]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/page_alloc.c
jbd2: Fix possible overflow in jbd2_log_space_left()
[mirror_ubuntu-hirsute-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION (8)
81
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
85 #endif
86
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
90 /*
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
95 */
96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 int _node_numa_mem_[MAX_NUMNODES];
99 #endif
100
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105 };
106 DEFINE_MUTEX(pcpu_drain_mutex);
107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
113
114 /*
115 * Array of node states.
116 */
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 [N_MEMORY] = { { [0] = 1UL } },
126 [N_CPU] = { { [0] = 1UL } },
127 #endif /* NUMA */
128 };
129 EXPORT_SYMBOL(node_states);
130
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
135
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140 #else
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142 #endif
143 EXPORT_SYMBOL(init_on_alloc);
144
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
147 #else
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
149 #endif
150 EXPORT_SYMBOL(init_on_free);
151
152 static int __init early_init_on_alloc(char *buf)
153 {
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167 }
168 early_param("init_on_alloc", early_init_on_alloc);
169
170 static int __init early_init_on_free(char *buf)
171 {
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185 }
186 early_param("init_on_free", early_init_on_free);
187
188 /*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196 static inline int get_pcppage_migratetype(struct page *page)
197 {
198 return page->index;
199 }
200
201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202 {
203 page->index = migratetype;
204 }
205
206 #ifdef CONFIG_PM_SLEEP
207 /*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
215 */
216
217 static gfp_t saved_gfp_mask;
218
219 void pm_restore_gfp_mask(void)
220 {
221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
226 }
227
228 void pm_restrict_gfp_mask(void)
229 {
230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234 }
235
236 bool pm_suspended_storage(void)
237 {
238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 return false;
240 return true;
241 }
242 #endif /* CONFIG_PM_SLEEP */
243
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
246 #endif
247
248 static void __free_pages_ok(struct page *page, unsigned int order);
249
250 /*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
260 */
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 [ZONE_DMA] = 256,
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 [ZONE_DMA32] = 256,
267 #endif
268 [ZONE_NORMAL] = 32,
269 #ifdef CONFIG_HIGHMEM
270 [ZONE_HIGHMEM] = 0,
271 #endif
272 [ZONE_MOVABLE] = 0,
273 };
274
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
277 "DMA",
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 "DMA32",
281 #endif
282 "Normal",
283 #ifdef CONFIG_HIGHMEM
284 "HighMem",
285 #endif
286 "Movable",
287 #ifdef CONFIG_ZONE_DEVICE
288 "Device",
289 #endif
290 };
291
292 const char * const migratetype_names[MIGRATE_TYPES] = {
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297 #ifdef CONFIG_CMA
298 "CMA",
299 #endif
300 #ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302 #endif
303 };
304
305 compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308 #ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310 #endif
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313 #endif
314 };
315
316 int min_free_kbytes = 1024;
317 int user_min_free_kbytes = -1;
318 #ifdef CONFIG_DISCONTIGMEM
319 /*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328 int watermark_boost_factor __read_mostly;
329 #else
330 int watermark_boost_factor __read_mostly = 15000;
331 #endif
332 int watermark_scale_factor = 10;
333
334 static unsigned long nr_kernel_pages __initdata;
335 static unsigned long nr_all_pages __initdata;
336 static unsigned long dma_reserve __initdata;
337
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352
353 #if MAX_NUMNODES > 1
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
358 #endif
359
360 int page_group_by_mobility_disabled __read_mostly;
361
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 /*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370 /*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384 {
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387 }
388
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391 {
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 return true;
396
397 return false;
398 }
399
400 /*
401 * Returns true when the remaining initialisation should be deferred until
402 * later in the boot cycle when it can be parallelised.
403 */
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406 {
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
418 /* Always populate low zones for address-constrained allocations */
419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 return false;
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
426 nr_initialised++;
427 if ((nr_initialised > PAGES_PER_SECTION) &&
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
431 }
432 return false;
433 }
434 #else
435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
437 static inline bool early_page_uninitialised(unsigned long pfn)
438 {
439 return false;
440 }
441
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443 {
444 return false;
445 }
446 #endif
447
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451 {
452 #ifdef CONFIG_SPARSEMEM
453 return section_to_usemap(__pfn_to_section(pfn));
454 #else
455 return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
457 }
458
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460 {
461 #ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464 #else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 #endif /* CONFIG_SPARSEMEM */
468 }
469
470 /**
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
476 *
477 * Return: pageblock_bits flags
478 */
479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
483 {
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
487
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
492
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496 }
497
498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
501 {
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503 }
504
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506 {
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508 }
509
510 /**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
517 */
518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
522 {
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
540
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
547 }
548 }
549
550 void set_pageblock_migratetype(struct page *page, int migratetype)
551 {
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
554 migratetype = MIGRATE_UNMOVABLE;
555
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
558 }
559
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
562 {
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
566 unsigned long sp, start_pfn;
567
568 do {
569 seq = zone_span_seqbegin(zone);
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
572 if (!zone_spans_pfn(zone, pfn))
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
575
576 if (ret)
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
580
581 return ret;
582 }
583
584 static int page_is_consistent(struct zone *zone, struct page *page)
585 {
586 if (!pfn_valid_within(page_to_pfn(page)))
587 return 0;
588 if (zone != page_zone(page))
589 return 0;
590
591 return 1;
592 }
593 /*
594 * Temporary debugging check for pages not lying within a given zone.
595 */
596 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 {
598 if (page_outside_zone_boundaries(zone, page))
599 return 1;
600 if (!page_is_consistent(zone, page))
601 return 1;
602
603 return 0;
604 }
605 #else
606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
607 {
608 return 0;
609 }
610 #endif
611
612 static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
614 {
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
618
619 /*
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
622 */
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
627 }
628 if (nr_unshown) {
629 pr_alert(
630 "BUG: Bad page state: %lu messages suppressed\n",
631 nr_unshown);
632 nr_unshown = 0;
633 }
634 nr_shown = 0;
635 }
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
638
639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
640 current->comm, page_to_pfn(page));
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
646 dump_page_owner(page);
647
648 print_modules();
649 dump_stack();
650 out:
651 /* Leave bad fields for debug, except PageBuddy could make trouble */
652 page_mapcount_reset(page); /* remove PageBuddy */
653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
654 }
655
656 /*
657 * Higher-order pages are called "compound pages". They are structured thusly:
658 *
659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
660 *
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
663 *
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
666 *
667 * The first tail page's ->compound_order holds the order of allocation.
668 * This usage means that zero-order pages may not be compound.
669 */
670
671 void free_compound_page(struct page *page)
672 {
673 mem_cgroup_uncharge(page);
674 __free_pages_ok(page, compound_order(page));
675 }
676
677 void prep_compound_page(struct page *page, unsigned int order)
678 {
679 int i;
680 int nr_pages = 1 << order;
681
682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 set_compound_order(page, order);
684 __SetPageHead(page);
685 for (i = 1; i < nr_pages; i++) {
686 struct page *p = page + i;
687 set_page_count(p, 0);
688 p->mapping = TAIL_MAPPING;
689 set_compound_head(p, page);
690 }
691 atomic_set(compound_mapcount_ptr(page), -1);
692 }
693
694 #ifdef CONFIG_DEBUG_PAGEALLOC
695 unsigned int _debug_guardpage_minorder;
696
697 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
698 DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
699 #else
700 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
701 #endif
702 EXPORT_SYMBOL(_debug_pagealloc_enabled);
703
704 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
705
706 static int __init early_debug_pagealloc(char *buf)
707 {
708 bool enable = false;
709
710 if (kstrtobool(buf, &enable))
711 return -EINVAL;
712
713 if (enable)
714 static_branch_enable(&_debug_pagealloc_enabled);
715
716 return 0;
717 }
718 early_param("debug_pagealloc", early_debug_pagealloc);
719
720 static void init_debug_guardpage(void)
721 {
722 if (!debug_pagealloc_enabled())
723 return;
724
725 if (!debug_guardpage_minorder())
726 return;
727
728 static_branch_enable(&_debug_guardpage_enabled);
729 }
730
731 static int __init debug_guardpage_minorder_setup(char *buf)
732 {
733 unsigned long res;
734
735 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
736 pr_err("Bad debug_guardpage_minorder value\n");
737 return 0;
738 }
739 _debug_guardpage_minorder = res;
740 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
741 return 0;
742 }
743 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
744
745 static inline bool set_page_guard(struct zone *zone, struct page *page,
746 unsigned int order, int migratetype)
747 {
748 if (!debug_guardpage_enabled())
749 return false;
750
751 if (order >= debug_guardpage_minorder())
752 return false;
753
754 __SetPageGuard(page);
755 INIT_LIST_HEAD(&page->lru);
756 set_page_private(page, order);
757 /* Guard pages are not available for any usage */
758 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
759
760 return true;
761 }
762
763 static inline void clear_page_guard(struct zone *zone, struct page *page,
764 unsigned int order, int migratetype)
765 {
766 if (!debug_guardpage_enabled())
767 return;
768
769 __ClearPageGuard(page);
770
771 set_page_private(page, 0);
772 if (!is_migrate_isolate(migratetype))
773 __mod_zone_freepage_state(zone, (1 << order), migratetype);
774 }
775 #else
776 static inline bool set_page_guard(struct zone *zone, struct page *page,
777 unsigned int order, int migratetype) { return false; }
778 static inline void clear_page_guard(struct zone *zone, struct page *page,
779 unsigned int order, int migratetype) {}
780 #endif
781
782 static inline void set_page_order(struct page *page, unsigned int order)
783 {
784 set_page_private(page, order);
785 __SetPageBuddy(page);
786 }
787
788 /*
789 * This function checks whether a page is free && is the buddy
790 * we can coalesce a page and its buddy if
791 * (a) the buddy is not in a hole (check before calling!) &&
792 * (b) the buddy is in the buddy system &&
793 * (c) a page and its buddy have the same order &&
794 * (d) a page and its buddy are in the same zone.
795 *
796 * For recording whether a page is in the buddy system, we set PageBuddy.
797 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
798 *
799 * For recording page's order, we use page_private(page).
800 */
801 static inline int page_is_buddy(struct page *page, struct page *buddy,
802 unsigned int order)
803 {
804 if (page_is_guard(buddy) && page_order(buddy) == order) {
805 if (page_zone_id(page) != page_zone_id(buddy))
806 return 0;
807
808 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
809
810 return 1;
811 }
812
813 if (PageBuddy(buddy) && page_order(buddy) == order) {
814 /*
815 * zone check is done late to avoid uselessly
816 * calculating zone/node ids for pages that could
817 * never merge.
818 */
819 if (page_zone_id(page) != page_zone_id(buddy))
820 return 0;
821
822 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
823
824 return 1;
825 }
826 return 0;
827 }
828
829 #ifdef CONFIG_COMPACTION
830 static inline struct capture_control *task_capc(struct zone *zone)
831 {
832 struct capture_control *capc = current->capture_control;
833
834 return capc &&
835 !(current->flags & PF_KTHREAD) &&
836 !capc->page &&
837 capc->cc->zone == zone &&
838 capc->cc->direct_compaction ? capc : NULL;
839 }
840
841 static inline bool
842 compaction_capture(struct capture_control *capc, struct page *page,
843 int order, int migratetype)
844 {
845 if (!capc || order != capc->cc->order)
846 return false;
847
848 /* Do not accidentally pollute CMA or isolated regions*/
849 if (is_migrate_cma(migratetype) ||
850 is_migrate_isolate(migratetype))
851 return false;
852
853 /*
854 * Do not let lower order allocations polluate a movable pageblock.
855 * This might let an unmovable request use a reclaimable pageblock
856 * and vice-versa but no more than normal fallback logic which can
857 * have trouble finding a high-order free page.
858 */
859 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
860 return false;
861
862 capc->page = page;
863 return true;
864 }
865
866 #else
867 static inline struct capture_control *task_capc(struct zone *zone)
868 {
869 return NULL;
870 }
871
872 static inline bool
873 compaction_capture(struct capture_control *capc, struct page *page,
874 int order, int migratetype)
875 {
876 return false;
877 }
878 #endif /* CONFIG_COMPACTION */
879
880 /*
881 * Freeing function for a buddy system allocator.
882 *
883 * The concept of a buddy system is to maintain direct-mapped table
884 * (containing bit values) for memory blocks of various "orders".
885 * The bottom level table contains the map for the smallest allocatable
886 * units of memory (here, pages), and each level above it describes
887 * pairs of units from the levels below, hence, "buddies".
888 * At a high level, all that happens here is marking the table entry
889 * at the bottom level available, and propagating the changes upward
890 * as necessary, plus some accounting needed to play nicely with other
891 * parts of the VM system.
892 * At each level, we keep a list of pages, which are heads of continuous
893 * free pages of length of (1 << order) and marked with PageBuddy.
894 * Page's order is recorded in page_private(page) field.
895 * So when we are allocating or freeing one, we can derive the state of the
896 * other. That is, if we allocate a small block, and both were
897 * free, the remainder of the region must be split into blocks.
898 * If a block is freed, and its buddy is also free, then this
899 * triggers coalescing into a block of larger size.
900 *
901 * -- nyc
902 */
903
904 static inline void __free_one_page(struct page *page,
905 unsigned long pfn,
906 struct zone *zone, unsigned int order,
907 int migratetype)
908 {
909 unsigned long combined_pfn;
910 unsigned long uninitialized_var(buddy_pfn);
911 struct page *buddy;
912 unsigned int max_order;
913 struct capture_control *capc = task_capc(zone);
914
915 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
916
917 VM_BUG_ON(!zone_is_initialized(zone));
918 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
919
920 VM_BUG_ON(migratetype == -1);
921 if (likely(!is_migrate_isolate(migratetype)))
922 __mod_zone_freepage_state(zone, 1 << order, migratetype);
923
924 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
925 VM_BUG_ON_PAGE(bad_range(zone, page), page);
926
927 continue_merging:
928 while (order < max_order - 1) {
929 if (compaction_capture(capc, page, order, migratetype)) {
930 __mod_zone_freepage_state(zone, -(1 << order),
931 migratetype);
932 return;
933 }
934 buddy_pfn = __find_buddy_pfn(pfn, order);
935 buddy = page + (buddy_pfn - pfn);
936
937 if (!pfn_valid_within(buddy_pfn))
938 goto done_merging;
939 if (!page_is_buddy(page, buddy, order))
940 goto done_merging;
941 /*
942 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
943 * merge with it and move up one order.
944 */
945 if (page_is_guard(buddy))
946 clear_page_guard(zone, buddy, order, migratetype);
947 else
948 del_page_from_free_area(buddy, &zone->free_area[order]);
949 combined_pfn = buddy_pfn & pfn;
950 page = page + (combined_pfn - pfn);
951 pfn = combined_pfn;
952 order++;
953 }
954 if (max_order < MAX_ORDER) {
955 /* If we are here, it means order is >= pageblock_order.
956 * We want to prevent merge between freepages on isolate
957 * pageblock and normal pageblock. Without this, pageblock
958 * isolation could cause incorrect freepage or CMA accounting.
959 *
960 * We don't want to hit this code for the more frequent
961 * low-order merging.
962 */
963 if (unlikely(has_isolate_pageblock(zone))) {
964 int buddy_mt;
965
966 buddy_pfn = __find_buddy_pfn(pfn, order);
967 buddy = page + (buddy_pfn - pfn);
968 buddy_mt = get_pageblock_migratetype(buddy);
969
970 if (migratetype != buddy_mt
971 && (is_migrate_isolate(migratetype) ||
972 is_migrate_isolate(buddy_mt)))
973 goto done_merging;
974 }
975 max_order++;
976 goto continue_merging;
977 }
978
979 done_merging:
980 set_page_order(page, order);
981
982 /*
983 * If this is not the largest possible page, check if the buddy
984 * of the next-highest order is free. If it is, it's possible
985 * that pages are being freed that will coalesce soon. In case,
986 * that is happening, add the free page to the tail of the list
987 * so it's less likely to be used soon and more likely to be merged
988 * as a higher order page
989 */
990 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
991 && !is_shuffle_order(order)) {
992 struct page *higher_page, *higher_buddy;
993 combined_pfn = buddy_pfn & pfn;
994 higher_page = page + (combined_pfn - pfn);
995 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
996 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
997 if (pfn_valid_within(buddy_pfn) &&
998 page_is_buddy(higher_page, higher_buddy, order + 1)) {
999 add_to_free_area_tail(page, &zone->free_area[order],
1000 migratetype);
1001 return;
1002 }
1003 }
1004
1005 if (is_shuffle_order(order))
1006 add_to_free_area_random(page, &zone->free_area[order],
1007 migratetype);
1008 else
1009 add_to_free_area(page, &zone->free_area[order], migratetype);
1010
1011 }
1012
1013 /*
1014 * A bad page could be due to a number of fields. Instead of multiple branches,
1015 * try and check multiple fields with one check. The caller must do a detailed
1016 * check if necessary.
1017 */
1018 static inline bool page_expected_state(struct page *page,
1019 unsigned long check_flags)
1020 {
1021 if (unlikely(atomic_read(&page->_mapcount) != -1))
1022 return false;
1023
1024 if (unlikely((unsigned long)page->mapping |
1025 page_ref_count(page) |
1026 #ifdef CONFIG_MEMCG
1027 (unsigned long)page->mem_cgroup |
1028 #endif
1029 (page->flags & check_flags)))
1030 return false;
1031
1032 return true;
1033 }
1034
1035 static void free_pages_check_bad(struct page *page)
1036 {
1037 const char *bad_reason;
1038 unsigned long bad_flags;
1039
1040 bad_reason = NULL;
1041 bad_flags = 0;
1042
1043 if (unlikely(atomic_read(&page->_mapcount) != -1))
1044 bad_reason = "nonzero mapcount";
1045 if (unlikely(page->mapping != NULL))
1046 bad_reason = "non-NULL mapping";
1047 if (unlikely(page_ref_count(page) != 0))
1048 bad_reason = "nonzero _refcount";
1049 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1050 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1051 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1052 }
1053 #ifdef CONFIG_MEMCG
1054 if (unlikely(page->mem_cgroup))
1055 bad_reason = "page still charged to cgroup";
1056 #endif
1057 bad_page(page, bad_reason, bad_flags);
1058 }
1059
1060 static inline int free_pages_check(struct page *page)
1061 {
1062 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1063 return 0;
1064
1065 /* Something has gone sideways, find it */
1066 free_pages_check_bad(page);
1067 return 1;
1068 }
1069
1070 static int free_tail_pages_check(struct page *head_page, struct page *page)
1071 {
1072 int ret = 1;
1073
1074 /*
1075 * We rely page->lru.next never has bit 0 set, unless the page
1076 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1077 */
1078 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1079
1080 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1081 ret = 0;
1082 goto out;
1083 }
1084 switch (page - head_page) {
1085 case 1:
1086 /* the first tail page: ->mapping may be compound_mapcount() */
1087 if (unlikely(compound_mapcount(page))) {
1088 bad_page(page, "nonzero compound_mapcount", 0);
1089 goto out;
1090 }
1091 break;
1092 case 2:
1093 /*
1094 * the second tail page: ->mapping is
1095 * deferred_list.next -- ignore value.
1096 */
1097 break;
1098 default:
1099 if (page->mapping != TAIL_MAPPING) {
1100 bad_page(page, "corrupted mapping in tail page", 0);
1101 goto out;
1102 }
1103 break;
1104 }
1105 if (unlikely(!PageTail(page))) {
1106 bad_page(page, "PageTail not set", 0);
1107 goto out;
1108 }
1109 if (unlikely(compound_head(page) != head_page)) {
1110 bad_page(page, "compound_head not consistent", 0);
1111 goto out;
1112 }
1113 ret = 0;
1114 out:
1115 page->mapping = NULL;
1116 clear_compound_head(page);
1117 return ret;
1118 }
1119
1120 static void kernel_init_free_pages(struct page *page, int numpages)
1121 {
1122 int i;
1123
1124 for (i = 0; i < numpages; i++)
1125 clear_highpage(page + i);
1126 }
1127
1128 static __always_inline bool free_pages_prepare(struct page *page,
1129 unsigned int order, bool check_free)
1130 {
1131 int bad = 0;
1132
1133 VM_BUG_ON_PAGE(PageTail(page), page);
1134
1135 trace_mm_page_free(page, order);
1136
1137 /*
1138 * Check tail pages before head page information is cleared to
1139 * avoid checking PageCompound for order-0 pages.
1140 */
1141 if (unlikely(order)) {
1142 bool compound = PageCompound(page);
1143 int i;
1144
1145 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1146
1147 if (compound)
1148 ClearPageDoubleMap(page);
1149 for (i = 1; i < (1 << order); i++) {
1150 if (compound)
1151 bad += free_tail_pages_check(page, page + i);
1152 if (unlikely(free_pages_check(page + i))) {
1153 bad++;
1154 continue;
1155 }
1156 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1157 }
1158 }
1159 if (PageMappingFlags(page))
1160 page->mapping = NULL;
1161 if (memcg_kmem_enabled() && PageKmemcg(page))
1162 __memcg_kmem_uncharge(page, order);
1163 if (check_free)
1164 bad += free_pages_check(page);
1165 if (bad)
1166 return false;
1167
1168 page_cpupid_reset_last(page);
1169 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1170 reset_page_owner(page, order);
1171
1172 if (!PageHighMem(page)) {
1173 debug_check_no_locks_freed(page_address(page),
1174 PAGE_SIZE << order);
1175 debug_check_no_obj_freed(page_address(page),
1176 PAGE_SIZE << order);
1177 }
1178 if (want_init_on_free())
1179 kernel_init_free_pages(page, 1 << order);
1180
1181 kernel_poison_pages(page, 1 << order, 0);
1182 /*
1183 * arch_free_page() can make the page's contents inaccessible. s390
1184 * does this. So nothing which can access the page's contents should
1185 * happen after this.
1186 */
1187 arch_free_page(page, order);
1188
1189 if (debug_pagealloc_enabled())
1190 kernel_map_pages(page, 1 << order, 0);
1191
1192 kasan_free_nondeferred_pages(page, order);
1193
1194 return true;
1195 }
1196
1197 #ifdef CONFIG_DEBUG_VM
1198 /*
1199 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1200 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1201 * moved from pcp lists to free lists.
1202 */
1203 static bool free_pcp_prepare(struct page *page)
1204 {
1205 return free_pages_prepare(page, 0, true);
1206 }
1207
1208 static bool bulkfree_pcp_prepare(struct page *page)
1209 {
1210 if (debug_pagealloc_enabled())
1211 return free_pages_check(page);
1212 else
1213 return false;
1214 }
1215 #else
1216 /*
1217 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1218 * moving from pcp lists to free list in order to reduce overhead. With
1219 * debug_pagealloc enabled, they are checked also immediately when being freed
1220 * to the pcp lists.
1221 */
1222 static bool free_pcp_prepare(struct page *page)
1223 {
1224 if (debug_pagealloc_enabled())
1225 return free_pages_prepare(page, 0, true);
1226 else
1227 return free_pages_prepare(page, 0, false);
1228 }
1229
1230 static bool bulkfree_pcp_prepare(struct page *page)
1231 {
1232 return free_pages_check(page);
1233 }
1234 #endif /* CONFIG_DEBUG_VM */
1235
1236 static inline void prefetch_buddy(struct page *page)
1237 {
1238 unsigned long pfn = page_to_pfn(page);
1239 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1240 struct page *buddy = page + (buddy_pfn - pfn);
1241
1242 prefetch(buddy);
1243 }
1244
1245 /*
1246 * Frees a number of pages from the PCP lists
1247 * Assumes all pages on list are in same zone, and of same order.
1248 * count is the number of pages to free.
1249 *
1250 * If the zone was previously in an "all pages pinned" state then look to
1251 * see if this freeing clears that state.
1252 *
1253 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1254 * pinned" detection logic.
1255 */
1256 static void free_pcppages_bulk(struct zone *zone, int count,
1257 struct per_cpu_pages *pcp)
1258 {
1259 int migratetype = 0;
1260 int batch_free = 0;
1261 int prefetch_nr = 0;
1262 bool isolated_pageblocks;
1263 struct page *page, *tmp;
1264 LIST_HEAD(head);
1265
1266 while (count) {
1267 struct list_head *list;
1268
1269 /*
1270 * Remove pages from lists in a round-robin fashion. A
1271 * batch_free count is maintained that is incremented when an
1272 * empty list is encountered. This is so more pages are freed
1273 * off fuller lists instead of spinning excessively around empty
1274 * lists
1275 */
1276 do {
1277 batch_free++;
1278 if (++migratetype == MIGRATE_PCPTYPES)
1279 migratetype = 0;
1280 list = &pcp->lists[migratetype];
1281 } while (list_empty(list));
1282
1283 /* This is the only non-empty list. Free them all. */
1284 if (batch_free == MIGRATE_PCPTYPES)
1285 batch_free = count;
1286
1287 do {
1288 page = list_last_entry(list, struct page, lru);
1289 /* must delete to avoid corrupting pcp list */
1290 list_del(&page->lru);
1291 pcp->count--;
1292
1293 if (bulkfree_pcp_prepare(page))
1294 continue;
1295
1296 list_add_tail(&page->lru, &head);
1297
1298 /*
1299 * We are going to put the page back to the global
1300 * pool, prefetch its buddy to speed up later access
1301 * under zone->lock. It is believed the overhead of
1302 * an additional test and calculating buddy_pfn here
1303 * can be offset by reduced memory latency later. To
1304 * avoid excessive prefetching due to large count, only
1305 * prefetch buddy for the first pcp->batch nr of pages.
1306 */
1307 if (prefetch_nr++ < pcp->batch)
1308 prefetch_buddy(page);
1309 } while (--count && --batch_free && !list_empty(list));
1310 }
1311
1312 spin_lock(&zone->lock);
1313 isolated_pageblocks = has_isolate_pageblock(zone);
1314
1315 /*
1316 * Use safe version since after __free_one_page(),
1317 * page->lru.next will not point to original list.
1318 */
1319 list_for_each_entry_safe(page, tmp, &head, lru) {
1320 int mt = get_pcppage_migratetype(page);
1321 /* MIGRATE_ISOLATE page should not go to pcplists */
1322 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1323 /* Pageblock could have been isolated meanwhile */
1324 if (unlikely(isolated_pageblocks))
1325 mt = get_pageblock_migratetype(page);
1326
1327 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1328 trace_mm_page_pcpu_drain(page, 0, mt);
1329 }
1330 spin_unlock(&zone->lock);
1331 }
1332
1333 static void free_one_page(struct zone *zone,
1334 struct page *page, unsigned long pfn,
1335 unsigned int order,
1336 int migratetype)
1337 {
1338 spin_lock(&zone->lock);
1339 if (unlikely(has_isolate_pageblock(zone) ||
1340 is_migrate_isolate(migratetype))) {
1341 migratetype = get_pfnblock_migratetype(page, pfn);
1342 }
1343 __free_one_page(page, pfn, zone, order, migratetype);
1344 spin_unlock(&zone->lock);
1345 }
1346
1347 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1348 unsigned long zone, int nid)
1349 {
1350 mm_zero_struct_page(page);
1351 set_page_links(page, zone, nid, pfn);
1352 init_page_count(page);
1353 page_mapcount_reset(page);
1354 page_cpupid_reset_last(page);
1355 page_kasan_tag_reset(page);
1356
1357 INIT_LIST_HEAD(&page->lru);
1358 #ifdef WANT_PAGE_VIRTUAL
1359 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1360 if (!is_highmem_idx(zone))
1361 set_page_address(page, __va(pfn << PAGE_SHIFT));
1362 #endif
1363 }
1364
1365 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1366 static void __meminit init_reserved_page(unsigned long pfn)
1367 {
1368 pg_data_t *pgdat;
1369 int nid, zid;
1370
1371 if (!early_page_uninitialised(pfn))
1372 return;
1373
1374 nid = early_pfn_to_nid(pfn);
1375 pgdat = NODE_DATA(nid);
1376
1377 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1378 struct zone *zone = &pgdat->node_zones[zid];
1379
1380 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1381 break;
1382 }
1383 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1384 }
1385 #else
1386 static inline void init_reserved_page(unsigned long pfn)
1387 {
1388 }
1389 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1390
1391 /*
1392 * Initialised pages do not have PageReserved set. This function is
1393 * called for each range allocated by the bootmem allocator and
1394 * marks the pages PageReserved. The remaining valid pages are later
1395 * sent to the buddy page allocator.
1396 */
1397 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1398 {
1399 unsigned long start_pfn = PFN_DOWN(start);
1400 unsigned long end_pfn = PFN_UP(end);
1401
1402 for (; start_pfn < end_pfn; start_pfn++) {
1403 if (pfn_valid(start_pfn)) {
1404 struct page *page = pfn_to_page(start_pfn);
1405
1406 init_reserved_page(start_pfn);
1407
1408 /* Avoid false-positive PageTail() */
1409 INIT_LIST_HEAD(&page->lru);
1410
1411 /*
1412 * no need for atomic set_bit because the struct
1413 * page is not visible yet so nobody should
1414 * access it yet.
1415 */
1416 __SetPageReserved(page);
1417 }
1418 }
1419 }
1420
1421 static void __free_pages_ok(struct page *page, unsigned int order)
1422 {
1423 unsigned long flags;
1424 int migratetype;
1425 unsigned long pfn = page_to_pfn(page);
1426
1427 if (!free_pages_prepare(page, order, true))
1428 return;
1429
1430 migratetype = get_pfnblock_migratetype(page, pfn);
1431 local_irq_save(flags);
1432 __count_vm_events(PGFREE, 1 << order);
1433 free_one_page(page_zone(page), page, pfn, order, migratetype);
1434 local_irq_restore(flags);
1435 }
1436
1437 void __free_pages_core(struct page *page, unsigned int order)
1438 {
1439 unsigned int nr_pages = 1 << order;
1440 struct page *p = page;
1441 unsigned int loop;
1442
1443 prefetchw(p);
1444 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1445 prefetchw(p + 1);
1446 __ClearPageReserved(p);
1447 set_page_count(p, 0);
1448 }
1449 __ClearPageReserved(p);
1450 set_page_count(p, 0);
1451
1452 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1453 set_page_refcounted(page);
1454 __free_pages(page, order);
1455 }
1456
1457 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1458 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1459
1460 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1461
1462 int __meminit early_pfn_to_nid(unsigned long pfn)
1463 {
1464 static DEFINE_SPINLOCK(early_pfn_lock);
1465 int nid;
1466
1467 spin_lock(&early_pfn_lock);
1468 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1469 if (nid < 0)
1470 nid = first_online_node;
1471 spin_unlock(&early_pfn_lock);
1472
1473 return nid;
1474 }
1475 #endif
1476
1477 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1478 /* Only safe to use early in boot when initialisation is single-threaded */
1479 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1480 {
1481 int nid;
1482
1483 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1484 if (nid >= 0 && nid != node)
1485 return false;
1486 return true;
1487 }
1488
1489 #else
1490 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1491 {
1492 return true;
1493 }
1494 #endif
1495
1496
1497 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1498 unsigned int order)
1499 {
1500 if (early_page_uninitialised(pfn))
1501 return;
1502 __free_pages_core(page, order);
1503 }
1504
1505 /*
1506 * Check that the whole (or subset of) a pageblock given by the interval of
1507 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1508 * with the migration of free compaction scanner. The scanners then need to
1509 * use only pfn_valid_within() check for arches that allow holes within
1510 * pageblocks.
1511 *
1512 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1513 *
1514 * It's possible on some configurations to have a setup like node0 node1 node0
1515 * i.e. it's possible that all pages within a zones range of pages do not
1516 * belong to a single zone. We assume that a border between node0 and node1
1517 * can occur within a single pageblock, but not a node0 node1 node0
1518 * interleaving within a single pageblock. It is therefore sufficient to check
1519 * the first and last page of a pageblock and avoid checking each individual
1520 * page in a pageblock.
1521 */
1522 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1523 unsigned long end_pfn, struct zone *zone)
1524 {
1525 struct page *start_page;
1526 struct page *end_page;
1527
1528 /* end_pfn is one past the range we are checking */
1529 end_pfn--;
1530
1531 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1532 return NULL;
1533
1534 start_page = pfn_to_online_page(start_pfn);
1535 if (!start_page)
1536 return NULL;
1537
1538 if (page_zone(start_page) != zone)
1539 return NULL;
1540
1541 end_page = pfn_to_page(end_pfn);
1542
1543 /* This gives a shorter code than deriving page_zone(end_page) */
1544 if (page_zone_id(start_page) != page_zone_id(end_page))
1545 return NULL;
1546
1547 return start_page;
1548 }
1549
1550 void set_zone_contiguous(struct zone *zone)
1551 {
1552 unsigned long block_start_pfn = zone->zone_start_pfn;
1553 unsigned long block_end_pfn;
1554
1555 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1556 for (; block_start_pfn < zone_end_pfn(zone);
1557 block_start_pfn = block_end_pfn,
1558 block_end_pfn += pageblock_nr_pages) {
1559
1560 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1561
1562 if (!__pageblock_pfn_to_page(block_start_pfn,
1563 block_end_pfn, zone))
1564 return;
1565 }
1566
1567 /* We confirm that there is no hole */
1568 zone->contiguous = true;
1569 }
1570
1571 void clear_zone_contiguous(struct zone *zone)
1572 {
1573 zone->contiguous = false;
1574 }
1575
1576 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1577 static void __init deferred_free_range(unsigned long pfn,
1578 unsigned long nr_pages)
1579 {
1580 struct page *page;
1581 unsigned long i;
1582
1583 if (!nr_pages)
1584 return;
1585
1586 page = pfn_to_page(pfn);
1587
1588 /* Free a large naturally-aligned chunk if possible */
1589 if (nr_pages == pageblock_nr_pages &&
1590 (pfn & (pageblock_nr_pages - 1)) == 0) {
1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1592 __free_pages_core(page, pageblock_order);
1593 return;
1594 }
1595
1596 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1597 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1598 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1599 __free_pages_core(page, 0);
1600 }
1601 }
1602
1603 /* Completion tracking for deferred_init_memmap() threads */
1604 static atomic_t pgdat_init_n_undone __initdata;
1605 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1606
1607 static inline void __init pgdat_init_report_one_done(void)
1608 {
1609 if (atomic_dec_and_test(&pgdat_init_n_undone))
1610 complete(&pgdat_init_all_done_comp);
1611 }
1612
1613 /*
1614 * Returns true if page needs to be initialized or freed to buddy allocator.
1615 *
1616 * First we check if pfn is valid on architectures where it is possible to have
1617 * holes within pageblock_nr_pages. On systems where it is not possible, this
1618 * function is optimized out.
1619 *
1620 * Then, we check if a current large page is valid by only checking the validity
1621 * of the head pfn.
1622 */
1623 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1624 {
1625 if (!pfn_valid_within(pfn))
1626 return false;
1627 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1628 return false;
1629 return true;
1630 }
1631
1632 /*
1633 * Free pages to buddy allocator. Try to free aligned pages in
1634 * pageblock_nr_pages sizes.
1635 */
1636 static void __init deferred_free_pages(unsigned long pfn,
1637 unsigned long end_pfn)
1638 {
1639 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1640 unsigned long nr_free = 0;
1641
1642 for (; pfn < end_pfn; pfn++) {
1643 if (!deferred_pfn_valid(pfn)) {
1644 deferred_free_range(pfn - nr_free, nr_free);
1645 nr_free = 0;
1646 } else if (!(pfn & nr_pgmask)) {
1647 deferred_free_range(pfn - nr_free, nr_free);
1648 nr_free = 1;
1649 touch_nmi_watchdog();
1650 } else {
1651 nr_free++;
1652 }
1653 }
1654 /* Free the last block of pages to allocator */
1655 deferred_free_range(pfn - nr_free, nr_free);
1656 }
1657
1658 /*
1659 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1660 * by performing it only once every pageblock_nr_pages.
1661 * Return number of pages initialized.
1662 */
1663 static unsigned long __init deferred_init_pages(struct zone *zone,
1664 unsigned long pfn,
1665 unsigned long end_pfn)
1666 {
1667 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1668 int nid = zone_to_nid(zone);
1669 unsigned long nr_pages = 0;
1670 int zid = zone_idx(zone);
1671 struct page *page = NULL;
1672
1673 for (; pfn < end_pfn; pfn++) {
1674 if (!deferred_pfn_valid(pfn)) {
1675 page = NULL;
1676 continue;
1677 } else if (!page || !(pfn & nr_pgmask)) {
1678 page = pfn_to_page(pfn);
1679 touch_nmi_watchdog();
1680 } else {
1681 page++;
1682 }
1683 __init_single_page(page, pfn, zid, nid);
1684 nr_pages++;
1685 }
1686 return (nr_pages);
1687 }
1688
1689 /*
1690 * This function is meant to pre-load the iterator for the zone init.
1691 * Specifically it walks through the ranges until we are caught up to the
1692 * first_init_pfn value and exits there. If we never encounter the value we
1693 * return false indicating there are no valid ranges left.
1694 */
1695 static bool __init
1696 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1697 unsigned long *spfn, unsigned long *epfn,
1698 unsigned long first_init_pfn)
1699 {
1700 u64 j;
1701
1702 /*
1703 * Start out by walking through the ranges in this zone that have
1704 * already been initialized. We don't need to do anything with them
1705 * so we just need to flush them out of the system.
1706 */
1707 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1708 if (*epfn <= first_init_pfn)
1709 continue;
1710 if (*spfn < first_init_pfn)
1711 *spfn = first_init_pfn;
1712 *i = j;
1713 return true;
1714 }
1715
1716 return false;
1717 }
1718
1719 /*
1720 * Initialize and free pages. We do it in two loops: first we initialize
1721 * struct page, then free to buddy allocator, because while we are
1722 * freeing pages we can access pages that are ahead (computing buddy
1723 * page in __free_one_page()).
1724 *
1725 * In order to try and keep some memory in the cache we have the loop
1726 * broken along max page order boundaries. This way we will not cause
1727 * any issues with the buddy page computation.
1728 */
1729 static unsigned long __init
1730 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1731 unsigned long *end_pfn)
1732 {
1733 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1734 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1735 unsigned long nr_pages = 0;
1736 u64 j = *i;
1737
1738 /* First we loop through and initialize the page values */
1739 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1740 unsigned long t;
1741
1742 if (mo_pfn <= *start_pfn)
1743 break;
1744
1745 t = min(mo_pfn, *end_pfn);
1746 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1747
1748 if (mo_pfn < *end_pfn) {
1749 *start_pfn = mo_pfn;
1750 break;
1751 }
1752 }
1753
1754 /* Reset values and now loop through freeing pages as needed */
1755 swap(j, *i);
1756
1757 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1758 unsigned long t;
1759
1760 if (mo_pfn <= spfn)
1761 break;
1762
1763 t = min(mo_pfn, epfn);
1764 deferred_free_pages(spfn, t);
1765
1766 if (mo_pfn <= epfn)
1767 break;
1768 }
1769
1770 return nr_pages;
1771 }
1772
1773 /* Initialise remaining memory on a node */
1774 static int __init deferred_init_memmap(void *data)
1775 {
1776 pg_data_t *pgdat = data;
1777 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1778 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1779 unsigned long first_init_pfn, flags;
1780 unsigned long start = jiffies;
1781 struct zone *zone;
1782 int zid;
1783 u64 i;
1784
1785 /* Bind memory initialisation thread to a local node if possible */
1786 if (!cpumask_empty(cpumask))
1787 set_cpus_allowed_ptr(current, cpumask);
1788
1789 pgdat_resize_lock(pgdat, &flags);
1790 first_init_pfn = pgdat->first_deferred_pfn;
1791 if (first_init_pfn == ULONG_MAX) {
1792 pgdat_resize_unlock(pgdat, &flags);
1793 pgdat_init_report_one_done();
1794 return 0;
1795 }
1796
1797 /* Sanity check boundaries */
1798 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1799 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1800 pgdat->first_deferred_pfn = ULONG_MAX;
1801
1802 /* Only the highest zone is deferred so find it */
1803 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1804 zone = pgdat->node_zones + zid;
1805 if (first_init_pfn < zone_end_pfn(zone))
1806 break;
1807 }
1808
1809 /* If the zone is empty somebody else may have cleared out the zone */
1810 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1811 first_init_pfn))
1812 goto zone_empty;
1813
1814 /*
1815 * Initialize and free pages in MAX_ORDER sized increments so
1816 * that we can avoid introducing any issues with the buddy
1817 * allocator.
1818 */
1819 while (spfn < epfn)
1820 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1821 zone_empty:
1822 pgdat_resize_unlock(pgdat, &flags);
1823
1824 /* Sanity check that the next zone really is unpopulated */
1825 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1826
1827 pr_info("node %d initialised, %lu pages in %ums\n",
1828 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1829
1830 pgdat_init_report_one_done();
1831 return 0;
1832 }
1833
1834 /*
1835 * If this zone has deferred pages, try to grow it by initializing enough
1836 * deferred pages to satisfy the allocation specified by order, rounded up to
1837 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1838 * of SECTION_SIZE bytes by initializing struct pages in increments of
1839 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1840 *
1841 * Return true when zone was grown, otherwise return false. We return true even
1842 * when we grow less than requested, to let the caller decide if there are
1843 * enough pages to satisfy the allocation.
1844 *
1845 * Note: We use noinline because this function is needed only during boot, and
1846 * it is called from a __ref function _deferred_grow_zone. This way we are
1847 * making sure that it is not inlined into permanent text section.
1848 */
1849 static noinline bool __init
1850 deferred_grow_zone(struct zone *zone, unsigned int order)
1851 {
1852 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1853 pg_data_t *pgdat = zone->zone_pgdat;
1854 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1855 unsigned long spfn, epfn, flags;
1856 unsigned long nr_pages = 0;
1857 u64 i;
1858
1859 /* Only the last zone may have deferred pages */
1860 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1861 return false;
1862
1863 pgdat_resize_lock(pgdat, &flags);
1864
1865 /*
1866 * If deferred pages have been initialized while we were waiting for
1867 * the lock, return true, as the zone was grown. The caller will retry
1868 * this zone. We won't return to this function since the caller also
1869 * has this static branch.
1870 */
1871 if (!static_branch_unlikely(&deferred_pages)) {
1872 pgdat_resize_unlock(pgdat, &flags);
1873 return true;
1874 }
1875
1876 /*
1877 * If someone grew this zone while we were waiting for spinlock, return
1878 * true, as there might be enough pages already.
1879 */
1880 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1881 pgdat_resize_unlock(pgdat, &flags);
1882 return true;
1883 }
1884
1885 /* If the zone is empty somebody else may have cleared out the zone */
1886 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1887 first_deferred_pfn)) {
1888 pgdat->first_deferred_pfn = ULONG_MAX;
1889 pgdat_resize_unlock(pgdat, &flags);
1890 /* Retry only once. */
1891 return first_deferred_pfn != ULONG_MAX;
1892 }
1893
1894 /*
1895 * Initialize and free pages in MAX_ORDER sized increments so
1896 * that we can avoid introducing any issues with the buddy
1897 * allocator.
1898 */
1899 while (spfn < epfn) {
1900 /* update our first deferred PFN for this section */
1901 first_deferred_pfn = spfn;
1902
1903 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1904
1905 /* We should only stop along section boundaries */
1906 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1907 continue;
1908
1909 /* If our quota has been met we can stop here */
1910 if (nr_pages >= nr_pages_needed)
1911 break;
1912 }
1913
1914 pgdat->first_deferred_pfn = spfn;
1915 pgdat_resize_unlock(pgdat, &flags);
1916
1917 return nr_pages > 0;
1918 }
1919
1920 /*
1921 * deferred_grow_zone() is __init, but it is called from
1922 * get_page_from_freelist() during early boot until deferred_pages permanently
1923 * disables this call. This is why we have refdata wrapper to avoid warning,
1924 * and to ensure that the function body gets unloaded.
1925 */
1926 static bool __ref
1927 _deferred_grow_zone(struct zone *zone, unsigned int order)
1928 {
1929 return deferred_grow_zone(zone, order);
1930 }
1931
1932 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1933
1934 void __init page_alloc_init_late(void)
1935 {
1936 struct zone *zone;
1937 int nid;
1938
1939 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1940
1941 /* There will be num_node_state(N_MEMORY) threads */
1942 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1943 for_each_node_state(nid, N_MEMORY) {
1944 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1945 }
1946
1947 /* Block until all are initialised */
1948 wait_for_completion(&pgdat_init_all_done_comp);
1949
1950 /*
1951 * We initialized the rest of the deferred pages. Permanently disable
1952 * on-demand struct page initialization.
1953 */
1954 static_branch_disable(&deferred_pages);
1955
1956 /* Reinit limits that are based on free pages after the kernel is up */
1957 files_maxfiles_init();
1958 #endif
1959
1960 /* Discard memblock private memory */
1961 memblock_discard();
1962
1963 for_each_node_state(nid, N_MEMORY)
1964 shuffle_free_memory(NODE_DATA(nid));
1965
1966 for_each_populated_zone(zone)
1967 set_zone_contiguous(zone);
1968
1969 #ifdef CONFIG_DEBUG_PAGEALLOC
1970 init_debug_guardpage();
1971 #endif
1972 }
1973
1974 #ifdef CONFIG_CMA
1975 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1976 void __init init_cma_reserved_pageblock(struct page *page)
1977 {
1978 unsigned i = pageblock_nr_pages;
1979 struct page *p = page;
1980
1981 do {
1982 __ClearPageReserved(p);
1983 set_page_count(p, 0);
1984 } while (++p, --i);
1985
1986 set_pageblock_migratetype(page, MIGRATE_CMA);
1987
1988 if (pageblock_order >= MAX_ORDER) {
1989 i = pageblock_nr_pages;
1990 p = page;
1991 do {
1992 set_page_refcounted(p);
1993 __free_pages(p, MAX_ORDER - 1);
1994 p += MAX_ORDER_NR_PAGES;
1995 } while (i -= MAX_ORDER_NR_PAGES);
1996 } else {
1997 set_page_refcounted(page);
1998 __free_pages(page, pageblock_order);
1999 }
2000
2001 adjust_managed_page_count(page, pageblock_nr_pages);
2002 }
2003 #endif
2004
2005 /*
2006 * The order of subdivision here is critical for the IO subsystem.
2007 * Please do not alter this order without good reasons and regression
2008 * testing. Specifically, as large blocks of memory are subdivided,
2009 * the order in which smaller blocks are delivered depends on the order
2010 * they're subdivided in this function. This is the primary factor
2011 * influencing the order in which pages are delivered to the IO
2012 * subsystem according to empirical testing, and this is also justified
2013 * by considering the behavior of a buddy system containing a single
2014 * large block of memory acted on by a series of small allocations.
2015 * This behavior is a critical factor in sglist merging's success.
2016 *
2017 * -- nyc
2018 */
2019 static inline void expand(struct zone *zone, struct page *page,
2020 int low, int high, struct free_area *area,
2021 int migratetype)
2022 {
2023 unsigned long size = 1 << high;
2024
2025 while (high > low) {
2026 area--;
2027 high--;
2028 size >>= 1;
2029 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2030
2031 /*
2032 * Mark as guard pages (or page), that will allow to
2033 * merge back to allocator when buddy will be freed.
2034 * Corresponding page table entries will not be touched,
2035 * pages will stay not present in virtual address space
2036 */
2037 if (set_page_guard(zone, &page[size], high, migratetype))
2038 continue;
2039
2040 add_to_free_area(&page[size], area, migratetype);
2041 set_page_order(&page[size], high);
2042 }
2043 }
2044
2045 static void check_new_page_bad(struct page *page)
2046 {
2047 const char *bad_reason = NULL;
2048 unsigned long bad_flags = 0;
2049
2050 if (unlikely(atomic_read(&page->_mapcount) != -1))
2051 bad_reason = "nonzero mapcount";
2052 if (unlikely(page->mapping != NULL))
2053 bad_reason = "non-NULL mapping";
2054 if (unlikely(page_ref_count(page) != 0))
2055 bad_reason = "nonzero _refcount";
2056 if (unlikely(page->flags & __PG_HWPOISON)) {
2057 bad_reason = "HWPoisoned (hardware-corrupted)";
2058 bad_flags = __PG_HWPOISON;
2059 /* Don't complain about hwpoisoned pages */
2060 page_mapcount_reset(page); /* remove PageBuddy */
2061 return;
2062 }
2063 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2064 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2065 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2066 }
2067 #ifdef CONFIG_MEMCG
2068 if (unlikely(page->mem_cgroup))
2069 bad_reason = "page still charged to cgroup";
2070 #endif
2071 bad_page(page, bad_reason, bad_flags);
2072 }
2073
2074 /*
2075 * This page is about to be returned from the page allocator
2076 */
2077 static inline int check_new_page(struct page *page)
2078 {
2079 if (likely(page_expected_state(page,
2080 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2081 return 0;
2082
2083 check_new_page_bad(page);
2084 return 1;
2085 }
2086
2087 static inline bool free_pages_prezeroed(void)
2088 {
2089 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2090 page_poisoning_enabled()) || want_init_on_free();
2091 }
2092
2093 #ifdef CONFIG_DEBUG_VM
2094 /*
2095 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2096 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2097 * also checked when pcp lists are refilled from the free lists.
2098 */
2099 static inline bool check_pcp_refill(struct page *page)
2100 {
2101 if (debug_pagealloc_enabled())
2102 return check_new_page(page);
2103 else
2104 return false;
2105 }
2106
2107 static inline bool check_new_pcp(struct page *page)
2108 {
2109 return check_new_page(page);
2110 }
2111 #else
2112 /*
2113 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2114 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2115 * enabled, they are also checked when being allocated from the pcp lists.
2116 */
2117 static inline bool check_pcp_refill(struct page *page)
2118 {
2119 return check_new_page(page);
2120 }
2121 static inline bool check_new_pcp(struct page *page)
2122 {
2123 if (debug_pagealloc_enabled())
2124 return check_new_page(page);
2125 else
2126 return false;
2127 }
2128 #endif /* CONFIG_DEBUG_VM */
2129
2130 static bool check_new_pages(struct page *page, unsigned int order)
2131 {
2132 int i;
2133 for (i = 0; i < (1 << order); i++) {
2134 struct page *p = page + i;
2135
2136 if (unlikely(check_new_page(p)))
2137 return true;
2138 }
2139
2140 return false;
2141 }
2142
2143 inline void post_alloc_hook(struct page *page, unsigned int order,
2144 gfp_t gfp_flags)
2145 {
2146 set_page_private(page, 0);
2147 set_page_refcounted(page);
2148
2149 arch_alloc_page(page, order);
2150 if (debug_pagealloc_enabled())
2151 kernel_map_pages(page, 1 << order, 1);
2152 kasan_alloc_pages(page, order);
2153 kernel_poison_pages(page, 1 << order, 1);
2154 set_page_owner(page, order, gfp_flags);
2155 }
2156
2157 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2158 unsigned int alloc_flags)
2159 {
2160 post_alloc_hook(page, order, gfp_flags);
2161
2162 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2163 kernel_init_free_pages(page, 1 << order);
2164
2165 if (order && (gfp_flags & __GFP_COMP))
2166 prep_compound_page(page, order);
2167
2168 /*
2169 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2170 * allocate the page. The expectation is that the caller is taking
2171 * steps that will free more memory. The caller should avoid the page
2172 * being used for !PFMEMALLOC purposes.
2173 */
2174 if (alloc_flags & ALLOC_NO_WATERMARKS)
2175 set_page_pfmemalloc(page);
2176 else
2177 clear_page_pfmemalloc(page);
2178 }
2179
2180 /*
2181 * Go through the free lists for the given migratetype and remove
2182 * the smallest available page from the freelists
2183 */
2184 static __always_inline
2185 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2186 int migratetype)
2187 {
2188 unsigned int current_order;
2189 struct free_area *area;
2190 struct page *page;
2191
2192 /* Find a page of the appropriate size in the preferred list */
2193 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2194 area = &(zone->free_area[current_order]);
2195 page = get_page_from_free_area(area, migratetype);
2196 if (!page)
2197 continue;
2198 del_page_from_free_area(page, area);
2199 expand(zone, page, order, current_order, area, migratetype);
2200 set_pcppage_migratetype(page, migratetype);
2201 return page;
2202 }
2203
2204 return NULL;
2205 }
2206
2207
2208 /*
2209 * This array describes the order lists are fallen back to when
2210 * the free lists for the desirable migrate type are depleted
2211 */
2212 static int fallbacks[MIGRATE_TYPES][4] = {
2213 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2214 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2215 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2216 #ifdef CONFIG_CMA
2217 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2218 #endif
2219 #ifdef CONFIG_MEMORY_ISOLATION
2220 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2221 #endif
2222 };
2223
2224 #ifdef CONFIG_CMA
2225 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2226 unsigned int order)
2227 {
2228 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2229 }
2230 #else
2231 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2232 unsigned int order) { return NULL; }
2233 #endif
2234
2235 /*
2236 * Move the free pages in a range to the free lists of the requested type.
2237 * Note that start_page and end_pages are not aligned on a pageblock
2238 * boundary. If alignment is required, use move_freepages_block()
2239 */
2240 static int move_freepages(struct zone *zone,
2241 struct page *start_page, struct page *end_page,
2242 int migratetype, int *num_movable)
2243 {
2244 struct page *page;
2245 unsigned int order;
2246 int pages_moved = 0;
2247
2248 for (page = start_page; page <= end_page;) {
2249 if (!pfn_valid_within(page_to_pfn(page))) {
2250 page++;
2251 continue;
2252 }
2253
2254 if (!PageBuddy(page)) {
2255 /*
2256 * We assume that pages that could be isolated for
2257 * migration are movable. But we don't actually try
2258 * isolating, as that would be expensive.
2259 */
2260 if (num_movable &&
2261 (PageLRU(page) || __PageMovable(page)))
2262 (*num_movable)++;
2263
2264 page++;
2265 continue;
2266 }
2267
2268 /* Make sure we are not inadvertently changing nodes */
2269 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2270 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2271
2272 order = page_order(page);
2273 move_to_free_area(page, &zone->free_area[order], migratetype);
2274 page += 1 << order;
2275 pages_moved += 1 << order;
2276 }
2277
2278 return pages_moved;
2279 }
2280
2281 int move_freepages_block(struct zone *zone, struct page *page,
2282 int migratetype, int *num_movable)
2283 {
2284 unsigned long start_pfn, end_pfn;
2285 struct page *start_page, *end_page;
2286
2287 if (num_movable)
2288 *num_movable = 0;
2289
2290 start_pfn = page_to_pfn(page);
2291 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2292 start_page = pfn_to_page(start_pfn);
2293 end_page = start_page + pageblock_nr_pages - 1;
2294 end_pfn = start_pfn + pageblock_nr_pages - 1;
2295
2296 /* Do not cross zone boundaries */
2297 if (!zone_spans_pfn(zone, start_pfn))
2298 start_page = page;
2299 if (!zone_spans_pfn(zone, end_pfn))
2300 return 0;
2301
2302 return move_freepages(zone, start_page, end_page, migratetype,
2303 num_movable);
2304 }
2305
2306 static void change_pageblock_range(struct page *pageblock_page,
2307 int start_order, int migratetype)
2308 {
2309 int nr_pageblocks = 1 << (start_order - pageblock_order);
2310
2311 while (nr_pageblocks--) {
2312 set_pageblock_migratetype(pageblock_page, migratetype);
2313 pageblock_page += pageblock_nr_pages;
2314 }
2315 }
2316
2317 /*
2318 * When we are falling back to another migratetype during allocation, try to
2319 * steal extra free pages from the same pageblocks to satisfy further
2320 * allocations, instead of polluting multiple pageblocks.
2321 *
2322 * If we are stealing a relatively large buddy page, it is likely there will
2323 * be more free pages in the pageblock, so try to steal them all. For
2324 * reclaimable and unmovable allocations, we steal regardless of page size,
2325 * as fragmentation caused by those allocations polluting movable pageblocks
2326 * is worse than movable allocations stealing from unmovable and reclaimable
2327 * pageblocks.
2328 */
2329 static bool can_steal_fallback(unsigned int order, int start_mt)
2330 {
2331 /*
2332 * Leaving this order check is intended, although there is
2333 * relaxed order check in next check. The reason is that
2334 * we can actually steal whole pageblock if this condition met,
2335 * but, below check doesn't guarantee it and that is just heuristic
2336 * so could be changed anytime.
2337 */
2338 if (order >= pageblock_order)
2339 return true;
2340
2341 if (order >= pageblock_order / 2 ||
2342 start_mt == MIGRATE_RECLAIMABLE ||
2343 start_mt == MIGRATE_UNMOVABLE ||
2344 page_group_by_mobility_disabled)
2345 return true;
2346
2347 return false;
2348 }
2349
2350 static inline void boost_watermark(struct zone *zone)
2351 {
2352 unsigned long max_boost;
2353
2354 if (!watermark_boost_factor)
2355 return;
2356
2357 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2358 watermark_boost_factor, 10000);
2359
2360 /*
2361 * high watermark may be uninitialised if fragmentation occurs
2362 * very early in boot so do not boost. We do not fall
2363 * through and boost by pageblock_nr_pages as failing
2364 * allocations that early means that reclaim is not going
2365 * to help and it may even be impossible to reclaim the
2366 * boosted watermark resulting in a hang.
2367 */
2368 if (!max_boost)
2369 return;
2370
2371 max_boost = max(pageblock_nr_pages, max_boost);
2372
2373 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2374 max_boost);
2375 }
2376
2377 /*
2378 * This function implements actual steal behaviour. If order is large enough,
2379 * we can steal whole pageblock. If not, we first move freepages in this
2380 * pageblock to our migratetype and determine how many already-allocated pages
2381 * are there in the pageblock with a compatible migratetype. If at least half
2382 * of pages are free or compatible, we can change migratetype of the pageblock
2383 * itself, so pages freed in the future will be put on the correct free list.
2384 */
2385 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2386 unsigned int alloc_flags, int start_type, bool whole_block)
2387 {
2388 unsigned int current_order = page_order(page);
2389 struct free_area *area;
2390 int free_pages, movable_pages, alike_pages;
2391 int old_block_type;
2392
2393 old_block_type = get_pageblock_migratetype(page);
2394
2395 /*
2396 * This can happen due to races and we want to prevent broken
2397 * highatomic accounting.
2398 */
2399 if (is_migrate_highatomic(old_block_type))
2400 goto single_page;
2401
2402 /* Take ownership for orders >= pageblock_order */
2403 if (current_order >= pageblock_order) {
2404 change_pageblock_range(page, current_order, start_type);
2405 goto single_page;
2406 }
2407
2408 /*
2409 * Boost watermarks to increase reclaim pressure to reduce the
2410 * likelihood of future fallbacks. Wake kswapd now as the node
2411 * may be balanced overall and kswapd will not wake naturally.
2412 */
2413 boost_watermark(zone);
2414 if (alloc_flags & ALLOC_KSWAPD)
2415 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2416
2417 /* We are not allowed to try stealing from the whole block */
2418 if (!whole_block)
2419 goto single_page;
2420
2421 free_pages = move_freepages_block(zone, page, start_type,
2422 &movable_pages);
2423 /*
2424 * Determine how many pages are compatible with our allocation.
2425 * For movable allocation, it's the number of movable pages which
2426 * we just obtained. For other types it's a bit more tricky.
2427 */
2428 if (start_type == MIGRATE_MOVABLE) {
2429 alike_pages = movable_pages;
2430 } else {
2431 /*
2432 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2433 * to MOVABLE pageblock, consider all non-movable pages as
2434 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2435 * vice versa, be conservative since we can't distinguish the
2436 * exact migratetype of non-movable pages.
2437 */
2438 if (old_block_type == MIGRATE_MOVABLE)
2439 alike_pages = pageblock_nr_pages
2440 - (free_pages + movable_pages);
2441 else
2442 alike_pages = 0;
2443 }
2444
2445 /* moving whole block can fail due to zone boundary conditions */
2446 if (!free_pages)
2447 goto single_page;
2448
2449 /*
2450 * If a sufficient number of pages in the block are either free or of
2451 * comparable migratability as our allocation, claim the whole block.
2452 */
2453 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2454 page_group_by_mobility_disabled)
2455 set_pageblock_migratetype(page, start_type);
2456
2457 return;
2458
2459 single_page:
2460 area = &zone->free_area[current_order];
2461 move_to_free_area(page, area, start_type);
2462 }
2463
2464 /*
2465 * Check whether there is a suitable fallback freepage with requested order.
2466 * If only_stealable is true, this function returns fallback_mt only if
2467 * we can steal other freepages all together. This would help to reduce
2468 * fragmentation due to mixed migratetype pages in one pageblock.
2469 */
2470 int find_suitable_fallback(struct free_area *area, unsigned int order,
2471 int migratetype, bool only_stealable, bool *can_steal)
2472 {
2473 int i;
2474 int fallback_mt;
2475
2476 if (area->nr_free == 0)
2477 return -1;
2478
2479 *can_steal = false;
2480 for (i = 0;; i++) {
2481 fallback_mt = fallbacks[migratetype][i];
2482 if (fallback_mt == MIGRATE_TYPES)
2483 break;
2484
2485 if (free_area_empty(area, fallback_mt))
2486 continue;
2487
2488 if (can_steal_fallback(order, migratetype))
2489 *can_steal = true;
2490
2491 if (!only_stealable)
2492 return fallback_mt;
2493
2494 if (*can_steal)
2495 return fallback_mt;
2496 }
2497
2498 return -1;
2499 }
2500
2501 /*
2502 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2503 * there are no empty page blocks that contain a page with a suitable order
2504 */
2505 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2506 unsigned int alloc_order)
2507 {
2508 int mt;
2509 unsigned long max_managed, flags;
2510
2511 /*
2512 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2513 * Check is race-prone but harmless.
2514 */
2515 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2516 if (zone->nr_reserved_highatomic >= max_managed)
2517 return;
2518
2519 spin_lock_irqsave(&zone->lock, flags);
2520
2521 /* Recheck the nr_reserved_highatomic limit under the lock */
2522 if (zone->nr_reserved_highatomic >= max_managed)
2523 goto out_unlock;
2524
2525 /* Yoink! */
2526 mt = get_pageblock_migratetype(page);
2527 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2528 && !is_migrate_cma(mt)) {
2529 zone->nr_reserved_highatomic += pageblock_nr_pages;
2530 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2531 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2532 }
2533
2534 out_unlock:
2535 spin_unlock_irqrestore(&zone->lock, flags);
2536 }
2537
2538 /*
2539 * Used when an allocation is about to fail under memory pressure. This
2540 * potentially hurts the reliability of high-order allocations when under
2541 * intense memory pressure but failed atomic allocations should be easier
2542 * to recover from than an OOM.
2543 *
2544 * If @force is true, try to unreserve a pageblock even though highatomic
2545 * pageblock is exhausted.
2546 */
2547 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2548 bool force)
2549 {
2550 struct zonelist *zonelist = ac->zonelist;
2551 unsigned long flags;
2552 struct zoneref *z;
2553 struct zone *zone;
2554 struct page *page;
2555 int order;
2556 bool ret;
2557
2558 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2559 ac->nodemask) {
2560 /*
2561 * Preserve at least one pageblock unless memory pressure
2562 * is really high.
2563 */
2564 if (!force && zone->nr_reserved_highatomic <=
2565 pageblock_nr_pages)
2566 continue;
2567
2568 spin_lock_irqsave(&zone->lock, flags);
2569 for (order = 0; order < MAX_ORDER; order++) {
2570 struct free_area *area = &(zone->free_area[order]);
2571
2572 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2573 if (!page)
2574 continue;
2575
2576 /*
2577 * In page freeing path, migratetype change is racy so
2578 * we can counter several free pages in a pageblock
2579 * in this loop althoug we changed the pageblock type
2580 * from highatomic to ac->migratetype. So we should
2581 * adjust the count once.
2582 */
2583 if (is_migrate_highatomic_page(page)) {
2584 /*
2585 * It should never happen but changes to
2586 * locking could inadvertently allow a per-cpu
2587 * drain to add pages to MIGRATE_HIGHATOMIC
2588 * while unreserving so be safe and watch for
2589 * underflows.
2590 */
2591 zone->nr_reserved_highatomic -= min(
2592 pageblock_nr_pages,
2593 zone->nr_reserved_highatomic);
2594 }
2595
2596 /*
2597 * Convert to ac->migratetype and avoid the normal
2598 * pageblock stealing heuristics. Minimally, the caller
2599 * is doing the work and needs the pages. More
2600 * importantly, if the block was always converted to
2601 * MIGRATE_UNMOVABLE or another type then the number
2602 * of pageblocks that cannot be completely freed
2603 * may increase.
2604 */
2605 set_pageblock_migratetype(page, ac->migratetype);
2606 ret = move_freepages_block(zone, page, ac->migratetype,
2607 NULL);
2608 if (ret) {
2609 spin_unlock_irqrestore(&zone->lock, flags);
2610 return ret;
2611 }
2612 }
2613 spin_unlock_irqrestore(&zone->lock, flags);
2614 }
2615
2616 return false;
2617 }
2618
2619 /*
2620 * Try finding a free buddy page on the fallback list and put it on the free
2621 * list of requested migratetype, possibly along with other pages from the same
2622 * block, depending on fragmentation avoidance heuristics. Returns true if
2623 * fallback was found so that __rmqueue_smallest() can grab it.
2624 *
2625 * The use of signed ints for order and current_order is a deliberate
2626 * deviation from the rest of this file, to make the for loop
2627 * condition simpler.
2628 */
2629 static __always_inline bool
2630 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2631 unsigned int alloc_flags)
2632 {
2633 struct free_area *area;
2634 int current_order;
2635 int min_order = order;
2636 struct page *page;
2637 int fallback_mt;
2638 bool can_steal;
2639
2640 /*
2641 * Do not steal pages from freelists belonging to other pageblocks
2642 * i.e. orders < pageblock_order. If there are no local zones free,
2643 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2644 */
2645 if (alloc_flags & ALLOC_NOFRAGMENT)
2646 min_order = pageblock_order;
2647
2648 /*
2649 * Find the largest available free page in the other list. This roughly
2650 * approximates finding the pageblock with the most free pages, which
2651 * would be too costly to do exactly.
2652 */
2653 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2654 --current_order) {
2655 area = &(zone->free_area[current_order]);
2656 fallback_mt = find_suitable_fallback(area, current_order,
2657 start_migratetype, false, &can_steal);
2658 if (fallback_mt == -1)
2659 continue;
2660
2661 /*
2662 * We cannot steal all free pages from the pageblock and the
2663 * requested migratetype is movable. In that case it's better to
2664 * steal and split the smallest available page instead of the
2665 * largest available page, because even if the next movable
2666 * allocation falls back into a different pageblock than this
2667 * one, it won't cause permanent fragmentation.
2668 */
2669 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2670 && current_order > order)
2671 goto find_smallest;
2672
2673 goto do_steal;
2674 }
2675
2676 return false;
2677
2678 find_smallest:
2679 for (current_order = order; current_order < MAX_ORDER;
2680 current_order++) {
2681 area = &(zone->free_area[current_order]);
2682 fallback_mt = find_suitable_fallback(area, current_order,
2683 start_migratetype, false, &can_steal);
2684 if (fallback_mt != -1)
2685 break;
2686 }
2687
2688 /*
2689 * This should not happen - we already found a suitable fallback
2690 * when looking for the largest page.
2691 */
2692 VM_BUG_ON(current_order == MAX_ORDER);
2693
2694 do_steal:
2695 page = get_page_from_free_area(area, fallback_mt);
2696
2697 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2698 can_steal);
2699
2700 trace_mm_page_alloc_extfrag(page, order, current_order,
2701 start_migratetype, fallback_mt);
2702
2703 return true;
2704
2705 }
2706
2707 /*
2708 * Do the hard work of removing an element from the buddy allocator.
2709 * Call me with the zone->lock already held.
2710 */
2711 static __always_inline struct page *
2712 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2713 unsigned int alloc_flags)
2714 {
2715 struct page *page;
2716
2717 retry:
2718 page = __rmqueue_smallest(zone, order, migratetype);
2719 if (unlikely(!page)) {
2720 if (migratetype == MIGRATE_MOVABLE)
2721 page = __rmqueue_cma_fallback(zone, order);
2722
2723 if (!page && __rmqueue_fallback(zone, order, migratetype,
2724 alloc_flags))
2725 goto retry;
2726 }
2727
2728 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2729 return page;
2730 }
2731
2732 /*
2733 * Obtain a specified number of elements from the buddy allocator, all under
2734 * a single hold of the lock, for efficiency. Add them to the supplied list.
2735 * Returns the number of new pages which were placed at *list.
2736 */
2737 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2738 unsigned long count, struct list_head *list,
2739 int migratetype, unsigned int alloc_flags)
2740 {
2741 int i, alloced = 0;
2742
2743 spin_lock(&zone->lock);
2744 for (i = 0; i < count; ++i) {
2745 struct page *page = __rmqueue(zone, order, migratetype,
2746 alloc_flags);
2747 if (unlikely(page == NULL))
2748 break;
2749
2750 if (unlikely(check_pcp_refill(page)))
2751 continue;
2752
2753 /*
2754 * Split buddy pages returned by expand() are received here in
2755 * physical page order. The page is added to the tail of
2756 * caller's list. From the callers perspective, the linked list
2757 * is ordered by page number under some conditions. This is
2758 * useful for IO devices that can forward direction from the
2759 * head, thus also in the physical page order. This is useful
2760 * for IO devices that can merge IO requests if the physical
2761 * pages are ordered properly.
2762 */
2763 list_add_tail(&page->lru, list);
2764 alloced++;
2765 if (is_migrate_cma(get_pcppage_migratetype(page)))
2766 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2767 -(1 << order));
2768 }
2769
2770 /*
2771 * i pages were removed from the buddy list even if some leak due
2772 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2773 * on i. Do not confuse with 'alloced' which is the number of
2774 * pages added to the pcp list.
2775 */
2776 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2777 spin_unlock(&zone->lock);
2778 return alloced;
2779 }
2780
2781 #ifdef CONFIG_NUMA
2782 /*
2783 * Called from the vmstat counter updater to drain pagesets of this
2784 * currently executing processor on remote nodes after they have
2785 * expired.
2786 *
2787 * Note that this function must be called with the thread pinned to
2788 * a single processor.
2789 */
2790 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2791 {
2792 unsigned long flags;
2793 int to_drain, batch;
2794
2795 local_irq_save(flags);
2796 batch = READ_ONCE(pcp->batch);
2797 to_drain = min(pcp->count, batch);
2798 if (to_drain > 0)
2799 free_pcppages_bulk(zone, to_drain, pcp);
2800 local_irq_restore(flags);
2801 }
2802 #endif
2803
2804 /*
2805 * Drain pcplists of the indicated processor and zone.
2806 *
2807 * The processor must either be the current processor and the
2808 * thread pinned to the current processor or a processor that
2809 * is not online.
2810 */
2811 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2812 {
2813 unsigned long flags;
2814 struct per_cpu_pageset *pset;
2815 struct per_cpu_pages *pcp;
2816
2817 local_irq_save(flags);
2818 pset = per_cpu_ptr(zone->pageset, cpu);
2819
2820 pcp = &pset->pcp;
2821 if (pcp->count)
2822 free_pcppages_bulk(zone, pcp->count, pcp);
2823 local_irq_restore(flags);
2824 }
2825
2826 /*
2827 * Drain pcplists of all zones on the indicated processor.
2828 *
2829 * The processor must either be the current processor and the
2830 * thread pinned to the current processor or a processor that
2831 * is not online.
2832 */
2833 static void drain_pages(unsigned int cpu)
2834 {
2835 struct zone *zone;
2836
2837 for_each_populated_zone(zone) {
2838 drain_pages_zone(cpu, zone);
2839 }
2840 }
2841
2842 /*
2843 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2844 *
2845 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2846 * the single zone's pages.
2847 */
2848 void drain_local_pages(struct zone *zone)
2849 {
2850 int cpu = smp_processor_id();
2851
2852 if (zone)
2853 drain_pages_zone(cpu, zone);
2854 else
2855 drain_pages(cpu);
2856 }
2857
2858 static void drain_local_pages_wq(struct work_struct *work)
2859 {
2860 struct pcpu_drain *drain;
2861
2862 drain = container_of(work, struct pcpu_drain, work);
2863
2864 /*
2865 * drain_all_pages doesn't use proper cpu hotplug protection so
2866 * we can race with cpu offline when the WQ can move this from
2867 * a cpu pinned worker to an unbound one. We can operate on a different
2868 * cpu which is allright but we also have to make sure to not move to
2869 * a different one.
2870 */
2871 preempt_disable();
2872 drain_local_pages(drain->zone);
2873 preempt_enable();
2874 }
2875
2876 /*
2877 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2878 *
2879 * When zone parameter is non-NULL, spill just the single zone's pages.
2880 *
2881 * Note that this can be extremely slow as the draining happens in a workqueue.
2882 */
2883 void drain_all_pages(struct zone *zone)
2884 {
2885 int cpu;
2886
2887 /*
2888 * Allocate in the BSS so we wont require allocation in
2889 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2890 */
2891 static cpumask_t cpus_with_pcps;
2892
2893 /*
2894 * Make sure nobody triggers this path before mm_percpu_wq is fully
2895 * initialized.
2896 */
2897 if (WARN_ON_ONCE(!mm_percpu_wq))
2898 return;
2899
2900 /*
2901 * Do not drain if one is already in progress unless it's specific to
2902 * a zone. Such callers are primarily CMA and memory hotplug and need
2903 * the drain to be complete when the call returns.
2904 */
2905 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2906 if (!zone)
2907 return;
2908 mutex_lock(&pcpu_drain_mutex);
2909 }
2910
2911 /*
2912 * We don't care about racing with CPU hotplug event
2913 * as offline notification will cause the notified
2914 * cpu to drain that CPU pcps and on_each_cpu_mask
2915 * disables preemption as part of its processing
2916 */
2917 for_each_online_cpu(cpu) {
2918 struct per_cpu_pageset *pcp;
2919 struct zone *z;
2920 bool has_pcps = false;
2921
2922 if (zone) {
2923 pcp = per_cpu_ptr(zone->pageset, cpu);
2924 if (pcp->pcp.count)
2925 has_pcps = true;
2926 } else {
2927 for_each_populated_zone(z) {
2928 pcp = per_cpu_ptr(z->pageset, cpu);
2929 if (pcp->pcp.count) {
2930 has_pcps = true;
2931 break;
2932 }
2933 }
2934 }
2935
2936 if (has_pcps)
2937 cpumask_set_cpu(cpu, &cpus_with_pcps);
2938 else
2939 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2940 }
2941
2942 for_each_cpu(cpu, &cpus_with_pcps) {
2943 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2944
2945 drain->zone = zone;
2946 INIT_WORK(&drain->work, drain_local_pages_wq);
2947 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2948 }
2949 for_each_cpu(cpu, &cpus_with_pcps)
2950 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2951
2952 mutex_unlock(&pcpu_drain_mutex);
2953 }
2954
2955 #ifdef CONFIG_HIBERNATION
2956
2957 /*
2958 * Touch the watchdog for every WD_PAGE_COUNT pages.
2959 */
2960 #define WD_PAGE_COUNT (128*1024)
2961
2962 void mark_free_pages(struct zone *zone)
2963 {
2964 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2965 unsigned long flags;
2966 unsigned int order, t;
2967 struct page *page;
2968
2969 if (zone_is_empty(zone))
2970 return;
2971
2972 spin_lock_irqsave(&zone->lock, flags);
2973
2974 max_zone_pfn = zone_end_pfn(zone);
2975 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2976 if (pfn_valid(pfn)) {
2977 page = pfn_to_page(pfn);
2978
2979 if (!--page_count) {
2980 touch_nmi_watchdog();
2981 page_count = WD_PAGE_COUNT;
2982 }
2983
2984 if (page_zone(page) != zone)
2985 continue;
2986
2987 if (!swsusp_page_is_forbidden(page))
2988 swsusp_unset_page_free(page);
2989 }
2990
2991 for_each_migratetype_order(order, t) {
2992 list_for_each_entry(page,
2993 &zone->free_area[order].free_list[t], lru) {
2994 unsigned long i;
2995
2996 pfn = page_to_pfn(page);
2997 for (i = 0; i < (1UL << order); i++) {
2998 if (!--page_count) {
2999 touch_nmi_watchdog();
3000 page_count = WD_PAGE_COUNT;
3001 }
3002 swsusp_set_page_free(pfn_to_page(pfn + i));
3003 }
3004 }
3005 }
3006 spin_unlock_irqrestore(&zone->lock, flags);
3007 }
3008 #endif /* CONFIG_PM */
3009
3010 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3011 {
3012 int migratetype;
3013
3014 if (!free_pcp_prepare(page))
3015 return false;
3016
3017 migratetype = get_pfnblock_migratetype(page, pfn);
3018 set_pcppage_migratetype(page, migratetype);
3019 return true;
3020 }
3021
3022 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3023 {
3024 struct zone *zone = page_zone(page);
3025 struct per_cpu_pages *pcp;
3026 int migratetype;
3027
3028 migratetype = get_pcppage_migratetype(page);
3029 __count_vm_event(PGFREE);
3030
3031 /*
3032 * We only track unmovable, reclaimable and movable on pcp lists.
3033 * Free ISOLATE pages back to the allocator because they are being
3034 * offlined but treat HIGHATOMIC as movable pages so we can get those
3035 * areas back if necessary. Otherwise, we may have to free
3036 * excessively into the page allocator
3037 */
3038 if (migratetype >= MIGRATE_PCPTYPES) {
3039 if (unlikely(is_migrate_isolate(migratetype))) {
3040 free_one_page(zone, page, pfn, 0, migratetype);
3041 return;
3042 }
3043 migratetype = MIGRATE_MOVABLE;
3044 }
3045
3046 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3047 list_add(&page->lru, &pcp->lists[migratetype]);
3048 pcp->count++;
3049 if (pcp->count >= pcp->high) {
3050 unsigned long batch = READ_ONCE(pcp->batch);
3051 free_pcppages_bulk(zone, batch, pcp);
3052 }
3053 }
3054
3055 /*
3056 * Free a 0-order page
3057 */
3058 void free_unref_page(struct page *page)
3059 {
3060 unsigned long flags;
3061 unsigned long pfn = page_to_pfn(page);
3062
3063 if (!free_unref_page_prepare(page, pfn))
3064 return;
3065
3066 local_irq_save(flags);
3067 free_unref_page_commit(page, pfn);
3068 local_irq_restore(flags);
3069 }
3070
3071 /*
3072 * Free a list of 0-order pages
3073 */
3074 void free_unref_page_list(struct list_head *list)
3075 {
3076 struct page *page, *next;
3077 unsigned long flags, pfn;
3078 int batch_count = 0;
3079
3080 /* Prepare pages for freeing */
3081 list_for_each_entry_safe(page, next, list, lru) {
3082 pfn = page_to_pfn(page);
3083 if (!free_unref_page_prepare(page, pfn))
3084 list_del(&page->lru);
3085 set_page_private(page, pfn);
3086 }
3087
3088 local_irq_save(flags);
3089 list_for_each_entry_safe(page, next, list, lru) {
3090 unsigned long pfn = page_private(page);
3091
3092 set_page_private(page, 0);
3093 trace_mm_page_free_batched(page);
3094 free_unref_page_commit(page, pfn);
3095
3096 /*
3097 * Guard against excessive IRQ disabled times when we get
3098 * a large list of pages to free.
3099 */
3100 if (++batch_count == SWAP_CLUSTER_MAX) {
3101 local_irq_restore(flags);
3102 batch_count = 0;
3103 local_irq_save(flags);
3104 }
3105 }
3106 local_irq_restore(flags);
3107 }
3108
3109 /*
3110 * split_page takes a non-compound higher-order page, and splits it into
3111 * n (1<<order) sub-pages: page[0..n]
3112 * Each sub-page must be freed individually.
3113 *
3114 * Note: this is probably too low level an operation for use in drivers.
3115 * Please consult with lkml before using this in your driver.
3116 */
3117 void split_page(struct page *page, unsigned int order)
3118 {
3119 int i;
3120
3121 VM_BUG_ON_PAGE(PageCompound(page), page);
3122 VM_BUG_ON_PAGE(!page_count(page), page);
3123
3124 for (i = 1; i < (1 << order); i++)
3125 set_page_refcounted(page + i);
3126 split_page_owner(page, order);
3127 }
3128 EXPORT_SYMBOL_GPL(split_page);
3129
3130 int __isolate_free_page(struct page *page, unsigned int order)
3131 {
3132 struct free_area *area = &page_zone(page)->free_area[order];
3133 unsigned long watermark;
3134 struct zone *zone;
3135 int mt;
3136
3137 BUG_ON(!PageBuddy(page));
3138
3139 zone = page_zone(page);
3140 mt = get_pageblock_migratetype(page);
3141
3142 if (!is_migrate_isolate(mt)) {
3143 /*
3144 * Obey watermarks as if the page was being allocated. We can
3145 * emulate a high-order watermark check with a raised order-0
3146 * watermark, because we already know our high-order page
3147 * exists.
3148 */
3149 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3150 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3151 return 0;
3152
3153 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3154 }
3155
3156 /* Remove page from free list */
3157
3158 del_page_from_free_area(page, area);
3159
3160 /*
3161 * Set the pageblock if the isolated page is at least half of a
3162 * pageblock
3163 */
3164 if (order >= pageblock_order - 1) {
3165 struct page *endpage = page + (1 << order) - 1;
3166 for (; page < endpage; page += pageblock_nr_pages) {
3167 int mt = get_pageblock_migratetype(page);
3168 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3169 && !is_migrate_highatomic(mt))
3170 set_pageblock_migratetype(page,
3171 MIGRATE_MOVABLE);
3172 }
3173 }
3174
3175
3176 return 1UL << order;
3177 }
3178
3179 /*
3180 * Update NUMA hit/miss statistics
3181 *
3182 * Must be called with interrupts disabled.
3183 */
3184 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3185 {
3186 #ifdef CONFIG_NUMA
3187 enum numa_stat_item local_stat = NUMA_LOCAL;
3188
3189 /* skip numa counters update if numa stats is disabled */
3190 if (!static_branch_likely(&vm_numa_stat_key))
3191 return;
3192
3193 if (zone_to_nid(z) != numa_node_id())
3194 local_stat = NUMA_OTHER;
3195
3196 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3197 __inc_numa_state(z, NUMA_HIT);
3198 else {
3199 __inc_numa_state(z, NUMA_MISS);
3200 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3201 }
3202 __inc_numa_state(z, local_stat);
3203 #endif
3204 }
3205
3206 /* Remove page from the per-cpu list, caller must protect the list */
3207 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3208 unsigned int alloc_flags,
3209 struct per_cpu_pages *pcp,
3210 struct list_head *list)
3211 {
3212 struct page *page;
3213
3214 do {
3215 if (list_empty(list)) {
3216 pcp->count += rmqueue_bulk(zone, 0,
3217 pcp->batch, list,
3218 migratetype, alloc_flags);
3219 if (unlikely(list_empty(list)))
3220 return NULL;
3221 }
3222
3223 page = list_first_entry(list, struct page, lru);
3224 list_del(&page->lru);
3225 pcp->count--;
3226 } while (check_new_pcp(page));
3227
3228 return page;
3229 }
3230
3231 /* Lock and remove page from the per-cpu list */
3232 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3233 struct zone *zone, gfp_t gfp_flags,
3234 int migratetype, unsigned int alloc_flags)
3235 {
3236 struct per_cpu_pages *pcp;
3237 struct list_head *list;
3238 struct page *page;
3239 unsigned long flags;
3240
3241 local_irq_save(flags);
3242 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3243 list = &pcp->lists[migratetype];
3244 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3245 if (page) {
3246 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3247 zone_statistics(preferred_zone, zone);
3248 }
3249 local_irq_restore(flags);
3250 return page;
3251 }
3252
3253 /*
3254 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3255 */
3256 static inline
3257 struct page *rmqueue(struct zone *preferred_zone,
3258 struct zone *zone, unsigned int order,
3259 gfp_t gfp_flags, unsigned int alloc_flags,
3260 int migratetype)
3261 {
3262 unsigned long flags;
3263 struct page *page;
3264
3265 if (likely(order == 0)) {
3266 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3267 migratetype, alloc_flags);
3268 goto out;
3269 }
3270
3271 /*
3272 * We most definitely don't want callers attempting to
3273 * allocate greater than order-1 page units with __GFP_NOFAIL.
3274 */
3275 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3276 spin_lock_irqsave(&zone->lock, flags);
3277
3278 do {
3279 page = NULL;
3280 if (alloc_flags & ALLOC_HARDER) {
3281 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3282 if (page)
3283 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3284 }
3285 if (!page)
3286 page = __rmqueue(zone, order, migratetype, alloc_flags);
3287 } while (page && check_new_pages(page, order));
3288 spin_unlock(&zone->lock);
3289 if (!page)
3290 goto failed;
3291 __mod_zone_freepage_state(zone, -(1 << order),
3292 get_pcppage_migratetype(page));
3293
3294 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3295 zone_statistics(preferred_zone, zone);
3296 local_irq_restore(flags);
3297
3298 out:
3299 /* Separate test+clear to avoid unnecessary atomics */
3300 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3301 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3302 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3303 }
3304
3305 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3306 return page;
3307
3308 failed:
3309 local_irq_restore(flags);
3310 return NULL;
3311 }
3312
3313 #ifdef CONFIG_FAIL_PAGE_ALLOC
3314
3315 static struct {
3316 struct fault_attr attr;
3317
3318 bool ignore_gfp_highmem;
3319 bool ignore_gfp_reclaim;
3320 u32 min_order;
3321 } fail_page_alloc = {
3322 .attr = FAULT_ATTR_INITIALIZER,
3323 .ignore_gfp_reclaim = true,
3324 .ignore_gfp_highmem = true,
3325 .min_order = 1,
3326 };
3327
3328 static int __init setup_fail_page_alloc(char *str)
3329 {
3330 return setup_fault_attr(&fail_page_alloc.attr, str);
3331 }
3332 __setup("fail_page_alloc=", setup_fail_page_alloc);
3333
3334 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3335 {
3336 if (order < fail_page_alloc.min_order)
3337 return false;
3338 if (gfp_mask & __GFP_NOFAIL)
3339 return false;
3340 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3341 return false;
3342 if (fail_page_alloc.ignore_gfp_reclaim &&
3343 (gfp_mask & __GFP_DIRECT_RECLAIM))
3344 return false;
3345
3346 return should_fail(&fail_page_alloc.attr, 1 << order);
3347 }
3348
3349 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3350
3351 static int __init fail_page_alloc_debugfs(void)
3352 {
3353 umode_t mode = S_IFREG | 0600;
3354 struct dentry *dir;
3355
3356 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3357 &fail_page_alloc.attr);
3358
3359 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3360 &fail_page_alloc.ignore_gfp_reclaim);
3361 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3362 &fail_page_alloc.ignore_gfp_highmem);
3363 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3364
3365 return 0;
3366 }
3367
3368 late_initcall(fail_page_alloc_debugfs);
3369
3370 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3371
3372 #else /* CONFIG_FAIL_PAGE_ALLOC */
3373
3374 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3375 {
3376 return false;
3377 }
3378
3379 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3380
3381 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3382 {
3383 return __should_fail_alloc_page(gfp_mask, order);
3384 }
3385 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3386
3387 /*
3388 * Return true if free base pages are above 'mark'. For high-order checks it
3389 * will return true of the order-0 watermark is reached and there is at least
3390 * one free page of a suitable size. Checking now avoids taking the zone lock
3391 * to check in the allocation paths if no pages are free.
3392 */
3393 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3394 int classzone_idx, unsigned int alloc_flags,
3395 long free_pages)
3396 {
3397 long min = mark;
3398 int o;
3399 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3400
3401 /* free_pages may go negative - that's OK */
3402 free_pages -= (1 << order) - 1;
3403
3404 if (alloc_flags & ALLOC_HIGH)
3405 min -= min / 2;
3406
3407 /*
3408 * If the caller does not have rights to ALLOC_HARDER then subtract
3409 * the high-atomic reserves. This will over-estimate the size of the
3410 * atomic reserve but it avoids a search.
3411 */
3412 if (likely(!alloc_harder)) {
3413 free_pages -= z->nr_reserved_highatomic;
3414 } else {
3415 /*
3416 * OOM victims can try even harder than normal ALLOC_HARDER
3417 * users on the grounds that it's definitely going to be in
3418 * the exit path shortly and free memory. Any allocation it
3419 * makes during the free path will be small and short-lived.
3420 */
3421 if (alloc_flags & ALLOC_OOM)
3422 min -= min / 2;
3423 else
3424 min -= min / 4;
3425 }
3426
3427
3428 #ifdef CONFIG_CMA
3429 /* If allocation can't use CMA areas don't use free CMA pages */
3430 if (!(alloc_flags & ALLOC_CMA))
3431 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3432 #endif
3433
3434 /*
3435 * Check watermarks for an order-0 allocation request. If these
3436 * are not met, then a high-order request also cannot go ahead
3437 * even if a suitable page happened to be free.
3438 */
3439 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3440 return false;
3441
3442 /* If this is an order-0 request then the watermark is fine */
3443 if (!order)
3444 return true;
3445
3446 /* For a high-order request, check at least one suitable page is free */
3447 for (o = order; o < MAX_ORDER; o++) {
3448 struct free_area *area = &z->free_area[o];
3449 int mt;
3450
3451 if (!area->nr_free)
3452 continue;
3453
3454 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3455 if (!free_area_empty(area, mt))
3456 return true;
3457 }
3458
3459 #ifdef CONFIG_CMA
3460 if ((alloc_flags & ALLOC_CMA) &&
3461 !free_area_empty(area, MIGRATE_CMA)) {
3462 return true;
3463 }
3464 #endif
3465 if (alloc_harder &&
3466 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3467 return true;
3468 }
3469 return false;
3470 }
3471
3472 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3473 int classzone_idx, unsigned int alloc_flags)
3474 {
3475 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3476 zone_page_state(z, NR_FREE_PAGES));
3477 }
3478
3479 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3480 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3481 {
3482 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3483 long cma_pages = 0;
3484
3485 #ifdef CONFIG_CMA
3486 /* If allocation can't use CMA areas don't use free CMA pages */
3487 if (!(alloc_flags & ALLOC_CMA))
3488 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3489 #endif
3490
3491 /*
3492 * Fast check for order-0 only. If this fails then the reserves
3493 * need to be calculated. There is a corner case where the check
3494 * passes but only the high-order atomic reserve are free. If
3495 * the caller is !atomic then it'll uselessly search the free
3496 * list. That corner case is then slower but it is harmless.
3497 */
3498 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3499 return true;
3500
3501 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3502 free_pages);
3503 }
3504
3505 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3506 unsigned long mark, int classzone_idx)
3507 {
3508 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3509
3510 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3511 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3512
3513 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3514 free_pages);
3515 }
3516
3517 #ifdef CONFIG_NUMA
3518 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3519 {
3520 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3521 node_reclaim_distance;
3522 }
3523 #else /* CONFIG_NUMA */
3524 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3525 {
3526 return true;
3527 }
3528 #endif /* CONFIG_NUMA */
3529
3530 /*
3531 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3532 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3533 * premature use of a lower zone may cause lowmem pressure problems that
3534 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3535 * probably too small. It only makes sense to spread allocations to avoid
3536 * fragmentation between the Normal and DMA32 zones.
3537 */
3538 static inline unsigned int
3539 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3540 {
3541 unsigned int alloc_flags = 0;
3542
3543 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3544 alloc_flags |= ALLOC_KSWAPD;
3545
3546 #ifdef CONFIG_ZONE_DMA32
3547 if (!zone)
3548 return alloc_flags;
3549
3550 if (zone_idx(zone) != ZONE_NORMAL)
3551 return alloc_flags;
3552
3553 /*
3554 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3555 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3556 * on UMA that if Normal is populated then so is DMA32.
3557 */
3558 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3559 if (nr_online_nodes > 1 && !populated_zone(--zone))
3560 return alloc_flags;
3561
3562 alloc_flags |= ALLOC_NOFRAGMENT;
3563 #endif /* CONFIG_ZONE_DMA32 */
3564 return alloc_flags;
3565 }
3566
3567 /*
3568 * get_page_from_freelist goes through the zonelist trying to allocate
3569 * a page.
3570 */
3571 static struct page *
3572 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3573 const struct alloc_context *ac)
3574 {
3575 struct zoneref *z;
3576 struct zone *zone;
3577 struct pglist_data *last_pgdat_dirty_limit = NULL;
3578 bool no_fallback;
3579
3580 retry:
3581 /*
3582 * Scan zonelist, looking for a zone with enough free.
3583 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3584 */
3585 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3586 z = ac->preferred_zoneref;
3587 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3588 ac->nodemask) {
3589 struct page *page;
3590 unsigned long mark;
3591
3592 if (cpusets_enabled() &&
3593 (alloc_flags & ALLOC_CPUSET) &&
3594 !__cpuset_zone_allowed(zone, gfp_mask))
3595 continue;
3596 /*
3597 * When allocating a page cache page for writing, we
3598 * want to get it from a node that is within its dirty
3599 * limit, such that no single node holds more than its
3600 * proportional share of globally allowed dirty pages.
3601 * The dirty limits take into account the node's
3602 * lowmem reserves and high watermark so that kswapd
3603 * should be able to balance it without having to
3604 * write pages from its LRU list.
3605 *
3606 * XXX: For now, allow allocations to potentially
3607 * exceed the per-node dirty limit in the slowpath
3608 * (spread_dirty_pages unset) before going into reclaim,
3609 * which is important when on a NUMA setup the allowed
3610 * nodes are together not big enough to reach the
3611 * global limit. The proper fix for these situations
3612 * will require awareness of nodes in the
3613 * dirty-throttling and the flusher threads.
3614 */
3615 if (ac->spread_dirty_pages) {
3616 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3617 continue;
3618
3619 if (!node_dirty_ok(zone->zone_pgdat)) {
3620 last_pgdat_dirty_limit = zone->zone_pgdat;
3621 continue;
3622 }
3623 }
3624
3625 if (no_fallback && nr_online_nodes > 1 &&
3626 zone != ac->preferred_zoneref->zone) {
3627 int local_nid;
3628
3629 /*
3630 * If moving to a remote node, retry but allow
3631 * fragmenting fallbacks. Locality is more important
3632 * than fragmentation avoidance.
3633 */
3634 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3635 if (zone_to_nid(zone) != local_nid) {
3636 alloc_flags &= ~ALLOC_NOFRAGMENT;
3637 goto retry;
3638 }
3639 }
3640
3641 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3642 if (!zone_watermark_fast(zone, order, mark,
3643 ac_classzone_idx(ac), alloc_flags)) {
3644 int ret;
3645
3646 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3647 /*
3648 * Watermark failed for this zone, but see if we can
3649 * grow this zone if it contains deferred pages.
3650 */
3651 if (static_branch_unlikely(&deferred_pages)) {
3652 if (_deferred_grow_zone(zone, order))
3653 goto try_this_zone;
3654 }
3655 #endif
3656 /* Checked here to keep the fast path fast */
3657 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3658 if (alloc_flags & ALLOC_NO_WATERMARKS)
3659 goto try_this_zone;
3660
3661 if (node_reclaim_mode == 0 ||
3662 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3663 continue;
3664
3665 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3666 switch (ret) {
3667 case NODE_RECLAIM_NOSCAN:
3668 /* did not scan */
3669 continue;
3670 case NODE_RECLAIM_FULL:
3671 /* scanned but unreclaimable */
3672 continue;
3673 default:
3674 /* did we reclaim enough */
3675 if (zone_watermark_ok(zone, order, mark,
3676 ac_classzone_idx(ac), alloc_flags))
3677 goto try_this_zone;
3678
3679 continue;
3680 }
3681 }
3682
3683 try_this_zone:
3684 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3685 gfp_mask, alloc_flags, ac->migratetype);
3686 if (page) {
3687 prep_new_page(page, order, gfp_mask, alloc_flags);
3688
3689 /*
3690 * If this is a high-order atomic allocation then check
3691 * if the pageblock should be reserved for the future
3692 */
3693 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3694 reserve_highatomic_pageblock(page, zone, order);
3695
3696 return page;
3697 } else {
3698 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3699 /* Try again if zone has deferred pages */
3700 if (static_branch_unlikely(&deferred_pages)) {
3701 if (_deferred_grow_zone(zone, order))
3702 goto try_this_zone;
3703 }
3704 #endif
3705 }
3706 }
3707
3708 /*
3709 * It's possible on a UMA machine to get through all zones that are
3710 * fragmented. If avoiding fragmentation, reset and try again.
3711 */
3712 if (no_fallback) {
3713 alloc_flags &= ~ALLOC_NOFRAGMENT;
3714 goto retry;
3715 }
3716
3717 return NULL;
3718 }
3719
3720 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3721 {
3722 unsigned int filter = SHOW_MEM_FILTER_NODES;
3723 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3724
3725 if (!__ratelimit(&show_mem_rs))
3726 return;
3727
3728 /*
3729 * This documents exceptions given to allocations in certain
3730 * contexts that are allowed to allocate outside current's set
3731 * of allowed nodes.
3732 */
3733 if (!(gfp_mask & __GFP_NOMEMALLOC))
3734 if (tsk_is_oom_victim(current) ||
3735 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3736 filter &= ~SHOW_MEM_FILTER_NODES;
3737 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3738 filter &= ~SHOW_MEM_FILTER_NODES;
3739
3740 show_mem(filter, nodemask);
3741 }
3742
3743 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3744 {
3745 struct va_format vaf;
3746 va_list args;
3747 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3748 DEFAULT_RATELIMIT_BURST);
3749
3750 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3751 return;
3752
3753 va_start(args, fmt);
3754 vaf.fmt = fmt;
3755 vaf.va = &args;
3756 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3757 current->comm, &vaf, gfp_mask, &gfp_mask,
3758 nodemask_pr_args(nodemask));
3759 va_end(args);
3760
3761 cpuset_print_current_mems_allowed();
3762 pr_cont("\n");
3763 dump_stack();
3764 warn_alloc_show_mem(gfp_mask, nodemask);
3765 }
3766
3767 static inline struct page *
3768 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3769 unsigned int alloc_flags,
3770 const struct alloc_context *ac)
3771 {
3772 struct page *page;
3773
3774 page = get_page_from_freelist(gfp_mask, order,
3775 alloc_flags|ALLOC_CPUSET, ac);
3776 /*
3777 * fallback to ignore cpuset restriction if our nodes
3778 * are depleted
3779 */
3780 if (!page)
3781 page = get_page_from_freelist(gfp_mask, order,
3782 alloc_flags, ac);
3783
3784 return page;
3785 }
3786
3787 static inline struct page *
3788 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3789 const struct alloc_context *ac, unsigned long *did_some_progress)
3790 {
3791 struct oom_control oc = {
3792 .zonelist = ac->zonelist,
3793 .nodemask = ac->nodemask,
3794 .memcg = NULL,
3795 .gfp_mask = gfp_mask,
3796 .order = order,
3797 };
3798 struct page *page;
3799
3800 *did_some_progress = 0;
3801
3802 /*
3803 * Acquire the oom lock. If that fails, somebody else is
3804 * making progress for us.
3805 */
3806 if (!mutex_trylock(&oom_lock)) {
3807 *did_some_progress = 1;
3808 schedule_timeout_uninterruptible(1);
3809 return NULL;
3810 }
3811
3812 /*
3813 * Go through the zonelist yet one more time, keep very high watermark
3814 * here, this is only to catch a parallel oom killing, we must fail if
3815 * we're still under heavy pressure. But make sure that this reclaim
3816 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3817 * allocation which will never fail due to oom_lock already held.
3818 */
3819 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3820 ~__GFP_DIRECT_RECLAIM, order,
3821 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3822 if (page)
3823 goto out;
3824
3825 /* Coredumps can quickly deplete all memory reserves */
3826 if (current->flags & PF_DUMPCORE)
3827 goto out;
3828 /* The OOM killer will not help higher order allocs */
3829 if (order > PAGE_ALLOC_COSTLY_ORDER)
3830 goto out;
3831 /*
3832 * We have already exhausted all our reclaim opportunities without any
3833 * success so it is time to admit defeat. We will skip the OOM killer
3834 * because it is very likely that the caller has a more reasonable
3835 * fallback than shooting a random task.
3836 */
3837 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3838 goto out;
3839 /* The OOM killer does not needlessly kill tasks for lowmem */
3840 if (ac->high_zoneidx < ZONE_NORMAL)
3841 goto out;
3842 if (pm_suspended_storage())
3843 goto out;
3844 /*
3845 * XXX: GFP_NOFS allocations should rather fail than rely on
3846 * other request to make a forward progress.
3847 * We are in an unfortunate situation where out_of_memory cannot
3848 * do much for this context but let's try it to at least get
3849 * access to memory reserved if the current task is killed (see
3850 * out_of_memory). Once filesystems are ready to handle allocation
3851 * failures more gracefully we should just bail out here.
3852 */
3853
3854 /* The OOM killer may not free memory on a specific node */
3855 if (gfp_mask & __GFP_THISNODE)
3856 goto out;
3857
3858 /* Exhausted what can be done so it's blame time */
3859 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3860 *did_some_progress = 1;
3861
3862 /*
3863 * Help non-failing allocations by giving them access to memory
3864 * reserves
3865 */
3866 if (gfp_mask & __GFP_NOFAIL)
3867 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3868 ALLOC_NO_WATERMARKS, ac);
3869 }
3870 out:
3871 mutex_unlock(&oom_lock);
3872 return page;
3873 }
3874
3875 /*
3876 * Maximum number of compaction retries wit a progress before OOM
3877 * killer is consider as the only way to move forward.
3878 */
3879 #define MAX_COMPACT_RETRIES 16
3880
3881 #ifdef CONFIG_COMPACTION
3882 /* Try memory compaction for high-order allocations before reclaim */
3883 static struct page *
3884 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3885 unsigned int alloc_flags, const struct alloc_context *ac,
3886 enum compact_priority prio, enum compact_result *compact_result)
3887 {
3888 struct page *page = NULL;
3889 unsigned long pflags;
3890 unsigned int noreclaim_flag;
3891
3892 if (!order)
3893 return NULL;
3894
3895 psi_memstall_enter(&pflags);
3896 noreclaim_flag = memalloc_noreclaim_save();
3897
3898 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3899 prio, &page);
3900
3901 memalloc_noreclaim_restore(noreclaim_flag);
3902 psi_memstall_leave(&pflags);
3903
3904 /*
3905 * At least in one zone compaction wasn't deferred or skipped, so let's
3906 * count a compaction stall
3907 */
3908 count_vm_event(COMPACTSTALL);
3909
3910 /* Prep a captured page if available */
3911 if (page)
3912 prep_new_page(page, order, gfp_mask, alloc_flags);
3913
3914 /* Try get a page from the freelist if available */
3915 if (!page)
3916 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3917
3918 if (page) {
3919 struct zone *zone = page_zone(page);
3920
3921 zone->compact_blockskip_flush = false;
3922 compaction_defer_reset(zone, order, true);
3923 count_vm_event(COMPACTSUCCESS);
3924 return page;
3925 }
3926
3927 /*
3928 * It's bad if compaction run occurs and fails. The most likely reason
3929 * is that pages exist, but not enough to satisfy watermarks.
3930 */
3931 count_vm_event(COMPACTFAIL);
3932
3933 cond_resched();
3934
3935 return NULL;
3936 }
3937
3938 static inline bool
3939 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3940 enum compact_result compact_result,
3941 enum compact_priority *compact_priority,
3942 int *compaction_retries)
3943 {
3944 int max_retries = MAX_COMPACT_RETRIES;
3945 int min_priority;
3946 bool ret = false;
3947 int retries = *compaction_retries;
3948 enum compact_priority priority = *compact_priority;
3949
3950 if (!order)
3951 return false;
3952
3953 if (compaction_made_progress(compact_result))
3954 (*compaction_retries)++;
3955
3956 /*
3957 * compaction considers all the zone as desperately out of memory
3958 * so it doesn't really make much sense to retry except when the
3959 * failure could be caused by insufficient priority
3960 */
3961 if (compaction_failed(compact_result))
3962 goto check_priority;
3963
3964 /*
3965 * compaction was skipped because there are not enough order-0 pages
3966 * to work with, so we retry only if it looks like reclaim can help.
3967 */
3968 if (compaction_needs_reclaim(compact_result)) {
3969 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3970 goto out;
3971 }
3972
3973 /*
3974 * make sure the compaction wasn't deferred or didn't bail out early
3975 * due to locks contention before we declare that we should give up.
3976 * But the next retry should use a higher priority if allowed, so
3977 * we don't just keep bailing out endlessly.
3978 */
3979 if (compaction_withdrawn(compact_result)) {
3980 goto check_priority;
3981 }
3982
3983 /*
3984 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3985 * costly ones because they are de facto nofail and invoke OOM
3986 * killer to move on while costly can fail and users are ready
3987 * to cope with that. 1/4 retries is rather arbitrary but we
3988 * would need much more detailed feedback from compaction to
3989 * make a better decision.
3990 */
3991 if (order > PAGE_ALLOC_COSTLY_ORDER)
3992 max_retries /= 4;
3993 if (*compaction_retries <= max_retries) {
3994 ret = true;
3995 goto out;
3996 }
3997
3998 /*
3999 * Make sure there are attempts at the highest priority if we exhausted
4000 * all retries or failed at the lower priorities.
4001 */
4002 check_priority:
4003 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4004 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4005
4006 if (*compact_priority > min_priority) {
4007 (*compact_priority)--;
4008 *compaction_retries = 0;
4009 ret = true;
4010 }
4011 out:
4012 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4013 return ret;
4014 }
4015 #else
4016 static inline struct page *
4017 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4018 unsigned int alloc_flags, const struct alloc_context *ac,
4019 enum compact_priority prio, enum compact_result *compact_result)
4020 {
4021 *compact_result = COMPACT_SKIPPED;
4022 return NULL;
4023 }
4024
4025 static inline bool
4026 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4027 enum compact_result compact_result,
4028 enum compact_priority *compact_priority,
4029 int *compaction_retries)
4030 {
4031 struct zone *zone;
4032 struct zoneref *z;
4033
4034 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4035 return false;
4036
4037 /*
4038 * There are setups with compaction disabled which would prefer to loop
4039 * inside the allocator rather than hit the oom killer prematurely.
4040 * Let's give them a good hope and keep retrying while the order-0
4041 * watermarks are OK.
4042 */
4043 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4044 ac->nodemask) {
4045 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4046 ac_classzone_idx(ac), alloc_flags))
4047 return true;
4048 }
4049 return false;
4050 }
4051 #endif /* CONFIG_COMPACTION */
4052
4053 #ifdef CONFIG_LOCKDEP
4054 static struct lockdep_map __fs_reclaim_map =
4055 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4056
4057 static bool __need_fs_reclaim(gfp_t gfp_mask)
4058 {
4059 gfp_mask = current_gfp_context(gfp_mask);
4060
4061 /* no reclaim without waiting on it */
4062 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4063 return false;
4064
4065 /* this guy won't enter reclaim */
4066 if (current->flags & PF_MEMALLOC)
4067 return false;
4068
4069 /* We're only interested __GFP_FS allocations for now */
4070 if (!(gfp_mask & __GFP_FS))
4071 return false;
4072
4073 if (gfp_mask & __GFP_NOLOCKDEP)
4074 return false;
4075
4076 return true;
4077 }
4078
4079 void __fs_reclaim_acquire(void)
4080 {
4081 lock_map_acquire(&__fs_reclaim_map);
4082 }
4083
4084 void __fs_reclaim_release(void)
4085 {
4086 lock_map_release(&__fs_reclaim_map);
4087 }
4088
4089 void fs_reclaim_acquire(gfp_t gfp_mask)
4090 {
4091 if (__need_fs_reclaim(gfp_mask))
4092 __fs_reclaim_acquire();
4093 }
4094 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4095
4096 void fs_reclaim_release(gfp_t gfp_mask)
4097 {
4098 if (__need_fs_reclaim(gfp_mask))
4099 __fs_reclaim_release();
4100 }
4101 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4102 #endif
4103
4104 /* Perform direct synchronous page reclaim */
4105 static int
4106 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4107 const struct alloc_context *ac)
4108 {
4109 int progress;
4110 unsigned int noreclaim_flag;
4111 unsigned long pflags;
4112
4113 cond_resched();
4114
4115 /* We now go into synchronous reclaim */
4116 cpuset_memory_pressure_bump();
4117 psi_memstall_enter(&pflags);
4118 fs_reclaim_acquire(gfp_mask);
4119 noreclaim_flag = memalloc_noreclaim_save();
4120
4121 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4122 ac->nodemask);
4123
4124 memalloc_noreclaim_restore(noreclaim_flag);
4125 fs_reclaim_release(gfp_mask);
4126 psi_memstall_leave(&pflags);
4127
4128 cond_resched();
4129
4130 return progress;
4131 }
4132
4133 /* The really slow allocator path where we enter direct reclaim */
4134 static inline struct page *
4135 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4136 unsigned int alloc_flags, const struct alloc_context *ac,
4137 unsigned long *did_some_progress)
4138 {
4139 struct page *page = NULL;
4140 bool drained = false;
4141
4142 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4143 if (unlikely(!(*did_some_progress)))
4144 return NULL;
4145
4146 retry:
4147 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4148
4149 /*
4150 * If an allocation failed after direct reclaim, it could be because
4151 * pages are pinned on the per-cpu lists or in high alloc reserves.
4152 * Shrink them them and try again
4153 */
4154 if (!page && !drained) {
4155 unreserve_highatomic_pageblock(ac, false);
4156 drain_all_pages(NULL);
4157 drained = true;
4158 goto retry;
4159 }
4160
4161 return page;
4162 }
4163
4164 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4165 const struct alloc_context *ac)
4166 {
4167 struct zoneref *z;
4168 struct zone *zone;
4169 pg_data_t *last_pgdat = NULL;
4170 enum zone_type high_zoneidx = ac->high_zoneidx;
4171
4172 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4173 ac->nodemask) {
4174 if (last_pgdat != zone->zone_pgdat)
4175 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4176 last_pgdat = zone->zone_pgdat;
4177 }
4178 }
4179
4180 static inline unsigned int
4181 gfp_to_alloc_flags(gfp_t gfp_mask)
4182 {
4183 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4184
4185 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4186 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4187
4188 /*
4189 * The caller may dip into page reserves a bit more if the caller
4190 * cannot run direct reclaim, or if the caller has realtime scheduling
4191 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4192 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4193 */
4194 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4195
4196 if (gfp_mask & __GFP_ATOMIC) {
4197 /*
4198 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4199 * if it can't schedule.
4200 */
4201 if (!(gfp_mask & __GFP_NOMEMALLOC))
4202 alloc_flags |= ALLOC_HARDER;
4203 /*
4204 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4205 * comment for __cpuset_node_allowed().
4206 */
4207 alloc_flags &= ~ALLOC_CPUSET;
4208 } else if (unlikely(rt_task(current)) && !in_interrupt())
4209 alloc_flags |= ALLOC_HARDER;
4210
4211 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4212 alloc_flags |= ALLOC_KSWAPD;
4213
4214 #ifdef CONFIG_CMA
4215 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4216 alloc_flags |= ALLOC_CMA;
4217 #endif
4218 return alloc_flags;
4219 }
4220
4221 static bool oom_reserves_allowed(struct task_struct *tsk)
4222 {
4223 if (!tsk_is_oom_victim(tsk))
4224 return false;
4225
4226 /*
4227 * !MMU doesn't have oom reaper so give access to memory reserves
4228 * only to the thread with TIF_MEMDIE set
4229 */
4230 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4231 return false;
4232
4233 return true;
4234 }
4235
4236 /*
4237 * Distinguish requests which really need access to full memory
4238 * reserves from oom victims which can live with a portion of it
4239 */
4240 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4241 {
4242 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4243 return 0;
4244 if (gfp_mask & __GFP_MEMALLOC)
4245 return ALLOC_NO_WATERMARKS;
4246 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4247 return ALLOC_NO_WATERMARKS;
4248 if (!in_interrupt()) {
4249 if (current->flags & PF_MEMALLOC)
4250 return ALLOC_NO_WATERMARKS;
4251 else if (oom_reserves_allowed(current))
4252 return ALLOC_OOM;
4253 }
4254
4255 return 0;
4256 }
4257
4258 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4259 {
4260 return !!__gfp_pfmemalloc_flags(gfp_mask);
4261 }
4262
4263 /*
4264 * Checks whether it makes sense to retry the reclaim to make a forward progress
4265 * for the given allocation request.
4266 *
4267 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4268 * without success, or when we couldn't even meet the watermark if we
4269 * reclaimed all remaining pages on the LRU lists.
4270 *
4271 * Returns true if a retry is viable or false to enter the oom path.
4272 */
4273 static inline bool
4274 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4275 struct alloc_context *ac, int alloc_flags,
4276 bool did_some_progress, int *no_progress_loops)
4277 {
4278 struct zone *zone;
4279 struct zoneref *z;
4280 bool ret = false;
4281
4282 /*
4283 * Costly allocations might have made a progress but this doesn't mean
4284 * their order will become available due to high fragmentation so
4285 * always increment the no progress counter for them
4286 */
4287 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4288 *no_progress_loops = 0;
4289 else
4290 (*no_progress_loops)++;
4291
4292 /*
4293 * Make sure we converge to OOM if we cannot make any progress
4294 * several times in the row.
4295 */
4296 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4297 /* Before OOM, exhaust highatomic_reserve */
4298 return unreserve_highatomic_pageblock(ac, true);
4299 }
4300
4301 /*
4302 * Keep reclaiming pages while there is a chance this will lead
4303 * somewhere. If none of the target zones can satisfy our allocation
4304 * request even if all reclaimable pages are considered then we are
4305 * screwed and have to go OOM.
4306 */
4307 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4308 ac->nodemask) {
4309 unsigned long available;
4310 unsigned long reclaimable;
4311 unsigned long min_wmark = min_wmark_pages(zone);
4312 bool wmark;
4313
4314 available = reclaimable = zone_reclaimable_pages(zone);
4315 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4316
4317 /*
4318 * Would the allocation succeed if we reclaimed all
4319 * reclaimable pages?
4320 */
4321 wmark = __zone_watermark_ok(zone, order, min_wmark,
4322 ac_classzone_idx(ac), alloc_flags, available);
4323 trace_reclaim_retry_zone(z, order, reclaimable,
4324 available, min_wmark, *no_progress_loops, wmark);
4325 if (wmark) {
4326 /*
4327 * If we didn't make any progress and have a lot of
4328 * dirty + writeback pages then we should wait for
4329 * an IO to complete to slow down the reclaim and
4330 * prevent from pre mature OOM
4331 */
4332 if (!did_some_progress) {
4333 unsigned long write_pending;
4334
4335 write_pending = zone_page_state_snapshot(zone,
4336 NR_ZONE_WRITE_PENDING);
4337
4338 if (2 * write_pending > reclaimable) {
4339 congestion_wait(BLK_RW_ASYNC, HZ/10);
4340 return true;
4341 }
4342 }
4343
4344 ret = true;
4345 goto out;
4346 }
4347 }
4348
4349 out:
4350 /*
4351 * Memory allocation/reclaim might be called from a WQ context and the
4352 * current implementation of the WQ concurrency control doesn't
4353 * recognize that a particular WQ is congested if the worker thread is
4354 * looping without ever sleeping. Therefore we have to do a short sleep
4355 * here rather than calling cond_resched().
4356 */
4357 if (current->flags & PF_WQ_WORKER)
4358 schedule_timeout_uninterruptible(1);
4359 else
4360 cond_resched();
4361 return ret;
4362 }
4363
4364 static inline bool
4365 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4366 {
4367 /*
4368 * It's possible that cpuset's mems_allowed and the nodemask from
4369 * mempolicy don't intersect. This should be normally dealt with by
4370 * policy_nodemask(), but it's possible to race with cpuset update in
4371 * such a way the check therein was true, and then it became false
4372 * before we got our cpuset_mems_cookie here.
4373 * This assumes that for all allocations, ac->nodemask can come only
4374 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4375 * when it does not intersect with the cpuset restrictions) or the
4376 * caller can deal with a violated nodemask.
4377 */
4378 if (cpusets_enabled() && ac->nodemask &&
4379 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4380 ac->nodemask = NULL;
4381 return true;
4382 }
4383
4384 /*
4385 * When updating a task's mems_allowed or mempolicy nodemask, it is
4386 * possible to race with parallel threads in such a way that our
4387 * allocation can fail while the mask is being updated. If we are about
4388 * to fail, check if the cpuset changed during allocation and if so,
4389 * retry.
4390 */
4391 if (read_mems_allowed_retry(cpuset_mems_cookie))
4392 return true;
4393
4394 return false;
4395 }
4396
4397 static inline struct page *
4398 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4399 struct alloc_context *ac)
4400 {
4401 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4402 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4403 struct page *page = NULL;
4404 unsigned int alloc_flags;
4405 unsigned long did_some_progress;
4406 enum compact_priority compact_priority;
4407 enum compact_result compact_result;
4408 int compaction_retries;
4409 int no_progress_loops;
4410 unsigned int cpuset_mems_cookie;
4411 int reserve_flags;
4412
4413 /*
4414 * We also sanity check to catch abuse of atomic reserves being used by
4415 * callers that are not in atomic context.
4416 */
4417 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4418 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4419 gfp_mask &= ~__GFP_ATOMIC;
4420
4421 retry_cpuset:
4422 compaction_retries = 0;
4423 no_progress_loops = 0;
4424 compact_priority = DEF_COMPACT_PRIORITY;
4425 cpuset_mems_cookie = read_mems_allowed_begin();
4426
4427 /*
4428 * The fast path uses conservative alloc_flags to succeed only until
4429 * kswapd needs to be woken up, and to avoid the cost of setting up
4430 * alloc_flags precisely. So we do that now.
4431 */
4432 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4433
4434 /*
4435 * We need to recalculate the starting point for the zonelist iterator
4436 * because we might have used different nodemask in the fast path, or
4437 * there was a cpuset modification and we are retrying - otherwise we
4438 * could end up iterating over non-eligible zones endlessly.
4439 */
4440 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4441 ac->high_zoneidx, ac->nodemask);
4442 if (!ac->preferred_zoneref->zone)
4443 goto nopage;
4444
4445 if (alloc_flags & ALLOC_KSWAPD)
4446 wake_all_kswapds(order, gfp_mask, ac);
4447
4448 /*
4449 * The adjusted alloc_flags might result in immediate success, so try
4450 * that first
4451 */
4452 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4453 if (page)
4454 goto got_pg;
4455
4456 /*
4457 * For costly allocations, try direct compaction first, as it's likely
4458 * that we have enough base pages and don't need to reclaim. For non-
4459 * movable high-order allocations, do that as well, as compaction will
4460 * try prevent permanent fragmentation by migrating from blocks of the
4461 * same migratetype.
4462 * Don't try this for allocations that are allowed to ignore
4463 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4464 */
4465 if (can_direct_reclaim &&
4466 (costly_order ||
4467 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4468 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4469 page = __alloc_pages_direct_compact(gfp_mask, order,
4470 alloc_flags, ac,
4471 INIT_COMPACT_PRIORITY,
4472 &compact_result);
4473 if (page)
4474 goto got_pg;
4475
4476 if (order >= pageblock_order && (gfp_mask & __GFP_IO)) {
4477 /*
4478 * If allocating entire pageblock(s) and compaction
4479 * failed because all zones are below low watermarks
4480 * or is prohibited because it recently failed at this
4481 * order, fail immediately.
4482 *
4483 * Reclaim is
4484 * - potentially very expensive because zones are far
4485 * below their low watermarks or this is part of very
4486 * bursty high order allocations,
4487 * - not guaranteed to help because isolate_freepages()
4488 * may not iterate over freed pages as part of its
4489 * linear scan, and
4490 * - unlikely to make entire pageblocks free on its
4491 * own.
4492 */
4493 if (compact_result == COMPACT_SKIPPED ||
4494 compact_result == COMPACT_DEFERRED)
4495 goto nopage;
4496 }
4497
4498 /*
4499 * Checks for costly allocations with __GFP_NORETRY, which
4500 * includes THP page fault allocations
4501 */
4502 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4503 /*
4504 * If compaction is deferred for high-order allocations,
4505 * it is because sync compaction recently failed. If
4506 * this is the case and the caller requested a THP
4507 * allocation, we do not want to heavily disrupt the
4508 * system, so we fail the allocation instead of entering
4509 * direct reclaim.
4510 */
4511 if (compact_result == COMPACT_DEFERRED)
4512 goto nopage;
4513
4514 /*
4515 * Looks like reclaim/compaction is worth trying, but
4516 * sync compaction could be very expensive, so keep
4517 * using async compaction.
4518 */
4519 compact_priority = INIT_COMPACT_PRIORITY;
4520 }
4521 }
4522
4523 retry:
4524 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4525 if (alloc_flags & ALLOC_KSWAPD)
4526 wake_all_kswapds(order, gfp_mask, ac);
4527
4528 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4529 if (reserve_flags)
4530 alloc_flags = reserve_flags;
4531
4532 /*
4533 * Reset the nodemask and zonelist iterators if memory policies can be
4534 * ignored. These allocations are high priority and system rather than
4535 * user oriented.
4536 */
4537 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4538 ac->nodemask = NULL;
4539 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4540 ac->high_zoneidx, ac->nodemask);
4541 }
4542
4543 /* Attempt with potentially adjusted zonelist and alloc_flags */
4544 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4545 if (page)
4546 goto got_pg;
4547
4548 /* Caller is not willing to reclaim, we can't balance anything */
4549 if (!can_direct_reclaim)
4550 goto nopage;
4551
4552 /* Avoid recursion of direct reclaim */
4553 if (current->flags & PF_MEMALLOC)
4554 goto nopage;
4555
4556 /* Try direct reclaim and then allocating */
4557 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4558 &did_some_progress);
4559 if (page)
4560 goto got_pg;
4561
4562 /* Try direct compaction and then allocating */
4563 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4564 compact_priority, &compact_result);
4565 if (page)
4566 goto got_pg;
4567
4568 /* Do not loop if specifically requested */
4569 if (gfp_mask & __GFP_NORETRY)
4570 goto nopage;
4571
4572 /*
4573 * Do not retry costly high order allocations unless they are
4574 * __GFP_RETRY_MAYFAIL
4575 */
4576 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4577 goto nopage;
4578
4579 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4580 did_some_progress > 0, &no_progress_loops))
4581 goto retry;
4582
4583 /*
4584 * It doesn't make any sense to retry for the compaction if the order-0
4585 * reclaim is not able to make any progress because the current
4586 * implementation of the compaction depends on the sufficient amount
4587 * of free memory (see __compaction_suitable)
4588 */
4589 if (did_some_progress > 0 &&
4590 should_compact_retry(ac, order, alloc_flags,
4591 compact_result, &compact_priority,
4592 &compaction_retries))
4593 goto retry;
4594
4595
4596 /* Deal with possible cpuset update races before we start OOM killing */
4597 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4598 goto retry_cpuset;
4599
4600 /* Reclaim has failed us, start killing things */
4601 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4602 if (page)
4603 goto got_pg;
4604
4605 /* Avoid allocations with no watermarks from looping endlessly */
4606 if (tsk_is_oom_victim(current) &&
4607 (alloc_flags == ALLOC_OOM ||
4608 (gfp_mask & __GFP_NOMEMALLOC)))
4609 goto nopage;
4610
4611 /* Retry as long as the OOM killer is making progress */
4612 if (did_some_progress) {
4613 no_progress_loops = 0;
4614 goto retry;
4615 }
4616
4617 nopage:
4618 /* Deal with possible cpuset update races before we fail */
4619 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4620 goto retry_cpuset;
4621
4622 /*
4623 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4624 * we always retry
4625 */
4626 if (gfp_mask & __GFP_NOFAIL) {
4627 /*
4628 * All existing users of the __GFP_NOFAIL are blockable, so warn
4629 * of any new users that actually require GFP_NOWAIT
4630 */
4631 if (WARN_ON_ONCE(!can_direct_reclaim))
4632 goto fail;
4633
4634 /*
4635 * PF_MEMALLOC request from this context is rather bizarre
4636 * because we cannot reclaim anything and only can loop waiting
4637 * for somebody to do a work for us
4638 */
4639 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4640
4641 /*
4642 * non failing costly orders are a hard requirement which we
4643 * are not prepared for much so let's warn about these users
4644 * so that we can identify them and convert them to something
4645 * else.
4646 */
4647 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4648
4649 /*
4650 * Help non-failing allocations by giving them access to memory
4651 * reserves but do not use ALLOC_NO_WATERMARKS because this
4652 * could deplete whole memory reserves which would just make
4653 * the situation worse
4654 */
4655 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4656 if (page)
4657 goto got_pg;
4658
4659 cond_resched();
4660 goto retry;
4661 }
4662 fail:
4663 warn_alloc(gfp_mask, ac->nodemask,
4664 "page allocation failure: order:%u", order);
4665 got_pg:
4666 return page;
4667 }
4668
4669 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4670 int preferred_nid, nodemask_t *nodemask,
4671 struct alloc_context *ac, gfp_t *alloc_mask,
4672 unsigned int *alloc_flags)
4673 {
4674 ac->high_zoneidx = gfp_zone(gfp_mask);
4675 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4676 ac->nodemask = nodemask;
4677 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4678
4679 if (cpusets_enabled()) {
4680 *alloc_mask |= __GFP_HARDWALL;
4681 if (!ac->nodemask)
4682 ac->nodemask = &cpuset_current_mems_allowed;
4683 else
4684 *alloc_flags |= ALLOC_CPUSET;
4685 }
4686
4687 fs_reclaim_acquire(gfp_mask);
4688 fs_reclaim_release(gfp_mask);
4689
4690 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4691
4692 if (should_fail_alloc_page(gfp_mask, order))
4693 return false;
4694
4695 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4696 *alloc_flags |= ALLOC_CMA;
4697
4698 return true;
4699 }
4700
4701 /* Determine whether to spread dirty pages and what the first usable zone */
4702 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4703 {
4704 /* Dirty zone balancing only done in the fast path */
4705 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4706
4707 /*
4708 * The preferred zone is used for statistics but crucially it is
4709 * also used as the starting point for the zonelist iterator. It
4710 * may get reset for allocations that ignore memory policies.
4711 */
4712 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4713 ac->high_zoneidx, ac->nodemask);
4714 }
4715
4716 /*
4717 * This is the 'heart' of the zoned buddy allocator.
4718 */
4719 struct page *
4720 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4721 nodemask_t *nodemask)
4722 {
4723 struct page *page;
4724 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4725 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4726 struct alloc_context ac = { };
4727
4728 /*
4729 * There are several places where we assume that the order value is sane
4730 * so bail out early if the request is out of bound.
4731 */
4732 if (unlikely(order >= MAX_ORDER)) {
4733 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4734 return NULL;
4735 }
4736
4737 gfp_mask &= gfp_allowed_mask;
4738 alloc_mask = gfp_mask;
4739 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4740 return NULL;
4741
4742 finalise_ac(gfp_mask, &ac);
4743
4744 /*
4745 * Forbid the first pass from falling back to types that fragment
4746 * memory until all local zones are considered.
4747 */
4748 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4749
4750 /* First allocation attempt */
4751 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4752 if (likely(page))
4753 goto out;
4754
4755 /*
4756 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4757 * resp. GFP_NOIO which has to be inherited for all allocation requests
4758 * from a particular context which has been marked by
4759 * memalloc_no{fs,io}_{save,restore}.
4760 */
4761 alloc_mask = current_gfp_context(gfp_mask);
4762 ac.spread_dirty_pages = false;
4763
4764 /*
4765 * Restore the original nodemask if it was potentially replaced with
4766 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4767 */
4768 if (unlikely(ac.nodemask != nodemask))
4769 ac.nodemask = nodemask;
4770
4771 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4772
4773 out:
4774 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4775 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4776 __free_pages(page, order);
4777 page = NULL;
4778 }
4779
4780 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4781
4782 return page;
4783 }
4784 EXPORT_SYMBOL(__alloc_pages_nodemask);
4785
4786 /*
4787 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4788 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4789 * you need to access high mem.
4790 */
4791 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4792 {
4793 struct page *page;
4794
4795 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4796 if (!page)
4797 return 0;
4798 return (unsigned long) page_address(page);
4799 }
4800 EXPORT_SYMBOL(__get_free_pages);
4801
4802 unsigned long get_zeroed_page(gfp_t gfp_mask)
4803 {
4804 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4805 }
4806 EXPORT_SYMBOL(get_zeroed_page);
4807
4808 static inline void free_the_page(struct page *page, unsigned int order)
4809 {
4810 if (order == 0) /* Via pcp? */
4811 free_unref_page(page);
4812 else
4813 __free_pages_ok(page, order);
4814 }
4815
4816 void __free_pages(struct page *page, unsigned int order)
4817 {
4818 if (put_page_testzero(page))
4819 free_the_page(page, order);
4820 }
4821 EXPORT_SYMBOL(__free_pages);
4822
4823 void free_pages(unsigned long addr, unsigned int order)
4824 {
4825 if (addr != 0) {
4826 VM_BUG_ON(!virt_addr_valid((void *)addr));
4827 __free_pages(virt_to_page((void *)addr), order);
4828 }
4829 }
4830
4831 EXPORT_SYMBOL(free_pages);
4832
4833 /*
4834 * Page Fragment:
4835 * An arbitrary-length arbitrary-offset area of memory which resides
4836 * within a 0 or higher order page. Multiple fragments within that page
4837 * are individually refcounted, in the page's reference counter.
4838 *
4839 * The page_frag functions below provide a simple allocation framework for
4840 * page fragments. This is used by the network stack and network device
4841 * drivers to provide a backing region of memory for use as either an
4842 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4843 */
4844 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4845 gfp_t gfp_mask)
4846 {
4847 struct page *page = NULL;
4848 gfp_t gfp = gfp_mask;
4849
4850 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4851 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4852 __GFP_NOMEMALLOC;
4853 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4854 PAGE_FRAG_CACHE_MAX_ORDER);
4855 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4856 #endif
4857 if (unlikely(!page))
4858 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4859
4860 nc->va = page ? page_address(page) : NULL;
4861
4862 return page;
4863 }
4864
4865 void __page_frag_cache_drain(struct page *page, unsigned int count)
4866 {
4867 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4868
4869 if (page_ref_sub_and_test(page, count))
4870 free_the_page(page, compound_order(page));
4871 }
4872 EXPORT_SYMBOL(__page_frag_cache_drain);
4873
4874 void *page_frag_alloc(struct page_frag_cache *nc,
4875 unsigned int fragsz, gfp_t gfp_mask)
4876 {
4877 unsigned int size = PAGE_SIZE;
4878 struct page *page;
4879 int offset;
4880
4881 if (unlikely(!nc->va)) {
4882 refill:
4883 page = __page_frag_cache_refill(nc, gfp_mask);
4884 if (!page)
4885 return NULL;
4886
4887 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4888 /* if size can vary use size else just use PAGE_SIZE */
4889 size = nc->size;
4890 #endif
4891 /* Even if we own the page, we do not use atomic_set().
4892 * This would break get_page_unless_zero() users.
4893 */
4894 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4895
4896 /* reset page count bias and offset to start of new frag */
4897 nc->pfmemalloc = page_is_pfmemalloc(page);
4898 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4899 nc->offset = size;
4900 }
4901
4902 offset = nc->offset - fragsz;
4903 if (unlikely(offset < 0)) {
4904 page = virt_to_page(nc->va);
4905
4906 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4907 goto refill;
4908
4909 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4910 /* if size can vary use size else just use PAGE_SIZE */
4911 size = nc->size;
4912 #endif
4913 /* OK, page count is 0, we can safely set it */
4914 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4915
4916 /* reset page count bias and offset to start of new frag */
4917 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4918 offset = size - fragsz;
4919 }
4920
4921 nc->pagecnt_bias--;
4922 nc->offset = offset;
4923
4924 return nc->va + offset;
4925 }
4926 EXPORT_SYMBOL(page_frag_alloc);
4927
4928 /*
4929 * Frees a page fragment allocated out of either a compound or order 0 page.
4930 */
4931 void page_frag_free(void *addr)
4932 {
4933 struct page *page = virt_to_head_page(addr);
4934
4935 if (unlikely(put_page_testzero(page)))
4936 free_the_page(page, compound_order(page));
4937 }
4938 EXPORT_SYMBOL(page_frag_free);
4939
4940 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4941 size_t size)
4942 {
4943 if (addr) {
4944 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4945 unsigned long used = addr + PAGE_ALIGN(size);
4946
4947 split_page(virt_to_page((void *)addr), order);
4948 while (used < alloc_end) {
4949 free_page(used);
4950 used += PAGE_SIZE;
4951 }
4952 }
4953 return (void *)addr;
4954 }
4955
4956 /**
4957 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4958 * @size: the number of bytes to allocate
4959 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4960 *
4961 * This function is similar to alloc_pages(), except that it allocates the
4962 * minimum number of pages to satisfy the request. alloc_pages() can only
4963 * allocate memory in power-of-two pages.
4964 *
4965 * This function is also limited by MAX_ORDER.
4966 *
4967 * Memory allocated by this function must be released by free_pages_exact().
4968 *
4969 * Return: pointer to the allocated area or %NULL in case of error.
4970 */
4971 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4972 {
4973 unsigned int order = get_order(size);
4974 unsigned long addr;
4975
4976 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4977 gfp_mask &= ~__GFP_COMP;
4978
4979 addr = __get_free_pages(gfp_mask, order);
4980 return make_alloc_exact(addr, order, size);
4981 }
4982 EXPORT_SYMBOL(alloc_pages_exact);
4983
4984 /**
4985 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4986 * pages on a node.
4987 * @nid: the preferred node ID where memory should be allocated
4988 * @size: the number of bytes to allocate
4989 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4990 *
4991 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4992 * back.
4993 *
4994 * Return: pointer to the allocated area or %NULL in case of error.
4995 */
4996 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4997 {
4998 unsigned int order = get_order(size);
4999 struct page *p;
5000
5001 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5002 gfp_mask &= ~__GFP_COMP;
5003
5004 p = alloc_pages_node(nid, gfp_mask, order);
5005 if (!p)
5006 return NULL;
5007 return make_alloc_exact((unsigned long)page_address(p), order, size);
5008 }
5009
5010 /**
5011 * free_pages_exact - release memory allocated via alloc_pages_exact()
5012 * @virt: the value returned by alloc_pages_exact.
5013 * @size: size of allocation, same value as passed to alloc_pages_exact().
5014 *
5015 * Release the memory allocated by a previous call to alloc_pages_exact.
5016 */
5017 void free_pages_exact(void *virt, size_t size)
5018 {
5019 unsigned long addr = (unsigned long)virt;
5020 unsigned long end = addr + PAGE_ALIGN(size);
5021
5022 while (addr < end) {
5023 free_page(addr);
5024 addr += PAGE_SIZE;
5025 }
5026 }
5027 EXPORT_SYMBOL(free_pages_exact);
5028
5029 /**
5030 * nr_free_zone_pages - count number of pages beyond high watermark
5031 * @offset: The zone index of the highest zone
5032 *
5033 * nr_free_zone_pages() counts the number of pages which are beyond the
5034 * high watermark within all zones at or below a given zone index. For each
5035 * zone, the number of pages is calculated as:
5036 *
5037 * nr_free_zone_pages = managed_pages - high_pages
5038 *
5039 * Return: number of pages beyond high watermark.
5040 */
5041 static unsigned long nr_free_zone_pages(int offset)
5042 {
5043 struct zoneref *z;
5044 struct zone *zone;
5045
5046 /* Just pick one node, since fallback list is circular */
5047 unsigned long sum = 0;
5048
5049 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5050
5051 for_each_zone_zonelist(zone, z, zonelist, offset) {
5052 unsigned long size = zone_managed_pages(zone);
5053 unsigned long high = high_wmark_pages(zone);
5054 if (size > high)
5055 sum += size - high;
5056 }
5057
5058 return sum;
5059 }
5060
5061 /**
5062 * nr_free_buffer_pages - count number of pages beyond high watermark
5063 *
5064 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5065 * watermark within ZONE_DMA and ZONE_NORMAL.
5066 *
5067 * Return: number of pages beyond high watermark within ZONE_DMA and
5068 * ZONE_NORMAL.
5069 */
5070 unsigned long nr_free_buffer_pages(void)
5071 {
5072 return nr_free_zone_pages(gfp_zone(GFP_USER));
5073 }
5074 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5075
5076 /**
5077 * nr_free_pagecache_pages - count number of pages beyond high watermark
5078 *
5079 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5080 * high watermark within all zones.
5081 *
5082 * Return: number of pages beyond high watermark within all zones.
5083 */
5084 unsigned long nr_free_pagecache_pages(void)
5085 {
5086 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5087 }
5088
5089 static inline void show_node(struct zone *zone)
5090 {
5091 if (IS_ENABLED(CONFIG_NUMA))
5092 printk("Node %d ", zone_to_nid(zone));
5093 }
5094
5095 long si_mem_available(void)
5096 {
5097 long available;
5098 unsigned long pagecache;
5099 unsigned long wmark_low = 0;
5100 unsigned long pages[NR_LRU_LISTS];
5101 unsigned long reclaimable;
5102 struct zone *zone;
5103 int lru;
5104
5105 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5106 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5107
5108 for_each_zone(zone)
5109 wmark_low += low_wmark_pages(zone);
5110
5111 /*
5112 * Estimate the amount of memory available for userspace allocations,
5113 * without causing swapping.
5114 */
5115 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5116
5117 /*
5118 * Not all the page cache can be freed, otherwise the system will
5119 * start swapping. Assume at least half of the page cache, or the
5120 * low watermark worth of cache, needs to stay.
5121 */
5122 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5123 pagecache -= min(pagecache / 2, wmark_low);
5124 available += pagecache;
5125
5126 /*
5127 * Part of the reclaimable slab and other kernel memory consists of
5128 * items that are in use, and cannot be freed. Cap this estimate at the
5129 * low watermark.
5130 */
5131 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5132 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5133 available += reclaimable - min(reclaimable / 2, wmark_low);
5134
5135 if (available < 0)
5136 available = 0;
5137 return available;
5138 }
5139 EXPORT_SYMBOL_GPL(si_mem_available);
5140
5141 void si_meminfo(struct sysinfo *val)
5142 {
5143 val->totalram = totalram_pages();
5144 val->sharedram = global_node_page_state(NR_SHMEM);
5145 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5146 val->bufferram = nr_blockdev_pages();
5147 val->totalhigh = totalhigh_pages();
5148 val->freehigh = nr_free_highpages();
5149 val->mem_unit = PAGE_SIZE;
5150 }
5151
5152 EXPORT_SYMBOL(si_meminfo);
5153
5154 #ifdef CONFIG_NUMA
5155 void si_meminfo_node(struct sysinfo *val, int nid)
5156 {
5157 int zone_type; /* needs to be signed */
5158 unsigned long managed_pages = 0;
5159 unsigned long managed_highpages = 0;
5160 unsigned long free_highpages = 0;
5161 pg_data_t *pgdat = NODE_DATA(nid);
5162
5163 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5164 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5165 val->totalram = managed_pages;
5166 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5167 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5168 #ifdef CONFIG_HIGHMEM
5169 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5170 struct zone *zone = &pgdat->node_zones[zone_type];
5171
5172 if (is_highmem(zone)) {
5173 managed_highpages += zone_managed_pages(zone);
5174 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5175 }
5176 }
5177 val->totalhigh = managed_highpages;
5178 val->freehigh = free_highpages;
5179 #else
5180 val->totalhigh = managed_highpages;
5181 val->freehigh = free_highpages;
5182 #endif
5183 val->mem_unit = PAGE_SIZE;
5184 }
5185 #endif
5186
5187 /*
5188 * Determine whether the node should be displayed or not, depending on whether
5189 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5190 */
5191 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5192 {
5193 if (!(flags & SHOW_MEM_FILTER_NODES))
5194 return false;
5195
5196 /*
5197 * no node mask - aka implicit memory numa policy. Do not bother with
5198 * the synchronization - read_mems_allowed_begin - because we do not
5199 * have to be precise here.
5200 */
5201 if (!nodemask)
5202 nodemask = &cpuset_current_mems_allowed;
5203
5204 return !node_isset(nid, *nodemask);
5205 }
5206
5207 #define K(x) ((x) << (PAGE_SHIFT-10))
5208
5209 static void show_migration_types(unsigned char type)
5210 {
5211 static const char types[MIGRATE_TYPES] = {
5212 [MIGRATE_UNMOVABLE] = 'U',
5213 [MIGRATE_MOVABLE] = 'M',
5214 [MIGRATE_RECLAIMABLE] = 'E',
5215 [MIGRATE_HIGHATOMIC] = 'H',
5216 #ifdef CONFIG_CMA
5217 [MIGRATE_CMA] = 'C',
5218 #endif
5219 #ifdef CONFIG_MEMORY_ISOLATION
5220 [MIGRATE_ISOLATE] = 'I',
5221 #endif
5222 };
5223 char tmp[MIGRATE_TYPES + 1];
5224 char *p = tmp;
5225 int i;
5226
5227 for (i = 0; i < MIGRATE_TYPES; i++) {
5228 if (type & (1 << i))
5229 *p++ = types[i];
5230 }
5231
5232 *p = '\0';
5233 printk(KERN_CONT "(%s) ", tmp);
5234 }
5235
5236 /*
5237 * Show free area list (used inside shift_scroll-lock stuff)
5238 * We also calculate the percentage fragmentation. We do this by counting the
5239 * memory on each free list with the exception of the first item on the list.
5240 *
5241 * Bits in @filter:
5242 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5243 * cpuset.
5244 */
5245 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5246 {
5247 unsigned long free_pcp = 0;
5248 int cpu;
5249 struct zone *zone;
5250 pg_data_t *pgdat;
5251
5252 for_each_populated_zone(zone) {
5253 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5254 continue;
5255
5256 for_each_online_cpu(cpu)
5257 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5258 }
5259
5260 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5261 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5262 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5263 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5264 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5265 " free:%lu free_pcp:%lu free_cma:%lu\n",
5266 global_node_page_state(NR_ACTIVE_ANON),
5267 global_node_page_state(NR_INACTIVE_ANON),
5268 global_node_page_state(NR_ISOLATED_ANON),
5269 global_node_page_state(NR_ACTIVE_FILE),
5270 global_node_page_state(NR_INACTIVE_FILE),
5271 global_node_page_state(NR_ISOLATED_FILE),
5272 global_node_page_state(NR_UNEVICTABLE),
5273 global_node_page_state(NR_FILE_DIRTY),
5274 global_node_page_state(NR_WRITEBACK),
5275 global_node_page_state(NR_UNSTABLE_NFS),
5276 global_node_page_state(NR_SLAB_RECLAIMABLE),
5277 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5278 global_node_page_state(NR_FILE_MAPPED),
5279 global_node_page_state(NR_SHMEM),
5280 global_zone_page_state(NR_PAGETABLE),
5281 global_zone_page_state(NR_BOUNCE),
5282 global_zone_page_state(NR_FREE_PAGES),
5283 free_pcp,
5284 global_zone_page_state(NR_FREE_CMA_PAGES));
5285
5286 for_each_online_pgdat(pgdat) {
5287 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5288 continue;
5289
5290 printk("Node %d"
5291 " active_anon:%lukB"
5292 " inactive_anon:%lukB"
5293 " active_file:%lukB"
5294 " inactive_file:%lukB"
5295 " unevictable:%lukB"
5296 " isolated(anon):%lukB"
5297 " isolated(file):%lukB"
5298 " mapped:%lukB"
5299 " dirty:%lukB"
5300 " writeback:%lukB"
5301 " shmem:%lukB"
5302 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5303 " shmem_thp: %lukB"
5304 " shmem_pmdmapped: %lukB"
5305 " anon_thp: %lukB"
5306 #endif
5307 " writeback_tmp:%lukB"
5308 " unstable:%lukB"
5309 " all_unreclaimable? %s"
5310 "\n",
5311 pgdat->node_id,
5312 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5313 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5314 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5315 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5316 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5317 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5318 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5319 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5320 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5321 K(node_page_state(pgdat, NR_WRITEBACK)),
5322 K(node_page_state(pgdat, NR_SHMEM)),
5323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5324 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5325 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5326 * HPAGE_PMD_NR),
5327 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5328 #endif
5329 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5330 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5331 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5332 "yes" : "no");
5333 }
5334
5335 for_each_populated_zone(zone) {
5336 int i;
5337
5338 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5339 continue;
5340
5341 free_pcp = 0;
5342 for_each_online_cpu(cpu)
5343 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5344
5345 show_node(zone);
5346 printk(KERN_CONT
5347 "%s"
5348 " free:%lukB"
5349 " min:%lukB"
5350 " low:%lukB"
5351 " high:%lukB"
5352 " active_anon:%lukB"
5353 " inactive_anon:%lukB"
5354 " active_file:%lukB"
5355 " inactive_file:%lukB"
5356 " unevictable:%lukB"
5357 " writepending:%lukB"
5358 " present:%lukB"
5359 " managed:%lukB"
5360 " mlocked:%lukB"
5361 " kernel_stack:%lukB"
5362 " pagetables:%lukB"
5363 " bounce:%lukB"
5364 " free_pcp:%lukB"
5365 " local_pcp:%ukB"
5366 " free_cma:%lukB"
5367 "\n",
5368 zone->name,
5369 K(zone_page_state(zone, NR_FREE_PAGES)),
5370 K(min_wmark_pages(zone)),
5371 K(low_wmark_pages(zone)),
5372 K(high_wmark_pages(zone)),
5373 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5374 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5375 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5376 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5377 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5378 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5379 K(zone->present_pages),
5380 K(zone_managed_pages(zone)),
5381 K(zone_page_state(zone, NR_MLOCK)),
5382 zone_page_state(zone, NR_KERNEL_STACK_KB),
5383 K(zone_page_state(zone, NR_PAGETABLE)),
5384 K(zone_page_state(zone, NR_BOUNCE)),
5385 K(free_pcp),
5386 K(this_cpu_read(zone->pageset->pcp.count)),
5387 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5388 printk("lowmem_reserve[]:");
5389 for (i = 0; i < MAX_NR_ZONES; i++)
5390 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5391 printk(KERN_CONT "\n");
5392 }
5393
5394 for_each_populated_zone(zone) {
5395 unsigned int order;
5396 unsigned long nr[MAX_ORDER], flags, total = 0;
5397 unsigned char types[MAX_ORDER];
5398
5399 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5400 continue;
5401 show_node(zone);
5402 printk(KERN_CONT "%s: ", zone->name);
5403
5404 spin_lock_irqsave(&zone->lock, flags);
5405 for (order = 0; order < MAX_ORDER; order++) {
5406 struct free_area *area = &zone->free_area[order];
5407 int type;
5408
5409 nr[order] = area->nr_free;
5410 total += nr[order] << order;
5411
5412 types[order] = 0;
5413 for (type = 0; type < MIGRATE_TYPES; type++) {
5414 if (!free_area_empty(area, type))
5415 types[order] |= 1 << type;
5416 }
5417 }
5418 spin_unlock_irqrestore(&zone->lock, flags);
5419 for (order = 0; order < MAX_ORDER; order++) {
5420 printk(KERN_CONT "%lu*%lukB ",
5421 nr[order], K(1UL) << order);
5422 if (nr[order])
5423 show_migration_types(types[order]);
5424 }
5425 printk(KERN_CONT "= %lukB\n", K(total));
5426 }
5427
5428 hugetlb_show_meminfo();
5429
5430 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5431
5432 show_swap_cache_info();
5433 }
5434
5435 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5436 {
5437 zoneref->zone = zone;
5438 zoneref->zone_idx = zone_idx(zone);
5439 }
5440
5441 /*
5442 * Builds allocation fallback zone lists.
5443 *
5444 * Add all populated zones of a node to the zonelist.
5445 */
5446 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5447 {
5448 struct zone *zone;
5449 enum zone_type zone_type = MAX_NR_ZONES;
5450 int nr_zones = 0;
5451
5452 do {
5453 zone_type--;
5454 zone = pgdat->node_zones + zone_type;
5455 if (managed_zone(zone)) {
5456 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5457 check_highest_zone(zone_type);
5458 }
5459 } while (zone_type);
5460
5461 return nr_zones;
5462 }
5463
5464 #ifdef CONFIG_NUMA
5465
5466 static int __parse_numa_zonelist_order(char *s)
5467 {
5468 /*
5469 * We used to support different zonlists modes but they turned
5470 * out to be just not useful. Let's keep the warning in place
5471 * if somebody still use the cmd line parameter so that we do
5472 * not fail it silently
5473 */
5474 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5475 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5476 return -EINVAL;
5477 }
5478 return 0;
5479 }
5480
5481 static __init int setup_numa_zonelist_order(char *s)
5482 {
5483 if (!s)
5484 return 0;
5485
5486 return __parse_numa_zonelist_order(s);
5487 }
5488 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5489
5490 char numa_zonelist_order[] = "Node";
5491
5492 /*
5493 * sysctl handler for numa_zonelist_order
5494 */
5495 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5496 void __user *buffer, size_t *length,
5497 loff_t *ppos)
5498 {
5499 char *str;
5500 int ret;
5501
5502 if (!write)
5503 return proc_dostring(table, write, buffer, length, ppos);
5504 str = memdup_user_nul(buffer, 16);
5505 if (IS_ERR(str))
5506 return PTR_ERR(str);
5507
5508 ret = __parse_numa_zonelist_order(str);
5509 kfree(str);
5510 return ret;
5511 }
5512
5513
5514 #define MAX_NODE_LOAD (nr_online_nodes)
5515 static int node_load[MAX_NUMNODES];
5516
5517 /**
5518 * find_next_best_node - find the next node that should appear in a given node's fallback list
5519 * @node: node whose fallback list we're appending
5520 * @used_node_mask: nodemask_t of already used nodes
5521 *
5522 * We use a number of factors to determine which is the next node that should
5523 * appear on a given node's fallback list. The node should not have appeared
5524 * already in @node's fallback list, and it should be the next closest node
5525 * according to the distance array (which contains arbitrary distance values
5526 * from each node to each node in the system), and should also prefer nodes
5527 * with no CPUs, since presumably they'll have very little allocation pressure
5528 * on them otherwise.
5529 *
5530 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5531 */
5532 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5533 {
5534 int n, val;
5535 int min_val = INT_MAX;
5536 int best_node = NUMA_NO_NODE;
5537 const struct cpumask *tmp = cpumask_of_node(0);
5538
5539 /* Use the local node if we haven't already */
5540 if (!node_isset(node, *used_node_mask)) {
5541 node_set(node, *used_node_mask);
5542 return node;
5543 }
5544
5545 for_each_node_state(n, N_MEMORY) {
5546
5547 /* Don't want a node to appear more than once */
5548 if (node_isset(n, *used_node_mask))
5549 continue;
5550
5551 /* Use the distance array to find the distance */
5552 val = node_distance(node, n);
5553
5554 /* Penalize nodes under us ("prefer the next node") */
5555 val += (n < node);
5556
5557 /* Give preference to headless and unused nodes */
5558 tmp = cpumask_of_node(n);
5559 if (!cpumask_empty(tmp))
5560 val += PENALTY_FOR_NODE_WITH_CPUS;
5561
5562 /* Slight preference for less loaded node */
5563 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5564 val += node_load[n];
5565
5566 if (val < min_val) {
5567 min_val = val;
5568 best_node = n;
5569 }
5570 }
5571
5572 if (best_node >= 0)
5573 node_set(best_node, *used_node_mask);
5574
5575 return best_node;
5576 }
5577
5578
5579 /*
5580 * Build zonelists ordered by node and zones within node.
5581 * This results in maximum locality--normal zone overflows into local
5582 * DMA zone, if any--but risks exhausting DMA zone.
5583 */
5584 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5585 unsigned nr_nodes)
5586 {
5587 struct zoneref *zonerefs;
5588 int i;
5589
5590 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5591
5592 for (i = 0; i < nr_nodes; i++) {
5593 int nr_zones;
5594
5595 pg_data_t *node = NODE_DATA(node_order[i]);
5596
5597 nr_zones = build_zonerefs_node(node, zonerefs);
5598 zonerefs += nr_zones;
5599 }
5600 zonerefs->zone = NULL;
5601 zonerefs->zone_idx = 0;
5602 }
5603
5604 /*
5605 * Build gfp_thisnode zonelists
5606 */
5607 static void build_thisnode_zonelists(pg_data_t *pgdat)
5608 {
5609 struct zoneref *zonerefs;
5610 int nr_zones;
5611
5612 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5613 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5614 zonerefs += nr_zones;
5615 zonerefs->zone = NULL;
5616 zonerefs->zone_idx = 0;
5617 }
5618
5619 /*
5620 * Build zonelists ordered by zone and nodes within zones.
5621 * This results in conserving DMA zone[s] until all Normal memory is
5622 * exhausted, but results in overflowing to remote node while memory
5623 * may still exist in local DMA zone.
5624 */
5625
5626 static void build_zonelists(pg_data_t *pgdat)
5627 {
5628 static int node_order[MAX_NUMNODES];
5629 int node, load, nr_nodes = 0;
5630 nodemask_t used_mask;
5631 int local_node, prev_node;
5632
5633 /* NUMA-aware ordering of nodes */
5634 local_node = pgdat->node_id;
5635 load = nr_online_nodes;
5636 prev_node = local_node;
5637 nodes_clear(used_mask);
5638
5639 memset(node_order, 0, sizeof(node_order));
5640 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5641 /*
5642 * We don't want to pressure a particular node.
5643 * So adding penalty to the first node in same
5644 * distance group to make it round-robin.
5645 */
5646 if (node_distance(local_node, node) !=
5647 node_distance(local_node, prev_node))
5648 node_load[node] = load;
5649
5650 node_order[nr_nodes++] = node;
5651 prev_node = node;
5652 load--;
5653 }
5654
5655 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5656 build_thisnode_zonelists(pgdat);
5657 }
5658
5659 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5660 /*
5661 * Return node id of node used for "local" allocations.
5662 * I.e., first node id of first zone in arg node's generic zonelist.
5663 * Used for initializing percpu 'numa_mem', which is used primarily
5664 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5665 */
5666 int local_memory_node(int node)
5667 {
5668 struct zoneref *z;
5669
5670 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5671 gfp_zone(GFP_KERNEL),
5672 NULL);
5673 return zone_to_nid(z->zone);
5674 }
5675 #endif
5676
5677 static void setup_min_unmapped_ratio(void);
5678 static void setup_min_slab_ratio(void);
5679 #else /* CONFIG_NUMA */
5680
5681 static void build_zonelists(pg_data_t *pgdat)
5682 {
5683 int node, local_node;
5684 struct zoneref *zonerefs;
5685 int nr_zones;
5686
5687 local_node = pgdat->node_id;
5688
5689 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5690 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5691 zonerefs += nr_zones;
5692
5693 /*
5694 * Now we build the zonelist so that it contains the zones
5695 * of all the other nodes.
5696 * We don't want to pressure a particular node, so when
5697 * building the zones for node N, we make sure that the
5698 * zones coming right after the local ones are those from
5699 * node N+1 (modulo N)
5700 */
5701 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5702 if (!node_online(node))
5703 continue;
5704 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5705 zonerefs += nr_zones;
5706 }
5707 for (node = 0; node < local_node; node++) {
5708 if (!node_online(node))
5709 continue;
5710 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5711 zonerefs += nr_zones;
5712 }
5713
5714 zonerefs->zone = NULL;
5715 zonerefs->zone_idx = 0;
5716 }
5717
5718 #endif /* CONFIG_NUMA */
5719
5720 /*
5721 * Boot pageset table. One per cpu which is going to be used for all
5722 * zones and all nodes. The parameters will be set in such a way
5723 * that an item put on a list will immediately be handed over to
5724 * the buddy list. This is safe since pageset manipulation is done
5725 * with interrupts disabled.
5726 *
5727 * The boot_pagesets must be kept even after bootup is complete for
5728 * unused processors and/or zones. They do play a role for bootstrapping
5729 * hotplugged processors.
5730 *
5731 * zoneinfo_show() and maybe other functions do
5732 * not check if the processor is online before following the pageset pointer.
5733 * Other parts of the kernel may not check if the zone is available.
5734 */
5735 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5736 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5737 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5738
5739 static void __build_all_zonelists(void *data)
5740 {
5741 int nid;
5742 int __maybe_unused cpu;
5743 pg_data_t *self = data;
5744 static DEFINE_SPINLOCK(lock);
5745
5746 spin_lock(&lock);
5747
5748 #ifdef CONFIG_NUMA
5749 memset(node_load, 0, sizeof(node_load));
5750 #endif
5751
5752 /*
5753 * This node is hotadded and no memory is yet present. So just
5754 * building zonelists is fine - no need to touch other nodes.
5755 */
5756 if (self && !node_online(self->node_id)) {
5757 build_zonelists(self);
5758 } else {
5759 for_each_online_node(nid) {
5760 pg_data_t *pgdat = NODE_DATA(nid);
5761
5762 build_zonelists(pgdat);
5763 }
5764
5765 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5766 /*
5767 * We now know the "local memory node" for each node--
5768 * i.e., the node of the first zone in the generic zonelist.
5769 * Set up numa_mem percpu variable for on-line cpus. During
5770 * boot, only the boot cpu should be on-line; we'll init the
5771 * secondary cpus' numa_mem as they come on-line. During
5772 * node/memory hotplug, we'll fixup all on-line cpus.
5773 */
5774 for_each_online_cpu(cpu)
5775 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5776 #endif
5777 }
5778
5779 spin_unlock(&lock);
5780 }
5781
5782 static noinline void __init
5783 build_all_zonelists_init(void)
5784 {
5785 int cpu;
5786
5787 __build_all_zonelists(NULL);
5788
5789 /*
5790 * Initialize the boot_pagesets that are going to be used
5791 * for bootstrapping processors. The real pagesets for
5792 * each zone will be allocated later when the per cpu
5793 * allocator is available.
5794 *
5795 * boot_pagesets are used also for bootstrapping offline
5796 * cpus if the system is already booted because the pagesets
5797 * are needed to initialize allocators on a specific cpu too.
5798 * F.e. the percpu allocator needs the page allocator which
5799 * needs the percpu allocator in order to allocate its pagesets
5800 * (a chicken-egg dilemma).
5801 */
5802 for_each_possible_cpu(cpu)
5803 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5804
5805 mminit_verify_zonelist();
5806 cpuset_init_current_mems_allowed();
5807 }
5808
5809 /*
5810 * unless system_state == SYSTEM_BOOTING.
5811 *
5812 * __ref due to call of __init annotated helper build_all_zonelists_init
5813 * [protected by SYSTEM_BOOTING].
5814 */
5815 void __ref build_all_zonelists(pg_data_t *pgdat)
5816 {
5817 if (system_state == SYSTEM_BOOTING) {
5818 build_all_zonelists_init();
5819 } else {
5820 __build_all_zonelists(pgdat);
5821 /* cpuset refresh routine should be here */
5822 }
5823 vm_total_pages = nr_free_pagecache_pages();
5824 /*
5825 * Disable grouping by mobility if the number of pages in the
5826 * system is too low to allow the mechanism to work. It would be
5827 * more accurate, but expensive to check per-zone. This check is
5828 * made on memory-hotadd so a system can start with mobility
5829 * disabled and enable it later
5830 */
5831 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5832 page_group_by_mobility_disabled = 1;
5833 else
5834 page_group_by_mobility_disabled = 0;
5835
5836 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5837 nr_online_nodes,
5838 page_group_by_mobility_disabled ? "off" : "on",
5839 vm_total_pages);
5840 #ifdef CONFIG_NUMA
5841 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5842 #endif
5843 }
5844
5845 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5846 static bool __meminit
5847 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5848 {
5849 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5850 static struct memblock_region *r;
5851
5852 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5853 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5854 for_each_memblock(memory, r) {
5855 if (*pfn < memblock_region_memory_end_pfn(r))
5856 break;
5857 }
5858 }
5859 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5860 memblock_is_mirror(r)) {
5861 *pfn = memblock_region_memory_end_pfn(r);
5862 return true;
5863 }
5864 }
5865 #endif
5866 return false;
5867 }
5868
5869 /*
5870 * Initially all pages are reserved - free ones are freed
5871 * up by memblock_free_all() once the early boot process is
5872 * done. Non-atomic initialization, single-pass.
5873 */
5874 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5875 unsigned long start_pfn, enum memmap_context context,
5876 struct vmem_altmap *altmap)
5877 {
5878 unsigned long pfn, end_pfn = start_pfn + size;
5879 struct page *page;
5880
5881 if (highest_memmap_pfn < end_pfn - 1)
5882 highest_memmap_pfn = end_pfn - 1;
5883
5884 #ifdef CONFIG_ZONE_DEVICE
5885 /*
5886 * Honor reservation requested by the driver for this ZONE_DEVICE
5887 * memory. We limit the total number of pages to initialize to just
5888 * those that might contain the memory mapping. We will defer the
5889 * ZONE_DEVICE page initialization until after we have released
5890 * the hotplug lock.
5891 */
5892 if (zone == ZONE_DEVICE) {
5893 if (!altmap)
5894 return;
5895
5896 if (start_pfn == altmap->base_pfn)
5897 start_pfn += altmap->reserve;
5898 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5899 }
5900 #endif
5901
5902 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5903 /*
5904 * There can be holes in boot-time mem_map[]s handed to this
5905 * function. They do not exist on hotplugged memory.
5906 */
5907 if (context == MEMMAP_EARLY) {
5908 if (!early_pfn_valid(pfn))
5909 continue;
5910 if (!early_pfn_in_nid(pfn, nid))
5911 continue;
5912 if (overlap_memmap_init(zone, &pfn))
5913 continue;
5914 if (defer_init(nid, pfn, end_pfn))
5915 break;
5916 }
5917
5918 page = pfn_to_page(pfn);
5919 __init_single_page(page, pfn, zone, nid);
5920 if (context == MEMMAP_HOTPLUG)
5921 __SetPageReserved(page);
5922
5923 /*
5924 * Mark the block movable so that blocks are reserved for
5925 * movable at startup. This will force kernel allocations
5926 * to reserve their blocks rather than leaking throughout
5927 * the address space during boot when many long-lived
5928 * kernel allocations are made.
5929 *
5930 * bitmap is created for zone's valid pfn range. but memmap
5931 * can be created for invalid pages (for alignment)
5932 * check here not to call set_pageblock_migratetype() against
5933 * pfn out of zone.
5934 */
5935 if (!(pfn & (pageblock_nr_pages - 1))) {
5936 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5937 cond_resched();
5938 }
5939 }
5940 }
5941
5942 #ifdef CONFIG_ZONE_DEVICE
5943 void __ref memmap_init_zone_device(struct zone *zone,
5944 unsigned long start_pfn,
5945 unsigned long size,
5946 struct dev_pagemap *pgmap)
5947 {
5948 unsigned long pfn, end_pfn = start_pfn + size;
5949 struct pglist_data *pgdat = zone->zone_pgdat;
5950 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5951 unsigned long zone_idx = zone_idx(zone);
5952 unsigned long start = jiffies;
5953 int nid = pgdat->node_id;
5954
5955 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5956 return;
5957
5958 /*
5959 * The call to memmap_init_zone should have already taken care
5960 * of the pages reserved for the memmap, so we can just jump to
5961 * the end of that region and start processing the device pages.
5962 */
5963 if (altmap) {
5964 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5965 size = end_pfn - start_pfn;
5966 }
5967
5968 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5969 struct page *page = pfn_to_page(pfn);
5970
5971 __init_single_page(page, pfn, zone_idx, nid);
5972
5973 /*
5974 * Mark page reserved as it will need to wait for onlining
5975 * phase for it to be fully associated with a zone.
5976 *
5977 * We can use the non-atomic __set_bit operation for setting
5978 * the flag as we are still initializing the pages.
5979 */
5980 __SetPageReserved(page);
5981
5982 /*
5983 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5984 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5985 * ever freed or placed on a driver-private list.
5986 */
5987 page->pgmap = pgmap;
5988 page->zone_device_data = NULL;
5989
5990 /*
5991 * Mark the block movable so that blocks are reserved for
5992 * movable at startup. This will force kernel allocations
5993 * to reserve their blocks rather than leaking throughout
5994 * the address space during boot when many long-lived
5995 * kernel allocations are made.
5996 *
5997 * bitmap is created for zone's valid pfn range. but memmap
5998 * can be created for invalid pages (for alignment)
5999 * check here not to call set_pageblock_migratetype() against
6000 * pfn out of zone.
6001 *
6002 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6003 * because this is done early in section_activate()
6004 */
6005 if (!(pfn & (pageblock_nr_pages - 1))) {
6006 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6007 cond_resched();
6008 }
6009 }
6010
6011 pr_info("%s initialised %lu pages in %ums\n", __func__,
6012 size, jiffies_to_msecs(jiffies - start));
6013 }
6014
6015 #endif
6016 static void __meminit zone_init_free_lists(struct zone *zone)
6017 {
6018 unsigned int order, t;
6019 for_each_migratetype_order(order, t) {
6020 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6021 zone->free_area[order].nr_free = 0;
6022 }
6023 }
6024
6025 void __meminit __weak memmap_init(unsigned long size, int nid,
6026 unsigned long zone, unsigned long start_pfn)
6027 {
6028 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6029 }
6030
6031 static int zone_batchsize(struct zone *zone)
6032 {
6033 #ifdef CONFIG_MMU
6034 int batch;
6035
6036 /*
6037 * The per-cpu-pages pools are set to around 1000th of the
6038 * size of the zone.
6039 */
6040 batch = zone_managed_pages(zone) / 1024;
6041 /* But no more than a meg. */
6042 if (batch * PAGE_SIZE > 1024 * 1024)
6043 batch = (1024 * 1024) / PAGE_SIZE;
6044 batch /= 4; /* We effectively *= 4 below */
6045 if (batch < 1)
6046 batch = 1;
6047
6048 /*
6049 * Clamp the batch to a 2^n - 1 value. Having a power
6050 * of 2 value was found to be more likely to have
6051 * suboptimal cache aliasing properties in some cases.
6052 *
6053 * For example if 2 tasks are alternately allocating
6054 * batches of pages, one task can end up with a lot
6055 * of pages of one half of the possible page colors
6056 * and the other with pages of the other colors.
6057 */
6058 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6059
6060 return batch;
6061
6062 #else
6063 /* The deferral and batching of frees should be suppressed under NOMMU
6064 * conditions.
6065 *
6066 * The problem is that NOMMU needs to be able to allocate large chunks
6067 * of contiguous memory as there's no hardware page translation to
6068 * assemble apparent contiguous memory from discontiguous pages.
6069 *
6070 * Queueing large contiguous runs of pages for batching, however,
6071 * causes the pages to actually be freed in smaller chunks. As there
6072 * can be a significant delay between the individual batches being
6073 * recycled, this leads to the once large chunks of space being
6074 * fragmented and becoming unavailable for high-order allocations.
6075 */
6076 return 0;
6077 #endif
6078 }
6079
6080 /*
6081 * pcp->high and pcp->batch values are related and dependent on one another:
6082 * ->batch must never be higher then ->high.
6083 * The following function updates them in a safe manner without read side
6084 * locking.
6085 *
6086 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6087 * those fields changing asynchronously (acording the the above rule).
6088 *
6089 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6090 * outside of boot time (or some other assurance that no concurrent updaters
6091 * exist).
6092 */
6093 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6094 unsigned long batch)
6095 {
6096 /* start with a fail safe value for batch */
6097 pcp->batch = 1;
6098 smp_wmb();
6099
6100 /* Update high, then batch, in order */
6101 pcp->high = high;
6102 smp_wmb();
6103
6104 pcp->batch = batch;
6105 }
6106
6107 /* a companion to pageset_set_high() */
6108 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6109 {
6110 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6111 }
6112
6113 static void pageset_init(struct per_cpu_pageset *p)
6114 {
6115 struct per_cpu_pages *pcp;
6116 int migratetype;
6117
6118 memset(p, 0, sizeof(*p));
6119
6120 pcp = &p->pcp;
6121 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6122 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6123 }
6124
6125 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6126 {
6127 pageset_init(p);
6128 pageset_set_batch(p, batch);
6129 }
6130
6131 /*
6132 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6133 * to the value high for the pageset p.
6134 */
6135 static void pageset_set_high(struct per_cpu_pageset *p,
6136 unsigned long high)
6137 {
6138 unsigned long batch = max(1UL, high / 4);
6139 if ((high / 4) > (PAGE_SHIFT * 8))
6140 batch = PAGE_SHIFT * 8;
6141
6142 pageset_update(&p->pcp, high, batch);
6143 }
6144
6145 static void pageset_set_high_and_batch(struct zone *zone,
6146 struct per_cpu_pageset *pcp)
6147 {
6148 if (percpu_pagelist_fraction)
6149 pageset_set_high(pcp,
6150 (zone_managed_pages(zone) /
6151 percpu_pagelist_fraction));
6152 else
6153 pageset_set_batch(pcp, zone_batchsize(zone));
6154 }
6155
6156 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6157 {
6158 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6159
6160 pageset_init(pcp);
6161 pageset_set_high_and_batch(zone, pcp);
6162 }
6163
6164 void __meminit setup_zone_pageset(struct zone *zone)
6165 {
6166 int cpu;
6167 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6168 for_each_possible_cpu(cpu)
6169 zone_pageset_init(zone, cpu);
6170 }
6171
6172 /*
6173 * Allocate per cpu pagesets and initialize them.
6174 * Before this call only boot pagesets were available.
6175 */
6176 void __init setup_per_cpu_pageset(void)
6177 {
6178 struct pglist_data *pgdat;
6179 struct zone *zone;
6180
6181 for_each_populated_zone(zone)
6182 setup_zone_pageset(zone);
6183
6184 for_each_online_pgdat(pgdat)
6185 pgdat->per_cpu_nodestats =
6186 alloc_percpu(struct per_cpu_nodestat);
6187 }
6188
6189 static __meminit void zone_pcp_init(struct zone *zone)
6190 {
6191 /*
6192 * per cpu subsystem is not up at this point. The following code
6193 * relies on the ability of the linker to provide the
6194 * offset of a (static) per cpu variable into the per cpu area.
6195 */
6196 zone->pageset = &boot_pageset;
6197
6198 if (populated_zone(zone))
6199 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6200 zone->name, zone->present_pages,
6201 zone_batchsize(zone));
6202 }
6203
6204 void __meminit init_currently_empty_zone(struct zone *zone,
6205 unsigned long zone_start_pfn,
6206 unsigned long size)
6207 {
6208 struct pglist_data *pgdat = zone->zone_pgdat;
6209 int zone_idx = zone_idx(zone) + 1;
6210
6211 if (zone_idx > pgdat->nr_zones)
6212 pgdat->nr_zones = zone_idx;
6213
6214 zone->zone_start_pfn = zone_start_pfn;
6215
6216 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6217 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6218 pgdat->node_id,
6219 (unsigned long)zone_idx(zone),
6220 zone_start_pfn, (zone_start_pfn + size));
6221
6222 zone_init_free_lists(zone);
6223 zone->initialized = 1;
6224 }
6225
6226 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6227 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6228
6229 /*
6230 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6231 */
6232 int __meminit __early_pfn_to_nid(unsigned long pfn,
6233 struct mminit_pfnnid_cache *state)
6234 {
6235 unsigned long start_pfn, end_pfn;
6236 int nid;
6237
6238 if (state->last_start <= pfn && pfn < state->last_end)
6239 return state->last_nid;
6240
6241 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6242 if (nid != NUMA_NO_NODE) {
6243 state->last_start = start_pfn;
6244 state->last_end = end_pfn;
6245 state->last_nid = nid;
6246 }
6247
6248 return nid;
6249 }
6250 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6251
6252 /**
6253 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6254 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6255 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6256 *
6257 * If an architecture guarantees that all ranges registered contain no holes
6258 * and may be freed, this this function may be used instead of calling
6259 * memblock_free_early_nid() manually.
6260 */
6261 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6262 {
6263 unsigned long start_pfn, end_pfn;
6264 int i, this_nid;
6265
6266 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6267 start_pfn = min(start_pfn, max_low_pfn);
6268 end_pfn = min(end_pfn, max_low_pfn);
6269
6270 if (start_pfn < end_pfn)
6271 memblock_free_early_nid(PFN_PHYS(start_pfn),
6272 (end_pfn - start_pfn) << PAGE_SHIFT,
6273 this_nid);
6274 }
6275 }
6276
6277 /**
6278 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6279 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6280 *
6281 * If an architecture guarantees that all ranges registered contain no holes and may
6282 * be freed, this function may be used instead of calling memory_present() manually.
6283 */
6284 void __init sparse_memory_present_with_active_regions(int nid)
6285 {
6286 unsigned long start_pfn, end_pfn;
6287 int i, this_nid;
6288
6289 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6290 memory_present(this_nid, start_pfn, end_pfn);
6291 }
6292
6293 /**
6294 * get_pfn_range_for_nid - Return the start and end page frames for a node
6295 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6296 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6297 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6298 *
6299 * It returns the start and end page frame of a node based on information
6300 * provided by memblock_set_node(). If called for a node
6301 * with no available memory, a warning is printed and the start and end
6302 * PFNs will be 0.
6303 */
6304 void __init get_pfn_range_for_nid(unsigned int nid,
6305 unsigned long *start_pfn, unsigned long *end_pfn)
6306 {
6307 unsigned long this_start_pfn, this_end_pfn;
6308 int i;
6309
6310 *start_pfn = -1UL;
6311 *end_pfn = 0;
6312
6313 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6314 *start_pfn = min(*start_pfn, this_start_pfn);
6315 *end_pfn = max(*end_pfn, this_end_pfn);
6316 }
6317
6318 if (*start_pfn == -1UL)
6319 *start_pfn = 0;
6320 }
6321
6322 /*
6323 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6324 * assumption is made that zones within a node are ordered in monotonic
6325 * increasing memory addresses so that the "highest" populated zone is used
6326 */
6327 static void __init find_usable_zone_for_movable(void)
6328 {
6329 int zone_index;
6330 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6331 if (zone_index == ZONE_MOVABLE)
6332 continue;
6333
6334 if (arch_zone_highest_possible_pfn[zone_index] >
6335 arch_zone_lowest_possible_pfn[zone_index])
6336 break;
6337 }
6338
6339 VM_BUG_ON(zone_index == -1);
6340 movable_zone = zone_index;
6341 }
6342
6343 /*
6344 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6345 * because it is sized independent of architecture. Unlike the other zones,
6346 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6347 * in each node depending on the size of each node and how evenly kernelcore
6348 * is distributed. This helper function adjusts the zone ranges
6349 * provided by the architecture for a given node by using the end of the
6350 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6351 * zones within a node are in order of monotonic increases memory addresses
6352 */
6353 static void __init adjust_zone_range_for_zone_movable(int nid,
6354 unsigned long zone_type,
6355 unsigned long node_start_pfn,
6356 unsigned long node_end_pfn,
6357 unsigned long *zone_start_pfn,
6358 unsigned long *zone_end_pfn)
6359 {
6360 /* Only adjust if ZONE_MOVABLE is on this node */
6361 if (zone_movable_pfn[nid]) {
6362 /* Size ZONE_MOVABLE */
6363 if (zone_type == ZONE_MOVABLE) {
6364 *zone_start_pfn = zone_movable_pfn[nid];
6365 *zone_end_pfn = min(node_end_pfn,
6366 arch_zone_highest_possible_pfn[movable_zone]);
6367
6368 /* Adjust for ZONE_MOVABLE starting within this range */
6369 } else if (!mirrored_kernelcore &&
6370 *zone_start_pfn < zone_movable_pfn[nid] &&
6371 *zone_end_pfn > zone_movable_pfn[nid]) {
6372 *zone_end_pfn = zone_movable_pfn[nid];
6373
6374 /* Check if this whole range is within ZONE_MOVABLE */
6375 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6376 *zone_start_pfn = *zone_end_pfn;
6377 }
6378 }
6379
6380 /*
6381 * Return the number of pages a zone spans in a node, including holes
6382 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6383 */
6384 static unsigned long __init zone_spanned_pages_in_node(int nid,
6385 unsigned long zone_type,
6386 unsigned long node_start_pfn,
6387 unsigned long node_end_pfn,
6388 unsigned long *zone_start_pfn,
6389 unsigned long *zone_end_pfn,
6390 unsigned long *ignored)
6391 {
6392 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6393 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6394 /* When hotadd a new node from cpu_up(), the node should be empty */
6395 if (!node_start_pfn && !node_end_pfn)
6396 return 0;
6397
6398 /* Get the start and end of the zone */
6399 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6400 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6401 adjust_zone_range_for_zone_movable(nid, zone_type,
6402 node_start_pfn, node_end_pfn,
6403 zone_start_pfn, zone_end_pfn);
6404
6405 /* Check that this node has pages within the zone's required range */
6406 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6407 return 0;
6408
6409 /* Move the zone boundaries inside the node if necessary */
6410 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6411 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6412
6413 /* Return the spanned pages */
6414 return *zone_end_pfn - *zone_start_pfn;
6415 }
6416
6417 /*
6418 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6419 * then all holes in the requested range will be accounted for.
6420 */
6421 unsigned long __init __absent_pages_in_range(int nid,
6422 unsigned long range_start_pfn,
6423 unsigned long range_end_pfn)
6424 {
6425 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6426 unsigned long start_pfn, end_pfn;
6427 int i;
6428
6429 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6430 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6431 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6432 nr_absent -= end_pfn - start_pfn;
6433 }
6434 return nr_absent;
6435 }
6436
6437 /**
6438 * absent_pages_in_range - Return number of page frames in holes within a range
6439 * @start_pfn: The start PFN to start searching for holes
6440 * @end_pfn: The end PFN to stop searching for holes
6441 *
6442 * Return: the number of pages frames in memory holes within a range.
6443 */
6444 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6445 unsigned long end_pfn)
6446 {
6447 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6448 }
6449
6450 /* Return the number of page frames in holes in a zone on a node */
6451 static unsigned long __init zone_absent_pages_in_node(int nid,
6452 unsigned long zone_type,
6453 unsigned long node_start_pfn,
6454 unsigned long node_end_pfn,
6455 unsigned long *ignored)
6456 {
6457 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6458 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6459 unsigned long zone_start_pfn, zone_end_pfn;
6460 unsigned long nr_absent;
6461
6462 /* When hotadd a new node from cpu_up(), the node should be empty */
6463 if (!node_start_pfn && !node_end_pfn)
6464 return 0;
6465
6466 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6467 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6468
6469 adjust_zone_range_for_zone_movable(nid, zone_type,
6470 node_start_pfn, node_end_pfn,
6471 &zone_start_pfn, &zone_end_pfn);
6472 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6473
6474 /*
6475 * ZONE_MOVABLE handling.
6476 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6477 * and vice versa.
6478 */
6479 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6480 unsigned long start_pfn, end_pfn;
6481 struct memblock_region *r;
6482
6483 for_each_memblock(memory, r) {
6484 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6485 zone_start_pfn, zone_end_pfn);
6486 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6487 zone_start_pfn, zone_end_pfn);
6488
6489 if (zone_type == ZONE_MOVABLE &&
6490 memblock_is_mirror(r))
6491 nr_absent += end_pfn - start_pfn;
6492
6493 if (zone_type == ZONE_NORMAL &&
6494 !memblock_is_mirror(r))
6495 nr_absent += end_pfn - start_pfn;
6496 }
6497 }
6498
6499 return nr_absent;
6500 }
6501
6502 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6503 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6504 unsigned long zone_type,
6505 unsigned long node_start_pfn,
6506 unsigned long node_end_pfn,
6507 unsigned long *zone_start_pfn,
6508 unsigned long *zone_end_pfn,
6509 unsigned long *zones_size)
6510 {
6511 unsigned int zone;
6512
6513 *zone_start_pfn = node_start_pfn;
6514 for (zone = 0; zone < zone_type; zone++)
6515 *zone_start_pfn += zones_size[zone];
6516
6517 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6518
6519 return zones_size[zone_type];
6520 }
6521
6522 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6523 unsigned long zone_type,
6524 unsigned long node_start_pfn,
6525 unsigned long node_end_pfn,
6526 unsigned long *zholes_size)
6527 {
6528 if (!zholes_size)
6529 return 0;
6530
6531 return zholes_size[zone_type];
6532 }
6533
6534 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6535
6536 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6537 unsigned long node_start_pfn,
6538 unsigned long node_end_pfn,
6539 unsigned long *zones_size,
6540 unsigned long *zholes_size)
6541 {
6542 unsigned long realtotalpages = 0, totalpages = 0;
6543 enum zone_type i;
6544
6545 for (i = 0; i < MAX_NR_ZONES; i++) {
6546 struct zone *zone = pgdat->node_zones + i;
6547 unsigned long zone_start_pfn, zone_end_pfn;
6548 unsigned long size, real_size;
6549
6550 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6551 node_start_pfn,
6552 node_end_pfn,
6553 &zone_start_pfn,
6554 &zone_end_pfn,
6555 zones_size);
6556 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6557 node_start_pfn, node_end_pfn,
6558 zholes_size);
6559 if (size)
6560 zone->zone_start_pfn = zone_start_pfn;
6561 else
6562 zone->zone_start_pfn = 0;
6563 zone->spanned_pages = size;
6564 zone->present_pages = real_size;
6565
6566 totalpages += size;
6567 realtotalpages += real_size;
6568 }
6569
6570 pgdat->node_spanned_pages = totalpages;
6571 pgdat->node_present_pages = realtotalpages;
6572 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6573 realtotalpages);
6574 }
6575
6576 #ifndef CONFIG_SPARSEMEM
6577 /*
6578 * Calculate the size of the zone->blockflags rounded to an unsigned long
6579 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6580 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6581 * round what is now in bits to nearest long in bits, then return it in
6582 * bytes.
6583 */
6584 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6585 {
6586 unsigned long usemapsize;
6587
6588 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6589 usemapsize = roundup(zonesize, pageblock_nr_pages);
6590 usemapsize = usemapsize >> pageblock_order;
6591 usemapsize *= NR_PAGEBLOCK_BITS;
6592 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6593
6594 return usemapsize / 8;
6595 }
6596
6597 static void __ref setup_usemap(struct pglist_data *pgdat,
6598 struct zone *zone,
6599 unsigned long zone_start_pfn,
6600 unsigned long zonesize)
6601 {
6602 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6603 zone->pageblock_flags = NULL;
6604 if (usemapsize) {
6605 zone->pageblock_flags =
6606 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6607 pgdat->node_id);
6608 if (!zone->pageblock_flags)
6609 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6610 usemapsize, zone->name, pgdat->node_id);
6611 }
6612 }
6613 #else
6614 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6615 unsigned long zone_start_pfn, unsigned long zonesize) {}
6616 #endif /* CONFIG_SPARSEMEM */
6617
6618 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6619
6620 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6621 void __init set_pageblock_order(void)
6622 {
6623 unsigned int order;
6624
6625 /* Check that pageblock_nr_pages has not already been setup */
6626 if (pageblock_order)
6627 return;
6628
6629 if (HPAGE_SHIFT > PAGE_SHIFT)
6630 order = HUGETLB_PAGE_ORDER;
6631 else
6632 order = MAX_ORDER - 1;
6633
6634 /*
6635 * Assume the largest contiguous order of interest is a huge page.
6636 * This value may be variable depending on boot parameters on IA64 and
6637 * powerpc.
6638 */
6639 pageblock_order = order;
6640 }
6641 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6642
6643 /*
6644 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6645 * is unused as pageblock_order is set at compile-time. See
6646 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6647 * the kernel config
6648 */
6649 void __init set_pageblock_order(void)
6650 {
6651 }
6652
6653 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6654
6655 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6656 unsigned long present_pages)
6657 {
6658 unsigned long pages = spanned_pages;
6659
6660 /*
6661 * Provide a more accurate estimation if there are holes within
6662 * the zone and SPARSEMEM is in use. If there are holes within the
6663 * zone, each populated memory region may cost us one or two extra
6664 * memmap pages due to alignment because memmap pages for each
6665 * populated regions may not be naturally aligned on page boundary.
6666 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6667 */
6668 if (spanned_pages > present_pages + (present_pages >> 4) &&
6669 IS_ENABLED(CONFIG_SPARSEMEM))
6670 pages = present_pages;
6671
6672 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6673 }
6674
6675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6676 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6677 {
6678 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6679
6680 spin_lock_init(&ds_queue->split_queue_lock);
6681 INIT_LIST_HEAD(&ds_queue->split_queue);
6682 ds_queue->split_queue_len = 0;
6683 }
6684 #else
6685 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6686 #endif
6687
6688 #ifdef CONFIG_COMPACTION
6689 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6690 {
6691 init_waitqueue_head(&pgdat->kcompactd_wait);
6692 }
6693 #else
6694 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6695 #endif
6696
6697 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6698 {
6699 pgdat_resize_init(pgdat);
6700
6701 pgdat_init_split_queue(pgdat);
6702 pgdat_init_kcompactd(pgdat);
6703
6704 init_waitqueue_head(&pgdat->kswapd_wait);
6705 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6706
6707 pgdat_page_ext_init(pgdat);
6708 spin_lock_init(&pgdat->lru_lock);
6709 lruvec_init(node_lruvec(pgdat));
6710 }
6711
6712 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6713 unsigned long remaining_pages)
6714 {
6715 atomic_long_set(&zone->managed_pages, remaining_pages);
6716 zone_set_nid(zone, nid);
6717 zone->name = zone_names[idx];
6718 zone->zone_pgdat = NODE_DATA(nid);
6719 spin_lock_init(&zone->lock);
6720 zone_seqlock_init(zone);
6721 zone_pcp_init(zone);
6722 }
6723
6724 /*
6725 * Set up the zone data structures
6726 * - init pgdat internals
6727 * - init all zones belonging to this node
6728 *
6729 * NOTE: this function is only called during memory hotplug
6730 */
6731 #ifdef CONFIG_MEMORY_HOTPLUG
6732 void __ref free_area_init_core_hotplug(int nid)
6733 {
6734 enum zone_type z;
6735 pg_data_t *pgdat = NODE_DATA(nid);
6736
6737 pgdat_init_internals(pgdat);
6738 for (z = 0; z < MAX_NR_ZONES; z++)
6739 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6740 }
6741 #endif
6742
6743 /*
6744 * Set up the zone data structures:
6745 * - mark all pages reserved
6746 * - mark all memory queues empty
6747 * - clear the memory bitmaps
6748 *
6749 * NOTE: pgdat should get zeroed by caller.
6750 * NOTE: this function is only called during early init.
6751 */
6752 static void __init free_area_init_core(struct pglist_data *pgdat)
6753 {
6754 enum zone_type j;
6755 int nid = pgdat->node_id;
6756
6757 pgdat_init_internals(pgdat);
6758 pgdat->per_cpu_nodestats = &boot_nodestats;
6759
6760 for (j = 0; j < MAX_NR_ZONES; j++) {
6761 struct zone *zone = pgdat->node_zones + j;
6762 unsigned long size, freesize, memmap_pages;
6763 unsigned long zone_start_pfn = zone->zone_start_pfn;
6764
6765 size = zone->spanned_pages;
6766 freesize = zone->present_pages;
6767
6768 /*
6769 * Adjust freesize so that it accounts for how much memory
6770 * is used by this zone for memmap. This affects the watermark
6771 * and per-cpu initialisations
6772 */
6773 memmap_pages = calc_memmap_size(size, freesize);
6774 if (!is_highmem_idx(j)) {
6775 if (freesize >= memmap_pages) {
6776 freesize -= memmap_pages;
6777 if (memmap_pages)
6778 printk(KERN_DEBUG
6779 " %s zone: %lu pages used for memmap\n",
6780 zone_names[j], memmap_pages);
6781 } else
6782 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6783 zone_names[j], memmap_pages, freesize);
6784 }
6785
6786 /* Account for reserved pages */
6787 if (j == 0 && freesize > dma_reserve) {
6788 freesize -= dma_reserve;
6789 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6790 zone_names[0], dma_reserve);
6791 }
6792
6793 if (!is_highmem_idx(j))
6794 nr_kernel_pages += freesize;
6795 /* Charge for highmem memmap if there are enough kernel pages */
6796 else if (nr_kernel_pages > memmap_pages * 2)
6797 nr_kernel_pages -= memmap_pages;
6798 nr_all_pages += freesize;
6799
6800 /*
6801 * Set an approximate value for lowmem here, it will be adjusted
6802 * when the bootmem allocator frees pages into the buddy system.
6803 * And all highmem pages will be managed by the buddy system.
6804 */
6805 zone_init_internals(zone, j, nid, freesize);
6806
6807 if (!size)
6808 continue;
6809
6810 set_pageblock_order();
6811 setup_usemap(pgdat, zone, zone_start_pfn, size);
6812 init_currently_empty_zone(zone, zone_start_pfn, size);
6813 memmap_init(size, nid, j, zone_start_pfn);
6814 }
6815 }
6816
6817 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6818 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6819 {
6820 unsigned long __maybe_unused start = 0;
6821 unsigned long __maybe_unused offset = 0;
6822
6823 /* Skip empty nodes */
6824 if (!pgdat->node_spanned_pages)
6825 return;
6826
6827 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6828 offset = pgdat->node_start_pfn - start;
6829 /* ia64 gets its own node_mem_map, before this, without bootmem */
6830 if (!pgdat->node_mem_map) {
6831 unsigned long size, end;
6832 struct page *map;
6833
6834 /*
6835 * The zone's endpoints aren't required to be MAX_ORDER
6836 * aligned but the node_mem_map endpoints must be in order
6837 * for the buddy allocator to function correctly.
6838 */
6839 end = pgdat_end_pfn(pgdat);
6840 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6841 size = (end - start) * sizeof(struct page);
6842 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6843 pgdat->node_id);
6844 if (!map)
6845 panic("Failed to allocate %ld bytes for node %d memory map\n",
6846 size, pgdat->node_id);
6847 pgdat->node_mem_map = map + offset;
6848 }
6849 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6850 __func__, pgdat->node_id, (unsigned long)pgdat,
6851 (unsigned long)pgdat->node_mem_map);
6852 #ifndef CONFIG_NEED_MULTIPLE_NODES
6853 /*
6854 * With no DISCONTIG, the global mem_map is just set as node 0's
6855 */
6856 if (pgdat == NODE_DATA(0)) {
6857 mem_map = NODE_DATA(0)->node_mem_map;
6858 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6859 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6860 mem_map -= offset;
6861 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6862 }
6863 #endif
6864 }
6865 #else
6866 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6867 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6868
6869 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6870 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6871 {
6872 pgdat->first_deferred_pfn = ULONG_MAX;
6873 }
6874 #else
6875 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6876 #endif
6877
6878 void __init free_area_init_node(int nid, unsigned long *zones_size,
6879 unsigned long node_start_pfn,
6880 unsigned long *zholes_size)
6881 {
6882 pg_data_t *pgdat = NODE_DATA(nid);
6883 unsigned long start_pfn = 0;
6884 unsigned long end_pfn = 0;
6885
6886 /* pg_data_t should be reset to zero when it's allocated */
6887 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6888
6889 pgdat->node_id = nid;
6890 pgdat->node_start_pfn = node_start_pfn;
6891 pgdat->per_cpu_nodestats = NULL;
6892 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6893 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6894 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6895 (u64)start_pfn << PAGE_SHIFT,
6896 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6897 #else
6898 start_pfn = node_start_pfn;
6899 #endif
6900 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6901 zones_size, zholes_size);
6902
6903 alloc_node_mem_map(pgdat);
6904 pgdat_set_deferred_range(pgdat);
6905
6906 free_area_init_core(pgdat);
6907 }
6908
6909 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6910 /*
6911 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6912 * pages zeroed
6913 */
6914 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6915 {
6916 unsigned long pfn;
6917 u64 pgcnt = 0;
6918
6919 for (pfn = spfn; pfn < epfn; pfn++) {
6920 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6921 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6922 + pageblock_nr_pages - 1;
6923 continue;
6924 }
6925 mm_zero_struct_page(pfn_to_page(pfn));
6926 pgcnt++;
6927 }
6928
6929 return pgcnt;
6930 }
6931
6932 /*
6933 * Only struct pages that are backed by physical memory are zeroed and
6934 * initialized by going through __init_single_page(). But, there are some
6935 * struct pages which are reserved in memblock allocator and their fields
6936 * may be accessed (for example page_to_pfn() on some configuration accesses
6937 * flags). We must explicitly zero those struct pages.
6938 *
6939 * This function also addresses a similar issue where struct pages are left
6940 * uninitialized because the physical address range is not covered by
6941 * memblock.memory or memblock.reserved. That could happen when memblock
6942 * layout is manually configured via memmap=.
6943 */
6944 void __init zero_resv_unavail(void)
6945 {
6946 phys_addr_t start, end;
6947 u64 i, pgcnt;
6948 phys_addr_t next = 0;
6949
6950 /*
6951 * Loop through unavailable ranges not covered by memblock.memory.
6952 */
6953 pgcnt = 0;
6954 for_each_mem_range(i, &memblock.memory, NULL,
6955 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6956 if (next < start)
6957 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6958 next = end;
6959 }
6960 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6961
6962 /*
6963 * Struct pages that do not have backing memory. This could be because
6964 * firmware is using some of this memory, or for some other reasons.
6965 */
6966 if (pgcnt)
6967 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6968 }
6969 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6970
6971 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6972
6973 #if MAX_NUMNODES > 1
6974 /*
6975 * Figure out the number of possible node ids.
6976 */
6977 void __init setup_nr_node_ids(void)
6978 {
6979 unsigned int highest;
6980
6981 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6982 nr_node_ids = highest + 1;
6983 }
6984 #endif
6985
6986 /**
6987 * node_map_pfn_alignment - determine the maximum internode alignment
6988 *
6989 * This function should be called after node map is populated and sorted.
6990 * It calculates the maximum power of two alignment which can distinguish
6991 * all the nodes.
6992 *
6993 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6994 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6995 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6996 * shifted, 1GiB is enough and this function will indicate so.
6997 *
6998 * This is used to test whether pfn -> nid mapping of the chosen memory
6999 * model has fine enough granularity to avoid incorrect mapping for the
7000 * populated node map.
7001 *
7002 * Return: the determined alignment in pfn's. 0 if there is no alignment
7003 * requirement (single node).
7004 */
7005 unsigned long __init node_map_pfn_alignment(void)
7006 {
7007 unsigned long accl_mask = 0, last_end = 0;
7008 unsigned long start, end, mask;
7009 int last_nid = NUMA_NO_NODE;
7010 int i, nid;
7011
7012 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7013 if (!start || last_nid < 0 || last_nid == nid) {
7014 last_nid = nid;
7015 last_end = end;
7016 continue;
7017 }
7018
7019 /*
7020 * Start with a mask granular enough to pin-point to the
7021 * start pfn and tick off bits one-by-one until it becomes
7022 * too coarse to separate the current node from the last.
7023 */
7024 mask = ~((1 << __ffs(start)) - 1);
7025 while (mask && last_end <= (start & (mask << 1)))
7026 mask <<= 1;
7027
7028 /* accumulate all internode masks */
7029 accl_mask |= mask;
7030 }
7031
7032 /* convert mask to number of pages */
7033 return ~accl_mask + 1;
7034 }
7035
7036 /* Find the lowest pfn for a node */
7037 static unsigned long __init find_min_pfn_for_node(int nid)
7038 {
7039 unsigned long min_pfn = ULONG_MAX;
7040 unsigned long start_pfn;
7041 int i;
7042
7043 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7044 min_pfn = min(min_pfn, start_pfn);
7045
7046 if (min_pfn == ULONG_MAX) {
7047 pr_warn("Could not find start_pfn for node %d\n", nid);
7048 return 0;
7049 }
7050
7051 return min_pfn;
7052 }
7053
7054 /**
7055 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7056 *
7057 * Return: the minimum PFN based on information provided via
7058 * memblock_set_node().
7059 */
7060 unsigned long __init find_min_pfn_with_active_regions(void)
7061 {
7062 return find_min_pfn_for_node(MAX_NUMNODES);
7063 }
7064
7065 /*
7066 * early_calculate_totalpages()
7067 * Sum pages in active regions for movable zone.
7068 * Populate N_MEMORY for calculating usable_nodes.
7069 */
7070 static unsigned long __init early_calculate_totalpages(void)
7071 {
7072 unsigned long totalpages = 0;
7073 unsigned long start_pfn, end_pfn;
7074 int i, nid;
7075
7076 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7077 unsigned long pages = end_pfn - start_pfn;
7078
7079 totalpages += pages;
7080 if (pages)
7081 node_set_state(nid, N_MEMORY);
7082 }
7083 return totalpages;
7084 }
7085
7086 /*
7087 * Find the PFN the Movable zone begins in each node. Kernel memory
7088 * is spread evenly between nodes as long as the nodes have enough
7089 * memory. When they don't, some nodes will have more kernelcore than
7090 * others
7091 */
7092 static void __init find_zone_movable_pfns_for_nodes(void)
7093 {
7094 int i, nid;
7095 unsigned long usable_startpfn;
7096 unsigned long kernelcore_node, kernelcore_remaining;
7097 /* save the state before borrow the nodemask */
7098 nodemask_t saved_node_state = node_states[N_MEMORY];
7099 unsigned long totalpages = early_calculate_totalpages();
7100 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7101 struct memblock_region *r;
7102
7103 /* Need to find movable_zone earlier when movable_node is specified. */
7104 find_usable_zone_for_movable();
7105
7106 /*
7107 * If movable_node is specified, ignore kernelcore and movablecore
7108 * options.
7109 */
7110 if (movable_node_is_enabled()) {
7111 for_each_memblock(memory, r) {
7112 if (!memblock_is_hotpluggable(r))
7113 continue;
7114
7115 nid = r->nid;
7116
7117 usable_startpfn = PFN_DOWN(r->base);
7118 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7119 min(usable_startpfn, zone_movable_pfn[nid]) :
7120 usable_startpfn;
7121 }
7122
7123 goto out2;
7124 }
7125
7126 /*
7127 * If kernelcore=mirror is specified, ignore movablecore option
7128 */
7129 if (mirrored_kernelcore) {
7130 bool mem_below_4gb_not_mirrored = false;
7131
7132 for_each_memblock(memory, r) {
7133 if (memblock_is_mirror(r))
7134 continue;
7135
7136 nid = r->nid;
7137
7138 usable_startpfn = memblock_region_memory_base_pfn(r);
7139
7140 if (usable_startpfn < 0x100000) {
7141 mem_below_4gb_not_mirrored = true;
7142 continue;
7143 }
7144
7145 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7146 min(usable_startpfn, zone_movable_pfn[nid]) :
7147 usable_startpfn;
7148 }
7149
7150 if (mem_below_4gb_not_mirrored)
7151 pr_warn("This configuration results in unmirrored kernel memory.");
7152
7153 goto out2;
7154 }
7155
7156 /*
7157 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7158 * amount of necessary memory.
7159 */
7160 if (required_kernelcore_percent)
7161 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7162 10000UL;
7163 if (required_movablecore_percent)
7164 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7165 10000UL;
7166
7167 /*
7168 * If movablecore= was specified, calculate what size of
7169 * kernelcore that corresponds so that memory usable for
7170 * any allocation type is evenly spread. If both kernelcore
7171 * and movablecore are specified, then the value of kernelcore
7172 * will be used for required_kernelcore if it's greater than
7173 * what movablecore would have allowed.
7174 */
7175 if (required_movablecore) {
7176 unsigned long corepages;
7177
7178 /*
7179 * Round-up so that ZONE_MOVABLE is at least as large as what
7180 * was requested by the user
7181 */
7182 required_movablecore =
7183 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7184 required_movablecore = min(totalpages, required_movablecore);
7185 corepages = totalpages - required_movablecore;
7186
7187 required_kernelcore = max(required_kernelcore, corepages);
7188 }
7189
7190 /*
7191 * If kernelcore was not specified or kernelcore size is larger
7192 * than totalpages, there is no ZONE_MOVABLE.
7193 */
7194 if (!required_kernelcore || required_kernelcore >= totalpages)
7195 goto out;
7196
7197 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7198 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7199
7200 restart:
7201 /* Spread kernelcore memory as evenly as possible throughout nodes */
7202 kernelcore_node = required_kernelcore / usable_nodes;
7203 for_each_node_state(nid, N_MEMORY) {
7204 unsigned long start_pfn, end_pfn;
7205
7206 /*
7207 * Recalculate kernelcore_node if the division per node
7208 * now exceeds what is necessary to satisfy the requested
7209 * amount of memory for the kernel
7210 */
7211 if (required_kernelcore < kernelcore_node)
7212 kernelcore_node = required_kernelcore / usable_nodes;
7213
7214 /*
7215 * As the map is walked, we track how much memory is usable
7216 * by the kernel using kernelcore_remaining. When it is
7217 * 0, the rest of the node is usable by ZONE_MOVABLE
7218 */
7219 kernelcore_remaining = kernelcore_node;
7220
7221 /* Go through each range of PFNs within this node */
7222 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7223 unsigned long size_pages;
7224
7225 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7226 if (start_pfn >= end_pfn)
7227 continue;
7228
7229 /* Account for what is only usable for kernelcore */
7230 if (start_pfn < usable_startpfn) {
7231 unsigned long kernel_pages;
7232 kernel_pages = min(end_pfn, usable_startpfn)
7233 - start_pfn;
7234
7235 kernelcore_remaining -= min(kernel_pages,
7236 kernelcore_remaining);
7237 required_kernelcore -= min(kernel_pages,
7238 required_kernelcore);
7239
7240 /* Continue if range is now fully accounted */
7241 if (end_pfn <= usable_startpfn) {
7242
7243 /*
7244 * Push zone_movable_pfn to the end so
7245 * that if we have to rebalance
7246 * kernelcore across nodes, we will
7247 * not double account here
7248 */
7249 zone_movable_pfn[nid] = end_pfn;
7250 continue;
7251 }
7252 start_pfn = usable_startpfn;
7253 }
7254
7255 /*
7256 * The usable PFN range for ZONE_MOVABLE is from
7257 * start_pfn->end_pfn. Calculate size_pages as the
7258 * number of pages used as kernelcore
7259 */
7260 size_pages = end_pfn - start_pfn;
7261 if (size_pages > kernelcore_remaining)
7262 size_pages = kernelcore_remaining;
7263 zone_movable_pfn[nid] = start_pfn + size_pages;
7264
7265 /*
7266 * Some kernelcore has been met, update counts and
7267 * break if the kernelcore for this node has been
7268 * satisfied
7269 */
7270 required_kernelcore -= min(required_kernelcore,
7271 size_pages);
7272 kernelcore_remaining -= size_pages;
7273 if (!kernelcore_remaining)
7274 break;
7275 }
7276 }
7277
7278 /*
7279 * If there is still required_kernelcore, we do another pass with one
7280 * less node in the count. This will push zone_movable_pfn[nid] further
7281 * along on the nodes that still have memory until kernelcore is
7282 * satisfied
7283 */
7284 usable_nodes--;
7285 if (usable_nodes && required_kernelcore > usable_nodes)
7286 goto restart;
7287
7288 out2:
7289 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7290 for (nid = 0; nid < MAX_NUMNODES; nid++)
7291 zone_movable_pfn[nid] =
7292 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7293
7294 out:
7295 /* restore the node_state */
7296 node_states[N_MEMORY] = saved_node_state;
7297 }
7298
7299 /* Any regular or high memory on that node ? */
7300 static void check_for_memory(pg_data_t *pgdat, int nid)
7301 {
7302 enum zone_type zone_type;
7303
7304 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7305 struct zone *zone = &pgdat->node_zones[zone_type];
7306 if (populated_zone(zone)) {
7307 if (IS_ENABLED(CONFIG_HIGHMEM))
7308 node_set_state(nid, N_HIGH_MEMORY);
7309 if (zone_type <= ZONE_NORMAL)
7310 node_set_state(nid, N_NORMAL_MEMORY);
7311 break;
7312 }
7313 }
7314 }
7315
7316 /**
7317 * free_area_init_nodes - Initialise all pg_data_t and zone data
7318 * @max_zone_pfn: an array of max PFNs for each zone
7319 *
7320 * This will call free_area_init_node() for each active node in the system.
7321 * Using the page ranges provided by memblock_set_node(), the size of each
7322 * zone in each node and their holes is calculated. If the maximum PFN
7323 * between two adjacent zones match, it is assumed that the zone is empty.
7324 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7325 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7326 * starts where the previous one ended. For example, ZONE_DMA32 starts
7327 * at arch_max_dma_pfn.
7328 */
7329 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7330 {
7331 unsigned long start_pfn, end_pfn;
7332 int i, nid;
7333
7334 /* Record where the zone boundaries are */
7335 memset(arch_zone_lowest_possible_pfn, 0,
7336 sizeof(arch_zone_lowest_possible_pfn));
7337 memset(arch_zone_highest_possible_pfn, 0,
7338 sizeof(arch_zone_highest_possible_pfn));
7339
7340 start_pfn = find_min_pfn_with_active_regions();
7341
7342 for (i = 0; i < MAX_NR_ZONES; i++) {
7343 if (i == ZONE_MOVABLE)
7344 continue;
7345
7346 end_pfn = max(max_zone_pfn[i], start_pfn);
7347 arch_zone_lowest_possible_pfn[i] = start_pfn;
7348 arch_zone_highest_possible_pfn[i] = end_pfn;
7349
7350 start_pfn = end_pfn;
7351 }
7352
7353 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7354 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7355 find_zone_movable_pfns_for_nodes();
7356
7357 /* Print out the zone ranges */
7358 pr_info("Zone ranges:\n");
7359 for (i = 0; i < MAX_NR_ZONES; i++) {
7360 if (i == ZONE_MOVABLE)
7361 continue;
7362 pr_info(" %-8s ", zone_names[i]);
7363 if (arch_zone_lowest_possible_pfn[i] ==
7364 arch_zone_highest_possible_pfn[i])
7365 pr_cont("empty\n");
7366 else
7367 pr_cont("[mem %#018Lx-%#018Lx]\n",
7368 (u64)arch_zone_lowest_possible_pfn[i]
7369 << PAGE_SHIFT,
7370 ((u64)arch_zone_highest_possible_pfn[i]
7371 << PAGE_SHIFT) - 1);
7372 }
7373
7374 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7375 pr_info("Movable zone start for each node\n");
7376 for (i = 0; i < MAX_NUMNODES; i++) {
7377 if (zone_movable_pfn[i])
7378 pr_info(" Node %d: %#018Lx\n", i,
7379 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7380 }
7381
7382 /*
7383 * Print out the early node map, and initialize the
7384 * subsection-map relative to active online memory ranges to
7385 * enable future "sub-section" extensions of the memory map.
7386 */
7387 pr_info("Early memory node ranges\n");
7388 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7389 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7390 (u64)start_pfn << PAGE_SHIFT,
7391 ((u64)end_pfn << PAGE_SHIFT) - 1);
7392 subsection_map_init(start_pfn, end_pfn - start_pfn);
7393 }
7394
7395 /* Initialise every node */
7396 mminit_verify_pageflags_layout();
7397 setup_nr_node_ids();
7398 zero_resv_unavail();
7399 for_each_online_node(nid) {
7400 pg_data_t *pgdat = NODE_DATA(nid);
7401 free_area_init_node(nid, NULL,
7402 find_min_pfn_for_node(nid), NULL);
7403
7404 /* Any memory on that node */
7405 if (pgdat->node_present_pages)
7406 node_set_state(nid, N_MEMORY);
7407 check_for_memory(pgdat, nid);
7408 }
7409 }
7410
7411 static int __init cmdline_parse_core(char *p, unsigned long *core,
7412 unsigned long *percent)
7413 {
7414 unsigned long long coremem;
7415 char *endptr;
7416
7417 if (!p)
7418 return -EINVAL;
7419
7420 /* Value may be a percentage of total memory, otherwise bytes */
7421 coremem = simple_strtoull(p, &endptr, 0);
7422 if (*endptr == '%') {
7423 /* Paranoid check for percent values greater than 100 */
7424 WARN_ON(coremem > 100);
7425
7426 *percent = coremem;
7427 } else {
7428 coremem = memparse(p, &p);
7429 /* Paranoid check that UL is enough for the coremem value */
7430 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7431
7432 *core = coremem >> PAGE_SHIFT;
7433 *percent = 0UL;
7434 }
7435 return 0;
7436 }
7437
7438 /*
7439 * kernelcore=size sets the amount of memory for use for allocations that
7440 * cannot be reclaimed or migrated.
7441 */
7442 static int __init cmdline_parse_kernelcore(char *p)
7443 {
7444 /* parse kernelcore=mirror */
7445 if (parse_option_str(p, "mirror")) {
7446 mirrored_kernelcore = true;
7447 return 0;
7448 }
7449
7450 return cmdline_parse_core(p, &required_kernelcore,
7451 &required_kernelcore_percent);
7452 }
7453
7454 /*
7455 * movablecore=size sets the amount of memory for use for allocations that
7456 * can be reclaimed or migrated.
7457 */
7458 static int __init cmdline_parse_movablecore(char *p)
7459 {
7460 return cmdline_parse_core(p, &required_movablecore,
7461 &required_movablecore_percent);
7462 }
7463
7464 early_param("kernelcore", cmdline_parse_kernelcore);
7465 early_param("movablecore", cmdline_parse_movablecore);
7466
7467 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7468
7469 void adjust_managed_page_count(struct page *page, long count)
7470 {
7471 atomic_long_add(count, &page_zone(page)->managed_pages);
7472 totalram_pages_add(count);
7473 #ifdef CONFIG_HIGHMEM
7474 if (PageHighMem(page))
7475 totalhigh_pages_add(count);
7476 #endif
7477 }
7478 EXPORT_SYMBOL(adjust_managed_page_count);
7479
7480 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7481 {
7482 void *pos;
7483 unsigned long pages = 0;
7484
7485 start = (void *)PAGE_ALIGN((unsigned long)start);
7486 end = (void *)((unsigned long)end & PAGE_MASK);
7487 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7488 struct page *page = virt_to_page(pos);
7489 void *direct_map_addr;
7490
7491 /*
7492 * 'direct_map_addr' might be different from 'pos'
7493 * because some architectures' virt_to_page()
7494 * work with aliases. Getting the direct map
7495 * address ensures that we get a _writeable_
7496 * alias for the memset().
7497 */
7498 direct_map_addr = page_address(page);
7499 if ((unsigned int)poison <= 0xFF)
7500 memset(direct_map_addr, poison, PAGE_SIZE);
7501
7502 free_reserved_page(page);
7503 }
7504
7505 if (pages && s)
7506 pr_info("Freeing %s memory: %ldK\n",
7507 s, pages << (PAGE_SHIFT - 10));
7508
7509 return pages;
7510 }
7511
7512 #ifdef CONFIG_HIGHMEM
7513 void free_highmem_page(struct page *page)
7514 {
7515 __free_reserved_page(page);
7516 totalram_pages_inc();
7517 atomic_long_inc(&page_zone(page)->managed_pages);
7518 totalhigh_pages_inc();
7519 }
7520 #endif
7521
7522
7523 void __init mem_init_print_info(const char *str)
7524 {
7525 unsigned long physpages, codesize, datasize, rosize, bss_size;
7526 unsigned long init_code_size, init_data_size;
7527
7528 physpages = get_num_physpages();
7529 codesize = _etext - _stext;
7530 datasize = _edata - _sdata;
7531 rosize = __end_rodata - __start_rodata;
7532 bss_size = __bss_stop - __bss_start;
7533 init_data_size = __init_end - __init_begin;
7534 init_code_size = _einittext - _sinittext;
7535
7536 /*
7537 * Detect special cases and adjust section sizes accordingly:
7538 * 1) .init.* may be embedded into .data sections
7539 * 2) .init.text.* may be out of [__init_begin, __init_end],
7540 * please refer to arch/tile/kernel/vmlinux.lds.S.
7541 * 3) .rodata.* may be embedded into .text or .data sections.
7542 */
7543 #define adj_init_size(start, end, size, pos, adj) \
7544 do { \
7545 if (start <= pos && pos < end && size > adj) \
7546 size -= adj; \
7547 } while (0)
7548
7549 adj_init_size(__init_begin, __init_end, init_data_size,
7550 _sinittext, init_code_size);
7551 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7552 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7553 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7554 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7555
7556 #undef adj_init_size
7557
7558 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7559 #ifdef CONFIG_HIGHMEM
7560 ", %luK highmem"
7561 #endif
7562 "%s%s)\n",
7563 nr_free_pages() << (PAGE_SHIFT - 10),
7564 physpages << (PAGE_SHIFT - 10),
7565 codesize >> 10, datasize >> 10, rosize >> 10,
7566 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7567 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7568 totalcma_pages << (PAGE_SHIFT - 10),
7569 #ifdef CONFIG_HIGHMEM
7570 totalhigh_pages() << (PAGE_SHIFT - 10),
7571 #endif
7572 str ? ", " : "", str ? str : "");
7573 }
7574
7575 /**
7576 * set_dma_reserve - set the specified number of pages reserved in the first zone
7577 * @new_dma_reserve: The number of pages to mark reserved
7578 *
7579 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7580 * In the DMA zone, a significant percentage may be consumed by kernel image
7581 * and other unfreeable allocations which can skew the watermarks badly. This
7582 * function may optionally be used to account for unfreeable pages in the
7583 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7584 * smaller per-cpu batchsize.
7585 */
7586 void __init set_dma_reserve(unsigned long new_dma_reserve)
7587 {
7588 dma_reserve = new_dma_reserve;
7589 }
7590
7591 void __init free_area_init(unsigned long *zones_size)
7592 {
7593 zero_resv_unavail();
7594 free_area_init_node(0, zones_size,
7595 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7596 }
7597
7598 static int page_alloc_cpu_dead(unsigned int cpu)
7599 {
7600
7601 lru_add_drain_cpu(cpu);
7602 drain_pages(cpu);
7603
7604 /*
7605 * Spill the event counters of the dead processor
7606 * into the current processors event counters.
7607 * This artificially elevates the count of the current
7608 * processor.
7609 */
7610 vm_events_fold_cpu(cpu);
7611
7612 /*
7613 * Zero the differential counters of the dead processor
7614 * so that the vm statistics are consistent.
7615 *
7616 * This is only okay since the processor is dead and cannot
7617 * race with what we are doing.
7618 */
7619 cpu_vm_stats_fold(cpu);
7620 return 0;
7621 }
7622
7623 #ifdef CONFIG_NUMA
7624 int hashdist = HASHDIST_DEFAULT;
7625
7626 static int __init set_hashdist(char *str)
7627 {
7628 if (!str)
7629 return 0;
7630 hashdist = simple_strtoul(str, &str, 0);
7631 return 1;
7632 }
7633 __setup("hashdist=", set_hashdist);
7634 #endif
7635
7636 void __init page_alloc_init(void)
7637 {
7638 int ret;
7639
7640 #ifdef CONFIG_NUMA
7641 if (num_node_state(N_MEMORY) == 1)
7642 hashdist = 0;
7643 #endif
7644
7645 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7646 "mm/page_alloc:dead", NULL,
7647 page_alloc_cpu_dead);
7648 WARN_ON(ret < 0);
7649 }
7650
7651 /*
7652 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7653 * or min_free_kbytes changes.
7654 */
7655 static void calculate_totalreserve_pages(void)
7656 {
7657 struct pglist_data *pgdat;
7658 unsigned long reserve_pages = 0;
7659 enum zone_type i, j;
7660
7661 for_each_online_pgdat(pgdat) {
7662
7663 pgdat->totalreserve_pages = 0;
7664
7665 for (i = 0; i < MAX_NR_ZONES; i++) {
7666 struct zone *zone = pgdat->node_zones + i;
7667 long max = 0;
7668 unsigned long managed_pages = zone_managed_pages(zone);
7669
7670 /* Find valid and maximum lowmem_reserve in the zone */
7671 for (j = i; j < MAX_NR_ZONES; j++) {
7672 if (zone->lowmem_reserve[j] > max)
7673 max = zone->lowmem_reserve[j];
7674 }
7675
7676 /* we treat the high watermark as reserved pages. */
7677 max += high_wmark_pages(zone);
7678
7679 if (max > managed_pages)
7680 max = managed_pages;
7681
7682 pgdat->totalreserve_pages += max;
7683
7684 reserve_pages += max;
7685 }
7686 }
7687 totalreserve_pages = reserve_pages;
7688 }
7689
7690 /*
7691 * setup_per_zone_lowmem_reserve - called whenever
7692 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7693 * has a correct pages reserved value, so an adequate number of
7694 * pages are left in the zone after a successful __alloc_pages().
7695 */
7696 static void setup_per_zone_lowmem_reserve(void)
7697 {
7698 struct pglist_data *pgdat;
7699 enum zone_type j, idx;
7700
7701 for_each_online_pgdat(pgdat) {
7702 for (j = 0; j < MAX_NR_ZONES; j++) {
7703 struct zone *zone = pgdat->node_zones + j;
7704 unsigned long managed_pages = zone_managed_pages(zone);
7705
7706 zone->lowmem_reserve[j] = 0;
7707
7708 idx = j;
7709 while (idx) {
7710 struct zone *lower_zone;
7711
7712 idx--;
7713 lower_zone = pgdat->node_zones + idx;
7714
7715 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7716 sysctl_lowmem_reserve_ratio[idx] = 0;
7717 lower_zone->lowmem_reserve[j] = 0;
7718 } else {
7719 lower_zone->lowmem_reserve[j] =
7720 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7721 }
7722 managed_pages += zone_managed_pages(lower_zone);
7723 }
7724 }
7725 }
7726
7727 /* update totalreserve_pages */
7728 calculate_totalreserve_pages();
7729 }
7730
7731 static void __setup_per_zone_wmarks(void)
7732 {
7733 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7734 unsigned long lowmem_pages = 0;
7735 struct zone *zone;
7736 unsigned long flags;
7737
7738 /* Calculate total number of !ZONE_HIGHMEM pages */
7739 for_each_zone(zone) {
7740 if (!is_highmem(zone))
7741 lowmem_pages += zone_managed_pages(zone);
7742 }
7743
7744 for_each_zone(zone) {
7745 u64 tmp;
7746
7747 spin_lock_irqsave(&zone->lock, flags);
7748 tmp = (u64)pages_min * zone_managed_pages(zone);
7749 do_div(tmp, lowmem_pages);
7750 if (is_highmem(zone)) {
7751 /*
7752 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7753 * need highmem pages, so cap pages_min to a small
7754 * value here.
7755 *
7756 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7757 * deltas control async page reclaim, and so should
7758 * not be capped for highmem.
7759 */
7760 unsigned long min_pages;
7761
7762 min_pages = zone_managed_pages(zone) / 1024;
7763 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7764 zone->_watermark[WMARK_MIN] = min_pages;
7765 } else {
7766 /*
7767 * If it's a lowmem zone, reserve a number of pages
7768 * proportionate to the zone's size.
7769 */
7770 zone->_watermark[WMARK_MIN] = tmp;
7771 }
7772
7773 /*
7774 * Set the kswapd watermarks distance according to the
7775 * scale factor in proportion to available memory, but
7776 * ensure a minimum size on small systems.
7777 */
7778 tmp = max_t(u64, tmp >> 2,
7779 mult_frac(zone_managed_pages(zone),
7780 watermark_scale_factor, 10000));
7781
7782 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7783 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7784 zone->watermark_boost = 0;
7785
7786 spin_unlock_irqrestore(&zone->lock, flags);
7787 }
7788
7789 /* update totalreserve_pages */
7790 calculate_totalreserve_pages();
7791 }
7792
7793 /**
7794 * setup_per_zone_wmarks - called when min_free_kbytes changes
7795 * or when memory is hot-{added|removed}
7796 *
7797 * Ensures that the watermark[min,low,high] values for each zone are set
7798 * correctly with respect to min_free_kbytes.
7799 */
7800 void setup_per_zone_wmarks(void)
7801 {
7802 static DEFINE_SPINLOCK(lock);
7803
7804 spin_lock(&lock);
7805 __setup_per_zone_wmarks();
7806 spin_unlock(&lock);
7807 }
7808
7809 /*
7810 * Initialise min_free_kbytes.
7811 *
7812 * For small machines we want it small (128k min). For large machines
7813 * we want it large (64MB max). But it is not linear, because network
7814 * bandwidth does not increase linearly with machine size. We use
7815 *
7816 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7817 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7818 *
7819 * which yields
7820 *
7821 * 16MB: 512k
7822 * 32MB: 724k
7823 * 64MB: 1024k
7824 * 128MB: 1448k
7825 * 256MB: 2048k
7826 * 512MB: 2896k
7827 * 1024MB: 4096k
7828 * 2048MB: 5792k
7829 * 4096MB: 8192k
7830 * 8192MB: 11584k
7831 * 16384MB: 16384k
7832 */
7833 int __meminit init_per_zone_wmark_min(void)
7834 {
7835 unsigned long lowmem_kbytes;
7836 int new_min_free_kbytes;
7837
7838 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7839 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7840
7841 if (new_min_free_kbytes > user_min_free_kbytes) {
7842 min_free_kbytes = new_min_free_kbytes;
7843 if (min_free_kbytes < 128)
7844 min_free_kbytes = 128;
7845 if (min_free_kbytes > 65536)
7846 min_free_kbytes = 65536;
7847 } else {
7848 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7849 new_min_free_kbytes, user_min_free_kbytes);
7850 }
7851 setup_per_zone_wmarks();
7852 refresh_zone_stat_thresholds();
7853 setup_per_zone_lowmem_reserve();
7854
7855 #ifdef CONFIG_NUMA
7856 setup_min_unmapped_ratio();
7857 setup_min_slab_ratio();
7858 #endif
7859
7860 return 0;
7861 }
7862 core_initcall(init_per_zone_wmark_min)
7863
7864 /*
7865 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7866 * that we can call two helper functions whenever min_free_kbytes
7867 * changes.
7868 */
7869 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7870 void __user *buffer, size_t *length, loff_t *ppos)
7871 {
7872 int rc;
7873
7874 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7875 if (rc)
7876 return rc;
7877
7878 if (write) {
7879 user_min_free_kbytes = min_free_kbytes;
7880 setup_per_zone_wmarks();
7881 }
7882 return 0;
7883 }
7884
7885 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7886 void __user *buffer, size_t *length, loff_t *ppos)
7887 {
7888 int rc;
7889
7890 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7891 if (rc)
7892 return rc;
7893
7894 return 0;
7895 }
7896
7897 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7898 void __user *buffer, size_t *length, loff_t *ppos)
7899 {
7900 int rc;
7901
7902 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7903 if (rc)
7904 return rc;
7905
7906 if (write)
7907 setup_per_zone_wmarks();
7908
7909 return 0;
7910 }
7911
7912 #ifdef CONFIG_NUMA
7913 static void setup_min_unmapped_ratio(void)
7914 {
7915 pg_data_t *pgdat;
7916 struct zone *zone;
7917
7918 for_each_online_pgdat(pgdat)
7919 pgdat->min_unmapped_pages = 0;
7920
7921 for_each_zone(zone)
7922 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7923 sysctl_min_unmapped_ratio) / 100;
7924 }
7925
7926
7927 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7928 void __user *buffer, size_t *length, loff_t *ppos)
7929 {
7930 int rc;
7931
7932 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7933 if (rc)
7934 return rc;
7935
7936 setup_min_unmapped_ratio();
7937
7938 return 0;
7939 }
7940
7941 static void setup_min_slab_ratio(void)
7942 {
7943 pg_data_t *pgdat;
7944 struct zone *zone;
7945
7946 for_each_online_pgdat(pgdat)
7947 pgdat->min_slab_pages = 0;
7948
7949 for_each_zone(zone)
7950 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7951 sysctl_min_slab_ratio) / 100;
7952 }
7953
7954 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7955 void __user *buffer, size_t *length, loff_t *ppos)
7956 {
7957 int rc;
7958
7959 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7960 if (rc)
7961 return rc;
7962
7963 setup_min_slab_ratio();
7964
7965 return 0;
7966 }
7967 #endif
7968
7969 /*
7970 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7971 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7972 * whenever sysctl_lowmem_reserve_ratio changes.
7973 *
7974 * The reserve ratio obviously has absolutely no relation with the
7975 * minimum watermarks. The lowmem reserve ratio can only make sense
7976 * if in function of the boot time zone sizes.
7977 */
7978 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7979 void __user *buffer, size_t *length, loff_t *ppos)
7980 {
7981 proc_dointvec_minmax(table, write, buffer, length, ppos);
7982 setup_per_zone_lowmem_reserve();
7983 return 0;
7984 }
7985
7986 /*
7987 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7988 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7989 * pagelist can have before it gets flushed back to buddy allocator.
7990 */
7991 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7992 void __user *buffer, size_t *length, loff_t *ppos)
7993 {
7994 struct zone *zone;
7995 int old_percpu_pagelist_fraction;
7996 int ret;
7997
7998 mutex_lock(&pcp_batch_high_lock);
7999 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8000
8001 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8002 if (!write || ret < 0)
8003 goto out;
8004
8005 /* Sanity checking to avoid pcp imbalance */
8006 if (percpu_pagelist_fraction &&
8007 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8008 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8009 ret = -EINVAL;
8010 goto out;
8011 }
8012
8013 /* No change? */
8014 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8015 goto out;
8016
8017 for_each_populated_zone(zone) {
8018 unsigned int cpu;
8019
8020 for_each_possible_cpu(cpu)
8021 pageset_set_high_and_batch(zone,
8022 per_cpu_ptr(zone->pageset, cpu));
8023 }
8024 out:
8025 mutex_unlock(&pcp_batch_high_lock);
8026 return ret;
8027 }
8028
8029 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8030 /*
8031 * Returns the number of pages that arch has reserved but
8032 * is not known to alloc_large_system_hash().
8033 */
8034 static unsigned long __init arch_reserved_kernel_pages(void)
8035 {
8036 return 0;
8037 }
8038 #endif
8039
8040 /*
8041 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8042 * machines. As memory size is increased the scale is also increased but at
8043 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8044 * quadruples the scale is increased by one, which means the size of hash table
8045 * only doubles, instead of quadrupling as well.
8046 * Because 32-bit systems cannot have large physical memory, where this scaling
8047 * makes sense, it is disabled on such platforms.
8048 */
8049 #if __BITS_PER_LONG > 32
8050 #define ADAPT_SCALE_BASE (64ul << 30)
8051 #define ADAPT_SCALE_SHIFT 2
8052 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8053 #endif
8054
8055 /*
8056 * allocate a large system hash table from bootmem
8057 * - it is assumed that the hash table must contain an exact power-of-2
8058 * quantity of entries
8059 * - limit is the number of hash buckets, not the total allocation size
8060 */
8061 void *__init alloc_large_system_hash(const char *tablename,
8062 unsigned long bucketsize,
8063 unsigned long numentries,
8064 int scale,
8065 int flags,
8066 unsigned int *_hash_shift,
8067 unsigned int *_hash_mask,
8068 unsigned long low_limit,
8069 unsigned long high_limit)
8070 {
8071 unsigned long long max = high_limit;
8072 unsigned long log2qty, size;
8073 void *table = NULL;
8074 gfp_t gfp_flags;
8075 bool virt;
8076
8077 /* allow the kernel cmdline to have a say */
8078 if (!numentries) {
8079 /* round applicable memory size up to nearest megabyte */
8080 numentries = nr_kernel_pages;
8081 numentries -= arch_reserved_kernel_pages();
8082
8083 /* It isn't necessary when PAGE_SIZE >= 1MB */
8084 if (PAGE_SHIFT < 20)
8085 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8086
8087 #if __BITS_PER_LONG > 32
8088 if (!high_limit) {
8089 unsigned long adapt;
8090
8091 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8092 adapt <<= ADAPT_SCALE_SHIFT)
8093 scale++;
8094 }
8095 #endif
8096
8097 /* limit to 1 bucket per 2^scale bytes of low memory */
8098 if (scale > PAGE_SHIFT)
8099 numentries >>= (scale - PAGE_SHIFT);
8100 else
8101 numentries <<= (PAGE_SHIFT - scale);
8102
8103 /* Make sure we've got at least a 0-order allocation.. */
8104 if (unlikely(flags & HASH_SMALL)) {
8105 /* Makes no sense without HASH_EARLY */
8106 WARN_ON(!(flags & HASH_EARLY));
8107 if (!(numentries >> *_hash_shift)) {
8108 numentries = 1UL << *_hash_shift;
8109 BUG_ON(!numentries);
8110 }
8111 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8112 numentries = PAGE_SIZE / bucketsize;
8113 }
8114 numentries = roundup_pow_of_two(numentries);
8115
8116 /* limit allocation size to 1/16 total memory by default */
8117 if (max == 0) {
8118 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8119 do_div(max, bucketsize);
8120 }
8121 max = min(max, 0x80000000ULL);
8122
8123 if (numentries < low_limit)
8124 numentries = low_limit;
8125 if (numentries > max)
8126 numentries = max;
8127
8128 log2qty = ilog2(numentries);
8129
8130 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8131 do {
8132 virt = false;
8133 size = bucketsize << log2qty;
8134 if (flags & HASH_EARLY) {
8135 if (flags & HASH_ZERO)
8136 table = memblock_alloc(size, SMP_CACHE_BYTES);
8137 else
8138 table = memblock_alloc_raw(size,
8139 SMP_CACHE_BYTES);
8140 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8141 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8142 virt = true;
8143 } else {
8144 /*
8145 * If bucketsize is not a power-of-two, we may free
8146 * some pages at the end of hash table which
8147 * alloc_pages_exact() automatically does
8148 */
8149 table = alloc_pages_exact(size, gfp_flags);
8150 kmemleak_alloc(table, size, 1, gfp_flags);
8151 }
8152 } while (!table && size > PAGE_SIZE && --log2qty);
8153
8154 if (!table)
8155 panic("Failed to allocate %s hash table\n", tablename);
8156
8157 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8158 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8159 virt ? "vmalloc" : "linear");
8160
8161 if (_hash_shift)
8162 *_hash_shift = log2qty;
8163 if (_hash_mask)
8164 *_hash_mask = (1 << log2qty) - 1;
8165
8166 return table;
8167 }
8168
8169 /*
8170 * This function checks whether pageblock includes unmovable pages or not.
8171 * If @count is not zero, it is okay to include less @count unmovable pages
8172 *
8173 * PageLRU check without isolation or lru_lock could race so that
8174 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8175 * check without lock_page also may miss some movable non-lru pages at
8176 * race condition. So you can't expect this function should be exact.
8177 */
8178 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8179 int migratetype, int flags)
8180 {
8181 unsigned long found;
8182 unsigned long iter = 0;
8183 unsigned long pfn = page_to_pfn(page);
8184 const char *reason = "unmovable page";
8185
8186 /*
8187 * TODO we could make this much more efficient by not checking every
8188 * page in the range if we know all of them are in MOVABLE_ZONE and
8189 * that the movable zone guarantees that pages are migratable but
8190 * the later is not the case right now unfortunatelly. E.g. movablecore
8191 * can still lead to having bootmem allocations in zone_movable.
8192 */
8193
8194 if (is_migrate_cma_page(page)) {
8195 /*
8196 * CMA allocations (alloc_contig_range) really need to mark
8197 * isolate CMA pageblocks even when they are not movable in fact
8198 * so consider them movable here.
8199 */
8200 if (is_migrate_cma(migratetype))
8201 return false;
8202
8203 reason = "CMA page";
8204 goto unmovable;
8205 }
8206
8207 for (found = 0; iter < pageblock_nr_pages; iter++) {
8208 unsigned long check = pfn + iter;
8209
8210 if (!pfn_valid_within(check))
8211 continue;
8212
8213 page = pfn_to_page(check);
8214
8215 if (PageReserved(page))
8216 goto unmovable;
8217
8218 /*
8219 * If the zone is movable and we have ruled out all reserved
8220 * pages then it should be reasonably safe to assume the rest
8221 * is movable.
8222 */
8223 if (zone_idx(zone) == ZONE_MOVABLE)
8224 continue;
8225
8226 /*
8227 * Hugepages are not in LRU lists, but they're movable.
8228 * We need not scan over tail pages because we don't
8229 * handle each tail page individually in migration.
8230 */
8231 if (PageHuge(page)) {
8232 struct page *head = compound_head(page);
8233 unsigned int skip_pages;
8234
8235 if (!hugepage_migration_supported(page_hstate(head)))
8236 goto unmovable;
8237
8238 skip_pages = compound_nr(head) - (page - head);
8239 iter += skip_pages - 1;
8240 continue;
8241 }
8242
8243 /*
8244 * We can't use page_count without pin a page
8245 * because another CPU can free compound page.
8246 * This check already skips compound tails of THP
8247 * because their page->_refcount is zero at all time.
8248 */
8249 if (!page_ref_count(page)) {
8250 if (PageBuddy(page))
8251 iter += (1 << page_order(page)) - 1;
8252 continue;
8253 }
8254
8255 /*
8256 * The HWPoisoned page may be not in buddy system, and
8257 * page_count() is not 0.
8258 */
8259 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8260 continue;
8261
8262 if (__PageMovable(page))
8263 continue;
8264
8265 if (!PageLRU(page))
8266 found++;
8267 /*
8268 * If there are RECLAIMABLE pages, we need to check
8269 * it. But now, memory offline itself doesn't call
8270 * shrink_node_slabs() and it still to be fixed.
8271 */
8272 /*
8273 * If the page is not RAM, page_count()should be 0.
8274 * we don't need more check. This is an _used_ not-movable page.
8275 *
8276 * The problematic thing here is PG_reserved pages. PG_reserved
8277 * is set to both of a memory hole page and a _used_ kernel
8278 * page at boot.
8279 */
8280 if (found > count)
8281 goto unmovable;
8282 }
8283 return false;
8284 unmovable:
8285 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8286 if (flags & REPORT_FAILURE)
8287 dump_page(pfn_to_page(pfn + iter), reason);
8288 return true;
8289 }
8290
8291 #ifdef CONFIG_CONTIG_ALLOC
8292 static unsigned long pfn_max_align_down(unsigned long pfn)
8293 {
8294 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8295 pageblock_nr_pages) - 1);
8296 }
8297
8298 static unsigned long pfn_max_align_up(unsigned long pfn)
8299 {
8300 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8301 pageblock_nr_pages));
8302 }
8303
8304 /* [start, end) must belong to a single zone. */
8305 static int __alloc_contig_migrate_range(struct compact_control *cc,
8306 unsigned long start, unsigned long end)
8307 {
8308 /* This function is based on compact_zone() from compaction.c. */
8309 unsigned long nr_reclaimed;
8310 unsigned long pfn = start;
8311 unsigned int tries = 0;
8312 int ret = 0;
8313
8314 migrate_prep();
8315
8316 while (pfn < end || !list_empty(&cc->migratepages)) {
8317 if (fatal_signal_pending(current)) {
8318 ret = -EINTR;
8319 break;
8320 }
8321
8322 if (list_empty(&cc->migratepages)) {
8323 cc->nr_migratepages = 0;
8324 pfn = isolate_migratepages_range(cc, pfn, end);
8325 if (!pfn) {
8326 ret = -EINTR;
8327 break;
8328 }
8329 tries = 0;
8330 } else if (++tries == 5) {
8331 ret = ret < 0 ? ret : -EBUSY;
8332 break;
8333 }
8334
8335 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8336 &cc->migratepages);
8337 cc->nr_migratepages -= nr_reclaimed;
8338
8339 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8340 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8341 }
8342 if (ret < 0) {
8343 putback_movable_pages(&cc->migratepages);
8344 return ret;
8345 }
8346 return 0;
8347 }
8348
8349 /**
8350 * alloc_contig_range() -- tries to allocate given range of pages
8351 * @start: start PFN to allocate
8352 * @end: one-past-the-last PFN to allocate
8353 * @migratetype: migratetype of the underlaying pageblocks (either
8354 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8355 * in range must have the same migratetype and it must
8356 * be either of the two.
8357 * @gfp_mask: GFP mask to use during compaction
8358 *
8359 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8360 * aligned. The PFN range must belong to a single zone.
8361 *
8362 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8363 * pageblocks in the range. Once isolated, the pageblocks should not
8364 * be modified by others.
8365 *
8366 * Return: zero on success or negative error code. On success all
8367 * pages which PFN is in [start, end) are allocated for the caller and
8368 * need to be freed with free_contig_range().
8369 */
8370 int alloc_contig_range(unsigned long start, unsigned long end,
8371 unsigned migratetype, gfp_t gfp_mask)
8372 {
8373 unsigned long outer_start, outer_end;
8374 unsigned int order;
8375 int ret = 0;
8376
8377 struct compact_control cc = {
8378 .nr_migratepages = 0,
8379 .order = -1,
8380 .zone = page_zone(pfn_to_page(start)),
8381 .mode = MIGRATE_SYNC,
8382 .ignore_skip_hint = true,
8383 .no_set_skip_hint = true,
8384 .gfp_mask = current_gfp_context(gfp_mask),
8385 };
8386 INIT_LIST_HEAD(&cc.migratepages);
8387
8388 /*
8389 * What we do here is we mark all pageblocks in range as
8390 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8391 * have different sizes, and due to the way page allocator
8392 * work, we align the range to biggest of the two pages so
8393 * that page allocator won't try to merge buddies from
8394 * different pageblocks and change MIGRATE_ISOLATE to some
8395 * other migration type.
8396 *
8397 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8398 * migrate the pages from an unaligned range (ie. pages that
8399 * we are interested in). This will put all the pages in
8400 * range back to page allocator as MIGRATE_ISOLATE.
8401 *
8402 * When this is done, we take the pages in range from page
8403 * allocator removing them from the buddy system. This way
8404 * page allocator will never consider using them.
8405 *
8406 * This lets us mark the pageblocks back as
8407 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8408 * aligned range but not in the unaligned, original range are
8409 * put back to page allocator so that buddy can use them.
8410 */
8411
8412 ret = start_isolate_page_range(pfn_max_align_down(start),
8413 pfn_max_align_up(end), migratetype, 0);
8414 if (ret < 0)
8415 return ret;
8416
8417 /*
8418 * In case of -EBUSY, we'd like to know which page causes problem.
8419 * So, just fall through. test_pages_isolated() has a tracepoint
8420 * which will report the busy page.
8421 *
8422 * It is possible that busy pages could become available before
8423 * the call to test_pages_isolated, and the range will actually be
8424 * allocated. So, if we fall through be sure to clear ret so that
8425 * -EBUSY is not accidentally used or returned to caller.
8426 */
8427 ret = __alloc_contig_migrate_range(&cc, start, end);
8428 if (ret && ret != -EBUSY)
8429 goto done;
8430 ret =0;
8431
8432 /*
8433 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8434 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8435 * more, all pages in [start, end) are free in page allocator.
8436 * What we are going to do is to allocate all pages from
8437 * [start, end) (that is remove them from page allocator).
8438 *
8439 * The only problem is that pages at the beginning and at the
8440 * end of interesting range may be not aligned with pages that
8441 * page allocator holds, ie. they can be part of higher order
8442 * pages. Because of this, we reserve the bigger range and
8443 * once this is done free the pages we are not interested in.
8444 *
8445 * We don't have to hold zone->lock here because the pages are
8446 * isolated thus they won't get removed from buddy.
8447 */
8448
8449 lru_add_drain_all();
8450
8451 order = 0;
8452 outer_start = start;
8453 while (!PageBuddy(pfn_to_page(outer_start))) {
8454 if (++order >= MAX_ORDER) {
8455 outer_start = start;
8456 break;
8457 }
8458 outer_start &= ~0UL << order;
8459 }
8460
8461 if (outer_start != start) {
8462 order = page_order(pfn_to_page(outer_start));
8463
8464 /*
8465 * outer_start page could be small order buddy page and
8466 * it doesn't include start page. Adjust outer_start
8467 * in this case to report failed page properly
8468 * on tracepoint in test_pages_isolated()
8469 */
8470 if (outer_start + (1UL << order) <= start)
8471 outer_start = start;
8472 }
8473
8474 /* Make sure the range is really isolated. */
8475 if (test_pages_isolated(outer_start, end, false)) {
8476 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8477 __func__, outer_start, end);
8478 ret = -EBUSY;
8479 goto done;
8480 }
8481
8482 /* Grab isolated pages from freelists. */
8483 outer_end = isolate_freepages_range(&cc, outer_start, end);
8484 if (!outer_end) {
8485 ret = -EBUSY;
8486 goto done;
8487 }
8488
8489 /* Free head and tail (if any) */
8490 if (start != outer_start)
8491 free_contig_range(outer_start, start - outer_start);
8492 if (end != outer_end)
8493 free_contig_range(end, outer_end - end);
8494
8495 done:
8496 undo_isolate_page_range(pfn_max_align_down(start),
8497 pfn_max_align_up(end), migratetype);
8498 return ret;
8499 }
8500 #endif /* CONFIG_CONTIG_ALLOC */
8501
8502 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8503 {
8504 unsigned int count = 0;
8505
8506 for (; nr_pages--; pfn++) {
8507 struct page *page = pfn_to_page(pfn);
8508
8509 count += page_count(page) != 1;
8510 __free_page(page);
8511 }
8512 WARN(count != 0, "%d pages are still in use!\n", count);
8513 }
8514
8515 #ifdef CONFIG_MEMORY_HOTPLUG
8516 /*
8517 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8518 * page high values need to be recalulated.
8519 */
8520 void __meminit zone_pcp_update(struct zone *zone)
8521 {
8522 unsigned cpu;
8523 mutex_lock(&pcp_batch_high_lock);
8524 for_each_possible_cpu(cpu)
8525 pageset_set_high_and_batch(zone,
8526 per_cpu_ptr(zone->pageset, cpu));
8527 mutex_unlock(&pcp_batch_high_lock);
8528 }
8529 #endif
8530
8531 void zone_pcp_reset(struct zone *zone)
8532 {
8533 unsigned long flags;
8534 int cpu;
8535 struct per_cpu_pageset *pset;
8536
8537 /* avoid races with drain_pages() */
8538 local_irq_save(flags);
8539 if (zone->pageset != &boot_pageset) {
8540 for_each_online_cpu(cpu) {
8541 pset = per_cpu_ptr(zone->pageset, cpu);
8542 drain_zonestat(zone, pset);
8543 }
8544 free_percpu(zone->pageset);
8545 zone->pageset = &boot_pageset;
8546 }
8547 local_irq_restore(flags);
8548 }
8549
8550 #ifdef CONFIG_MEMORY_HOTREMOVE
8551 /*
8552 * All pages in the range must be in a single zone and isolated
8553 * before calling this.
8554 */
8555 unsigned long
8556 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8557 {
8558 struct page *page;
8559 struct zone *zone;
8560 unsigned int order, i;
8561 unsigned long pfn;
8562 unsigned long flags;
8563 unsigned long offlined_pages = 0;
8564
8565 /* find the first valid pfn */
8566 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8567 if (pfn_valid(pfn))
8568 break;
8569 if (pfn == end_pfn)
8570 return offlined_pages;
8571
8572 offline_mem_sections(pfn, end_pfn);
8573 zone = page_zone(pfn_to_page(pfn));
8574 spin_lock_irqsave(&zone->lock, flags);
8575 pfn = start_pfn;
8576 while (pfn < end_pfn) {
8577 if (!pfn_valid(pfn)) {
8578 pfn++;
8579 continue;
8580 }
8581 page = pfn_to_page(pfn);
8582 /*
8583 * The HWPoisoned page may be not in buddy system, and
8584 * page_count() is not 0.
8585 */
8586 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8587 pfn++;
8588 SetPageReserved(page);
8589 offlined_pages++;
8590 continue;
8591 }
8592
8593 BUG_ON(page_count(page));
8594 BUG_ON(!PageBuddy(page));
8595 order = page_order(page);
8596 offlined_pages += 1 << order;
8597 #ifdef CONFIG_DEBUG_VM
8598 pr_info("remove from free list %lx %d %lx\n",
8599 pfn, 1 << order, end_pfn);
8600 #endif
8601 del_page_from_free_area(page, &zone->free_area[order]);
8602 for (i = 0; i < (1 << order); i++)
8603 SetPageReserved((page+i));
8604 pfn += (1 << order);
8605 }
8606 spin_unlock_irqrestore(&zone->lock, flags);
8607
8608 return offlined_pages;
8609 }
8610 #endif
8611
8612 bool is_free_buddy_page(struct page *page)
8613 {
8614 struct zone *zone = page_zone(page);
8615 unsigned long pfn = page_to_pfn(page);
8616 unsigned long flags;
8617 unsigned int order;
8618
8619 spin_lock_irqsave(&zone->lock, flags);
8620 for (order = 0; order < MAX_ORDER; order++) {
8621 struct page *page_head = page - (pfn & ((1 << order) - 1));
8622
8623 if (PageBuddy(page_head) && page_order(page_head) >= order)
8624 break;
8625 }
8626 spin_unlock_irqrestore(&zone->lock, flags);
8627
8628 return order < MAX_ORDER;
8629 }
8630
8631 #ifdef CONFIG_MEMORY_FAILURE
8632 /*
8633 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8634 * test is performed under the zone lock to prevent a race against page
8635 * allocation.
8636 */
8637 bool set_hwpoison_free_buddy_page(struct page *page)
8638 {
8639 struct zone *zone = page_zone(page);
8640 unsigned long pfn = page_to_pfn(page);
8641 unsigned long flags;
8642 unsigned int order;
8643 bool hwpoisoned = false;
8644
8645 spin_lock_irqsave(&zone->lock, flags);
8646 for (order = 0; order < MAX_ORDER; order++) {
8647 struct page *page_head = page - (pfn & ((1 << order) - 1));
8648
8649 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8650 if (!TestSetPageHWPoison(page))
8651 hwpoisoned = true;
8652 break;
8653 }
8654 }
8655 spin_unlock_irqrestore(&zone->lock, flags);
8656
8657 return hwpoisoned;
8658 }
8659 #endif