]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
drm/atomic-helper: check that drivers call drm_crtc_vblank_off
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76
77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78 static DEFINE_MUTEX(pcp_batch_high_lock);
79 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80
81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82 DEFINE_PER_CPU(int, numa_node);
83 EXPORT_PER_CPU_SYMBOL(numa_node);
84 #endif
85
86 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
87 /*
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
92 */
93 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
94 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
95 int _node_numa_mem_[MAX_NUMNODES];
96 #endif
97
98 /* work_structs for global per-cpu drains */
99 DEFINE_MUTEX(pcpu_drain_mutex);
100 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101
102 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103 volatile unsigned long latent_entropy __latent_entropy;
104 EXPORT_SYMBOL(latent_entropy);
105 #endif
106
107 /*
108 * Array of node states.
109 */
110 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 [N_POSSIBLE] = NODE_MASK_ALL,
112 [N_ONLINE] = { { [0] = 1UL } },
113 #ifndef CONFIG_NUMA
114 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
115 #ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY] = { { [0] = 1UL } },
117 #endif
118 [N_MEMORY] = { { [0] = 1UL } },
119 [N_CPU] = { { [0] = 1UL } },
120 #endif /* NUMA */
121 };
122 EXPORT_SYMBOL(node_states);
123
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
126
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
130
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133
134 /*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142 static inline int get_pcppage_migratetype(struct page *page)
143 {
144 return page->index;
145 }
146
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 {
149 page->index = migratetype;
150 }
151
152 #ifdef CONFIG_PM_SLEEP
153 /*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with pm_mutex held (gfp_allowed_mask also should
158 * only be modified with pm_mutex held, unless the suspend/hibernate code is
159 * guaranteed not to run in parallel with that modification).
160 */
161
162 static gfp_t saved_gfp_mask;
163
164 void pm_restore_gfp_mask(void)
165 {
166 WARN_ON(!mutex_is_locked(&pm_mutex));
167 if (saved_gfp_mask) {
168 gfp_allowed_mask = saved_gfp_mask;
169 saved_gfp_mask = 0;
170 }
171 }
172
173 void pm_restrict_gfp_mask(void)
174 {
175 WARN_ON(!mutex_is_locked(&pm_mutex));
176 WARN_ON(saved_gfp_mask);
177 saved_gfp_mask = gfp_allowed_mask;
178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
179 }
180
181 bool pm_suspended_storage(void)
182 {
183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
184 return false;
185 return true;
186 }
187 #endif /* CONFIG_PM_SLEEP */
188
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly;
191 #endif
192
193 static void __free_pages_ok(struct page *page, unsigned int order);
194
195 /*
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202 *
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
205 */
206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
207 #ifdef CONFIG_ZONE_DMA
208 256,
209 #endif
210 #ifdef CONFIG_ZONE_DMA32
211 256,
212 #endif
213 #ifdef CONFIG_HIGHMEM
214 32,
215 #endif
216 32,
217 };
218
219 EXPORT_SYMBOL(totalram_pages);
220
221 static char * const zone_names[MAX_NR_ZONES] = {
222 #ifdef CONFIG_ZONE_DMA
223 "DMA",
224 #endif
225 #ifdef CONFIG_ZONE_DMA32
226 "DMA32",
227 #endif
228 "Normal",
229 #ifdef CONFIG_HIGHMEM
230 "HighMem",
231 #endif
232 "Movable",
233 #ifdef CONFIG_ZONE_DEVICE
234 "Device",
235 #endif
236 };
237
238 char * const migratetype_names[MIGRATE_TYPES] = {
239 "Unmovable",
240 "Movable",
241 "Reclaimable",
242 "HighAtomic",
243 #ifdef CONFIG_CMA
244 "CMA",
245 #endif
246 #ifdef CONFIG_MEMORY_ISOLATION
247 "Isolate",
248 #endif
249 };
250
251 compound_page_dtor * const compound_page_dtors[] = {
252 NULL,
253 free_compound_page,
254 #ifdef CONFIG_HUGETLB_PAGE
255 free_huge_page,
256 #endif
257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
258 free_transhuge_page,
259 #endif
260 };
261
262 int min_free_kbytes = 1024;
263 int user_min_free_kbytes = -1;
264 int watermark_scale_factor = 10;
265
266 static unsigned long __meminitdata nr_kernel_pages;
267 static unsigned long __meminitdata nr_all_pages;
268 static unsigned long __meminitdata dma_reserve;
269
270 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __initdata required_kernelcore;
274 static unsigned long __initdata required_movablecore;
275 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
276 static bool mirrored_kernelcore;
277
278 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279 int movable_zone;
280 EXPORT_SYMBOL(movable_zone);
281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
282
283 #if MAX_NUMNODES > 1
284 int nr_node_ids __read_mostly = MAX_NUMNODES;
285 int nr_online_nodes __read_mostly = 1;
286 EXPORT_SYMBOL(nr_node_ids);
287 EXPORT_SYMBOL(nr_online_nodes);
288 #endif
289
290 int page_group_by_mobility_disabled __read_mostly;
291
292 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293 static inline void reset_deferred_meminit(pg_data_t *pgdat)
294 {
295 unsigned long max_initialise;
296 unsigned long reserved_lowmem;
297
298 /*
299 * Initialise at least 2G of a node but also take into account that
300 * two large system hashes that can take up 1GB for 0.25TB/node.
301 */
302 max_initialise = max(2UL << (30 - PAGE_SHIFT),
303 (pgdat->node_spanned_pages >> 8));
304
305 /*
306 * Compensate the all the memblock reservations (e.g. crash kernel)
307 * from the initial estimation to make sure we will initialize enough
308 * memory to boot.
309 */
310 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
311 pgdat->node_start_pfn + max_initialise);
312 max_initialise += reserved_lowmem;
313
314 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
315 pgdat->first_deferred_pfn = ULONG_MAX;
316 }
317
318 /* Returns true if the struct page for the pfn is uninitialised */
319 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
320 {
321 int nid = early_pfn_to_nid(pfn);
322
323 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
324 return true;
325
326 return false;
327 }
328
329 /*
330 * Returns false when the remaining initialisation should be deferred until
331 * later in the boot cycle when it can be parallelised.
332 */
333 static inline bool update_defer_init(pg_data_t *pgdat,
334 unsigned long pfn, unsigned long zone_end,
335 unsigned long *nr_initialised)
336 {
337 /* Always populate low zones for address-contrained allocations */
338 if (zone_end < pgdat_end_pfn(pgdat))
339 return true;
340 (*nr_initialised)++;
341 if ((*nr_initialised > pgdat->static_init_size) &&
342 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
343 pgdat->first_deferred_pfn = pfn;
344 return false;
345 }
346
347 return true;
348 }
349 #else
350 static inline void reset_deferred_meminit(pg_data_t *pgdat)
351 {
352 }
353
354 static inline bool early_page_uninitialised(unsigned long pfn)
355 {
356 return false;
357 }
358
359 static inline bool update_defer_init(pg_data_t *pgdat,
360 unsigned long pfn, unsigned long zone_end,
361 unsigned long *nr_initialised)
362 {
363 return true;
364 }
365 #endif
366
367 /* Return a pointer to the bitmap storing bits affecting a block of pages */
368 static inline unsigned long *get_pageblock_bitmap(struct page *page,
369 unsigned long pfn)
370 {
371 #ifdef CONFIG_SPARSEMEM
372 return __pfn_to_section(pfn)->pageblock_flags;
373 #else
374 return page_zone(page)->pageblock_flags;
375 #endif /* CONFIG_SPARSEMEM */
376 }
377
378 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
379 {
380 #ifdef CONFIG_SPARSEMEM
381 pfn &= (PAGES_PER_SECTION-1);
382 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
383 #else
384 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
385 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
386 #endif /* CONFIG_SPARSEMEM */
387 }
388
389 /**
390 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
391 * @page: The page within the block of interest
392 * @pfn: The target page frame number
393 * @end_bitidx: The last bit of interest to retrieve
394 * @mask: mask of bits that the caller is interested in
395 *
396 * Return: pageblock_bits flags
397 */
398 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
399 unsigned long pfn,
400 unsigned long end_bitidx,
401 unsigned long mask)
402 {
403 unsigned long *bitmap;
404 unsigned long bitidx, word_bitidx;
405 unsigned long word;
406
407 bitmap = get_pageblock_bitmap(page, pfn);
408 bitidx = pfn_to_bitidx(page, pfn);
409 word_bitidx = bitidx / BITS_PER_LONG;
410 bitidx &= (BITS_PER_LONG-1);
411
412 word = bitmap[word_bitidx];
413 bitidx += end_bitidx;
414 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
415 }
416
417 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
418 unsigned long end_bitidx,
419 unsigned long mask)
420 {
421 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
422 }
423
424 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
425 {
426 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
427 }
428
429 /**
430 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
431 * @page: The page within the block of interest
432 * @flags: The flags to set
433 * @pfn: The target page frame number
434 * @end_bitidx: The last bit of interest
435 * @mask: mask of bits that the caller is interested in
436 */
437 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
438 unsigned long pfn,
439 unsigned long end_bitidx,
440 unsigned long mask)
441 {
442 unsigned long *bitmap;
443 unsigned long bitidx, word_bitidx;
444 unsigned long old_word, word;
445
446 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
447
448 bitmap = get_pageblock_bitmap(page, pfn);
449 bitidx = pfn_to_bitidx(page, pfn);
450 word_bitidx = bitidx / BITS_PER_LONG;
451 bitidx &= (BITS_PER_LONG-1);
452
453 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
454
455 bitidx += end_bitidx;
456 mask <<= (BITS_PER_LONG - bitidx - 1);
457 flags <<= (BITS_PER_LONG - bitidx - 1);
458
459 word = READ_ONCE(bitmap[word_bitidx]);
460 for (;;) {
461 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
462 if (word == old_word)
463 break;
464 word = old_word;
465 }
466 }
467
468 void set_pageblock_migratetype(struct page *page, int migratetype)
469 {
470 if (unlikely(page_group_by_mobility_disabled &&
471 migratetype < MIGRATE_PCPTYPES))
472 migratetype = MIGRATE_UNMOVABLE;
473
474 set_pageblock_flags_group(page, (unsigned long)migratetype,
475 PB_migrate, PB_migrate_end);
476 }
477
478 #ifdef CONFIG_DEBUG_VM
479 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
480 {
481 int ret = 0;
482 unsigned seq;
483 unsigned long pfn = page_to_pfn(page);
484 unsigned long sp, start_pfn;
485
486 do {
487 seq = zone_span_seqbegin(zone);
488 start_pfn = zone->zone_start_pfn;
489 sp = zone->spanned_pages;
490 if (!zone_spans_pfn(zone, pfn))
491 ret = 1;
492 } while (zone_span_seqretry(zone, seq));
493
494 if (ret)
495 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
496 pfn, zone_to_nid(zone), zone->name,
497 start_pfn, start_pfn + sp);
498
499 return ret;
500 }
501
502 static int page_is_consistent(struct zone *zone, struct page *page)
503 {
504 if (!pfn_valid_within(page_to_pfn(page)))
505 return 0;
506 if (zone != page_zone(page))
507 return 0;
508
509 return 1;
510 }
511 /*
512 * Temporary debugging check for pages not lying within a given zone.
513 */
514 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
515 {
516 if (page_outside_zone_boundaries(zone, page))
517 return 1;
518 if (!page_is_consistent(zone, page))
519 return 1;
520
521 return 0;
522 }
523 #else
524 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
525 {
526 return 0;
527 }
528 #endif
529
530 static void bad_page(struct page *page, const char *reason,
531 unsigned long bad_flags)
532 {
533 static unsigned long resume;
534 static unsigned long nr_shown;
535 static unsigned long nr_unshown;
536
537 /*
538 * Allow a burst of 60 reports, then keep quiet for that minute;
539 * or allow a steady drip of one report per second.
540 */
541 if (nr_shown == 60) {
542 if (time_before(jiffies, resume)) {
543 nr_unshown++;
544 goto out;
545 }
546 if (nr_unshown) {
547 pr_alert(
548 "BUG: Bad page state: %lu messages suppressed\n",
549 nr_unshown);
550 nr_unshown = 0;
551 }
552 nr_shown = 0;
553 }
554 if (nr_shown++ == 0)
555 resume = jiffies + 60 * HZ;
556
557 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
558 current->comm, page_to_pfn(page));
559 __dump_page(page, reason);
560 bad_flags &= page->flags;
561 if (bad_flags)
562 pr_alert("bad because of flags: %#lx(%pGp)\n",
563 bad_flags, &bad_flags);
564 dump_page_owner(page);
565
566 print_modules();
567 dump_stack();
568 out:
569 /* Leave bad fields for debug, except PageBuddy could make trouble */
570 page_mapcount_reset(page); /* remove PageBuddy */
571 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
572 }
573
574 /*
575 * Higher-order pages are called "compound pages". They are structured thusly:
576 *
577 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
578 *
579 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
580 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
581 *
582 * The first tail page's ->compound_dtor holds the offset in array of compound
583 * page destructors. See compound_page_dtors.
584 *
585 * The first tail page's ->compound_order holds the order of allocation.
586 * This usage means that zero-order pages may not be compound.
587 */
588
589 void free_compound_page(struct page *page)
590 {
591 __free_pages_ok(page, compound_order(page));
592 }
593
594 void prep_compound_page(struct page *page, unsigned int order)
595 {
596 int i;
597 int nr_pages = 1 << order;
598
599 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
600 set_compound_order(page, order);
601 __SetPageHead(page);
602 for (i = 1; i < nr_pages; i++) {
603 struct page *p = page + i;
604 set_page_count(p, 0);
605 p->mapping = TAIL_MAPPING;
606 set_compound_head(p, page);
607 }
608 atomic_set(compound_mapcount_ptr(page), -1);
609 }
610
611 #ifdef CONFIG_DEBUG_PAGEALLOC
612 unsigned int _debug_guardpage_minorder;
613 bool _debug_pagealloc_enabled __read_mostly
614 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
615 EXPORT_SYMBOL(_debug_pagealloc_enabled);
616 bool _debug_guardpage_enabled __read_mostly;
617
618 static int __init early_debug_pagealloc(char *buf)
619 {
620 if (!buf)
621 return -EINVAL;
622 return kstrtobool(buf, &_debug_pagealloc_enabled);
623 }
624 early_param("debug_pagealloc", early_debug_pagealloc);
625
626 static bool need_debug_guardpage(void)
627 {
628 /* If we don't use debug_pagealloc, we don't need guard page */
629 if (!debug_pagealloc_enabled())
630 return false;
631
632 if (!debug_guardpage_minorder())
633 return false;
634
635 return true;
636 }
637
638 static void init_debug_guardpage(void)
639 {
640 if (!debug_pagealloc_enabled())
641 return;
642
643 if (!debug_guardpage_minorder())
644 return;
645
646 _debug_guardpage_enabled = true;
647 }
648
649 struct page_ext_operations debug_guardpage_ops = {
650 .need = need_debug_guardpage,
651 .init = init_debug_guardpage,
652 };
653
654 static int __init debug_guardpage_minorder_setup(char *buf)
655 {
656 unsigned long res;
657
658 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
659 pr_err("Bad debug_guardpage_minorder value\n");
660 return 0;
661 }
662 _debug_guardpage_minorder = res;
663 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
664 return 0;
665 }
666 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
667
668 static inline bool set_page_guard(struct zone *zone, struct page *page,
669 unsigned int order, int migratetype)
670 {
671 struct page_ext *page_ext;
672
673 if (!debug_guardpage_enabled())
674 return false;
675
676 if (order >= debug_guardpage_minorder())
677 return false;
678
679 page_ext = lookup_page_ext(page);
680 if (unlikely(!page_ext))
681 return false;
682
683 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
684
685 INIT_LIST_HEAD(&page->lru);
686 set_page_private(page, order);
687 /* Guard pages are not available for any usage */
688 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
689
690 return true;
691 }
692
693 static inline void clear_page_guard(struct zone *zone, struct page *page,
694 unsigned int order, int migratetype)
695 {
696 struct page_ext *page_ext;
697
698 if (!debug_guardpage_enabled())
699 return;
700
701 page_ext = lookup_page_ext(page);
702 if (unlikely(!page_ext))
703 return;
704
705 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
706
707 set_page_private(page, 0);
708 if (!is_migrate_isolate(migratetype))
709 __mod_zone_freepage_state(zone, (1 << order), migratetype);
710 }
711 #else
712 struct page_ext_operations debug_guardpage_ops;
713 static inline bool set_page_guard(struct zone *zone, struct page *page,
714 unsigned int order, int migratetype) { return false; }
715 static inline void clear_page_guard(struct zone *zone, struct page *page,
716 unsigned int order, int migratetype) {}
717 #endif
718
719 static inline void set_page_order(struct page *page, unsigned int order)
720 {
721 set_page_private(page, order);
722 __SetPageBuddy(page);
723 }
724
725 static inline void rmv_page_order(struct page *page)
726 {
727 __ClearPageBuddy(page);
728 set_page_private(page, 0);
729 }
730
731 /*
732 * This function checks whether a page is free && is the buddy
733 * we can do coalesce a page and its buddy if
734 * (a) the buddy is not in a hole (check before calling!) &&
735 * (b) the buddy is in the buddy system &&
736 * (c) a page and its buddy have the same order &&
737 * (d) a page and its buddy are in the same zone.
738 *
739 * For recording whether a page is in the buddy system, we set ->_mapcount
740 * PAGE_BUDDY_MAPCOUNT_VALUE.
741 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
742 * serialized by zone->lock.
743 *
744 * For recording page's order, we use page_private(page).
745 */
746 static inline int page_is_buddy(struct page *page, struct page *buddy,
747 unsigned int order)
748 {
749 if (page_is_guard(buddy) && page_order(buddy) == order) {
750 if (page_zone_id(page) != page_zone_id(buddy))
751 return 0;
752
753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754
755 return 1;
756 }
757
758 if (PageBuddy(buddy) && page_order(buddy) == order) {
759 /*
760 * zone check is done late to avoid uselessly
761 * calculating zone/node ids for pages that could
762 * never merge.
763 */
764 if (page_zone_id(page) != page_zone_id(buddy))
765 return 0;
766
767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768
769 return 1;
770 }
771 return 0;
772 }
773
774 /*
775 * Freeing function for a buddy system allocator.
776 *
777 * The concept of a buddy system is to maintain direct-mapped table
778 * (containing bit values) for memory blocks of various "orders".
779 * The bottom level table contains the map for the smallest allocatable
780 * units of memory (here, pages), and each level above it describes
781 * pairs of units from the levels below, hence, "buddies".
782 * At a high level, all that happens here is marking the table entry
783 * at the bottom level available, and propagating the changes upward
784 * as necessary, plus some accounting needed to play nicely with other
785 * parts of the VM system.
786 * At each level, we keep a list of pages, which are heads of continuous
787 * free pages of length of (1 << order) and marked with _mapcount
788 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
789 * field.
790 * So when we are allocating or freeing one, we can derive the state of the
791 * other. That is, if we allocate a small block, and both were
792 * free, the remainder of the region must be split into blocks.
793 * If a block is freed, and its buddy is also free, then this
794 * triggers coalescing into a block of larger size.
795 *
796 * -- nyc
797 */
798
799 static inline void __free_one_page(struct page *page,
800 unsigned long pfn,
801 struct zone *zone, unsigned int order,
802 int migratetype)
803 {
804 unsigned long combined_pfn;
805 unsigned long uninitialized_var(buddy_pfn);
806 struct page *buddy;
807 unsigned int max_order;
808
809 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
810
811 VM_BUG_ON(!zone_is_initialized(zone));
812 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
813
814 VM_BUG_ON(migratetype == -1);
815 if (likely(!is_migrate_isolate(migratetype)))
816 __mod_zone_freepage_state(zone, 1 << order, migratetype);
817
818 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
819 VM_BUG_ON_PAGE(bad_range(zone, page), page);
820
821 continue_merging:
822 while (order < max_order - 1) {
823 buddy_pfn = __find_buddy_pfn(pfn, order);
824 buddy = page + (buddy_pfn - pfn);
825
826 if (!pfn_valid_within(buddy_pfn))
827 goto done_merging;
828 if (!page_is_buddy(page, buddy, order))
829 goto done_merging;
830 /*
831 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
832 * merge with it and move up one order.
833 */
834 if (page_is_guard(buddy)) {
835 clear_page_guard(zone, buddy, order, migratetype);
836 } else {
837 list_del(&buddy->lru);
838 zone->free_area[order].nr_free--;
839 rmv_page_order(buddy);
840 }
841 combined_pfn = buddy_pfn & pfn;
842 page = page + (combined_pfn - pfn);
843 pfn = combined_pfn;
844 order++;
845 }
846 if (max_order < MAX_ORDER) {
847 /* If we are here, it means order is >= pageblock_order.
848 * We want to prevent merge between freepages on isolate
849 * pageblock and normal pageblock. Without this, pageblock
850 * isolation could cause incorrect freepage or CMA accounting.
851 *
852 * We don't want to hit this code for the more frequent
853 * low-order merging.
854 */
855 if (unlikely(has_isolate_pageblock(zone))) {
856 int buddy_mt;
857
858 buddy_pfn = __find_buddy_pfn(pfn, order);
859 buddy = page + (buddy_pfn - pfn);
860 buddy_mt = get_pageblock_migratetype(buddy);
861
862 if (migratetype != buddy_mt
863 && (is_migrate_isolate(migratetype) ||
864 is_migrate_isolate(buddy_mt)))
865 goto done_merging;
866 }
867 max_order++;
868 goto continue_merging;
869 }
870
871 done_merging:
872 set_page_order(page, order);
873
874 /*
875 * If this is not the largest possible page, check if the buddy
876 * of the next-highest order is free. If it is, it's possible
877 * that pages are being freed that will coalesce soon. In case,
878 * that is happening, add the free page to the tail of the list
879 * so it's less likely to be used soon and more likely to be merged
880 * as a higher order page
881 */
882 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
883 struct page *higher_page, *higher_buddy;
884 combined_pfn = buddy_pfn & pfn;
885 higher_page = page + (combined_pfn - pfn);
886 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
887 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
888 if (pfn_valid_within(buddy_pfn) &&
889 page_is_buddy(higher_page, higher_buddy, order + 1)) {
890 list_add_tail(&page->lru,
891 &zone->free_area[order].free_list[migratetype]);
892 goto out;
893 }
894 }
895
896 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
897 out:
898 zone->free_area[order].nr_free++;
899 }
900
901 /*
902 * A bad page could be due to a number of fields. Instead of multiple branches,
903 * try and check multiple fields with one check. The caller must do a detailed
904 * check if necessary.
905 */
906 static inline bool page_expected_state(struct page *page,
907 unsigned long check_flags)
908 {
909 if (unlikely(atomic_read(&page->_mapcount) != -1))
910 return false;
911
912 if (unlikely((unsigned long)page->mapping |
913 page_ref_count(page) |
914 #ifdef CONFIG_MEMCG
915 (unsigned long)page->mem_cgroup |
916 #endif
917 (page->flags & check_flags)))
918 return false;
919
920 return true;
921 }
922
923 static void free_pages_check_bad(struct page *page)
924 {
925 const char *bad_reason;
926 unsigned long bad_flags;
927
928 bad_reason = NULL;
929 bad_flags = 0;
930
931 if (unlikely(atomic_read(&page->_mapcount) != -1))
932 bad_reason = "nonzero mapcount";
933 if (unlikely(page->mapping != NULL))
934 bad_reason = "non-NULL mapping";
935 if (unlikely(page_ref_count(page) != 0))
936 bad_reason = "nonzero _refcount";
937 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
938 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
939 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
940 }
941 #ifdef CONFIG_MEMCG
942 if (unlikely(page->mem_cgroup))
943 bad_reason = "page still charged to cgroup";
944 #endif
945 bad_page(page, bad_reason, bad_flags);
946 }
947
948 static inline int free_pages_check(struct page *page)
949 {
950 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
951 return 0;
952
953 /* Something has gone sideways, find it */
954 free_pages_check_bad(page);
955 return 1;
956 }
957
958 static int free_tail_pages_check(struct page *head_page, struct page *page)
959 {
960 int ret = 1;
961
962 /*
963 * We rely page->lru.next never has bit 0 set, unless the page
964 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
965 */
966 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
967
968 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
969 ret = 0;
970 goto out;
971 }
972 switch (page - head_page) {
973 case 1:
974 /* the first tail page: ->mapping is compound_mapcount() */
975 if (unlikely(compound_mapcount(page))) {
976 bad_page(page, "nonzero compound_mapcount", 0);
977 goto out;
978 }
979 break;
980 case 2:
981 /*
982 * the second tail page: ->mapping is
983 * page_deferred_list().next -- ignore value.
984 */
985 break;
986 default:
987 if (page->mapping != TAIL_MAPPING) {
988 bad_page(page, "corrupted mapping in tail page", 0);
989 goto out;
990 }
991 break;
992 }
993 if (unlikely(!PageTail(page))) {
994 bad_page(page, "PageTail not set", 0);
995 goto out;
996 }
997 if (unlikely(compound_head(page) != head_page)) {
998 bad_page(page, "compound_head not consistent", 0);
999 goto out;
1000 }
1001 ret = 0;
1002 out:
1003 page->mapping = NULL;
1004 clear_compound_head(page);
1005 return ret;
1006 }
1007
1008 static __always_inline bool free_pages_prepare(struct page *page,
1009 unsigned int order, bool check_free)
1010 {
1011 int bad = 0;
1012
1013 VM_BUG_ON_PAGE(PageTail(page), page);
1014
1015 trace_mm_page_free(page, order);
1016 kmemcheck_free_shadow(page, order);
1017
1018 /*
1019 * Check tail pages before head page information is cleared to
1020 * avoid checking PageCompound for order-0 pages.
1021 */
1022 if (unlikely(order)) {
1023 bool compound = PageCompound(page);
1024 int i;
1025
1026 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1027
1028 if (compound)
1029 ClearPageDoubleMap(page);
1030 for (i = 1; i < (1 << order); i++) {
1031 if (compound)
1032 bad += free_tail_pages_check(page, page + i);
1033 if (unlikely(free_pages_check(page + i))) {
1034 bad++;
1035 continue;
1036 }
1037 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1038 }
1039 }
1040 if (PageMappingFlags(page))
1041 page->mapping = NULL;
1042 if (memcg_kmem_enabled() && PageKmemcg(page))
1043 memcg_kmem_uncharge(page, order);
1044 if (check_free)
1045 bad += free_pages_check(page);
1046 if (bad)
1047 return false;
1048
1049 page_cpupid_reset_last(page);
1050 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 reset_page_owner(page, order);
1052
1053 if (!PageHighMem(page)) {
1054 debug_check_no_locks_freed(page_address(page),
1055 PAGE_SIZE << order);
1056 debug_check_no_obj_freed(page_address(page),
1057 PAGE_SIZE << order);
1058 }
1059 arch_free_page(page, order);
1060 kernel_poison_pages(page, 1 << order, 0);
1061 kernel_map_pages(page, 1 << order, 0);
1062 kasan_free_pages(page, order);
1063
1064 return true;
1065 }
1066
1067 #ifdef CONFIG_DEBUG_VM
1068 static inline bool free_pcp_prepare(struct page *page)
1069 {
1070 return free_pages_prepare(page, 0, true);
1071 }
1072
1073 static inline bool bulkfree_pcp_prepare(struct page *page)
1074 {
1075 return false;
1076 }
1077 #else
1078 static bool free_pcp_prepare(struct page *page)
1079 {
1080 return free_pages_prepare(page, 0, false);
1081 }
1082
1083 static bool bulkfree_pcp_prepare(struct page *page)
1084 {
1085 return free_pages_check(page);
1086 }
1087 #endif /* CONFIG_DEBUG_VM */
1088
1089 /*
1090 * Frees a number of pages from the PCP lists
1091 * Assumes all pages on list are in same zone, and of same order.
1092 * count is the number of pages to free.
1093 *
1094 * If the zone was previously in an "all pages pinned" state then look to
1095 * see if this freeing clears that state.
1096 *
1097 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1098 * pinned" detection logic.
1099 */
1100 static void free_pcppages_bulk(struct zone *zone, int count,
1101 struct per_cpu_pages *pcp)
1102 {
1103 int migratetype = 0;
1104 int batch_free = 0;
1105 bool isolated_pageblocks;
1106
1107 spin_lock(&zone->lock);
1108 isolated_pageblocks = has_isolate_pageblock(zone);
1109
1110 while (count) {
1111 struct page *page;
1112 struct list_head *list;
1113
1114 /*
1115 * Remove pages from lists in a round-robin fashion. A
1116 * batch_free count is maintained that is incremented when an
1117 * empty list is encountered. This is so more pages are freed
1118 * off fuller lists instead of spinning excessively around empty
1119 * lists
1120 */
1121 do {
1122 batch_free++;
1123 if (++migratetype == MIGRATE_PCPTYPES)
1124 migratetype = 0;
1125 list = &pcp->lists[migratetype];
1126 } while (list_empty(list));
1127
1128 /* This is the only non-empty list. Free them all. */
1129 if (batch_free == MIGRATE_PCPTYPES)
1130 batch_free = count;
1131
1132 do {
1133 int mt; /* migratetype of the to-be-freed page */
1134
1135 page = list_last_entry(list, struct page, lru);
1136 /* must delete as __free_one_page list manipulates */
1137 list_del(&page->lru);
1138
1139 mt = get_pcppage_migratetype(page);
1140 /* MIGRATE_ISOLATE page should not go to pcplists */
1141 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1142 /* Pageblock could have been isolated meanwhile */
1143 if (unlikely(isolated_pageblocks))
1144 mt = get_pageblock_migratetype(page);
1145
1146 if (bulkfree_pcp_prepare(page))
1147 continue;
1148
1149 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1150 trace_mm_page_pcpu_drain(page, 0, mt);
1151 } while (--count && --batch_free && !list_empty(list));
1152 }
1153 spin_unlock(&zone->lock);
1154 }
1155
1156 static void free_one_page(struct zone *zone,
1157 struct page *page, unsigned long pfn,
1158 unsigned int order,
1159 int migratetype)
1160 {
1161 spin_lock(&zone->lock);
1162 if (unlikely(has_isolate_pageblock(zone) ||
1163 is_migrate_isolate(migratetype))) {
1164 migratetype = get_pfnblock_migratetype(page, pfn);
1165 }
1166 __free_one_page(page, pfn, zone, order, migratetype);
1167 spin_unlock(&zone->lock);
1168 }
1169
1170 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1171 unsigned long zone, int nid)
1172 {
1173 set_page_links(page, zone, nid, pfn);
1174 init_page_count(page);
1175 page_mapcount_reset(page);
1176 page_cpupid_reset_last(page);
1177
1178 INIT_LIST_HEAD(&page->lru);
1179 #ifdef WANT_PAGE_VIRTUAL
1180 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1181 if (!is_highmem_idx(zone))
1182 set_page_address(page, __va(pfn << PAGE_SHIFT));
1183 #endif
1184 }
1185
1186 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1187 int nid)
1188 {
1189 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1190 }
1191
1192 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1193 static void init_reserved_page(unsigned long pfn)
1194 {
1195 pg_data_t *pgdat;
1196 int nid, zid;
1197
1198 if (!early_page_uninitialised(pfn))
1199 return;
1200
1201 nid = early_pfn_to_nid(pfn);
1202 pgdat = NODE_DATA(nid);
1203
1204 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1205 struct zone *zone = &pgdat->node_zones[zid];
1206
1207 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1208 break;
1209 }
1210 __init_single_pfn(pfn, zid, nid);
1211 }
1212 #else
1213 static inline void init_reserved_page(unsigned long pfn)
1214 {
1215 }
1216 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1217
1218 /*
1219 * Initialised pages do not have PageReserved set. This function is
1220 * called for each range allocated by the bootmem allocator and
1221 * marks the pages PageReserved. The remaining valid pages are later
1222 * sent to the buddy page allocator.
1223 */
1224 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1225 {
1226 unsigned long start_pfn = PFN_DOWN(start);
1227 unsigned long end_pfn = PFN_UP(end);
1228
1229 for (; start_pfn < end_pfn; start_pfn++) {
1230 if (pfn_valid(start_pfn)) {
1231 struct page *page = pfn_to_page(start_pfn);
1232
1233 init_reserved_page(start_pfn);
1234
1235 /* Avoid false-positive PageTail() */
1236 INIT_LIST_HEAD(&page->lru);
1237
1238 SetPageReserved(page);
1239 }
1240 }
1241 }
1242
1243 static void __free_pages_ok(struct page *page, unsigned int order)
1244 {
1245 unsigned long flags;
1246 int migratetype;
1247 unsigned long pfn = page_to_pfn(page);
1248
1249 if (!free_pages_prepare(page, order, true))
1250 return;
1251
1252 migratetype = get_pfnblock_migratetype(page, pfn);
1253 local_irq_save(flags);
1254 __count_vm_events(PGFREE, 1 << order);
1255 free_one_page(page_zone(page), page, pfn, order, migratetype);
1256 local_irq_restore(flags);
1257 }
1258
1259 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1260 {
1261 unsigned int nr_pages = 1 << order;
1262 struct page *p = page;
1263 unsigned int loop;
1264
1265 prefetchw(p);
1266 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1267 prefetchw(p + 1);
1268 __ClearPageReserved(p);
1269 set_page_count(p, 0);
1270 }
1271 __ClearPageReserved(p);
1272 set_page_count(p, 0);
1273
1274 page_zone(page)->managed_pages += nr_pages;
1275 set_page_refcounted(page);
1276 __free_pages(page, order);
1277 }
1278
1279 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1280 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1281
1282 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1283
1284 int __meminit early_pfn_to_nid(unsigned long pfn)
1285 {
1286 static DEFINE_SPINLOCK(early_pfn_lock);
1287 int nid;
1288
1289 spin_lock(&early_pfn_lock);
1290 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1291 if (nid < 0)
1292 nid = first_online_node;
1293 spin_unlock(&early_pfn_lock);
1294
1295 return nid;
1296 }
1297 #endif
1298
1299 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1300 static inline bool __meminit __maybe_unused
1301 meminit_pfn_in_nid(unsigned long pfn, int node,
1302 struct mminit_pfnnid_cache *state)
1303 {
1304 int nid;
1305
1306 nid = __early_pfn_to_nid(pfn, state);
1307 if (nid >= 0 && nid != node)
1308 return false;
1309 return true;
1310 }
1311
1312 /* Only safe to use early in boot when initialisation is single-threaded */
1313 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314 {
1315 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1316 }
1317
1318 #else
1319
1320 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1321 {
1322 return true;
1323 }
1324 static inline bool __meminit __maybe_unused
1325 meminit_pfn_in_nid(unsigned long pfn, int node,
1326 struct mminit_pfnnid_cache *state)
1327 {
1328 return true;
1329 }
1330 #endif
1331
1332
1333 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1334 unsigned int order)
1335 {
1336 if (early_page_uninitialised(pfn))
1337 return;
1338 return __free_pages_boot_core(page, order);
1339 }
1340
1341 /*
1342 * Check that the whole (or subset of) a pageblock given by the interval of
1343 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1344 * with the migration of free compaction scanner. The scanners then need to
1345 * use only pfn_valid_within() check for arches that allow holes within
1346 * pageblocks.
1347 *
1348 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1349 *
1350 * It's possible on some configurations to have a setup like node0 node1 node0
1351 * i.e. it's possible that all pages within a zones range of pages do not
1352 * belong to a single zone. We assume that a border between node0 and node1
1353 * can occur within a single pageblock, but not a node0 node1 node0
1354 * interleaving within a single pageblock. It is therefore sufficient to check
1355 * the first and last page of a pageblock and avoid checking each individual
1356 * page in a pageblock.
1357 */
1358 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1359 unsigned long end_pfn, struct zone *zone)
1360 {
1361 struct page *start_page;
1362 struct page *end_page;
1363
1364 /* end_pfn is one past the range we are checking */
1365 end_pfn--;
1366
1367 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1368 return NULL;
1369
1370 start_page = pfn_to_online_page(start_pfn);
1371 if (!start_page)
1372 return NULL;
1373
1374 if (page_zone(start_page) != zone)
1375 return NULL;
1376
1377 end_page = pfn_to_page(end_pfn);
1378
1379 /* This gives a shorter code than deriving page_zone(end_page) */
1380 if (page_zone_id(start_page) != page_zone_id(end_page))
1381 return NULL;
1382
1383 return start_page;
1384 }
1385
1386 void set_zone_contiguous(struct zone *zone)
1387 {
1388 unsigned long block_start_pfn = zone->zone_start_pfn;
1389 unsigned long block_end_pfn;
1390
1391 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1392 for (; block_start_pfn < zone_end_pfn(zone);
1393 block_start_pfn = block_end_pfn,
1394 block_end_pfn += pageblock_nr_pages) {
1395
1396 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1397
1398 if (!__pageblock_pfn_to_page(block_start_pfn,
1399 block_end_pfn, zone))
1400 return;
1401 }
1402
1403 /* We confirm that there is no hole */
1404 zone->contiguous = true;
1405 }
1406
1407 void clear_zone_contiguous(struct zone *zone)
1408 {
1409 zone->contiguous = false;
1410 }
1411
1412 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1413 static void __init deferred_free_range(struct page *page,
1414 unsigned long pfn, int nr_pages)
1415 {
1416 int i;
1417
1418 if (!page)
1419 return;
1420
1421 /* Free a large naturally-aligned chunk if possible */
1422 if (nr_pages == pageblock_nr_pages &&
1423 (pfn & (pageblock_nr_pages - 1)) == 0) {
1424 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1425 __free_pages_boot_core(page, pageblock_order);
1426 return;
1427 }
1428
1429 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1430 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1431 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1432 __free_pages_boot_core(page, 0);
1433 }
1434 }
1435
1436 /* Completion tracking for deferred_init_memmap() threads */
1437 static atomic_t pgdat_init_n_undone __initdata;
1438 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1439
1440 static inline void __init pgdat_init_report_one_done(void)
1441 {
1442 if (atomic_dec_and_test(&pgdat_init_n_undone))
1443 complete(&pgdat_init_all_done_comp);
1444 }
1445
1446 /* Initialise remaining memory on a node */
1447 static int __init deferred_init_memmap(void *data)
1448 {
1449 pg_data_t *pgdat = data;
1450 int nid = pgdat->node_id;
1451 struct mminit_pfnnid_cache nid_init_state = { };
1452 unsigned long start = jiffies;
1453 unsigned long nr_pages = 0;
1454 unsigned long walk_start, walk_end;
1455 int i, zid;
1456 struct zone *zone;
1457 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1458 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1459
1460 if (first_init_pfn == ULONG_MAX) {
1461 pgdat_init_report_one_done();
1462 return 0;
1463 }
1464
1465 /* Bind memory initialisation thread to a local node if possible */
1466 if (!cpumask_empty(cpumask))
1467 set_cpus_allowed_ptr(current, cpumask);
1468
1469 /* Sanity check boundaries */
1470 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1471 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1472 pgdat->first_deferred_pfn = ULONG_MAX;
1473
1474 /* Only the highest zone is deferred so find it */
1475 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1476 zone = pgdat->node_zones + zid;
1477 if (first_init_pfn < zone_end_pfn(zone))
1478 break;
1479 }
1480
1481 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1482 unsigned long pfn, end_pfn;
1483 struct page *page = NULL;
1484 struct page *free_base_page = NULL;
1485 unsigned long free_base_pfn = 0;
1486 int nr_to_free = 0;
1487
1488 end_pfn = min(walk_end, zone_end_pfn(zone));
1489 pfn = first_init_pfn;
1490 if (pfn < walk_start)
1491 pfn = walk_start;
1492 if (pfn < zone->zone_start_pfn)
1493 pfn = zone->zone_start_pfn;
1494
1495 for (; pfn < end_pfn; pfn++) {
1496 if (!pfn_valid_within(pfn))
1497 goto free_range;
1498
1499 /*
1500 * Ensure pfn_valid is checked every
1501 * pageblock_nr_pages for memory holes
1502 */
1503 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1504 if (!pfn_valid(pfn)) {
1505 page = NULL;
1506 goto free_range;
1507 }
1508 }
1509
1510 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1511 page = NULL;
1512 goto free_range;
1513 }
1514
1515 /* Minimise pfn page lookups and scheduler checks */
1516 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1517 page++;
1518 } else {
1519 nr_pages += nr_to_free;
1520 deferred_free_range(free_base_page,
1521 free_base_pfn, nr_to_free);
1522 free_base_page = NULL;
1523 free_base_pfn = nr_to_free = 0;
1524
1525 page = pfn_to_page(pfn);
1526 cond_resched();
1527 }
1528
1529 if (page->flags) {
1530 VM_BUG_ON(page_zone(page) != zone);
1531 goto free_range;
1532 }
1533
1534 __init_single_page(page, pfn, zid, nid);
1535 if (!free_base_page) {
1536 free_base_page = page;
1537 free_base_pfn = pfn;
1538 nr_to_free = 0;
1539 }
1540 nr_to_free++;
1541
1542 /* Where possible, batch up pages for a single free */
1543 continue;
1544 free_range:
1545 /* Free the current block of pages to allocator */
1546 nr_pages += nr_to_free;
1547 deferred_free_range(free_base_page, free_base_pfn,
1548 nr_to_free);
1549 free_base_page = NULL;
1550 free_base_pfn = nr_to_free = 0;
1551 }
1552 /* Free the last block of pages to allocator */
1553 nr_pages += nr_to_free;
1554 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1555
1556 first_init_pfn = max(end_pfn, first_init_pfn);
1557 }
1558
1559 /* Sanity check that the next zone really is unpopulated */
1560 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1561
1562 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1563 jiffies_to_msecs(jiffies - start));
1564
1565 pgdat_init_report_one_done();
1566 return 0;
1567 }
1568 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1569
1570 void __init page_alloc_init_late(void)
1571 {
1572 struct zone *zone;
1573
1574 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1575 int nid;
1576
1577 /* There will be num_node_state(N_MEMORY) threads */
1578 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1579 for_each_node_state(nid, N_MEMORY) {
1580 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1581 }
1582
1583 /* Block until all are initialised */
1584 wait_for_completion(&pgdat_init_all_done_comp);
1585
1586 /* Reinit limits that are based on free pages after the kernel is up */
1587 files_maxfiles_init();
1588 #endif
1589 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1590 /* Discard memblock private memory */
1591 memblock_discard();
1592 #endif
1593
1594 for_each_populated_zone(zone)
1595 set_zone_contiguous(zone);
1596 }
1597
1598 #ifdef CONFIG_CMA
1599 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1600 void __init init_cma_reserved_pageblock(struct page *page)
1601 {
1602 unsigned i = pageblock_nr_pages;
1603 struct page *p = page;
1604
1605 do {
1606 __ClearPageReserved(p);
1607 set_page_count(p, 0);
1608 } while (++p, --i);
1609
1610 set_pageblock_migratetype(page, MIGRATE_CMA);
1611
1612 if (pageblock_order >= MAX_ORDER) {
1613 i = pageblock_nr_pages;
1614 p = page;
1615 do {
1616 set_page_refcounted(p);
1617 __free_pages(p, MAX_ORDER - 1);
1618 p += MAX_ORDER_NR_PAGES;
1619 } while (i -= MAX_ORDER_NR_PAGES);
1620 } else {
1621 set_page_refcounted(page);
1622 __free_pages(page, pageblock_order);
1623 }
1624
1625 adjust_managed_page_count(page, pageblock_nr_pages);
1626 }
1627 #endif
1628
1629 /*
1630 * The order of subdivision here is critical for the IO subsystem.
1631 * Please do not alter this order without good reasons and regression
1632 * testing. Specifically, as large blocks of memory are subdivided,
1633 * the order in which smaller blocks are delivered depends on the order
1634 * they're subdivided in this function. This is the primary factor
1635 * influencing the order in which pages are delivered to the IO
1636 * subsystem according to empirical testing, and this is also justified
1637 * by considering the behavior of a buddy system containing a single
1638 * large block of memory acted on by a series of small allocations.
1639 * This behavior is a critical factor in sglist merging's success.
1640 *
1641 * -- nyc
1642 */
1643 static inline void expand(struct zone *zone, struct page *page,
1644 int low, int high, struct free_area *area,
1645 int migratetype)
1646 {
1647 unsigned long size = 1 << high;
1648
1649 while (high > low) {
1650 area--;
1651 high--;
1652 size >>= 1;
1653 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1654
1655 /*
1656 * Mark as guard pages (or page), that will allow to
1657 * merge back to allocator when buddy will be freed.
1658 * Corresponding page table entries will not be touched,
1659 * pages will stay not present in virtual address space
1660 */
1661 if (set_page_guard(zone, &page[size], high, migratetype))
1662 continue;
1663
1664 list_add(&page[size].lru, &area->free_list[migratetype]);
1665 area->nr_free++;
1666 set_page_order(&page[size], high);
1667 }
1668 }
1669
1670 static void check_new_page_bad(struct page *page)
1671 {
1672 const char *bad_reason = NULL;
1673 unsigned long bad_flags = 0;
1674
1675 if (unlikely(atomic_read(&page->_mapcount) != -1))
1676 bad_reason = "nonzero mapcount";
1677 if (unlikely(page->mapping != NULL))
1678 bad_reason = "non-NULL mapping";
1679 if (unlikely(page_ref_count(page) != 0))
1680 bad_reason = "nonzero _count";
1681 if (unlikely(page->flags & __PG_HWPOISON)) {
1682 bad_reason = "HWPoisoned (hardware-corrupted)";
1683 bad_flags = __PG_HWPOISON;
1684 /* Don't complain about hwpoisoned pages */
1685 page_mapcount_reset(page); /* remove PageBuddy */
1686 return;
1687 }
1688 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1689 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1690 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1691 }
1692 #ifdef CONFIG_MEMCG
1693 if (unlikely(page->mem_cgroup))
1694 bad_reason = "page still charged to cgroup";
1695 #endif
1696 bad_page(page, bad_reason, bad_flags);
1697 }
1698
1699 /*
1700 * This page is about to be returned from the page allocator
1701 */
1702 static inline int check_new_page(struct page *page)
1703 {
1704 if (likely(page_expected_state(page,
1705 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1706 return 0;
1707
1708 check_new_page_bad(page);
1709 return 1;
1710 }
1711
1712 static inline bool free_pages_prezeroed(void)
1713 {
1714 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1715 page_poisoning_enabled();
1716 }
1717
1718 #ifdef CONFIG_DEBUG_VM
1719 static bool check_pcp_refill(struct page *page)
1720 {
1721 return false;
1722 }
1723
1724 static bool check_new_pcp(struct page *page)
1725 {
1726 return check_new_page(page);
1727 }
1728 #else
1729 static bool check_pcp_refill(struct page *page)
1730 {
1731 return check_new_page(page);
1732 }
1733 static bool check_new_pcp(struct page *page)
1734 {
1735 return false;
1736 }
1737 #endif /* CONFIG_DEBUG_VM */
1738
1739 static bool check_new_pages(struct page *page, unsigned int order)
1740 {
1741 int i;
1742 for (i = 0; i < (1 << order); i++) {
1743 struct page *p = page + i;
1744
1745 if (unlikely(check_new_page(p)))
1746 return true;
1747 }
1748
1749 return false;
1750 }
1751
1752 inline void post_alloc_hook(struct page *page, unsigned int order,
1753 gfp_t gfp_flags)
1754 {
1755 set_page_private(page, 0);
1756 set_page_refcounted(page);
1757
1758 arch_alloc_page(page, order);
1759 kernel_map_pages(page, 1 << order, 1);
1760 kernel_poison_pages(page, 1 << order, 1);
1761 kasan_alloc_pages(page, order);
1762 set_page_owner(page, order, gfp_flags);
1763 }
1764
1765 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1766 unsigned int alloc_flags)
1767 {
1768 int i;
1769
1770 post_alloc_hook(page, order, gfp_flags);
1771
1772 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1773 for (i = 0; i < (1 << order); i++)
1774 clear_highpage(page + i);
1775
1776 if (order && (gfp_flags & __GFP_COMP))
1777 prep_compound_page(page, order);
1778
1779 /*
1780 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1781 * allocate the page. The expectation is that the caller is taking
1782 * steps that will free more memory. The caller should avoid the page
1783 * being used for !PFMEMALLOC purposes.
1784 */
1785 if (alloc_flags & ALLOC_NO_WATERMARKS)
1786 set_page_pfmemalloc(page);
1787 else
1788 clear_page_pfmemalloc(page);
1789 }
1790
1791 /*
1792 * Go through the free lists for the given migratetype and remove
1793 * the smallest available page from the freelists
1794 */
1795 static inline
1796 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1797 int migratetype)
1798 {
1799 unsigned int current_order;
1800 struct free_area *area;
1801 struct page *page;
1802
1803 /* Find a page of the appropriate size in the preferred list */
1804 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1805 area = &(zone->free_area[current_order]);
1806 page = list_first_entry_or_null(&area->free_list[migratetype],
1807 struct page, lru);
1808 if (!page)
1809 continue;
1810 list_del(&page->lru);
1811 rmv_page_order(page);
1812 area->nr_free--;
1813 expand(zone, page, order, current_order, area, migratetype);
1814 set_pcppage_migratetype(page, migratetype);
1815 return page;
1816 }
1817
1818 return NULL;
1819 }
1820
1821
1822 /*
1823 * This array describes the order lists are fallen back to when
1824 * the free lists for the desirable migrate type are depleted
1825 */
1826 static int fallbacks[MIGRATE_TYPES][4] = {
1827 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1828 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1829 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1830 #ifdef CONFIG_CMA
1831 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1832 #endif
1833 #ifdef CONFIG_MEMORY_ISOLATION
1834 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1835 #endif
1836 };
1837
1838 #ifdef CONFIG_CMA
1839 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1840 unsigned int order)
1841 {
1842 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1843 }
1844 #else
1845 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1846 unsigned int order) { return NULL; }
1847 #endif
1848
1849 /*
1850 * Move the free pages in a range to the free lists of the requested type.
1851 * Note that start_page and end_pages are not aligned on a pageblock
1852 * boundary. If alignment is required, use move_freepages_block()
1853 */
1854 static int move_freepages(struct zone *zone,
1855 struct page *start_page, struct page *end_page,
1856 int migratetype, int *num_movable)
1857 {
1858 struct page *page;
1859 unsigned int order;
1860 int pages_moved = 0;
1861
1862 #ifndef CONFIG_HOLES_IN_ZONE
1863 /*
1864 * page_zone is not safe to call in this context when
1865 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1866 * anyway as we check zone boundaries in move_freepages_block().
1867 * Remove at a later date when no bug reports exist related to
1868 * grouping pages by mobility
1869 */
1870 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1871 #endif
1872
1873 if (num_movable)
1874 *num_movable = 0;
1875
1876 for (page = start_page; page <= end_page;) {
1877 if (!pfn_valid_within(page_to_pfn(page))) {
1878 page++;
1879 continue;
1880 }
1881
1882 /* Make sure we are not inadvertently changing nodes */
1883 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1884
1885 if (!PageBuddy(page)) {
1886 /*
1887 * We assume that pages that could be isolated for
1888 * migration are movable. But we don't actually try
1889 * isolating, as that would be expensive.
1890 */
1891 if (num_movable &&
1892 (PageLRU(page) || __PageMovable(page)))
1893 (*num_movable)++;
1894
1895 page++;
1896 continue;
1897 }
1898
1899 order = page_order(page);
1900 list_move(&page->lru,
1901 &zone->free_area[order].free_list[migratetype]);
1902 page += 1 << order;
1903 pages_moved += 1 << order;
1904 }
1905
1906 return pages_moved;
1907 }
1908
1909 int move_freepages_block(struct zone *zone, struct page *page,
1910 int migratetype, int *num_movable)
1911 {
1912 unsigned long start_pfn, end_pfn;
1913 struct page *start_page, *end_page;
1914
1915 start_pfn = page_to_pfn(page);
1916 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1917 start_page = pfn_to_page(start_pfn);
1918 end_page = start_page + pageblock_nr_pages - 1;
1919 end_pfn = start_pfn + pageblock_nr_pages - 1;
1920
1921 /* Do not cross zone boundaries */
1922 if (!zone_spans_pfn(zone, start_pfn))
1923 start_page = page;
1924 if (!zone_spans_pfn(zone, end_pfn))
1925 return 0;
1926
1927 return move_freepages(zone, start_page, end_page, migratetype,
1928 num_movable);
1929 }
1930
1931 static void change_pageblock_range(struct page *pageblock_page,
1932 int start_order, int migratetype)
1933 {
1934 int nr_pageblocks = 1 << (start_order - pageblock_order);
1935
1936 while (nr_pageblocks--) {
1937 set_pageblock_migratetype(pageblock_page, migratetype);
1938 pageblock_page += pageblock_nr_pages;
1939 }
1940 }
1941
1942 /*
1943 * When we are falling back to another migratetype during allocation, try to
1944 * steal extra free pages from the same pageblocks to satisfy further
1945 * allocations, instead of polluting multiple pageblocks.
1946 *
1947 * If we are stealing a relatively large buddy page, it is likely there will
1948 * be more free pages in the pageblock, so try to steal them all. For
1949 * reclaimable and unmovable allocations, we steal regardless of page size,
1950 * as fragmentation caused by those allocations polluting movable pageblocks
1951 * is worse than movable allocations stealing from unmovable and reclaimable
1952 * pageblocks.
1953 */
1954 static bool can_steal_fallback(unsigned int order, int start_mt)
1955 {
1956 /*
1957 * Leaving this order check is intended, although there is
1958 * relaxed order check in next check. The reason is that
1959 * we can actually steal whole pageblock if this condition met,
1960 * but, below check doesn't guarantee it and that is just heuristic
1961 * so could be changed anytime.
1962 */
1963 if (order >= pageblock_order)
1964 return true;
1965
1966 if (order >= pageblock_order / 2 ||
1967 start_mt == MIGRATE_RECLAIMABLE ||
1968 start_mt == MIGRATE_UNMOVABLE ||
1969 page_group_by_mobility_disabled)
1970 return true;
1971
1972 return false;
1973 }
1974
1975 /*
1976 * This function implements actual steal behaviour. If order is large enough,
1977 * we can steal whole pageblock. If not, we first move freepages in this
1978 * pageblock to our migratetype and determine how many already-allocated pages
1979 * are there in the pageblock with a compatible migratetype. If at least half
1980 * of pages are free or compatible, we can change migratetype of the pageblock
1981 * itself, so pages freed in the future will be put on the correct free list.
1982 */
1983 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1984 int start_type, bool whole_block)
1985 {
1986 unsigned int current_order = page_order(page);
1987 struct free_area *area;
1988 int free_pages, movable_pages, alike_pages;
1989 int old_block_type;
1990
1991 old_block_type = get_pageblock_migratetype(page);
1992
1993 /*
1994 * This can happen due to races and we want to prevent broken
1995 * highatomic accounting.
1996 */
1997 if (is_migrate_highatomic(old_block_type))
1998 goto single_page;
1999
2000 /* Take ownership for orders >= pageblock_order */
2001 if (current_order >= pageblock_order) {
2002 change_pageblock_range(page, current_order, start_type);
2003 goto single_page;
2004 }
2005
2006 /* We are not allowed to try stealing from the whole block */
2007 if (!whole_block)
2008 goto single_page;
2009
2010 free_pages = move_freepages_block(zone, page, start_type,
2011 &movable_pages);
2012 /*
2013 * Determine how many pages are compatible with our allocation.
2014 * For movable allocation, it's the number of movable pages which
2015 * we just obtained. For other types it's a bit more tricky.
2016 */
2017 if (start_type == MIGRATE_MOVABLE) {
2018 alike_pages = movable_pages;
2019 } else {
2020 /*
2021 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2022 * to MOVABLE pageblock, consider all non-movable pages as
2023 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2024 * vice versa, be conservative since we can't distinguish the
2025 * exact migratetype of non-movable pages.
2026 */
2027 if (old_block_type == MIGRATE_MOVABLE)
2028 alike_pages = pageblock_nr_pages
2029 - (free_pages + movable_pages);
2030 else
2031 alike_pages = 0;
2032 }
2033
2034 /* moving whole block can fail due to zone boundary conditions */
2035 if (!free_pages)
2036 goto single_page;
2037
2038 /*
2039 * If a sufficient number of pages in the block are either free or of
2040 * comparable migratability as our allocation, claim the whole block.
2041 */
2042 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2043 page_group_by_mobility_disabled)
2044 set_pageblock_migratetype(page, start_type);
2045
2046 return;
2047
2048 single_page:
2049 area = &zone->free_area[current_order];
2050 list_move(&page->lru, &area->free_list[start_type]);
2051 }
2052
2053 /*
2054 * Check whether there is a suitable fallback freepage with requested order.
2055 * If only_stealable is true, this function returns fallback_mt only if
2056 * we can steal other freepages all together. This would help to reduce
2057 * fragmentation due to mixed migratetype pages in one pageblock.
2058 */
2059 int find_suitable_fallback(struct free_area *area, unsigned int order,
2060 int migratetype, bool only_stealable, bool *can_steal)
2061 {
2062 int i;
2063 int fallback_mt;
2064
2065 if (area->nr_free == 0)
2066 return -1;
2067
2068 *can_steal = false;
2069 for (i = 0;; i++) {
2070 fallback_mt = fallbacks[migratetype][i];
2071 if (fallback_mt == MIGRATE_TYPES)
2072 break;
2073
2074 if (list_empty(&area->free_list[fallback_mt]))
2075 continue;
2076
2077 if (can_steal_fallback(order, migratetype))
2078 *can_steal = true;
2079
2080 if (!only_stealable)
2081 return fallback_mt;
2082
2083 if (*can_steal)
2084 return fallback_mt;
2085 }
2086
2087 return -1;
2088 }
2089
2090 /*
2091 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2092 * there are no empty page blocks that contain a page with a suitable order
2093 */
2094 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2095 unsigned int alloc_order)
2096 {
2097 int mt;
2098 unsigned long max_managed, flags;
2099
2100 /*
2101 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2102 * Check is race-prone but harmless.
2103 */
2104 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2105 if (zone->nr_reserved_highatomic >= max_managed)
2106 return;
2107
2108 spin_lock_irqsave(&zone->lock, flags);
2109
2110 /* Recheck the nr_reserved_highatomic limit under the lock */
2111 if (zone->nr_reserved_highatomic >= max_managed)
2112 goto out_unlock;
2113
2114 /* Yoink! */
2115 mt = get_pageblock_migratetype(page);
2116 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2117 && !is_migrate_cma(mt)) {
2118 zone->nr_reserved_highatomic += pageblock_nr_pages;
2119 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2120 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2121 }
2122
2123 out_unlock:
2124 spin_unlock_irqrestore(&zone->lock, flags);
2125 }
2126
2127 /*
2128 * Used when an allocation is about to fail under memory pressure. This
2129 * potentially hurts the reliability of high-order allocations when under
2130 * intense memory pressure but failed atomic allocations should be easier
2131 * to recover from than an OOM.
2132 *
2133 * If @force is true, try to unreserve a pageblock even though highatomic
2134 * pageblock is exhausted.
2135 */
2136 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2137 bool force)
2138 {
2139 struct zonelist *zonelist = ac->zonelist;
2140 unsigned long flags;
2141 struct zoneref *z;
2142 struct zone *zone;
2143 struct page *page;
2144 int order;
2145 bool ret;
2146
2147 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2148 ac->nodemask) {
2149 /*
2150 * Preserve at least one pageblock unless memory pressure
2151 * is really high.
2152 */
2153 if (!force && zone->nr_reserved_highatomic <=
2154 pageblock_nr_pages)
2155 continue;
2156
2157 spin_lock_irqsave(&zone->lock, flags);
2158 for (order = 0; order < MAX_ORDER; order++) {
2159 struct free_area *area = &(zone->free_area[order]);
2160
2161 page = list_first_entry_or_null(
2162 &area->free_list[MIGRATE_HIGHATOMIC],
2163 struct page, lru);
2164 if (!page)
2165 continue;
2166
2167 /*
2168 * In page freeing path, migratetype change is racy so
2169 * we can counter several free pages in a pageblock
2170 * in this loop althoug we changed the pageblock type
2171 * from highatomic to ac->migratetype. So we should
2172 * adjust the count once.
2173 */
2174 if (is_migrate_highatomic_page(page)) {
2175 /*
2176 * It should never happen but changes to
2177 * locking could inadvertently allow a per-cpu
2178 * drain to add pages to MIGRATE_HIGHATOMIC
2179 * while unreserving so be safe and watch for
2180 * underflows.
2181 */
2182 zone->nr_reserved_highatomic -= min(
2183 pageblock_nr_pages,
2184 zone->nr_reserved_highatomic);
2185 }
2186
2187 /*
2188 * Convert to ac->migratetype and avoid the normal
2189 * pageblock stealing heuristics. Minimally, the caller
2190 * is doing the work and needs the pages. More
2191 * importantly, if the block was always converted to
2192 * MIGRATE_UNMOVABLE or another type then the number
2193 * of pageblocks that cannot be completely freed
2194 * may increase.
2195 */
2196 set_pageblock_migratetype(page, ac->migratetype);
2197 ret = move_freepages_block(zone, page, ac->migratetype,
2198 NULL);
2199 if (ret) {
2200 spin_unlock_irqrestore(&zone->lock, flags);
2201 return ret;
2202 }
2203 }
2204 spin_unlock_irqrestore(&zone->lock, flags);
2205 }
2206
2207 return false;
2208 }
2209
2210 /*
2211 * Try finding a free buddy page on the fallback list and put it on the free
2212 * list of requested migratetype, possibly along with other pages from the same
2213 * block, depending on fragmentation avoidance heuristics. Returns true if
2214 * fallback was found so that __rmqueue_smallest() can grab it.
2215 *
2216 * The use of signed ints for order and current_order is a deliberate
2217 * deviation from the rest of this file, to make the for loop
2218 * condition simpler.
2219 */
2220 static inline bool
2221 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2222 {
2223 struct free_area *area;
2224 int current_order;
2225 struct page *page;
2226 int fallback_mt;
2227 bool can_steal;
2228
2229 /*
2230 * Find the largest available free page in the other list. This roughly
2231 * approximates finding the pageblock with the most free pages, which
2232 * would be too costly to do exactly.
2233 */
2234 for (current_order = MAX_ORDER - 1; current_order >= order;
2235 --current_order) {
2236 area = &(zone->free_area[current_order]);
2237 fallback_mt = find_suitable_fallback(area, current_order,
2238 start_migratetype, false, &can_steal);
2239 if (fallback_mt == -1)
2240 continue;
2241
2242 /*
2243 * We cannot steal all free pages from the pageblock and the
2244 * requested migratetype is movable. In that case it's better to
2245 * steal and split the smallest available page instead of the
2246 * largest available page, because even if the next movable
2247 * allocation falls back into a different pageblock than this
2248 * one, it won't cause permanent fragmentation.
2249 */
2250 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2251 && current_order > order)
2252 goto find_smallest;
2253
2254 goto do_steal;
2255 }
2256
2257 return false;
2258
2259 find_smallest:
2260 for (current_order = order; current_order < MAX_ORDER;
2261 current_order++) {
2262 area = &(zone->free_area[current_order]);
2263 fallback_mt = find_suitable_fallback(area, current_order,
2264 start_migratetype, false, &can_steal);
2265 if (fallback_mt != -1)
2266 break;
2267 }
2268
2269 /*
2270 * This should not happen - we already found a suitable fallback
2271 * when looking for the largest page.
2272 */
2273 VM_BUG_ON(current_order == MAX_ORDER);
2274
2275 do_steal:
2276 page = list_first_entry(&area->free_list[fallback_mt],
2277 struct page, lru);
2278
2279 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2280
2281 trace_mm_page_alloc_extfrag(page, order, current_order,
2282 start_migratetype, fallback_mt);
2283
2284 return true;
2285
2286 }
2287
2288 /*
2289 * Do the hard work of removing an element from the buddy allocator.
2290 * Call me with the zone->lock already held.
2291 */
2292 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2293 int migratetype)
2294 {
2295 struct page *page;
2296
2297 retry:
2298 page = __rmqueue_smallest(zone, order, migratetype);
2299 if (unlikely(!page)) {
2300 if (migratetype == MIGRATE_MOVABLE)
2301 page = __rmqueue_cma_fallback(zone, order);
2302
2303 if (!page && __rmqueue_fallback(zone, order, migratetype))
2304 goto retry;
2305 }
2306
2307 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2308 return page;
2309 }
2310
2311 /*
2312 * Obtain a specified number of elements from the buddy allocator, all under
2313 * a single hold of the lock, for efficiency. Add them to the supplied list.
2314 * Returns the number of new pages which were placed at *list.
2315 */
2316 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2317 unsigned long count, struct list_head *list,
2318 int migratetype, bool cold)
2319 {
2320 int i, alloced = 0;
2321
2322 spin_lock(&zone->lock);
2323 for (i = 0; i < count; ++i) {
2324 struct page *page = __rmqueue(zone, order, migratetype);
2325 if (unlikely(page == NULL))
2326 break;
2327
2328 if (unlikely(check_pcp_refill(page)))
2329 continue;
2330
2331 /*
2332 * Split buddy pages returned by expand() are received here
2333 * in physical page order. The page is added to the callers and
2334 * list and the list head then moves forward. From the callers
2335 * perspective, the linked list is ordered by page number in
2336 * some conditions. This is useful for IO devices that can
2337 * merge IO requests if the physical pages are ordered
2338 * properly.
2339 */
2340 if (likely(!cold))
2341 list_add(&page->lru, list);
2342 else
2343 list_add_tail(&page->lru, list);
2344 list = &page->lru;
2345 alloced++;
2346 if (is_migrate_cma(get_pcppage_migratetype(page)))
2347 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2348 -(1 << order));
2349 }
2350
2351 /*
2352 * i pages were removed from the buddy list even if some leak due
2353 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2354 * on i. Do not confuse with 'alloced' which is the number of
2355 * pages added to the pcp list.
2356 */
2357 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2358 spin_unlock(&zone->lock);
2359 return alloced;
2360 }
2361
2362 #ifdef CONFIG_NUMA
2363 /*
2364 * Called from the vmstat counter updater to drain pagesets of this
2365 * currently executing processor on remote nodes after they have
2366 * expired.
2367 *
2368 * Note that this function must be called with the thread pinned to
2369 * a single processor.
2370 */
2371 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2372 {
2373 unsigned long flags;
2374 int to_drain, batch;
2375
2376 local_irq_save(flags);
2377 batch = READ_ONCE(pcp->batch);
2378 to_drain = min(pcp->count, batch);
2379 if (to_drain > 0) {
2380 free_pcppages_bulk(zone, to_drain, pcp);
2381 pcp->count -= to_drain;
2382 }
2383 local_irq_restore(flags);
2384 }
2385 #endif
2386
2387 /*
2388 * Drain pcplists of the indicated processor and zone.
2389 *
2390 * The processor must either be the current processor and the
2391 * thread pinned to the current processor or a processor that
2392 * is not online.
2393 */
2394 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2395 {
2396 unsigned long flags;
2397 struct per_cpu_pageset *pset;
2398 struct per_cpu_pages *pcp;
2399
2400 local_irq_save(flags);
2401 pset = per_cpu_ptr(zone->pageset, cpu);
2402
2403 pcp = &pset->pcp;
2404 if (pcp->count) {
2405 free_pcppages_bulk(zone, pcp->count, pcp);
2406 pcp->count = 0;
2407 }
2408 local_irq_restore(flags);
2409 }
2410
2411 /*
2412 * Drain pcplists of all zones on the indicated processor.
2413 *
2414 * The processor must either be the current processor and the
2415 * thread pinned to the current processor or a processor that
2416 * is not online.
2417 */
2418 static void drain_pages(unsigned int cpu)
2419 {
2420 struct zone *zone;
2421
2422 for_each_populated_zone(zone) {
2423 drain_pages_zone(cpu, zone);
2424 }
2425 }
2426
2427 /*
2428 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2429 *
2430 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2431 * the single zone's pages.
2432 */
2433 void drain_local_pages(struct zone *zone)
2434 {
2435 int cpu = smp_processor_id();
2436
2437 if (zone)
2438 drain_pages_zone(cpu, zone);
2439 else
2440 drain_pages(cpu);
2441 }
2442
2443 static void drain_local_pages_wq(struct work_struct *work)
2444 {
2445 /*
2446 * drain_all_pages doesn't use proper cpu hotplug protection so
2447 * we can race with cpu offline when the WQ can move this from
2448 * a cpu pinned worker to an unbound one. We can operate on a different
2449 * cpu which is allright but we also have to make sure to not move to
2450 * a different one.
2451 */
2452 preempt_disable();
2453 drain_local_pages(NULL);
2454 preempt_enable();
2455 }
2456
2457 /*
2458 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2459 *
2460 * When zone parameter is non-NULL, spill just the single zone's pages.
2461 *
2462 * Note that this can be extremely slow as the draining happens in a workqueue.
2463 */
2464 void drain_all_pages(struct zone *zone)
2465 {
2466 int cpu;
2467
2468 /*
2469 * Allocate in the BSS so we wont require allocation in
2470 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2471 */
2472 static cpumask_t cpus_with_pcps;
2473
2474 /*
2475 * Make sure nobody triggers this path before mm_percpu_wq is fully
2476 * initialized.
2477 */
2478 if (WARN_ON_ONCE(!mm_percpu_wq))
2479 return;
2480
2481 /* Workqueues cannot recurse */
2482 if (current->flags & PF_WQ_WORKER)
2483 return;
2484
2485 /*
2486 * Do not drain if one is already in progress unless it's specific to
2487 * a zone. Such callers are primarily CMA and memory hotplug and need
2488 * the drain to be complete when the call returns.
2489 */
2490 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2491 if (!zone)
2492 return;
2493 mutex_lock(&pcpu_drain_mutex);
2494 }
2495
2496 /*
2497 * We don't care about racing with CPU hotplug event
2498 * as offline notification will cause the notified
2499 * cpu to drain that CPU pcps and on_each_cpu_mask
2500 * disables preemption as part of its processing
2501 */
2502 for_each_online_cpu(cpu) {
2503 struct per_cpu_pageset *pcp;
2504 struct zone *z;
2505 bool has_pcps = false;
2506
2507 if (zone) {
2508 pcp = per_cpu_ptr(zone->pageset, cpu);
2509 if (pcp->pcp.count)
2510 has_pcps = true;
2511 } else {
2512 for_each_populated_zone(z) {
2513 pcp = per_cpu_ptr(z->pageset, cpu);
2514 if (pcp->pcp.count) {
2515 has_pcps = true;
2516 break;
2517 }
2518 }
2519 }
2520
2521 if (has_pcps)
2522 cpumask_set_cpu(cpu, &cpus_with_pcps);
2523 else
2524 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2525 }
2526
2527 for_each_cpu(cpu, &cpus_with_pcps) {
2528 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2529 INIT_WORK(work, drain_local_pages_wq);
2530 queue_work_on(cpu, mm_percpu_wq, work);
2531 }
2532 for_each_cpu(cpu, &cpus_with_pcps)
2533 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2534
2535 mutex_unlock(&pcpu_drain_mutex);
2536 }
2537
2538 #ifdef CONFIG_HIBERNATION
2539
2540 /*
2541 * Touch the watchdog for every WD_PAGE_COUNT pages.
2542 */
2543 #define WD_PAGE_COUNT (128*1024)
2544
2545 void mark_free_pages(struct zone *zone)
2546 {
2547 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2548 unsigned long flags;
2549 unsigned int order, t;
2550 struct page *page;
2551
2552 if (zone_is_empty(zone))
2553 return;
2554
2555 spin_lock_irqsave(&zone->lock, flags);
2556
2557 max_zone_pfn = zone_end_pfn(zone);
2558 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2559 if (pfn_valid(pfn)) {
2560 page = pfn_to_page(pfn);
2561
2562 if (!--page_count) {
2563 touch_nmi_watchdog();
2564 page_count = WD_PAGE_COUNT;
2565 }
2566
2567 if (page_zone(page) != zone)
2568 continue;
2569
2570 if (!swsusp_page_is_forbidden(page))
2571 swsusp_unset_page_free(page);
2572 }
2573
2574 for_each_migratetype_order(order, t) {
2575 list_for_each_entry(page,
2576 &zone->free_area[order].free_list[t], lru) {
2577 unsigned long i;
2578
2579 pfn = page_to_pfn(page);
2580 for (i = 0; i < (1UL << order); i++) {
2581 if (!--page_count) {
2582 touch_nmi_watchdog();
2583 page_count = WD_PAGE_COUNT;
2584 }
2585 swsusp_set_page_free(pfn_to_page(pfn + i));
2586 }
2587 }
2588 }
2589 spin_unlock_irqrestore(&zone->lock, flags);
2590 }
2591 #endif /* CONFIG_PM */
2592
2593 /*
2594 * Free a 0-order page
2595 * cold == true ? free a cold page : free a hot page
2596 */
2597 void free_hot_cold_page(struct page *page, bool cold)
2598 {
2599 struct zone *zone = page_zone(page);
2600 struct per_cpu_pages *pcp;
2601 unsigned long flags;
2602 unsigned long pfn = page_to_pfn(page);
2603 int migratetype;
2604
2605 if (!free_pcp_prepare(page))
2606 return;
2607
2608 migratetype = get_pfnblock_migratetype(page, pfn);
2609 set_pcppage_migratetype(page, migratetype);
2610 local_irq_save(flags);
2611 __count_vm_event(PGFREE);
2612
2613 /*
2614 * We only track unmovable, reclaimable and movable on pcp lists.
2615 * Free ISOLATE pages back to the allocator because they are being
2616 * offlined but treat HIGHATOMIC as movable pages so we can get those
2617 * areas back if necessary. Otherwise, we may have to free
2618 * excessively into the page allocator
2619 */
2620 if (migratetype >= MIGRATE_PCPTYPES) {
2621 if (unlikely(is_migrate_isolate(migratetype))) {
2622 free_one_page(zone, page, pfn, 0, migratetype);
2623 goto out;
2624 }
2625 migratetype = MIGRATE_MOVABLE;
2626 }
2627
2628 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2629 if (!cold)
2630 list_add(&page->lru, &pcp->lists[migratetype]);
2631 else
2632 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2633 pcp->count++;
2634 if (pcp->count >= pcp->high) {
2635 unsigned long batch = READ_ONCE(pcp->batch);
2636 free_pcppages_bulk(zone, batch, pcp);
2637 pcp->count -= batch;
2638 }
2639
2640 out:
2641 local_irq_restore(flags);
2642 }
2643
2644 /*
2645 * Free a list of 0-order pages
2646 */
2647 void free_hot_cold_page_list(struct list_head *list, bool cold)
2648 {
2649 struct page *page, *next;
2650
2651 list_for_each_entry_safe(page, next, list, lru) {
2652 trace_mm_page_free_batched(page, cold);
2653 free_hot_cold_page(page, cold);
2654 }
2655 }
2656
2657 /*
2658 * split_page takes a non-compound higher-order page, and splits it into
2659 * n (1<<order) sub-pages: page[0..n]
2660 * Each sub-page must be freed individually.
2661 *
2662 * Note: this is probably too low level an operation for use in drivers.
2663 * Please consult with lkml before using this in your driver.
2664 */
2665 void split_page(struct page *page, unsigned int order)
2666 {
2667 int i;
2668
2669 VM_BUG_ON_PAGE(PageCompound(page), page);
2670 VM_BUG_ON_PAGE(!page_count(page), page);
2671
2672 #ifdef CONFIG_KMEMCHECK
2673 /*
2674 * Split shadow pages too, because free(page[0]) would
2675 * otherwise free the whole shadow.
2676 */
2677 if (kmemcheck_page_is_tracked(page))
2678 split_page(virt_to_page(page[0].shadow), order);
2679 #endif
2680
2681 for (i = 1; i < (1 << order); i++)
2682 set_page_refcounted(page + i);
2683 split_page_owner(page, order);
2684 }
2685 EXPORT_SYMBOL_GPL(split_page);
2686
2687 int __isolate_free_page(struct page *page, unsigned int order)
2688 {
2689 unsigned long watermark;
2690 struct zone *zone;
2691 int mt;
2692
2693 BUG_ON(!PageBuddy(page));
2694
2695 zone = page_zone(page);
2696 mt = get_pageblock_migratetype(page);
2697
2698 if (!is_migrate_isolate(mt)) {
2699 /*
2700 * Obey watermarks as if the page was being allocated. We can
2701 * emulate a high-order watermark check with a raised order-0
2702 * watermark, because we already know our high-order page
2703 * exists.
2704 */
2705 watermark = min_wmark_pages(zone) + (1UL << order);
2706 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2707 return 0;
2708
2709 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2710 }
2711
2712 /* Remove page from free list */
2713 list_del(&page->lru);
2714 zone->free_area[order].nr_free--;
2715 rmv_page_order(page);
2716
2717 /*
2718 * Set the pageblock if the isolated page is at least half of a
2719 * pageblock
2720 */
2721 if (order >= pageblock_order - 1) {
2722 struct page *endpage = page + (1 << order) - 1;
2723 for (; page < endpage; page += pageblock_nr_pages) {
2724 int mt = get_pageblock_migratetype(page);
2725 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2726 && !is_migrate_highatomic(mt))
2727 set_pageblock_migratetype(page,
2728 MIGRATE_MOVABLE);
2729 }
2730 }
2731
2732
2733 return 1UL << order;
2734 }
2735
2736 /*
2737 * Update NUMA hit/miss statistics
2738 *
2739 * Must be called with interrupts disabled.
2740 */
2741 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2742 {
2743 #ifdef CONFIG_NUMA
2744 enum numa_stat_item local_stat = NUMA_LOCAL;
2745
2746 if (z->node != numa_node_id())
2747 local_stat = NUMA_OTHER;
2748
2749 if (z->node == preferred_zone->node)
2750 __inc_numa_state(z, NUMA_HIT);
2751 else {
2752 __inc_numa_state(z, NUMA_MISS);
2753 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2754 }
2755 __inc_numa_state(z, local_stat);
2756 #endif
2757 }
2758
2759 /* Remove page from the per-cpu list, caller must protect the list */
2760 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2761 bool cold, struct per_cpu_pages *pcp,
2762 struct list_head *list)
2763 {
2764 struct page *page;
2765
2766 do {
2767 if (list_empty(list)) {
2768 pcp->count += rmqueue_bulk(zone, 0,
2769 pcp->batch, list,
2770 migratetype, cold);
2771 if (unlikely(list_empty(list)))
2772 return NULL;
2773 }
2774
2775 if (cold)
2776 page = list_last_entry(list, struct page, lru);
2777 else
2778 page = list_first_entry(list, struct page, lru);
2779
2780 list_del(&page->lru);
2781 pcp->count--;
2782 } while (check_new_pcp(page));
2783
2784 return page;
2785 }
2786
2787 /* Lock and remove page from the per-cpu list */
2788 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2789 struct zone *zone, unsigned int order,
2790 gfp_t gfp_flags, int migratetype)
2791 {
2792 struct per_cpu_pages *pcp;
2793 struct list_head *list;
2794 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2795 struct page *page;
2796 unsigned long flags;
2797
2798 local_irq_save(flags);
2799 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2800 list = &pcp->lists[migratetype];
2801 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2802 if (page) {
2803 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2804 zone_statistics(preferred_zone, zone);
2805 }
2806 local_irq_restore(flags);
2807 return page;
2808 }
2809
2810 /*
2811 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2812 */
2813 static inline
2814 struct page *rmqueue(struct zone *preferred_zone,
2815 struct zone *zone, unsigned int order,
2816 gfp_t gfp_flags, unsigned int alloc_flags,
2817 int migratetype)
2818 {
2819 unsigned long flags;
2820 struct page *page;
2821
2822 if (likely(order == 0)) {
2823 page = rmqueue_pcplist(preferred_zone, zone, order,
2824 gfp_flags, migratetype);
2825 goto out;
2826 }
2827
2828 /*
2829 * We most definitely don't want callers attempting to
2830 * allocate greater than order-1 page units with __GFP_NOFAIL.
2831 */
2832 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2833 spin_lock_irqsave(&zone->lock, flags);
2834
2835 do {
2836 page = NULL;
2837 if (alloc_flags & ALLOC_HARDER) {
2838 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2839 if (page)
2840 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2841 }
2842 if (!page)
2843 page = __rmqueue(zone, order, migratetype);
2844 } while (page && check_new_pages(page, order));
2845 spin_unlock(&zone->lock);
2846 if (!page)
2847 goto failed;
2848 __mod_zone_freepage_state(zone, -(1 << order),
2849 get_pcppage_migratetype(page));
2850
2851 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2852 zone_statistics(preferred_zone, zone);
2853 local_irq_restore(flags);
2854
2855 out:
2856 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2857 return page;
2858
2859 failed:
2860 local_irq_restore(flags);
2861 return NULL;
2862 }
2863
2864 #ifdef CONFIG_FAIL_PAGE_ALLOC
2865
2866 static struct {
2867 struct fault_attr attr;
2868
2869 bool ignore_gfp_highmem;
2870 bool ignore_gfp_reclaim;
2871 u32 min_order;
2872 } fail_page_alloc = {
2873 .attr = FAULT_ATTR_INITIALIZER,
2874 .ignore_gfp_reclaim = true,
2875 .ignore_gfp_highmem = true,
2876 .min_order = 1,
2877 };
2878
2879 static int __init setup_fail_page_alloc(char *str)
2880 {
2881 return setup_fault_attr(&fail_page_alloc.attr, str);
2882 }
2883 __setup("fail_page_alloc=", setup_fail_page_alloc);
2884
2885 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2886 {
2887 if (order < fail_page_alloc.min_order)
2888 return false;
2889 if (gfp_mask & __GFP_NOFAIL)
2890 return false;
2891 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2892 return false;
2893 if (fail_page_alloc.ignore_gfp_reclaim &&
2894 (gfp_mask & __GFP_DIRECT_RECLAIM))
2895 return false;
2896
2897 return should_fail(&fail_page_alloc.attr, 1 << order);
2898 }
2899
2900 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2901
2902 static int __init fail_page_alloc_debugfs(void)
2903 {
2904 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2905 struct dentry *dir;
2906
2907 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2908 &fail_page_alloc.attr);
2909 if (IS_ERR(dir))
2910 return PTR_ERR(dir);
2911
2912 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2913 &fail_page_alloc.ignore_gfp_reclaim))
2914 goto fail;
2915 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2916 &fail_page_alloc.ignore_gfp_highmem))
2917 goto fail;
2918 if (!debugfs_create_u32("min-order", mode, dir,
2919 &fail_page_alloc.min_order))
2920 goto fail;
2921
2922 return 0;
2923 fail:
2924 debugfs_remove_recursive(dir);
2925
2926 return -ENOMEM;
2927 }
2928
2929 late_initcall(fail_page_alloc_debugfs);
2930
2931 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2932
2933 #else /* CONFIG_FAIL_PAGE_ALLOC */
2934
2935 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2936 {
2937 return false;
2938 }
2939
2940 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2941
2942 /*
2943 * Return true if free base pages are above 'mark'. For high-order checks it
2944 * will return true of the order-0 watermark is reached and there is at least
2945 * one free page of a suitable size. Checking now avoids taking the zone lock
2946 * to check in the allocation paths if no pages are free.
2947 */
2948 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2949 int classzone_idx, unsigned int alloc_flags,
2950 long free_pages)
2951 {
2952 long min = mark;
2953 int o;
2954 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
2955
2956 /* free_pages may go negative - that's OK */
2957 free_pages -= (1 << order) - 1;
2958
2959 if (alloc_flags & ALLOC_HIGH)
2960 min -= min / 2;
2961
2962 /*
2963 * If the caller does not have rights to ALLOC_HARDER then subtract
2964 * the high-atomic reserves. This will over-estimate the size of the
2965 * atomic reserve but it avoids a search.
2966 */
2967 if (likely(!alloc_harder)) {
2968 free_pages -= z->nr_reserved_highatomic;
2969 } else {
2970 /*
2971 * OOM victims can try even harder than normal ALLOC_HARDER
2972 * users on the grounds that it's definitely going to be in
2973 * the exit path shortly and free memory. Any allocation it
2974 * makes during the free path will be small and short-lived.
2975 */
2976 if (alloc_flags & ALLOC_OOM)
2977 min -= min / 2;
2978 else
2979 min -= min / 4;
2980 }
2981
2982
2983 #ifdef CONFIG_CMA
2984 /* If allocation can't use CMA areas don't use free CMA pages */
2985 if (!(alloc_flags & ALLOC_CMA))
2986 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2987 #endif
2988
2989 /*
2990 * Check watermarks for an order-0 allocation request. If these
2991 * are not met, then a high-order request also cannot go ahead
2992 * even if a suitable page happened to be free.
2993 */
2994 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2995 return false;
2996
2997 /* If this is an order-0 request then the watermark is fine */
2998 if (!order)
2999 return true;
3000
3001 /* For a high-order request, check at least one suitable page is free */
3002 for (o = order; o < MAX_ORDER; o++) {
3003 struct free_area *area = &z->free_area[o];
3004 int mt;
3005
3006 if (!area->nr_free)
3007 continue;
3008
3009 if (alloc_harder)
3010 return true;
3011
3012 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3013 if (!list_empty(&area->free_list[mt]))
3014 return true;
3015 }
3016
3017 #ifdef CONFIG_CMA
3018 if ((alloc_flags & ALLOC_CMA) &&
3019 !list_empty(&area->free_list[MIGRATE_CMA])) {
3020 return true;
3021 }
3022 #endif
3023 }
3024 return false;
3025 }
3026
3027 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3028 int classzone_idx, unsigned int alloc_flags)
3029 {
3030 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3031 zone_page_state(z, NR_FREE_PAGES));
3032 }
3033
3034 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3035 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3036 {
3037 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3038 long cma_pages = 0;
3039
3040 #ifdef CONFIG_CMA
3041 /* If allocation can't use CMA areas don't use free CMA pages */
3042 if (!(alloc_flags & ALLOC_CMA))
3043 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3044 #endif
3045
3046 /*
3047 * Fast check for order-0 only. If this fails then the reserves
3048 * need to be calculated. There is a corner case where the check
3049 * passes but only the high-order atomic reserve are free. If
3050 * the caller is !atomic then it'll uselessly search the free
3051 * list. That corner case is then slower but it is harmless.
3052 */
3053 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3054 return true;
3055
3056 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3057 free_pages);
3058 }
3059
3060 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3061 unsigned long mark, int classzone_idx)
3062 {
3063 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3064
3065 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3066 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3067
3068 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3069 free_pages);
3070 }
3071
3072 #ifdef CONFIG_NUMA
3073 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3074 {
3075 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3076 RECLAIM_DISTANCE;
3077 }
3078 #else /* CONFIG_NUMA */
3079 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3080 {
3081 return true;
3082 }
3083 #endif /* CONFIG_NUMA */
3084
3085 /*
3086 * get_page_from_freelist goes through the zonelist trying to allocate
3087 * a page.
3088 */
3089 static struct page *
3090 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3091 const struct alloc_context *ac)
3092 {
3093 struct zoneref *z = ac->preferred_zoneref;
3094 struct zone *zone;
3095 struct pglist_data *last_pgdat_dirty_limit = NULL;
3096
3097 /*
3098 * Scan zonelist, looking for a zone with enough free.
3099 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3100 */
3101 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3102 ac->nodemask) {
3103 struct page *page;
3104 unsigned long mark;
3105
3106 if (cpusets_enabled() &&
3107 (alloc_flags & ALLOC_CPUSET) &&
3108 !__cpuset_zone_allowed(zone, gfp_mask))
3109 continue;
3110 /*
3111 * When allocating a page cache page for writing, we
3112 * want to get it from a node that is within its dirty
3113 * limit, such that no single node holds more than its
3114 * proportional share of globally allowed dirty pages.
3115 * The dirty limits take into account the node's
3116 * lowmem reserves and high watermark so that kswapd
3117 * should be able to balance it without having to
3118 * write pages from its LRU list.
3119 *
3120 * XXX: For now, allow allocations to potentially
3121 * exceed the per-node dirty limit in the slowpath
3122 * (spread_dirty_pages unset) before going into reclaim,
3123 * which is important when on a NUMA setup the allowed
3124 * nodes are together not big enough to reach the
3125 * global limit. The proper fix for these situations
3126 * will require awareness of nodes in the
3127 * dirty-throttling and the flusher threads.
3128 */
3129 if (ac->spread_dirty_pages) {
3130 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3131 continue;
3132
3133 if (!node_dirty_ok(zone->zone_pgdat)) {
3134 last_pgdat_dirty_limit = zone->zone_pgdat;
3135 continue;
3136 }
3137 }
3138
3139 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3140 if (!zone_watermark_fast(zone, order, mark,
3141 ac_classzone_idx(ac), alloc_flags)) {
3142 int ret;
3143
3144 /* Checked here to keep the fast path fast */
3145 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3146 if (alloc_flags & ALLOC_NO_WATERMARKS)
3147 goto try_this_zone;
3148
3149 if (node_reclaim_mode == 0 ||
3150 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3151 continue;
3152
3153 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3154 switch (ret) {
3155 case NODE_RECLAIM_NOSCAN:
3156 /* did not scan */
3157 continue;
3158 case NODE_RECLAIM_FULL:
3159 /* scanned but unreclaimable */
3160 continue;
3161 default:
3162 /* did we reclaim enough */
3163 if (zone_watermark_ok(zone, order, mark,
3164 ac_classzone_idx(ac), alloc_flags))
3165 goto try_this_zone;
3166
3167 continue;
3168 }
3169 }
3170
3171 try_this_zone:
3172 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3173 gfp_mask, alloc_flags, ac->migratetype);
3174 if (page) {
3175 prep_new_page(page, order, gfp_mask, alloc_flags);
3176
3177 /*
3178 * If this is a high-order atomic allocation then check
3179 * if the pageblock should be reserved for the future
3180 */
3181 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3182 reserve_highatomic_pageblock(page, zone, order);
3183
3184 return page;
3185 }
3186 }
3187
3188 return NULL;
3189 }
3190
3191 /*
3192 * Large machines with many possible nodes should not always dump per-node
3193 * meminfo in irq context.
3194 */
3195 static inline bool should_suppress_show_mem(void)
3196 {
3197 bool ret = false;
3198
3199 #if NODES_SHIFT > 8
3200 ret = in_interrupt();
3201 #endif
3202 return ret;
3203 }
3204
3205 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3206 {
3207 unsigned int filter = SHOW_MEM_FILTER_NODES;
3208 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3209
3210 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3211 return;
3212
3213 /*
3214 * This documents exceptions given to allocations in certain
3215 * contexts that are allowed to allocate outside current's set
3216 * of allowed nodes.
3217 */
3218 if (!(gfp_mask & __GFP_NOMEMALLOC))
3219 if (tsk_is_oom_victim(current) ||
3220 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3221 filter &= ~SHOW_MEM_FILTER_NODES;
3222 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3223 filter &= ~SHOW_MEM_FILTER_NODES;
3224
3225 show_mem(filter, nodemask);
3226 }
3227
3228 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3229 {
3230 struct va_format vaf;
3231 va_list args;
3232 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3233 DEFAULT_RATELIMIT_BURST);
3234
3235 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3236 return;
3237
3238 pr_warn("%s: ", current->comm);
3239
3240 va_start(args, fmt);
3241 vaf.fmt = fmt;
3242 vaf.va = &args;
3243 pr_cont("%pV", &vaf);
3244 va_end(args);
3245
3246 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3247 if (nodemask)
3248 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3249 else
3250 pr_cont("(null)\n");
3251
3252 cpuset_print_current_mems_allowed();
3253
3254 dump_stack();
3255 warn_alloc_show_mem(gfp_mask, nodemask);
3256 }
3257
3258 static inline struct page *
3259 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3260 unsigned int alloc_flags,
3261 const struct alloc_context *ac)
3262 {
3263 struct page *page;
3264
3265 page = get_page_from_freelist(gfp_mask, order,
3266 alloc_flags|ALLOC_CPUSET, ac);
3267 /*
3268 * fallback to ignore cpuset restriction if our nodes
3269 * are depleted
3270 */
3271 if (!page)
3272 page = get_page_from_freelist(gfp_mask, order,
3273 alloc_flags, ac);
3274
3275 return page;
3276 }
3277
3278 static inline struct page *
3279 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3280 const struct alloc_context *ac, unsigned long *did_some_progress)
3281 {
3282 struct oom_control oc = {
3283 .zonelist = ac->zonelist,
3284 .nodemask = ac->nodemask,
3285 .memcg = NULL,
3286 .gfp_mask = gfp_mask,
3287 .order = order,
3288 };
3289 struct page *page;
3290
3291 *did_some_progress = 0;
3292
3293 /*
3294 * Acquire the oom lock. If that fails, somebody else is
3295 * making progress for us.
3296 */
3297 if (!mutex_trylock(&oom_lock)) {
3298 *did_some_progress = 1;
3299 schedule_timeout_uninterruptible(1);
3300 return NULL;
3301 }
3302
3303 /*
3304 * Go through the zonelist yet one more time, keep very high watermark
3305 * here, this is only to catch a parallel oom killing, we must fail if
3306 * we're still under heavy pressure. But make sure that this reclaim
3307 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3308 * allocation which will never fail due to oom_lock already held.
3309 */
3310 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3311 ~__GFP_DIRECT_RECLAIM, order,
3312 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3313 if (page)
3314 goto out;
3315
3316 /* Coredumps can quickly deplete all memory reserves */
3317 if (current->flags & PF_DUMPCORE)
3318 goto out;
3319 /* The OOM killer will not help higher order allocs */
3320 if (order > PAGE_ALLOC_COSTLY_ORDER)
3321 goto out;
3322 /*
3323 * We have already exhausted all our reclaim opportunities without any
3324 * success so it is time to admit defeat. We will skip the OOM killer
3325 * because it is very likely that the caller has a more reasonable
3326 * fallback than shooting a random task.
3327 */
3328 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3329 goto out;
3330 /* The OOM killer does not needlessly kill tasks for lowmem */
3331 if (ac->high_zoneidx < ZONE_NORMAL)
3332 goto out;
3333 if (pm_suspended_storage())
3334 goto out;
3335 /*
3336 * XXX: GFP_NOFS allocations should rather fail than rely on
3337 * other request to make a forward progress.
3338 * We are in an unfortunate situation where out_of_memory cannot
3339 * do much for this context but let's try it to at least get
3340 * access to memory reserved if the current task is killed (see
3341 * out_of_memory). Once filesystems are ready to handle allocation
3342 * failures more gracefully we should just bail out here.
3343 */
3344
3345 /* The OOM killer may not free memory on a specific node */
3346 if (gfp_mask & __GFP_THISNODE)
3347 goto out;
3348
3349 /* Exhausted what can be done so it's blamo time */
3350 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3351 *did_some_progress = 1;
3352
3353 /*
3354 * Help non-failing allocations by giving them access to memory
3355 * reserves
3356 */
3357 if (gfp_mask & __GFP_NOFAIL)
3358 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3359 ALLOC_NO_WATERMARKS, ac);
3360 }
3361 out:
3362 mutex_unlock(&oom_lock);
3363 return page;
3364 }
3365
3366 /*
3367 * Maximum number of compaction retries wit a progress before OOM
3368 * killer is consider as the only way to move forward.
3369 */
3370 #define MAX_COMPACT_RETRIES 16
3371
3372 #ifdef CONFIG_COMPACTION
3373 /* Try memory compaction for high-order allocations before reclaim */
3374 static struct page *
3375 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3376 unsigned int alloc_flags, const struct alloc_context *ac,
3377 enum compact_priority prio, enum compact_result *compact_result)
3378 {
3379 struct page *page;
3380 unsigned int noreclaim_flag;
3381
3382 if (!order)
3383 return NULL;
3384
3385 noreclaim_flag = memalloc_noreclaim_save();
3386 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3387 prio);
3388 memalloc_noreclaim_restore(noreclaim_flag);
3389
3390 if (*compact_result <= COMPACT_INACTIVE)
3391 return NULL;
3392
3393 /*
3394 * At least in one zone compaction wasn't deferred or skipped, so let's
3395 * count a compaction stall
3396 */
3397 count_vm_event(COMPACTSTALL);
3398
3399 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3400
3401 if (page) {
3402 struct zone *zone = page_zone(page);
3403
3404 zone->compact_blockskip_flush = false;
3405 compaction_defer_reset(zone, order, true);
3406 count_vm_event(COMPACTSUCCESS);
3407 return page;
3408 }
3409
3410 /*
3411 * It's bad if compaction run occurs and fails. The most likely reason
3412 * is that pages exist, but not enough to satisfy watermarks.
3413 */
3414 count_vm_event(COMPACTFAIL);
3415
3416 cond_resched();
3417
3418 return NULL;
3419 }
3420
3421 static inline bool
3422 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3423 enum compact_result compact_result,
3424 enum compact_priority *compact_priority,
3425 int *compaction_retries)
3426 {
3427 int max_retries = MAX_COMPACT_RETRIES;
3428 int min_priority;
3429 bool ret = false;
3430 int retries = *compaction_retries;
3431 enum compact_priority priority = *compact_priority;
3432
3433 if (!order)
3434 return false;
3435
3436 if (compaction_made_progress(compact_result))
3437 (*compaction_retries)++;
3438
3439 /*
3440 * compaction considers all the zone as desperately out of memory
3441 * so it doesn't really make much sense to retry except when the
3442 * failure could be caused by insufficient priority
3443 */
3444 if (compaction_failed(compact_result))
3445 goto check_priority;
3446
3447 /*
3448 * make sure the compaction wasn't deferred or didn't bail out early
3449 * due to locks contention before we declare that we should give up.
3450 * But do not retry if the given zonelist is not suitable for
3451 * compaction.
3452 */
3453 if (compaction_withdrawn(compact_result)) {
3454 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3455 goto out;
3456 }
3457
3458 /*
3459 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3460 * costly ones because they are de facto nofail and invoke OOM
3461 * killer to move on while costly can fail and users are ready
3462 * to cope with that. 1/4 retries is rather arbitrary but we
3463 * would need much more detailed feedback from compaction to
3464 * make a better decision.
3465 */
3466 if (order > PAGE_ALLOC_COSTLY_ORDER)
3467 max_retries /= 4;
3468 if (*compaction_retries <= max_retries) {
3469 ret = true;
3470 goto out;
3471 }
3472
3473 /*
3474 * Make sure there are attempts at the highest priority if we exhausted
3475 * all retries or failed at the lower priorities.
3476 */
3477 check_priority:
3478 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3479 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3480
3481 if (*compact_priority > min_priority) {
3482 (*compact_priority)--;
3483 *compaction_retries = 0;
3484 ret = true;
3485 }
3486 out:
3487 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3488 return ret;
3489 }
3490 #else
3491 static inline struct page *
3492 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3493 unsigned int alloc_flags, const struct alloc_context *ac,
3494 enum compact_priority prio, enum compact_result *compact_result)
3495 {
3496 *compact_result = COMPACT_SKIPPED;
3497 return NULL;
3498 }
3499
3500 static inline bool
3501 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3502 enum compact_result compact_result,
3503 enum compact_priority *compact_priority,
3504 int *compaction_retries)
3505 {
3506 struct zone *zone;
3507 struct zoneref *z;
3508
3509 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3510 return false;
3511
3512 /*
3513 * There are setups with compaction disabled which would prefer to loop
3514 * inside the allocator rather than hit the oom killer prematurely.
3515 * Let's give them a good hope and keep retrying while the order-0
3516 * watermarks are OK.
3517 */
3518 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3519 ac->nodemask) {
3520 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3521 ac_classzone_idx(ac), alloc_flags))
3522 return true;
3523 }
3524 return false;
3525 }
3526 #endif /* CONFIG_COMPACTION */
3527
3528 #ifdef CONFIG_LOCKDEP
3529 struct lockdep_map __fs_reclaim_map =
3530 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3531
3532 static bool __need_fs_reclaim(gfp_t gfp_mask)
3533 {
3534 gfp_mask = current_gfp_context(gfp_mask);
3535
3536 /* no reclaim without waiting on it */
3537 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3538 return false;
3539
3540 /* this guy won't enter reclaim */
3541 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3542 return false;
3543
3544 /* We're only interested __GFP_FS allocations for now */
3545 if (!(gfp_mask & __GFP_FS))
3546 return false;
3547
3548 if (gfp_mask & __GFP_NOLOCKDEP)
3549 return false;
3550
3551 return true;
3552 }
3553
3554 void fs_reclaim_acquire(gfp_t gfp_mask)
3555 {
3556 if (__need_fs_reclaim(gfp_mask))
3557 lock_map_acquire(&__fs_reclaim_map);
3558 }
3559 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3560
3561 void fs_reclaim_release(gfp_t gfp_mask)
3562 {
3563 if (__need_fs_reclaim(gfp_mask))
3564 lock_map_release(&__fs_reclaim_map);
3565 }
3566 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3567 #endif
3568
3569 /* Perform direct synchronous page reclaim */
3570 static int
3571 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3572 const struct alloc_context *ac)
3573 {
3574 struct reclaim_state reclaim_state;
3575 int progress;
3576 unsigned int noreclaim_flag;
3577
3578 cond_resched();
3579
3580 /* We now go into synchronous reclaim */
3581 cpuset_memory_pressure_bump();
3582 noreclaim_flag = memalloc_noreclaim_save();
3583 fs_reclaim_acquire(gfp_mask);
3584 reclaim_state.reclaimed_slab = 0;
3585 current->reclaim_state = &reclaim_state;
3586
3587 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3588 ac->nodemask);
3589
3590 current->reclaim_state = NULL;
3591 fs_reclaim_release(gfp_mask);
3592 memalloc_noreclaim_restore(noreclaim_flag);
3593
3594 cond_resched();
3595
3596 return progress;
3597 }
3598
3599 /* The really slow allocator path where we enter direct reclaim */
3600 static inline struct page *
3601 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3602 unsigned int alloc_flags, const struct alloc_context *ac,
3603 unsigned long *did_some_progress)
3604 {
3605 struct page *page = NULL;
3606 bool drained = false;
3607
3608 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3609 if (unlikely(!(*did_some_progress)))
3610 return NULL;
3611
3612 retry:
3613 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3614
3615 /*
3616 * If an allocation failed after direct reclaim, it could be because
3617 * pages are pinned on the per-cpu lists or in high alloc reserves.
3618 * Shrink them them and try again
3619 */
3620 if (!page && !drained) {
3621 unreserve_highatomic_pageblock(ac, false);
3622 drain_all_pages(NULL);
3623 drained = true;
3624 goto retry;
3625 }
3626
3627 return page;
3628 }
3629
3630 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3631 {
3632 struct zoneref *z;
3633 struct zone *zone;
3634 pg_data_t *last_pgdat = NULL;
3635
3636 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3637 ac->high_zoneidx, ac->nodemask) {
3638 if (last_pgdat != zone->zone_pgdat)
3639 wakeup_kswapd(zone, order, ac->high_zoneidx);
3640 last_pgdat = zone->zone_pgdat;
3641 }
3642 }
3643
3644 static inline unsigned int
3645 gfp_to_alloc_flags(gfp_t gfp_mask)
3646 {
3647 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3648
3649 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3650 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3651
3652 /*
3653 * The caller may dip into page reserves a bit more if the caller
3654 * cannot run direct reclaim, or if the caller has realtime scheduling
3655 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3656 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3657 */
3658 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3659
3660 if (gfp_mask & __GFP_ATOMIC) {
3661 /*
3662 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3663 * if it can't schedule.
3664 */
3665 if (!(gfp_mask & __GFP_NOMEMALLOC))
3666 alloc_flags |= ALLOC_HARDER;
3667 /*
3668 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3669 * comment for __cpuset_node_allowed().
3670 */
3671 alloc_flags &= ~ALLOC_CPUSET;
3672 } else if (unlikely(rt_task(current)) && !in_interrupt())
3673 alloc_flags |= ALLOC_HARDER;
3674
3675 #ifdef CONFIG_CMA
3676 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3677 alloc_flags |= ALLOC_CMA;
3678 #endif
3679 return alloc_flags;
3680 }
3681
3682 static bool oom_reserves_allowed(struct task_struct *tsk)
3683 {
3684 if (!tsk_is_oom_victim(tsk))
3685 return false;
3686
3687 /*
3688 * !MMU doesn't have oom reaper so give access to memory reserves
3689 * only to the thread with TIF_MEMDIE set
3690 */
3691 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3692 return false;
3693
3694 return true;
3695 }
3696
3697 /*
3698 * Distinguish requests which really need access to full memory
3699 * reserves from oom victims which can live with a portion of it
3700 */
3701 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3702 {
3703 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3704 return 0;
3705 if (gfp_mask & __GFP_MEMALLOC)
3706 return ALLOC_NO_WATERMARKS;
3707 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3708 return ALLOC_NO_WATERMARKS;
3709 if (!in_interrupt()) {
3710 if (current->flags & PF_MEMALLOC)
3711 return ALLOC_NO_WATERMARKS;
3712 else if (oom_reserves_allowed(current))
3713 return ALLOC_OOM;
3714 }
3715
3716 return 0;
3717 }
3718
3719 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3720 {
3721 return !!__gfp_pfmemalloc_flags(gfp_mask);
3722 }
3723
3724 /*
3725 * Checks whether it makes sense to retry the reclaim to make a forward progress
3726 * for the given allocation request.
3727 *
3728 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3729 * without success, or when we couldn't even meet the watermark if we
3730 * reclaimed all remaining pages on the LRU lists.
3731 *
3732 * Returns true if a retry is viable or false to enter the oom path.
3733 */
3734 static inline bool
3735 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3736 struct alloc_context *ac, int alloc_flags,
3737 bool did_some_progress, int *no_progress_loops)
3738 {
3739 struct zone *zone;
3740 struct zoneref *z;
3741
3742 /*
3743 * Costly allocations might have made a progress but this doesn't mean
3744 * their order will become available due to high fragmentation so
3745 * always increment the no progress counter for them
3746 */
3747 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3748 *no_progress_loops = 0;
3749 else
3750 (*no_progress_loops)++;
3751
3752 /*
3753 * Make sure we converge to OOM if we cannot make any progress
3754 * several times in the row.
3755 */
3756 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3757 /* Before OOM, exhaust highatomic_reserve */
3758 return unreserve_highatomic_pageblock(ac, true);
3759 }
3760
3761 /*
3762 * Keep reclaiming pages while there is a chance this will lead
3763 * somewhere. If none of the target zones can satisfy our allocation
3764 * request even if all reclaimable pages are considered then we are
3765 * screwed and have to go OOM.
3766 */
3767 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3768 ac->nodemask) {
3769 unsigned long available;
3770 unsigned long reclaimable;
3771 unsigned long min_wmark = min_wmark_pages(zone);
3772 bool wmark;
3773
3774 available = reclaimable = zone_reclaimable_pages(zone);
3775 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3776
3777 /*
3778 * Would the allocation succeed if we reclaimed all
3779 * reclaimable pages?
3780 */
3781 wmark = __zone_watermark_ok(zone, order, min_wmark,
3782 ac_classzone_idx(ac), alloc_flags, available);
3783 trace_reclaim_retry_zone(z, order, reclaimable,
3784 available, min_wmark, *no_progress_loops, wmark);
3785 if (wmark) {
3786 /*
3787 * If we didn't make any progress and have a lot of
3788 * dirty + writeback pages then we should wait for
3789 * an IO to complete to slow down the reclaim and
3790 * prevent from pre mature OOM
3791 */
3792 if (!did_some_progress) {
3793 unsigned long write_pending;
3794
3795 write_pending = zone_page_state_snapshot(zone,
3796 NR_ZONE_WRITE_PENDING);
3797
3798 if (2 * write_pending > reclaimable) {
3799 congestion_wait(BLK_RW_ASYNC, HZ/10);
3800 return true;
3801 }
3802 }
3803
3804 /*
3805 * Memory allocation/reclaim might be called from a WQ
3806 * context and the current implementation of the WQ
3807 * concurrency control doesn't recognize that
3808 * a particular WQ is congested if the worker thread is
3809 * looping without ever sleeping. Therefore we have to
3810 * do a short sleep here rather than calling
3811 * cond_resched().
3812 */
3813 if (current->flags & PF_WQ_WORKER)
3814 schedule_timeout_uninterruptible(1);
3815 else
3816 cond_resched();
3817
3818 return true;
3819 }
3820 }
3821
3822 return false;
3823 }
3824
3825 static inline bool
3826 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3827 {
3828 /*
3829 * It's possible that cpuset's mems_allowed and the nodemask from
3830 * mempolicy don't intersect. This should be normally dealt with by
3831 * policy_nodemask(), but it's possible to race with cpuset update in
3832 * such a way the check therein was true, and then it became false
3833 * before we got our cpuset_mems_cookie here.
3834 * This assumes that for all allocations, ac->nodemask can come only
3835 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3836 * when it does not intersect with the cpuset restrictions) or the
3837 * caller can deal with a violated nodemask.
3838 */
3839 if (cpusets_enabled() && ac->nodemask &&
3840 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3841 ac->nodemask = NULL;
3842 return true;
3843 }
3844
3845 /*
3846 * When updating a task's mems_allowed or mempolicy nodemask, it is
3847 * possible to race with parallel threads in such a way that our
3848 * allocation can fail while the mask is being updated. If we are about
3849 * to fail, check if the cpuset changed during allocation and if so,
3850 * retry.
3851 */
3852 if (read_mems_allowed_retry(cpuset_mems_cookie))
3853 return true;
3854
3855 return false;
3856 }
3857
3858 static inline struct page *
3859 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3860 struct alloc_context *ac)
3861 {
3862 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3863 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3864 struct page *page = NULL;
3865 unsigned int alloc_flags;
3866 unsigned long did_some_progress;
3867 enum compact_priority compact_priority;
3868 enum compact_result compact_result;
3869 int compaction_retries;
3870 int no_progress_loops;
3871 unsigned long alloc_start = jiffies;
3872 unsigned int stall_timeout = 10 * HZ;
3873 unsigned int cpuset_mems_cookie;
3874 int reserve_flags;
3875
3876 /*
3877 * In the slowpath, we sanity check order to avoid ever trying to
3878 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3879 * be using allocators in order of preference for an area that is
3880 * too large.
3881 */
3882 if (order >= MAX_ORDER) {
3883 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3884 return NULL;
3885 }
3886
3887 /*
3888 * We also sanity check to catch abuse of atomic reserves being used by
3889 * callers that are not in atomic context.
3890 */
3891 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3892 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3893 gfp_mask &= ~__GFP_ATOMIC;
3894
3895 retry_cpuset:
3896 compaction_retries = 0;
3897 no_progress_loops = 0;
3898 compact_priority = DEF_COMPACT_PRIORITY;
3899 cpuset_mems_cookie = read_mems_allowed_begin();
3900
3901 /*
3902 * The fast path uses conservative alloc_flags to succeed only until
3903 * kswapd needs to be woken up, and to avoid the cost of setting up
3904 * alloc_flags precisely. So we do that now.
3905 */
3906 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3907
3908 /*
3909 * We need to recalculate the starting point for the zonelist iterator
3910 * because we might have used different nodemask in the fast path, or
3911 * there was a cpuset modification and we are retrying - otherwise we
3912 * could end up iterating over non-eligible zones endlessly.
3913 */
3914 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3915 ac->high_zoneidx, ac->nodemask);
3916 if (!ac->preferred_zoneref->zone)
3917 goto nopage;
3918
3919 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3920 wake_all_kswapds(order, ac);
3921
3922 /*
3923 * The adjusted alloc_flags might result in immediate success, so try
3924 * that first
3925 */
3926 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3927 if (page)
3928 goto got_pg;
3929
3930 /*
3931 * For costly allocations, try direct compaction first, as it's likely
3932 * that we have enough base pages and don't need to reclaim. For non-
3933 * movable high-order allocations, do that as well, as compaction will
3934 * try prevent permanent fragmentation by migrating from blocks of the
3935 * same migratetype.
3936 * Don't try this for allocations that are allowed to ignore
3937 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3938 */
3939 if (can_direct_reclaim &&
3940 (costly_order ||
3941 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3942 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3943 page = __alloc_pages_direct_compact(gfp_mask, order,
3944 alloc_flags, ac,
3945 INIT_COMPACT_PRIORITY,
3946 &compact_result);
3947 if (page)
3948 goto got_pg;
3949
3950 /*
3951 * Checks for costly allocations with __GFP_NORETRY, which
3952 * includes THP page fault allocations
3953 */
3954 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3955 /*
3956 * If compaction is deferred for high-order allocations,
3957 * it is because sync compaction recently failed. If
3958 * this is the case and the caller requested a THP
3959 * allocation, we do not want to heavily disrupt the
3960 * system, so we fail the allocation instead of entering
3961 * direct reclaim.
3962 */
3963 if (compact_result == COMPACT_DEFERRED)
3964 goto nopage;
3965
3966 /*
3967 * Looks like reclaim/compaction is worth trying, but
3968 * sync compaction could be very expensive, so keep
3969 * using async compaction.
3970 */
3971 compact_priority = INIT_COMPACT_PRIORITY;
3972 }
3973 }
3974
3975 retry:
3976 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3977 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3978 wake_all_kswapds(order, ac);
3979
3980 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
3981 if (reserve_flags)
3982 alloc_flags = reserve_flags;
3983
3984 /*
3985 * Reset the zonelist iterators if memory policies can be ignored.
3986 * These allocations are high priority and system rather than user
3987 * orientated.
3988 */
3989 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
3990 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3991 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3992 ac->high_zoneidx, ac->nodemask);
3993 }
3994
3995 /* Attempt with potentially adjusted zonelist and alloc_flags */
3996 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3997 if (page)
3998 goto got_pg;
3999
4000 /* Caller is not willing to reclaim, we can't balance anything */
4001 if (!can_direct_reclaim)
4002 goto nopage;
4003
4004 /* Make sure we know about allocations which stall for too long */
4005 if (time_after(jiffies, alloc_start + stall_timeout)) {
4006 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
4007 "page allocation stalls for %ums, order:%u",
4008 jiffies_to_msecs(jiffies-alloc_start), order);
4009 stall_timeout += 10 * HZ;
4010 }
4011
4012 /* Avoid recursion of direct reclaim */
4013 if (current->flags & PF_MEMALLOC)
4014 goto nopage;
4015
4016 /* Try direct reclaim and then allocating */
4017 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4018 &did_some_progress);
4019 if (page)
4020 goto got_pg;
4021
4022 /* Try direct compaction and then allocating */
4023 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4024 compact_priority, &compact_result);
4025 if (page)
4026 goto got_pg;
4027
4028 /* Do not loop if specifically requested */
4029 if (gfp_mask & __GFP_NORETRY)
4030 goto nopage;
4031
4032 /*
4033 * Do not retry costly high order allocations unless they are
4034 * __GFP_RETRY_MAYFAIL
4035 */
4036 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4037 goto nopage;
4038
4039 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4040 did_some_progress > 0, &no_progress_loops))
4041 goto retry;
4042
4043 /*
4044 * It doesn't make any sense to retry for the compaction if the order-0
4045 * reclaim is not able to make any progress because the current
4046 * implementation of the compaction depends on the sufficient amount
4047 * of free memory (see __compaction_suitable)
4048 */
4049 if (did_some_progress > 0 &&
4050 should_compact_retry(ac, order, alloc_flags,
4051 compact_result, &compact_priority,
4052 &compaction_retries))
4053 goto retry;
4054
4055
4056 /* Deal with possible cpuset update races before we start OOM killing */
4057 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4058 goto retry_cpuset;
4059
4060 /* Reclaim has failed us, start killing things */
4061 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4062 if (page)
4063 goto got_pg;
4064
4065 /* Avoid allocations with no watermarks from looping endlessly */
4066 if (tsk_is_oom_victim(current) &&
4067 (alloc_flags == ALLOC_OOM ||
4068 (gfp_mask & __GFP_NOMEMALLOC)))
4069 goto nopage;
4070
4071 /* Retry as long as the OOM killer is making progress */
4072 if (did_some_progress) {
4073 no_progress_loops = 0;
4074 goto retry;
4075 }
4076
4077 nopage:
4078 /* Deal with possible cpuset update races before we fail */
4079 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4080 goto retry_cpuset;
4081
4082 /*
4083 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4084 * we always retry
4085 */
4086 if (gfp_mask & __GFP_NOFAIL) {
4087 /*
4088 * All existing users of the __GFP_NOFAIL are blockable, so warn
4089 * of any new users that actually require GFP_NOWAIT
4090 */
4091 if (WARN_ON_ONCE(!can_direct_reclaim))
4092 goto fail;
4093
4094 /*
4095 * PF_MEMALLOC request from this context is rather bizarre
4096 * because we cannot reclaim anything and only can loop waiting
4097 * for somebody to do a work for us
4098 */
4099 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4100
4101 /*
4102 * non failing costly orders are a hard requirement which we
4103 * are not prepared for much so let's warn about these users
4104 * so that we can identify them and convert them to something
4105 * else.
4106 */
4107 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4108
4109 /*
4110 * Help non-failing allocations by giving them access to memory
4111 * reserves but do not use ALLOC_NO_WATERMARKS because this
4112 * could deplete whole memory reserves which would just make
4113 * the situation worse
4114 */
4115 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4116 if (page)
4117 goto got_pg;
4118
4119 cond_resched();
4120 goto retry;
4121 }
4122 fail:
4123 warn_alloc(gfp_mask, ac->nodemask,
4124 "page allocation failure: order:%u", order);
4125 got_pg:
4126 return page;
4127 }
4128
4129 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4130 int preferred_nid, nodemask_t *nodemask,
4131 struct alloc_context *ac, gfp_t *alloc_mask,
4132 unsigned int *alloc_flags)
4133 {
4134 ac->high_zoneidx = gfp_zone(gfp_mask);
4135 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4136 ac->nodemask = nodemask;
4137 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4138
4139 if (cpusets_enabled()) {
4140 *alloc_mask |= __GFP_HARDWALL;
4141 if (!ac->nodemask)
4142 ac->nodemask = &cpuset_current_mems_allowed;
4143 else
4144 *alloc_flags |= ALLOC_CPUSET;
4145 }
4146
4147 fs_reclaim_acquire(gfp_mask);
4148 fs_reclaim_release(gfp_mask);
4149
4150 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4151
4152 if (should_fail_alloc_page(gfp_mask, order))
4153 return false;
4154
4155 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4156 *alloc_flags |= ALLOC_CMA;
4157
4158 return true;
4159 }
4160
4161 /* Determine whether to spread dirty pages and what the first usable zone */
4162 static inline void finalise_ac(gfp_t gfp_mask,
4163 unsigned int order, struct alloc_context *ac)
4164 {
4165 /* Dirty zone balancing only done in the fast path */
4166 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4167
4168 /*
4169 * The preferred zone is used for statistics but crucially it is
4170 * also used as the starting point for the zonelist iterator. It
4171 * may get reset for allocations that ignore memory policies.
4172 */
4173 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4174 ac->high_zoneidx, ac->nodemask);
4175 }
4176
4177 /*
4178 * This is the 'heart' of the zoned buddy allocator.
4179 */
4180 struct page *
4181 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4182 nodemask_t *nodemask)
4183 {
4184 struct page *page;
4185 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4186 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4187 struct alloc_context ac = { };
4188
4189 gfp_mask &= gfp_allowed_mask;
4190 alloc_mask = gfp_mask;
4191 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4192 return NULL;
4193
4194 finalise_ac(gfp_mask, order, &ac);
4195
4196 /* First allocation attempt */
4197 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4198 if (likely(page))
4199 goto out;
4200
4201 /*
4202 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4203 * resp. GFP_NOIO which has to be inherited for all allocation requests
4204 * from a particular context which has been marked by
4205 * memalloc_no{fs,io}_{save,restore}.
4206 */
4207 alloc_mask = current_gfp_context(gfp_mask);
4208 ac.spread_dirty_pages = false;
4209
4210 /*
4211 * Restore the original nodemask if it was potentially replaced with
4212 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4213 */
4214 if (unlikely(ac.nodemask != nodemask))
4215 ac.nodemask = nodemask;
4216
4217 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4218
4219 out:
4220 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4221 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4222 __free_pages(page, order);
4223 page = NULL;
4224 }
4225
4226 if (kmemcheck_enabled && page)
4227 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4228
4229 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4230
4231 return page;
4232 }
4233 EXPORT_SYMBOL(__alloc_pages_nodemask);
4234
4235 /*
4236 * Common helper functions.
4237 */
4238 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4239 {
4240 struct page *page;
4241
4242 /*
4243 * __get_free_pages() returns a 32-bit address, which cannot represent
4244 * a highmem page
4245 */
4246 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4247
4248 page = alloc_pages(gfp_mask, order);
4249 if (!page)
4250 return 0;
4251 return (unsigned long) page_address(page);
4252 }
4253 EXPORT_SYMBOL(__get_free_pages);
4254
4255 unsigned long get_zeroed_page(gfp_t gfp_mask)
4256 {
4257 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4258 }
4259 EXPORT_SYMBOL(get_zeroed_page);
4260
4261 void __free_pages(struct page *page, unsigned int order)
4262 {
4263 if (put_page_testzero(page)) {
4264 if (order == 0)
4265 free_hot_cold_page(page, false);
4266 else
4267 __free_pages_ok(page, order);
4268 }
4269 }
4270
4271 EXPORT_SYMBOL(__free_pages);
4272
4273 void free_pages(unsigned long addr, unsigned int order)
4274 {
4275 if (addr != 0) {
4276 VM_BUG_ON(!virt_addr_valid((void *)addr));
4277 __free_pages(virt_to_page((void *)addr), order);
4278 }
4279 }
4280
4281 EXPORT_SYMBOL(free_pages);
4282
4283 /*
4284 * Page Fragment:
4285 * An arbitrary-length arbitrary-offset area of memory which resides
4286 * within a 0 or higher order page. Multiple fragments within that page
4287 * are individually refcounted, in the page's reference counter.
4288 *
4289 * The page_frag functions below provide a simple allocation framework for
4290 * page fragments. This is used by the network stack and network device
4291 * drivers to provide a backing region of memory for use as either an
4292 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4293 */
4294 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4295 gfp_t gfp_mask)
4296 {
4297 struct page *page = NULL;
4298 gfp_t gfp = gfp_mask;
4299
4300 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4301 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4302 __GFP_NOMEMALLOC;
4303 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4304 PAGE_FRAG_CACHE_MAX_ORDER);
4305 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4306 #endif
4307 if (unlikely(!page))
4308 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4309
4310 nc->va = page ? page_address(page) : NULL;
4311
4312 return page;
4313 }
4314
4315 void __page_frag_cache_drain(struct page *page, unsigned int count)
4316 {
4317 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4318
4319 if (page_ref_sub_and_test(page, count)) {
4320 unsigned int order = compound_order(page);
4321
4322 if (order == 0)
4323 free_hot_cold_page(page, false);
4324 else
4325 __free_pages_ok(page, order);
4326 }
4327 }
4328 EXPORT_SYMBOL(__page_frag_cache_drain);
4329
4330 void *page_frag_alloc(struct page_frag_cache *nc,
4331 unsigned int fragsz, gfp_t gfp_mask)
4332 {
4333 unsigned int size = PAGE_SIZE;
4334 struct page *page;
4335 int offset;
4336
4337 if (unlikely(!nc->va)) {
4338 refill:
4339 page = __page_frag_cache_refill(nc, gfp_mask);
4340 if (!page)
4341 return NULL;
4342
4343 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4344 /* if size can vary use size else just use PAGE_SIZE */
4345 size = nc->size;
4346 #endif
4347 /* Even if we own the page, we do not use atomic_set().
4348 * This would break get_page_unless_zero() users.
4349 */
4350 page_ref_add(page, size - 1);
4351
4352 /* reset page count bias and offset to start of new frag */
4353 nc->pfmemalloc = page_is_pfmemalloc(page);
4354 nc->pagecnt_bias = size;
4355 nc->offset = size;
4356 }
4357
4358 offset = nc->offset - fragsz;
4359 if (unlikely(offset < 0)) {
4360 page = virt_to_page(nc->va);
4361
4362 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4363 goto refill;
4364
4365 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4366 /* if size can vary use size else just use PAGE_SIZE */
4367 size = nc->size;
4368 #endif
4369 /* OK, page count is 0, we can safely set it */
4370 set_page_count(page, size);
4371
4372 /* reset page count bias and offset to start of new frag */
4373 nc->pagecnt_bias = size;
4374 offset = size - fragsz;
4375 }
4376
4377 nc->pagecnt_bias--;
4378 nc->offset = offset;
4379
4380 return nc->va + offset;
4381 }
4382 EXPORT_SYMBOL(page_frag_alloc);
4383
4384 /*
4385 * Frees a page fragment allocated out of either a compound or order 0 page.
4386 */
4387 void page_frag_free(void *addr)
4388 {
4389 struct page *page = virt_to_head_page(addr);
4390
4391 if (unlikely(put_page_testzero(page)))
4392 __free_pages_ok(page, compound_order(page));
4393 }
4394 EXPORT_SYMBOL(page_frag_free);
4395
4396 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4397 size_t size)
4398 {
4399 if (addr) {
4400 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4401 unsigned long used = addr + PAGE_ALIGN(size);
4402
4403 split_page(virt_to_page((void *)addr), order);
4404 while (used < alloc_end) {
4405 free_page(used);
4406 used += PAGE_SIZE;
4407 }
4408 }
4409 return (void *)addr;
4410 }
4411
4412 /**
4413 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4414 * @size: the number of bytes to allocate
4415 * @gfp_mask: GFP flags for the allocation
4416 *
4417 * This function is similar to alloc_pages(), except that it allocates the
4418 * minimum number of pages to satisfy the request. alloc_pages() can only
4419 * allocate memory in power-of-two pages.
4420 *
4421 * This function is also limited by MAX_ORDER.
4422 *
4423 * Memory allocated by this function must be released by free_pages_exact().
4424 */
4425 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4426 {
4427 unsigned int order = get_order(size);
4428 unsigned long addr;
4429
4430 addr = __get_free_pages(gfp_mask, order);
4431 return make_alloc_exact(addr, order, size);
4432 }
4433 EXPORT_SYMBOL(alloc_pages_exact);
4434
4435 /**
4436 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4437 * pages on a node.
4438 * @nid: the preferred node ID where memory should be allocated
4439 * @size: the number of bytes to allocate
4440 * @gfp_mask: GFP flags for the allocation
4441 *
4442 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4443 * back.
4444 */
4445 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4446 {
4447 unsigned int order = get_order(size);
4448 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4449 if (!p)
4450 return NULL;
4451 return make_alloc_exact((unsigned long)page_address(p), order, size);
4452 }
4453
4454 /**
4455 * free_pages_exact - release memory allocated via alloc_pages_exact()
4456 * @virt: the value returned by alloc_pages_exact.
4457 * @size: size of allocation, same value as passed to alloc_pages_exact().
4458 *
4459 * Release the memory allocated by a previous call to alloc_pages_exact.
4460 */
4461 void free_pages_exact(void *virt, size_t size)
4462 {
4463 unsigned long addr = (unsigned long)virt;
4464 unsigned long end = addr + PAGE_ALIGN(size);
4465
4466 while (addr < end) {
4467 free_page(addr);
4468 addr += PAGE_SIZE;
4469 }
4470 }
4471 EXPORT_SYMBOL(free_pages_exact);
4472
4473 /**
4474 * nr_free_zone_pages - count number of pages beyond high watermark
4475 * @offset: The zone index of the highest zone
4476 *
4477 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4478 * high watermark within all zones at or below a given zone index. For each
4479 * zone, the number of pages is calculated as:
4480 *
4481 * nr_free_zone_pages = managed_pages - high_pages
4482 */
4483 static unsigned long nr_free_zone_pages(int offset)
4484 {
4485 struct zoneref *z;
4486 struct zone *zone;
4487
4488 /* Just pick one node, since fallback list is circular */
4489 unsigned long sum = 0;
4490
4491 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4492
4493 for_each_zone_zonelist(zone, z, zonelist, offset) {
4494 unsigned long size = zone->managed_pages;
4495 unsigned long high = high_wmark_pages(zone);
4496 if (size > high)
4497 sum += size - high;
4498 }
4499
4500 return sum;
4501 }
4502
4503 /**
4504 * nr_free_buffer_pages - count number of pages beyond high watermark
4505 *
4506 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4507 * watermark within ZONE_DMA and ZONE_NORMAL.
4508 */
4509 unsigned long nr_free_buffer_pages(void)
4510 {
4511 return nr_free_zone_pages(gfp_zone(GFP_USER));
4512 }
4513 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4514
4515 /**
4516 * nr_free_pagecache_pages - count number of pages beyond high watermark
4517 *
4518 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4519 * high watermark within all zones.
4520 */
4521 unsigned long nr_free_pagecache_pages(void)
4522 {
4523 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4524 }
4525
4526 static inline void show_node(struct zone *zone)
4527 {
4528 if (IS_ENABLED(CONFIG_NUMA))
4529 printk("Node %d ", zone_to_nid(zone));
4530 }
4531
4532 long si_mem_available(void)
4533 {
4534 long available;
4535 unsigned long pagecache;
4536 unsigned long wmark_low = 0;
4537 unsigned long pages[NR_LRU_LISTS];
4538 struct zone *zone;
4539 int lru;
4540
4541 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4542 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4543
4544 for_each_zone(zone)
4545 wmark_low += zone->watermark[WMARK_LOW];
4546
4547 /*
4548 * Estimate the amount of memory available for userspace allocations,
4549 * without causing swapping.
4550 */
4551 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4552
4553 /*
4554 * Not all the page cache can be freed, otherwise the system will
4555 * start swapping. Assume at least half of the page cache, or the
4556 * low watermark worth of cache, needs to stay.
4557 */
4558 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4559 pagecache -= min(pagecache / 2, wmark_low);
4560 available += pagecache;
4561
4562 /*
4563 * Part of the reclaimable slab consists of items that are in use,
4564 * and cannot be freed. Cap this estimate at the low watermark.
4565 */
4566 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4567 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4568 wmark_low);
4569
4570 if (available < 0)
4571 available = 0;
4572 return available;
4573 }
4574 EXPORT_SYMBOL_GPL(si_mem_available);
4575
4576 void si_meminfo(struct sysinfo *val)
4577 {
4578 val->totalram = totalram_pages;
4579 val->sharedram = global_node_page_state(NR_SHMEM);
4580 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4581 val->bufferram = nr_blockdev_pages();
4582 val->totalhigh = totalhigh_pages;
4583 val->freehigh = nr_free_highpages();
4584 val->mem_unit = PAGE_SIZE;
4585 }
4586
4587 EXPORT_SYMBOL(si_meminfo);
4588
4589 #ifdef CONFIG_NUMA
4590 void si_meminfo_node(struct sysinfo *val, int nid)
4591 {
4592 int zone_type; /* needs to be signed */
4593 unsigned long managed_pages = 0;
4594 unsigned long managed_highpages = 0;
4595 unsigned long free_highpages = 0;
4596 pg_data_t *pgdat = NODE_DATA(nid);
4597
4598 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4599 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4600 val->totalram = managed_pages;
4601 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4602 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4603 #ifdef CONFIG_HIGHMEM
4604 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4605 struct zone *zone = &pgdat->node_zones[zone_type];
4606
4607 if (is_highmem(zone)) {
4608 managed_highpages += zone->managed_pages;
4609 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4610 }
4611 }
4612 val->totalhigh = managed_highpages;
4613 val->freehigh = free_highpages;
4614 #else
4615 val->totalhigh = managed_highpages;
4616 val->freehigh = free_highpages;
4617 #endif
4618 val->mem_unit = PAGE_SIZE;
4619 }
4620 #endif
4621
4622 /*
4623 * Determine whether the node should be displayed or not, depending on whether
4624 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4625 */
4626 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4627 {
4628 if (!(flags & SHOW_MEM_FILTER_NODES))
4629 return false;
4630
4631 /*
4632 * no node mask - aka implicit memory numa policy. Do not bother with
4633 * the synchronization - read_mems_allowed_begin - because we do not
4634 * have to be precise here.
4635 */
4636 if (!nodemask)
4637 nodemask = &cpuset_current_mems_allowed;
4638
4639 return !node_isset(nid, *nodemask);
4640 }
4641
4642 #define K(x) ((x) << (PAGE_SHIFT-10))
4643
4644 static void show_migration_types(unsigned char type)
4645 {
4646 static const char types[MIGRATE_TYPES] = {
4647 [MIGRATE_UNMOVABLE] = 'U',
4648 [MIGRATE_MOVABLE] = 'M',
4649 [MIGRATE_RECLAIMABLE] = 'E',
4650 [MIGRATE_HIGHATOMIC] = 'H',
4651 #ifdef CONFIG_CMA
4652 [MIGRATE_CMA] = 'C',
4653 #endif
4654 #ifdef CONFIG_MEMORY_ISOLATION
4655 [MIGRATE_ISOLATE] = 'I',
4656 #endif
4657 };
4658 char tmp[MIGRATE_TYPES + 1];
4659 char *p = tmp;
4660 int i;
4661
4662 for (i = 0; i < MIGRATE_TYPES; i++) {
4663 if (type & (1 << i))
4664 *p++ = types[i];
4665 }
4666
4667 *p = '\0';
4668 printk(KERN_CONT "(%s) ", tmp);
4669 }
4670
4671 /*
4672 * Show free area list (used inside shift_scroll-lock stuff)
4673 * We also calculate the percentage fragmentation. We do this by counting the
4674 * memory on each free list with the exception of the first item on the list.
4675 *
4676 * Bits in @filter:
4677 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4678 * cpuset.
4679 */
4680 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4681 {
4682 unsigned long free_pcp = 0;
4683 int cpu;
4684 struct zone *zone;
4685 pg_data_t *pgdat;
4686
4687 for_each_populated_zone(zone) {
4688 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4689 continue;
4690
4691 for_each_online_cpu(cpu)
4692 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4693 }
4694
4695 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4696 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4697 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4698 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4699 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4700 " free:%lu free_pcp:%lu free_cma:%lu\n",
4701 global_node_page_state(NR_ACTIVE_ANON),
4702 global_node_page_state(NR_INACTIVE_ANON),
4703 global_node_page_state(NR_ISOLATED_ANON),
4704 global_node_page_state(NR_ACTIVE_FILE),
4705 global_node_page_state(NR_INACTIVE_FILE),
4706 global_node_page_state(NR_ISOLATED_FILE),
4707 global_node_page_state(NR_UNEVICTABLE),
4708 global_node_page_state(NR_FILE_DIRTY),
4709 global_node_page_state(NR_WRITEBACK),
4710 global_node_page_state(NR_UNSTABLE_NFS),
4711 global_node_page_state(NR_SLAB_RECLAIMABLE),
4712 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4713 global_node_page_state(NR_FILE_MAPPED),
4714 global_node_page_state(NR_SHMEM),
4715 global_zone_page_state(NR_PAGETABLE),
4716 global_zone_page_state(NR_BOUNCE),
4717 global_zone_page_state(NR_FREE_PAGES),
4718 free_pcp,
4719 global_zone_page_state(NR_FREE_CMA_PAGES));
4720
4721 for_each_online_pgdat(pgdat) {
4722 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4723 continue;
4724
4725 printk("Node %d"
4726 " active_anon:%lukB"
4727 " inactive_anon:%lukB"
4728 " active_file:%lukB"
4729 " inactive_file:%lukB"
4730 " unevictable:%lukB"
4731 " isolated(anon):%lukB"
4732 " isolated(file):%lukB"
4733 " mapped:%lukB"
4734 " dirty:%lukB"
4735 " writeback:%lukB"
4736 " shmem:%lukB"
4737 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4738 " shmem_thp: %lukB"
4739 " shmem_pmdmapped: %lukB"
4740 " anon_thp: %lukB"
4741 #endif
4742 " writeback_tmp:%lukB"
4743 " unstable:%lukB"
4744 " all_unreclaimable? %s"
4745 "\n",
4746 pgdat->node_id,
4747 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4748 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4749 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4750 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4751 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4752 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4753 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4754 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4755 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4756 K(node_page_state(pgdat, NR_WRITEBACK)),
4757 K(node_page_state(pgdat, NR_SHMEM)),
4758 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4759 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4760 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4761 * HPAGE_PMD_NR),
4762 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4763 #endif
4764 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4765 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4766 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4767 "yes" : "no");
4768 }
4769
4770 for_each_populated_zone(zone) {
4771 int i;
4772
4773 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4774 continue;
4775
4776 free_pcp = 0;
4777 for_each_online_cpu(cpu)
4778 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4779
4780 show_node(zone);
4781 printk(KERN_CONT
4782 "%s"
4783 " free:%lukB"
4784 " min:%lukB"
4785 " low:%lukB"
4786 " high:%lukB"
4787 " active_anon:%lukB"
4788 " inactive_anon:%lukB"
4789 " active_file:%lukB"
4790 " inactive_file:%lukB"
4791 " unevictable:%lukB"
4792 " writepending:%lukB"
4793 " present:%lukB"
4794 " managed:%lukB"
4795 " mlocked:%lukB"
4796 " kernel_stack:%lukB"
4797 " pagetables:%lukB"
4798 " bounce:%lukB"
4799 " free_pcp:%lukB"
4800 " local_pcp:%ukB"
4801 " free_cma:%lukB"
4802 "\n",
4803 zone->name,
4804 K(zone_page_state(zone, NR_FREE_PAGES)),
4805 K(min_wmark_pages(zone)),
4806 K(low_wmark_pages(zone)),
4807 K(high_wmark_pages(zone)),
4808 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4809 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4810 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4811 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4812 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4813 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4814 K(zone->present_pages),
4815 K(zone->managed_pages),
4816 K(zone_page_state(zone, NR_MLOCK)),
4817 zone_page_state(zone, NR_KERNEL_STACK_KB),
4818 K(zone_page_state(zone, NR_PAGETABLE)),
4819 K(zone_page_state(zone, NR_BOUNCE)),
4820 K(free_pcp),
4821 K(this_cpu_read(zone->pageset->pcp.count)),
4822 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4823 printk("lowmem_reserve[]:");
4824 for (i = 0; i < MAX_NR_ZONES; i++)
4825 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4826 printk(KERN_CONT "\n");
4827 }
4828
4829 for_each_populated_zone(zone) {
4830 unsigned int order;
4831 unsigned long nr[MAX_ORDER], flags, total = 0;
4832 unsigned char types[MAX_ORDER];
4833
4834 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4835 continue;
4836 show_node(zone);
4837 printk(KERN_CONT "%s: ", zone->name);
4838
4839 spin_lock_irqsave(&zone->lock, flags);
4840 for (order = 0; order < MAX_ORDER; order++) {
4841 struct free_area *area = &zone->free_area[order];
4842 int type;
4843
4844 nr[order] = area->nr_free;
4845 total += nr[order] << order;
4846
4847 types[order] = 0;
4848 for (type = 0; type < MIGRATE_TYPES; type++) {
4849 if (!list_empty(&area->free_list[type]))
4850 types[order] |= 1 << type;
4851 }
4852 }
4853 spin_unlock_irqrestore(&zone->lock, flags);
4854 for (order = 0; order < MAX_ORDER; order++) {
4855 printk(KERN_CONT "%lu*%lukB ",
4856 nr[order], K(1UL) << order);
4857 if (nr[order])
4858 show_migration_types(types[order]);
4859 }
4860 printk(KERN_CONT "= %lukB\n", K(total));
4861 }
4862
4863 hugetlb_show_meminfo();
4864
4865 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4866
4867 show_swap_cache_info();
4868 }
4869
4870 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4871 {
4872 zoneref->zone = zone;
4873 zoneref->zone_idx = zone_idx(zone);
4874 }
4875
4876 /*
4877 * Builds allocation fallback zone lists.
4878 *
4879 * Add all populated zones of a node to the zonelist.
4880 */
4881 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4882 {
4883 struct zone *zone;
4884 enum zone_type zone_type = MAX_NR_ZONES;
4885 int nr_zones = 0;
4886
4887 do {
4888 zone_type--;
4889 zone = pgdat->node_zones + zone_type;
4890 if (managed_zone(zone)) {
4891 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4892 check_highest_zone(zone_type);
4893 }
4894 } while (zone_type);
4895
4896 return nr_zones;
4897 }
4898
4899 #ifdef CONFIG_NUMA
4900
4901 static int __parse_numa_zonelist_order(char *s)
4902 {
4903 /*
4904 * We used to support different zonlists modes but they turned
4905 * out to be just not useful. Let's keep the warning in place
4906 * if somebody still use the cmd line parameter so that we do
4907 * not fail it silently
4908 */
4909 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4910 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4911 return -EINVAL;
4912 }
4913 return 0;
4914 }
4915
4916 static __init int setup_numa_zonelist_order(char *s)
4917 {
4918 if (!s)
4919 return 0;
4920
4921 return __parse_numa_zonelist_order(s);
4922 }
4923 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4924
4925 char numa_zonelist_order[] = "Node";
4926
4927 /*
4928 * sysctl handler for numa_zonelist_order
4929 */
4930 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4931 void __user *buffer, size_t *length,
4932 loff_t *ppos)
4933 {
4934 char *str;
4935 int ret;
4936
4937 if (!write)
4938 return proc_dostring(table, write, buffer, length, ppos);
4939 str = memdup_user_nul(buffer, 16);
4940 if (IS_ERR(str))
4941 return PTR_ERR(str);
4942
4943 ret = __parse_numa_zonelist_order(str);
4944 kfree(str);
4945 return ret;
4946 }
4947
4948
4949 #define MAX_NODE_LOAD (nr_online_nodes)
4950 static int node_load[MAX_NUMNODES];
4951
4952 /**
4953 * find_next_best_node - find the next node that should appear in a given node's fallback list
4954 * @node: node whose fallback list we're appending
4955 * @used_node_mask: nodemask_t of already used nodes
4956 *
4957 * We use a number of factors to determine which is the next node that should
4958 * appear on a given node's fallback list. The node should not have appeared
4959 * already in @node's fallback list, and it should be the next closest node
4960 * according to the distance array (which contains arbitrary distance values
4961 * from each node to each node in the system), and should also prefer nodes
4962 * with no CPUs, since presumably they'll have very little allocation pressure
4963 * on them otherwise.
4964 * It returns -1 if no node is found.
4965 */
4966 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4967 {
4968 int n, val;
4969 int min_val = INT_MAX;
4970 int best_node = NUMA_NO_NODE;
4971 const struct cpumask *tmp = cpumask_of_node(0);
4972
4973 /* Use the local node if we haven't already */
4974 if (!node_isset(node, *used_node_mask)) {
4975 node_set(node, *used_node_mask);
4976 return node;
4977 }
4978
4979 for_each_node_state(n, N_MEMORY) {
4980
4981 /* Don't want a node to appear more than once */
4982 if (node_isset(n, *used_node_mask))
4983 continue;
4984
4985 /* Use the distance array to find the distance */
4986 val = node_distance(node, n);
4987
4988 /* Penalize nodes under us ("prefer the next node") */
4989 val += (n < node);
4990
4991 /* Give preference to headless and unused nodes */
4992 tmp = cpumask_of_node(n);
4993 if (!cpumask_empty(tmp))
4994 val += PENALTY_FOR_NODE_WITH_CPUS;
4995
4996 /* Slight preference for less loaded node */
4997 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4998 val += node_load[n];
4999
5000 if (val < min_val) {
5001 min_val = val;
5002 best_node = n;
5003 }
5004 }
5005
5006 if (best_node >= 0)
5007 node_set(best_node, *used_node_mask);
5008
5009 return best_node;
5010 }
5011
5012
5013 /*
5014 * Build zonelists ordered by node and zones within node.
5015 * This results in maximum locality--normal zone overflows into local
5016 * DMA zone, if any--but risks exhausting DMA zone.
5017 */
5018 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5019 unsigned nr_nodes)
5020 {
5021 struct zoneref *zonerefs;
5022 int i;
5023
5024 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5025
5026 for (i = 0; i < nr_nodes; i++) {
5027 int nr_zones;
5028
5029 pg_data_t *node = NODE_DATA(node_order[i]);
5030
5031 nr_zones = build_zonerefs_node(node, zonerefs);
5032 zonerefs += nr_zones;
5033 }
5034 zonerefs->zone = NULL;
5035 zonerefs->zone_idx = 0;
5036 }
5037
5038 /*
5039 * Build gfp_thisnode zonelists
5040 */
5041 static void build_thisnode_zonelists(pg_data_t *pgdat)
5042 {
5043 struct zoneref *zonerefs;
5044 int nr_zones;
5045
5046 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5047 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5048 zonerefs += nr_zones;
5049 zonerefs->zone = NULL;
5050 zonerefs->zone_idx = 0;
5051 }
5052
5053 /*
5054 * Build zonelists ordered by zone and nodes within zones.
5055 * This results in conserving DMA zone[s] until all Normal memory is
5056 * exhausted, but results in overflowing to remote node while memory
5057 * may still exist in local DMA zone.
5058 */
5059
5060 static void build_zonelists(pg_data_t *pgdat)
5061 {
5062 static int node_order[MAX_NUMNODES];
5063 int node, load, nr_nodes = 0;
5064 nodemask_t used_mask;
5065 int local_node, prev_node;
5066
5067 /* NUMA-aware ordering of nodes */
5068 local_node = pgdat->node_id;
5069 load = nr_online_nodes;
5070 prev_node = local_node;
5071 nodes_clear(used_mask);
5072
5073 memset(node_order, 0, sizeof(node_order));
5074 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5075 /*
5076 * We don't want to pressure a particular node.
5077 * So adding penalty to the first node in same
5078 * distance group to make it round-robin.
5079 */
5080 if (node_distance(local_node, node) !=
5081 node_distance(local_node, prev_node))
5082 node_load[node] = load;
5083
5084 node_order[nr_nodes++] = node;
5085 prev_node = node;
5086 load--;
5087 }
5088
5089 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5090 build_thisnode_zonelists(pgdat);
5091 }
5092
5093 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5094 /*
5095 * Return node id of node used for "local" allocations.
5096 * I.e., first node id of first zone in arg node's generic zonelist.
5097 * Used for initializing percpu 'numa_mem', which is used primarily
5098 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5099 */
5100 int local_memory_node(int node)
5101 {
5102 struct zoneref *z;
5103
5104 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5105 gfp_zone(GFP_KERNEL),
5106 NULL);
5107 return z->zone->node;
5108 }
5109 #endif
5110
5111 static void setup_min_unmapped_ratio(void);
5112 static void setup_min_slab_ratio(void);
5113 #else /* CONFIG_NUMA */
5114
5115 static void build_zonelists(pg_data_t *pgdat)
5116 {
5117 int node, local_node;
5118 struct zoneref *zonerefs;
5119 int nr_zones;
5120
5121 local_node = pgdat->node_id;
5122
5123 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5124 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5125 zonerefs += nr_zones;
5126
5127 /*
5128 * Now we build the zonelist so that it contains the zones
5129 * of all the other nodes.
5130 * We don't want to pressure a particular node, so when
5131 * building the zones for node N, we make sure that the
5132 * zones coming right after the local ones are those from
5133 * node N+1 (modulo N)
5134 */
5135 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5136 if (!node_online(node))
5137 continue;
5138 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5139 zonerefs += nr_zones;
5140 }
5141 for (node = 0; node < local_node; node++) {
5142 if (!node_online(node))
5143 continue;
5144 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5145 zonerefs += nr_zones;
5146 }
5147
5148 zonerefs->zone = NULL;
5149 zonerefs->zone_idx = 0;
5150 }
5151
5152 #endif /* CONFIG_NUMA */
5153
5154 /*
5155 * Boot pageset table. One per cpu which is going to be used for all
5156 * zones and all nodes. The parameters will be set in such a way
5157 * that an item put on a list will immediately be handed over to
5158 * the buddy list. This is safe since pageset manipulation is done
5159 * with interrupts disabled.
5160 *
5161 * The boot_pagesets must be kept even after bootup is complete for
5162 * unused processors and/or zones. They do play a role for bootstrapping
5163 * hotplugged processors.
5164 *
5165 * zoneinfo_show() and maybe other functions do
5166 * not check if the processor is online before following the pageset pointer.
5167 * Other parts of the kernel may not check if the zone is available.
5168 */
5169 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5170 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5171 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5172
5173 static void __build_all_zonelists(void *data)
5174 {
5175 int nid;
5176 int __maybe_unused cpu;
5177 pg_data_t *self = data;
5178 static DEFINE_SPINLOCK(lock);
5179
5180 spin_lock(&lock);
5181
5182 #ifdef CONFIG_NUMA
5183 memset(node_load, 0, sizeof(node_load));
5184 #endif
5185
5186 /*
5187 * This node is hotadded and no memory is yet present. So just
5188 * building zonelists is fine - no need to touch other nodes.
5189 */
5190 if (self && !node_online(self->node_id)) {
5191 build_zonelists(self);
5192 } else {
5193 for_each_online_node(nid) {
5194 pg_data_t *pgdat = NODE_DATA(nid);
5195
5196 build_zonelists(pgdat);
5197 }
5198
5199 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5200 /*
5201 * We now know the "local memory node" for each node--
5202 * i.e., the node of the first zone in the generic zonelist.
5203 * Set up numa_mem percpu variable for on-line cpus. During
5204 * boot, only the boot cpu should be on-line; we'll init the
5205 * secondary cpus' numa_mem as they come on-line. During
5206 * node/memory hotplug, we'll fixup all on-line cpus.
5207 */
5208 for_each_online_cpu(cpu)
5209 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5210 #endif
5211 }
5212
5213 spin_unlock(&lock);
5214 }
5215
5216 static noinline void __init
5217 build_all_zonelists_init(void)
5218 {
5219 int cpu;
5220
5221 __build_all_zonelists(NULL);
5222
5223 /*
5224 * Initialize the boot_pagesets that are going to be used
5225 * for bootstrapping processors. The real pagesets for
5226 * each zone will be allocated later when the per cpu
5227 * allocator is available.
5228 *
5229 * boot_pagesets are used also for bootstrapping offline
5230 * cpus if the system is already booted because the pagesets
5231 * are needed to initialize allocators on a specific cpu too.
5232 * F.e. the percpu allocator needs the page allocator which
5233 * needs the percpu allocator in order to allocate its pagesets
5234 * (a chicken-egg dilemma).
5235 */
5236 for_each_possible_cpu(cpu)
5237 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5238
5239 mminit_verify_zonelist();
5240 cpuset_init_current_mems_allowed();
5241 }
5242
5243 /*
5244 * unless system_state == SYSTEM_BOOTING.
5245 *
5246 * __ref due to call of __init annotated helper build_all_zonelists_init
5247 * [protected by SYSTEM_BOOTING].
5248 */
5249 void __ref build_all_zonelists(pg_data_t *pgdat)
5250 {
5251 if (system_state == SYSTEM_BOOTING) {
5252 build_all_zonelists_init();
5253 } else {
5254 __build_all_zonelists(pgdat);
5255 /* cpuset refresh routine should be here */
5256 }
5257 vm_total_pages = nr_free_pagecache_pages();
5258 /*
5259 * Disable grouping by mobility if the number of pages in the
5260 * system is too low to allow the mechanism to work. It would be
5261 * more accurate, but expensive to check per-zone. This check is
5262 * made on memory-hotadd so a system can start with mobility
5263 * disabled and enable it later
5264 */
5265 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5266 page_group_by_mobility_disabled = 1;
5267 else
5268 page_group_by_mobility_disabled = 0;
5269
5270 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5271 nr_online_nodes,
5272 page_group_by_mobility_disabled ? "off" : "on",
5273 vm_total_pages);
5274 #ifdef CONFIG_NUMA
5275 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5276 #endif
5277 }
5278
5279 /*
5280 * Initially all pages are reserved - free ones are freed
5281 * up by free_all_bootmem() once the early boot process is
5282 * done. Non-atomic initialization, single-pass.
5283 */
5284 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5285 unsigned long start_pfn, enum memmap_context context)
5286 {
5287 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5288 unsigned long end_pfn = start_pfn + size;
5289 pg_data_t *pgdat = NODE_DATA(nid);
5290 unsigned long pfn;
5291 unsigned long nr_initialised = 0;
5292 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5293 struct memblock_region *r = NULL, *tmp;
5294 #endif
5295
5296 if (highest_memmap_pfn < end_pfn - 1)
5297 highest_memmap_pfn = end_pfn - 1;
5298
5299 /*
5300 * Honor reservation requested by the driver for this ZONE_DEVICE
5301 * memory
5302 */
5303 if (altmap && start_pfn == altmap->base_pfn)
5304 start_pfn += altmap->reserve;
5305
5306 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5307 /*
5308 * There can be holes in boot-time mem_map[]s handed to this
5309 * function. They do not exist on hotplugged memory.
5310 */
5311 if (context != MEMMAP_EARLY)
5312 goto not_early;
5313
5314 if (!early_pfn_valid(pfn)) {
5315 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5316 /*
5317 * Skip to the pfn preceding the next valid one (or
5318 * end_pfn), such that we hit a valid pfn (or end_pfn)
5319 * on our next iteration of the loop.
5320 */
5321 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5322 #endif
5323 continue;
5324 }
5325 if (!early_pfn_in_nid(pfn, nid))
5326 continue;
5327 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5328 break;
5329
5330 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5331 /*
5332 * Check given memblock attribute by firmware which can affect
5333 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5334 * mirrored, it's an overlapped memmap init. skip it.
5335 */
5336 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5337 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5338 for_each_memblock(memory, tmp)
5339 if (pfn < memblock_region_memory_end_pfn(tmp))
5340 break;
5341 r = tmp;
5342 }
5343 if (pfn >= memblock_region_memory_base_pfn(r) &&
5344 memblock_is_mirror(r)) {
5345 /* already initialized as NORMAL */
5346 pfn = memblock_region_memory_end_pfn(r);
5347 continue;
5348 }
5349 }
5350 #endif
5351
5352 not_early:
5353 /*
5354 * Mark the block movable so that blocks are reserved for
5355 * movable at startup. This will force kernel allocations
5356 * to reserve their blocks rather than leaking throughout
5357 * the address space during boot when many long-lived
5358 * kernel allocations are made.
5359 *
5360 * bitmap is created for zone's valid pfn range. but memmap
5361 * can be created for invalid pages (for alignment)
5362 * check here not to call set_pageblock_migratetype() against
5363 * pfn out of zone.
5364 */
5365 if (!(pfn & (pageblock_nr_pages - 1))) {
5366 struct page *page = pfn_to_page(pfn);
5367
5368 __init_single_page(page, pfn, zone, nid);
5369 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5370 } else {
5371 __init_single_pfn(pfn, zone, nid);
5372 }
5373 }
5374 }
5375
5376 static void __meminit zone_init_free_lists(struct zone *zone)
5377 {
5378 unsigned int order, t;
5379 for_each_migratetype_order(order, t) {
5380 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5381 zone->free_area[order].nr_free = 0;
5382 }
5383 }
5384
5385 #ifndef __HAVE_ARCH_MEMMAP_INIT
5386 #define memmap_init(size, nid, zone, start_pfn) \
5387 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5388 #endif
5389
5390 static int zone_batchsize(struct zone *zone)
5391 {
5392 #ifdef CONFIG_MMU
5393 int batch;
5394
5395 /*
5396 * The per-cpu-pages pools are set to around 1000th of the
5397 * size of the zone. But no more than 1/2 of a meg.
5398 *
5399 * OK, so we don't know how big the cache is. So guess.
5400 */
5401 batch = zone->managed_pages / 1024;
5402 if (batch * PAGE_SIZE > 512 * 1024)
5403 batch = (512 * 1024) / PAGE_SIZE;
5404 batch /= 4; /* We effectively *= 4 below */
5405 if (batch < 1)
5406 batch = 1;
5407
5408 /*
5409 * Clamp the batch to a 2^n - 1 value. Having a power
5410 * of 2 value was found to be more likely to have
5411 * suboptimal cache aliasing properties in some cases.
5412 *
5413 * For example if 2 tasks are alternately allocating
5414 * batches of pages, one task can end up with a lot
5415 * of pages of one half of the possible page colors
5416 * and the other with pages of the other colors.
5417 */
5418 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5419
5420 return batch;
5421
5422 #else
5423 /* The deferral and batching of frees should be suppressed under NOMMU
5424 * conditions.
5425 *
5426 * The problem is that NOMMU needs to be able to allocate large chunks
5427 * of contiguous memory as there's no hardware page translation to
5428 * assemble apparent contiguous memory from discontiguous pages.
5429 *
5430 * Queueing large contiguous runs of pages for batching, however,
5431 * causes the pages to actually be freed in smaller chunks. As there
5432 * can be a significant delay between the individual batches being
5433 * recycled, this leads to the once large chunks of space being
5434 * fragmented and becoming unavailable for high-order allocations.
5435 */
5436 return 0;
5437 #endif
5438 }
5439
5440 /*
5441 * pcp->high and pcp->batch values are related and dependent on one another:
5442 * ->batch must never be higher then ->high.
5443 * The following function updates them in a safe manner without read side
5444 * locking.
5445 *
5446 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5447 * those fields changing asynchronously (acording the the above rule).
5448 *
5449 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5450 * outside of boot time (or some other assurance that no concurrent updaters
5451 * exist).
5452 */
5453 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5454 unsigned long batch)
5455 {
5456 /* start with a fail safe value for batch */
5457 pcp->batch = 1;
5458 smp_wmb();
5459
5460 /* Update high, then batch, in order */
5461 pcp->high = high;
5462 smp_wmb();
5463
5464 pcp->batch = batch;
5465 }
5466
5467 /* a companion to pageset_set_high() */
5468 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5469 {
5470 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5471 }
5472
5473 static void pageset_init(struct per_cpu_pageset *p)
5474 {
5475 struct per_cpu_pages *pcp;
5476 int migratetype;
5477
5478 memset(p, 0, sizeof(*p));
5479
5480 pcp = &p->pcp;
5481 pcp->count = 0;
5482 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5483 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5484 }
5485
5486 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5487 {
5488 pageset_init(p);
5489 pageset_set_batch(p, batch);
5490 }
5491
5492 /*
5493 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5494 * to the value high for the pageset p.
5495 */
5496 static void pageset_set_high(struct per_cpu_pageset *p,
5497 unsigned long high)
5498 {
5499 unsigned long batch = max(1UL, high / 4);
5500 if ((high / 4) > (PAGE_SHIFT * 8))
5501 batch = PAGE_SHIFT * 8;
5502
5503 pageset_update(&p->pcp, high, batch);
5504 }
5505
5506 static void pageset_set_high_and_batch(struct zone *zone,
5507 struct per_cpu_pageset *pcp)
5508 {
5509 if (percpu_pagelist_fraction)
5510 pageset_set_high(pcp,
5511 (zone->managed_pages /
5512 percpu_pagelist_fraction));
5513 else
5514 pageset_set_batch(pcp, zone_batchsize(zone));
5515 }
5516
5517 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5518 {
5519 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5520
5521 pageset_init(pcp);
5522 pageset_set_high_and_batch(zone, pcp);
5523 }
5524
5525 void __meminit setup_zone_pageset(struct zone *zone)
5526 {
5527 int cpu;
5528 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5529 for_each_possible_cpu(cpu)
5530 zone_pageset_init(zone, cpu);
5531 }
5532
5533 /*
5534 * Allocate per cpu pagesets and initialize them.
5535 * Before this call only boot pagesets were available.
5536 */
5537 void __init setup_per_cpu_pageset(void)
5538 {
5539 struct pglist_data *pgdat;
5540 struct zone *zone;
5541
5542 for_each_populated_zone(zone)
5543 setup_zone_pageset(zone);
5544
5545 for_each_online_pgdat(pgdat)
5546 pgdat->per_cpu_nodestats =
5547 alloc_percpu(struct per_cpu_nodestat);
5548 }
5549
5550 static __meminit void zone_pcp_init(struct zone *zone)
5551 {
5552 /*
5553 * per cpu subsystem is not up at this point. The following code
5554 * relies on the ability of the linker to provide the
5555 * offset of a (static) per cpu variable into the per cpu area.
5556 */
5557 zone->pageset = &boot_pageset;
5558
5559 if (populated_zone(zone))
5560 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5561 zone->name, zone->present_pages,
5562 zone_batchsize(zone));
5563 }
5564
5565 void __meminit init_currently_empty_zone(struct zone *zone,
5566 unsigned long zone_start_pfn,
5567 unsigned long size)
5568 {
5569 struct pglist_data *pgdat = zone->zone_pgdat;
5570
5571 pgdat->nr_zones = zone_idx(zone) + 1;
5572
5573 zone->zone_start_pfn = zone_start_pfn;
5574
5575 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5576 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5577 pgdat->node_id,
5578 (unsigned long)zone_idx(zone),
5579 zone_start_pfn, (zone_start_pfn + size));
5580
5581 zone_init_free_lists(zone);
5582 zone->initialized = 1;
5583 }
5584
5585 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5586 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5587
5588 /*
5589 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5590 */
5591 int __meminit __early_pfn_to_nid(unsigned long pfn,
5592 struct mminit_pfnnid_cache *state)
5593 {
5594 unsigned long start_pfn, end_pfn;
5595 int nid;
5596
5597 if (state->last_start <= pfn && pfn < state->last_end)
5598 return state->last_nid;
5599
5600 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5601 if (nid != -1) {
5602 state->last_start = start_pfn;
5603 state->last_end = end_pfn;
5604 state->last_nid = nid;
5605 }
5606
5607 return nid;
5608 }
5609 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5610
5611 /**
5612 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5613 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5614 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5615 *
5616 * If an architecture guarantees that all ranges registered contain no holes
5617 * and may be freed, this this function may be used instead of calling
5618 * memblock_free_early_nid() manually.
5619 */
5620 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5621 {
5622 unsigned long start_pfn, end_pfn;
5623 int i, this_nid;
5624
5625 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5626 start_pfn = min(start_pfn, max_low_pfn);
5627 end_pfn = min(end_pfn, max_low_pfn);
5628
5629 if (start_pfn < end_pfn)
5630 memblock_free_early_nid(PFN_PHYS(start_pfn),
5631 (end_pfn - start_pfn) << PAGE_SHIFT,
5632 this_nid);
5633 }
5634 }
5635
5636 /**
5637 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5638 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5639 *
5640 * If an architecture guarantees that all ranges registered contain no holes and may
5641 * be freed, this function may be used instead of calling memory_present() manually.
5642 */
5643 void __init sparse_memory_present_with_active_regions(int nid)
5644 {
5645 unsigned long start_pfn, end_pfn;
5646 int i, this_nid;
5647
5648 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5649 memory_present(this_nid, start_pfn, end_pfn);
5650 }
5651
5652 /**
5653 * get_pfn_range_for_nid - Return the start and end page frames for a node
5654 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5655 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5656 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5657 *
5658 * It returns the start and end page frame of a node based on information
5659 * provided by memblock_set_node(). If called for a node
5660 * with no available memory, a warning is printed and the start and end
5661 * PFNs will be 0.
5662 */
5663 void __meminit get_pfn_range_for_nid(unsigned int nid,
5664 unsigned long *start_pfn, unsigned long *end_pfn)
5665 {
5666 unsigned long this_start_pfn, this_end_pfn;
5667 int i;
5668
5669 *start_pfn = -1UL;
5670 *end_pfn = 0;
5671
5672 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5673 *start_pfn = min(*start_pfn, this_start_pfn);
5674 *end_pfn = max(*end_pfn, this_end_pfn);
5675 }
5676
5677 if (*start_pfn == -1UL)
5678 *start_pfn = 0;
5679 }
5680
5681 /*
5682 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5683 * assumption is made that zones within a node are ordered in monotonic
5684 * increasing memory addresses so that the "highest" populated zone is used
5685 */
5686 static void __init find_usable_zone_for_movable(void)
5687 {
5688 int zone_index;
5689 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5690 if (zone_index == ZONE_MOVABLE)
5691 continue;
5692
5693 if (arch_zone_highest_possible_pfn[zone_index] >
5694 arch_zone_lowest_possible_pfn[zone_index])
5695 break;
5696 }
5697
5698 VM_BUG_ON(zone_index == -1);
5699 movable_zone = zone_index;
5700 }
5701
5702 /*
5703 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5704 * because it is sized independent of architecture. Unlike the other zones,
5705 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5706 * in each node depending on the size of each node and how evenly kernelcore
5707 * is distributed. This helper function adjusts the zone ranges
5708 * provided by the architecture for a given node by using the end of the
5709 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5710 * zones within a node are in order of monotonic increases memory addresses
5711 */
5712 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5713 unsigned long zone_type,
5714 unsigned long node_start_pfn,
5715 unsigned long node_end_pfn,
5716 unsigned long *zone_start_pfn,
5717 unsigned long *zone_end_pfn)
5718 {
5719 /* Only adjust if ZONE_MOVABLE is on this node */
5720 if (zone_movable_pfn[nid]) {
5721 /* Size ZONE_MOVABLE */
5722 if (zone_type == ZONE_MOVABLE) {
5723 *zone_start_pfn = zone_movable_pfn[nid];
5724 *zone_end_pfn = min(node_end_pfn,
5725 arch_zone_highest_possible_pfn[movable_zone]);
5726
5727 /* Adjust for ZONE_MOVABLE starting within this range */
5728 } else if (!mirrored_kernelcore &&
5729 *zone_start_pfn < zone_movable_pfn[nid] &&
5730 *zone_end_pfn > zone_movable_pfn[nid]) {
5731 *zone_end_pfn = zone_movable_pfn[nid];
5732
5733 /* Check if this whole range is within ZONE_MOVABLE */
5734 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5735 *zone_start_pfn = *zone_end_pfn;
5736 }
5737 }
5738
5739 /*
5740 * Return the number of pages a zone spans in a node, including holes
5741 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5742 */
5743 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5744 unsigned long zone_type,
5745 unsigned long node_start_pfn,
5746 unsigned long node_end_pfn,
5747 unsigned long *zone_start_pfn,
5748 unsigned long *zone_end_pfn,
5749 unsigned long *ignored)
5750 {
5751 /* When hotadd a new node from cpu_up(), the node should be empty */
5752 if (!node_start_pfn && !node_end_pfn)
5753 return 0;
5754
5755 /* Get the start and end of the zone */
5756 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5757 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5758 adjust_zone_range_for_zone_movable(nid, zone_type,
5759 node_start_pfn, node_end_pfn,
5760 zone_start_pfn, zone_end_pfn);
5761
5762 /* Check that this node has pages within the zone's required range */
5763 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5764 return 0;
5765
5766 /* Move the zone boundaries inside the node if necessary */
5767 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5768 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5769
5770 /* Return the spanned pages */
5771 return *zone_end_pfn - *zone_start_pfn;
5772 }
5773
5774 /*
5775 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5776 * then all holes in the requested range will be accounted for.
5777 */
5778 unsigned long __meminit __absent_pages_in_range(int nid,
5779 unsigned long range_start_pfn,
5780 unsigned long range_end_pfn)
5781 {
5782 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5783 unsigned long start_pfn, end_pfn;
5784 int i;
5785
5786 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5787 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5788 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5789 nr_absent -= end_pfn - start_pfn;
5790 }
5791 return nr_absent;
5792 }
5793
5794 /**
5795 * absent_pages_in_range - Return number of page frames in holes within a range
5796 * @start_pfn: The start PFN to start searching for holes
5797 * @end_pfn: The end PFN to stop searching for holes
5798 *
5799 * It returns the number of pages frames in memory holes within a range.
5800 */
5801 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5802 unsigned long end_pfn)
5803 {
5804 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5805 }
5806
5807 /* Return the number of page frames in holes in a zone on a node */
5808 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5809 unsigned long zone_type,
5810 unsigned long node_start_pfn,
5811 unsigned long node_end_pfn,
5812 unsigned long *ignored)
5813 {
5814 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5815 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5816 unsigned long zone_start_pfn, zone_end_pfn;
5817 unsigned long nr_absent;
5818
5819 /* When hotadd a new node from cpu_up(), the node should be empty */
5820 if (!node_start_pfn && !node_end_pfn)
5821 return 0;
5822
5823 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5824 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5825
5826 adjust_zone_range_for_zone_movable(nid, zone_type,
5827 node_start_pfn, node_end_pfn,
5828 &zone_start_pfn, &zone_end_pfn);
5829 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5830
5831 /*
5832 * ZONE_MOVABLE handling.
5833 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5834 * and vice versa.
5835 */
5836 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5837 unsigned long start_pfn, end_pfn;
5838 struct memblock_region *r;
5839
5840 for_each_memblock(memory, r) {
5841 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5842 zone_start_pfn, zone_end_pfn);
5843 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5844 zone_start_pfn, zone_end_pfn);
5845
5846 if (zone_type == ZONE_MOVABLE &&
5847 memblock_is_mirror(r))
5848 nr_absent += end_pfn - start_pfn;
5849
5850 if (zone_type == ZONE_NORMAL &&
5851 !memblock_is_mirror(r))
5852 nr_absent += end_pfn - start_pfn;
5853 }
5854 }
5855
5856 return nr_absent;
5857 }
5858
5859 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5860 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5861 unsigned long zone_type,
5862 unsigned long node_start_pfn,
5863 unsigned long node_end_pfn,
5864 unsigned long *zone_start_pfn,
5865 unsigned long *zone_end_pfn,
5866 unsigned long *zones_size)
5867 {
5868 unsigned int zone;
5869
5870 *zone_start_pfn = node_start_pfn;
5871 for (zone = 0; zone < zone_type; zone++)
5872 *zone_start_pfn += zones_size[zone];
5873
5874 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5875
5876 return zones_size[zone_type];
5877 }
5878
5879 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5880 unsigned long zone_type,
5881 unsigned long node_start_pfn,
5882 unsigned long node_end_pfn,
5883 unsigned long *zholes_size)
5884 {
5885 if (!zholes_size)
5886 return 0;
5887
5888 return zholes_size[zone_type];
5889 }
5890
5891 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5892
5893 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5894 unsigned long node_start_pfn,
5895 unsigned long node_end_pfn,
5896 unsigned long *zones_size,
5897 unsigned long *zholes_size)
5898 {
5899 unsigned long realtotalpages = 0, totalpages = 0;
5900 enum zone_type i;
5901
5902 for (i = 0; i < MAX_NR_ZONES; i++) {
5903 struct zone *zone = pgdat->node_zones + i;
5904 unsigned long zone_start_pfn, zone_end_pfn;
5905 unsigned long size, real_size;
5906
5907 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5908 node_start_pfn,
5909 node_end_pfn,
5910 &zone_start_pfn,
5911 &zone_end_pfn,
5912 zones_size);
5913 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5914 node_start_pfn, node_end_pfn,
5915 zholes_size);
5916 if (size)
5917 zone->zone_start_pfn = zone_start_pfn;
5918 else
5919 zone->zone_start_pfn = 0;
5920 zone->spanned_pages = size;
5921 zone->present_pages = real_size;
5922
5923 totalpages += size;
5924 realtotalpages += real_size;
5925 }
5926
5927 pgdat->node_spanned_pages = totalpages;
5928 pgdat->node_present_pages = realtotalpages;
5929 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5930 realtotalpages);
5931 }
5932
5933 #ifndef CONFIG_SPARSEMEM
5934 /*
5935 * Calculate the size of the zone->blockflags rounded to an unsigned long
5936 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5937 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5938 * round what is now in bits to nearest long in bits, then return it in
5939 * bytes.
5940 */
5941 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5942 {
5943 unsigned long usemapsize;
5944
5945 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5946 usemapsize = roundup(zonesize, pageblock_nr_pages);
5947 usemapsize = usemapsize >> pageblock_order;
5948 usemapsize *= NR_PAGEBLOCK_BITS;
5949 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5950
5951 return usemapsize / 8;
5952 }
5953
5954 static void __init setup_usemap(struct pglist_data *pgdat,
5955 struct zone *zone,
5956 unsigned long zone_start_pfn,
5957 unsigned long zonesize)
5958 {
5959 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5960 zone->pageblock_flags = NULL;
5961 if (usemapsize)
5962 zone->pageblock_flags =
5963 memblock_virt_alloc_node_nopanic(usemapsize,
5964 pgdat->node_id);
5965 }
5966 #else
5967 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5968 unsigned long zone_start_pfn, unsigned long zonesize) {}
5969 #endif /* CONFIG_SPARSEMEM */
5970
5971 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5972
5973 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5974 void __paginginit set_pageblock_order(void)
5975 {
5976 unsigned int order;
5977
5978 /* Check that pageblock_nr_pages has not already been setup */
5979 if (pageblock_order)
5980 return;
5981
5982 if (HPAGE_SHIFT > PAGE_SHIFT)
5983 order = HUGETLB_PAGE_ORDER;
5984 else
5985 order = MAX_ORDER - 1;
5986
5987 /*
5988 * Assume the largest contiguous order of interest is a huge page.
5989 * This value may be variable depending on boot parameters on IA64 and
5990 * powerpc.
5991 */
5992 pageblock_order = order;
5993 }
5994 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5995
5996 /*
5997 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5998 * is unused as pageblock_order is set at compile-time. See
5999 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6000 * the kernel config
6001 */
6002 void __paginginit set_pageblock_order(void)
6003 {
6004 }
6005
6006 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6007
6008 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6009 unsigned long present_pages)
6010 {
6011 unsigned long pages = spanned_pages;
6012
6013 /*
6014 * Provide a more accurate estimation if there are holes within
6015 * the zone and SPARSEMEM is in use. If there are holes within the
6016 * zone, each populated memory region may cost us one or two extra
6017 * memmap pages due to alignment because memmap pages for each
6018 * populated regions may not be naturally aligned on page boundary.
6019 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6020 */
6021 if (spanned_pages > present_pages + (present_pages >> 4) &&
6022 IS_ENABLED(CONFIG_SPARSEMEM))
6023 pages = present_pages;
6024
6025 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6026 }
6027
6028 /*
6029 * Set up the zone data structures:
6030 * - mark all pages reserved
6031 * - mark all memory queues empty
6032 * - clear the memory bitmaps
6033 *
6034 * NOTE: pgdat should get zeroed by caller.
6035 */
6036 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6037 {
6038 enum zone_type j;
6039 int nid = pgdat->node_id;
6040
6041 pgdat_resize_init(pgdat);
6042 #ifdef CONFIG_NUMA_BALANCING
6043 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6044 pgdat->numabalancing_migrate_nr_pages = 0;
6045 pgdat->numabalancing_migrate_next_window = jiffies;
6046 #endif
6047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6048 spin_lock_init(&pgdat->split_queue_lock);
6049 INIT_LIST_HEAD(&pgdat->split_queue);
6050 pgdat->split_queue_len = 0;
6051 #endif
6052 init_waitqueue_head(&pgdat->kswapd_wait);
6053 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6054 #ifdef CONFIG_COMPACTION
6055 init_waitqueue_head(&pgdat->kcompactd_wait);
6056 #endif
6057 pgdat_page_ext_init(pgdat);
6058 spin_lock_init(&pgdat->lru_lock);
6059 lruvec_init(node_lruvec(pgdat));
6060
6061 pgdat->per_cpu_nodestats = &boot_nodestats;
6062
6063 for (j = 0; j < MAX_NR_ZONES; j++) {
6064 struct zone *zone = pgdat->node_zones + j;
6065 unsigned long size, realsize, freesize, memmap_pages;
6066 unsigned long zone_start_pfn = zone->zone_start_pfn;
6067
6068 size = zone->spanned_pages;
6069 realsize = freesize = zone->present_pages;
6070
6071 /*
6072 * Adjust freesize so that it accounts for how much memory
6073 * is used by this zone for memmap. This affects the watermark
6074 * and per-cpu initialisations
6075 */
6076 memmap_pages = calc_memmap_size(size, realsize);
6077 if (!is_highmem_idx(j)) {
6078 if (freesize >= memmap_pages) {
6079 freesize -= memmap_pages;
6080 if (memmap_pages)
6081 printk(KERN_DEBUG
6082 " %s zone: %lu pages used for memmap\n",
6083 zone_names[j], memmap_pages);
6084 } else
6085 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6086 zone_names[j], memmap_pages, freesize);
6087 }
6088
6089 /* Account for reserved pages */
6090 if (j == 0 && freesize > dma_reserve) {
6091 freesize -= dma_reserve;
6092 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6093 zone_names[0], dma_reserve);
6094 }
6095
6096 if (!is_highmem_idx(j))
6097 nr_kernel_pages += freesize;
6098 /* Charge for highmem memmap if there are enough kernel pages */
6099 else if (nr_kernel_pages > memmap_pages * 2)
6100 nr_kernel_pages -= memmap_pages;
6101 nr_all_pages += freesize;
6102
6103 /*
6104 * Set an approximate value for lowmem here, it will be adjusted
6105 * when the bootmem allocator frees pages into the buddy system.
6106 * And all highmem pages will be managed by the buddy system.
6107 */
6108 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6109 #ifdef CONFIG_NUMA
6110 zone->node = nid;
6111 #endif
6112 zone->name = zone_names[j];
6113 zone->zone_pgdat = pgdat;
6114 spin_lock_init(&zone->lock);
6115 zone_seqlock_init(zone);
6116 zone_pcp_init(zone);
6117
6118 if (!size)
6119 continue;
6120
6121 set_pageblock_order();
6122 setup_usemap(pgdat, zone, zone_start_pfn, size);
6123 init_currently_empty_zone(zone, zone_start_pfn, size);
6124 memmap_init(size, nid, j, zone_start_pfn);
6125 }
6126 }
6127
6128 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6129 {
6130 unsigned long __maybe_unused start = 0;
6131 unsigned long __maybe_unused offset = 0;
6132
6133 /* Skip empty nodes */
6134 if (!pgdat->node_spanned_pages)
6135 return;
6136
6137 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6138 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6139 offset = pgdat->node_start_pfn - start;
6140 /* ia64 gets its own node_mem_map, before this, without bootmem */
6141 if (!pgdat->node_mem_map) {
6142 unsigned long size, end;
6143 struct page *map;
6144
6145 /*
6146 * The zone's endpoints aren't required to be MAX_ORDER
6147 * aligned but the node_mem_map endpoints must be in order
6148 * for the buddy allocator to function correctly.
6149 */
6150 end = pgdat_end_pfn(pgdat);
6151 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6152 size = (end - start) * sizeof(struct page);
6153 map = alloc_remap(pgdat->node_id, size);
6154 if (!map)
6155 map = memblock_virt_alloc_node_nopanic(size,
6156 pgdat->node_id);
6157 pgdat->node_mem_map = map + offset;
6158 }
6159 #ifndef CONFIG_NEED_MULTIPLE_NODES
6160 /*
6161 * With no DISCONTIG, the global mem_map is just set as node 0's
6162 */
6163 if (pgdat == NODE_DATA(0)) {
6164 mem_map = NODE_DATA(0)->node_mem_map;
6165 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6166 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6167 mem_map -= offset;
6168 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6169 }
6170 #endif
6171 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6172 }
6173
6174 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6175 unsigned long node_start_pfn, unsigned long *zholes_size)
6176 {
6177 pg_data_t *pgdat = NODE_DATA(nid);
6178 unsigned long start_pfn = 0;
6179 unsigned long end_pfn = 0;
6180
6181 /* pg_data_t should be reset to zero when it's allocated */
6182 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6183
6184 pgdat->node_id = nid;
6185 pgdat->node_start_pfn = node_start_pfn;
6186 pgdat->per_cpu_nodestats = NULL;
6187 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6188 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6189 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6190 (u64)start_pfn << PAGE_SHIFT,
6191 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6192 #else
6193 start_pfn = node_start_pfn;
6194 #endif
6195 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6196 zones_size, zholes_size);
6197
6198 alloc_node_mem_map(pgdat);
6199 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6200 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6201 nid, (unsigned long)pgdat,
6202 (unsigned long)pgdat->node_mem_map);
6203 #endif
6204
6205 reset_deferred_meminit(pgdat);
6206 free_area_init_core(pgdat);
6207 }
6208
6209 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6210
6211 #if MAX_NUMNODES > 1
6212 /*
6213 * Figure out the number of possible node ids.
6214 */
6215 void __init setup_nr_node_ids(void)
6216 {
6217 unsigned int highest;
6218
6219 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6220 nr_node_ids = highest + 1;
6221 }
6222 #endif
6223
6224 /**
6225 * node_map_pfn_alignment - determine the maximum internode alignment
6226 *
6227 * This function should be called after node map is populated and sorted.
6228 * It calculates the maximum power of two alignment which can distinguish
6229 * all the nodes.
6230 *
6231 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6232 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6233 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6234 * shifted, 1GiB is enough and this function will indicate so.
6235 *
6236 * This is used to test whether pfn -> nid mapping of the chosen memory
6237 * model has fine enough granularity to avoid incorrect mapping for the
6238 * populated node map.
6239 *
6240 * Returns the determined alignment in pfn's. 0 if there is no alignment
6241 * requirement (single node).
6242 */
6243 unsigned long __init node_map_pfn_alignment(void)
6244 {
6245 unsigned long accl_mask = 0, last_end = 0;
6246 unsigned long start, end, mask;
6247 int last_nid = -1;
6248 int i, nid;
6249
6250 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6251 if (!start || last_nid < 0 || last_nid == nid) {
6252 last_nid = nid;
6253 last_end = end;
6254 continue;
6255 }
6256
6257 /*
6258 * Start with a mask granular enough to pin-point to the
6259 * start pfn and tick off bits one-by-one until it becomes
6260 * too coarse to separate the current node from the last.
6261 */
6262 mask = ~((1 << __ffs(start)) - 1);
6263 while (mask && last_end <= (start & (mask << 1)))
6264 mask <<= 1;
6265
6266 /* accumulate all internode masks */
6267 accl_mask |= mask;
6268 }
6269
6270 /* convert mask to number of pages */
6271 return ~accl_mask + 1;
6272 }
6273
6274 /* Find the lowest pfn for a node */
6275 static unsigned long __init find_min_pfn_for_node(int nid)
6276 {
6277 unsigned long min_pfn = ULONG_MAX;
6278 unsigned long start_pfn;
6279 int i;
6280
6281 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6282 min_pfn = min(min_pfn, start_pfn);
6283
6284 if (min_pfn == ULONG_MAX) {
6285 pr_warn("Could not find start_pfn for node %d\n", nid);
6286 return 0;
6287 }
6288
6289 return min_pfn;
6290 }
6291
6292 /**
6293 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6294 *
6295 * It returns the minimum PFN based on information provided via
6296 * memblock_set_node().
6297 */
6298 unsigned long __init find_min_pfn_with_active_regions(void)
6299 {
6300 return find_min_pfn_for_node(MAX_NUMNODES);
6301 }
6302
6303 /*
6304 * early_calculate_totalpages()
6305 * Sum pages in active regions for movable zone.
6306 * Populate N_MEMORY for calculating usable_nodes.
6307 */
6308 static unsigned long __init early_calculate_totalpages(void)
6309 {
6310 unsigned long totalpages = 0;
6311 unsigned long start_pfn, end_pfn;
6312 int i, nid;
6313
6314 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6315 unsigned long pages = end_pfn - start_pfn;
6316
6317 totalpages += pages;
6318 if (pages)
6319 node_set_state(nid, N_MEMORY);
6320 }
6321 return totalpages;
6322 }
6323
6324 /*
6325 * Find the PFN the Movable zone begins in each node. Kernel memory
6326 * is spread evenly between nodes as long as the nodes have enough
6327 * memory. When they don't, some nodes will have more kernelcore than
6328 * others
6329 */
6330 static void __init find_zone_movable_pfns_for_nodes(void)
6331 {
6332 int i, nid;
6333 unsigned long usable_startpfn;
6334 unsigned long kernelcore_node, kernelcore_remaining;
6335 /* save the state before borrow the nodemask */
6336 nodemask_t saved_node_state = node_states[N_MEMORY];
6337 unsigned long totalpages = early_calculate_totalpages();
6338 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6339 struct memblock_region *r;
6340
6341 /* Need to find movable_zone earlier when movable_node is specified. */
6342 find_usable_zone_for_movable();
6343
6344 /*
6345 * If movable_node is specified, ignore kernelcore and movablecore
6346 * options.
6347 */
6348 if (movable_node_is_enabled()) {
6349 for_each_memblock(memory, r) {
6350 if (!memblock_is_hotpluggable(r))
6351 continue;
6352
6353 nid = r->nid;
6354
6355 usable_startpfn = PFN_DOWN(r->base);
6356 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6357 min(usable_startpfn, zone_movable_pfn[nid]) :
6358 usable_startpfn;
6359 }
6360
6361 goto out2;
6362 }
6363
6364 /*
6365 * If kernelcore=mirror is specified, ignore movablecore option
6366 */
6367 if (mirrored_kernelcore) {
6368 bool mem_below_4gb_not_mirrored = false;
6369
6370 for_each_memblock(memory, r) {
6371 if (memblock_is_mirror(r))
6372 continue;
6373
6374 nid = r->nid;
6375
6376 usable_startpfn = memblock_region_memory_base_pfn(r);
6377
6378 if (usable_startpfn < 0x100000) {
6379 mem_below_4gb_not_mirrored = true;
6380 continue;
6381 }
6382
6383 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6384 min(usable_startpfn, zone_movable_pfn[nid]) :
6385 usable_startpfn;
6386 }
6387
6388 if (mem_below_4gb_not_mirrored)
6389 pr_warn("This configuration results in unmirrored kernel memory.");
6390
6391 goto out2;
6392 }
6393
6394 /*
6395 * If movablecore=nn[KMG] was specified, calculate what size of
6396 * kernelcore that corresponds so that memory usable for
6397 * any allocation type is evenly spread. If both kernelcore
6398 * and movablecore are specified, then the value of kernelcore
6399 * will be used for required_kernelcore if it's greater than
6400 * what movablecore would have allowed.
6401 */
6402 if (required_movablecore) {
6403 unsigned long corepages;
6404
6405 /*
6406 * Round-up so that ZONE_MOVABLE is at least as large as what
6407 * was requested by the user
6408 */
6409 required_movablecore =
6410 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6411 required_movablecore = min(totalpages, required_movablecore);
6412 corepages = totalpages - required_movablecore;
6413
6414 required_kernelcore = max(required_kernelcore, corepages);
6415 }
6416
6417 /*
6418 * If kernelcore was not specified or kernelcore size is larger
6419 * than totalpages, there is no ZONE_MOVABLE.
6420 */
6421 if (!required_kernelcore || required_kernelcore >= totalpages)
6422 goto out;
6423
6424 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6425 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6426
6427 restart:
6428 /* Spread kernelcore memory as evenly as possible throughout nodes */
6429 kernelcore_node = required_kernelcore / usable_nodes;
6430 for_each_node_state(nid, N_MEMORY) {
6431 unsigned long start_pfn, end_pfn;
6432
6433 /*
6434 * Recalculate kernelcore_node if the division per node
6435 * now exceeds what is necessary to satisfy the requested
6436 * amount of memory for the kernel
6437 */
6438 if (required_kernelcore < kernelcore_node)
6439 kernelcore_node = required_kernelcore / usable_nodes;
6440
6441 /*
6442 * As the map is walked, we track how much memory is usable
6443 * by the kernel using kernelcore_remaining. When it is
6444 * 0, the rest of the node is usable by ZONE_MOVABLE
6445 */
6446 kernelcore_remaining = kernelcore_node;
6447
6448 /* Go through each range of PFNs within this node */
6449 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6450 unsigned long size_pages;
6451
6452 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6453 if (start_pfn >= end_pfn)
6454 continue;
6455
6456 /* Account for what is only usable for kernelcore */
6457 if (start_pfn < usable_startpfn) {
6458 unsigned long kernel_pages;
6459 kernel_pages = min(end_pfn, usable_startpfn)
6460 - start_pfn;
6461
6462 kernelcore_remaining -= min(kernel_pages,
6463 kernelcore_remaining);
6464 required_kernelcore -= min(kernel_pages,
6465 required_kernelcore);
6466
6467 /* Continue if range is now fully accounted */
6468 if (end_pfn <= usable_startpfn) {
6469
6470 /*
6471 * Push zone_movable_pfn to the end so
6472 * that if we have to rebalance
6473 * kernelcore across nodes, we will
6474 * not double account here
6475 */
6476 zone_movable_pfn[nid] = end_pfn;
6477 continue;
6478 }
6479 start_pfn = usable_startpfn;
6480 }
6481
6482 /*
6483 * The usable PFN range for ZONE_MOVABLE is from
6484 * start_pfn->end_pfn. Calculate size_pages as the
6485 * number of pages used as kernelcore
6486 */
6487 size_pages = end_pfn - start_pfn;
6488 if (size_pages > kernelcore_remaining)
6489 size_pages = kernelcore_remaining;
6490 zone_movable_pfn[nid] = start_pfn + size_pages;
6491
6492 /*
6493 * Some kernelcore has been met, update counts and
6494 * break if the kernelcore for this node has been
6495 * satisfied
6496 */
6497 required_kernelcore -= min(required_kernelcore,
6498 size_pages);
6499 kernelcore_remaining -= size_pages;
6500 if (!kernelcore_remaining)
6501 break;
6502 }
6503 }
6504
6505 /*
6506 * If there is still required_kernelcore, we do another pass with one
6507 * less node in the count. This will push zone_movable_pfn[nid] further
6508 * along on the nodes that still have memory until kernelcore is
6509 * satisfied
6510 */
6511 usable_nodes--;
6512 if (usable_nodes && required_kernelcore > usable_nodes)
6513 goto restart;
6514
6515 out2:
6516 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6517 for (nid = 0; nid < MAX_NUMNODES; nid++)
6518 zone_movable_pfn[nid] =
6519 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6520
6521 out:
6522 /* restore the node_state */
6523 node_states[N_MEMORY] = saved_node_state;
6524 }
6525
6526 /* Any regular or high memory on that node ? */
6527 static void check_for_memory(pg_data_t *pgdat, int nid)
6528 {
6529 enum zone_type zone_type;
6530
6531 if (N_MEMORY == N_NORMAL_MEMORY)
6532 return;
6533
6534 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6535 struct zone *zone = &pgdat->node_zones[zone_type];
6536 if (populated_zone(zone)) {
6537 node_set_state(nid, N_HIGH_MEMORY);
6538 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6539 zone_type <= ZONE_NORMAL)
6540 node_set_state(nid, N_NORMAL_MEMORY);
6541 break;
6542 }
6543 }
6544 }
6545
6546 /**
6547 * free_area_init_nodes - Initialise all pg_data_t and zone data
6548 * @max_zone_pfn: an array of max PFNs for each zone
6549 *
6550 * This will call free_area_init_node() for each active node in the system.
6551 * Using the page ranges provided by memblock_set_node(), the size of each
6552 * zone in each node and their holes is calculated. If the maximum PFN
6553 * between two adjacent zones match, it is assumed that the zone is empty.
6554 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6555 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6556 * starts where the previous one ended. For example, ZONE_DMA32 starts
6557 * at arch_max_dma_pfn.
6558 */
6559 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6560 {
6561 unsigned long start_pfn, end_pfn;
6562 int i, nid;
6563
6564 /* Record where the zone boundaries are */
6565 memset(arch_zone_lowest_possible_pfn, 0,
6566 sizeof(arch_zone_lowest_possible_pfn));
6567 memset(arch_zone_highest_possible_pfn, 0,
6568 sizeof(arch_zone_highest_possible_pfn));
6569
6570 start_pfn = find_min_pfn_with_active_regions();
6571
6572 for (i = 0; i < MAX_NR_ZONES; i++) {
6573 if (i == ZONE_MOVABLE)
6574 continue;
6575
6576 end_pfn = max(max_zone_pfn[i], start_pfn);
6577 arch_zone_lowest_possible_pfn[i] = start_pfn;
6578 arch_zone_highest_possible_pfn[i] = end_pfn;
6579
6580 start_pfn = end_pfn;
6581 }
6582
6583 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6584 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6585 find_zone_movable_pfns_for_nodes();
6586
6587 /* Print out the zone ranges */
6588 pr_info("Zone ranges:\n");
6589 for (i = 0; i < MAX_NR_ZONES; i++) {
6590 if (i == ZONE_MOVABLE)
6591 continue;
6592 pr_info(" %-8s ", zone_names[i]);
6593 if (arch_zone_lowest_possible_pfn[i] ==
6594 arch_zone_highest_possible_pfn[i])
6595 pr_cont("empty\n");
6596 else
6597 pr_cont("[mem %#018Lx-%#018Lx]\n",
6598 (u64)arch_zone_lowest_possible_pfn[i]
6599 << PAGE_SHIFT,
6600 ((u64)arch_zone_highest_possible_pfn[i]
6601 << PAGE_SHIFT) - 1);
6602 }
6603
6604 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6605 pr_info("Movable zone start for each node\n");
6606 for (i = 0; i < MAX_NUMNODES; i++) {
6607 if (zone_movable_pfn[i])
6608 pr_info(" Node %d: %#018Lx\n", i,
6609 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6610 }
6611
6612 /* Print out the early node map */
6613 pr_info("Early memory node ranges\n");
6614 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6615 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6616 (u64)start_pfn << PAGE_SHIFT,
6617 ((u64)end_pfn << PAGE_SHIFT) - 1);
6618
6619 /* Initialise every node */
6620 mminit_verify_pageflags_layout();
6621 setup_nr_node_ids();
6622 for_each_online_node(nid) {
6623 pg_data_t *pgdat = NODE_DATA(nid);
6624 free_area_init_node(nid, NULL,
6625 find_min_pfn_for_node(nid), NULL);
6626
6627 /* Any memory on that node */
6628 if (pgdat->node_present_pages)
6629 node_set_state(nid, N_MEMORY);
6630 check_for_memory(pgdat, nid);
6631 }
6632 }
6633
6634 static int __init cmdline_parse_core(char *p, unsigned long *core)
6635 {
6636 unsigned long long coremem;
6637 if (!p)
6638 return -EINVAL;
6639
6640 coremem = memparse(p, &p);
6641 *core = coremem >> PAGE_SHIFT;
6642
6643 /* Paranoid check that UL is enough for the coremem value */
6644 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6645
6646 return 0;
6647 }
6648
6649 /*
6650 * kernelcore=size sets the amount of memory for use for allocations that
6651 * cannot be reclaimed or migrated.
6652 */
6653 static int __init cmdline_parse_kernelcore(char *p)
6654 {
6655 /* parse kernelcore=mirror */
6656 if (parse_option_str(p, "mirror")) {
6657 mirrored_kernelcore = true;
6658 return 0;
6659 }
6660
6661 return cmdline_parse_core(p, &required_kernelcore);
6662 }
6663
6664 /*
6665 * movablecore=size sets the amount of memory for use for allocations that
6666 * can be reclaimed or migrated.
6667 */
6668 static int __init cmdline_parse_movablecore(char *p)
6669 {
6670 return cmdline_parse_core(p, &required_movablecore);
6671 }
6672
6673 early_param("kernelcore", cmdline_parse_kernelcore);
6674 early_param("movablecore", cmdline_parse_movablecore);
6675
6676 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6677
6678 void adjust_managed_page_count(struct page *page, long count)
6679 {
6680 spin_lock(&managed_page_count_lock);
6681 page_zone(page)->managed_pages += count;
6682 totalram_pages += count;
6683 #ifdef CONFIG_HIGHMEM
6684 if (PageHighMem(page))
6685 totalhigh_pages += count;
6686 #endif
6687 spin_unlock(&managed_page_count_lock);
6688 }
6689 EXPORT_SYMBOL(adjust_managed_page_count);
6690
6691 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6692 {
6693 void *pos;
6694 unsigned long pages = 0;
6695
6696 start = (void *)PAGE_ALIGN((unsigned long)start);
6697 end = (void *)((unsigned long)end & PAGE_MASK);
6698 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6699 if ((unsigned int)poison <= 0xFF)
6700 memset(pos, poison, PAGE_SIZE);
6701 free_reserved_page(virt_to_page(pos));
6702 }
6703
6704 if (pages && s)
6705 pr_info("Freeing %s memory: %ldK\n",
6706 s, pages << (PAGE_SHIFT - 10));
6707
6708 return pages;
6709 }
6710 EXPORT_SYMBOL(free_reserved_area);
6711
6712 #ifdef CONFIG_HIGHMEM
6713 void free_highmem_page(struct page *page)
6714 {
6715 __free_reserved_page(page);
6716 totalram_pages++;
6717 page_zone(page)->managed_pages++;
6718 totalhigh_pages++;
6719 }
6720 #endif
6721
6722
6723 void __init mem_init_print_info(const char *str)
6724 {
6725 unsigned long physpages, codesize, datasize, rosize, bss_size;
6726 unsigned long init_code_size, init_data_size;
6727
6728 physpages = get_num_physpages();
6729 codesize = _etext - _stext;
6730 datasize = _edata - _sdata;
6731 rosize = __end_rodata - __start_rodata;
6732 bss_size = __bss_stop - __bss_start;
6733 init_data_size = __init_end - __init_begin;
6734 init_code_size = _einittext - _sinittext;
6735
6736 /*
6737 * Detect special cases and adjust section sizes accordingly:
6738 * 1) .init.* may be embedded into .data sections
6739 * 2) .init.text.* may be out of [__init_begin, __init_end],
6740 * please refer to arch/tile/kernel/vmlinux.lds.S.
6741 * 3) .rodata.* may be embedded into .text or .data sections.
6742 */
6743 #define adj_init_size(start, end, size, pos, adj) \
6744 do { \
6745 if (start <= pos && pos < end && size > adj) \
6746 size -= adj; \
6747 } while (0)
6748
6749 adj_init_size(__init_begin, __init_end, init_data_size,
6750 _sinittext, init_code_size);
6751 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6752 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6753 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6754 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6755
6756 #undef adj_init_size
6757
6758 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6759 #ifdef CONFIG_HIGHMEM
6760 ", %luK highmem"
6761 #endif
6762 "%s%s)\n",
6763 nr_free_pages() << (PAGE_SHIFT - 10),
6764 physpages << (PAGE_SHIFT - 10),
6765 codesize >> 10, datasize >> 10, rosize >> 10,
6766 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6767 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6768 totalcma_pages << (PAGE_SHIFT - 10),
6769 #ifdef CONFIG_HIGHMEM
6770 totalhigh_pages << (PAGE_SHIFT - 10),
6771 #endif
6772 str ? ", " : "", str ? str : "");
6773 }
6774
6775 /**
6776 * set_dma_reserve - set the specified number of pages reserved in the first zone
6777 * @new_dma_reserve: The number of pages to mark reserved
6778 *
6779 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6780 * In the DMA zone, a significant percentage may be consumed by kernel image
6781 * and other unfreeable allocations which can skew the watermarks badly. This
6782 * function may optionally be used to account for unfreeable pages in the
6783 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6784 * smaller per-cpu batchsize.
6785 */
6786 void __init set_dma_reserve(unsigned long new_dma_reserve)
6787 {
6788 dma_reserve = new_dma_reserve;
6789 }
6790
6791 void __init free_area_init(unsigned long *zones_size)
6792 {
6793 free_area_init_node(0, zones_size,
6794 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6795 }
6796
6797 static int page_alloc_cpu_dead(unsigned int cpu)
6798 {
6799
6800 lru_add_drain_cpu(cpu);
6801 drain_pages(cpu);
6802
6803 /*
6804 * Spill the event counters of the dead processor
6805 * into the current processors event counters.
6806 * This artificially elevates the count of the current
6807 * processor.
6808 */
6809 vm_events_fold_cpu(cpu);
6810
6811 /*
6812 * Zero the differential counters of the dead processor
6813 * so that the vm statistics are consistent.
6814 *
6815 * This is only okay since the processor is dead and cannot
6816 * race with what we are doing.
6817 */
6818 cpu_vm_stats_fold(cpu);
6819 return 0;
6820 }
6821
6822 void __init page_alloc_init(void)
6823 {
6824 int ret;
6825
6826 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6827 "mm/page_alloc:dead", NULL,
6828 page_alloc_cpu_dead);
6829 WARN_ON(ret < 0);
6830 }
6831
6832 /*
6833 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6834 * or min_free_kbytes changes.
6835 */
6836 static void calculate_totalreserve_pages(void)
6837 {
6838 struct pglist_data *pgdat;
6839 unsigned long reserve_pages = 0;
6840 enum zone_type i, j;
6841
6842 for_each_online_pgdat(pgdat) {
6843
6844 pgdat->totalreserve_pages = 0;
6845
6846 for (i = 0; i < MAX_NR_ZONES; i++) {
6847 struct zone *zone = pgdat->node_zones + i;
6848 long max = 0;
6849
6850 /* Find valid and maximum lowmem_reserve in the zone */
6851 for (j = i; j < MAX_NR_ZONES; j++) {
6852 if (zone->lowmem_reserve[j] > max)
6853 max = zone->lowmem_reserve[j];
6854 }
6855
6856 /* we treat the high watermark as reserved pages. */
6857 max += high_wmark_pages(zone);
6858
6859 if (max > zone->managed_pages)
6860 max = zone->managed_pages;
6861
6862 pgdat->totalreserve_pages += max;
6863
6864 reserve_pages += max;
6865 }
6866 }
6867 totalreserve_pages = reserve_pages;
6868 }
6869
6870 /*
6871 * setup_per_zone_lowmem_reserve - called whenever
6872 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6873 * has a correct pages reserved value, so an adequate number of
6874 * pages are left in the zone after a successful __alloc_pages().
6875 */
6876 static void setup_per_zone_lowmem_reserve(void)
6877 {
6878 struct pglist_data *pgdat;
6879 enum zone_type j, idx;
6880
6881 for_each_online_pgdat(pgdat) {
6882 for (j = 0; j < MAX_NR_ZONES; j++) {
6883 struct zone *zone = pgdat->node_zones + j;
6884 unsigned long managed_pages = zone->managed_pages;
6885
6886 zone->lowmem_reserve[j] = 0;
6887
6888 idx = j;
6889 while (idx) {
6890 struct zone *lower_zone;
6891
6892 idx--;
6893
6894 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6895 sysctl_lowmem_reserve_ratio[idx] = 1;
6896
6897 lower_zone = pgdat->node_zones + idx;
6898 lower_zone->lowmem_reserve[j] = managed_pages /
6899 sysctl_lowmem_reserve_ratio[idx];
6900 managed_pages += lower_zone->managed_pages;
6901 }
6902 }
6903 }
6904
6905 /* update totalreserve_pages */
6906 calculate_totalreserve_pages();
6907 }
6908
6909 static void __setup_per_zone_wmarks(void)
6910 {
6911 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6912 unsigned long lowmem_pages = 0;
6913 struct zone *zone;
6914 unsigned long flags;
6915
6916 /* Calculate total number of !ZONE_HIGHMEM pages */
6917 for_each_zone(zone) {
6918 if (!is_highmem(zone))
6919 lowmem_pages += zone->managed_pages;
6920 }
6921
6922 for_each_zone(zone) {
6923 u64 tmp;
6924
6925 spin_lock_irqsave(&zone->lock, flags);
6926 tmp = (u64)pages_min * zone->managed_pages;
6927 do_div(tmp, lowmem_pages);
6928 if (is_highmem(zone)) {
6929 /*
6930 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6931 * need highmem pages, so cap pages_min to a small
6932 * value here.
6933 *
6934 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6935 * deltas control asynch page reclaim, and so should
6936 * not be capped for highmem.
6937 */
6938 unsigned long min_pages;
6939
6940 min_pages = zone->managed_pages / 1024;
6941 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6942 zone->watermark[WMARK_MIN] = min_pages;
6943 } else {
6944 /*
6945 * If it's a lowmem zone, reserve a number of pages
6946 * proportionate to the zone's size.
6947 */
6948 zone->watermark[WMARK_MIN] = tmp;
6949 }
6950
6951 /*
6952 * Set the kswapd watermarks distance according to the
6953 * scale factor in proportion to available memory, but
6954 * ensure a minimum size on small systems.
6955 */
6956 tmp = max_t(u64, tmp >> 2,
6957 mult_frac(zone->managed_pages,
6958 watermark_scale_factor, 10000));
6959
6960 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6961 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6962
6963 spin_unlock_irqrestore(&zone->lock, flags);
6964 }
6965
6966 /* update totalreserve_pages */
6967 calculate_totalreserve_pages();
6968 }
6969
6970 /**
6971 * setup_per_zone_wmarks - called when min_free_kbytes changes
6972 * or when memory is hot-{added|removed}
6973 *
6974 * Ensures that the watermark[min,low,high] values for each zone are set
6975 * correctly with respect to min_free_kbytes.
6976 */
6977 void setup_per_zone_wmarks(void)
6978 {
6979 static DEFINE_SPINLOCK(lock);
6980
6981 spin_lock(&lock);
6982 __setup_per_zone_wmarks();
6983 spin_unlock(&lock);
6984 }
6985
6986 /*
6987 * Initialise min_free_kbytes.
6988 *
6989 * For small machines we want it small (128k min). For large machines
6990 * we want it large (64MB max). But it is not linear, because network
6991 * bandwidth does not increase linearly with machine size. We use
6992 *
6993 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6994 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6995 *
6996 * which yields
6997 *
6998 * 16MB: 512k
6999 * 32MB: 724k
7000 * 64MB: 1024k
7001 * 128MB: 1448k
7002 * 256MB: 2048k
7003 * 512MB: 2896k
7004 * 1024MB: 4096k
7005 * 2048MB: 5792k
7006 * 4096MB: 8192k
7007 * 8192MB: 11584k
7008 * 16384MB: 16384k
7009 */
7010 int __meminit init_per_zone_wmark_min(void)
7011 {
7012 unsigned long lowmem_kbytes;
7013 int new_min_free_kbytes;
7014
7015 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7016 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7017
7018 if (new_min_free_kbytes > user_min_free_kbytes) {
7019 min_free_kbytes = new_min_free_kbytes;
7020 if (min_free_kbytes < 128)
7021 min_free_kbytes = 128;
7022 if (min_free_kbytes > 65536)
7023 min_free_kbytes = 65536;
7024 } else {
7025 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7026 new_min_free_kbytes, user_min_free_kbytes);
7027 }
7028 setup_per_zone_wmarks();
7029 refresh_zone_stat_thresholds();
7030 setup_per_zone_lowmem_reserve();
7031
7032 #ifdef CONFIG_NUMA
7033 setup_min_unmapped_ratio();
7034 setup_min_slab_ratio();
7035 #endif
7036
7037 return 0;
7038 }
7039 core_initcall(init_per_zone_wmark_min)
7040
7041 /*
7042 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7043 * that we can call two helper functions whenever min_free_kbytes
7044 * changes.
7045 */
7046 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7047 void __user *buffer, size_t *length, loff_t *ppos)
7048 {
7049 int rc;
7050
7051 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7052 if (rc)
7053 return rc;
7054
7055 if (write) {
7056 user_min_free_kbytes = min_free_kbytes;
7057 setup_per_zone_wmarks();
7058 }
7059 return 0;
7060 }
7061
7062 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7063 void __user *buffer, size_t *length, loff_t *ppos)
7064 {
7065 int rc;
7066
7067 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7068 if (rc)
7069 return rc;
7070
7071 if (write)
7072 setup_per_zone_wmarks();
7073
7074 return 0;
7075 }
7076
7077 #ifdef CONFIG_NUMA
7078 static void setup_min_unmapped_ratio(void)
7079 {
7080 pg_data_t *pgdat;
7081 struct zone *zone;
7082
7083 for_each_online_pgdat(pgdat)
7084 pgdat->min_unmapped_pages = 0;
7085
7086 for_each_zone(zone)
7087 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7088 sysctl_min_unmapped_ratio) / 100;
7089 }
7090
7091
7092 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7093 void __user *buffer, size_t *length, loff_t *ppos)
7094 {
7095 int rc;
7096
7097 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7098 if (rc)
7099 return rc;
7100
7101 setup_min_unmapped_ratio();
7102
7103 return 0;
7104 }
7105
7106 static void setup_min_slab_ratio(void)
7107 {
7108 pg_data_t *pgdat;
7109 struct zone *zone;
7110
7111 for_each_online_pgdat(pgdat)
7112 pgdat->min_slab_pages = 0;
7113
7114 for_each_zone(zone)
7115 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7116 sysctl_min_slab_ratio) / 100;
7117 }
7118
7119 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7120 void __user *buffer, size_t *length, loff_t *ppos)
7121 {
7122 int rc;
7123
7124 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7125 if (rc)
7126 return rc;
7127
7128 setup_min_slab_ratio();
7129
7130 return 0;
7131 }
7132 #endif
7133
7134 /*
7135 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7136 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7137 * whenever sysctl_lowmem_reserve_ratio changes.
7138 *
7139 * The reserve ratio obviously has absolutely no relation with the
7140 * minimum watermarks. The lowmem reserve ratio can only make sense
7141 * if in function of the boot time zone sizes.
7142 */
7143 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7144 void __user *buffer, size_t *length, loff_t *ppos)
7145 {
7146 proc_dointvec_minmax(table, write, buffer, length, ppos);
7147 setup_per_zone_lowmem_reserve();
7148 return 0;
7149 }
7150
7151 /*
7152 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7153 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7154 * pagelist can have before it gets flushed back to buddy allocator.
7155 */
7156 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7157 void __user *buffer, size_t *length, loff_t *ppos)
7158 {
7159 struct zone *zone;
7160 int old_percpu_pagelist_fraction;
7161 int ret;
7162
7163 mutex_lock(&pcp_batch_high_lock);
7164 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7165
7166 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7167 if (!write || ret < 0)
7168 goto out;
7169
7170 /* Sanity checking to avoid pcp imbalance */
7171 if (percpu_pagelist_fraction &&
7172 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7173 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7174 ret = -EINVAL;
7175 goto out;
7176 }
7177
7178 /* No change? */
7179 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7180 goto out;
7181
7182 for_each_populated_zone(zone) {
7183 unsigned int cpu;
7184
7185 for_each_possible_cpu(cpu)
7186 pageset_set_high_and_batch(zone,
7187 per_cpu_ptr(zone->pageset, cpu));
7188 }
7189 out:
7190 mutex_unlock(&pcp_batch_high_lock);
7191 return ret;
7192 }
7193
7194 #ifdef CONFIG_NUMA
7195 int hashdist = HASHDIST_DEFAULT;
7196
7197 static int __init set_hashdist(char *str)
7198 {
7199 if (!str)
7200 return 0;
7201 hashdist = simple_strtoul(str, &str, 0);
7202 return 1;
7203 }
7204 __setup("hashdist=", set_hashdist);
7205 #endif
7206
7207 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7208 /*
7209 * Returns the number of pages that arch has reserved but
7210 * is not known to alloc_large_system_hash().
7211 */
7212 static unsigned long __init arch_reserved_kernel_pages(void)
7213 {
7214 return 0;
7215 }
7216 #endif
7217
7218 /*
7219 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7220 * machines. As memory size is increased the scale is also increased but at
7221 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7222 * quadruples the scale is increased by one, which means the size of hash table
7223 * only doubles, instead of quadrupling as well.
7224 * Because 32-bit systems cannot have large physical memory, where this scaling
7225 * makes sense, it is disabled on such platforms.
7226 */
7227 #if __BITS_PER_LONG > 32
7228 #define ADAPT_SCALE_BASE (64ul << 30)
7229 #define ADAPT_SCALE_SHIFT 2
7230 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7231 #endif
7232
7233 /*
7234 * allocate a large system hash table from bootmem
7235 * - it is assumed that the hash table must contain an exact power-of-2
7236 * quantity of entries
7237 * - limit is the number of hash buckets, not the total allocation size
7238 */
7239 void *__init alloc_large_system_hash(const char *tablename,
7240 unsigned long bucketsize,
7241 unsigned long numentries,
7242 int scale,
7243 int flags,
7244 unsigned int *_hash_shift,
7245 unsigned int *_hash_mask,
7246 unsigned long low_limit,
7247 unsigned long high_limit)
7248 {
7249 unsigned long long max = high_limit;
7250 unsigned long log2qty, size;
7251 void *table = NULL;
7252 gfp_t gfp_flags;
7253
7254 /* allow the kernel cmdline to have a say */
7255 if (!numentries) {
7256 /* round applicable memory size up to nearest megabyte */
7257 numentries = nr_kernel_pages;
7258 numentries -= arch_reserved_kernel_pages();
7259
7260 /* It isn't necessary when PAGE_SIZE >= 1MB */
7261 if (PAGE_SHIFT < 20)
7262 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7263
7264 #if __BITS_PER_LONG > 32
7265 if (!high_limit) {
7266 unsigned long adapt;
7267
7268 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7269 adapt <<= ADAPT_SCALE_SHIFT)
7270 scale++;
7271 }
7272 #endif
7273
7274 /* limit to 1 bucket per 2^scale bytes of low memory */
7275 if (scale > PAGE_SHIFT)
7276 numentries >>= (scale - PAGE_SHIFT);
7277 else
7278 numentries <<= (PAGE_SHIFT - scale);
7279
7280 /* Make sure we've got at least a 0-order allocation.. */
7281 if (unlikely(flags & HASH_SMALL)) {
7282 /* Makes no sense without HASH_EARLY */
7283 WARN_ON(!(flags & HASH_EARLY));
7284 if (!(numentries >> *_hash_shift)) {
7285 numentries = 1UL << *_hash_shift;
7286 BUG_ON(!numentries);
7287 }
7288 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7289 numentries = PAGE_SIZE / bucketsize;
7290 }
7291 numentries = roundup_pow_of_two(numentries);
7292
7293 /* limit allocation size to 1/16 total memory by default */
7294 if (max == 0) {
7295 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7296 do_div(max, bucketsize);
7297 }
7298 max = min(max, 0x80000000ULL);
7299
7300 if (numentries < low_limit)
7301 numentries = low_limit;
7302 if (numentries > max)
7303 numentries = max;
7304
7305 log2qty = ilog2(numentries);
7306
7307 /*
7308 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7309 * currently not used when HASH_EARLY is specified.
7310 */
7311 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7312 do {
7313 size = bucketsize << log2qty;
7314 if (flags & HASH_EARLY)
7315 table = memblock_virt_alloc_nopanic(size, 0);
7316 else if (hashdist)
7317 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7318 else {
7319 /*
7320 * If bucketsize is not a power-of-two, we may free
7321 * some pages at the end of hash table which
7322 * alloc_pages_exact() automatically does
7323 */
7324 if (get_order(size) < MAX_ORDER) {
7325 table = alloc_pages_exact(size, gfp_flags);
7326 kmemleak_alloc(table, size, 1, gfp_flags);
7327 }
7328 }
7329 } while (!table && size > PAGE_SIZE && --log2qty);
7330
7331 if (!table)
7332 panic("Failed to allocate %s hash table\n", tablename);
7333
7334 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7335 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7336
7337 if (_hash_shift)
7338 *_hash_shift = log2qty;
7339 if (_hash_mask)
7340 *_hash_mask = (1 << log2qty) - 1;
7341
7342 return table;
7343 }
7344
7345 /*
7346 * This function checks whether pageblock includes unmovable pages or not.
7347 * If @count is not zero, it is okay to include less @count unmovable pages
7348 *
7349 * PageLRU check without isolation or lru_lock could race so that
7350 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7351 * check without lock_page also may miss some movable non-lru pages at
7352 * race condition. So you can't expect this function should be exact.
7353 */
7354 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7355 bool skip_hwpoisoned_pages)
7356 {
7357 unsigned long pfn, iter, found;
7358 int mt;
7359
7360 /*
7361 * For avoiding noise data, lru_add_drain_all() should be called
7362 * If ZONE_MOVABLE, the zone never contains unmovable pages
7363 */
7364 if (zone_idx(zone) == ZONE_MOVABLE)
7365 return false;
7366 mt = get_pageblock_migratetype(page);
7367 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7368 return false;
7369
7370 pfn = page_to_pfn(page);
7371 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7372 unsigned long check = pfn + iter;
7373
7374 if (!pfn_valid_within(check))
7375 continue;
7376
7377 page = pfn_to_page(check);
7378
7379 /*
7380 * Hugepages are not in LRU lists, but they're movable.
7381 * We need not scan over tail pages bacause we don't
7382 * handle each tail page individually in migration.
7383 */
7384 if (PageHuge(page)) {
7385 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7386 continue;
7387 }
7388
7389 /*
7390 * We can't use page_count without pin a page
7391 * because another CPU can free compound page.
7392 * This check already skips compound tails of THP
7393 * because their page->_refcount is zero at all time.
7394 */
7395 if (!page_ref_count(page)) {
7396 if (PageBuddy(page))
7397 iter += (1 << page_order(page)) - 1;
7398 continue;
7399 }
7400
7401 /*
7402 * The HWPoisoned page may be not in buddy system, and
7403 * page_count() is not 0.
7404 */
7405 if (skip_hwpoisoned_pages && PageHWPoison(page))
7406 continue;
7407
7408 if (__PageMovable(page))
7409 continue;
7410
7411 if (!PageLRU(page))
7412 found++;
7413 /*
7414 * If there are RECLAIMABLE pages, we need to check
7415 * it. But now, memory offline itself doesn't call
7416 * shrink_node_slabs() and it still to be fixed.
7417 */
7418 /*
7419 * If the page is not RAM, page_count()should be 0.
7420 * we don't need more check. This is an _used_ not-movable page.
7421 *
7422 * The problematic thing here is PG_reserved pages. PG_reserved
7423 * is set to both of a memory hole page and a _used_ kernel
7424 * page at boot.
7425 */
7426 if (found > count)
7427 return true;
7428 }
7429 return false;
7430 }
7431
7432 bool is_pageblock_removable_nolock(struct page *page)
7433 {
7434 struct zone *zone;
7435 unsigned long pfn;
7436
7437 /*
7438 * We have to be careful here because we are iterating over memory
7439 * sections which are not zone aware so we might end up outside of
7440 * the zone but still within the section.
7441 * We have to take care about the node as well. If the node is offline
7442 * its NODE_DATA will be NULL - see page_zone.
7443 */
7444 if (!node_online(page_to_nid(page)))
7445 return false;
7446
7447 zone = page_zone(page);
7448 pfn = page_to_pfn(page);
7449 if (!zone_spans_pfn(zone, pfn))
7450 return false;
7451
7452 return !has_unmovable_pages(zone, page, 0, true);
7453 }
7454
7455 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7456
7457 static unsigned long pfn_max_align_down(unsigned long pfn)
7458 {
7459 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7460 pageblock_nr_pages) - 1);
7461 }
7462
7463 static unsigned long pfn_max_align_up(unsigned long pfn)
7464 {
7465 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7466 pageblock_nr_pages));
7467 }
7468
7469 /* [start, end) must belong to a single zone. */
7470 static int __alloc_contig_migrate_range(struct compact_control *cc,
7471 unsigned long start, unsigned long end)
7472 {
7473 /* This function is based on compact_zone() from compaction.c. */
7474 unsigned long nr_reclaimed;
7475 unsigned long pfn = start;
7476 unsigned int tries = 0;
7477 int ret = 0;
7478
7479 migrate_prep();
7480
7481 while (pfn < end || !list_empty(&cc->migratepages)) {
7482 if (fatal_signal_pending(current)) {
7483 ret = -EINTR;
7484 break;
7485 }
7486
7487 if (list_empty(&cc->migratepages)) {
7488 cc->nr_migratepages = 0;
7489 pfn = isolate_migratepages_range(cc, pfn, end);
7490 if (!pfn) {
7491 ret = -EINTR;
7492 break;
7493 }
7494 tries = 0;
7495 } else if (++tries == 5) {
7496 ret = ret < 0 ? ret : -EBUSY;
7497 break;
7498 }
7499
7500 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7501 &cc->migratepages);
7502 cc->nr_migratepages -= nr_reclaimed;
7503
7504 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7505 NULL, 0, cc->mode, MR_CMA);
7506 }
7507 if (ret < 0) {
7508 putback_movable_pages(&cc->migratepages);
7509 return ret;
7510 }
7511 return 0;
7512 }
7513
7514 /**
7515 * alloc_contig_range() -- tries to allocate given range of pages
7516 * @start: start PFN to allocate
7517 * @end: one-past-the-last PFN to allocate
7518 * @migratetype: migratetype of the underlaying pageblocks (either
7519 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7520 * in range must have the same migratetype and it must
7521 * be either of the two.
7522 * @gfp_mask: GFP mask to use during compaction
7523 *
7524 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7525 * aligned, however it's the caller's responsibility to guarantee that
7526 * we are the only thread that changes migrate type of pageblocks the
7527 * pages fall in.
7528 *
7529 * The PFN range must belong to a single zone.
7530 *
7531 * Returns zero on success or negative error code. On success all
7532 * pages which PFN is in [start, end) are allocated for the caller and
7533 * need to be freed with free_contig_range().
7534 */
7535 int alloc_contig_range(unsigned long start, unsigned long end,
7536 unsigned migratetype, gfp_t gfp_mask)
7537 {
7538 unsigned long outer_start, outer_end;
7539 unsigned int order;
7540 int ret = 0;
7541
7542 struct compact_control cc = {
7543 .nr_migratepages = 0,
7544 .order = -1,
7545 .zone = page_zone(pfn_to_page(start)),
7546 .mode = MIGRATE_SYNC,
7547 .ignore_skip_hint = true,
7548 .gfp_mask = current_gfp_context(gfp_mask),
7549 };
7550 INIT_LIST_HEAD(&cc.migratepages);
7551
7552 /*
7553 * What we do here is we mark all pageblocks in range as
7554 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7555 * have different sizes, and due to the way page allocator
7556 * work, we align the range to biggest of the two pages so
7557 * that page allocator won't try to merge buddies from
7558 * different pageblocks and change MIGRATE_ISOLATE to some
7559 * other migration type.
7560 *
7561 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7562 * migrate the pages from an unaligned range (ie. pages that
7563 * we are interested in). This will put all the pages in
7564 * range back to page allocator as MIGRATE_ISOLATE.
7565 *
7566 * When this is done, we take the pages in range from page
7567 * allocator removing them from the buddy system. This way
7568 * page allocator will never consider using them.
7569 *
7570 * This lets us mark the pageblocks back as
7571 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7572 * aligned range but not in the unaligned, original range are
7573 * put back to page allocator so that buddy can use them.
7574 */
7575
7576 ret = start_isolate_page_range(pfn_max_align_down(start),
7577 pfn_max_align_up(end), migratetype,
7578 false);
7579 if (ret)
7580 return ret;
7581
7582 /*
7583 * In case of -EBUSY, we'd like to know which page causes problem.
7584 * So, just fall through. We will check it in test_pages_isolated().
7585 */
7586 ret = __alloc_contig_migrate_range(&cc, start, end);
7587 if (ret && ret != -EBUSY)
7588 goto done;
7589
7590 /*
7591 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7592 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7593 * more, all pages in [start, end) are free in page allocator.
7594 * What we are going to do is to allocate all pages from
7595 * [start, end) (that is remove them from page allocator).
7596 *
7597 * The only problem is that pages at the beginning and at the
7598 * end of interesting range may be not aligned with pages that
7599 * page allocator holds, ie. they can be part of higher order
7600 * pages. Because of this, we reserve the bigger range and
7601 * once this is done free the pages we are not interested in.
7602 *
7603 * We don't have to hold zone->lock here because the pages are
7604 * isolated thus they won't get removed from buddy.
7605 */
7606
7607 lru_add_drain_all();
7608 drain_all_pages(cc.zone);
7609
7610 order = 0;
7611 outer_start = start;
7612 while (!PageBuddy(pfn_to_page(outer_start))) {
7613 if (++order >= MAX_ORDER) {
7614 outer_start = start;
7615 break;
7616 }
7617 outer_start &= ~0UL << order;
7618 }
7619
7620 if (outer_start != start) {
7621 order = page_order(pfn_to_page(outer_start));
7622
7623 /*
7624 * outer_start page could be small order buddy page and
7625 * it doesn't include start page. Adjust outer_start
7626 * in this case to report failed page properly
7627 * on tracepoint in test_pages_isolated()
7628 */
7629 if (outer_start + (1UL << order) <= start)
7630 outer_start = start;
7631 }
7632
7633 /* Make sure the range is really isolated. */
7634 if (test_pages_isolated(outer_start, end, false)) {
7635 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7636 __func__, outer_start, end);
7637 ret = -EBUSY;
7638 goto done;
7639 }
7640
7641 /* Grab isolated pages from freelists. */
7642 outer_end = isolate_freepages_range(&cc, outer_start, end);
7643 if (!outer_end) {
7644 ret = -EBUSY;
7645 goto done;
7646 }
7647
7648 /* Free head and tail (if any) */
7649 if (start != outer_start)
7650 free_contig_range(outer_start, start - outer_start);
7651 if (end != outer_end)
7652 free_contig_range(end, outer_end - end);
7653
7654 done:
7655 undo_isolate_page_range(pfn_max_align_down(start),
7656 pfn_max_align_up(end), migratetype);
7657 return ret;
7658 }
7659
7660 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7661 {
7662 unsigned int count = 0;
7663
7664 for (; nr_pages--; pfn++) {
7665 struct page *page = pfn_to_page(pfn);
7666
7667 count += page_count(page) != 1;
7668 __free_page(page);
7669 }
7670 WARN(count != 0, "%d pages are still in use!\n", count);
7671 }
7672 #endif
7673
7674 #ifdef CONFIG_MEMORY_HOTPLUG
7675 /*
7676 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7677 * page high values need to be recalulated.
7678 */
7679 void __meminit zone_pcp_update(struct zone *zone)
7680 {
7681 unsigned cpu;
7682 mutex_lock(&pcp_batch_high_lock);
7683 for_each_possible_cpu(cpu)
7684 pageset_set_high_and_batch(zone,
7685 per_cpu_ptr(zone->pageset, cpu));
7686 mutex_unlock(&pcp_batch_high_lock);
7687 }
7688 #endif
7689
7690 void zone_pcp_reset(struct zone *zone)
7691 {
7692 unsigned long flags;
7693 int cpu;
7694 struct per_cpu_pageset *pset;
7695
7696 /* avoid races with drain_pages() */
7697 local_irq_save(flags);
7698 if (zone->pageset != &boot_pageset) {
7699 for_each_online_cpu(cpu) {
7700 pset = per_cpu_ptr(zone->pageset, cpu);
7701 drain_zonestat(zone, pset);
7702 }
7703 free_percpu(zone->pageset);
7704 zone->pageset = &boot_pageset;
7705 }
7706 local_irq_restore(flags);
7707 }
7708
7709 #ifdef CONFIG_MEMORY_HOTREMOVE
7710 /*
7711 * All pages in the range must be in a single zone and isolated
7712 * before calling this.
7713 */
7714 void
7715 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7716 {
7717 struct page *page;
7718 struct zone *zone;
7719 unsigned int order, i;
7720 unsigned long pfn;
7721 unsigned long flags;
7722 /* find the first valid pfn */
7723 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7724 if (pfn_valid(pfn))
7725 break;
7726 if (pfn == end_pfn)
7727 return;
7728 offline_mem_sections(pfn, end_pfn);
7729 zone = page_zone(pfn_to_page(pfn));
7730 spin_lock_irqsave(&zone->lock, flags);
7731 pfn = start_pfn;
7732 while (pfn < end_pfn) {
7733 if (!pfn_valid(pfn)) {
7734 pfn++;
7735 continue;
7736 }
7737 page = pfn_to_page(pfn);
7738 /*
7739 * The HWPoisoned page may be not in buddy system, and
7740 * page_count() is not 0.
7741 */
7742 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7743 pfn++;
7744 SetPageReserved(page);
7745 continue;
7746 }
7747
7748 BUG_ON(page_count(page));
7749 BUG_ON(!PageBuddy(page));
7750 order = page_order(page);
7751 #ifdef CONFIG_DEBUG_VM
7752 pr_info("remove from free list %lx %d %lx\n",
7753 pfn, 1 << order, end_pfn);
7754 #endif
7755 list_del(&page->lru);
7756 rmv_page_order(page);
7757 zone->free_area[order].nr_free--;
7758 for (i = 0; i < (1 << order); i++)
7759 SetPageReserved((page+i));
7760 pfn += (1 << order);
7761 }
7762 spin_unlock_irqrestore(&zone->lock, flags);
7763 }
7764 #endif
7765
7766 bool is_free_buddy_page(struct page *page)
7767 {
7768 struct zone *zone = page_zone(page);
7769 unsigned long pfn = page_to_pfn(page);
7770 unsigned long flags;
7771 unsigned int order;
7772
7773 spin_lock_irqsave(&zone->lock, flags);
7774 for (order = 0; order < MAX_ORDER; order++) {
7775 struct page *page_head = page - (pfn & ((1 << order) - 1));
7776
7777 if (PageBuddy(page_head) && page_order(page_head) >= order)
7778 break;
7779 }
7780 spin_unlock_irqrestore(&zone->lock, flags);
7781
7782 return order < MAX_ORDER;
7783 }