]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/page_alloc.c
mm: introduce for_each_populated_zone() macro
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53
54 /*
55 * Array of node states.
56 */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 unsigned long highest_memmap_pfn __read_mostly;
73 int percpu_pagelist_fraction;
74
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78
79 static void __free_pages_ok(struct page *page, unsigned int order);
80
81 /*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
91 */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 32,
101 #endif
102 32,
103 };
104
105 EXPORT_SYMBOL(totalram_pages);
106
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
119 };
120
121 int min_free_kbytes = 1024;
122
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 /*
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
134 */
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
147
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169
170 int page_group_by_mobility_disabled __read_mostly;
171
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
176 }
177
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
184
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
192
193 return ret;
194 }
195
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
202
203 return 1;
204 }
205 /*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
214
215 return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 return 0;
221 }
222 #endif
223
224 static void bad_page(struct page *page)
225 {
226 static unsigned long resume;
227 static unsigned long nr_shown;
228 static unsigned long nr_unshown;
229
230 /*
231 * Allow a burst of 60 reports, then keep quiet for that minute;
232 * or allow a steady drip of one report per second.
233 */
234 if (nr_shown == 60) {
235 if (time_before(jiffies, resume)) {
236 nr_unshown++;
237 goto out;
238 }
239 if (nr_unshown) {
240 printk(KERN_ALERT
241 "BUG: Bad page state: %lu messages suppressed\n",
242 nr_unshown);
243 nr_unshown = 0;
244 }
245 nr_shown = 0;
246 }
247 if (nr_shown++ == 0)
248 resume = jiffies + 60 * HZ;
249
250 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
251 current->comm, page_to_pfn(page));
252 printk(KERN_ALERT
253 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
254 page, (void *)page->flags, page_count(page),
255 page_mapcount(page), page->mapping, page->index);
256
257 dump_stack();
258 out:
259 /* Leave bad fields for debug, except PageBuddy could make trouble */
260 __ClearPageBuddy(page);
261 add_taint(TAINT_BAD_PAGE);
262 }
263
264 /*
265 * Higher-order pages are called "compound pages". They are structured thusly:
266 *
267 * The first PAGE_SIZE page is called the "head page".
268 *
269 * The remaining PAGE_SIZE pages are called "tail pages".
270 *
271 * All pages have PG_compound set. All pages have their ->private pointing at
272 * the head page (even the head page has this).
273 *
274 * The first tail page's ->lru.next holds the address of the compound page's
275 * put_page() function. Its ->lru.prev holds the order of allocation.
276 * This usage means that zero-order pages may not be compound.
277 */
278
279 static void free_compound_page(struct page *page)
280 {
281 __free_pages_ok(page, compound_order(page));
282 }
283
284 void prep_compound_page(struct page *page, unsigned long order)
285 {
286 int i;
287 int nr_pages = 1 << order;
288
289 set_compound_page_dtor(page, free_compound_page);
290 set_compound_order(page, order);
291 __SetPageHead(page);
292 for (i = 1; i < nr_pages; i++) {
293 struct page *p = page + i;
294
295 __SetPageTail(p);
296 p->first_page = page;
297 }
298 }
299
300 #ifdef CONFIG_HUGETLBFS
301 void prep_compound_gigantic_page(struct page *page, unsigned long order)
302 {
303 int i;
304 int nr_pages = 1 << order;
305 struct page *p = page + 1;
306
307 set_compound_page_dtor(page, free_compound_page);
308 set_compound_order(page, order);
309 __SetPageHead(page);
310 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
311 __SetPageTail(p);
312 p->first_page = page;
313 }
314 }
315 #endif
316
317 static int destroy_compound_page(struct page *page, unsigned long order)
318 {
319 int i;
320 int nr_pages = 1 << order;
321 int bad = 0;
322
323 if (unlikely(compound_order(page) != order) ||
324 unlikely(!PageHead(page))) {
325 bad_page(page);
326 bad++;
327 }
328
329 __ClearPageHead(page);
330
331 for (i = 1; i < nr_pages; i++) {
332 struct page *p = page + i;
333
334 if (unlikely(!PageTail(p) | (p->first_page != page))) {
335 bad_page(page);
336 bad++;
337 }
338 __ClearPageTail(p);
339 }
340
341 return bad;
342 }
343
344 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
345 {
346 int i;
347
348 /*
349 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
350 * and __GFP_HIGHMEM from hard or soft interrupt context.
351 */
352 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
353 for (i = 0; i < (1 << order); i++)
354 clear_highpage(page + i);
355 }
356
357 static inline void set_page_order(struct page *page, int order)
358 {
359 set_page_private(page, order);
360 __SetPageBuddy(page);
361 }
362
363 static inline void rmv_page_order(struct page *page)
364 {
365 __ClearPageBuddy(page);
366 set_page_private(page, 0);
367 }
368
369 /*
370 * Locate the struct page for both the matching buddy in our
371 * pair (buddy1) and the combined O(n+1) page they form (page).
372 *
373 * 1) Any buddy B1 will have an order O twin B2 which satisfies
374 * the following equation:
375 * B2 = B1 ^ (1 << O)
376 * For example, if the starting buddy (buddy2) is #8 its order
377 * 1 buddy is #10:
378 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
379 *
380 * 2) Any buddy B will have an order O+1 parent P which
381 * satisfies the following equation:
382 * P = B & ~(1 << O)
383 *
384 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
385 */
386 static inline struct page *
387 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
388 {
389 unsigned long buddy_idx = page_idx ^ (1 << order);
390
391 return page + (buddy_idx - page_idx);
392 }
393
394 static inline unsigned long
395 __find_combined_index(unsigned long page_idx, unsigned int order)
396 {
397 return (page_idx & ~(1 << order));
398 }
399
400 /*
401 * This function checks whether a page is free && is the buddy
402 * we can do coalesce a page and its buddy if
403 * (a) the buddy is not in a hole &&
404 * (b) the buddy is in the buddy system &&
405 * (c) a page and its buddy have the same order &&
406 * (d) a page and its buddy are in the same zone.
407 *
408 * For recording whether a page is in the buddy system, we use PG_buddy.
409 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
410 *
411 * For recording page's order, we use page_private(page).
412 */
413 static inline int page_is_buddy(struct page *page, struct page *buddy,
414 int order)
415 {
416 if (!pfn_valid_within(page_to_pfn(buddy)))
417 return 0;
418
419 if (page_zone_id(page) != page_zone_id(buddy))
420 return 0;
421
422 if (PageBuddy(buddy) && page_order(buddy) == order) {
423 BUG_ON(page_count(buddy) != 0);
424 return 1;
425 }
426 return 0;
427 }
428
429 /*
430 * Freeing function for a buddy system allocator.
431 *
432 * The concept of a buddy system is to maintain direct-mapped table
433 * (containing bit values) for memory blocks of various "orders".
434 * The bottom level table contains the map for the smallest allocatable
435 * units of memory (here, pages), and each level above it describes
436 * pairs of units from the levels below, hence, "buddies".
437 * At a high level, all that happens here is marking the table entry
438 * at the bottom level available, and propagating the changes upward
439 * as necessary, plus some accounting needed to play nicely with other
440 * parts of the VM system.
441 * At each level, we keep a list of pages, which are heads of continuous
442 * free pages of length of (1 << order) and marked with PG_buddy. Page's
443 * order is recorded in page_private(page) field.
444 * So when we are allocating or freeing one, we can derive the state of the
445 * other. That is, if we allocate a small block, and both were
446 * free, the remainder of the region must be split into blocks.
447 * If a block is freed, and its buddy is also free, then this
448 * triggers coalescing into a block of larger size.
449 *
450 * -- wli
451 */
452
453 static inline void __free_one_page(struct page *page,
454 struct zone *zone, unsigned int order)
455 {
456 unsigned long page_idx;
457 int order_size = 1 << order;
458 int migratetype = get_pageblock_migratetype(page);
459
460 if (unlikely(PageCompound(page)))
461 if (unlikely(destroy_compound_page(page, order)))
462 return;
463
464 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
465
466 VM_BUG_ON(page_idx & (order_size - 1));
467 VM_BUG_ON(bad_range(zone, page));
468
469 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
470 while (order < MAX_ORDER-1) {
471 unsigned long combined_idx;
472 struct page *buddy;
473
474 buddy = __page_find_buddy(page, page_idx, order);
475 if (!page_is_buddy(page, buddy, order))
476 break;
477
478 /* Our buddy is free, merge with it and move up one order. */
479 list_del(&buddy->lru);
480 zone->free_area[order].nr_free--;
481 rmv_page_order(buddy);
482 combined_idx = __find_combined_index(page_idx, order);
483 page = page + (combined_idx - page_idx);
484 page_idx = combined_idx;
485 order++;
486 }
487 set_page_order(page, order);
488 list_add(&page->lru,
489 &zone->free_area[order].free_list[migratetype]);
490 zone->free_area[order].nr_free++;
491 }
492
493 static inline int free_pages_check(struct page *page)
494 {
495 free_page_mlock(page);
496 if (unlikely(page_mapcount(page) |
497 (page->mapping != NULL) |
498 (page_count(page) != 0) |
499 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
500 bad_page(page);
501 return 1;
502 }
503 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
504 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
505 return 0;
506 }
507
508 /*
509 * Frees a list of pages.
510 * Assumes all pages on list are in same zone, and of same order.
511 * count is the number of pages to free.
512 *
513 * If the zone was previously in an "all pages pinned" state then look to
514 * see if this freeing clears that state.
515 *
516 * And clear the zone's pages_scanned counter, to hold off the "all pages are
517 * pinned" detection logic.
518 */
519 static void free_pages_bulk(struct zone *zone, int count,
520 struct list_head *list, int order)
521 {
522 spin_lock(&zone->lock);
523 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
524 zone->pages_scanned = 0;
525 while (count--) {
526 struct page *page;
527
528 VM_BUG_ON(list_empty(list));
529 page = list_entry(list->prev, struct page, lru);
530 /* have to delete it as __free_one_page list manipulates */
531 list_del(&page->lru);
532 __free_one_page(page, zone, order);
533 }
534 spin_unlock(&zone->lock);
535 }
536
537 static void free_one_page(struct zone *zone, struct page *page, int order)
538 {
539 spin_lock(&zone->lock);
540 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
541 zone->pages_scanned = 0;
542 __free_one_page(page, zone, order);
543 spin_unlock(&zone->lock);
544 }
545
546 static void __free_pages_ok(struct page *page, unsigned int order)
547 {
548 unsigned long flags;
549 int i;
550 int bad = 0;
551
552 for (i = 0 ; i < (1 << order) ; ++i)
553 bad += free_pages_check(page + i);
554 if (bad)
555 return;
556
557 if (!PageHighMem(page)) {
558 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
559 debug_check_no_obj_freed(page_address(page),
560 PAGE_SIZE << order);
561 }
562 arch_free_page(page, order);
563 kernel_map_pages(page, 1 << order, 0);
564
565 local_irq_save(flags);
566 __count_vm_events(PGFREE, 1 << order);
567 free_one_page(page_zone(page), page, order);
568 local_irq_restore(flags);
569 }
570
571 /*
572 * permit the bootmem allocator to evade page validation on high-order frees
573 */
574 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
575 {
576 if (order == 0) {
577 __ClearPageReserved(page);
578 set_page_count(page, 0);
579 set_page_refcounted(page);
580 __free_page(page);
581 } else {
582 int loop;
583
584 prefetchw(page);
585 for (loop = 0; loop < BITS_PER_LONG; loop++) {
586 struct page *p = &page[loop];
587
588 if (loop + 1 < BITS_PER_LONG)
589 prefetchw(p + 1);
590 __ClearPageReserved(p);
591 set_page_count(p, 0);
592 }
593
594 set_page_refcounted(page);
595 __free_pages(page, order);
596 }
597 }
598
599
600 /*
601 * The order of subdivision here is critical for the IO subsystem.
602 * Please do not alter this order without good reasons and regression
603 * testing. Specifically, as large blocks of memory are subdivided,
604 * the order in which smaller blocks are delivered depends on the order
605 * they're subdivided in this function. This is the primary factor
606 * influencing the order in which pages are delivered to the IO
607 * subsystem according to empirical testing, and this is also justified
608 * by considering the behavior of a buddy system containing a single
609 * large block of memory acted on by a series of small allocations.
610 * This behavior is a critical factor in sglist merging's success.
611 *
612 * -- wli
613 */
614 static inline void expand(struct zone *zone, struct page *page,
615 int low, int high, struct free_area *area,
616 int migratetype)
617 {
618 unsigned long size = 1 << high;
619
620 while (high > low) {
621 area--;
622 high--;
623 size >>= 1;
624 VM_BUG_ON(bad_range(zone, &page[size]));
625 list_add(&page[size].lru, &area->free_list[migratetype]);
626 area->nr_free++;
627 set_page_order(&page[size], high);
628 }
629 }
630
631 /*
632 * This page is about to be returned from the page allocator
633 */
634 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
635 {
636 if (unlikely(page_mapcount(page) |
637 (page->mapping != NULL) |
638 (page_count(page) != 0) |
639 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
640 bad_page(page);
641 return 1;
642 }
643
644 set_page_private(page, 0);
645 set_page_refcounted(page);
646
647 arch_alloc_page(page, order);
648 kernel_map_pages(page, 1 << order, 1);
649
650 if (gfp_flags & __GFP_ZERO)
651 prep_zero_page(page, order, gfp_flags);
652
653 if (order && (gfp_flags & __GFP_COMP))
654 prep_compound_page(page, order);
655
656 return 0;
657 }
658
659 /*
660 * Go through the free lists for the given migratetype and remove
661 * the smallest available page from the freelists
662 */
663 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
664 int migratetype)
665 {
666 unsigned int current_order;
667 struct free_area * area;
668 struct page *page;
669
670 /* Find a page of the appropriate size in the preferred list */
671 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
672 area = &(zone->free_area[current_order]);
673 if (list_empty(&area->free_list[migratetype]))
674 continue;
675
676 page = list_entry(area->free_list[migratetype].next,
677 struct page, lru);
678 list_del(&page->lru);
679 rmv_page_order(page);
680 area->nr_free--;
681 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
682 expand(zone, page, order, current_order, area, migratetype);
683 return page;
684 }
685
686 return NULL;
687 }
688
689
690 /*
691 * This array describes the order lists are fallen back to when
692 * the free lists for the desirable migrate type are depleted
693 */
694 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
695 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
696 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
697 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
699 };
700
701 /*
702 * Move the free pages in a range to the free lists of the requested type.
703 * Note that start_page and end_pages are not aligned on a pageblock
704 * boundary. If alignment is required, use move_freepages_block()
705 */
706 static int move_freepages(struct zone *zone,
707 struct page *start_page, struct page *end_page,
708 int migratetype)
709 {
710 struct page *page;
711 unsigned long order;
712 int pages_moved = 0;
713
714 #ifndef CONFIG_HOLES_IN_ZONE
715 /*
716 * page_zone is not safe to call in this context when
717 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
718 * anyway as we check zone boundaries in move_freepages_block().
719 * Remove at a later date when no bug reports exist related to
720 * grouping pages by mobility
721 */
722 BUG_ON(page_zone(start_page) != page_zone(end_page));
723 #endif
724
725 for (page = start_page; page <= end_page;) {
726 /* Make sure we are not inadvertently changing nodes */
727 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
728
729 if (!pfn_valid_within(page_to_pfn(page))) {
730 page++;
731 continue;
732 }
733
734 if (!PageBuddy(page)) {
735 page++;
736 continue;
737 }
738
739 order = page_order(page);
740 list_del(&page->lru);
741 list_add(&page->lru,
742 &zone->free_area[order].free_list[migratetype]);
743 page += 1 << order;
744 pages_moved += 1 << order;
745 }
746
747 return pages_moved;
748 }
749
750 static int move_freepages_block(struct zone *zone, struct page *page,
751 int migratetype)
752 {
753 unsigned long start_pfn, end_pfn;
754 struct page *start_page, *end_page;
755
756 start_pfn = page_to_pfn(page);
757 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
758 start_page = pfn_to_page(start_pfn);
759 end_page = start_page + pageblock_nr_pages - 1;
760 end_pfn = start_pfn + pageblock_nr_pages - 1;
761
762 /* Do not cross zone boundaries */
763 if (start_pfn < zone->zone_start_pfn)
764 start_page = page;
765 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
766 return 0;
767
768 return move_freepages(zone, start_page, end_page, migratetype);
769 }
770
771 /* Remove an element from the buddy allocator from the fallback list */
772 static struct page *__rmqueue_fallback(struct zone *zone, int order,
773 int start_migratetype)
774 {
775 struct free_area * area;
776 int current_order;
777 struct page *page;
778 int migratetype, i;
779
780 /* Find the largest possible block of pages in the other list */
781 for (current_order = MAX_ORDER-1; current_order >= order;
782 --current_order) {
783 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
784 migratetype = fallbacks[start_migratetype][i];
785
786 /* MIGRATE_RESERVE handled later if necessary */
787 if (migratetype == MIGRATE_RESERVE)
788 continue;
789
790 area = &(zone->free_area[current_order]);
791 if (list_empty(&area->free_list[migratetype]))
792 continue;
793
794 page = list_entry(area->free_list[migratetype].next,
795 struct page, lru);
796 area->nr_free--;
797
798 /*
799 * If breaking a large block of pages, move all free
800 * pages to the preferred allocation list. If falling
801 * back for a reclaimable kernel allocation, be more
802 * agressive about taking ownership of free pages
803 */
804 if (unlikely(current_order >= (pageblock_order >> 1)) ||
805 start_migratetype == MIGRATE_RECLAIMABLE) {
806 unsigned long pages;
807 pages = move_freepages_block(zone, page,
808 start_migratetype);
809
810 /* Claim the whole block if over half of it is free */
811 if (pages >= (1 << (pageblock_order-1)))
812 set_pageblock_migratetype(page,
813 start_migratetype);
814
815 migratetype = start_migratetype;
816 }
817
818 /* Remove the page from the freelists */
819 list_del(&page->lru);
820 rmv_page_order(page);
821 __mod_zone_page_state(zone, NR_FREE_PAGES,
822 -(1UL << order));
823
824 if (current_order == pageblock_order)
825 set_pageblock_migratetype(page,
826 start_migratetype);
827
828 expand(zone, page, order, current_order, area, migratetype);
829 return page;
830 }
831 }
832
833 /* Use MIGRATE_RESERVE rather than fail an allocation */
834 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
835 }
836
837 /*
838 * Do the hard work of removing an element from the buddy allocator.
839 * Call me with the zone->lock already held.
840 */
841 static struct page *__rmqueue(struct zone *zone, unsigned int order,
842 int migratetype)
843 {
844 struct page *page;
845
846 page = __rmqueue_smallest(zone, order, migratetype);
847
848 if (unlikely(!page))
849 page = __rmqueue_fallback(zone, order, migratetype);
850
851 return page;
852 }
853
854 /*
855 * Obtain a specified number of elements from the buddy allocator, all under
856 * a single hold of the lock, for efficiency. Add them to the supplied list.
857 * Returns the number of new pages which were placed at *list.
858 */
859 static int rmqueue_bulk(struct zone *zone, unsigned int order,
860 unsigned long count, struct list_head *list,
861 int migratetype)
862 {
863 int i;
864
865 spin_lock(&zone->lock);
866 for (i = 0; i < count; ++i) {
867 struct page *page = __rmqueue(zone, order, migratetype);
868 if (unlikely(page == NULL))
869 break;
870
871 /*
872 * Split buddy pages returned by expand() are received here
873 * in physical page order. The page is added to the callers and
874 * list and the list head then moves forward. From the callers
875 * perspective, the linked list is ordered by page number in
876 * some conditions. This is useful for IO devices that can
877 * merge IO requests if the physical pages are ordered
878 * properly.
879 */
880 list_add(&page->lru, list);
881 set_page_private(page, migratetype);
882 list = &page->lru;
883 }
884 spin_unlock(&zone->lock);
885 return i;
886 }
887
888 #ifdef CONFIG_NUMA
889 /*
890 * Called from the vmstat counter updater to drain pagesets of this
891 * currently executing processor on remote nodes after they have
892 * expired.
893 *
894 * Note that this function must be called with the thread pinned to
895 * a single processor.
896 */
897 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
898 {
899 unsigned long flags;
900 int to_drain;
901
902 local_irq_save(flags);
903 if (pcp->count >= pcp->batch)
904 to_drain = pcp->batch;
905 else
906 to_drain = pcp->count;
907 free_pages_bulk(zone, to_drain, &pcp->list, 0);
908 pcp->count -= to_drain;
909 local_irq_restore(flags);
910 }
911 #endif
912
913 /*
914 * Drain pages of the indicated processor.
915 *
916 * The processor must either be the current processor and the
917 * thread pinned to the current processor or a processor that
918 * is not online.
919 */
920 static void drain_pages(unsigned int cpu)
921 {
922 unsigned long flags;
923 struct zone *zone;
924
925 for_each_populated_zone(zone) {
926 struct per_cpu_pageset *pset;
927 struct per_cpu_pages *pcp;
928
929 pset = zone_pcp(zone, cpu);
930
931 pcp = &pset->pcp;
932 local_irq_save(flags);
933 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
934 pcp->count = 0;
935 local_irq_restore(flags);
936 }
937 }
938
939 /*
940 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
941 */
942 void drain_local_pages(void *arg)
943 {
944 drain_pages(smp_processor_id());
945 }
946
947 /*
948 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
949 */
950 void drain_all_pages(void)
951 {
952 on_each_cpu(drain_local_pages, NULL, 1);
953 }
954
955 #ifdef CONFIG_HIBERNATION
956
957 void mark_free_pages(struct zone *zone)
958 {
959 unsigned long pfn, max_zone_pfn;
960 unsigned long flags;
961 int order, t;
962 struct list_head *curr;
963
964 if (!zone->spanned_pages)
965 return;
966
967 spin_lock_irqsave(&zone->lock, flags);
968
969 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
970 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
971 if (pfn_valid(pfn)) {
972 struct page *page = pfn_to_page(pfn);
973
974 if (!swsusp_page_is_forbidden(page))
975 swsusp_unset_page_free(page);
976 }
977
978 for_each_migratetype_order(order, t) {
979 list_for_each(curr, &zone->free_area[order].free_list[t]) {
980 unsigned long i;
981
982 pfn = page_to_pfn(list_entry(curr, struct page, lru));
983 for (i = 0; i < (1UL << order); i++)
984 swsusp_set_page_free(pfn_to_page(pfn + i));
985 }
986 }
987 spin_unlock_irqrestore(&zone->lock, flags);
988 }
989 #endif /* CONFIG_PM */
990
991 /*
992 * Free a 0-order page
993 */
994 static void free_hot_cold_page(struct page *page, int cold)
995 {
996 struct zone *zone = page_zone(page);
997 struct per_cpu_pages *pcp;
998 unsigned long flags;
999
1000 if (PageAnon(page))
1001 page->mapping = NULL;
1002 if (free_pages_check(page))
1003 return;
1004
1005 if (!PageHighMem(page)) {
1006 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1007 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1008 }
1009 arch_free_page(page, 0);
1010 kernel_map_pages(page, 1, 0);
1011
1012 pcp = &zone_pcp(zone, get_cpu())->pcp;
1013 local_irq_save(flags);
1014 __count_vm_event(PGFREE);
1015 if (cold)
1016 list_add_tail(&page->lru, &pcp->list);
1017 else
1018 list_add(&page->lru, &pcp->list);
1019 set_page_private(page, get_pageblock_migratetype(page));
1020 pcp->count++;
1021 if (pcp->count >= pcp->high) {
1022 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1023 pcp->count -= pcp->batch;
1024 }
1025 local_irq_restore(flags);
1026 put_cpu();
1027 }
1028
1029 void free_hot_page(struct page *page)
1030 {
1031 free_hot_cold_page(page, 0);
1032 }
1033
1034 void free_cold_page(struct page *page)
1035 {
1036 free_hot_cold_page(page, 1);
1037 }
1038
1039 /*
1040 * split_page takes a non-compound higher-order page, and splits it into
1041 * n (1<<order) sub-pages: page[0..n]
1042 * Each sub-page must be freed individually.
1043 *
1044 * Note: this is probably too low level an operation for use in drivers.
1045 * Please consult with lkml before using this in your driver.
1046 */
1047 void split_page(struct page *page, unsigned int order)
1048 {
1049 int i;
1050
1051 VM_BUG_ON(PageCompound(page));
1052 VM_BUG_ON(!page_count(page));
1053 for (i = 1; i < (1 << order); i++)
1054 set_page_refcounted(page + i);
1055 }
1056
1057 /*
1058 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1059 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1060 * or two.
1061 */
1062 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1063 struct zone *zone, int order, gfp_t gfp_flags)
1064 {
1065 unsigned long flags;
1066 struct page *page;
1067 int cold = !!(gfp_flags & __GFP_COLD);
1068 int cpu;
1069 int migratetype = allocflags_to_migratetype(gfp_flags);
1070
1071 again:
1072 cpu = get_cpu();
1073 if (likely(order == 0)) {
1074 struct per_cpu_pages *pcp;
1075
1076 pcp = &zone_pcp(zone, cpu)->pcp;
1077 local_irq_save(flags);
1078 if (!pcp->count) {
1079 pcp->count = rmqueue_bulk(zone, 0,
1080 pcp->batch, &pcp->list, migratetype);
1081 if (unlikely(!pcp->count))
1082 goto failed;
1083 }
1084
1085 /* Find a page of the appropriate migrate type */
1086 if (cold) {
1087 list_for_each_entry_reverse(page, &pcp->list, lru)
1088 if (page_private(page) == migratetype)
1089 break;
1090 } else {
1091 list_for_each_entry(page, &pcp->list, lru)
1092 if (page_private(page) == migratetype)
1093 break;
1094 }
1095
1096 /* Allocate more to the pcp list if necessary */
1097 if (unlikely(&page->lru == &pcp->list)) {
1098 pcp->count += rmqueue_bulk(zone, 0,
1099 pcp->batch, &pcp->list, migratetype);
1100 page = list_entry(pcp->list.next, struct page, lru);
1101 }
1102
1103 list_del(&page->lru);
1104 pcp->count--;
1105 } else {
1106 spin_lock_irqsave(&zone->lock, flags);
1107 page = __rmqueue(zone, order, migratetype);
1108 spin_unlock(&zone->lock);
1109 if (!page)
1110 goto failed;
1111 }
1112
1113 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1114 zone_statistics(preferred_zone, zone);
1115 local_irq_restore(flags);
1116 put_cpu();
1117
1118 VM_BUG_ON(bad_range(zone, page));
1119 if (prep_new_page(page, order, gfp_flags))
1120 goto again;
1121 return page;
1122
1123 failed:
1124 local_irq_restore(flags);
1125 put_cpu();
1126 return NULL;
1127 }
1128
1129 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1130 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1131 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1132 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1133 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1134 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1135 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1136
1137 #ifdef CONFIG_FAIL_PAGE_ALLOC
1138
1139 static struct fail_page_alloc_attr {
1140 struct fault_attr attr;
1141
1142 u32 ignore_gfp_highmem;
1143 u32 ignore_gfp_wait;
1144 u32 min_order;
1145
1146 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1147
1148 struct dentry *ignore_gfp_highmem_file;
1149 struct dentry *ignore_gfp_wait_file;
1150 struct dentry *min_order_file;
1151
1152 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1153
1154 } fail_page_alloc = {
1155 .attr = FAULT_ATTR_INITIALIZER,
1156 .ignore_gfp_wait = 1,
1157 .ignore_gfp_highmem = 1,
1158 .min_order = 1,
1159 };
1160
1161 static int __init setup_fail_page_alloc(char *str)
1162 {
1163 return setup_fault_attr(&fail_page_alloc.attr, str);
1164 }
1165 __setup("fail_page_alloc=", setup_fail_page_alloc);
1166
1167 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1168 {
1169 if (order < fail_page_alloc.min_order)
1170 return 0;
1171 if (gfp_mask & __GFP_NOFAIL)
1172 return 0;
1173 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1174 return 0;
1175 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1176 return 0;
1177
1178 return should_fail(&fail_page_alloc.attr, 1 << order);
1179 }
1180
1181 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1182
1183 static int __init fail_page_alloc_debugfs(void)
1184 {
1185 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1186 struct dentry *dir;
1187 int err;
1188
1189 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1190 "fail_page_alloc");
1191 if (err)
1192 return err;
1193 dir = fail_page_alloc.attr.dentries.dir;
1194
1195 fail_page_alloc.ignore_gfp_wait_file =
1196 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1197 &fail_page_alloc.ignore_gfp_wait);
1198
1199 fail_page_alloc.ignore_gfp_highmem_file =
1200 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1201 &fail_page_alloc.ignore_gfp_highmem);
1202 fail_page_alloc.min_order_file =
1203 debugfs_create_u32("min-order", mode, dir,
1204 &fail_page_alloc.min_order);
1205
1206 if (!fail_page_alloc.ignore_gfp_wait_file ||
1207 !fail_page_alloc.ignore_gfp_highmem_file ||
1208 !fail_page_alloc.min_order_file) {
1209 err = -ENOMEM;
1210 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1211 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1212 debugfs_remove(fail_page_alloc.min_order_file);
1213 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1214 }
1215
1216 return err;
1217 }
1218
1219 late_initcall(fail_page_alloc_debugfs);
1220
1221 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1222
1223 #else /* CONFIG_FAIL_PAGE_ALLOC */
1224
1225 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1226 {
1227 return 0;
1228 }
1229
1230 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1231
1232 /*
1233 * Return 1 if free pages are above 'mark'. This takes into account the order
1234 * of the allocation.
1235 */
1236 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1237 int classzone_idx, int alloc_flags)
1238 {
1239 /* free_pages my go negative - that's OK */
1240 long min = mark;
1241 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1242 int o;
1243
1244 if (alloc_flags & ALLOC_HIGH)
1245 min -= min / 2;
1246 if (alloc_flags & ALLOC_HARDER)
1247 min -= min / 4;
1248
1249 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1250 return 0;
1251 for (o = 0; o < order; o++) {
1252 /* At the next order, this order's pages become unavailable */
1253 free_pages -= z->free_area[o].nr_free << o;
1254
1255 /* Require fewer higher order pages to be free */
1256 min >>= 1;
1257
1258 if (free_pages <= min)
1259 return 0;
1260 }
1261 return 1;
1262 }
1263
1264 #ifdef CONFIG_NUMA
1265 /*
1266 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1267 * skip over zones that are not allowed by the cpuset, or that have
1268 * been recently (in last second) found to be nearly full. See further
1269 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1270 * that have to skip over a lot of full or unallowed zones.
1271 *
1272 * If the zonelist cache is present in the passed in zonelist, then
1273 * returns a pointer to the allowed node mask (either the current
1274 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1275 *
1276 * If the zonelist cache is not available for this zonelist, does
1277 * nothing and returns NULL.
1278 *
1279 * If the fullzones BITMAP in the zonelist cache is stale (more than
1280 * a second since last zap'd) then we zap it out (clear its bits.)
1281 *
1282 * We hold off even calling zlc_setup, until after we've checked the
1283 * first zone in the zonelist, on the theory that most allocations will
1284 * be satisfied from that first zone, so best to examine that zone as
1285 * quickly as we can.
1286 */
1287 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1288 {
1289 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1290 nodemask_t *allowednodes; /* zonelist_cache approximation */
1291
1292 zlc = zonelist->zlcache_ptr;
1293 if (!zlc)
1294 return NULL;
1295
1296 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1297 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1298 zlc->last_full_zap = jiffies;
1299 }
1300
1301 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1302 &cpuset_current_mems_allowed :
1303 &node_states[N_HIGH_MEMORY];
1304 return allowednodes;
1305 }
1306
1307 /*
1308 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1309 * if it is worth looking at further for free memory:
1310 * 1) Check that the zone isn't thought to be full (doesn't have its
1311 * bit set in the zonelist_cache fullzones BITMAP).
1312 * 2) Check that the zones node (obtained from the zonelist_cache
1313 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1314 * Return true (non-zero) if zone is worth looking at further, or
1315 * else return false (zero) if it is not.
1316 *
1317 * This check -ignores- the distinction between various watermarks,
1318 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1319 * found to be full for any variation of these watermarks, it will
1320 * be considered full for up to one second by all requests, unless
1321 * we are so low on memory on all allowed nodes that we are forced
1322 * into the second scan of the zonelist.
1323 *
1324 * In the second scan we ignore this zonelist cache and exactly
1325 * apply the watermarks to all zones, even it is slower to do so.
1326 * We are low on memory in the second scan, and should leave no stone
1327 * unturned looking for a free page.
1328 */
1329 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1330 nodemask_t *allowednodes)
1331 {
1332 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1333 int i; /* index of *z in zonelist zones */
1334 int n; /* node that zone *z is on */
1335
1336 zlc = zonelist->zlcache_ptr;
1337 if (!zlc)
1338 return 1;
1339
1340 i = z - zonelist->_zonerefs;
1341 n = zlc->z_to_n[i];
1342
1343 /* This zone is worth trying if it is allowed but not full */
1344 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1345 }
1346
1347 /*
1348 * Given 'z' scanning a zonelist, set the corresponding bit in
1349 * zlc->fullzones, so that subsequent attempts to allocate a page
1350 * from that zone don't waste time re-examining it.
1351 */
1352 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1353 {
1354 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1355 int i; /* index of *z in zonelist zones */
1356
1357 zlc = zonelist->zlcache_ptr;
1358 if (!zlc)
1359 return;
1360
1361 i = z - zonelist->_zonerefs;
1362
1363 set_bit(i, zlc->fullzones);
1364 }
1365
1366 #else /* CONFIG_NUMA */
1367
1368 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1369 {
1370 return NULL;
1371 }
1372
1373 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1374 nodemask_t *allowednodes)
1375 {
1376 return 1;
1377 }
1378
1379 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1380 {
1381 }
1382 #endif /* CONFIG_NUMA */
1383
1384 /*
1385 * get_page_from_freelist goes through the zonelist trying to allocate
1386 * a page.
1387 */
1388 static struct page *
1389 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1390 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1391 {
1392 struct zoneref *z;
1393 struct page *page = NULL;
1394 int classzone_idx;
1395 struct zone *zone, *preferred_zone;
1396 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1397 int zlc_active = 0; /* set if using zonelist_cache */
1398 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1399
1400 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1401 &preferred_zone);
1402 if (!preferred_zone)
1403 return NULL;
1404
1405 classzone_idx = zone_idx(preferred_zone);
1406
1407 zonelist_scan:
1408 /*
1409 * Scan zonelist, looking for a zone with enough free.
1410 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1411 */
1412 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1413 high_zoneidx, nodemask) {
1414 if (NUMA_BUILD && zlc_active &&
1415 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1416 continue;
1417 if ((alloc_flags & ALLOC_CPUSET) &&
1418 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1419 goto try_next_zone;
1420
1421 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1422 unsigned long mark;
1423 if (alloc_flags & ALLOC_WMARK_MIN)
1424 mark = zone->pages_min;
1425 else if (alloc_flags & ALLOC_WMARK_LOW)
1426 mark = zone->pages_low;
1427 else
1428 mark = zone->pages_high;
1429 if (!zone_watermark_ok(zone, order, mark,
1430 classzone_idx, alloc_flags)) {
1431 if (!zone_reclaim_mode ||
1432 !zone_reclaim(zone, gfp_mask, order))
1433 goto this_zone_full;
1434 }
1435 }
1436
1437 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1438 if (page)
1439 break;
1440 this_zone_full:
1441 if (NUMA_BUILD)
1442 zlc_mark_zone_full(zonelist, z);
1443 try_next_zone:
1444 if (NUMA_BUILD && !did_zlc_setup) {
1445 /* we do zlc_setup after the first zone is tried */
1446 allowednodes = zlc_setup(zonelist, alloc_flags);
1447 zlc_active = 1;
1448 did_zlc_setup = 1;
1449 }
1450 }
1451
1452 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1453 /* Disable zlc cache for second zonelist scan */
1454 zlc_active = 0;
1455 goto zonelist_scan;
1456 }
1457 return page;
1458 }
1459
1460 /*
1461 * This is the 'heart' of the zoned buddy allocator.
1462 */
1463 struct page *
1464 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1465 struct zonelist *zonelist, nodemask_t *nodemask)
1466 {
1467 const gfp_t wait = gfp_mask & __GFP_WAIT;
1468 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1469 struct zoneref *z;
1470 struct zone *zone;
1471 struct page *page;
1472 struct reclaim_state reclaim_state;
1473 struct task_struct *p = current;
1474 int do_retry;
1475 int alloc_flags;
1476 unsigned long did_some_progress;
1477 unsigned long pages_reclaimed = 0;
1478
1479 lockdep_trace_alloc(gfp_mask);
1480
1481 might_sleep_if(wait);
1482
1483 if (should_fail_alloc_page(gfp_mask, order))
1484 return NULL;
1485
1486 restart:
1487 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1488
1489 if (unlikely(!z->zone)) {
1490 /*
1491 * Happens if we have an empty zonelist as a result of
1492 * GFP_THISNODE being used on a memoryless node
1493 */
1494 return NULL;
1495 }
1496
1497 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1498 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1499 if (page)
1500 goto got_pg;
1501
1502 /*
1503 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1504 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1505 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1506 * using a larger set of nodes after it has established that the
1507 * allowed per node queues are empty and that nodes are
1508 * over allocated.
1509 */
1510 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1511 goto nopage;
1512
1513 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1514 wakeup_kswapd(zone, order);
1515
1516 /*
1517 * OK, we're below the kswapd watermark and have kicked background
1518 * reclaim. Now things get more complex, so set up alloc_flags according
1519 * to how we want to proceed.
1520 *
1521 * The caller may dip into page reserves a bit more if the caller
1522 * cannot run direct reclaim, or if the caller has realtime scheduling
1523 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1524 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1525 */
1526 alloc_flags = ALLOC_WMARK_MIN;
1527 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1528 alloc_flags |= ALLOC_HARDER;
1529 if (gfp_mask & __GFP_HIGH)
1530 alloc_flags |= ALLOC_HIGH;
1531 if (wait)
1532 alloc_flags |= ALLOC_CPUSET;
1533
1534 /*
1535 * Go through the zonelist again. Let __GFP_HIGH and allocations
1536 * coming from realtime tasks go deeper into reserves.
1537 *
1538 * This is the last chance, in general, before the goto nopage.
1539 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1540 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1541 */
1542 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1543 high_zoneidx, alloc_flags);
1544 if (page)
1545 goto got_pg;
1546
1547 /* This allocation should allow future memory freeing. */
1548
1549 rebalance:
1550 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1551 && !in_interrupt()) {
1552 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1553 nofail_alloc:
1554 /* go through the zonelist yet again, ignoring mins */
1555 page = get_page_from_freelist(gfp_mask, nodemask, order,
1556 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1557 if (page)
1558 goto got_pg;
1559 if (gfp_mask & __GFP_NOFAIL) {
1560 congestion_wait(WRITE, HZ/50);
1561 goto nofail_alloc;
1562 }
1563 }
1564 goto nopage;
1565 }
1566
1567 /* Atomic allocations - we can't balance anything */
1568 if (!wait)
1569 goto nopage;
1570
1571 cond_resched();
1572
1573 /* We now go into synchronous reclaim */
1574 cpuset_memory_pressure_bump();
1575 /*
1576 * The task's cpuset might have expanded its set of allowable nodes
1577 */
1578 cpuset_update_task_memory_state();
1579 p->flags |= PF_MEMALLOC;
1580
1581 lockdep_set_current_reclaim_state(gfp_mask);
1582 reclaim_state.reclaimed_slab = 0;
1583 p->reclaim_state = &reclaim_state;
1584
1585 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1586
1587 p->reclaim_state = NULL;
1588 lockdep_clear_current_reclaim_state();
1589 p->flags &= ~PF_MEMALLOC;
1590
1591 cond_resched();
1592
1593 if (order != 0)
1594 drain_all_pages();
1595
1596 if (likely(did_some_progress)) {
1597 page = get_page_from_freelist(gfp_mask, nodemask, order,
1598 zonelist, high_zoneidx, alloc_flags);
1599 if (page)
1600 goto got_pg;
1601 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1602 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1603 schedule_timeout_uninterruptible(1);
1604 goto restart;
1605 }
1606
1607 /*
1608 * Go through the zonelist yet one more time, keep
1609 * very high watermark here, this is only to catch
1610 * a parallel oom killing, we must fail if we're still
1611 * under heavy pressure.
1612 */
1613 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1614 order, zonelist, high_zoneidx,
1615 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1616 if (page) {
1617 clear_zonelist_oom(zonelist, gfp_mask);
1618 goto got_pg;
1619 }
1620
1621 /* The OOM killer will not help higher order allocs so fail */
1622 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1623 clear_zonelist_oom(zonelist, gfp_mask);
1624 goto nopage;
1625 }
1626
1627 out_of_memory(zonelist, gfp_mask, order);
1628 clear_zonelist_oom(zonelist, gfp_mask);
1629 goto restart;
1630 }
1631
1632 /*
1633 * Don't let big-order allocations loop unless the caller explicitly
1634 * requests that. Wait for some write requests to complete then retry.
1635 *
1636 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1637 * means __GFP_NOFAIL, but that may not be true in other
1638 * implementations.
1639 *
1640 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1641 * specified, then we retry until we no longer reclaim any pages
1642 * (above), or we've reclaimed an order of pages at least as
1643 * large as the allocation's order. In both cases, if the
1644 * allocation still fails, we stop retrying.
1645 */
1646 pages_reclaimed += did_some_progress;
1647 do_retry = 0;
1648 if (!(gfp_mask & __GFP_NORETRY)) {
1649 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1650 do_retry = 1;
1651 } else {
1652 if (gfp_mask & __GFP_REPEAT &&
1653 pages_reclaimed < (1 << order))
1654 do_retry = 1;
1655 }
1656 if (gfp_mask & __GFP_NOFAIL)
1657 do_retry = 1;
1658 }
1659 if (do_retry) {
1660 congestion_wait(WRITE, HZ/50);
1661 goto rebalance;
1662 }
1663
1664 nopage:
1665 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1666 printk(KERN_WARNING "%s: page allocation failure."
1667 " order:%d, mode:0x%x\n",
1668 p->comm, order, gfp_mask);
1669 dump_stack();
1670 show_mem();
1671 }
1672 got_pg:
1673 return page;
1674 }
1675 EXPORT_SYMBOL(__alloc_pages_internal);
1676
1677 /*
1678 * Common helper functions.
1679 */
1680 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1681 {
1682 struct page * page;
1683 page = alloc_pages(gfp_mask, order);
1684 if (!page)
1685 return 0;
1686 return (unsigned long) page_address(page);
1687 }
1688
1689 EXPORT_SYMBOL(__get_free_pages);
1690
1691 unsigned long get_zeroed_page(gfp_t gfp_mask)
1692 {
1693 struct page * page;
1694
1695 /*
1696 * get_zeroed_page() returns a 32-bit address, which cannot represent
1697 * a highmem page
1698 */
1699 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1700
1701 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1702 if (page)
1703 return (unsigned long) page_address(page);
1704 return 0;
1705 }
1706
1707 EXPORT_SYMBOL(get_zeroed_page);
1708
1709 void __pagevec_free(struct pagevec *pvec)
1710 {
1711 int i = pagevec_count(pvec);
1712
1713 while (--i >= 0)
1714 free_hot_cold_page(pvec->pages[i], pvec->cold);
1715 }
1716
1717 void __free_pages(struct page *page, unsigned int order)
1718 {
1719 if (put_page_testzero(page)) {
1720 if (order == 0)
1721 free_hot_page(page);
1722 else
1723 __free_pages_ok(page, order);
1724 }
1725 }
1726
1727 EXPORT_SYMBOL(__free_pages);
1728
1729 void free_pages(unsigned long addr, unsigned int order)
1730 {
1731 if (addr != 0) {
1732 VM_BUG_ON(!virt_addr_valid((void *)addr));
1733 __free_pages(virt_to_page((void *)addr), order);
1734 }
1735 }
1736
1737 EXPORT_SYMBOL(free_pages);
1738
1739 /**
1740 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1741 * @size: the number of bytes to allocate
1742 * @gfp_mask: GFP flags for the allocation
1743 *
1744 * This function is similar to alloc_pages(), except that it allocates the
1745 * minimum number of pages to satisfy the request. alloc_pages() can only
1746 * allocate memory in power-of-two pages.
1747 *
1748 * This function is also limited by MAX_ORDER.
1749 *
1750 * Memory allocated by this function must be released by free_pages_exact().
1751 */
1752 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1753 {
1754 unsigned int order = get_order(size);
1755 unsigned long addr;
1756
1757 addr = __get_free_pages(gfp_mask, order);
1758 if (addr) {
1759 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1760 unsigned long used = addr + PAGE_ALIGN(size);
1761
1762 split_page(virt_to_page(addr), order);
1763 while (used < alloc_end) {
1764 free_page(used);
1765 used += PAGE_SIZE;
1766 }
1767 }
1768
1769 return (void *)addr;
1770 }
1771 EXPORT_SYMBOL(alloc_pages_exact);
1772
1773 /**
1774 * free_pages_exact - release memory allocated via alloc_pages_exact()
1775 * @virt: the value returned by alloc_pages_exact.
1776 * @size: size of allocation, same value as passed to alloc_pages_exact().
1777 *
1778 * Release the memory allocated by a previous call to alloc_pages_exact.
1779 */
1780 void free_pages_exact(void *virt, size_t size)
1781 {
1782 unsigned long addr = (unsigned long)virt;
1783 unsigned long end = addr + PAGE_ALIGN(size);
1784
1785 while (addr < end) {
1786 free_page(addr);
1787 addr += PAGE_SIZE;
1788 }
1789 }
1790 EXPORT_SYMBOL(free_pages_exact);
1791
1792 static unsigned int nr_free_zone_pages(int offset)
1793 {
1794 struct zoneref *z;
1795 struct zone *zone;
1796
1797 /* Just pick one node, since fallback list is circular */
1798 unsigned int sum = 0;
1799
1800 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1801
1802 for_each_zone_zonelist(zone, z, zonelist, offset) {
1803 unsigned long size = zone->present_pages;
1804 unsigned long high = zone->pages_high;
1805 if (size > high)
1806 sum += size - high;
1807 }
1808
1809 return sum;
1810 }
1811
1812 /*
1813 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1814 */
1815 unsigned int nr_free_buffer_pages(void)
1816 {
1817 return nr_free_zone_pages(gfp_zone(GFP_USER));
1818 }
1819 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1820
1821 /*
1822 * Amount of free RAM allocatable within all zones
1823 */
1824 unsigned int nr_free_pagecache_pages(void)
1825 {
1826 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1827 }
1828
1829 static inline void show_node(struct zone *zone)
1830 {
1831 if (NUMA_BUILD)
1832 printk("Node %d ", zone_to_nid(zone));
1833 }
1834
1835 void si_meminfo(struct sysinfo *val)
1836 {
1837 val->totalram = totalram_pages;
1838 val->sharedram = 0;
1839 val->freeram = global_page_state(NR_FREE_PAGES);
1840 val->bufferram = nr_blockdev_pages();
1841 val->totalhigh = totalhigh_pages;
1842 val->freehigh = nr_free_highpages();
1843 val->mem_unit = PAGE_SIZE;
1844 }
1845
1846 EXPORT_SYMBOL(si_meminfo);
1847
1848 #ifdef CONFIG_NUMA
1849 void si_meminfo_node(struct sysinfo *val, int nid)
1850 {
1851 pg_data_t *pgdat = NODE_DATA(nid);
1852
1853 val->totalram = pgdat->node_present_pages;
1854 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1855 #ifdef CONFIG_HIGHMEM
1856 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1857 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1858 NR_FREE_PAGES);
1859 #else
1860 val->totalhigh = 0;
1861 val->freehigh = 0;
1862 #endif
1863 val->mem_unit = PAGE_SIZE;
1864 }
1865 #endif
1866
1867 #define K(x) ((x) << (PAGE_SHIFT-10))
1868
1869 /*
1870 * Show free area list (used inside shift_scroll-lock stuff)
1871 * We also calculate the percentage fragmentation. We do this by counting the
1872 * memory on each free list with the exception of the first item on the list.
1873 */
1874 void show_free_areas(void)
1875 {
1876 int cpu;
1877 struct zone *zone;
1878
1879 for_each_populated_zone(zone) {
1880 show_node(zone);
1881 printk("%s per-cpu:\n", zone->name);
1882
1883 for_each_online_cpu(cpu) {
1884 struct per_cpu_pageset *pageset;
1885
1886 pageset = zone_pcp(zone, cpu);
1887
1888 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1889 cpu, pageset->pcp.high,
1890 pageset->pcp.batch, pageset->pcp.count);
1891 }
1892 }
1893
1894 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1895 " inactive_file:%lu"
1896 //TODO: check/adjust line lengths
1897 #ifdef CONFIG_UNEVICTABLE_LRU
1898 " unevictable:%lu"
1899 #endif
1900 " dirty:%lu writeback:%lu unstable:%lu\n"
1901 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1902 global_page_state(NR_ACTIVE_ANON),
1903 global_page_state(NR_ACTIVE_FILE),
1904 global_page_state(NR_INACTIVE_ANON),
1905 global_page_state(NR_INACTIVE_FILE),
1906 #ifdef CONFIG_UNEVICTABLE_LRU
1907 global_page_state(NR_UNEVICTABLE),
1908 #endif
1909 global_page_state(NR_FILE_DIRTY),
1910 global_page_state(NR_WRITEBACK),
1911 global_page_state(NR_UNSTABLE_NFS),
1912 global_page_state(NR_FREE_PAGES),
1913 global_page_state(NR_SLAB_RECLAIMABLE) +
1914 global_page_state(NR_SLAB_UNRECLAIMABLE),
1915 global_page_state(NR_FILE_MAPPED),
1916 global_page_state(NR_PAGETABLE),
1917 global_page_state(NR_BOUNCE));
1918
1919 for_each_populated_zone(zone) {
1920 int i;
1921
1922 show_node(zone);
1923 printk("%s"
1924 " free:%lukB"
1925 " min:%lukB"
1926 " low:%lukB"
1927 " high:%lukB"
1928 " active_anon:%lukB"
1929 " inactive_anon:%lukB"
1930 " active_file:%lukB"
1931 " inactive_file:%lukB"
1932 #ifdef CONFIG_UNEVICTABLE_LRU
1933 " unevictable:%lukB"
1934 #endif
1935 " present:%lukB"
1936 " pages_scanned:%lu"
1937 " all_unreclaimable? %s"
1938 "\n",
1939 zone->name,
1940 K(zone_page_state(zone, NR_FREE_PAGES)),
1941 K(zone->pages_min),
1942 K(zone->pages_low),
1943 K(zone->pages_high),
1944 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1945 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1946 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1947 K(zone_page_state(zone, NR_INACTIVE_FILE)),
1948 #ifdef CONFIG_UNEVICTABLE_LRU
1949 K(zone_page_state(zone, NR_UNEVICTABLE)),
1950 #endif
1951 K(zone->present_pages),
1952 zone->pages_scanned,
1953 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1954 );
1955 printk("lowmem_reserve[]:");
1956 for (i = 0; i < MAX_NR_ZONES; i++)
1957 printk(" %lu", zone->lowmem_reserve[i]);
1958 printk("\n");
1959 }
1960
1961 for_each_populated_zone(zone) {
1962 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1963
1964 show_node(zone);
1965 printk("%s: ", zone->name);
1966
1967 spin_lock_irqsave(&zone->lock, flags);
1968 for (order = 0; order < MAX_ORDER; order++) {
1969 nr[order] = zone->free_area[order].nr_free;
1970 total += nr[order] << order;
1971 }
1972 spin_unlock_irqrestore(&zone->lock, flags);
1973 for (order = 0; order < MAX_ORDER; order++)
1974 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1975 printk("= %lukB\n", K(total));
1976 }
1977
1978 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1979
1980 show_swap_cache_info();
1981 }
1982
1983 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1984 {
1985 zoneref->zone = zone;
1986 zoneref->zone_idx = zone_idx(zone);
1987 }
1988
1989 /*
1990 * Builds allocation fallback zone lists.
1991 *
1992 * Add all populated zones of a node to the zonelist.
1993 */
1994 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1995 int nr_zones, enum zone_type zone_type)
1996 {
1997 struct zone *zone;
1998
1999 BUG_ON(zone_type >= MAX_NR_ZONES);
2000 zone_type++;
2001
2002 do {
2003 zone_type--;
2004 zone = pgdat->node_zones + zone_type;
2005 if (populated_zone(zone)) {
2006 zoneref_set_zone(zone,
2007 &zonelist->_zonerefs[nr_zones++]);
2008 check_highest_zone(zone_type);
2009 }
2010
2011 } while (zone_type);
2012 return nr_zones;
2013 }
2014
2015
2016 /*
2017 * zonelist_order:
2018 * 0 = automatic detection of better ordering.
2019 * 1 = order by ([node] distance, -zonetype)
2020 * 2 = order by (-zonetype, [node] distance)
2021 *
2022 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2023 * the same zonelist. So only NUMA can configure this param.
2024 */
2025 #define ZONELIST_ORDER_DEFAULT 0
2026 #define ZONELIST_ORDER_NODE 1
2027 #define ZONELIST_ORDER_ZONE 2
2028
2029 /* zonelist order in the kernel.
2030 * set_zonelist_order() will set this to NODE or ZONE.
2031 */
2032 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2033 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2034
2035
2036 #ifdef CONFIG_NUMA
2037 /* The value user specified ....changed by config */
2038 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2039 /* string for sysctl */
2040 #define NUMA_ZONELIST_ORDER_LEN 16
2041 char numa_zonelist_order[16] = "default";
2042
2043 /*
2044 * interface for configure zonelist ordering.
2045 * command line option "numa_zonelist_order"
2046 * = "[dD]efault - default, automatic configuration.
2047 * = "[nN]ode - order by node locality, then by zone within node
2048 * = "[zZ]one - order by zone, then by locality within zone
2049 */
2050
2051 static int __parse_numa_zonelist_order(char *s)
2052 {
2053 if (*s == 'd' || *s == 'D') {
2054 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2055 } else if (*s == 'n' || *s == 'N') {
2056 user_zonelist_order = ZONELIST_ORDER_NODE;
2057 } else if (*s == 'z' || *s == 'Z') {
2058 user_zonelist_order = ZONELIST_ORDER_ZONE;
2059 } else {
2060 printk(KERN_WARNING
2061 "Ignoring invalid numa_zonelist_order value: "
2062 "%s\n", s);
2063 return -EINVAL;
2064 }
2065 return 0;
2066 }
2067
2068 static __init int setup_numa_zonelist_order(char *s)
2069 {
2070 if (s)
2071 return __parse_numa_zonelist_order(s);
2072 return 0;
2073 }
2074 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2075
2076 /*
2077 * sysctl handler for numa_zonelist_order
2078 */
2079 int numa_zonelist_order_handler(ctl_table *table, int write,
2080 struct file *file, void __user *buffer, size_t *length,
2081 loff_t *ppos)
2082 {
2083 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2084 int ret;
2085
2086 if (write)
2087 strncpy(saved_string, (char*)table->data,
2088 NUMA_ZONELIST_ORDER_LEN);
2089 ret = proc_dostring(table, write, file, buffer, length, ppos);
2090 if (ret)
2091 return ret;
2092 if (write) {
2093 int oldval = user_zonelist_order;
2094 if (__parse_numa_zonelist_order((char*)table->data)) {
2095 /*
2096 * bogus value. restore saved string
2097 */
2098 strncpy((char*)table->data, saved_string,
2099 NUMA_ZONELIST_ORDER_LEN);
2100 user_zonelist_order = oldval;
2101 } else if (oldval != user_zonelist_order)
2102 build_all_zonelists();
2103 }
2104 return 0;
2105 }
2106
2107
2108 #define MAX_NODE_LOAD (num_online_nodes())
2109 static int node_load[MAX_NUMNODES];
2110
2111 /**
2112 * find_next_best_node - find the next node that should appear in a given node's fallback list
2113 * @node: node whose fallback list we're appending
2114 * @used_node_mask: nodemask_t of already used nodes
2115 *
2116 * We use a number of factors to determine which is the next node that should
2117 * appear on a given node's fallback list. The node should not have appeared
2118 * already in @node's fallback list, and it should be the next closest node
2119 * according to the distance array (which contains arbitrary distance values
2120 * from each node to each node in the system), and should also prefer nodes
2121 * with no CPUs, since presumably they'll have very little allocation pressure
2122 * on them otherwise.
2123 * It returns -1 if no node is found.
2124 */
2125 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2126 {
2127 int n, val;
2128 int min_val = INT_MAX;
2129 int best_node = -1;
2130 node_to_cpumask_ptr(tmp, 0);
2131
2132 /* Use the local node if we haven't already */
2133 if (!node_isset(node, *used_node_mask)) {
2134 node_set(node, *used_node_mask);
2135 return node;
2136 }
2137
2138 for_each_node_state(n, N_HIGH_MEMORY) {
2139
2140 /* Don't want a node to appear more than once */
2141 if (node_isset(n, *used_node_mask))
2142 continue;
2143
2144 /* Use the distance array to find the distance */
2145 val = node_distance(node, n);
2146
2147 /* Penalize nodes under us ("prefer the next node") */
2148 val += (n < node);
2149
2150 /* Give preference to headless and unused nodes */
2151 node_to_cpumask_ptr_next(tmp, n);
2152 if (!cpus_empty(*tmp))
2153 val += PENALTY_FOR_NODE_WITH_CPUS;
2154
2155 /* Slight preference for less loaded node */
2156 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2157 val += node_load[n];
2158
2159 if (val < min_val) {
2160 min_val = val;
2161 best_node = n;
2162 }
2163 }
2164
2165 if (best_node >= 0)
2166 node_set(best_node, *used_node_mask);
2167
2168 return best_node;
2169 }
2170
2171
2172 /*
2173 * Build zonelists ordered by node and zones within node.
2174 * This results in maximum locality--normal zone overflows into local
2175 * DMA zone, if any--but risks exhausting DMA zone.
2176 */
2177 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2178 {
2179 int j;
2180 struct zonelist *zonelist;
2181
2182 zonelist = &pgdat->node_zonelists[0];
2183 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2184 ;
2185 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2186 MAX_NR_ZONES - 1);
2187 zonelist->_zonerefs[j].zone = NULL;
2188 zonelist->_zonerefs[j].zone_idx = 0;
2189 }
2190
2191 /*
2192 * Build gfp_thisnode zonelists
2193 */
2194 static void build_thisnode_zonelists(pg_data_t *pgdat)
2195 {
2196 int j;
2197 struct zonelist *zonelist;
2198
2199 zonelist = &pgdat->node_zonelists[1];
2200 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2201 zonelist->_zonerefs[j].zone = NULL;
2202 zonelist->_zonerefs[j].zone_idx = 0;
2203 }
2204
2205 /*
2206 * Build zonelists ordered by zone and nodes within zones.
2207 * This results in conserving DMA zone[s] until all Normal memory is
2208 * exhausted, but results in overflowing to remote node while memory
2209 * may still exist in local DMA zone.
2210 */
2211 static int node_order[MAX_NUMNODES];
2212
2213 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2214 {
2215 int pos, j, node;
2216 int zone_type; /* needs to be signed */
2217 struct zone *z;
2218 struct zonelist *zonelist;
2219
2220 zonelist = &pgdat->node_zonelists[0];
2221 pos = 0;
2222 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2223 for (j = 0; j < nr_nodes; j++) {
2224 node = node_order[j];
2225 z = &NODE_DATA(node)->node_zones[zone_type];
2226 if (populated_zone(z)) {
2227 zoneref_set_zone(z,
2228 &zonelist->_zonerefs[pos++]);
2229 check_highest_zone(zone_type);
2230 }
2231 }
2232 }
2233 zonelist->_zonerefs[pos].zone = NULL;
2234 zonelist->_zonerefs[pos].zone_idx = 0;
2235 }
2236
2237 static int default_zonelist_order(void)
2238 {
2239 int nid, zone_type;
2240 unsigned long low_kmem_size,total_size;
2241 struct zone *z;
2242 int average_size;
2243 /*
2244 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2245 * If they are really small and used heavily, the system can fall
2246 * into OOM very easily.
2247 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2248 */
2249 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2250 low_kmem_size = 0;
2251 total_size = 0;
2252 for_each_online_node(nid) {
2253 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2254 z = &NODE_DATA(nid)->node_zones[zone_type];
2255 if (populated_zone(z)) {
2256 if (zone_type < ZONE_NORMAL)
2257 low_kmem_size += z->present_pages;
2258 total_size += z->present_pages;
2259 }
2260 }
2261 }
2262 if (!low_kmem_size || /* there are no DMA area. */
2263 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2264 return ZONELIST_ORDER_NODE;
2265 /*
2266 * look into each node's config.
2267 * If there is a node whose DMA/DMA32 memory is very big area on
2268 * local memory, NODE_ORDER may be suitable.
2269 */
2270 average_size = total_size /
2271 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2272 for_each_online_node(nid) {
2273 low_kmem_size = 0;
2274 total_size = 0;
2275 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2276 z = &NODE_DATA(nid)->node_zones[zone_type];
2277 if (populated_zone(z)) {
2278 if (zone_type < ZONE_NORMAL)
2279 low_kmem_size += z->present_pages;
2280 total_size += z->present_pages;
2281 }
2282 }
2283 if (low_kmem_size &&
2284 total_size > average_size && /* ignore small node */
2285 low_kmem_size > total_size * 70/100)
2286 return ZONELIST_ORDER_NODE;
2287 }
2288 return ZONELIST_ORDER_ZONE;
2289 }
2290
2291 static void set_zonelist_order(void)
2292 {
2293 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2294 current_zonelist_order = default_zonelist_order();
2295 else
2296 current_zonelist_order = user_zonelist_order;
2297 }
2298
2299 static void build_zonelists(pg_data_t *pgdat)
2300 {
2301 int j, node, load;
2302 enum zone_type i;
2303 nodemask_t used_mask;
2304 int local_node, prev_node;
2305 struct zonelist *zonelist;
2306 int order = current_zonelist_order;
2307
2308 /* initialize zonelists */
2309 for (i = 0; i < MAX_ZONELISTS; i++) {
2310 zonelist = pgdat->node_zonelists + i;
2311 zonelist->_zonerefs[0].zone = NULL;
2312 zonelist->_zonerefs[0].zone_idx = 0;
2313 }
2314
2315 /* NUMA-aware ordering of nodes */
2316 local_node = pgdat->node_id;
2317 load = num_online_nodes();
2318 prev_node = local_node;
2319 nodes_clear(used_mask);
2320
2321 memset(node_load, 0, sizeof(node_load));
2322 memset(node_order, 0, sizeof(node_order));
2323 j = 0;
2324
2325 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2326 int distance = node_distance(local_node, node);
2327
2328 /*
2329 * If another node is sufficiently far away then it is better
2330 * to reclaim pages in a zone before going off node.
2331 */
2332 if (distance > RECLAIM_DISTANCE)
2333 zone_reclaim_mode = 1;
2334
2335 /*
2336 * We don't want to pressure a particular node.
2337 * So adding penalty to the first node in same
2338 * distance group to make it round-robin.
2339 */
2340 if (distance != node_distance(local_node, prev_node))
2341 node_load[node] = load;
2342
2343 prev_node = node;
2344 load--;
2345 if (order == ZONELIST_ORDER_NODE)
2346 build_zonelists_in_node_order(pgdat, node);
2347 else
2348 node_order[j++] = node; /* remember order */
2349 }
2350
2351 if (order == ZONELIST_ORDER_ZONE) {
2352 /* calculate node order -- i.e., DMA last! */
2353 build_zonelists_in_zone_order(pgdat, j);
2354 }
2355
2356 build_thisnode_zonelists(pgdat);
2357 }
2358
2359 /* Construct the zonelist performance cache - see further mmzone.h */
2360 static void build_zonelist_cache(pg_data_t *pgdat)
2361 {
2362 struct zonelist *zonelist;
2363 struct zonelist_cache *zlc;
2364 struct zoneref *z;
2365
2366 zonelist = &pgdat->node_zonelists[0];
2367 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2368 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2369 for (z = zonelist->_zonerefs; z->zone; z++)
2370 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2371 }
2372
2373
2374 #else /* CONFIG_NUMA */
2375
2376 static void set_zonelist_order(void)
2377 {
2378 current_zonelist_order = ZONELIST_ORDER_ZONE;
2379 }
2380
2381 static void build_zonelists(pg_data_t *pgdat)
2382 {
2383 int node, local_node;
2384 enum zone_type j;
2385 struct zonelist *zonelist;
2386
2387 local_node = pgdat->node_id;
2388
2389 zonelist = &pgdat->node_zonelists[0];
2390 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2391
2392 /*
2393 * Now we build the zonelist so that it contains the zones
2394 * of all the other nodes.
2395 * We don't want to pressure a particular node, so when
2396 * building the zones for node N, we make sure that the
2397 * zones coming right after the local ones are those from
2398 * node N+1 (modulo N)
2399 */
2400 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2401 if (!node_online(node))
2402 continue;
2403 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2404 MAX_NR_ZONES - 1);
2405 }
2406 for (node = 0; node < local_node; node++) {
2407 if (!node_online(node))
2408 continue;
2409 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2410 MAX_NR_ZONES - 1);
2411 }
2412
2413 zonelist->_zonerefs[j].zone = NULL;
2414 zonelist->_zonerefs[j].zone_idx = 0;
2415 }
2416
2417 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2418 static void build_zonelist_cache(pg_data_t *pgdat)
2419 {
2420 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2421 }
2422
2423 #endif /* CONFIG_NUMA */
2424
2425 /* return values int ....just for stop_machine() */
2426 static int __build_all_zonelists(void *dummy)
2427 {
2428 int nid;
2429
2430 for_each_online_node(nid) {
2431 pg_data_t *pgdat = NODE_DATA(nid);
2432
2433 build_zonelists(pgdat);
2434 build_zonelist_cache(pgdat);
2435 }
2436 return 0;
2437 }
2438
2439 void build_all_zonelists(void)
2440 {
2441 set_zonelist_order();
2442
2443 if (system_state == SYSTEM_BOOTING) {
2444 __build_all_zonelists(NULL);
2445 mminit_verify_zonelist();
2446 cpuset_init_current_mems_allowed();
2447 } else {
2448 /* we have to stop all cpus to guarantee there is no user
2449 of zonelist */
2450 stop_machine(__build_all_zonelists, NULL, NULL);
2451 /* cpuset refresh routine should be here */
2452 }
2453 vm_total_pages = nr_free_pagecache_pages();
2454 /*
2455 * Disable grouping by mobility if the number of pages in the
2456 * system is too low to allow the mechanism to work. It would be
2457 * more accurate, but expensive to check per-zone. This check is
2458 * made on memory-hotadd so a system can start with mobility
2459 * disabled and enable it later
2460 */
2461 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2462 page_group_by_mobility_disabled = 1;
2463 else
2464 page_group_by_mobility_disabled = 0;
2465
2466 printk("Built %i zonelists in %s order, mobility grouping %s. "
2467 "Total pages: %ld\n",
2468 num_online_nodes(),
2469 zonelist_order_name[current_zonelist_order],
2470 page_group_by_mobility_disabled ? "off" : "on",
2471 vm_total_pages);
2472 #ifdef CONFIG_NUMA
2473 printk("Policy zone: %s\n", zone_names[policy_zone]);
2474 #endif
2475 }
2476
2477 /*
2478 * Helper functions to size the waitqueue hash table.
2479 * Essentially these want to choose hash table sizes sufficiently
2480 * large so that collisions trying to wait on pages are rare.
2481 * But in fact, the number of active page waitqueues on typical
2482 * systems is ridiculously low, less than 200. So this is even
2483 * conservative, even though it seems large.
2484 *
2485 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2486 * waitqueues, i.e. the size of the waitq table given the number of pages.
2487 */
2488 #define PAGES_PER_WAITQUEUE 256
2489
2490 #ifndef CONFIG_MEMORY_HOTPLUG
2491 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2492 {
2493 unsigned long size = 1;
2494
2495 pages /= PAGES_PER_WAITQUEUE;
2496
2497 while (size < pages)
2498 size <<= 1;
2499
2500 /*
2501 * Once we have dozens or even hundreds of threads sleeping
2502 * on IO we've got bigger problems than wait queue collision.
2503 * Limit the size of the wait table to a reasonable size.
2504 */
2505 size = min(size, 4096UL);
2506
2507 return max(size, 4UL);
2508 }
2509 #else
2510 /*
2511 * A zone's size might be changed by hot-add, so it is not possible to determine
2512 * a suitable size for its wait_table. So we use the maximum size now.
2513 *
2514 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2515 *
2516 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2517 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2518 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2519 *
2520 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2521 * or more by the traditional way. (See above). It equals:
2522 *
2523 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2524 * ia64(16K page size) : = ( 8G + 4M)byte.
2525 * powerpc (64K page size) : = (32G +16M)byte.
2526 */
2527 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2528 {
2529 return 4096UL;
2530 }
2531 #endif
2532
2533 /*
2534 * This is an integer logarithm so that shifts can be used later
2535 * to extract the more random high bits from the multiplicative
2536 * hash function before the remainder is taken.
2537 */
2538 static inline unsigned long wait_table_bits(unsigned long size)
2539 {
2540 return ffz(~size);
2541 }
2542
2543 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2544
2545 /*
2546 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2547 * of blocks reserved is based on zone->pages_min. The memory within the
2548 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2549 * higher will lead to a bigger reserve which will get freed as contiguous
2550 * blocks as reclaim kicks in
2551 */
2552 static void setup_zone_migrate_reserve(struct zone *zone)
2553 {
2554 unsigned long start_pfn, pfn, end_pfn;
2555 struct page *page;
2556 unsigned long reserve, block_migratetype;
2557
2558 /* Get the start pfn, end pfn and the number of blocks to reserve */
2559 start_pfn = zone->zone_start_pfn;
2560 end_pfn = start_pfn + zone->spanned_pages;
2561 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2562 pageblock_order;
2563
2564 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2565 if (!pfn_valid(pfn))
2566 continue;
2567 page = pfn_to_page(pfn);
2568
2569 /* Watch out for overlapping nodes */
2570 if (page_to_nid(page) != zone_to_nid(zone))
2571 continue;
2572
2573 /* Blocks with reserved pages will never free, skip them. */
2574 if (PageReserved(page))
2575 continue;
2576
2577 block_migratetype = get_pageblock_migratetype(page);
2578
2579 /* If this block is reserved, account for it */
2580 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2581 reserve--;
2582 continue;
2583 }
2584
2585 /* Suitable for reserving if this block is movable */
2586 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2587 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2588 move_freepages_block(zone, page, MIGRATE_RESERVE);
2589 reserve--;
2590 continue;
2591 }
2592
2593 /*
2594 * If the reserve is met and this is a previous reserved block,
2595 * take it back
2596 */
2597 if (block_migratetype == MIGRATE_RESERVE) {
2598 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2599 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2600 }
2601 }
2602 }
2603
2604 /*
2605 * Initially all pages are reserved - free ones are freed
2606 * up by free_all_bootmem() once the early boot process is
2607 * done. Non-atomic initialization, single-pass.
2608 */
2609 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2610 unsigned long start_pfn, enum memmap_context context)
2611 {
2612 struct page *page;
2613 unsigned long end_pfn = start_pfn + size;
2614 unsigned long pfn;
2615 struct zone *z;
2616
2617 if (highest_memmap_pfn < end_pfn - 1)
2618 highest_memmap_pfn = end_pfn - 1;
2619
2620 z = &NODE_DATA(nid)->node_zones[zone];
2621 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2622 /*
2623 * There can be holes in boot-time mem_map[]s
2624 * handed to this function. They do not
2625 * exist on hotplugged memory.
2626 */
2627 if (context == MEMMAP_EARLY) {
2628 if (!early_pfn_valid(pfn))
2629 continue;
2630 if (!early_pfn_in_nid(pfn, nid))
2631 continue;
2632 }
2633 page = pfn_to_page(pfn);
2634 set_page_links(page, zone, nid, pfn);
2635 mminit_verify_page_links(page, zone, nid, pfn);
2636 init_page_count(page);
2637 reset_page_mapcount(page);
2638 SetPageReserved(page);
2639 /*
2640 * Mark the block movable so that blocks are reserved for
2641 * movable at startup. This will force kernel allocations
2642 * to reserve their blocks rather than leaking throughout
2643 * the address space during boot when many long-lived
2644 * kernel allocations are made. Later some blocks near
2645 * the start are marked MIGRATE_RESERVE by
2646 * setup_zone_migrate_reserve()
2647 *
2648 * bitmap is created for zone's valid pfn range. but memmap
2649 * can be created for invalid pages (for alignment)
2650 * check here not to call set_pageblock_migratetype() against
2651 * pfn out of zone.
2652 */
2653 if ((z->zone_start_pfn <= pfn)
2654 && (pfn < z->zone_start_pfn + z->spanned_pages)
2655 && !(pfn & (pageblock_nr_pages - 1)))
2656 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2657
2658 INIT_LIST_HEAD(&page->lru);
2659 #ifdef WANT_PAGE_VIRTUAL
2660 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2661 if (!is_highmem_idx(zone))
2662 set_page_address(page, __va(pfn << PAGE_SHIFT));
2663 #endif
2664 }
2665 }
2666
2667 static void __meminit zone_init_free_lists(struct zone *zone)
2668 {
2669 int order, t;
2670 for_each_migratetype_order(order, t) {
2671 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2672 zone->free_area[order].nr_free = 0;
2673 }
2674 }
2675
2676 #ifndef __HAVE_ARCH_MEMMAP_INIT
2677 #define memmap_init(size, nid, zone, start_pfn) \
2678 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2679 #endif
2680
2681 static int zone_batchsize(struct zone *zone)
2682 {
2683 int batch;
2684
2685 /*
2686 * The per-cpu-pages pools are set to around 1000th of the
2687 * size of the zone. But no more than 1/2 of a meg.
2688 *
2689 * OK, so we don't know how big the cache is. So guess.
2690 */
2691 batch = zone->present_pages / 1024;
2692 if (batch * PAGE_SIZE > 512 * 1024)
2693 batch = (512 * 1024) / PAGE_SIZE;
2694 batch /= 4; /* We effectively *= 4 below */
2695 if (batch < 1)
2696 batch = 1;
2697
2698 /*
2699 * Clamp the batch to a 2^n - 1 value. Having a power
2700 * of 2 value was found to be more likely to have
2701 * suboptimal cache aliasing properties in some cases.
2702 *
2703 * For example if 2 tasks are alternately allocating
2704 * batches of pages, one task can end up with a lot
2705 * of pages of one half of the possible page colors
2706 * and the other with pages of the other colors.
2707 */
2708 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2709
2710 return batch;
2711 }
2712
2713 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2714 {
2715 struct per_cpu_pages *pcp;
2716
2717 memset(p, 0, sizeof(*p));
2718
2719 pcp = &p->pcp;
2720 pcp->count = 0;
2721 pcp->high = 6 * batch;
2722 pcp->batch = max(1UL, 1 * batch);
2723 INIT_LIST_HEAD(&pcp->list);
2724 }
2725
2726 /*
2727 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2728 * to the value high for the pageset p.
2729 */
2730
2731 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2732 unsigned long high)
2733 {
2734 struct per_cpu_pages *pcp;
2735
2736 pcp = &p->pcp;
2737 pcp->high = high;
2738 pcp->batch = max(1UL, high/4);
2739 if ((high/4) > (PAGE_SHIFT * 8))
2740 pcp->batch = PAGE_SHIFT * 8;
2741 }
2742
2743
2744 #ifdef CONFIG_NUMA
2745 /*
2746 * Boot pageset table. One per cpu which is going to be used for all
2747 * zones and all nodes. The parameters will be set in such a way
2748 * that an item put on a list will immediately be handed over to
2749 * the buddy list. This is safe since pageset manipulation is done
2750 * with interrupts disabled.
2751 *
2752 * Some NUMA counter updates may also be caught by the boot pagesets.
2753 *
2754 * The boot_pagesets must be kept even after bootup is complete for
2755 * unused processors and/or zones. They do play a role for bootstrapping
2756 * hotplugged processors.
2757 *
2758 * zoneinfo_show() and maybe other functions do
2759 * not check if the processor is online before following the pageset pointer.
2760 * Other parts of the kernel may not check if the zone is available.
2761 */
2762 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2763
2764 /*
2765 * Dynamically allocate memory for the
2766 * per cpu pageset array in struct zone.
2767 */
2768 static int __cpuinit process_zones(int cpu)
2769 {
2770 struct zone *zone, *dzone;
2771 int node = cpu_to_node(cpu);
2772
2773 node_set_state(node, N_CPU); /* this node has a cpu */
2774
2775 for_each_populated_zone(zone) {
2776 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2777 GFP_KERNEL, node);
2778 if (!zone_pcp(zone, cpu))
2779 goto bad;
2780
2781 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2782
2783 if (percpu_pagelist_fraction)
2784 setup_pagelist_highmark(zone_pcp(zone, cpu),
2785 (zone->present_pages / percpu_pagelist_fraction));
2786 }
2787
2788 return 0;
2789 bad:
2790 for_each_zone(dzone) {
2791 if (!populated_zone(dzone))
2792 continue;
2793 if (dzone == zone)
2794 break;
2795 kfree(zone_pcp(dzone, cpu));
2796 zone_pcp(dzone, cpu) = NULL;
2797 }
2798 return -ENOMEM;
2799 }
2800
2801 static inline void free_zone_pagesets(int cpu)
2802 {
2803 struct zone *zone;
2804
2805 for_each_zone(zone) {
2806 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2807
2808 /* Free per_cpu_pageset if it is slab allocated */
2809 if (pset != &boot_pageset[cpu])
2810 kfree(pset);
2811 zone_pcp(zone, cpu) = NULL;
2812 }
2813 }
2814
2815 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2816 unsigned long action,
2817 void *hcpu)
2818 {
2819 int cpu = (long)hcpu;
2820 int ret = NOTIFY_OK;
2821
2822 switch (action) {
2823 case CPU_UP_PREPARE:
2824 case CPU_UP_PREPARE_FROZEN:
2825 if (process_zones(cpu))
2826 ret = NOTIFY_BAD;
2827 break;
2828 case CPU_UP_CANCELED:
2829 case CPU_UP_CANCELED_FROZEN:
2830 case CPU_DEAD:
2831 case CPU_DEAD_FROZEN:
2832 free_zone_pagesets(cpu);
2833 break;
2834 default:
2835 break;
2836 }
2837 return ret;
2838 }
2839
2840 static struct notifier_block __cpuinitdata pageset_notifier =
2841 { &pageset_cpuup_callback, NULL, 0 };
2842
2843 void __init setup_per_cpu_pageset(void)
2844 {
2845 int err;
2846
2847 /* Initialize per_cpu_pageset for cpu 0.
2848 * A cpuup callback will do this for every cpu
2849 * as it comes online
2850 */
2851 err = process_zones(smp_processor_id());
2852 BUG_ON(err);
2853 register_cpu_notifier(&pageset_notifier);
2854 }
2855
2856 #endif
2857
2858 static noinline __init_refok
2859 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2860 {
2861 int i;
2862 struct pglist_data *pgdat = zone->zone_pgdat;
2863 size_t alloc_size;
2864
2865 /*
2866 * The per-page waitqueue mechanism uses hashed waitqueues
2867 * per zone.
2868 */
2869 zone->wait_table_hash_nr_entries =
2870 wait_table_hash_nr_entries(zone_size_pages);
2871 zone->wait_table_bits =
2872 wait_table_bits(zone->wait_table_hash_nr_entries);
2873 alloc_size = zone->wait_table_hash_nr_entries
2874 * sizeof(wait_queue_head_t);
2875
2876 if (!slab_is_available()) {
2877 zone->wait_table = (wait_queue_head_t *)
2878 alloc_bootmem_node(pgdat, alloc_size);
2879 } else {
2880 /*
2881 * This case means that a zone whose size was 0 gets new memory
2882 * via memory hot-add.
2883 * But it may be the case that a new node was hot-added. In
2884 * this case vmalloc() will not be able to use this new node's
2885 * memory - this wait_table must be initialized to use this new
2886 * node itself as well.
2887 * To use this new node's memory, further consideration will be
2888 * necessary.
2889 */
2890 zone->wait_table = vmalloc(alloc_size);
2891 }
2892 if (!zone->wait_table)
2893 return -ENOMEM;
2894
2895 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2896 init_waitqueue_head(zone->wait_table + i);
2897
2898 return 0;
2899 }
2900
2901 static __meminit void zone_pcp_init(struct zone *zone)
2902 {
2903 int cpu;
2904 unsigned long batch = zone_batchsize(zone);
2905
2906 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2907 #ifdef CONFIG_NUMA
2908 /* Early boot. Slab allocator not functional yet */
2909 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2910 setup_pageset(&boot_pageset[cpu],0);
2911 #else
2912 setup_pageset(zone_pcp(zone,cpu), batch);
2913 #endif
2914 }
2915 if (zone->present_pages)
2916 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2917 zone->name, zone->present_pages, batch);
2918 }
2919
2920 __meminit int init_currently_empty_zone(struct zone *zone,
2921 unsigned long zone_start_pfn,
2922 unsigned long size,
2923 enum memmap_context context)
2924 {
2925 struct pglist_data *pgdat = zone->zone_pgdat;
2926 int ret;
2927 ret = zone_wait_table_init(zone, size);
2928 if (ret)
2929 return ret;
2930 pgdat->nr_zones = zone_idx(zone) + 1;
2931
2932 zone->zone_start_pfn = zone_start_pfn;
2933
2934 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2935 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2936 pgdat->node_id,
2937 (unsigned long)zone_idx(zone),
2938 zone_start_pfn, (zone_start_pfn + size));
2939
2940 zone_init_free_lists(zone);
2941
2942 return 0;
2943 }
2944
2945 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2946 /*
2947 * Basic iterator support. Return the first range of PFNs for a node
2948 * Note: nid == MAX_NUMNODES returns first region regardless of node
2949 */
2950 static int __meminit first_active_region_index_in_nid(int nid)
2951 {
2952 int i;
2953
2954 for (i = 0; i < nr_nodemap_entries; i++)
2955 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2956 return i;
2957
2958 return -1;
2959 }
2960
2961 /*
2962 * Basic iterator support. Return the next active range of PFNs for a node
2963 * Note: nid == MAX_NUMNODES returns next region regardless of node
2964 */
2965 static int __meminit next_active_region_index_in_nid(int index, int nid)
2966 {
2967 for (index = index + 1; index < nr_nodemap_entries; index++)
2968 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2969 return index;
2970
2971 return -1;
2972 }
2973
2974 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2975 /*
2976 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2977 * Architectures may implement their own version but if add_active_range()
2978 * was used and there are no special requirements, this is a convenient
2979 * alternative
2980 */
2981 int __meminit __early_pfn_to_nid(unsigned long pfn)
2982 {
2983 int i;
2984
2985 for (i = 0; i < nr_nodemap_entries; i++) {
2986 unsigned long start_pfn = early_node_map[i].start_pfn;
2987 unsigned long end_pfn = early_node_map[i].end_pfn;
2988
2989 if (start_pfn <= pfn && pfn < end_pfn)
2990 return early_node_map[i].nid;
2991 }
2992 /* This is a memory hole */
2993 return -1;
2994 }
2995 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2996
2997 int __meminit early_pfn_to_nid(unsigned long pfn)
2998 {
2999 int nid;
3000
3001 nid = __early_pfn_to_nid(pfn);
3002 if (nid >= 0)
3003 return nid;
3004 /* just returns 0 */
3005 return 0;
3006 }
3007
3008 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3009 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3010 {
3011 int nid;
3012
3013 nid = __early_pfn_to_nid(pfn);
3014 if (nid >= 0 && nid != node)
3015 return false;
3016 return true;
3017 }
3018 #endif
3019
3020 /* Basic iterator support to walk early_node_map[] */
3021 #define for_each_active_range_index_in_nid(i, nid) \
3022 for (i = first_active_region_index_in_nid(nid); i != -1; \
3023 i = next_active_region_index_in_nid(i, nid))
3024
3025 /**
3026 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3027 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3028 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3029 *
3030 * If an architecture guarantees that all ranges registered with
3031 * add_active_ranges() contain no holes and may be freed, this
3032 * this function may be used instead of calling free_bootmem() manually.
3033 */
3034 void __init free_bootmem_with_active_regions(int nid,
3035 unsigned long max_low_pfn)
3036 {
3037 int i;
3038
3039 for_each_active_range_index_in_nid(i, nid) {
3040 unsigned long size_pages = 0;
3041 unsigned long end_pfn = early_node_map[i].end_pfn;
3042
3043 if (early_node_map[i].start_pfn >= max_low_pfn)
3044 continue;
3045
3046 if (end_pfn > max_low_pfn)
3047 end_pfn = max_low_pfn;
3048
3049 size_pages = end_pfn - early_node_map[i].start_pfn;
3050 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3051 PFN_PHYS(early_node_map[i].start_pfn),
3052 size_pages << PAGE_SHIFT);
3053 }
3054 }
3055
3056 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3057 {
3058 int i;
3059 int ret;
3060
3061 for_each_active_range_index_in_nid(i, nid) {
3062 ret = work_fn(early_node_map[i].start_pfn,
3063 early_node_map[i].end_pfn, data);
3064 if (ret)
3065 break;
3066 }
3067 }
3068 /**
3069 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3070 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3071 *
3072 * If an architecture guarantees that all ranges registered with
3073 * add_active_ranges() contain no holes and may be freed, this
3074 * function may be used instead of calling memory_present() manually.
3075 */
3076 void __init sparse_memory_present_with_active_regions(int nid)
3077 {
3078 int i;
3079
3080 for_each_active_range_index_in_nid(i, nid)
3081 memory_present(early_node_map[i].nid,
3082 early_node_map[i].start_pfn,
3083 early_node_map[i].end_pfn);
3084 }
3085
3086 /**
3087 * push_node_boundaries - Push node boundaries to at least the requested boundary
3088 * @nid: The nid of the node to push the boundary for
3089 * @start_pfn: The start pfn of the node
3090 * @end_pfn: The end pfn of the node
3091 *
3092 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3093 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3094 * be hotplugged even though no physical memory exists. This function allows
3095 * an arch to push out the node boundaries so mem_map is allocated that can
3096 * be used later.
3097 */
3098 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3099 void __init push_node_boundaries(unsigned int nid,
3100 unsigned long start_pfn, unsigned long end_pfn)
3101 {
3102 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3103 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3104 nid, start_pfn, end_pfn);
3105
3106 /* Initialise the boundary for this node if necessary */
3107 if (node_boundary_end_pfn[nid] == 0)
3108 node_boundary_start_pfn[nid] = -1UL;
3109
3110 /* Update the boundaries */
3111 if (node_boundary_start_pfn[nid] > start_pfn)
3112 node_boundary_start_pfn[nid] = start_pfn;
3113 if (node_boundary_end_pfn[nid] < end_pfn)
3114 node_boundary_end_pfn[nid] = end_pfn;
3115 }
3116
3117 /* If necessary, push the node boundary out for reserve hotadd */
3118 static void __meminit account_node_boundary(unsigned int nid,
3119 unsigned long *start_pfn, unsigned long *end_pfn)
3120 {
3121 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3122 "Entering account_node_boundary(%u, %lu, %lu)\n",
3123 nid, *start_pfn, *end_pfn);
3124
3125 /* Return if boundary information has not been provided */
3126 if (node_boundary_end_pfn[nid] == 0)
3127 return;
3128
3129 /* Check the boundaries and update if necessary */
3130 if (node_boundary_start_pfn[nid] < *start_pfn)
3131 *start_pfn = node_boundary_start_pfn[nid];
3132 if (node_boundary_end_pfn[nid] > *end_pfn)
3133 *end_pfn = node_boundary_end_pfn[nid];
3134 }
3135 #else
3136 void __init push_node_boundaries(unsigned int nid,
3137 unsigned long start_pfn, unsigned long end_pfn) {}
3138
3139 static void __meminit account_node_boundary(unsigned int nid,
3140 unsigned long *start_pfn, unsigned long *end_pfn) {}
3141 #endif
3142
3143
3144 /**
3145 * get_pfn_range_for_nid - Return the start and end page frames for a node
3146 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3147 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3148 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3149 *
3150 * It returns the start and end page frame of a node based on information
3151 * provided by an arch calling add_active_range(). If called for a node
3152 * with no available memory, a warning is printed and the start and end
3153 * PFNs will be 0.
3154 */
3155 void __meminit get_pfn_range_for_nid(unsigned int nid,
3156 unsigned long *start_pfn, unsigned long *end_pfn)
3157 {
3158 int i;
3159 *start_pfn = -1UL;
3160 *end_pfn = 0;
3161
3162 for_each_active_range_index_in_nid(i, nid) {
3163 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3164 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3165 }
3166
3167 if (*start_pfn == -1UL)
3168 *start_pfn = 0;
3169
3170 /* Push the node boundaries out if requested */
3171 account_node_boundary(nid, start_pfn, end_pfn);
3172 }
3173
3174 /*
3175 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3176 * assumption is made that zones within a node are ordered in monotonic
3177 * increasing memory addresses so that the "highest" populated zone is used
3178 */
3179 static void __init find_usable_zone_for_movable(void)
3180 {
3181 int zone_index;
3182 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3183 if (zone_index == ZONE_MOVABLE)
3184 continue;
3185
3186 if (arch_zone_highest_possible_pfn[zone_index] >
3187 arch_zone_lowest_possible_pfn[zone_index])
3188 break;
3189 }
3190
3191 VM_BUG_ON(zone_index == -1);
3192 movable_zone = zone_index;
3193 }
3194
3195 /*
3196 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3197 * because it is sized independant of architecture. Unlike the other zones,
3198 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3199 * in each node depending on the size of each node and how evenly kernelcore
3200 * is distributed. This helper function adjusts the zone ranges
3201 * provided by the architecture for a given node by using the end of the
3202 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3203 * zones within a node are in order of monotonic increases memory addresses
3204 */
3205 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3206 unsigned long zone_type,
3207 unsigned long node_start_pfn,
3208 unsigned long node_end_pfn,
3209 unsigned long *zone_start_pfn,
3210 unsigned long *zone_end_pfn)
3211 {
3212 /* Only adjust if ZONE_MOVABLE is on this node */
3213 if (zone_movable_pfn[nid]) {
3214 /* Size ZONE_MOVABLE */
3215 if (zone_type == ZONE_MOVABLE) {
3216 *zone_start_pfn = zone_movable_pfn[nid];
3217 *zone_end_pfn = min(node_end_pfn,
3218 arch_zone_highest_possible_pfn[movable_zone]);
3219
3220 /* Adjust for ZONE_MOVABLE starting within this range */
3221 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3222 *zone_end_pfn > zone_movable_pfn[nid]) {
3223 *zone_end_pfn = zone_movable_pfn[nid];
3224
3225 /* Check if this whole range is within ZONE_MOVABLE */
3226 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3227 *zone_start_pfn = *zone_end_pfn;
3228 }
3229 }
3230
3231 /*
3232 * Return the number of pages a zone spans in a node, including holes
3233 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3234 */
3235 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3236 unsigned long zone_type,
3237 unsigned long *ignored)
3238 {
3239 unsigned long node_start_pfn, node_end_pfn;
3240 unsigned long zone_start_pfn, zone_end_pfn;
3241
3242 /* Get the start and end of the node and zone */
3243 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3244 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3245 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3246 adjust_zone_range_for_zone_movable(nid, zone_type,
3247 node_start_pfn, node_end_pfn,
3248 &zone_start_pfn, &zone_end_pfn);
3249
3250 /* Check that this node has pages within the zone's required range */
3251 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3252 return 0;
3253
3254 /* Move the zone boundaries inside the node if necessary */
3255 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3256 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3257
3258 /* Return the spanned pages */
3259 return zone_end_pfn - zone_start_pfn;
3260 }
3261
3262 /*
3263 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3264 * then all holes in the requested range will be accounted for.
3265 */
3266 static unsigned long __meminit __absent_pages_in_range(int nid,
3267 unsigned long range_start_pfn,
3268 unsigned long range_end_pfn)
3269 {
3270 int i = 0;
3271 unsigned long prev_end_pfn = 0, hole_pages = 0;
3272 unsigned long start_pfn;
3273
3274 /* Find the end_pfn of the first active range of pfns in the node */
3275 i = first_active_region_index_in_nid(nid);
3276 if (i == -1)
3277 return 0;
3278
3279 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3280
3281 /* Account for ranges before physical memory on this node */
3282 if (early_node_map[i].start_pfn > range_start_pfn)
3283 hole_pages = prev_end_pfn - range_start_pfn;
3284
3285 /* Find all holes for the zone within the node */
3286 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3287
3288 /* No need to continue if prev_end_pfn is outside the zone */
3289 if (prev_end_pfn >= range_end_pfn)
3290 break;
3291
3292 /* Make sure the end of the zone is not within the hole */
3293 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3294 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3295
3296 /* Update the hole size cound and move on */
3297 if (start_pfn > range_start_pfn) {
3298 BUG_ON(prev_end_pfn > start_pfn);
3299 hole_pages += start_pfn - prev_end_pfn;
3300 }
3301 prev_end_pfn = early_node_map[i].end_pfn;
3302 }
3303
3304 /* Account for ranges past physical memory on this node */
3305 if (range_end_pfn > prev_end_pfn)
3306 hole_pages += range_end_pfn -
3307 max(range_start_pfn, prev_end_pfn);
3308
3309 return hole_pages;
3310 }
3311
3312 /**
3313 * absent_pages_in_range - Return number of page frames in holes within a range
3314 * @start_pfn: The start PFN to start searching for holes
3315 * @end_pfn: The end PFN to stop searching for holes
3316 *
3317 * It returns the number of pages frames in memory holes within a range.
3318 */
3319 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3320 unsigned long end_pfn)
3321 {
3322 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3323 }
3324
3325 /* Return the number of page frames in holes in a zone on a node */
3326 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3327 unsigned long zone_type,
3328 unsigned long *ignored)
3329 {
3330 unsigned long node_start_pfn, node_end_pfn;
3331 unsigned long zone_start_pfn, zone_end_pfn;
3332
3333 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3334 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3335 node_start_pfn);
3336 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3337 node_end_pfn);
3338
3339 adjust_zone_range_for_zone_movable(nid, zone_type,
3340 node_start_pfn, node_end_pfn,
3341 &zone_start_pfn, &zone_end_pfn);
3342 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3343 }
3344
3345 #else
3346 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3347 unsigned long zone_type,
3348 unsigned long *zones_size)
3349 {
3350 return zones_size[zone_type];
3351 }
3352
3353 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3354 unsigned long zone_type,
3355 unsigned long *zholes_size)
3356 {
3357 if (!zholes_size)
3358 return 0;
3359
3360 return zholes_size[zone_type];
3361 }
3362
3363 #endif
3364
3365 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3366 unsigned long *zones_size, unsigned long *zholes_size)
3367 {
3368 unsigned long realtotalpages, totalpages = 0;
3369 enum zone_type i;
3370
3371 for (i = 0; i < MAX_NR_ZONES; i++)
3372 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3373 zones_size);
3374 pgdat->node_spanned_pages = totalpages;
3375
3376 realtotalpages = totalpages;
3377 for (i = 0; i < MAX_NR_ZONES; i++)
3378 realtotalpages -=
3379 zone_absent_pages_in_node(pgdat->node_id, i,
3380 zholes_size);
3381 pgdat->node_present_pages = realtotalpages;
3382 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3383 realtotalpages);
3384 }
3385
3386 #ifndef CONFIG_SPARSEMEM
3387 /*
3388 * Calculate the size of the zone->blockflags rounded to an unsigned long
3389 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3390 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3391 * round what is now in bits to nearest long in bits, then return it in
3392 * bytes.
3393 */
3394 static unsigned long __init usemap_size(unsigned long zonesize)
3395 {
3396 unsigned long usemapsize;
3397
3398 usemapsize = roundup(zonesize, pageblock_nr_pages);
3399 usemapsize = usemapsize >> pageblock_order;
3400 usemapsize *= NR_PAGEBLOCK_BITS;
3401 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3402
3403 return usemapsize / 8;
3404 }
3405
3406 static void __init setup_usemap(struct pglist_data *pgdat,
3407 struct zone *zone, unsigned long zonesize)
3408 {
3409 unsigned long usemapsize = usemap_size(zonesize);
3410 zone->pageblock_flags = NULL;
3411 if (usemapsize)
3412 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3413 }
3414 #else
3415 static void inline setup_usemap(struct pglist_data *pgdat,
3416 struct zone *zone, unsigned long zonesize) {}
3417 #endif /* CONFIG_SPARSEMEM */
3418
3419 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3420
3421 /* Return a sensible default order for the pageblock size. */
3422 static inline int pageblock_default_order(void)
3423 {
3424 if (HPAGE_SHIFT > PAGE_SHIFT)
3425 return HUGETLB_PAGE_ORDER;
3426
3427 return MAX_ORDER-1;
3428 }
3429
3430 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3431 static inline void __init set_pageblock_order(unsigned int order)
3432 {
3433 /* Check that pageblock_nr_pages has not already been setup */
3434 if (pageblock_order)
3435 return;
3436
3437 /*
3438 * Assume the largest contiguous order of interest is a huge page.
3439 * This value may be variable depending on boot parameters on IA64
3440 */
3441 pageblock_order = order;
3442 }
3443 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3444
3445 /*
3446 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3447 * and pageblock_default_order() are unused as pageblock_order is set
3448 * at compile-time. See include/linux/pageblock-flags.h for the values of
3449 * pageblock_order based on the kernel config
3450 */
3451 static inline int pageblock_default_order(unsigned int order)
3452 {
3453 return MAX_ORDER-1;
3454 }
3455 #define set_pageblock_order(x) do {} while (0)
3456
3457 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3458
3459 /*
3460 * Set up the zone data structures:
3461 * - mark all pages reserved
3462 * - mark all memory queues empty
3463 * - clear the memory bitmaps
3464 */
3465 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3466 unsigned long *zones_size, unsigned long *zholes_size)
3467 {
3468 enum zone_type j;
3469 int nid = pgdat->node_id;
3470 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3471 int ret;
3472
3473 pgdat_resize_init(pgdat);
3474 pgdat->nr_zones = 0;
3475 init_waitqueue_head(&pgdat->kswapd_wait);
3476 pgdat->kswapd_max_order = 0;
3477 pgdat_page_cgroup_init(pgdat);
3478
3479 for (j = 0; j < MAX_NR_ZONES; j++) {
3480 struct zone *zone = pgdat->node_zones + j;
3481 unsigned long size, realsize, memmap_pages;
3482 enum lru_list l;
3483
3484 size = zone_spanned_pages_in_node(nid, j, zones_size);
3485 realsize = size - zone_absent_pages_in_node(nid, j,
3486 zholes_size);
3487
3488 /*
3489 * Adjust realsize so that it accounts for how much memory
3490 * is used by this zone for memmap. This affects the watermark
3491 * and per-cpu initialisations
3492 */
3493 memmap_pages =
3494 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3495 if (realsize >= memmap_pages) {
3496 realsize -= memmap_pages;
3497 if (memmap_pages)
3498 printk(KERN_DEBUG
3499 " %s zone: %lu pages used for memmap\n",
3500 zone_names[j], memmap_pages);
3501 } else
3502 printk(KERN_WARNING
3503 " %s zone: %lu pages exceeds realsize %lu\n",
3504 zone_names[j], memmap_pages, realsize);
3505
3506 /* Account for reserved pages */
3507 if (j == 0 && realsize > dma_reserve) {
3508 realsize -= dma_reserve;
3509 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3510 zone_names[0], dma_reserve);
3511 }
3512
3513 if (!is_highmem_idx(j))
3514 nr_kernel_pages += realsize;
3515 nr_all_pages += realsize;
3516
3517 zone->spanned_pages = size;
3518 zone->present_pages = realsize;
3519 #ifdef CONFIG_NUMA
3520 zone->node = nid;
3521 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3522 / 100;
3523 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3524 #endif
3525 zone->name = zone_names[j];
3526 spin_lock_init(&zone->lock);
3527 spin_lock_init(&zone->lru_lock);
3528 zone_seqlock_init(zone);
3529 zone->zone_pgdat = pgdat;
3530
3531 zone->prev_priority = DEF_PRIORITY;
3532
3533 zone_pcp_init(zone);
3534 for_each_lru(l) {
3535 INIT_LIST_HEAD(&zone->lru[l].list);
3536 zone->lru[l].nr_scan = 0;
3537 }
3538 zone->reclaim_stat.recent_rotated[0] = 0;
3539 zone->reclaim_stat.recent_rotated[1] = 0;
3540 zone->reclaim_stat.recent_scanned[0] = 0;
3541 zone->reclaim_stat.recent_scanned[1] = 0;
3542 zap_zone_vm_stats(zone);
3543 zone->flags = 0;
3544 if (!size)
3545 continue;
3546
3547 set_pageblock_order(pageblock_default_order());
3548 setup_usemap(pgdat, zone, size);
3549 ret = init_currently_empty_zone(zone, zone_start_pfn,
3550 size, MEMMAP_EARLY);
3551 BUG_ON(ret);
3552 memmap_init(size, nid, j, zone_start_pfn);
3553 zone_start_pfn += size;
3554 }
3555 }
3556
3557 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3558 {
3559 /* Skip empty nodes */
3560 if (!pgdat->node_spanned_pages)
3561 return;
3562
3563 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3564 /* ia64 gets its own node_mem_map, before this, without bootmem */
3565 if (!pgdat->node_mem_map) {
3566 unsigned long size, start, end;
3567 struct page *map;
3568
3569 /*
3570 * The zone's endpoints aren't required to be MAX_ORDER
3571 * aligned but the node_mem_map endpoints must be in order
3572 * for the buddy allocator to function correctly.
3573 */
3574 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3575 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3576 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3577 size = (end - start) * sizeof(struct page);
3578 map = alloc_remap(pgdat->node_id, size);
3579 if (!map)
3580 map = alloc_bootmem_node(pgdat, size);
3581 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3582 }
3583 #ifndef CONFIG_NEED_MULTIPLE_NODES
3584 /*
3585 * With no DISCONTIG, the global mem_map is just set as node 0's
3586 */
3587 if (pgdat == NODE_DATA(0)) {
3588 mem_map = NODE_DATA(0)->node_mem_map;
3589 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3590 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3591 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3592 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3593 }
3594 #endif
3595 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3596 }
3597
3598 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3599 unsigned long node_start_pfn, unsigned long *zholes_size)
3600 {
3601 pg_data_t *pgdat = NODE_DATA(nid);
3602
3603 pgdat->node_id = nid;
3604 pgdat->node_start_pfn = node_start_pfn;
3605 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3606
3607 alloc_node_mem_map(pgdat);
3608 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3609 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3610 nid, (unsigned long)pgdat,
3611 (unsigned long)pgdat->node_mem_map);
3612 #endif
3613
3614 free_area_init_core(pgdat, zones_size, zholes_size);
3615 }
3616
3617 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3618
3619 #if MAX_NUMNODES > 1
3620 /*
3621 * Figure out the number of possible node ids.
3622 */
3623 static void __init setup_nr_node_ids(void)
3624 {
3625 unsigned int node;
3626 unsigned int highest = 0;
3627
3628 for_each_node_mask(node, node_possible_map)
3629 highest = node;
3630 nr_node_ids = highest + 1;
3631 }
3632 #else
3633 static inline void setup_nr_node_ids(void)
3634 {
3635 }
3636 #endif
3637
3638 /**
3639 * add_active_range - Register a range of PFNs backed by physical memory
3640 * @nid: The node ID the range resides on
3641 * @start_pfn: The start PFN of the available physical memory
3642 * @end_pfn: The end PFN of the available physical memory
3643 *
3644 * These ranges are stored in an early_node_map[] and later used by
3645 * free_area_init_nodes() to calculate zone sizes and holes. If the
3646 * range spans a memory hole, it is up to the architecture to ensure
3647 * the memory is not freed by the bootmem allocator. If possible
3648 * the range being registered will be merged with existing ranges.
3649 */
3650 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3651 unsigned long end_pfn)
3652 {
3653 int i;
3654
3655 mminit_dprintk(MMINIT_TRACE, "memory_register",
3656 "Entering add_active_range(%d, %#lx, %#lx) "
3657 "%d entries of %d used\n",
3658 nid, start_pfn, end_pfn,
3659 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3660
3661 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3662
3663 /* Merge with existing active regions if possible */
3664 for (i = 0; i < nr_nodemap_entries; i++) {
3665 if (early_node_map[i].nid != nid)
3666 continue;
3667
3668 /* Skip if an existing region covers this new one */
3669 if (start_pfn >= early_node_map[i].start_pfn &&
3670 end_pfn <= early_node_map[i].end_pfn)
3671 return;
3672
3673 /* Merge forward if suitable */
3674 if (start_pfn <= early_node_map[i].end_pfn &&
3675 end_pfn > early_node_map[i].end_pfn) {
3676 early_node_map[i].end_pfn = end_pfn;
3677 return;
3678 }
3679
3680 /* Merge backward if suitable */
3681 if (start_pfn < early_node_map[i].end_pfn &&
3682 end_pfn >= early_node_map[i].start_pfn) {
3683 early_node_map[i].start_pfn = start_pfn;
3684 return;
3685 }
3686 }
3687
3688 /* Check that early_node_map is large enough */
3689 if (i >= MAX_ACTIVE_REGIONS) {
3690 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3691 MAX_ACTIVE_REGIONS);
3692 return;
3693 }
3694
3695 early_node_map[i].nid = nid;
3696 early_node_map[i].start_pfn = start_pfn;
3697 early_node_map[i].end_pfn = end_pfn;
3698 nr_nodemap_entries = i + 1;
3699 }
3700
3701 /**
3702 * remove_active_range - Shrink an existing registered range of PFNs
3703 * @nid: The node id the range is on that should be shrunk
3704 * @start_pfn: The new PFN of the range
3705 * @end_pfn: The new PFN of the range
3706 *
3707 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3708 * The map is kept near the end physical page range that has already been
3709 * registered. This function allows an arch to shrink an existing registered
3710 * range.
3711 */
3712 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3713 unsigned long end_pfn)
3714 {
3715 int i, j;
3716 int removed = 0;
3717
3718 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3719 nid, start_pfn, end_pfn);
3720
3721 /* Find the old active region end and shrink */
3722 for_each_active_range_index_in_nid(i, nid) {
3723 if (early_node_map[i].start_pfn >= start_pfn &&
3724 early_node_map[i].end_pfn <= end_pfn) {
3725 /* clear it */
3726 early_node_map[i].start_pfn = 0;
3727 early_node_map[i].end_pfn = 0;
3728 removed = 1;
3729 continue;
3730 }
3731 if (early_node_map[i].start_pfn < start_pfn &&
3732 early_node_map[i].end_pfn > start_pfn) {
3733 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3734 early_node_map[i].end_pfn = start_pfn;
3735 if (temp_end_pfn > end_pfn)
3736 add_active_range(nid, end_pfn, temp_end_pfn);
3737 continue;
3738 }
3739 if (early_node_map[i].start_pfn >= start_pfn &&
3740 early_node_map[i].end_pfn > end_pfn &&
3741 early_node_map[i].start_pfn < end_pfn) {
3742 early_node_map[i].start_pfn = end_pfn;
3743 continue;
3744 }
3745 }
3746
3747 if (!removed)
3748 return;
3749
3750 /* remove the blank ones */
3751 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3752 if (early_node_map[i].nid != nid)
3753 continue;
3754 if (early_node_map[i].end_pfn)
3755 continue;
3756 /* we found it, get rid of it */
3757 for (j = i; j < nr_nodemap_entries - 1; j++)
3758 memcpy(&early_node_map[j], &early_node_map[j+1],
3759 sizeof(early_node_map[j]));
3760 j = nr_nodemap_entries - 1;
3761 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3762 nr_nodemap_entries--;
3763 }
3764 }
3765
3766 /**
3767 * remove_all_active_ranges - Remove all currently registered regions
3768 *
3769 * During discovery, it may be found that a table like SRAT is invalid
3770 * and an alternative discovery method must be used. This function removes
3771 * all currently registered regions.
3772 */
3773 void __init remove_all_active_ranges(void)
3774 {
3775 memset(early_node_map, 0, sizeof(early_node_map));
3776 nr_nodemap_entries = 0;
3777 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3778 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3779 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3780 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3781 }
3782
3783 /* Compare two active node_active_regions */
3784 static int __init cmp_node_active_region(const void *a, const void *b)
3785 {
3786 struct node_active_region *arange = (struct node_active_region *)a;
3787 struct node_active_region *brange = (struct node_active_region *)b;
3788
3789 /* Done this way to avoid overflows */
3790 if (arange->start_pfn > brange->start_pfn)
3791 return 1;
3792 if (arange->start_pfn < brange->start_pfn)
3793 return -1;
3794
3795 return 0;
3796 }
3797
3798 /* sort the node_map by start_pfn */
3799 static void __init sort_node_map(void)
3800 {
3801 sort(early_node_map, (size_t)nr_nodemap_entries,
3802 sizeof(struct node_active_region),
3803 cmp_node_active_region, NULL);
3804 }
3805
3806 /* Find the lowest pfn for a node */
3807 static unsigned long __init find_min_pfn_for_node(int nid)
3808 {
3809 int i;
3810 unsigned long min_pfn = ULONG_MAX;
3811
3812 /* Assuming a sorted map, the first range found has the starting pfn */
3813 for_each_active_range_index_in_nid(i, nid)
3814 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3815
3816 if (min_pfn == ULONG_MAX) {
3817 printk(KERN_WARNING
3818 "Could not find start_pfn for node %d\n", nid);
3819 return 0;
3820 }
3821
3822 return min_pfn;
3823 }
3824
3825 /**
3826 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3827 *
3828 * It returns the minimum PFN based on information provided via
3829 * add_active_range().
3830 */
3831 unsigned long __init find_min_pfn_with_active_regions(void)
3832 {
3833 return find_min_pfn_for_node(MAX_NUMNODES);
3834 }
3835
3836 /*
3837 * early_calculate_totalpages()
3838 * Sum pages in active regions for movable zone.
3839 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3840 */
3841 static unsigned long __init early_calculate_totalpages(void)
3842 {
3843 int i;
3844 unsigned long totalpages = 0;
3845
3846 for (i = 0; i < nr_nodemap_entries; i++) {
3847 unsigned long pages = early_node_map[i].end_pfn -
3848 early_node_map[i].start_pfn;
3849 totalpages += pages;
3850 if (pages)
3851 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3852 }
3853 return totalpages;
3854 }
3855
3856 /*
3857 * Find the PFN the Movable zone begins in each node. Kernel memory
3858 * is spread evenly between nodes as long as the nodes have enough
3859 * memory. When they don't, some nodes will have more kernelcore than
3860 * others
3861 */
3862 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3863 {
3864 int i, nid;
3865 unsigned long usable_startpfn;
3866 unsigned long kernelcore_node, kernelcore_remaining;
3867 unsigned long totalpages = early_calculate_totalpages();
3868 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3869
3870 /*
3871 * If movablecore was specified, calculate what size of
3872 * kernelcore that corresponds so that memory usable for
3873 * any allocation type is evenly spread. If both kernelcore
3874 * and movablecore are specified, then the value of kernelcore
3875 * will be used for required_kernelcore if it's greater than
3876 * what movablecore would have allowed.
3877 */
3878 if (required_movablecore) {
3879 unsigned long corepages;
3880
3881 /*
3882 * Round-up so that ZONE_MOVABLE is at least as large as what
3883 * was requested by the user
3884 */
3885 required_movablecore =
3886 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3887 corepages = totalpages - required_movablecore;
3888
3889 required_kernelcore = max(required_kernelcore, corepages);
3890 }
3891
3892 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3893 if (!required_kernelcore)
3894 return;
3895
3896 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3897 find_usable_zone_for_movable();
3898 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3899
3900 restart:
3901 /* Spread kernelcore memory as evenly as possible throughout nodes */
3902 kernelcore_node = required_kernelcore / usable_nodes;
3903 for_each_node_state(nid, N_HIGH_MEMORY) {
3904 /*
3905 * Recalculate kernelcore_node if the division per node
3906 * now exceeds what is necessary to satisfy the requested
3907 * amount of memory for the kernel
3908 */
3909 if (required_kernelcore < kernelcore_node)
3910 kernelcore_node = required_kernelcore / usable_nodes;
3911
3912 /*
3913 * As the map is walked, we track how much memory is usable
3914 * by the kernel using kernelcore_remaining. When it is
3915 * 0, the rest of the node is usable by ZONE_MOVABLE
3916 */
3917 kernelcore_remaining = kernelcore_node;
3918
3919 /* Go through each range of PFNs within this node */
3920 for_each_active_range_index_in_nid(i, nid) {
3921 unsigned long start_pfn, end_pfn;
3922 unsigned long size_pages;
3923
3924 start_pfn = max(early_node_map[i].start_pfn,
3925 zone_movable_pfn[nid]);
3926 end_pfn = early_node_map[i].end_pfn;
3927 if (start_pfn >= end_pfn)
3928 continue;
3929
3930 /* Account for what is only usable for kernelcore */
3931 if (start_pfn < usable_startpfn) {
3932 unsigned long kernel_pages;
3933 kernel_pages = min(end_pfn, usable_startpfn)
3934 - start_pfn;
3935
3936 kernelcore_remaining -= min(kernel_pages,
3937 kernelcore_remaining);
3938 required_kernelcore -= min(kernel_pages,
3939 required_kernelcore);
3940
3941 /* Continue if range is now fully accounted */
3942 if (end_pfn <= usable_startpfn) {
3943
3944 /*
3945 * Push zone_movable_pfn to the end so
3946 * that if we have to rebalance
3947 * kernelcore across nodes, we will
3948 * not double account here
3949 */
3950 zone_movable_pfn[nid] = end_pfn;
3951 continue;
3952 }
3953 start_pfn = usable_startpfn;
3954 }
3955
3956 /*
3957 * The usable PFN range for ZONE_MOVABLE is from
3958 * start_pfn->end_pfn. Calculate size_pages as the
3959 * number of pages used as kernelcore
3960 */
3961 size_pages = end_pfn - start_pfn;
3962 if (size_pages > kernelcore_remaining)
3963 size_pages = kernelcore_remaining;
3964 zone_movable_pfn[nid] = start_pfn + size_pages;
3965
3966 /*
3967 * Some kernelcore has been met, update counts and
3968 * break if the kernelcore for this node has been
3969 * satisified
3970 */
3971 required_kernelcore -= min(required_kernelcore,
3972 size_pages);
3973 kernelcore_remaining -= size_pages;
3974 if (!kernelcore_remaining)
3975 break;
3976 }
3977 }
3978
3979 /*
3980 * If there is still required_kernelcore, we do another pass with one
3981 * less node in the count. This will push zone_movable_pfn[nid] further
3982 * along on the nodes that still have memory until kernelcore is
3983 * satisified
3984 */
3985 usable_nodes--;
3986 if (usable_nodes && required_kernelcore > usable_nodes)
3987 goto restart;
3988
3989 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3990 for (nid = 0; nid < MAX_NUMNODES; nid++)
3991 zone_movable_pfn[nid] =
3992 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3993 }
3994
3995 /* Any regular memory on that node ? */
3996 static void check_for_regular_memory(pg_data_t *pgdat)
3997 {
3998 #ifdef CONFIG_HIGHMEM
3999 enum zone_type zone_type;
4000
4001 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4002 struct zone *zone = &pgdat->node_zones[zone_type];
4003 if (zone->present_pages)
4004 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4005 }
4006 #endif
4007 }
4008
4009 /**
4010 * free_area_init_nodes - Initialise all pg_data_t and zone data
4011 * @max_zone_pfn: an array of max PFNs for each zone
4012 *
4013 * This will call free_area_init_node() for each active node in the system.
4014 * Using the page ranges provided by add_active_range(), the size of each
4015 * zone in each node and their holes is calculated. If the maximum PFN
4016 * between two adjacent zones match, it is assumed that the zone is empty.
4017 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4018 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4019 * starts where the previous one ended. For example, ZONE_DMA32 starts
4020 * at arch_max_dma_pfn.
4021 */
4022 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4023 {
4024 unsigned long nid;
4025 int i;
4026
4027 /* Sort early_node_map as initialisation assumes it is sorted */
4028 sort_node_map();
4029
4030 /* Record where the zone boundaries are */
4031 memset(arch_zone_lowest_possible_pfn, 0,
4032 sizeof(arch_zone_lowest_possible_pfn));
4033 memset(arch_zone_highest_possible_pfn, 0,
4034 sizeof(arch_zone_highest_possible_pfn));
4035 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4036 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4037 for (i = 1; i < MAX_NR_ZONES; i++) {
4038 if (i == ZONE_MOVABLE)
4039 continue;
4040 arch_zone_lowest_possible_pfn[i] =
4041 arch_zone_highest_possible_pfn[i-1];
4042 arch_zone_highest_possible_pfn[i] =
4043 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4044 }
4045 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4046 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4047
4048 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4049 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4050 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4051
4052 /* Print out the zone ranges */
4053 printk("Zone PFN ranges:\n");
4054 for (i = 0; i < MAX_NR_ZONES; i++) {
4055 if (i == ZONE_MOVABLE)
4056 continue;
4057 printk(" %-8s %0#10lx -> %0#10lx\n",
4058 zone_names[i],
4059 arch_zone_lowest_possible_pfn[i],
4060 arch_zone_highest_possible_pfn[i]);
4061 }
4062
4063 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4064 printk("Movable zone start PFN for each node\n");
4065 for (i = 0; i < MAX_NUMNODES; i++) {
4066 if (zone_movable_pfn[i])
4067 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4068 }
4069
4070 /* Print out the early_node_map[] */
4071 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4072 for (i = 0; i < nr_nodemap_entries; i++)
4073 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4074 early_node_map[i].start_pfn,
4075 early_node_map[i].end_pfn);
4076
4077 /* Initialise every node */
4078 mminit_verify_pageflags_layout();
4079 setup_nr_node_ids();
4080 for_each_online_node(nid) {
4081 pg_data_t *pgdat = NODE_DATA(nid);
4082 free_area_init_node(nid, NULL,
4083 find_min_pfn_for_node(nid), NULL);
4084
4085 /* Any memory on that node */
4086 if (pgdat->node_present_pages)
4087 node_set_state(nid, N_HIGH_MEMORY);
4088 check_for_regular_memory(pgdat);
4089 }
4090 }
4091
4092 static int __init cmdline_parse_core(char *p, unsigned long *core)
4093 {
4094 unsigned long long coremem;
4095 if (!p)
4096 return -EINVAL;
4097
4098 coremem = memparse(p, &p);
4099 *core = coremem >> PAGE_SHIFT;
4100
4101 /* Paranoid check that UL is enough for the coremem value */
4102 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4103
4104 return 0;
4105 }
4106
4107 /*
4108 * kernelcore=size sets the amount of memory for use for allocations that
4109 * cannot be reclaimed or migrated.
4110 */
4111 static int __init cmdline_parse_kernelcore(char *p)
4112 {
4113 return cmdline_parse_core(p, &required_kernelcore);
4114 }
4115
4116 /*
4117 * movablecore=size sets the amount of memory for use for allocations that
4118 * can be reclaimed or migrated.
4119 */
4120 static int __init cmdline_parse_movablecore(char *p)
4121 {
4122 return cmdline_parse_core(p, &required_movablecore);
4123 }
4124
4125 early_param("kernelcore", cmdline_parse_kernelcore);
4126 early_param("movablecore", cmdline_parse_movablecore);
4127
4128 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4129
4130 /**
4131 * set_dma_reserve - set the specified number of pages reserved in the first zone
4132 * @new_dma_reserve: The number of pages to mark reserved
4133 *
4134 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4135 * In the DMA zone, a significant percentage may be consumed by kernel image
4136 * and other unfreeable allocations which can skew the watermarks badly. This
4137 * function may optionally be used to account for unfreeable pages in the
4138 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4139 * smaller per-cpu batchsize.
4140 */
4141 void __init set_dma_reserve(unsigned long new_dma_reserve)
4142 {
4143 dma_reserve = new_dma_reserve;
4144 }
4145
4146 #ifndef CONFIG_NEED_MULTIPLE_NODES
4147 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4148 EXPORT_SYMBOL(contig_page_data);
4149 #endif
4150
4151 void __init free_area_init(unsigned long *zones_size)
4152 {
4153 free_area_init_node(0, zones_size,
4154 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4155 }
4156
4157 static int page_alloc_cpu_notify(struct notifier_block *self,
4158 unsigned long action, void *hcpu)
4159 {
4160 int cpu = (unsigned long)hcpu;
4161
4162 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4163 drain_pages(cpu);
4164
4165 /*
4166 * Spill the event counters of the dead processor
4167 * into the current processors event counters.
4168 * This artificially elevates the count of the current
4169 * processor.
4170 */
4171 vm_events_fold_cpu(cpu);
4172
4173 /*
4174 * Zero the differential counters of the dead processor
4175 * so that the vm statistics are consistent.
4176 *
4177 * This is only okay since the processor is dead and cannot
4178 * race with what we are doing.
4179 */
4180 refresh_cpu_vm_stats(cpu);
4181 }
4182 return NOTIFY_OK;
4183 }
4184
4185 void __init page_alloc_init(void)
4186 {
4187 hotcpu_notifier(page_alloc_cpu_notify, 0);
4188 }
4189
4190 /*
4191 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4192 * or min_free_kbytes changes.
4193 */
4194 static void calculate_totalreserve_pages(void)
4195 {
4196 struct pglist_data *pgdat;
4197 unsigned long reserve_pages = 0;
4198 enum zone_type i, j;
4199
4200 for_each_online_pgdat(pgdat) {
4201 for (i = 0; i < MAX_NR_ZONES; i++) {
4202 struct zone *zone = pgdat->node_zones + i;
4203 unsigned long max = 0;
4204
4205 /* Find valid and maximum lowmem_reserve in the zone */
4206 for (j = i; j < MAX_NR_ZONES; j++) {
4207 if (zone->lowmem_reserve[j] > max)
4208 max = zone->lowmem_reserve[j];
4209 }
4210
4211 /* we treat pages_high as reserved pages. */
4212 max += zone->pages_high;
4213
4214 if (max > zone->present_pages)
4215 max = zone->present_pages;
4216 reserve_pages += max;
4217 }
4218 }
4219 totalreserve_pages = reserve_pages;
4220 }
4221
4222 /*
4223 * setup_per_zone_lowmem_reserve - called whenever
4224 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4225 * has a correct pages reserved value, so an adequate number of
4226 * pages are left in the zone after a successful __alloc_pages().
4227 */
4228 static void setup_per_zone_lowmem_reserve(void)
4229 {
4230 struct pglist_data *pgdat;
4231 enum zone_type j, idx;
4232
4233 for_each_online_pgdat(pgdat) {
4234 for (j = 0; j < MAX_NR_ZONES; j++) {
4235 struct zone *zone = pgdat->node_zones + j;
4236 unsigned long present_pages = zone->present_pages;
4237
4238 zone->lowmem_reserve[j] = 0;
4239
4240 idx = j;
4241 while (idx) {
4242 struct zone *lower_zone;
4243
4244 idx--;
4245
4246 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4247 sysctl_lowmem_reserve_ratio[idx] = 1;
4248
4249 lower_zone = pgdat->node_zones + idx;
4250 lower_zone->lowmem_reserve[j] = present_pages /
4251 sysctl_lowmem_reserve_ratio[idx];
4252 present_pages += lower_zone->present_pages;
4253 }
4254 }
4255 }
4256
4257 /* update totalreserve_pages */
4258 calculate_totalreserve_pages();
4259 }
4260
4261 /**
4262 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4263 *
4264 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4265 * with respect to min_free_kbytes.
4266 */
4267 void setup_per_zone_pages_min(void)
4268 {
4269 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4270 unsigned long lowmem_pages = 0;
4271 struct zone *zone;
4272 unsigned long flags;
4273
4274 /* Calculate total number of !ZONE_HIGHMEM pages */
4275 for_each_zone(zone) {
4276 if (!is_highmem(zone))
4277 lowmem_pages += zone->present_pages;
4278 }
4279
4280 for_each_zone(zone) {
4281 u64 tmp;
4282
4283 spin_lock_irqsave(&zone->lock, flags);
4284 tmp = (u64)pages_min * zone->present_pages;
4285 do_div(tmp, lowmem_pages);
4286 if (is_highmem(zone)) {
4287 /*
4288 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4289 * need highmem pages, so cap pages_min to a small
4290 * value here.
4291 *
4292 * The (pages_high-pages_low) and (pages_low-pages_min)
4293 * deltas controls asynch page reclaim, and so should
4294 * not be capped for highmem.
4295 */
4296 int min_pages;
4297
4298 min_pages = zone->present_pages / 1024;
4299 if (min_pages < SWAP_CLUSTER_MAX)
4300 min_pages = SWAP_CLUSTER_MAX;
4301 if (min_pages > 128)
4302 min_pages = 128;
4303 zone->pages_min = min_pages;
4304 } else {
4305 /*
4306 * If it's a lowmem zone, reserve a number of pages
4307 * proportionate to the zone's size.
4308 */
4309 zone->pages_min = tmp;
4310 }
4311
4312 zone->pages_low = zone->pages_min + (tmp >> 2);
4313 zone->pages_high = zone->pages_min + (tmp >> 1);
4314 setup_zone_migrate_reserve(zone);
4315 spin_unlock_irqrestore(&zone->lock, flags);
4316 }
4317
4318 /* update totalreserve_pages */
4319 calculate_totalreserve_pages();
4320 }
4321
4322 /**
4323 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4324 *
4325 * The inactive anon list should be small enough that the VM never has to
4326 * do too much work, but large enough that each inactive page has a chance
4327 * to be referenced again before it is swapped out.
4328 *
4329 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4330 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4331 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4332 * the anonymous pages are kept on the inactive list.
4333 *
4334 * total target max
4335 * memory ratio inactive anon
4336 * -------------------------------------
4337 * 10MB 1 5MB
4338 * 100MB 1 50MB
4339 * 1GB 3 250MB
4340 * 10GB 10 0.9GB
4341 * 100GB 31 3GB
4342 * 1TB 101 10GB
4343 * 10TB 320 32GB
4344 */
4345 static void setup_per_zone_inactive_ratio(void)
4346 {
4347 struct zone *zone;
4348
4349 for_each_zone(zone) {
4350 unsigned int gb, ratio;
4351
4352 /* Zone size in gigabytes */
4353 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4354 ratio = int_sqrt(10 * gb);
4355 if (!ratio)
4356 ratio = 1;
4357
4358 zone->inactive_ratio = ratio;
4359 }
4360 }
4361
4362 /*
4363 * Initialise min_free_kbytes.
4364 *
4365 * For small machines we want it small (128k min). For large machines
4366 * we want it large (64MB max). But it is not linear, because network
4367 * bandwidth does not increase linearly with machine size. We use
4368 *
4369 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4370 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4371 *
4372 * which yields
4373 *
4374 * 16MB: 512k
4375 * 32MB: 724k
4376 * 64MB: 1024k
4377 * 128MB: 1448k
4378 * 256MB: 2048k
4379 * 512MB: 2896k
4380 * 1024MB: 4096k
4381 * 2048MB: 5792k
4382 * 4096MB: 8192k
4383 * 8192MB: 11584k
4384 * 16384MB: 16384k
4385 */
4386 static int __init init_per_zone_pages_min(void)
4387 {
4388 unsigned long lowmem_kbytes;
4389
4390 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4391
4392 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4393 if (min_free_kbytes < 128)
4394 min_free_kbytes = 128;
4395 if (min_free_kbytes > 65536)
4396 min_free_kbytes = 65536;
4397 setup_per_zone_pages_min();
4398 setup_per_zone_lowmem_reserve();
4399 setup_per_zone_inactive_ratio();
4400 return 0;
4401 }
4402 module_init(init_per_zone_pages_min)
4403
4404 /*
4405 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4406 * that we can call two helper functions whenever min_free_kbytes
4407 * changes.
4408 */
4409 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4410 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4411 {
4412 proc_dointvec(table, write, file, buffer, length, ppos);
4413 if (write)
4414 setup_per_zone_pages_min();
4415 return 0;
4416 }
4417
4418 #ifdef CONFIG_NUMA
4419 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4420 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4421 {
4422 struct zone *zone;
4423 int rc;
4424
4425 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4426 if (rc)
4427 return rc;
4428
4429 for_each_zone(zone)
4430 zone->min_unmapped_pages = (zone->present_pages *
4431 sysctl_min_unmapped_ratio) / 100;
4432 return 0;
4433 }
4434
4435 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4436 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4437 {
4438 struct zone *zone;
4439 int rc;
4440
4441 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4442 if (rc)
4443 return rc;
4444
4445 for_each_zone(zone)
4446 zone->min_slab_pages = (zone->present_pages *
4447 sysctl_min_slab_ratio) / 100;
4448 return 0;
4449 }
4450 #endif
4451
4452 /*
4453 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4454 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4455 * whenever sysctl_lowmem_reserve_ratio changes.
4456 *
4457 * The reserve ratio obviously has absolutely no relation with the
4458 * pages_min watermarks. The lowmem reserve ratio can only make sense
4459 * if in function of the boot time zone sizes.
4460 */
4461 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4462 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4463 {
4464 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4465 setup_per_zone_lowmem_reserve();
4466 return 0;
4467 }
4468
4469 /*
4470 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4471 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4472 * can have before it gets flushed back to buddy allocator.
4473 */
4474
4475 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4476 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4477 {
4478 struct zone *zone;
4479 unsigned int cpu;
4480 int ret;
4481
4482 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4483 if (!write || (ret == -EINVAL))
4484 return ret;
4485 for_each_zone(zone) {
4486 for_each_online_cpu(cpu) {
4487 unsigned long high;
4488 high = zone->present_pages / percpu_pagelist_fraction;
4489 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4490 }
4491 }
4492 return 0;
4493 }
4494
4495 int hashdist = HASHDIST_DEFAULT;
4496
4497 #ifdef CONFIG_NUMA
4498 static int __init set_hashdist(char *str)
4499 {
4500 if (!str)
4501 return 0;
4502 hashdist = simple_strtoul(str, &str, 0);
4503 return 1;
4504 }
4505 __setup("hashdist=", set_hashdist);
4506 #endif
4507
4508 /*
4509 * allocate a large system hash table from bootmem
4510 * - it is assumed that the hash table must contain an exact power-of-2
4511 * quantity of entries
4512 * - limit is the number of hash buckets, not the total allocation size
4513 */
4514 void *__init alloc_large_system_hash(const char *tablename,
4515 unsigned long bucketsize,
4516 unsigned long numentries,
4517 int scale,
4518 int flags,
4519 unsigned int *_hash_shift,
4520 unsigned int *_hash_mask,
4521 unsigned long limit)
4522 {
4523 unsigned long long max = limit;
4524 unsigned long log2qty, size;
4525 void *table = NULL;
4526
4527 /* allow the kernel cmdline to have a say */
4528 if (!numentries) {
4529 /* round applicable memory size up to nearest megabyte */
4530 numentries = nr_kernel_pages;
4531 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4532 numentries >>= 20 - PAGE_SHIFT;
4533 numentries <<= 20 - PAGE_SHIFT;
4534
4535 /* limit to 1 bucket per 2^scale bytes of low memory */
4536 if (scale > PAGE_SHIFT)
4537 numentries >>= (scale - PAGE_SHIFT);
4538 else
4539 numentries <<= (PAGE_SHIFT - scale);
4540
4541 /* Make sure we've got at least a 0-order allocation.. */
4542 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4543 numentries = PAGE_SIZE / bucketsize;
4544 }
4545 numentries = roundup_pow_of_two(numentries);
4546
4547 /* limit allocation size to 1/16 total memory by default */
4548 if (max == 0) {
4549 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4550 do_div(max, bucketsize);
4551 }
4552
4553 if (numentries > max)
4554 numentries = max;
4555
4556 log2qty = ilog2(numentries);
4557
4558 do {
4559 size = bucketsize << log2qty;
4560 if (flags & HASH_EARLY)
4561 table = alloc_bootmem_nopanic(size);
4562 else if (hashdist)
4563 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4564 else {
4565 unsigned long order = get_order(size);
4566 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4567 /*
4568 * If bucketsize is not a power-of-two, we may free
4569 * some pages at the end of hash table.
4570 */
4571 if (table) {
4572 unsigned long alloc_end = (unsigned long)table +
4573 (PAGE_SIZE << order);
4574 unsigned long used = (unsigned long)table +
4575 PAGE_ALIGN(size);
4576 split_page(virt_to_page(table), order);
4577 while (used < alloc_end) {
4578 free_page(used);
4579 used += PAGE_SIZE;
4580 }
4581 }
4582 }
4583 } while (!table && size > PAGE_SIZE && --log2qty);
4584
4585 if (!table)
4586 panic("Failed to allocate %s hash table\n", tablename);
4587
4588 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4589 tablename,
4590 (1U << log2qty),
4591 ilog2(size) - PAGE_SHIFT,
4592 size);
4593
4594 if (_hash_shift)
4595 *_hash_shift = log2qty;
4596 if (_hash_mask)
4597 *_hash_mask = (1 << log2qty) - 1;
4598
4599 return table;
4600 }
4601
4602 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4603 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4604 unsigned long pfn)
4605 {
4606 #ifdef CONFIG_SPARSEMEM
4607 return __pfn_to_section(pfn)->pageblock_flags;
4608 #else
4609 return zone->pageblock_flags;
4610 #endif /* CONFIG_SPARSEMEM */
4611 }
4612
4613 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4614 {
4615 #ifdef CONFIG_SPARSEMEM
4616 pfn &= (PAGES_PER_SECTION-1);
4617 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4618 #else
4619 pfn = pfn - zone->zone_start_pfn;
4620 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4621 #endif /* CONFIG_SPARSEMEM */
4622 }
4623
4624 /**
4625 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4626 * @page: The page within the block of interest
4627 * @start_bitidx: The first bit of interest to retrieve
4628 * @end_bitidx: The last bit of interest
4629 * returns pageblock_bits flags
4630 */
4631 unsigned long get_pageblock_flags_group(struct page *page,
4632 int start_bitidx, int end_bitidx)
4633 {
4634 struct zone *zone;
4635 unsigned long *bitmap;
4636 unsigned long pfn, bitidx;
4637 unsigned long flags = 0;
4638 unsigned long value = 1;
4639
4640 zone = page_zone(page);
4641 pfn = page_to_pfn(page);
4642 bitmap = get_pageblock_bitmap(zone, pfn);
4643 bitidx = pfn_to_bitidx(zone, pfn);
4644
4645 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4646 if (test_bit(bitidx + start_bitidx, bitmap))
4647 flags |= value;
4648
4649 return flags;
4650 }
4651
4652 /**
4653 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4654 * @page: The page within the block of interest
4655 * @start_bitidx: The first bit of interest
4656 * @end_bitidx: The last bit of interest
4657 * @flags: The flags to set
4658 */
4659 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4660 int start_bitidx, int end_bitidx)
4661 {
4662 struct zone *zone;
4663 unsigned long *bitmap;
4664 unsigned long pfn, bitidx;
4665 unsigned long value = 1;
4666
4667 zone = page_zone(page);
4668 pfn = page_to_pfn(page);
4669 bitmap = get_pageblock_bitmap(zone, pfn);
4670 bitidx = pfn_to_bitidx(zone, pfn);
4671 VM_BUG_ON(pfn < zone->zone_start_pfn);
4672 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4673
4674 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4675 if (flags & value)
4676 __set_bit(bitidx + start_bitidx, bitmap);
4677 else
4678 __clear_bit(bitidx + start_bitidx, bitmap);
4679 }
4680
4681 /*
4682 * This is designed as sub function...plz see page_isolation.c also.
4683 * set/clear page block's type to be ISOLATE.
4684 * page allocater never alloc memory from ISOLATE block.
4685 */
4686
4687 int set_migratetype_isolate(struct page *page)
4688 {
4689 struct zone *zone;
4690 unsigned long flags;
4691 int ret = -EBUSY;
4692
4693 zone = page_zone(page);
4694 spin_lock_irqsave(&zone->lock, flags);
4695 /*
4696 * In future, more migrate types will be able to be isolation target.
4697 */
4698 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4699 goto out;
4700 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4701 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4702 ret = 0;
4703 out:
4704 spin_unlock_irqrestore(&zone->lock, flags);
4705 if (!ret)
4706 drain_all_pages();
4707 return ret;
4708 }
4709
4710 void unset_migratetype_isolate(struct page *page)
4711 {
4712 struct zone *zone;
4713 unsigned long flags;
4714 zone = page_zone(page);
4715 spin_lock_irqsave(&zone->lock, flags);
4716 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4717 goto out;
4718 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4719 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4720 out:
4721 spin_unlock_irqrestore(&zone->lock, flags);
4722 }
4723
4724 #ifdef CONFIG_MEMORY_HOTREMOVE
4725 /*
4726 * All pages in the range must be isolated before calling this.
4727 */
4728 void
4729 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4730 {
4731 struct page *page;
4732 struct zone *zone;
4733 int order, i;
4734 unsigned long pfn;
4735 unsigned long flags;
4736 /* find the first valid pfn */
4737 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4738 if (pfn_valid(pfn))
4739 break;
4740 if (pfn == end_pfn)
4741 return;
4742 zone = page_zone(pfn_to_page(pfn));
4743 spin_lock_irqsave(&zone->lock, flags);
4744 pfn = start_pfn;
4745 while (pfn < end_pfn) {
4746 if (!pfn_valid(pfn)) {
4747 pfn++;
4748 continue;
4749 }
4750 page = pfn_to_page(pfn);
4751 BUG_ON(page_count(page));
4752 BUG_ON(!PageBuddy(page));
4753 order = page_order(page);
4754 #ifdef CONFIG_DEBUG_VM
4755 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4756 pfn, 1 << order, end_pfn);
4757 #endif
4758 list_del(&page->lru);
4759 rmv_page_order(page);
4760 zone->free_area[order].nr_free--;
4761 __mod_zone_page_state(zone, NR_FREE_PAGES,
4762 - (1UL << order));
4763 for (i = 0; i < (1 << order); i++)
4764 SetPageReserved((page+i));
4765 pfn += (1 << order);
4766 }
4767 spin_unlock_irqrestore(&zone->lock, flags);
4768 }
4769 #endif