]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/page_alloc.c
tuntap: add sanity checks about msg_controllen in sendmsg
[mirror_ubuntu-focal-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/khugepaged.h>
72
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/div64.h>
76 #include "internal.h"
77 #include "shuffle.h"
78
79 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80 static DEFINE_MUTEX(pcp_batch_high_lock);
81 #define MIN_PERCPU_PAGELIST_FRACTION (8)
82
83 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84 DEFINE_PER_CPU(int, numa_node);
85 EXPORT_PER_CPU_SYMBOL(numa_node);
86 #endif
87
88 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89
90 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
91 /*
92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95 * defined in <linux/topology.h>.
96 */
97 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
98 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99 int _node_numa_mem_[MAX_NUMNODES];
100 #endif
101
102 /* work_structs for global per-cpu drains */
103 struct pcpu_drain {
104 struct zone *zone;
105 struct work_struct work;
106 };
107 DEFINE_MUTEX(pcpu_drain_mutex);
108 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
109
110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111 volatile unsigned long latent_entropy __latent_entropy;
112 EXPORT_SYMBOL(latent_entropy);
113 #endif
114
115 /*
116 * Array of node states.
117 */
118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 [N_POSSIBLE] = NODE_MASK_ALL,
120 [N_ONLINE] = { { [0] = 1UL } },
121 #ifndef CONFIG_NUMA
122 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
123 #ifdef CONFIG_HIGHMEM
124 [N_HIGH_MEMORY] = { { [0] = 1UL } },
125 #endif
126 [N_MEMORY] = { { [0] = 1UL } },
127 [N_CPU] = { { [0] = 1UL } },
128 #endif /* NUMA */
129 };
130 EXPORT_SYMBOL(node_states);
131
132 atomic_long_t _totalram_pages __read_mostly;
133 EXPORT_SYMBOL(_totalram_pages);
134 unsigned long totalreserve_pages __read_mostly;
135 unsigned long totalcma_pages __read_mostly;
136
137 int percpu_pagelist_fraction;
138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
139 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
141 #else
142 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
143 #endif
144 EXPORT_SYMBOL(init_on_alloc);
145
146 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147 DEFINE_STATIC_KEY_TRUE(init_on_free);
148 #else
149 DEFINE_STATIC_KEY_FALSE(init_on_free);
150 #endif
151 EXPORT_SYMBOL(init_on_free);
152
153 static int __init early_init_on_alloc(char *buf)
154 {
155 int ret;
156 bool bool_result;
157
158 if (!buf)
159 return -EINVAL;
160 ret = kstrtobool(buf, &bool_result);
161 if (bool_result && page_poisoning_enabled())
162 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 if (bool_result)
164 static_branch_enable(&init_on_alloc);
165 else
166 static_branch_disable(&init_on_alloc);
167 return ret;
168 }
169 early_param("init_on_alloc", early_init_on_alloc);
170
171 static int __init early_init_on_free(char *buf)
172 {
173 int ret;
174 bool bool_result;
175
176 if (!buf)
177 return -EINVAL;
178 ret = kstrtobool(buf, &bool_result);
179 if (bool_result && page_poisoning_enabled())
180 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 if (bool_result)
182 static_branch_enable(&init_on_free);
183 else
184 static_branch_disable(&init_on_free);
185 return ret;
186 }
187 early_param("init_on_free", early_init_on_free);
188
189 /*
190 * A cached value of the page's pageblock's migratetype, used when the page is
191 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193 * Also the migratetype set in the page does not necessarily match the pcplist
194 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195 * other index - this ensures that it will be put on the correct CMA freelist.
196 */
197 static inline int get_pcppage_migratetype(struct page *page)
198 {
199 return page->index;
200 }
201
202 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203 {
204 page->index = migratetype;
205 }
206
207 #ifdef CONFIG_PM_SLEEP
208 /*
209 * The following functions are used by the suspend/hibernate code to temporarily
210 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211 * while devices are suspended. To avoid races with the suspend/hibernate code,
212 * they should always be called with system_transition_mutex held
213 * (gfp_allowed_mask also should only be modified with system_transition_mutex
214 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215 * with that modification).
216 */
217
218 static gfp_t saved_gfp_mask;
219
220 void pm_restore_gfp_mask(void)
221 {
222 WARN_ON(!mutex_is_locked(&system_transition_mutex));
223 if (saved_gfp_mask) {
224 gfp_allowed_mask = saved_gfp_mask;
225 saved_gfp_mask = 0;
226 }
227 }
228
229 void pm_restrict_gfp_mask(void)
230 {
231 WARN_ON(!mutex_is_locked(&system_transition_mutex));
232 WARN_ON(saved_gfp_mask);
233 saved_gfp_mask = gfp_allowed_mask;
234 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
235 }
236
237 bool pm_suspended_storage(void)
238 {
239 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
240 return false;
241 return true;
242 }
243 #endif /* CONFIG_PM_SLEEP */
244
245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
246 unsigned int pageblock_order __read_mostly;
247 #endif
248
249 static void __free_pages_ok(struct page *page, unsigned int order);
250
251 /*
252 * results with 256, 32 in the lowmem_reserve sysctl:
253 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254 * 1G machine -> (16M dma, 784M normal, 224M high)
255 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
257 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258 *
259 * TBD: should special case ZONE_DMA32 machines here - in those we normally
260 * don't need any ZONE_NORMAL reservation
261 */
262 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
263 #ifdef CONFIG_ZONE_DMA
264 [ZONE_DMA] = 256,
265 #endif
266 #ifdef CONFIG_ZONE_DMA32
267 [ZONE_DMA32] = 256,
268 #endif
269 [ZONE_NORMAL] = 32,
270 #ifdef CONFIG_HIGHMEM
271 [ZONE_HIGHMEM] = 0,
272 #endif
273 [ZONE_MOVABLE] = 0,
274 };
275
276 static char * const zone_names[MAX_NR_ZONES] = {
277 #ifdef CONFIG_ZONE_DMA
278 "DMA",
279 #endif
280 #ifdef CONFIG_ZONE_DMA32
281 "DMA32",
282 #endif
283 "Normal",
284 #ifdef CONFIG_HIGHMEM
285 "HighMem",
286 #endif
287 "Movable",
288 #ifdef CONFIG_ZONE_DEVICE
289 "Device",
290 #endif
291 };
292
293 const char * const migratetype_names[MIGRATE_TYPES] = {
294 "Unmovable",
295 "Movable",
296 "Reclaimable",
297 "HighAtomic",
298 #ifdef CONFIG_CMA
299 "CMA",
300 #endif
301 #ifdef CONFIG_MEMORY_ISOLATION
302 "Isolate",
303 #endif
304 };
305
306 compound_page_dtor * const compound_page_dtors[] = {
307 NULL,
308 free_compound_page,
309 #ifdef CONFIG_HUGETLB_PAGE
310 free_huge_page,
311 #endif
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 free_transhuge_page,
314 #endif
315 };
316
317 int min_free_kbytes = 1024;
318 int user_min_free_kbytes = -1;
319 int watermark_boost_factor __read_mostly;
320 int watermark_scale_factor = 10;
321
322 static unsigned long nr_kernel_pages __initdata;
323 static unsigned long nr_all_pages __initdata;
324 static unsigned long dma_reserve __initdata;
325
326 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
327 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
328 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
329 static unsigned long required_kernelcore __initdata;
330 static unsigned long required_kernelcore_percent __initdata;
331 static unsigned long required_movablecore __initdata;
332 static unsigned long required_movablecore_percent __initdata;
333 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
334 static bool mirrored_kernelcore __meminitdata;
335
336 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
337 int movable_zone;
338 EXPORT_SYMBOL(movable_zone);
339 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
340
341 #if MAX_NUMNODES > 1
342 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
343 unsigned int nr_online_nodes __read_mostly = 1;
344 EXPORT_SYMBOL(nr_node_ids);
345 EXPORT_SYMBOL(nr_online_nodes);
346 #endif
347
348 int page_group_by_mobility_disabled __read_mostly;
349
350 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
351 /*
352 * During boot we initialize deferred pages on-demand, as needed, but once
353 * page_alloc_init_late() has finished, the deferred pages are all initialized,
354 * and we can permanently disable that path.
355 */
356 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
357
358 /*
359 * Calling kasan_free_pages() only after deferred memory initialization
360 * has completed. Poisoning pages during deferred memory init will greatly
361 * lengthen the process and cause problem in large memory systems as the
362 * deferred pages initialization is done with interrupt disabled.
363 *
364 * Assuming that there will be no reference to those newly initialized
365 * pages before they are ever allocated, this should have no effect on
366 * KASAN memory tracking as the poison will be properly inserted at page
367 * allocation time. The only corner case is when pages are allocated by
368 * on-demand allocation and then freed again before the deferred pages
369 * initialization is done, but this is not likely to happen.
370 */
371 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
372 {
373 if (!static_branch_unlikely(&deferred_pages))
374 kasan_free_pages(page, order);
375 }
376
377 /* Returns true if the struct page for the pfn is uninitialised */
378 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
379 {
380 int nid = early_pfn_to_nid(pfn);
381
382 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
383 return true;
384
385 return false;
386 }
387
388 /*
389 * Returns true when the remaining initialisation should be deferred until
390 * later in the boot cycle when it can be parallelised.
391 */
392 static bool __meminit
393 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
394 {
395 static unsigned long prev_end_pfn, nr_initialised;
396
397 /*
398 * prev_end_pfn static that contains the end of previous zone
399 * No need to protect because called very early in boot before smp_init.
400 */
401 if (prev_end_pfn != end_pfn) {
402 prev_end_pfn = end_pfn;
403 nr_initialised = 0;
404 }
405
406 /* Always populate low zones for address-constrained allocations */
407 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
408 return false;
409
410 /*
411 * We start only with one section of pages, more pages are added as
412 * needed until the rest of deferred pages are initialized.
413 */
414 nr_initialised++;
415 if ((nr_initialised > PAGES_PER_SECTION) &&
416 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
417 NODE_DATA(nid)->first_deferred_pfn = pfn;
418 return true;
419 }
420 return false;
421 }
422 #else
423 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
424
425 static inline bool early_page_uninitialised(unsigned long pfn)
426 {
427 return false;
428 }
429
430 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
431 {
432 return false;
433 }
434 #endif
435
436 /* Return a pointer to the bitmap storing bits affecting a block of pages */
437 static inline unsigned long *get_pageblock_bitmap(struct page *page,
438 unsigned long pfn)
439 {
440 #ifdef CONFIG_SPARSEMEM
441 return section_to_usemap(__pfn_to_section(pfn));
442 #else
443 return page_zone(page)->pageblock_flags;
444 #endif /* CONFIG_SPARSEMEM */
445 }
446
447 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
448 {
449 #ifdef CONFIG_SPARSEMEM
450 pfn &= (PAGES_PER_SECTION-1);
451 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
452 #else
453 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
454 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
455 #endif /* CONFIG_SPARSEMEM */
456 }
457
458 /**
459 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
460 * @page: The page within the block of interest
461 * @pfn: The target page frame number
462 * @end_bitidx: The last bit of interest to retrieve
463 * @mask: mask of bits that the caller is interested in
464 *
465 * Return: pageblock_bits flags
466 */
467 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
468 unsigned long pfn,
469 unsigned long end_bitidx,
470 unsigned long mask)
471 {
472 unsigned long *bitmap;
473 unsigned long bitidx, word_bitidx;
474 unsigned long word;
475
476 bitmap = get_pageblock_bitmap(page, pfn);
477 bitidx = pfn_to_bitidx(page, pfn);
478 word_bitidx = bitidx / BITS_PER_LONG;
479 bitidx &= (BITS_PER_LONG-1);
480
481 word = bitmap[word_bitidx];
482 bitidx += end_bitidx;
483 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
484 }
485
486 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
487 unsigned long end_bitidx,
488 unsigned long mask)
489 {
490 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
491 }
492
493 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
494 {
495 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
496 }
497
498 /**
499 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
500 * @page: The page within the block of interest
501 * @flags: The flags to set
502 * @pfn: The target page frame number
503 * @end_bitidx: The last bit of interest
504 * @mask: mask of bits that the caller is interested in
505 */
506 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
507 unsigned long pfn,
508 unsigned long end_bitidx,
509 unsigned long mask)
510 {
511 unsigned long *bitmap;
512 unsigned long bitidx, word_bitidx;
513 unsigned long old_word, word;
514
515 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
516 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
517
518 bitmap = get_pageblock_bitmap(page, pfn);
519 bitidx = pfn_to_bitidx(page, pfn);
520 word_bitidx = bitidx / BITS_PER_LONG;
521 bitidx &= (BITS_PER_LONG-1);
522
523 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
524
525 bitidx += end_bitidx;
526 mask <<= (BITS_PER_LONG - bitidx - 1);
527 flags <<= (BITS_PER_LONG - bitidx - 1);
528
529 word = READ_ONCE(bitmap[word_bitidx]);
530 for (;;) {
531 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
532 if (word == old_word)
533 break;
534 word = old_word;
535 }
536 }
537
538 void set_pageblock_migratetype(struct page *page, int migratetype)
539 {
540 if (unlikely(page_group_by_mobility_disabled &&
541 migratetype < MIGRATE_PCPTYPES))
542 migratetype = MIGRATE_UNMOVABLE;
543
544 set_pageblock_flags_group(page, (unsigned long)migratetype,
545 PB_migrate, PB_migrate_end);
546 }
547
548 #ifdef CONFIG_DEBUG_VM
549 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
550 {
551 int ret = 0;
552 unsigned seq;
553 unsigned long pfn = page_to_pfn(page);
554 unsigned long sp, start_pfn;
555
556 do {
557 seq = zone_span_seqbegin(zone);
558 start_pfn = zone->zone_start_pfn;
559 sp = zone->spanned_pages;
560 if (!zone_spans_pfn(zone, pfn))
561 ret = 1;
562 } while (zone_span_seqretry(zone, seq));
563
564 if (ret)
565 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
566 pfn, zone_to_nid(zone), zone->name,
567 start_pfn, start_pfn + sp);
568
569 return ret;
570 }
571
572 static int page_is_consistent(struct zone *zone, struct page *page)
573 {
574 if (!pfn_valid_within(page_to_pfn(page)))
575 return 0;
576 if (zone != page_zone(page))
577 return 0;
578
579 return 1;
580 }
581 /*
582 * Temporary debugging check for pages not lying within a given zone.
583 */
584 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
585 {
586 if (page_outside_zone_boundaries(zone, page))
587 return 1;
588 if (!page_is_consistent(zone, page))
589 return 1;
590
591 return 0;
592 }
593 #else
594 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
595 {
596 return 0;
597 }
598 #endif
599
600 static void bad_page(struct page *page, const char *reason,
601 unsigned long bad_flags)
602 {
603 static unsigned long resume;
604 static unsigned long nr_shown;
605 static unsigned long nr_unshown;
606
607 /*
608 * Allow a burst of 60 reports, then keep quiet for that minute;
609 * or allow a steady drip of one report per second.
610 */
611 if (nr_shown == 60) {
612 if (time_before(jiffies, resume)) {
613 nr_unshown++;
614 goto out;
615 }
616 if (nr_unshown) {
617 pr_alert(
618 "BUG: Bad page state: %lu messages suppressed\n",
619 nr_unshown);
620 nr_unshown = 0;
621 }
622 nr_shown = 0;
623 }
624 if (nr_shown++ == 0)
625 resume = jiffies + 60 * HZ;
626
627 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
628 current->comm, page_to_pfn(page));
629 __dump_page(page, reason);
630 bad_flags &= page->flags;
631 if (bad_flags)
632 pr_alert("bad because of flags: %#lx(%pGp)\n",
633 bad_flags, &bad_flags);
634 dump_page_owner(page);
635
636 print_modules();
637 dump_stack();
638 out:
639 /* Leave bad fields for debug, except PageBuddy could make trouble */
640 page_mapcount_reset(page); /* remove PageBuddy */
641 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
642 }
643
644 /*
645 * Higher-order pages are called "compound pages". They are structured thusly:
646 *
647 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
648 *
649 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
650 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
651 *
652 * The first tail page's ->compound_dtor holds the offset in array of compound
653 * page destructors. See compound_page_dtors.
654 *
655 * The first tail page's ->compound_order holds the order of allocation.
656 * This usage means that zero-order pages may not be compound.
657 */
658
659 void free_compound_page(struct page *page)
660 {
661 mem_cgroup_uncharge(page);
662 __free_pages_ok(page, compound_order(page));
663 }
664
665 void prep_compound_page(struct page *page, unsigned int order)
666 {
667 int i;
668 int nr_pages = 1 << order;
669
670 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
671 set_compound_order(page, order);
672 __SetPageHead(page);
673 for (i = 1; i < nr_pages; i++) {
674 struct page *p = page + i;
675 set_page_count(p, 0);
676 p->mapping = TAIL_MAPPING;
677 set_compound_head(p, page);
678 }
679 atomic_set(compound_mapcount_ptr(page), -1);
680 }
681
682 #ifdef CONFIG_DEBUG_PAGEALLOC
683 unsigned int _debug_guardpage_minorder;
684
685 bool _debug_pagealloc_enabled_early __read_mostly
686 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
687 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
688 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
689 EXPORT_SYMBOL(_debug_pagealloc_enabled);
690
691 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
692
693 static int __init early_debug_pagealloc(char *buf)
694 {
695 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
696 }
697 early_param("debug_pagealloc", early_debug_pagealloc);
698
699 void init_debug_pagealloc(void)
700 {
701 if (!debug_pagealloc_enabled())
702 return;
703
704 static_branch_enable(&_debug_pagealloc_enabled);
705
706 if (!debug_guardpage_minorder())
707 return;
708
709 static_branch_enable(&_debug_guardpage_enabled);
710 }
711
712 static int __init debug_guardpage_minorder_setup(char *buf)
713 {
714 unsigned long res;
715
716 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
717 pr_err("Bad debug_guardpage_minorder value\n");
718 return 0;
719 }
720 _debug_guardpage_minorder = res;
721 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
722 return 0;
723 }
724 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
725
726 static inline bool set_page_guard(struct zone *zone, struct page *page,
727 unsigned int order, int migratetype)
728 {
729 if (!debug_guardpage_enabled())
730 return false;
731
732 if (order >= debug_guardpage_minorder())
733 return false;
734
735 __SetPageGuard(page);
736 INIT_LIST_HEAD(&page->lru);
737 set_page_private(page, order);
738 /* Guard pages are not available for any usage */
739 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
740
741 return true;
742 }
743
744 static inline void clear_page_guard(struct zone *zone, struct page *page,
745 unsigned int order, int migratetype)
746 {
747 if (!debug_guardpage_enabled())
748 return;
749
750 __ClearPageGuard(page);
751
752 set_page_private(page, 0);
753 if (!is_migrate_isolate(migratetype))
754 __mod_zone_freepage_state(zone, (1 << order), migratetype);
755 }
756 #else
757 static inline bool set_page_guard(struct zone *zone, struct page *page,
758 unsigned int order, int migratetype) { return false; }
759 static inline void clear_page_guard(struct zone *zone, struct page *page,
760 unsigned int order, int migratetype) {}
761 #endif
762
763 static inline void set_page_order(struct page *page, unsigned int order)
764 {
765 set_page_private(page, order);
766 __SetPageBuddy(page);
767 }
768
769 /*
770 * This function checks whether a page is free && is the buddy
771 * we can coalesce a page and its buddy if
772 * (a) the buddy is not in a hole (check before calling!) &&
773 * (b) the buddy is in the buddy system &&
774 * (c) a page and its buddy have the same order &&
775 * (d) a page and its buddy are in the same zone.
776 *
777 * For recording whether a page is in the buddy system, we set PageBuddy.
778 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
779 *
780 * For recording page's order, we use page_private(page).
781 */
782 static inline int page_is_buddy(struct page *page, struct page *buddy,
783 unsigned int order)
784 {
785 if (page_is_guard(buddy) && page_order(buddy) == order) {
786 if (page_zone_id(page) != page_zone_id(buddy))
787 return 0;
788
789 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
790
791 return 1;
792 }
793
794 if (PageBuddy(buddy) && page_order(buddy) == order) {
795 /*
796 * zone check is done late to avoid uselessly
797 * calculating zone/node ids for pages that could
798 * never merge.
799 */
800 if (page_zone_id(page) != page_zone_id(buddy))
801 return 0;
802
803 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
804
805 return 1;
806 }
807 return 0;
808 }
809
810 #ifdef CONFIG_COMPACTION
811 static inline struct capture_control *task_capc(struct zone *zone)
812 {
813 struct capture_control *capc = current->capture_control;
814
815 return capc &&
816 !(current->flags & PF_KTHREAD) &&
817 !capc->page &&
818 capc->cc->zone == zone &&
819 capc->cc->direct_compaction ? capc : NULL;
820 }
821
822 static inline bool
823 compaction_capture(struct capture_control *capc, struct page *page,
824 int order, int migratetype)
825 {
826 if (!capc || order != capc->cc->order)
827 return false;
828
829 /* Do not accidentally pollute CMA or isolated regions*/
830 if (is_migrate_cma(migratetype) ||
831 is_migrate_isolate(migratetype))
832 return false;
833
834 /*
835 * Do not let lower order allocations polluate a movable pageblock.
836 * This might let an unmovable request use a reclaimable pageblock
837 * and vice-versa but no more than normal fallback logic which can
838 * have trouble finding a high-order free page.
839 */
840 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
841 return false;
842
843 capc->page = page;
844 return true;
845 }
846
847 #else
848 static inline struct capture_control *task_capc(struct zone *zone)
849 {
850 return NULL;
851 }
852
853 static inline bool
854 compaction_capture(struct capture_control *capc, struct page *page,
855 int order, int migratetype)
856 {
857 return false;
858 }
859 #endif /* CONFIG_COMPACTION */
860
861 /*
862 * Freeing function for a buddy system allocator.
863 *
864 * The concept of a buddy system is to maintain direct-mapped table
865 * (containing bit values) for memory blocks of various "orders".
866 * The bottom level table contains the map for the smallest allocatable
867 * units of memory (here, pages), and each level above it describes
868 * pairs of units from the levels below, hence, "buddies".
869 * At a high level, all that happens here is marking the table entry
870 * at the bottom level available, and propagating the changes upward
871 * as necessary, plus some accounting needed to play nicely with other
872 * parts of the VM system.
873 * At each level, we keep a list of pages, which are heads of continuous
874 * free pages of length of (1 << order) and marked with PageBuddy.
875 * Page's order is recorded in page_private(page) field.
876 * So when we are allocating or freeing one, we can derive the state of the
877 * other. That is, if we allocate a small block, and both were
878 * free, the remainder of the region must be split into blocks.
879 * If a block is freed, and its buddy is also free, then this
880 * triggers coalescing into a block of larger size.
881 *
882 * -- nyc
883 */
884
885 static inline void __free_one_page(struct page *page,
886 unsigned long pfn,
887 struct zone *zone, unsigned int order,
888 int migratetype)
889 {
890 unsigned long combined_pfn;
891 unsigned long uninitialized_var(buddy_pfn);
892 struct page *buddy;
893 unsigned int max_order;
894 struct capture_control *capc = task_capc(zone);
895
896 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
897
898 VM_BUG_ON(!zone_is_initialized(zone));
899 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
900
901 VM_BUG_ON(migratetype == -1);
902 if (likely(!is_migrate_isolate(migratetype)))
903 __mod_zone_freepage_state(zone, 1 << order, migratetype);
904
905 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
906 VM_BUG_ON_PAGE(bad_range(zone, page), page);
907
908 continue_merging:
909 while (order < max_order) {
910 if (compaction_capture(capc, page, order, migratetype)) {
911 __mod_zone_freepage_state(zone, -(1 << order),
912 migratetype);
913 return;
914 }
915 buddy_pfn = __find_buddy_pfn(pfn, order);
916 buddy = page + (buddy_pfn - pfn);
917
918 if (!pfn_valid_within(buddy_pfn))
919 goto done_merging;
920 if (!page_is_buddy(page, buddy, order))
921 goto done_merging;
922 /*
923 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
924 * merge with it and move up one order.
925 */
926 if (page_is_guard(buddy))
927 clear_page_guard(zone, buddy, order, migratetype);
928 else
929 del_page_from_free_area(buddy, &zone->free_area[order]);
930 combined_pfn = buddy_pfn & pfn;
931 page = page + (combined_pfn - pfn);
932 pfn = combined_pfn;
933 order++;
934 }
935 if (order < MAX_ORDER - 1) {
936 /* If we are here, it means order is >= pageblock_order.
937 * We want to prevent merge between freepages on isolate
938 * pageblock and normal pageblock. Without this, pageblock
939 * isolation could cause incorrect freepage or CMA accounting.
940 *
941 * We don't want to hit this code for the more frequent
942 * low-order merging.
943 */
944 if (unlikely(has_isolate_pageblock(zone))) {
945 int buddy_mt;
946
947 buddy_pfn = __find_buddy_pfn(pfn, order);
948 buddy = page + (buddy_pfn - pfn);
949 buddy_mt = get_pageblock_migratetype(buddy);
950
951 if (migratetype != buddy_mt
952 && (is_migrate_isolate(migratetype) ||
953 is_migrate_isolate(buddy_mt)))
954 goto done_merging;
955 }
956 max_order = order + 1;
957 goto continue_merging;
958 }
959
960 done_merging:
961 set_page_order(page, order);
962
963 /*
964 * If this is not the largest possible page, check if the buddy
965 * of the next-highest order is free. If it is, it's possible
966 * that pages are being freed that will coalesce soon. In case,
967 * that is happening, add the free page to the tail of the list
968 * so it's less likely to be used soon and more likely to be merged
969 * as a higher order page
970 */
971 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
972 && !is_shuffle_order(order)) {
973 struct page *higher_page, *higher_buddy;
974 combined_pfn = buddy_pfn & pfn;
975 higher_page = page + (combined_pfn - pfn);
976 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
977 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
978 if (pfn_valid_within(buddy_pfn) &&
979 page_is_buddy(higher_page, higher_buddy, order + 1)) {
980 add_to_free_area_tail(page, &zone->free_area[order],
981 migratetype);
982 return;
983 }
984 }
985
986 if (is_shuffle_order(order))
987 add_to_free_area_random(page, &zone->free_area[order],
988 migratetype);
989 else
990 add_to_free_area(page, &zone->free_area[order], migratetype);
991
992 }
993
994 /*
995 * A bad page could be due to a number of fields. Instead of multiple branches,
996 * try and check multiple fields with one check. The caller must do a detailed
997 * check if necessary.
998 */
999 static inline bool page_expected_state(struct page *page,
1000 unsigned long check_flags)
1001 {
1002 if (unlikely(atomic_read(&page->_mapcount) != -1))
1003 return false;
1004
1005 if (unlikely((unsigned long)page->mapping |
1006 page_ref_count(page) |
1007 #ifdef CONFIG_MEMCG
1008 (unsigned long)page->mem_cgroup |
1009 #endif
1010 (page->flags & check_flags)))
1011 return false;
1012
1013 return true;
1014 }
1015
1016 static void free_pages_check_bad(struct page *page)
1017 {
1018 const char *bad_reason;
1019 unsigned long bad_flags;
1020
1021 bad_reason = NULL;
1022 bad_flags = 0;
1023
1024 if (unlikely(atomic_read(&page->_mapcount) != -1))
1025 bad_reason = "nonzero mapcount";
1026 if (unlikely(page->mapping != NULL))
1027 bad_reason = "non-NULL mapping";
1028 if (unlikely(page_ref_count(page) != 0))
1029 bad_reason = "nonzero _refcount";
1030 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1031 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1032 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1033 }
1034 #ifdef CONFIG_MEMCG
1035 if (unlikely(page->mem_cgroup))
1036 bad_reason = "page still charged to cgroup";
1037 #endif
1038 bad_page(page, bad_reason, bad_flags);
1039 }
1040
1041 static inline int free_pages_check(struct page *page)
1042 {
1043 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1044 return 0;
1045
1046 /* Something has gone sideways, find it */
1047 free_pages_check_bad(page);
1048 return 1;
1049 }
1050
1051 static int free_tail_pages_check(struct page *head_page, struct page *page)
1052 {
1053 int ret = 1;
1054
1055 /*
1056 * We rely page->lru.next never has bit 0 set, unless the page
1057 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1058 */
1059 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1060
1061 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1062 ret = 0;
1063 goto out;
1064 }
1065 switch (page - head_page) {
1066 case 1:
1067 /* the first tail page: ->mapping may be compound_mapcount() */
1068 if (unlikely(compound_mapcount(page))) {
1069 bad_page(page, "nonzero compound_mapcount", 0);
1070 goto out;
1071 }
1072 break;
1073 case 2:
1074 /*
1075 * the second tail page: ->mapping is
1076 * deferred_list.next -- ignore value.
1077 */
1078 break;
1079 default:
1080 if (page->mapping != TAIL_MAPPING) {
1081 bad_page(page, "corrupted mapping in tail page", 0);
1082 goto out;
1083 }
1084 break;
1085 }
1086 if (unlikely(!PageTail(page))) {
1087 bad_page(page, "PageTail not set", 0);
1088 goto out;
1089 }
1090 if (unlikely(compound_head(page) != head_page)) {
1091 bad_page(page, "compound_head not consistent", 0);
1092 goto out;
1093 }
1094 ret = 0;
1095 out:
1096 page->mapping = NULL;
1097 clear_compound_head(page);
1098 return ret;
1099 }
1100
1101 static void kernel_init_free_pages(struct page *page, int numpages)
1102 {
1103 int i;
1104
1105 for (i = 0; i < numpages; i++)
1106 clear_highpage(page + i);
1107 }
1108
1109 static __always_inline bool free_pages_prepare(struct page *page,
1110 unsigned int order, bool check_free)
1111 {
1112 int bad = 0;
1113
1114 VM_BUG_ON_PAGE(PageTail(page), page);
1115
1116 trace_mm_page_free(page, order);
1117
1118 /*
1119 * Check tail pages before head page information is cleared to
1120 * avoid checking PageCompound for order-0 pages.
1121 */
1122 if (unlikely(order)) {
1123 bool compound = PageCompound(page);
1124 int i;
1125
1126 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1127
1128 if (compound)
1129 ClearPageDoubleMap(page);
1130 for (i = 1; i < (1 << order); i++) {
1131 if (compound)
1132 bad += free_tail_pages_check(page, page + i);
1133 if (unlikely(free_pages_check(page + i))) {
1134 bad++;
1135 continue;
1136 }
1137 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1138 }
1139 }
1140 if (PageMappingFlags(page))
1141 page->mapping = NULL;
1142 if (memcg_kmem_enabled() && PageKmemcg(page))
1143 __memcg_kmem_uncharge(page, order);
1144 if (check_free)
1145 bad += free_pages_check(page);
1146 if (bad)
1147 return false;
1148
1149 page_cpupid_reset_last(page);
1150 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1151 reset_page_owner(page, order);
1152
1153 if (!PageHighMem(page)) {
1154 debug_check_no_locks_freed(page_address(page),
1155 PAGE_SIZE << order);
1156 debug_check_no_obj_freed(page_address(page),
1157 PAGE_SIZE << order);
1158 }
1159 if (want_init_on_free())
1160 kernel_init_free_pages(page, 1 << order);
1161
1162 kernel_poison_pages(page, 1 << order, 0);
1163 /*
1164 * arch_free_page() can make the page's contents inaccessible. s390
1165 * does this. So nothing which can access the page's contents should
1166 * happen after this.
1167 */
1168 arch_free_page(page, order);
1169
1170 if (debug_pagealloc_enabled_static())
1171 kernel_map_pages(page, 1 << order, 0);
1172
1173 kasan_free_nondeferred_pages(page, order);
1174
1175 return true;
1176 }
1177
1178 #ifdef CONFIG_DEBUG_VM
1179 /*
1180 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1181 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1182 * moved from pcp lists to free lists.
1183 */
1184 static bool free_pcp_prepare(struct page *page)
1185 {
1186 return free_pages_prepare(page, 0, true);
1187 }
1188
1189 static bool bulkfree_pcp_prepare(struct page *page)
1190 {
1191 if (debug_pagealloc_enabled_static())
1192 return free_pages_check(page);
1193 else
1194 return false;
1195 }
1196 #else
1197 /*
1198 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1199 * moving from pcp lists to free list in order to reduce overhead. With
1200 * debug_pagealloc enabled, they are checked also immediately when being freed
1201 * to the pcp lists.
1202 */
1203 static bool free_pcp_prepare(struct page *page)
1204 {
1205 if (debug_pagealloc_enabled_static())
1206 return free_pages_prepare(page, 0, true);
1207 else
1208 return free_pages_prepare(page, 0, false);
1209 }
1210
1211 static bool bulkfree_pcp_prepare(struct page *page)
1212 {
1213 return free_pages_check(page);
1214 }
1215 #endif /* CONFIG_DEBUG_VM */
1216
1217 static inline void prefetch_buddy(struct page *page)
1218 {
1219 unsigned long pfn = page_to_pfn(page);
1220 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1221 struct page *buddy = page + (buddy_pfn - pfn);
1222
1223 prefetch(buddy);
1224 }
1225
1226 /*
1227 * Frees a number of pages from the PCP lists
1228 * Assumes all pages on list are in same zone, and of same order.
1229 * count is the number of pages to free.
1230 *
1231 * If the zone was previously in an "all pages pinned" state then look to
1232 * see if this freeing clears that state.
1233 *
1234 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1235 * pinned" detection logic.
1236 */
1237 static void free_pcppages_bulk(struct zone *zone, int count,
1238 struct per_cpu_pages *pcp)
1239 {
1240 int migratetype = 0;
1241 int batch_free = 0;
1242 int prefetch_nr = 0;
1243 bool isolated_pageblocks;
1244 struct page *page, *tmp;
1245 LIST_HEAD(head);
1246
1247 /*
1248 * Ensure proper count is passed which otherwise would stuck in the
1249 * below while (list_empty(list)) loop.
1250 */
1251 count = min(pcp->count, count);
1252 while (count) {
1253 struct list_head *list;
1254
1255 /*
1256 * Remove pages from lists in a round-robin fashion. A
1257 * batch_free count is maintained that is incremented when an
1258 * empty list is encountered. This is so more pages are freed
1259 * off fuller lists instead of spinning excessively around empty
1260 * lists
1261 */
1262 do {
1263 batch_free++;
1264 if (++migratetype == MIGRATE_PCPTYPES)
1265 migratetype = 0;
1266 list = &pcp->lists[migratetype];
1267 } while (list_empty(list));
1268
1269 /* This is the only non-empty list. Free them all. */
1270 if (batch_free == MIGRATE_PCPTYPES)
1271 batch_free = count;
1272
1273 do {
1274 page = list_last_entry(list, struct page, lru);
1275 /* must delete to avoid corrupting pcp list */
1276 list_del(&page->lru);
1277 pcp->count--;
1278
1279 if (bulkfree_pcp_prepare(page))
1280 continue;
1281
1282 list_add_tail(&page->lru, &head);
1283
1284 /*
1285 * We are going to put the page back to the global
1286 * pool, prefetch its buddy to speed up later access
1287 * under zone->lock. It is believed the overhead of
1288 * an additional test and calculating buddy_pfn here
1289 * can be offset by reduced memory latency later. To
1290 * avoid excessive prefetching due to large count, only
1291 * prefetch buddy for the first pcp->batch nr of pages.
1292 */
1293 if (prefetch_nr++ < pcp->batch)
1294 prefetch_buddy(page);
1295 } while (--count && --batch_free && !list_empty(list));
1296 }
1297
1298 spin_lock(&zone->lock);
1299 isolated_pageblocks = has_isolate_pageblock(zone);
1300
1301 /*
1302 * Use safe version since after __free_one_page(),
1303 * page->lru.next will not point to original list.
1304 */
1305 list_for_each_entry_safe(page, tmp, &head, lru) {
1306 int mt = get_pcppage_migratetype(page);
1307 /* MIGRATE_ISOLATE page should not go to pcplists */
1308 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1309 /* Pageblock could have been isolated meanwhile */
1310 if (unlikely(isolated_pageblocks))
1311 mt = get_pageblock_migratetype(page);
1312
1313 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1314 trace_mm_page_pcpu_drain(page, 0, mt);
1315 }
1316 spin_unlock(&zone->lock);
1317 }
1318
1319 static void free_one_page(struct zone *zone,
1320 struct page *page, unsigned long pfn,
1321 unsigned int order,
1322 int migratetype)
1323 {
1324 spin_lock(&zone->lock);
1325 if (unlikely(has_isolate_pageblock(zone) ||
1326 is_migrate_isolate(migratetype))) {
1327 migratetype = get_pfnblock_migratetype(page, pfn);
1328 }
1329 __free_one_page(page, pfn, zone, order, migratetype);
1330 spin_unlock(&zone->lock);
1331 }
1332
1333 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1334 unsigned long zone, int nid)
1335 {
1336 mm_zero_struct_page(page);
1337 set_page_links(page, zone, nid, pfn);
1338 init_page_count(page);
1339 page_mapcount_reset(page);
1340 page_cpupid_reset_last(page);
1341 page_kasan_tag_reset(page);
1342
1343 INIT_LIST_HEAD(&page->lru);
1344 #ifdef WANT_PAGE_VIRTUAL
1345 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1346 if (!is_highmem_idx(zone))
1347 set_page_address(page, __va(pfn << PAGE_SHIFT));
1348 #endif
1349 }
1350
1351 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1352 static void __meminit init_reserved_page(unsigned long pfn)
1353 {
1354 pg_data_t *pgdat;
1355 int nid, zid;
1356
1357 if (!early_page_uninitialised(pfn))
1358 return;
1359
1360 nid = early_pfn_to_nid(pfn);
1361 pgdat = NODE_DATA(nid);
1362
1363 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1364 struct zone *zone = &pgdat->node_zones[zid];
1365
1366 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1367 break;
1368 }
1369 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1370 }
1371 #else
1372 static inline void init_reserved_page(unsigned long pfn)
1373 {
1374 }
1375 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1376
1377 /*
1378 * Initialised pages do not have PageReserved set. This function is
1379 * called for each range allocated by the bootmem allocator and
1380 * marks the pages PageReserved. The remaining valid pages are later
1381 * sent to the buddy page allocator.
1382 */
1383 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1384 {
1385 unsigned long start_pfn = PFN_DOWN(start);
1386 unsigned long end_pfn = PFN_UP(end);
1387
1388 for (; start_pfn < end_pfn; start_pfn++) {
1389 if (pfn_valid(start_pfn)) {
1390 struct page *page = pfn_to_page(start_pfn);
1391
1392 init_reserved_page(start_pfn);
1393
1394 /* Avoid false-positive PageTail() */
1395 INIT_LIST_HEAD(&page->lru);
1396
1397 /*
1398 * no need for atomic set_bit because the struct
1399 * page is not visible yet so nobody should
1400 * access it yet.
1401 */
1402 __SetPageReserved(page);
1403 }
1404 }
1405 }
1406
1407 static void __free_pages_ok(struct page *page, unsigned int order)
1408 {
1409 unsigned long flags;
1410 int migratetype;
1411 unsigned long pfn = page_to_pfn(page);
1412
1413 if (!free_pages_prepare(page, order, true))
1414 return;
1415
1416 migratetype = get_pfnblock_migratetype(page, pfn);
1417 local_irq_save(flags);
1418 __count_vm_events(PGFREE, 1 << order);
1419 free_one_page(page_zone(page), page, pfn, order, migratetype);
1420 local_irq_restore(flags);
1421 }
1422
1423 void __free_pages_core(struct page *page, unsigned int order)
1424 {
1425 unsigned int nr_pages = 1 << order;
1426 struct page *p = page;
1427 unsigned int loop;
1428
1429 prefetchw(p);
1430 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1431 prefetchw(p + 1);
1432 __ClearPageReserved(p);
1433 set_page_count(p, 0);
1434 }
1435 __ClearPageReserved(p);
1436 set_page_count(p, 0);
1437
1438 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1439 set_page_refcounted(page);
1440 __free_pages(page, order);
1441 }
1442
1443 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1444 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1445
1446 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1447
1448 int __meminit early_pfn_to_nid(unsigned long pfn)
1449 {
1450 static DEFINE_SPINLOCK(early_pfn_lock);
1451 int nid;
1452
1453 spin_lock(&early_pfn_lock);
1454 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1455 if (nid < 0)
1456 nid = first_online_node;
1457 spin_unlock(&early_pfn_lock);
1458
1459 return nid;
1460 }
1461 #endif
1462
1463 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1464 /* Only safe to use early in boot when initialisation is single-threaded */
1465 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1466 {
1467 int nid;
1468
1469 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1470 if (nid >= 0 && nid != node)
1471 return false;
1472 return true;
1473 }
1474
1475 #else
1476 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1477 {
1478 return true;
1479 }
1480 #endif
1481
1482
1483 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1484 unsigned int order)
1485 {
1486 if (early_page_uninitialised(pfn))
1487 return;
1488 __free_pages_core(page, order);
1489 }
1490
1491 /*
1492 * Check that the whole (or subset of) a pageblock given by the interval of
1493 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1494 * with the migration of free compaction scanner. The scanners then need to
1495 * use only pfn_valid_within() check for arches that allow holes within
1496 * pageblocks.
1497 *
1498 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1499 *
1500 * It's possible on some configurations to have a setup like node0 node1 node0
1501 * i.e. it's possible that all pages within a zones range of pages do not
1502 * belong to a single zone. We assume that a border between node0 and node1
1503 * can occur within a single pageblock, but not a node0 node1 node0
1504 * interleaving within a single pageblock. It is therefore sufficient to check
1505 * the first and last page of a pageblock and avoid checking each individual
1506 * page in a pageblock.
1507 */
1508 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1509 unsigned long end_pfn, struct zone *zone)
1510 {
1511 struct page *start_page;
1512 struct page *end_page;
1513
1514 /* end_pfn is one past the range we are checking */
1515 end_pfn--;
1516
1517 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1518 return NULL;
1519
1520 start_page = pfn_to_online_page(start_pfn);
1521 if (!start_page)
1522 return NULL;
1523
1524 if (page_zone(start_page) != zone)
1525 return NULL;
1526
1527 end_page = pfn_to_page(end_pfn);
1528
1529 /* This gives a shorter code than deriving page_zone(end_page) */
1530 if (page_zone_id(start_page) != page_zone_id(end_page))
1531 return NULL;
1532
1533 return start_page;
1534 }
1535
1536 void set_zone_contiguous(struct zone *zone)
1537 {
1538 unsigned long block_start_pfn = zone->zone_start_pfn;
1539 unsigned long block_end_pfn;
1540
1541 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1542 for (; block_start_pfn < zone_end_pfn(zone);
1543 block_start_pfn = block_end_pfn,
1544 block_end_pfn += pageblock_nr_pages) {
1545
1546 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1547
1548 if (!__pageblock_pfn_to_page(block_start_pfn,
1549 block_end_pfn, zone))
1550 return;
1551 cond_resched();
1552 }
1553
1554 /* We confirm that there is no hole */
1555 zone->contiguous = true;
1556 }
1557
1558 void clear_zone_contiguous(struct zone *zone)
1559 {
1560 zone->contiguous = false;
1561 }
1562
1563 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1564 static void __init deferred_free_range(unsigned long pfn,
1565 unsigned long nr_pages)
1566 {
1567 struct page *page;
1568 unsigned long i;
1569
1570 if (!nr_pages)
1571 return;
1572
1573 page = pfn_to_page(pfn);
1574
1575 /* Free a large naturally-aligned chunk if possible */
1576 if (nr_pages == pageblock_nr_pages &&
1577 (pfn & (pageblock_nr_pages - 1)) == 0) {
1578 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1579 __free_pages_core(page, pageblock_order);
1580 return;
1581 }
1582
1583 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1584 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1585 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1586 __free_pages_core(page, 0);
1587 }
1588 }
1589
1590 /* Completion tracking for deferred_init_memmap() threads */
1591 static atomic_t pgdat_init_n_undone __initdata;
1592 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1593
1594 static inline void __init pgdat_init_report_one_done(void)
1595 {
1596 if (atomic_dec_and_test(&pgdat_init_n_undone))
1597 complete(&pgdat_init_all_done_comp);
1598 }
1599
1600 /*
1601 * Returns true if page needs to be initialized or freed to buddy allocator.
1602 *
1603 * First we check if pfn is valid on architectures where it is possible to have
1604 * holes within pageblock_nr_pages. On systems where it is not possible, this
1605 * function is optimized out.
1606 *
1607 * Then, we check if a current large page is valid by only checking the validity
1608 * of the head pfn.
1609 */
1610 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1611 {
1612 if (!pfn_valid_within(pfn))
1613 return false;
1614 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1615 return false;
1616 return true;
1617 }
1618
1619 /*
1620 * Free pages to buddy allocator. Try to free aligned pages in
1621 * pageblock_nr_pages sizes.
1622 */
1623 static void __init deferred_free_pages(unsigned long pfn,
1624 unsigned long end_pfn)
1625 {
1626 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1627 unsigned long nr_free = 0;
1628
1629 for (; pfn < end_pfn; pfn++) {
1630 if (!deferred_pfn_valid(pfn)) {
1631 deferred_free_range(pfn - nr_free, nr_free);
1632 nr_free = 0;
1633 } else if (!(pfn & nr_pgmask)) {
1634 deferred_free_range(pfn - nr_free, nr_free);
1635 nr_free = 1;
1636 } else {
1637 nr_free++;
1638 }
1639 }
1640 /* Free the last block of pages to allocator */
1641 deferred_free_range(pfn - nr_free, nr_free);
1642 }
1643
1644 /*
1645 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1646 * by performing it only once every pageblock_nr_pages.
1647 * Return number of pages initialized.
1648 */
1649 static unsigned long __init deferred_init_pages(struct zone *zone,
1650 unsigned long pfn,
1651 unsigned long end_pfn)
1652 {
1653 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1654 int nid = zone_to_nid(zone);
1655 unsigned long nr_pages = 0;
1656 int zid = zone_idx(zone);
1657 struct page *page = NULL;
1658
1659 for (; pfn < end_pfn; pfn++) {
1660 if (!deferred_pfn_valid(pfn)) {
1661 page = NULL;
1662 continue;
1663 } else if (!page || !(pfn & nr_pgmask)) {
1664 page = pfn_to_page(pfn);
1665 } else {
1666 page++;
1667 }
1668 __init_single_page(page, pfn, zid, nid);
1669 nr_pages++;
1670 }
1671 return (nr_pages);
1672 }
1673
1674 /*
1675 * This function is meant to pre-load the iterator for the zone init.
1676 * Specifically it walks through the ranges until we are caught up to the
1677 * first_init_pfn value and exits there. If we never encounter the value we
1678 * return false indicating there are no valid ranges left.
1679 */
1680 static bool __init
1681 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1682 unsigned long *spfn, unsigned long *epfn,
1683 unsigned long first_init_pfn)
1684 {
1685 u64 j;
1686
1687 /*
1688 * Start out by walking through the ranges in this zone that have
1689 * already been initialized. We don't need to do anything with them
1690 * so we just need to flush them out of the system.
1691 */
1692 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1693 if (*epfn <= first_init_pfn)
1694 continue;
1695 if (*spfn < first_init_pfn)
1696 *spfn = first_init_pfn;
1697 *i = j;
1698 return true;
1699 }
1700
1701 return false;
1702 }
1703
1704 /*
1705 * Initialize and free pages. We do it in two loops: first we initialize
1706 * struct page, then free to buddy allocator, because while we are
1707 * freeing pages we can access pages that are ahead (computing buddy
1708 * page in __free_one_page()).
1709 *
1710 * In order to try and keep some memory in the cache we have the loop
1711 * broken along max page order boundaries. This way we will not cause
1712 * any issues with the buddy page computation.
1713 */
1714 static unsigned long __init
1715 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1716 unsigned long *end_pfn)
1717 {
1718 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1719 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1720 unsigned long nr_pages = 0;
1721 u64 j = *i;
1722
1723 /* First we loop through and initialize the page values */
1724 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1725 unsigned long t;
1726
1727 if (mo_pfn <= *start_pfn)
1728 break;
1729
1730 t = min(mo_pfn, *end_pfn);
1731 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1732
1733 if (mo_pfn < *end_pfn) {
1734 *start_pfn = mo_pfn;
1735 break;
1736 }
1737 }
1738
1739 /* Reset values and now loop through freeing pages as needed */
1740 swap(j, *i);
1741
1742 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1743 unsigned long t;
1744
1745 if (mo_pfn <= spfn)
1746 break;
1747
1748 t = min(mo_pfn, epfn);
1749 deferred_free_pages(spfn, t);
1750
1751 if (mo_pfn <= epfn)
1752 break;
1753 }
1754
1755 return nr_pages;
1756 }
1757
1758 /* Initialise remaining memory on a node */
1759 static int __init deferred_init_memmap(void *data)
1760 {
1761 pg_data_t *pgdat = data;
1762 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1763 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1764 unsigned long first_init_pfn, flags;
1765 unsigned long start = jiffies;
1766 struct zone *zone;
1767 int zid;
1768 u64 i;
1769
1770 /* Bind memory initialisation thread to a local node if possible */
1771 if (!cpumask_empty(cpumask))
1772 set_cpus_allowed_ptr(current, cpumask);
1773
1774 pgdat_resize_lock(pgdat, &flags);
1775 first_init_pfn = pgdat->first_deferred_pfn;
1776 if (first_init_pfn == ULONG_MAX) {
1777 pgdat_resize_unlock(pgdat, &flags);
1778 pgdat_init_report_one_done();
1779 return 0;
1780 }
1781
1782 /* Sanity check boundaries */
1783 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1784 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1785 pgdat->first_deferred_pfn = ULONG_MAX;
1786
1787 /*
1788 * Once we unlock here, the zone cannot be grown anymore, thus if an
1789 * interrupt thread must allocate this early in boot, zone must be
1790 * pre-grown prior to start of deferred page initialization.
1791 */
1792 pgdat_resize_unlock(pgdat, &flags);
1793
1794 /* Only the highest zone is deferred so find it */
1795 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1796 zone = pgdat->node_zones + zid;
1797 if (first_init_pfn < zone_end_pfn(zone))
1798 break;
1799 }
1800
1801 /* If the zone is empty somebody else may have cleared out the zone */
1802 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1803 first_init_pfn))
1804 goto zone_empty;
1805
1806 /*
1807 * Initialize and free pages in MAX_ORDER sized increments so
1808 * that we can avoid introducing any issues with the buddy
1809 * allocator.
1810 */
1811 while (spfn < epfn) {
1812 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1813 cond_resched();
1814 }
1815 zone_empty:
1816 /* Sanity check that the next zone really is unpopulated */
1817 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1818
1819 pr_info("node %d initialised, %lu pages in %ums\n",
1820 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1821
1822 pgdat_init_report_one_done();
1823 return 0;
1824 }
1825
1826 /*
1827 * If this zone has deferred pages, try to grow it by initializing enough
1828 * deferred pages to satisfy the allocation specified by order, rounded up to
1829 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1830 * of SECTION_SIZE bytes by initializing struct pages in increments of
1831 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1832 *
1833 * Return true when zone was grown, otherwise return false. We return true even
1834 * when we grow less than requested, to let the caller decide if there are
1835 * enough pages to satisfy the allocation.
1836 *
1837 * Note: We use noinline because this function is needed only during boot, and
1838 * it is called from a __ref function _deferred_grow_zone. This way we are
1839 * making sure that it is not inlined into permanent text section.
1840 */
1841 static noinline bool __init
1842 deferred_grow_zone(struct zone *zone, unsigned int order)
1843 {
1844 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1845 pg_data_t *pgdat = zone->zone_pgdat;
1846 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1847 unsigned long spfn, epfn, flags;
1848 unsigned long nr_pages = 0;
1849 u64 i;
1850
1851 /* Only the last zone may have deferred pages */
1852 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1853 return false;
1854
1855 pgdat_resize_lock(pgdat, &flags);
1856
1857 /*
1858 * If someone grew this zone while we were waiting for spinlock, return
1859 * true, as there might be enough pages already.
1860 */
1861 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1862 pgdat_resize_unlock(pgdat, &flags);
1863 return true;
1864 }
1865
1866 /* If the zone is empty somebody else may have cleared out the zone */
1867 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1868 first_deferred_pfn)) {
1869 pgdat->first_deferred_pfn = ULONG_MAX;
1870 pgdat_resize_unlock(pgdat, &flags);
1871 /* Retry only once. */
1872 return first_deferred_pfn != ULONG_MAX;
1873 }
1874
1875 /*
1876 * Initialize and free pages in MAX_ORDER sized increments so
1877 * that we can avoid introducing any issues with the buddy
1878 * allocator.
1879 */
1880 while (spfn < epfn) {
1881 /* update our first deferred PFN for this section */
1882 first_deferred_pfn = spfn;
1883
1884 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1885 touch_nmi_watchdog();
1886
1887 /* We should only stop along section boundaries */
1888 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1889 continue;
1890
1891 /* If our quota has been met we can stop here */
1892 if (nr_pages >= nr_pages_needed)
1893 break;
1894 }
1895
1896 pgdat->first_deferred_pfn = spfn;
1897 pgdat_resize_unlock(pgdat, &flags);
1898
1899 return nr_pages > 0;
1900 }
1901
1902 /*
1903 * deferred_grow_zone() is __init, but it is called from
1904 * get_page_from_freelist() during early boot until deferred_pages permanently
1905 * disables this call. This is why we have refdata wrapper to avoid warning,
1906 * and to ensure that the function body gets unloaded.
1907 */
1908 static bool __ref
1909 _deferred_grow_zone(struct zone *zone, unsigned int order)
1910 {
1911 return deferred_grow_zone(zone, order);
1912 }
1913
1914 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1915
1916 void __init page_alloc_init_late(void)
1917 {
1918 struct zone *zone;
1919 int nid;
1920
1921 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1922
1923 /* There will be num_node_state(N_MEMORY) threads */
1924 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1925 for_each_node_state(nid, N_MEMORY) {
1926 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1927 }
1928
1929 /* Block until all are initialised */
1930 wait_for_completion(&pgdat_init_all_done_comp);
1931
1932 /*
1933 * The number of managed pages has changed due to the initialisation
1934 * so the pcpu batch and high limits needs to be updated or the limits
1935 * will be artificially small.
1936 */
1937 for_each_populated_zone(zone)
1938 zone_pcp_update(zone);
1939
1940 /*
1941 * We initialized the rest of the deferred pages. Permanently disable
1942 * on-demand struct page initialization.
1943 */
1944 static_branch_disable(&deferred_pages);
1945
1946 /* Reinit limits that are based on free pages after the kernel is up */
1947 files_maxfiles_init();
1948 #endif
1949
1950 /* Discard memblock private memory */
1951 memblock_discard();
1952
1953 for_each_node_state(nid, N_MEMORY)
1954 shuffle_free_memory(NODE_DATA(nid));
1955
1956 for_each_populated_zone(zone)
1957 set_zone_contiguous(zone);
1958 }
1959
1960 #ifdef CONFIG_CMA
1961 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1962 void __init init_cma_reserved_pageblock(struct page *page)
1963 {
1964 unsigned i = pageblock_nr_pages;
1965 struct page *p = page;
1966
1967 do {
1968 __ClearPageReserved(p);
1969 set_page_count(p, 0);
1970 } while (++p, --i);
1971
1972 set_pageblock_migratetype(page, MIGRATE_CMA);
1973
1974 if (pageblock_order >= MAX_ORDER) {
1975 i = pageblock_nr_pages;
1976 p = page;
1977 do {
1978 set_page_refcounted(p);
1979 __free_pages(p, MAX_ORDER - 1);
1980 p += MAX_ORDER_NR_PAGES;
1981 } while (i -= MAX_ORDER_NR_PAGES);
1982 } else {
1983 set_page_refcounted(page);
1984 __free_pages(page, pageblock_order);
1985 }
1986
1987 adjust_managed_page_count(page, pageblock_nr_pages);
1988 }
1989 #endif
1990
1991 /*
1992 * The order of subdivision here is critical for the IO subsystem.
1993 * Please do not alter this order without good reasons and regression
1994 * testing. Specifically, as large blocks of memory are subdivided,
1995 * the order in which smaller blocks are delivered depends on the order
1996 * they're subdivided in this function. This is the primary factor
1997 * influencing the order in which pages are delivered to the IO
1998 * subsystem according to empirical testing, and this is also justified
1999 * by considering the behavior of a buddy system containing a single
2000 * large block of memory acted on by a series of small allocations.
2001 * This behavior is a critical factor in sglist merging's success.
2002 *
2003 * -- nyc
2004 */
2005 static inline void expand(struct zone *zone, struct page *page,
2006 int low, int high, struct free_area *area,
2007 int migratetype)
2008 {
2009 unsigned long size = 1 << high;
2010
2011 while (high > low) {
2012 area--;
2013 high--;
2014 size >>= 1;
2015 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2016
2017 /*
2018 * Mark as guard pages (or page), that will allow to
2019 * merge back to allocator when buddy will be freed.
2020 * Corresponding page table entries will not be touched,
2021 * pages will stay not present in virtual address space
2022 */
2023 if (set_page_guard(zone, &page[size], high, migratetype))
2024 continue;
2025
2026 add_to_free_area(&page[size], area, migratetype);
2027 set_page_order(&page[size], high);
2028 }
2029 }
2030
2031 static void check_new_page_bad(struct page *page)
2032 {
2033 const char *bad_reason = NULL;
2034 unsigned long bad_flags = 0;
2035
2036 if (unlikely(atomic_read(&page->_mapcount) != -1))
2037 bad_reason = "nonzero mapcount";
2038 if (unlikely(page->mapping != NULL))
2039 bad_reason = "non-NULL mapping";
2040 if (unlikely(page_ref_count(page) != 0))
2041 bad_reason = "nonzero _refcount";
2042 if (unlikely(page->flags & __PG_HWPOISON)) {
2043 bad_reason = "HWPoisoned (hardware-corrupted)";
2044 bad_flags = __PG_HWPOISON;
2045 /* Don't complain about hwpoisoned pages */
2046 page_mapcount_reset(page); /* remove PageBuddy */
2047 return;
2048 }
2049 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2050 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2051 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2052 }
2053 #ifdef CONFIG_MEMCG
2054 if (unlikely(page->mem_cgroup))
2055 bad_reason = "page still charged to cgroup";
2056 #endif
2057 bad_page(page, bad_reason, bad_flags);
2058 }
2059
2060 /*
2061 * This page is about to be returned from the page allocator
2062 */
2063 static inline int check_new_page(struct page *page)
2064 {
2065 if (likely(page_expected_state(page,
2066 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2067 return 0;
2068
2069 check_new_page_bad(page);
2070 return 1;
2071 }
2072
2073 static inline bool free_pages_prezeroed(void)
2074 {
2075 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2076 page_poisoning_enabled()) || want_init_on_free();
2077 }
2078
2079 #ifdef CONFIG_DEBUG_VM
2080 /*
2081 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2082 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2083 * also checked when pcp lists are refilled from the free lists.
2084 */
2085 static inline bool check_pcp_refill(struct page *page)
2086 {
2087 if (debug_pagealloc_enabled_static())
2088 return check_new_page(page);
2089 else
2090 return false;
2091 }
2092
2093 static inline bool check_new_pcp(struct page *page)
2094 {
2095 return check_new_page(page);
2096 }
2097 #else
2098 /*
2099 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2100 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2101 * enabled, they are also checked when being allocated from the pcp lists.
2102 */
2103 static inline bool check_pcp_refill(struct page *page)
2104 {
2105 return check_new_page(page);
2106 }
2107 static inline bool check_new_pcp(struct page *page)
2108 {
2109 if (debug_pagealloc_enabled_static())
2110 return check_new_page(page);
2111 else
2112 return false;
2113 }
2114 #endif /* CONFIG_DEBUG_VM */
2115
2116 static bool check_new_pages(struct page *page, unsigned int order)
2117 {
2118 int i;
2119 for (i = 0; i < (1 << order); i++) {
2120 struct page *p = page + i;
2121
2122 if (unlikely(check_new_page(p)))
2123 return true;
2124 }
2125
2126 return false;
2127 }
2128
2129 inline void post_alloc_hook(struct page *page, unsigned int order,
2130 gfp_t gfp_flags)
2131 {
2132 set_page_private(page, 0);
2133 set_page_refcounted(page);
2134
2135 arch_alloc_page(page, order);
2136 if (debug_pagealloc_enabled_static())
2137 kernel_map_pages(page, 1 << order, 1);
2138 kasan_alloc_pages(page, order);
2139 kernel_poison_pages(page, 1 << order, 1);
2140 set_page_owner(page, order, gfp_flags);
2141 }
2142
2143 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2144 unsigned int alloc_flags)
2145 {
2146 post_alloc_hook(page, order, gfp_flags);
2147
2148 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2149 kernel_init_free_pages(page, 1 << order);
2150
2151 if (order && (gfp_flags & __GFP_COMP))
2152 prep_compound_page(page, order);
2153
2154 /*
2155 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2156 * allocate the page. The expectation is that the caller is taking
2157 * steps that will free more memory. The caller should avoid the page
2158 * being used for !PFMEMALLOC purposes.
2159 */
2160 if (alloc_flags & ALLOC_NO_WATERMARKS)
2161 set_page_pfmemalloc(page);
2162 else
2163 clear_page_pfmemalloc(page);
2164 }
2165
2166 /*
2167 * Go through the free lists for the given migratetype and remove
2168 * the smallest available page from the freelists
2169 */
2170 static __always_inline
2171 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2172 int migratetype)
2173 {
2174 unsigned int current_order;
2175 struct free_area *area;
2176 struct page *page;
2177
2178 /* Find a page of the appropriate size in the preferred list */
2179 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2180 area = &(zone->free_area[current_order]);
2181 page = get_page_from_free_area(area, migratetype);
2182 if (!page)
2183 continue;
2184 del_page_from_free_area(page, area);
2185 expand(zone, page, order, current_order, area, migratetype);
2186 set_pcppage_migratetype(page, migratetype);
2187 return page;
2188 }
2189
2190 return NULL;
2191 }
2192
2193
2194 /*
2195 * This array describes the order lists are fallen back to when
2196 * the free lists for the desirable migrate type are depleted
2197 */
2198 static int fallbacks[MIGRATE_TYPES][4] = {
2199 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2200 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2201 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2202 #ifdef CONFIG_CMA
2203 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2204 #endif
2205 #ifdef CONFIG_MEMORY_ISOLATION
2206 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2207 #endif
2208 };
2209
2210 #ifdef CONFIG_CMA
2211 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2212 unsigned int order)
2213 {
2214 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2215 }
2216 #else
2217 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2218 unsigned int order) { return NULL; }
2219 #endif
2220
2221 /*
2222 * Move the free pages in a range to the free lists of the requested type.
2223 * Note that start_page and end_pages are not aligned on a pageblock
2224 * boundary. If alignment is required, use move_freepages_block()
2225 */
2226 static int move_freepages(struct zone *zone,
2227 struct page *start_page, struct page *end_page,
2228 int migratetype, int *num_movable)
2229 {
2230 struct page *page;
2231 unsigned int order;
2232 int pages_moved = 0;
2233
2234 for (page = start_page; page <= end_page;) {
2235 if (!pfn_valid_within(page_to_pfn(page))) {
2236 page++;
2237 continue;
2238 }
2239
2240 if (!PageBuddy(page)) {
2241 /*
2242 * We assume that pages that could be isolated for
2243 * migration are movable. But we don't actually try
2244 * isolating, as that would be expensive.
2245 */
2246 if (num_movable &&
2247 (PageLRU(page) || __PageMovable(page)))
2248 (*num_movable)++;
2249
2250 page++;
2251 continue;
2252 }
2253
2254 /* Make sure we are not inadvertently changing nodes */
2255 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2256 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2257
2258 order = page_order(page);
2259 move_to_free_area(page, &zone->free_area[order], migratetype);
2260 page += 1 << order;
2261 pages_moved += 1 << order;
2262 }
2263
2264 return pages_moved;
2265 }
2266
2267 int move_freepages_block(struct zone *zone, struct page *page,
2268 int migratetype, int *num_movable)
2269 {
2270 unsigned long start_pfn, end_pfn;
2271 struct page *start_page, *end_page;
2272
2273 if (num_movable)
2274 *num_movable = 0;
2275
2276 start_pfn = page_to_pfn(page);
2277 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2278 start_page = pfn_to_page(start_pfn);
2279 end_page = start_page + pageblock_nr_pages - 1;
2280 end_pfn = start_pfn + pageblock_nr_pages - 1;
2281
2282 /* Do not cross zone boundaries */
2283 if (!zone_spans_pfn(zone, start_pfn))
2284 start_page = page;
2285 if (!zone_spans_pfn(zone, end_pfn))
2286 return 0;
2287
2288 return move_freepages(zone, start_page, end_page, migratetype,
2289 num_movable);
2290 }
2291
2292 static void change_pageblock_range(struct page *pageblock_page,
2293 int start_order, int migratetype)
2294 {
2295 int nr_pageblocks = 1 << (start_order - pageblock_order);
2296
2297 while (nr_pageblocks--) {
2298 set_pageblock_migratetype(pageblock_page, migratetype);
2299 pageblock_page += pageblock_nr_pages;
2300 }
2301 }
2302
2303 /*
2304 * When we are falling back to another migratetype during allocation, try to
2305 * steal extra free pages from the same pageblocks to satisfy further
2306 * allocations, instead of polluting multiple pageblocks.
2307 *
2308 * If we are stealing a relatively large buddy page, it is likely there will
2309 * be more free pages in the pageblock, so try to steal them all. For
2310 * reclaimable and unmovable allocations, we steal regardless of page size,
2311 * as fragmentation caused by those allocations polluting movable pageblocks
2312 * is worse than movable allocations stealing from unmovable and reclaimable
2313 * pageblocks.
2314 */
2315 static bool can_steal_fallback(unsigned int order, int start_mt)
2316 {
2317 /*
2318 * Leaving this order check is intended, although there is
2319 * relaxed order check in next check. The reason is that
2320 * we can actually steal whole pageblock if this condition met,
2321 * but, below check doesn't guarantee it and that is just heuristic
2322 * so could be changed anytime.
2323 */
2324 if (order >= pageblock_order)
2325 return true;
2326
2327 if (order >= pageblock_order / 2 ||
2328 start_mt == MIGRATE_RECLAIMABLE ||
2329 start_mt == MIGRATE_UNMOVABLE ||
2330 page_group_by_mobility_disabled)
2331 return true;
2332
2333 return false;
2334 }
2335
2336 static inline bool boost_watermark(struct zone *zone)
2337 {
2338 unsigned long max_boost;
2339
2340 if (!watermark_boost_factor)
2341 return false;
2342 /*
2343 * Don't bother in zones that are unlikely to produce results.
2344 * On small machines, including kdump capture kernels running
2345 * in a small area, boosting the watermark can cause an out of
2346 * memory situation immediately.
2347 */
2348 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2349 return false;
2350
2351 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2352 watermark_boost_factor, 10000);
2353
2354 /*
2355 * high watermark may be uninitialised if fragmentation occurs
2356 * very early in boot so do not boost. We do not fall
2357 * through and boost by pageblock_nr_pages as failing
2358 * allocations that early means that reclaim is not going
2359 * to help and it may even be impossible to reclaim the
2360 * boosted watermark resulting in a hang.
2361 */
2362 if (!max_boost)
2363 return false;
2364
2365 max_boost = max(pageblock_nr_pages, max_boost);
2366
2367 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2368 max_boost);
2369
2370 return true;
2371 }
2372
2373 /*
2374 * This function implements actual steal behaviour. If order is large enough,
2375 * we can steal whole pageblock. If not, we first move freepages in this
2376 * pageblock to our migratetype and determine how many already-allocated pages
2377 * are there in the pageblock with a compatible migratetype. If at least half
2378 * of pages are free or compatible, we can change migratetype of the pageblock
2379 * itself, so pages freed in the future will be put on the correct free list.
2380 */
2381 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2382 unsigned int alloc_flags, int start_type, bool whole_block)
2383 {
2384 unsigned int current_order = page_order(page);
2385 struct free_area *area;
2386 int free_pages, movable_pages, alike_pages;
2387 int old_block_type;
2388
2389 old_block_type = get_pageblock_migratetype(page);
2390
2391 /*
2392 * This can happen due to races and we want to prevent broken
2393 * highatomic accounting.
2394 */
2395 if (is_migrate_highatomic(old_block_type))
2396 goto single_page;
2397
2398 /* Take ownership for orders >= pageblock_order */
2399 if (current_order >= pageblock_order) {
2400 change_pageblock_range(page, current_order, start_type);
2401 goto single_page;
2402 }
2403
2404 /*
2405 * Boost watermarks to increase reclaim pressure to reduce the
2406 * likelihood of future fallbacks. Wake kswapd now as the node
2407 * may be balanced overall and kswapd will not wake naturally.
2408 */
2409 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2410 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2411
2412 /* We are not allowed to try stealing from the whole block */
2413 if (!whole_block)
2414 goto single_page;
2415
2416 free_pages = move_freepages_block(zone, page, start_type,
2417 &movable_pages);
2418 /*
2419 * Determine how many pages are compatible with our allocation.
2420 * For movable allocation, it's the number of movable pages which
2421 * we just obtained. For other types it's a bit more tricky.
2422 */
2423 if (start_type == MIGRATE_MOVABLE) {
2424 alike_pages = movable_pages;
2425 } else {
2426 /*
2427 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2428 * to MOVABLE pageblock, consider all non-movable pages as
2429 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2430 * vice versa, be conservative since we can't distinguish the
2431 * exact migratetype of non-movable pages.
2432 */
2433 if (old_block_type == MIGRATE_MOVABLE)
2434 alike_pages = pageblock_nr_pages
2435 - (free_pages + movable_pages);
2436 else
2437 alike_pages = 0;
2438 }
2439
2440 /* moving whole block can fail due to zone boundary conditions */
2441 if (!free_pages)
2442 goto single_page;
2443
2444 /*
2445 * If a sufficient number of pages in the block are either free or of
2446 * comparable migratability as our allocation, claim the whole block.
2447 */
2448 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2449 page_group_by_mobility_disabled)
2450 set_pageblock_migratetype(page, start_type);
2451
2452 return;
2453
2454 single_page:
2455 area = &zone->free_area[current_order];
2456 move_to_free_area(page, area, start_type);
2457 }
2458
2459 /*
2460 * Check whether there is a suitable fallback freepage with requested order.
2461 * If only_stealable is true, this function returns fallback_mt only if
2462 * we can steal other freepages all together. This would help to reduce
2463 * fragmentation due to mixed migratetype pages in one pageblock.
2464 */
2465 int find_suitable_fallback(struct free_area *area, unsigned int order,
2466 int migratetype, bool only_stealable, bool *can_steal)
2467 {
2468 int i;
2469 int fallback_mt;
2470
2471 if (area->nr_free == 0)
2472 return -1;
2473
2474 *can_steal = false;
2475 for (i = 0;; i++) {
2476 fallback_mt = fallbacks[migratetype][i];
2477 if (fallback_mt == MIGRATE_TYPES)
2478 break;
2479
2480 if (free_area_empty(area, fallback_mt))
2481 continue;
2482
2483 if (can_steal_fallback(order, migratetype))
2484 *can_steal = true;
2485
2486 if (!only_stealable)
2487 return fallback_mt;
2488
2489 if (*can_steal)
2490 return fallback_mt;
2491 }
2492
2493 return -1;
2494 }
2495
2496 /*
2497 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2498 * there are no empty page blocks that contain a page with a suitable order
2499 */
2500 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2501 unsigned int alloc_order)
2502 {
2503 int mt;
2504 unsigned long max_managed, flags;
2505
2506 /*
2507 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2508 * Check is race-prone but harmless.
2509 */
2510 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2511 if (zone->nr_reserved_highatomic >= max_managed)
2512 return;
2513
2514 spin_lock_irqsave(&zone->lock, flags);
2515
2516 /* Recheck the nr_reserved_highatomic limit under the lock */
2517 if (zone->nr_reserved_highatomic >= max_managed)
2518 goto out_unlock;
2519
2520 /* Yoink! */
2521 mt = get_pageblock_migratetype(page);
2522 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2523 && !is_migrate_cma(mt)) {
2524 zone->nr_reserved_highatomic += pageblock_nr_pages;
2525 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2526 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2527 }
2528
2529 out_unlock:
2530 spin_unlock_irqrestore(&zone->lock, flags);
2531 }
2532
2533 /*
2534 * Used when an allocation is about to fail under memory pressure. This
2535 * potentially hurts the reliability of high-order allocations when under
2536 * intense memory pressure but failed atomic allocations should be easier
2537 * to recover from than an OOM.
2538 *
2539 * If @force is true, try to unreserve a pageblock even though highatomic
2540 * pageblock is exhausted.
2541 */
2542 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2543 bool force)
2544 {
2545 struct zonelist *zonelist = ac->zonelist;
2546 unsigned long flags;
2547 struct zoneref *z;
2548 struct zone *zone;
2549 struct page *page;
2550 int order;
2551 bool ret;
2552
2553 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2554 ac->nodemask) {
2555 /*
2556 * Preserve at least one pageblock unless memory pressure
2557 * is really high.
2558 */
2559 if (!force && zone->nr_reserved_highatomic <=
2560 pageblock_nr_pages)
2561 continue;
2562
2563 spin_lock_irqsave(&zone->lock, flags);
2564 for (order = 0; order < MAX_ORDER; order++) {
2565 struct free_area *area = &(zone->free_area[order]);
2566
2567 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2568 if (!page)
2569 continue;
2570
2571 /*
2572 * In page freeing path, migratetype change is racy so
2573 * we can counter several free pages in a pageblock
2574 * in this loop althoug we changed the pageblock type
2575 * from highatomic to ac->migratetype. So we should
2576 * adjust the count once.
2577 */
2578 if (is_migrate_highatomic_page(page)) {
2579 /*
2580 * It should never happen but changes to
2581 * locking could inadvertently allow a per-cpu
2582 * drain to add pages to MIGRATE_HIGHATOMIC
2583 * while unreserving so be safe and watch for
2584 * underflows.
2585 */
2586 zone->nr_reserved_highatomic -= min(
2587 pageblock_nr_pages,
2588 zone->nr_reserved_highatomic);
2589 }
2590
2591 /*
2592 * Convert to ac->migratetype and avoid the normal
2593 * pageblock stealing heuristics. Minimally, the caller
2594 * is doing the work and needs the pages. More
2595 * importantly, if the block was always converted to
2596 * MIGRATE_UNMOVABLE or another type then the number
2597 * of pageblocks that cannot be completely freed
2598 * may increase.
2599 */
2600 set_pageblock_migratetype(page, ac->migratetype);
2601 ret = move_freepages_block(zone, page, ac->migratetype,
2602 NULL);
2603 if (ret) {
2604 spin_unlock_irqrestore(&zone->lock, flags);
2605 return ret;
2606 }
2607 }
2608 spin_unlock_irqrestore(&zone->lock, flags);
2609 }
2610
2611 return false;
2612 }
2613
2614 /*
2615 * Try finding a free buddy page on the fallback list and put it on the free
2616 * list of requested migratetype, possibly along with other pages from the same
2617 * block, depending on fragmentation avoidance heuristics. Returns true if
2618 * fallback was found so that __rmqueue_smallest() can grab it.
2619 *
2620 * The use of signed ints for order and current_order is a deliberate
2621 * deviation from the rest of this file, to make the for loop
2622 * condition simpler.
2623 */
2624 static __always_inline bool
2625 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2626 unsigned int alloc_flags)
2627 {
2628 struct free_area *area;
2629 int current_order;
2630 int min_order = order;
2631 struct page *page;
2632 int fallback_mt;
2633 bool can_steal;
2634
2635 /*
2636 * Do not steal pages from freelists belonging to other pageblocks
2637 * i.e. orders < pageblock_order. If there are no local zones free,
2638 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2639 */
2640 if (alloc_flags & ALLOC_NOFRAGMENT)
2641 min_order = pageblock_order;
2642
2643 /*
2644 * Find the largest available free page in the other list. This roughly
2645 * approximates finding the pageblock with the most free pages, which
2646 * would be too costly to do exactly.
2647 */
2648 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2649 --current_order) {
2650 area = &(zone->free_area[current_order]);
2651 fallback_mt = find_suitable_fallback(area, current_order,
2652 start_migratetype, false, &can_steal);
2653 if (fallback_mt == -1)
2654 continue;
2655
2656 /*
2657 * We cannot steal all free pages from the pageblock and the
2658 * requested migratetype is movable. In that case it's better to
2659 * steal and split the smallest available page instead of the
2660 * largest available page, because even if the next movable
2661 * allocation falls back into a different pageblock than this
2662 * one, it won't cause permanent fragmentation.
2663 */
2664 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2665 && current_order > order)
2666 goto find_smallest;
2667
2668 goto do_steal;
2669 }
2670
2671 return false;
2672
2673 find_smallest:
2674 for (current_order = order; current_order < MAX_ORDER;
2675 current_order++) {
2676 area = &(zone->free_area[current_order]);
2677 fallback_mt = find_suitable_fallback(area, current_order,
2678 start_migratetype, false, &can_steal);
2679 if (fallback_mt != -1)
2680 break;
2681 }
2682
2683 /*
2684 * This should not happen - we already found a suitable fallback
2685 * when looking for the largest page.
2686 */
2687 VM_BUG_ON(current_order == MAX_ORDER);
2688
2689 do_steal:
2690 page = get_page_from_free_area(area, fallback_mt);
2691
2692 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2693 can_steal);
2694
2695 trace_mm_page_alloc_extfrag(page, order, current_order,
2696 start_migratetype, fallback_mt);
2697
2698 return true;
2699
2700 }
2701
2702 /*
2703 * Do the hard work of removing an element from the buddy allocator.
2704 * Call me with the zone->lock already held.
2705 */
2706 static __always_inline struct page *
2707 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2708 unsigned int alloc_flags)
2709 {
2710 struct page *page;
2711
2712 retry:
2713 page = __rmqueue_smallest(zone, order, migratetype);
2714 if (unlikely(!page)) {
2715 if (migratetype == MIGRATE_MOVABLE)
2716 page = __rmqueue_cma_fallback(zone, order);
2717
2718 if (!page && __rmqueue_fallback(zone, order, migratetype,
2719 alloc_flags))
2720 goto retry;
2721 }
2722
2723 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2724 return page;
2725 }
2726
2727 /*
2728 * Obtain a specified number of elements from the buddy allocator, all under
2729 * a single hold of the lock, for efficiency. Add them to the supplied list.
2730 * Returns the number of new pages which were placed at *list.
2731 */
2732 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2733 unsigned long count, struct list_head *list,
2734 int migratetype, unsigned int alloc_flags)
2735 {
2736 int i, alloced = 0;
2737
2738 spin_lock(&zone->lock);
2739 for (i = 0; i < count; ++i) {
2740 struct page *page = __rmqueue(zone, order, migratetype,
2741 alloc_flags);
2742 if (unlikely(page == NULL))
2743 break;
2744
2745 if (unlikely(check_pcp_refill(page)))
2746 continue;
2747
2748 /*
2749 * Split buddy pages returned by expand() are received here in
2750 * physical page order. The page is added to the tail of
2751 * caller's list. From the callers perspective, the linked list
2752 * is ordered by page number under some conditions. This is
2753 * useful for IO devices that can forward direction from the
2754 * head, thus also in the physical page order. This is useful
2755 * for IO devices that can merge IO requests if the physical
2756 * pages are ordered properly.
2757 */
2758 list_add_tail(&page->lru, list);
2759 alloced++;
2760 if (is_migrate_cma(get_pcppage_migratetype(page)))
2761 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2762 -(1 << order));
2763 }
2764
2765 /*
2766 * i pages were removed from the buddy list even if some leak due
2767 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2768 * on i. Do not confuse with 'alloced' which is the number of
2769 * pages added to the pcp list.
2770 */
2771 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2772 spin_unlock(&zone->lock);
2773 return alloced;
2774 }
2775
2776 #ifdef CONFIG_NUMA
2777 /*
2778 * Called from the vmstat counter updater to drain pagesets of this
2779 * currently executing processor on remote nodes after they have
2780 * expired.
2781 *
2782 * Note that this function must be called with the thread pinned to
2783 * a single processor.
2784 */
2785 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2786 {
2787 unsigned long flags;
2788 int to_drain, batch;
2789
2790 local_irq_save(flags);
2791 batch = READ_ONCE(pcp->batch);
2792 to_drain = min(pcp->count, batch);
2793 if (to_drain > 0)
2794 free_pcppages_bulk(zone, to_drain, pcp);
2795 local_irq_restore(flags);
2796 }
2797 #endif
2798
2799 /*
2800 * Drain pcplists of the indicated processor and zone.
2801 *
2802 * The processor must either be the current processor and the
2803 * thread pinned to the current processor or a processor that
2804 * is not online.
2805 */
2806 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2807 {
2808 unsigned long flags;
2809 struct per_cpu_pageset *pset;
2810 struct per_cpu_pages *pcp;
2811
2812 local_irq_save(flags);
2813 pset = per_cpu_ptr(zone->pageset, cpu);
2814
2815 pcp = &pset->pcp;
2816 if (pcp->count)
2817 free_pcppages_bulk(zone, pcp->count, pcp);
2818 local_irq_restore(flags);
2819 }
2820
2821 /*
2822 * Drain pcplists of all zones on the indicated processor.
2823 *
2824 * The processor must either be the current processor and the
2825 * thread pinned to the current processor or a processor that
2826 * is not online.
2827 */
2828 static void drain_pages(unsigned int cpu)
2829 {
2830 struct zone *zone;
2831
2832 for_each_populated_zone(zone) {
2833 drain_pages_zone(cpu, zone);
2834 }
2835 }
2836
2837 /*
2838 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2839 *
2840 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2841 * the single zone's pages.
2842 */
2843 void drain_local_pages(struct zone *zone)
2844 {
2845 int cpu = smp_processor_id();
2846
2847 if (zone)
2848 drain_pages_zone(cpu, zone);
2849 else
2850 drain_pages(cpu);
2851 }
2852
2853 static void drain_local_pages_wq(struct work_struct *work)
2854 {
2855 struct pcpu_drain *drain;
2856
2857 drain = container_of(work, struct pcpu_drain, work);
2858
2859 /*
2860 * drain_all_pages doesn't use proper cpu hotplug protection so
2861 * we can race with cpu offline when the WQ can move this from
2862 * a cpu pinned worker to an unbound one. We can operate on a different
2863 * cpu which is allright but we also have to make sure to not move to
2864 * a different one.
2865 */
2866 preempt_disable();
2867 drain_local_pages(drain->zone);
2868 preempt_enable();
2869 }
2870
2871 /*
2872 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2873 *
2874 * When zone parameter is non-NULL, spill just the single zone's pages.
2875 *
2876 * Note that this can be extremely slow as the draining happens in a workqueue.
2877 */
2878 void drain_all_pages(struct zone *zone)
2879 {
2880 int cpu;
2881
2882 /*
2883 * Allocate in the BSS so we wont require allocation in
2884 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2885 */
2886 static cpumask_t cpus_with_pcps;
2887
2888 /*
2889 * Make sure nobody triggers this path before mm_percpu_wq is fully
2890 * initialized.
2891 */
2892 if (WARN_ON_ONCE(!mm_percpu_wq))
2893 return;
2894
2895 /*
2896 * Do not drain if one is already in progress unless it's specific to
2897 * a zone. Such callers are primarily CMA and memory hotplug and need
2898 * the drain to be complete when the call returns.
2899 */
2900 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2901 if (!zone)
2902 return;
2903 mutex_lock(&pcpu_drain_mutex);
2904 }
2905
2906 /*
2907 * We don't care about racing with CPU hotplug event
2908 * as offline notification will cause the notified
2909 * cpu to drain that CPU pcps and on_each_cpu_mask
2910 * disables preemption as part of its processing
2911 */
2912 for_each_online_cpu(cpu) {
2913 struct per_cpu_pageset *pcp;
2914 struct zone *z;
2915 bool has_pcps = false;
2916
2917 if (zone) {
2918 pcp = per_cpu_ptr(zone->pageset, cpu);
2919 if (pcp->pcp.count)
2920 has_pcps = true;
2921 } else {
2922 for_each_populated_zone(z) {
2923 pcp = per_cpu_ptr(z->pageset, cpu);
2924 if (pcp->pcp.count) {
2925 has_pcps = true;
2926 break;
2927 }
2928 }
2929 }
2930
2931 if (has_pcps)
2932 cpumask_set_cpu(cpu, &cpus_with_pcps);
2933 else
2934 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2935 }
2936
2937 for_each_cpu(cpu, &cpus_with_pcps) {
2938 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2939
2940 drain->zone = zone;
2941 INIT_WORK(&drain->work, drain_local_pages_wq);
2942 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2943 }
2944 for_each_cpu(cpu, &cpus_with_pcps)
2945 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2946
2947 mutex_unlock(&pcpu_drain_mutex);
2948 }
2949
2950 #ifdef CONFIG_HIBERNATION
2951
2952 /*
2953 * Touch the watchdog for every WD_PAGE_COUNT pages.
2954 */
2955 #define WD_PAGE_COUNT (128*1024)
2956
2957 void mark_free_pages(struct zone *zone)
2958 {
2959 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2960 unsigned long flags;
2961 unsigned int order, t;
2962 struct page *page;
2963
2964 if (zone_is_empty(zone))
2965 return;
2966
2967 spin_lock_irqsave(&zone->lock, flags);
2968
2969 max_zone_pfn = zone_end_pfn(zone);
2970 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2971 if (pfn_valid(pfn)) {
2972 page = pfn_to_page(pfn);
2973
2974 if (!--page_count) {
2975 touch_nmi_watchdog();
2976 page_count = WD_PAGE_COUNT;
2977 }
2978
2979 if (page_zone(page) != zone)
2980 continue;
2981
2982 if (!swsusp_page_is_forbidden(page))
2983 swsusp_unset_page_free(page);
2984 }
2985
2986 for_each_migratetype_order(order, t) {
2987 list_for_each_entry(page,
2988 &zone->free_area[order].free_list[t], lru) {
2989 unsigned long i;
2990
2991 pfn = page_to_pfn(page);
2992 for (i = 0; i < (1UL << order); i++) {
2993 if (!--page_count) {
2994 touch_nmi_watchdog();
2995 page_count = WD_PAGE_COUNT;
2996 }
2997 swsusp_set_page_free(pfn_to_page(pfn + i));
2998 }
2999 }
3000 }
3001 spin_unlock_irqrestore(&zone->lock, flags);
3002 }
3003 #endif /* CONFIG_PM */
3004
3005 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3006 {
3007 int migratetype;
3008
3009 if (!free_pcp_prepare(page))
3010 return false;
3011
3012 migratetype = get_pfnblock_migratetype(page, pfn);
3013 set_pcppage_migratetype(page, migratetype);
3014 return true;
3015 }
3016
3017 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3018 {
3019 struct zone *zone = page_zone(page);
3020 struct per_cpu_pages *pcp;
3021 int migratetype;
3022
3023 migratetype = get_pcppage_migratetype(page);
3024 __count_vm_event(PGFREE);
3025
3026 /*
3027 * We only track unmovable, reclaimable and movable on pcp lists.
3028 * Free ISOLATE pages back to the allocator because they are being
3029 * offlined but treat HIGHATOMIC as movable pages so we can get those
3030 * areas back if necessary. Otherwise, we may have to free
3031 * excessively into the page allocator
3032 */
3033 if (migratetype >= MIGRATE_PCPTYPES) {
3034 if (unlikely(is_migrate_isolate(migratetype))) {
3035 free_one_page(zone, page, pfn, 0, migratetype);
3036 return;
3037 }
3038 migratetype = MIGRATE_MOVABLE;
3039 }
3040
3041 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3042 list_add(&page->lru, &pcp->lists[migratetype]);
3043 pcp->count++;
3044 if (pcp->count >= pcp->high) {
3045 unsigned long batch = READ_ONCE(pcp->batch);
3046 free_pcppages_bulk(zone, batch, pcp);
3047 }
3048 }
3049
3050 /*
3051 * Free a 0-order page
3052 */
3053 void free_unref_page(struct page *page)
3054 {
3055 unsigned long flags;
3056 unsigned long pfn = page_to_pfn(page);
3057
3058 if (!free_unref_page_prepare(page, pfn))
3059 return;
3060
3061 local_irq_save(flags);
3062 free_unref_page_commit(page, pfn);
3063 local_irq_restore(flags);
3064 }
3065
3066 /*
3067 * Free a list of 0-order pages
3068 */
3069 void free_unref_page_list(struct list_head *list)
3070 {
3071 struct page *page, *next;
3072 unsigned long flags, pfn;
3073 int batch_count = 0;
3074
3075 /* Prepare pages for freeing */
3076 list_for_each_entry_safe(page, next, list, lru) {
3077 pfn = page_to_pfn(page);
3078 if (!free_unref_page_prepare(page, pfn))
3079 list_del(&page->lru);
3080 set_page_private(page, pfn);
3081 }
3082
3083 local_irq_save(flags);
3084 list_for_each_entry_safe(page, next, list, lru) {
3085 unsigned long pfn = page_private(page);
3086
3087 set_page_private(page, 0);
3088 trace_mm_page_free_batched(page);
3089 free_unref_page_commit(page, pfn);
3090
3091 /*
3092 * Guard against excessive IRQ disabled times when we get
3093 * a large list of pages to free.
3094 */
3095 if (++batch_count == SWAP_CLUSTER_MAX) {
3096 local_irq_restore(flags);
3097 batch_count = 0;
3098 local_irq_save(flags);
3099 }
3100 }
3101 local_irq_restore(flags);
3102 }
3103
3104 /*
3105 * split_page takes a non-compound higher-order page, and splits it into
3106 * n (1<<order) sub-pages: page[0..n]
3107 * Each sub-page must be freed individually.
3108 *
3109 * Note: this is probably too low level an operation for use in drivers.
3110 * Please consult with lkml before using this in your driver.
3111 */
3112 void split_page(struct page *page, unsigned int order)
3113 {
3114 int i;
3115
3116 VM_BUG_ON_PAGE(PageCompound(page), page);
3117 VM_BUG_ON_PAGE(!page_count(page), page);
3118
3119 for (i = 1; i < (1 << order); i++)
3120 set_page_refcounted(page + i);
3121 split_page_owner(page, 1 << order);
3122 }
3123 EXPORT_SYMBOL_GPL(split_page);
3124
3125 int __isolate_free_page(struct page *page, unsigned int order)
3126 {
3127 struct free_area *area = &page_zone(page)->free_area[order];
3128 unsigned long watermark;
3129 struct zone *zone;
3130 int mt;
3131
3132 BUG_ON(!PageBuddy(page));
3133
3134 zone = page_zone(page);
3135 mt = get_pageblock_migratetype(page);
3136
3137 if (!is_migrate_isolate(mt)) {
3138 /*
3139 * Obey watermarks as if the page was being allocated. We can
3140 * emulate a high-order watermark check with a raised order-0
3141 * watermark, because we already know our high-order page
3142 * exists.
3143 */
3144 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3145 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3146 return 0;
3147
3148 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3149 }
3150
3151 /* Remove page from free list */
3152
3153 del_page_from_free_area(page, area);
3154
3155 /*
3156 * Set the pageblock if the isolated page is at least half of a
3157 * pageblock
3158 */
3159 if (order >= pageblock_order - 1) {
3160 struct page *endpage = page + (1 << order) - 1;
3161 for (; page < endpage; page += pageblock_nr_pages) {
3162 int mt = get_pageblock_migratetype(page);
3163 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3164 && !is_migrate_highatomic(mt))
3165 set_pageblock_migratetype(page,
3166 MIGRATE_MOVABLE);
3167 }
3168 }
3169
3170
3171 return 1UL << order;
3172 }
3173
3174 /*
3175 * Update NUMA hit/miss statistics
3176 *
3177 * Must be called with interrupts disabled.
3178 */
3179 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3180 {
3181 #ifdef CONFIG_NUMA
3182 enum numa_stat_item local_stat = NUMA_LOCAL;
3183
3184 /* skip numa counters update if numa stats is disabled */
3185 if (!static_branch_likely(&vm_numa_stat_key))
3186 return;
3187
3188 if (zone_to_nid(z) != numa_node_id())
3189 local_stat = NUMA_OTHER;
3190
3191 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3192 __inc_numa_state(z, NUMA_HIT);
3193 else {
3194 __inc_numa_state(z, NUMA_MISS);
3195 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3196 }
3197 __inc_numa_state(z, local_stat);
3198 #endif
3199 }
3200
3201 /* Remove page from the per-cpu list, caller must protect the list */
3202 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3203 unsigned int alloc_flags,
3204 struct per_cpu_pages *pcp,
3205 struct list_head *list)
3206 {
3207 struct page *page;
3208
3209 do {
3210 if (list_empty(list)) {
3211 pcp->count += rmqueue_bulk(zone, 0,
3212 pcp->batch, list,
3213 migratetype, alloc_flags);
3214 if (unlikely(list_empty(list)))
3215 return NULL;
3216 }
3217
3218 page = list_first_entry(list, struct page, lru);
3219 list_del(&page->lru);
3220 pcp->count--;
3221 } while (check_new_pcp(page));
3222
3223 return page;
3224 }
3225
3226 /* Lock and remove page from the per-cpu list */
3227 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3228 struct zone *zone, gfp_t gfp_flags,
3229 int migratetype, unsigned int alloc_flags)
3230 {
3231 struct per_cpu_pages *pcp;
3232 struct list_head *list;
3233 struct page *page;
3234 unsigned long flags;
3235
3236 local_irq_save(flags);
3237 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3238 list = &pcp->lists[migratetype];
3239 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3240 if (page) {
3241 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3242 zone_statistics(preferred_zone, zone);
3243 }
3244 local_irq_restore(flags);
3245 return page;
3246 }
3247
3248 /*
3249 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3250 */
3251 static inline
3252 struct page *rmqueue(struct zone *preferred_zone,
3253 struct zone *zone, unsigned int order,
3254 gfp_t gfp_flags, unsigned int alloc_flags,
3255 int migratetype)
3256 {
3257 unsigned long flags;
3258 struct page *page;
3259
3260 if (likely(order == 0)) {
3261 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3262 migratetype, alloc_flags);
3263 goto out;
3264 }
3265
3266 /*
3267 * We most definitely don't want callers attempting to
3268 * allocate greater than order-1 page units with __GFP_NOFAIL.
3269 */
3270 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3271 spin_lock_irqsave(&zone->lock, flags);
3272
3273 do {
3274 page = NULL;
3275 if (alloc_flags & ALLOC_HARDER) {
3276 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3277 if (page)
3278 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3279 }
3280 if (!page)
3281 page = __rmqueue(zone, order, migratetype, alloc_flags);
3282 } while (page && check_new_pages(page, order));
3283 spin_unlock(&zone->lock);
3284 if (!page)
3285 goto failed;
3286 __mod_zone_freepage_state(zone, -(1 << order),
3287 get_pcppage_migratetype(page));
3288
3289 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3290 zone_statistics(preferred_zone, zone);
3291 local_irq_restore(flags);
3292
3293 out:
3294 /* Separate test+clear to avoid unnecessary atomics */
3295 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3296 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3297 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3298 }
3299
3300 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3301 return page;
3302
3303 failed:
3304 local_irq_restore(flags);
3305 return NULL;
3306 }
3307
3308 #ifdef CONFIG_FAIL_PAGE_ALLOC
3309
3310 static struct {
3311 struct fault_attr attr;
3312
3313 bool ignore_gfp_highmem;
3314 bool ignore_gfp_reclaim;
3315 u32 min_order;
3316 } fail_page_alloc = {
3317 .attr = FAULT_ATTR_INITIALIZER,
3318 .ignore_gfp_reclaim = true,
3319 .ignore_gfp_highmem = true,
3320 .min_order = 1,
3321 };
3322
3323 static int __init setup_fail_page_alloc(char *str)
3324 {
3325 return setup_fault_attr(&fail_page_alloc.attr, str);
3326 }
3327 __setup("fail_page_alloc=", setup_fail_page_alloc);
3328
3329 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3330 {
3331 if (order < fail_page_alloc.min_order)
3332 return false;
3333 if (gfp_mask & __GFP_NOFAIL)
3334 return false;
3335 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3336 return false;
3337 if (fail_page_alloc.ignore_gfp_reclaim &&
3338 (gfp_mask & __GFP_DIRECT_RECLAIM))
3339 return false;
3340
3341 return should_fail(&fail_page_alloc.attr, 1 << order);
3342 }
3343
3344 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3345
3346 static int __init fail_page_alloc_debugfs(void)
3347 {
3348 umode_t mode = S_IFREG | 0600;
3349 struct dentry *dir;
3350
3351 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3352 &fail_page_alloc.attr);
3353
3354 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3355 &fail_page_alloc.ignore_gfp_reclaim);
3356 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3357 &fail_page_alloc.ignore_gfp_highmem);
3358 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3359
3360 return 0;
3361 }
3362
3363 late_initcall(fail_page_alloc_debugfs);
3364
3365 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3366
3367 #else /* CONFIG_FAIL_PAGE_ALLOC */
3368
3369 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3370 {
3371 return false;
3372 }
3373
3374 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3375
3376 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3377 {
3378 return __should_fail_alloc_page(gfp_mask, order);
3379 }
3380 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3381
3382 /*
3383 * Return true if free base pages are above 'mark'. For high-order checks it
3384 * will return true of the order-0 watermark is reached and there is at least
3385 * one free page of a suitable size. Checking now avoids taking the zone lock
3386 * to check in the allocation paths if no pages are free.
3387 */
3388 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3389 int classzone_idx, unsigned int alloc_flags,
3390 long free_pages)
3391 {
3392 long min = mark;
3393 int o;
3394 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3395
3396 /* free_pages may go negative - that's OK */
3397 free_pages -= (1 << order) - 1;
3398
3399 if (alloc_flags & ALLOC_HIGH)
3400 min -= min / 2;
3401
3402 /*
3403 * If the caller does not have rights to ALLOC_HARDER then subtract
3404 * the high-atomic reserves. This will over-estimate the size of the
3405 * atomic reserve but it avoids a search.
3406 */
3407 if (likely(!alloc_harder)) {
3408 free_pages -= z->nr_reserved_highatomic;
3409 } else {
3410 /*
3411 * OOM victims can try even harder than normal ALLOC_HARDER
3412 * users on the grounds that it's definitely going to be in
3413 * the exit path shortly and free memory. Any allocation it
3414 * makes during the free path will be small and short-lived.
3415 */
3416 if (alloc_flags & ALLOC_OOM)
3417 min -= min / 2;
3418 else
3419 min -= min / 4;
3420 }
3421
3422
3423 #ifdef CONFIG_CMA
3424 /* If allocation can't use CMA areas don't use free CMA pages */
3425 if (!(alloc_flags & ALLOC_CMA))
3426 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3427 #endif
3428
3429 /*
3430 * Check watermarks for an order-0 allocation request. If these
3431 * are not met, then a high-order request also cannot go ahead
3432 * even if a suitable page happened to be free.
3433 */
3434 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3435 return false;
3436
3437 /* If this is an order-0 request then the watermark is fine */
3438 if (!order)
3439 return true;
3440
3441 /* For a high-order request, check at least one suitable page is free */
3442 for (o = order; o < MAX_ORDER; o++) {
3443 struct free_area *area = &z->free_area[o];
3444 int mt;
3445
3446 if (!area->nr_free)
3447 continue;
3448
3449 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3450 if (!free_area_empty(area, mt))
3451 return true;
3452 }
3453
3454 #ifdef CONFIG_CMA
3455 if ((alloc_flags & ALLOC_CMA) &&
3456 !free_area_empty(area, MIGRATE_CMA)) {
3457 return true;
3458 }
3459 #endif
3460 if (alloc_harder &&
3461 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3462 return true;
3463 }
3464 return false;
3465 }
3466
3467 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3468 int classzone_idx, unsigned int alloc_flags)
3469 {
3470 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3471 zone_page_state(z, NR_FREE_PAGES));
3472 }
3473
3474 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3475 unsigned long mark, int classzone_idx,
3476 unsigned int alloc_flags, gfp_t gfp_mask)
3477 {
3478 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3479 long cma_pages = 0;
3480
3481 #ifdef CONFIG_CMA
3482 /* If allocation can't use CMA areas don't use free CMA pages */
3483 if (!(alloc_flags & ALLOC_CMA))
3484 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3485 #endif
3486
3487 /*
3488 * Fast check for order-0 only. If this fails then the reserves
3489 * need to be calculated. There is a corner case where the check
3490 * passes but only the high-order atomic reserve are free. If
3491 * the caller is !atomic then it'll uselessly search the free
3492 * list. That corner case is then slower but it is harmless.
3493 */
3494 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3495 return true;
3496
3497 if (__zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3498 free_pages))
3499 return true;
3500 /*
3501 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3502 * when checking the min watermark. The min watermark is the
3503 * point where boosting is ignored so that kswapd is woken up
3504 * when below the low watermark.
3505 */
3506 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3507 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3508 mark = z->_watermark[WMARK_MIN];
3509 return __zone_watermark_ok(z, order, mark, classzone_idx,
3510 alloc_flags, free_pages);
3511 }
3512
3513 return false;
3514 }
3515
3516 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3517 unsigned long mark, int classzone_idx)
3518 {
3519 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3520
3521 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3522 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3523
3524 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3525 free_pages);
3526 }
3527
3528 #ifdef CONFIG_NUMA
3529 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3530 {
3531 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3532 node_reclaim_distance;
3533 }
3534 #else /* CONFIG_NUMA */
3535 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3536 {
3537 return true;
3538 }
3539 #endif /* CONFIG_NUMA */
3540
3541 /*
3542 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3543 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3544 * premature use of a lower zone may cause lowmem pressure problems that
3545 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3546 * probably too small. It only makes sense to spread allocations to avoid
3547 * fragmentation between the Normal and DMA32 zones.
3548 */
3549 static inline unsigned int
3550 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3551 {
3552 unsigned int alloc_flags = 0;
3553
3554 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3555 alloc_flags |= ALLOC_KSWAPD;
3556
3557 #ifdef CONFIG_ZONE_DMA32
3558 if (!zone)
3559 return alloc_flags;
3560
3561 if (zone_idx(zone) != ZONE_NORMAL)
3562 return alloc_flags;
3563
3564 /*
3565 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3566 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3567 * on UMA that if Normal is populated then so is DMA32.
3568 */
3569 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3570 if (nr_online_nodes > 1 && !populated_zone(--zone))
3571 return alloc_flags;
3572
3573 alloc_flags |= ALLOC_NOFRAGMENT;
3574 #endif /* CONFIG_ZONE_DMA32 */
3575 return alloc_flags;
3576 }
3577
3578 /*
3579 * get_page_from_freelist goes through the zonelist trying to allocate
3580 * a page.
3581 */
3582 static struct page *
3583 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3584 const struct alloc_context *ac)
3585 {
3586 struct zoneref *z;
3587 struct zone *zone;
3588 struct pglist_data *last_pgdat_dirty_limit = NULL;
3589 bool no_fallback;
3590
3591 retry:
3592 /*
3593 * Scan zonelist, looking for a zone with enough free.
3594 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3595 */
3596 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3597 z = ac->preferred_zoneref;
3598 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3599 ac->nodemask) {
3600 struct page *page;
3601 unsigned long mark;
3602
3603 if (cpusets_enabled() &&
3604 (alloc_flags & ALLOC_CPUSET) &&
3605 !__cpuset_zone_allowed(zone, gfp_mask))
3606 continue;
3607 /*
3608 * When allocating a page cache page for writing, we
3609 * want to get it from a node that is within its dirty
3610 * limit, such that no single node holds more than its
3611 * proportional share of globally allowed dirty pages.
3612 * The dirty limits take into account the node's
3613 * lowmem reserves and high watermark so that kswapd
3614 * should be able to balance it without having to
3615 * write pages from its LRU list.
3616 *
3617 * XXX: For now, allow allocations to potentially
3618 * exceed the per-node dirty limit in the slowpath
3619 * (spread_dirty_pages unset) before going into reclaim,
3620 * which is important when on a NUMA setup the allowed
3621 * nodes are together not big enough to reach the
3622 * global limit. The proper fix for these situations
3623 * will require awareness of nodes in the
3624 * dirty-throttling and the flusher threads.
3625 */
3626 if (ac->spread_dirty_pages) {
3627 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3628 continue;
3629
3630 if (!node_dirty_ok(zone->zone_pgdat)) {
3631 last_pgdat_dirty_limit = zone->zone_pgdat;
3632 continue;
3633 }
3634 }
3635
3636 if (no_fallback && nr_online_nodes > 1 &&
3637 zone != ac->preferred_zoneref->zone) {
3638 int local_nid;
3639
3640 /*
3641 * If moving to a remote node, retry but allow
3642 * fragmenting fallbacks. Locality is more important
3643 * than fragmentation avoidance.
3644 */
3645 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3646 if (zone_to_nid(zone) != local_nid) {
3647 alloc_flags &= ~ALLOC_NOFRAGMENT;
3648 goto retry;
3649 }
3650 }
3651
3652 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3653 if (!zone_watermark_fast(zone, order, mark,
3654 ac_classzone_idx(ac), alloc_flags,
3655 gfp_mask)) {
3656 int ret;
3657
3658 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3659 /*
3660 * Watermark failed for this zone, but see if we can
3661 * grow this zone if it contains deferred pages.
3662 */
3663 if (static_branch_unlikely(&deferred_pages)) {
3664 if (_deferred_grow_zone(zone, order))
3665 goto try_this_zone;
3666 }
3667 #endif
3668 /* Checked here to keep the fast path fast */
3669 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3670 if (alloc_flags & ALLOC_NO_WATERMARKS)
3671 goto try_this_zone;
3672
3673 if (node_reclaim_mode == 0 ||
3674 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3675 continue;
3676
3677 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3678 switch (ret) {
3679 case NODE_RECLAIM_NOSCAN:
3680 /* did not scan */
3681 continue;
3682 case NODE_RECLAIM_FULL:
3683 /* scanned but unreclaimable */
3684 continue;
3685 default:
3686 /* did we reclaim enough */
3687 if (zone_watermark_ok(zone, order, mark,
3688 ac_classzone_idx(ac), alloc_flags))
3689 goto try_this_zone;
3690
3691 continue;
3692 }
3693 }
3694
3695 try_this_zone:
3696 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3697 gfp_mask, alloc_flags, ac->migratetype);
3698 if (page) {
3699 prep_new_page(page, order, gfp_mask, alloc_flags);
3700
3701 /*
3702 * If this is a high-order atomic allocation then check
3703 * if the pageblock should be reserved for the future
3704 */
3705 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3706 reserve_highatomic_pageblock(page, zone, order);
3707
3708 return page;
3709 } else {
3710 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3711 /* Try again if zone has deferred pages */
3712 if (static_branch_unlikely(&deferred_pages)) {
3713 if (_deferred_grow_zone(zone, order))
3714 goto try_this_zone;
3715 }
3716 #endif
3717 }
3718 }
3719
3720 /*
3721 * It's possible on a UMA machine to get through all zones that are
3722 * fragmented. If avoiding fragmentation, reset and try again.
3723 */
3724 if (no_fallback) {
3725 alloc_flags &= ~ALLOC_NOFRAGMENT;
3726 goto retry;
3727 }
3728
3729 return NULL;
3730 }
3731
3732 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3733 {
3734 unsigned int filter = SHOW_MEM_FILTER_NODES;
3735
3736 /*
3737 * This documents exceptions given to allocations in certain
3738 * contexts that are allowed to allocate outside current's set
3739 * of allowed nodes.
3740 */
3741 if (!(gfp_mask & __GFP_NOMEMALLOC))
3742 if (tsk_is_oom_victim(current) ||
3743 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3744 filter &= ~SHOW_MEM_FILTER_NODES;
3745 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3746 filter &= ~SHOW_MEM_FILTER_NODES;
3747
3748 show_mem(filter, nodemask);
3749 }
3750
3751 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3752 {
3753 struct va_format vaf;
3754 va_list args;
3755 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3756
3757 if ((gfp_mask & __GFP_NOWARN) ||
3758 !__ratelimit(&nopage_rs) ||
3759 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3760 return;
3761
3762 va_start(args, fmt);
3763 vaf.fmt = fmt;
3764 vaf.va = &args;
3765 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3766 current->comm, &vaf, gfp_mask, &gfp_mask,
3767 nodemask_pr_args(nodemask));
3768 va_end(args);
3769
3770 cpuset_print_current_mems_allowed();
3771 pr_cont("\n");
3772 dump_stack();
3773 warn_alloc_show_mem(gfp_mask, nodemask);
3774 }
3775
3776 static inline struct page *
3777 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3778 unsigned int alloc_flags,
3779 const struct alloc_context *ac)
3780 {
3781 struct page *page;
3782
3783 page = get_page_from_freelist(gfp_mask, order,
3784 alloc_flags|ALLOC_CPUSET, ac);
3785 /*
3786 * fallback to ignore cpuset restriction if our nodes
3787 * are depleted
3788 */
3789 if (!page)
3790 page = get_page_from_freelist(gfp_mask, order,
3791 alloc_flags, ac);
3792
3793 return page;
3794 }
3795
3796 static inline struct page *
3797 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3798 const struct alloc_context *ac, unsigned long *did_some_progress)
3799 {
3800 struct oom_control oc = {
3801 .zonelist = ac->zonelist,
3802 .nodemask = ac->nodemask,
3803 .memcg = NULL,
3804 .gfp_mask = gfp_mask,
3805 .order = order,
3806 };
3807 struct page *page;
3808
3809 *did_some_progress = 0;
3810
3811 /*
3812 * Acquire the oom lock. If that fails, somebody else is
3813 * making progress for us.
3814 */
3815 if (!mutex_trylock(&oom_lock)) {
3816 *did_some_progress = 1;
3817 schedule_timeout_uninterruptible(1);
3818 return NULL;
3819 }
3820
3821 /*
3822 * Go through the zonelist yet one more time, keep very high watermark
3823 * here, this is only to catch a parallel oom killing, we must fail if
3824 * we're still under heavy pressure. But make sure that this reclaim
3825 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3826 * allocation which will never fail due to oom_lock already held.
3827 */
3828 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3829 ~__GFP_DIRECT_RECLAIM, order,
3830 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3831 if (page)
3832 goto out;
3833
3834 /* Coredumps can quickly deplete all memory reserves */
3835 if (current->flags & PF_DUMPCORE)
3836 goto out;
3837 /* The OOM killer will not help higher order allocs */
3838 if (order > PAGE_ALLOC_COSTLY_ORDER)
3839 goto out;
3840 /*
3841 * We have already exhausted all our reclaim opportunities without any
3842 * success so it is time to admit defeat. We will skip the OOM killer
3843 * because it is very likely that the caller has a more reasonable
3844 * fallback than shooting a random task.
3845 */
3846 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3847 goto out;
3848 /* The OOM killer does not needlessly kill tasks for lowmem */
3849 if (ac->high_zoneidx < ZONE_NORMAL)
3850 goto out;
3851 if (pm_suspended_storage())
3852 goto out;
3853 /*
3854 * XXX: GFP_NOFS allocations should rather fail than rely on
3855 * other request to make a forward progress.
3856 * We are in an unfortunate situation where out_of_memory cannot
3857 * do much for this context but let's try it to at least get
3858 * access to memory reserved if the current task is killed (see
3859 * out_of_memory). Once filesystems are ready to handle allocation
3860 * failures more gracefully we should just bail out here.
3861 */
3862
3863 /* The OOM killer may not free memory on a specific node */
3864 if (gfp_mask & __GFP_THISNODE)
3865 goto out;
3866
3867 /* Exhausted what can be done so it's blame time */
3868 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3869 *did_some_progress = 1;
3870
3871 /*
3872 * Help non-failing allocations by giving them access to memory
3873 * reserves
3874 */
3875 if (gfp_mask & __GFP_NOFAIL)
3876 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3877 ALLOC_NO_WATERMARKS, ac);
3878 }
3879 out:
3880 mutex_unlock(&oom_lock);
3881 return page;
3882 }
3883
3884 /*
3885 * Maximum number of compaction retries wit a progress before OOM
3886 * killer is consider as the only way to move forward.
3887 */
3888 #define MAX_COMPACT_RETRIES 16
3889
3890 #ifdef CONFIG_COMPACTION
3891 /* Try memory compaction for high-order allocations before reclaim */
3892 static struct page *
3893 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3894 unsigned int alloc_flags, const struct alloc_context *ac,
3895 enum compact_priority prio, enum compact_result *compact_result)
3896 {
3897 struct page *page = NULL;
3898 unsigned long pflags;
3899 unsigned int noreclaim_flag;
3900
3901 if (!order)
3902 return NULL;
3903
3904 psi_memstall_enter(&pflags);
3905 noreclaim_flag = memalloc_noreclaim_save();
3906
3907 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3908 prio, &page);
3909
3910 memalloc_noreclaim_restore(noreclaim_flag);
3911 psi_memstall_leave(&pflags);
3912
3913 /*
3914 * At least in one zone compaction wasn't deferred or skipped, so let's
3915 * count a compaction stall
3916 */
3917 count_vm_event(COMPACTSTALL);
3918
3919 /* Prep a captured page if available */
3920 if (page)
3921 prep_new_page(page, order, gfp_mask, alloc_flags);
3922
3923 /* Try get a page from the freelist if available */
3924 if (!page)
3925 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3926
3927 if (page) {
3928 struct zone *zone = page_zone(page);
3929
3930 zone->compact_blockskip_flush = false;
3931 compaction_defer_reset(zone, order, true);
3932 count_vm_event(COMPACTSUCCESS);
3933 return page;
3934 }
3935
3936 /*
3937 * It's bad if compaction run occurs and fails. The most likely reason
3938 * is that pages exist, but not enough to satisfy watermarks.
3939 */
3940 count_vm_event(COMPACTFAIL);
3941
3942 cond_resched();
3943
3944 return NULL;
3945 }
3946
3947 static inline bool
3948 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3949 enum compact_result compact_result,
3950 enum compact_priority *compact_priority,
3951 int *compaction_retries)
3952 {
3953 int max_retries = MAX_COMPACT_RETRIES;
3954 int min_priority;
3955 bool ret = false;
3956 int retries = *compaction_retries;
3957 enum compact_priority priority = *compact_priority;
3958
3959 if (!order)
3960 return false;
3961
3962 if (compaction_made_progress(compact_result))
3963 (*compaction_retries)++;
3964
3965 /*
3966 * compaction considers all the zone as desperately out of memory
3967 * so it doesn't really make much sense to retry except when the
3968 * failure could be caused by insufficient priority
3969 */
3970 if (compaction_failed(compact_result))
3971 goto check_priority;
3972
3973 /*
3974 * compaction was skipped because there are not enough order-0 pages
3975 * to work with, so we retry only if it looks like reclaim can help.
3976 */
3977 if (compaction_needs_reclaim(compact_result)) {
3978 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3979 goto out;
3980 }
3981
3982 /*
3983 * make sure the compaction wasn't deferred or didn't bail out early
3984 * due to locks contention before we declare that we should give up.
3985 * But the next retry should use a higher priority if allowed, so
3986 * we don't just keep bailing out endlessly.
3987 */
3988 if (compaction_withdrawn(compact_result)) {
3989 goto check_priority;
3990 }
3991
3992 /*
3993 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3994 * costly ones because they are de facto nofail and invoke OOM
3995 * killer to move on while costly can fail and users are ready
3996 * to cope with that. 1/4 retries is rather arbitrary but we
3997 * would need much more detailed feedback from compaction to
3998 * make a better decision.
3999 */
4000 if (order > PAGE_ALLOC_COSTLY_ORDER)
4001 max_retries /= 4;
4002 if (*compaction_retries <= max_retries) {
4003 ret = true;
4004 goto out;
4005 }
4006
4007 /*
4008 * Make sure there are attempts at the highest priority if we exhausted
4009 * all retries or failed at the lower priorities.
4010 */
4011 check_priority:
4012 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4013 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4014
4015 if (*compact_priority > min_priority) {
4016 (*compact_priority)--;
4017 *compaction_retries = 0;
4018 ret = true;
4019 }
4020 out:
4021 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4022 return ret;
4023 }
4024 #else
4025 static inline struct page *
4026 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4027 unsigned int alloc_flags, const struct alloc_context *ac,
4028 enum compact_priority prio, enum compact_result *compact_result)
4029 {
4030 *compact_result = COMPACT_SKIPPED;
4031 return NULL;
4032 }
4033
4034 static inline bool
4035 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4036 enum compact_result compact_result,
4037 enum compact_priority *compact_priority,
4038 int *compaction_retries)
4039 {
4040 struct zone *zone;
4041 struct zoneref *z;
4042
4043 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4044 return false;
4045
4046 /*
4047 * There are setups with compaction disabled which would prefer to loop
4048 * inside the allocator rather than hit the oom killer prematurely.
4049 * Let's give them a good hope and keep retrying while the order-0
4050 * watermarks are OK.
4051 */
4052 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4053 ac->nodemask) {
4054 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4055 ac_classzone_idx(ac), alloc_flags))
4056 return true;
4057 }
4058 return false;
4059 }
4060 #endif /* CONFIG_COMPACTION */
4061
4062 #ifdef CONFIG_LOCKDEP
4063 static struct lockdep_map __fs_reclaim_map =
4064 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4065
4066 static bool __need_fs_reclaim(gfp_t gfp_mask)
4067 {
4068 gfp_mask = current_gfp_context(gfp_mask);
4069
4070 /* no reclaim without waiting on it */
4071 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4072 return false;
4073
4074 /* this guy won't enter reclaim */
4075 if (current->flags & PF_MEMALLOC)
4076 return false;
4077
4078 /* We're only interested __GFP_FS allocations for now */
4079 if (!(gfp_mask & __GFP_FS))
4080 return false;
4081
4082 if (gfp_mask & __GFP_NOLOCKDEP)
4083 return false;
4084
4085 return true;
4086 }
4087
4088 void __fs_reclaim_acquire(void)
4089 {
4090 lock_map_acquire(&__fs_reclaim_map);
4091 }
4092
4093 void __fs_reclaim_release(void)
4094 {
4095 lock_map_release(&__fs_reclaim_map);
4096 }
4097
4098 void fs_reclaim_acquire(gfp_t gfp_mask)
4099 {
4100 if (__need_fs_reclaim(gfp_mask))
4101 __fs_reclaim_acquire();
4102 }
4103 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4104
4105 void fs_reclaim_release(gfp_t gfp_mask)
4106 {
4107 if (__need_fs_reclaim(gfp_mask))
4108 __fs_reclaim_release();
4109 }
4110 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4111 #endif
4112
4113 /* Perform direct synchronous page reclaim */
4114 static int
4115 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4116 const struct alloc_context *ac)
4117 {
4118 int progress;
4119 unsigned int noreclaim_flag;
4120 unsigned long pflags;
4121
4122 cond_resched();
4123
4124 /* We now go into synchronous reclaim */
4125 cpuset_memory_pressure_bump();
4126 psi_memstall_enter(&pflags);
4127 fs_reclaim_acquire(gfp_mask);
4128 noreclaim_flag = memalloc_noreclaim_save();
4129
4130 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4131 ac->nodemask);
4132
4133 memalloc_noreclaim_restore(noreclaim_flag);
4134 fs_reclaim_release(gfp_mask);
4135 psi_memstall_leave(&pflags);
4136
4137 cond_resched();
4138
4139 return progress;
4140 }
4141
4142 /* The really slow allocator path where we enter direct reclaim */
4143 static inline struct page *
4144 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4145 unsigned int alloc_flags, const struct alloc_context *ac,
4146 unsigned long *did_some_progress)
4147 {
4148 struct page *page = NULL;
4149 bool drained = false;
4150
4151 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4152 if (unlikely(!(*did_some_progress)))
4153 return NULL;
4154
4155 retry:
4156 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4157
4158 /*
4159 * If an allocation failed after direct reclaim, it could be because
4160 * pages are pinned on the per-cpu lists or in high alloc reserves.
4161 * Shrink them them and try again
4162 */
4163 if (!page && !drained) {
4164 unreserve_highatomic_pageblock(ac, false);
4165 drain_all_pages(NULL);
4166 drained = true;
4167 goto retry;
4168 }
4169
4170 return page;
4171 }
4172
4173 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4174 const struct alloc_context *ac)
4175 {
4176 struct zoneref *z;
4177 struct zone *zone;
4178 pg_data_t *last_pgdat = NULL;
4179 enum zone_type high_zoneidx = ac->high_zoneidx;
4180
4181 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4182 ac->nodemask) {
4183 if (last_pgdat != zone->zone_pgdat)
4184 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4185 last_pgdat = zone->zone_pgdat;
4186 }
4187 }
4188
4189 static inline unsigned int
4190 gfp_to_alloc_flags(gfp_t gfp_mask)
4191 {
4192 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4193
4194 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4195 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4196
4197 /*
4198 * The caller may dip into page reserves a bit more if the caller
4199 * cannot run direct reclaim, or if the caller has realtime scheduling
4200 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4201 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4202 */
4203 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4204
4205 if (gfp_mask & __GFP_ATOMIC) {
4206 /*
4207 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4208 * if it can't schedule.
4209 */
4210 if (!(gfp_mask & __GFP_NOMEMALLOC))
4211 alloc_flags |= ALLOC_HARDER;
4212 /*
4213 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4214 * comment for __cpuset_node_allowed().
4215 */
4216 alloc_flags &= ~ALLOC_CPUSET;
4217 } else if (unlikely(rt_task(current)) && !in_interrupt())
4218 alloc_flags |= ALLOC_HARDER;
4219
4220 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4221 alloc_flags |= ALLOC_KSWAPD;
4222
4223 #ifdef CONFIG_CMA
4224 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4225 alloc_flags |= ALLOC_CMA;
4226 #endif
4227 return alloc_flags;
4228 }
4229
4230 static bool oom_reserves_allowed(struct task_struct *tsk)
4231 {
4232 if (!tsk_is_oom_victim(tsk))
4233 return false;
4234
4235 /*
4236 * !MMU doesn't have oom reaper so give access to memory reserves
4237 * only to the thread with TIF_MEMDIE set
4238 */
4239 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4240 return false;
4241
4242 return true;
4243 }
4244
4245 /*
4246 * Distinguish requests which really need access to full memory
4247 * reserves from oom victims which can live with a portion of it
4248 */
4249 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4250 {
4251 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4252 return 0;
4253 if (gfp_mask & __GFP_MEMALLOC)
4254 return ALLOC_NO_WATERMARKS;
4255 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4256 return ALLOC_NO_WATERMARKS;
4257 if (!in_interrupt()) {
4258 if (current->flags & PF_MEMALLOC)
4259 return ALLOC_NO_WATERMARKS;
4260 else if (oom_reserves_allowed(current))
4261 return ALLOC_OOM;
4262 }
4263
4264 return 0;
4265 }
4266
4267 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4268 {
4269 return !!__gfp_pfmemalloc_flags(gfp_mask);
4270 }
4271
4272 /*
4273 * Checks whether it makes sense to retry the reclaim to make a forward progress
4274 * for the given allocation request.
4275 *
4276 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4277 * without success, or when we couldn't even meet the watermark if we
4278 * reclaimed all remaining pages on the LRU lists.
4279 *
4280 * Returns true if a retry is viable or false to enter the oom path.
4281 */
4282 static inline bool
4283 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4284 struct alloc_context *ac, int alloc_flags,
4285 bool did_some_progress, int *no_progress_loops)
4286 {
4287 struct zone *zone;
4288 struct zoneref *z;
4289 bool ret = false;
4290
4291 /*
4292 * Costly allocations might have made a progress but this doesn't mean
4293 * their order will become available due to high fragmentation so
4294 * always increment the no progress counter for them
4295 */
4296 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4297 *no_progress_loops = 0;
4298 else
4299 (*no_progress_loops)++;
4300
4301 /*
4302 * Make sure we converge to OOM if we cannot make any progress
4303 * several times in the row.
4304 */
4305 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4306 /* Before OOM, exhaust highatomic_reserve */
4307 return unreserve_highatomic_pageblock(ac, true);
4308 }
4309
4310 /*
4311 * Keep reclaiming pages while there is a chance this will lead
4312 * somewhere. If none of the target zones can satisfy our allocation
4313 * request even if all reclaimable pages are considered then we are
4314 * screwed and have to go OOM.
4315 */
4316 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4317 ac->nodemask) {
4318 unsigned long available;
4319 unsigned long reclaimable;
4320 unsigned long min_wmark = min_wmark_pages(zone);
4321 bool wmark;
4322
4323 available = reclaimable = zone_reclaimable_pages(zone);
4324 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4325
4326 /*
4327 * Would the allocation succeed if we reclaimed all
4328 * reclaimable pages?
4329 */
4330 wmark = __zone_watermark_ok(zone, order, min_wmark,
4331 ac_classzone_idx(ac), alloc_flags, available);
4332 trace_reclaim_retry_zone(z, order, reclaimable,
4333 available, min_wmark, *no_progress_loops, wmark);
4334 if (wmark) {
4335 /*
4336 * If we didn't make any progress and have a lot of
4337 * dirty + writeback pages then we should wait for
4338 * an IO to complete to slow down the reclaim and
4339 * prevent from pre mature OOM
4340 */
4341 if (!did_some_progress) {
4342 unsigned long write_pending;
4343
4344 write_pending = zone_page_state_snapshot(zone,
4345 NR_ZONE_WRITE_PENDING);
4346
4347 if (2 * write_pending > reclaimable) {
4348 congestion_wait(BLK_RW_ASYNC, HZ/10);
4349 return true;
4350 }
4351 }
4352
4353 ret = true;
4354 goto out;
4355 }
4356 }
4357
4358 out:
4359 /*
4360 * Memory allocation/reclaim might be called from a WQ context and the
4361 * current implementation of the WQ concurrency control doesn't
4362 * recognize that a particular WQ is congested if the worker thread is
4363 * looping without ever sleeping. Therefore we have to do a short sleep
4364 * here rather than calling cond_resched().
4365 */
4366 if (current->flags & PF_WQ_WORKER)
4367 schedule_timeout_uninterruptible(1);
4368 else
4369 cond_resched();
4370 return ret;
4371 }
4372
4373 static inline bool
4374 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4375 {
4376 /*
4377 * It's possible that cpuset's mems_allowed and the nodemask from
4378 * mempolicy don't intersect. This should be normally dealt with by
4379 * policy_nodemask(), but it's possible to race with cpuset update in
4380 * such a way the check therein was true, and then it became false
4381 * before we got our cpuset_mems_cookie here.
4382 * This assumes that for all allocations, ac->nodemask can come only
4383 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4384 * when it does not intersect with the cpuset restrictions) or the
4385 * caller can deal with a violated nodemask.
4386 */
4387 if (cpusets_enabled() && ac->nodemask &&
4388 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4389 ac->nodemask = NULL;
4390 return true;
4391 }
4392
4393 /*
4394 * When updating a task's mems_allowed or mempolicy nodemask, it is
4395 * possible to race with parallel threads in such a way that our
4396 * allocation can fail while the mask is being updated. If we are about
4397 * to fail, check if the cpuset changed during allocation and if so,
4398 * retry.
4399 */
4400 if (read_mems_allowed_retry(cpuset_mems_cookie))
4401 return true;
4402
4403 return false;
4404 }
4405
4406 static inline struct page *
4407 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4408 struct alloc_context *ac)
4409 {
4410 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4411 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4412 struct page *page = NULL;
4413 unsigned int alloc_flags;
4414 unsigned long did_some_progress;
4415 enum compact_priority compact_priority;
4416 enum compact_result compact_result;
4417 int compaction_retries;
4418 int no_progress_loops;
4419 unsigned int cpuset_mems_cookie;
4420 int reserve_flags;
4421
4422 /*
4423 * We also sanity check to catch abuse of atomic reserves being used by
4424 * callers that are not in atomic context.
4425 */
4426 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4427 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4428 gfp_mask &= ~__GFP_ATOMIC;
4429
4430 retry_cpuset:
4431 compaction_retries = 0;
4432 no_progress_loops = 0;
4433 compact_priority = DEF_COMPACT_PRIORITY;
4434 cpuset_mems_cookie = read_mems_allowed_begin();
4435
4436 /*
4437 * The fast path uses conservative alloc_flags to succeed only until
4438 * kswapd needs to be woken up, and to avoid the cost of setting up
4439 * alloc_flags precisely. So we do that now.
4440 */
4441 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4442
4443 /*
4444 * We need to recalculate the starting point for the zonelist iterator
4445 * because we might have used different nodemask in the fast path, or
4446 * there was a cpuset modification and we are retrying - otherwise we
4447 * could end up iterating over non-eligible zones endlessly.
4448 */
4449 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4450 ac->high_zoneidx, ac->nodemask);
4451 if (!ac->preferred_zoneref->zone)
4452 goto nopage;
4453
4454 if (alloc_flags & ALLOC_KSWAPD)
4455 wake_all_kswapds(order, gfp_mask, ac);
4456
4457 /*
4458 * The adjusted alloc_flags might result in immediate success, so try
4459 * that first
4460 */
4461 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4462 if (page)
4463 goto got_pg;
4464
4465 /*
4466 * For costly allocations, try direct compaction first, as it's likely
4467 * that we have enough base pages and don't need to reclaim. For non-
4468 * movable high-order allocations, do that as well, as compaction will
4469 * try prevent permanent fragmentation by migrating from blocks of the
4470 * same migratetype.
4471 * Don't try this for allocations that are allowed to ignore
4472 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4473 */
4474 if (can_direct_reclaim &&
4475 (costly_order ||
4476 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4477 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4478 page = __alloc_pages_direct_compact(gfp_mask, order,
4479 alloc_flags, ac,
4480 INIT_COMPACT_PRIORITY,
4481 &compact_result);
4482 if (page)
4483 goto got_pg;
4484
4485 if (order >= pageblock_order && (gfp_mask & __GFP_IO) &&
4486 !(gfp_mask & __GFP_RETRY_MAYFAIL)) {
4487 /*
4488 * If allocating entire pageblock(s) and compaction
4489 * failed because all zones are below low watermarks
4490 * or is prohibited because it recently failed at this
4491 * order, fail immediately unless the allocator has
4492 * requested compaction and reclaim retry.
4493 *
4494 * Reclaim is
4495 * - potentially very expensive because zones are far
4496 * below their low watermarks or this is part of very
4497 * bursty high order allocations,
4498 * - not guaranteed to help because isolate_freepages()
4499 * may not iterate over freed pages as part of its
4500 * linear scan, and
4501 * - unlikely to make entire pageblocks free on its
4502 * own.
4503 */
4504 if (compact_result == COMPACT_SKIPPED ||
4505 compact_result == COMPACT_DEFERRED)
4506 goto nopage;
4507 }
4508
4509 /*
4510 * Checks for costly allocations with __GFP_NORETRY, which
4511 * includes THP page fault allocations
4512 */
4513 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4514 /*
4515 * If compaction is deferred for high-order allocations,
4516 * it is because sync compaction recently failed. If
4517 * this is the case and the caller requested a THP
4518 * allocation, we do not want to heavily disrupt the
4519 * system, so we fail the allocation instead of entering
4520 * direct reclaim.
4521 */
4522 if (compact_result == COMPACT_DEFERRED)
4523 goto nopage;
4524
4525 /*
4526 * Looks like reclaim/compaction is worth trying, but
4527 * sync compaction could be very expensive, so keep
4528 * using async compaction.
4529 */
4530 compact_priority = INIT_COMPACT_PRIORITY;
4531 }
4532 }
4533
4534 retry:
4535 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4536 if (alloc_flags & ALLOC_KSWAPD)
4537 wake_all_kswapds(order, gfp_mask, ac);
4538
4539 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4540 if (reserve_flags)
4541 alloc_flags = reserve_flags;
4542
4543 /*
4544 * Reset the nodemask and zonelist iterators if memory policies can be
4545 * ignored. These allocations are high priority and system rather than
4546 * user oriented.
4547 */
4548 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4549 ac->nodemask = NULL;
4550 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4551 ac->high_zoneidx, ac->nodemask);
4552 }
4553
4554 /* Attempt with potentially adjusted zonelist and alloc_flags */
4555 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4556 if (page)
4557 goto got_pg;
4558
4559 /* Caller is not willing to reclaim, we can't balance anything */
4560 if (!can_direct_reclaim)
4561 goto nopage;
4562
4563 /* Avoid recursion of direct reclaim */
4564 if (current->flags & PF_MEMALLOC)
4565 goto nopage;
4566
4567 /* Try direct reclaim and then allocating */
4568 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4569 &did_some_progress);
4570 if (page)
4571 goto got_pg;
4572
4573 /* Try direct compaction and then allocating */
4574 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4575 compact_priority, &compact_result);
4576 if (page)
4577 goto got_pg;
4578
4579 /* Do not loop if specifically requested */
4580 if (gfp_mask & __GFP_NORETRY)
4581 goto nopage;
4582
4583 /*
4584 * Do not retry costly high order allocations unless they are
4585 * __GFP_RETRY_MAYFAIL
4586 */
4587 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4588 goto nopage;
4589
4590 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4591 did_some_progress > 0, &no_progress_loops))
4592 goto retry;
4593
4594 /*
4595 * It doesn't make any sense to retry for the compaction if the order-0
4596 * reclaim is not able to make any progress because the current
4597 * implementation of the compaction depends on the sufficient amount
4598 * of free memory (see __compaction_suitable)
4599 */
4600 if (did_some_progress > 0 &&
4601 should_compact_retry(ac, order, alloc_flags,
4602 compact_result, &compact_priority,
4603 &compaction_retries))
4604 goto retry;
4605
4606
4607 /* Deal with possible cpuset update races before we start OOM killing */
4608 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4609 goto retry_cpuset;
4610
4611 /* Reclaim has failed us, start killing things */
4612 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4613 if (page)
4614 goto got_pg;
4615
4616 /* Avoid allocations with no watermarks from looping endlessly */
4617 if (tsk_is_oom_victim(current) &&
4618 (alloc_flags == ALLOC_OOM ||
4619 (gfp_mask & __GFP_NOMEMALLOC)))
4620 goto nopage;
4621
4622 /* Retry as long as the OOM killer is making progress */
4623 if (did_some_progress) {
4624 no_progress_loops = 0;
4625 goto retry;
4626 }
4627
4628 nopage:
4629 /* Deal with possible cpuset update races before we fail */
4630 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4631 goto retry_cpuset;
4632
4633 /*
4634 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4635 * we always retry
4636 */
4637 if (gfp_mask & __GFP_NOFAIL) {
4638 /*
4639 * All existing users of the __GFP_NOFAIL are blockable, so warn
4640 * of any new users that actually require GFP_NOWAIT
4641 */
4642 if (WARN_ON_ONCE(!can_direct_reclaim))
4643 goto fail;
4644
4645 /*
4646 * PF_MEMALLOC request from this context is rather bizarre
4647 * because we cannot reclaim anything and only can loop waiting
4648 * for somebody to do a work for us
4649 */
4650 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4651
4652 /*
4653 * non failing costly orders are a hard requirement which we
4654 * are not prepared for much so let's warn about these users
4655 * so that we can identify them and convert them to something
4656 * else.
4657 */
4658 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4659
4660 /*
4661 * Help non-failing allocations by giving them access to memory
4662 * reserves but do not use ALLOC_NO_WATERMARKS because this
4663 * could deplete whole memory reserves which would just make
4664 * the situation worse
4665 */
4666 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4667 if (page)
4668 goto got_pg;
4669
4670 cond_resched();
4671 goto retry;
4672 }
4673 fail:
4674 warn_alloc(gfp_mask, ac->nodemask,
4675 "page allocation failure: order:%u", order);
4676 got_pg:
4677 return page;
4678 }
4679
4680 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4681 int preferred_nid, nodemask_t *nodemask,
4682 struct alloc_context *ac, gfp_t *alloc_mask,
4683 unsigned int *alloc_flags)
4684 {
4685 ac->high_zoneidx = gfp_zone(gfp_mask);
4686 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4687 ac->nodemask = nodemask;
4688 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4689
4690 if (cpusets_enabled()) {
4691 *alloc_mask |= __GFP_HARDWALL;
4692 if (!ac->nodemask)
4693 ac->nodemask = &cpuset_current_mems_allowed;
4694 else
4695 *alloc_flags |= ALLOC_CPUSET;
4696 }
4697
4698 fs_reclaim_acquire(gfp_mask);
4699 fs_reclaim_release(gfp_mask);
4700
4701 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4702
4703 if (should_fail_alloc_page(gfp_mask, order))
4704 return false;
4705
4706 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4707 *alloc_flags |= ALLOC_CMA;
4708
4709 return true;
4710 }
4711
4712 /* Determine whether to spread dirty pages and what the first usable zone */
4713 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4714 {
4715 /* Dirty zone balancing only done in the fast path */
4716 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4717
4718 /*
4719 * The preferred zone is used for statistics but crucially it is
4720 * also used as the starting point for the zonelist iterator. It
4721 * may get reset for allocations that ignore memory policies.
4722 */
4723 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4724 ac->high_zoneidx, ac->nodemask);
4725 }
4726
4727 /*
4728 * This is the 'heart' of the zoned buddy allocator.
4729 */
4730 struct page *
4731 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4732 nodemask_t *nodemask)
4733 {
4734 struct page *page;
4735 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4736 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4737 struct alloc_context ac = { };
4738
4739 /*
4740 * There are several places where we assume that the order value is sane
4741 * so bail out early if the request is out of bound.
4742 */
4743 if (unlikely(order >= MAX_ORDER)) {
4744 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4745 return NULL;
4746 }
4747
4748 gfp_mask &= gfp_allowed_mask;
4749 alloc_mask = gfp_mask;
4750 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4751 return NULL;
4752
4753 finalise_ac(gfp_mask, &ac);
4754
4755 /*
4756 * Forbid the first pass from falling back to types that fragment
4757 * memory until all local zones are considered.
4758 */
4759 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4760
4761 /* First allocation attempt */
4762 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4763 if (likely(page))
4764 goto out;
4765
4766 /*
4767 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4768 * resp. GFP_NOIO which has to be inherited for all allocation requests
4769 * from a particular context which has been marked by
4770 * memalloc_no{fs,io}_{save,restore}.
4771 */
4772 alloc_mask = current_gfp_context(gfp_mask);
4773 ac.spread_dirty_pages = false;
4774
4775 /*
4776 * Restore the original nodemask if it was potentially replaced with
4777 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4778 */
4779 if (unlikely(ac.nodemask != nodemask))
4780 ac.nodemask = nodemask;
4781
4782 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4783
4784 out:
4785 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4786 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4787 __free_pages(page, order);
4788 page = NULL;
4789 }
4790
4791 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4792
4793 return page;
4794 }
4795 EXPORT_SYMBOL(__alloc_pages_nodemask);
4796
4797 /*
4798 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4799 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4800 * you need to access high mem.
4801 */
4802 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4803 {
4804 struct page *page;
4805
4806 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4807 if (!page)
4808 return 0;
4809 return (unsigned long) page_address(page);
4810 }
4811 EXPORT_SYMBOL(__get_free_pages);
4812
4813 unsigned long get_zeroed_page(gfp_t gfp_mask)
4814 {
4815 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4816 }
4817 EXPORT_SYMBOL(get_zeroed_page);
4818
4819 static inline void free_the_page(struct page *page, unsigned int order)
4820 {
4821 if (order == 0) /* Via pcp? */
4822 free_unref_page(page);
4823 else
4824 __free_pages_ok(page, order);
4825 }
4826
4827 void __free_pages(struct page *page, unsigned int order)
4828 {
4829 if (put_page_testzero(page))
4830 free_the_page(page, order);
4831 }
4832 EXPORT_SYMBOL(__free_pages);
4833
4834 void free_pages(unsigned long addr, unsigned int order)
4835 {
4836 if (addr != 0) {
4837 VM_BUG_ON(!virt_addr_valid((void *)addr));
4838 __free_pages(virt_to_page((void *)addr), order);
4839 }
4840 }
4841
4842 EXPORT_SYMBOL(free_pages);
4843
4844 /*
4845 * Page Fragment:
4846 * An arbitrary-length arbitrary-offset area of memory which resides
4847 * within a 0 or higher order page. Multiple fragments within that page
4848 * are individually refcounted, in the page's reference counter.
4849 *
4850 * The page_frag functions below provide a simple allocation framework for
4851 * page fragments. This is used by the network stack and network device
4852 * drivers to provide a backing region of memory for use as either an
4853 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4854 */
4855 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4856 gfp_t gfp_mask)
4857 {
4858 struct page *page = NULL;
4859 gfp_t gfp = gfp_mask;
4860
4861 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4862 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4863 __GFP_NOMEMALLOC;
4864 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4865 PAGE_FRAG_CACHE_MAX_ORDER);
4866 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4867 #endif
4868 if (unlikely(!page))
4869 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4870
4871 nc->va = page ? page_address(page) : NULL;
4872
4873 return page;
4874 }
4875
4876 void __page_frag_cache_drain(struct page *page, unsigned int count)
4877 {
4878 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4879
4880 if (page_ref_sub_and_test(page, count))
4881 free_the_page(page, compound_order(page));
4882 }
4883 EXPORT_SYMBOL(__page_frag_cache_drain);
4884
4885 void *page_frag_alloc(struct page_frag_cache *nc,
4886 unsigned int fragsz, gfp_t gfp_mask)
4887 {
4888 unsigned int size = PAGE_SIZE;
4889 struct page *page;
4890 int offset;
4891
4892 if (unlikely(!nc->va)) {
4893 refill:
4894 page = __page_frag_cache_refill(nc, gfp_mask);
4895 if (!page)
4896 return NULL;
4897
4898 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4899 /* if size can vary use size else just use PAGE_SIZE */
4900 size = nc->size;
4901 #endif
4902 /* Even if we own the page, we do not use atomic_set().
4903 * This would break get_page_unless_zero() users.
4904 */
4905 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4906
4907 /* reset page count bias and offset to start of new frag */
4908 nc->pfmemalloc = page_is_pfmemalloc(page);
4909 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4910 nc->offset = size;
4911 }
4912
4913 offset = nc->offset - fragsz;
4914 if (unlikely(offset < 0)) {
4915 page = virt_to_page(nc->va);
4916
4917 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4918 goto refill;
4919
4920 if (unlikely(nc->pfmemalloc)) {
4921 free_the_page(page, compound_order(page));
4922 goto refill;
4923 }
4924
4925 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4926 /* if size can vary use size else just use PAGE_SIZE */
4927 size = nc->size;
4928 #endif
4929 /* OK, page count is 0, we can safely set it */
4930 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4931
4932 /* reset page count bias and offset to start of new frag */
4933 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4934 offset = size - fragsz;
4935 }
4936
4937 nc->pagecnt_bias--;
4938 nc->offset = offset;
4939
4940 return nc->va + offset;
4941 }
4942 EXPORT_SYMBOL(page_frag_alloc);
4943
4944 /*
4945 * Frees a page fragment allocated out of either a compound or order 0 page.
4946 */
4947 void page_frag_free(void *addr)
4948 {
4949 struct page *page = virt_to_head_page(addr);
4950
4951 if (unlikely(put_page_testzero(page)))
4952 free_the_page(page, compound_order(page));
4953 }
4954 EXPORT_SYMBOL(page_frag_free);
4955
4956 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4957 size_t size)
4958 {
4959 if (addr) {
4960 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4961 unsigned long used = addr + PAGE_ALIGN(size);
4962
4963 split_page(virt_to_page((void *)addr), order);
4964 while (used < alloc_end) {
4965 free_page(used);
4966 used += PAGE_SIZE;
4967 }
4968 }
4969 return (void *)addr;
4970 }
4971
4972 /**
4973 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4974 * @size: the number of bytes to allocate
4975 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4976 *
4977 * This function is similar to alloc_pages(), except that it allocates the
4978 * minimum number of pages to satisfy the request. alloc_pages() can only
4979 * allocate memory in power-of-two pages.
4980 *
4981 * This function is also limited by MAX_ORDER.
4982 *
4983 * Memory allocated by this function must be released by free_pages_exact().
4984 *
4985 * Return: pointer to the allocated area or %NULL in case of error.
4986 */
4987 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4988 {
4989 unsigned int order = get_order(size);
4990 unsigned long addr;
4991
4992 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4993 gfp_mask &= ~__GFP_COMP;
4994
4995 addr = __get_free_pages(gfp_mask, order);
4996 return make_alloc_exact(addr, order, size);
4997 }
4998 EXPORT_SYMBOL(alloc_pages_exact);
4999
5000 /**
5001 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5002 * pages on a node.
5003 * @nid: the preferred node ID where memory should be allocated
5004 * @size: the number of bytes to allocate
5005 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5006 *
5007 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5008 * back.
5009 *
5010 * Return: pointer to the allocated area or %NULL in case of error.
5011 */
5012 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5013 {
5014 unsigned int order = get_order(size);
5015 struct page *p;
5016
5017 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5018 gfp_mask &= ~__GFP_COMP;
5019
5020 p = alloc_pages_node(nid, gfp_mask, order);
5021 if (!p)
5022 return NULL;
5023 return make_alloc_exact((unsigned long)page_address(p), order, size);
5024 }
5025
5026 /**
5027 * free_pages_exact - release memory allocated via alloc_pages_exact()
5028 * @virt: the value returned by alloc_pages_exact.
5029 * @size: size of allocation, same value as passed to alloc_pages_exact().
5030 *
5031 * Release the memory allocated by a previous call to alloc_pages_exact.
5032 */
5033 void free_pages_exact(void *virt, size_t size)
5034 {
5035 unsigned long addr = (unsigned long)virt;
5036 unsigned long end = addr + PAGE_ALIGN(size);
5037
5038 while (addr < end) {
5039 free_page(addr);
5040 addr += PAGE_SIZE;
5041 }
5042 }
5043 EXPORT_SYMBOL(free_pages_exact);
5044
5045 /**
5046 * nr_free_zone_pages - count number of pages beyond high watermark
5047 * @offset: The zone index of the highest zone
5048 *
5049 * nr_free_zone_pages() counts the number of pages which are beyond the
5050 * high watermark within all zones at or below a given zone index. For each
5051 * zone, the number of pages is calculated as:
5052 *
5053 * nr_free_zone_pages = managed_pages - high_pages
5054 *
5055 * Return: number of pages beyond high watermark.
5056 */
5057 static unsigned long nr_free_zone_pages(int offset)
5058 {
5059 struct zoneref *z;
5060 struct zone *zone;
5061
5062 /* Just pick one node, since fallback list is circular */
5063 unsigned long sum = 0;
5064
5065 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5066
5067 for_each_zone_zonelist(zone, z, zonelist, offset) {
5068 unsigned long size = zone_managed_pages(zone);
5069 unsigned long high = high_wmark_pages(zone);
5070 if (size > high)
5071 sum += size - high;
5072 }
5073
5074 return sum;
5075 }
5076
5077 /**
5078 * nr_free_buffer_pages - count number of pages beyond high watermark
5079 *
5080 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5081 * watermark within ZONE_DMA and ZONE_NORMAL.
5082 *
5083 * Return: number of pages beyond high watermark within ZONE_DMA and
5084 * ZONE_NORMAL.
5085 */
5086 unsigned long nr_free_buffer_pages(void)
5087 {
5088 return nr_free_zone_pages(gfp_zone(GFP_USER));
5089 }
5090 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5091
5092 /**
5093 * nr_free_pagecache_pages - count number of pages beyond high watermark
5094 *
5095 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5096 * high watermark within all zones.
5097 *
5098 * Return: number of pages beyond high watermark within all zones.
5099 */
5100 unsigned long nr_free_pagecache_pages(void)
5101 {
5102 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5103 }
5104
5105 static inline void show_node(struct zone *zone)
5106 {
5107 if (IS_ENABLED(CONFIG_NUMA))
5108 printk("Node %d ", zone_to_nid(zone));
5109 }
5110
5111 long si_mem_available(void)
5112 {
5113 long available;
5114 unsigned long pagecache;
5115 unsigned long wmark_low = 0;
5116 unsigned long pages[NR_LRU_LISTS];
5117 unsigned long reclaimable;
5118 struct zone *zone;
5119 int lru;
5120
5121 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5122 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5123
5124 for_each_zone(zone)
5125 wmark_low += low_wmark_pages(zone);
5126
5127 /*
5128 * Estimate the amount of memory available for userspace allocations,
5129 * without causing swapping.
5130 */
5131 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5132
5133 /*
5134 * Not all the page cache can be freed, otherwise the system will
5135 * start swapping. Assume at least half of the page cache, or the
5136 * low watermark worth of cache, needs to stay.
5137 */
5138 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5139 pagecache -= min(pagecache / 2, wmark_low);
5140 available += pagecache;
5141
5142 /*
5143 * Part of the reclaimable slab and other kernel memory consists of
5144 * items that are in use, and cannot be freed. Cap this estimate at the
5145 * low watermark.
5146 */
5147 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5148 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5149 available += reclaimable - min(reclaimable / 2, wmark_low);
5150
5151 if (available < 0)
5152 available = 0;
5153 return available;
5154 }
5155 EXPORT_SYMBOL_GPL(si_mem_available);
5156
5157 void si_meminfo(struct sysinfo *val)
5158 {
5159 val->totalram = totalram_pages();
5160 val->sharedram = global_node_page_state(NR_SHMEM);
5161 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5162 val->bufferram = nr_blockdev_pages();
5163 val->totalhigh = totalhigh_pages();
5164 val->freehigh = nr_free_highpages();
5165 val->mem_unit = PAGE_SIZE;
5166 }
5167
5168 EXPORT_SYMBOL(si_meminfo);
5169
5170 #ifdef CONFIG_NUMA
5171 void si_meminfo_node(struct sysinfo *val, int nid)
5172 {
5173 int zone_type; /* needs to be signed */
5174 unsigned long managed_pages = 0;
5175 unsigned long managed_highpages = 0;
5176 unsigned long free_highpages = 0;
5177 pg_data_t *pgdat = NODE_DATA(nid);
5178
5179 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5180 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5181 val->totalram = managed_pages;
5182 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5183 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5184 #ifdef CONFIG_HIGHMEM
5185 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5186 struct zone *zone = &pgdat->node_zones[zone_type];
5187
5188 if (is_highmem(zone)) {
5189 managed_highpages += zone_managed_pages(zone);
5190 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5191 }
5192 }
5193 val->totalhigh = managed_highpages;
5194 val->freehigh = free_highpages;
5195 #else
5196 val->totalhigh = managed_highpages;
5197 val->freehigh = free_highpages;
5198 #endif
5199 val->mem_unit = PAGE_SIZE;
5200 }
5201 #endif
5202
5203 /*
5204 * Determine whether the node should be displayed or not, depending on whether
5205 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5206 */
5207 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5208 {
5209 if (!(flags & SHOW_MEM_FILTER_NODES))
5210 return false;
5211
5212 /*
5213 * no node mask - aka implicit memory numa policy. Do not bother with
5214 * the synchronization - read_mems_allowed_begin - because we do not
5215 * have to be precise here.
5216 */
5217 if (!nodemask)
5218 nodemask = &cpuset_current_mems_allowed;
5219
5220 return !node_isset(nid, *nodemask);
5221 }
5222
5223 #define K(x) ((x) << (PAGE_SHIFT-10))
5224
5225 static void show_migration_types(unsigned char type)
5226 {
5227 static const char types[MIGRATE_TYPES] = {
5228 [MIGRATE_UNMOVABLE] = 'U',
5229 [MIGRATE_MOVABLE] = 'M',
5230 [MIGRATE_RECLAIMABLE] = 'E',
5231 [MIGRATE_HIGHATOMIC] = 'H',
5232 #ifdef CONFIG_CMA
5233 [MIGRATE_CMA] = 'C',
5234 #endif
5235 #ifdef CONFIG_MEMORY_ISOLATION
5236 [MIGRATE_ISOLATE] = 'I',
5237 #endif
5238 };
5239 char tmp[MIGRATE_TYPES + 1];
5240 char *p = tmp;
5241 int i;
5242
5243 for (i = 0; i < MIGRATE_TYPES; i++) {
5244 if (type & (1 << i))
5245 *p++ = types[i];
5246 }
5247
5248 *p = '\0';
5249 printk(KERN_CONT "(%s) ", tmp);
5250 }
5251
5252 /*
5253 * Show free area list (used inside shift_scroll-lock stuff)
5254 * We also calculate the percentage fragmentation. We do this by counting the
5255 * memory on each free list with the exception of the first item on the list.
5256 *
5257 * Bits in @filter:
5258 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5259 * cpuset.
5260 */
5261 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5262 {
5263 unsigned long free_pcp = 0;
5264 int cpu;
5265 struct zone *zone;
5266 pg_data_t *pgdat;
5267
5268 for_each_populated_zone(zone) {
5269 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5270 continue;
5271
5272 for_each_online_cpu(cpu)
5273 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5274 }
5275
5276 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5277 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5278 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5279 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5280 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5281 " free:%lu free_pcp:%lu free_cma:%lu\n",
5282 global_node_page_state(NR_ACTIVE_ANON),
5283 global_node_page_state(NR_INACTIVE_ANON),
5284 global_node_page_state(NR_ISOLATED_ANON),
5285 global_node_page_state(NR_ACTIVE_FILE),
5286 global_node_page_state(NR_INACTIVE_FILE),
5287 global_node_page_state(NR_ISOLATED_FILE),
5288 global_node_page_state(NR_UNEVICTABLE),
5289 global_node_page_state(NR_FILE_DIRTY),
5290 global_node_page_state(NR_WRITEBACK),
5291 global_node_page_state(NR_UNSTABLE_NFS),
5292 global_node_page_state(NR_SLAB_RECLAIMABLE),
5293 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5294 global_node_page_state(NR_FILE_MAPPED),
5295 global_node_page_state(NR_SHMEM),
5296 global_zone_page_state(NR_PAGETABLE),
5297 global_zone_page_state(NR_BOUNCE),
5298 global_zone_page_state(NR_FREE_PAGES),
5299 free_pcp,
5300 global_zone_page_state(NR_FREE_CMA_PAGES));
5301
5302 for_each_online_pgdat(pgdat) {
5303 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5304 continue;
5305
5306 printk("Node %d"
5307 " active_anon:%lukB"
5308 " inactive_anon:%lukB"
5309 " active_file:%lukB"
5310 " inactive_file:%lukB"
5311 " unevictable:%lukB"
5312 " isolated(anon):%lukB"
5313 " isolated(file):%lukB"
5314 " mapped:%lukB"
5315 " dirty:%lukB"
5316 " writeback:%lukB"
5317 " shmem:%lukB"
5318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5319 " shmem_thp: %lukB"
5320 " shmem_pmdmapped: %lukB"
5321 " anon_thp: %lukB"
5322 #endif
5323 " writeback_tmp:%lukB"
5324 " unstable:%lukB"
5325 " all_unreclaimable? %s"
5326 "\n",
5327 pgdat->node_id,
5328 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5329 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5330 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5331 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5332 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5333 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5334 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5335 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5336 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5337 K(node_page_state(pgdat, NR_WRITEBACK)),
5338 K(node_page_state(pgdat, NR_SHMEM)),
5339 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5340 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5341 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5342 * HPAGE_PMD_NR),
5343 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5344 #endif
5345 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5346 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5347 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5348 "yes" : "no");
5349 }
5350
5351 for_each_populated_zone(zone) {
5352 int i;
5353
5354 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5355 continue;
5356
5357 free_pcp = 0;
5358 for_each_online_cpu(cpu)
5359 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5360
5361 show_node(zone);
5362 printk(KERN_CONT
5363 "%s"
5364 " free:%lukB"
5365 " min:%lukB"
5366 " low:%lukB"
5367 " high:%lukB"
5368 " active_anon:%lukB"
5369 " inactive_anon:%lukB"
5370 " active_file:%lukB"
5371 " inactive_file:%lukB"
5372 " unevictable:%lukB"
5373 " writepending:%lukB"
5374 " present:%lukB"
5375 " managed:%lukB"
5376 " mlocked:%lukB"
5377 " kernel_stack:%lukB"
5378 " pagetables:%lukB"
5379 " bounce:%lukB"
5380 " free_pcp:%lukB"
5381 " local_pcp:%ukB"
5382 " free_cma:%lukB"
5383 "\n",
5384 zone->name,
5385 K(zone_page_state(zone, NR_FREE_PAGES)),
5386 K(min_wmark_pages(zone)),
5387 K(low_wmark_pages(zone)),
5388 K(high_wmark_pages(zone)),
5389 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5390 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5391 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5392 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5393 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5394 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5395 K(zone->present_pages),
5396 K(zone_managed_pages(zone)),
5397 K(zone_page_state(zone, NR_MLOCK)),
5398 zone_page_state(zone, NR_KERNEL_STACK_KB),
5399 K(zone_page_state(zone, NR_PAGETABLE)),
5400 K(zone_page_state(zone, NR_BOUNCE)),
5401 K(free_pcp),
5402 K(this_cpu_read(zone->pageset->pcp.count)),
5403 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5404 printk("lowmem_reserve[]:");
5405 for (i = 0; i < MAX_NR_ZONES; i++)
5406 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5407 printk(KERN_CONT "\n");
5408 }
5409
5410 for_each_populated_zone(zone) {
5411 unsigned int order;
5412 unsigned long nr[MAX_ORDER], flags, total = 0;
5413 unsigned char types[MAX_ORDER];
5414
5415 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5416 continue;
5417 show_node(zone);
5418 printk(KERN_CONT "%s: ", zone->name);
5419
5420 spin_lock_irqsave(&zone->lock, flags);
5421 for (order = 0; order < MAX_ORDER; order++) {
5422 struct free_area *area = &zone->free_area[order];
5423 int type;
5424
5425 nr[order] = area->nr_free;
5426 total += nr[order] << order;
5427
5428 types[order] = 0;
5429 for (type = 0; type < MIGRATE_TYPES; type++) {
5430 if (!free_area_empty(area, type))
5431 types[order] |= 1 << type;
5432 }
5433 }
5434 spin_unlock_irqrestore(&zone->lock, flags);
5435 for (order = 0; order < MAX_ORDER; order++) {
5436 printk(KERN_CONT "%lu*%lukB ",
5437 nr[order], K(1UL) << order);
5438 if (nr[order])
5439 show_migration_types(types[order]);
5440 }
5441 printk(KERN_CONT "= %lukB\n", K(total));
5442 }
5443
5444 hugetlb_show_meminfo();
5445
5446 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5447
5448 show_swap_cache_info();
5449 }
5450
5451 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5452 {
5453 zoneref->zone = zone;
5454 zoneref->zone_idx = zone_idx(zone);
5455 }
5456
5457 /*
5458 * Builds allocation fallback zone lists.
5459 *
5460 * Add all populated zones of a node to the zonelist.
5461 */
5462 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5463 {
5464 struct zone *zone;
5465 enum zone_type zone_type = MAX_NR_ZONES;
5466 int nr_zones = 0;
5467
5468 do {
5469 zone_type--;
5470 zone = pgdat->node_zones + zone_type;
5471 if (managed_zone(zone)) {
5472 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5473 check_highest_zone(zone_type);
5474 }
5475 } while (zone_type);
5476
5477 return nr_zones;
5478 }
5479
5480 #ifdef CONFIG_NUMA
5481
5482 static int __parse_numa_zonelist_order(char *s)
5483 {
5484 /*
5485 * We used to support different zonlists modes but they turned
5486 * out to be just not useful. Let's keep the warning in place
5487 * if somebody still use the cmd line parameter so that we do
5488 * not fail it silently
5489 */
5490 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5491 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5492 return -EINVAL;
5493 }
5494 return 0;
5495 }
5496
5497 static __init int setup_numa_zonelist_order(char *s)
5498 {
5499 if (!s)
5500 return 0;
5501
5502 return __parse_numa_zonelist_order(s);
5503 }
5504 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5505
5506 char numa_zonelist_order[] = "Node";
5507
5508 /*
5509 * sysctl handler for numa_zonelist_order
5510 */
5511 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5512 void __user *buffer, size_t *length,
5513 loff_t *ppos)
5514 {
5515 char *str;
5516 int ret;
5517
5518 if (!write)
5519 return proc_dostring(table, write, buffer, length, ppos);
5520 str = memdup_user_nul(buffer, 16);
5521 if (IS_ERR(str))
5522 return PTR_ERR(str);
5523
5524 ret = __parse_numa_zonelist_order(str);
5525 kfree(str);
5526 return ret;
5527 }
5528
5529
5530 #define MAX_NODE_LOAD (nr_online_nodes)
5531 static int node_load[MAX_NUMNODES];
5532
5533 /**
5534 * find_next_best_node - find the next node that should appear in a given node's fallback list
5535 * @node: node whose fallback list we're appending
5536 * @used_node_mask: nodemask_t of already used nodes
5537 *
5538 * We use a number of factors to determine which is the next node that should
5539 * appear on a given node's fallback list. The node should not have appeared
5540 * already in @node's fallback list, and it should be the next closest node
5541 * according to the distance array (which contains arbitrary distance values
5542 * from each node to each node in the system), and should also prefer nodes
5543 * with no CPUs, since presumably they'll have very little allocation pressure
5544 * on them otherwise.
5545 *
5546 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5547 */
5548 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5549 {
5550 int n, val;
5551 int min_val = INT_MAX;
5552 int best_node = NUMA_NO_NODE;
5553 const struct cpumask *tmp = cpumask_of_node(0);
5554
5555 /* Use the local node if we haven't already */
5556 if (!node_isset(node, *used_node_mask)) {
5557 node_set(node, *used_node_mask);
5558 return node;
5559 }
5560
5561 for_each_node_state(n, N_MEMORY) {
5562
5563 /* Don't want a node to appear more than once */
5564 if (node_isset(n, *used_node_mask))
5565 continue;
5566
5567 /* Use the distance array to find the distance */
5568 val = node_distance(node, n);
5569
5570 /* Penalize nodes under us ("prefer the next node") */
5571 val += (n < node);
5572
5573 /* Give preference to headless and unused nodes */
5574 tmp = cpumask_of_node(n);
5575 if (!cpumask_empty(tmp))
5576 val += PENALTY_FOR_NODE_WITH_CPUS;
5577
5578 /* Slight preference for less loaded node */
5579 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5580 val += node_load[n];
5581
5582 if (val < min_val) {
5583 min_val = val;
5584 best_node = n;
5585 }
5586 }
5587
5588 if (best_node >= 0)
5589 node_set(best_node, *used_node_mask);
5590
5591 return best_node;
5592 }
5593
5594
5595 /*
5596 * Build zonelists ordered by node and zones within node.
5597 * This results in maximum locality--normal zone overflows into local
5598 * DMA zone, if any--but risks exhausting DMA zone.
5599 */
5600 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5601 unsigned nr_nodes)
5602 {
5603 struct zoneref *zonerefs;
5604 int i;
5605
5606 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5607
5608 for (i = 0; i < nr_nodes; i++) {
5609 int nr_zones;
5610
5611 pg_data_t *node = NODE_DATA(node_order[i]);
5612
5613 nr_zones = build_zonerefs_node(node, zonerefs);
5614 zonerefs += nr_zones;
5615 }
5616 zonerefs->zone = NULL;
5617 zonerefs->zone_idx = 0;
5618 }
5619
5620 /*
5621 * Build gfp_thisnode zonelists
5622 */
5623 static void build_thisnode_zonelists(pg_data_t *pgdat)
5624 {
5625 struct zoneref *zonerefs;
5626 int nr_zones;
5627
5628 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5629 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5630 zonerefs += nr_zones;
5631 zonerefs->zone = NULL;
5632 zonerefs->zone_idx = 0;
5633 }
5634
5635 /*
5636 * Build zonelists ordered by zone and nodes within zones.
5637 * This results in conserving DMA zone[s] until all Normal memory is
5638 * exhausted, but results in overflowing to remote node while memory
5639 * may still exist in local DMA zone.
5640 */
5641
5642 static void build_zonelists(pg_data_t *pgdat)
5643 {
5644 static int node_order[MAX_NUMNODES];
5645 int node, load, nr_nodes = 0;
5646 nodemask_t used_mask;
5647 int local_node, prev_node;
5648
5649 /* NUMA-aware ordering of nodes */
5650 local_node = pgdat->node_id;
5651 load = nr_online_nodes;
5652 prev_node = local_node;
5653 nodes_clear(used_mask);
5654
5655 memset(node_order, 0, sizeof(node_order));
5656 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5657 /*
5658 * We don't want to pressure a particular node.
5659 * So adding penalty to the first node in same
5660 * distance group to make it round-robin.
5661 */
5662 if (node_distance(local_node, node) !=
5663 node_distance(local_node, prev_node))
5664 node_load[node] = load;
5665
5666 node_order[nr_nodes++] = node;
5667 prev_node = node;
5668 load--;
5669 }
5670
5671 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5672 build_thisnode_zonelists(pgdat);
5673 }
5674
5675 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5676 /*
5677 * Return node id of node used for "local" allocations.
5678 * I.e., first node id of first zone in arg node's generic zonelist.
5679 * Used for initializing percpu 'numa_mem', which is used primarily
5680 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5681 */
5682 int local_memory_node(int node)
5683 {
5684 struct zoneref *z;
5685
5686 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5687 gfp_zone(GFP_KERNEL),
5688 NULL);
5689 return zone_to_nid(z->zone);
5690 }
5691 #endif
5692
5693 static void setup_min_unmapped_ratio(void);
5694 static void setup_min_slab_ratio(void);
5695 #else /* CONFIG_NUMA */
5696
5697 static void build_zonelists(pg_data_t *pgdat)
5698 {
5699 int node, local_node;
5700 struct zoneref *zonerefs;
5701 int nr_zones;
5702
5703 local_node = pgdat->node_id;
5704
5705 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5706 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5707 zonerefs += nr_zones;
5708
5709 /*
5710 * Now we build the zonelist so that it contains the zones
5711 * of all the other nodes.
5712 * We don't want to pressure a particular node, so when
5713 * building the zones for node N, we make sure that the
5714 * zones coming right after the local ones are those from
5715 * node N+1 (modulo N)
5716 */
5717 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5718 if (!node_online(node))
5719 continue;
5720 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5721 zonerefs += nr_zones;
5722 }
5723 for (node = 0; node < local_node; node++) {
5724 if (!node_online(node))
5725 continue;
5726 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5727 zonerefs += nr_zones;
5728 }
5729
5730 zonerefs->zone = NULL;
5731 zonerefs->zone_idx = 0;
5732 }
5733
5734 #endif /* CONFIG_NUMA */
5735
5736 /*
5737 * Boot pageset table. One per cpu which is going to be used for all
5738 * zones and all nodes. The parameters will be set in such a way
5739 * that an item put on a list will immediately be handed over to
5740 * the buddy list. This is safe since pageset manipulation is done
5741 * with interrupts disabled.
5742 *
5743 * The boot_pagesets must be kept even after bootup is complete for
5744 * unused processors and/or zones. They do play a role for bootstrapping
5745 * hotplugged processors.
5746 *
5747 * zoneinfo_show() and maybe other functions do
5748 * not check if the processor is online before following the pageset pointer.
5749 * Other parts of the kernel may not check if the zone is available.
5750 */
5751 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5752 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5753 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5754
5755 static void __build_all_zonelists(void *data)
5756 {
5757 int nid;
5758 int __maybe_unused cpu;
5759 pg_data_t *self = data;
5760 static DEFINE_SPINLOCK(lock);
5761
5762 spin_lock(&lock);
5763
5764 #ifdef CONFIG_NUMA
5765 memset(node_load, 0, sizeof(node_load));
5766 #endif
5767
5768 /*
5769 * This node is hotadded and no memory is yet present. So just
5770 * building zonelists is fine - no need to touch other nodes.
5771 */
5772 if (self && !node_online(self->node_id)) {
5773 build_zonelists(self);
5774 } else {
5775 for_each_online_node(nid) {
5776 pg_data_t *pgdat = NODE_DATA(nid);
5777
5778 build_zonelists(pgdat);
5779 }
5780
5781 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5782 /*
5783 * We now know the "local memory node" for each node--
5784 * i.e., the node of the first zone in the generic zonelist.
5785 * Set up numa_mem percpu variable for on-line cpus. During
5786 * boot, only the boot cpu should be on-line; we'll init the
5787 * secondary cpus' numa_mem as they come on-line. During
5788 * node/memory hotplug, we'll fixup all on-line cpus.
5789 */
5790 for_each_online_cpu(cpu)
5791 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5792 #endif
5793 }
5794
5795 spin_unlock(&lock);
5796 }
5797
5798 static noinline void __init
5799 build_all_zonelists_init(void)
5800 {
5801 int cpu;
5802
5803 __build_all_zonelists(NULL);
5804
5805 /*
5806 * Initialize the boot_pagesets that are going to be used
5807 * for bootstrapping processors. The real pagesets for
5808 * each zone will be allocated later when the per cpu
5809 * allocator is available.
5810 *
5811 * boot_pagesets are used also for bootstrapping offline
5812 * cpus if the system is already booted because the pagesets
5813 * are needed to initialize allocators on a specific cpu too.
5814 * F.e. the percpu allocator needs the page allocator which
5815 * needs the percpu allocator in order to allocate its pagesets
5816 * (a chicken-egg dilemma).
5817 */
5818 for_each_possible_cpu(cpu)
5819 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5820
5821 mminit_verify_zonelist();
5822 cpuset_init_current_mems_allowed();
5823 }
5824
5825 /*
5826 * unless system_state == SYSTEM_BOOTING.
5827 *
5828 * __ref due to call of __init annotated helper build_all_zonelists_init
5829 * [protected by SYSTEM_BOOTING].
5830 */
5831 void __ref build_all_zonelists(pg_data_t *pgdat)
5832 {
5833 if (system_state == SYSTEM_BOOTING) {
5834 build_all_zonelists_init();
5835 } else {
5836 __build_all_zonelists(pgdat);
5837 /* cpuset refresh routine should be here */
5838 }
5839 vm_total_pages = nr_free_pagecache_pages();
5840 /*
5841 * Disable grouping by mobility if the number of pages in the
5842 * system is too low to allow the mechanism to work. It would be
5843 * more accurate, but expensive to check per-zone. This check is
5844 * made on memory-hotadd so a system can start with mobility
5845 * disabled and enable it later
5846 */
5847 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5848 page_group_by_mobility_disabled = 1;
5849 else
5850 page_group_by_mobility_disabled = 0;
5851
5852 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5853 nr_online_nodes,
5854 page_group_by_mobility_disabled ? "off" : "on",
5855 vm_total_pages);
5856 #ifdef CONFIG_NUMA
5857 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5858 #endif
5859 }
5860
5861 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5862 static bool __meminit
5863 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5864 {
5865 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5866 static struct memblock_region *r;
5867
5868 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5869 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5870 for_each_memblock(memory, r) {
5871 if (*pfn < memblock_region_memory_end_pfn(r))
5872 break;
5873 }
5874 }
5875 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5876 memblock_is_mirror(r)) {
5877 *pfn = memblock_region_memory_end_pfn(r);
5878 return true;
5879 }
5880 }
5881 #endif
5882 return false;
5883 }
5884
5885 /*
5886 * Initially all pages are reserved - free ones are freed
5887 * up by memblock_free_all() once the early boot process is
5888 * done. Non-atomic initialization, single-pass.
5889 */
5890 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5891 unsigned long start_pfn, enum meminit_context context,
5892 struct vmem_altmap *altmap)
5893 {
5894 unsigned long pfn, end_pfn = start_pfn + size;
5895 struct page *page;
5896
5897 if (highest_memmap_pfn < end_pfn - 1)
5898 highest_memmap_pfn = end_pfn - 1;
5899
5900 #ifdef CONFIG_ZONE_DEVICE
5901 /*
5902 * Honor reservation requested by the driver for this ZONE_DEVICE
5903 * memory. We limit the total number of pages to initialize to just
5904 * those that might contain the memory mapping. We will defer the
5905 * ZONE_DEVICE page initialization until after we have released
5906 * the hotplug lock.
5907 */
5908 if (zone == ZONE_DEVICE) {
5909 if (!altmap)
5910 return;
5911
5912 if (start_pfn == altmap->base_pfn)
5913 start_pfn += altmap->reserve;
5914 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5915 }
5916 #endif
5917
5918 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5919 /*
5920 * There can be holes in boot-time mem_map[]s handed to this
5921 * function. They do not exist on hotplugged memory.
5922 */
5923 if (context == MEMINIT_EARLY) {
5924 if (!early_pfn_valid(pfn))
5925 continue;
5926 if (!early_pfn_in_nid(pfn, nid))
5927 continue;
5928 if (overlap_memmap_init(zone, &pfn))
5929 continue;
5930 if (defer_init(nid, pfn, end_pfn))
5931 break;
5932 }
5933
5934 page = pfn_to_page(pfn);
5935 __init_single_page(page, pfn, zone, nid);
5936 if (context == MEMINIT_HOTPLUG)
5937 __SetPageReserved(page);
5938
5939 /*
5940 * Mark the block movable so that blocks are reserved for
5941 * movable at startup. This will force kernel allocations
5942 * to reserve their blocks rather than leaking throughout
5943 * the address space during boot when many long-lived
5944 * kernel allocations are made.
5945 *
5946 * bitmap is created for zone's valid pfn range. but memmap
5947 * can be created for invalid pages (for alignment)
5948 * check here not to call set_pageblock_migratetype() against
5949 * pfn out of zone.
5950 */
5951 if (!(pfn & (pageblock_nr_pages - 1))) {
5952 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5953 cond_resched();
5954 }
5955 }
5956 }
5957
5958 #ifdef CONFIG_ZONE_DEVICE
5959 void __ref memmap_init_zone_device(struct zone *zone,
5960 unsigned long start_pfn,
5961 unsigned long size,
5962 struct dev_pagemap *pgmap)
5963 {
5964 unsigned long pfn, end_pfn = start_pfn + size;
5965 struct pglist_data *pgdat = zone->zone_pgdat;
5966 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5967 unsigned long zone_idx = zone_idx(zone);
5968 unsigned long start = jiffies;
5969 int nid = pgdat->node_id;
5970
5971 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5972 return;
5973
5974 /*
5975 * The call to memmap_init_zone should have already taken care
5976 * of the pages reserved for the memmap, so we can just jump to
5977 * the end of that region and start processing the device pages.
5978 */
5979 if (altmap) {
5980 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5981 size = end_pfn - start_pfn;
5982 }
5983
5984 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5985 struct page *page = pfn_to_page(pfn);
5986
5987 __init_single_page(page, pfn, zone_idx, nid);
5988
5989 /*
5990 * Mark page reserved as it will need to wait for onlining
5991 * phase for it to be fully associated with a zone.
5992 *
5993 * We can use the non-atomic __set_bit operation for setting
5994 * the flag as we are still initializing the pages.
5995 */
5996 __SetPageReserved(page);
5997
5998 /*
5999 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6000 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6001 * ever freed or placed on a driver-private list.
6002 */
6003 page->pgmap = pgmap;
6004 page->zone_device_data = NULL;
6005
6006 /*
6007 * Mark the block movable so that blocks are reserved for
6008 * movable at startup. This will force kernel allocations
6009 * to reserve their blocks rather than leaking throughout
6010 * the address space during boot when many long-lived
6011 * kernel allocations are made.
6012 *
6013 * bitmap is created for zone's valid pfn range. but memmap
6014 * can be created for invalid pages (for alignment)
6015 * check here not to call set_pageblock_migratetype() against
6016 * pfn out of zone.
6017 *
6018 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6019 * because this is done early in section_activate()
6020 */
6021 if (!(pfn & (pageblock_nr_pages - 1))) {
6022 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6023 cond_resched();
6024 }
6025 }
6026
6027 pr_info("%s initialised %lu pages in %ums\n", __func__,
6028 size, jiffies_to_msecs(jiffies - start));
6029 }
6030
6031 #endif
6032 static void __meminit zone_init_free_lists(struct zone *zone)
6033 {
6034 unsigned int order, t;
6035 for_each_migratetype_order(order, t) {
6036 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6037 zone->free_area[order].nr_free = 0;
6038 }
6039 }
6040
6041 void __meminit __weak memmap_init(unsigned long size, int nid,
6042 unsigned long zone, unsigned long start_pfn)
6043 {
6044 memmap_init_zone(size, nid, zone, start_pfn, MEMINIT_EARLY, NULL);
6045 }
6046
6047 static int zone_batchsize(struct zone *zone)
6048 {
6049 #ifdef CONFIG_MMU
6050 int batch;
6051
6052 /*
6053 * The per-cpu-pages pools are set to around 1000th of the
6054 * size of the zone.
6055 */
6056 batch = zone_managed_pages(zone) / 1024;
6057 /* But no more than a meg. */
6058 if (batch * PAGE_SIZE > 1024 * 1024)
6059 batch = (1024 * 1024) / PAGE_SIZE;
6060 batch /= 4; /* We effectively *= 4 below */
6061 if (batch < 1)
6062 batch = 1;
6063
6064 /*
6065 * Clamp the batch to a 2^n - 1 value. Having a power
6066 * of 2 value was found to be more likely to have
6067 * suboptimal cache aliasing properties in some cases.
6068 *
6069 * For example if 2 tasks are alternately allocating
6070 * batches of pages, one task can end up with a lot
6071 * of pages of one half of the possible page colors
6072 * and the other with pages of the other colors.
6073 */
6074 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6075
6076 return batch;
6077
6078 #else
6079 /* The deferral and batching of frees should be suppressed under NOMMU
6080 * conditions.
6081 *
6082 * The problem is that NOMMU needs to be able to allocate large chunks
6083 * of contiguous memory as there's no hardware page translation to
6084 * assemble apparent contiguous memory from discontiguous pages.
6085 *
6086 * Queueing large contiguous runs of pages for batching, however,
6087 * causes the pages to actually be freed in smaller chunks. As there
6088 * can be a significant delay between the individual batches being
6089 * recycled, this leads to the once large chunks of space being
6090 * fragmented and becoming unavailable for high-order allocations.
6091 */
6092 return 0;
6093 #endif
6094 }
6095
6096 /*
6097 * pcp->high and pcp->batch values are related and dependent on one another:
6098 * ->batch must never be higher then ->high.
6099 * The following function updates them in a safe manner without read side
6100 * locking.
6101 *
6102 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6103 * those fields changing asynchronously (acording the the above rule).
6104 *
6105 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6106 * outside of boot time (or some other assurance that no concurrent updaters
6107 * exist).
6108 */
6109 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6110 unsigned long batch)
6111 {
6112 /* start with a fail safe value for batch */
6113 pcp->batch = 1;
6114 smp_wmb();
6115
6116 /* Update high, then batch, in order */
6117 pcp->high = high;
6118 smp_wmb();
6119
6120 pcp->batch = batch;
6121 }
6122
6123 /* a companion to pageset_set_high() */
6124 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6125 {
6126 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6127 }
6128
6129 static void pageset_init(struct per_cpu_pageset *p)
6130 {
6131 struct per_cpu_pages *pcp;
6132 int migratetype;
6133
6134 memset(p, 0, sizeof(*p));
6135
6136 pcp = &p->pcp;
6137 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6138 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6139 }
6140
6141 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6142 {
6143 pageset_init(p);
6144 pageset_set_batch(p, batch);
6145 }
6146
6147 /*
6148 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6149 * to the value high for the pageset p.
6150 */
6151 static void pageset_set_high(struct per_cpu_pageset *p,
6152 unsigned long high)
6153 {
6154 unsigned long batch = max(1UL, high / 4);
6155 if ((high / 4) > (PAGE_SHIFT * 8))
6156 batch = PAGE_SHIFT * 8;
6157
6158 pageset_update(&p->pcp, high, batch);
6159 }
6160
6161 static void pageset_set_high_and_batch(struct zone *zone,
6162 struct per_cpu_pageset *pcp)
6163 {
6164 if (percpu_pagelist_fraction)
6165 pageset_set_high(pcp,
6166 (zone_managed_pages(zone) /
6167 percpu_pagelist_fraction));
6168 else
6169 pageset_set_batch(pcp, zone_batchsize(zone));
6170 }
6171
6172 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6173 {
6174 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6175
6176 pageset_init(pcp);
6177 pageset_set_high_and_batch(zone, pcp);
6178 }
6179
6180 void __meminit setup_zone_pageset(struct zone *zone)
6181 {
6182 int cpu;
6183 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6184 for_each_possible_cpu(cpu)
6185 zone_pageset_init(zone, cpu);
6186 }
6187
6188 /*
6189 * Allocate per cpu pagesets and initialize them.
6190 * Before this call only boot pagesets were available.
6191 */
6192 void __init setup_per_cpu_pageset(void)
6193 {
6194 struct pglist_data *pgdat;
6195 struct zone *zone;
6196
6197 for_each_populated_zone(zone)
6198 setup_zone_pageset(zone);
6199
6200 for_each_online_pgdat(pgdat)
6201 pgdat->per_cpu_nodestats =
6202 alloc_percpu(struct per_cpu_nodestat);
6203 }
6204
6205 static __meminit void zone_pcp_init(struct zone *zone)
6206 {
6207 /*
6208 * per cpu subsystem is not up at this point. The following code
6209 * relies on the ability of the linker to provide the
6210 * offset of a (static) per cpu variable into the per cpu area.
6211 */
6212 zone->pageset = &boot_pageset;
6213
6214 if (populated_zone(zone))
6215 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6216 zone->name, zone->present_pages,
6217 zone_batchsize(zone));
6218 }
6219
6220 void __meminit init_currently_empty_zone(struct zone *zone,
6221 unsigned long zone_start_pfn,
6222 unsigned long size)
6223 {
6224 struct pglist_data *pgdat = zone->zone_pgdat;
6225 int zone_idx = zone_idx(zone) + 1;
6226
6227 if (zone_idx > pgdat->nr_zones)
6228 pgdat->nr_zones = zone_idx;
6229
6230 zone->zone_start_pfn = zone_start_pfn;
6231
6232 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6233 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6234 pgdat->node_id,
6235 (unsigned long)zone_idx(zone),
6236 zone_start_pfn, (zone_start_pfn + size));
6237
6238 zone_init_free_lists(zone);
6239 zone->initialized = 1;
6240 }
6241
6242 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6243 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6244
6245 /*
6246 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6247 */
6248 int __meminit __early_pfn_to_nid(unsigned long pfn,
6249 struct mminit_pfnnid_cache *state)
6250 {
6251 unsigned long start_pfn, end_pfn;
6252 int nid;
6253
6254 if (state->last_start <= pfn && pfn < state->last_end)
6255 return state->last_nid;
6256
6257 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6258 if (nid != NUMA_NO_NODE) {
6259 state->last_start = start_pfn;
6260 state->last_end = end_pfn;
6261 state->last_nid = nid;
6262 }
6263
6264 return nid;
6265 }
6266 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6267
6268 /**
6269 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6270 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6271 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6272 *
6273 * If an architecture guarantees that all ranges registered contain no holes
6274 * and may be freed, this this function may be used instead of calling
6275 * memblock_free_early_nid() manually.
6276 */
6277 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6278 {
6279 unsigned long start_pfn, end_pfn;
6280 int i, this_nid;
6281
6282 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6283 start_pfn = min(start_pfn, max_low_pfn);
6284 end_pfn = min(end_pfn, max_low_pfn);
6285
6286 if (start_pfn < end_pfn)
6287 memblock_free_early_nid(PFN_PHYS(start_pfn),
6288 (end_pfn - start_pfn) << PAGE_SHIFT,
6289 this_nid);
6290 }
6291 }
6292
6293 /**
6294 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6295 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6296 *
6297 * If an architecture guarantees that all ranges registered contain no holes and may
6298 * be freed, this function may be used instead of calling memory_present() manually.
6299 */
6300 void __init sparse_memory_present_with_active_regions(int nid)
6301 {
6302 unsigned long start_pfn, end_pfn;
6303 int i, this_nid;
6304
6305 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6306 memory_present(this_nid, start_pfn, end_pfn);
6307 }
6308
6309 /**
6310 * get_pfn_range_for_nid - Return the start and end page frames for a node
6311 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6312 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6313 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6314 *
6315 * It returns the start and end page frame of a node based on information
6316 * provided by memblock_set_node(). If called for a node
6317 * with no available memory, a warning is printed and the start and end
6318 * PFNs will be 0.
6319 */
6320 void __init get_pfn_range_for_nid(unsigned int nid,
6321 unsigned long *start_pfn, unsigned long *end_pfn)
6322 {
6323 unsigned long this_start_pfn, this_end_pfn;
6324 int i;
6325
6326 *start_pfn = -1UL;
6327 *end_pfn = 0;
6328
6329 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6330 *start_pfn = min(*start_pfn, this_start_pfn);
6331 *end_pfn = max(*end_pfn, this_end_pfn);
6332 }
6333
6334 if (*start_pfn == -1UL)
6335 *start_pfn = 0;
6336 }
6337
6338 /*
6339 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6340 * assumption is made that zones within a node are ordered in monotonic
6341 * increasing memory addresses so that the "highest" populated zone is used
6342 */
6343 static void __init find_usable_zone_for_movable(void)
6344 {
6345 int zone_index;
6346 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6347 if (zone_index == ZONE_MOVABLE)
6348 continue;
6349
6350 if (arch_zone_highest_possible_pfn[zone_index] >
6351 arch_zone_lowest_possible_pfn[zone_index])
6352 break;
6353 }
6354
6355 VM_BUG_ON(zone_index == -1);
6356 movable_zone = zone_index;
6357 }
6358
6359 /*
6360 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6361 * because it is sized independent of architecture. Unlike the other zones,
6362 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6363 * in each node depending on the size of each node and how evenly kernelcore
6364 * is distributed. This helper function adjusts the zone ranges
6365 * provided by the architecture for a given node by using the end of the
6366 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6367 * zones within a node are in order of monotonic increases memory addresses
6368 */
6369 static void __init adjust_zone_range_for_zone_movable(int nid,
6370 unsigned long zone_type,
6371 unsigned long node_start_pfn,
6372 unsigned long node_end_pfn,
6373 unsigned long *zone_start_pfn,
6374 unsigned long *zone_end_pfn)
6375 {
6376 /* Only adjust if ZONE_MOVABLE is on this node */
6377 if (zone_movable_pfn[nid]) {
6378 /* Size ZONE_MOVABLE */
6379 if (zone_type == ZONE_MOVABLE) {
6380 *zone_start_pfn = zone_movable_pfn[nid];
6381 *zone_end_pfn = min(node_end_pfn,
6382 arch_zone_highest_possible_pfn[movable_zone]);
6383
6384 /* Adjust for ZONE_MOVABLE starting within this range */
6385 } else if (!mirrored_kernelcore &&
6386 *zone_start_pfn < zone_movable_pfn[nid] &&
6387 *zone_end_pfn > zone_movable_pfn[nid]) {
6388 *zone_end_pfn = zone_movable_pfn[nid];
6389
6390 /* Check if this whole range is within ZONE_MOVABLE */
6391 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6392 *zone_start_pfn = *zone_end_pfn;
6393 }
6394 }
6395
6396 /*
6397 * Return the number of pages a zone spans in a node, including holes
6398 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6399 */
6400 static unsigned long __init zone_spanned_pages_in_node(int nid,
6401 unsigned long zone_type,
6402 unsigned long node_start_pfn,
6403 unsigned long node_end_pfn,
6404 unsigned long *zone_start_pfn,
6405 unsigned long *zone_end_pfn,
6406 unsigned long *ignored)
6407 {
6408 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6409 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6410 /* When hotadd a new node from cpu_up(), the node should be empty */
6411 if (!node_start_pfn && !node_end_pfn)
6412 return 0;
6413
6414 /* Get the start and end of the zone */
6415 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6416 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6417 adjust_zone_range_for_zone_movable(nid, zone_type,
6418 node_start_pfn, node_end_pfn,
6419 zone_start_pfn, zone_end_pfn);
6420
6421 /* Check that this node has pages within the zone's required range */
6422 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6423 return 0;
6424
6425 /* Move the zone boundaries inside the node if necessary */
6426 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6427 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6428
6429 /* Return the spanned pages */
6430 return *zone_end_pfn - *zone_start_pfn;
6431 }
6432
6433 /*
6434 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6435 * then all holes in the requested range will be accounted for.
6436 */
6437 unsigned long __init __absent_pages_in_range(int nid,
6438 unsigned long range_start_pfn,
6439 unsigned long range_end_pfn)
6440 {
6441 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6442 unsigned long start_pfn, end_pfn;
6443 int i;
6444
6445 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6446 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6447 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6448 nr_absent -= end_pfn - start_pfn;
6449 }
6450 return nr_absent;
6451 }
6452
6453 /**
6454 * absent_pages_in_range - Return number of page frames in holes within a range
6455 * @start_pfn: The start PFN to start searching for holes
6456 * @end_pfn: The end PFN to stop searching for holes
6457 *
6458 * Return: the number of pages frames in memory holes within a range.
6459 */
6460 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6461 unsigned long end_pfn)
6462 {
6463 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6464 }
6465
6466 /* Return the number of page frames in holes in a zone on a node */
6467 static unsigned long __init zone_absent_pages_in_node(int nid,
6468 unsigned long zone_type,
6469 unsigned long node_start_pfn,
6470 unsigned long node_end_pfn,
6471 unsigned long *ignored)
6472 {
6473 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6474 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6475 unsigned long zone_start_pfn, zone_end_pfn;
6476 unsigned long nr_absent;
6477
6478 /* When hotadd a new node from cpu_up(), the node should be empty */
6479 if (!node_start_pfn && !node_end_pfn)
6480 return 0;
6481
6482 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6483 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6484
6485 adjust_zone_range_for_zone_movable(nid, zone_type,
6486 node_start_pfn, node_end_pfn,
6487 &zone_start_pfn, &zone_end_pfn);
6488 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6489
6490 /*
6491 * ZONE_MOVABLE handling.
6492 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6493 * and vice versa.
6494 */
6495 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6496 unsigned long start_pfn, end_pfn;
6497 struct memblock_region *r;
6498
6499 for_each_memblock(memory, r) {
6500 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6501 zone_start_pfn, zone_end_pfn);
6502 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6503 zone_start_pfn, zone_end_pfn);
6504
6505 if (zone_type == ZONE_MOVABLE &&
6506 memblock_is_mirror(r))
6507 nr_absent += end_pfn - start_pfn;
6508
6509 if (zone_type == ZONE_NORMAL &&
6510 !memblock_is_mirror(r))
6511 nr_absent += end_pfn - start_pfn;
6512 }
6513 }
6514
6515 return nr_absent;
6516 }
6517
6518 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6519 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6520 unsigned long zone_type,
6521 unsigned long node_start_pfn,
6522 unsigned long node_end_pfn,
6523 unsigned long *zone_start_pfn,
6524 unsigned long *zone_end_pfn,
6525 unsigned long *zones_size)
6526 {
6527 unsigned int zone;
6528
6529 *zone_start_pfn = node_start_pfn;
6530 for (zone = 0; zone < zone_type; zone++)
6531 *zone_start_pfn += zones_size[zone];
6532
6533 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6534
6535 return zones_size[zone_type];
6536 }
6537
6538 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6539 unsigned long zone_type,
6540 unsigned long node_start_pfn,
6541 unsigned long node_end_pfn,
6542 unsigned long *zholes_size)
6543 {
6544 if (!zholes_size)
6545 return 0;
6546
6547 return zholes_size[zone_type];
6548 }
6549
6550 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6551
6552 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6553 unsigned long node_start_pfn,
6554 unsigned long node_end_pfn,
6555 unsigned long *zones_size,
6556 unsigned long *zholes_size)
6557 {
6558 unsigned long realtotalpages = 0, totalpages = 0;
6559 enum zone_type i;
6560
6561 for (i = 0; i < MAX_NR_ZONES; i++) {
6562 struct zone *zone = pgdat->node_zones + i;
6563 unsigned long zone_start_pfn, zone_end_pfn;
6564 unsigned long size, real_size;
6565
6566 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6567 node_start_pfn,
6568 node_end_pfn,
6569 &zone_start_pfn,
6570 &zone_end_pfn,
6571 zones_size);
6572 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6573 node_start_pfn, node_end_pfn,
6574 zholes_size);
6575 if (size)
6576 zone->zone_start_pfn = zone_start_pfn;
6577 else
6578 zone->zone_start_pfn = 0;
6579 zone->spanned_pages = size;
6580 zone->present_pages = real_size;
6581
6582 totalpages += size;
6583 realtotalpages += real_size;
6584 }
6585
6586 pgdat->node_spanned_pages = totalpages;
6587 pgdat->node_present_pages = realtotalpages;
6588 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6589 realtotalpages);
6590 }
6591
6592 #ifndef CONFIG_SPARSEMEM
6593 /*
6594 * Calculate the size of the zone->blockflags rounded to an unsigned long
6595 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6596 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6597 * round what is now in bits to nearest long in bits, then return it in
6598 * bytes.
6599 */
6600 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6601 {
6602 unsigned long usemapsize;
6603
6604 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6605 usemapsize = roundup(zonesize, pageblock_nr_pages);
6606 usemapsize = usemapsize >> pageblock_order;
6607 usemapsize *= NR_PAGEBLOCK_BITS;
6608 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6609
6610 return usemapsize / 8;
6611 }
6612
6613 static void __ref setup_usemap(struct pglist_data *pgdat,
6614 struct zone *zone,
6615 unsigned long zone_start_pfn,
6616 unsigned long zonesize)
6617 {
6618 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6619 zone->pageblock_flags = NULL;
6620 if (usemapsize) {
6621 zone->pageblock_flags =
6622 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6623 pgdat->node_id);
6624 if (!zone->pageblock_flags)
6625 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6626 usemapsize, zone->name, pgdat->node_id);
6627 }
6628 }
6629 #else
6630 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6631 unsigned long zone_start_pfn, unsigned long zonesize) {}
6632 #endif /* CONFIG_SPARSEMEM */
6633
6634 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6635
6636 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6637 void __init set_pageblock_order(void)
6638 {
6639 unsigned int order;
6640
6641 /* Check that pageblock_nr_pages has not already been setup */
6642 if (pageblock_order)
6643 return;
6644
6645 if (HPAGE_SHIFT > PAGE_SHIFT)
6646 order = HUGETLB_PAGE_ORDER;
6647 else
6648 order = MAX_ORDER - 1;
6649
6650 /*
6651 * Assume the largest contiguous order of interest is a huge page.
6652 * This value may be variable depending on boot parameters on IA64 and
6653 * powerpc.
6654 */
6655 pageblock_order = order;
6656 }
6657 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6658
6659 /*
6660 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6661 * is unused as pageblock_order is set at compile-time. See
6662 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6663 * the kernel config
6664 */
6665 void __init set_pageblock_order(void)
6666 {
6667 }
6668
6669 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6670
6671 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6672 unsigned long present_pages)
6673 {
6674 unsigned long pages = spanned_pages;
6675
6676 /*
6677 * Provide a more accurate estimation if there are holes within
6678 * the zone and SPARSEMEM is in use. If there are holes within the
6679 * zone, each populated memory region may cost us one or two extra
6680 * memmap pages due to alignment because memmap pages for each
6681 * populated regions may not be naturally aligned on page boundary.
6682 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6683 */
6684 if (spanned_pages > present_pages + (present_pages >> 4) &&
6685 IS_ENABLED(CONFIG_SPARSEMEM))
6686 pages = present_pages;
6687
6688 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6689 }
6690
6691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6692 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6693 {
6694 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6695
6696 spin_lock_init(&ds_queue->split_queue_lock);
6697 INIT_LIST_HEAD(&ds_queue->split_queue);
6698 ds_queue->split_queue_len = 0;
6699 }
6700 #else
6701 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6702 #endif
6703
6704 #ifdef CONFIG_COMPACTION
6705 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6706 {
6707 init_waitqueue_head(&pgdat->kcompactd_wait);
6708 }
6709 #else
6710 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6711 #endif
6712
6713 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6714 {
6715 pgdat_resize_init(pgdat);
6716
6717 pgdat_init_split_queue(pgdat);
6718 pgdat_init_kcompactd(pgdat);
6719
6720 init_waitqueue_head(&pgdat->kswapd_wait);
6721 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6722
6723 pgdat_page_ext_init(pgdat);
6724 spin_lock_init(&pgdat->lru_lock);
6725 lruvec_init(node_lruvec(pgdat));
6726 }
6727
6728 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6729 unsigned long remaining_pages)
6730 {
6731 atomic_long_set(&zone->managed_pages, remaining_pages);
6732 zone_set_nid(zone, nid);
6733 zone->name = zone_names[idx];
6734 zone->zone_pgdat = NODE_DATA(nid);
6735 spin_lock_init(&zone->lock);
6736 zone_seqlock_init(zone);
6737 zone_pcp_init(zone);
6738 }
6739
6740 /*
6741 * Set up the zone data structures
6742 * - init pgdat internals
6743 * - init all zones belonging to this node
6744 *
6745 * NOTE: this function is only called during memory hotplug
6746 */
6747 #ifdef CONFIG_MEMORY_HOTPLUG
6748 void __ref free_area_init_core_hotplug(int nid)
6749 {
6750 enum zone_type z;
6751 pg_data_t *pgdat = NODE_DATA(nid);
6752
6753 pgdat_init_internals(pgdat);
6754 for (z = 0; z < MAX_NR_ZONES; z++)
6755 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6756 }
6757 #endif
6758
6759 /*
6760 * Set up the zone data structures:
6761 * - mark all pages reserved
6762 * - mark all memory queues empty
6763 * - clear the memory bitmaps
6764 *
6765 * NOTE: pgdat should get zeroed by caller.
6766 * NOTE: this function is only called during early init.
6767 */
6768 static void __init free_area_init_core(struct pglist_data *pgdat)
6769 {
6770 enum zone_type j;
6771 int nid = pgdat->node_id;
6772
6773 pgdat_init_internals(pgdat);
6774 pgdat->per_cpu_nodestats = &boot_nodestats;
6775
6776 for (j = 0; j < MAX_NR_ZONES; j++) {
6777 struct zone *zone = pgdat->node_zones + j;
6778 unsigned long size, freesize, memmap_pages;
6779 unsigned long zone_start_pfn = zone->zone_start_pfn;
6780
6781 size = zone->spanned_pages;
6782 freesize = zone->present_pages;
6783
6784 /*
6785 * Adjust freesize so that it accounts for how much memory
6786 * is used by this zone for memmap. This affects the watermark
6787 * and per-cpu initialisations
6788 */
6789 memmap_pages = calc_memmap_size(size, freesize);
6790 if (!is_highmem_idx(j)) {
6791 if (freesize >= memmap_pages) {
6792 freesize -= memmap_pages;
6793 if (memmap_pages)
6794 printk(KERN_DEBUG
6795 " %s zone: %lu pages used for memmap\n",
6796 zone_names[j], memmap_pages);
6797 } else
6798 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6799 zone_names[j], memmap_pages, freesize);
6800 }
6801
6802 /* Account for reserved pages */
6803 if (j == 0 && freesize > dma_reserve) {
6804 freesize -= dma_reserve;
6805 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6806 zone_names[0], dma_reserve);
6807 }
6808
6809 if (!is_highmem_idx(j))
6810 nr_kernel_pages += freesize;
6811 /* Charge for highmem memmap if there are enough kernel pages */
6812 else if (nr_kernel_pages > memmap_pages * 2)
6813 nr_kernel_pages -= memmap_pages;
6814 nr_all_pages += freesize;
6815
6816 /*
6817 * Set an approximate value for lowmem here, it will be adjusted
6818 * when the bootmem allocator frees pages into the buddy system.
6819 * And all highmem pages will be managed by the buddy system.
6820 */
6821 zone_init_internals(zone, j, nid, freesize);
6822
6823 if (!size)
6824 continue;
6825
6826 set_pageblock_order();
6827 setup_usemap(pgdat, zone, zone_start_pfn, size);
6828 init_currently_empty_zone(zone, zone_start_pfn, size);
6829 memmap_init(size, nid, j, zone_start_pfn);
6830 }
6831 }
6832
6833 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6834 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6835 {
6836 unsigned long __maybe_unused start = 0;
6837 unsigned long __maybe_unused offset = 0;
6838
6839 /* Skip empty nodes */
6840 if (!pgdat->node_spanned_pages)
6841 return;
6842
6843 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6844 offset = pgdat->node_start_pfn - start;
6845 /* ia64 gets its own node_mem_map, before this, without bootmem */
6846 if (!pgdat->node_mem_map) {
6847 unsigned long size, end;
6848 struct page *map;
6849
6850 /*
6851 * The zone's endpoints aren't required to be MAX_ORDER
6852 * aligned but the node_mem_map endpoints must be in order
6853 * for the buddy allocator to function correctly.
6854 */
6855 end = pgdat_end_pfn(pgdat);
6856 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6857 size = (end - start) * sizeof(struct page);
6858 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6859 pgdat->node_id);
6860 if (!map)
6861 panic("Failed to allocate %ld bytes for node %d memory map\n",
6862 size, pgdat->node_id);
6863 pgdat->node_mem_map = map + offset;
6864 }
6865 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6866 __func__, pgdat->node_id, (unsigned long)pgdat,
6867 (unsigned long)pgdat->node_mem_map);
6868 #ifndef CONFIG_NEED_MULTIPLE_NODES
6869 /*
6870 * With no DISCONTIG, the global mem_map is just set as node 0's
6871 */
6872 if (pgdat == NODE_DATA(0)) {
6873 mem_map = NODE_DATA(0)->node_mem_map;
6874 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6875 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6876 mem_map -= offset;
6877 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6878 }
6879 #endif
6880 }
6881 #else
6882 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6883 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6884
6885 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6886 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6887 {
6888 pgdat->first_deferred_pfn = ULONG_MAX;
6889 }
6890 #else
6891 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6892 #endif
6893
6894 void __init free_area_init_node(int nid, unsigned long *zones_size,
6895 unsigned long node_start_pfn,
6896 unsigned long *zholes_size)
6897 {
6898 pg_data_t *pgdat = NODE_DATA(nid);
6899 unsigned long start_pfn = 0;
6900 unsigned long end_pfn = 0;
6901
6902 /* pg_data_t should be reset to zero when it's allocated */
6903 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6904
6905 pgdat->node_id = nid;
6906 pgdat->node_start_pfn = node_start_pfn;
6907 pgdat->per_cpu_nodestats = NULL;
6908 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6909 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6910 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6911 (u64)start_pfn << PAGE_SHIFT,
6912 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6913 #else
6914 start_pfn = node_start_pfn;
6915 #endif
6916 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6917 zones_size, zholes_size);
6918
6919 alloc_node_mem_map(pgdat);
6920 pgdat_set_deferred_range(pgdat);
6921
6922 free_area_init_core(pgdat);
6923 }
6924
6925 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6926 /*
6927 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6928 * pages zeroed
6929 */
6930 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6931 {
6932 unsigned long pfn;
6933 u64 pgcnt = 0;
6934
6935 for (pfn = spfn; pfn < epfn; pfn++) {
6936 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6937 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6938 + pageblock_nr_pages - 1;
6939 continue;
6940 }
6941 mm_zero_struct_page(pfn_to_page(pfn));
6942 pgcnt++;
6943 }
6944
6945 return pgcnt;
6946 }
6947
6948 /*
6949 * Only struct pages that are backed by physical memory are zeroed and
6950 * initialized by going through __init_single_page(). But, there are some
6951 * struct pages which are reserved in memblock allocator and their fields
6952 * may be accessed (for example page_to_pfn() on some configuration accesses
6953 * flags). We must explicitly zero those struct pages.
6954 *
6955 * This function also addresses a similar issue where struct pages are left
6956 * uninitialized because the physical address range is not covered by
6957 * memblock.memory or memblock.reserved. That could happen when memblock
6958 * layout is manually configured via memmap=, or when the highest physical
6959 * address (max_pfn) does not end on a section boundary.
6960 */
6961 void __init zero_resv_unavail(void)
6962 {
6963 phys_addr_t start, end;
6964 u64 i, pgcnt;
6965 phys_addr_t next = 0;
6966
6967 /*
6968 * Loop through unavailable ranges not covered by memblock.memory.
6969 */
6970 pgcnt = 0;
6971 for_each_mem_range(i, &memblock.memory, NULL,
6972 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6973 if (next < start)
6974 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6975 next = end;
6976 }
6977
6978 /*
6979 * Early sections always have a fully populated memmap for the whole
6980 * section - see pfn_valid(). If the last section has holes at the
6981 * end and that section is marked "online", the memmap will be
6982 * considered initialized. Make sure that memmap has a well defined
6983 * state.
6984 */
6985 pgcnt += zero_pfn_range(PFN_DOWN(next),
6986 round_up(max_pfn, PAGES_PER_SECTION));
6987
6988 /*
6989 * Struct pages that do not have backing memory. This could be because
6990 * firmware is using some of this memory, or for some other reasons.
6991 */
6992 if (pgcnt)
6993 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6994 }
6995 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6996
6997 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6998
6999 #if MAX_NUMNODES > 1
7000 /*
7001 * Figure out the number of possible node ids.
7002 */
7003 void __init setup_nr_node_ids(void)
7004 {
7005 unsigned int highest;
7006
7007 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7008 nr_node_ids = highest + 1;
7009 }
7010 #endif
7011
7012 /**
7013 * node_map_pfn_alignment - determine the maximum internode alignment
7014 *
7015 * This function should be called after node map is populated and sorted.
7016 * It calculates the maximum power of two alignment which can distinguish
7017 * all the nodes.
7018 *
7019 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7020 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7021 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7022 * shifted, 1GiB is enough and this function will indicate so.
7023 *
7024 * This is used to test whether pfn -> nid mapping of the chosen memory
7025 * model has fine enough granularity to avoid incorrect mapping for the
7026 * populated node map.
7027 *
7028 * Return: the determined alignment in pfn's. 0 if there is no alignment
7029 * requirement (single node).
7030 */
7031 unsigned long __init node_map_pfn_alignment(void)
7032 {
7033 unsigned long accl_mask = 0, last_end = 0;
7034 unsigned long start, end, mask;
7035 int last_nid = NUMA_NO_NODE;
7036 int i, nid;
7037
7038 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7039 if (!start || last_nid < 0 || last_nid == nid) {
7040 last_nid = nid;
7041 last_end = end;
7042 continue;
7043 }
7044
7045 /*
7046 * Start with a mask granular enough to pin-point to the
7047 * start pfn and tick off bits one-by-one until it becomes
7048 * too coarse to separate the current node from the last.
7049 */
7050 mask = ~((1 << __ffs(start)) - 1);
7051 while (mask && last_end <= (start & (mask << 1)))
7052 mask <<= 1;
7053
7054 /* accumulate all internode masks */
7055 accl_mask |= mask;
7056 }
7057
7058 /* convert mask to number of pages */
7059 return ~accl_mask + 1;
7060 }
7061
7062 /* Find the lowest pfn for a node */
7063 static unsigned long __init find_min_pfn_for_node(int nid)
7064 {
7065 unsigned long min_pfn = ULONG_MAX;
7066 unsigned long start_pfn;
7067 int i;
7068
7069 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7070 min_pfn = min(min_pfn, start_pfn);
7071
7072 if (min_pfn == ULONG_MAX) {
7073 pr_warn("Could not find start_pfn for node %d\n", nid);
7074 return 0;
7075 }
7076
7077 return min_pfn;
7078 }
7079
7080 /**
7081 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7082 *
7083 * Return: the minimum PFN based on information provided via
7084 * memblock_set_node().
7085 */
7086 unsigned long __init find_min_pfn_with_active_regions(void)
7087 {
7088 return find_min_pfn_for_node(MAX_NUMNODES);
7089 }
7090
7091 /*
7092 * early_calculate_totalpages()
7093 * Sum pages in active regions for movable zone.
7094 * Populate N_MEMORY for calculating usable_nodes.
7095 */
7096 static unsigned long __init early_calculate_totalpages(void)
7097 {
7098 unsigned long totalpages = 0;
7099 unsigned long start_pfn, end_pfn;
7100 int i, nid;
7101
7102 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7103 unsigned long pages = end_pfn - start_pfn;
7104
7105 totalpages += pages;
7106 if (pages)
7107 node_set_state(nid, N_MEMORY);
7108 }
7109 return totalpages;
7110 }
7111
7112 /*
7113 * Find the PFN the Movable zone begins in each node. Kernel memory
7114 * is spread evenly between nodes as long as the nodes have enough
7115 * memory. When they don't, some nodes will have more kernelcore than
7116 * others
7117 */
7118 static void __init find_zone_movable_pfns_for_nodes(void)
7119 {
7120 int i, nid;
7121 unsigned long usable_startpfn;
7122 unsigned long kernelcore_node, kernelcore_remaining;
7123 /* save the state before borrow the nodemask */
7124 nodemask_t saved_node_state = node_states[N_MEMORY];
7125 unsigned long totalpages = early_calculate_totalpages();
7126 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7127 struct memblock_region *r;
7128
7129 /* Need to find movable_zone earlier when movable_node is specified. */
7130 find_usable_zone_for_movable();
7131
7132 /*
7133 * If movable_node is specified, ignore kernelcore and movablecore
7134 * options.
7135 */
7136 if (movable_node_is_enabled()) {
7137 for_each_memblock(memory, r) {
7138 if (!memblock_is_hotpluggable(r))
7139 continue;
7140
7141 nid = r->nid;
7142
7143 usable_startpfn = PFN_DOWN(r->base);
7144 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7145 min(usable_startpfn, zone_movable_pfn[nid]) :
7146 usable_startpfn;
7147 }
7148
7149 goto out2;
7150 }
7151
7152 /*
7153 * If kernelcore=mirror is specified, ignore movablecore option
7154 */
7155 if (mirrored_kernelcore) {
7156 bool mem_below_4gb_not_mirrored = false;
7157
7158 for_each_memblock(memory, r) {
7159 if (memblock_is_mirror(r))
7160 continue;
7161
7162 nid = r->nid;
7163
7164 usable_startpfn = memblock_region_memory_base_pfn(r);
7165
7166 if (usable_startpfn < 0x100000) {
7167 mem_below_4gb_not_mirrored = true;
7168 continue;
7169 }
7170
7171 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7172 min(usable_startpfn, zone_movable_pfn[nid]) :
7173 usable_startpfn;
7174 }
7175
7176 if (mem_below_4gb_not_mirrored)
7177 pr_warn("This configuration results in unmirrored kernel memory.");
7178
7179 goto out2;
7180 }
7181
7182 /*
7183 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7184 * amount of necessary memory.
7185 */
7186 if (required_kernelcore_percent)
7187 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7188 10000UL;
7189 if (required_movablecore_percent)
7190 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7191 10000UL;
7192
7193 /*
7194 * If movablecore= was specified, calculate what size of
7195 * kernelcore that corresponds so that memory usable for
7196 * any allocation type is evenly spread. If both kernelcore
7197 * and movablecore are specified, then the value of kernelcore
7198 * will be used for required_kernelcore if it's greater than
7199 * what movablecore would have allowed.
7200 */
7201 if (required_movablecore) {
7202 unsigned long corepages;
7203
7204 /*
7205 * Round-up so that ZONE_MOVABLE is at least as large as what
7206 * was requested by the user
7207 */
7208 required_movablecore =
7209 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7210 required_movablecore = min(totalpages, required_movablecore);
7211 corepages = totalpages - required_movablecore;
7212
7213 required_kernelcore = max(required_kernelcore, corepages);
7214 }
7215
7216 /*
7217 * If kernelcore was not specified or kernelcore size is larger
7218 * than totalpages, there is no ZONE_MOVABLE.
7219 */
7220 if (!required_kernelcore || required_kernelcore >= totalpages)
7221 goto out;
7222
7223 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7224 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7225
7226 restart:
7227 /* Spread kernelcore memory as evenly as possible throughout nodes */
7228 kernelcore_node = required_kernelcore / usable_nodes;
7229 for_each_node_state(nid, N_MEMORY) {
7230 unsigned long start_pfn, end_pfn;
7231
7232 /*
7233 * Recalculate kernelcore_node if the division per node
7234 * now exceeds what is necessary to satisfy the requested
7235 * amount of memory for the kernel
7236 */
7237 if (required_kernelcore < kernelcore_node)
7238 kernelcore_node = required_kernelcore / usable_nodes;
7239
7240 /*
7241 * As the map is walked, we track how much memory is usable
7242 * by the kernel using kernelcore_remaining. When it is
7243 * 0, the rest of the node is usable by ZONE_MOVABLE
7244 */
7245 kernelcore_remaining = kernelcore_node;
7246
7247 /* Go through each range of PFNs within this node */
7248 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7249 unsigned long size_pages;
7250
7251 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7252 if (start_pfn >= end_pfn)
7253 continue;
7254
7255 /* Account for what is only usable for kernelcore */
7256 if (start_pfn < usable_startpfn) {
7257 unsigned long kernel_pages;
7258 kernel_pages = min(end_pfn, usable_startpfn)
7259 - start_pfn;
7260
7261 kernelcore_remaining -= min(kernel_pages,
7262 kernelcore_remaining);
7263 required_kernelcore -= min(kernel_pages,
7264 required_kernelcore);
7265
7266 /* Continue if range is now fully accounted */
7267 if (end_pfn <= usable_startpfn) {
7268
7269 /*
7270 * Push zone_movable_pfn to the end so
7271 * that if we have to rebalance
7272 * kernelcore across nodes, we will
7273 * not double account here
7274 */
7275 zone_movable_pfn[nid] = end_pfn;
7276 continue;
7277 }
7278 start_pfn = usable_startpfn;
7279 }
7280
7281 /*
7282 * The usable PFN range for ZONE_MOVABLE is from
7283 * start_pfn->end_pfn. Calculate size_pages as the
7284 * number of pages used as kernelcore
7285 */
7286 size_pages = end_pfn - start_pfn;
7287 if (size_pages > kernelcore_remaining)
7288 size_pages = kernelcore_remaining;
7289 zone_movable_pfn[nid] = start_pfn + size_pages;
7290
7291 /*
7292 * Some kernelcore has been met, update counts and
7293 * break if the kernelcore for this node has been
7294 * satisfied
7295 */
7296 required_kernelcore -= min(required_kernelcore,
7297 size_pages);
7298 kernelcore_remaining -= size_pages;
7299 if (!kernelcore_remaining)
7300 break;
7301 }
7302 }
7303
7304 /*
7305 * If there is still required_kernelcore, we do another pass with one
7306 * less node in the count. This will push zone_movable_pfn[nid] further
7307 * along on the nodes that still have memory until kernelcore is
7308 * satisfied
7309 */
7310 usable_nodes--;
7311 if (usable_nodes && required_kernelcore > usable_nodes)
7312 goto restart;
7313
7314 out2:
7315 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7316 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7317 unsigned long start_pfn, end_pfn;
7318
7319 zone_movable_pfn[nid] =
7320 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7321
7322 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7323 if (zone_movable_pfn[nid] >= end_pfn)
7324 zone_movable_pfn[nid] = 0;
7325 }
7326
7327 out:
7328 /* restore the node_state */
7329 node_states[N_MEMORY] = saved_node_state;
7330 }
7331
7332 /* Any regular or high memory on that node ? */
7333 static void check_for_memory(pg_data_t *pgdat, int nid)
7334 {
7335 enum zone_type zone_type;
7336
7337 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7338 struct zone *zone = &pgdat->node_zones[zone_type];
7339 if (populated_zone(zone)) {
7340 if (IS_ENABLED(CONFIG_HIGHMEM))
7341 node_set_state(nid, N_HIGH_MEMORY);
7342 if (zone_type <= ZONE_NORMAL)
7343 node_set_state(nid, N_NORMAL_MEMORY);
7344 break;
7345 }
7346 }
7347 }
7348
7349 /**
7350 * free_area_init_nodes - Initialise all pg_data_t and zone data
7351 * @max_zone_pfn: an array of max PFNs for each zone
7352 *
7353 * This will call free_area_init_node() for each active node in the system.
7354 * Using the page ranges provided by memblock_set_node(), the size of each
7355 * zone in each node and their holes is calculated. If the maximum PFN
7356 * between two adjacent zones match, it is assumed that the zone is empty.
7357 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7358 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7359 * starts where the previous one ended. For example, ZONE_DMA32 starts
7360 * at arch_max_dma_pfn.
7361 */
7362 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7363 {
7364 unsigned long start_pfn, end_pfn;
7365 int i, nid;
7366
7367 /* Record where the zone boundaries are */
7368 memset(arch_zone_lowest_possible_pfn, 0,
7369 sizeof(arch_zone_lowest_possible_pfn));
7370 memset(arch_zone_highest_possible_pfn, 0,
7371 sizeof(arch_zone_highest_possible_pfn));
7372
7373 start_pfn = find_min_pfn_with_active_regions();
7374
7375 for (i = 0; i < MAX_NR_ZONES; i++) {
7376 if (i == ZONE_MOVABLE)
7377 continue;
7378
7379 end_pfn = max(max_zone_pfn[i], start_pfn);
7380 arch_zone_lowest_possible_pfn[i] = start_pfn;
7381 arch_zone_highest_possible_pfn[i] = end_pfn;
7382
7383 start_pfn = end_pfn;
7384 }
7385
7386 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7387 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7388 find_zone_movable_pfns_for_nodes();
7389
7390 /* Print out the zone ranges */
7391 pr_info("Zone ranges:\n");
7392 for (i = 0; i < MAX_NR_ZONES; i++) {
7393 if (i == ZONE_MOVABLE)
7394 continue;
7395 pr_info(" %-8s ", zone_names[i]);
7396 if (arch_zone_lowest_possible_pfn[i] ==
7397 arch_zone_highest_possible_pfn[i])
7398 pr_cont("empty\n");
7399 else
7400 pr_cont("[mem %#018Lx-%#018Lx]\n",
7401 (u64)arch_zone_lowest_possible_pfn[i]
7402 << PAGE_SHIFT,
7403 ((u64)arch_zone_highest_possible_pfn[i]
7404 << PAGE_SHIFT) - 1);
7405 }
7406
7407 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7408 pr_info("Movable zone start for each node\n");
7409 for (i = 0; i < MAX_NUMNODES; i++) {
7410 if (zone_movable_pfn[i])
7411 pr_info(" Node %d: %#018Lx\n", i,
7412 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7413 }
7414
7415 /*
7416 * Print out the early node map, and initialize the
7417 * subsection-map relative to active online memory ranges to
7418 * enable future "sub-section" extensions of the memory map.
7419 */
7420 pr_info("Early memory node ranges\n");
7421 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7422 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7423 (u64)start_pfn << PAGE_SHIFT,
7424 ((u64)end_pfn << PAGE_SHIFT) - 1);
7425 subsection_map_init(start_pfn, end_pfn - start_pfn);
7426 }
7427
7428 /* Initialise every node */
7429 mminit_verify_pageflags_layout();
7430 setup_nr_node_ids();
7431 zero_resv_unavail();
7432 for_each_online_node(nid) {
7433 pg_data_t *pgdat = NODE_DATA(nid);
7434 free_area_init_node(nid, NULL,
7435 find_min_pfn_for_node(nid), NULL);
7436
7437 /* Any memory on that node */
7438 if (pgdat->node_present_pages)
7439 node_set_state(nid, N_MEMORY);
7440 check_for_memory(pgdat, nid);
7441 }
7442 }
7443
7444 static int __init cmdline_parse_core(char *p, unsigned long *core,
7445 unsigned long *percent)
7446 {
7447 unsigned long long coremem;
7448 char *endptr;
7449
7450 if (!p)
7451 return -EINVAL;
7452
7453 /* Value may be a percentage of total memory, otherwise bytes */
7454 coremem = simple_strtoull(p, &endptr, 0);
7455 if (*endptr == '%') {
7456 /* Paranoid check for percent values greater than 100 */
7457 WARN_ON(coremem > 100);
7458
7459 *percent = coremem;
7460 } else {
7461 coremem = memparse(p, &p);
7462 /* Paranoid check that UL is enough for the coremem value */
7463 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7464
7465 *core = coremem >> PAGE_SHIFT;
7466 *percent = 0UL;
7467 }
7468 return 0;
7469 }
7470
7471 /*
7472 * kernelcore=size sets the amount of memory for use for allocations that
7473 * cannot be reclaimed or migrated.
7474 */
7475 static int __init cmdline_parse_kernelcore(char *p)
7476 {
7477 /* parse kernelcore=mirror */
7478 if (parse_option_str(p, "mirror")) {
7479 mirrored_kernelcore = true;
7480 return 0;
7481 }
7482
7483 return cmdline_parse_core(p, &required_kernelcore,
7484 &required_kernelcore_percent);
7485 }
7486
7487 /*
7488 * movablecore=size sets the amount of memory for use for allocations that
7489 * can be reclaimed or migrated.
7490 */
7491 static int __init cmdline_parse_movablecore(char *p)
7492 {
7493 return cmdline_parse_core(p, &required_movablecore,
7494 &required_movablecore_percent);
7495 }
7496
7497 early_param("kernelcore", cmdline_parse_kernelcore);
7498 early_param("movablecore", cmdline_parse_movablecore);
7499
7500 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7501
7502 void adjust_managed_page_count(struct page *page, long count)
7503 {
7504 atomic_long_add(count, &page_zone(page)->managed_pages);
7505 totalram_pages_add(count);
7506 #ifdef CONFIG_HIGHMEM
7507 if (PageHighMem(page))
7508 totalhigh_pages_add(count);
7509 #endif
7510 }
7511 EXPORT_SYMBOL(adjust_managed_page_count);
7512
7513 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7514 {
7515 void *pos;
7516 unsigned long pages = 0;
7517
7518 start = (void *)PAGE_ALIGN((unsigned long)start);
7519 end = (void *)((unsigned long)end & PAGE_MASK);
7520 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7521 struct page *page = virt_to_page(pos);
7522 void *direct_map_addr;
7523
7524 /*
7525 * 'direct_map_addr' might be different from 'pos'
7526 * because some architectures' virt_to_page()
7527 * work with aliases. Getting the direct map
7528 * address ensures that we get a _writeable_
7529 * alias for the memset().
7530 */
7531 direct_map_addr = page_address(page);
7532 if ((unsigned int)poison <= 0xFF)
7533 memset(direct_map_addr, poison, PAGE_SIZE);
7534
7535 free_reserved_page(page);
7536 }
7537
7538 if (pages && s)
7539 pr_info("Freeing %s memory: %ldK\n",
7540 s, pages << (PAGE_SHIFT - 10));
7541
7542 return pages;
7543 }
7544
7545 #ifdef CONFIG_HIGHMEM
7546 void free_highmem_page(struct page *page)
7547 {
7548 __free_reserved_page(page);
7549 totalram_pages_inc();
7550 atomic_long_inc(&page_zone(page)->managed_pages);
7551 totalhigh_pages_inc();
7552 }
7553 #endif
7554
7555
7556 void __init mem_init_print_info(const char *str)
7557 {
7558 unsigned long physpages, codesize, datasize, rosize, bss_size;
7559 unsigned long init_code_size, init_data_size;
7560
7561 physpages = get_num_physpages();
7562 codesize = _etext - _stext;
7563 datasize = _edata - _sdata;
7564 rosize = __end_rodata - __start_rodata;
7565 bss_size = __bss_stop - __bss_start;
7566 init_data_size = __init_end - __init_begin;
7567 init_code_size = _einittext - _sinittext;
7568
7569 /*
7570 * Detect special cases and adjust section sizes accordingly:
7571 * 1) .init.* may be embedded into .data sections
7572 * 2) .init.text.* may be out of [__init_begin, __init_end],
7573 * please refer to arch/tile/kernel/vmlinux.lds.S.
7574 * 3) .rodata.* may be embedded into .text or .data sections.
7575 */
7576 #define adj_init_size(start, end, size, pos, adj) \
7577 do { \
7578 if (start <= pos && pos < end && size > adj) \
7579 size -= adj; \
7580 } while (0)
7581
7582 adj_init_size(__init_begin, __init_end, init_data_size,
7583 _sinittext, init_code_size);
7584 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7585 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7586 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7587 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7588
7589 #undef adj_init_size
7590
7591 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7592 #ifdef CONFIG_HIGHMEM
7593 ", %luK highmem"
7594 #endif
7595 "%s%s)\n",
7596 nr_free_pages() << (PAGE_SHIFT - 10),
7597 physpages << (PAGE_SHIFT - 10),
7598 codesize >> 10, datasize >> 10, rosize >> 10,
7599 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7600 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7601 totalcma_pages << (PAGE_SHIFT - 10),
7602 #ifdef CONFIG_HIGHMEM
7603 totalhigh_pages() << (PAGE_SHIFT - 10),
7604 #endif
7605 str ? ", " : "", str ? str : "");
7606 }
7607
7608 /**
7609 * set_dma_reserve - set the specified number of pages reserved in the first zone
7610 * @new_dma_reserve: The number of pages to mark reserved
7611 *
7612 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7613 * In the DMA zone, a significant percentage may be consumed by kernel image
7614 * and other unfreeable allocations which can skew the watermarks badly. This
7615 * function may optionally be used to account for unfreeable pages in the
7616 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7617 * smaller per-cpu batchsize.
7618 */
7619 void __init set_dma_reserve(unsigned long new_dma_reserve)
7620 {
7621 dma_reserve = new_dma_reserve;
7622 }
7623
7624 void __init free_area_init(unsigned long *zones_size)
7625 {
7626 zero_resv_unavail();
7627 free_area_init_node(0, zones_size,
7628 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7629 }
7630
7631 static int page_alloc_cpu_dead(unsigned int cpu)
7632 {
7633
7634 lru_add_drain_cpu(cpu);
7635 drain_pages(cpu);
7636
7637 /*
7638 * Spill the event counters of the dead processor
7639 * into the current processors event counters.
7640 * This artificially elevates the count of the current
7641 * processor.
7642 */
7643 vm_events_fold_cpu(cpu);
7644
7645 /*
7646 * Zero the differential counters of the dead processor
7647 * so that the vm statistics are consistent.
7648 *
7649 * This is only okay since the processor is dead and cannot
7650 * race with what we are doing.
7651 */
7652 cpu_vm_stats_fold(cpu);
7653 return 0;
7654 }
7655
7656 #ifdef CONFIG_NUMA
7657 int hashdist = HASHDIST_DEFAULT;
7658
7659 static int __init set_hashdist(char *str)
7660 {
7661 if (!str)
7662 return 0;
7663 hashdist = simple_strtoul(str, &str, 0);
7664 return 1;
7665 }
7666 __setup("hashdist=", set_hashdist);
7667 #endif
7668
7669 void __init page_alloc_init(void)
7670 {
7671 int ret;
7672
7673 #ifdef CONFIG_NUMA
7674 if (num_node_state(N_MEMORY) == 1)
7675 hashdist = 0;
7676 #endif
7677
7678 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7679 "mm/page_alloc:dead", NULL,
7680 page_alloc_cpu_dead);
7681 WARN_ON(ret < 0);
7682 }
7683
7684 /*
7685 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7686 * or min_free_kbytes changes.
7687 */
7688 static void calculate_totalreserve_pages(void)
7689 {
7690 struct pglist_data *pgdat;
7691 unsigned long reserve_pages = 0;
7692 enum zone_type i, j;
7693
7694 for_each_online_pgdat(pgdat) {
7695
7696 pgdat->totalreserve_pages = 0;
7697
7698 for (i = 0; i < MAX_NR_ZONES; i++) {
7699 struct zone *zone = pgdat->node_zones + i;
7700 long max = 0;
7701 unsigned long managed_pages = zone_managed_pages(zone);
7702
7703 /* Find valid and maximum lowmem_reserve in the zone */
7704 for (j = i; j < MAX_NR_ZONES; j++) {
7705 if (zone->lowmem_reserve[j] > max)
7706 max = zone->lowmem_reserve[j];
7707 }
7708
7709 /* we treat the high watermark as reserved pages. */
7710 max += high_wmark_pages(zone);
7711
7712 if (max > managed_pages)
7713 max = managed_pages;
7714
7715 pgdat->totalreserve_pages += max;
7716
7717 reserve_pages += max;
7718 }
7719 }
7720 totalreserve_pages = reserve_pages;
7721 }
7722
7723 /*
7724 * setup_per_zone_lowmem_reserve - called whenever
7725 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7726 * has a correct pages reserved value, so an adequate number of
7727 * pages are left in the zone after a successful __alloc_pages().
7728 */
7729 static void setup_per_zone_lowmem_reserve(void)
7730 {
7731 struct pglist_data *pgdat;
7732 enum zone_type j, idx;
7733
7734 for_each_online_pgdat(pgdat) {
7735 for (j = 0; j < MAX_NR_ZONES; j++) {
7736 struct zone *zone = pgdat->node_zones + j;
7737 unsigned long managed_pages = zone_managed_pages(zone);
7738
7739 zone->lowmem_reserve[j] = 0;
7740
7741 idx = j;
7742 while (idx) {
7743 struct zone *lower_zone;
7744
7745 idx--;
7746 lower_zone = pgdat->node_zones + idx;
7747
7748 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7749 sysctl_lowmem_reserve_ratio[idx] = 0;
7750 lower_zone->lowmem_reserve[j] = 0;
7751 } else {
7752 lower_zone->lowmem_reserve[j] =
7753 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7754 }
7755 managed_pages += zone_managed_pages(lower_zone);
7756 }
7757 }
7758 }
7759
7760 /* update totalreserve_pages */
7761 calculate_totalreserve_pages();
7762 }
7763
7764 static void __setup_per_zone_wmarks(void)
7765 {
7766 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7767 unsigned long lowmem_pages = 0;
7768 struct zone *zone;
7769 unsigned long flags;
7770
7771 /* Calculate total number of !ZONE_HIGHMEM pages */
7772 for_each_zone(zone) {
7773 if (!is_highmem(zone))
7774 lowmem_pages += zone_managed_pages(zone);
7775 }
7776
7777 for_each_zone(zone) {
7778 u64 tmp;
7779
7780 spin_lock_irqsave(&zone->lock, flags);
7781 tmp = (u64)pages_min * zone_managed_pages(zone);
7782 do_div(tmp, lowmem_pages);
7783 if (is_highmem(zone)) {
7784 /*
7785 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7786 * need highmem pages, so cap pages_min to a small
7787 * value here.
7788 *
7789 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7790 * deltas control async page reclaim, and so should
7791 * not be capped for highmem.
7792 */
7793 unsigned long min_pages;
7794
7795 min_pages = zone_managed_pages(zone) / 1024;
7796 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7797 zone->_watermark[WMARK_MIN] = min_pages;
7798 } else {
7799 /*
7800 * If it's a lowmem zone, reserve a number of pages
7801 * proportionate to the zone's size.
7802 */
7803 zone->_watermark[WMARK_MIN] = tmp;
7804 }
7805
7806 /*
7807 * Set the kswapd watermarks distance according to the
7808 * scale factor in proportion to available memory, but
7809 * ensure a minimum size on small systems.
7810 */
7811 tmp = max_t(u64, tmp >> 2,
7812 mult_frac(zone_managed_pages(zone),
7813 watermark_scale_factor, 10000));
7814
7815 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7816 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7817 zone->watermark_boost = 0;
7818
7819 spin_unlock_irqrestore(&zone->lock, flags);
7820 }
7821
7822 /* update totalreserve_pages */
7823 calculate_totalreserve_pages();
7824 }
7825
7826 /**
7827 * setup_per_zone_wmarks - called when min_free_kbytes changes
7828 * or when memory is hot-{added|removed}
7829 *
7830 * Ensures that the watermark[min,low,high] values for each zone are set
7831 * correctly with respect to min_free_kbytes.
7832 */
7833 void setup_per_zone_wmarks(void)
7834 {
7835 static DEFINE_SPINLOCK(lock);
7836
7837 spin_lock(&lock);
7838 __setup_per_zone_wmarks();
7839 spin_unlock(&lock);
7840 }
7841
7842 /*
7843 * Initialise min_free_kbytes.
7844 *
7845 * For small machines we want it small (128k min). For large machines
7846 * we want it large (64MB max). But it is not linear, because network
7847 * bandwidth does not increase linearly with machine size. We use
7848 *
7849 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7850 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7851 *
7852 * which yields
7853 *
7854 * 16MB: 512k
7855 * 32MB: 724k
7856 * 64MB: 1024k
7857 * 128MB: 1448k
7858 * 256MB: 2048k
7859 * 512MB: 2896k
7860 * 1024MB: 4096k
7861 * 2048MB: 5792k
7862 * 4096MB: 8192k
7863 * 8192MB: 11584k
7864 * 16384MB: 16384k
7865 */
7866 int __meminit init_per_zone_wmark_min(void)
7867 {
7868 unsigned long lowmem_kbytes;
7869 int new_min_free_kbytes;
7870
7871 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7872 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7873
7874 if (new_min_free_kbytes > user_min_free_kbytes) {
7875 min_free_kbytes = new_min_free_kbytes;
7876 if (min_free_kbytes < 128)
7877 min_free_kbytes = 128;
7878 if (min_free_kbytes > 65536)
7879 min_free_kbytes = 65536;
7880 } else {
7881 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7882 new_min_free_kbytes, user_min_free_kbytes);
7883 }
7884 setup_per_zone_wmarks();
7885 refresh_zone_stat_thresholds();
7886 setup_per_zone_lowmem_reserve();
7887
7888 #ifdef CONFIG_NUMA
7889 setup_min_unmapped_ratio();
7890 setup_min_slab_ratio();
7891 #endif
7892
7893 khugepaged_min_free_kbytes_update();
7894
7895 return 0;
7896 }
7897 postcore_initcall(init_per_zone_wmark_min)
7898
7899 /*
7900 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7901 * that we can call two helper functions whenever min_free_kbytes
7902 * changes.
7903 */
7904 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7905 void __user *buffer, size_t *length, loff_t *ppos)
7906 {
7907 int rc;
7908
7909 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7910 if (rc)
7911 return rc;
7912
7913 if (write) {
7914 user_min_free_kbytes = min_free_kbytes;
7915 setup_per_zone_wmarks();
7916 }
7917 return 0;
7918 }
7919
7920 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7921 void __user *buffer, size_t *length, loff_t *ppos)
7922 {
7923 int rc;
7924
7925 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7926 if (rc)
7927 return rc;
7928
7929 return 0;
7930 }
7931
7932 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7933 void __user *buffer, size_t *length, loff_t *ppos)
7934 {
7935 int rc;
7936
7937 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7938 if (rc)
7939 return rc;
7940
7941 if (write)
7942 setup_per_zone_wmarks();
7943
7944 return 0;
7945 }
7946
7947 #ifdef CONFIG_NUMA
7948 static void setup_min_unmapped_ratio(void)
7949 {
7950 pg_data_t *pgdat;
7951 struct zone *zone;
7952
7953 for_each_online_pgdat(pgdat)
7954 pgdat->min_unmapped_pages = 0;
7955
7956 for_each_zone(zone)
7957 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7958 sysctl_min_unmapped_ratio) / 100;
7959 }
7960
7961
7962 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7963 void __user *buffer, size_t *length, loff_t *ppos)
7964 {
7965 int rc;
7966
7967 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7968 if (rc)
7969 return rc;
7970
7971 setup_min_unmapped_ratio();
7972
7973 return 0;
7974 }
7975
7976 static void setup_min_slab_ratio(void)
7977 {
7978 pg_data_t *pgdat;
7979 struct zone *zone;
7980
7981 for_each_online_pgdat(pgdat)
7982 pgdat->min_slab_pages = 0;
7983
7984 for_each_zone(zone)
7985 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7986 sysctl_min_slab_ratio) / 100;
7987 }
7988
7989 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7990 void __user *buffer, size_t *length, loff_t *ppos)
7991 {
7992 int rc;
7993
7994 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7995 if (rc)
7996 return rc;
7997
7998 setup_min_slab_ratio();
7999
8000 return 0;
8001 }
8002 #endif
8003
8004 /*
8005 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8006 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8007 * whenever sysctl_lowmem_reserve_ratio changes.
8008 *
8009 * The reserve ratio obviously has absolutely no relation with the
8010 * minimum watermarks. The lowmem reserve ratio can only make sense
8011 * if in function of the boot time zone sizes.
8012 */
8013 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8014 void __user *buffer, size_t *length, loff_t *ppos)
8015 {
8016 proc_dointvec_minmax(table, write, buffer, length, ppos);
8017 setup_per_zone_lowmem_reserve();
8018 return 0;
8019 }
8020
8021 /*
8022 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8023 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8024 * pagelist can have before it gets flushed back to buddy allocator.
8025 */
8026 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8027 void __user *buffer, size_t *length, loff_t *ppos)
8028 {
8029 struct zone *zone;
8030 int old_percpu_pagelist_fraction;
8031 int ret;
8032
8033 mutex_lock(&pcp_batch_high_lock);
8034 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8035
8036 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8037 if (!write || ret < 0)
8038 goto out;
8039
8040 /* Sanity checking to avoid pcp imbalance */
8041 if (percpu_pagelist_fraction &&
8042 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8043 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8044 ret = -EINVAL;
8045 goto out;
8046 }
8047
8048 /* No change? */
8049 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8050 goto out;
8051
8052 for_each_populated_zone(zone) {
8053 unsigned int cpu;
8054
8055 for_each_possible_cpu(cpu)
8056 pageset_set_high_and_batch(zone,
8057 per_cpu_ptr(zone->pageset, cpu));
8058 }
8059 out:
8060 mutex_unlock(&pcp_batch_high_lock);
8061 return ret;
8062 }
8063
8064 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8065 /*
8066 * Returns the number of pages that arch has reserved but
8067 * is not known to alloc_large_system_hash().
8068 */
8069 static unsigned long __init arch_reserved_kernel_pages(void)
8070 {
8071 return 0;
8072 }
8073 #endif
8074
8075 /*
8076 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8077 * machines. As memory size is increased the scale is also increased but at
8078 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8079 * quadruples the scale is increased by one, which means the size of hash table
8080 * only doubles, instead of quadrupling as well.
8081 * Because 32-bit systems cannot have large physical memory, where this scaling
8082 * makes sense, it is disabled on such platforms.
8083 */
8084 #if __BITS_PER_LONG > 32
8085 #define ADAPT_SCALE_BASE (64ul << 30)
8086 #define ADAPT_SCALE_SHIFT 2
8087 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8088 #endif
8089
8090 /*
8091 * allocate a large system hash table from bootmem
8092 * - it is assumed that the hash table must contain an exact power-of-2
8093 * quantity of entries
8094 * - limit is the number of hash buckets, not the total allocation size
8095 */
8096 void *__init alloc_large_system_hash(const char *tablename,
8097 unsigned long bucketsize,
8098 unsigned long numentries,
8099 int scale,
8100 int flags,
8101 unsigned int *_hash_shift,
8102 unsigned int *_hash_mask,
8103 unsigned long low_limit,
8104 unsigned long high_limit)
8105 {
8106 unsigned long long max = high_limit;
8107 unsigned long log2qty, size;
8108 void *table = NULL;
8109 gfp_t gfp_flags;
8110 bool virt;
8111
8112 /* allow the kernel cmdline to have a say */
8113 if (!numentries) {
8114 /* round applicable memory size up to nearest megabyte */
8115 numentries = nr_kernel_pages;
8116 numentries -= arch_reserved_kernel_pages();
8117
8118 /* It isn't necessary when PAGE_SIZE >= 1MB */
8119 if (PAGE_SHIFT < 20)
8120 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8121
8122 #if __BITS_PER_LONG > 32
8123 if (!high_limit) {
8124 unsigned long adapt;
8125
8126 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8127 adapt <<= ADAPT_SCALE_SHIFT)
8128 scale++;
8129 }
8130 #endif
8131
8132 /* limit to 1 bucket per 2^scale bytes of low memory */
8133 if (scale > PAGE_SHIFT)
8134 numentries >>= (scale - PAGE_SHIFT);
8135 else
8136 numentries <<= (PAGE_SHIFT - scale);
8137
8138 /* Make sure we've got at least a 0-order allocation.. */
8139 if (unlikely(flags & HASH_SMALL)) {
8140 /* Makes no sense without HASH_EARLY */
8141 WARN_ON(!(flags & HASH_EARLY));
8142 if (!(numentries >> *_hash_shift)) {
8143 numentries = 1UL << *_hash_shift;
8144 BUG_ON(!numentries);
8145 }
8146 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8147 numentries = PAGE_SIZE / bucketsize;
8148 }
8149 numentries = roundup_pow_of_two(numentries);
8150
8151 /* limit allocation size to 1/16 total memory by default */
8152 if (max == 0) {
8153 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8154 do_div(max, bucketsize);
8155 }
8156 max = min(max, 0x80000000ULL);
8157
8158 if (numentries < low_limit)
8159 numentries = low_limit;
8160 if (numentries > max)
8161 numentries = max;
8162
8163 log2qty = ilog2(numentries);
8164
8165 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8166 do {
8167 virt = false;
8168 size = bucketsize << log2qty;
8169 if (flags & HASH_EARLY) {
8170 if (flags & HASH_ZERO)
8171 table = memblock_alloc(size, SMP_CACHE_BYTES);
8172 else
8173 table = memblock_alloc_raw(size,
8174 SMP_CACHE_BYTES);
8175 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8176 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8177 virt = true;
8178 } else {
8179 /*
8180 * If bucketsize is not a power-of-two, we may free
8181 * some pages at the end of hash table which
8182 * alloc_pages_exact() automatically does
8183 */
8184 table = alloc_pages_exact(size, gfp_flags);
8185 kmemleak_alloc(table, size, 1, gfp_flags);
8186 }
8187 } while (!table && size > PAGE_SIZE && --log2qty);
8188
8189 if (!table)
8190 panic("Failed to allocate %s hash table\n", tablename);
8191
8192 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8193 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8194 virt ? "vmalloc" : "linear");
8195
8196 if (_hash_shift)
8197 *_hash_shift = log2qty;
8198 if (_hash_mask)
8199 *_hash_mask = (1 << log2qty) - 1;
8200
8201 return table;
8202 }
8203
8204 /*
8205 * This function checks whether pageblock includes unmovable pages or not.
8206 * If @count is not zero, it is okay to include less @count unmovable pages
8207 *
8208 * PageLRU check without isolation or lru_lock could race so that
8209 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8210 * check without lock_page also may miss some movable non-lru pages at
8211 * race condition. So you can't expect this function should be exact.
8212 */
8213 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8214 int migratetype, int flags)
8215 {
8216 unsigned long found;
8217 unsigned long iter = 0;
8218 unsigned long pfn = page_to_pfn(page);
8219 const char *reason = "unmovable page";
8220
8221 /*
8222 * TODO we could make this much more efficient by not checking every
8223 * page in the range if we know all of them are in MOVABLE_ZONE and
8224 * that the movable zone guarantees that pages are migratable but
8225 * the later is not the case right now unfortunatelly. E.g. movablecore
8226 * can still lead to having bootmem allocations in zone_movable.
8227 */
8228
8229 if (is_migrate_cma_page(page)) {
8230 /*
8231 * CMA allocations (alloc_contig_range) really need to mark
8232 * isolate CMA pageblocks even when they are not movable in fact
8233 * so consider them movable here.
8234 */
8235 if (is_migrate_cma(migratetype))
8236 return false;
8237
8238 reason = "CMA page";
8239 goto unmovable;
8240 }
8241
8242 for (found = 0; iter < pageblock_nr_pages; iter++) {
8243 unsigned long check = pfn + iter;
8244
8245 if (!pfn_valid_within(check))
8246 continue;
8247
8248 page = pfn_to_page(check);
8249
8250 if (PageReserved(page))
8251 goto unmovable;
8252
8253 /*
8254 * If the zone is movable and we have ruled out all reserved
8255 * pages then it should be reasonably safe to assume the rest
8256 * is movable.
8257 */
8258 if (zone_idx(zone) == ZONE_MOVABLE)
8259 continue;
8260
8261 /*
8262 * Hugepages are not in LRU lists, but they're movable.
8263 * We need not scan over tail pages because we don't
8264 * handle each tail page individually in migration.
8265 */
8266 if (PageHuge(page)) {
8267 struct page *head = compound_head(page);
8268 unsigned int skip_pages;
8269
8270 if (!hugepage_migration_supported(page_hstate(head)))
8271 goto unmovable;
8272
8273 skip_pages = compound_nr(head) - (page - head);
8274 iter += skip_pages - 1;
8275 continue;
8276 }
8277
8278 /*
8279 * We can't use page_count without pin a page
8280 * because another CPU can free compound page.
8281 * This check already skips compound tails of THP
8282 * because their page->_refcount is zero at all time.
8283 */
8284 if (!page_ref_count(page)) {
8285 if (PageBuddy(page))
8286 iter += (1 << page_order(page)) - 1;
8287 continue;
8288 }
8289
8290 /*
8291 * The HWPoisoned page may be not in buddy system, and
8292 * page_count() is not 0.
8293 */
8294 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8295 continue;
8296
8297 if (__PageMovable(page))
8298 continue;
8299
8300 if (!PageLRU(page))
8301 found++;
8302 /*
8303 * If there are RECLAIMABLE pages, we need to check
8304 * it. But now, memory offline itself doesn't call
8305 * shrink_node_slabs() and it still to be fixed.
8306 */
8307 /*
8308 * If the page is not RAM, page_count()should be 0.
8309 * we don't need more check. This is an _used_ not-movable page.
8310 *
8311 * The problematic thing here is PG_reserved pages. PG_reserved
8312 * is set to both of a memory hole page and a _used_ kernel
8313 * page at boot.
8314 */
8315 if (found > count)
8316 goto unmovable;
8317 }
8318 return false;
8319 unmovable:
8320 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8321 if (flags & REPORT_FAILURE)
8322 dump_page(pfn_to_page(pfn + iter), reason);
8323 return true;
8324 }
8325
8326 #ifdef CONFIG_CONTIG_ALLOC
8327 static unsigned long pfn_max_align_down(unsigned long pfn)
8328 {
8329 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8330 pageblock_nr_pages) - 1);
8331 }
8332
8333 static unsigned long pfn_max_align_up(unsigned long pfn)
8334 {
8335 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8336 pageblock_nr_pages));
8337 }
8338
8339 /* [start, end) must belong to a single zone. */
8340 static int __alloc_contig_migrate_range(struct compact_control *cc,
8341 unsigned long start, unsigned long end)
8342 {
8343 /* This function is based on compact_zone() from compaction.c. */
8344 unsigned long nr_reclaimed;
8345 unsigned long pfn = start;
8346 unsigned int tries = 0;
8347 int ret = 0;
8348
8349 migrate_prep();
8350
8351 while (pfn < end || !list_empty(&cc->migratepages)) {
8352 if (fatal_signal_pending(current)) {
8353 ret = -EINTR;
8354 break;
8355 }
8356
8357 if (list_empty(&cc->migratepages)) {
8358 cc->nr_migratepages = 0;
8359 pfn = isolate_migratepages_range(cc, pfn, end);
8360 if (!pfn) {
8361 ret = -EINTR;
8362 break;
8363 }
8364 tries = 0;
8365 } else if (++tries == 5) {
8366 ret = ret < 0 ? ret : -EBUSY;
8367 break;
8368 }
8369
8370 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8371 &cc->migratepages);
8372 cc->nr_migratepages -= nr_reclaimed;
8373
8374 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8375 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8376 }
8377 if (ret < 0) {
8378 putback_movable_pages(&cc->migratepages);
8379 return ret;
8380 }
8381 return 0;
8382 }
8383
8384 /**
8385 * alloc_contig_range() -- tries to allocate given range of pages
8386 * @start: start PFN to allocate
8387 * @end: one-past-the-last PFN to allocate
8388 * @migratetype: migratetype of the underlaying pageblocks (either
8389 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8390 * in range must have the same migratetype and it must
8391 * be either of the two.
8392 * @gfp_mask: GFP mask to use during compaction
8393 *
8394 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8395 * aligned. The PFN range must belong to a single zone.
8396 *
8397 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8398 * pageblocks in the range. Once isolated, the pageblocks should not
8399 * be modified by others.
8400 *
8401 * Return: zero on success or negative error code. On success all
8402 * pages which PFN is in [start, end) are allocated for the caller and
8403 * need to be freed with free_contig_range().
8404 */
8405 int alloc_contig_range(unsigned long start, unsigned long end,
8406 unsigned migratetype, gfp_t gfp_mask)
8407 {
8408 unsigned long outer_start, outer_end;
8409 unsigned int order;
8410 int ret = 0;
8411
8412 struct compact_control cc = {
8413 .nr_migratepages = 0,
8414 .order = -1,
8415 .zone = page_zone(pfn_to_page(start)),
8416 .mode = MIGRATE_SYNC,
8417 .ignore_skip_hint = true,
8418 .no_set_skip_hint = true,
8419 .gfp_mask = current_gfp_context(gfp_mask),
8420 };
8421 INIT_LIST_HEAD(&cc.migratepages);
8422
8423 /*
8424 * What we do here is we mark all pageblocks in range as
8425 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8426 * have different sizes, and due to the way page allocator
8427 * work, we align the range to biggest of the two pages so
8428 * that page allocator won't try to merge buddies from
8429 * different pageblocks and change MIGRATE_ISOLATE to some
8430 * other migration type.
8431 *
8432 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8433 * migrate the pages from an unaligned range (ie. pages that
8434 * we are interested in). This will put all the pages in
8435 * range back to page allocator as MIGRATE_ISOLATE.
8436 *
8437 * When this is done, we take the pages in range from page
8438 * allocator removing them from the buddy system. This way
8439 * page allocator will never consider using them.
8440 *
8441 * This lets us mark the pageblocks back as
8442 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8443 * aligned range but not in the unaligned, original range are
8444 * put back to page allocator so that buddy can use them.
8445 */
8446
8447 ret = start_isolate_page_range(pfn_max_align_down(start),
8448 pfn_max_align_up(end), migratetype, 0);
8449 if (ret < 0)
8450 return ret;
8451
8452 /*
8453 * In case of -EBUSY, we'd like to know which page causes problem.
8454 * So, just fall through. test_pages_isolated() has a tracepoint
8455 * which will report the busy page.
8456 *
8457 * It is possible that busy pages could become available before
8458 * the call to test_pages_isolated, and the range will actually be
8459 * allocated. So, if we fall through be sure to clear ret so that
8460 * -EBUSY is not accidentally used or returned to caller.
8461 */
8462 ret = __alloc_contig_migrate_range(&cc, start, end);
8463 if (ret && ret != -EBUSY)
8464 goto done;
8465 ret =0;
8466
8467 /*
8468 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8469 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8470 * more, all pages in [start, end) are free in page allocator.
8471 * What we are going to do is to allocate all pages from
8472 * [start, end) (that is remove them from page allocator).
8473 *
8474 * The only problem is that pages at the beginning and at the
8475 * end of interesting range may be not aligned with pages that
8476 * page allocator holds, ie. they can be part of higher order
8477 * pages. Because of this, we reserve the bigger range and
8478 * once this is done free the pages we are not interested in.
8479 *
8480 * We don't have to hold zone->lock here because the pages are
8481 * isolated thus they won't get removed from buddy.
8482 */
8483
8484 lru_add_drain_all();
8485
8486 order = 0;
8487 outer_start = start;
8488 while (!PageBuddy(pfn_to_page(outer_start))) {
8489 if (++order >= MAX_ORDER) {
8490 outer_start = start;
8491 break;
8492 }
8493 outer_start &= ~0UL << order;
8494 }
8495
8496 if (outer_start != start) {
8497 order = page_order(pfn_to_page(outer_start));
8498
8499 /*
8500 * outer_start page could be small order buddy page and
8501 * it doesn't include start page. Adjust outer_start
8502 * in this case to report failed page properly
8503 * on tracepoint in test_pages_isolated()
8504 */
8505 if (outer_start + (1UL << order) <= start)
8506 outer_start = start;
8507 }
8508
8509 /* Make sure the range is really isolated. */
8510 if (test_pages_isolated(outer_start, end, false)) {
8511 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8512 __func__, outer_start, end);
8513 ret = -EBUSY;
8514 goto done;
8515 }
8516
8517 /* Grab isolated pages from freelists. */
8518 outer_end = isolate_freepages_range(&cc, outer_start, end);
8519 if (!outer_end) {
8520 ret = -EBUSY;
8521 goto done;
8522 }
8523
8524 /* Free head and tail (if any) */
8525 if (start != outer_start)
8526 free_contig_range(outer_start, start - outer_start);
8527 if (end != outer_end)
8528 free_contig_range(end, outer_end - end);
8529
8530 done:
8531 undo_isolate_page_range(pfn_max_align_down(start),
8532 pfn_max_align_up(end), migratetype);
8533 return ret;
8534 }
8535 #endif /* CONFIG_CONTIG_ALLOC */
8536
8537 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8538 {
8539 unsigned int count = 0;
8540
8541 for (; nr_pages--; pfn++) {
8542 struct page *page = pfn_to_page(pfn);
8543
8544 count += page_count(page) != 1;
8545 __free_page(page);
8546 }
8547 WARN(count != 0, "%d pages are still in use!\n", count);
8548 }
8549
8550 /*
8551 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8552 * page high values need to be recalulated.
8553 */
8554 void __meminit zone_pcp_update(struct zone *zone)
8555 {
8556 unsigned cpu;
8557 mutex_lock(&pcp_batch_high_lock);
8558 for_each_possible_cpu(cpu)
8559 pageset_set_high_and_batch(zone,
8560 per_cpu_ptr(zone->pageset, cpu));
8561 mutex_unlock(&pcp_batch_high_lock);
8562 }
8563
8564 void zone_pcp_reset(struct zone *zone)
8565 {
8566 unsigned long flags;
8567 int cpu;
8568 struct per_cpu_pageset *pset;
8569
8570 /* avoid races with drain_pages() */
8571 local_irq_save(flags);
8572 if (zone->pageset != &boot_pageset) {
8573 for_each_online_cpu(cpu) {
8574 pset = per_cpu_ptr(zone->pageset, cpu);
8575 drain_zonestat(zone, pset);
8576 }
8577 free_percpu(zone->pageset);
8578 zone->pageset = &boot_pageset;
8579 }
8580 local_irq_restore(flags);
8581 }
8582
8583 #ifdef CONFIG_MEMORY_HOTREMOVE
8584 /*
8585 * All pages in the range must be in a single zone and isolated
8586 * before calling this.
8587 */
8588 unsigned long
8589 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8590 {
8591 struct page *page;
8592 struct zone *zone;
8593 unsigned int order, i;
8594 unsigned long pfn;
8595 unsigned long flags;
8596 unsigned long offlined_pages = 0;
8597
8598 /* find the first valid pfn */
8599 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8600 if (pfn_valid(pfn))
8601 break;
8602 if (pfn == end_pfn)
8603 return offlined_pages;
8604
8605 offline_mem_sections(pfn, end_pfn);
8606 zone = page_zone(pfn_to_page(pfn));
8607 spin_lock_irqsave(&zone->lock, flags);
8608 pfn = start_pfn;
8609 while (pfn < end_pfn) {
8610 if (!pfn_valid(pfn)) {
8611 pfn++;
8612 continue;
8613 }
8614 page = pfn_to_page(pfn);
8615 /*
8616 * The HWPoisoned page may be not in buddy system, and
8617 * page_count() is not 0.
8618 */
8619 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8620 pfn++;
8621 SetPageReserved(page);
8622 offlined_pages++;
8623 continue;
8624 }
8625
8626 BUG_ON(page_count(page));
8627 BUG_ON(!PageBuddy(page));
8628 order = page_order(page);
8629 offlined_pages += 1 << order;
8630 #ifdef CONFIG_DEBUG_VM
8631 pr_info("remove from free list %lx %d %lx\n",
8632 pfn, 1 << order, end_pfn);
8633 #endif
8634 del_page_from_free_area(page, &zone->free_area[order]);
8635 for (i = 0; i < (1 << order); i++)
8636 SetPageReserved((page+i));
8637 pfn += (1 << order);
8638 }
8639 spin_unlock_irqrestore(&zone->lock, flags);
8640
8641 return offlined_pages;
8642 }
8643 #endif
8644
8645 bool is_free_buddy_page(struct page *page)
8646 {
8647 struct zone *zone = page_zone(page);
8648 unsigned long pfn = page_to_pfn(page);
8649 unsigned long flags;
8650 unsigned int order;
8651
8652 spin_lock_irqsave(&zone->lock, flags);
8653 for (order = 0; order < MAX_ORDER; order++) {
8654 struct page *page_head = page - (pfn & ((1 << order) - 1));
8655
8656 if (PageBuddy(page_head) && page_order(page_head) >= order)
8657 break;
8658 }
8659 spin_unlock_irqrestore(&zone->lock, flags);
8660
8661 return order < MAX_ORDER;
8662 }
8663
8664 #ifdef CONFIG_MEMORY_FAILURE
8665 /*
8666 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8667 * test is performed under the zone lock to prevent a race against page
8668 * allocation.
8669 */
8670 bool set_hwpoison_free_buddy_page(struct page *page)
8671 {
8672 struct zone *zone = page_zone(page);
8673 unsigned long pfn = page_to_pfn(page);
8674 unsigned long flags;
8675 unsigned int order;
8676 bool hwpoisoned = false;
8677
8678 spin_lock_irqsave(&zone->lock, flags);
8679 for (order = 0; order < MAX_ORDER; order++) {
8680 struct page *page_head = page - (pfn & ((1 << order) - 1));
8681
8682 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8683 if (!TestSetPageHWPoison(page))
8684 hwpoisoned = true;
8685 break;
8686 }
8687 }
8688 spin_unlock_irqrestore(&zone->lock, flags);
8689
8690 return hwpoisoned;
8691 }
8692 #endif
8693
8694 #ifdef CONFIG_ZONE_DMA
8695 bool has_managed_dma(void)
8696 {
8697 struct pglist_data *pgdat;
8698
8699 for_each_online_pgdat(pgdat) {
8700 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
8701
8702 if (managed_zone(zone))
8703 return true;
8704 }
8705 return false;
8706 }
8707 #endif /* CONFIG_ZONE_DMA */