]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
afs: Fix VNOVOL handling in address rotation
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <xen/xen.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76
77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78 static DEFINE_MUTEX(pcp_batch_high_lock);
79 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80
81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82 DEFINE_PER_CPU(int, numa_node);
83 EXPORT_PER_CPU_SYMBOL(numa_node);
84 #endif
85
86 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
87
88 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 /*
90 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
91 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
92 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
93 * defined in <linux/topology.h>.
94 */
95 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
96 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
97 int _node_numa_mem_[MAX_NUMNODES];
98 #endif
99
100 /* work_structs for global per-cpu drains */
101 DEFINE_MUTEX(pcpu_drain_mutex);
102 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
103
104 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
105 volatile unsigned long latent_entropy __latent_entropy;
106 EXPORT_SYMBOL(latent_entropy);
107 #endif
108
109 /*
110 * Array of node states.
111 */
112 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
113 [N_POSSIBLE] = NODE_MASK_ALL,
114 [N_ONLINE] = { { [0] = 1UL } },
115 #ifndef CONFIG_NUMA
116 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
117 #ifdef CONFIG_HIGHMEM
118 [N_HIGH_MEMORY] = { { [0] = 1UL } },
119 #endif
120 [N_MEMORY] = { { [0] = 1UL } },
121 [N_CPU] = { { [0] = 1UL } },
122 #endif /* NUMA */
123 };
124 EXPORT_SYMBOL(node_states);
125
126 /* Protect totalram_pages and zone->managed_pages */
127 static DEFINE_SPINLOCK(managed_page_count_lock);
128
129 unsigned long totalram_pages __read_mostly;
130 unsigned long totalreserve_pages __read_mostly;
131 unsigned long totalcma_pages __read_mostly;
132
133 int percpu_pagelist_fraction;
134 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
135
136 /*
137 * A cached value of the page's pageblock's migratetype, used when the page is
138 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
139 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
140 * Also the migratetype set in the page does not necessarily match the pcplist
141 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
142 * other index - this ensures that it will be put on the correct CMA freelist.
143 */
144 static inline int get_pcppage_migratetype(struct page *page)
145 {
146 return page->index;
147 }
148
149 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
150 {
151 page->index = migratetype;
152 }
153
154 #ifdef CONFIG_PM_SLEEP
155 /*
156 * The following functions are used by the suspend/hibernate code to temporarily
157 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
158 * while devices are suspended. To avoid races with the suspend/hibernate code,
159 * they should always be called with pm_mutex held (gfp_allowed_mask also should
160 * only be modified with pm_mutex held, unless the suspend/hibernate code is
161 * guaranteed not to run in parallel with that modification).
162 */
163
164 static gfp_t saved_gfp_mask;
165
166 void pm_restore_gfp_mask(void)
167 {
168 WARN_ON(!mutex_is_locked(&pm_mutex));
169 if (saved_gfp_mask) {
170 gfp_allowed_mask = saved_gfp_mask;
171 saved_gfp_mask = 0;
172 }
173 }
174
175 void pm_restrict_gfp_mask(void)
176 {
177 WARN_ON(!mutex_is_locked(&pm_mutex));
178 WARN_ON(saved_gfp_mask);
179 saved_gfp_mask = gfp_allowed_mask;
180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181 }
182
183 bool pm_suspended_storage(void)
184 {
185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 return false;
187 return true;
188 }
189 #endif /* CONFIG_PM_SLEEP */
190
191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192 unsigned int pageblock_order __read_mostly;
193 #endif
194
195 static void __free_pages_ok(struct page *page, unsigned int order);
196
197 /*
198 * results with 256, 32 in the lowmem_reserve sysctl:
199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200 * 1G machine -> (16M dma, 784M normal, 224M high)
201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 *
205 * TBD: should special case ZONE_DMA32 machines here - in those we normally
206 * don't need any ZONE_NORMAL reservation
207 */
208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
209 #ifdef CONFIG_ZONE_DMA
210 256,
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
213 256,
214 #endif
215 #ifdef CONFIG_HIGHMEM
216 32,
217 #endif
218 32,
219 };
220
221 EXPORT_SYMBOL(totalram_pages);
222
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
225 "DMA",
226 #endif
227 #ifdef CONFIG_ZONE_DMA32
228 "DMA32",
229 #endif
230 "Normal",
231 #ifdef CONFIG_HIGHMEM
232 "HighMem",
233 #endif
234 "Movable",
235 #ifdef CONFIG_ZONE_DEVICE
236 "Device",
237 #endif
238 };
239
240 char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245 #ifdef CONFIG_CMA
246 "CMA",
247 #endif
248 #ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250 #endif
251 };
252
253 compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256 #ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258 #endif
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261 #endif
262 };
263
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
267
268 static unsigned long __meminitdata nr_kernel_pages;
269 static unsigned long __meminitdata nr_all_pages;
270 static unsigned long __meminitdata dma_reserve;
271
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
274 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
275 static unsigned long __initdata required_kernelcore;
276 static unsigned long __initdata required_movablecore;
277 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
278 static bool mirrored_kernelcore;
279
280 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
281 int movable_zone;
282 EXPORT_SYMBOL(movable_zone);
283 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
284
285 #if MAX_NUMNODES > 1
286 int nr_node_ids __read_mostly = MAX_NUMNODES;
287 int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
291
292 int page_group_by_mobility_disabled __read_mostly;
293
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295
296 /*
297 * Determine how many pages need to be initialized durig early boot
298 * (non-deferred initialization).
299 * The value of first_deferred_pfn will be set later, once non-deferred pages
300 * are initialized, but for now set it ULONG_MAX.
301 */
302 static inline void reset_deferred_meminit(pg_data_t *pgdat)
303 {
304 phys_addr_t start_addr, end_addr;
305 unsigned long max_pgcnt;
306 unsigned long reserved;
307
308 /*
309 * Initialise at least 2G of a node but also take into account that
310 * two large system hashes that can take up 1GB for 0.25TB/node.
311 */
312 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
313 (pgdat->node_spanned_pages >> 8));
314
315 /*
316 * Compensate the all the memblock reservations (e.g. crash kernel)
317 * from the initial estimation to make sure we will initialize enough
318 * memory to boot.
319 */
320 start_addr = PFN_PHYS(pgdat->node_start_pfn);
321 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
322 reserved = memblock_reserved_memory_within(start_addr, end_addr);
323 max_pgcnt += PHYS_PFN(reserved);
324
325 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
326 pgdat->first_deferred_pfn = ULONG_MAX;
327 }
328
329 /* Returns true if the struct page for the pfn is uninitialised */
330 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
331 {
332 int nid = early_pfn_to_nid(pfn);
333
334 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
335 return true;
336
337 return false;
338 }
339
340 /*
341 * Returns false when the remaining initialisation should be deferred until
342 * later in the boot cycle when it can be parallelised.
343 */
344 static inline bool update_defer_init(pg_data_t *pgdat,
345 unsigned long pfn, unsigned long zone_end,
346 unsigned long *nr_initialised)
347 {
348 /* Always populate low zones for address-contrained allocations */
349 if (zone_end < pgdat_end_pfn(pgdat))
350 return true;
351 /* Xen PV domains need page structures early */
352 if (xen_pv_domain())
353 return true;
354 (*nr_initialised)++;
355 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
356 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
357 pgdat->first_deferred_pfn = pfn;
358 return false;
359 }
360
361 return true;
362 }
363 #else
364 static inline void reset_deferred_meminit(pg_data_t *pgdat)
365 {
366 }
367
368 static inline bool early_page_uninitialised(unsigned long pfn)
369 {
370 return false;
371 }
372
373 static inline bool update_defer_init(pg_data_t *pgdat,
374 unsigned long pfn, unsigned long zone_end,
375 unsigned long *nr_initialised)
376 {
377 return true;
378 }
379 #endif
380
381 /* Return a pointer to the bitmap storing bits affecting a block of pages */
382 static inline unsigned long *get_pageblock_bitmap(struct page *page,
383 unsigned long pfn)
384 {
385 #ifdef CONFIG_SPARSEMEM
386 return __pfn_to_section(pfn)->pageblock_flags;
387 #else
388 return page_zone(page)->pageblock_flags;
389 #endif /* CONFIG_SPARSEMEM */
390 }
391
392 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
393 {
394 #ifdef CONFIG_SPARSEMEM
395 pfn &= (PAGES_PER_SECTION-1);
396 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
397 #else
398 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
399 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
400 #endif /* CONFIG_SPARSEMEM */
401 }
402
403 /**
404 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
405 * @page: The page within the block of interest
406 * @pfn: The target page frame number
407 * @end_bitidx: The last bit of interest to retrieve
408 * @mask: mask of bits that the caller is interested in
409 *
410 * Return: pageblock_bits flags
411 */
412 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
413 unsigned long pfn,
414 unsigned long end_bitidx,
415 unsigned long mask)
416 {
417 unsigned long *bitmap;
418 unsigned long bitidx, word_bitidx;
419 unsigned long word;
420
421 bitmap = get_pageblock_bitmap(page, pfn);
422 bitidx = pfn_to_bitidx(page, pfn);
423 word_bitidx = bitidx / BITS_PER_LONG;
424 bitidx &= (BITS_PER_LONG-1);
425
426 word = bitmap[word_bitidx];
427 bitidx += end_bitidx;
428 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
429 }
430
431 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
432 unsigned long end_bitidx,
433 unsigned long mask)
434 {
435 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
436 }
437
438 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
439 {
440 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
441 }
442
443 /**
444 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
445 * @page: The page within the block of interest
446 * @flags: The flags to set
447 * @pfn: The target page frame number
448 * @end_bitidx: The last bit of interest
449 * @mask: mask of bits that the caller is interested in
450 */
451 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
452 unsigned long pfn,
453 unsigned long end_bitidx,
454 unsigned long mask)
455 {
456 unsigned long *bitmap;
457 unsigned long bitidx, word_bitidx;
458 unsigned long old_word, word;
459
460 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
461
462 bitmap = get_pageblock_bitmap(page, pfn);
463 bitidx = pfn_to_bitidx(page, pfn);
464 word_bitidx = bitidx / BITS_PER_LONG;
465 bitidx &= (BITS_PER_LONG-1);
466
467 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
468
469 bitidx += end_bitidx;
470 mask <<= (BITS_PER_LONG - bitidx - 1);
471 flags <<= (BITS_PER_LONG - bitidx - 1);
472
473 word = READ_ONCE(bitmap[word_bitidx]);
474 for (;;) {
475 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
476 if (word == old_word)
477 break;
478 word = old_word;
479 }
480 }
481
482 void set_pageblock_migratetype(struct page *page, int migratetype)
483 {
484 if (unlikely(page_group_by_mobility_disabled &&
485 migratetype < MIGRATE_PCPTYPES))
486 migratetype = MIGRATE_UNMOVABLE;
487
488 set_pageblock_flags_group(page, (unsigned long)migratetype,
489 PB_migrate, PB_migrate_end);
490 }
491
492 #ifdef CONFIG_DEBUG_VM
493 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
494 {
495 int ret = 0;
496 unsigned seq;
497 unsigned long pfn = page_to_pfn(page);
498 unsigned long sp, start_pfn;
499
500 do {
501 seq = zone_span_seqbegin(zone);
502 start_pfn = zone->zone_start_pfn;
503 sp = zone->spanned_pages;
504 if (!zone_spans_pfn(zone, pfn))
505 ret = 1;
506 } while (zone_span_seqretry(zone, seq));
507
508 if (ret)
509 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
510 pfn, zone_to_nid(zone), zone->name,
511 start_pfn, start_pfn + sp);
512
513 return ret;
514 }
515
516 static int page_is_consistent(struct zone *zone, struct page *page)
517 {
518 if (!pfn_valid_within(page_to_pfn(page)))
519 return 0;
520 if (zone != page_zone(page))
521 return 0;
522
523 return 1;
524 }
525 /*
526 * Temporary debugging check for pages not lying within a given zone.
527 */
528 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
529 {
530 if (page_outside_zone_boundaries(zone, page))
531 return 1;
532 if (!page_is_consistent(zone, page))
533 return 1;
534
535 return 0;
536 }
537 #else
538 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
539 {
540 return 0;
541 }
542 #endif
543
544 static void bad_page(struct page *page, const char *reason,
545 unsigned long bad_flags)
546 {
547 static unsigned long resume;
548 static unsigned long nr_shown;
549 static unsigned long nr_unshown;
550
551 /*
552 * Allow a burst of 60 reports, then keep quiet for that minute;
553 * or allow a steady drip of one report per second.
554 */
555 if (nr_shown == 60) {
556 if (time_before(jiffies, resume)) {
557 nr_unshown++;
558 goto out;
559 }
560 if (nr_unshown) {
561 pr_alert(
562 "BUG: Bad page state: %lu messages suppressed\n",
563 nr_unshown);
564 nr_unshown = 0;
565 }
566 nr_shown = 0;
567 }
568 if (nr_shown++ == 0)
569 resume = jiffies + 60 * HZ;
570
571 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
572 current->comm, page_to_pfn(page));
573 __dump_page(page, reason);
574 bad_flags &= page->flags;
575 if (bad_flags)
576 pr_alert("bad because of flags: %#lx(%pGp)\n",
577 bad_flags, &bad_flags);
578 dump_page_owner(page);
579
580 print_modules();
581 dump_stack();
582 out:
583 /* Leave bad fields for debug, except PageBuddy could make trouble */
584 page_mapcount_reset(page); /* remove PageBuddy */
585 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
586 }
587
588 /*
589 * Higher-order pages are called "compound pages". They are structured thusly:
590 *
591 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
592 *
593 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
594 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
595 *
596 * The first tail page's ->compound_dtor holds the offset in array of compound
597 * page destructors. See compound_page_dtors.
598 *
599 * The first tail page's ->compound_order holds the order of allocation.
600 * This usage means that zero-order pages may not be compound.
601 */
602
603 void free_compound_page(struct page *page)
604 {
605 __free_pages_ok(page, compound_order(page));
606 }
607
608 void prep_compound_page(struct page *page, unsigned int order)
609 {
610 int i;
611 int nr_pages = 1 << order;
612
613 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
614 set_compound_order(page, order);
615 __SetPageHead(page);
616 for (i = 1; i < nr_pages; i++) {
617 struct page *p = page + i;
618 set_page_count(p, 0);
619 p->mapping = TAIL_MAPPING;
620 set_compound_head(p, page);
621 }
622 atomic_set(compound_mapcount_ptr(page), -1);
623 }
624
625 #ifdef CONFIG_DEBUG_PAGEALLOC
626 unsigned int _debug_guardpage_minorder;
627 bool _debug_pagealloc_enabled __read_mostly
628 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
629 EXPORT_SYMBOL(_debug_pagealloc_enabled);
630 bool _debug_guardpage_enabled __read_mostly;
631
632 static int __init early_debug_pagealloc(char *buf)
633 {
634 if (!buf)
635 return -EINVAL;
636 return kstrtobool(buf, &_debug_pagealloc_enabled);
637 }
638 early_param("debug_pagealloc", early_debug_pagealloc);
639
640 static bool need_debug_guardpage(void)
641 {
642 /* If we don't use debug_pagealloc, we don't need guard page */
643 if (!debug_pagealloc_enabled())
644 return false;
645
646 if (!debug_guardpage_minorder())
647 return false;
648
649 return true;
650 }
651
652 static void init_debug_guardpage(void)
653 {
654 if (!debug_pagealloc_enabled())
655 return;
656
657 if (!debug_guardpage_minorder())
658 return;
659
660 _debug_guardpage_enabled = true;
661 }
662
663 struct page_ext_operations debug_guardpage_ops = {
664 .need = need_debug_guardpage,
665 .init = init_debug_guardpage,
666 };
667
668 static int __init debug_guardpage_minorder_setup(char *buf)
669 {
670 unsigned long res;
671
672 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
673 pr_err("Bad debug_guardpage_minorder value\n");
674 return 0;
675 }
676 _debug_guardpage_minorder = res;
677 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
678 return 0;
679 }
680 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
681
682 static inline bool set_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype)
684 {
685 struct page_ext *page_ext;
686
687 if (!debug_guardpage_enabled())
688 return false;
689
690 if (order >= debug_guardpage_minorder())
691 return false;
692
693 page_ext = lookup_page_ext(page);
694 if (unlikely(!page_ext))
695 return false;
696
697 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
698
699 INIT_LIST_HEAD(&page->lru);
700 set_page_private(page, order);
701 /* Guard pages are not available for any usage */
702 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
703
704 return true;
705 }
706
707 static inline void clear_page_guard(struct zone *zone, struct page *page,
708 unsigned int order, int migratetype)
709 {
710 struct page_ext *page_ext;
711
712 if (!debug_guardpage_enabled())
713 return;
714
715 page_ext = lookup_page_ext(page);
716 if (unlikely(!page_ext))
717 return;
718
719 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
720
721 set_page_private(page, 0);
722 if (!is_migrate_isolate(migratetype))
723 __mod_zone_freepage_state(zone, (1 << order), migratetype);
724 }
725 #else
726 struct page_ext_operations debug_guardpage_ops;
727 static inline bool set_page_guard(struct zone *zone, struct page *page,
728 unsigned int order, int migratetype) { return false; }
729 static inline void clear_page_guard(struct zone *zone, struct page *page,
730 unsigned int order, int migratetype) {}
731 #endif
732
733 static inline void set_page_order(struct page *page, unsigned int order)
734 {
735 set_page_private(page, order);
736 __SetPageBuddy(page);
737 }
738
739 static inline void rmv_page_order(struct page *page)
740 {
741 __ClearPageBuddy(page);
742 set_page_private(page, 0);
743 }
744
745 /*
746 * This function checks whether a page is free && is the buddy
747 * we can do coalesce a page and its buddy if
748 * (a) the buddy is not in a hole (check before calling!) &&
749 * (b) the buddy is in the buddy system &&
750 * (c) a page and its buddy have the same order &&
751 * (d) a page and its buddy are in the same zone.
752 *
753 * For recording whether a page is in the buddy system, we set ->_mapcount
754 * PAGE_BUDDY_MAPCOUNT_VALUE.
755 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
756 * serialized by zone->lock.
757 *
758 * For recording page's order, we use page_private(page).
759 */
760 static inline int page_is_buddy(struct page *page, struct page *buddy,
761 unsigned int order)
762 {
763 if (page_is_guard(buddy) && page_order(buddy) == order) {
764 if (page_zone_id(page) != page_zone_id(buddy))
765 return 0;
766
767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768
769 return 1;
770 }
771
772 if (PageBuddy(buddy) && page_order(buddy) == order) {
773 /*
774 * zone check is done late to avoid uselessly
775 * calculating zone/node ids for pages that could
776 * never merge.
777 */
778 if (page_zone_id(page) != page_zone_id(buddy))
779 return 0;
780
781 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
782
783 return 1;
784 }
785 return 0;
786 }
787
788 /*
789 * Freeing function for a buddy system allocator.
790 *
791 * The concept of a buddy system is to maintain direct-mapped table
792 * (containing bit values) for memory blocks of various "orders".
793 * The bottom level table contains the map for the smallest allocatable
794 * units of memory (here, pages), and each level above it describes
795 * pairs of units from the levels below, hence, "buddies".
796 * At a high level, all that happens here is marking the table entry
797 * at the bottom level available, and propagating the changes upward
798 * as necessary, plus some accounting needed to play nicely with other
799 * parts of the VM system.
800 * At each level, we keep a list of pages, which are heads of continuous
801 * free pages of length of (1 << order) and marked with _mapcount
802 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
803 * field.
804 * So when we are allocating or freeing one, we can derive the state of the
805 * other. That is, if we allocate a small block, and both were
806 * free, the remainder of the region must be split into blocks.
807 * If a block is freed, and its buddy is also free, then this
808 * triggers coalescing into a block of larger size.
809 *
810 * -- nyc
811 */
812
813 static inline void __free_one_page(struct page *page,
814 unsigned long pfn,
815 struct zone *zone, unsigned int order,
816 int migratetype)
817 {
818 unsigned long combined_pfn;
819 unsigned long uninitialized_var(buddy_pfn);
820 struct page *buddy;
821 unsigned int max_order;
822
823 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
824
825 VM_BUG_ON(!zone_is_initialized(zone));
826 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
827
828 VM_BUG_ON(migratetype == -1);
829 if (likely(!is_migrate_isolate(migratetype)))
830 __mod_zone_freepage_state(zone, 1 << order, migratetype);
831
832 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
833 VM_BUG_ON_PAGE(bad_range(zone, page), page);
834
835 continue_merging:
836 while (order < max_order - 1) {
837 buddy_pfn = __find_buddy_pfn(pfn, order);
838 buddy = page + (buddy_pfn - pfn);
839
840 if (!pfn_valid_within(buddy_pfn))
841 goto done_merging;
842 if (!page_is_buddy(page, buddy, order))
843 goto done_merging;
844 /*
845 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
846 * merge with it and move up one order.
847 */
848 if (page_is_guard(buddy)) {
849 clear_page_guard(zone, buddy, order, migratetype);
850 } else {
851 list_del(&buddy->lru);
852 zone->free_area[order].nr_free--;
853 rmv_page_order(buddy);
854 }
855 combined_pfn = buddy_pfn & pfn;
856 page = page + (combined_pfn - pfn);
857 pfn = combined_pfn;
858 order++;
859 }
860 if (max_order < MAX_ORDER) {
861 /* If we are here, it means order is >= pageblock_order.
862 * We want to prevent merge between freepages on isolate
863 * pageblock and normal pageblock. Without this, pageblock
864 * isolation could cause incorrect freepage or CMA accounting.
865 *
866 * We don't want to hit this code for the more frequent
867 * low-order merging.
868 */
869 if (unlikely(has_isolate_pageblock(zone))) {
870 int buddy_mt;
871
872 buddy_pfn = __find_buddy_pfn(pfn, order);
873 buddy = page + (buddy_pfn - pfn);
874 buddy_mt = get_pageblock_migratetype(buddy);
875
876 if (migratetype != buddy_mt
877 && (is_migrate_isolate(migratetype) ||
878 is_migrate_isolate(buddy_mt)))
879 goto done_merging;
880 }
881 max_order++;
882 goto continue_merging;
883 }
884
885 done_merging:
886 set_page_order(page, order);
887
888 /*
889 * If this is not the largest possible page, check if the buddy
890 * of the next-highest order is free. If it is, it's possible
891 * that pages are being freed that will coalesce soon. In case,
892 * that is happening, add the free page to the tail of the list
893 * so it's less likely to be used soon and more likely to be merged
894 * as a higher order page
895 */
896 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
897 struct page *higher_page, *higher_buddy;
898 combined_pfn = buddy_pfn & pfn;
899 higher_page = page + (combined_pfn - pfn);
900 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
901 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
902 if (pfn_valid_within(buddy_pfn) &&
903 page_is_buddy(higher_page, higher_buddy, order + 1)) {
904 list_add_tail(&page->lru,
905 &zone->free_area[order].free_list[migratetype]);
906 goto out;
907 }
908 }
909
910 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
911 out:
912 zone->free_area[order].nr_free++;
913 }
914
915 /*
916 * A bad page could be due to a number of fields. Instead of multiple branches,
917 * try and check multiple fields with one check. The caller must do a detailed
918 * check if necessary.
919 */
920 static inline bool page_expected_state(struct page *page,
921 unsigned long check_flags)
922 {
923 if (unlikely(atomic_read(&page->_mapcount) != -1))
924 return false;
925
926 if (unlikely((unsigned long)page->mapping |
927 page_ref_count(page) |
928 #ifdef CONFIG_MEMCG
929 (unsigned long)page->mem_cgroup |
930 #endif
931 (page->flags & check_flags)))
932 return false;
933
934 return true;
935 }
936
937 static void free_pages_check_bad(struct page *page)
938 {
939 const char *bad_reason;
940 unsigned long bad_flags;
941
942 bad_reason = NULL;
943 bad_flags = 0;
944
945 if (unlikely(atomic_read(&page->_mapcount) != -1))
946 bad_reason = "nonzero mapcount";
947 if (unlikely(page->mapping != NULL))
948 bad_reason = "non-NULL mapping";
949 if (unlikely(page_ref_count(page) != 0))
950 bad_reason = "nonzero _refcount";
951 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
952 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
953 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
954 }
955 #ifdef CONFIG_MEMCG
956 if (unlikely(page->mem_cgroup))
957 bad_reason = "page still charged to cgroup";
958 #endif
959 bad_page(page, bad_reason, bad_flags);
960 }
961
962 static inline int free_pages_check(struct page *page)
963 {
964 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
965 return 0;
966
967 /* Something has gone sideways, find it */
968 free_pages_check_bad(page);
969 return 1;
970 }
971
972 static int free_tail_pages_check(struct page *head_page, struct page *page)
973 {
974 int ret = 1;
975
976 /*
977 * We rely page->lru.next never has bit 0 set, unless the page
978 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
979 */
980 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
981
982 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
983 ret = 0;
984 goto out;
985 }
986 switch (page - head_page) {
987 case 1:
988 /* the first tail page: ->mapping is compound_mapcount() */
989 if (unlikely(compound_mapcount(page))) {
990 bad_page(page, "nonzero compound_mapcount", 0);
991 goto out;
992 }
993 break;
994 case 2:
995 /*
996 * the second tail page: ->mapping is
997 * page_deferred_list().next -- ignore value.
998 */
999 break;
1000 default:
1001 if (page->mapping != TAIL_MAPPING) {
1002 bad_page(page, "corrupted mapping in tail page", 0);
1003 goto out;
1004 }
1005 break;
1006 }
1007 if (unlikely(!PageTail(page))) {
1008 bad_page(page, "PageTail not set", 0);
1009 goto out;
1010 }
1011 if (unlikely(compound_head(page) != head_page)) {
1012 bad_page(page, "compound_head not consistent", 0);
1013 goto out;
1014 }
1015 ret = 0;
1016 out:
1017 page->mapping = NULL;
1018 clear_compound_head(page);
1019 return ret;
1020 }
1021
1022 static __always_inline bool free_pages_prepare(struct page *page,
1023 unsigned int order, bool check_free)
1024 {
1025 int bad = 0;
1026
1027 VM_BUG_ON_PAGE(PageTail(page), page);
1028
1029 trace_mm_page_free(page, order);
1030
1031 /*
1032 * Check tail pages before head page information is cleared to
1033 * avoid checking PageCompound for order-0 pages.
1034 */
1035 if (unlikely(order)) {
1036 bool compound = PageCompound(page);
1037 int i;
1038
1039 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1040
1041 if (compound)
1042 ClearPageDoubleMap(page);
1043 for (i = 1; i < (1 << order); i++) {
1044 if (compound)
1045 bad += free_tail_pages_check(page, page + i);
1046 if (unlikely(free_pages_check(page + i))) {
1047 bad++;
1048 continue;
1049 }
1050 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 }
1052 }
1053 if (PageMappingFlags(page))
1054 page->mapping = NULL;
1055 if (memcg_kmem_enabled() && PageKmemcg(page))
1056 memcg_kmem_uncharge(page, order);
1057 if (check_free)
1058 bad += free_pages_check(page);
1059 if (bad)
1060 return false;
1061
1062 page_cpupid_reset_last(page);
1063 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1064 reset_page_owner(page, order);
1065
1066 if (!PageHighMem(page)) {
1067 debug_check_no_locks_freed(page_address(page),
1068 PAGE_SIZE << order);
1069 debug_check_no_obj_freed(page_address(page),
1070 PAGE_SIZE << order);
1071 }
1072 arch_free_page(page, order);
1073 kernel_poison_pages(page, 1 << order, 0);
1074 kernel_map_pages(page, 1 << order, 0);
1075 kasan_free_pages(page, order);
1076
1077 return true;
1078 }
1079
1080 #ifdef CONFIG_DEBUG_VM
1081 static inline bool free_pcp_prepare(struct page *page)
1082 {
1083 return free_pages_prepare(page, 0, true);
1084 }
1085
1086 static inline bool bulkfree_pcp_prepare(struct page *page)
1087 {
1088 return false;
1089 }
1090 #else
1091 static bool free_pcp_prepare(struct page *page)
1092 {
1093 return free_pages_prepare(page, 0, false);
1094 }
1095
1096 static bool bulkfree_pcp_prepare(struct page *page)
1097 {
1098 return free_pages_check(page);
1099 }
1100 #endif /* CONFIG_DEBUG_VM */
1101
1102 /*
1103 * Frees a number of pages from the PCP lists
1104 * Assumes all pages on list are in same zone, and of same order.
1105 * count is the number of pages to free.
1106 *
1107 * If the zone was previously in an "all pages pinned" state then look to
1108 * see if this freeing clears that state.
1109 *
1110 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1111 * pinned" detection logic.
1112 */
1113 static void free_pcppages_bulk(struct zone *zone, int count,
1114 struct per_cpu_pages *pcp)
1115 {
1116 int migratetype = 0;
1117 int batch_free = 0;
1118 bool isolated_pageblocks;
1119
1120 spin_lock(&zone->lock);
1121 isolated_pageblocks = has_isolate_pageblock(zone);
1122
1123 while (count) {
1124 struct page *page;
1125 struct list_head *list;
1126
1127 /*
1128 * Remove pages from lists in a round-robin fashion. A
1129 * batch_free count is maintained that is incremented when an
1130 * empty list is encountered. This is so more pages are freed
1131 * off fuller lists instead of spinning excessively around empty
1132 * lists
1133 */
1134 do {
1135 batch_free++;
1136 if (++migratetype == MIGRATE_PCPTYPES)
1137 migratetype = 0;
1138 list = &pcp->lists[migratetype];
1139 } while (list_empty(list));
1140
1141 /* This is the only non-empty list. Free them all. */
1142 if (batch_free == MIGRATE_PCPTYPES)
1143 batch_free = count;
1144
1145 do {
1146 int mt; /* migratetype of the to-be-freed page */
1147
1148 page = list_last_entry(list, struct page, lru);
1149 /* must delete as __free_one_page list manipulates */
1150 list_del(&page->lru);
1151
1152 mt = get_pcppage_migratetype(page);
1153 /* MIGRATE_ISOLATE page should not go to pcplists */
1154 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1155 /* Pageblock could have been isolated meanwhile */
1156 if (unlikely(isolated_pageblocks))
1157 mt = get_pageblock_migratetype(page);
1158
1159 if (bulkfree_pcp_prepare(page))
1160 continue;
1161
1162 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1163 trace_mm_page_pcpu_drain(page, 0, mt);
1164 } while (--count && --batch_free && !list_empty(list));
1165 }
1166 spin_unlock(&zone->lock);
1167 }
1168
1169 static void free_one_page(struct zone *zone,
1170 struct page *page, unsigned long pfn,
1171 unsigned int order,
1172 int migratetype)
1173 {
1174 spin_lock(&zone->lock);
1175 if (unlikely(has_isolate_pageblock(zone) ||
1176 is_migrate_isolate(migratetype))) {
1177 migratetype = get_pfnblock_migratetype(page, pfn);
1178 }
1179 __free_one_page(page, pfn, zone, order, migratetype);
1180 spin_unlock(&zone->lock);
1181 }
1182
1183 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1184 unsigned long zone, int nid, bool zero)
1185 {
1186 if (zero)
1187 mm_zero_struct_page(page);
1188 set_page_links(page, zone, nid, pfn);
1189 init_page_count(page);
1190 page_mapcount_reset(page);
1191 page_cpupid_reset_last(page);
1192
1193 INIT_LIST_HEAD(&page->lru);
1194 #ifdef WANT_PAGE_VIRTUAL
1195 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1196 if (!is_highmem_idx(zone))
1197 set_page_address(page, __va(pfn << PAGE_SHIFT));
1198 #endif
1199 }
1200
1201 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1202 int nid, bool zero)
1203 {
1204 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero);
1205 }
1206
1207 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1208 static void __meminit init_reserved_page(unsigned long pfn)
1209 {
1210 pg_data_t *pgdat;
1211 int nid, zid;
1212
1213 if (!early_page_uninitialised(pfn))
1214 return;
1215
1216 nid = early_pfn_to_nid(pfn);
1217 pgdat = NODE_DATA(nid);
1218
1219 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1220 struct zone *zone = &pgdat->node_zones[zid];
1221
1222 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1223 break;
1224 }
1225 __init_single_pfn(pfn, zid, nid, true);
1226 }
1227 #else
1228 static inline void init_reserved_page(unsigned long pfn)
1229 {
1230 }
1231 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1232
1233 /*
1234 * Initialised pages do not have PageReserved set. This function is
1235 * called for each range allocated by the bootmem allocator and
1236 * marks the pages PageReserved. The remaining valid pages are later
1237 * sent to the buddy page allocator.
1238 */
1239 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1240 {
1241 unsigned long start_pfn = PFN_DOWN(start);
1242 unsigned long end_pfn = PFN_UP(end);
1243
1244 for (; start_pfn < end_pfn; start_pfn++) {
1245 if (pfn_valid(start_pfn)) {
1246 struct page *page = pfn_to_page(start_pfn);
1247
1248 init_reserved_page(start_pfn);
1249
1250 /* Avoid false-positive PageTail() */
1251 INIT_LIST_HEAD(&page->lru);
1252
1253 SetPageReserved(page);
1254 }
1255 }
1256 }
1257
1258 static void __free_pages_ok(struct page *page, unsigned int order)
1259 {
1260 unsigned long flags;
1261 int migratetype;
1262 unsigned long pfn = page_to_pfn(page);
1263
1264 if (!free_pages_prepare(page, order, true))
1265 return;
1266
1267 migratetype = get_pfnblock_migratetype(page, pfn);
1268 local_irq_save(flags);
1269 __count_vm_events(PGFREE, 1 << order);
1270 free_one_page(page_zone(page), page, pfn, order, migratetype);
1271 local_irq_restore(flags);
1272 }
1273
1274 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1275 {
1276 unsigned int nr_pages = 1 << order;
1277 struct page *p = page;
1278 unsigned int loop;
1279
1280 prefetchw(p);
1281 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1282 prefetchw(p + 1);
1283 __ClearPageReserved(p);
1284 set_page_count(p, 0);
1285 }
1286 __ClearPageReserved(p);
1287 set_page_count(p, 0);
1288
1289 page_zone(page)->managed_pages += nr_pages;
1290 set_page_refcounted(page);
1291 __free_pages(page, order);
1292 }
1293
1294 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1295 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1296
1297 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1298
1299 int __meminit early_pfn_to_nid(unsigned long pfn)
1300 {
1301 static DEFINE_SPINLOCK(early_pfn_lock);
1302 int nid;
1303
1304 spin_lock(&early_pfn_lock);
1305 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1306 if (nid < 0)
1307 nid = first_online_node;
1308 spin_unlock(&early_pfn_lock);
1309
1310 return nid;
1311 }
1312 #endif
1313
1314 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1315 static inline bool __meminit __maybe_unused
1316 meminit_pfn_in_nid(unsigned long pfn, int node,
1317 struct mminit_pfnnid_cache *state)
1318 {
1319 int nid;
1320
1321 nid = __early_pfn_to_nid(pfn, state);
1322 if (nid >= 0 && nid != node)
1323 return false;
1324 return true;
1325 }
1326
1327 /* Only safe to use early in boot when initialisation is single-threaded */
1328 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329 {
1330 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1331 }
1332
1333 #else
1334
1335 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1336 {
1337 return true;
1338 }
1339 static inline bool __meminit __maybe_unused
1340 meminit_pfn_in_nid(unsigned long pfn, int node,
1341 struct mminit_pfnnid_cache *state)
1342 {
1343 return true;
1344 }
1345 #endif
1346
1347
1348 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1349 unsigned int order)
1350 {
1351 if (early_page_uninitialised(pfn))
1352 return;
1353 return __free_pages_boot_core(page, order);
1354 }
1355
1356 /*
1357 * Check that the whole (or subset of) a pageblock given by the interval of
1358 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1359 * with the migration of free compaction scanner. The scanners then need to
1360 * use only pfn_valid_within() check for arches that allow holes within
1361 * pageblocks.
1362 *
1363 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1364 *
1365 * It's possible on some configurations to have a setup like node0 node1 node0
1366 * i.e. it's possible that all pages within a zones range of pages do not
1367 * belong to a single zone. We assume that a border between node0 and node1
1368 * can occur within a single pageblock, but not a node0 node1 node0
1369 * interleaving within a single pageblock. It is therefore sufficient to check
1370 * the first and last page of a pageblock and avoid checking each individual
1371 * page in a pageblock.
1372 */
1373 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1374 unsigned long end_pfn, struct zone *zone)
1375 {
1376 struct page *start_page;
1377 struct page *end_page;
1378
1379 /* end_pfn is one past the range we are checking */
1380 end_pfn--;
1381
1382 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1383 return NULL;
1384
1385 start_page = pfn_to_online_page(start_pfn);
1386 if (!start_page)
1387 return NULL;
1388
1389 if (page_zone(start_page) != zone)
1390 return NULL;
1391
1392 end_page = pfn_to_page(end_pfn);
1393
1394 /* This gives a shorter code than deriving page_zone(end_page) */
1395 if (page_zone_id(start_page) != page_zone_id(end_page))
1396 return NULL;
1397
1398 return start_page;
1399 }
1400
1401 void set_zone_contiguous(struct zone *zone)
1402 {
1403 unsigned long block_start_pfn = zone->zone_start_pfn;
1404 unsigned long block_end_pfn;
1405
1406 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1407 for (; block_start_pfn < zone_end_pfn(zone);
1408 block_start_pfn = block_end_pfn,
1409 block_end_pfn += pageblock_nr_pages) {
1410
1411 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1412
1413 if (!__pageblock_pfn_to_page(block_start_pfn,
1414 block_end_pfn, zone))
1415 return;
1416 }
1417
1418 /* We confirm that there is no hole */
1419 zone->contiguous = true;
1420 }
1421
1422 void clear_zone_contiguous(struct zone *zone)
1423 {
1424 zone->contiguous = false;
1425 }
1426
1427 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1428 static void __init deferred_free_range(unsigned long pfn,
1429 unsigned long nr_pages)
1430 {
1431 struct page *page;
1432 unsigned long i;
1433
1434 if (!nr_pages)
1435 return;
1436
1437 page = pfn_to_page(pfn);
1438
1439 /* Free a large naturally-aligned chunk if possible */
1440 if (nr_pages == pageblock_nr_pages &&
1441 (pfn & (pageblock_nr_pages - 1)) == 0) {
1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1443 __free_pages_boot_core(page, pageblock_order);
1444 return;
1445 }
1446
1447 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1448 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1449 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1450 __free_pages_boot_core(page, 0);
1451 }
1452 }
1453
1454 /* Completion tracking for deferred_init_memmap() threads */
1455 static atomic_t pgdat_init_n_undone __initdata;
1456 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1457
1458 static inline void __init pgdat_init_report_one_done(void)
1459 {
1460 if (atomic_dec_and_test(&pgdat_init_n_undone))
1461 complete(&pgdat_init_all_done_comp);
1462 }
1463
1464 /*
1465 * Helper for deferred_init_range, free the given range, reset the counters, and
1466 * return number of pages freed.
1467 */
1468 static inline unsigned long __init __def_free(unsigned long *nr_free,
1469 unsigned long *free_base_pfn,
1470 struct page **page)
1471 {
1472 unsigned long nr = *nr_free;
1473
1474 deferred_free_range(*free_base_pfn, nr);
1475 *free_base_pfn = 0;
1476 *nr_free = 0;
1477 *page = NULL;
1478
1479 return nr;
1480 }
1481
1482 static unsigned long __init deferred_init_range(int nid, int zid,
1483 unsigned long start_pfn,
1484 unsigned long end_pfn)
1485 {
1486 struct mminit_pfnnid_cache nid_init_state = { };
1487 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1488 unsigned long free_base_pfn = 0;
1489 unsigned long nr_pages = 0;
1490 unsigned long nr_free = 0;
1491 struct page *page = NULL;
1492 unsigned long pfn;
1493
1494 /*
1495 * First we check if pfn is valid on architectures where it is possible
1496 * to have holes within pageblock_nr_pages. On systems where it is not
1497 * possible, this function is optimized out.
1498 *
1499 * Then, we check if a current large page is valid by only checking the
1500 * validity of the head pfn.
1501 *
1502 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1503 * within a node: a pfn is between start and end of a node, but does not
1504 * belong to this memory node.
1505 *
1506 * Finally, we minimize pfn page lookups and scheduler checks by
1507 * performing it only once every pageblock_nr_pages.
1508 *
1509 * We do it in two loops: first we initialize struct page, than free to
1510 * buddy allocator, becuse while we are freeing pages we can access
1511 * pages that are ahead (computing buddy page in __free_one_page()).
1512 */
1513 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1514 if (!pfn_valid_within(pfn))
1515 continue;
1516 if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1517 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1518 if (page && (pfn & nr_pgmask))
1519 page++;
1520 else
1521 page = pfn_to_page(pfn);
1522 __init_single_page(page, pfn, zid, nid, true);
1523 cond_resched();
1524 }
1525 }
1526 }
1527
1528 page = NULL;
1529 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1530 if (!pfn_valid_within(pfn)) {
1531 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1532 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1533 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1534 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1535 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1536 } else if (page && (pfn & nr_pgmask)) {
1537 page++;
1538 nr_free++;
1539 } else {
1540 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1541 page = pfn_to_page(pfn);
1542 free_base_pfn = pfn;
1543 nr_free = 1;
1544 cond_resched();
1545 }
1546 }
1547 /* Free the last block of pages to allocator */
1548 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1549
1550 return nr_pages;
1551 }
1552
1553 /* Initialise remaining memory on a node */
1554 static int __init deferred_init_memmap(void *data)
1555 {
1556 pg_data_t *pgdat = data;
1557 int nid = pgdat->node_id;
1558 unsigned long start = jiffies;
1559 unsigned long nr_pages = 0;
1560 unsigned long spfn, epfn;
1561 phys_addr_t spa, epa;
1562 int zid;
1563 struct zone *zone;
1564 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1565 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1566 u64 i;
1567
1568 if (first_init_pfn == ULONG_MAX) {
1569 pgdat_init_report_one_done();
1570 return 0;
1571 }
1572
1573 /* Bind memory initialisation thread to a local node if possible */
1574 if (!cpumask_empty(cpumask))
1575 set_cpus_allowed_ptr(current, cpumask);
1576
1577 /* Sanity check boundaries */
1578 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1579 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1580 pgdat->first_deferred_pfn = ULONG_MAX;
1581
1582 /* Only the highest zone is deferred so find it */
1583 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1584 zone = pgdat->node_zones + zid;
1585 if (first_init_pfn < zone_end_pfn(zone))
1586 break;
1587 }
1588 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1589
1590 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1591 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1592 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1593 nr_pages += deferred_init_range(nid, zid, spfn, epfn);
1594 }
1595
1596 /* Sanity check that the next zone really is unpopulated */
1597 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1598
1599 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1600 jiffies_to_msecs(jiffies - start));
1601
1602 pgdat_init_report_one_done();
1603 return 0;
1604 }
1605 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1606
1607 void __init page_alloc_init_late(void)
1608 {
1609 struct zone *zone;
1610
1611 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1612 int nid;
1613
1614 /* There will be num_node_state(N_MEMORY) threads */
1615 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1616 for_each_node_state(nid, N_MEMORY) {
1617 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1618 }
1619
1620 /* Block until all are initialised */
1621 wait_for_completion(&pgdat_init_all_done_comp);
1622
1623 /* Reinit limits that are based on free pages after the kernel is up */
1624 files_maxfiles_init();
1625 #endif
1626 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1627 /* Discard memblock private memory */
1628 memblock_discard();
1629 #endif
1630
1631 for_each_populated_zone(zone)
1632 set_zone_contiguous(zone);
1633 }
1634
1635 #ifdef CONFIG_CMA
1636 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1637 void __init init_cma_reserved_pageblock(struct page *page)
1638 {
1639 unsigned i = pageblock_nr_pages;
1640 struct page *p = page;
1641
1642 do {
1643 __ClearPageReserved(p);
1644 set_page_count(p, 0);
1645 } while (++p, --i);
1646
1647 set_pageblock_migratetype(page, MIGRATE_CMA);
1648
1649 if (pageblock_order >= MAX_ORDER) {
1650 i = pageblock_nr_pages;
1651 p = page;
1652 do {
1653 set_page_refcounted(p);
1654 __free_pages(p, MAX_ORDER - 1);
1655 p += MAX_ORDER_NR_PAGES;
1656 } while (i -= MAX_ORDER_NR_PAGES);
1657 } else {
1658 set_page_refcounted(page);
1659 __free_pages(page, pageblock_order);
1660 }
1661
1662 adjust_managed_page_count(page, pageblock_nr_pages);
1663 }
1664 #endif
1665
1666 /*
1667 * The order of subdivision here is critical for the IO subsystem.
1668 * Please do not alter this order without good reasons and regression
1669 * testing. Specifically, as large blocks of memory are subdivided,
1670 * the order in which smaller blocks are delivered depends on the order
1671 * they're subdivided in this function. This is the primary factor
1672 * influencing the order in which pages are delivered to the IO
1673 * subsystem according to empirical testing, and this is also justified
1674 * by considering the behavior of a buddy system containing a single
1675 * large block of memory acted on by a series of small allocations.
1676 * This behavior is a critical factor in sglist merging's success.
1677 *
1678 * -- nyc
1679 */
1680 static inline void expand(struct zone *zone, struct page *page,
1681 int low, int high, struct free_area *area,
1682 int migratetype)
1683 {
1684 unsigned long size = 1 << high;
1685
1686 while (high > low) {
1687 area--;
1688 high--;
1689 size >>= 1;
1690 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1691
1692 /*
1693 * Mark as guard pages (or page), that will allow to
1694 * merge back to allocator when buddy will be freed.
1695 * Corresponding page table entries will not be touched,
1696 * pages will stay not present in virtual address space
1697 */
1698 if (set_page_guard(zone, &page[size], high, migratetype))
1699 continue;
1700
1701 list_add(&page[size].lru, &area->free_list[migratetype]);
1702 area->nr_free++;
1703 set_page_order(&page[size], high);
1704 }
1705 }
1706
1707 static void check_new_page_bad(struct page *page)
1708 {
1709 const char *bad_reason = NULL;
1710 unsigned long bad_flags = 0;
1711
1712 if (unlikely(atomic_read(&page->_mapcount) != -1))
1713 bad_reason = "nonzero mapcount";
1714 if (unlikely(page->mapping != NULL))
1715 bad_reason = "non-NULL mapping";
1716 if (unlikely(page_ref_count(page) != 0))
1717 bad_reason = "nonzero _count";
1718 if (unlikely(page->flags & __PG_HWPOISON)) {
1719 bad_reason = "HWPoisoned (hardware-corrupted)";
1720 bad_flags = __PG_HWPOISON;
1721 /* Don't complain about hwpoisoned pages */
1722 page_mapcount_reset(page); /* remove PageBuddy */
1723 return;
1724 }
1725 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1726 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1727 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1728 }
1729 #ifdef CONFIG_MEMCG
1730 if (unlikely(page->mem_cgroup))
1731 bad_reason = "page still charged to cgroup";
1732 #endif
1733 bad_page(page, bad_reason, bad_flags);
1734 }
1735
1736 /*
1737 * This page is about to be returned from the page allocator
1738 */
1739 static inline int check_new_page(struct page *page)
1740 {
1741 if (likely(page_expected_state(page,
1742 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1743 return 0;
1744
1745 check_new_page_bad(page);
1746 return 1;
1747 }
1748
1749 static inline bool free_pages_prezeroed(void)
1750 {
1751 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1752 page_poisoning_enabled();
1753 }
1754
1755 #ifdef CONFIG_DEBUG_VM
1756 static bool check_pcp_refill(struct page *page)
1757 {
1758 return false;
1759 }
1760
1761 static bool check_new_pcp(struct page *page)
1762 {
1763 return check_new_page(page);
1764 }
1765 #else
1766 static bool check_pcp_refill(struct page *page)
1767 {
1768 return check_new_page(page);
1769 }
1770 static bool check_new_pcp(struct page *page)
1771 {
1772 return false;
1773 }
1774 #endif /* CONFIG_DEBUG_VM */
1775
1776 static bool check_new_pages(struct page *page, unsigned int order)
1777 {
1778 int i;
1779 for (i = 0; i < (1 << order); i++) {
1780 struct page *p = page + i;
1781
1782 if (unlikely(check_new_page(p)))
1783 return true;
1784 }
1785
1786 return false;
1787 }
1788
1789 inline void post_alloc_hook(struct page *page, unsigned int order,
1790 gfp_t gfp_flags)
1791 {
1792 set_page_private(page, 0);
1793 set_page_refcounted(page);
1794
1795 arch_alloc_page(page, order);
1796 kernel_map_pages(page, 1 << order, 1);
1797 kernel_poison_pages(page, 1 << order, 1);
1798 kasan_alloc_pages(page, order);
1799 set_page_owner(page, order, gfp_flags);
1800 }
1801
1802 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1803 unsigned int alloc_flags)
1804 {
1805 int i;
1806
1807 post_alloc_hook(page, order, gfp_flags);
1808
1809 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1810 for (i = 0; i < (1 << order); i++)
1811 clear_highpage(page + i);
1812
1813 if (order && (gfp_flags & __GFP_COMP))
1814 prep_compound_page(page, order);
1815
1816 /*
1817 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1818 * allocate the page. The expectation is that the caller is taking
1819 * steps that will free more memory. The caller should avoid the page
1820 * being used for !PFMEMALLOC purposes.
1821 */
1822 if (alloc_flags & ALLOC_NO_WATERMARKS)
1823 set_page_pfmemalloc(page);
1824 else
1825 clear_page_pfmemalloc(page);
1826 }
1827
1828 /*
1829 * Go through the free lists for the given migratetype and remove
1830 * the smallest available page from the freelists
1831 */
1832 static __always_inline
1833 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1834 int migratetype)
1835 {
1836 unsigned int current_order;
1837 struct free_area *area;
1838 struct page *page;
1839
1840 /* Find a page of the appropriate size in the preferred list */
1841 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1842 area = &(zone->free_area[current_order]);
1843 page = list_first_entry_or_null(&area->free_list[migratetype],
1844 struct page, lru);
1845 if (!page)
1846 continue;
1847 list_del(&page->lru);
1848 rmv_page_order(page);
1849 area->nr_free--;
1850 expand(zone, page, order, current_order, area, migratetype);
1851 set_pcppage_migratetype(page, migratetype);
1852 return page;
1853 }
1854
1855 return NULL;
1856 }
1857
1858
1859 /*
1860 * This array describes the order lists are fallen back to when
1861 * the free lists for the desirable migrate type are depleted
1862 */
1863 static int fallbacks[MIGRATE_TYPES][4] = {
1864 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1865 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1866 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1867 #ifdef CONFIG_CMA
1868 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1869 #endif
1870 #ifdef CONFIG_MEMORY_ISOLATION
1871 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1872 #endif
1873 };
1874
1875 #ifdef CONFIG_CMA
1876 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1877 unsigned int order)
1878 {
1879 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1880 }
1881 #else
1882 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1883 unsigned int order) { return NULL; }
1884 #endif
1885
1886 /*
1887 * Move the free pages in a range to the free lists of the requested type.
1888 * Note that start_page and end_pages are not aligned on a pageblock
1889 * boundary. If alignment is required, use move_freepages_block()
1890 */
1891 static int move_freepages(struct zone *zone,
1892 struct page *start_page, struct page *end_page,
1893 int migratetype, int *num_movable)
1894 {
1895 struct page *page;
1896 unsigned int order;
1897 int pages_moved = 0;
1898
1899 #ifndef CONFIG_HOLES_IN_ZONE
1900 /*
1901 * page_zone is not safe to call in this context when
1902 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1903 * anyway as we check zone boundaries in move_freepages_block().
1904 * Remove at a later date when no bug reports exist related to
1905 * grouping pages by mobility
1906 */
1907 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1908 #endif
1909
1910 if (num_movable)
1911 *num_movable = 0;
1912
1913 for (page = start_page; page <= end_page;) {
1914 if (!pfn_valid_within(page_to_pfn(page))) {
1915 page++;
1916 continue;
1917 }
1918
1919 /* Make sure we are not inadvertently changing nodes */
1920 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1921
1922 if (!PageBuddy(page)) {
1923 /*
1924 * We assume that pages that could be isolated for
1925 * migration are movable. But we don't actually try
1926 * isolating, as that would be expensive.
1927 */
1928 if (num_movable &&
1929 (PageLRU(page) || __PageMovable(page)))
1930 (*num_movable)++;
1931
1932 page++;
1933 continue;
1934 }
1935
1936 order = page_order(page);
1937 list_move(&page->lru,
1938 &zone->free_area[order].free_list[migratetype]);
1939 page += 1 << order;
1940 pages_moved += 1 << order;
1941 }
1942
1943 return pages_moved;
1944 }
1945
1946 int move_freepages_block(struct zone *zone, struct page *page,
1947 int migratetype, int *num_movable)
1948 {
1949 unsigned long start_pfn, end_pfn;
1950 struct page *start_page, *end_page;
1951
1952 start_pfn = page_to_pfn(page);
1953 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1954 start_page = pfn_to_page(start_pfn);
1955 end_page = start_page + pageblock_nr_pages - 1;
1956 end_pfn = start_pfn + pageblock_nr_pages - 1;
1957
1958 /* Do not cross zone boundaries */
1959 if (!zone_spans_pfn(zone, start_pfn))
1960 start_page = page;
1961 if (!zone_spans_pfn(zone, end_pfn))
1962 return 0;
1963
1964 return move_freepages(zone, start_page, end_page, migratetype,
1965 num_movable);
1966 }
1967
1968 static void change_pageblock_range(struct page *pageblock_page,
1969 int start_order, int migratetype)
1970 {
1971 int nr_pageblocks = 1 << (start_order - pageblock_order);
1972
1973 while (nr_pageblocks--) {
1974 set_pageblock_migratetype(pageblock_page, migratetype);
1975 pageblock_page += pageblock_nr_pages;
1976 }
1977 }
1978
1979 /*
1980 * When we are falling back to another migratetype during allocation, try to
1981 * steal extra free pages from the same pageblocks to satisfy further
1982 * allocations, instead of polluting multiple pageblocks.
1983 *
1984 * If we are stealing a relatively large buddy page, it is likely there will
1985 * be more free pages in the pageblock, so try to steal them all. For
1986 * reclaimable and unmovable allocations, we steal regardless of page size,
1987 * as fragmentation caused by those allocations polluting movable pageblocks
1988 * is worse than movable allocations stealing from unmovable and reclaimable
1989 * pageblocks.
1990 */
1991 static bool can_steal_fallback(unsigned int order, int start_mt)
1992 {
1993 /*
1994 * Leaving this order check is intended, although there is
1995 * relaxed order check in next check. The reason is that
1996 * we can actually steal whole pageblock if this condition met,
1997 * but, below check doesn't guarantee it and that is just heuristic
1998 * so could be changed anytime.
1999 */
2000 if (order >= pageblock_order)
2001 return true;
2002
2003 if (order >= pageblock_order / 2 ||
2004 start_mt == MIGRATE_RECLAIMABLE ||
2005 start_mt == MIGRATE_UNMOVABLE ||
2006 page_group_by_mobility_disabled)
2007 return true;
2008
2009 return false;
2010 }
2011
2012 /*
2013 * This function implements actual steal behaviour. If order is large enough,
2014 * we can steal whole pageblock. If not, we first move freepages in this
2015 * pageblock to our migratetype and determine how many already-allocated pages
2016 * are there in the pageblock with a compatible migratetype. If at least half
2017 * of pages are free or compatible, we can change migratetype of the pageblock
2018 * itself, so pages freed in the future will be put on the correct free list.
2019 */
2020 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2021 int start_type, bool whole_block)
2022 {
2023 unsigned int current_order = page_order(page);
2024 struct free_area *area;
2025 int free_pages, movable_pages, alike_pages;
2026 int old_block_type;
2027
2028 old_block_type = get_pageblock_migratetype(page);
2029
2030 /*
2031 * This can happen due to races and we want to prevent broken
2032 * highatomic accounting.
2033 */
2034 if (is_migrate_highatomic(old_block_type))
2035 goto single_page;
2036
2037 /* Take ownership for orders >= pageblock_order */
2038 if (current_order >= pageblock_order) {
2039 change_pageblock_range(page, current_order, start_type);
2040 goto single_page;
2041 }
2042
2043 /* We are not allowed to try stealing from the whole block */
2044 if (!whole_block)
2045 goto single_page;
2046
2047 free_pages = move_freepages_block(zone, page, start_type,
2048 &movable_pages);
2049 /*
2050 * Determine how many pages are compatible with our allocation.
2051 * For movable allocation, it's the number of movable pages which
2052 * we just obtained. For other types it's a bit more tricky.
2053 */
2054 if (start_type == MIGRATE_MOVABLE) {
2055 alike_pages = movable_pages;
2056 } else {
2057 /*
2058 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2059 * to MOVABLE pageblock, consider all non-movable pages as
2060 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2061 * vice versa, be conservative since we can't distinguish the
2062 * exact migratetype of non-movable pages.
2063 */
2064 if (old_block_type == MIGRATE_MOVABLE)
2065 alike_pages = pageblock_nr_pages
2066 - (free_pages + movable_pages);
2067 else
2068 alike_pages = 0;
2069 }
2070
2071 /* moving whole block can fail due to zone boundary conditions */
2072 if (!free_pages)
2073 goto single_page;
2074
2075 /*
2076 * If a sufficient number of pages in the block are either free or of
2077 * comparable migratability as our allocation, claim the whole block.
2078 */
2079 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2080 page_group_by_mobility_disabled)
2081 set_pageblock_migratetype(page, start_type);
2082
2083 return;
2084
2085 single_page:
2086 area = &zone->free_area[current_order];
2087 list_move(&page->lru, &area->free_list[start_type]);
2088 }
2089
2090 /*
2091 * Check whether there is a suitable fallback freepage with requested order.
2092 * If only_stealable is true, this function returns fallback_mt only if
2093 * we can steal other freepages all together. This would help to reduce
2094 * fragmentation due to mixed migratetype pages in one pageblock.
2095 */
2096 int find_suitable_fallback(struct free_area *area, unsigned int order,
2097 int migratetype, bool only_stealable, bool *can_steal)
2098 {
2099 int i;
2100 int fallback_mt;
2101
2102 if (area->nr_free == 0)
2103 return -1;
2104
2105 *can_steal = false;
2106 for (i = 0;; i++) {
2107 fallback_mt = fallbacks[migratetype][i];
2108 if (fallback_mt == MIGRATE_TYPES)
2109 break;
2110
2111 if (list_empty(&area->free_list[fallback_mt]))
2112 continue;
2113
2114 if (can_steal_fallback(order, migratetype))
2115 *can_steal = true;
2116
2117 if (!only_stealable)
2118 return fallback_mt;
2119
2120 if (*can_steal)
2121 return fallback_mt;
2122 }
2123
2124 return -1;
2125 }
2126
2127 /*
2128 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2129 * there are no empty page blocks that contain a page with a suitable order
2130 */
2131 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2132 unsigned int alloc_order)
2133 {
2134 int mt;
2135 unsigned long max_managed, flags;
2136
2137 /*
2138 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2139 * Check is race-prone but harmless.
2140 */
2141 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2142 if (zone->nr_reserved_highatomic >= max_managed)
2143 return;
2144
2145 spin_lock_irqsave(&zone->lock, flags);
2146
2147 /* Recheck the nr_reserved_highatomic limit under the lock */
2148 if (zone->nr_reserved_highatomic >= max_managed)
2149 goto out_unlock;
2150
2151 /* Yoink! */
2152 mt = get_pageblock_migratetype(page);
2153 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2154 && !is_migrate_cma(mt)) {
2155 zone->nr_reserved_highatomic += pageblock_nr_pages;
2156 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2157 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2158 }
2159
2160 out_unlock:
2161 spin_unlock_irqrestore(&zone->lock, flags);
2162 }
2163
2164 /*
2165 * Used when an allocation is about to fail under memory pressure. This
2166 * potentially hurts the reliability of high-order allocations when under
2167 * intense memory pressure but failed atomic allocations should be easier
2168 * to recover from than an OOM.
2169 *
2170 * If @force is true, try to unreserve a pageblock even though highatomic
2171 * pageblock is exhausted.
2172 */
2173 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2174 bool force)
2175 {
2176 struct zonelist *zonelist = ac->zonelist;
2177 unsigned long flags;
2178 struct zoneref *z;
2179 struct zone *zone;
2180 struct page *page;
2181 int order;
2182 bool ret;
2183
2184 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2185 ac->nodemask) {
2186 /*
2187 * Preserve at least one pageblock unless memory pressure
2188 * is really high.
2189 */
2190 if (!force && zone->nr_reserved_highatomic <=
2191 pageblock_nr_pages)
2192 continue;
2193
2194 spin_lock_irqsave(&zone->lock, flags);
2195 for (order = 0; order < MAX_ORDER; order++) {
2196 struct free_area *area = &(zone->free_area[order]);
2197
2198 page = list_first_entry_or_null(
2199 &area->free_list[MIGRATE_HIGHATOMIC],
2200 struct page, lru);
2201 if (!page)
2202 continue;
2203
2204 /*
2205 * In page freeing path, migratetype change is racy so
2206 * we can counter several free pages in a pageblock
2207 * in this loop althoug we changed the pageblock type
2208 * from highatomic to ac->migratetype. So we should
2209 * adjust the count once.
2210 */
2211 if (is_migrate_highatomic_page(page)) {
2212 /*
2213 * It should never happen but changes to
2214 * locking could inadvertently allow a per-cpu
2215 * drain to add pages to MIGRATE_HIGHATOMIC
2216 * while unreserving so be safe and watch for
2217 * underflows.
2218 */
2219 zone->nr_reserved_highatomic -= min(
2220 pageblock_nr_pages,
2221 zone->nr_reserved_highatomic);
2222 }
2223
2224 /*
2225 * Convert to ac->migratetype and avoid the normal
2226 * pageblock stealing heuristics. Minimally, the caller
2227 * is doing the work and needs the pages. More
2228 * importantly, if the block was always converted to
2229 * MIGRATE_UNMOVABLE or another type then the number
2230 * of pageblocks that cannot be completely freed
2231 * may increase.
2232 */
2233 set_pageblock_migratetype(page, ac->migratetype);
2234 ret = move_freepages_block(zone, page, ac->migratetype,
2235 NULL);
2236 if (ret) {
2237 spin_unlock_irqrestore(&zone->lock, flags);
2238 return ret;
2239 }
2240 }
2241 spin_unlock_irqrestore(&zone->lock, flags);
2242 }
2243
2244 return false;
2245 }
2246
2247 /*
2248 * Try finding a free buddy page on the fallback list and put it on the free
2249 * list of requested migratetype, possibly along with other pages from the same
2250 * block, depending on fragmentation avoidance heuristics. Returns true if
2251 * fallback was found so that __rmqueue_smallest() can grab it.
2252 *
2253 * The use of signed ints for order and current_order is a deliberate
2254 * deviation from the rest of this file, to make the for loop
2255 * condition simpler.
2256 */
2257 static __always_inline bool
2258 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2259 {
2260 struct free_area *area;
2261 int current_order;
2262 struct page *page;
2263 int fallback_mt;
2264 bool can_steal;
2265
2266 /*
2267 * Find the largest available free page in the other list. This roughly
2268 * approximates finding the pageblock with the most free pages, which
2269 * would be too costly to do exactly.
2270 */
2271 for (current_order = MAX_ORDER - 1; current_order >= order;
2272 --current_order) {
2273 area = &(zone->free_area[current_order]);
2274 fallback_mt = find_suitable_fallback(area, current_order,
2275 start_migratetype, false, &can_steal);
2276 if (fallback_mt == -1)
2277 continue;
2278
2279 /*
2280 * We cannot steal all free pages from the pageblock and the
2281 * requested migratetype is movable. In that case it's better to
2282 * steal and split the smallest available page instead of the
2283 * largest available page, because even if the next movable
2284 * allocation falls back into a different pageblock than this
2285 * one, it won't cause permanent fragmentation.
2286 */
2287 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2288 && current_order > order)
2289 goto find_smallest;
2290
2291 goto do_steal;
2292 }
2293
2294 return false;
2295
2296 find_smallest:
2297 for (current_order = order; current_order < MAX_ORDER;
2298 current_order++) {
2299 area = &(zone->free_area[current_order]);
2300 fallback_mt = find_suitable_fallback(area, current_order,
2301 start_migratetype, false, &can_steal);
2302 if (fallback_mt != -1)
2303 break;
2304 }
2305
2306 /*
2307 * This should not happen - we already found a suitable fallback
2308 * when looking for the largest page.
2309 */
2310 VM_BUG_ON(current_order == MAX_ORDER);
2311
2312 do_steal:
2313 page = list_first_entry(&area->free_list[fallback_mt],
2314 struct page, lru);
2315
2316 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2317
2318 trace_mm_page_alloc_extfrag(page, order, current_order,
2319 start_migratetype, fallback_mt);
2320
2321 return true;
2322
2323 }
2324
2325 /*
2326 * Do the hard work of removing an element from the buddy allocator.
2327 * Call me with the zone->lock already held.
2328 */
2329 static __always_inline struct page *
2330 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2331 {
2332 struct page *page;
2333
2334 retry:
2335 page = __rmqueue_smallest(zone, order, migratetype);
2336 if (unlikely(!page)) {
2337 if (migratetype == MIGRATE_MOVABLE)
2338 page = __rmqueue_cma_fallback(zone, order);
2339
2340 if (!page && __rmqueue_fallback(zone, order, migratetype))
2341 goto retry;
2342 }
2343
2344 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2345 return page;
2346 }
2347
2348 /*
2349 * Obtain a specified number of elements from the buddy allocator, all under
2350 * a single hold of the lock, for efficiency. Add them to the supplied list.
2351 * Returns the number of new pages which were placed at *list.
2352 */
2353 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2354 unsigned long count, struct list_head *list,
2355 int migratetype)
2356 {
2357 int i, alloced = 0;
2358
2359 spin_lock(&zone->lock);
2360 for (i = 0; i < count; ++i) {
2361 struct page *page = __rmqueue(zone, order, migratetype);
2362 if (unlikely(page == NULL))
2363 break;
2364
2365 if (unlikely(check_pcp_refill(page)))
2366 continue;
2367
2368 /*
2369 * Split buddy pages returned by expand() are received here in
2370 * physical page order. The page is added to the tail of
2371 * caller's list. From the callers perspective, the linked list
2372 * is ordered by page number under some conditions. This is
2373 * useful for IO devices that can forward direction from the
2374 * head, thus also in the physical page order. This is useful
2375 * for IO devices that can merge IO requests if the physical
2376 * pages are ordered properly.
2377 */
2378 list_add_tail(&page->lru, list);
2379 alloced++;
2380 if (is_migrate_cma(get_pcppage_migratetype(page)))
2381 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2382 -(1 << order));
2383 }
2384
2385 /*
2386 * i pages were removed from the buddy list even if some leak due
2387 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2388 * on i. Do not confuse with 'alloced' which is the number of
2389 * pages added to the pcp list.
2390 */
2391 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2392 spin_unlock(&zone->lock);
2393 return alloced;
2394 }
2395
2396 #ifdef CONFIG_NUMA
2397 /*
2398 * Called from the vmstat counter updater to drain pagesets of this
2399 * currently executing processor on remote nodes after they have
2400 * expired.
2401 *
2402 * Note that this function must be called with the thread pinned to
2403 * a single processor.
2404 */
2405 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2406 {
2407 unsigned long flags;
2408 int to_drain, batch;
2409
2410 local_irq_save(flags);
2411 batch = READ_ONCE(pcp->batch);
2412 to_drain = min(pcp->count, batch);
2413 if (to_drain > 0) {
2414 free_pcppages_bulk(zone, to_drain, pcp);
2415 pcp->count -= to_drain;
2416 }
2417 local_irq_restore(flags);
2418 }
2419 #endif
2420
2421 /*
2422 * Drain pcplists of the indicated processor and zone.
2423 *
2424 * The processor must either be the current processor and the
2425 * thread pinned to the current processor or a processor that
2426 * is not online.
2427 */
2428 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2429 {
2430 unsigned long flags;
2431 struct per_cpu_pageset *pset;
2432 struct per_cpu_pages *pcp;
2433
2434 local_irq_save(flags);
2435 pset = per_cpu_ptr(zone->pageset, cpu);
2436
2437 pcp = &pset->pcp;
2438 if (pcp->count) {
2439 free_pcppages_bulk(zone, pcp->count, pcp);
2440 pcp->count = 0;
2441 }
2442 local_irq_restore(flags);
2443 }
2444
2445 /*
2446 * Drain pcplists of all zones on the indicated processor.
2447 *
2448 * The processor must either be the current processor and the
2449 * thread pinned to the current processor or a processor that
2450 * is not online.
2451 */
2452 static void drain_pages(unsigned int cpu)
2453 {
2454 struct zone *zone;
2455
2456 for_each_populated_zone(zone) {
2457 drain_pages_zone(cpu, zone);
2458 }
2459 }
2460
2461 /*
2462 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2463 *
2464 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2465 * the single zone's pages.
2466 */
2467 void drain_local_pages(struct zone *zone)
2468 {
2469 int cpu = smp_processor_id();
2470
2471 if (zone)
2472 drain_pages_zone(cpu, zone);
2473 else
2474 drain_pages(cpu);
2475 }
2476
2477 static void drain_local_pages_wq(struct work_struct *work)
2478 {
2479 /*
2480 * drain_all_pages doesn't use proper cpu hotplug protection so
2481 * we can race with cpu offline when the WQ can move this from
2482 * a cpu pinned worker to an unbound one. We can operate on a different
2483 * cpu which is allright but we also have to make sure to not move to
2484 * a different one.
2485 */
2486 preempt_disable();
2487 drain_local_pages(NULL);
2488 preempt_enable();
2489 }
2490
2491 /*
2492 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2493 *
2494 * When zone parameter is non-NULL, spill just the single zone's pages.
2495 *
2496 * Note that this can be extremely slow as the draining happens in a workqueue.
2497 */
2498 void drain_all_pages(struct zone *zone)
2499 {
2500 int cpu;
2501
2502 /*
2503 * Allocate in the BSS so we wont require allocation in
2504 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2505 */
2506 static cpumask_t cpus_with_pcps;
2507
2508 /*
2509 * Make sure nobody triggers this path before mm_percpu_wq is fully
2510 * initialized.
2511 */
2512 if (WARN_ON_ONCE(!mm_percpu_wq))
2513 return;
2514
2515 /*
2516 * Do not drain if one is already in progress unless it's specific to
2517 * a zone. Such callers are primarily CMA and memory hotplug and need
2518 * the drain to be complete when the call returns.
2519 */
2520 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2521 if (!zone)
2522 return;
2523 mutex_lock(&pcpu_drain_mutex);
2524 }
2525
2526 /*
2527 * We don't care about racing with CPU hotplug event
2528 * as offline notification will cause the notified
2529 * cpu to drain that CPU pcps and on_each_cpu_mask
2530 * disables preemption as part of its processing
2531 */
2532 for_each_online_cpu(cpu) {
2533 struct per_cpu_pageset *pcp;
2534 struct zone *z;
2535 bool has_pcps = false;
2536
2537 if (zone) {
2538 pcp = per_cpu_ptr(zone->pageset, cpu);
2539 if (pcp->pcp.count)
2540 has_pcps = true;
2541 } else {
2542 for_each_populated_zone(z) {
2543 pcp = per_cpu_ptr(z->pageset, cpu);
2544 if (pcp->pcp.count) {
2545 has_pcps = true;
2546 break;
2547 }
2548 }
2549 }
2550
2551 if (has_pcps)
2552 cpumask_set_cpu(cpu, &cpus_with_pcps);
2553 else
2554 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2555 }
2556
2557 for_each_cpu(cpu, &cpus_with_pcps) {
2558 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2559 INIT_WORK(work, drain_local_pages_wq);
2560 queue_work_on(cpu, mm_percpu_wq, work);
2561 }
2562 for_each_cpu(cpu, &cpus_with_pcps)
2563 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2564
2565 mutex_unlock(&pcpu_drain_mutex);
2566 }
2567
2568 #ifdef CONFIG_HIBERNATION
2569
2570 /*
2571 * Touch the watchdog for every WD_PAGE_COUNT pages.
2572 */
2573 #define WD_PAGE_COUNT (128*1024)
2574
2575 void mark_free_pages(struct zone *zone)
2576 {
2577 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2578 unsigned long flags;
2579 unsigned int order, t;
2580 struct page *page;
2581
2582 if (zone_is_empty(zone))
2583 return;
2584
2585 spin_lock_irqsave(&zone->lock, flags);
2586
2587 max_zone_pfn = zone_end_pfn(zone);
2588 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2589 if (pfn_valid(pfn)) {
2590 page = pfn_to_page(pfn);
2591
2592 if (!--page_count) {
2593 touch_nmi_watchdog();
2594 page_count = WD_PAGE_COUNT;
2595 }
2596
2597 if (page_zone(page) != zone)
2598 continue;
2599
2600 if (!swsusp_page_is_forbidden(page))
2601 swsusp_unset_page_free(page);
2602 }
2603
2604 for_each_migratetype_order(order, t) {
2605 list_for_each_entry(page,
2606 &zone->free_area[order].free_list[t], lru) {
2607 unsigned long i;
2608
2609 pfn = page_to_pfn(page);
2610 for (i = 0; i < (1UL << order); i++) {
2611 if (!--page_count) {
2612 touch_nmi_watchdog();
2613 page_count = WD_PAGE_COUNT;
2614 }
2615 swsusp_set_page_free(pfn_to_page(pfn + i));
2616 }
2617 }
2618 }
2619 spin_unlock_irqrestore(&zone->lock, flags);
2620 }
2621 #endif /* CONFIG_PM */
2622
2623 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2624 {
2625 int migratetype;
2626
2627 if (!free_pcp_prepare(page))
2628 return false;
2629
2630 migratetype = get_pfnblock_migratetype(page, pfn);
2631 set_pcppage_migratetype(page, migratetype);
2632 return true;
2633 }
2634
2635 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2636 {
2637 struct zone *zone = page_zone(page);
2638 struct per_cpu_pages *pcp;
2639 int migratetype;
2640
2641 migratetype = get_pcppage_migratetype(page);
2642 __count_vm_event(PGFREE);
2643
2644 /*
2645 * We only track unmovable, reclaimable and movable on pcp lists.
2646 * Free ISOLATE pages back to the allocator because they are being
2647 * offlined but treat HIGHATOMIC as movable pages so we can get those
2648 * areas back if necessary. Otherwise, we may have to free
2649 * excessively into the page allocator
2650 */
2651 if (migratetype >= MIGRATE_PCPTYPES) {
2652 if (unlikely(is_migrate_isolate(migratetype))) {
2653 free_one_page(zone, page, pfn, 0, migratetype);
2654 return;
2655 }
2656 migratetype = MIGRATE_MOVABLE;
2657 }
2658
2659 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2660 list_add(&page->lru, &pcp->lists[migratetype]);
2661 pcp->count++;
2662 if (pcp->count >= pcp->high) {
2663 unsigned long batch = READ_ONCE(pcp->batch);
2664 free_pcppages_bulk(zone, batch, pcp);
2665 pcp->count -= batch;
2666 }
2667 }
2668
2669 /*
2670 * Free a 0-order page
2671 */
2672 void free_unref_page(struct page *page)
2673 {
2674 unsigned long flags;
2675 unsigned long pfn = page_to_pfn(page);
2676
2677 if (!free_unref_page_prepare(page, pfn))
2678 return;
2679
2680 local_irq_save(flags);
2681 free_unref_page_commit(page, pfn);
2682 local_irq_restore(flags);
2683 }
2684
2685 /*
2686 * Free a list of 0-order pages
2687 */
2688 void free_unref_page_list(struct list_head *list)
2689 {
2690 struct page *page, *next;
2691 unsigned long flags, pfn;
2692 int batch_count = 0;
2693
2694 /* Prepare pages for freeing */
2695 list_for_each_entry_safe(page, next, list, lru) {
2696 pfn = page_to_pfn(page);
2697 if (!free_unref_page_prepare(page, pfn))
2698 list_del(&page->lru);
2699 set_page_private(page, pfn);
2700 }
2701
2702 local_irq_save(flags);
2703 list_for_each_entry_safe(page, next, list, lru) {
2704 unsigned long pfn = page_private(page);
2705
2706 set_page_private(page, 0);
2707 trace_mm_page_free_batched(page);
2708 free_unref_page_commit(page, pfn);
2709
2710 /*
2711 * Guard against excessive IRQ disabled times when we get
2712 * a large list of pages to free.
2713 */
2714 if (++batch_count == SWAP_CLUSTER_MAX) {
2715 local_irq_restore(flags);
2716 batch_count = 0;
2717 local_irq_save(flags);
2718 }
2719 }
2720 local_irq_restore(flags);
2721 }
2722
2723 /*
2724 * split_page takes a non-compound higher-order page, and splits it into
2725 * n (1<<order) sub-pages: page[0..n]
2726 * Each sub-page must be freed individually.
2727 *
2728 * Note: this is probably too low level an operation for use in drivers.
2729 * Please consult with lkml before using this in your driver.
2730 */
2731 void split_page(struct page *page, unsigned int order)
2732 {
2733 int i;
2734
2735 VM_BUG_ON_PAGE(PageCompound(page), page);
2736 VM_BUG_ON_PAGE(!page_count(page), page);
2737
2738 for (i = 1; i < (1 << order); i++)
2739 set_page_refcounted(page + i);
2740 split_page_owner(page, order);
2741 }
2742 EXPORT_SYMBOL_GPL(split_page);
2743
2744 int __isolate_free_page(struct page *page, unsigned int order)
2745 {
2746 unsigned long watermark;
2747 struct zone *zone;
2748 int mt;
2749
2750 BUG_ON(!PageBuddy(page));
2751
2752 zone = page_zone(page);
2753 mt = get_pageblock_migratetype(page);
2754
2755 if (!is_migrate_isolate(mt)) {
2756 /*
2757 * Obey watermarks as if the page was being allocated. We can
2758 * emulate a high-order watermark check with a raised order-0
2759 * watermark, because we already know our high-order page
2760 * exists.
2761 */
2762 watermark = min_wmark_pages(zone) + (1UL << order);
2763 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2764 return 0;
2765
2766 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2767 }
2768
2769 /* Remove page from free list */
2770 list_del(&page->lru);
2771 zone->free_area[order].nr_free--;
2772 rmv_page_order(page);
2773
2774 /*
2775 * Set the pageblock if the isolated page is at least half of a
2776 * pageblock
2777 */
2778 if (order >= pageblock_order - 1) {
2779 struct page *endpage = page + (1 << order) - 1;
2780 for (; page < endpage; page += pageblock_nr_pages) {
2781 int mt = get_pageblock_migratetype(page);
2782 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2783 && !is_migrate_highatomic(mt))
2784 set_pageblock_migratetype(page,
2785 MIGRATE_MOVABLE);
2786 }
2787 }
2788
2789
2790 return 1UL << order;
2791 }
2792
2793 /*
2794 * Update NUMA hit/miss statistics
2795 *
2796 * Must be called with interrupts disabled.
2797 */
2798 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2799 {
2800 #ifdef CONFIG_NUMA
2801 enum numa_stat_item local_stat = NUMA_LOCAL;
2802
2803 /* skip numa counters update if numa stats is disabled */
2804 if (!static_branch_likely(&vm_numa_stat_key))
2805 return;
2806
2807 if (z->node != numa_node_id())
2808 local_stat = NUMA_OTHER;
2809
2810 if (z->node == preferred_zone->node)
2811 __inc_numa_state(z, NUMA_HIT);
2812 else {
2813 __inc_numa_state(z, NUMA_MISS);
2814 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2815 }
2816 __inc_numa_state(z, local_stat);
2817 #endif
2818 }
2819
2820 /* Remove page from the per-cpu list, caller must protect the list */
2821 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2822 struct per_cpu_pages *pcp,
2823 struct list_head *list)
2824 {
2825 struct page *page;
2826
2827 do {
2828 if (list_empty(list)) {
2829 pcp->count += rmqueue_bulk(zone, 0,
2830 pcp->batch, list,
2831 migratetype);
2832 if (unlikely(list_empty(list)))
2833 return NULL;
2834 }
2835
2836 page = list_first_entry(list, struct page, lru);
2837 list_del(&page->lru);
2838 pcp->count--;
2839 } while (check_new_pcp(page));
2840
2841 return page;
2842 }
2843
2844 /* Lock and remove page from the per-cpu list */
2845 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2846 struct zone *zone, unsigned int order,
2847 gfp_t gfp_flags, int migratetype)
2848 {
2849 struct per_cpu_pages *pcp;
2850 struct list_head *list;
2851 struct page *page;
2852 unsigned long flags;
2853
2854 local_irq_save(flags);
2855 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2856 list = &pcp->lists[migratetype];
2857 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2858 if (page) {
2859 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2860 zone_statistics(preferred_zone, zone);
2861 }
2862 local_irq_restore(flags);
2863 return page;
2864 }
2865
2866 /*
2867 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2868 */
2869 static inline
2870 struct page *rmqueue(struct zone *preferred_zone,
2871 struct zone *zone, unsigned int order,
2872 gfp_t gfp_flags, unsigned int alloc_flags,
2873 int migratetype)
2874 {
2875 unsigned long flags;
2876 struct page *page;
2877
2878 if (likely(order == 0)) {
2879 page = rmqueue_pcplist(preferred_zone, zone, order,
2880 gfp_flags, migratetype);
2881 goto out;
2882 }
2883
2884 /*
2885 * We most definitely don't want callers attempting to
2886 * allocate greater than order-1 page units with __GFP_NOFAIL.
2887 */
2888 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2889 spin_lock_irqsave(&zone->lock, flags);
2890
2891 do {
2892 page = NULL;
2893 if (alloc_flags & ALLOC_HARDER) {
2894 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2895 if (page)
2896 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2897 }
2898 if (!page)
2899 page = __rmqueue(zone, order, migratetype);
2900 } while (page && check_new_pages(page, order));
2901 spin_unlock(&zone->lock);
2902 if (!page)
2903 goto failed;
2904 __mod_zone_freepage_state(zone, -(1 << order),
2905 get_pcppage_migratetype(page));
2906
2907 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2908 zone_statistics(preferred_zone, zone);
2909 local_irq_restore(flags);
2910
2911 out:
2912 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2913 return page;
2914
2915 failed:
2916 local_irq_restore(flags);
2917 return NULL;
2918 }
2919
2920 #ifdef CONFIG_FAIL_PAGE_ALLOC
2921
2922 static struct {
2923 struct fault_attr attr;
2924
2925 bool ignore_gfp_highmem;
2926 bool ignore_gfp_reclaim;
2927 u32 min_order;
2928 } fail_page_alloc = {
2929 .attr = FAULT_ATTR_INITIALIZER,
2930 .ignore_gfp_reclaim = true,
2931 .ignore_gfp_highmem = true,
2932 .min_order = 1,
2933 };
2934
2935 static int __init setup_fail_page_alloc(char *str)
2936 {
2937 return setup_fault_attr(&fail_page_alloc.attr, str);
2938 }
2939 __setup("fail_page_alloc=", setup_fail_page_alloc);
2940
2941 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2942 {
2943 if (order < fail_page_alloc.min_order)
2944 return false;
2945 if (gfp_mask & __GFP_NOFAIL)
2946 return false;
2947 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2948 return false;
2949 if (fail_page_alloc.ignore_gfp_reclaim &&
2950 (gfp_mask & __GFP_DIRECT_RECLAIM))
2951 return false;
2952
2953 return should_fail(&fail_page_alloc.attr, 1 << order);
2954 }
2955
2956 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2957
2958 static int __init fail_page_alloc_debugfs(void)
2959 {
2960 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2961 struct dentry *dir;
2962
2963 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2964 &fail_page_alloc.attr);
2965 if (IS_ERR(dir))
2966 return PTR_ERR(dir);
2967
2968 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2969 &fail_page_alloc.ignore_gfp_reclaim))
2970 goto fail;
2971 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2972 &fail_page_alloc.ignore_gfp_highmem))
2973 goto fail;
2974 if (!debugfs_create_u32("min-order", mode, dir,
2975 &fail_page_alloc.min_order))
2976 goto fail;
2977
2978 return 0;
2979 fail:
2980 debugfs_remove_recursive(dir);
2981
2982 return -ENOMEM;
2983 }
2984
2985 late_initcall(fail_page_alloc_debugfs);
2986
2987 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2988
2989 #else /* CONFIG_FAIL_PAGE_ALLOC */
2990
2991 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2992 {
2993 return false;
2994 }
2995
2996 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2997
2998 /*
2999 * Return true if free base pages are above 'mark'. For high-order checks it
3000 * will return true of the order-0 watermark is reached and there is at least
3001 * one free page of a suitable size. Checking now avoids taking the zone lock
3002 * to check in the allocation paths if no pages are free.
3003 */
3004 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3005 int classzone_idx, unsigned int alloc_flags,
3006 long free_pages)
3007 {
3008 long min = mark;
3009 int o;
3010 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3011
3012 /* free_pages may go negative - that's OK */
3013 free_pages -= (1 << order) - 1;
3014
3015 if (alloc_flags & ALLOC_HIGH)
3016 min -= min / 2;
3017
3018 /*
3019 * If the caller does not have rights to ALLOC_HARDER then subtract
3020 * the high-atomic reserves. This will over-estimate the size of the
3021 * atomic reserve but it avoids a search.
3022 */
3023 if (likely(!alloc_harder)) {
3024 free_pages -= z->nr_reserved_highatomic;
3025 } else {
3026 /*
3027 * OOM victims can try even harder than normal ALLOC_HARDER
3028 * users on the grounds that it's definitely going to be in
3029 * the exit path shortly and free memory. Any allocation it
3030 * makes during the free path will be small and short-lived.
3031 */
3032 if (alloc_flags & ALLOC_OOM)
3033 min -= min / 2;
3034 else
3035 min -= min / 4;
3036 }
3037
3038
3039 #ifdef CONFIG_CMA
3040 /* If allocation can't use CMA areas don't use free CMA pages */
3041 if (!(alloc_flags & ALLOC_CMA))
3042 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3043 #endif
3044
3045 /*
3046 * Check watermarks for an order-0 allocation request. If these
3047 * are not met, then a high-order request also cannot go ahead
3048 * even if a suitable page happened to be free.
3049 */
3050 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3051 return false;
3052
3053 /* If this is an order-0 request then the watermark is fine */
3054 if (!order)
3055 return true;
3056
3057 /* For a high-order request, check at least one suitable page is free */
3058 for (o = order; o < MAX_ORDER; o++) {
3059 struct free_area *area = &z->free_area[o];
3060 int mt;
3061
3062 if (!area->nr_free)
3063 continue;
3064
3065 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3066 if (!list_empty(&area->free_list[mt]))
3067 return true;
3068 }
3069
3070 #ifdef CONFIG_CMA
3071 if ((alloc_flags & ALLOC_CMA) &&
3072 !list_empty(&area->free_list[MIGRATE_CMA])) {
3073 return true;
3074 }
3075 #endif
3076 if (alloc_harder &&
3077 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3078 return true;
3079 }
3080 return false;
3081 }
3082
3083 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3084 int classzone_idx, unsigned int alloc_flags)
3085 {
3086 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3087 zone_page_state(z, NR_FREE_PAGES));
3088 }
3089
3090 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3091 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3092 {
3093 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3094 long cma_pages = 0;
3095
3096 #ifdef CONFIG_CMA
3097 /* If allocation can't use CMA areas don't use free CMA pages */
3098 if (!(alloc_flags & ALLOC_CMA))
3099 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3100 #endif
3101
3102 /*
3103 * Fast check for order-0 only. If this fails then the reserves
3104 * need to be calculated. There is a corner case where the check
3105 * passes but only the high-order atomic reserve are free. If
3106 * the caller is !atomic then it'll uselessly search the free
3107 * list. That corner case is then slower but it is harmless.
3108 */
3109 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3110 return true;
3111
3112 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3113 free_pages);
3114 }
3115
3116 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3117 unsigned long mark, int classzone_idx)
3118 {
3119 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3120
3121 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3122 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3123
3124 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3125 free_pages);
3126 }
3127
3128 #ifdef CONFIG_NUMA
3129 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3130 {
3131 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3132 RECLAIM_DISTANCE;
3133 }
3134 #else /* CONFIG_NUMA */
3135 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3136 {
3137 return true;
3138 }
3139 #endif /* CONFIG_NUMA */
3140
3141 /*
3142 * get_page_from_freelist goes through the zonelist trying to allocate
3143 * a page.
3144 */
3145 static struct page *
3146 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3147 const struct alloc_context *ac)
3148 {
3149 struct zoneref *z = ac->preferred_zoneref;
3150 struct zone *zone;
3151 struct pglist_data *last_pgdat_dirty_limit = NULL;
3152
3153 /*
3154 * Scan zonelist, looking for a zone with enough free.
3155 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3156 */
3157 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3158 ac->nodemask) {
3159 struct page *page;
3160 unsigned long mark;
3161
3162 if (cpusets_enabled() &&
3163 (alloc_flags & ALLOC_CPUSET) &&
3164 !__cpuset_zone_allowed(zone, gfp_mask))
3165 continue;
3166 /*
3167 * When allocating a page cache page for writing, we
3168 * want to get it from a node that is within its dirty
3169 * limit, such that no single node holds more than its
3170 * proportional share of globally allowed dirty pages.
3171 * The dirty limits take into account the node's
3172 * lowmem reserves and high watermark so that kswapd
3173 * should be able to balance it without having to
3174 * write pages from its LRU list.
3175 *
3176 * XXX: For now, allow allocations to potentially
3177 * exceed the per-node dirty limit in the slowpath
3178 * (spread_dirty_pages unset) before going into reclaim,
3179 * which is important when on a NUMA setup the allowed
3180 * nodes are together not big enough to reach the
3181 * global limit. The proper fix for these situations
3182 * will require awareness of nodes in the
3183 * dirty-throttling and the flusher threads.
3184 */
3185 if (ac->spread_dirty_pages) {
3186 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3187 continue;
3188
3189 if (!node_dirty_ok(zone->zone_pgdat)) {
3190 last_pgdat_dirty_limit = zone->zone_pgdat;
3191 continue;
3192 }
3193 }
3194
3195 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3196 if (!zone_watermark_fast(zone, order, mark,
3197 ac_classzone_idx(ac), alloc_flags)) {
3198 int ret;
3199
3200 /* Checked here to keep the fast path fast */
3201 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3202 if (alloc_flags & ALLOC_NO_WATERMARKS)
3203 goto try_this_zone;
3204
3205 if (node_reclaim_mode == 0 ||
3206 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3207 continue;
3208
3209 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3210 switch (ret) {
3211 case NODE_RECLAIM_NOSCAN:
3212 /* did not scan */
3213 continue;
3214 case NODE_RECLAIM_FULL:
3215 /* scanned but unreclaimable */
3216 continue;
3217 default:
3218 /* did we reclaim enough */
3219 if (zone_watermark_ok(zone, order, mark,
3220 ac_classzone_idx(ac), alloc_flags))
3221 goto try_this_zone;
3222
3223 continue;
3224 }
3225 }
3226
3227 try_this_zone:
3228 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3229 gfp_mask, alloc_flags, ac->migratetype);
3230 if (page) {
3231 prep_new_page(page, order, gfp_mask, alloc_flags);
3232
3233 /*
3234 * If this is a high-order atomic allocation then check
3235 * if the pageblock should be reserved for the future
3236 */
3237 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3238 reserve_highatomic_pageblock(page, zone, order);
3239
3240 return page;
3241 }
3242 }
3243
3244 return NULL;
3245 }
3246
3247 /*
3248 * Large machines with many possible nodes should not always dump per-node
3249 * meminfo in irq context.
3250 */
3251 static inline bool should_suppress_show_mem(void)
3252 {
3253 bool ret = false;
3254
3255 #if NODES_SHIFT > 8
3256 ret = in_interrupt();
3257 #endif
3258 return ret;
3259 }
3260
3261 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3262 {
3263 unsigned int filter = SHOW_MEM_FILTER_NODES;
3264 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3265
3266 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3267 return;
3268
3269 /*
3270 * This documents exceptions given to allocations in certain
3271 * contexts that are allowed to allocate outside current's set
3272 * of allowed nodes.
3273 */
3274 if (!(gfp_mask & __GFP_NOMEMALLOC))
3275 if (tsk_is_oom_victim(current) ||
3276 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3277 filter &= ~SHOW_MEM_FILTER_NODES;
3278 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3279 filter &= ~SHOW_MEM_FILTER_NODES;
3280
3281 show_mem(filter, nodemask);
3282 }
3283
3284 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3285 {
3286 struct va_format vaf;
3287 va_list args;
3288 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3289 DEFAULT_RATELIMIT_BURST);
3290
3291 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3292 return;
3293
3294 va_start(args, fmt);
3295 vaf.fmt = fmt;
3296 vaf.va = &args;
3297 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3298 current->comm, &vaf, gfp_mask, &gfp_mask,
3299 nodemask_pr_args(nodemask));
3300 va_end(args);
3301
3302 cpuset_print_current_mems_allowed();
3303
3304 dump_stack();
3305 warn_alloc_show_mem(gfp_mask, nodemask);
3306 }
3307
3308 static inline struct page *
3309 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3310 unsigned int alloc_flags,
3311 const struct alloc_context *ac)
3312 {
3313 struct page *page;
3314
3315 page = get_page_from_freelist(gfp_mask, order,
3316 alloc_flags|ALLOC_CPUSET, ac);
3317 /*
3318 * fallback to ignore cpuset restriction if our nodes
3319 * are depleted
3320 */
3321 if (!page)
3322 page = get_page_from_freelist(gfp_mask, order,
3323 alloc_flags, ac);
3324
3325 return page;
3326 }
3327
3328 static inline struct page *
3329 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3330 const struct alloc_context *ac, unsigned long *did_some_progress)
3331 {
3332 struct oom_control oc = {
3333 .zonelist = ac->zonelist,
3334 .nodemask = ac->nodemask,
3335 .memcg = NULL,
3336 .gfp_mask = gfp_mask,
3337 .order = order,
3338 };
3339 struct page *page;
3340
3341 *did_some_progress = 0;
3342
3343 /*
3344 * Acquire the oom lock. If that fails, somebody else is
3345 * making progress for us.
3346 */
3347 if (!mutex_trylock(&oom_lock)) {
3348 *did_some_progress = 1;
3349 schedule_timeout_uninterruptible(1);
3350 return NULL;
3351 }
3352
3353 /*
3354 * Go through the zonelist yet one more time, keep very high watermark
3355 * here, this is only to catch a parallel oom killing, we must fail if
3356 * we're still under heavy pressure. But make sure that this reclaim
3357 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3358 * allocation which will never fail due to oom_lock already held.
3359 */
3360 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3361 ~__GFP_DIRECT_RECLAIM, order,
3362 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3363 if (page)
3364 goto out;
3365
3366 /* Coredumps can quickly deplete all memory reserves */
3367 if (current->flags & PF_DUMPCORE)
3368 goto out;
3369 /* The OOM killer will not help higher order allocs */
3370 if (order > PAGE_ALLOC_COSTLY_ORDER)
3371 goto out;
3372 /*
3373 * We have already exhausted all our reclaim opportunities without any
3374 * success so it is time to admit defeat. We will skip the OOM killer
3375 * because it is very likely that the caller has a more reasonable
3376 * fallback than shooting a random task.
3377 */
3378 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3379 goto out;
3380 /* The OOM killer does not needlessly kill tasks for lowmem */
3381 if (ac->high_zoneidx < ZONE_NORMAL)
3382 goto out;
3383 if (pm_suspended_storage())
3384 goto out;
3385 /*
3386 * XXX: GFP_NOFS allocations should rather fail than rely on
3387 * other request to make a forward progress.
3388 * We are in an unfortunate situation where out_of_memory cannot
3389 * do much for this context but let's try it to at least get
3390 * access to memory reserved if the current task is killed (see
3391 * out_of_memory). Once filesystems are ready to handle allocation
3392 * failures more gracefully we should just bail out here.
3393 */
3394
3395 /* The OOM killer may not free memory on a specific node */
3396 if (gfp_mask & __GFP_THISNODE)
3397 goto out;
3398
3399 /* Exhausted what can be done so it's blamo time */
3400 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3401 *did_some_progress = 1;
3402
3403 /*
3404 * Help non-failing allocations by giving them access to memory
3405 * reserves
3406 */
3407 if (gfp_mask & __GFP_NOFAIL)
3408 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3409 ALLOC_NO_WATERMARKS, ac);
3410 }
3411 out:
3412 mutex_unlock(&oom_lock);
3413 return page;
3414 }
3415
3416 /*
3417 * Maximum number of compaction retries wit a progress before OOM
3418 * killer is consider as the only way to move forward.
3419 */
3420 #define MAX_COMPACT_RETRIES 16
3421
3422 #ifdef CONFIG_COMPACTION
3423 /* Try memory compaction for high-order allocations before reclaim */
3424 static struct page *
3425 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3426 unsigned int alloc_flags, const struct alloc_context *ac,
3427 enum compact_priority prio, enum compact_result *compact_result)
3428 {
3429 struct page *page;
3430 unsigned int noreclaim_flag;
3431
3432 if (!order)
3433 return NULL;
3434
3435 noreclaim_flag = memalloc_noreclaim_save();
3436 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3437 prio);
3438 memalloc_noreclaim_restore(noreclaim_flag);
3439
3440 if (*compact_result <= COMPACT_INACTIVE)
3441 return NULL;
3442
3443 /*
3444 * At least in one zone compaction wasn't deferred or skipped, so let's
3445 * count a compaction stall
3446 */
3447 count_vm_event(COMPACTSTALL);
3448
3449 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3450
3451 if (page) {
3452 struct zone *zone = page_zone(page);
3453
3454 zone->compact_blockskip_flush = false;
3455 compaction_defer_reset(zone, order, true);
3456 count_vm_event(COMPACTSUCCESS);
3457 return page;
3458 }
3459
3460 /*
3461 * It's bad if compaction run occurs and fails. The most likely reason
3462 * is that pages exist, but not enough to satisfy watermarks.
3463 */
3464 count_vm_event(COMPACTFAIL);
3465
3466 cond_resched();
3467
3468 return NULL;
3469 }
3470
3471 static inline bool
3472 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3473 enum compact_result compact_result,
3474 enum compact_priority *compact_priority,
3475 int *compaction_retries)
3476 {
3477 int max_retries = MAX_COMPACT_RETRIES;
3478 int min_priority;
3479 bool ret = false;
3480 int retries = *compaction_retries;
3481 enum compact_priority priority = *compact_priority;
3482
3483 if (!order)
3484 return false;
3485
3486 if (compaction_made_progress(compact_result))
3487 (*compaction_retries)++;
3488
3489 /*
3490 * compaction considers all the zone as desperately out of memory
3491 * so it doesn't really make much sense to retry except when the
3492 * failure could be caused by insufficient priority
3493 */
3494 if (compaction_failed(compact_result))
3495 goto check_priority;
3496
3497 /*
3498 * make sure the compaction wasn't deferred or didn't bail out early
3499 * due to locks contention before we declare that we should give up.
3500 * But do not retry if the given zonelist is not suitable for
3501 * compaction.
3502 */
3503 if (compaction_withdrawn(compact_result)) {
3504 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3505 goto out;
3506 }
3507
3508 /*
3509 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3510 * costly ones because they are de facto nofail and invoke OOM
3511 * killer to move on while costly can fail and users are ready
3512 * to cope with that. 1/4 retries is rather arbitrary but we
3513 * would need much more detailed feedback from compaction to
3514 * make a better decision.
3515 */
3516 if (order > PAGE_ALLOC_COSTLY_ORDER)
3517 max_retries /= 4;
3518 if (*compaction_retries <= max_retries) {
3519 ret = true;
3520 goto out;
3521 }
3522
3523 /*
3524 * Make sure there are attempts at the highest priority if we exhausted
3525 * all retries or failed at the lower priorities.
3526 */
3527 check_priority:
3528 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3529 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3530
3531 if (*compact_priority > min_priority) {
3532 (*compact_priority)--;
3533 *compaction_retries = 0;
3534 ret = true;
3535 }
3536 out:
3537 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3538 return ret;
3539 }
3540 #else
3541 static inline struct page *
3542 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3543 unsigned int alloc_flags, const struct alloc_context *ac,
3544 enum compact_priority prio, enum compact_result *compact_result)
3545 {
3546 *compact_result = COMPACT_SKIPPED;
3547 return NULL;
3548 }
3549
3550 static inline bool
3551 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3552 enum compact_result compact_result,
3553 enum compact_priority *compact_priority,
3554 int *compaction_retries)
3555 {
3556 struct zone *zone;
3557 struct zoneref *z;
3558
3559 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3560 return false;
3561
3562 /*
3563 * There are setups with compaction disabled which would prefer to loop
3564 * inside the allocator rather than hit the oom killer prematurely.
3565 * Let's give them a good hope and keep retrying while the order-0
3566 * watermarks are OK.
3567 */
3568 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3569 ac->nodemask) {
3570 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3571 ac_classzone_idx(ac), alloc_flags))
3572 return true;
3573 }
3574 return false;
3575 }
3576 #endif /* CONFIG_COMPACTION */
3577
3578 #ifdef CONFIG_LOCKDEP
3579 struct lockdep_map __fs_reclaim_map =
3580 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3581
3582 static bool __need_fs_reclaim(gfp_t gfp_mask)
3583 {
3584 gfp_mask = current_gfp_context(gfp_mask);
3585
3586 /* no reclaim without waiting on it */
3587 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3588 return false;
3589
3590 /* this guy won't enter reclaim */
3591 if (current->flags & PF_MEMALLOC)
3592 return false;
3593
3594 /* We're only interested __GFP_FS allocations for now */
3595 if (!(gfp_mask & __GFP_FS))
3596 return false;
3597
3598 if (gfp_mask & __GFP_NOLOCKDEP)
3599 return false;
3600
3601 return true;
3602 }
3603
3604 void fs_reclaim_acquire(gfp_t gfp_mask)
3605 {
3606 if (__need_fs_reclaim(gfp_mask))
3607 lock_map_acquire(&__fs_reclaim_map);
3608 }
3609 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3610
3611 void fs_reclaim_release(gfp_t gfp_mask)
3612 {
3613 if (__need_fs_reclaim(gfp_mask))
3614 lock_map_release(&__fs_reclaim_map);
3615 }
3616 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3617 #endif
3618
3619 /* Perform direct synchronous page reclaim */
3620 static int
3621 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3622 const struct alloc_context *ac)
3623 {
3624 struct reclaim_state reclaim_state;
3625 int progress;
3626 unsigned int noreclaim_flag;
3627
3628 cond_resched();
3629
3630 /* We now go into synchronous reclaim */
3631 cpuset_memory_pressure_bump();
3632 noreclaim_flag = memalloc_noreclaim_save();
3633 fs_reclaim_acquire(gfp_mask);
3634 reclaim_state.reclaimed_slab = 0;
3635 current->reclaim_state = &reclaim_state;
3636
3637 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3638 ac->nodemask);
3639
3640 current->reclaim_state = NULL;
3641 fs_reclaim_release(gfp_mask);
3642 memalloc_noreclaim_restore(noreclaim_flag);
3643
3644 cond_resched();
3645
3646 return progress;
3647 }
3648
3649 /* The really slow allocator path where we enter direct reclaim */
3650 static inline struct page *
3651 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3652 unsigned int alloc_flags, const struct alloc_context *ac,
3653 unsigned long *did_some_progress)
3654 {
3655 struct page *page = NULL;
3656 bool drained = false;
3657
3658 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3659 if (unlikely(!(*did_some_progress)))
3660 return NULL;
3661
3662 retry:
3663 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3664
3665 /*
3666 * If an allocation failed after direct reclaim, it could be because
3667 * pages are pinned on the per-cpu lists or in high alloc reserves.
3668 * Shrink them them and try again
3669 */
3670 if (!page && !drained) {
3671 unreserve_highatomic_pageblock(ac, false);
3672 drain_all_pages(NULL);
3673 drained = true;
3674 goto retry;
3675 }
3676
3677 return page;
3678 }
3679
3680 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3681 {
3682 struct zoneref *z;
3683 struct zone *zone;
3684 pg_data_t *last_pgdat = NULL;
3685
3686 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3687 ac->high_zoneidx, ac->nodemask) {
3688 if (last_pgdat != zone->zone_pgdat)
3689 wakeup_kswapd(zone, order, ac->high_zoneidx);
3690 last_pgdat = zone->zone_pgdat;
3691 }
3692 }
3693
3694 static inline unsigned int
3695 gfp_to_alloc_flags(gfp_t gfp_mask)
3696 {
3697 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3698
3699 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3700 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3701
3702 /*
3703 * The caller may dip into page reserves a bit more if the caller
3704 * cannot run direct reclaim, or if the caller has realtime scheduling
3705 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3706 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3707 */
3708 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3709
3710 if (gfp_mask & __GFP_ATOMIC) {
3711 /*
3712 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3713 * if it can't schedule.
3714 */
3715 if (!(gfp_mask & __GFP_NOMEMALLOC))
3716 alloc_flags |= ALLOC_HARDER;
3717 /*
3718 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3719 * comment for __cpuset_node_allowed().
3720 */
3721 alloc_flags &= ~ALLOC_CPUSET;
3722 } else if (unlikely(rt_task(current)) && !in_interrupt())
3723 alloc_flags |= ALLOC_HARDER;
3724
3725 #ifdef CONFIG_CMA
3726 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3727 alloc_flags |= ALLOC_CMA;
3728 #endif
3729 return alloc_flags;
3730 }
3731
3732 static bool oom_reserves_allowed(struct task_struct *tsk)
3733 {
3734 if (!tsk_is_oom_victim(tsk))
3735 return false;
3736
3737 /*
3738 * !MMU doesn't have oom reaper so give access to memory reserves
3739 * only to the thread with TIF_MEMDIE set
3740 */
3741 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3742 return false;
3743
3744 return true;
3745 }
3746
3747 /*
3748 * Distinguish requests which really need access to full memory
3749 * reserves from oom victims which can live with a portion of it
3750 */
3751 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3752 {
3753 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3754 return 0;
3755 if (gfp_mask & __GFP_MEMALLOC)
3756 return ALLOC_NO_WATERMARKS;
3757 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3758 return ALLOC_NO_WATERMARKS;
3759 if (!in_interrupt()) {
3760 if (current->flags & PF_MEMALLOC)
3761 return ALLOC_NO_WATERMARKS;
3762 else if (oom_reserves_allowed(current))
3763 return ALLOC_OOM;
3764 }
3765
3766 return 0;
3767 }
3768
3769 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3770 {
3771 return !!__gfp_pfmemalloc_flags(gfp_mask);
3772 }
3773
3774 /*
3775 * Checks whether it makes sense to retry the reclaim to make a forward progress
3776 * for the given allocation request.
3777 *
3778 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3779 * without success, or when we couldn't even meet the watermark if we
3780 * reclaimed all remaining pages on the LRU lists.
3781 *
3782 * Returns true if a retry is viable or false to enter the oom path.
3783 */
3784 static inline bool
3785 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3786 struct alloc_context *ac, int alloc_flags,
3787 bool did_some_progress, int *no_progress_loops)
3788 {
3789 struct zone *zone;
3790 struct zoneref *z;
3791
3792 /*
3793 * Costly allocations might have made a progress but this doesn't mean
3794 * their order will become available due to high fragmentation so
3795 * always increment the no progress counter for them
3796 */
3797 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3798 *no_progress_loops = 0;
3799 else
3800 (*no_progress_loops)++;
3801
3802 /*
3803 * Make sure we converge to OOM if we cannot make any progress
3804 * several times in the row.
3805 */
3806 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3807 /* Before OOM, exhaust highatomic_reserve */
3808 return unreserve_highatomic_pageblock(ac, true);
3809 }
3810
3811 /*
3812 * Keep reclaiming pages while there is a chance this will lead
3813 * somewhere. If none of the target zones can satisfy our allocation
3814 * request even if all reclaimable pages are considered then we are
3815 * screwed and have to go OOM.
3816 */
3817 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3818 ac->nodemask) {
3819 unsigned long available;
3820 unsigned long reclaimable;
3821 unsigned long min_wmark = min_wmark_pages(zone);
3822 bool wmark;
3823
3824 available = reclaimable = zone_reclaimable_pages(zone);
3825 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3826
3827 /*
3828 * Would the allocation succeed if we reclaimed all
3829 * reclaimable pages?
3830 */
3831 wmark = __zone_watermark_ok(zone, order, min_wmark,
3832 ac_classzone_idx(ac), alloc_flags, available);
3833 trace_reclaim_retry_zone(z, order, reclaimable,
3834 available, min_wmark, *no_progress_loops, wmark);
3835 if (wmark) {
3836 /*
3837 * If we didn't make any progress and have a lot of
3838 * dirty + writeback pages then we should wait for
3839 * an IO to complete to slow down the reclaim and
3840 * prevent from pre mature OOM
3841 */
3842 if (!did_some_progress) {
3843 unsigned long write_pending;
3844
3845 write_pending = zone_page_state_snapshot(zone,
3846 NR_ZONE_WRITE_PENDING);
3847
3848 if (2 * write_pending > reclaimable) {
3849 congestion_wait(BLK_RW_ASYNC, HZ/10);
3850 return true;
3851 }
3852 }
3853
3854 /*
3855 * Memory allocation/reclaim might be called from a WQ
3856 * context and the current implementation of the WQ
3857 * concurrency control doesn't recognize that
3858 * a particular WQ is congested if the worker thread is
3859 * looping without ever sleeping. Therefore we have to
3860 * do a short sleep here rather than calling
3861 * cond_resched().
3862 */
3863 if (current->flags & PF_WQ_WORKER)
3864 schedule_timeout_uninterruptible(1);
3865 else
3866 cond_resched();
3867
3868 return true;
3869 }
3870 }
3871
3872 return false;
3873 }
3874
3875 static inline bool
3876 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3877 {
3878 /*
3879 * It's possible that cpuset's mems_allowed and the nodemask from
3880 * mempolicy don't intersect. This should be normally dealt with by
3881 * policy_nodemask(), but it's possible to race with cpuset update in
3882 * such a way the check therein was true, and then it became false
3883 * before we got our cpuset_mems_cookie here.
3884 * This assumes that for all allocations, ac->nodemask can come only
3885 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3886 * when it does not intersect with the cpuset restrictions) or the
3887 * caller can deal with a violated nodemask.
3888 */
3889 if (cpusets_enabled() && ac->nodemask &&
3890 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3891 ac->nodemask = NULL;
3892 return true;
3893 }
3894
3895 /*
3896 * When updating a task's mems_allowed or mempolicy nodemask, it is
3897 * possible to race with parallel threads in such a way that our
3898 * allocation can fail while the mask is being updated. If we are about
3899 * to fail, check if the cpuset changed during allocation and if so,
3900 * retry.
3901 */
3902 if (read_mems_allowed_retry(cpuset_mems_cookie))
3903 return true;
3904
3905 return false;
3906 }
3907
3908 static inline struct page *
3909 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3910 struct alloc_context *ac)
3911 {
3912 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3913 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3914 struct page *page = NULL;
3915 unsigned int alloc_flags;
3916 unsigned long did_some_progress;
3917 enum compact_priority compact_priority;
3918 enum compact_result compact_result;
3919 int compaction_retries;
3920 int no_progress_loops;
3921 unsigned int cpuset_mems_cookie;
3922 int reserve_flags;
3923
3924 /*
3925 * In the slowpath, we sanity check order to avoid ever trying to
3926 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3927 * be using allocators in order of preference for an area that is
3928 * too large.
3929 */
3930 if (order >= MAX_ORDER) {
3931 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3932 return NULL;
3933 }
3934
3935 /*
3936 * We also sanity check to catch abuse of atomic reserves being used by
3937 * callers that are not in atomic context.
3938 */
3939 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3940 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3941 gfp_mask &= ~__GFP_ATOMIC;
3942
3943 retry_cpuset:
3944 compaction_retries = 0;
3945 no_progress_loops = 0;
3946 compact_priority = DEF_COMPACT_PRIORITY;
3947 cpuset_mems_cookie = read_mems_allowed_begin();
3948
3949 /*
3950 * The fast path uses conservative alloc_flags to succeed only until
3951 * kswapd needs to be woken up, and to avoid the cost of setting up
3952 * alloc_flags precisely. So we do that now.
3953 */
3954 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3955
3956 /*
3957 * We need to recalculate the starting point for the zonelist iterator
3958 * because we might have used different nodemask in the fast path, or
3959 * there was a cpuset modification and we are retrying - otherwise we
3960 * could end up iterating over non-eligible zones endlessly.
3961 */
3962 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3963 ac->high_zoneidx, ac->nodemask);
3964 if (!ac->preferred_zoneref->zone)
3965 goto nopage;
3966
3967 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3968 wake_all_kswapds(order, ac);
3969
3970 /*
3971 * The adjusted alloc_flags might result in immediate success, so try
3972 * that first
3973 */
3974 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3975 if (page)
3976 goto got_pg;
3977
3978 /*
3979 * For costly allocations, try direct compaction first, as it's likely
3980 * that we have enough base pages and don't need to reclaim. For non-
3981 * movable high-order allocations, do that as well, as compaction will
3982 * try prevent permanent fragmentation by migrating from blocks of the
3983 * same migratetype.
3984 * Don't try this for allocations that are allowed to ignore
3985 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3986 */
3987 if (can_direct_reclaim &&
3988 (costly_order ||
3989 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3990 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3991 page = __alloc_pages_direct_compact(gfp_mask, order,
3992 alloc_flags, ac,
3993 INIT_COMPACT_PRIORITY,
3994 &compact_result);
3995 if (page)
3996 goto got_pg;
3997
3998 /*
3999 * Checks for costly allocations with __GFP_NORETRY, which
4000 * includes THP page fault allocations
4001 */
4002 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4003 /*
4004 * If compaction is deferred for high-order allocations,
4005 * it is because sync compaction recently failed. If
4006 * this is the case and the caller requested a THP
4007 * allocation, we do not want to heavily disrupt the
4008 * system, so we fail the allocation instead of entering
4009 * direct reclaim.
4010 */
4011 if (compact_result == COMPACT_DEFERRED)
4012 goto nopage;
4013
4014 /*
4015 * Looks like reclaim/compaction is worth trying, but
4016 * sync compaction could be very expensive, so keep
4017 * using async compaction.
4018 */
4019 compact_priority = INIT_COMPACT_PRIORITY;
4020 }
4021 }
4022
4023 retry:
4024 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4025 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4026 wake_all_kswapds(order, ac);
4027
4028 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4029 if (reserve_flags)
4030 alloc_flags = reserve_flags;
4031
4032 /*
4033 * Reset the zonelist iterators if memory policies can be ignored.
4034 * These allocations are high priority and system rather than user
4035 * orientated.
4036 */
4037 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4038 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4039 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4040 ac->high_zoneidx, ac->nodemask);
4041 }
4042
4043 /* Attempt with potentially adjusted zonelist and alloc_flags */
4044 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4045 if (page)
4046 goto got_pg;
4047
4048 /* Caller is not willing to reclaim, we can't balance anything */
4049 if (!can_direct_reclaim)
4050 goto nopage;
4051
4052 /* Avoid recursion of direct reclaim */
4053 if (current->flags & PF_MEMALLOC)
4054 goto nopage;
4055
4056 /* Try direct reclaim and then allocating */
4057 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4058 &did_some_progress);
4059 if (page)
4060 goto got_pg;
4061
4062 /* Try direct compaction and then allocating */
4063 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4064 compact_priority, &compact_result);
4065 if (page)
4066 goto got_pg;
4067
4068 /* Do not loop if specifically requested */
4069 if (gfp_mask & __GFP_NORETRY)
4070 goto nopage;
4071
4072 /*
4073 * Do not retry costly high order allocations unless they are
4074 * __GFP_RETRY_MAYFAIL
4075 */
4076 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4077 goto nopage;
4078
4079 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4080 did_some_progress > 0, &no_progress_loops))
4081 goto retry;
4082
4083 /*
4084 * It doesn't make any sense to retry for the compaction if the order-0
4085 * reclaim is not able to make any progress because the current
4086 * implementation of the compaction depends on the sufficient amount
4087 * of free memory (see __compaction_suitable)
4088 */
4089 if (did_some_progress > 0 &&
4090 should_compact_retry(ac, order, alloc_flags,
4091 compact_result, &compact_priority,
4092 &compaction_retries))
4093 goto retry;
4094
4095
4096 /* Deal with possible cpuset update races before we start OOM killing */
4097 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4098 goto retry_cpuset;
4099
4100 /* Reclaim has failed us, start killing things */
4101 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4102 if (page)
4103 goto got_pg;
4104
4105 /* Avoid allocations with no watermarks from looping endlessly */
4106 if (tsk_is_oom_victim(current) &&
4107 (alloc_flags == ALLOC_OOM ||
4108 (gfp_mask & __GFP_NOMEMALLOC)))
4109 goto nopage;
4110
4111 /* Retry as long as the OOM killer is making progress */
4112 if (did_some_progress) {
4113 no_progress_loops = 0;
4114 goto retry;
4115 }
4116
4117 nopage:
4118 /* Deal with possible cpuset update races before we fail */
4119 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4120 goto retry_cpuset;
4121
4122 /*
4123 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4124 * we always retry
4125 */
4126 if (gfp_mask & __GFP_NOFAIL) {
4127 /*
4128 * All existing users of the __GFP_NOFAIL are blockable, so warn
4129 * of any new users that actually require GFP_NOWAIT
4130 */
4131 if (WARN_ON_ONCE(!can_direct_reclaim))
4132 goto fail;
4133
4134 /*
4135 * PF_MEMALLOC request from this context is rather bizarre
4136 * because we cannot reclaim anything and only can loop waiting
4137 * for somebody to do a work for us
4138 */
4139 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4140
4141 /*
4142 * non failing costly orders are a hard requirement which we
4143 * are not prepared for much so let's warn about these users
4144 * so that we can identify them and convert them to something
4145 * else.
4146 */
4147 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4148
4149 /*
4150 * Help non-failing allocations by giving them access to memory
4151 * reserves but do not use ALLOC_NO_WATERMARKS because this
4152 * could deplete whole memory reserves which would just make
4153 * the situation worse
4154 */
4155 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4156 if (page)
4157 goto got_pg;
4158
4159 cond_resched();
4160 goto retry;
4161 }
4162 fail:
4163 warn_alloc(gfp_mask, ac->nodemask,
4164 "page allocation failure: order:%u", order);
4165 got_pg:
4166 return page;
4167 }
4168
4169 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4170 int preferred_nid, nodemask_t *nodemask,
4171 struct alloc_context *ac, gfp_t *alloc_mask,
4172 unsigned int *alloc_flags)
4173 {
4174 ac->high_zoneidx = gfp_zone(gfp_mask);
4175 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4176 ac->nodemask = nodemask;
4177 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4178
4179 if (cpusets_enabled()) {
4180 *alloc_mask |= __GFP_HARDWALL;
4181 if (!ac->nodemask)
4182 ac->nodemask = &cpuset_current_mems_allowed;
4183 else
4184 *alloc_flags |= ALLOC_CPUSET;
4185 }
4186
4187 fs_reclaim_acquire(gfp_mask);
4188 fs_reclaim_release(gfp_mask);
4189
4190 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4191
4192 if (should_fail_alloc_page(gfp_mask, order))
4193 return false;
4194
4195 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4196 *alloc_flags |= ALLOC_CMA;
4197
4198 return true;
4199 }
4200
4201 /* Determine whether to spread dirty pages and what the first usable zone */
4202 static inline void finalise_ac(gfp_t gfp_mask,
4203 unsigned int order, struct alloc_context *ac)
4204 {
4205 /* Dirty zone balancing only done in the fast path */
4206 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4207
4208 /*
4209 * The preferred zone is used for statistics but crucially it is
4210 * also used as the starting point for the zonelist iterator. It
4211 * may get reset for allocations that ignore memory policies.
4212 */
4213 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4214 ac->high_zoneidx, ac->nodemask);
4215 }
4216
4217 /*
4218 * This is the 'heart' of the zoned buddy allocator.
4219 */
4220 struct page *
4221 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4222 nodemask_t *nodemask)
4223 {
4224 struct page *page;
4225 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4226 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4227 struct alloc_context ac = { };
4228
4229 gfp_mask &= gfp_allowed_mask;
4230 alloc_mask = gfp_mask;
4231 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4232 return NULL;
4233
4234 finalise_ac(gfp_mask, order, &ac);
4235
4236 /* First allocation attempt */
4237 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4238 if (likely(page))
4239 goto out;
4240
4241 /*
4242 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4243 * resp. GFP_NOIO which has to be inherited for all allocation requests
4244 * from a particular context which has been marked by
4245 * memalloc_no{fs,io}_{save,restore}.
4246 */
4247 alloc_mask = current_gfp_context(gfp_mask);
4248 ac.spread_dirty_pages = false;
4249
4250 /*
4251 * Restore the original nodemask if it was potentially replaced with
4252 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4253 */
4254 if (unlikely(ac.nodemask != nodemask))
4255 ac.nodemask = nodemask;
4256
4257 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4258
4259 out:
4260 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4261 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4262 __free_pages(page, order);
4263 page = NULL;
4264 }
4265
4266 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4267
4268 return page;
4269 }
4270 EXPORT_SYMBOL(__alloc_pages_nodemask);
4271
4272 /*
4273 * Common helper functions.
4274 */
4275 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4276 {
4277 struct page *page;
4278
4279 /*
4280 * __get_free_pages() returns a 32-bit address, which cannot represent
4281 * a highmem page
4282 */
4283 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4284
4285 page = alloc_pages(gfp_mask, order);
4286 if (!page)
4287 return 0;
4288 return (unsigned long) page_address(page);
4289 }
4290 EXPORT_SYMBOL(__get_free_pages);
4291
4292 unsigned long get_zeroed_page(gfp_t gfp_mask)
4293 {
4294 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4295 }
4296 EXPORT_SYMBOL(get_zeroed_page);
4297
4298 void __free_pages(struct page *page, unsigned int order)
4299 {
4300 if (put_page_testzero(page)) {
4301 if (order == 0)
4302 free_unref_page(page);
4303 else
4304 __free_pages_ok(page, order);
4305 }
4306 }
4307
4308 EXPORT_SYMBOL(__free_pages);
4309
4310 void free_pages(unsigned long addr, unsigned int order)
4311 {
4312 if (addr != 0) {
4313 VM_BUG_ON(!virt_addr_valid((void *)addr));
4314 __free_pages(virt_to_page((void *)addr), order);
4315 }
4316 }
4317
4318 EXPORT_SYMBOL(free_pages);
4319
4320 /*
4321 * Page Fragment:
4322 * An arbitrary-length arbitrary-offset area of memory which resides
4323 * within a 0 or higher order page. Multiple fragments within that page
4324 * are individually refcounted, in the page's reference counter.
4325 *
4326 * The page_frag functions below provide a simple allocation framework for
4327 * page fragments. This is used by the network stack and network device
4328 * drivers to provide a backing region of memory for use as either an
4329 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4330 */
4331 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4332 gfp_t gfp_mask)
4333 {
4334 struct page *page = NULL;
4335 gfp_t gfp = gfp_mask;
4336
4337 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4338 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4339 __GFP_NOMEMALLOC;
4340 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4341 PAGE_FRAG_CACHE_MAX_ORDER);
4342 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4343 #endif
4344 if (unlikely(!page))
4345 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4346
4347 nc->va = page ? page_address(page) : NULL;
4348
4349 return page;
4350 }
4351
4352 void __page_frag_cache_drain(struct page *page, unsigned int count)
4353 {
4354 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4355
4356 if (page_ref_sub_and_test(page, count)) {
4357 unsigned int order = compound_order(page);
4358
4359 if (order == 0)
4360 free_unref_page(page);
4361 else
4362 __free_pages_ok(page, order);
4363 }
4364 }
4365 EXPORT_SYMBOL(__page_frag_cache_drain);
4366
4367 void *page_frag_alloc(struct page_frag_cache *nc,
4368 unsigned int fragsz, gfp_t gfp_mask)
4369 {
4370 unsigned int size = PAGE_SIZE;
4371 struct page *page;
4372 int offset;
4373
4374 if (unlikely(!nc->va)) {
4375 refill:
4376 page = __page_frag_cache_refill(nc, gfp_mask);
4377 if (!page)
4378 return NULL;
4379
4380 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4381 /* if size can vary use size else just use PAGE_SIZE */
4382 size = nc->size;
4383 #endif
4384 /* Even if we own the page, we do not use atomic_set().
4385 * This would break get_page_unless_zero() users.
4386 */
4387 page_ref_add(page, size - 1);
4388
4389 /* reset page count bias and offset to start of new frag */
4390 nc->pfmemalloc = page_is_pfmemalloc(page);
4391 nc->pagecnt_bias = size;
4392 nc->offset = size;
4393 }
4394
4395 offset = nc->offset - fragsz;
4396 if (unlikely(offset < 0)) {
4397 page = virt_to_page(nc->va);
4398
4399 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4400 goto refill;
4401
4402 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4403 /* if size can vary use size else just use PAGE_SIZE */
4404 size = nc->size;
4405 #endif
4406 /* OK, page count is 0, we can safely set it */
4407 set_page_count(page, size);
4408
4409 /* reset page count bias and offset to start of new frag */
4410 nc->pagecnt_bias = size;
4411 offset = size - fragsz;
4412 }
4413
4414 nc->pagecnt_bias--;
4415 nc->offset = offset;
4416
4417 return nc->va + offset;
4418 }
4419 EXPORT_SYMBOL(page_frag_alloc);
4420
4421 /*
4422 * Frees a page fragment allocated out of either a compound or order 0 page.
4423 */
4424 void page_frag_free(void *addr)
4425 {
4426 struct page *page = virt_to_head_page(addr);
4427
4428 if (unlikely(put_page_testzero(page)))
4429 __free_pages_ok(page, compound_order(page));
4430 }
4431 EXPORT_SYMBOL(page_frag_free);
4432
4433 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4434 size_t size)
4435 {
4436 if (addr) {
4437 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4438 unsigned long used = addr + PAGE_ALIGN(size);
4439
4440 split_page(virt_to_page((void *)addr), order);
4441 while (used < alloc_end) {
4442 free_page(used);
4443 used += PAGE_SIZE;
4444 }
4445 }
4446 return (void *)addr;
4447 }
4448
4449 /**
4450 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4451 * @size: the number of bytes to allocate
4452 * @gfp_mask: GFP flags for the allocation
4453 *
4454 * This function is similar to alloc_pages(), except that it allocates the
4455 * minimum number of pages to satisfy the request. alloc_pages() can only
4456 * allocate memory in power-of-two pages.
4457 *
4458 * This function is also limited by MAX_ORDER.
4459 *
4460 * Memory allocated by this function must be released by free_pages_exact().
4461 */
4462 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4463 {
4464 unsigned int order = get_order(size);
4465 unsigned long addr;
4466
4467 addr = __get_free_pages(gfp_mask, order);
4468 return make_alloc_exact(addr, order, size);
4469 }
4470 EXPORT_SYMBOL(alloc_pages_exact);
4471
4472 /**
4473 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4474 * pages on a node.
4475 * @nid: the preferred node ID where memory should be allocated
4476 * @size: the number of bytes to allocate
4477 * @gfp_mask: GFP flags for the allocation
4478 *
4479 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4480 * back.
4481 */
4482 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4483 {
4484 unsigned int order = get_order(size);
4485 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4486 if (!p)
4487 return NULL;
4488 return make_alloc_exact((unsigned long)page_address(p), order, size);
4489 }
4490
4491 /**
4492 * free_pages_exact - release memory allocated via alloc_pages_exact()
4493 * @virt: the value returned by alloc_pages_exact.
4494 * @size: size of allocation, same value as passed to alloc_pages_exact().
4495 *
4496 * Release the memory allocated by a previous call to alloc_pages_exact.
4497 */
4498 void free_pages_exact(void *virt, size_t size)
4499 {
4500 unsigned long addr = (unsigned long)virt;
4501 unsigned long end = addr + PAGE_ALIGN(size);
4502
4503 while (addr < end) {
4504 free_page(addr);
4505 addr += PAGE_SIZE;
4506 }
4507 }
4508 EXPORT_SYMBOL(free_pages_exact);
4509
4510 /**
4511 * nr_free_zone_pages - count number of pages beyond high watermark
4512 * @offset: The zone index of the highest zone
4513 *
4514 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4515 * high watermark within all zones at or below a given zone index. For each
4516 * zone, the number of pages is calculated as:
4517 *
4518 * nr_free_zone_pages = managed_pages - high_pages
4519 */
4520 static unsigned long nr_free_zone_pages(int offset)
4521 {
4522 struct zoneref *z;
4523 struct zone *zone;
4524
4525 /* Just pick one node, since fallback list is circular */
4526 unsigned long sum = 0;
4527
4528 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4529
4530 for_each_zone_zonelist(zone, z, zonelist, offset) {
4531 unsigned long size = zone->managed_pages;
4532 unsigned long high = high_wmark_pages(zone);
4533 if (size > high)
4534 sum += size - high;
4535 }
4536
4537 return sum;
4538 }
4539
4540 /**
4541 * nr_free_buffer_pages - count number of pages beyond high watermark
4542 *
4543 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4544 * watermark within ZONE_DMA and ZONE_NORMAL.
4545 */
4546 unsigned long nr_free_buffer_pages(void)
4547 {
4548 return nr_free_zone_pages(gfp_zone(GFP_USER));
4549 }
4550 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4551
4552 /**
4553 * nr_free_pagecache_pages - count number of pages beyond high watermark
4554 *
4555 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4556 * high watermark within all zones.
4557 */
4558 unsigned long nr_free_pagecache_pages(void)
4559 {
4560 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4561 }
4562
4563 static inline void show_node(struct zone *zone)
4564 {
4565 if (IS_ENABLED(CONFIG_NUMA))
4566 printk("Node %d ", zone_to_nid(zone));
4567 }
4568
4569 long si_mem_available(void)
4570 {
4571 long available;
4572 unsigned long pagecache;
4573 unsigned long wmark_low = 0;
4574 unsigned long pages[NR_LRU_LISTS];
4575 struct zone *zone;
4576 int lru;
4577
4578 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4579 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4580
4581 for_each_zone(zone)
4582 wmark_low += zone->watermark[WMARK_LOW];
4583
4584 /*
4585 * Estimate the amount of memory available for userspace allocations,
4586 * without causing swapping.
4587 */
4588 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4589
4590 /*
4591 * Not all the page cache can be freed, otherwise the system will
4592 * start swapping. Assume at least half of the page cache, or the
4593 * low watermark worth of cache, needs to stay.
4594 */
4595 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4596 pagecache -= min(pagecache / 2, wmark_low);
4597 available += pagecache;
4598
4599 /*
4600 * Part of the reclaimable slab consists of items that are in use,
4601 * and cannot be freed. Cap this estimate at the low watermark.
4602 */
4603 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4604 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4605 wmark_low);
4606
4607 if (available < 0)
4608 available = 0;
4609 return available;
4610 }
4611 EXPORT_SYMBOL_GPL(si_mem_available);
4612
4613 void si_meminfo(struct sysinfo *val)
4614 {
4615 val->totalram = totalram_pages;
4616 val->sharedram = global_node_page_state(NR_SHMEM);
4617 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4618 val->bufferram = nr_blockdev_pages();
4619 val->totalhigh = totalhigh_pages;
4620 val->freehigh = nr_free_highpages();
4621 val->mem_unit = PAGE_SIZE;
4622 }
4623
4624 EXPORT_SYMBOL(si_meminfo);
4625
4626 #ifdef CONFIG_NUMA
4627 void si_meminfo_node(struct sysinfo *val, int nid)
4628 {
4629 int zone_type; /* needs to be signed */
4630 unsigned long managed_pages = 0;
4631 unsigned long managed_highpages = 0;
4632 unsigned long free_highpages = 0;
4633 pg_data_t *pgdat = NODE_DATA(nid);
4634
4635 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4636 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4637 val->totalram = managed_pages;
4638 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4639 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4640 #ifdef CONFIG_HIGHMEM
4641 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4642 struct zone *zone = &pgdat->node_zones[zone_type];
4643
4644 if (is_highmem(zone)) {
4645 managed_highpages += zone->managed_pages;
4646 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4647 }
4648 }
4649 val->totalhigh = managed_highpages;
4650 val->freehigh = free_highpages;
4651 #else
4652 val->totalhigh = managed_highpages;
4653 val->freehigh = free_highpages;
4654 #endif
4655 val->mem_unit = PAGE_SIZE;
4656 }
4657 #endif
4658
4659 /*
4660 * Determine whether the node should be displayed or not, depending on whether
4661 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4662 */
4663 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4664 {
4665 if (!(flags & SHOW_MEM_FILTER_NODES))
4666 return false;
4667
4668 /*
4669 * no node mask - aka implicit memory numa policy. Do not bother with
4670 * the synchronization - read_mems_allowed_begin - because we do not
4671 * have to be precise here.
4672 */
4673 if (!nodemask)
4674 nodemask = &cpuset_current_mems_allowed;
4675
4676 return !node_isset(nid, *nodemask);
4677 }
4678
4679 #define K(x) ((x) << (PAGE_SHIFT-10))
4680
4681 static void show_migration_types(unsigned char type)
4682 {
4683 static const char types[MIGRATE_TYPES] = {
4684 [MIGRATE_UNMOVABLE] = 'U',
4685 [MIGRATE_MOVABLE] = 'M',
4686 [MIGRATE_RECLAIMABLE] = 'E',
4687 [MIGRATE_HIGHATOMIC] = 'H',
4688 #ifdef CONFIG_CMA
4689 [MIGRATE_CMA] = 'C',
4690 #endif
4691 #ifdef CONFIG_MEMORY_ISOLATION
4692 [MIGRATE_ISOLATE] = 'I',
4693 #endif
4694 };
4695 char tmp[MIGRATE_TYPES + 1];
4696 char *p = tmp;
4697 int i;
4698
4699 for (i = 0; i < MIGRATE_TYPES; i++) {
4700 if (type & (1 << i))
4701 *p++ = types[i];
4702 }
4703
4704 *p = '\0';
4705 printk(KERN_CONT "(%s) ", tmp);
4706 }
4707
4708 /*
4709 * Show free area list (used inside shift_scroll-lock stuff)
4710 * We also calculate the percentage fragmentation. We do this by counting the
4711 * memory on each free list with the exception of the first item on the list.
4712 *
4713 * Bits in @filter:
4714 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4715 * cpuset.
4716 */
4717 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4718 {
4719 unsigned long free_pcp = 0;
4720 int cpu;
4721 struct zone *zone;
4722 pg_data_t *pgdat;
4723
4724 for_each_populated_zone(zone) {
4725 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4726 continue;
4727
4728 for_each_online_cpu(cpu)
4729 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4730 }
4731
4732 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4733 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4734 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4735 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4736 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4737 " free:%lu free_pcp:%lu free_cma:%lu\n",
4738 global_node_page_state(NR_ACTIVE_ANON),
4739 global_node_page_state(NR_INACTIVE_ANON),
4740 global_node_page_state(NR_ISOLATED_ANON),
4741 global_node_page_state(NR_ACTIVE_FILE),
4742 global_node_page_state(NR_INACTIVE_FILE),
4743 global_node_page_state(NR_ISOLATED_FILE),
4744 global_node_page_state(NR_UNEVICTABLE),
4745 global_node_page_state(NR_FILE_DIRTY),
4746 global_node_page_state(NR_WRITEBACK),
4747 global_node_page_state(NR_UNSTABLE_NFS),
4748 global_node_page_state(NR_SLAB_RECLAIMABLE),
4749 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4750 global_node_page_state(NR_FILE_MAPPED),
4751 global_node_page_state(NR_SHMEM),
4752 global_zone_page_state(NR_PAGETABLE),
4753 global_zone_page_state(NR_BOUNCE),
4754 global_zone_page_state(NR_FREE_PAGES),
4755 free_pcp,
4756 global_zone_page_state(NR_FREE_CMA_PAGES));
4757
4758 for_each_online_pgdat(pgdat) {
4759 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4760 continue;
4761
4762 printk("Node %d"
4763 " active_anon:%lukB"
4764 " inactive_anon:%lukB"
4765 " active_file:%lukB"
4766 " inactive_file:%lukB"
4767 " unevictable:%lukB"
4768 " isolated(anon):%lukB"
4769 " isolated(file):%lukB"
4770 " mapped:%lukB"
4771 " dirty:%lukB"
4772 " writeback:%lukB"
4773 " shmem:%lukB"
4774 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4775 " shmem_thp: %lukB"
4776 " shmem_pmdmapped: %lukB"
4777 " anon_thp: %lukB"
4778 #endif
4779 " writeback_tmp:%lukB"
4780 " unstable:%lukB"
4781 " all_unreclaimable? %s"
4782 "\n",
4783 pgdat->node_id,
4784 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4785 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4786 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4787 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4788 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4789 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4790 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4791 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4792 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4793 K(node_page_state(pgdat, NR_WRITEBACK)),
4794 K(node_page_state(pgdat, NR_SHMEM)),
4795 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4796 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4797 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4798 * HPAGE_PMD_NR),
4799 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4800 #endif
4801 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4802 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4803 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4804 "yes" : "no");
4805 }
4806
4807 for_each_populated_zone(zone) {
4808 int i;
4809
4810 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4811 continue;
4812
4813 free_pcp = 0;
4814 for_each_online_cpu(cpu)
4815 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4816
4817 show_node(zone);
4818 printk(KERN_CONT
4819 "%s"
4820 " free:%lukB"
4821 " min:%lukB"
4822 " low:%lukB"
4823 " high:%lukB"
4824 " active_anon:%lukB"
4825 " inactive_anon:%lukB"
4826 " active_file:%lukB"
4827 " inactive_file:%lukB"
4828 " unevictable:%lukB"
4829 " writepending:%lukB"
4830 " present:%lukB"
4831 " managed:%lukB"
4832 " mlocked:%lukB"
4833 " kernel_stack:%lukB"
4834 " pagetables:%lukB"
4835 " bounce:%lukB"
4836 " free_pcp:%lukB"
4837 " local_pcp:%ukB"
4838 " free_cma:%lukB"
4839 "\n",
4840 zone->name,
4841 K(zone_page_state(zone, NR_FREE_PAGES)),
4842 K(min_wmark_pages(zone)),
4843 K(low_wmark_pages(zone)),
4844 K(high_wmark_pages(zone)),
4845 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4846 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4847 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4848 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4849 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4850 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4851 K(zone->present_pages),
4852 K(zone->managed_pages),
4853 K(zone_page_state(zone, NR_MLOCK)),
4854 zone_page_state(zone, NR_KERNEL_STACK_KB),
4855 K(zone_page_state(zone, NR_PAGETABLE)),
4856 K(zone_page_state(zone, NR_BOUNCE)),
4857 K(free_pcp),
4858 K(this_cpu_read(zone->pageset->pcp.count)),
4859 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4860 printk("lowmem_reserve[]:");
4861 for (i = 0; i < MAX_NR_ZONES; i++)
4862 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4863 printk(KERN_CONT "\n");
4864 }
4865
4866 for_each_populated_zone(zone) {
4867 unsigned int order;
4868 unsigned long nr[MAX_ORDER], flags, total = 0;
4869 unsigned char types[MAX_ORDER];
4870
4871 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4872 continue;
4873 show_node(zone);
4874 printk(KERN_CONT "%s: ", zone->name);
4875
4876 spin_lock_irqsave(&zone->lock, flags);
4877 for (order = 0; order < MAX_ORDER; order++) {
4878 struct free_area *area = &zone->free_area[order];
4879 int type;
4880
4881 nr[order] = area->nr_free;
4882 total += nr[order] << order;
4883
4884 types[order] = 0;
4885 for (type = 0; type < MIGRATE_TYPES; type++) {
4886 if (!list_empty(&area->free_list[type]))
4887 types[order] |= 1 << type;
4888 }
4889 }
4890 spin_unlock_irqrestore(&zone->lock, flags);
4891 for (order = 0; order < MAX_ORDER; order++) {
4892 printk(KERN_CONT "%lu*%lukB ",
4893 nr[order], K(1UL) << order);
4894 if (nr[order])
4895 show_migration_types(types[order]);
4896 }
4897 printk(KERN_CONT "= %lukB\n", K(total));
4898 }
4899
4900 hugetlb_show_meminfo();
4901
4902 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4903
4904 show_swap_cache_info();
4905 }
4906
4907 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4908 {
4909 zoneref->zone = zone;
4910 zoneref->zone_idx = zone_idx(zone);
4911 }
4912
4913 /*
4914 * Builds allocation fallback zone lists.
4915 *
4916 * Add all populated zones of a node to the zonelist.
4917 */
4918 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4919 {
4920 struct zone *zone;
4921 enum zone_type zone_type = MAX_NR_ZONES;
4922 int nr_zones = 0;
4923
4924 do {
4925 zone_type--;
4926 zone = pgdat->node_zones + zone_type;
4927 if (managed_zone(zone)) {
4928 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4929 check_highest_zone(zone_type);
4930 }
4931 } while (zone_type);
4932
4933 return nr_zones;
4934 }
4935
4936 #ifdef CONFIG_NUMA
4937
4938 static int __parse_numa_zonelist_order(char *s)
4939 {
4940 /*
4941 * We used to support different zonlists modes but they turned
4942 * out to be just not useful. Let's keep the warning in place
4943 * if somebody still use the cmd line parameter so that we do
4944 * not fail it silently
4945 */
4946 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4947 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4948 return -EINVAL;
4949 }
4950 return 0;
4951 }
4952
4953 static __init int setup_numa_zonelist_order(char *s)
4954 {
4955 if (!s)
4956 return 0;
4957
4958 return __parse_numa_zonelist_order(s);
4959 }
4960 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4961
4962 char numa_zonelist_order[] = "Node";
4963
4964 /*
4965 * sysctl handler for numa_zonelist_order
4966 */
4967 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4968 void __user *buffer, size_t *length,
4969 loff_t *ppos)
4970 {
4971 char *str;
4972 int ret;
4973
4974 if (!write)
4975 return proc_dostring(table, write, buffer, length, ppos);
4976 str = memdup_user_nul(buffer, 16);
4977 if (IS_ERR(str))
4978 return PTR_ERR(str);
4979
4980 ret = __parse_numa_zonelist_order(str);
4981 kfree(str);
4982 return ret;
4983 }
4984
4985
4986 #define MAX_NODE_LOAD (nr_online_nodes)
4987 static int node_load[MAX_NUMNODES];
4988
4989 /**
4990 * find_next_best_node - find the next node that should appear in a given node's fallback list
4991 * @node: node whose fallback list we're appending
4992 * @used_node_mask: nodemask_t of already used nodes
4993 *
4994 * We use a number of factors to determine which is the next node that should
4995 * appear on a given node's fallback list. The node should not have appeared
4996 * already in @node's fallback list, and it should be the next closest node
4997 * according to the distance array (which contains arbitrary distance values
4998 * from each node to each node in the system), and should also prefer nodes
4999 * with no CPUs, since presumably they'll have very little allocation pressure
5000 * on them otherwise.
5001 * It returns -1 if no node is found.
5002 */
5003 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5004 {
5005 int n, val;
5006 int min_val = INT_MAX;
5007 int best_node = NUMA_NO_NODE;
5008 const struct cpumask *tmp = cpumask_of_node(0);
5009
5010 /* Use the local node if we haven't already */
5011 if (!node_isset(node, *used_node_mask)) {
5012 node_set(node, *used_node_mask);
5013 return node;
5014 }
5015
5016 for_each_node_state(n, N_MEMORY) {
5017
5018 /* Don't want a node to appear more than once */
5019 if (node_isset(n, *used_node_mask))
5020 continue;
5021
5022 /* Use the distance array to find the distance */
5023 val = node_distance(node, n);
5024
5025 /* Penalize nodes under us ("prefer the next node") */
5026 val += (n < node);
5027
5028 /* Give preference to headless and unused nodes */
5029 tmp = cpumask_of_node(n);
5030 if (!cpumask_empty(tmp))
5031 val += PENALTY_FOR_NODE_WITH_CPUS;
5032
5033 /* Slight preference for less loaded node */
5034 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5035 val += node_load[n];
5036
5037 if (val < min_val) {
5038 min_val = val;
5039 best_node = n;
5040 }
5041 }
5042
5043 if (best_node >= 0)
5044 node_set(best_node, *used_node_mask);
5045
5046 return best_node;
5047 }
5048
5049
5050 /*
5051 * Build zonelists ordered by node and zones within node.
5052 * This results in maximum locality--normal zone overflows into local
5053 * DMA zone, if any--but risks exhausting DMA zone.
5054 */
5055 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5056 unsigned nr_nodes)
5057 {
5058 struct zoneref *zonerefs;
5059 int i;
5060
5061 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5062
5063 for (i = 0; i < nr_nodes; i++) {
5064 int nr_zones;
5065
5066 pg_data_t *node = NODE_DATA(node_order[i]);
5067
5068 nr_zones = build_zonerefs_node(node, zonerefs);
5069 zonerefs += nr_zones;
5070 }
5071 zonerefs->zone = NULL;
5072 zonerefs->zone_idx = 0;
5073 }
5074
5075 /*
5076 * Build gfp_thisnode zonelists
5077 */
5078 static void build_thisnode_zonelists(pg_data_t *pgdat)
5079 {
5080 struct zoneref *zonerefs;
5081 int nr_zones;
5082
5083 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5084 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5085 zonerefs += nr_zones;
5086 zonerefs->zone = NULL;
5087 zonerefs->zone_idx = 0;
5088 }
5089
5090 /*
5091 * Build zonelists ordered by zone and nodes within zones.
5092 * This results in conserving DMA zone[s] until all Normal memory is
5093 * exhausted, but results in overflowing to remote node while memory
5094 * may still exist in local DMA zone.
5095 */
5096
5097 static void build_zonelists(pg_data_t *pgdat)
5098 {
5099 static int node_order[MAX_NUMNODES];
5100 int node, load, nr_nodes = 0;
5101 nodemask_t used_mask;
5102 int local_node, prev_node;
5103
5104 /* NUMA-aware ordering of nodes */
5105 local_node = pgdat->node_id;
5106 load = nr_online_nodes;
5107 prev_node = local_node;
5108 nodes_clear(used_mask);
5109
5110 memset(node_order, 0, sizeof(node_order));
5111 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5112 /*
5113 * We don't want to pressure a particular node.
5114 * So adding penalty to the first node in same
5115 * distance group to make it round-robin.
5116 */
5117 if (node_distance(local_node, node) !=
5118 node_distance(local_node, prev_node))
5119 node_load[node] = load;
5120
5121 node_order[nr_nodes++] = node;
5122 prev_node = node;
5123 load--;
5124 }
5125
5126 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5127 build_thisnode_zonelists(pgdat);
5128 }
5129
5130 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5131 /*
5132 * Return node id of node used for "local" allocations.
5133 * I.e., first node id of first zone in arg node's generic zonelist.
5134 * Used for initializing percpu 'numa_mem', which is used primarily
5135 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5136 */
5137 int local_memory_node(int node)
5138 {
5139 struct zoneref *z;
5140
5141 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5142 gfp_zone(GFP_KERNEL),
5143 NULL);
5144 return z->zone->node;
5145 }
5146 #endif
5147
5148 static void setup_min_unmapped_ratio(void);
5149 static void setup_min_slab_ratio(void);
5150 #else /* CONFIG_NUMA */
5151
5152 static void build_zonelists(pg_data_t *pgdat)
5153 {
5154 int node, local_node;
5155 struct zoneref *zonerefs;
5156 int nr_zones;
5157
5158 local_node = pgdat->node_id;
5159
5160 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5161 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5162 zonerefs += nr_zones;
5163
5164 /*
5165 * Now we build the zonelist so that it contains the zones
5166 * of all the other nodes.
5167 * We don't want to pressure a particular node, so when
5168 * building the zones for node N, we make sure that the
5169 * zones coming right after the local ones are those from
5170 * node N+1 (modulo N)
5171 */
5172 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5173 if (!node_online(node))
5174 continue;
5175 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5176 zonerefs += nr_zones;
5177 }
5178 for (node = 0; node < local_node; node++) {
5179 if (!node_online(node))
5180 continue;
5181 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5182 zonerefs += nr_zones;
5183 }
5184
5185 zonerefs->zone = NULL;
5186 zonerefs->zone_idx = 0;
5187 }
5188
5189 #endif /* CONFIG_NUMA */
5190
5191 /*
5192 * Boot pageset table. One per cpu which is going to be used for all
5193 * zones and all nodes. The parameters will be set in such a way
5194 * that an item put on a list will immediately be handed over to
5195 * the buddy list. This is safe since pageset manipulation is done
5196 * with interrupts disabled.
5197 *
5198 * The boot_pagesets must be kept even after bootup is complete for
5199 * unused processors and/or zones. They do play a role for bootstrapping
5200 * hotplugged processors.
5201 *
5202 * zoneinfo_show() and maybe other functions do
5203 * not check if the processor is online before following the pageset pointer.
5204 * Other parts of the kernel may not check if the zone is available.
5205 */
5206 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5207 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5208 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5209
5210 static void __build_all_zonelists(void *data)
5211 {
5212 int nid;
5213 int __maybe_unused cpu;
5214 pg_data_t *self = data;
5215 static DEFINE_SPINLOCK(lock);
5216
5217 spin_lock(&lock);
5218
5219 #ifdef CONFIG_NUMA
5220 memset(node_load, 0, sizeof(node_load));
5221 #endif
5222
5223 /*
5224 * This node is hotadded and no memory is yet present. So just
5225 * building zonelists is fine - no need to touch other nodes.
5226 */
5227 if (self && !node_online(self->node_id)) {
5228 build_zonelists(self);
5229 } else {
5230 for_each_online_node(nid) {
5231 pg_data_t *pgdat = NODE_DATA(nid);
5232
5233 build_zonelists(pgdat);
5234 }
5235
5236 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5237 /*
5238 * We now know the "local memory node" for each node--
5239 * i.e., the node of the first zone in the generic zonelist.
5240 * Set up numa_mem percpu variable for on-line cpus. During
5241 * boot, only the boot cpu should be on-line; we'll init the
5242 * secondary cpus' numa_mem as they come on-line. During
5243 * node/memory hotplug, we'll fixup all on-line cpus.
5244 */
5245 for_each_online_cpu(cpu)
5246 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5247 #endif
5248 }
5249
5250 spin_unlock(&lock);
5251 }
5252
5253 static noinline void __init
5254 build_all_zonelists_init(void)
5255 {
5256 int cpu;
5257
5258 __build_all_zonelists(NULL);
5259
5260 /*
5261 * Initialize the boot_pagesets that are going to be used
5262 * for bootstrapping processors. The real pagesets for
5263 * each zone will be allocated later when the per cpu
5264 * allocator is available.
5265 *
5266 * boot_pagesets are used also for bootstrapping offline
5267 * cpus if the system is already booted because the pagesets
5268 * are needed to initialize allocators on a specific cpu too.
5269 * F.e. the percpu allocator needs the page allocator which
5270 * needs the percpu allocator in order to allocate its pagesets
5271 * (a chicken-egg dilemma).
5272 */
5273 for_each_possible_cpu(cpu)
5274 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5275
5276 mminit_verify_zonelist();
5277 cpuset_init_current_mems_allowed();
5278 }
5279
5280 /*
5281 * unless system_state == SYSTEM_BOOTING.
5282 *
5283 * __ref due to call of __init annotated helper build_all_zonelists_init
5284 * [protected by SYSTEM_BOOTING].
5285 */
5286 void __ref build_all_zonelists(pg_data_t *pgdat)
5287 {
5288 if (system_state == SYSTEM_BOOTING) {
5289 build_all_zonelists_init();
5290 } else {
5291 __build_all_zonelists(pgdat);
5292 /* cpuset refresh routine should be here */
5293 }
5294 vm_total_pages = nr_free_pagecache_pages();
5295 /*
5296 * Disable grouping by mobility if the number of pages in the
5297 * system is too low to allow the mechanism to work. It would be
5298 * more accurate, but expensive to check per-zone. This check is
5299 * made on memory-hotadd so a system can start with mobility
5300 * disabled and enable it later
5301 */
5302 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5303 page_group_by_mobility_disabled = 1;
5304 else
5305 page_group_by_mobility_disabled = 0;
5306
5307 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5308 nr_online_nodes,
5309 page_group_by_mobility_disabled ? "off" : "on",
5310 vm_total_pages);
5311 #ifdef CONFIG_NUMA
5312 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5313 #endif
5314 }
5315
5316 /*
5317 * Initially all pages are reserved - free ones are freed
5318 * up by free_all_bootmem() once the early boot process is
5319 * done. Non-atomic initialization, single-pass.
5320 */
5321 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5322 unsigned long start_pfn, enum memmap_context context)
5323 {
5324 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5325 unsigned long end_pfn = start_pfn + size;
5326 pg_data_t *pgdat = NODE_DATA(nid);
5327 unsigned long pfn;
5328 unsigned long nr_initialised = 0;
5329 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5330 struct memblock_region *r = NULL, *tmp;
5331 #endif
5332
5333 if (highest_memmap_pfn < end_pfn - 1)
5334 highest_memmap_pfn = end_pfn - 1;
5335
5336 /*
5337 * Honor reservation requested by the driver for this ZONE_DEVICE
5338 * memory
5339 */
5340 if (altmap && start_pfn == altmap->base_pfn)
5341 start_pfn += altmap->reserve;
5342
5343 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5344 /*
5345 * There can be holes in boot-time mem_map[]s handed to this
5346 * function. They do not exist on hotplugged memory.
5347 */
5348 if (context != MEMMAP_EARLY)
5349 goto not_early;
5350
5351 if (!early_pfn_valid(pfn))
5352 continue;
5353 if (!early_pfn_in_nid(pfn, nid))
5354 continue;
5355 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5356 break;
5357
5358 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5359 /*
5360 * Check given memblock attribute by firmware which can affect
5361 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5362 * mirrored, it's an overlapped memmap init. skip it.
5363 */
5364 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5365 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5366 for_each_memblock(memory, tmp)
5367 if (pfn < memblock_region_memory_end_pfn(tmp))
5368 break;
5369 r = tmp;
5370 }
5371 if (pfn >= memblock_region_memory_base_pfn(r) &&
5372 memblock_is_mirror(r)) {
5373 /* already initialized as NORMAL */
5374 pfn = memblock_region_memory_end_pfn(r);
5375 continue;
5376 }
5377 }
5378 #endif
5379
5380 not_early:
5381 /*
5382 * Mark the block movable so that blocks are reserved for
5383 * movable at startup. This will force kernel allocations
5384 * to reserve their blocks rather than leaking throughout
5385 * the address space during boot when many long-lived
5386 * kernel allocations are made.
5387 *
5388 * bitmap is created for zone's valid pfn range. but memmap
5389 * can be created for invalid pages (for alignment)
5390 * check here not to call set_pageblock_migratetype() against
5391 * pfn out of zone.
5392 *
5393 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5394 * because this is done early in sparse_add_one_section
5395 */
5396 if (!(pfn & (pageblock_nr_pages - 1))) {
5397 struct page *page = pfn_to_page(pfn);
5398
5399 __init_single_page(page, pfn, zone, nid,
5400 context != MEMMAP_HOTPLUG);
5401 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5402 cond_resched();
5403 } else {
5404 __init_single_pfn(pfn, zone, nid,
5405 context != MEMMAP_HOTPLUG);
5406 }
5407 }
5408 }
5409
5410 static void __meminit zone_init_free_lists(struct zone *zone)
5411 {
5412 unsigned int order, t;
5413 for_each_migratetype_order(order, t) {
5414 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5415 zone->free_area[order].nr_free = 0;
5416 }
5417 }
5418
5419 #ifndef __HAVE_ARCH_MEMMAP_INIT
5420 #define memmap_init(size, nid, zone, start_pfn) \
5421 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5422 #endif
5423
5424 static int zone_batchsize(struct zone *zone)
5425 {
5426 #ifdef CONFIG_MMU
5427 int batch;
5428
5429 /*
5430 * The per-cpu-pages pools are set to around 1000th of the
5431 * size of the zone. But no more than 1/2 of a meg.
5432 *
5433 * OK, so we don't know how big the cache is. So guess.
5434 */
5435 batch = zone->managed_pages / 1024;
5436 if (batch * PAGE_SIZE > 512 * 1024)
5437 batch = (512 * 1024) / PAGE_SIZE;
5438 batch /= 4; /* We effectively *= 4 below */
5439 if (batch < 1)
5440 batch = 1;
5441
5442 /*
5443 * Clamp the batch to a 2^n - 1 value. Having a power
5444 * of 2 value was found to be more likely to have
5445 * suboptimal cache aliasing properties in some cases.
5446 *
5447 * For example if 2 tasks are alternately allocating
5448 * batches of pages, one task can end up with a lot
5449 * of pages of one half of the possible page colors
5450 * and the other with pages of the other colors.
5451 */
5452 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5453
5454 return batch;
5455
5456 #else
5457 /* The deferral and batching of frees should be suppressed under NOMMU
5458 * conditions.
5459 *
5460 * The problem is that NOMMU needs to be able to allocate large chunks
5461 * of contiguous memory as there's no hardware page translation to
5462 * assemble apparent contiguous memory from discontiguous pages.
5463 *
5464 * Queueing large contiguous runs of pages for batching, however,
5465 * causes the pages to actually be freed in smaller chunks. As there
5466 * can be a significant delay between the individual batches being
5467 * recycled, this leads to the once large chunks of space being
5468 * fragmented and becoming unavailable for high-order allocations.
5469 */
5470 return 0;
5471 #endif
5472 }
5473
5474 /*
5475 * pcp->high and pcp->batch values are related and dependent on one another:
5476 * ->batch must never be higher then ->high.
5477 * The following function updates them in a safe manner without read side
5478 * locking.
5479 *
5480 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5481 * those fields changing asynchronously (acording the the above rule).
5482 *
5483 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5484 * outside of boot time (or some other assurance that no concurrent updaters
5485 * exist).
5486 */
5487 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5488 unsigned long batch)
5489 {
5490 /* start with a fail safe value for batch */
5491 pcp->batch = 1;
5492 smp_wmb();
5493
5494 /* Update high, then batch, in order */
5495 pcp->high = high;
5496 smp_wmb();
5497
5498 pcp->batch = batch;
5499 }
5500
5501 /* a companion to pageset_set_high() */
5502 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5503 {
5504 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5505 }
5506
5507 static void pageset_init(struct per_cpu_pageset *p)
5508 {
5509 struct per_cpu_pages *pcp;
5510 int migratetype;
5511
5512 memset(p, 0, sizeof(*p));
5513
5514 pcp = &p->pcp;
5515 pcp->count = 0;
5516 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5517 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5518 }
5519
5520 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5521 {
5522 pageset_init(p);
5523 pageset_set_batch(p, batch);
5524 }
5525
5526 /*
5527 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5528 * to the value high for the pageset p.
5529 */
5530 static void pageset_set_high(struct per_cpu_pageset *p,
5531 unsigned long high)
5532 {
5533 unsigned long batch = max(1UL, high / 4);
5534 if ((high / 4) > (PAGE_SHIFT * 8))
5535 batch = PAGE_SHIFT * 8;
5536
5537 pageset_update(&p->pcp, high, batch);
5538 }
5539
5540 static void pageset_set_high_and_batch(struct zone *zone,
5541 struct per_cpu_pageset *pcp)
5542 {
5543 if (percpu_pagelist_fraction)
5544 pageset_set_high(pcp,
5545 (zone->managed_pages /
5546 percpu_pagelist_fraction));
5547 else
5548 pageset_set_batch(pcp, zone_batchsize(zone));
5549 }
5550
5551 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5552 {
5553 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5554
5555 pageset_init(pcp);
5556 pageset_set_high_and_batch(zone, pcp);
5557 }
5558
5559 void __meminit setup_zone_pageset(struct zone *zone)
5560 {
5561 int cpu;
5562 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5563 for_each_possible_cpu(cpu)
5564 zone_pageset_init(zone, cpu);
5565 }
5566
5567 /*
5568 * Allocate per cpu pagesets and initialize them.
5569 * Before this call only boot pagesets were available.
5570 */
5571 void __init setup_per_cpu_pageset(void)
5572 {
5573 struct pglist_data *pgdat;
5574 struct zone *zone;
5575
5576 for_each_populated_zone(zone)
5577 setup_zone_pageset(zone);
5578
5579 for_each_online_pgdat(pgdat)
5580 pgdat->per_cpu_nodestats =
5581 alloc_percpu(struct per_cpu_nodestat);
5582 }
5583
5584 static __meminit void zone_pcp_init(struct zone *zone)
5585 {
5586 /*
5587 * per cpu subsystem is not up at this point. The following code
5588 * relies on the ability of the linker to provide the
5589 * offset of a (static) per cpu variable into the per cpu area.
5590 */
5591 zone->pageset = &boot_pageset;
5592
5593 if (populated_zone(zone))
5594 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5595 zone->name, zone->present_pages,
5596 zone_batchsize(zone));
5597 }
5598
5599 void __meminit init_currently_empty_zone(struct zone *zone,
5600 unsigned long zone_start_pfn,
5601 unsigned long size)
5602 {
5603 struct pglist_data *pgdat = zone->zone_pgdat;
5604
5605 pgdat->nr_zones = zone_idx(zone) + 1;
5606
5607 zone->zone_start_pfn = zone_start_pfn;
5608
5609 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5610 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5611 pgdat->node_id,
5612 (unsigned long)zone_idx(zone),
5613 zone_start_pfn, (zone_start_pfn + size));
5614
5615 zone_init_free_lists(zone);
5616 zone->initialized = 1;
5617 }
5618
5619 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5620 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5621
5622 /*
5623 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5624 */
5625 int __meminit __early_pfn_to_nid(unsigned long pfn,
5626 struct mminit_pfnnid_cache *state)
5627 {
5628 unsigned long start_pfn, end_pfn;
5629 int nid;
5630
5631 if (state->last_start <= pfn && pfn < state->last_end)
5632 return state->last_nid;
5633
5634 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5635 if (nid != -1) {
5636 state->last_start = start_pfn;
5637 state->last_end = end_pfn;
5638 state->last_nid = nid;
5639 }
5640
5641 return nid;
5642 }
5643 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5644
5645 /**
5646 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5647 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5648 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5649 *
5650 * If an architecture guarantees that all ranges registered contain no holes
5651 * and may be freed, this this function may be used instead of calling
5652 * memblock_free_early_nid() manually.
5653 */
5654 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5655 {
5656 unsigned long start_pfn, end_pfn;
5657 int i, this_nid;
5658
5659 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5660 start_pfn = min(start_pfn, max_low_pfn);
5661 end_pfn = min(end_pfn, max_low_pfn);
5662
5663 if (start_pfn < end_pfn)
5664 memblock_free_early_nid(PFN_PHYS(start_pfn),
5665 (end_pfn - start_pfn) << PAGE_SHIFT,
5666 this_nid);
5667 }
5668 }
5669
5670 /**
5671 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5672 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5673 *
5674 * If an architecture guarantees that all ranges registered contain no holes and may
5675 * be freed, this function may be used instead of calling memory_present() manually.
5676 */
5677 void __init sparse_memory_present_with_active_regions(int nid)
5678 {
5679 unsigned long start_pfn, end_pfn;
5680 int i, this_nid;
5681
5682 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5683 memory_present(this_nid, start_pfn, end_pfn);
5684 }
5685
5686 /**
5687 * get_pfn_range_for_nid - Return the start and end page frames for a node
5688 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5689 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5690 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5691 *
5692 * It returns the start and end page frame of a node based on information
5693 * provided by memblock_set_node(). If called for a node
5694 * with no available memory, a warning is printed and the start and end
5695 * PFNs will be 0.
5696 */
5697 void __meminit get_pfn_range_for_nid(unsigned int nid,
5698 unsigned long *start_pfn, unsigned long *end_pfn)
5699 {
5700 unsigned long this_start_pfn, this_end_pfn;
5701 int i;
5702
5703 *start_pfn = -1UL;
5704 *end_pfn = 0;
5705
5706 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5707 *start_pfn = min(*start_pfn, this_start_pfn);
5708 *end_pfn = max(*end_pfn, this_end_pfn);
5709 }
5710
5711 if (*start_pfn == -1UL)
5712 *start_pfn = 0;
5713 }
5714
5715 /*
5716 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5717 * assumption is made that zones within a node are ordered in monotonic
5718 * increasing memory addresses so that the "highest" populated zone is used
5719 */
5720 static void __init find_usable_zone_for_movable(void)
5721 {
5722 int zone_index;
5723 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5724 if (zone_index == ZONE_MOVABLE)
5725 continue;
5726
5727 if (arch_zone_highest_possible_pfn[zone_index] >
5728 arch_zone_lowest_possible_pfn[zone_index])
5729 break;
5730 }
5731
5732 VM_BUG_ON(zone_index == -1);
5733 movable_zone = zone_index;
5734 }
5735
5736 /*
5737 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5738 * because it is sized independent of architecture. Unlike the other zones,
5739 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5740 * in each node depending on the size of each node and how evenly kernelcore
5741 * is distributed. This helper function adjusts the zone ranges
5742 * provided by the architecture for a given node by using the end of the
5743 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5744 * zones within a node are in order of monotonic increases memory addresses
5745 */
5746 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5747 unsigned long zone_type,
5748 unsigned long node_start_pfn,
5749 unsigned long node_end_pfn,
5750 unsigned long *zone_start_pfn,
5751 unsigned long *zone_end_pfn)
5752 {
5753 /* Only adjust if ZONE_MOVABLE is on this node */
5754 if (zone_movable_pfn[nid]) {
5755 /* Size ZONE_MOVABLE */
5756 if (zone_type == ZONE_MOVABLE) {
5757 *zone_start_pfn = zone_movable_pfn[nid];
5758 *zone_end_pfn = min(node_end_pfn,
5759 arch_zone_highest_possible_pfn[movable_zone]);
5760
5761 /* Adjust for ZONE_MOVABLE starting within this range */
5762 } else if (!mirrored_kernelcore &&
5763 *zone_start_pfn < zone_movable_pfn[nid] &&
5764 *zone_end_pfn > zone_movable_pfn[nid]) {
5765 *zone_end_pfn = zone_movable_pfn[nid];
5766
5767 /* Check if this whole range is within ZONE_MOVABLE */
5768 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5769 *zone_start_pfn = *zone_end_pfn;
5770 }
5771 }
5772
5773 /*
5774 * Return the number of pages a zone spans in a node, including holes
5775 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5776 */
5777 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5778 unsigned long zone_type,
5779 unsigned long node_start_pfn,
5780 unsigned long node_end_pfn,
5781 unsigned long *zone_start_pfn,
5782 unsigned long *zone_end_pfn,
5783 unsigned long *ignored)
5784 {
5785 /* When hotadd a new node from cpu_up(), the node should be empty */
5786 if (!node_start_pfn && !node_end_pfn)
5787 return 0;
5788
5789 /* Get the start and end of the zone */
5790 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5791 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5792 adjust_zone_range_for_zone_movable(nid, zone_type,
5793 node_start_pfn, node_end_pfn,
5794 zone_start_pfn, zone_end_pfn);
5795
5796 /* Check that this node has pages within the zone's required range */
5797 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5798 return 0;
5799
5800 /* Move the zone boundaries inside the node if necessary */
5801 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5802 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5803
5804 /* Return the spanned pages */
5805 return *zone_end_pfn - *zone_start_pfn;
5806 }
5807
5808 /*
5809 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5810 * then all holes in the requested range will be accounted for.
5811 */
5812 unsigned long __meminit __absent_pages_in_range(int nid,
5813 unsigned long range_start_pfn,
5814 unsigned long range_end_pfn)
5815 {
5816 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5817 unsigned long start_pfn, end_pfn;
5818 int i;
5819
5820 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5821 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5822 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5823 nr_absent -= end_pfn - start_pfn;
5824 }
5825 return nr_absent;
5826 }
5827
5828 /**
5829 * absent_pages_in_range - Return number of page frames in holes within a range
5830 * @start_pfn: The start PFN to start searching for holes
5831 * @end_pfn: The end PFN to stop searching for holes
5832 *
5833 * It returns the number of pages frames in memory holes within a range.
5834 */
5835 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5836 unsigned long end_pfn)
5837 {
5838 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5839 }
5840
5841 /* Return the number of page frames in holes in a zone on a node */
5842 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5843 unsigned long zone_type,
5844 unsigned long node_start_pfn,
5845 unsigned long node_end_pfn,
5846 unsigned long *ignored)
5847 {
5848 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5849 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5850 unsigned long zone_start_pfn, zone_end_pfn;
5851 unsigned long nr_absent;
5852
5853 /* When hotadd a new node from cpu_up(), the node should be empty */
5854 if (!node_start_pfn && !node_end_pfn)
5855 return 0;
5856
5857 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5858 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5859
5860 adjust_zone_range_for_zone_movable(nid, zone_type,
5861 node_start_pfn, node_end_pfn,
5862 &zone_start_pfn, &zone_end_pfn);
5863 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5864
5865 /*
5866 * ZONE_MOVABLE handling.
5867 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5868 * and vice versa.
5869 */
5870 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5871 unsigned long start_pfn, end_pfn;
5872 struct memblock_region *r;
5873
5874 for_each_memblock(memory, r) {
5875 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5876 zone_start_pfn, zone_end_pfn);
5877 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5878 zone_start_pfn, zone_end_pfn);
5879
5880 if (zone_type == ZONE_MOVABLE &&
5881 memblock_is_mirror(r))
5882 nr_absent += end_pfn - start_pfn;
5883
5884 if (zone_type == ZONE_NORMAL &&
5885 !memblock_is_mirror(r))
5886 nr_absent += end_pfn - start_pfn;
5887 }
5888 }
5889
5890 return nr_absent;
5891 }
5892
5893 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5894 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5895 unsigned long zone_type,
5896 unsigned long node_start_pfn,
5897 unsigned long node_end_pfn,
5898 unsigned long *zone_start_pfn,
5899 unsigned long *zone_end_pfn,
5900 unsigned long *zones_size)
5901 {
5902 unsigned int zone;
5903
5904 *zone_start_pfn = node_start_pfn;
5905 for (zone = 0; zone < zone_type; zone++)
5906 *zone_start_pfn += zones_size[zone];
5907
5908 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5909
5910 return zones_size[zone_type];
5911 }
5912
5913 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5914 unsigned long zone_type,
5915 unsigned long node_start_pfn,
5916 unsigned long node_end_pfn,
5917 unsigned long *zholes_size)
5918 {
5919 if (!zholes_size)
5920 return 0;
5921
5922 return zholes_size[zone_type];
5923 }
5924
5925 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5926
5927 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5928 unsigned long node_start_pfn,
5929 unsigned long node_end_pfn,
5930 unsigned long *zones_size,
5931 unsigned long *zholes_size)
5932 {
5933 unsigned long realtotalpages = 0, totalpages = 0;
5934 enum zone_type i;
5935
5936 for (i = 0; i < MAX_NR_ZONES; i++) {
5937 struct zone *zone = pgdat->node_zones + i;
5938 unsigned long zone_start_pfn, zone_end_pfn;
5939 unsigned long size, real_size;
5940
5941 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5942 node_start_pfn,
5943 node_end_pfn,
5944 &zone_start_pfn,
5945 &zone_end_pfn,
5946 zones_size);
5947 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5948 node_start_pfn, node_end_pfn,
5949 zholes_size);
5950 if (size)
5951 zone->zone_start_pfn = zone_start_pfn;
5952 else
5953 zone->zone_start_pfn = 0;
5954 zone->spanned_pages = size;
5955 zone->present_pages = real_size;
5956
5957 totalpages += size;
5958 realtotalpages += real_size;
5959 }
5960
5961 pgdat->node_spanned_pages = totalpages;
5962 pgdat->node_present_pages = realtotalpages;
5963 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5964 realtotalpages);
5965 }
5966
5967 #ifndef CONFIG_SPARSEMEM
5968 /*
5969 * Calculate the size of the zone->blockflags rounded to an unsigned long
5970 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5971 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5972 * round what is now in bits to nearest long in bits, then return it in
5973 * bytes.
5974 */
5975 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5976 {
5977 unsigned long usemapsize;
5978
5979 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5980 usemapsize = roundup(zonesize, pageblock_nr_pages);
5981 usemapsize = usemapsize >> pageblock_order;
5982 usemapsize *= NR_PAGEBLOCK_BITS;
5983 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5984
5985 return usemapsize / 8;
5986 }
5987
5988 static void __init setup_usemap(struct pglist_data *pgdat,
5989 struct zone *zone,
5990 unsigned long zone_start_pfn,
5991 unsigned long zonesize)
5992 {
5993 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5994 zone->pageblock_flags = NULL;
5995 if (usemapsize)
5996 zone->pageblock_flags =
5997 memblock_virt_alloc_node_nopanic(usemapsize,
5998 pgdat->node_id);
5999 }
6000 #else
6001 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6002 unsigned long zone_start_pfn, unsigned long zonesize) {}
6003 #endif /* CONFIG_SPARSEMEM */
6004
6005 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6006
6007 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6008 void __paginginit set_pageblock_order(void)
6009 {
6010 unsigned int order;
6011
6012 /* Check that pageblock_nr_pages has not already been setup */
6013 if (pageblock_order)
6014 return;
6015
6016 if (HPAGE_SHIFT > PAGE_SHIFT)
6017 order = HUGETLB_PAGE_ORDER;
6018 else
6019 order = MAX_ORDER - 1;
6020
6021 /*
6022 * Assume the largest contiguous order of interest is a huge page.
6023 * This value may be variable depending on boot parameters on IA64 and
6024 * powerpc.
6025 */
6026 pageblock_order = order;
6027 }
6028 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6029
6030 /*
6031 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6032 * is unused as pageblock_order is set at compile-time. See
6033 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6034 * the kernel config
6035 */
6036 void __paginginit set_pageblock_order(void)
6037 {
6038 }
6039
6040 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6041
6042 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6043 unsigned long present_pages)
6044 {
6045 unsigned long pages = spanned_pages;
6046
6047 /*
6048 * Provide a more accurate estimation if there are holes within
6049 * the zone and SPARSEMEM is in use. If there are holes within the
6050 * zone, each populated memory region may cost us one or two extra
6051 * memmap pages due to alignment because memmap pages for each
6052 * populated regions may not be naturally aligned on page boundary.
6053 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6054 */
6055 if (spanned_pages > present_pages + (present_pages >> 4) &&
6056 IS_ENABLED(CONFIG_SPARSEMEM))
6057 pages = present_pages;
6058
6059 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6060 }
6061
6062 /*
6063 * Set up the zone data structures:
6064 * - mark all pages reserved
6065 * - mark all memory queues empty
6066 * - clear the memory bitmaps
6067 *
6068 * NOTE: pgdat should get zeroed by caller.
6069 */
6070 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6071 {
6072 enum zone_type j;
6073 int nid = pgdat->node_id;
6074
6075 pgdat_resize_init(pgdat);
6076 #ifdef CONFIG_NUMA_BALANCING
6077 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6078 pgdat->numabalancing_migrate_nr_pages = 0;
6079 pgdat->numabalancing_migrate_next_window = jiffies;
6080 #endif
6081 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6082 spin_lock_init(&pgdat->split_queue_lock);
6083 INIT_LIST_HEAD(&pgdat->split_queue);
6084 pgdat->split_queue_len = 0;
6085 #endif
6086 init_waitqueue_head(&pgdat->kswapd_wait);
6087 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6088 #ifdef CONFIG_COMPACTION
6089 init_waitqueue_head(&pgdat->kcompactd_wait);
6090 #endif
6091 pgdat_page_ext_init(pgdat);
6092 spin_lock_init(&pgdat->lru_lock);
6093 lruvec_init(node_lruvec(pgdat));
6094
6095 pgdat->per_cpu_nodestats = &boot_nodestats;
6096
6097 for (j = 0; j < MAX_NR_ZONES; j++) {
6098 struct zone *zone = pgdat->node_zones + j;
6099 unsigned long size, realsize, freesize, memmap_pages;
6100 unsigned long zone_start_pfn = zone->zone_start_pfn;
6101
6102 size = zone->spanned_pages;
6103 realsize = freesize = zone->present_pages;
6104
6105 /*
6106 * Adjust freesize so that it accounts for how much memory
6107 * is used by this zone for memmap. This affects the watermark
6108 * and per-cpu initialisations
6109 */
6110 memmap_pages = calc_memmap_size(size, realsize);
6111 if (!is_highmem_idx(j)) {
6112 if (freesize >= memmap_pages) {
6113 freesize -= memmap_pages;
6114 if (memmap_pages)
6115 printk(KERN_DEBUG
6116 " %s zone: %lu pages used for memmap\n",
6117 zone_names[j], memmap_pages);
6118 } else
6119 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6120 zone_names[j], memmap_pages, freesize);
6121 }
6122
6123 /* Account for reserved pages */
6124 if (j == 0 && freesize > dma_reserve) {
6125 freesize -= dma_reserve;
6126 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6127 zone_names[0], dma_reserve);
6128 }
6129
6130 if (!is_highmem_idx(j))
6131 nr_kernel_pages += freesize;
6132 /* Charge for highmem memmap if there are enough kernel pages */
6133 else if (nr_kernel_pages > memmap_pages * 2)
6134 nr_kernel_pages -= memmap_pages;
6135 nr_all_pages += freesize;
6136
6137 /*
6138 * Set an approximate value for lowmem here, it will be adjusted
6139 * when the bootmem allocator frees pages into the buddy system.
6140 * And all highmem pages will be managed by the buddy system.
6141 */
6142 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6143 #ifdef CONFIG_NUMA
6144 zone->node = nid;
6145 #endif
6146 zone->name = zone_names[j];
6147 zone->zone_pgdat = pgdat;
6148 spin_lock_init(&zone->lock);
6149 zone_seqlock_init(zone);
6150 zone_pcp_init(zone);
6151
6152 if (!size)
6153 continue;
6154
6155 set_pageblock_order();
6156 setup_usemap(pgdat, zone, zone_start_pfn, size);
6157 init_currently_empty_zone(zone, zone_start_pfn, size);
6158 memmap_init(size, nid, j, zone_start_pfn);
6159 }
6160 }
6161
6162 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6163 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6164 {
6165 unsigned long __maybe_unused start = 0;
6166 unsigned long __maybe_unused offset = 0;
6167
6168 /* Skip empty nodes */
6169 if (!pgdat->node_spanned_pages)
6170 return;
6171
6172 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6173 offset = pgdat->node_start_pfn - start;
6174 /* ia64 gets its own node_mem_map, before this, without bootmem */
6175 if (!pgdat->node_mem_map) {
6176 unsigned long size, end;
6177 struct page *map;
6178
6179 /*
6180 * The zone's endpoints aren't required to be MAX_ORDER
6181 * aligned but the node_mem_map endpoints must be in order
6182 * for the buddy allocator to function correctly.
6183 */
6184 end = pgdat_end_pfn(pgdat);
6185 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6186 size = (end - start) * sizeof(struct page);
6187 map = alloc_remap(pgdat->node_id, size);
6188 if (!map)
6189 map = memblock_virt_alloc_node_nopanic(size,
6190 pgdat->node_id);
6191 pgdat->node_mem_map = map + offset;
6192 }
6193 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6194 __func__, pgdat->node_id, (unsigned long)pgdat,
6195 (unsigned long)pgdat->node_mem_map);
6196 #ifndef CONFIG_NEED_MULTIPLE_NODES
6197 /*
6198 * With no DISCONTIG, the global mem_map is just set as node 0's
6199 */
6200 if (pgdat == NODE_DATA(0)) {
6201 mem_map = NODE_DATA(0)->node_mem_map;
6202 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6203 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6204 mem_map -= offset;
6205 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6206 }
6207 #endif
6208 }
6209 #else
6210 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6211 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6212
6213 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6214 unsigned long node_start_pfn, unsigned long *zholes_size)
6215 {
6216 pg_data_t *pgdat = NODE_DATA(nid);
6217 unsigned long start_pfn = 0;
6218 unsigned long end_pfn = 0;
6219
6220 /* pg_data_t should be reset to zero when it's allocated */
6221 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6222
6223 pgdat->node_id = nid;
6224 pgdat->node_start_pfn = node_start_pfn;
6225 pgdat->per_cpu_nodestats = NULL;
6226 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6227 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6228 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6229 (u64)start_pfn << PAGE_SHIFT,
6230 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6231 #else
6232 start_pfn = node_start_pfn;
6233 #endif
6234 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6235 zones_size, zholes_size);
6236
6237 alloc_node_mem_map(pgdat);
6238
6239 reset_deferred_meminit(pgdat);
6240 free_area_init_core(pgdat);
6241 }
6242
6243 #ifdef CONFIG_HAVE_MEMBLOCK
6244 /*
6245 * Only struct pages that are backed by physical memory are zeroed and
6246 * initialized by going through __init_single_page(). But, there are some
6247 * struct pages which are reserved in memblock allocator and their fields
6248 * may be accessed (for example page_to_pfn() on some configuration accesses
6249 * flags). We must explicitly zero those struct pages.
6250 */
6251 void __paginginit zero_resv_unavail(void)
6252 {
6253 phys_addr_t start, end;
6254 unsigned long pfn;
6255 u64 i, pgcnt;
6256
6257 /*
6258 * Loop through ranges that are reserved, but do not have reported
6259 * physical memory backing.
6260 */
6261 pgcnt = 0;
6262 for_each_resv_unavail_range(i, &start, &end) {
6263 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6264 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6265 continue;
6266 mm_zero_struct_page(pfn_to_page(pfn));
6267 pgcnt++;
6268 }
6269 }
6270
6271 /*
6272 * Struct pages that do not have backing memory. This could be because
6273 * firmware is using some of this memory, or for some other reasons.
6274 * Once memblock is changed so such behaviour is not allowed: i.e.
6275 * list of "reserved" memory must be a subset of list of "memory", then
6276 * this code can be removed.
6277 */
6278 if (pgcnt)
6279 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6280 }
6281 #endif /* CONFIG_HAVE_MEMBLOCK */
6282
6283 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6284
6285 #if MAX_NUMNODES > 1
6286 /*
6287 * Figure out the number of possible node ids.
6288 */
6289 void __init setup_nr_node_ids(void)
6290 {
6291 unsigned int highest;
6292
6293 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6294 nr_node_ids = highest + 1;
6295 }
6296 #endif
6297
6298 /**
6299 * node_map_pfn_alignment - determine the maximum internode alignment
6300 *
6301 * This function should be called after node map is populated and sorted.
6302 * It calculates the maximum power of two alignment which can distinguish
6303 * all the nodes.
6304 *
6305 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6306 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6307 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6308 * shifted, 1GiB is enough and this function will indicate so.
6309 *
6310 * This is used to test whether pfn -> nid mapping of the chosen memory
6311 * model has fine enough granularity to avoid incorrect mapping for the
6312 * populated node map.
6313 *
6314 * Returns the determined alignment in pfn's. 0 if there is no alignment
6315 * requirement (single node).
6316 */
6317 unsigned long __init node_map_pfn_alignment(void)
6318 {
6319 unsigned long accl_mask = 0, last_end = 0;
6320 unsigned long start, end, mask;
6321 int last_nid = -1;
6322 int i, nid;
6323
6324 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6325 if (!start || last_nid < 0 || last_nid == nid) {
6326 last_nid = nid;
6327 last_end = end;
6328 continue;
6329 }
6330
6331 /*
6332 * Start with a mask granular enough to pin-point to the
6333 * start pfn and tick off bits one-by-one until it becomes
6334 * too coarse to separate the current node from the last.
6335 */
6336 mask = ~((1 << __ffs(start)) - 1);
6337 while (mask && last_end <= (start & (mask << 1)))
6338 mask <<= 1;
6339
6340 /* accumulate all internode masks */
6341 accl_mask |= mask;
6342 }
6343
6344 /* convert mask to number of pages */
6345 return ~accl_mask + 1;
6346 }
6347
6348 /* Find the lowest pfn for a node */
6349 static unsigned long __init find_min_pfn_for_node(int nid)
6350 {
6351 unsigned long min_pfn = ULONG_MAX;
6352 unsigned long start_pfn;
6353 int i;
6354
6355 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6356 min_pfn = min(min_pfn, start_pfn);
6357
6358 if (min_pfn == ULONG_MAX) {
6359 pr_warn("Could not find start_pfn for node %d\n", nid);
6360 return 0;
6361 }
6362
6363 return min_pfn;
6364 }
6365
6366 /**
6367 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6368 *
6369 * It returns the minimum PFN based on information provided via
6370 * memblock_set_node().
6371 */
6372 unsigned long __init find_min_pfn_with_active_regions(void)
6373 {
6374 return find_min_pfn_for_node(MAX_NUMNODES);
6375 }
6376
6377 /*
6378 * early_calculate_totalpages()
6379 * Sum pages in active regions for movable zone.
6380 * Populate N_MEMORY for calculating usable_nodes.
6381 */
6382 static unsigned long __init early_calculate_totalpages(void)
6383 {
6384 unsigned long totalpages = 0;
6385 unsigned long start_pfn, end_pfn;
6386 int i, nid;
6387
6388 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6389 unsigned long pages = end_pfn - start_pfn;
6390
6391 totalpages += pages;
6392 if (pages)
6393 node_set_state(nid, N_MEMORY);
6394 }
6395 return totalpages;
6396 }
6397
6398 /*
6399 * Find the PFN the Movable zone begins in each node. Kernel memory
6400 * is spread evenly between nodes as long as the nodes have enough
6401 * memory. When they don't, some nodes will have more kernelcore than
6402 * others
6403 */
6404 static void __init find_zone_movable_pfns_for_nodes(void)
6405 {
6406 int i, nid;
6407 unsigned long usable_startpfn;
6408 unsigned long kernelcore_node, kernelcore_remaining;
6409 /* save the state before borrow the nodemask */
6410 nodemask_t saved_node_state = node_states[N_MEMORY];
6411 unsigned long totalpages = early_calculate_totalpages();
6412 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6413 struct memblock_region *r;
6414
6415 /* Need to find movable_zone earlier when movable_node is specified. */
6416 find_usable_zone_for_movable();
6417
6418 /*
6419 * If movable_node is specified, ignore kernelcore and movablecore
6420 * options.
6421 */
6422 if (movable_node_is_enabled()) {
6423 for_each_memblock(memory, r) {
6424 if (!memblock_is_hotpluggable(r))
6425 continue;
6426
6427 nid = r->nid;
6428
6429 usable_startpfn = PFN_DOWN(r->base);
6430 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6431 min(usable_startpfn, zone_movable_pfn[nid]) :
6432 usable_startpfn;
6433 }
6434
6435 goto out2;
6436 }
6437
6438 /*
6439 * If kernelcore=mirror is specified, ignore movablecore option
6440 */
6441 if (mirrored_kernelcore) {
6442 bool mem_below_4gb_not_mirrored = false;
6443
6444 for_each_memblock(memory, r) {
6445 if (memblock_is_mirror(r))
6446 continue;
6447
6448 nid = r->nid;
6449
6450 usable_startpfn = memblock_region_memory_base_pfn(r);
6451
6452 if (usable_startpfn < 0x100000) {
6453 mem_below_4gb_not_mirrored = true;
6454 continue;
6455 }
6456
6457 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6458 min(usable_startpfn, zone_movable_pfn[nid]) :
6459 usable_startpfn;
6460 }
6461
6462 if (mem_below_4gb_not_mirrored)
6463 pr_warn("This configuration results in unmirrored kernel memory.");
6464
6465 goto out2;
6466 }
6467
6468 /*
6469 * If movablecore=nn[KMG] was specified, calculate what size of
6470 * kernelcore that corresponds so that memory usable for
6471 * any allocation type is evenly spread. If both kernelcore
6472 * and movablecore are specified, then the value of kernelcore
6473 * will be used for required_kernelcore if it's greater than
6474 * what movablecore would have allowed.
6475 */
6476 if (required_movablecore) {
6477 unsigned long corepages;
6478
6479 /*
6480 * Round-up so that ZONE_MOVABLE is at least as large as what
6481 * was requested by the user
6482 */
6483 required_movablecore =
6484 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6485 required_movablecore = min(totalpages, required_movablecore);
6486 corepages = totalpages - required_movablecore;
6487
6488 required_kernelcore = max(required_kernelcore, corepages);
6489 }
6490
6491 /*
6492 * If kernelcore was not specified or kernelcore size is larger
6493 * than totalpages, there is no ZONE_MOVABLE.
6494 */
6495 if (!required_kernelcore || required_kernelcore >= totalpages)
6496 goto out;
6497
6498 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6499 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6500
6501 restart:
6502 /* Spread kernelcore memory as evenly as possible throughout nodes */
6503 kernelcore_node = required_kernelcore / usable_nodes;
6504 for_each_node_state(nid, N_MEMORY) {
6505 unsigned long start_pfn, end_pfn;
6506
6507 /*
6508 * Recalculate kernelcore_node if the division per node
6509 * now exceeds what is necessary to satisfy the requested
6510 * amount of memory for the kernel
6511 */
6512 if (required_kernelcore < kernelcore_node)
6513 kernelcore_node = required_kernelcore / usable_nodes;
6514
6515 /*
6516 * As the map is walked, we track how much memory is usable
6517 * by the kernel using kernelcore_remaining. When it is
6518 * 0, the rest of the node is usable by ZONE_MOVABLE
6519 */
6520 kernelcore_remaining = kernelcore_node;
6521
6522 /* Go through each range of PFNs within this node */
6523 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6524 unsigned long size_pages;
6525
6526 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6527 if (start_pfn >= end_pfn)
6528 continue;
6529
6530 /* Account for what is only usable for kernelcore */
6531 if (start_pfn < usable_startpfn) {
6532 unsigned long kernel_pages;
6533 kernel_pages = min(end_pfn, usable_startpfn)
6534 - start_pfn;
6535
6536 kernelcore_remaining -= min(kernel_pages,
6537 kernelcore_remaining);
6538 required_kernelcore -= min(kernel_pages,
6539 required_kernelcore);
6540
6541 /* Continue if range is now fully accounted */
6542 if (end_pfn <= usable_startpfn) {
6543
6544 /*
6545 * Push zone_movable_pfn to the end so
6546 * that if we have to rebalance
6547 * kernelcore across nodes, we will
6548 * not double account here
6549 */
6550 zone_movable_pfn[nid] = end_pfn;
6551 continue;
6552 }
6553 start_pfn = usable_startpfn;
6554 }
6555
6556 /*
6557 * The usable PFN range for ZONE_MOVABLE is from
6558 * start_pfn->end_pfn. Calculate size_pages as the
6559 * number of pages used as kernelcore
6560 */
6561 size_pages = end_pfn - start_pfn;
6562 if (size_pages > kernelcore_remaining)
6563 size_pages = kernelcore_remaining;
6564 zone_movable_pfn[nid] = start_pfn + size_pages;
6565
6566 /*
6567 * Some kernelcore has been met, update counts and
6568 * break if the kernelcore for this node has been
6569 * satisfied
6570 */
6571 required_kernelcore -= min(required_kernelcore,
6572 size_pages);
6573 kernelcore_remaining -= size_pages;
6574 if (!kernelcore_remaining)
6575 break;
6576 }
6577 }
6578
6579 /*
6580 * If there is still required_kernelcore, we do another pass with one
6581 * less node in the count. This will push zone_movable_pfn[nid] further
6582 * along on the nodes that still have memory until kernelcore is
6583 * satisfied
6584 */
6585 usable_nodes--;
6586 if (usable_nodes && required_kernelcore > usable_nodes)
6587 goto restart;
6588
6589 out2:
6590 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6591 for (nid = 0; nid < MAX_NUMNODES; nid++)
6592 zone_movable_pfn[nid] =
6593 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6594
6595 out:
6596 /* restore the node_state */
6597 node_states[N_MEMORY] = saved_node_state;
6598 }
6599
6600 /* Any regular or high memory on that node ? */
6601 static void check_for_memory(pg_data_t *pgdat, int nid)
6602 {
6603 enum zone_type zone_type;
6604
6605 if (N_MEMORY == N_NORMAL_MEMORY)
6606 return;
6607
6608 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6609 struct zone *zone = &pgdat->node_zones[zone_type];
6610 if (populated_zone(zone)) {
6611 node_set_state(nid, N_HIGH_MEMORY);
6612 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6613 zone_type <= ZONE_NORMAL)
6614 node_set_state(nid, N_NORMAL_MEMORY);
6615 break;
6616 }
6617 }
6618 }
6619
6620 /**
6621 * free_area_init_nodes - Initialise all pg_data_t and zone data
6622 * @max_zone_pfn: an array of max PFNs for each zone
6623 *
6624 * This will call free_area_init_node() for each active node in the system.
6625 * Using the page ranges provided by memblock_set_node(), the size of each
6626 * zone in each node and their holes is calculated. If the maximum PFN
6627 * between two adjacent zones match, it is assumed that the zone is empty.
6628 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6629 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6630 * starts where the previous one ended. For example, ZONE_DMA32 starts
6631 * at arch_max_dma_pfn.
6632 */
6633 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6634 {
6635 unsigned long start_pfn, end_pfn;
6636 int i, nid;
6637
6638 /* Record where the zone boundaries are */
6639 memset(arch_zone_lowest_possible_pfn, 0,
6640 sizeof(arch_zone_lowest_possible_pfn));
6641 memset(arch_zone_highest_possible_pfn, 0,
6642 sizeof(arch_zone_highest_possible_pfn));
6643
6644 start_pfn = find_min_pfn_with_active_regions();
6645
6646 for (i = 0; i < MAX_NR_ZONES; i++) {
6647 if (i == ZONE_MOVABLE)
6648 continue;
6649
6650 end_pfn = max(max_zone_pfn[i], start_pfn);
6651 arch_zone_lowest_possible_pfn[i] = start_pfn;
6652 arch_zone_highest_possible_pfn[i] = end_pfn;
6653
6654 start_pfn = end_pfn;
6655 }
6656
6657 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6658 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6659 find_zone_movable_pfns_for_nodes();
6660
6661 /* Print out the zone ranges */
6662 pr_info("Zone ranges:\n");
6663 for (i = 0; i < MAX_NR_ZONES; i++) {
6664 if (i == ZONE_MOVABLE)
6665 continue;
6666 pr_info(" %-8s ", zone_names[i]);
6667 if (arch_zone_lowest_possible_pfn[i] ==
6668 arch_zone_highest_possible_pfn[i])
6669 pr_cont("empty\n");
6670 else
6671 pr_cont("[mem %#018Lx-%#018Lx]\n",
6672 (u64)arch_zone_lowest_possible_pfn[i]
6673 << PAGE_SHIFT,
6674 ((u64)arch_zone_highest_possible_pfn[i]
6675 << PAGE_SHIFT) - 1);
6676 }
6677
6678 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6679 pr_info("Movable zone start for each node\n");
6680 for (i = 0; i < MAX_NUMNODES; i++) {
6681 if (zone_movable_pfn[i])
6682 pr_info(" Node %d: %#018Lx\n", i,
6683 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6684 }
6685
6686 /* Print out the early node map */
6687 pr_info("Early memory node ranges\n");
6688 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6689 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6690 (u64)start_pfn << PAGE_SHIFT,
6691 ((u64)end_pfn << PAGE_SHIFT) - 1);
6692
6693 /* Initialise every node */
6694 mminit_verify_pageflags_layout();
6695 setup_nr_node_ids();
6696 for_each_online_node(nid) {
6697 pg_data_t *pgdat = NODE_DATA(nid);
6698 free_area_init_node(nid, NULL,
6699 find_min_pfn_for_node(nid), NULL);
6700
6701 /* Any memory on that node */
6702 if (pgdat->node_present_pages)
6703 node_set_state(nid, N_MEMORY);
6704 check_for_memory(pgdat, nid);
6705 }
6706 zero_resv_unavail();
6707 }
6708
6709 static int __init cmdline_parse_core(char *p, unsigned long *core)
6710 {
6711 unsigned long long coremem;
6712 if (!p)
6713 return -EINVAL;
6714
6715 coremem = memparse(p, &p);
6716 *core = coremem >> PAGE_SHIFT;
6717
6718 /* Paranoid check that UL is enough for the coremem value */
6719 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6720
6721 return 0;
6722 }
6723
6724 /*
6725 * kernelcore=size sets the amount of memory for use for allocations that
6726 * cannot be reclaimed or migrated.
6727 */
6728 static int __init cmdline_parse_kernelcore(char *p)
6729 {
6730 /* parse kernelcore=mirror */
6731 if (parse_option_str(p, "mirror")) {
6732 mirrored_kernelcore = true;
6733 return 0;
6734 }
6735
6736 return cmdline_parse_core(p, &required_kernelcore);
6737 }
6738
6739 /*
6740 * movablecore=size sets the amount of memory for use for allocations that
6741 * can be reclaimed or migrated.
6742 */
6743 static int __init cmdline_parse_movablecore(char *p)
6744 {
6745 return cmdline_parse_core(p, &required_movablecore);
6746 }
6747
6748 early_param("kernelcore", cmdline_parse_kernelcore);
6749 early_param("movablecore", cmdline_parse_movablecore);
6750
6751 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6752
6753 void adjust_managed_page_count(struct page *page, long count)
6754 {
6755 spin_lock(&managed_page_count_lock);
6756 page_zone(page)->managed_pages += count;
6757 totalram_pages += count;
6758 #ifdef CONFIG_HIGHMEM
6759 if (PageHighMem(page))
6760 totalhigh_pages += count;
6761 #endif
6762 spin_unlock(&managed_page_count_lock);
6763 }
6764 EXPORT_SYMBOL(adjust_managed_page_count);
6765
6766 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6767 {
6768 void *pos;
6769 unsigned long pages = 0;
6770
6771 start = (void *)PAGE_ALIGN((unsigned long)start);
6772 end = (void *)((unsigned long)end & PAGE_MASK);
6773 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6774 if ((unsigned int)poison <= 0xFF)
6775 memset(pos, poison, PAGE_SIZE);
6776 free_reserved_page(virt_to_page(pos));
6777 }
6778
6779 if (pages && s)
6780 pr_info("Freeing %s memory: %ldK\n",
6781 s, pages << (PAGE_SHIFT - 10));
6782
6783 return pages;
6784 }
6785 EXPORT_SYMBOL(free_reserved_area);
6786
6787 #ifdef CONFIG_HIGHMEM
6788 void free_highmem_page(struct page *page)
6789 {
6790 __free_reserved_page(page);
6791 totalram_pages++;
6792 page_zone(page)->managed_pages++;
6793 totalhigh_pages++;
6794 }
6795 #endif
6796
6797
6798 void __init mem_init_print_info(const char *str)
6799 {
6800 unsigned long physpages, codesize, datasize, rosize, bss_size;
6801 unsigned long init_code_size, init_data_size;
6802
6803 physpages = get_num_physpages();
6804 codesize = _etext - _stext;
6805 datasize = _edata - _sdata;
6806 rosize = __end_rodata - __start_rodata;
6807 bss_size = __bss_stop - __bss_start;
6808 init_data_size = __init_end - __init_begin;
6809 init_code_size = _einittext - _sinittext;
6810
6811 /*
6812 * Detect special cases and adjust section sizes accordingly:
6813 * 1) .init.* may be embedded into .data sections
6814 * 2) .init.text.* may be out of [__init_begin, __init_end],
6815 * please refer to arch/tile/kernel/vmlinux.lds.S.
6816 * 3) .rodata.* may be embedded into .text or .data sections.
6817 */
6818 #define adj_init_size(start, end, size, pos, adj) \
6819 do { \
6820 if (start <= pos && pos < end && size > adj) \
6821 size -= adj; \
6822 } while (0)
6823
6824 adj_init_size(__init_begin, __init_end, init_data_size,
6825 _sinittext, init_code_size);
6826 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6827 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6828 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6829 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6830
6831 #undef adj_init_size
6832
6833 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6834 #ifdef CONFIG_HIGHMEM
6835 ", %luK highmem"
6836 #endif
6837 "%s%s)\n",
6838 nr_free_pages() << (PAGE_SHIFT - 10),
6839 physpages << (PAGE_SHIFT - 10),
6840 codesize >> 10, datasize >> 10, rosize >> 10,
6841 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6842 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6843 totalcma_pages << (PAGE_SHIFT - 10),
6844 #ifdef CONFIG_HIGHMEM
6845 totalhigh_pages << (PAGE_SHIFT - 10),
6846 #endif
6847 str ? ", " : "", str ? str : "");
6848 }
6849
6850 /**
6851 * set_dma_reserve - set the specified number of pages reserved in the first zone
6852 * @new_dma_reserve: The number of pages to mark reserved
6853 *
6854 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6855 * In the DMA zone, a significant percentage may be consumed by kernel image
6856 * and other unfreeable allocations which can skew the watermarks badly. This
6857 * function may optionally be used to account for unfreeable pages in the
6858 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6859 * smaller per-cpu batchsize.
6860 */
6861 void __init set_dma_reserve(unsigned long new_dma_reserve)
6862 {
6863 dma_reserve = new_dma_reserve;
6864 }
6865
6866 void __init free_area_init(unsigned long *zones_size)
6867 {
6868 free_area_init_node(0, zones_size,
6869 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6870 zero_resv_unavail();
6871 }
6872
6873 static int page_alloc_cpu_dead(unsigned int cpu)
6874 {
6875
6876 lru_add_drain_cpu(cpu);
6877 drain_pages(cpu);
6878
6879 /*
6880 * Spill the event counters of the dead processor
6881 * into the current processors event counters.
6882 * This artificially elevates the count of the current
6883 * processor.
6884 */
6885 vm_events_fold_cpu(cpu);
6886
6887 /*
6888 * Zero the differential counters of the dead processor
6889 * so that the vm statistics are consistent.
6890 *
6891 * This is only okay since the processor is dead and cannot
6892 * race with what we are doing.
6893 */
6894 cpu_vm_stats_fold(cpu);
6895 return 0;
6896 }
6897
6898 void __init page_alloc_init(void)
6899 {
6900 int ret;
6901
6902 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6903 "mm/page_alloc:dead", NULL,
6904 page_alloc_cpu_dead);
6905 WARN_ON(ret < 0);
6906 }
6907
6908 /*
6909 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6910 * or min_free_kbytes changes.
6911 */
6912 static void calculate_totalreserve_pages(void)
6913 {
6914 struct pglist_data *pgdat;
6915 unsigned long reserve_pages = 0;
6916 enum zone_type i, j;
6917
6918 for_each_online_pgdat(pgdat) {
6919
6920 pgdat->totalreserve_pages = 0;
6921
6922 for (i = 0; i < MAX_NR_ZONES; i++) {
6923 struct zone *zone = pgdat->node_zones + i;
6924 long max = 0;
6925
6926 /* Find valid and maximum lowmem_reserve in the zone */
6927 for (j = i; j < MAX_NR_ZONES; j++) {
6928 if (zone->lowmem_reserve[j] > max)
6929 max = zone->lowmem_reserve[j];
6930 }
6931
6932 /* we treat the high watermark as reserved pages. */
6933 max += high_wmark_pages(zone);
6934
6935 if (max > zone->managed_pages)
6936 max = zone->managed_pages;
6937
6938 pgdat->totalreserve_pages += max;
6939
6940 reserve_pages += max;
6941 }
6942 }
6943 totalreserve_pages = reserve_pages;
6944 }
6945
6946 /*
6947 * setup_per_zone_lowmem_reserve - called whenever
6948 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6949 * has a correct pages reserved value, so an adequate number of
6950 * pages are left in the zone after a successful __alloc_pages().
6951 */
6952 static void setup_per_zone_lowmem_reserve(void)
6953 {
6954 struct pglist_data *pgdat;
6955 enum zone_type j, idx;
6956
6957 for_each_online_pgdat(pgdat) {
6958 for (j = 0; j < MAX_NR_ZONES; j++) {
6959 struct zone *zone = pgdat->node_zones + j;
6960 unsigned long managed_pages = zone->managed_pages;
6961
6962 zone->lowmem_reserve[j] = 0;
6963
6964 idx = j;
6965 while (idx) {
6966 struct zone *lower_zone;
6967
6968 idx--;
6969
6970 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6971 sysctl_lowmem_reserve_ratio[idx] = 1;
6972
6973 lower_zone = pgdat->node_zones + idx;
6974 lower_zone->lowmem_reserve[j] = managed_pages /
6975 sysctl_lowmem_reserve_ratio[idx];
6976 managed_pages += lower_zone->managed_pages;
6977 }
6978 }
6979 }
6980
6981 /* update totalreserve_pages */
6982 calculate_totalreserve_pages();
6983 }
6984
6985 static void __setup_per_zone_wmarks(void)
6986 {
6987 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6988 unsigned long lowmem_pages = 0;
6989 struct zone *zone;
6990 unsigned long flags;
6991
6992 /* Calculate total number of !ZONE_HIGHMEM pages */
6993 for_each_zone(zone) {
6994 if (!is_highmem(zone))
6995 lowmem_pages += zone->managed_pages;
6996 }
6997
6998 for_each_zone(zone) {
6999 u64 tmp;
7000
7001 spin_lock_irqsave(&zone->lock, flags);
7002 tmp = (u64)pages_min * zone->managed_pages;
7003 do_div(tmp, lowmem_pages);
7004 if (is_highmem(zone)) {
7005 /*
7006 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7007 * need highmem pages, so cap pages_min to a small
7008 * value here.
7009 *
7010 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7011 * deltas control asynch page reclaim, and so should
7012 * not be capped for highmem.
7013 */
7014 unsigned long min_pages;
7015
7016 min_pages = zone->managed_pages / 1024;
7017 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7018 zone->watermark[WMARK_MIN] = min_pages;
7019 } else {
7020 /*
7021 * If it's a lowmem zone, reserve a number of pages
7022 * proportionate to the zone's size.
7023 */
7024 zone->watermark[WMARK_MIN] = tmp;
7025 }
7026
7027 /*
7028 * Set the kswapd watermarks distance according to the
7029 * scale factor in proportion to available memory, but
7030 * ensure a minimum size on small systems.
7031 */
7032 tmp = max_t(u64, tmp >> 2,
7033 mult_frac(zone->managed_pages,
7034 watermark_scale_factor, 10000));
7035
7036 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7037 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7038
7039 spin_unlock_irqrestore(&zone->lock, flags);
7040 }
7041
7042 /* update totalreserve_pages */
7043 calculate_totalreserve_pages();
7044 }
7045
7046 /**
7047 * setup_per_zone_wmarks - called when min_free_kbytes changes
7048 * or when memory is hot-{added|removed}
7049 *
7050 * Ensures that the watermark[min,low,high] values for each zone are set
7051 * correctly with respect to min_free_kbytes.
7052 */
7053 void setup_per_zone_wmarks(void)
7054 {
7055 static DEFINE_SPINLOCK(lock);
7056
7057 spin_lock(&lock);
7058 __setup_per_zone_wmarks();
7059 spin_unlock(&lock);
7060 }
7061
7062 /*
7063 * Initialise min_free_kbytes.
7064 *
7065 * For small machines we want it small (128k min). For large machines
7066 * we want it large (64MB max). But it is not linear, because network
7067 * bandwidth does not increase linearly with machine size. We use
7068 *
7069 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7070 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7071 *
7072 * which yields
7073 *
7074 * 16MB: 512k
7075 * 32MB: 724k
7076 * 64MB: 1024k
7077 * 128MB: 1448k
7078 * 256MB: 2048k
7079 * 512MB: 2896k
7080 * 1024MB: 4096k
7081 * 2048MB: 5792k
7082 * 4096MB: 8192k
7083 * 8192MB: 11584k
7084 * 16384MB: 16384k
7085 */
7086 int __meminit init_per_zone_wmark_min(void)
7087 {
7088 unsigned long lowmem_kbytes;
7089 int new_min_free_kbytes;
7090
7091 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7092 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7093
7094 if (new_min_free_kbytes > user_min_free_kbytes) {
7095 min_free_kbytes = new_min_free_kbytes;
7096 if (min_free_kbytes < 128)
7097 min_free_kbytes = 128;
7098 if (min_free_kbytes > 65536)
7099 min_free_kbytes = 65536;
7100 } else {
7101 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7102 new_min_free_kbytes, user_min_free_kbytes);
7103 }
7104 setup_per_zone_wmarks();
7105 refresh_zone_stat_thresholds();
7106 setup_per_zone_lowmem_reserve();
7107
7108 #ifdef CONFIG_NUMA
7109 setup_min_unmapped_ratio();
7110 setup_min_slab_ratio();
7111 #endif
7112
7113 return 0;
7114 }
7115 core_initcall(init_per_zone_wmark_min)
7116
7117 /*
7118 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7119 * that we can call two helper functions whenever min_free_kbytes
7120 * changes.
7121 */
7122 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7123 void __user *buffer, size_t *length, loff_t *ppos)
7124 {
7125 int rc;
7126
7127 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7128 if (rc)
7129 return rc;
7130
7131 if (write) {
7132 user_min_free_kbytes = min_free_kbytes;
7133 setup_per_zone_wmarks();
7134 }
7135 return 0;
7136 }
7137
7138 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7139 void __user *buffer, size_t *length, loff_t *ppos)
7140 {
7141 int rc;
7142
7143 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7144 if (rc)
7145 return rc;
7146
7147 if (write)
7148 setup_per_zone_wmarks();
7149
7150 return 0;
7151 }
7152
7153 #ifdef CONFIG_NUMA
7154 static void setup_min_unmapped_ratio(void)
7155 {
7156 pg_data_t *pgdat;
7157 struct zone *zone;
7158
7159 for_each_online_pgdat(pgdat)
7160 pgdat->min_unmapped_pages = 0;
7161
7162 for_each_zone(zone)
7163 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7164 sysctl_min_unmapped_ratio) / 100;
7165 }
7166
7167
7168 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7169 void __user *buffer, size_t *length, loff_t *ppos)
7170 {
7171 int rc;
7172
7173 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7174 if (rc)
7175 return rc;
7176
7177 setup_min_unmapped_ratio();
7178
7179 return 0;
7180 }
7181
7182 static void setup_min_slab_ratio(void)
7183 {
7184 pg_data_t *pgdat;
7185 struct zone *zone;
7186
7187 for_each_online_pgdat(pgdat)
7188 pgdat->min_slab_pages = 0;
7189
7190 for_each_zone(zone)
7191 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7192 sysctl_min_slab_ratio) / 100;
7193 }
7194
7195 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7196 void __user *buffer, size_t *length, loff_t *ppos)
7197 {
7198 int rc;
7199
7200 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7201 if (rc)
7202 return rc;
7203
7204 setup_min_slab_ratio();
7205
7206 return 0;
7207 }
7208 #endif
7209
7210 /*
7211 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7212 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7213 * whenever sysctl_lowmem_reserve_ratio changes.
7214 *
7215 * The reserve ratio obviously has absolutely no relation with the
7216 * minimum watermarks. The lowmem reserve ratio can only make sense
7217 * if in function of the boot time zone sizes.
7218 */
7219 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7220 void __user *buffer, size_t *length, loff_t *ppos)
7221 {
7222 proc_dointvec_minmax(table, write, buffer, length, ppos);
7223 setup_per_zone_lowmem_reserve();
7224 return 0;
7225 }
7226
7227 /*
7228 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7229 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7230 * pagelist can have before it gets flushed back to buddy allocator.
7231 */
7232 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7233 void __user *buffer, size_t *length, loff_t *ppos)
7234 {
7235 struct zone *zone;
7236 int old_percpu_pagelist_fraction;
7237 int ret;
7238
7239 mutex_lock(&pcp_batch_high_lock);
7240 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7241
7242 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7243 if (!write || ret < 0)
7244 goto out;
7245
7246 /* Sanity checking to avoid pcp imbalance */
7247 if (percpu_pagelist_fraction &&
7248 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7249 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7250 ret = -EINVAL;
7251 goto out;
7252 }
7253
7254 /* No change? */
7255 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7256 goto out;
7257
7258 for_each_populated_zone(zone) {
7259 unsigned int cpu;
7260
7261 for_each_possible_cpu(cpu)
7262 pageset_set_high_and_batch(zone,
7263 per_cpu_ptr(zone->pageset, cpu));
7264 }
7265 out:
7266 mutex_unlock(&pcp_batch_high_lock);
7267 return ret;
7268 }
7269
7270 #ifdef CONFIG_NUMA
7271 int hashdist = HASHDIST_DEFAULT;
7272
7273 static int __init set_hashdist(char *str)
7274 {
7275 if (!str)
7276 return 0;
7277 hashdist = simple_strtoul(str, &str, 0);
7278 return 1;
7279 }
7280 __setup("hashdist=", set_hashdist);
7281 #endif
7282
7283 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7284 /*
7285 * Returns the number of pages that arch has reserved but
7286 * is not known to alloc_large_system_hash().
7287 */
7288 static unsigned long __init arch_reserved_kernel_pages(void)
7289 {
7290 return 0;
7291 }
7292 #endif
7293
7294 /*
7295 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7296 * machines. As memory size is increased the scale is also increased but at
7297 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7298 * quadruples the scale is increased by one, which means the size of hash table
7299 * only doubles, instead of quadrupling as well.
7300 * Because 32-bit systems cannot have large physical memory, where this scaling
7301 * makes sense, it is disabled on such platforms.
7302 */
7303 #if __BITS_PER_LONG > 32
7304 #define ADAPT_SCALE_BASE (64ul << 30)
7305 #define ADAPT_SCALE_SHIFT 2
7306 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7307 #endif
7308
7309 /*
7310 * allocate a large system hash table from bootmem
7311 * - it is assumed that the hash table must contain an exact power-of-2
7312 * quantity of entries
7313 * - limit is the number of hash buckets, not the total allocation size
7314 */
7315 void *__init alloc_large_system_hash(const char *tablename,
7316 unsigned long bucketsize,
7317 unsigned long numentries,
7318 int scale,
7319 int flags,
7320 unsigned int *_hash_shift,
7321 unsigned int *_hash_mask,
7322 unsigned long low_limit,
7323 unsigned long high_limit)
7324 {
7325 unsigned long long max = high_limit;
7326 unsigned long log2qty, size;
7327 void *table = NULL;
7328 gfp_t gfp_flags;
7329
7330 /* allow the kernel cmdline to have a say */
7331 if (!numentries) {
7332 /* round applicable memory size up to nearest megabyte */
7333 numentries = nr_kernel_pages;
7334 numentries -= arch_reserved_kernel_pages();
7335
7336 /* It isn't necessary when PAGE_SIZE >= 1MB */
7337 if (PAGE_SHIFT < 20)
7338 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7339
7340 #if __BITS_PER_LONG > 32
7341 if (!high_limit) {
7342 unsigned long adapt;
7343
7344 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7345 adapt <<= ADAPT_SCALE_SHIFT)
7346 scale++;
7347 }
7348 #endif
7349
7350 /* limit to 1 bucket per 2^scale bytes of low memory */
7351 if (scale > PAGE_SHIFT)
7352 numentries >>= (scale - PAGE_SHIFT);
7353 else
7354 numentries <<= (PAGE_SHIFT - scale);
7355
7356 /* Make sure we've got at least a 0-order allocation.. */
7357 if (unlikely(flags & HASH_SMALL)) {
7358 /* Makes no sense without HASH_EARLY */
7359 WARN_ON(!(flags & HASH_EARLY));
7360 if (!(numentries >> *_hash_shift)) {
7361 numentries = 1UL << *_hash_shift;
7362 BUG_ON(!numentries);
7363 }
7364 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7365 numentries = PAGE_SIZE / bucketsize;
7366 }
7367 numentries = roundup_pow_of_two(numentries);
7368
7369 /* limit allocation size to 1/16 total memory by default */
7370 if (max == 0) {
7371 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7372 do_div(max, bucketsize);
7373 }
7374 max = min(max, 0x80000000ULL);
7375
7376 if (numentries < low_limit)
7377 numentries = low_limit;
7378 if (numentries > max)
7379 numentries = max;
7380
7381 log2qty = ilog2(numentries);
7382
7383 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7384 do {
7385 size = bucketsize << log2qty;
7386 if (flags & HASH_EARLY) {
7387 if (flags & HASH_ZERO)
7388 table = memblock_virt_alloc_nopanic(size, 0);
7389 else
7390 table = memblock_virt_alloc_raw(size, 0);
7391 } else if (hashdist) {
7392 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7393 } else {
7394 /*
7395 * If bucketsize is not a power-of-two, we may free
7396 * some pages at the end of hash table which
7397 * alloc_pages_exact() automatically does
7398 */
7399 if (get_order(size) < MAX_ORDER) {
7400 table = alloc_pages_exact(size, gfp_flags);
7401 kmemleak_alloc(table, size, 1, gfp_flags);
7402 }
7403 }
7404 } while (!table && size > PAGE_SIZE && --log2qty);
7405
7406 if (!table)
7407 panic("Failed to allocate %s hash table\n", tablename);
7408
7409 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7410 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7411
7412 if (_hash_shift)
7413 *_hash_shift = log2qty;
7414 if (_hash_mask)
7415 *_hash_mask = (1 << log2qty) - 1;
7416
7417 return table;
7418 }
7419
7420 /*
7421 * This function checks whether pageblock includes unmovable pages or not.
7422 * If @count is not zero, it is okay to include less @count unmovable pages
7423 *
7424 * PageLRU check without isolation or lru_lock could race so that
7425 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7426 * check without lock_page also may miss some movable non-lru pages at
7427 * race condition. So you can't expect this function should be exact.
7428 */
7429 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7430 int migratetype,
7431 bool skip_hwpoisoned_pages)
7432 {
7433 unsigned long pfn, iter, found;
7434
7435 /*
7436 * For avoiding noise data, lru_add_drain_all() should be called
7437 * If ZONE_MOVABLE, the zone never contains unmovable pages
7438 */
7439 if (zone_idx(zone) == ZONE_MOVABLE)
7440 return false;
7441
7442 /*
7443 * CMA allocations (alloc_contig_range) really need to mark isolate
7444 * CMA pageblocks even when they are not movable in fact so consider
7445 * them movable here.
7446 */
7447 if (is_migrate_cma(migratetype) &&
7448 is_migrate_cma(get_pageblock_migratetype(page)))
7449 return false;
7450
7451 pfn = page_to_pfn(page);
7452 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7453 unsigned long check = pfn + iter;
7454
7455 if (!pfn_valid_within(check))
7456 continue;
7457
7458 page = pfn_to_page(check);
7459
7460 if (PageReserved(page))
7461 return true;
7462
7463 /*
7464 * Hugepages are not in LRU lists, but they're movable.
7465 * We need not scan over tail pages bacause we don't
7466 * handle each tail page individually in migration.
7467 */
7468 if (PageHuge(page)) {
7469 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7470 continue;
7471 }
7472
7473 /*
7474 * We can't use page_count without pin a page
7475 * because another CPU can free compound page.
7476 * This check already skips compound tails of THP
7477 * because their page->_refcount is zero at all time.
7478 */
7479 if (!page_ref_count(page)) {
7480 if (PageBuddy(page))
7481 iter += (1 << page_order(page)) - 1;
7482 continue;
7483 }
7484
7485 /*
7486 * The HWPoisoned page may be not in buddy system, and
7487 * page_count() is not 0.
7488 */
7489 if (skip_hwpoisoned_pages && PageHWPoison(page))
7490 continue;
7491
7492 if (__PageMovable(page))
7493 continue;
7494
7495 if (!PageLRU(page))
7496 found++;
7497 /*
7498 * If there are RECLAIMABLE pages, we need to check
7499 * it. But now, memory offline itself doesn't call
7500 * shrink_node_slabs() and it still to be fixed.
7501 */
7502 /*
7503 * If the page is not RAM, page_count()should be 0.
7504 * we don't need more check. This is an _used_ not-movable page.
7505 *
7506 * The problematic thing here is PG_reserved pages. PG_reserved
7507 * is set to both of a memory hole page and a _used_ kernel
7508 * page at boot.
7509 */
7510 if (found > count)
7511 return true;
7512 }
7513 return false;
7514 }
7515
7516 bool is_pageblock_removable_nolock(struct page *page)
7517 {
7518 struct zone *zone;
7519 unsigned long pfn;
7520
7521 /*
7522 * We have to be careful here because we are iterating over memory
7523 * sections which are not zone aware so we might end up outside of
7524 * the zone but still within the section.
7525 * We have to take care about the node as well. If the node is offline
7526 * its NODE_DATA will be NULL - see page_zone.
7527 */
7528 if (!node_online(page_to_nid(page)))
7529 return false;
7530
7531 zone = page_zone(page);
7532 pfn = page_to_pfn(page);
7533 if (!zone_spans_pfn(zone, pfn))
7534 return false;
7535
7536 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7537 }
7538
7539 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7540
7541 static unsigned long pfn_max_align_down(unsigned long pfn)
7542 {
7543 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7544 pageblock_nr_pages) - 1);
7545 }
7546
7547 static unsigned long pfn_max_align_up(unsigned long pfn)
7548 {
7549 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7550 pageblock_nr_pages));
7551 }
7552
7553 /* [start, end) must belong to a single zone. */
7554 static int __alloc_contig_migrate_range(struct compact_control *cc,
7555 unsigned long start, unsigned long end)
7556 {
7557 /* This function is based on compact_zone() from compaction.c. */
7558 unsigned long nr_reclaimed;
7559 unsigned long pfn = start;
7560 unsigned int tries = 0;
7561 int ret = 0;
7562
7563 migrate_prep();
7564
7565 while (pfn < end || !list_empty(&cc->migratepages)) {
7566 if (fatal_signal_pending(current)) {
7567 ret = -EINTR;
7568 break;
7569 }
7570
7571 if (list_empty(&cc->migratepages)) {
7572 cc->nr_migratepages = 0;
7573 pfn = isolate_migratepages_range(cc, pfn, end);
7574 if (!pfn) {
7575 ret = -EINTR;
7576 break;
7577 }
7578 tries = 0;
7579 } else if (++tries == 5) {
7580 ret = ret < 0 ? ret : -EBUSY;
7581 break;
7582 }
7583
7584 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7585 &cc->migratepages);
7586 cc->nr_migratepages -= nr_reclaimed;
7587
7588 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7589 NULL, 0, cc->mode, MR_CMA);
7590 }
7591 if (ret < 0) {
7592 putback_movable_pages(&cc->migratepages);
7593 return ret;
7594 }
7595 return 0;
7596 }
7597
7598 /**
7599 * alloc_contig_range() -- tries to allocate given range of pages
7600 * @start: start PFN to allocate
7601 * @end: one-past-the-last PFN to allocate
7602 * @migratetype: migratetype of the underlaying pageblocks (either
7603 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7604 * in range must have the same migratetype and it must
7605 * be either of the two.
7606 * @gfp_mask: GFP mask to use during compaction
7607 *
7608 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7609 * aligned, however it's the caller's responsibility to guarantee that
7610 * we are the only thread that changes migrate type of pageblocks the
7611 * pages fall in.
7612 *
7613 * The PFN range must belong to a single zone.
7614 *
7615 * Returns zero on success or negative error code. On success all
7616 * pages which PFN is in [start, end) are allocated for the caller and
7617 * need to be freed with free_contig_range().
7618 */
7619 int alloc_contig_range(unsigned long start, unsigned long end,
7620 unsigned migratetype, gfp_t gfp_mask)
7621 {
7622 unsigned long outer_start, outer_end;
7623 unsigned int order;
7624 int ret = 0;
7625
7626 struct compact_control cc = {
7627 .nr_migratepages = 0,
7628 .order = -1,
7629 .zone = page_zone(pfn_to_page(start)),
7630 .mode = MIGRATE_SYNC,
7631 .ignore_skip_hint = true,
7632 .no_set_skip_hint = true,
7633 .gfp_mask = current_gfp_context(gfp_mask),
7634 };
7635 INIT_LIST_HEAD(&cc.migratepages);
7636
7637 /*
7638 * What we do here is we mark all pageblocks in range as
7639 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7640 * have different sizes, and due to the way page allocator
7641 * work, we align the range to biggest of the two pages so
7642 * that page allocator won't try to merge buddies from
7643 * different pageblocks and change MIGRATE_ISOLATE to some
7644 * other migration type.
7645 *
7646 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7647 * migrate the pages from an unaligned range (ie. pages that
7648 * we are interested in). This will put all the pages in
7649 * range back to page allocator as MIGRATE_ISOLATE.
7650 *
7651 * When this is done, we take the pages in range from page
7652 * allocator removing them from the buddy system. This way
7653 * page allocator will never consider using them.
7654 *
7655 * This lets us mark the pageblocks back as
7656 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7657 * aligned range but not in the unaligned, original range are
7658 * put back to page allocator so that buddy can use them.
7659 */
7660
7661 ret = start_isolate_page_range(pfn_max_align_down(start),
7662 pfn_max_align_up(end), migratetype,
7663 false);
7664 if (ret)
7665 return ret;
7666
7667 /*
7668 * In case of -EBUSY, we'd like to know which page causes problem.
7669 * So, just fall through. test_pages_isolated() has a tracepoint
7670 * which will report the busy page.
7671 *
7672 * It is possible that busy pages could become available before
7673 * the call to test_pages_isolated, and the range will actually be
7674 * allocated. So, if we fall through be sure to clear ret so that
7675 * -EBUSY is not accidentally used or returned to caller.
7676 */
7677 ret = __alloc_contig_migrate_range(&cc, start, end);
7678 if (ret && ret != -EBUSY)
7679 goto done;
7680 ret =0;
7681
7682 /*
7683 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7684 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7685 * more, all pages in [start, end) are free in page allocator.
7686 * What we are going to do is to allocate all pages from
7687 * [start, end) (that is remove them from page allocator).
7688 *
7689 * The only problem is that pages at the beginning and at the
7690 * end of interesting range may be not aligned with pages that
7691 * page allocator holds, ie. they can be part of higher order
7692 * pages. Because of this, we reserve the bigger range and
7693 * once this is done free the pages we are not interested in.
7694 *
7695 * We don't have to hold zone->lock here because the pages are
7696 * isolated thus they won't get removed from buddy.
7697 */
7698
7699 lru_add_drain_all();
7700 drain_all_pages(cc.zone);
7701
7702 order = 0;
7703 outer_start = start;
7704 while (!PageBuddy(pfn_to_page(outer_start))) {
7705 if (++order >= MAX_ORDER) {
7706 outer_start = start;
7707 break;
7708 }
7709 outer_start &= ~0UL << order;
7710 }
7711
7712 if (outer_start != start) {
7713 order = page_order(pfn_to_page(outer_start));
7714
7715 /*
7716 * outer_start page could be small order buddy page and
7717 * it doesn't include start page. Adjust outer_start
7718 * in this case to report failed page properly
7719 * on tracepoint in test_pages_isolated()
7720 */
7721 if (outer_start + (1UL << order) <= start)
7722 outer_start = start;
7723 }
7724
7725 /* Make sure the range is really isolated. */
7726 if (test_pages_isolated(outer_start, end, false)) {
7727 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7728 __func__, outer_start, end);
7729 ret = -EBUSY;
7730 goto done;
7731 }
7732
7733 /* Grab isolated pages from freelists. */
7734 outer_end = isolate_freepages_range(&cc, outer_start, end);
7735 if (!outer_end) {
7736 ret = -EBUSY;
7737 goto done;
7738 }
7739
7740 /* Free head and tail (if any) */
7741 if (start != outer_start)
7742 free_contig_range(outer_start, start - outer_start);
7743 if (end != outer_end)
7744 free_contig_range(end, outer_end - end);
7745
7746 done:
7747 undo_isolate_page_range(pfn_max_align_down(start),
7748 pfn_max_align_up(end), migratetype);
7749 return ret;
7750 }
7751
7752 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7753 {
7754 unsigned int count = 0;
7755
7756 for (; nr_pages--; pfn++) {
7757 struct page *page = pfn_to_page(pfn);
7758
7759 count += page_count(page) != 1;
7760 __free_page(page);
7761 }
7762 WARN(count != 0, "%d pages are still in use!\n", count);
7763 }
7764 #endif
7765
7766 #ifdef CONFIG_MEMORY_HOTPLUG
7767 /*
7768 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7769 * page high values need to be recalulated.
7770 */
7771 void __meminit zone_pcp_update(struct zone *zone)
7772 {
7773 unsigned cpu;
7774 mutex_lock(&pcp_batch_high_lock);
7775 for_each_possible_cpu(cpu)
7776 pageset_set_high_and_batch(zone,
7777 per_cpu_ptr(zone->pageset, cpu));
7778 mutex_unlock(&pcp_batch_high_lock);
7779 }
7780 #endif
7781
7782 void zone_pcp_reset(struct zone *zone)
7783 {
7784 unsigned long flags;
7785 int cpu;
7786 struct per_cpu_pageset *pset;
7787
7788 /* avoid races with drain_pages() */
7789 local_irq_save(flags);
7790 if (zone->pageset != &boot_pageset) {
7791 for_each_online_cpu(cpu) {
7792 pset = per_cpu_ptr(zone->pageset, cpu);
7793 drain_zonestat(zone, pset);
7794 }
7795 free_percpu(zone->pageset);
7796 zone->pageset = &boot_pageset;
7797 }
7798 local_irq_restore(flags);
7799 }
7800
7801 #ifdef CONFIG_MEMORY_HOTREMOVE
7802 /*
7803 * All pages in the range must be in a single zone and isolated
7804 * before calling this.
7805 */
7806 void
7807 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7808 {
7809 struct page *page;
7810 struct zone *zone;
7811 unsigned int order, i;
7812 unsigned long pfn;
7813 unsigned long flags;
7814 /* find the first valid pfn */
7815 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7816 if (pfn_valid(pfn))
7817 break;
7818 if (pfn == end_pfn)
7819 return;
7820 offline_mem_sections(pfn, end_pfn);
7821 zone = page_zone(pfn_to_page(pfn));
7822 spin_lock_irqsave(&zone->lock, flags);
7823 pfn = start_pfn;
7824 while (pfn < end_pfn) {
7825 if (!pfn_valid(pfn)) {
7826 pfn++;
7827 continue;
7828 }
7829 page = pfn_to_page(pfn);
7830 /*
7831 * The HWPoisoned page may be not in buddy system, and
7832 * page_count() is not 0.
7833 */
7834 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7835 pfn++;
7836 SetPageReserved(page);
7837 continue;
7838 }
7839
7840 BUG_ON(page_count(page));
7841 BUG_ON(!PageBuddy(page));
7842 order = page_order(page);
7843 #ifdef CONFIG_DEBUG_VM
7844 pr_info("remove from free list %lx %d %lx\n",
7845 pfn, 1 << order, end_pfn);
7846 #endif
7847 list_del(&page->lru);
7848 rmv_page_order(page);
7849 zone->free_area[order].nr_free--;
7850 for (i = 0; i < (1 << order); i++)
7851 SetPageReserved((page+i));
7852 pfn += (1 << order);
7853 }
7854 spin_unlock_irqrestore(&zone->lock, flags);
7855 }
7856 #endif
7857
7858 bool is_free_buddy_page(struct page *page)
7859 {
7860 struct zone *zone = page_zone(page);
7861 unsigned long pfn = page_to_pfn(page);
7862 unsigned long flags;
7863 unsigned int order;
7864
7865 spin_lock_irqsave(&zone->lock, flags);
7866 for (order = 0; order < MAX_ORDER; order++) {
7867 struct page *page_head = page - (pfn & ((1 << order) - 1));
7868
7869 if (PageBuddy(page_head) && page_order(page_head) >= order)
7870 break;
7871 }
7872 spin_unlock_irqrestore(&zone->lock, flags);
7873
7874 return order < MAX_ORDER;
7875 }