]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
net: rtnetlink: prevent underflows in do_setvfinfo()
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <xen/xen.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76
77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78 static DEFINE_MUTEX(pcp_batch_high_lock);
79 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80
81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82 DEFINE_PER_CPU(int, numa_node);
83 EXPORT_PER_CPU_SYMBOL(numa_node);
84 #endif
85
86 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
87
88 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 /*
90 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
91 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
92 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
93 * defined in <linux/topology.h>.
94 */
95 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
96 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
97 int _node_numa_mem_[MAX_NUMNODES];
98 #endif
99
100 /* work_structs for global per-cpu drains */
101 DEFINE_MUTEX(pcpu_drain_mutex);
102 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
103
104 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
105 volatile unsigned long latent_entropy __latent_entropy;
106 EXPORT_SYMBOL(latent_entropy);
107 #endif
108
109 /*
110 * Array of node states.
111 */
112 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
113 [N_POSSIBLE] = NODE_MASK_ALL,
114 [N_ONLINE] = { { [0] = 1UL } },
115 #ifndef CONFIG_NUMA
116 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
117 #ifdef CONFIG_HIGHMEM
118 [N_HIGH_MEMORY] = { { [0] = 1UL } },
119 #endif
120 [N_MEMORY] = { { [0] = 1UL } },
121 [N_CPU] = { { [0] = 1UL } },
122 #endif /* NUMA */
123 };
124 EXPORT_SYMBOL(node_states);
125
126 /* Protect totalram_pages and zone->managed_pages */
127 static DEFINE_SPINLOCK(managed_page_count_lock);
128
129 unsigned long totalram_pages __read_mostly;
130 unsigned long totalreserve_pages __read_mostly;
131 unsigned long totalcma_pages __read_mostly;
132
133 int percpu_pagelist_fraction;
134 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
135
136 /*
137 * A cached value of the page's pageblock's migratetype, used when the page is
138 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
139 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
140 * Also the migratetype set in the page does not necessarily match the pcplist
141 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
142 * other index - this ensures that it will be put on the correct CMA freelist.
143 */
144 static inline int get_pcppage_migratetype(struct page *page)
145 {
146 return page->index;
147 }
148
149 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
150 {
151 page->index = migratetype;
152 }
153
154 #ifdef CONFIG_PM_SLEEP
155 /*
156 * The following functions are used by the suspend/hibernate code to temporarily
157 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
158 * while devices are suspended. To avoid races with the suspend/hibernate code,
159 * they should always be called with pm_mutex held (gfp_allowed_mask also should
160 * only be modified with pm_mutex held, unless the suspend/hibernate code is
161 * guaranteed not to run in parallel with that modification).
162 */
163
164 static gfp_t saved_gfp_mask;
165
166 void pm_restore_gfp_mask(void)
167 {
168 WARN_ON(!mutex_is_locked(&pm_mutex));
169 if (saved_gfp_mask) {
170 gfp_allowed_mask = saved_gfp_mask;
171 saved_gfp_mask = 0;
172 }
173 }
174
175 void pm_restrict_gfp_mask(void)
176 {
177 WARN_ON(!mutex_is_locked(&pm_mutex));
178 WARN_ON(saved_gfp_mask);
179 saved_gfp_mask = gfp_allowed_mask;
180 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181 }
182
183 bool pm_suspended_storage(void)
184 {
185 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 return false;
187 return true;
188 }
189 #endif /* CONFIG_PM_SLEEP */
190
191 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192 unsigned int pageblock_order __read_mostly;
193 #endif
194
195 static void __free_pages_ok(struct page *page, unsigned int order);
196
197 /*
198 * results with 256, 32 in the lowmem_reserve sysctl:
199 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
200 * 1G machine -> (16M dma, 784M normal, 224M high)
201 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
202 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
203 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 *
205 * TBD: should special case ZONE_DMA32 machines here - in those we normally
206 * don't need any ZONE_NORMAL reservation
207 */
208 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
209 #ifdef CONFIG_ZONE_DMA
210 256,
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
213 256,
214 #endif
215 #ifdef CONFIG_HIGHMEM
216 32,
217 #endif
218 32,
219 };
220
221 EXPORT_SYMBOL(totalram_pages);
222
223 static char * const zone_names[MAX_NR_ZONES] = {
224 #ifdef CONFIG_ZONE_DMA
225 "DMA",
226 #endif
227 #ifdef CONFIG_ZONE_DMA32
228 "DMA32",
229 #endif
230 "Normal",
231 #ifdef CONFIG_HIGHMEM
232 "HighMem",
233 #endif
234 "Movable",
235 #ifdef CONFIG_ZONE_DEVICE
236 "Device",
237 #endif
238 };
239
240 char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245 #ifdef CONFIG_CMA
246 "CMA",
247 #endif
248 #ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250 #endif
251 };
252
253 compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256 #ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258 #endif
259 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261 #endif
262 };
263
264 int min_free_kbytes = 1024;
265 int user_min_free_kbytes = -1;
266 int watermark_scale_factor = 10;
267
268 static unsigned long __meminitdata nr_kernel_pages;
269 static unsigned long __meminitdata nr_all_pages;
270 static unsigned long __meminitdata dma_reserve;
271
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
274 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
275 static unsigned long __initdata required_kernelcore;
276 static unsigned long __initdata required_movablecore;
277 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
278 static bool mirrored_kernelcore;
279
280 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
281 int movable_zone;
282 EXPORT_SYMBOL(movable_zone);
283 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
284
285 #if MAX_NUMNODES > 1
286 int nr_node_ids __read_mostly = MAX_NUMNODES;
287 int nr_online_nodes __read_mostly = 1;
288 EXPORT_SYMBOL(nr_node_ids);
289 EXPORT_SYMBOL(nr_online_nodes);
290 #endif
291
292 int page_group_by_mobility_disabled __read_mostly;
293
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295
296 /*
297 * Determine how many pages need to be initialized durig early boot
298 * (non-deferred initialization).
299 * The value of first_deferred_pfn will be set later, once non-deferred pages
300 * are initialized, but for now set it ULONG_MAX.
301 */
302 static inline void reset_deferred_meminit(pg_data_t *pgdat)
303 {
304 phys_addr_t start_addr, end_addr;
305 unsigned long max_pgcnt;
306 unsigned long reserved;
307
308 /*
309 * Initialise at least 2G of a node but also take into account that
310 * two large system hashes that can take up 1GB for 0.25TB/node.
311 */
312 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
313 (pgdat->node_spanned_pages >> 8));
314
315 /*
316 * Compensate the all the memblock reservations (e.g. crash kernel)
317 * from the initial estimation to make sure we will initialize enough
318 * memory to boot.
319 */
320 start_addr = PFN_PHYS(pgdat->node_start_pfn);
321 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
322 reserved = memblock_reserved_memory_within(start_addr, end_addr);
323 max_pgcnt += PHYS_PFN(reserved);
324
325 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
326 pgdat->first_deferred_pfn = ULONG_MAX;
327 }
328
329 /* Returns true if the struct page for the pfn is uninitialised */
330 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
331 {
332 int nid = early_pfn_to_nid(pfn);
333
334 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
335 return true;
336
337 return false;
338 }
339
340 /*
341 * Returns false when the remaining initialisation should be deferred until
342 * later in the boot cycle when it can be parallelised.
343 */
344 static inline bool update_defer_init(pg_data_t *pgdat,
345 unsigned long pfn, unsigned long zone_end,
346 unsigned long *nr_initialised)
347 {
348 /* Always populate low zones for address-contrained allocations */
349 if (zone_end < pgdat_end_pfn(pgdat))
350 return true;
351 /* Xen PV domains need page structures early */
352 if (xen_pv_domain())
353 return true;
354 (*nr_initialised)++;
355 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
356 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
357 pgdat->first_deferred_pfn = pfn;
358 return false;
359 }
360
361 return true;
362 }
363 #else
364 static inline void reset_deferred_meminit(pg_data_t *pgdat)
365 {
366 }
367
368 static inline bool early_page_uninitialised(unsigned long pfn)
369 {
370 return false;
371 }
372
373 static inline bool update_defer_init(pg_data_t *pgdat,
374 unsigned long pfn, unsigned long zone_end,
375 unsigned long *nr_initialised)
376 {
377 return true;
378 }
379 #endif
380
381 /* Return a pointer to the bitmap storing bits affecting a block of pages */
382 static inline unsigned long *get_pageblock_bitmap(struct page *page,
383 unsigned long pfn)
384 {
385 #ifdef CONFIG_SPARSEMEM
386 return __pfn_to_section(pfn)->pageblock_flags;
387 #else
388 return page_zone(page)->pageblock_flags;
389 #endif /* CONFIG_SPARSEMEM */
390 }
391
392 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
393 {
394 #ifdef CONFIG_SPARSEMEM
395 pfn &= (PAGES_PER_SECTION-1);
396 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
397 #else
398 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
399 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
400 #endif /* CONFIG_SPARSEMEM */
401 }
402
403 /**
404 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
405 * @page: The page within the block of interest
406 * @pfn: The target page frame number
407 * @end_bitidx: The last bit of interest to retrieve
408 * @mask: mask of bits that the caller is interested in
409 *
410 * Return: pageblock_bits flags
411 */
412 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
413 unsigned long pfn,
414 unsigned long end_bitidx,
415 unsigned long mask)
416 {
417 unsigned long *bitmap;
418 unsigned long bitidx, word_bitidx;
419 unsigned long word;
420
421 bitmap = get_pageblock_bitmap(page, pfn);
422 bitidx = pfn_to_bitidx(page, pfn);
423 word_bitidx = bitidx / BITS_PER_LONG;
424 bitidx &= (BITS_PER_LONG-1);
425
426 word = bitmap[word_bitidx];
427 bitidx += end_bitidx;
428 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
429 }
430
431 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
432 unsigned long end_bitidx,
433 unsigned long mask)
434 {
435 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
436 }
437
438 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
439 {
440 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
441 }
442
443 /**
444 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
445 * @page: The page within the block of interest
446 * @flags: The flags to set
447 * @pfn: The target page frame number
448 * @end_bitidx: The last bit of interest
449 * @mask: mask of bits that the caller is interested in
450 */
451 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
452 unsigned long pfn,
453 unsigned long end_bitidx,
454 unsigned long mask)
455 {
456 unsigned long *bitmap;
457 unsigned long bitidx, word_bitidx;
458 unsigned long old_word, word;
459
460 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
461
462 bitmap = get_pageblock_bitmap(page, pfn);
463 bitidx = pfn_to_bitidx(page, pfn);
464 word_bitidx = bitidx / BITS_PER_LONG;
465 bitidx &= (BITS_PER_LONG-1);
466
467 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
468
469 bitidx += end_bitidx;
470 mask <<= (BITS_PER_LONG - bitidx - 1);
471 flags <<= (BITS_PER_LONG - bitidx - 1);
472
473 word = READ_ONCE(bitmap[word_bitidx]);
474 for (;;) {
475 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
476 if (word == old_word)
477 break;
478 word = old_word;
479 }
480 }
481
482 void set_pageblock_migratetype(struct page *page, int migratetype)
483 {
484 if (unlikely(page_group_by_mobility_disabled &&
485 migratetype < MIGRATE_PCPTYPES))
486 migratetype = MIGRATE_UNMOVABLE;
487
488 set_pageblock_flags_group(page, (unsigned long)migratetype,
489 PB_migrate, PB_migrate_end);
490 }
491
492 #ifdef CONFIG_DEBUG_VM
493 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
494 {
495 int ret = 0;
496 unsigned seq;
497 unsigned long pfn = page_to_pfn(page);
498 unsigned long sp, start_pfn;
499
500 do {
501 seq = zone_span_seqbegin(zone);
502 start_pfn = zone->zone_start_pfn;
503 sp = zone->spanned_pages;
504 if (!zone_spans_pfn(zone, pfn))
505 ret = 1;
506 } while (zone_span_seqretry(zone, seq));
507
508 if (ret)
509 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
510 pfn, zone_to_nid(zone), zone->name,
511 start_pfn, start_pfn + sp);
512
513 return ret;
514 }
515
516 static int page_is_consistent(struct zone *zone, struct page *page)
517 {
518 if (!pfn_valid_within(page_to_pfn(page)))
519 return 0;
520 if (zone != page_zone(page))
521 return 0;
522
523 return 1;
524 }
525 /*
526 * Temporary debugging check for pages not lying within a given zone.
527 */
528 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
529 {
530 if (page_outside_zone_boundaries(zone, page))
531 return 1;
532 if (!page_is_consistent(zone, page))
533 return 1;
534
535 return 0;
536 }
537 #else
538 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
539 {
540 return 0;
541 }
542 #endif
543
544 static void bad_page(struct page *page, const char *reason,
545 unsigned long bad_flags)
546 {
547 static unsigned long resume;
548 static unsigned long nr_shown;
549 static unsigned long nr_unshown;
550
551 /*
552 * Allow a burst of 60 reports, then keep quiet for that minute;
553 * or allow a steady drip of one report per second.
554 */
555 if (nr_shown == 60) {
556 if (time_before(jiffies, resume)) {
557 nr_unshown++;
558 goto out;
559 }
560 if (nr_unshown) {
561 pr_alert(
562 "BUG: Bad page state: %lu messages suppressed\n",
563 nr_unshown);
564 nr_unshown = 0;
565 }
566 nr_shown = 0;
567 }
568 if (nr_shown++ == 0)
569 resume = jiffies + 60 * HZ;
570
571 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
572 current->comm, page_to_pfn(page));
573 __dump_page(page, reason);
574 bad_flags &= page->flags;
575 if (bad_flags)
576 pr_alert("bad because of flags: %#lx(%pGp)\n",
577 bad_flags, &bad_flags);
578 dump_page_owner(page);
579
580 print_modules();
581 dump_stack();
582 out:
583 /* Leave bad fields for debug, except PageBuddy could make trouble */
584 page_mapcount_reset(page); /* remove PageBuddy */
585 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
586 }
587
588 /*
589 * Higher-order pages are called "compound pages". They are structured thusly:
590 *
591 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
592 *
593 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
594 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
595 *
596 * The first tail page's ->compound_dtor holds the offset in array of compound
597 * page destructors. See compound_page_dtors.
598 *
599 * The first tail page's ->compound_order holds the order of allocation.
600 * This usage means that zero-order pages may not be compound.
601 */
602
603 void free_compound_page(struct page *page)
604 {
605 __free_pages_ok(page, compound_order(page));
606 }
607
608 void prep_compound_page(struct page *page, unsigned int order)
609 {
610 int i;
611 int nr_pages = 1 << order;
612
613 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
614 set_compound_order(page, order);
615 __SetPageHead(page);
616 for (i = 1; i < nr_pages; i++) {
617 struct page *p = page + i;
618 set_page_count(p, 0);
619 p->mapping = TAIL_MAPPING;
620 set_compound_head(p, page);
621 }
622 atomic_set(compound_mapcount_ptr(page), -1);
623 }
624
625 #ifdef CONFIG_DEBUG_PAGEALLOC
626 unsigned int _debug_guardpage_minorder;
627 bool _debug_pagealloc_enabled __read_mostly
628 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
629 EXPORT_SYMBOL(_debug_pagealloc_enabled);
630 bool _debug_guardpage_enabled __read_mostly;
631
632 static int __init early_debug_pagealloc(char *buf)
633 {
634 if (!buf)
635 return -EINVAL;
636 return kstrtobool(buf, &_debug_pagealloc_enabled);
637 }
638 early_param("debug_pagealloc", early_debug_pagealloc);
639
640 static bool need_debug_guardpage(void)
641 {
642 /* If we don't use debug_pagealloc, we don't need guard page */
643 if (!debug_pagealloc_enabled())
644 return false;
645
646 if (!debug_guardpage_minorder())
647 return false;
648
649 return true;
650 }
651
652 static void init_debug_guardpage(void)
653 {
654 if (!debug_pagealloc_enabled())
655 return;
656
657 if (!debug_guardpage_minorder())
658 return;
659
660 _debug_guardpage_enabled = true;
661 }
662
663 struct page_ext_operations debug_guardpage_ops = {
664 .need = need_debug_guardpage,
665 .init = init_debug_guardpage,
666 };
667
668 static int __init debug_guardpage_minorder_setup(char *buf)
669 {
670 unsigned long res;
671
672 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
673 pr_err("Bad debug_guardpage_minorder value\n");
674 return 0;
675 }
676 _debug_guardpage_minorder = res;
677 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
678 return 0;
679 }
680 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
681
682 static inline bool set_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype)
684 {
685 struct page_ext *page_ext;
686
687 if (!debug_guardpage_enabled())
688 return false;
689
690 if (order >= debug_guardpage_minorder())
691 return false;
692
693 page_ext = lookup_page_ext(page);
694 if (unlikely(!page_ext))
695 return false;
696
697 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
698
699 INIT_LIST_HEAD(&page->lru);
700 set_page_private(page, order);
701 /* Guard pages are not available for any usage */
702 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
703
704 return true;
705 }
706
707 static inline void clear_page_guard(struct zone *zone, struct page *page,
708 unsigned int order, int migratetype)
709 {
710 struct page_ext *page_ext;
711
712 if (!debug_guardpage_enabled())
713 return;
714
715 page_ext = lookup_page_ext(page);
716 if (unlikely(!page_ext))
717 return;
718
719 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
720
721 set_page_private(page, 0);
722 if (!is_migrate_isolate(migratetype))
723 __mod_zone_freepage_state(zone, (1 << order), migratetype);
724 }
725 #else
726 struct page_ext_operations debug_guardpage_ops;
727 static inline bool set_page_guard(struct zone *zone, struct page *page,
728 unsigned int order, int migratetype) { return false; }
729 static inline void clear_page_guard(struct zone *zone, struct page *page,
730 unsigned int order, int migratetype) {}
731 #endif
732
733 static inline void set_page_order(struct page *page, unsigned int order)
734 {
735 set_page_private(page, order);
736 __SetPageBuddy(page);
737 }
738
739 static inline void rmv_page_order(struct page *page)
740 {
741 __ClearPageBuddy(page);
742 set_page_private(page, 0);
743 }
744
745 /*
746 * This function checks whether a page is free && is the buddy
747 * we can do coalesce a page and its buddy if
748 * (a) the buddy is not in a hole (check before calling!) &&
749 * (b) the buddy is in the buddy system &&
750 * (c) a page and its buddy have the same order &&
751 * (d) a page and its buddy are in the same zone.
752 *
753 * For recording whether a page is in the buddy system, we set ->_mapcount
754 * PAGE_BUDDY_MAPCOUNT_VALUE.
755 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
756 * serialized by zone->lock.
757 *
758 * For recording page's order, we use page_private(page).
759 */
760 static inline int page_is_buddy(struct page *page, struct page *buddy,
761 unsigned int order)
762 {
763 if (page_is_guard(buddy) && page_order(buddy) == order) {
764 if (page_zone_id(page) != page_zone_id(buddy))
765 return 0;
766
767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768
769 return 1;
770 }
771
772 if (PageBuddy(buddy) && page_order(buddy) == order) {
773 /*
774 * zone check is done late to avoid uselessly
775 * calculating zone/node ids for pages that could
776 * never merge.
777 */
778 if (page_zone_id(page) != page_zone_id(buddy))
779 return 0;
780
781 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
782
783 return 1;
784 }
785 return 0;
786 }
787
788 /*
789 * Freeing function for a buddy system allocator.
790 *
791 * The concept of a buddy system is to maintain direct-mapped table
792 * (containing bit values) for memory blocks of various "orders".
793 * The bottom level table contains the map for the smallest allocatable
794 * units of memory (here, pages), and each level above it describes
795 * pairs of units from the levels below, hence, "buddies".
796 * At a high level, all that happens here is marking the table entry
797 * at the bottom level available, and propagating the changes upward
798 * as necessary, plus some accounting needed to play nicely with other
799 * parts of the VM system.
800 * At each level, we keep a list of pages, which are heads of continuous
801 * free pages of length of (1 << order) and marked with _mapcount
802 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
803 * field.
804 * So when we are allocating or freeing one, we can derive the state of the
805 * other. That is, if we allocate a small block, and both were
806 * free, the remainder of the region must be split into blocks.
807 * If a block is freed, and its buddy is also free, then this
808 * triggers coalescing into a block of larger size.
809 *
810 * -- nyc
811 */
812
813 static inline void __free_one_page(struct page *page,
814 unsigned long pfn,
815 struct zone *zone, unsigned int order,
816 int migratetype)
817 {
818 unsigned long combined_pfn;
819 unsigned long uninitialized_var(buddy_pfn);
820 struct page *buddy;
821 unsigned int max_order;
822
823 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
824
825 VM_BUG_ON(!zone_is_initialized(zone));
826 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
827
828 VM_BUG_ON(migratetype == -1);
829 if (likely(!is_migrate_isolate(migratetype)))
830 __mod_zone_freepage_state(zone, 1 << order, migratetype);
831
832 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
833 VM_BUG_ON_PAGE(bad_range(zone, page), page);
834
835 continue_merging:
836 while (order < max_order - 1) {
837 buddy_pfn = __find_buddy_pfn(pfn, order);
838 buddy = page + (buddy_pfn - pfn);
839
840 if (!pfn_valid_within(buddy_pfn))
841 goto done_merging;
842 if (!page_is_buddy(page, buddy, order))
843 goto done_merging;
844 /*
845 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
846 * merge with it and move up one order.
847 */
848 if (page_is_guard(buddy)) {
849 clear_page_guard(zone, buddy, order, migratetype);
850 } else {
851 list_del(&buddy->lru);
852 zone->free_area[order].nr_free--;
853 rmv_page_order(buddy);
854 }
855 combined_pfn = buddy_pfn & pfn;
856 page = page + (combined_pfn - pfn);
857 pfn = combined_pfn;
858 order++;
859 }
860 if (max_order < MAX_ORDER) {
861 /* If we are here, it means order is >= pageblock_order.
862 * We want to prevent merge between freepages on isolate
863 * pageblock and normal pageblock. Without this, pageblock
864 * isolation could cause incorrect freepage or CMA accounting.
865 *
866 * We don't want to hit this code for the more frequent
867 * low-order merging.
868 */
869 if (unlikely(has_isolate_pageblock(zone))) {
870 int buddy_mt;
871
872 buddy_pfn = __find_buddy_pfn(pfn, order);
873 buddy = page + (buddy_pfn - pfn);
874 buddy_mt = get_pageblock_migratetype(buddy);
875
876 if (migratetype != buddy_mt
877 && (is_migrate_isolate(migratetype) ||
878 is_migrate_isolate(buddy_mt)))
879 goto done_merging;
880 }
881 max_order++;
882 goto continue_merging;
883 }
884
885 done_merging:
886 set_page_order(page, order);
887
888 /*
889 * If this is not the largest possible page, check if the buddy
890 * of the next-highest order is free. If it is, it's possible
891 * that pages are being freed that will coalesce soon. In case,
892 * that is happening, add the free page to the tail of the list
893 * so it's less likely to be used soon and more likely to be merged
894 * as a higher order page
895 */
896 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
897 struct page *higher_page, *higher_buddy;
898 combined_pfn = buddy_pfn & pfn;
899 higher_page = page + (combined_pfn - pfn);
900 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
901 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
902 if (pfn_valid_within(buddy_pfn) &&
903 page_is_buddy(higher_page, higher_buddy, order + 1)) {
904 list_add_tail(&page->lru,
905 &zone->free_area[order].free_list[migratetype]);
906 goto out;
907 }
908 }
909
910 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
911 out:
912 zone->free_area[order].nr_free++;
913 }
914
915 /*
916 * A bad page could be due to a number of fields. Instead of multiple branches,
917 * try and check multiple fields with one check. The caller must do a detailed
918 * check if necessary.
919 */
920 static inline bool page_expected_state(struct page *page,
921 unsigned long check_flags)
922 {
923 if (unlikely(atomic_read(&page->_mapcount) != -1))
924 return false;
925
926 if (unlikely((unsigned long)page->mapping |
927 page_ref_count(page) |
928 #ifdef CONFIG_MEMCG
929 (unsigned long)page->mem_cgroup |
930 #endif
931 (page->flags & check_flags)))
932 return false;
933
934 return true;
935 }
936
937 static void free_pages_check_bad(struct page *page)
938 {
939 const char *bad_reason;
940 unsigned long bad_flags;
941
942 bad_reason = NULL;
943 bad_flags = 0;
944
945 if (unlikely(atomic_read(&page->_mapcount) != -1))
946 bad_reason = "nonzero mapcount";
947 if (unlikely(page->mapping != NULL))
948 bad_reason = "non-NULL mapping";
949 if (unlikely(page_ref_count(page) != 0))
950 bad_reason = "nonzero _refcount";
951 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
952 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
953 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
954 }
955 #ifdef CONFIG_MEMCG
956 if (unlikely(page->mem_cgroup))
957 bad_reason = "page still charged to cgroup";
958 #endif
959 bad_page(page, bad_reason, bad_flags);
960 }
961
962 static inline int free_pages_check(struct page *page)
963 {
964 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
965 return 0;
966
967 /* Something has gone sideways, find it */
968 free_pages_check_bad(page);
969 return 1;
970 }
971
972 static int free_tail_pages_check(struct page *head_page, struct page *page)
973 {
974 int ret = 1;
975
976 /*
977 * We rely page->lru.next never has bit 0 set, unless the page
978 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
979 */
980 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
981
982 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
983 ret = 0;
984 goto out;
985 }
986 switch (page - head_page) {
987 case 1:
988 /* the first tail page: ->mapping is compound_mapcount() */
989 if (unlikely(compound_mapcount(page))) {
990 bad_page(page, "nonzero compound_mapcount", 0);
991 goto out;
992 }
993 break;
994 case 2:
995 /*
996 * the second tail page: ->mapping is
997 * page_deferred_list().next -- ignore value.
998 */
999 break;
1000 default:
1001 if (page->mapping != TAIL_MAPPING) {
1002 bad_page(page, "corrupted mapping in tail page", 0);
1003 goto out;
1004 }
1005 break;
1006 }
1007 if (unlikely(!PageTail(page))) {
1008 bad_page(page, "PageTail not set", 0);
1009 goto out;
1010 }
1011 if (unlikely(compound_head(page) != head_page)) {
1012 bad_page(page, "compound_head not consistent", 0);
1013 goto out;
1014 }
1015 ret = 0;
1016 out:
1017 page->mapping = NULL;
1018 clear_compound_head(page);
1019 return ret;
1020 }
1021
1022 static __always_inline bool free_pages_prepare(struct page *page,
1023 unsigned int order, bool check_free)
1024 {
1025 int bad = 0;
1026
1027 VM_BUG_ON_PAGE(PageTail(page), page);
1028
1029 trace_mm_page_free(page, order);
1030
1031 /*
1032 * Check tail pages before head page information is cleared to
1033 * avoid checking PageCompound for order-0 pages.
1034 */
1035 if (unlikely(order)) {
1036 bool compound = PageCompound(page);
1037 int i;
1038
1039 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1040
1041 if (compound)
1042 ClearPageDoubleMap(page);
1043 for (i = 1; i < (1 << order); i++) {
1044 if (compound)
1045 bad += free_tail_pages_check(page, page + i);
1046 if (unlikely(free_pages_check(page + i))) {
1047 bad++;
1048 continue;
1049 }
1050 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 }
1052 }
1053 if (PageMappingFlags(page))
1054 page->mapping = NULL;
1055 if (memcg_kmem_enabled() && PageKmemcg(page))
1056 memcg_kmem_uncharge(page, order);
1057 if (check_free)
1058 bad += free_pages_check(page);
1059 if (bad)
1060 return false;
1061
1062 page_cpupid_reset_last(page);
1063 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1064 reset_page_owner(page, order);
1065
1066 if (!PageHighMem(page)) {
1067 debug_check_no_locks_freed(page_address(page),
1068 PAGE_SIZE << order);
1069 debug_check_no_obj_freed(page_address(page),
1070 PAGE_SIZE << order);
1071 }
1072 arch_free_page(page, order);
1073 kernel_poison_pages(page, 1 << order, 0);
1074 kernel_map_pages(page, 1 << order, 0);
1075 kasan_free_pages(page, order);
1076
1077 return true;
1078 }
1079
1080 #ifdef CONFIG_DEBUG_VM
1081 static inline bool free_pcp_prepare(struct page *page)
1082 {
1083 return free_pages_prepare(page, 0, true);
1084 }
1085
1086 static inline bool bulkfree_pcp_prepare(struct page *page)
1087 {
1088 return false;
1089 }
1090 #else
1091 static bool free_pcp_prepare(struct page *page)
1092 {
1093 return free_pages_prepare(page, 0, false);
1094 }
1095
1096 static bool bulkfree_pcp_prepare(struct page *page)
1097 {
1098 return free_pages_check(page);
1099 }
1100 #endif /* CONFIG_DEBUG_VM */
1101
1102 /*
1103 * Frees a number of pages from the PCP lists
1104 * Assumes all pages on list are in same zone, and of same order.
1105 * count is the number of pages to free.
1106 *
1107 * If the zone was previously in an "all pages pinned" state then look to
1108 * see if this freeing clears that state.
1109 *
1110 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1111 * pinned" detection logic.
1112 */
1113 static void free_pcppages_bulk(struct zone *zone, int count,
1114 struct per_cpu_pages *pcp)
1115 {
1116 int migratetype = 0;
1117 int batch_free = 0;
1118 bool isolated_pageblocks;
1119
1120 spin_lock(&zone->lock);
1121 isolated_pageblocks = has_isolate_pageblock(zone);
1122
1123 while (count) {
1124 struct page *page;
1125 struct list_head *list;
1126
1127 /*
1128 * Remove pages from lists in a round-robin fashion. A
1129 * batch_free count is maintained that is incremented when an
1130 * empty list is encountered. This is so more pages are freed
1131 * off fuller lists instead of spinning excessively around empty
1132 * lists
1133 */
1134 do {
1135 batch_free++;
1136 if (++migratetype == MIGRATE_PCPTYPES)
1137 migratetype = 0;
1138 list = &pcp->lists[migratetype];
1139 } while (list_empty(list));
1140
1141 /* This is the only non-empty list. Free them all. */
1142 if (batch_free == MIGRATE_PCPTYPES)
1143 batch_free = count;
1144
1145 do {
1146 int mt; /* migratetype of the to-be-freed page */
1147
1148 page = list_last_entry(list, struct page, lru);
1149 /* must delete as __free_one_page list manipulates */
1150 list_del(&page->lru);
1151
1152 mt = get_pcppage_migratetype(page);
1153 /* MIGRATE_ISOLATE page should not go to pcplists */
1154 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1155 /* Pageblock could have been isolated meanwhile */
1156 if (unlikely(isolated_pageblocks))
1157 mt = get_pageblock_migratetype(page);
1158
1159 if (bulkfree_pcp_prepare(page))
1160 continue;
1161
1162 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1163 trace_mm_page_pcpu_drain(page, 0, mt);
1164 } while (--count && --batch_free && !list_empty(list));
1165 }
1166 spin_unlock(&zone->lock);
1167 }
1168
1169 static void free_one_page(struct zone *zone,
1170 struct page *page, unsigned long pfn,
1171 unsigned int order,
1172 int migratetype)
1173 {
1174 spin_lock(&zone->lock);
1175 if (unlikely(has_isolate_pageblock(zone) ||
1176 is_migrate_isolate(migratetype))) {
1177 migratetype = get_pfnblock_migratetype(page, pfn);
1178 }
1179 __free_one_page(page, pfn, zone, order, migratetype);
1180 spin_unlock(&zone->lock);
1181 }
1182
1183 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1184 unsigned long zone, int nid, bool zero)
1185 {
1186 if (zero)
1187 mm_zero_struct_page(page);
1188 set_page_links(page, zone, nid, pfn);
1189 init_page_count(page);
1190 page_mapcount_reset(page);
1191 page_cpupid_reset_last(page);
1192
1193 INIT_LIST_HEAD(&page->lru);
1194 #ifdef WANT_PAGE_VIRTUAL
1195 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1196 if (!is_highmem_idx(zone))
1197 set_page_address(page, __va(pfn << PAGE_SHIFT));
1198 #endif
1199 }
1200
1201 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1202 int nid, bool zero)
1203 {
1204 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero);
1205 }
1206
1207 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1208 static void __meminit init_reserved_page(unsigned long pfn)
1209 {
1210 pg_data_t *pgdat;
1211 int nid, zid;
1212
1213 if (!early_page_uninitialised(pfn))
1214 return;
1215
1216 nid = early_pfn_to_nid(pfn);
1217 pgdat = NODE_DATA(nid);
1218
1219 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1220 struct zone *zone = &pgdat->node_zones[zid];
1221
1222 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1223 break;
1224 }
1225 __init_single_pfn(pfn, zid, nid, true);
1226 }
1227 #else
1228 static inline void init_reserved_page(unsigned long pfn)
1229 {
1230 }
1231 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1232
1233 /*
1234 * Initialised pages do not have PageReserved set. This function is
1235 * called for each range allocated by the bootmem allocator and
1236 * marks the pages PageReserved. The remaining valid pages are later
1237 * sent to the buddy page allocator.
1238 */
1239 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1240 {
1241 unsigned long start_pfn = PFN_DOWN(start);
1242 unsigned long end_pfn = PFN_UP(end);
1243
1244 for (; start_pfn < end_pfn; start_pfn++) {
1245 if (pfn_valid(start_pfn)) {
1246 struct page *page = pfn_to_page(start_pfn);
1247
1248 init_reserved_page(start_pfn);
1249
1250 /* Avoid false-positive PageTail() */
1251 INIT_LIST_HEAD(&page->lru);
1252
1253 SetPageReserved(page);
1254 }
1255 }
1256 }
1257
1258 static void __free_pages_ok(struct page *page, unsigned int order)
1259 {
1260 unsigned long flags;
1261 int migratetype;
1262 unsigned long pfn = page_to_pfn(page);
1263
1264 if (!free_pages_prepare(page, order, true))
1265 return;
1266
1267 migratetype = get_pfnblock_migratetype(page, pfn);
1268 local_irq_save(flags);
1269 __count_vm_events(PGFREE, 1 << order);
1270 free_one_page(page_zone(page), page, pfn, order, migratetype);
1271 local_irq_restore(flags);
1272 }
1273
1274 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1275 {
1276 unsigned int nr_pages = 1 << order;
1277 struct page *p = page;
1278 unsigned int loop;
1279
1280 prefetchw(p);
1281 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1282 prefetchw(p + 1);
1283 __ClearPageReserved(p);
1284 set_page_count(p, 0);
1285 }
1286 __ClearPageReserved(p);
1287 set_page_count(p, 0);
1288
1289 page_zone(page)->managed_pages += nr_pages;
1290 set_page_refcounted(page);
1291 __free_pages(page, order);
1292 }
1293
1294 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1295 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1296
1297 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1298
1299 int __meminit early_pfn_to_nid(unsigned long pfn)
1300 {
1301 static DEFINE_SPINLOCK(early_pfn_lock);
1302 int nid;
1303
1304 spin_lock(&early_pfn_lock);
1305 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1306 if (nid < 0)
1307 nid = first_online_node;
1308 spin_unlock(&early_pfn_lock);
1309
1310 return nid;
1311 }
1312 #endif
1313
1314 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1315 static inline bool __meminit __maybe_unused
1316 meminit_pfn_in_nid(unsigned long pfn, int node,
1317 struct mminit_pfnnid_cache *state)
1318 {
1319 int nid;
1320
1321 nid = __early_pfn_to_nid(pfn, state);
1322 if (nid >= 0 && nid != node)
1323 return false;
1324 return true;
1325 }
1326
1327 /* Only safe to use early in boot when initialisation is single-threaded */
1328 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1329 {
1330 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1331 }
1332
1333 #else
1334
1335 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1336 {
1337 return true;
1338 }
1339 static inline bool __meminit __maybe_unused
1340 meminit_pfn_in_nid(unsigned long pfn, int node,
1341 struct mminit_pfnnid_cache *state)
1342 {
1343 return true;
1344 }
1345 #endif
1346
1347
1348 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1349 unsigned int order)
1350 {
1351 if (early_page_uninitialised(pfn))
1352 return;
1353 return __free_pages_boot_core(page, order);
1354 }
1355
1356 /*
1357 * Check that the whole (or subset of) a pageblock given by the interval of
1358 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1359 * with the migration of free compaction scanner. The scanners then need to
1360 * use only pfn_valid_within() check for arches that allow holes within
1361 * pageblocks.
1362 *
1363 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1364 *
1365 * It's possible on some configurations to have a setup like node0 node1 node0
1366 * i.e. it's possible that all pages within a zones range of pages do not
1367 * belong to a single zone. We assume that a border between node0 and node1
1368 * can occur within a single pageblock, but not a node0 node1 node0
1369 * interleaving within a single pageblock. It is therefore sufficient to check
1370 * the first and last page of a pageblock and avoid checking each individual
1371 * page in a pageblock.
1372 */
1373 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1374 unsigned long end_pfn, struct zone *zone)
1375 {
1376 struct page *start_page;
1377 struct page *end_page;
1378
1379 /* end_pfn is one past the range we are checking */
1380 end_pfn--;
1381
1382 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1383 return NULL;
1384
1385 start_page = pfn_to_online_page(start_pfn);
1386 if (!start_page)
1387 return NULL;
1388
1389 if (page_zone(start_page) != zone)
1390 return NULL;
1391
1392 end_page = pfn_to_page(end_pfn);
1393
1394 /* This gives a shorter code than deriving page_zone(end_page) */
1395 if (page_zone_id(start_page) != page_zone_id(end_page))
1396 return NULL;
1397
1398 return start_page;
1399 }
1400
1401 void set_zone_contiguous(struct zone *zone)
1402 {
1403 unsigned long block_start_pfn = zone->zone_start_pfn;
1404 unsigned long block_end_pfn;
1405
1406 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1407 for (; block_start_pfn < zone_end_pfn(zone);
1408 block_start_pfn = block_end_pfn,
1409 block_end_pfn += pageblock_nr_pages) {
1410
1411 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1412
1413 if (!__pageblock_pfn_to_page(block_start_pfn,
1414 block_end_pfn, zone))
1415 return;
1416 }
1417
1418 /* We confirm that there is no hole */
1419 zone->contiguous = true;
1420 }
1421
1422 void clear_zone_contiguous(struct zone *zone)
1423 {
1424 zone->contiguous = false;
1425 }
1426
1427 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1428 static void __init deferred_free_range(unsigned long pfn,
1429 unsigned long nr_pages)
1430 {
1431 struct page *page;
1432 unsigned long i;
1433
1434 if (!nr_pages)
1435 return;
1436
1437 page = pfn_to_page(pfn);
1438
1439 /* Free a large naturally-aligned chunk if possible */
1440 if (nr_pages == pageblock_nr_pages &&
1441 (pfn & (pageblock_nr_pages - 1)) == 0) {
1442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1443 __free_pages_boot_core(page, pageblock_order);
1444 return;
1445 }
1446
1447 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1448 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1449 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1450 __free_pages_boot_core(page, 0);
1451 }
1452 }
1453
1454 /* Completion tracking for deferred_init_memmap() threads */
1455 static atomic_t pgdat_init_n_undone __initdata;
1456 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1457
1458 static inline void __init pgdat_init_report_one_done(void)
1459 {
1460 if (atomic_dec_and_test(&pgdat_init_n_undone))
1461 complete(&pgdat_init_all_done_comp);
1462 }
1463
1464 /*
1465 * Helper for deferred_init_range, free the given range, reset the counters, and
1466 * return number of pages freed.
1467 */
1468 static inline unsigned long __init __def_free(unsigned long *nr_free,
1469 unsigned long *free_base_pfn,
1470 struct page **page)
1471 {
1472 unsigned long nr = *nr_free;
1473
1474 deferred_free_range(*free_base_pfn, nr);
1475 *free_base_pfn = 0;
1476 *nr_free = 0;
1477 *page = NULL;
1478
1479 return nr;
1480 }
1481
1482 static unsigned long __init deferred_init_range(int nid, int zid,
1483 unsigned long start_pfn,
1484 unsigned long end_pfn)
1485 {
1486 struct mminit_pfnnid_cache nid_init_state = { };
1487 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1488 unsigned long free_base_pfn = 0;
1489 unsigned long nr_pages = 0;
1490 unsigned long nr_free = 0;
1491 struct page *page = NULL;
1492 unsigned long pfn;
1493
1494 /*
1495 * First we check if pfn is valid on architectures where it is possible
1496 * to have holes within pageblock_nr_pages. On systems where it is not
1497 * possible, this function is optimized out.
1498 *
1499 * Then, we check if a current large page is valid by only checking the
1500 * validity of the head pfn.
1501 *
1502 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1503 * within a node: a pfn is between start and end of a node, but does not
1504 * belong to this memory node.
1505 *
1506 * Finally, we minimize pfn page lookups and scheduler checks by
1507 * performing it only once every pageblock_nr_pages.
1508 *
1509 * We do it in two loops: first we initialize struct page, than free to
1510 * buddy allocator, becuse while we are freeing pages we can access
1511 * pages that are ahead (computing buddy page in __free_one_page()).
1512 */
1513 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1514 if (!pfn_valid_within(pfn))
1515 continue;
1516 if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1517 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1518 if (page && (pfn & nr_pgmask))
1519 page++;
1520 else
1521 page = pfn_to_page(pfn);
1522 __init_single_page(page, pfn, zid, nid, true);
1523 cond_resched();
1524 }
1525 }
1526 }
1527
1528 page = NULL;
1529 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1530 if (!pfn_valid_within(pfn)) {
1531 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1532 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1533 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1534 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1535 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1536 } else if (page && (pfn & nr_pgmask)) {
1537 page++;
1538 nr_free++;
1539 } else {
1540 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1541 page = pfn_to_page(pfn);
1542 free_base_pfn = pfn;
1543 nr_free = 1;
1544 cond_resched();
1545 }
1546 }
1547 /* Free the last block of pages to allocator */
1548 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1549
1550 return nr_pages;
1551 }
1552
1553 /* Initialise remaining memory on a node */
1554 static int __init deferred_init_memmap(void *data)
1555 {
1556 pg_data_t *pgdat = data;
1557 int nid = pgdat->node_id;
1558 unsigned long start = jiffies;
1559 unsigned long nr_pages = 0;
1560 unsigned long spfn, epfn;
1561 phys_addr_t spa, epa;
1562 int zid;
1563 struct zone *zone;
1564 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1565 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1566 u64 i;
1567
1568 if (first_init_pfn == ULONG_MAX) {
1569 pgdat_init_report_one_done();
1570 return 0;
1571 }
1572
1573 /* Bind memory initialisation thread to a local node if possible */
1574 if (!cpumask_empty(cpumask))
1575 set_cpus_allowed_ptr(current, cpumask);
1576
1577 /* Sanity check boundaries */
1578 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1579 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1580 pgdat->first_deferred_pfn = ULONG_MAX;
1581
1582 /* Only the highest zone is deferred so find it */
1583 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1584 zone = pgdat->node_zones + zid;
1585 if (first_init_pfn < zone_end_pfn(zone))
1586 break;
1587 }
1588 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1589
1590 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1591 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1592 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1593 nr_pages += deferred_init_range(nid, zid, spfn, epfn);
1594 }
1595
1596 /* Sanity check that the next zone really is unpopulated */
1597 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1598
1599 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1600 jiffies_to_msecs(jiffies - start));
1601
1602 pgdat_init_report_one_done();
1603 return 0;
1604 }
1605 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1606
1607 void __init page_alloc_init_late(void)
1608 {
1609 struct zone *zone;
1610
1611 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1612 int nid;
1613
1614 /* There will be num_node_state(N_MEMORY) threads */
1615 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1616 for_each_node_state(nid, N_MEMORY) {
1617 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1618 }
1619
1620 /* Block until all are initialised */
1621 wait_for_completion(&pgdat_init_all_done_comp);
1622
1623 /*
1624 * The number of managed pages has changed due to the initialisation
1625 * so the pcpu batch and high limits needs to be updated or the limits
1626 * will be artificially small.
1627 */
1628 for_each_populated_zone(zone)
1629 zone_pcp_update(zone);
1630
1631 /* Reinit limits that are based on free pages after the kernel is up */
1632 files_maxfiles_init();
1633 #endif
1634 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1635 /* Discard memblock private memory */
1636 memblock_discard();
1637 #endif
1638
1639 for_each_populated_zone(zone)
1640 set_zone_contiguous(zone);
1641 }
1642
1643 #ifdef CONFIG_CMA
1644 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1645 void __init init_cma_reserved_pageblock(struct page *page)
1646 {
1647 unsigned i = pageblock_nr_pages;
1648 struct page *p = page;
1649
1650 do {
1651 __ClearPageReserved(p);
1652 set_page_count(p, 0);
1653 } while (++p, --i);
1654
1655 set_pageblock_migratetype(page, MIGRATE_CMA);
1656
1657 if (pageblock_order >= MAX_ORDER) {
1658 i = pageblock_nr_pages;
1659 p = page;
1660 do {
1661 set_page_refcounted(p);
1662 __free_pages(p, MAX_ORDER - 1);
1663 p += MAX_ORDER_NR_PAGES;
1664 } while (i -= MAX_ORDER_NR_PAGES);
1665 } else {
1666 set_page_refcounted(page);
1667 __free_pages(page, pageblock_order);
1668 }
1669
1670 adjust_managed_page_count(page, pageblock_nr_pages);
1671 }
1672 #endif
1673
1674 /*
1675 * The order of subdivision here is critical for the IO subsystem.
1676 * Please do not alter this order without good reasons and regression
1677 * testing. Specifically, as large blocks of memory are subdivided,
1678 * the order in which smaller blocks are delivered depends on the order
1679 * they're subdivided in this function. This is the primary factor
1680 * influencing the order in which pages are delivered to the IO
1681 * subsystem according to empirical testing, and this is also justified
1682 * by considering the behavior of a buddy system containing a single
1683 * large block of memory acted on by a series of small allocations.
1684 * This behavior is a critical factor in sglist merging's success.
1685 *
1686 * -- nyc
1687 */
1688 static inline void expand(struct zone *zone, struct page *page,
1689 int low, int high, struct free_area *area,
1690 int migratetype)
1691 {
1692 unsigned long size = 1 << high;
1693
1694 while (high > low) {
1695 area--;
1696 high--;
1697 size >>= 1;
1698 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1699
1700 /*
1701 * Mark as guard pages (or page), that will allow to
1702 * merge back to allocator when buddy will be freed.
1703 * Corresponding page table entries will not be touched,
1704 * pages will stay not present in virtual address space
1705 */
1706 if (set_page_guard(zone, &page[size], high, migratetype))
1707 continue;
1708
1709 list_add(&page[size].lru, &area->free_list[migratetype]);
1710 area->nr_free++;
1711 set_page_order(&page[size], high);
1712 }
1713 }
1714
1715 static void check_new_page_bad(struct page *page)
1716 {
1717 const char *bad_reason = NULL;
1718 unsigned long bad_flags = 0;
1719
1720 if (unlikely(atomic_read(&page->_mapcount) != -1))
1721 bad_reason = "nonzero mapcount";
1722 if (unlikely(page->mapping != NULL))
1723 bad_reason = "non-NULL mapping";
1724 if (unlikely(page_ref_count(page) != 0))
1725 bad_reason = "nonzero _count";
1726 if (unlikely(page->flags & __PG_HWPOISON)) {
1727 bad_reason = "HWPoisoned (hardware-corrupted)";
1728 bad_flags = __PG_HWPOISON;
1729 /* Don't complain about hwpoisoned pages */
1730 page_mapcount_reset(page); /* remove PageBuddy */
1731 return;
1732 }
1733 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1734 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1735 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1736 }
1737 #ifdef CONFIG_MEMCG
1738 if (unlikely(page->mem_cgroup))
1739 bad_reason = "page still charged to cgroup";
1740 #endif
1741 bad_page(page, bad_reason, bad_flags);
1742 }
1743
1744 /*
1745 * This page is about to be returned from the page allocator
1746 */
1747 static inline int check_new_page(struct page *page)
1748 {
1749 if (likely(page_expected_state(page,
1750 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1751 return 0;
1752
1753 check_new_page_bad(page);
1754 return 1;
1755 }
1756
1757 static inline bool free_pages_prezeroed(void)
1758 {
1759 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1760 page_poisoning_enabled();
1761 }
1762
1763 #ifdef CONFIG_DEBUG_VM
1764 static bool check_pcp_refill(struct page *page)
1765 {
1766 return false;
1767 }
1768
1769 static bool check_new_pcp(struct page *page)
1770 {
1771 return check_new_page(page);
1772 }
1773 #else
1774 static bool check_pcp_refill(struct page *page)
1775 {
1776 return check_new_page(page);
1777 }
1778 static bool check_new_pcp(struct page *page)
1779 {
1780 return false;
1781 }
1782 #endif /* CONFIG_DEBUG_VM */
1783
1784 static bool check_new_pages(struct page *page, unsigned int order)
1785 {
1786 int i;
1787 for (i = 0; i < (1 << order); i++) {
1788 struct page *p = page + i;
1789
1790 if (unlikely(check_new_page(p)))
1791 return true;
1792 }
1793
1794 return false;
1795 }
1796
1797 inline void post_alloc_hook(struct page *page, unsigned int order,
1798 gfp_t gfp_flags)
1799 {
1800 set_page_private(page, 0);
1801 set_page_refcounted(page);
1802
1803 arch_alloc_page(page, order);
1804 kernel_map_pages(page, 1 << order, 1);
1805 kasan_alloc_pages(page, order);
1806 kernel_poison_pages(page, 1 << order, 1);
1807 set_page_owner(page, order, gfp_flags);
1808 }
1809
1810 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1811 unsigned int alloc_flags)
1812 {
1813 int i;
1814
1815 post_alloc_hook(page, order, gfp_flags);
1816
1817 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1818 for (i = 0; i < (1 << order); i++)
1819 clear_highpage(page + i);
1820
1821 if (order && (gfp_flags & __GFP_COMP))
1822 prep_compound_page(page, order);
1823
1824 /*
1825 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1826 * allocate the page. The expectation is that the caller is taking
1827 * steps that will free more memory. The caller should avoid the page
1828 * being used for !PFMEMALLOC purposes.
1829 */
1830 if (alloc_flags & ALLOC_NO_WATERMARKS)
1831 set_page_pfmemalloc(page);
1832 else
1833 clear_page_pfmemalloc(page);
1834 }
1835
1836 /*
1837 * Go through the free lists for the given migratetype and remove
1838 * the smallest available page from the freelists
1839 */
1840 static __always_inline
1841 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1842 int migratetype)
1843 {
1844 unsigned int current_order;
1845 struct free_area *area;
1846 struct page *page;
1847
1848 /* Find a page of the appropriate size in the preferred list */
1849 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1850 area = &(zone->free_area[current_order]);
1851 page = list_first_entry_or_null(&area->free_list[migratetype],
1852 struct page, lru);
1853 if (!page)
1854 continue;
1855 list_del(&page->lru);
1856 rmv_page_order(page);
1857 area->nr_free--;
1858 expand(zone, page, order, current_order, area, migratetype);
1859 set_pcppage_migratetype(page, migratetype);
1860 return page;
1861 }
1862
1863 return NULL;
1864 }
1865
1866
1867 /*
1868 * This array describes the order lists are fallen back to when
1869 * the free lists for the desirable migrate type are depleted
1870 */
1871 static int fallbacks[MIGRATE_TYPES][4] = {
1872 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1873 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1874 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1875 #ifdef CONFIG_CMA
1876 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1877 #endif
1878 #ifdef CONFIG_MEMORY_ISOLATION
1879 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1880 #endif
1881 };
1882
1883 #ifdef CONFIG_CMA
1884 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1885 unsigned int order)
1886 {
1887 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1888 }
1889 #else
1890 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1891 unsigned int order) { return NULL; }
1892 #endif
1893
1894 /*
1895 * Move the free pages in a range to the free lists of the requested type.
1896 * Note that start_page and end_pages are not aligned on a pageblock
1897 * boundary. If alignment is required, use move_freepages_block()
1898 */
1899 static int move_freepages(struct zone *zone,
1900 struct page *start_page, struct page *end_page,
1901 int migratetype, int *num_movable)
1902 {
1903 struct page *page;
1904 unsigned int order;
1905 int pages_moved = 0;
1906
1907 #ifndef CONFIG_HOLES_IN_ZONE
1908 /*
1909 * page_zone is not safe to call in this context when
1910 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1911 * anyway as we check zone boundaries in move_freepages_block().
1912 * Remove at a later date when no bug reports exist related to
1913 * grouping pages by mobility
1914 */
1915 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1916 #endif
1917
1918 if (num_movable)
1919 *num_movable = 0;
1920
1921 for (page = start_page; page <= end_page;) {
1922 if (!pfn_valid_within(page_to_pfn(page))) {
1923 page++;
1924 continue;
1925 }
1926
1927 /* Make sure we are not inadvertently changing nodes */
1928 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1929
1930 if (!PageBuddy(page)) {
1931 /*
1932 * We assume that pages that could be isolated for
1933 * migration are movable. But we don't actually try
1934 * isolating, as that would be expensive.
1935 */
1936 if (num_movable &&
1937 (PageLRU(page) || __PageMovable(page)))
1938 (*num_movable)++;
1939
1940 page++;
1941 continue;
1942 }
1943
1944 order = page_order(page);
1945 list_move(&page->lru,
1946 &zone->free_area[order].free_list[migratetype]);
1947 page += 1 << order;
1948 pages_moved += 1 << order;
1949 }
1950
1951 return pages_moved;
1952 }
1953
1954 int move_freepages_block(struct zone *zone, struct page *page,
1955 int migratetype, int *num_movable)
1956 {
1957 unsigned long start_pfn, end_pfn;
1958 struct page *start_page, *end_page;
1959
1960 start_pfn = page_to_pfn(page);
1961 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1962 start_page = pfn_to_page(start_pfn);
1963 end_page = start_page + pageblock_nr_pages - 1;
1964 end_pfn = start_pfn + pageblock_nr_pages - 1;
1965
1966 /* Do not cross zone boundaries */
1967 if (!zone_spans_pfn(zone, start_pfn))
1968 start_page = page;
1969 if (!zone_spans_pfn(zone, end_pfn))
1970 return 0;
1971
1972 return move_freepages(zone, start_page, end_page, migratetype,
1973 num_movable);
1974 }
1975
1976 static void change_pageblock_range(struct page *pageblock_page,
1977 int start_order, int migratetype)
1978 {
1979 int nr_pageblocks = 1 << (start_order - pageblock_order);
1980
1981 while (nr_pageblocks--) {
1982 set_pageblock_migratetype(pageblock_page, migratetype);
1983 pageblock_page += pageblock_nr_pages;
1984 }
1985 }
1986
1987 /*
1988 * When we are falling back to another migratetype during allocation, try to
1989 * steal extra free pages from the same pageblocks to satisfy further
1990 * allocations, instead of polluting multiple pageblocks.
1991 *
1992 * If we are stealing a relatively large buddy page, it is likely there will
1993 * be more free pages in the pageblock, so try to steal them all. For
1994 * reclaimable and unmovable allocations, we steal regardless of page size,
1995 * as fragmentation caused by those allocations polluting movable pageblocks
1996 * is worse than movable allocations stealing from unmovable and reclaimable
1997 * pageblocks.
1998 */
1999 static bool can_steal_fallback(unsigned int order, int start_mt)
2000 {
2001 /*
2002 * Leaving this order check is intended, although there is
2003 * relaxed order check in next check. The reason is that
2004 * we can actually steal whole pageblock if this condition met,
2005 * but, below check doesn't guarantee it and that is just heuristic
2006 * so could be changed anytime.
2007 */
2008 if (order >= pageblock_order)
2009 return true;
2010
2011 if (order >= pageblock_order / 2 ||
2012 start_mt == MIGRATE_RECLAIMABLE ||
2013 start_mt == MIGRATE_UNMOVABLE ||
2014 page_group_by_mobility_disabled)
2015 return true;
2016
2017 return false;
2018 }
2019
2020 /*
2021 * This function implements actual steal behaviour. If order is large enough,
2022 * we can steal whole pageblock. If not, we first move freepages in this
2023 * pageblock to our migratetype and determine how many already-allocated pages
2024 * are there in the pageblock with a compatible migratetype. If at least half
2025 * of pages are free or compatible, we can change migratetype of the pageblock
2026 * itself, so pages freed in the future will be put on the correct free list.
2027 */
2028 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2029 int start_type, bool whole_block)
2030 {
2031 unsigned int current_order = page_order(page);
2032 struct free_area *area;
2033 int free_pages, movable_pages, alike_pages;
2034 int old_block_type;
2035
2036 old_block_type = get_pageblock_migratetype(page);
2037
2038 /*
2039 * This can happen due to races and we want to prevent broken
2040 * highatomic accounting.
2041 */
2042 if (is_migrate_highatomic(old_block_type))
2043 goto single_page;
2044
2045 /* Take ownership for orders >= pageblock_order */
2046 if (current_order >= pageblock_order) {
2047 change_pageblock_range(page, current_order, start_type);
2048 goto single_page;
2049 }
2050
2051 /* We are not allowed to try stealing from the whole block */
2052 if (!whole_block)
2053 goto single_page;
2054
2055 free_pages = move_freepages_block(zone, page, start_type,
2056 &movable_pages);
2057 /*
2058 * Determine how many pages are compatible with our allocation.
2059 * For movable allocation, it's the number of movable pages which
2060 * we just obtained. For other types it's a bit more tricky.
2061 */
2062 if (start_type == MIGRATE_MOVABLE) {
2063 alike_pages = movable_pages;
2064 } else {
2065 /*
2066 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2067 * to MOVABLE pageblock, consider all non-movable pages as
2068 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2069 * vice versa, be conservative since we can't distinguish the
2070 * exact migratetype of non-movable pages.
2071 */
2072 if (old_block_type == MIGRATE_MOVABLE)
2073 alike_pages = pageblock_nr_pages
2074 - (free_pages + movable_pages);
2075 else
2076 alike_pages = 0;
2077 }
2078
2079 /* moving whole block can fail due to zone boundary conditions */
2080 if (!free_pages)
2081 goto single_page;
2082
2083 /*
2084 * If a sufficient number of pages in the block are either free or of
2085 * comparable migratability as our allocation, claim the whole block.
2086 */
2087 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2088 page_group_by_mobility_disabled)
2089 set_pageblock_migratetype(page, start_type);
2090
2091 return;
2092
2093 single_page:
2094 area = &zone->free_area[current_order];
2095 list_move(&page->lru, &area->free_list[start_type]);
2096 }
2097
2098 /*
2099 * Check whether there is a suitable fallback freepage with requested order.
2100 * If only_stealable is true, this function returns fallback_mt only if
2101 * we can steal other freepages all together. This would help to reduce
2102 * fragmentation due to mixed migratetype pages in one pageblock.
2103 */
2104 int find_suitable_fallback(struct free_area *area, unsigned int order,
2105 int migratetype, bool only_stealable, bool *can_steal)
2106 {
2107 int i;
2108 int fallback_mt;
2109
2110 if (area->nr_free == 0)
2111 return -1;
2112
2113 *can_steal = false;
2114 for (i = 0;; i++) {
2115 fallback_mt = fallbacks[migratetype][i];
2116 if (fallback_mt == MIGRATE_TYPES)
2117 break;
2118
2119 if (list_empty(&area->free_list[fallback_mt]))
2120 continue;
2121
2122 if (can_steal_fallback(order, migratetype))
2123 *can_steal = true;
2124
2125 if (!only_stealable)
2126 return fallback_mt;
2127
2128 if (*can_steal)
2129 return fallback_mt;
2130 }
2131
2132 return -1;
2133 }
2134
2135 /*
2136 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2137 * there are no empty page blocks that contain a page with a suitable order
2138 */
2139 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2140 unsigned int alloc_order)
2141 {
2142 int mt;
2143 unsigned long max_managed, flags;
2144
2145 /*
2146 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2147 * Check is race-prone but harmless.
2148 */
2149 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2150 if (zone->nr_reserved_highatomic >= max_managed)
2151 return;
2152
2153 spin_lock_irqsave(&zone->lock, flags);
2154
2155 /* Recheck the nr_reserved_highatomic limit under the lock */
2156 if (zone->nr_reserved_highatomic >= max_managed)
2157 goto out_unlock;
2158
2159 /* Yoink! */
2160 mt = get_pageblock_migratetype(page);
2161 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2162 && !is_migrate_cma(mt)) {
2163 zone->nr_reserved_highatomic += pageblock_nr_pages;
2164 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2165 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2166 }
2167
2168 out_unlock:
2169 spin_unlock_irqrestore(&zone->lock, flags);
2170 }
2171
2172 /*
2173 * Used when an allocation is about to fail under memory pressure. This
2174 * potentially hurts the reliability of high-order allocations when under
2175 * intense memory pressure but failed atomic allocations should be easier
2176 * to recover from than an OOM.
2177 *
2178 * If @force is true, try to unreserve a pageblock even though highatomic
2179 * pageblock is exhausted.
2180 */
2181 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2182 bool force)
2183 {
2184 struct zonelist *zonelist = ac->zonelist;
2185 unsigned long flags;
2186 struct zoneref *z;
2187 struct zone *zone;
2188 struct page *page;
2189 int order;
2190 bool ret;
2191
2192 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2193 ac->nodemask) {
2194 /*
2195 * Preserve at least one pageblock unless memory pressure
2196 * is really high.
2197 */
2198 if (!force && zone->nr_reserved_highatomic <=
2199 pageblock_nr_pages)
2200 continue;
2201
2202 spin_lock_irqsave(&zone->lock, flags);
2203 for (order = 0; order < MAX_ORDER; order++) {
2204 struct free_area *area = &(zone->free_area[order]);
2205
2206 page = list_first_entry_or_null(
2207 &area->free_list[MIGRATE_HIGHATOMIC],
2208 struct page, lru);
2209 if (!page)
2210 continue;
2211
2212 /*
2213 * In page freeing path, migratetype change is racy so
2214 * we can counter several free pages in a pageblock
2215 * in this loop althoug we changed the pageblock type
2216 * from highatomic to ac->migratetype. So we should
2217 * adjust the count once.
2218 */
2219 if (is_migrate_highatomic_page(page)) {
2220 /*
2221 * It should never happen but changes to
2222 * locking could inadvertently allow a per-cpu
2223 * drain to add pages to MIGRATE_HIGHATOMIC
2224 * while unreserving so be safe and watch for
2225 * underflows.
2226 */
2227 zone->nr_reserved_highatomic -= min(
2228 pageblock_nr_pages,
2229 zone->nr_reserved_highatomic);
2230 }
2231
2232 /*
2233 * Convert to ac->migratetype and avoid the normal
2234 * pageblock stealing heuristics. Minimally, the caller
2235 * is doing the work and needs the pages. More
2236 * importantly, if the block was always converted to
2237 * MIGRATE_UNMOVABLE or another type then the number
2238 * of pageblocks that cannot be completely freed
2239 * may increase.
2240 */
2241 set_pageblock_migratetype(page, ac->migratetype);
2242 ret = move_freepages_block(zone, page, ac->migratetype,
2243 NULL);
2244 if (ret) {
2245 spin_unlock_irqrestore(&zone->lock, flags);
2246 return ret;
2247 }
2248 }
2249 spin_unlock_irqrestore(&zone->lock, flags);
2250 }
2251
2252 return false;
2253 }
2254
2255 /*
2256 * Try finding a free buddy page on the fallback list and put it on the free
2257 * list of requested migratetype, possibly along with other pages from the same
2258 * block, depending on fragmentation avoidance heuristics. Returns true if
2259 * fallback was found so that __rmqueue_smallest() can grab it.
2260 *
2261 * The use of signed ints for order and current_order is a deliberate
2262 * deviation from the rest of this file, to make the for loop
2263 * condition simpler.
2264 */
2265 static __always_inline bool
2266 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2267 {
2268 struct free_area *area;
2269 int current_order;
2270 struct page *page;
2271 int fallback_mt;
2272 bool can_steal;
2273
2274 /*
2275 * Find the largest available free page in the other list. This roughly
2276 * approximates finding the pageblock with the most free pages, which
2277 * would be too costly to do exactly.
2278 */
2279 for (current_order = MAX_ORDER - 1; current_order >= order;
2280 --current_order) {
2281 area = &(zone->free_area[current_order]);
2282 fallback_mt = find_suitable_fallback(area, current_order,
2283 start_migratetype, false, &can_steal);
2284 if (fallback_mt == -1)
2285 continue;
2286
2287 /*
2288 * We cannot steal all free pages from the pageblock and the
2289 * requested migratetype is movable. In that case it's better to
2290 * steal and split the smallest available page instead of the
2291 * largest available page, because even if the next movable
2292 * allocation falls back into a different pageblock than this
2293 * one, it won't cause permanent fragmentation.
2294 */
2295 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2296 && current_order > order)
2297 goto find_smallest;
2298
2299 goto do_steal;
2300 }
2301
2302 return false;
2303
2304 find_smallest:
2305 for (current_order = order; current_order < MAX_ORDER;
2306 current_order++) {
2307 area = &(zone->free_area[current_order]);
2308 fallback_mt = find_suitable_fallback(area, current_order,
2309 start_migratetype, false, &can_steal);
2310 if (fallback_mt != -1)
2311 break;
2312 }
2313
2314 /*
2315 * This should not happen - we already found a suitable fallback
2316 * when looking for the largest page.
2317 */
2318 VM_BUG_ON(current_order == MAX_ORDER);
2319
2320 do_steal:
2321 page = list_first_entry(&area->free_list[fallback_mt],
2322 struct page, lru);
2323
2324 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2325
2326 trace_mm_page_alloc_extfrag(page, order, current_order,
2327 start_migratetype, fallback_mt);
2328
2329 return true;
2330
2331 }
2332
2333 /*
2334 * Do the hard work of removing an element from the buddy allocator.
2335 * Call me with the zone->lock already held.
2336 */
2337 static __always_inline struct page *
2338 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2339 {
2340 struct page *page;
2341
2342 retry:
2343 page = __rmqueue_smallest(zone, order, migratetype);
2344 if (unlikely(!page)) {
2345 if (migratetype == MIGRATE_MOVABLE)
2346 page = __rmqueue_cma_fallback(zone, order);
2347
2348 if (!page && __rmqueue_fallback(zone, order, migratetype))
2349 goto retry;
2350 }
2351
2352 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2353 return page;
2354 }
2355
2356 /*
2357 * Obtain a specified number of elements from the buddy allocator, all under
2358 * a single hold of the lock, for efficiency. Add them to the supplied list.
2359 * Returns the number of new pages which were placed at *list.
2360 */
2361 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2362 unsigned long count, struct list_head *list,
2363 int migratetype)
2364 {
2365 int i, alloced = 0;
2366
2367 spin_lock(&zone->lock);
2368 for (i = 0; i < count; ++i) {
2369 struct page *page = __rmqueue(zone, order, migratetype);
2370 if (unlikely(page == NULL))
2371 break;
2372
2373 if (unlikely(check_pcp_refill(page)))
2374 continue;
2375
2376 /*
2377 * Split buddy pages returned by expand() are received here in
2378 * physical page order. The page is added to the tail of
2379 * caller's list. From the callers perspective, the linked list
2380 * is ordered by page number under some conditions. This is
2381 * useful for IO devices that can forward direction from the
2382 * head, thus also in the physical page order. This is useful
2383 * for IO devices that can merge IO requests if the physical
2384 * pages are ordered properly.
2385 */
2386 list_add_tail(&page->lru, list);
2387 alloced++;
2388 if (is_migrate_cma(get_pcppage_migratetype(page)))
2389 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2390 -(1 << order));
2391 }
2392
2393 /*
2394 * i pages were removed from the buddy list even if some leak due
2395 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2396 * on i. Do not confuse with 'alloced' which is the number of
2397 * pages added to the pcp list.
2398 */
2399 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2400 spin_unlock(&zone->lock);
2401 return alloced;
2402 }
2403
2404 #ifdef CONFIG_NUMA
2405 /*
2406 * Called from the vmstat counter updater to drain pagesets of this
2407 * currently executing processor on remote nodes after they have
2408 * expired.
2409 *
2410 * Note that this function must be called with the thread pinned to
2411 * a single processor.
2412 */
2413 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2414 {
2415 unsigned long flags;
2416 int to_drain, batch;
2417
2418 local_irq_save(flags);
2419 batch = READ_ONCE(pcp->batch);
2420 to_drain = min(pcp->count, batch);
2421 if (to_drain > 0) {
2422 free_pcppages_bulk(zone, to_drain, pcp);
2423 pcp->count -= to_drain;
2424 }
2425 local_irq_restore(flags);
2426 }
2427 #endif
2428
2429 /*
2430 * Drain pcplists of the indicated processor and zone.
2431 *
2432 * The processor must either be the current processor and the
2433 * thread pinned to the current processor or a processor that
2434 * is not online.
2435 */
2436 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2437 {
2438 unsigned long flags;
2439 struct per_cpu_pageset *pset;
2440 struct per_cpu_pages *pcp;
2441
2442 local_irq_save(flags);
2443 pset = per_cpu_ptr(zone->pageset, cpu);
2444
2445 pcp = &pset->pcp;
2446 if (pcp->count) {
2447 free_pcppages_bulk(zone, pcp->count, pcp);
2448 pcp->count = 0;
2449 }
2450 local_irq_restore(flags);
2451 }
2452
2453 /*
2454 * Drain pcplists of all zones on the indicated processor.
2455 *
2456 * The processor must either be the current processor and the
2457 * thread pinned to the current processor or a processor that
2458 * is not online.
2459 */
2460 static void drain_pages(unsigned int cpu)
2461 {
2462 struct zone *zone;
2463
2464 for_each_populated_zone(zone) {
2465 drain_pages_zone(cpu, zone);
2466 }
2467 }
2468
2469 /*
2470 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2471 *
2472 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2473 * the single zone's pages.
2474 */
2475 void drain_local_pages(struct zone *zone)
2476 {
2477 int cpu = smp_processor_id();
2478
2479 if (zone)
2480 drain_pages_zone(cpu, zone);
2481 else
2482 drain_pages(cpu);
2483 }
2484
2485 static void drain_local_pages_wq(struct work_struct *work)
2486 {
2487 /*
2488 * drain_all_pages doesn't use proper cpu hotplug protection so
2489 * we can race with cpu offline when the WQ can move this from
2490 * a cpu pinned worker to an unbound one. We can operate on a different
2491 * cpu which is allright but we also have to make sure to not move to
2492 * a different one.
2493 */
2494 preempt_disable();
2495 drain_local_pages(NULL);
2496 preempt_enable();
2497 }
2498
2499 /*
2500 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2501 *
2502 * When zone parameter is non-NULL, spill just the single zone's pages.
2503 *
2504 * Note that this can be extremely slow as the draining happens in a workqueue.
2505 */
2506 void drain_all_pages(struct zone *zone)
2507 {
2508 int cpu;
2509
2510 /*
2511 * Allocate in the BSS so we wont require allocation in
2512 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2513 */
2514 static cpumask_t cpus_with_pcps;
2515
2516 /*
2517 * Make sure nobody triggers this path before mm_percpu_wq is fully
2518 * initialized.
2519 */
2520 if (WARN_ON_ONCE(!mm_percpu_wq))
2521 return;
2522
2523 /*
2524 * Do not drain if one is already in progress unless it's specific to
2525 * a zone. Such callers are primarily CMA and memory hotplug and need
2526 * the drain to be complete when the call returns.
2527 */
2528 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2529 if (!zone)
2530 return;
2531 mutex_lock(&pcpu_drain_mutex);
2532 }
2533
2534 /*
2535 * We don't care about racing with CPU hotplug event
2536 * as offline notification will cause the notified
2537 * cpu to drain that CPU pcps and on_each_cpu_mask
2538 * disables preemption as part of its processing
2539 */
2540 for_each_online_cpu(cpu) {
2541 struct per_cpu_pageset *pcp;
2542 struct zone *z;
2543 bool has_pcps = false;
2544
2545 if (zone) {
2546 pcp = per_cpu_ptr(zone->pageset, cpu);
2547 if (pcp->pcp.count)
2548 has_pcps = true;
2549 } else {
2550 for_each_populated_zone(z) {
2551 pcp = per_cpu_ptr(z->pageset, cpu);
2552 if (pcp->pcp.count) {
2553 has_pcps = true;
2554 break;
2555 }
2556 }
2557 }
2558
2559 if (has_pcps)
2560 cpumask_set_cpu(cpu, &cpus_with_pcps);
2561 else
2562 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2563 }
2564
2565 for_each_cpu(cpu, &cpus_with_pcps) {
2566 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2567 INIT_WORK(work, drain_local_pages_wq);
2568 queue_work_on(cpu, mm_percpu_wq, work);
2569 }
2570 for_each_cpu(cpu, &cpus_with_pcps)
2571 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2572
2573 mutex_unlock(&pcpu_drain_mutex);
2574 }
2575
2576 #ifdef CONFIG_HIBERNATION
2577
2578 /*
2579 * Touch the watchdog for every WD_PAGE_COUNT pages.
2580 */
2581 #define WD_PAGE_COUNT (128*1024)
2582
2583 void mark_free_pages(struct zone *zone)
2584 {
2585 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2586 unsigned long flags;
2587 unsigned int order, t;
2588 struct page *page;
2589
2590 if (zone_is_empty(zone))
2591 return;
2592
2593 spin_lock_irqsave(&zone->lock, flags);
2594
2595 max_zone_pfn = zone_end_pfn(zone);
2596 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2597 if (pfn_valid(pfn)) {
2598 page = pfn_to_page(pfn);
2599
2600 if (!--page_count) {
2601 touch_nmi_watchdog();
2602 page_count = WD_PAGE_COUNT;
2603 }
2604
2605 if (page_zone(page) != zone)
2606 continue;
2607
2608 if (!swsusp_page_is_forbidden(page))
2609 swsusp_unset_page_free(page);
2610 }
2611
2612 for_each_migratetype_order(order, t) {
2613 list_for_each_entry(page,
2614 &zone->free_area[order].free_list[t], lru) {
2615 unsigned long i;
2616
2617 pfn = page_to_pfn(page);
2618 for (i = 0; i < (1UL << order); i++) {
2619 if (!--page_count) {
2620 touch_nmi_watchdog();
2621 page_count = WD_PAGE_COUNT;
2622 }
2623 swsusp_set_page_free(pfn_to_page(pfn + i));
2624 }
2625 }
2626 }
2627 spin_unlock_irqrestore(&zone->lock, flags);
2628 }
2629 #endif /* CONFIG_PM */
2630
2631 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2632 {
2633 int migratetype;
2634
2635 if (!free_pcp_prepare(page))
2636 return false;
2637
2638 migratetype = get_pfnblock_migratetype(page, pfn);
2639 set_pcppage_migratetype(page, migratetype);
2640 return true;
2641 }
2642
2643 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2644 {
2645 struct zone *zone = page_zone(page);
2646 struct per_cpu_pages *pcp;
2647 int migratetype;
2648
2649 migratetype = get_pcppage_migratetype(page);
2650 __count_vm_event(PGFREE);
2651
2652 /*
2653 * We only track unmovable, reclaimable and movable on pcp lists.
2654 * Free ISOLATE pages back to the allocator because they are being
2655 * offlined but treat HIGHATOMIC as movable pages so we can get those
2656 * areas back if necessary. Otherwise, we may have to free
2657 * excessively into the page allocator
2658 */
2659 if (migratetype >= MIGRATE_PCPTYPES) {
2660 if (unlikely(is_migrate_isolate(migratetype))) {
2661 free_one_page(zone, page, pfn, 0, migratetype);
2662 return;
2663 }
2664 migratetype = MIGRATE_MOVABLE;
2665 }
2666
2667 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2668 list_add(&page->lru, &pcp->lists[migratetype]);
2669 pcp->count++;
2670 if (pcp->count >= pcp->high) {
2671 unsigned long batch = READ_ONCE(pcp->batch);
2672 free_pcppages_bulk(zone, batch, pcp);
2673 pcp->count -= batch;
2674 }
2675 }
2676
2677 /*
2678 * Free a 0-order page
2679 */
2680 void free_unref_page(struct page *page)
2681 {
2682 unsigned long flags;
2683 unsigned long pfn = page_to_pfn(page);
2684
2685 if (!free_unref_page_prepare(page, pfn))
2686 return;
2687
2688 local_irq_save(flags);
2689 free_unref_page_commit(page, pfn);
2690 local_irq_restore(flags);
2691 }
2692
2693 /*
2694 * Free a list of 0-order pages
2695 */
2696 void free_unref_page_list(struct list_head *list)
2697 {
2698 struct page *page, *next;
2699 unsigned long flags, pfn;
2700 int batch_count = 0;
2701
2702 /* Prepare pages for freeing */
2703 list_for_each_entry_safe(page, next, list, lru) {
2704 pfn = page_to_pfn(page);
2705 if (!free_unref_page_prepare(page, pfn))
2706 list_del(&page->lru);
2707 set_page_private(page, pfn);
2708 }
2709
2710 local_irq_save(flags);
2711 list_for_each_entry_safe(page, next, list, lru) {
2712 unsigned long pfn = page_private(page);
2713
2714 set_page_private(page, 0);
2715 trace_mm_page_free_batched(page);
2716 free_unref_page_commit(page, pfn);
2717
2718 /*
2719 * Guard against excessive IRQ disabled times when we get
2720 * a large list of pages to free.
2721 */
2722 if (++batch_count == SWAP_CLUSTER_MAX) {
2723 local_irq_restore(flags);
2724 batch_count = 0;
2725 local_irq_save(flags);
2726 }
2727 }
2728 local_irq_restore(flags);
2729 }
2730
2731 /*
2732 * split_page takes a non-compound higher-order page, and splits it into
2733 * n (1<<order) sub-pages: page[0..n]
2734 * Each sub-page must be freed individually.
2735 *
2736 * Note: this is probably too low level an operation for use in drivers.
2737 * Please consult with lkml before using this in your driver.
2738 */
2739 void split_page(struct page *page, unsigned int order)
2740 {
2741 int i;
2742
2743 VM_BUG_ON_PAGE(PageCompound(page), page);
2744 VM_BUG_ON_PAGE(!page_count(page), page);
2745
2746 for (i = 1; i < (1 << order); i++)
2747 set_page_refcounted(page + i);
2748 split_page_owner(page, order);
2749 }
2750 EXPORT_SYMBOL_GPL(split_page);
2751
2752 int __isolate_free_page(struct page *page, unsigned int order)
2753 {
2754 unsigned long watermark;
2755 struct zone *zone;
2756 int mt;
2757
2758 BUG_ON(!PageBuddy(page));
2759
2760 zone = page_zone(page);
2761 mt = get_pageblock_migratetype(page);
2762
2763 if (!is_migrate_isolate(mt)) {
2764 /*
2765 * Obey watermarks as if the page was being allocated. We can
2766 * emulate a high-order watermark check with a raised order-0
2767 * watermark, because we already know our high-order page
2768 * exists.
2769 */
2770 watermark = min_wmark_pages(zone) + (1UL << order);
2771 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2772 return 0;
2773
2774 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2775 }
2776
2777 /* Remove page from free list */
2778 list_del(&page->lru);
2779 zone->free_area[order].nr_free--;
2780 rmv_page_order(page);
2781
2782 /*
2783 * Set the pageblock if the isolated page is at least half of a
2784 * pageblock
2785 */
2786 if (order >= pageblock_order - 1) {
2787 struct page *endpage = page + (1 << order) - 1;
2788 for (; page < endpage; page += pageblock_nr_pages) {
2789 int mt = get_pageblock_migratetype(page);
2790 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2791 && !is_migrate_highatomic(mt))
2792 set_pageblock_migratetype(page,
2793 MIGRATE_MOVABLE);
2794 }
2795 }
2796
2797
2798 return 1UL << order;
2799 }
2800
2801 /*
2802 * Update NUMA hit/miss statistics
2803 *
2804 * Must be called with interrupts disabled.
2805 */
2806 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2807 {
2808 #ifdef CONFIG_NUMA
2809 enum numa_stat_item local_stat = NUMA_LOCAL;
2810
2811 /* skip numa counters update if numa stats is disabled */
2812 if (!static_branch_likely(&vm_numa_stat_key))
2813 return;
2814
2815 if (z->node != numa_node_id())
2816 local_stat = NUMA_OTHER;
2817
2818 if (z->node == preferred_zone->node)
2819 __inc_numa_state(z, NUMA_HIT);
2820 else {
2821 __inc_numa_state(z, NUMA_MISS);
2822 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2823 }
2824 __inc_numa_state(z, local_stat);
2825 #endif
2826 }
2827
2828 /* Remove page from the per-cpu list, caller must protect the list */
2829 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2830 struct per_cpu_pages *pcp,
2831 struct list_head *list)
2832 {
2833 struct page *page;
2834
2835 do {
2836 if (list_empty(list)) {
2837 pcp->count += rmqueue_bulk(zone, 0,
2838 pcp->batch, list,
2839 migratetype);
2840 if (unlikely(list_empty(list)))
2841 return NULL;
2842 }
2843
2844 page = list_first_entry(list, struct page, lru);
2845 list_del(&page->lru);
2846 pcp->count--;
2847 } while (check_new_pcp(page));
2848
2849 return page;
2850 }
2851
2852 /* Lock and remove page from the per-cpu list */
2853 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2854 struct zone *zone, unsigned int order,
2855 gfp_t gfp_flags, int migratetype)
2856 {
2857 struct per_cpu_pages *pcp;
2858 struct list_head *list;
2859 struct page *page;
2860 unsigned long flags;
2861
2862 local_irq_save(flags);
2863 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2864 list = &pcp->lists[migratetype];
2865 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2866 if (page) {
2867 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2868 zone_statistics(preferred_zone, zone);
2869 }
2870 local_irq_restore(flags);
2871 return page;
2872 }
2873
2874 /*
2875 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2876 */
2877 static inline
2878 struct page *rmqueue(struct zone *preferred_zone,
2879 struct zone *zone, unsigned int order,
2880 gfp_t gfp_flags, unsigned int alloc_flags,
2881 int migratetype)
2882 {
2883 unsigned long flags;
2884 struct page *page;
2885
2886 if (likely(order == 0)) {
2887 page = rmqueue_pcplist(preferred_zone, zone, order,
2888 gfp_flags, migratetype);
2889 goto out;
2890 }
2891
2892 /*
2893 * We most definitely don't want callers attempting to
2894 * allocate greater than order-1 page units with __GFP_NOFAIL.
2895 */
2896 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2897 spin_lock_irqsave(&zone->lock, flags);
2898
2899 do {
2900 page = NULL;
2901 if (alloc_flags & ALLOC_HARDER) {
2902 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2903 if (page)
2904 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2905 }
2906 if (!page)
2907 page = __rmqueue(zone, order, migratetype);
2908 } while (page && check_new_pages(page, order));
2909 spin_unlock(&zone->lock);
2910 if (!page)
2911 goto failed;
2912 __mod_zone_freepage_state(zone, -(1 << order),
2913 get_pcppage_migratetype(page));
2914
2915 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2916 zone_statistics(preferred_zone, zone);
2917 local_irq_restore(flags);
2918
2919 out:
2920 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2921 return page;
2922
2923 failed:
2924 local_irq_restore(flags);
2925 return NULL;
2926 }
2927
2928 #ifdef CONFIG_FAIL_PAGE_ALLOC
2929
2930 static struct {
2931 struct fault_attr attr;
2932
2933 bool ignore_gfp_highmem;
2934 bool ignore_gfp_reclaim;
2935 u32 min_order;
2936 } fail_page_alloc = {
2937 .attr = FAULT_ATTR_INITIALIZER,
2938 .ignore_gfp_reclaim = true,
2939 .ignore_gfp_highmem = true,
2940 .min_order = 1,
2941 };
2942
2943 static int __init setup_fail_page_alloc(char *str)
2944 {
2945 return setup_fault_attr(&fail_page_alloc.attr, str);
2946 }
2947 __setup("fail_page_alloc=", setup_fail_page_alloc);
2948
2949 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2950 {
2951 if (order < fail_page_alloc.min_order)
2952 return false;
2953 if (gfp_mask & __GFP_NOFAIL)
2954 return false;
2955 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2956 return false;
2957 if (fail_page_alloc.ignore_gfp_reclaim &&
2958 (gfp_mask & __GFP_DIRECT_RECLAIM))
2959 return false;
2960
2961 return should_fail(&fail_page_alloc.attr, 1 << order);
2962 }
2963
2964 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2965
2966 static int __init fail_page_alloc_debugfs(void)
2967 {
2968 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2969 struct dentry *dir;
2970
2971 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2972 &fail_page_alloc.attr);
2973 if (IS_ERR(dir))
2974 return PTR_ERR(dir);
2975
2976 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2977 &fail_page_alloc.ignore_gfp_reclaim))
2978 goto fail;
2979 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2980 &fail_page_alloc.ignore_gfp_highmem))
2981 goto fail;
2982 if (!debugfs_create_u32("min-order", mode, dir,
2983 &fail_page_alloc.min_order))
2984 goto fail;
2985
2986 return 0;
2987 fail:
2988 debugfs_remove_recursive(dir);
2989
2990 return -ENOMEM;
2991 }
2992
2993 late_initcall(fail_page_alloc_debugfs);
2994
2995 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2996
2997 #else /* CONFIG_FAIL_PAGE_ALLOC */
2998
2999 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3000 {
3001 return false;
3002 }
3003
3004 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3005
3006 /*
3007 * Return true if free base pages are above 'mark'. For high-order checks it
3008 * will return true of the order-0 watermark is reached and there is at least
3009 * one free page of a suitable size. Checking now avoids taking the zone lock
3010 * to check in the allocation paths if no pages are free.
3011 */
3012 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3013 int classzone_idx, unsigned int alloc_flags,
3014 long free_pages)
3015 {
3016 long min = mark;
3017 int o;
3018 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3019
3020 /* free_pages may go negative - that's OK */
3021 free_pages -= (1 << order) - 1;
3022
3023 if (alloc_flags & ALLOC_HIGH)
3024 min -= min / 2;
3025
3026 /*
3027 * If the caller does not have rights to ALLOC_HARDER then subtract
3028 * the high-atomic reserves. This will over-estimate the size of the
3029 * atomic reserve but it avoids a search.
3030 */
3031 if (likely(!alloc_harder)) {
3032 free_pages -= z->nr_reserved_highatomic;
3033 } else {
3034 /*
3035 * OOM victims can try even harder than normal ALLOC_HARDER
3036 * users on the grounds that it's definitely going to be in
3037 * the exit path shortly and free memory. Any allocation it
3038 * makes during the free path will be small and short-lived.
3039 */
3040 if (alloc_flags & ALLOC_OOM)
3041 min -= min / 2;
3042 else
3043 min -= min / 4;
3044 }
3045
3046
3047 #ifdef CONFIG_CMA
3048 /* If allocation can't use CMA areas don't use free CMA pages */
3049 if (!(alloc_flags & ALLOC_CMA))
3050 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3051 #endif
3052
3053 /*
3054 * Check watermarks for an order-0 allocation request. If these
3055 * are not met, then a high-order request also cannot go ahead
3056 * even if a suitable page happened to be free.
3057 */
3058 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3059 return false;
3060
3061 /* If this is an order-0 request then the watermark is fine */
3062 if (!order)
3063 return true;
3064
3065 /* For a high-order request, check at least one suitable page is free */
3066 for (o = order; o < MAX_ORDER; o++) {
3067 struct free_area *area = &z->free_area[o];
3068 int mt;
3069
3070 if (!area->nr_free)
3071 continue;
3072
3073 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3074 if (!list_empty(&area->free_list[mt]))
3075 return true;
3076 }
3077
3078 #ifdef CONFIG_CMA
3079 if ((alloc_flags & ALLOC_CMA) &&
3080 !list_empty(&area->free_list[MIGRATE_CMA])) {
3081 return true;
3082 }
3083 #endif
3084 if (alloc_harder &&
3085 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3086 return true;
3087 }
3088 return false;
3089 }
3090
3091 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3092 int classzone_idx, unsigned int alloc_flags)
3093 {
3094 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3095 zone_page_state(z, NR_FREE_PAGES));
3096 }
3097
3098 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3099 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3100 {
3101 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3102 long cma_pages = 0;
3103
3104 #ifdef CONFIG_CMA
3105 /* If allocation can't use CMA areas don't use free CMA pages */
3106 if (!(alloc_flags & ALLOC_CMA))
3107 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3108 #endif
3109
3110 /*
3111 * Fast check for order-0 only. If this fails then the reserves
3112 * need to be calculated. There is a corner case where the check
3113 * passes but only the high-order atomic reserve are free. If
3114 * the caller is !atomic then it'll uselessly search the free
3115 * list. That corner case is then slower but it is harmless.
3116 */
3117 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3118 return true;
3119
3120 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3121 free_pages);
3122 }
3123
3124 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3125 unsigned long mark, int classzone_idx)
3126 {
3127 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3128
3129 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3130 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3131
3132 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3133 free_pages);
3134 }
3135
3136 #ifdef CONFIG_NUMA
3137 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3138 {
3139 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3140 RECLAIM_DISTANCE;
3141 }
3142 #else /* CONFIG_NUMA */
3143 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3144 {
3145 return true;
3146 }
3147 #endif /* CONFIG_NUMA */
3148
3149 /*
3150 * get_page_from_freelist goes through the zonelist trying to allocate
3151 * a page.
3152 */
3153 static struct page *
3154 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3155 const struct alloc_context *ac)
3156 {
3157 struct zoneref *z = ac->preferred_zoneref;
3158 struct zone *zone;
3159 struct pglist_data *last_pgdat_dirty_limit = NULL;
3160
3161 /*
3162 * Scan zonelist, looking for a zone with enough free.
3163 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3164 */
3165 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3166 ac->nodemask) {
3167 struct page *page;
3168 unsigned long mark;
3169
3170 if (cpusets_enabled() &&
3171 (alloc_flags & ALLOC_CPUSET) &&
3172 !__cpuset_zone_allowed(zone, gfp_mask))
3173 continue;
3174 /*
3175 * When allocating a page cache page for writing, we
3176 * want to get it from a node that is within its dirty
3177 * limit, such that no single node holds more than its
3178 * proportional share of globally allowed dirty pages.
3179 * The dirty limits take into account the node's
3180 * lowmem reserves and high watermark so that kswapd
3181 * should be able to balance it without having to
3182 * write pages from its LRU list.
3183 *
3184 * XXX: For now, allow allocations to potentially
3185 * exceed the per-node dirty limit in the slowpath
3186 * (spread_dirty_pages unset) before going into reclaim,
3187 * which is important when on a NUMA setup the allowed
3188 * nodes are together not big enough to reach the
3189 * global limit. The proper fix for these situations
3190 * will require awareness of nodes in the
3191 * dirty-throttling and the flusher threads.
3192 */
3193 if (ac->spread_dirty_pages) {
3194 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3195 continue;
3196
3197 if (!node_dirty_ok(zone->zone_pgdat)) {
3198 last_pgdat_dirty_limit = zone->zone_pgdat;
3199 continue;
3200 }
3201 }
3202
3203 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3204 if (!zone_watermark_fast(zone, order, mark,
3205 ac_classzone_idx(ac), alloc_flags)) {
3206 int ret;
3207
3208 /* Checked here to keep the fast path fast */
3209 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3210 if (alloc_flags & ALLOC_NO_WATERMARKS)
3211 goto try_this_zone;
3212
3213 if (node_reclaim_mode == 0 ||
3214 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3215 continue;
3216
3217 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3218 switch (ret) {
3219 case NODE_RECLAIM_NOSCAN:
3220 /* did not scan */
3221 continue;
3222 case NODE_RECLAIM_FULL:
3223 /* scanned but unreclaimable */
3224 continue;
3225 default:
3226 /* did we reclaim enough */
3227 if (zone_watermark_ok(zone, order, mark,
3228 ac_classzone_idx(ac), alloc_flags))
3229 goto try_this_zone;
3230
3231 continue;
3232 }
3233 }
3234
3235 try_this_zone:
3236 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3237 gfp_mask, alloc_flags, ac->migratetype);
3238 if (page) {
3239 prep_new_page(page, order, gfp_mask, alloc_flags);
3240
3241 /*
3242 * If this is a high-order atomic allocation then check
3243 * if the pageblock should be reserved for the future
3244 */
3245 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3246 reserve_highatomic_pageblock(page, zone, order);
3247
3248 return page;
3249 }
3250 }
3251
3252 return NULL;
3253 }
3254
3255 /*
3256 * Large machines with many possible nodes should not always dump per-node
3257 * meminfo in irq context.
3258 */
3259 static inline bool should_suppress_show_mem(void)
3260 {
3261 bool ret = false;
3262
3263 #if NODES_SHIFT > 8
3264 ret = in_interrupt();
3265 #endif
3266 return ret;
3267 }
3268
3269 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3270 {
3271 unsigned int filter = SHOW_MEM_FILTER_NODES;
3272 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3273
3274 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3275 return;
3276
3277 /*
3278 * This documents exceptions given to allocations in certain
3279 * contexts that are allowed to allocate outside current's set
3280 * of allowed nodes.
3281 */
3282 if (!(gfp_mask & __GFP_NOMEMALLOC))
3283 if (tsk_is_oom_victim(current) ||
3284 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3285 filter &= ~SHOW_MEM_FILTER_NODES;
3286 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3287 filter &= ~SHOW_MEM_FILTER_NODES;
3288
3289 show_mem(filter, nodemask);
3290 }
3291
3292 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3293 {
3294 struct va_format vaf;
3295 va_list args;
3296 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3297 DEFAULT_RATELIMIT_BURST);
3298
3299 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3300 return;
3301
3302 va_start(args, fmt);
3303 vaf.fmt = fmt;
3304 vaf.va = &args;
3305 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3306 current->comm, &vaf, gfp_mask, &gfp_mask,
3307 nodemask_pr_args(nodemask));
3308 va_end(args);
3309
3310 cpuset_print_current_mems_allowed();
3311
3312 dump_stack();
3313 warn_alloc_show_mem(gfp_mask, nodemask);
3314 }
3315
3316 static inline struct page *
3317 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3318 unsigned int alloc_flags,
3319 const struct alloc_context *ac)
3320 {
3321 struct page *page;
3322
3323 page = get_page_from_freelist(gfp_mask, order,
3324 alloc_flags|ALLOC_CPUSET, ac);
3325 /*
3326 * fallback to ignore cpuset restriction if our nodes
3327 * are depleted
3328 */
3329 if (!page)
3330 page = get_page_from_freelist(gfp_mask, order,
3331 alloc_flags, ac);
3332
3333 return page;
3334 }
3335
3336 static inline struct page *
3337 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3338 const struct alloc_context *ac, unsigned long *did_some_progress)
3339 {
3340 struct oom_control oc = {
3341 .zonelist = ac->zonelist,
3342 .nodemask = ac->nodemask,
3343 .memcg = NULL,
3344 .gfp_mask = gfp_mask,
3345 .order = order,
3346 };
3347 struct page *page;
3348
3349 *did_some_progress = 0;
3350
3351 /*
3352 * Acquire the oom lock. If that fails, somebody else is
3353 * making progress for us.
3354 */
3355 if (!mutex_trylock(&oom_lock)) {
3356 *did_some_progress = 1;
3357 schedule_timeout_uninterruptible(1);
3358 return NULL;
3359 }
3360
3361 /*
3362 * Go through the zonelist yet one more time, keep very high watermark
3363 * here, this is only to catch a parallel oom killing, we must fail if
3364 * we're still under heavy pressure. But make sure that this reclaim
3365 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3366 * allocation which will never fail due to oom_lock already held.
3367 */
3368 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3369 ~__GFP_DIRECT_RECLAIM, order,
3370 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3371 if (page)
3372 goto out;
3373
3374 /* Coredumps can quickly deplete all memory reserves */
3375 if (current->flags & PF_DUMPCORE)
3376 goto out;
3377 /* The OOM killer will not help higher order allocs */
3378 if (order > PAGE_ALLOC_COSTLY_ORDER)
3379 goto out;
3380 /*
3381 * We have already exhausted all our reclaim opportunities without any
3382 * success so it is time to admit defeat. We will skip the OOM killer
3383 * because it is very likely that the caller has a more reasonable
3384 * fallback than shooting a random task.
3385 */
3386 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3387 goto out;
3388 /* The OOM killer does not needlessly kill tasks for lowmem */
3389 if (ac->high_zoneidx < ZONE_NORMAL)
3390 goto out;
3391 if (pm_suspended_storage())
3392 goto out;
3393 /*
3394 * XXX: GFP_NOFS allocations should rather fail than rely on
3395 * other request to make a forward progress.
3396 * We are in an unfortunate situation where out_of_memory cannot
3397 * do much for this context but let's try it to at least get
3398 * access to memory reserved if the current task is killed (see
3399 * out_of_memory). Once filesystems are ready to handle allocation
3400 * failures more gracefully we should just bail out here.
3401 */
3402
3403 /* The OOM killer may not free memory on a specific node */
3404 if (gfp_mask & __GFP_THISNODE)
3405 goto out;
3406
3407 /* Exhausted what can be done so it's blamo time */
3408 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3409 *did_some_progress = 1;
3410
3411 /*
3412 * Help non-failing allocations by giving them access to memory
3413 * reserves
3414 */
3415 if (gfp_mask & __GFP_NOFAIL)
3416 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3417 ALLOC_NO_WATERMARKS, ac);
3418 }
3419 out:
3420 mutex_unlock(&oom_lock);
3421 return page;
3422 }
3423
3424 /*
3425 * Maximum number of compaction retries wit a progress before OOM
3426 * killer is consider as the only way to move forward.
3427 */
3428 #define MAX_COMPACT_RETRIES 16
3429
3430 #ifdef CONFIG_COMPACTION
3431 /* Try memory compaction for high-order allocations before reclaim */
3432 static struct page *
3433 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3434 unsigned int alloc_flags, const struct alloc_context *ac,
3435 enum compact_priority prio, enum compact_result *compact_result)
3436 {
3437 struct page *page;
3438 unsigned int noreclaim_flag;
3439
3440 if (!order)
3441 return NULL;
3442
3443 noreclaim_flag = memalloc_noreclaim_save();
3444 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3445 prio);
3446 memalloc_noreclaim_restore(noreclaim_flag);
3447
3448 if (*compact_result <= COMPACT_INACTIVE)
3449 return NULL;
3450
3451 /*
3452 * At least in one zone compaction wasn't deferred or skipped, so let's
3453 * count a compaction stall
3454 */
3455 count_vm_event(COMPACTSTALL);
3456
3457 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3458
3459 if (page) {
3460 struct zone *zone = page_zone(page);
3461
3462 zone->compact_blockskip_flush = false;
3463 compaction_defer_reset(zone, order, true);
3464 count_vm_event(COMPACTSUCCESS);
3465 return page;
3466 }
3467
3468 /*
3469 * It's bad if compaction run occurs and fails. The most likely reason
3470 * is that pages exist, but not enough to satisfy watermarks.
3471 */
3472 count_vm_event(COMPACTFAIL);
3473
3474 cond_resched();
3475
3476 return NULL;
3477 }
3478
3479 static inline bool
3480 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3481 enum compact_result compact_result,
3482 enum compact_priority *compact_priority,
3483 int *compaction_retries)
3484 {
3485 int max_retries = MAX_COMPACT_RETRIES;
3486 int min_priority;
3487 bool ret = false;
3488 int retries = *compaction_retries;
3489 enum compact_priority priority = *compact_priority;
3490
3491 if (!order)
3492 return false;
3493
3494 if (compaction_made_progress(compact_result))
3495 (*compaction_retries)++;
3496
3497 /*
3498 * compaction considers all the zone as desperately out of memory
3499 * so it doesn't really make much sense to retry except when the
3500 * failure could be caused by insufficient priority
3501 */
3502 if (compaction_failed(compact_result))
3503 goto check_priority;
3504
3505 /*
3506 * make sure the compaction wasn't deferred or didn't bail out early
3507 * due to locks contention before we declare that we should give up.
3508 * But do not retry if the given zonelist is not suitable for
3509 * compaction.
3510 */
3511 if (compaction_withdrawn(compact_result)) {
3512 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3513 goto out;
3514 }
3515
3516 /*
3517 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3518 * costly ones because they are de facto nofail and invoke OOM
3519 * killer to move on while costly can fail and users are ready
3520 * to cope with that. 1/4 retries is rather arbitrary but we
3521 * would need much more detailed feedback from compaction to
3522 * make a better decision.
3523 */
3524 if (order > PAGE_ALLOC_COSTLY_ORDER)
3525 max_retries /= 4;
3526 if (*compaction_retries <= max_retries) {
3527 ret = true;
3528 goto out;
3529 }
3530
3531 /*
3532 * Make sure there are attempts at the highest priority if we exhausted
3533 * all retries or failed at the lower priorities.
3534 */
3535 check_priority:
3536 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3537 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3538
3539 if (*compact_priority > min_priority) {
3540 (*compact_priority)--;
3541 *compaction_retries = 0;
3542 ret = true;
3543 }
3544 out:
3545 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3546 return ret;
3547 }
3548 #else
3549 static inline struct page *
3550 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3551 unsigned int alloc_flags, const struct alloc_context *ac,
3552 enum compact_priority prio, enum compact_result *compact_result)
3553 {
3554 *compact_result = COMPACT_SKIPPED;
3555 return NULL;
3556 }
3557
3558 static inline bool
3559 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3560 enum compact_result compact_result,
3561 enum compact_priority *compact_priority,
3562 int *compaction_retries)
3563 {
3564 struct zone *zone;
3565 struct zoneref *z;
3566
3567 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3568 return false;
3569
3570 /*
3571 * There are setups with compaction disabled which would prefer to loop
3572 * inside the allocator rather than hit the oom killer prematurely.
3573 * Let's give them a good hope and keep retrying while the order-0
3574 * watermarks are OK.
3575 */
3576 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3577 ac->nodemask) {
3578 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3579 ac_classzone_idx(ac), alloc_flags))
3580 return true;
3581 }
3582 return false;
3583 }
3584 #endif /* CONFIG_COMPACTION */
3585
3586 #ifdef CONFIG_LOCKDEP
3587 struct lockdep_map __fs_reclaim_map =
3588 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3589
3590 static bool __need_fs_reclaim(gfp_t gfp_mask)
3591 {
3592 gfp_mask = current_gfp_context(gfp_mask);
3593
3594 /* no reclaim without waiting on it */
3595 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3596 return false;
3597
3598 /* this guy won't enter reclaim */
3599 if (current->flags & PF_MEMALLOC)
3600 return false;
3601
3602 /* We're only interested __GFP_FS allocations for now */
3603 if (!(gfp_mask & __GFP_FS))
3604 return false;
3605
3606 if (gfp_mask & __GFP_NOLOCKDEP)
3607 return false;
3608
3609 return true;
3610 }
3611
3612 void fs_reclaim_acquire(gfp_t gfp_mask)
3613 {
3614 if (__need_fs_reclaim(gfp_mask))
3615 lock_map_acquire(&__fs_reclaim_map);
3616 }
3617 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3618
3619 void fs_reclaim_release(gfp_t gfp_mask)
3620 {
3621 if (__need_fs_reclaim(gfp_mask))
3622 lock_map_release(&__fs_reclaim_map);
3623 }
3624 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3625 #endif
3626
3627 /* Perform direct synchronous page reclaim */
3628 static int
3629 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3630 const struct alloc_context *ac)
3631 {
3632 struct reclaim_state reclaim_state;
3633 int progress;
3634 unsigned int noreclaim_flag;
3635
3636 cond_resched();
3637
3638 /* We now go into synchronous reclaim */
3639 cpuset_memory_pressure_bump();
3640 noreclaim_flag = memalloc_noreclaim_save();
3641 fs_reclaim_acquire(gfp_mask);
3642 reclaim_state.reclaimed_slab = 0;
3643 current->reclaim_state = &reclaim_state;
3644
3645 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3646 ac->nodemask);
3647
3648 current->reclaim_state = NULL;
3649 fs_reclaim_release(gfp_mask);
3650 memalloc_noreclaim_restore(noreclaim_flag);
3651
3652 cond_resched();
3653
3654 return progress;
3655 }
3656
3657 /* The really slow allocator path where we enter direct reclaim */
3658 static inline struct page *
3659 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3660 unsigned int alloc_flags, const struct alloc_context *ac,
3661 unsigned long *did_some_progress)
3662 {
3663 struct page *page = NULL;
3664 bool drained = false;
3665
3666 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3667 if (unlikely(!(*did_some_progress)))
3668 return NULL;
3669
3670 retry:
3671 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3672
3673 /*
3674 * If an allocation failed after direct reclaim, it could be because
3675 * pages are pinned on the per-cpu lists or in high alloc reserves.
3676 * Shrink them them and try again
3677 */
3678 if (!page && !drained) {
3679 unreserve_highatomic_pageblock(ac, false);
3680 drain_all_pages(NULL);
3681 drained = true;
3682 goto retry;
3683 }
3684
3685 return page;
3686 }
3687
3688 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3689 {
3690 struct zoneref *z;
3691 struct zone *zone;
3692 pg_data_t *last_pgdat = NULL;
3693
3694 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3695 ac->high_zoneidx, ac->nodemask) {
3696 if (last_pgdat != zone->zone_pgdat)
3697 wakeup_kswapd(zone, order, ac->high_zoneidx);
3698 last_pgdat = zone->zone_pgdat;
3699 }
3700 }
3701
3702 static inline unsigned int
3703 gfp_to_alloc_flags(gfp_t gfp_mask)
3704 {
3705 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3706
3707 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3708 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3709
3710 /*
3711 * The caller may dip into page reserves a bit more if the caller
3712 * cannot run direct reclaim, or if the caller has realtime scheduling
3713 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3714 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3715 */
3716 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3717
3718 if (gfp_mask & __GFP_ATOMIC) {
3719 /*
3720 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3721 * if it can't schedule.
3722 */
3723 if (!(gfp_mask & __GFP_NOMEMALLOC))
3724 alloc_flags |= ALLOC_HARDER;
3725 /*
3726 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3727 * comment for __cpuset_node_allowed().
3728 */
3729 alloc_flags &= ~ALLOC_CPUSET;
3730 } else if (unlikely(rt_task(current)) && !in_interrupt())
3731 alloc_flags |= ALLOC_HARDER;
3732
3733 #ifdef CONFIG_CMA
3734 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3735 alloc_flags |= ALLOC_CMA;
3736 #endif
3737 return alloc_flags;
3738 }
3739
3740 static bool oom_reserves_allowed(struct task_struct *tsk)
3741 {
3742 if (!tsk_is_oom_victim(tsk))
3743 return false;
3744
3745 /*
3746 * !MMU doesn't have oom reaper so give access to memory reserves
3747 * only to the thread with TIF_MEMDIE set
3748 */
3749 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3750 return false;
3751
3752 return true;
3753 }
3754
3755 /*
3756 * Distinguish requests which really need access to full memory
3757 * reserves from oom victims which can live with a portion of it
3758 */
3759 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3760 {
3761 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3762 return 0;
3763 if (gfp_mask & __GFP_MEMALLOC)
3764 return ALLOC_NO_WATERMARKS;
3765 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3766 return ALLOC_NO_WATERMARKS;
3767 if (!in_interrupt()) {
3768 if (current->flags & PF_MEMALLOC)
3769 return ALLOC_NO_WATERMARKS;
3770 else if (oom_reserves_allowed(current))
3771 return ALLOC_OOM;
3772 }
3773
3774 return 0;
3775 }
3776
3777 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3778 {
3779 return !!__gfp_pfmemalloc_flags(gfp_mask);
3780 }
3781
3782 /*
3783 * Checks whether it makes sense to retry the reclaim to make a forward progress
3784 * for the given allocation request.
3785 *
3786 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3787 * without success, or when we couldn't even meet the watermark if we
3788 * reclaimed all remaining pages on the LRU lists.
3789 *
3790 * Returns true if a retry is viable or false to enter the oom path.
3791 */
3792 static inline bool
3793 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3794 struct alloc_context *ac, int alloc_flags,
3795 bool did_some_progress, int *no_progress_loops)
3796 {
3797 struct zone *zone;
3798 struct zoneref *z;
3799
3800 /*
3801 * Costly allocations might have made a progress but this doesn't mean
3802 * their order will become available due to high fragmentation so
3803 * always increment the no progress counter for them
3804 */
3805 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3806 *no_progress_loops = 0;
3807 else
3808 (*no_progress_loops)++;
3809
3810 /*
3811 * Make sure we converge to OOM if we cannot make any progress
3812 * several times in the row.
3813 */
3814 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3815 /* Before OOM, exhaust highatomic_reserve */
3816 return unreserve_highatomic_pageblock(ac, true);
3817 }
3818
3819 /*
3820 * Keep reclaiming pages while there is a chance this will lead
3821 * somewhere. If none of the target zones can satisfy our allocation
3822 * request even if all reclaimable pages are considered then we are
3823 * screwed and have to go OOM.
3824 */
3825 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3826 ac->nodemask) {
3827 unsigned long available;
3828 unsigned long reclaimable;
3829 unsigned long min_wmark = min_wmark_pages(zone);
3830 bool wmark;
3831
3832 available = reclaimable = zone_reclaimable_pages(zone);
3833 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3834
3835 /*
3836 * Would the allocation succeed if we reclaimed all
3837 * reclaimable pages?
3838 */
3839 wmark = __zone_watermark_ok(zone, order, min_wmark,
3840 ac_classzone_idx(ac), alloc_flags, available);
3841 trace_reclaim_retry_zone(z, order, reclaimable,
3842 available, min_wmark, *no_progress_loops, wmark);
3843 if (wmark) {
3844 /*
3845 * If we didn't make any progress and have a lot of
3846 * dirty + writeback pages then we should wait for
3847 * an IO to complete to slow down the reclaim and
3848 * prevent from pre mature OOM
3849 */
3850 if (!did_some_progress) {
3851 unsigned long write_pending;
3852
3853 write_pending = zone_page_state_snapshot(zone,
3854 NR_ZONE_WRITE_PENDING);
3855
3856 if (2 * write_pending > reclaimable) {
3857 congestion_wait(BLK_RW_ASYNC, HZ/10);
3858 return true;
3859 }
3860 }
3861
3862 /*
3863 * Memory allocation/reclaim might be called from a WQ
3864 * context and the current implementation of the WQ
3865 * concurrency control doesn't recognize that
3866 * a particular WQ is congested if the worker thread is
3867 * looping without ever sleeping. Therefore we have to
3868 * do a short sleep here rather than calling
3869 * cond_resched().
3870 */
3871 if (current->flags & PF_WQ_WORKER)
3872 schedule_timeout_uninterruptible(1);
3873 else
3874 cond_resched();
3875
3876 return true;
3877 }
3878 }
3879
3880 return false;
3881 }
3882
3883 static inline bool
3884 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3885 {
3886 /*
3887 * It's possible that cpuset's mems_allowed and the nodemask from
3888 * mempolicy don't intersect. This should be normally dealt with by
3889 * policy_nodemask(), but it's possible to race with cpuset update in
3890 * such a way the check therein was true, and then it became false
3891 * before we got our cpuset_mems_cookie here.
3892 * This assumes that for all allocations, ac->nodemask can come only
3893 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3894 * when it does not intersect with the cpuset restrictions) or the
3895 * caller can deal with a violated nodemask.
3896 */
3897 if (cpusets_enabled() && ac->nodemask &&
3898 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3899 ac->nodemask = NULL;
3900 return true;
3901 }
3902
3903 /*
3904 * When updating a task's mems_allowed or mempolicy nodemask, it is
3905 * possible to race with parallel threads in such a way that our
3906 * allocation can fail while the mask is being updated. If we are about
3907 * to fail, check if the cpuset changed during allocation and if so,
3908 * retry.
3909 */
3910 if (read_mems_allowed_retry(cpuset_mems_cookie))
3911 return true;
3912
3913 return false;
3914 }
3915
3916 static inline struct page *
3917 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3918 struct alloc_context *ac)
3919 {
3920 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3921 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3922 struct page *page = NULL;
3923 unsigned int alloc_flags;
3924 unsigned long did_some_progress;
3925 enum compact_priority compact_priority;
3926 enum compact_result compact_result;
3927 int compaction_retries;
3928 int no_progress_loops;
3929 unsigned int cpuset_mems_cookie;
3930 int reserve_flags;
3931
3932 /*
3933 * We also sanity check to catch abuse of atomic reserves being used by
3934 * callers that are not in atomic context.
3935 */
3936 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3937 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3938 gfp_mask &= ~__GFP_ATOMIC;
3939
3940 retry_cpuset:
3941 compaction_retries = 0;
3942 no_progress_loops = 0;
3943 compact_priority = DEF_COMPACT_PRIORITY;
3944 cpuset_mems_cookie = read_mems_allowed_begin();
3945
3946 /*
3947 * The fast path uses conservative alloc_flags to succeed only until
3948 * kswapd needs to be woken up, and to avoid the cost of setting up
3949 * alloc_flags precisely. So we do that now.
3950 */
3951 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3952
3953 /*
3954 * We need to recalculate the starting point for the zonelist iterator
3955 * because we might have used different nodemask in the fast path, or
3956 * there was a cpuset modification and we are retrying - otherwise we
3957 * could end up iterating over non-eligible zones endlessly.
3958 */
3959 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3960 ac->high_zoneidx, ac->nodemask);
3961 if (!ac->preferred_zoneref->zone)
3962 goto nopage;
3963
3964 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3965 wake_all_kswapds(order, ac);
3966
3967 /*
3968 * The adjusted alloc_flags might result in immediate success, so try
3969 * that first
3970 */
3971 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3972 if (page)
3973 goto got_pg;
3974
3975 /*
3976 * For costly allocations, try direct compaction first, as it's likely
3977 * that we have enough base pages and don't need to reclaim. For non-
3978 * movable high-order allocations, do that as well, as compaction will
3979 * try prevent permanent fragmentation by migrating from blocks of the
3980 * same migratetype.
3981 * Don't try this for allocations that are allowed to ignore
3982 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3983 */
3984 if (can_direct_reclaim &&
3985 (costly_order ||
3986 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3987 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3988 page = __alloc_pages_direct_compact(gfp_mask, order,
3989 alloc_flags, ac,
3990 INIT_COMPACT_PRIORITY,
3991 &compact_result);
3992 if (page)
3993 goto got_pg;
3994
3995 /*
3996 * Checks for costly allocations with __GFP_NORETRY, which
3997 * includes THP page fault allocations
3998 */
3999 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4000 /*
4001 * If compaction is deferred for high-order allocations,
4002 * it is because sync compaction recently failed. If
4003 * this is the case and the caller requested a THP
4004 * allocation, we do not want to heavily disrupt the
4005 * system, so we fail the allocation instead of entering
4006 * direct reclaim.
4007 */
4008 if (compact_result == COMPACT_DEFERRED)
4009 goto nopage;
4010
4011 /*
4012 * Looks like reclaim/compaction is worth trying, but
4013 * sync compaction could be very expensive, so keep
4014 * using async compaction.
4015 */
4016 compact_priority = INIT_COMPACT_PRIORITY;
4017 }
4018 }
4019
4020 retry:
4021 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4022 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4023 wake_all_kswapds(order, ac);
4024
4025 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4026 if (reserve_flags)
4027 alloc_flags = reserve_flags;
4028
4029 /*
4030 * Reset the zonelist iterators if memory policies can be ignored.
4031 * These allocations are high priority and system rather than user
4032 * orientated.
4033 */
4034 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4035 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4036 ac->high_zoneidx, ac->nodemask);
4037 }
4038
4039 /* Attempt with potentially adjusted zonelist and alloc_flags */
4040 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4041 if (page)
4042 goto got_pg;
4043
4044 /* Caller is not willing to reclaim, we can't balance anything */
4045 if (!can_direct_reclaim)
4046 goto nopage;
4047
4048 /* Avoid recursion of direct reclaim */
4049 if (current->flags & PF_MEMALLOC)
4050 goto nopage;
4051
4052 /* Try direct reclaim and then allocating */
4053 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4054 &did_some_progress);
4055 if (page)
4056 goto got_pg;
4057
4058 /* Try direct compaction and then allocating */
4059 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4060 compact_priority, &compact_result);
4061 if (page)
4062 goto got_pg;
4063
4064 /* Do not loop if specifically requested */
4065 if (gfp_mask & __GFP_NORETRY)
4066 goto nopage;
4067
4068 /*
4069 * Do not retry costly high order allocations unless they are
4070 * __GFP_RETRY_MAYFAIL
4071 */
4072 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4073 goto nopage;
4074
4075 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4076 did_some_progress > 0, &no_progress_loops))
4077 goto retry;
4078
4079 /*
4080 * It doesn't make any sense to retry for the compaction if the order-0
4081 * reclaim is not able to make any progress because the current
4082 * implementation of the compaction depends on the sufficient amount
4083 * of free memory (see __compaction_suitable)
4084 */
4085 if (did_some_progress > 0 &&
4086 should_compact_retry(ac, order, alloc_flags,
4087 compact_result, &compact_priority,
4088 &compaction_retries))
4089 goto retry;
4090
4091
4092 /* Deal with possible cpuset update races before we start OOM killing */
4093 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4094 goto retry_cpuset;
4095
4096 /* Reclaim has failed us, start killing things */
4097 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4098 if (page)
4099 goto got_pg;
4100
4101 /* Avoid allocations with no watermarks from looping endlessly */
4102 if (tsk_is_oom_victim(current) &&
4103 (alloc_flags == ALLOC_OOM ||
4104 (gfp_mask & __GFP_NOMEMALLOC)))
4105 goto nopage;
4106
4107 /* Retry as long as the OOM killer is making progress */
4108 if (did_some_progress) {
4109 no_progress_loops = 0;
4110 goto retry;
4111 }
4112
4113 nopage:
4114 /* Deal with possible cpuset update races before we fail */
4115 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4116 goto retry_cpuset;
4117
4118 /*
4119 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4120 * we always retry
4121 */
4122 if (gfp_mask & __GFP_NOFAIL) {
4123 /*
4124 * All existing users of the __GFP_NOFAIL are blockable, so warn
4125 * of any new users that actually require GFP_NOWAIT
4126 */
4127 if (WARN_ON_ONCE(!can_direct_reclaim))
4128 goto fail;
4129
4130 /*
4131 * PF_MEMALLOC request from this context is rather bizarre
4132 * because we cannot reclaim anything and only can loop waiting
4133 * for somebody to do a work for us
4134 */
4135 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4136
4137 /*
4138 * non failing costly orders are a hard requirement which we
4139 * are not prepared for much so let's warn about these users
4140 * so that we can identify them and convert them to something
4141 * else.
4142 */
4143 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4144
4145 /*
4146 * Help non-failing allocations by giving them access to memory
4147 * reserves but do not use ALLOC_NO_WATERMARKS because this
4148 * could deplete whole memory reserves which would just make
4149 * the situation worse
4150 */
4151 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4152 if (page)
4153 goto got_pg;
4154
4155 cond_resched();
4156 goto retry;
4157 }
4158 fail:
4159 warn_alloc(gfp_mask, ac->nodemask,
4160 "page allocation failure: order:%u", order);
4161 got_pg:
4162 return page;
4163 }
4164
4165 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4166 int preferred_nid, nodemask_t *nodemask,
4167 struct alloc_context *ac, gfp_t *alloc_mask,
4168 unsigned int *alloc_flags)
4169 {
4170 ac->high_zoneidx = gfp_zone(gfp_mask);
4171 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4172 ac->nodemask = nodemask;
4173 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4174
4175 if (cpusets_enabled()) {
4176 *alloc_mask |= __GFP_HARDWALL;
4177 if (!ac->nodemask)
4178 ac->nodemask = &cpuset_current_mems_allowed;
4179 else
4180 *alloc_flags |= ALLOC_CPUSET;
4181 }
4182
4183 fs_reclaim_acquire(gfp_mask);
4184 fs_reclaim_release(gfp_mask);
4185
4186 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4187
4188 if (should_fail_alloc_page(gfp_mask, order))
4189 return false;
4190
4191 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4192 *alloc_flags |= ALLOC_CMA;
4193
4194 return true;
4195 }
4196
4197 /* Determine whether to spread dirty pages and what the first usable zone */
4198 static inline void finalise_ac(gfp_t gfp_mask,
4199 unsigned int order, struct alloc_context *ac)
4200 {
4201 /* Dirty zone balancing only done in the fast path */
4202 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4203
4204 /*
4205 * The preferred zone is used for statistics but crucially it is
4206 * also used as the starting point for the zonelist iterator. It
4207 * may get reset for allocations that ignore memory policies.
4208 */
4209 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4210 ac->high_zoneidx, ac->nodemask);
4211 }
4212
4213 /*
4214 * This is the 'heart' of the zoned buddy allocator.
4215 */
4216 struct page *
4217 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4218 nodemask_t *nodemask)
4219 {
4220 struct page *page;
4221 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4222 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4223 struct alloc_context ac = { };
4224
4225 /*
4226 * There are several places where we assume that the order value is sane
4227 * so bail out early if the request is out of bound.
4228 */
4229 if (unlikely(order >= MAX_ORDER)) {
4230 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4231 return NULL;
4232 }
4233
4234 gfp_mask &= gfp_allowed_mask;
4235 alloc_mask = gfp_mask;
4236 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4237 return NULL;
4238
4239 finalise_ac(gfp_mask, order, &ac);
4240
4241 /* First allocation attempt */
4242 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4243 if (likely(page))
4244 goto out;
4245
4246 /*
4247 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4248 * resp. GFP_NOIO which has to be inherited for all allocation requests
4249 * from a particular context which has been marked by
4250 * memalloc_no{fs,io}_{save,restore}.
4251 */
4252 alloc_mask = current_gfp_context(gfp_mask);
4253 ac.spread_dirty_pages = false;
4254
4255 /*
4256 * Restore the original nodemask if it was potentially replaced with
4257 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4258 */
4259 if (unlikely(ac.nodemask != nodemask))
4260 ac.nodemask = nodemask;
4261
4262 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4263
4264 out:
4265 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4266 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4267 __free_pages(page, order);
4268 page = NULL;
4269 }
4270
4271 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4272
4273 return page;
4274 }
4275 EXPORT_SYMBOL(__alloc_pages_nodemask);
4276
4277 /*
4278 * Common helper functions.
4279 */
4280 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4281 {
4282 struct page *page;
4283
4284 /*
4285 * __get_free_pages() returns a 32-bit address, which cannot represent
4286 * a highmem page
4287 */
4288 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4289
4290 page = alloc_pages(gfp_mask, order);
4291 if (!page)
4292 return 0;
4293 return (unsigned long) page_address(page);
4294 }
4295 EXPORT_SYMBOL(__get_free_pages);
4296
4297 unsigned long get_zeroed_page(gfp_t gfp_mask)
4298 {
4299 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4300 }
4301 EXPORT_SYMBOL(get_zeroed_page);
4302
4303 void __free_pages(struct page *page, unsigned int order)
4304 {
4305 if (put_page_testzero(page)) {
4306 if (order == 0)
4307 free_unref_page(page);
4308 else
4309 __free_pages_ok(page, order);
4310 }
4311 }
4312
4313 EXPORT_SYMBOL(__free_pages);
4314
4315 void free_pages(unsigned long addr, unsigned int order)
4316 {
4317 if (addr != 0) {
4318 VM_BUG_ON(!virt_addr_valid((void *)addr));
4319 __free_pages(virt_to_page((void *)addr), order);
4320 }
4321 }
4322
4323 EXPORT_SYMBOL(free_pages);
4324
4325 /*
4326 * Page Fragment:
4327 * An arbitrary-length arbitrary-offset area of memory which resides
4328 * within a 0 or higher order page. Multiple fragments within that page
4329 * are individually refcounted, in the page's reference counter.
4330 *
4331 * The page_frag functions below provide a simple allocation framework for
4332 * page fragments. This is used by the network stack and network device
4333 * drivers to provide a backing region of memory for use as either an
4334 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4335 */
4336 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4337 gfp_t gfp_mask)
4338 {
4339 struct page *page = NULL;
4340 gfp_t gfp = gfp_mask;
4341
4342 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4343 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4344 __GFP_NOMEMALLOC;
4345 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4346 PAGE_FRAG_CACHE_MAX_ORDER);
4347 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4348 #endif
4349 if (unlikely(!page))
4350 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4351
4352 nc->va = page ? page_address(page) : NULL;
4353
4354 return page;
4355 }
4356
4357 void __page_frag_cache_drain(struct page *page, unsigned int count)
4358 {
4359 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4360
4361 if (page_ref_sub_and_test(page, count)) {
4362 unsigned int order = compound_order(page);
4363
4364 if (order == 0)
4365 free_unref_page(page);
4366 else
4367 __free_pages_ok(page, order);
4368 }
4369 }
4370 EXPORT_SYMBOL(__page_frag_cache_drain);
4371
4372 void *page_frag_alloc(struct page_frag_cache *nc,
4373 unsigned int fragsz, gfp_t gfp_mask)
4374 {
4375 unsigned int size = PAGE_SIZE;
4376 struct page *page;
4377 int offset;
4378
4379 if (unlikely(!nc->va)) {
4380 refill:
4381 page = __page_frag_cache_refill(nc, gfp_mask);
4382 if (!page)
4383 return NULL;
4384
4385 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4386 /* if size can vary use size else just use PAGE_SIZE */
4387 size = nc->size;
4388 #endif
4389 /* Even if we own the page, we do not use atomic_set().
4390 * This would break get_page_unless_zero() users.
4391 */
4392 page_ref_add(page, size);
4393
4394 /* reset page count bias and offset to start of new frag */
4395 nc->pfmemalloc = page_is_pfmemalloc(page);
4396 nc->pagecnt_bias = size + 1;
4397 nc->offset = size;
4398 }
4399
4400 offset = nc->offset - fragsz;
4401 if (unlikely(offset < 0)) {
4402 page = virt_to_page(nc->va);
4403
4404 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4405 goto refill;
4406
4407 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4408 /* if size can vary use size else just use PAGE_SIZE */
4409 size = nc->size;
4410 #endif
4411 /* OK, page count is 0, we can safely set it */
4412 set_page_count(page, size + 1);
4413
4414 /* reset page count bias and offset to start of new frag */
4415 nc->pagecnt_bias = size + 1;
4416 offset = size - fragsz;
4417 }
4418
4419 nc->pagecnt_bias--;
4420 nc->offset = offset;
4421
4422 return nc->va + offset;
4423 }
4424 EXPORT_SYMBOL(page_frag_alloc);
4425
4426 /*
4427 * Frees a page fragment allocated out of either a compound or order 0 page.
4428 */
4429 void page_frag_free(void *addr)
4430 {
4431 struct page *page = virt_to_head_page(addr);
4432
4433 if (unlikely(put_page_testzero(page)))
4434 __free_pages_ok(page, compound_order(page));
4435 }
4436 EXPORT_SYMBOL(page_frag_free);
4437
4438 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4439 size_t size)
4440 {
4441 if (addr) {
4442 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4443 unsigned long used = addr + PAGE_ALIGN(size);
4444
4445 split_page(virt_to_page((void *)addr), order);
4446 while (used < alloc_end) {
4447 free_page(used);
4448 used += PAGE_SIZE;
4449 }
4450 }
4451 return (void *)addr;
4452 }
4453
4454 /**
4455 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4456 * @size: the number of bytes to allocate
4457 * @gfp_mask: GFP flags for the allocation
4458 *
4459 * This function is similar to alloc_pages(), except that it allocates the
4460 * minimum number of pages to satisfy the request. alloc_pages() can only
4461 * allocate memory in power-of-two pages.
4462 *
4463 * This function is also limited by MAX_ORDER.
4464 *
4465 * Memory allocated by this function must be released by free_pages_exact().
4466 */
4467 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4468 {
4469 unsigned int order = get_order(size);
4470 unsigned long addr;
4471
4472 addr = __get_free_pages(gfp_mask, order);
4473 return make_alloc_exact(addr, order, size);
4474 }
4475 EXPORT_SYMBOL(alloc_pages_exact);
4476
4477 /**
4478 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4479 * pages on a node.
4480 * @nid: the preferred node ID where memory should be allocated
4481 * @size: the number of bytes to allocate
4482 * @gfp_mask: GFP flags for the allocation
4483 *
4484 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4485 * back.
4486 */
4487 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4488 {
4489 unsigned int order = get_order(size);
4490 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4491 if (!p)
4492 return NULL;
4493 return make_alloc_exact((unsigned long)page_address(p), order, size);
4494 }
4495
4496 /**
4497 * free_pages_exact - release memory allocated via alloc_pages_exact()
4498 * @virt: the value returned by alloc_pages_exact.
4499 * @size: size of allocation, same value as passed to alloc_pages_exact().
4500 *
4501 * Release the memory allocated by a previous call to alloc_pages_exact.
4502 */
4503 void free_pages_exact(void *virt, size_t size)
4504 {
4505 unsigned long addr = (unsigned long)virt;
4506 unsigned long end = addr + PAGE_ALIGN(size);
4507
4508 while (addr < end) {
4509 free_page(addr);
4510 addr += PAGE_SIZE;
4511 }
4512 }
4513 EXPORT_SYMBOL(free_pages_exact);
4514
4515 /**
4516 * nr_free_zone_pages - count number of pages beyond high watermark
4517 * @offset: The zone index of the highest zone
4518 *
4519 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4520 * high watermark within all zones at or below a given zone index. For each
4521 * zone, the number of pages is calculated as:
4522 *
4523 * nr_free_zone_pages = managed_pages - high_pages
4524 */
4525 static unsigned long nr_free_zone_pages(int offset)
4526 {
4527 struct zoneref *z;
4528 struct zone *zone;
4529
4530 /* Just pick one node, since fallback list is circular */
4531 unsigned long sum = 0;
4532
4533 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4534
4535 for_each_zone_zonelist(zone, z, zonelist, offset) {
4536 unsigned long size = zone->managed_pages;
4537 unsigned long high = high_wmark_pages(zone);
4538 if (size > high)
4539 sum += size - high;
4540 }
4541
4542 return sum;
4543 }
4544
4545 /**
4546 * nr_free_buffer_pages - count number of pages beyond high watermark
4547 *
4548 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4549 * watermark within ZONE_DMA and ZONE_NORMAL.
4550 */
4551 unsigned long nr_free_buffer_pages(void)
4552 {
4553 return nr_free_zone_pages(gfp_zone(GFP_USER));
4554 }
4555 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4556
4557 /**
4558 * nr_free_pagecache_pages - count number of pages beyond high watermark
4559 *
4560 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4561 * high watermark within all zones.
4562 */
4563 unsigned long nr_free_pagecache_pages(void)
4564 {
4565 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4566 }
4567
4568 static inline void show_node(struct zone *zone)
4569 {
4570 if (IS_ENABLED(CONFIG_NUMA))
4571 printk("Node %d ", zone_to_nid(zone));
4572 }
4573
4574 long si_mem_available(void)
4575 {
4576 long available;
4577 unsigned long pagecache;
4578 unsigned long wmark_low = 0;
4579 unsigned long pages[NR_LRU_LISTS];
4580 struct zone *zone;
4581 int lru;
4582
4583 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4584 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4585
4586 for_each_zone(zone)
4587 wmark_low += zone->watermark[WMARK_LOW];
4588
4589 /*
4590 * Estimate the amount of memory available for userspace allocations,
4591 * without causing swapping.
4592 */
4593 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4594
4595 /*
4596 * Not all the page cache can be freed, otherwise the system will
4597 * start swapping. Assume at least half of the page cache, or the
4598 * low watermark worth of cache, needs to stay.
4599 */
4600 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4601 pagecache -= min(pagecache / 2, wmark_low);
4602 available += pagecache;
4603
4604 /*
4605 * Part of the reclaimable slab consists of items that are in use,
4606 * and cannot be freed. Cap this estimate at the low watermark.
4607 */
4608 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4609 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4610 wmark_low);
4611
4612 /*
4613 * Part of the kernel memory, which can be released under memory
4614 * pressure.
4615 */
4616 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4617 PAGE_SHIFT;
4618
4619 if (available < 0)
4620 available = 0;
4621 return available;
4622 }
4623 EXPORT_SYMBOL_GPL(si_mem_available);
4624
4625 void si_meminfo(struct sysinfo *val)
4626 {
4627 val->totalram = totalram_pages;
4628 val->sharedram = global_node_page_state(NR_SHMEM);
4629 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4630 val->bufferram = nr_blockdev_pages();
4631 val->totalhigh = totalhigh_pages;
4632 val->freehigh = nr_free_highpages();
4633 val->mem_unit = PAGE_SIZE;
4634 }
4635
4636 EXPORT_SYMBOL(si_meminfo);
4637
4638 #ifdef CONFIG_NUMA
4639 void si_meminfo_node(struct sysinfo *val, int nid)
4640 {
4641 int zone_type; /* needs to be signed */
4642 unsigned long managed_pages = 0;
4643 unsigned long managed_highpages = 0;
4644 unsigned long free_highpages = 0;
4645 pg_data_t *pgdat = NODE_DATA(nid);
4646
4647 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4648 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4649 val->totalram = managed_pages;
4650 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4651 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4652 #ifdef CONFIG_HIGHMEM
4653 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4654 struct zone *zone = &pgdat->node_zones[zone_type];
4655
4656 if (is_highmem(zone)) {
4657 managed_highpages += zone->managed_pages;
4658 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4659 }
4660 }
4661 val->totalhigh = managed_highpages;
4662 val->freehigh = free_highpages;
4663 #else
4664 val->totalhigh = managed_highpages;
4665 val->freehigh = free_highpages;
4666 #endif
4667 val->mem_unit = PAGE_SIZE;
4668 }
4669 #endif
4670
4671 /*
4672 * Determine whether the node should be displayed or not, depending on whether
4673 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4674 */
4675 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4676 {
4677 if (!(flags & SHOW_MEM_FILTER_NODES))
4678 return false;
4679
4680 /*
4681 * no node mask - aka implicit memory numa policy. Do not bother with
4682 * the synchronization - read_mems_allowed_begin - because we do not
4683 * have to be precise here.
4684 */
4685 if (!nodemask)
4686 nodemask = &cpuset_current_mems_allowed;
4687
4688 return !node_isset(nid, *nodemask);
4689 }
4690
4691 #define K(x) ((x) << (PAGE_SHIFT-10))
4692
4693 static void show_migration_types(unsigned char type)
4694 {
4695 static const char types[MIGRATE_TYPES] = {
4696 [MIGRATE_UNMOVABLE] = 'U',
4697 [MIGRATE_MOVABLE] = 'M',
4698 [MIGRATE_RECLAIMABLE] = 'E',
4699 [MIGRATE_HIGHATOMIC] = 'H',
4700 #ifdef CONFIG_CMA
4701 [MIGRATE_CMA] = 'C',
4702 #endif
4703 #ifdef CONFIG_MEMORY_ISOLATION
4704 [MIGRATE_ISOLATE] = 'I',
4705 #endif
4706 };
4707 char tmp[MIGRATE_TYPES + 1];
4708 char *p = tmp;
4709 int i;
4710
4711 for (i = 0; i < MIGRATE_TYPES; i++) {
4712 if (type & (1 << i))
4713 *p++ = types[i];
4714 }
4715
4716 *p = '\0';
4717 printk(KERN_CONT "(%s) ", tmp);
4718 }
4719
4720 /*
4721 * Show free area list (used inside shift_scroll-lock stuff)
4722 * We also calculate the percentage fragmentation. We do this by counting the
4723 * memory on each free list with the exception of the first item on the list.
4724 *
4725 * Bits in @filter:
4726 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4727 * cpuset.
4728 */
4729 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4730 {
4731 unsigned long free_pcp = 0;
4732 int cpu;
4733 struct zone *zone;
4734 pg_data_t *pgdat;
4735
4736 for_each_populated_zone(zone) {
4737 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4738 continue;
4739
4740 for_each_online_cpu(cpu)
4741 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4742 }
4743
4744 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4745 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4746 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4747 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4748 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4749 " free:%lu free_pcp:%lu free_cma:%lu\n",
4750 global_node_page_state(NR_ACTIVE_ANON),
4751 global_node_page_state(NR_INACTIVE_ANON),
4752 global_node_page_state(NR_ISOLATED_ANON),
4753 global_node_page_state(NR_ACTIVE_FILE),
4754 global_node_page_state(NR_INACTIVE_FILE),
4755 global_node_page_state(NR_ISOLATED_FILE),
4756 global_node_page_state(NR_UNEVICTABLE),
4757 global_node_page_state(NR_FILE_DIRTY),
4758 global_node_page_state(NR_WRITEBACK),
4759 global_node_page_state(NR_UNSTABLE_NFS),
4760 global_node_page_state(NR_SLAB_RECLAIMABLE),
4761 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4762 global_node_page_state(NR_FILE_MAPPED),
4763 global_node_page_state(NR_SHMEM),
4764 global_zone_page_state(NR_PAGETABLE),
4765 global_zone_page_state(NR_BOUNCE),
4766 global_zone_page_state(NR_FREE_PAGES),
4767 free_pcp,
4768 global_zone_page_state(NR_FREE_CMA_PAGES));
4769
4770 for_each_online_pgdat(pgdat) {
4771 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4772 continue;
4773
4774 printk("Node %d"
4775 " active_anon:%lukB"
4776 " inactive_anon:%lukB"
4777 " active_file:%lukB"
4778 " inactive_file:%lukB"
4779 " unevictable:%lukB"
4780 " isolated(anon):%lukB"
4781 " isolated(file):%lukB"
4782 " mapped:%lukB"
4783 " dirty:%lukB"
4784 " writeback:%lukB"
4785 " shmem:%lukB"
4786 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4787 " shmem_thp: %lukB"
4788 " shmem_pmdmapped: %lukB"
4789 " anon_thp: %lukB"
4790 #endif
4791 " writeback_tmp:%lukB"
4792 " unstable:%lukB"
4793 " all_unreclaimable? %s"
4794 "\n",
4795 pgdat->node_id,
4796 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4797 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4798 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4799 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4800 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4801 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4802 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4803 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4804 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4805 K(node_page_state(pgdat, NR_WRITEBACK)),
4806 K(node_page_state(pgdat, NR_SHMEM)),
4807 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4808 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4809 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4810 * HPAGE_PMD_NR),
4811 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4812 #endif
4813 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4814 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4815 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4816 "yes" : "no");
4817 }
4818
4819 for_each_populated_zone(zone) {
4820 int i;
4821
4822 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4823 continue;
4824
4825 free_pcp = 0;
4826 for_each_online_cpu(cpu)
4827 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4828
4829 show_node(zone);
4830 printk(KERN_CONT
4831 "%s"
4832 " free:%lukB"
4833 " min:%lukB"
4834 " low:%lukB"
4835 " high:%lukB"
4836 " active_anon:%lukB"
4837 " inactive_anon:%lukB"
4838 " active_file:%lukB"
4839 " inactive_file:%lukB"
4840 " unevictable:%lukB"
4841 " writepending:%lukB"
4842 " present:%lukB"
4843 " managed:%lukB"
4844 " mlocked:%lukB"
4845 " kernel_stack:%lukB"
4846 " pagetables:%lukB"
4847 " bounce:%lukB"
4848 " free_pcp:%lukB"
4849 " local_pcp:%ukB"
4850 " free_cma:%lukB"
4851 "\n",
4852 zone->name,
4853 K(zone_page_state(zone, NR_FREE_PAGES)),
4854 K(min_wmark_pages(zone)),
4855 K(low_wmark_pages(zone)),
4856 K(high_wmark_pages(zone)),
4857 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4858 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4859 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4860 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4861 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4862 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4863 K(zone->present_pages),
4864 K(zone->managed_pages),
4865 K(zone_page_state(zone, NR_MLOCK)),
4866 zone_page_state(zone, NR_KERNEL_STACK_KB),
4867 K(zone_page_state(zone, NR_PAGETABLE)),
4868 K(zone_page_state(zone, NR_BOUNCE)),
4869 K(free_pcp),
4870 K(this_cpu_read(zone->pageset->pcp.count)),
4871 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4872 printk("lowmem_reserve[]:");
4873 for (i = 0; i < MAX_NR_ZONES; i++)
4874 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4875 printk(KERN_CONT "\n");
4876 }
4877
4878 for_each_populated_zone(zone) {
4879 unsigned int order;
4880 unsigned long nr[MAX_ORDER], flags, total = 0;
4881 unsigned char types[MAX_ORDER];
4882
4883 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4884 continue;
4885 show_node(zone);
4886 printk(KERN_CONT "%s: ", zone->name);
4887
4888 spin_lock_irqsave(&zone->lock, flags);
4889 for (order = 0; order < MAX_ORDER; order++) {
4890 struct free_area *area = &zone->free_area[order];
4891 int type;
4892
4893 nr[order] = area->nr_free;
4894 total += nr[order] << order;
4895
4896 types[order] = 0;
4897 for (type = 0; type < MIGRATE_TYPES; type++) {
4898 if (!list_empty(&area->free_list[type]))
4899 types[order] |= 1 << type;
4900 }
4901 }
4902 spin_unlock_irqrestore(&zone->lock, flags);
4903 for (order = 0; order < MAX_ORDER; order++) {
4904 printk(KERN_CONT "%lu*%lukB ",
4905 nr[order], K(1UL) << order);
4906 if (nr[order])
4907 show_migration_types(types[order]);
4908 }
4909 printk(KERN_CONT "= %lukB\n", K(total));
4910 }
4911
4912 hugetlb_show_meminfo();
4913
4914 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4915
4916 show_swap_cache_info();
4917 }
4918
4919 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4920 {
4921 zoneref->zone = zone;
4922 zoneref->zone_idx = zone_idx(zone);
4923 }
4924
4925 /*
4926 * Builds allocation fallback zone lists.
4927 *
4928 * Add all populated zones of a node to the zonelist.
4929 */
4930 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4931 {
4932 struct zone *zone;
4933 enum zone_type zone_type = MAX_NR_ZONES;
4934 int nr_zones = 0;
4935
4936 do {
4937 zone_type--;
4938 zone = pgdat->node_zones + zone_type;
4939 if (managed_zone(zone)) {
4940 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4941 check_highest_zone(zone_type);
4942 }
4943 } while (zone_type);
4944
4945 return nr_zones;
4946 }
4947
4948 #ifdef CONFIG_NUMA
4949
4950 static int __parse_numa_zonelist_order(char *s)
4951 {
4952 /*
4953 * We used to support different zonlists modes but they turned
4954 * out to be just not useful. Let's keep the warning in place
4955 * if somebody still use the cmd line parameter so that we do
4956 * not fail it silently
4957 */
4958 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4959 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4960 return -EINVAL;
4961 }
4962 return 0;
4963 }
4964
4965 static __init int setup_numa_zonelist_order(char *s)
4966 {
4967 if (!s)
4968 return 0;
4969
4970 return __parse_numa_zonelist_order(s);
4971 }
4972 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4973
4974 char numa_zonelist_order[] = "Node";
4975
4976 /*
4977 * sysctl handler for numa_zonelist_order
4978 */
4979 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4980 void __user *buffer, size_t *length,
4981 loff_t *ppos)
4982 {
4983 char *str;
4984 int ret;
4985
4986 if (!write)
4987 return proc_dostring(table, write, buffer, length, ppos);
4988 str = memdup_user_nul(buffer, 16);
4989 if (IS_ERR(str))
4990 return PTR_ERR(str);
4991
4992 ret = __parse_numa_zonelist_order(str);
4993 kfree(str);
4994 return ret;
4995 }
4996
4997
4998 #define MAX_NODE_LOAD (nr_online_nodes)
4999 static int node_load[MAX_NUMNODES];
5000
5001 /**
5002 * find_next_best_node - find the next node that should appear in a given node's fallback list
5003 * @node: node whose fallback list we're appending
5004 * @used_node_mask: nodemask_t of already used nodes
5005 *
5006 * We use a number of factors to determine which is the next node that should
5007 * appear on a given node's fallback list. The node should not have appeared
5008 * already in @node's fallback list, and it should be the next closest node
5009 * according to the distance array (which contains arbitrary distance values
5010 * from each node to each node in the system), and should also prefer nodes
5011 * with no CPUs, since presumably they'll have very little allocation pressure
5012 * on them otherwise.
5013 * It returns -1 if no node is found.
5014 */
5015 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5016 {
5017 int n, val;
5018 int min_val = INT_MAX;
5019 int best_node = NUMA_NO_NODE;
5020 const struct cpumask *tmp = cpumask_of_node(0);
5021
5022 /* Use the local node if we haven't already */
5023 if (!node_isset(node, *used_node_mask)) {
5024 node_set(node, *used_node_mask);
5025 return node;
5026 }
5027
5028 for_each_node_state(n, N_MEMORY) {
5029
5030 /* Don't want a node to appear more than once */
5031 if (node_isset(n, *used_node_mask))
5032 continue;
5033
5034 /* Use the distance array to find the distance */
5035 val = node_distance(node, n);
5036
5037 /* Penalize nodes under us ("prefer the next node") */
5038 val += (n < node);
5039
5040 /* Give preference to headless and unused nodes */
5041 tmp = cpumask_of_node(n);
5042 if (!cpumask_empty(tmp))
5043 val += PENALTY_FOR_NODE_WITH_CPUS;
5044
5045 /* Slight preference for less loaded node */
5046 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5047 val += node_load[n];
5048
5049 if (val < min_val) {
5050 min_val = val;
5051 best_node = n;
5052 }
5053 }
5054
5055 if (best_node >= 0)
5056 node_set(best_node, *used_node_mask);
5057
5058 return best_node;
5059 }
5060
5061
5062 /*
5063 * Build zonelists ordered by node and zones within node.
5064 * This results in maximum locality--normal zone overflows into local
5065 * DMA zone, if any--but risks exhausting DMA zone.
5066 */
5067 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5068 unsigned nr_nodes)
5069 {
5070 struct zoneref *zonerefs;
5071 int i;
5072
5073 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5074
5075 for (i = 0; i < nr_nodes; i++) {
5076 int nr_zones;
5077
5078 pg_data_t *node = NODE_DATA(node_order[i]);
5079
5080 nr_zones = build_zonerefs_node(node, zonerefs);
5081 zonerefs += nr_zones;
5082 }
5083 zonerefs->zone = NULL;
5084 zonerefs->zone_idx = 0;
5085 }
5086
5087 /*
5088 * Build gfp_thisnode zonelists
5089 */
5090 static void build_thisnode_zonelists(pg_data_t *pgdat)
5091 {
5092 struct zoneref *zonerefs;
5093 int nr_zones;
5094
5095 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5096 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5097 zonerefs += nr_zones;
5098 zonerefs->zone = NULL;
5099 zonerefs->zone_idx = 0;
5100 }
5101
5102 /*
5103 * Build zonelists ordered by zone and nodes within zones.
5104 * This results in conserving DMA zone[s] until all Normal memory is
5105 * exhausted, but results in overflowing to remote node while memory
5106 * may still exist in local DMA zone.
5107 */
5108
5109 static void build_zonelists(pg_data_t *pgdat)
5110 {
5111 static int node_order[MAX_NUMNODES];
5112 int node, load, nr_nodes = 0;
5113 nodemask_t used_mask;
5114 int local_node, prev_node;
5115
5116 /* NUMA-aware ordering of nodes */
5117 local_node = pgdat->node_id;
5118 load = nr_online_nodes;
5119 prev_node = local_node;
5120 nodes_clear(used_mask);
5121
5122 memset(node_order, 0, sizeof(node_order));
5123 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5124 /*
5125 * We don't want to pressure a particular node.
5126 * So adding penalty to the first node in same
5127 * distance group to make it round-robin.
5128 */
5129 if (node_distance(local_node, node) !=
5130 node_distance(local_node, prev_node))
5131 node_load[node] = load;
5132
5133 node_order[nr_nodes++] = node;
5134 prev_node = node;
5135 load--;
5136 }
5137
5138 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5139 build_thisnode_zonelists(pgdat);
5140 }
5141
5142 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5143 /*
5144 * Return node id of node used for "local" allocations.
5145 * I.e., first node id of first zone in arg node's generic zonelist.
5146 * Used for initializing percpu 'numa_mem', which is used primarily
5147 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5148 */
5149 int local_memory_node(int node)
5150 {
5151 struct zoneref *z;
5152
5153 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5154 gfp_zone(GFP_KERNEL),
5155 NULL);
5156 return z->zone->node;
5157 }
5158 #endif
5159
5160 static void setup_min_unmapped_ratio(void);
5161 static void setup_min_slab_ratio(void);
5162 #else /* CONFIG_NUMA */
5163
5164 static void build_zonelists(pg_data_t *pgdat)
5165 {
5166 int node, local_node;
5167 struct zoneref *zonerefs;
5168 int nr_zones;
5169
5170 local_node = pgdat->node_id;
5171
5172 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5173 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5174 zonerefs += nr_zones;
5175
5176 /*
5177 * Now we build the zonelist so that it contains the zones
5178 * of all the other nodes.
5179 * We don't want to pressure a particular node, so when
5180 * building the zones for node N, we make sure that the
5181 * zones coming right after the local ones are those from
5182 * node N+1 (modulo N)
5183 */
5184 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5185 if (!node_online(node))
5186 continue;
5187 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5188 zonerefs += nr_zones;
5189 }
5190 for (node = 0; node < local_node; node++) {
5191 if (!node_online(node))
5192 continue;
5193 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5194 zonerefs += nr_zones;
5195 }
5196
5197 zonerefs->zone = NULL;
5198 zonerefs->zone_idx = 0;
5199 }
5200
5201 #endif /* CONFIG_NUMA */
5202
5203 /*
5204 * Boot pageset table. One per cpu which is going to be used for all
5205 * zones and all nodes. The parameters will be set in such a way
5206 * that an item put on a list will immediately be handed over to
5207 * the buddy list. This is safe since pageset manipulation is done
5208 * with interrupts disabled.
5209 *
5210 * The boot_pagesets must be kept even after bootup is complete for
5211 * unused processors and/or zones. They do play a role for bootstrapping
5212 * hotplugged processors.
5213 *
5214 * zoneinfo_show() and maybe other functions do
5215 * not check if the processor is online before following the pageset pointer.
5216 * Other parts of the kernel may not check if the zone is available.
5217 */
5218 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5219 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5220 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5221
5222 static void __build_all_zonelists(void *data)
5223 {
5224 int nid;
5225 int __maybe_unused cpu;
5226 pg_data_t *self = data;
5227 static DEFINE_SPINLOCK(lock);
5228
5229 spin_lock(&lock);
5230
5231 #ifdef CONFIG_NUMA
5232 memset(node_load, 0, sizeof(node_load));
5233 #endif
5234
5235 /*
5236 * This node is hotadded and no memory is yet present. So just
5237 * building zonelists is fine - no need to touch other nodes.
5238 */
5239 if (self && !node_online(self->node_id)) {
5240 build_zonelists(self);
5241 } else {
5242 for_each_online_node(nid) {
5243 pg_data_t *pgdat = NODE_DATA(nid);
5244
5245 build_zonelists(pgdat);
5246 }
5247
5248 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5249 /*
5250 * We now know the "local memory node" for each node--
5251 * i.e., the node of the first zone in the generic zonelist.
5252 * Set up numa_mem percpu variable for on-line cpus. During
5253 * boot, only the boot cpu should be on-line; we'll init the
5254 * secondary cpus' numa_mem as they come on-line. During
5255 * node/memory hotplug, we'll fixup all on-line cpus.
5256 */
5257 for_each_online_cpu(cpu)
5258 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5259 #endif
5260 }
5261
5262 spin_unlock(&lock);
5263 }
5264
5265 static noinline void __init
5266 build_all_zonelists_init(void)
5267 {
5268 int cpu;
5269
5270 __build_all_zonelists(NULL);
5271
5272 /*
5273 * Initialize the boot_pagesets that are going to be used
5274 * for bootstrapping processors. The real pagesets for
5275 * each zone will be allocated later when the per cpu
5276 * allocator is available.
5277 *
5278 * boot_pagesets are used also for bootstrapping offline
5279 * cpus if the system is already booted because the pagesets
5280 * are needed to initialize allocators on a specific cpu too.
5281 * F.e. the percpu allocator needs the page allocator which
5282 * needs the percpu allocator in order to allocate its pagesets
5283 * (a chicken-egg dilemma).
5284 */
5285 for_each_possible_cpu(cpu)
5286 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5287
5288 mminit_verify_zonelist();
5289 cpuset_init_current_mems_allowed();
5290 }
5291
5292 /*
5293 * unless system_state == SYSTEM_BOOTING.
5294 *
5295 * __ref due to call of __init annotated helper build_all_zonelists_init
5296 * [protected by SYSTEM_BOOTING].
5297 */
5298 void __ref build_all_zonelists(pg_data_t *pgdat)
5299 {
5300 if (system_state == SYSTEM_BOOTING) {
5301 build_all_zonelists_init();
5302 } else {
5303 __build_all_zonelists(pgdat);
5304 /* cpuset refresh routine should be here */
5305 }
5306 vm_total_pages = nr_free_pagecache_pages();
5307 /*
5308 * Disable grouping by mobility if the number of pages in the
5309 * system is too low to allow the mechanism to work. It would be
5310 * more accurate, but expensive to check per-zone. This check is
5311 * made on memory-hotadd so a system can start with mobility
5312 * disabled and enable it later
5313 */
5314 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5315 page_group_by_mobility_disabled = 1;
5316 else
5317 page_group_by_mobility_disabled = 0;
5318
5319 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5320 nr_online_nodes,
5321 page_group_by_mobility_disabled ? "off" : "on",
5322 vm_total_pages);
5323 #ifdef CONFIG_NUMA
5324 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5325 #endif
5326 }
5327
5328 /*
5329 * Initially all pages are reserved - free ones are freed
5330 * up by free_all_bootmem() once the early boot process is
5331 * done. Non-atomic initialization, single-pass.
5332 */
5333 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5334 unsigned long start_pfn, enum memmap_context context)
5335 {
5336 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5337 unsigned long end_pfn = start_pfn + size;
5338 pg_data_t *pgdat = NODE_DATA(nid);
5339 unsigned long pfn;
5340 unsigned long nr_initialised = 0;
5341 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5342 struct memblock_region *r = NULL, *tmp;
5343 #endif
5344
5345 if (highest_memmap_pfn < end_pfn - 1)
5346 highest_memmap_pfn = end_pfn - 1;
5347
5348 /*
5349 * Honor reservation requested by the driver for this ZONE_DEVICE
5350 * memory
5351 */
5352 if (altmap && start_pfn == altmap->base_pfn)
5353 start_pfn += altmap->reserve;
5354
5355 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5356 /*
5357 * There can be holes in boot-time mem_map[]s handed to this
5358 * function. They do not exist on hotplugged memory.
5359 */
5360 if (context != MEMMAP_EARLY)
5361 goto not_early;
5362
5363 if (!early_pfn_valid(pfn))
5364 continue;
5365 if (!early_pfn_in_nid(pfn, nid))
5366 continue;
5367 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5368 break;
5369
5370 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5371 /*
5372 * Check given memblock attribute by firmware which can affect
5373 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5374 * mirrored, it's an overlapped memmap init. skip it.
5375 */
5376 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5377 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5378 for_each_memblock(memory, tmp)
5379 if (pfn < memblock_region_memory_end_pfn(tmp))
5380 break;
5381 r = tmp;
5382 }
5383 if (pfn >= memblock_region_memory_base_pfn(r) &&
5384 memblock_is_mirror(r)) {
5385 /* already initialized as NORMAL */
5386 pfn = memblock_region_memory_end_pfn(r);
5387 continue;
5388 }
5389 }
5390 #endif
5391
5392 not_early:
5393 /*
5394 * Mark the block movable so that blocks are reserved for
5395 * movable at startup. This will force kernel allocations
5396 * to reserve their blocks rather than leaking throughout
5397 * the address space during boot when many long-lived
5398 * kernel allocations are made.
5399 *
5400 * bitmap is created for zone's valid pfn range. but memmap
5401 * can be created for invalid pages (for alignment)
5402 * check here not to call set_pageblock_migratetype() against
5403 * pfn out of zone.
5404 *
5405 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5406 * because this is done early in sparse_add_one_section
5407 */
5408 if (!(pfn & (pageblock_nr_pages - 1))) {
5409 struct page *page = pfn_to_page(pfn);
5410
5411 __init_single_page(page, pfn, zone, nid,
5412 context != MEMMAP_HOTPLUG);
5413 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5414 cond_resched();
5415 } else {
5416 __init_single_pfn(pfn, zone, nid,
5417 context != MEMMAP_HOTPLUG);
5418 }
5419 }
5420 }
5421
5422 static void __meminit zone_init_free_lists(struct zone *zone)
5423 {
5424 unsigned int order, t;
5425 for_each_migratetype_order(order, t) {
5426 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5427 zone->free_area[order].nr_free = 0;
5428 }
5429 }
5430
5431 #ifndef __HAVE_ARCH_MEMMAP_INIT
5432 #define memmap_init(size, nid, zone, start_pfn) \
5433 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5434 #endif
5435
5436 static int zone_batchsize(struct zone *zone)
5437 {
5438 #ifdef CONFIG_MMU
5439 int batch;
5440
5441 /*
5442 * The per-cpu-pages pools are set to around 1000th of the
5443 * size of the zone. But no more than 1/2 of a meg.
5444 *
5445 * OK, so we don't know how big the cache is. So guess.
5446 */
5447 batch = zone->managed_pages / 1024;
5448 if (batch * PAGE_SIZE > 512 * 1024)
5449 batch = (512 * 1024) / PAGE_SIZE;
5450 batch /= 4; /* We effectively *= 4 below */
5451 if (batch < 1)
5452 batch = 1;
5453
5454 /*
5455 * Clamp the batch to a 2^n - 1 value. Having a power
5456 * of 2 value was found to be more likely to have
5457 * suboptimal cache aliasing properties in some cases.
5458 *
5459 * For example if 2 tasks are alternately allocating
5460 * batches of pages, one task can end up with a lot
5461 * of pages of one half of the possible page colors
5462 * and the other with pages of the other colors.
5463 */
5464 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5465
5466 return batch;
5467
5468 #else
5469 /* The deferral and batching of frees should be suppressed under NOMMU
5470 * conditions.
5471 *
5472 * The problem is that NOMMU needs to be able to allocate large chunks
5473 * of contiguous memory as there's no hardware page translation to
5474 * assemble apparent contiguous memory from discontiguous pages.
5475 *
5476 * Queueing large contiguous runs of pages for batching, however,
5477 * causes the pages to actually be freed in smaller chunks. As there
5478 * can be a significant delay between the individual batches being
5479 * recycled, this leads to the once large chunks of space being
5480 * fragmented and becoming unavailable for high-order allocations.
5481 */
5482 return 0;
5483 #endif
5484 }
5485
5486 /*
5487 * pcp->high and pcp->batch values are related and dependent on one another:
5488 * ->batch must never be higher then ->high.
5489 * The following function updates them in a safe manner without read side
5490 * locking.
5491 *
5492 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5493 * those fields changing asynchronously (acording the the above rule).
5494 *
5495 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5496 * outside of boot time (or some other assurance that no concurrent updaters
5497 * exist).
5498 */
5499 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5500 unsigned long batch)
5501 {
5502 /* start with a fail safe value for batch */
5503 pcp->batch = 1;
5504 smp_wmb();
5505
5506 /* Update high, then batch, in order */
5507 pcp->high = high;
5508 smp_wmb();
5509
5510 pcp->batch = batch;
5511 }
5512
5513 /* a companion to pageset_set_high() */
5514 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5515 {
5516 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5517 }
5518
5519 static void pageset_init(struct per_cpu_pageset *p)
5520 {
5521 struct per_cpu_pages *pcp;
5522 int migratetype;
5523
5524 memset(p, 0, sizeof(*p));
5525
5526 pcp = &p->pcp;
5527 pcp->count = 0;
5528 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5529 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5530 }
5531
5532 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5533 {
5534 pageset_init(p);
5535 pageset_set_batch(p, batch);
5536 }
5537
5538 /*
5539 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5540 * to the value high for the pageset p.
5541 */
5542 static void pageset_set_high(struct per_cpu_pageset *p,
5543 unsigned long high)
5544 {
5545 unsigned long batch = max(1UL, high / 4);
5546 if ((high / 4) > (PAGE_SHIFT * 8))
5547 batch = PAGE_SHIFT * 8;
5548
5549 pageset_update(&p->pcp, high, batch);
5550 }
5551
5552 static void pageset_set_high_and_batch(struct zone *zone,
5553 struct per_cpu_pageset *pcp)
5554 {
5555 if (percpu_pagelist_fraction)
5556 pageset_set_high(pcp,
5557 (zone->managed_pages /
5558 percpu_pagelist_fraction));
5559 else
5560 pageset_set_batch(pcp, zone_batchsize(zone));
5561 }
5562
5563 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5564 {
5565 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5566
5567 pageset_init(pcp);
5568 pageset_set_high_and_batch(zone, pcp);
5569 }
5570
5571 void __meminit setup_zone_pageset(struct zone *zone)
5572 {
5573 int cpu;
5574 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5575 for_each_possible_cpu(cpu)
5576 zone_pageset_init(zone, cpu);
5577 }
5578
5579 /*
5580 * Allocate per cpu pagesets and initialize them.
5581 * Before this call only boot pagesets were available.
5582 */
5583 void __init setup_per_cpu_pageset(void)
5584 {
5585 struct pglist_data *pgdat;
5586 struct zone *zone;
5587
5588 for_each_populated_zone(zone)
5589 setup_zone_pageset(zone);
5590
5591 for_each_online_pgdat(pgdat)
5592 pgdat->per_cpu_nodestats =
5593 alloc_percpu(struct per_cpu_nodestat);
5594 }
5595
5596 static __meminit void zone_pcp_init(struct zone *zone)
5597 {
5598 /*
5599 * per cpu subsystem is not up at this point. The following code
5600 * relies on the ability of the linker to provide the
5601 * offset of a (static) per cpu variable into the per cpu area.
5602 */
5603 zone->pageset = &boot_pageset;
5604
5605 if (populated_zone(zone))
5606 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5607 zone->name, zone->present_pages,
5608 zone_batchsize(zone));
5609 }
5610
5611 void __meminit init_currently_empty_zone(struct zone *zone,
5612 unsigned long zone_start_pfn,
5613 unsigned long size)
5614 {
5615 struct pglist_data *pgdat = zone->zone_pgdat;
5616 int zone_idx = zone_idx(zone) + 1;
5617
5618 if (zone_idx > pgdat->nr_zones)
5619 pgdat->nr_zones = zone_idx;
5620
5621 zone->zone_start_pfn = zone_start_pfn;
5622
5623 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5624 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5625 pgdat->node_id,
5626 (unsigned long)zone_idx(zone),
5627 zone_start_pfn, (zone_start_pfn + size));
5628
5629 zone_init_free_lists(zone);
5630 zone->initialized = 1;
5631 }
5632
5633 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5634 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5635
5636 /*
5637 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5638 */
5639 int __meminit __early_pfn_to_nid(unsigned long pfn,
5640 struct mminit_pfnnid_cache *state)
5641 {
5642 unsigned long start_pfn, end_pfn;
5643 int nid;
5644
5645 if (state->last_start <= pfn && pfn < state->last_end)
5646 return state->last_nid;
5647
5648 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5649 if (nid != -1) {
5650 state->last_start = start_pfn;
5651 state->last_end = end_pfn;
5652 state->last_nid = nid;
5653 }
5654
5655 return nid;
5656 }
5657 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5658
5659 /**
5660 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5661 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5662 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5663 *
5664 * If an architecture guarantees that all ranges registered contain no holes
5665 * and may be freed, this this function may be used instead of calling
5666 * memblock_free_early_nid() manually.
5667 */
5668 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5669 {
5670 unsigned long start_pfn, end_pfn;
5671 int i, this_nid;
5672
5673 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5674 start_pfn = min(start_pfn, max_low_pfn);
5675 end_pfn = min(end_pfn, max_low_pfn);
5676
5677 if (start_pfn < end_pfn)
5678 memblock_free_early_nid(PFN_PHYS(start_pfn),
5679 (end_pfn - start_pfn) << PAGE_SHIFT,
5680 this_nid);
5681 }
5682 }
5683
5684 /**
5685 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5686 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5687 *
5688 * If an architecture guarantees that all ranges registered contain no holes and may
5689 * be freed, this function may be used instead of calling memory_present() manually.
5690 */
5691 void __init sparse_memory_present_with_active_regions(int nid)
5692 {
5693 unsigned long start_pfn, end_pfn;
5694 int i, this_nid;
5695
5696 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5697 memory_present(this_nid, start_pfn, end_pfn);
5698 }
5699
5700 /**
5701 * get_pfn_range_for_nid - Return the start and end page frames for a node
5702 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5703 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5704 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5705 *
5706 * It returns the start and end page frame of a node based on information
5707 * provided by memblock_set_node(). If called for a node
5708 * with no available memory, a warning is printed and the start and end
5709 * PFNs will be 0.
5710 */
5711 void __meminit get_pfn_range_for_nid(unsigned int nid,
5712 unsigned long *start_pfn, unsigned long *end_pfn)
5713 {
5714 unsigned long this_start_pfn, this_end_pfn;
5715 int i;
5716
5717 *start_pfn = -1UL;
5718 *end_pfn = 0;
5719
5720 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5721 *start_pfn = min(*start_pfn, this_start_pfn);
5722 *end_pfn = max(*end_pfn, this_end_pfn);
5723 }
5724
5725 if (*start_pfn == -1UL)
5726 *start_pfn = 0;
5727 }
5728
5729 /*
5730 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5731 * assumption is made that zones within a node are ordered in monotonic
5732 * increasing memory addresses so that the "highest" populated zone is used
5733 */
5734 static void __init find_usable_zone_for_movable(void)
5735 {
5736 int zone_index;
5737 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5738 if (zone_index == ZONE_MOVABLE)
5739 continue;
5740
5741 if (arch_zone_highest_possible_pfn[zone_index] >
5742 arch_zone_lowest_possible_pfn[zone_index])
5743 break;
5744 }
5745
5746 VM_BUG_ON(zone_index == -1);
5747 movable_zone = zone_index;
5748 }
5749
5750 /*
5751 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5752 * because it is sized independent of architecture. Unlike the other zones,
5753 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5754 * in each node depending on the size of each node and how evenly kernelcore
5755 * is distributed. This helper function adjusts the zone ranges
5756 * provided by the architecture for a given node by using the end of the
5757 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5758 * zones within a node are in order of monotonic increases memory addresses
5759 */
5760 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5761 unsigned long zone_type,
5762 unsigned long node_start_pfn,
5763 unsigned long node_end_pfn,
5764 unsigned long *zone_start_pfn,
5765 unsigned long *zone_end_pfn)
5766 {
5767 /* Only adjust if ZONE_MOVABLE is on this node */
5768 if (zone_movable_pfn[nid]) {
5769 /* Size ZONE_MOVABLE */
5770 if (zone_type == ZONE_MOVABLE) {
5771 *zone_start_pfn = zone_movable_pfn[nid];
5772 *zone_end_pfn = min(node_end_pfn,
5773 arch_zone_highest_possible_pfn[movable_zone]);
5774
5775 /* Adjust for ZONE_MOVABLE starting within this range */
5776 } else if (!mirrored_kernelcore &&
5777 *zone_start_pfn < zone_movable_pfn[nid] &&
5778 *zone_end_pfn > zone_movable_pfn[nid]) {
5779 *zone_end_pfn = zone_movable_pfn[nid];
5780
5781 /* Check if this whole range is within ZONE_MOVABLE */
5782 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5783 *zone_start_pfn = *zone_end_pfn;
5784 }
5785 }
5786
5787 /*
5788 * Return the number of pages a zone spans in a node, including holes
5789 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5790 */
5791 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5792 unsigned long zone_type,
5793 unsigned long node_start_pfn,
5794 unsigned long node_end_pfn,
5795 unsigned long *zone_start_pfn,
5796 unsigned long *zone_end_pfn,
5797 unsigned long *ignored)
5798 {
5799 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5800 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5801 /* When hotadd a new node from cpu_up(), the node should be empty */
5802 if (!node_start_pfn && !node_end_pfn)
5803 return 0;
5804
5805 /* Get the start and end of the zone */
5806 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5807 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5808 adjust_zone_range_for_zone_movable(nid, zone_type,
5809 node_start_pfn, node_end_pfn,
5810 zone_start_pfn, zone_end_pfn);
5811
5812 /* Check that this node has pages within the zone's required range */
5813 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5814 return 0;
5815
5816 /* Move the zone boundaries inside the node if necessary */
5817 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5818 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5819
5820 /* Return the spanned pages */
5821 return *zone_end_pfn - *zone_start_pfn;
5822 }
5823
5824 /*
5825 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5826 * then all holes in the requested range will be accounted for.
5827 */
5828 unsigned long __meminit __absent_pages_in_range(int nid,
5829 unsigned long range_start_pfn,
5830 unsigned long range_end_pfn)
5831 {
5832 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5833 unsigned long start_pfn, end_pfn;
5834 int i;
5835
5836 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5837 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5838 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5839 nr_absent -= end_pfn - start_pfn;
5840 }
5841 return nr_absent;
5842 }
5843
5844 /**
5845 * absent_pages_in_range - Return number of page frames in holes within a range
5846 * @start_pfn: The start PFN to start searching for holes
5847 * @end_pfn: The end PFN to stop searching for holes
5848 *
5849 * It returns the number of pages frames in memory holes within a range.
5850 */
5851 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5852 unsigned long end_pfn)
5853 {
5854 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5855 }
5856
5857 /* Return the number of page frames in holes in a zone on a node */
5858 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5859 unsigned long zone_type,
5860 unsigned long node_start_pfn,
5861 unsigned long node_end_pfn,
5862 unsigned long *ignored)
5863 {
5864 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5865 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5866 unsigned long zone_start_pfn, zone_end_pfn;
5867 unsigned long nr_absent;
5868
5869 /* When hotadd a new node from cpu_up(), the node should be empty */
5870 if (!node_start_pfn && !node_end_pfn)
5871 return 0;
5872
5873 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5874 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5875
5876 adjust_zone_range_for_zone_movable(nid, zone_type,
5877 node_start_pfn, node_end_pfn,
5878 &zone_start_pfn, &zone_end_pfn);
5879 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5880
5881 /*
5882 * ZONE_MOVABLE handling.
5883 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5884 * and vice versa.
5885 */
5886 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5887 unsigned long start_pfn, end_pfn;
5888 struct memblock_region *r;
5889
5890 for_each_memblock(memory, r) {
5891 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5892 zone_start_pfn, zone_end_pfn);
5893 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5894 zone_start_pfn, zone_end_pfn);
5895
5896 if (zone_type == ZONE_MOVABLE &&
5897 memblock_is_mirror(r))
5898 nr_absent += end_pfn - start_pfn;
5899
5900 if (zone_type == ZONE_NORMAL &&
5901 !memblock_is_mirror(r))
5902 nr_absent += end_pfn - start_pfn;
5903 }
5904 }
5905
5906 return nr_absent;
5907 }
5908
5909 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5910 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5911 unsigned long zone_type,
5912 unsigned long node_start_pfn,
5913 unsigned long node_end_pfn,
5914 unsigned long *zone_start_pfn,
5915 unsigned long *zone_end_pfn,
5916 unsigned long *zones_size)
5917 {
5918 unsigned int zone;
5919
5920 *zone_start_pfn = node_start_pfn;
5921 for (zone = 0; zone < zone_type; zone++)
5922 *zone_start_pfn += zones_size[zone];
5923
5924 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5925
5926 return zones_size[zone_type];
5927 }
5928
5929 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5930 unsigned long zone_type,
5931 unsigned long node_start_pfn,
5932 unsigned long node_end_pfn,
5933 unsigned long *zholes_size)
5934 {
5935 if (!zholes_size)
5936 return 0;
5937
5938 return zholes_size[zone_type];
5939 }
5940
5941 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5942
5943 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5944 unsigned long node_start_pfn,
5945 unsigned long node_end_pfn,
5946 unsigned long *zones_size,
5947 unsigned long *zholes_size)
5948 {
5949 unsigned long realtotalpages = 0, totalpages = 0;
5950 enum zone_type i;
5951
5952 for (i = 0; i < MAX_NR_ZONES; i++) {
5953 struct zone *zone = pgdat->node_zones + i;
5954 unsigned long zone_start_pfn, zone_end_pfn;
5955 unsigned long size, real_size;
5956
5957 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5958 node_start_pfn,
5959 node_end_pfn,
5960 &zone_start_pfn,
5961 &zone_end_pfn,
5962 zones_size);
5963 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5964 node_start_pfn, node_end_pfn,
5965 zholes_size);
5966 if (size)
5967 zone->zone_start_pfn = zone_start_pfn;
5968 else
5969 zone->zone_start_pfn = 0;
5970 zone->spanned_pages = size;
5971 zone->present_pages = real_size;
5972
5973 totalpages += size;
5974 realtotalpages += real_size;
5975 }
5976
5977 pgdat->node_spanned_pages = totalpages;
5978 pgdat->node_present_pages = realtotalpages;
5979 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5980 realtotalpages);
5981 }
5982
5983 #ifndef CONFIG_SPARSEMEM
5984 /*
5985 * Calculate the size of the zone->blockflags rounded to an unsigned long
5986 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5987 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5988 * round what is now in bits to nearest long in bits, then return it in
5989 * bytes.
5990 */
5991 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5992 {
5993 unsigned long usemapsize;
5994
5995 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5996 usemapsize = roundup(zonesize, pageblock_nr_pages);
5997 usemapsize = usemapsize >> pageblock_order;
5998 usemapsize *= NR_PAGEBLOCK_BITS;
5999 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6000
6001 return usemapsize / 8;
6002 }
6003
6004 static void __init setup_usemap(struct pglist_data *pgdat,
6005 struct zone *zone,
6006 unsigned long zone_start_pfn,
6007 unsigned long zonesize)
6008 {
6009 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6010 zone->pageblock_flags = NULL;
6011 if (usemapsize)
6012 zone->pageblock_flags =
6013 memblock_virt_alloc_node_nopanic(usemapsize,
6014 pgdat->node_id);
6015 }
6016 #else
6017 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6018 unsigned long zone_start_pfn, unsigned long zonesize) {}
6019 #endif /* CONFIG_SPARSEMEM */
6020
6021 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6022
6023 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6024 void __paginginit set_pageblock_order(void)
6025 {
6026 unsigned int order;
6027
6028 /* Check that pageblock_nr_pages has not already been setup */
6029 if (pageblock_order)
6030 return;
6031
6032 if (HPAGE_SHIFT > PAGE_SHIFT)
6033 order = HUGETLB_PAGE_ORDER;
6034 else
6035 order = MAX_ORDER - 1;
6036
6037 /*
6038 * Assume the largest contiguous order of interest is a huge page.
6039 * This value may be variable depending on boot parameters on IA64 and
6040 * powerpc.
6041 */
6042 pageblock_order = order;
6043 }
6044 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6045
6046 /*
6047 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6048 * is unused as pageblock_order is set at compile-time. See
6049 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6050 * the kernel config
6051 */
6052 void __paginginit set_pageblock_order(void)
6053 {
6054 }
6055
6056 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6057
6058 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6059 unsigned long present_pages)
6060 {
6061 unsigned long pages = spanned_pages;
6062
6063 /*
6064 * Provide a more accurate estimation if there are holes within
6065 * the zone and SPARSEMEM is in use. If there are holes within the
6066 * zone, each populated memory region may cost us one or two extra
6067 * memmap pages due to alignment because memmap pages for each
6068 * populated regions may not be naturally aligned on page boundary.
6069 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6070 */
6071 if (spanned_pages > present_pages + (present_pages >> 4) &&
6072 IS_ENABLED(CONFIG_SPARSEMEM))
6073 pages = present_pages;
6074
6075 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6076 }
6077
6078 /*
6079 * Set up the zone data structures:
6080 * - mark all pages reserved
6081 * - mark all memory queues empty
6082 * - clear the memory bitmaps
6083 *
6084 * NOTE: pgdat should get zeroed by caller.
6085 */
6086 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6087 {
6088 enum zone_type j;
6089 int nid = pgdat->node_id;
6090
6091 pgdat_resize_init(pgdat);
6092 #ifdef CONFIG_NUMA_BALANCING
6093 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6094 pgdat->numabalancing_migrate_nr_pages = 0;
6095 pgdat->numabalancing_migrate_next_window = jiffies;
6096 #endif
6097 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6098 spin_lock_init(&pgdat->split_queue_lock);
6099 INIT_LIST_HEAD(&pgdat->split_queue);
6100 pgdat->split_queue_len = 0;
6101 #endif
6102 init_waitqueue_head(&pgdat->kswapd_wait);
6103 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6104 #ifdef CONFIG_COMPACTION
6105 init_waitqueue_head(&pgdat->kcompactd_wait);
6106 #endif
6107 pgdat_page_ext_init(pgdat);
6108 spin_lock_init(&pgdat->lru_lock);
6109 lruvec_init(node_lruvec(pgdat));
6110
6111 pgdat->per_cpu_nodestats = &boot_nodestats;
6112
6113 for (j = 0; j < MAX_NR_ZONES; j++) {
6114 struct zone *zone = pgdat->node_zones + j;
6115 unsigned long size, realsize, freesize, memmap_pages;
6116 unsigned long zone_start_pfn = zone->zone_start_pfn;
6117
6118 size = zone->spanned_pages;
6119 realsize = freesize = zone->present_pages;
6120
6121 /*
6122 * Adjust freesize so that it accounts for how much memory
6123 * is used by this zone for memmap. This affects the watermark
6124 * and per-cpu initialisations
6125 */
6126 memmap_pages = calc_memmap_size(size, realsize);
6127 if (!is_highmem_idx(j)) {
6128 if (freesize >= memmap_pages) {
6129 freesize -= memmap_pages;
6130 if (memmap_pages)
6131 printk(KERN_DEBUG
6132 " %s zone: %lu pages used for memmap\n",
6133 zone_names[j], memmap_pages);
6134 } else
6135 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6136 zone_names[j], memmap_pages, freesize);
6137 }
6138
6139 /* Account for reserved pages */
6140 if (j == 0 && freesize > dma_reserve) {
6141 freesize -= dma_reserve;
6142 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6143 zone_names[0], dma_reserve);
6144 }
6145
6146 if (!is_highmem_idx(j))
6147 nr_kernel_pages += freesize;
6148 /* Charge for highmem memmap if there are enough kernel pages */
6149 else if (nr_kernel_pages > memmap_pages * 2)
6150 nr_kernel_pages -= memmap_pages;
6151 nr_all_pages += freesize;
6152
6153 /*
6154 * Set an approximate value for lowmem here, it will be adjusted
6155 * when the bootmem allocator frees pages into the buddy system.
6156 * And all highmem pages will be managed by the buddy system.
6157 */
6158 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6159 #ifdef CONFIG_NUMA
6160 zone->node = nid;
6161 #endif
6162 zone->name = zone_names[j];
6163 zone->zone_pgdat = pgdat;
6164 spin_lock_init(&zone->lock);
6165 zone_seqlock_init(zone);
6166 zone_pcp_init(zone);
6167
6168 if (!size)
6169 continue;
6170
6171 set_pageblock_order();
6172 setup_usemap(pgdat, zone, zone_start_pfn, size);
6173 init_currently_empty_zone(zone, zone_start_pfn, size);
6174 memmap_init(size, nid, j, zone_start_pfn);
6175 }
6176 }
6177
6178 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6179 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6180 {
6181 unsigned long __maybe_unused start = 0;
6182 unsigned long __maybe_unused offset = 0;
6183
6184 /* Skip empty nodes */
6185 if (!pgdat->node_spanned_pages)
6186 return;
6187
6188 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6189 offset = pgdat->node_start_pfn - start;
6190 /* ia64 gets its own node_mem_map, before this, without bootmem */
6191 if (!pgdat->node_mem_map) {
6192 unsigned long size, end;
6193 struct page *map;
6194
6195 /*
6196 * The zone's endpoints aren't required to be MAX_ORDER
6197 * aligned but the node_mem_map endpoints must be in order
6198 * for the buddy allocator to function correctly.
6199 */
6200 end = pgdat_end_pfn(pgdat);
6201 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6202 size = (end - start) * sizeof(struct page);
6203 map = alloc_remap(pgdat->node_id, size);
6204 if (!map)
6205 map = memblock_virt_alloc_node_nopanic(size,
6206 pgdat->node_id);
6207 pgdat->node_mem_map = map + offset;
6208 }
6209 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6210 __func__, pgdat->node_id, (unsigned long)pgdat,
6211 (unsigned long)pgdat->node_mem_map);
6212 #ifndef CONFIG_NEED_MULTIPLE_NODES
6213 /*
6214 * With no DISCONTIG, the global mem_map is just set as node 0's
6215 */
6216 if (pgdat == NODE_DATA(0)) {
6217 mem_map = NODE_DATA(0)->node_mem_map;
6218 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6219 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6220 mem_map -= offset;
6221 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6222 }
6223 #endif
6224 }
6225 #else
6226 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6227 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6228
6229 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6230 unsigned long node_start_pfn, unsigned long *zholes_size)
6231 {
6232 pg_data_t *pgdat = NODE_DATA(nid);
6233 unsigned long start_pfn = 0;
6234 unsigned long end_pfn = 0;
6235
6236 /* pg_data_t should be reset to zero when it's allocated */
6237 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6238
6239 pgdat->node_id = nid;
6240 pgdat->node_start_pfn = node_start_pfn;
6241 pgdat->per_cpu_nodestats = NULL;
6242 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6243 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6244 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6245 (u64)start_pfn << PAGE_SHIFT,
6246 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6247 #else
6248 start_pfn = node_start_pfn;
6249 #endif
6250 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6251 zones_size, zholes_size);
6252
6253 alloc_node_mem_map(pgdat);
6254
6255 reset_deferred_meminit(pgdat);
6256 free_area_init_core(pgdat);
6257 }
6258
6259 #if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6260 /*
6261 * Only struct pages that are backed by physical memory are zeroed and
6262 * initialized by going through __init_single_page(). But, there are some
6263 * struct pages which are reserved in memblock allocator and their fields
6264 * may be accessed (for example page_to_pfn() on some configuration accesses
6265 * flags). We must explicitly zero those struct pages.
6266 */
6267 void __paginginit zero_resv_unavail(void)
6268 {
6269 phys_addr_t start, end;
6270 unsigned long pfn;
6271 u64 i, pgcnt;
6272
6273 /*
6274 * Loop through ranges that are reserved, but do not have reported
6275 * physical memory backing.
6276 */
6277 pgcnt = 0;
6278 for_each_resv_unavail_range(i, &start, &end) {
6279 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6280 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6281 continue;
6282 mm_zero_struct_page(pfn_to_page(pfn));
6283 pgcnt++;
6284 }
6285 }
6286
6287 /*
6288 * Struct pages that do not have backing memory. This could be because
6289 * firmware is using some of this memory, or for some other reasons.
6290 * Once memblock is changed so such behaviour is not allowed: i.e.
6291 * list of "reserved" memory must be a subset of list of "memory", then
6292 * this code can be removed.
6293 */
6294 if (pgcnt)
6295 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6296 }
6297 #endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6298
6299 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6300
6301 #if MAX_NUMNODES > 1
6302 /*
6303 * Figure out the number of possible node ids.
6304 */
6305 void __init setup_nr_node_ids(void)
6306 {
6307 unsigned int highest;
6308
6309 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6310 nr_node_ids = highest + 1;
6311 }
6312 #endif
6313
6314 /**
6315 * node_map_pfn_alignment - determine the maximum internode alignment
6316 *
6317 * This function should be called after node map is populated and sorted.
6318 * It calculates the maximum power of two alignment which can distinguish
6319 * all the nodes.
6320 *
6321 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6322 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6323 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6324 * shifted, 1GiB is enough and this function will indicate so.
6325 *
6326 * This is used to test whether pfn -> nid mapping of the chosen memory
6327 * model has fine enough granularity to avoid incorrect mapping for the
6328 * populated node map.
6329 *
6330 * Returns the determined alignment in pfn's. 0 if there is no alignment
6331 * requirement (single node).
6332 */
6333 unsigned long __init node_map_pfn_alignment(void)
6334 {
6335 unsigned long accl_mask = 0, last_end = 0;
6336 unsigned long start, end, mask;
6337 int last_nid = -1;
6338 int i, nid;
6339
6340 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6341 if (!start || last_nid < 0 || last_nid == nid) {
6342 last_nid = nid;
6343 last_end = end;
6344 continue;
6345 }
6346
6347 /*
6348 * Start with a mask granular enough to pin-point to the
6349 * start pfn and tick off bits one-by-one until it becomes
6350 * too coarse to separate the current node from the last.
6351 */
6352 mask = ~((1 << __ffs(start)) - 1);
6353 while (mask && last_end <= (start & (mask << 1)))
6354 mask <<= 1;
6355
6356 /* accumulate all internode masks */
6357 accl_mask |= mask;
6358 }
6359
6360 /* convert mask to number of pages */
6361 return ~accl_mask + 1;
6362 }
6363
6364 /* Find the lowest pfn for a node */
6365 static unsigned long __init find_min_pfn_for_node(int nid)
6366 {
6367 unsigned long min_pfn = ULONG_MAX;
6368 unsigned long start_pfn;
6369 int i;
6370
6371 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6372 min_pfn = min(min_pfn, start_pfn);
6373
6374 if (min_pfn == ULONG_MAX) {
6375 pr_warn("Could not find start_pfn for node %d\n", nid);
6376 return 0;
6377 }
6378
6379 return min_pfn;
6380 }
6381
6382 /**
6383 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6384 *
6385 * It returns the minimum PFN based on information provided via
6386 * memblock_set_node().
6387 */
6388 unsigned long __init find_min_pfn_with_active_regions(void)
6389 {
6390 return find_min_pfn_for_node(MAX_NUMNODES);
6391 }
6392
6393 /*
6394 * early_calculate_totalpages()
6395 * Sum pages in active regions for movable zone.
6396 * Populate N_MEMORY for calculating usable_nodes.
6397 */
6398 static unsigned long __init early_calculate_totalpages(void)
6399 {
6400 unsigned long totalpages = 0;
6401 unsigned long start_pfn, end_pfn;
6402 int i, nid;
6403
6404 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6405 unsigned long pages = end_pfn - start_pfn;
6406
6407 totalpages += pages;
6408 if (pages)
6409 node_set_state(nid, N_MEMORY);
6410 }
6411 return totalpages;
6412 }
6413
6414 /*
6415 * Find the PFN the Movable zone begins in each node. Kernel memory
6416 * is spread evenly between nodes as long as the nodes have enough
6417 * memory. When they don't, some nodes will have more kernelcore than
6418 * others
6419 */
6420 static void __init find_zone_movable_pfns_for_nodes(void)
6421 {
6422 int i, nid;
6423 unsigned long usable_startpfn;
6424 unsigned long kernelcore_node, kernelcore_remaining;
6425 /* save the state before borrow the nodemask */
6426 nodemask_t saved_node_state = node_states[N_MEMORY];
6427 unsigned long totalpages = early_calculate_totalpages();
6428 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6429 struct memblock_region *r;
6430
6431 /* Need to find movable_zone earlier when movable_node is specified. */
6432 find_usable_zone_for_movable();
6433
6434 /*
6435 * If movable_node is specified, ignore kernelcore and movablecore
6436 * options.
6437 */
6438 if (movable_node_is_enabled()) {
6439 for_each_memblock(memory, r) {
6440 if (!memblock_is_hotpluggable(r))
6441 continue;
6442
6443 nid = r->nid;
6444
6445 usable_startpfn = PFN_DOWN(r->base);
6446 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6447 min(usable_startpfn, zone_movable_pfn[nid]) :
6448 usable_startpfn;
6449 }
6450
6451 goto out2;
6452 }
6453
6454 /*
6455 * If kernelcore=mirror is specified, ignore movablecore option
6456 */
6457 if (mirrored_kernelcore) {
6458 bool mem_below_4gb_not_mirrored = false;
6459
6460 for_each_memblock(memory, r) {
6461 if (memblock_is_mirror(r))
6462 continue;
6463
6464 nid = r->nid;
6465
6466 usable_startpfn = memblock_region_memory_base_pfn(r);
6467
6468 if (usable_startpfn < 0x100000) {
6469 mem_below_4gb_not_mirrored = true;
6470 continue;
6471 }
6472
6473 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6474 min(usable_startpfn, zone_movable_pfn[nid]) :
6475 usable_startpfn;
6476 }
6477
6478 if (mem_below_4gb_not_mirrored)
6479 pr_warn("This configuration results in unmirrored kernel memory.");
6480
6481 goto out2;
6482 }
6483
6484 /*
6485 * If movablecore=nn[KMG] was specified, calculate what size of
6486 * kernelcore that corresponds so that memory usable for
6487 * any allocation type is evenly spread. If both kernelcore
6488 * and movablecore are specified, then the value of kernelcore
6489 * will be used for required_kernelcore if it's greater than
6490 * what movablecore would have allowed.
6491 */
6492 if (required_movablecore) {
6493 unsigned long corepages;
6494
6495 /*
6496 * Round-up so that ZONE_MOVABLE is at least as large as what
6497 * was requested by the user
6498 */
6499 required_movablecore =
6500 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6501 required_movablecore = min(totalpages, required_movablecore);
6502 corepages = totalpages - required_movablecore;
6503
6504 required_kernelcore = max(required_kernelcore, corepages);
6505 }
6506
6507 /*
6508 * If kernelcore was not specified or kernelcore size is larger
6509 * than totalpages, there is no ZONE_MOVABLE.
6510 */
6511 if (!required_kernelcore || required_kernelcore >= totalpages)
6512 goto out;
6513
6514 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6515 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6516
6517 restart:
6518 /* Spread kernelcore memory as evenly as possible throughout nodes */
6519 kernelcore_node = required_kernelcore / usable_nodes;
6520 for_each_node_state(nid, N_MEMORY) {
6521 unsigned long start_pfn, end_pfn;
6522
6523 /*
6524 * Recalculate kernelcore_node if the division per node
6525 * now exceeds what is necessary to satisfy the requested
6526 * amount of memory for the kernel
6527 */
6528 if (required_kernelcore < kernelcore_node)
6529 kernelcore_node = required_kernelcore / usable_nodes;
6530
6531 /*
6532 * As the map is walked, we track how much memory is usable
6533 * by the kernel using kernelcore_remaining. When it is
6534 * 0, the rest of the node is usable by ZONE_MOVABLE
6535 */
6536 kernelcore_remaining = kernelcore_node;
6537
6538 /* Go through each range of PFNs within this node */
6539 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6540 unsigned long size_pages;
6541
6542 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6543 if (start_pfn >= end_pfn)
6544 continue;
6545
6546 /* Account for what is only usable for kernelcore */
6547 if (start_pfn < usable_startpfn) {
6548 unsigned long kernel_pages;
6549 kernel_pages = min(end_pfn, usable_startpfn)
6550 - start_pfn;
6551
6552 kernelcore_remaining -= min(kernel_pages,
6553 kernelcore_remaining);
6554 required_kernelcore -= min(kernel_pages,
6555 required_kernelcore);
6556
6557 /* Continue if range is now fully accounted */
6558 if (end_pfn <= usable_startpfn) {
6559
6560 /*
6561 * Push zone_movable_pfn to the end so
6562 * that if we have to rebalance
6563 * kernelcore across nodes, we will
6564 * not double account here
6565 */
6566 zone_movable_pfn[nid] = end_pfn;
6567 continue;
6568 }
6569 start_pfn = usable_startpfn;
6570 }
6571
6572 /*
6573 * The usable PFN range for ZONE_MOVABLE is from
6574 * start_pfn->end_pfn. Calculate size_pages as the
6575 * number of pages used as kernelcore
6576 */
6577 size_pages = end_pfn - start_pfn;
6578 if (size_pages > kernelcore_remaining)
6579 size_pages = kernelcore_remaining;
6580 zone_movable_pfn[nid] = start_pfn + size_pages;
6581
6582 /*
6583 * Some kernelcore has been met, update counts and
6584 * break if the kernelcore for this node has been
6585 * satisfied
6586 */
6587 required_kernelcore -= min(required_kernelcore,
6588 size_pages);
6589 kernelcore_remaining -= size_pages;
6590 if (!kernelcore_remaining)
6591 break;
6592 }
6593 }
6594
6595 /*
6596 * If there is still required_kernelcore, we do another pass with one
6597 * less node in the count. This will push zone_movable_pfn[nid] further
6598 * along on the nodes that still have memory until kernelcore is
6599 * satisfied
6600 */
6601 usable_nodes--;
6602 if (usable_nodes && required_kernelcore > usable_nodes)
6603 goto restart;
6604
6605 out2:
6606 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6607 for (nid = 0; nid < MAX_NUMNODES; nid++)
6608 zone_movable_pfn[nid] =
6609 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6610
6611 out:
6612 /* restore the node_state */
6613 node_states[N_MEMORY] = saved_node_state;
6614 }
6615
6616 /* Any regular or high memory on that node ? */
6617 static void check_for_memory(pg_data_t *pgdat, int nid)
6618 {
6619 enum zone_type zone_type;
6620
6621 if (N_MEMORY == N_NORMAL_MEMORY)
6622 return;
6623
6624 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6625 struct zone *zone = &pgdat->node_zones[zone_type];
6626 if (populated_zone(zone)) {
6627 node_set_state(nid, N_HIGH_MEMORY);
6628 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6629 zone_type <= ZONE_NORMAL)
6630 node_set_state(nid, N_NORMAL_MEMORY);
6631 break;
6632 }
6633 }
6634 }
6635
6636 /**
6637 * free_area_init_nodes - Initialise all pg_data_t and zone data
6638 * @max_zone_pfn: an array of max PFNs for each zone
6639 *
6640 * This will call free_area_init_node() for each active node in the system.
6641 * Using the page ranges provided by memblock_set_node(), the size of each
6642 * zone in each node and their holes is calculated. If the maximum PFN
6643 * between two adjacent zones match, it is assumed that the zone is empty.
6644 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6645 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6646 * starts where the previous one ended. For example, ZONE_DMA32 starts
6647 * at arch_max_dma_pfn.
6648 */
6649 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6650 {
6651 unsigned long start_pfn, end_pfn;
6652 int i, nid;
6653
6654 /* Record where the zone boundaries are */
6655 memset(arch_zone_lowest_possible_pfn, 0,
6656 sizeof(arch_zone_lowest_possible_pfn));
6657 memset(arch_zone_highest_possible_pfn, 0,
6658 sizeof(arch_zone_highest_possible_pfn));
6659
6660 start_pfn = find_min_pfn_with_active_regions();
6661
6662 for (i = 0; i < MAX_NR_ZONES; i++) {
6663 if (i == ZONE_MOVABLE)
6664 continue;
6665
6666 end_pfn = max(max_zone_pfn[i], start_pfn);
6667 arch_zone_lowest_possible_pfn[i] = start_pfn;
6668 arch_zone_highest_possible_pfn[i] = end_pfn;
6669
6670 start_pfn = end_pfn;
6671 }
6672
6673 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6674 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6675 find_zone_movable_pfns_for_nodes();
6676
6677 /* Print out the zone ranges */
6678 pr_info("Zone ranges:\n");
6679 for (i = 0; i < MAX_NR_ZONES; i++) {
6680 if (i == ZONE_MOVABLE)
6681 continue;
6682 pr_info(" %-8s ", zone_names[i]);
6683 if (arch_zone_lowest_possible_pfn[i] ==
6684 arch_zone_highest_possible_pfn[i])
6685 pr_cont("empty\n");
6686 else
6687 pr_cont("[mem %#018Lx-%#018Lx]\n",
6688 (u64)arch_zone_lowest_possible_pfn[i]
6689 << PAGE_SHIFT,
6690 ((u64)arch_zone_highest_possible_pfn[i]
6691 << PAGE_SHIFT) - 1);
6692 }
6693
6694 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6695 pr_info("Movable zone start for each node\n");
6696 for (i = 0; i < MAX_NUMNODES; i++) {
6697 if (zone_movable_pfn[i])
6698 pr_info(" Node %d: %#018Lx\n", i,
6699 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6700 }
6701
6702 /* Print out the early node map */
6703 pr_info("Early memory node ranges\n");
6704 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6705 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6706 (u64)start_pfn << PAGE_SHIFT,
6707 ((u64)end_pfn << PAGE_SHIFT) - 1);
6708
6709 /* Initialise every node */
6710 mminit_verify_pageflags_layout();
6711 setup_nr_node_ids();
6712 zero_resv_unavail();
6713 for_each_online_node(nid) {
6714 pg_data_t *pgdat = NODE_DATA(nid);
6715 free_area_init_node(nid, NULL,
6716 find_min_pfn_for_node(nid), NULL);
6717
6718 /* Any memory on that node */
6719 if (pgdat->node_present_pages)
6720 node_set_state(nid, N_MEMORY);
6721 check_for_memory(pgdat, nid);
6722 }
6723 }
6724
6725 static int __init cmdline_parse_core(char *p, unsigned long *core)
6726 {
6727 unsigned long long coremem;
6728 if (!p)
6729 return -EINVAL;
6730
6731 coremem = memparse(p, &p);
6732 *core = coremem >> PAGE_SHIFT;
6733
6734 /* Paranoid check that UL is enough for the coremem value */
6735 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6736
6737 return 0;
6738 }
6739
6740 /*
6741 * kernelcore=size sets the amount of memory for use for allocations that
6742 * cannot be reclaimed or migrated.
6743 */
6744 static int __init cmdline_parse_kernelcore(char *p)
6745 {
6746 /* parse kernelcore=mirror */
6747 if (parse_option_str(p, "mirror")) {
6748 mirrored_kernelcore = true;
6749 return 0;
6750 }
6751
6752 return cmdline_parse_core(p, &required_kernelcore);
6753 }
6754
6755 /*
6756 * movablecore=size sets the amount of memory for use for allocations that
6757 * can be reclaimed or migrated.
6758 */
6759 static int __init cmdline_parse_movablecore(char *p)
6760 {
6761 return cmdline_parse_core(p, &required_movablecore);
6762 }
6763
6764 early_param("kernelcore", cmdline_parse_kernelcore);
6765 early_param("movablecore", cmdline_parse_movablecore);
6766
6767 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6768
6769 void adjust_managed_page_count(struct page *page, long count)
6770 {
6771 spin_lock(&managed_page_count_lock);
6772 page_zone(page)->managed_pages += count;
6773 totalram_pages += count;
6774 #ifdef CONFIG_HIGHMEM
6775 if (PageHighMem(page))
6776 totalhigh_pages += count;
6777 #endif
6778 spin_unlock(&managed_page_count_lock);
6779 }
6780 EXPORT_SYMBOL(adjust_managed_page_count);
6781
6782 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6783 {
6784 void *pos;
6785 unsigned long pages = 0;
6786
6787 start = (void *)PAGE_ALIGN((unsigned long)start);
6788 end = (void *)((unsigned long)end & PAGE_MASK);
6789 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6790 struct page *page = virt_to_page(pos);
6791 void *direct_map_addr;
6792
6793 /*
6794 * 'direct_map_addr' might be different from 'pos'
6795 * because some architectures' virt_to_page()
6796 * work with aliases. Getting the direct map
6797 * address ensures that we get a _writeable_
6798 * alias for the memset().
6799 */
6800 direct_map_addr = page_address(page);
6801 if ((unsigned int)poison <= 0xFF)
6802 memset(direct_map_addr, poison, PAGE_SIZE);
6803
6804 free_reserved_page(page);
6805 }
6806
6807 if (pages && s)
6808 pr_info("Freeing %s memory: %ldK\n",
6809 s, pages << (PAGE_SHIFT - 10));
6810
6811 return pages;
6812 }
6813 EXPORT_SYMBOL(free_reserved_area);
6814
6815 #ifdef CONFIG_HIGHMEM
6816 void free_highmem_page(struct page *page)
6817 {
6818 __free_reserved_page(page);
6819 totalram_pages++;
6820 page_zone(page)->managed_pages++;
6821 totalhigh_pages++;
6822 }
6823 #endif
6824
6825
6826 void __init mem_init_print_info(const char *str)
6827 {
6828 unsigned long physpages, codesize, datasize, rosize, bss_size;
6829 unsigned long init_code_size, init_data_size;
6830
6831 physpages = get_num_physpages();
6832 codesize = _etext - _stext;
6833 datasize = _edata - _sdata;
6834 rosize = __end_rodata - __start_rodata;
6835 bss_size = __bss_stop - __bss_start;
6836 init_data_size = __init_end - __init_begin;
6837 init_code_size = _einittext - _sinittext;
6838
6839 /*
6840 * Detect special cases and adjust section sizes accordingly:
6841 * 1) .init.* may be embedded into .data sections
6842 * 2) .init.text.* may be out of [__init_begin, __init_end],
6843 * please refer to arch/tile/kernel/vmlinux.lds.S.
6844 * 3) .rodata.* may be embedded into .text or .data sections.
6845 */
6846 #define adj_init_size(start, end, size, pos, adj) \
6847 do { \
6848 if (start <= pos && pos < end && size > adj) \
6849 size -= adj; \
6850 } while (0)
6851
6852 adj_init_size(__init_begin, __init_end, init_data_size,
6853 _sinittext, init_code_size);
6854 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6855 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6856 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6857 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6858
6859 #undef adj_init_size
6860
6861 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6862 #ifdef CONFIG_HIGHMEM
6863 ", %luK highmem"
6864 #endif
6865 "%s%s)\n",
6866 nr_free_pages() << (PAGE_SHIFT - 10),
6867 physpages << (PAGE_SHIFT - 10),
6868 codesize >> 10, datasize >> 10, rosize >> 10,
6869 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6870 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6871 totalcma_pages << (PAGE_SHIFT - 10),
6872 #ifdef CONFIG_HIGHMEM
6873 totalhigh_pages << (PAGE_SHIFT - 10),
6874 #endif
6875 str ? ", " : "", str ? str : "");
6876 }
6877
6878 /**
6879 * set_dma_reserve - set the specified number of pages reserved in the first zone
6880 * @new_dma_reserve: The number of pages to mark reserved
6881 *
6882 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6883 * In the DMA zone, a significant percentage may be consumed by kernel image
6884 * and other unfreeable allocations which can skew the watermarks badly. This
6885 * function may optionally be used to account for unfreeable pages in the
6886 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6887 * smaller per-cpu batchsize.
6888 */
6889 void __init set_dma_reserve(unsigned long new_dma_reserve)
6890 {
6891 dma_reserve = new_dma_reserve;
6892 }
6893
6894 void __init free_area_init(unsigned long *zones_size)
6895 {
6896 zero_resv_unavail();
6897 free_area_init_node(0, zones_size,
6898 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6899 }
6900
6901 static int page_alloc_cpu_dead(unsigned int cpu)
6902 {
6903
6904 lru_add_drain_cpu(cpu);
6905 drain_pages(cpu);
6906
6907 /*
6908 * Spill the event counters of the dead processor
6909 * into the current processors event counters.
6910 * This artificially elevates the count of the current
6911 * processor.
6912 */
6913 vm_events_fold_cpu(cpu);
6914
6915 /*
6916 * Zero the differential counters of the dead processor
6917 * so that the vm statistics are consistent.
6918 *
6919 * This is only okay since the processor is dead and cannot
6920 * race with what we are doing.
6921 */
6922 cpu_vm_stats_fold(cpu);
6923 return 0;
6924 }
6925
6926 void __init page_alloc_init(void)
6927 {
6928 int ret;
6929
6930 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6931 "mm/page_alloc:dead", NULL,
6932 page_alloc_cpu_dead);
6933 WARN_ON(ret < 0);
6934 }
6935
6936 /*
6937 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6938 * or min_free_kbytes changes.
6939 */
6940 static void calculate_totalreserve_pages(void)
6941 {
6942 struct pglist_data *pgdat;
6943 unsigned long reserve_pages = 0;
6944 enum zone_type i, j;
6945
6946 for_each_online_pgdat(pgdat) {
6947
6948 pgdat->totalreserve_pages = 0;
6949
6950 for (i = 0; i < MAX_NR_ZONES; i++) {
6951 struct zone *zone = pgdat->node_zones + i;
6952 long max = 0;
6953
6954 /* Find valid and maximum lowmem_reserve in the zone */
6955 for (j = i; j < MAX_NR_ZONES; j++) {
6956 if (zone->lowmem_reserve[j] > max)
6957 max = zone->lowmem_reserve[j];
6958 }
6959
6960 /* we treat the high watermark as reserved pages. */
6961 max += high_wmark_pages(zone);
6962
6963 if (max > zone->managed_pages)
6964 max = zone->managed_pages;
6965
6966 pgdat->totalreserve_pages += max;
6967
6968 reserve_pages += max;
6969 }
6970 }
6971 totalreserve_pages = reserve_pages;
6972 }
6973
6974 /*
6975 * setup_per_zone_lowmem_reserve - called whenever
6976 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6977 * has a correct pages reserved value, so an adequate number of
6978 * pages are left in the zone after a successful __alloc_pages().
6979 */
6980 static void setup_per_zone_lowmem_reserve(void)
6981 {
6982 struct pglist_data *pgdat;
6983 enum zone_type j, idx;
6984
6985 for_each_online_pgdat(pgdat) {
6986 for (j = 0; j < MAX_NR_ZONES; j++) {
6987 struct zone *zone = pgdat->node_zones + j;
6988 unsigned long managed_pages = zone->managed_pages;
6989
6990 zone->lowmem_reserve[j] = 0;
6991
6992 idx = j;
6993 while (idx) {
6994 struct zone *lower_zone;
6995
6996 idx--;
6997
6998 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6999 sysctl_lowmem_reserve_ratio[idx] = 1;
7000
7001 lower_zone = pgdat->node_zones + idx;
7002 lower_zone->lowmem_reserve[j] = managed_pages /
7003 sysctl_lowmem_reserve_ratio[idx];
7004 managed_pages += lower_zone->managed_pages;
7005 }
7006 }
7007 }
7008
7009 /* update totalreserve_pages */
7010 calculate_totalreserve_pages();
7011 }
7012
7013 static void __setup_per_zone_wmarks(void)
7014 {
7015 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7016 unsigned long lowmem_pages = 0;
7017 struct zone *zone;
7018 unsigned long flags;
7019
7020 /* Calculate total number of !ZONE_HIGHMEM pages */
7021 for_each_zone(zone) {
7022 if (!is_highmem(zone))
7023 lowmem_pages += zone->managed_pages;
7024 }
7025
7026 for_each_zone(zone) {
7027 u64 tmp;
7028
7029 spin_lock_irqsave(&zone->lock, flags);
7030 tmp = (u64)pages_min * zone->managed_pages;
7031 do_div(tmp, lowmem_pages);
7032 if (is_highmem(zone)) {
7033 /*
7034 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7035 * need highmem pages, so cap pages_min to a small
7036 * value here.
7037 *
7038 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7039 * deltas control asynch page reclaim, and so should
7040 * not be capped for highmem.
7041 */
7042 unsigned long min_pages;
7043
7044 min_pages = zone->managed_pages / 1024;
7045 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7046 zone->watermark[WMARK_MIN] = min_pages;
7047 } else {
7048 /*
7049 * If it's a lowmem zone, reserve a number of pages
7050 * proportionate to the zone's size.
7051 */
7052 zone->watermark[WMARK_MIN] = tmp;
7053 }
7054
7055 /*
7056 * Set the kswapd watermarks distance according to the
7057 * scale factor in proportion to available memory, but
7058 * ensure a minimum size on small systems.
7059 */
7060 tmp = max_t(u64, tmp >> 2,
7061 mult_frac(zone->managed_pages,
7062 watermark_scale_factor, 10000));
7063
7064 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7065 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7066
7067 spin_unlock_irqrestore(&zone->lock, flags);
7068 }
7069
7070 /* update totalreserve_pages */
7071 calculate_totalreserve_pages();
7072 }
7073
7074 /**
7075 * setup_per_zone_wmarks - called when min_free_kbytes changes
7076 * or when memory is hot-{added|removed}
7077 *
7078 * Ensures that the watermark[min,low,high] values for each zone are set
7079 * correctly with respect to min_free_kbytes.
7080 */
7081 void setup_per_zone_wmarks(void)
7082 {
7083 static DEFINE_SPINLOCK(lock);
7084
7085 spin_lock(&lock);
7086 __setup_per_zone_wmarks();
7087 spin_unlock(&lock);
7088 }
7089
7090 /*
7091 * Initialise min_free_kbytes.
7092 *
7093 * For small machines we want it small (128k min). For large machines
7094 * we want it large (64MB max). But it is not linear, because network
7095 * bandwidth does not increase linearly with machine size. We use
7096 *
7097 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7098 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7099 *
7100 * which yields
7101 *
7102 * 16MB: 512k
7103 * 32MB: 724k
7104 * 64MB: 1024k
7105 * 128MB: 1448k
7106 * 256MB: 2048k
7107 * 512MB: 2896k
7108 * 1024MB: 4096k
7109 * 2048MB: 5792k
7110 * 4096MB: 8192k
7111 * 8192MB: 11584k
7112 * 16384MB: 16384k
7113 */
7114 int __meminit init_per_zone_wmark_min(void)
7115 {
7116 unsigned long lowmem_kbytes;
7117 int new_min_free_kbytes;
7118
7119 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7120 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7121
7122 if (new_min_free_kbytes > user_min_free_kbytes) {
7123 min_free_kbytes = new_min_free_kbytes;
7124 if (min_free_kbytes < 128)
7125 min_free_kbytes = 128;
7126 if (min_free_kbytes > 65536)
7127 min_free_kbytes = 65536;
7128 } else {
7129 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7130 new_min_free_kbytes, user_min_free_kbytes);
7131 }
7132 setup_per_zone_wmarks();
7133 refresh_zone_stat_thresholds();
7134 setup_per_zone_lowmem_reserve();
7135
7136 #ifdef CONFIG_NUMA
7137 setup_min_unmapped_ratio();
7138 setup_min_slab_ratio();
7139 #endif
7140
7141 return 0;
7142 }
7143 core_initcall(init_per_zone_wmark_min)
7144
7145 /*
7146 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7147 * that we can call two helper functions whenever min_free_kbytes
7148 * changes.
7149 */
7150 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7151 void __user *buffer, size_t *length, loff_t *ppos)
7152 {
7153 int rc;
7154
7155 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7156 if (rc)
7157 return rc;
7158
7159 if (write) {
7160 user_min_free_kbytes = min_free_kbytes;
7161 setup_per_zone_wmarks();
7162 }
7163 return 0;
7164 }
7165
7166 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7167 void __user *buffer, size_t *length, loff_t *ppos)
7168 {
7169 int rc;
7170
7171 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7172 if (rc)
7173 return rc;
7174
7175 if (write)
7176 setup_per_zone_wmarks();
7177
7178 return 0;
7179 }
7180
7181 #ifdef CONFIG_NUMA
7182 static void setup_min_unmapped_ratio(void)
7183 {
7184 pg_data_t *pgdat;
7185 struct zone *zone;
7186
7187 for_each_online_pgdat(pgdat)
7188 pgdat->min_unmapped_pages = 0;
7189
7190 for_each_zone(zone)
7191 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7192 sysctl_min_unmapped_ratio) / 100;
7193 }
7194
7195
7196 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7197 void __user *buffer, size_t *length, loff_t *ppos)
7198 {
7199 int rc;
7200
7201 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7202 if (rc)
7203 return rc;
7204
7205 setup_min_unmapped_ratio();
7206
7207 return 0;
7208 }
7209
7210 static void setup_min_slab_ratio(void)
7211 {
7212 pg_data_t *pgdat;
7213 struct zone *zone;
7214
7215 for_each_online_pgdat(pgdat)
7216 pgdat->min_slab_pages = 0;
7217
7218 for_each_zone(zone)
7219 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7220 sysctl_min_slab_ratio) / 100;
7221 }
7222
7223 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7224 void __user *buffer, size_t *length, loff_t *ppos)
7225 {
7226 int rc;
7227
7228 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7229 if (rc)
7230 return rc;
7231
7232 setup_min_slab_ratio();
7233
7234 return 0;
7235 }
7236 #endif
7237
7238 /*
7239 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7240 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7241 * whenever sysctl_lowmem_reserve_ratio changes.
7242 *
7243 * The reserve ratio obviously has absolutely no relation with the
7244 * minimum watermarks. The lowmem reserve ratio can only make sense
7245 * if in function of the boot time zone sizes.
7246 */
7247 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7248 void __user *buffer, size_t *length, loff_t *ppos)
7249 {
7250 proc_dointvec_minmax(table, write, buffer, length, ppos);
7251 setup_per_zone_lowmem_reserve();
7252 return 0;
7253 }
7254
7255 /*
7256 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7257 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7258 * pagelist can have before it gets flushed back to buddy allocator.
7259 */
7260 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7261 void __user *buffer, size_t *length, loff_t *ppos)
7262 {
7263 struct zone *zone;
7264 int old_percpu_pagelist_fraction;
7265 int ret;
7266
7267 mutex_lock(&pcp_batch_high_lock);
7268 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7269
7270 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7271 if (!write || ret < 0)
7272 goto out;
7273
7274 /* Sanity checking to avoid pcp imbalance */
7275 if (percpu_pagelist_fraction &&
7276 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7277 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7278 ret = -EINVAL;
7279 goto out;
7280 }
7281
7282 /* No change? */
7283 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7284 goto out;
7285
7286 for_each_populated_zone(zone) {
7287 unsigned int cpu;
7288
7289 for_each_possible_cpu(cpu)
7290 pageset_set_high_and_batch(zone,
7291 per_cpu_ptr(zone->pageset, cpu));
7292 }
7293 out:
7294 mutex_unlock(&pcp_batch_high_lock);
7295 return ret;
7296 }
7297
7298 #ifdef CONFIG_NUMA
7299 int hashdist = HASHDIST_DEFAULT;
7300
7301 static int __init set_hashdist(char *str)
7302 {
7303 if (!str)
7304 return 0;
7305 hashdist = simple_strtoul(str, &str, 0);
7306 return 1;
7307 }
7308 __setup("hashdist=", set_hashdist);
7309 #endif
7310
7311 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7312 /*
7313 * Returns the number of pages that arch has reserved but
7314 * is not known to alloc_large_system_hash().
7315 */
7316 static unsigned long __init arch_reserved_kernel_pages(void)
7317 {
7318 return 0;
7319 }
7320 #endif
7321
7322 /*
7323 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7324 * machines. As memory size is increased the scale is also increased but at
7325 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7326 * quadruples the scale is increased by one, which means the size of hash table
7327 * only doubles, instead of quadrupling as well.
7328 * Because 32-bit systems cannot have large physical memory, where this scaling
7329 * makes sense, it is disabled on such platforms.
7330 */
7331 #if __BITS_PER_LONG > 32
7332 #define ADAPT_SCALE_BASE (64ul << 30)
7333 #define ADAPT_SCALE_SHIFT 2
7334 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7335 #endif
7336
7337 /*
7338 * allocate a large system hash table from bootmem
7339 * - it is assumed that the hash table must contain an exact power-of-2
7340 * quantity of entries
7341 * - limit is the number of hash buckets, not the total allocation size
7342 */
7343 void *__init alloc_large_system_hash(const char *tablename,
7344 unsigned long bucketsize,
7345 unsigned long numentries,
7346 int scale,
7347 int flags,
7348 unsigned int *_hash_shift,
7349 unsigned int *_hash_mask,
7350 unsigned long low_limit,
7351 unsigned long high_limit)
7352 {
7353 unsigned long long max = high_limit;
7354 unsigned long log2qty, size;
7355 void *table = NULL;
7356 gfp_t gfp_flags;
7357
7358 /* allow the kernel cmdline to have a say */
7359 if (!numentries) {
7360 /* round applicable memory size up to nearest megabyte */
7361 numentries = nr_kernel_pages;
7362 numentries -= arch_reserved_kernel_pages();
7363
7364 /* It isn't necessary when PAGE_SIZE >= 1MB */
7365 if (PAGE_SHIFT < 20)
7366 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7367
7368 #if __BITS_PER_LONG > 32
7369 if (!high_limit) {
7370 unsigned long adapt;
7371
7372 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7373 adapt <<= ADAPT_SCALE_SHIFT)
7374 scale++;
7375 }
7376 #endif
7377
7378 /* limit to 1 bucket per 2^scale bytes of low memory */
7379 if (scale > PAGE_SHIFT)
7380 numentries >>= (scale - PAGE_SHIFT);
7381 else
7382 numentries <<= (PAGE_SHIFT - scale);
7383
7384 /* Make sure we've got at least a 0-order allocation.. */
7385 if (unlikely(flags & HASH_SMALL)) {
7386 /* Makes no sense without HASH_EARLY */
7387 WARN_ON(!(flags & HASH_EARLY));
7388 if (!(numentries >> *_hash_shift)) {
7389 numentries = 1UL << *_hash_shift;
7390 BUG_ON(!numentries);
7391 }
7392 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7393 numentries = PAGE_SIZE / bucketsize;
7394 }
7395 numentries = roundup_pow_of_two(numentries);
7396
7397 /* limit allocation size to 1/16 total memory by default */
7398 if (max == 0) {
7399 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7400 do_div(max, bucketsize);
7401 }
7402 max = min(max, 0x80000000ULL);
7403
7404 if (numentries < low_limit)
7405 numentries = low_limit;
7406 if (numentries > max)
7407 numentries = max;
7408
7409 log2qty = ilog2(numentries);
7410
7411 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7412 do {
7413 size = bucketsize << log2qty;
7414 if (flags & HASH_EARLY) {
7415 if (flags & HASH_ZERO)
7416 table = memblock_virt_alloc_nopanic(size, 0);
7417 else
7418 table = memblock_virt_alloc_raw(size, 0);
7419 } else if (hashdist) {
7420 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7421 } else {
7422 /*
7423 * If bucketsize is not a power-of-two, we may free
7424 * some pages at the end of hash table which
7425 * alloc_pages_exact() automatically does
7426 */
7427 if (get_order(size) < MAX_ORDER) {
7428 table = alloc_pages_exact(size, gfp_flags);
7429 kmemleak_alloc(table, size, 1, gfp_flags);
7430 }
7431 }
7432 } while (!table && size > PAGE_SIZE && --log2qty);
7433
7434 if (!table)
7435 panic("Failed to allocate %s hash table\n", tablename);
7436
7437 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7438 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7439
7440 if (_hash_shift)
7441 *_hash_shift = log2qty;
7442 if (_hash_mask)
7443 *_hash_mask = (1 << log2qty) - 1;
7444
7445 return table;
7446 }
7447
7448 /*
7449 * This function checks whether pageblock includes unmovable pages or not.
7450 * If @count is not zero, it is okay to include less @count unmovable pages
7451 *
7452 * PageLRU check without isolation or lru_lock could race so that
7453 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7454 * check without lock_page also may miss some movable non-lru pages at
7455 * race condition. So you can't expect this function should be exact.
7456 */
7457 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7458 int migratetype,
7459 bool skip_hwpoisoned_pages)
7460 {
7461 unsigned long pfn, iter, found;
7462
7463 /*
7464 * For avoiding noise data, lru_add_drain_all() should be called
7465 * If ZONE_MOVABLE, the zone never contains unmovable pages
7466 */
7467 if (zone_idx(zone) == ZONE_MOVABLE)
7468 return false;
7469
7470 /*
7471 * CMA allocations (alloc_contig_range) really need to mark isolate
7472 * CMA pageblocks even when they are not movable in fact so consider
7473 * them movable here.
7474 */
7475 if (is_migrate_cma(migratetype) &&
7476 is_migrate_cma(get_pageblock_migratetype(page)))
7477 return false;
7478
7479 pfn = page_to_pfn(page);
7480 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7481 unsigned long check = pfn + iter;
7482
7483 if (!pfn_valid_within(check))
7484 continue;
7485
7486 page = pfn_to_page(check);
7487
7488 if (PageReserved(page))
7489 return true;
7490
7491 /*
7492 * Hugepages are not in LRU lists, but they're movable.
7493 * We need not scan over tail pages bacause we don't
7494 * handle each tail page individually in migration.
7495 */
7496 if (PageHuge(page)) {
7497 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7498 continue;
7499 }
7500
7501 /*
7502 * We can't use page_count without pin a page
7503 * because another CPU can free compound page.
7504 * This check already skips compound tails of THP
7505 * because their page->_refcount is zero at all time.
7506 */
7507 if (!page_ref_count(page)) {
7508 if (PageBuddy(page))
7509 iter += (1 << page_order(page)) - 1;
7510 continue;
7511 }
7512
7513 /*
7514 * The HWPoisoned page may be not in buddy system, and
7515 * page_count() is not 0.
7516 */
7517 if (skip_hwpoisoned_pages && PageHWPoison(page))
7518 continue;
7519
7520 if (__PageMovable(page))
7521 continue;
7522
7523 if (!PageLRU(page))
7524 found++;
7525 /*
7526 * If there are RECLAIMABLE pages, we need to check
7527 * it. But now, memory offline itself doesn't call
7528 * shrink_node_slabs() and it still to be fixed.
7529 */
7530 /*
7531 * If the page is not RAM, page_count()should be 0.
7532 * we don't need more check. This is an _used_ not-movable page.
7533 *
7534 * The problematic thing here is PG_reserved pages. PG_reserved
7535 * is set to both of a memory hole page and a _used_ kernel
7536 * page at boot.
7537 */
7538 if (found > count)
7539 return true;
7540 }
7541 return false;
7542 }
7543
7544 bool is_pageblock_removable_nolock(struct page *page)
7545 {
7546 struct zone *zone;
7547 unsigned long pfn;
7548
7549 /*
7550 * We have to be careful here because we are iterating over memory
7551 * sections which are not zone aware so we might end up outside of
7552 * the zone but still within the section.
7553 * We have to take care about the node as well. If the node is offline
7554 * its NODE_DATA will be NULL - see page_zone.
7555 */
7556 if (!node_online(page_to_nid(page)))
7557 return false;
7558
7559 zone = page_zone(page);
7560 pfn = page_to_pfn(page);
7561 if (!zone_spans_pfn(zone, pfn))
7562 return false;
7563
7564 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7565 }
7566
7567 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7568
7569 static unsigned long pfn_max_align_down(unsigned long pfn)
7570 {
7571 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7572 pageblock_nr_pages) - 1);
7573 }
7574
7575 static unsigned long pfn_max_align_up(unsigned long pfn)
7576 {
7577 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7578 pageblock_nr_pages));
7579 }
7580
7581 /* [start, end) must belong to a single zone. */
7582 static int __alloc_contig_migrate_range(struct compact_control *cc,
7583 unsigned long start, unsigned long end)
7584 {
7585 /* This function is based on compact_zone() from compaction.c. */
7586 unsigned long nr_reclaimed;
7587 unsigned long pfn = start;
7588 unsigned int tries = 0;
7589 int ret = 0;
7590
7591 migrate_prep();
7592
7593 while (pfn < end || !list_empty(&cc->migratepages)) {
7594 if (fatal_signal_pending(current)) {
7595 ret = -EINTR;
7596 break;
7597 }
7598
7599 if (list_empty(&cc->migratepages)) {
7600 cc->nr_migratepages = 0;
7601 pfn = isolate_migratepages_range(cc, pfn, end);
7602 if (!pfn) {
7603 ret = -EINTR;
7604 break;
7605 }
7606 tries = 0;
7607 } else if (++tries == 5) {
7608 ret = ret < 0 ? ret : -EBUSY;
7609 break;
7610 }
7611
7612 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7613 &cc->migratepages);
7614 cc->nr_migratepages -= nr_reclaimed;
7615
7616 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7617 NULL, 0, cc->mode, MR_CMA);
7618 }
7619 if (ret < 0) {
7620 putback_movable_pages(&cc->migratepages);
7621 return ret;
7622 }
7623 return 0;
7624 }
7625
7626 /**
7627 * alloc_contig_range() -- tries to allocate given range of pages
7628 * @start: start PFN to allocate
7629 * @end: one-past-the-last PFN to allocate
7630 * @migratetype: migratetype of the underlaying pageblocks (either
7631 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7632 * in range must have the same migratetype and it must
7633 * be either of the two.
7634 * @gfp_mask: GFP mask to use during compaction
7635 *
7636 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7637 * aligned, however it's the caller's responsibility to guarantee that
7638 * we are the only thread that changes migrate type of pageblocks the
7639 * pages fall in.
7640 *
7641 * The PFN range must belong to a single zone.
7642 *
7643 * Returns zero on success or negative error code. On success all
7644 * pages which PFN is in [start, end) are allocated for the caller and
7645 * need to be freed with free_contig_range().
7646 */
7647 int alloc_contig_range(unsigned long start, unsigned long end,
7648 unsigned migratetype, gfp_t gfp_mask)
7649 {
7650 unsigned long outer_start, outer_end;
7651 unsigned int order;
7652 int ret = 0;
7653
7654 struct compact_control cc = {
7655 .nr_migratepages = 0,
7656 .order = -1,
7657 .zone = page_zone(pfn_to_page(start)),
7658 .mode = MIGRATE_SYNC,
7659 .ignore_skip_hint = true,
7660 .no_set_skip_hint = true,
7661 .gfp_mask = current_gfp_context(gfp_mask),
7662 };
7663 INIT_LIST_HEAD(&cc.migratepages);
7664
7665 /*
7666 * What we do here is we mark all pageblocks in range as
7667 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7668 * have different sizes, and due to the way page allocator
7669 * work, we align the range to biggest of the two pages so
7670 * that page allocator won't try to merge buddies from
7671 * different pageblocks and change MIGRATE_ISOLATE to some
7672 * other migration type.
7673 *
7674 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7675 * migrate the pages from an unaligned range (ie. pages that
7676 * we are interested in). This will put all the pages in
7677 * range back to page allocator as MIGRATE_ISOLATE.
7678 *
7679 * When this is done, we take the pages in range from page
7680 * allocator removing them from the buddy system. This way
7681 * page allocator will never consider using them.
7682 *
7683 * This lets us mark the pageblocks back as
7684 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7685 * aligned range but not in the unaligned, original range are
7686 * put back to page allocator so that buddy can use them.
7687 */
7688
7689 ret = start_isolate_page_range(pfn_max_align_down(start),
7690 pfn_max_align_up(end), migratetype,
7691 false);
7692 if (ret)
7693 return ret;
7694
7695 /*
7696 * In case of -EBUSY, we'd like to know which page causes problem.
7697 * So, just fall through. test_pages_isolated() has a tracepoint
7698 * which will report the busy page.
7699 *
7700 * It is possible that busy pages could become available before
7701 * the call to test_pages_isolated, and the range will actually be
7702 * allocated. So, if we fall through be sure to clear ret so that
7703 * -EBUSY is not accidentally used or returned to caller.
7704 */
7705 ret = __alloc_contig_migrate_range(&cc, start, end);
7706 if (ret && ret != -EBUSY)
7707 goto done;
7708 ret =0;
7709
7710 /*
7711 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7712 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7713 * more, all pages in [start, end) are free in page allocator.
7714 * What we are going to do is to allocate all pages from
7715 * [start, end) (that is remove them from page allocator).
7716 *
7717 * The only problem is that pages at the beginning and at the
7718 * end of interesting range may be not aligned with pages that
7719 * page allocator holds, ie. they can be part of higher order
7720 * pages. Because of this, we reserve the bigger range and
7721 * once this is done free the pages we are not interested in.
7722 *
7723 * We don't have to hold zone->lock here because the pages are
7724 * isolated thus they won't get removed from buddy.
7725 */
7726
7727 lru_add_drain_all();
7728 drain_all_pages(cc.zone);
7729
7730 order = 0;
7731 outer_start = start;
7732 while (!PageBuddy(pfn_to_page(outer_start))) {
7733 if (++order >= MAX_ORDER) {
7734 outer_start = start;
7735 break;
7736 }
7737 outer_start &= ~0UL << order;
7738 }
7739
7740 if (outer_start != start) {
7741 order = page_order(pfn_to_page(outer_start));
7742
7743 /*
7744 * outer_start page could be small order buddy page and
7745 * it doesn't include start page. Adjust outer_start
7746 * in this case to report failed page properly
7747 * on tracepoint in test_pages_isolated()
7748 */
7749 if (outer_start + (1UL << order) <= start)
7750 outer_start = start;
7751 }
7752
7753 /* Make sure the range is really isolated. */
7754 if (test_pages_isolated(outer_start, end, false)) {
7755 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7756 __func__, outer_start, end);
7757 ret = -EBUSY;
7758 goto done;
7759 }
7760
7761 /* Grab isolated pages from freelists. */
7762 outer_end = isolate_freepages_range(&cc, outer_start, end);
7763 if (!outer_end) {
7764 ret = -EBUSY;
7765 goto done;
7766 }
7767
7768 /* Free head and tail (if any) */
7769 if (start != outer_start)
7770 free_contig_range(outer_start, start - outer_start);
7771 if (end != outer_end)
7772 free_contig_range(end, outer_end - end);
7773
7774 done:
7775 undo_isolate_page_range(pfn_max_align_down(start),
7776 pfn_max_align_up(end), migratetype);
7777 return ret;
7778 }
7779
7780 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7781 {
7782 unsigned int count = 0;
7783
7784 for (; nr_pages--; pfn++) {
7785 struct page *page = pfn_to_page(pfn);
7786
7787 count += page_count(page) != 1;
7788 __free_page(page);
7789 }
7790 WARN(count != 0, "%d pages are still in use!\n", count);
7791 }
7792 #endif
7793
7794 /*
7795 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7796 * page high values need to be recalulated.
7797 */
7798 void __meminit zone_pcp_update(struct zone *zone)
7799 {
7800 unsigned cpu;
7801 mutex_lock(&pcp_batch_high_lock);
7802 for_each_possible_cpu(cpu)
7803 pageset_set_high_and_batch(zone,
7804 per_cpu_ptr(zone->pageset, cpu));
7805 mutex_unlock(&pcp_batch_high_lock);
7806 }
7807
7808 void zone_pcp_reset(struct zone *zone)
7809 {
7810 unsigned long flags;
7811 int cpu;
7812 struct per_cpu_pageset *pset;
7813
7814 /* avoid races with drain_pages() */
7815 local_irq_save(flags);
7816 if (zone->pageset != &boot_pageset) {
7817 for_each_online_cpu(cpu) {
7818 pset = per_cpu_ptr(zone->pageset, cpu);
7819 drain_zonestat(zone, pset);
7820 }
7821 free_percpu(zone->pageset);
7822 zone->pageset = &boot_pageset;
7823 }
7824 local_irq_restore(flags);
7825 }
7826
7827 #ifdef CONFIG_MEMORY_HOTREMOVE
7828 /*
7829 * All pages in the range must be in a single zone and isolated
7830 * before calling this.
7831 */
7832 void
7833 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7834 {
7835 struct page *page;
7836 struct zone *zone;
7837 unsigned int order, i;
7838 unsigned long pfn;
7839 unsigned long flags;
7840 /* find the first valid pfn */
7841 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7842 if (pfn_valid(pfn))
7843 break;
7844 if (pfn == end_pfn)
7845 return;
7846 offline_mem_sections(pfn, end_pfn);
7847 zone = page_zone(pfn_to_page(pfn));
7848 spin_lock_irqsave(&zone->lock, flags);
7849 pfn = start_pfn;
7850 while (pfn < end_pfn) {
7851 if (!pfn_valid(pfn)) {
7852 pfn++;
7853 continue;
7854 }
7855 page = pfn_to_page(pfn);
7856 /*
7857 * The HWPoisoned page may be not in buddy system, and
7858 * page_count() is not 0.
7859 */
7860 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7861 pfn++;
7862 SetPageReserved(page);
7863 continue;
7864 }
7865
7866 BUG_ON(page_count(page));
7867 BUG_ON(!PageBuddy(page));
7868 order = page_order(page);
7869 #ifdef CONFIG_DEBUG_VM
7870 pr_info("remove from free list %lx %d %lx\n",
7871 pfn, 1 << order, end_pfn);
7872 #endif
7873 list_del(&page->lru);
7874 rmv_page_order(page);
7875 zone->free_area[order].nr_free--;
7876 for (i = 0; i < (1 << order); i++)
7877 SetPageReserved((page+i));
7878 pfn += (1 << order);
7879 }
7880 spin_unlock_irqrestore(&zone->lock, flags);
7881 }
7882 #endif
7883
7884 bool is_free_buddy_page(struct page *page)
7885 {
7886 struct zone *zone = page_zone(page);
7887 unsigned long pfn = page_to_pfn(page);
7888 unsigned long flags;
7889 unsigned int order;
7890
7891 spin_lock_irqsave(&zone->lock, flags);
7892 for (order = 0; order < MAX_ORDER; order++) {
7893 struct page *page_head = page - (pfn & ((1 << order) - 1));
7894
7895 if (PageBuddy(page_head) && page_order(page_head) >= order)
7896 break;
7897 }
7898 spin_unlock_irqrestore(&zone->lock, flags);
7899
7900 return order < MAX_ORDER;
7901 }