]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/page_alloc.c
mm/debug-pagealloc: prepare boottime configurable on/off
[mirror_ubuntu-focal-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page_ext.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62
63 #include <asm/sections.h>
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
66 #include "internal.h"
67
68 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69 static DEFINE_MUTEX(pcp_batch_high_lock);
70 #define MIN_PERCPU_PAGELIST_FRACTION (8)
71
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node);
74 EXPORT_PER_CPU_SYMBOL(numa_node);
75 #endif
76
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
78 /*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86 int _node_numa_mem_[MAX_NUMNODES];
87 #endif
88
89 /*
90 * Array of node states.
91 */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 [N_CPU] = { { [0] = 1UL } },
104 #endif /* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119 unsigned long dirty_balance_reserve __read_mostly;
120
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123
124 #ifdef CONFIG_PM_SLEEP
125 /*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
133
134 static gfp_t saved_gfp_mask;
135
136 void pm_restore_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
143 }
144
145 void pm_restrict_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
151 }
152
153 bool pm_suspended_storage(void)
154 {
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164
165 static void __free_pages_ok(struct page *page, unsigned int order);
166
167 /*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
177 */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 32,
187 #endif
188 32,
189 };
190
191 EXPORT_SYMBOL(totalram_pages);
192
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 "DMA32",
199 #endif
200 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 "HighMem",
203 #endif
204 "Movable",
205 };
206
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes = -1;
209
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232
233 int page_group_by_mobility_disabled __read_mostly;
234
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
239 migratetype = MIGRATE_UNMOVABLE;
240
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243 }
244
245 bool oom_killer_disabled __read_mostly;
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
267
268 return ret;
269 }
270
271 static int page_is_consistent(struct zone *zone, struct page *page)
272 {
273 if (!pfn_valid_within(page_to_pfn(page)))
274 return 0;
275 if (zone != page_zone(page))
276 return 0;
277
278 return 1;
279 }
280 /*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283 static int bad_range(struct zone *zone, struct page *page)
284 {
285 if (page_outside_zone_boundaries(zone, page))
286 return 1;
287 if (!page_is_consistent(zone, page))
288 return 1;
289
290 return 0;
291 }
292 #else
293 static inline int bad_range(struct zone *zone, struct page *page)
294 {
295 return 0;
296 }
297 #endif
298
299 static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
301 {
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
308 page_mapcount_reset(page); /* remove PageBuddy */
309 return;
310 }
311
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
333 current->comm, page_to_pfn(page));
334 dump_page_badflags(page, reason, bad_flags);
335
336 print_modules();
337 dump_stack();
338 out:
339 /* Leave bad fields for debug, except PageBuddy could make trouble */
340 page_mapcount_reset(page); /* remove PageBuddy */
341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
342 }
343
344 /*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
353 *
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
357 */
358
359 static void free_compound_page(struct page *page)
360 {
361 __free_pages_ok(page, compound_order(page));
362 }
363
364 void prep_compound_page(struct page *page, unsigned long order)
365 {
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
374 set_page_count(p, 0);
375 p->first_page = page;
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
379 }
380 }
381
382 /* update __split_huge_page_refcount if you change this function */
383 static int destroy_compound_page(struct page *page, unsigned long order)
384 {
385 int i;
386 int nr_pages = 1 << order;
387 int bad = 0;
388
389 if (unlikely(compound_order(page) != order)) {
390 bad_page(page, "wrong compound order", 0);
391 bad++;
392 }
393
394 __ClearPageHead(page);
395
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
398
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
404 bad++;
405 }
406 __ClearPageTail(p);
407 }
408
409 return bad;
410 }
411
412 static inline void prep_zero_page(struct page *page, unsigned int order,
413 gfp_t gfp_flags)
414 {
415 int i;
416
417 /*
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 */
421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
422 for (i = 0; i < (1 << order); i++)
423 clear_highpage(page + i);
424 }
425
426 #ifdef CONFIG_DEBUG_PAGEALLOC
427 unsigned int _debug_guardpage_minorder;
428 bool _debug_guardpage_enabled __read_mostly;
429
430 static bool need_debug_guardpage(void)
431 {
432 return true;
433 }
434
435 static void init_debug_guardpage(void)
436 {
437 _debug_guardpage_enabled = true;
438 }
439
440 struct page_ext_operations debug_guardpage_ops = {
441 .need = need_debug_guardpage,
442 .init = init_debug_guardpage,
443 };
444
445 static int __init debug_guardpage_minorder_setup(char *buf)
446 {
447 unsigned long res;
448
449 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
450 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
451 return 0;
452 }
453 _debug_guardpage_minorder = res;
454 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
455 return 0;
456 }
457 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
458
459 static inline void set_page_guard(struct zone *zone, struct page *page,
460 unsigned int order, int migratetype)
461 {
462 struct page_ext *page_ext;
463
464 if (!debug_guardpage_enabled())
465 return;
466
467 page_ext = lookup_page_ext(page);
468 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
469
470 INIT_LIST_HEAD(&page->lru);
471 set_page_private(page, order);
472 /* Guard pages are not available for any usage */
473 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
474 }
475
476 static inline void clear_page_guard(struct zone *zone, struct page *page,
477 unsigned int order, int migratetype)
478 {
479 struct page_ext *page_ext;
480
481 if (!debug_guardpage_enabled())
482 return;
483
484 page_ext = lookup_page_ext(page);
485 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
486
487 set_page_private(page, 0);
488 if (!is_migrate_isolate(migratetype))
489 __mod_zone_freepage_state(zone, (1 << order), migratetype);
490 }
491 #else
492 struct page_ext_operations debug_guardpage_ops = { NULL, };
493 static inline void set_page_guard(struct zone *zone, struct page *page,
494 unsigned int order, int migratetype) {}
495 static inline void clear_page_guard(struct zone *zone, struct page *page,
496 unsigned int order, int migratetype) {}
497 #endif
498
499 static inline void set_page_order(struct page *page, unsigned int order)
500 {
501 set_page_private(page, order);
502 __SetPageBuddy(page);
503 }
504
505 static inline void rmv_page_order(struct page *page)
506 {
507 __ClearPageBuddy(page);
508 set_page_private(page, 0);
509 }
510
511 /*
512 * This function checks whether a page is free && is the buddy
513 * we can do coalesce a page and its buddy if
514 * (a) the buddy is not in a hole &&
515 * (b) the buddy is in the buddy system &&
516 * (c) a page and its buddy have the same order &&
517 * (d) a page and its buddy are in the same zone.
518 *
519 * For recording whether a page is in the buddy system, we set ->_mapcount
520 * PAGE_BUDDY_MAPCOUNT_VALUE.
521 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
522 * serialized by zone->lock.
523 *
524 * For recording page's order, we use page_private(page).
525 */
526 static inline int page_is_buddy(struct page *page, struct page *buddy,
527 unsigned int order)
528 {
529 if (!pfn_valid_within(page_to_pfn(buddy)))
530 return 0;
531
532 if (page_is_guard(buddy) && page_order(buddy) == order) {
533 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
534
535 if (page_zone_id(page) != page_zone_id(buddy))
536 return 0;
537
538 return 1;
539 }
540
541 if (PageBuddy(buddy) && page_order(buddy) == order) {
542 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
543
544 /*
545 * zone check is done late to avoid uselessly
546 * calculating zone/node ids for pages that could
547 * never merge.
548 */
549 if (page_zone_id(page) != page_zone_id(buddy))
550 return 0;
551
552 return 1;
553 }
554 return 0;
555 }
556
557 /*
558 * Freeing function for a buddy system allocator.
559 *
560 * The concept of a buddy system is to maintain direct-mapped table
561 * (containing bit values) for memory blocks of various "orders".
562 * The bottom level table contains the map for the smallest allocatable
563 * units of memory (here, pages), and each level above it describes
564 * pairs of units from the levels below, hence, "buddies".
565 * At a high level, all that happens here is marking the table entry
566 * at the bottom level available, and propagating the changes upward
567 * as necessary, plus some accounting needed to play nicely with other
568 * parts of the VM system.
569 * At each level, we keep a list of pages, which are heads of continuous
570 * free pages of length of (1 << order) and marked with _mapcount
571 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
572 * field.
573 * So when we are allocating or freeing one, we can derive the state of the
574 * other. That is, if we allocate a small block, and both were
575 * free, the remainder of the region must be split into blocks.
576 * If a block is freed, and its buddy is also free, then this
577 * triggers coalescing into a block of larger size.
578 *
579 * -- nyc
580 */
581
582 static inline void __free_one_page(struct page *page,
583 unsigned long pfn,
584 struct zone *zone, unsigned int order,
585 int migratetype)
586 {
587 unsigned long page_idx;
588 unsigned long combined_idx;
589 unsigned long uninitialized_var(buddy_idx);
590 struct page *buddy;
591 int max_order = MAX_ORDER;
592
593 VM_BUG_ON(!zone_is_initialized(zone));
594
595 if (unlikely(PageCompound(page)))
596 if (unlikely(destroy_compound_page(page, order)))
597 return;
598
599 VM_BUG_ON(migratetype == -1);
600 if (is_migrate_isolate(migratetype)) {
601 /*
602 * We restrict max order of merging to prevent merge
603 * between freepages on isolate pageblock and normal
604 * pageblock. Without this, pageblock isolation
605 * could cause incorrect freepage accounting.
606 */
607 max_order = min(MAX_ORDER, pageblock_order + 1);
608 } else {
609 __mod_zone_freepage_state(zone, 1 << order, migratetype);
610 }
611
612 page_idx = pfn & ((1 << max_order) - 1);
613
614 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
615 VM_BUG_ON_PAGE(bad_range(zone, page), page);
616
617 while (order < max_order - 1) {
618 buddy_idx = __find_buddy_index(page_idx, order);
619 buddy = page + (buddy_idx - page_idx);
620 if (!page_is_buddy(page, buddy, order))
621 break;
622 /*
623 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
624 * merge with it and move up one order.
625 */
626 if (page_is_guard(buddy)) {
627 clear_page_guard(zone, buddy, order, migratetype);
628 } else {
629 list_del(&buddy->lru);
630 zone->free_area[order].nr_free--;
631 rmv_page_order(buddy);
632 }
633 combined_idx = buddy_idx & page_idx;
634 page = page + (combined_idx - page_idx);
635 page_idx = combined_idx;
636 order++;
637 }
638 set_page_order(page, order);
639
640 /*
641 * If this is not the largest possible page, check if the buddy
642 * of the next-highest order is free. If it is, it's possible
643 * that pages are being freed that will coalesce soon. In case,
644 * that is happening, add the free page to the tail of the list
645 * so it's less likely to be used soon and more likely to be merged
646 * as a higher order page
647 */
648 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
649 struct page *higher_page, *higher_buddy;
650 combined_idx = buddy_idx & page_idx;
651 higher_page = page + (combined_idx - page_idx);
652 buddy_idx = __find_buddy_index(combined_idx, order + 1);
653 higher_buddy = higher_page + (buddy_idx - combined_idx);
654 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
655 list_add_tail(&page->lru,
656 &zone->free_area[order].free_list[migratetype]);
657 goto out;
658 }
659 }
660
661 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
662 out:
663 zone->free_area[order].nr_free++;
664 }
665
666 static inline int free_pages_check(struct page *page)
667 {
668 const char *bad_reason = NULL;
669 unsigned long bad_flags = 0;
670
671 if (unlikely(page_mapcount(page)))
672 bad_reason = "nonzero mapcount";
673 if (unlikely(page->mapping != NULL))
674 bad_reason = "non-NULL mapping";
675 if (unlikely(atomic_read(&page->_count) != 0))
676 bad_reason = "nonzero _count";
677 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
678 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
679 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
680 }
681 #ifdef CONFIG_MEMCG
682 if (unlikely(page->mem_cgroup))
683 bad_reason = "page still charged to cgroup";
684 #endif
685 if (unlikely(bad_reason)) {
686 bad_page(page, bad_reason, bad_flags);
687 return 1;
688 }
689 page_cpupid_reset_last(page);
690 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
691 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
692 return 0;
693 }
694
695 /*
696 * Frees a number of pages from the PCP lists
697 * Assumes all pages on list are in same zone, and of same order.
698 * count is the number of pages to free.
699 *
700 * If the zone was previously in an "all pages pinned" state then look to
701 * see if this freeing clears that state.
702 *
703 * And clear the zone's pages_scanned counter, to hold off the "all pages are
704 * pinned" detection logic.
705 */
706 static void free_pcppages_bulk(struct zone *zone, int count,
707 struct per_cpu_pages *pcp)
708 {
709 int migratetype = 0;
710 int batch_free = 0;
711 int to_free = count;
712 unsigned long nr_scanned;
713
714 spin_lock(&zone->lock);
715 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
716 if (nr_scanned)
717 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
718
719 while (to_free) {
720 struct page *page;
721 struct list_head *list;
722
723 /*
724 * Remove pages from lists in a round-robin fashion. A
725 * batch_free count is maintained that is incremented when an
726 * empty list is encountered. This is so more pages are freed
727 * off fuller lists instead of spinning excessively around empty
728 * lists
729 */
730 do {
731 batch_free++;
732 if (++migratetype == MIGRATE_PCPTYPES)
733 migratetype = 0;
734 list = &pcp->lists[migratetype];
735 } while (list_empty(list));
736
737 /* This is the only non-empty list. Free them all. */
738 if (batch_free == MIGRATE_PCPTYPES)
739 batch_free = to_free;
740
741 do {
742 int mt; /* migratetype of the to-be-freed page */
743
744 page = list_entry(list->prev, struct page, lru);
745 /* must delete as __free_one_page list manipulates */
746 list_del(&page->lru);
747 mt = get_freepage_migratetype(page);
748 if (unlikely(has_isolate_pageblock(zone)))
749 mt = get_pageblock_migratetype(page);
750
751 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
752 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
753 trace_mm_page_pcpu_drain(page, 0, mt);
754 } while (--to_free && --batch_free && !list_empty(list));
755 }
756 spin_unlock(&zone->lock);
757 }
758
759 static void free_one_page(struct zone *zone,
760 struct page *page, unsigned long pfn,
761 unsigned int order,
762 int migratetype)
763 {
764 unsigned long nr_scanned;
765 spin_lock(&zone->lock);
766 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
767 if (nr_scanned)
768 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
769
770 if (unlikely(has_isolate_pageblock(zone) ||
771 is_migrate_isolate(migratetype))) {
772 migratetype = get_pfnblock_migratetype(page, pfn);
773 }
774 __free_one_page(page, pfn, zone, order, migratetype);
775 spin_unlock(&zone->lock);
776 }
777
778 static bool free_pages_prepare(struct page *page, unsigned int order)
779 {
780 int i;
781 int bad = 0;
782
783 VM_BUG_ON_PAGE(PageTail(page), page);
784 VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
785
786 trace_mm_page_free(page, order);
787 kmemcheck_free_shadow(page, order);
788
789 if (PageAnon(page))
790 page->mapping = NULL;
791 for (i = 0; i < (1 << order); i++)
792 bad += free_pages_check(page + i);
793 if (bad)
794 return false;
795
796 if (!PageHighMem(page)) {
797 debug_check_no_locks_freed(page_address(page),
798 PAGE_SIZE << order);
799 debug_check_no_obj_freed(page_address(page),
800 PAGE_SIZE << order);
801 }
802 arch_free_page(page, order);
803 kernel_map_pages(page, 1 << order, 0);
804
805 return true;
806 }
807
808 static void __free_pages_ok(struct page *page, unsigned int order)
809 {
810 unsigned long flags;
811 int migratetype;
812 unsigned long pfn = page_to_pfn(page);
813
814 if (!free_pages_prepare(page, order))
815 return;
816
817 migratetype = get_pfnblock_migratetype(page, pfn);
818 local_irq_save(flags);
819 __count_vm_events(PGFREE, 1 << order);
820 set_freepage_migratetype(page, migratetype);
821 free_one_page(page_zone(page), page, pfn, order, migratetype);
822 local_irq_restore(flags);
823 }
824
825 void __init __free_pages_bootmem(struct page *page, unsigned int order)
826 {
827 unsigned int nr_pages = 1 << order;
828 struct page *p = page;
829 unsigned int loop;
830
831 prefetchw(p);
832 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
833 prefetchw(p + 1);
834 __ClearPageReserved(p);
835 set_page_count(p, 0);
836 }
837 __ClearPageReserved(p);
838 set_page_count(p, 0);
839
840 page_zone(page)->managed_pages += nr_pages;
841 set_page_refcounted(page);
842 __free_pages(page, order);
843 }
844
845 #ifdef CONFIG_CMA
846 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
847 void __init init_cma_reserved_pageblock(struct page *page)
848 {
849 unsigned i = pageblock_nr_pages;
850 struct page *p = page;
851
852 do {
853 __ClearPageReserved(p);
854 set_page_count(p, 0);
855 } while (++p, --i);
856
857 set_pageblock_migratetype(page, MIGRATE_CMA);
858
859 if (pageblock_order >= MAX_ORDER) {
860 i = pageblock_nr_pages;
861 p = page;
862 do {
863 set_page_refcounted(p);
864 __free_pages(p, MAX_ORDER - 1);
865 p += MAX_ORDER_NR_PAGES;
866 } while (i -= MAX_ORDER_NR_PAGES);
867 } else {
868 set_page_refcounted(page);
869 __free_pages(page, pageblock_order);
870 }
871
872 adjust_managed_page_count(page, pageblock_nr_pages);
873 }
874 #endif
875
876 /*
877 * The order of subdivision here is critical for the IO subsystem.
878 * Please do not alter this order without good reasons and regression
879 * testing. Specifically, as large blocks of memory are subdivided,
880 * the order in which smaller blocks are delivered depends on the order
881 * they're subdivided in this function. This is the primary factor
882 * influencing the order in which pages are delivered to the IO
883 * subsystem according to empirical testing, and this is also justified
884 * by considering the behavior of a buddy system containing a single
885 * large block of memory acted on by a series of small allocations.
886 * This behavior is a critical factor in sglist merging's success.
887 *
888 * -- nyc
889 */
890 static inline void expand(struct zone *zone, struct page *page,
891 int low, int high, struct free_area *area,
892 int migratetype)
893 {
894 unsigned long size = 1 << high;
895
896 while (high > low) {
897 area--;
898 high--;
899 size >>= 1;
900 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
901
902 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
903 debug_guardpage_enabled() &&
904 high < debug_guardpage_minorder()) {
905 /*
906 * Mark as guard pages (or page), that will allow to
907 * merge back to allocator when buddy will be freed.
908 * Corresponding page table entries will not be touched,
909 * pages will stay not present in virtual address space
910 */
911 set_page_guard(zone, &page[size], high, migratetype);
912 continue;
913 }
914 list_add(&page[size].lru, &area->free_list[migratetype]);
915 area->nr_free++;
916 set_page_order(&page[size], high);
917 }
918 }
919
920 /*
921 * This page is about to be returned from the page allocator
922 */
923 static inline int check_new_page(struct page *page)
924 {
925 const char *bad_reason = NULL;
926 unsigned long bad_flags = 0;
927
928 if (unlikely(page_mapcount(page)))
929 bad_reason = "nonzero mapcount";
930 if (unlikely(page->mapping != NULL))
931 bad_reason = "non-NULL mapping";
932 if (unlikely(atomic_read(&page->_count) != 0))
933 bad_reason = "nonzero _count";
934 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
935 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
936 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
937 }
938 #ifdef CONFIG_MEMCG
939 if (unlikely(page->mem_cgroup))
940 bad_reason = "page still charged to cgroup";
941 #endif
942 if (unlikely(bad_reason)) {
943 bad_page(page, bad_reason, bad_flags);
944 return 1;
945 }
946 return 0;
947 }
948
949 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
950 {
951 int i;
952
953 for (i = 0; i < (1 << order); i++) {
954 struct page *p = page + i;
955 if (unlikely(check_new_page(p)))
956 return 1;
957 }
958
959 set_page_private(page, 0);
960 set_page_refcounted(page);
961
962 arch_alloc_page(page, order);
963 kernel_map_pages(page, 1 << order, 1);
964
965 if (gfp_flags & __GFP_ZERO)
966 prep_zero_page(page, order, gfp_flags);
967
968 if (order && (gfp_flags & __GFP_COMP))
969 prep_compound_page(page, order);
970
971 return 0;
972 }
973
974 /*
975 * Go through the free lists for the given migratetype and remove
976 * the smallest available page from the freelists
977 */
978 static inline
979 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
980 int migratetype)
981 {
982 unsigned int current_order;
983 struct free_area *area;
984 struct page *page;
985
986 /* Find a page of the appropriate size in the preferred list */
987 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
988 area = &(zone->free_area[current_order]);
989 if (list_empty(&area->free_list[migratetype]))
990 continue;
991
992 page = list_entry(area->free_list[migratetype].next,
993 struct page, lru);
994 list_del(&page->lru);
995 rmv_page_order(page);
996 area->nr_free--;
997 expand(zone, page, order, current_order, area, migratetype);
998 set_freepage_migratetype(page, migratetype);
999 return page;
1000 }
1001
1002 return NULL;
1003 }
1004
1005
1006 /*
1007 * This array describes the order lists are fallen back to when
1008 * the free lists for the desirable migrate type are depleted
1009 */
1010 static int fallbacks[MIGRATE_TYPES][4] = {
1011 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1012 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1013 #ifdef CONFIG_CMA
1014 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1015 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1016 #else
1017 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1018 #endif
1019 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1020 #ifdef CONFIG_MEMORY_ISOLATION
1021 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1022 #endif
1023 };
1024
1025 /*
1026 * Move the free pages in a range to the free lists of the requested type.
1027 * Note that start_page and end_pages are not aligned on a pageblock
1028 * boundary. If alignment is required, use move_freepages_block()
1029 */
1030 int move_freepages(struct zone *zone,
1031 struct page *start_page, struct page *end_page,
1032 int migratetype)
1033 {
1034 struct page *page;
1035 unsigned long order;
1036 int pages_moved = 0;
1037
1038 #ifndef CONFIG_HOLES_IN_ZONE
1039 /*
1040 * page_zone is not safe to call in this context when
1041 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1042 * anyway as we check zone boundaries in move_freepages_block().
1043 * Remove at a later date when no bug reports exist related to
1044 * grouping pages by mobility
1045 */
1046 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1047 #endif
1048
1049 for (page = start_page; page <= end_page;) {
1050 /* Make sure we are not inadvertently changing nodes */
1051 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1052
1053 if (!pfn_valid_within(page_to_pfn(page))) {
1054 page++;
1055 continue;
1056 }
1057
1058 if (!PageBuddy(page)) {
1059 page++;
1060 continue;
1061 }
1062
1063 order = page_order(page);
1064 list_move(&page->lru,
1065 &zone->free_area[order].free_list[migratetype]);
1066 set_freepage_migratetype(page, migratetype);
1067 page += 1 << order;
1068 pages_moved += 1 << order;
1069 }
1070
1071 return pages_moved;
1072 }
1073
1074 int move_freepages_block(struct zone *zone, struct page *page,
1075 int migratetype)
1076 {
1077 unsigned long start_pfn, end_pfn;
1078 struct page *start_page, *end_page;
1079
1080 start_pfn = page_to_pfn(page);
1081 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1082 start_page = pfn_to_page(start_pfn);
1083 end_page = start_page + pageblock_nr_pages - 1;
1084 end_pfn = start_pfn + pageblock_nr_pages - 1;
1085
1086 /* Do not cross zone boundaries */
1087 if (!zone_spans_pfn(zone, start_pfn))
1088 start_page = page;
1089 if (!zone_spans_pfn(zone, end_pfn))
1090 return 0;
1091
1092 return move_freepages(zone, start_page, end_page, migratetype);
1093 }
1094
1095 static void change_pageblock_range(struct page *pageblock_page,
1096 int start_order, int migratetype)
1097 {
1098 int nr_pageblocks = 1 << (start_order - pageblock_order);
1099
1100 while (nr_pageblocks--) {
1101 set_pageblock_migratetype(pageblock_page, migratetype);
1102 pageblock_page += pageblock_nr_pages;
1103 }
1104 }
1105
1106 /*
1107 * If breaking a large block of pages, move all free pages to the preferred
1108 * allocation list. If falling back for a reclaimable kernel allocation, be
1109 * more aggressive about taking ownership of free pages.
1110 *
1111 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1112 * nor move CMA pages to different free lists. We don't want unmovable pages
1113 * to be allocated from MIGRATE_CMA areas.
1114 *
1115 * Returns the new migratetype of the pageblock (or the same old migratetype
1116 * if it was unchanged).
1117 */
1118 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1119 int start_type, int fallback_type)
1120 {
1121 int current_order = page_order(page);
1122
1123 /*
1124 * When borrowing from MIGRATE_CMA, we need to release the excess
1125 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1126 * is set to CMA so it is returned to the correct freelist in case
1127 * the page ends up being not actually allocated from the pcp lists.
1128 */
1129 if (is_migrate_cma(fallback_type))
1130 return fallback_type;
1131
1132 /* Take ownership for orders >= pageblock_order */
1133 if (current_order >= pageblock_order) {
1134 change_pageblock_range(page, current_order, start_type);
1135 return start_type;
1136 }
1137
1138 if (current_order >= pageblock_order / 2 ||
1139 start_type == MIGRATE_RECLAIMABLE ||
1140 page_group_by_mobility_disabled) {
1141 int pages;
1142
1143 pages = move_freepages_block(zone, page, start_type);
1144
1145 /* Claim the whole block if over half of it is free */
1146 if (pages >= (1 << (pageblock_order-1)) ||
1147 page_group_by_mobility_disabled) {
1148
1149 set_pageblock_migratetype(page, start_type);
1150 return start_type;
1151 }
1152
1153 }
1154
1155 return fallback_type;
1156 }
1157
1158 /* Remove an element from the buddy allocator from the fallback list */
1159 static inline struct page *
1160 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1161 {
1162 struct free_area *area;
1163 unsigned int current_order;
1164 struct page *page;
1165 int migratetype, new_type, i;
1166
1167 /* Find the largest possible block of pages in the other list */
1168 for (current_order = MAX_ORDER-1;
1169 current_order >= order && current_order <= MAX_ORDER-1;
1170 --current_order) {
1171 for (i = 0;; i++) {
1172 migratetype = fallbacks[start_migratetype][i];
1173
1174 /* MIGRATE_RESERVE handled later if necessary */
1175 if (migratetype == MIGRATE_RESERVE)
1176 break;
1177
1178 area = &(zone->free_area[current_order]);
1179 if (list_empty(&area->free_list[migratetype]))
1180 continue;
1181
1182 page = list_entry(area->free_list[migratetype].next,
1183 struct page, lru);
1184 area->nr_free--;
1185
1186 new_type = try_to_steal_freepages(zone, page,
1187 start_migratetype,
1188 migratetype);
1189
1190 /* Remove the page from the freelists */
1191 list_del(&page->lru);
1192 rmv_page_order(page);
1193
1194 expand(zone, page, order, current_order, area,
1195 new_type);
1196 /* The freepage_migratetype may differ from pageblock's
1197 * migratetype depending on the decisions in
1198 * try_to_steal_freepages. This is OK as long as it does
1199 * not differ for MIGRATE_CMA type.
1200 */
1201 set_freepage_migratetype(page, new_type);
1202
1203 trace_mm_page_alloc_extfrag(page, order, current_order,
1204 start_migratetype, migratetype, new_type);
1205
1206 return page;
1207 }
1208 }
1209
1210 return NULL;
1211 }
1212
1213 /*
1214 * Do the hard work of removing an element from the buddy allocator.
1215 * Call me with the zone->lock already held.
1216 */
1217 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1218 int migratetype)
1219 {
1220 struct page *page;
1221
1222 retry_reserve:
1223 page = __rmqueue_smallest(zone, order, migratetype);
1224
1225 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1226 page = __rmqueue_fallback(zone, order, migratetype);
1227
1228 /*
1229 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1230 * is used because __rmqueue_smallest is an inline function
1231 * and we want just one call site
1232 */
1233 if (!page) {
1234 migratetype = MIGRATE_RESERVE;
1235 goto retry_reserve;
1236 }
1237 }
1238
1239 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1240 return page;
1241 }
1242
1243 /*
1244 * Obtain a specified number of elements from the buddy allocator, all under
1245 * a single hold of the lock, for efficiency. Add them to the supplied list.
1246 * Returns the number of new pages which were placed at *list.
1247 */
1248 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1249 unsigned long count, struct list_head *list,
1250 int migratetype, bool cold)
1251 {
1252 int i;
1253
1254 spin_lock(&zone->lock);
1255 for (i = 0; i < count; ++i) {
1256 struct page *page = __rmqueue(zone, order, migratetype);
1257 if (unlikely(page == NULL))
1258 break;
1259
1260 /*
1261 * Split buddy pages returned by expand() are received here
1262 * in physical page order. The page is added to the callers and
1263 * list and the list head then moves forward. From the callers
1264 * perspective, the linked list is ordered by page number in
1265 * some conditions. This is useful for IO devices that can
1266 * merge IO requests if the physical pages are ordered
1267 * properly.
1268 */
1269 if (likely(!cold))
1270 list_add(&page->lru, list);
1271 else
1272 list_add_tail(&page->lru, list);
1273 list = &page->lru;
1274 if (is_migrate_cma(get_freepage_migratetype(page)))
1275 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1276 -(1 << order));
1277 }
1278 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1279 spin_unlock(&zone->lock);
1280 return i;
1281 }
1282
1283 #ifdef CONFIG_NUMA
1284 /*
1285 * Called from the vmstat counter updater to drain pagesets of this
1286 * currently executing processor on remote nodes after they have
1287 * expired.
1288 *
1289 * Note that this function must be called with the thread pinned to
1290 * a single processor.
1291 */
1292 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1293 {
1294 unsigned long flags;
1295 int to_drain, batch;
1296
1297 local_irq_save(flags);
1298 batch = ACCESS_ONCE(pcp->batch);
1299 to_drain = min(pcp->count, batch);
1300 if (to_drain > 0) {
1301 free_pcppages_bulk(zone, to_drain, pcp);
1302 pcp->count -= to_drain;
1303 }
1304 local_irq_restore(flags);
1305 }
1306 #endif
1307
1308 /*
1309 * Drain pcplists of the indicated processor and zone.
1310 *
1311 * The processor must either be the current processor and the
1312 * thread pinned to the current processor or a processor that
1313 * is not online.
1314 */
1315 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1316 {
1317 unsigned long flags;
1318 struct per_cpu_pageset *pset;
1319 struct per_cpu_pages *pcp;
1320
1321 local_irq_save(flags);
1322 pset = per_cpu_ptr(zone->pageset, cpu);
1323
1324 pcp = &pset->pcp;
1325 if (pcp->count) {
1326 free_pcppages_bulk(zone, pcp->count, pcp);
1327 pcp->count = 0;
1328 }
1329 local_irq_restore(flags);
1330 }
1331
1332 /*
1333 * Drain pcplists of all zones on the indicated processor.
1334 *
1335 * The processor must either be the current processor and the
1336 * thread pinned to the current processor or a processor that
1337 * is not online.
1338 */
1339 static void drain_pages(unsigned int cpu)
1340 {
1341 struct zone *zone;
1342
1343 for_each_populated_zone(zone) {
1344 drain_pages_zone(cpu, zone);
1345 }
1346 }
1347
1348 /*
1349 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1350 *
1351 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1352 * the single zone's pages.
1353 */
1354 void drain_local_pages(struct zone *zone)
1355 {
1356 int cpu = smp_processor_id();
1357
1358 if (zone)
1359 drain_pages_zone(cpu, zone);
1360 else
1361 drain_pages(cpu);
1362 }
1363
1364 /*
1365 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1366 *
1367 * When zone parameter is non-NULL, spill just the single zone's pages.
1368 *
1369 * Note that this code is protected against sending an IPI to an offline
1370 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1371 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1372 * nothing keeps CPUs from showing up after we populated the cpumask and
1373 * before the call to on_each_cpu_mask().
1374 */
1375 void drain_all_pages(struct zone *zone)
1376 {
1377 int cpu;
1378
1379 /*
1380 * Allocate in the BSS so we wont require allocation in
1381 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1382 */
1383 static cpumask_t cpus_with_pcps;
1384
1385 /*
1386 * We don't care about racing with CPU hotplug event
1387 * as offline notification will cause the notified
1388 * cpu to drain that CPU pcps and on_each_cpu_mask
1389 * disables preemption as part of its processing
1390 */
1391 for_each_online_cpu(cpu) {
1392 struct per_cpu_pageset *pcp;
1393 struct zone *z;
1394 bool has_pcps = false;
1395
1396 if (zone) {
1397 pcp = per_cpu_ptr(zone->pageset, cpu);
1398 if (pcp->pcp.count)
1399 has_pcps = true;
1400 } else {
1401 for_each_populated_zone(z) {
1402 pcp = per_cpu_ptr(z->pageset, cpu);
1403 if (pcp->pcp.count) {
1404 has_pcps = true;
1405 break;
1406 }
1407 }
1408 }
1409
1410 if (has_pcps)
1411 cpumask_set_cpu(cpu, &cpus_with_pcps);
1412 else
1413 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1414 }
1415 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1416 zone, 1);
1417 }
1418
1419 #ifdef CONFIG_HIBERNATION
1420
1421 void mark_free_pages(struct zone *zone)
1422 {
1423 unsigned long pfn, max_zone_pfn;
1424 unsigned long flags;
1425 unsigned int order, t;
1426 struct list_head *curr;
1427
1428 if (zone_is_empty(zone))
1429 return;
1430
1431 spin_lock_irqsave(&zone->lock, flags);
1432
1433 max_zone_pfn = zone_end_pfn(zone);
1434 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1435 if (pfn_valid(pfn)) {
1436 struct page *page = pfn_to_page(pfn);
1437
1438 if (!swsusp_page_is_forbidden(page))
1439 swsusp_unset_page_free(page);
1440 }
1441
1442 for_each_migratetype_order(order, t) {
1443 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1444 unsigned long i;
1445
1446 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1447 for (i = 0; i < (1UL << order); i++)
1448 swsusp_set_page_free(pfn_to_page(pfn + i));
1449 }
1450 }
1451 spin_unlock_irqrestore(&zone->lock, flags);
1452 }
1453 #endif /* CONFIG_PM */
1454
1455 /*
1456 * Free a 0-order page
1457 * cold == true ? free a cold page : free a hot page
1458 */
1459 void free_hot_cold_page(struct page *page, bool cold)
1460 {
1461 struct zone *zone = page_zone(page);
1462 struct per_cpu_pages *pcp;
1463 unsigned long flags;
1464 unsigned long pfn = page_to_pfn(page);
1465 int migratetype;
1466
1467 if (!free_pages_prepare(page, 0))
1468 return;
1469
1470 migratetype = get_pfnblock_migratetype(page, pfn);
1471 set_freepage_migratetype(page, migratetype);
1472 local_irq_save(flags);
1473 __count_vm_event(PGFREE);
1474
1475 /*
1476 * We only track unmovable, reclaimable and movable on pcp lists.
1477 * Free ISOLATE pages back to the allocator because they are being
1478 * offlined but treat RESERVE as movable pages so we can get those
1479 * areas back if necessary. Otherwise, we may have to free
1480 * excessively into the page allocator
1481 */
1482 if (migratetype >= MIGRATE_PCPTYPES) {
1483 if (unlikely(is_migrate_isolate(migratetype))) {
1484 free_one_page(zone, page, pfn, 0, migratetype);
1485 goto out;
1486 }
1487 migratetype = MIGRATE_MOVABLE;
1488 }
1489
1490 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1491 if (!cold)
1492 list_add(&page->lru, &pcp->lists[migratetype]);
1493 else
1494 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1495 pcp->count++;
1496 if (pcp->count >= pcp->high) {
1497 unsigned long batch = ACCESS_ONCE(pcp->batch);
1498 free_pcppages_bulk(zone, batch, pcp);
1499 pcp->count -= batch;
1500 }
1501
1502 out:
1503 local_irq_restore(flags);
1504 }
1505
1506 /*
1507 * Free a list of 0-order pages
1508 */
1509 void free_hot_cold_page_list(struct list_head *list, bool cold)
1510 {
1511 struct page *page, *next;
1512
1513 list_for_each_entry_safe(page, next, list, lru) {
1514 trace_mm_page_free_batched(page, cold);
1515 free_hot_cold_page(page, cold);
1516 }
1517 }
1518
1519 /*
1520 * split_page takes a non-compound higher-order page, and splits it into
1521 * n (1<<order) sub-pages: page[0..n]
1522 * Each sub-page must be freed individually.
1523 *
1524 * Note: this is probably too low level an operation for use in drivers.
1525 * Please consult with lkml before using this in your driver.
1526 */
1527 void split_page(struct page *page, unsigned int order)
1528 {
1529 int i;
1530
1531 VM_BUG_ON_PAGE(PageCompound(page), page);
1532 VM_BUG_ON_PAGE(!page_count(page), page);
1533
1534 #ifdef CONFIG_KMEMCHECK
1535 /*
1536 * Split shadow pages too, because free(page[0]) would
1537 * otherwise free the whole shadow.
1538 */
1539 if (kmemcheck_page_is_tracked(page))
1540 split_page(virt_to_page(page[0].shadow), order);
1541 #endif
1542
1543 for (i = 1; i < (1 << order); i++)
1544 set_page_refcounted(page + i);
1545 }
1546 EXPORT_SYMBOL_GPL(split_page);
1547
1548 int __isolate_free_page(struct page *page, unsigned int order)
1549 {
1550 unsigned long watermark;
1551 struct zone *zone;
1552 int mt;
1553
1554 BUG_ON(!PageBuddy(page));
1555
1556 zone = page_zone(page);
1557 mt = get_pageblock_migratetype(page);
1558
1559 if (!is_migrate_isolate(mt)) {
1560 /* Obey watermarks as if the page was being allocated */
1561 watermark = low_wmark_pages(zone) + (1 << order);
1562 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1563 return 0;
1564
1565 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1566 }
1567
1568 /* Remove page from free list */
1569 list_del(&page->lru);
1570 zone->free_area[order].nr_free--;
1571 rmv_page_order(page);
1572
1573 /* Set the pageblock if the isolated page is at least a pageblock */
1574 if (order >= pageblock_order - 1) {
1575 struct page *endpage = page + (1 << order) - 1;
1576 for (; page < endpage; page += pageblock_nr_pages) {
1577 int mt = get_pageblock_migratetype(page);
1578 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1579 set_pageblock_migratetype(page,
1580 MIGRATE_MOVABLE);
1581 }
1582 }
1583
1584 return 1UL << order;
1585 }
1586
1587 /*
1588 * Similar to split_page except the page is already free. As this is only
1589 * being used for migration, the migratetype of the block also changes.
1590 * As this is called with interrupts disabled, the caller is responsible
1591 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1592 * are enabled.
1593 *
1594 * Note: this is probably too low level an operation for use in drivers.
1595 * Please consult with lkml before using this in your driver.
1596 */
1597 int split_free_page(struct page *page)
1598 {
1599 unsigned int order;
1600 int nr_pages;
1601
1602 order = page_order(page);
1603
1604 nr_pages = __isolate_free_page(page, order);
1605 if (!nr_pages)
1606 return 0;
1607
1608 /* Split into individual pages */
1609 set_page_refcounted(page);
1610 split_page(page, order);
1611 return nr_pages;
1612 }
1613
1614 /*
1615 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1616 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1617 * or two.
1618 */
1619 static inline
1620 struct page *buffered_rmqueue(struct zone *preferred_zone,
1621 struct zone *zone, unsigned int order,
1622 gfp_t gfp_flags, int migratetype)
1623 {
1624 unsigned long flags;
1625 struct page *page;
1626 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1627
1628 again:
1629 if (likely(order == 0)) {
1630 struct per_cpu_pages *pcp;
1631 struct list_head *list;
1632
1633 local_irq_save(flags);
1634 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1635 list = &pcp->lists[migratetype];
1636 if (list_empty(list)) {
1637 pcp->count += rmqueue_bulk(zone, 0,
1638 pcp->batch, list,
1639 migratetype, cold);
1640 if (unlikely(list_empty(list)))
1641 goto failed;
1642 }
1643
1644 if (cold)
1645 page = list_entry(list->prev, struct page, lru);
1646 else
1647 page = list_entry(list->next, struct page, lru);
1648
1649 list_del(&page->lru);
1650 pcp->count--;
1651 } else {
1652 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1653 /*
1654 * __GFP_NOFAIL is not to be used in new code.
1655 *
1656 * All __GFP_NOFAIL callers should be fixed so that they
1657 * properly detect and handle allocation failures.
1658 *
1659 * We most definitely don't want callers attempting to
1660 * allocate greater than order-1 page units with
1661 * __GFP_NOFAIL.
1662 */
1663 WARN_ON_ONCE(order > 1);
1664 }
1665 spin_lock_irqsave(&zone->lock, flags);
1666 page = __rmqueue(zone, order, migratetype);
1667 spin_unlock(&zone->lock);
1668 if (!page)
1669 goto failed;
1670 __mod_zone_freepage_state(zone, -(1 << order),
1671 get_freepage_migratetype(page));
1672 }
1673
1674 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1675 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1676 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1677 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1678
1679 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1680 zone_statistics(preferred_zone, zone, gfp_flags);
1681 local_irq_restore(flags);
1682
1683 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1684 if (prep_new_page(page, order, gfp_flags))
1685 goto again;
1686 return page;
1687
1688 failed:
1689 local_irq_restore(flags);
1690 return NULL;
1691 }
1692
1693 #ifdef CONFIG_FAIL_PAGE_ALLOC
1694
1695 static struct {
1696 struct fault_attr attr;
1697
1698 u32 ignore_gfp_highmem;
1699 u32 ignore_gfp_wait;
1700 u32 min_order;
1701 } fail_page_alloc = {
1702 .attr = FAULT_ATTR_INITIALIZER,
1703 .ignore_gfp_wait = 1,
1704 .ignore_gfp_highmem = 1,
1705 .min_order = 1,
1706 };
1707
1708 static int __init setup_fail_page_alloc(char *str)
1709 {
1710 return setup_fault_attr(&fail_page_alloc.attr, str);
1711 }
1712 __setup("fail_page_alloc=", setup_fail_page_alloc);
1713
1714 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1715 {
1716 if (order < fail_page_alloc.min_order)
1717 return false;
1718 if (gfp_mask & __GFP_NOFAIL)
1719 return false;
1720 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1721 return false;
1722 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1723 return false;
1724
1725 return should_fail(&fail_page_alloc.attr, 1 << order);
1726 }
1727
1728 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1729
1730 static int __init fail_page_alloc_debugfs(void)
1731 {
1732 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1733 struct dentry *dir;
1734
1735 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1736 &fail_page_alloc.attr);
1737 if (IS_ERR(dir))
1738 return PTR_ERR(dir);
1739
1740 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1741 &fail_page_alloc.ignore_gfp_wait))
1742 goto fail;
1743 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1744 &fail_page_alloc.ignore_gfp_highmem))
1745 goto fail;
1746 if (!debugfs_create_u32("min-order", mode, dir,
1747 &fail_page_alloc.min_order))
1748 goto fail;
1749
1750 return 0;
1751 fail:
1752 debugfs_remove_recursive(dir);
1753
1754 return -ENOMEM;
1755 }
1756
1757 late_initcall(fail_page_alloc_debugfs);
1758
1759 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1760
1761 #else /* CONFIG_FAIL_PAGE_ALLOC */
1762
1763 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1764 {
1765 return false;
1766 }
1767
1768 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1769
1770 /*
1771 * Return true if free pages are above 'mark'. This takes into account the order
1772 * of the allocation.
1773 */
1774 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1775 unsigned long mark, int classzone_idx, int alloc_flags,
1776 long free_pages)
1777 {
1778 /* free_pages may go negative - that's OK */
1779 long min = mark;
1780 int o;
1781 long free_cma = 0;
1782
1783 free_pages -= (1 << order) - 1;
1784 if (alloc_flags & ALLOC_HIGH)
1785 min -= min / 2;
1786 if (alloc_flags & ALLOC_HARDER)
1787 min -= min / 4;
1788 #ifdef CONFIG_CMA
1789 /* If allocation can't use CMA areas don't use free CMA pages */
1790 if (!(alloc_flags & ALLOC_CMA))
1791 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1792 #endif
1793
1794 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1795 return false;
1796 for (o = 0; o < order; o++) {
1797 /* At the next order, this order's pages become unavailable */
1798 free_pages -= z->free_area[o].nr_free << o;
1799
1800 /* Require fewer higher order pages to be free */
1801 min >>= 1;
1802
1803 if (free_pages <= min)
1804 return false;
1805 }
1806 return true;
1807 }
1808
1809 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1810 int classzone_idx, int alloc_flags)
1811 {
1812 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1813 zone_page_state(z, NR_FREE_PAGES));
1814 }
1815
1816 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1817 unsigned long mark, int classzone_idx, int alloc_flags)
1818 {
1819 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1820
1821 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1822 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1823
1824 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1825 free_pages);
1826 }
1827
1828 #ifdef CONFIG_NUMA
1829 /*
1830 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1831 * skip over zones that are not allowed by the cpuset, or that have
1832 * been recently (in last second) found to be nearly full. See further
1833 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1834 * that have to skip over a lot of full or unallowed zones.
1835 *
1836 * If the zonelist cache is present in the passed zonelist, then
1837 * returns a pointer to the allowed node mask (either the current
1838 * tasks mems_allowed, or node_states[N_MEMORY].)
1839 *
1840 * If the zonelist cache is not available for this zonelist, does
1841 * nothing and returns NULL.
1842 *
1843 * If the fullzones BITMAP in the zonelist cache is stale (more than
1844 * a second since last zap'd) then we zap it out (clear its bits.)
1845 *
1846 * We hold off even calling zlc_setup, until after we've checked the
1847 * first zone in the zonelist, on the theory that most allocations will
1848 * be satisfied from that first zone, so best to examine that zone as
1849 * quickly as we can.
1850 */
1851 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1852 {
1853 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1854 nodemask_t *allowednodes; /* zonelist_cache approximation */
1855
1856 zlc = zonelist->zlcache_ptr;
1857 if (!zlc)
1858 return NULL;
1859
1860 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1861 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1862 zlc->last_full_zap = jiffies;
1863 }
1864
1865 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1866 &cpuset_current_mems_allowed :
1867 &node_states[N_MEMORY];
1868 return allowednodes;
1869 }
1870
1871 /*
1872 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1873 * if it is worth looking at further for free memory:
1874 * 1) Check that the zone isn't thought to be full (doesn't have its
1875 * bit set in the zonelist_cache fullzones BITMAP).
1876 * 2) Check that the zones node (obtained from the zonelist_cache
1877 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1878 * Return true (non-zero) if zone is worth looking at further, or
1879 * else return false (zero) if it is not.
1880 *
1881 * This check -ignores- the distinction between various watermarks,
1882 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1883 * found to be full for any variation of these watermarks, it will
1884 * be considered full for up to one second by all requests, unless
1885 * we are so low on memory on all allowed nodes that we are forced
1886 * into the second scan of the zonelist.
1887 *
1888 * In the second scan we ignore this zonelist cache and exactly
1889 * apply the watermarks to all zones, even it is slower to do so.
1890 * We are low on memory in the second scan, and should leave no stone
1891 * unturned looking for a free page.
1892 */
1893 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1894 nodemask_t *allowednodes)
1895 {
1896 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1897 int i; /* index of *z in zonelist zones */
1898 int n; /* node that zone *z is on */
1899
1900 zlc = zonelist->zlcache_ptr;
1901 if (!zlc)
1902 return 1;
1903
1904 i = z - zonelist->_zonerefs;
1905 n = zlc->z_to_n[i];
1906
1907 /* This zone is worth trying if it is allowed but not full */
1908 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1909 }
1910
1911 /*
1912 * Given 'z' scanning a zonelist, set the corresponding bit in
1913 * zlc->fullzones, so that subsequent attempts to allocate a page
1914 * from that zone don't waste time re-examining it.
1915 */
1916 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1917 {
1918 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1919 int i; /* index of *z in zonelist zones */
1920
1921 zlc = zonelist->zlcache_ptr;
1922 if (!zlc)
1923 return;
1924
1925 i = z - zonelist->_zonerefs;
1926
1927 set_bit(i, zlc->fullzones);
1928 }
1929
1930 /*
1931 * clear all zones full, called after direct reclaim makes progress so that
1932 * a zone that was recently full is not skipped over for up to a second
1933 */
1934 static void zlc_clear_zones_full(struct zonelist *zonelist)
1935 {
1936 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1937
1938 zlc = zonelist->zlcache_ptr;
1939 if (!zlc)
1940 return;
1941
1942 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1943 }
1944
1945 static bool zone_local(struct zone *local_zone, struct zone *zone)
1946 {
1947 return local_zone->node == zone->node;
1948 }
1949
1950 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1951 {
1952 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1953 RECLAIM_DISTANCE;
1954 }
1955
1956 #else /* CONFIG_NUMA */
1957
1958 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1959 {
1960 return NULL;
1961 }
1962
1963 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1964 nodemask_t *allowednodes)
1965 {
1966 return 1;
1967 }
1968
1969 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1970 {
1971 }
1972
1973 static void zlc_clear_zones_full(struct zonelist *zonelist)
1974 {
1975 }
1976
1977 static bool zone_local(struct zone *local_zone, struct zone *zone)
1978 {
1979 return true;
1980 }
1981
1982 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1983 {
1984 return true;
1985 }
1986
1987 #endif /* CONFIG_NUMA */
1988
1989 static void reset_alloc_batches(struct zone *preferred_zone)
1990 {
1991 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1992
1993 do {
1994 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1995 high_wmark_pages(zone) - low_wmark_pages(zone) -
1996 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1997 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1998 } while (zone++ != preferred_zone);
1999 }
2000
2001 /*
2002 * get_page_from_freelist goes through the zonelist trying to allocate
2003 * a page.
2004 */
2005 static struct page *
2006 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
2007 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
2008 struct zone *preferred_zone, int classzone_idx, int migratetype)
2009 {
2010 struct zoneref *z;
2011 struct page *page = NULL;
2012 struct zone *zone;
2013 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2014 int zlc_active = 0; /* set if using zonelist_cache */
2015 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2016 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2017 (gfp_mask & __GFP_WRITE);
2018 int nr_fair_skipped = 0;
2019 bool zonelist_rescan;
2020
2021 zonelist_scan:
2022 zonelist_rescan = false;
2023
2024 /*
2025 * Scan zonelist, looking for a zone with enough free.
2026 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2027 */
2028 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2029 high_zoneidx, nodemask) {
2030 unsigned long mark;
2031
2032 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2033 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2034 continue;
2035 if (cpusets_enabled() &&
2036 (alloc_flags & ALLOC_CPUSET) &&
2037 !cpuset_zone_allowed(zone, gfp_mask))
2038 continue;
2039 /*
2040 * Distribute pages in proportion to the individual
2041 * zone size to ensure fair page aging. The zone a
2042 * page was allocated in should have no effect on the
2043 * time the page has in memory before being reclaimed.
2044 */
2045 if (alloc_flags & ALLOC_FAIR) {
2046 if (!zone_local(preferred_zone, zone))
2047 break;
2048 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2049 nr_fair_skipped++;
2050 continue;
2051 }
2052 }
2053 /*
2054 * When allocating a page cache page for writing, we
2055 * want to get it from a zone that is within its dirty
2056 * limit, such that no single zone holds more than its
2057 * proportional share of globally allowed dirty pages.
2058 * The dirty limits take into account the zone's
2059 * lowmem reserves and high watermark so that kswapd
2060 * should be able to balance it without having to
2061 * write pages from its LRU list.
2062 *
2063 * This may look like it could increase pressure on
2064 * lower zones by failing allocations in higher zones
2065 * before they are full. But the pages that do spill
2066 * over are limited as the lower zones are protected
2067 * by this very same mechanism. It should not become
2068 * a practical burden to them.
2069 *
2070 * XXX: For now, allow allocations to potentially
2071 * exceed the per-zone dirty limit in the slowpath
2072 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2073 * which is important when on a NUMA setup the allowed
2074 * zones are together not big enough to reach the
2075 * global limit. The proper fix for these situations
2076 * will require awareness of zones in the
2077 * dirty-throttling and the flusher threads.
2078 */
2079 if (consider_zone_dirty && !zone_dirty_ok(zone))
2080 continue;
2081
2082 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2083 if (!zone_watermark_ok(zone, order, mark,
2084 classzone_idx, alloc_flags)) {
2085 int ret;
2086
2087 /* Checked here to keep the fast path fast */
2088 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2089 if (alloc_flags & ALLOC_NO_WATERMARKS)
2090 goto try_this_zone;
2091
2092 if (IS_ENABLED(CONFIG_NUMA) &&
2093 !did_zlc_setup && nr_online_nodes > 1) {
2094 /*
2095 * we do zlc_setup if there are multiple nodes
2096 * and before considering the first zone allowed
2097 * by the cpuset.
2098 */
2099 allowednodes = zlc_setup(zonelist, alloc_flags);
2100 zlc_active = 1;
2101 did_zlc_setup = 1;
2102 }
2103
2104 if (zone_reclaim_mode == 0 ||
2105 !zone_allows_reclaim(preferred_zone, zone))
2106 goto this_zone_full;
2107
2108 /*
2109 * As we may have just activated ZLC, check if the first
2110 * eligible zone has failed zone_reclaim recently.
2111 */
2112 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2113 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2114 continue;
2115
2116 ret = zone_reclaim(zone, gfp_mask, order);
2117 switch (ret) {
2118 case ZONE_RECLAIM_NOSCAN:
2119 /* did not scan */
2120 continue;
2121 case ZONE_RECLAIM_FULL:
2122 /* scanned but unreclaimable */
2123 continue;
2124 default:
2125 /* did we reclaim enough */
2126 if (zone_watermark_ok(zone, order, mark,
2127 classzone_idx, alloc_flags))
2128 goto try_this_zone;
2129
2130 /*
2131 * Failed to reclaim enough to meet watermark.
2132 * Only mark the zone full if checking the min
2133 * watermark or if we failed to reclaim just
2134 * 1<<order pages or else the page allocator
2135 * fastpath will prematurely mark zones full
2136 * when the watermark is between the low and
2137 * min watermarks.
2138 */
2139 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2140 ret == ZONE_RECLAIM_SOME)
2141 goto this_zone_full;
2142
2143 continue;
2144 }
2145 }
2146
2147 try_this_zone:
2148 page = buffered_rmqueue(preferred_zone, zone, order,
2149 gfp_mask, migratetype);
2150 if (page)
2151 break;
2152 this_zone_full:
2153 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2154 zlc_mark_zone_full(zonelist, z);
2155 }
2156
2157 if (page) {
2158 /*
2159 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2160 * necessary to allocate the page. The expectation is
2161 * that the caller is taking steps that will free more
2162 * memory. The caller should avoid the page being used
2163 * for !PFMEMALLOC purposes.
2164 */
2165 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2166 return page;
2167 }
2168
2169 /*
2170 * The first pass makes sure allocations are spread fairly within the
2171 * local node. However, the local node might have free pages left
2172 * after the fairness batches are exhausted, and remote zones haven't
2173 * even been considered yet. Try once more without fairness, and
2174 * include remote zones now, before entering the slowpath and waking
2175 * kswapd: prefer spilling to a remote zone over swapping locally.
2176 */
2177 if (alloc_flags & ALLOC_FAIR) {
2178 alloc_flags &= ~ALLOC_FAIR;
2179 if (nr_fair_skipped) {
2180 zonelist_rescan = true;
2181 reset_alloc_batches(preferred_zone);
2182 }
2183 if (nr_online_nodes > 1)
2184 zonelist_rescan = true;
2185 }
2186
2187 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2188 /* Disable zlc cache for second zonelist scan */
2189 zlc_active = 0;
2190 zonelist_rescan = true;
2191 }
2192
2193 if (zonelist_rescan)
2194 goto zonelist_scan;
2195
2196 return NULL;
2197 }
2198
2199 /*
2200 * Large machines with many possible nodes should not always dump per-node
2201 * meminfo in irq context.
2202 */
2203 static inline bool should_suppress_show_mem(void)
2204 {
2205 bool ret = false;
2206
2207 #if NODES_SHIFT > 8
2208 ret = in_interrupt();
2209 #endif
2210 return ret;
2211 }
2212
2213 static DEFINE_RATELIMIT_STATE(nopage_rs,
2214 DEFAULT_RATELIMIT_INTERVAL,
2215 DEFAULT_RATELIMIT_BURST);
2216
2217 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2218 {
2219 unsigned int filter = SHOW_MEM_FILTER_NODES;
2220
2221 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2222 debug_guardpage_minorder() > 0)
2223 return;
2224
2225 /*
2226 * This documents exceptions given to allocations in certain
2227 * contexts that are allowed to allocate outside current's set
2228 * of allowed nodes.
2229 */
2230 if (!(gfp_mask & __GFP_NOMEMALLOC))
2231 if (test_thread_flag(TIF_MEMDIE) ||
2232 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2233 filter &= ~SHOW_MEM_FILTER_NODES;
2234 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2235 filter &= ~SHOW_MEM_FILTER_NODES;
2236
2237 if (fmt) {
2238 struct va_format vaf;
2239 va_list args;
2240
2241 va_start(args, fmt);
2242
2243 vaf.fmt = fmt;
2244 vaf.va = &args;
2245
2246 pr_warn("%pV", &vaf);
2247
2248 va_end(args);
2249 }
2250
2251 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2252 current->comm, order, gfp_mask);
2253
2254 dump_stack();
2255 if (!should_suppress_show_mem())
2256 show_mem(filter);
2257 }
2258
2259 static inline int
2260 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2261 unsigned long did_some_progress,
2262 unsigned long pages_reclaimed)
2263 {
2264 /* Do not loop if specifically requested */
2265 if (gfp_mask & __GFP_NORETRY)
2266 return 0;
2267
2268 /* Always retry if specifically requested */
2269 if (gfp_mask & __GFP_NOFAIL)
2270 return 1;
2271
2272 /*
2273 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2274 * making forward progress without invoking OOM. Suspend also disables
2275 * storage devices so kswapd will not help. Bail if we are suspending.
2276 */
2277 if (!did_some_progress && pm_suspended_storage())
2278 return 0;
2279
2280 /*
2281 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2282 * means __GFP_NOFAIL, but that may not be true in other
2283 * implementations.
2284 */
2285 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2286 return 1;
2287
2288 /*
2289 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2290 * specified, then we retry until we no longer reclaim any pages
2291 * (above), or we've reclaimed an order of pages at least as
2292 * large as the allocation's order. In both cases, if the
2293 * allocation still fails, we stop retrying.
2294 */
2295 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2296 return 1;
2297
2298 return 0;
2299 }
2300
2301 static inline struct page *
2302 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2303 struct zonelist *zonelist, enum zone_type high_zoneidx,
2304 nodemask_t *nodemask, struct zone *preferred_zone,
2305 int classzone_idx, int migratetype)
2306 {
2307 struct page *page;
2308
2309 /* Acquire the per-zone oom lock for each zone */
2310 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2311 schedule_timeout_uninterruptible(1);
2312 return NULL;
2313 }
2314
2315 /*
2316 * PM-freezer should be notified that there might be an OOM killer on
2317 * its way to kill and wake somebody up. This is too early and we might
2318 * end up not killing anything but false positives are acceptable.
2319 * See freeze_processes.
2320 */
2321 note_oom_kill();
2322
2323 /*
2324 * Go through the zonelist yet one more time, keep very high watermark
2325 * here, this is only to catch a parallel oom killing, we must fail if
2326 * we're still under heavy pressure.
2327 */
2328 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2329 order, zonelist, high_zoneidx,
2330 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2331 preferred_zone, classzone_idx, migratetype);
2332 if (page)
2333 goto out;
2334
2335 if (!(gfp_mask & __GFP_NOFAIL)) {
2336 /* The OOM killer will not help higher order allocs */
2337 if (order > PAGE_ALLOC_COSTLY_ORDER)
2338 goto out;
2339 /* The OOM killer does not needlessly kill tasks for lowmem */
2340 if (high_zoneidx < ZONE_NORMAL)
2341 goto out;
2342 /*
2343 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2344 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2345 * The caller should handle page allocation failure by itself if
2346 * it specifies __GFP_THISNODE.
2347 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2348 */
2349 if (gfp_mask & __GFP_THISNODE)
2350 goto out;
2351 }
2352 /* Exhausted what can be done so it's blamo time */
2353 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2354
2355 out:
2356 oom_zonelist_unlock(zonelist, gfp_mask);
2357 return page;
2358 }
2359
2360 #ifdef CONFIG_COMPACTION
2361 /* Try memory compaction for high-order allocations before reclaim */
2362 static struct page *
2363 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2364 struct zonelist *zonelist, enum zone_type high_zoneidx,
2365 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2366 int classzone_idx, int migratetype, enum migrate_mode mode,
2367 int *contended_compaction, bool *deferred_compaction)
2368 {
2369 unsigned long compact_result;
2370 struct page *page;
2371
2372 if (!order)
2373 return NULL;
2374
2375 current->flags |= PF_MEMALLOC;
2376 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2377 nodemask, mode,
2378 contended_compaction,
2379 alloc_flags, classzone_idx);
2380 current->flags &= ~PF_MEMALLOC;
2381
2382 switch (compact_result) {
2383 case COMPACT_DEFERRED:
2384 *deferred_compaction = true;
2385 /* fall-through */
2386 case COMPACT_SKIPPED:
2387 return NULL;
2388 default:
2389 break;
2390 }
2391
2392 /*
2393 * At least in one zone compaction wasn't deferred or skipped, so let's
2394 * count a compaction stall
2395 */
2396 count_vm_event(COMPACTSTALL);
2397
2398 page = get_page_from_freelist(gfp_mask, nodemask,
2399 order, zonelist, high_zoneidx,
2400 alloc_flags & ~ALLOC_NO_WATERMARKS,
2401 preferred_zone, classzone_idx, migratetype);
2402
2403 if (page) {
2404 struct zone *zone = page_zone(page);
2405
2406 zone->compact_blockskip_flush = false;
2407 compaction_defer_reset(zone, order, true);
2408 count_vm_event(COMPACTSUCCESS);
2409 return page;
2410 }
2411
2412 /*
2413 * It's bad if compaction run occurs and fails. The most likely reason
2414 * is that pages exist, but not enough to satisfy watermarks.
2415 */
2416 count_vm_event(COMPACTFAIL);
2417
2418 cond_resched();
2419
2420 return NULL;
2421 }
2422 #else
2423 static inline struct page *
2424 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2425 struct zonelist *zonelist, enum zone_type high_zoneidx,
2426 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2427 int classzone_idx, int migratetype, enum migrate_mode mode,
2428 int *contended_compaction, bool *deferred_compaction)
2429 {
2430 return NULL;
2431 }
2432 #endif /* CONFIG_COMPACTION */
2433
2434 /* Perform direct synchronous page reclaim */
2435 static int
2436 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2437 nodemask_t *nodemask)
2438 {
2439 struct reclaim_state reclaim_state;
2440 int progress;
2441
2442 cond_resched();
2443
2444 /* We now go into synchronous reclaim */
2445 cpuset_memory_pressure_bump();
2446 current->flags |= PF_MEMALLOC;
2447 lockdep_set_current_reclaim_state(gfp_mask);
2448 reclaim_state.reclaimed_slab = 0;
2449 current->reclaim_state = &reclaim_state;
2450
2451 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2452
2453 current->reclaim_state = NULL;
2454 lockdep_clear_current_reclaim_state();
2455 current->flags &= ~PF_MEMALLOC;
2456
2457 cond_resched();
2458
2459 return progress;
2460 }
2461
2462 /* The really slow allocator path where we enter direct reclaim */
2463 static inline struct page *
2464 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2465 struct zonelist *zonelist, enum zone_type high_zoneidx,
2466 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2467 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2468 {
2469 struct page *page = NULL;
2470 bool drained = false;
2471
2472 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2473 nodemask);
2474 if (unlikely(!(*did_some_progress)))
2475 return NULL;
2476
2477 /* After successful reclaim, reconsider all zones for allocation */
2478 if (IS_ENABLED(CONFIG_NUMA))
2479 zlc_clear_zones_full(zonelist);
2480
2481 retry:
2482 page = get_page_from_freelist(gfp_mask, nodemask, order,
2483 zonelist, high_zoneidx,
2484 alloc_flags & ~ALLOC_NO_WATERMARKS,
2485 preferred_zone, classzone_idx,
2486 migratetype);
2487
2488 /*
2489 * If an allocation failed after direct reclaim, it could be because
2490 * pages are pinned on the per-cpu lists. Drain them and try again
2491 */
2492 if (!page && !drained) {
2493 drain_all_pages(NULL);
2494 drained = true;
2495 goto retry;
2496 }
2497
2498 return page;
2499 }
2500
2501 /*
2502 * This is called in the allocator slow-path if the allocation request is of
2503 * sufficient urgency to ignore watermarks and take other desperate measures
2504 */
2505 static inline struct page *
2506 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2507 struct zonelist *zonelist, enum zone_type high_zoneidx,
2508 nodemask_t *nodemask, struct zone *preferred_zone,
2509 int classzone_idx, int migratetype)
2510 {
2511 struct page *page;
2512
2513 do {
2514 page = get_page_from_freelist(gfp_mask, nodemask, order,
2515 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2516 preferred_zone, classzone_idx, migratetype);
2517
2518 if (!page && gfp_mask & __GFP_NOFAIL)
2519 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2520 } while (!page && (gfp_mask & __GFP_NOFAIL));
2521
2522 return page;
2523 }
2524
2525 static void wake_all_kswapds(unsigned int order,
2526 struct zonelist *zonelist,
2527 enum zone_type high_zoneidx,
2528 struct zone *preferred_zone,
2529 nodemask_t *nodemask)
2530 {
2531 struct zoneref *z;
2532 struct zone *zone;
2533
2534 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2535 high_zoneidx, nodemask)
2536 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2537 }
2538
2539 static inline int
2540 gfp_to_alloc_flags(gfp_t gfp_mask)
2541 {
2542 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2543 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2544
2545 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2546 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2547
2548 /*
2549 * The caller may dip into page reserves a bit more if the caller
2550 * cannot run direct reclaim, or if the caller has realtime scheduling
2551 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2552 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2553 */
2554 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2555
2556 if (atomic) {
2557 /*
2558 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2559 * if it can't schedule.
2560 */
2561 if (!(gfp_mask & __GFP_NOMEMALLOC))
2562 alloc_flags |= ALLOC_HARDER;
2563 /*
2564 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2565 * comment for __cpuset_node_allowed().
2566 */
2567 alloc_flags &= ~ALLOC_CPUSET;
2568 } else if (unlikely(rt_task(current)) && !in_interrupt())
2569 alloc_flags |= ALLOC_HARDER;
2570
2571 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2572 if (gfp_mask & __GFP_MEMALLOC)
2573 alloc_flags |= ALLOC_NO_WATERMARKS;
2574 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2575 alloc_flags |= ALLOC_NO_WATERMARKS;
2576 else if (!in_interrupt() &&
2577 ((current->flags & PF_MEMALLOC) ||
2578 unlikely(test_thread_flag(TIF_MEMDIE))))
2579 alloc_flags |= ALLOC_NO_WATERMARKS;
2580 }
2581 #ifdef CONFIG_CMA
2582 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2583 alloc_flags |= ALLOC_CMA;
2584 #endif
2585 return alloc_flags;
2586 }
2587
2588 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2589 {
2590 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2591 }
2592
2593 static inline struct page *
2594 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2595 struct zonelist *zonelist, enum zone_type high_zoneidx,
2596 nodemask_t *nodemask, struct zone *preferred_zone,
2597 int classzone_idx, int migratetype)
2598 {
2599 const gfp_t wait = gfp_mask & __GFP_WAIT;
2600 struct page *page = NULL;
2601 int alloc_flags;
2602 unsigned long pages_reclaimed = 0;
2603 unsigned long did_some_progress;
2604 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2605 bool deferred_compaction = false;
2606 int contended_compaction = COMPACT_CONTENDED_NONE;
2607
2608 /*
2609 * In the slowpath, we sanity check order to avoid ever trying to
2610 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2611 * be using allocators in order of preference for an area that is
2612 * too large.
2613 */
2614 if (order >= MAX_ORDER) {
2615 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2616 return NULL;
2617 }
2618
2619 /*
2620 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2621 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2622 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2623 * using a larger set of nodes after it has established that the
2624 * allowed per node queues are empty and that nodes are
2625 * over allocated.
2626 */
2627 if (IS_ENABLED(CONFIG_NUMA) &&
2628 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2629 goto nopage;
2630
2631 restart:
2632 if (!(gfp_mask & __GFP_NO_KSWAPD))
2633 wake_all_kswapds(order, zonelist, high_zoneidx,
2634 preferred_zone, nodemask);
2635
2636 /*
2637 * OK, we're below the kswapd watermark and have kicked background
2638 * reclaim. Now things get more complex, so set up alloc_flags according
2639 * to how we want to proceed.
2640 */
2641 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2642
2643 /*
2644 * Find the true preferred zone if the allocation is unconstrained by
2645 * cpusets.
2646 */
2647 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2648 struct zoneref *preferred_zoneref;
2649 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2650 NULL, &preferred_zone);
2651 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2652 }
2653
2654 rebalance:
2655 /* This is the last chance, in general, before the goto nopage. */
2656 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2657 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2658 preferred_zone, classzone_idx, migratetype);
2659 if (page)
2660 goto got_pg;
2661
2662 /* Allocate without watermarks if the context allows */
2663 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2664 /*
2665 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2666 * the allocation is high priority and these type of
2667 * allocations are system rather than user orientated
2668 */
2669 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2670
2671 page = __alloc_pages_high_priority(gfp_mask, order,
2672 zonelist, high_zoneidx, nodemask,
2673 preferred_zone, classzone_idx, migratetype);
2674 if (page) {
2675 goto got_pg;
2676 }
2677 }
2678
2679 /* Atomic allocations - we can't balance anything */
2680 if (!wait) {
2681 /*
2682 * All existing users of the deprecated __GFP_NOFAIL are
2683 * blockable, so warn of any new users that actually allow this
2684 * type of allocation to fail.
2685 */
2686 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2687 goto nopage;
2688 }
2689
2690 /* Avoid recursion of direct reclaim */
2691 if (current->flags & PF_MEMALLOC)
2692 goto nopage;
2693
2694 /* Avoid allocations with no watermarks from looping endlessly */
2695 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2696 goto nopage;
2697
2698 /*
2699 * Try direct compaction. The first pass is asynchronous. Subsequent
2700 * attempts after direct reclaim are synchronous
2701 */
2702 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2703 high_zoneidx, nodemask, alloc_flags,
2704 preferred_zone,
2705 classzone_idx, migratetype,
2706 migration_mode, &contended_compaction,
2707 &deferred_compaction);
2708 if (page)
2709 goto got_pg;
2710
2711 /* Checks for THP-specific high-order allocations */
2712 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2713 /*
2714 * If compaction is deferred for high-order allocations, it is
2715 * because sync compaction recently failed. If this is the case
2716 * and the caller requested a THP allocation, we do not want
2717 * to heavily disrupt the system, so we fail the allocation
2718 * instead of entering direct reclaim.
2719 */
2720 if (deferred_compaction)
2721 goto nopage;
2722
2723 /*
2724 * In all zones where compaction was attempted (and not
2725 * deferred or skipped), lock contention has been detected.
2726 * For THP allocation we do not want to disrupt the others
2727 * so we fallback to base pages instead.
2728 */
2729 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2730 goto nopage;
2731
2732 /*
2733 * If compaction was aborted due to need_resched(), we do not
2734 * want to further increase allocation latency, unless it is
2735 * khugepaged trying to collapse.
2736 */
2737 if (contended_compaction == COMPACT_CONTENDED_SCHED
2738 && !(current->flags & PF_KTHREAD))
2739 goto nopage;
2740 }
2741
2742 /*
2743 * It can become very expensive to allocate transparent hugepages at
2744 * fault, so use asynchronous memory compaction for THP unless it is
2745 * khugepaged trying to collapse.
2746 */
2747 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2748 (current->flags & PF_KTHREAD))
2749 migration_mode = MIGRATE_SYNC_LIGHT;
2750
2751 /* Try direct reclaim and then allocating */
2752 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2753 zonelist, high_zoneidx,
2754 nodemask,
2755 alloc_flags, preferred_zone,
2756 classzone_idx, migratetype,
2757 &did_some_progress);
2758 if (page)
2759 goto got_pg;
2760
2761 /*
2762 * If we failed to make any progress reclaiming, then we are
2763 * running out of options and have to consider going OOM
2764 */
2765 if (!did_some_progress) {
2766 if (oom_gfp_allowed(gfp_mask)) {
2767 if (oom_killer_disabled)
2768 goto nopage;
2769 /* Coredumps can quickly deplete all memory reserves */
2770 if ((current->flags & PF_DUMPCORE) &&
2771 !(gfp_mask & __GFP_NOFAIL))
2772 goto nopage;
2773 page = __alloc_pages_may_oom(gfp_mask, order,
2774 zonelist, high_zoneidx,
2775 nodemask, preferred_zone,
2776 classzone_idx, migratetype);
2777 if (page)
2778 goto got_pg;
2779
2780 if (!(gfp_mask & __GFP_NOFAIL)) {
2781 /*
2782 * The oom killer is not called for high-order
2783 * allocations that may fail, so if no progress
2784 * is being made, there are no other options and
2785 * retrying is unlikely to help.
2786 */
2787 if (order > PAGE_ALLOC_COSTLY_ORDER)
2788 goto nopage;
2789 /*
2790 * The oom killer is not called for lowmem
2791 * allocations to prevent needlessly killing
2792 * innocent tasks.
2793 */
2794 if (high_zoneidx < ZONE_NORMAL)
2795 goto nopage;
2796 }
2797
2798 goto restart;
2799 }
2800 }
2801
2802 /* Check if we should retry the allocation */
2803 pages_reclaimed += did_some_progress;
2804 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2805 pages_reclaimed)) {
2806 /* Wait for some write requests to complete then retry */
2807 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2808 goto rebalance;
2809 } else {
2810 /*
2811 * High-order allocations do not necessarily loop after
2812 * direct reclaim and reclaim/compaction depends on compaction
2813 * being called after reclaim so call directly if necessary
2814 */
2815 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2816 high_zoneidx, nodemask, alloc_flags,
2817 preferred_zone,
2818 classzone_idx, migratetype,
2819 migration_mode, &contended_compaction,
2820 &deferred_compaction);
2821 if (page)
2822 goto got_pg;
2823 }
2824
2825 nopage:
2826 warn_alloc_failed(gfp_mask, order, NULL);
2827 return page;
2828 got_pg:
2829 if (kmemcheck_enabled)
2830 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2831
2832 return page;
2833 }
2834
2835 /*
2836 * This is the 'heart' of the zoned buddy allocator.
2837 */
2838 struct page *
2839 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2840 struct zonelist *zonelist, nodemask_t *nodemask)
2841 {
2842 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2843 struct zone *preferred_zone;
2844 struct zoneref *preferred_zoneref;
2845 struct page *page = NULL;
2846 int migratetype = gfpflags_to_migratetype(gfp_mask);
2847 unsigned int cpuset_mems_cookie;
2848 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2849 int classzone_idx;
2850
2851 gfp_mask &= gfp_allowed_mask;
2852
2853 lockdep_trace_alloc(gfp_mask);
2854
2855 might_sleep_if(gfp_mask & __GFP_WAIT);
2856
2857 if (should_fail_alloc_page(gfp_mask, order))
2858 return NULL;
2859
2860 /*
2861 * Check the zones suitable for the gfp_mask contain at least one
2862 * valid zone. It's possible to have an empty zonelist as a result
2863 * of GFP_THISNODE and a memoryless node
2864 */
2865 if (unlikely(!zonelist->_zonerefs->zone))
2866 return NULL;
2867
2868 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2869 alloc_flags |= ALLOC_CMA;
2870
2871 retry_cpuset:
2872 cpuset_mems_cookie = read_mems_allowed_begin();
2873
2874 /* The preferred zone is used for statistics later */
2875 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2876 nodemask ? : &cpuset_current_mems_allowed,
2877 &preferred_zone);
2878 if (!preferred_zone)
2879 goto out;
2880 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2881
2882 /* First allocation attempt */
2883 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2884 zonelist, high_zoneidx, alloc_flags,
2885 preferred_zone, classzone_idx, migratetype);
2886 if (unlikely(!page)) {
2887 /*
2888 * Runtime PM, block IO and its error handling path
2889 * can deadlock because I/O on the device might not
2890 * complete.
2891 */
2892 gfp_mask = memalloc_noio_flags(gfp_mask);
2893 page = __alloc_pages_slowpath(gfp_mask, order,
2894 zonelist, high_zoneidx, nodemask,
2895 preferred_zone, classzone_idx, migratetype);
2896 }
2897
2898 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2899
2900 out:
2901 /*
2902 * When updating a task's mems_allowed, it is possible to race with
2903 * parallel threads in such a way that an allocation can fail while
2904 * the mask is being updated. If a page allocation is about to fail,
2905 * check if the cpuset changed during allocation and if so, retry.
2906 */
2907 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2908 goto retry_cpuset;
2909
2910 return page;
2911 }
2912 EXPORT_SYMBOL(__alloc_pages_nodemask);
2913
2914 /*
2915 * Common helper functions.
2916 */
2917 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2918 {
2919 struct page *page;
2920
2921 /*
2922 * __get_free_pages() returns a 32-bit address, which cannot represent
2923 * a highmem page
2924 */
2925 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2926
2927 page = alloc_pages(gfp_mask, order);
2928 if (!page)
2929 return 0;
2930 return (unsigned long) page_address(page);
2931 }
2932 EXPORT_SYMBOL(__get_free_pages);
2933
2934 unsigned long get_zeroed_page(gfp_t gfp_mask)
2935 {
2936 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2937 }
2938 EXPORT_SYMBOL(get_zeroed_page);
2939
2940 void __free_pages(struct page *page, unsigned int order)
2941 {
2942 if (put_page_testzero(page)) {
2943 if (order == 0)
2944 free_hot_cold_page(page, false);
2945 else
2946 __free_pages_ok(page, order);
2947 }
2948 }
2949
2950 EXPORT_SYMBOL(__free_pages);
2951
2952 void free_pages(unsigned long addr, unsigned int order)
2953 {
2954 if (addr != 0) {
2955 VM_BUG_ON(!virt_addr_valid((void *)addr));
2956 __free_pages(virt_to_page((void *)addr), order);
2957 }
2958 }
2959
2960 EXPORT_SYMBOL(free_pages);
2961
2962 /*
2963 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2964 * of the current memory cgroup.
2965 *
2966 * It should be used when the caller would like to use kmalloc, but since the
2967 * allocation is large, it has to fall back to the page allocator.
2968 */
2969 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2970 {
2971 struct page *page;
2972 struct mem_cgroup *memcg = NULL;
2973
2974 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2975 return NULL;
2976 page = alloc_pages(gfp_mask, order);
2977 memcg_kmem_commit_charge(page, memcg, order);
2978 return page;
2979 }
2980
2981 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2982 {
2983 struct page *page;
2984 struct mem_cgroup *memcg = NULL;
2985
2986 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2987 return NULL;
2988 page = alloc_pages_node(nid, gfp_mask, order);
2989 memcg_kmem_commit_charge(page, memcg, order);
2990 return page;
2991 }
2992
2993 /*
2994 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2995 * alloc_kmem_pages.
2996 */
2997 void __free_kmem_pages(struct page *page, unsigned int order)
2998 {
2999 memcg_kmem_uncharge_pages(page, order);
3000 __free_pages(page, order);
3001 }
3002
3003 void free_kmem_pages(unsigned long addr, unsigned int order)
3004 {
3005 if (addr != 0) {
3006 VM_BUG_ON(!virt_addr_valid((void *)addr));
3007 __free_kmem_pages(virt_to_page((void *)addr), order);
3008 }
3009 }
3010
3011 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3012 {
3013 if (addr) {
3014 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3015 unsigned long used = addr + PAGE_ALIGN(size);
3016
3017 split_page(virt_to_page((void *)addr), order);
3018 while (used < alloc_end) {
3019 free_page(used);
3020 used += PAGE_SIZE;
3021 }
3022 }
3023 return (void *)addr;
3024 }
3025
3026 /**
3027 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3028 * @size: the number of bytes to allocate
3029 * @gfp_mask: GFP flags for the allocation
3030 *
3031 * This function is similar to alloc_pages(), except that it allocates the
3032 * minimum number of pages to satisfy the request. alloc_pages() can only
3033 * allocate memory in power-of-two pages.
3034 *
3035 * This function is also limited by MAX_ORDER.
3036 *
3037 * Memory allocated by this function must be released by free_pages_exact().
3038 */
3039 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3040 {
3041 unsigned int order = get_order(size);
3042 unsigned long addr;
3043
3044 addr = __get_free_pages(gfp_mask, order);
3045 return make_alloc_exact(addr, order, size);
3046 }
3047 EXPORT_SYMBOL(alloc_pages_exact);
3048
3049 /**
3050 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3051 * pages on a node.
3052 * @nid: the preferred node ID where memory should be allocated
3053 * @size: the number of bytes to allocate
3054 * @gfp_mask: GFP flags for the allocation
3055 *
3056 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3057 * back.
3058 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3059 * but is not exact.
3060 */
3061 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3062 {
3063 unsigned order = get_order(size);
3064 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3065 if (!p)
3066 return NULL;
3067 return make_alloc_exact((unsigned long)page_address(p), order, size);
3068 }
3069
3070 /**
3071 * free_pages_exact - release memory allocated via alloc_pages_exact()
3072 * @virt: the value returned by alloc_pages_exact.
3073 * @size: size of allocation, same value as passed to alloc_pages_exact().
3074 *
3075 * Release the memory allocated by a previous call to alloc_pages_exact.
3076 */
3077 void free_pages_exact(void *virt, size_t size)
3078 {
3079 unsigned long addr = (unsigned long)virt;
3080 unsigned long end = addr + PAGE_ALIGN(size);
3081
3082 while (addr < end) {
3083 free_page(addr);
3084 addr += PAGE_SIZE;
3085 }
3086 }
3087 EXPORT_SYMBOL(free_pages_exact);
3088
3089 /**
3090 * nr_free_zone_pages - count number of pages beyond high watermark
3091 * @offset: The zone index of the highest zone
3092 *
3093 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3094 * high watermark within all zones at or below a given zone index. For each
3095 * zone, the number of pages is calculated as:
3096 * managed_pages - high_pages
3097 */
3098 static unsigned long nr_free_zone_pages(int offset)
3099 {
3100 struct zoneref *z;
3101 struct zone *zone;
3102
3103 /* Just pick one node, since fallback list is circular */
3104 unsigned long sum = 0;
3105
3106 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3107
3108 for_each_zone_zonelist(zone, z, zonelist, offset) {
3109 unsigned long size = zone->managed_pages;
3110 unsigned long high = high_wmark_pages(zone);
3111 if (size > high)
3112 sum += size - high;
3113 }
3114
3115 return sum;
3116 }
3117
3118 /**
3119 * nr_free_buffer_pages - count number of pages beyond high watermark
3120 *
3121 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3122 * watermark within ZONE_DMA and ZONE_NORMAL.
3123 */
3124 unsigned long nr_free_buffer_pages(void)
3125 {
3126 return nr_free_zone_pages(gfp_zone(GFP_USER));
3127 }
3128 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3129
3130 /**
3131 * nr_free_pagecache_pages - count number of pages beyond high watermark
3132 *
3133 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3134 * high watermark within all zones.
3135 */
3136 unsigned long nr_free_pagecache_pages(void)
3137 {
3138 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3139 }
3140
3141 static inline void show_node(struct zone *zone)
3142 {
3143 if (IS_ENABLED(CONFIG_NUMA))
3144 printk("Node %d ", zone_to_nid(zone));
3145 }
3146
3147 void si_meminfo(struct sysinfo *val)
3148 {
3149 val->totalram = totalram_pages;
3150 val->sharedram = global_page_state(NR_SHMEM);
3151 val->freeram = global_page_state(NR_FREE_PAGES);
3152 val->bufferram = nr_blockdev_pages();
3153 val->totalhigh = totalhigh_pages;
3154 val->freehigh = nr_free_highpages();
3155 val->mem_unit = PAGE_SIZE;
3156 }
3157
3158 EXPORT_SYMBOL(si_meminfo);
3159
3160 #ifdef CONFIG_NUMA
3161 void si_meminfo_node(struct sysinfo *val, int nid)
3162 {
3163 int zone_type; /* needs to be signed */
3164 unsigned long managed_pages = 0;
3165 pg_data_t *pgdat = NODE_DATA(nid);
3166
3167 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3168 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3169 val->totalram = managed_pages;
3170 val->sharedram = node_page_state(nid, NR_SHMEM);
3171 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3172 #ifdef CONFIG_HIGHMEM
3173 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3174 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3175 NR_FREE_PAGES);
3176 #else
3177 val->totalhigh = 0;
3178 val->freehigh = 0;
3179 #endif
3180 val->mem_unit = PAGE_SIZE;
3181 }
3182 #endif
3183
3184 /*
3185 * Determine whether the node should be displayed or not, depending on whether
3186 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3187 */
3188 bool skip_free_areas_node(unsigned int flags, int nid)
3189 {
3190 bool ret = false;
3191 unsigned int cpuset_mems_cookie;
3192
3193 if (!(flags & SHOW_MEM_FILTER_NODES))
3194 goto out;
3195
3196 do {
3197 cpuset_mems_cookie = read_mems_allowed_begin();
3198 ret = !node_isset(nid, cpuset_current_mems_allowed);
3199 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3200 out:
3201 return ret;
3202 }
3203
3204 #define K(x) ((x) << (PAGE_SHIFT-10))
3205
3206 static void show_migration_types(unsigned char type)
3207 {
3208 static const char types[MIGRATE_TYPES] = {
3209 [MIGRATE_UNMOVABLE] = 'U',
3210 [MIGRATE_RECLAIMABLE] = 'E',
3211 [MIGRATE_MOVABLE] = 'M',
3212 [MIGRATE_RESERVE] = 'R',
3213 #ifdef CONFIG_CMA
3214 [MIGRATE_CMA] = 'C',
3215 #endif
3216 #ifdef CONFIG_MEMORY_ISOLATION
3217 [MIGRATE_ISOLATE] = 'I',
3218 #endif
3219 };
3220 char tmp[MIGRATE_TYPES + 1];
3221 char *p = tmp;
3222 int i;
3223
3224 for (i = 0; i < MIGRATE_TYPES; i++) {
3225 if (type & (1 << i))
3226 *p++ = types[i];
3227 }
3228
3229 *p = '\0';
3230 printk("(%s) ", tmp);
3231 }
3232
3233 /*
3234 * Show free area list (used inside shift_scroll-lock stuff)
3235 * We also calculate the percentage fragmentation. We do this by counting the
3236 * memory on each free list with the exception of the first item on the list.
3237 * Suppresses nodes that are not allowed by current's cpuset if
3238 * SHOW_MEM_FILTER_NODES is passed.
3239 */
3240 void show_free_areas(unsigned int filter)
3241 {
3242 int cpu;
3243 struct zone *zone;
3244
3245 for_each_populated_zone(zone) {
3246 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3247 continue;
3248 show_node(zone);
3249 printk("%s per-cpu:\n", zone->name);
3250
3251 for_each_online_cpu(cpu) {
3252 struct per_cpu_pageset *pageset;
3253
3254 pageset = per_cpu_ptr(zone->pageset, cpu);
3255
3256 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3257 cpu, pageset->pcp.high,
3258 pageset->pcp.batch, pageset->pcp.count);
3259 }
3260 }
3261
3262 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3263 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3264 " unevictable:%lu"
3265 " dirty:%lu writeback:%lu unstable:%lu\n"
3266 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3267 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3268 " free_cma:%lu\n",
3269 global_page_state(NR_ACTIVE_ANON),
3270 global_page_state(NR_INACTIVE_ANON),
3271 global_page_state(NR_ISOLATED_ANON),
3272 global_page_state(NR_ACTIVE_FILE),
3273 global_page_state(NR_INACTIVE_FILE),
3274 global_page_state(NR_ISOLATED_FILE),
3275 global_page_state(NR_UNEVICTABLE),
3276 global_page_state(NR_FILE_DIRTY),
3277 global_page_state(NR_WRITEBACK),
3278 global_page_state(NR_UNSTABLE_NFS),
3279 global_page_state(NR_FREE_PAGES),
3280 global_page_state(NR_SLAB_RECLAIMABLE),
3281 global_page_state(NR_SLAB_UNRECLAIMABLE),
3282 global_page_state(NR_FILE_MAPPED),
3283 global_page_state(NR_SHMEM),
3284 global_page_state(NR_PAGETABLE),
3285 global_page_state(NR_BOUNCE),
3286 global_page_state(NR_FREE_CMA_PAGES));
3287
3288 for_each_populated_zone(zone) {
3289 int i;
3290
3291 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3292 continue;
3293 show_node(zone);
3294 printk("%s"
3295 " free:%lukB"
3296 " min:%lukB"
3297 " low:%lukB"
3298 " high:%lukB"
3299 " active_anon:%lukB"
3300 " inactive_anon:%lukB"
3301 " active_file:%lukB"
3302 " inactive_file:%lukB"
3303 " unevictable:%lukB"
3304 " isolated(anon):%lukB"
3305 " isolated(file):%lukB"
3306 " present:%lukB"
3307 " managed:%lukB"
3308 " mlocked:%lukB"
3309 " dirty:%lukB"
3310 " writeback:%lukB"
3311 " mapped:%lukB"
3312 " shmem:%lukB"
3313 " slab_reclaimable:%lukB"
3314 " slab_unreclaimable:%lukB"
3315 " kernel_stack:%lukB"
3316 " pagetables:%lukB"
3317 " unstable:%lukB"
3318 " bounce:%lukB"
3319 " free_cma:%lukB"
3320 " writeback_tmp:%lukB"
3321 " pages_scanned:%lu"
3322 " all_unreclaimable? %s"
3323 "\n",
3324 zone->name,
3325 K(zone_page_state(zone, NR_FREE_PAGES)),
3326 K(min_wmark_pages(zone)),
3327 K(low_wmark_pages(zone)),
3328 K(high_wmark_pages(zone)),
3329 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3330 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3331 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3332 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3333 K(zone_page_state(zone, NR_UNEVICTABLE)),
3334 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3335 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3336 K(zone->present_pages),
3337 K(zone->managed_pages),
3338 K(zone_page_state(zone, NR_MLOCK)),
3339 K(zone_page_state(zone, NR_FILE_DIRTY)),
3340 K(zone_page_state(zone, NR_WRITEBACK)),
3341 K(zone_page_state(zone, NR_FILE_MAPPED)),
3342 K(zone_page_state(zone, NR_SHMEM)),
3343 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3344 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3345 zone_page_state(zone, NR_KERNEL_STACK) *
3346 THREAD_SIZE / 1024,
3347 K(zone_page_state(zone, NR_PAGETABLE)),
3348 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3349 K(zone_page_state(zone, NR_BOUNCE)),
3350 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3351 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3352 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3353 (!zone_reclaimable(zone) ? "yes" : "no")
3354 );
3355 printk("lowmem_reserve[]:");
3356 for (i = 0; i < MAX_NR_ZONES; i++)
3357 printk(" %ld", zone->lowmem_reserve[i]);
3358 printk("\n");
3359 }
3360
3361 for_each_populated_zone(zone) {
3362 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3363 unsigned char types[MAX_ORDER];
3364
3365 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3366 continue;
3367 show_node(zone);
3368 printk("%s: ", zone->name);
3369
3370 spin_lock_irqsave(&zone->lock, flags);
3371 for (order = 0; order < MAX_ORDER; order++) {
3372 struct free_area *area = &zone->free_area[order];
3373 int type;
3374
3375 nr[order] = area->nr_free;
3376 total += nr[order] << order;
3377
3378 types[order] = 0;
3379 for (type = 0; type < MIGRATE_TYPES; type++) {
3380 if (!list_empty(&area->free_list[type]))
3381 types[order] |= 1 << type;
3382 }
3383 }
3384 spin_unlock_irqrestore(&zone->lock, flags);
3385 for (order = 0; order < MAX_ORDER; order++) {
3386 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3387 if (nr[order])
3388 show_migration_types(types[order]);
3389 }
3390 printk("= %lukB\n", K(total));
3391 }
3392
3393 hugetlb_show_meminfo();
3394
3395 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3396
3397 show_swap_cache_info();
3398 }
3399
3400 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3401 {
3402 zoneref->zone = zone;
3403 zoneref->zone_idx = zone_idx(zone);
3404 }
3405
3406 /*
3407 * Builds allocation fallback zone lists.
3408 *
3409 * Add all populated zones of a node to the zonelist.
3410 */
3411 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3412 int nr_zones)
3413 {
3414 struct zone *zone;
3415 enum zone_type zone_type = MAX_NR_ZONES;
3416
3417 do {
3418 zone_type--;
3419 zone = pgdat->node_zones + zone_type;
3420 if (populated_zone(zone)) {
3421 zoneref_set_zone(zone,
3422 &zonelist->_zonerefs[nr_zones++]);
3423 check_highest_zone(zone_type);
3424 }
3425 } while (zone_type);
3426
3427 return nr_zones;
3428 }
3429
3430
3431 /*
3432 * zonelist_order:
3433 * 0 = automatic detection of better ordering.
3434 * 1 = order by ([node] distance, -zonetype)
3435 * 2 = order by (-zonetype, [node] distance)
3436 *
3437 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3438 * the same zonelist. So only NUMA can configure this param.
3439 */
3440 #define ZONELIST_ORDER_DEFAULT 0
3441 #define ZONELIST_ORDER_NODE 1
3442 #define ZONELIST_ORDER_ZONE 2
3443
3444 /* zonelist order in the kernel.
3445 * set_zonelist_order() will set this to NODE or ZONE.
3446 */
3447 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3448 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3449
3450
3451 #ifdef CONFIG_NUMA
3452 /* The value user specified ....changed by config */
3453 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3454 /* string for sysctl */
3455 #define NUMA_ZONELIST_ORDER_LEN 16
3456 char numa_zonelist_order[16] = "default";
3457
3458 /*
3459 * interface for configure zonelist ordering.
3460 * command line option "numa_zonelist_order"
3461 * = "[dD]efault - default, automatic configuration.
3462 * = "[nN]ode - order by node locality, then by zone within node
3463 * = "[zZ]one - order by zone, then by locality within zone
3464 */
3465
3466 static int __parse_numa_zonelist_order(char *s)
3467 {
3468 if (*s == 'd' || *s == 'D') {
3469 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3470 } else if (*s == 'n' || *s == 'N') {
3471 user_zonelist_order = ZONELIST_ORDER_NODE;
3472 } else if (*s == 'z' || *s == 'Z') {
3473 user_zonelist_order = ZONELIST_ORDER_ZONE;
3474 } else {
3475 printk(KERN_WARNING
3476 "Ignoring invalid numa_zonelist_order value: "
3477 "%s\n", s);
3478 return -EINVAL;
3479 }
3480 return 0;
3481 }
3482
3483 static __init int setup_numa_zonelist_order(char *s)
3484 {
3485 int ret;
3486
3487 if (!s)
3488 return 0;
3489
3490 ret = __parse_numa_zonelist_order(s);
3491 if (ret == 0)
3492 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3493
3494 return ret;
3495 }
3496 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3497
3498 /*
3499 * sysctl handler for numa_zonelist_order
3500 */
3501 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3502 void __user *buffer, size_t *length,
3503 loff_t *ppos)
3504 {
3505 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3506 int ret;
3507 static DEFINE_MUTEX(zl_order_mutex);
3508
3509 mutex_lock(&zl_order_mutex);
3510 if (write) {
3511 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3512 ret = -EINVAL;
3513 goto out;
3514 }
3515 strcpy(saved_string, (char *)table->data);
3516 }
3517 ret = proc_dostring(table, write, buffer, length, ppos);
3518 if (ret)
3519 goto out;
3520 if (write) {
3521 int oldval = user_zonelist_order;
3522
3523 ret = __parse_numa_zonelist_order((char *)table->data);
3524 if (ret) {
3525 /*
3526 * bogus value. restore saved string
3527 */
3528 strncpy((char *)table->data, saved_string,
3529 NUMA_ZONELIST_ORDER_LEN);
3530 user_zonelist_order = oldval;
3531 } else if (oldval != user_zonelist_order) {
3532 mutex_lock(&zonelists_mutex);
3533 build_all_zonelists(NULL, NULL);
3534 mutex_unlock(&zonelists_mutex);
3535 }
3536 }
3537 out:
3538 mutex_unlock(&zl_order_mutex);
3539 return ret;
3540 }
3541
3542
3543 #define MAX_NODE_LOAD (nr_online_nodes)
3544 static int node_load[MAX_NUMNODES];
3545
3546 /**
3547 * find_next_best_node - find the next node that should appear in a given node's fallback list
3548 * @node: node whose fallback list we're appending
3549 * @used_node_mask: nodemask_t of already used nodes
3550 *
3551 * We use a number of factors to determine which is the next node that should
3552 * appear on a given node's fallback list. The node should not have appeared
3553 * already in @node's fallback list, and it should be the next closest node
3554 * according to the distance array (which contains arbitrary distance values
3555 * from each node to each node in the system), and should also prefer nodes
3556 * with no CPUs, since presumably they'll have very little allocation pressure
3557 * on them otherwise.
3558 * It returns -1 if no node is found.
3559 */
3560 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3561 {
3562 int n, val;
3563 int min_val = INT_MAX;
3564 int best_node = NUMA_NO_NODE;
3565 const struct cpumask *tmp = cpumask_of_node(0);
3566
3567 /* Use the local node if we haven't already */
3568 if (!node_isset(node, *used_node_mask)) {
3569 node_set(node, *used_node_mask);
3570 return node;
3571 }
3572
3573 for_each_node_state(n, N_MEMORY) {
3574
3575 /* Don't want a node to appear more than once */
3576 if (node_isset(n, *used_node_mask))
3577 continue;
3578
3579 /* Use the distance array to find the distance */
3580 val = node_distance(node, n);
3581
3582 /* Penalize nodes under us ("prefer the next node") */
3583 val += (n < node);
3584
3585 /* Give preference to headless and unused nodes */
3586 tmp = cpumask_of_node(n);
3587 if (!cpumask_empty(tmp))
3588 val += PENALTY_FOR_NODE_WITH_CPUS;
3589
3590 /* Slight preference for less loaded node */
3591 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3592 val += node_load[n];
3593
3594 if (val < min_val) {
3595 min_val = val;
3596 best_node = n;
3597 }
3598 }
3599
3600 if (best_node >= 0)
3601 node_set(best_node, *used_node_mask);
3602
3603 return best_node;
3604 }
3605
3606
3607 /*
3608 * Build zonelists ordered by node and zones within node.
3609 * This results in maximum locality--normal zone overflows into local
3610 * DMA zone, if any--but risks exhausting DMA zone.
3611 */
3612 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3613 {
3614 int j;
3615 struct zonelist *zonelist;
3616
3617 zonelist = &pgdat->node_zonelists[0];
3618 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3619 ;
3620 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3621 zonelist->_zonerefs[j].zone = NULL;
3622 zonelist->_zonerefs[j].zone_idx = 0;
3623 }
3624
3625 /*
3626 * Build gfp_thisnode zonelists
3627 */
3628 static void build_thisnode_zonelists(pg_data_t *pgdat)
3629 {
3630 int j;
3631 struct zonelist *zonelist;
3632
3633 zonelist = &pgdat->node_zonelists[1];
3634 j = build_zonelists_node(pgdat, zonelist, 0);
3635 zonelist->_zonerefs[j].zone = NULL;
3636 zonelist->_zonerefs[j].zone_idx = 0;
3637 }
3638
3639 /*
3640 * Build zonelists ordered by zone and nodes within zones.
3641 * This results in conserving DMA zone[s] until all Normal memory is
3642 * exhausted, but results in overflowing to remote node while memory
3643 * may still exist in local DMA zone.
3644 */
3645 static int node_order[MAX_NUMNODES];
3646
3647 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3648 {
3649 int pos, j, node;
3650 int zone_type; /* needs to be signed */
3651 struct zone *z;
3652 struct zonelist *zonelist;
3653
3654 zonelist = &pgdat->node_zonelists[0];
3655 pos = 0;
3656 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3657 for (j = 0; j < nr_nodes; j++) {
3658 node = node_order[j];
3659 z = &NODE_DATA(node)->node_zones[zone_type];
3660 if (populated_zone(z)) {
3661 zoneref_set_zone(z,
3662 &zonelist->_zonerefs[pos++]);
3663 check_highest_zone(zone_type);
3664 }
3665 }
3666 }
3667 zonelist->_zonerefs[pos].zone = NULL;
3668 zonelist->_zonerefs[pos].zone_idx = 0;
3669 }
3670
3671 #if defined(CONFIG_64BIT)
3672 /*
3673 * Devices that require DMA32/DMA are relatively rare and do not justify a
3674 * penalty to every machine in case the specialised case applies. Default
3675 * to Node-ordering on 64-bit NUMA machines
3676 */
3677 static int default_zonelist_order(void)
3678 {
3679 return ZONELIST_ORDER_NODE;
3680 }
3681 #else
3682 /*
3683 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3684 * by the kernel. If processes running on node 0 deplete the low memory zone
3685 * then reclaim will occur more frequency increasing stalls and potentially
3686 * be easier to OOM if a large percentage of the zone is under writeback or
3687 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3688 * Hence, default to zone ordering on 32-bit.
3689 */
3690 static int default_zonelist_order(void)
3691 {
3692 return ZONELIST_ORDER_ZONE;
3693 }
3694 #endif /* CONFIG_64BIT */
3695
3696 static void set_zonelist_order(void)
3697 {
3698 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3699 current_zonelist_order = default_zonelist_order();
3700 else
3701 current_zonelist_order = user_zonelist_order;
3702 }
3703
3704 static void build_zonelists(pg_data_t *pgdat)
3705 {
3706 int j, node, load;
3707 enum zone_type i;
3708 nodemask_t used_mask;
3709 int local_node, prev_node;
3710 struct zonelist *zonelist;
3711 int order = current_zonelist_order;
3712
3713 /* initialize zonelists */
3714 for (i = 0; i < MAX_ZONELISTS; i++) {
3715 zonelist = pgdat->node_zonelists + i;
3716 zonelist->_zonerefs[0].zone = NULL;
3717 zonelist->_zonerefs[0].zone_idx = 0;
3718 }
3719
3720 /* NUMA-aware ordering of nodes */
3721 local_node = pgdat->node_id;
3722 load = nr_online_nodes;
3723 prev_node = local_node;
3724 nodes_clear(used_mask);
3725
3726 memset(node_order, 0, sizeof(node_order));
3727 j = 0;
3728
3729 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3730 /*
3731 * We don't want to pressure a particular node.
3732 * So adding penalty to the first node in same
3733 * distance group to make it round-robin.
3734 */
3735 if (node_distance(local_node, node) !=
3736 node_distance(local_node, prev_node))
3737 node_load[node] = load;
3738
3739 prev_node = node;
3740 load--;
3741 if (order == ZONELIST_ORDER_NODE)
3742 build_zonelists_in_node_order(pgdat, node);
3743 else
3744 node_order[j++] = node; /* remember order */
3745 }
3746
3747 if (order == ZONELIST_ORDER_ZONE) {
3748 /* calculate node order -- i.e., DMA last! */
3749 build_zonelists_in_zone_order(pgdat, j);
3750 }
3751
3752 build_thisnode_zonelists(pgdat);
3753 }
3754
3755 /* Construct the zonelist performance cache - see further mmzone.h */
3756 static void build_zonelist_cache(pg_data_t *pgdat)
3757 {
3758 struct zonelist *zonelist;
3759 struct zonelist_cache *zlc;
3760 struct zoneref *z;
3761
3762 zonelist = &pgdat->node_zonelists[0];
3763 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3764 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3765 for (z = zonelist->_zonerefs; z->zone; z++)
3766 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3767 }
3768
3769 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3770 /*
3771 * Return node id of node used for "local" allocations.
3772 * I.e., first node id of first zone in arg node's generic zonelist.
3773 * Used for initializing percpu 'numa_mem', which is used primarily
3774 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3775 */
3776 int local_memory_node(int node)
3777 {
3778 struct zone *zone;
3779
3780 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3781 gfp_zone(GFP_KERNEL),
3782 NULL,
3783 &zone);
3784 return zone->node;
3785 }
3786 #endif
3787
3788 #else /* CONFIG_NUMA */
3789
3790 static void set_zonelist_order(void)
3791 {
3792 current_zonelist_order = ZONELIST_ORDER_ZONE;
3793 }
3794
3795 static void build_zonelists(pg_data_t *pgdat)
3796 {
3797 int node, local_node;
3798 enum zone_type j;
3799 struct zonelist *zonelist;
3800
3801 local_node = pgdat->node_id;
3802
3803 zonelist = &pgdat->node_zonelists[0];
3804 j = build_zonelists_node(pgdat, zonelist, 0);
3805
3806 /*
3807 * Now we build the zonelist so that it contains the zones
3808 * of all the other nodes.
3809 * We don't want to pressure a particular node, so when
3810 * building the zones for node N, we make sure that the
3811 * zones coming right after the local ones are those from
3812 * node N+1 (modulo N)
3813 */
3814 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3815 if (!node_online(node))
3816 continue;
3817 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3818 }
3819 for (node = 0; node < local_node; node++) {
3820 if (!node_online(node))
3821 continue;
3822 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3823 }
3824
3825 zonelist->_zonerefs[j].zone = NULL;
3826 zonelist->_zonerefs[j].zone_idx = 0;
3827 }
3828
3829 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3830 static void build_zonelist_cache(pg_data_t *pgdat)
3831 {
3832 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3833 }
3834
3835 #endif /* CONFIG_NUMA */
3836
3837 /*
3838 * Boot pageset table. One per cpu which is going to be used for all
3839 * zones and all nodes. The parameters will be set in such a way
3840 * that an item put on a list will immediately be handed over to
3841 * the buddy list. This is safe since pageset manipulation is done
3842 * with interrupts disabled.
3843 *
3844 * The boot_pagesets must be kept even after bootup is complete for
3845 * unused processors and/or zones. They do play a role for bootstrapping
3846 * hotplugged processors.
3847 *
3848 * zoneinfo_show() and maybe other functions do
3849 * not check if the processor is online before following the pageset pointer.
3850 * Other parts of the kernel may not check if the zone is available.
3851 */
3852 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3853 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3854 static void setup_zone_pageset(struct zone *zone);
3855
3856 /*
3857 * Global mutex to protect against size modification of zonelists
3858 * as well as to serialize pageset setup for the new populated zone.
3859 */
3860 DEFINE_MUTEX(zonelists_mutex);
3861
3862 /* return values int ....just for stop_machine() */
3863 static int __build_all_zonelists(void *data)
3864 {
3865 int nid;
3866 int cpu;
3867 pg_data_t *self = data;
3868
3869 #ifdef CONFIG_NUMA
3870 memset(node_load, 0, sizeof(node_load));
3871 #endif
3872
3873 if (self && !node_online(self->node_id)) {
3874 build_zonelists(self);
3875 build_zonelist_cache(self);
3876 }
3877
3878 for_each_online_node(nid) {
3879 pg_data_t *pgdat = NODE_DATA(nid);
3880
3881 build_zonelists(pgdat);
3882 build_zonelist_cache(pgdat);
3883 }
3884
3885 /*
3886 * Initialize the boot_pagesets that are going to be used
3887 * for bootstrapping processors. The real pagesets for
3888 * each zone will be allocated later when the per cpu
3889 * allocator is available.
3890 *
3891 * boot_pagesets are used also for bootstrapping offline
3892 * cpus if the system is already booted because the pagesets
3893 * are needed to initialize allocators on a specific cpu too.
3894 * F.e. the percpu allocator needs the page allocator which
3895 * needs the percpu allocator in order to allocate its pagesets
3896 * (a chicken-egg dilemma).
3897 */
3898 for_each_possible_cpu(cpu) {
3899 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3900
3901 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3902 /*
3903 * We now know the "local memory node" for each node--
3904 * i.e., the node of the first zone in the generic zonelist.
3905 * Set up numa_mem percpu variable for on-line cpus. During
3906 * boot, only the boot cpu should be on-line; we'll init the
3907 * secondary cpus' numa_mem as they come on-line. During
3908 * node/memory hotplug, we'll fixup all on-line cpus.
3909 */
3910 if (cpu_online(cpu))
3911 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3912 #endif
3913 }
3914
3915 return 0;
3916 }
3917
3918 /*
3919 * Called with zonelists_mutex held always
3920 * unless system_state == SYSTEM_BOOTING.
3921 */
3922 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3923 {
3924 set_zonelist_order();
3925
3926 if (system_state == SYSTEM_BOOTING) {
3927 __build_all_zonelists(NULL);
3928 mminit_verify_zonelist();
3929 cpuset_init_current_mems_allowed();
3930 } else {
3931 #ifdef CONFIG_MEMORY_HOTPLUG
3932 if (zone)
3933 setup_zone_pageset(zone);
3934 #endif
3935 /* we have to stop all cpus to guarantee there is no user
3936 of zonelist */
3937 stop_machine(__build_all_zonelists, pgdat, NULL);
3938 /* cpuset refresh routine should be here */
3939 }
3940 vm_total_pages = nr_free_pagecache_pages();
3941 /*
3942 * Disable grouping by mobility if the number of pages in the
3943 * system is too low to allow the mechanism to work. It would be
3944 * more accurate, but expensive to check per-zone. This check is
3945 * made on memory-hotadd so a system can start with mobility
3946 * disabled and enable it later
3947 */
3948 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3949 page_group_by_mobility_disabled = 1;
3950 else
3951 page_group_by_mobility_disabled = 0;
3952
3953 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
3954 "Total pages: %ld\n",
3955 nr_online_nodes,
3956 zonelist_order_name[current_zonelist_order],
3957 page_group_by_mobility_disabled ? "off" : "on",
3958 vm_total_pages);
3959 #ifdef CONFIG_NUMA
3960 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3961 #endif
3962 }
3963
3964 /*
3965 * Helper functions to size the waitqueue hash table.
3966 * Essentially these want to choose hash table sizes sufficiently
3967 * large so that collisions trying to wait on pages are rare.
3968 * But in fact, the number of active page waitqueues on typical
3969 * systems is ridiculously low, less than 200. So this is even
3970 * conservative, even though it seems large.
3971 *
3972 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3973 * waitqueues, i.e. the size of the waitq table given the number of pages.
3974 */
3975 #define PAGES_PER_WAITQUEUE 256
3976
3977 #ifndef CONFIG_MEMORY_HOTPLUG
3978 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3979 {
3980 unsigned long size = 1;
3981
3982 pages /= PAGES_PER_WAITQUEUE;
3983
3984 while (size < pages)
3985 size <<= 1;
3986
3987 /*
3988 * Once we have dozens or even hundreds of threads sleeping
3989 * on IO we've got bigger problems than wait queue collision.
3990 * Limit the size of the wait table to a reasonable size.
3991 */
3992 size = min(size, 4096UL);
3993
3994 return max(size, 4UL);
3995 }
3996 #else
3997 /*
3998 * A zone's size might be changed by hot-add, so it is not possible to determine
3999 * a suitable size for its wait_table. So we use the maximum size now.
4000 *
4001 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4002 *
4003 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4004 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4005 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4006 *
4007 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4008 * or more by the traditional way. (See above). It equals:
4009 *
4010 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4011 * ia64(16K page size) : = ( 8G + 4M)byte.
4012 * powerpc (64K page size) : = (32G +16M)byte.
4013 */
4014 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4015 {
4016 return 4096UL;
4017 }
4018 #endif
4019
4020 /*
4021 * This is an integer logarithm so that shifts can be used later
4022 * to extract the more random high bits from the multiplicative
4023 * hash function before the remainder is taken.
4024 */
4025 static inline unsigned long wait_table_bits(unsigned long size)
4026 {
4027 return ffz(~size);
4028 }
4029
4030 /*
4031 * Check if a pageblock contains reserved pages
4032 */
4033 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4034 {
4035 unsigned long pfn;
4036
4037 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4038 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4039 return 1;
4040 }
4041 return 0;
4042 }
4043
4044 /*
4045 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4046 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4047 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4048 * higher will lead to a bigger reserve which will get freed as contiguous
4049 * blocks as reclaim kicks in
4050 */
4051 static void setup_zone_migrate_reserve(struct zone *zone)
4052 {
4053 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4054 struct page *page;
4055 unsigned long block_migratetype;
4056 int reserve;
4057 int old_reserve;
4058
4059 /*
4060 * Get the start pfn, end pfn and the number of blocks to reserve
4061 * We have to be careful to be aligned to pageblock_nr_pages to
4062 * make sure that we always check pfn_valid for the first page in
4063 * the block.
4064 */
4065 start_pfn = zone->zone_start_pfn;
4066 end_pfn = zone_end_pfn(zone);
4067 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4068 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4069 pageblock_order;
4070
4071 /*
4072 * Reserve blocks are generally in place to help high-order atomic
4073 * allocations that are short-lived. A min_free_kbytes value that
4074 * would result in more than 2 reserve blocks for atomic allocations
4075 * is assumed to be in place to help anti-fragmentation for the
4076 * future allocation of hugepages at runtime.
4077 */
4078 reserve = min(2, reserve);
4079 old_reserve = zone->nr_migrate_reserve_block;
4080
4081 /* When memory hot-add, we almost always need to do nothing */
4082 if (reserve == old_reserve)
4083 return;
4084 zone->nr_migrate_reserve_block = reserve;
4085
4086 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4087 if (!pfn_valid(pfn))
4088 continue;
4089 page = pfn_to_page(pfn);
4090
4091 /* Watch out for overlapping nodes */
4092 if (page_to_nid(page) != zone_to_nid(zone))
4093 continue;
4094
4095 block_migratetype = get_pageblock_migratetype(page);
4096
4097 /* Only test what is necessary when the reserves are not met */
4098 if (reserve > 0) {
4099 /*
4100 * Blocks with reserved pages will never free, skip
4101 * them.
4102 */
4103 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4104 if (pageblock_is_reserved(pfn, block_end_pfn))
4105 continue;
4106
4107 /* If this block is reserved, account for it */
4108 if (block_migratetype == MIGRATE_RESERVE) {
4109 reserve--;
4110 continue;
4111 }
4112
4113 /* Suitable for reserving if this block is movable */
4114 if (block_migratetype == MIGRATE_MOVABLE) {
4115 set_pageblock_migratetype(page,
4116 MIGRATE_RESERVE);
4117 move_freepages_block(zone, page,
4118 MIGRATE_RESERVE);
4119 reserve--;
4120 continue;
4121 }
4122 } else if (!old_reserve) {
4123 /*
4124 * At boot time we don't need to scan the whole zone
4125 * for turning off MIGRATE_RESERVE.
4126 */
4127 break;
4128 }
4129
4130 /*
4131 * If the reserve is met and this is a previous reserved block,
4132 * take it back
4133 */
4134 if (block_migratetype == MIGRATE_RESERVE) {
4135 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4136 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4137 }
4138 }
4139 }
4140
4141 /*
4142 * Initially all pages are reserved - free ones are freed
4143 * up by free_all_bootmem() once the early boot process is
4144 * done. Non-atomic initialization, single-pass.
4145 */
4146 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4147 unsigned long start_pfn, enum memmap_context context)
4148 {
4149 struct page *page;
4150 unsigned long end_pfn = start_pfn + size;
4151 unsigned long pfn;
4152 struct zone *z;
4153
4154 if (highest_memmap_pfn < end_pfn - 1)
4155 highest_memmap_pfn = end_pfn - 1;
4156
4157 z = &NODE_DATA(nid)->node_zones[zone];
4158 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4159 /*
4160 * There can be holes in boot-time mem_map[]s
4161 * handed to this function. They do not
4162 * exist on hotplugged memory.
4163 */
4164 if (context == MEMMAP_EARLY) {
4165 if (!early_pfn_valid(pfn))
4166 continue;
4167 if (!early_pfn_in_nid(pfn, nid))
4168 continue;
4169 }
4170 page = pfn_to_page(pfn);
4171 set_page_links(page, zone, nid, pfn);
4172 mminit_verify_page_links(page, zone, nid, pfn);
4173 init_page_count(page);
4174 page_mapcount_reset(page);
4175 page_cpupid_reset_last(page);
4176 SetPageReserved(page);
4177 /*
4178 * Mark the block movable so that blocks are reserved for
4179 * movable at startup. This will force kernel allocations
4180 * to reserve their blocks rather than leaking throughout
4181 * the address space during boot when many long-lived
4182 * kernel allocations are made. Later some blocks near
4183 * the start are marked MIGRATE_RESERVE by
4184 * setup_zone_migrate_reserve()
4185 *
4186 * bitmap is created for zone's valid pfn range. but memmap
4187 * can be created for invalid pages (for alignment)
4188 * check here not to call set_pageblock_migratetype() against
4189 * pfn out of zone.
4190 */
4191 if ((z->zone_start_pfn <= pfn)
4192 && (pfn < zone_end_pfn(z))
4193 && !(pfn & (pageblock_nr_pages - 1)))
4194 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4195
4196 INIT_LIST_HEAD(&page->lru);
4197 #ifdef WANT_PAGE_VIRTUAL
4198 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4199 if (!is_highmem_idx(zone))
4200 set_page_address(page, __va(pfn << PAGE_SHIFT));
4201 #endif
4202 }
4203 }
4204
4205 static void __meminit zone_init_free_lists(struct zone *zone)
4206 {
4207 unsigned int order, t;
4208 for_each_migratetype_order(order, t) {
4209 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4210 zone->free_area[order].nr_free = 0;
4211 }
4212 }
4213
4214 #ifndef __HAVE_ARCH_MEMMAP_INIT
4215 #define memmap_init(size, nid, zone, start_pfn) \
4216 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4217 #endif
4218
4219 static int zone_batchsize(struct zone *zone)
4220 {
4221 #ifdef CONFIG_MMU
4222 int batch;
4223
4224 /*
4225 * The per-cpu-pages pools are set to around 1000th of the
4226 * size of the zone. But no more than 1/2 of a meg.
4227 *
4228 * OK, so we don't know how big the cache is. So guess.
4229 */
4230 batch = zone->managed_pages / 1024;
4231 if (batch * PAGE_SIZE > 512 * 1024)
4232 batch = (512 * 1024) / PAGE_SIZE;
4233 batch /= 4; /* We effectively *= 4 below */
4234 if (batch < 1)
4235 batch = 1;
4236
4237 /*
4238 * Clamp the batch to a 2^n - 1 value. Having a power
4239 * of 2 value was found to be more likely to have
4240 * suboptimal cache aliasing properties in some cases.
4241 *
4242 * For example if 2 tasks are alternately allocating
4243 * batches of pages, one task can end up with a lot
4244 * of pages of one half of the possible page colors
4245 * and the other with pages of the other colors.
4246 */
4247 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4248
4249 return batch;
4250
4251 #else
4252 /* The deferral and batching of frees should be suppressed under NOMMU
4253 * conditions.
4254 *
4255 * The problem is that NOMMU needs to be able to allocate large chunks
4256 * of contiguous memory as there's no hardware page translation to
4257 * assemble apparent contiguous memory from discontiguous pages.
4258 *
4259 * Queueing large contiguous runs of pages for batching, however,
4260 * causes the pages to actually be freed in smaller chunks. As there
4261 * can be a significant delay between the individual batches being
4262 * recycled, this leads to the once large chunks of space being
4263 * fragmented and becoming unavailable for high-order allocations.
4264 */
4265 return 0;
4266 #endif
4267 }
4268
4269 /*
4270 * pcp->high and pcp->batch values are related and dependent on one another:
4271 * ->batch must never be higher then ->high.
4272 * The following function updates them in a safe manner without read side
4273 * locking.
4274 *
4275 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4276 * those fields changing asynchronously (acording the the above rule).
4277 *
4278 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4279 * outside of boot time (or some other assurance that no concurrent updaters
4280 * exist).
4281 */
4282 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4283 unsigned long batch)
4284 {
4285 /* start with a fail safe value for batch */
4286 pcp->batch = 1;
4287 smp_wmb();
4288
4289 /* Update high, then batch, in order */
4290 pcp->high = high;
4291 smp_wmb();
4292
4293 pcp->batch = batch;
4294 }
4295
4296 /* a companion to pageset_set_high() */
4297 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4298 {
4299 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4300 }
4301
4302 static void pageset_init(struct per_cpu_pageset *p)
4303 {
4304 struct per_cpu_pages *pcp;
4305 int migratetype;
4306
4307 memset(p, 0, sizeof(*p));
4308
4309 pcp = &p->pcp;
4310 pcp->count = 0;
4311 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4312 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4313 }
4314
4315 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4316 {
4317 pageset_init(p);
4318 pageset_set_batch(p, batch);
4319 }
4320
4321 /*
4322 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4323 * to the value high for the pageset p.
4324 */
4325 static void pageset_set_high(struct per_cpu_pageset *p,
4326 unsigned long high)
4327 {
4328 unsigned long batch = max(1UL, high / 4);
4329 if ((high / 4) > (PAGE_SHIFT * 8))
4330 batch = PAGE_SHIFT * 8;
4331
4332 pageset_update(&p->pcp, high, batch);
4333 }
4334
4335 static void pageset_set_high_and_batch(struct zone *zone,
4336 struct per_cpu_pageset *pcp)
4337 {
4338 if (percpu_pagelist_fraction)
4339 pageset_set_high(pcp,
4340 (zone->managed_pages /
4341 percpu_pagelist_fraction));
4342 else
4343 pageset_set_batch(pcp, zone_batchsize(zone));
4344 }
4345
4346 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4347 {
4348 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4349
4350 pageset_init(pcp);
4351 pageset_set_high_and_batch(zone, pcp);
4352 }
4353
4354 static void __meminit setup_zone_pageset(struct zone *zone)
4355 {
4356 int cpu;
4357 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4358 for_each_possible_cpu(cpu)
4359 zone_pageset_init(zone, cpu);
4360 }
4361
4362 /*
4363 * Allocate per cpu pagesets and initialize them.
4364 * Before this call only boot pagesets were available.
4365 */
4366 void __init setup_per_cpu_pageset(void)
4367 {
4368 struct zone *zone;
4369
4370 for_each_populated_zone(zone)
4371 setup_zone_pageset(zone);
4372 }
4373
4374 static noinline __init_refok
4375 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4376 {
4377 int i;
4378 size_t alloc_size;
4379
4380 /*
4381 * The per-page waitqueue mechanism uses hashed waitqueues
4382 * per zone.
4383 */
4384 zone->wait_table_hash_nr_entries =
4385 wait_table_hash_nr_entries(zone_size_pages);
4386 zone->wait_table_bits =
4387 wait_table_bits(zone->wait_table_hash_nr_entries);
4388 alloc_size = zone->wait_table_hash_nr_entries
4389 * sizeof(wait_queue_head_t);
4390
4391 if (!slab_is_available()) {
4392 zone->wait_table = (wait_queue_head_t *)
4393 memblock_virt_alloc_node_nopanic(
4394 alloc_size, zone->zone_pgdat->node_id);
4395 } else {
4396 /*
4397 * This case means that a zone whose size was 0 gets new memory
4398 * via memory hot-add.
4399 * But it may be the case that a new node was hot-added. In
4400 * this case vmalloc() will not be able to use this new node's
4401 * memory - this wait_table must be initialized to use this new
4402 * node itself as well.
4403 * To use this new node's memory, further consideration will be
4404 * necessary.
4405 */
4406 zone->wait_table = vmalloc(alloc_size);
4407 }
4408 if (!zone->wait_table)
4409 return -ENOMEM;
4410
4411 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4412 init_waitqueue_head(zone->wait_table + i);
4413
4414 return 0;
4415 }
4416
4417 static __meminit void zone_pcp_init(struct zone *zone)
4418 {
4419 /*
4420 * per cpu subsystem is not up at this point. The following code
4421 * relies on the ability of the linker to provide the
4422 * offset of a (static) per cpu variable into the per cpu area.
4423 */
4424 zone->pageset = &boot_pageset;
4425
4426 if (populated_zone(zone))
4427 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4428 zone->name, zone->present_pages,
4429 zone_batchsize(zone));
4430 }
4431
4432 int __meminit init_currently_empty_zone(struct zone *zone,
4433 unsigned long zone_start_pfn,
4434 unsigned long size,
4435 enum memmap_context context)
4436 {
4437 struct pglist_data *pgdat = zone->zone_pgdat;
4438 int ret;
4439 ret = zone_wait_table_init(zone, size);
4440 if (ret)
4441 return ret;
4442 pgdat->nr_zones = zone_idx(zone) + 1;
4443
4444 zone->zone_start_pfn = zone_start_pfn;
4445
4446 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4447 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4448 pgdat->node_id,
4449 (unsigned long)zone_idx(zone),
4450 zone_start_pfn, (zone_start_pfn + size));
4451
4452 zone_init_free_lists(zone);
4453
4454 return 0;
4455 }
4456
4457 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4458 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4459 /*
4460 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4461 */
4462 int __meminit __early_pfn_to_nid(unsigned long pfn)
4463 {
4464 unsigned long start_pfn, end_pfn;
4465 int nid;
4466 /*
4467 * NOTE: The following SMP-unsafe globals are only used early in boot
4468 * when the kernel is running single-threaded.
4469 */
4470 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4471 static int __meminitdata last_nid;
4472
4473 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4474 return last_nid;
4475
4476 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4477 if (nid != -1) {
4478 last_start_pfn = start_pfn;
4479 last_end_pfn = end_pfn;
4480 last_nid = nid;
4481 }
4482
4483 return nid;
4484 }
4485 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4486
4487 int __meminit early_pfn_to_nid(unsigned long pfn)
4488 {
4489 int nid;
4490
4491 nid = __early_pfn_to_nid(pfn);
4492 if (nid >= 0)
4493 return nid;
4494 /* just returns 0 */
4495 return 0;
4496 }
4497
4498 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4499 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4500 {
4501 int nid;
4502
4503 nid = __early_pfn_to_nid(pfn);
4504 if (nid >= 0 && nid != node)
4505 return false;
4506 return true;
4507 }
4508 #endif
4509
4510 /**
4511 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4512 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4513 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4514 *
4515 * If an architecture guarantees that all ranges registered contain no holes
4516 * and may be freed, this this function may be used instead of calling
4517 * memblock_free_early_nid() manually.
4518 */
4519 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4520 {
4521 unsigned long start_pfn, end_pfn;
4522 int i, this_nid;
4523
4524 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4525 start_pfn = min(start_pfn, max_low_pfn);
4526 end_pfn = min(end_pfn, max_low_pfn);
4527
4528 if (start_pfn < end_pfn)
4529 memblock_free_early_nid(PFN_PHYS(start_pfn),
4530 (end_pfn - start_pfn) << PAGE_SHIFT,
4531 this_nid);
4532 }
4533 }
4534
4535 /**
4536 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4537 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4538 *
4539 * If an architecture guarantees that all ranges registered contain no holes and may
4540 * be freed, this function may be used instead of calling memory_present() manually.
4541 */
4542 void __init sparse_memory_present_with_active_regions(int nid)
4543 {
4544 unsigned long start_pfn, end_pfn;
4545 int i, this_nid;
4546
4547 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4548 memory_present(this_nid, start_pfn, end_pfn);
4549 }
4550
4551 /**
4552 * get_pfn_range_for_nid - Return the start and end page frames for a node
4553 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4554 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4555 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4556 *
4557 * It returns the start and end page frame of a node based on information
4558 * provided by memblock_set_node(). If called for a node
4559 * with no available memory, a warning is printed and the start and end
4560 * PFNs will be 0.
4561 */
4562 void __meminit get_pfn_range_for_nid(unsigned int nid,
4563 unsigned long *start_pfn, unsigned long *end_pfn)
4564 {
4565 unsigned long this_start_pfn, this_end_pfn;
4566 int i;
4567
4568 *start_pfn = -1UL;
4569 *end_pfn = 0;
4570
4571 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4572 *start_pfn = min(*start_pfn, this_start_pfn);
4573 *end_pfn = max(*end_pfn, this_end_pfn);
4574 }
4575
4576 if (*start_pfn == -1UL)
4577 *start_pfn = 0;
4578 }
4579
4580 /*
4581 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4582 * assumption is made that zones within a node are ordered in monotonic
4583 * increasing memory addresses so that the "highest" populated zone is used
4584 */
4585 static void __init find_usable_zone_for_movable(void)
4586 {
4587 int zone_index;
4588 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4589 if (zone_index == ZONE_MOVABLE)
4590 continue;
4591
4592 if (arch_zone_highest_possible_pfn[zone_index] >
4593 arch_zone_lowest_possible_pfn[zone_index])
4594 break;
4595 }
4596
4597 VM_BUG_ON(zone_index == -1);
4598 movable_zone = zone_index;
4599 }
4600
4601 /*
4602 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4603 * because it is sized independent of architecture. Unlike the other zones,
4604 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4605 * in each node depending on the size of each node and how evenly kernelcore
4606 * is distributed. This helper function adjusts the zone ranges
4607 * provided by the architecture for a given node by using the end of the
4608 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4609 * zones within a node are in order of monotonic increases memory addresses
4610 */
4611 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4612 unsigned long zone_type,
4613 unsigned long node_start_pfn,
4614 unsigned long node_end_pfn,
4615 unsigned long *zone_start_pfn,
4616 unsigned long *zone_end_pfn)
4617 {
4618 /* Only adjust if ZONE_MOVABLE is on this node */
4619 if (zone_movable_pfn[nid]) {
4620 /* Size ZONE_MOVABLE */
4621 if (zone_type == ZONE_MOVABLE) {
4622 *zone_start_pfn = zone_movable_pfn[nid];
4623 *zone_end_pfn = min(node_end_pfn,
4624 arch_zone_highest_possible_pfn[movable_zone]);
4625
4626 /* Adjust for ZONE_MOVABLE starting within this range */
4627 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4628 *zone_end_pfn > zone_movable_pfn[nid]) {
4629 *zone_end_pfn = zone_movable_pfn[nid];
4630
4631 /* Check if this whole range is within ZONE_MOVABLE */
4632 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4633 *zone_start_pfn = *zone_end_pfn;
4634 }
4635 }
4636
4637 /*
4638 * Return the number of pages a zone spans in a node, including holes
4639 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4640 */
4641 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4642 unsigned long zone_type,
4643 unsigned long node_start_pfn,
4644 unsigned long node_end_pfn,
4645 unsigned long *ignored)
4646 {
4647 unsigned long zone_start_pfn, zone_end_pfn;
4648
4649 /* Get the start and end of the zone */
4650 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4651 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4652 adjust_zone_range_for_zone_movable(nid, zone_type,
4653 node_start_pfn, node_end_pfn,
4654 &zone_start_pfn, &zone_end_pfn);
4655
4656 /* Check that this node has pages within the zone's required range */
4657 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4658 return 0;
4659
4660 /* Move the zone boundaries inside the node if necessary */
4661 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4662 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4663
4664 /* Return the spanned pages */
4665 return zone_end_pfn - zone_start_pfn;
4666 }
4667
4668 /*
4669 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4670 * then all holes in the requested range will be accounted for.
4671 */
4672 unsigned long __meminit __absent_pages_in_range(int nid,
4673 unsigned long range_start_pfn,
4674 unsigned long range_end_pfn)
4675 {
4676 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4677 unsigned long start_pfn, end_pfn;
4678 int i;
4679
4680 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4681 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4682 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4683 nr_absent -= end_pfn - start_pfn;
4684 }
4685 return nr_absent;
4686 }
4687
4688 /**
4689 * absent_pages_in_range - Return number of page frames in holes within a range
4690 * @start_pfn: The start PFN to start searching for holes
4691 * @end_pfn: The end PFN to stop searching for holes
4692 *
4693 * It returns the number of pages frames in memory holes within a range.
4694 */
4695 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4696 unsigned long end_pfn)
4697 {
4698 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4699 }
4700
4701 /* Return the number of page frames in holes in a zone on a node */
4702 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4703 unsigned long zone_type,
4704 unsigned long node_start_pfn,
4705 unsigned long node_end_pfn,
4706 unsigned long *ignored)
4707 {
4708 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4709 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4710 unsigned long zone_start_pfn, zone_end_pfn;
4711
4712 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4713 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4714
4715 adjust_zone_range_for_zone_movable(nid, zone_type,
4716 node_start_pfn, node_end_pfn,
4717 &zone_start_pfn, &zone_end_pfn);
4718 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4719 }
4720
4721 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4722 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4723 unsigned long zone_type,
4724 unsigned long node_start_pfn,
4725 unsigned long node_end_pfn,
4726 unsigned long *zones_size)
4727 {
4728 return zones_size[zone_type];
4729 }
4730
4731 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4732 unsigned long zone_type,
4733 unsigned long node_start_pfn,
4734 unsigned long node_end_pfn,
4735 unsigned long *zholes_size)
4736 {
4737 if (!zholes_size)
4738 return 0;
4739
4740 return zholes_size[zone_type];
4741 }
4742
4743 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4744
4745 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4746 unsigned long node_start_pfn,
4747 unsigned long node_end_pfn,
4748 unsigned long *zones_size,
4749 unsigned long *zholes_size)
4750 {
4751 unsigned long realtotalpages, totalpages = 0;
4752 enum zone_type i;
4753
4754 for (i = 0; i < MAX_NR_ZONES; i++)
4755 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4756 node_start_pfn,
4757 node_end_pfn,
4758 zones_size);
4759 pgdat->node_spanned_pages = totalpages;
4760
4761 realtotalpages = totalpages;
4762 for (i = 0; i < MAX_NR_ZONES; i++)
4763 realtotalpages -=
4764 zone_absent_pages_in_node(pgdat->node_id, i,
4765 node_start_pfn, node_end_pfn,
4766 zholes_size);
4767 pgdat->node_present_pages = realtotalpages;
4768 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4769 realtotalpages);
4770 }
4771
4772 #ifndef CONFIG_SPARSEMEM
4773 /*
4774 * Calculate the size of the zone->blockflags rounded to an unsigned long
4775 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4776 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4777 * round what is now in bits to nearest long in bits, then return it in
4778 * bytes.
4779 */
4780 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4781 {
4782 unsigned long usemapsize;
4783
4784 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4785 usemapsize = roundup(zonesize, pageblock_nr_pages);
4786 usemapsize = usemapsize >> pageblock_order;
4787 usemapsize *= NR_PAGEBLOCK_BITS;
4788 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4789
4790 return usemapsize / 8;
4791 }
4792
4793 static void __init setup_usemap(struct pglist_data *pgdat,
4794 struct zone *zone,
4795 unsigned long zone_start_pfn,
4796 unsigned long zonesize)
4797 {
4798 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4799 zone->pageblock_flags = NULL;
4800 if (usemapsize)
4801 zone->pageblock_flags =
4802 memblock_virt_alloc_node_nopanic(usemapsize,
4803 pgdat->node_id);
4804 }
4805 #else
4806 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4807 unsigned long zone_start_pfn, unsigned long zonesize) {}
4808 #endif /* CONFIG_SPARSEMEM */
4809
4810 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4811
4812 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4813 void __paginginit set_pageblock_order(void)
4814 {
4815 unsigned int order;
4816
4817 /* Check that pageblock_nr_pages has not already been setup */
4818 if (pageblock_order)
4819 return;
4820
4821 if (HPAGE_SHIFT > PAGE_SHIFT)
4822 order = HUGETLB_PAGE_ORDER;
4823 else
4824 order = MAX_ORDER - 1;
4825
4826 /*
4827 * Assume the largest contiguous order of interest is a huge page.
4828 * This value may be variable depending on boot parameters on IA64 and
4829 * powerpc.
4830 */
4831 pageblock_order = order;
4832 }
4833 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4834
4835 /*
4836 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4837 * is unused as pageblock_order is set at compile-time. See
4838 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4839 * the kernel config
4840 */
4841 void __paginginit set_pageblock_order(void)
4842 {
4843 }
4844
4845 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4846
4847 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4848 unsigned long present_pages)
4849 {
4850 unsigned long pages = spanned_pages;
4851
4852 /*
4853 * Provide a more accurate estimation if there are holes within
4854 * the zone and SPARSEMEM is in use. If there are holes within the
4855 * zone, each populated memory region may cost us one or two extra
4856 * memmap pages due to alignment because memmap pages for each
4857 * populated regions may not naturally algined on page boundary.
4858 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4859 */
4860 if (spanned_pages > present_pages + (present_pages >> 4) &&
4861 IS_ENABLED(CONFIG_SPARSEMEM))
4862 pages = present_pages;
4863
4864 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4865 }
4866
4867 /*
4868 * Set up the zone data structures:
4869 * - mark all pages reserved
4870 * - mark all memory queues empty
4871 * - clear the memory bitmaps
4872 *
4873 * NOTE: pgdat should get zeroed by caller.
4874 */
4875 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4876 unsigned long node_start_pfn, unsigned long node_end_pfn,
4877 unsigned long *zones_size, unsigned long *zholes_size)
4878 {
4879 enum zone_type j;
4880 int nid = pgdat->node_id;
4881 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4882 int ret;
4883
4884 pgdat_resize_init(pgdat);
4885 #ifdef CONFIG_NUMA_BALANCING
4886 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4887 pgdat->numabalancing_migrate_nr_pages = 0;
4888 pgdat->numabalancing_migrate_next_window = jiffies;
4889 #endif
4890 init_waitqueue_head(&pgdat->kswapd_wait);
4891 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4892 pgdat_page_ext_init(pgdat);
4893
4894 for (j = 0; j < MAX_NR_ZONES; j++) {
4895 struct zone *zone = pgdat->node_zones + j;
4896 unsigned long size, realsize, freesize, memmap_pages;
4897
4898 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4899 node_end_pfn, zones_size);
4900 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4901 node_start_pfn,
4902 node_end_pfn,
4903 zholes_size);
4904
4905 /*
4906 * Adjust freesize so that it accounts for how much memory
4907 * is used by this zone for memmap. This affects the watermark
4908 * and per-cpu initialisations
4909 */
4910 memmap_pages = calc_memmap_size(size, realsize);
4911 if (freesize >= memmap_pages) {
4912 freesize -= memmap_pages;
4913 if (memmap_pages)
4914 printk(KERN_DEBUG
4915 " %s zone: %lu pages used for memmap\n",
4916 zone_names[j], memmap_pages);
4917 } else
4918 printk(KERN_WARNING
4919 " %s zone: %lu pages exceeds freesize %lu\n",
4920 zone_names[j], memmap_pages, freesize);
4921
4922 /* Account for reserved pages */
4923 if (j == 0 && freesize > dma_reserve) {
4924 freesize -= dma_reserve;
4925 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4926 zone_names[0], dma_reserve);
4927 }
4928
4929 if (!is_highmem_idx(j))
4930 nr_kernel_pages += freesize;
4931 /* Charge for highmem memmap if there are enough kernel pages */
4932 else if (nr_kernel_pages > memmap_pages * 2)
4933 nr_kernel_pages -= memmap_pages;
4934 nr_all_pages += freesize;
4935
4936 zone->spanned_pages = size;
4937 zone->present_pages = realsize;
4938 /*
4939 * Set an approximate value for lowmem here, it will be adjusted
4940 * when the bootmem allocator frees pages into the buddy system.
4941 * And all highmem pages will be managed by the buddy system.
4942 */
4943 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4944 #ifdef CONFIG_NUMA
4945 zone->node = nid;
4946 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4947 / 100;
4948 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4949 #endif
4950 zone->name = zone_names[j];
4951 spin_lock_init(&zone->lock);
4952 spin_lock_init(&zone->lru_lock);
4953 zone_seqlock_init(zone);
4954 zone->zone_pgdat = pgdat;
4955 zone_pcp_init(zone);
4956
4957 /* For bootup, initialized properly in watermark setup */
4958 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4959
4960 lruvec_init(&zone->lruvec);
4961 if (!size)
4962 continue;
4963
4964 set_pageblock_order();
4965 setup_usemap(pgdat, zone, zone_start_pfn, size);
4966 ret = init_currently_empty_zone(zone, zone_start_pfn,
4967 size, MEMMAP_EARLY);
4968 BUG_ON(ret);
4969 memmap_init(size, nid, j, zone_start_pfn);
4970 zone_start_pfn += size;
4971 }
4972 }
4973
4974 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4975 {
4976 /* Skip empty nodes */
4977 if (!pgdat->node_spanned_pages)
4978 return;
4979
4980 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4981 /* ia64 gets its own node_mem_map, before this, without bootmem */
4982 if (!pgdat->node_mem_map) {
4983 unsigned long size, start, end;
4984 struct page *map;
4985
4986 /*
4987 * The zone's endpoints aren't required to be MAX_ORDER
4988 * aligned but the node_mem_map endpoints must be in order
4989 * for the buddy allocator to function correctly.
4990 */
4991 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4992 end = pgdat_end_pfn(pgdat);
4993 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4994 size = (end - start) * sizeof(struct page);
4995 map = alloc_remap(pgdat->node_id, size);
4996 if (!map)
4997 map = memblock_virt_alloc_node_nopanic(size,
4998 pgdat->node_id);
4999 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5000 }
5001 #ifndef CONFIG_NEED_MULTIPLE_NODES
5002 /*
5003 * With no DISCONTIG, the global mem_map is just set as node 0's
5004 */
5005 if (pgdat == NODE_DATA(0)) {
5006 mem_map = NODE_DATA(0)->node_mem_map;
5007 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5008 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5009 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5010 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5011 }
5012 #endif
5013 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5014 }
5015
5016 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5017 unsigned long node_start_pfn, unsigned long *zholes_size)
5018 {
5019 pg_data_t *pgdat = NODE_DATA(nid);
5020 unsigned long start_pfn = 0;
5021 unsigned long end_pfn = 0;
5022
5023 /* pg_data_t should be reset to zero when it's allocated */
5024 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5025
5026 pgdat->node_id = nid;
5027 pgdat->node_start_pfn = node_start_pfn;
5028 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5029 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5030 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
5031 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
5032 #endif
5033 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5034 zones_size, zholes_size);
5035
5036 alloc_node_mem_map(pgdat);
5037 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5038 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5039 nid, (unsigned long)pgdat,
5040 (unsigned long)pgdat->node_mem_map);
5041 #endif
5042
5043 free_area_init_core(pgdat, start_pfn, end_pfn,
5044 zones_size, zholes_size);
5045 }
5046
5047 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5048
5049 #if MAX_NUMNODES > 1
5050 /*
5051 * Figure out the number of possible node ids.
5052 */
5053 void __init setup_nr_node_ids(void)
5054 {
5055 unsigned int node;
5056 unsigned int highest = 0;
5057
5058 for_each_node_mask(node, node_possible_map)
5059 highest = node;
5060 nr_node_ids = highest + 1;
5061 }
5062 #endif
5063
5064 /**
5065 * node_map_pfn_alignment - determine the maximum internode alignment
5066 *
5067 * This function should be called after node map is populated and sorted.
5068 * It calculates the maximum power of two alignment which can distinguish
5069 * all the nodes.
5070 *
5071 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5072 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5073 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5074 * shifted, 1GiB is enough and this function will indicate so.
5075 *
5076 * This is used to test whether pfn -> nid mapping of the chosen memory
5077 * model has fine enough granularity to avoid incorrect mapping for the
5078 * populated node map.
5079 *
5080 * Returns the determined alignment in pfn's. 0 if there is no alignment
5081 * requirement (single node).
5082 */
5083 unsigned long __init node_map_pfn_alignment(void)
5084 {
5085 unsigned long accl_mask = 0, last_end = 0;
5086 unsigned long start, end, mask;
5087 int last_nid = -1;
5088 int i, nid;
5089
5090 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5091 if (!start || last_nid < 0 || last_nid == nid) {
5092 last_nid = nid;
5093 last_end = end;
5094 continue;
5095 }
5096
5097 /*
5098 * Start with a mask granular enough to pin-point to the
5099 * start pfn and tick off bits one-by-one until it becomes
5100 * too coarse to separate the current node from the last.
5101 */
5102 mask = ~((1 << __ffs(start)) - 1);
5103 while (mask && last_end <= (start & (mask << 1)))
5104 mask <<= 1;
5105
5106 /* accumulate all internode masks */
5107 accl_mask |= mask;
5108 }
5109
5110 /* convert mask to number of pages */
5111 return ~accl_mask + 1;
5112 }
5113
5114 /* Find the lowest pfn for a node */
5115 static unsigned long __init find_min_pfn_for_node(int nid)
5116 {
5117 unsigned long min_pfn = ULONG_MAX;
5118 unsigned long start_pfn;
5119 int i;
5120
5121 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5122 min_pfn = min(min_pfn, start_pfn);
5123
5124 if (min_pfn == ULONG_MAX) {
5125 printk(KERN_WARNING
5126 "Could not find start_pfn for node %d\n", nid);
5127 return 0;
5128 }
5129
5130 return min_pfn;
5131 }
5132
5133 /**
5134 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5135 *
5136 * It returns the minimum PFN based on information provided via
5137 * memblock_set_node().
5138 */
5139 unsigned long __init find_min_pfn_with_active_regions(void)
5140 {
5141 return find_min_pfn_for_node(MAX_NUMNODES);
5142 }
5143
5144 /*
5145 * early_calculate_totalpages()
5146 * Sum pages in active regions for movable zone.
5147 * Populate N_MEMORY for calculating usable_nodes.
5148 */
5149 static unsigned long __init early_calculate_totalpages(void)
5150 {
5151 unsigned long totalpages = 0;
5152 unsigned long start_pfn, end_pfn;
5153 int i, nid;
5154
5155 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5156 unsigned long pages = end_pfn - start_pfn;
5157
5158 totalpages += pages;
5159 if (pages)
5160 node_set_state(nid, N_MEMORY);
5161 }
5162 return totalpages;
5163 }
5164
5165 /*
5166 * Find the PFN the Movable zone begins in each node. Kernel memory
5167 * is spread evenly between nodes as long as the nodes have enough
5168 * memory. When they don't, some nodes will have more kernelcore than
5169 * others
5170 */
5171 static void __init find_zone_movable_pfns_for_nodes(void)
5172 {
5173 int i, nid;
5174 unsigned long usable_startpfn;
5175 unsigned long kernelcore_node, kernelcore_remaining;
5176 /* save the state before borrow the nodemask */
5177 nodemask_t saved_node_state = node_states[N_MEMORY];
5178 unsigned long totalpages = early_calculate_totalpages();
5179 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5180 struct memblock_region *r;
5181
5182 /* Need to find movable_zone earlier when movable_node is specified. */
5183 find_usable_zone_for_movable();
5184
5185 /*
5186 * If movable_node is specified, ignore kernelcore and movablecore
5187 * options.
5188 */
5189 if (movable_node_is_enabled()) {
5190 for_each_memblock(memory, r) {
5191 if (!memblock_is_hotpluggable(r))
5192 continue;
5193
5194 nid = r->nid;
5195
5196 usable_startpfn = PFN_DOWN(r->base);
5197 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5198 min(usable_startpfn, zone_movable_pfn[nid]) :
5199 usable_startpfn;
5200 }
5201
5202 goto out2;
5203 }
5204
5205 /*
5206 * If movablecore=nn[KMG] was specified, calculate what size of
5207 * kernelcore that corresponds so that memory usable for
5208 * any allocation type is evenly spread. If both kernelcore
5209 * and movablecore are specified, then the value of kernelcore
5210 * will be used for required_kernelcore if it's greater than
5211 * what movablecore would have allowed.
5212 */
5213 if (required_movablecore) {
5214 unsigned long corepages;
5215
5216 /*
5217 * Round-up so that ZONE_MOVABLE is at least as large as what
5218 * was requested by the user
5219 */
5220 required_movablecore =
5221 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5222 corepages = totalpages - required_movablecore;
5223
5224 required_kernelcore = max(required_kernelcore, corepages);
5225 }
5226
5227 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5228 if (!required_kernelcore)
5229 goto out;
5230
5231 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5232 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5233
5234 restart:
5235 /* Spread kernelcore memory as evenly as possible throughout nodes */
5236 kernelcore_node = required_kernelcore / usable_nodes;
5237 for_each_node_state(nid, N_MEMORY) {
5238 unsigned long start_pfn, end_pfn;
5239
5240 /*
5241 * Recalculate kernelcore_node if the division per node
5242 * now exceeds what is necessary to satisfy the requested
5243 * amount of memory for the kernel
5244 */
5245 if (required_kernelcore < kernelcore_node)
5246 kernelcore_node = required_kernelcore / usable_nodes;
5247
5248 /*
5249 * As the map is walked, we track how much memory is usable
5250 * by the kernel using kernelcore_remaining. When it is
5251 * 0, the rest of the node is usable by ZONE_MOVABLE
5252 */
5253 kernelcore_remaining = kernelcore_node;
5254
5255 /* Go through each range of PFNs within this node */
5256 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5257 unsigned long size_pages;
5258
5259 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5260 if (start_pfn >= end_pfn)
5261 continue;
5262
5263 /* Account for what is only usable for kernelcore */
5264 if (start_pfn < usable_startpfn) {
5265 unsigned long kernel_pages;
5266 kernel_pages = min(end_pfn, usable_startpfn)
5267 - start_pfn;
5268
5269 kernelcore_remaining -= min(kernel_pages,
5270 kernelcore_remaining);
5271 required_kernelcore -= min(kernel_pages,
5272 required_kernelcore);
5273
5274 /* Continue if range is now fully accounted */
5275 if (end_pfn <= usable_startpfn) {
5276
5277 /*
5278 * Push zone_movable_pfn to the end so
5279 * that if we have to rebalance
5280 * kernelcore across nodes, we will
5281 * not double account here
5282 */
5283 zone_movable_pfn[nid] = end_pfn;
5284 continue;
5285 }
5286 start_pfn = usable_startpfn;
5287 }
5288
5289 /*
5290 * The usable PFN range for ZONE_MOVABLE is from
5291 * start_pfn->end_pfn. Calculate size_pages as the
5292 * number of pages used as kernelcore
5293 */
5294 size_pages = end_pfn - start_pfn;
5295 if (size_pages > kernelcore_remaining)
5296 size_pages = kernelcore_remaining;
5297 zone_movable_pfn[nid] = start_pfn + size_pages;
5298
5299 /*
5300 * Some kernelcore has been met, update counts and
5301 * break if the kernelcore for this node has been
5302 * satisfied
5303 */
5304 required_kernelcore -= min(required_kernelcore,
5305 size_pages);
5306 kernelcore_remaining -= size_pages;
5307 if (!kernelcore_remaining)
5308 break;
5309 }
5310 }
5311
5312 /*
5313 * If there is still required_kernelcore, we do another pass with one
5314 * less node in the count. This will push zone_movable_pfn[nid] further
5315 * along on the nodes that still have memory until kernelcore is
5316 * satisfied
5317 */
5318 usable_nodes--;
5319 if (usable_nodes && required_kernelcore > usable_nodes)
5320 goto restart;
5321
5322 out2:
5323 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5324 for (nid = 0; nid < MAX_NUMNODES; nid++)
5325 zone_movable_pfn[nid] =
5326 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5327
5328 out:
5329 /* restore the node_state */
5330 node_states[N_MEMORY] = saved_node_state;
5331 }
5332
5333 /* Any regular or high memory on that node ? */
5334 static void check_for_memory(pg_data_t *pgdat, int nid)
5335 {
5336 enum zone_type zone_type;
5337
5338 if (N_MEMORY == N_NORMAL_MEMORY)
5339 return;
5340
5341 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5342 struct zone *zone = &pgdat->node_zones[zone_type];
5343 if (populated_zone(zone)) {
5344 node_set_state(nid, N_HIGH_MEMORY);
5345 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5346 zone_type <= ZONE_NORMAL)
5347 node_set_state(nid, N_NORMAL_MEMORY);
5348 break;
5349 }
5350 }
5351 }
5352
5353 /**
5354 * free_area_init_nodes - Initialise all pg_data_t and zone data
5355 * @max_zone_pfn: an array of max PFNs for each zone
5356 *
5357 * This will call free_area_init_node() for each active node in the system.
5358 * Using the page ranges provided by memblock_set_node(), the size of each
5359 * zone in each node and their holes is calculated. If the maximum PFN
5360 * between two adjacent zones match, it is assumed that the zone is empty.
5361 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5362 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5363 * starts where the previous one ended. For example, ZONE_DMA32 starts
5364 * at arch_max_dma_pfn.
5365 */
5366 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5367 {
5368 unsigned long start_pfn, end_pfn;
5369 int i, nid;
5370
5371 /* Record where the zone boundaries are */
5372 memset(arch_zone_lowest_possible_pfn, 0,
5373 sizeof(arch_zone_lowest_possible_pfn));
5374 memset(arch_zone_highest_possible_pfn, 0,
5375 sizeof(arch_zone_highest_possible_pfn));
5376 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5377 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5378 for (i = 1; i < MAX_NR_ZONES; i++) {
5379 if (i == ZONE_MOVABLE)
5380 continue;
5381 arch_zone_lowest_possible_pfn[i] =
5382 arch_zone_highest_possible_pfn[i-1];
5383 arch_zone_highest_possible_pfn[i] =
5384 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5385 }
5386 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5387 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5388
5389 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5390 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5391 find_zone_movable_pfns_for_nodes();
5392
5393 /* Print out the zone ranges */
5394 pr_info("Zone ranges:\n");
5395 for (i = 0; i < MAX_NR_ZONES; i++) {
5396 if (i == ZONE_MOVABLE)
5397 continue;
5398 pr_info(" %-8s ", zone_names[i]);
5399 if (arch_zone_lowest_possible_pfn[i] ==
5400 arch_zone_highest_possible_pfn[i])
5401 pr_cont("empty\n");
5402 else
5403 pr_cont("[mem %0#10lx-%0#10lx]\n",
5404 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5405 (arch_zone_highest_possible_pfn[i]
5406 << PAGE_SHIFT) - 1);
5407 }
5408
5409 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5410 pr_info("Movable zone start for each node\n");
5411 for (i = 0; i < MAX_NUMNODES; i++) {
5412 if (zone_movable_pfn[i])
5413 pr_info(" Node %d: %#010lx\n", i,
5414 zone_movable_pfn[i] << PAGE_SHIFT);
5415 }
5416
5417 /* Print out the early node map */
5418 pr_info("Early memory node ranges\n");
5419 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5420 pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5421 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5422
5423 /* Initialise every node */
5424 mminit_verify_pageflags_layout();
5425 setup_nr_node_ids();
5426 for_each_online_node(nid) {
5427 pg_data_t *pgdat = NODE_DATA(nid);
5428 free_area_init_node(nid, NULL,
5429 find_min_pfn_for_node(nid), NULL);
5430
5431 /* Any memory on that node */
5432 if (pgdat->node_present_pages)
5433 node_set_state(nid, N_MEMORY);
5434 check_for_memory(pgdat, nid);
5435 }
5436 }
5437
5438 static int __init cmdline_parse_core(char *p, unsigned long *core)
5439 {
5440 unsigned long long coremem;
5441 if (!p)
5442 return -EINVAL;
5443
5444 coremem = memparse(p, &p);
5445 *core = coremem >> PAGE_SHIFT;
5446
5447 /* Paranoid check that UL is enough for the coremem value */
5448 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5449
5450 return 0;
5451 }
5452
5453 /*
5454 * kernelcore=size sets the amount of memory for use for allocations that
5455 * cannot be reclaimed or migrated.
5456 */
5457 static int __init cmdline_parse_kernelcore(char *p)
5458 {
5459 return cmdline_parse_core(p, &required_kernelcore);
5460 }
5461
5462 /*
5463 * movablecore=size sets the amount of memory for use for allocations that
5464 * can be reclaimed or migrated.
5465 */
5466 static int __init cmdline_parse_movablecore(char *p)
5467 {
5468 return cmdline_parse_core(p, &required_movablecore);
5469 }
5470
5471 early_param("kernelcore", cmdline_parse_kernelcore);
5472 early_param("movablecore", cmdline_parse_movablecore);
5473
5474 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5475
5476 void adjust_managed_page_count(struct page *page, long count)
5477 {
5478 spin_lock(&managed_page_count_lock);
5479 page_zone(page)->managed_pages += count;
5480 totalram_pages += count;
5481 #ifdef CONFIG_HIGHMEM
5482 if (PageHighMem(page))
5483 totalhigh_pages += count;
5484 #endif
5485 spin_unlock(&managed_page_count_lock);
5486 }
5487 EXPORT_SYMBOL(adjust_managed_page_count);
5488
5489 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5490 {
5491 void *pos;
5492 unsigned long pages = 0;
5493
5494 start = (void *)PAGE_ALIGN((unsigned long)start);
5495 end = (void *)((unsigned long)end & PAGE_MASK);
5496 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5497 if ((unsigned int)poison <= 0xFF)
5498 memset(pos, poison, PAGE_SIZE);
5499 free_reserved_page(virt_to_page(pos));
5500 }
5501
5502 if (pages && s)
5503 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5504 s, pages << (PAGE_SHIFT - 10), start, end);
5505
5506 return pages;
5507 }
5508 EXPORT_SYMBOL(free_reserved_area);
5509
5510 #ifdef CONFIG_HIGHMEM
5511 void free_highmem_page(struct page *page)
5512 {
5513 __free_reserved_page(page);
5514 totalram_pages++;
5515 page_zone(page)->managed_pages++;
5516 totalhigh_pages++;
5517 }
5518 #endif
5519
5520
5521 void __init mem_init_print_info(const char *str)
5522 {
5523 unsigned long physpages, codesize, datasize, rosize, bss_size;
5524 unsigned long init_code_size, init_data_size;
5525
5526 physpages = get_num_physpages();
5527 codesize = _etext - _stext;
5528 datasize = _edata - _sdata;
5529 rosize = __end_rodata - __start_rodata;
5530 bss_size = __bss_stop - __bss_start;
5531 init_data_size = __init_end - __init_begin;
5532 init_code_size = _einittext - _sinittext;
5533
5534 /*
5535 * Detect special cases and adjust section sizes accordingly:
5536 * 1) .init.* may be embedded into .data sections
5537 * 2) .init.text.* may be out of [__init_begin, __init_end],
5538 * please refer to arch/tile/kernel/vmlinux.lds.S.
5539 * 3) .rodata.* may be embedded into .text or .data sections.
5540 */
5541 #define adj_init_size(start, end, size, pos, adj) \
5542 do { \
5543 if (start <= pos && pos < end && size > adj) \
5544 size -= adj; \
5545 } while (0)
5546
5547 adj_init_size(__init_begin, __init_end, init_data_size,
5548 _sinittext, init_code_size);
5549 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5550 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5551 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5552 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5553
5554 #undef adj_init_size
5555
5556 pr_info("Memory: %luK/%luK available "
5557 "(%luK kernel code, %luK rwdata, %luK rodata, "
5558 "%luK init, %luK bss, %luK reserved"
5559 #ifdef CONFIG_HIGHMEM
5560 ", %luK highmem"
5561 #endif
5562 "%s%s)\n",
5563 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5564 codesize >> 10, datasize >> 10, rosize >> 10,
5565 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5566 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5567 #ifdef CONFIG_HIGHMEM
5568 totalhigh_pages << (PAGE_SHIFT-10),
5569 #endif
5570 str ? ", " : "", str ? str : "");
5571 }
5572
5573 /**
5574 * set_dma_reserve - set the specified number of pages reserved in the first zone
5575 * @new_dma_reserve: The number of pages to mark reserved
5576 *
5577 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5578 * In the DMA zone, a significant percentage may be consumed by kernel image
5579 * and other unfreeable allocations which can skew the watermarks badly. This
5580 * function may optionally be used to account for unfreeable pages in the
5581 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5582 * smaller per-cpu batchsize.
5583 */
5584 void __init set_dma_reserve(unsigned long new_dma_reserve)
5585 {
5586 dma_reserve = new_dma_reserve;
5587 }
5588
5589 void __init free_area_init(unsigned long *zones_size)
5590 {
5591 free_area_init_node(0, zones_size,
5592 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5593 }
5594
5595 static int page_alloc_cpu_notify(struct notifier_block *self,
5596 unsigned long action, void *hcpu)
5597 {
5598 int cpu = (unsigned long)hcpu;
5599
5600 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5601 lru_add_drain_cpu(cpu);
5602 drain_pages(cpu);
5603
5604 /*
5605 * Spill the event counters of the dead processor
5606 * into the current processors event counters.
5607 * This artificially elevates the count of the current
5608 * processor.
5609 */
5610 vm_events_fold_cpu(cpu);
5611
5612 /*
5613 * Zero the differential counters of the dead processor
5614 * so that the vm statistics are consistent.
5615 *
5616 * This is only okay since the processor is dead and cannot
5617 * race with what we are doing.
5618 */
5619 cpu_vm_stats_fold(cpu);
5620 }
5621 return NOTIFY_OK;
5622 }
5623
5624 void __init page_alloc_init(void)
5625 {
5626 hotcpu_notifier(page_alloc_cpu_notify, 0);
5627 }
5628
5629 /*
5630 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5631 * or min_free_kbytes changes.
5632 */
5633 static void calculate_totalreserve_pages(void)
5634 {
5635 struct pglist_data *pgdat;
5636 unsigned long reserve_pages = 0;
5637 enum zone_type i, j;
5638
5639 for_each_online_pgdat(pgdat) {
5640 for (i = 0; i < MAX_NR_ZONES; i++) {
5641 struct zone *zone = pgdat->node_zones + i;
5642 long max = 0;
5643
5644 /* Find valid and maximum lowmem_reserve in the zone */
5645 for (j = i; j < MAX_NR_ZONES; j++) {
5646 if (zone->lowmem_reserve[j] > max)
5647 max = zone->lowmem_reserve[j];
5648 }
5649
5650 /* we treat the high watermark as reserved pages. */
5651 max += high_wmark_pages(zone);
5652
5653 if (max > zone->managed_pages)
5654 max = zone->managed_pages;
5655 reserve_pages += max;
5656 /*
5657 * Lowmem reserves are not available to
5658 * GFP_HIGHUSER page cache allocations and
5659 * kswapd tries to balance zones to their high
5660 * watermark. As a result, neither should be
5661 * regarded as dirtyable memory, to prevent a
5662 * situation where reclaim has to clean pages
5663 * in order to balance the zones.
5664 */
5665 zone->dirty_balance_reserve = max;
5666 }
5667 }
5668 dirty_balance_reserve = reserve_pages;
5669 totalreserve_pages = reserve_pages;
5670 }
5671
5672 /*
5673 * setup_per_zone_lowmem_reserve - called whenever
5674 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5675 * has a correct pages reserved value, so an adequate number of
5676 * pages are left in the zone after a successful __alloc_pages().
5677 */
5678 static void setup_per_zone_lowmem_reserve(void)
5679 {
5680 struct pglist_data *pgdat;
5681 enum zone_type j, idx;
5682
5683 for_each_online_pgdat(pgdat) {
5684 for (j = 0; j < MAX_NR_ZONES; j++) {
5685 struct zone *zone = pgdat->node_zones + j;
5686 unsigned long managed_pages = zone->managed_pages;
5687
5688 zone->lowmem_reserve[j] = 0;
5689
5690 idx = j;
5691 while (idx) {
5692 struct zone *lower_zone;
5693
5694 idx--;
5695
5696 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5697 sysctl_lowmem_reserve_ratio[idx] = 1;
5698
5699 lower_zone = pgdat->node_zones + idx;
5700 lower_zone->lowmem_reserve[j] = managed_pages /
5701 sysctl_lowmem_reserve_ratio[idx];
5702 managed_pages += lower_zone->managed_pages;
5703 }
5704 }
5705 }
5706
5707 /* update totalreserve_pages */
5708 calculate_totalreserve_pages();
5709 }
5710
5711 static void __setup_per_zone_wmarks(void)
5712 {
5713 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5714 unsigned long lowmem_pages = 0;
5715 struct zone *zone;
5716 unsigned long flags;
5717
5718 /* Calculate total number of !ZONE_HIGHMEM pages */
5719 for_each_zone(zone) {
5720 if (!is_highmem(zone))
5721 lowmem_pages += zone->managed_pages;
5722 }
5723
5724 for_each_zone(zone) {
5725 u64 tmp;
5726
5727 spin_lock_irqsave(&zone->lock, flags);
5728 tmp = (u64)pages_min * zone->managed_pages;
5729 do_div(tmp, lowmem_pages);
5730 if (is_highmem(zone)) {
5731 /*
5732 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5733 * need highmem pages, so cap pages_min to a small
5734 * value here.
5735 *
5736 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5737 * deltas controls asynch page reclaim, and so should
5738 * not be capped for highmem.
5739 */
5740 unsigned long min_pages;
5741
5742 min_pages = zone->managed_pages / 1024;
5743 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5744 zone->watermark[WMARK_MIN] = min_pages;
5745 } else {
5746 /*
5747 * If it's a lowmem zone, reserve a number of pages
5748 * proportionate to the zone's size.
5749 */
5750 zone->watermark[WMARK_MIN] = tmp;
5751 }
5752
5753 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5754 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5755
5756 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5757 high_wmark_pages(zone) - low_wmark_pages(zone) -
5758 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5759
5760 setup_zone_migrate_reserve(zone);
5761 spin_unlock_irqrestore(&zone->lock, flags);
5762 }
5763
5764 /* update totalreserve_pages */
5765 calculate_totalreserve_pages();
5766 }
5767
5768 /**
5769 * setup_per_zone_wmarks - called when min_free_kbytes changes
5770 * or when memory is hot-{added|removed}
5771 *
5772 * Ensures that the watermark[min,low,high] values for each zone are set
5773 * correctly with respect to min_free_kbytes.
5774 */
5775 void setup_per_zone_wmarks(void)
5776 {
5777 mutex_lock(&zonelists_mutex);
5778 __setup_per_zone_wmarks();
5779 mutex_unlock(&zonelists_mutex);
5780 }
5781
5782 /*
5783 * The inactive anon list should be small enough that the VM never has to
5784 * do too much work, but large enough that each inactive page has a chance
5785 * to be referenced again before it is swapped out.
5786 *
5787 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5788 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5789 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5790 * the anonymous pages are kept on the inactive list.
5791 *
5792 * total target max
5793 * memory ratio inactive anon
5794 * -------------------------------------
5795 * 10MB 1 5MB
5796 * 100MB 1 50MB
5797 * 1GB 3 250MB
5798 * 10GB 10 0.9GB
5799 * 100GB 31 3GB
5800 * 1TB 101 10GB
5801 * 10TB 320 32GB
5802 */
5803 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5804 {
5805 unsigned int gb, ratio;
5806
5807 /* Zone size in gigabytes */
5808 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5809 if (gb)
5810 ratio = int_sqrt(10 * gb);
5811 else
5812 ratio = 1;
5813
5814 zone->inactive_ratio = ratio;
5815 }
5816
5817 static void __meminit setup_per_zone_inactive_ratio(void)
5818 {
5819 struct zone *zone;
5820
5821 for_each_zone(zone)
5822 calculate_zone_inactive_ratio(zone);
5823 }
5824
5825 /*
5826 * Initialise min_free_kbytes.
5827 *
5828 * For small machines we want it small (128k min). For large machines
5829 * we want it large (64MB max). But it is not linear, because network
5830 * bandwidth does not increase linearly with machine size. We use
5831 *
5832 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5833 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5834 *
5835 * which yields
5836 *
5837 * 16MB: 512k
5838 * 32MB: 724k
5839 * 64MB: 1024k
5840 * 128MB: 1448k
5841 * 256MB: 2048k
5842 * 512MB: 2896k
5843 * 1024MB: 4096k
5844 * 2048MB: 5792k
5845 * 4096MB: 8192k
5846 * 8192MB: 11584k
5847 * 16384MB: 16384k
5848 */
5849 int __meminit init_per_zone_wmark_min(void)
5850 {
5851 unsigned long lowmem_kbytes;
5852 int new_min_free_kbytes;
5853
5854 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5855 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5856
5857 if (new_min_free_kbytes > user_min_free_kbytes) {
5858 min_free_kbytes = new_min_free_kbytes;
5859 if (min_free_kbytes < 128)
5860 min_free_kbytes = 128;
5861 if (min_free_kbytes > 65536)
5862 min_free_kbytes = 65536;
5863 } else {
5864 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5865 new_min_free_kbytes, user_min_free_kbytes);
5866 }
5867 setup_per_zone_wmarks();
5868 refresh_zone_stat_thresholds();
5869 setup_per_zone_lowmem_reserve();
5870 setup_per_zone_inactive_ratio();
5871 return 0;
5872 }
5873 module_init(init_per_zone_wmark_min)
5874
5875 /*
5876 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5877 * that we can call two helper functions whenever min_free_kbytes
5878 * changes.
5879 */
5880 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5881 void __user *buffer, size_t *length, loff_t *ppos)
5882 {
5883 int rc;
5884
5885 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5886 if (rc)
5887 return rc;
5888
5889 if (write) {
5890 user_min_free_kbytes = min_free_kbytes;
5891 setup_per_zone_wmarks();
5892 }
5893 return 0;
5894 }
5895
5896 #ifdef CONFIG_NUMA
5897 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5898 void __user *buffer, size_t *length, loff_t *ppos)
5899 {
5900 struct zone *zone;
5901 int rc;
5902
5903 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5904 if (rc)
5905 return rc;
5906
5907 for_each_zone(zone)
5908 zone->min_unmapped_pages = (zone->managed_pages *
5909 sysctl_min_unmapped_ratio) / 100;
5910 return 0;
5911 }
5912
5913 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5914 void __user *buffer, size_t *length, loff_t *ppos)
5915 {
5916 struct zone *zone;
5917 int rc;
5918
5919 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5920 if (rc)
5921 return rc;
5922
5923 for_each_zone(zone)
5924 zone->min_slab_pages = (zone->managed_pages *
5925 sysctl_min_slab_ratio) / 100;
5926 return 0;
5927 }
5928 #endif
5929
5930 /*
5931 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5932 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5933 * whenever sysctl_lowmem_reserve_ratio changes.
5934 *
5935 * The reserve ratio obviously has absolutely no relation with the
5936 * minimum watermarks. The lowmem reserve ratio can only make sense
5937 * if in function of the boot time zone sizes.
5938 */
5939 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5940 void __user *buffer, size_t *length, loff_t *ppos)
5941 {
5942 proc_dointvec_minmax(table, write, buffer, length, ppos);
5943 setup_per_zone_lowmem_reserve();
5944 return 0;
5945 }
5946
5947 /*
5948 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5949 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5950 * pagelist can have before it gets flushed back to buddy allocator.
5951 */
5952 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5953 void __user *buffer, size_t *length, loff_t *ppos)
5954 {
5955 struct zone *zone;
5956 int old_percpu_pagelist_fraction;
5957 int ret;
5958
5959 mutex_lock(&pcp_batch_high_lock);
5960 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5961
5962 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5963 if (!write || ret < 0)
5964 goto out;
5965
5966 /* Sanity checking to avoid pcp imbalance */
5967 if (percpu_pagelist_fraction &&
5968 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5969 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5970 ret = -EINVAL;
5971 goto out;
5972 }
5973
5974 /* No change? */
5975 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5976 goto out;
5977
5978 for_each_populated_zone(zone) {
5979 unsigned int cpu;
5980
5981 for_each_possible_cpu(cpu)
5982 pageset_set_high_and_batch(zone,
5983 per_cpu_ptr(zone->pageset, cpu));
5984 }
5985 out:
5986 mutex_unlock(&pcp_batch_high_lock);
5987 return ret;
5988 }
5989
5990 int hashdist = HASHDIST_DEFAULT;
5991
5992 #ifdef CONFIG_NUMA
5993 static int __init set_hashdist(char *str)
5994 {
5995 if (!str)
5996 return 0;
5997 hashdist = simple_strtoul(str, &str, 0);
5998 return 1;
5999 }
6000 __setup("hashdist=", set_hashdist);
6001 #endif
6002
6003 /*
6004 * allocate a large system hash table from bootmem
6005 * - it is assumed that the hash table must contain an exact power-of-2
6006 * quantity of entries
6007 * - limit is the number of hash buckets, not the total allocation size
6008 */
6009 void *__init alloc_large_system_hash(const char *tablename,
6010 unsigned long bucketsize,
6011 unsigned long numentries,
6012 int scale,
6013 int flags,
6014 unsigned int *_hash_shift,
6015 unsigned int *_hash_mask,
6016 unsigned long low_limit,
6017 unsigned long high_limit)
6018 {
6019 unsigned long long max = high_limit;
6020 unsigned long log2qty, size;
6021 void *table = NULL;
6022
6023 /* allow the kernel cmdline to have a say */
6024 if (!numentries) {
6025 /* round applicable memory size up to nearest megabyte */
6026 numentries = nr_kernel_pages;
6027
6028 /* It isn't necessary when PAGE_SIZE >= 1MB */
6029 if (PAGE_SHIFT < 20)
6030 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6031
6032 /* limit to 1 bucket per 2^scale bytes of low memory */
6033 if (scale > PAGE_SHIFT)
6034 numentries >>= (scale - PAGE_SHIFT);
6035 else
6036 numentries <<= (PAGE_SHIFT - scale);
6037
6038 /* Make sure we've got at least a 0-order allocation.. */
6039 if (unlikely(flags & HASH_SMALL)) {
6040 /* Makes no sense without HASH_EARLY */
6041 WARN_ON(!(flags & HASH_EARLY));
6042 if (!(numentries >> *_hash_shift)) {
6043 numentries = 1UL << *_hash_shift;
6044 BUG_ON(!numentries);
6045 }
6046 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6047 numentries = PAGE_SIZE / bucketsize;
6048 }
6049 numentries = roundup_pow_of_two(numentries);
6050
6051 /* limit allocation size to 1/16 total memory by default */
6052 if (max == 0) {
6053 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6054 do_div(max, bucketsize);
6055 }
6056 max = min(max, 0x80000000ULL);
6057
6058 if (numentries < low_limit)
6059 numentries = low_limit;
6060 if (numentries > max)
6061 numentries = max;
6062
6063 log2qty = ilog2(numentries);
6064
6065 do {
6066 size = bucketsize << log2qty;
6067 if (flags & HASH_EARLY)
6068 table = memblock_virt_alloc_nopanic(size, 0);
6069 else if (hashdist)
6070 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6071 else {
6072 /*
6073 * If bucketsize is not a power-of-two, we may free
6074 * some pages at the end of hash table which
6075 * alloc_pages_exact() automatically does
6076 */
6077 if (get_order(size) < MAX_ORDER) {
6078 table = alloc_pages_exact(size, GFP_ATOMIC);
6079 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6080 }
6081 }
6082 } while (!table && size > PAGE_SIZE && --log2qty);
6083
6084 if (!table)
6085 panic("Failed to allocate %s hash table\n", tablename);
6086
6087 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6088 tablename,
6089 (1UL << log2qty),
6090 ilog2(size) - PAGE_SHIFT,
6091 size);
6092
6093 if (_hash_shift)
6094 *_hash_shift = log2qty;
6095 if (_hash_mask)
6096 *_hash_mask = (1 << log2qty) - 1;
6097
6098 return table;
6099 }
6100
6101 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6102 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6103 unsigned long pfn)
6104 {
6105 #ifdef CONFIG_SPARSEMEM
6106 return __pfn_to_section(pfn)->pageblock_flags;
6107 #else
6108 return zone->pageblock_flags;
6109 #endif /* CONFIG_SPARSEMEM */
6110 }
6111
6112 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6113 {
6114 #ifdef CONFIG_SPARSEMEM
6115 pfn &= (PAGES_PER_SECTION-1);
6116 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6117 #else
6118 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6119 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6120 #endif /* CONFIG_SPARSEMEM */
6121 }
6122
6123 /**
6124 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6125 * @page: The page within the block of interest
6126 * @pfn: The target page frame number
6127 * @end_bitidx: The last bit of interest to retrieve
6128 * @mask: mask of bits that the caller is interested in
6129 *
6130 * Return: pageblock_bits flags
6131 */
6132 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6133 unsigned long end_bitidx,
6134 unsigned long mask)
6135 {
6136 struct zone *zone;
6137 unsigned long *bitmap;
6138 unsigned long bitidx, word_bitidx;
6139 unsigned long word;
6140
6141 zone = page_zone(page);
6142 bitmap = get_pageblock_bitmap(zone, pfn);
6143 bitidx = pfn_to_bitidx(zone, pfn);
6144 word_bitidx = bitidx / BITS_PER_LONG;
6145 bitidx &= (BITS_PER_LONG-1);
6146
6147 word = bitmap[word_bitidx];
6148 bitidx += end_bitidx;
6149 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6150 }
6151
6152 /**
6153 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6154 * @page: The page within the block of interest
6155 * @flags: The flags to set
6156 * @pfn: The target page frame number
6157 * @end_bitidx: The last bit of interest
6158 * @mask: mask of bits that the caller is interested in
6159 */
6160 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6161 unsigned long pfn,
6162 unsigned long end_bitidx,
6163 unsigned long mask)
6164 {
6165 struct zone *zone;
6166 unsigned long *bitmap;
6167 unsigned long bitidx, word_bitidx;
6168 unsigned long old_word, word;
6169
6170 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6171
6172 zone = page_zone(page);
6173 bitmap = get_pageblock_bitmap(zone, pfn);
6174 bitidx = pfn_to_bitidx(zone, pfn);
6175 word_bitidx = bitidx / BITS_PER_LONG;
6176 bitidx &= (BITS_PER_LONG-1);
6177
6178 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6179
6180 bitidx += end_bitidx;
6181 mask <<= (BITS_PER_LONG - bitidx - 1);
6182 flags <<= (BITS_PER_LONG - bitidx - 1);
6183
6184 word = ACCESS_ONCE(bitmap[word_bitidx]);
6185 for (;;) {
6186 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6187 if (word == old_word)
6188 break;
6189 word = old_word;
6190 }
6191 }
6192
6193 /*
6194 * This function checks whether pageblock includes unmovable pages or not.
6195 * If @count is not zero, it is okay to include less @count unmovable pages
6196 *
6197 * PageLRU check without isolation or lru_lock could race so that
6198 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6199 * expect this function should be exact.
6200 */
6201 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6202 bool skip_hwpoisoned_pages)
6203 {
6204 unsigned long pfn, iter, found;
6205 int mt;
6206
6207 /*
6208 * For avoiding noise data, lru_add_drain_all() should be called
6209 * If ZONE_MOVABLE, the zone never contains unmovable pages
6210 */
6211 if (zone_idx(zone) == ZONE_MOVABLE)
6212 return false;
6213 mt = get_pageblock_migratetype(page);
6214 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6215 return false;
6216
6217 pfn = page_to_pfn(page);
6218 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6219 unsigned long check = pfn + iter;
6220
6221 if (!pfn_valid_within(check))
6222 continue;
6223
6224 page = pfn_to_page(check);
6225
6226 /*
6227 * Hugepages are not in LRU lists, but they're movable.
6228 * We need not scan over tail pages bacause we don't
6229 * handle each tail page individually in migration.
6230 */
6231 if (PageHuge(page)) {
6232 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6233 continue;
6234 }
6235
6236 /*
6237 * We can't use page_count without pin a page
6238 * because another CPU can free compound page.
6239 * This check already skips compound tails of THP
6240 * because their page->_count is zero at all time.
6241 */
6242 if (!atomic_read(&page->_count)) {
6243 if (PageBuddy(page))
6244 iter += (1 << page_order(page)) - 1;
6245 continue;
6246 }
6247
6248 /*
6249 * The HWPoisoned page may be not in buddy system, and
6250 * page_count() is not 0.
6251 */
6252 if (skip_hwpoisoned_pages && PageHWPoison(page))
6253 continue;
6254
6255 if (!PageLRU(page))
6256 found++;
6257 /*
6258 * If there are RECLAIMABLE pages, we need to check it.
6259 * But now, memory offline itself doesn't call shrink_slab()
6260 * and it still to be fixed.
6261 */
6262 /*
6263 * If the page is not RAM, page_count()should be 0.
6264 * we don't need more check. This is an _used_ not-movable page.
6265 *
6266 * The problematic thing here is PG_reserved pages. PG_reserved
6267 * is set to both of a memory hole page and a _used_ kernel
6268 * page at boot.
6269 */
6270 if (found > count)
6271 return true;
6272 }
6273 return false;
6274 }
6275
6276 bool is_pageblock_removable_nolock(struct page *page)
6277 {
6278 struct zone *zone;
6279 unsigned long pfn;
6280
6281 /*
6282 * We have to be careful here because we are iterating over memory
6283 * sections which are not zone aware so we might end up outside of
6284 * the zone but still within the section.
6285 * We have to take care about the node as well. If the node is offline
6286 * its NODE_DATA will be NULL - see page_zone.
6287 */
6288 if (!node_online(page_to_nid(page)))
6289 return false;
6290
6291 zone = page_zone(page);
6292 pfn = page_to_pfn(page);
6293 if (!zone_spans_pfn(zone, pfn))
6294 return false;
6295
6296 return !has_unmovable_pages(zone, page, 0, true);
6297 }
6298
6299 #ifdef CONFIG_CMA
6300
6301 static unsigned long pfn_max_align_down(unsigned long pfn)
6302 {
6303 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6304 pageblock_nr_pages) - 1);
6305 }
6306
6307 static unsigned long pfn_max_align_up(unsigned long pfn)
6308 {
6309 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6310 pageblock_nr_pages));
6311 }
6312
6313 /* [start, end) must belong to a single zone. */
6314 static int __alloc_contig_migrate_range(struct compact_control *cc,
6315 unsigned long start, unsigned long end)
6316 {
6317 /* This function is based on compact_zone() from compaction.c. */
6318 unsigned long nr_reclaimed;
6319 unsigned long pfn = start;
6320 unsigned int tries = 0;
6321 int ret = 0;
6322
6323 migrate_prep();
6324
6325 while (pfn < end || !list_empty(&cc->migratepages)) {
6326 if (fatal_signal_pending(current)) {
6327 ret = -EINTR;
6328 break;
6329 }
6330
6331 if (list_empty(&cc->migratepages)) {
6332 cc->nr_migratepages = 0;
6333 pfn = isolate_migratepages_range(cc, pfn, end);
6334 if (!pfn) {
6335 ret = -EINTR;
6336 break;
6337 }
6338 tries = 0;
6339 } else if (++tries == 5) {
6340 ret = ret < 0 ? ret : -EBUSY;
6341 break;
6342 }
6343
6344 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6345 &cc->migratepages);
6346 cc->nr_migratepages -= nr_reclaimed;
6347
6348 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6349 NULL, 0, cc->mode, MR_CMA);
6350 }
6351 if (ret < 0) {
6352 putback_movable_pages(&cc->migratepages);
6353 return ret;
6354 }
6355 return 0;
6356 }
6357
6358 /**
6359 * alloc_contig_range() -- tries to allocate given range of pages
6360 * @start: start PFN to allocate
6361 * @end: one-past-the-last PFN to allocate
6362 * @migratetype: migratetype of the underlaying pageblocks (either
6363 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6364 * in range must have the same migratetype and it must
6365 * be either of the two.
6366 *
6367 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6368 * aligned, however it's the caller's responsibility to guarantee that
6369 * we are the only thread that changes migrate type of pageblocks the
6370 * pages fall in.
6371 *
6372 * The PFN range must belong to a single zone.
6373 *
6374 * Returns zero on success or negative error code. On success all
6375 * pages which PFN is in [start, end) are allocated for the caller and
6376 * need to be freed with free_contig_range().
6377 */
6378 int alloc_contig_range(unsigned long start, unsigned long end,
6379 unsigned migratetype)
6380 {
6381 unsigned long outer_start, outer_end;
6382 int ret = 0, order;
6383
6384 struct compact_control cc = {
6385 .nr_migratepages = 0,
6386 .order = -1,
6387 .zone = page_zone(pfn_to_page(start)),
6388 .mode = MIGRATE_SYNC,
6389 .ignore_skip_hint = true,
6390 };
6391 INIT_LIST_HEAD(&cc.migratepages);
6392
6393 /*
6394 * What we do here is we mark all pageblocks in range as
6395 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6396 * have different sizes, and due to the way page allocator
6397 * work, we align the range to biggest of the two pages so
6398 * that page allocator won't try to merge buddies from
6399 * different pageblocks and change MIGRATE_ISOLATE to some
6400 * other migration type.
6401 *
6402 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6403 * migrate the pages from an unaligned range (ie. pages that
6404 * we are interested in). This will put all the pages in
6405 * range back to page allocator as MIGRATE_ISOLATE.
6406 *
6407 * When this is done, we take the pages in range from page
6408 * allocator removing them from the buddy system. This way
6409 * page allocator will never consider using them.
6410 *
6411 * This lets us mark the pageblocks back as
6412 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6413 * aligned range but not in the unaligned, original range are
6414 * put back to page allocator so that buddy can use them.
6415 */
6416
6417 ret = start_isolate_page_range(pfn_max_align_down(start),
6418 pfn_max_align_up(end), migratetype,
6419 false);
6420 if (ret)
6421 return ret;
6422
6423 ret = __alloc_contig_migrate_range(&cc, start, end);
6424 if (ret)
6425 goto done;
6426
6427 /*
6428 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6429 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6430 * more, all pages in [start, end) are free in page allocator.
6431 * What we are going to do is to allocate all pages from
6432 * [start, end) (that is remove them from page allocator).
6433 *
6434 * The only problem is that pages at the beginning and at the
6435 * end of interesting range may be not aligned with pages that
6436 * page allocator holds, ie. they can be part of higher order
6437 * pages. Because of this, we reserve the bigger range and
6438 * once this is done free the pages we are not interested in.
6439 *
6440 * We don't have to hold zone->lock here because the pages are
6441 * isolated thus they won't get removed from buddy.
6442 */
6443
6444 lru_add_drain_all();
6445 drain_all_pages(cc.zone);
6446
6447 order = 0;
6448 outer_start = start;
6449 while (!PageBuddy(pfn_to_page(outer_start))) {
6450 if (++order >= MAX_ORDER) {
6451 ret = -EBUSY;
6452 goto done;
6453 }
6454 outer_start &= ~0UL << order;
6455 }
6456
6457 /* Make sure the range is really isolated. */
6458 if (test_pages_isolated(outer_start, end, false)) {
6459 pr_info("%s: [%lx, %lx) PFNs busy\n",
6460 __func__, outer_start, end);
6461 ret = -EBUSY;
6462 goto done;
6463 }
6464
6465 /* Grab isolated pages from freelists. */
6466 outer_end = isolate_freepages_range(&cc, outer_start, end);
6467 if (!outer_end) {
6468 ret = -EBUSY;
6469 goto done;
6470 }
6471
6472 /* Free head and tail (if any) */
6473 if (start != outer_start)
6474 free_contig_range(outer_start, start - outer_start);
6475 if (end != outer_end)
6476 free_contig_range(end, outer_end - end);
6477
6478 done:
6479 undo_isolate_page_range(pfn_max_align_down(start),
6480 pfn_max_align_up(end), migratetype);
6481 return ret;
6482 }
6483
6484 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6485 {
6486 unsigned int count = 0;
6487
6488 for (; nr_pages--; pfn++) {
6489 struct page *page = pfn_to_page(pfn);
6490
6491 count += page_count(page) != 1;
6492 __free_page(page);
6493 }
6494 WARN(count != 0, "%d pages are still in use!\n", count);
6495 }
6496 #endif
6497
6498 #ifdef CONFIG_MEMORY_HOTPLUG
6499 /*
6500 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6501 * page high values need to be recalulated.
6502 */
6503 void __meminit zone_pcp_update(struct zone *zone)
6504 {
6505 unsigned cpu;
6506 mutex_lock(&pcp_batch_high_lock);
6507 for_each_possible_cpu(cpu)
6508 pageset_set_high_and_batch(zone,
6509 per_cpu_ptr(zone->pageset, cpu));
6510 mutex_unlock(&pcp_batch_high_lock);
6511 }
6512 #endif
6513
6514 void zone_pcp_reset(struct zone *zone)
6515 {
6516 unsigned long flags;
6517 int cpu;
6518 struct per_cpu_pageset *pset;
6519
6520 /* avoid races with drain_pages() */
6521 local_irq_save(flags);
6522 if (zone->pageset != &boot_pageset) {
6523 for_each_online_cpu(cpu) {
6524 pset = per_cpu_ptr(zone->pageset, cpu);
6525 drain_zonestat(zone, pset);
6526 }
6527 free_percpu(zone->pageset);
6528 zone->pageset = &boot_pageset;
6529 }
6530 local_irq_restore(flags);
6531 }
6532
6533 #ifdef CONFIG_MEMORY_HOTREMOVE
6534 /*
6535 * All pages in the range must be isolated before calling this.
6536 */
6537 void
6538 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6539 {
6540 struct page *page;
6541 struct zone *zone;
6542 unsigned int order, i;
6543 unsigned long pfn;
6544 unsigned long flags;
6545 /* find the first valid pfn */
6546 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6547 if (pfn_valid(pfn))
6548 break;
6549 if (pfn == end_pfn)
6550 return;
6551 zone = page_zone(pfn_to_page(pfn));
6552 spin_lock_irqsave(&zone->lock, flags);
6553 pfn = start_pfn;
6554 while (pfn < end_pfn) {
6555 if (!pfn_valid(pfn)) {
6556 pfn++;
6557 continue;
6558 }
6559 page = pfn_to_page(pfn);
6560 /*
6561 * The HWPoisoned page may be not in buddy system, and
6562 * page_count() is not 0.
6563 */
6564 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6565 pfn++;
6566 SetPageReserved(page);
6567 continue;
6568 }
6569
6570 BUG_ON(page_count(page));
6571 BUG_ON(!PageBuddy(page));
6572 order = page_order(page);
6573 #ifdef CONFIG_DEBUG_VM
6574 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6575 pfn, 1 << order, end_pfn);
6576 #endif
6577 list_del(&page->lru);
6578 rmv_page_order(page);
6579 zone->free_area[order].nr_free--;
6580 for (i = 0; i < (1 << order); i++)
6581 SetPageReserved((page+i));
6582 pfn += (1 << order);
6583 }
6584 spin_unlock_irqrestore(&zone->lock, flags);
6585 }
6586 #endif
6587
6588 #ifdef CONFIG_MEMORY_FAILURE
6589 bool is_free_buddy_page(struct page *page)
6590 {
6591 struct zone *zone = page_zone(page);
6592 unsigned long pfn = page_to_pfn(page);
6593 unsigned long flags;
6594 unsigned int order;
6595
6596 spin_lock_irqsave(&zone->lock, flags);
6597 for (order = 0; order < MAX_ORDER; order++) {
6598 struct page *page_head = page - (pfn & ((1 << order) - 1));
6599
6600 if (PageBuddy(page_head) && page_order(page_head) >= order)
6601 break;
6602 }
6603 spin_unlock_irqrestore(&zone->lock, flags);
6604
6605 return order < MAX_ORDER;
6606 }
6607 #endif