]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/page_alloc.c
Merge tag 'mediatek-drm-fixes-6.0' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-kernels.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/swapops.h>
23 #include <linux/interrupt.h>
24 #include <linux/pagemap.h>
25 #include <linux/jiffies.h>
26 #include <linux/memblock.h>
27 #include <linux/compiler.h>
28 #include <linux/kernel.h>
29 #include <linux/kasan.h>
30 #include <linux/module.h>
31 #include <linux/suspend.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/slab.h>
35 #include <linux/ratelimit.h>
36 #include <linux/oom.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/random.h>
49 #include <linux/sort.h>
50 #include <linux/pfn.h>
51 #include <linux/backing-dev.h>
52 #include <linux/fault-inject.h>
53 #include <linux/page-isolation.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/migrate.h>
63 #include <linux/hugetlb.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/mm.h>
66 #include <linux/page_owner.h>
67 #include <linux/page_table_check.h>
68 #include <linux/kthread.h>
69 #include <linux/memcontrol.h>
70 #include <linux/ftrace.h>
71 #include <linux/lockdep.h>
72 #include <linux/nmi.h>
73 #include <linux/psi.h>
74 #include <linux/padata.h>
75 #include <linux/khugepaged.h>
76 #include <linux/buffer_head.h>
77 #include <linux/delayacct.h>
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
81 #include "internal.h"
82 #include "shuffle.h"
83 #include "page_reporting.h"
84 #include "swap.h"
85
86 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
87 typedef int __bitwise fpi_t;
88
89 /* No special request */
90 #define FPI_NONE ((__force fpi_t)0)
91
92 /*
93 * Skip free page reporting notification for the (possibly merged) page.
94 * This does not hinder free page reporting from grabbing the page,
95 * reporting it and marking it "reported" - it only skips notifying
96 * the free page reporting infrastructure about a newly freed page. For
97 * example, used when temporarily pulling a page from a freelist and
98 * putting it back unmodified.
99 */
100 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
101
102 /*
103 * Place the (possibly merged) page to the tail of the freelist. Will ignore
104 * page shuffling (relevant code - e.g., memory onlining - is expected to
105 * shuffle the whole zone).
106 *
107 * Note: No code should rely on this flag for correctness - it's purely
108 * to allow for optimizations when handing back either fresh pages
109 * (memory onlining) or untouched pages (page isolation, free page
110 * reporting).
111 */
112 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
113
114 /*
115 * Don't poison memory with KASAN (only for the tag-based modes).
116 * During boot, all non-reserved memblock memory is exposed to page_alloc.
117 * Poisoning all that memory lengthens boot time, especially on systems with
118 * large amount of RAM. This flag is used to skip that poisoning.
119 * This is only done for the tag-based KASAN modes, as those are able to
120 * detect memory corruptions with the memory tags assigned by default.
121 * All memory allocated normally after boot gets poisoned as usual.
122 */
123 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
124
125 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
126 static DEFINE_MUTEX(pcp_batch_high_lock);
127 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
128
129 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
130 /*
131 * On SMP, spin_trylock is sufficient protection.
132 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
133 */
134 #define pcp_trylock_prepare(flags) do { } while (0)
135 #define pcp_trylock_finish(flag) do { } while (0)
136 #else
137
138 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
139 #define pcp_trylock_prepare(flags) local_irq_save(flags)
140 #define pcp_trylock_finish(flags) local_irq_restore(flags)
141 #endif
142
143 /*
144 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
145 * a migration causing the wrong PCP to be locked and remote memory being
146 * potentially allocated, pin the task to the CPU for the lookup+lock.
147 * preempt_disable is used on !RT because it is faster than migrate_disable.
148 * migrate_disable is used on RT because otherwise RT spinlock usage is
149 * interfered with and a high priority task cannot preempt the allocator.
150 */
151 #ifndef CONFIG_PREEMPT_RT
152 #define pcpu_task_pin() preempt_disable()
153 #define pcpu_task_unpin() preempt_enable()
154 #else
155 #define pcpu_task_pin() migrate_disable()
156 #define pcpu_task_unpin() migrate_enable()
157 #endif
158
159 /*
160 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
161 * Return value should be used with equivalent unlock helper.
162 */
163 #define pcpu_spin_lock(type, member, ptr) \
164 ({ \
165 type *_ret; \
166 pcpu_task_pin(); \
167 _ret = this_cpu_ptr(ptr); \
168 spin_lock(&_ret->member); \
169 _ret; \
170 })
171
172 #define pcpu_spin_lock_irqsave(type, member, ptr, flags) \
173 ({ \
174 type *_ret; \
175 pcpu_task_pin(); \
176 _ret = this_cpu_ptr(ptr); \
177 spin_lock_irqsave(&_ret->member, flags); \
178 _ret; \
179 })
180
181 #define pcpu_spin_trylock_irqsave(type, member, ptr, flags) \
182 ({ \
183 type *_ret; \
184 pcpu_task_pin(); \
185 _ret = this_cpu_ptr(ptr); \
186 if (!spin_trylock_irqsave(&_ret->member, flags)) { \
187 pcpu_task_unpin(); \
188 _ret = NULL; \
189 } \
190 _ret; \
191 })
192
193 #define pcpu_spin_unlock(member, ptr) \
194 ({ \
195 spin_unlock(&ptr->member); \
196 pcpu_task_unpin(); \
197 })
198
199 #define pcpu_spin_unlock_irqrestore(member, ptr, flags) \
200 ({ \
201 spin_unlock_irqrestore(&ptr->member, flags); \
202 pcpu_task_unpin(); \
203 })
204
205 /* struct per_cpu_pages specific helpers. */
206 #define pcp_spin_lock(ptr) \
207 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
208
209 #define pcp_spin_lock_irqsave(ptr, flags) \
210 pcpu_spin_lock_irqsave(struct per_cpu_pages, lock, ptr, flags)
211
212 #define pcp_spin_trylock_irqsave(ptr, flags) \
213 pcpu_spin_trylock_irqsave(struct per_cpu_pages, lock, ptr, flags)
214
215 #define pcp_spin_unlock(ptr) \
216 pcpu_spin_unlock(lock, ptr)
217
218 #define pcp_spin_unlock_irqrestore(ptr, flags) \
219 pcpu_spin_unlock_irqrestore(lock, ptr, flags)
220 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
221 DEFINE_PER_CPU(int, numa_node);
222 EXPORT_PER_CPU_SYMBOL(numa_node);
223 #endif
224
225 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
226
227 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
228 /*
229 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
230 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
231 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
232 * defined in <linux/topology.h>.
233 */
234 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
235 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
236 #endif
237
238 static DEFINE_MUTEX(pcpu_drain_mutex);
239
240 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
241 volatile unsigned long latent_entropy __latent_entropy;
242 EXPORT_SYMBOL(latent_entropy);
243 #endif
244
245 /*
246 * Array of node states.
247 */
248 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
249 [N_POSSIBLE] = NODE_MASK_ALL,
250 [N_ONLINE] = { { [0] = 1UL } },
251 #ifndef CONFIG_NUMA
252 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
253 #ifdef CONFIG_HIGHMEM
254 [N_HIGH_MEMORY] = { { [0] = 1UL } },
255 #endif
256 [N_MEMORY] = { { [0] = 1UL } },
257 [N_CPU] = { { [0] = 1UL } },
258 #endif /* NUMA */
259 };
260 EXPORT_SYMBOL(node_states);
261
262 atomic_long_t _totalram_pages __read_mostly;
263 EXPORT_SYMBOL(_totalram_pages);
264 unsigned long totalreserve_pages __read_mostly;
265 unsigned long totalcma_pages __read_mostly;
266
267 int percpu_pagelist_high_fraction;
268 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
269 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
270 EXPORT_SYMBOL(init_on_alloc);
271
272 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
273 EXPORT_SYMBOL(init_on_free);
274
275 static bool _init_on_alloc_enabled_early __read_mostly
276 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
277 static int __init early_init_on_alloc(char *buf)
278 {
279
280 return kstrtobool(buf, &_init_on_alloc_enabled_early);
281 }
282 early_param("init_on_alloc", early_init_on_alloc);
283
284 static bool _init_on_free_enabled_early __read_mostly
285 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
286 static int __init early_init_on_free(char *buf)
287 {
288 return kstrtobool(buf, &_init_on_free_enabled_early);
289 }
290 early_param("init_on_free", early_init_on_free);
291
292 /*
293 * A cached value of the page's pageblock's migratetype, used when the page is
294 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
295 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
296 * Also the migratetype set in the page does not necessarily match the pcplist
297 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
298 * other index - this ensures that it will be put on the correct CMA freelist.
299 */
300 static inline int get_pcppage_migratetype(struct page *page)
301 {
302 return page->index;
303 }
304
305 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
306 {
307 page->index = migratetype;
308 }
309
310 #ifdef CONFIG_PM_SLEEP
311 /*
312 * The following functions are used by the suspend/hibernate code to temporarily
313 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
314 * while devices are suspended. To avoid races with the suspend/hibernate code,
315 * they should always be called with system_transition_mutex held
316 * (gfp_allowed_mask also should only be modified with system_transition_mutex
317 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
318 * with that modification).
319 */
320
321 static gfp_t saved_gfp_mask;
322
323 void pm_restore_gfp_mask(void)
324 {
325 WARN_ON(!mutex_is_locked(&system_transition_mutex));
326 if (saved_gfp_mask) {
327 gfp_allowed_mask = saved_gfp_mask;
328 saved_gfp_mask = 0;
329 }
330 }
331
332 void pm_restrict_gfp_mask(void)
333 {
334 WARN_ON(!mutex_is_locked(&system_transition_mutex));
335 WARN_ON(saved_gfp_mask);
336 saved_gfp_mask = gfp_allowed_mask;
337 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
338 }
339
340 bool pm_suspended_storage(void)
341 {
342 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
343 return false;
344 return true;
345 }
346 #endif /* CONFIG_PM_SLEEP */
347
348 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
349 unsigned int pageblock_order __read_mostly;
350 #endif
351
352 static void __free_pages_ok(struct page *page, unsigned int order,
353 fpi_t fpi_flags);
354
355 /*
356 * results with 256, 32 in the lowmem_reserve sysctl:
357 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
358 * 1G machine -> (16M dma, 784M normal, 224M high)
359 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
360 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
361 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
362 *
363 * TBD: should special case ZONE_DMA32 machines here - in those we normally
364 * don't need any ZONE_NORMAL reservation
365 */
366 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
367 #ifdef CONFIG_ZONE_DMA
368 [ZONE_DMA] = 256,
369 #endif
370 #ifdef CONFIG_ZONE_DMA32
371 [ZONE_DMA32] = 256,
372 #endif
373 [ZONE_NORMAL] = 32,
374 #ifdef CONFIG_HIGHMEM
375 [ZONE_HIGHMEM] = 0,
376 #endif
377 [ZONE_MOVABLE] = 0,
378 };
379
380 static char * const zone_names[MAX_NR_ZONES] = {
381 #ifdef CONFIG_ZONE_DMA
382 "DMA",
383 #endif
384 #ifdef CONFIG_ZONE_DMA32
385 "DMA32",
386 #endif
387 "Normal",
388 #ifdef CONFIG_HIGHMEM
389 "HighMem",
390 #endif
391 "Movable",
392 #ifdef CONFIG_ZONE_DEVICE
393 "Device",
394 #endif
395 };
396
397 const char * const migratetype_names[MIGRATE_TYPES] = {
398 "Unmovable",
399 "Movable",
400 "Reclaimable",
401 "HighAtomic",
402 #ifdef CONFIG_CMA
403 "CMA",
404 #endif
405 #ifdef CONFIG_MEMORY_ISOLATION
406 "Isolate",
407 #endif
408 };
409
410 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
411 [NULL_COMPOUND_DTOR] = NULL,
412 [COMPOUND_PAGE_DTOR] = free_compound_page,
413 #ifdef CONFIG_HUGETLB_PAGE
414 [HUGETLB_PAGE_DTOR] = free_huge_page,
415 #endif
416 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
417 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
418 #endif
419 };
420
421 int min_free_kbytes = 1024;
422 int user_min_free_kbytes = -1;
423 int watermark_boost_factor __read_mostly = 15000;
424 int watermark_scale_factor = 10;
425
426 static unsigned long nr_kernel_pages __initdata;
427 static unsigned long nr_all_pages __initdata;
428 static unsigned long dma_reserve __initdata;
429
430 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
431 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
432 static unsigned long required_kernelcore __initdata;
433 static unsigned long required_kernelcore_percent __initdata;
434 static unsigned long required_movablecore __initdata;
435 static unsigned long required_movablecore_percent __initdata;
436 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
437 bool mirrored_kernelcore __initdata_memblock;
438
439 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
440 int movable_zone;
441 EXPORT_SYMBOL(movable_zone);
442
443 #if MAX_NUMNODES > 1
444 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
445 unsigned int nr_online_nodes __read_mostly = 1;
446 EXPORT_SYMBOL(nr_node_ids);
447 EXPORT_SYMBOL(nr_online_nodes);
448 #endif
449
450 int page_group_by_mobility_disabled __read_mostly;
451
452 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
453 /*
454 * During boot we initialize deferred pages on-demand, as needed, but once
455 * page_alloc_init_late() has finished, the deferred pages are all initialized,
456 * and we can permanently disable that path.
457 */
458 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
459
460 static inline bool deferred_pages_enabled(void)
461 {
462 return static_branch_unlikely(&deferred_pages);
463 }
464
465 /* Returns true if the struct page for the pfn is uninitialised */
466 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
467 {
468 int nid = early_pfn_to_nid(pfn);
469
470 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
471 return true;
472
473 return false;
474 }
475
476 /*
477 * Returns true when the remaining initialisation should be deferred until
478 * later in the boot cycle when it can be parallelised.
479 */
480 static bool __meminit
481 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
482 {
483 static unsigned long prev_end_pfn, nr_initialised;
484
485 /*
486 * prev_end_pfn static that contains the end of previous zone
487 * No need to protect because called very early in boot before smp_init.
488 */
489 if (prev_end_pfn != end_pfn) {
490 prev_end_pfn = end_pfn;
491 nr_initialised = 0;
492 }
493
494 /* Always populate low zones for address-constrained allocations */
495 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
496 return false;
497
498 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
499 return true;
500 /*
501 * We start only with one section of pages, more pages are added as
502 * needed until the rest of deferred pages are initialized.
503 */
504 nr_initialised++;
505 if ((nr_initialised > PAGES_PER_SECTION) &&
506 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
507 NODE_DATA(nid)->first_deferred_pfn = pfn;
508 return true;
509 }
510 return false;
511 }
512 #else
513 static inline bool deferred_pages_enabled(void)
514 {
515 return false;
516 }
517
518 static inline bool early_page_uninitialised(unsigned long pfn)
519 {
520 return false;
521 }
522
523 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
524 {
525 return false;
526 }
527 #endif
528
529 /* Return a pointer to the bitmap storing bits affecting a block of pages */
530 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
531 unsigned long pfn)
532 {
533 #ifdef CONFIG_SPARSEMEM
534 return section_to_usemap(__pfn_to_section(pfn));
535 #else
536 return page_zone(page)->pageblock_flags;
537 #endif /* CONFIG_SPARSEMEM */
538 }
539
540 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
541 {
542 #ifdef CONFIG_SPARSEMEM
543 pfn &= (PAGES_PER_SECTION-1);
544 #else
545 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
546 #endif /* CONFIG_SPARSEMEM */
547 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
548 }
549
550 static __always_inline
551 unsigned long __get_pfnblock_flags_mask(const struct page *page,
552 unsigned long pfn,
553 unsigned long mask)
554 {
555 unsigned long *bitmap;
556 unsigned long bitidx, word_bitidx;
557 unsigned long word;
558
559 bitmap = get_pageblock_bitmap(page, pfn);
560 bitidx = pfn_to_bitidx(page, pfn);
561 word_bitidx = bitidx / BITS_PER_LONG;
562 bitidx &= (BITS_PER_LONG-1);
563 /*
564 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
565 * a consistent read of the memory array, so that results, even though
566 * racy, are not corrupted.
567 */
568 word = READ_ONCE(bitmap[word_bitidx]);
569 return (word >> bitidx) & mask;
570 }
571
572 /**
573 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
574 * @page: The page within the block of interest
575 * @pfn: The target page frame number
576 * @mask: mask of bits that the caller is interested in
577 *
578 * Return: pageblock_bits flags
579 */
580 unsigned long get_pfnblock_flags_mask(const struct page *page,
581 unsigned long pfn, unsigned long mask)
582 {
583 return __get_pfnblock_flags_mask(page, pfn, mask);
584 }
585
586 static __always_inline int get_pfnblock_migratetype(const struct page *page,
587 unsigned long pfn)
588 {
589 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
590 }
591
592 /**
593 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
594 * @page: The page within the block of interest
595 * @flags: The flags to set
596 * @pfn: The target page frame number
597 * @mask: mask of bits that the caller is interested in
598 */
599 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
600 unsigned long pfn,
601 unsigned long mask)
602 {
603 unsigned long *bitmap;
604 unsigned long bitidx, word_bitidx;
605 unsigned long word;
606
607 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
608 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
609
610 bitmap = get_pageblock_bitmap(page, pfn);
611 bitidx = pfn_to_bitidx(page, pfn);
612 word_bitidx = bitidx / BITS_PER_LONG;
613 bitidx &= (BITS_PER_LONG-1);
614
615 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
616
617 mask <<= bitidx;
618 flags <<= bitidx;
619
620 word = READ_ONCE(bitmap[word_bitidx]);
621 do {
622 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
623 }
624
625 void set_pageblock_migratetype(struct page *page, int migratetype)
626 {
627 if (unlikely(page_group_by_mobility_disabled &&
628 migratetype < MIGRATE_PCPTYPES))
629 migratetype = MIGRATE_UNMOVABLE;
630
631 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
632 page_to_pfn(page), MIGRATETYPE_MASK);
633 }
634
635 #ifdef CONFIG_DEBUG_VM
636 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
637 {
638 int ret = 0;
639 unsigned seq;
640 unsigned long pfn = page_to_pfn(page);
641 unsigned long sp, start_pfn;
642
643 do {
644 seq = zone_span_seqbegin(zone);
645 start_pfn = zone->zone_start_pfn;
646 sp = zone->spanned_pages;
647 if (!zone_spans_pfn(zone, pfn))
648 ret = 1;
649 } while (zone_span_seqretry(zone, seq));
650
651 if (ret)
652 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
653 pfn, zone_to_nid(zone), zone->name,
654 start_pfn, start_pfn + sp);
655
656 return ret;
657 }
658
659 static int page_is_consistent(struct zone *zone, struct page *page)
660 {
661 if (zone != page_zone(page))
662 return 0;
663
664 return 1;
665 }
666 /*
667 * Temporary debugging check for pages not lying within a given zone.
668 */
669 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
670 {
671 if (page_outside_zone_boundaries(zone, page))
672 return 1;
673 if (!page_is_consistent(zone, page))
674 return 1;
675
676 return 0;
677 }
678 #else
679 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
680 {
681 return 0;
682 }
683 #endif
684
685 static void bad_page(struct page *page, const char *reason)
686 {
687 static unsigned long resume;
688 static unsigned long nr_shown;
689 static unsigned long nr_unshown;
690
691 /*
692 * Allow a burst of 60 reports, then keep quiet for that minute;
693 * or allow a steady drip of one report per second.
694 */
695 if (nr_shown == 60) {
696 if (time_before(jiffies, resume)) {
697 nr_unshown++;
698 goto out;
699 }
700 if (nr_unshown) {
701 pr_alert(
702 "BUG: Bad page state: %lu messages suppressed\n",
703 nr_unshown);
704 nr_unshown = 0;
705 }
706 nr_shown = 0;
707 }
708 if (nr_shown++ == 0)
709 resume = jiffies + 60 * HZ;
710
711 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
712 current->comm, page_to_pfn(page));
713 dump_page(page, reason);
714
715 print_modules();
716 dump_stack();
717 out:
718 /* Leave bad fields for debug, except PageBuddy could make trouble */
719 page_mapcount_reset(page); /* remove PageBuddy */
720 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
721 }
722
723 static inline unsigned int order_to_pindex(int migratetype, int order)
724 {
725 int base = order;
726
727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
728 if (order > PAGE_ALLOC_COSTLY_ORDER) {
729 VM_BUG_ON(order != pageblock_order);
730 return NR_LOWORDER_PCP_LISTS;
731 }
732 #else
733 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
734 #endif
735
736 return (MIGRATE_PCPTYPES * base) + migratetype;
737 }
738
739 static inline int pindex_to_order(unsigned int pindex)
740 {
741 int order = pindex / MIGRATE_PCPTYPES;
742
743 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
744 if (pindex == NR_LOWORDER_PCP_LISTS)
745 order = pageblock_order;
746 #else
747 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
748 #endif
749
750 return order;
751 }
752
753 static inline bool pcp_allowed_order(unsigned int order)
754 {
755 if (order <= PAGE_ALLOC_COSTLY_ORDER)
756 return true;
757 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
758 if (order == pageblock_order)
759 return true;
760 #endif
761 return false;
762 }
763
764 static inline void free_the_page(struct page *page, unsigned int order)
765 {
766 if (pcp_allowed_order(order)) /* Via pcp? */
767 free_unref_page(page, order);
768 else
769 __free_pages_ok(page, order, FPI_NONE);
770 }
771
772 /*
773 * Higher-order pages are called "compound pages". They are structured thusly:
774 *
775 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
776 *
777 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
778 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
779 *
780 * The first tail page's ->compound_dtor holds the offset in array of compound
781 * page destructors. See compound_page_dtors.
782 *
783 * The first tail page's ->compound_order holds the order of allocation.
784 * This usage means that zero-order pages may not be compound.
785 */
786
787 void free_compound_page(struct page *page)
788 {
789 mem_cgroup_uncharge(page_folio(page));
790 free_the_page(page, compound_order(page));
791 }
792
793 static void prep_compound_head(struct page *page, unsigned int order)
794 {
795 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
796 set_compound_order(page, order);
797 atomic_set(compound_mapcount_ptr(page), -1);
798 atomic_set(compound_pincount_ptr(page), 0);
799 }
800
801 static void prep_compound_tail(struct page *head, int tail_idx)
802 {
803 struct page *p = head + tail_idx;
804
805 p->mapping = TAIL_MAPPING;
806 set_compound_head(p, head);
807 }
808
809 void prep_compound_page(struct page *page, unsigned int order)
810 {
811 int i;
812 int nr_pages = 1 << order;
813
814 __SetPageHead(page);
815 for (i = 1; i < nr_pages; i++)
816 prep_compound_tail(page, i);
817
818 prep_compound_head(page, order);
819 }
820
821 void destroy_large_folio(struct folio *folio)
822 {
823 enum compound_dtor_id dtor = folio_page(folio, 1)->compound_dtor;
824
825 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio);
826 compound_page_dtors[dtor](&folio->page);
827 }
828
829 #ifdef CONFIG_DEBUG_PAGEALLOC
830 unsigned int _debug_guardpage_minorder;
831
832 bool _debug_pagealloc_enabled_early __read_mostly
833 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
834 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
835 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
836 EXPORT_SYMBOL(_debug_pagealloc_enabled);
837
838 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
839
840 static int __init early_debug_pagealloc(char *buf)
841 {
842 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
843 }
844 early_param("debug_pagealloc", early_debug_pagealloc);
845
846 static int __init debug_guardpage_minorder_setup(char *buf)
847 {
848 unsigned long res;
849
850 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
851 pr_err("Bad debug_guardpage_minorder value\n");
852 return 0;
853 }
854 _debug_guardpage_minorder = res;
855 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
856 return 0;
857 }
858 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
859
860 static inline bool set_page_guard(struct zone *zone, struct page *page,
861 unsigned int order, int migratetype)
862 {
863 if (!debug_guardpage_enabled())
864 return false;
865
866 if (order >= debug_guardpage_minorder())
867 return false;
868
869 __SetPageGuard(page);
870 INIT_LIST_HEAD(&page->buddy_list);
871 set_page_private(page, order);
872 /* Guard pages are not available for any usage */
873 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
874
875 return true;
876 }
877
878 static inline void clear_page_guard(struct zone *zone, struct page *page,
879 unsigned int order, int migratetype)
880 {
881 if (!debug_guardpage_enabled())
882 return;
883
884 __ClearPageGuard(page);
885
886 set_page_private(page, 0);
887 if (!is_migrate_isolate(migratetype))
888 __mod_zone_freepage_state(zone, (1 << order), migratetype);
889 }
890 #else
891 static inline bool set_page_guard(struct zone *zone, struct page *page,
892 unsigned int order, int migratetype) { return false; }
893 static inline void clear_page_guard(struct zone *zone, struct page *page,
894 unsigned int order, int migratetype) {}
895 #endif
896
897 /*
898 * Enable static keys related to various memory debugging and hardening options.
899 * Some override others, and depend on early params that are evaluated in the
900 * order of appearance. So we need to first gather the full picture of what was
901 * enabled, and then make decisions.
902 */
903 void init_mem_debugging_and_hardening(void)
904 {
905 bool page_poisoning_requested = false;
906
907 #ifdef CONFIG_PAGE_POISONING
908 /*
909 * Page poisoning is debug page alloc for some arches. If
910 * either of those options are enabled, enable poisoning.
911 */
912 if (page_poisoning_enabled() ||
913 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
914 debug_pagealloc_enabled())) {
915 static_branch_enable(&_page_poisoning_enabled);
916 page_poisoning_requested = true;
917 }
918 #endif
919
920 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
921 page_poisoning_requested) {
922 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
923 "will take precedence over init_on_alloc and init_on_free\n");
924 _init_on_alloc_enabled_early = false;
925 _init_on_free_enabled_early = false;
926 }
927
928 if (_init_on_alloc_enabled_early)
929 static_branch_enable(&init_on_alloc);
930 else
931 static_branch_disable(&init_on_alloc);
932
933 if (_init_on_free_enabled_early)
934 static_branch_enable(&init_on_free);
935 else
936 static_branch_disable(&init_on_free);
937
938 #ifdef CONFIG_DEBUG_PAGEALLOC
939 if (!debug_pagealloc_enabled())
940 return;
941
942 static_branch_enable(&_debug_pagealloc_enabled);
943
944 if (!debug_guardpage_minorder())
945 return;
946
947 static_branch_enable(&_debug_guardpage_enabled);
948 #endif
949 }
950
951 static inline void set_buddy_order(struct page *page, unsigned int order)
952 {
953 set_page_private(page, order);
954 __SetPageBuddy(page);
955 }
956
957 #ifdef CONFIG_COMPACTION
958 static inline struct capture_control *task_capc(struct zone *zone)
959 {
960 struct capture_control *capc = current->capture_control;
961
962 return unlikely(capc) &&
963 !(current->flags & PF_KTHREAD) &&
964 !capc->page &&
965 capc->cc->zone == zone ? capc : NULL;
966 }
967
968 static inline bool
969 compaction_capture(struct capture_control *capc, struct page *page,
970 int order, int migratetype)
971 {
972 if (!capc || order != capc->cc->order)
973 return false;
974
975 /* Do not accidentally pollute CMA or isolated regions*/
976 if (is_migrate_cma(migratetype) ||
977 is_migrate_isolate(migratetype))
978 return false;
979
980 /*
981 * Do not let lower order allocations pollute a movable pageblock.
982 * This might let an unmovable request use a reclaimable pageblock
983 * and vice-versa but no more than normal fallback logic which can
984 * have trouble finding a high-order free page.
985 */
986 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
987 return false;
988
989 capc->page = page;
990 return true;
991 }
992
993 #else
994 static inline struct capture_control *task_capc(struct zone *zone)
995 {
996 return NULL;
997 }
998
999 static inline bool
1000 compaction_capture(struct capture_control *capc, struct page *page,
1001 int order, int migratetype)
1002 {
1003 return false;
1004 }
1005 #endif /* CONFIG_COMPACTION */
1006
1007 /* Used for pages not on another list */
1008 static inline void add_to_free_list(struct page *page, struct zone *zone,
1009 unsigned int order, int migratetype)
1010 {
1011 struct free_area *area = &zone->free_area[order];
1012
1013 list_add(&page->buddy_list, &area->free_list[migratetype]);
1014 area->nr_free++;
1015 }
1016
1017 /* Used for pages not on another list */
1018 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
1019 unsigned int order, int migratetype)
1020 {
1021 struct free_area *area = &zone->free_area[order];
1022
1023 list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
1024 area->nr_free++;
1025 }
1026
1027 /*
1028 * Used for pages which are on another list. Move the pages to the tail
1029 * of the list - so the moved pages won't immediately be considered for
1030 * allocation again (e.g., optimization for memory onlining).
1031 */
1032 static inline void move_to_free_list(struct page *page, struct zone *zone,
1033 unsigned int order, int migratetype)
1034 {
1035 struct free_area *area = &zone->free_area[order];
1036
1037 list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
1038 }
1039
1040 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1041 unsigned int order)
1042 {
1043 /* clear reported state and update reported page count */
1044 if (page_reported(page))
1045 __ClearPageReported(page);
1046
1047 list_del(&page->buddy_list);
1048 __ClearPageBuddy(page);
1049 set_page_private(page, 0);
1050 zone->free_area[order].nr_free--;
1051 }
1052
1053 /*
1054 * If this is not the largest possible page, check if the buddy
1055 * of the next-highest order is free. If it is, it's possible
1056 * that pages are being freed that will coalesce soon. In case,
1057 * that is happening, add the free page to the tail of the list
1058 * so it's less likely to be used soon and more likely to be merged
1059 * as a higher order page
1060 */
1061 static inline bool
1062 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1063 struct page *page, unsigned int order)
1064 {
1065 unsigned long higher_page_pfn;
1066 struct page *higher_page;
1067
1068 if (order >= MAX_ORDER - 2)
1069 return false;
1070
1071 higher_page_pfn = buddy_pfn & pfn;
1072 higher_page = page + (higher_page_pfn - pfn);
1073
1074 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
1075 NULL) != NULL;
1076 }
1077
1078 /*
1079 * Freeing function for a buddy system allocator.
1080 *
1081 * The concept of a buddy system is to maintain direct-mapped table
1082 * (containing bit values) for memory blocks of various "orders".
1083 * The bottom level table contains the map for the smallest allocatable
1084 * units of memory (here, pages), and each level above it describes
1085 * pairs of units from the levels below, hence, "buddies".
1086 * At a high level, all that happens here is marking the table entry
1087 * at the bottom level available, and propagating the changes upward
1088 * as necessary, plus some accounting needed to play nicely with other
1089 * parts of the VM system.
1090 * At each level, we keep a list of pages, which are heads of continuous
1091 * free pages of length of (1 << order) and marked with PageBuddy.
1092 * Page's order is recorded in page_private(page) field.
1093 * So when we are allocating or freeing one, we can derive the state of the
1094 * other. That is, if we allocate a small block, and both were
1095 * free, the remainder of the region must be split into blocks.
1096 * If a block is freed, and its buddy is also free, then this
1097 * triggers coalescing into a block of larger size.
1098 *
1099 * -- nyc
1100 */
1101
1102 static inline void __free_one_page(struct page *page,
1103 unsigned long pfn,
1104 struct zone *zone, unsigned int order,
1105 int migratetype, fpi_t fpi_flags)
1106 {
1107 struct capture_control *capc = task_capc(zone);
1108 unsigned long buddy_pfn;
1109 unsigned long combined_pfn;
1110 struct page *buddy;
1111 bool to_tail;
1112
1113 VM_BUG_ON(!zone_is_initialized(zone));
1114 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1115
1116 VM_BUG_ON(migratetype == -1);
1117 if (likely(!is_migrate_isolate(migratetype)))
1118 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1119
1120 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1121 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1122
1123 while (order < MAX_ORDER - 1) {
1124 if (compaction_capture(capc, page, order, migratetype)) {
1125 __mod_zone_freepage_state(zone, -(1 << order),
1126 migratetype);
1127 return;
1128 }
1129
1130 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
1131 if (!buddy)
1132 goto done_merging;
1133
1134 if (unlikely(order >= pageblock_order)) {
1135 /*
1136 * We want to prevent merge between freepages on pageblock
1137 * without fallbacks and normal pageblock. Without this,
1138 * pageblock isolation could cause incorrect freepage or CMA
1139 * accounting or HIGHATOMIC accounting.
1140 */
1141 int buddy_mt = get_pageblock_migratetype(buddy);
1142
1143 if (migratetype != buddy_mt
1144 && (!migratetype_is_mergeable(migratetype) ||
1145 !migratetype_is_mergeable(buddy_mt)))
1146 goto done_merging;
1147 }
1148
1149 /*
1150 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1151 * merge with it and move up one order.
1152 */
1153 if (page_is_guard(buddy))
1154 clear_page_guard(zone, buddy, order, migratetype);
1155 else
1156 del_page_from_free_list(buddy, zone, order);
1157 combined_pfn = buddy_pfn & pfn;
1158 page = page + (combined_pfn - pfn);
1159 pfn = combined_pfn;
1160 order++;
1161 }
1162
1163 done_merging:
1164 set_buddy_order(page, order);
1165
1166 if (fpi_flags & FPI_TO_TAIL)
1167 to_tail = true;
1168 else if (is_shuffle_order(order))
1169 to_tail = shuffle_pick_tail();
1170 else
1171 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1172
1173 if (to_tail)
1174 add_to_free_list_tail(page, zone, order, migratetype);
1175 else
1176 add_to_free_list(page, zone, order, migratetype);
1177
1178 /* Notify page reporting subsystem of freed page */
1179 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1180 page_reporting_notify_free(order);
1181 }
1182
1183 /**
1184 * split_free_page() -- split a free page at split_pfn_offset
1185 * @free_page: the original free page
1186 * @order: the order of the page
1187 * @split_pfn_offset: split offset within the page
1188 *
1189 * Return -ENOENT if the free page is changed, otherwise 0
1190 *
1191 * It is used when the free page crosses two pageblocks with different migratetypes
1192 * at split_pfn_offset within the page. The split free page will be put into
1193 * separate migratetype lists afterwards. Otherwise, the function achieves
1194 * nothing.
1195 */
1196 int split_free_page(struct page *free_page,
1197 unsigned int order, unsigned long split_pfn_offset)
1198 {
1199 struct zone *zone = page_zone(free_page);
1200 unsigned long free_page_pfn = page_to_pfn(free_page);
1201 unsigned long pfn;
1202 unsigned long flags;
1203 int free_page_order;
1204 int mt;
1205 int ret = 0;
1206
1207 if (split_pfn_offset == 0)
1208 return ret;
1209
1210 spin_lock_irqsave(&zone->lock, flags);
1211
1212 if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
1213 ret = -ENOENT;
1214 goto out;
1215 }
1216
1217 mt = get_pageblock_migratetype(free_page);
1218 if (likely(!is_migrate_isolate(mt)))
1219 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1220
1221 del_page_from_free_list(free_page, zone, order);
1222 for (pfn = free_page_pfn;
1223 pfn < free_page_pfn + (1UL << order);) {
1224 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
1225
1226 free_page_order = min_t(unsigned int,
1227 pfn ? __ffs(pfn) : order,
1228 __fls(split_pfn_offset));
1229 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
1230 mt, FPI_NONE);
1231 pfn += 1UL << free_page_order;
1232 split_pfn_offset -= (1UL << free_page_order);
1233 /* we have done the first part, now switch to second part */
1234 if (split_pfn_offset == 0)
1235 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
1236 }
1237 out:
1238 spin_unlock_irqrestore(&zone->lock, flags);
1239 return ret;
1240 }
1241 /*
1242 * A bad page could be due to a number of fields. Instead of multiple branches,
1243 * try and check multiple fields with one check. The caller must do a detailed
1244 * check if necessary.
1245 */
1246 static inline bool page_expected_state(struct page *page,
1247 unsigned long check_flags)
1248 {
1249 if (unlikely(atomic_read(&page->_mapcount) != -1))
1250 return false;
1251
1252 if (unlikely((unsigned long)page->mapping |
1253 page_ref_count(page) |
1254 #ifdef CONFIG_MEMCG
1255 page->memcg_data |
1256 #endif
1257 (page->flags & check_flags)))
1258 return false;
1259
1260 return true;
1261 }
1262
1263 static const char *page_bad_reason(struct page *page, unsigned long flags)
1264 {
1265 const char *bad_reason = NULL;
1266
1267 if (unlikely(atomic_read(&page->_mapcount) != -1))
1268 bad_reason = "nonzero mapcount";
1269 if (unlikely(page->mapping != NULL))
1270 bad_reason = "non-NULL mapping";
1271 if (unlikely(page_ref_count(page) != 0))
1272 bad_reason = "nonzero _refcount";
1273 if (unlikely(page->flags & flags)) {
1274 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1275 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1276 else
1277 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1278 }
1279 #ifdef CONFIG_MEMCG
1280 if (unlikely(page->memcg_data))
1281 bad_reason = "page still charged to cgroup";
1282 #endif
1283 return bad_reason;
1284 }
1285
1286 static void check_free_page_bad(struct page *page)
1287 {
1288 bad_page(page,
1289 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1290 }
1291
1292 static inline int check_free_page(struct page *page)
1293 {
1294 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1295 return 0;
1296
1297 /* Something has gone sideways, find it */
1298 check_free_page_bad(page);
1299 return 1;
1300 }
1301
1302 static int free_tail_pages_check(struct page *head_page, struct page *page)
1303 {
1304 int ret = 1;
1305
1306 /*
1307 * We rely page->lru.next never has bit 0 set, unless the page
1308 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1309 */
1310 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1311
1312 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1313 ret = 0;
1314 goto out;
1315 }
1316 switch (page - head_page) {
1317 case 1:
1318 /* the first tail page: ->mapping may be compound_mapcount() */
1319 if (unlikely(compound_mapcount(page))) {
1320 bad_page(page, "nonzero compound_mapcount");
1321 goto out;
1322 }
1323 break;
1324 case 2:
1325 /*
1326 * the second tail page: ->mapping is
1327 * deferred_list.next -- ignore value.
1328 */
1329 break;
1330 default:
1331 if (page->mapping != TAIL_MAPPING) {
1332 bad_page(page, "corrupted mapping in tail page");
1333 goto out;
1334 }
1335 break;
1336 }
1337 if (unlikely(!PageTail(page))) {
1338 bad_page(page, "PageTail not set");
1339 goto out;
1340 }
1341 if (unlikely(compound_head(page) != head_page)) {
1342 bad_page(page, "compound_head not consistent");
1343 goto out;
1344 }
1345 ret = 0;
1346 out:
1347 page->mapping = NULL;
1348 clear_compound_head(page);
1349 return ret;
1350 }
1351
1352 /*
1353 * Skip KASAN memory poisoning when either:
1354 *
1355 * 1. Deferred memory initialization has not yet completed,
1356 * see the explanation below.
1357 * 2. Skipping poisoning is requested via FPI_SKIP_KASAN_POISON,
1358 * see the comment next to it.
1359 * 3. Skipping poisoning is requested via __GFP_SKIP_KASAN_POISON,
1360 * see the comment next to it.
1361 *
1362 * Poisoning pages during deferred memory init will greatly lengthen the
1363 * process and cause problem in large memory systems as the deferred pages
1364 * initialization is done with interrupt disabled.
1365 *
1366 * Assuming that there will be no reference to those newly initialized
1367 * pages before they are ever allocated, this should have no effect on
1368 * KASAN memory tracking as the poison will be properly inserted at page
1369 * allocation time. The only corner case is when pages are allocated by
1370 * on-demand allocation and then freed again before the deferred pages
1371 * initialization is done, but this is not likely to happen.
1372 */
1373 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1374 {
1375 return deferred_pages_enabled() ||
1376 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
1377 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
1378 PageSkipKASanPoison(page);
1379 }
1380
1381 static void kernel_init_pages(struct page *page, int numpages)
1382 {
1383 int i;
1384
1385 /* s390's use of memset() could override KASAN redzones. */
1386 kasan_disable_current();
1387 for (i = 0; i < numpages; i++)
1388 clear_highpage_kasan_tagged(page + i);
1389 kasan_enable_current();
1390 }
1391
1392 static __always_inline bool free_pages_prepare(struct page *page,
1393 unsigned int order, bool check_free, fpi_t fpi_flags)
1394 {
1395 int bad = 0;
1396 bool init = want_init_on_free();
1397
1398 VM_BUG_ON_PAGE(PageTail(page), page);
1399
1400 trace_mm_page_free(page, order);
1401
1402 if (unlikely(PageHWPoison(page)) && !order) {
1403 /*
1404 * Do not let hwpoison pages hit pcplists/buddy
1405 * Untie memcg state and reset page's owner
1406 */
1407 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1408 __memcg_kmem_uncharge_page(page, order);
1409 reset_page_owner(page, order);
1410 page_table_check_free(page, order);
1411 return false;
1412 }
1413
1414 /*
1415 * Check tail pages before head page information is cleared to
1416 * avoid checking PageCompound for order-0 pages.
1417 */
1418 if (unlikely(order)) {
1419 bool compound = PageCompound(page);
1420 int i;
1421
1422 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1423
1424 if (compound) {
1425 ClearPageDoubleMap(page);
1426 ClearPageHasHWPoisoned(page);
1427 }
1428 for (i = 1; i < (1 << order); i++) {
1429 if (compound)
1430 bad += free_tail_pages_check(page, page + i);
1431 if (unlikely(check_free_page(page + i))) {
1432 bad++;
1433 continue;
1434 }
1435 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1436 }
1437 }
1438 if (PageMappingFlags(page))
1439 page->mapping = NULL;
1440 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1441 __memcg_kmem_uncharge_page(page, order);
1442 if (check_free)
1443 bad += check_free_page(page);
1444 if (bad)
1445 return false;
1446
1447 page_cpupid_reset_last(page);
1448 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1449 reset_page_owner(page, order);
1450 page_table_check_free(page, order);
1451
1452 if (!PageHighMem(page)) {
1453 debug_check_no_locks_freed(page_address(page),
1454 PAGE_SIZE << order);
1455 debug_check_no_obj_freed(page_address(page),
1456 PAGE_SIZE << order);
1457 }
1458
1459 kernel_poison_pages(page, 1 << order);
1460
1461 /*
1462 * As memory initialization might be integrated into KASAN,
1463 * KASAN poisoning and memory initialization code must be
1464 * kept together to avoid discrepancies in behavior.
1465 *
1466 * With hardware tag-based KASAN, memory tags must be set before the
1467 * page becomes unavailable via debug_pagealloc or arch_free_page.
1468 */
1469 if (!should_skip_kasan_poison(page, fpi_flags)) {
1470 kasan_poison_pages(page, order, init);
1471
1472 /* Memory is already initialized if KASAN did it internally. */
1473 if (kasan_has_integrated_init())
1474 init = false;
1475 }
1476 if (init)
1477 kernel_init_pages(page, 1 << order);
1478
1479 /*
1480 * arch_free_page() can make the page's contents inaccessible. s390
1481 * does this. So nothing which can access the page's contents should
1482 * happen after this.
1483 */
1484 arch_free_page(page, order);
1485
1486 debug_pagealloc_unmap_pages(page, 1 << order);
1487
1488 return true;
1489 }
1490
1491 #ifdef CONFIG_DEBUG_VM
1492 /*
1493 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1494 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1495 * moved from pcp lists to free lists.
1496 */
1497 static bool free_pcp_prepare(struct page *page, unsigned int order)
1498 {
1499 return free_pages_prepare(page, order, true, FPI_NONE);
1500 }
1501
1502 static bool bulkfree_pcp_prepare(struct page *page)
1503 {
1504 if (debug_pagealloc_enabled_static())
1505 return check_free_page(page);
1506 else
1507 return false;
1508 }
1509 #else
1510 /*
1511 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1512 * moving from pcp lists to free list in order to reduce overhead. With
1513 * debug_pagealloc enabled, they are checked also immediately when being freed
1514 * to the pcp lists.
1515 */
1516 static bool free_pcp_prepare(struct page *page, unsigned int order)
1517 {
1518 if (debug_pagealloc_enabled_static())
1519 return free_pages_prepare(page, order, true, FPI_NONE);
1520 else
1521 return free_pages_prepare(page, order, false, FPI_NONE);
1522 }
1523
1524 static bool bulkfree_pcp_prepare(struct page *page)
1525 {
1526 return check_free_page(page);
1527 }
1528 #endif /* CONFIG_DEBUG_VM */
1529
1530 /*
1531 * Frees a number of pages from the PCP lists
1532 * Assumes all pages on list are in same zone.
1533 * count is the number of pages to free.
1534 */
1535 static void free_pcppages_bulk(struct zone *zone, int count,
1536 struct per_cpu_pages *pcp,
1537 int pindex)
1538 {
1539 int min_pindex = 0;
1540 int max_pindex = NR_PCP_LISTS - 1;
1541 unsigned int order;
1542 bool isolated_pageblocks;
1543 struct page *page;
1544
1545 /*
1546 * Ensure proper count is passed which otherwise would stuck in the
1547 * below while (list_empty(list)) loop.
1548 */
1549 count = min(pcp->count, count);
1550
1551 /* Ensure requested pindex is drained first. */
1552 pindex = pindex - 1;
1553
1554 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
1555 spin_lock(&zone->lock);
1556 isolated_pageblocks = has_isolate_pageblock(zone);
1557
1558 while (count > 0) {
1559 struct list_head *list;
1560 int nr_pages;
1561
1562 /* Remove pages from lists in a round-robin fashion. */
1563 do {
1564 if (++pindex > max_pindex)
1565 pindex = min_pindex;
1566 list = &pcp->lists[pindex];
1567 if (!list_empty(list))
1568 break;
1569
1570 if (pindex == max_pindex)
1571 max_pindex--;
1572 if (pindex == min_pindex)
1573 min_pindex++;
1574 } while (1);
1575
1576 order = pindex_to_order(pindex);
1577 nr_pages = 1 << order;
1578 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1579 do {
1580 int mt;
1581
1582 page = list_last_entry(list, struct page, pcp_list);
1583 mt = get_pcppage_migratetype(page);
1584
1585 /* must delete to avoid corrupting pcp list */
1586 list_del(&page->pcp_list);
1587 count -= nr_pages;
1588 pcp->count -= nr_pages;
1589
1590 if (bulkfree_pcp_prepare(page))
1591 continue;
1592
1593 /* MIGRATE_ISOLATE page should not go to pcplists */
1594 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1595 /* Pageblock could have been isolated meanwhile */
1596 if (unlikely(isolated_pageblocks))
1597 mt = get_pageblock_migratetype(page);
1598
1599 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1600 trace_mm_page_pcpu_drain(page, order, mt);
1601 } while (count > 0 && !list_empty(list));
1602 }
1603
1604 spin_unlock(&zone->lock);
1605 }
1606
1607 static void free_one_page(struct zone *zone,
1608 struct page *page, unsigned long pfn,
1609 unsigned int order,
1610 int migratetype, fpi_t fpi_flags)
1611 {
1612 unsigned long flags;
1613
1614 spin_lock_irqsave(&zone->lock, flags);
1615 if (unlikely(has_isolate_pageblock(zone) ||
1616 is_migrate_isolate(migratetype))) {
1617 migratetype = get_pfnblock_migratetype(page, pfn);
1618 }
1619 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1620 spin_unlock_irqrestore(&zone->lock, flags);
1621 }
1622
1623 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1624 unsigned long zone, int nid)
1625 {
1626 mm_zero_struct_page(page);
1627 set_page_links(page, zone, nid, pfn);
1628 init_page_count(page);
1629 page_mapcount_reset(page);
1630 page_cpupid_reset_last(page);
1631 page_kasan_tag_reset(page);
1632
1633 INIT_LIST_HEAD(&page->lru);
1634 #ifdef WANT_PAGE_VIRTUAL
1635 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1636 if (!is_highmem_idx(zone))
1637 set_page_address(page, __va(pfn << PAGE_SHIFT));
1638 #endif
1639 }
1640
1641 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1642 static void __meminit init_reserved_page(unsigned long pfn)
1643 {
1644 pg_data_t *pgdat;
1645 int nid, zid;
1646
1647 if (!early_page_uninitialised(pfn))
1648 return;
1649
1650 nid = early_pfn_to_nid(pfn);
1651 pgdat = NODE_DATA(nid);
1652
1653 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1654 struct zone *zone = &pgdat->node_zones[zid];
1655
1656 if (zone_spans_pfn(zone, pfn))
1657 break;
1658 }
1659 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1660 }
1661 #else
1662 static inline void init_reserved_page(unsigned long pfn)
1663 {
1664 }
1665 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1666
1667 /*
1668 * Initialised pages do not have PageReserved set. This function is
1669 * called for each range allocated by the bootmem allocator and
1670 * marks the pages PageReserved. The remaining valid pages are later
1671 * sent to the buddy page allocator.
1672 */
1673 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1674 {
1675 unsigned long start_pfn = PFN_DOWN(start);
1676 unsigned long end_pfn = PFN_UP(end);
1677
1678 for (; start_pfn < end_pfn; start_pfn++) {
1679 if (pfn_valid(start_pfn)) {
1680 struct page *page = pfn_to_page(start_pfn);
1681
1682 init_reserved_page(start_pfn);
1683
1684 /* Avoid false-positive PageTail() */
1685 INIT_LIST_HEAD(&page->lru);
1686
1687 /*
1688 * no need for atomic set_bit because the struct
1689 * page is not visible yet so nobody should
1690 * access it yet.
1691 */
1692 __SetPageReserved(page);
1693 }
1694 }
1695 }
1696
1697 static void __free_pages_ok(struct page *page, unsigned int order,
1698 fpi_t fpi_flags)
1699 {
1700 unsigned long flags;
1701 int migratetype;
1702 unsigned long pfn = page_to_pfn(page);
1703 struct zone *zone = page_zone(page);
1704
1705 if (!free_pages_prepare(page, order, true, fpi_flags))
1706 return;
1707
1708 migratetype = get_pfnblock_migratetype(page, pfn);
1709
1710 spin_lock_irqsave(&zone->lock, flags);
1711 if (unlikely(has_isolate_pageblock(zone) ||
1712 is_migrate_isolate(migratetype))) {
1713 migratetype = get_pfnblock_migratetype(page, pfn);
1714 }
1715 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1716 spin_unlock_irqrestore(&zone->lock, flags);
1717
1718 __count_vm_events(PGFREE, 1 << order);
1719 }
1720
1721 void __free_pages_core(struct page *page, unsigned int order)
1722 {
1723 unsigned int nr_pages = 1 << order;
1724 struct page *p = page;
1725 unsigned int loop;
1726
1727 /*
1728 * When initializing the memmap, __init_single_page() sets the refcount
1729 * of all pages to 1 ("allocated"/"not free"). We have to set the
1730 * refcount of all involved pages to 0.
1731 */
1732 prefetchw(p);
1733 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1734 prefetchw(p + 1);
1735 __ClearPageReserved(p);
1736 set_page_count(p, 0);
1737 }
1738 __ClearPageReserved(p);
1739 set_page_count(p, 0);
1740
1741 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1742
1743 /*
1744 * Bypass PCP and place fresh pages right to the tail, primarily
1745 * relevant for memory onlining.
1746 */
1747 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1748 }
1749
1750 #ifdef CONFIG_NUMA
1751
1752 /*
1753 * During memory init memblocks map pfns to nids. The search is expensive and
1754 * this caches recent lookups. The implementation of __early_pfn_to_nid
1755 * treats start/end as pfns.
1756 */
1757 struct mminit_pfnnid_cache {
1758 unsigned long last_start;
1759 unsigned long last_end;
1760 int last_nid;
1761 };
1762
1763 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1764
1765 /*
1766 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1767 */
1768 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1769 struct mminit_pfnnid_cache *state)
1770 {
1771 unsigned long start_pfn, end_pfn;
1772 int nid;
1773
1774 if (state->last_start <= pfn && pfn < state->last_end)
1775 return state->last_nid;
1776
1777 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1778 if (nid != NUMA_NO_NODE) {
1779 state->last_start = start_pfn;
1780 state->last_end = end_pfn;
1781 state->last_nid = nid;
1782 }
1783
1784 return nid;
1785 }
1786
1787 int __meminit early_pfn_to_nid(unsigned long pfn)
1788 {
1789 static DEFINE_SPINLOCK(early_pfn_lock);
1790 int nid;
1791
1792 spin_lock(&early_pfn_lock);
1793 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1794 if (nid < 0)
1795 nid = first_online_node;
1796 spin_unlock(&early_pfn_lock);
1797
1798 return nid;
1799 }
1800 #endif /* CONFIG_NUMA */
1801
1802 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1803 unsigned int order)
1804 {
1805 if (early_page_uninitialised(pfn))
1806 return;
1807 __free_pages_core(page, order);
1808 }
1809
1810 /*
1811 * Check that the whole (or subset of) a pageblock given by the interval of
1812 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1813 * with the migration of free compaction scanner.
1814 *
1815 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1816 *
1817 * It's possible on some configurations to have a setup like node0 node1 node0
1818 * i.e. it's possible that all pages within a zones range of pages do not
1819 * belong to a single zone. We assume that a border between node0 and node1
1820 * can occur within a single pageblock, but not a node0 node1 node0
1821 * interleaving within a single pageblock. It is therefore sufficient to check
1822 * the first and last page of a pageblock and avoid checking each individual
1823 * page in a pageblock.
1824 */
1825 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1826 unsigned long end_pfn, struct zone *zone)
1827 {
1828 struct page *start_page;
1829 struct page *end_page;
1830
1831 /* end_pfn is one past the range we are checking */
1832 end_pfn--;
1833
1834 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1835 return NULL;
1836
1837 start_page = pfn_to_online_page(start_pfn);
1838 if (!start_page)
1839 return NULL;
1840
1841 if (page_zone(start_page) != zone)
1842 return NULL;
1843
1844 end_page = pfn_to_page(end_pfn);
1845
1846 /* This gives a shorter code than deriving page_zone(end_page) */
1847 if (page_zone_id(start_page) != page_zone_id(end_page))
1848 return NULL;
1849
1850 return start_page;
1851 }
1852
1853 void set_zone_contiguous(struct zone *zone)
1854 {
1855 unsigned long block_start_pfn = zone->zone_start_pfn;
1856 unsigned long block_end_pfn;
1857
1858 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1859 for (; block_start_pfn < zone_end_pfn(zone);
1860 block_start_pfn = block_end_pfn,
1861 block_end_pfn += pageblock_nr_pages) {
1862
1863 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1864
1865 if (!__pageblock_pfn_to_page(block_start_pfn,
1866 block_end_pfn, zone))
1867 return;
1868 cond_resched();
1869 }
1870
1871 /* We confirm that there is no hole */
1872 zone->contiguous = true;
1873 }
1874
1875 void clear_zone_contiguous(struct zone *zone)
1876 {
1877 zone->contiguous = false;
1878 }
1879
1880 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1881 static void __init deferred_free_range(unsigned long pfn,
1882 unsigned long nr_pages)
1883 {
1884 struct page *page;
1885 unsigned long i;
1886
1887 if (!nr_pages)
1888 return;
1889
1890 page = pfn_to_page(pfn);
1891
1892 /* Free a large naturally-aligned chunk if possible */
1893 if (nr_pages == pageblock_nr_pages &&
1894 (pfn & (pageblock_nr_pages - 1)) == 0) {
1895 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1896 __free_pages_core(page, pageblock_order);
1897 return;
1898 }
1899
1900 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1901 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1902 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1903 __free_pages_core(page, 0);
1904 }
1905 }
1906
1907 /* Completion tracking for deferred_init_memmap() threads */
1908 static atomic_t pgdat_init_n_undone __initdata;
1909 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1910
1911 static inline void __init pgdat_init_report_one_done(void)
1912 {
1913 if (atomic_dec_and_test(&pgdat_init_n_undone))
1914 complete(&pgdat_init_all_done_comp);
1915 }
1916
1917 /*
1918 * Returns true if page needs to be initialized or freed to buddy allocator.
1919 *
1920 * First we check if pfn is valid on architectures where it is possible to have
1921 * holes within pageblock_nr_pages. On systems where it is not possible, this
1922 * function is optimized out.
1923 *
1924 * Then, we check if a current large page is valid by only checking the validity
1925 * of the head pfn.
1926 */
1927 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1928 {
1929 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1930 return false;
1931 return true;
1932 }
1933
1934 /*
1935 * Free pages to buddy allocator. Try to free aligned pages in
1936 * pageblock_nr_pages sizes.
1937 */
1938 static void __init deferred_free_pages(unsigned long pfn,
1939 unsigned long end_pfn)
1940 {
1941 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1942 unsigned long nr_free = 0;
1943
1944 for (; pfn < end_pfn; pfn++) {
1945 if (!deferred_pfn_valid(pfn)) {
1946 deferred_free_range(pfn - nr_free, nr_free);
1947 nr_free = 0;
1948 } else if (!(pfn & nr_pgmask)) {
1949 deferred_free_range(pfn - nr_free, nr_free);
1950 nr_free = 1;
1951 } else {
1952 nr_free++;
1953 }
1954 }
1955 /* Free the last block of pages to allocator */
1956 deferred_free_range(pfn - nr_free, nr_free);
1957 }
1958
1959 /*
1960 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1961 * by performing it only once every pageblock_nr_pages.
1962 * Return number of pages initialized.
1963 */
1964 static unsigned long __init deferred_init_pages(struct zone *zone,
1965 unsigned long pfn,
1966 unsigned long end_pfn)
1967 {
1968 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1969 int nid = zone_to_nid(zone);
1970 unsigned long nr_pages = 0;
1971 int zid = zone_idx(zone);
1972 struct page *page = NULL;
1973
1974 for (; pfn < end_pfn; pfn++) {
1975 if (!deferred_pfn_valid(pfn)) {
1976 page = NULL;
1977 continue;
1978 } else if (!page || !(pfn & nr_pgmask)) {
1979 page = pfn_to_page(pfn);
1980 } else {
1981 page++;
1982 }
1983 __init_single_page(page, pfn, zid, nid);
1984 nr_pages++;
1985 }
1986 return (nr_pages);
1987 }
1988
1989 /*
1990 * This function is meant to pre-load the iterator for the zone init.
1991 * Specifically it walks through the ranges until we are caught up to the
1992 * first_init_pfn value and exits there. If we never encounter the value we
1993 * return false indicating there are no valid ranges left.
1994 */
1995 static bool __init
1996 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1997 unsigned long *spfn, unsigned long *epfn,
1998 unsigned long first_init_pfn)
1999 {
2000 u64 j;
2001
2002 /*
2003 * Start out by walking through the ranges in this zone that have
2004 * already been initialized. We don't need to do anything with them
2005 * so we just need to flush them out of the system.
2006 */
2007 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
2008 if (*epfn <= first_init_pfn)
2009 continue;
2010 if (*spfn < first_init_pfn)
2011 *spfn = first_init_pfn;
2012 *i = j;
2013 return true;
2014 }
2015
2016 return false;
2017 }
2018
2019 /*
2020 * Initialize and free pages. We do it in two loops: first we initialize
2021 * struct page, then free to buddy allocator, because while we are
2022 * freeing pages we can access pages that are ahead (computing buddy
2023 * page in __free_one_page()).
2024 *
2025 * In order to try and keep some memory in the cache we have the loop
2026 * broken along max page order boundaries. This way we will not cause
2027 * any issues with the buddy page computation.
2028 */
2029 static unsigned long __init
2030 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
2031 unsigned long *end_pfn)
2032 {
2033 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
2034 unsigned long spfn = *start_pfn, epfn = *end_pfn;
2035 unsigned long nr_pages = 0;
2036 u64 j = *i;
2037
2038 /* First we loop through and initialize the page values */
2039 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
2040 unsigned long t;
2041
2042 if (mo_pfn <= *start_pfn)
2043 break;
2044
2045 t = min(mo_pfn, *end_pfn);
2046 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2047
2048 if (mo_pfn < *end_pfn) {
2049 *start_pfn = mo_pfn;
2050 break;
2051 }
2052 }
2053
2054 /* Reset values and now loop through freeing pages as needed */
2055 swap(j, *i);
2056
2057 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2058 unsigned long t;
2059
2060 if (mo_pfn <= spfn)
2061 break;
2062
2063 t = min(mo_pfn, epfn);
2064 deferred_free_pages(spfn, t);
2065
2066 if (mo_pfn <= epfn)
2067 break;
2068 }
2069
2070 return nr_pages;
2071 }
2072
2073 static void __init
2074 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2075 void *arg)
2076 {
2077 unsigned long spfn, epfn;
2078 struct zone *zone = arg;
2079 u64 i;
2080
2081 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2082
2083 /*
2084 * Initialize and free pages in MAX_ORDER sized increments so that we
2085 * can avoid introducing any issues with the buddy allocator.
2086 */
2087 while (spfn < end_pfn) {
2088 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2089 cond_resched();
2090 }
2091 }
2092
2093 /* An arch may override for more concurrency. */
2094 __weak int __init
2095 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2096 {
2097 return 1;
2098 }
2099
2100 /* Initialise remaining memory on a node */
2101 static int __init deferred_init_memmap(void *data)
2102 {
2103 pg_data_t *pgdat = data;
2104 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2105 unsigned long spfn = 0, epfn = 0;
2106 unsigned long first_init_pfn, flags;
2107 unsigned long start = jiffies;
2108 struct zone *zone;
2109 int zid, max_threads;
2110 u64 i;
2111
2112 /* Bind memory initialisation thread to a local node if possible */
2113 if (!cpumask_empty(cpumask))
2114 set_cpus_allowed_ptr(current, cpumask);
2115
2116 pgdat_resize_lock(pgdat, &flags);
2117 first_init_pfn = pgdat->first_deferred_pfn;
2118 if (first_init_pfn == ULONG_MAX) {
2119 pgdat_resize_unlock(pgdat, &flags);
2120 pgdat_init_report_one_done();
2121 return 0;
2122 }
2123
2124 /* Sanity check boundaries */
2125 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2126 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2127 pgdat->first_deferred_pfn = ULONG_MAX;
2128
2129 /*
2130 * Once we unlock here, the zone cannot be grown anymore, thus if an
2131 * interrupt thread must allocate this early in boot, zone must be
2132 * pre-grown prior to start of deferred page initialization.
2133 */
2134 pgdat_resize_unlock(pgdat, &flags);
2135
2136 /* Only the highest zone is deferred so find it */
2137 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2138 zone = pgdat->node_zones + zid;
2139 if (first_init_pfn < zone_end_pfn(zone))
2140 break;
2141 }
2142
2143 /* If the zone is empty somebody else may have cleared out the zone */
2144 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2145 first_init_pfn))
2146 goto zone_empty;
2147
2148 max_threads = deferred_page_init_max_threads(cpumask);
2149
2150 while (spfn < epfn) {
2151 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2152 struct padata_mt_job job = {
2153 .thread_fn = deferred_init_memmap_chunk,
2154 .fn_arg = zone,
2155 .start = spfn,
2156 .size = epfn_align - spfn,
2157 .align = PAGES_PER_SECTION,
2158 .min_chunk = PAGES_PER_SECTION,
2159 .max_threads = max_threads,
2160 };
2161
2162 padata_do_multithreaded(&job);
2163 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2164 epfn_align);
2165 }
2166 zone_empty:
2167 /* Sanity check that the next zone really is unpopulated */
2168 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2169
2170 pr_info("node %d deferred pages initialised in %ums\n",
2171 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2172
2173 pgdat_init_report_one_done();
2174 return 0;
2175 }
2176
2177 /*
2178 * If this zone has deferred pages, try to grow it by initializing enough
2179 * deferred pages to satisfy the allocation specified by order, rounded up to
2180 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2181 * of SECTION_SIZE bytes by initializing struct pages in increments of
2182 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2183 *
2184 * Return true when zone was grown, otherwise return false. We return true even
2185 * when we grow less than requested, to let the caller decide if there are
2186 * enough pages to satisfy the allocation.
2187 *
2188 * Note: We use noinline because this function is needed only during boot, and
2189 * it is called from a __ref function _deferred_grow_zone. This way we are
2190 * making sure that it is not inlined into permanent text section.
2191 */
2192 static noinline bool __init
2193 deferred_grow_zone(struct zone *zone, unsigned int order)
2194 {
2195 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2196 pg_data_t *pgdat = zone->zone_pgdat;
2197 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2198 unsigned long spfn, epfn, flags;
2199 unsigned long nr_pages = 0;
2200 u64 i;
2201
2202 /* Only the last zone may have deferred pages */
2203 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2204 return false;
2205
2206 pgdat_resize_lock(pgdat, &flags);
2207
2208 /*
2209 * If someone grew this zone while we were waiting for spinlock, return
2210 * true, as there might be enough pages already.
2211 */
2212 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2213 pgdat_resize_unlock(pgdat, &flags);
2214 return true;
2215 }
2216
2217 /* If the zone is empty somebody else may have cleared out the zone */
2218 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2219 first_deferred_pfn)) {
2220 pgdat->first_deferred_pfn = ULONG_MAX;
2221 pgdat_resize_unlock(pgdat, &flags);
2222 /* Retry only once. */
2223 return first_deferred_pfn != ULONG_MAX;
2224 }
2225
2226 /*
2227 * Initialize and free pages in MAX_ORDER sized increments so
2228 * that we can avoid introducing any issues with the buddy
2229 * allocator.
2230 */
2231 while (spfn < epfn) {
2232 /* update our first deferred PFN for this section */
2233 first_deferred_pfn = spfn;
2234
2235 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2236 touch_nmi_watchdog();
2237
2238 /* We should only stop along section boundaries */
2239 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2240 continue;
2241
2242 /* If our quota has been met we can stop here */
2243 if (nr_pages >= nr_pages_needed)
2244 break;
2245 }
2246
2247 pgdat->first_deferred_pfn = spfn;
2248 pgdat_resize_unlock(pgdat, &flags);
2249
2250 return nr_pages > 0;
2251 }
2252
2253 /*
2254 * deferred_grow_zone() is __init, but it is called from
2255 * get_page_from_freelist() during early boot until deferred_pages permanently
2256 * disables this call. This is why we have refdata wrapper to avoid warning,
2257 * and to ensure that the function body gets unloaded.
2258 */
2259 static bool __ref
2260 _deferred_grow_zone(struct zone *zone, unsigned int order)
2261 {
2262 return deferred_grow_zone(zone, order);
2263 }
2264
2265 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2266
2267 void __init page_alloc_init_late(void)
2268 {
2269 struct zone *zone;
2270 int nid;
2271
2272 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2273
2274 /* There will be num_node_state(N_MEMORY) threads */
2275 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2276 for_each_node_state(nid, N_MEMORY) {
2277 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2278 }
2279
2280 /* Block until all are initialised */
2281 wait_for_completion(&pgdat_init_all_done_comp);
2282
2283 /*
2284 * We initialized the rest of the deferred pages. Permanently disable
2285 * on-demand struct page initialization.
2286 */
2287 static_branch_disable(&deferred_pages);
2288
2289 /* Reinit limits that are based on free pages after the kernel is up */
2290 files_maxfiles_init();
2291 #endif
2292
2293 buffer_init();
2294
2295 /* Discard memblock private memory */
2296 memblock_discard();
2297
2298 for_each_node_state(nid, N_MEMORY)
2299 shuffle_free_memory(NODE_DATA(nid));
2300
2301 for_each_populated_zone(zone)
2302 set_zone_contiguous(zone);
2303 }
2304
2305 #ifdef CONFIG_CMA
2306 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2307 void __init init_cma_reserved_pageblock(struct page *page)
2308 {
2309 unsigned i = pageblock_nr_pages;
2310 struct page *p = page;
2311
2312 do {
2313 __ClearPageReserved(p);
2314 set_page_count(p, 0);
2315 } while (++p, --i);
2316
2317 set_pageblock_migratetype(page, MIGRATE_CMA);
2318 set_page_refcounted(page);
2319 __free_pages(page, pageblock_order);
2320
2321 adjust_managed_page_count(page, pageblock_nr_pages);
2322 page_zone(page)->cma_pages += pageblock_nr_pages;
2323 }
2324 #endif
2325
2326 /*
2327 * The order of subdivision here is critical for the IO subsystem.
2328 * Please do not alter this order without good reasons and regression
2329 * testing. Specifically, as large blocks of memory are subdivided,
2330 * the order in which smaller blocks are delivered depends on the order
2331 * they're subdivided in this function. This is the primary factor
2332 * influencing the order in which pages are delivered to the IO
2333 * subsystem according to empirical testing, and this is also justified
2334 * by considering the behavior of a buddy system containing a single
2335 * large block of memory acted on by a series of small allocations.
2336 * This behavior is a critical factor in sglist merging's success.
2337 *
2338 * -- nyc
2339 */
2340 static inline void expand(struct zone *zone, struct page *page,
2341 int low, int high, int migratetype)
2342 {
2343 unsigned long size = 1 << high;
2344
2345 while (high > low) {
2346 high--;
2347 size >>= 1;
2348 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2349
2350 /*
2351 * Mark as guard pages (or page), that will allow to
2352 * merge back to allocator when buddy will be freed.
2353 * Corresponding page table entries will not be touched,
2354 * pages will stay not present in virtual address space
2355 */
2356 if (set_page_guard(zone, &page[size], high, migratetype))
2357 continue;
2358
2359 add_to_free_list(&page[size], zone, high, migratetype);
2360 set_buddy_order(&page[size], high);
2361 }
2362 }
2363
2364 static void check_new_page_bad(struct page *page)
2365 {
2366 if (unlikely(page->flags & __PG_HWPOISON)) {
2367 /* Don't complain about hwpoisoned pages */
2368 page_mapcount_reset(page); /* remove PageBuddy */
2369 return;
2370 }
2371
2372 bad_page(page,
2373 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2374 }
2375
2376 /*
2377 * This page is about to be returned from the page allocator
2378 */
2379 static inline int check_new_page(struct page *page)
2380 {
2381 if (likely(page_expected_state(page,
2382 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2383 return 0;
2384
2385 check_new_page_bad(page);
2386 return 1;
2387 }
2388
2389 static bool check_new_pages(struct page *page, unsigned int order)
2390 {
2391 int i;
2392 for (i = 0; i < (1 << order); i++) {
2393 struct page *p = page + i;
2394
2395 if (unlikely(check_new_page(p)))
2396 return true;
2397 }
2398
2399 return false;
2400 }
2401
2402 #ifdef CONFIG_DEBUG_VM
2403 /*
2404 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2405 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2406 * also checked when pcp lists are refilled from the free lists.
2407 */
2408 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2409 {
2410 if (debug_pagealloc_enabled_static())
2411 return check_new_pages(page, order);
2412 else
2413 return false;
2414 }
2415
2416 static inline bool check_new_pcp(struct page *page, unsigned int order)
2417 {
2418 return check_new_pages(page, order);
2419 }
2420 #else
2421 /*
2422 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2423 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2424 * enabled, they are also checked when being allocated from the pcp lists.
2425 */
2426 static inline bool check_pcp_refill(struct page *page, unsigned int order)
2427 {
2428 return check_new_pages(page, order);
2429 }
2430 static inline bool check_new_pcp(struct page *page, unsigned int order)
2431 {
2432 if (debug_pagealloc_enabled_static())
2433 return check_new_pages(page, order);
2434 else
2435 return false;
2436 }
2437 #endif /* CONFIG_DEBUG_VM */
2438
2439 static inline bool should_skip_kasan_unpoison(gfp_t flags)
2440 {
2441 /* Don't skip if a software KASAN mode is enabled. */
2442 if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
2443 IS_ENABLED(CONFIG_KASAN_SW_TAGS))
2444 return false;
2445
2446 /* Skip, if hardware tag-based KASAN is not enabled. */
2447 if (!kasan_hw_tags_enabled())
2448 return true;
2449
2450 /*
2451 * With hardware tag-based KASAN enabled, skip if this has been
2452 * requested via __GFP_SKIP_KASAN_UNPOISON.
2453 */
2454 return flags & __GFP_SKIP_KASAN_UNPOISON;
2455 }
2456
2457 static inline bool should_skip_init(gfp_t flags)
2458 {
2459 /* Don't skip, if hardware tag-based KASAN is not enabled. */
2460 if (!kasan_hw_tags_enabled())
2461 return false;
2462
2463 /* For hardware tag-based KASAN, skip if requested. */
2464 return (flags & __GFP_SKIP_ZERO);
2465 }
2466
2467 inline void post_alloc_hook(struct page *page, unsigned int order,
2468 gfp_t gfp_flags)
2469 {
2470 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
2471 !should_skip_init(gfp_flags);
2472 bool init_tags = init && (gfp_flags & __GFP_ZEROTAGS);
2473 int i;
2474
2475 set_page_private(page, 0);
2476 set_page_refcounted(page);
2477
2478 arch_alloc_page(page, order);
2479 debug_pagealloc_map_pages(page, 1 << order);
2480
2481 /*
2482 * Page unpoisoning must happen before memory initialization.
2483 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2484 * allocations and the page unpoisoning code will complain.
2485 */
2486 kernel_unpoison_pages(page, 1 << order);
2487
2488 /*
2489 * As memory initialization might be integrated into KASAN,
2490 * KASAN unpoisoning and memory initializion code must be
2491 * kept together to avoid discrepancies in behavior.
2492 */
2493
2494 /*
2495 * If memory tags should be zeroed (which happens only when memory
2496 * should be initialized as well).
2497 */
2498 if (init_tags) {
2499 /* Initialize both memory and tags. */
2500 for (i = 0; i != 1 << order; ++i)
2501 tag_clear_highpage(page + i);
2502
2503 /* Note that memory is already initialized by the loop above. */
2504 init = false;
2505 }
2506 if (!should_skip_kasan_unpoison(gfp_flags)) {
2507 /* Unpoison shadow memory or set memory tags. */
2508 kasan_unpoison_pages(page, order, init);
2509
2510 /* Note that memory is already initialized by KASAN. */
2511 if (kasan_has_integrated_init())
2512 init = false;
2513 } else {
2514 /* Ensure page_address() dereferencing does not fault. */
2515 for (i = 0; i != 1 << order; ++i)
2516 page_kasan_tag_reset(page + i);
2517 }
2518 /* If memory is still not initialized, do it now. */
2519 if (init)
2520 kernel_init_pages(page, 1 << order);
2521 /* Propagate __GFP_SKIP_KASAN_POISON to page flags. */
2522 if (kasan_hw_tags_enabled() && (gfp_flags & __GFP_SKIP_KASAN_POISON))
2523 SetPageSkipKASanPoison(page);
2524
2525 set_page_owner(page, order, gfp_flags);
2526 page_table_check_alloc(page, order);
2527 }
2528
2529 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2530 unsigned int alloc_flags)
2531 {
2532 post_alloc_hook(page, order, gfp_flags);
2533
2534 if (order && (gfp_flags & __GFP_COMP))
2535 prep_compound_page(page, order);
2536
2537 /*
2538 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2539 * allocate the page. The expectation is that the caller is taking
2540 * steps that will free more memory. The caller should avoid the page
2541 * being used for !PFMEMALLOC purposes.
2542 */
2543 if (alloc_flags & ALLOC_NO_WATERMARKS)
2544 set_page_pfmemalloc(page);
2545 else
2546 clear_page_pfmemalloc(page);
2547 }
2548
2549 /*
2550 * Go through the free lists for the given migratetype and remove
2551 * the smallest available page from the freelists
2552 */
2553 static __always_inline
2554 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2555 int migratetype)
2556 {
2557 unsigned int current_order;
2558 struct free_area *area;
2559 struct page *page;
2560
2561 /* Find a page of the appropriate size in the preferred list */
2562 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2563 area = &(zone->free_area[current_order]);
2564 page = get_page_from_free_area(area, migratetype);
2565 if (!page)
2566 continue;
2567 del_page_from_free_list(page, zone, current_order);
2568 expand(zone, page, order, current_order, migratetype);
2569 set_pcppage_migratetype(page, migratetype);
2570 trace_mm_page_alloc_zone_locked(page, order, migratetype,
2571 pcp_allowed_order(order) &&
2572 migratetype < MIGRATE_PCPTYPES);
2573 return page;
2574 }
2575
2576 return NULL;
2577 }
2578
2579
2580 /*
2581 * This array describes the order lists are fallen back to when
2582 * the free lists for the desirable migrate type are depleted
2583 *
2584 * The other migratetypes do not have fallbacks.
2585 */
2586 static int fallbacks[MIGRATE_TYPES][3] = {
2587 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2588 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2589 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2590 };
2591
2592 #ifdef CONFIG_CMA
2593 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2594 unsigned int order)
2595 {
2596 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2597 }
2598 #else
2599 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2600 unsigned int order) { return NULL; }
2601 #endif
2602
2603 /*
2604 * Move the free pages in a range to the freelist tail of the requested type.
2605 * Note that start_page and end_pages are not aligned on a pageblock
2606 * boundary. If alignment is required, use move_freepages_block()
2607 */
2608 static int move_freepages(struct zone *zone,
2609 unsigned long start_pfn, unsigned long end_pfn,
2610 int migratetype, int *num_movable)
2611 {
2612 struct page *page;
2613 unsigned long pfn;
2614 unsigned int order;
2615 int pages_moved = 0;
2616
2617 for (pfn = start_pfn; pfn <= end_pfn;) {
2618 page = pfn_to_page(pfn);
2619 if (!PageBuddy(page)) {
2620 /*
2621 * We assume that pages that could be isolated for
2622 * migration are movable. But we don't actually try
2623 * isolating, as that would be expensive.
2624 */
2625 if (num_movable &&
2626 (PageLRU(page) || __PageMovable(page)))
2627 (*num_movable)++;
2628 pfn++;
2629 continue;
2630 }
2631
2632 /* Make sure we are not inadvertently changing nodes */
2633 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2634 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2635
2636 order = buddy_order(page);
2637 move_to_free_list(page, zone, order, migratetype);
2638 pfn += 1 << order;
2639 pages_moved += 1 << order;
2640 }
2641
2642 return pages_moved;
2643 }
2644
2645 int move_freepages_block(struct zone *zone, struct page *page,
2646 int migratetype, int *num_movable)
2647 {
2648 unsigned long start_pfn, end_pfn, pfn;
2649
2650 if (num_movable)
2651 *num_movable = 0;
2652
2653 pfn = page_to_pfn(page);
2654 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2655 end_pfn = start_pfn + pageblock_nr_pages - 1;
2656
2657 /* Do not cross zone boundaries */
2658 if (!zone_spans_pfn(zone, start_pfn))
2659 start_pfn = pfn;
2660 if (!zone_spans_pfn(zone, end_pfn))
2661 return 0;
2662
2663 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2664 num_movable);
2665 }
2666
2667 static void change_pageblock_range(struct page *pageblock_page,
2668 int start_order, int migratetype)
2669 {
2670 int nr_pageblocks = 1 << (start_order - pageblock_order);
2671
2672 while (nr_pageblocks--) {
2673 set_pageblock_migratetype(pageblock_page, migratetype);
2674 pageblock_page += pageblock_nr_pages;
2675 }
2676 }
2677
2678 /*
2679 * When we are falling back to another migratetype during allocation, try to
2680 * steal extra free pages from the same pageblocks to satisfy further
2681 * allocations, instead of polluting multiple pageblocks.
2682 *
2683 * If we are stealing a relatively large buddy page, it is likely there will
2684 * be more free pages in the pageblock, so try to steal them all. For
2685 * reclaimable and unmovable allocations, we steal regardless of page size,
2686 * as fragmentation caused by those allocations polluting movable pageblocks
2687 * is worse than movable allocations stealing from unmovable and reclaimable
2688 * pageblocks.
2689 */
2690 static bool can_steal_fallback(unsigned int order, int start_mt)
2691 {
2692 /*
2693 * Leaving this order check is intended, although there is
2694 * relaxed order check in next check. The reason is that
2695 * we can actually steal whole pageblock if this condition met,
2696 * but, below check doesn't guarantee it and that is just heuristic
2697 * so could be changed anytime.
2698 */
2699 if (order >= pageblock_order)
2700 return true;
2701
2702 if (order >= pageblock_order / 2 ||
2703 start_mt == MIGRATE_RECLAIMABLE ||
2704 start_mt == MIGRATE_UNMOVABLE ||
2705 page_group_by_mobility_disabled)
2706 return true;
2707
2708 return false;
2709 }
2710
2711 static inline bool boost_watermark(struct zone *zone)
2712 {
2713 unsigned long max_boost;
2714
2715 if (!watermark_boost_factor)
2716 return false;
2717 /*
2718 * Don't bother in zones that are unlikely to produce results.
2719 * On small machines, including kdump capture kernels running
2720 * in a small area, boosting the watermark can cause an out of
2721 * memory situation immediately.
2722 */
2723 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2724 return false;
2725
2726 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2727 watermark_boost_factor, 10000);
2728
2729 /*
2730 * high watermark may be uninitialised if fragmentation occurs
2731 * very early in boot so do not boost. We do not fall
2732 * through and boost by pageblock_nr_pages as failing
2733 * allocations that early means that reclaim is not going
2734 * to help and it may even be impossible to reclaim the
2735 * boosted watermark resulting in a hang.
2736 */
2737 if (!max_boost)
2738 return false;
2739
2740 max_boost = max(pageblock_nr_pages, max_boost);
2741
2742 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2743 max_boost);
2744
2745 return true;
2746 }
2747
2748 /*
2749 * This function implements actual steal behaviour. If order is large enough,
2750 * we can steal whole pageblock. If not, we first move freepages in this
2751 * pageblock to our migratetype and determine how many already-allocated pages
2752 * are there in the pageblock with a compatible migratetype. If at least half
2753 * of pages are free or compatible, we can change migratetype of the pageblock
2754 * itself, so pages freed in the future will be put on the correct free list.
2755 */
2756 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2757 unsigned int alloc_flags, int start_type, bool whole_block)
2758 {
2759 unsigned int current_order = buddy_order(page);
2760 int free_pages, movable_pages, alike_pages;
2761 int old_block_type;
2762
2763 old_block_type = get_pageblock_migratetype(page);
2764
2765 /*
2766 * This can happen due to races and we want to prevent broken
2767 * highatomic accounting.
2768 */
2769 if (is_migrate_highatomic(old_block_type))
2770 goto single_page;
2771
2772 /* Take ownership for orders >= pageblock_order */
2773 if (current_order >= pageblock_order) {
2774 change_pageblock_range(page, current_order, start_type);
2775 goto single_page;
2776 }
2777
2778 /*
2779 * Boost watermarks to increase reclaim pressure to reduce the
2780 * likelihood of future fallbacks. Wake kswapd now as the node
2781 * may be balanced overall and kswapd will not wake naturally.
2782 */
2783 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2784 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2785
2786 /* We are not allowed to try stealing from the whole block */
2787 if (!whole_block)
2788 goto single_page;
2789
2790 free_pages = move_freepages_block(zone, page, start_type,
2791 &movable_pages);
2792 /*
2793 * Determine how many pages are compatible with our allocation.
2794 * For movable allocation, it's the number of movable pages which
2795 * we just obtained. For other types it's a bit more tricky.
2796 */
2797 if (start_type == MIGRATE_MOVABLE) {
2798 alike_pages = movable_pages;
2799 } else {
2800 /*
2801 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2802 * to MOVABLE pageblock, consider all non-movable pages as
2803 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2804 * vice versa, be conservative since we can't distinguish the
2805 * exact migratetype of non-movable pages.
2806 */
2807 if (old_block_type == MIGRATE_MOVABLE)
2808 alike_pages = pageblock_nr_pages
2809 - (free_pages + movable_pages);
2810 else
2811 alike_pages = 0;
2812 }
2813
2814 /* moving whole block can fail due to zone boundary conditions */
2815 if (!free_pages)
2816 goto single_page;
2817
2818 /*
2819 * If a sufficient number of pages in the block are either free or of
2820 * comparable migratability as our allocation, claim the whole block.
2821 */
2822 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2823 page_group_by_mobility_disabled)
2824 set_pageblock_migratetype(page, start_type);
2825
2826 return;
2827
2828 single_page:
2829 move_to_free_list(page, zone, current_order, start_type);
2830 }
2831
2832 /*
2833 * Check whether there is a suitable fallback freepage with requested order.
2834 * If only_stealable is true, this function returns fallback_mt only if
2835 * we can steal other freepages all together. This would help to reduce
2836 * fragmentation due to mixed migratetype pages in one pageblock.
2837 */
2838 int find_suitable_fallback(struct free_area *area, unsigned int order,
2839 int migratetype, bool only_stealable, bool *can_steal)
2840 {
2841 int i;
2842 int fallback_mt;
2843
2844 if (area->nr_free == 0)
2845 return -1;
2846
2847 *can_steal = false;
2848 for (i = 0;; i++) {
2849 fallback_mt = fallbacks[migratetype][i];
2850 if (fallback_mt == MIGRATE_TYPES)
2851 break;
2852
2853 if (free_area_empty(area, fallback_mt))
2854 continue;
2855
2856 if (can_steal_fallback(order, migratetype))
2857 *can_steal = true;
2858
2859 if (!only_stealable)
2860 return fallback_mt;
2861
2862 if (*can_steal)
2863 return fallback_mt;
2864 }
2865
2866 return -1;
2867 }
2868
2869 /*
2870 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2871 * there are no empty page blocks that contain a page with a suitable order
2872 */
2873 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2874 unsigned int alloc_order)
2875 {
2876 int mt;
2877 unsigned long max_managed, flags;
2878
2879 /*
2880 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2881 * Check is race-prone but harmless.
2882 */
2883 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2884 if (zone->nr_reserved_highatomic >= max_managed)
2885 return;
2886
2887 spin_lock_irqsave(&zone->lock, flags);
2888
2889 /* Recheck the nr_reserved_highatomic limit under the lock */
2890 if (zone->nr_reserved_highatomic >= max_managed)
2891 goto out_unlock;
2892
2893 /* Yoink! */
2894 mt = get_pageblock_migratetype(page);
2895 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2896 if (migratetype_is_mergeable(mt)) {
2897 zone->nr_reserved_highatomic += pageblock_nr_pages;
2898 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2899 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2900 }
2901
2902 out_unlock:
2903 spin_unlock_irqrestore(&zone->lock, flags);
2904 }
2905
2906 /*
2907 * Used when an allocation is about to fail under memory pressure. This
2908 * potentially hurts the reliability of high-order allocations when under
2909 * intense memory pressure but failed atomic allocations should be easier
2910 * to recover from than an OOM.
2911 *
2912 * If @force is true, try to unreserve a pageblock even though highatomic
2913 * pageblock is exhausted.
2914 */
2915 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2916 bool force)
2917 {
2918 struct zonelist *zonelist = ac->zonelist;
2919 unsigned long flags;
2920 struct zoneref *z;
2921 struct zone *zone;
2922 struct page *page;
2923 int order;
2924 bool ret;
2925
2926 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2927 ac->nodemask) {
2928 /*
2929 * Preserve at least one pageblock unless memory pressure
2930 * is really high.
2931 */
2932 if (!force && zone->nr_reserved_highatomic <=
2933 pageblock_nr_pages)
2934 continue;
2935
2936 spin_lock_irqsave(&zone->lock, flags);
2937 for (order = 0; order < MAX_ORDER; order++) {
2938 struct free_area *area = &(zone->free_area[order]);
2939
2940 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2941 if (!page)
2942 continue;
2943
2944 /*
2945 * In page freeing path, migratetype change is racy so
2946 * we can counter several free pages in a pageblock
2947 * in this loop although we changed the pageblock type
2948 * from highatomic to ac->migratetype. So we should
2949 * adjust the count once.
2950 */
2951 if (is_migrate_highatomic_page(page)) {
2952 /*
2953 * It should never happen but changes to
2954 * locking could inadvertently allow a per-cpu
2955 * drain to add pages to MIGRATE_HIGHATOMIC
2956 * while unreserving so be safe and watch for
2957 * underflows.
2958 */
2959 zone->nr_reserved_highatomic -= min(
2960 pageblock_nr_pages,
2961 zone->nr_reserved_highatomic);
2962 }
2963
2964 /*
2965 * Convert to ac->migratetype and avoid the normal
2966 * pageblock stealing heuristics. Minimally, the caller
2967 * is doing the work and needs the pages. More
2968 * importantly, if the block was always converted to
2969 * MIGRATE_UNMOVABLE or another type then the number
2970 * of pageblocks that cannot be completely freed
2971 * may increase.
2972 */
2973 set_pageblock_migratetype(page, ac->migratetype);
2974 ret = move_freepages_block(zone, page, ac->migratetype,
2975 NULL);
2976 if (ret) {
2977 spin_unlock_irqrestore(&zone->lock, flags);
2978 return ret;
2979 }
2980 }
2981 spin_unlock_irqrestore(&zone->lock, flags);
2982 }
2983
2984 return false;
2985 }
2986
2987 /*
2988 * Try finding a free buddy page on the fallback list and put it on the free
2989 * list of requested migratetype, possibly along with other pages from the same
2990 * block, depending on fragmentation avoidance heuristics. Returns true if
2991 * fallback was found so that __rmqueue_smallest() can grab it.
2992 *
2993 * The use of signed ints for order and current_order is a deliberate
2994 * deviation from the rest of this file, to make the for loop
2995 * condition simpler.
2996 */
2997 static __always_inline bool
2998 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2999 unsigned int alloc_flags)
3000 {
3001 struct free_area *area;
3002 int current_order;
3003 int min_order = order;
3004 struct page *page;
3005 int fallback_mt;
3006 bool can_steal;
3007
3008 /*
3009 * Do not steal pages from freelists belonging to other pageblocks
3010 * i.e. orders < pageblock_order. If there are no local zones free,
3011 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
3012 */
3013 if (alloc_flags & ALLOC_NOFRAGMENT)
3014 min_order = pageblock_order;
3015
3016 /*
3017 * Find the largest available free page in the other list. This roughly
3018 * approximates finding the pageblock with the most free pages, which
3019 * would be too costly to do exactly.
3020 */
3021 for (current_order = MAX_ORDER - 1; current_order >= min_order;
3022 --current_order) {
3023 area = &(zone->free_area[current_order]);
3024 fallback_mt = find_suitable_fallback(area, current_order,
3025 start_migratetype, false, &can_steal);
3026 if (fallback_mt == -1)
3027 continue;
3028
3029 /*
3030 * We cannot steal all free pages from the pageblock and the
3031 * requested migratetype is movable. In that case it's better to
3032 * steal and split the smallest available page instead of the
3033 * largest available page, because even if the next movable
3034 * allocation falls back into a different pageblock than this
3035 * one, it won't cause permanent fragmentation.
3036 */
3037 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
3038 && current_order > order)
3039 goto find_smallest;
3040
3041 goto do_steal;
3042 }
3043
3044 return false;
3045
3046 find_smallest:
3047 for (current_order = order; current_order < MAX_ORDER;
3048 current_order++) {
3049 area = &(zone->free_area[current_order]);
3050 fallback_mt = find_suitable_fallback(area, current_order,
3051 start_migratetype, false, &can_steal);
3052 if (fallback_mt != -1)
3053 break;
3054 }
3055
3056 /*
3057 * This should not happen - we already found a suitable fallback
3058 * when looking for the largest page.
3059 */
3060 VM_BUG_ON(current_order == MAX_ORDER);
3061
3062 do_steal:
3063 page = get_page_from_free_area(area, fallback_mt);
3064
3065 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
3066 can_steal);
3067
3068 trace_mm_page_alloc_extfrag(page, order, current_order,
3069 start_migratetype, fallback_mt);
3070
3071 return true;
3072
3073 }
3074
3075 /*
3076 * Do the hard work of removing an element from the buddy allocator.
3077 * Call me with the zone->lock already held.
3078 */
3079 static __always_inline struct page *
3080 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3081 unsigned int alloc_flags)
3082 {
3083 struct page *page;
3084
3085 if (IS_ENABLED(CONFIG_CMA)) {
3086 /*
3087 * Balance movable allocations between regular and CMA areas by
3088 * allocating from CMA when over half of the zone's free memory
3089 * is in the CMA area.
3090 */
3091 if (alloc_flags & ALLOC_CMA &&
3092 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3093 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3094 page = __rmqueue_cma_fallback(zone, order);
3095 if (page)
3096 return page;
3097 }
3098 }
3099 retry:
3100 page = __rmqueue_smallest(zone, order, migratetype);
3101 if (unlikely(!page)) {
3102 if (alloc_flags & ALLOC_CMA)
3103 page = __rmqueue_cma_fallback(zone, order);
3104
3105 if (!page && __rmqueue_fallback(zone, order, migratetype,
3106 alloc_flags))
3107 goto retry;
3108 }
3109 return page;
3110 }
3111
3112 /*
3113 * Obtain a specified number of elements from the buddy allocator, all under
3114 * a single hold of the lock, for efficiency. Add them to the supplied list.
3115 * Returns the number of new pages which were placed at *list.
3116 */
3117 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3118 unsigned long count, struct list_head *list,
3119 int migratetype, unsigned int alloc_flags)
3120 {
3121 int i, allocated = 0;
3122
3123 /* Caller must hold IRQ-safe pcp->lock so IRQs are disabled. */
3124 spin_lock(&zone->lock);
3125 for (i = 0; i < count; ++i) {
3126 struct page *page = __rmqueue(zone, order, migratetype,
3127 alloc_flags);
3128 if (unlikely(page == NULL))
3129 break;
3130
3131 if (unlikely(check_pcp_refill(page, order)))
3132 continue;
3133
3134 /*
3135 * Split buddy pages returned by expand() are received here in
3136 * physical page order. The page is added to the tail of
3137 * caller's list. From the callers perspective, the linked list
3138 * is ordered by page number under some conditions. This is
3139 * useful for IO devices that can forward direction from the
3140 * head, thus also in the physical page order. This is useful
3141 * for IO devices that can merge IO requests if the physical
3142 * pages are ordered properly.
3143 */
3144 list_add_tail(&page->pcp_list, list);
3145 allocated++;
3146 if (is_migrate_cma(get_pcppage_migratetype(page)))
3147 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3148 -(1 << order));
3149 }
3150
3151 /*
3152 * i pages were removed from the buddy list even if some leak due
3153 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3154 * on i. Do not confuse with 'allocated' which is the number of
3155 * pages added to the pcp list.
3156 */
3157 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3158 spin_unlock(&zone->lock);
3159 return allocated;
3160 }
3161
3162 #ifdef CONFIG_NUMA
3163 /*
3164 * Called from the vmstat counter updater to drain pagesets of this
3165 * currently executing processor on remote nodes after they have
3166 * expired.
3167 */
3168 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3169 {
3170 int to_drain, batch;
3171
3172 batch = READ_ONCE(pcp->batch);
3173 to_drain = min(pcp->count, batch);
3174 if (to_drain > 0) {
3175 unsigned long flags;
3176
3177 /*
3178 * free_pcppages_bulk expects IRQs disabled for zone->lock
3179 * so even though pcp->lock is not intended to be IRQ-safe,
3180 * it's needed in this context.
3181 */
3182 spin_lock_irqsave(&pcp->lock, flags);
3183 free_pcppages_bulk(zone, to_drain, pcp, 0);
3184 spin_unlock_irqrestore(&pcp->lock, flags);
3185 }
3186 }
3187 #endif
3188
3189 /*
3190 * Drain pcplists of the indicated processor and zone.
3191 */
3192 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3193 {
3194 struct per_cpu_pages *pcp;
3195
3196 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3197 if (pcp->count) {
3198 unsigned long flags;
3199
3200 /* See drain_zone_pages on why this is disabling IRQs */
3201 spin_lock_irqsave(&pcp->lock, flags);
3202 free_pcppages_bulk(zone, pcp->count, pcp, 0);
3203 spin_unlock_irqrestore(&pcp->lock, flags);
3204 }
3205 }
3206
3207 /*
3208 * Drain pcplists of all zones on the indicated processor.
3209 */
3210 static void drain_pages(unsigned int cpu)
3211 {
3212 struct zone *zone;
3213
3214 for_each_populated_zone(zone) {
3215 drain_pages_zone(cpu, zone);
3216 }
3217 }
3218
3219 /*
3220 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3221 */
3222 void drain_local_pages(struct zone *zone)
3223 {
3224 int cpu = smp_processor_id();
3225
3226 if (zone)
3227 drain_pages_zone(cpu, zone);
3228 else
3229 drain_pages(cpu);
3230 }
3231
3232 /*
3233 * The implementation of drain_all_pages(), exposing an extra parameter to
3234 * drain on all cpus.
3235 *
3236 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3237 * not empty. The check for non-emptiness can however race with a free to
3238 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3239 * that need the guarantee that every CPU has drained can disable the
3240 * optimizing racy check.
3241 */
3242 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3243 {
3244 int cpu;
3245
3246 /*
3247 * Allocate in the BSS so we won't require allocation in
3248 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3249 */
3250 static cpumask_t cpus_with_pcps;
3251
3252 /*
3253 * Do not drain if one is already in progress unless it's specific to
3254 * a zone. Such callers are primarily CMA and memory hotplug and need
3255 * the drain to be complete when the call returns.
3256 */
3257 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3258 if (!zone)
3259 return;
3260 mutex_lock(&pcpu_drain_mutex);
3261 }
3262
3263 /*
3264 * We don't care about racing with CPU hotplug event
3265 * as offline notification will cause the notified
3266 * cpu to drain that CPU pcps and on_each_cpu_mask
3267 * disables preemption as part of its processing
3268 */
3269 for_each_online_cpu(cpu) {
3270 struct per_cpu_pages *pcp;
3271 struct zone *z;
3272 bool has_pcps = false;
3273
3274 if (force_all_cpus) {
3275 /*
3276 * The pcp.count check is racy, some callers need a
3277 * guarantee that no cpu is missed.
3278 */
3279 has_pcps = true;
3280 } else if (zone) {
3281 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3282 if (pcp->count)
3283 has_pcps = true;
3284 } else {
3285 for_each_populated_zone(z) {
3286 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3287 if (pcp->count) {
3288 has_pcps = true;
3289 break;
3290 }
3291 }
3292 }
3293
3294 if (has_pcps)
3295 cpumask_set_cpu(cpu, &cpus_with_pcps);
3296 else
3297 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3298 }
3299
3300 for_each_cpu(cpu, &cpus_with_pcps) {
3301 if (zone)
3302 drain_pages_zone(cpu, zone);
3303 else
3304 drain_pages(cpu);
3305 }
3306
3307 mutex_unlock(&pcpu_drain_mutex);
3308 }
3309
3310 /*
3311 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3312 *
3313 * When zone parameter is non-NULL, spill just the single zone's pages.
3314 */
3315 void drain_all_pages(struct zone *zone)
3316 {
3317 __drain_all_pages(zone, false);
3318 }
3319
3320 #ifdef CONFIG_HIBERNATION
3321
3322 /*
3323 * Touch the watchdog for every WD_PAGE_COUNT pages.
3324 */
3325 #define WD_PAGE_COUNT (128*1024)
3326
3327 void mark_free_pages(struct zone *zone)
3328 {
3329 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3330 unsigned long flags;
3331 unsigned int order, t;
3332 struct page *page;
3333
3334 if (zone_is_empty(zone))
3335 return;
3336
3337 spin_lock_irqsave(&zone->lock, flags);
3338
3339 max_zone_pfn = zone_end_pfn(zone);
3340 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3341 if (pfn_valid(pfn)) {
3342 page = pfn_to_page(pfn);
3343
3344 if (!--page_count) {
3345 touch_nmi_watchdog();
3346 page_count = WD_PAGE_COUNT;
3347 }
3348
3349 if (page_zone(page) != zone)
3350 continue;
3351
3352 if (!swsusp_page_is_forbidden(page))
3353 swsusp_unset_page_free(page);
3354 }
3355
3356 for_each_migratetype_order(order, t) {
3357 list_for_each_entry(page,
3358 &zone->free_area[order].free_list[t], buddy_list) {
3359 unsigned long i;
3360
3361 pfn = page_to_pfn(page);
3362 for (i = 0; i < (1UL << order); i++) {
3363 if (!--page_count) {
3364 touch_nmi_watchdog();
3365 page_count = WD_PAGE_COUNT;
3366 }
3367 swsusp_set_page_free(pfn_to_page(pfn + i));
3368 }
3369 }
3370 }
3371 spin_unlock_irqrestore(&zone->lock, flags);
3372 }
3373 #endif /* CONFIG_PM */
3374
3375 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3376 unsigned int order)
3377 {
3378 int migratetype;
3379
3380 if (!free_pcp_prepare(page, order))
3381 return false;
3382
3383 migratetype = get_pfnblock_migratetype(page, pfn);
3384 set_pcppage_migratetype(page, migratetype);
3385 return true;
3386 }
3387
3388 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch,
3389 bool free_high)
3390 {
3391 int min_nr_free, max_nr_free;
3392
3393 /* Free everything if batch freeing high-order pages. */
3394 if (unlikely(free_high))
3395 return pcp->count;
3396
3397 /* Check for PCP disabled or boot pageset */
3398 if (unlikely(high < batch))
3399 return 1;
3400
3401 /* Leave at least pcp->batch pages on the list */
3402 min_nr_free = batch;
3403 max_nr_free = high - batch;
3404
3405 /*
3406 * Double the number of pages freed each time there is subsequent
3407 * freeing of pages without any allocation.
3408 */
3409 batch <<= pcp->free_factor;
3410 if (batch < max_nr_free)
3411 pcp->free_factor++;
3412 batch = clamp(batch, min_nr_free, max_nr_free);
3413
3414 return batch;
3415 }
3416
3417 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
3418 bool free_high)
3419 {
3420 int high = READ_ONCE(pcp->high);
3421
3422 if (unlikely(!high || free_high))
3423 return 0;
3424
3425 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3426 return high;
3427
3428 /*
3429 * If reclaim is active, limit the number of pages that can be
3430 * stored on pcp lists
3431 */
3432 return min(READ_ONCE(pcp->batch) << 2, high);
3433 }
3434
3435 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
3436 struct page *page, int migratetype,
3437 unsigned int order)
3438 {
3439 int high;
3440 int pindex;
3441 bool free_high;
3442
3443 __count_vm_event(PGFREE);
3444 pindex = order_to_pindex(migratetype, order);
3445 list_add(&page->pcp_list, &pcp->lists[pindex]);
3446 pcp->count += 1 << order;
3447
3448 /*
3449 * As high-order pages other than THP's stored on PCP can contribute
3450 * to fragmentation, limit the number stored when PCP is heavily
3451 * freeing without allocation. The remainder after bulk freeing
3452 * stops will be drained from vmstat refresh context.
3453 */
3454 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER);
3455
3456 high = nr_pcp_high(pcp, zone, free_high);
3457 if (pcp->count >= high) {
3458 int batch = READ_ONCE(pcp->batch);
3459
3460 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex);
3461 }
3462 }
3463
3464 /*
3465 * Free a pcp page
3466 */
3467 void free_unref_page(struct page *page, unsigned int order)
3468 {
3469 unsigned long flags;
3470 unsigned long __maybe_unused UP_flags;
3471 struct per_cpu_pages *pcp;
3472 struct zone *zone;
3473 unsigned long pfn = page_to_pfn(page);
3474 int migratetype;
3475
3476 if (!free_unref_page_prepare(page, pfn, order))
3477 return;
3478
3479 /*
3480 * We only track unmovable, reclaimable and movable on pcp lists.
3481 * Place ISOLATE pages on the isolated list because they are being
3482 * offlined but treat HIGHATOMIC as movable pages so we can get those
3483 * areas back if necessary. Otherwise, we may have to free
3484 * excessively into the page allocator
3485 */
3486 migratetype = get_pcppage_migratetype(page);
3487 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3488 if (unlikely(is_migrate_isolate(migratetype))) {
3489 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3490 return;
3491 }
3492 migratetype = MIGRATE_MOVABLE;
3493 }
3494
3495 zone = page_zone(page);
3496 pcp_trylock_prepare(UP_flags);
3497 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3498 if (pcp) {
3499 free_unref_page_commit(zone, pcp, page, migratetype, order);
3500 pcp_spin_unlock_irqrestore(pcp, flags);
3501 } else {
3502 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
3503 }
3504 pcp_trylock_finish(UP_flags);
3505 }
3506
3507 /*
3508 * Free a list of 0-order pages
3509 */
3510 void free_unref_page_list(struct list_head *list)
3511 {
3512 struct page *page, *next;
3513 struct per_cpu_pages *pcp = NULL;
3514 struct zone *locked_zone = NULL;
3515 unsigned long flags;
3516 int batch_count = 0;
3517 int migratetype;
3518
3519 /* Prepare pages for freeing */
3520 list_for_each_entry_safe(page, next, list, lru) {
3521 unsigned long pfn = page_to_pfn(page);
3522 if (!free_unref_page_prepare(page, pfn, 0)) {
3523 list_del(&page->lru);
3524 continue;
3525 }
3526
3527 /*
3528 * Free isolated pages directly to the allocator, see
3529 * comment in free_unref_page.
3530 */
3531 migratetype = get_pcppage_migratetype(page);
3532 if (unlikely(is_migrate_isolate(migratetype))) {
3533 list_del(&page->lru);
3534 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3535 continue;
3536 }
3537 }
3538
3539 list_for_each_entry_safe(page, next, list, lru) {
3540 struct zone *zone = page_zone(page);
3541
3542 /* Different zone, different pcp lock. */
3543 if (zone != locked_zone) {
3544 if (pcp)
3545 pcp_spin_unlock_irqrestore(pcp, flags);
3546
3547 locked_zone = zone;
3548 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3549 }
3550
3551 /*
3552 * Non-isolated types over MIGRATE_PCPTYPES get added
3553 * to the MIGRATE_MOVABLE pcp list.
3554 */
3555 migratetype = get_pcppage_migratetype(page);
3556 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3557 migratetype = MIGRATE_MOVABLE;
3558
3559 trace_mm_page_free_batched(page);
3560 free_unref_page_commit(zone, pcp, page, migratetype, 0);
3561
3562 /*
3563 * Guard against excessive IRQ disabled times when we get
3564 * a large list of pages to free.
3565 */
3566 if (++batch_count == SWAP_CLUSTER_MAX) {
3567 pcp_spin_unlock_irqrestore(pcp, flags);
3568 batch_count = 0;
3569 pcp = pcp_spin_lock_irqsave(locked_zone->per_cpu_pageset, flags);
3570 }
3571 }
3572
3573 if (pcp)
3574 pcp_spin_unlock_irqrestore(pcp, flags);
3575 }
3576
3577 /*
3578 * split_page takes a non-compound higher-order page, and splits it into
3579 * n (1<<order) sub-pages: page[0..n]
3580 * Each sub-page must be freed individually.
3581 *
3582 * Note: this is probably too low level an operation for use in drivers.
3583 * Please consult with lkml before using this in your driver.
3584 */
3585 void split_page(struct page *page, unsigned int order)
3586 {
3587 int i;
3588
3589 VM_BUG_ON_PAGE(PageCompound(page), page);
3590 VM_BUG_ON_PAGE(!page_count(page), page);
3591
3592 for (i = 1; i < (1 << order); i++)
3593 set_page_refcounted(page + i);
3594 split_page_owner(page, 1 << order);
3595 split_page_memcg(page, 1 << order);
3596 }
3597 EXPORT_SYMBOL_GPL(split_page);
3598
3599 int __isolate_free_page(struct page *page, unsigned int order)
3600 {
3601 unsigned long watermark;
3602 struct zone *zone;
3603 int mt;
3604
3605 BUG_ON(!PageBuddy(page));
3606
3607 zone = page_zone(page);
3608 mt = get_pageblock_migratetype(page);
3609
3610 if (!is_migrate_isolate(mt)) {
3611 /*
3612 * Obey watermarks as if the page was being allocated. We can
3613 * emulate a high-order watermark check with a raised order-0
3614 * watermark, because we already know our high-order page
3615 * exists.
3616 */
3617 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3618 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3619 return 0;
3620
3621 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3622 }
3623
3624 /* Remove page from free list */
3625
3626 del_page_from_free_list(page, zone, order);
3627
3628 /*
3629 * Set the pageblock if the isolated page is at least half of a
3630 * pageblock
3631 */
3632 if (order >= pageblock_order - 1) {
3633 struct page *endpage = page + (1 << order) - 1;
3634 for (; page < endpage; page += pageblock_nr_pages) {
3635 int mt = get_pageblock_migratetype(page);
3636 /*
3637 * Only change normal pageblocks (i.e., they can merge
3638 * with others)
3639 */
3640 if (migratetype_is_mergeable(mt))
3641 set_pageblock_migratetype(page,
3642 MIGRATE_MOVABLE);
3643 }
3644 }
3645
3646
3647 return 1UL << order;
3648 }
3649
3650 /**
3651 * __putback_isolated_page - Return a now-isolated page back where we got it
3652 * @page: Page that was isolated
3653 * @order: Order of the isolated page
3654 * @mt: The page's pageblock's migratetype
3655 *
3656 * This function is meant to return a page pulled from the free lists via
3657 * __isolate_free_page back to the free lists they were pulled from.
3658 */
3659 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3660 {
3661 struct zone *zone = page_zone(page);
3662
3663 /* zone lock should be held when this function is called */
3664 lockdep_assert_held(&zone->lock);
3665
3666 /* Return isolated page to tail of freelist. */
3667 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3668 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3669 }
3670
3671 /*
3672 * Update NUMA hit/miss statistics
3673 *
3674 * Must be called with interrupts disabled.
3675 */
3676 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3677 long nr_account)
3678 {
3679 #ifdef CONFIG_NUMA
3680 enum numa_stat_item local_stat = NUMA_LOCAL;
3681
3682 /* skip numa counters update if numa stats is disabled */
3683 if (!static_branch_likely(&vm_numa_stat_key))
3684 return;
3685
3686 if (zone_to_nid(z) != numa_node_id())
3687 local_stat = NUMA_OTHER;
3688
3689 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3690 __count_numa_events(z, NUMA_HIT, nr_account);
3691 else {
3692 __count_numa_events(z, NUMA_MISS, nr_account);
3693 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3694 }
3695 __count_numa_events(z, local_stat, nr_account);
3696 #endif
3697 }
3698
3699 static __always_inline
3700 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
3701 unsigned int order, unsigned int alloc_flags,
3702 int migratetype)
3703 {
3704 struct page *page;
3705 unsigned long flags;
3706
3707 do {
3708 page = NULL;
3709 spin_lock_irqsave(&zone->lock, flags);
3710 /*
3711 * order-0 request can reach here when the pcplist is skipped
3712 * due to non-CMA allocation context. HIGHATOMIC area is
3713 * reserved for high-order atomic allocation, so order-0
3714 * request should skip it.
3715 */
3716 if (order > 0 && alloc_flags & ALLOC_HARDER)
3717 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3718 if (!page) {
3719 page = __rmqueue(zone, order, migratetype, alloc_flags);
3720 if (!page) {
3721 spin_unlock_irqrestore(&zone->lock, flags);
3722 return NULL;
3723 }
3724 }
3725 __mod_zone_freepage_state(zone, -(1 << order),
3726 get_pcppage_migratetype(page));
3727 spin_unlock_irqrestore(&zone->lock, flags);
3728 } while (check_new_pages(page, order));
3729
3730 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3731 zone_statistics(preferred_zone, zone, 1);
3732
3733 return page;
3734 }
3735
3736 /* Remove page from the per-cpu list, caller must protect the list */
3737 static inline
3738 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3739 int migratetype,
3740 unsigned int alloc_flags,
3741 struct per_cpu_pages *pcp,
3742 struct list_head *list)
3743 {
3744 struct page *page;
3745
3746 do {
3747 if (list_empty(list)) {
3748 int batch = READ_ONCE(pcp->batch);
3749 int alloced;
3750
3751 /*
3752 * Scale batch relative to order if batch implies
3753 * free pages can be stored on the PCP. Batch can
3754 * be 1 for small zones or for boot pagesets which
3755 * should never store free pages as the pages may
3756 * belong to arbitrary zones.
3757 */
3758 if (batch > 1)
3759 batch = max(batch >> order, 2);
3760 alloced = rmqueue_bulk(zone, order,
3761 batch, list,
3762 migratetype, alloc_flags);
3763
3764 pcp->count += alloced << order;
3765 if (unlikely(list_empty(list)))
3766 return NULL;
3767 }
3768
3769 page = list_first_entry(list, struct page, pcp_list);
3770 list_del(&page->pcp_list);
3771 pcp->count -= 1 << order;
3772 } while (check_new_pcp(page, order));
3773
3774 return page;
3775 }
3776
3777 /* Lock and remove page from the per-cpu list */
3778 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3779 struct zone *zone, unsigned int order,
3780 gfp_t gfp_flags, int migratetype,
3781 unsigned int alloc_flags)
3782 {
3783 struct per_cpu_pages *pcp;
3784 struct list_head *list;
3785 struct page *page;
3786 unsigned long flags;
3787 unsigned long __maybe_unused UP_flags;
3788
3789 /*
3790 * spin_trylock may fail due to a parallel drain. In the future, the
3791 * trylock will also protect against IRQ reentrancy.
3792 */
3793 pcp_trylock_prepare(UP_flags);
3794 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
3795 if (!pcp) {
3796 pcp_trylock_finish(UP_flags);
3797 return NULL;
3798 }
3799
3800 /*
3801 * On allocation, reduce the number of pages that are batch freed.
3802 * See nr_pcp_free() where free_factor is increased for subsequent
3803 * frees.
3804 */
3805 pcp->free_factor >>= 1;
3806 list = &pcp->lists[order_to_pindex(migratetype, order)];
3807 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3808 pcp_spin_unlock_irqrestore(pcp, flags);
3809 pcp_trylock_finish(UP_flags);
3810 if (page) {
3811 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3812 zone_statistics(preferred_zone, zone, 1);
3813 }
3814 return page;
3815 }
3816
3817 /*
3818 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3819 */
3820 static inline
3821 struct page *rmqueue(struct zone *preferred_zone,
3822 struct zone *zone, unsigned int order,
3823 gfp_t gfp_flags, unsigned int alloc_flags,
3824 int migratetype)
3825 {
3826 struct page *page;
3827
3828 /*
3829 * We most definitely don't want callers attempting to
3830 * allocate greater than order-1 page units with __GFP_NOFAIL.
3831 */
3832 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3833
3834 if (likely(pcp_allowed_order(order))) {
3835 /*
3836 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3837 * we need to skip it when CMA area isn't allowed.
3838 */
3839 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3840 migratetype != MIGRATE_MOVABLE) {
3841 page = rmqueue_pcplist(preferred_zone, zone, order,
3842 gfp_flags, migratetype, alloc_flags);
3843 if (likely(page))
3844 goto out;
3845 }
3846 }
3847
3848 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3849 migratetype);
3850
3851 out:
3852 /* Separate test+clear to avoid unnecessary atomics */
3853 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3854 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3855 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3856 }
3857
3858 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3859 return page;
3860 }
3861
3862 #ifdef CONFIG_FAIL_PAGE_ALLOC
3863
3864 static struct {
3865 struct fault_attr attr;
3866
3867 bool ignore_gfp_highmem;
3868 bool ignore_gfp_reclaim;
3869 u32 min_order;
3870 } fail_page_alloc = {
3871 .attr = FAULT_ATTR_INITIALIZER,
3872 .ignore_gfp_reclaim = true,
3873 .ignore_gfp_highmem = true,
3874 .min_order = 1,
3875 };
3876
3877 static int __init setup_fail_page_alloc(char *str)
3878 {
3879 return setup_fault_attr(&fail_page_alloc.attr, str);
3880 }
3881 __setup("fail_page_alloc=", setup_fail_page_alloc);
3882
3883 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3884 {
3885 if (order < fail_page_alloc.min_order)
3886 return false;
3887 if (gfp_mask & __GFP_NOFAIL)
3888 return false;
3889 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3890 return false;
3891 if (fail_page_alloc.ignore_gfp_reclaim &&
3892 (gfp_mask & __GFP_DIRECT_RECLAIM))
3893 return false;
3894
3895 if (gfp_mask & __GFP_NOWARN)
3896 fail_page_alloc.attr.no_warn = true;
3897
3898 return should_fail(&fail_page_alloc.attr, 1 << order);
3899 }
3900
3901 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3902
3903 static int __init fail_page_alloc_debugfs(void)
3904 {
3905 umode_t mode = S_IFREG | 0600;
3906 struct dentry *dir;
3907
3908 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3909 &fail_page_alloc.attr);
3910
3911 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3912 &fail_page_alloc.ignore_gfp_reclaim);
3913 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3914 &fail_page_alloc.ignore_gfp_highmem);
3915 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3916
3917 return 0;
3918 }
3919
3920 late_initcall(fail_page_alloc_debugfs);
3921
3922 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3923
3924 #else /* CONFIG_FAIL_PAGE_ALLOC */
3925
3926 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3927 {
3928 return false;
3929 }
3930
3931 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3932
3933 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3934 {
3935 return __should_fail_alloc_page(gfp_mask, order);
3936 }
3937 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3938
3939 static inline long __zone_watermark_unusable_free(struct zone *z,
3940 unsigned int order, unsigned int alloc_flags)
3941 {
3942 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3943 long unusable_free = (1 << order) - 1;
3944
3945 /*
3946 * If the caller does not have rights to ALLOC_HARDER then subtract
3947 * the high-atomic reserves. This will over-estimate the size of the
3948 * atomic reserve but it avoids a search.
3949 */
3950 if (likely(!alloc_harder))
3951 unusable_free += z->nr_reserved_highatomic;
3952
3953 #ifdef CONFIG_CMA
3954 /* If allocation can't use CMA areas don't use free CMA pages */
3955 if (!(alloc_flags & ALLOC_CMA))
3956 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3957 #endif
3958
3959 return unusable_free;
3960 }
3961
3962 /*
3963 * Return true if free base pages are above 'mark'. For high-order checks it
3964 * will return true of the order-0 watermark is reached and there is at least
3965 * one free page of a suitable size. Checking now avoids taking the zone lock
3966 * to check in the allocation paths if no pages are free.
3967 */
3968 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3969 int highest_zoneidx, unsigned int alloc_flags,
3970 long free_pages)
3971 {
3972 long min = mark;
3973 int o;
3974 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3975
3976 /* free_pages may go negative - that's OK */
3977 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3978
3979 if (alloc_flags & ALLOC_HIGH)
3980 min -= min / 2;
3981
3982 if (unlikely(alloc_harder)) {
3983 /*
3984 * OOM victims can try even harder than normal ALLOC_HARDER
3985 * users on the grounds that it's definitely going to be in
3986 * the exit path shortly and free memory. Any allocation it
3987 * makes during the free path will be small and short-lived.
3988 */
3989 if (alloc_flags & ALLOC_OOM)
3990 min -= min / 2;
3991 else
3992 min -= min / 4;
3993 }
3994
3995 /*
3996 * Check watermarks for an order-0 allocation request. If these
3997 * are not met, then a high-order request also cannot go ahead
3998 * even if a suitable page happened to be free.
3999 */
4000 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
4001 return false;
4002
4003 /* If this is an order-0 request then the watermark is fine */
4004 if (!order)
4005 return true;
4006
4007 /* For a high-order request, check at least one suitable page is free */
4008 for (o = order; o < MAX_ORDER; o++) {
4009 struct free_area *area = &z->free_area[o];
4010 int mt;
4011
4012 if (!area->nr_free)
4013 continue;
4014
4015 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
4016 if (!free_area_empty(area, mt))
4017 return true;
4018 }
4019
4020 #ifdef CONFIG_CMA
4021 if ((alloc_flags & ALLOC_CMA) &&
4022 !free_area_empty(area, MIGRATE_CMA)) {
4023 return true;
4024 }
4025 #endif
4026 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
4027 return true;
4028 }
4029 return false;
4030 }
4031
4032 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
4033 int highest_zoneidx, unsigned int alloc_flags)
4034 {
4035 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4036 zone_page_state(z, NR_FREE_PAGES));
4037 }
4038
4039 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
4040 unsigned long mark, int highest_zoneidx,
4041 unsigned int alloc_flags, gfp_t gfp_mask)
4042 {
4043 long free_pages;
4044
4045 free_pages = zone_page_state(z, NR_FREE_PAGES);
4046
4047 /*
4048 * Fast check for order-0 only. If this fails then the reserves
4049 * need to be calculated.
4050 */
4051 if (!order) {
4052 long usable_free;
4053 long reserved;
4054
4055 usable_free = free_pages;
4056 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
4057
4058 /* reserved may over estimate high-atomic reserves. */
4059 usable_free -= min(usable_free, reserved);
4060 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
4061 return true;
4062 }
4063
4064 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
4065 free_pages))
4066 return true;
4067 /*
4068 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
4069 * when checking the min watermark. The min watermark is the
4070 * point where boosting is ignored so that kswapd is woken up
4071 * when below the low watermark.
4072 */
4073 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
4074 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
4075 mark = z->_watermark[WMARK_MIN];
4076 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
4077 alloc_flags, free_pages);
4078 }
4079
4080 return false;
4081 }
4082
4083 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
4084 unsigned long mark, int highest_zoneidx)
4085 {
4086 long free_pages = zone_page_state(z, NR_FREE_PAGES);
4087
4088 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
4089 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
4090
4091 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
4092 free_pages);
4093 }
4094
4095 #ifdef CONFIG_NUMA
4096 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
4097
4098 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4099 {
4100 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
4101 node_reclaim_distance;
4102 }
4103 #else /* CONFIG_NUMA */
4104 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4105 {
4106 return true;
4107 }
4108 #endif /* CONFIG_NUMA */
4109
4110 /*
4111 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4112 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4113 * premature use of a lower zone may cause lowmem pressure problems that
4114 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4115 * probably too small. It only makes sense to spread allocations to avoid
4116 * fragmentation between the Normal and DMA32 zones.
4117 */
4118 static inline unsigned int
4119 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4120 {
4121 unsigned int alloc_flags;
4122
4123 /*
4124 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4125 * to save a branch.
4126 */
4127 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4128
4129 #ifdef CONFIG_ZONE_DMA32
4130 if (!zone)
4131 return alloc_flags;
4132
4133 if (zone_idx(zone) != ZONE_NORMAL)
4134 return alloc_flags;
4135
4136 /*
4137 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4138 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4139 * on UMA that if Normal is populated then so is DMA32.
4140 */
4141 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4142 if (nr_online_nodes > 1 && !populated_zone(--zone))
4143 return alloc_flags;
4144
4145 alloc_flags |= ALLOC_NOFRAGMENT;
4146 #endif /* CONFIG_ZONE_DMA32 */
4147 return alloc_flags;
4148 }
4149
4150 /* Must be called after current_gfp_context() which can change gfp_mask */
4151 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4152 unsigned int alloc_flags)
4153 {
4154 #ifdef CONFIG_CMA
4155 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4156 alloc_flags |= ALLOC_CMA;
4157 #endif
4158 return alloc_flags;
4159 }
4160
4161 /*
4162 * get_page_from_freelist goes through the zonelist trying to allocate
4163 * a page.
4164 */
4165 static struct page *
4166 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4167 const struct alloc_context *ac)
4168 {
4169 struct zoneref *z;
4170 struct zone *zone;
4171 struct pglist_data *last_pgdat = NULL;
4172 bool last_pgdat_dirty_ok = false;
4173 bool no_fallback;
4174
4175 retry:
4176 /*
4177 * Scan zonelist, looking for a zone with enough free.
4178 * See also __cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
4179 */
4180 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4181 z = ac->preferred_zoneref;
4182 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4183 ac->nodemask) {
4184 struct page *page;
4185 unsigned long mark;
4186
4187 if (cpusets_enabled() &&
4188 (alloc_flags & ALLOC_CPUSET) &&
4189 !__cpuset_zone_allowed(zone, gfp_mask))
4190 continue;
4191 /*
4192 * When allocating a page cache page for writing, we
4193 * want to get it from a node that is within its dirty
4194 * limit, such that no single node holds more than its
4195 * proportional share of globally allowed dirty pages.
4196 * The dirty limits take into account the node's
4197 * lowmem reserves and high watermark so that kswapd
4198 * should be able to balance it without having to
4199 * write pages from its LRU list.
4200 *
4201 * XXX: For now, allow allocations to potentially
4202 * exceed the per-node dirty limit in the slowpath
4203 * (spread_dirty_pages unset) before going into reclaim,
4204 * which is important when on a NUMA setup the allowed
4205 * nodes are together not big enough to reach the
4206 * global limit. The proper fix for these situations
4207 * will require awareness of nodes in the
4208 * dirty-throttling and the flusher threads.
4209 */
4210 if (ac->spread_dirty_pages) {
4211 if (last_pgdat != zone->zone_pgdat) {
4212 last_pgdat = zone->zone_pgdat;
4213 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
4214 }
4215
4216 if (!last_pgdat_dirty_ok)
4217 continue;
4218 }
4219
4220 if (no_fallback && nr_online_nodes > 1 &&
4221 zone != ac->preferred_zoneref->zone) {
4222 int local_nid;
4223
4224 /*
4225 * If moving to a remote node, retry but allow
4226 * fragmenting fallbacks. Locality is more important
4227 * than fragmentation avoidance.
4228 */
4229 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4230 if (zone_to_nid(zone) != local_nid) {
4231 alloc_flags &= ~ALLOC_NOFRAGMENT;
4232 goto retry;
4233 }
4234 }
4235
4236 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4237 if (!zone_watermark_fast(zone, order, mark,
4238 ac->highest_zoneidx, alloc_flags,
4239 gfp_mask)) {
4240 int ret;
4241
4242 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4243 /*
4244 * Watermark failed for this zone, but see if we can
4245 * grow this zone if it contains deferred pages.
4246 */
4247 if (static_branch_unlikely(&deferred_pages)) {
4248 if (_deferred_grow_zone(zone, order))
4249 goto try_this_zone;
4250 }
4251 #endif
4252 /* Checked here to keep the fast path fast */
4253 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4254 if (alloc_flags & ALLOC_NO_WATERMARKS)
4255 goto try_this_zone;
4256
4257 if (!node_reclaim_enabled() ||
4258 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4259 continue;
4260
4261 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4262 switch (ret) {
4263 case NODE_RECLAIM_NOSCAN:
4264 /* did not scan */
4265 continue;
4266 case NODE_RECLAIM_FULL:
4267 /* scanned but unreclaimable */
4268 continue;
4269 default:
4270 /* did we reclaim enough */
4271 if (zone_watermark_ok(zone, order, mark,
4272 ac->highest_zoneidx, alloc_flags))
4273 goto try_this_zone;
4274
4275 continue;
4276 }
4277 }
4278
4279 try_this_zone:
4280 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4281 gfp_mask, alloc_flags, ac->migratetype);
4282 if (page) {
4283 prep_new_page(page, order, gfp_mask, alloc_flags);
4284
4285 /*
4286 * If this is a high-order atomic allocation then check
4287 * if the pageblock should be reserved for the future
4288 */
4289 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4290 reserve_highatomic_pageblock(page, zone, order);
4291
4292 return page;
4293 } else {
4294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4295 /* Try again if zone has deferred pages */
4296 if (static_branch_unlikely(&deferred_pages)) {
4297 if (_deferred_grow_zone(zone, order))
4298 goto try_this_zone;
4299 }
4300 #endif
4301 }
4302 }
4303
4304 /*
4305 * It's possible on a UMA machine to get through all zones that are
4306 * fragmented. If avoiding fragmentation, reset and try again.
4307 */
4308 if (no_fallback) {
4309 alloc_flags &= ~ALLOC_NOFRAGMENT;
4310 goto retry;
4311 }
4312
4313 return NULL;
4314 }
4315
4316 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4317 {
4318 unsigned int filter = SHOW_MEM_FILTER_NODES;
4319
4320 /*
4321 * This documents exceptions given to allocations in certain
4322 * contexts that are allowed to allocate outside current's set
4323 * of allowed nodes.
4324 */
4325 if (!(gfp_mask & __GFP_NOMEMALLOC))
4326 if (tsk_is_oom_victim(current) ||
4327 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4328 filter &= ~SHOW_MEM_FILTER_NODES;
4329 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4330 filter &= ~SHOW_MEM_FILTER_NODES;
4331
4332 show_mem(filter, nodemask);
4333 }
4334
4335 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4336 {
4337 struct va_format vaf;
4338 va_list args;
4339 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4340
4341 if ((gfp_mask & __GFP_NOWARN) ||
4342 !__ratelimit(&nopage_rs) ||
4343 ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4344 return;
4345
4346 va_start(args, fmt);
4347 vaf.fmt = fmt;
4348 vaf.va = &args;
4349 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4350 current->comm, &vaf, gfp_mask, &gfp_mask,
4351 nodemask_pr_args(nodemask));
4352 va_end(args);
4353
4354 cpuset_print_current_mems_allowed();
4355 pr_cont("\n");
4356 dump_stack();
4357 warn_alloc_show_mem(gfp_mask, nodemask);
4358 }
4359
4360 static inline struct page *
4361 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4362 unsigned int alloc_flags,
4363 const struct alloc_context *ac)
4364 {
4365 struct page *page;
4366
4367 page = get_page_from_freelist(gfp_mask, order,
4368 alloc_flags|ALLOC_CPUSET, ac);
4369 /*
4370 * fallback to ignore cpuset restriction if our nodes
4371 * are depleted
4372 */
4373 if (!page)
4374 page = get_page_from_freelist(gfp_mask, order,
4375 alloc_flags, ac);
4376
4377 return page;
4378 }
4379
4380 static inline struct page *
4381 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4382 const struct alloc_context *ac, unsigned long *did_some_progress)
4383 {
4384 struct oom_control oc = {
4385 .zonelist = ac->zonelist,
4386 .nodemask = ac->nodemask,
4387 .memcg = NULL,
4388 .gfp_mask = gfp_mask,
4389 .order = order,
4390 };
4391 struct page *page;
4392
4393 *did_some_progress = 0;
4394
4395 /*
4396 * Acquire the oom lock. If that fails, somebody else is
4397 * making progress for us.
4398 */
4399 if (!mutex_trylock(&oom_lock)) {
4400 *did_some_progress = 1;
4401 schedule_timeout_uninterruptible(1);
4402 return NULL;
4403 }
4404
4405 /*
4406 * Go through the zonelist yet one more time, keep very high watermark
4407 * here, this is only to catch a parallel oom killing, we must fail if
4408 * we're still under heavy pressure. But make sure that this reclaim
4409 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4410 * allocation which will never fail due to oom_lock already held.
4411 */
4412 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4413 ~__GFP_DIRECT_RECLAIM, order,
4414 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4415 if (page)
4416 goto out;
4417
4418 /* Coredumps can quickly deplete all memory reserves */
4419 if (current->flags & PF_DUMPCORE)
4420 goto out;
4421 /* The OOM killer will not help higher order allocs */
4422 if (order > PAGE_ALLOC_COSTLY_ORDER)
4423 goto out;
4424 /*
4425 * We have already exhausted all our reclaim opportunities without any
4426 * success so it is time to admit defeat. We will skip the OOM killer
4427 * because it is very likely that the caller has a more reasonable
4428 * fallback than shooting a random task.
4429 *
4430 * The OOM killer may not free memory on a specific node.
4431 */
4432 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4433 goto out;
4434 /* The OOM killer does not needlessly kill tasks for lowmem */
4435 if (ac->highest_zoneidx < ZONE_NORMAL)
4436 goto out;
4437 if (pm_suspended_storage())
4438 goto out;
4439 /*
4440 * XXX: GFP_NOFS allocations should rather fail than rely on
4441 * other request to make a forward progress.
4442 * We are in an unfortunate situation where out_of_memory cannot
4443 * do much for this context but let's try it to at least get
4444 * access to memory reserved if the current task is killed (see
4445 * out_of_memory). Once filesystems are ready to handle allocation
4446 * failures more gracefully we should just bail out here.
4447 */
4448
4449 /* Exhausted what can be done so it's blame time */
4450 if (out_of_memory(&oc) ||
4451 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
4452 *did_some_progress = 1;
4453
4454 /*
4455 * Help non-failing allocations by giving them access to memory
4456 * reserves
4457 */
4458 if (gfp_mask & __GFP_NOFAIL)
4459 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4460 ALLOC_NO_WATERMARKS, ac);
4461 }
4462 out:
4463 mutex_unlock(&oom_lock);
4464 return page;
4465 }
4466
4467 /*
4468 * Maximum number of compaction retries with a progress before OOM
4469 * killer is consider as the only way to move forward.
4470 */
4471 #define MAX_COMPACT_RETRIES 16
4472
4473 #ifdef CONFIG_COMPACTION
4474 /* Try memory compaction for high-order allocations before reclaim */
4475 static struct page *
4476 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4477 unsigned int alloc_flags, const struct alloc_context *ac,
4478 enum compact_priority prio, enum compact_result *compact_result)
4479 {
4480 struct page *page = NULL;
4481 unsigned long pflags;
4482 unsigned int noreclaim_flag;
4483
4484 if (!order)
4485 return NULL;
4486
4487 psi_memstall_enter(&pflags);
4488 delayacct_compact_start();
4489 noreclaim_flag = memalloc_noreclaim_save();
4490
4491 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4492 prio, &page);
4493
4494 memalloc_noreclaim_restore(noreclaim_flag);
4495 psi_memstall_leave(&pflags);
4496 delayacct_compact_end();
4497
4498 if (*compact_result == COMPACT_SKIPPED)
4499 return NULL;
4500 /*
4501 * At least in one zone compaction wasn't deferred or skipped, so let's
4502 * count a compaction stall
4503 */
4504 count_vm_event(COMPACTSTALL);
4505
4506 /* Prep a captured page if available */
4507 if (page)
4508 prep_new_page(page, order, gfp_mask, alloc_flags);
4509
4510 /* Try get a page from the freelist if available */
4511 if (!page)
4512 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4513
4514 if (page) {
4515 struct zone *zone = page_zone(page);
4516
4517 zone->compact_blockskip_flush = false;
4518 compaction_defer_reset(zone, order, true);
4519 count_vm_event(COMPACTSUCCESS);
4520 return page;
4521 }
4522
4523 /*
4524 * It's bad if compaction run occurs and fails. The most likely reason
4525 * is that pages exist, but not enough to satisfy watermarks.
4526 */
4527 count_vm_event(COMPACTFAIL);
4528
4529 cond_resched();
4530
4531 return NULL;
4532 }
4533
4534 static inline bool
4535 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4536 enum compact_result compact_result,
4537 enum compact_priority *compact_priority,
4538 int *compaction_retries)
4539 {
4540 int max_retries = MAX_COMPACT_RETRIES;
4541 int min_priority;
4542 bool ret = false;
4543 int retries = *compaction_retries;
4544 enum compact_priority priority = *compact_priority;
4545
4546 if (!order)
4547 return false;
4548
4549 if (fatal_signal_pending(current))
4550 return false;
4551
4552 if (compaction_made_progress(compact_result))
4553 (*compaction_retries)++;
4554
4555 /*
4556 * compaction considers all the zone as desperately out of memory
4557 * so it doesn't really make much sense to retry except when the
4558 * failure could be caused by insufficient priority
4559 */
4560 if (compaction_failed(compact_result))
4561 goto check_priority;
4562
4563 /*
4564 * compaction was skipped because there are not enough order-0 pages
4565 * to work with, so we retry only if it looks like reclaim can help.
4566 */
4567 if (compaction_needs_reclaim(compact_result)) {
4568 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4569 goto out;
4570 }
4571
4572 /*
4573 * make sure the compaction wasn't deferred or didn't bail out early
4574 * due to locks contention before we declare that we should give up.
4575 * But the next retry should use a higher priority if allowed, so
4576 * we don't just keep bailing out endlessly.
4577 */
4578 if (compaction_withdrawn(compact_result)) {
4579 goto check_priority;
4580 }
4581
4582 /*
4583 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4584 * costly ones because they are de facto nofail and invoke OOM
4585 * killer to move on while costly can fail and users are ready
4586 * to cope with that. 1/4 retries is rather arbitrary but we
4587 * would need much more detailed feedback from compaction to
4588 * make a better decision.
4589 */
4590 if (order > PAGE_ALLOC_COSTLY_ORDER)
4591 max_retries /= 4;
4592 if (*compaction_retries <= max_retries) {
4593 ret = true;
4594 goto out;
4595 }
4596
4597 /*
4598 * Make sure there are attempts at the highest priority if we exhausted
4599 * all retries or failed at the lower priorities.
4600 */
4601 check_priority:
4602 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4603 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4604
4605 if (*compact_priority > min_priority) {
4606 (*compact_priority)--;
4607 *compaction_retries = 0;
4608 ret = true;
4609 }
4610 out:
4611 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4612 return ret;
4613 }
4614 #else
4615 static inline struct page *
4616 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4617 unsigned int alloc_flags, const struct alloc_context *ac,
4618 enum compact_priority prio, enum compact_result *compact_result)
4619 {
4620 *compact_result = COMPACT_SKIPPED;
4621 return NULL;
4622 }
4623
4624 static inline bool
4625 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4626 enum compact_result compact_result,
4627 enum compact_priority *compact_priority,
4628 int *compaction_retries)
4629 {
4630 struct zone *zone;
4631 struct zoneref *z;
4632
4633 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4634 return false;
4635
4636 /*
4637 * There are setups with compaction disabled which would prefer to loop
4638 * inside the allocator rather than hit the oom killer prematurely.
4639 * Let's give them a good hope and keep retrying while the order-0
4640 * watermarks are OK.
4641 */
4642 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4643 ac->highest_zoneidx, ac->nodemask) {
4644 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4645 ac->highest_zoneidx, alloc_flags))
4646 return true;
4647 }
4648 return false;
4649 }
4650 #endif /* CONFIG_COMPACTION */
4651
4652 #ifdef CONFIG_LOCKDEP
4653 static struct lockdep_map __fs_reclaim_map =
4654 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4655
4656 static bool __need_reclaim(gfp_t gfp_mask)
4657 {
4658 /* no reclaim without waiting on it */
4659 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4660 return false;
4661
4662 /* this guy won't enter reclaim */
4663 if (current->flags & PF_MEMALLOC)
4664 return false;
4665
4666 if (gfp_mask & __GFP_NOLOCKDEP)
4667 return false;
4668
4669 return true;
4670 }
4671
4672 void __fs_reclaim_acquire(unsigned long ip)
4673 {
4674 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4675 }
4676
4677 void __fs_reclaim_release(unsigned long ip)
4678 {
4679 lock_release(&__fs_reclaim_map, ip);
4680 }
4681
4682 void fs_reclaim_acquire(gfp_t gfp_mask)
4683 {
4684 gfp_mask = current_gfp_context(gfp_mask);
4685
4686 if (__need_reclaim(gfp_mask)) {
4687 if (gfp_mask & __GFP_FS)
4688 __fs_reclaim_acquire(_RET_IP_);
4689
4690 #ifdef CONFIG_MMU_NOTIFIER
4691 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4692 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4693 #endif
4694
4695 }
4696 }
4697 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4698
4699 void fs_reclaim_release(gfp_t gfp_mask)
4700 {
4701 gfp_mask = current_gfp_context(gfp_mask);
4702
4703 if (__need_reclaim(gfp_mask)) {
4704 if (gfp_mask & __GFP_FS)
4705 __fs_reclaim_release(_RET_IP_);
4706 }
4707 }
4708 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4709 #endif
4710
4711 /* Perform direct synchronous page reclaim */
4712 static unsigned long
4713 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4714 const struct alloc_context *ac)
4715 {
4716 unsigned int noreclaim_flag;
4717 unsigned long progress;
4718
4719 cond_resched();
4720
4721 /* We now go into synchronous reclaim */
4722 cpuset_memory_pressure_bump();
4723 fs_reclaim_acquire(gfp_mask);
4724 noreclaim_flag = memalloc_noreclaim_save();
4725
4726 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4727 ac->nodemask);
4728
4729 memalloc_noreclaim_restore(noreclaim_flag);
4730 fs_reclaim_release(gfp_mask);
4731
4732 cond_resched();
4733
4734 return progress;
4735 }
4736
4737 /* The really slow allocator path where we enter direct reclaim */
4738 static inline struct page *
4739 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4740 unsigned int alloc_flags, const struct alloc_context *ac,
4741 unsigned long *did_some_progress)
4742 {
4743 struct page *page = NULL;
4744 unsigned long pflags;
4745 bool drained = false;
4746
4747 psi_memstall_enter(&pflags);
4748 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4749 if (unlikely(!(*did_some_progress)))
4750 goto out;
4751
4752 retry:
4753 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4754
4755 /*
4756 * If an allocation failed after direct reclaim, it could be because
4757 * pages are pinned on the per-cpu lists or in high alloc reserves.
4758 * Shrink them and try again
4759 */
4760 if (!page && !drained) {
4761 unreserve_highatomic_pageblock(ac, false);
4762 drain_all_pages(NULL);
4763 drained = true;
4764 goto retry;
4765 }
4766 out:
4767 psi_memstall_leave(&pflags);
4768
4769 return page;
4770 }
4771
4772 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4773 const struct alloc_context *ac)
4774 {
4775 struct zoneref *z;
4776 struct zone *zone;
4777 pg_data_t *last_pgdat = NULL;
4778 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4779
4780 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4781 ac->nodemask) {
4782 if (!managed_zone(zone))
4783 continue;
4784 if (last_pgdat != zone->zone_pgdat) {
4785 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4786 last_pgdat = zone->zone_pgdat;
4787 }
4788 }
4789 }
4790
4791 static inline unsigned int
4792 gfp_to_alloc_flags(gfp_t gfp_mask)
4793 {
4794 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4795
4796 /*
4797 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4798 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4799 * to save two branches.
4800 */
4801 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4802 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4803
4804 /*
4805 * The caller may dip into page reserves a bit more if the caller
4806 * cannot run direct reclaim, or if the caller has realtime scheduling
4807 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4808 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4809 */
4810 alloc_flags |= (__force int)
4811 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4812
4813 if (gfp_mask & __GFP_ATOMIC) {
4814 /*
4815 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4816 * if it can't schedule.
4817 */
4818 if (!(gfp_mask & __GFP_NOMEMALLOC))
4819 alloc_flags |= ALLOC_HARDER;
4820 /*
4821 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4822 * comment for __cpuset_node_allowed().
4823 */
4824 alloc_flags &= ~ALLOC_CPUSET;
4825 } else if (unlikely(rt_task(current)) && in_task())
4826 alloc_flags |= ALLOC_HARDER;
4827
4828 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4829
4830 return alloc_flags;
4831 }
4832
4833 static bool oom_reserves_allowed(struct task_struct *tsk)
4834 {
4835 if (!tsk_is_oom_victim(tsk))
4836 return false;
4837
4838 /*
4839 * !MMU doesn't have oom reaper so give access to memory reserves
4840 * only to the thread with TIF_MEMDIE set
4841 */
4842 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4843 return false;
4844
4845 return true;
4846 }
4847
4848 /*
4849 * Distinguish requests which really need access to full memory
4850 * reserves from oom victims which can live with a portion of it
4851 */
4852 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4853 {
4854 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4855 return 0;
4856 if (gfp_mask & __GFP_MEMALLOC)
4857 return ALLOC_NO_WATERMARKS;
4858 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4859 return ALLOC_NO_WATERMARKS;
4860 if (!in_interrupt()) {
4861 if (current->flags & PF_MEMALLOC)
4862 return ALLOC_NO_WATERMARKS;
4863 else if (oom_reserves_allowed(current))
4864 return ALLOC_OOM;
4865 }
4866
4867 return 0;
4868 }
4869
4870 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4871 {
4872 return !!__gfp_pfmemalloc_flags(gfp_mask);
4873 }
4874
4875 /*
4876 * Checks whether it makes sense to retry the reclaim to make a forward progress
4877 * for the given allocation request.
4878 *
4879 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4880 * without success, or when we couldn't even meet the watermark if we
4881 * reclaimed all remaining pages on the LRU lists.
4882 *
4883 * Returns true if a retry is viable or false to enter the oom path.
4884 */
4885 static inline bool
4886 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4887 struct alloc_context *ac, int alloc_flags,
4888 bool did_some_progress, int *no_progress_loops)
4889 {
4890 struct zone *zone;
4891 struct zoneref *z;
4892 bool ret = false;
4893
4894 /*
4895 * Costly allocations might have made a progress but this doesn't mean
4896 * their order will become available due to high fragmentation so
4897 * always increment the no progress counter for them
4898 */
4899 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4900 *no_progress_loops = 0;
4901 else
4902 (*no_progress_loops)++;
4903
4904 /*
4905 * Make sure we converge to OOM if we cannot make any progress
4906 * several times in the row.
4907 */
4908 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4909 /* Before OOM, exhaust highatomic_reserve */
4910 return unreserve_highatomic_pageblock(ac, true);
4911 }
4912
4913 /*
4914 * Keep reclaiming pages while there is a chance this will lead
4915 * somewhere. If none of the target zones can satisfy our allocation
4916 * request even if all reclaimable pages are considered then we are
4917 * screwed and have to go OOM.
4918 */
4919 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4920 ac->highest_zoneidx, ac->nodemask) {
4921 unsigned long available;
4922 unsigned long reclaimable;
4923 unsigned long min_wmark = min_wmark_pages(zone);
4924 bool wmark;
4925
4926 available = reclaimable = zone_reclaimable_pages(zone);
4927 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4928
4929 /*
4930 * Would the allocation succeed if we reclaimed all
4931 * reclaimable pages?
4932 */
4933 wmark = __zone_watermark_ok(zone, order, min_wmark,
4934 ac->highest_zoneidx, alloc_flags, available);
4935 trace_reclaim_retry_zone(z, order, reclaimable,
4936 available, min_wmark, *no_progress_loops, wmark);
4937 if (wmark) {
4938 ret = true;
4939 break;
4940 }
4941 }
4942
4943 /*
4944 * Memory allocation/reclaim might be called from a WQ context and the
4945 * current implementation of the WQ concurrency control doesn't
4946 * recognize that a particular WQ is congested if the worker thread is
4947 * looping without ever sleeping. Therefore we have to do a short sleep
4948 * here rather than calling cond_resched().
4949 */
4950 if (current->flags & PF_WQ_WORKER)
4951 schedule_timeout_uninterruptible(1);
4952 else
4953 cond_resched();
4954 return ret;
4955 }
4956
4957 static inline bool
4958 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4959 {
4960 /*
4961 * It's possible that cpuset's mems_allowed and the nodemask from
4962 * mempolicy don't intersect. This should be normally dealt with by
4963 * policy_nodemask(), but it's possible to race with cpuset update in
4964 * such a way the check therein was true, and then it became false
4965 * before we got our cpuset_mems_cookie here.
4966 * This assumes that for all allocations, ac->nodemask can come only
4967 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4968 * when it does not intersect with the cpuset restrictions) or the
4969 * caller can deal with a violated nodemask.
4970 */
4971 if (cpusets_enabled() && ac->nodemask &&
4972 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4973 ac->nodemask = NULL;
4974 return true;
4975 }
4976
4977 /*
4978 * When updating a task's mems_allowed or mempolicy nodemask, it is
4979 * possible to race with parallel threads in such a way that our
4980 * allocation can fail while the mask is being updated. If we are about
4981 * to fail, check if the cpuset changed during allocation and if so,
4982 * retry.
4983 */
4984 if (read_mems_allowed_retry(cpuset_mems_cookie))
4985 return true;
4986
4987 return false;
4988 }
4989
4990 static inline struct page *
4991 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4992 struct alloc_context *ac)
4993 {
4994 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4995 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4996 struct page *page = NULL;
4997 unsigned int alloc_flags;
4998 unsigned long did_some_progress;
4999 enum compact_priority compact_priority;
5000 enum compact_result compact_result;
5001 int compaction_retries;
5002 int no_progress_loops;
5003 unsigned int cpuset_mems_cookie;
5004 int reserve_flags;
5005
5006 /*
5007 * We also sanity check to catch abuse of atomic reserves being used by
5008 * callers that are not in atomic context.
5009 */
5010 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
5011 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
5012 gfp_mask &= ~__GFP_ATOMIC;
5013
5014 retry_cpuset:
5015 compaction_retries = 0;
5016 no_progress_loops = 0;
5017 compact_priority = DEF_COMPACT_PRIORITY;
5018 cpuset_mems_cookie = read_mems_allowed_begin();
5019
5020 /*
5021 * The fast path uses conservative alloc_flags to succeed only until
5022 * kswapd needs to be woken up, and to avoid the cost of setting up
5023 * alloc_flags precisely. So we do that now.
5024 */
5025 alloc_flags = gfp_to_alloc_flags(gfp_mask);
5026
5027 /*
5028 * We need to recalculate the starting point for the zonelist iterator
5029 * because we might have used different nodemask in the fast path, or
5030 * there was a cpuset modification and we are retrying - otherwise we
5031 * could end up iterating over non-eligible zones endlessly.
5032 */
5033 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5034 ac->highest_zoneidx, ac->nodemask);
5035 if (!ac->preferred_zoneref->zone)
5036 goto nopage;
5037
5038 /*
5039 * Check for insane configurations where the cpuset doesn't contain
5040 * any suitable zone to satisfy the request - e.g. non-movable
5041 * GFP_HIGHUSER allocations from MOVABLE nodes only.
5042 */
5043 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
5044 struct zoneref *z = first_zones_zonelist(ac->zonelist,
5045 ac->highest_zoneidx,
5046 &cpuset_current_mems_allowed);
5047 if (!z->zone)
5048 goto nopage;
5049 }
5050
5051 if (alloc_flags & ALLOC_KSWAPD)
5052 wake_all_kswapds(order, gfp_mask, ac);
5053
5054 /*
5055 * The adjusted alloc_flags might result in immediate success, so try
5056 * that first
5057 */
5058 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5059 if (page)
5060 goto got_pg;
5061
5062 /*
5063 * For costly allocations, try direct compaction first, as it's likely
5064 * that we have enough base pages and don't need to reclaim. For non-
5065 * movable high-order allocations, do that as well, as compaction will
5066 * try prevent permanent fragmentation by migrating from blocks of the
5067 * same migratetype.
5068 * Don't try this for allocations that are allowed to ignore
5069 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
5070 */
5071 if (can_direct_reclaim &&
5072 (costly_order ||
5073 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
5074 && !gfp_pfmemalloc_allowed(gfp_mask)) {
5075 page = __alloc_pages_direct_compact(gfp_mask, order,
5076 alloc_flags, ac,
5077 INIT_COMPACT_PRIORITY,
5078 &compact_result);
5079 if (page)
5080 goto got_pg;
5081
5082 /*
5083 * Checks for costly allocations with __GFP_NORETRY, which
5084 * includes some THP page fault allocations
5085 */
5086 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
5087 /*
5088 * If allocating entire pageblock(s) and compaction
5089 * failed because all zones are below low watermarks
5090 * or is prohibited because it recently failed at this
5091 * order, fail immediately unless the allocator has
5092 * requested compaction and reclaim retry.
5093 *
5094 * Reclaim is
5095 * - potentially very expensive because zones are far
5096 * below their low watermarks or this is part of very
5097 * bursty high order allocations,
5098 * - not guaranteed to help because isolate_freepages()
5099 * may not iterate over freed pages as part of its
5100 * linear scan, and
5101 * - unlikely to make entire pageblocks free on its
5102 * own.
5103 */
5104 if (compact_result == COMPACT_SKIPPED ||
5105 compact_result == COMPACT_DEFERRED)
5106 goto nopage;
5107
5108 /*
5109 * Looks like reclaim/compaction is worth trying, but
5110 * sync compaction could be very expensive, so keep
5111 * using async compaction.
5112 */
5113 compact_priority = INIT_COMPACT_PRIORITY;
5114 }
5115 }
5116
5117 retry:
5118 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5119 if (alloc_flags & ALLOC_KSWAPD)
5120 wake_all_kswapds(order, gfp_mask, ac);
5121
5122 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5123 if (reserve_flags)
5124 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5125
5126 /*
5127 * Reset the nodemask and zonelist iterators if memory policies can be
5128 * ignored. These allocations are high priority and system rather than
5129 * user oriented.
5130 */
5131 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5132 ac->nodemask = NULL;
5133 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5134 ac->highest_zoneidx, ac->nodemask);
5135 }
5136
5137 /* Attempt with potentially adjusted zonelist and alloc_flags */
5138 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5139 if (page)
5140 goto got_pg;
5141
5142 /* Caller is not willing to reclaim, we can't balance anything */
5143 if (!can_direct_reclaim)
5144 goto nopage;
5145
5146 /* Avoid recursion of direct reclaim */
5147 if (current->flags & PF_MEMALLOC)
5148 goto nopage;
5149
5150 /* Try direct reclaim and then allocating */
5151 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5152 &did_some_progress);
5153 if (page)
5154 goto got_pg;
5155
5156 /* Try direct compaction and then allocating */
5157 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5158 compact_priority, &compact_result);
5159 if (page)
5160 goto got_pg;
5161
5162 /* Do not loop if specifically requested */
5163 if (gfp_mask & __GFP_NORETRY)
5164 goto nopage;
5165
5166 /*
5167 * Do not retry costly high order allocations unless they are
5168 * __GFP_RETRY_MAYFAIL
5169 */
5170 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5171 goto nopage;
5172
5173 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5174 did_some_progress > 0, &no_progress_loops))
5175 goto retry;
5176
5177 /*
5178 * It doesn't make any sense to retry for the compaction if the order-0
5179 * reclaim is not able to make any progress because the current
5180 * implementation of the compaction depends on the sufficient amount
5181 * of free memory (see __compaction_suitable)
5182 */
5183 if (did_some_progress > 0 &&
5184 should_compact_retry(ac, order, alloc_flags,
5185 compact_result, &compact_priority,
5186 &compaction_retries))
5187 goto retry;
5188
5189
5190 /* Deal with possible cpuset update races before we start OOM killing */
5191 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5192 goto retry_cpuset;
5193
5194 /* Reclaim has failed us, start killing things */
5195 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5196 if (page)
5197 goto got_pg;
5198
5199 /* Avoid allocations with no watermarks from looping endlessly */
5200 if (tsk_is_oom_victim(current) &&
5201 (alloc_flags & ALLOC_OOM ||
5202 (gfp_mask & __GFP_NOMEMALLOC)))
5203 goto nopage;
5204
5205 /* Retry as long as the OOM killer is making progress */
5206 if (did_some_progress) {
5207 no_progress_loops = 0;
5208 goto retry;
5209 }
5210
5211 nopage:
5212 /* Deal with possible cpuset update races before we fail */
5213 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5214 goto retry_cpuset;
5215
5216 /*
5217 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5218 * we always retry
5219 */
5220 if (gfp_mask & __GFP_NOFAIL) {
5221 /*
5222 * All existing users of the __GFP_NOFAIL are blockable, so warn
5223 * of any new users that actually require GFP_NOWAIT
5224 */
5225 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
5226 goto fail;
5227
5228 /*
5229 * PF_MEMALLOC request from this context is rather bizarre
5230 * because we cannot reclaim anything and only can loop waiting
5231 * for somebody to do a work for us
5232 */
5233 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
5234
5235 /*
5236 * non failing costly orders are a hard requirement which we
5237 * are not prepared for much so let's warn about these users
5238 * so that we can identify them and convert them to something
5239 * else.
5240 */
5241 WARN_ON_ONCE_GFP(order > PAGE_ALLOC_COSTLY_ORDER, gfp_mask);
5242
5243 /*
5244 * Help non-failing allocations by giving them access to memory
5245 * reserves but do not use ALLOC_NO_WATERMARKS because this
5246 * could deplete whole memory reserves which would just make
5247 * the situation worse
5248 */
5249 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5250 if (page)
5251 goto got_pg;
5252
5253 cond_resched();
5254 goto retry;
5255 }
5256 fail:
5257 warn_alloc(gfp_mask, ac->nodemask,
5258 "page allocation failure: order:%u", order);
5259 got_pg:
5260 return page;
5261 }
5262
5263 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5264 int preferred_nid, nodemask_t *nodemask,
5265 struct alloc_context *ac, gfp_t *alloc_gfp,
5266 unsigned int *alloc_flags)
5267 {
5268 ac->highest_zoneidx = gfp_zone(gfp_mask);
5269 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5270 ac->nodemask = nodemask;
5271 ac->migratetype = gfp_migratetype(gfp_mask);
5272
5273 if (cpusets_enabled()) {
5274 *alloc_gfp |= __GFP_HARDWALL;
5275 /*
5276 * When we are in the interrupt context, it is irrelevant
5277 * to the current task context. It means that any node ok.
5278 */
5279 if (in_task() && !ac->nodemask)
5280 ac->nodemask = &cpuset_current_mems_allowed;
5281 else
5282 *alloc_flags |= ALLOC_CPUSET;
5283 }
5284
5285 might_alloc(gfp_mask);
5286
5287 if (should_fail_alloc_page(gfp_mask, order))
5288 return false;
5289
5290 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5291
5292 /* Dirty zone balancing only done in the fast path */
5293 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5294
5295 /*
5296 * The preferred zone is used for statistics but crucially it is
5297 * also used as the starting point for the zonelist iterator. It
5298 * may get reset for allocations that ignore memory policies.
5299 */
5300 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5301 ac->highest_zoneidx, ac->nodemask);
5302
5303 return true;
5304 }
5305
5306 /*
5307 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5308 * @gfp: GFP flags for the allocation
5309 * @preferred_nid: The preferred NUMA node ID to allocate from
5310 * @nodemask: Set of nodes to allocate from, may be NULL
5311 * @nr_pages: The number of pages desired on the list or array
5312 * @page_list: Optional list to store the allocated pages
5313 * @page_array: Optional array to store the pages
5314 *
5315 * This is a batched version of the page allocator that attempts to
5316 * allocate nr_pages quickly. Pages are added to page_list if page_list
5317 * is not NULL, otherwise it is assumed that the page_array is valid.
5318 *
5319 * For lists, nr_pages is the number of pages that should be allocated.
5320 *
5321 * For arrays, only NULL elements are populated with pages and nr_pages
5322 * is the maximum number of pages that will be stored in the array.
5323 *
5324 * Returns the number of pages on the list or array.
5325 */
5326 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5327 nodemask_t *nodemask, int nr_pages,
5328 struct list_head *page_list,
5329 struct page **page_array)
5330 {
5331 struct page *page;
5332 unsigned long flags;
5333 unsigned long __maybe_unused UP_flags;
5334 struct zone *zone;
5335 struct zoneref *z;
5336 struct per_cpu_pages *pcp;
5337 struct list_head *pcp_list;
5338 struct alloc_context ac;
5339 gfp_t alloc_gfp;
5340 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5341 int nr_populated = 0, nr_account = 0;
5342
5343 /*
5344 * Skip populated array elements to determine if any pages need
5345 * to be allocated before disabling IRQs.
5346 */
5347 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5348 nr_populated++;
5349
5350 /* No pages requested? */
5351 if (unlikely(nr_pages <= 0))
5352 goto out;
5353
5354 /* Already populated array? */
5355 if (unlikely(page_array && nr_pages - nr_populated == 0))
5356 goto out;
5357
5358 /* Bulk allocator does not support memcg accounting. */
5359 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5360 goto failed;
5361
5362 /* Use the single page allocator for one page. */
5363 if (nr_pages - nr_populated == 1)
5364 goto failed;
5365
5366 #ifdef CONFIG_PAGE_OWNER
5367 /*
5368 * PAGE_OWNER may recurse into the allocator to allocate space to
5369 * save the stack with pagesets.lock held. Releasing/reacquiring
5370 * removes much of the performance benefit of bulk allocation so
5371 * force the caller to allocate one page at a time as it'll have
5372 * similar performance to added complexity to the bulk allocator.
5373 */
5374 if (static_branch_unlikely(&page_owner_inited))
5375 goto failed;
5376 #endif
5377
5378 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5379 gfp &= gfp_allowed_mask;
5380 alloc_gfp = gfp;
5381 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5382 goto out;
5383 gfp = alloc_gfp;
5384
5385 /* Find an allowed local zone that meets the low watermark. */
5386 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5387 unsigned long mark;
5388
5389 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5390 !__cpuset_zone_allowed(zone, gfp)) {
5391 continue;
5392 }
5393
5394 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5395 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5396 goto failed;
5397 }
5398
5399 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5400 if (zone_watermark_fast(zone, 0, mark,
5401 zonelist_zone_idx(ac.preferred_zoneref),
5402 alloc_flags, gfp)) {
5403 break;
5404 }
5405 }
5406
5407 /*
5408 * If there are no allowed local zones that meets the watermarks then
5409 * try to allocate a single page and reclaim if necessary.
5410 */
5411 if (unlikely(!zone))
5412 goto failed;
5413
5414 /* Is a parallel drain in progress? */
5415 pcp_trylock_prepare(UP_flags);
5416 pcp = pcp_spin_trylock_irqsave(zone->per_cpu_pageset, flags);
5417 if (!pcp)
5418 goto failed_irq;
5419
5420 /* Attempt the batch allocation */
5421 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5422 while (nr_populated < nr_pages) {
5423
5424 /* Skip existing pages */
5425 if (page_array && page_array[nr_populated]) {
5426 nr_populated++;
5427 continue;
5428 }
5429
5430 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5431 pcp, pcp_list);
5432 if (unlikely(!page)) {
5433 /* Try and allocate at least one page */
5434 if (!nr_account) {
5435 pcp_spin_unlock_irqrestore(pcp, flags);
5436 goto failed_irq;
5437 }
5438 break;
5439 }
5440 nr_account++;
5441
5442 prep_new_page(page, 0, gfp, 0);
5443 if (page_list)
5444 list_add(&page->lru, page_list);
5445 else
5446 page_array[nr_populated] = page;
5447 nr_populated++;
5448 }
5449
5450 pcp_spin_unlock_irqrestore(pcp, flags);
5451 pcp_trylock_finish(UP_flags);
5452
5453 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5454 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5455
5456 out:
5457 return nr_populated;
5458
5459 failed_irq:
5460 pcp_trylock_finish(UP_flags);
5461
5462 failed:
5463 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5464 if (page) {
5465 if (page_list)
5466 list_add(&page->lru, page_list);
5467 else
5468 page_array[nr_populated] = page;
5469 nr_populated++;
5470 }
5471
5472 goto out;
5473 }
5474 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5475
5476 /*
5477 * This is the 'heart' of the zoned buddy allocator.
5478 */
5479 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5480 nodemask_t *nodemask)
5481 {
5482 struct page *page;
5483 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5484 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5485 struct alloc_context ac = { };
5486
5487 /*
5488 * There are several places where we assume that the order value is sane
5489 * so bail out early if the request is out of bound.
5490 */
5491 if (WARN_ON_ONCE_GFP(order >= MAX_ORDER, gfp))
5492 return NULL;
5493
5494 gfp &= gfp_allowed_mask;
5495 /*
5496 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5497 * resp. GFP_NOIO which has to be inherited for all allocation requests
5498 * from a particular context which has been marked by
5499 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5500 * movable zones are not used during allocation.
5501 */
5502 gfp = current_gfp_context(gfp);
5503 alloc_gfp = gfp;
5504 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5505 &alloc_gfp, &alloc_flags))
5506 return NULL;
5507
5508 /*
5509 * Forbid the first pass from falling back to types that fragment
5510 * memory until all local zones are considered.
5511 */
5512 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5513
5514 /* First allocation attempt */
5515 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5516 if (likely(page))
5517 goto out;
5518
5519 alloc_gfp = gfp;
5520 ac.spread_dirty_pages = false;
5521
5522 /*
5523 * Restore the original nodemask if it was potentially replaced with
5524 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5525 */
5526 ac.nodemask = nodemask;
5527
5528 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5529
5530 out:
5531 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5532 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5533 __free_pages(page, order);
5534 page = NULL;
5535 }
5536
5537 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5538
5539 return page;
5540 }
5541 EXPORT_SYMBOL(__alloc_pages);
5542
5543 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
5544 nodemask_t *nodemask)
5545 {
5546 struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
5547 preferred_nid, nodemask);
5548
5549 if (page && order > 1)
5550 prep_transhuge_page(page);
5551 return (struct folio *)page;
5552 }
5553 EXPORT_SYMBOL(__folio_alloc);
5554
5555 /*
5556 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5557 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5558 * you need to access high mem.
5559 */
5560 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5561 {
5562 struct page *page;
5563
5564 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5565 if (!page)
5566 return 0;
5567 return (unsigned long) page_address(page);
5568 }
5569 EXPORT_SYMBOL(__get_free_pages);
5570
5571 unsigned long get_zeroed_page(gfp_t gfp_mask)
5572 {
5573 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5574 }
5575 EXPORT_SYMBOL(get_zeroed_page);
5576
5577 /**
5578 * __free_pages - Free pages allocated with alloc_pages().
5579 * @page: The page pointer returned from alloc_pages().
5580 * @order: The order of the allocation.
5581 *
5582 * This function can free multi-page allocations that are not compound
5583 * pages. It does not check that the @order passed in matches that of
5584 * the allocation, so it is easy to leak memory. Freeing more memory
5585 * than was allocated will probably emit a warning.
5586 *
5587 * If the last reference to this page is speculative, it will be released
5588 * by put_page() which only frees the first page of a non-compound
5589 * allocation. To prevent the remaining pages from being leaked, we free
5590 * the subsequent pages here. If you want to use the page's reference
5591 * count to decide when to free the allocation, you should allocate a
5592 * compound page, and use put_page() instead of __free_pages().
5593 *
5594 * Context: May be called in interrupt context or while holding a normal
5595 * spinlock, but not in NMI context or while holding a raw spinlock.
5596 */
5597 void __free_pages(struct page *page, unsigned int order)
5598 {
5599 if (put_page_testzero(page))
5600 free_the_page(page, order);
5601 else if (!PageHead(page))
5602 while (order-- > 0)
5603 free_the_page(page + (1 << order), order);
5604 }
5605 EXPORT_SYMBOL(__free_pages);
5606
5607 void free_pages(unsigned long addr, unsigned int order)
5608 {
5609 if (addr != 0) {
5610 VM_BUG_ON(!virt_addr_valid((void *)addr));
5611 __free_pages(virt_to_page((void *)addr), order);
5612 }
5613 }
5614
5615 EXPORT_SYMBOL(free_pages);
5616
5617 /*
5618 * Page Fragment:
5619 * An arbitrary-length arbitrary-offset area of memory which resides
5620 * within a 0 or higher order page. Multiple fragments within that page
5621 * are individually refcounted, in the page's reference counter.
5622 *
5623 * The page_frag functions below provide a simple allocation framework for
5624 * page fragments. This is used by the network stack and network device
5625 * drivers to provide a backing region of memory for use as either an
5626 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5627 */
5628 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5629 gfp_t gfp_mask)
5630 {
5631 struct page *page = NULL;
5632 gfp_t gfp = gfp_mask;
5633
5634 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5635 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5636 __GFP_NOMEMALLOC;
5637 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5638 PAGE_FRAG_CACHE_MAX_ORDER);
5639 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5640 #endif
5641 if (unlikely(!page))
5642 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5643
5644 nc->va = page ? page_address(page) : NULL;
5645
5646 return page;
5647 }
5648
5649 void __page_frag_cache_drain(struct page *page, unsigned int count)
5650 {
5651 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5652
5653 if (page_ref_sub_and_test(page, count))
5654 free_the_page(page, compound_order(page));
5655 }
5656 EXPORT_SYMBOL(__page_frag_cache_drain);
5657
5658 void *page_frag_alloc_align(struct page_frag_cache *nc,
5659 unsigned int fragsz, gfp_t gfp_mask,
5660 unsigned int align_mask)
5661 {
5662 unsigned int size = PAGE_SIZE;
5663 struct page *page;
5664 int offset;
5665
5666 if (unlikely(!nc->va)) {
5667 refill:
5668 page = __page_frag_cache_refill(nc, gfp_mask);
5669 if (!page)
5670 return NULL;
5671
5672 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5673 /* if size can vary use size else just use PAGE_SIZE */
5674 size = nc->size;
5675 #endif
5676 /* Even if we own the page, we do not use atomic_set().
5677 * This would break get_page_unless_zero() users.
5678 */
5679 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5680
5681 /* reset page count bias and offset to start of new frag */
5682 nc->pfmemalloc = page_is_pfmemalloc(page);
5683 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5684 nc->offset = size;
5685 }
5686
5687 offset = nc->offset - fragsz;
5688 if (unlikely(offset < 0)) {
5689 page = virt_to_page(nc->va);
5690
5691 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5692 goto refill;
5693
5694 if (unlikely(nc->pfmemalloc)) {
5695 free_the_page(page, compound_order(page));
5696 goto refill;
5697 }
5698
5699 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5700 /* if size can vary use size else just use PAGE_SIZE */
5701 size = nc->size;
5702 #endif
5703 /* OK, page count is 0, we can safely set it */
5704 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5705
5706 /* reset page count bias and offset to start of new frag */
5707 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5708 offset = size - fragsz;
5709 }
5710
5711 nc->pagecnt_bias--;
5712 offset &= align_mask;
5713 nc->offset = offset;
5714
5715 return nc->va + offset;
5716 }
5717 EXPORT_SYMBOL(page_frag_alloc_align);
5718
5719 /*
5720 * Frees a page fragment allocated out of either a compound or order 0 page.
5721 */
5722 void page_frag_free(void *addr)
5723 {
5724 struct page *page = virt_to_head_page(addr);
5725
5726 if (unlikely(put_page_testzero(page)))
5727 free_the_page(page, compound_order(page));
5728 }
5729 EXPORT_SYMBOL(page_frag_free);
5730
5731 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5732 size_t size)
5733 {
5734 if (addr) {
5735 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5736 unsigned long used = addr + PAGE_ALIGN(size);
5737
5738 split_page(virt_to_page((void *)addr), order);
5739 while (used < alloc_end) {
5740 free_page(used);
5741 used += PAGE_SIZE;
5742 }
5743 }
5744 return (void *)addr;
5745 }
5746
5747 /**
5748 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5749 * @size: the number of bytes to allocate
5750 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5751 *
5752 * This function is similar to alloc_pages(), except that it allocates the
5753 * minimum number of pages to satisfy the request. alloc_pages() can only
5754 * allocate memory in power-of-two pages.
5755 *
5756 * This function is also limited by MAX_ORDER.
5757 *
5758 * Memory allocated by this function must be released by free_pages_exact().
5759 *
5760 * Return: pointer to the allocated area or %NULL in case of error.
5761 */
5762 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5763 {
5764 unsigned int order = get_order(size);
5765 unsigned long addr;
5766
5767 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5768 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5769
5770 addr = __get_free_pages(gfp_mask, order);
5771 return make_alloc_exact(addr, order, size);
5772 }
5773 EXPORT_SYMBOL(alloc_pages_exact);
5774
5775 /**
5776 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5777 * pages on a node.
5778 * @nid: the preferred node ID where memory should be allocated
5779 * @size: the number of bytes to allocate
5780 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5781 *
5782 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5783 * back.
5784 *
5785 * Return: pointer to the allocated area or %NULL in case of error.
5786 */
5787 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5788 {
5789 unsigned int order = get_order(size);
5790 struct page *p;
5791
5792 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5793 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5794
5795 p = alloc_pages_node(nid, gfp_mask, order);
5796 if (!p)
5797 return NULL;
5798 return make_alloc_exact((unsigned long)page_address(p), order, size);
5799 }
5800
5801 /**
5802 * free_pages_exact - release memory allocated via alloc_pages_exact()
5803 * @virt: the value returned by alloc_pages_exact.
5804 * @size: size of allocation, same value as passed to alloc_pages_exact().
5805 *
5806 * Release the memory allocated by a previous call to alloc_pages_exact.
5807 */
5808 void free_pages_exact(void *virt, size_t size)
5809 {
5810 unsigned long addr = (unsigned long)virt;
5811 unsigned long end = addr + PAGE_ALIGN(size);
5812
5813 while (addr < end) {
5814 free_page(addr);
5815 addr += PAGE_SIZE;
5816 }
5817 }
5818 EXPORT_SYMBOL(free_pages_exact);
5819
5820 /**
5821 * nr_free_zone_pages - count number of pages beyond high watermark
5822 * @offset: The zone index of the highest zone
5823 *
5824 * nr_free_zone_pages() counts the number of pages which are beyond the
5825 * high watermark within all zones at or below a given zone index. For each
5826 * zone, the number of pages is calculated as:
5827 *
5828 * nr_free_zone_pages = managed_pages - high_pages
5829 *
5830 * Return: number of pages beyond high watermark.
5831 */
5832 static unsigned long nr_free_zone_pages(int offset)
5833 {
5834 struct zoneref *z;
5835 struct zone *zone;
5836
5837 /* Just pick one node, since fallback list is circular */
5838 unsigned long sum = 0;
5839
5840 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5841
5842 for_each_zone_zonelist(zone, z, zonelist, offset) {
5843 unsigned long size = zone_managed_pages(zone);
5844 unsigned long high = high_wmark_pages(zone);
5845 if (size > high)
5846 sum += size - high;
5847 }
5848
5849 return sum;
5850 }
5851
5852 /**
5853 * nr_free_buffer_pages - count number of pages beyond high watermark
5854 *
5855 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5856 * watermark within ZONE_DMA and ZONE_NORMAL.
5857 *
5858 * Return: number of pages beyond high watermark within ZONE_DMA and
5859 * ZONE_NORMAL.
5860 */
5861 unsigned long nr_free_buffer_pages(void)
5862 {
5863 return nr_free_zone_pages(gfp_zone(GFP_USER));
5864 }
5865 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5866
5867 static inline void show_node(struct zone *zone)
5868 {
5869 if (IS_ENABLED(CONFIG_NUMA))
5870 printk("Node %d ", zone_to_nid(zone));
5871 }
5872
5873 long si_mem_available(void)
5874 {
5875 long available;
5876 unsigned long pagecache;
5877 unsigned long wmark_low = 0;
5878 unsigned long pages[NR_LRU_LISTS];
5879 unsigned long reclaimable;
5880 struct zone *zone;
5881 int lru;
5882
5883 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5884 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5885
5886 for_each_zone(zone)
5887 wmark_low += low_wmark_pages(zone);
5888
5889 /*
5890 * Estimate the amount of memory available for userspace allocations,
5891 * without causing swapping or OOM.
5892 */
5893 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5894
5895 /*
5896 * Not all the page cache can be freed, otherwise the system will
5897 * start swapping or thrashing. Assume at least half of the page
5898 * cache, or the low watermark worth of cache, needs to stay.
5899 */
5900 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5901 pagecache -= min(pagecache / 2, wmark_low);
5902 available += pagecache;
5903
5904 /*
5905 * Part of the reclaimable slab and other kernel memory consists of
5906 * items that are in use, and cannot be freed. Cap this estimate at the
5907 * low watermark.
5908 */
5909 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5910 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5911 available += reclaimable - min(reclaimable / 2, wmark_low);
5912
5913 if (available < 0)
5914 available = 0;
5915 return available;
5916 }
5917 EXPORT_SYMBOL_GPL(si_mem_available);
5918
5919 void si_meminfo(struct sysinfo *val)
5920 {
5921 val->totalram = totalram_pages();
5922 val->sharedram = global_node_page_state(NR_SHMEM);
5923 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5924 val->bufferram = nr_blockdev_pages();
5925 val->totalhigh = totalhigh_pages();
5926 val->freehigh = nr_free_highpages();
5927 val->mem_unit = PAGE_SIZE;
5928 }
5929
5930 EXPORT_SYMBOL(si_meminfo);
5931
5932 #ifdef CONFIG_NUMA
5933 void si_meminfo_node(struct sysinfo *val, int nid)
5934 {
5935 int zone_type; /* needs to be signed */
5936 unsigned long managed_pages = 0;
5937 unsigned long managed_highpages = 0;
5938 unsigned long free_highpages = 0;
5939 pg_data_t *pgdat = NODE_DATA(nid);
5940
5941 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5942 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5943 val->totalram = managed_pages;
5944 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5945 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5946 #ifdef CONFIG_HIGHMEM
5947 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5948 struct zone *zone = &pgdat->node_zones[zone_type];
5949
5950 if (is_highmem(zone)) {
5951 managed_highpages += zone_managed_pages(zone);
5952 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5953 }
5954 }
5955 val->totalhigh = managed_highpages;
5956 val->freehigh = free_highpages;
5957 #else
5958 val->totalhigh = managed_highpages;
5959 val->freehigh = free_highpages;
5960 #endif
5961 val->mem_unit = PAGE_SIZE;
5962 }
5963 #endif
5964
5965 /*
5966 * Determine whether the node should be displayed or not, depending on whether
5967 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5968 */
5969 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5970 {
5971 if (!(flags & SHOW_MEM_FILTER_NODES))
5972 return false;
5973
5974 /*
5975 * no node mask - aka implicit memory numa policy. Do not bother with
5976 * the synchronization - read_mems_allowed_begin - because we do not
5977 * have to be precise here.
5978 */
5979 if (!nodemask)
5980 nodemask = &cpuset_current_mems_allowed;
5981
5982 return !node_isset(nid, *nodemask);
5983 }
5984
5985 #define K(x) ((x) << (PAGE_SHIFT-10))
5986
5987 static void show_migration_types(unsigned char type)
5988 {
5989 static const char types[MIGRATE_TYPES] = {
5990 [MIGRATE_UNMOVABLE] = 'U',
5991 [MIGRATE_MOVABLE] = 'M',
5992 [MIGRATE_RECLAIMABLE] = 'E',
5993 [MIGRATE_HIGHATOMIC] = 'H',
5994 #ifdef CONFIG_CMA
5995 [MIGRATE_CMA] = 'C',
5996 #endif
5997 #ifdef CONFIG_MEMORY_ISOLATION
5998 [MIGRATE_ISOLATE] = 'I',
5999 #endif
6000 };
6001 char tmp[MIGRATE_TYPES + 1];
6002 char *p = tmp;
6003 int i;
6004
6005 for (i = 0; i < MIGRATE_TYPES; i++) {
6006 if (type & (1 << i))
6007 *p++ = types[i];
6008 }
6009
6010 *p = '\0';
6011 printk(KERN_CONT "(%s) ", tmp);
6012 }
6013
6014 /*
6015 * Show free area list (used inside shift_scroll-lock stuff)
6016 * We also calculate the percentage fragmentation. We do this by counting the
6017 * memory on each free list with the exception of the first item on the list.
6018 *
6019 * Bits in @filter:
6020 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
6021 * cpuset.
6022 */
6023 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
6024 {
6025 unsigned long free_pcp = 0;
6026 int cpu, nid;
6027 struct zone *zone;
6028 pg_data_t *pgdat;
6029
6030 for_each_populated_zone(zone) {
6031 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6032 continue;
6033
6034 for_each_online_cpu(cpu)
6035 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6036 }
6037
6038 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
6039 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
6040 " unevictable:%lu dirty:%lu writeback:%lu\n"
6041 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
6042 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
6043 " kernel_misc_reclaimable:%lu\n"
6044 " free:%lu free_pcp:%lu free_cma:%lu\n",
6045 global_node_page_state(NR_ACTIVE_ANON),
6046 global_node_page_state(NR_INACTIVE_ANON),
6047 global_node_page_state(NR_ISOLATED_ANON),
6048 global_node_page_state(NR_ACTIVE_FILE),
6049 global_node_page_state(NR_INACTIVE_FILE),
6050 global_node_page_state(NR_ISOLATED_FILE),
6051 global_node_page_state(NR_UNEVICTABLE),
6052 global_node_page_state(NR_FILE_DIRTY),
6053 global_node_page_state(NR_WRITEBACK),
6054 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
6055 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
6056 global_node_page_state(NR_FILE_MAPPED),
6057 global_node_page_state(NR_SHMEM),
6058 global_node_page_state(NR_PAGETABLE),
6059 global_zone_page_state(NR_BOUNCE),
6060 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
6061 global_zone_page_state(NR_FREE_PAGES),
6062 free_pcp,
6063 global_zone_page_state(NR_FREE_CMA_PAGES));
6064
6065 for_each_online_pgdat(pgdat) {
6066 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
6067 continue;
6068
6069 printk("Node %d"
6070 " active_anon:%lukB"
6071 " inactive_anon:%lukB"
6072 " active_file:%lukB"
6073 " inactive_file:%lukB"
6074 " unevictable:%lukB"
6075 " isolated(anon):%lukB"
6076 " isolated(file):%lukB"
6077 " mapped:%lukB"
6078 " dirty:%lukB"
6079 " writeback:%lukB"
6080 " shmem:%lukB"
6081 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6082 " shmem_thp: %lukB"
6083 " shmem_pmdmapped: %lukB"
6084 " anon_thp: %lukB"
6085 #endif
6086 " writeback_tmp:%lukB"
6087 " kernel_stack:%lukB"
6088 #ifdef CONFIG_SHADOW_CALL_STACK
6089 " shadow_call_stack:%lukB"
6090 #endif
6091 " pagetables:%lukB"
6092 " all_unreclaimable? %s"
6093 "\n",
6094 pgdat->node_id,
6095 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
6096 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
6097 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
6098 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
6099 K(node_page_state(pgdat, NR_UNEVICTABLE)),
6100 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
6101 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
6102 K(node_page_state(pgdat, NR_FILE_MAPPED)),
6103 K(node_page_state(pgdat, NR_FILE_DIRTY)),
6104 K(node_page_state(pgdat, NR_WRITEBACK)),
6105 K(node_page_state(pgdat, NR_SHMEM)),
6106 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6107 K(node_page_state(pgdat, NR_SHMEM_THPS)),
6108 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
6109 K(node_page_state(pgdat, NR_ANON_THPS)),
6110 #endif
6111 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
6112 node_page_state(pgdat, NR_KERNEL_STACK_KB),
6113 #ifdef CONFIG_SHADOW_CALL_STACK
6114 node_page_state(pgdat, NR_KERNEL_SCS_KB),
6115 #endif
6116 K(node_page_state(pgdat, NR_PAGETABLE)),
6117 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
6118 "yes" : "no");
6119 }
6120
6121 for_each_populated_zone(zone) {
6122 int i;
6123
6124 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6125 continue;
6126
6127 free_pcp = 0;
6128 for_each_online_cpu(cpu)
6129 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
6130
6131 show_node(zone);
6132 printk(KERN_CONT
6133 "%s"
6134 " free:%lukB"
6135 " boost:%lukB"
6136 " min:%lukB"
6137 " low:%lukB"
6138 " high:%lukB"
6139 " reserved_highatomic:%luKB"
6140 " active_anon:%lukB"
6141 " inactive_anon:%lukB"
6142 " active_file:%lukB"
6143 " inactive_file:%lukB"
6144 " unevictable:%lukB"
6145 " writepending:%lukB"
6146 " present:%lukB"
6147 " managed:%lukB"
6148 " mlocked:%lukB"
6149 " bounce:%lukB"
6150 " free_pcp:%lukB"
6151 " local_pcp:%ukB"
6152 " free_cma:%lukB"
6153 "\n",
6154 zone->name,
6155 K(zone_page_state(zone, NR_FREE_PAGES)),
6156 K(zone->watermark_boost),
6157 K(min_wmark_pages(zone)),
6158 K(low_wmark_pages(zone)),
6159 K(high_wmark_pages(zone)),
6160 K(zone->nr_reserved_highatomic),
6161 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6162 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6163 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6164 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6165 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6166 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6167 K(zone->present_pages),
6168 K(zone_managed_pages(zone)),
6169 K(zone_page_state(zone, NR_MLOCK)),
6170 K(zone_page_state(zone, NR_BOUNCE)),
6171 K(free_pcp),
6172 K(this_cpu_read(zone->per_cpu_pageset->count)),
6173 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6174 printk("lowmem_reserve[]:");
6175 for (i = 0; i < MAX_NR_ZONES; i++)
6176 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6177 printk(KERN_CONT "\n");
6178 }
6179
6180 for_each_populated_zone(zone) {
6181 unsigned int order;
6182 unsigned long nr[MAX_ORDER], flags, total = 0;
6183 unsigned char types[MAX_ORDER];
6184
6185 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6186 continue;
6187 show_node(zone);
6188 printk(KERN_CONT "%s: ", zone->name);
6189
6190 spin_lock_irqsave(&zone->lock, flags);
6191 for (order = 0; order < MAX_ORDER; order++) {
6192 struct free_area *area = &zone->free_area[order];
6193 int type;
6194
6195 nr[order] = area->nr_free;
6196 total += nr[order] << order;
6197
6198 types[order] = 0;
6199 for (type = 0; type < MIGRATE_TYPES; type++) {
6200 if (!free_area_empty(area, type))
6201 types[order] |= 1 << type;
6202 }
6203 }
6204 spin_unlock_irqrestore(&zone->lock, flags);
6205 for (order = 0; order < MAX_ORDER; order++) {
6206 printk(KERN_CONT "%lu*%lukB ",
6207 nr[order], K(1UL) << order);
6208 if (nr[order])
6209 show_migration_types(types[order]);
6210 }
6211 printk(KERN_CONT "= %lukB\n", K(total));
6212 }
6213
6214 for_each_online_node(nid) {
6215 if (show_mem_node_skip(filter, nid, nodemask))
6216 continue;
6217 hugetlb_show_meminfo_node(nid);
6218 }
6219
6220 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6221
6222 show_swap_cache_info();
6223 }
6224
6225 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6226 {
6227 zoneref->zone = zone;
6228 zoneref->zone_idx = zone_idx(zone);
6229 }
6230
6231 /*
6232 * Builds allocation fallback zone lists.
6233 *
6234 * Add all populated zones of a node to the zonelist.
6235 */
6236 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6237 {
6238 struct zone *zone;
6239 enum zone_type zone_type = MAX_NR_ZONES;
6240 int nr_zones = 0;
6241
6242 do {
6243 zone_type--;
6244 zone = pgdat->node_zones + zone_type;
6245 if (populated_zone(zone)) {
6246 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6247 check_highest_zone(zone_type);
6248 }
6249 } while (zone_type);
6250
6251 return nr_zones;
6252 }
6253
6254 #ifdef CONFIG_NUMA
6255
6256 static int __parse_numa_zonelist_order(char *s)
6257 {
6258 /*
6259 * We used to support different zonelists modes but they turned
6260 * out to be just not useful. Let's keep the warning in place
6261 * if somebody still use the cmd line parameter so that we do
6262 * not fail it silently
6263 */
6264 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6265 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6266 return -EINVAL;
6267 }
6268 return 0;
6269 }
6270
6271 char numa_zonelist_order[] = "Node";
6272
6273 /*
6274 * sysctl handler for numa_zonelist_order
6275 */
6276 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6277 void *buffer, size_t *length, loff_t *ppos)
6278 {
6279 if (write)
6280 return __parse_numa_zonelist_order(buffer);
6281 return proc_dostring(table, write, buffer, length, ppos);
6282 }
6283
6284
6285 static int node_load[MAX_NUMNODES];
6286
6287 /**
6288 * find_next_best_node - find the next node that should appear in a given node's fallback list
6289 * @node: node whose fallback list we're appending
6290 * @used_node_mask: nodemask_t of already used nodes
6291 *
6292 * We use a number of factors to determine which is the next node that should
6293 * appear on a given node's fallback list. The node should not have appeared
6294 * already in @node's fallback list, and it should be the next closest node
6295 * according to the distance array (which contains arbitrary distance values
6296 * from each node to each node in the system), and should also prefer nodes
6297 * with no CPUs, since presumably they'll have very little allocation pressure
6298 * on them otherwise.
6299 *
6300 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6301 */
6302 int find_next_best_node(int node, nodemask_t *used_node_mask)
6303 {
6304 int n, val;
6305 int min_val = INT_MAX;
6306 int best_node = NUMA_NO_NODE;
6307
6308 /* Use the local node if we haven't already */
6309 if (!node_isset(node, *used_node_mask)) {
6310 node_set(node, *used_node_mask);
6311 return node;
6312 }
6313
6314 for_each_node_state(n, N_MEMORY) {
6315
6316 /* Don't want a node to appear more than once */
6317 if (node_isset(n, *used_node_mask))
6318 continue;
6319
6320 /* Use the distance array to find the distance */
6321 val = node_distance(node, n);
6322
6323 /* Penalize nodes under us ("prefer the next node") */
6324 val += (n < node);
6325
6326 /* Give preference to headless and unused nodes */
6327 if (!cpumask_empty(cpumask_of_node(n)))
6328 val += PENALTY_FOR_NODE_WITH_CPUS;
6329
6330 /* Slight preference for less loaded node */
6331 val *= MAX_NUMNODES;
6332 val += node_load[n];
6333
6334 if (val < min_val) {
6335 min_val = val;
6336 best_node = n;
6337 }
6338 }
6339
6340 if (best_node >= 0)
6341 node_set(best_node, *used_node_mask);
6342
6343 return best_node;
6344 }
6345
6346
6347 /*
6348 * Build zonelists ordered by node and zones within node.
6349 * This results in maximum locality--normal zone overflows into local
6350 * DMA zone, if any--but risks exhausting DMA zone.
6351 */
6352 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6353 unsigned nr_nodes)
6354 {
6355 struct zoneref *zonerefs;
6356 int i;
6357
6358 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6359
6360 for (i = 0; i < nr_nodes; i++) {
6361 int nr_zones;
6362
6363 pg_data_t *node = NODE_DATA(node_order[i]);
6364
6365 nr_zones = build_zonerefs_node(node, zonerefs);
6366 zonerefs += nr_zones;
6367 }
6368 zonerefs->zone = NULL;
6369 zonerefs->zone_idx = 0;
6370 }
6371
6372 /*
6373 * Build gfp_thisnode zonelists
6374 */
6375 static void build_thisnode_zonelists(pg_data_t *pgdat)
6376 {
6377 struct zoneref *zonerefs;
6378 int nr_zones;
6379
6380 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6381 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6382 zonerefs += nr_zones;
6383 zonerefs->zone = NULL;
6384 zonerefs->zone_idx = 0;
6385 }
6386
6387 /*
6388 * Build zonelists ordered by zone and nodes within zones.
6389 * This results in conserving DMA zone[s] until all Normal memory is
6390 * exhausted, but results in overflowing to remote node while memory
6391 * may still exist in local DMA zone.
6392 */
6393
6394 static void build_zonelists(pg_data_t *pgdat)
6395 {
6396 static int node_order[MAX_NUMNODES];
6397 int node, nr_nodes = 0;
6398 nodemask_t used_mask = NODE_MASK_NONE;
6399 int local_node, prev_node;
6400
6401 /* NUMA-aware ordering of nodes */
6402 local_node = pgdat->node_id;
6403 prev_node = local_node;
6404
6405 memset(node_order, 0, sizeof(node_order));
6406 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6407 /*
6408 * We don't want to pressure a particular node.
6409 * So adding penalty to the first node in same
6410 * distance group to make it round-robin.
6411 */
6412 if (node_distance(local_node, node) !=
6413 node_distance(local_node, prev_node))
6414 node_load[node] += 1;
6415
6416 node_order[nr_nodes++] = node;
6417 prev_node = node;
6418 }
6419
6420 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6421 build_thisnode_zonelists(pgdat);
6422 pr_info("Fallback order for Node %d: ", local_node);
6423 for (node = 0; node < nr_nodes; node++)
6424 pr_cont("%d ", node_order[node]);
6425 pr_cont("\n");
6426 }
6427
6428 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6429 /*
6430 * Return node id of node used for "local" allocations.
6431 * I.e., first node id of first zone in arg node's generic zonelist.
6432 * Used for initializing percpu 'numa_mem', which is used primarily
6433 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6434 */
6435 int local_memory_node(int node)
6436 {
6437 struct zoneref *z;
6438
6439 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6440 gfp_zone(GFP_KERNEL),
6441 NULL);
6442 return zone_to_nid(z->zone);
6443 }
6444 #endif
6445
6446 static void setup_min_unmapped_ratio(void);
6447 static void setup_min_slab_ratio(void);
6448 #else /* CONFIG_NUMA */
6449
6450 static void build_zonelists(pg_data_t *pgdat)
6451 {
6452 int node, local_node;
6453 struct zoneref *zonerefs;
6454 int nr_zones;
6455
6456 local_node = pgdat->node_id;
6457
6458 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6459 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6460 zonerefs += nr_zones;
6461
6462 /*
6463 * Now we build the zonelist so that it contains the zones
6464 * of all the other nodes.
6465 * We don't want to pressure a particular node, so when
6466 * building the zones for node N, we make sure that the
6467 * zones coming right after the local ones are those from
6468 * node N+1 (modulo N)
6469 */
6470 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6471 if (!node_online(node))
6472 continue;
6473 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6474 zonerefs += nr_zones;
6475 }
6476 for (node = 0; node < local_node; node++) {
6477 if (!node_online(node))
6478 continue;
6479 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6480 zonerefs += nr_zones;
6481 }
6482
6483 zonerefs->zone = NULL;
6484 zonerefs->zone_idx = 0;
6485 }
6486
6487 #endif /* CONFIG_NUMA */
6488
6489 /*
6490 * Boot pageset table. One per cpu which is going to be used for all
6491 * zones and all nodes. The parameters will be set in such a way
6492 * that an item put on a list will immediately be handed over to
6493 * the buddy list. This is safe since pageset manipulation is done
6494 * with interrupts disabled.
6495 *
6496 * The boot_pagesets must be kept even after bootup is complete for
6497 * unused processors and/or zones. They do play a role for bootstrapping
6498 * hotplugged processors.
6499 *
6500 * zoneinfo_show() and maybe other functions do
6501 * not check if the processor is online before following the pageset pointer.
6502 * Other parts of the kernel may not check if the zone is available.
6503 */
6504 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6505 /* These effectively disable the pcplists in the boot pageset completely */
6506 #define BOOT_PAGESET_HIGH 0
6507 #define BOOT_PAGESET_BATCH 1
6508 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6509 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6510 DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6511
6512 static void __build_all_zonelists(void *data)
6513 {
6514 int nid;
6515 int __maybe_unused cpu;
6516 pg_data_t *self = data;
6517 static DEFINE_SPINLOCK(lock);
6518
6519 spin_lock(&lock);
6520
6521 #ifdef CONFIG_NUMA
6522 memset(node_load, 0, sizeof(node_load));
6523 #endif
6524
6525 /*
6526 * This node is hotadded and no memory is yet present. So just
6527 * building zonelists is fine - no need to touch other nodes.
6528 */
6529 if (self && !node_online(self->node_id)) {
6530 build_zonelists(self);
6531 } else {
6532 /*
6533 * All possible nodes have pgdat preallocated
6534 * in free_area_init
6535 */
6536 for_each_node(nid) {
6537 pg_data_t *pgdat = NODE_DATA(nid);
6538
6539 build_zonelists(pgdat);
6540 }
6541
6542 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6543 /*
6544 * We now know the "local memory node" for each node--
6545 * i.e., the node of the first zone in the generic zonelist.
6546 * Set up numa_mem percpu variable for on-line cpus. During
6547 * boot, only the boot cpu should be on-line; we'll init the
6548 * secondary cpus' numa_mem as they come on-line. During
6549 * node/memory hotplug, we'll fixup all on-line cpus.
6550 */
6551 for_each_online_cpu(cpu)
6552 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6553 #endif
6554 }
6555
6556 spin_unlock(&lock);
6557 }
6558
6559 static noinline void __init
6560 build_all_zonelists_init(void)
6561 {
6562 int cpu;
6563
6564 __build_all_zonelists(NULL);
6565
6566 /*
6567 * Initialize the boot_pagesets that are going to be used
6568 * for bootstrapping processors. The real pagesets for
6569 * each zone will be allocated later when the per cpu
6570 * allocator is available.
6571 *
6572 * boot_pagesets are used also for bootstrapping offline
6573 * cpus if the system is already booted because the pagesets
6574 * are needed to initialize allocators on a specific cpu too.
6575 * F.e. the percpu allocator needs the page allocator which
6576 * needs the percpu allocator in order to allocate its pagesets
6577 * (a chicken-egg dilemma).
6578 */
6579 for_each_possible_cpu(cpu)
6580 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6581
6582 mminit_verify_zonelist();
6583 cpuset_init_current_mems_allowed();
6584 }
6585
6586 /*
6587 * unless system_state == SYSTEM_BOOTING.
6588 *
6589 * __ref due to call of __init annotated helper build_all_zonelists_init
6590 * [protected by SYSTEM_BOOTING].
6591 */
6592 void __ref build_all_zonelists(pg_data_t *pgdat)
6593 {
6594 unsigned long vm_total_pages;
6595
6596 if (system_state == SYSTEM_BOOTING) {
6597 build_all_zonelists_init();
6598 } else {
6599 __build_all_zonelists(pgdat);
6600 /* cpuset refresh routine should be here */
6601 }
6602 /* Get the number of free pages beyond high watermark in all zones. */
6603 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6604 /*
6605 * Disable grouping by mobility if the number of pages in the
6606 * system is too low to allow the mechanism to work. It would be
6607 * more accurate, but expensive to check per-zone. This check is
6608 * made on memory-hotadd so a system can start with mobility
6609 * disabled and enable it later
6610 */
6611 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6612 page_group_by_mobility_disabled = 1;
6613 else
6614 page_group_by_mobility_disabled = 0;
6615
6616 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6617 nr_online_nodes,
6618 page_group_by_mobility_disabled ? "off" : "on",
6619 vm_total_pages);
6620 #ifdef CONFIG_NUMA
6621 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6622 #endif
6623 }
6624
6625 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6626 static bool __meminit
6627 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6628 {
6629 static struct memblock_region *r;
6630
6631 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6632 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6633 for_each_mem_region(r) {
6634 if (*pfn < memblock_region_memory_end_pfn(r))
6635 break;
6636 }
6637 }
6638 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6639 memblock_is_mirror(r)) {
6640 *pfn = memblock_region_memory_end_pfn(r);
6641 return true;
6642 }
6643 }
6644 return false;
6645 }
6646
6647 /*
6648 * Initially all pages are reserved - free ones are freed
6649 * up by memblock_free_all() once the early boot process is
6650 * done. Non-atomic initialization, single-pass.
6651 *
6652 * All aligned pageblocks are initialized to the specified migratetype
6653 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6654 * zone stats (e.g., nr_isolate_pageblock) are touched.
6655 */
6656 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6657 unsigned long start_pfn, unsigned long zone_end_pfn,
6658 enum meminit_context context,
6659 struct vmem_altmap *altmap, int migratetype)
6660 {
6661 unsigned long pfn, end_pfn = start_pfn + size;
6662 struct page *page;
6663
6664 if (highest_memmap_pfn < end_pfn - 1)
6665 highest_memmap_pfn = end_pfn - 1;
6666
6667 #ifdef CONFIG_ZONE_DEVICE
6668 /*
6669 * Honor reservation requested by the driver for this ZONE_DEVICE
6670 * memory. We limit the total number of pages to initialize to just
6671 * those that might contain the memory mapping. We will defer the
6672 * ZONE_DEVICE page initialization until after we have released
6673 * the hotplug lock.
6674 */
6675 if (zone == ZONE_DEVICE) {
6676 if (!altmap)
6677 return;
6678
6679 if (start_pfn == altmap->base_pfn)
6680 start_pfn += altmap->reserve;
6681 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6682 }
6683 #endif
6684
6685 for (pfn = start_pfn; pfn < end_pfn; ) {
6686 /*
6687 * There can be holes in boot-time mem_map[]s handed to this
6688 * function. They do not exist on hotplugged memory.
6689 */
6690 if (context == MEMINIT_EARLY) {
6691 if (overlap_memmap_init(zone, &pfn))
6692 continue;
6693 if (defer_init(nid, pfn, zone_end_pfn))
6694 break;
6695 }
6696
6697 page = pfn_to_page(pfn);
6698 __init_single_page(page, pfn, zone, nid);
6699 if (context == MEMINIT_HOTPLUG)
6700 __SetPageReserved(page);
6701
6702 /*
6703 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6704 * such that unmovable allocations won't be scattered all
6705 * over the place during system boot.
6706 */
6707 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6708 set_pageblock_migratetype(page, migratetype);
6709 cond_resched();
6710 }
6711 pfn++;
6712 }
6713 }
6714
6715 #ifdef CONFIG_ZONE_DEVICE
6716 static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
6717 unsigned long zone_idx, int nid,
6718 struct dev_pagemap *pgmap)
6719 {
6720
6721 __init_single_page(page, pfn, zone_idx, nid);
6722
6723 /*
6724 * Mark page reserved as it will need to wait for onlining
6725 * phase for it to be fully associated with a zone.
6726 *
6727 * We can use the non-atomic __set_bit operation for setting
6728 * the flag as we are still initializing the pages.
6729 */
6730 __SetPageReserved(page);
6731
6732 /*
6733 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6734 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6735 * ever freed or placed on a driver-private list.
6736 */
6737 page->pgmap = pgmap;
6738 page->zone_device_data = NULL;
6739
6740 /*
6741 * Mark the block movable so that blocks are reserved for
6742 * movable at startup. This will force kernel allocations
6743 * to reserve their blocks rather than leaking throughout
6744 * the address space during boot when many long-lived
6745 * kernel allocations are made.
6746 *
6747 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6748 * because this is done early in section_activate()
6749 */
6750 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6751 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6752 cond_resched();
6753 }
6754 }
6755
6756 /*
6757 * With compound page geometry and when struct pages are stored in ram most
6758 * tail pages are reused. Consequently, the amount of unique struct pages to
6759 * initialize is a lot smaller that the total amount of struct pages being
6760 * mapped. This is a paired / mild layering violation with explicit knowledge
6761 * of how the sparse_vmemmap internals handle compound pages in the lack
6762 * of an altmap. See vmemmap_populate_compound_pages().
6763 */
6764 static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
6765 unsigned long nr_pages)
6766 {
6767 return is_power_of_2(sizeof(struct page)) &&
6768 !altmap ? 2 * (PAGE_SIZE / sizeof(struct page)) : nr_pages;
6769 }
6770
6771 static void __ref memmap_init_compound(struct page *head,
6772 unsigned long head_pfn,
6773 unsigned long zone_idx, int nid,
6774 struct dev_pagemap *pgmap,
6775 unsigned long nr_pages)
6776 {
6777 unsigned long pfn, end_pfn = head_pfn + nr_pages;
6778 unsigned int order = pgmap->vmemmap_shift;
6779
6780 __SetPageHead(head);
6781 for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
6782 struct page *page = pfn_to_page(pfn);
6783
6784 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6785 prep_compound_tail(head, pfn - head_pfn);
6786 set_page_count(page, 0);
6787
6788 /*
6789 * The first tail page stores compound_mapcount_ptr() and
6790 * compound_order() and the second tail page stores
6791 * compound_pincount_ptr(). Call prep_compound_head() after
6792 * the first and second tail pages have been initialized to
6793 * not have the data overwritten.
6794 */
6795 if (pfn == head_pfn + 2)
6796 prep_compound_head(head, order);
6797 }
6798 }
6799
6800 void __ref memmap_init_zone_device(struct zone *zone,
6801 unsigned long start_pfn,
6802 unsigned long nr_pages,
6803 struct dev_pagemap *pgmap)
6804 {
6805 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6806 struct pglist_data *pgdat = zone->zone_pgdat;
6807 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6808 unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
6809 unsigned long zone_idx = zone_idx(zone);
6810 unsigned long start = jiffies;
6811 int nid = pgdat->node_id;
6812
6813 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6814 return;
6815
6816 /*
6817 * The call to memmap_init should have already taken care
6818 * of the pages reserved for the memmap, so we can just jump to
6819 * the end of that region and start processing the device pages.
6820 */
6821 if (altmap) {
6822 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6823 nr_pages = end_pfn - start_pfn;
6824 }
6825
6826 for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
6827 struct page *page = pfn_to_page(pfn);
6828
6829 __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
6830
6831 if (pfns_per_compound == 1)
6832 continue;
6833
6834 memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
6835 compound_nr_pages(altmap, pfns_per_compound));
6836 }
6837
6838 pr_info("%s initialised %lu pages in %ums\n", __func__,
6839 nr_pages, jiffies_to_msecs(jiffies - start));
6840 }
6841
6842 #endif
6843 static void __meminit zone_init_free_lists(struct zone *zone)
6844 {
6845 unsigned int order, t;
6846 for_each_migratetype_order(order, t) {
6847 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6848 zone->free_area[order].nr_free = 0;
6849 }
6850 }
6851
6852 /*
6853 * Only struct pages that correspond to ranges defined by memblock.memory
6854 * are zeroed and initialized by going through __init_single_page() during
6855 * memmap_init_zone_range().
6856 *
6857 * But, there could be struct pages that correspond to holes in
6858 * memblock.memory. This can happen because of the following reasons:
6859 * - physical memory bank size is not necessarily the exact multiple of the
6860 * arbitrary section size
6861 * - early reserved memory may not be listed in memblock.memory
6862 * - memory layouts defined with memmap= kernel parameter may not align
6863 * nicely with memmap sections
6864 *
6865 * Explicitly initialize those struct pages so that:
6866 * - PG_Reserved is set
6867 * - zone and node links point to zone and node that span the page if the
6868 * hole is in the middle of a zone
6869 * - zone and node links point to adjacent zone/node if the hole falls on
6870 * the zone boundary; the pages in such holes will be prepended to the
6871 * zone/node above the hole except for the trailing pages in the last
6872 * section that will be appended to the zone/node below.
6873 */
6874 static void __init init_unavailable_range(unsigned long spfn,
6875 unsigned long epfn,
6876 int zone, int node)
6877 {
6878 unsigned long pfn;
6879 u64 pgcnt = 0;
6880
6881 for (pfn = spfn; pfn < epfn; pfn++) {
6882 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6883 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6884 + pageblock_nr_pages - 1;
6885 continue;
6886 }
6887 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6888 __SetPageReserved(pfn_to_page(pfn));
6889 pgcnt++;
6890 }
6891
6892 if (pgcnt)
6893 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6894 node, zone_names[zone], pgcnt);
6895 }
6896
6897 static void __init memmap_init_zone_range(struct zone *zone,
6898 unsigned long start_pfn,
6899 unsigned long end_pfn,
6900 unsigned long *hole_pfn)
6901 {
6902 unsigned long zone_start_pfn = zone->zone_start_pfn;
6903 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6904 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6905
6906 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6907 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6908
6909 if (start_pfn >= end_pfn)
6910 return;
6911
6912 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6913 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6914
6915 if (*hole_pfn < start_pfn)
6916 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6917
6918 *hole_pfn = end_pfn;
6919 }
6920
6921 static void __init memmap_init(void)
6922 {
6923 unsigned long start_pfn, end_pfn;
6924 unsigned long hole_pfn = 0;
6925 int i, j, zone_id = 0, nid;
6926
6927 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6928 struct pglist_data *node = NODE_DATA(nid);
6929
6930 for (j = 0; j < MAX_NR_ZONES; j++) {
6931 struct zone *zone = node->node_zones + j;
6932
6933 if (!populated_zone(zone))
6934 continue;
6935
6936 memmap_init_zone_range(zone, start_pfn, end_pfn,
6937 &hole_pfn);
6938 zone_id = j;
6939 }
6940 }
6941
6942 #ifdef CONFIG_SPARSEMEM
6943 /*
6944 * Initialize the memory map for hole in the range [memory_end,
6945 * section_end].
6946 * Append the pages in this hole to the highest zone in the last
6947 * node.
6948 * The call to init_unavailable_range() is outside the ifdef to
6949 * silence the compiler warining about zone_id set but not used;
6950 * for FLATMEM it is a nop anyway
6951 */
6952 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6953 if (hole_pfn < end_pfn)
6954 #endif
6955 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6956 }
6957
6958 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6959 phys_addr_t min_addr, int nid, bool exact_nid)
6960 {
6961 void *ptr;
6962
6963 if (exact_nid)
6964 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6965 MEMBLOCK_ALLOC_ACCESSIBLE,
6966 nid);
6967 else
6968 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6969 MEMBLOCK_ALLOC_ACCESSIBLE,
6970 nid);
6971
6972 if (ptr && size > 0)
6973 page_init_poison(ptr, size);
6974
6975 return ptr;
6976 }
6977
6978 static int zone_batchsize(struct zone *zone)
6979 {
6980 #ifdef CONFIG_MMU
6981 int batch;
6982
6983 /*
6984 * The number of pages to batch allocate is either ~0.1%
6985 * of the zone or 1MB, whichever is smaller. The batch
6986 * size is striking a balance between allocation latency
6987 * and zone lock contention.
6988 */
6989 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6990 batch /= 4; /* We effectively *= 4 below */
6991 if (batch < 1)
6992 batch = 1;
6993
6994 /*
6995 * Clamp the batch to a 2^n - 1 value. Having a power
6996 * of 2 value was found to be more likely to have
6997 * suboptimal cache aliasing properties in some cases.
6998 *
6999 * For example if 2 tasks are alternately allocating
7000 * batches of pages, one task can end up with a lot
7001 * of pages of one half of the possible page colors
7002 * and the other with pages of the other colors.
7003 */
7004 batch = rounddown_pow_of_two(batch + batch/2) - 1;
7005
7006 return batch;
7007
7008 #else
7009 /* The deferral and batching of frees should be suppressed under NOMMU
7010 * conditions.
7011 *
7012 * The problem is that NOMMU needs to be able to allocate large chunks
7013 * of contiguous memory as there's no hardware page translation to
7014 * assemble apparent contiguous memory from discontiguous pages.
7015 *
7016 * Queueing large contiguous runs of pages for batching, however,
7017 * causes the pages to actually be freed in smaller chunks. As there
7018 * can be a significant delay between the individual batches being
7019 * recycled, this leads to the once large chunks of space being
7020 * fragmented and becoming unavailable for high-order allocations.
7021 */
7022 return 0;
7023 #endif
7024 }
7025
7026 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
7027 {
7028 #ifdef CONFIG_MMU
7029 int high;
7030 int nr_split_cpus;
7031 unsigned long total_pages;
7032
7033 if (!percpu_pagelist_high_fraction) {
7034 /*
7035 * By default, the high value of the pcp is based on the zone
7036 * low watermark so that if they are full then background
7037 * reclaim will not be started prematurely.
7038 */
7039 total_pages = low_wmark_pages(zone);
7040 } else {
7041 /*
7042 * If percpu_pagelist_high_fraction is configured, the high
7043 * value is based on a fraction of the managed pages in the
7044 * zone.
7045 */
7046 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
7047 }
7048
7049 /*
7050 * Split the high value across all online CPUs local to the zone. Note
7051 * that early in boot that CPUs may not be online yet and that during
7052 * CPU hotplug that the cpumask is not yet updated when a CPU is being
7053 * onlined. For memory nodes that have no CPUs, split pcp->high across
7054 * all online CPUs to mitigate the risk that reclaim is triggered
7055 * prematurely due to pages stored on pcp lists.
7056 */
7057 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
7058 if (!nr_split_cpus)
7059 nr_split_cpus = num_online_cpus();
7060 high = total_pages / nr_split_cpus;
7061
7062 /*
7063 * Ensure high is at least batch*4. The multiple is based on the
7064 * historical relationship between high and batch.
7065 */
7066 high = max(high, batch << 2);
7067
7068 return high;
7069 #else
7070 return 0;
7071 #endif
7072 }
7073
7074 /*
7075 * pcp->high and pcp->batch values are related and generally batch is lower
7076 * than high. They are also related to pcp->count such that count is lower
7077 * than high, and as soon as it reaches high, the pcplist is flushed.
7078 *
7079 * However, guaranteeing these relations at all times would require e.g. write
7080 * barriers here but also careful usage of read barriers at the read side, and
7081 * thus be prone to error and bad for performance. Thus the update only prevents
7082 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
7083 * can cope with those fields changing asynchronously, and fully trust only the
7084 * pcp->count field on the local CPU with interrupts disabled.
7085 *
7086 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
7087 * outside of boot time (or some other assurance that no concurrent updaters
7088 * exist).
7089 */
7090 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
7091 unsigned long batch)
7092 {
7093 WRITE_ONCE(pcp->batch, batch);
7094 WRITE_ONCE(pcp->high, high);
7095 }
7096
7097 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
7098 {
7099 int pindex;
7100
7101 memset(pcp, 0, sizeof(*pcp));
7102 memset(pzstats, 0, sizeof(*pzstats));
7103
7104 spin_lock_init(&pcp->lock);
7105 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
7106 INIT_LIST_HEAD(&pcp->lists[pindex]);
7107
7108 /*
7109 * Set batch and high values safe for a boot pageset. A true percpu
7110 * pageset's initialization will update them subsequently. Here we don't
7111 * need to be as careful as pageset_update() as nobody can access the
7112 * pageset yet.
7113 */
7114 pcp->high = BOOT_PAGESET_HIGH;
7115 pcp->batch = BOOT_PAGESET_BATCH;
7116 pcp->free_factor = 0;
7117 }
7118
7119 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
7120 unsigned long batch)
7121 {
7122 struct per_cpu_pages *pcp;
7123 int cpu;
7124
7125 for_each_possible_cpu(cpu) {
7126 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7127 pageset_update(pcp, high, batch);
7128 }
7129 }
7130
7131 /*
7132 * Calculate and set new high and batch values for all per-cpu pagesets of a
7133 * zone based on the zone's size.
7134 */
7135 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
7136 {
7137 int new_high, new_batch;
7138
7139 new_batch = max(1, zone_batchsize(zone));
7140 new_high = zone_highsize(zone, new_batch, cpu_online);
7141
7142 if (zone->pageset_high == new_high &&
7143 zone->pageset_batch == new_batch)
7144 return;
7145
7146 zone->pageset_high = new_high;
7147 zone->pageset_batch = new_batch;
7148
7149 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
7150 }
7151
7152 void __meminit setup_zone_pageset(struct zone *zone)
7153 {
7154 int cpu;
7155
7156 /* Size may be 0 on !SMP && !NUMA */
7157 if (sizeof(struct per_cpu_zonestat) > 0)
7158 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
7159
7160 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
7161 for_each_possible_cpu(cpu) {
7162 struct per_cpu_pages *pcp;
7163 struct per_cpu_zonestat *pzstats;
7164
7165 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
7166 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
7167 per_cpu_pages_init(pcp, pzstats);
7168 }
7169
7170 zone_set_pageset_high_and_batch(zone, 0);
7171 }
7172
7173 /*
7174 * Allocate per cpu pagesets and initialize them.
7175 * Before this call only boot pagesets were available.
7176 */
7177 void __init setup_per_cpu_pageset(void)
7178 {
7179 struct pglist_data *pgdat;
7180 struct zone *zone;
7181 int __maybe_unused cpu;
7182
7183 for_each_populated_zone(zone)
7184 setup_zone_pageset(zone);
7185
7186 #ifdef CONFIG_NUMA
7187 /*
7188 * Unpopulated zones continue using the boot pagesets.
7189 * The numa stats for these pagesets need to be reset.
7190 * Otherwise, they will end up skewing the stats of
7191 * the nodes these zones are associated with.
7192 */
7193 for_each_possible_cpu(cpu) {
7194 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
7195 memset(pzstats->vm_numa_event, 0,
7196 sizeof(pzstats->vm_numa_event));
7197 }
7198 #endif
7199
7200 for_each_online_pgdat(pgdat)
7201 pgdat->per_cpu_nodestats =
7202 alloc_percpu(struct per_cpu_nodestat);
7203 }
7204
7205 static __meminit void zone_pcp_init(struct zone *zone)
7206 {
7207 /*
7208 * per cpu subsystem is not up at this point. The following code
7209 * relies on the ability of the linker to provide the
7210 * offset of a (static) per cpu variable into the per cpu area.
7211 */
7212 zone->per_cpu_pageset = &boot_pageset;
7213 zone->per_cpu_zonestats = &boot_zonestats;
7214 zone->pageset_high = BOOT_PAGESET_HIGH;
7215 zone->pageset_batch = BOOT_PAGESET_BATCH;
7216
7217 if (populated_zone(zone))
7218 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7219 zone->present_pages, zone_batchsize(zone));
7220 }
7221
7222 void __meminit init_currently_empty_zone(struct zone *zone,
7223 unsigned long zone_start_pfn,
7224 unsigned long size)
7225 {
7226 struct pglist_data *pgdat = zone->zone_pgdat;
7227 int zone_idx = zone_idx(zone) + 1;
7228
7229 if (zone_idx > pgdat->nr_zones)
7230 pgdat->nr_zones = zone_idx;
7231
7232 zone->zone_start_pfn = zone_start_pfn;
7233
7234 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7235 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7236 pgdat->node_id,
7237 (unsigned long)zone_idx(zone),
7238 zone_start_pfn, (zone_start_pfn + size));
7239
7240 zone_init_free_lists(zone);
7241 zone->initialized = 1;
7242 }
7243
7244 /**
7245 * get_pfn_range_for_nid - Return the start and end page frames for a node
7246 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7247 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7248 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7249 *
7250 * It returns the start and end page frame of a node based on information
7251 * provided by memblock_set_node(). If called for a node
7252 * with no available memory, a warning is printed and the start and end
7253 * PFNs will be 0.
7254 */
7255 void __init get_pfn_range_for_nid(unsigned int nid,
7256 unsigned long *start_pfn, unsigned long *end_pfn)
7257 {
7258 unsigned long this_start_pfn, this_end_pfn;
7259 int i;
7260
7261 *start_pfn = -1UL;
7262 *end_pfn = 0;
7263
7264 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7265 *start_pfn = min(*start_pfn, this_start_pfn);
7266 *end_pfn = max(*end_pfn, this_end_pfn);
7267 }
7268
7269 if (*start_pfn == -1UL)
7270 *start_pfn = 0;
7271 }
7272
7273 /*
7274 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7275 * assumption is made that zones within a node are ordered in monotonic
7276 * increasing memory addresses so that the "highest" populated zone is used
7277 */
7278 static void __init find_usable_zone_for_movable(void)
7279 {
7280 int zone_index;
7281 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7282 if (zone_index == ZONE_MOVABLE)
7283 continue;
7284
7285 if (arch_zone_highest_possible_pfn[zone_index] >
7286 arch_zone_lowest_possible_pfn[zone_index])
7287 break;
7288 }
7289
7290 VM_BUG_ON(zone_index == -1);
7291 movable_zone = zone_index;
7292 }
7293
7294 /*
7295 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7296 * because it is sized independent of architecture. Unlike the other zones,
7297 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7298 * in each node depending on the size of each node and how evenly kernelcore
7299 * is distributed. This helper function adjusts the zone ranges
7300 * provided by the architecture for a given node by using the end of the
7301 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7302 * zones within a node are in order of monotonic increases memory addresses
7303 */
7304 static void __init adjust_zone_range_for_zone_movable(int nid,
7305 unsigned long zone_type,
7306 unsigned long node_start_pfn,
7307 unsigned long node_end_pfn,
7308 unsigned long *zone_start_pfn,
7309 unsigned long *zone_end_pfn)
7310 {
7311 /* Only adjust if ZONE_MOVABLE is on this node */
7312 if (zone_movable_pfn[nid]) {
7313 /* Size ZONE_MOVABLE */
7314 if (zone_type == ZONE_MOVABLE) {
7315 *zone_start_pfn = zone_movable_pfn[nid];
7316 *zone_end_pfn = min(node_end_pfn,
7317 arch_zone_highest_possible_pfn[movable_zone]);
7318
7319 /* Adjust for ZONE_MOVABLE starting within this range */
7320 } else if (!mirrored_kernelcore &&
7321 *zone_start_pfn < zone_movable_pfn[nid] &&
7322 *zone_end_pfn > zone_movable_pfn[nid]) {
7323 *zone_end_pfn = zone_movable_pfn[nid];
7324
7325 /* Check if this whole range is within ZONE_MOVABLE */
7326 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7327 *zone_start_pfn = *zone_end_pfn;
7328 }
7329 }
7330
7331 /*
7332 * Return the number of pages a zone spans in a node, including holes
7333 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7334 */
7335 static unsigned long __init zone_spanned_pages_in_node(int nid,
7336 unsigned long zone_type,
7337 unsigned long node_start_pfn,
7338 unsigned long node_end_pfn,
7339 unsigned long *zone_start_pfn,
7340 unsigned long *zone_end_pfn)
7341 {
7342 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7343 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7344 /* When hotadd a new node from cpu_up(), the node should be empty */
7345 if (!node_start_pfn && !node_end_pfn)
7346 return 0;
7347
7348 /* Get the start and end of the zone */
7349 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7350 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7351 adjust_zone_range_for_zone_movable(nid, zone_type,
7352 node_start_pfn, node_end_pfn,
7353 zone_start_pfn, zone_end_pfn);
7354
7355 /* Check that this node has pages within the zone's required range */
7356 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7357 return 0;
7358
7359 /* Move the zone boundaries inside the node if necessary */
7360 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7361 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7362
7363 /* Return the spanned pages */
7364 return *zone_end_pfn - *zone_start_pfn;
7365 }
7366
7367 /*
7368 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7369 * then all holes in the requested range will be accounted for.
7370 */
7371 unsigned long __init __absent_pages_in_range(int nid,
7372 unsigned long range_start_pfn,
7373 unsigned long range_end_pfn)
7374 {
7375 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7376 unsigned long start_pfn, end_pfn;
7377 int i;
7378
7379 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7380 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7381 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7382 nr_absent -= end_pfn - start_pfn;
7383 }
7384 return nr_absent;
7385 }
7386
7387 /**
7388 * absent_pages_in_range - Return number of page frames in holes within a range
7389 * @start_pfn: The start PFN to start searching for holes
7390 * @end_pfn: The end PFN to stop searching for holes
7391 *
7392 * Return: the number of pages frames in memory holes within a range.
7393 */
7394 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7395 unsigned long end_pfn)
7396 {
7397 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7398 }
7399
7400 /* Return the number of page frames in holes in a zone on a node */
7401 static unsigned long __init zone_absent_pages_in_node(int nid,
7402 unsigned long zone_type,
7403 unsigned long node_start_pfn,
7404 unsigned long node_end_pfn)
7405 {
7406 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7407 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7408 unsigned long zone_start_pfn, zone_end_pfn;
7409 unsigned long nr_absent;
7410
7411 /* When hotadd a new node from cpu_up(), the node should be empty */
7412 if (!node_start_pfn && !node_end_pfn)
7413 return 0;
7414
7415 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7416 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7417
7418 adjust_zone_range_for_zone_movable(nid, zone_type,
7419 node_start_pfn, node_end_pfn,
7420 &zone_start_pfn, &zone_end_pfn);
7421 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7422
7423 /*
7424 * ZONE_MOVABLE handling.
7425 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7426 * and vice versa.
7427 */
7428 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7429 unsigned long start_pfn, end_pfn;
7430 struct memblock_region *r;
7431
7432 for_each_mem_region(r) {
7433 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7434 zone_start_pfn, zone_end_pfn);
7435 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7436 zone_start_pfn, zone_end_pfn);
7437
7438 if (zone_type == ZONE_MOVABLE &&
7439 memblock_is_mirror(r))
7440 nr_absent += end_pfn - start_pfn;
7441
7442 if (zone_type == ZONE_NORMAL &&
7443 !memblock_is_mirror(r))
7444 nr_absent += end_pfn - start_pfn;
7445 }
7446 }
7447
7448 return nr_absent;
7449 }
7450
7451 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7452 unsigned long node_start_pfn,
7453 unsigned long node_end_pfn)
7454 {
7455 unsigned long realtotalpages = 0, totalpages = 0;
7456 enum zone_type i;
7457
7458 for (i = 0; i < MAX_NR_ZONES; i++) {
7459 struct zone *zone = pgdat->node_zones + i;
7460 unsigned long zone_start_pfn, zone_end_pfn;
7461 unsigned long spanned, absent;
7462 unsigned long size, real_size;
7463
7464 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7465 node_start_pfn,
7466 node_end_pfn,
7467 &zone_start_pfn,
7468 &zone_end_pfn);
7469 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7470 node_start_pfn,
7471 node_end_pfn);
7472
7473 size = spanned;
7474 real_size = size - absent;
7475
7476 if (size)
7477 zone->zone_start_pfn = zone_start_pfn;
7478 else
7479 zone->zone_start_pfn = 0;
7480 zone->spanned_pages = size;
7481 zone->present_pages = real_size;
7482 #if defined(CONFIG_MEMORY_HOTPLUG)
7483 zone->present_early_pages = real_size;
7484 #endif
7485
7486 totalpages += size;
7487 realtotalpages += real_size;
7488 }
7489
7490 pgdat->node_spanned_pages = totalpages;
7491 pgdat->node_present_pages = realtotalpages;
7492 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7493 }
7494
7495 #ifndef CONFIG_SPARSEMEM
7496 /*
7497 * Calculate the size of the zone->blockflags rounded to an unsigned long
7498 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7499 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7500 * round what is now in bits to nearest long in bits, then return it in
7501 * bytes.
7502 */
7503 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7504 {
7505 unsigned long usemapsize;
7506
7507 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7508 usemapsize = roundup(zonesize, pageblock_nr_pages);
7509 usemapsize = usemapsize >> pageblock_order;
7510 usemapsize *= NR_PAGEBLOCK_BITS;
7511 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7512
7513 return usemapsize / 8;
7514 }
7515
7516 static void __ref setup_usemap(struct zone *zone)
7517 {
7518 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7519 zone->spanned_pages);
7520 zone->pageblock_flags = NULL;
7521 if (usemapsize) {
7522 zone->pageblock_flags =
7523 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7524 zone_to_nid(zone));
7525 if (!zone->pageblock_flags)
7526 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7527 usemapsize, zone->name, zone_to_nid(zone));
7528 }
7529 }
7530 #else
7531 static inline void setup_usemap(struct zone *zone) {}
7532 #endif /* CONFIG_SPARSEMEM */
7533
7534 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7535
7536 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7537 void __init set_pageblock_order(void)
7538 {
7539 unsigned int order = MAX_ORDER - 1;
7540
7541 /* Check that pageblock_nr_pages has not already been setup */
7542 if (pageblock_order)
7543 return;
7544
7545 /* Don't let pageblocks exceed the maximum allocation granularity. */
7546 if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
7547 order = HUGETLB_PAGE_ORDER;
7548
7549 /*
7550 * Assume the largest contiguous order of interest is a huge page.
7551 * This value may be variable depending on boot parameters on IA64 and
7552 * powerpc.
7553 */
7554 pageblock_order = order;
7555 }
7556 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7557
7558 /*
7559 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7560 * is unused as pageblock_order is set at compile-time. See
7561 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7562 * the kernel config
7563 */
7564 void __init set_pageblock_order(void)
7565 {
7566 }
7567
7568 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7569
7570 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7571 unsigned long present_pages)
7572 {
7573 unsigned long pages = spanned_pages;
7574
7575 /*
7576 * Provide a more accurate estimation if there are holes within
7577 * the zone and SPARSEMEM is in use. If there are holes within the
7578 * zone, each populated memory region may cost us one or two extra
7579 * memmap pages due to alignment because memmap pages for each
7580 * populated regions may not be naturally aligned on page boundary.
7581 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7582 */
7583 if (spanned_pages > present_pages + (present_pages >> 4) &&
7584 IS_ENABLED(CONFIG_SPARSEMEM))
7585 pages = present_pages;
7586
7587 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7588 }
7589
7590 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7591 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7592 {
7593 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7594
7595 spin_lock_init(&ds_queue->split_queue_lock);
7596 INIT_LIST_HEAD(&ds_queue->split_queue);
7597 ds_queue->split_queue_len = 0;
7598 }
7599 #else
7600 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7601 #endif
7602
7603 #ifdef CONFIG_COMPACTION
7604 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7605 {
7606 init_waitqueue_head(&pgdat->kcompactd_wait);
7607 }
7608 #else
7609 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7610 #endif
7611
7612 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7613 {
7614 int i;
7615
7616 pgdat_resize_init(pgdat);
7617
7618 pgdat_init_split_queue(pgdat);
7619 pgdat_init_kcompactd(pgdat);
7620
7621 init_waitqueue_head(&pgdat->kswapd_wait);
7622 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7623
7624 for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
7625 init_waitqueue_head(&pgdat->reclaim_wait[i]);
7626
7627 pgdat_page_ext_init(pgdat);
7628 lruvec_init(&pgdat->__lruvec);
7629 }
7630
7631 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7632 unsigned long remaining_pages)
7633 {
7634 atomic_long_set(&zone->managed_pages, remaining_pages);
7635 zone_set_nid(zone, nid);
7636 zone->name = zone_names[idx];
7637 zone->zone_pgdat = NODE_DATA(nid);
7638 spin_lock_init(&zone->lock);
7639 zone_seqlock_init(zone);
7640 zone_pcp_init(zone);
7641 }
7642
7643 /*
7644 * Set up the zone data structures
7645 * - init pgdat internals
7646 * - init all zones belonging to this node
7647 *
7648 * NOTE: this function is only called during memory hotplug
7649 */
7650 #ifdef CONFIG_MEMORY_HOTPLUG
7651 void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
7652 {
7653 int nid = pgdat->node_id;
7654 enum zone_type z;
7655 int cpu;
7656
7657 pgdat_init_internals(pgdat);
7658
7659 if (pgdat->per_cpu_nodestats == &boot_nodestats)
7660 pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
7661
7662 /*
7663 * Reset the nr_zones, order and highest_zoneidx before reuse.
7664 * Note that kswapd will init kswapd_highest_zoneidx properly
7665 * when it starts in the near future.
7666 */
7667 pgdat->nr_zones = 0;
7668 pgdat->kswapd_order = 0;
7669 pgdat->kswapd_highest_zoneidx = 0;
7670 pgdat->node_start_pfn = 0;
7671 for_each_online_cpu(cpu) {
7672 struct per_cpu_nodestat *p;
7673
7674 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
7675 memset(p, 0, sizeof(*p));
7676 }
7677
7678 for (z = 0; z < MAX_NR_ZONES; z++)
7679 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7680 }
7681 #endif
7682
7683 /*
7684 * Set up the zone data structures:
7685 * - mark all pages reserved
7686 * - mark all memory queues empty
7687 * - clear the memory bitmaps
7688 *
7689 * NOTE: pgdat should get zeroed by caller.
7690 * NOTE: this function is only called during early init.
7691 */
7692 static void __init free_area_init_core(struct pglist_data *pgdat)
7693 {
7694 enum zone_type j;
7695 int nid = pgdat->node_id;
7696
7697 pgdat_init_internals(pgdat);
7698 pgdat->per_cpu_nodestats = &boot_nodestats;
7699
7700 for (j = 0; j < MAX_NR_ZONES; j++) {
7701 struct zone *zone = pgdat->node_zones + j;
7702 unsigned long size, freesize, memmap_pages;
7703
7704 size = zone->spanned_pages;
7705 freesize = zone->present_pages;
7706
7707 /*
7708 * Adjust freesize so that it accounts for how much memory
7709 * is used by this zone for memmap. This affects the watermark
7710 * and per-cpu initialisations
7711 */
7712 memmap_pages = calc_memmap_size(size, freesize);
7713 if (!is_highmem_idx(j)) {
7714 if (freesize >= memmap_pages) {
7715 freesize -= memmap_pages;
7716 if (memmap_pages)
7717 pr_debug(" %s zone: %lu pages used for memmap\n",
7718 zone_names[j], memmap_pages);
7719 } else
7720 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7721 zone_names[j], memmap_pages, freesize);
7722 }
7723
7724 /* Account for reserved pages */
7725 if (j == 0 && freesize > dma_reserve) {
7726 freesize -= dma_reserve;
7727 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7728 }
7729
7730 if (!is_highmem_idx(j))
7731 nr_kernel_pages += freesize;
7732 /* Charge for highmem memmap if there are enough kernel pages */
7733 else if (nr_kernel_pages > memmap_pages * 2)
7734 nr_kernel_pages -= memmap_pages;
7735 nr_all_pages += freesize;
7736
7737 /*
7738 * Set an approximate value for lowmem here, it will be adjusted
7739 * when the bootmem allocator frees pages into the buddy system.
7740 * And all highmem pages will be managed by the buddy system.
7741 */
7742 zone_init_internals(zone, j, nid, freesize);
7743
7744 if (!size)
7745 continue;
7746
7747 set_pageblock_order();
7748 setup_usemap(zone);
7749 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7750 }
7751 }
7752
7753 #ifdef CONFIG_FLATMEM
7754 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7755 {
7756 unsigned long __maybe_unused start = 0;
7757 unsigned long __maybe_unused offset = 0;
7758
7759 /* Skip empty nodes */
7760 if (!pgdat->node_spanned_pages)
7761 return;
7762
7763 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7764 offset = pgdat->node_start_pfn - start;
7765 /* ia64 gets its own node_mem_map, before this, without bootmem */
7766 if (!pgdat->node_mem_map) {
7767 unsigned long size, end;
7768 struct page *map;
7769
7770 /*
7771 * The zone's endpoints aren't required to be MAX_ORDER
7772 * aligned but the node_mem_map endpoints must be in order
7773 * for the buddy allocator to function correctly.
7774 */
7775 end = pgdat_end_pfn(pgdat);
7776 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7777 size = (end - start) * sizeof(struct page);
7778 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7779 pgdat->node_id, false);
7780 if (!map)
7781 panic("Failed to allocate %ld bytes for node %d memory map\n",
7782 size, pgdat->node_id);
7783 pgdat->node_mem_map = map + offset;
7784 }
7785 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7786 __func__, pgdat->node_id, (unsigned long)pgdat,
7787 (unsigned long)pgdat->node_mem_map);
7788 #ifndef CONFIG_NUMA
7789 /*
7790 * With no DISCONTIG, the global mem_map is just set as node 0's
7791 */
7792 if (pgdat == NODE_DATA(0)) {
7793 mem_map = NODE_DATA(0)->node_mem_map;
7794 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7795 mem_map -= offset;
7796 }
7797 #endif
7798 }
7799 #else
7800 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7801 #endif /* CONFIG_FLATMEM */
7802
7803 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7804 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7805 {
7806 pgdat->first_deferred_pfn = ULONG_MAX;
7807 }
7808 #else
7809 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7810 #endif
7811
7812 static void __init free_area_init_node(int nid)
7813 {
7814 pg_data_t *pgdat = NODE_DATA(nid);
7815 unsigned long start_pfn = 0;
7816 unsigned long end_pfn = 0;
7817
7818 /* pg_data_t should be reset to zero when it's allocated */
7819 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7820
7821 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7822
7823 pgdat->node_id = nid;
7824 pgdat->node_start_pfn = start_pfn;
7825 pgdat->per_cpu_nodestats = NULL;
7826
7827 if (start_pfn != end_pfn) {
7828 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7829 (u64)start_pfn << PAGE_SHIFT,
7830 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7831 } else {
7832 pr_info("Initmem setup node %d as memoryless\n", nid);
7833 }
7834
7835 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7836
7837 alloc_node_mem_map(pgdat);
7838 pgdat_set_deferred_range(pgdat);
7839
7840 free_area_init_core(pgdat);
7841 }
7842
7843 static void __init free_area_init_memoryless_node(int nid)
7844 {
7845 free_area_init_node(nid);
7846 }
7847
7848 #if MAX_NUMNODES > 1
7849 /*
7850 * Figure out the number of possible node ids.
7851 */
7852 void __init setup_nr_node_ids(void)
7853 {
7854 unsigned int highest;
7855
7856 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7857 nr_node_ids = highest + 1;
7858 }
7859 #endif
7860
7861 /**
7862 * node_map_pfn_alignment - determine the maximum internode alignment
7863 *
7864 * This function should be called after node map is populated and sorted.
7865 * It calculates the maximum power of two alignment which can distinguish
7866 * all the nodes.
7867 *
7868 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7869 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7870 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7871 * shifted, 1GiB is enough and this function will indicate so.
7872 *
7873 * This is used to test whether pfn -> nid mapping of the chosen memory
7874 * model has fine enough granularity to avoid incorrect mapping for the
7875 * populated node map.
7876 *
7877 * Return: the determined alignment in pfn's. 0 if there is no alignment
7878 * requirement (single node).
7879 */
7880 unsigned long __init node_map_pfn_alignment(void)
7881 {
7882 unsigned long accl_mask = 0, last_end = 0;
7883 unsigned long start, end, mask;
7884 int last_nid = NUMA_NO_NODE;
7885 int i, nid;
7886
7887 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7888 if (!start || last_nid < 0 || last_nid == nid) {
7889 last_nid = nid;
7890 last_end = end;
7891 continue;
7892 }
7893
7894 /*
7895 * Start with a mask granular enough to pin-point to the
7896 * start pfn and tick off bits one-by-one until it becomes
7897 * too coarse to separate the current node from the last.
7898 */
7899 mask = ~((1 << __ffs(start)) - 1);
7900 while (mask && last_end <= (start & (mask << 1)))
7901 mask <<= 1;
7902
7903 /* accumulate all internode masks */
7904 accl_mask |= mask;
7905 }
7906
7907 /* convert mask to number of pages */
7908 return ~accl_mask + 1;
7909 }
7910
7911 /**
7912 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7913 *
7914 * Return: the minimum PFN based on information provided via
7915 * memblock_set_node().
7916 */
7917 unsigned long __init find_min_pfn_with_active_regions(void)
7918 {
7919 return PHYS_PFN(memblock_start_of_DRAM());
7920 }
7921
7922 /*
7923 * early_calculate_totalpages()
7924 * Sum pages in active regions for movable zone.
7925 * Populate N_MEMORY for calculating usable_nodes.
7926 */
7927 static unsigned long __init early_calculate_totalpages(void)
7928 {
7929 unsigned long totalpages = 0;
7930 unsigned long start_pfn, end_pfn;
7931 int i, nid;
7932
7933 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7934 unsigned long pages = end_pfn - start_pfn;
7935
7936 totalpages += pages;
7937 if (pages)
7938 node_set_state(nid, N_MEMORY);
7939 }
7940 return totalpages;
7941 }
7942
7943 /*
7944 * Find the PFN the Movable zone begins in each node. Kernel memory
7945 * is spread evenly between nodes as long as the nodes have enough
7946 * memory. When they don't, some nodes will have more kernelcore than
7947 * others
7948 */
7949 static void __init find_zone_movable_pfns_for_nodes(void)
7950 {
7951 int i, nid;
7952 unsigned long usable_startpfn;
7953 unsigned long kernelcore_node, kernelcore_remaining;
7954 /* save the state before borrow the nodemask */
7955 nodemask_t saved_node_state = node_states[N_MEMORY];
7956 unsigned long totalpages = early_calculate_totalpages();
7957 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7958 struct memblock_region *r;
7959
7960 /* Need to find movable_zone earlier when movable_node is specified. */
7961 find_usable_zone_for_movable();
7962
7963 /*
7964 * If movable_node is specified, ignore kernelcore and movablecore
7965 * options.
7966 */
7967 if (movable_node_is_enabled()) {
7968 for_each_mem_region(r) {
7969 if (!memblock_is_hotpluggable(r))
7970 continue;
7971
7972 nid = memblock_get_region_node(r);
7973
7974 usable_startpfn = PFN_DOWN(r->base);
7975 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7976 min(usable_startpfn, zone_movable_pfn[nid]) :
7977 usable_startpfn;
7978 }
7979
7980 goto out2;
7981 }
7982
7983 /*
7984 * If kernelcore=mirror is specified, ignore movablecore option
7985 */
7986 if (mirrored_kernelcore) {
7987 bool mem_below_4gb_not_mirrored = false;
7988
7989 for_each_mem_region(r) {
7990 if (memblock_is_mirror(r))
7991 continue;
7992
7993 nid = memblock_get_region_node(r);
7994
7995 usable_startpfn = memblock_region_memory_base_pfn(r);
7996
7997 if (usable_startpfn < PHYS_PFN(SZ_4G)) {
7998 mem_below_4gb_not_mirrored = true;
7999 continue;
8000 }
8001
8002 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
8003 min(usable_startpfn, zone_movable_pfn[nid]) :
8004 usable_startpfn;
8005 }
8006
8007 if (mem_below_4gb_not_mirrored)
8008 pr_warn("This configuration results in unmirrored kernel memory.\n");
8009
8010 goto out2;
8011 }
8012
8013 /*
8014 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
8015 * amount of necessary memory.
8016 */
8017 if (required_kernelcore_percent)
8018 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
8019 10000UL;
8020 if (required_movablecore_percent)
8021 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
8022 10000UL;
8023
8024 /*
8025 * If movablecore= was specified, calculate what size of
8026 * kernelcore that corresponds so that memory usable for
8027 * any allocation type is evenly spread. If both kernelcore
8028 * and movablecore are specified, then the value of kernelcore
8029 * will be used for required_kernelcore if it's greater than
8030 * what movablecore would have allowed.
8031 */
8032 if (required_movablecore) {
8033 unsigned long corepages;
8034
8035 /*
8036 * Round-up so that ZONE_MOVABLE is at least as large as what
8037 * was requested by the user
8038 */
8039 required_movablecore =
8040 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
8041 required_movablecore = min(totalpages, required_movablecore);
8042 corepages = totalpages - required_movablecore;
8043
8044 required_kernelcore = max(required_kernelcore, corepages);
8045 }
8046
8047 /*
8048 * If kernelcore was not specified or kernelcore size is larger
8049 * than totalpages, there is no ZONE_MOVABLE.
8050 */
8051 if (!required_kernelcore || required_kernelcore >= totalpages)
8052 goto out;
8053
8054 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
8055 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
8056
8057 restart:
8058 /* Spread kernelcore memory as evenly as possible throughout nodes */
8059 kernelcore_node = required_kernelcore / usable_nodes;
8060 for_each_node_state(nid, N_MEMORY) {
8061 unsigned long start_pfn, end_pfn;
8062
8063 /*
8064 * Recalculate kernelcore_node if the division per node
8065 * now exceeds what is necessary to satisfy the requested
8066 * amount of memory for the kernel
8067 */
8068 if (required_kernelcore < kernelcore_node)
8069 kernelcore_node = required_kernelcore / usable_nodes;
8070
8071 /*
8072 * As the map is walked, we track how much memory is usable
8073 * by the kernel using kernelcore_remaining. When it is
8074 * 0, the rest of the node is usable by ZONE_MOVABLE
8075 */
8076 kernelcore_remaining = kernelcore_node;
8077
8078 /* Go through each range of PFNs within this node */
8079 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
8080 unsigned long size_pages;
8081
8082 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
8083 if (start_pfn >= end_pfn)
8084 continue;
8085
8086 /* Account for what is only usable for kernelcore */
8087 if (start_pfn < usable_startpfn) {
8088 unsigned long kernel_pages;
8089 kernel_pages = min(end_pfn, usable_startpfn)
8090 - start_pfn;
8091
8092 kernelcore_remaining -= min(kernel_pages,
8093 kernelcore_remaining);
8094 required_kernelcore -= min(kernel_pages,
8095 required_kernelcore);
8096
8097 /* Continue if range is now fully accounted */
8098 if (end_pfn <= usable_startpfn) {
8099
8100 /*
8101 * Push zone_movable_pfn to the end so
8102 * that if we have to rebalance
8103 * kernelcore across nodes, we will
8104 * not double account here
8105 */
8106 zone_movable_pfn[nid] = end_pfn;
8107 continue;
8108 }
8109 start_pfn = usable_startpfn;
8110 }
8111
8112 /*
8113 * The usable PFN range for ZONE_MOVABLE is from
8114 * start_pfn->end_pfn. Calculate size_pages as the
8115 * number of pages used as kernelcore
8116 */
8117 size_pages = end_pfn - start_pfn;
8118 if (size_pages > kernelcore_remaining)
8119 size_pages = kernelcore_remaining;
8120 zone_movable_pfn[nid] = start_pfn + size_pages;
8121
8122 /*
8123 * Some kernelcore has been met, update counts and
8124 * break if the kernelcore for this node has been
8125 * satisfied
8126 */
8127 required_kernelcore -= min(required_kernelcore,
8128 size_pages);
8129 kernelcore_remaining -= size_pages;
8130 if (!kernelcore_remaining)
8131 break;
8132 }
8133 }
8134
8135 /*
8136 * If there is still required_kernelcore, we do another pass with one
8137 * less node in the count. This will push zone_movable_pfn[nid] further
8138 * along on the nodes that still have memory until kernelcore is
8139 * satisfied
8140 */
8141 usable_nodes--;
8142 if (usable_nodes && required_kernelcore > usable_nodes)
8143 goto restart;
8144
8145 out2:
8146 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
8147 for (nid = 0; nid < MAX_NUMNODES; nid++) {
8148 unsigned long start_pfn, end_pfn;
8149
8150 zone_movable_pfn[nid] =
8151 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
8152
8153 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8154 if (zone_movable_pfn[nid] >= end_pfn)
8155 zone_movable_pfn[nid] = 0;
8156 }
8157
8158 out:
8159 /* restore the node_state */
8160 node_states[N_MEMORY] = saved_node_state;
8161 }
8162
8163 /* Any regular or high memory on that node ? */
8164 static void check_for_memory(pg_data_t *pgdat, int nid)
8165 {
8166 enum zone_type zone_type;
8167
8168 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
8169 struct zone *zone = &pgdat->node_zones[zone_type];
8170 if (populated_zone(zone)) {
8171 if (IS_ENABLED(CONFIG_HIGHMEM))
8172 node_set_state(nid, N_HIGH_MEMORY);
8173 if (zone_type <= ZONE_NORMAL)
8174 node_set_state(nid, N_NORMAL_MEMORY);
8175 break;
8176 }
8177 }
8178 }
8179
8180 /*
8181 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
8182 * such cases we allow max_zone_pfn sorted in the descending order
8183 */
8184 bool __weak arch_has_descending_max_zone_pfns(void)
8185 {
8186 return false;
8187 }
8188
8189 /**
8190 * free_area_init - Initialise all pg_data_t and zone data
8191 * @max_zone_pfn: an array of max PFNs for each zone
8192 *
8193 * This will call free_area_init_node() for each active node in the system.
8194 * Using the page ranges provided by memblock_set_node(), the size of each
8195 * zone in each node and their holes is calculated. If the maximum PFN
8196 * between two adjacent zones match, it is assumed that the zone is empty.
8197 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
8198 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
8199 * starts where the previous one ended. For example, ZONE_DMA32 starts
8200 * at arch_max_dma_pfn.
8201 */
8202 void __init free_area_init(unsigned long *max_zone_pfn)
8203 {
8204 unsigned long start_pfn, end_pfn;
8205 int i, nid, zone;
8206 bool descending;
8207
8208 /* Record where the zone boundaries are */
8209 memset(arch_zone_lowest_possible_pfn, 0,
8210 sizeof(arch_zone_lowest_possible_pfn));
8211 memset(arch_zone_highest_possible_pfn, 0,
8212 sizeof(arch_zone_highest_possible_pfn));
8213
8214 start_pfn = find_min_pfn_with_active_regions();
8215 descending = arch_has_descending_max_zone_pfns();
8216
8217 for (i = 0; i < MAX_NR_ZONES; i++) {
8218 if (descending)
8219 zone = MAX_NR_ZONES - i - 1;
8220 else
8221 zone = i;
8222
8223 if (zone == ZONE_MOVABLE)
8224 continue;
8225
8226 end_pfn = max(max_zone_pfn[zone], start_pfn);
8227 arch_zone_lowest_possible_pfn[zone] = start_pfn;
8228 arch_zone_highest_possible_pfn[zone] = end_pfn;
8229
8230 start_pfn = end_pfn;
8231 }
8232
8233 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
8234 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
8235 find_zone_movable_pfns_for_nodes();
8236
8237 /* Print out the zone ranges */
8238 pr_info("Zone ranges:\n");
8239 for (i = 0; i < MAX_NR_ZONES; i++) {
8240 if (i == ZONE_MOVABLE)
8241 continue;
8242 pr_info(" %-8s ", zone_names[i]);
8243 if (arch_zone_lowest_possible_pfn[i] ==
8244 arch_zone_highest_possible_pfn[i])
8245 pr_cont("empty\n");
8246 else
8247 pr_cont("[mem %#018Lx-%#018Lx]\n",
8248 (u64)arch_zone_lowest_possible_pfn[i]
8249 << PAGE_SHIFT,
8250 ((u64)arch_zone_highest_possible_pfn[i]
8251 << PAGE_SHIFT) - 1);
8252 }
8253
8254 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8255 pr_info("Movable zone start for each node\n");
8256 for (i = 0; i < MAX_NUMNODES; i++) {
8257 if (zone_movable_pfn[i])
8258 pr_info(" Node %d: %#018Lx\n", i,
8259 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8260 }
8261
8262 /*
8263 * Print out the early node map, and initialize the
8264 * subsection-map relative to active online memory ranges to
8265 * enable future "sub-section" extensions of the memory map.
8266 */
8267 pr_info("Early memory node ranges\n");
8268 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8269 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8270 (u64)start_pfn << PAGE_SHIFT,
8271 ((u64)end_pfn << PAGE_SHIFT) - 1);
8272 subsection_map_init(start_pfn, end_pfn - start_pfn);
8273 }
8274
8275 /* Initialise every node */
8276 mminit_verify_pageflags_layout();
8277 setup_nr_node_ids();
8278 for_each_node(nid) {
8279 pg_data_t *pgdat;
8280
8281 if (!node_online(nid)) {
8282 pr_info("Initializing node %d as memoryless\n", nid);
8283
8284 /* Allocator not initialized yet */
8285 pgdat = arch_alloc_nodedata(nid);
8286 if (!pgdat) {
8287 pr_err("Cannot allocate %zuB for node %d.\n",
8288 sizeof(*pgdat), nid);
8289 continue;
8290 }
8291 arch_refresh_nodedata(nid, pgdat);
8292 free_area_init_memoryless_node(nid);
8293
8294 /*
8295 * We do not want to confuse userspace by sysfs
8296 * files/directories for node without any memory
8297 * attached to it, so this node is not marked as
8298 * N_MEMORY and not marked online so that no sysfs
8299 * hierarchy will be created via register_one_node for
8300 * it. The pgdat will get fully initialized by
8301 * hotadd_init_pgdat() when memory is hotplugged into
8302 * this node.
8303 */
8304 continue;
8305 }
8306
8307 pgdat = NODE_DATA(nid);
8308 free_area_init_node(nid);
8309
8310 /* Any memory on that node */
8311 if (pgdat->node_present_pages)
8312 node_set_state(nid, N_MEMORY);
8313 check_for_memory(pgdat, nid);
8314 }
8315
8316 memmap_init();
8317 }
8318
8319 static int __init cmdline_parse_core(char *p, unsigned long *core,
8320 unsigned long *percent)
8321 {
8322 unsigned long long coremem;
8323 char *endptr;
8324
8325 if (!p)
8326 return -EINVAL;
8327
8328 /* Value may be a percentage of total memory, otherwise bytes */
8329 coremem = simple_strtoull(p, &endptr, 0);
8330 if (*endptr == '%') {
8331 /* Paranoid check for percent values greater than 100 */
8332 WARN_ON(coremem > 100);
8333
8334 *percent = coremem;
8335 } else {
8336 coremem = memparse(p, &p);
8337 /* Paranoid check that UL is enough for the coremem value */
8338 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8339
8340 *core = coremem >> PAGE_SHIFT;
8341 *percent = 0UL;
8342 }
8343 return 0;
8344 }
8345
8346 /*
8347 * kernelcore=size sets the amount of memory for use for allocations that
8348 * cannot be reclaimed or migrated.
8349 */
8350 static int __init cmdline_parse_kernelcore(char *p)
8351 {
8352 /* parse kernelcore=mirror */
8353 if (parse_option_str(p, "mirror")) {
8354 mirrored_kernelcore = true;
8355 return 0;
8356 }
8357
8358 return cmdline_parse_core(p, &required_kernelcore,
8359 &required_kernelcore_percent);
8360 }
8361
8362 /*
8363 * movablecore=size sets the amount of memory for use for allocations that
8364 * can be reclaimed or migrated.
8365 */
8366 static int __init cmdline_parse_movablecore(char *p)
8367 {
8368 return cmdline_parse_core(p, &required_movablecore,
8369 &required_movablecore_percent);
8370 }
8371
8372 early_param("kernelcore", cmdline_parse_kernelcore);
8373 early_param("movablecore", cmdline_parse_movablecore);
8374
8375 void adjust_managed_page_count(struct page *page, long count)
8376 {
8377 atomic_long_add(count, &page_zone(page)->managed_pages);
8378 totalram_pages_add(count);
8379 #ifdef CONFIG_HIGHMEM
8380 if (PageHighMem(page))
8381 totalhigh_pages_add(count);
8382 #endif
8383 }
8384 EXPORT_SYMBOL(adjust_managed_page_count);
8385
8386 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8387 {
8388 void *pos;
8389 unsigned long pages = 0;
8390
8391 start = (void *)PAGE_ALIGN((unsigned long)start);
8392 end = (void *)((unsigned long)end & PAGE_MASK);
8393 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8394 struct page *page = virt_to_page(pos);
8395 void *direct_map_addr;
8396
8397 /*
8398 * 'direct_map_addr' might be different from 'pos'
8399 * because some architectures' virt_to_page()
8400 * work with aliases. Getting the direct map
8401 * address ensures that we get a _writeable_
8402 * alias for the memset().
8403 */
8404 direct_map_addr = page_address(page);
8405 /*
8406 * Perform a kasan-unchecked memset() since this memory
8407 * has not been initialized.
8408 */
8409 direct_map_addr = kasan_reset_tag(direct_map_addr);
8410 if ((unsigned int)poison <= 0xFF)
8411 memset(direct_map_addr, poison, PAGE_SIZE);
8412
8413 free_reserved_page(page);
8414 }
8415
8416 if (pages && s)
8417 pr_info("Freeing %s memory: %ldK\n", s, K(pages));
8418
8419 return pages;
8420 }
8421
8422 void __init mem_init_print_info(void)
8423 {
8424 unsigned long physpages, codesize, datasize, rosize, bss_size;
8425 unsigned long init_code_size, init_data_size;
8426
8427 physpages = get_num_physpages();
8428 codesize = _etext - _stext;
8429 datasize = _edata - _sdata;
8430 rosize = __end_rodata - __start_rodata;
8431 bss_size = __bss_stop - __bss_start;
8432 init_data_size = __init_end - __init_begin;
8433 init_code_size = _einittext - _sinittext;
8434
8435 /*
8436 * Detect special cases and adjust section sizes accordingly:
8437 * 1) .init.* may be embedded into .data sections
8438 * 2) .init.text.* may be out of [__init_begin, __init_end],
8439 * please refer to arch/tile/kernel/vmlinux.lds.S.
8440 * 3) .rodata.* may be embedded into .text or .data sections.
8441 */
8442 #define adj_init_size(start, end, size, pos, adj) \
8443 do { \
8444 if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
8445 size -= adj; \
8446 } while (0)
8447
8448 adj_init_size(__init_begin, __init_end, init_data_size,
8449 _sinittext, init_code_size);
8450 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8451 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8452 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8453 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8454
8455 #undef adj_init_size
8456
8457 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8458 #ifdef CONFIG_HIGHMEM
8459 ", %luK highmem"
8460 #endif
8461 ")\n",
8462 K(nr_free_pages()), K(physpages),
8463 codesize >> 10, datasize >> 10, rosize >> 10,
8464 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8465 K(physpages - totalram_pages() - totalcma_pages),
8466 K(totalcma_pages)
8467 #ifdef CONFIG_HIGHMEM
8468 , K(totalhigh_pages())
8469 #endif
8470 );
8471 }
8472
8473 /**
8474 * set_dma_reserve - set the specified number of pages reserved in the first zone
8475 * @new_dma_reserve: The number of pages to mark reserved
8476 *
8477 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8478 * In the DMA zone, a significant percentage may be consumed by kernel image
8479 * and other unfreeable allocations which can skew the watermarks badly. This
8480 * function may optionally be used to account for unfreeable pages in the
8481 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8482 * smaller per-cpu batchsize.
8483 */
8484 void __init set_dma_reserve(unsigned long new_dma_reserve)
8485 {
8486 dma_reserve = new_dma_reserve;
8487 }
8488
8489 static int page_alloc_cpu_dead(unsigned int cpu)
8490 {
8491 struct zone *zone;
8492
8493 lru_add_drain_cpu(cpu);
8494 mlock_page_drain_remote(cpu);
8495 drain_pages(cpu);
8496
8497 /*
8498 * Spill the event counters of the dead processor
8499 * into the current processors event counters.
8500 * This artificially elevates the count of the current
8501 * processor.
8502 */
8503 vm_events_fold_cpu(cpu);
8504
8505 /*
8506 * Zero the differential counters of the dead processor
8507 * so that the vm statistics are consistent.
8508 *
8509 * This is only okay since the processor is dead and cannot
8510 * race with what we are doing.
8511 */
8512 cpu_vm_stats_fold(cpu);
8513
8514 for_each_populated_zone(zone)
8515 zone_pcp_update(zone, 0);
8516
8517 return 0;
8518 }
8519
8520 static int page_alloc_cpu_online(unsigned int cpu)
8521 {
8522 struct zone *zone;
8523
8524 for_each_populated_zone(zone)
8525 zone_pcp_update(zone, 1);
8526 return 0;
8527 }
8528
8529 #ifdef CONFIG_NUMA
8530 int hashdist = HASHDIST_DEFAULT;
8531
8532 static int __init set_hashdist(char *str)
8533 {
8534 if (!str)
8535 return 0;
8536 hashdist = simple_strtoul(str, &str, 0);
8537 return 1;
8538 }
8539 __setup("hashdist=", set_hashdist);
8540 #endif
8541
8542 void __init page_alloc_init(void)
8543 {
8544 int ret;
8545
8546 #ifdef CONFIG_NUMA
8547 if (num_node_state(N_MEMORY) == 1)
8548 hashdist = 0;
8549 #endif
8550
8551 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8552 "mm/page_alloc:pcp",
8553 page_alloc_cpu_online,
8554 page_alloc_cpu_dead);
8555 WARN_ON(ret < 0);
8556 }
8557
8558 /*
8559 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8560 * or min_free_kbytes changes.
8561 */
8562 static void calculate_totalreserve_pages(void)
8563 {
8564 struct pglist_data *pgdat;
8565 unsigned long reserve_pages = 0;
8566 enum zone_type i, j;
8567
8568 for_each_online_pgdat(pgdat) {
8569
8570 pgdat->totalreserve_pages = 0;
8571
8572 for (i = 0; i < MAX_NR_ZONES; i++) {
8573 struct zone *zone = pgdat->node_zones + i;
8574 long max = 0;
8575 unsigned long managed_pages = zone_managed_pages(zone);
8576
8577 /* Find valid and maximum lowmem_reserve in the zone */
8578 for (j = i; j < MAX_NR_ZONES; j++) {
8579 if (zone->lowmem_reserve[j] > max)
8580 max = zone->lowmem_reserve[j];
8581 }
8582
8583 /* we treat the high watermark as reserved pages. */
8584 max += high_wmark_pages(zone);
8585
8586 if (max > managed_pages)
8587 max = managed_pages;
8588
8589 pgdat->totalreserve_pages += max;
8590
8591 reserve_pages += max;
8592 }
8593 }
8594 totalreserve_pages = reserve_pages;
8595 }
8596
8597 /*
8598 * setup_per_zone_lowmem_reserve - called whenever
8599 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8600 * has a correct pages reserved value, so an adequate number of
8601 * pages are left in the zone after a successful __alloc_pages().
8602 */
8603 static void setup_per_zone_lowmem_reserve(void)
8604 {
8605 struct pglist_data *pgdat;
8606 enum zone_type i, j;
8607
8608 for_each_online_pgdat(pgdat) {
8609 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8610 struct zone *zone = &pgdat->node_zones[i];
8611 int ratio = sysctl_lowmem_reserve_ratio[i];
8612 bool clear = !ratio || !zone_managed_pages(zone);
8613 unsigned long managed_pages = 0;
8614
8615 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8616 struct zone *upper_zone = &pgdat->node_zones[j];
8617
8618 managed_pages += zone_managed_pages(upper_zone);
8619
8620 if (clear)
8621 zone->lowmem_reserve[j] = 0;
8622 else
8623 zone->lowmem_reserve[j] = managed_pages / ratio;
8624 }
8625 }
8626 }
8627
8628 /* update totalreserve_pages */
8629 calculate_totalreserve_pages();
8630 }
8631
8632 static void __setup_per_zone_wmarks(void)
8633 {
8634 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8635 unsigned long lowmem_pages = 0;
8636 struct zone *zone;
8637 unsigned long flags;
8638
8639 /* Calculate total number of !ZONE_HIGHMEM pages */
8640 for_each_zone(zone) {
8641 if (!is_highmem(zone))
8642 lowmem_pages += zone_managed_pages(zone);
8643 }
8644
8645 for_each_zone(zone) {
8646 u64 tmp;
8647
8648 spin_lock_irqsave(&zone->lock, flags);
8649 tmp = (u64)pages_min * zone_managed_pages(zone);
8650 do_div(tmp, lowmem_pages);
8651 if (is_highmem(zone)) {
8652 /*
8653 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8654 * need highmem pages, so cap pages_min to a small
8655 * value here.
8656 *
8657 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8658 * deltas control async page reclaim, and so should
8659 * not be capped for highmem.
8660 */
8661 unsigned long min_pages;
8662
8663 min_pages = zone_managed_pages(zone) / 1024;
8664 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8665 zone->_watermark[WMARK_MIN] = min_pages;
8666 } else {
8667 /*
8668 * If it's a lowmem zone, reserve a number of pages
8669 * proportionate to the zone's size.
8670 */
8671 zone->_watermark[WMARK_MIN] = tmp;
8672 }
8673
8674 /*
8675 * Set the kswapd watermarks distance according to the
8676 * scale factor in proportion to available memory, but
8677 * ensure a minimum size on small systems.
8678 */
8679 tmp = max_t(u64, tmp >> 2,
8680 mult_frac(zone_managed_pages(zone),
8681 watermark_scale_factor, 10000));
8682
8683 zone->watermark_boost = 0;
8684 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8685 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
8686 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
8687
8688 spin_unlock_irqrestore(&zone->lock, flags);
8689 }
8690
8691 /* update totalreserve_pages */
8692 calculate_totalreserve_pages();
8693 }
8694
8695 /**
8696 * setup_per_zone_wmarks - called when min_free_kbytes changes
8697 * or when memory is hot-{added|removed}
8698 *
8699 * Ensures that the watermark[min,low,high] values for each zone are set
8700 * correctly with respect to min_free_kbytes.
8701 */
8702 void setup_per_zone_wmarks(void)
8703 {
8704 struct zone *zone;
8705 static DEFINE_SPINLOCK(lock);
8706
8707 spin_lock(&lock);
8708 __setup_per_zone_wmarks();
8709 spin_unlock(&lock);
8710
8711 /*
8712 * The watermark size have changed so update the pcpu batch
8713 * and high limits or the limits may be inappropriate.
8714 */
8715 for_each_zone(zone)
8716 zone_pcp_update(zone, 0);
8717 }
8718
8719 /*
8720 * Initialise min_free_kbytes.
8721 *
8722 * For small machines we want it small (128k min). For large machines
8723 * we want it large (256MB max). But it is not linear, because network
8724 * bandwidth does not increase linearly with machine size. We use
8725 *
8726 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8727 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8728 *
8729 * which yields
8730 *
8731 * 16MB: 512k
8732 * 32MB: 724k
8733 * 64MB: 1024k
8734 * 128MB: 1448k
8735 * 256MB: 2048k
8736 * 512MB: 2896k
8737 * 1024MB: 4096k
8738 * 2048MB: 5792k
8739 * 4096MB: 8192k
8740 * 8192MB: 11584k
8741 * 16384MB: 16384k
8742 */
8743 void calculate_min_free_kbytes(void)
8744 {
8745 unsigned long lowmem_kbytes;
8746 int new_min_free_kbytes;
8747
8748 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8749 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8750
8751 if (new_min_free_kbytes > user_min_free_kbytes)
8752 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
8753 else
8754 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8755 new_min_free_kbytes, user_min_free_kbytes);
8756
8757 }
8758
8759 int __meminit init_per_zone_wmark_min(void)
8760 {
8761 calculate_min_free_kbytes();
8762 setup_per_zone_wmarks();
8763 refresh_zone_stat_thresholds();
8764 setup_per_zone_lowmem_reserve();
8765
8766 #ifdef CONFIG_NUMA
8767 setup_min_unmapped_ratio();
8768 setup_min_slab_ratio();
8769 #endif
8770
8771 khugepaged_min_free_kbytes_update();
8772
8773 return 0;
8774 }
8775 postcore_initcall(init_per_zone_wmark_min)
8776
8777 /*
8778 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8779 * that we can call two helper functions whenever min_free_kbytes
8780 * changes.
8781 */
8782 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8783 void *buffer, size_t *length, loff_t *ppos)
8784 {
8785 int rc;
8786
8787 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8788 if (rc)
8789 return rc;
8790
8791 if (write) {
8792 user_min_free_kbytes = min_free_kbytes;
8793 setup_per_zone_wmarks();
8794 }
8795 return 0;
8796 }
8797
8798 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8799 void *buffer, size_t *length, loff_t *ppos)
8800 {
8801 int rc;
8802
8803 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8804 if (rc)
8805 return rc;
8806
8807 if (write)
8808 setup_per_zone_wmarks();
8809
8810 return 0;
8811 }
8812
8813 #ifdef CONFIG_NUMA
8814 static void setup_min_unmapped_ratio(void)
8815 {
8816 pg_data_t *pgdat;
8817 struct zone *zone;
8818
8819 for_each_online_pgdat(pgdat)
8820 pgdat->min_unmapped_pages = 0;
8821
8822 for_each_zone(zone)
8823 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8824 sysctl_min_unmapped_ratio) / 100;
8825 }
8826
8827
8828 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8829 void *buffer, size_t *length, loff_t *ppos)
8830 {
8831 int rc;
8832
8833 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8834 if (rc)
8835 return rc;
8836
8837 setup_min_unmapped_ratio();
8838
8839 return 0;
8840 }
8841
8842 static void setup_min_slab_ratio(void)
8843 {
8844 pg_data_t *pgdat;
8845 struct zone *zone;
8846
8847 for_each_online_pgdat(pgdat)
8848 pgdat->min_slab_pages = 0;
8849
8850 for_each_zone(zone)
8851 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8852 sysctl_min_slab_ratio) / 100;
8853 }
8854
8855 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8856 void *buffer, size_t *length, loff_t *ppos)
8857 {
8858 int rc;
8859
8860 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8861 if (rc)
8862 return rc;
8863
8864 setup_min_slab_ratio();
8865
8866 return 0;
8867 }
8868 #endif
8869
8870 /*
8871 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8872 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8873 * whenever sysctl_lowmem_reserve_ratio changes.
8874 *
8875 * The reserve ratio obviously has absolutely no relation with the
8876 * minimum watermarks. The lowmem reserve ratio can only make sense
8877 * if in function of the boot time zone sizes.
8878 */
8879 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8880 void *buffer, size_t *length, loff_t *ppos)
8881 {
8882 int i;
8883
8884 proc_dointvec_minmax(table, write, buffer, length, ppos);
8885
8886 for (i = 0; i < MAX_NR_ZONES; i++) {
8887 if (sysctl_lowmem_reserve_ratio[i] < 1)
8888 sysctl_lowmem_reserve_ratio[i] = 0;
8889 }
8890
8891 setup_per_zone_lowmem_reserve();
8892 return 0;
8893 }
8894
8895 /*
8896 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8897 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8898 * pagelist can have before it gets flushed back to buddy allocator.
8899 */
8900 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8901 int write, void *buffer, size_t *length, loff_t *ppos)
8902 {
8903 struct zone *zone;
8904 int old_percpu_pagelist_high_fraction;
8905 int ret;
8906
8907 mutex_lock(&pcp_batch_high_lock);
8908 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8909
8910 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8911 if (!write || ret < 0)
8912 goto out;
8913
8914 /* Sanity checking to avoid pcp imbalance */
8915 if (percpu_pagelist_high_fraction &&
8916 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8917 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8918 ret = -EINVAL;
8919 goto out;
8920 }
8921
8922 /* No change? */
8923 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8924 goto out;
8925
8926 for_each_populated_zone(zone)
8927 zone_set_pageset_high_and_batch(zone, 0);
8928 out:
8929 mutex_unlock(&pcp_batch_high_lock);
8930 return ret;
8931 }
8932
8933 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8934 /*
8935 * Returns the number of pages that arch has reserved but
8936 * is not known to alloc_large_system_hash().
8937 */
8938 static unsigned long __init arch_reserved_kernel_pages(void)
8939 {
8940 return 0;
8941 }
8942 #endif
8943
8944 /*
8945 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8946 * machines. As memory size is increased the scale is also increased but at
8947 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8948 * quadruples the scale is increased by one, which means the size of hash table
8949 * only doubles, instead of quadrupling as well.
8950 * Because 32-bit systems cannot have large physical memory, where this scaling
8951 * makes sense, it is disabled on such platforms.
8952 */
8953 #if __BITS_PER_LONG > 32
8954 #define ADAPT_SCALE_BASE (64ul << 30)
8955 #define ADAPT_SCALE_SHIFT 2
8956 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8957 #endif
8958
8959 /*
8960 * allocate a large system hash table from bootmem
8961 * - it is assumed that the hash table must contain an exact power-of-2
8962 * quantity of entries
8963 * - limit is the number of hash buckets, not the total allocation size
8964 */
8965 void *__init alloc_large_system_hash(const char *tablename,
8966 unsigned long bucketsize,
8967 unsigned long numentries,
8968 int scale,
8969 int flags,
8970 unsigned int *_hash_shift,
8971 unsigned int *_hash_mask,
8972 unsigned long low_limit,
8973 unsigned long high_limit)
8974 {
8975 unsigned long long max = high_limit;
8976 unsigned long log2qty, size;
8977 void *table = NULL;
8978 gfp_t gfp_flags;
8979 bool virt;
8980 bool huge;
8981
8982 /* allow the kernel cmdline to have a say */
8983 if (!numentries) {
8984 /* round applicable memory size up to nearest megabyte */
8985 numentries = nr_kernel_pages;
8986 numentries -= arch_reserved_kernel_pages();
8987
8988 /* It isn't necessary when PAGE_SIZE >= 1MB */
8989 if (PAGE_SHIFT < 20)
8990 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8991
8992 #if __BITS_PER_LONG > 32
8993 if (!high_limit) {
8994 unsigned long adapt;
8995
8996 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8997 adapt <<= ADAPT_SCALE_SHIFT)
8998 scale++;
8999 }
9000 #endif
9001
9002 /* limit to 1 bucket per 2^scale bytes of low memory */
9003 if (scale > PAGE_SHIFT)
9004 numentries >>= (scale - PAGE_SHIFT);
9005 else
9006 numentries <<= (PAGE_SHIFT - scale);
9007
9008 /* Make sure we've got at least a 0-order allocation.. */
9009 if (unlikely(flags & HASH_SMALL)) {
9010 /* Makes no sense without HASH_EARLY */
9011 WARN_ON(!(flags & HASH_EARLY));
9012 if (!(numentries >> *_hash_shift)) {
9013 numentries = 1UL << *_hash_shift;
9014 BUG_ON(!numentries);
9015 }
9016 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9017 numentries = PAGE_SIZE / bucketsize;
9018 }
9019 numentries = roundup_pow_of_two(numentries);
9020
9021 /* limit allocation size to 1/16 total memory by default */
9022 if (max == 0) {
9023 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
9024 do_div(max, bucketsize);
9025 }
9026 max = min(max, 0x80000000ULL);
9027
9028 if (numentries < low_limit)
9029 numentries = low_limit;
9030 if (numentries > max)
9031 numentries = max;
9032
9033 log2qty = ilog2(numentries);
9034
9035 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
9036 do {
9037 virt = false;
9038 size = bucketsize << log2qty;
9039 if (flags & HASH_EARLY) {
9040 if (flags & HASH_ZERO)
9041 table = memblock_alloc(size, SMP_CACHE_BYTES);
9042 else
9043 table = memblock_alloc_raw(size,
9044 SMP_CACHE_BYTES);
9045 } else if (get_order(size) >= MAX_ORDER || hashdist) {
9046 table = vmalloc_huge(size, gfp_flags);
9047 virt = true;
9048 if (table)
9049 huge = is_vm_area_hugepages(table);
9050 } else {
9051 /*
9052 * If bucketsize is not a power-of-two, we may free
9053 * some pages at the end of hash table which
9054 * alloc_pages_exact() automatically does
9055 */
9056 table = alloc_pages_exact(size, gfp_flags);
9057 kmemleak_alloc(table, size, 1, gfp_flags);
9058 }
9059 } while (!table && size > PAGE_SIZE && --log2qty);
9060
9061 if (!table)
9062 panic("Failed to allocate %s hash table\n", tablename);
9063
9064 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
9065 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
9066 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
9067
9068 if (_hash_shift)
9069 *_hash_shift = log2qty;
9070 if (_hash_mask)
9071 *_hash_mask = (1 << log2qty) - 1;
9072
9073 return table;
9074 }
9075
9076 #ifdef CONFIG_CONTIG_ALLOC
9077 #if defined(CONFIG_DYNAMIC_DEBUG) || \
9078 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
9079 /* Usage: See admin-guide/dynamic-debug-howto.rst */
9080 static void alloc_contig_dump_pages(struct list_head *page_list)
9081 {
9082 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
9083
9084 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
9085 struct page *page;
9086
9087 dump_stack();
9088 list_for_each_entry(page, page_list, lru)
9089 dump_page(page, "migration failure");
9090 }
9091 }
9092 #else
9093 static inline void alloc_contig_dump_pages(struct list_head *page_list)
9094 {
9095 }
9096 #endif
9097
9098 /* [start, end) must belong to a single zone. */
9099 int __alloc_contig_migrate_range(struct compact_control *cc,
9100 unsigned long start, unsigned long end)
9101 {
9102 /* This function is based on compact_zone() from compaction.c. */
9103 unsigned int nr_reclaimed;
9104 unsigned long pfn = start;
9105 unsigned int tries = 0;
9106 int ret = 0;
9107 struct migration_target_control mtc = {
9108 .nid = zone_to_nid(cc->zone),
9109 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
9110 };
9111
9112 lru_cache_disable();
9113
9114 while (pfn < end || !list_empty(&cc->migratepages)) {
9115 if (fatal_signal_pending(current)) {
9116 ret = -EINTR;
9117 break;
9118 }
9119
9120 if (list_empty(&cc->migratepages)) {
9121 cc->nr_migratepages = 0;
9122 ret = isolate_migratepages_range(cc, pfn, end);
9123 if (ret && ret != -EAGAIN)
9124 break;
9125 pfn = cc->migrate_pfn;
9126 tries = 0;
9127 } else if (++tries == 5) {
9128 ret = -EBUSY;
9129 break;
9130 }
9131
9132 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
9133 &cc->migratepages);
9134 cc->nr_migratepages -= nr_reclaimed;
9135
9136 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
9137 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
9138
9139 /*
9140 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
9141 * to retry again over this error, so do the same here.
9142 */
9143 if (ret == -ENOMEM)
9144 break;
9145 }
9146
9147 lru_cache_enable();
9148 if (ret < 0) {
9149 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
9150 alloc_contig_dump_pages(&cc->migratepages);
9151 putback_movable_pages(&cc->migratepages);
9152 return ret;
9153 }
9154 return 0;
9155 }
9156
9157 /**
9158 * alloc_contig_range() -- tries to allocate given range of pages
9159 * @start: start PFN to allocate
9160 * @end: one-past-the-last PFN to allocate
9161 * @migratetype: migratetype of the underlying pageblocks (either
9162 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9163 * in range must have the same migratetype and it must
9164 * be either of the two.
9165 * @gfp_mask: GFP mask to use during compaction
9166 *
9167 * The PFN range does not have to be pageblock aligned. The PFN range must
9168 * belong to a single zone.
9169 *
9170 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9171 * pageblocks in the range. Once isolated, the pageblocks should not
9172 * be modified by others.
9173 *
9174 * Return: zero on success or negative error code. On success all
9175 * pages which PFN is in [start, end) are allocated for the caller and
9176 * need to be freed with free_contig_range().
9177 */
9178 int alloc_contig_range(unsigned long start, unsigned long end,
9179 unsigned migratetype, gfp_t gfp_mask)
9180 {
9181 unsigned long outer_start, outer_end;
9182 int order;
9183 int ret = 0;
9184
9185 struct compact_control cc = {
9186 .nr_migratepages = 0,
9187 .order = -1,
9188 .zone = page_zone(pfn_to_page(start)),
9189 .mode = MIGRATE_SYNC,
9190 .ignore_skip_hint = true,
9191 .no_set_skip_hint = true,
9192 .gfp_mask = current_gfp_context(gfp_mask),
9193 .alloc_contig = true,
9194 };
9195 INIT_LIST_HEAD(&cc.migratepages);
9196
9197 /*
9198 * What we do here is we mark all pageblocks in range as
9199 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9200 * have different sizes, and due to the way page allocator
9201 * work, start_isolate_page_range() has special handlings for this.
9202 *
9203 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9204 * migrate the pages from an unaligned range (ie. pages that
9205 * we are interested in). This will put all the pages in
9206 * range back to page allocator as MIGRATE_ISOLATE.
9207 *
9208 * When this is done, we take the pages in range from page
9209 * allocator removing them from the buddy system. This way
9210 * page allocator will never consider using them.
9211 *
9212 * This lets us mark the pageblocks back as
9213 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9214 * aligned range but not in the unaligned, original range are
9215 * put back to page allocator so that buddy can use them.
9216 */
9217
9218 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
9219 if (ret)
9220 goto done;
9221
9222 drain_all_pages(cc.zone);
9223
9224 /*
9225 * In case of -EBUSY, we'd like to know which page causes problem.
9226 * So, just fall through. test_pages_isolated() has a tracepoint
9227 * which will report the busy page.
9228 *
9229 * It is possible that busy pages could become available before
9230 * the call to test_pages_isolated, and the range will actually be
9231 * allocated. So, if we fall through be sure to clear ret so that
9232 * -EBUSY is not accidentally used or returned to caller.
9233 */
9234 ret = __alloc_contig_migrate_range(&cc, start, end);
9235 if (ret && ret != -EBUSY)
9236 goto done;
9237 ret = 0;
9238
9239 /*
9240 * Pages from [start, end) are within a pageblock_nr_pages
9241 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9242 * more, all pages in [start, end) are free in page allocator.
9243 * What we are going to do is to allocate all pages from
9244 * [start, end) (that is remove them from page allocator).
9245 *
9246 * The only problem is that pages at the beginning and at the
9247 * end of interesting range may be not aligned with pages that
9248 * page allocator holds, ie. they can be part of higher order
9249 * pages. Because of this, we reserve the bigger range and
9250 * once this is done free the pages we are not interested in.
9251 *
9252 * We don't have to hold zone->lock here because the pages are
9253 * isolated thus they won't get removed from buddy.
9254 */
9255
9256 order = 0;
9257 outer_start = start;
9258 while (!PageBuddy(pfn_to_page(outer_start))) {
9259 if (++order >= MAX_ORDER) {
9260 outer_start = start;
9261 break;
9262 }
9263 outer_start &= ~0UL << order;
9264 }
9265
9266 if (outer_start != start) {
9267 order = buddy_order(pfn_to_page(outer_start));
9268
9269 /*
9270 * outer_start page could be small order buddy page and
9271 * it doesn't include start page. Adjust outer_start
9272 * in this case to report failed page properly
9273 * on tracepoint in test_pages_isolated()
9274 */
9275 if (outer_start + (1UL << order) <= start)
9276 outer_start = start;
9277 }
9278
9279 /* Make sure the range is really isolated. */
9280 if (test_pages_isolated(outer_start, end, 0)) {
9281 ret = -EBUSY;
9282 goto done;
9283 }
9284
9285 /* Grab isolated pages from freelists. */
9286 outer_end = isolate_freepages_range(&cc, outer_start, end);
9287 if (!outer_end) {
9288 ret = -EBUSY;
9289 goto done;
9290 }
9291
9292 /* Free head and tail (if any) */
9293 if (start != outer_start)
9294 free_contig_range(outer_start, start - outer_start);
9295 if (end != outer_end)
9296 free_contig_range(end, outer_end - end);
9297
9298 done:
9299 undo_isolate_page_range(start, end, migratetype);
9300 return ret;
9301 }
9302 EXPORT_SYMBOL(alloc_contig_range);
9303
9304 static int __alloc_contig_pages(unsigned long start_pfn,
9305 unsigned long nr_pages, gfp_t gfp_mask)
9306 {
9307 unsigned long end_pfn = start_pfn + nr_pages;
9308
9309 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9310 gfp_mask);
9311 }
9312
9313 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9314 unsigned long nr_pages)
9315 {
9316 unsigned long i, end_pfn = start_pfn + nr_pages;
9317 struct page *page;
9318
9319 for (i = start_pfn; i < end_pfn; i++) {
9320 page = pfn_to_online_page(i);
9321 if (!page)
9322 return false;
9323
9324 if (page_zone(page) != z)
9325 return false;
9326
9327 if (PageReserved(page))
9328 return false;
9329 }
9330 return true;
9331 }
9332
9333 static bool zone_spans_last_pfn(const struct zone *zone,
9334 unsigned long start_pfn, unsigned long nr_pages)
9335 {
9336 unsigned long last_pfn = start_pfn + nr_pages - 1;
9337
9338 return zone_spans_pfn(zone, last_pfn);
9339 }
9340
9341 /**
9342 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9343 * @nr_pages: Number of contiguous pages to allocate
9344 * @gfp_mask: GFP mask to limit search and used during compaction
9345 * @nid: Target node
9346 * @nodemask: Mask for other possible nodes
9347 *
9348 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9349 * on an applicable zonelist to find a contiguous pfn range which can then be
9350 * tried for allocation with alloc_contig_range(). This routine is intended
9351 * for allocation requests which can not be fulfilled with the buddy allocator.
9352 *
9353 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9354 * power of two, then allocated range is also guaranteed to be aligned to same
9355 * nr_pages (e.g. 1GB request would be aligned to 1GB).
9356 *
9357 * Allocated pages can be freed with free_contig_range() or by manually calling
9358 * __free_page() on each allocated page.
9359 *
9360 * Return: pointer to contiguous pages on success, or NULL if not successful.
9361 */
9362 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9363 int nid, nodemask_t *nodemask)
9364 {
9365 unsigned long ret, pfn, flags;
9366 struct zonelist *zonelist;
9367 struct zone *zone;
9368 struct zoneref *z;
9369
9370 zonelist = node_zonelist(nid, gfp_mask);
9371 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9372 gfp_zone(gfp_mask), nodemask) {
9373 spin_lock_irqsave(&zone->lock, flags);
9374
9375 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9376 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9377 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9378 /*
9379 * We release the zone lock here because
9380 * alloc_contig_range() will also lock the zone
9381 * at some point. If there's an allocation
9382 * spinning on this lock, it may win the race
9383 * and cause alloc_contig_range() to fail...
9384 */
9385 spin_unlock_irqrestore(&zone->lock, flags);
9386 ret = __alloc_contig_pages(pfn, nr_pages,
9387 gfp_mask);
9388 if (!ret)
9389 return pfn_to_page(pfn);
9390 spin_lock_irqsave(&zone->lock, flags);
9391 }
9392 pfn += nr_pages;
9393 }
9394 spin_unlock_irqrestore(&zone->lock, flags);
9395 }
9396 return NULL;
9397 }
9398 #endif /* CONFIG_CONTIG_ALLOC */
9399
9400 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9401 {
9402 unsigned long count = 0;
9403
9404 for (; nr_pages--; pfn++) {
9405 struct page *page = pfn_to_page(pfn);
9406
9407 count += page_count(page) != 1;
9408 __free_page(page);
9409 }
9410 WARN(count != 0, "%lu pages are still in use!\n", count);
9411 }
9412 EXPORT_SYMBOL(free_contig_range);
9413
9414 /*
9415 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9416 * page high values need to be recalculated.
9417 */
9418 void zone_pcp_update(struct zone *zone, int cpu_online)
9419 {
9420 mutex_lock(&pcp_batch_high_lock);
9421 zone_set_pageset_high_and_batch(zone, cpu_online);
9422 mutex_unlock(&pcp_batch_high_lock);
9423 }
9424
9425 /*
9426 * Effectively disable pcplists for the zone by setting the high limit to 0
9427 * and draining all cpus. A concurrent page freeing on another CPU that's about
9428 * to put the page on pcplist will either finish before the drain and the page
9429 * will be drained, or observe the new high limit and skip the pcplist.
9430 *
9431 * Must be paired with a call to zone_pcp_enable().
9432 */
9433 void zone_pcp_disable(struct zone *zone)
9434 {
9435 mutex_lock(&pcp_batch_high_lock);
9436 __zone_set_pageset_high_and_batch(zone, 0, 1);
9437 __drain_all_pages(zone, true);
9438 }
9439
9440 void zone_pcp_enable(struct zone *zone)
9441 {
9442 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9443 mutex_unlock(&pcp_batch_high_lock);
9444 }
9445
9446 void zone_pcp_reset(struct zone *zone)
9447 {
9448 int cpu;
9449 struct per_cpu_zonestat *pzstats;
9450
9451 if (zone->per_cpu_pageset != &boot_pageset) {
9452 for_each_online_cpu(cpu) {
9453 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9454 drain_zonestat(zone, pzstats);
9455 }
9456 free_percpu(zone->per_cpu_pageset);
9457 free_percpu(zone->per_cpu_zonestats);
9458 zone->per_cpu_pageset = &boot_pageset;
9459 zone->per_cpu_zonestats = &boot_zonestats;
9460 }
9461 }
9462
9463 #ifdef CONFIG_MEMORY_HOTREMOVE
9464 /*
9465 * All pages in the range must be in a single zone, must not contain holes,
9466 * must span full sections, and must be isolated before calling this function.
9467 */
9468 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9469 {
9470 unsigned long pfn = start_pfn;
9471 struct page *page;
9472 struct zone *zone;
9473 unsigned int order;
9474 unsigned long flags;
9475
9476 offline_mem_sections(pfn, end_pfn);
9477 zone = page_zone(pfn_to_page(pfn));
9478 spin_lock_irqsave(&zone->lock, flags);
9479 while (pfn < end_pfn) {
9480 page = pfn_to_page(pfn);
9481 /*
9482 * The HWPoisoned page may be not in buddy system, and
9483 * page_count() is not 0.
9484 */
9485 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9486 pfn++;
9487 continue;
9488 }
9489 /*
9490 * At this point all remaining PageOffline() pages have a
9491 * reference count of 0 and can simply be skipped.
9492 */
9493 if (PageOffline(page)) {
9494 BUG_ON(page_count(page));
9495 BUG_ON(PageBuddy(page));
9496 pfn++;
9497 continue;
9498 }
9499
9500 BUG_ON(page_count(page));
9501 BUG_ON(!PageBuddy(page));
9502 order = buddy_order(page);
9503 del_page_from_free_list(page, zone, order);
9504 pfn += (1 << order);
9505 }
9506 spin_unlock_irqrestore(&zone->lock, flags);
9507 }
9508 #endif
9509
9510 /*
9511 * This function returns a stable result only if called under zone lock.
9512 */
9513 bool is_free_buddy_page(struct page *page)
9514 {
9515 unsigned long pfn = page_to_pfn(page);
9516 unsigned int order;
9517
9518 for (order = 0; order < MAX_ORDER; order++) {
9519 struct page *page_head = page - (pfn & ((1 << order) - 1));
9520
9521 if (PageBuddy(page_head) &&
9522 buddy_order_unsafe(page_head) >= order)
9523 break;
9524 }
9525
9526 return order < MAX_ORDER;
9527 }
9528 EXPORT_SYMBOL(is_free_buddy_page);
9529
9530 #ifdef CONFIG_MEMORY_FAILURE
9531 /*
9532 * Break down a higher-order page in sub-pages, and keep our target out of
9533 * buddy allocator.
9534 */
9535 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9536 struct page *target, int low, int high,
9537 int migratetype)
9538 {
9539 unsigned long size = 1 << high;
9540 struct page *current_buddy, *next_page;
9541
9542 while (high > low) {
9543 high--;
9544 size >>= 1;
9545
9546 if (target >= &page[size]) {
9547 next_page = page + size;
9548 current_buddy = page;
9549 } else {
9550 next_page = page;
9551 current_buddy = page + size;
9552 }
9553
9554 if (set_page_guard(zone, current_buddy, high, migratetype))
9555 continue;
9556
9557 if (current_buddy != target) {
9558 add_to_free_list(current_buddy, zone, high, migratetype);
9559 set_buddy_order(current_buddy, high);
9560 page = next_page;
9561 }
9562 }
9563 }
9564
9565 /*
9566 * Take a page that will be marked as poisoned off the buddy allocator.
9567 */
9568 bool take_page_off_buddy(struct page *page)
9569 {
9570 struct zone *zone = page_zone(page);
9571 unsigned long pfn = page_to_pfn(page);
9572 unsigned long flags;
9573 unsigned int order;
9574 bool ret = false;
9575
9576 spin_lock_irqsave(&zone->lock, flags);
9577 for (order = 0; order < MAX_ORDER; order++) {
9578 struct page *page_head = page - (pfn & ((1 << order) - 1));
9579 int page_order = buddy_order(page_head);
9580
9581 if (PageBuddy(page_head) && page_order >= order) {
9582 unsigned long pfn_head = page_to_pfn(page_head);
9583 int migratetype = get_pfnblock_migratetype(page_head,
9584 pfn_head);
9585
9586 del_page_from_free_list(page_head, zone, page_order);
9587 break_down_buddy_pages(zone, page_head, page, 0,
9588 page_order, migratetype);
9589 SetPageHWPoisonTakenOff(page);
9590 if (!is_migrate_isolate(migratetype))
9591 __mod_zone_freepage_state(zone, -1, migratetype);
9592 ret = true;
9593 break;
9594 }
9595 if (page_count(page_head) > 0)
9596 break;
9597 }
9598 spin_unlock_irqrestore(&zone->lock, flags);
9599 return ret;
9600 }
9601
9602 /*
9603 * Cancel takeoff done by take_page_off_buddy().
9604 */
9605 bool put_page_back_buddy(struct page *page)
9606 {
9607 struct zone *zone = page_zone(page);
9608 unsigned long pfn = page_to_pfn(page);
9609 unsigned long flags;
9610 int migratetype = get_pfnblock_migratetype(page, pfn);
9611 bool ret = false;
9612
9613 spin_lock_irqsave(&zone->lock, flags);
9614 if (put_page_testzero(page)) {
9615 ClearPageHWPoisonTakenOff(page);
9616 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
9617 if (TestClearPageHWPoison(page)) {
9618 ret = true;
9619 }
9620 }
9621 spin_unlock_irqrestore(&zone->lock, flags);
9622
9623 return ret;
9624 }
9625 #endif
9626
9627 #ifdef CONFIG_ZONE_DMA
9628 bool has_managed_dma(void)
9629 {
9630 struct pglist_data *pgdat;
9631
9632 for_each_online_pgdat(pgdat) {
9633 struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9634
9635 if (managed_zone(zone))
9636 return true;
9637 }
9638 return false;
9639 }
9640 #endif /* CONFIG_ZONE_DMA */