]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/page_alloc.c
ef1b807204a0cc6831249077f7e48a8779b04bff
[mirror_ubuntu-focal-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION (8)
81
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
85 #endif
86
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
90 /*
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
95 */
96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 int _node_numa_mem_[MAX_NUMNODES];
99 #endif
100
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105 };
106 DEFINE_MUTEX(pcpu_drain_mutex);
107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
113
114 /*
115 * Array of node states.
116 */
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 [N_MEMORY] = { { [0] = 1UL } },
126 [N_CPU] = { { [0] = 1UL } },
127 #endif /* NUMA */
128 };
129 EXPORT_SYMBOL(node_states);
130
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
135
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140 #else
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142 #endif
143 EXPORT_SYMBOL(init_on_alloc);
144
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
147 #else
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
149 #endif
150 EXPORT_SYMBOL(init_on_free);
151
152 static int __init early_init_on_alloc(char *buf)
153 {
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167 }
168 early_param("init_on_alloc", early_init_on_alloc);
169
170 static int __init early_init_on_free(char *buf)
171 {
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185 }
186 early_param("init_on_free", early_init_on_free);
187
188 /*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196 static inline int get_pcppage_migratetype(struct page *page)
197 {
198 return page->index;
199 }
200
201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202 {
203 page->index = migratetype;
204 }
205
206 #ifdef CONFIG_PM_SLEEP
207 /*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
215 */
216
217 static gfp_t saved_gfp_mask;
218
219 void pm_restore_gfp_mask(void)
220 {
221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
226 }
227
228 void pm_restrict_gfp_mask(void)
229 {
230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234 }
235
236 bool pm_suspended_storage(void)
237 {
238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 return false;
240 return true;
241 }
242 #endif /* CONFIG_PM_SLEEP */
243
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
246 #endif
247
248 static void __free_pages_ok(struct page *page, unsigned int order);
249
250 /*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
260 */
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 [ZONE_DMA] = 256,
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 [ZONE_DMA32] = 256,
267 #endif
268 [ZONE_NORMAL] = 32,
269 #ifdef CONFIG_HIGHMEM
270 [ZONE_HIGHMEM] = 0,
271 #endif
272 [ZONE_MOVABLE] = 0,
273 };
274
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
277 "DMA",
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 "DMA32",
281 #endif
282 "Normal",
283 #ifdef CONFIG_HIGHMEM
284 "HighMem",
285 #endif
286 "Movable",
287 #ifdef CONFIG_ZONE_DEVICE
288 "Device",
289 #endif
290 };
291
292 const char * const migratetype_names[MIGRATE_TYPES] = {
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297 #ifdef CONFIG_CMA
298 "CMA",
299 #endif
300 #ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302 #endif
303 };
304
305 compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308 #ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310 #endif
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313 #endif
314 };
315
316 int min_free_kbytes = 1024;
317 int user_min_free_kbytes = -1;
318 int watermark_boost_factor __read_mostly;
319 int watermark_scale_factor = 10;
320
321 static unsigned long nr_kernel_pages __initdata;
322 static unsigned long nr_all_pages __initdata;
323 static unsigned long dma_reserve __initdata;
324
325 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
326 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
327 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
328 static unsigned long required_kernelcore __initdata;
329 static unsigned long required_kernelcore_percent __initdata;
330 static unsigned long required_movablecore __initdata;
331 static unsigned long required_movablecore_percent __initdata;
332 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
333 static bool mirrored_kernelcore __meminitdata;
334
335 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
336 int movable_zone;
337 EXPORT_SYMBOL(movable_zone);
338 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
339
340 #if MAX_NUMNODES > 1
341 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
342 unsigned int nr_online_nodes __read_mostly = 1;
343 EXPORT_SYMBOL(nr_node_ids);
344 EXPORT_SYMBOL(nr_online_nodes);
345 #endif
346
347 int page_group_by_mobility_disabled __read_mostly;
348
349 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
350 /*
351 * During boot we initialize deferred pages on-demand, as needed, but once
352 * page_alloc_init_late() has finished, the deferred pages are all initialized,
353 * and we can permanently disable that path.
354 */
355 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
356
357 /*
358 * Calling kasan_free_pages() only after deferred memory initialization
359 * has completed. Poisoning pages during deferred memory init will greatly
360 * lengthen the process and cause problem in large memory systems as the
361 * deferred pages initialization is done with interrupt disabled.
362 *
363 * Assuming that there will be no reference to those newly initialized
364 * pages before they are ever allocated, this should have no effect on
365 * KASAN memory tracking as the poison will be properly inserted at page
366 * allocation time. The only corner case is when pages are allocated by
367 * on-demand allocation and then freed again before the deferred pages
368 * initialization is done, but this is not likely to happen.
369 */
370 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
371 {
372 if (!static_branch_unlikely(&deferred_pages))
373 kasan_free_pages(page, order);
374 }
375
376 /* Returns true if the struct page for the pfn is uninitialised */
377 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
378 {
379 int nid = early_pfn_to_nid(pfn);
380
381 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
382 return true;
383
384 return false;
385 }
386
387 /*
388 * Returns true when the remaining initialisation should be deferred until
389 * later in the boot cycle when it can be parallelised.
390 */
391 static bool __meminit
392 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
393 {
394 static unsigned long prev_end_pfn, nr_initialised;
395
396 /*
397 * prev_end_pfn static that contains the end of previous zone
398 * No need to protect because called very early in boot before smp_init.
399 */
400 if (prev_end_pfn != end_pfn) {
401 prev_end_pfn = end_pfn;
402 nr_initialised = 0;
403 }
404
405 /* Always populate low zones for address-constrained allocations */
406 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
407 return false;
408
409 /*
410 * We start only with one section of pages, more pages are added as
411 * needed until the rest of deferred pages are initialized.
412 */
413 nr_initialised++;
414 if ((nr_initialised > PAGES_PER_SECTION) &&
415 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
416 NODE_DATA(nid)->first_deferred_pfn = pfn;
417 return true;
418 }
419 return false;
420 }
421 #else
422 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
423
424 static inline bool early_page_uninitialised(unsigned long pfn)
425 {
426 return false;
427 }
428
429 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
430 {
431 return false;
432 }
433 #endif
434
435 /* Return a pointer to the bitmap storing bits affecting a block of pages */
436 static inline unsigned long *get_pageblock_bitmap(struct page *page,
437 unsigned long pfn)
438 {
439 #ifdef CONFIG_SPARSEMEM
440 return section_to_usemap(__pfn_to_section(pfn));
441 #else
442 return page_zone(page)->pageblock_flags;
443 #endif /* CONFIG_SPARSEMEM */
444 }
445
446 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
447 {
448 #ifdef CONFIG_SPARSEMEM
449 pfn &= (PAGES_PER_SECTION-1);
450 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
451 #else
452 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
453 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
454 #endif /* CONFIG_SPARSEMEM */
455 }
456
457 /**
458 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
459 * @page: The page within the block of interest
460 * @pfn: The target page frame number
461 * @end_bitidx: The last bit of interest to retrieve
462 * @mask: mask of bits that the caller is interested in
463 *
464 * Return: pageblock_bits flags
465 */
466 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
467 unsigned long pfn,
468 unsigned long end_bitidx,
469 unsigned long mask)
470 {
471 unsigned long *bitmap;
472 unsigned long bitidx, word_bitidx;
473 unsigned long word;
474
475 bitmap = get_pageblock_bitmap(page, pfn);
476 bitidx = pfn_to_bitidx(page, pfn);
477 word_bitidx = bitidx / BITS_PER_LONG;
478 bitidx &= (BITS_PER_LONG-1);
479
480 word = bitmap[word_bitidx];
481 bitidx += end_bitidx;
482 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
483 }
484
485 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
486 unsigned long end_bitidx,
487 unsigned long mask)
488 {
489 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
490 }
491
492 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
493 {
494 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
495 }
496
497 /**
498 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
499 * @page: The page within the block of interest
500 * @flags: The flags to set
501 * @pfn: The target page frame number
502 * @end_bitidx: The last bit of interest
503 * @mask: mask of bits that the caller is interested in
504 */
505 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
506 unsigned long pfn,
507 unsigned long end_bitidx,
508 unsigned long mask)
509 {
510 unsigned long *bitmap;
511 unsigned long bitidx, word_bitidx;
512 unsigned long old_word, word;
513
514 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
515 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
516
517 bitmap = get_pageblock_bitmap(page, pfn);
518 bitidx = pfn_to_bitidx(page, pfn);
519 word_bitidx = bitidx / BITS_PER_LONG;
520 bitidx &= (BITS_PER_LONG-1);
521
522 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
523
524 bitidx += end_bitidx;
525 mask <<= (BITS_PER_LONG - bitidx - 1);
526 flags <<= (BITS_PER_LONG - bitidx - 1);
527
528 word = READ_ONCE(bitmap[word_bitidx]);
529 for (;;) {
530 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
531 if (word == old_word)
532 break;
533 word = old_word;
534 }
535 }
536
537 void set_pageblock_migratetype(struct page *page, int migratetype)
538 {
539 if (unlikely(page_group_by_mobility_disabled &&
540 migratetype < MIGRATE_PCPTYPES))
541 migratetype = MIGRATE_UNMOVABLE;
542
543 set_pageblock_flags_group(page, (unsigned long)migratetype,
544 PB_migrate, PB_migrate_end);
545 }
546
547 #ifdef CONFIG_DEBUG_VM
548 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
549 {
550 int ret = 0;
551 unsigned seq;
552 unsigned long pfn = page_to_pfn(page);
553 unsigned long sp, start_pfn;
554
555 do {
556 seq = zone_span_seqbegin(zone);
557 start_pfn = zone->zone_start_pfn;
558 sp = zone->spanned_pages;
559 if (!zone_spans_pfn(zone, pfn))
560 ret = 1;
561 } while (zone_span_seqretry(zone, seq));
562
563 if (ret)
564 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
565 pfn, zone_to_nid(zone), zone->name,
566 start_pfn, start_pfn + sp);
567
568 return ret;
569 }
570
571 static int page_is_consistent(struct zone *zone, struct page *page)
572 {
573 if (!pfn_valid_within(page_to_pfn(page)))
574 return 0;
575 if (zone != page_zone(page))
576 return 0;
577
578 return 1;
579 }
580 /*
581 * Temporary debugging check for pages not lying within a given zone.
582 */
583 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
584 {
585 if (page_outside_zone_boundaries(zone, page))
586 return 1;
587 if (!page_is_consistent(zone, page))
588 return 1;
589
590 return 0;
591 }
592 #else
593 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
594 {
595 return 0;
596 }
597 #endif
598
599 static void bad_page(struct page *page, const char *reason,
600 unsigned long bad_flags)
601 {
602 static unsigned long resume;
603 static unsigned long nr_shown;
604 static unsigned long nr_unshown;
605
606 /*
607 * Allow a burst of 60 reports, then keep quiet for that minute;
608 * or allow a steady drip of one report per second.
609 */
610 if (nr_shown == 60) {
611 if (time_before(jiffies, resume)) {
612 nr_unshown++;
613 goto out;
614 }
615 if (nr_unshown) {
616 pr_alert(
617 "BUG: Bad page state: %lu messages suppressed\n",
618 nr_unshown);
619 nr_unshown = 0;
620 }
621 nr_shown = 0;
622 }
623 if (nr_shown++ == 0)
624 resume = jiffies + 60 * HZ;
625
626 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
627 current->comm, page_to_pfn(page));
628 __dump_page(page, reason);
629 bad_flags &= page->flags;
630 if (bad_flags)
631 pr_alert("bad because of flags: %#lx(%pGp)\n",
632 bad_flags, &bad_flags);
633 dump_page_owner(page);
634
635 print_modules();
636 dump_stack();
637 out:
638 /* Leave bad fields for debug, except PageBuddy could make trouble */
639 page_mapcount_reset(page); /* remove PageBuddy */
640 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
641 }
642
643 /*
644 * Higher-order pages are called "compound pages". They are structured thusly:
645 *
646 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
647 *
648 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
649 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
650 *
651 * The first tail page's ->compound_dtor holds the offset in array of compound
652 * page destructors. See compound_page_dtors.
653 *
654 * The first tail page's ->compound_order holds the order of allocation.
655 * This usage means that zero-order pages may not be compound.
656 */
657
658 void free_compound_page(struct page *page)
659 {
660 mem_cgroup_uncharge(page);
661 __free_pages_ok(page, compound_order(page));
662 }
663
664 void prep_compound_page(struct page *page, unsigned int order)
665 {
666 int i;
667 int nr_pages = 1 << order;
668
669 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
670 set_compound_order(page, order);
671 __SetPageHead(page);
672 for (i = 1; i < nr_pages; i++) {
673 struct page *p = page + i;
674 set_page_count(p, 0);
675 p->mapping = TAIL_MAPPING;
676 set_compound_head(p, page);
677 }
678 atomic_set(compound_mapcount_ptr(page), -1);
679 }
680
681 #ifdef CONFIG_DEBUG_PAGEALLOC
682 unsigned int _debug_guardpage_minorder;
683
684 bool _debug_pagealloc_enabled_early __read_mostly
685 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
686 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
687 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
688 EXPORT_SYMBOL(_debug_pagealloc_enabled);
689
690 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
691
692 static int __init early_debug_pagealloc(char *buf)
693 {
694 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
695 }
696 early_param("debug_pagealloc", early_debug_pagealloc);
697
698 void init_debug_pagealloc(void)
699 {
700 if (!debug_pagealloc_enabled())
701 return;
702
703 static_branch_enable(&_debug_pagealloc_enabled);
704
705 if (!debug_guardpage_minorder())
706 return;
707
708 static_branch_enable(&_debug_guardpage_enabled);
709 }
710
711 static int __init debug_guardpage_minorder_setup(char *buf)
712 {
713 unsigned long res;
714
715 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
716 pr_err("Bad debug_guardpage_minorder value\n");
717 return 0;
718 }
719 _debug_guardpage_minorder = res;
720 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
721 return 0;
722 }
723 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
724
725 static inline bool set_page_guard(struct zone *zone, struct page *page,
726 unsigned int order, int migratetype)
727 {
728 if (!debug_guardpage_enabled())
729 return false;
730
731 if (order >= debug_guardpage_minorder())
732 return false;
733
734 __SetPageGuard(page);
735 INIT_LIST_HEAD(&page->lru);
736 set_page_private(page, order);
737 /* Guard pages are not available for any usage */
738 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
739
740 return true;
741 }
742
743 static inline void clear_page_guard(struct zone *zone, struct page *page,
744 unsigned int order, int migratetype)
745 {
746 if (!debug_guardpage_enabled())
747 return;
748
749 __ClearPageGuard(page);
750
751 set_page_private(page, 0);
752 if (!is_migrate_isolate(migratetype))
753 __mod_zone_freepage_state(zone, (1 << order), migratetype);
754 }
755 #else
756 static inline bool set_page_guard(struct zone *zone, struct page *page,
757 unsigned int order, int migratetype) { return false; }
758 static inline void clear_page_guard(struct zone *zone, struct page *page,
759 unsigned int order, int migratetype) {}
760 #endif
761
762 static inline void set_page_order(struct page *page, unsigned int order)
763 {
764 set_page_private(page, order);
765 __SetPageBuddy(page);
766 }
767
768 /*
769 * This function checks whether a page is free && is the buddy
770 * we can coalesce a page and its buddy if
771 * (a) the buddy is not in a hole (check before calling!) &&
772 * (b) the buddy is in the buddy system &&
773 * (c) a page and its buddy have the same order &&
774 * (d) a page and its buddy are in the same zone.
775 *
776 * For recording whether a page is in the buddy system, we set PageBuddy.
777 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
778 *
779 * For recording page's order, we use page_private(page).
780 */
781 static inline int page_is_buddy(struct page *page, struct page *buddy,
782 unsigned int order)
783 {
784 if (page_is_guard(buddy) && page_order(buddy) == order) {
785 if (page_zone_id(page) != page_zone_id(buddy))
786 return 0;
787
788 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
789
790 return 1;
791 }
792
793 if (PageBuddy(buddy) && page_order(buddy) == order) {
794 /*
795 * zone check is done late to avoid uselessly
796 * calculating zone/node ids for pages that could
797 * never merge.
798 */
799 if (page_zone_id(page) != page_zone_id(buddy))
800 return 0;
801
802 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
803
804 return 1;
805 }
806 return 0;
807 }
808
809 #ifdef CONFIG_COMPACTION
810 static inline struct capture_control *task_capc(struct zone *zone)
811 {
812 struct capture_control *capc = current->capture_control;
813
814 return capc &&
815 !(current->flags & PF_KTHREAD) &&
816 !capc->page &&
817 capc->cc->zone == zone &&
818 capc->cc->direct_compaction ? capc : NULL;
819 }
820
821 static inline bool
822 compaction_capture(struct capture_control *capc, struct page *page,
823 int order, int migratetype)
824 {
825 if (!capc || order != capc->cc->order)
826 return false;
827
828 /* Do not accidentally pollute CMA or isolated regions*/
829 if (is_migrate_cma(migratetype) ||
830 is_migrate_isolate(migratetype))
831 return false;
832
833 /*
834 * Do not let lower order allocations polluate a movable pageblock.
835 * This might let an unmovable request use a reclaimable pageblock
836 * and vice-versa but no more than normal fallback logic which can
837 * have trouble finding a high-order free page.
838 */
839 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
840 return false;
841
842 capc->page = page;
843 return true;
844 }
845
846 #else
847 static inline struct capture_control *task_capc(struct zone *zone)
848 {
849 return NULL;
850 }
851
852 static inline bool
853 compaction_capture(struct capture_control *capc, struct page *page,
854 int order, int migratetype)
855 {
856 return false;
857 }
858 #endif /* CONFIG_COMPACTION */
859
860 /*
861 * Freeing function for a buddy system allocator.
862 *
863 * The concept of a buddy system is to maintain direct-mapped table
864 * (containing bit values) for memory blocks of various "orders".
865 * The bottom level table contains the map for the smallest allocatable
866 * units of memory (here, pages), and each level above it describes
867 * pairs of units from the levels below, hence, "buddies".
868 * At a high level, all that happens here is marking the table entry
869 * at the bottom level available, and propagating the changes upward
870 * as necessary, plus some accounting needed to play nicely with other
871 * parts of the VM system.
872 * At each level, we keep a list of pages, which are heads of continuous
873 * free pages of length of (1 << order) and marked with PageBuddy.
874 * Page's order is recorded in page_private(page) field.
875 * So when we are allocating or freeing one, we can derive the state of the
876 * other. That is, if we allocate a small block, and both were
877 * free, the remainder of the region must be split into blocks.
878 * If a block is freed, and its buddy is also free, then this
879 * triggers coalescing into a block of larger size.
880 *
881 * -- nyc
882 */
883
884 static inline void __free_one_page(struct page *page,
885 unsigned long pfn,
886 struct zone *zone, unsigned int order,
887 int migratetype)
888 {
889 unsigned long combined_pfn;
890 unsigned long uninitialized_var(buddy_pfn);
891 struct page *buddy;
892 unsigned int max_order;
893 struct capture_control *capc = task_capc(zone);
894
895 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
896
897 VM_BUG_ON(!zone_is_initialized(zone));
898 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
899
900 VM_BUG_ON(migratetype == -1);
901 if (likely(!is_migrate_isolate(migratetype)))
902 __mod_zone_freepage_state(zone, 1 << order, migratetype);
903
904 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
905 VM_BUG_ON_PAGE(bad_range(zone, page), page);
906
907 continue_merging:
908 while (order < max_order - 1) {
909 if (compaction_capture(capc, page, order, migratetype)) {
910 __mod_zone_freepage_state(zone, -(1 << order),
911 migratetype);
912 return;
913 }
914 buddy_pfn = __find_buddy_pfn(pfn, order);
915 buddy = page + (buddy_pfn - pfn);
916
917 if (!pfn_valid_within(buddy_pfn))
918 goto done_merging;
919 if (!page_is_buddy(page, buddy, order))
920 goto done_merging;
921 /*
922 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
923 * merge with it and move up one order.
924 */
925 if (page_is_guard(buddy))
926 clear_page_guard(zone, buddy, order, migratetype);
927 else
928 del_page_from_free_area(buddy, &zone->free_area[order]);
929 combined_pfn = buddy_pfn & pfn;
930 page = page + (combined_pfn - pfn);
931 pfn = combined_pfn;
932 order++;
933 }
934 if (max_order < MAX_ORDER) {
935 /* If we are here, it means order is >= pageblock_order.
936 * We want to prevent merge between freepages on isolate
937 * pageblock and normal pageblock. Without this, pageblock
938 * isolation could cause incorrect freepage or CMA accounting.
939 *
940 * We don't want to hit this code for the more frequent
941 * low-order merging.
942 */
943 if (unlikely(has_isolate_pageblock(zone))) {
944 int buddy_mt;
945
946 buddy_pfn = __find_buddy_pfn(pfn, order);
947 buddy = page + (buddy_pfn - pfn);
948 buddy_mt = get_pageblock_migratetype(buddy);
949
950 if (migratetype != buddy_mt
951 && (is_migrate_isolate(migratetype) ||
952 is_migrate_isolate(buddy_mt)))
953 goto done_merging;
954 }
955 max_order++;
956 goto continue_merging;
957 }
958
959 done_merging:
960 set_page_order(page, order);
961
962 /*
963 * If this is not the largest possible page, check if the buddy
964 * of the next-highest order is free. If it is, it's possible
965 * that pages are being freed that will coalesce soon. In case,
966 * that is happening, add the free page to the tail of the list
967 * so it's less likely to be used soon and more likely to be merged
968 * as a higher order page
969 */
970 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
971 && !is_shuffle_order(order)) {
972 struct page *higher_page, *higher_buddy;
973 combined_pfn = buddy_pfn & pfn;
974 higher_page = page + (combined_pfn - pfn);
975 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
976 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
977 if (pfn_valid_within(buddy_pfn) &&
978 page_is_buddy(higher_page, higher_buddy, order + 1)) {
979 add_to_free_area_tail(page, &zone->free_area[order],
980 migratetype);
981 return;
982 }
983 }
984
985 if (is_shuffle_order(order))
986 add_to_free_area_random(page, &zone->free_area[order],
987 migratetype);
988 else
989 add_to_free_area(page, &zone->free_area[order], migratetype);
990
991 }
992
993 /*
994 * A bad page could be due to a number of fields. Instead of multiple branches,
995 * try and check multiple fields with one check. The caller must do a detailed
996 * check if necessary.
997 */
998 static inline bool page_expected_state(struct page *page,
999 unsigned long check_flags)
1000 {
1001 if (unlikely(atomic_read(&page->_mapcount) != -1))
1002 return false;
1003
1004 if (unlikely((unsigned long)page->mapping |
1005 page_ref_count(page) |
1006 #ifdef CONFIG_MEMCG
1007 (unsigned long)page->mem_cgroup |
1008 #endif
1009 (page->flags & check_flags)))
1010 return false;
1011
1012 return true;
1013 }
1014
1015 static void free_pages_check_bad(struct page *page)
1016 {
1017 const char *bad_reason;
1018 unsigned long bad_flags;
1019
1020 bad_reason = NULL;
1021 bad_flags = 0;
1022
1023 if (unlikely(atomic_read(&page->_mapcount) != -1))
1024 bad_reason = "nonzero mapcount";
1025 if (unlikely(page->mapping != NULL))
1026 bad_reason = "non-NULL mapping";
1027 if (unlikely(page_ref_count(page) != 0))
1028 bad_reason = "nonzero _refcount";
1029 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1030 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1031 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1032 }
1033 #ifdef CONFIG_MEMCG
1034 if (unlikely(page->mem_cgroup))
1035 bad_reason = "page still charged to cgroup";
1036 #endif
1037 bad_page(page, bad_reason, bad_flags);
1038 }
1039
1040 static inline int free_pages_check(struct page *page)
1041 {
1042 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1043 return 0;
1044
1045 /* Something has gone sideways, find it */
1046 free_pages_check_bad(page);
1047 return 1;
1048 }
1049
1050 static int free_tail_pages_check(struct page *head_page, struct page *page)
1051 {
1052 int ret = 1;
1053
1054 /*
1055 * We rely page->lru.next never has bit 0 set, unless the page
1056 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1057 */
1058 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1059
1060 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1061 ret = 0;
1062 goto out;
1063 }
1064 switch (page - head_page) {
1065 case 1:
1066 /* the first tail page: ->mapping may be compound_mapcount() */
1067 if (unlikely(compound_mapcount(page))) {
1068 bad_page(page, "nonzero compound_mapcount", 0);
1069 goto out;
1070 }
1071 break;
1072 case 2:
1073 /*
1074 * the second tail page: ->mapping is
1075 * deferred_list.next -- ignore value.
1076 */
1077 break;
1078 default:
1079 if (page->mapping != TAIL_MAPPING) {
1080 bad_page(page, "corrupted mapping in tail page", 0);
1081 goto out;
1082 }
1083 break;
1084 }
1085 if (unlikely(!PageTail(page))) {
1086 bad_page(page, "PageTail not set", 0);
1087 goto out;
1088 }
1089 if (unlikely(compound_head(page) != head_page)) {
1090 bad_page(page, "compound_head not consistent", 0);
1091 goto out;
1092 }
1093 ret = 0;
1094 out:
1095 page->mapping = NULL;
1096 clear_compound_head(page);
1097 return ret;
1098 }
1099
1100 static void kernel_init_free_pages(struct page *page, int numpages)
1101 {
1102 int i;
1103
1104 for (i = 0; i < numpages; i++)
1105 clear_highpage(page + i);
1106 }
1107
1108 static __always_inline bool free_pages_prepare(struct page *page,
1109 unsigned int order, bool check_free)
1110 {
1111 int bad = 0;
1112
1113 VM_BUG_ON_PAGE(PageTail(page), page);
1114
1115 trace_mm_page_free(page, order);
1116
1117 /*
1118 * Check tail pages before head page information is cleared to
1119 * avoid checking PageCompound for order-0 pages.
1120 */
1121 if (unlikely(order)) {
1122 bool compound = PageCompound(page);
1123 int i;
1124
1125 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1126
1127 if (compound)
1128 ClearPageDoubleMap(page);
1129 for (i = 1; i < (1 << order); i++) {
1130 if (compound)
1131 bad += free_tail_pages_check(page, page + i);
1132 if (unlikely(free_pages_check(page + i))) {
1133 bad++;
1134 continue;
1135 }
1136 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1137 }
1138 }
1139 if (PageMappingFlags(page))
1140 page->mapping = NULL;
1141 if (memcg_kmem_enabled() && PageKmemcg(page))
1142 __memcg_kmem_uncharge(page, order);
1143 if (check_free)
1144 bad += free_pages_check(page);
1145 if (bad)
1146 return false;
1147
1148 page_cpupid_reset_last(page);
1149 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1150 reset_page_owner(page, order);
1151
1152 if (!PageHighMem(page)) {
1153 debug_check_no_locks_freed(page_address(page),
1154 PAGE_SIZE << order);
1155 debug_check_no_obj_freed(page_address(page),
1156 PAGE_SIZE << order);
1157 }
1158 if (want_init_on_free())
1159 kernel_init_free_pages(page, 1 << order);
1160
1161 kernel_poison_pages(page, 1 << order, 0);
1162 /*
1163 * arch_free_page() can make the page's contents inaccessible. s390
1164 * does this. So nothing which can access the page's contents should
1165 * happen after this.
1166 */
1167 arch_free_page(page, order);
1168
1169 if (debug_pagealloc_enabled_static())
1170 kernel_map_pages(page, 1 << order, 0);
1171
1172 kasan_free_nondeferred_pages(page, order);
1173
1174 return true;
1175 }
1176
1177 #ifdef CONFIG_DEBUG_VM
1178 /*
1179 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1180 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1181 * moved from pcp lists to free lists.
1182 */
1183 static bool free_pcp_prepare(struct page *page)
1184 {
1185 return free_pages_prepare(page, 0, true);
1186 }
1187
1188 static bool bulkfree_pcp_prepare(struct page *page)
1189 {
1190 if (debug_pagealloc_enabled_static())
1191 return free_pages_check(page);
1192 else
1193 return false;
1194 }
1195 #else
1196 /*
1197 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1198 * moving from pcp lists to free list in order to reduce overhead. With
1199 * debug_pagealloc enabled, they are checked also immediately when being freed
1200 * to the pcp lists.
1201 */
1202 static bool free_pcp_prepare(struct page *page)
1203 {
1204 if (debug_pagealloc_enabled_static())
1205 return free_pages_prepare(page, 0, true);
1206 else
1207 return free_pages_prepare(page, 0, false);
1208 }
1209
1210 static bool bulkfree_pcp_prepare(struct page *page)
1211 {
1212 return free_pages_check(page);
1213 }
1214 #endif /* CONFIG_DEBUG_VM */
1215
1216 static inline void prefetch_buddy(struct page *page)
1217 {
1218 unsigned long pfn = page_to_pfn(page);
1219 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1220 struct page *buddy = page + (buddy_pfn - pfn);
1221
1222 prefetch(buddy);
1223 }
1224
1225 /*
1226 * Frees a number of pages from the PCP lists
1227 * Assumes all pages on list are in same zone, and of same order.
1228 * count is the number of pages to free.
1229 *
1230 * If the zone was previously in an "all pages pinned" state then look to
1231 * see if this freeing clears that state.
1232 *
1233 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1234 * pinned" detection logic.
1235 */
1236 static void free_pcppages_bulk(struct zone *zone, int count,
1237 struct per_cpu_pages *pcp)
1238 {
1239 int migratetype = 0;
1240 int batch_free = 0;
1241 int prefetch_nr = 0;
1242 bool isolated_pageblocks;
1243 struct page *page, *tmp;
1244 LIST_HEAD(head);
1245
1246 /*
1247 * Ensure proper count is passed which otherwise would stuck in the
1248 * below while (list_empty(list)) loop.
1249 */
1250 count = min(pcp->count, count);
1251 while (count) {
1252 struct list_head *list;
1253
1254 /*
1255 * Remove pages from lists in a round-robin fashion. A
1256 * batch_free count is maintained that is incremented when an
1257 * empty list is encountered. This is so more pages are freed
1258 * off fuller lists instead of spinning excessively around empty
1259 * lists
1260 */
1261 do {
1262 batch_free++;
1263 if (++migratetype == MIGRATE_PCPTYPES)
1264 migratetype = 0;
1265 list = &pcp->lists[migratetype];
1266 } while (list_empty(list));
1267
1268 /* This is the only non-empty list. Free them all. */
1269 if (batch_free == MIGRATE_PCPTYPES)
1270 batch_free = count;
1271
1272 do {
1273 page = list_last_entry(list, struct page, lru);
1274 /* must delete to avoid corrupting pcp list */
1275 list_del(&page->lru);
1276 pcp->count--;
1277
1278 if (bulkfree_pcp_prepare(page))
1279 continue;
1280
1281 list_add_tail(&page->lru, &head);
1282
1283 /*
1284 * We are going to put the page back to the global
1285 * pool, prefetch its buddy to speed up later access
1286 * under zone->lock. It is believed the overhead of
1287 * an additional test and calculating buddy_pfn here
1288 * can be offset by reduced memory latency later. To
1289 * avoid excessive prefetching due to large count, only
1290 * prefetch buddy for the first pcp->batch nr of pages.
1291 */
1292 if (prefetch_nr++ < pcp->batch)
1293 prefetch_buddy(page);
1294 } while (--count && --batch_free && !list_empty(list));
1295 }
1296
1297 spin_lock(&zone->lock);
1298 isolated_pageblocks = has_isolate_pageblock(zone);
1299
1300 /*
1301 * Use safe version since after __free_one_page(),
1302 * page->lru.next will not point to original list.
1303 */
1304 list_for_each_entry_safe(page, tmp, &head, lru) {
1305 int mt = get_pcppage_migratetype(page);
1306 /* MIGRATE_ISOLATE page should not go to pcplists */
1307 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1308 /* Pageblock could have been isolated meanwhile */
1309 if (unlikely(isolated_pageblocks))
1310 mt = get_pageblock_migratetype(page);
1311
1312 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1313 trace_mm_page_pcpu_drain(page, 0, mt);
1314 }
1315 spin_unlock(&zone->lock);
1316 }
1317
1318 static void free_one_page(struct zone *zone,
1319 struct page *page, unsigned long pfn,
1320 unsigned int order,
1321 int migratetype)
1322 {
1323 spin_lock(&zone->lock);
1324 if (unlikely(has_isolate_pageblock(zone) ||
1325 is_migrate_isolate(migratetype))) {
1326 migratetype = get_pfnblock_migratetype(page, pfn);
1327 }
1328 __free_one_page(page, pfn, zone, order, migratetype);
1329 spin_unlock(&zone->lock);
1330 }
1331
1332 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1333 unsigned long zone, int nid)
1334 {
1335 mm_zero_struct_page(page);
1336 set_page_links(page, zone, nid, pfn);
1337 init_page_count(page);
1338 page_mapcount_reset(page);
1339 page_cpupid_reset_last(page);
1340 page_kasan_tag_reset(page);
1341
1342 INIT_LIST_HEAD(&page->lru);
1343 #ifdef WANT_PAGE_VIRTUAL
1344 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1345 if (!is_highmem_idx(zone))
1346 set_page_address(page, __va(pfn << PAGE_SHIFT));
1347 #endif
1348 }
1349
1350 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1351 static void __meminit init_reserved_page(unsigned long pfn)
1352 {
1353 pg_data_t *pgdat;
1354 int nid, zid;
1355
1356 if (!early_page_uninitialised(pfn))
1357 return;
1358
1359 nid = early_pfn_to_nid(pfn);
1360 pgdat = NODE_DATA(nid);
1361
1362 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1363 struct zone *zone = &pgdat->node_zones[zid];
1364
1365 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1366 break;
1367 }
1368 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1369 }
1370 #else
1371 static inline void init_reserved_page(unsigned long pfn)
1372 {
1373 }
1374 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1375
1376 /*
1377 * Initialised pages do not have PageReserved set. This function is
1378 * called for each range allocated by the bootmem allocator and
1379 * marks the pages PageReserved. The remaining valid pages are later
1380 * sent to the buddy page allocator.
1381 */
1382 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1383 {
1384 unsigned long start_pfn = PFN_DOWN(start);
1385 unsigned long end_pfn = PFN_UP(end);
1386
1387 for (; start_pfn < end_pfn; start_pfn++) {
1388 if (pfn_valid(start_pfn)) {
1389 struct page *page = pfn_to_page(start_pfn);
1390
1391 init_reserved_page(start_pfn);
1392
1393 /* Avoid false-positive PageTail() */
1394 INIT_LIST_HEAD(&page->lru);
1395
1396 /*
1397 * no need for atomic set_bit because the struct
1398 * page is not visible yet so nobody should
1399 * access it yet.
1400 */
1401 __SetPageReserved(page);
1402 }
1403 }
1404 }
1405
1406 static void __free_pages_ok(struct page *page, unsigned int order)
1407 {
1408 unsigned long flags;
1409 int migratetype;
1410 unsigned long pfn = page_to_pfn(page);
1411
1412 if (!free_pages_prepare(page, order, true))
1413 return;
1414
1415 migratetype = get_pfnblock_migratetype(page, pfn);
1416 local_irq_save(flags);
1417 __count_vm_events(PGFREE, 1 << order);
1418 free_one_page(page_zone(page), page, pfn, order, migratetype);
1419 local_irq_restore(flags);
1420 }
1421
1422 void __free_pages_core(struct page *page, unsigned int order)
1423 {
1424 unsigned int nr_pages = 1 << order;
1425 struct page *p = page;
1426 unsigned int loop;
1427
1428 prefetchw(p);
1429 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1430 prefetchw(p + 1);
1431 __ClearPageReserved(p);
1432 set_page_count(p, 0);
1433 }
1434 __ClearPageReserved(p);
1435 set_page_count(p, 0);
1436
1437 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1438 set_page_refcounted(page);
1439 __free_pages(page, order);
1440 }
1441
1442 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1443 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1444
1445 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1446
1447 int __meminit early_pfn_to_nid(unsigned long pfn)
1448 {
1449 static DEFINE_SPINLOCK(early_pfn_lock);
1450 int nid;
1451
1452 spin_lock(&early_pfn_lock);
1453 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1454 if (nid < 0)
1455 nid = first_online_node;
1456 spin_unlock(&early_pfn_lock);
1457
1458 return nid;
1459 }
1460 #endif
1461
1462 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1463 /* Only safe to use early in boot when initialisation is single-threaded */
1464 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1465 {
1466 int nid;
1467
1468 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1469 if (nid >= 0 && nid != node)
1470 return false;
1471 return true;
1472 }
1473
1474 #else
1475 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1476 {
1477 return true;
1478 }
1479 #endif
1480
1481
1482 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1483 unsigned int order)
1484 {
1485 if (early_page_uninitialised(pfn))
1486 return;
1487 __free_pages_core(page, order);
1488 }
1489
1490 /*
1491 * Check that the whole (or subset of) a pageblock given by the interval of
1492 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1493 * with the migration of free compaction scanner. The scanners then need to
1494 * use only pfn_valid_within() check for arches that allow holes within
1495 * pageblocks.
1496 *
1497 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1498 *
1499 * It's possible on some configurations to have a setup like node0 node1 node0
1500 * i.e. it's possible that all pages within a zones range of pages do not
1501 * belong to a single zone. We assume that a border between node0 and node1
1502 * can occur within a single pageblock, but not a node0 node1 node0
1503 * interleaving within a single pageblock. It is therefore sufficient to check
1504 * the first and last page of a pageblock and avoid checking each individual
1505 * page in a pageblock.
1506 */
1507 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1508 unsigned long end_pfn, struct zone *zone)
1509 {
1510 struct page *start_page;
1511 struct page *end_page;
1512
1513 /* end_pfn is one past the range we are checking */
1514 end_pfn--;
1515
1516 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1517 return NULL;
1518
1519 start_page = pfn_to_online_page(start_pfn);
1520 if (!start_page)
1521 return NULL;
1522
1523 if (page_zone(start_page) != zone)
1524 return NULL;
1525
1526 end_page = pfn_to_page(end_pfn);
1527
1528 /* This gives a shorter code than deriving page_zone(end_page) */
1529 if (page_zone_id(start_page) != page_zone_id(end_page))
1530 return NULL;
1531
1532 return start_page;
1533 }
1534
1535 void set_zone_contiguous(struct zone *zone)
1536 {
1537 unsigned long block_start_pfn = zone->zone_start_pfn;
1538 unsigned long block_end_pfn;
1539
1540 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1541 for (; block_start_pfn < zone_end_pfn(zone);
1542 block_start_pfn = block_end_pfn,
1543 block_end_pfn += pageblock_nr_pages) {
1544
1545 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1546
1547 if (!__pageblock_pfn_to_page(block_start_pfn,
1548 block_end_pfn, zone))
1549 return;
1550 cond_resched();
1551 }
1552
1553 /* We confirm that there is no hole */
1554 zone->contiguous = true;
1555 }
1556
1557 void clear_zone_contiguous(struct zone *zone)
1558 {
1559 zone->contiguous = false;
1560 }
1561
1562 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1563 static void __init deferred_free_range(unsigned long pfn,
1564 unsigned long nr_pages)
1565 {
1566 struct page *page;
1567 unsigned long i;
1568
1569 if (!nr_pages)
1570 return;
1571
1572 page = pfn_to_page(pfn);
1573
1574 /* Free a large naturally-aligned chunk if possible */
1575 if (nr_pages == pageblock_nr_pages &&
1576 (pfn & (pageblock_nr_pages - 1)) == 0) {
1577 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1578 __free_pages_core(page, pageblock_order);
1579 return;
1580 }
1581
1582 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1583 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1584 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1585 __free_pages_core(page, 0);
1586 }
1587 }
1588
1589 /* Completion tracking for deferred_init_memmap() threads */
1590 static atomic_t pgdat_init_n_undone __initdata;
1591 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1592
1593 static inline void __init pgdat_init_report_one_done(void)
1594 {
1595 if (atomic_dec_and_test(&pgdat_init_n_undone))
1596 complete(&pgdat_init_all_done_comp);
1597 }
1598
1599 /*
1600 * Returns true if page needs to be initialized or freed to buddy allocator.
1601 *
1602 * First we check if pfn is valid on architectures where it is possible to have
1603 * holes within pageblock_nr_pages. On systems where it is not possible, this
1604 * function is optimized out.
1605 *
1606 * Then, we check if a current large page is valid by only checking the validity
1607 * of the head pfn.
1608 */
1609 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1610 {
1611 if (!pfn_valid_within(pfn))
1612 return false;
1613 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1614 return false;
1615 return true;
1616 }
1617
1618 /*
1619 * Free pages to buddy allocator. Try to free aligned pages in
1620 * pageblock_nr_pages sizes.
1621 */
1622 static void __init deferred_free_pages(unsigned long pfn,
1623 unsigned long end_pfn)
1624 {
1625 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1626 unsigned long nr_free = 0;
1627
1628 for (; pfn < end_pfn; pfn++) {
1629 if (!deferred_pfn_valid(pfn)) {
1630 deferred_free_range(pfn - nr_free, nr_free);
1631 nr_free = 0;
1632 } else if (!(pfn & nr_pgmask)) {
1633 deferred_free_range(pfn - nr_free, nr_free);
1634 nr_free = 1;
1635 } else {
1636 nr_free++;
1637 }
1638 }
1639 /* Free the last block of pages to allocator */
1640 deferred_free_range(pfn - nr_free, nr_free);
1641 }
1642
1643 /*
1644 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1645 * by performing it only once every pageblock_nr_pages.
1646 * Return number of pages initialized.
1647 */
1648 static unsigned long __init deferred_init_pages(struct zone *zone,
1649 unsigned long pfn,
1650 unsigned long end_pfn)
1651 {
1652 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1653 int nid = zone_to_nid(zone);
1654 unsigned long nr_pages = 0;
1655 int zid = zone_idx(zone);
1656 struct page *page = NULL;
1657
1658 for (; pfn < end_pfn; pfn++) {
1659 if (!deferred_pfn_valid(pfn)) {
1660 page = NULL;
1661 continue;
1662 } else if (!page || !(pfn & nr_pgmask)) {
1663 page = pfn_to_page(pfn);
1664 } else {
1665 page++;
1666 }
1667 __init_single_page(page, pfn, zid, nid);
1668 nr_pages++;
1669 }
1670 return (nr_pages);
1671 }
1672
1673 /*
1674 * This function is meant to pre-load the iterator for the zone init.
1675 * Specifically it walks through the ranges until we are caught up to the
1676 * first_init_pfn value and exits there. If we never encounter the value we
1677 * return false indicating there are no valid ranges left.
1678 */
1679 static bool __init
1680 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1681 unsigned long *spfn, unsigned long *epfn,
1682 unsigned long first_init_pfn)
1683 {
1684 u64 j;
1685
1686 /*
1687 * Start out by walking through the ranges in this zone that have
1688 * already been initialized. We don't need to do anything with them
1689 * so we just need to flush them out of the system.
1690 */
1691 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1692 if (*epfn <= first_init_pfn)
1693 continue;
1694 if (*spfn < first_init_pfn)
1695 *spfn = first_init_pfn;
1696 *i = j;
1697 return true;
1698 }
1699
1700 return false;
1701 }
1702
1703 /*
1704 * Initialize and free pages. We do it in two loops: first we initialize
1705 * struct page, then free to buddy allocator, because while we are
1706 * freeing pages we can access pages that are ahead (computing buddy
1707 * page in __free_one_page()).
1708 *
1709 * In order to try and keep some memory in the cache we have the loop
1710 * broken along max page order boundaries. This way we will not cause
1711 * any issues with the buddy page computation.
1712 */
1713 static unsigned long __init
1714 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1715 unsigned long *end_pfn)
1716 {
1717 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1718 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1719 unsigned long nr_pages = 0;
1720 u64 j = *i;
1721
1722 /* First we loop through and initialize the page values */
1723 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1724 unsigned long t;
1725
1726 if (mo_pfn <= *start_pfn)
1727 break;
1728
1729 t = min(mo_pfn, *end_pfn);
1730 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1731
1732 if (mo_pfn < *end_pfn) {
1733 *start_pfn = mo_pfn;
1734 break;
1735 }
1736 }
1737
1738 /* Reset values and now loop through freeing pages as needed */
1739 swap(j, *i);
1740
1741 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1742 unsigned long t;
1743
1744 if (mo_pfn <= spfn)
1745 break;
1746
1747 t = min(mo_pfn, epfn);
1748 deferred_free_pages(spfn, t);
1749
1750 if (mo_pfn <= epfn)
1751 break;
1752 }
1753
1754 return nr_pages;
1755 }
1756
1757 /* Initialise remaining memory on a node */
1758 static int __init deferred_init_memmap(void *data)
1759 {
1760 pg_data_t *pgdat = data;
1761 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1762 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1763 unsigned long first_init_pfn, flags;
1764 unsigned long start = jiffies;
1765 struct zone *zone;
1766 int zid;
1767 u64 i;
1768
1769 /* Bind memory initialisation thread to a local node if possible */
1770 if (!cpumask_empty(cpumask))
1771 set_cpus_allowed_ptr(current, cpumask);
1772
1773 pgdat_resize_lock(pgdat, &flags);
1774 first_init_pfn = pgdat->first_deferred_pfn;
1775 if (first_init_pfn == ULONG_MAX) {
1776 pgdat_resize_unlock(pgdat, &flags);
1777 pgdat_init_report_one_done();
1778 return 0;
1779 }
1780
1781 /* Sanity check boundaries */
1782 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1783 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1784 pgdat->first_deferred_pfn = ULONG_MAX;
1785
1786 /*
1787 * Once we unlock here, the zone cannot be grown anymore, thus if an
1788 * interrupt thread must allocate this early in boot, zone must be
1789 * pre-grown prior to start of deferred page initialization.
1790 */
1791 pgdat_resize_unlock(pgdat, &flags);
1792
1793 /* Only the highest zone is deferred so find it */
1794 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1795 zone = pgdat->node_zones + zid;
1796 if (first_init_pfn < zone_end_pfn(zone))
1797 break;
1798 }
1799
1800 /* If the zone is empty somebody else may have cleared out the zone */
1801 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1802 first_init_pfn))
1803 goto zone_empty;
1804
1805 /*
1806 * Initialize and free pages in MAX_ORDER sized increments so
1807 * that we can avoid introducing any issues with the buddy
1808 * allocator.
1809 */
1810 while (spfn < epfn) {
1811 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1812 cond_resched();
1813 }
1814 zone_empty:
1815 /* Sanity check that the next zone really is unpopulated */
1816 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1817
1818 pr_info("node %d initialised, %lu pages in %ums\n",
1819 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1820
1821 pgdat_init_report_one_done();
1822 return 0;
1823 }
1824
1825 /*
1826 * If this zone has deferred pages, try to grow it by initializing enough
1827 * deferred pages to satisfy the allocation specified by order, rounded up to
1828 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1829 * of SECTION_SIZE bytes by initializing struct pages in increments of
1830 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1831 *
1832 * Return true when zone was grown, otherwise return false. We return true even
1833 * when we grow less than requested, to let the caller decide if there are
1834 * enough pages to satisfy the allocation.
1835 *
1836 * Note: We use noinline because this function is needed only during boot, and
1837 * it is called from a __ref function _deferred_grow_zone. This way we are
1838 * making sure that it is not inlined into permanent text section.
1839 */
1840 static noinline bool __init
1841 deferred_grow_zone(struct zone *zone, unsigned int order)
1842 {
1843 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1844 pg_data_t *pgdat = zone->zone_pgdat;
1845 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1846 unsigned long spfn, epfn, flags;
1847 unsigned long nr_pages = 0;
1848 u64 i;
1849
1850 /* Only the last zone may have deferred pages */
1851 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1852 return false;
1853
1854 pgdat_resize_lock(pgdat, &flags);
1855
1856 /*
1857 * If someone grew this zone while we were waiting for spinlock, return
1858 * true, as there might be enough pages already.
1859 */
1860 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1861 pgdat_resize_unlock(pgdat, &flags);
1862 return true;
1863 }
1864
1865 /* If the zone is empty somebody else may have cleared out the zone */
1866 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1867 first_deferred_pfn)) {
1868 pgdat->first_deferred_pfn = ULONG_MAX;
1869 pgdat_resize_unlock(pgdat, &flags);
1870 /* Retry only once. */
1871 return first_deferred_pfn != ULONG_MAX;
1872 }
1873
1874 /*
1875 * Initialize and free pages in MAX_ORDER sized increments so
1876 * that we can avoid introducing any issues with the buddy
1877 * allocator.
1878 */
1879 while (spfn < epfn) {
1880 /* update our first deferred PFN for this section */
1881 first_deferred_pfn = spfn;
1882
1883 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1884 touch_nmi_watchdog();
1885
1886 /* We should only stop along section boundaries */
1887 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1888 continue;
1889
1890 /* If our quota has been met we can stop here */
1891 if (nr_pages >= nr_pages_needed)
1892 break;
1893 }
1894
1895 pgdat->first_deferred_pfn = spfn;
1896 pgdat_resize_unlock(pgdat, &flags);
1897
1898 return nr_pages > 0;
1899 }
1900
1901 /*
1902 * deferred_grow_zone() is __init, but it is called from
1903 * get_page_from_freelist() during early boot until deferred_pages permanently
1904 * disables this call. This is why we have refdata wrapper to avoid warning,
1905 * and to ensure that the function body gets unloaded.
1906 */
1907 static bool __ref
1908 _deferred_grow_zone(struct zone *zone, unsigned int order)
1909 {
1910 return deferred_grow_zone(zone, order);
1911 }
1912
1913 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1914
1915 void __init page_alloc_init_late(void)
1916 {
1917 struct zone *zone;
1918 int nid;
1919
1920 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1921
1922 /* There will be num_node_state(N_MEMORY) threads */
1923 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1924 for_each_node_state(nid, N_MEMORY) {
1925 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1926 }
1927
1928 /* Block until all are initialised */
1929 wait_for_completion(&pgdat_init_all_done_comp);
1930
1931 /*
1932 * The number of managed pages has changed due to the initialisation
1933 * so the pcpu batch and high limits needs to be updated or the limits
1934 * will be artificially small.
1935 */
1936 for_each_populated_zone(zone)
1937 zone_pcp_update(zone);
1938
1939 /*
1940 * We initialized the rest of the deferred pages. Permanently disable
1941 * on-demand struct page initialization.
1942 */
1943 static_branch_disable(&deferred_pages);
1944
1945 /* Reinit limits that are based on free pages after the kernel is up */
1946 files_maxfiles_init();
1947 #endif
1948
1949 /* Discard memblock private memory */
1950 memblock_discard();
1951
1952 for_each_node_state(nid, N_MEMORY)
1953 shuffle_free_memory(NODE_DATA(nid));
1954
1955 for_each_populated_zone(zone)
1956 set_zone_contiguous(zone);
1957 }
1958
1959 #ifdef CONFIG_CMA
1960 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1961 void __init init_cma_reserved_pageblock(struct page *page)
1962 {
1963 unsigned i = pageblock_nr_pages;
1964 struct page *p = page;
1965
1966 do {
1967 __ClearPageReserved(p);
1968 set_page_count(p, 0);
1969 } while (++p, --i);
1970
1971 set_pageblock_migratetype(page, MIGRATE_CMA);
1972
1973 if (pageblock_order >= MAX_ORDER) {
1974 i = pageblock_nr_pages;
1975 p = page;
1976 do {
1977 set_page_refcounted(p);
1978 __free_pages(p, MAX_ORDER - 1);
1979 p += MAX_ORDER_NR_PAGES;
1980 } while (i -= MAX_ORDER_NR_PAGES);
1981 } else {
1982 set_page_refcounted(page);
1983 __free_pages(page, pageblock_order);
1984 }
1985
1986 adjust_managed_page_count(page, pageblock_nr_pages);
1987 }
1988 #endif
1989
1990 /*
1991 * The order of subdivision here is critical for the IO subsystem.
1992 * Please do not alter this order without good reasons and regression
1993 * testing. Specifically, as large blocks of memory are subdivided,
1994 * the order in which smaller blocks are delivered depends on the order
1995 * they're subdivided in this function. This is the primary factor
1996 * influencing the order in which pages are delivered to the IO
1997 * subsystem according to empirical testing, and this is also justified
1998 * by considering the behavior of a buddy system containing a single
1999 * large block of memory acted on by a series of small allocations.
2000 * This behavior is a critical factor in sglist merging's success.
2001 *
2002 * -- nyc
2003 */
2004 static inline void expand(struct zone *zone, struct page *page,
2005 int low, int high, struct free_area *area,
2006 int migratetype)
2007 {
2008 unsigned long size = 1 << high;
2009
2010 while (high > low) {
2011 area--;
2012 high--;
2013 size >>= 1;
2014 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2015
2016 /*
2017 * Mark as guard pages (or page), that will allow to
2018 * merge back to allocator when buddy will be freed.
2019 * Corresponding page table entries will not be touched,
2020 * pages will stay not present in virtual address space
2021 */
2022 if (set_page_guard(zone, &page[size], high, migratetype))
2023 continue;
2024
2025 add_to_free_area(&page[size], area, migratetype);
2026 set_page_order(&page[size], high);
2027 }
2028 }
2029
2030 static void check_new_page_bad(struct page *page)
2031 {
2032 const char *bad_reason = NULL;
2033 unsigned long bad_flags = 0;
2034
2035 if (unlikely(atomic_read(&page->_mapcount) != -1))
2036 bad_reason = "nonzero mapcount";
2037 if (unlikely(page->mapping != NULL))
2038 bad_reason = "non-NULL mapping";
2039 if (unlikely(page_ref_count(page) != 0))
2040 bad_reason = "nonzero _refcount";
2041 if (unlikely(page->flags & __PG_HWPOISON)) {
2042 bad_reason = "HWPoisoned (hardware-corrupted)";
2043 bad_flags = __PG_HWPOISON;
2044 /* Don't complain about hwpoisoned pages */
2045 page_mapcount_reset(page); /* remove PageBuddy */
2046 return;
2047 }
2048 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2049 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2050 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2051 }
2052 #ifdef CONFIG_MEMCG
2053 if (unlikely(page->mem_cgroup))
2054 bad_reason = "page still charged to cgroup";
2055 #endif
2056 bad_page(page, bad_reason, bad_flags);
2057 }
2058
2059 /*
2060 * This page is about to be returned from the page allocator
2061 */
2062 static inline int check_new_page(struct page *page)
2063 {
2064 if (likely(page_expected_state(page,
2065 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2066 return 0;
2067
2068 check_new_page_bad(page);
2069 return 1;
2070 }
2071
2072 static inline bool free_pages_prezeroed(void)
2073 {
2074 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2075 page_poisoning_enabled()) || want_init_on_free();
2076 }
2077
2078 #ifdef CONFIG_DEBUG_VM
2079 /*
2080 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2081 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2082 * also checked when pcp lists are refilled from the free lists.
2083 */
2084 static inline bool check_pcp_refill(struct page *page)
2085 {
2086 if (debug_pagealloc_enabled_static())
2087 return check_new_page(page);
2088 else
2089 return false;
2090 }
2091
2092 static inline bool check_new_pcp(struct page *page)
2093 {
2094 return check_new_page(page);
2095 }
2096 #else
2097 /*
2098 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2099 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2100 * enabled, they are also checked when being allocated from the pcp lists.
2101 */
2102 static inline bool check_pcp_refill(struct page *page)
2103 {
2104 return check_new_page(page);
2105 }
2106 static inline bool check_new_pcp(struct page *page)
2107 {
2108 if (debug_pagealloc_enabled_static())
2109 return check_new_page(page);
2110 else
2111 return false;
2112 }
2113 #endif /* CONFIG_DEBUG_VM */
2114
2115 static bool check_new_pages(struct page *page, unsigned int order)
2116 {
2117 int i;
2118 for (i = 0; i < (1 << order); i++) {
2119 struct page *p = page + i;
2120
2121 if (unlikely(check_new_page(p)))
2122 return true;
2123 }
2124
2125 return false;
2126 }
2127
2128 inline void post_alloc_hook(struct page *page, unsigned int order,
2129 gfp_t gfp_flags)
2130 {
2131 set_page_private(page, 0);
2132 set_page_refcounted(page);
2133
2134 arch_alloc_page(page, order);
2135 if (debug_pagealloc_enabled_static())
2136 kernel_map_pages(page, 1 << order, 1);
2137 kasan_alloc_pages(page, order);
2138 kernel_poison_pages(page, 1 << order, 1);
2139 set_page_owner(page, order, gfp_flags);
2140 }
2141
2142 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2143 unsigned int alloc_flags)
2144 {
2145 post_alloc_hook(page, order, gfp_flags);
2146
2147 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2148 kernel_init_free_pages(page, 1 << order);
2149
2150 if (order && (gfp_flags & __GFP_COMP))
2151 prep_compound_page(page, order);
2152
2153 /*
2154 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2155 * allocate the page. The expectation is that the caller is taking
2156 * steps that will free more memory. The caller should avoid the page
2157 * being used for !PFMEMALLOC purposes.
2158 */
2159 if (alloc_flags & ALLOC_NO_WATERMARKS)
2160 set_page_pfmemalloc(page);
2161 else
2162 clear_page_pfmemalloc(page);
2163 }
2164
2165 /*
2166 * Go through the free lists for the given migratetype and remove
2167 * the smallest available page from the freelists
2168 */
2169 static __always_inline
2170 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2171 int migratetype)
2172 {
2173 unsigned int current_order;
2174 struct free_area *area;
2175 struct page *page;
2176
2177 /* Find a page of the appropriate size in the preferred list */
2178 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2179 area = &(zone->free_area[current_order]);
2180 page = get_page_from_free_area(area, migratetype);
2181 if (!page)
2182 continue;
2183 del_page_from_free_area(page, area);
2184 expand(zone, page, order, current_order, area, migratetype);
2185 set_pcppage_migratetype(page, migratetype);
2186 return page;
2187 }
2188
2189 return NULL;
2190 }
2191
2192
2193 /*
2194 * This array describes the order lists are fallen back to when
2195 * the free lists for the desirable migrate type are depleted
2196 */
2197 static int fallbacks[MIGRATE_TYPES][4] = {
2198 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2199 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2200 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2201 #ifdef CONFIG_CMA
2202 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2203 #endif
2204 #ifdef CONFIG_MEMORY_ISOLATION
2205 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2206 #endif
2207 };
2208
2209 #ifdef CONFIG_CMA
2210 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2211 unsigned int order)
2212 {
2213 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2214 }
2215 #else
2216 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2217 unsigned int order) { return NULL; }
2218 #endif
2219
2220 /*
2221 * Move the free pages in a range to the free lists of the requested type.
2222 * Note that start_page and end_pages are not aligned on a pageblock
2223 * boundary. If alignment is required, use move_freepages_block()
2224 */
2225 static int move_freepages(struct zone *zone,
2226 struct page *start_page, struct page *end_page,
2227 int migratetype, int *num_movable)
2228 {
2229 struct page *page;
2230 unsigned int order;
2231 int pages_moved = 0;
2232
2233 for (page = start_page; page <= end_page;) {
2234 if (!pfn_valid_within(page_to_pfn(page))) {
2235 page++;
2236 continue;
2237 }
2238
2239 if (!PageBuddy(page)) {
2240 /*
2241 * We assume that pages that could be isolated for
2242 * migration are movable. But we don't actually try
2243 * isolating, as that would be expensive.
2244 */
2245 if (num_movable &&
2246 (PageLRU(page) || __PageMovable(page)))
2247 (*num_movable)++;
2248
2249 page++;
2250 continue;
2251 }
2252
2253 /* Make sure we are not inadvertently changing nodes */
2254 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2255 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2256
2257 order = page_order(page);
2258 move_to_free_area(page, &zone->free_area[order], migratetype);
2259 page += 1 << order;
2260 pages_moved += 1 << order;
2261 }
2262
2263 return pages_moved;
2264 }
2265
2266 int move_freepages_block(struct zone *zone, struct page *page,
2267 int migratetype, int *num_movable)
2268 {
2269 unsigned long start_pfn, end_pfn;
2270 struct page *start_page, *end_page;
2271
2272 if (num_movable)
2273 *num_movable = 0;
2274
2275 start_pfn = page_to_pfn(page);
2276 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2277 start_page = pfn_to_page(start_pfn);
2278 end_page = start_page + pageblock_nr_pages - 1;
2279 end_pfn = start_pfn + pageblock_nr_pages - 1;
2280
2281 /* Do not cross zone boundaries */
2282 if (!zone_spans_pfn(zone, start_pfn))
2283 start_page = page;
2284 if (!zone_spans_pfn(zone, end_pfn))
2285 return 0;
2286
2287 return move_freepages(zone, start_page, end_page, migratetype,
2288 num_movable);
2289 }
2290
2291 static void change_pageblock_range(struct page *pageblock_page,
2292 int start_order, int migratetype)
2293 {
2294 int nr_pageblocks = 1 << (start_order - pageblock_order);
2295
2296 while (nr_pageblocks--) {
2297 set_pageblock_migratetype(pageblock_page, migratetype);
2298 pageblock_page += pageblock_nr_pages;
2299 }
2300 }
2301
2302 /*
2303 * When we are falling back to another migratetype during allocation, try to
2304 * steal extra free pages from the same pageblocks to satisfy further
2305 * allocations, instead of polluting multiple pageblocks.
2306 *
2307 * If we are stealing a relatively large buddy page, it is likely there will
2308 * be more free pages in the pageblock, so try to steal them all. For
2309 * reclaimable and unmovable allocations, we steal regardless of page size,
2310 * as fragmentation caused by those allocations polluting movable pageblocks
2311 * is worse than movable allocations stealing from unmovable and reclaimable
2312 * pageblocks.
2313 */
2314 static bool can_steal_fallback(unsigned int order, int start_mt)
2315 {
2316 /*
2317 * Leaving this order check is intended, although there is
2318 * relaxed order check in next check. The reason is that
2319 * we can actually steal whole pageblock if this condition met,
2320 * but, below check doesn't guarantee it and that is just heuristic
2321 * so could be changed anytime.
2322 */
2323 if (order >= pageblock_order)
2324 return true;
2325
2326 if (order >= pageblock_order / 2 ||
2327 start_mt == MIGRATE_RECLAIMABLE ||
2328 start_mt == MIGRATE_UNMOVABLE ||
2329 page_group_by_mobility_disabled)
2330 return true;
2331
2332 return false;
2333 }
2334
2335 static inline void boost_watermark(struct zone *zone)
2336 {
2337 unsigned long max_boost;
2338
2339 if (!watermark_boost_factor)
2340 return;
2341 /*
2342 * Don't bother in zones that are unlikely to produce results.
2343 * On small machines, including kdump capture kernels running
2344 * in a small area, boosting the watermark can cause an out of
2345 * memory situation immediately.
2346 */
2347 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2348 return;
2349
2350 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2351 watermark_boost_factor, 10000);
2352
2353 /*
2354 * high watermark may be uninitialised if fragmentation occurs
2355 * very early in boot so do not boost. We do not fall
2356 * through and boost by pageblock_nr_pages as failing
2357 * allocations that early means that reclaim is not going
2358 * to help and it may even be impossible to reclaim the
2359 * boosted watermark resulting in a hang.
2360 */
2361 if (!max_boost)
2362 return;
2363
2364 max_boost = max(pageblock_nr_pages, max_boost);
2365
2366 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2367 max_boost);
2368 }
2369
2370 /*
2371 * This function implements actual steal behaviour. If order is large enough,
2372 * we can steal whole pageblock. If not, we first move freepages in this
2373 * pageblock to our migratetype and determine how many already-allocated pages
2374 * are there in the pageblock with a compatible migratetype. If at least half
2375 * of pages are free or compatible, we can change migratetype of the pageblock
2376 * itself, so pages freed in the future will be put on the correct free list.
2377 */
2378 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2379 unsigned int alloc_flags, int start_type, bool whole_block)
2380 {
2381 unsigned int current_order = page_order(page);
2382 struct free_area *area;
2383 int free_pages, movable_pages, alike_pages;
2384 int old_block_type;
2385
2386 old_block_type = get_pageblock_migratetype(page);
2387
2388 /*
2389 * This can happen due to races and we want to prevent broken
2390 * highatomic accounting.
2391 */
2392 if (is_migrate_highatomic(old_block_type))
2393 goto single_page;
2394
2395 /* Take ownership for orders >= pageblock_order */
2396 if (current_order >= pageblock_order) {
2397 change_pageblock_range(page, current_order, start_type);
2398 goto single_page;
2399 }
2400
2401 /*
2402 * Boost watermarks to increase reclaim pressure to reduce the
2403 * likelihood of future fallbacks. Wake kswapd now as the node
2404 * may be balanced overall and kswapd will not wake naturally.
2405 */
2406 boost_watermark(zone);
2407 if (alloc_flags & ALLOC_KSWAPD)
2408 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2409
2410 /* We are not allowed to try stealing from the whole block */
2411 if (!whole_block)
2412 goto single_page;
2413
2414 free_pages = move_freepages_block(zone, page, start_type,
2415 &movable_pages);
2416 /*
2417 * Determine how many pages are compatible with our allocation.
2418 * For movable allocation, it's the number of movable pages which
2419 * we just obtained. For other types it's a bit more tricky.
2420 */
2421 if (start_type == MIGRATE_MOVABLE) {
2422 alike_pages = movable_pages;
2423 } else {
2424 /*
2425 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2426 * to MOVABLE pageblock, consider all non-movable pages as
2427 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2428 * vice versa, be conservative since we can't distinguish the
2429 * exact migratetype of non-movable pages.
2430 */
2431 if (old_block_type == MIGRATE_MOVABLE)
2432 alike_pages = pageblock_nr_pages
2433 - (free_pages + movable_pages);
2434 else
2435 alike_pages = 0;
2436 }
2437
2438 /* moving whole block can fail due to zone boundary conditions */
2439 if (!free_pages)
2440 goto single_page;
2441
2442 /*
2443 * If a sufficient number of pages in the block are either free or of
2444 * comparable migratability as our allocation, claim the whole block.
2445 */
2446 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2447 page_group_by_mobility_disabled)
2448 set_pageblock_migratetype(page, start_type);
2449
2450 return;
2451
2452 single_page:
2453 area = &zone->free_area[current_order];
2454 move_to_free_area(page, area, start_type);
2455 }
2456
2457 /*
2458 * Check whether there is a suitable fallback freepage with requested order.
2459 * If only_stealable is true, this function returns fallback_mt only if
2460 * we can steal other freepages all together. This would help to reduce
2461 * fragmentation due to mixed migratetype pages in one pageblock.
2462 */
2463 int find_suitable_fallback(struct free_area *area, unsigned int order,
2464 int migratetype, bool only_stealable, bool *can_steal)
2465 {
2466 int i;
2467 int fallback_mt;
2468
2469 if (area->nr_free == 0)
2470 return -1;
2471
2472 *can_steal = false;
2473 for (i = 0;; i++) {
2474 fallback_mt = fallbacks[migratetype][i];
2475 if (fallback_mt == MIGRATE_TYPES)
2476 break;
2477
2478 if (free_area_empty(area, fallback_mt))
2479 continue;
2480
2481 if (can_steal_fallback(order, migratetype))
2482 *can_steal = true;
2483
2484 if (!only_stealable)
2485 return fallback_mt;
2486
2487 if (*can_steal)
2488 return fallback_mt;
2489 }
2490
2491 return -1;
2492 }
2493
2494 /*
2495 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2496 * there are no empty page blocks that contain a page with a suitable order
2497 */
2498 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2499 unsigned int alloc_order)
2500 {
2501 int mt;
2502 unsigned long max_managed, flags;
2503
2504 /*
2505 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2506 * Check is race-prone but harmless.
2507 */
2508 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2509 if (zone->nr_reserved_highatomic >= max_managed)
2510 return;
2511
2512 spin_lock_irqsave(&zone->lock, flags);
2513
2514 /* Recheck the nr_reserved_highatomic limit under the lock */
2515 if (zone->nr_reserved_highatomic >= max_managed)
2516 goto out_unlock;
2517
2518 /* Yoink! */
2519 mt = get_pageblock_migratetype(page);
2520 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2521 && !is_migrate_cma(mt)) {
2522 zone->nr_reserved_highatomic += pageblock_nr_pages;
2523 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2524 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2525 }
2526
2527 out_unlock:
2528 spin_unlock_irqrestore(&zone->lock, flags);
2529 }
2530
2531 /*
2532 * Used when an allocation is about to fail under memory pressure. This
2533 * potentially hurts the reliability of high-order allocations when under
2534 * intense memory pressure but failed atomic allocations should be easier
2535 * to recover from than an OOM.
2536 *
2537 * If @force is true, try to unreserve a pageblock even though highatomic
2538 * pageblock is exhausted.
2539 */
2540 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2541 bool force)
2542 {
2543 struct zonelist *zonelist = ac->zonelist;
2544 unsigned long flags;
2545 struct zoneref *z;
2546 struct zone *zone;
2547 struct page *page;
2548 int order;
2549 bool ret;
2550
2551 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2552 ac->nodemask) {
2553 /*
2554 * Preserve at least one pageblock unless memory pressure
2555 * is really high.
2556 */
2557 if (!force && zone->nr_reserved_highatomic <=
2558 pageblock_nr_pages)
2559 continue;
2560
2561 spin_lock_irqsave(&zone->lock, flags);
2562 for (order = 0; order < MAX_ORDER; order++) {
2563 struct free_area *area = &(zone->free_area[order]);
2564
2565 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2566 if (!page)
2567 continue;
2568
2569 /*
2570 * In page freeing path, migratetype change is racy so
2571 * we can counter several free pages in a pageblock
2572 * in this loop althoug we changed the pageblock type
2573 * from highatomic to ac->migratetype. So we should
2574 * adjust the count once.
2575 */
2576 if (is_migrate_highatomic_page(page)) {
2577 /*
2578 * It should never happen but changes to
2579 * locking could inadvertently allow a per-cpu
2580 * drain to add pages to MIGRATE_HIGHATOMIC
2581 * while unreserving so be safe and watch for
2582 * underflows.
2583 */
2584 zone->nr_reserved_highatomic -= min(
2585 pageblock_nr_pages,
2586 zone->nr_reserved_highatomic);
2587 }
2588
2589 /*
2590 * Convert to ac->migratetype and avoid the normal
2591 * pageblock stealing heuristics. Minimally, the caller
2592 * is doing the work and needs the pages. More
2593 * importantly, if the block was always converted to
2594 * MIGRATE_UNMOVABLE or another type then the number
2595 * of pageblocks that cannot be completely freed
2596 * may increase.
2597 */
2598 set_pageblock_migratetype(page, ac->migratetype);
2599 ret = move_freepages_block(zone, page, ac->migratetype,
2600 NULL);
2601 if (ret) {
2602 spin_unlock_irqrestore(&zone->lock, flags);
2603 return ret;
2604 }
2605 }
2606 spin_unlock_irqrestore(&zone->lock, flags);
2607 }
2608
2609 return false;
2610 }
2611
2612 /*
2613 * Try finding a free buddy page on the fallback list and put it on the free
2614 * list of requested migratetype, possibly along with other pages from the same
2615 * block, depending on fragmentation avoidance heuristics. Returns true if
2616 * fallback was found so that __rmqueue_smallest() can grab it.
2617 *
2618 * The use of signed ints for order and current_order is a deliberate
2619 * deviation from the rest of this file, to make the for loop
2620 * condition simpler.
2621 */
2622 static __always_inline bool
2623 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2624 unsigned int alloc_flags)
2625 {
2626 struct free_area *area;
2627 int current_order;
2628 int min_order = order;
2629 struct page *page;
2630 int fallback_mt;
2631 bool can_steal;
2632
2633 /*
2634 * Do not steal pages from freelists belonging to other pageblocks
2635 * i.e. orders < pageblock_order. If there are no local zones free,
2636 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2637 */
2638 if (alloc_flags & ALLOC_NOFRAGMENT)
2639 min_order = pageblock_order;
2640
2641 /*
2642 * Find the largest available free page in the other list. This roughly
2643 * approximates finding the pageblock with the most free pages, which
2644 * would be too costly to do exactly.
2645 */
2646 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2647 --current_order) {
2648 area = &(zone->free_area[current_order]);
2649 fallback_mt = find_suitable_fallback(area, current_order,
2650 start_migratetype, false, &can_steal);
2651 if (fallback_mt == -1)
2652 continue;
2653
2654 /*
2655 * We cannot steal all free pages from the pageblock and the
2656 * requested migratetype is movable. In that case it's better to
2657 * steal and split the smallest available page instead of the
2658 * largest available page, because even if the next movable
2659 * allocation falls back into a different pageblock than this
2660 * one, it won't cause permanent fragmentation.
2661 */
2662 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2663 && current_order > order)
2664 goto find_smallest;
2665
2666 goto do_steal;
2667 }
2668
2669 return false;
2670
2671 find_smallest:
2672 for (current_order = order; current_order < MAX_ORDER;
2673 current_order++) {
2674 area = &(zone->free_area[current_order]);
2675 fallback_mt = find_suitable_fallback(area, current_order,
2676 start_migratetype, false, &can_steal);
2677 if (fallback_mt != -1)
2678 break;
2679 }
2680
2681 /*
2682 * This should not happen - we already found a suitable fallback
2683 * when looking for the largest page.
2684 */
2685 VM_BUG_ON(current_order == MAX_ORDER);
2686
2687 do_steal:
2688 page = get_page_from_free_area(area, fallback_mt);
2689
2690 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2691 can_steal);
2692
2693 trace_mm_page_alloc_extfrag(page, order, current_order,
2694 start_migratetype, fallback_mt);
2695
2696 return true;
2697
2698 }
2699
2700 /*
2701 * Do the hard work of removing an element from the buddy allocator.
2702 * Call me with the zone->lock already held.
2703 */
2704 static __always_inline struct page *
2705 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2706 unsigned int alloc_flags)
2707 {
2708 struct page *page;
2709
2710 retry:
2711 page = __rmqueue_smallest(zone, order, migratetype);
2712 if (unlikely(!page)) {
2713 if (migratetype == MIGRATE_MOVABLE)
2714 page = __rmqueue_cma_fallback(zone, order);
2715
2716 if (!page && __rmqueue_fallback(zone, order, migratetype,
2717 alloc_flags))
2718 goto retry;
2719 }
2720
2721 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2722 return page;
2723 }
2724
2725 /*
2726 * Obtain a specified number of elements from the buddy allocator, all under
2727 * a single hold of the lock, for efficiency. Add them to the supplied list.
2728 * Returns the number of new pages which were placed at *list.
2729 */
2730 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2731 unsigned long count, struct list_head *list,
2732 int migratetype, unsigned int alloc_flags)
2733 {
2734 int i, alloced = 0;
2735
2736 spin_lock(&zone->lock);
2737 for (i = 0; i < count; ++i) {
2738 struct page *page = __rmqueue(zone, order, migratetype,
2739 alloc_flags);
2740 if (unlikely(page == NULL))
2741 break;
2742
2743 if (unlikely(check_pcp_refill(page)))
2744 continue;
2745
2746 /*
2747 * Split buddy pages returned by expand() are received here in
2748 * physical page order. The page is added to the tail of
2749 * caller's list. From the callers perspective, the linked list
2750 * is ordered by page number under some conditions. This is
2751 * useful for IO devices that can forward direction from the
2752 * head, thus also in the physical page order. This is useful
2753 * for IO devices that can merge IO requests if the physical
2754 * pages are ordered properly.
2755 */
2756 list_add_tail(&page->lru, list);
2757 alloced++;
2758 if (is_migrate_cma(get_pcppage_migratetype(page)))
2759 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2760 -(1 << order));
2761 }
2762
2763 /*
2764 * i pages were removed from the buddy list even if some leak due
2765 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2766 * on i. Do not confuse with 'alloced' which is the number of
2767 * pages added to the pcp list.
2768 */
2769 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2770 spin_unlock(&zone->lock);
2771 return alloced;
2772 }
2773
2774 #ifdef CONFIG_NUMA
2775 /*
2776 * Called from the vmstat counter updater to drain pagesets of this
2777 * currently executing processor on remote nodes after they have
2778 * expired.
2779 *
2780 * Note that this function must be called with the thread pinned to
2781 * a single processor.
2782 */
2783 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2784 {
2785 unsigned long flags;
2786 int to_drain, batch;
2787
2788 local_irq_save(flags);
2789 batch = READ_ONCE(pcp->batch);
2790 to_drain = min(pcp->count, batch);
2791 if (to_drain > 0)
2792 free_pcppages_bulk(zone, to_drain, pcp);
2793 local_irq_restore(flags);
2794 }
2795 #endif
2796
2797 /*
2798 * Drain pcplists of the indicated processor and zone.
2799 *
2800 * The processor must either be the current processor and the
2801 * thread pinned to the current processor or a processor that
2802 * is not online.
2803 */
2804 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2805 {
2806 unsigned long flags;
2807 struct per_cpu_pageset *pset;
2808 struct per_cpu_pages *pcp;
2809
2810 local_irq_save(flags);
2811 pset = per_cpu_ptr(zone->pageset, cpu);
2812
2813 pcp = &pset->pcp;
2814 if (pcp->count)
2815 free_pcppages_bulk(zone, pcp->count, pcp);
2816 local_irq_restore(flags);
2817 }
2818
2819 /*
2820 * Drain pcplists of all zones on the indicated processor.
2821 *
2822 * The processor must either be the current processor and the
2823 * thread pinned to the current processor or a processor that
2824 * is not online.
2825 */
2826 static void drain_pages(unsigned int cpu)
2827 {
2828 struct zone *zone;
2829
2830 for_each_populated_zone(zone) {
2831 drain_pages_zone(cpu, zone);
2832 }
2833 }
2834
2835 /*
2836 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2837 *
2838 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2839 * the single zone's pages.
2840 */
2841 void drain_local_pages(struct zone *zone)
2842 {
2843 int cpu = smp_processor_id();
2844
2845 if (zone)
2846 drain_pages_zone(cpu, zone);
2847 else
2848 drain_pages(cpu);
2849 }
2850
2851 static void drain_local_pages_wq(struct work_struct *work)
2852 {
2853 struct pcpu_drain *drain;
2854
2855 drain = container_of(work, struct pcpu_drain, work);
2856
2857 /*
2858 * drain_all_pages doesn't use proper cpu hotplug protection so
2859 * we can race with cpu offline when the WQ can move this from
2860 * a cpu pinned worker to an unbound one. We can operate on a different
2861 * cpu which is allright but we also have to make sure to not move to
2862 * a different one.
2863 */
2864 preempt_disable();
2865 drain_local_pages(drain->zone);
2866 preempt_enable();
2867 }
2868
2869 /*
2870 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2871 *
2872 * When zone parameter is non-NULL, spill just the single zone's pages.
2873 *
2874 * Note that this can be extremely slow as the draining happens in a workqueue.
2875 */
2876 void drain_all_pages(struct zone *zone)
2877 {
2878 int cpu;
2879
2880 /*
2881 * Allocate in the BSS so we wont require allocation in
2882 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2883 */
2884 static cpumask_t cpus_with_pcps;
2885
2886 /*
2887 * Make sure nobody triggers this path before mm_percpu_wq is fully
2888 * initialized.
2889 */
2890 if (WARN_ON_ONCE(!mm_percpu_wq))
2891 return;
2892
2893 /*
2894 * Do not drain if one is already in progress unless it's specific to
2895 * a zone. Such callers are primarily CMA and memory hotplug and need
2896 * the drain to be complete when the call returns.
2897 */
2898 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2899 if (!zone)
2900 return;
2901 mutex_lock(&pcpu_drain_mutex);
2902 }
2903
2904 /*
2905 * We don't care about racing with CPU hotplug event
2906 * as offline notification will cause the notified
2907 * cpu to drain that CPU pcps and on_each_cpu_mask
2908 * disables preemption as part of its processing
2909 */
2910 for_each_online_cpu(cpu) {
2911 struct per_cpu_pageset *pcp;
2912 struct zone *z;
2913 bool has_pcps = false;
2914
2915 if (zone) {
2916 pcp = per_cpu_ptr(zone->pageset, cpu);
2917 if (pcp->pcp.count)
2918 has_pcps = true;
2919 } else {
2920 for_each_populated_zone(z) {
2921 pcp = per_cpu_ptr(z->pageset, cpu);
2922 if (pcp->pcp.count) {
2923 has_pcps = true;
2924 break;
2925 }
2926 }
2927 }
2928
2929 if (has_pcps)
2930 cpumask_set_cpu(cpu, &cpus_with_pcps);
2931 else
2932 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2933 }
2934
2935 for_each_cpu(cpu, &cpus_with_pcps) {
2936 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2937
2938 drain->zone = zone;
2939 INIT_WORK(&drain->work, drain_local_pages_wq);
2940 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2941 }
2942 for_each_cpu(cpu, &cpus_with_pcps)
2943 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2944
2945 mutex_unlock(&pcpu_drain_mutex);
2946 }
2947
2948 #ifdef CONFIG_HIBERNATION
2949
2950 /*
2951 * Touch the watchdog for every WD_PAGE_COUNT pages.
2952 */
2953 #define WD_PAGE_COUNT (128*1024)
2954
2955 void mark_free_pages(struct zone *zone)
2956 {
2957 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2958 unsigned long flags;
2959 unsigned int order, t;
2960 struct page *page;
2961
2962 if (zone_is_empty(zone))
2963 return;
2964
2965 spin_lock_irqsave(&zone->lock, flags);
2966
2967 max_zone_pfn = zone_end_pfn(zone);
2968 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2969 if (pfn_valid(pfn)) {
2970 page = pfn_to_page(pfn);
2971
2972 if (!--page_count) {
2973 touch_nmi_watchdog();
2974 page_count = WD_PAGE_COUNT;
2975 }
2976
2977 if (page_zone(page) != zone)
2978 continue;
2979
2980 if (!swsusp_page_is_forbidden(page))
2981 swsusp_unset_page_free(page);
2982 }
2983
2984 for_each_migratetype_order(order, t) {
2985 list_for_each_entry(page,
2986 &zone->free_area[order].free_list[t], lru) {
2987 unsigned long i;
2988
2989 pfn = page_to_pfn(page);
2990 for (i = 0; i < (1UL << order); i++) {
2991 if (!--page_count) {
2992 touch_nmi_watchdog();
2993 page_count = WD_PAGE_COUNT;
2994 }
2995 swsusp_set_page_free(pfn_to_page(pfn + i));
2996 }
2997 }
2998 }
2999 spin_unlock_irqrestore(&zone->lock, flags);
3000 }
3001 #endif /* CONFIG_PM */
3002
3003 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3004 {
3005 int migratetype;
3006
3007 if (!free_pcp_prepare(page))
3008 return false;
3009
3010 migratetype = get_pfnblock_migratetype(page, pfn);
3011 set_pcppage_migratetype(page, migratetype);
3012 return true;
3013 }
3014
3015 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3016 {
3017 struct zone *zone = page_zone(page);
3018 struct per_cpu_pages *pcp;
3019 int migratetype;
3020
3021 migratetype = get_pcppage_migratetype(page);
3022 __count_vm_event(PGFREE);
3023
3024 /*
3025 * We only track unmovable, reclaimable and movable on pcp lists.
3026 * Free ISOLATE pages back to the allocator because they are being
3027 * offlined but treat HIGHATOMIC as movable pages so we can get those
3028 * areas back if necessary. Otherwise, we may have to free
3029 * excessively into the page allocator
3030 */
3031 if (migratetype >= MIGRATE_PCPTYPES) {
3032 if (unlikely(is_migrate_isolate(migratetype))) {
3033 free_one_page(zone, page, pfn, 0, migratetype);
3034 return;
3035 }
3036 migratetype = MIGRATE_MOVABLE;
3037 }
3038
3039 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3040 list_add(&page->lru, &pcp->lists[migratetype]);
3041 pcp->count++;
3042 if (pcp->count >= pcp->high) {
3043 unsigned long batch = READ_ONCE(pcp->batch);
3044 free_pcppages_bulk(zone, batch, pcp);
3045 }
3046 }
3047
3048 /*
3049 * Free a 0-order page
3050 */
3051 void free_unref_page(struct page *page)
3052 {
3053 unsigned long flags;
3054 unsigned long pfn = page_to_pfn(page);
3055
3056 if (!free_unref_page_prepare(page, pfn))
3057 return;
3058
3059 local_irq_save(flags);
3060 free_unref_page_commit(page, pfn);
3061 local_irq_restore(flags);
3062 }
3063
3064 /*
3065 * Free a list of 0-order pages
3066 */
3067 void free_unref_page_list(struct list_head *list)
3068 {
3069 struct page *page, *next;
3070 unsigned long flags, pfn;
3071 int batch_count = 0;
3072
3073 /* Prepare pages for freeing */
3074 list_for_each_entry_safe(page, next, list, lru) {
3075 pfn = page_to_pfn(page);
3076 if (!free_unref_page_prepare(page, pfn))
3077 list_del(&page->lru);
3078 set_page_private(page, pfn);
3079 }
3080
3081 local_irq_save(flags);
3082 list_for_each_entry_safe(page, next, list, lru) {
3083 unsigned long pfn = page_private(page);
3084
3085 set_page_private(page, 0);
3086 trace_mm_page_free_batched(page);
3087 free_unref_page_commit(page, pfn);
3088
3089 /*
3090 * Guard against excessive IRQ disabled times when we get
3091 * a large list of pages to free.
3092 */
3093 if (++batch_count == SWAP_CLUSTER_MAX) {
3094 local_irq_restore(flags);
3095 batch_count = 0;
3096 local_irq_save(flags);
3097 }
3098 }
3099 local_irq_restore(flags);
3100 }
3101
3102 /*
3103 * split_page takes a non-compound higher-order page, and splits it into
3104 * n (1<<order) sub-pages: page[0..n]
3105 * Each sub-page must be freed individually.
3106 *
3107 * Note: this is probably too low level an operation for use in drivers.
3108 * Please consult with lkml before using this in your driver.
3109 */
3110 void split_page(struct page *page, unsigned int order)
3111 {
3112 int i;
3113
3114 VM_BUG_ON_PAGE(PageCompound(page), page);
3115 VM_BUG_ON_PAGE(!page_count(page), page);
3116
3117 for (i = 1; i < (1 << order); i++)
3118 set_page_refcounted(page + i);
3119 split_page_owner(page, order);
3120 }
3121 EXPORT_SYMBOL_GPL(split_page);
3122
3123 int __isolate_free_page(struct page *page, unsigned int order)
3124 {
3125 struct free_area *area = &page_zone(page)->free_area[order];
3126 unsigned long watermark;
3127 struct zone *zone;
3128 int mt;
3129
3130 BUG_ON(!PageBuddy(page));
3131
3132 zone = page_zone(page);
3133 mt = get_pageblock_migratetype(page);
3134
3135 if (!is_migrate_isolate(mt)) {
3136 /*
3137 * Obey watermarks as if the page was being allocated. We can
3138 * emulate a high-order watermark check with a raised order-0
3139 * watermark, because we already know our high-order page
3140 * exists.
3141 */
3142 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3143 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3144 return 0;
3145
3146 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3147 }
3148
3149 /* Remove page from free list */
3150
3151 del_page_from_free_area(page, area);
3152
3153 /*
3154 * Set the pageblock if the isolated page is at least half of a
3155 * pageblock
3156 */
3157 if (order >= pageblock_order - 1) {
3158 struct page *endpage = page + (1 << order) - 1;
3159 for (; page < endpage; page += pageblock_nr_pages) {
3160 int mt = get_pageblock_migratetype(page);
3161 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3162 && !is_migrate_highatomic(mt))
3163 set_pageblock_migratetype(page,
3164 MIGRATE_MOVABLE);
3165 }
3166 }
3167
3168
3169 return 1UL << order;
3170 }
3171
3172 /*
3173 * Update NUMA hit/miss statistics
3174 *
3175 * Must be called with interrupts disabled.
3176 */
3177 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3178 {
3179 #ifdef CONFIG_NUMA
3180 enum numa_stat_item local_stat = NUMA_LOCAL;
3181
3182 /* skip numa counters update if numa stats is disabled */
3183 if (!static_branch_likely(&vm_numa_stat_key))
3184 return;
3185
3186 if (zone_to_nid(z) != numa_node_id())
3187 local_stat = NUMA_OTHER;
3188
3189 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3190 __inc_numa_state(z, NUMA_HIT);
3191 else {
3192 __inc_numa_state(z, NUMA_MISS);
3193 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3194 }
3195 __inc_numa_state(z, local_stat);
3196 #endif
3197 }
3198
3199 /* Remove page from the per-cpu list, caller must protect the list */
3200 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3201 unsigned int alloc_flags,
3202 struct per_cpu_pages *pcp,
3203 struct list_head *list)
3204 {
3205 struct page *page;
3206
3207 do {
3208 if (list_empty(list)) {
3209 pcp->count += rmqueue_bulk(zone, 0,
3210 pcp->batch, list,
3211 migratetype, alloc_flags);
3212 if (unlikely(list_empty(list)))
3213 return NULL;
3214 }
3215
3216 page = list_first_entry(list, struct page, lru);
3217 list_del(&page->lru);
3218 pcp->count--;
3219 } while (check_new_pcp(page));
3220
3221 return page;
3222 }
3223
3224 /* Lock and remove page from the per-cpu list */
3225 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3226 struct zone *zone, gfp_t gfp_flags,
3227 int migratetype, unsigned int alloc_flags)
3228 {
3229 struct per_cpu_pages *pcp;
3230 struct list_head *list;
3231 struct page *page;
3232 unsigned long flags;
3233
3234 local_irq_save(flags);
3235 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3236 list = &pcp->lists[migratetype];
3237 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3238 if (page) {
3239 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3240 zone_statistics(preferred_zone, zone);
3241 }
3242 local_irq_restore(flags);
3243 return page;
3244 }
3245
3246 /*
3247 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3248 */
3249 static inline
3250 struct page *rmqueue(struct zone *preferred_zone,
3251 struct zone *zone, unsigned int order,
3252 gfp_t gfp_flags, unsigned int alloc_flags,
3253 int migratetype)
3254 {
3255 unsigned long flags;
3256 struct page *page;
3257
3258 if (likely(order == 0)) {
3259 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3260 migratetype, alloc_flags);
3261 goto out;
3262 }
3263
3264 /*
3265 * We most definitely don't want callers attempting to
3266 * allocate greater than order-1 page units with __GFP_NOFAIL.
3267 */
3268 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3269 spin_lock_irqsave(&zone->lock, flags);
3270
3271 do {
3272 page = NULL;
3273 if (alloc_flags & ALLOC_HARDER) {
3274 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3275 if (page)
3276 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3277 }
3278 if (!page)
3279 page = __rmqueue(zone, order, migratetype, alloc_flags);
3280 } while (page && check_new_pages(page, order));
3281 spin_unlock(&zone->lock);
3282 if (!page)
3283 goto failed;
3284 __mod_zone_freepage_state(zone, -(1 << order),
3285 get_pcppage_migratetype(page));
3286
3287 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3288 zone_statistics(preferred_zone, zone);
3289 local_irq_restore(flags);
3290
3291 out:
3292 /* Separate test+clear to avoid unnecessary atomics */
3293 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3294 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3295 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3296 }
3297
3298 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3299 return page;
3300
3301 failed:
3302 local_irq_restore(flags);
3303 return NULL;
3304 }
3305
3306 #ifdef CONFIG_FAIL_PAGE_ALLOC
3307
3308 static struct {
3309 struct fault_attr attr;
3310
3311 bool ignore_gfp_highmem;
3312 bool ignore_gfp_reclaim;
3313 u32 min_order;
3314 } fail_page_alloc = {
3315 .attr = FAULT_ATTR_INITIALIZER,
3316 .ignore_gfp_reclaim = true,
3317 .ignore_gfp_highmem = true,
3318 .min_order = 1,
3319 };
3320
3321 static int __init setup_fail_page_alloc(char *str)
3322 {
3323 return setup_fault_attr(&fail_page_alloc.attr, str);
3324 }
3325 __setup("fail_page_alloc=", setup_fail_page_alloc);
3326
3327 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3328 {
3329 if (order < fail_page_alloc.min_order)
3330 return false;
3331 if (gfp_mask & __GFP_NOFAIL)
3332 return false;
3333 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3334 return false;
3335 if (fail_page_alloc.ignore_gfp_reclaim &&
3336 (gfp_mask & __GFP_DIRECT_RECLAIM))
3337 return false;
3338
3339 return should_fail(&fail_page_alloc.attr, 1 << order);
3340 }
3341
3342 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3343
3344 static int __init fail_page_alloc_debugfs(void)
3345 {
3346 umode_t mode = S_IFREG | 0600;
3347 struct dentry *dir;
3348
3349 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3350 &fail_page_alloc.attr);
3351
3352 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3353 &fail_page_alloc.ignore_gfp_reclaim);
3354 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3355 &fail_page_alloc.ignore_gfp_highmem);
3356 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3357
3358 return 0;
3359 }
3360
3361 late_initcall(fail_page_alloc_debugfs);
3362
3363 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3364
3365 #else /* CONFIG_FAIL_PAGE_ALLOC */
3366
3367 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3368 {
3369 return false;
3370 }
3371
3372 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3373
3374 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3375 {
3376 return __should_fail_alloc_page(gfp_mask, order);
3377 }
3378 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3379
3380 /*
3381 * Return true if free base pages are above 'mark'. For high-order checks it
3382 * will return true of the order-0 watermark is reached and there is at least
3383 * one free page of a suitable size. Checking now avoids taking the zone lock
3384 * to check in the allocation paths if no pages are free.
3385 */
3386 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3387 int classzone_idx, unsigned int alloc_flags,
3388 long free_pages)
3389 {
3390 long min = mark;
3391 int o;
3392 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3393
3394 /* free_pages may go negative - that's OK */
3395 free_pages -= (1 << order) - 1;
3396
3397 if (alloc_flags & ALLOC_HIGH)
3398 min -= min / 2;
3399
3400 /*
3401 * If the caller does not have rights to ALLOC_HARDER then subtract
3402 * the high-atomic reserves. This will over-estimate the size of the
3403 * atomic reserve but it avoids a search.
3404 */
3405 if (likely(!alloc_harder)) {
3406 free_pages -= z->nr_reserved_highatomic;
3407 } else {
3408 /*
3409 * OOM victims can try even harder than normal ALLOC_HARDER
3410 * users on the grounds that it's definitely going to be in
3411 * the exit path shortly and free memory. Any allocation it
3412 * makes during the free path will be small and short-lived.
3413 */
3414 if (alloc_flags & ALLOC_OOM)
3415 min -= min / 2;
3416 else
3417 min -= min / 4;
3418 }
3419
3420
3421 #ifdef CONFIG_CMA
3422 /* If allocation can't use CMA areas don't use free CMA pages */
3423 if (!(alloc_flags & ALLOC_CMA))
3424 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3425 #endif
3426
3427 /*
3428 * Check watermarks for an order-0 allocation request. If these
3429 * are not met, then a high-order request also cannot go ahead
3430 * even if a suitable page happened to be free.
3431 */
3432 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3433 return false;
3434
3435 /* If this is an order-0 request then the watermark is fine */
3436 if (!order)
3437 return true;
3438
3439 /* For a high-order request, check at least one suitable page is free */
3440 for (o = order; o < MAX_ORDER; o++) {
3441 struct free_area *area = &z->free_area[o];
3442 int mt;
3443
3444 if (!area->nr_free)
3445 continue;
3446
3447 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3448 if (!free_area_empty(area, mt))
3449 return true;
3450 }
3451
3452 #ifdef CONFIG_CMA
3453 if ((alloc_flags & ALLOC_CMA) &&
3454 !free_area_empty(area, MIGRATE_CMA)) {
3455 return true;
3456 }
3457 #endif
3458 if (alloc_harder &&
3459 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3460 return true;
3461 }
3462 return false;
3463 }
3464
3465 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3466 int classzone_idx, unsigned int alloc_flags)
3467 {
3468 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3469 zone_page_state(z, NR_FREE_PAGES));
3470 }
3471
3472 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3473 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3474 {
3475 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3476 long cma_pages = 0;
3477
3478 #ifdef CONFIG_CMA
3479 /* If allocation can't use CMA areas don't use free CMA pages */
3480 if (!(alloc_flags & ALLOC_CMA))
3481 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3482 #endif
3483
3484 /*
3485 * Fast check for order-0 only. If this fails then the reserves
3486 * need to be calculated. There is a corner case where the check
3487 * passes but only the high-order atomic reserve are free. If
3488 * the caller is !atomic then it'll uselessly search the free
3489 * list. That corner case is then slower but it is harmless.
3490 */
3491 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3492 return true;
3493
3494 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3495 free_pages);
3496 }
3497
3498 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3499 unsigned long mark, int classzone_idx)
3500 {
3501 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3502
3503 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3504 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3505
3506 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3507 free_pages);
3508 }
3509
3510 #ifdef CONFIG_NUMA
3511 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3512 {
3513 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3514 node_reclaim_distance;
3515 }
3516 #else /* CONFIG_NUMA */
3517 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3518 {
3519 return true;
3520 }
3521 #endif /* CONFIG_NUMA */
3522
3523 /*
3524 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3525 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3526 * premature use of a lower zone may cause lowmem pressure problems that
3527 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3528 * probably too small. It only makes sense to spread allocations to avoid
3529 * fragmentation between the Normal and DMA32 zones.
3530 */
3531 static inline unsigned int
3532 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3533 {
3534 unsigned int alloc_flags = 0;
3535
3536 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3537 alloc_flags |= ALLOC_KSWAPD;
3538
3539 #ifdef CONFIG_ZONE_DMA32
3540 if (!zone)
3541 return alloc_flags;
3542
3543 if (zone_idx(zone) != ZONE_NORMAL)
3544 return alloc_flags;
3545
3546 /*
3547 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3548 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3549 * on UMA that if Normal is populated then so is DMA32.
3550 */
3551 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3552 if (nr_online_nodes > 1 && !populated_zone(--zone))
3553 return alloc_flags;
3554
3555 alloc_flags |= ALLOC_NOFRAGMENT;
3556 #endif /* CONFIG_ZONE_DMA32 */
3557 return alloc_flags;
3558 }
3559
3560 /*
3561 * get_page_from_freelist goes through the zonelist trying to allocate
3562 * a page.
3563 */
3564 static struct page *
3565 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3566 const struct alloc_context *ac)
3567 {
3568 struct zoneref *z;
3569 struct zone *zone;
3570 struct pglist_data *last_pgdat_dirty_limit = NULL;
3571 bool no_fallback;
3572
3573 retry:
3574 /*
3575 * Scan zonelist, looking for a zone with enough free.
3576 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3577 */
3578 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3579 z = ac->preferred_zoneref;
3580 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3581 ac->nodemask) {
3582 struct page *page;
3583 unsigned long mark;
3584
3585 if (cpusets_enabled() &&
3586 (alloc_flags & ALLOC_CPUSET) &&
3587 !__cpuset_zone_allowed(zone, gfp_mask))
3588 continue;
3589 /*
3590 * When allocating a page cache page for writing, we
3591 * want to get it from a node that is within its dirty
3592 * limit, such that no single node holds more than its
3593 * proportional share of globally allowed dirty pages.
3594 * The dirty limits take into account the node's
3595 * lowmem reserves and high watermark so that kswapd
3596 * should be able to balance it without having to
3597 * write pages from its LRU list.
3598 *
3599 * XXX: For now, allow allocations to potentially
3600 * exceed the per-node dirty limit in the slowpath
3601 * (spread_dirty_pages unset) before going into reclaim,
3602 * which is important when on a NUMA setup the allowed
3603 * nodes are together not big enough to reach the
3604 * global limit. The proper fix for these situations
3605 * will require awareness of nodes in the
3606 * dirty-throttling and the flusher threads.
3607 */
3608 if (ac->spread_dirty_pages) {
3609 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3610 continue;
3611
3612 if (!node_dirty_ok(zone->zone_pgdat)) {
3613 last_pgdat_dirty_limit = zone->zone_pgdat;
3614 continue;
3615 }
3616 }
3617
3618 if (no_fallback && nr_online_nodes > 1 &&
3619 zone != ac->preferred_zoneref->zone) {
3620 int local_nid;
3621
3622 /*
3623 * If moving to a remote node, retry but allow
3624 * fragmenting fallbacks. Locality is more important
3625 * than fragmentation avoidance.
3626 */
3627 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3628 if (zone_to_nid(zone) != local_nid) {
3629 alloc_flags &= ~ALLOC_NOFRAGMENT;
3630 goto retry;
3631 }
3632 }
3633
3634 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3635 if (!zone_watermark_fast(zone, order, mark,
3636 ac_classzone_idx(ac), alloc_flags)) {
3637 int ret;
3638
3639 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3640 /*
3641 * Watermark failed for this zone, but see if we can
3642 * grow this zone if it contains deferred pages.
3643 */
3644 if (static_branch_unlikely(&deferred_pages)) {
3645 if (_deferred_grow_zone(zone, order))
3646 goto try_this_zone;
3647 }
3648 #endif
3649 /* Checked here to keep the fast path fast */
3650 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3651 if (alloc_flags & ALLOC_NO_WATERMARKS)
3652 goto try_this_zone;
3653
3654 if (node_reclaim_mode == 0 ||
3655 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3656 continue;
3657
3658 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3659 switch (ret) {
3660 case NODE_RECLAIM_NOSCAN:
3661 /* did not scan */
3662 continue;
3663 case NODE_RECLAIM_FULL:
3664 /* scanned but unreclaimable */
3665 continue;
3666 default:
3667 /* did we reclaim enough */
3668 if (zone_watermark_ok(zone, order, mark,
3669 ac_classzone_idx(ac), alloc_flags))
3670 goto try_this_zone;
3671
3672 continue;
3673 }
3674 }
3675
3676 try_this_zone:
3677 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3678 gfp_mask, alloc_flags, ac->migratetype);
3679 if (page) {
3680 prep_new_page(page, order, gfp_mask, alloc_flags);
3681
3682 /*
3683 * If this is a high-order atomic allocation then check
3684 * if the pageblock should be reserved for the future
3685 */
3686 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3687 reserve_highatomic_pageblock(page, zone, order);
3688
3689 return page;
3690 } else {
3691 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3692 /* Try again if zone has deferred pages */
3693 if (static_branch_unlikely(&deferred_pages)) {
3694 if (_deferred_grow_zone(zone, order))
3695 goto try_this_zone;
3696 }
3697 #endif
3698 }
3699 }
3700
3701 /*
3702 * It's possible on a UMA machine to get through all zones that are
3703 * fragmented. If avoiding fragmentation, reset and try again.
3704 */
3705 if (no_fallback) {
3706 alloc_flags &= ~ALLOC_NOFRAGMENT;
3707 goto retry;
3708 }
3709
3710 return NULL;
3711 }
3712
3713 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3714 {
3715 unsigned int filter = SHOW_MEM_FILTER_NODES;
3716
3717 /*
3718 * This documents exceptions given to allocations in certain
3719 * contexts that are allowed to allocate outside current's set
3720 * of allowed nodes.
3721 */
3722 if (!(gfp_mask & __GFP_NOMEMALLOC))
3723 if (tsk_is_oom_victim(current) ||
3724 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3725 filter &= ~SHOW_MEM_FILTER_NODES;
3726 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3727 filter &= ~SHOW_MEM_FILTER_NODES;
3728
3729 show_mem(filter, nodemask);
3730 }
3731
3732 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3733 {
3734 struct va_format vaf;
3735 va_list args;
3736 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3737
3738 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3739 return;
3740
3741 va_start(args, fmt);
3742 vaf.fmt = fmt;
3743 vaf.va = &args;
3744 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3745 current->comm, &vaf, gfp_mask, &gfp_mask,
3746 nodemask_pr_args(nodemask));
3747 va_end(args);
3748
3749 cpuset_print_current_mems_allowed();
3750 pr_cont("\n");
3751 dump_stack();
3752 warn_alloc_show_mem(gfp_mask, nodemask);
3753 }
3754
3755 static inline struct page *
3756 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3757 unsigned int alloc_flags,
3758 const struct alloc_context *ac)
3759 {
3760 struct page *page;
3761
3762 page = get_page_from_freelist(gfp_mask, order,
3763 alloc_flags|ALLOC_CPUSET, ac);
3764 /*
3765 * fallback to ignore cpuset restriction if our nodes
3766 * are depleted
3767 */
3768 if (!page)
3769 page = get_page_from_freelist(gfp_mask, order,
3770 alloc_flags, ac);
3771
3772 return page;
3773 }
3774
3775 static inline struct page *
3776 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3777 const struct alloc_context *ac, unsigned long *did_some_progress)
3778 {
3779 struct oom_control oc = {
3780 .zonelist = ac->zonelist,
3781 .nodemask = ac->nodemask,
3782 .memcg = NULL,
3783 .gfp_mask = gfp_mask,
3784 .order = order,
3785 };
3786 struct page *page;
3787
3788 *did_some_progress = 0;
3789
3790 /*
3791 * Acquire the oom lock. If that fails, somebody else is
3792 * making progress for us.
3793 */
3794 if (!mutex_trylock(&oom_lock)) {
3795 *did_some_progress = 1;
3796 schedule_timeout_uninterruptible(1);
3797 return NULL;
3798 }
3799
3800 /*
3801 * Go through the zonelist yet one more time, keep very high watermark
3802 * here, this is only to catch a parallel oom killing, we must fail if
3803 * we're still under heavy pressure. But make sure that this reclaim
3804 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3805 * allocation which will never fail due to oom_lock already held.
3806 */
3807 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3808 ~__GFP_DIRECT_RECLAIM, order,
3809 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3810 if (page)
3811 goto out;
3812
3813 /* Coredumps can quickly deplete all memory reserves */
3814 if (current->flags & PF_DUMPCORE)
3815 goto out;
3816 /* The OOM killer will not help higher order allocs */
3817 if (order > PAGE_ALLOC_COSTLY_ORDER)
3818 goto out;
3819 /*
3820 * We have already exhausted all our reclaim opportunities without any
3821 * success so it is time to admit defeat. We will skip the OOM killer
3822 * because it is very likely that the caller has a more reasonable
3823 * fallback than shooting a random task.
3824 */
3825 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3826 goto out;
3827 /* The OOM killer does not needlessly kill tasks for lowmem */
3828 if (ac->high_zoneidx < ZONE_NORMAL)
3829 goto out;
3830 if (pm_suspended_storage())
3831 goto out;
3832 /*
3833 * XXX: GFP_NOFS allocations should rather fail than rely on
3834 * other request to make a forward progress.
3835 * We are in an unfortunate situation where out_of_memory cannot
3836 * do much for this context but let's try it to at least get
3837 * access to memory reserved if the current task is killed (see
3838 * out_of_memory). Once filesystems are ready to handle allocation
3839 * failures more gracefully we should just bail out here.
3840 */
3841
3842 /* The OOM killer may not free memory on a specific node */
3843 if (gfp_mask & __GFP_THISNODE)
3844 goto out;
3845
3846 /* Exhausted what can be done so it's blame time */
3847 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3848 *did_some_progress = 1;
3849
3850 /*
3851 * Help non-failing allocations by giving them access to memory
3852 * reserves
3853 */
3854 if (gfp_mask & __GFP_NOFAIL)
3855 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3856 ALLOC_NO_WATERMARKS, ac);
3857 }
3858 out:
3859 mutex_unlock(&oom_lock);
3860 return page;
3861 }
3862
3863 /*
3864 * Maximum number of compaction retries wit a progress before OOM
3865 * killer is consider as the only way to move forward.
3866 */
3867 #define MAX_COMPACT_RETRIES 16
3868
3869 #ifdef CONFIG_COMPACTION
3870 /* Try memory compaction for high-order allocations before reclaim */
3871 static struct page *
3872 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3873 unsigned int alloc_flags, const struct alloc_context *ac,
3874 enum compact_priority prio, enum compact_result *compact_result)
3875 {
3876 struct page *page = NULL;
3877 unsigned long pflags;
3878 unsigned int noreclaim_flag;
3879
3880 if (!order)
3881 return NULL;
3882
3883 psi_memstall_enter(&pflags);
3884 noreclaim_flag = memalloc_noreclaim_save();
3885
3886 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3887 prio, &page);
3888
3889 memalloc_noreclaim_restore(noreclaim_flag);
3890 psi_memstall_leave(&pflags);
3891
3892 /*
3893 * At least in one zone compaction wasn't deferred or skipped, so let's
3894 * count a compaction stall
3895 */
3896 count_vm_event(COMPACTSTALL);
3897
3898 /* Prep a captured page if available */
3899 if (page)
3900 prep_new_page(page, order, gfp_mask, alloc_flags);
3901
3902 /* Try get a page from the freelist if available */
3903 if (!page)
3904 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3905
3906 if (page) {
3907 struct zone *zone = page_zone(page);
3908
3909 zone->compact_blockskip_flush = false;
3910 compaction_defer_reset(zone, order, true);
3911 count_vm_event(COMPACTSUCCESS);
3912 return page;
3913 }
3914
3915 /*
3916 * It's bad if compaction run occurs and fails. The most likely reason
3917 * is that pages exist, but not enough to satisfy watermarks.
3918 */
3919 count_vm_event(COMPACTFAIL);
3920
3921 cond_resched();
3922
3923 return NULL;
3924 }
3925
3926 static inline bool
3927 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3928 enum compact_result compact_result,
3929 enum compact_priority *compact_priority,
3930 int *compaction_retries)
3931 {
3932 int max_retries = MAX_COMPACT_RETRIES;
3933 int min_priority;
3934 bool ret = false;
3935 int retries = *compaction_retries;
3936 enum compact_priority priority = *compact_priority;
3937
3938 if (!order)
3939 return false;
3940
3941 if (compaction_made_progress(compact_result))
3942 (*compaction_retries)++;
3943
3944 /*
3945 * compaction considers all the zone as desperately out of memory
3946 * so it doesn't really make much sense to retry except when the
3947 * failure could be caused by insufficient priority
3948 */
3949 if (compaction_failed(compact_result))
3950 goto check_priority;
3951
3952 /*
3953 * compaction was skipped because there are not enough order-0 pages
3954 * to work with, so we retry only if it looks like reclaim can help.
3955 */
3956 if (compaction_needs_reclaim(compact_result)) {
3957 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3958 goto out;
3959 }
3960
3961 /*
3962 * make sure the compaction wasn't deferred or didn't bail out early
3963 * due to locks contention before we declare that we should give up.
3964 * But the next retry should use a higher priority if allowed, so
3965 * we don't just keep bailing out endlessly.
3966 */
3967 if (compaction_withdrawn(compact_result)) {
3968 goto check_priority;
3969 }
3970
3971 /*
3972 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3973 * costly ones because they are de facto nofail and invoke OOM
3974 * killer to move on while costly can fail and users are ready
3975 * to cope with that. 1/4 retries is rather arbitrary but we
3976 * would need much more detailed feedback from compaction to
3977 * make a better decision.
3978 */
3979 if (order > PAGE_ALLOC_COSTLY_ORDER)
3980 max_retries /= 4;
3981 if (*compaction_retries <= max_retries) {
3982 ret = true;
3983 goto out;
3984 }
3985
3986 /*
3987 * Make sure there are attempts at the highest priority if we exhausted
3988 * all retries or failed at the lower priorities.
3989 */
3990 check_priority:
3991 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3992 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3993
3994 if (*compact_priority > min_priority) {
3995 (*compact_priority)--;
3996 *compaction_retries = 0;
3997 ret = true;
3998 }
3999 out:
4000 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4001 return ret;
4002 }
4003 #else
4004 static inline struct page *
4005 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4006 unsigned int alloc_flags, const struct alloc_context *ac,
4007 enum compact_priority prio, enum compact_result *compact_result)
4008 {
4009 *compact_result = COMPACT_SKIPPED;
4010 return NULL;
4011 }
4012
4013 static inline bool
4014 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4015 enum compact_result compact_result,
4016 enum compact_priority *compact_priority,
4017 int *compaction_retries)
4018 {
4019 struct zone *zone;
4020 struct zoneref *z;
4021
4022 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4023 return false;
4024
4025 /*
4026 * There are setups with compaction disabled which would prefer to loop
4027 * inside the allocator rather than hit the oom killer prematurely.
4028 * Let's give them a good hope and keep retrying while the order-0
4029 * watermarks are OK.
4030 */
4031 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4032 ac->nodemask) {
4033 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4034 ac_classzone_idx(ac), alloc_flags))
4035 return true;
4036 }
4037 return false;
4038 }
4039 #endif /* CONFIG_COMPACTION */
4040
4041 #ifdef CONFIG_LOCKDEP
4042 static struct lockdep_map __fs_reclaim_map =
4043 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4044
4045 static bool __need_fs_reclaim(gfp_t gfp_mask)
4046 {
4047 gfp_mask = current_gfp_context(gfp_mask);
4048
4049 /* no reclaim without waiting on it */
4050 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4051 return false;
4052
4053 /* this guy won't enter reclaim */
4054 if (current->flags & PF_MEMALLOC)
4055 return false;
4056
4057 /* We're only interested __GFP_FS allocations for now */
4058 if (!(gfp_mask & __GFP_FS))
4059 return false;
4060
4061 if (gfp_mask & __GFP_NOLOCKDEP)
4062 return false;
4063
4064 return true;
4065 }
4066
4067 void __fs_reclaim_acquire(void)
4068 {
4069 lock_map_acquire(&__fs_reclaim_map);
4070 }
4071
4072 void __fs_reclaim_release(void)
4073 {
4074 lock_map_release(&__fs_reclaim_map);
4075 }
4076
4077 void fs_reclaim_acquire(gfp_t gfp_mask)
4078 {
4079 if (__need_fs_reclaim(gfp_mask))
4080 __fs_reclaim_acquire();
4081 }
4082 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4083
4084 void fs_reclaim_release(gfp_t gfp_mask)
4085 {
4086 if (__need_fs_reclaim(gfp_mask))
4087 __fs_reclaim_release();
4088 }
4089 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4090 #endif
4091
4092 /* Perform direct synchronous page reclaim */
4093 static int
4094 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4095 const struct alloc_context *ac)
4096 {
4097 int progress;
4098 unsigned int noreclaim_flag;
4099 unsigned long pflags;
4100
4101 cond_resched();
4102
4103 /* We now go into synchronous reclaim */
4104 cpuset_memory_pressure_bump();
4105 psi_memstall_enter(&pflags);
4106 fs_reclaim_acquire(gfp_mask);
4107 noreclaim_flag = memalloc_noreclaim_save();
4108
4109 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4110 ac->nodemask);
4111
4112 memalloc_noreclaim_restore(noreclaim_flag);
4113 fs_reclaim_release(gfp_mask);
4114 psi_memstall_leave(&pflags);
4115
4116 cond_resched();
4117
4118 return progress;
4119 }
4120
4121 /* The really slow allocator path where we enter direct reclaim */
4122 static inline struct page *
4123 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4124 unsigned int alloc_flags, const struct alloc_context *ac,
4125 unsigned long *did_some_progress)
4126 {
4127 struct page *page = NULL;
4128 bool drained = false;
4129
4130 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4131 if (unlikely(!(*did_some_progress)))
4132 return NULL;
4133
4134 retry:
4135 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4136
4137 /*
4138 * If an allocation failed after direct reclaim, it could be because
4139 * pages are pinned on the per-cpu lists or in high alloc reserves.
4140 * Shrink them them and try again
4141 */
4142 if (!page && !drained) {
4143 unreserve_highatomic_pageblock(ac, false);
4144 drain_all_pages(NULL);
4145 drained = true;
4146 goto retry;
4147 }
4148
4149 return page;
4150 }
4151
4152 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4153 const struct alloc_context *ac)
4154 {
4155 struct zoneref *z;
4156 struct zone *zone;
4157 pg_data_t *last_pgdat = NULL;
4158 enum zone_type high_zoneidx = ac->high_zoneidx;
4159
4160 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4161 ac->nodemask) {
4162 if (last_pgdat != zone->zone_pgdat)
4163 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4164 last_pgdat = zone->zone_pgdat;
4165 }
4166 }
4167
4168 static inline unsigned int
4169 gfp_to_alloc_flags(gfp_t gfp_mask)
4170 {
4171 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4172
4173 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4174 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4175
4176 /*
4177 * The caller may dip into page reserves a bit more if the caller
4178 * cannot run direct reclaim, or if the caller has realtime scheduling
4179 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4180 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4181 */
4182 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4183
4184 if (gfp_mask & __GFP_ATOMIC) {
4185 /*
4186 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4187 * if it can't schedule.
4188 */
4189 if (!(gfp_mask & __GFP_NOMEMALLOC))
4190 alloc_flags |= ALLOC_HARDER;
4191 /*
4192 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4193 * comment for __cpuset_node_allowed().
4194 */
4195 alloc_flags &= ~ALLOC_CPUSET;
4196 } else if (unlikely(rt_task(current)) && !in_interrupt())
4197 alloc_flags |= ALLOC_HARDER;
4198
4199 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4200 alloc_flags |= ALLOC_KSWAPD;
4201
4202 #ifdef CONFIG_CMA
4203 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4204 alloc_flags |= ALLOC_CMA;
4205 #endif
4206 return alloc_flags;
4207 }
4208
4209 static bool oom_reserves_allowed(struct task_struct *tsk)
4210 {
4211 if (!tsk_is_oom_victim(tsk))
4212 return false;
4213
4214 /*
4215 * !MMU doesn't have oom reaper so give access to memory reserves
4216 * only to the thread with TIF_MEMDIE set
4217 */
4218 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4219 return false;
4220
4221 return true;
4222 }
4223
4224 /*
4225 * Distinguish requests which really need access to full memory
4226 * reserves from oom victims which can live with a portion of it
4227 */
4228 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4229 {
4230 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4231 return 0;
4232 if (gfp_mask & __GFP_MEMALLOC)
4233 return ALLOC_NO_WATERMARKS;
4234 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4235 return ALLOC_NO_WATERMARKS;
4236 if (!in_interrupt()) {
4237 if (current->flags & PF_MEMALLOC)
4238 return ALLOC_NO_WATERMARKS;
4239 else if (oom_reserves_allowed(current))
4240 return ALLOC_OOM;
4241 }
4242
4243 return 0;
4244 }
4245
4246 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4247 {
4248 return !!__gfp_pfmemalloc_flags(gfp_mask);
4249 }
4250
4251 /*
4252 * Checks whether it makes sense to retry the reclaim to make a forward progress
4253 * for the given allocation request.
4254 *
4255 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4256 * without success, or when we couldn't even meet the watermark if we
4257 * reclaimed all remaining pages on the LRU lists.
4258 *
4259 * Returns true if a retry is viable or false to enter the oom path.
4260 */
4261 static inline bool
4262 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4263 struct alloc_context *ac, int alloc_flags,
4264 bool did_some_progress, int *no_progress_loops)
4265 {
4266 struct zone *zone;
4267 struct zoneref *z;
4268 bool ret = false;
4269
4270 /*
4271 * Costly allocations might have made a progress but this doesn't mean
4272 * their order will become available due to high fragmentation so
4273 * always increment the no progress counter for them
4274 */
4275 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4276 *no_progress_loops = 0;
4277 else
4278 (*no_progress_loops)++;
4279
4280 /*
4281 * Make sure we converge to OOM if we cannot make any progress
4282 * several times in the row.
4283 */
4284 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4285 /* Before OOM, exhaust highatomic_reserve */
4286 return unreserve_highatomic_pageblock(ac, true);
4287 }
4288
4289 /*
4290 * Keep reclaiming pages while there is a chance this will lead
4291 * somewhere. If none of the target zones can satisfy our allocation
4292 * request even if all reclaimable pages are considered then we are
4293 * screwed and have to go OOM.
4294 */
4295 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4296 ac->nodemask) {
4297 unsigned long available;
4298 unsigned long reclaimable;
4299 unsigned long min_wmark = min_wmark_pages(zone);
4300 bool wmark;
4301
4302 available = reclaimable = zone_reclaimable_pages(zone);
4303 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4304
4305 /*
4306 * Would the allocation succeed if we reclaimed all
4307 * reclaimable pages?
4308 */
4309 wmark = __zone_watermark_ok(zone, order, min_wmark,
4310 ac_classzone_idx(ac), alloc_flags, available);
4311 trace_reclaim_retry_zone(z, order, reclaimable,
4312 available, min_wmark, *no_progress_loops, wmark);
4313 if (wmark) {
4314 /*
4315 * If we didn't make any progress and have a lot of
4316 * dirty + writeback pages then we should wait for
4317 * an IO to complete to slow down the reclaim and
4318 * prevent from pre mature OOM
4319 */
4320 if (!did_some_progress) {
4321 unsigned long write_pending;
4322
4323 write_pending = zone_page_state_snapshot(zone,
4324 NR_ZONE_WRITE_PENDING);
4325
4326 if (2 * write_pending > reclaimable) {
4327 congestion_wait(BLK_RW_ASYNC, HZ/10);
4328 return true;
4329 }
4330 }
4331
4332 ret = true;
4333 goto out;
4334 }
4335 }
4336
4337 out:
4338 /*
4339 * Memory allocation/reclaim might be called from a WQ context and the
4340 * current implementation of the WQ concurrency control doesn't
4341 * recognize that a particular WQ is congested if the worker thread is
4342 * looping without ever sleeping. Therefore we have to do a short sleep
4343 * here rather than calling cond_resched().
4344 */
4345 if (current->flags & PF_WQ_WORKER)
4346 schedule_timeout_uninterruptible(1);
4347 else
4348 cond_resched();
4349 return ret;
4350 }
4351
4352 static inline bool
4353 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4354 {
4355 /*
4356 * It's possible that cpuset's mems_allowed and the nodemask from
4357 * mempolicy don't intersect. This should be normally dealt with by
4358 * policy_nodemask(), but it's possible to race with cpuset update in
4359 * such a way the check therein was true, and then it became false
4360 * before we got our cpuset_mems_cookie here.
4361 * This assumes that for all allocations, ac->nodemask can come only
4362 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4363 * when it does not intersect with the cpuset restrictions) or the
4364 * caller can deal with a violated nodemask.
4365 */
4366 if (cpusets_enabled() && ac->nodemask &&
4367 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4368 ac->nodemask = NULL;
4369 return true;
4370 }
4371
4372 /*
4373 * When updating a task's mems_allowed or mempolicy nodemask, it is
4374 * possible to race with parallel threads in such a way that our
4375 * allocation can fail while the mask is being updated. If we are about
4376 * to fail, check if the cpuset changed during allocation and if so,
4377 * retry.
4378 */
4379 if (read_mems_allowed_retry(cpuset_mems_cookie))
4380 return true;
4381
4382 return false;
4383 }
4384
4385 static inline struct page *
4386 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4387 struct alloc_context *ac)
4388 {
4389 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4390 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4391 struct page *page = NULL;
4392 unsigned int alloc_flags;
4393 unsigned long did_some_progress;
4394 enum compact_priority compact_priority;
4395 enum compact_result compact_result;
4396 int compaction_retries;
4397 int no_progress_loops;
4398 unsigned int cpuset_mems_cookie;
4399 int reserve_flags;
4400
4401 /*
4402 * We also sanity check to catch abuse of atomic reserves being used by
4403 * callers that are not in atomic context.
4404 */
4405 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4406 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4407 gfp_mask &= ~__GFP_ATOMIC;
4408
4409 retry_cpuset:
4410 compaction_retries = 0;
4411 no_progress_loops = 0;
4412 compact_priority = DEF_COMPACT_PRIORITY;
4413 cpuset_mems_cookie = read_mems_allowed_begin();
4414
4415 /*
4416 * The fast path uses conservative alloc_flags to succeed only until
4417 * kswapd needs to be woken up, and to avoid the cost of setting up
4418 * alloc_flags precisely. So we do that now.
4419 */
4420 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4421
4422 /*
4423 * We need to recalculate the starting point for the zonelist iterator
4424 * because we might have used different nodemask in the fast path, or
4425 * there was a cpuset modification and we are retrying - otherwise we
4426 * could end up iterating over non-eligible zones endlessly.
4427 */
4428 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4429 ac->high_zoneidx, ac->nodemask);
4430 if (!ac->preferred_zoneref->zone)
4431 goto nopage;
4432
4433 if (alloc_flags & ALLOC_KSWAPD)
4434 wake_all_kswapds(order, gfp_mask, ac);
4435
4436 /*
4437 * The adjusted alloc_flags might result in immediate success, so try
4438 * that first
4439 */
4440 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4441 if (page)
4442 goto got_pg;
4443
4444 /*
4445 * For costly allocations, try direct compaction first, as it's likely
4446 * that we have enough base pages and don't need to reclaim. For non-
4447 * movable high-order allocations, do that as well, as compaction will
4448 * try prevent permanent fragmentation by migrating from blocks of the
4449 * same migratetype.
4450 * Don't try this for allocations that are allowed to ignore
4451 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4452 */
4453 if (can_direct_reclaim &&
4454 (costly_order ||
4455 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4456 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4457 page = __alloc_pages_direct_compact(gfp_mask, order,
4458 alloc_flags, ac,
4459 INIT_COMPACT_PRIORITY,
4460 &compact_result);
4461 if (page)
4462 goto got_pg;
4463
4464 if (order >= pageblock_order && (gfp_mask & __GFP_IO) &&
4465 !(gfp_mask & __GFP_RETRY_MAYFAIL)) {
4466 /*
4467 * If allocating entire pageblock(s) and compaction
4468 * failed because all zones are below low watermarks
4469 * or is prohibited because it recently failed at this
4470 * order, fail immediately unless the allocator has
4471 * requested compaction and reclaim retry.
4472 *
4473 * Reclaim is
4474 * - potentially very expensive because zones are far
4475 * below their low watermarks or this is part of very
4476 * bursty high order allocations,
4477 * - not guaranteed to help because isolate_freepages()
4478 * may not iterate over freed pages as part of its
4479 * linear scan, and
4480 * - unlikely to make entire pageblocks free on its
4481 * own.
4482 */
4483 if (compact_result == COMPACT_SKIPPED ||
4484 compact_result == COMPACT_DEFERRED)
4485 goto nopage;
4486 }
4487
4488 /*
4489 * Checks for costly allocations with __GFP_NORETRY, which
4490 * includes THP page fault allocations
4491 */
4492 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4493 /*
4494 * If compaction is deferred for high-order allocations,
4495 * it is because sync compaction recently failed. If
4496 * this is the case and the caller requested a THP
4497 * allocation, we do not want to heavily disrupt the
4498 * system, so we fail the allocation instead of entering
4499 * direct reclaim.
4500 */
4501 if (compact_result == COMPACT_DEFERRED)
4502 goto nopage;
4503
4504 /*
4505 * Looks like reclaim/compaction is worth trying, but
4506 * sync compaction could be very expensive, so keep
4507 * using async compaction.
4508 */
4509 compact_priority = INIT_COMPACT_PRIORITY;
4510 }
4511 }
4512
4513 retry:
4514 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4515 if (alloc_flags & ALLOC_KSWAPD)
4516 wake_all_kswapds(order, gfp_mask, ac);
4517
4518 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4519 if (reserve_flags)
4520 alloc_flags = reserve_flags;
4521
4522 /*
4523 * Reset the nodemask and zonelist iterators if memory policies can be
4524 * ignored. These allocations are high priority and system rather than
4525 * user oriented.
4526 */
4527 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4528 ac->nodemask = NULL;
4529 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4530 ac->high_zoneidx, ac->nodemask);
4531 }
4532
4533 /* Attempt with potentially adjusted zonelist and alloc_flags */
4534 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4535 if (page)
4536 goto got_pg;
4537
4538 /* Caller is not willing to reclaim, we can't balance anything */
4539 if (!can_direct_reclaim)
4540 goto nopage;
4541
4542 /* Avoid recursion of direct reclaim */
4543 if (current->flags & PF_MEMALLOC)
4544 goto nopage;
4545
4546 /* Try direct reclaim and then allocating */
4547 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4548 &did_some_progress);
4549 if (page)
4550 goto got_pg;
4551
4552 /* Try direct compaction and then allocating */
4553 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4554 compact_priority, &compact_result);
4555 if (page)
4556 goto got_pg;
4557
4558 /* Do not loop if specifically requested */
4559 if (gfp_mask & __GFP_NORETRY)
4560 goto nopage;
4561
4562 /*
4563 * Do not retry costly high order allocations unless they are
4564 * __GFP_RETRY_MAYFAIL
4565 */
4566 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4567 goto nopage;
4568
4569 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4570 did_some_progress > 0, &no_progress_loops))
4571 goto retry;
4572
4573 /*
4574 * It doesn't make any sense to retry for the compaction if the order-0
4575 * reclaim is not able to make any progress because the current
4576 * implementation of the compaction depends on the sufficient amount
4577 * of free memory (see __compaction_suitable)
4578 */
4579 if (did_some_progress > 0 &&
4580 should_compact_retry(ac, order, alloc_flags,
4581 compact_result, &compact_priority,
4582 &compaction_retries))
4583 goto retry;
4584
4585
4586 /* Deal with possible cpuset update races before we start OOM killing */
4587 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4588 goto retry_cpuset;
4589
4590 /* Reclaim has failed us, start killing things */
4591 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4592 if (page)
4593 goto got_pg;
4594
4595 /* Avoid allocations with no watermarks from looping endlessly */
4596 if (tsk_is_oom_victim(current) &&
4597 (alloc_flags == ALLOC_OOM ||
4598 (gfp_mask & __GFP_NOMEMALLOC)))
4599 goto nopage;
4600
4601 /* Retry as long as the OOM killer is making progress */
4602 if (did_some_progress) {
4603 no_progress_loops = 0;
4604 goto retry;
4605 }
4606
4607 nopage:
4608 /* Deal with possible cpuset update races before we fail */
4609 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4610 goto retry_cpuset;
4611
4612 /*
4613 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4614 * we always retry
4615 */
4616 if (gfp_mask & __GFP_NOFAIL) {
4617 /*
4618 * All existing users of the __GFP_NOFAIL are blockable, so warn
4619 * of any new users that actually require GFP_NOWAIT
4620 */
4621 if (WARN_ON_ONCE(!can_direct_reclaim))
4622 goto fail;
4623
4624 /*
4625 * PF_MEMALLOC request from this context is rather bizarre
4626 * because we cannot reclaim anything and only can loop waiting
4627 * for somebody to do a work for us
4628 */
4629 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4630
4631 /*
4632 * non failing costly orders are a hard requirement which we
4633 * are not prepared for much so let's warn about these users
4634 * so that we can identify them and convert them to something
4635 * else.
4636 */
4637 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4638
4639 /*
4640 * Help non-failing allocations by giving them access to memory
4641 * reserves but do not use ALLOC_NO_WATERMARKS because this
4642 * could deplete whole memory reserves which would just make
4643 * the situation worse
4644 */
4645 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4646 if (page)
4647 goto got_pg;
4648
4649 cond_resched();
4650 goto retry;
4651 }
4652 fail:
4653 warn_alloc(gfp_mask, ac->nodemask,
4654 "page allocation failure: order:%u", order);
4655 got_pg:
4656 return page;
4657 }
4658
4659 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4660 int preferred_nid, nodemask_t *nodemask,
4661 struct alloc_context *ac, gfp_t *alloc_mask,
4662 unsigned int *alloc_flags)
4663 {
4664 ac->high_zoneidx = gfp_zone(gfp_mask);
4665 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4666 ac->nodemask = nodemask;
4667 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4668
4669 if (cpusets_enabled()) {
4670 *alloc_mask |= __GFP_HARDWALL;
4671 if (!ac->nodemask)
4672 ac->nodemask = &cpuset_current_mems_allowed;
4673 else
4674 *alloc_flags |= ALLOC_CPUSET;
4675 }
4676
4677 fs_reclaim_acquire(gfp_mask);
4678 fs_reclaim_release(gfp_mask);
4679
4680 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4681
4682 if (should_fail_alloc_page(gfp_mask, order))
4683 return false;
4684
4685 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4686 *alloc_flags |= ALLOC_CMA;
4687
4688 return true;
4689 }
4690
4691 /* Determine whether to spread dirty pages and what the first usable zone */
4692 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4693 {
4694 /* Dirty zone balancing only done in the fast path */
4695 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4696
4697 /*
4698 * The preferred zone is used for statistics but crucially it is
4699 * also used as the starting point for the zonelist iterator. It
4700 * may get reset for allocations that ignore memory policies.
4701 */
4702 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4703 ac->high_zoneidx, ac->nodemask);
4704 }
4705
4706 /*
4707 * This is the 'heart' of the zoned buddy allocator.
4708 */
4709 struct page *
4710 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4711 nodemask_t *nodemask)
4712 {
4713 struct page *page;
4714 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4715 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4716 struct alloc_context ac = { };
4717
4718 /*
4719 * There are several places where we assume that the order value is sane
4720 * so bail out early if the request is out of bound.
4721 */
4722 if (unlikely(order >= MAX_ORDER)) {
4723 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4724 return NULL;
4725 }
4726
4727 gfp_mask &= gfp_allowed_mask;
4728 alloc_mask = gfp_mask;
4729 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4730 return NULL;
4731
4732 finalise_ac(gfp_mask, &ac);
4733
4734 /*
4735 * Forbid the first pass from falling back to types that fragment
4736 * memory until all local zones are considered.
4737 */
4738 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4739
4740 /* First allocation attempt */
4741 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4742 if (likely(page))
4743 goto out;
4744
4745 /*
4746 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4747 * resp. GFP_NOIO which has to be inherited for all allocation requests
4748 * from a particular context which has been marked by
4749 * memalloc_no{fs,io}_{save,restore}.
4750 */
4751 alloc_mask = current_gfp_context(gfp_mask);
4752 ac.spread_dirty_pages = false;
4753
4754 /*
4755 * Restore the original nodemask if it was potentially replaced with
4756 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4757 */
4758 if (unlikely(ac.nodemask != nodemask))
4759 ac.nodemask = nodemask;
4760
4761 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4762
4763 out:
4764 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4765 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4766 __free_pages(page, order);
4767 page = NULL;
4768 }
4769
4770 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4771
4772 return page;
4773 }
4774 EXPORT_SYMBOL(__alloc_pages_nodemask);
4775
4776 /*
4777 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4778 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4779 * you need to access high mem.
4780 */
4781 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4782 {
4783 struct page *page;
4784
4785 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4786 if (!page)
4787 return 0;
4788 return (unsigned long) page_address(page);
4789 }
4790 EXPORT_SYMBOL(__get_free_pages);
4791
4792 unsigned long get_zeroed_page(gfp_t gfp_mask)
4793 {
4794 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4795 }
4796 EXPORT_SYMBOL(get_zeroed_page);
4797
4798 static inline void free_the_page(struct page *page, unsigned int order)
4799 {
4800 if (order == 0) /* Via pcp? */
4801 free_unref_page(page);
4802 else
4803 __free_pages_ok(page, order);
4804 }
4805
4806 void __free_pages(struct page *page, unsigned int order)
4807 {
4808 if (put_page_testzero(page))
4809 free_the_page(page, order);
4810 }
4811 EXPORT_SYMBOL(__free_pages);
4812
4813 void free_pages(unsigned long addr, unsigned int order)
4814 {
4815 if (addr != 0) {
4816 VM_BUG_ON(!virt_addr_valid((void *)addr));
4817 __free_pages(virt_to_page((void *)addr), order);
4818 }
4819 }
4820
4821 EXPORT_SYMBOL(free_pages);
4822
4823 /*
4824 * Page Fragment:
4825 * An arbitrary-length arbitrary-offset area of memory which resides
4826 * within a 0 or higher order page. Multiple fragments within that page
4827 * are individually refcounted, in the page's reference counter.
4828 *
4829 * The page_frag functions below provide a simple allocation framework for
4830 * page fragments. This is used by the network stack and network device
4831 * drivers to provide a backing region of memory for use as either an
4832 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4833 */
4834 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4835 gfp_t gfp_mask)
4836 {
4837 struct page *page = NULL;
4838 gfp_t gfp = gfp_mask;
4839
4840 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4841 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4842 __GFP_NOMEMALLOC;
4843 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4844 PAGE_FRAG_CACHE_MAX_ORDER);
4845 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4846 #endif
4847 if (unlikely(!page))
4848 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4849
4850 nc->va = page ? page_address(page) : NULL;
4851
4852 return page;
4853 }
4854
4855 void __page_frag_cache_drain(struct page *page, unsigned int count)
4856 {
4857 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4858
4859 if (page_ref_sub_and_test(page, count))
4860 free_the_page(page, compound_order(page));
4861 }
4862 EXPORT_SYMBOL(__page_frag_cache_drain);
4863
4864 void *page_frag_alloc(struct page_frag_cache *nc,
4865 unsigned int fragsz, gfp_t gfp_mask)
4866 {
4867 unsigned int size = PAGE_SIZE;
4868 struct page *page;
4869 int offset;
4870
4871 if (unlikely(!nc->va)) {
4872 refill:
4873 page = __page_frag_cache_refill(nc, gfp_mask);
4874 if (!page)
4875 return NULL;
4876
4877 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4878 /* if size can vary use size else just use PAGE_SIZE */
4879 size = nc->size;
4880 #endif
4881 /* Even if we own the page, we do not use atomic_set().
4882 * This would break get_page_unless_zero() users.
4883 */
4884 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4885
4886 /* reset page count bias and offset to start of new frag */
4887 nc->pfmemalloc = page_is_pfmemalloc(page);
4888 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4889 nc->offset = size;
4890 }
4891
4892 offset = nc->offset - fragsz;
4893 if (unlikely(offset < 0)) {
4894 page = virt_to_page(nc->va);
4895
4896 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4897 goto refill;
4898
4899 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4900 /* if size can vary use size else just use PAGE_SIZE */
4901 size = nc->size;
4902 #endif
4903 /* OK, page count is 0, we can safely set it */
4904 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4905
4906 /* reset page count bias and offset to start of new frag */
4907 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4908 offset = size - fragsz;
4909 }
4910
4911 nc->pagecnt_bias--;
4912 nc->offset = offset;
4913
4914 return nc->va + offset;
4915 }
4916 EXPORT_SYMBOL(page_frag_alloc);
4917
4918 /*
4919 * Frees a page fragment allocated out of either a compound or order 0 page.
4920 */
4921 void page_frag_free(void *addr)
4922 {
4923 struct page *page = virt_to_head_page(addr);
4924
4925 if (unlikely(put_page_testzero(page)))
4926 free_the_page(page, compound_order(page));
4927 }
4928 EXPORT_SYMBOL(page_frag_free);
4929
4930 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4931 size_t size)
4932 {
4933 if (addr) {
4934 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4935 unsigned long used = addr + PAGE_ALIGN(size);
4936
4937 split_page(virt_to_page((void *)addr), order);
4938 while (used < alloc_end) {
4939 free_page(used);
4940 used += PAGE_SIZE;
4941 }
4942 }
4943 return (void *)addr;
4944 }
4945
4946 /**
4947 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4948 * @size: the number of bytes to allocate
4949 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4950 *
4951 * This function is similar to alloc_pages(), except that it allocates the
4952 * minimum number of pages to satisfy the request. alloc_pages() can only
4953 * allocate memory in power-of-two pages.
4954 *
4955 * This function is also limited by MAX_ORDER.
4956 *
4957 * Memory allocated by this function must be released by free_pages_exact().
4958 *
4959 * Return: pointer to the allocated area or %NULL in case of error.
4960 */
4961 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4962 {
4963 unsigned int order = get_order(size);
4964 unsigned long addr;
4965
4966 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4967 gfp_mask &= ~__GFP_COMP;
4968
4969 addr = __get_free_pages(gfp_mask, order);
4970 return make_alloc_exact(addr, order, size);
4971 }
4972 EXPORT_SYMBOL(alloc_pages_exact);
4973
4974 /**
4975 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4976 * pages on a node.
4977 * @nid: the preferred node ID where memory should be allocated
4978 * @size: the number of bytes to allocate
4979 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4980 *
4981 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4982 * back.
4983 *
4984 * Return: pointer to the allocated area or %NULL in case of error.
4985 */
4986 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4987 {
4988 unsigned int order = get_order(size);
4989 struct page *p;
4990
4991 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4992 gfp_mask &= ~__GFP_COMP;
4993
4994 p = alloc_pages_node(nid, gfp_mask, order);
4995 if (!p)
4996 return NULL;
4997 return make_alloc_exact((unsigned long)page_address(p), order, size);
4998 }
4999
5000 /**
5001 * free_pages_exact - release memory allocated via alloc_pages_exact()
5002 * @virt: the value returned by alloc_pages_exact.
5003 * @size: size of allocation, same value as passed to alloc_pages_exact().
5004 *
5005 * Release the memory allocated by a previous call to alloc_pages_exact.
5006 */
5007 void free_pages_exact(void *virt, size_t size)
5008 {
5009 unsigned long addr = (unsigned long)virt;
5010 unsigned long end = addr + PAGE_ALIGN(size);
5011
5012 while (addr < end) {
5013 free_page(addr);
5014 addr += PAGE_SIZE;
5015 }
5016 }
5017 EXPORT_SYMBOL(free_pages_exact);
5018
5019 /**
5020 * nr_free_zone_pages - count number of pages beyond high watermark
5021 * @offset: The zone index of the highest zone
5022 *
5023 * nr_free_zone_pages() counts the number of pages which are beyond the
5024 * high watermark within all zones at or below a given zone index. For each
5025 * zone, the number of pages is calculated as:
5026 *
5027 * nr_free_zone_pages = managed_pages - high_pages
5028 *
5029 * Return: number of pages beyond high watermark.
5030 */
5031 static unsigned long nr_free_zone_pages(int offset)
5032 {
5033 struct zoneref *z;
5034 struct zone *zone;
5035
5036 /* Just pick one node, since fallback list is circular */
5037 unsigned long sum = 0;
5038
5039 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5040
5041 for_each_zone_zonelist(zone, z, zonelist, offset) {
5042 unsigned long size = zone_managed_pages(zone);
5043 unsigned long high = high_wmark_pages(zone);
5044 if (size > high)
5045 sum += size - high;
5046 }
5047
5048 return sum;
5049 }
5050
5051 /**
5052 * nr_free_buffer_pages - count number of pages beyond high watermark
5053 *
5054 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5055 * watermark within ZONE_DMA and ZONE_NORMAL.
5056 *
5057 * Return: number of pages beyond high watermark within ZONE_DMA and
5058 * ZONE_NORMAL.
5059 */
5060 unsigned long nr_free_buffer_pages(void)
5061 {
5062 return nr_free_zone_pages(gfp_zone(GFP_USER));
5063 }
5064 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5065
5066 /**
5067 * nr_free_pagecache_pages - count number of pages beyond high watermark
5068 *
5069 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5070 * high watermark within all zones.
5071 *
5072 * Return: number of pages beyond high watermark within all zones.
5073 */
5074 unsigned long nr_free_pagecache_pages(void)
5075 {
5076 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5077 }
5078
5079 static inline void show_node(struct zone *zone)
5080 {
5081 if (IS_ENABLED(CONFIG_NUMA))
5082 printk("Node %d ", zone_to_nid(zone));
5083 }
5084
5085 long si_mem_available(void)
5086 {
5087 long available;
5088 unsigned long pagecache;
5089 unsigned long wmark_low = 0;
5090 unsigned long pages[NR_LRU_LISTS];
5091 unsigned long reclaimable;
5092 struct zone *zone;
5093 int lru;
5094
5095 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5096 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5097
5098 for_each_zone(zone)
5099 wmark_low += low_wmark_pages(zone);
5100
5101 /*
5102 * Estimate the amount of memory available for userspace allocations,
5103 * without causing swapping.
5104 */
5105 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5106
5107 /*
5108 * Not all the page cache can be freed, otherwise the system will
5109 * start swapping. Assume at least half of the page cache, or the
5110 * low watermark worth of cache, needs to stay.
5111 */
5112 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5113 pagecache -= min(pagecache / 2, wmark_low);
5114 available += pagecache;
5115
5116 /*
5117 * Part of the reclaimable slab and other kernel memory consists of
5118 * items that are in use, and cannot be freed. Cap this estimate at the
5119 * low watermark.
5120 */
5121 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5122 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5123 available += reclaimable - min(reclaimable / 2, wmark_low);
5124
5125 if (available < 0)
5126 available = 0;
5127 return available;
5128 }
5129 EXPORT_SYMBOL_GPL(si_mem_available);
5130
5131 void si_meminfo(struct sysinfo *val)
5132 {
5133 val->totalram = totalram_pages();
5134 val->sharedram = global_node_page_state(NR_SHMEM);
5135 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5136 val->bufferram = nr_blockdev_pages();
5137 val->totalhigh = totalhigh_pages();
5138 val->freehigh = nr_free_highpages();
5139 val->mem_unit = PAGE_SIZE;
5140 }
5141
5142 EXPORT_SYMBOL(si_meminfo);
5143
5144 #ifdef CONFIG_NUMA
5145 void si_meminfo_node(struct sysinfo *val, int nid)
5146 {
5147 int zone_type; /* needs to be signed */
5148 unsigned long managed_pages = 0;
5149 unsigned long managed_highpages = 0;
5150 unsigned long free_highpages = 0;
5151 pg_data_t *pgdat = NODE_DATA(nid);
5152
5153 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5154 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5155 val->totalram = managed_pages;
5156 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5157 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5158 #ifdef CONFIG_HIGHMEM
5159 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5160 struct zone *zone = &pgdat->node_zones[zone_type];
5161
5162 if (is_highmem(zone)) {
5163 managed_highpages += zone_managed_pages(zone);
5164 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5165 }
5166 }
5167 val->totalhigh = managed_highpages;
5168 val->freehigh = free_highpages;
5169 #else
5170 val->totalhigh = managed_highpages;
5171 val->freehigh = free_highpages;
5172 #endif
5173 val->mem_unit = PAGE_SIZE;
5174 }
5175 #endif
5176
5177 /*
5178 * Determine whether the node should be displayed or not, depending on whether
5179 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5180 */
5181 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5182 {
5183 if (!(flags & SHOW_MEM_FILTER_NODES))
5184 return false;
5185
5186 /*
5187 * no node mask - aka implicit memory numa policy. Do not bother with
5188 * the synchronization - read_mems_allowed_begin - because we do not
5189 * have to be precise here.
5190 */
5191 if (!nodemask)
5192 nodemask = &cpuset_current_mems_allowed;
5193
5194 return !node_isset(nid, *nodemask);
5195 }
5196
5197 #define K(x) ((x) << (PAGE_SHIFT-10))
5198
5199 static void show_migration_types(unsigned char type)
5200 {
5201 static const char types[MIGRATE_TYPES] = {
5202 [MIGRATE_UNMOVABLE] = 'U',
5203 [MIGRATE_MOVABLE] = 'M',
5204 [MIGRATE_RECLAIMABLE] = 'E',
5205 [MIGRATE_HIGHATOMIC] = 'H',
5206 #ifdef CONFIG_CMA
5207 [MIGRATE_CMA] = 'C',
5208 #endif
5209 #ifdef CONFIG_MEMORY_ISOLATION
5210 [MIGRATE_ISOLATE] = 'I',
5211 #endif
5212 };
5213 char tmp[MIGRATE_TYPES + 1];
5214 char *p = tmp;
5215 int i;
5216
5217 for (i = 0; i < MIGRATE_TYPES; i++) {
5218 if (type & (1 << i))
5219 *p++ = types[i];
5220 }
5221
5222 *p = '\0';
5223 printk(KERN_CONT "(%s) ", tmp);
5224 }
5225
5226 /*
5227 * Show free area list (used inside shift_scroll-lock stuff)
5228 * We also calculate the percentage fragmentation. We do this by counting the
5229 * memory on each free list with the exception of the first item on the list.
5230 *
5231 * Bits in @filter:
5232 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5233 * cpuset.
5234 */
5235 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5236 {
5237 unsigned long free_pcp = 0;
5238 int cpu;
5239 struct zone *zone;
5240 pg_data_t *pgdat;
5241
5242 for_each_populated_zone(zone) {
5243 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5244 continue;
5245
5246 for_each_online_cpu(cpu)
5247 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5248 }
5249
5250 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5251 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5252 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5253 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5254 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5255 " free:%lu free_pcp:%lu free_cma:%lu\n",
5256 global_node_page_state(NR_ACTIVE_ANON),
5257 global_node_page_state(NR_INACTIVE_ANON),
5258 global_node_page_state(NR_ISOLATED_ANON),
5259 global_node_page_state(NR_ACTIVE_FILE),
5260 global_node_page_state(NR_INACTIVE_FILE),
5261 global_node_page_state(NR_ISOLATED_FILE),
5262 global_node_page_state(NR_UNEVICTABLE),
5263 global_node_page_state(NR_FILE_DIRTY),
5264 global_node_page_state(NR_WRITEBACK),
5265 global_node_page_state(NR_UNSTABLE_NFS),
5266 global_node_page_state(NR_SLAB_RECLAIMABLE),
5267 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5268 global_node_page_state(NR_FILE_MAPPED),
5269 global_node_page_state(NR_SHMEM),
5270 global_zone_page_state(NR_PAGETABLE),
5271 global_zone_page_state(NR_BOUNCE),
5272 global_zone_page_state(NR_FREE_PAGES),
5273 free_pcp,
5274 global_zone_page_state(NR_FREE_CMA_PAGES));
5275
5276 for_each_online_pgdat(pgdat) {
5277 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5278 continue;
5279
5280 printk("Node %d"
5281 " active_anon:%lukB"
5282 " inactive_anon:%lukB"
5283 " active_file:%lukB"
5284 " inactive_file:%lukB"
5285 " unevictable:%lukB"
5286 " isolated(anon):%lukB"
5287 " isolated(file):%lukB"
5288 " mapped:%lukB"
5289 " dirty:%lukB"
5290 " writeback:%lukB"
5291 " shmem:%lukB"
5292 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5293 " shmem_thp: %lukB"
5294 " shmem_pmdmapped: %lukB"
5295 " anon_thp: %lukB"
5296 #endif
5297 " writeback_tmp:%lukB"
5298 " unstable:%lukB"
5299 " all_unreclaimable? %s"
5300 "\n",
5301 pgdat->node_id,
5302 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5303 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5304 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5305 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5306 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5307 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5308 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5309 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5310 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5311 K(node_page_state(pgdat, NR_WRITEBACK)),
5312 K(node_page_state(pgdat, NR_SHMEM)),
5313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5314 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5315 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5316 * HPAGE_PMD_NR),
5317 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5318 #endif
5319 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5320 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5321 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5322 "yes" : "no");
5323 }
5324
5325 for_each_populated_zone(zone) {
5326 int i;
5327
5328 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5329 continue;
5330
5331 free_pcp = 0;
5332 for_each_online_cpu(cpu)
5333 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5334
5335 show_node(zone);
5336 printk(KERN_CONT
5337 "%s"
5338 " free:%lukB"
5339 " min:%lukB"
5340 " low:%lukB"
5341 " high:%lukB"
5342 " active_anon:%lukB"
5343 " inactive_anon:%lukB"
5344 " active_file:%lukB"
5345 " inactive_file:%lukB"
5346 " unevictable:%lukB"
5347 " writepending:%lukB"
5348 " present:%lukB"
5349 " managed:%lukB"
5350 " mlocked:%lukB"
5351 " kernel_stack:%lukB"
5352 " pagetables:%lukB"
5353 " bounce:%lukB"
5354 " free_pcp:%lukB"
5355 " local_pcp:%ukB"
5356 " free_cma:%lukB"
5357 "\n",
5358 zone->name,
5359 K(zone_page_state(zone, NR_FREE_PAGES)),
5360 K(min_wmark_pages(zone)),
5361 K(low_wmark_pages(zone)),
5362 K(high_wmark_pages(zone)),
5363 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5364 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5365 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5366 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5367 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5368 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5369 K(zone->present_pages),
5370 K(zone_managed_pages(zone)),
5371 K(zone_page_state(zone, NR_MLOCK)),
5372 zone_page_state(zone, NR_KERNEL_STACK_KB),
5373 K(zone_page_state(zone, NR_PAGETABLE)),
5374 K(zone_page_state(zone, NR_BOUNCE)),
5375 K(free_pcp),
5376 K(this_cpu_read(zone->pageset->pcp.count)),
5377 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5378 printk("lowmem_reserve[]:");
5379 for (i = 0; i < MAX_NR_ZONES; i++)
5380 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5381 printk(KERN_CONT "\n");
5382 }
5383
5384 for_each_populated_zone(zone) {
5385 unsigned int order;
5386 unsigned long nr[MAX_ORDER], flags, total = 0;
5387 unsigned char types[MAX_ORDER];
5388
5389 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5390 continue;
5391 show_node(zone);
5392 printk(KERN_CONT "%s: ", zone->name);
5393
5394 spin_lock_irqsave(&zone->lock, flags);
5395 for (order = 0; order < MAX_ORDER; order++) {
5396 struct free_area *area = &zone->free_area[order];
5397 int type;
5398
5399 nr[order] = area->nr_free;
5400 total += nr[order] << order;
5401
5402 types[order] = 0;
5403 for (type = 0; type < MIGRATE_TYPES; type++) {
5404 if (!free_area_empty(area, type))
5405 types[order] |= 1 << type;
5406 }
5407 }
5408 spin_unlock_irqrestore(&zone->lock, flags);
5409 for (order = 0; order < MAX_ORDER; order++) {
5410 printk(KERN_CONT "%lu*%lukB ",
5411 nr[order], K(1UL) << order);
5412 if (nr[order])
5413 show_migration_types(types[order]);
5414 }
5415 printk(KERN_CONT "= %lukB\n", K(total));
5416 }
5417
5418 hugetlb_show_meminfo();
5419
5420 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5421
5422 show_swap_cache_info();
5423 }
5424
5425 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5426 {
5427 zoneref->zone = zone;
5428 zoneref->zone_idx = zone_idx(zone);
5429 }
5430
5431 /*
5432 * Builds allocation fallback zone lists.
5433 *
5434 * Add all populated zones of a node to the zonelist.
5435 */
5436 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5437 {
5438 struct zone *zone;
5439 enum zone_type zone_type = MAX_NR_ZONES;
5440 int nr_zones = 0;
5441
5442 do {
5443 zone_type--;
5444 zone = pgdat->node_zones + zone_type;
5445 if (managed_zone(zone)) {
5446 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5447 check_highest_zone(zone_type);
5448 }
5449 } while (zone_type);
5450
5451 return nr_zones;
5452 }
5453
5454 #ifdef CONFIG_NUMA
5455
5456 static int __parse_numa_zonelist_order(char *s)
5457 {
5458 /*
5459 * We used to support different zonlists modes but they turned
5460 * out to be just not useful. Let's keep the warning in place
5461 * if somebody still use the cmd line parameter so that we do
5462 * not fail it silently
5463 */
5464 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5465 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5466 return -EINVAL;
5467 }
5468 return 0;
5469 }
5470
5471 static __init int setup_numa_zonelist_order(char *s)
5472 {
5473 if (!s)
5474 return 0;
5475
5476 return __parse_numa_zonelist_order(s);
5477 }
5478 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5479
5480 char numa_zonelist_order[] = "Node";
5481
5482 /*
5483 * sysctl handler for numa_zonelist_order
5484 */
5485 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5486 void __user *buffer, size_t *length,
5487 loff_t *ppos)
5488 {
5489 char *str;
5490 int ret;
5491
5492 if (!write)
5493 return proc_dostring(table, write, buffer, length, ppos);
5494 str = memdup_user_nul(buffer, 16);
5495 if (IS_ERR(str))
5496 return PTR_ERR(str);
5497
5498 ret = __parse_numa_zonelist_order(str);
5499 kfree(str);
5500 return ret;
5501 }
5502
5503
5504 #define MAX_NODE_LOAD (nr_online_nodes)
5505 static int node_load[MAX_NUMNODES];
5506
5507 /**
5508 * find_next_best_node - find the next node that should appear in a given node's fallback list
5509 * @node: node whose fallback list we're appending
5510 * @used_node_mask: nodemask_t of already used nodes
5511 *
5512 * We use a number of factors to determine which is the next node that should
5513 * appear on a given node's fallback list. The node should not have appeared
5514 * already in @node's fallback list, and it should be the next closest node
5515 * according to the distance array (which contains arbitrary distance values
5516 * from each node to each node in the system), and should also prefer nodes
5517 * with no CPUs, since presumably they'll have very little allocation pressure
5518 * on them otherwise.
5519 *
5520 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5521 */
5522 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5523 {
5524 int n, val;
5525 int min_val = INT_MAX;
5526 int best_node = NUMA_NO_NODE;
5527 const struct cpumask *tmp = cpumask_of_node(0);
5528
5529 /* Use the local node if we haven't already */
5530 if (!node_isset(node, *used_node_mask)) {
5531 node_set(node, *used_node_mask);
5532 return node;
5533 }
5534
5535 for_each_node_state(n, N_MEMORY) {
5536
5537 /* Don't want a node to appear more than once */
5538 if (node_isset(n, *used_node_mask))
5539 continue;
5540
5541 /* Use the distance array to find the distance */
5542 val = node_distance(node, n);
5543
5544 /* Penalize nodes under us ("prefer the next node") */
5545 val += (n < node);
5546
5547 /* Give preference to headless and unused nodes */
5548 tmp = cpumask_of_node(n);
5549 if (!cpumask_empty(tmp))
5550 val += PENALTY_FOR_NODE_WITH_CPUS;
5551
5552 /* Slight preference for less loaded node */
5553 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5554 val += node_load[n];
5555
5556 if (val < min_val) {
5557 min_val = val;
5558 best_node = n;
5559 }
5560 }
5561
5562 if (best_node >= 0)
5563 node_set(best_node, *used_node_mask);
5564
5565 return best_node;
5566 }
5567
5568
5569 /*
5570 * Build zonelists ordered by node and zones within node.
5571 * This results in maximum locality--normal zone overflows into local
5572 * DMA zone, if any--but risks exhausting DMA zone.
5573 */
5574 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5575 unsigned nr_nodes)
5576 {
5577 struct zoneref *zonerefs;
5578 int i;
5579
5580 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5581
5582 for (i = 0; i < nr_nodes; i++) {
5583 int nr_zones;
5584
5585 pg_data_t *node = NODE_DATA(node_order[i]);
5586
5587 nr_zones = build_zonerefs_node(node, zonerefs);
5588 zonerefs += nr_zones;
5589 }
5590 zonerefs->zone = NULL;
5591 zonerefs->zone_idx = 0;
5592 }
5593
5594 /*
5595 * Build gfp_thisnode zonelists
5596 */
5597 static void build_thisnode_zonelists(pg_data_t *pgdat)
5598 {
5599 struct zoneref *zonerefs;
5600 int nr_zones;
5601
5602 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5603 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5604 zonerefs += nr_zones;
5605 zonerefs->zone = NULL;
5606 zonerefs->zone_idx = 0;
5607 }
5608
5609 /*
5610 * Build zonelists ordered by zone and nodes within zones.
5611 * This results in conserving DMA zone[s] until all Normal memory is
5612 * exhausted, but results in overflowing to remote node while memory
5613 * may still exist in local DMA zone.
5614 */
5615
5616 static void build_zonelists(pg_data_t *pgdat)
5617 {
5618 static int node_order[MAX_NUMNODES];
5619 int node, load, nr_nodes = 0;
5620 nodemask_t used_mask;
5621 int local_node, prev_node;
5622
5623 /* NUMA-aware ordering of nodes */
5624 local_node = pgdat->node_id;
5625 load = nr_online_nodes;
5626 prev_node = local_node;
5627 nodes_clear(used_mask);
5628
5629 memset(node_order, 0, sizeof(node_order));
5630 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5631 /*
5632 * We don't want to pressure a particular node.
5633 * So adding penalty to the first node in same
5634 * distance group to make it round-robin.
5635 */
5636 if (node_distance(local_node, node) !=
5637 node_distance(local_node, prev_node))
5638 node_load[node] = load;
5639
5640 node_order[nr_nodes++] = node;
5641 prev_node = node;
5642 load--;
5643 }
5644
5645 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5646 build_thisnode_zonelists(pgdat);
5647 }
5648
5649 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5650 /*
5651 * Return node id of node used for "local" allocations.
5652 * I.e., first node id of first zone in arg node's generic zonelist.
5653 * Used for initializing percpu 'numa_mem', which is used primarily
5654 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5655 */
5656 int local_memory_node(int node)
5657 {
5658 struct zoneref *z;
5659
5660 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5661 gfp_zone(GFP_KERNEL),
5662 NULL);
5663 return zone_to_nid(z->zone);
5664 }
5665 #endif
5666
5667 static void setup_min_unmapped_ratio(void);
5668 static void setup_min_slab_ratio(void);
5669 #else /* CONFIG_NUMA */
5670
5671 static void build_zonelists(pg_data_t *pgdat)
5672 {
5673 int node, local_node;
5674 struct zoneref *zonerefs;
5675 int nr_zones;
5676
5677 local_node = pgdat->node_id;
5678
5679 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5680 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5681 zonerefs += nr_zones;
5682
5683 /*
5684 * Now we build the zonelist so that it contains the zones
5685 * of all the other nodes.
5686 * We don't want to pressure a particular node, so when
5687 * building the zones for node N, we make sure that the
5688 * zones coming right after the local ones are those from
5689 * node N+1 (modulo N)
5690 */
5691 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5692 if (!node_online(node))
5693 continue;
5694 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5695 zonerefs += nr_zones;
5696 }
5697 for (node = 0; node < local_node; node++) {
5698 if (!node_online(node))
5699 continue;
5700 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5701 zonerefs += nr_zones;
5702 }
5703
5704 zonerefs->zone = NULL;
5705 zonerefs->zone_idx = 0;
5706 }
5707
5708 #endif /* CONFIG_NUMA */
5709
5710 /*
5711 * Boot pageset table. One per cpu which is going to be used for all
5712 * zones and all nodes. The parameters will be set in such a way
5713 * that an item put on a list will immediately be handed over to
5714 * the buddy list. This is safe since pageset manipulation is done
5715 * with interrupts disabled.
5716 *
5717 * The boot_pagesets must be kept even after bootup is complete for
5718 * unused processors and/or zones. They do play a role for bootstrapping
5719 * hotplugged processors.
5720 *
5721 * zoneinfo_show() and maybe other functions do
5722 * not check if the processor is online before following the pageset pointer.
5723 * Other parts of the kernel may not check if the zone is available.
5724 */
5725 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5726 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5727 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5728
5729 static void __build_all_zonelists(void *data)
5730 {
5731 int nid;
5732 int __maybe_unused cpu;
5733 pg_data_t *self = data;
5734 static DEFINE_SPINLOCK(lock);
5735
5736 spin_lock(&lock);
5737
5738 #ifdef CONFIG_NUMA
5739 memset(node_load, 0, sizeof(node_load));
5740 #endif
5741
5742 /*
5743 * This node is hotadded and no memory is yet present. So just
5744 * building zonelists is fine - no need to touch other nodes.
5745 */
5746 if (self && !node_online(self->node_id)) {
5747 build_zonelists(self);
5748 } else {
5749 for_each_online_node(nid) {
5750 pg_data_t *pgdat = NODE_DATA(nid);
5751
5752 build_zonelists(pgdat);
5753 }
5754
5755 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5756 /*
5757 * We now know the "local memory node" for each node--
5758 * i.e., the node of the first zone in the generic zonelist.
5759 * Set up numa_mem percpu variable for on-line cpus. During
5760 * boot, only the boot cpu should be on-line; we'll init the
5761 * secondary cpus' numa_mem as they come on-line. During
5762 * node/memory hotplug, we'll fixup all on-line cpus.
5763 */
5764 for_each_online_cpu(cpu)
5765 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5766 #endif
5767 }
5768
5769 spin_unlock(&lock);
5770 }
5771
5772 static noinline void __init
5773 build_all_zonelists_init(void)
5774 {
5775 int cpu;
5776
5777 __build_all_zonelists(NULL);
5778
5779 /*
5780 * Initialize the boot_pagesets that are going to be used
5781 * for bootstrapping processors. The real pagesets for
5782 * each zone will be allocated later when the per cpu
5783 * allocator is available.
5784 *
5785 * boot_pagesets are used also for bootstrapping offline
5786 * cpus if the system is already booted because the pagesets
5787 * are needed to initialize allocators on a specific cpu too.
5788 * F.e. the percpu allocator needs the page allocator which
5789 * needs the percpu allocator in order to allocate its pagesets
5790 * (a chicken-egg dilemma).
5791 */
5792 for_each_possible_cpu(cpu)
5793 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5794
5795 mminit_verify_zonelist();
5796 cpuset_init_current_mems_allowed();
5797 }
5798
5799 /*
5800 * unless system_state == SYSTEM_BOOTING.
5801 *
5802 * __ref due to call of __init annotated helper build_all_zonelists_init
5803 * [protected by SYSTEM_BOOTING].
5804 */
5805 void __ref build_all_zonelists(pg_data_t *pgdat)
5806 {
5807 if (system_state == SYSTEM_BOOTING) {
5808 build_all_zonelists_init();
5809 } else {
5810 __build_all_zonelists(pgdat);
5811 /* cpuset refresh routine should be here */
5812 }
5813 vm_total_pages = nr_free_pagecache_pages();
5814 /*
5815 * Disable grouping by mobility if the number of pages in the
5816 * system is too low to allow the mechanism to work. It would be
5817 * more accurate, but expensive to check per-zone. This check is
5818 * made on memory-hotadd so a system can start with mobility
5819 * disabled and enable it later
5820 */
5821 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5822 page_group_by_mobility_disabled = 1;
5823 else
5824 page_group_by_mobility_disabled = 0;
5825
5826 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5827 nr_online_nodes,
5828 page_group_by_mobility_disabled ? "off" : "on",
5829 vm_total_pages);
5830 #ifdef CONFIG_NUMA
5831 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5832 #endif
5833 }
5834
5835 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5836 static bool __meminit
5837 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5838 {
5839 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5840 static struct memblock_region *r;
5841
5842 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5843 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5844 for_each_memblock(memory, r) {
5845 if (*pfn < memblock_region_memory_end_pfn(r))
5846 break;
5847 }
5848 }
5849 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5850 memblock_is_mirror(r)) {
5851 *pfn = memblock_region_memory_end_pfn(r);
5852 return true;
5853 }
5854 }
5855 #endif
5856 return false;
5857 }
5858
5859 /*
5860 * Initially all pages are reserved - free ones are freed
5861 * up by memblock_free_all() once the early boot process is
5862 * done. Non-atomic initialization, single-pass.
5863 */
5864 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5865 unsigned long start_pfn, enum memmap_context context,
5866 struct vmem_altmap *altmap)
5867 {
5868 unsigned long pfn, end_pfn = start_pfn + size;
5869 struct page *page;
5870
5871 if (highest_memmap_pfn < end_pfn - 1)
5872 highest_memmap_pfn = end_pfn - 1;
5873
5874 #ifdef CONFIG_ZONE_DEVICE
5875 /*
5876 * Honor reservation requested by the driver for this ZONE_DEVICE
5877 * memory. We limit the total number of pages to initialize to just
5878 * those that might contain the memory mapping. We will defer the
5879 * ZONE_DEVICE page initialization until after we have released
5880 * the hotplug lock.
5881 */
5882 if (zone == ZONE_DEVICE) {
5883 if (!altmap)
5884 return;
5885
5886 if (start_pfn == altmap->base_pfn)
5887 start_pfn += altmap->reserve;
5888 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5889 }
5890 #endif
5891
5892 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5893 /*
5894 * There can be holes in boot-time mem_map[]s handed to this
5895 * function. They do not exist on hotplugged memory.
5896 */
5897 if (context == MEMMAP_EARLY) {
5898 if (!early_pfn_valid(pfn))
5899 continue;
5900 if (!early_pfn_in_nid(pfn, nid))
5901 continue;
5902 if (overlap_memmap_init(zone, &pfn))
5903 continue;
5904 if (defer_init(nid, pfn, end_pfn))
5905 break;
5906 }
5907
5908 page = pfn_to_page(pfn);
5909 __init_single_page(page, pfn, zone, nid);
5910 if (context == MEMMAP_HOTPLUG)
5911 __SetPageReserved(page);
5912
5913 /*
5914 * Mark the block movable so that blocks are reserved for
5915 * movable at startup. This will force kernel allocations
5916 * to reserve their blocks rather than leaking throughout
5917 * the address space during boot when many long-lived
5918 * kernel allocations are made.
5919 *
5920 * bitmap is created for zone's valid pfn range. but memmap
5921 * can be created for invalid pages (for alignment)
5922 * check here not to call set_pageblock_migratetype() against
5923 * pfn out of zone.
5924 */
5925 if (!(pfn & (pageblock_nr_pages - 1))) {
5926 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5927 cond_resched();
5928 }
5929 }
5930 }
5931
5932 #ifdef CONFIG_ZONE_DEVICE
5933 void __ref memmap_init_zone_device(struct zone *zone,
5934 unsigned long start_pfn,
5935 unsigned long size,
5936 struct dev_pagemap *pgmap)
5937 {
5938 unsigned long pfn, end_pfn = start_pfn + size;
5939 struct pglist_data *pgdat = zone->zone_pgdat;
5940 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5941 unsigned long zone_idx = zone_idx(zone);
5942 unsigned long start = jiffies;
5943 int nid = pgdat->node_id;
5944
5945 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5946 return;
5947
5948 /*
5949 * The call to memmap_init_zone should have already taken care
5950 * of the pages reserved for the memmap, so we can just jump to
5951 * the end of that region and start processing the device pages.
5952 */
5953 if (altmap) {
5954 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5955 size = end_pfn - start_pfn;
5956 }
5957
5958 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5959 struct page *page = pfn_to_page(pfn);
5960
5961 __init_single_page(page, pfn, zone_idx, nid);
5962
5963 /*
5964 * Mark page reserved as it will need to wait for onlining
5965 * phase for it to be fully associated with a zone.
5966 *
5967 * We can use the non-atomic __set_bit operation for setting
5968 * the flag as we are still initializing the pages.
5969 */
5970 __SetPageReserved(page);
5971
5972 /*
5973 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5974 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5975 * ever freed or placed on a driver-private list.
5976 */
5977 page->pgmap = pgmap;
5978 page->zone_device_data = NULL;
5979
5980 /*
5981 * Mark the block movable so that blocks are reserved for
5982 * movable at startup. This will force kernel allocations
5983 * to reserve their blocks rather than leaking throughout
5984 * the address space during boot when many long-lived
5985 * kernel allocations are made.
5986 *
5987 * bitmap is created for zone's valid pfn range. but memmap
5988 * can be created for invalid pages (for alignment)
5989 * check here not to call set_pageblock_migratetype() against
5990 * pfn out of zone.
5991 *
5992 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5993 * because this is done early in section_activate()
5994 */
5995 if (!(pfn & (pageblock_nr_pages - 1))) {
5996 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5997 cond_resched();
5998 }
5999 }
6000
6001 pr_info("%s initialised %lu pages in %ums\n", __func__,
6002 size, jiffies_to_msecs(jiffies - start));
6003 }
6004
6005 #endif
6006 static void __meminit zone_init_free_lists(struct zone *zone)
6007 {
6008 unsigned int order, t;
6009 for_each_migratetype_order(order, t) {
6010 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6011 zone->free_area[order].nr_free = 0;
6012 }
6013 }
6014
6015 void __meminit __weak memmap_init(unsigned long size, int nid,
6016 unsigned long zone, unsigned long start_pfn)
6017 {
6018 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6019 }
6020
6021 static int zone_batchsize(struct zone *zone)
6022 {
6023 #ifdef CONFIG_MMU
6024 int batch;
6025
6026 /*
6027 * The per-cpu-pages pools are set to around 1000th of the
6028 * size of the zone.
6029 */
6030 batch = zone_managed_pages(zone) / 1024;
6031 /* But no more than a meg. */
6032 if (batch * PAGE_SIZE > 1024 * 1024)
6033 batch = (1024 * 1024) / PAGE_SIZE;
6034 batch /= 4; /* We effectively *= 4 below */
6035 if (batch < 1)
6036 batch = 1;
6037
6038 /*
6039 * Clamp the batch to a 2^n - 1 value. Having a power
6040 * of 2 value was found to be more likely to have
6041 * suboptimal cache aliasing properties in some cases.
6042 *
6043 * For example if 2 tasks are alternately allocating
6044 * batches of pages, one task can end up with a lot
6045 * of pages of one half of the possible page colors
6046 * and the other with pages of the other colors.
6047 */
6048 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6049
6050 return batch;
6051
6052 #else
6053 /* The deferral and batching of frees should be suppressed under NOMMU
6054 * conditions.
6055 *
6056 * The problem is that NOMMU needs to be able to allocate large chunks
6057 * of contiguous memory as there's no hardware page translation to
6058 * assemble apparent contiguous memory from discontiguous pages.
6059 *
6060 * Queueing large contiguous runs of pages for batching, however,
6061 * causes the pages to actually be freed in smaller chunks. As there
6062 * can be a significant delay between the individual batches being
6063 * recycled, this leads to the once large chunks of space being
6064 * fragmented and becoming unavailable for high-order allocations.
6065 */
6066 return 0;
6067 #endif
6068 }
6069
6070 /*
6071 * pcp->high and pcp->batch values are related and dependent on one another:
6072 * ->batch must never be higher then ->high.
6073 * The following function updates them in a safe manner without read side
6074 * locking.
6075 *
6076 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6077 * those fields changing asynchronously (acording the the above rule).
6078 *
6079 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6080 * outside of boot time (or some other assurance that no concurrent updaters
6081 * exist).
6082 */
6083 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6084 unsigned long batch)
6085 {
6086 /* start with a fail safe value for batch */
6087 pcp->batch = 1;
6088 smp_wmb();
6089
6090 /* Update high, then batch, in order */
6091 pcp->high = high;
6092 smp_wmb();
6093
6094 pcp->batch = batch;
6095 }
6096
6097 /* a companion to pageset_set_high() */
6098 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6099 {
6100 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6101 }
6102
6103 static void pageset_init(struct per_cpu_pageset *p)
6104 {
6105 struct per_cpu_pages *pcp;
6106 int migratetype;
6107
6108 memset(p, 0, sizeof(*p));
6109
6110 pcp = &p->pcp;
6111 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6112 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6113 }
6114
6115 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6116 {
6117 pageset_init(p);
6118 pageset_set_batch(p, batch);
6119 }
6120
6121 /*
6122 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6123 * to the value high for the pageset p.
6124 */
6125 static void pageset_set_high(struct per_cpu_pageset *p,
6126 unsigned long high)
6127 {
6128 unsigned long batch = max(1UL, high / 4);
6129 if ((high / 4) > (PAGE_SHIFT * 8))
6130 batch = PAGE_SHIFT * 8;
6131
6132 pageset_update(&p->pcp, high, batch);
6133 }
6134
6135 static void pageset_set_high_and_batch(struct zone *zone,
6136 struct per_cpu_pageset *pcp)
6137 {
6138 if (percpu_pagelist_fraction)
6139 pageset_set_high(pcp,
6140 (zone_managed_pages(zone) /
6141 percpu_pagelist_fraction));
6142 else
6143 pageset_set_batch(pcp, zone_batchsize(zone));
6144 }
6145
6146 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6147 {
6148 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6149
6150 pageset_init(pcp);
6151 pageset_set_high_and_batch(zone, pcp);
6152 }
6153
6154 void __meminit setup_zone_pageset(struct zone *zone)
6155 {
6156 int cpu;
6157 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6158 for_each_possible_cpu(cpu)
6159 zone_pageset_init(zone, cpu);
6160 }
6161
6162 /*
6163 * Allocate per cpu pagesets and initialize them.
6164 * Before this call only boot pagesets were available.
6165 */
6166 void __init setup_per_cpu_pageset(void)
6167 {
6168 struct pglist_data *pgdat;
6169 struct zone *zone;
6170
6171 for_each_populated_zone(zone)
6172 setup_zone_pageset(zone);
6173
6174 for_each_online_pgdat(pgdat)
6175 pgdat->per_cpu_nodestats =
6176 alloc_percpu(struct per_cpu_nodestat);
6177 }
6178
6179 static __meminit void zone_pcp_init(struct zone *zone)
6180 {
6181 /*
6182 * per cpu subsystem is not up at this point. The following code
6183 * relies on the ability of the linker to provide the
6184 * offset of a (static) per cpu variable into the per cpu area.
6185 */
6186 zone->pageset = &boot_pageset;
6187
6188 if (populated_zone(zone))
6189 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6190 zone->name, zone->present_pages,
6191 zone_batchsize(zone));
6192 }
6193
6194 void __meminit init_currently_empty_zone(struct zone *zone,
6195 unsigned long zone_start_pfn,
6196 unsigned long size)
6197 {
6198 struct pglist_data *pgdat = zone->zone_pgdat;
6199 int zone_idx = zone_idx(zone) + 1;
6200
6201 if (zone_idx > pgdat->nr_zones)
6202 pgdat->nr_zones = zone_idx;
6203
6204 zone->zone_start_pfn = zone_start_pfn;
6205
6206 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6207 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6208 pgdat->node_id,
6209 (unsigned long)zone_idx(zone),
6210 zone_start_pfn, (zone_start_pfn + size));
6211
6212 zone_init_free_lists(zone);
6213 zone->initialized = 1;
6214 }
6215
6216 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6217 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6218
6219 /*
6220 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6221 */
6222 int __meminit __early_pfn_to_nid(unsigned long pfn,
6223 struct mminit_pfnnid_cache *state)
6224 {
6225 unsigned long start_pfn, end_pfn;
6226 int nid;
6227
6228 if (state->last_start <= pfn && pfn < state->last_end)
6229 return state->last_nid;
6230
6231 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6232 if (nid != NUMA_NO_NODE) {
6233 state->last_start = start_pfn;
6234 state->last_end = end_pfn;
6235 state->last_nid = nid;
6236 }
6237
6238 return nid;
6239 }
6240 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6241
6242 /**
6243 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6244 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6245 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6246 *
6247 * If an architecture guarantees that all ranges registered contain no holes
6248 * and may be freed, this this function may be used instead of calling
6249 * memblock_free_early_nid() manually.
6250 */
6251 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6252 {
6253 unsigned long start_pfn, end_pfn;
6254 int i, this_nid;
6255
6256 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6257 start_pfn = min(start_pfn, max_low_pfn);
6258 end_pfn = min(end_pfn, max_low_pfn);
6259
6260 if (start_pfn < end_pfn)
6261 memblock_free_early_nid(PFN_PHYS(start_pfn),
6262 (end_pfn - start_pfn) << PAGE_SHIFT,
6263 this_nid);
6264 }
6265 }
6266
6267 /**
6268 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6269 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6270 *
6271 * If an architecture guarantees that all ranges registered contain no holes and may
6272 * be freed, this function may be used instead of calling memory_present() manually.
6273 */
6274 void __init sparse_memory_present_with_active_regions(int nid)
6275 {
6276 unsigned long start_pfn, end_pfn;
6277 int i, this_nid;
6278
6279 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6280 memory_present(this_nid, start_pfn, end_pfn);
6281 }
6282
6283 /**
6284 * get_pfn_range_for_nid - Return the start and end page frames for a node
6285 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6286 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6287 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6288 *
6289 * It returns the start and end page frame of a node based on information
6290 * provided by memblock_set_node(). If called for a node
6291 * with no available memory, a warning is printed and the start and end
6292 * PFNs will be 0.
6293 */
6294 void __init get_pfn_range_for_nid(unsigned int nid,
6295 unsigned long *start_pfn, unsigned long *end_pfn)
6296 {
6297 unsigned long this_start_pfn, this_end_pfn;
6298 int i;
6299
6300 *start_pfn = -1UL;
6301 *end_pfn = 0;
6302
6303 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6304 *start_pfn = min(*start_pfn, this_start_pfn);
6305 *end_pfn = max(*end_pfn, this_end_pfn);
6306 }
6307
6308 if (*start_pfn == -1UL)
6309 *start_pfn = 0;
6310 }
6311
6312 /*
6313 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6314 * assumption is made that zones within a node are ordered in monotonic
6315 * increasing memory addresses so that the "highest" populated zone is used
6316 */
6317 static void __init find_usable_zone_for_movable(void)
6318 {
6319 int zone_index;
6320 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6321 if (zone_index == ZONE_MOVABLE)
6322 continue;
6323
6324 if (arch_zone_highest_possible_pfn[zone_index] >
6325 arch_zone_lowest_possible_pfn[zone_index])
6326 break;
6327 }
6328
6329 VM_BUG_ON(zone_index == -1);
6330 movable_zone = zone_index;
6331 }
6332
6333 /*
6334 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6335 * because it is sized independent of architecture. Unlike the other zones,
6336 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6337 * in each node depending on the size of each node and how evenly kernelcore
6338 * is distributed. This helper function adjusts the zone ranges
6339 * provided by the architecture for a given node by using the end of the
6340 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6341 * zones within a node are in order of monotonic increases memory addresses
6342 */
6343 static void __init adjust_zone_range_for_zone_movable(int nid,
6344 unsigned long zone_type,
6345 unsigned long node_start_pfn,
6346 unsigned long node_end_pfn,
6347 unsigned long *zone_start_pfn,
6348 unsigned long *zone_end_pfn)
6349 {
6350 /* Only adjust if ZONE_MOVABLE is on this node */
6351 if (zone_movable_pfn[nid]) {
6352 /* Size ZONE_MOVABLE */
6353 if (zone_type == ZONE_MOVABLE) {
6354 *zone_start_pfn = zone_movable_pfn[nid];
6355 *zone_end_pfn = min(node_end_pfn,
6356 arch_zone_highest_possible_pfn[movable_zone]);
6357
6358 /* Adjust for ZONE_MOVABLE starting within this range */
6359 } else if (!mirrored_kernelcore &&
6360 *zone_start_pfn < zone_movable_pfn[nid] &&
6361 *zone_end_pfn > zone_movable_pfn[nid]) {
6362 *zone_end_pfn = zone_movable_pfn[nid];
6363
6364 /* Check if this whole range is within ZONE_MOVABLE */
6365 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6366 *zone_start_pfn = *zone_end_pfn;
6367 }
6368 }
6369
6370 /*
6371 * Return the number of pages a zone spans in a node, including holes
6372 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6373 */
6374 static unsigned long __init zone_spanned_pages_in_node(int nid,
6375 unsigned long zone_type,
6376 unsigned long node_start_pfn,
6377 unsigned long node_end_pfn,
6378 unsigned long *zone_start_pfn,
6379 unsigned long *zone_end_pfn,
6380 unsigned long *ignored)
6381 {
6382 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6383 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6384 /* When hotadd a new node from cpu_up(), the node should be empty */
6385 if (!node_start_pfn && !node_end_pfn)
6386 return 0;
6387
6388 /* Get the start and end of the zone */
6389 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6390 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6391 adjust_zone_range_for_zone_movable(nid, zone_type,
6392 node_start_pfn, node_end_pfn,
6393 zone_start_pfn, zone_end_pfn);
6394
6395 /* Check that this node has pages within the zone's required range */
6396 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6397 return 0;
6398
6399 /* Move the zone boundaries inside the node if necessary */
6400 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6401 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6402
6403 /* Return the spanned pages */
6404 return *zone_end_pfn - *zone_start_pfn;
6405 }
6406
6407 /*
6408 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6409 * then all holes in the requested range will be accounted for.
6410 */
6411 unsigned long __init __absent_pages_in_range(int nid,
6412 unsigned long range_start_pfn,
6413 unsigned long range_end_pfn)
6414 {
6415 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6416 unsigned long start_pfn, end_pfn;
6417 int i;
6418
6419 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6420 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6421 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6422 nr_absent -= end_pfn - start_pfn;
6423 }
6424 return nr_absent;
6425 }
6426
6427 /**
6428 * absent_pages_in_range - Return number of page frames in holes within a range
6429 * @start_pfn: The start PFN to start searching for holes
6430 * @end_pfn: The end PFN to stop searching for holes
6431 *
6432 * Return: the number of pages frames in memory holes within a range.
6433 */
6434 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6435 unsigned long end_pfn)
6436 {
6437 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6438 }
6439
6440 /* Return the number of page frames in holes in a zone on a node */
6441 static unsigned long __init zone_absent_pages_in_node(int nid,
6442 unsigned long zone_type,
6443 unsigned long node_start_pfn,
6444 unsigned long node_end_pfn,
6445 unsigned long *ignored)
6446 {
6447 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6448 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6449 unsigned long zone_start_pfn, zone_end_pfn;
6450 unsigned long nr_absent;
6451
6452 /* When hotadd a new node from cpu_up(), the node should be empty */
6453 if (!node_start_pfn && !node_end_pfn)
6454 return 0;
6455
6456 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6457 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6458
6459 adjust_zone_range_for_zone_movable(nid, zone_type,
6460 node_start_pfn, node_end_pfn,
6461 &zone_start_pfn, &zone_end_pfn);
6462 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6463
6464 /*
6465 * ZONE_MOVABLE handling.
6466 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6467 * and vice versa.
6468 */
6469 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6470 unsigned long start_pfn, end_pfn;
6471 struct memblock_region *r;
6472
6473 for_each_memblock(memory, r) {
6474 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6475 zone_start_pfn, zone_end_pfn);
6476 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6477 zone_start_pfn, zone_end_pfn);
6478
6479 if (zone_type == ZONE_MOVABLE &&
6480 memblock_is_mirror(r))
6481 nr_absent += end_pfn - start_pfn;
6482
6483 if (zone_type == ZONE_NORMAL &&
6484 !memblock_is_mirror(r))
6485 nr_absent += end_pfn - start_pfn;
6486 }
6487 }
6488
6489 return nr_absent;
6490 }
6491
6492 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6493 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6494 unsigned long zone_type,
6495 unsigned long node_start_pfn,
6496 unsigned long node_end_pfn,
6497 unsigned long *zone_start_pfn,
6498 unsigned long *zone_end_pfn,
6499 unsigned long *zones_size)
6500 {
6501 unsigned int zone;
6502
6503 *zone_start_pfn = node_start_pfn;
6504 for (zone = 0; zone < zone_type; zone++)
6505 *zone_start_pfn += zones_size[zone];
6506
6507 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6508
6509 return zones_size[zone_type];
6510 }
6511
6512 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6513 unsigned long zone_type,
6514 unsigned long node_start_pfn,
6515 unsigned long node_end_pfn,
6516 unsigned long *zholes_size)
6517 {
6518 if (!zholes_size)
6519 return 0;
6520
6521 return zholes_size[zone_type];
6522 }
6523
6524 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6525
6526 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6527 unsigned long node_start_pfn,
6528 unsigned long node_end_pfn,
6529 unsigned long *zones_size,
6530 unsigned long *zholes_size)
6531 {
6532 unsigned long realtotalpages = 0, totalpages = 0;
6533 enum zone_type i;
6534
6535 for (i = 0; i < MAX_NR_ZONES; i++) {
6536 struct zone *zone = pgdat->node_zones + i;
6537 unsigned long zone_start_pfn, zone_end_pfn;
6538 unsigned long size, real_size;
6539
6540 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6541 node_start_pfn,
6542 node_end_pfn,
6543 &zone_start_pfn,
6544 &zone_end_pfn,
6545 zones_size);
6546 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6547 node_start_pfn, node_end_pfn,
6548 zholes_size);
6549 if (size)
6550 zone->zone_start_pfn = zone_start_pfn;
6551 else
6552 zone->zone_start_pfn = 0;
6553 zone->spanned_pages = size;
6554 zone->present_pages = real_size;
6555
6556 totalpages += size;
6557 realtotalpages += real_size;
6558 }
6559
6560 pgdat->node_spanned_pages = totalpages;
6561 pgdat->node_present_pages = realtotalpages;
6562 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6563 realtotalpages);
6564 }
6565
6566 #ifndef CONFIG_SPARSEMEM
6567 /*
6568 * Calculate the size of the zone->blockflags rounded to an unsigned long
6569 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6570 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6571 * round what is now in bits to nearest long in bits, then return it in
6572 * bytes.
6573 */
6574 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6575 {
6576 unsigned long usemapsize;
6577
6578 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6579 usemapsize = roundup(zonesize, pageblock_nr_pages);
6580 usemapsize = usemapsize >> pageblock_order;
6581 usemapsize *= NR_PAGEBLOCK_BITS;
6582 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6583
6584 return usemapsize / 8;
6585 }
6586
6587 static void __ref setup_usemap(struct pglist_data *pgdat,
6588 struct zone *zone,
6589 unsigned long zone_start_pfn,
6590 unsigned long zonesize)
6591 {
6592 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6593 zone->pageblock_flags = NULL;
6594 if (usemapsize) {
6595 zone->pageblock_flags =
6596 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6597 pgdat->node_id);
6598 if (!zone->pageblock_flags)
6599 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6600 usemapsize, zone->name, pgdat->node_id);
6601 }
6602 }
6603 #else
6604 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6605 unsigned long zone_start_pfn, unsigned long zonesize) {}
6606 #endif /* CONFIG_SPARSEMEM */
6607
6608 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6609
6610 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6611 void __init set_pageblock_order(void)
6612 {
6613 unsigned int order;
6614
6615 /* Check that pageblock_nr_pages has not already been setup */
6616 if (pageblock_order)
6617 return;
6618
6619 if (HPAGE_SHIFT > PAGE_SHIFT)
6620 order = HUGETLB_PAGE_ORDER;
6621 else
6622 order = MAX_ORDER - 1;
6623
6624 /*
6625 * Assume the largest contiguous order of interest is a huge page.
6626 * This value may be variable depending on boot parameters on IA64 and
6627 * powerpc.
6628 */
6629 pageblock_order = order;
6630 }
6631 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6632
6633 /*
6634 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6635 * is unused as pageblock_order is set at compile-time. See
6636 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6637 * the kernel config
6638 */
6639 void __init set_pageblock_order(void)
6640 {
6641 }
6642
6643 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6644
6645 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6646 unsigned long present_pages)
6647 {
6648 unsigned long pages = spanned_pages;
6649
6650 /*
6651 * Provide a more accurate estimation if there are holes within
6652 * the zone and SPARSEMEM is in use. If there are holes within the
6653 * zone, each populated memory region may cost us one or two extra
6654 * memmap pages due to alignment because memmap pages for each
6655 * populated regions may not be naturally aligned on page boundary.
6656 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6657 */
6658 if (spanned_pages > present_pages + (present_pages >> 4) &&
6659 IS_ENABLED(CONFIG_SPARSEMEM))
6660 pages = present_pages;
6661
6662 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6663 }
6664
6665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6666 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6667 {
6668 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6669
6670 spin_lock_init(&ds_queue->split_queue_lock);
6671 INIT_LIST_HEAD(&ds_queue->split_queue);
6672 ds_queue->split_queue_len = 0;
6673 }
6674 #else
6675 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6676 #endif
6677
6678 #ifdef CONFIG_COMPACTION
6679 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6680 {
6681 init_waitqueue_head(&pgdat->kcompactd_wait);
6682 }
6683 #else
6684 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6685 #endif
6686
6687 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6688 {
6689 pgdat_resize_init(pgdat);
6690
6691 pgdat_init_split_queue(pgdat);
6692 pgdat_init_kcompactd(pgdat);
6693
6694 init_waitqueue_head(&pgdat->kswapd_wait);
6695 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6696
6697 pgdat_page_ext_init(pgdat);
6698 spin_lock_init(&pgdat->lru_lock);
6699 lruvec_init(node_lruvec(pgdat));
6700 }
6701
6702 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6703 unsigned long remaining_pages)
6704 {
6705 atomic_long_set(&zone->managed_pages, remaining_pages);
6706 zone_set_nid(zone, nid);
6707 zone->name = zone_names[idx];
6708 zone->zone_pgdat = NODE_DATA(nid);
6709 spin_lock_init(&zone->lock);
6710 zone_seqlock_init(zone);
6711 zone_pcp_init(zone);
6712 }
6713
6714 /*
6715 * Set up the zone data structures
6716 * - init pgdat internals
6717 * - init all zones belonging to this node
6718 *
6719 * NOTE: this function is only called during memory hotplug
6720 */
6721 #ifdef CONFIG_MEMORY_HOTPLUG
6722 void __ref free_area_init_core_hotplug(int nid)
6723 {
6724 enum zone_type z;
6725 pg_data_t *pgdat = NODE_DATA(nid);
6726
6727 pgdat_init_internals(pgdat);
6728 for (z = 0; z < MAX_NR_ZONES; z++)
6729 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6730 }
6731 #endif
6732
6733 /*
6734 * Set up the zone data structures:
6735 * - mark all pages reserved
6736 * - mark all memory queues empty
6737 * - clear the memory bitmaps
6738 *
6739 * NOTE: pgdat should get zeroed by caller.
6740 * NOTE: this function is only called during early init.
6741 */
6742 static void __init free_area_init_core(struct pglist_data *pgdat)
6743 {
6744 enum zone_type j;
6745 int nid = pgdat->node_id;
6746
6747 pgdat_init_internals(pgdat);
6748 pgdat->per_cpu_nodestats = &boot_nodestats;
6749
6750 for (j = 0; j < MAX_NR_ZONES; j++) {
6751 struct zone *zone = pgdat->node_zones + j;
6752 unsigned long size, freesize, memmap_pages;
6753 unsigned long zone_start_pfn = zone->zone_start_pfn;
6754
6755 size = zone->spanned_pages;
6756 freesize = zone->present_pages;
6757
6758 /*
6759 * Adjust freesize so that it accounts for how much memory
6760 * is used by this zone for memmap. This affects the watermark
6761 * and per-cpu initialisations
6762 */
6763 memmap_pages = calc_memmap_size(size, freesize);
6764 if (!is_highmem_idx(j)) {
6765 if (freesize >= memmap_pages) {
6766 freesize -= memmap_pages;
6767 if (memmap_pages)
6768 printk(KERN_DEBUG
6769 " %s zone: %lu pages used for memmap\n",
6770 zone_names[j], memmap_pages);
6771 } else
6772 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6773 zone_names[j], memmap_pages, freesize);
6774 }
6775
6776 /* Account for reserved pages */
6777 if (j == 0 && freesize > dma_reserve) {
6778 freesize -= dma_reserve;
6779 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6780 zone_names[0], dma_reserve);
6781 }
6782
6783 if (!is_highmem_idx(j))
6784 nr_kernel_pages += freesize;
6785 /* Charge for highmem memmap if there are enough kernel pages */
6786 else if (nr_kernel_pages > memmap_pages * 2)
6787 nr_kernel_pages -= memmap_pages;
6788 nr_all_pages += freesize;
6789
6790 /*
6791 * Set an approximate value for lowmem here, it will be adjusted
6792 * when the bootmem allocator frees pages into the buddy system.
6793 * And all highmem pages will be managed by the buddy system.
6794 */
6795 zone_init_internals(zone, j, nid, freesize);
6796
6797 if (!size)
6798 continue;
6799
6800 set_pageblock_order();
6801 setup_usemap(pgdat, zone, zone_start_pfn, size);
6802 init_currently_empty_zone(zone, zone_start_pfn, size);
6803 memmap_init(size, nid, j, zone_start_pfn);
6804 }
6805 }
6806
6807 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6808 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6809 {
6810 unsigned long __maybe_unused start = 0;
6811 unsigned long __maybe_unused offset = 0;
6812
6813 /* Skip empty nodes */
6814 if (!pgdat->node_spanned_pages)
6815 return;
6816
6817 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6818 offset = pgdat->node_start_pfn - start;
6819 /* ia64 gets its own node_mem_map, before this, without bootmem */
6820 if (!pgdat->node_mem_map) {
6821 unsigned long size, end;
6822 struct page *map;
6823
6824 /*
6825 * The zone's endpoints aren't required to be MAX_ORDER
6826 * aligned but the node_mem_map endpoints must be in order
6827 * for the buddy allocator to function correctly.
6828 */
6829 end = pgdat_end_pfn(pgdat);
6830 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6831 size = (end - start) * sizeof(struct page);
6832 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6833 pgdat->node_id);
6834 if (!map)
6835 panic("Failed to allocate %ld bytes for node %d memory map\n",
6836 size, pgdat->node_id);
6837 pgdat->node_mem_map = map + offset;
6838 }
6839 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6840 __func__, pgdat->node_id, (unsigned long)pgdat,
6841 (unsigned long)pgdat->node_mem_map);
6842 #ifndef CONFIG_NEED_MULTIPLE_NODES
6843 /*
6844 * With no DISCONTIG, the global mem_map is just set as node 0's
6845 */
6846 if (pgdat == NODE_DATA(0)) {
6847 mem_map = NODE_DATA(0)->node_mem_map;
6848 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6849 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6850 mem_map -= offset;
6851 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6852 }
6853 #endif
6854 }
6855 #else
6856 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6857 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6858
6859 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6860 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6861 {
6862 pgdat->first_deferred_pfn = ULONG_MAX;
6863 }
6864 #else
6865 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6866 #endif
6867
6868 void __init free_area_init_node(int nid, unsigned long *zones_size,
6869 unsigned long node_start_pfn,
6870 unsigned long *zholes_size)
6871 {
6872 pg_data_t *pgdat = NODE_DATA(nid);
6873 unsigned long start_pfn = 0;
6874 unsigned long end_pfn = 0;
6875
6876 /* pg_data_t should be reset to zero when it's allocated */
6877 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6878
6879 pgdat->node_id = nid;
6880 pgdat->node_start_pfn = node_start_pfn;
6881 pgdat->per_cpu_nodestats = NULL;
6882 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6883 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6884 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6885 (u64)start_pfn << PAGE_SHIFT,
6886 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6887 #else
6888 start_pfn = node_start_pfn;
6889 #endif
6890 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6891 zones_size, zholes_size);
6892
6893 alloc_node_mem_map(pgdat);
6894 pgdat_set_deferred_range(pgdat);
6895
6896 free_area_init_core(pgdat);
6897 }
6898
6899 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6900 /*
6901 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6902 * pages zeroed
6903 */
6904 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6905 {
6906 unsigned long pfn;
6907 u64 pgcnt = 0;
6908
6909 for (pfn = spfn; pfn < epfn; pfn++) {
6910 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6911 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6912 + pageblock_nr_pages - 1;
6913 continue;
6914 }
6915 mm_zero_struct_page(pfn_to_page(pfn));
6916 pgcnt++;
6917 }
6918
6919 return pgcnt;
6920 }
6921
6922 /*
6923 * Only struct pages that are backed by physical memory are zeroed and
6924 * initialized by going through __init_single_page(). But, there are some
6925 * struct pages which are reserved in memblock allocator and their fields
6926 * may be accessed (for example page_to_pfn() on some configuration accesses
6927 * flags). We must explicitly zero those struct pages.
6928 *
6929 * This function also addresses a similar issue where struct pages are left
6930 * uninitialized because the physical address range is not covered by
6931 * memblock.memory or memblock.reserved. That could happen when memblock
6932 * layout is manually configured via memmap=, or when the highest physical
6933 * address (max_pfn) does not end on a section boundary.
6934 */
6935 void __init zero_resv_unavail(void)
6936 {
6937 phys_addr_t start, end;
6938 u64 i, pgcnt;
6939 phys_addr_t next = 0;
6940
6941 /*
6942 * Loop through unavailable ranges not covered by memblock.memory.
6943 */
6944 pgcnt = 0;
6945 for_each_mem_range(i, &memblock.memory, NULL,
6946 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6947 if (next < start)
6948 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6949 next = end;
6950 }
6951
6952 /*
6953 * Early sections always have a fully populated memmap for the whole
6954 * section - see pfn_valid(). If the last section has holes at the
6955 * end and that section is marked "online", the memmap will be
6956 * considered initialized. Make sure that memmap has a well defined
6957 * state.
6958 */
6959 pgcnt += zero_pfn_range(PFN_DOWN(next),
6960 round_up(max_pfn, PAGES_PER_SECTION));
6961
6962 /*
6963 * Struct pages that do not have backing memory. This could be because
6964 * firmware is using some of this memory, or for some other reasons.
6965 */
6966 if (pgcnt)
6967 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6968 }
6969 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6970
6971 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6972
6973 #if MAX_NUMNODES > 1
6974 /*
6975 * Figure out the number of possible node ids.
6976 */
6977 void __init setup_nr_node_ids(void)
6978 {
6979 unsigned int highest;
6980
6981 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6982 nr_node_ids = highest + 1;
6983 }
6984 #endif
6985
6986 /**
6987 * node_map_pfn_alignment - determine the maximum internode alignment
6988 *
6989 * This function should be called after node map is populated and sorted.
6990 * It calculates the maximum power of two alignment which can distinguish
6991 * all the nodes.
6992 *
6993 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6994 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6995 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6996 * shifted, 1GiB is enough and this function will indicate so.
6997 *
6998 * This is used to test whether pfn -> nid mapping of the chosen memory
6999 * model has fine enough granularity to avoid incorrect mapping for the
7000 * populated node map.
7001 *
7002 * Return: the determined alignment in pfn's. 0 if there is no alignment
7003 * requirement (single node).
7004 */
7005 unsigned long __init node_map_pfn_alignment(void)
7006 {
7007 unsigned long accl_mask = 0, last_end = 0;
7008 unsigned long start, end, mask;
7009 int last_nid = NUMA_NO_NODE;
7010 int i, nid;
7011
7012 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7013 if (!start || last_nid < 0 || last_nid == nid) {
7014 last_nid = nid;
7015 last_end = end;
7016 continue;
7017 }
7018
7019 /*
7020 * Start with a mask granular enough to pin-point to the
7021 * start pfn and tick off bits one-by-one until it becomes
7022 * too coarse to separate the current node from the last.
7023 */
7024 mask = ~((1 << __ffs(start)) - 1);
7025 while (mask && last_end <= (start & (mask << 1)))
7026 mask <<= 1;
7027
7028 /* accumulate all internode masks */
7029 accl_mask |= mask;
7030 }
7031
7032 /* convert mask to number of pages */
7033 return ~accl_mask + 1;
7034 }
7035
7036 /* Find the lowest pfn for a node */
7037 static unsigned long __init find_min_pfn_for_node(int nid)
7038 {
7039 unsigned long min_pfn = ULONG_MAX;
7040 unsigned long start_pfn;
7041 int i;
7042
7043 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7044 min_pfn = min(min_pfn, start_pfn);
7045
7046 if (min_pfn == ULONG_MAX) {
7047 pr_warn("Could not find start_pfn for node %d\n", nid);
7048 return 0;
7049 }
7050
7051 return min_pfn;
7052 }
7053
7054 /**
7055 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7056 *
7057 * Return: the minimum PFN based on information provided via
7058 * memblock_set_node().
7059 */
7060 unsigned long __init find_min_pfn_with_active_regions(void)
7061 {
7062 return find_min_pfn_for_node(MAX_NUMNODES);
7063 }
7064
7065 /*
7066 * early_calculate_totalpages()
7067 * Sum pages in active regions for movable zone.
7068 * Populate N_MEMORY for calculating usable_nodes.
7069 */
7070 static unsigned long __init early_calculate_totalpages(void)
7071 {
7072 unsigned long totalpages = 0;
7073 unsigned long start_pfn, end_pfn;
7074 int i, nid;
7075
7076 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7077 unsigned long pages = end_pfn - start_pfn;
7078
7079 totalpages += pages;
7080 if (pages)
7081 node_set_state(nid, N_MEMORY);
7082 }
7083 return totalpages;
7084 }
7085
7086 /*
7087 * Find the PFN the Movable zone begins in each node. Kernel memory
7088 * is spread evenly between nodes as long as the nodes have enough
7089 * memory. When they don't, some nodes will have more kernelcore than
7090 * others
7091 */
7092 static void __init find_zone_movable_pfns_for_nodes(void)
7093 {
7094 int i, nid;
7095 unsigned long usable_startpfn;
7096 unsigned long kernelcore_node, kernelcore_remaining;
7097 /* save the state before borrow the nodemask */
7098 nodemask_t saved_node_state = node_states[N_MEMORY];
7099 unsigned long totalpages = early_calculate_totalpages();
7100 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7101 struct memblock_region *r;
7102
7103 /* Need to find movable_zone earlier when movable_node is specified. */
7104 find_usable_zone_for_movable();
7105
7106 /*
7107 * If movable_node is specified, ignore kernelcore and movablecore
7108 * options.
7109 */
7110 if (movable_node_is_enabled()) {
7111 for_each_memblock(memory, r) {
7112 if (!memblock_is_hotpluggable(r))
7113 continue;
7114
7115 nid = r->nid;
7116
7117 usable_startpfn = PFN_DOWN(r->base);
7118 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7119 min(usable_startpfn, zone_movable_pfn[nid]) :
7120 usable_startpfn;
7121 }
7122
7123 goto out2;
7124 }
7125
7126 /*
7127 * If kernelcore=mirror is specified, ignore movablecore option
7128 */
7129 if (mirrored_kernelcore) {
7130 bool mem_below_4gb_not_mirrored = false;
7131
7132 for_each_memblock(memory, r) {
7133 if (memblock_is_mirror(r))
7134 continue;
7135
7136 nid = r->nid;
7137
7138 usable_startpfn = memblock_region_memory_base_pfn(r);
7139
7140 if (usable_startpfn < 0x100000) {
7141 mem_below_4gb_not_mirrored = true;
7142 continue;
7143 }
7144
7145 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7146 min(usable_startpfn, zone_movable_pfn[nid]) :
7147 usable_startpfn;
7148 }
7149
7150 if (mem_below_4gb_not_mirrored)
7151 pr_warn("This configuration results in unmirrored kernel memory.");
7152
7153 goto out2;
7154 }
7155
7156 /*
7157 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7158 * amount of necessary memory.
7159 */
7160 if (required_kernelcore_percent)
7161 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7162 10000UL;
7163 if (required_movablecore_percent)
7164 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7165 10000UL;
7166
7167 /*
7168 * If movablecore= was specified, calculate what size of
7169 * kernelcore that corresponds so that memory usable for
7170 * any allocation type is evenly spread. If both kernelcore
7171 * and movablecore are specified, then the value of kernelcore
7172 * will be used for required_kernelcore if it's greater than
7173 * what movablecore would have allowed.
7174 */
7175 if (required_movablecore) {
7176 unsigned long corepages;
7177
7178 /*
7179 * Round-up so that ZONE_MOVABLE is at least as large as what
7180 * was requested by the user
7181 */
7182 required_movablecore =
7183 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7184 required_movablecore = min(totalpages, required_movablecore);
7185 corepages = totalpages - required_movablecore;
7186
7187 required_kernelcore = max(required_kernelcore, corepages);
7188 }
7189
7190 /*
7191 * If kernelcore was not specified or kernelcore size is larger
7192 * than totalpages, there is no ZONE_MOVABLE.
7193 */
7194 if (!required_kernelcore || required_kernelcore >= totalpages)
7195 goto out;
7196
7197 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7198 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7199
7200 restart:
7201 /* Spread kernelcore memory as evenly as possible throughout nodes */
7202 kernelcore_node = required_kernelcore / usable_nodes;
7203 for_each_node_state(nid, N_MEMORY) {
7204 unsigned long start_pfn, end_pfn;
7205
7206 /*
7207 * Recalculate kernelcore_node if the division per node
7208 * now exceeds what is necessary to satisfy the requested
7209 * amount of memory for the kernel
7210 */
7211 if (required_kernelcore < kernelcore_node)
7212 kernelcore_node = required_kernelcore / usable_nodes;
7213
7214 /*
7215 * As the map is walked, we track how much memory is usable
7216 * by the kernel using kernelcore_remaining. When it is
7217 * 0, the rest of the node is usable by ZONE_MOVABLE
7218 */
7219 kernelcore_remaining = kernelcore_node;
7220
7221 /* Go through each range of PFNs within this node */
7222 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7223 unsigned long size_pages;
7224
7225 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7226 if (start_pfn >= end_pfn)
7227 continue;
7228
7229 /* Account for what is only usable for kernelcore */
7230 if (start_pfn < usable_startpfn) {
7231 unsigned long kernel_pages;
7232 kernel_pages = min(end_pfn, usable_startpfn)
7233 - start_pfn;
7234
7235 kernelcore_remaining -= min(kernel_pages,
7236 kernelcore_remaining);
7237 required_kernelcore -= min(kernel_pages,
7238 required_kernelcore);
7239
7240 /* Continue if range is now fully accounted */
7241 if (end_pfn <= usable_startpfn) {
7242
7243 /*
7244 * Push zone_movable_pfn to the end so
7245 * that if we have to rebalance
7246 * kernelcore across nodes, we will
7247 * not double account here
7248 */
7249 zone_movable_pfn[nid] = end_pfn;
7250 continue;
7251 }
7252 start_pfn = usable_startpfn;
7253 }
7254
7255 /*
7256 * The usable PFN range for ZONE_MOVABLE is from
7257 * start_pfn->end_pfn. Calculate size_pages as the
7258 * number of pages used as kernelcore
7259 */
7260 size_pages = end_pfn - start_pfn;
7261 if (size_pages > kernelcore_remaining)
7262 size_pages = kernelcore_remaining;
7263 zone_movable_pfn[nid] = start_pfn + size_pages;
7264
7265 /*
7266 * Some kernelcore has been met, update counts and
7267 * break if the kernelcore for this node has been
7268 * satisfied
7269 */
7270 required_kernelcore -= min(required_kernelcore,
7271 size_pages);
7272 kernelcore_remaining -= size_pages;
7273 if (!kernelcore_remaining)
7274 break;
7275 }
7276 }
7277
7278 /*
7279 * If there is still required_kernelcore, we do another pass with one
7280 * less node in the count. This will push zone_movable_pfn[nid] further
7281 * along on the nodes that still have memory until kernelcore is
7282 * satisfied
7283 */
7284 usable_nodes--;
7285 if (usable_nodes && required_kernelcore > usable_nodes)
7286 goto restart;
7287
7288 out2:
7289 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7290 for (nid = 0; nid < MAX_NUMNODES; nid++)
7291 zone_movable_pfn[nid] =
7292 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7293
7294 out:
7295 /* restore the node_state */
7296 node_states[N_MEMORY] = saved_node_state;
7297 }
7298
7299 /* Any regular or high memory on that node ? */
7300 static void check_for_memory(pg_data_t *pgdat, int nid)
7301 {
7302 enum zone_type zone_type;
7303
7304 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7305 struct zone *zone = &pgdat->node_zones[zone_type];
7306 if (populated_zone(zone)) {
7307 if (IS_ENABLED(CONFIG_HIGHMEM))
7308 node_set_state(nid, N_HIGH_MEMORY);
7309 if (zone_type <= ZONE_NORMAL)
7310 node_set_state(nid, N_NORMAL_MEMORY);
7311 break;
7312 }
7313 }
7314 }
7315
7316 /**
7317 * free_area_init_nodes - Initialise all pg_data_t and zone data
7318 * @max_zone_pfn: an array of max PFNs for each zone
7319 *
7320 * This will call free_area_init_node() for each active node in the system.
7321 * Using the page ranges provided by memblock_set_node(), the size of each
7322 * zone in each node and their holes is calculated. If the maximum PFN
7323 * between two adjacent zones match, it is assumed that the zone is empty.
7324 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7325 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7326 * starts where the previous one ended. For example, ZONE_DMA32 starts
7327 * at arch_max_dma_pfn.
7328 */
7329 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7330 {
7331 unsigned long start_pfn, end_pfn;
7332 int i, nid;
7333
7334 /* Record where the zone boundaries are */
7335 memset(arch_zone_lowest_possible_pfn, 0,
7336 sizeof(arch_zone_lowest_possible_pfn));
7337 memset(arch_zone_highest_possible_pfn, 0,
7338 sizeof(arch_zone_highest_possible_pfn));
7339
7340 start_pfn = find_min_pfn_with_active_regions();
7341
7342 for (i = 0; i < MAX_NR_ZONES; i++) {
7343 if (i == ZONE_MOVABLE)
7344 continue;
7345
7346 end_pfn = max(max_zone_pfn[i], start_pfn);
7347 arch_zone_lowest_possible_pfn[i] = start_pfn;
7348 arch_zone_highest_possible_pfn[i] = end_pfn;
7349
7350 start_pfn = end_pfn;
7351 }
7352
7353 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7354 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7355 find_zone_movable_pfns_for_nodes();
7356
7357 /* Print out the zone ranges */
7358 pr_info("Zone ranges:\n");
7359 for (i = 0; i < MAX_NR_ZONES; i++) {
7360 if (i == ZONE_MOVABLE)
7361 continue;
7362 pr_info(" %-8s ", zone_names[i]);
7363 if (arch_zone_lowest_possible_pfn[i] ==
7364 arch_zone_highest_possible_pfn[i])
7365 pr_cont("empty\n");
7366 else
7367 pr_cont("[mem %#018Lx-%#018Lx]\n",
7368 (u64)arch_zone_lowest_possible_pfn[i]
7369 << PAGE_SHIFT,
7370 ((u64)arch_zone_highest_possible_pfn[i]
7371 << PAGE_SHIFT) - 1);
7372 }
7373
7374 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7375 pr_info("Movable zone start for each node\n");
7376 for (i = 0; i < MAX_NUMNODES; i++) {
7377 if (zone_movable_pfn[i])
7378 pr_info(" Node %d: %#018Lx\n", i,
7379 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7380 }
7381
7382 /*
7383 * Print out the early node map, and initialize the
7384 * subsection-map relative to active online memory ranges to
7385 * enable future "sub-section" extensions of the memory map.
7386 */
7387 pr_info("Early memory node ranges\n");
7388 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7389 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7390 (u64)start_pfn << PAGE_SHIFT,
7391 ((u64)end_pfn << PAGE_SHIFT) - 1);
7392 subsection_map_init(start_pfn, end_pfn - start_pfn);
7393 }
7394
7395 /* Initialise every node */
7396 mminit_verify_pageflags_layout();
7397 setup_nr_node_ids();
7398 zero_resv_unavail();
7399 for_each_online_node(nid) {
7400 pg_data_t *pgdat = NODE_DATA(nid);
7401 free_area_init_node(nid, NULL,
7402 find_min_pfn_for_node(nid), NULL);
7403
7404 /* Any memory on that node */
7405 if (pgdat->node_present_pages)
7406 node_set_state(nid, N_MEMORY);
7407 check_for_memory(pgdat, nid);
7408 }
7409 }
7410
7411 static int __init cmdline_parse_core(char *p, unsigned long *core,
7412 unsigned long *percent)
7413 {
7414 unsigned long long coremem;
7415 char *endptr;
7416
7417 if (!p)
7418 return -EINVAL;
7419
7420 /* Value may be a percentage of total memory, otherwise bytes */
7421 coremem = simple_strtoull(p, &endptr, 0);
7422 if (*endptr == '%') {
7423 /* Paranoid check for percent values greater than 100 */
7424 WARN_ON(coremem > 100);
7425
7426 *percent = coremem;
7427 } else {
7428 coremem = memparse(p, &p);
7429 /* Paranoid check that UL is enough for the coremem value */
7430 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7431
7432 *core = coremem >> PAGE_SHIFT;
7433 *percent = 0UL;
7434 }
7435 return 0;
7436 }
7437
7438 /*
7439 * kernelcore=size sets the amount of memory for use for allocations that
7440 * cannot be reclaimed or migrated.
7441 */
7442 static int __init cmdline_parse_kernelcore(char *p)
7443 {
7444 /* parse kernelcore=mirror */
7445 if (parse_option_str(p, "mirror")) {
7446 mirrored_kernelcore = true;
7447 return 0;
7448 }
7449
7450 return cmdline_parse_core(p, &required_kernelcore,
7451 &required_kernelcore_percent);
7452 }
7453
7454 /*
7455 * movablecore=size sets the amount of memory for use for allocations that
7456 * can be reclaimed or migrated.
7457 */
7458 static int __init cmdline_parse_movablecore(char *p)
7459 {
7460 return cmdline_parse_core(p, &required_movablecore,
7461 &required_movablecore_percent);
7462 }
7463
7464 early_param("kernelcore", cmdline_parse_kernelcore);
7465 early_param("movablecore", cmdline_parse_movablecore);
7466
7467 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7468
7469 void adjust_managed_page_count(struct page *page, long count)
7470 {
7471 atomic_long_add(count, &page_zone(page)->managed_pages);
7472 totalram_pages_add(count);
7473 #ifdef CONFIG_HIGHMEM
7474 if (PageHighMem(page))
7475 totalhigh_pages_add(count);
7476 #endif
7477 }
7478 EXPORT_SYMBOL(adjust_managed_page_count);
7479
7480 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7481 {
7482 void *pos;
7483 unsigned long pages = 0;
7484
7485 start = (void *)PAGE_ALIGN((unsigned long)start);
7486 end = (void *)((unsigned long)end & PAGE_MASK);
7487 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7488 struct page *page = virt_to_page(pos);
7489 void *direct_map_addr;
7490
7491 /*
7492 * 'direct_map_addr' might be different from 'pos'
7493 * because some architectures' virt_to_page()
7494 * work with aliases. Getting the direct map
7495 * address ensures that we get a _writeable_
7496 * alias for the memset().
7497 */
7498 direct_map_addr = page_address(page);
7499 if ((unsigned int)poison <= 0xFF)
7500 memset(direct_map_addr, poison, PAGE_SIZE);
7501
7502 free_reserved_page(page);
7503 }
7504
7505 if (pages && s)
7506 pr_info("Freeing %s memory: %ldK\n",
7507 s, pages << (PAGE_SHIFT - 10));
7508
7509 return pages;
7510 }
7511
7512 #ifdef CONFIG_HIGHMEM
7513 void free_highmem_page(struct page *page)
7514 {
7515 __free_reserved_page(page);
7516 totalram_pages_inc();
7517 atomic_long_inc(&page_zone(page)->managed_pages);
7518 totalhigh_pages_inc();
7519 }
7520 #endif
7521
7522
7523 void __init mem_init_print_info(const char *str)
7524 {
7525 unsigned long physpages, codesize, datasize, rosize, bss_size;
7526 unsigned long init_code_size, init_data_size;
7527
7528 physpages = get_num_physpages();
7529 codesize = _etext - _stext;
7530 datasize = _edata - _sdata;
7531 rosize = __end_rodata - __start_rodata;
7532 bss_size = __bss_stop - __bss_start;
7533 init_data_size = __init_end - __init_begin;
7534 init_code_size = _einittext - _sinittext;
7535
7536 /*
7537 * Detect special cases and adjust section sizes accordingly:
7538 * 1) .init.* may be embedded into .data sections
7539 * 2) .init.text.* may be out of [__init_begin, __init_end],
7540 * please refer to arch/tile/kernel/vmlinux.lds.S.
7541 * 3) .rodata.* may be embedded into .text or .data sections.
7542 */
7543 #define adj_init_size(start, end, size, pos, adj) \
7544 do { \
7545 if (start <= pos && pos < end && size > adj) \
7546 size -= adj; \
7547 } while (0)
7548
7549 adj_init_size(__init_begin, __init_end, init_data_size,
7550 _sinittext, init_code_size);
7551 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7552 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7553 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7554 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7555
7556 #undef adj_init_size
7557
7558 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7559 #ifdef CONFIG_HIGHMEM
7560 ", %luK highmem"
7561 #endif
7562 "%s%s)\n",
7563 nr_free_pages() << (PAGE_SHIFT - 10),
7564 physpages << (PAGE_SHIFT - 10),
7565 codesize >> 10, datasize >> 10, rosize >> 10,
7566 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7567 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7568 totalcma_pages << (PAGE_SHIFT - 10),
7569 #ifdef CONFIG_HIGHMEM
7570 totalhigh_pages() << (PAGE_SHIFT - 10),
7571 #endif
7572 str ? ", " : "", str ? str : "");
7573 }
7574
7575 /**
7576 * set_dma_reserve - set the specified number of pages reserved in the first zone
7577 * @new_dma_reserve: The number of pages to mark reserved
7578 *
7579 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7580 * In the DMA zone, a significant percentage may be consumed by kernel image
7581 * and other unfreeable allocations which can skew the watermarks badly. This
7582 * function may optionally be used to account for unfreeable pages in the
7583 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7584 * smaller per-cpu batchsize.
7585 */
7586 void __init set_dma_reserve(unsigned long new_dma_reserve)
7587 {
7588 dma_reserve = new_dma_reserve;
7589 }
7590
7591 void __init free_area_init(unsigned long *zones_size)
7592 {
7593 zero_resv_unavail();
7594 free_area_init_node(0, zones_size,
7595 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7596 }
7597
7598 static int page_alloc_cpu_dead(unsigned int cpu)
7599 {
7600
7601 lru_add_drain_cpu(cpu);
7602 drain_pages(cpu);
7603
7604 /*
7605 * Spill the event counters of the dead processor
7606 * into the current processors event counters.
7607 * This artificially elevates the count of the current
7608 * processor.
7609 */
7610 vm_events_fold_cpu(cpu);
7611
7612 /*
7613 * Zero the differential counters of the dead processor
7614 * so that the vm statistics are consistent.
7615 *
7616 * This is only okay since the processor is dead and cannot
7617 * race with what we are doing.
7618 */
7619 cpu_vm_stats_fold(cpu);
7620 return 0;
7621 }
7622
7623 #ifdef CONFIG_NUMA
7624 int hashdist = HASHDIST_DEFAULT;
7625
7626 static int __init set_hashdist(char *str)
7627 {
7628 if (!str)
7629 return 0;
7630 hashdist = simple_strtoul(str, &str, 0);
7631 return 1;
7632 }
7633 __setup("hashdist=", set_hashdist);
7634 #endif
7635
7636 void __init page_alloc_init(void)
7637 {
7638 int ret;
7639
7640 #ifdef CONFIG_NUMA
7641 if (num_node_state(N_MEMORY) == 1)
7642 hashdist = 0;
7643 #endif
7644
7645 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7646 "mm/page_alloc:dead", NULL,
7647 page_alloc_cpu_dead);
7648 WARN_ON(ret < 0);
7649 }
7650
7651 /*
7652 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7653 * or min_free_kbytes changes.
7654 */
7655 static void calculate_totalreserve_pages(void)
7656 {
7657 struct pglist_data *pgdat;
7658 unsigned long reserve_pages = 0;
7659 enum zone_type i, j;
7660
7661 for_each_online_pgdat(pgdat) {
7662
7663 pgdat->totalreserve_pages = 0;
7664
7665 for (i = 0; i < MAX_NR_ZONES; i++) {
7666 struct zone *zone = pgdat->node_zones + i;
7667 long max = 0;
7668 unsigned long managed_pages = zone_managed_pages(zone);
7669
7670 /* Find valid and maximum lowmem_reserve in the zone */
7671 for (j = i; j < MAX_NR_ZONES; j++) {
7672 if (zone->lowmem_reserve[j] > max)
7673 max = zone->lowmem_reserve[j];
7674 }
7675
7676 /* we treat the high watermark as reserved pages. */
7677 max += high_wmark_pages(zone);
7678
7679 if (max > managed_pages)
7680 max = managed_pages;
7681
7682 pgdat->totalreserve_pages += max;
7683
7684 reserve_pages += max;
7685 }
7686 }
7687 totalreserve_pages = reserve_pages;
7688 }
7689
7690 /*
7691 * setup_per_zone_lowmem_reserve - called whenever
7692 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7693 * has a correct pages reserved value, so an adequate number of
7694 * pages are left in the zone after a successful __alloc_pages().
7695 */
7696 static void setup_per_zone_lowmem_reserve(void)
7697 {
7698 struct pglist_data *pgdat;
7699 enum zone_type j, idx;
7700
7701 for_each_online_pgdat(pgdat) {
7702 for (j = 0; j < MAX_NR_ZONES; j++) {
7703 struct zone *zone = pgdat->node_zones + j;
7704 unsigned long managed_pages = zone_managed_pages(zone);
7705
7706 zone->lowmem_reserve[j] = 0;
7707
7708 idx = j;
7709 while (idx) {
7710 struct zone *lower_zone;
7711
7712 idx--;
7713 lower_zone = pgdat->node_zones + idx;
7714
7715 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7716 sysctl_lowmem_reserve_ratio[idx] = 0;
7717 lower_zone->lowmem_reserve[j] = 0;
7718 } else {
7719 lower_zone->lowmem_reserve[j] =
7720 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7721 }
7722 managed_pages += zone_managed_pages(lower_zone);
7723 }
7724 }
7725 }
7726
7727 /* update totalreserve_pages */
7728 calculate_totalreserve_pages();
7729 }
7730
7731 static void __setup_per_zone_wmarks(void)
7732 {
7733 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7734 unsigned long lowmem_pages = 0;
7735 struct zone *zone;
7736 unsigned long flags;
7737
7738 /* Calculate total number of !ZONE_HIGHMEM pages */
7739 for_each_zone(zone) {
7740 if (!is_highmem(zone))
7741 lowmem_pages += zone_managed_pages(zone);
7742 }
7743
7744 for_each_zone(zone) {
7745 u64 tmp;
7746
7747 spin_lock_irqsave(&zone->lock, flags);
7748 tmp = (u64)pages_min * zone_managed_pages(zone);
7749 do_div(tmp, lowmem_pages);
7750 if (is_highmem(zone)) {
7751 /*
7752 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7753 * need highmem pages, so cap pages_min to a small
7754 * value here.
7755 *
7756 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7757 * deltas control async page reclaim, and so should
7758 * not be capped for highmem.
7759 */
7760 unsigned long min_pages;
7761
7762 min_pages = zone_managed_pages(zone) / 1024;
7763 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7764 zone->_watermark[WMARK_MIN] = min_pages;
7765 } else {
7766 /*
7767 * If it's a lowmem zone, reserve a number of pages
7768 * proportionate to the zone's size.
7769 */
7770 zone->_watermark[WMARK_MIN] = tmp;
7771 }
7772
7773 /*
7774 * Set the kswapd watermarks distance according to the
7775 * scale factor in proportion to available memory, but
7776 * ensure a minimum size on small systems.
7777 */
7778 tmp = max_t(u64, tmp >> 2,
7779 mult_frac(zone_managed_pages(zone),
7780 watermark_scale_factor, 10000));
7781
7782 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7783 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7784 zone->watermark_boost = 0;
7785
7786 spin_unlock_irqrestore(&zone->lock, flags);
7787 }
7788
7789 /* update totalreserve_pages */
7790 calculate_totalreserve_pages();
7791 }
7792
7793 /**
7794 * setup_per_zone_wmarks - called when min_free_kbytes changes
7795 * or when memory is hot-{added|removed}
7796 *
7797 * Ensures that the watermark[min,low,high] values for each zone are set
7798 * correctly with respect to min_free_kbytes.
7799 */
7800 void setup_per_zone_wmarks(void)
7801 {
7802 static DEFINE_SPINLOCK(lock);
7803
7804 spin_lock(&lock);
7805 __setup_per_zone_wmarks();
7806 spin_unlock(&lock);
7807 }
7808
7809 /*
7810 * Initialise min_free_kbytes.
7811 *
7812 * For small machines we want it small (128k min). For large machines
7813 * we want it large (64MB max). But it is not linear, because network
7814 * bandwidth does not increase linearly with machine size. We use
7815 *
7816 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7817 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7818 *
7819 * which yields
7820 *
7821 * 16MB: 512k
7822 * 32MB: 724k
7823 * 64MB: 1024k
7824 * 128MB: 1448k
7825 * 256MB: 2048k
7826 * 512MB: 2896k
7827 * 1024MB: 4096k
7828 * 2048MB: 5792k
7829 * 4096MB: 8192k
7830 * 8192MB: 11584k
7831 * 16384MB: 16384k
7832 */
7833 int __meminit init_per_zone_wmark_min(void)
7834 {
7835 unsigned long lowmem_kbytes;
7836 int new_min_free_kbytes;
7837
7838 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7839 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7840
7841 if (new_min_free_kbytes > user_min_free_kbytes) {
7842 min_free_kbytes = new_min_free_kbytes;
7843 if (min_free_kbytes < 128)
7844 min_free_kbytes = 128;
7845 if (min_free_kbytes > 65536)
7846 min_free_kbytes = 65536;
7847 } else {
7848 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7849 new_min_free_kbytes, user_min_free_kbytes);
7850 }
7851 setup_per_zone_wmarks();
7852 refresh_zone_stat_thresholds();
7853 setup_per_zone_lowmem_reserve();
7854
7855 #ifdef CONFIG_NUMA
7856 setup_min_unmapped_ratio();
7857 setup_min_slab_ratio();
7858 #endif
7859
7860 return 0;
7861 }
7862 postcore_initcall(init_per_zone_wmark_min)
7863
7864 /*
7865 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7866 * that we can call two helper functions whenever min_free_kbytes
7867 * changes.
7868 */
7869 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7870 void __user *buffer, size_t *length, loff_t *ppos)
7871 {
7872 int rc;
7873
7874 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7875 if (rc)
7876 return rc;
7877
7878 if (write) {
7879 user_min_free_kbytes = min_free_kbytes;
7880 setup_per_zone_wmarks();
7881 }
7882 return 0;
7883 }
7884
7885 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7886 void __user *buffer, size_t *length, loff_t *ppos)
7887 {
7888 int rc;
7889
7890 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7891 if (rc)
7892 return rc;
7893
7894 return 0;
7895 }
7896
7897 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7898 void __user *buffer, size_t *length, loff_t *ppos)
7899 {
7900 int rc;
7901
7902 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7903 if (rc)
7904 return rc;
7905
7906 if (write)
7907 setup_per_zone_wmarks();
7908
7909 return 0;
7910 }
7911
7912 #ifdef CONFIG_NUMA
7913 static void setup_min_unmapped_ratio(void)
7914 {
7915 pg_data_t *pgdat;
7916 struct zone *zone;
7917
7918 for_each_online_pgdat(pgdat)
7919 pgdat->min_unmapped_pages = 0;
7920
7921 for_each_zone(zone)
7922 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7923 sysctl_min_unmapped_ratio) / 100;
7924 }
7925
7926
7927 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7928 void __user *buffer, size_t *length, loff_t *ppos)
7929 {
7930 int rc;
7931
7932 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7933 if (rc)
7934 return rc;
7935
7936 setup_min_unmapped_ratio();
7937
7938 return 0;
7939 }
7940
7941 static void setup_min_slab_ratio(void)
7942 {
7943 pg_data_t *pgdat;
7944 struct zone *zone;
7945
7946 for_each_online_pgdat(pgdat)
7947 pgdat->min_slab_pages = 0;
7948
7949 for_each_zone(zone)
7950 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7951 sysctl_min_slab_ratio) / 100;
7952 }
7953
7954 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7955 void __user *buffer, size_t *length, loff_t *ppos)
7956 {
7957 int rc;
7958
7959 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7960 if (rc)
7961 return rc;
7962
7963 setup_min_slab_ratio();
7964
7965 return 0;
7966 }
7967 #endif
7968
7969 /*
7970 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7971 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7972 * whenever sysctl_lowmem_reserve_ratio changes.
7973 *
7974 * The reserve ratio obviously has absolutely no relation with the
7975 * minimum watermarks. The lowmem reserve ratio can only make sense
7976 * if in function of the boot time zone sizes.
7977 */
7978 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7979 void __user *buffer, size_t *length, loff_t *ppos)
7980 {
7981 proc_dointvec_minmax(table, write, buffer, length, ppos);
7982 setup_per_zone_lowmem_reserve();
7983 return 0;
7984 }
7985
7986 /*
7987 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7988 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7989 * pagelist can have before it gets flushed back to buddy allocator.
7990 */
7991 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7992 void __user *buffer, size_t *length, loff_t *ppos)
7993 {
7994 struct zone *zone;
7995 int old_percpu_pagelist_fraction;
7996 int ret;
7997
7998 mutex_lock(&pcp_batch_high_lock);
7999 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8000
8001 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8002 if (!write || ret < 0)
8003 goto out;
8004
8005 /* Sanity checking to avoid pcp imbalance */
8006 if (percpu_pagelist_fraction &&
8007 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8008 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8009 ret = -EINVAL;
8010 goto out;
8011 }
8012
8013 /* No change? */
8014 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8015 goto out;
8016
8017 for_each_populated_zone(zone) {
8018 unsigned int cpu;
8019
8020 for_each_possible_cpu(cpu)
8021 pageset_set_high_and_batch(zone,
8022 per_cpu_ptr(zone->pageset, cpu));
8023 }
8024 out:
8025 mutex_unlock(&pcp_batch_high_lock);
8026 return ret;
8027 }
8028
8029 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8030 /*
8031 * Returns the number of pages that arch has reserved but
8032 * is not known to alloc_large_system_hash().
8033 */
8034 static unsigned long __init arch_reserved_kernel_pages(void)
8035 {
8036 return 0;
8037 }
8038 #endif
8039
8040 /*
8041 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8042 * machines. As memory size is increased the scale is also increased but at
8043 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8044 * quadruples the scale is increased by one, which means the size of hash table
8045 * only doubles, instead of quadrupling as well.
8046 * Because 32-bit systems cannot have large physical memory, where this scaling
8047 * makes sense, it is disabled on such platforms.
8048 */
8049 #if __BITS_PER_LONG > 32
8050 #define ADAPT_SCALE_BASE (64ul << 30)
8051 #define ADAPT_SCALE_SHIFT 2
8052 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8053 #endif
8054
8055 /*
8056 * allocate a large system hash table from bootmem
8057 * - it is assumed that the hash table must contain an exact power-of-2
8058 * quantity of entries
8059 * - limit is the number of hash buckets, not the total allocation size
8060 */
8061 void *__init alloc_large_system_hash(const char *tablename,
8062 unsigned long bucketsize,
8063 unsigned long numentries,
8064 int scale,
8065 int flags,
8066 unsigned int *_hash_shift,
8067 unsigned int *_hash_mask,
8068 unsigned long low_limit,
8069 unsigned long high_limit)
8070 {
8071 unsigned long long max = high_limit;
8072 unsigned long log2qty, size;
8073 void *table = NULL;
8074 gfp_t gfp_flags;
8075 bool virt;
8076
8077 /* allow the kernel cmdline to have a say */
8078 if (!numentries) {
8079 /* round applicable memory size up to nearest megabyte */
8080 numentries = nr_kernel_pages;
8081 numentries -= arch_reserved_kernel_pages();
8082
8083 /* It isn't necessary when PAGE_SIZE >= 1MB */
8084 if (PAGE_SHIFT < 20)
8085 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8086
8087 #if __BITS_PER_LONG > 32
8088 if (!high_limit) {
8089 unsigned long adapt;
8090
8091 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8092 adapt <<= ADAPT_SCALE_SHIFT)
8093 scale++;
8094 }
8095 #endif
8096
8097 /* limit to 1 bucket per 2^scale bytes of low memory */
8098 if (scale > PAGE_SHIFT)
8099 numentries >>= (scale - PAGE_SHIFT);
8100 else
8101 numentries <<= (PAGE_SHIFT - scale);
8102
8103 /* Make sure we've got at least a 0-order allocation.. */
8104 if (unlikely(flags & HASH_SMALL)) {
8105 /* Makes no sense without HASH_EARLY */
8106 WARN_ON(!(flags & HASH_EARLY));
8107 if (!(numentries >> *_hash_shift)) {
8108 numentries = 1UL << *_hash_shift;
8109 BUG_ON(!numentries);
8110 }
8111 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8112 numentries = PAGE_SIZE / bucketsize;
8113 }
8114 numentries = roundup_pow_of_two(numentries);
8115
8116 /* limit allocation size to 1/16 total memory by default */
8117 if (max == 0) {
8118 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8119 do_div(max, bucketsize);
8120 }
8121 max = min(max, 0x80000000ULL);
8122
8123 if (numentries < low_limit)
8124 numentries = low_limit;
8125 if (numentries > max)
8126 numentries = max;
8127
8128 log2qty = ilog2(numentries);
8129
8130 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8131 do {
8132 virt = false;
8133 size = bucketsize << log2qty;
8134 if (flags & HASH_EARLY) {
8135 if (flags & HASH_ZERO)
8136 table = memblock_alloc(size, SMP_CACHE_BYTES);
8137 else
8138 table = memblock_alloc_raw(size,
8139 SMP_CACHE_BYTES);
8140 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8141 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8142 virt = true;
8143 } else {
8144 /*
8145 * If bucketsize is not a power-of-two, we may free
8146 * some pages at the end of hash table which
8147 * alloc_pages_exact() automatically does
8148 */
8149 table = alloc_pages_exact(size, gfp_flags);
8150 kmemleak_alloc(table, size, 1, gfp_flags);
8151 }
8152 } while (!table && size > PAGE_SIZE && --log2qty);
8153
8154 if (!table)
8155 panic("Failed to allocate %s hash table\n", tablename);
8156
8157 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8158 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8159 virt ? "vmalloc" : "linear");
8160
8161 if (_hash_shift)
8162 *_hash_shift = log2qty;
8163 if (_hash_mask)
8164 *_hash_mask = (1 << log2qty) - 1;
8165
8166 return table;
8167 }
8168
8169 /*
8170 * This function checks whether pageblock includes unmovable pages or not.
8171 * If @count is not zero, it is okay to include less @count unmovable pages
8172 *
8173 * PageLRU check without isolation or lru_lock could race so that
8174 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8175 * check without lock_page also may miss some movable non-lru pages at
8176 * race condition. So you can't expect this function should be exact.
8177 */
8178 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8179 int migratetype, int flags)
8180 {
8181 unsigned long found;
8182 unsigned long iter = 0;
8183 unsigned long pfn = page_to_pfn(page);
8184 const char *reason = "unmovable page";
8185
8186 /*
8187 * TODO we could make this much more efficient by not checking every
8188 * page in the range if we know all of them are in MOVABLE_ZONE and
8189 * that the movable zone guarantees that pages are migratable but
8190 * the later is not the case right now unfortunatelly. E.g. movablecore
8191 * can still lead to having bootmem allocations in zone_movable.
8192 */
8193
8194 if (is_migrate_cma_page(page)) {
8195 /*
8196 * CMA allocations (alloc_contig_range) really need to mark
8197 * isolate CMA pageblocks even when they are not movable in fact
8198 * so consider them movable here.
8199 */
8200 if (is_migrate_cma(migratetype))
8201 return false;
8202
8203 reason = "CMA page";
8204 goto unmovable;
8205 }
8206
8207 for (found = 0; iter < pageblock_nr_pages; iter++) {
8208 unsigned long check = pfn + iter;
8209
8210 if (!pfn_valid_within(check))
8211 continue;
8212
8213 page = pfn_to_page(check);
8214
8215 if (PageReserved(page))
8216 goto unmovable;
8217
8218 /*
8219 * If the zone is movable and we have ruled out all reserved
8220 * pages then it should be reasonably safe to assume the rest
8221 * is movable.
8222 */
8223 if (zone_idx(zone) == ZONE_MOVABLE)
8224 continue;
8225
8226 /*
8227 * Hugepages are not in LRU lists, but they're movable.
8228 * We need not scan over tail pages because we don't
8229 * handle each tail page individually in migration.
8230 */
8231 if (PageHuge(page)) {
8232 struct page *head = compound_head(page);
8233 unsigned int skip_pages;
8234
8235 if (!hugepage_migration_supported(page_hstate(head)))
8236 goto unmovable;
8237
8238 skip_pages = compound_nr(head) - (page - head);
8239 iter += skip_pages - 1;
8240 continue;
8241 }
8242
8243 /*
8244 * We can't use page_count without pin a page
8245 * because another CPU can free compound page.
8246 * This check already skips compound tails of THP
8247 * because their page->_refcount is zero at all time.
8248 */
8249 if (!page_ref_count(page)) {
8250 if (PageBuddy(page))
8251 iter += (1 << page_order(page)) - 1;
8252 continue;
8253 }
8254
8255 /*
8256 * The HWPoisoned page may be not in buddy system, and
8257 * page_count() is not 0.
8258 */
8259 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8260 continue;
8261
8262 if (__PageMovable(page))
8263 continue;
8264
8265 if (!PageLRU(page))
8266 found++;
8267 /*
8268 * If there are RECLAIMABLE pages, we need to check
8269 * it. But now, memory offline itself doesn't call
8270 * shrink_node_slabs() and it still to be fixed.
8271 */
8272 /*
8273 * If the page is not RAM, page_count()should be 0.
8274 * we don't need more check. This is an _used_ not-movable page.
8275 *
8276 * The problematic thing here is PG_reserved pages. PG_reserved
8277 * is set to both of a memory hole page and a _used_ kernel
8278 * page at boot.
8279 */
8280 if (found > count)
8281 goto unmovable;
8282 }
8283 return false;
8284 unmovable:
8285 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8286 if (flags & REPORT_FAILURE)
8287 dump_page(pfn_to_page(pfn + iter), reason);
8288 return true;
8289 }
8290
8291 #ifdef CONFIG_CONTIG_ALLOC
8292 static unsigned long pfn_max_align_down(unsigned long pfn)
8293 {
8294 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8295 pageblock_nr_pages) - 1);
8296 }
8297
8298 static unsigned long pfn_max_align_up(unsigned long pfn)
8299 {
8300 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8301 pageblock_nr_pages));
8302 }
8303
8304 /* [start, end) must belong to a single zone. */
8305 static int __alloc_contig_migrate_range(struct compact_control *cc,
8306 unsigned long start, unsigned long end)
8307 {
8308 /* This function is based on compact_zone() from compaction.c. */
8309 unsigned long nr_reclaimed;
8310 unsigned long pfn = start;
8311 unsigned int tries = 0;
8312 int ret = 0;
8313
8314 migrate_prep();
8315
8316 while (pfn < end || !list_empty(&cc->migratepages)) {
8317 if (fatal_signal_pending(current)) {
8318 ret = -EINTR;
8319 break;
8320 }
8321
8322 if (list_empty(&cc->migratepages)) {
8323 cc->nr_migratepages = 0;
8324 pfn = isolate_migratepages_range(cc, pfn, end);
8325 if (!pfn) {
8326 ret = -EINTR;
8327 break;
8328 }
8329 tries = 0;
8330 } else if (++tries == 5) {
8331 ret = ret < 0 ? ret : -EBUSY;
8332 break;
8333 }
8334
8335 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8336 &cc->migratepages);
8337 cc->nr_migratepages -= nr_reclaimed;
8338
8339 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8340 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8341 }
8342 if (ret < 0) {
8343 putback_movable_pages(&cc->migratepages);
8344 return ret;
8345 }
8346 return 0;
8347 }
8348
8349 /**
8350 * alloc_contig_range() -- tries to allocate given range of pages
8351 * @start: start PFN to allocate
8352 * @end: one-past-the-last PFN to allocate
8353 * @migratetype: migratetype of the underlaying pageblocks (either
8354 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8355 * in range must have the same migratetype and it must
8356 * be either of the two.
8357 * @gfp_mask: GFP mask to use during compaction
8358 *
8359 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8360 * aligned. The PFN range must belong to a single zone.
8361 *
8362 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8363 * pageblocks in the range. Once isolated, the pageblocks should not
8364 * be modified by others.
8365 *
8366 * Return: zero on success or negative error code. On success all
8367 * pages which PFN is in [start, end) are allocated for the caller and
8368 * need to be freed with free_contig_range().
8369 */
8370 int alloc_contig_range(unsigned long start, unsigned long end,
8371 unsigned migratetype, gfp_t gfp_mask)
8372 {
8373 unsigned long outer_start, outer_end;
8374 unsigned int order;
8375 int ret = 0;
8376
8377 struct compact_control cc = {
8378 .nr_migratepages = 0,
8379 .order = -1,
8380 .zone = page_zone(pfn_to_page(start)),
8381 .mode = MIGRATE_SYNC,
8382 .ignore_skip_hint = true,
8383 .no_set_skip_hint = true,
8384 .gfp_mask = current_gfp_context(gfp_mask),
8385 };
8386 INIT_LIST_HEAD(&cc.migratepages);
8387
8388 /*
8389 * What we do here is we mark all pageblocks in range as
8390 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8391 * have different sizes, and due to the way page allocator
8392 * work, we align the range to biggest of the two pages so
8393 * that page allocator won't try to merge buddies from
8394 * different pageblocks and change MIGRATE_ISOLATE to some
8395 * other migration type.
8396 *
8397 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8398 * migrate the pages from an unaligned range (ie. pages that
8399 * we are interested in). This will put all the pages in
8400 * range back to page allocator as MIGRATE_ISOLATE.
8401 *
8402 * When this is done, we take the pages in range from page
8403 * allocator removing them from the buddy system. This way
8404 * page allocator will never consider using them.
8405 *
8406 * This lets us mark the pageblocks back as
8407 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8408 * aligned range but not in the unaligned, original range are
8409 * put back to page allocator so that buddy can use them.
8410 */
8411
8412 ret = start_isolate_page_range(pfn_max_align_down(start),
8413 pfn_max_align_up(end), migratetype, 0);
8414 if (ret < 0)
8415 return ret;
8416
8417 /*
8418 * In case of -EBUSY, we'd like to know which page causes problem.
8419 * So, just fall through. test_pages_isolated() has a tracepoint
8420 * which will report the busy page.
8421 *
8422 * It is possible that busy pages could become available before
8423 * the call to test_pages_isolated, and the range will actually be
8424 * allocated. So, if we fall through be sure to clear ret so that
8425 * -EBUSY is not accidentally used or returned to caller.
8426 */
8427 ret = __alloc_contig_migrate_range(&cc, start, end);
8428 if (ret && ret != -EBUSY)
8429 goto done;
8430 ret =0;
8431
8432 /*
8433 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8434 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8435 * more, all pages in [start, end) are free in page allocator.
8436 * What we are going to do is to allocate all pages from
8437 * [start, end) (that is remove them from page allocator).
8438 *
8439 * The only problem is that pages at the beginning and at the
8440 * end of interesting range may be not aligned with pages that
8441 * page allocator holds, ie. they can be part of higher order
8442 * pages. Because of this, we reserve the bigger range and
8443 * once this is done free the pages we are not interested in.
8444 *
8445 * We don't have to hold zone->lock here because the pages are
8446 * isolated thus they won't get removed from buddy.
8447 */
8448
8449 lru_add_drain_all();
8450
8451 order = 0;
8452 outer_start = start;
8453 while (!PageBuddy(pfn_to_page(outer_start))) {
8454 if (++order >= MAX_ORDER) {
8455 outer_start = start;
8456 break;
8457 }
8458 outer_start &= ~0UL << order;
8459 }
8460
8461 if (outer_start != start) {
8462 order = page_order(pfn_to_page(outer_start));
8463
8464 /*
8465 * outer_start page could be small order buddy page and
8466 * it doesn't include start page. Adjust outer_start
8467 * in this case to report failed page properly
8468 * on tracepoint in test_pages_isolated()
8469 */
8470 if (outer_start + (1UL << order) <= start)
8471 outer_start = start;
8472 }
8473
8474 /* Make sure the range is really isolated. */
8475 if (test_pages_isolated(outer_start, end, false)) {
8476 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8477 __func__, outer_start, end);
8478 ret = -EBUSY;
8479 goto done;
8480 }
8481
8482 /* Grab isolated pages from freelists. */
8483 outer_end = isolate_freepages_range(&cc, outer_start, end);
8484 if (!outer_end) {
8485 ret = -EBUSY;
8486 goto done;
8487 }
8488
8489 /* Free head and tail (if any) */
8490 if (start != outer_start)
8491 free_contig_range(outer_start, start - outer_start);
8492 if (end != outer_end)
8493 free_contig_range(end, outer_end - end);
8494
8495 done:
8496 undo_isolate_page_range(pfn_max_align_down(start),
8497 pfn_max_align_up(end), migratetype);
8498 return ret;
8499 }
8500 #endif /* CONFIG_CONTIG_ALLOC */
8501
8502 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8503 {
8504 unsigned int count = 0;
8505
8506 for (; nr_pages--; pfn++) {
8507 struct page *page = pfn_to_page(pfn);
8508
8509 count += page_count(page) != 1;
8510 __free_page(page);
8511 }
8512 WARN(count != 0, "%d pages are still in use!\n", count);
8513 }
8514
8515 /*
8516 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8517 * page high values need to be recalulated.
8518 */
8519 void __meminit zone_pcp_update(struct zone *zone)
8520 {
8521 unsigned cpu;
8522 mutex_lock(&pcp_batch_high_lock);
8523 for_each_possible_cpu(cpu)
8524 pageset_set_high_and_batch(zone,
8525 per_cpu_ptr(zone->pageset, cpu));
8526 mutex_unlock(&pcp_batch_high_lock);
8527 }
8528
8529 void zone_pcp_reset(struct zone *zone)
8530 {
8531 unsigned long flags;
8532 int cpu;
8533 struct per_cpu_pageset *pset;
8534
8535 /* avoid races with drain_pages() */
8536 local_irq_save(flags);
8537 if (zone->pageset != &boot_pageset) {
8538 for_each_online_cpu(cpu) {
8539 pset = per_cpu_ptr(zone->pageset, cpu);
8540 drain_zonestat(zone, pset);
8541 }
8542 free_percpu(zone->pageset);
8543 zone->pageset = &boot_pageset;
8544 }
8545 local_irq_restore(flags);
8546 }
8547
8548 #ifdef CONFIG_MEMORY_HOTREMOVE
8549 /*
8550 * All pages in the range must be in a single zone and isolated
8551 * before calling this.
8552 */
8553 unsigned long
8554 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8555 {
8556 struct page *page;
8557 struct zone *zone;
8558 unsigned int order, i;
8559 unsigned long pfn;
8560 unsigned long flags;
8561 unsigned long offlined_pages = 0;
8562
8563 /* find the first valid pfn */
8564 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8565 if (pfn_valid(pfn))
8566 break;
8567 if (pfn == end_pfn)
8568 return offlined_pages;
8569
8570 offline_mem_sections(pfn, end_pfn);
8571 zone = page_zone(pfn_to_page(pfn));
8572 spin_lock_irqsave(&zone->lock, flags);
8573 pfn = start_pfn;
8574 while (pfn < end_pfn) {
8575 if (!pfn_valid(pfn)) {
8576 pfn++;
8577 continue;
8578 }
8579 page = pfn_to_page(pfn);
8580 /*
8581 * The HWPoisoned page may be not in buddy system, and
8582 * page_count() is not 0.
8583 */
8584 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8585 pfn++;
8586 SetPageReserved(page);
8587 offlined_pages++;
8588 continue;
8589 }
8590
8591 BUG_ON(page_count(page));
8592 BUG_ON(!PageBuddy(page));
8593 order = page_order(page);
8594 offlined_pages += 1 << order;
8595 #ifdef CONFIG_DEBUG_VM
8596 pr_info("remove from free list %lx %d %lx\n",
8597 pfn, 1 << order, end_pfn);
8598 #endif
8599 del_page_from_free_area(page, &zone->free_area[order]);
8600 for (i = 0; i < (1 << order); i++)
8601 SetPageReserved((page+i));
8602 pfn += (1 << order);
8603 }
8604 spin_unlock_irqrestore(&zone->lock, flags);
8605
8606 return offlined_pages;
8607 }
8608 #endif
8609
8610 bool is_free_buddy_page(struct page *page)
8611 {
8612 struct zone *zone = page_zone(page);
8613 unsigned long pfn = page_to_pfn(page);
8614 unsigned long flags;
8615 unsigned int order;
8616
8617 spin_lock_irqsave(&zone->lock, flags);
8618 for (order = 0; order < MAX_ORDER; order++) {
8619 struct page *page_head = page - (pfn & ((1 << order) - 1));
8620
8621 if (PageBuddy(page_head) && page_order(page_head) >= order)
8622 break;
8623 }
8624 spin_unlock_irqrestore(&zone->lock, flags);
8625
8626 return order < MAX_ORDER;
8627 }
8628
8629 #ifdef CONFIG_MEMORY_FAILURE
8630 /*
8631 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8632 * test is performed under the zone lock to prevent a race against page
8633 * allocation.
8634 */
8635 bool set_hwpoison_free_buddy_page(struct page *page)
8636 {
8637 struct zone *zone = page_zone(page);
8638 unsigned long pfn = page_to_pfn(page);
8639 unsigned long flags;
8640 unsigned int order;
8641 bool hwpoisoned = false;
8642
8643 spin_lock_irqsave(&zone->lock, flags);
8644 for (order = 0; order < MAX_ORDER; order++) {
8645 struct page *page_head = page - (pfn & ((1 << order) - 1));
8646
8647 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8648 if (!TestSetPageHWPoison(page))
8649 hwpoisoned = true;
8650 break;
8651 }
8652 }
8653 spin_unlock_irqrestore(&zone->lock, flags);
8654
8655 return hwpoisoned;
8656 }
8657 #endif