]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
netfilter: nf_tables_offload: release flow_rule on error from commit path
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION (8)
81
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
85 #endif
86
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
90 /*
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
95 */
96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 int _node_numa_mem_[MAX_NUMNODES];
99 #endif
100
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105 };
106 DEFINE_MUTEX(pcpu_drain_mutex);
107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
113
114 /*
115 * Array of node states.
116 */
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 [N_MEMORY] = { { [0] = 1UL } },
126 [N_CPU] = { { [0] = 1UL } },
127 #endif /* NUMA */
128 };
129 EXPORT_SYMBOL(node_states);
130
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
135
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140 #else
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142 #endif
143 EXPORT_SYMBOL(init_on_alloc);
144
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
147 #else
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
149 #endif
150 EXPORT_SYMBOL(init_on_free);
151
152 static int __init early_init_on_alloc(char *buf)
153 {
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167 }
168 early_param("init_on_alloc", early_init_on_alloc);
169
170 static int __init early_init_on_free(char *buf)
171 {
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185 }
186 early_param("init_on_free", early_init_on_free);
187
188 /*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196 static inline int get_pcppage_migratetype(struct page *page)
197 {
198 return page->index;
199 }
200
201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202 {
203 page->index = migratetype;
204 }
205
206 #ifdef CONFIG_PM_SLEEP
207 /*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
215 */
216
217 static gfp_t saved_gfp_mask;
218
219 void pm_restore_gfp_mask(void)
220 {
221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
226 }
227
228 void pm_restrict_gfp_mask(void)
229 {
230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234 }
235
236 bool pm_suspended_storage(void)
237 {
238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 return false;
240 return true;
241 }
242 #endif /* CONFIG_PM_SLEEP */
243
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
246 #endif
247
248 static void __free_pages_ok(struct page *page, unsigned int order);
249
250 /*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
260 */
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 [ZONE_DMA] = 256,
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 [ZONE_DMA32] = 256,
267 #endif
268 [ZONE_NORMAL] = 32,
269 #ifdef CONFIG_HIGHMEM
270 [ZONE_HIGHMEM] = 0,
271 #endif
272 [ZONE_MOVABLE] = 0,
273 };
274
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
277 "DMA",
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 "DMA32",
281 #endif
282 "Normal",
283 #ifdef CONFIG_HIGHMEM
284 "HighMem",
285 #endif
286 "Movable",
287 #ifdef CONFIG_ZONE_DEVICE
288 "Device",
289 #endif
290 };
291
292 const char * const migratetype_names[MIGRATE_TYPES] = {
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297 #ifdef CONFIG_CMA
298 "CMA",
299 #endif
300 #ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302 #endif
303 };
304
305 compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308 #ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310 #endif
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313 #endif
314 };
315
316 int min_free_kbytes = 1024;
317 int user_min_free_kbytes = -1;
318 #ifdef CONFIG_DISCONTIGMEM
319 /*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328 int watermark_boost_factor __read_mostly;
329 #else
330 int watermark_boost_factor __read_mostly = 15000;
331 #endif
332 int watermark_scale_factor = 10;
333
334 static unsigned long nr_kernel_pages __initdata;
335 static unsigned long nr_all_pages __initdata;
336 static unsigned long dma_reserve __initdata;
337
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352
353 #if MAX_NUMNODES > 1
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
358 #endif
359
360 int page_group_by_mobility_disabled __read_mostly;
361
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 /*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370 /*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384 {
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387 }
388
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391 {
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 return true;
396
397 return false;
398 }
399
400 /*
401 * Returns true when the remaining initialisation should be deferred until
402 * later in the boot cycle when it can be parallelised.
403 */
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406 {
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
418 /* Always populate low zones for address-constrained allocations */
419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 return false;
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
426 nr_initialised++;
427 if ((nr_initialised > PAGES_PER_SECTION) &&
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
431 }
432 return false;
433 }
434 #else
435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
437 static inline bool early_page_uninitialised(unsigned long pfn)
438 {
439 return false;
440 }
441
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443 {
444 return false;
445 }
446 #endif
447
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451 {
452 #ifdef CONFIG_SPARSEMEM
453 return section_to_usemap(__pfn_to_section(pfn));
454 #else
455 return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
457 }
458
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460 {
461 #ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464 #else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 #endif /* CONFIG_SPARSEMEM */
468 }
469
470 /**
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
476 *
477 * Return: pageblock_bits flags
478 */
479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
483 {
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
487
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
492
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496 }
497
498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
501 {
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503 }
504
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506 {
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508 }
509
510 /**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
517 */
518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
522 {
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
540
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
547 }
548 }
549
550 void set_pageblock_migratetype(struct page *page, int migratetype)
551 {
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
554 migratetype = MIGRATE_UNMOVABLE;
555
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
558 }
559
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
562 {
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
566 unsigned long sp, start_pfn;
567
568 do {
569 seq = zone_span_seqbegin(zone);
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
572 if (!zone_spans_pfn(zone, pfn))
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
575
576 if (ret)
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
580
581 return ret;
582 }
583
584 static int page_is_consistent(struct zone *zone, struct page *page)
585 {
586 if (!pfn_valid_within(page_to_pfn(page)))
587 return 0;
588 if (zone != page_zone(page))
589 return 0;
590
591 return 1;
592 }
593 /*
594 * Temporary debugging check for pages not lying within a given zone.
595 */
596 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 {
598 if (page_outside_zone_boundaries(zone, page))
599 return 1;
600 if (!page_is_consistent(zone, page))
601 return 1;
602
603 return 0;
604 }
605 #else
606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
607 {
608 return 0;
609 }
610 #endif
611
612 static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
614 {
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
618
619 /*
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
622 */
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
627 }
628 if (nr_unshown) {
629 pr_alert(
630 "BUG: Bad page state: %lu messages suppressed\n",
631 nr_unshown);
632 nr_unshown = 0;
633 }
634 nr_shown = 0;
635 }
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
638
639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
640 current->comm, page_to_pfn(page));
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
646 dump_page_owner(page);
647
648 print_modules();
649 dump_stack();
650 out:
651 /* Leave bad fields for debug, except PageBuddy could make trouble */
652 page_mapcount_reset(page); /* remove PageBuddy */
653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
654 }
655
656 /*
657 * Higher-order pages are called "compound pages". They are structured thusly:
658 *
659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
660 *
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
663 *
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
666 *
667 * The first tail page's ->compound_order holds the order of allocation.
668 * This usage means that zero-order pages may not be compound.
669 */
670
671 void free_compound_page(struct page *page)
672 {
673 mem_cgroup_uncharge(page);
674 __free_pages_ok(page, compound_order(page));
675 }
676
677 void prep_compound_page(struct page *page, unsigned int order)
678 {
679 int i;
680 int nr_pages = 1 << order;
681
682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 set_compound_order(page, order);
684 __SetPageHead(page);
685 for (i = 1; i < nr_pages; i++) {
686 struct page *p = page + i;
687 set_page_count(p, 0);
688 p->mapping = TAIL_MAPPING;
689 set_compound_head(p, page);
690 }
691 atomic_set(compound_mapcount_ptr(page), -1);
692 }
693
694 #ifdef CONFIG_DEBUG_PAGEALLOC
695 unsigned int _debug_guardpage_minorder;
696
697 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
698 DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
699 #else
700 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
701 #endif
702 EXPORT_SYMBOL(_debug_pagealloc_enabled);
703
704 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
705
706 static int __init early_debug_pagealloc(char *buf)
707 {
708 bool enable = false;
709
710 if (kstrtobool(buf, &enable))
711 return -EINVAL;
712
713 if (enable)
714 static_branch_enable(&_debug_pagealloc_enabled);
715
716 return 0;
717 }
718 early_param("debug_pagealloc", early_debug_pagealloc);
719
720 static void init_debug_guardpage(void)
721 {
722 if (!debug_pagealloc_enabled())
723 return;
724
725 if (!debug_guardpage_minorder())
726 return;
727
728 static_branch_enable(&_debug_guardpage_enabled);
729 }
730
731 static int __init debug_guardpage_minorder_setup(char *buf)
732 {
733 unsigned long res;
734
735 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
736 pr_err("Bad debug_guardpage_minorder value\n");
737 return 0;
738 }
739 _debug_guardpage_minorder = res;
740 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
741 return 0;
742 }
743 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
744
745 static inline bool set_page_guard(struct zone *zone, struct page *page,
746 unsigned int order, int migratetype)
747 {
748 if (!debug_guardpage_enabled())
749 return false;
750
751 if (order >= debug_guardpage_minorder())
752 return false;
753
754 __SetPageGuard(page);
755 INIT_LIST_HEAD(&page->lru);
756 set_page_private(page, order);
757 /* Guard pages are not available for any usage */
758 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
759
760 return true;
761 }
762
763 static inline void clear_page_guard(struct zone *zone, struct page *page,
764 unsigned int order, int migratetype)
765 {
766 if (!debug_guardpage_enabled())
767 return;
768
769 __ClearPageGuard(page);
770
771 set_page_private(page, 0);
772 if (!is_migrate_isolate(migratetype))
773 __mod_zone_freepage_state(zone, (1 << order), migratetype);
774 }
775 #else
776 static inline bool set_page_guard(struct zone *zone, struct page *page,
777 unsigned int order, int migratetype) { return false; }
778 static inline void clear_page_guard(struct zone *zone, struct page *page,
779 unsigned int order, int migratetype) {}
780 #endif
781
782 static inline void set_page_order(struct page *page, unsigned int order)
783 {
784 set_page_private(page, order);
785 __SetPageBuddy(page);
786 }
787
788 /*
789 * This function checks whether a page is free && is the buddy
790 * we can coalesce a page and its buddy if
791 * (a) the buddy is not in a hole (check before calling!) &&
792 * (b) the buddy is in the buddy system &&
793 * (c) a page and its buddy have the same order &&
794 * (d) a page and its buddy are in the same zone.
795 *
796 * For recording whether a page is in the buddy system, we set PageBuddy.
797 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
798 *
799 * For recording page's order, we use page_private(page).
800 */
801 static inline int page_is_buddy(struct page *page, struct page *buddy,
802 unsigned int order)
803 {
804 if (page_is_guard(buddy) && page_order(buddy) == order) {
805 if (page_zone_id(page) != page_zone_id(buddy))
806 return 0;
807
808 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
809
810 return 1;
811 }
812
813 if (PageBuddy(buddy) && page_order(buddy) == order) {
814 /*
815 * zone check is done late to avoid uselessly
816 * calculating zone/node ids for pages that could
817 * never merge.
818 */
819 if (page_zone_id(page) != page_zone_id(buddy))
820 return 0;
821
822 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
823
824 return 1;
825 }
826 return 0;
827 }
828
829 #ifdef CONFIG_COMPACTION
830 static inline struct capture_control *task_capc(struct zone *zone)
831 {
832 struct capture_control *capc = current->capture_control;
833
834 return capc &&
835 !(current->flags & PF_KTHREAD) &&
836 !capc->page &&
837 capc->cc->zone == zone &&
838 capc->cc->direct_compaction ? capc : NULL;
839 }
840
841 static inline bool
842 compaction_capture(struct capture_control *capc, struct page *page,
843 int order, int migratetype)
844 {
845 if (!capc || order != capc->cc->order)
846 return false;
847
848 /* Do not accidentally pollute CMA or isolated regions*/
849 if (is_migrate_cma(migratetype) ||
850 is_migrate_isolate(migratetype))
851 return false;
852
853 /*
854 * Do not let lower order allocations polluate a movable pageblock.
855 * This might let an unmovable request use a reclaimable pageblock
856 * and vice-versa but no more than normal fallback logic which can
857 * have trouble finding a high-order free page.
858 */
859 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
860 return false;
861
862 capc->page = page;
863 return true;
864 }
865
866 #else
867 static inline struct capture_control *task_capc(struct zone *zone)
868 {
869 return NULL;
870 }
871
872 static inline bool
873 compaction_capture(struct capture_control *capc, struct page *page,
874 int order, int migratetype)
875 {
876 return false;
877 }
878 #endif /* CONFIG_COMPACTION */
879
880 /*
881 * Freeing function for a buddy system allocator.
882 *
883 * The concept of a buddy system is to maintain direct-mapped table
884 * (containing bit values) for memory blocks of various "orders".
885 * The bottom level table contains the map for the smallest allocatable
886 * units of memory (here, pages), and each level above it describes
887 * pairs of units from the levels below, hence, "buddies".
888 * At a high level, all that happens here is marking the table entry
889 * at the bottom level available, and propagating the changes upward
890 * as necessary, plus some accounting needed to play nicely with other
891 * parts of the VM system.
892 * At each level, we keep a list of pages, which are heads of continuous
893 * free pages of length of (1 << order) and marked with PageBuddy.
894 * Page's order is recorded in page_private(page) field.
895 * So when we are allocating or freeing one, we can derive the state of the
896 * other. That is, if we allocate a small block, and both were
897 * free, the remainder of the region must be split into blocks.
898 * If a block is freed, and its buddy is also free, then this
899 * triggers coalescing into a block of larger size.
900 *
901 * -- nyc
902 */
903
904 static inline void __free_one_page(struct page *page,
905 unsigned long pfn,
906 struct zone *zone, unsigned int order,
907 int migratetype)
908 {
909 unsigned long combined_pfn;
910 unsigned long uninitialized_var(buddy_pfn);
911 struct page *buddy;
912 unsigned int max_order;
913 struct capture_control *capc = task_capc(zone);
914
915 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
916
917 VM_BUG_ON(!zone_is_initialized(zone));
918 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
919
920 VM_BUG_ON(migratetype == -1);
921 if (likely(!is_migrate_isolate(migratetype)))
922 __mod_zone_freepage_state(zone, 1 << order, migratetype);
923
924 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
925 VM_BUG_ON_PAGE(bad_range(zone, page), page);
926
927 continue_merging:
928 while (order < max_order - 1) {
929 if (compaction_capture(capc, page, order, migratetype)) {
930 __mod_zone_freepage_state(zone, -(1 << order),
931 migratetype);
932 return;
933 }
934 buddy_pfn = __find_buddy_pfn(pfn, order);
935 buddy = page + (buddy_pfn - pfn);
936
937 if (!pfn_valid_within(buddy_pfn))
938 goto done_merging;
939 if (!page_is_buddy(page, buddy, order))
940 goto done_merging;
941 /*
942 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
943 * merge with it and move up one order.
944 */
945 if (page_is_guard(buddy))
946 clear_page_guard(zone, buddy, order, migratetype);
947 else
948 del_page_from_free_area(buddy, &zone->free_area[order]);
949 combined_pfn = buddy_pfn & pfn;
950 page = page + (combined_pfn - pfn);
951 pfn = combined_pfn;
952 order++;
953 }
954 if (max_order < MAX_ORDER) {
955 /* If we are here, it means order is >= pageblock_order.
956 * We want to prevent merge between freepages on isolate
957 * pageblock and normal pageblock. Without this, pageblock
958 * isolation could cause incorrect freepage or CMA accounting.
959 *
960 * We don't want to hit this code for the more frequent
961 * low-order merging.
962 */
963 if (unlikely(has_isolate_pageblock(zone))) {
964 int buddy_mt;
965
966 buddy_pfn = __find_buddy_pfn(pfn, order);
967 buddy = page + (buddy_pfn - pfn);
968 buddy_mt = get_pageblock_migratetype(buddy);
969
970 if (migratetype != buddy_mt
971 && (is_migrate_isolate(migratetype) ||
972 is_migrate_isolate(buddy_mt)))
973 goto done_merging;
974 }
975 max_order++;
976 goto continue_merging;
977 }
978
979 done_merging:
980 set_page_order(page, order);
981
982 /*
983 * If this is not the largest possible page, check if the buddy
984 * of the next-highest order is free. If it is, it's possible
985 * that pages are being freed that will coalesce soon. In case,
986 * that is happening, add the free page to the tail of the list
987 * so it's less likely to be used soon and more likely to be merged
988 * as a higher order page
989 */
990 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
991 && !is_shuffle_order(order)) {
992 struct page *higher_page, *higher_buddy;
993 combined_pfn = buddy_pfn & pfn;
994 higher_page = page + (combined_pfn - pfn);
995 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
996 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
997 if (pfn_valid_within(buddy_pfn) &&
998 page_is_buddy(higher_page, higher_buddy, order + 1)) {
999 add_to_free_area_tail(page, &zone->free_area[order],
1000 migratetype);
1001 return;
1002 }
1003 }
1004
1005 if (is_shuffle_order(order))
1006 add_to_free_area_random(page, &zone->free_area[order],
1007 migratetype);
1008 else
1009 add_to_free_area(page, &zone->free_area[order], migratetype);
1010
1011 }
1012
1013 /*
1014 * A bad page could be due to a number of fields. Instead of multiple branches,
1015 * try and check multiple fields with one check. The caller must do a detailed
1016 * check if necessary.
1017 */
1018 static inline bool page_expected_state(struct page *page,
1019 unsigned long check_flags)
1020 {
1021 if (unlikely(atomic_read(&page->_mapcount) != -1))
1022 return false;
1023
1024 if (unlikely((unsigned long)page->mapping |
1025 page_ref_count(page) |
1026 #ifdef CONFIG_MEMCG
1027 (unsigned long)page->mem_cgroup |
1028 #endif
1029 (page->flags & check_flags)))
1030 return false;
1031
1032 return true;
1033 }
1034
1035 static void free_pages_check_bad(struct page *page)
1036 {
1037 const char *bad_reason;
1038 unsigned long bad_flags;
1039
1040 bad_reason = NULL;
1041 bad_flags = 0;
1042
1043 if (unlikely(atomic_read(&page->_mapcount) != -1))
1044 bad_reason = "nonzero mapcount";
1045 if (unlikely(page->mapping != NULL))
1046 bad_reason = "non-NULL mapping";
1047 if (unlikely(page_ref_count(page) != 0))
1048 bad_reason = "nonzero _refcount";
1049 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1050 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1051 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1052 }
1053 #ifdef CONFIG_MEMCG
1054 if (unlikely(page->mem_cgroup))
1055 bad_reason = "page still charged to cgroup";
1056 #endif
1057 bad_page(page, bad_reason, bad_flags);
1058 }
1059
1060 static inline int free_pages_check(struct page *page)
1061 {
1062 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1063 return 0;
1064
1065 /* Something has gone sideways, find it */
1066 free_pages_check_bad(page);
1067 return 1;
1068 }
1069
1070 static int free_tail_pages_check(struct page *head_page, struct page *page)
1071 {
1072 int ret = 1;
1073
1074 /*
1075 * We rely page->lru.next never has bit 0 set, unless the page
1076 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1077 */
1078 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1079
1080 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1081 ret = 0;
1082 goto out;
1083 }
1084 switch (page - head_page) {
1085 case 1:
1086 /* the first tail page: ->mapping may be compound_mapcount() */
1087 if (unlikely(compound_mapcount(page))) {
1088 bad_page(page, "nonzero compound_mapcount", 0);
1089 goto out;
1090 }
1091 break;
1092 case 2:
1093 /*
1094 * the second tail page: ->mapping is
1095 * deferred_list.next -- ignore value.
1096 */
1097 break;
1098 default:
1099 if (page->mapping != TAIL_MAPPING) {
1100 bad_page(page, "corrupted mapping in tail page", 0);
1101 goto out;
1102 }
1103 break;
1104 }
1105 if (unlikely(!PageTail(page))) {
1106 bad_page(page, "PageTail not set", 0);
1107 goto out;
1108 }
1109 if (unlikely(compound_head(page) != head_page)) {
1110 bad_page(page, "compound_head not consistent", 0);
1111 goto out;
1112 }
1113 ret = 0;
1114 out:
1115 page->mapping = NULL;
1116 clear_compound_head(page);
1117 return ret;
1118 }
1119
1120 static void kernel_init_free_pages(struct page *page, int numpages)
1121 {
1122 int i;
1123
1124 for (i = 0; i < numpages; i++)
1125 clear_highpage(page + i);
1126 }
1127
1128 static __always_inline bool free_pages_prepare(struct page *page,
1129 unsigned int order, bool check_free)
1130 {
1131 int bad = 0;
1132
1133 VM_BUG_ON_PAGE(PageTail(page), page);
1134
1135 trace_mm_page_free(page, order);
1136
1137 /*
1138 * Check tail pages before head page information is cleared to
1139 * avoid checking PageCompound for order-0 pages.
1140 */
1141 if (unlikely(order)) {
1142 bool compound = PageCompound(page);
1143 int i;
1144
1145 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1146
1147 if (compound)
1148 ClearPageDoubleMap(page);
1149 for (i = 1; i < (1 << order); i++) {
1150 if (compound)
1151 bad += free_tail_pages_check(page, page + i);
1152 if (unlikely(free_pages_check(page + i))) {
1153 bad++;
1154 continue;
1155 }
1156 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1157 }
1158 }
1159 if (PageMappingFlags(page))
1160 page->mapping = NULL;
1161 if (memcg_kmem_enabled() && PageKmemcg(page))
1162 __memcg_kmem_uncharge(page, order);
1163 if (check_free)
1164 bad += free_pages_check(page);
1165 if (bad)
1166 return false;
1167
1168 page_cpupid_reset_last(page);
1169 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1170 reset_page_owner(page, order);
1171
1172 if (!PageHighMem(page)) {
1173 debug_check_no_locks_freed(page_address(page),
1174 PAGE_SIZE << order);
1175 debug_check_no_obj_freed(page_address(page),
1176 PAGE_SIZE << order);
1177 }
1178 if (want_init_on_free())
1179 kernel_init_free_pages(page, 1 << order);
1180
1181 kernel_poison_pages(page, 1 << order, 0);
1182 /*
1183 * arch_free_page() can make the page's contents inaccessible. s390
1184 * does this. So nothing which can access the page's contents should
1185 * happen after this.
1186 */
1187 arch_free_page(page, order);
1188
1189 if (debug_pagealloc_enabled())
1190 kernel_map_pages(page, 1 << order, 0);
1191
1192 kasan_free_nondeferred_pages(page, order);
1193
1194 return true;
1195 }
1196
1197 #ifdef CONFIG_DEBUG_VM
1198 /*
1199 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1200 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1201 * moved from pcp lists to free lists.
1202 */
1203 static bool free_pcp_prepare(struct page *page)
1204 {
1205 return free_pages_prepare(page, 0, true);
1206 }
1207
1208 static bool bulkfree_pcp_prepare(struct page *page)
1209 {
1210 if (debug_pagealloc_enabled())
1211 return free_pages_check(page);
1212 else
1213 return false;
1214 }
1215 #else
1216 /*
1217 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1218 * moving from pcp lists to free list in order to reduce overhead. With
1219 * debug_pagealloc enabled, they are checked also immediately when being freed
1220 * to the pcp lists.
1221 */
1222 static bool free_pcp_prepare(struct page *page)
1223 {
1224 if (debug_pagealloc_enabled())
1225 return free_pages_prepare(page, 0, true);
1226 else
1227 return free_pages_prepare(page, 0, false);
1228 }
1229
1230 static bool bulkfree_pcp_prepare(struct page *page)
1231 {
1232 return free_pages_check(page);
1233 }
1234 #endif /* CONFIG_DEBUG_VM */
1235
1236 static inline void prefetch_buddy(struct page *page)
1237 {
1238 unsigned long pfn = page_to_pfn(page);
1239 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1240 struct page *buddy = page + (buddy_pfn - pfn);
1241
1242 prefetch(buddy);
1243 }
1244
1245 /*
1246 * Frees a number of pages from the PCP lists
1247 * Assumes all pages on list are in same zone, and of same order.
1248 * count is the number of pages to free.
1249 *
1250 * If the zone was previously in an "all pages pinned" state then look to
1251 * see if this freeing clears that state.
1252 *
1253 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1254 * pinned" detection logic.
1255 */
1256 static void free_pcppages_bulk(struct zone *zone, int count,
1257 struct per_cpu_pages *pcp)
1258 {
1259 int migratetype = 0;
1260 int batch_free = 0;
1261 int prefetch_nr = 0;
1262 bool isolated_pageblocks;
1263 struct page *page, *tmp;
1264 LIST_HEAD(head);
1265
1266 while (count) {
1267 struct list_head *list;
1268
1269 /*
1270 * Remove pages from lists in a round-robin fashion. A
1271 * batch_free count is maintained that is incremented when an
1272 * empty list is encountered. This is so more pages are freed
1273 * off fuller lists instead of spinning excessively around empty
1274 * lists
1275 */
1276 do {
1277 batch_free++;
1278 if (++migratetype == MIGRATE_PCPTYPES)
1279 migratetype = 0;
1280 list = &pcp->lists[migratetype];
1281 } while (list_empty(list));
1282
1283 /* This is the only non-empty list. Free them all. */
1284 if (batch_free == MIGRATE_PCPTYPES)
1285 batch_free = count;
1286
1287 do {
1288 page = list_last_entry(list, struct page, lru);
1289 /* must delete to avoid corrupting pcp list */
1290 list_del(&page->lru);
1291 pcp->count--;
1292
1293 if (bulkfree_pcp_prepare(page))
1294 continue;
1295
1296 list_add_tail(&page->lru, &head);
1297
1298 /*
1299 * We are going to put the page back to the global
1300 * pool, prefetch its buddy to speed up later access
1301 * under zone->lock. It is believed the overhead of
1302 * an additional test and calculating buddy_pfn here
1303 * can be offset by reduced memory latency later. To
1304 * avoid excessive prefetching due to large count, only
1305 * prefetch buddy for the first pcp->batch nr of pages.
1306 */
1307 if (prefetch_nr++ < pcp->batch)
1308 prefetch_buddy(page);
1309 } while (--count && --batch_free && !list_empty(list));
1310 }
1311
1312 spin_lock(&zone->lock);
1313 isolated_pageblocks = has_isolate_pageblock(zone);
1314
1315 /*
1316 * Use safe version since after __free_one_page(),
1317 * page->lru.next will not point to original list.
1318 */
1319 list_for_each_entry_safe(page, tmp, &head, lru) {
1320 int mt = get_pcppage_migratetype(page);
1321 /* MIGRATE_ISOLATE page should not go to pcplists */
1322 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1323 /* Pageblock could have been isolated meanwhile */
1324 if (unlikely(isolated_pageblocks))
1325 mt = get_pageblock_migratetype(page);
1326
1327 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1328 trace_mm_page_pcpu_drain(page, 0, mt);
1329 }
1330 spin_unlock(&zone->lock);
1331 }
1332
1333 static void free_one_page(struct zone *zone,
1334 struct page *page, unsigned long pfn,
1335 unsigned int order,
1336 int migratetype)
1337 {
1338 spin_lock(&zone->lock);
1339 if (unlikely(has_isolate_pageblock(zone) ||
1340 is_migrate_isolate(migratetype))) {
1341 migratetype = get_pfnblock_migratetype(page, pfn);
1342 }
1343 __free_one_page(page, pfn, zone, order, migratetype);
1344 spin_unlock(&zone->lock);
1345 }
1346
1347 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1348 unsigned long zone, int nid)
1349 {
1350 mm_zero_struct_page(page);
1351 set_page_links(page, zone, nid, pfn);
1352 init_page_count(page);
1353 page_mapcount_reset(page);
1354 page_cpupid_reset_last(page);
1355 page_kasan_tag_reset(page);
1356
1357 INIT_LIST_HEAD(&page->lru);
1358 #ifdef WANT_PAGE_VIRTUAL
1359 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1360 if (!is_highmem_idx(zone))
1361 set_page_address(page, __va(pfn << PAGE_SHIFT));
1362 #endif
1363 }
1364
1365 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1366 static void __meminit init_reserved_page(unsigned long pfn)
1367 {
1368 pg_data_t *pgdat;
1369 int nid, zid;
1370
1371 if (!early_page_uninitialised(pfn))
1372 return;
1373
1374 nid = early_pfn_to_nid(pfn);
1375 pgdat = NODE_DATA(nid);
1376
1377 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1378 struct zone *zone = &pgdat->node_zones[zid];
1379
1380 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1381 break;
1382 }
1383 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1384 }
1385 #else
1386 static inline void init_reserved_page(unsigned long pfn)
1387 {
1388 }
1389 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1390
1391 /*
1392 * Initialised pages do not have PageReserved set. This function is
1393 * called for each range allocated by the bootmem allocator and
1394 * marks the pages PageReserved. The remaining valid pages are later
1395 * sent to the buddy page allocator.
1396 */
1397 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1398 {
1399 unsigned long start_pfn = PFN_DOWN(start);
1400 unsigned long end_pfn = PFN_UP(end);
1401
1402 for (; start_pfn < end_pfn; start_pfn++) {
1403 if (pfn_valid(start_pfn)) {
1404 struct page *page = pfn_to_page(start_pfn);
1405
1406 init_reserved_page(start_pfn);
1407
1408 /* Avoid false-positive PageTail() */
1409 INIT_LIST_HEAD(&page->lru);
1410
1411 /*
1412 * no need for atomic set_bit because the struct
1413 * page is not visible yet so nobody should
1414 * access it yet.
1415 */
1416 __SetPageReserved(page);
1417 }
1418 }
1419 }
1420
1421 static void __free_pages_ok(struct page *page, unsigned int order)
1422 {
1423 unsigned long flags;
1424 int migratetype;
1425 unsigned long pfn = page_to_pfn(page);
1426
1427 if (!free_pages_prepare(page, order, true))
1428 return;
1429
1430 migratetype = get_pfnblock_migratetype(page, pfn);
1431 local_irq_save(flags);
1432 __count_vm_events(PGFREE, 1 << order);
1433 free_one_page(page_zone(page), page, pfn, order, migratetype);
1434 local_irq_restore(flags);
1435 }
1436
1437 void __free_pages_core(struct page *page, unsigned int order)
1438 {
1439 unsigned int nr_pages = 1 << order;
1440 struct page *p = page;
1441 unsigned int loop;
1442
1443 prefetchw(p);
1444 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1445 prefetchw(p + 1);
1446 __ClearPageReserved(p);
1447 set_page_count(p, 0);
1448 }
1449 __ClearPageReserved(p);
1450 set_page_count(p, 0);
1451
1452 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1453 set_page_refcounted(page);
1454 __free_pages(page, order);
1455 }
1456
1457 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1458 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1459
1460 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1461
1462 int __meminit early_pfn_to_nid(unsigned long pfn)
1463 {
1464 static DEFINE_SPINLOCK(early_pfn_lock);
1465 int nid;
1466
1467 spin_lock(&early_pfn_lock);
1468 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1469 if (nid < 0)
1470 nid = first_online_node;
1471 spin_unlock(&early_pfn_lock);
1472
1473 return nid;
1474 }
1475 #endif
1476
1477 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1478 /* Only safe to use early in boot when initialisation is single-threaded */
1479 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1480 {
1481 int nid;
1482
1483 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1484 if (nid >= 0 && nid != node)
1485 return false;
1486 return true;
1487 }
1488
1489 #else
1490 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1491 {
1492 return true;
1493 }
1494 #endif
1495
1496
1497 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1498 unsigned int order)
1499 {
1500 if (early_page_uninitialised(pfn))
1501 return;
1502 __free_pages_core(page, order);
1503 }
1504
1505 /*
1506 * Check that the whole (or subset of) a pageblock given by the interval of
1507 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1508 * with the migration of free compaction scanner. The scanners then need to
1509 * use only pfn_valid_within() check for arches that allow holes within
1510 * pageblocks.
1511 *
1512 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1513 *
1514 * It's possible on some configurations to have a setup like node0 node1 node0
1515 * i.e. it's possible that all pages within a zones range of pages do not
1516 * belong to a single zone. We assume that a border between node0 and node1
1517 * can occur within a single pageblock, but not a node0 node1 node0
1518 * interleaving within a single pageblock. It is therefore sufficient to check
1519 * the first and last page of a pageblock and avoid checking each individual
1520 * page in a pageblock.
1521 */
1522 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1523 unsigned long end_pfn, struct zone *zone)
1524 {
1525 struct page *start_page;
1526 struct page *end_page;
1527
1528 /* end_pfn is one past the range we are checking */
1529 end_pfn--;
1530
1531 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1532 return NULL;
1533
1534 start_page = pfn_to_online_page(start_pfn);
1535 if (!start_page)
1536 return NULL;
1537
1538 if (page_zone(start_page) != zone)
1539 return NULL;
1540
1541 end_page = pfn_to_page(end_pfn);
1542
1543 /* This gives a shorter code than deriving page_zone(end_page) */
1544 if (page_zone_id(start_page) != page_zone_id(end_page))
1545 return NULL;
1546
1547 return start_page;
1548 }
1549
1550 void set_zone_contiguous(struct zone *zone)
1551 {
1552 unsigned long block_start_pfn = zone->zone_start_pfn;
1553 unsigned long block_end_pfn;
1554
1555 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1556 for (; block_start_pfn < zone_end_pfn(zone);
1557 block_start_pfn = block_end_pfn,
1558 block_end_pfn += pageblock_nr_pages) {
1559
1560 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1561
1562 if (!__pageblock_pfn_to_page(block_start_pfn,
1563 block_end_pfn, zone))
1564 return;
1565 }
1566
1567 /* We confirm that there is no hole */
1568 zone->contiguous = true;
1569 }
1570
1571 void clear_zone_contiguous(struct zone *zone)
1572 {
1573 zone->contiguous = false;
1574 }
1575
1576 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1577 static void __init deferred_free_range(unsigned long pfn,
1578 unsigned long nr_pages)
1579 {
1580 struct page *page;
1581 unsigned long i;
1582
1583 if (!nr_pages)
1584 return;
1585
1586 page = pfn_to_page(pfn);
1587
1588 /* Free a large naturally-aligned chunk if possible */
1589 if (nr_pages == pageblock_nr_pages &&
1590 (pfn & (pageblock_nr_pages - 1)) == 0) {
1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1592 __free_pages_core(page, pageblock_order);
1593 return;
1594 }
1595
1596 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1597 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1598 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1599 __free_pages_core(page, 0);
1600 }
1601 }
1602
1603 /* Completion tracking for deferred_init_memmap() threads */
1604 static atomic_t pgdat_init_n_undone __initdata;
1605 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1606
1607 static inline void __init pgdat_init_report_one_done(void)
1608 {
1609 if (atomic_dec_and_test(&pgdat_init_n_undone))
1610 complete(&pgdat_init_all_done_comp);
1611 }
1612
1613 /*
1614 * Returns true if page needs to be initialized or freed to buddy allocator.
1615 *
1616 * First we check if pfn is valid on architectures where it is possible to have
1617 * holes within pageblock_nr_pages. On systems where it is not possible, this
1618 * function is optimized out.
1619 *
1620 * Then, we check if a current large page is valid by only checking the validity
1621 * of the head pfn.
1622 */
1623 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1624 {
1625 if (!pfn_valid_within(pfn))
1626 return false;
1627 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1628 return false;
1629 return true;
1630 }
1631
1632 /*
1633 * Free pages to buddy allocator. Try to free aligned pages in
1634 * pageblock_nr_pages sizes.
1635 */
1636 static void __init deferred_free_pages(unsigned long pfn,
1637 unsigned long end_pfn)
1638 {
1639 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1640 unsigned long nr_free = 0;
1641
1642 for (; pfn < end_pfn; pfn++) {
1643 if (!deferred_pfn_valid(pfn)) {
1644 deferred_free_range(pfn - nr_free, nr_free);
1645 nr_free = 0;
1646 } else if (!(pfn & nr_pgmask)) {
1647 deferred_free_range(pfn - nr_free, nr_free);
1648 nr_free = 1;
1649 touch_nmi_watchdog();
1650 } else {
1651 nr_free++;
1652 }
1653 }
1654 /* Free the last block of pages to allocator */
1655 deferred_free_range(pfn - nr_free, nr_free);
1656 }
1657
1658 /*
1659 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1660 * by performing it only once every pageblock_nr_pages.
1661 * Return number of pages initialized.
1662 */
1663 static unsigned long __init deferred_init_pages(struct zone *zone,
1664 unsigned long pfn,
1665 unsigned long end_pfn)
1666 {
1667 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1668 int nid = zone_to_nid(zone);
1669 unsigned long nr_pages = 0;
1670 int zid = zone_idx(zone);
1671 struct page *page = NULL;
1672
1673 for (; pfn < end_pfn; pfn++) {
1674 if (!deferred_pfn_valid(pfn)) {
1675 page = NULL;
1676 continue;
1677 } else if (!page || !(pfn & nr_pgmask)) {
1678 page = pfn_to_page(pfn);
1679 touch_nmi_watchdog();
1680 } else {
1681 page++;
1682 }
1683 __init_single_page(page, pfn, zid, nid);
1684 nr_pages++;
1685 }
1686 return (nr_pages);
1687 }
1688
1689 /*
1690 * This function is meant to pre-load the iterator for the zone init.
1691 * Specifically it walks through the ranges until we are caught up to the
1692 * first_init_pfn value and exits there. If we never encounter the value we
1693 * return false indicating there are no valid ranges left.
1694 */
1695 static bool __init
1696 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1697 unsigned long *spfn, unsigned long *epfn,
1698 unsigned long first_init_pfn)
1699 {
1700 u64 j;
1701
1702 /*
1703 * Start out by walking through the ranges in this zone that have
1704 * already been initialized. We don't need to do anything with them
1705 * so we just need to flush them out of the system.
1706 */
1707 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1708 if (*epfn <= first_init_pfn)
1709 continue;
1710 if (*spfn < first_init_pfn)
1711 *spfn = first_init_pfn;
1712 *i = j;
1713 return true;
1714 }
1715
1716 return false;
1717 }
1718
1719 /*
1720 * Initialize and free pages. We do it in two loops: first we initialize
1721 * struct page, then free to buddy allocator, because while we are
1722 * freeing pages we can access pages that are ahead (computing buddy
1723 * page in __free_one_page()).
1724 *
1725 * In order to try and keep some memory in the cache we have the loop
1726 * broken along max page order boundaries. This way we will not cause
1727 * any issues with the buddy page computation.
1728 */
1729 static unsigned long __init
1730 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1731 unsigned long *end_pfn)
1732 {
1733 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1734 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1735 unsigned long nr_pages = 0;
1736 u64 j = *i;
1737
1738 /* First we loop through and initialize the page values */
1739 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1740 unsigned long t;
1741
1742 if (mo_pfn <= *start_pfn)
1743 break;
1744
1745 t = min(mo_pfn, *end_pfn);
1746 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1747
1748 if (mo_pfn < *end_pfn) {
1749 *start_pfn = mo_pfn;
1750 break;
1751 }
1752 }
1753
1754 /* Reset values and now loop through freeing pages as needed */
1755 swap(j, *i);
1756
1757 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1758 unsigned long t;
1759
1760 if (mo_pfn <= spfn)
1761 break;
1762
1763 t = min(mo_pfn, epfn);
1764 deferred_free_pages(spfn, t);
1765
1766 if (mo_pfn <= epfn)
1767 break;
1768 }
1769
1770 return nr_pages;
1771 }
1772
1773 /* Initialise remaining memory on a node */
1774 static int __init deferred_init_memmap(void *data)
1775 {
1776 pg_data_t *pgdat = data;
1777 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1778 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1779 unsigned long first_init_pfn, flags;
1780 unsigned long start = jiffies;
1781 struct zone *zone;
1782 int zid;
1783 u64 i;
1784
1785 /* Bind memory initialisation thread to a local node if possible */
1786 if (!cpumask_empty(cpumask))
1787 set_cpus_allowed_ptr(current, cpumask);
1788
1789 pgdat_resize_lock(pgdat, &flags);
1790 first_init_pfn = pgdat->first_deferred_pfn;
1791 if (first_init_pfn == ULONG_MAX) {
1792 pgdat_resize_unlock(pgdat, &flags);
1793 pgdat_init_report_one_done();
1794 return 0;
1795 }
1796
1797 /* Sanity check boundaries */
1798 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1799 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1800 pgdat->first_deferred_pfn = ULONG_MAX;
1801
1802 /* Only the highest zone is deferred so find it */
1803 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1804 zone = pgdat->node_zones + zid;
1805 if (first_init_pfn < zone_end_pfn(zone))
1806 break;
1807 }
1808
1809 /* If the zone is empty somebody else may have cleared out the zone */
1810 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1811 first_init_pfn))
1812 goto zone_empty;
1813
1814 /*
1815 * Initialize and free pages in MAX_ORDER sized increments so
1816 * that we can avoid introducing any issues with the buddy
1817 * allocator.
1818 */
1819 while (spfn < epfn)
1820 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1821 zone_empty:
1822 pgdat_resize_unlock(pgdat, &flags);
1823
1824 /* Sanity check that the next zone really is unpopulated */
1825 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1826
1827 pr_info("node %d initialised, %lu pages in %ums\n",
1828 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1829
1830 pgdat_init_report_one_done();
1831 return 0;
1832 }
1833
1834 /*
1835 * If this zone has deferred pages, try to grow it by initializing enough
1836 * deferred pages to satisfy the allocation specified by order, rounded up to
1837 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1838 * of SECTION_SIZE bytes by initializing struct pages in increments of
1839 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1840 *
1841 * Return true when zone was grown, otherwise return false. We return true even
1842 * when we grow less than requested, to let the caller decide if there are
1843 * enough pages to satisfy the allocation.
1844 *
1845 * Note: We use noinline because this function is needed only during boot, and
1846 * it is called from a __ref function _deferred_grow_zone. This way we are
1847 * making sure that it is not inlined into permanent text section.
1848 */
1849 static noinline bool __init
1850 deferred_grow_zone(struct zone *zone, unsigned int order)
1851 {
1852 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1853 pg_data_t *pgdat = zone->zone_pgdat;
1854 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1855 unsigned long spfn, epfn, flags;
1856 unsigned long nr_pages = 0;
1857 u64 i;
1858
1859 /* Only the last zone may have deferred pages */
1860 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1861 return false;
1862
1863 pgdat_resize_lock(pgdat, &flags);
1864
1865 /*
1866 * If deferred pages have been initialized while we were waiting for
1867 * the lock, return true, as the zone was grown. The caller will retry
1868 * this zone. We won't return to this function since the caller also
1869 * has this static branch.
1870 */
1871 if (!static_branch_unlikely(&deferred_pages)) {
1872 pgdat_resize_unlock(pgdat, &flags);
1873 return true;
1874 }
1875
1876 /*
1877 * If someone grew this zone while we were waiting for spinlock, return
1878 * true, as there might be enough pages already.
1879 */
1880 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1881 pgdat_resize_unlock(pgdat, &flags);
1882 return true;
1883 }
1884
1885 /* If the zone is empty somebody else may have cleared out the zone */
1886 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1887 first_deferred_pfn)) {
1888 pgdat->first_deferred_pfn = ULONG_MAX;
1889 pgdat_resize_unlock(pgdat, &flags);
1890 /* Retry only once. */
1891 return first_deferred_pfn != ULONG_MAX;
1892 }
1893
1894 /*
1895 * Initialize and free pages in MAX_ORDER sized increments so
1896 * that we can avoid introducing any issues with the buddy
1897 * allocator.
1898 */
1899 while (spfn < epfn) {
1900 /* update our first deferred PFN for this section */
1901 first_deferred_pfn = spfn;
1902
1903 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1904
1905 /* We should only stop along section boundaries */
1906 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1907 continue;
1908
1909 /* If our quota has been met we can stop here */
1910 if (nr_pages >= nr_pages_needed)
1911 break;
1912 }
1913
1914 pgdat->first_deferred_pfn = spfn;
1915 pgdat_resize_unlock(pgdat, &flags);
1916
1917 return nr_pages > 0;
1918 }
1919
1920 /*
1921 * deferred_grow_zone() is __init, but it is called from
1922 * get_page_from_freelist() during early boot until deferred_pages permanently
1923 * disables this call. This is why we have refdata wrapper to avoid warning,
1924 * and to ensure that the function body gets unloaded.
1925 */
1926 static bool __ref
1927 _deferred_grow_zone(struct zone *zone, unsigned int order)
1928 {
1929 return deferred_grow_zone(zone, order);
1930 }
1931
1932 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1933
1934 void __init page_alloc_init_late(void)
1935 {
1936 struct zone *zone;
1937 int nid;
1938
1939 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1940
1941 /* There will be num_node_state(N_MEMORY) threads */
1942 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1943 for_each_node_state(nid, N_MEMORY) {
1944 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1945 }
1946
1947 /* Block until all are initialised */
1948 wait_for_completion(&pgdat_init_all_done_comp);
1949
1950 /*
1951 * The number of managed pages has changed due to the initialisation
1952 * so the pcpu batch and high limits needs to be updated or the limits
1953 * will be artificially small.
1954 */
1955 for_each_populated_zone(zone)
1956 zone_pcp_update(zone);
1957
1958 /*
1959 * We initialized the rest of the deferred pages. Permanently disable
1960 * on-demand struct page initialization.
1961 */
1962 static_branch_disable(&deferred_pages);
1963
1964 /* Reinit limits that are based on free pages after the kernel is up */
1965 files_maxfiles_init();
1966 #endif
1967
1968 /* Discard memblock private memory */
1969 memblock_discard();
1970
1971 for_each_node_state(nid, N_MEMORY)
1972 shuffle_free_memory(NODE_DATA(nid));
1973
1974 for_each_populated_zone(zone)
1975 set_zone_contiguous(zone);
1976
1977 #ifdef CONFIG_DEBUG_PAGEALLOC
1978 init_debug_guardpage();
1979 #endif
1980 }
1981
1982 #ifdef CONFIG_CMA
1983 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1984 void __init init_cma_reserved_pageblock(struct page *page)
1985 {
1986 unsigned i = pageblock_nr_pages;
1987 struct page *p = page;
1988
1989 do {
1990 __ClearPageReserved(p);
1991 set_page_count(p, 0);
1992 } while (++p, --i);
1993
1994 set_pageblock_migratetype(page, MIGRATE_CMA);
1995
1996 if (pageblock_order >= MAX_ORDER) {
1997 i = pageblock_nr_pages;
1998 p = page;
1999 do {
2000 set_page_refcounted(p);
2001 __free_pages(p, MAX_ORDER - 1);
2002 p += MAX_ORDER_NR_PAGES;
2003 } while (i -= MAX_ORDER_NR_PAGES);
2004 } else {
2005 set_page_refcounted(page);
2006 __free_pages(page, pageblock_order);
2007 }
2008
2009 adjust_managed_page_count(page, pageblock_nr_pages);
2010 }
2011 #endif
2012
2013 /*
2014 * The order of subdivision here is critical for the IO subsystem.
2015 * Please do not alter this order without good reasons and regression
2016 * testing. Specifically, as large blocks of memory are subdivided,
2017 * the order in which smaller blocks are delivered depends on the order
2018 * they're subdivided in this function. This is the primary factor
2019 * influencing the order in which pages are delivered to the IO
2020 * subsystem according to empirical testing, and this is also justified
2021 * by considering the behavior of a buddy system containing a single
2022 * large block of memory acted on by a series of small allocations.
2023 * This behavior is a critical factor in sglist merging's success.
2024 *
2025 * -- nyc
2026 */
2027 static inline void expand(struct zone *zone, struct page *page,
2028 int low, int high, struct free_area *area,
2029 int migratetype)
2030 {
2031 unsigned long size = 1 << high;
2032
2033 while (high > low) {
2034 area--;
2035 high--;
2036 size >>= 1;
2037 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2038
2039 /*
2040 * Mark as guard pages (or page), that will allow to
2041 * merge back to allocator when buddy will be freed.
2042 * Corresponding page table entries will not be touched,
2043 * pages will stay not present in virtual address space
2044 */
2045 if (set_page_guard(zone, &page[size], high, migratetype))
2046 continue;
2047
2048 add_to_free_area(&page[size], area, migratetype);
2049 set_page_order(&page[size], high);
2050 }
2051 }
2052
2053 static void check_new_page_bad(struct page *page)
2054 {
2055 const char *bad_reason = NULL;
2056 unsigned long bad_flags = 0;
2057
2058 if (unlikely(atomic_read(&page->_mapcount) != -1))
2059 bad_reason = "nonzero mapcount";
2060 if (unlikely(page->mapping != NULL))
2061 bad_reason = "non-NULL mapping";
2062 if (unlikely(page_ref_count(page) != 0))
2063 bad_reason = "nonzero _refcount";
2064 if (unlikely(page->flags & __PG_HWPOISON)) {
2065 bad_reason = "HWPoisoned (hardware-corrupted)";
2066 bad_flags = __PG_HWPOISON;
2067 /* Don't complain about hwpoisoned pages */
2068 page_mapcount_reset(page); /* remove PageBuddy */
2069 return;
2070 }
2071 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2072 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2073 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2074 }
2075 #ifdef CONFIG_MEMCG
2076 if (unlikely(page->mem_cgroup))
2077 bad_reason = "page still charged to cgroup";
2078 #endif
2079 bad_page(page, bad_reason, bad_flags);
2080 }
2081
2082 /*
2083 * This page is about to be returned from the page allocator
2084 */
2085 static inline int check_new_page(struct page *page)
2086 {
2087 if (likely(page_expected_state(page,
2088 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2089 return 0;
2090
2091 check_new_page_bad(page);
2092 return 1;
2093 }
2094
2095 static inline bool free_pages_prezeroed(void)
2096 {
2097 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2098 page_poisoning_enabled()) || want_init_on_free();
2099 }
2100
2101 #ifdef CONFIG_DEBUG_VM
2102 /*
2103 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2104 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2105 * also checked when pcp lists are refilled from the free lists.
2106 */
2107 static inline bool check_pcp_refill(struct page *page)
2108 {
2109 if (debug_pagealloc_enabled())
2110 return check_new_page(page);
2111 else
2112 return false;
2113 }
2114
2115 static inline bool check_new_pcp(struct page *page)
2116 {
2117 return check_new_page(page);
2118 }
2119 #else
2120 /*
2121 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2122 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2123 * enabled, they are also checked when being allocated from the pcp lists.
2124 */
2125 static inline bool check_pcp_refill(struct page *page)
2126 {
2127 return check_new_page(page);
2128 }
2129 static inline bool check_new_pcp(struct page *page)
2130 {
2131 if (debug_pagealloc_enabled())
2132 return check_new_page(page);
2133 else
2134 return false;
2135 }
2136 #endif /* CONFIG_DEBUG_VM */
2137
2138 static bool check_new_pages(struct page *page, unsigned int order)
2139 {
2140 int i;
2141 for (i = 0; i < (1 << order); i++) {
2142 struct page *p = page + i;
2143
2144 if (unlikely(check_new_page(p)))
2145 return true;
2146 }
2147
2148 return false;
2149 }
2150
2151 inline void post_alloc_hook(struct page *page, unsigned int order,
2152 gfp_t gfp_flags)
2153 {
2154 set_page_private(page, 0);
2155 set_page_refcounted(page);
2156
2157 arch_alloc_page(page, order);
2158 if (debug_pagealloc_enabled())
2159 kernel_map_pages(page, 1 << order, 1);
2160 kasan_alloc_pages(page, order);
2161 kernel_poison_pages(page, 1 << order, 1);
2162 set_page_owner(page, order, gfp_flags);
2163 }
2164
2165 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2166 unsigned int alloc_flags)
2167 {
2168 post_alloc_hook(page, order, gfp_flags);
2169
2170 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2171 kernel_init_free_pages(page, 1 << order);
2172
2173 if (order && (gfp_flags & __GFP_COMP))
2174 prep_compound_page(page, order);
2175
2176 /*
2177 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2178 * allocate the page. The expectation is that the caller is taking
2179 * steps that will free more memory. The caller should avoid the page
2180 * being used for !PFMEMALLOC purposes.
2181 */
2182 if (alloc_flags & ALLOC_NO_WATERMARKS)
2183 set_page_pfmemalloc(page);
2184 else
2185 clear_page_pfmemalloc(page);
2186 }
2187
2188 /*
2189 * Go through the free lists for the given migratetype and remove
2190 * the smallest available page from the freelists
2191 */
2192 static __always_inline
2193 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2194 int migratetype)
2195 {
2196 unsigned int current_order;
2197 struct free_area *area;
2198 struct page *page;
2199
2200 /* Find a page of the appropriate size in the preferred list */
2201 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2202 area = &(zone->free_area[current_order]);
2203 page = get_page_from_free_area(area, migratetype);
2204 if (!page)
2205 continue;
2206 del_page_from_free_area(page, area);
2207 expand(zone, page, order, current_order, area, migratetype);
2208 set_pcppage_migratetype(page, migratetype);
2209 return page;
2210 }
2211
2212 return NULL;
2213 }
2214
2215
2216 /*
2217 * This array describes the order lists are fallen back to when
2218 * the free lists for the desirable migrate type are depleted
2219 */
2220 static int fallbacks[MIGRATE_TYPES][4] = {
2221 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2222 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2223 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2224 #ifdef CONFIG_CMA
2225 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2226 #endif
2227 #ifdef CONFIG_MEMORY_ISOLATION
2228 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2229 #endif
2230 };
2231
2232 #ifdef CONFIG_CMA
2233 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2234 unsigned int order)
2235 {
2236 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2237 }
2238 #else
2239 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2240 unsigned int order) { return NULL; }
2241 #endif
2242
2243 /*
2244 * Move the free pages in a range to the free lists of the requested type.
2245 * Note that start_page and end_pages are not aligned on a pageblock
2246 * boundary. If alignment is required, use move_freepages_block()
2247 */
2248 static int move_freepages(struct zone *zone,
2249 struct page *start_page, struct page *end_page,
2250 int migratetype, int *num_movable)
2251 {
2252 struct page *page;
2253 unsigned int order;
2254 int pages_moved = 0;
2255
2256 for (page = start_page; page <= end_page;) {
2257 if (!pfn_valid_within(page_to_pfn(page))) {
2258 page++;
2259 continue;
2260 }
2261
2262 if (!PageBuddy(page)) {
2263 /*
2264 * We assume that pages that could be isolated for
2265 * migration are movable. But we don't actually try
2266 * isolating, as that would be expensive.
2267 */
2268 if (num_movable &&
2269 (PageLRU(page) || __PageMovable(page)))
2270 (*num_movable)++;
2271
2272 page++;
2273 continue;
2274 }
2275
2276 /* Make sure we are not inadvertently changing nodes */
2277 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2278 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2279
2280 order = page_order(page);
2281 move_to_free_area(page, &zone->free_area[order], migratetype);
2282 page += 1 << order;
2283 pages_moved += 1 << order;
2284 }
2285
2286 return pages_moved;
2287 }
2288
2289 int move_freepages_block(struct zone *zone, struct page *page,
2290 int migratetype, int *num_movable)
2291 {
2292 unsigned long start_pfn, end_pfn;
2293 struct page *start_page, *end_page;
2294
2295 if (num_movable)
2296 *num_movable = 0;
2297
2298 start_pfn = page_to_pfn(page);
2299 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2300 start_page = pfn_to_page(start_pfn);
2301 end_page = start_page + pageblock_nr_pages - 1;
2302 end_pfn = start_pfn + pageblock_nr_pages - 1;
2303
2304 /* Do not cross zone boundaries */
2305 if (!zone_spans_pfn(zone, start_pfn))
2306 start_page = page;
2307 if (!zone_spans_pfn(zone, end_pfn))
2308 return 0;
2309
2310 return move_freepages(zone, start_page, end_page, migratetype,
2311 num_movable);
2312 }
2313
2314 static void change_pageblock_range(struct page *pageblock_page,
2315 int start_order, int migratetype)
2316 {
2317 int nr_pageblocks = 1 << (start_order - pageblock_order);
2318
2319 while (nr_pageblocks--) {
2320 set_pageblock_migratetype(pageblock_page, migratetype);
2321 pageblock_page += pageblock_nr_pages;
2322 }
2323 }
2324
2325 /*
2326 * When we are falling back to another migratetype during allocation, try to
2327 * steal extra free pages from the same pageblocks to satisfy further
2328 * allocations, instead of polluting multiple pageblocks.
2329 *
2330 * If we are stealing a relatively large buddy page, it is likely there will
2331 * be more free pages in the pageblock, so try to steal them all. For
2332 * reclaimable and unmovable allocations, we steal regardless of page size,
2333 * as fragmentation caused by those allocations polluting movable pageblocks
2334 * is worse than movable allocations stealing from unmovable and reclaimable
2335 * pageblocks.
2336 */
2337 static bool can_steal_fallback(unsigned int order, int start_mt)
2338 {
2339 /*
2340 * Leaving this order check is intended, although there is
2341 * relaxed order check in next check. The reason is that
2342 * we can actually steal whole pageblock if this condition met,
2343 * but, below check doesn't guarantee it and that is just heuristic
2344 * so could be changed anytime.
2345 */
2346 if (order >= pageblock_order)
2347 return true;
2348
2349 if (order >= pageblock_order / 2 ||
2350 start_mt == MIGRATE_RECLAIMABLE ||
2351 start_mt == MIGRATE_UNMOVABLE ||
2352 page_group_by_mobility_disabled)
2353 return true;
2354
2355 return false;
2356 }
2357
2358 static inline void boost_watermark(struct zone *zone)
2359 {
2360 unsigned long max_boost;
2361
2362 if (!watermark_boost_factor)
2363 return;
2364
2365 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2366 watermark_boost_factor, 10000);
2367
2368 /*
2369 * high watermark may be uninitialised if fragmentation occurs
2370 * very early in boot so do not boost. We do not fall
2371 * through and boost by pageblock_nr_pages as failing
2372 * allocations that early means that reclaim is not going
2373 * to help and it may even be impossible to reclaim the
2374 * boosted watermark resulting in a hang.
2375 */
2376 if (!max_boost)
2377 return;
2378
2379 max_boost = max(pageblock_nr_pages, max_boost);
2380
2381 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2382 max_boost);
2383 }
2384
2385 /*
2386 * This function implements actual steal behaviour. If order is large enough,
2387 * we can steal whole pageblock. If not, we first move freepages in this
2388 * pageblock to our migratetype and determine how many already-allocated pages
2389 * are there in the pageblock with a compatible migratetype. If at least half
2390 * of pages are free or compatible, we can change migratetype of the pageblock
2391 * itself, so pages freed in the future will be put on the correct free list.
2392 */
2393 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2394 unsigned int alloc_flags, int start_type, bool whole_block)
2395 {
2396 unsigned int current_order = page_order(page);
2397 struct free_area *area;
2398 int free_pages, movable_pages, alike_pages;
2399 int old_block_type;
2400
2401 old_block_type = get_pageblock_migratetype(page);
2402
2403 /*
2404 * This can happen due to races and we want to prevent broken
2405 * highatomic accounting.
2406 */
2407 if (is_migrate_highatomic(old_block_type))
2408 goto single_page;
2409
2410 /* Take ownership for orders >= pageblock_order */
2411 if (current_order >= pageblock_order) {
2412 change_pageblock_range(page, current_order, start_type);
2413 goto single_page;
2414 }
2415
2416 /*
2417 * Boost watermarks to increase reclaim pressure to reduce the
2418 * likelihood of future fallbacks. Wake kswapd now as the node
2419 * may be balanced overall and kswapd will not wake naturally.
2420 */
2421 boost_watermark(zone);
2422 if (alloc_flags & ALLOC_KSWAPD)
2423 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2424
2425 /* We are not allowed to try stealing from the whole block */
2426 if (!whole_block)
2427 goto single_page;
2428
2429 free_pages = move_freepages_block(zone, page, start_type,
2430 &movable_pages);
2431 /*
2432 * Determine how many pages are compatible with our allocation.
2433 * For movable allocation, it's the number of movable pages which
2434 * we just obtained. For other types it's a bit more tricky.
2435 */
2436 if (start_type == MIGRATE_MOVABLE) {
2437 alike_pages = movable_pages;
2438 } else {
2439 /*
2440 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2441 * to MOVABLE pageblock, consider all non-movable pages as
2442 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2443 * vice versa, be conservative since we can't distinguish the
2444 * exact migratetype of non-movable pages.
2445 */
2446 if (old_block_type == MIGRATE_MOVABLE)
2447 alike_pages = pageblock_nr_pages
2448 - (free_pages + movable_pages);
2449 else
2450 alike_pages = 0;
2451 }
2452
2453 /* moving whole block can fail due to zone boundary conditions */
2454 if (!free_pages)
2455 goto single_page;
2456
2457 /*
2458 * If a sufficient number of pages in the block are either free or of
2459 * comparable migratability as our allocation, claim the whole block.
2460 */
2461 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2462 page_group_by_mobility_disabled)
2463 set_pageblock_migratetype(page, start_type);
2464
2465 return;
2466
2467 single_page:
2468 area = &zone->free_area[current_order];
2469 move_to_free_area(page, area, start_type);
2470 }
2471
2472 /*
2473 * Check whether there is a suitable fallback freepage with requested order.
2474 * If only_stealable is true, this function returns fallback_mt only if
2475 * we can steal other freepages all together. This would help to reduce
2476 * fragmentation due to mixed migratetype pages in one pageblock.
2477 */
2478 int find_suitable_fallback(struct free_area *area, unsigned int order,
2479 int migratetype, bool only_stealable, bool *can_steal)
2480 {
2481 int i;
2482 int fallback_mt;
2483
2484 if (area->nr_free == 0)
2485 return -1;
2486
2487 *can_steal = false;
2488 for (i = 0;; i++) {
2489 fallback_mt = fallbacks[migratetype][i];
2490 if (fallback_mt == MIGRATE_TYPES)
2491 break;
2492
2493 if (free_area_empty(area, fallback_mt))
2494 continue;
2495
2496 if (can_steal_fallback(order, migratetype))
2497 *can_steal = true;
2498
2499 if (!only_stealable)
2500 return fallback_mt;
2501
2502 if (*can_steal)
2503 return fallback_mt;
2504 }
2505
2506 return -1;
2507 }
2508
2509 /*
2510 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2511 * there are no empty page blocks that contain a page with a suitable order
2512 */
2513 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2514 unsigned int alloc_order)
2515 {
2516 int mt;
2517 unsigned long max_managed, flags;
2518
2519 /*
2520 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2521 * Check is race-prone but harmless.
2522 */
2523 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2524 if (zone->nr_reserved_highatomic >= max_managed)
2525 return;
2526
2527 spin_lock_irqsave(&zone->lock, flags);
2528
2529 /* Recheck the nr_reserved_highatomic limit under the lock */
2530 if (zone->nr_reserved_highatomic >= max_managed)
2531 goto out_unlock;
2532
2533 /* Yoink! */
2534 mt = get_pageblock_migratetype(page);
2535 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2536 && !is_migrate_cma(mt)) {
2537 zone->nr_reserved_highatomic += pageblock_nr_pages;
2538 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2539 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2540 }
2541
2542 out_unlock:
2543 spin_unlock_irqrestore(&zone->lock, flags);
2544 }
2545
2546 /*
2547 * Used when an allocation is about to fail under memory pressure. This
2548 * potentially hurts the reliability of high-order allocations when under
2549 * intense memory pressure but failed atomic allocations should be easier
2550 * to recover from than an OOM.
2551 *
2552 * If @force is true, try to unreserve a pageblock even though highatomic
2553 * pageblock is exhausted.
2554 */
2555 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2556 bool force)
2557 {
2558 struct zonelist *zonelist = ac->zonelist;
2559 unsigned long flags;
2560 struct zoneref *z;
2561 struct zone *zone;
2562 struct page *page;
2563 int order;
2564 bool ret;
2565
2566 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2567 ac->nodemask) {
2568 /*
2569 * Preserve at least one pageblock unless memory pressure
2570 * is really high.
2571 */
2572 if (!force && zone->nr_reserved_highatomic <=
2573 pageblock_nr_pages)
2574 continue;
2575
2576 spin_lock_irqsave(&zone->lock, flags);
2577 for (order = 0; order < MAX_ORDER; order++) {
2578 struct free_area *area = &(zone->free_area[order]);
2579
2580 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2581 if (!page)
2582 continue;
2583
2584 /*
2585 * In page freeing path, migratetype change is racy so
2586 * we can counter several free pages in a pageblock
2587 * in this loop althoug we changed the pageblock type
2588 * from highatomic to ac->migratetype. So we should
2589 * adjust the count once.
2590 */
2591 if (is_migrate_highatomic_page(page)) {
2592 /*
2593 * It should never happen but changes to
2594 * locking could inadvertently allow a per-cpu
2595 * drain to add pages to MIGRATE_HIGHATOMIC
2596 * while unreserving so be safe and watch for
2597 * underflows.
2598 */
2599 zone->nr_reserved_highatomic -= min(
2600 pageblock_nr_pages,
2601 zone->nr_reserved_highatomic);
2602 }
2603
2604 /*
2605 * Convert to ac->migratetype and avoid the normal
2606 * pageblock stealing heuristics. Minimally, the caller
2607 * is doing the work and needs the pages. More
2608 * importantly, if the block was always converted to
2609 * MIGRATE_UNMOVABLE or another type then the number
2610 * of pageblocks that cannot be completely freed
2611 * may increase.
2612 */
2613 set_pageblock_migratetype(page, ac->migratetype);
2614 ret = move_freepages_block(zone, page, ac->migratetype,
2615 NULL);
2616 if (ret) {
2617 spin_unlock_irqrestore(&zone->lock, flags);
2618 return ret;
2619 }
2620 }
2621 spin_unlock_irqrestore(&zone->lock, flags);
2622 }
2623
2624 return false;
2625 }
2626
2627 /*
2628 * Try finding a free buddy page on the fallback list and put it on the free
2629 * list of requested migratetype, possibly along with other pages from the same
2630 * block, depending on fragmentation avoidance heuristics. Returns true if
2631 * fallback was found so that __rmqueue_smallest() can grab it.
2632 *
2633 * The use of signed ints for order and current_order is a deliberate
2634 * deviation from the rest of this file, to make the for loop
2635 * condition simpler.
2636 */
2637 static __always_inline bool
2638 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2639 unsigned int alloc_flags)
2640 {
2641 struct free_area *area;
2642 int current_order;
2643 int min_order = order;
2644 struct page *page;
2645 int fallback_mt;
2646 bool can_steal;
2647
2648 /*
2649 * Do not steal pages from freelists belonging to other pageblocks
2650 * i.e. orders < pageblock_order. If there are no local zones free,
2651 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2652 */
2653 if (alloc_flags & ALLOC_NOFRAGMENT)
2654 min_order = pageblock_order;
2655
2656 /*
2657 * Find the largest available free page in the other list. This roughly
2658 * approximates finding the pageblock with the most free pages, which
2659 * would be too costly to do exactly.
2660 */
2661 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2662 --current_order) {
2663 area = &(zone->free_area[current_order]);
2664 fallback_mt = find_suitable_fallback(area, current_order,
2665 start_migratetype, false, &can_steal);
2666 if (fallback_mt == -1)
2667 continue;
2668
2669 /*
2670 * We cannot steal all free pages from the pageblock and the
2671 * requested migratetype is movable. In that case it's better to
2672 * steal and split the smallest available page instead of the
2673 * largest available page, because even if the next movable
2674 * allocation falls back into a different pageblock than this
2675 * one, it won't cause permanent fragmentation.
2676 */
2677 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2678 && current_order > order)
2679 goto find_smallest;
2680
2681 goto do_steal;
2682 }
2683
2684 return false;
2685
2686 find_smallest:
2687 for (current_order = order; current_order < MAX_ORDER;
2688 current_order++) {
2689 area = &(zone->free_area[current_order]);
2690 fallback_mt = find_suitable_fallback(area, current_order,
2691 start_migratetype, false, &can_steal);
2692 if (fallback_mt != -1)
2693 break;
2694 }
2695
2696 /*
2697 * This should not happen - we already found a suitable fallback
2698 * when looking for the largest page.
2699 */
2700 VM_BUG_ON(current_order == MAX_ORDER);
2701
2702 do_steal:
2703 page = get_page_from_free_area(area, fallback_mt);
2704
2705 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2706 can_steal);
2707
2708 trace_mm_page_alloc_extfrag(page, order, current_order,
2709 start_migratetype, fallback_mt);
2710
2711 return true;
2712
2713 }
2714
2715 /*
2716 * Do the hard work of removing an element from the buddy allocator.
2717 * Call me with the zone->lock already held.
2718 */
2719 static __always_inline struct page *
2720 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2721 unsigned int alloc_flags)
2722 {
2723 struct page *page;
2724
2725 retry:
2726 page = __rmqueue_smallest(zone, order, migratetype);
2727 if (unlikely(!page)) {
2728 if (migratetype == MIGRATE_MOVABLE)
2729 page = __rmqueue_cma_fallback(zone, order);
2730
2731 if (!page && __rmqueue_fallback(zone, order, migratetype,
2732 alloc_flags))
2733 goto retry;
2734 }
2735
2736 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2737 return page;
2738 }
2739
2740 /*
2741 * Obtain a specified number of elements from the buddy allocator, all under
2742 * a single hold of the lock, for efficiency. Add them to the supplied list.
2743 * Returns the number of new pages which were placed at *list.
2744 */
2745 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2746 unsigned long count, struct list_head *list,
2747 int migratetype, unsigned int alloc_flags)
2748 {
2749 int i, alloced = 0;
2750
2751 spin_lock(&zone->lock);
2752 for (i = 0; i < count; ++i) {
2753 struct page *page = __rmqueue(zone, order, migratetype,
2754 alloc_flags);
2755 if (unlikely(page == NULL))
2756 break;
2757
2758 if (unlikely(check_pcp_refill(page)))
2759 continue;
2760
2761 /*
2762 * Split buddy pages returned by expand() are received here in
2763 * physical page order. The page is added to the tail of
2764 * caller's list. From the callers perspective, the linked list
2765 * is ordered by page number under some conditions. This is
2766 * useful for IO devices that can forward direction from the
2767 * head, thus also in the physical page order. This is useful
2768 * for IO devices that can merge IO requests if the physical
2769 * pages are ordered properly.
2770 */
2771 list_add_tail(&page->lru, list);
2772 alloced++;
2773 if (is_migrate_cma(get_pcppage_migratetype(page)))
2774 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2775 -(1 << order));
2776 }
2777
2778 /*
2779 * i pages were removed from the buddy list even if some leak due
2780 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2781 * on i. Do not confuse with 'alloced' which is the number of
2782 * pages added to the pcp list.
2783 */
2784 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2785 spin_unlock(&zone->lock);
2786 return alloced;
2787 }
2788
2789 #ifdef CONFIG_NUMA
2790 /*
2791 * Called from the vmstat counter updater to drain pagesets of this
2792 * currently executing processor on remote nodes after they have
2793 * expired.
2794 *
2795 * Note that this function must be called with the thread pinned to
2796 * a single processor.
2797 */
2798 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2799 {
2800 unsigned long flags;
2801 int to_drain, batch;
2802
2803 local_irq_save(flags);
2804 batch = READ_ONCE(pcp->batch);
2805 to_drain = min(pcp->count, batch);
2806 if (to_drain > 0)
2807 free_pcppages_bulk(zone, to_drain, pcp);
2808 local_irq_restore(flags);
2809 }
2810 #endif
2811
2812 /*
2813 * Drain pcplists of the indicated processor and zone.
2814 *
2815 * The processor must either be the current processor and the
2816 * thread pinned to the current processor or a processor that
2817 * is not online.
2818 */
2819 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2820 {
2821 unsigned long flags;
2822 struct per_cpu_pageset *pset;
2823 struct per_cpu_pages *pcp;
2824
2825 local_irq_save(flags);
2826 pset = per_cpu_ptr(zone->pageset, cpu);
2827
2828 pcp = &pset->pcp;
2829 if (pcp->count)
2830 free_pcppages_bulk(zone, pcp->count, pcp);
2831 local_irq_restore(flags);
2832 }
2833
2834 /*
2835 * Drain pcplists of all zones on the indicated processor.
2836 *
2837 * The processor must either be the current processor and the
2838 * thread pinned to the current processor or a processor that
2839 * is not online.
2840 */
2841 static void drain_pages(unsigned int cpu)
2842 {
2843 struct zone *zone;
2844
2845 for_each_populated_zone(zone) {
2846 drain_pages_zone(cpu, zone);
2847 }
2848 }
2849
2850 /*
2851 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2852 *
2853 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2854 * the single zone's pages.
2855 */
2856 void drain_local_pages(struct zone *zone)
2857 {
2858 int cpu = smp_processor_id();
2859
2860 if (zone)
2861 drain_pages_zone(cpu, zone);
2862 else
2863 drain_pages(cpu);
2864 }
2865
2866 static void drain_local_pages_wq(struct work_struct *work)
2867 {
2868 struct pcpu_drain *drain;
2869
2870 drain = container_of(work, struct pcpu_drain, work);
2871
2872 /*
2873 * drain_all_pages doesn't use proper cpu hotplug protection so
2874 * we can race with cpu offline when the WQ can move this from
2875 * a cpu pinned worker to an unbound one. We can operate on a different
2876 * cpu which is allright but we also have to make sure to not move to
2877 * a different one.
2878 */
2879 preempt_disable();
2880 drain_local_pages(drain->zone);
2881 preempt_enable();
2882 }
2883
2884 /*
2885 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2886 *
2887 * When zone parameter is non-NULL, spill just the single zone's pages.
2888 *
2889 * Note that this can be extremely slow as the draining happens in a workqueue.
2890 */
2891 void drain_all_pages(struct zone *zone)
2892 {
2893 int cpu;
2894
2895 /*
2896 * Allocate in the BSS so we wont require allocation in
2897 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2898 */
2899 static cpumask_t cpus_with_pcps;
2900
2901 /*
2902 * Make sure nobody triggers this path before mm_percpu_wq is fully
2903 * initialized.
2904 */
2905 if (WARN_ON_ONCE(!mm_percpu_wq))
2906 return;
2907
2908 /*
2909 * Do not drain if one is already in progress unless it's specific to
2910 * a zone. Such callers are primarily CMA and memory hotplug and need
2911 * the drain to be complete when the call returns.
2912 */
2913 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2914 if (!zone)
2915 return;
2916 mutex_lock(&pcpu_drain_mutex);
2917 }
2918
2919 /*
2920 * We don't care about racing with CPU hotplug event
2921 * as offline notification will cause the notified
2922 * cpu to drain that CPU pcps and on_each_cpu_mask
2923 * disables preemption as part of its processing
2924 */
2925 for_each_online_cpu(cpu) {
2926 struct per_cpu_pageset *pcp;
2927 struct zone *z;
2928 bool has_pcps = false;
2929
2930 if (zone) {
2931 pcp = per_cpu_ptr(zone->pageset, cpu);
2932 if (pcp->pcp.count)
2933 has_pcps = true;
2934 } else {
2935 for_each_populated_zone(z) {
2936 pcp = per_cpu_ptr(z->pageset, cpu);
2937 if (pcp->pcp.count) {
2938 has_pcps = true;
2939 break;
2940 }
2941 }
2942 }
2943
2944 if (has_pcps)
2945 cpumask_set_cpu(cpu, &cpus_with_pcps);
2946 else
2947 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2948 }
2949
2950 for_each_cpu(cpu, &cpus_with_pcps) {
2951 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2952
2953 drain->zone = zone;
2954 INIT_WORK(&drain->work, drain_local_pages_wq);
2955 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2956 }
2957 for_each_cpu(cpu, &cpus_with_pcps)
2958 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2959
2960 mutex_unlock(&pcpu_drain_mutex);
2961 }
2962
2963 #ifdef CONFIG_HIBERNATION
2964
2965 /*
2966 * Touch the watchdog for every WD_PAGE_COUNT pages.
2967 */
2968 #define WD_PAGE_COUNT (128*1024)
2969
2970 void mark_free_pages(struct zone *zone)
2971 {
2972 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2973 unsigned long flags;
2974 unsigned int order, t;
2975 struct page *page;
2976
2977 if (zone_is_empty(zone))
2978 return;
2979
2980 spin_lock_irqsave(&zone->lock, flags);
2981
2982 max_zone_pfn = zone_end_pfn(zone);
2983 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2984 if (pfn_valid(pfn)) {
2985 page = pfn_to_page(pfn);
2986
2987 if (!--page_count) {
2988 touch_nmi_watchdog();
2989 page_count = WD_PAGE_COUNT;
2990 }
2991
2992 if (page_zone(page) != zone)
2993 continue;
2994
2995 if (!swsusp_page_is_forbidden(page))
2996 swsusp_unset_page_free(page);
2997 }
2998
2999 for_each_migratetype_order(order, t) {
3000 list_for_each_entry(page,
3001 &zone->free_area[order].free_list[t], lru) {
3002 unsigned long i;
3003
3004 pfn = page_to_pfn(page);
3005 for (i = 0; i < (1UL << order); i++) {
3006 if (!--page_count) {
3007 touch_nmi_watchdog();
3008 page_count = WD_PAGE_COUNT;
3009 }
3010 swsusp_set_page_free(pfn_to_page(pfn + i));
3011 }
3012 }
3013 }
3014 spin_unlock_irqrestore(&zone->lock, flags);
3015 }
3016 #endif /* CONFIG_PM */
3017
3018 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3019 {
3020 int migratetype;
3021
3022 if (!free_pcp_prepare(page))
3023 return false;
3024
3025 migratetype = get_pfnblock_migratetype(page, pfn);
3026 set_pcppage_migratetype(page, migratetype);
3027 return true;
3028 }
3029
3030 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3031 {
3032 struct zone *zone = page_zone(page);
3033 struct per_cpu_pages *pcp;
3034 int migratetype;
3035
3036 migratetype = get_pcppage_migratetype(page);
3037 __count_vm_event(PGFREE);
3038
3039 /*
3040 * We only track unmovable, reclaimable and movable on pcp lists.
3041 * Free ISOLATE pages back to the allocator because they are being
3042 * offlined but treat HIGHATOMIC as movable pages so we can get those
3043 * areas back if necessary. Otherwise, we may have to free
3044 * excessively into the page allocator
3045 */
3046 if (migratetype >= MIGRATE_PCPTYPES) {
3047 if (unlikely(is_migrate_isolate(migratetype))) {
3048 free_one_page(zone, page, pfn, 0, migratetype);
3049 return;
3050 }
3051 migratetype = MIGRATE_MOVABLE;
3052 }
3053
3054 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3055 list_add(&page->lru, &pcp->lists[migratetype]);
3056 pcp->count++;
3057 if (pcp->count >= pcp->high) {
3058 unsigned long batch = READ_ONCE(pcp->batch);
3059 free_pcppages_bulk(zone, batch, pcp);
3060 }
3061 }
3062
3063 /*
3064 * Free a 0-order page
3065 */
3066 void free_unref_page(struct page *page)
3067 {
3068 unsigned long flags;
3069 unsigned long pfn = page_to_pfn(page);
3070
3071 if (!free_unref_page_prepare(page, pfn))
3072 return;
3073
3074 local_irq_save(flags);
3075 free_unref_page_commit(page, pfn);
3076 local_irq_restore(flags);
3077 }
3078
3079 /*
3080 * Free a list of 0-order pages
3081 */
3082 void free_unref_page_list(struct list_head *list)
3083 {
3084 struct page *page, *next;
3085 unsigned long flags, pfn;
3086 int batch_count = 0;
3087
3088 /* Prepare pages for freeing */
3089 list_for_each_entry_safe(page, next, list, lru) {
3090 pfn = page_to_pfn(page);
3091 if (!free_unref_page_prepare(page, pfn))
3092 list_del(&page->lru);
3093 set_page_private(page, pfn);
3094 }
3095
3096 local_irq_save(flags);
3097 list_for_each_entry_safe(page, next, list, lru) {
3098 unsigned long pfn = page_private(page);
3099
3100 set_page_private(page, 0);
3101 trace_mm_page_free_batched(page);
3102 free_unref_page_commit(page, pfn);
3103
3104 /*
3105 * Guard against excessive IRQ disabled times when we get
3106 * a large list of pages to free.
3107 */
3108 if (++batch_count == SWAP_CLUSTER_MAX) {
3109 local_irq_restore(flags);
3110 batch_count = 0;
3111 local_irq_save(flags);
3112 }
3113 }
3114 local_irq_restore(flags);
3115 }
3116
3117 /*
3118 * split_page takes a non-compound higher-order page, and splits it into
3119 * n (1<<order) sub-pages: page[0..n]
3120 * Each sub-page must be freed individually.
3121 *
3122 * Note: this is probably too low level an operation for use in drivers.
3123 * Please consult with lkml before using this in your driver.
3124 */
3125 void split_page(struct page *page, unsigned int order)
3126 {
3127 int i;
3128
3129 VM_BUG_ON_PAGE(PageCompound(page), page);
3130 VM_BUG_ON_PAGE(!page_count(page), page);
3131
3132 for (i = 1; i < (1 << order); i++)
3133 set_page_refcounted(page + i);
3134 split_page_owner(page, order);
3135 }
3136 EXPORT_SYMBOL_GPL(split_page);
3137
3138 int __isolate_free_page(struct page *page, unsigned int order)
3139 {
3140 struct free_area *area = &page_zone(page)->free_area[order];
3141 unsigned long watermark;
3142 struct zone *zone;
3143 int mt;
3144
3145 BUG_ON(!PageBuddy(page));
3146
3147 zone = page_zone(page);
3148 mt = get_pageblock_migratetype(page);
3149
3150 if (!is_migrate_isolate(mt)) {
3151 /*
3152 * Obey watermarks as if the page was being allocated. We can
3153 * emulate a high-order watermark check with a raised order-0
3154 * watermark, because we already know our high-order page
3155 * exists.
3156 */
3157 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3158 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3159 return 0;
3160
3161 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3162 }
3163
3164 /* Remove page from free list */
3165
3166 del_page_from_free_area(page, area);
3167
3168 /*
3169 * Set the pageblock if the isolated page is at least half of a
3170 * pageblock
3171 */
3172 if (order >= pageblock_order - 1) {
3173 struct page *endpage = page + (1 << order) - 1;
3174 for (; page < endpage; page += pageblock_nr_pages) {
3175 int mt = get_pageblock_migratetype(page);
3176 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3177 && !is_migrate_highatomic(mt))
3178 set_pageblock_migratetype(page,
3179 MIGRATE_MOVABLE);
3180 }
3181 }
3182
3183
3184 return 1UL << order;
3185 }
3186
3187 /*
3188 * Update NUMA hit/miss statistics
3189 *
3190 * Must be called with interrupts disabled.
3191 */
3192 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3193 {
3194 #ifdef CONFIG_NUMA
3195 enum numa_stat_item local_stat = NUMA_LOCAL;
3196
3197 /* skip numa counters update if numa stats is disabled */
3198 if (!static_branch_likely(&vm_numa_stat_key))
3199 return;
3200
3201 if (zone_to_nid(z) != numa_node_id())
3202 local_stat = NUMA_OTHER;
3203
3204 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3205 __inc_numa_state(z, NUMA_HIT);
3206 else {
3207 __inc_numa_state(z, NUMA_MISS);
3208 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3209 }
3210 __inc_numa_state(z, local_stat);
3211 #endif
3212 }
3213
3214 /* Remove page from the per-cpu list, caller must protect the list */
3215 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3216 unsigned int alloc_flags,
3217 struct per_cpu_pages *pcp,
3218 struct list_head *list)
3219 {
3220 struct page *page;
3221
3222 do {
3223 if (list_empty(list)) {
3224 pcp->count += rmqueue_bulk(zone, 0,
3225 pcp->batch, list,
3226 migratetype, alloc_flags);
3227 if (unlikely(list_empty(list)))
3228 return NULL;
3229 }
3230
3231 page = list_first_entry(list, struct page, lru);
3232 list_del(&page->lru);
3233 pcp->count--;
3234 } while (check_new_pcp(page));
3235
3236 return page;
3237 }
3238
3239 /* Lock and remove page from the per-cpu list */
3240 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3241 struct zone *zone, gfp_t gfp_flags,
3242 int migratetype, unsigned int alloc_flags)
3243 {
3244 struct per_cpu_pages *pcp;
3245 struct list_head *list;
3246 struct page *page;
3247 unsigned long flags;
3248
3249 local_irq_save(flags);
3250 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3251 list = &pcp->lists[migratetype];
3252 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3253 if (page) {
3254 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3255 zone_statistics(preferred_zone, zone);
3256 }
3257 local_irq_restore(flags);
3258 return page;
3259 }
3260
3261 /*
3262 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3263 */
3264 static inline
3265 struct page *rmqueue(struct zone *preferred_zone,
3266 struct zone *zone, unsigned int order,
3267 gfp_t gfp_flags, unsigned int alloc_flags,
3268 int migratetype)
3269 {
3270 unsigned long flags;
3271 struct page *page;
3272
3273 if (likely(order == 0)) {
3274 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3275 migratetype, alloc_flags);
3276 goto out;
3277 }
3278
3279 /*
3280 * We most definitely don't want callers attempting to
3281 * allocate greater than order-1 page units with __GFP_NOFAIL.
3282 */
3283 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3284 spin_lock_irqsave(&zone->lock, flags);
3285
3286 do {
3287 page = NULL;
3288 if (alloc_flags & ALLOC_HARDER) {
3289 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3290 if (page)
3291 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3292 }
3293 if (!page)
3294 page = __rmqueue(zone, order, migratetype, alloc_flags);
3295 } while (page && check_new_pages(page, order));
3296 spin_unlock(&zone->lock);
3297 if (!page)
3298 goto failed;
3299 __mod_zone_freepage_state(zone, -(1 << order),
3300 get_pcppage_migratetype(page));
3301
3302 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3303 zone_statistics(preferred_zone, zone);
3304 local_irq_restore(flags);
3305
3306 out:
3307 /* Separate test+clear to avoid unnecessary atomics */
3308 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3309 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3310 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3311 }
3312
3313 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3314 return page;
3315
3316 failed:
3317 local_irq_restore(flags);
3318 return NULL;
3319 }
3320
3321 #ifdef CONFIG_FAIL_PAGE_ALLOC
3322
3323 static struct {
3324 struct fault_attr attr;
3325
3326 bool ignore_gfp_highmem;
3327 bool ignore_gfp_reclaim;
3328 u32 min_order;
3329 } fail_page_alloc = {
3330 .attr = FAULT_ATTR_INITIALIZER,
3331 .ignore_gfp_reclaim = true,
3332 .ignore_gfp_highmem = true,
3333 .min_order = 1,
3334 };
3335
3336 static int __init setup_fail_page_alloc(char *str)
3337 {
3338 return setup_fault_attr(&fail_page_alloc.attr, str);
3339 }
3340 __setup("fail_page_alloc=", setup_fail_page_alloc);
3341
3342 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3343 {
3344 if (order < fail_page_alloc.min_order)
3345 return false;
3346 if (gfp_mask & __GFP_NOFAIL)
3347 return false;
3348 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3349 return false;
3350 if (fail_page_alloc.ignore_gfp_reclaim &&
3351 (gfp_mask & __GFP_DIRECT_RECLAIM))
3352 return false;
3353
3354 return should_fail(&fail_page_alloc.attr, 1 << order);
3355 }
3356
3357 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3358
3359 static int __init fail_page_alloc_debugfs(void)
3360 {
3361 umode_t mode = S_IFREG | 0600;
3362 struct dentry *dir;
3363
3364 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3365 &fail_page_alloc.attr);
3366
3367 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3368 &fail_page_alloc.ignore_gfp_reclaim);
3369 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3370 &fail_page_alloc.ignore_gfp_highmem);
3371 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3372
3373 return 0;
3374 }
3375
3376 late_initcall(fail_page_alloc_debugfs);
3377
3378 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3379
3380 #else /* CONFIG_FAIL_PAGE_ALLOC */
3381
3382 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3383 {
3384 return false;
3385 }
3386
3387 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3388
3389 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3390 {
3391 return __should_fail_alloc_page(gfp_mask, order);
3392 }
3393 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3394
3395 /*
3396 * Return true if free base pages are above 'mark'. For high-order checks it
3397 * will return true of the order-0 watermark is reached and there is at least
3398 * one free page of a suitable size. Checking now avoids taking the zone lock
3399 * to check in the allocation paths if no pages are free.
3400 */
3401 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3402 int classzone_idx, unsigned int alloc_flags,
3403 long free_pages)
3404 {
3405 long min = mark;
3406 int o;
3407 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3408
3409 /* free_pages may go negative - that's OK */
3410 free_pages -= (1 << order) - 1;
3411
3412 if (alloc_flags & ALLOC_HIGH)
3413 min -= min / 2;
3414
3415 /*
3416 * If the caller does not have rights to ALLOC_HARDER then subtract
3417 * the high-atomic reserves. This will over-estimate the size of the
3418 * atomic reserve but it avoids a search.
3419 */
3420 if (likely(!alloc_harder)) {
3421 free_pages -= z->nr_reserved_highatomic;
3422 } else {
3423 /*
3424 * OOM victims can try even harder than normal ALLOC_HARDER
3425 * users on the grounds that it's definitely going to be in
3426 * the exit path shortly and free memory. Any allocation it
3427 * makes during the free path will be small and short-lived.
3428 */
3429 if (alloc_flags & ALLOC_OOM)
3430 min -= min / 2;
3431 else
3432 min -= min / 4;
3433 }
3434
3435
3436 #ifdef CONFIG_CMA
3437 /* If allocation can't use CMA areas don't use free CMA pages */
3438 if (!(alloc_flags & ALLOC_CMA))
3439 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3440 #endif
3441
3442 /*
3443 * Check watermarks for an order-0 allocation request. If these
3444 * are not met, then a high-order request also cannot go ahead
3445 * even if a suitable page happened to be free.
3446 */
3447 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3448 return false;
3449
3450 /* If this is an order-0 request then the watermark is fine */
3451 if (!order)
3452 return true;
3453
3454 /* For a high-order request, check at least one suitable page is free */
3455 for (o = order; o < MAX_ORDER; o++) {
3456 struct free_area *area = &z->free_area[o];
3457 int mt;
3458
3459 if (!area->nr_free)
3460 continue;
3461
3462 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3463 if (!free_area_empty(area, mt))
3464 return true;
3465 }
3466
3467 #ifdef CONFIG_CMA
3468 if ((alloc_flags & ALLOC_CMA) &&
3469 !free_area_empty(area, MIGRATE_CMA)) {
3470 return true;
3471 }
3472 #endif
3473 if (alloc_harder &&
3474 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3475 return true;
3476 }
3477 return false;
3478 }
3479
3480 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3481 int classzone_idx, unsigned int alloc_flags)
3482 {
3483 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3484 zone_page_state(z, NR_FREE_PAGES));
3485 }
3486
3487 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3488 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3489 {
3490 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3491 long cma_pages = 0;
3492
3493 #ifdef CONFIG_CMA
3494 /* If allocation can't use CMA areas don't use free CMA pages */
3495 if (!(alloc_flags & ALLOC_CMA))
3496 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3497 #endif
3498
3499 /*
3500 * Fast check for order-0 only. If this fails then the reserves
3501 * need to be calculated. There is a corner case where the check
3502 * passes but only the high-order atomic reserve are free. If
3503 * the caller is !atomic then it'll uselessly search the free
3504 * list. That corner case is then slower but it is harmless.
3505 */
3506 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3507 return true;
3508
3509 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3510 free_pages);
3511 }
3512
3513 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3514 unsigned long mark, int classzone_idx)
3515 {
3516 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3517
3518 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3519 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3520
3521 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3522 free_pages);
3523 }
3524
3525 #ifdef CONFIG_NUMA
3526 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3527 {
3528 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3529 node_reclaim_distance;
3530 }
3531 #else /* CONFIG_NUMA */
3532 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3533 {
3534 return true;
3535 }
3536 #endif /* CONFIG_NUMA */
3537
3538 /*
3539 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3540 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3541 * premature use of a lower zone may cause lowmem pressure problems that
3542 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3543 * probably too small. It only makes sense to spread allocations to avoid
3544 * fragmentation between the Normal and DMA32 zones.
3545 */
3546 static inline unsigned int
3547 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3548 {
3549 unsigned int alloc_flags = 0;
3550
3551 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3552 alloc_flags |= ALLOC_KSWAPD;
3553
3554 #ifdef CONFIG_ZONE_DMA32
3555 if (!zone)
3556 return alloc_flags;
3557
3558 if (zone_idx(zone) != ZONE_NORMAL)
3559 return alloc_flags;
3560
3561 /*
3562 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3563 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3564 * on UMA that if Normal is populated then so is DMA32.
3565 */
3566 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3567 if (nr_online_nodes > 1 && !populated_zone(--zone))
3568 return alloc_flags;
3569
3570 alloc_flags |= ALLOC_NOFRAGMENT;
3571 #endif /* CONFIG_ZONE_DMA32 */
3572 return alloc_flags;
3573 }
3574
3575 /*
3576 * get_page_from_freelist goes through the zonelist trying to allocate
3577 * a page.
3578 */
3579 static struct page *
3580 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3581 const struct alloc_context *ac)
3582 {
3583 struct zoneref *z;
3584 struct zone *zone;
3585 struct pglist_data *last_pgdat_dirty_limit = NULL;
3586 bool no_fallback;
3587
3588 retry:
3589 /*
3590 * Scan zonelist, looking for a zone with enough free.
3591 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3592 */
3593 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3594 z = ac->preferred_zoneref;
3595 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3596 ac->nodemask) {
3597 struct page *page;
3598 unsigned long mark;
3599
3600 if (cpusets_enabled() &&
3601 (alloc_flags & ALLOC_CPUSET) &&
3602 !__cpuset_zone_allowed(zone, gfp_mask))
3603 continue;
3604 /*
3605 * When allocating a page cache page for writing, we
3606 * want to get it from a node that is within its dirty
3607 * limit, such that no single node holds more than its
3608 * proportional share of globally allowed dirty pages.
3609 * The dirty limits take into account the node's
3610 * lowmem reserves and high watermark so that kswapd
3611 * should be able to balance it without having to
3612 * write pages from its LRU list.
3613 *
3614 * XXX: For now, allow allocations to potentially
3615 * exceed the per-node dirty limit in the slowpath
3616 * (spread_dirty_pages unset) before going into reclaim,
3617 * which is important when on a NUMA setup the allowed
3618 * nodes are together not big enough to reach the
3619 * global limit. The proper fix for these situations
3620 * will require awareness of nodes in the
3621 * dirty-throttling and the flusher threads.
3622 */
3623 if (ac->spread_dirty_pages) {
3624 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3625 continue;
3626
3627 if (!node_dirty_ok(zone->zone_pgdat)) {
3628 last_pgdat_dirty_limit = zone->zone_pgdat;
3629 continue;
3630 }
3631 }
3632
3633 if (no_fallback && nr_online_nodes > 1 &&
3634 zone != ac->preferred_zoneref->zone) {
3635 int local_nid;
3636
3637 /*
3638 * If moving to a remote node, retry but allow
3639 * fragmenting fallbacks. Locality is more important
3640 * than fragmentation avoidance.
3641 */
3642 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3643 if (zone_to_nid(zone) != local_nid) {
3644 alloc_flags &= ~ALLOC_NOFRAGMENT;
3645 goto retry;
3646 }
3647 }
3648
3649 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3650 if (!zone_watermark_fast(zone, order, mark,
3651 ac_classzone_idx(ac), alloc_flags)) {
3652 int ret;
3653
3654 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3655 /*
3656 * Watermark failed for this zone, but see if we can
3657 * grow this zone if it contains deferred pages.
3658 */
3659 if (static_branch_unlikely(&deferred_pages)) {
3660 if (_deferred_grow_zone(zone, order))
3661 goto try_this_zone;
3662 }
3663 #endif
3664 /* Checked here to keep the fast path fast */
3665 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3666 if (alloc_flags & ALLOC_NO_WATERMARKS)
3667 goto try_this_zone;
3668
3669 if (node_reclaim_mode == 0 ||
3670 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3671 continue;
3672
3673 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3674 switch (ret) {
3675 case NODE_RECLAIM_NOSCAN:
3676 /* did not scan */
3677 continue;
3678 case NODE_RECLAIM_FULL:
3679 /* scanned but unreclaimable */
3680 continue;
3681 default:
3682 /* did we reclaim enough */
3683 if (zone_watermark_ok(zone, order, mark,
3684 ac_classzone_idx(ac), alloc_flags))
3685 goto try_this_zone;
3686
3687 continue;
3688 }
3689 }
3690
3691 try_this_zone:
3692 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3693 gfp_mask, alloc_flags, ac->migratetype);
3694 if (page) {
3695 prep_new_page(page, order, gfp_mask, alloc_flags);
3696
3697 /*
3698 * If this is a high-order atomic allocation then check
3699 * if the pageblock should be reserved for the future
3700 */
3701 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3702 reserve_highatomic_pageblock(page, zone, order);
3703
3704 return page;
3705 } else {
3706 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3707 /* Try again if zone has deferred pages */
3708 if (static_branch_unlikely(&deferred_pages)) {
3709 if (_deferred_grow_zone(zone, order))
3710 goto try_this_zone;
3711 }
3712 #endif
3713 }
3714 }
3715
3716 /*
3717 * It's possible on a UMA machine to get through all zones that are
3718 * fragmented. If avoiding fragmentation, reset and try again.
3719 */
3720 if (no_fallback) {
3721 alloc_flags &= ~ALLOC_NOFRAGMENT;
3722 goto retry;
3723 }
3724
3725 return NULL;
3726 }
3727
3728 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3729 {
3730 unsigned int filter = SHOW_MEM_FILTER_NODES;
3731
3732 /*
3733 * This documents exceptions given to allocations in certain
3734 * contexts that are allowed to allocate outside current's set
3735 * of allowed nodes.
3736 */
3737 if (!(gfp_mask & __GFP_NOMEMALLOC))
3738 if (tsk_is_oom_victim(current) ||
3739 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3740 filter &= ~SHOW_MEM_FILTER_NODES;
3741 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3742 filter &= ~SHOW_MEM_FILTER_NODES;
3743
3744 show_mem(filter, nodemask);
3745 }
3746
3747 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3748 {
3749 struct va_format vaf;
3750 va_list args;
3751 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3752
3753 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3754 return;
3755
3756 va_start(args, fmt);
3757 vaf.fmt = fmt;
3758 vaf.va = &args;
3759 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3760 current->comm, &vaf, gfp_mask, &gfp_mask,
3761 nodemask_pr_args(nodemask));
3762 va_end(args);
3763
3764 cpuset_print_current_mems_allowed();
3765 pr_cont("\n");
3766 dump_stack();
3767 warn_alloc_show_mem(gfp_mask, nodemask);
3768 }
3769
3770 static inline struct page *
3771 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3772 unsigned int alloc_flags,
3773 const struct alloc_context *ac)
3774 {
3775 struct page *page;
3776
3777 page = get_page_from_freelist(gfp_mask, order,
3778 alloc_flags|ALLOC_CPUSET, ac);
3779 /*
3780 * fallback to ignore cpuset restriction if our nodes
3781 * are depleted
3782 */
3783 if (!page)
3784 page = get_page_from_freelist(gfp_mask, order,
3785 alloc_flags, ac);
3786
3787 return page;
3788 }
3789
3790 static inline struct page *
3791 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3792 const struct alloc_context *ac, unsigned long *did_some_progress)
3793 {
3794 struct oom_control oc = {
3795 .zonelist = ac->zonelist,
3796 .nodemask = ac->nodemask,
3797 .memcg = NULL,
3798 .gfp_mask = gfp_mask,
3799 .order = order,
3800 };
3801 struct page *page;
3802
3803 *did_some_progress = 0;
3804
3805 /*
3806 * Acquire the oom lock. If that fails, somebody else is
3807 * making progress for us.
3808 */
3809 if (!mutex_trylock(&oom_lock)) {
3810 *did_some_progress = 1;
3811 schedule_timeout_uninterruptible(1);
3812 return NULL;
3813 }
3814
3815 /*
3816 * Go through the zonelist yet one more time, keep very high watermark
3817 * here, this is only to catch a parallel oom killing, we must fail if
3818 * we're still under heavy pressure. But make sure that this reclaim
3819 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3820 * allocation which will never fail due to oom_lock already held.
3821 */
3822 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3823 ~__GFP_DIRECT_RECLAIM, order,
3824 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3825 if (page)
3826 goto out;
3827
3828 /* Coredumps can quickly deplete all memory reserves */
3829 if (current->flags & PF_DUMPCORE)
3830 goto out;
3831 /* The OOM killer will not help higher order allocs */
3832 if (order > PAGE_ALLOC_COSTLY_ORDER)
3833 goto out;
3834 /*
3835 * We have already exhausted all our reclaim opportunities without any
3836 * success so it is time to admit defeat. We will skip the OOM killer
3837 * because it is very likely that the caller has a more reasonable
3838 * fallback than shooting a random task.
3839 */
3840 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3841 goto out;
3842 /* The OOM killer does not needlessly kill tasks for lowmem */
3843 if (ac->high_zoneidx < ZONE_NORMAL)
3844 goto out;
3845 if (pm_suspended_storage())
3846 goto out;
3847 /*
3848 * XXX: GFP_NOFS allocations should rather fail than rely on
3849 * other request to make a forward progress.
3850 * We are in an unfortunate situation where out_of_memory cannot
3851 * do much for this context but let's try it to at least get
3852 * access to memory reserved if the current task is killed (see
3853 * out_of_memory). Once filesystems are ready to handle allocation
3854 * failures more gracefully we should just bail out here.
3855 */
3856
3857 /* The OOM killer may not free memory on a specific node */
3858 if (gfp_mask & __GFP_THISNODE)
3859 goto out;
3860
3861 /* Exhausted what can be done so it's blame time */
3862 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3863 *did_some_progress = 1;
3864
3865 /*
3866 * Help non-failing allocations by giving them access to memory
3867 * reserves
3868 */
3869 if (gfp_mask & __GFP_NOFAIL)
3870 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3871 ALLOC_NO_WATERMARKS, ac);
3872 }
3873 out:
3874 mutex_unlock(&oom_lock);
3875 return page;
3876 }
3877
3878 /*
3879 * Maximum number of compaction retries wit a progress before OOM
3880 * killer is consider as the only way to move forward.
3881 */
3882 #define MAX_COMPACT_RETRIES 16
3883
3884 #ifdef CONFIG_COMPACTION
3885 /* Try memory compaction for high-order allocations before reclaim */
3886 static struct page *
3887 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3888 unsigned int alloc_flags, const struct alloc_context *ac,
3889 enum compact_priority prio, enum compact_result *compact_result)
3890 {
3891 struct page *page = NULL;
3892 unsigned long pflags;
3893 unsigned int noreclaim_flag;
3894
3895 if (!order)
3896 return NULL;
3897
3898 psi_memstall_enter(&pflags);
3899 noreclaim_flag = memalloc_noreclaim_save();
3900
3901 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3902 prio, &page);
3903
3904 memalloc_noreclaim_restore(noreclaim_flag);
3905 psi_memstall_leave(&pflags);
3906
3907 /*
3908 * At least in one zone compaction wasn't deferred or skipped, so let's
3909 * count a compaction stall
3910 */
3911 count_vm_event(COMPACTSTALL);
3912
3913 /* Prep a captured page if available */
3914 if (page)
3915 prep_new_page(page, order, gfp_mask, alloc_flags);
3916
3917 /* Try get a page from the freelist if available */
3918 if (!page)
3919 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3920
3921 if (page) {
3922 struct zone *zone = page_zone(page);
3923
3924 zone->compact_blockskip_flush = false;
3925 compaction_defer_reset(zone, order, true);
3926 count_vm_event(COMPACTSUCCESS);
3927 return page;
3928 }
3929
3930 /*
3931 * It's bad if compaction run occurs and fails. The most likely reason
3932 * is that pages exist, but not enough to satisfy watermarks.
3933 */
3934 count_vm_event(COMPACTFAIL);
3935
3936 cond_resched();
3937
3938 return NULL;
3939 }
3940
3941 static inline bool
3942 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3943 enum compact_result compact_result,
3944 enum compact_priority *compact_priority,
3945 int *compaction_retries)
3946 {
3947 int max_retries = MAX_COMPACT_RETRIES;
3948 int min_priority;
3949 bool ret = false;
3950 int retries = *compaction_retries;
3951 enum compact_priority priority = *compact_priority;
3952
3953 if (!order)
3954 return false;
3955
3956 if (compaction_made_progress(compact_result))
3957 (*compaction_retries)++;
3958
3959 /*
3960 * compaction considers all the zone as desperately out of memory
3961 * so it doesn't really make much sense to retry except when the
3962 * failure could be caused by insufficient priority
3963 */
3964 if (compaction_failed(compact_result))
3965 goto check_priority;
3966
3967 /*
3968 * compaction was skipped because there are not enough order-0 pages
3969 * to work with, so we retry only if it looks like reclaim can help.
3970 */
3971 if (compaction_needs_reclaim(compact_result)) {
3972 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3973 goto out;
3974 }
3975
3976 /*
3977 * make sure the compaction wasn't deferred or didn't bail out early
3978 * due to locks contention before we declare that we should give up.
3979 * But the next retry should use a higher priority if allowed, so
3980 * we don't just keep bailing out endlessly.
3981 */
3982 if (compaction_withdrawn(compact_result)) {
3983 goto check_priority;
3984 }
3985
3986 /*
3987 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3988 * costly ones because they are de facto nofail and invoke OOM
3989 * killer to move on while costly can fail and users are ready
3990 * to cope with that. 1/4 retries is rather arbitrary but we
3991 * would need much more detailed feedback from compaction to
3992 * make a better decision.
3993 */
3994 if (order > PAGE_ALLOC_COSTLY_ORDER)
3995 max_retries /= 4;
3996 if (*compaction_retries <= max_retries) {
3997 ret = true;
3998 goto out;
3999 }
4000
4001 /*
4002 * Make sure there are attempts at the highest priority if we exhausted
4003 * all retries or failed at the lower priorities.
4004 */
4005 check_priority:
4006 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4007 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4008
4009 if (*compact_priority > min_priority) {
4010 (*compact_priority)--;
4011 *compaction_retries = 0;
4012 ret = true;
4013 }
4014 out:
4015 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4016 return ret;
4017 }
4018 #else
4019 static inline struct page *
4020 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4021 unsigned int alloc_flags, const struct alloc_context *ac,
4022 enum compact_priority prio, enum compact_result *compact_result)
4023 {
4024 *compact_result = COMPACT_SKIPPED;
4025 return NULL;
4026 }
4027
4028 static inline bool
4029 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4030 enum compact_result compact_result,
4031 enum compact_priority *compact_priority,
4032 int *compaction_retries)
4033 {
4034 struct zone *zone;
4035 struct zoneref *z;
4036
4037 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4038 return false;
4039
4040 /*
4041 * There are setups with compaction disabled which would prefer to loop
4042 * inside the allocator rather than hit the oom killer prematurely.
4043 * Let's give them a good hope and keep retrying while the order-0
4044 * watermarks are OK.
4045 */
4046 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4047 ac->nodemask) {
4048 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4049 ac_classzone_idx(ac), alloc_flags))
4050 return true;
4051 }
4052 return false;
4053 }
4054 #endif /* CONFIG_COMPACTION */
4055
4056 #ifdef CONFIG_LOCKDEP
4057 static struct lockdep_map __fs_reclaim_map =
4058 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4059
4060 static bool __need_fs_reclaim(gfp_t gfp_mask)
4061 {
4062 gfp_mask = current_gfp_context(gfp_mask);
4063
4064 /* no reclaim without waiting on it */
4065 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4066 return false;
4067
4068 /* this guy won't enter reclaim */
4069 if (current->flags & PF_MEMALLOC)
4070 return false;
4071
4072 /* We're only interested __GFP_FS allocations for now */
4073 if (!(gfp_mask & __GFP_FS))
4074 return false;
4075
4076 if (gfp_mask & __GFP_NOLOCKDEP)
4077 return false;
4078
4079 return true;
4080 }
4081
4082 void __fs_reclaim_acquire(void)
4083 {
4084 lock_map_acquire(&__fs_reclaim_map);
4085 }
4086
4087 void __fs_reclaim_release(void)
4088 {
4089 lock_map_release(&__fs_reclaim_map);
4090 }
4091
4092 void fs_reclaim_acquire(gfp_t gfp_mask)
4093 {
4094 if (__need_fs_reclaim(gfp_mask))
4095 __fs_reclaim_acquire();
4096 }
4097 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4098
4099 void fs_reclaim_release(gfp_t gfp_mask)
4100 {
4101 if (__need_fs_reclaim(gfp_mask))
4102 __fs_reclaim_release();
4103 }
4104 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4105 #endif
4106
4107 /* Perform direct synchronous page reclaim */
4108 static int
4109 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4110 const struct alloc_context *ac)
4111 {
4112 int progress;
4113 unsigned int noreclaim_flag;
4114 unsigned long pflags;
4115
4116 cond_resched();
4117
4118 /* We now go into synchronous reclaim */
4119 cpuset_memory_pressure_bump();
4120 psi_memstall_enter(&pflags);
4121 fs_reclaim_acquire(gfp_mask);
4122 noreclaim_flag = memalloc_noreclaim_save();
4123
4124 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4125 ac->nodemask);
4126
4127 memalloc_noreclaim_restore(noreclaim_flag);
4128 fs_reclaim_release(gfp_mask);
4129 psi_memstall_leave(&pflags);
4130
4131 cond_resched();
4132
4133 return progress;
4134 }
4135
4136 /* The really slow allocator path where we enter direct reclaim */
4137 static inline struct page *
4138 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4139 unsigned int alloc_flags, const struct alloc_context *ac,
4140 unsigned long *did_some_progress)
4141 {
4142 struct page *page = NULL;
4143 bool drained = false;
4144
4145 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4146 if (unlikely(!(*did_some_progress)))
4147 return NULL;
4148
4149 retry:
4150 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4151
4152 /*
4153 * If an allocation failed after direct reclaim, it could be because
4154 * pages are pinned on the per-cpu lists or in high alloc reserves.
4155 * Shrink them them and try again
4156 */
4157 if (!page && !drained) {
4158 unreserve_highatomic_pageblock(ac, false);
4159 drain_all_pages(NULL);
4160 drained = true;
4161 goto retry;
4162 }
4163
4164 return page;
4165 }
4166
4167 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4168 const struct alloc_context *ac)
4169 {
4170 struct zoneref *z;
4171 struct zone *zone;
4172 pg_data_t *last_pgdat = NULL;
4173 enum zone_type high_zoneidx = ac->high_zoneidx;
4174
4175 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4176 ac->nodemask) {
4177 if (last_pgdat != zone->zone_pgdat)
4178 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4179 last_pgdat = zone->zone_pgdat;
4180 }
4181 }
4182
4183 static inline unsigned int
4184 gfp_to_alloc_flags(gfp_t gfp_mask)
4185 {
4186 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4187
4188 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4189 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4190
4191 /*
4192 * The caller may dip into page reserves a bit more if the caller
4193 * cannot run direct reclaim, or if the caller has realtime scheduling
4194 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4195 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4196 */
4197 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4198
4199 if (gfp_mask & __GFP_ATOMIC) {
4200 /*
4201 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4202 * if it can't schedule.
4203 */
4204 if (!(gfp_mask & __GFP_NOMEMALLOC))
4205 alloc_flags |= ALLOC_HARDER;
4206 /*
4207 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4208 * comment for __cpuset_node_allowed().
4209 */
4210 alloc_flags &= ~ALLOC_CPUSET;
4211 } else if (unlikely(rt_task(current)) && !in_interrupt())
4212 alloc_flags |= ALLOC_HARDER;
4213
4214 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4215 alloc_flags |= ALLOC_KSWAPD;
4216
4217 #ifdef CONFIG_CMA
4218 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4219 alloc_flags |= ALLOC_CMA;
4220 #endif
4221 return alloc_flags;
4222 }
4223
4224 static bool oom_reserves_allowed(struct task_struct *tsk)
4225 {
4226 if (!tsk_is_oom_victim(tsk))
4227 return false;
4228
4229 /*
4230 * !MMU doesn't have oom reaper so give access to memory reserves
4231 * only to the thread with TIF_MEMDIE set
4232 */
4233 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4234 return false;
4235
4236 return true;
4237 }
4238
4239 /*
4240 * Distinguish requests which really need access to full memory
4241 * reserves from oom victims which can live with a portion of it
4242 */
4243 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4244 {
4245 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4246 return 0;
4247 if (gfp_mask & __GFP_MEMALLOC)
4248 return ALLOC_NO_WATERMARKS;
4249 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4250 return ALLOC_NO_WATERMARKS;
4251 if (!in_interrupt()) {
4252 if (current->flags & PF_MEMALLOC)
4253 return ALLOC_NO_WATERMARKS;
4254 else if (oom_reserves_allowed(current))
4255 return ALLOC_OOM;
4256 }
4257
4258 return 0;
4259 }
4260
4261 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4262 {
4263 return !!__gfp_pfmemalloc_flags(gfp_mask);
4264 }
4265
4266 /*
4267 * Checks whether it makes sense to retry the reclaim to make a forward progress
4268 * for the given allocation request.
4269 *
4270 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4271 * without success, or when we couldn't even meet the watermark if we
4272 * reclaimed all remaining pages on the LRU lists.
4273 *
4274 * Returns true if a retry is viable or false to enter the oom path.
4275 */
4276 static inline bool
4277 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4278 struct alloc_context *ac, int alloc_flags,
4279 bool did_some_progress, int *no_progress_loops)
4280 {
4281 struct zone *zone;
4282 struct zoneref *z;
4283 bool ret = false;
4284
4285 /*
4286 * Costly allocations might have made a progress but this doesn't mean
4287 * their order will become available due to high fragmentation so
4288 * always increment the no progress counter for them
4289 */
4290 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4291 *no_progress_loops = 0;
4292 else
4293 (*no_progress_loops)++;
4294
4295 /*
4296 * Make sure we converge to OOM if we cannot make any progress
4297 * several times in the row.
4298 */
4299 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4300 /* Before OOM, exhaust highatomic_reserve */
4301 return unreserve_highatomic_pageblock(ac, true);
4302 }
4303
4304 /*
4305 * Keep reclaiming pages while there is a chance this will lead
4306 * somewhere. If none of the target zones can satisfy our allocation
4307 * request even if all reclaimable pages are considered then we are
4308 * screwed and have to go OOM.
4309 */
4310 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4311 ac->nodemask) {
4312 unsigned long available;
4313 unsigned long reclaimable;
4314 unsigned long min_wmark = min_wmark_pages(zone);
4315 bool wmark;
4316
4317 available = reclaimable = zone_reclaimable_pages(zone);
4318 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4319
4320 /*
4321 * Would the allocation succeed if we reclaimed all
4322 * reclaimable pages?
4323 */
4324 wmark = __zone_watermark_ok(zone, order, min_wmark,
4325 ac_classzone_idx(ac), alloc_flags, available);
4326 trace_reclaim_retry_zone(z, order, reclaimable,
4327 available, min_wmark, *no_progress_loops, wmark);
4328 if (wmark) {
4329 /*
4330 * If we didn't make any progress and have a lot of
4331 * dirty + writeback pages then we should wait for
4332 * an IO to complete to slow down the reclaim and
4333 * prevent from pre mature OOM
4334 */
4335 if (!did_some_progress) {
4336 unsigned long write_pending;
4337
4338 write_pending = zone_page_state_snapshot(zone,
4339 NR_ZONE_WRITE_PENDING);
4340
4341 if (2 * write_pending > reclaimable) {
4342 congestion_wait(BLK_RW_ASYNC, HZ/10);
4343 return true;
4344 }
4345 }
4346
4347 ret = true;
4348 goto out;
4349 }
4350 }
4351
4352 out:
4353 /*
4354 * Memory allocation/reclaim might be called from a WQ context and the
4355 * current implementation of the WQ concurrency control doesn't
4356 * recognize that a particular WQ is congested if the worker thread is
4357 * looping without ever sleeping. Therefore we have to do a short sleep
4358 * here rather than calling cond_resched().
4359 */
4360 if (current->flags & PF_WQ_WORKER)
4361 schedule_timeout_uninterruptible(1);
4362 else
4363 cond_resched();
4364 return ret;
4365 }
4366
4367 static inline bool
4368 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4369 {
4370 /*
4371 * It's possible that cpuset's mems_allowed and the nodemask from
4372 * mempolicy don't intersect. This should be normally dealt with by
4373 * policy_nodemask(), but it's possible to race with cpuset update in
4374 * such a way the check therein was true, and then it became false
4375 * before we got our cpuset_mems_cookie here.
4376 * This assumes that for all allocations, ac->nodemask can come only
4377 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4378 * when it does not intersect with the cpuset restrictions) or the
4379 * caller can deal with a violated nodemask.
4380 */
4381 if (cpusets_enabled() && ac->nodemask &&
4382 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4383 ac->nodemask = NULL;
4384 return true;
4385 }
4386
4387 /*
4388 * When updating a task's mems_allowed or mempolicy nodemask, it is
4389 * possible to race with parallel threads in such a way that our
4390 * allocation can fail while the mask is being updated. If we are about
4391 * to fail, check if the cpuset changed during allocation and if so,
4392 * retry.
4393 */
4394 if (read_mems_allowed_retry(cpuset_mems_cookie))
4395 return true;
4396
4397 return false;
4398 }
4399
4400 static inline struct page *
4401 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4402 struct alloc_context *ac)
4403 {
4404 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4405 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4406 struct page *page = NULL;
4407 unsigned int alloc_flags;
4408 unsigned long did_some_progress;
4409 enum compact_priority compact_priority;
4410 enum compact_result compact_result;
4411 int compaction_retries;
4412 int no_progress_loops;
4413 unsigned int cpuset_mems_cookie;
4414 int reserve_flags;
4415
4416 /*
4417 * We also sanity check to catch abuse of atomic reserves being used by
4418 * callers that are not in atomic context.
4419 */
4420 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4421 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4422 gfp_mask &= ~__GFP_ATOMIC;
4423
4424 retry_cpuset:
4425 compaction_retries = 0;
4426 no_progress_loops = 0;
4427 compact_priority = DEF_COMPACT_PRIORITY;
4428 cpuset_mems_cookie = read_mems_allowed_begin();
4429
4430 /*
4431 * The fast path uses conservative alloc_flags to succeed only until
4432 * kswapd needs to be woken up, and to avoid the cost of setting up
4433 * alloc_flags precisely. So we do that now.
4434 */
4435 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4436
4437 /*
4438 * We need to recalculate the starting point for the zonelist iterator
4439 * because we might have used different nodemask in the fast path, or
4440 * there was a cpuset modification and we are retrying - otherwise we
4441 * could end up iterating over non-eligible zones endlessly.
4442 */
4443 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4444 ac->high_zoneidx, ac->nodemask);
4445 if (!ac->preferred_zoneref->zone)
4446 goto nopage;
4447
4448 if (alloc_flags & ALLOC_KSWAPD)
4449 wake_all_kswapds(order, gfp_mask, ac);
4450
4451 /*
4452 * The adjusted alloc_flags might result in immediate success, so try
4453 * that first
4454 */
4455 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4456 if (page)
4457 goto got_pg;
4458
4459 /*
4460 * For costly allocations, try direct compaction first, as it's likely
4461 * that we have enough base pages and don't need to reclaim. For non-
4462 * movable high-order allocations, do that as well, as compaction will
4463 * try prevent permanent fragmentation by migrating from blocks of the
4464 * same migratetype.
4465 * Don't try this for allocations that are allowed to ignore
4466 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4467 */
4468 if (can_direct_reclaim &&
4469 (costly_order ||
4470 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4471 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4472 page = __alloc_pages_direct_compact(gfp_mask, order,
4473 alloc_flags, ac,
4474 INIT_COMPACT_PRIORITY,
4475 &compact_result);
4476 if (page)
4477 goto got_pg;
4478
4479 if (order >= pageblock_order && (gfp_mask & __GFP_IO) &&
4480 !(gfp_mask & __GFP_RETRY_MAYFAIL)) {
4481 /*
4482 * If allocating entire pageblock(s) and compaction
4483 * failed because all zones are below low watermarks
4484 * or is prohibited because it recently failed at this
4485 * order, fail immediately unless the allocator has
4486 * requested compaction and reclaim retry.
4487 *
4488 * Reclaim is
4489 * - potentially very expensive because zones are far
4490 * below their low watermarks or this is part of very
4491 * bursty high order allocations,
4492 * - not guaranteed to help because isolate_freepages()
4493 * may not iterate over freed pages as part of its
4494 * linear scan, and
4495 * - unlikely to make entire pageblocks free on its
4496 * own.
4497 */
4498 if (compact_result == COMPACT_SKIPPED ||
4499 compact_result == COMPACT_DEFERRED)
4500 goto nopage;
4501 }
4502
4503 /*
4504 * Checks for costly allocations with __GFP_NORETRY, which
4505 * includes THP page fault allocations
4506 */
4507 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4508 /*
4509 * If compaction is deferred for high-order allocations,
4510 * it is because sync compaction recently failed. If
4511 * this is the case and the caller requested a THP
4512 * allocation, we do not want to heavily disrupt the
4513 * system, so we fail the allocation instead of entering
4514 * direct reclaim.
4515 */
4516 if (compact_result == COMPACT_DEFERRED)
4517 goto nopage;
4518
4519 /*
4520 * Looks like reclaim/compaction is worth trying, but
4521 * sync compaction could be very expensive, so keep
4522 * using async compaction.
4523 */
4524 compact_priority = INIT_COMPACT_PRIORITY;
4525 }
4526 }
4527
4528 retry:
4529 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4530 if (alloc_flags & ALLOC_KSWAPD)
4531 wake_all_kswapds(order, gfp_mask, ac);
4532
4533 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4534 if (reserve_flags)
4535 alloc_flags = reserve_flags;
4536
4537 /*
4538 * Reset the nodemask and zonelist iterators if memory policies can be
4539 * ignored. These allocations are high priority and system rather than
4540 * user oriented.
4541 */
4542 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4543 ac->nodemask = NULL;
4544 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4545 ac->high_zoneidx, ac->nodemask);
4546 }
4547
4548 /* Attempt with potentially adjusted zonelist and alloc_flags */
4549 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4550 if (page)
4551 goto got_pg;
4552
4553 /* Caller is not willing to reclaim, we can't balance anything */
4554 if (!can_direct_reclaim)
4555 goto nopage;
4556
4557 /* Avoid recursion of direct reclaim */
4558 if (current->flags & PF_MEMALLOC)
4559 goto nopage;
4560
4561 /* Try direct reclaim and then allocating */
4562 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4563 &did_some_progress);
4564 if (page)
4565 goto got_pg;
4566
4567 /* Try direct compaction and then allocating */
4568 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4569 compact_priority, &compact_result);
4570 if (page)
4571 goto got_pg;
4572
4573 /* Do not loop if specifically requested */
4574 if (gfp_mask & __GFP_NORETRY)
4575 goto nopage;
4576
4577 /*
4578 * Do not retry costly high order allocations unless they are
4579 * __GFP_RETRY_MAYFAIL
4580 */
4581 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4582 goto nopage;
4583
4584 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4585 did_some_progress > 0, &no_progress_loops))
4586 goto retry;
4587
4588 /*
4589 * It doesn't make any sense to retry for the compaction if the order-0
4590 * reclaim is not able to make any progress because the current
4591 * implementation of the compaction depends on the sufficient amount
4592 * of free memory (see __compaction_suitable)
4593 */
4594 if (did_some_progress > 0 &&
4595 should_compact_retry(ac, order, alloc_flags,
4596 compact_result, &compact_priority,
4597 &compaction_retries))
4598 goto retry;
4599
4600
4601 /* Deal with possible cpuset update races before we start OOM killing */
4602 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4603 goto retry_cpuset;
4604
4605 /* Reclaim has failed us, start killing things */
4606 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4607 if (page)
4608 goto got_pg;
4609
4610 /* Avoid allocations with no watermarks from looping endlessly */
4611 if (tsk_is_oom_victim(current) &&
4612 (alloc_flags == ALLOC_OOM ||
4613 (gfp_mask & __GFP_NOMEMALLOC)))
4614 goto nopage;
4615
4616 /* Retry as long as the OOM killer is making progress */
4617 if (did_some_progress) {
4618 no_progress_loops = 0;
4619 goto retry;
4620 }
4621
4622 nopage:
4623 /* Deal with possible cpuset update races before we fail */
4624 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4625 goto retry_cpuset;
4626
4627 /*
4628 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4629 * we always retry
4630 */
4631 if (gfp_mask & __GFP_NOFAIL) {
4632 /*
4633 * All existing users of the __GFP_NOFAIL are blockable, so warn
4634 * of any new users that actually require GFP_NOWAIT
4635 */
4636 if (WARN_ON_ONCE(!can_direct_reclaim))
4637 goto fail;
4638
4639 /*
4640 * PF_MEMALLOC request from this context is rather bizarre
4641 * because we cannot reclaim anything and only can loop waiting
4642 * for somebody to do a work for us
4643 */
4644 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4645
4646 /*
4647 * non failing costly orders are a hard requirement which we
4648 * are not prepared for much so let's warn about these users
4649 * so that we can identify them and convert them to something
4650 * else.
4651 */
4652 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4653
4654 /*
4655 * Help non-failing allocations by giving them access to memory
4656 * reserves but do not use ALLOC_NO_WATERMARKS because this
4657 * could deplete whole memory reserves which would just make
4658 * the situation worse
4659 */
4660 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4661 if (page)
4662 goto got_pg;
4663
4664 cond_resched();
4665 goto retry;
4666 }
4667 fail:
4668 warn_alloc(gfp_mask, ac->nodemask,
4669 "page allocation failure: order:%u", order);
4670 got_pg:
4671 return page;
4672 }
4673
4674 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4675 int preferred_nid, nodemask_t *nodemask,
4676 struct alloc_context *ac, gfp_t *alloc_mask,
4677 unsigned int *alloc_flags)
4678 {
4679 ac->high_zoneidx = gfp_zone(gfp_mask);
4680 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4681 ac->nodemask = nodemask;
4682 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4683
4684 if (cpusets_enabled()) {
4685 *alloc_mask |= __GFP_HARDWALL;
4686 if (!ac->nodemask)
4687 ac->nodemask = &cpuset_current_mems_allowed;
4688 else
4689 *alloc_flags |= ALLOC_CPUSET;
4690 }
4691
4692 fs_reclaim_acquire(gfp_mask);
4693 fs_reclaim_release(gfp_mask);
4694
4695 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4696
4697 if (should_fail_alloc_page(gfp_mask, order))
4698 return false;
4699
4700 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4701 *alloc_flags |= ALLOC_CMA;
4702
4703 return true;
4704 }
4705
4706 /* Determine whether to spread dirty pages and what the first usable zone */
4707 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4708 {
4709 /* Dirty zone balancing only done in the fast path */
4710 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4711
4712 /*
4713 * The preferred zone is used for statistics but crucially it is
4714 * also used as the starting point for the zonelist iterator. It
4715 * may get reset for allocations that ignore memory policies.
4716 */
4717 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4718 ac->high_zoneidx, ac->nodemask);
4719 }
4720
4721 /*
4722 * This is the 'heart' of the zoned buddy allocator.
4723 */
4724 struct page *
4725 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4726 nodemask_t *nodemask)
4727 {
4728 struct page *page;
4729 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4730 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4731 struct alloc_context ac = { };
4732
4733 /*
4734 * There are several places where we assume that the order value is sane
4735 * so bail out early if the request is out of bound.
4736 */
4737 if (unlikely(order >= MAX_ORDER)) {
4738 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4739 return NULL;
4740 }
4741
4742 gfp_mask &= gfp_allowed_mask;
4743 alloc_mask = gfp_mask;
4744 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4745 return NULL;
4746
4747 finalise_ac(gfp_mask, &ac);
4748
4749 /*
4750 * Forbid the first pass from falling back to types that fragment
4751 * memory until all local zones are considered.
4752 */
4753 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4754
4755 /* First allocation attempt */
4756 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4757 if (likely(page))
4758 goto out;
4759
4760 /*
4761 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4762 * resp. GFP_NOIO which has to be inherited for all allocation requests
4763 * from a particular context which has been marked by
4764 * memalloc_no{fs,io}_{save,restore}.
4765 */
4766 alloc_mask = current_gfp_context(gfp_mask);
4767 ac.spread_dirty_pages = false;
4768
4769 /*
4770 * Restore the original nodemask if it was potentially replaced with
4771 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4772 */
4773 if (unlikely(ac.nodemask != nodemask))
4774 ac.nodemask = nodemask;
4775
4776 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4777
4778 out:
4779 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4780 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4781 __free_pages(page, order);
4782 page = NULL;
4783 }
4784
4785 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4786
4787 return page;
4788 }
4789 EXPORT_SYMBOL(__alloc_pages_nodemask);
4790
4791 /*
4792 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4793 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4794 * you need to access high mem.
4795 */
4796 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4797 {
4798 struct page *page;
4799
4800 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4801 if (!page)
4802 return 0;
4803 return (unsigned long) page_address(page);
4804 }
4805 EXPORT_SYMBOL(__get_free_pages);
4806
4807 unsigned long get_zeroed_page(gfp_t gfp_mask)
4808 {
4809 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4810 }
4811 EXPORT_SYMBOL(get_zeroed_page);
4812
4813 static inline void free_the_page(struct page *page, unsigned int order)
4814 {
4815 if (order == 0) /* Via pcp? */
4816 free_unref_page(page);
4817 else
4818 __free_pages_ok(page, order);
4819 }
4820
4821 void __free_pages(struct page *page, unsigned int order)
4822 {
4823 if (put_page_testzero(page))
4824 free_the_page(page, order);
4825 }
4826 EXPORT_SYMBOL(__free_pages);
4827
4828 void free_pages(unsigned long addr, unsigned int order)
4829 {
4830 if (addr != 0) {
4831 VM_BUG_ON(!virt_addr_valid((void *)addr));
4832 __free_pages(virt_to_page((void *)addr), order);
4833 }
4834 }
4835
4836 EXPORT_SYMBOL(free_pages);
4837
4838 /*
4839 * Page Fragment:
4840 * An arbitrary-length arbitrary-offset area of memory which resides
4841 * within a 0 or higher order page. Multiple fragments within that page
4842 * are individually refcounted, in the page's reference counter.
4843 *
4844 * The page_frag functions below provide a simple allocation framework for
4845 * page fragments. This is used by the network stack and network device
4846 * drivers to provide a backing region of memory for use as either an
4847 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4848 */
4849 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4850 gfp_t gfp_mask)
4851 {
4852 struct page *page = NULL;
4853 gfp_t gfp = gfp_mask;
4854
4855 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4856 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4857 __GFP_NOMEMALLOC;
4858 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4859 PAGE_FRAG_CACHE_MAX_ORDER);
4860 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4861 #endif
4862 if (unlikely(!page))
4863 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4864
4865 nc->va = page ? page_address(page) : NULL;
4866
4867 return page;
4868 }
4869
4870 void __page_frag_cache_drain(struct page *page, unsigned int count)
4871 {
4872 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4873
4874 if (page_ref_sub_and_test(page, count))
4875 free_the_page(page, compound_order(page));
4876 }
4877 EXPORT_SYMBOL(__page_frag_cache_drain);
4878
4879 void *page_frag_alloc(struct page_frag_cache *nc,
4880 unsigned int fragsz, gfp_t gfp_mask)
4881 {
4882 unsigned int size = PAGE_SIZE;
4883 struct page *page;
4884 int offset;
4885
4886 if (unlikely(!nc->va)) {
4887 refill:
4888 page = __page_frag_cache_refill(nc, gfp_mask);
4889 if (!page)
4890 return NULL;
4891
4892 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4893 /* if size can vary use size else just use PAGE_SIZE */
4894 size = nc->size;
4895 #endif
4896 /* Even if we own the page, we do not use atomic_set().
4897 * This would break get_page_unless_zero() users.
4898 */
4899 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4900
4901 /* reset page count bias and offset to start of new frag */
4902 nc->pfmemalloc = page_is_pfmemalloc(page);
4903 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4904 nc->offset = size;
4905 }
4906
4907 offset = nc->offset - fragsz;
4908 if (unlikely(offset < 0)) {
4909 page = virt_to_page(nc->va);
4910
4911 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4912 goto refill;
4913
4914 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4915 /* if size can vary use size else just use PAGE_SIZE */
4916 size = nc->size;
4917 #endif
4918 /* OK, page count is 0, we can safely set it */
4919 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4920
4921 /* reset page count bias and offset to start of new frag */
4922 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4923 offset = size - fragsz;
4924 }
4925
4926 nc->pagecnt_bias--;
4927 nc->offset = offset;
4928
4929 return nc->va + offset;
4930 }
4931 EXPORT_SYMBOL(page_frag_alloc);
4932
4933 /*
4934 * Frees a page fragment allocated out of either a compound or order 0 page.
4935 */
4936 void page_frag_free(void *addr)
4937 {
4938 struct page *page = virt_to_head_page(addr);
4939
4940 if (unlikely(put_page_testzero(page)))
4941 free_the_page(page, compound_order(page));
4942 }
4943 EXPORT_SYMBOL(page_frag_free);
4944
4945 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4946 size_t size)
4947 {
4948 if (addr) {
4949 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4950 unsigned long used = addr + PAGE_ALIGN(size);
4951
4952 split_page(virt_to_page((void *)addr), order);
4953 while (used < alloc_end) {
4954 free_page(used);
4955 used += PAGE_SIZE;
4956 }
4957 }
4958 return (void *)addr;
4959 }
4960
4961 /**
4962 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4963 * @size: the number of bytes to allocate
4964 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4965 *
4966 * This function is similar to alloc_pages(), except that it allocates the
4967 * minimum number of pages to satisfy the request. alloc_pages() can only
4968 * allocate memory in power-of-two pages.
4969 *
4970 * This function is also limited by MAX_ORDER.
4971 *
4972 * Memory allocated by this function must be released by free_pages_exact().
4973 *
4974 * Return: pointer to the allocated area or %NULL in case of error.
4975 */
4976 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4977 {
4978 unsigned int order = get_order(size);
4979 unsigned long addr;
4980
4981 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4982 gfp_mask &= ~__GFP_COMP;
4983
4984 addr = __get_free_pages(gfp_mask, order);
4985 return make_alloc_exact(addr, order, size);
4986 }
4987 EXPORT_SYMBOL(alloc_pages_exact);
4988
4989 /**
4990 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4991 * pages on a node.
4992 * @nid: the preferred node ID where memory should be allocated
4993 * @size: the number of bytes to allocate
4994 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4995 *
4996 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4997 * back.
4998 *
4999 * Return: pointer to the allocated area or %NULL in case of error.
5000 */
5001 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5002 {
5003 unsigned int order = get_order(size);
5004 struct page *p;
5005
5006 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5007 gfp_mask &= ~__GFP_COMP;
5008
5009 p = alloc_pages_node(nid, gfp_mask, order);
5010 if (!p)
5011 return NULL;
5012 return make_alloc_exact((unsigned long)page_address(p), order, size);
5013 }
5014
5015 /**
5016 * free_pages_exact - release memory allocated via alloc_pages_exact()
5017 * @virt: the value returned by alloc_pages_exact.
5018 * @size: size of allocation, same value as passed to alloc_pages_exact().
5019 *
5020 * Release the memory allocated by a previous call to alloc_pages_exact.
5021 */
5022 void free_pages_exact(void *virt, size_t size)
5023 {
5024 unsigned long addr = (unsigned long)virt;
5025 unsigned long end = addr + PAGE_ALIGN(size);
5026
5027 while (addr < end) {
5028 free_page(addr);
5029 addr += PAGE_SIZE;
5030 }
5031 }
5032 EXPORT_SYMBOL(free_pages_exact);
5033
5034 /**
5035 * nr_free_zone_pages - count number of pages beyond high watermark
5036 * @offset: The zone index of the highest zone
5037 *
5038 * nr_free_zone_pages() counts the number of pages which are beyond the
5039 * high watermark within all zones at or below a given zone index. For each
5040 * zone, the number of pages is calculated as:
5041 *
5042 * nr_free_zone_pages = managed_pages - high_pages
5043 *
5044 * Return: number of pages beyond high watermark.
5045 */
5046 static unsigned long nr_free_zone_pages(int offset)
5047 {
5048 struct zoneref *z;
5049 struct zone *zone;
5050
5051 /* Just pick one node, since fallback list is circular */
5052 unsigned long sum = 0;
5053
5054 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5055
5056 for_each_zone_zonelist(zone, z, zonelist, offset) {
5057 unsigned long size = zone_managed_pages(zone);
5058 unsigned long high = high_wmark_pages(zone);
5059 if (size > high)
5060 sum += size - high;
5061 }
5062
5063 return sum;
5064 }
5065
5066 /**
5067 * nr_free_buffer_pages - count number of pages beyond high watermark
5068 *
5069 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5070 * watermark within ZONE_DMA and ZONE_NORMAL.
5071 *
5072 * Return: number of pages beyond high watermark within ZONE_DMA and
5073 * ZONE_NORMAL.
5074 */
5075 unsigned long nr_free_buffer_pages(void)
5076 {
5077 return nr_free_zone_pages(gfp_zone(GFP_USER));
5078 }
5079 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5080
5081 /**
5082 * nr_free_pagecache_pages - count number of pages beyond high watermark
5083 *
5084 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5085 * high watermark within all zones.
5086 *
5087 * Return: number of pages beyond high watermark within all zones.
5088 */
5089 unsigned long nr_free_pagecache_pages(void)
5090 {
5091 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5092 }
5093
5094 static inline void show_node(struct zone *zone)
5095 {
5096 if (IS_ENABLED(CONFIG_NUMA))
5097 printk("Node %d ", zone_to_nid(zone));
5098 }
5099
5100 long si_mem_available(void)
5101 {
5102 long available;
5103 unsigned long pagecache;
5104 unsigned long wmark_low = 0;
5105 unsigned long pages[NR_LRU_LISTS];
5106 unsigned long reclaimable;
5107 struct zone *zone;
5108 int lru;
5109
5110 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5111 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5112
5113 for_each_zone(zone)
5114 wmark_low += low_wmark_pages(zone);
5115
5116 /*
5117 * Estimate the amount of memory available for userspace allocations,
5118 * without causing swapping.
5119 */
5120 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5121
5122 /*
5123 * Not all the page cache can be freed, otherwise the system will
5124 * start swapping. Assume at least half of the page cache, or the
5125 * low watermark worth of cache, needs to stay.
5126 */
5127 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5128 pagecache -= min(pagecache / 2, wmark_low);
5129 available += pagecache;
5130
5131 /*
5132 * Part of the reclaimable slab and other kernel memory consists of
5133 * items that are in use, and cannot be freed. Cap this estimate at the
5134 * low watermark.
5135 */
5136 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5137 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5138 available += reclaimable - min(reclaimable / 2, wmark_low);
5139
5140 if (available < 0)
5141 available = 0;
5142 return available;
5143 }
5144 EXPORT_SYMBOL_GPL(si_mem_available);
5145
5146 void si_meminfo(struct sysinfo *val)
5147 {
5148 val->totalram = totalram_pages();
5149 val->sharedram = global_node_page_state(NR_SHMEM);
5150 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5151 val->bufferram = nr_blockdev_pages();
5152 val->totalhigh = totalhigh_pages();
5153 val->freehigh = nr_free_highpages();
5154 val->mem_unit = PAGE_SIZE;
5155 }
5156
5157 EXPORT_SYMBOL(si_meminfo);
5158
5159 #ifdef CONFIG_NUMA
5160 void si_meminfo_node(struct sysinfo *val, int nid)
5161 {
5162 int zone_type; /* needs to be signed */
5163 unsigned long managed_pages = 0;
5164 unsigned long managed_highpages = 0;
5165 unsigned long free_highpages = 0;
5166 pg_data_t *pgdat = NODE_DATA(nid);
5167
5168 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5169 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5170 val->totalram = managed_pages;
5171 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5172 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5173 #ifdef CONFIG_HIGHMEM
5174 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5175 struct zone *zone = &pgdat->node_zones[zone_type];
5176
5177 if (is_highmem(zone)) {
5178 managed_highpages += zone_managed_pages(zone);
5179 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5180 }
5181 }
5182 val->totalhigh = managed_highpages;
5183 val->freehigh = free_highpages;
5184 #else
5185 val->totalhigh = managed_highpages;
5186 val->freehigh = free_highpages;
5187 #endif
5188 val->mem_unit = PAGE_SIZE;
5189 }
5190 #endif
5191
5192 /*
5193 * Determine whether the node should be displayed or not, depending on whether
5194 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5195 */
5196 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5197 {
5198 if (!(flags & SHOW_MEM_FILTER_NODES))
5199 return false;
5200
5201 /*
5202 * no node mask - aka implicit memory numa policy. Do not bother with
5203 * the synchronization - read_mems_allowed_begin - because we do not
5204 * have to be precise here.
5205 */
5206 if (!nodemask)
5207 nodemask = &cpuset_current_mems_allowed;
5208
5209 return !node_isset(nid, *nodemask);
5210 }
5211
5212 #define K(x) ((x) << (PAGE_SHIFT-10))
5213
5214 static void show_migration_types(unsigned char type)
5215 {
5216 static const char types[MIGRATE_TYPES] = {
5217 [MIGRATE_UNMOVABLE] = 'U',
5218 [MIGRATE_MOVABLE] = 'M',
5219 [MIGRATE_RECLAIMABLE] = 'E',
5220 [MIGRATE_HIGHATOMIC] = 'H',
5221 #ifdef CONFIG_CMA
5222 [MIGRATE_CMA] = 'C',
5223 #endif
5224 #ifdef CONFIG_MEMORY_ISOLATION
5225 [MIGRATE_ISOLATE] = 'I',
5226 #endif
5227 };
5228 char tmp[MIGRATE_TYPES + 1];
5229 char *p = tmp;
5230 int i;
5231
5232 for (i = 0; i < MIGRATE_TYPES; i++) {
5233 if (type & (1 << i))
5234 *p++ = types[i];
5235 }
5236
5237 *p = '\0';
5238 printk(KERN_CONT "(%s) ", tmp);
5239 }
5240
5241 /*
5242 * Show free area list (used inside shift_scroll-lock stuff)
5243 * We also calculate the percentage fragmentation. We do this by counting the
5244 * memory on each free list with the exception of the first item on the list.
5245 *
5246 * Bits in @filter:
5247 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5248 * cpuset.
5249 */
5250 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5251 {
5252 unsigned long free_pcp = 0;
5253 int cpu;
5254 struct zone *zone;
5255 pg_data_t *pgdat;
5256
5257 for_each_populated_zone(zone) {
5258 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5259 continue;
5260
5261 for_each_online_cpu(cpu)
5262 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5263 }
5264
5265 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5266 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5267 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5268 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5269 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5270 " free:%lu free_pcp:%lu free_cma:%lu\n",
5271 global_node_page_state(NR_ACTIVE_ANON),
5272 global_node_page_state(NR_INACTIVE_ANON),
5273 global_node_page_state(NR_ISOLATED_ANON),
5274 global_node_page_state(NR_ACTIVE_FILE),
5275 global_node_page_state(NR_INACTIVE_FILE),
5276 global_node_page_state(NR_ISOLATED_FILE),
5277 global_node_page_state(NR_UNEVICTABLE),
5278 global_node_page_state(NR_FILE_DIRTY),
5279 global_node_page_state(NR_WRITEBACK),
5280 global_node_page_state(NR_UNSTABLE_NFS),
5281 global_node_page_state(NR_SLAB_RECLAIMABLE),
5282 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5283 global_node_page_state(NR_FILE_MAPPED),
5284 global_node_page_state(NR_SHMEM),
5285 global_zone_page_state(NR_PAGETABLE),
5286 global_zone_page_state(NR_BOUNCE),
5287 global_zone_page_state(NR_FREE_PAGES),
5288 free_pcp,
5289 global_zone_page_state(NR_FREE_CMA_PAGES));
5290
5291 for_each_online_pgdat(pgdat) {
5292 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5293 continue;
5294
5295 printk("Node %d"
5296 " active_anon:%lukB"
5297 " inactive_anon:%lukB"
5298 " active_file:%lukB"
5299 " inactive_file:%lukB"
5300 " unevictable:%lukB"
5301 " isolated(anon):%lukB"
5302 " isolated(file):%lukB"
5303 " mapped:%lukB"
5304 " dirty:%lukB"
5305 " writeback:%lukB"
5306 " shmem:%lukB"
5307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5308 " shmem_thp: %lukB"
5309 " shmem_pmdmapped: %lukB"
5310 " anon_thp: %lukB"
5311 #endif
5312 " writeback_tmp:%lukB"
5313 " unstable:%lukB"
5314 " all_unreclaimable? %s"
5315 "\n",
5316 pgdat->node_id,
5317 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5318 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5319 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5320 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5321 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5322 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5323 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5324 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5325 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5326 K(node_page_state(pgdat, NR_WRITEBACK)),
5327 K(node_page_state(pgdat, NR_SHMEM)),
5328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5329 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5330 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5331 * HPAGE_PMD_NR),
5332 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5333 #endif
5334 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5335 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5336 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5337 "yes" : "no");
5338 }
5339
5340 for_each_populated_zone(zone) {
5341 int i;
5342
5343 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5344 continue;
5345
5346 free_pcp = 0;
5347 for_each_online_cpu(cpu)
5348 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5349
5350 show_node(zone);
5351 printk(KERN_CONT
5352 "%s"
5353 " free:%lukB"
5354 " min:%lukB"
5355 " low:%lukB"
5356 " high:%lukB"
5357 " active_anon:%lukB"
5358 " inactive_anon:%lukB"
5359 " active_file:%lukB"
5360 " inactive_file:%lukB"
5361 " unevictable:%lukB"
5362 " writepending:%lukB"
5363 " present:%lukB"
5364 " managed:%lukB"
5365 " mlocked:%lukB"
5366 " kernel_stack:%lukB"
5367 " pagetables:%lukB"
5368 " bounce:%lukB"
5369 " free_pcp:%lukB"
5370 " local_pcp:%ukB"
5371 " free_cma:%lukB"
5372 "\n",
5373 zone->name,
5374 K(zone_page_state(zone, NR_FREE_PAGES)),
5375 K(min_wmark_pages(zone)),
5376 K(low_wmark_pages(zone)),
5377 K(high_wmark_pages(zone)),
5378 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5379 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5380 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5381 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5382 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5383 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5384 K(zone->present_pages),
5385 K(zone_managed_pages(zone)),
5386 K(zone_page_state(zone, NR_MLOCK)),
5387 zone_page_state(zone, NR_KERNEL_STACK_KB),
5388 K(zone_page_state(zone, NR_PAGETABLE)),
5389 K(zone_page_state(zone, NR_BOUNCE)),
5390 K(free_pcp),
5391 K(this_cpu_read(zone->pageset->pcp.count)),
5392 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5393 printk("lowmem_reserve[]:");
5394 for (i = 0; i < MAX_NR_ZONES; i++)
5395 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5396 printk(KERN_CONT "\n");
5397 }
5398
5399 for_each_populated_zone(zone) {
5400 unsigned int order;
5401 unsigned long nr[MAX_ORDER], flags, total = 0;
5402 unsigned char types[MAX_ORDER];
5403
5404 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5405 continue;
5406 show_node(zone);
5407 printk(KERN_CONT "%s: ", zone->name);
5408
5409 spin_lock_irqsave(&zone->lock, flags);
5410 for (order = 0; order < MAX_ORDER; order++) {
5411 struct free_area *area = &zone->free_area[order];
5412 int type;
5413
5414 nr[order] = area->nr_free;
5415 total += nr[order] << order;
5416
5417 types[order] = 0;
5418 for (type = 0; type < MIGRATE_TYPES; type++) {
5419 if (!free_area_empty(area, type))
5420 types[order] |= 1 << type;
5421 }
5422 }
5423 spin_unlock_irqrestore(&zone->lock, flags);
5424 for (order = 0; order < MAX_ORDER; order++) {
5425 printk(KERN_CONT "%lu*%lukB ",
5426 nr[order], K(1UL) << order);
5427 if (nr[order])
5428 show_migration_types(types[order]);
5429 }
5430 printk(KERN_CONT "= %lukB\n", K(total));
5431 }
5432
5433 hugetlb_show_meminfo();
5434
5435 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5436
5437 show_swap_cache_info();
5438 }
5439
5440 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5441 {
5442 zoneref->zone = zone;
5443 zoneref->zone_idx = zone_idx(zone);
5444 }
5445
5446 /*
5447 * Builds allocation fallback zone lists.
5448 *
5449 * Add all populated zones of a node to the zonelist.
5450 */
5451 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5452 {
5453 struct zone *zone;
5454 enum zone_type zone_type = MAX_NR_ZONES;
5455 int nr_zones = 0;
5456
5457 do {
5458 zone_type--;
5459 zone = pgdat->node_zones + zone_type;
5460 if (managed_zone(zone)) {
5461 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5462 check_highest_zone(zone_type);
5463 }
5464 } while (zone_type);
5465
5466 return nr_zones;
5467 }
5468
5469 #ifdef CONFIG_NUMA
5470
5471 static int __parse_numa_zonelist_order(char *s)
5472 {
5473 /*
5474 * We used to support different zonlists modes but they turned
5475 * out to be just not useful. Let's keep the warning in place
5476 * if somebody still use the cmd line parameter so that we do
5477 * not fail it silently
5478 */
5479 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5480 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5481 return -EINVAL;
5482 }
5483 return 0;
5484 }
5485
5486 static __init int setup_numa_zonelist_order(char *s)
5487 {
5488 if (!s)
5489 return 0;
5490
5491 return __parse_numa_zonelist_order(s);
5492 }
5493 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5494
5495 char numa_zonelist_order[] = "Node";
5496
5497 /*
5498 * sysctl handler for numa_zonelist_order
5499 */
5500 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5501 void __user *buffer, size_t *length,
5502 loff_t *ppos)
5503 {
5504 char *str;
5505 int ret;
5506
5507 if (!write)
5508 return proc_dostring(table, write, buffer, length, ppos);
5509 str = memdup_user_nul(buffer, 16);
5510 if (IS_ERR(str))
5511 return PTR_ERR(str);
5512
5513 ret = __parse_numa_zonelist_order(str);
5514 kfree(str);
5515 return ret;
5516 }
5517
5518
5519 #define MAX_NODE_LOAD (nr_online_nodes)
5520 static int node_load[MAX_NUMNODES];
5521
5522 /**
5523 * find_next_best_node - find the next node that should appear in a given node's fallback list
5524 * @node: node whose fallback list we're appending
5525 * @used_node_mask: nodemask_t of already used nodes
5526 *
5527 * We use a number of factors to determine which is the next node that should
5528 * appear on a given node's fallback list. The node should not have appeared
5529 * already in @node's fallback list, and it should be the next closest node
5530 * according to the distance array (which contains arbitrary distance values
5531 * from each node to each node in the system), and should also prefer nodes
5532 * with no CPUs, since presumably they'll have very little allocation pressure
5533 * on them otherwise.
5534 *
5535 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5536 */
5537 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5538 {
5539 int n, val;
5540 int min_val = INT_MAX;
5541 int best_node = NUMA_NO_NODE;
5542 const struct cpumask *tmp = cpumask_of_node(0);
5543
5544 /* Use the local node if we haven't already */
5545 if (!node_isset(node, *used_node_mask)) {
5546 node_set(node, *used_node_mask);
5547 return node;
5548 }
5549
5550 for_each_node_state(n, N_MEMORY) {
5551
5552 /* Don't want a node to appear more than once */
5553 if (node_isset(n, *used_node_mask))
5554 continue;
5555
5556 /* Use the distance array to find the distance */
5557 val = node_distance(node, n);
5558
5559 /* Penalize nodes under us ("prefer the next node") */
5560 val += (n < node);
5561
5562 /* Give preference to headless and unused nodes */
5563 tmp = cpumask_of_node(n);
5564 if (!cpumask_empty(tmp))
5565 val += PENALTY_FOR_NODE_WITH_CPUS;
5566
5567 /* Slight preference for less loaded node */
5568 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5569 val += node_load[n];
5570
5571 if (val < min_val) {
5572 min_val = val;
5573 best_node = n;
5574 }
5575 }
5576
5577 if (best_node >= 0)
5578 node_set(best_node, *used_node_mask);
5579
5580 return best_node;
5581 }
5582
5583
5584 /*
5585 * Build zonelists ordered by node and zones within node.
5586 * This results in maximum locality--normal zone overflows into local
5587 * DMA zone, if any--but risks exhausting DMA zone.
5588 */
5589 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5590 unsigned nr_nodes)
5591 {
5592 struct zoneref *zonerefs;
5593 int i;
5594
5595 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5596
5597 for (i = 0; i < nr_nodes; i++) {
5598 int nr_zones;
5599
5600 pg_data_t *node = NODE_DATA(node_order[i]);
5601
5602 nr_zones = build_zonerefs_node(node, zonerefs);
5603 zonerefs += nr_zones;
5604 }
5605 zonerefs->zone = NULL;
5606 zonerefs->zone_idx = 0;
5607 }
5608
5609 /*
5610 * Build gfp_thisnode zonelists
5611 */
5612 static void build_thisnode_zonelists(pg_data_t *pgdat)
5613 {
5614 struct zoneref *zonerefs;
5615 int nr_zones;
5616
5617 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5618 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5619 zonerefs += nr_zones;
5620 zonerefs->zone = NULL;
5621 zonerefs->zone_idx = 0;
5622 }
5623
5624 /*
5625 * Build zonelists ordered by zone and nodes within zones.
5626 * This results in conserving DMA zone[s] until all Normal memory is
5627 * exhausted, but results in overflowing to remote node while memory
5628 * may still exist in local DMA zone.
5629 */
5630
5631 static void build_zonelists(pg_data_t *pgdat)
5632 {
5633 static int node_order[MAX_NUMNODES];
5634 int node, load, nr_nodes = 0;
5635 nodemask_t used_mask;
5636 int local_node, prev_node;
5637
5638 /* NUMA-aware ordering of nodes */
5639 local_node = pgdat->node_id;
5640 load = nr_online_nodes;
5641 prev_node = local_node;
5642 nodes_clear(used_mask);
5643
5644 memset(node_order, 0, sizeof(node_order));
5645 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5646 /*
5647 * We don't want to pressure a particular node.
5648 * So adding penalty to the first node in same
5649 * distance group to make it round-robin.
5650 */
5651 if (node_distance(local_node, node) !=
5652 node_distance(local_node, prev_node))
5653 node_load[node] = load;
5654
5655 node_order[nr_nodes++] = node;
5656 prev_node = node;
5657 load--;
5658 }
5659
5660 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5661 build_thisnode_zonelists(pgdat);
5662 }
5663
5664 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5665 /*
5666 * Return node id of node used for "local" allocations.
5667 * I.e., first node id of first zone in arg node's generic zonelist.
5668 * Used for initializing percpu 'numa_mem', which is used primarily
5669 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5670 */
5671 int local_memory_node(int node)
5672 {
5673 struct zoneref *z;
5674
5675 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5676 gfp_zone(GFP_KERNEL),
5677 NULL);
5678 return zone_to_nid(z->zone);
5679 }
5680 #endif
5681
5682 static void setup_min_unmapped_ratio(void);
5683 static void setup_min_slab_ratio(void);
5684 #else /* CONFIG_NUMA */
5685
5686 static void build_zonelists(pg_data_t *pgdat)
5687 {
5688 int node, local_node;
5689 struct zoneref *zonerefs;
5690 int nr_zones;
5691
5692 local_node = pgdat->node_id;
5693
5694 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5695 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5696 zonerefs += nr_zones;
5697
5698 /*
5699 * Now we build the zonelist so that it contains the zones
5700 * of all the other nodes.
5701 * We don't want to pressure a particular node, so when
5702 * building the zones for node N, we make sure that the
5703 * zones coming right after the local ones are those from
5704 * node N+1 (modulo N)
5705 */
5706 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5707 if (!node_online(node))
5708 continue;
5709 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5710 zonerefs += nr_zones;
5711 }
5712 for (node = 0; node < local_node; node++) {
5713 if (!node_online(node))
5714 continue;
5715 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5716 zonerefs += nr_zones;
5717 }
5718
5719 zonerefs->zone = NULL;
5720 zonerefs->zone_idx = 0;
5721 }
5722
5723 #endif /* CONFIG_NUMA */
5724
5725 /*
5726 * Boot pageset table. One per cpu which is going to be used for all
5727 * zones and all nodes. The parameters will be set in such a way
5728 * that an item put on a list will immediately be handed over to
5729 * the buddy list. This is safe since pageset manipulation is done
5730 * with interrupts disabled.
5731 *
5732 * The boot_pagesets must be kept even after bootup is complete for
5733 * unused processors and/or zones. They do play a role for bootstrapping
5734 * hotplugged processors.
5735 *
5736 * zoneinfo_show() and maybe other functions do
5737 * not check if the processor is online before following the pageset pointer.
5738 * Other parts of the kernel may not check if the zone is available.
5739 */
5740 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5741 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5742 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5743
5744 static void __build_all_zonelists(void *data)
5745 {
5746 int nid;
5747 int __maybe_unused cpu;
5748 pg_data_t *self = data;
5749 static DEFINE_SPINLOCK(lock);
5750
5751 spin_lock(&lock);
5752
5753 #ifdef CONFIG_NUMA
5754 memset(node_load, 0, sizeof(node_load));
5755 #endif
5756
5757 /*
5758 * This node is hotadded and no memory is yet present. So just
5759 * building zonelists is fine - no need to touch other nodes.
5760 */
5761 if (self && !node_online(self->node_id)) {
5762 build_zonelists(self);
5763 } else {
5764 for_each_online_node(nid) {
5765 pg_data_t *pgdat = NODE_DATA(nid);
5766
5767 build_zonelists(pgdat);
5768 }
5769
5770 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5771 /*
5772 * We now know the "local memory node" for each node--
5773 * i.e., the node of the first zone in the generic zonelist.
5774 * Set up numa_mem percpu variable for on-line cpus. During
5775 * boot, only the boot cpu should be on-line; we'll init the
5776 * secondary cpus' numa_mem as they come on-line. During
5777 * node/memory hotplug, we'll fixup all on-line cpus.
5778 */
5779 for_each_online_cpu(cpu)
5780 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5781 #endif
5782 }
5783
5784 spin_unlock(&lock);
5785 }
5786
5787 static noinline void __init
5788 build_all_zonelists_init(void)
5789 {
5790 int cpu;
5791
5792 __build_all_zonelists(NULL);
5793
5794 /*
5795 * Initialize the boot_pagesets that are going to be used
5796 * for bootstrapping processors. The real pagesets for
5797 * each zone will be allocated later when the per cpu
5798 * allocator is available.
5799 *
5800 * boot_pagesets are used also for bootstrapping offline
5801 * cpus if the system is already booted because the pagesets
5802 * are needed to initialize allocators on a specific cpu too.
5803 * F.e. the percpu allocator needs the page allocator which
5804 * needs the percpu allocator in order to allocate its pagesets
5805 * (a chicken-egg dilemma).
5806 */
5807 for_each_possible_cpu(cpu)
5808 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5809
5810 mminit_verify_zonelist();
5811 cpuset_init_current_mems_allowed();
5812 }
5813
5814 /*
5815 * unless system_state == SYSTEM_BOOTING.
5816 *
5817 * __ref due to call of __init annotated helper build_all_zonelists_init
5818 * [protected by SYSTEM_BOOTING].
5819 */
5820 void __ref build_all_zonelists(pg_data_t *pgdat)
5821 {
5822 if (system_state == SYSTEM_BOOTING) {
5823 build_all_zonelists_init();
5824 } else {
5825 __build_all_zonelists(pgdat);
5826 /* cpuset refresh routine should be here */
5827 }
5828 vm_total_pages = nr_free_pagecache_pages();
5829 /*
5830 * Disable grouping by mobility if the number of pages in the
5831 * system is too low to allow the mechanism to work. It would be
5832 * more accurate, but expensive to check per-zone. This check is
5833 * made on memory-hotadd so a system can start with mobility
5834 * disabled and enable it later
5835 */
5836 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5837 page_group_by_mobility_disabled = 1;
5838 else
5839 page_group_by_mobility_disabled = 0;
5840
5841 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5842 nr_online_nodes,
5843 page_group_by_mobility_disabled ? "off" : "on",
5844 vm_total_pages);
5845 #ifdef CONFIG_NUMA
5846 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5847 #endif
5848 }
5849
5850 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5851 static bool __meminit
5852 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5853 {
5854 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5855 static struct memblock_region *r;
5856
5857 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5858 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5859 for_each_memblock(memory, r) {
5860 if (*pfn < memblock_region_memory_end_pfn(r))
5861 break;
5862 }
5863 }
5864 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5865 memblock_is_mirror(r)) {
5866 *pfn = memblock_region_memory_end_pfn(r);
5867 return true;
5868 }
5869 }
5870 #endif
5871 return false;
5872 }
5873
5874 /*
5875 * Initially all pages are reserved - free ones are freed
5876 * up by memblock_free_all() once the early boot process is
5877 * done. Non-atomic initialization, single-pass.
5878 */
5879 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5880 unsigned long start_pfn, enum memmap_context context,
5881 struct vmem_altmap *altmap)
5882 {
5883 unsigned long pfn, end_pfn = start_pfn + size;
5884 struct page *page;
5885
5886 if (highest_memmap_pfn < end_pfn - 1)
5887 highest_memmap_pfn = end_pfn - 1;
5888
5889 #ifdef CONFIG_ZONE_DEVICE
5890 /*
5891 * Honor reservation requested by the driver for this ZONE_DEVICE
5892 * memory. We limit the total number of pages to initialize to just
5893 * those that might contain the memory mapping. We will defer the
5894 * ZONE_DEVICE page initialization until after we have released
5895 * the hotplug lock.
5896 */
5897 if (zone == ZONE_DEVICE) {
5898 if (!altmap)
5899 return;
5900
5901 if (start_pfn == altmap->base_pfn)
5902 start_pfn += altmap->reserve;
5903 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5904 }
5905 #endif
5906
5907 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5908 /*
5909 * There can be holes in boot-time mem_map[]s handed to this
5910 * function. They do not exist on hotplugged memory.
5911 */
5912 if (context == MEMMAP_EARLY) {
5913 if (!early_pfn_valid(pfn))
5914 continue;
5915 if (!early_pfn_in_nid(pfn, nid))
5916 continue;
5917 if (overlap_memmap_init(zone, &pfn))
5918 continue;
5919 if (defer_init(nid, pfn, end_pfn))
5920 break;
5921 }
5922
5923 page = pfn_to_page(pfn);
5924 __init_single_page(page, pfn, zone, nid);
5925 if (context == MEMMAP_HOTPLUG)
5926 __SetPageReserved(page);
5927
5928 /*
5929 * Mark the block movable so that blocks are reserved for
5930 * movable at startup. This will force kernel allocations
5931 * to reserve their blocks rather than leaking throughout
5932 * the address space during boot when many long-lived
5933 * kernel allocations are made.
5934 *
5935 * bitmap is created for zone's valid pfn range. but memmap
5936 * can be created for invalid pages (for alignment)
5937 * check here not to call set_pageblock_migratetype() against
5938 * pfn out of zone.
5939 */
5940 if (!(pfn & (pageblock_nr_pages - 1))) {
5941 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5942 cond_resched();
5943 }
5944 }
5945 }
5946
5947 #ifdef CONFIG_ZONE_DEVICE
5948 void __ref memmap_init_zone_device(struct zone *zone,
5949 unsigned long start_pfn,
5950 unsigned long size,
5951 struct dev_pagemap *pgmap)
5952 {
5953 unsigned long pfn, end_pfn = start_pfn + size;
5954 struct pglist_data *pgdat = zone->zone_pgdat;
5955 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5956 unsigned long zone_idx = zone_idx(zone);
5957 unsigned long start = jiffies;
5958 int nid = pgdat->node_id;
5959
5960 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5961 return;
5962
5963 /*
5964 * The call to memmap_init_zone should have already taken care
5965 * of the pages reserved for the memmap, so we can just jump to
5966 * the end of that region and start processing the device pages.
5967 */
5968 if (altmap) {
5969 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5970 size = end_pfn - start_pfn;
5971 }
5972
5973 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5974 struct page *page = pfn_to_page(pfn);
5975
5976 __init_single_page(page, pfn, zone_idx, nid);
5977
5978 /*
5979 * Mark page reserved as it will need to wait for onlining
5980 * phase for it to be fully associated with a zone.
5981 *
5982 * We can use the non-atomic __set_bit operation for setting
5983 * the flag as we are still initializing the pages.
5984 */
5985 __SetPageReserved(page);
5986
5987 /*
5988 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5989 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5990 * ever freed or placed on a driver-private list.
5991 */
5992 page->pgmap = pgmap;
5993 page->zone_device_data = NULL;
5994
5995 /*
5996 * Mark the block movable so that blocks are reserved for
5997 * movable at startup. This will force kernel allocations
5998 * to reserve their blocks rather than leaking throughout
5999 * the address space during boot when many long-lived
6000 * kernel allocations are made.
6001 *
6002 * bitmap is created for zone's valid pfn range. but memmap
6003 * can be created for invalid pages (for alignment)
6004 * check here not to call set_pageblock_migratetype() against
6005 * pfn out of zone.
6006 *
6007 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6008 * because this is done early in section_activate()
6009 */
6010 if (!(pfn & (pageblock_nr_pages - 1))) {
6011 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6012 cond_resched();
6013 }
6014 }
6015
6016 pr_info("%s initialised %lu pages in %ums\n", __func__,
6017 size, jiffies_to_msecs(jiffies - start));
6018 }
6019
6020 #endif
6021 static void __meminit zone_init_free_lists(struct zone *zone)
6022 {
6023 unsigned int order, t;
6024 for_each_migratetype_order(order, t) {
6025 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6026 zone->free_area[order].nr_free = 0;
6027 }
6028 }
6029
6030 void __meminit __weak memmap_init(unsigned long size, int nid,
6031 unsigned long zone, unsigned long start_pfn)
6032 {
6033 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6034 }
6035
6036 static int zone_batchsize(struct zone *zone)
6037 {
6038 #ifdef CONFIG_MMU
6039 int batch;
6040
6041 /*
6042 * The per-cpu-pages pools are set to around 1000th of the
6043 * size of the zone.
6044 */
6045 batch = zone_managed_pages(zone) / 1024;
6046 /* But no more than a meg. */
6047 if (batch * PAGE_SIZE > 1024 * 1024)
6048 batch = (1024 * 1024) / PAGE_SIZE;
6049 batch /= 4; /* We effectively *= 4 below */
6050 if (batch < 1)
6051 batch = 1;
6052
6053 /*
6054 * Clamp the batch to a 2^n - 1 value. Having a power
6055 * of 2 value was found to be more likely to have
6056 * suboptimal cache aliasing properties in some cases.
6057 *
6058 * For example if 2 tasks are alternately allocating
6059 * batches of pages, one task can end up with a lot
6060 * of pages of one half of the possible page colors
6061 * and the other with pages of the other colors.
6062 */
6063 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6064
6065 return batch;
6066
6067 #else
6068 /* The deferral and batching of frees should be suppressed under NOMMU
6069 * conditions.
6070 *
6071 * The problem is that NOMMU needs to be able to allocate large chunks
6072 * of contiguous memory as there's no hardware page translation to
6073 * assemble apparent contiguous memory from discontiguous pages.
6074 *
6075 * Queueing large contiguous runs of pages for batching, however,
6076 * causes the pages to actually be freed in smaller chunks. As there
6077 * can be a significant delay between the individual batches being
6078 * recycled, this leads to the once large chunks of space being
6079 * fragmented and becoming unavailable for high-order allocations.
6080 */
6081 return 0;
6082 #endif
6083 }
6084
6085 /*
6086 * pcp->high and pcp->batch values are related and dependent on one another:
6087 * ->batch must never be higher then ->high.
6088 * The following function updates them in a safe manner without read side
6089 * locking.
6090 *
6091 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6092 * those fields changing asynchronously (acording the the above rule).
6093 *
6094 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6095 * outside of boot time (or some other assurance that no concurrent updaters
6096 * exist).
6097 */
6098 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6099 unsigned long batch)
6100 {
6101 /* start with a fail safe value for batch */
6102 pcp->batch = 1;
6103 smp_wmb();
6104
6105 /* Update high, then batch, in order */
6106 pcp->high = high;
6107 smp_wmb();
6108
6109 pcp->batch = batch;
6110 }
6111
6112 /* a companion to pageset_set_high() */
6113 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6114 {
6115 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6116 }
6117
6118 static void pageset_init(struct per_cpu_pageset *p)
6119 {
6120 struct per_cpu_pages *pcp;
6121 int migratetype;
6122
6123 memset(p, 0, sizeof(*p));
6124
6125 pcp = &p->pcp;
6126 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6127 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6128 }
6129
6130 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6131 {
6132 pageset_init(p);
6133 pageset_set_batch(p, batch);
6134 }
6135
6136 /*
6137 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6138 * to the value high for the pageset p.
6139 */
6140 static void pageset_set_high(struct per_cpu_pageset *p,
6141 unsigned long high)
6142 {
6143 unsigned long batch = max(1UL, high / 4);
6144 if ((high / 4) > (PAGE_SHIFT * 8))
6145 batch = PAGE_SHIFT * 8;
6146
6147 pageset_update(&p->pcp, high, batch);
6148 }
6149
6150 static void pageset_set_high_and_batch(struct zone *zone,
6151 struct per_cpu_pageset *pcp)
6152 {
6153 if (percpu_pagelist_fraction)
6154 pageset_set_high(pcp,
6155 (zone_managed_pages(zone) /
6156 percpu_pagelist_fraction));
6157 else
6158 pageset_set_batch(pcp, zone_batchsize(zone));
6159 }
6160
6161 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6162 {
6163 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6164
6165 pageset_init(pcp);
6166 pageset_set_high_and_batch(zone, pcp);
6167 }
6168
6169 void __meminit setup_zone_pageset(struct zone *zone)
6170 {
6171 int cpu;
6172 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6173 for_each_possible_cpu(cpu)
6174 zone_pageset_init(zone, cpu);
6175 }
6176
6177 /*
6178 * Allocate per cpu pagesets and initialize them.
6179 * Before this call only boot pagesets were available.
6180 */
6181 void __init setup_per_cpu_pageset(void)
6182 {
6183 struct pglist_data *pgdat;
6184 struct zone *zone;
6185
6186 for_each_populated_zone(zone)
6187 setup_zone_pageset(zone);
6188
6189 for_each_online_pgdat(pgdat)
6190 pgdat->per_cpu_nodestats =
6191 alloc_percpu(struct per_cpu_nodestat);
6192 }
6193
6194 static __meminit void zone_pcp_init(struct zone *zone)
6195 {
6196 /*
6197 * per cpu subsystem is not up at this point. The following code
6198 * relies on the ability of the linker to provide the
6199 * offset of a (static) per cpu variable into the per cpu area.
6200 */
6201 zone->pageset = &boot_pageset;
6202
6203 if (populated_zone(zone))
6204 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6205 zone->name, zone->present_pages,
6206 zone_batchsize(zone));
6207 }
6208
6209 void __meminit init_currently_empty_zone(struct zone *zone,
6210 unsigned long zone_start_pfn,
6211 unsigned long size)
6212 {
6213 struct pglist_data *pgdat = zone->zone_pgdat;
6214 int zone_idx = zone_idx(zone) + 1;
6215
6216 if (zone_idx > pgdat->nr_zones)
6217 pgdat->nr_zones = zone_idx;
6218
6219 zone->zone_start_pfn = zone_start_pfn;
6220
6221 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6222 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6223 pgdat->node_id,
6224 (unsigned long)zone_idx(zone),
6225 zone_start_pfn, (zone_start_pfn + size));
6226
6227 zone_init_free_lists(zone);
6228 zone->initialized = 1;
6229 }
6230
6231 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6232 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6233
6234 /*
6235 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6236 */
6237 int __meminit __early_pfn_to_nid(unsigned long pfn,
6238 struct mminit_pfnnid_cache *state)
6239 {
6240 unsigned long start_pfn, end_pfn;
6241 int nid;
6242
6243 if (state->last_start <= pfn && pfn < state->last_end)
6244 return state->last_nid;
6245
6246 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6247 if (nid != NUMA_NO_NODE) {
6248 state->last_start = start_pfn;
6249 state->last_end = end_pfn;
6250 state->last_nid = nid;
6251 }
6252
6253 return nid;
6254 }
6255 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6256
6257 /**
6258 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6259 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6260 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6261 *
6262 * If an architecture guarantees that all ranges registered contain no holes
6263 * and may be freed, this this function may be used instead of calling
6264 * memblock_free_early_nid() manually.
6265 */
6266 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6267 {
6268 unsigned long start_pfn, end_pfn;
6269 int i, this_nid;
6270
6271 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6272 start_pfn = min(start_pfn, max_low_pfn);
6273 end_pfn = min(end_pfn, max_low_pfn);
6274
6275 if (start_pfn < end_pfn)
6276 memblock_free_early_nid(PFN_PHYS(start_pfn),
6277 (end_pfn - start_pfn) << PAGE_SHIFT,
6278 this_nid);
6279 }
6280 }
6281
6282 /**
6283 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6284 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6285 *
6286 * If an architecture guarantees that all ranges registered contain no holes and may
6287 * be freed, this function may be used instead of calling memory_present() manually.
6288 */
6289 void __init sparse_memory_present_with_active_regions(int nid)
6290 {
6291 unsigned long start_pfn, end_pfn;
6292 int i, this_nid;
6293
6294 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6295 memory_present(this_nid, start_pfn, end_pfn);
6296 }
6297
6298 /**
6299 * get_pfn_range_for_nid - Return the start and end page frames for a node
6300 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6301 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6302 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6303 *
6304 * It returns the start and end page frame of a node based on information
6305 * provided by memblock_set_node(). If called for a node
6306 * with no available memory, a warning is printed and the start and end
6307 * PFNs will be 0.
6308 */
6309 void __init get_pfn_range_for_nid(unsigned int nid,
6310 unsigned long *start_pfn, unsigned long *end_pfn)
6311 {
6312 unsigned long this_start_pfn, this_end_pfn;
6313 int i;
6314
6315 *start_pfn = -1UL;
6316 *end_pfn = 0;
6317
6318 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6319 *start_pfn = min(*start_pfn, this_start_pfn);
6320 *end_pfn = max(*end_pfn, this_end_pfn);
6321 }
6322
6323 if (*start_pfn == -1UL)
6324 *start_pfn = 0;
6325 }
6326
6327 /*
6328 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6329 * assumption is made that zones within a node are ordered in monotonic
6330 * increasing memory addresses so that the "highest" populated zone is used
6331 */
6332 static void __init find_usable_zone_for_movable(void)
6333 {
6334 int zone_index;
6335 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6336 if (zone_index == ZONE_MOVABLE)
6337 continue;
6338
6339 if (arch_zone_highest_possible_pfn[zone_index] >
6340 arch_zone_lowest_possible_pfn[zone_index])
6341 break;
6342 }
6343
6344 VM_BUG_ON(zone_index == -1);
6345 movable_zone = zone_index;
6346 }
6347
6348 /*
6349 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6350 * because it is sized independent of architecture. Unlike the other zones,
6351 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6352 * in each node depending on the size of each node and how evenly kernelcore
6353 * is distributed. This helper function adjusts the zone ranges
6354 * provided by the architecture for a given node by using the end of the
6355 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6356 * zones within a node are in order of monotonic increases memory addresses
6357 */
6358 static void __init adjust_zone_range_for_zone_movable(int nid,
6359 unsigned long zone_type,
6360 unsigned long node_start_pfn,
6361 unsigned long node_end_pfn,
6362 unsigned long *zone_start_pfn,
6363 unsigned long *zone_end_pfn)
6364 {
6365 /* Only adjust if ZONE_MOVABLE is on this node */
6366 if (zone_movable_pfn[nid]) {
6367 /* Size ZONE_MOVABLE */
6368 if (zone_type == ZONE_MOVABLE) {
6369 *zone_start_pfn = zone_movable_pfn[nid];
6370 *zone_end_pfn = min(node_end_pfn,
6371 arch_zone_highest_possible_pfn[movable_zone]);
6372
6373 /* Adjust for ZONE_MOVABLE starting within this range */
6374 } else if (!mirrored_kernelcore &&
6375 *zone_start_pfn < zone_movable_pfn[nid] &&
6376 *zone_end_pfn > zone_movable_pfn[nid]) {
6377 *zone_end_pfn = zone_movable_pfn[nid];
6378
6379 /* Check if this whole range is within ZONE_MOVABLE */
6380 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6381 *zone_start_pfn = *zone_end_pfn;
6382 }
6383 }
6384
6385 /*
6386 * Return the number of pages a zone spans in a node, including holes
6387 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6388 */
6389 static unsigned long __init zone_spanned_pages_in_node(int nid,
6390 unsigned long zone_type,
6391 unsigned long node_start_pfn,
6392 unsigned long node_end_pfn,
6393 unsigned long *zone_start_pfn,
6394 unsigned long *zone_end_pfn,
6395 unsigned long *ignored)
6396 {
6397 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6398 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6399 /* When hotadd a new node from cpu_up(), the node should be empty */
6400 if (!node_start_pfn && !node_end_pfn)
6401 return 0;
6402
6403 /* Get the start and end of the zone */
6404 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6405 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6406 adjust_zone_range_for_zone_movable(nid, zone_type,
6407 node_start_pfn, node_end_pfn,
6408 zone_start_pfn, zone_end_pfn);
6409
6410 /* Check that this node has pages within the zone's required range */
6411 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6412 return 0;
6413
6414 /* Move the zone boundaries inside the node if necessary */
6415 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6416 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6417
6418 /* Return the spanned pages */
6419 return *zone_end_pfn - *zone_start_pfn;
6420 }
6421
6422 /*
6423 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6424 * then all holes in the requested range will be accounted for.
6425 */
6426 unsigned long __init __absent_pages_in_range(int nid,
6427 unsigned long range_start_pfn,
6428 unsigned long range_end_pfn)
6429 {
6430 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6431 unsigned long start_pfn, end_pfn;
6432 int i;
6433
6434 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6435 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6436 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6437 nr_absent -= end_pfn - start_pfn;
6438 }
6439 return nr_absent;
6440 }
6441
6442 /**
6443 * absent_pages_in_range - Return number of page frames in holes within a range
6444 * @start_pfn: The start PFN to start searching for holes
6445 * @end_pfn: The end PFN to stop searching for holes
6446 *
6447 * Return: the number of pages frames in memory holes within a range.
6448 */
6449 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6450 unsigned long end_pfn)
6451 {
6452 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6453 }
6454
6455 /* Return the number of page frames in holes in a zone on a node */
6456 static unsigned long __init zone_absent_pages_in_node(int nid,
6457 unsigned long zone_type,
6458 unsigned long node_start_pfn,
6459 unsigned long node_end_pfn,
6460 unsigned long *ignored)
6461 {
6462 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6463 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6464 unsigned long zone_start_pfn, zone_end_pfn;
6465 unsigned long nr_absent;
6466
6467 /* When hotadd a new node from cpu_up(), the node should be empty */
6468 if (!node_start_pfn && !node_end_pfn)
6469 return 0;
6470
6471 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6472 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6473
6474 adjust_zone_range_for_zone_movable(nid, zone_type,
6475 node_start_pfn, node_end_pfn,
6476 &zone_start_pfn, &zone_end_pfn);
6477 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6478
6479 /*
6480 * ZONE_MOVABLE handling.
6481 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6482 * and vice versa.
6483 */
6484 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6485 unsigned long start_pfn, end_pfn;
6486 struct memblock_region *r;
6487
6488 for_each_memblock(memory, r) {
6489 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6490 zone_start_pfn, zone_end_pfn);
6491 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6492 zone_start_pfn, zone_end_pfn);
6493
6494 if (zone_type == ZONE_MOVABLE &&
6495 memblock_is_mirror(r))
6496 nr_absent += end_pfn - start_pfn;
6497
6498 if (zone_type == ZONE_NORMAL &&
6499 !memblock_is_mirror(r))
6500 nr_absent += end_pfn - start_pfn;
6501 }
6502 }
6503
6504 return nr_absent;
6505 }
6506
6507 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6508 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6509 unsigned long zone_type,
6510 unsigned long node_start_pfn,
6511 unsigned long node_end_pfn,
6512 unsigned long *zone_start_pfn,
6513 unsigned long *zone_end_pfn,
6514 unsigned long *zones_size)
6515 {
6516 unsigned int zone;
6517
6518 *zone_start_pfn = node_start_pfn;
6519 for (zone = 0; zone < zone_type; zone++)
6520 *zone_start_pfn += zones_size[zone];
6521
6522 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6523
6524 return zones_size[zone_type];
6525 }
6526
6527 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6528 unsigned long zone_type,
6529 unsigned long node_start_pfn,
6530 unsigned long node_end_pfn,
6531 unsigned long *zholes_size)
6532 {
6533 if (!zholes_size)
6534 return 0;
6535
6536 return zholes_size[zone_type];
6537 }
6538
6539 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6540
6541 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6542 unsigned long node_start_pfn,
6543 unsigned long node_end_pfn,
6544 unsigned long *zones_size,
6545 unsigned long *zholes_size)
6546 {
6547 unsigned long realtotalpages = 0, totalpages = 0;
6548 enum zone_type i;
6549
6550 for (i = 0; i < MAX_NR_ZONES; i++) {
6551 struct zone *zone = pgdat->node_zones + i;
6552 unsigned long zone_start_pfn, zone_end_pfn;
6553 unsigned long size, real_size;
6554
6555 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6556 node_start_pfn,
6557 node_end_pfn,
6558 &zone_start_pfn,
6559 &zone_end_pfn,
6560 zones_size);
6561 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6562 node_start_pfn, node_end_pfn,
6563 zholes_size);
6564 if (size)
6565 zone->zone_start_pfn = zone_start_pfn;
6566 else
6567 zone->zone_start_pfn = 0;
6568 zone->spanned_pages = size;
6569 zone->present_pages = real_size;
6570
6571 totalpages += size;
6572 realtotalpages += real_size;
6573 }
6574
6575 pgdat->node_spanned_pages = totalpages;
6576 pgdat->node_present_pages = realtotalpages;
6577 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6578 realtotalpages);
6579 }
6580
6581 #ifndef CONFIG_SPARSEMEM
6582 /*
6583 * Calculate the size of the zone->blockflags rounded to an unsigned long
6584 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6585 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6586 * round what is now in bits to nearest long in bits, then return it in
6587 * bytes.
6588 */
6589 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6590 {
6591 unsigned long usemapsize;
6592
6593 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6594 usemapsize = roundup(zonesize, pageblock_nr_pages);
6595 usemapsize = usemapsize >> pageblock_order;
6596 usemapsize *= NR_PAGEBLOCK_BITS;
6597 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6598
6599 return usemapsize / 8;
6600 }
6601
6602 static void __ref setup_usemap(struct pglist_data *pgdat,
6603 struct zone *zone,
6604 unsigned long zone_start_pfn,
6605 unsigned long zonesize)
6606 {
6607 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6608 zone->pageblock_flags = NULL;
6609 if (usemapsize) {
6610 zone->pageblock_flags =
6611 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6612 pgdat->node_id);
6613 if (!zone->pageblock_flags)
6614 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6615 usemapsize, zone->name, pgdat->node_id);
6616 }
6617 }
6618 #else
6619 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6620 unsigned long zone_start_pfn, unsigned long zonesize) {}
6621 #endif /* CONFIG_SPARSEMEM */
6622
6623 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6624
6625 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6626 void __init set_pageblock_order(void)
6627 {
6628 unsigned int order;
6629
6630 /* Check that pageblock_nr_pages has not already been setup */
6631 if (pageblock_order)
6632 return;
6633
6634 if (HPAGE_SHIFT > PAGE_SHIFT)
6635 order = HUGETLB_PAGE_ORDER;
6636 else
6637 order = MAX_ORDER - 1;
6638
6639 /*
6640 * Assume the largest contiguous order of interest is a huge page.
6641 * This value may be variable depending on boot parameters on IA64 and
6642 * powerpc.
6643 */
6644 pageblock_order = order;
6645 }
6646 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6647
6648 /*
6649 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6650 * is unused as pageblock_order is set at compile-time. See
6651 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6652 * the kernel config
6653 */
6654 void __init set_pageblock_order(void)
6655 {
6656 }
6657
6658 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6659
6660 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6661 unsigned long present_pages)
6662 {
6663 unsigned long pages = spanned_pages;
6664
6665 /*
6666 * Provide a more accurate estimation if there are holes within
6667 * the zone and SPARSEMEM is in use. If there are holes within the
6668 * zone, each populated memory region may cost us one or two extra
6669 * memmap pages due to alignment because memmap pages for each
6670 * populated regions may not be naturally aligned on page boundary.
6671 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6672 */
6673 if (spanned_pages > present_pages + (present_pages >> 4) &&
6674 IS_ENABLED(CONFIG_SPARSEMEM))
6675 pages = present_pages;
6676
6677 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6678 }
6679
6680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6681 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6682 {
6683 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6684
6685 spin_lock_init(&ds_queue->split_queue_lock);
6686 INIT_LIST_HEAD(&ds_queue->split_queue);
6687 ds_queue->split_queue_len = 0;
6688 }
6689 #else
6690 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6691 #endif
6692
6693 #ifdef CONFIG_COMPACTION
6694 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6695 {
6696 init_waitqueue_head(&pgdat->kcompactd_wait);
6697 }
6698 #else
6699 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6700 #endif
6701
6702 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6703 {
6704 pgdat_resize_init(pgdat);
6705
6706 pgdat_init_split_queue(pgdat);
6707 pgdat_init_kcompactd(pgdat);
6708
6709 init_waitqueue_head(&pgdat->kswapd_wait);
6710 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6711
6712 pgdat_page_ext_init(pgdat);
6713 spin_lock_init(&pgdat->lru_lock);
6714 lruvec_init(node_lruvec(pgdat));
6715 }
6716
6717 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6718 unsigned long remaining_pages)
6719 {
6720 atomic_long_set(&zone->managed_pages, remaining_pages);
6721 zone_set_nid(zone, nid);
6722 zone->name = zone_names[idx];
6723 zone->zone_pgdat = NODE_DATA(nid);
6724 spin_lock_init(&zone->lock);
6725 zone_seqlock_init(zone);
6726 zone_pcp_init(zone);
6727 }
6728
6729 /*
6730 * Set up the zone data structures
6731 * - init pgdat internals
6732 * - init all zones belonging to this node
6733 *
6734 * NOTE: this function is only called during memory hotplug
6735 */
6736 #ifdef CONFIG_MEMORY_HOTPLUG
6737 void __ref free_area_init_core_hotplug(int nid)
6738 {
6739 enum zone_type z;
6740 pg_data_t *pgdat = NODE_DATA(nid);
6741
6742 pgdat_init_internals(pgdat);
6743 for (z = 0; z < MAX_NR_ZONES; z++)
6744 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6745 }
6746 #endif
6747
6748 /*
6749 * Set up the zone data structures:
6750 * - mark all pages reserved
6751 * - mark all memory queues empty
6752 * - clear the memory bitmaps
6753 *
6754 * NOTE: pgdat should get zeroed by caller.
6755 * NOTE: this function is only called during early init.
6756 */
6757 static void __init free_area_init_core(struct pglist_data *pgdat)
6758 {
6759 enum zone_type j;
6760 int nid = pgdat->node_id;
6761
6762 pgdat_init_internals(pgdat);
6763 pgdat->per_cpu_nodestats = &boot_nodestats;
6764
6765 for (j = 0; j < MAX_NR_ZONES; j++) {
6766 struct zone *zone = pgdat->node_zones + j;
6767 unsigned long size, freesize, memmap_pages;
6768 unsigned long zone_start_pfn = zone->zone_start_pfn;
6769
6770 size = zone->spanned_pages;
6771 freesize = zone->present_pages;
6772
6773 /*
6774 * Adjust freesize so that it accounts for how much memory
6775 * is used by this zone for memmap. This affects the watermark
6776 * and per-cpu initialisations
6777 */
6778 memmap_pages = calc_memmap_size(size, freesize);
6779 if (!is_highmem_idx(j)) {
6780 if (freesize >= memmap_pages) {
6781 freesize -= memmap_pages;
6782 if (memmap_pages)
6783 printk(KERN_DEBUG
6784 " %s zone: %lu pages used for memmap\n",
6785 zone_names[j], memmap_pages);
6786 } else
6787 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6788 zone_names[j], memmap_pages, freesize);
6789 }
6790
6791 /* Account for reserved pages */
6792 if (j == 0 && freesize > dma_reserve) {
6793 freesize -= dma_reserve;
6794 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6795 zone_names[0], dma_reserve);
6796 }
6797
6798 if (!is_highmem_idx(j))
6799 nr_kernel_pages += freesize;
6800 /* Charge for highmem memmap if there are enough kernel pages */
6801 else if (nr_kernel_pages > memmap_pages * 2)
6802 nr_kernel_pages -= memmap_pages;
6803 nr_all_pages += freesize;
6804
6805 /*
6806 * Set an approximate value for lowmem here, it will be adjusted
6807 * when the bootmem allocator frees pages into the buddy system.
6808 * And all highmem pages will be managed by the buddy system.
6809 */
6810 zone_init_internals(zone, j, nid, freesize);
6811
6812 if (!size)
6813 continue;
6814
6815 set_pageblock_order();
6816 setup_usemap(pgdat, zone, zone_start_pfn, size);
6817 init_currently_empty_zone(zone, zone_start_pfn, size);
6818 memmap_init(size, nid, j, zone_start_pfn);
6819 }
6820 }
6821
6822 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6823 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6824 {
6825 unsigned long __maybe_unused start = 0;
6826 unsigned long __maybe_unused offset = 0;
6827
6828 /* Skip empty nodes */
6829 if (!pgdat->node_spanned_pages)
6830 return;
6831
6832 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6833 offset = pgdat->node_start_pfn - start;
6834 /* ia64 gets its own node_mem_map, before this, without bootmem */
6835 if (!pgdat->node_mem_map) {
6836 unsigned long size, end;
6837 struct page *map;
6838
6839 /*
6840 * The zone's endpoints aren't required to be MAX_ORDER
6841 * aligned but the node_mem_map endpoints must be in order
6842 * for the buddy allocator to function correctly.
6843 */
6844 end = pgdat_end_pfn(pgdat);
6845 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6846 size = (end - start) * sizeof(struct page);
6847 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6848 pgdat->node_id);
6849 if (!map)
6850 panic("Failed to allocate %ld bytes for node %d memory map\n",
6851 size, pgdat->node_id);
6852 pgdat->node_mem_map = map + offset;
6853 }
6854 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6855 __func__, pgdat->node_id, (unsigned long)pgdat,
6856 (unsigned long)pgdat->node_mem_map);
6857 #ifndef CONFIG_NEED_MULTIPLE_NODES
6858 /*
6859 * With no DISCONTIG, the global mem_map is just set as node 0's
6860 */
6861 if (pgdat == NODE_DATA(0)) {
6862 mem_map = NODE_DATA(0)->node_mem_map;
6863 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6864 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6865 mem_map -= offset;
6866 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6867 }
6868 #endif
6869 }
6870 #else
6871 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6872 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6873
6874 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6875 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6876 {
6877 pgdat->first_deferred_pfn = ULONG_MAX;
6878 }
6879 #else
6880 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6881 #endif
6882
6883 void __init free_area_init_node(int nid, unsigned long *zones_size,
6884 unsigned long node_start_pfn,
6885 unsigned long *zholes_size)
6886 {
6887 pg_data_t *pgdat = NODE_DATA(nid);
6888 unsigned long start_pfn = 0;
6889 unsigned long end_pfn = 0;
6890
6891 /* pg_data_t should be reset to zero when it's allocated */
6892 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6893
6894 pgdat->node_id = nid;
6895 pgdat->node_start_pfn = node_start_pfn;
6896 pgdat->per_cpu_nodestats = NULL;
6897 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6898 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6899 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6900 (u64)start_pfn << PAGE_SHIFT,
6901 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6902 #else
6903 start_pfn = node_start_pfn;
6904 #endif
6905 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6906 zones_size, zholes_size);
6907
6908 alloc_node_mem_map(pgdat);
6909 pgdat_set_deferred_range(pgdat);
6910
6911 free_area_init_core(pgdat);
6912 }
6913
6914 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6915 /*
6916 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6917 * pages zeroed
6918 */
6919 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6920 {
6921 unsigned long pfn;
6922 u64 pgcnt = 0;
6923
6924 for (pfn = spfn; pfn < epfn; pfn++) {
6925 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6926 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6927 + pageblock_nr_pages - 1;
6928 continue;
6929 }
6930 mm_zero_struct_page(pfn_to_page(pfn));
6931 pgcnt++;
6932 }
6933
6934 return pgcnt;
6935 }
6936
6937 /*
6938 * Only struct pages that are backed by physical memory are zeroed and
6939 * initialized by going through __init_single_page(). But, there are some
6940 * struct pages which are reserved in memblock allocator and their fields
6941 * may be accessed (for example page_to_pfn() on some configuration accesses
6942 * flags). We must explicitly zero those struct pages.
6943 *
6944 * This function also addresses a similar issue where struct pages are left
6945 * uninitialized because the physical address range is not covered by
6946 * memblock.memory or memblock.reserved. That could happen when memblock
6947 * layout is manually configured via memmap=.
6948 */
6949 void __init zero_resv_unavail(void)
6950 {
6951 phys_addr_t start, end;
6952 u64 i, pgcnt;
6953 phys_addr_t next = 0;
6954
6955 /*
6956 * Loop through unavailable ranges not covered by memblock.memory.
6957 */
6958 pgcnt = 0;
6959 for_each_mem_range(i, &memblock.memory, NULL,
6960 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6961 if (next < start)
6962 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6963 next = end;
6964 }
6965 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6966
6967 /*
6968 * Struct pages that do not have backing memory. This could be because
6969 * firmware is using some of this memory, or for some other reasons.
6970 */
6971 if (pgcnt)
6972 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6973 }
6974 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6975
6976 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6977
6978 #if MAX_NUMNODES > 1
6979 /*
6980 * Figure out the number of possible node ids.
6981 */
6982 void __init setup_nr_node_ids(void)
6983 {
6984 unsigned int highest;
6985
6986 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6987 nr_node_ids = highest + 1;
6988 }
6989 #endif
6990
6991 /**
6992 * node_map_pfn_alignment - determine the maximum internode alignment
6993 *
6994 * This function should be called after node map is populated and sorted.
6995 * It calculates the maximum power of two alignment which can distinguish
6996 * all the nodes.
6997 *
6998 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6999 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7000 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7001 * shifted, 1GiB is enough and this function will indicate so.
7002 *
7003 * This is used to test whether pfn -> nid mapping of the chosen memory
7004 * model has fine enough granularity to avoid incorrect mapping for the
7005 * populated node map.
7006 *
7007 * Return: the determined alignment in pfn's. 0 if there is no alignment
7008 * requirement (single node).
7009 */
7010 unsigned long __init node_map_pfn_alignment(void)
7011 {
7012 unsigned long accl_mask = 0, last_end = 0;
7013 unsigned long start, end, mask;
7014 int last_nid = NUMA_NO_NODE;
7015 int i, nid;
7016
7017 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7018 if (!start || last_nid < 0 || last_nid == nid) {
7019 last_nid = nid;
7020 last_end = end;
7021 continue;
7022 }
7023
7024 /*
7025 * Start with a mask granular enough to pin-point to the
7026 * start pfn and tick off bits one-by-one until it becomes
7027 * too coarse to separate the current node from the last.
7028 */
7029 mask = ~((1 << __ffs(start)) - 1);
7030 while (mask && last_end <= (start & (mask << 1)))
7031 mask <<= 1;
7032
7033 /* accumulate all internode masks */
7034 accl_mask |= mask;
7035 }
7036
7037 /* convert mask to number of pages */
7038 return ~accl_mask + 1;
7039 }
7040
7041 /* Find the lowest pfn for a node */
7042 static unsigned long __init find_min_pfn_for_node(int nid)
7043 {
7044 unsigned long min_pfn = ULONG_MAX;
7045 unsigned long start_pfn;
7046 int i;
7047
7048 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7049 min_pfn = min(min_pfn, start_pfn);
7050
7051 if (min_pfn == ULONG_MAX) {
7052 pr_warn("Could not find start_pfn for node %d\n", nid);
7053 return 0;
7054 }
7055
7056 return min_pfn;
7057 }
7058
7059 /**
7060 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7061 *
7062 * Return: the minimum PFN based on information provided via
7063 * memblock_set_node().
7064 */
7065 unsigned long __init find_min_pfn_with_active_regions(void)
7066 {
7067 return find_min_pfn_for_node(MAX_NUMNODES);
7068 }
7069
7070 /*
7071 * early_calculate_totalpages()
7072 * Sum pages in active regions for movable zone.
7073 * Populate N_MEMORY for calculating usable_nodes.
7074 */
7075 static unsigned long __init early_calculate_totalpages(void)
7076 {
7077 unsigned long totalpages = 0;
7078 unsigned long start_pfn, end_pfn;
7079 int i, nid;
7080
7081 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7082 unsigned long pages = end_pfn - start_pfn;
7083
7084 totalpages += pages;
7085 if (pages)
7086 node_set_state(nid, N_MEMORY);
7087 }
7088 return totalpages;
7089 }
7090
7091 /*
7092 * Find the PFN the Movable zone begins in each node. Kernel memory
7093 * is spread evenly between nodes as long as the nodes have enough
7094 * memory. When they don't, some nodes will have more kernelcore than
7095 * others
7096 */
7097 static void __init find_zone_movable_pfns_for_nodes(void)
7098 {
7099 int i, nid;
7100 unsigned long usable_startpfn;
7101 unsigned long kernelcore_node, kernelcore_remaining;
7102 /* save the state before borrow the nodemask */
7103 nodemask_t saved_node_state = node_states[N_MEMORY];
7104 unsigned long totalpages = early_calculate_totalpages();
7105 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7106 struct memblock_region *r;
7107
7108 /* Need to find movable_zone earlier when movable_node is specified. */
7109 find_usable_zone_for_movable();
7110
7111 /*
7112 * If movable_node is specified, ignore kernelcore and movablecore
7113 * options.
7114 */
7115 if (movable_node_is_enabled()) {
7116 for_each_memblock(memory, r) {
7117 if (!memblock_is_hotpluggable(r))
7118 continue;
7119
7120 nid = r->nid;
7121
7122 usable_startpfn = PFN_DOWN(r->base);
7123 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7124 min(usable_startpfn, zone_movable_pfn[nid]) :
7125 usable_startpfn;
7126 }
7127
7128 goto out2;
7129 }
7130
7131 /*
7132 * If kernelcore=mirror is specified, ignore movablecore option
7133 */
7134 if (mirrored_kernelcore) {
7135 bool mem_below_4gb_not_mirrored = false;
7136
7137 for_each_memblock(memory, r) {
7138 if (memblock_is_mirror(r))
7139 continue;
7140
7141 nid = r->nid;
7142
7143 usable_startpfn = memblock_region_memory_base_pfn(r);
7144
7145 if (usable_startpfn < 0x100000) {
7146 mem_below_4gb_not_mirrored = true;
7147 continue;
7148 }
7149
7150 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7151 min(usable_startpfn, zone_movable_pfn[nid]) :
7152 usable_startpfn;
7153 }
7154
7155 if (mem_below_4gb_not_mirrored)
7156 pr_warn("This configuration results in unmirrored kernel memory.");
7157
7158 goto out2;
7159 }
7160
7161 /*
7162 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7163 * amount of necessary memory.
7164 */
7165 if (required_kernelcore_percent)
7166 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7167 10000UL;
7168 if (required_movablecore_percent)
7169 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7170 10000UL;
7171
7172 /*
7173 * If movablecore= was specified, calculate what size of
7174 * kernelcore that corresponds so that memory usable for
7175 * any allocation type is evenly spread. If both kernelcore
7176 * and movablecore are specified, then the value of kernelcore
7177 * will be used for required_kernelcore if it's greater than
7178 * what movablecore would have allowed.
7179 */
7180 if (required_movablecore) {
7181 unsigned long corepages;
7182
7183 /*
7184 * Round-up so that ZONE_MOVABLE is at least as large as what
7185 * was requested by the user
7186 */
7187 required_movablecore =
7188 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7189 required_movablecore = min(totalpages, required_movablecore);
7190 corepages = totalpages - required_movablecore;
7191
7192 required_kernelcore = max(required_kernelcore, corepages);
7193 }
7194
7195 /*
7196 * If kernelcore was not specified or kernelcore size is larger
7197 * than totalpages, there is no ZONE_MOVABLE.
7198 */
7199 if (!required_kernelcore || required_kernelcore >= totalpages)
7200 goto out;
7201
7202 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7203 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7204
7205 restart:
7206 /* Spread kernelcore memory as evenly as possible throughout nodes */
7207 kernelcore_node = required_kernelcore / usable_nodes;
7208 for_each_node_state(nid, N_MEMORY) {
7209 unsigned long start_pfn, end_pfn;
7210
7211 /*
7212 * Recalculate kernelcore_node if the division per node
7213 * now exceeds what is necessary to satisfy the requested
7214 * amount of memory for the kernel
7215 */
7216 if (required_kernelcore < kernelcore_node)
7217 kernelcore_node = required_kernelcore / usable_nodes;
7218
7219 /*
7220 * As the map is walked, we track how much memory is usable
7221 * by the kernel using kernelcore_remaining. When it is
7222 * 0, the rest of the node is usable by ZONE_MOVABLE
7223 */
7224 kernelcore_remaining = kernelcore_node;
7225
7226 /* Go through each range of PFNs within this node */
7227 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7228 unsigned long size_pages;
7229
7230 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7231 if (start_pfn >= end_pfn)
7232 continue;
7233
7234 /* Account for what is only usable for kernelcore */
7235 if (start_pfn < usable_startpfn) {
7236 unsigned long kernel_pages;
7237 kernel_pages = min(end_pfn, usable_startpfn)
7238 - start_pfn;
7239
7240 kernelcore_remaining -= min(kernel_pages,
7241 kernelcore_remaining);
7242 required_kernelcore -= min(kernel_pages,
7243 required_kernelcore);
7244
7245 /* Continue if range is now fully accounted */
7246 if (end_pfn <= usable_startpfn) {
7247
7248 /*
7249 * Push zone_movable_pfn to the end so
7250 * that if we have to rebalance
7251 * kernelcore across nodes, we will
7252 * not double account here
7253 */
7254 zone_movable_pfn[nid] = end_pfn;
7255 continue;
7256 }
7257 start_pfn = usable_startpfn;
7258 }
7259
7260 /*
7261 * The usable PFN range for ZONE_MOVABLE is from
7262 * start_pfn->end_pfn. Calculate size_pages as the
7263 * number of pages used as kernelcore
7264 */
7265 size_pages = end_pfn - start_pfn;
7266 if (size_pages > kernelcore_remaining)
7267 size_pages = kernelcore_remaining;
7268 zone_movable_pfn[nid] = start_pfn + size_pages;
7269
7270 /*
7271 * Some kernelcore has been met, update counts and
7272 * break if the kernelcore for this node has been
7273 * satisfied
7274 */
7275 required_kernelcore -= min(required_kernelcore,
7276 size_pages);
7277 kernelcore_remaining -= size_pages;
7278 if (!kernelcore_remaining)
7279 break;
7280 }
7281 }
7282
7283 /*
7284 * If there is still required_kernelcore, we do another pass with one
7285 * less node in the count. This will push zone_movable_pfn[nid] further
7286 * along on the nodes that still have memory until kernelcore is
7287 * satisfied
7288 */
7289 usable_nodes--;
7290 if (usable_nodes && required_kernelcore > usable_nodes)
7291 goto restart;
7292
7293 out2:
7294 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7295 for (nid = 0; nid < MAX_NUMNODES; nid++)
7296 zone_movable_pfn[nid] =
7297 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7298
7299 out:
7300 /* restore the node_state */
7301 node_states[N_MEMORY] = saved_node_state;
7302 }
7303
7304 /* Any regular or high memory on that node ? */
7305 static void check_for_memory(pg_data_t *pgdat, int nid)
7306 {
7307 enum zone_type zone_type;
7308
7309 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7310 struct zone *zone = &pgdat->node_zones[zone_type];
7311 if (populated_zone(zone)) {
7312 if (IS_ENABLED(CONFIG_HIGHMEM))
7313 node_set_state(nid, N_HIGH_MEMORY);
7314 if (zone_type <= ZONE_NORMAL)
7315 node_set_state(nid, N_NORMAL_MEMORY);
7316 break;
7317 }
7318 }
7319 }
7320
7321 /**
7322 * free_area_init_nodes - Initialise all pg_data_t and zone data
7323 * @max_zone_pfn: an array of max PFNs for each zone
7324 *
7325 * This will call free_area_init_node() for each active node in the system.
7326 * Using the page ranges provided by memblock_set_node(), the size of each
7327 * zone in each node and their holes is calculated. If the maximum PFN
7328 * between two adjacent zones match, it is assumed that the zone is empty.
7329 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7330 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7331 * starts where the previous one ended. For example, ZONE_DMA32 starts
7332 * at arch_max_dma_pfn.
7333 */
7334 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7335 {
7336 unsigned long start_pfn, end_pfn;
7337 int i, nid;
7338
7339 /* Record where the zone boundaries are */
7340 memset(arch_zone_lowest_possible_pfn, 0,
7341 sizeof(arch_zone_lowest_possible_pfn));
7342 memset(arch_zone_highest_possible_pfn, 0,
7343 sizeof(arch_zone_highest_possible_pfn));
7344
7345 start_pfn = find_min_pfn_with_active_regions();
7346
7347 for (i = 0; i < MAX_NR_ZONES; i++) {
7348 if (i == ZONE_MOVABLE)
7349 continue;
7350
7351 end_pfn = max(max_zone_pfn[i], start_pfn);
7352 arch_zone_lowest_possible_pfn[i] = start_pfn;
7353 arch_zone_highest_possible_pfn[i] = end_pfn;
7354
7355 start_pfn = end_pfn;
7356 }
7357
7358 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7359 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7360 find_zone_movable_pfns_for_nodes();
7361
7362 /* Print out the zone ranges */
7363 pr_info("Zone ranges:\n");
7364 for (i = 0; i < MAX_NR_ZONES; i++) {
7365 if (i == ZONE_MOVABLE)
7366 continue;
7367 pr_info(" %-8s ", zone_names[i]);
7368 if (arch_zone_lowest_possible_pfn[i] ==
7369 arch_zone_highest_possible_pfn[i])
7370 pr_cont("empty\n");
7371 else
7372 pr_cont("[mem %#018Lx-%#018Lx]\n",
7373 (u64)arch_zone_lowest_possible_pfn[i]
7374 << PAGE_SHIFT,
7375 ((u64)arch_zone_highest_possible_pfn[i]
7376 << PAGE_SHIFT) - 1);
7377 }
7378
7379 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7380 pr_info("Movable zone start for each node\n");
7381 for (i = 0; i < MAX_NUMNODES; i++) {
7382 if (zone_movable_pfn[i])
7383 pr_info(" Node %d: %#018Lx\n", i,
7384 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7385 }
7386
7387 /*
7388 * Print out the early node map, and initialize the
7389 * subsection-map relative to active online memory ranges to
7390 * enable future "sub-section" extensions of the memory map.
7391 */
7392 pr_info("Early memory node ranges\n");
7393 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7394 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7395 (u64)start_pfn << PAGE_SHIFT,
7396 ((u64)end_pfn << PAGE_SHIFT) - 1);
7397 subsection_map_init(start_pfn, end_pfn - start_pfn);
7398 }
7399
7400 /* Initialise every node */
7401 mminit_verify_pageflags_layout();
7402 setup_nr_node_ids();
7403 zero_resv_unavail();
7404 for_each_online_node(nid) {
7405 pg_data_t *pgdat = NODE_DATA(nid);
7406 free_area_init_node(nid, NULL,
7407 find_min_pfn_for_node(nid), NULL);
7408
7409 /* Any memory on that node */
7410 if (pgdat->node_present_pages)
7411 node_set_state(nid, N_MEMORY);
7412 check_for_memory(pgdat, nid);
7413 }
7414 }
7415
7416 static int __init cmdline_parse_core(char *p, unsigned long *core,
7417 unsigned long *percent)
7418 {
7419 unsigned long long coremem;
7420 char *endptr;
7421
7422 if (!p)
7423 return -EINVAL;
7424
7425 /* Value may be a percentage of total memory, otherwise bytes */
7426 coremem = simple_strtoull(p, &endptr, 0);
7427 if (*endptr == '%') {
7428 /* Paranoid check for percent values greater than 100 */
7429 WARN_ON(coremem > 100);
7430
7431 *percent = coremem;
7432 } else {
7433 coremem = memparse(p, &p);
7434 /* Paranoid check that UL is enough for the coremem value */
7435 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7436
7437 *core = coremem >> PAGE_SHIFT;
7438 *percent = 0UL;
7439 }
7440 return 0;
7441 }
7442
7443 /*
7444 * kernelcore=size sets the amount of memory for use for allocations that
7445 * cannot be reclaimed or migrated.
7446 */
7447 static int __init cmdline_parse_kernelcore(char *p)
7448 {
7449 /* parse kernelcore=mirror */
7450 if (parse_option_str(p, "mirror")) {
7451 mirrored_kernelcore = true;
7452 return 0;
7453 }
7454
7455 return cmdline_parse_core(p, &required_kernelcore,
7456 &required_kernelcore_percent);
7457 }
7458
7459 /*
7460 * movablecore=size sets the amount of memory for use for allocations that
7461 * can be reclaimed or migrated.
7462 */
7463 static int __init cmdline_parse_movablecore(char *p)
7464 {
7465 return cmdline_parse_core(p, &required_movablecore,
7466 &required_movablecore_percent);
7467 }
7468
7469 early_param("kernelcore", cmdline_parse_kernelcore);
7470 early_param("movablecore", cmdline_parse_movablecore);
7471
7472 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7473
7474 void adjust_managed_page_count(struct page *page, long count)
7475 {
7476 atomic_long_add(count, &page_zone(page)->managed_pages);
7477 totalram_pages_add(count);
7478 #ifdef CONFIG_HIGHMEM
7479 if (PageHighMem(page))
7480 totalhigh_pages_add(count);
7481 #endif
7482 }
7483 EXPORT_SYMBOL(adjust_managed_page_count);
7484
7485 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7486 {
7487 void *pos;
7488 unsigned long pages = 0;
7489
7490 start = (void *)PAGE_ALIGN((unsigned long)start);
7491 end = (void *)((unsigned long)end & PAGE_MASK);
7492 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7493 struct page *page = virt_to_page(pos);
7494 void *direct_map_addr;
7495
7496 /*
7497 * 'direct_map_addr' might be different from 'pos'
7498 * because some architectures' virt_to_page()
7499 * work with aliases. Getting the direct map
7500 * address ensures that we get a _writeable_
7501 * alias for the memset().
7502 */
7503 direct_map_addr = page_address(page);
7504 if ((unsigned int)poison <= 0xFF)
7505 memset(direct_map_addr, poison, PAGE_SIZE);
7506
7507 free_reserved_page(page);
7508 }
7509
7510 if (pages && s)
7511 pr_info("Freeing %s memory: %ldK\n",
7512 s, pages << (PAGE_SHIFT - 10));
7513
7514 return pages;
7515 }
7516
7517 #ifdef CONFIG_HIGHMEM
7518 void free_highmem_page(struct page *page)
7519 {
7520 __free_reserved_page(page);
7521 totalram_pages_inc();
7522 atomic_long_inc(&page_zone(page)->managed_pages);
7523 totalhigh_pages_inc();
7524 }
7525 #endif
7526
7527
7528 void __init mem_init_print_info(const char *str)
7529 {
7530 unsigned long physpages, codesize, datasize, rosize, bss_size;
7531 unsigned long init_code_size, init_data_size;
7532
7533 physpages = get_num_physpages();
7534 codesize = _etext - _stext;
7535 datasize = _edata - _sdata;
7536 rosize = __end_rodata - __start_rodata;
7537 bss_size = __bss_stop - __bss_start;
7538 init_data_size = __init_end - __init_begin;
7539 init_code_size = _einittext - _sinittext;
7540
7541 /*
7542 * Detect special cases and adjust section sizes accordingly:
7543 * 1) .init.* may be embedded into .data sections
7544 * 2) .init.text.* may be out of [__init_begin, __init_end],
7545 * please refer to arch/tile/kernel/vmlinux.lds.S.
7546 * 3) .rodata.* may be embedded into .text or .data sections.
7547 */
7548 #define adj_init_size(start, end, size, pos, adj) \
7549 do { \
7550 if (start <= pos && pos < end && size > adj) \
7551 size -= adj; \
7552 } while (0)
7553
7554 adj_init_size(__init_begin, __init_end, init_data_size,
7555 _sinittext, init_code_size);
7556 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7557 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7558 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7559 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7560
7561 #undef adj_init_size
7562
7563 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7564 #ifdef CONFIG_HIGHMEM
7565 ", %luK highmem"
7566 #endif
7567 "%s%s)\n",
7568 nr_free_pages() << (PAGE_SHIFT - 10),
7569 physpages << (PAGE_SHIFT - 10),
7570 codesize >> 10, datasize >> 10, rosize >> 10,
7571 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7572 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7573 totalcma_pages << (PAGE_SHIFT - 10),
7574 #ifdef CONFIG_HIGHMEM
7575 totalhigh_pages() << (PAGE_SHIFT - 10),
7576 #endif
7577 str ? ", " : "", str ? str : "");
7578 }
7579
7580 /**
7581 * set_dma_reserve - set the specified number of pages reserved in the first zone
7582 * @new_dma_reserve: The number of pages to mark reserved
7583 *
7584 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7585 * In the DMA zone, a significant percentage may be consumed by kernel image
7586 * and other unfreeable allocations which can skew the watermarks badly. This
7587 * function may optionally be used to account for unfreeable pages in the
7588 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7589 * smaller per-cpu batchsize.
7590 */
7591 void __init set_dma_reserve(unsigned long new_dma_reserve)
7592 {
7593 dma_reserve = new_dma_reserve;
7594 }
7595
7596 void __init free_area_init(unsigned long *zones_size)
7597 {
7598 zero_resv_unavail();
7599 free_area_init_node(0, zones_size,
7600 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7601 }
7602
7603 static int page_alloc_cpu_dead(unsigned int cpu)
7604 {
7605
7606 lru_add_drain_cpu(cpu);
7607 drain_pages(cpu);
7608
7609 /*
7610 * Spill the event counters of the dead processor
7611 * into the current processors event counters.
7612 * This artificially elevates the count of the current
7613 * processor.
7614 */
7615 vm_events_fold_cpu(cpu);
7616
7617 /*
7618 * Zero the differential counters of the dead processor
7619 * so that the vm statistics are consistent.
7620 *
7621 * This is only okay since the processor is dead and cannot
7622 * race with what we are doing.
7623 */
7624 cpu_vm_stats_fold(cpu);
7625 return 0;
7626 }
7627
7628 #ifdef CONFIG_NUMA
7629 int hashdist = HASHDIST_DEFAULT;
7630
7631 static int __init set_hashdist(char *str)
7632 {
7633 if (!str)
7634 return 0;
7635 hashdist = simple_strtoul(str, &str, 0);
7636 return 1;
7637 }
7638 __setup("hashdist=", set_hashdist);
7639 #endif
7640
7641 void __init page_alloc_init(void)
7642 {
7643 int ret;
7644
7645 #ifdef CONFIG_NUMA
7646 if (num_node_state(N_MEMORY) == 1)
7647 hashdist = 0;
7648 #endif
7649
7650 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7651 "mm/page_alloc:dead", NULL,
7652 page_alloc_cpu_dead);
7653 WARN_ON(ret < 0);
7654 }
7655
7656 /*
7657 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7658 * or min_free_kbytes changes.
7659 */
7660 static void calculate_totalreserve_pages(void)
7661 {
7662 struct pglist_data *pgdat;
7663 unsigned long reserve_pages = 0;
7664 enum zone_type i, j;
7665
7666 for_each_online_pgdat(pgdat) {
7667
7668 pgdat->totalreserve_pages = 0;
7669
7670 for (i = 0; i < MAX_NR_ZONES; i++) {
7671 struct zone *zone = pgdat->node_zones + i;
7672 long max = 0;
7673 unsigned long managed_pages = zone_managed_pages(zone);
7674
7675 /* Find valid and maximum lowmem_reserve in the zone */
7676 for (j = i; j < MAX_NR_ZONES; j++) {
7677 if (zone->lowmem_reserve[j] > max)
7678 max = zone->lowmem_reserve[j];
7679 }
7680
7681 /* we treat the high watermark as reserved pages. */
7682 max += high_wmark_pages(zone);
7683
7684 if (max > managed_pages)
7685 max = managed_pages;
7686
7687 pgdat->totalreserve_pages += max;
7688
7689 reserve_pages += max;
7690 }
7691 }
7692 totalreserve_pages = reserve_pages;
7693 }
7694
7695 /*
7696 * setup_per_zone_lowmem_reserve - called whenever
7697 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7698 * has a correct pages reserved value, so an adequate number of
7699 * pages are left in the zone after a successful __alloc_pages().
7700 */
7701 static void setup_per_zone_lowmem_reserve(void)
7702 {
7703 struct pglist_data *pgdat;
7704 enum zone_type j, idx;
7705
7706 for_each_online_pgdat(pgdat) {
7707 for (j = 0; j < MAX_NR_ZONES; j++) {
7708 struct zone *zone = pgdat->node_zones + j;
7709 unsigned long managed_pages = zone_managed_pages(zone);
7710
7711 zone->lowmem_reserve[j] = 0;
7712
7713 idx = j;
7714 while (idx) {
7715 struct zone *lower_zone;
7716
7717 idx--;
7718 lower_zone = pgdat->node_zones + idx;
7719
7720 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7721 sysctl_lowmem_reserve_ratio[idx] = 0;
7722 lower_zone->lowmem_reserve[j] = 0;
7723 } else {
7724 lower_zone->lowmem_reserve[j] =
7725 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7726 }
7727 managed_pages += zone_managed_pages(lower_zone);
7728 }
7729 }
7730 }
7731
7732 /* update totalreserve_pages */
7733 calculate_totalreserve_pages();
7734 }
7735
7736 static void __setup_per_zone_wmarks(void)
7737 {
7738 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7739 unsigned long lowmem_pages = 0;
7740 struct zone *zone;
7741 unsigned long flags;
7742
7743 /* Calculate total number of !ZONE_HIGHMEM pages */
7744 for_each_zone(zone) {
7745 if (!is_highmem(zone))
7746 lowmem_pages += zone_managed_pages(zone);
7747 }
7748
7749 for_each_zone(zone) {
7750 u64 tmp;
7751
7752 spin_lock_irqsave(&zone->lock, flags);
7753 tmp = (u64)pages_min * zone_managed_pages(zone);
7754 do_div(tmp, lowmem_pages);
7755 if (is_highmem(zone)) {
7756 /*
7757 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7758 * need highmem pages, so cap pages_min to a small
7759 * value here.
7760 *
7761 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7762 * deltas control async page reclaim, and so should
7763 * not be capped for highmem.
7764 */
7765 unsigned long min_pages;
7766
7767 min_pages = zone_managed_pages(zone) / 1024;
7768 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7769 zone->_watermark[WMARK_MIN] = min_pages;
7770 } else {
7771 /*
7772 * If it's a lowmem zone, reserve a number of pages
7773 * proportionate to the zone's size.
7774 */
7775 zone->_watermark[WMARK_MIN] = tmp;
7776 }
7777
7778 /*
7779 * Set the kswapd watermarks distance according to the
7780 * scale factor in proportion to available memory, but
7781 * ensure a minimum size on small systems.
7782 */
7783 tmp = max_t(u64, tmp >> 2,
7784 mult_frac(zone_managed_pages(zone),
7785 watermark_scale_factor, 10000));
7786
7787 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7788 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7789 zone->watermark_boost = 0;
7790
7791 spin_unlock_irqrestore(&zone->lock, flags);
7792 }
7793
7794 /* update totalreserve_pages */
7795 calculate_totalreserve_pages();
7796 }
7797
7798 /**
7799 * setup_per_zone_wmarks - called when min_free_kbytes changes
7800 * or when memory is hot-{added|removed}
7801 *
7802 * Ensures that the watermark[min,low,high] values for each zone are set
7803 * correctly with respect to min_free_kbytes.
7804 */
7805 void setup_per_zone_wmarks(void)
7806 {
7807 static DEFINE_SPINLOCK(lock);
7808
7809 spin_lock(&lock);
7810 __setup_per_zone_wmarks();
7811 spin_unlock(&lock);
7812 }
7813
7814 /*
7815 * Initialise min_free_kbytes.
7816 *
7817 * For small machines we want it small (128k min). For large machines
7818 * we want it large (64MB max). But it is not linear, because network
7819 * bandwidth does not increase linearly with machine size. We use
7820 *
7821 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7822 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7823 *
7824 * which yields
7825 *
7826 * 16MB: 512k
7827 * 32MB: 724k
7828 * 64MB: 1024k
7829 * 128MB: 1448k
7830 * 256MB: 2048k
7831 * 512MB: 2896k
7832 * 1024MB: 4096k
7833 * 2048MB: 5792k
7834 * 4096MB: 8192k
7835 * 8192MB: 11584k
7836 * 16384MB: 16384k
7837 */
7838 int __meminit init_per_zone_wmark_min(void)
7839 {
7840 unsigned long lowmem_kbytes;
7841 int new_min_free_kbytes;
7842
7843 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7844 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7845
7846 if (new_min_free_kbytes > user_min_free_kbytes) {
7847 min_free_kbytes = new_min_free_kbytes;
7848 if (min_free_kbytes < 128)
7849 min_free_kbytes = 128;
7850 if (min_free_kbytes > 65536)
7851 min_free_kbytes = 65536;
7852 } else {
7853 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7854 new_min_free_kbytes, user_min_free_kbytes);
7855 }
7856 setup_per_zone_wmarks();
7857 refresh_zone_stat_thresholds();
7858 setup_per_zone_lowmem_reserve();
7859
7860 #ifdef CONFIG_NUMA
7861 setup_min_unmapped_ratio();
7862 setup_min_slab_ratio();
7863 #endif
7864
7865 return 0;
7866 }
7867 core_initcall(init_per_zone_wmark_min)
7868
7869 /*
7870 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7871 * that we can call two helper functions whenever min_free_kbytes
7872 * changes.
7873 */
7874 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7875 void __user *buffer, size_t *length, loff_t *ppos)
7876 {
7877 int rc;
7878
7879 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7880 if (rc)
7881 return rc;
7882
7883 if (write) {
7884 user_min_free_kbytes = min_free_kbytes;
7885 setup_per_zone_wmarks();
7886 }
7887 return 0;
7888 }
7889
7890 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7891 void __user *buffer, size_t *length, loff_t *ppos)
7892 {
7893 int rc;
7894
7895 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7896 if (rc)
7897 return rc;
7898
7899 return 0;
7900 }
7901
7902 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7903 void __user *buffer, size_t *length, loff_t *ppos)
7904 {
7905 int rc;
7906
7907 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7908 if (rc)
7909 return rc;
7910
7911 if (write)
7912 setup_per_zone_wmarks();
7913
7914 return 0;
7915 }
7916
7917 #ifdef CONFIG_NUMA
7918 static void setup_min_unmapped_ratio(void)
7919 {
7920 pg_data_t *pgdat;
7921 struct zone *zone;
7922
7923 for_each_online_pgdat(pgdat)
7924 pgdat->min_unmapped_pages = 0;
7925
7926 for_each_zone(zone)
7927 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7928 sysctl_min_unmapped_ratio) / 100;
7929 }
7930
7931
7932 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7933 void __user *buffer, size_t *length, loff_t *ppos)
7934 {
7935 int rc;
7936
7937 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7938 if (rc)
7939 return rc;
7940
7941 setup_min_unmapped_ratio();
7942
7943 return 0;
7944 }
7945
7946 static void setup_min_slab_ratio(void)
7947 {
7948 pg_data_t *pgdat;
7949 struct zone *zone;
7950
7951 for_each_online_pgdat(pgdat)
7952 pgdat->min_slab_pages = 0;
7953
7954 for_each_zone(zone)
7955 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7956 sysctl_min_slab_ratio) / 100;
7957 }
7958
7959 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7960 void __user *buffer, size_t *length, loff_t *ppos)
7961 {
7962 int rc;
7963
7964 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7965 if (rc)
7966 return rc;
7967
7968 setup_min_slab_ratio();
7969
7970 return 0;
7971 }
7972 #endif
7973
7974 /*
7975 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7976 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7977 * whenever sysctl_lowmem_reserve_ratio changes.
7978 *
7979 * The reserve ratio obviously has absolutely no relation with the
7980 * minimum watermarks. The lowmem reserve ratio can only make sense
7981 * if in function of the boot time zone sizes.
7982 */
7983 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7984 void __user *buffer, size_t *length, loff_t *ppos)
7985 {
7986 proc_dointvec_minmax(table, write, buffer, length, ppos);
7987 setup_per_zone_lowmem_reserve();
7988 return 0;
7989 }
7990
7991 /*
7992 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7993 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7994 * pagelist can have before it gets flushed back to buddy allocator.
7995 */
7996 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7997 void __user *buffer, size_t *length, loff_t *ppos)
7998 {
7999 struct zone *zone;
8000 int old_percpu_pagelist_fraction;
8001 int ret;
8002
8003 mutex_lock(&pcp_batch_high_lock);
8004 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8005
8006 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8007 if (!write || ret < 0)
8008 goto out;
8009
8010 /* Sanity checking to avoid pcp imbalance */
8011 if (percpu_pagelist_fraction &&
8012 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8013 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8014 ret = -EINVAL;
8015 goto out;
8016 }
8017
8018 /* No change? */
8019 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8020 goto out;
8021
8022 for_each_populated_zone(zone) {
8023 unsigned int cpu;
8024
8025 for_each_possible_cpu(cpu)
8026 pageset_set_high_and_batch(zone,
8027 per_cpu_ptr(zone->pageset, cpu));
8028 }
8029 out:
8030 mutex_unlock(&pcp_batch_high_lock);
8031 return ret;
8032 }
8033
8034 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8035 /*
8036 * Returns the number of pages that arch has reserved but
8037 * is not known to alloc_large_system_hash().
8038 */
8039 static unsigned long __init arch_reserved_kernel_pages(void)
8040 {
8041 return 0;
8042 }
8043 #endif
8044
8045 /*
8046 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8047 * machines. As memory size is increased the scale is also increased but at
8048 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8049 * quadruples the scale is increased by one, which means the size of hash table
8050 * only doubles, instead of quadrupling as well.
8051 * Because 32-bit systems cannot have large physical memory, where this scaling
8052 * makes sense, it is disabled on such platforms.
8053 */
8054 #if __BITS_PER_LONG > 32
8055 #define ADAPT_SCALE_BASE (64ul << 30)
8056 #define ADAPT_SCALE_SHIFT 2
8057 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8058 #endif
8059
8060 /*
8061 * allocate a large system hash table from bootmem
8062 * - it is assumed that the hash table must contain an exact power-of-2
8063 * quantity of entries
8064 * - limit is the number of hash buckets, not the total allocation size
8065 */
8066 void *__init alloc_large_system_hash(const char *tablename,
8067 unsigned long bucketsize,
8068 unsigned long numentries,
8069 int scale,
8070 int flags,
8071 unsigned int *_hash_shift,
8072 unsigned int *_hash_mask,
8073 unsigned long low_limit,
8074 unsigned long high_limit)
8075 {
8076 unsigned long long max = high_limit;
8077 unsigned long log2qty, size;
8078 void *table = NULL;
8079 gfp_t gfp_flags;
8080 bool virt;
8081
8082 /* allow the kernel cmdline to have a say */
8083 if (!numentries) {
8084 /* round applicable memory size up to nearest megabyte */
8085 numentries = nr_kernel_pages;
8086 numentries -= arch_reserved_kernel_pages();
8087
8088 /* It isn't necessary when PAGE_SIZE >= 1MB */
8089 if (PAGE_SHIFT < 20)
8090 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8091
8092 #if __BITS_PER_LONG > 32
8093 if (!high_limit) {
8094 unsigned long adapt;
8095
8096 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8097 adapt <<= ADAPT_SCALE_SHIFT)
8098 scale++;
8099 }
8100 #endif
8101
8102 /* limit to 1 bucket per 2^scale bytes of low memory */
8103 if (scale > PAGE_SHIFT)
8104 numentries >>= (scale - PAGE_SHIFT);
8105 else
8106 numentries <<= (PAGE_SHIFT - scale);
8107
8108 /* Make sure we've got at least a 0-order allocation.. */
8109 if (unlikely(flags & HASH_SMALL)) {
8110 /* Makes no sense without HASH_EARLY */
8111 WARN_ON(!(flags & HASH_EARLY));
8112 if (!(numentries >> *_hash_shift)) {
8113 numentries = 1UL << *_hash_shift;
8114 BUG_ON(!numentries);
8115 }
8116 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8117 numentries = PAGE_SIZE / bucketsize;
8118 }
8119 numentries = roundup_pow_of_two(numentries);
8120
8121 /* limit allocation size to 1/16 total memory by default */
8122 if (max == 0) {
8123 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8124 do_div(max, bucketsize);
8125 }
8126 max = min(max, 0x80000000ULL);
8127
8128 if (numentries < low_limit)
8129 numentries = low_limit;
8130 if (numentries > max)
8131 numentries = max;
8132
8133 log2qty = ilog2(numentries);
8134
8135 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8136 do {
8137 virt = false;
8138 size = bucketsize << log2qty;
8139 if (flags & HASH_EARLY) {
8140 if (flags & HASH_ZERO)
8141 table = memblock_alloc(size, SMP_CACHE_BYTES);
8142 else
8143 table = memblock_alloc_raw(size,
8144 SMP_CACHE_BYTES);
8145 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8146 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8147 virt = true;
8148 } else {
8149 /*
8150 * If bucketsize is not a power-of-two, we may free
8151 * some pages at the end of hash table which
8152 * alloc_pages_exact() automatically does
8153 */
8154 table = alloc_pages_exact(size, gfp_flags);
8155 kmemleak_alloc(table, size, 1, gfp_flags);
8156 }
8157 } while (!table && size > PAGE_SIZE && --log2qty);
8158
8159 if (!table)
8160 panic("Failed to allocate %s hash table\n", tablename);
8161
8162 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8163 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8164 virt ? "vmalloc" : "linear");
8165
8166 if (_hash_shift)
8167 *_hash_shift = log2qty;
8168 if (_hash_mask)
8169 *_hash_mask = (1 << log2qty) - 1;
8170
8171 return table;
8172 }
8173
8174 /*
8175 * This function checks whether pageblock includes unmovable pages or not.
8176 * If @count is not zero, it is okay to include less @count unmovable pages
8177 *
8178 * PageLRU check without isolation or lru_lock could race so that
8179 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8180 * check without lock_page also may miss some movable non-lru pages at
8181 * race condition. So you can't expect this function should be exact.
8182 */
8183 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8184 int migratetype, int flags)
8185 {
8186 unsigned long found;
8187 unsigned long iter = 0;
8188 unsigned long pfn = page_to_pfn(page);
8189 const char *reason = "unmovable page";
8190
8191 /*
8192 * TODO we could make this much more efficient by not checking every
8193 * page in the range if we know all of them are in MOVABLE_ZONE and
8194 * that the movable zone guarantees that pages are migratable but
8195 * the later is not the case right now unfortunatelly. E.g. movablecore
8196 * can still lead to having bootmem allocations in zone_movable.
8197 */
8198
8199 if (is_migrate_cma_page(page)) {
8200 /*
8201 * CMA allocations (alloc_contig_range) really need to mark
8202 * isolate CMA pageblocks even when they are not movable in fact
8203 * so consider them movable here.
8204 */
8205 if (is_migrate_cma(migratetype))
8206 return false;
8207
8208 reason = "CMA page";
8209 goto unmovable;
8210 }
8211
8212 for (found = 0; iter < pageblock_nr_pages; iter++) {
8213 unsigned long check = pfn + iter;
8214
8215 if (!pfn_valid_within(check))
8216 continue;
8217
8218 page = pfn_to_page(check);
8219
8220 if (PageReserved(page))
8221 goto unmovable;
8222
8223 /*
8224 * If the zone is movable and we have ruled out all reserved
8225 * pages then it should be reasonably safe to assume the rest
8226 * is movable.
8227 */
8228 if (zone_idx(zone) == ZONE_MOVABLE)
8229 continue;
8230
8231 /*
8232 * Hugepages are not in LRU lists, but they're movable.
8233 * We need not scan over tail pages because we don't
8234 * handle each tail page individually in migration.
8235 */
8236 if (PageHuge(page)) {
8237 struct page *head = compound_head(page);
8238 unsigned int skip_pages;
8239
8240 if (!hugepage_migration_supported(page_hstate(head)))
8241 goto unmovable;
8242
8243 skip_pages = compound_nr(head) - (page - head);
8244 iter += skip_pages - 1;
8245 continue;
8246 }
8247
8248 /*
8249 * We can't use page_count without pin a page
8250 * because another CPU can free compound page.
8251 * This check already skips compound tails of THP
8252 * because their page->_refcount is zero at all time.
8253 */
8254 if (!page_ref_count(page)) {
8255 if (PageBuddy(page))
8256 iter += (1 << page_order(page)) - 1;
8257 continue;
8258 }
8259
8260 /*
8261 * The HWPoisoned page may be not in buddy system, and
8262 * page_count() is not 0.
8263 */
8264 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8265 continue;
8266
8267 if (__PageMovable(page))
8268 continue;
8269
8270 if (!PageLRU(page))
8271 found++;
8272 /*
8273 * If there are RECLAIMABLE pages, we need to check
8274 * it. But now, memory offline itself doesn't call
8275 * shrink_node_slabs() and it still to be fixed.
8276 */
8277 /*
8278 * If the page is not RAM, page_count()should be 0.
8279 * we don't need more check. This is an _used_ not-movable page.
8280 *
8281 * The problematic thing here is PG_reserved pages. PG_reserved
8282 * is set to both of a memory hole page and a _used_ kernel
8283 * page at boot.
8284 */
8285 if (found > count)
8286 goto unmovable;
8287 }
8288 return false;
8289 unmovable:
8290 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8291 if (flags & REPORT_FAILURE)
8292 dump_page(pfn_to_page(pfn + iter), reason);
8293 return true;
8294 }
8295
8296 #ifdef CONFIG_CONTIG_ALLOC
8297 static unsigned long pfn_max_align_down(unsigned long pfn)
8298 {
8299 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8300 pageblock_nr_pages) - 1);
8301 }
8302
8303 static unsigned long pfn_max_align_up(unsigned long pfn)
8304 {
8305 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8306 pageblock_nr_pages));
8307 }
8308
8309 /* [start, end) must belong to a single zone. */
8310 static int __alloc_contig_migrate_range(struct compact_control *cc,
8311 unsigned long start, unsigned long end)
8312 {
8313 /* This function is based on compact_zone() from compaction.c. */
8314 unsigned long nr_reclaimed;
8315 unsigned long pfn = start;
8316 unsigned int tries = 0;
8317 int ret = 0;
8318
8319 migrate_prep();
8320
8321 while (pfn < end || !list_empty(&cc->migratepages)) {
8322 if (fatal_signal_pending(current)) {
8323 ret = -EINTR;
8324 break;
8325 }
8326
8327 if (list_empty(&cc->migratepages)) {
8328 cc->nr_migratepages = 0;
8329 pfn = isolate_migratepages_range(cc, pfn, end);
8330 if (!pfn) {
8331 ret = -EINTR;
8332 break;
8333 }
8334 tries = 0;
8335 } else if (++tries == 5) {
8336 ret = ret < 0 ? ret : -EBUSY;
8337 break;
8338 }
8339
8340 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8341 &cc->migratepages);
8342 cc->nr_migratepages -= nr_reclaimed;
8343
8344 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8345 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8346 }
8347 if (ret < 0) {
8348 putback_movable_pages(&cc->migratepages);
8349 return ret;
8350 }
8351 return 0;
8352 }
8353
8354 /**
8355 * alloc_contig_range() -- tries to allocate given range of pages
8356 * @start: start PFN to allocate
8357 * @end: one-past-the-last PFN to allocate
8358 * @migratetype: migratetype of the underlaying pageblocks (either
8359 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8360 * in range must have the same migratetype and it must
8361 * be either of the two.
8362 * @gfp_mask: GFP mask to use during compaction
8363 *
8364 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8365 * aligned. The PFN range must belong to a single zone.
8366 *
8367 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8368 * pageblocks in the range. Once isolated, the pageblocks should not
8369 * be modified by others.
8370 *
8371 * Return: zero on success or negative error code. On success all
8372 * pages which PFN is in [start, end) are allocated for the caller and
8373 * need to be freed with free_contig_range().
8374 */
8375 int alloc_contig_range(unsigned long start, unsigned long end,
8376 unsigned migratetype, gfp_t gfp_mask)
8377 {
8378 unsigned long outer_start, outer_end;
8379 unsigned int order;
8380 int ret = 0;
8381
8382 struct compact_control cc = {
8383 .nr_migratepages = 0,
8384 .order = -1,
8385 .zone = page_zone(pfn_to_page(start)),
8386 .mode = MIGRATE_SYNC,
8387 .ignore_skip_hint = true,
8388 .no_set_skip_hint = true,
8389 .gfp_mask = current_gfp_context(gfp_mask),
8390 };
8391 INIT_LIST_HEAD(&cc.migratepages);
8392
8393 /*
8394 * What we do here is we mark all pageblocks in range as
8395 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8396 * have different sizes, and due to the way page allocator
8397 * work, we align the range to biggest of the two pages so
8398 * that page allocator won't try to merge buddies from
8399 * different pageblocks and change MIGRATE_ISOLATE to some
8400 * other migration type.
8401 *
8402 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8403 * migrate the pages from an unaligned range (ie. pages that
8404 * we are interested in). This will put all the pages in
8405 * range back to page allocator as MIGRATE_ISOLATE.
8406 *
8407 * When this is done, we take the pages in range from page
8408 * allocator removing them from the buddy system. This way
8409 * page allocator will never consider using them.
8410 *
8411 * This lets us mark the pageblocks back as
8412 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8413 * aligned range but not in the unaligned, original range are
8414 * put back to page allocator so that buddy can use them.
8415 */
8416
8417 ret = start_isolate_page_range(pfn_max_align_down(start),
8418 pfn_max_align_up(end), migratetype, 0);
8419 if (ret < 0)
8420 return ret;
8421
8422 /*
8423 * In case of -EBUSY, we'd like to know which page causes problem.
8424 * So, just fall through. test_pages_isolated() has a tracepoint
8425 * which will report the busy page.
8426 *
8427 * It is possible that busy pages could become available before
8428 * the call to test_pages_isolated, and the range will actually be
8429 * allocated. So, if we fall through be sure to clear ret so that
8430 * -EBUSY is not accidentally used or returned to caller.
8431 */
8432 ret = __alloc_contig_migrate_range(&cc, start, end);
8433 if (ret && ret != -EBUSY)
8434 goto done;
8435 ret =0;
8436
8437 /*
8438 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8439 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8440 * more, all pages in [start, end) are free in page allocator.
8441 * What we are going to do is to allocate all pages from
8442 * [start, end) (that is remove them from page allocator).
8443 *
8444 * The only problem is that pages at the beginning and at the
8445 * end of interesting range may be not aligned with pages that
8446 * page allocator holds, ie. they can be part of higher order
8447 * pages. Because of this, we reserve the bigger range and
8448 * once this is done free the pages we are not interested in.
8449 *
8450 * We don't have to hold zone->lock here because the pages are
8451 * isolated thus they won't get removed from buddy.
8452 */
8453
8454 lru_add_drain_all();
8455
8456 order = 0;
8457 outer_start = start;
8458 while (!PageBuddy(pfn_to_page(outer_start))) {
8459 if (++order >= MAX_ORDER) {
8460 outer_start = start;
8461 break;
8462 }
8463 outer_start &= ~0UL << order;
8464 }
8465
8466 if (outer_start != start) {
8467 order = page_order(pfn_to_page(outer_start));
8468
8469 /*
8470 * outer_start page could be small order buddy page and
8471 * it doesn't include start page. Adjust outer_start
8472 * in this case to report failed page properly
8473 * on tracepoint in test_pages_isolated()
8474 */
8475 if (outer_start + (1UL << order) <= start)
8476 outer_start = start;
8477 }
8478
8479 /* Make sure the range is really isolated. */
8480 if (test_pages_isolated(outer_start, end, false)) {
8481 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8482 __func__, outer_start, end);
8483 ret = -EBUSY;
8484 goto done;
8485 }
8486
8487 /* Grab isolated pages from freelists. */
8488 outer_end = isolate_freepages_range(&cc, outer_start, end);
8489 if (!outer_end) {
8490 ret = -EBUSY;
8491 goto done;
8492 }
8493
8494 /* Free head and tail (if any) */
8495 if (start != outer_start)
8496 free_contig_range(outer_start, start - outer_start);
8497 if (end != outer_end)
8498 free_contig_range(end, outer_end - end);
8499
8500 done:
8501 undo_isolate_page_range(pfn_max_align_down(start),
8502 pfn_max_align_up(end), migratetype);
8503 return ret;
8504 }
8505 #endif /* CONFIG_CONTIG_ALLOC */
8506
8507 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8508 {
8509 unsigned int count = 0;
8510
8511 for (; nr_pages--; pfn++) {
8512 struct page *page = pfn_to_page(pfn);
8513
8514 count += page_count(page) != 1;
8515 __free_page(page);
8516 }
8517 WARN(count != 0, "%d pages are still in use!\n", count);
8518 }
8519
8520 /*
8521 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8522 * page high values need to be recalulated.
8523 */
8524 void __meminit zone_pcp_update(struct zone *zone)
8525 {
8526 unsigned cpu;
8527 mutex_lock(&pcp_batch_high_lock);
8528 for_each_possible_cpu(cpu)
8529 pageset_set_high_and_batch(zone,
8530 per_cpu_ptr(zone->pageset, cpu));
8531 mutex_unlock(&pcp_batch_high_lock);
8532 }
8533
8534 void zone_pcp_reset(struct zone *zone)
8535 {
8536 unsigned long flags;
8537 int cpu;
8538 struct per_cpu_pageset *pset;
8539
8540 /* avoid races with drain_pages() */
8541 local_irq_save(flags);
8542 if (zone->pageset != &boot_pageset) {
8543 for_each_online_cpu(cpu) {
8544 pset = per_cpu_ptr(zone->pageset, cpu);
8545 drain_zonestat(zone, pset);
8546 }
8547 free_percpu(zone->pageset);
8548 zone->pageset = &boot_pageset;
8549 }
8550 local_irq_restore(flags);
8551 }
8552
8553 #ifdef CONFIG_MEMORY_HOTREMOVE
8554 /*
8555 * All pages in the range must be in a single zone and isolated
8556 * before calling this.
8557 */
8558 unsigned long
8559 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8560 {
8561 struct page *page;
8562 struct zone *zone;
8563 unsigned int order, i;
8564 unsigned long pfn;
8565 unsigned long flags;
8566 unsigned long offlined_pages = 0;
8567
8568 /* find the first valid pfn */
8569 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8570 if (pfn_valid(pfn))
8571 break;
8572 if (pfn == end_pfn)
8573 return offlined_pages;
8574
8575 offline_mem_sections(pfn, end_pfn);
8576 zone = page_zone(pfn_to_page(pfn));
8577 spin_lock_irqsave(&zone->lock, flags);
8578 pfn = start_pfn;
8579 while (pfn < end_pfn) {
8580 if (!pfn_valid(pfn)) {
8581 pfn++;
8582 continue;
8583 }
8584 page = pfn_to_page(pfn);
8585 /*
8586 * The HWPoisoned page may be not in buddy system, and
8587 * page_count() is not 0.
8588 */
8589 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8590 pfn++;
8591 SetPageReserved(page);
8592 offlined_pages++;
8593 continue;
8594 }
8595
8596 BUG_ON(page_count(page));
8597 BUG_ON(!PageBuddy(page));
8598 order = page_order(page);
8599 offlined_pages += 1 << order;
8600 #ifdef CONFIG_DEBUG_VM
8601 pr_info("remove from free list %lx %d %lx\n",
8602 pfn, 1 << order, end_pfn);
8603 #endif
8604 del_page_from_free_area(page, &zone->free_area[order]);
8605 for (i = 0; i < (1 << order); i++)
8606 SetPageReserved((page+i));
8607 pfn += (1 << order);
8608 }
8609 spin_unlock_irqrestore(&zone->lock, flags);
8610
8611 return offlined_pages;
8612 }
8613 #endif
8614
8615 bool is_free_buddy_page(struct page *page)
8616 {
8617 struct zone *zone = page_zone(page);
8618 unsigned long pfn = page_to_pfn(page);
8619 unsigned long flags;
8620 unsigned int order;
8621
8622 spin_lock_irqsave(&zone->lock, flags);
8623 for (order = 0; order < MAX_ORDER; order++) {
8624 struct page *page_head = page - (pfn & ((1 << order) - 1));
8625
8626 if (PageBuddy(page_head) && page_order(page_head) >= order)
8627 break;
8628 }
8629 spin_unlock_irqrestore(&zone->lock, flags);
8630
8631 return order < MAX_ORDER;
8632 }
8633
8634 #ifdef CONFIG_MEMORY_FAILURE
8635 /*
8636 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8637 * test is performed under the zone lock to prevent a race against page
8638 * allocation.
8639 */
8640 bool set_hwpoison_free_buddy_page(struct page *page)
8641 {
8642 struct zone *zone = page_zone(page);
8643 unsigned long pfn = page_to_pfn(page);
8644 unsigned long flags;
8645 unsigned int order;
8646 bool hwpoisoned = false;
8647
8648 spin_lock_irqsave(&zone->lock, flags);
8649 for (order = 0; order < MAX_ORDER; order++) {
8650 struct page *page_head = page - (pfn & ((1 << order) - 1));
8651
8652 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8653 if (!TestSetPageHWPoison(page))
8654 hwpoisoned = true;
8655 break;
8656 }
8657 }
8658 spin_unlock_irqrestore(&zone->lock, flags);
8659
8660 return hwpoisoned;
8661 }
8662 #endif