]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
mm: compaction: update the COMPACT[STALL|FAIL] events properly
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84
85 /* No special request */
86 #define FPI_NONE ((__force fpi_t)0)
87
88 /*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
98 /*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
110 /*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_FRACTION (8)
124
125 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
126 DEFINE_PER_CPU(int, numa_node);
127 EXPORT_PER_CPU_SYMBOL(numa_node);
128 #endif
129
130 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
131
132 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
133 /*
134 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
135 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
136 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
137 * defined in <linux/topology.h>.
138 */
139 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
140 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
141 #endif
142
143 /* work_structs for global per-cpu drains */
144 struct pcpu_drain {
145 struct zone *zone;
146 struct work_struct work;
147 };
148 static DEFINE_MUTEX(pcpu_drain_mutex);
149 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
150
151 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
152 volatile unsigned long latent_entropy __latent_entropy;
153 EXPORT_SYMBOL(latent_entropy);
154 #endif
155
156 /*
157 * Array of node states.
158 */
159 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
160 [N_POSSIBLE] = NODE_MASK_ALL,
161 [N_ONLINE] = { { [0] = 1UL } },
162 #ifndef CONFIG_NUMA
163 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
164 #ifdef CONFIG_HIGHMEM
165 [N_HIGH_MEMORY] = { { [0] = 1UL } },
166 #endif
167 [N_MEMORY] = { { [0] = 1UL } },
168 [N_CPU] = { { [0] = 1UL } },
169 #endif /* NUMA */
170 };
171 EXPORT_SYMBOL(node_states);
172
173 atomic_long_t _totalram_pages __read_mostly;
174 EXPORT_SYMBOL(_totalram_pages);
175 unsigned long totalreserve_pages __read_mostly;
176 unsigned long totalcma_pages __read_mostly;
177
178 int percpu_pagelist_fraction;
179 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
180 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
181 EXPORT_SYMBOL(init_on_alloc);
182
183 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
184 EXPORT_SYMBOL(init_on_free);
185
186 static bool _init_on_alloc_enabled_early __read_mostly
187 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
188 static int __init early_init_on_alloc(char *buf)
189 {
190
191 return kstrtobool(buf, &_init_on_alloc_enabled_early);
192 }
193 early_param("init_on_alloc", early_init_on_alloc);
194
195 static bool _init_on_free_enabled_early __read_mostly
196 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
197 static int __init early_init_on_free(char *buf)
198 {
199 return kstrtobool(buf, &_init_on_free_enabled_early);
200 }
201 early_param("init_on_free", early_init_on_free);
202
203 /*
204 * A cached value of the page's pageblock's migratetype, used when the page is
205 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
206 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
207 * Also the migratetype set in the page does not necessarily match the pcplist
208 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
209 * other index - this ensures that it will be put on the correct CMA freelist.
210 */
211 static inline int get_pcppage_migratetype(struct page *page)
212 {
213 return page->index;
214 }
215
216 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
217 {
218 page->index = migratetype;
219 }
220
221 #ifdef CONFIG_PM_SLEEP
222 /*
223 * The following functions are used by the suspend/hibernate code to temporarily
224 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
225 * while devices are suspended. To avoid races with the suspend/hibernate code,
226 * they should always be called with system_transition_mutex held
227 * (gfp_allowed_mask also should only be modified with system_transition_mutex
228 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
229 * with that modification).
230 */
231
232 static gfp_t saved_gfp_mask;
233
234 void pm_restore_gfp_mask(void)
235 {
236 WARN_ON(!mutex_is_locked(&system_transition_mutex));
237 if (saved_gfp_mask) {
238 gfp_allowed_mask = saved_gfp_mask;
239 saved_gfp_mask = 0;
240 }
241 }
242
243 void pm_restrict_gfp_mask(void)
244 {
245 WARN_ON(!mutex_is_locked(&system_transition_mutex));
246 WARN_ON(saved_gfp_mask);
247 saved_gfp_mask = gfp_allowed_mask;
248 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
249 }
250
251 bool pm_suspended_storage(void)
252 {
253 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
254 return false;
255 return true;
256 }
257 #endif /* CONFIG_PM_SLEEP */
258
259 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
260 unsigned int pageblock_order __read_mostly;
261 #endif
262
263 static void __free_pages_ok(struct page *page, unsigned int order,
264 fpi_t fpi_flags);
265
266 /*
267 * results with 256, 32 in the lowmem_reserve sysctl:
268 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
269 * 1G machine -> (16M dma, 784M normal, 224M high)
270 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
271 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
272 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
273 *
274 * TBD: should special case ZONE_DMA32 machines here - in those we normally
275 * don't need any ZONE_NORMAL reservation
276 */
277 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
278 #ifdef CONFIG_ZONE_DMA
279 [ZONE_DMA] = 256,
280 #endif
281 #ifdef CONFIG_ZONE_DMA32
282 [ZONE_DMA32] = 256,
283 #endif
284 [ZONE_NORMAL] = 32,
285 #ifdef CONFIG_HIGHMEM
286 [ZONE_HIGHMEM] = 0,
287 #endif
288 [ZONE_MOVABLE] = 0,
289 };
290
291 static char * const zone_names[MAX_NR_ZONES] = {
292 #ifdef CONFIG_ZONE_DMA
293 "DMA",
294 #endif
295 #ifdef CONFIG_ZONE_DMA32
296 "DMA32",
297 #endif
298 "Normal",
299 #ifdef CONFIG_HIGHMEM
300 "HighMem",
301 #endif
302 "Movable",
303 #ifdef CONFIG_ZONE_DEVICE
304 "Device",
305 #endif
306 };
307
308 const char * const migratetype_names[MIGRATE_TYPES] = {
309 "Unmovable",
310 "Movable",
311 "Reclaimable",
312 "HighAtomic",
313 #ifdef CONFIG_CMA
314 "CMA",
315 #endif
316 #ifdef CONFIG_MEMORY_ISOLATION
317 "Isolate",
318 #endif
319 };
320
321 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
322 [NULL_COMPOUND_DTOR] = NULL,
323 [COMPOUND_PAGE_DTOR] = free_compound_page,
324 #ifdef CONFIG_HUGETLB_PAGE
325 [HUGETLB_PAGE_DTOR] = free_huge_page,
326 #endif
327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
329 #endif
330 };
331
332 int min_free_kbytes = 1024;
333 int user_min_free_kbytes = -1;
334 #ifdef CONFIG_DISCONTIGMEM
335 /*
336 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
337 * are not on separate NUMA nodes. Functionally this works but with
338 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
339 * quite small. By default, do not boost watermarks on discontigmem as in
340 * many cases very high-order allocations like THP are likely to be
341 * unsupported and the premature reclaim offsets the advantage of long-term
342 * fragmentation avoidance.
343 */
344 int watermark_boost_factor __read_mostly;
345 #else
346 int watermark_boost_factor __read_mostly = 15000;
347 #endif
348 int watermark_scale_factor = 10;
349
350 static unsigned long nr_kernel_pages __initdata;
351 static unsigned long nr_all_pages __initdata;
352 static unsigned long dma_reserve __initdata;
353
354 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
355 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
356 static unsigned long required_kernelcore __initdata;
357 static unsigned long required_kernelcore_percent __initdata;
358 static unsigned long required_movablecore __initdata;
359 static unsigned long required_movablecore_percent __initdata;
360 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
361 static bool mirrored_kernelcore __meminitdata;
362
363 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
364 int movable_zone;
365 EXPORT_SYMBOL(movable_zone);
366
367 #if MAX_NUMNODES > 1
368 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
369 unsigned int nr_online_nodes __read_mostly = 1;
370 EXPORT_SYMBOL(nr_node_ids);
371 EXPORT_SYMBOL(nr_online_nodes);
372 #endif
373
374 int page_group_by_mobility_disabled __read_mostly;
375
376 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
377 /*
378 * During boot we initialize deferred pages on-demand, as needed, but once
379 * page_alloc_init_late() has finished, the deferred pages are all initialized,
380 * and we can permanently disable that path.
381 */
382 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
383
384 /*
385 * Calling kasan_free_pages() only after deferred memory initialization
386 * has completed. Poisoning pages during deferred memory init will greatly
387 * lengthen the process and cause problem in large memory systems as the
388 * deferred pages initialization is done with interrupt disabled.
389 *
390 * Assuming that there will be no reference to those newly initialized
391 * pages before they are ever allocated, this should have no effect on
392 * KASAN memory tracking as the poison will be properly inserted at page
393 * allocation time. The only corner case is when pages are allocated by
394 * on-demand allocation and then freed again before the deferred pages
395 * initialization is done, but this is not likely to happen.
396 */
397 static inline void kasan_free_nondeferred_pages(struct page *page, int order,
398 bool init, fpi_t fpi_flags)
399 {
400 if (static_branch_unlikely(&deferred_pages))
401 return;
402 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
403 (fpi_flags & FPI_SKIP_KASAN_POISON))
404 return;
405 kasan_free_pages(page, order, init);
406 }
407
408 /* Returns true if the struct page for the pfn is uninitialised */
409 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
410 {
411 int nid = early_pfn_to_nid(pfn);
412
413 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
414 return true;
415
416 return false;
417 }
418
419 /*
420 * Returns true when the remaining initialisation should be deferred until
421 * later in the boot cycle when it can be parallelised.
422 */
423 static bool __meminit
424 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
425 {
426 static unsigned long prev_end_pfn, nr_initialised;
427
428 /*
429 * prev_end_pfn static that contains the end of previous zone
430 * No need to protect because called very early in boot before smp_init.
431 */
432 if (prev_end_pfn != end_pfn) {
433 prev_end_pfn = end_pfn;
434 nr_initialised = 0;
435 }
436
437 /* Always populate low zones for address-constrained allocations */
438 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
439 return false;
440
441 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
442 return true;
443 /*
444 * We start only with one section of pages, more pages are added as
445 * needed until the rest of deferred pages are initialized.
446 */
447 nr_initialised++;
448 if ((nr_initialised > PAGES_PER_SECTION) &&
449 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
450 NODE_DATA(nid)->first_deferred_pfn = pfn;
451 return true;
452 }
453 return false;
454 }
455 #else
456 static inline void kasan_free_nondeferred_pages(struct page *page, int order,
457 bool init, fpi_t fpi_flags)
458 {
459 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
460 (fpi_flags & FPI_SKIP_KASAN_POISON))
461 return;
462 kasan_free_pages(page, order, init);
463 }
464
465 static inline bool early_page_uninitialised(unsigned long pfn)
466 {
467 return false;
468 }
469
470 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
471 {
472 return false;
473 }
474 #endif
475
476 /* Return a pointer to the bitmap storing bits affecting a block of pages */
477 static inline unsigned long *get_pageblock_bitmap(struct page *page,
478 unsigned long pfn)
479 {
480 #ifdef CONFIG_SPARSEMEM
481 return section_to_usemap(__pfn_to_section(pfn));
482 #else
483 return page_zone(page)->pageblock_flags;
484 #endif /* CONFIG_SPARSEMEM */
485 }
486
487 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
488 {
489 #ifdef CONFIG_SPARSEMEM
490 pfn &= (PAGES_PER_SECTION-1);
491 #else
492 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
493 #endif /* CONFIG_SPARSEMEM */
494 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
495 }
496
497 static __always_inline
498 unsigned long __get_pfnblock_flags_mask(struct page *page,
499 unsigned long pfn,
500 unsigned long mask)
501 {
502 unsigned long *bitmap;
503 unsigned long bitidx, word_bitidx;
504 unsigned long word;
505
506 bitmap = get_pageblock_bitmap(page, pfn);
507 bitidx = pfn_to_bitidx(page, pfn);
508 word_bitidx = bitidx / BITS_PER_LONG;
509 bitidx &= (BITS_PER_LONG-1);
510
511 word = bitmap[word_bitidx];
512 return (word >> bitidx) & mask;
513 }
514
515 /**
516 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
517 * @page: The page within the block of interest
518 * @pfn: The target page frame number
519 * @mask: mask of bits that the caller is interested in
520 *
521 * Return: pageblock_bits flags
522 */
523 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
524 unsigned long mask)
525 {
526 return __get_pfnblock_flags_mask(page, pfn, mask);
527 }
528
529 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
530 {
531 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
532 }
533
534 /**
535 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
536 * @page: The page within the block of interest
537 * @flags: The flags to set
538 * @pfn: The target page frame number
539 * @mask: mask of bits that the caller is interested in
540 */
541 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
542 unsigned long pfn,
543 unsigned long mask)
544 {
545 unsigned long *bitmap;
546 unsigned long bitidx, word_bitidx;
547 unsigned long old_word, word;
548
549 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
550 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
551
552 bitmap = get_pageblock_bitmap(page, pfn);
553 bitidx = pfn_to_bitidx(page, pfn);
554 word_bitidx = bitidx / BITS_PER_LONG;
555 bitidx &= (BITS_PER_LONG-1);
556
557 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
558
559 mask <<= bitidx;
560 flags <<= bitidx;
561
562 word = READ_ONCE(bitmap[word_bitidx]);
563 for (;;) {
564 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
565 if (word == old_word)
566 break;
567 word = old_word;
568 }
569 }
570
571 void set_pageblock_migratetype(struct page *page, int migratetype)
572 {
573 if (unlikely(page_group_by_mobility_disabled &&
574 migratetype < MIGRATE_PCPTYPES))
575 migratetype = MIGRATE_UNMOVABLE;
576
577 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
578 page_to_pfn(page), MIGRATETYPE_MASK);
579 }
580
581 #ifdef CONFIG_DEBUG_VM
582 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
583 {
584 int ret = 0;
585 unsigned seq;
586 unsigned long pfn = page_to_pfn(page);
587 unsigned long sp, start_pfn;
588
589 do {
590 seq = zone_span_seqbegin(zone);
591 start_pfn = zone->zone_start_pfn;
592 sp = zone->spanned_pages;
593 if (!zone_spans_pfn(zone, pfn))
594 ret = 1;
595 } while (zone_span_seqretry(zone, seq));
596
597 if (ret)
598 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
599 pfn, zone_to_nid(zone), zone->name,
600 start_pfn, start_pfn + sp);
601
602 return ret;
603 }
604
605 static int page_is_consistent(struct zone *zone, struct page *page)
606 {
607 if (!pfn_valid_within(page_to_pfn(page)))
608 return 0;
609 if (zone != page_zone(page))
610 return 0;
611
612 return 1;
613 }
614 /*
615 * Temporary debugging check for pages not lying within a given zone.
616 */
617 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
618 {
619 if (page_outside_zone_boundaries(zone, page))
620 return 1;
621 if (!page_is_consistent(zone, page))
622 return 1;
623
624 return 0;
625 }
626 #else
627 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
628 {
629 return 0;
630 }
631 #endif
632
633 static void bad_page(struct page *page, const char *reason)
634 {
635 static unsigned long resume;
636 static unsigned long nr_shown;
637 static unsigned long nr_unshown;
638
639 /*
640 * Allow a burst of 60 reports, then keep quiet for that minute;
641 * or allow a steady drip of one report per second.
642 */
643 if (nr_shown == 60) {
644 if (time_before(jiffies, resume)) {
645 nr_unshown++;
646 goto out;
647 }
648 if (nr_unshown) {
649 pr_alert(
650 "BUG: Bad page state: %lu messages suppressed\n",
651 nr_unshown);
652 nr_unshown = 0;
653 }
654 nr_shown = 0;
655 }
656 if (nr_shown++ == 0)
657 resume = jiffies + 60 * HZ;
658
659 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
660 current->comm, page_to_pfn(page));
661 __dump_page(page, reason);
662 dump_page_owner(page);
663
664 print_modules();
665 dump_stack();
666 out:
667 /* Leave bad fields for debug, except PageBuddy could make trouble */
668 page_mapcount_reset(page); /* remove PageBuddy */
669 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
670 }
671
672 /*
673 * Higher-order pages are called "compound pages". They are structured thusly:
674 *
675 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
676 *
677 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
678 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
679 *
680 * The first tail page's ->compound_dtor holds the offset in array of compound
681 * page destructors. See compound_page_dtors.
682 *
683 * The first tail page's ->compound_order holds the order of allocation.
684 * This usage means that zero-order pages may not be compound.
685 */
686
687 void free_compound_page(struct page *page)
688 {
689 mem_cgroup_uncharge(page);
690 __free_pages_ok(page, compound_order(page), FPI_NONE);
691 }
692
693 void prep_compound_page(struct page *page, unsigned int order)
694 {
695 int i;
696 int nr_pages = 1 << order;
697
698 __SetPageHead(page);
699 for (i = 1; i < nr_pages; i++) {
700 struct page *p = page + i;
701 set_page_count(p, 0);
702 p->mapping = TAIL_MAPPING;
703 set_compound_head(p, page);
704 }
705
706 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
707 set_compound_order(page, order);
708 atomic_set(compound_mapcount_ptr(page), -1);
709 if (hpage_pincount_available(page))
710 atomic_set(compound_pincount_ptr(page), 0);
711 }
712
713 #ifdef CONFIG_DEBUG_PAGEALLOC
714 unsigned int _debug_guardpage_minorder;
715
716 bool _debug_pagealloc_enabled_early __read_mostly
717 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
718 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
719 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
720 EXPORT_SYMBOL(_debug_pagealloc_enabled);
721
722 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
723
724 static int __init early_debug_pagealloc(char *buf)
725 {
726 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
727 }
728 early_param("debug_pagealloc", early_debug_pagealloc);
729
730 static int __init debug_guardpage_minorder_setup(char *buf)
731 {
732 unsigned long res;
733
734 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
735 pr_err("Bad debug_guardpage_minorder value\n");
736 return 0;
737 }
738 _debug_guardpage_minorder = res;
739 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
740 return 0;
741 }
742 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
743
744 static inline bool set_page_guard(struct zone *zone, struct page *page,
745 unsigned int order, int migratetype)
746 {
747 if (!debug_guardpage_enabled())
748 return false;
749
750 if (order >= debug_guardpage_minorder())
751 return false;
752
753 __SetPageGuard(page);
754 INIT_LIST_HEAD(&page->lru);
755 set_page_private(page, order);
756 /* Guard pages are not available for any usage */
757 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
758
759 return true;
760 }
761
762 static inline void clear_page_guard(struct zone *zone, struct page *page,
763 unsigned int order, int migratetype)
764 {
765 if (!debug_guardpage_enabled())
766 return;
767
768 __ClearPageGuard(page);
769
770 set_page_private(page, 0);
771 if (!is_migrate_isolate(migratetype))
772 __mod_zone_freepage_state(zone, (1 << order), migratetype);
773 }
774 #else
775 static inline bool set_page_guard(struct zone *zone, struct page *page,
776 unsigned int order, int migratetype) { return false; }
777 static inline void clear_page_guard(struct zone *zone, struct page *page,
778 unsigned int order, int migratetype) {}
779 #endif
780
781 /*
782 * Enable static keys related to various memory debugging and hardening options.
783 * Some override others, and depend on early params that are evaluated in the
784 * order of appearance. So we need to first gather the full picture of what was
785 * enabled, and then make decisions.
786 */
787 void init_mem_debugging_and_hardening(void)
788 {
789 bool page_poisoning_requested = false;
790
791 #ifdef CONFIG_PAGE_POISONING
792 /*
793 * Page poisoning is debug page alloc for some arches. If
794 * either of those options are enabled, enable poisoning.
795 */
796 if (page_poisoning_enabled() ||
797 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
798 debug_pagealloc_enabled())) {
799 static_branch_enable(&_page_poisoning_enabled);
800 page_poisoning_requested = true;
801 }
802 #endif
803
804 if (_init_on_alloc_enabled_early) {
805 if (page_poisoning_requested)
806 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
807 "will take precedence over init_on_alloc\n");
808 else
809 static_branch_enable(&init_on_alloc);
810 }
811 if (_init_on_free_enabled_early) {
812 if (page_poisoning_requested)
813 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
814 "will take precedence over init_on_free\n");
815 else
816 static_branch_enable(&init_on_free);
817 }
818
819 #ifdef CONFIG_DEBUG_PAGEALLOC
820 if (!debug_pagealloc_enabled())
821 return;
822
823 static_branch_enable(&_debug_pagealloc_enabled);
824
825 if (!debug_guardpage_minorder())
826 return;
827
828 static_branch_enable(&_debug_guardpage_enabled);
829 #endif
830 }
831
832 static inline void set_buddy_order(struct page *page, unsigned int order)
833 {
834 set_page_private(page, order);
835 __SetPageBuddy(page);
836 }
837
838 /*
839 * This function checks whether a page is free && is the buddy
840 * we can coalesce a page and its buddy if
841 * (a) the buddy is not in a hole (check before calling!) &&
842 * (b) the buddy is in the buddy system &&
843 * (c) a page and its buddy have the same order &&
844 * (d) a page and its buddy are in the same zone.
845 *
846 * For recording whether a page is in the buddy system, we set PageBuddy.
847 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
848 *
849 * For recording page's order, we use page_private(page).
850 */
851 static inline bool page_is_buddy(struct page *page, struct page *buddy,
852 unsigned int order)
853 {
854 if (!page_is_guard(buddy) && !PageBuddy(buddy))
855 return false;
856
857 if (buddy_order(buddy) != order)
858 return false;
859
860 /*
861 * zone check is done late to avoid uselessly calculating
862 * zone/node ids for pages that could never merge.
863 */
864 if (page_zone_id(page) != page_zone_id(buddy))
865 return false;
866
867 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
868
869 return true;
870 }
871
872 #ifdef CONFIG_COMPACTION
873 static inline struct capture_control *task_capc(struct zone *zone)
874 {
875 struct capture_control *capc = current->capture_control;
876
877 return unlikely(capc) &&
878 !(current->flags & PF_KTHREAD) &&
879 !capc->page &&
880 capc->cc->zone == zone ? capc : NULL;
881 }
882
883 static inline bool
884 compaction_capture(struct capture_control *capc, struct page *page,
885 int order, int migratetype)
886 {
887 if (!capc || order != capc->cc->order)
888 return false;
889
890 /* Do not accidentally pollute CMA or isolated regions*/
891 if (is_migrate_cma(migratetype) ||
892 is_migrate_isolate(migratetype))
893 return false;
894
895 /*
896 * Do not let lower order allocations polluate a movable pageblock.
897 * This might let an unmovable request use a reclaimable pageblock
898 * and vice-versa but no more than normal fallback logic which can
899 * have trouble finding a high-order free page.
900 */
901 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
902 return false;
903
904 capc->page = page;
905 return true;
906 }
907
908 #else
909 static inline struct capture_control *task_capc(struct zone *zone)
910 {
911 return NULL;
912 }
913
914 static inline bool
915 compaction_capture(struct capture_control *capc, struct page *page,
916 int order, int migratetype)
917 {
918 return false;
919 }
920 #endif /* CONFIG_COMPACTION */
921
922 /* Used for pages not on another list */
923 static inline void add_to_free_list(struct page *page, struct zone *zone,
924 unsigned int order, int migratetype)
925 {
926 struct free_area *area = &zone->free_area[order];
927
928 list_add(&page->lru, &area->free_list[migratetype]);
929 area->nr_free++;
930 }
931
932 /* Used for pages not on another list */
933 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
934 unsigned int order, int migratetype)
935 {
936 struct free_area *area = &zone->free_area[order];
937
938 list_add_tail(&page->lru, &area->free_list[migratetype]);
939 area->nr_free++;
940 }
941
942 /*
943 * Used for pages which are on another list. Move the pages to the tail
944 * of the list - so the moved pages won't immediately be considered for
945 * allocation again (e.g., optimization for memory onlining).
946 */
947 static inline void move_to_free_list(struct page *page, struct zone *zone,
948 unsigned int order, int migratetype)
949 {
950 struct free_area *area = &zone->free_area[order];
951
952 list_move_tail(&page->lru, &area->free_list[migratetype]);
953 }
954
955 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
956 unsigned int order)
957 {
958 /* clear reported state and update reported page count */
959 if (page_reported(page))
960 __ClearPageReported(page);
961
962 list_del(&page->lru);
963 __ClearPageBuddy(page);
964 set_page_private(page, 0);
965 zone->free_area[order].nr_free--;
966 }
967
968 /*
969 * If this is not the largest possible page, check if the buddy
970 * of the next-highest order is free. If it is, it's possible
971 * that pages are being freed that will coalesce soon. In case,
972 * that is happening, add the free page to the tail of the list
973 * so it's less likely to be used soon and more likely to be merged
974 * as a higher order page
975 */
976 static inline bool
977 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
978 struct page *page, unsigned int order)
979 {
980 struct page *higher_page, *higher_buddy;
981 unsigned long combined_pfn;
982
983 if (order >= MAX_ORDER - 2)
984 return false;
985
986 if (!pfn_valid_within(buddy_pfn))
987 return false;
988
989 combined_pfn = buddy_pfn & pfn;
990 higher_page = page + (combined_pfn - pfn);
991 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
992 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
993
994 return pfn_valid_within(buddy_pfn) &&
995 page_is_buddy(higher_page, higher_buddy, order + 1);
996 }
997
998 /*
999 * Freeing function for a buddy system allocator.
1000 *
1001 * The concept of a buddy system is to maintain direct-mapped table
1002 * (containing bit values) for memory blocks of various "orders".
1003 * The bottom level table contains the map for the smallest allocatable
1004 * units of memory (here, pages), and each level above it describes
1005 * pairs of units from the levels below, hence, "buddies".
1006 * At a high level, all that happens here is marking the table entry
1007 * at the bottom level available, and propagating the changes upward
1008 * as necessary, plus some accounting needed to play nicely with other
1009 * parts of the VM system.
1010 * At each level, we keep a list of pages, which are heads of continuous
1011 * free pages of length of (1 << order) and marked with PageBuddy.
1012 * Page's order is recorded in page_private(page) field.
1013 * So when we are allocating or freeing one, we can derive the state of the
1014 * other. That is, if we allocate a small block, and both were
1015 * free, the remainder of the region must be split into blocks.
1016 * If a block is freed, and its buddy is also free, then this
1017 * triggers coalescing into a block of larger size.
1018 *
1019 * -- nyc
1020 */
1021
1022 static inline void __free_one_page(struct page *page,
1023 unsigned long pfn,
1024 struct zone *zone, unsigned int order,
1025 int migratetype, fpi_t fpi_flags)
1026 {
1027 struct capture_control *capc = task_capc(zone);
1028 unsigned long buddy_pfn;
1029 unsigned long combined_pfn;
1030 unsigned int max_order;
1031 struct page *buddy;
1032 bool to_tail;
1033
1034 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1035
1036 VM_BUG_ON(!zone_is_initialized(zone));
1037 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1038
1039 VM_BUG_ON(migratetype == -1);
1040 if (likely(!is_migrate_isolate(migratetype)))
1041 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1042
1043 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1044 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1045
1046 continue_merging:
1047 while (order < max_order) {
1048 if (compaction_capture(capc, page, order, migratetype)) {
1049 __mod_zone_freepage_state(zone, -(1 << order),
1050 migratetype);
1051 return;
1052 }
1053 buddy_pfn = __find_buddy_pfn(pfn, order);
1054 buddy = page + (buddy_pfn - pfn);
1055
1056 if (!pfn_valid_within(buddy_pfn))
1057 goto done_merging;
1058 if (!page_is_buddy(page, buddy, order))
1059 goto done_merging;
1060 /*
1061 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1062 * merge with it and move up one order.
1063 */
1064 if (page_is_guard(buddy))
1065 clear_page_guard(zone, buddy, order, migratetype);
1066 else
1067 del_page_from_free_list(buddy, zone, order);
1068 combined_pfn = buddy_pfn & pfn;
1069 page = page + (combined_pfn - pfn);
1070 pfn = combined_pfn;
1071 order++;
1072 }
1073 if (order < MAX_ORDER - 1) {
1074 /* If we are here, it means order is >= pageblock_order.
1075 * We want to prevent merge between freepages on isolate
1076 * pageblock and normal pageblock. Without this, pageblock
1077 * isolation could cause incorrect freepage or CMA accounting.
1078 *
1079 * We don't want to hit this code for the more frequent
1080 * low-order merging.
1081 */
1082 if (unlikely(has_isolate_pageblock(zone))) {
1083 int buddy_mt;
1084
1085 buddy_pfn = __find_buddy_pfn(pfn, order);
1086 buddy = page + (buddy_pfn - pfn);
1087 buddy_mt = get_pageblock_migratetype(buddy);
1088
1089 if (migratetype != buddy_mt
1090 && (is_migrate_isolate(migratetype) ||
1091 is_migrate_isolate(buddy_mt)))
1092 goto done_merging;
1093 }
1094 max_order = order + 1;
1095 goto continue_merging;
1096 }
1097
1098 done_merging:
1099 set_buddy_order(page, order);
1100
1101 if (fpi_flags & FPI_TO_TAIL)
1102 to_tail = true;
1103 else if (is_shuffle_order(order))
1104 to_tail = shuffle_pick_tail();
1105 else
1106 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1107
1108 if (to_tail)
1109 add_to_free_list_tail(page, zone, order, migratetype);
1110 else
1111 add_to_free_list(page, zone, order, migratetype);
1112
1113 /* Notify page reporting subsystem of freed page */
1114 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1115 page_reporting_notify_free(order);
1116 }
1117
1118 /*
1119 * A bad page could be due to a number of fields. Instead of multiple branches,
1120 * try and check multiple fields with one check. The caller must do a detailed
1121 * check if necessary.
1122 */
1123 static inline bool page_expected_state(struct page *page,
1124 unsigned long check_flags)
1125 {
1126 if (unlikely(atomic_read(&page->_mapcount) != -1))
1127 return false;
1128
1129 if (unlikely((unsigned long)page->mapping |
1130 page_ref_count(page) |
1131 #ifdef CONFIG_MEMCG
1132 page->memcg_data |
1133 #endif
1134 (page->flags & check_flags)))
1135 return false;
1136
1137 return true;
1138 }
1139
1140 static const char *page_bad_reason(struct page *page, unsigned long flags)
1141 {
1142 const char *bad_reason = NULL;
1143
1144 if (unlikely(atomic_read(&page->_mapcount) != -1))
1145 bad_reason = "nonzero mapcount";
1146 if (unlikely(page->mapping != NULL))
1147 bad_reason = "non-NULL mapping";
1148 if (unlikely(page_ref_count(page) != 0))
1149 bad_reason = "nonzero _refcount";
1150 if (unlikely(page->flags & flags)) {
1151 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1152 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1153 else
1154 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1155 }
1156 #ifdef CONFIG_MEMCG
1157 if (unlikely(page->memcg_data))
1158 bad_reason = "page still charged to cgroup";
1159 #endif
1160 return bad_reason;
1161 }
1162
1163 static void check_free_page_bad(struct page *page)
1164 {
1165 bad_page(page,
1166 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1167 }
1168
1169 static inline int check_free_page(struct page *page)
1170 {
1171 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1172 return 0;
1173
1174 /* Something has gone sideways, find it */
1175 check_free_page_bad(page);
1176 return 1;
1177 }
1178
1179 static int free_tail_pages_check(struct page *head_page, struct page *page)
1180 {
1181 int ret = 1;
1182
1183 /*
1184 * We rely page->lru.next never has bit 0 set, unless the page
1185 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1186 */
1187 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1188
1189 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1190 ret = 0;
1191 goto out;
1192 }
1193 switch (page - head_page) {
1194 case 1:
1195 /* the first tail page: ->mapping may be compound_mapcount() */
1196 if (unlikely(compound_mapcount(page))) {
1197 bad_page(page, "nonzero compound_mapcount");
1198 goto out;
1199 }
1200 break;
1201 case 2:
1202 /*
1203 * the second tail page: ->mapping is
1204 * deferred_list.next -- ignore value.
1205 */
1206 break;
1207 default:
1208 if (page->mapping != TAIL_MAPPING) {
1209 bad_page(page, "corrupted mapping in tail page");
1210 goto out;
1211 }
1212 break;
1213 }
1214 if (unlikely(!PageTail(page))) {
1215 bad_page(page, "PageTail not set");
1216 goto out;
1217 }
1218 if (unlikely(compound_head(page) != head_page)) {
1219 bad_page(page, "compound_head not consistent");
1220 goto out;
1221 }
1222 ret = 0;
1223 out:
1224 page->mapping = NULL;
1225 clear_compound_head(page);
1226 return ret;
1227 }
1228
1229 static void kernel_init_free_pages(struct page *page, int numpages)
1230 {
1231 int i;
1232
1233 /* s390's use of memset() could override KASAN redzones. */
1234 kasan_disable_current();
1235 for (i = 0; i < numpages; i++) {
1236 u8 tag = page_kasan_tag(page + i);
1237 page_kasan_tag_reset(page + i);
1238 clear_highpage(page + i);
1239 page_kasan_tag_set(page + i, tag);
1240 }
1241 kasan_enable_current();
1242 }
1243
1244 static __always_inline bool free_pages_prepare(struct page *page,
1245 unsigned int order, bool check_free, fpi_t fpi_flags)
1246 {
1247 int bad = 0;
1248 bool init;
1249
1250 VM_BUG_ON_PAGE(PageTail(page), page);
1251
1252 trace_mm_page_free(page, order);
1253
1254 if (unlikely(PageHWPoison(page)) && !order) {
1255 /*
1256 * Do not let hwpoison pages hit pcplists/buddy
1257 * Untie memcg state and reset page's owner
1258 */
1259 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1260 __memcg_kmem_uncharge_page(page, order);
1261 reset_page_owner(page, order);
1262 return false;
1263 }
1264
1265 /*
1266 * Check tail pages before head page information is cleared to
1267 * avoid checking PageCompound for order-0 pages.
1268 */
1269 if (unlikely(order)) {
1270 bool compound = PageCompound(page);
1271 int i;
1272
1273 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1274
1275 if (compound)
1276 ClearPageDoubleMap(page);
1277 for (i = 1; i < (1 << order); i++) {
1278 if (compound)
1279 bad += free_tail_pages_check(page, page + i);
1280 if (unlikely(check_free_page(page + i))) {
1281 bad++;
1282 continue;
1283 }
1284 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1285 }
1286 }
1287 if (PageMappingFlags(page))
1288 page->mapping = NULL;
1289 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1290 __memcg_kmem_uncharge_page(page, order);
1291 if (check_free)
1292 bad += check_free_page(page);
1293 if (bad)
1294 return false;
1295
1296 page_cpupid_reset_last(page);
1297 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1298 reset_page_owner(page, order);
1299
1300 if (!PageHighMem(page)) {
1301 debug_check_no_locks_freed(page_address(page),
1302 PAGE_SIZE << order);
1303 debug_check_no_obj_freed(page_address(page),
1304 PAGE_SIZE << order);
1305 }
1306
1307 kernel_poison_pages(page, 1 << order);
1308
1309 /*
1310 * As memory initialization might be integrated into KASAN,
1311 * kasan_free_pages and kernel_init_free_pages must be
1312 * kept together to avoid discrepancies in behavior.
1313 *
1314 * With hardware tag-based KASAN, memory tags must be set before the
1315 * page becomes unavailable via debug_pagealloc or arch_free_page.
1316 */
1317 init = want_init_on_free();
1318 if (init && !kasan_has_integrated_init())
1319 kernel_init_free_pages(page, 1 << order);
1320 kasan_free_nondeferred_pages(page, order, init, fpi_flags);
1321
1322 /*
1323 * arch_free_page() can make the page's contents inaccessible. s390
1324 * does this. So nothing which can access the page's contents should
1325 * happen after this.
1326 */
1327 arch_free_page(page, order);
1328
1329 debug_pagealloc_unmap_pages(page, 1 << order);
1330
1331 return true;
1332 }
1333
1334 #ifdef CONFIG_DEBUG_VM
1335 /*
1336 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1337 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1338 * moved from pcp lists to free lists.
1339 */
1340 static bool free_pcp_prepare(struct page *page)
1341 {
1342 return free_pages_prepare(page, 0, true, FPI_NONE);
1343 }
1344
1345 static bool bulkfree_pcp_prepare(struct page *page)
1346 {
1347 if (debug_pagealloc_enabled_static())
1348 return check_free_page(page);
1349 else
1350 return false;
1351 }
1352 #else
1353 /*
1354 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1355 * moving from pcp lists to free list in order to reduce overhead. With
1356 * debug_pagealloc enabled, they are checked also immediately when being freed
1357 * to the pcp lists.
1358 */
1359 static bool free_pcp_prepare(struct page *page)
1360 {
1361 if (debug_pagealloc_enabled_static())
1362 return free_pages_prepare(page, 0, true, FPI_NONE);
1363 else
1364 return free_pages_prepare(page, 0, false, FPI_NONE);
1365 }
1366
1367 static bool bulkfree_pcp_prepare(struct page *page)
1368 {
1369 return check_free_page(page);
1370 }
1371 #endif /* CONFIG_DEBUG_VM */
1372
1373 static inline void prefetch_buddy(struct page *page)
1374 {
1375 unsigned long pfn = page_to_pfn(page);
1376 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1377 struct page *buddy = page + (buddy_pfn - pfn);
1378
1379 prefetch(buddy);
1380 }
1381
1382 /*
1383 * Frees a number of pages from the PCP lists
1384 * Assumes all pages on list are in same zone, and of same order.
1385 * count is the number of pages to free.
1386 *
1387 * If the zone was previously in an "all pages pinned" state then look to
1388 * see if this freeing clears that state.
1389 *
1390 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1391 * pinned" detection logic.
1392 */
1393 static void free_pcppages_bulk(struct zone *zone, int count,
1394 struct per_cpu_pages *pcp)
1395 {
1396 int migratetype = 0;
1397 int batch_free = 0;
1398 int prefetch_nr = READ_ONCE(pcp->batch);
1399 bool isolated_pageblocks;
1400 struct page *page, *tmp;
1401 LIST_HEAD(head);
1402
1403 /*
1404 * Ensure proper count is passed which otherwise would stuck in the
1405 * below while (list_empty(list)) loop.
1406 */
1407 count = min(pcp->count, count);
1408 while (count) {
1409 struct list_head *list;
1410
1411 /*
1412 * Remove pages from lists in a round-robin fashion. A
1413 * batch_free count is maintained that is incremented when an
1414 * empty list is encountered. This is so more pages are freed
1415 * off fuller lists instead of spinning excessively around empty
1416 * lists
1417 */
1418 do {
1419 batch_free++;
1420 if (++migratetype == MIGRATE_PCPTYPES)
1421 migratetype = 0;
1422 list = &pcp->lists[migratetype];
1423 } while (list_empty(list));
1424
1425 /* This is the only non-empty list. Free them all. */
1426 if (batch_free == MIGRATE_PCPTYPES)
1427 batch_free = count;
1428
1429 do {
1430 page = list_last_entry(list, struct page, lru);
1431 /* must delete to avoid corrupting pcp list */
1432 list_del(&page->lru);
1433 pcp->count--;
1434
1435 if (bulkfree_pcp_prepare(page))
1436 continue;
1437
1438 list_add_tail(&page->lru, &head);
1439
1440 /*
1441 * We are going to put the page back to the global
1442 * pool, prefetch its buddy to speed up later access
1443 * under zone->lock. It is believed the overhead of
1444 * an additional test and calculating buddy_pfn here
1445 * can be offset by reduced memory latency later. To
1446 * avoid excessive prefetching due to large count, only
1447 * prefetch buddy for the first pcp->batch nr of pages.
1448 */
1449 if (prefetch_nr) {
1450 prefetch_buddy(page);
1451 prefetch_nr--;
1452 }
1453 } while (--count && --batch_free && !list_empty(list));
1454 }
1455
1456 spin_lock(&zone->lock);
1457 isolated_pageblocks = has_isolate_pageblock(zone);
1458
1459 /*
1460 * Use safe version since after __free_one_page(),
1461 * page->lru.next will not point to original list.
1462 */
1463 list_for_each_entry_safe(page, tmp, &head, lru) {
1464 int mt = get_pcppage_migratetype(page);
1465 /* MIGRATE_ISOLATE page should not go to pcplists */
1466 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1467 /* Pageblock could have been isolated meanwhile */
1468 if (unlikely(isolated_pageblocks))
1469 mt = get_pageblock_migratetype(page);
1470
1471 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1472 trace_mm_page_pcpu_drain(page, 0, mt);
1473 }
1474 spin_unlock(&zone->lock);
1475 }
1476
1477 static void free_one_page(struct zone *zone,
1478 struct page *page, unsigned long pfn,
1479 unsigned int order,
1480 int migratetype, fpi_t fpi_flags)
1481 {
1482 spin_lock(&zone->lock);
1483 if (unlikely(has_isolate_pageblock(zone) ||
1484 is_migrate_isolate(migratetype))) {
1485 migratetype = get_pfnblock_migratetype(page, pfn);
1486 }
1487 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1488 spin_unlock(&zone->lock);
1489 }
1490
1491 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1492 unsigned long zone, int nid)
1493 {
1494 mm_zero_struct_page(page);
1495 set_page_links(page, zone, nid, pfn);
1496 init_page_count(page);
1497 page_mapcount_reset(page);
1498 page_cpupid_reset_last(page);
1499 page_kasan_tag_reset(page);
1500
1501 INIT_LIST_HEAD(&page->lru);
1502 #ifdef WANT_PAGE_VIRTUAL
1503 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1504 if (!is_highmem_idx(zone))
1505 set_page_address(page, __va(pfn << PAGE_SHIFT));
1506 #endif
1507 }
1508
1509 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1510 static void __meminit init_reserved_page(unsigned long pfn)
1511 {
1512 pg_data_t *pgdat;
1513 int nid, zid;
1514
1515 if (!early_page_uninitialised(pfn))
1516 return;
1517
1518 nid = early_pfn_to_nid(pfn);
1519 pgdat = NODE_DATA(nid);
1520
1521 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1522 struct zone *zone = &pgdat->node_zones[zid];
1523
1524 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1525 break;
1526 }
1527 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1528 }
1529 #else
1530 static inline void init_reserved_page(unsigned long pfn)
1531 {
1532 }
1533 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1534
1535 /*
1536 * Initialised pages do not have PageReserved set. This function is
1537 * called for each range allocated by the bootmem allocator and
1538 * marks the pages PageReserved. The remaining valid pages are later
1539 * sent to the buddy page allocator.
1540 */
1541 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1542 {
1543 unsigned long start_pfn = PFN_DOWN(start);
1544 unsigned long end_pfn = PFN_UP(end);
1545
1546 for (; start_pfn < end_pfn; start_pfn++) {
1547 if (pfn_valid(start_pfn)) {
1548 struct page *page = pfn_to_page(start_pfn);
1549
1550 init_reserved_page(start_pfn);
1551
1552 /* Avoid false-positive PageTail() */
1553 INIT_LIST_HEAD(&page->lru);
1554
1555 /*
1556 * no need for atomic set_bit because the struct
1557 * page is not visible yet so nobody should
1558 * access it yet.
1559 */
1560 __SetPageReserved(page);
1561 }
1562 }
1563 }
1564
1565 static void __free_pages_ok(struct page *page, unsigned int order,
1566 fpi_t fpi_flags)
1567 {
1568 unsigned long flags;
1569 int migratetype;
1570 unsigned long pfn = page_to_pfn(page);
1571
1572 if (!free_pages_prepare(page, order, true, fpi_flags))
1573 return;
1574
1575 migratetype = get_pfnblock_migratetype(page, pfn);
1576 local_irq_save(flags);
1577 __count_vm_events(PGFREE, 1 << order);
1578 free_one_page(page_zone(page), page, pfn, order, migratetype,
1579 fpi_flags);
1580 local_irq_restore(flags);
1581 }
1582
1583 void __free_pages_core(struct page *page, unsigned int order)
1584 {
1585 unsigned int nr_pages = 1 << order;
1586 struct page *p = page;
1587 unsigned int loop;
1588
1589 /*
1590 * When initializing the memmap, __init_single_page() sets the refcount
1591 * of all pages to 1 ("allocated"/"not free"). We have to set the
1592 * refcount of all involved pages to 0.
1593 */
1594 prefetchw(p);
1595 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1596 prefetchw(p + 1);
1597 __ClearPageReserved(p);
1598 set_page_count(p, 0);
1599 }
1600 __ClearPageReserved(p);
1601 set_page_count(p, 0);
1602
1603 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1604
1605 /*
1606 * Bypass PCP and place fresh pages right to the tail, primarily
1607 * relevant for memory onlining.
1608 */
1609 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1610 }
1611
1612 #ifdef CONFIG_NEED_MULTIPLE_NODES
1613
1614 /*
1615 * During memory init memblocks map pfns to nids. The search is expensive and
1616 * this caches recent lookups. The implementation of __early_pfn_to_nid
1617 * treats start/end as pfns.
1618 */
1619 struct mminit_pfnnid_cache {
1620 unsigned long last_start;
1621 unsigned long last_end;
1622 int last_nid;
1623 };
1624
1625 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1626
1627 /*
1628 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1629 */
1630 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1631 struct mminit_pfnnid_cache *state)
1632 {
1633 unsigned long start_pfn, end_pfn;
1634 int nid;
1635
1636 if (state->last_start <= pfn && pfn < state->last_end)
1637 return state->last_nid;
1638
1639 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1640 if (nid != NUMA_NO_NODE) {
1641 state->last_start = start_pfn;
1642 state->last_end = end_pfn;
1643 state->last_nid = nid;
1644 }
1645
1646 return nid;
1647 }
1648
1649 int __meminit early_pfn_to_nid(unsigned long pfn)
1650 {
1651 static DEFINE_SPINLOCK(early_pfn_lock);
1652 int nid;
1653
1654 spin_lock(&early_pfn_lock);
1655 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1656 if (nid < 0)
1657 nid = first_online_node;
1658 spin_unlock(&early_pfn_lock);
1659
1660 return nid;
1661 }
1662 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1663
1664 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1665 unsigned int order)
1666 {
1667 if (early_page_uninitialised(pfn))
1668 return;
1669 __free_pages_core(page, order);
1670 }
1671
1672 /*
1673 * Check that the whole (or subset of) a pageblock given by the interval of
1674 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1675 * with the migration of free compaction scanner. The scanners then need to
1676 * use only pfn_valid_within() check for arches that allow holes within
1677 * pageblocks.
1678 *
1679 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1680 *
1681 * It's possible on some configurations to have a setup like node0 node1 node0
1682 * i.e. it's possible that all pages within a zones range of pages do not
1683 * belong to a single zone. We assume that a border between node0 and node1
1684 * can occur within a single pageblock, but not a node0 node1 node0
1685 * interleaving within a single pageblock. It is therefore sufficient to check
1686 * the first and last page of a pageblock and avoid checking each individual
1687 * page in a pageblock.
1688 */
1689 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1690 unsigned long end_pfn, struct zone *zone)
1691 {
1692 struct page *start_page;
1693 struct page *end_page;
1694
1695 /* end_pfn is one past the range we are checking */
1696 end_pfn--;
1697
1698 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1699 return NULL;
1700
1701 start_page = pfn_to_online_page(start_pfn);
1702 if (!start_page)
1703 return NULL;
1704
1705 if (page_zone(start_page) != zone)
1706 return NULL;
1707
1708 end_page = pfn_to_page(end_pfn);
1709
1710 /* This gives a shorter code than deriving page_zone(end_page) */
1711 if (page_zone_id(start_page) != page_zone_id(end_page))
1712 return NULL;
1713
1714 return start_page;
1715 }
1716
1717 void set_zone_contiguous(struct zone *zone)
1718 {
1719 unsigned long block_start_pfn = zone->zone_start_pfn;
1720 unsigned long block_end_pfn;
1721
1722 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1723 for (; block_start_pfn < zone_end_pfn(zone);
1724 block_start_pfn = block_end_pfn,
1725 block_end_pfn += pageblock_nr_pages) {
1726
1727 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1728
1729 if (!__pageblock_pfn_to_page(block_start_pfn,
1730 block_end_pfn, zone))
1731 return;
1732 cond_resched();
1733 }
1734
1735 /* We confirm that there is no hole */
1736 zone->contiguous = true;
1737 }
1738
1739 void clear_zone_contiguous(struct zone *zone)
1740 {
1741 zone->contiguous = false;
1742 }
1743
1744 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1745 static void __init deferred_free_range(unsigned long pfn,
1746 unsigned long nr_pages)
1747 {
1748 struct page *page;
1749 unsigned long i;
1750
1751 if (!nr_pages)
1752 return;
1753
1754 page = pfn_to_page(pfn);
1755
1756 /* Free a large naturally-aligned chunk if possible */
1757 if (nr_pages == pageblock_nr_pages &&
1758 (pfn & (pageblock_nr_pages - 1)) == 0) {
1759 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1760 __free_pages_core(page, pageblock_order);
1761 return;
1762 }
1763
1764 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1765 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1766 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1767 __free_pages_core(page, 0);
1768 }
1769 }
1770
1771 /* Completion tracking for deferred_init_memmap() threads */
1772 static atomic_t pgdat_init_n_undone __initdata;
1773 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1774
1775 static inline void __init pgdat_init_report_one_done(void)
1776 {
1777 if (atomic_dec_and_test(&pgdat_init_n_undone))
1778 complete(&pgdat_init_all_done_comp);
1779 }
1780
1781 /*
1782 * Returns true if page needs to be initialized or freed to buddy allocator.
1783 *
1784 * First we check if pfn is valid on architectures where it is possible to have
1785 * holes within pageblock_nr_pages. On systems where it is not possible, this
1786 * function is optimized out.
1787 *
1788 * Then, we check if a current large page is valid by only checking the validity
1789 * of the head pfn.
1790 */
1791 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1792 {
1793 if (!pfn_valid_within(pfn))
1794 return false;
1795 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1796 return false;
1797 return true;
1798 }
1799
1800 /*
1801 * Free pages to buddy allocator. Try to free aligned pages in
1802 * pageblock_nr_pages sizes.
1803 */
1804 static void __init deferred_free_pages(unsigned long pfn,
1805 unsigned long end_pfn)
1806 {
1807 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1808 unsigned long nr_free = 0;
1809
1810 for (; pfn < end_pfn; pfn++) {
1811 if (!deferred_pfn_valid(pfn)) {
1812 deferred_free_range(pfn - nr_free, nr_free);
1813 nr_free = 0;
1814 } else if (!(pfn & nr_pgmask)) {
1815 deferred_free_range(pfn - nr_free, nr_free);
1816 nr_free = 1;
1817 } else {
1818 nr_free++;
1819 }
1820 }
1821 /* Free the last block of pages to allocator */
1822 deferred_free_range(pfn - nr_free, nr_free);
1823 }
1824
1825 /*
1826 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1827 * by performing it only once every pageblock_nr_pages.
1828 * Return number of pages initialized.
1829 */
1830 static unsigned long __init deferred_init_pages(struct zone *zone,
1831 unsigned long pfn,
1832 unsigned long end_pfn)
1833 {
1834 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1835 int nid = zone_to_nid(zone);
1836 unsigned long nr_pages = 0;
1837 int zid = zone_idx(zone);
1838 struct page *page = NULL;
1839
1840 for (; pfn < end_pfn; pfn++) {
1841 if (!deferred_pfn_valid(pfn)) {
1842 page = NULL;
1843 continue;
1844 } else if (!page || !(pfn & nr_pgmask)) {
1845 page = pfn_to_page(pfn);
1846 } else {
1847 page++;
1848 }
1849 __init_single_page(page, pfn, zid, nid);
1850 nr_pages++;
1851 }
1852 return (nr_pages);
1853 }
1854
1855 /*
1856 * This function is meant to pre-load the iterator for the zone init.
1857 * Specifically it walks through the ranges until we are caught up to the
1858 * first_init_pfn value and exits there. If we never encounter the value we
1859 * return false indicating there are no valid ranges left.
1860 */
1861 static bool __init
1862 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1863 unsigned long *spfn, unsigned long *epfn,
1864 unsigned long first_init_pfn)
1865 {
1866 u64 j;
1867
1868 /*
1869 * Start out by walking through the ranges in this zone that have
1870 * already been initialized. We don't need to do anything with them
1871 * so we just need to flush them out of the system.
1872 */
1873 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1874 if (*epfn <= first_init_pfn)
1875 continue;
1876 if (*spfn < first_init_pfn)
1877 *spfn = first_init_pfn;
1878 *i = j;
1879 return true;
1880 }
1881
1882 return false;
1883 }
1884
1885 /*
1886 * Initialize and free pages. We do it in two loops: first we initialize
1887 * struct page, then free to buddy allocator, because while we are
1888 * freeing pages we can access pages that are ahead (computing buddy
1889 * page in __free_one_page()).
1890 *
1891 * In order to try and keep some memory in the cache we have the loop
1892 * broken along max page order boundaries. This way we will not cause
1893 * any issues with the buddy page computation.
1894 */
1895 static unsigned long __init
1896 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1897 unsigned long *end_pfn)
1898 {
1899 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1900 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1901 unsigned long nr_pages = 0;
1902 u64 j = *i;
1903
1904 /* First we loop through and initialize the page values */
1905 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1906 unsigned long t;
1907
1908 if (mo_pfn <= *start_pfn)
1909 break;
1910
1911 t = min(mo_pfn, *end_pfn);
1912 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1913
1914 if (mo_pfn < *end_pfn) {
1915 *start_pfn = mo_pfn;
1916 break;
1917 }
1918 }
1919
1920 /* Reset values and now loop through freeing pages as needed */
1921 swap(j, *i);
1922
1923 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1924 unsigned long t;
1925
1926 if (mo_pfn <= spfn)
1927 break;
1928
1929 t = min(mo_pfn, epfn);
1930 deferred_free_pages(spfn, t);
1931
1932 if (mo_pfn <= epfn)
1933 break;
1934 }
1935
1936 return nr_pages;
1937 }
1938
1939 static void __init
1940 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1941 void *arg)
1942 {
1943 unsigned long spfn, epfn;
1944 struct zone *zone = arg;
1945 u64 i;
1946
1947 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1948
1949 /*
1950 * Initialize and free pages in MAX_ORDER sized increments so that we
1951 * can avoid introducing any issues with the buddy allocator.
1952 */
1953 while (spfn < end_pfn) {
1954 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1955 cond_resched();
1956 }
1957 }
1958
1959 /* An arch may override for more concurrency. */
1960 __weak int __init
1961 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1962 {
1963 return 1;
1964 }
1965
1966 /* Initialise remaining memory on a node */
1967 static int __init deferred_init_memmap(void *data)
1968 {
1969 pg_data_t *pgdat = data;
1970 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1971 unsigned long spfn = 0, epfn = 0;
1972 unsigned long first_init_pfn, flags;
1973 unsigned long start = jiffies;
1974 struct zone *zone;
1975 int zid, max_threads;
1976 u64 i;
1977
1978 /* Bind memory initialisation thread to a local node if possible */
1979 if (!cpumask_empty(cpumask))
1980 set_cpus_allowed_ptr(current, cpumask);
1981
1982 pgdat_resize_lock(pgdat, &flags);
1983 first_init_pfn = pgdat->first_deferred_pfn;
1984 if (first_init_pfn == ULONG_MAX) {
1985 pgdat_resize_unlock(pgdat, &flags);
1986 pgdat_init_report_one_done();
1987 return 0;
1988 }
1989
1990 /* Sanity check boundaries */
1991 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1992 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1993 pgdat->first_deferred_pfn = ULONG_MAX;
1994
1995 /*
1996 * Once we unlock here, the zone cannot be grown anymore, thus if an
1997 * interrupt thread must allocate this early in boot, zone must be
1998 * pre-grown prior to start of deferred page initialization.
1999 */
2000 pgdat_resize_unlock(pgdat, &flags);
2001
2002 /* Only the highest zone is deferred so find it */
2003 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2004 zone = pgdat->node_zones + zid;
2005 if (first_init_pfn < zone_end_pfn(zone))
2006 break;
2007 }
2008
2009 /* If the zone is empty somebody else may have cleared out the zone */
2010 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2011 first_init_pfn))
2012 goto zone_empty;
2013
2014 max_threads = deferred_page_init_max_threads(cpumask);
2015
2016 while (spfn < epfn) {
2017 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2018 struct padata_mt_job job = {
2019 .thread_fn = deferred_init_memmap_chunk,
2020 .fn_arg = zone,
2021 .start = spfn,
2022 .size = epfn_align - spfn,
2023 .align = PAGES_PER_SECTION,
2024 .min_chunk = PAGES_PER_SECTION,
2025 .max_threads = max_threads,
2026 };
2027
2028 padata_do_multithreaded(&job);
2029 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2030 epfn_align);
2031 }
2032 zone_empty:
2033 /* Sanity check that the next zone really is unpopulated */
2034 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2035
2036 pr_info("node %d deferred pages initialised in %ums\n",
2037 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2038
2039 pgdat_init_report_one_done();
2040 return 0;
2041 }
2042
2043 /*
2044 * If this zone has deferred pages, try to grow it by initializing enough
2045 * deferred pages to satisfy the allocation specified by order, rounded up to
2046 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2047 * of SECTION_SIZE bytes by initializing struct pages in increments of
2048 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2049 *
2050 * Return true when zone was grown, otherwise return false. We return true even
2051 * when we grow less than requested, to let the caller decide if there are
2052 * enough pages to satisfy the allocation.
2053 *
2054 * Note: We use noinline because this function is needed only during boot, and
2055 * it is called from a __ref function _deferred_grow_zone. This way we are
2056 * making sure that it is not inlined into permanent text section.
2057 */
2058 static noinline bool __init
2059 deferred_grow_zone(struct zone *zone, unsigned int order)
2060 {
2061 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2062 pg_data_t *pgdat = zone->zone_pgdat;
2063 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2064 unsigned long spfn, epfn, flags;
2065 unsigned long nr_pages = 0;
2066 u64 i;
2067
2068 /* Only the last zone may have deferred pages */
2069 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2070 return false;
2071
2072 pgdat_resize_lock(pgdat, &flags);
2073
2074 /*
2075 * If someone grew this zone while we were waiting for spinlock, return
2076 * true, as there might be enough pages already.
2077 */
2078 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2079 pgdat_resize_unlock(pgdat, &flags);
2080 return true;
2081 }
2082
2083 /* If the zone is empty somebody else may have cleared out the zone */
2084 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2085 first_deferred_pfn)) {
2086 pgdat->first_deferred_pfn = ULONG_MAX;
2087 pgdat_resize_unlock(pgdat, &flags);
2088 /* Retry only once. */
2089 return first_deferred_pfn != ULONG_MAX;
2090 }
2091
2092 /*
2093 * Initialize and free pages in MAX_ORDER sized increments so
2094 * that we can avoid introducing any issues with the buddy
2095 * allocator.
2096 */
2097 while (spfn < epfn) {
2098 /* update our first deferred PFN for this section */
2099 first_deferred_pfn = spfn;
2100
2101 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2102 touch_nmi_watchdog();
2103
2104 /* We should only stop along section boundaries */
2105 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2106 continue;
2107
2108 /* If our quota has been met we can stop here */
2109 if (nr_pages >= nr_pages_needed)
2110 break;
2111 }
2112
2113 pgdat->first_deferred_pfn = spfn;
2114 pgdat_resize_unlock(pgdat, &flags);
2115
2116 return nr_pages > 0;
2117 }
2118
2119 /*
2120 * deferred_grow_zone() is __init, but it is called from
2121 * get_page_from_freelist() during early boot until deferred_pages permanently
2122 * disables this call. This is why we have refdata wrapper to avoid warning,
2123 * and to ensure that the function body gets unloaded.
2124 */
2125 static bool __ref
2126 _deferred_grow_zone(struct zone *zone, unsigned int order)
2127 {
2128 return deferred_grow_zone(zone, order);
2129 }
2130
2131 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2132
2133 void __init page_alloc_init_late(void)
2134 {
2135 struct zone *zone;
2136 int nid;
2137
2138 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2139
2140 /* There will be num_node_state(N_MEMORY) threads */
2141 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2142 for_each_node_state(nid, N_MEMORY) {
2143 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2144 }
2145
2146 /* Block until all are initialised */
2147 wait_for_completion(&pgdat_init_all_done_comp);
2148
2149 /*
2150 * The number of managed pages has changed due to the initialisation
2151 * so the pcpu batch and high limits needs to be updated or the limits
2152 * will be artificially small.
2153 */
2154 for_each_populated_zone(zone)
2155 zone_pcp_update(zone);
2156
2157 /*
2158 * We initialized the rest of the deferred pages. Permanently disable
2159 * on-demand struct page initialization.
2160 */
2161 static_branch_disable(&deferred_pages);
2162
2163 /* Reinit limits that are based on free pages after the kernel is up */
2164 files_maxfiles_init();
2165 #endif
2166
2167 buffer_init();
2168
2169 /* Discard memblock private memory */
2170 memblock_discard();
2171
2172 for_each_node_state(nid, N_MEMORY)
2173 shuffle_free_memory(NODE_DATA(nid));
2174
2175 for_each_populated_zone(zone)
2176 set_zone_contiguous(zone);
2177 }
2178
2179 #ifdef CONFIG_CMA
2180 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2181 void __init init_cma_reserved_pageblock(struct page *page)
2182 {
2183 unsigned i = pageblock_nr_pages;
2184 struct page *p = page;
2185
2186 do {
2187 __ClearPageReserved(p);
2188 set_page_count(p, 0);
2189 } while (++p, --i);
2190
2191 set_pageblock_migratetype(page, MIGRATE_CMA);
2192
2193 if (pageblock_order >= MAX_ORDER) {
2194 i = pageblock_nr_pages;
2195 p = page;
2196 do {
2197 set_page_refcounted(p);
2198 __free_pages(p, MAX_ORDER - 1);
2199 p += MAX_ORDER_NR_PAGES;
2200 } while (i -= MAX_ORDER_NR_PAGES);
2201 } else {
2202 set_page_refcounted(page);
2203 __free_pages(page, pageblock_order);
2204 }
2205
2206 adjust_managed_page_count(page, pageblock_nr_pages);
2207 page_zone(page)->cma_pages += pageblock_nr_pages;
2208 }
2209 #endif
2210
2211 /*
2212 * The order of subdivision here is critical for the IO subsystem.
2213 * Please do not alter this order without good reasons and regression
2214 * testing. Specifically, as large blocks of memory are subdivided,
2215 * the order in which smaller blocks are delivered depends on the order
2216 * they're subdivided in this function. This is the primary factor
2217 * influencing the order in which pages are delivered to the IO
2218 * subsystem according to empirical testing, and this is also justified
2219 * by considering the behavior of a buddy system containing a single
2220 * large block of memory acted on by a series of small allocations.
2221 * This behavior is a critical factor in sglist merging's success.
2222 *
2223 * -- nyc
2224 */
2225 static inline void expand(struct zone *zone, struct page *page,
2226 int low, int high, int migratetype)
2227 {
2228 unsigned long size = 1 << high;
2229
2230 while (high > low) {
2231 high--;
2232 size >>= 1;
2233 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2234
2235 /*
2236 * Mark as guard pages (or page), that will allow to
2237 * merge back to allocator when buddy will be freed.
2238 * Corresponding page table entries will not be touched,
2239 * pages will stay not present in virtual address space
2240 */
2241 if (set_page_guard(zone, &page[size], high, migratetype))
2242 continue;
2243
2244 add_to_free_list(&page[size], zone, high, migratetype);
2245 set_buddy_order(&page[size], high);
2246 }
2247 }
2248
2249 static void check_new_page_bad(struct page *page)
2250 {
2251 if (unlikely(page->flags & __PG_HWPOISON)) {
2252 /* Don't complain about hwpoisoned pages */
2253 page_mapcount_reset(page); /* remove PageBuddy */
2254 return;
2255 }
2256
2257 bad_page(page,
2258 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2259 }
2260
2261 /*
2262 * This page is about to be returned from the page allocator
2263 */
2264 static inline int check_new_page(struct page *page)
2265 {
2266 if (likely(page_expected_state(page,
2267 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2268 return 0;
2269
2270 check_new_page_bad(page);
2271 return 1;
2272 }
2273
2274 #ifdef CONFIG_DEBUG_VM
2275 /*
2276 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2277 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2278 * also checked when pcp lists are refilled from the free lists.
2279 */
2280 static inline bool check_pcp_refill(struct page *page)
2281 {
2282 if (debug_pagealloc_enabled_static())
2283 return check_new_page(page);
2284 else
2285 return false;
2286 }
2287
2288 static inline bool check_new_pcp(struct page *page)
2289 {
2290 return check_new_page(page);
2291 }
2292 #else
2293 /*
2294 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2295 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2296 * enabled, they are also checked when being allocated from the pcp lists.
2297 */
2298 static inline bool check_pcp_refill(struct page *page)
2299 {
2300 return check_new_page(page);
2301 }
2302 static inline bool check_new_pcp(struct page *page)
2303 {
2304 if (debug_pagealloc_enabled_static())
2305 return check_new_page(page);
2306 else
2307 return false;
2308 }
2309 #endif /* CONFIG_DEBUG_VM */
2310
2311 static bool check_new_pages(struct page *page, unsigned int order)
2312 {
2313 int i;
2314 for (i = 0; i < (1 << order); i++) {
2315 struct page *p = page + i;
2316
2317 if (unlikely(check_new_page(p)))
2318 return true;
2319 }
2320
2321 return false;
2322 }
2323
2324 inline void post_alloc_hook(struct page *page, unsigned int order,
2325 gfp_t gfp_flags)
2326 {
2327 bool init;
2328
2329 set_page_private(page, 0);
2330 set_page_refcounted(page);
2331
2332 arch_alloc_page(page, order);
2333 debug_pagealloc_map_pages(page, 1 << order);
2334
2335 /*
2336 * Page unpoisoning must happen before memory initialization.
2337 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2338 * allocations and the page unpoisoning code will complain.
2339 */
2340 kernel_unpoison_pages(page, 1 << order);
2341
2342 /*
2343 * As memory initialization might be integrated into KASAN,
2344 * kasan_alloc_pages and kernel_init_free_pages must be
2345 * kept together to avoid discrepancies in behavior.
2346 */
2347 init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2348 kasan_alloc_pages(page, order, init);
2349 if (init && !kasan_has_integrated_init())
2350 kernel_init_free_pages(page, 1 << order);
2351
2352 set_page_owner(page, order, gfp_flags);
2353 }
2354
2355 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2356 unsigned int alloc_flags)
2357 {
2358 post_alloc_hook(page, order, gfp_flags);
2359
2360 if (order && (gfp_flags & __GFP_COMP))
2361 prep_compound_page(page, order);
2362
2363 /*
2364 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2365 * allocate the page. The expectation is that the caller is taking
2366 * steps that will free more memory. The caller should avoid the page
2367 * being used for !PFMEMALLOC purposes.
2368 */
2369 if (alloc_flags & ALLOC_NO_WATERMARKS)
2370 set_page_pfmemalloc(page);
2371 else
2372 clear_page_pfmemalloc(page);
2373 }
2374
2375 /*
2376 * Go through the free lists for the given migratetype and remove
2377 * the smallest available page from the freelists
2378 */
2379 static __always_inline
2380 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2381 int migratetype)
2382 {
2383 unsigned int current_order;
2384 struct free_area *area;
2385 struct page *page;
2386
2387 /* Find a page of the appropriate size in the preferred list */
2388 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2389 area = &(zone->free_area[current_order]);
2390 page = get_page_from_free_area(area, migratetype);
2391 if (!page)
2392 continue;
2393 del_page_from_free_list(page, zone, current_order);
2394 expand(zone, page, order, current_order, migratetype);
2395 set_pcppage_migratetype(page, migratetype);
2396 return page;
2397 }
2398
2399 return NULL;
2400 }
2401
2402
2403 /*
2404 * This array describes the order lists are fallen back to when
2405 * the free lists for the desirable migrate type are depleted
2406 */
2407 static int fallbacks[MIGRATE_TYPES][3] = {
2408 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2409 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2410 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2411 #ifdef CONFIG_CMA
2412 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2413 #endif
2414 #ifdef CONFIG_MEMORY_ISOLATION
2415 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2416 #endif
2417 };
2418
2419 #ifdef CONFIG_CMA
2420 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2421 unsigned int order)
2422 {
2423 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2424 }
2425 #else
2426 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2427 unsigned int order) { return NULL; }
2428 #endif
2429
2430 /*
2431 * Move the free pages in a range to the freelist tail of the requested type.
2432 * Note that start_page and end_pages are not aligned on a pageblock
2433 * boundary. If alignment is required, use move_freepages_block()
2434 */
2435 static int move_freepages(struct zone *zone,
2436 unsigned long start_pfn, unsigned long end_pfn,
2437 int migratetype, int *num_movable)
2438 {
2439 struct page *page;
2440 unsigned long pfn;
2441 unsigned int order;
2442 int pages_moved = 0;
2443
2444 for (pfn = start_pfn; pfn <= end_pfn;) {
2445 if (!pfn_valid_within(pfn)) {
2446 pfn++;
2447 continue;
2448 }
2449
2450 page = pfn_to_page(pfn);
2451 if (!PageBuddy(page)) {
2452 /*
2453 * We assume that pages that could be isolated for
2454 * migration are movable. But we don't actually try
2455 * isolating, as that would be expensive.
2456 */
2457 if (num_movable &&
2458 (PageLRU(page) || __PageMovable(page)))
2459 (*num_movable)++;
2460 pfn++;
2461 continue;
2462 }
2463
2464 /* Make sure we are not inadvertently changing nodes */
2465 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2466 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2467
2468 order = buddy_order(page);
2469 move_to_free_list(page, zone, order, migratetype);
2470 pfn += 1 << order;
2471 pages_moved += 1 << order;
2472 }
2473
2474 return pages_moved;
2475 }
2476
2477 int move_freepages_block(struct zone *zone, struct page *page,
2478 int migratetype, int *num_movable)
2479 {
2480 unsigned long start_pfn, end_pfn, pfn;
2481
2482 if (num_movable)
2483 *num_movable = 0;
2484
2485 pfn = page_to_pfn(page);
2486 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2487 end_pfn = start_pfn + pageblock_nr_pages - 1;
2488
2489 /* Do not cross zone boundaries */
2490 if (!zone_spans_pfn(zone, start_pfn))
2491 start_pfn = pfn;
2492 if (!zone_spans_pfn(zone, end_pfn))
2493 return 0;
2494
2495 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2496 num_movable);
2497 }
2498
2499 static void change_pageblock_range(struct page *pageblock_page,
2500 int start_order, int migratetype)
2501 {
2502 int nr_pageblocks = 1 << (start_order - pageblock_order);
2503
2504 while (nr_pageblocks--) {
2505 set_pageblock_migratetype(pageblock_page, migratetype);
2506 pageblock_page += pageblock_nr_pages;
2507 }
2508 }
2509
2510 /*
2511 * When we are falling back to another migratetype during allocation, try to
2512 * steal extra free pages from the same pageblocks to satisfy further
2513 * allocations, instead of polluting multiple pageblocks.
2514 *
2515 * If we are stealing a relatively large buddy page, it is likely there will
2516 * be more free pages in the pageblock, so try to steal them all. For
2517 * reclaimable and unmovable allocations, we steal regardless of page size,
2518 * as fragmentation caused by those allocations polluting movable pageblocks
2519 * is worse than movable allocations stealing from unmovable and reclaimable
2520 * pageblocks.
2521 */
2522 static bool can_steal_fallback(unsigned int order, int start_mt)
2523 {
2524 /*
2525 * Leaving this order check is intended, although there is
2526 * relaxed order check in next check. The reason is that
2527 * we can actually steal whole pageblock if this condition met,
2528 * but, below check doesn't guarantee it and that is just heuristic
2529 * so could be changed anytime.
2530 */
2531 if (order >= pageblock_order)
2532 return true;
2533
2534 if (order >= pageblock_order / 2 ||
2535 start_mt == MIGRATE_RECLAIMABLE ||
2536 start_mt == MIGRATE_UNMOVABLE ||
2537 page_group_by_mobility_disabled)
2538 return true;
2539
2540 return false;
2541 }
2542
2543 static inline bool boost_watermark(struct zone *zone)
2544 {
2545 unsigned long max_boost;
2546
2547 if (!watermark_boost_factor)
2548 return false;
2549 /*
2550 * Don't bother in zones that are unlikely to produce results.
2551 * On small machines, including kdump capture kernels running
2552 * in a small area, boosting the watermark can cause an out of
2553 * memory situation immediately.
2554 */
2555 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2556 return false;
2557
2558 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2559 watermark_boost_factor, 10000);
2560
2561 /*
2562 * high watermark may be uninitialised if fragmentation occurs
2563 * very early in boot so do not boost. We do not fall
2564 * through and boost by pageblock_nr_pages as failing
2565 * allocations that early means that reclaim is not going
2566 * to help and it may even be impossible to reclaim the
2567 * boosted watermark resulting in a hang.
2568 */
2569 if (!max_boost)
2570 return false;
2571
2572 max_boost = max(pageblock_nr_pages, max_boost);
2573
2574 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2575 max_boost);
2576
2577 return true;
2578 }
2579
2580 /*
2581 * This function implements actual steal behaviour. If order is large enough,
2582 * we can steal whole pageblock. If not, we first move freepages in this
2583 * pageblock to our migratetype and determine how many already-allocated pages
2584 * are there in the pageblock with a compatible migratetype. If at least half
2585 * of pages are free or compatible, we can change migratetype of the pageblock
2586 * itself, so pages freed in the future will be put on the correct free list.
2587 */
2588 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2589 unsigned int alloc_flags, int start_type, bool whole_block)
2590 {
2591 unsigned int current_order = buddy_order(page);
2592 int free_pages, movable_pages, alike_pages;
2593 int old_block_type;
2594
2595 old_block_type = get_pageblock_migratetype(page);
2596
2597 /*
2598 * This can happen due to races and we want to prevent broken
2599 * highatomic accounting.
2600 */
2601 if (is_migrate_highatomic(old_block_type))
2602 goto single_page;
2603
2604 /* Take ownership for orders >= pageblock_order */
2605 if (current_order >= pageblock_order) {
2606 change_pageblock_range(page, current_order, start_type);
2607 goto single_page;
2608 }
2609
2610 /*
2611 * Boost watermarks to increase reclaim pressure to reduce the
2612 * likelihood of future fallbacks. Wake kswapd now as the node
2613 * may be balanced overall and kswapd will not wake naturally.
2614 */
2615 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2616 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2617
2618 /* We are not allowed to try stealing from the whole block */
2619 if (!whole_block)
2620 goto single_page;
2621
2622 free_pages = move_freepages_block(zone, page, start_type,
2623 &movable_pages);
2624 /*
2625 * Determine how many pages are compatible with our allocation.
2626 * For movable allocation, it's the number of movable pages which
2627 * we just obtained. For other types it's a bit more tricky.
2628 */
2629 if (start_type == MIGRATE_MOVABLE) {
2630 alike_pages = movable_pages;
2631 } else {
2632 /*
2633 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2634 * to MOVABLE pageblock, consider all non-movable pages as
2635 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2636 * vice versa, be conservative since we can't distinguish the
2637 * exact migratetype of non-movable pages.
2638 */
2639 if (old_block_type == MIGRATE_MOVABLE)
2640 alike_pages = pageblock_nr_pages
2641 - (free_pages + movable_pages);
2642 else
2643 alike_pages = 0;
2644 }
2645
2646 /* moving whole block can fail due to zone boundary conditions */
2647 if (!free_pages)
2648 goto single_page;
2649
2650 /*
2651 * If a sufficient number of pages in the block are either free or of
2652 * comparable migratability as our allocation, claim the whole block.
2653 */
2654 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2655 page_group_by_mobility_disabled)
2656 set_pageblock_migratetype(page, start_type);
2657
2658 return;
2659
2660 single_page:
2661 move_to_free_list(page, zone, current_order, start_type);
2662 }
2663
2664 /*
2665 * Check whether there is a suitable fallback freepage with requested order.
2666 * If only_stealable is true, this function returns fallback_mt only if
2667 * we can steal other freepages all together. This would help to reduce
2668 * fragmentation due to mixed migratetype pages in one pageblock.
2669 */
2670 int find_suitable_fallback(struct free_area *area, unsigned int order,
2671 int migratetype, bool only_stealable, bool *can_steal)
2672 {
2673 int i;
2674 int fallback_mt;
2675
2676 if (area->nr_free == 0)
2677 return -1;
2678
2679 *can_steal = false;
2680 for (i = 0;; i++) {
2681 fallback_mt = fallbacks[migratetype][i];
2682 if (fallback_mt == MIGRATE_TYPES)
2683 break;
2684
2685 if (free_area_empty(area, fallback_mt))
2686 continue;
2687
2688 if (can_steal_fallback(order, migratetype))
2689 *can_steal = true;
2690
2691 if (!only_stealable)
2692 return fallback_mt;
2693
2694 if (*can_steal)
2695 return fallback_mt;
2696 }
2697
2698 return -1;
2699 }
2700
2701 /*
2702 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2703 * there are no empty page blocks that contain a page with a suitable order
2704 */
2705 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2706 unsigned int alloc_order)
2707 {
2708 int mt;
2709 unsigned long max_managed, flags;
2710
2711 /*
2712 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2713 * Check is race-prone but harmless.
2714 */
2715 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2716 if (zone->nr_reserved_highatomic >= max_managed)
2717 return;
2718
2719 spin_lock_irqsave(&zone->lock, flags);
2720
2721 /* Recheck the nr_reserved_highatomic limit under the lock */
2722 if (zone->nr_reserved_highatomic >= max_managed)
2723 goto out_unlock;
2724
2725 /* Yoink! */
2726 mt = get_pageblock_migratetype(page);
2727 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2728 && !is_migrate_cma(mt)) {
2729 zone->nr_reserved_highatomic += pageblock_nr_pages;
2730 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2731 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2732 }
2733
2734 out_unlock:
2735 spin_unlock_irqrestore(&zone->lock, flags);
2736 }
2737
2738 /*
2739 * Used when an allocation is about to fail under memory pressure. This
2740 * potentially hurts the reliability of high-order allocations when under
2741 * intense memory pressure but failed atomic allocations should be easier
2742 * to recover from than an OOM.
2743 *
2744 * If @force is true, try to unreserve a pageblock even though highatomic
2745 * pageblock is exhausted.
2746 */
2747 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2748 bool force)
2749 {
2750 struct zonelist *zonelist = ac->zonelist;
2751 unsigned long flags;
2752 struct zoneref *z;
2753 struct zone *zone;
2754 struct page *page;
2755 int order;
2756 bool ret;
2757
2758 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2759 ac->nodemask) {
2760 /*
2761 * Preserve at least one pageblock unless memory pressure
2762 * is really high.
2763 */
2764 if (!force && zone->nr_reserved_highatomic <=
2765 pageblock_nr_pages)
2766 continue;
2767
2768 spin_lock_irqsave(&zone->lock, flags);
2769 for (order = 0; order < MAX_ORDER; order++) {
2770 struct free_area *area = &(zone->free_area[order]);
2771
2772 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2773 if (!page)
2774 continue;
2775
2776 /*
2777 * In page freeing path, migratetype change is racy so
2778 * we can counter several free pages in a pageblock
2779 * in this loop althoug we changed the pageblock type
2780 * from highatomic to ac->migratetype. So we should
2781 * adjust the count once.
2782 */
2783 if (is_migrate_highatomic_page(page)) {
2784 /*
2785 * It should never happen but changes to
2786 * locking could inadvertently allow a per-cpu
2787 * drain to add pages to MIGRATE_HIGHATOMIC
2788 * while unreserving so be safe and watch for
2789 * underflows.
2790 */
2791 zone->nr_reserved_highatomic -= min(
2792 pageblock_nr_pages,
2793 zone->nr_reserved_highatomic);
2794 }
2795
2796 /*
2797 * Convert to ac->migratetype and avoid the normal
2798 * pageblock stealing heuristics. Minimally, the caller
2799 * is doing the work and needs the pages. More
2800 * importantly, if the block was always converted to
2801 * MIGRATE_UNMOVABLE or another type then the number
2802 * of pageblocks that cannot be completely freed
2803 * may increase.
2804 */
2805 set_pageblock_migratetype(page, ac->migratetype);
2806 ret = move_freepages_block(zone, page, ac->migratetype,
2807 NULL);
2808 if (ret) {
2809 spin_unlock_irqrestore(&zone->lock, flags);
2810 return ret;
2811 }
2812 }
2813 spin_unlock_irqrestore(&zone->lock, flags);
2814 }
2815
2816 return false;
2817 }
2818
2819 /*
2820 * Try finding a free buddy page on the fallback list and put it on the free
2821 * list of requested migratetype, possibly along with other pages from the same
2822 * block, depending on fragmentation avoidance heuristics. Returns true if
2823 * fallback was found so that __rmqueue_smallest() can grab it.
2824 *
2825 * The use of signed ints for order and current_order is a deliberate
2826 * deviation from the rest of this file, to make the for loop
2827 * condition simpler.
2828 */
2829 static __always_inline bool
2830 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2831 unsigned int alloc_flags)
2832 {
2833 struct free_area *area;
2834 int current_order;
2835 int min_order = order;
2836 struct page *page;
2837 int fallback_mt;
2838 bool can_steal;
2839
2840 /*
2841 * Do not steal pages from freelists belonging to other pageblocks
2842 * i.e. orders < pageblock_order. If there are no local zones free,
2843 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2844 */
2845 if (alloc_flags & ALLOC_NOFRAGMENT)
2846 min_order = pageblock_order;
2847
2848 /*
2849 * Find the largest available free page in the other list. This roughly
2850 * approximates finding the pageblock with the most free pages, which
2851 * would be too costly to do exactly.
2852 */
2853 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2854 --current_order) {
2855 area = &(zone->free_area[current_order]);
2856 fallback_mt = find_suitable_fallback(area, current_order,
2857 start_migratetype, false, &can_steal);
2858 if (fallback_mt == -1)
2859 continue;
2860
2861 /*
2862 * We cannot steal all free pages from the pageblock and the
2863 * requested migratetype is movable. In that case it's better to
2864 * steal and split the smallest available page instead of the
2865 * largest available page, because even if the next movable
2866 * allocation falls back into a different pageblock than this
2867 * one, it won't cause permanent fragmentation.
2868 */
2869 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2870 && current_order > order)
2871 goto find_smallest;
2872
2873 goto do_steal;
2874 }
2875
2876 return false;
2877
2878 find_smallest:
2879 for (current_order = order; current_order < MAX_ORDER;
2880 current_order++) {
2881 area = &(zone->free_area[current_order]);
2882 fallback_mt = find_suitable_fallback(area, current_order,
2883 start_migratetype, false, &can_steal);
2884 if (fallback_mt != -1)
2885 break;
2886 }
2887
2888 /*
2889 * This should not happen - we already found a suitable fallback
2890 * when looking for the largest page.
2891 */
2892 VM_BUG_ON(current_order == MAX_ORDER);
2893
2894 do_steal:
2895 page = get_page_from_free_area(area, fallback_mt);
2896
2897 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2898 can_steal);
2899
2900 trace_mm_page_alloc_extfrag(page, order, current_order,
2901 start_migratetype, fallback_mt);
2902
2903 return true;
2904
2905 }
2906
2907 /*
2908 * Do the hard work of removing an element from the buddy allocator.
2909 * Call me with the zone->lock already held.
2910 */
2911 static __always_inline struct page *
2912 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2913 unsigned int alloc_flags)
2914 {
2915 struct page *page;
2916
2917 if (IS_ENABLED(CONFIG_CMA)) {
2918 /*
2919 * Balance movable allocations between regular and CMA areas by
2920 * allocating from CMA when over half of the zone's free memory
2921 * is in the CMA area.
2922 */
2923 if (alloc_flags & ALLOC_CMA &&
2924 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2925 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2926 page = __rmqueue_cma_fallback(zone, order);
2927 if (page)
2928 goto out;
2929 }
2930 }
2931 retry:
2932 page = __rmqueue_smallest(zone, order, migratetype);
2933 if (unlikely(!page)) {
2934 if (alloc_flags & ALLOC_CMA)
2935 page = __rmqueue_cma_fallback(zone, order);
2936
2937 if (!page && __rmqueue_fallback(zone, order, migratetype,
2938 alloc_flags))
2939 goto retry;
2940 }
2941 out:
2942 if (page)
2943 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2944 return page;
2945 }
2946
2947 /*
2948 * Obtain a specified number of elements from the buddy allocator, all under
2949 * a single hold of the lock, for efficiency. Add them to the supplied list.
2950 * Returns the number of new pages which were placed at *list.
2951 */
2952 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2953 unsigned long count, struct list_head *list,
2954 int migratetype, unsigned int alloc_flags)
2955 {
2956 int i, allocated = 0;
2957
2958 spin_lock(&zone->lock);
2959 for (i = 0; i < count; ++i) {
2960 struct page *page = __rmqueue(zone, order, migratetype,
2961 alloc_flags);
2962 if (unlikely(page == NULL))
2963 break;
2964
2965 if (unlikely(check_pcp_refill(page)))
2966 continue;
2967
2968 /*
2969 * Split buddy pages returned by expand() are received here in
2970 * physical page order. The page is added to the tail of
2971 * caller's list. From the callers perspective, the linked list
2972 * is ordered by page number under some conditions. This is
2973 * useful for IO devices that can forward direction from the
2974 * head, thus also in the physical page order. This is useful
2975 * for IO devices that can merge IO requests if the physical
2976 * pages are ordered properly.
2977 */
2978 list_add_tail(&page->lru, list);
2979 allocated++;
2980 if (is_migrate_cma(get_pcppage_migratetype(page)))
2981 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2982 -(1 << order));
2983 }
2984
2985 /*
2986 * i pages were removed from the buddy list even if some leak due
2987 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2988 * on i. Do not confuse with 'allocated' which is the number of
2989 * pages added to the pcp list.
2990 */
2991 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2992 spin_unlock(&zone->lock);
2993 return allocated;
2994 }
2995
2996 #ifdef CONFIG_NUMA
2997 /*
2998 * Called from the vmstat counter updater to drain pagesets of this
2999 * currently executing processor on remote nodes after they have
3000 * expired.
3001 *
3002 * Note that this function must be called with the thread pinned to
3003 * a single processor.
3004 */
3005 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3006 {
3007 unsigned long flags;
3008 int to_drain, batch;
3009
3010 local_irq_save(flags);
3011 batch = READ_ONCE(pcp->batch);
3012 to_drain = min(pcp->count, batch);
3013 if (to_drain > 0)
3014 free_pcppages_bulk(zone, to_drain, pcp);
3015 local_irq_restore(flags);
3016 }
3017 #endif
3018
3019 /*
3020 * Drain pcplists of the indicated processor and zone.
3021 *
3022 * The processor must either be the current processor and the
3023 * thread pinned to the current processor or a processor that
3024 * is not online.
3025 */
3026 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3027 {
3028 unsigned long flags;
3029 struct per_cpu_pageset *pset;
3030 struct per_cpu_pages *pcp;
3031
3032 local_irq_save(flags);
3033 pset = per_cpu_ptr(zone->pageset, cpu);
3034
3035 pcp = &pset->pcp;
3036 if (pcp->count)
3037 free_pcppages_bulk(zone, pcp->count, pcp);
3038 local_irq_restore(flags);
3039 }
3040
3041 /*
3042 * Drain pcplists of all zones on the indicated processor.
3043 *
3044 * The processor must either be the current processor and the
3045 * thread pinned to the current processor or a processor that
3046 * is not online.
3047 */
3048 static void drain_pages(unsigned int cpu)
3049 {
3050 struct zone *zone;
3051
3052 for_each_populated_zone(zone) {
3053 drain_pages_zone(cpu, zone);
3054 }
3055 }
3056
3057 /*
3058 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3059 *
3060 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3061 * the single zone's pages.
3062 */
3063 void drain_local_pages(struct zone *zone)
3064 {
3065 int cpu = smp_processor_id();
3066
3067 if (zone)
3068 drain_pages_zone(cpu, zone);
3069 else
3070 drain_pages(cpu);
3071 }
3072
3073 static void drain_local_pages_wq(struct work_struct *work)
3074 {
3075 struct pcpu_drain *drain;
3076
3077 drain = container_of(work, struct pcpu_drain, work);
3078
3079 /*
3080 * drain_all_pages doesn't use proper cpu hotplug protection so
3081 * we can race with cpu offline when the WQ can move this from
3082 * a cpu pinned worker to an unbound one. We can operate on a different
3083 * cpu which is allright but we also have to make sure to not move to
3084 * a different one.
3085 */
3086 preempt_disable();
3087 drain_local_pages(drain->zone);
3088 preempt_enable();
3089 }
3090
3091 /*
3092 * The implementation of drain_all_pages(), exposing an extra parameter to
3093 * drain on all cpus.
3094 *
3095 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3096 * not empty. The check for non-emptiness can however race with a free to
3097 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3098 * that need the guarantee that every CPU has drained can disable the
3099 * optimizing racy check.
3100 */
3101 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3102 {
3103 int cpu;
3104
3105 /*
3106 * Allocate in the BSS so we wont require allocation in
3107 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3108 */
3109 static cpumask_t cpus_with_pcps;
3110
3111 /*
3112 * Make sure nobody triggers this path before mm_percpu_wq is fully
3113 * initialized.
3114 */
3115 if (WARN_ON_ONCE(!mm_percpu_wq))
3116 return;
3117
3118 /*
3119 * Do not drain if one is already in progress unless it's specific to
3120 * a zone. Such callers are primarily CMA and memory hotplug and need
3121 * the drain to be complete when the call returns.
3122 */
3123 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3124 if (!zone)
3125 return;
3126 mutex_lock(&pcpu_drain_mutex);
3127 }
3128
3129 /*
3130 * We don't care about racing with CPU hotplug event
3131 * as offline notification will cause the notified
3132 * cpu to drain that CPU pcps and on_each_cpu_mask
3133 * disables preemption as part of its processing
3134 */
3135 for_each_online_cpu(cpu) {
3136 struct per_cpu_pageset *pcp;
3137 struct zone *z;
3138 bool has_pcps = false;
3139
3140 if (force_all_cpus) {
3141 /*
3142 * The pcp.count check is racy, some callers need a
3143 * guarantee that no cpu is missed.
3144 */
3145 has_pcps = true;
3146 } else if (zone) {
3147 pcp = per_cpu_ptr(zone->pageset, cpu);
3148 if (pcp->pcp.count)
3149 has_pcps = true;
3150 } else {
3151 for_each_populated_zone(z) {
3152 pcp = per_cpu_ptr(z->pageset, cpu);
3153 if (pcp->pcp.count) {
3154 has_pcps = true;
3155 break;
3156 }
3157 }
3158 }
3159
3160 if (has_pcps)
3161 cpumask_set_cpu(cpu, &cpus_with_pcps);
3162 else
3163 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3164 }
3165
3166 for_each_cpu(cpu, &cpus_with_pcps) {
3167 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3168
3169 drain->zone = zone;
3170 INIT_WORK(&drain->work, drain_local_pages_wq);
3171 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3172 }
3173 for_each_cpu(cpu, &cpus_with_pcps)
3174 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3175
3176 mutex_unlock(&pcpu_drain_mutex);
3177 }
3178
3179 /*
3180 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3181 *
3182 * When zone parameter is non-NULL, spill just the single zone's pages.
3183 *
3184 * Note that this can be extremely slow as the draining happens in a workqueue.
3185 */
3186 void drain_all_pages(struct zone *zone)
3187 {
3188 __drain_all_pages(zone, false);
3189 }
3190
3191 #ifdef CONFIG_HIBERNATION
3192
3193 /*
3194 * Touch the watchdog for every WD_PAGE_COUNT pages.
3195 */
3196 #define WD_PAGE_COUNT (128*1024)
3197
3198 void mark_free_pages(struct zone *zone)
3199 {
3200 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3201 unsigned long flags;
3202 unsigned int order, t;
3203 struct page *page;
3204
3205 if (zone_is_empty(zone))
3206 return;
3207
3208 spin_lock_irqsave(&zone->lock, flags);
3209
3210 max_zone_pfn = zone_end_pfn(zone);
3211 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3212 if (pfn_valid(pfn)) {
3213 page = pfn_to_page(pfn);
3214
3215 if (!--page_count) {
3216 touch_nmi_watchdog();
3217 page_count = WD_PAGE_COUNT;
3218 }
3219
3220 if (page_zone(page) != zone)
3221 continue;
3222
3223 if (!swsusp_page_is_forbidden(page))
3224 swsusp_unset_page_free(page);
3225 }
3226
3227 for_each_migratetype_order(order, t) {
3228 list_for_each_entry(page,
3229 &zone->free_area[order].free_list[t], lru) {
3230 unsigned long i;
3231
3232 pfn = page_to_pfn(page);
3233 for (i = 0; i < (1UL << order); i++) {
3234 if (!--page_count) {
3235 touch_nmi_watchdog();
3236 page_count = WD_PAGE_COUNT;
3237 }
3238 swsusp_set_page_free(pfn_to_page(pfn + i));
3239 }
3240 }
3241 }
3242 spin_unlock_irqrestore(&zone->lock, flags);
3243 }
3244 #endif /* CONFIG_PM */
3245
3246 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3247 {
3248 int migratetype;
3249
3250 if (!free_pcp_prepare(page))
3251 return false;
3252
3253 migratetype = get_pfnblock_migratetype(page, pfn);
3254 set_pcppage_migratetype(page, migratetype);
3255 return true;
3256 }
3257
3258 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3259 {
3260 struct zone *zone = page_zone(page);
3261 struct per_cpu_pages *pcp;
3262 int migratetype;
3263
3264 migratetype = get_pcppage_migratetype(page);
3265 __count_vm_event(PGFREE);
3266
3267 /*
3268 * We only track unmovable, reclaimable and movable on pcp lists.
3269 * Free ISOLATE pages back to the allocator because they are being
3270 * offlined but treat HIGHATOMIC as movable pages so we can get those
3271 * areas back if necessary. Otherwise, we may have to free
3272 * excessively into the page allocator
3273 */
3274 if (migratetype >= MIGRATE_PCPTYPES) {
3275 if (unlikely(is_migrate_isolate(migratetype))) {
3276 free_one_page(zone, page, pfn, 0, migratetype,
3277 FPI_NONE);
3278 return;
3279 }
3280 migratetype = MIGRATE_MOVABLE;
3281 }
3282
3283 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3284 list_add(&page->lru, &pcp->lists[migratetype]);
3285 pcp->count++;
3286 if (pcp->count >= READ_ONCE(pcp->high))
3287 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3288 }
3289
3290 /*
3291 * Free a 0-order page
3292 */
3293 void free_unref_page(struct page *page)
3294 {
3295 unsigned long flags;
3296 unsigned long pfn = page_to_pfn(page);
3297
3298 if (!free_unref_page_prepare(page, pfn))
3299 return;
3300
3301 local_irq_save(flags);
3302 free_unref_page_commit(page, pfn);
3303 local_irq_restore(flags);
3304 }
3305
3306 /*
3307 * Free a list of 0-order pages
3308 */
3309 void free_unref_page_list(struct list_head *list)
3310 {
3311 struct page *page, *next;
3312 unsigned long flags, pfn;
3313 int batch_count = 0;
3314
3315 /* Prepare pages for freeing */
3316 list_for_each_entry_safe(page, next, list, lru) {
3317 pfn = page_to_pfn(page);
3318 if (!free_unref_page_prepare(page, pfn))
3319 list_del(&page->lru);
3320 set_page_private(page, pfn);
3321 }
3322
3323 local_irq_save(flags);
3324 list_for_each_entry_safe(page, next, list, lru) {
3325 unsigned long pfn = page_private(page);
3326
3327 set_page_private(page, 0);
3328 trace_mm_page_free_batched(page);
3329 free_unref_page_commit(page, pfn);
3330
3331 /*
3332 * Guard against excessive IRQ disabled times when we get
3333 * a large list of pages to free.
3334 */
3335 if (++batch_count == SWAP_CLUSTER_MAX) {
3336 local_irq_restore(flags);
3337 batch_count = 0;
3338 local_irq_save(flags);
3339 }
3340 }
3341 local_irq_restore(flags);
3342 }
3343
3344 /*
3345 * split_page takes a non-compound higher-order page, and splits it into
3346 * n (1<<order) sub-pages: page[0..n]
3347 * Each sub-page must be freed individually.
3348 *
3349 * Note: this is probably too low level an operation for use in drivers.
3350 * Please consult with lkml before using this in your driver.
3351 */
3352 void split_page(struct page *page, unsigned int order)
3353 {
3354 int i;
3355
3356 VM_BUG_ON_PAGE(PageCompound(page), page);
3357 VM_BUG_ON_PAGE(!page_count(page), page);
3358
3359 for (i = 1; i < (1 << order); i++)
3360 set_page_refcounted(page + i);
3361 split_page_owner(page, 1 << order);
3362 split_page_memcg(page, 1 << order);
3363 }
3364 EXPORT_SYMBOL_GPL(split_page);
3365
3366 int __isolate_free_page(struct page *page, unsigned int order)
3367 {
3368 unsigned long watermark;
3369 struct zone *zone;
3370 int mt;
3371
3372 BUG_ON(!PageBuddy(page));
3373
3374 zone = page_zone(page);
3375 mt = get_pageblock_migratetype(page);
3376
3377 if (!is_migrate_isolate(mt)) {
3378 /*
3379 * Obey watermarks as if the page was being allocated. We can
3380 * emulate a high-order watermark check with a raised order-0
3381 * watermark, because we already know our high-order page
3382 * exists.
3383 */
3384 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3385 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3386 return 0;
3387
3388 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3389 }
3390
3391 /* Remove page from free list */
3392
3393 del_page_from_free_list(page, zone, order);
3394
3395 /*
3396 * Set the pageblock if the isolated page is at least half of a
3397 * pageblock
3398 */
3399 if (order >= pageblock_order - 1) {
3400 struct page *endpage = page + (1 << order) - 1;
3401 for (; page < endpage; page += pageblock_nr_pages) {
3402 int mt = get_pageblock_migratetype(page);
3403 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3404 && !is_migrate_highatomic(mt))
3405 set_pageblock_migratetype(page,
3406 MIGRATE_MOVABLE);
3407 }
3408 }
3409
3410
3411 return 1UL << order;
3412 }
3413
3414 /**
3415 * __putback_isolated_page - Return a now-isolated page back where we got it
3416 * @page: Page that was isolated
3417 * @order: Order of the isolated page
3418 * @mt: The page's pageblock's migratetype
3419 *
3420 * This function is meant to return a page pulled from the free lists via
3421 * __isolate_free_page back to the free lists they were pulled from.
3422 */
3423 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3424 {
3425 struct zone *zone = page_zone(page);
3426
3427 /* zone lock should be held when this function is called */
3428 lockdep_assert_held(&zone->lock);
3429
3430 /* Return isolated page to tail of freelist. */
3431 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3432 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3433 }
3434
3435 /*
3436 * Update NUMA hit/miss statistics
3437 *
3438 * Must be called with interrupts disabled.
3439 */
3440 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3441 {
3442 #ifdef CONFIG_NUMA
3443 enum numa_stat_item local_stat = NUMA_LOCAL;
3444
3445 /* skip numa counters update if numa stats is disabled */
3446 if (!static_branch_likely(&vm_numa_stat_key))
3447 return;
3448
3449 if (zone_to_nid(z) != numa_node_id())
3450 local_stat = NUMA_OTHER;
3451
3452 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3453 __inc_numa_state(z, NUMA_HIT);
3454 else {
3455 __inc_numa_state(z, NUMA_MISS);
3456 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3457 }
3458 __inc_numa_state(z, local_stat);
3459 #endif
3460 }
3461
3462 /* Remove page from the per-cpu list, caller must protect the list */
3463 static inline
3464 struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3465 unsigned int alloc_flags,
3466 struct per_cpu_pages *pcp,
3467 struct list_head *list)
3468 {
3469 struct page *page;
3470
3471 do {
3472 if (list_empty(list)) {
3473 pcp->count += rmqueue_bulk(zone, 0,
3474 READ_ONCE(pcp->batch), list,
3475 migratetype, alloc_flags);
3476 if (unlikely(list_empty(list)))
3477 return NULL;
3478 }
3479
3480 page = list_first_entry(list, struct page, lru);
3481 list_del(&page->lru);
3482 pcp->count--;
3483 } while (check_new_pcp(page));
3484
3485 return page;
3486 }
3487
3488 /* Lock and remove page from the per-cpu list */
3489 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3490 struct zone *zone, gfp_t gfp_flags,
3491 int migratetype, unsigned int alloc_flags)
3492 {
3493 struct per_cpu_pages *pcp;
3494 struct list_head *list;
3495 struct page *page;
3496 unsigned long flags;
3497
3498 local_irq_save(flags);
3499 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3500 list = &pcp->lists[migratetype];
3501 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3502 if (page) {
3503 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3504 zone_statistics(preferred_zone, zone);
3505 }
3506 local_irq_restore(flags);
3507 return page;
3508 }
3509
3510 /*
3511 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3512 */
3513 static inline
3514 struct page *rmqueue(struct zone *preferred_zone,
3515 struct zone *zone, unsigned int order,
3516 gfp_t gfp_flags, unsigned int alloc_flags,
3517 int migratetype)
3518 {
3519 unsigned long flags;
3520 struct page *page;
3521
3522 if (likely(order == 0)) {
3523 /*
3524 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3525 * we need to skip it when CMA area isn't allowed.
3526 */
3527 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3528 migratetype != MIGRATE_MOVABLE) {
3529 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3530 migratetype, alloc_flags);
3531 goto out;
3532 }
3533 }
3534
3535 /*
3536 * We most definitely don't want callers attempting to
3537 * allocate greater than order-1 page units with __GFP_NOFAIL.
3538 */
3539 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3540 spin_lock_irqsave(&zone->lock, flags);
3541
3542 do {
3543 page = NULL;
3544 /*
3545 * order-0 request can reach here when the pcplist is skipped
3546 * due to non-CMA allocation context. HIGHATOMIC area is
3547 * reserved for high-order atomic allocation, so order-0
3548 * request should skip it.
3549 */
3550 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3551 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3552 if (page)
3553 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3554 }
3555 if (!page)
3556 page = __rmqueue(zone, order, migratetype, alloc_flags);
3557 } while (page && check_new_pages(page, order));
3558 spin_unlock(&zone->lock);
3559 if (!page)
3560 goto failed;
3561 __mod_zone_freepage_state(zone, -(1 << order),
3562 get_pcppage_migratetype(page));
3563
3564 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3565 zone_statistics(preferred_zone, zone);
3566 local_irq_restore(flags);
3567
3568 out:
3569 /* Separate test+clear to avoid unnecessary atomics */
3570 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3571 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3572 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3573 }
3574
3575 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3576 return page;
3577
3578 failed:
3579 local_irq_restore(flags);
3580 return NULL;
3581 }
3582
3583 #ifdef CONFIG_FAIL_PAGE_ALLOC
3584
3585 static struct {
3586 struct fault_attr attr;
3587
3588 bool ignore_gfp_highmem;
3589 bool ignore_gfp_reclaim;
3590 u32 min_order;
3591 } fail_page_alloc = {
3592 .attr = FAULT_ATTR_INITIALIZER,
3593 .ignore_gfp_reclaim = true,
3594 .ignore_gfp_highmem = true,
3595 .min_order = 1,
3596 };
3597
3598 static int __init setup_fail_page_alloc(char *str)
3599 {
3600 return setup_fault_attr(&fail_page_alloc.attr, str);
3601 }
3602 __setup("fail_page_alloc=", setup_fail_page_alloc);
3603
3604 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3605 {
3606 if (order < fail_page_alloc.min_order)
3607 return false;
3608 if (gfp_mask & __GFP_NOFAIL)
3609 return false;
3610 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3611 return false;
3612 if (fail_page_alloc.ignore_gfp_reclaim &&
3613 (gfp_mask & __GFP_DIRECT_RECLAIM))
3614 return false;
3615
3616 return should_fail(&fail_page_alloc.attr, 1 << order);
3617 }
3618
3619 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3620
3621 static int __init fail_page_alloc_debugfs(void)
3622 {
3623 umode_t mode = S_IFREG | 0600;
3624 struct dentry *dir;
3625
3626 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3627 &fail_page_alloc.attr);
3628
3629 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3630 &fail_page_alloc.ignore_gfp_reclaim);
3631 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3632 &fail_page_alloc.ignore_gfp_highmem);
3633 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3634
3635 return 0;
3636 }
3637
3638 late_initcall(fail_page_alloc_debugfs);
3639
3640 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3641
3642 #else /* CONFIG_FAIL_PAGE_ALLOC */
3643
3644 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3645 {
3646 return false;
3647 }
3648
3649 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3650
3651 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3652 {
3653 return __should_fail_alloc_page(gfp_mask, order);
3654 }
3655 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3656
3657 static inline long __zone_watermark_unusable_free(struct zone *z,
3658 unsigned int order, unsigned int alloc_flags)
3659 {
3660 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3661 long unusable_free = (1 << order) - 1;
3662
3663 /*
3664 * If the caller does not have rights to ALLOC_HARDER then subtract
3665 * the high-atomic reserves. This will over-estimate the size of the
3666 * atomic reserve but it avoids a search.
3667 */
3668 if (likely(!alloc_harder))
3669 unusable_free += z->nr_reserved_highatomic;
3670
3671 #ifdef CONFIG_CMA
3672 /* If allocation can't use CMA areas don't use free CMA pages */
3673 if (!(alloc_flags & ALLOC_CMA))
3674 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3675 #endif
3676
3677 return unusable_free;
3678 }
3679
3680 /*
3681 * Return true if free base pages are above 'mark'. For high-order checks it
3682 * will return true of the order-0 watermark is reached and there is at least
3683 * one free page of a suitable size. Checking now avoids taking the zone lock
3684 * to check in the allocation paths if no pages are free.
3685 */
3686 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3687 int highest_zoneidx, unsigned int alloc_flags,
3688 long free_pages)
3689 {
3690 long min = mark;
3691 int o;
3692 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3693
3694 /* free_pages may go negative - that's OK */
3695 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3696
3697 if (alloc_flags & ALLOC_HIGH)
3698 min -= min / 2;
3699
3700 if (unlikely(alloc_harder)) {
3701 /*
3702 * OOM victims can try even harder than normal ALLOC_HARDER
3703 * users on the grounds that it's definitely going to be in
3704 * the exit path shortly and free memory. Any allocation it
3705 * makes during the free path will be small and short-lived.
3706 */
3707 if (alloc_flags & ALLOC_OOM)
3708 min -= min / 2;
3709 else
3710 min -= min / 4;
3711 }
3712
3713 /*
3714 * Check watermarks for an order-0 allocation request. If these
3715 * are not met, then a high-order request also cannot go ahead
3716 * even if a suitable page happened to be free.
3717 */
3718 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3719 return false;
3720
3721 /* If this is an order-0 request then the watermark is fine */
3722 if (!order)
3723 return true;
3724
3725 /* For a high-order request, check at least one suitable page is free */
3726 for (o = order; o < MAX_ORDER; o++) {
3727 struct free_area *area = &z->free_area[o];
3728 int mt;
3729
3730 if (!area->nr_free)
3731 continue;
3732
3733 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3734 if (!free_area_empty(area, mt))
3735 return true;
3736 }
3737
3738 #ifdef CONFIG_CMA
3739 if ((alloc_flags & ALLOC_CMA) &&
3740 !free_area_empty(area, MIGRATE_CMA)) {
3741 return true;
3742 }
3743 #endif
3744 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3745 return true;
3746 }
3747 return false;
3748 }
3749
3750 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3751 int highest_zoneidx, unsigned int alloc_flags)
3752 {
3753 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3754 zone_page_state(z, NR_FREE_PAGES));
3755 }
3756
3757 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3758 unsigned long mark, int highest_zoneidx,
3759 unsigned int alloc_flags, gfp_t gfp_mask)
3760 {
3761 long free_pages;
3762
3763 free_pages = zone_page_state(z, NR_FREE_PAGES);
3764
3765 /*
3766 * Fast check for order-0 only. If this fails then the reserves
3767 * need to be calculated.
3768 */
3769 if (!order) {
3770 long fast_free;
3771
3772 fast_free = free_pages;
3773 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3774 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3775 return true;
3776 }
3777
3778 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3779 free_pages))
3780 return true;
3781 /*
3782 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3783 * when checking the min watermark. The min watermark is the
3784 * point where boosting is ignored so that kswapd is woken up
3785 * when below the low watermark.
3786 */
3787 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3788 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3789 mark = z->_watermark[WMARK_MIN];
3790 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3791 alloc_flags, free_pages);
3792 }
3793
3794 return false;
3795 }
3796
3797 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3798 unsigned long mark, int highest_zoneidx)
3799 {
3800 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3801
3802 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3803 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3804
3805 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3806 free_pages);
3807 }
3808
3809 #ifdef CONFIG_NUMA
3810 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3811 {
3812 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3813 node_reclaim_distance;
3814 }
3815 #else /* CONFIG_NUMA */
3816 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3817 {
3818 return true;
3819 }
3820 #endif /* CONFIG_NUMA */
3821
3822 /*
3823 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3824 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3825 * premature use of a lower zone may cause lowmem pressure problems that
3826 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3827 * probably too small. It only makes sense to spread allocations to avoid
3828 * fragmentation between the Normal and DMA32 zones.
3829 */
3830 static inline unsigned int
3831 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3832 {
3833 unsigned int alloc_flags;
3834
3835 /*
3836 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3837 * to save a branch.
3838 */
3839 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3840
3841 #ifdef CONFIG_ZONE_DMA32
3842 if (!zone)
3843 return alloc_flags;
3844
3845 if (zone_idx(zone) != ZONE_NORMAL)
3846 return alloc_flags;
3847
3848 /*
3849 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3850 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3851 * on UMA that if Normal is populated then so is DMA32.
3852 */
3853 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3854 if (nr_online_nodes > 1 && !populated_zone(--zone))
3855 return alloc_flags;
3856
3857 alloc_flags |= ALLOC_NOFRAGMENT;
3858 #endif /* CONFIG_ZONE_DMA32 */
3859 return alloc_flags;
3860 }
3861
3862 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3863 unsigned int alloc_flags)
3864 {
3865 #ifdef CONFIG_CMA
3866 unsigned int pflags = current->flags;
3867
3868 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3869 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3870 alloc_flags |= ALLOC_CMA;
3871
3872 #endif
3873 return alloc_flags;
3874 }
3875
3876 /*
3877 * get_page_from_freelist goes through the zonelist trying to allocate
3878 * a page.
3879 */
3880 static struct page *
3881 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3882 const struct alloc_context *ac)
3883 {
3884 struct zoneref *z;
3885 struct zone *zone;
3886 struct pglist_data *last_pgdat_dirty_limit = NULL;
3887 bool no_fallback;
3888
3889 retry:
3890 /*
3891 * Scan zonelist, looking for a zone with enough free.
3892 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3893 */
3894 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3895 z = ac->preferred_zoneref;
3896 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3897 ac->nodemask) {
3898 struct page *page;
3899 unsigned long mark;
3900
3901 if (cpusets_enabled() &&
3902 (alloc_flags & ALLOC_CPUSET) &&
3903 !__cpuset_zone_allowed(zone, gfp_mask))
3904 continue;
3905 /*
3906 * When allocating a page cache page for writing, we
3907 * want to get it from a node that is within its dirty
3908 * limit, such that no single node holds more than its
3909 * proportional share of globally allowed dirty pages.
3910 * The dirty limits take into account the node's
3911 * lowmem reserves and high watermark so that kswapd
3912 * should be able to balance it without having to
3913 * write pages from its LRU list.
3914 *
3915 * XXX: For now, allow allocations to potentially
3916 * exceed the per-node dirty limit in the slowpath
3917 * (spread_dirty_pages unset) before going into reclaim,
3918 * which is important when on a NUMA setup the allowed
3919 * nodes are together not big enough to reach the
3920 * global limit. The proper fix for these situations
3921 * will require awareness of nodes in the
3922 * dirty-throttling and the flusher threads.
3923 */
3924 if (ac->spread_dirty_pages) {
3925 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3926 continue;
3927
3928 if (!node_dirty_ok(zone->zone_pgdat)) {
3929 last_pgdat_dirty_limit = zone->zone_pgdat;
3930 continue;
3931 }
3932 }
3933
3934 if (no_fallback && nr_online_nodes > 1 &&
3935 zone != ac->preferred_zoneref->zone) {
3936 int local_nid;
3937
3938 /*
3939 * If moving to a remote node, retry but allow
3940 * fragmenting fallbacks. Locality is more important
3941 * than fragmentation avoidance.
3942 */
3943 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3944 if (zone_to_nid(zone) != local_nid) {
3945 alloc_flags &= ~ALLOC_NOFRAGMENT;
3946 goto retry;
3947 }
3948 }
3949
3950 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3951 if (!zone_watermark_fast(zone, order, mark,
3952 ac->highest_zoneidx, alloc_flags,
3953 gfp_mask)) {
3954 int ret;
3955
3956 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3957 /*
3958 * Watermark failed for this zone, but see if we can
3959 * grow this zone if it contains deferred pages.
3960 */
3961 if (static_branch_unlikely(&deferred_pages)) {
3962 if (_deferred_grow_zone(zone, order))
3963 goto try_this_zone;
3964 }
3965 #endif
3966 /* Checked here to keep the fast path fast */
3967 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3968 if (alloc_flags & ALLOC_NO_WATERMARKS)
3969 goto try_this_zone;
3970
3971 if (!node_reclaim_enabled() ||
3972 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3973 continue;
3974
3975 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3976 switch (ret) {
3977 case NODE_RECLAIM_NOSCAN:
3978 /* did not scan */
3979 continue;
3980 case NODE_RECLAIM_FULL:
3981 /* scanned but unreclaimable */
3982 continue;
3983 default:
3984 /* did we reclaim enough */
3985 if (zone_watermark_ok(zone, order, mark,
3986 ac->highest_zoneidx, alloc_flags))
3987 goto try_this_zone;
3988
3989 continue;
3990 }
3991 }
3992
3993 try_this_zone:
3994 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3995 gfp_mask, alloc_flags, ac->migratetype);
3996 if (page) {
3997 prep_new_page(page, order, gfp_mask, alloc_flags);
3998
3999 /*
4000 * If this is a high-order atomic allocation then check
4001 * if the pageblock should be reserved for the future
4002 */
4003 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4004 reserve_highatomic_pageblock(page, zone, order);
4005
4006 return page;
4007 } else {
4008 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4009 /* Try again if zone has deferred pages */
4010 if (static_branch_unlikely(&deferred_pages)) {
4011 if (_deferred_grow_zone(zone, order))
4012 goto try_this_zone;
4013 }
4014 #endif
4015 }
4016 }
4017
4018 /*
4019 * It's possible on a UMA machine to get through all zones that are
4020 * fragmented. If avoiding fragmentation, reset and try again.
4021 */
4022 if (no_fallback) {
4023 alloc_flags &= ~ALLOC_NOFRAGMENT;
4024 goto retry;
4025 }
4026
4027 return NULL;
4028 }
4029
4030 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4031 {
4032 unsigned int filter = SHOW_MEM_FILTER_NODES;
4033
4034 /*
4035 * This documents exceptions given to allocations in certain
4036 * contexts that are allowed to allocate outside current's set
4037 * of allowed nodes.
4038 */
4039 if (!(gfp_mask & __GFP_NOMEMALLOC))
4040 if (tsk_is_oom_victim(current) ||
4041 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4042 filter &= ~SHOW_MEM_FILTER_NODES;
4043 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4044 filter &= ~SHOW_MEM_FILTER_NODES;
4045
4046 show_mem(filter, nodemask);
4047 }
4048
4049 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4050 {
4051 struct va_format vaf;
4052 va_list args;
4053 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4054
4055 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4056 return;
4057
4058 va_start(args, fmt);
4059 vaf.fmt = fmt;
4060 vaf.va = &args;
4061 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4062 current->comm, &vaf, gfp_mask, &gfp_mask,
4063 nodemask_pr_args(nodemask));
4064 va_end(args);
4065
4066 cpuset_print_current_mems_allowed();
4067 pr_cont("\n");
4068 dump_stack();
4069 warn_alloc_show_mem(gfp_mask, nodemask);
4070 }
4071
4072 static inline struct page *
4073 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4074 unsigned int alloc_flags,
4075 const struct alloc_context *ac)
4076 {
4077 struct page *page;
4078
4079 page = get_page_from_freelist(gfp_mask, order,
4080 alloc_flags|ALLOC_CPUSET, ac);
4081 /*
4082 * fallback to ignore cpuset restriction if our nodes
4083 * are depleted
4084 */
4085 if (!page)
4086 page = get_page_from_freelist(gfp_mask, order,
4087 alloc_flags, ac);
4088
4089 return page;
4090 }
4091
4092 static inline struct page *
4093 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4094 const struct alloc_context *ac, unsigned long *did_some_progress)
4095 {
4096 struct oom_control oc = {
4097 .zonelist = ac->zonelist,
4098 .nodemask = ac->nodemask,
4099 .memcg = NULL,
4100 .gfp_mask = gfp_mask,
4101 .order = order,
4102 };
4103 struct page *page;
4104
4105 *did_some_progress = 0;
4106
4107 /*
4108 * Acquire the oom lock. If that fails, somebody else is
4109 * making progress for us.
4110 */
4111 if (!mutex_trylock(&oom_lock)) {
4112 *did_some_progress = 1;
4113 schedule_timeout_uninterruptible(1);
4114 return NULL;
4115 }
4116
4117 /*
4118 * Go through the zonelist yet one more time, keep very high watermark
4119 * here, this is only to catch a parallel oom killing, we must fail if
4120 * we're still under heavy pressure. But make sure that this reclaim
4121 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4122 * allocation which will never fail due to oom_lock already held.
4123 */
4124 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4125 ~__GFP_DIRECT_RECLAIM, order,
4126 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4127 if (page)
4128 goto out;
4129
4130 /* Coredumps can quickly deplete all memory reserves */
4131 if (current->flags & PF_DUMPCORE)
4132 goto out;
4133 /* The OOM killer will not help higher order allocs */
4134 if (order > PAGE_ALLOC_COSTLY_ORDER)
4135 goto out;
4136 /*
4137 * We have already exhausted all our reclaim opportunities without any
4138 * success so it is time to admit defeat. We will skip the OOM killer
4139 * because it is very likely that the caller has a more reasonable
4140 * fallback than shooting a random task.
4141 *
4142 * The OOM killer may not free memory on a specific node.
4143 */
4144 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4145 goto out;
4146 /* The OOM killer does not needlessly kill tasks for lowmem */
4147 if (ac->highest_zoneidx < ZONE_NORMAL)
4148 goto out;
4149 if (pm_suspended_storage())
4150 goto out;
4151 /*
4152 * XXX: GFP_NOFS allocations should rather fail than rely on
4153 * other request to make a forward progress.
4154 * We are in an unfortunate situation where out_of_memory cannot
4155 * do much for this context but let's try it to at least get
4156 * access to memory reserved if the current task is killed (see
4157 * out_of_memory). Once filesystems are ready to handle allocation
4158 * failures more gracefully we should just bail out here.
4159 */
4160
4161 /* Exhausted what can be done so it's blame time */
4162 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4163 *did_some_progress = 1;
4164
4165 /*
4166 * Help non-failing allocations by giving them access to memory
4167 * reserves
4168 */
4169 if (gfp_mask & __GFP_NOFAIL)
4170 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4171 ALLOC_NO_WATERMARKS, ac);
4172 }
4173 out:
4174 mutex_unlock(&oom_lock);
4175 return page;
4176 }
4177
4178 /*
4179 * Maximum number of compaction retries wit a progress before OOM
4180 * killer is consider as the only way to move forward.
4181 */
4182 #define MAX_COMPACT_RETRIES 16
4183
4184 #ifdef CONFIG_COMPACTION
4185 /* Try memory compaction for high-order allocations before reclaim */
4186 static struct page *
4187 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4188 unsigned int alloc_flags, const struct alloc_context *ac,
4189 enum compact_priority prio, enum compact_result *compact_result)
4190 {
4191 struct page *page = NULL;
4192 unsigned long pflags;
4193 unsigned int noreclaim_flag;
4194
4195 if (!order)
4196 return NULL;
4197
4198 psi_memstall_enter(&pflags);
4199 noreclaim_flag = memalloc_noreclaim_save();
4200
4201 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4202 prio, &page);
4203
4204 memalloc_noreclaim_restore(noreclaim_flag);
4205 psi_memstall_leave(&pflags);
4206
4207 if (*compact_result == COMPACT_SKIPPED)
4208 return NULL;
4209 /*
4210 * At least in one zone compaction wasn't deferred or skipped, so let's
4211 * count a compaction stall
4212 */
4213 count_vm_event(COMPACTSTALL);
4214
4215 /* Prep a captured page if available */
4216 if (page)
4217 prep_new_page(page, order, gfp_mask, alloc_flags);
4218
4219 /* Try get a page from the freelist if available */
4220 if (!page)
4221 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4222
4223 if (page) {
4224 struct zone *zone = page_zone(page);
4225
4226 zone->compact_blockskip_flush = false;
4227 compaction_defer_reset(zone, order, true);
4228 count_vm_event(COMPACTSUCCESS);
4229 return page;
4230 }
4231
4232 /*
4233 * It's bad if compaction run occurs and fails. The most likely reason
4234 * is that pages exist, but not enough to satisfy watermarks.
4235 */
4236 count_vm_event(COMPACTFAIL);
4237
4238 cond_resched();
4239
4240 return NULL;
4241 }
4242
4243 static inline bool
4244 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4245 enum compact_result compact_result,
4246 enum compact_priority *compact_priority,
4247 int *compaction_retries)
4248 {
4249 int max_retries = MAX_COMPACT_RETRIES;
4250 int min_priority;
4251 bool ret = false;
4252 int retries = *compaction_retries;
4253 enum compact_priority priority = *compact_priority;
4254
4255 if (!order)
4256 return false;
4257
4258 if (compaction_made_progress(compact_result))
4259 (*compaction_retries)++;
4260
4261 /*
4262 * compaction considers all the zone as desperately out of memory
4263 * so it doesn't really make much sense to retry except when the
4264 * failure could be caused by insufficient priority
4265 */
4266 if (compaction_failed(compact_result))
4267 goto check_priority;
4268
4269 /*
4270 * compaction was skipped because there are not enough order-0 pages
4271 * to work with, so we retry only if it looks like reclaim can help.
4272 */
4273 if (compaction_needs_reclaim(compact_result)) {
4274 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4275 goto out;
4276 }
4277
4278 /*
4279 * make sure the compaction wasn't deferred or didn't bail out early
4280 * due to locks contention before we declare that we should give up.
4281 * But the next retry should use a higher priority if allowed, so
4282 * we don't just keep bailing out endlessly.
4283 */
4284 if (compaction_withdrawn(compact_result)) {
4285 goto check_priority;
4286 }
4287
4288 /*
4289 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4290 * costly ones because they are de facto nofail and invoke OOM
4291 * killer to move on while costly can fail and users are ready
4292 * to cope with that. 1/4 retries is rather arbitrary but we
4293 * would need much more detailed feedback from compaction to
4294 * make a better decision.
4295 */
4296 if (order > PAGE_ALLOC_COSTLY_ORDER)
4297 max_retries /= 4;
4298 if (*compaction_retries <= max_retries) {
4299 ret = true;
4300 goto out;
4301 }
4302
4303 /*
4304 * Make sure there are attempts at the highest priority if we exhausted
4305 * all retries or failed at the lower priorities.
4306 */
4307 check_priority:
4308 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4309 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4310
4311 if (*compact_priority > min_priority) {
4312 (*compact_priority)--;
4313 *compaction_retries = 0;
4314 ret = true;
4315 }
4316 out:
4317 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4318 return ret;
4319 }
4320 #else
4321 static inline struct page *
4322 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4323 unsigned int alloc_flags, const struct alloc_context *ac,
4324 enum compact_priority prio, enum compact_result *compact_result)
4325 {
4326 *compact_result = COMPACT_SKIPPED;
4327 return NULL;
4328 }
4329
4330 static inline bool
4331 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4332 enum compact_result compact_result,
4333 enum compact_priority *compact_priority,
4334 int *compaction_retries)
4335 {
4336 struct zone *zone;
4337 struct zoneref *z;
4338
4339 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4340 return false;
4341
4342 /*
4343 * There are setups with compaction disabled which would prefer to loop
4344 * inside the allocator rather than hit the oom killer prematurely.
4345 * Let's give them a good hope and keep retrying while the order-0
4346 * watermarks are OK.
4347 */
4348 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4349 ac->highest_zoneidx, ac->nodemask) {
4350 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4351 ac->highest_zoneidx, alloc_flags))
4352 return true;
4353 }
4354 return false;
4355 }
4356 #endif /* CONFIG_COMPACTION */
4357
4358 #ifdef CONFIG_LOCKDEP
4359 static struct lockdep_map __fs_reclaim_map =
4360 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4361
4362 static bool __need_reclaim(gfp_t gfp_mask)
4363 {
4364 /* no reclaim without waiting on it */
4365 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4366 return false;
4367
4368 /* this guy won't enter reclaim */
4369 if (current->flags & PF_MEMALLOC)
4370 return false;
4371
4372 if (gfp_mask & __GFP_NOLOCKDEP)
4373 return false;
4374
4375 return true;
4376 }
4377
4378 void __fs_reclaim_acquire(void)
4379 {
4380 lock_map_acquire(&__fs_reclaim_map);
4381 }
4382
4383 void __fs_reclaim_release(void)
4384 {
4385 lock_map_release(&__fs_reclaim_map);
4386 }
4387
4388 void fs_reclaim_acquire(gfp_t gfp_mask)
4389 {
4390 gfp_mask = current_gfp_context(gfp_mask);
4391
4392 if (__need_reclaim(gfp_mask)) {
4393 if (gfp_mask & __GFP_FS)
4394 __fs_reclaim_acquire();
4395
4396 #ifdef CONFIG_MMU_NOTIFIER
4397 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4398 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4399 #endif
4400
4401 }
4402 }
4403 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4404
4405 void fs_reclaim_release(gfp_t gfp_mask)
4406 {
4407 gfp_mask = current_gfp_context(gfp_mask);
4408
4409 if (__need_reclaim(gfp_mask)) {
4410 if (gfp_mask & __GFP_FS)
4411 __fs_reclaim_release();
4412 }
4413 }
4414 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4415 #endif
4416
4417 /* Perform direct synchronous page reclaim */
4418 static unsigned long
4419 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4420 const struct alloc_context *ac)
4421 {
4422 unsigned int noreclaim_flag;
4423 unsigned long pflags, progress;
4424
4425 cond_resched();
4426
4427 /* We now go into synchronous reclaim */
4428 cpuset_memory_pressure_bump();
4429 psi_memstall_enter(&pflags);
4430 fs_reclaim_acquire(gfp_mask);
4431 noreclaim_flag = memalloc_noreclaim_save();
4432
4433 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4434 ac->nodemask);
4435
4436 memalloc_noreclaim_restore(noreclaim_flag);
4437 fs_reclaim_release(gfp_mask);
4438 psi_memstall_leave(&pflags);
4439
4440 cond_resched();
4441
4442 return progress;
4443 }
4444
4445 /* The really slow allocator path where we enter direct reclaim */
4446 static inline struct page *
4447 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4448 unsigned int alloc_flags, const struct alloc_context *ac,
4449 unsigned long *did_some_progress)
4450 {
4451 struct page *page = NULL;
4452 bool drained = false;
4453
4454 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4455 if (unlikely(!(*did_some_progress)))
4456 return NULL;
4457
4458 retry:
4459 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4460
4461 /*
4462 * If an allocation failed after direct reclaim, it could be because
4463 * pages are pinned on the per-cpu lists or in high alloc reserves.
4464 * Shrink them and try again
4465 */
4466 if (!page && !drained) {
4467 unreserve_highatomic_pageblock(ac, false);
4468 drain_all_pages(NULL);
4469 drained = true;
4470 goto retry;
4471 }
4472
4473 return page;
4474 }
4475
4476 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4477 const struct alloc_context *ac)
4478 {
4479 struct zoneref *z;
4480 struct zone *zone;
4481 pg_data_t *last_pgdat = NULL;
4482 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4483
4484 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4485 ac->nodemask) {
4486 if (last_pgdat != zone->zone_pgdat)
4487 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4488 last_pgdat = zone->zone_pgdat;
4489 }
4490 }
4491
4492 static inline unsigned int
4493 gfp_to_alloc_flags(gfp_t gfp_mask)
4494 {
4495 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4496
4497 /*
4498 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4499 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4500 * to save two branches.
4501 */
4502 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4503 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4504
4505 /*
4506 * The caller may dip into page reserves a bit more if the caller
4507 * cannot run direct reclaim, or if the caller has realtime scheduling
4508 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4509 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4510 */
4511 alloc_flags |= (__force int)
4512 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4513
4514 if (gfp_mask & __GFP_ATOMIC) {
4515 /*
4516 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4517 * if it can't schedule.
4518 */
4519 if (!(gfp_mask & __GFP_NOMEMALLOC))
4520 alloc_flags |= ALLOC_HARDER;
4521 /*
4522 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4523 * comment for __cpuset_node_allowed().
4524 */
4525 alloc_flags &= ~ALLOC_CPUSET;
4526 } else if (unlikely(rt_task(current)) && !in_interrupt())
4527 alloc_flags |= ALLOC_HARDER;
4528
4529 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4530
4531 return alloc_flags;
4532 }
4533
4534 static bool oom_reserves_allowed(struct task_struct *tsk)
4535 {
4536 if (!tsk_is_oom_victim(tsk))
4537 return false;
4538
4539 /*
4540 * !MMU doesn't have oom reaper so give access to memory reserves
4541 * only to the thread with TIF_MEMDIE set
4542 */
4543 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4544 return false;
4545
4546 return true;
4547 }
4548
4549 /*
4550 * Distinguish requests which really need access to full memory
4551 * reserves from oom victims which can live with a portion of it
4552 */
4553 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4554 {
4555 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4556 return 0;
4557 if (gfp_mask & __GFP_MEMALLOC)
4558 return ALLOC_NO_WATERMARKS;
4559 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4560 return ALLOC_NO_WATERMARKS;
4561 if (!in_interrupt()) {
4562 if (current->flags & PF_MEMALLOC)
4563 return ALLOC_NO_WATERMARKS;
4564 else if (oom_reserves_allowed(current))
4565 return ALLOC_OOM;
4566 }
4567
4568 return 0;
4569 }
4570
4571 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4572 {
4573 return !!__gfp_pfmemalloc_flags(gfp_mask);
4574 }
4575
4576 /*
4577 * Checks whether it makes sense to retry the reclaim to make a forward progress
4578 * for the given allocation request.
4579 *
4580 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4581 * without success, or when we couldn't even meet the watermark if we
4582 * reclaimed all remaining pages on the LRU lists.
4583 *
4584 * Returns true if a retry is viable or false to enter the oom path.
4585 */
4586 static inline bool
4587 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4588 struct alloc_context *ac, int alloc_flags,
4589 bool did_some_progress, int *no_progress_loops)
4590 {
4591 struct zone *zone;
4592 struct zoneref *z;
4593 bool ret = false;
4594
4595 /*
4596 * Costly allocations might have made a progress but this doesn't mean
4597 * their order will become available due to high fragmentation so
4598 * always increment the no progress counter for them
4599 */
4600 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4601 *no_progress_loops = 0;
4602 else
4603 (*no_progress_loops)++;
4604
4605 /*
4606 * Make sure we converge to OOM if we cannot make any progress
4607 * several times in the row.
4608 */
4609 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4610 /* Before OOM, exhaust highatomic_reserve */
4611 return unreserve_highatomic_pageblock(ac, true);
4612 }
4613
4614 /*
4615 * Keep reclaiming pages while there is a chance this will lead
4616 * somewhere. If none of the target zones can satisfy our allocation
4617 * request even if all reclaimable pages are considered then we are
4618 * screwed and have to go OOM.
4619 */
4620 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4621 ac->highest_zoneidx, ac->nodemask) {
4622 unsigned long available;
4623 unsigned long reclaimable;
4624 unsigned long min_wmark = min_wmark_pages(zone);
4625 bool wmark;
4626
4627 available = reclaimable = zone_reclaimable_pages(zone);
4628 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4629
4630 /*
4631 * Would the allocation succeed if we reclaimed all
4632 * reclaimable pages?
4633 */
4634 wmark = __zone_watermark_ok(zone, order, min_wmark,
4635 ac->highest_zoneidx, alloc_flags, available);
4636 trace_reclaim_retry_zone(z, order, reclaimable,
4637 available, min_wmark, *no_progress_loops, wmark);
4638 if (wmark) {
4639 /*
4640 * If we didn't make any progress and have a lot of
4641 * dirty + writeback pages then we should wait for
4642 * an IO to complete to slow down the reclaim and
4643 * prevent from pre mature OOM
4644 */
4645 if (!did_some_progress) {
4646 unsigned long write_pending;
4647
4648 write_pending = zone_page_state_snapshot(zone,
4649 NR_ZONE_WRITE_PENDING);
4650
4651 if (2 * write_pending > reclaimable) {
4652 congestion_wait(BLK_RW_ASYNC, HZ/10);
4653 return true;
4654 }
4655 }
4656
4657 ret = true;
4658 goto out;
4659 }
4660 }
4661
4662 out:
4663 /*
4664 * Memory allocation/reclaim might be called from a WQ context and the
4665 * current implementation of the WQ concurrency control doesn't
4666 * recognize that a particular WQ is congested if the worker thread is
4667 * looping without ever sleeping. Therefore we have to do a short sleep
4668 * here rather than calling cond_resched().
4669 */
4670 if (current->flags & PF_WQ_WORKER)
4671 schedule_timeout_uninterruptible(1);
4672 else
4673 cond_resched();
4674 return ret;
4675 }
4676
4677 static inline bool
4678 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4679 {
4680 /*
4681 * It's possible that cpuset's mems_allowed and the nodemask from
4682 * mempolicy don't intersect. This should be normally dealt with by
4683 * policy_nodemask(), but it's possible to race with cpuset update in
4684 * such a way the check therein was true, and then it became false
4685 * before we got our cpuset_mems_cookie here.
4686 * This assumes that for all allocations, ac->nodemask can come only
4687 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4688 * when it does not intersect with the cpuset restrictions) or the
4689 * caller can deal with a violated nodemask.
4690 */
4691 if (cpusets_enabled() && ac->nodemask &&
4692 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4693 ac->nodemask = NULL;
4694 return true;
4695 }
4696
4697 /*
4698 * When updating a task's mems_allowed or mempolicy nodemask, it is
4699 * possible to race with parallel threads in such a way that our
4700 * allocation can fail while the mask is being updated. If we are about
4701 * to fail, check if the cpuset changed during allocation and if so,
4702 * retry.
4703 */
4704 if (read_mems_allowed_retry(cpuset_mems_cookie))
4705 return true;
4706
4707 return false;
4708 }
4709
4710 static inline struct page *
4711 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4712 struct alloc_context *ac)
4713 {
4714 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4715 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4716 struct page *page = NULL;
4717 unsigned int alloc_flags;
4718 unsigned long did_some_progress;
4719 enum compact_priority compact_priority;
4720 enum compact_result compact_result;
4721 int compaction_retries;
4722 int no_progress_loops;
4723 unsigned int cpuset_mems_cookie;
4724 int reserve_flags;
4725
4726 /*
4727 * We also sanity check to catch abuse of atomic reserves being used by
4728 * callers that are not in atomic context.
4729 */
4730 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4731 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4732 gfp_mask &= ~__GFP_ATOMIC;
4733
4734 retry_cpuset:
4735 compaction_retries = 0;
4736 no_progress_loops = 0;
4737 compact_priority = DEF_COMPACT_PRIORITY;
4738 cpuset_mems_cookie = read_mems_allowed_begin();
4739
4740 /*
4741 * The fast path uses conservative alloc_flags to succeed only until
4742 * kswapd needs to be woken up, and to avoid the cost of setting up
4743 * alloc_flags precisely. So we do that now.
4744 */
4745 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4746
4747 /*
4748 * We need to recalculate the starting point for the zonelist iterator
4749 * because we might have used different nodemask in the fast path, or
4750 * there was a cpuset modification and we are retrying - otherwise we
4751 * could end up iterating over non-eligible zones endlessly.
4752 */
4753 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4754 ac->highest_zoneidx, ac->nodemask);
4755 if (!ac->preferred_zoneref->zone)
4756 goto nopage;
4757
4758 if (alloc_flags & ALLOC_KSWAPD)
4759 wake_all_kswapds(order, gfp_mask, ac);
4760
4761 /*
4762 * The adjusted alloc_flags might result in immediate success, so try
4763 * that first
4764 */
4765 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4766 if (page)
4767 goto got_pg;
4768
4769 /*
4770 * For costly allocations, try direct compaction first, as it's likely
4771 * that we have enough base pages and don't need to reclaim. For non-
4772 * movable high-order allocations, do that as well, as compaction will
4773 * try prevent permanent fragmentation by migrating from blocks of the
4774 * same migratetype.
4775 * Don't try this for allocations that are allowed to ignore
4776 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4777 */
4778 if (can_direct_reclaim &&
4779 (costly_order ||
4780 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4781 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4782 page = __alloc_pages_direct_compact(gfp_mask, order,
4783 alloc_flags, ac,
4784 INIT_COMPACT_PRIORITY,
4785 &compact_result);
4786 if (page)
4787 goto got_pg;
4788
4789 /*
4790 * Checks for costly allocations with __GFP_NORETRY, which
4791 * includes some THP page fault allocations
4792 */
4793 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4794 /*
4795 * If allocating entire pageblock(s) and compaction
4796 * failed because all zones are below low watermarks
4797 * or is prohibited because it recently failed at this
4798 * order, fail immediately unless the allocator has
4799 * requested compaction and reclaim retry.
4800 *
4801 * Reclaim is
4802 * - potentially very expensive because zones are far
4803 * below their low watermarks or this is part of very
4804 * bursty high order allocations,
4805 * - not guaranteed to help because isolate_freepages()
4806 * may not iterate over freed pages as part of its
4807 * linear scan, and
4808 * - unlikely to make entire pageblocks free on its
4809 * own.
4810 */
4811 if (compact_result == COMPACT_SKIPPED ||
4812 compact_result == COMPACT_DEFERRED)
4813 goto nopage;
4814
4815 /*
4816 * Looks like reclaim/compaction is worth trying, but
4817 * sync compaction could be very expensive, so keep
4818 * using async compaction.
4819 */
4820 compact_priority = INIT_COMPACT_PRIORITY;
4821 }
4822 }
4823
4824 retry:
4825 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4826 if (alloc_flags & ALLOC_KSWAPD)
4827 wake_all_kswapds(order, gfp_mask, ac);
4828
4829 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4830 if (reserve_flags)
4831 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4832
4833 /*
4834 * Reset the nodemask and zonelist iterators if memory policies can be
4835 * ignored. These allocations are high priority and system rather than
4836 * user oriented.
4837 */
4838 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4839 ac->nodemask = NULL;
4840 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4841 ac->highest_zoneidx, ac->nodemask);
4842 }
4843
4844 /* Attempt with potentially adjusted zonelist and alloc_flags */
4845 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4846 if (page)
4847 goto got_pg;
4848
4849 /* Caller is not willing to reclaim, we can't balance anything */
4850 if (!can_direct_reclaim)
4851 goto nopage;
4852
4853 /* Avoid recursion of direct reclaim */
4854 if (current->flags & PF_MEMALLOC)
4855 goto nopage;
4856
4857 /* Try direct reclaim and then allocating */
4858 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4859 &did_some_progress);
4860 if (page)
4861 goto got_pg;
4862
4863 /* Try direct compaction and then allocating */
4864 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4865 compact_priority, &compact_result);
4866 if (page)
4867 goto got_pg;
4868
4869 /* Do not loop if specifically requested */
4870 if (gfp_mask & __GFP_NORETRY)
4871 goto nopage;
4872
4873 /*
4874 * Do not retry costly high order allocations unless they are
4875 * __GFP_RETRY_MAYFAIL
4876 */
4877 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4878 goto nopage;
4879
4880 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4881 did_some_progress > 0, &no_progress_loops))
4882 goto retry;
4883
4884 /*
4885 * It doesn't make any sense to retry for the compaction if the order-0
4886 * reclaim is not able to make any progress because the current
4887 * implementation of the compaction depends on the sufficient amount
4888 * of free memory (see __compaction_suitable)
4889 */
4890 if (did_some_progress > 0 &&
4891 should_compact_retry(ac, order, alloc_flags,
4892 compact_result, &compact_priority,
4893 &compaction_retries))
4894 goto retry;
4895
4896
4897 /* Deal with possible cpuset update races before we start OOM killing */
4898 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4899 goto retry_cpuset;
4900
4901 /* Reclaim has failed us, start killing things */
4902 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4903 if (page)
4904 goto got_pg;
4905
4906 /* Avoid allocations with no watermarks from looping endlessly */
4907 if (tsk_is_oom_victim(current) &&
4908 (alloc_flags & ALLOC_OOM ||
4909 (gfp_mask & __GFP_NOMEMALLOC)))
4910 goto nopage;
4911
4912 /* Retry as long as the OOM killer is making progress */
4913 if (did_some_progress) {
4914 no_progress_loops = 0;
4915 goto retry;
4916 }
4917
4918 nopage:
4919 /* Deal with possible cpuset update races before we fail */
4920 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4921 goto retry_cpuset;
4922
4923 /*
4924 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4925 * we always retry
4926 */
4927 if (gfp_mask & __GFP_NOFAIL) {
4928 /*
4929 * All existing users of the __GFP_NOFAIL are blockable, so warn
4930 * of any new users that actually require GFP_NOWAIT
4931 */
4932 if (WARN_ON_ONCE(!can_direct_reclaim))
4933 goto fail;
4934
4935 /*
4936 * PF_MEMALLOC request from this context is rather bizarre
4937 * because we cannot reclaim anything and only can loop waiting
4938 * for somebody to do a work for us
4939 */
4940 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4941
4942 /*
4943 * non failing costly orders are a hard requirement which we
4944 * are not prepared for much so let's warn about these users
4945 * so that we can identify them and convert them to something
4946 * else.
4947 */
4948 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4949
4950 /*
4951 * Help non-failing allocations by giving them access to memory
4952 * reserves but do not use ALLOC_NO_WATERMARKS because this
4953 * could deplete whole memory reserves which would just make
4954 * the situation worse
4955 */
4956 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4957 if (page)
4958 goto got_pg;
4959
4960 cond_resched();
4961 goto retry;
4962 }
4963 fail:
4964 warn_alloc(gfp_mask, ac->nodemask,
4965 "page allocation failure: order:%u", order);
4966 got_pg:
4967 return page;
4968 }
4969
4970 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4971 int preferred_nid, nodemask_t *nodemask,
4972 struct alloc_context *ac, gfp_t *alloc_gfp,
4973 unsigned int *alloc_flags)
4974 {
4975 ac->highest_zoneidx = gfp_zone(gfp_mask);
4976 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4977 ac->nodemask = nodemask;
4978 ac->migratetype = gfp_migratetype(gfp_mask);
4979
4980 if (cpusets_enabled()) {
4981 *alloc_gfp |= __GFP_HARDWALL;
4982 /*
4983 * When we are in the interrupt context, it is irrelevant
4984 * to the current task context. It means that any node ok.
4985 */
4986 if (!in_interrupt() && !ac->nodemask)
4987 ac->nodemask = &cpuset_current_mems_allowed;
4988 else
4989 *alloc_flags |= ALLOC_CPUSET;
4990 }
4991
4992 fs_reclaim_acquire(gfp_mask);
4993 fs_reclaim_release(gfp_mask);
4994
4995 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4996
4997 if (should_fail_alloc_page(gfp_mask, order))
4998 return false;
4999
5000 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
5001
5002 /* Dirty zone balancing only done in the fast path */
5003 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5004
5005 /*
5006 * The preferred zone is used for statistics but crucially it is
5007 * also used as the starting point for the zonelist iterator. It
5008 * may get reset for allocations that ignore memory policies.
5009 */
5010 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5011 ac->highest_zoneidx, ac->nodemask);
5012
5013 return true;
5014 }
5015
5016 /*
5017 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5018 * @gfp: GFP flags for the allocation
5019 * @preferred_nid: The preferred NUMA node ID to allocate from
5020 * @nodemask: Set of nodes to allocate from, may be NULL
5021 * @nr_pages: The number of pages desired on the list or array
5022 * @page_list: Optional list to store the allocated pages
5023 * @page_array: Optional array to store the pages
5024 *
5025 * This is a batched version of the page allocator that attempts to
5026 * allocate nr_pages quickly. Pages are added to page_list if page_list
5027 * is not NULL, otherwise it is assumed that the page_array is valid.
5028 *
5029 * For lists, nr_pages is the number of pages that should be allocated.
5030 *
5031 * For arrays, only NULL elements are populated with pages and nr_pages
5032 * is the maximum number of pages that will be stored in the array.
5033 *
5034 * Returns the number of pages on the list or array.
5035 */
5036 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5037 nodemask_t *nodemask, int nr_pages,
5038 struct list_head *page_list,
5039 struct page **page_array)
5040 {
5041 struct page *page;
5042 unsigned long flags;
5043 struct zone *zone;
5044 struct zoneref *z;
5045 struct per_cpu_pages *pcp;
5046 struct list_head *pcp_list;
5047 struct alloc_context ac;
5048 gfp_t alloc_gfp;
5049 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5050 int nr_populated = 0;
5051
5052 if (unlikely(nr_pages <= 0))
5053 return 0;
5054
5055 /*
5056 * Skip populated array elements to determine if any pages need
5057 * to be allocated before disabling IRQs.
5058 */
5059 while (page_array && page_array[nr_populated] && nr_populated < nr_pages)
5060 nr_populated++;
5061
5062 /* Use the single page allocator for one page. */
5063 if (nr_pages - nr_populated == 1)
5064 goto failed;
5065
5066 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5067 gfp &= gfp_allowed_mask;
5068 alloc_gfp = gfp;
5069 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5070 return 0;
5071 gfp = alloc_gfp;
5072
5073 /* Find an allowed local zone that meets the low watermark. */
5074 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5075 unsigned long mark;
5076
5077 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5078 !__cpuset_zone_allowed(zone, gfp)) {
5079 continue;
5080 }
5081
5082 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5083 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5084 goto failed;
5085 }
5086
5087 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5088 if (zone_watermark_fast(zone, 0, mark,
5089 zonelist_zone_idx(ac.preferred_zoneref),
5090 alloc_flags, gfp)) {
5091 break;
5092 }
5093 }
5094
5095 /*
5096 * If there are no allowed local zones that meets the watermarks then
5097 * try to allocate a single page and reclaim if necessary.
5098 */
5099 if (unlikely(!zone))
5100 goto failed;
5101
5102 /* Attempt the batch allocation */
5103 local_irq_save(flags);
5104 pcp = &this_cpu_ptr(zone->pageset)->pcp;
5105 pcp_list = &pcp->lists[ac.migratetype];
5106
5107 while (nr_populated < nr_pages) {
5108
5109 /* Skip existing pages */
5110 if (page_array && page_array[nr_populated]) {
5111 nr_populated++;
5112 continue;
5113 }
5114
5115 page = __rmqueue_pcplist(zone, ac.migratetype, alloc_flags,
5116 pcp, pcp_list);
5117 if (unlikely(!page)) {
5118 /* Try and get at least one page */
5119 if (!nr_populated)
5120 goto failed_irq;
5121 break;
5122 }
5123
5124 /*
5125 * Ideally this would be batched but the best way to do
5126 * that cheaply is to first convert zone_statistics to
5127 * be inaccurate per-cpu counter like vm_events to avoid
5128 * a RMW cycle then do the accounting with IRQs enabled.
5129 */
5130 __count_zid_vm_events(PGALLOC, zone_idx(zone), 1);
5131 zone_statistics(ac.preferred_zoneref->zone, zone);
5132
5133 prep_new_page(page, 0, gfp, 0);
5134 if (page_list)
5135 list_add(&page->lru, page_list);
5136 else
5137 page_array[nr_populated] = page;
5138 nr_populated++;
5139 }
5140
5141 local_irq_restore(flags);
5142
5143 return nr_populated;
5144
5145 failed_irq:
5146 local_irq_restore(flags);
5147
5148 failed:
5149 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5150 if (page) {
5151 if (page_list)
5152 list_add(&page->lru, page_list);
5153 else
5154 page_array[nr_populated] = page;
5155 nr_populated++;
5156 }
5157
5158 return nr_populated;
5159 }
5160 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5161
5162 /*
5163 * This is the 'heart' of the zoned buddy allocator.
5164 */
5165 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5166 nodemask_t *nodemask)
5167 {
5168 struct page *page;
5169 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5170 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5171 struct alloc_context ac = { };
5172
5173 /*
5174 * There are several places where we assume that the order value is sane
5175 * so bail out early if the request is out of bound.
5176 */
5177 if (unlikely(order >= MAX_ORDER)) {
5178 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5179 return NULL;
5180 }
5181
5182 gfp &= gfp_allowed_mask;
5183 alloc_gfp = gfp;
5184 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5185 &alloc_gfp, &alloc_flags))
5186 return NULL;
5187
5188 /*
5189 * Forbid the first pass from falling back to types that fragment
5190 * memory until all local zones are considered.
5191 */
5192 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5193
5194 /* First allocation attempt */
5195 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5196 if (likely(page))
5197 goto out;
5198
5199 /*
5200 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5201 * resp. GFP_NOIO which has to be inherited for all allocation requests
5202 * from a particular context which has been marked by
5203 * memalloc_no{fs,io}_{save,restore}.
5204 */
5205 alloc_gfp = current_gfp_context(gfp);
5206 ac.spread_dirty_pages = false;
5207
5208 /*
5209 * Restore the original nodemask if it was potentially replaced with
5210 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5211 */
5212 ac.nodemask = nodemask;
5213
5214 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5215
5216 out:
5217 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5218 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5219 __free_pages(page, order);
5220 page = NULL;
5221 }
5222
5223 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5224
5225 return page;
5226 }
5227 EXPORT_SYMBOL(__alloc_pages);
5228
5229 /*
5230 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5231 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5232 * you need to access high mem.
5233 */
5234 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5235 {
5236 struct page *page;
5237
5238 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5239 if (!page)
5240 return 0;
5241 return (unsigned long) page_address(page);
5242 }
5243 EXPORT_SYMBOL(__get_free_pages);
5244
5245 unsigned long get_zeroed_page(gfp_t gfp_mask)
5246 {
5247 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5248 }
5249 EXPORT_SYMBOL(get_zeroed_page);
5250
5251 static inline void free_the_page(struct page *page, unsigned int order)
5252 {
5253 if (order == 0) /* Via pcp? */
5254 free_unref_page(page);
5255 else
5256 __free_pages_ok(page, order, FPI_NONE);
5257 }
5258
5259 /**
5260 * __free_pages - Free pages allocated with alloc_pages().
5261 * @page: The page pointer returned from alloc_pages().
5262 * @order: The order of the allocation.
5263 *
5264 * This function can free multi-page allocations that are not compound
5265 * pages. It does not check that the @order passed in matches that of
5266 * the allocation, so it is easy to leak memory. Freeing more memory
5267 * than was allocated will probably emit a warning.
5268 *
5269 * If the last reference to this page is speculative, it will be released
5270 * by put_page() which only frees the first page of a non-compound
5271 * allocation. To prevent the remaining pages from being leaked, we free
5272 * the subsequent pages here. If you want to use the page's reference
5273 * count to decide when to free the allocation, you should allocate a
5274 * compound page, and use put_page() instead of __free_pages().
5275 *
5276 * Context: May be called in interrupt context or while holding a normal
5277 * spinlock, but not in NMI context or while holding a raw spinlock.
5278 */
5279 void __free_pages(struct page *page, unsigned int order)
5280 {
5281 if (put_page_testzero(page))
5282 free_the_page(page, order);
5283 else if (!PageHead(page))
5284 while (order-- > 0)
5285 free_the_page(page + (1 << order), order);
5286 }
5287 EXPORT_SYMBOL(__free_pages);
5288
5289 void free_pages(unsigned long addr, unsigned int order)
5290 {
5291 if (addr != 0) {
5292 VM_BUG_ON(!virt_addr_valid((void *)addr));
5293 __free_pages(virt_to_page((void *)addr), order);
5294 }
5295 }
5296
5297 EXPORT_SYMBOL(free_pages);
5298
5299 /*
5300 * Page Fragment:
5301 * An arbitrary-length arbitrary-offset area of memory which resides
5302 * within a 0 or higher order page. Multiple fragments within that page
5303 * are individually refcounted, in the page's reference counter.
5304 *
5305 * The page_frag functions below provide a simple allocation framework for
5306 * page fragments. This is used by the network stack and network device
5307 * drivers to provide a backing region of memory for use as either an
5308 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5309 */
5310 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5311 gfp_t gfp_mask)
5312 {
5313 struct page *page = NULL;
5314 gfp_t gfp = gfp_mask;
5315
5316 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5317 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5318 __GFP_NOMEMALLOC;
5319 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5320 PAGE_FRAG_CACHE_MAX_ORDER);
5321 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5322 #endif
5323 if (unlikely(!page))
5324 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5325
5326 nc->va = page ? page_address(page) : NULL;
5327
5328 return page;
5329 }
5330
5331 void __page_frag_cache_drain(struct page *page, unsigned int count)
5332 {
5333 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5334
5335 if (page_ref_sub_and_test(page, count))
5336 free_the_page(page, compound_order(page));
5337 }
5338 EXPORT_SYMBOL(__page_frag_cache_drain);
5339
5340 void *page_frag_alloc_align(struct page_frag_cache *nc,
5341 unsigned int fragsz, gfp_t gfp_mask,
5342 unsigned int align_mask)
5343 {
5344 unsigned int size = PAGE_SIZE;
5345 struct page *page;
5346 int offset;
5347
5348 if (unlikely(!nc->va)) {
5349 refill:
5350 page = __page_frag_cache_refill(nc, gfp_mask);
5351 if (!page)
5352 return NULL;
5353
5354 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5355 /* if size can vary use size else just use PAGE_SIZE */
5356 size = nc->size;
5357 #endif
5358 /* Even if we own the page, we do not use atomic_set().
5359 * This would break get_page_unless_zero() users.
5360 */
5361 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5362
5363 /* reset page count bias and offset to start of new frag */
5364 nc->pfmemalloc = page_is_pfmemalloc(page);
5365 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5366 nc->offset = size;
5367 }
5368
5369 offset = nc->offset - fragsz;
5370 if (unlikely(offset < 0)) {
5371 page = virt_to_page(nc->va);
5372
5373 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5374 goto refill;
5375
5376 if (unlikely(nc->pfmemalloc)) {
5377 free_the_page(page, compound_order(page));
5378 goto refill;
5379 }
5380
5381 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5382 /* if size can vary use size else just use PAGE_SIZE */
5383 size = nc->size;
5384 #endif
5385 /* OK, page count is 0, we can safely set it */
5386 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5387
5388 /* reset page count bias and offset to start of new frag */
5389 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5390 offset = size - fragsz;
5391 }
5392
5393 nc->pagecnt_bias--;
5394 offset &= align_mask;
5395 nc->offset = offset;
5396
5397 return nc->va + offset;
5398 }
5399 EXPORT_SYMBOL(page_frag_alloc_align);
5400
5401 /*
5402 * Frees a page fragment allocated out of either a compound or order 0 page.
5403 */
5404 void page_frag_free(void *addr)
5405 {
5406 struct page *page = virt_to_head_page(addr);
5407
5408 if (unlikely(put_page_testzero(page)))
5409 free_the_page(page, compound_order(page));
5410 }
5411 EXPORT_SYMBOL(page_frag_free);
5412
5413 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5414 size_t size)
5415 {
5416 if (addr) {
5417 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5418 unsigned long used = addr + PAGE_ALIGN(size);
5419
5420 split_page(virt_to_page((void *)addr), order);
5421 while (used < alloc_end) {
5422 free_page(used);
5423 used += PAGE_SIZE;
5424 }
5425 }
5426 return (void *)addr;
5427 }
5428
5429 /**
5430 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5431 * @size: the number of bytes to allocate
5432 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5433 *
5434 * This function is similar to alloc_pages(), except that it allocates the
5435 * minimum number of pages to satisfy the request. alloc_pages() can only
5436 * allocate memory in power-of-two pages.
5437 *
5438 * This function is also limited by MAX_ORDER.
5439 *
5440 * Memory allocated by this function must be released by free_pages_exact().
5441 *
5442 * Return: pointer to the allocated area or %NULL in case of error.
5443 */
5444 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5445 {
5446 unsigned int order = get_order(size);
5447 unsigned long addr;
5448
5449 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5450 gfp_mask &= ~__GFP_COMP;
5451
5452 addr = __get_free_pages(gfp_mask, order);
5453 return make_alloc_exact(addr, order, size);
5454 }
5455 EXPORT_SYMBOL(alloc_pages_exact);
5456
5457 /**
5458 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5459 * pages on a node.
5460 * @nid: the preferred node ID where memory should be allocated
5461 * @size: the number of bytes to allocate
5462 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5463 *
5464 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5465 * back.
5466 *
5467 * Return: pointer to the allocated area or %NULL in case of error.
5468 */
5469 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5470 {
5471 unsigned int order = get_order(size);
5472 struct page *p;
5473
5474 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5475 gfp_mask &= ~__GFP_COMP;
5476
5477 p = alloc_pages_node(nid, gfp_mask, order);
5478 if (!p)
5479 return NULL;
5480 return make_alloc_exact((unsigned long)page_address(p), order, size);
5481 }
5482
5483 /**
5484 * free_pages_exact - release memory allocated via alloc_pages_exact()
5485 * @virt: the value returned by alloc_pages_exact.
5486 * @size: size of allocation, same value as passed to alloc_pages_exact().
5487 *
5488 * Release the memory allocated by a previous call to alloc_pages_exact.
5489 */
5490 void free_pages_exact(void *virt, size_t size)
5491 {
5492 unsigned long addr = (unsigned long)virt;
5493 unsigned long end = addr + PAGE_ALIGN(size);
5494
5495 while (addr < end) {
5496 free_page(addr);
5497 addr += PAGE_SIZE;
5498 }
5499 }
5500 EXPORT_SYMBOL(free_pages_exact);
5501
5502 /**
5503 * nr_free_zone_pages - count number of pages beyond high watermark
5504 * @offset: The zone index of the highest zone
5505 *
5506 * nr_free_zone_pages() counts the number of pages which are beyond the
5507 * high watermark within all zones at or below a given zone index. For each
5508 * zone, the number of pages is calculated as:
5509 *
5510 * nr_free_zone_pages = managed_pages - high_pages
5511 *
5512 * Return: number of pages beyond high watermark.
5513 */
5514 static unsigned long nr_free_zone_pages(int offset)
5515 {
5516 struct zoneref *z;
5517 struct zone *zone;
5518
5519 /* Just pick one node, since fallback list is circular */
5520 unsigned long sum = 0;
5521
5522 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5523
5524 for_each_zone_zonelist(zone, z, zonelist, offset) {
5525 unsigned long size = zone_managed_pages(zone);
5526 unsigned long high = high_wmark_pages(zone);
5527 if (size > high)
5528 sum += size - high;
5529 }
5530
5531 return sum;
5532 }
5533
5534 /**
5535 * nr_free_buffer_pages - count number of pages beyond high watermark
5536 *
5537 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5538 * watermark within ZONE_DMA and ZONE_NORMAL.
5539 *
5540 * Return: number of pages beyond high watermark within ZONE_DMA and
5541 * ZONE_NORMAL.
5542 */
5543 unsigned long nr_free_buffer_pages(void)
5544 {
5545 return nr_free_zone_pages(gfp_zone(GFP_USER));
5546 }
5547 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5548
5549 static inline void show_node(struct zone *zone)
5550 {
5551 if (IS_ENABLED(CONFIG_NUMA))
5552 printk("Node %d ", zone_to_nid(zone));
5553 }
5554
5555 long si_mem_available(void)
5556 {
5557 long available;
5558 unsigned long pagecache;
5559 unsigned long wmark_low = 0;
5560 unsigned long pages[NR_LRU_LISTS];
5561 unsigned long reclaimable;
5562 struct zone *zone;
5563 int lru;
5564
5565 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5566 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5567
5568 for_each_zone(zone)
5569 wmark_low += low_wmark_pages(zone);
5570
5571 /*
5572 * Estimate the amount of memory available for userspace allocations,
5573 * without causing swapping.
5574 */
5575 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5576
5577 /*
5578 * Not all the page cache can be freed, otherwise the system will
5579 * start swapping. Assume at least half of the page cache, or the
5580 * low watermark worth of cache, needs to stay.
5581 */
5582 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5583 pagecache -= min(pagecache / 2, wmark_low);
5584 available += pagecache;
5585
5586 /*
5587 * Part of the reclaimable slab and other kernel memory consists of
5588 * items that are in use, and cannot be freed. Cap this estimate at the
5589 * low watermark.
5590 */
5591 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5592 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5593 available += reclaimable - min(reclaimable / 2, wmark_low);
5594
5595 if (available < 0)
5596 available = 0;
5597 return available;
5598 }
5599 EXPORT_SYMBOL_GPL(si_mem_available);
5600
5601 void si_meminfo(struct sysinfo *val)
5602 {
5603 val->totalram = totalram_pages();
5604 val->sharedram = global_node_page_state(NR_SHMEM);
5605 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5606 val->bufferram = nr_blockdev_pages();
5607 val->totalhigh = totalhigh_pages();
5608 val->freehigh = nr_free_highpages();
5609 val->mem_unit = PAGE_SIZE;
5610 }
5611
5612 EXPORT_SYMBOL(si_meminfo);
5613
5614 #ifdef CONFIG_NUMA
5615 void si_meminfo_node(struct sysinfo *val, int nid)
5616 {
5617 int zone_type; /* needs to be signed */
5618 unsigned long managed_pages = 0;
5619 unsigned long managed_highpages = 0;
5620 unsigned long free_highpages = 0;
5621 pg_data_t *pgdat = NODE_DATA(nid);
5622
5623 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5624 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5625 val->totalram = managed_pages;
5626 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5627 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5628 #ifdef CONFIG_HIGHMEM
5629 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5630 struct zone *zone = &pgdat->node_zones[zone_type];
5631
5632 if (is_highmem(zone)) {
5633 managed_highpages += zone_managed_pages(zone);
5634 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5635 }
5636 }
5637 val->totalhigh = managed_highpages;
5638 val->freehigh = free_highpages;
5639 #else
5640 val->totalhigh = managed_highpages;
5641 val->freehigh = free_highpages;
5642 #endif
5643 val->mem_unit = PAGE_SIZE;
5644 }
5645 #endif
5646
5647 /*
5648 * Determine whether the node should be displayed or not, depending on whether
5649 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5650 */
5651 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5652 {
5653 if (!(flags & SHOW_MEM_FILTER_NODES))
5654 return false;
5655
5656 /*
5657 * no node mask - aka implicit memory numa policy. Do not bother with
5658 * the synchronization - read_mems_allowed_begin - because we do not
5659 * have to be precise here.
5660 */
5661 if (!nodemask)
5662 nodemask = &cpuset_current_mems_allowed;
5663
5664 return !node_isset(nid, *nodemask);
5665 }
5666
5667 #define K(x) ((x) << (PAGE_SHIFT-10))
5668
5669 static void show_migration_types(unsigned char type)
5670 {
5671 static const char types[MIGRATE_TYPES] = {
5672 [MIGRATE_UNMOVABLE] = 'U',
5673 [MIGRATE_MOVABLE] = 'M',
5674 [MIGRATE_RECLAIMABLE] = 'E',
5675 [MIGRATE_HIGHATOMIC] = 'H',
5676 #ifdef CONFIG_CMA
5677 [MIGRATE_CMA] = 'C',
5678 #endif
5679 #ifdef CONFIG_MEMORY_ISOLATION
5680 [MIGRATE_ISOLATE] = 'I',
5681 #endif
5682 };
5683 char tmp[MIGRATE_TYPES + 1];
5684 char *p = tmp;
5685 int i;
5686
5687 for (i = 0; i < MIGRATE_TYPES; i++) {
5688 if (type & (1 << i))
5689 *p++ = types[i];
5690 }
5691
5692 *p = '\0';
5693 printk(KERN_CONT "(%s) ", tmp);
5694 }
5695
5696 /*
5697 * Show free area list (used inside shift_scroll-lock stuff)
5698 * We also calculate the percentage fragmentation. We do this by counting the
5699 * memory on each free list with the exception of the first item on the list.
5700 *
5701 * Bits in @filter:
5702 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5703 * cpuset.
5704 */
5705 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5706 {
5707 unsigned long free_pcp = 0;
5708 int cpu;
5709 struct zone *zone;
5710 pg_data_t *pgdat;
5711
5712 for_each_populated_zone(zone) {
5713 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5714 continue;
5715
5716 for_each_online_cpu(cpu)
5717 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5718 }
5719
5720 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5721 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5722 " unevictable:%lu dirty:%lu writeback:%lu\n"
5723 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5724 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5725 " free:%lu free_pcp:%lu free_cma:%lu\n",
5726 global_node_page_state(NR_ACTIVE_ANON),
5727 global_node_page_state(NR_INACTIVE_ANON),
5728 global_node_page_state(NR_ISOLATED_ANON),
5729 global_node_page_state(NR_ACTIVE_FILE),
5730 global_node_page_state(NR_INACTIVE_FILE),
5731 global_node_page_state(NR_ISOLATED_FILE),
5732 global_node_page_state(NR_UNEVICTABLE),
5733 global_node_page_state(NR_FILE_DIRTY),
5734 global_node_page_state(NR_WRITEBACK),
5735 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5736 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5737 global_node_page_state(NR_FILE_MAPPED),
5738 global_node_page_state(NR_SHMEM),
5739 global_node_page_state(NR_PAGETABLE),
5740 global_zone_page_state(NR_BOUNCE),
5741 global_zone_page_state(NR_FREE_PAGES),
5742 free_pcp,
5743 global_zone_page_state(NR_FREE_CMA_PAGES));
5744
5745 for_each_online_pgdat(pgdat) {
5746 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5747 continue;
5748
5749 printk("Node %d"
5750 " active_anon:%lukB"
5751 " inactive_anon:%lukB"
5752 " active_file:%lukB"
5753 " inactive_file:%lukB"
5754 " unevictable:%lukB"
5755 " isolated(anon):%lukB"
5756 " isolated(file):%lukB"
5757 " mapped:%lukB"
5758 " dirty:%lukB"
5759 " writeback:%lukB"
5760 " shmem:%lukB"
5761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5762 " shmem_thp: %lukB"
5763 " shmem_pmdmapped: %lukB"
5764 " anon_thp: %lukB"
5765 #endif
5766 " writeback_tmp:%lukB"
5767 " kernel_stack:%lukB"
5768 #ifdef CONFIG_SHADOW_CALL_STACK
5769 " shadow_call_stack:%lukB"
5770 #endif
5771 " pagetables:%lukB"
5772 " all_unreclaimable? %s"
5773 "\n",
5774 pgdat->node_id,
5775 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5776 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5777 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5778 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5779 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5780 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5781 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5782 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5783 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5784 K(node_page_state(pgdat, NR_WRITEBACK)),
5785 K(node_page_state(pgdat, NR_SHMEM)),
5786 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5787 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5788 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5789 K(node_page_state(pgdat, NR_ANON_THPS)),
5790 #endif
5791 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5792 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5793 #ifdef CONFIG_SHADOW_CALL_STACK
5794 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5795 #endif
5796 K(node_page_state(pgdat, NR_PAGETABLE)),
5797 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5798 "yes" : "no");
5799 }
5800
5801 for_each_populated_zone(zone) {
5802 int i;
5803
5804 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5805 continue;
5806
5807 free_pcp = 0;
5808 for_each_online_cpu(cpu)
5809 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5810
5811 show_node(zone);
5812 printk(KERN_CONT
5813 "%s"
5814 " free:%lukB"
5815 " min:%lukB"
5816 " low:%lukB"
5817 " high:%lukB"
5818 " reserved_highatomic:%luKB"
5819 " active_anon:%lukB"
5820 " inactive_anon:%lukB"
5821 " active_file:%lukB"
5822 " inactive_file:%lukB"
5823 " unevictable:%lukB"
5824 " writepending:%lukB"
5825 " present:%lukB"
5826 " managed:%lukB"
5827 " mlocked:%lukB"
5828 " bounce:%lukB"
5829 " free_pcp:%lukB"
5830 " local_pcp:%ukB"
5831 " free_cma:%lukB"
5832 "\n",
5833 zone->name,
5834 K(zone_page_state(zone, NR_FREE_PAGES)),
5835 K(min_wmark_pages(zone)),
5836 K(low_wmark_pages(zone)),
5837 K(high_wmark_pages(zone)),
5838 K(zone->nr_reserved_highatomic),
5839 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5840 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5841 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5842 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5843 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5844 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5845 K(zone->present_pages),
5846 K(zone_managed_pages(zone)),
5847 K(zone_page_state(zone, NR_MLOCK)),
5848 K(zone_page_state(zone, NR_BOUNCE)),
5849 K(free_pcp),
5850 K(this_cpu_read(zone->pageset->pcp.count)),
5851 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5852 printk("lowmem_reserve[]:");
5853 for (i = 0; i < MAX_NR_ZONES; i++)
5854 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5855 printk(KERN_CONT "\n");
5856 }
5857
5858 for_each_populated_zone(zone) {
5859 unsigned int order;
5860 unsigned long nr[MAX_ORDER], flags, total = 0;
5861 unsigned char types[MAX_ORDER];
5862
5863 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5864 continue;
5865 show_node(zone);
5866 printk(KERN_CONT "%s: ", zone->name);
5867
5868 spin_lock_irqsave(&zone->lock, flags);
5869 for (order = 0; order < MAX_ORDER; order++) {
5870 struct free_area *area = &zone->free_area[order];
5871 int type;
5872
5873 nr[order] = area->nr_free;
5874 total += nr[order] << order;
5875
5876 types[order] = 0;
5877 for (type = 0; type < MIGRATE_TYPES; type++) {
5878 if (!free_area_empty(area, type))
5879 types[order] |= 1 << type;
5880 }
5881 }
5882 spin_unlock_irqrestore(&zone->lock, flags);
5883 for (order = 0; order < MAX_ORDER; order++) {
5884 printk(KERN_CONT "%lu*%lukB ",
5885 nr[order], K(1UL) << order);
5886 if (nr[order])
5887 show_migration_types(types[order]);
5888 }
5889 printk(KERN_CONT "= %lukB\n", K(total));
5890 }
5891
5892 hugetlb_show_meminfo();
5893
5894 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5895
5896 show_swap_cache_info();
5897 }
5898
5899 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5900 {
5901 zoneref->zone = zone;
5902 zoneref->zone_idx = zone_idx(zone);
5903 }
5904
5905 /*
5906 * Builds allocation fallback zone lists.
5907 *
5908 * Add all populated zones of a node to the zonelist.
5909 */
5910 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5911 {
5912 struct zone *zone;
5913 enum zone_type zone_type = MAX_NR_ZONES;
5914 int nr_zones = 0;
5915
5916 do {
5917 zone_type--;
5918 zone = pgdat->node_zones + zone_type;
5919 if (managed_zone(zone)) {
5920 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5921 check_highest_zone(zone_type);
5922 }
5923 } while (zone_type);
5924
5925 return nr_zones;
5926 }
5927
5928 #ifdef CONFIG_NUMA
5929
5930 static int __parse_numa_zonelist_order(char *s)
5931 {
5932 /*
5933 * We used to support different zonlists modes but they turned
5934 * out to be just not useful. Let's keep the warning in place
5935 * if somebody still use the cmd line parameter so that we do
5936 * not fail it silently
5937 */
5938 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5939 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5940 return -EINVAL;
5941 }
5942 return 0;
5943 }
5944
5945 char numa_zonelist_order[] = "Node";
5946
5947 /*
5948 * sysctl handler for numa_zonelist_order
5949 */
5950 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5951 void *buffer, size_t *length, loff_t *ppos)
5952 {
5953 if (write)
5954 return __parse_numa_zonelist_order(buffer);
5955 return proc_dostring(table, write, buffer, length, ppos);
5956 }
5957
5958
5959 #define MAX_NODE_LOAD (nr_online_nodes)
5960 static int node_load[MAX_NUMNODES];
5961
5962 /**
5963 * find_next_best_node - find the next node that should appear in a given node's fallback list
5964 * @node: node whose fallback list we're appending
5965 * @used_node_mask: nodemask_t of already used nodes
5966 *
5967 * We use a number of factors to determine which is the next node that should
5968 * appear on a given node's fallback list. The node should not have appeared
5969 * already in @node's fallback list, and it should be the next closest node
5970 * according to the distance array (which contains arbitrary distance values
5971 * from each node to each node in the system), and should also prefer nodes
5972 * with no CPUs, since presumably they'll have very little allocation pressure
5973 * on them otherwise.
5974 *
5975 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5976 */
5977 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5978 {
5979 int n, val;
5980 int min_val = INT_MAX;
5981 int best_node = NUMA_NO_NODE;
5982
5983 /* Use the local node if we haven't already */
5984 if (!node_isset(node, *used_node_mask)) {
5985 node_set(node, *used_node_mask);
5986 return node;
5987 }
5988
5989 for_each_node_state(n, N_MEMORY) {
5990
5991 /* Don't want a node to appear more than once */
5992 if (node_isset(n, *used_node_mask))
5993 continue;
5994
5995 /* Use the distance array to find the distance */
5996 val = node_distance(node, n);
5997
5998 /* Penalize nodes under us ("prefer the next node") */
5999 val += (n < node);
6000
6001 /* Give preference to headless and unused nodes */
6002 if (!cpumask_empty(cpumask_of_node(n)))
6003 val += PENALTY_FOR_NODE_WITH_CPUS;
6004
6005 /* Slight preference for less loaded node */
6006 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6007 val += node_load[n];
6008
6009 if (val < min_val) {
6010 min_val = val;
6011 best_node = n;
6012 }
6013 }
6014
6015 if (best_node >= 0)
6016 node_set(best_node, *used_node_mask);
6017
6018 return best_node;
6019 }
6020
6021
6022 /*
6023 * Build zonelists ordered by node and zones within node.
6024 * This results in maximum locality--normal zone overflows into local
6025 * DMA zone, if any--but risks exhausting DMA zone.
6026 */
6027 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6028 unsigned nr_nodes)
6029 {
6030 struct zoneref *zonerefs;
6031 int i;
6032
6033 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6034
6035 for (i = 0; i < nr_nodes; i++) {
6036 int nr_zones;
6037
6038 pg_data_t *node = NODE_DATA(node_order[i]);
6039
6040 nr_zones = build_zonerefs_node(node, zonerefs);
6041 zonerefs += nr_zones;
6042 }
6043 zonerefs->zone = NULL;
6044 zonerefs->zone_idx = 0;
6045 }
6046
6047 /*
6048 * Build gfp_thisnode zonelists
6049 */
6050 static void build_thisnode_zonelists(pg_data_t *pgdat)
6051 {
6052 struct zoneref *zonerefs;
6053 int nr_zones;
6054
6055 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6056 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6057 zonerefs += nr_zones;
6058 zonerefs->zone = NULL;
6059 zonerefs->zone_idx = 0;
6060 }
6061
6062 /*
6063 * Build zonelists ordered by zone and nodes within zones.
6064 * This results in conserving DMA zone[s] until all Normal memory is
6065 * exhausted, but results in overflowing to remote node while memory
6066 * may still exist in local DMA zone.
6067 */
6068
6069 static void build_zonelists(pg_data_t *pgdat)
6070 {
6071 static int node_order[MAX_NUMNODES];
6072 int node, load, nr_nodes = 0;
6073 nodemask_t used_mask = NODE_MASK_NONE;
6074 int local_node, prev_node;
6075
6076 /* NUMA-aware ordering of nodes */
6077 local_node = pgdat->node_id;
6078 load = nr_online_nodes;
6079 prev_node = local_node;
6080
6081 memset(node_order, 0, sizeof(node_order));
6082 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6083 /*
6084 * We don't want to pressure a particular node.
6085 * So adding penalty to the first node in same
6086 * distance group to make it round-robin.
6087 */
6088 if (node_distance(local_node, node) !=
6089 node_distance(local_node, prev_node))
6090 node_load[node] = load;
6091
6092 node_order[nr_nodes++] = node;
6093 prev_node = node;
6094 load--;
6095 }
6096
6097 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6098 build_thisnode_zonelists(pgdat);
6099 }
6100
6101 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6102 /*
6103 * Return node id of node used for "local" allocations.
6104 * I.e., first node id of first zone in arg node's generic zonelist.
6105 * Used for initializing percpu 'numa_mem', which is used primarily
6106 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6107 */
6108 int local_memory_node(int node)
6109 {
6110 struct zoneref *z;
6111
6112 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6113 gfp_zone(GFP_KERNEL),
6114 NULL);
6115 return zone_to_nid(z->zone);
6116 }
6117 #endif
6118
6119 static void setup_min_unmapped_ratio(void);
6120 static void setup_min_slab_ratio(void);
6121 #else /* CONFIG_NUMA */
6122
6123 static void build_zonelists(pg_data_t *pgdat)
6124 {
6125 int node, local_node;
6126 struct zoneref *zonerefs;
6127 int nr_zones;
6128
6129 local_node = pgdat->node_id;
6130
6131 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6132 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6133 zonerefs += nr_zones;
6134
6135 /*
6136 * Now we build the zonelist so that it contains the zones
6137 * of all the other nodes.
6138 * We don't want to pressure a particular node, so when
6139 * building the zones for node N, we make sure that the
6140 * zones coming right after the local ones are those from
6141 * node N+1 (modulo N)
6142 */
6143 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6144 if (!node_online(node))
6145 continue;
6146 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6147 zonerefs += nr_zones;
6148 }
6149 for (node = 0; node < local_node; node++) {
6150 if (!node_online(node))
6151 continue;
6152 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6153 zonerefs += nr_zones;
6154 }
6155
6156 zonerefs->zone = NULL;
6157 zonerefs->zone_idx = 0;
6158 }
6159
6160 #endif /* CONFIG_NUMA */
6161
6162 /*
6163 * Boot pageset table. One per cpu which is going to be used for all
6164 * zones and all nodes. The parameters will be set in such a way
6165 * that an item put on a list will immediately be handed over to
6166 * the buddy list. This is safe since pageset manipulation is done
6167 * with interrupts disabled.
6168 *
6169 * The boot_pagesets must be kept even after bootup is complete for
6170 * unused processors and/or zones. They do play a role for bootstrapping
6171 * hotplugged processors.
6172 *
6173 * zoneinfo_show() and maybe other functions do
6174 * not check if the processor is online before following the pageset pointer.
6175 * Other parts of the kernel may not check if the zone is available.
6176 */
6177 static void pageset_init(struct per_cpu_pageset *p);
6178 /* These effectively disable the pcplists in the boot pageset completely */
6179 #define BOOT_PAGESET_HIGH 0
6180 #define BOOT_PAGESET_BATCH 1
6181 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
6182 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6183
6184 static void __build_all_zonelists(void *data)
6185 {
6186 int nid;
6187 int __maybe_unused cpu;
6188 pg_data_t *self = data;
6189 static DEFINE_SPINLOCK(lock);
6190
6191 spin_lock(&lock);
6192
6193 #ifdef CONFIG_NUMA
6194 memset(node_load, 0, sizeof(node_load));
6195 #endif
6196
6197 /*
6198 * This node is hotadded and no memory is yet present. So just
6199 * building zonelists is fine - no need to touch other nodes.
6200 */
6201 if (self && !node_online(self->node_id)) {
6202 build_zonelists(self);
6203 } else {
6204 for_each_online_node(nid) {
6205 pg_data_t *pgdat = NODE_DATA(nid);
6206
6207 build_zonelists(pgdat);
6208 }
6209
6210 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6211 /*
6212 * We now know the "local memory node" for each node--
6213 * i.e., the node of the first zone in the generic zonelist.
6214 * Set up numa_mem percpu variable for on-line cpus. During
6215 * boot, only the boot cpu should be on-line; we'll init the
6216 * secondary cpus' numa_mem as they come on-line. During
6217 * node/memory hotplug, we'll fixup all on-line cpus.
6218 */
6219 for_each_online_cpu(cpu)
6220 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6221 #endif
6222 }
6223
6224 spin_unlock(&lock);
6225 }
6226
6227 static noinline void __init
6228 build_all_zonelists_init(void)
6229 {
6230 int cpu;
6231
6232 __build_all_zonelists(NULL);
6233
6234 /*
6235 * Initialize the boot_pagesets that are going to be used
6236 * for bootstrapping processors. The real pagesets for
6237 * each zone will be allocated later when the per cpu
6238 * allocator is available.
6239 *
6240 * boot_pagesets are used also for bootstrapping offline
6241 * cpus if the system is already booted because the pagesets
6242 * are needed to initialize allocators on a specific cpu too.
6243 * F.e. the percpu allocator needs the page allocator which
6244 * needs the percpu allocator in order to allocate its pagesets
6245 * (a chicken-egg dilemma).
6246 */
6247 for_each_possible_cpu(cpu)
6248 pageset_init(&per_cpu(boot_pageset, cpu));
6249
6250 mminit_verify_zonelist();
6251 cpuset_init_current_mems_allowed();
6252 }
6253
6254 /*
6255 * unless system_state == SYSTEM_BOOTING.
6256 *
6257 * __ref due to call of __init annotated helper build_all_zonelists_init
6258 * [protected by SYSTEM_BOOTING].
6259 */
6260 void __ref build_all_zonelists(pg_data_t *pgdat)
6261 {
6262 unsigned long vm_total_pages;
6263
6264 if (system_state == SYSTEM_BOOTING) {
6265 build_all_zonelists_init();
6266 } else {
6267 __build_all_zonelists(pgdat);
6268 /* cpuset refresh routine should be here */
6269 }
6270 /* Get the number of free pages beyond high watermark in all zones. */
6271 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6272 /*
6273 * Disable grouping by mobility if the number of pages in the
6274 * system is too low to allow the mechanism to work. It would be
6275 * more accurate, but expensive to check per-zone. This check is
6276 * made on memory-hotadd so a system can start with mobility
6277 * disabled and enable it later
6278 */
6279 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6280 page_group_by_mobility_disabled = 1;
6281 else
6282 page_group_by_mobility_disabled = 0;
6283
6284 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6285 nr_online_nodes,
6286 page_group_by_mobility_disabled ? "off" : "on",
6287 vm_total_pages);
6288 #ifdef CONFIG_NUMA
6289 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6290 #endif
6291 }
6292
6293 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6294 static bool __meminit
6295 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6296 {
6297 static struct memblock_region *r;
6298
6299 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6300 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6301 for_each_mem_region(r) {
6302 if (*pfn < memblock_region_memory_end_pfn(r))
6303 break;
6304 }
6305 }
6306 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6307 memblock_is_mirror(r)) {
6308 *pfn = memblock_region_memory_end_pfn(r);
6309 return true;
6310 }
6311 }
6312 return false;
6313 }
6314
6315 /*
6316 * Initially all pages are reserved - free ones are freed
6317 * up by memblock_free_all() once the early boot process is
6318 * done. Non-atomic initialization, single-pass.
6319 *
6320 * All aligned pageblocks are initialized to the specified migratetype
6321 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6322 * zone stats (e.g., nr_isolate_pageblock) are touched.
6323 */
6324 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6325 unsigned long start_pfn, unsigned long zone_end_pfn,
6326 enum meminit_context context,
6327 struct vmem_altmap *altmap, int migratetype)
6328 {
6329 unsigned long pfn, end_pfn = start_pfn + size;
6330 struct page *page;
6331
6332 if (highest_memmap_pfn < end_pfn - 1)
6333 highest_memmap_pfn = end_pfn - 1;
6334
6335 #ifdef CONFIG_ZONE_DEVICE
6336 /*
6337 * Honor reservation requested by the driver for this ZONE_DEVICE
6338 * memory. We limit the total number of pages to initialize to just
6339 * those that might contain the memory mapping. We will defer the
6340 * ZONE_DEVICE page initialization until after we have released
6341 * the hotplug lock.
6342 */
6343 if (zone == ZONE_DEVICE) {
6344 if (!altmap)
6345 return;
6346
6347 if (start_pfn == altmap->base_pfn)
6348 start_pfn += altmap->reserve;
6349 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6350 }
6351 #endif
6352
6353 for (pfn = start_pfn; pfn < end_pfn; ) {
6354 /*
6355 * There can be holes in boot-time mem_map[]s handed to this
6356 * function. They do not exist on hotplugged memory.
6357 */
6358 if (context == MEMINIT_EARLY) {
6359 if (overlap_memmap_init(zone, &pfn))
6360 continue;
6361 if (defer_init(nid, pfn, zone_end_pfn))
6362 break;
6363 }
6364
6365 page = pfn_to_page(pfn);
6366 __init_single_page(page, pfn, zone, nid);
6367 if (context == MEMINIT_HOTPLUG)
6368 __SetPageReserved(page);
6369
6370 /*
6371 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6372 * such that unmovable allocations won't be scattered all
6373 * over the place during system boot.
6374 */
6375 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6376 set_pageblock_migratetype(page, migratetype);
6377 cond_resched();
6378 }
6379 pfn++;
6380 }
6381 }
6382
6383 #ifdef CONFIG_ZONE_DEVICE
6384 void __ref memmap_init_zone_device(struct zone *zone,
6385 unsigned long start_pfn,
6386 unsigned long nr_pages,
6387 struct dev_pagemap *pgmap)
6388 {
6389 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6390 struct pglist_data *pgdat = zone->zone_pgdat;
6391 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6392 unsigned long zone_idx = zone_idx(zone);
6393 unsigned long start = jiffies;
6394 int nid = pgdat->node_id;
6395
6396 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6397 return;
6398
6399 /*
6400 * The call to memmap_init_zone should have already taken care
6401 * of the pages reserved for the memmap, so we can just jump to
6402 * the end of that region and start processing the device pages.
6403 */
6404 if (altmap) {
6405 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6406 nr_pages = end_pfn - start_pfn;
6407 }
6408
6409 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6410 struct page *page = pfn_to_page(pfn);
6411
6412 __init_single_page(page, pfn, zone_idx, nid);
6413
6414 /*
6415 * Mark page reserved as it will need to wait for onlining
6416 * phase for it to be fully associated with a zone.
6417 *
6418 * We can use the non-atomic __set_bit operation for setting
6419 * the flag as we are still initializing the pages.
6420 */
6421 __SetPageReserved(page);
6422
6423 /*
6424 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6425 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6426 * ever freed or placed on a driver-private list.
6427 */
6428 page->pgmap = pgmap;
6429 page->zone_device_data = NULL;
6430
6431 /*
6432 * Mark the block movable so that blocks are reserved for
6433 * movable at startup. This will force kernel allocations
6434 * to reserve their blocks rather than leaking throughout
6435 * the address space during boot when many long-lived
6436 * kernel allocations are made.
6437 *
6438 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6439 * because this is done early in section_activate()
6440 */
6441 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6442 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6443 cond_resched();
6444 }
6445 }
6446
6447 pr_info("%s initialised %lu pages in %ums\n", __func__,
6448 nr_pages, jiffies_to_msecs(jiffies - start));
6449 }
6450
6451 #endif
6452 static void __meminit zone_init_free_lists(struct zone *zone)
6453 {
6454 unsigned int order, t;
6455 for_each_migratetype_order(order, t) {
6456 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6457 zone->free_area[order].nr_free = 0;
6458 }
6459 }
6460
6461 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6462 /*
6463 * Only struct pages that correspond to ranges defined by memblock.memory
6464 * are zeroed and initialized by going through __init_single_page() during
6465 * memmap_init_zone().
6466 *
6467 * But, there could be struct pages that correspond to holes in
6468 * memblock.memory. This can happen because of the following reasons:
6469 * - physical memory bank size is not necessarily the exact multiple of the
6470 * arbitrary section size
6471 * - early reserved memory may not be listed in memblock.memory
6472 * - memory layouts defined with memmap= kernel parameter may not align
6473 * nicely with memmap sections
6474 *
6475 * Explicitly initialize those struct pages so that:
6476 * - PG_Reserved is set
6477 * - zone and node links point to zone and node that span the page if the
6478 * hole is in the middle of a zone
6479 * - zone and node links point to adjacent zone/node if the hole falls on
6480 * the zone boundary; the pages in such holes will be prepended to the
6481 * zone/node above the hole except for the trailing pages in the last
6482 * section that will be appended to the zone/node below.
6483 */
6484 static u64 __meminit init_unavailable_range(unsigned long spfn,
6485 unsigned long epfn,
6486 int zone, int node)
6487 {
6488 unsigned long pfn;
6489 u64 pgcnt = 0;
6490
6491 for (pfn = spfn; pfn < epfn; pfn++) {
6492 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6493 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6494 + pageblock_nr_pages - 1;
6495 continue;
6496 }
6497 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6498 __SetPageReserved(pfn_to_page(pfn));
6499 pgcnt++;
6500 }
6501
6502 return pgcnt;
6503 }
6504 #else
6505 static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6506 int zone, int node)
6507 {
6508 return 0;
6509 }
6510 #endif
6511
6512 void __meminit __weak memmap_init_zone(struct zone *zone)
6513 {
6514 unsigned long zone_start_pfn = zone->zone_start_pfn;
6515 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6516 int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6517 static unsigned long hole_pfn;
6518 unsigned long start_pfn, end_pfn;
6519 u64 pgcnt = 0;
6520
6521 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6522 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6523 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6524
6525 if (end_pfn > start_pfn)
6526 memmap_init_range(end_pfn - start_pfn, nid,
6527 zone_id, start_pfn, zone_end_pfn,
6528 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6529
6530 if (hole_pfn < start_pfn)
6531 pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6532 zone_id, nid);
6533 hole_pfn = end_pfn;
6534 }
6535
6536 #ifdef CONFIG_SPARSEMEM
6537 /*
6538 * Initialize the hole in the range [zone_end_pfn, section_end].
6539 * If zone boundary falls in the middle of a section, this hole
6540 * will be re-initialized during the call to this function for the
6541 * higher zone.
6542 */
6543 end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
6544 if (hole_pfn < end_pfn)
6545 pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6546 zone_id, nid);
6547 #endif
6548
6549 if (pgcnt)
6550 pr_info(" %s zone: %llu pages in unavailable ranges\n",
6551 zone->name, pgcnt);
6552 }
6553
6554 static int zone_batchsize(struct zone *zone)
6555 {
6556 #ifdef CONFIG_MMU
6557 int batch;
6558
6559 /*
6560 * The per-cpu-pages pools are set to around 1000th of the
6561 * size of the zone.
6562 */
6563 batch = zone_managed_pages(zone) / 1024;
6564 /* But no more than a meg. */
6565 if (batch * PAGE_SIZE > 1024 * 1024)
6566 batch = (1024 * 1024) / PAGE_SIZE;
6567 batch /= 4; /* We effectively *= 4 below */
6568 if (batch < 1)
6569 batch = 1;
6570
6571 /*
6572 * Clamp the batch to a 2^n - 1 value. Having a power
6573 * of 2 value was found to be more likely to have
6574 * suboptimal cache aliasing properties in some cases.
6575 *
6576 * For example if 2 tasks are alternately allocating
6577 * batches of pages, one task can end up with a lot
6578 * of pages of one half of the possible page colors
6579 * and the other with pages of the other colors.
6580 */
6581 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6582
6583 return batch;
6584
6585 #else
6586 /* The deferral and batching of frees should be suppressed under NOMMU
6587 * conditions.
6588 *
6589 * The problem is that NOMMU needs to be able to allocate large chunks
6590 * of contiguous memory as there's no hardware page translation to
6591 * assemble apparent contiguous memory from discontiguous pages.
6592 *
6593 * Queueing large contiguous runs of pages for batching, however,
6594 * causes the pages to actually be freed in smaller chunks. As there
6595 * can be a significant delay between the individual batches being
6596 * recycled, this leads to the once large chunks of space being
6597 * fragmented and becoming unavailable for high-order allocations.
6598 */
6599 return 0;
6600 #endif
6601 }
6602
6603 /*
6604 * pcp->high and pcp->batch values are related and generally batch is lower
6605 * than high. They are also related to pcp->count such that count is lower
6606 * than high, and as soon as it reaches high, the pcplist is flushed.
6607 *
6608 * However, guaranteeing these relations at all times would require e.g. write
6609 * barriers here but also careful usage of read barriers at the read side, and
6610 * thus be prone to error and bad for performance. Thus the update only prevents
6611 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6612 * can cope with those fields changing asynchronously, and fully trust only the
6613 * pcp->count field on the local CPU with interrupts disabled.
6614 *
6615 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6616 * outside of boot time (or some other assurance that no concurrent updaters
6617 * exist).
6618 */
6619 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6620 unsigned long batch)
6621 {
6622 WRITE_ONCE(pcp->batch, batch);
6623 WRITE_ONCE(pcp->high, high);
6624 }
6625
6626 static void pageset_init(struct per_cpu_pageset *p)
6627 {
6628 struct per_cpu_pages *pcp;
6629 int migratetype;
6630
6631 memset(p, 0, sizeof(*p));
6632
6633 pcp = &p->pcp;
6634 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6635 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6636
6637 /*
6638 * Set batch and high values safe for a boot pageset. A true percpu
6639 * pageset's initialization will update them subsequently. Here we don't
6640 * need to be as careful as pageset_update() as nobody can access the
6641 * pageset yet.
6642 */
6643 pcp->high = BOOT_PAGESET_HIGH;
6644 pcp->batch = BOOT_PAGESET_BATCH;
6645 }
6646
6647 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6648 unsigned long batch)
6649 {
6650 struct per_cpu_pageset *p;
6651 int cpu;
6652
6653 for_each_possible_cpu(cpu) {
6654 p = per_cpu_ptr(zone->pageset, cpu);
6655 pageset_update(&p->pcp, high, batch);
6656 }
6657 }
6658
6659 /*
6660 * Calculate and set new high and batch values for all per-cpu pagesets of a
6661 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6662 */
6663 static void zone_set_pageset_high_and_batch(struct zone *zone)
6664 {
6665 unsigned long new_high, new_batch;
6666
6667 if (percpu_pagelist_fraction) {
6668 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6669 new_batch = max(1UL, new_high / 4);
6670 if ((new_high / 4) > (PAGE_SHIFT * 8))
6671 new_batch = PAGE_SHIFT * 8;
6672 } else {
6673 new_batch = zone_batchsize(zone);
6674 new_high = 6 * new_batch;
6675 new_batch = max(1UL, 1 * new_batch);
6676 }
6677
6678 if (zone->pageset_high == new_high &&
6679 zone->pageset_batch == new_batch)
6680 return;
6681
6682 zone->pageset_high = new_high;
6683 zone->pageset_batch = new_batch;
6684
6685 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6686 }
6687
6688 void __meminit setup_zone_pageset(struct zone *zone)
6689 {
6690 struct per_cpu_pageset *p;
6691 int cpu;
6692
6693 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6694 for_each_possible_cpu(cpu) {
6695 p = per_cpu_ptr(zone->pageset, cpu);
6696 pageset_init(p);
6697 }
6698
6699 zone_set_pageset_high_and_batch(zone);
6700 }
6701
6702 /*
6703 * Allocate per cpu pagesets and initialize them.
6704 * Before this call only boot pagesets were available.
6705 */
6706 void __init setup_per_cpu_pageset(void)
6707 {
6708 struct pglist_data *pgdat;
6709 struct zone *zone;
6710 int __maybe_unused cpu;
6711
6712 for_each_populated_zone(zone)
6713 setup_zone_pageset(zone);
6714
6715 #ifdef CONFIG_NUMA
6716 /*
6717 * Unpopulated zones continue using the boot pagesets.
6718 * The numa stats for these pagesets need to be reset.
6719 * Otherwise, they will end up skewing the stats of
6720 * the nodes these zones are associated with.
6721 */
6722 for_each_possible_cpu(cpu) {
6723 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6724 memset(pcp->vm_numa_stat_diff, 0,
6725 sizeof(pcp->vm_numa_stat_diff));
6726 }
6727 #endif
6728
6729 for_each_online_pgdat(pgdat)
6730 pgdat->per_cpu_nodestats =
6731 alloc_percpu(struct per_cpu_nodestat);
6732 }
6733
6734 static __meminit void zone_pcp_init(struct zone *zone)
6735 {
6736 /*
6737 * per cpu subsystem is not up at this point. The following code
6738 * relies on the ability of the linker to provide the
6739 * offset of a (static) per cpu variable into the per cpu area.
6740 */
6741 zone->pageset = &boot_pageset;
6742 zone->pageset_high = BOOT_PAGESET_HIGH;
6743 zone->pageset_batch = BOOT_PAGESET_BATCH;
6744
6745 if (populated_zone(zone))
6746 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6747 zone->name, zone->present_pages,
6748 zone_batchsize(zone));
6749 }
6750
6751 void __meminit init_currently_empty_zone(struct zone *zone,
6752 unsigned long zone_start_pfn,
6753 unsigned long size)
6754 {
6755 struct pglist_data *pgdat = zone->zone_pgdat;
6756 int zone_idx = zone_idx(zone) + 1;
6757
6758 if (zone_idx > pgdat->nr_zones)
6759 pgdat->nr_zones = zone_idx;
6760
6761 zone->zone_start_pfn = zone_start_pfn;
6762
6763 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6764 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6765 pgdat->node_id,
6766 (unsigned long)zone_idx(zone),
6767 zone_start_pfn, (zone_start_pfn + size));
6768
6769 zone_init_free_lists(zone);
6770 zone->initialized = 1;
6771 }
6772
6773 /**
6774 * get_pfn_range_for_nid - Return the start and end page frames for a node
6775 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6776 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6777 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6778 *
6779 * It returns the start and end page frame of a node based on information
6780 * provided by memblock_set_node(). If called for a node
6781 * with no available memory, a warning is printed and the start and end
6782 * PFNs will be 0.
6783 */
6784 void __init get_pfn_range_for_nid(unsigned int nid,
6785 unsigned long *start_pfn, unsigned long *end_pfn)
6786 {
6787 unsigned long this_start_pfn, this_end_pfn;
6788 int i;
6789
6790 *start_pfn = -1UL;
6791 *end_pfn = 0;
6792
6793 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6794 *start_pfn = min(*start_pfn, this_start_pfn);
6795 *end_pfn = max(*end_pfn, this_end_pfn);
6796 }
6797
6798 if (*start_pfn == -1UL)
6799 *start_pfn = 0;
6800 }
6801
6802 /*
6803 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6804 * assumption is made that zones within a node are ordered in monotonic
6805 * increasing memory addresses so that the "highest" populated zone is used
6806 */
6807 static void __init find_usable_zone_for_movable(void)
6808 {
6809 int zone_index;
6810 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6811 if (zone_index == ZONE_MOVABLE)
6812 continue;
6813
6814 if (arch_zone_highest_possible_pfn[zone_index] >
6815 arch_zone_lowest_possible_pfn[zone_index])
6816 break;
6817 }
6818
6819 VM_BUG_ON(zone_index == -1);
6820 movable_zone = zone_index;
6821 }
6822
6823 /*
6824 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6825 * because it is sized independent of architecture. Unlike the other zones,
6826 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6827 * in each node depending on the size of each node and how evenly kernelcore
6828 * is distributed. This helper function adjusts the zone ranges
6829 * provided by the architecture for a given node by using the end of the
6830 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6831 * zones within a node are in order of monotonic increases memory addresses
6832 */
6833 static void __init adjust_zone_range_for_zone_movable(int nid,
6834 unsigned long zone_type,
6835 unsigned long node_start_pfn,
6836 unsigned long node_end_pfn,
6837 unsigned long *zone_start_pfn,
6838 unsigned long *zone_end_pfn)
6839 {
6840 /* Only adjust if ZONE_MOVABLE is on this node */
6841 if (zone_movable_pfn[nid]) {
6842 /* Size ZONE_MOVABLE */
6843 if (zone_type == ZONE_MOVABLE) {
6844 *zone_start_pfn = zone_movable_pfn[nid];
6845 *zone_end_pfn = min(node_end_pfn,
6846 arch_zone_highest_possible_pfn[movable_zone]);
6847
6848 /* Adjust for ZONE_MOVABLE starting within this range */
6849 } else if (!mirrored_kernelcore &&
6850 *zone_start_pfn < zone_movable_pfn[nid] &&
6851 *zone_end_pfn > zone_movable_pfn[nid]) {
6852 *zone_end_pfn = zone_movable_pfn[nid];
6853
6854 /* Check if this whole range is within ZONE_MOVABLE */
6855 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6856 *zone_start_pfn = *zone_end_pfn;
6857 }
6858 }
6859
6860 /*
6861 * Return the number of pages a zone spans in a node, including holes
6862 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6863 */
6864 static unsigned long __init zone_spanned_pages_in_node(int nid,
6865 unsigned long zone_type,
6866 unsigned long node_start_pfn,
6867 unsigned long node_end_pfn,
6868 unsigned long *zone_start_pfn,
6869 unsigned long *zone_end_pfn)
6870 {
6871 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6872 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6873 /* When hotadd a new node from cpu_up(), the node should be empty */
6874 if (!node_start_pfn && !node_end_pfn)
6875 return 0;
6876
6877 /* Get the start and end of the zone */
6878 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6879 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6880 adjust_zone_range_for_zone_movable(nid, zone_type,
6881 node_start_pfn, node_end_pfn,
6882 zone_start_pfn, zone_end_pfn);
6883
6884 /* Check that this node has pages within the zone's required range */
6885 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6886 return 0;
6887
6888 /* Move the zone boundaries inside the node if necessary */
6889 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6890 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6891
6892 /* Return the spanned pages */
6893 return *zone_end_pfn - *zone_start_pfn;
6894 }
6895
6896 /*
6897 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6898 * then all holes in the requested range will be accounted for.
6899 */
6900 unsigned long __init __absent_pages_in_range(int nid,
6901 unsigned long range_start_pfn,
6902 unsigned long range_end_pfn)
6903 {
6904 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6905 unsigned long start_pfn, end_pfn;
6906 int i;
6907
6908 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6909 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6910 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6911 nr_absent -= end_pfn - start_pfn;
6912 }
6913 return nr_absent;
6914 }
6915
6916 /**
6917 * absent_pages_in_range - Return number of page frames in holes within a range
6918 * @start_pfn: The start PFN to start searching for holes
6919 * @end_pfn: The end PFN to stop searching for holes
6920 *
6921 * Return: the number of pages frames in memory holes within a range.
6922 */
6923 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6924 unsigned long end_pfn)
6925 {
6926 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6927 }
6928
6929 /* Return the number of page frames in holes in a zone on a node */
6930 static unsigned long __init zone_absent_pages_in_node(int nid,
6931 unsigned long zone_type,
6932 unsigned long node_start_pfn,
6933 unsigned long node_end_pfn)
6934 {
6935 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6936 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6937 unsigned long zone_start_pfn, zone_end_pfn;
6938 unsigned long nr_absent;
6939
6940 /* When hotadd a new node from cpu_up(), the node should be empty */
6941 if (!node_start_pfn && !node_end_pfn)
6942 return 0;
6943
6944 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6945 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6946
6947 adjust_zone_range_for_zone_movable(nid, zone_type,
6948 node_start_pfn, node_end_pfn,
6949 &zone_start_pfn, &zone_end_pfn);
6950 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6951
6952 /*
6953 * ZONE_MOVABLE handling.
6954 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6955 * and vice versa.
6956 */
6957 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6958 unsigned long start_pfn, end_pfn;
6959 struct memblock_region *r;
6960
6961 for_each_mem_region(r) {
6962 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6963 zone_start_pfn, zone_end_pfn);
6964 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6965 zone_start_pfn, zone_end_pfn);
6966
6967 if (zone_type == ZONE_MOVABLE &&
6968 memblock_is_mirror(r))
6969 nr_absent += end_pfn - start_pfn;
6970
6971 if (zone_type == ZONE_NORMAL &&
6972 !memblock_is_mirror(r))
6973 nr_absent += end_pfn - start_pfn;
6974 }
6975 }
6976
6977 return nr_absent;
6978 }
6979
6980 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6981 unsigned long node_start_pfn,
6982 unsigned long node_end_pfn)
6983 {
6984 unsigned long realtotalpages = 0, totalpages = 0;
6985 enum zone_type i;
6986
6987 for (i = 0; i < MAX_NR_ZONES; i++) {
6988 struct zone *zone = pgdat->node_zones + i;
6989 unsigned long zone_start_pfn, zone_end_pfn;
6990 unsigned long spanned, absent;
6991 unsigned long size, real_size;
6992
6993 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6994 node_start_pfn,
6995 node_end_pfn,
6996 &zone_start_pfn,
6997 &zone_end_pfn);
6998 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6999 node_start_pfn,
7000 node_end_pfn);
7001
7002 size = spanned;
7003 real_size = size - absent;
7004
7005 if (size)
7006 zone->zone_start_pfn = zone_start_pfn;
7007 else
7008 zone->zone_start_pfn = 0;
7009 zone->spanned_pages = size;
7010 zone->present_pages = real_size;
7011
7012 totalpages += size;
7013 realtotalpages += real_size;
7014 }
7015
7016 pgdat->node_spanned_pages = totalpages;
7017 pgdat->node_present_pages = realtotalpages;
7018 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
7019 realtotalpages);
7020 }
7021
7022 #ifndef CONFIG_SPARSEMEM
7023 /*
7024 * Calculate the size of the zone->blockflags rounded to an unsigned long
7025 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7026 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7027 * round what is now in bits to nearest long in bits, then return it in
7028 * bytes.
7029 */
7030 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7031 {
7032 unsigned long usemapsize;
7033
7034 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7035 usemapsize = roundup(zonesize, pageblock_nr_pages);
7036 usemapsize = usemapsize >> pageblock_order;
7037 usemapsize *= NR_PAGEBLOCK_BITS;
7038 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7039
7040 return usemapsize / 8;
7041 }
7042
7043 static void __ref setup_usemap(struct zone *zone)
7044 {
7045 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7046 zone->spanned_pages);
7047 zone->pageblock_flags = NULL;
7048 if (usemapsize) {
7049 zone->pageblock_flags =
7050 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7051 zone_to_nid(zone));
7052 if (!zone->pageblock_flags)
7053 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7054 usemapsize, zone->name, zone_to_nid(zone));
7055 }
7056 }
7057 #else
7058 static inline void setup_usemap(struct zone *zone) {}
7059 #endif /* CONFIG_SPARSEMEM */
7060
7061 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7062
7063 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7064 void __init set_pageblock_order(void)
7065 {
7066 unsigned int order;
7067
7068 /* Check that pageblock_nr_pages has not already been setup */
7069 if (pageblock_order)
7070 return;
7071
7072 if (HPAGE_SHIFT > PAGE_SHIFT)
7073 order = HUGETLB_PAGE_ORDER;
7074 else
7075 order = MAX_ORDER - 1;
7076
7077 /*
7078 * Assume the largest contiguous order of interest is a huge page.
7079 * This value may be variable depending on boot parameters on IA64 and
7080 * powerpc.
7081 */
7082 pageblock_order = order;
7083 }
7084 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7085
7086 /*
7087 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7088 * is unused as pageblock_order is set at compile-time. See
7089 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7090 * the kernel config
7091 */
7092 void __init set_pageblock_order(void)
7093 {
7094 }
7095
7096 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7097
7098 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7099 unsigned long present_pages)
7100 {
7101 unsigned long pages = spanned_pages;
7102
7103 /*
7104 * Provide a more accurate estimation if there are holes within
7105 * the zone and SPARSEMEM is in use. If there are holes within the
7106 * zone, each populated memory region may cost us one or two extra
7107 * memmap pages due to alignment because memmap pages for each
7108 * populated regions may not be naturally aligned on page boundary.
7109 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7110 */
7111 if (spanned_pages > present_pages + (present_pages >> 4) &&
7112 IS_ENABLED(CONFIG_SPARSEMEM))
7113 pages = present_pages;
7114
7115 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7116 }
7117
7118 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7119 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7120 {
7121 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7122
7123 spin_lock_init(&ds_queue->split_queue_lock);
7124 INIT_LIST_HEAD(&ds_queue->split_queue);
7125 ds_queue->split_queue_len = 0;
7126 }
7127 #else
7128 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7129 #endif
7130
7131 #ifdef CONFIG_COMPACTION
7132 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7133 {
7134 init_waitqueue_head(&pgdat->kcompactd_wait);
7135 }
7136 #else
7137 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7138 #endif
7139
7140 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7141 {
7142 pgdat_resize_init(pgdat);
7143
7144 pgdat_init_split_queue(pgdat);
7145 pgdat_init_kcompactd(pgdat);
7146
7147 init_waitqueue_head(&pgdat->kswapd_wait);
7148 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7149
7150 pgdat_page_ext_init(pgdat);
7151 lruvec_init(&pgdat->__lruvec);
7152 }
7153
7154 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7155 unsigned long remaining_pages)
7156 {
7157 atomic_long_set(&zone->managed_pages, remaining_pages);
7158 zone_set_nid(zone, nid);
7159 zone->name = zone_names[idx];
7160 zone->zone_pgdat = NODE_DATA(nid);
7161 spin_lock_init(&zone->lock);
7162 zone_seqlock_init(zone);
7163 zone_pcp_init(zone);
7164 }
7165
7166 /*
7167 * Set up the zone data structures
7168 * - init pgdat internals
7169 * - init all zones belonging to this node
7170 *
7171 * NOTE: this function is only called during memory hotplug
7172 */
7173 #ifdef CONFIG_MEMORY_HOTPLUG
7174 void __ref free_area_init_core_hotplug(int nid)
7175 {
7176 enum zone_type z;
7177 pg_data_t *pgdat = NODE_DATA(nid);
7178
7179 pgdat_init_internals(pgdat);
7180 for (z = 0; z < MAX_NR_ZONES; z++)
7181 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7182 }
7183 #endif
7184
7185 /*
7186 * Set up the zone data structures:
7187 * - mark all pages reserved
7188 * - mark all memory queues empty
7189 * - clear the memory bitmaps
7190 *
7191 * NOTE: pgdat should get zeroed by caller.
7192 * NOTE: this function is only called during early init.
7193 */
7194 static void __init free_area_init_core(struct pglist_data *pgdat)
7195 {
7196 enum zone_type j;
7197 int nid = pgdat->node_id;
7198
7199 pgdat_init_internals(pgdat);
7200 pgdat->per_cpu_nodestats = &boot_nodestats;
7201
7202 for (j = 0; j < MAX_NR_ZONES; j++) {
7203 struct zone *zone = pgdat->node_zones + j;
7204 unsigned long size, freesize, memmap_pages;
7205
7206 size = zone->spanned_pages;
7207 freesize = zone->present_pages;
7208
7209 /*
7210 * Adjust freesize so that it accounts for how much memory
7211 * is used by this zone for memmap. This affects the watermark
7212 * and per-cpu initialisations
7213 */
7214 memmap_pages = calc_memmap_size(size, freesize);
7215 if (!is_highmem_idx(j)) {
7216 if (freesize >= memmap_pages) {
7217 freesize -= memmap_pages;
7218 if (memmap_pages)
7219 printk(KERN_DEBUG
7220 " %s zone: %lu pages used for memmap\n",
7221 zone_names[j], memmap_pages);
7222 } else
7223 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
7224 zone_names[j], memmap_pages, freesize);
7225 }
7226
7227 /* Account for reserved pages */
7228 if (j == 0 && freesize > dma_reserve) {
7229 freesize -= dma_reserve;
7230 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
7231 zone_names[0], dma_reserve);
7232 }
7233
7234 if (!is_highmem_idx(j))
7235 nr_kernel_pages += freesize;
7236 /* Charge for highmem memmap if there are enough kernel pages */
7237 else if (nr_kernel_pages > memmap_pages * 2)
7238 nr_kernel_pages -= memmap_pages;
7239 nr_all_pages += freesize;
7240
7241 /*
7242 * Set an approximate value for lowmem here, it will be adjusted
7243 * when the bootmem allocator frees pages into the buddy system.
7244 * And all highmem pages will be managed by the buddy system.
7245 */
7246 zone_init_internals(zone, j, nid, freesize);
7247
7248 if (!size)
7249 continue;
7250
7251 set_pageblock_order();
7252 setup_usemap(zone);
7253 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7254 memmap_init_zone(zone);
7255 }
7256 }
7257
7258 #ifdef CONFIG_FLAT_NODE_MEM_MAP
7259 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7260 {
7261 unsigned long __maybe_unused start = 0;
7262 unsigned long __maybe_unused offset = 0;
7263
7264 /* Skip empty nodes */
7265 if (!pgdat->node_spanned_pages)
7266 return;
7267
7268 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7269 offset = pgdat->node_start_pfn - start;
7270 /* ia64 gets its own node_mem_map, before this, without bootmem */
7271 if (!pgdat->node_mem_map) {
7272 unsigned long size, end;
7273 struct page *map;
7274
7275 /*
7276 * The zone's endpoints aren't required to be MAX_ORDER
7277 * aligned but the node_mem_map endpoints must be in order
7278 * for the buddy allocator to function correctly.
7279 */
7280 end = pgdat_end_pfn(pgdat);
7281 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7282 size = (end - start) * sizeof(struct page);
7283 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7284 pgdat->node_id);
7285 if (!map)
7286 panic("Failed to allocate %ld bytes for node %d memory map\n",
7287 size, pgdat->node_id);
7288 pgdat->node_mem_map = map + offset;
7289 }
7290 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7291 __func__, pgdat->node_id, (unsigned long)pgdat,
7292 (unsigned long)pgdat->node_mem_map);
7293 #ifndef CONFIG_NEED_MULTIPLE_NODES
7294 /*
7295 * With no DISCONTIG, the global mem_map is just set as node 0's
7296 */
7297 if (pgdat == NODE_DATA(0)) {
7298 mem_map = NODE_DATA(0)->node_mem_map;
7299 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7300 mem_map -= offset;
7301 }
7302 #endif
7303 }
7304 #else
7305 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7306 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7307
7308 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7309 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7310 {
7311 pgdat->first_deferred_pfn = ULONG_MAX;
7312 }
7313 #else
7314 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7315 #endif
7316
7317 static void __init free_area_init_node(int nid)
7318 {
7319 pg_data_t *pgdat = NODE_DATA(nid);
7320 unsigned long start_pfn = 0;
7321 unsigned long end_pfn = 0;
7322
7323 /* pg_data_t should be reset to zero when it's allocated */
7324 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7325
7326 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7327
7328 pgdat->node_id = nid;
7329 pgdat->node_start_pfn = start_pfn;
7330 pgdat->per_cpu_nodestats = NULL;
7331
7332 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7333 (u64)start_pfn << PAGE_SHIFT,
7334 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7335 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7336
7337 alloc_node_mem_map(pgdat);
7338 pgdat_set_deferred_range(pgdat);
7339
7340 free_area_init_core(pgdat);
7341 }
7342
7343 void __init free_area_init_memoryless_node(int nid)
7344 {
7345 free_area_init_node(nid);
7346 }
7347
7348 #if MAX_NUMNODES > 1
7349 /*
7350 * Figure out the number of possible node ids.
7351 */
7352 void __init setup_nr_node_ids(void)
7353 {
7354 unsigned int highest;
7355
7356 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7357 nr_node_ids = highest + 1;
7358 }
7359 #endif
7360
7361 /**
7362 * node_map_pfn_alignment - determine the maximum internode alignment
7363 *
7364 * This function should be called after node map is populated and sorted.
7365 * It calculates the maximum power of two alignment which can distinguish
7366 * all the nodes.
7367 *
7368 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7369 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7370 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7371 * shifted, 1GiB is enough and this function will indicate so.
7372 *
7373 * This is used to test whether pfn -> nid mapping of the chosen memory
7374 * model has fine enough granularity to avoid incorrect mapping for the
7375 * populated node map.
7376 *
7377 * Return: the determined alignment in pfn's. 0 if there is no alignment
7378 * requirement (single node).
7379 */
7380 unsigned long __init node_map_pfn_alignment(void)
7381 {
7382 unsigned long accl_mask = 0, last_end = 0;
7383 unsigned long start, end, mask;
7384 int last_nid = NUMA_NO_NODE;
7385 int i, nid;
7386
7387 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7388 if (!start || last_nid < 0 || last_nid == nid) {
7389 last_nid = nid;
7390 last_end = end;
7391 continue;
7392 }
7393
7394 /*
7395 * Start with a mask granular enough to pin-point to the
7396 * start pfn and tick off bits one-by-one until it becomes
7397 * too coarse to separate the current node from the last.
7398 */
7399 mask = ~((1 << __ffs(start)) - 1);
7400 while (mask && last_end <= (start & (mask << 1)))
7401 mask <<= 1;
7402
7403 /* accumulate all internode masks */
7404 accl_mask |= mask;
7405 }
7406
7407 /* convert mask to number of pages */
7408 return ~accl_mask + 1;
7409 }
7410
7411 /**
7412 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7413 *
7414 * Return: the minimum PFN based on information provided via
7415 * memblock_set_node().
7416 */
7417 unsigned long __init find_min_pfn_with_active_regions(void)
7418 {
7419 return PHYS_PFN(memblock_start_of_DRAM());
7420 }
7421
7422 /*
7423 * early_calculate_totalpages()
7424 * Sum pages in active regions for movable zone.
7425 * Populate N_MEMORY for calculating usable_nodes.
7426 */
7427 static unsigned long __init early_calculate_totalpages(void)
7428 {
7429 unsigned long totalpages = 0;
7430 unsigned long start_pfn, end_pfn;
7431 int i, nid;
7432
7433 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7434 unsigned long pages = end_pfn - start_pfn;
7435
7436 totalpages += pages;
7437 if (pages)
7438 node_set_state(nid, N_MEMORY);
7439 }
7440 return totalpages;
7441 }
7442
7443 /*
7444 * Find the PFN the Movable zone begins in each node. Kernel memory
7445 * is spread evenly between nodes as long as the nodes have enough
7446 * memory. When they don't, some nodes will have more kernelcore than
7447 * others
7448 */
7449 static void __init find_zone_movable_pfns_for_nodes(void)
7450 {
7451 int i, nid;
7452 unsigned long usable_startpfn;
7453 unsigned long kernelcore_node, kernelcore_remaining;
7454 /* save the state before borrow the nodemask */
7455 nodemask_t saved_node_state = node_states[N_MEMORY];
7456 unsigned long totalpages = early_calculate_totalpages();
7457 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7458 struct memblock_region *r;
7459
7460 /* Need to find movable_zone earlier when movable_node is specified. */
7461 find_usable_zone_for_movable();
7462
7463 /*
7464 * If movable_node is specified, ignore kernelcore and movablecore
7465 * options.
7466 */
7467 if (movable_node_is_enabled()) {
7468 for_each_mem_region(r) {
7469 if (!memblock_is_hotpluggable(r))
7470 continue;
7471
7472 nid = memblock_get_region_node(r);
7473
7474 usable_startpfn = PFN_DOWN(r->base);
7475 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7476 min(usable_startpfn, zone_movable_pfn[nid]) :
7477 usable_startpfn;
7478 }
7479
7480 goto out2;
7481 }
7482
7483 /*
7484 * If kernelcore=mirror is specified, ignore movablecore option
7485 */
7486 if (mirrored_kernelcore) {
7487 bool mem_below_4gb_not_mirrored = false;
7488
7489 for_each_mem_region(r) {
7490 if (memblock_is_mirror(r))
7491 continue;
7492
7493 nid = memblock_get_region_node(r);
7494
7495 usable_startpfn = memblock_region_memory_base_pfn(r);
7496
7497 if (usable_startpfn < 0x100000) {
7498 mem_below_4gb_not_mirrored = true;
7499 continue;
7500 }
7501
7502 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7503 min(usable_startpfn, zone_movable_pfn[nid]) :
7504 usable_startpfn;
7505 }
7506
7507 if (mem_below_4gb_not_mirrored)
7508 pr_warn("This configuration results in unmirrored kernel memory.\n");
7509
7510 goto out2;
7511 }
7512
7513 /*
7514 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7515 * amount of necessary memory.
7516 */
7517 if (required_kernelcore_percent)
7518 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7519 10000UL;
7520 if (required_movablecore_percent)
7521 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7522 10000UL;
7523
7524 /*
7525 * If movablecore= was specified, calculate what size of
7526 * kernelcore that corresponds so that memory usable for
7527 * any allocation type is evenly spread. If both kernelcore
7528 * and movablecore are specified, then the value of kernelcore
7529 * will be used for required_kernelcore if it's greater than
7530 * what movablecore would have allowed.
7531 */
7532 if (required_movablecore) {
7533 unsigned long corepages;
7534
7535 /*
7536 * Round-up so that ZONE_MOVABLE is at least as large as what
7537 * was requested by the user
7538 */
7539 required_movablecore =
7540 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7541 required_movablecore = min(totalpages, required_movablecore);
7542 corepages = totalpages - required_movablecore;
7543
7544 required_kernelcore = max(required_kernelcore, corepages);
7545 }
7546
7547 /*
7548 * If kernelcore was not specified or kernelcore size is larger
7549 * than totalpages, there is no ZONE_MOVABLE.
7550 */
7551 if (!required_kernelcore || required_kernelcore >= totalpages)
7552 goto out;
7553
7554 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7555 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7556
7557 restart:
7558 /* Spread kernelcore memory as evenly as possible throughout nodes */
7559 kernelcore_node = required_kernelcore / usable_nodes;
7560 for_each_node_state(nid, N_MEMORY) {
7561 unsigned long start_pfn, end_pfn;
7562
7563 /*
7564 * Recalculate kernelcore_node if the division per node
7565 * now exceeds what is necessary to satisfy the requested
7566 * amount of memory for the kernel
7567 */
7568 if (required_kernelcore < kernelcore_node)
7569 kernelcore_node = required_kernelcore / usable_nodes;
7570
7571 /*
7572 * As the map is walked, we track how much memory is usable
7573 * by the kernel using kernelcore_remaining. When it is
7574 * 0, the rest of the node is usable by ZONE_MOVABLE
7575 */
7576 kernelcore_remaining = kernelcore_node;
7577
7578 /* Go through each range of PFNs within this node */
7579 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7580 unsigned long size_pages;
7581
7582 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7583 if (start_pfn >= end_pfn)
7584 continue;
7585
7586 /* Account for what is only usable for kernelcore */
7587 if (start_pfn < usable_startpfn) {
7588 unsigned long kernel_pages;
7589 kernel_pages = min(end_pfn, usable_startpfn)
7590 - start_pfn;
7591
7592 kernelcore_remaining -= min(kernel_pages,
7593 kernelcore_remaining);
7594 required_kernelcore -= min(kernel_pages,
7595 required_kernelcore);
7596
7597 /* Continue if range is now fully accounted */
7598 if (end_pfn <= usable_startpfn) {
7599
7600 /*
7601 * Push zone_movable_pfn to the end so
7602 * that if we have to rebalance
7603 * kernelcore across nodes, we will
7604 * not double account here
7605 */
7606 zone_movable_pfn[nid] = end_pfn;
7607 continue;
7608 }
7609 start_pfn = usable_startpfn;
7610 }
7611
7612 /*
7613 * The usable PFN range for ZONE_MOVABLE is from
7614 * start_pfn->end_pfn. Calculate size_pages as the
7615 * number of pages used as kernelcore
7616 */
7617 size_pages = end_pfn - start_pfn;
7618 if (size_pages > kernelcore_remaining)
7619 size_pages = kernelcore_remaining;
7620 zone_movable_pfn[nid] = start_pfn + size_pages;
7621
7622 /*
7623 * Some kernelcore has been met, update counts and
7624 * break if the kernelcore for this node has been
7625 * satisfied
7626 */
7627 required_kernelcore -= min(required_kernelcore,
7628 size_pages);
7629 kernelcore_remaining -= size_pages;
7630 if (!kernelcore_remaining)
7631 break;
7632 }
7633 }
7634
7635 /*
7636 * If there is still required_kernelcore, we do another pass with one
7637 * less node in the count. This will push zone_movable_pfn[nid] further
7638 * along on the nodes that still have memory until kernelcore is
7639 * satisfied
7640 */
7641 usable_nodes--;
7642 if (usable_nodes && required_kernelcore > usable_nodes)
7643 goto restart;
7644
7645 out2:
7646 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7647 for (nid = 0; nid < MAX_NUMNODES; nid++)
7648 zone_movable_pfn[nid] =
7649 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7650
7651 out:
7652 /* restore the node_state */
7653 node_states[N_MEMORY] = saved_node_state;
7654 }
7655
7656 /* Any regular or high memory on that node ? */
7657 static void check_for_memory(pg_data_t *pgdat, int nid)
7658 {
7659 enum zone_type zone_type;
7660
7661 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7662 struct zone *zone = &pgdat->node_zones[zone_type];
7663 if (populated_zone(zone)) {
7664 if (IS_ENABLED(CONFIG_HIGHMEM))
7665 node_set_state(nid, N_HIGH_MEMORY);
7666 if (zone_type <= ZONE_NORMAL)
7667 node_set_state(nid, N_NORMAL_MEMORY);
7668 break;
7669 }
7670 }
7671 }
7672
7673 /*
7674 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7675 * such cases we allow max_zone_pfn sorted in the descending order
7676 */
7677 bool __weak arch_has_descending_max_zone_pfns(void)
7678 {
7679 return false;
7680 }
7681
7682 /**
7683 * free_area_init - Initialise all pg_data_t and zone data
7684 * @max_zone_pfn: an array of max PFNs for each zone
7685 *
7686 * This will call free_area_init_node() for each active node in the system.
7687 * Using the page ranges provided by memblock_set_node(), the size of each
7688 * zone in each node and their holes is calculated. If the maximum PFN
7689 * between two adjacent zones match, it is assumed that the zone is empty.
7690 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7691 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7692 * starts where the previous one ended. For example, ZONE_DMA32 starts
7693 * at arch_max_dma_pfn.
7694 */
7695 void __init free_area_init(unsigned long *max_zone_pfn)
7696 {
7697 unsigned long start_pfn, end_pfn;
7698 int i, nid, zone;
7699 bool descending;
7700
7701 /* Record where the zone boundaries are */
7702 memset(arch_zone_lowest_possible_pfn, 0,
7703 sizeof(arch_zone_lowest_possible_pfn));
7704 memset(arch_zone_highest_possible_pfn, 0,
7705 sizeof(arch_zone_highest_possible_pfn));
7706
7707 start_pfn = find_min_pfn_with_active_regions();
7708 descending = arch_has_descending_max_zone_pfns();
7709
7710 for (i = 0; i < MAX_NR_ZONES; i++) {
7711 if (descending)
7712 zone = MAX_NR_ZONES - i - 1;
7713 else
7714 zone = i;
7715
7716 if (zone == ZONE_MOVABLE)
7717 continue;
7718
7719 end_pfn = max(max_zone_pfn[zone], start_pfn);
7720 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7721 arch_zone_highest_possible_pfn[zone] = end_pfn;
7722
7723 start_pfn = end_pfn;
7724 }
7725
7726 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7727 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7728 find_zone_movable_pfns_for_nodes();
7729
7730 /* Print out the zone ranges */
7731 pr_info("Zone ranges:\n");
7732 for (i = 0; i < MAX_NR_ZONES; i++) {
7733 if (i == ZONE_MOVABLE)
7734 continue;
7735 pr_info(" %-8s ", zone_names[i]);
7736 if (arch_zone_lowest_possible_pfn[i] ==
7737 arch_zone_highest_possible_pfn[i])
7738 pr_cont("empty\n");
7739 else
7740 pr_cont("[mem %#018Lx-%#018Lx]\n",
7741 (u64)arch_zone_lowest_possible_pfn[i]
7742 << PAGE_SHIFT,
7743 ((u64)arch_zone_highest_possible_pfn[i]
7744 << PAGE_SHIFT) - 1);
7745 }
7746
7747 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7748 pr_info("Movable zone start for each node\n");
7749 for (i = 0; i < MAX_NUMNODES; i++) {
7750 if (zone_movable_pfn[i])
7751 pr_info(" Node %d: %#018Lx\n", i,
7752 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7753 }
7754
7755 /*
7756 * Print out the early node map, and initialize the
7757 * subsection-map relative to active online memory ranges to
7758 * enable future "sub-section" extensions of the memory map.
7759 */
7760 pr_info("Early memory node ranges\n");
7761 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7762 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7763 (u64)start_pfn << PAGE_SHIFT,
7764 ((u64)end_pfn << PAGE_SHIFT) - 1);
7765 subsection_map_init(start_pfn, end_pfn - start_pfn);
7766 }
7767
7768 /* Initialise every node */
7769 mminit_verify_pageflags_layout();
7770 setup_nr_node_ids();
7771 for_each_online_node(nid) {
7772 pg_data_t *pgdat = NODE_DATA(nid);
7773 free_area_init_node(nid);
7774
7775 /* Any memory on that node */
7776 if (pgdat->node_present_pages)
7777 node_set_state(nid, N_MEMORY);
7778 check_for_memory(pgdat, nid);
7779 }
7780 }
7781
7782 static int __init cmdline_parse_core(char *p, unsigned long *core,
7783 unsigned long *percent)
7784 {
7785 unsigned long long coremem;
7786 char *endptr;
7787
7788 if (!p)
7789 return -EINVAL;
7790
7791 /* Value may be a percentage of total memory, otherwise bytes */
7792 coremem = simple_strtoull(p, &endptr, 0);
7793 if (*endptr == '%') {
7794 /* Paranoid check for percent values greater than 100 */
7795 WARN_ON(coremem > 100);
7796
7797 *percent = coremem;
7798 } else {
7799 coremem = memparse(p, &p);
7800 /* Paranoid check that UL is enough for the coremem value */
7801 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7802
7803 *core = coremem >> PAGE_SHIFT;
7804 *percent = 0UL;
7805 }
7806 return 0;
7807 }
7808
7809 /*
7810 * kernelcore=size sets the amount of memory for use for allocations that
7811 * cannot be reclaimed or migrated.
7812 */
7813 static int __init cmdline_parse_kernelcore(char *p)
7814 {
7815 /* parse kernelcore=mirror */
7816 if (parse_option_str(p, "mirror")) {
7817 mirrored_kernelcore = true;
7818 return 0;
7819 }
7820
7821 return cmdline_parse_core(p, &required_kernelcore,
7822 &required_kernelcore_percent);
7823 }
7824
7825 /*
7826 * movablecore=size sets the amount of memory for use for allocations that
7827 * can be reclaimed or migrated.
7828 */
7829 static int __init cmdline_parse_movablecore(char *p)
7830 {
7831 return cmdline_parse_core(p, &required_movablecore,
7832 &required_movablecore_percent);
7833 }
7834
7835 early_param("kernelcore", cmdline_parse_kernelcore);
7836 early_param("movablecore", cmdline_parse_movablecore);
7837
7838 void adjust_managed_page_count(struct page *page, long count)
7839 {
7840 atomic_long_add(count, &page_zone(page)->managed_pages);
7841 totalram_pages_add(count);
7842 #ifdef CONFIG_HIGHMEM
7843 if (PageHighMem(page))
7844 totalhigh_pages_add(count);
7845 #endif
7846 }
7847 EXPORT_SYMBOL(adjust_managed_page_count);
7848
7849 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7850 {
7851 void *pos;
7852 unsigned long pages = 0;
7853
7854 start = (void *)PAGE_ALIGN((unsigned long)start);
7855 end = (void *)((unsigned long)end & PAGE_MASK);
7856 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7857 struct page *page = virt_to_page(pos);
7858 void *direct_map_addr;
7859
7860 /*
7861 * 'direct_map_addr' might be different from 'pos'
7862 * because some architectures' virt_to_page()
7863 * work with aliases. Getting the direct map
7864 * address ensures that we get a _writeable_
7865 * alias for the memset().
7866 */
7867 direct_map_addr = page_address(page);
7868 /*
7869 * Perform a kasan-unchecked memset() since this memory
7870 * has not been initialized.
7871 */
7872 direct_map_addr = kasan_reset_tag(direct_map_addr);
7873 if ((unsigned int)poison <= 0xFF)
7874 memset(direct_map_addr, poison, PAGE_SIZE);
7875
7876 free_reserved_page(page);
7877 }
7878
7879 if (pages && s)
7880 pr_info("Freeing %s memory: %ldK\n",
7881 s, pages << (PAGE_SHIFT - 10));
7882
7883 return pages;
7884 }
7885
7886 void __init mem_init_print_info(void)
7887 {
7888 unsigned long physpages, codesize, datasize, rosize, bss_size;
7889 unsigned long init_code_size, init_data_size;
7890
7891 physpages = get_num_physpages();
7892 codesize = _etext - _stext;
7893 datasize = _edata - _sdata;
7894 rosize = __end_rodata - __start_rodata;
7895 bss_size = __bss_stop - __bss_start;
7896 init_data_size = __init_end - __init_begin;
7897 init_code_size = _einittext - _sinittext;
7898
7899 /*
7900 * Detect special cases and adjust section sizes accordingly:
7901 * 1) .init.* may be embedded into .data sections
7902 * 2) .init.text.* may be out of [__init_begin, __init_end],
7903 * please refer to arch/tile/kernel/vmlinux.lds.S.
7904 * 3) .rodata.* may be embedded into .text or .data sections.
7905 */
7906 #define adj_init_size(start, end, size, pos, adj) \
7907 do { \
7908 if (start <= pos && pos < end && size > adj) \
7909 size -= adj; \
7910 } while (0)
7911
7912 adj_init_size(__init_begin, __init_end, init_data_size,
7913 _sinittext, init_code_size);
7914 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7915 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7916 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7917 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7918
7919 #undef adj_init_size
7920
7921 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7922 #ifdef CONFIG_HIGHMEM
7923 ", %luK highmem"
7924 #endif
7925 ")\n",
7926 nr_free_pages() << (PAGE_SHIFT - 10),
7927 physpages << (PAGE_SHIFT - 10),
7928 codesize >> 10, datasize >> 10, rosize >> 10,
7929 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7930 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7931 totalcma_pages << (PAGE_SHIFT - 10)
7932 #ifdef CONFIG_HIGHMEM
7933 , totalhigh_pages() << (PAGE_SHIFT - 10)
7934 #endif
7935 );
7936 }
7937
7938 /**
7939 * set_dma_reserve - set the specified number of pages reserved in the first zone
7940 * @new_dma_reserve: The number of pages to mark reserved
7941 *
7942 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7943 * In the DMA zone, a significant percentage may be consumed by kernel image
7944 * and other unfreeable allocations which can skew the watermarks badly. This
7945 * function may optionally be used to account for unfreeable pages in the
7946 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7947 * smaller per-cpu batchsize.
7948 */
7949 void __init set_dma_reserve(unsigned long new_dma_reserve)
7950 {
7951 dma_reserve = new_dma_reserve;
7952 }
7953
7954 static int page_alloc_cpu_dead(unsigned int cpu)
7955 {
7956
7957 lru_add_drain_cpu(cpu);
7958 drain_pages(cpu);
7959
7960 /*
7961 * Spill the event counters of the dead processor
7962 * into the current processors event counters.
7963 * This artificially elevates the count of the current
7964 * processor.
7965 */
7966 vm_events_fold_cpu(cpu);
7967
7968 /*
7969 * Zero the differential counters of the dead processor
7970 * so that the vm statistics are consistent.
7971 *
7972 * This is only okay since the processor is dead and cannot
7973 * race with what we are doing.
7974 */
7975 cpu_vm_stats_fold(cpu);
7976 return 0;
7977 }
7978
7979 #ifdef CONFIG_NUMA
7980 int hashdist = HASHDIST_DEFAULT;
7981
7982 static int __init set_hashdist(char *str)
7983 {
7984 if (!str)
7985 return 0;
7986 hashdist = simple_strtoul(str, &str, 0);
7987 return 1;
7988 }
7989 __setup("hashdist=", set_hashdist);
7990 #endif
7991
7992 void __init page_alloc_init(void)
7993 {
7994 int ret;
7995
7996 #ifdef CONFIG_NUMA
7997 if (num_node_state(N_MEMORY) == 1)
7998 hashdist = 0;
7999 #endif
8000
8001 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
8002 "mm/page_alloc:dead", NULL,
8003 page_alloc_cpu_dead);
8004 WARN_ON(ret < 0);
8005 }
8006
8007 /*
8008 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8009 * or min_free_kbytes changes.
8010 */
8011 static void calculate_totalreserve_pages(void)
8012 {
8013 struct pglist_data *pgdat;
8014 unsigned long reserve_pages = 0;
8015 enum zone_type i, j;
8016
8017 for_each_online_pgdat(pgdat) {
8018
8019 pgdat->totalreserve_pages = 0;
8020
8021 for (i = 0; i < MAX_NR_ZONES; i++) {
8022 struct zone *zone = pgdat->node_zones + i;
8023 long max = 0;
8024 unsigned long managed_pages = zone_managed_pages(zone);
8025
8026 /* Find valid and maximum lowmem_reserve in the zone */
8027 for (j = i; j < MAX_NR_ZONES; j++) {
8028 if (zone->lowmem_reserve[j] > max)
8029 max = zone->lowmem_reserve[j];
8030 }
8031
8032 /* we treat the high watermark as reserved pages. */
8033 max += high_wmark_pages(zone);
8034
8035 if (max > managed_pages)
8036 max = managed_pages;
8037
8038 pgdat->totalreserve_pages += max;
8039
8040 reserve_pages += max;
8041 }
8042 }
8043 totalreserve_pages = reserve_pages;
8044 }
8045
8046 /*
8047 * setup_per_zone_lowmem_reserve - called whenever
8048 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8049 * has a correct pages reserved value, so an adequate number of
8050 * pages are left in the zone after a successful __alloc_pages().
8051 */
8052 static void setup_per_zone_lowmem_reserve(void)
8053 {
8054 struct pglist_data *pgdat;
8055 enum zone_type i, j;
8056
8057 for_each_online_pgdat(pgdat) {
8058 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8059 struct zone *zone = &pgdat->node_zones[i];
8060 int ratio = sysctl_lowmem_reserve_ratio[i];
8061 bool clear = !ratio || !zone_managed_pages(zone);
8062 unsigned long managed_pages = 0;
8063
8064 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8065 if (clear) {
8066 zone->lowmem_reserve[j] = 0;
8067 } else {
8068 struct zone *upper_zone = &pgdat->node_zones[j];
8069
8070 managed_pages += zone_managed_pages(upper_zone);
8071 zone->lowmem_reserve[j] = managed_pages / ratio;
8072 }
8073 }
8074 }
8075 }
8076
8077 /* update totalreserve_pages */
8078 calculate_totalreserve_pages();
8079 }
8080
8081 static void __setup_per_zone_wmarks(void)
8082 {
8083 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8084 unsigned long lowmem_pages = 0;
8085 struct zone *zone;
8086 unsigned long flags;
8087
8088 /* Calculate total number of !ZONE_HIGHMEM pages */
8089 for_each_zone(zone) {
8090 if (!is_highmem(zone))
8091 lowmem_pages += zone_managed_pages(zone);
8092 }
8093
8094 for_each_zone(zone) {
8095 u64 tmp;
8096
8097 spin_lock_irqsave(&zone->lock, flags);
8098 tmp = (u64)pages_min * zone_managed_pages(zone);
8099 do_div(tmp, lowmem_pages);
8100 if (is_highmem(zone)) {
8101 /*
8102 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8103 * need highmem pages, so cap pages_min to a small
8104 * value here.
8105 *
8106 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8107 * deltas control async page reclaim, and so should
8108 * not be capped for highmem.
8109 */
8110 unsigned long min_pages;
8111
8112 min_pages = zone_managed_pages(zone) / 1024;
8113 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8114 zone->_watermark[WMARK_MIN] = min_pages;
8115 } else {
8116 /*
8117 * If it's a lowmem zone, reserve a number of pages
8118 * proportionate to the zone's size.
8119 */
8120 zone->_watermark[WMARK_MIN] = tmp;
8121 }
8122
8123 /*
8124 * Set the kswapd watermarks distance according to the
8125 * scale factor in proportion to available memory, but
8126 * ensure a minimum size on small systems.
8127 */
8128 tmp = max_t(u64, tmp >> 2,
8129 mult_frac(zone_managed_pages(zone),
8130 watermark_scale_factor, 10000));
8131
8132 zone->watermark_boost = 0;
8133 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8134 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8135
8136 spin_unlock_irqrestore(&zone->lock, flags);
8137 }
8138
8139 /* update totalreserve_pages */
8140 calculate_totalreserve_pages();
8141 }
8142
8143 /**
8144 * setup_per_zone_wmarks - called when min_free_kbytes changes
8145 * or when memory is hot-{added|removed}
8146 *
8147 * Ensures that the watermark[min,low,high] values for each zone are set
8148 * correctly with respect to min_free_kbytes.
8149 */
8150 void setup_per_zone_wmarks(void)
8151 {
8152 static DEFINE_SPINLOCK(lock);
8153
8154 spin_lock(&lock);
8155 __setup_per_zone_wmarks();
8156 spin_unlock(&lock);
8157 }
8158
8159 /*
8160 * Initialise min_free_kbytes.
8161 *
8162 * For small machines we want it small (128k min). For large machines
8163 * we want it large (256MB max). But it is not linear, because network
8164 * bandwidth does not increase linearly with machine size. We use
8165 *
8166 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8167 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8168 *
8169 * which yields
8170 *
8171 * 16MB: 512k
8172 * 32MB: 724k
8173 * 64MB: 1024k
8174 * 128MB: 1448k
8175 * 256MB: 2048k
8176 * 512MB: 2896k
8177 * 1024MB: 4096k
8178 * 2048MB: 5792k
8179 * 4096MB: 8192k
8180 * 8192MB: 11584k
8181 * 16384MB: 16384k
8182 */
8183 int __meminit init_per_zone_wmark_min(void)
8184 {
8185 unsigned long lowmem_kbytes;
8186 int new_min_free_kbytes;
8187
8188 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8189 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8190
8191 if (new_min_free_kbytes > user_min_free_kbytes) {
8192 min_free_kbytes = new_min_free_kbytes;
8193 if (min_free_kbytes < 128)
8194 min_free_kbytes = 128;
8195 if (min_free_kbytes > 262144)
8196 min_free_kbytes = 262144;
8197 } else {
8198 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8199 new_min_free_kbytes, user_min_free_kbytes);
8200 }
8201 setup_per_zone_wmarks();
8202 refresh_zone_stat_thresholds();
8203 setup_per_zone_lowmem_reserve();
8204
8205 #ifdef CONFIG_NUMA
8206 setup_min_unmapped_ratio();
8207 setup_min_slab_ratio();
8208 #endif
8209
8210 khugepaged_min_free_kbytes_update();
8211
8212 return 0;
8213 }
8214 postcore_initcall(init_per_zone_wmark_min)
8215
8216 /*
8217 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8218 * that we can call two helper functions whenever min_free_kbytes
8219 * changes.
8220 */
8221 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8222 void *buffer, size_t *length, loff_t *ppos)
8223 {
8224 int rc;
8225
8226 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8227 if (rc)
8228 return rc;
8229
8230 if (write) {
8231 user_min_free_kbytes = min_free_kbytes;
8232 setup_per_zone_wmarks();
8233 }
8234 return 0;
8235 }
8236
8237 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8238 void *buffer, size_t *length, loff_t *ppos)
8239 {
8240 int rc;
8241
8242 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8243 if (rc)
8244 return rc;
8245
8246 if (write)
8247 setup_per_zone_wmarks();
8248
8249 return 0;
8250 }
8251
8252 #ifdef CONFIG_NUMA
8253 static void setup_min_unmapped_ratio(void)
8254 {
8255 pg_data_t *pgdat;
8256 struct zone *zone;
8257
8258 for_each_online_pgdat(pgdat)
8259 pgdat->min_unmapped_pages = 0;
8260
8261 for_each_zone(zone)
8262 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8263 sysctl_min_unmapped_ratio) / 100;
8264 }
8265
8266
8267 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8268 void *buffer, size_t *length, loff_t *ppos)
8269 {
8270 int rc;
8271
8272 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8273 if (rc)
8274 return rc;
8275
8276 setup_min_unmapped_ratio();
8277
8278 return 0;
8279 }
8280
8281 static void setup_min_slab_ratio(void)
8282 {
8283 pg_data_t *pgdat;
8284 struct zone *zone;
8285
8286 for_each_online_pgdat(pgdat)
8287 pgdat->min_slab_pages = 0;
8288
8289 for_each_zone(zone)
8290 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8291 sysctl_min_slab_ratio) / 100;
8292 }
8293
8294 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8295 void *buffer, size_t *length, loff_t *ppos)
8296 {
8297 int rc;
8298
8299 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8300 if (rc)
8301 return rc;
8302
8303 setup_min_slab_ratio();
8304
8305 return 0;
8306 }
8307 #endif
8308
8309 /*
8310 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8311 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8312 * whenever sysctl_lowmem_reserve_ratio changes.
8313 *
8314 * The reserve ratio obviously has absolutely no relation with the
8315 * minimum watermarks. The lowmem reserve ratio can only make sense
8316 * if in function of the boot time zone sizes.
8317 */
8318 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8319 void *buffer, size_t *length, loff_t *ppos)
8320 {
8321 int i;
8322
8323 proc_dointvec_minmax(table, write, buffer, length, ppos);
8324
8325 for (i = 0; i < MAX_NR_ZONES; i++) {
8326 if (sysctl_lowmem_reserve_ratio[i] < 1)
8327 sysctl_lowmem_reserve_ratio[i] = 0;
8328 }
8329
8330 setup_per_zone_lowmem_reserve();
8331 return 0;
8332 }
8333
8334 /*
8335 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8336 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8337 * pagelist can have before it gets flushed back to buddy allocator.
8338 */
8339 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8340 void *buffer, size_t *length, loff_t *ppos)
8341 {
8342 struct zone *zone;
8343 int old_percpu_pagelist_fraction;
8344 int ret;
8345
8346 mutex_lock(&pcp_batch_high_lock);
8347 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8348
8349 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8350 if (!write || ret < 0)
8351 goto out;
8352
8353 /* Sanity checking to avoid pcp imbalance */
8354 if (percpu_pagelist_fraction &&
8355 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8356 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8357 ret = -EINVAL;
8358 goto out;
8359 }
8360
8361 /* No change? */
8362 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8363 goto out;
8364
8365 for_each_populated_zone(zone)
8366 zone_set_pageset_high_and_batch(zone);
8367 out:
8368 mutex_unlock(&pcp_batch_high_lock);
8369 return ret;
8370 }
8371
8372 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8373 /*
8374 * Returns the number of pages that arch has reserved but
8375 * is not known to alloc_large_system_hash().
8376 */
8377 static unsigned long __init arch_reserved_kernel_pages(void)
8378 {
8379 return 0;
8380 }
8381 #endif
8382
8383 /*
8384 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8385 * machines. As memory size is increased the scale is also increased but at
8386 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8387 * quadruples the scale is increased by one, which means the size of hash table
8388 * only doubles, instead of quadrupling as well.
8389 * Because 32-bit systems cannot have large physical memory, where this scaling
8390 * makes sense, it is disabled on such platforms.
8391 */
8392 #if __BITS_PER_LONG > 32
8393 #define ADAPT_SCALE_BASE (64ul << 30)
8394 #define ADAPT_SCALE_SHIFT 2
8395 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8396 #endif
8397
8398 /*
8399 * allocate a large system hash table from bootmem
8400 * - it is assumed that the hash table must contain an exact power-of-2
8401 * quantity of entries
8402 * - limit is the number of hash buckets, not the total allocation size
8403 */
8404 void *__init alloc_large_system_hash(const char *tablename,
8405 unsigned long bucketsize,
8406 unsigned long numentries,
8407 int scale,
8408 int flags,
8409 unsigned int *_hash_shift,
8410 unsigned int *_hash_mask,
8411 unsigned long low_limit,
8412 unsigned long high_limit)
8413 {
8414 unsigned long long max = high_limit;
8415 unsigned long log2qty, size;
8416 void *table = NULL;
8417 gfp_t gfp_flags;
8418 bool virt;
8419 bool huge;
8420
8421 /* allow the kernel cmdline to have a say */
8422 if (!numentries) {
8423 /* round applicable memory size up to nearest megabyte */
8424 numentries = nr_kernel_pages;
8425 numentries -= arch_reserved_kernel_pages();
8426
8427 /* It isn't necessary when PAGE_SIZE >= 1MB */
8428 if (PAGE_SHIFT < 20)
8429 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8430
8431 #if __BITS_PER_LONG > 32
8432 if (!high_limit) {
8433 unsigned long adapt;
8434
8435 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8436 adapt <<= ADAPT_SCALE_SHIFT)
8437 scale++;
8438 }
8439 #endif
8440
8441 /* limit to 1 bucket per 2^scale bytes of low memory */
8442 if (scale > PAGE_SHIFT)
8443 numentries >>= (scale - PAGE_SHIFT);
8444 else
8445 numentries <<= (PAGE_SHIFT - scale);
8446
8447 /* Make sure we've got at least a 0-order allocation.. */
8448 if (unlikely(flags & HASH_SMALL)) {
8449 /* Makes no sense without HASH_EARLY */
8450 WARN_ON(!(flags & HASH_EARLY));
8451 if (!(numentries >> *_hash_shift)) {
8452 numentries = 1UL << *_hash_shift;
8453 BUG_ON(!numentries);
8454 }
8455 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8456 numentries = PAGE_SIZE / bucketsize;
8457 }
8458 numentries = roundup_pow_of_two(numentries);
8459
8460 /* limit allocation size to 1/16 total memory by default */
8461 if (max == 0) {
8462 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8463 do_div(max, bucketsize);
8464 }
8465 max = min(max, 0x80000000ULL);
8466
8467 if (numentries < low_limit)
8468 numentries = low_limit;
8469 if (numentries > max)
8470 numentries = max;
8471
8472 log2qty = ilog2(numentries);
8473
8474 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8475 do {
8476 virt = false;
8477 size = bucketsize << log2qty;
8478 if (flags & HASH_EARLY) {
8479 if (flags & HASH_ZERO)
8480 table = memblock_alloc(size, SMP_CACHE_BYTES);
8481 else
8482 table = memblock_alloc_raw(size,
8483 SMP_CACHE_BYTES);
8484 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8485 table = __vmalloc(size, gfp_flags);
8486 virt = true;
8487 huge = is_vm_area_hugepages(table);
8488 } else {
8489 /*
8490 * If bucketsize is not a power-of-two, we may free
8491 * some pages at the end of hash table which
8492 * alloc_pages_exact() automatically does
8493 */
8494 table = alloc_pages_exact(size, gfp_flags);
8495 kmemleak_alloc(table, size, 1, gfp_flags);
8496 }
8497 } while (!table && size > PAGE_SIZE && --log2qty);
8498
8499 if (!table)
8500 panic("Failed to allocate %s hash table\n", tablename);
8501
8502 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8503 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8504 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8505
8506 if (_hash_shift)
8507 *_hash_shift = log2qty;
8508 if (_hash_mask)
8509 *_hash_mask = (1 << log2qty) - 1;
8510
8511 return table;
8512 }
8513
8514 /*
8515 * This function checks whether pageblock includes unmovable pages or not.
8516 *
8517 * PageLRU check without isolation or lru_lock could race so that
8518 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8519 * check without lock_page also may miss some movable non-lru pages at
8520 * race condition. So you can't expect this function should be exact.
8521 *
8522 * Returns a page without holding a reference. If the caller wants to
8523 * dereference that page (e.g., dumping), it has to make sure that it
8524 * cannot get removed (e.g., via memory unplug) concurrently.
8525 *
8526 */
8527 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8528 int migratetype, int flags)
8529 {
8530 unsigned long iter = 0;
8531 unsigned long pfn = page_to_pfn(page);
8532 unsigned long offset = pfn % pageblock_nr_pages;
8533
8534 if (is_migrate_cma_page(page)) {
8535 /*
8536 * CMA allocations (alloc_contig_range) really need to mark
8537 * isolate CMA pageblocks even when they are not movable in fact
8538 * so consider them movable here.
8539 */
8540 if (is_migrate_cma(migratetype))
8541 return NULL;
8542
8543 return page;
8544 }
8545
8546 for (; iter < pageblock_nr_pages - offset; iter++) {
8547 if (!pfn_valid_within(pfn + iter))
8548 continue;
8549
8550 page = pfn_to_page(pfn + iter);
8551
8552 /*
8553 * Both, bootmem allocations and memory holes are marked
8554 * PG_reserved and are unmovable. We can even have unmovable
8555 * allocations inside ZONE_MOVABLE, for example when
8556 * specifying "movablecore".
8557 */
8558 if (PageReserved(page))
8559 return page;
8560
8561 /*
8562 * If the zone is movable and we have ruled out all reserved
8563 * pages then it should be reasonably safe to assume the rest
8564 * is movable.
8565 */
8566 if (zone_idx(zone) == ZONE_MOVABLE)
8567 continue;
8568
8569 /*
8570 * Hugepages are not in LRU lists, but they're movable.
8571 * THPs are on the LRU, but need to be counted as #small pages.
8572 * We need not scan over tail pages because we don't
8573 * handle each tail page individually in migration.
8574 */
8575 if (PageHuge(page) || PageTransCompound(page)) {
8576 struct page *head = compound_head(page);
8577 unsigned int skip_pages;
8578
8579 if (PageHuge(page)) {
8580 if (!hugepage_migration_supported(page_hstate(head)))
8581 return page;
8582 } else if (!PageLRU(head) && !__PageMovable(head)) {
8583 return page;
8584 }
8585
8586 skip_pages = compound_nr(head) - (page - head);
8587 iter += skip_pages - 1;
8588 continue;
8589 }
8590
8591 /*
8592 * We can't use page_count without pin a page
8593 * because another CPU can free compound page.
8594 * This check already skips compound tails of THP
8595 * because their page->_refcount is zero at all time.
8596 */
8597 if (!page_ref_count(page)) {
8598 if (PageBuddy(page))
8599 iter += (1 << buddy_order(page)) - 1;
8600 continue;
8601 }
8602
8603 /*
8604 * The HWPoisoned page may be not in buddy system, and
8605 * page_count() is not 0.
8606 */
8607 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8608 continue;
8609
8610 /*
8611 * We treat all PageOffline() pages as movable when offlining
8612 * to give drivers a chance to decrement their reference count
8613 * in MEM_GOING_OFFLINE in order to indicate that these pages
8614 * can be offlined as there are no direct references anymore.
8615 * For actually unmovable PageOffline() where the driver does
8616 * not support this, we will fail later when trying to actually
8617 * move these pages that still have a reference count > 0.
8618 * (false negatives in this function only)
8619 */
8620 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8621 continue;
8622
8623 if (__PageMovable(page) || PageLRU(page))
8624 continue;
8625
8626 /*
8627 * If there are RECLAIMABLE pages, we need to check
8628 * it. But now, memory offline itself doesn't call
8629 * shrink_node_slabs() and it still to be fixed.
8630 */
8631 return page;
8632 }
8633 return NULL;
8634 }
8635
8636 #ifdef CONFIG_CONTIG_ALLOC
8637 static unsigned long pfn_max_align_down(unsigned long pfn)
8638 {
8639 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8640 pageblock_nr_pages) - 1);
8641 }
8642
8643 static unsigned long pfn_max_align_up(unsigned long pfn)
8644 {
8645 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8646 pageblock_nr_pages));
8647 }
8648
8649 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8650 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8651 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8652 static void alloc_contig_dump_pages(struct list_head *page_list)
8653 {
8654 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8655
8656 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8657 struct page *page;
8658
8659 dump_stack();
8660 list_for_each_entry(page, page_list, lru)
8661 dump_page(page, "migration failure");
8662 }
8663 }
8664 #else
8665 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8666 {
8667 }
8668 #endif
8669
8670 /* [start, end) must belong to a single zone. */
8671 static int __alloc_contig_migrate_range(struct compact_control *cc,
8672 unsigned long start, unsigned long end)
8673 {
8674 /* This function is based on compact_zone() from compaction.c. */
8675 unsigned int nr_reclaimed;
8676 unsigned long pfn = start;
8677 unsigned int tries = 0;
8678 int ret = 0;
8679 struct migration_target_control mtc = {
8680 .nid = zone_to_nid(cc->zone),
8681 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8682 };
8683
8684 migrate_prep();
8685
8686 while (pfn < end || !list_empty(&cc->migratepages)) {
8687 if (fatal_signal_pending(current)) {
8688 ret = -EINTR;
8689 break;
8690 }
8691
8692 if (list_empty(&cc->migratepages)) {
8693 cc->nr_migratepages = 0;
8694 ret = isolate_migratepages_range(cc, pfn, end);
8695 if (ret && ret != -EAGAIN)
8696 break;
8697 pfn = cc->migrate_pfn;
8698 tries = 0;
8699 } else if (++tries == 5) {
8700 ret = -EBUSY;
8701 break;
8702 }
8703
8704 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8705 &cc->migratepages);
8706 cc->nr_migratepages -= nr_reclaimed;
8707
8708 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8709 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8710
8711 /*
8712 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8713 * to retry again over this error, so do the same here.
8714 */
8715 if (ret == -ENOMEM)
8716 break;
8717 }
8718 if (ret < 0) {
8719 alloc_contig_dump_pages(&cc->migratepages);
8720 putback_movable_pages(&cc->migratepages);
8721 return ret;
8722 }
8723 return 0;
8724 }
8725
8726 /**
8727 * alloc_contig_range() -- tries to allocate given range of pages
8728 * @start: start PFN to allocate
8729 * @end: one-past-the-last PFN to allocate
8730 * @migratetype: migratetype of the underlaying pageblocks (either
8731 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8732 * in range must have the same migratetype and it must
8733 * be either of the two.
8734 * @gfp_mask: GFP mask to use during compaction
8735 *
8736 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8737 * aligned. The PFN range must belong to a single zone.
8738 *
8739 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8740 * pageblocks in the range. Once isolated, the pageblocks should not
8741 * be modified by others.
8742 *
8743 * Return: zero on success or negative error code. On success all
8744 * pages which PFN is in [start, end) are allocated for the caller and
8745 * need to be freed with free_contig_range().
8746 */
8747 int alloc_contig_range(unsigned long start, unsigned long end,
8748 unsigned migratetype, gfp_t gfp_mask)
8749 {
8750 unsigned long outer_start, outer_end;
8751 unsigned int order;
8752 int ret = 0;
8753
8754 struct compact_control cc = {
8755 .nr_migratepages = 0,
8756 .order = -1,
8757 .zone = page_zone(pfn_to_page(start)),
8758 .mode = MIGRATE_SYNC,
8759 .ignore_skip_hint = true,
8760 .no_set_skip_hint = true,
8761 .gfp_mask = current_gfp_context(gfp_mask),
8762 .alloc_contig = true,
8763 };
8764 INIT_LIST_HEAD(&cc.migratepages);
8765
8766 /*
8767 * What we do here is we mark all pageblocks in range as
8768 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8769 * have different sizes, and due to the way page allocator
8770 * work, we align the range to biggest of the two pages so
8771 * that page allocator won't try to merge buddies from
8772 * different pageblocks and change MIGRATE_ISOLATE to some
8773 * other migration type.
8774 *
8775 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8776 * migrate the pages from an unaligned range (ie. pages that
8777 * we are interested in). This will put all the pages in
8778 * range back to page allocator as MIGRATE_ISOLATE.
8779 *
8780 * When this is done, we take the pages in range from page
8781 * allocator removing them from the buddy system. This way
8782 * page allocator will never consider using them.
8783 *
8784 * This lets us mark the pageblocks back as
8785 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8786 * aligned range but not in the unaligned, original range are
8787 * put back to page allocator so that buddy can use them.
8788 */
8789
8790 ret = start_isolate_page_range(pfn_max_align_down(start),
8791 pfn_max_align_up(end), migratetype, 0);
8792 if (ret)
8793 return ret;
8794
8795 drain_all_pages(cc.zone);
8796
8797 /*
8798 * In case of -EBUSY, we'd like to know which page causes problem.
8799 * So, just fall through. test_pages_isolated() has a tracepoint
8800 * which will report the busy page.
8801 *
8802 * It is possible that busy pages could become available before
8803 * the call to test_pages_isolated, and the range will actually be
8804 * allocated. So, if we fall through be sure to clear ret so that
8805 * -EBUSY is not accidentally used or returned to caller.
8806 */
8807 ret = __alloc_contig_migrate_range(&cc, start, end);
8808 if (ret && ret != -EBUSY)
8809 goto done;
8810 ret =0;
8811
8812 /*
8813 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8814 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8815 * more, all pages in [start, end) are free in page allocator.
8816 * What we are going to do is to allocate all pages from
8817 * [start, end) (that is remove them from page allocator).
8818 *
8819 * The only problem is that pages at the beginning and at the
8820 * end of interesting range may be not aligned with pages that
8821 * page allocator holds, ie. they can be part of higher order
8822 * pages. Because of this, we reserve the bigger range and
8823 * once this is done free the pages we are not interested in.
8824 *
8825 * We don't have to hold zone->lock here because the pages are
8826 * isolated thus they won't get removed from buddy.
8827 */
8828
8829 order = 0;
8830 outer_start = start;
8831 while (!PageBuddy(pfn_to_page(outer_start))) {
8832 if (++order >= MAX_ORDER) {
8833 outer_start = start;
8834 break;
8835 }
8836 outer_start &= ~0UL << order;
8837 }
8838
8839 if (outer_start != start) {
8840 order = buddy_order(pfn_to_page(outer_start));
8841
8842 /*
8843 * outer_start page could be small order buddy page and
8844 * it doesn't include start page. Adjust outer_start
8845 * in this case to report failed page properly
8846 * on tracepoint in test_pages_isolated()
8847 */
8848 if (outer_start + (1UL << order) <= start)
8849 outer_start = start;
8850 }
8851
8852 /* Make sure the range is really isolated. */
8853 if (test_pages_isolated(outer_start, end, 0)) {
8854 ret = -EBUSY;
8855 goto done;
8856 }
8857
8858 /* Grab isolated pages from freelists. */
8859 outer_end = isolate_freepages_range(&cc, outer_start, end);
8860 if (!outer_end) {
8861 ret = -EBUSY;
8862 goto done;
8863 }
8864
8865 /* Free head and tail (if any) */
8866 if (start != outer_start)
8867 free_contig_range(outer_start, start - outer_start);
8868 if (end != outer_end)
8869 free_contig_range(end, outer_end - end);
8870
8871 done:
8872 undo_isolate_page_range(pfn_max_align_down(start),
8873 pfn_max_align_up(end), migratetype);
8874 return ret;
8875 }
8876 EXPORT_SYMBOL(alloc_contig_range);
8877
8878 static int __alloc_contig_pages(unsigned long start_pfn,
8879 unsigned long nr_pages, gfp_t gfp_mask)
8880 {
8881 unsigned long end_pfn = start_pfn + nr_pages;
8882
8883 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8884 gfp_mask);
8885 }
8886
8887 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8888 unsigned long nr_pages)
8889 {
8890 unsigned long i, end_pfn = start_pfn + nr_pages;
8891 struct page *page;
8892
8893 for (i = start_pfn; i < end_pfn; i++) {
8894 page = pfn_to_online_page(i);
8895 if (!page)
8896 return false;
8897
8898 if (page_zone(page) != z)
8899 return false;
8900
8901 if (PageReserved(page))
8902 return false;
8903 }
8904 return true;
8905 }
8906
8907 static bool zone_spans_last_pfn(const struct zone *zone,
8908 unsigned long start_pfn, unsigned long nr_pages)
8909 {
8910 unsigned long last_pfn = start_pfn + nr_pages - 1;
8911
8912 return zone_spans_pfn(zone, last_pfn);
8913 }
8914
8915 /**
8916 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8917 * @nr_pages: Number of contiguous pages to allocate
8918 * @gfp_mask: GFP mask to limit search and used during compaction
8919 * @nid: Target node
8920 * @nodemask: Mask for other possible nodes
8921 *
8922 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8923 * on an applicable zonelist to find a contiguous pfn range which can then be
8924 * tried for allocation with alloc_contig_range(). This routine is intended
8925 * for allocation requests which can not be fulfilled with the buddy allocator.
8926 *
8927 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8928 * power of two then the alignment is guaranteed to be to the given nr_pages
8929 * (e.g. 1GB request would be aligned to 1GB).
8930 *
8931 * Allocated pages can be freed with free_contig_range() or by manually calling
8932 * __free_page() on each allocated page.
8933 *
8934 * Return: pointer to contiguous pages on success, or NULL if not successful.
8935 */
8936 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8937 int nid, nodemask_t *nodemask)
8938 {
8939 unsigned long ret, pfn, flags;
8940 struct zonelist *zonelist;
8941 struct zone *zone;
8942 struct zoneref *z;
8943
8944 zonelist = node_zonelist(nid, gfp_mask);
8945 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8946 gfp_zone(gfp_mask), nodemask) {
8947 spin_lock_irqsave(&zone->lock, flags);
8948
8949 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8950 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8951 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8952 /*
8953 * We release the zone lock here because
8954 * alloc_contig_range() will also lock the zone
8955 * at some point. If there's an allocation
8956 * spinning on this lock, it may win the race
8957 * and cause alloc_contig_range() to fail...
8958 */
8959 spin_unlock_irqrestore(&zone->lock, flags);
8960 ret = __alloc_contig_pages(pfn, nr_pages,
8961 gfp_mask);
8962 if (!ret)
8963 return pfn_to_page(pfn);
8964 spin_lock_irqsave(&zone->lock, flags);
8965 }
8966 pfn += nr_pages;
8967 }
8968 spin_unlock_irqrestore(&zone->lock, flags);
8969 }
8970 return NULL;
8971 }
8972 #endif /* CONFIG_CONTIG_ALLOC */
8973
8974 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8975 {
8976 unsigned int count = 0;
8977
8978 for (; nr_pages--; pfn++) {
8979 struct page *page = pfn_to_page(pfn);
8980
8981 count += page_count(page) != 1;
8982 __free_page(page);
8983 }
8984 WARN(count != 0, "%d pages are still in use!\n", count);
8985 }
8986 EXPORT_SYMBOL(free_contig_range);
8987
8988 /*
8989 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8990 * page high values need to be recalulated.
8991 */
8992 void __meminit zone_pcp_update(struct zone *zone)
8993 {
8994 mutex_lock(&pcp_batch_high_lock);
8995 zone_set_pageset_high_and_batch(zone);
8996 mutex_unlock(&pcp_batch_high_lock);
8997 }
8998
8999 /*
9000 * Effectively disable pcplists for the zone by setting the high limit to 0
9001 * and draining all cpus. A concurrent page freeing on another CPU that's about
9002 * to put the page on pcplist will either finish before the drain and the page
9003 * will be drained, or observe the new high limit and skip the pcplist.
9004 *
9005 * Must be paired with a call to zone_pcp_enable().
9006 */
9007 void zone_pcp_disable(struct zone *zone)
9008 {
9009 mutex_lock(&pcp_batch_high_lock);
9010 __zone_set_pageset_high_and_batch(zone, 0, 1);
9011 __drain_all_pages(zone, true);
9012 }
9013
9014 void zone_pcp_enable(struct zone *zone)
9015 {
9016 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9017 mutex_unlock(&pcp_batch_high_lock);
9018 }
9019
9020 void zone_pcp_reset(struct zone *zone)
9021 {
9022 unsigned long flags;
9023 int cpu;
9024 struct per_cpu_pageset *pset;
9025
9026 /* avoid races with drain_pages() */
9027 local_irq_save(flags);
9028 if (zone->pageset != &boot_pageset) {
9029 for_each_online_cpu(cpu) {
9030 pset = per_cpu_ptr(zone->pageset, cpu);
9031 drain_zonestat(zone, pset);
9032 }
9033 free_percpu(zone->pageset);
9034 zone->pageset = &boot_pageset;
9035 }
9036 local_irq_restore(flags);
9037 }
9038
9039 #ifdef CONFIG_MEMORY_HOTREMOVE
9040 /*
9041 * All pages in the range must be in a single zone, must not contain holes,
9042 * must span full sections, and must be isolated before calling this function.
9043 */
9044 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9045 {
9046 unsigned long pfn = start_pfn;
9047 struct page *page;
9048 struct zone *zone;
9049 unsigned int order;
9050 unsigned long flags;
9051
9052 offline_mem_sections(pfn, end_pfn);
9053 zone = page_zone(pfn_to_page(pfn));
9054 spin_lock_irqsave(&zone->lock, flags);
9055 while (pfn < end_pfn) {
9056 page = pfn_to_page(pfn);
9057 /*
9058 * The HWPoisoned page may be not in buddy system, and
9059 * page_count() is not 0.
9060 */
9061 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9062 pfn++;
9063 continue;
9064 }
9065 /*
9066 * At this point all remaining PageOffline() pages have a
9067 * reference count of 0 and can simply be skipped.
9068 */
9069 if (PageOffline(page)) {
9070 BUG_ON(page_count(page));
9071 BUG_ON(PageBuddy(page));
9072 pfn++;
9073 continue;
9074 }
9075
9076 BUG_ON(page_count(page));
9077 BUG_ON(!PageBuddy(page));
9078 order = buddy_order(page);
9079 del_page_from_free_list(page, zone, order);
9080 pfn += (1 << order);
9081 }
9082 spin_unlock_irqrestore(&zone->lock, flags);
9083 }
9084 #endif
9085
9086 bool is_free_buddy_page(struct page *page)
9087 {
9088 struct zone *zone = page_zone(page);
9089 unsigned long pfn = page_to_pfn(page);
9090 unsigned long flags;
9091 unsigned int order;
9092
9093 spin_lock_irqsave(&zone->lock, flags);
9094 for (order = 0; order < MAX_ORDER; order++) {
9095 struct page *page_head = page - (pfn & ((1 << order) - 1));
9096
9097 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9098 break;
9099 }
9100 spin_unlock_irqrestore(&zone->lock, flags);
9101
9102 return order < MAX_ORDER;
9103 }
9104
9105 #ifdef CONFIG_MEMORY_FAILURE
9106 /*
9107 * Break down a higher-order page in sub-pages, and keep our target out of
9108 * buddy allocator.
9109 */
9110 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9111 struct page *target, int low, int high,
9112 int migratetype)
9113 {
9114 unsigned long size = 1 << high;
9115 struct page *current_buddy, *next_page;
9116
9117 while (high > low) {
9118 high--;
9119 size >>= 1;
9120
9121 if (target >= &page[size]) {
9122 next_page = page + size;
9123 current_buddy = page;
9124 } else {
9125 next_page = page;
9126 current_buddy = page + size;
9127 }
9128
9129 if (set_page_guard(zone, current_buddy, high, migratetype))
9130 continue;
9131
9132 if (current_buddy != target) {
9133 add_to_free_list(current_buddy, zone, high, migratetype);
9134 set_buddy_order(current_buddy, high);
9135 page = next_page;
9136 }
9137 }
9138 }
9139
9140 /*
9141 * Take a page that will be marked as poisoned off the buddy allocator.
9142 */
9143 bool take_page_off_buddy(struct page *page)
9144 {
9145 struct zone *zone = page_zone(page);
9146 unsigned long pfn = page_to_pfn(page);
9147 unsigned long flags;
9148 unsigned int order;
9149 bool ret = false;
9150
9151 spin_lock_irqsave(&zone->lock, flags);
9152 for (order = 0; order < MAX_ORDER; order++) {
9153 struct page *page_head = page - (pfn & ((1 << order) - 1));
9154 int page_order = buddy_order(page_head);
9155
9156 if (PageBuddy(page_head) && page_order >= order) {
9157 unsigned long pfn_head = page_to_pfn(page_head);
9158 int migratetype = get_pfnblock_migratetype(page_head,
9159 pfn_head);
9160
9161 del_page_from_free_list(page_head, zone, page_order);
9162 break_down_buddy_pages(zone, page_head, page, 0,
9163 page_order, migratetype);
9164 ret = true;
9165 break;
9166 }
9167 if (page_count(page_head) > 0)
9168 break;
9169 }
9170 spin_unlock_irqrestore(&zone->lock, flags);
9171 return ret;
9172 }
9173 #endif