]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
Merge branch 'for-5.10/cp2112' into for-linus
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
72
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/div64.h>
76 #include "internal.h"
77 #include "shuffle.h"
78 #include "page_reporting.h"
79
80 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
81 static DEFINE_MUTEX(pcp_batch_high_lock);
82 #define MIN_PERCPU_PAGELIST_FRACTION (8)
83
84 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
85 DEFINE_PER_CPU(int, numa_node);
86 EXPORT_PER_CPU_SYMBOL(numa_node);
87 #endif
88
89 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
90
91 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
92 /*
93 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
94 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
95 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
96 * defined in <linux/topology.h>.
97 */
98 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
99 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
100 #endif
101
102 /* work_structs for global per-cpu drains */
103 struct pcpu_drain {
104 struct zone *zone;
105 struct work_struct work;
106 };
107 static DEFINE_MUTEX(pcpu_drain_mutex);
108 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
109
110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111 volatile unsigned long latent_entropy __latent_entropy;
112 EXPORT_SYMBOL(latent_entropy);
113 #endif
114
115 /*
116 * Array of node states.
117 */
118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 [N_POSSIBLE] = NODE_MASK_ALL,
120 [N_ONLINE] = { { [0] = 1UL } },
121 #ifndef CONFIG_NUMA
122 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
123 #ifdef CONFIG_HIGHMEM
124 [N_HIGH_MEMORY] = { { [0] = 1UL } },
125 #endif
126 [N_MEMORY] = { { [0] = 1UL } },
127 [N_CPU] = { { [0] = 1UL } },
128 #endif /* NUMA */
129 };
130 EXPORT_SYMBOL(node_states);
131
132 atomic_long_t _totalram_pages __read_mostly;
133 EXPORT_SYMBOL(_totalram_pages);
134 unsigned long totalreserve_pages __read_mostly;
135 unsigned long totalcma_pages __read_mostly;
136
137 int percpu_pagelist_fraction;
138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
139 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
141 #else
142 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
143 #endif
144 EXPORT_SYMBOL(init_on_alloc);
145
146 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147 DEFINE_STATIC_KEY_TRUE(init_on_free);
148 #else
149 DEFINE_STATIC_KEY_FALSE(init_on_free);
150 #endif
151 EXPORT_SYMBOL(init_on_free);
152
153 static int __init early_init_on_alloc(char *buf)
154 {
155 int ret;
156 bool bool_result;
157
158 if (!buf)
159 return -EINVAL;
160 ret = kstrtobool(buf, &bool_result);
161 if (bool_result && page_poisoning_enabled())
162 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 if (bool_result)
164 static_branch_enable(&init_on_alloc);
165 else
166 static_branch_disable(&init_on_alloc);
167 return ret;
168 }
169 early_param("init_on_alloc", early_init_on_alloc);
170
171 static int __init early_init_on_free(char *buf)
172 {
173 int ret;
174 bool bool_result;
175
176 if (!buf)
177 return -EINVAL;
178 ret = kstrtobool(buf, &bool_result);
179 if (bool_result && page_poisoning_enabled())
180 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 if (bool_result)
182 static_branch_enable(&init_on_free);
183 else
184 static_branch_disable(&init_on_free);
185 return ret;
186 }
187 early_param("init_on_free", early_init_on_free);
188
189 /*
190 * A cached value of the page's pageblock's migratetype, used when the page is
191 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193 * Also the migratetype set in the page does not necessarily match the pcplist
194 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195 * other index - this ensures that it will be put on the correct CMA freelist.
196 */
197 static inline int get_pcppage_migratetype(struct page *page)
198 {
199 return page->index;
200 }
201
202 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203 {
204 page->index = migratetype;
205 }
206
207 #ifdef CONFIG_PM_SLEEP
208 /*
209 * The following functions are used by the suspend/hibernate code to temporarily
210 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211 * while devices are suspended. To avoid races with the suspend/hibernate code,
212 * they should always be called with system_transition_mutex held
213 * (gfp_allowed_mask also should only be modified with system_transition_mutex
214 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215 * with that modification).
216 */
217
218 static gfp_t saved_gfp_mask;
219
220 void pm_restore_gfp_mask(void)
221 {
222 WARN_ON(!mutex_is_locked(&system_transition_mutex));
223 if (saved_gfp_mask) {
224 gfp_allowed_mask = saved_gfp_mask;
225 saved_gfp_mask = 0;
226 }
227 }
228
229 void pm_restrict_gfp_mask(void)
230 {
231 WARN_ON(!mutex_is_locked(&system_transition_mutex));
232 WARN_ON(saved_gfp_mask);
233 saved_gfp_mask = gfp_allowed_mask;
234 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
235 }
236
237 bool pm_suspended_storage(void)
238 {
239 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
240 return false;
241 return true;
242 }
243 #endif /* CONFIG_PM_SLEEP */
244
245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
246 unsigned int pageblock_order __read_mostly;
247 #endif
248
249 static void __free_pages_ok(struct page *page, unsigned int order);
250
251 /*
252 * results with 256, 32 in the lowmem_reserve sysctl:
253 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254 * 1G machine -> (16M dma, 784M normal, 224M high)
255 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
257 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258 *
259 * TBD: should special case ZONE_DMA32 machines here - in those we normally
260 * don't need any ZONE_NORMAL reservation
261 */
262 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
263 #ifdef CONFIG_ZONE_DMA
264 [ZONE_DMA] = 256,
265 #endif
266 #ifdef CONFIG_ZONE_DMA32
267 [ZONE_DMA32] = 256,
268 #endif
269 [ZONE_NORMAL] = 32,
270 #ifdef CONFIG_HIGHMEM
271 [ZONE_HIGHMEM] = 0,
272 #endif
273 [ZONE_MOVABLE] = 0,
274 };
275
276 static char * const zone_names[MAX_NR_ZONES] = {
277 #ifdef CONFIG_ZONE_DMA
278 "DMA",
279 #endif
280 #ifdef CONFIG_ZONE_DMA32
281 "DMA32",
282 #endif
283 "Normal",
284 #ifdef CONFIG_HIGHMEM
285 "HighMem",
286 #endif
287 "Movable",
288 #ifdef CONFIG_ZONE_DEVICE
289 "Device",
290 #endif
291 };
292
293 const char * const migratetype_names[MIGRATE_TYPES] = {
294 "Unmovable",
295 "Movable",
296 "Reclaimable",
297 "HighAtomic",
298 #ifdef CONFIG_CMA
299 "CMA",
300 #endif
301 #ifdef CONFIG_MEMORY_ISOLATION
302 "Isolate",
303 #endif
304 };
305
306 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
307 [NULL_COMPOUND_DTOR] = NULL,
308 [COMPOUND_PAGE_DTOR] = free_compound_page,
309 #ifdef CONFIG_HUGETLB_PAGE
310 [HUGETLB_PAGE_DTOR] = free_huge_page,
311 #endif
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
314 #endif
315 };
316
317 int min_free_kbytes = 1024;
318 int user_min_free_kbytes = -1;
319 #ifdef CONFIG_DISCONTIGMEM
320 /*
321 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
322 * are not on separate NUMA nodes. Functionally this works but with
323 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
324 * quite small. By default, do not boost watermarks on discontigmem as in
325 * many cases very high-order allocations like THP are likely to be
326 * unsupported and the premature reclaim offsets the advantage of long-term
327 * fragmentation avoidance.
328 */
329 int watermark_boost_factor __read_mostly;
330 #else
331 int watermark_boost_factor __read_mostly = 15000;
332 #endif
333 int watermark_scale_factor = 10;
334
335 static unsigned long nr_kernel_pages __initdata;
336 static unsigned long nr_all_pages __initdata;
337 static unsigned long dma_reserve __initdata;
338
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351
352 #if MAX_NUMNODES > 1
353 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
354 unsigned int nr_online_nodes __read_mostly = 1;
355 EXPORT_SYMBOL(nr_node_ids);
356 EXPORT_SYMBOL(nr_online_nodes);
357 #endif
358
359 int page_group_by_mobility_disabled __read_mostly;
360
361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
362 /*
363 * During boot we initialize deferred pages on-demand, as needed, but once
364 * page_alloc_init_late() has finished, the deferred pages are all initialized,
365 * and we can permanently disable that path.
366 */
367 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
368
369 /*
370 * Calling kasan_free_pages() only after deferred memory initialization
371 * has completed. Poisoning pages during deferred memory init will greatly
372 * lengthen the process and cause problem in large memory systems as the
373 * deferred pages initialization is done with interrupt disabled.
374 *
375 * Assuming that there will be no reference to those newly initialized
376 * pages before they are ever allocated, this should have no effect on
377 * KASAN memory tracking as the poison will be properly inserted at page
378 * allocation time. The only corner case is when pages are allocated by
379 * on-demand allocation and then freed again before the deferred pages
380 * initialization is done, but this is not likely to happen.
381 */
382 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
383 {
384 if (!static_branch_unlikely(&deferred_pages))
385 kasan_free_pages(page, order);
386 }
387
388 /* Returns true if the struct page for the pfn is uninitialised */
389 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
390 {
391 int nid = early_pfn_to_nid(pfn);
392
393 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
394 return true;
395
396 return false;
397 }
398
399 /*
400 * Returns true when the remaining initialisation should be deferred until
401 * later in the boot cycle when it can be parallelised.
402 */
403 static bool __meminit
404 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
405 {
406 static unsigned long prev_end_pfn, nr_initialised;
407
408 /*
409 * prev_end_pfn static that contains the end of previous zone
410 * No need to protect because called very early in boot before smp_init.
411 */
412 if (prev_end_pfn != end_pfn) {
413 prev_end_pfn = end_pfn;
414 nr_initialised = 0;
415 }
416
417 /* Always populate low zones for address-constrained allocations */
418 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
419 return false;
420
421 /*
422 * We start only with one section of pages, more pages are added as
423 * needed until the rest of deferred pages are initialized.
424 */
425 nr_initialised++;
426 if ((nr_initialised > PAGES_PER_SECTION) &&
427 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 NODE_DATA(nid)->first_deferred_pfn = pfn;
429 return true;
430 }
431 return false;
432 }
433 #else
434 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
435
436 static inline bool early_page_uninitialised(unsigned long pfn)
437 {
438 return false;
439 }
440
441 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
442 {
443 return false;
444 }
445 #endif
446
447 /* Return a pointer to the bitmap storing bits affecting a block of pages */
448 static inline unsigned long *get_pageblock_bitmap(struct page *page,
449 unsigned long pfn)
450 {
451 #ifdef CONFIG_SPARSEMEM
452 return section_to_usemap(__pfn_to_section(pfn));
453 #else
454 return page_zone(page)->pageblock_flags;
455 #endif /* CONFIG_SPARSEMEM */
456 }
457
458 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
459 {
460 #ifdef CONFIG_SPARSEMEM
461 pfn &= (PAGES_PER_SECTION-1);
462 #else
463 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
464 #endif /* CONFIG_SPARSEMEM */
465 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
466 }
467
468 /**
469 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
470 * @page: The page within the block of interest
471 * @pfn: The target page frame number
472 * @mask: mask of bits that the caller is interested in
473 *
474 * Return: pageblock_bits flags
475 */
476 static __always_inline
477 unsigned long __get_pfnblock_flags_mask(struct page *page,
478 unsigned long pfn,
479 unsigned long mask)
480 {
481 unsigned long *bitmap;
482 unsigned long bitidx, word_bitidx;
483 unsigned long word;
484
485 bitmap = get_pageblock_bitmap(page, pfn);
486 bitidx = pfn_to_bitidx(page, pfn);
487 word_bitidx = bitidx / BITS_PER_LONG;
488 bitidx &= (BITS_PER_LONG-1);
489
490 word = bitmap[word_bitidx];
491 return (word >> bitidx) & mask;
492 }
493
494 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
495 unsigned long mask)
496 {
497 return __get_pfnblock_flags_mask(page, pfn, mask);
498 }
499
500 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
501 {
502 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
503 }
504
505 /**
506 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
507 * @page: The page within the block of interest
508 * @flags: The flags to set
509 * @pfn: The target page frame number
510 * @mask: mask of bits that the caller is interested in
511 */
512 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
513 unsigned long pfn,
514 unsigned long mask)
515 {
516 unsigned long *bitmap;
517 unsigned long bitidx, word_bitidx;
518 unsigned long old_word, word;
519
520 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
521 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
522
523 bitmap = get_pageblock_bitmap(page, pfn);
524 bitidx = pfn_to_bitidx(page, pfn);
525 word_bitidx = bitidx / BITS_PER_LONG;
526 bitidx &= (BITS_PER_LONG-1);
527
528 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
529
530 mask <<= bitidx;
531 flags <<= bitidx;
532
533 word = READ_ONCE(bitmap[word_bitidx]);
534 for (;;) {
535 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
536 if (word == old_word)
537 break;
538 word = old_word;
539 }
540 }
541
542 void set_pageblock_migratetype(struct page *page, int migratetype)
543 {
544 if (unlikely(page_group_by_mobility_disabled &&
545 migratetype < MIGRATE_PCPTYPES))
546 migratetype = MIGRATE_UNMOVABLE;
547
548 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
549 page_to_pfn(page), MIGRATETYPE_MASK);
550 }
551
552 #ifdef CONFIG_DEBUG_VM
553 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
554 {
555 int ret = 0;
556 unsigned seq;
557 unsigned long pfn = page_to_pfn(page);
558 unsigned long sp, start_pfn;
559
560 do {
561 seq = zone_span_seqbegin(zone);
562 start_pfn = zone->zone_start_pfn;
563 sp = zone->spanned_pages;
564 if (!zone_spans_pfn(zone, pfn))
565 ret = 1;
566 } while (zone_span_seqretry(zone, seq));
567
568 if (ret)
569 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
570 pfn, zone_to_nid(zone), zone->name,
571 start_pfn, start_pfn + sp);
572
573 return ret;
574 }
575
576 static int page_is_consistent(struct zone *zone, struct page *page)
577 {
578 if (!pfn_valid_within(page_to_pfn(page)))
579 return 0;
580 if (zone != page_zone(page))
581 return 0;
582
583 return 1;
584 }
585 /*
586 * Temporary debugging check for pages not lying within a given zone.
587 */
588 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
589 {
590 if (page_outside_zone_boundaries(zone, page))
591 return 1;
592 if (!page_is_consistent(zone, page))
593 return 1;
594
595 return 0;
596 }
597 #else
598 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
599 {
600 return 0;
601 }
602 #endif
603
604 static void bad_page(struct page *page, const char *reason)
605 {
606 static unsigned long resume;
607 static unsigned long nr_shown;
608 static unsigned long nr_unshown;
609
610 /*
611 * Allow a burst of 60 reports, then keep quiet for that minute;
612 * or allow a steady drip of one report per second.
613 */
614 if (nr_shown == 60) {
615 if (time_before(jiffies, resume)) {
616 nr_unshown++;
617 goto out;
618 }
619 if (nr_unshown) {
620 pr_alert(
621 "BUG: Bad page state: %lu messages suppressed\n",
622 nr_unshown);
623 nr_unshown = 0;
624 }
625 nr_shown = 0;
626 }
627 if (nr_shown++ == 0)
628 resume = jiffies + 60 * HZ;
629
630 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
631 current->comm, page_to_pfn(page));
632 __dump_page(page, reason);
633 dump_page_owner(page);
634
635 print_modules();
636 dump_stack();
637 out:
638 /* Leave bad fields for debug, except PageBuddy could make trouble */
639 page_mapcount_reset(page); /* remove PageBuddy */
640 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
641 }
642
643 /*
644 * Higher-order pages are called "compound pages". They are structured thusly:
645 *
646 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
647 *
648 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
649 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
650 *
651 * The first tail page's ->compound_dtor holds the offset in array of compound
652 * page destructors. See compound_page_dtors.
653 *
654 * The first tail page's ->compound_order holds the order of allocation.
655 * This usage means that zero-order pages may not be compound.
656 */
657
658 void free_compound_page(struct page *page)
659 {
660 mem_cgroup_uncharge(page);
661 __free_pages_ok(page, compound_order(page));
662 }
663
664 void prep_compound_page(struct page *page, unsigned int order)
665 {
666 int i;
667 int nr_pages = 1 << order;
668
669 __SetPageHead(page);
670 for (i = 1; i < nr_pages; i++) {
671 struct page *p = page + i;
672 set_page_count(p, 0);
673 p->mapping = TAIL_MAPPING;
674 set_compound_head(p, page);
675 }
676
677 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
678 set_compound_order(page, order);
679 atomic_set(compound_mapcount_ptr(page), -1);
680 if (hpage_pincount_available(page))
681 atomic_set(compound_pincount_ptr(page), 0);
682 }
683
684 #ifdef CONFIG_DEBUG_PAGEALLOC
685 unsigned int _debug_guardpage_minorder;
686
687 bool _debug_pagealloc_enabled_early __read_mostly
688 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
689 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
690 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
691 EXPORT_SYMBOL(_debug_pagealloc_enabled);
692
693 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
694
695 static int __init early_debug_pagealloc(char *buf)
696 {
697 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
698 }
699 early_param("debug_pagealloc", early_debug_pagealloc);
700
701 void init_debug_pagealloc(void)
702 {
703 if (!debug_pagealloc_enabled())
704 return;
705
706 static_branch_enable(&_debug_pagealloc_enabled);
707
708 if (!debug_guardpage_minorder())
709 return;
710
711 static_branch_enable(&_debug_guardpage_enabled);
712 }
713
714 static int __init debug_guardpage_minorder_setup(char *buf)
715 {
716 unsigned long res;
717
718 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
719 pr_err("Bad debug_guardpage_minorder value\n");
720 return 0;
721 }
722 _debug_guardpage_minorder = res;
723 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
724 return 0;
725 }
726 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
727
728 static inline bool set_page_guard(struct zone *zone, struct page *page,
729 unsigned int order, int migratetype)
730 {
731 if (!debug_guardpage_enabled())
732 return false;
733
734 if (order >= debug_guardpage_minorder())
735 return false;
736
737 __SetPageGuard(page);
738 INIT_LIST_HEAD(&page->lru);
739 set_page_private(page, order);
740 /* Guard pages are not available for any usage */
741 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
742
743 return true;
744 }
745
746 static inline void clear_page_guard(struct zone *zone, struct page *page,
747 unsigned int order, int migratetype)
748 {
749 if (!debug_guardpage_enabled())
750 return;
751
752 __ClearPageGuard(page);
753
754 set_page_private(page, 0);
755 if (!is_migrate_isolate(migratetype))
756 __mod_zone_freepage_state(zone, (1 << order), migratetype);
757 }
758 #else
759 static inline bool set_page_guard(struct zone *zone, struct page *page,
760 unsigned int order, int migratetype) { return false; }
761 static inline void clear_page_guard(struct zone *zone, struct page *page,
762 unsigned int order, int migratetype) {}
763 #endif
764
765 static inline void set_page_order(struct page *page, unsigned int order)
766 {
767 set_page_private(page, order);
768 __SetPageBuddy(page);
769 }
770
771 /*
772 * This function checks whether a page is free && is the buddy
773 * we can coalesce a page and its buddy if
774 * (a) the buddy is not in a hole (check before calling!) &&
775 * (b) the buddy is in the buddy system &&
776 * (c) a page and its buddy have the same order &&
777 * (d) a page and its buddy are in the same zone.
778 *
779 * For recording whether a page is in the buddy system, we set PageBuddy.
780 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
781 *
782 * For recording page's order, we use page_private(page).
783 */
784 static inline bool page_is_buddy(struct page *page, struct page *buddy,
785 unsigned int order)
786 {
787 if (!page_is_guard(buddy) && !PageBuddy(buddy))
788 return false;
789
790 if (page_order(buddy) != order)
791 return false;
792
793 /*
794 * zone check is done late to avoid uselessly calculating
795 * zone/node ids for pages that could never merge.
796 */
797 if (page_zone_id(page) != page_zone_id(buddy))
798 return false;
799
800 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
801
802 return true;
803 }
804
805 #ifdef CONFIG_COMPACTION
806 static inline struct capture_control *task_capc(struct zone *zone)
807 {
808 struct capture_control *capc = current->capture_control;
809
810 return unlikely(capc) &&
811 !(current->flags & PF_KTHREAD) &&
812 !capc->page &&
813 capc->cc->zone == zone ? capc : NULL;
814 }
815
816 static inline bool
817 compaction_capture(struct capture_control *capc, struct page *page,
818 int order, int migratetype)
819 {
820 if (!capc || order != capc->cc->order)
821 return false;
822
823 /* Do not accidentally pollute CMA or isolated regions*/
824 if (is_migrate_cma(migratetype) ||
825 is_migrate_isolate(migratetype))
826 return false;
827
828 /*
829 * Do not let lower order allocations polluate a movable pageblock.
830 * This might let an unmovable request use a reclaimable pageblock
831 * and vice-versa but no more than normal fallback logic which can
832 * have trouble finding a high-order free page.
833 */
834 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
835 return false;
836
837 capc->page = page;
838 return true;
839 }
840
841 #else
842 static inline struct capture_control *task_capc(struct zone *zone)
843 {
844 return NULL;
845 }
846
847 static inline bool
848 compaction_capture(struct capture_control *capc, struct page *page,
849 int order, int migratetype)
850 {
851 return false;
852 }
853 #endif /* CONFIG_COMPACTION */
854
855 /* Used for pages not on another list */
856 static inline void add_to_free_list(struct page *page, struct zone *zone,
857 unsigned int order, int migratetype)
858 {
859 struct free_area *area = &zone->free_area[order];
860
861 list_add(&page->lru, &area->free_list[migratetype]);
862 area->nr_free++;
863 }
864
865 /* Used for pages not on another list */
866 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
867 unsigned int order, int migratetype)
868 {
869 struct free_area *area = &zone->free_area[order];
870
871 list_add_tail(&page->lru, &area->free_list[migratetype]);
872 area->nr_free++;
873 }
874
875 /* Used for pages which are on another list */
876 static inline void move_to_free_list(struct page *page, struct zone *zone,
877 unsigned int order, int migratetype)
878 {
879 struct free_area *area = &zone->free_area[order];
880
881 list_move(&page->lru, &area->free_list[migratetype]);
882 }
883
884 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
885 unsigned int order)
886 {
887 /* clear reported state and update reported page count */
888 if (page_reported(page))
889 __ClearPageReported(page);
890
891 list_del(&page->lru);
892 __ClearPageBuddy(page);
893 set_page_private(page, 0);
894 zone->free_area[order].nr_free--;
895 }
896
897 /*
898 * If this is not the largest possible page, check if the buddy
899 * of the next-highest order is free. If it is, it's possible
900 * that pages are being freed that will coalesce soon. In case,
901 * that is happening, add the free page to the tail of the list
902 * so it's less likely to be used soon and more likely to be merged
903 * as a higher order page
904 */
905 static inline bool
906 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
907 struct page *page, unsigned int order)
908 {
909 struct page *higher_page, *higher_buddy;
910 unsigned long combined_pfn;
911
912 if (order >= MAX_ORDER - 2)
913 return false;
914
915 if (!pfn_valid_within(buddy_pfn))
916 return false;
917
918 combined_pfn = buddy_pfn & pfn;
919 higher_page = page + (combined_pfn - pfn);
920 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
921 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
922
923 return pfn_valid_within(buddy_pfn) &&
924 page_is_buddy(higher_page, higher_buddy, order + 1);
925 }
926
927 /*
928 * Freeing function for a buddy system allocator.
929 *
930 * The concept of a buddy system is to maintain direct-mapped table
931 * (containing bit values) for memory blocks of various "orders".
932 * The bottom level table contains the map for the smallest allocatable
933 * units of memory (here, pages), and each level above it describes
934 * pairs of units from the levels below, hence, "buddies".
935 * At a high level, all that happens here is marking the table entry
936 * at the bottom level available, and propagating the changes upward
937 * as necessary, plus some accounting needed to play nicely with other
938 * parts of the VM system.
939 * At each level, we keep a list of pages, which are heads of continuous
940 * free pages of length of (1 << order) and marked with PageBuddy.
941 * Page's order is recorded in page_private(page) field.
942 * So when we are allocating or freeing one, we can derive the state of the
943 * other. That is, if we allocate a small block, and both were
944 * free, the remainder of the region must be split into blocks.
945 * If a block is freed, and its buddy is also free, then this
946 * triggers coalescing into a block of larger size.
947 *
948 * -- nyc
949 */
950
951 static inline void __free_one_page(struct page *page,
952 unsigned long pfn,
953 struct zone *zone, unsigned int order,
954 int migratetype, bool report)
955 {
956 struct capture_control *capc = task_capc(zone);
957 unsigned long buddy_pfn;
958 unsigned long combined_pfn;
959 unsigned int max_order;
960 struct page *buddy;
961 bool to_tail;
962
963 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
964
965 VM_BUG_ON(!zone_is_initialized(zone));
966 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
967
968 VM_BUG_ON(migratetype == -1);
969 if (likely(!is_migrate_isolate(migratetype)))
970 __mod_zone_freepage_state(zone, 1 << order, migratetype);
971
972 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
973 VM_BUG_ON_PAGE(bad_range(zone, page), page);
974
975 continue_merging:
976 while (order < max_order - 1) {
977 if (compaction_capture(capc, page, order, migratetype)) {
978 __mod_zone_freepage_state(zone, -(1 << order),
979 migratetype);
980 return;
981 }
982 buddy_pfn = __find_buddy_pfn(pfn, order);
983 buddy = page + (buddy_pfn - pfn);
984
985 if (!pfn_valid_within(buddy_pfn))
986 goto done_merging;
987 if (!page_is_buddy(page, buddy, order))
988 goto done_merging;
989 /*
990 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
991 * merge with it and move up one order.
992 */
993 if (page_is_guard(buddy))
994 clear_page_guard(zone, buddy, order, migratetype);
995 else
996 del_page_from_free_list(buddy, zone, order);
997 combined_pfn = buddy_pfn & pfn;
998 page = page + (combined_pfn - pfn);
999 pfn = combined_pfn;
1000 order++;
1001 }
1002 if (max_order < MAX_ORDER) {
1003 /* If we are here, it means order is >= pageblock_order.
1004 * We want to prevent merge between freepages on isolate
1005 * pageblock and normal pageblock. Without this, pageblock
1006 * isolation could cause incorrect freepage or CMA accounting.
1007 *
1008 * We don't want to hit this code for the more frequent
1009 * low-order merging.
1010 */
1011 if (unlikely(has_isolate_pageblock(zone))) {
1012 int buddy_mt;
1013
1014 buddy_pfn = __find_buddy_pfn(pfn, order);
1015 buddy = page + (buddy_pfn - pfn);
1016 buddy_mt = get_pageblock_migratetype(buddy);
1017
1018 if (migratetype != buddy_mt
1019 && (is_migrate_isolate(migratetype) ||
1020 is_migrate_isolate(buddy_mt)))
1021 goto done_merging;
1022 }
1023 max_order++;
1024 goto continue_merging;
1025 }
1026
1027 done_merging:
1028 set_page_order(page, order);
1029
1030 if (is_shuffle_order(order))
1031 to_tail = shuffle_pick_tail();
1032 else
1033 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1034
1035 if (to_tail)
1036 add_to_free_list_tail(page, zone, order, migratetype);
1037 else
1038 add_to_free_list(page, zone, order, migratetype);
1039
1040 /* Notify page reporting subsystem of freed page */
1041 if (report)
1042 page_reporting_notify_free(order);
1043 }
1044
1045 /*
1046 * A bad page could be due to a number of fields. Instead of multiple branches,
1047 * try and check multiple fields with one check. The caller must do a detailed
1048 * check if necessary.
1049 */
1050 static inline bool page_expected_state(struct page *page,
1051 unsigned long check_flags)
1052 {
1053 if (unlikely(atomic_read(&page->_mapcount) != -1))
1054 return false;
1055
1056 if (unlikely((unsigned long)page->mapping |
1057 page_ref_count(page) |
1058 #ifdef CONFIG_MEMCG
1059 (unsigned long)page->mem_cgroup |
1060 #endif
1061 (page->flags & check_flags)))
1062 return false;
1063
1064 return true;
1065 }
1066
1067 static const char *page_bad_reason(struct page *page, unsigned long flags)
1068 {
1069 const char *bad_reason = NULL;
1070
1071 if (unlikely(atomic_read(&page->_mapcount) != -1))
1072 bad_reason = "nonzero mapcount";
1073 if (unlikely(page->mapping != NULL))
1074 bad_reason = "non-NULL mapping";
1075 if (unlikely(page_ref_count(page) != 0))
1076 bad_reason = "nonzero _refcount";
1077 if (unlikely(page->flags & flags)) {
1078 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1079 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1080 else
1081 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1082 }
1083 #ifdef CONFIG_MEMCG
1084 if (unlikely(page->mem_cgroup))
1085 bad_reason = "page still charged to cgroup";
1086 #endif
1087 return bad_reason;
1088 }
1089
1090 static void check_free_page_bad(struct page *page)
1091 {
1092 bad_page(page,
1093 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1094 }
1095
1096 static inline int check_free_page(struct page *page)
1097 {
1098 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1099 return 0;
1100
1101 /* Something has gone sideways, find it */
1102 check_free_page_bad(page);
1103 return 1;
1104 }
1105
1106 static int free_tail_pages_check(struct page *head_page, struct page *page)
1107 {
1108 int ret = 1;
1109
1110 /*
1111 * We rely page->lru.next never has bit 0 set, unless the page
1112 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1113 */
1114 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1115
1116 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1117 ret = 0;
1118 goto out;
1119 }
1120 switch (page - head_page) {
1121 case 1:
1122 /* the first tail page: ->mapping may be compound_mapcount() */
1123 if (unlikely(compound_mapcount(page))) {
1124 bad_page(page, "nonzero compound_mapcount");
1125 goto out;
1126 }
1127 break;
1128 case 2:
1129 /*
1130 * the second tail page: ->mapping is
1131 * deferred_list.next -- ignore value.
1132 */
1133 break;
1134 default:
1135 if (page->mapping != TAIL_MAPPING) {
1136 bad_page(page, "corrupted mapping in tail page");
1137 goto out;
1138 }
1139 break;
1140 }
1141 if (unlikely(!PageTail(page))) {
1142 bad_page(page, "PageTail not set");
1143 goto out;
1144 }
1145 if (unlikely(compound_head(page) != head_page)) {
1146 bad_page(page, "compound_head not consistent");
1147 goto out;
1148 }
1149 ret = 0;
1150 out:
1151 page->mapping = NULL;
1152 clear_compound_head(page);
1153 return ret;
1154 }
1155
1156 static void kernel_init_free_pages(struct page *page, int numpages)
1157 {
1158 int i;
1159
1160 /* s390's use of memset() could override KASAN redzones. */
1161 kasan_disable_current();
1162 for (i = 0; i < numpages; i++)
1163 clear_highpage(page + i);
1164 kasan_enable_current();
1165 }
1166
1167 static __always_inline bool free_pages_prepare(struct page *page,
1168 unsigned int order, bool check_free)
1169 {
1170 int bad = 0;
1171
1172 VM_BUG_ON_PAGE(PageTail(page), page);
1173
1174 trace_mm_page_free(page, order);
1175
1176 /*
1177 * Check tail pages before head page information is cleared to
1178 * avoid checking PageCompound for order-0 pages.
1179 */
1180 if (unlikely(order)) {
1181 bool compound = PageCompound(page);
1182 int i;
1183
1184 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1185
1186 if (compound)
1187 ClearPageDoubleMap(page);
1188 for (i = 1; i < (1 << order); i++) {
1189 if (compound)
1190 bad += free_tail_pages_check(page, page + i);
1191 if (unlikely(check_free_page(page + i))) {
1192 bad++;
1193 continue;
1194 }
1195 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1196 }
1197 }
1198 if (PageMappingFlags(page))
1199 page->mapping = NULL;
1200 if (memcg_kmem_enabled() && PageKmemcg(page))
1201 __memcg_kmem_uncharge_page(page, order);
1202 if (check_free)
1203 bad += check_free_page(page);
1204 if (bad)
1205 return false;
1206
1207 page_cpupid_reset_last(page);
1208 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1209 reset_page_owner(page, order);
1210
1211 if (!PageHighMem(page)) {
1212 debug_check_no_locks_freed(page_address(page),
1213 PAGE_SIZE << order);
1214 debug_check_no_obj_freed(page_address(page),
1215 PAGE_SIZE << order);
1216 }
1217 if (want_init_on_free())
1218 kernel_init_free_pages(page, 1 << order);
1219
1220 kernel_poison_pages(page, 1 << order, 0);
1221 /*
1222 * arch_free_page() can make the page's contents inaccessible. s390
1223 * does this. So nothing which can access the page's contents should
1224 * happen after this.
1225 */
1226 arch_free_page(page, order);
1227
1228 if (debug_pagealloc_enabled_static())
1229 kernel_map_pages(page, 1 << order, 0);
1230
1231 kasan_free_nondeferred_pages(page, order);
1232
1233 return true;
1234 }
1235
1236 #ifdef CONFIG_DEBUG_VM
1237 /*
1238 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1239 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1240 * moved from pcp lists to free lists.
1241 */
1242 static bool free_pcp_prepare(struct page *page)
1243 {
1244 return free_pages_prepare(page, 0, true);
1245 }
1246
1247 static bool bulkfree_pcp_prepare(struct page *page)
1248 {
1249 if (debug_pagealloc_enabled_static())
1250 return check_free_page(page);
1251 else
1252 return false;
1253 }
1254 #else
1255 /*
1256 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1257 * moving from pcp lists to free list in order to reduce overhead. With
1258 * debug_pagealloc enabled, they are checked also immediately when being freed
1259 * to the pcp lists.
1260 */
1261 static bool free_pcp_prepare(struct page *page)
1262 {
1263 if (debug_pagealloc_enabled_static())
1264 return free_pages_prepare(page, 0, true);
1265 else
1266 return free_pages_prepare(page, 0, false);
1267 }
1268
1269 static bool bulkfree_pcp_prepare(struct page *page)
1270 {
1271 return check_free_page(page);
1272 }
1273 #endif /* CONFIG_DEBUG_VM */
1274
1275 static inline void prefetch_buddy(struct page *page)
1276 {
1277 unsigned long pfn = page_to_pfn(page);
1278 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1279 struct page *buddy = page + (buddy_pfn - pfn);
1280
1281 prefetch(buddy);
1282 }
1283
1284 /*
1285 * Frees a number of pages from the PCP lists
1286 * Assumes all pages on list are in same zone, and of same order.
1287 * count is the number of pages to free.
1288 *
1289 * If the zone was previously in an "all pages pinned" state then look to
1290 * see if this freeing clears that state.
1291 *
1292 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1293 * pinned" detection logic.
1294 */
1295 static void free_pcppages_bulk(struct zone *zone, int count,
1296 struct per_cpu_pages *pcp)
1297 {
1298 int migratetype = 0;
1299 int batch_free = 0;
1300 int prefetch_nr = 0;
1301 bool isolated_pageblocks;
1302 struct page *page, *tmp;
1303 LIST_HEAD(head);
1304
1305 /*
1306 * Ensure proper count is passed which otherwise would stuck in the
1307 * below while (list_empty(list)) loop.
1308 */
1309 count = min(pcp->count, count);
1310 while (count) {
1311 struct list_head *list;
1312
1313 /*
1314 * Remove pages from lists in a round-robin fashion. A
1315 * batch_free count is maintained that is incremented when an
1316 * empty list is encountered. This is so more pages are freed
1317 * off fuller lists instead of spinning excessively around empty
1318 * lists
1319 */
1320 do {
1321 batch_free++;
1322 if (++migratetype == MIGRATE_PCPTYPES)
1323 migratetype = 0;
1324 list = &pcp->lists[migratetype];
1325 } while (list_empty(list));
1326
1327 /* This is the only non-empty list. Free them all. */
1328 if (batch_free == MIGRATE_PCPTYPES)
1329 batch_free = count;
1330
1331 do {
1332 page = list_last_entry(list, struct page, lru);
1333 /* must delete to avoid corrupting pcp list */
1334 list_del(&page->lru);
1335 pcp->count--;
1336
1337 if (bulkfree_pcp_prepare(page))
1338 continue;
1339
1340 list_add_tail(&page->lru, &head);
1341
1342 /*
1343 * We are going to put the page back to the global
1344 * pool, prefetch its buddy to speed up later access
1345 * under zone->lock. It is believed the overhead of
1346 * an additional test and calculating buddy_pfn here
1347 * can be offset by reduced memory latency later. To
1348 * avoid excessive prefetching due to large count, only
1349 * prefetch buddy for the first pcp->batch nr of pages.
1350 */
1351 if (prefetch_nr++ < pcp->batch)
1352 prefetch_buddy(page);
1353 } while (--count && --batch_free && !list_empty(list));
1354 }
1355
1356 spin_lock(&zone->lock);
1357 isolated_pageblocks = has_isolate_pageblock(zone);
1358
1359 /*
1360 * Use safe version since after __free_one_page(),
1361 * page->lru.next will not point to original list.
1362 */
1363 list_for_each_entry_safe(page, tmp, &head, lru) {
1364 int mt = get_pcppage_migratetype(page);
1365 /* MIGRATE_ISOLATE page should not go to pcplists */
1366 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1367 /* Pageblock could have been isolated meanwhile */
1368 if (unlikely(isolated_pageblocks))
1369 mt = get_pageblock_migratetype(page);
1370
1371 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1372 trace_mm_page_pcpu_drain(page, 0, mt);
1373 }
1374 spin_unlock(&zone->lock);
1375 }
1376
1377 static void free_one_page(struct zone *zone,
1378 struct page *page, unsigned long pfn,
1379 unsigned int order,
1380 int migratetype)
1381 {
1382 spin_lock(&zone->lock);
1383 if (unlikely(has_isolate_pageblock(zone) ||
1384 is_migrate_isolate(migratetype))) {
1385 migratetype = get_pfnblock_migratetype(page, pfn);
1386 }
1387 __free_one_page(page, pfn, zone, order, migratetype, true);
1388 spin_unlock(&zone->lock);
1389 }
1390
1391 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1392 unsigned long zone, int nid)
1393 {
1394 mm_zero_struct_page(page);
1395 set_page_links(page, zone, nid, pfn);
1396 init_page_count(page);
1397 page_mapcount_reset(page);
1398 page_cpupid_reset_last(page);
1399 page_kasan_tag_reset(page);
1400
1401 INIT_LIST_HEAD(&page->lru);
1402 #ifdef WANT_PAGE_VIRTUAL
1403 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1404 if (!is_highmem_idx(zone))
1405 set_page_address(page, __va(pfn << PAGE_SHIFT));
1406 #endif
1407 }
1408
1409 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1410 static void __meminit init_reserved_page(unsigned long pfn)
1411 {
1412 pg_data_t *pgdat;
1413 int nid, zid;
1414
1415 if (!early_page_uninitialised(pfn))
1416 return;
1417
1418 nid = early_pfn_to_nid(pfn);
1419 pgdat = NODE_DATA(nid);
1420
1421 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1422 struct zone *zone = &pgdat->node_zones[zid];
1423
1424 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1425 break;
1426 }
1427 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1428 }
1429 #else
1430 static inline void init_reserved_page(unsigned long pfn)
1431 {
1432 }
1433 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1434
1435 /*
1436 * Initialised pages do not have PageReserved set. This function is
1437 * called for each range allocated by the bootmem allocator and
1438 * marks the pages PageReserved. The remaining valid pages are later
1439 * sent to the buddy page allocator.
1440 */
1441 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1442 {
1443 unsigned long start_pfn = PFN_DOWN(start);
1444 unsigned long end_pfn = PFN_UP(end);
1445
1446 for (; start_pfn < end_pfn; start_pfn++) {
1447 if (pfn_valid(start_pfn)) {
1448 struct page *page = pfn_to_page(start_pfn);
1449
1450 init_reserved_page(start_pfn);
1451
1452 /* Avoid false-positive PageTail() */
1453 INIT_LIST_HEAD(&page->lru);
1454
1455 /*
1456 * no need for atomic set_bit because the struct
1457 * page is not visible yet so nobody should
1458 * access it yet.
1459 */
1460 __SetPageReserved(page);
1461 }
1462 }
1463 }
1464
1465 static void __free_pages_ok(struct page *page, unsigned int order)
1466 {
1467 unsigned long flags;
1468 int migratetype;
1469 unsigned long pfn = page_to_pfn(page);
1470
1471 if (!free_pages_prepare(page, order, true))
1472 return;
1473
1474 migratetype = get_pfnblock_migratetype(page, pfn);
1475 local_irq_save(flags);
1476 __count_vm_events(PGFREE, 1 << order);
1477 free_one_page(page_zone(page), page, pfn, order, migratetype);
1478 local_irq_restore(flags);
1479 }
1480
1481 void __free_pages_core(struct page *page, unsigned int order)
1482 {
1483 unsigned int nr_pages = 1 << order;
1484 struct page *p = page;
1485 unsigned int loop;
1486
1487 prefetchw(p);
1488 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1489 prefetchw(p + 1);
1490 __ClearPageReserved(p);
1491 set_page_count(p, 0);
1492 }
1493 __ClearPageReserved(p);
1494 set_page_count(p, 0);
1495
1496 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1497 set_page_refcounted(page);
1498 __free_pages(page, order);
1499 }
1500
1501 #ifdef CONFIG_NEED_MULTIPLE_NODES
1502
1503 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1504
1505 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1506
1507 /*
1508 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1509 */
1510 int __meminit __early_pfn_to_nid(unsigned long pfn,
1511 struct mminit_pfnnid_cache *state)
1512 {
1513 unsigned long start_pfn, end_pfn;
1514 int nid;
1515
1516 if (state->last_start <= pfn && pfn < state->last_end)
1517 return state->last_nid;
1518
1519 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1520 if (nid != NUMA_NO_NODE) {
1521 state->last_start = start_pfn;
1522 state->last_end = end_pfn;
1523 state->last_nid = nid;
1524 }
1525
1526 return nid;
1527 }
1528 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1529
1530 int __meminit early_pfn_to_nid(unsigned long pfn)
1531 {
1532 static DEFINE_SPINLOCK(early_pfn_lock);
1533 int nid;
1534
1535 spin_lock(&early_pfn_lock);
1536 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1537 if (nid < 0)
1538 nid = first_online_node;
1539 spin_unlock(&early_pfn_lock);
1540
1541 return nid;
1542 }
1543 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1544
1545 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1546 unsigned int order)
1547 {
1548 if (early_page_uninitialised(pfn))
1549 return;
1550 __free_pages_core(page, order);
1551 }
1552
1553 /*
1554 * Check that the whole (or subset of) a pageblock given by the interval of
1555 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1556 * with the migration of free compaction scanner. The scanners then need to
1557 * use only pfn_valid_within() check for arches that allow holes within
1558 * pageblocks.
1559 *
1560 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1561 *
1562 * It's possible on some configurations to have a setup like node0 node1 node0
1563 * i.e. it's possible that all pages within a zones range of pages do not
1564 * belong to a single zone. We assume that a border between node0 and node1
1565 * can occur within a single pageblock, but not a node0 node1 node0
1566 * interleaving within a single pageblock. It is therefore sufficient to check
1567 * the first and last page of a pageblock and avoid checking each individual
1568 * page in a pageblock.
1569 */
1570 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1571 unsigned long end_pfn, struct zone *zone)
1572 {
1573 struct page *start_page;
1574 struct page *end_page;
1575
1576 /* end_pfn is one past the range we are checking */
1577 end_pfn--;
1578
1579 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1580 return NULL;
1581
1582 start_page = pfn_to_online_page(start_pfn);
1583 if (!start_page)
1584 return NULL;
1585
1586 if (page_zone(start_page) != zone)
1587 return NULL;
1588
1589 end_page = pfn_to_page(end_pfn);
1590
1591 /* This gives a shorter code than deriving page_zone(end_page) */
1592 if (page_zone_id(start_page) != page_zone_id(end_page))
1593 return NULL;
1594
1595 return start_page;
1596 }
1597
1598 void set_zone_contiguous(struct zone *zone)
1599 {
1600 unsigned long block_start_pfn = zone->zone_start_pfn;
1601 unsigned long block_end_pfn;
1602
1603 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1604 for (; block_start_pfn < zone_end_pfn(zone);
1605 block_start_pfn = block_end_pfn,
1606 block_end_pfn += pageblock_nr_pages) {
1607
1608 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1609
1610 if (!__pageblock_pfn_to_page(block_start_pfn,
1611 block_end_pfn, zone))
1612 return;
1613 cond_resched();
1614 }
1615
1616 /* We confirm that there is no hole */
1617 zone->contiguous = true;
1618 }
1619
1620 void clear_zone_contiguous(struct zone *zone)
1621 {
1622 zone->contiguous = false;
1623 }
1624
1625 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1626 static void __init deferred_free_range(unsigned long pfn,
1627 unsigned long nr_pages)
1628 {
1629 struct page *page;
1630 unsigned long i;
1631
1632 if (!nr_pages)
1633 return;
1634
1635 page = pfn_to_page(pfn);
1636
1637 /* Free a large naturally-aligned chunk if possible */
1638 if (nr_pages == pageblock_nr_pages &&
1639 (pfn & (pageblock_nr_pages - 1)) == 0) {
1640 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1641 __free_pages_core(page, pageblock_order);
1642 return;
1643 }
1644
1645 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1646 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1647 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1648 __free_pages_core(page, 0);
1649 }
1650 }
1651
1652 /* Completion tracking for deferred_init_memmap() threads */
1653 static atomic_t pgdat_init_n_undone __initdata;
1654 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1655
1656 static inline void __init pgdat_init_report_one_done(void)
1657 {
1658 if (atomic_dec_and_test(&pgdat_init_n_undone))
1659 complete(&pgdat_init_all_done_comp);
1660 }
1661
1662 /*
1663 * Returns true if page needs to be initialized or freed to buddy allocator.
1664 *
1665 * First we check if pfn is valid on architectures where it is possible to have
1666 * holes within pageblock_nr_pages. On systems where it is not possible, this
1667 * function is optimized out.
1668 *
1669 * Then, we check if a current large page is valid by only checking the validity
1670 * of the head pfn.
1671 */
1672 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1673 {
1674 if (!pfn_valid_within(pfn))
1675 return false;
1676 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1677 return false;
1678 return true;
1679 }
1680
1681 /*
1682 * Free pages to buddy allocator. Try to free aligned pages in
1683 * pageblock_nr_pages sizes.
1684 */
1685 static void __init deferred_free_pages(unsigned long pfn,
1686 unsigned long end_pfn)
1687 {
1688 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1689 unsigned long nr_free = 0;
1690
1691 for (; pfn < end_pfn; pfn++) {
1692 if (!deferred_pfn_valid(pfn)) {
1693 deferred_free_range(pfn - nr_free, nr_free);
1694 nr_free = 0;
1695 } else if (!(pfn & nr_pgmask)) {
1696 deferred_free_range(pfn - nr_free, nr_free);
1697 nr_free = 1;
1698 } else {
1699 nr_free++;
1700 }
1701 }
1702 /* Free the last block of pages to allocator */
1703 deferred_free_range(pfn - nr_free, nr_free);
1704 }
1705
1706 /*
1707 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1708 * by performing it only once every pageblock_nr_pages.
1709 * Return number of pages initialized.
1710 */
1711 static unsigned long __init deferred_init_pages(struct zone *zone,
1712 unsigned long pfn,
1713 unsigned long end_pfn)
1714 {
1715 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1716 int nid = zone_to_nid(zone);
1717 unsigned long nr_pages = 0;
1718 int zid = zone_idx(zone);
1719 struct page *page = NULL;
1720
1721 for (; pfn < end_pfn; pfn++) {
1722 if (!deferred_pfn_valid(pfn)) {
1723 page = NULL;
1724 continue;
1725 } else if (!page || !(pfn & nr_pgmask)) {
1726 page = pfn_to_page(pfn);
1727 } else {
1728 page++;
1729 }
1730 __init_single_page(page, pfn, zid, nid);
1731 nr_pages++;
1732 }
1733 return (nr_pages);
1734 }
1735
1736 /*
1737 * This function is meant to pre-load the iterator for the zone init.
1738 * Specifically it walks through the ranges until we are caught up to the
1739 * first_init_pfn value and exits there. If we never encounter the value we
1740 * return false indicating there are no valid ranges left.
1741 */
1742 static bool __init
1743 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1744 unsigned long *spfn, unsigned long *epfn,
1745 unsigned long first_init_pfn)
1746 {
1747 u64 j;
1748
1749 /*
1750 * Start out by walking through the ranges in this zone that have
1751 * already been initialized. We don't need to do anything with them
1752 * so we just need to flush them out of the system.
1753 */
1754 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1755 if (*epfn <= first_init_pfn)
1756 continue;
1757 if (*spfn < first_init_pfn)
1758 *spfn = first_init_pfn;
1759 *i = j;
1760 return true;
1761 }
1762
1763 return false;
1764 }
1765
1766 /*
1767 * Initialize and free pages. We do it in two loops: first we initialize
1768 * struct page, then free to buddy allocator, because while we are
1769 * freeing pages we can access pages that are ahead (computing buddy
1770 * page in __free_one_page()).
1771 *
1772 * In order to try and keep some memory in the cache we have the loop
1773 * broken along max page order boundaries. This way we will not cause
1774 * any issues with the buddy page computation.
1775 */
1776 static unsigned long __init
1777 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1778 unsigned long *end_pfn)
1779 {
1780 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1781 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1782 unsigned long nr_pages = 0;
1783 u64 j = *i;
1784
1785 /* First we loop through and initialize the page values */
1786 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1787 unsigned long t;
1788
1789 if (mo_pfn <= *start_pfn)
1790 break;
1791
1792 t = min(mo_pfn, *end_pfn);
1793 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1794
1795 if (mo_pfn < *end_pfn) {
1796 *start_pfn = mo_pfn;
1797 break;
1798 }
1799 }
1800
1801 /* Reset values and now loop through freeing pages as needed */
1802 swap(j, *i);
1803
1804 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1805 unsigned long t;
1806
1807 if (mo_pfn <= spfn)
1808 break;
1809
1810 t = min(mo_pfn, epfn);
1811 deferred_free_pages(spfn, t);
1812
1813 if (mo_pfn <= epfn)
1814 break;
1815 }
1816
1817 return nr_pages;
1818 }
1819
1820 static void __init
1821 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1822 void *arg)
1823 {
1824 unsigned long spfn, epfn;
1825 struct zone *zone = arg;
1826 u64 i;
1827
1828 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1829
1830 /*
1831 * Initialize and free pages in MAX_ORDER sized increments so that we
1832 * can avoid introducing any issues with the buddy allocator.
1833 */
1834 while (spfn < end_pfn) {
1835 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1836 cond_resched();
1837 }
1838 }
1839
1840 /* An arch may override for more concurrency. */
1841 __weak int __init
1842 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1843 {
1844 return 1;
1845 }
1846
1847 /* Initialise remaining memory on a node */
1848 static int __init deferred_init_memmap(void *data)
1849 {
1850 pg_data_t *pgdat = data;
1851 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1852 unsigned long spfn = 0, epfn = 0;
1853 unsigned long first_init_pfn, flags;
1854 unsigned long start = jiffies;
1855 struct zone *zone;
1856 int zid, max_threads;
1857 u64 i;
1858
1859 /* Bind memory initialisation thread to a local node if possible */
1860 if (!cpumask_empty(cpumask))
1861 set_cpus_allowed_ptr(current, cpumask);
1862
1863 pgdat_resize_lock(pgdat, &flags);
1864 first_init_pfn = pgdat->first_deferred_pfn;
1865 if (first_init_pfn == ULONG_MAX) {
1866 pgdat_resize_unlock(pgdat, &flags);
1867 pgdat_init_report_one_done();
1868 return 0;
1869 }
1870
1871 /* Sanity check boundaries */
1872 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1873 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1874 pgdat->first_deferred_pfn = ULONG_MAX;
1875
1876 /*
1877 * Once we unlock here, the zone cannot be grown anymore, thus if an
1878 * interrupt thread must allocate this early in boot, zone must be
1879 * pre-grown prior to start of deferred page initialization.
1880 */
1881 pgdat_resize_unlock(pgdat, &flags);
1882
1883 /* Only the highest zone is deferred so find it */
1884 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1885 zone = pgdat->node_zones + zid;
1886 if (first_init_pfn < zone_end_pfn(zone))
1887 break;
1888 }
1889
1890 /* If the zone is empty somebody else may have cleared out the zone */
1891 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1892 first_init_pfn))
1893 goto zone_empty;
1894
1895 max_threads = deferred_page_init_max_threads(cpumask);
1896
1897 while (spfn < epfn) {
1898 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1899 struct padata_mt_job job = {
1900 .thread_fn = deferred_init_memmap_chunk,
1901 .fn_arg = zone,
1902 .start = spfn,
1903 .size = epfn_align - spfn,
1904 .align = PAGES_PER_SECTION,
1905 .min_chunk = PAGES_PER_SECTION,
1906 .max_threads = max_threads,
1907 };
1908
1909 padata_do_multithreaded(&job);
1910 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1911 epfn_align);
1912 }
1913 zone_empty:
1914 /* Sanity check that the next zone really is unpopulated */
1915 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1916
1917 pr_info("node %d deferred pages initialised in %ums\n",
1918 pgdat->node_id, jiffies_to_msecs(jiffies - start));
1919
1920 pgdat_init_report_one_done();
1921 return 0;
1922 }
1923
1924 /*
1925 * If this zone has deferred pages, try to grow it by initializing enough
1926 * deferred pages to satisfy the allocation specified by order, rounded up to
1927 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1928 * of SECTION_SIZE bytes by initializing struct pages in increments of
1929 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1930 *
1931 * Return true when zone was grown, otherwise return false. We return true even
1932 * when we grow less than requested, to let the caller decide if there are
1933 * enough pages to satisfy the allocation.
1934 *
1935 * Note: We use noinline because this function is needed only during boot, and
1936 * it is called from a __ref function _deferred_grow_zone. This way we are
1937 * making sure that it is not inlined into permanent text section.
1938 */
1939 static noinline bool __init
1940 deferred_grow_zone(struct zone *zone, unsigned int order)
1941 {
1942 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1943 pg_data_t *pgdat = zone->zone_pgdat;
1944 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1945 unsigned long spfn, epfn, flags;
1946 unsigned long nr_pages = 0;
1947 u64 i;
1948
1949 /* Only the last zone may have deferred pages */
1950 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1951 return false;
1952
1953 pgdat_resize_lock(pgdat, &flags);
1954
1955 /*
1956 * If someone grew this zone while we were waiting for spinlock, return
1957 * true, as there might be enough pages already.
1958 */
1959 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1960 pgdat_resize_unlock(pgdat, &flags);
1961 return true;
1962 }
1963
1964 /* If the zone is empty somebody else may have cleared out the zone */
1965 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1966 first_deferred_pfn)) {
1967 pgdat->first_deferred_pfn = ULONG_MAX;
1968 pgdat_resize_unlock(pgdat, &flags);
1969 /* Retry only once. */
1970 return first_deferred_pfn != ULONG_MAX;
1971 }
1972
1973 /*
1974 * Initialize and free pages in MAX_ORDER sized increments so
1975 * that we can avoid introducing any issues with the buddy
1976 * allocator.
1977 */
1978 while (spfn < epfn) {
1979 /* update our first deferred PFN for this section */
1980 first_deferred_pfn = spfn;
1981
1982 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1983 touch_nmi_watchdog();
1984
1985 /* We should only stop along section boundaries */
1986 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1987 continue;
1988
1989 /* If our quota has been met we can stop here */
1990 if (nr_pages >= nr_pages_needed)
1991 break;
1992 }
1993
1994 pgdat->first_deferred_pfn = spfn;
1995 pgdat_resize_unlock(pgdat, &flags);
1996
1997 return nr_pages > 0;
1998 }
1999
2000 /*
2001 * deferred_grow_zone() is __init, but it is called from
2002 * get_page_from_freelist() during early boot until deferred_pages permanently
2003 * disables this call. This is why we have refdata wrapper to avoid warning,
2004 * and to ensure that the function body gets unloaded.
2005 */
2006 static bool __ref
2007 _deferred_grow_zone(struct zone *zone, unsigned int order)
2008 {
2009 return deferred_grow_zone(zone, order);
2010 }
2011
2012 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2013
2014 void __init page_alloc_init_late(void)
2015 {
2016 struct zone *zone;
2017 int nid;
2018
2019 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2020
2021 /* There will be num_node_state(N_MEMORY) threads */
2022 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2023 for_each_node_state(nid, N_MEMORY) {
2024 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2025 }
2026
2027 /* Block until all are initialised */
2028 wait_for_completion(&pgdat_init_all_done_comp);
2029
2030 /*
2031 * The number of managed pages has changed due to the initialisation
2032 * so the pcpu batch and high limits needs to be updated or the limits
2033 * will be artificially small.
2034 */
2035 for_each_populated_zone(zone)
2036 zone_pcp_update(zone);
2037
2038 /*
2039 * We initialized the rest of the deferred pages. Permanently disable
2040 * on-demand struct page initialization.
2041 */
2042 static_branch_disable(&deferred_pages);
2043
2044 /* Reinit limits that are based on free pages after the kernel is up */
2045 files_maxfiles_init();
2046 #endif
2047
2048 /* Discard memblock private memory */
2049 memblock_discard();
2050
2051 for_each_node_state(nid, N_MEMORY)
2052 shuffle_free_memory(NODE_DATA(nid));
2053
2054 for_each_populated_zone(zone)
2055 set_zone_contiguous(zone);
2056 }
2057
2058 #ifdef CONFIG_CMA
2059 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2060 void __init init_cma_reserved_pageblock(struct page *page)
2061 {
2062 unsigned i = pageblock_nr_pages;
2063 struct page *p = page;
2064
2065 do {
2066 __ClearPageReserved(p);
2067 set_page_count(p, 0);
2068 } while (++p, --i);
2069
2070 set_pageblock_migratetype(page, MIGRATE_CMA);
2071
2072 if (pageblock_order >= MAX_ORDER) {
2073 i = pageblock_nr_pages;
2074 p = page;
2075 do {
2076 set_page_refcounted(p);
2077 __free_pages(p, MAX_ORDER - 1);
2078 p += MAX_ORDER_NR_PAGES;
2079 } while (i -= MAX_ORDER_NR_PAGES);
2080 } else {
2081 set_page_refcounted(page);
2082 __free_pages(page, pageblock_order);
2083 }
2084
2085 adjust_managed_page_count(page, pageblock_nr_pages);
2086 }
2087 #endif
2088
2089 /*
2090 * The order of subdivision here is critical for the IO subsystem.
2091 * Please do not alter this order without good reasons and regression
2092 * testing. Specifically, as large blocks of memory are subdivided,
2093 * the order in which smaller blocks are delivered depends on the order
2094 * they're subdivided in this function. This is the primary factor
2095 * influencing the order in which pages are delivered to the IO
2096 * subsystem according to empirical testing, and this is also justified
2097 * by considering the behavior of a buddy system containing a single
2098 * large block of memory acted on by a series of small allocations.
2099 * This behavior is a critical factor in sglist merging's success.
2100 *
2101 * -- nyc
2102 */
2103 static inline void expand(struct zone *zone, struct page *page,
2104 int low, int high, int migratetype)
2105 {
2106 unsigned long size = 1 << high;
2107
2108 while (high > low) {
2109 high--;
2110 size >>= 1;
2111 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2112
2113 /*
2114 * Mark as guard pages (or page), that will allow to
2115 * merge back to allocator when buddy will be freed.
2116 * Corresponding page table entries will not be touched,
2117 * pages will stay not present in virtual address space
2118 */
2119 if (set_page_guard(zone, &page[size], high, migratetype))
2120 continue;
2121
2122 add_to_free_list(&page[size], zone, high, migratetype);
2123 set_page_order(&page[size], high);
2124 }
2125 }
2126
2127 static void check_new_page_bad(struct page *page)
2128 {
2129 if (unlikely(page->flags & __PG_HWPOISON)) {
2130 /* Don't complain about hwpoisoned pages */
2131 page_mapcount_reset(page); /* remove PageBuddy */
2132 return;
2133 }
2134
2135 bad_page(page,
2136 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2137 }
2138
2139 /*
2140 * This page is about to be returned from the page allocator
2141 */
2142 static inline int check_new_page(struct page *page)
2143 {
2144 if (likely(page_expected_state(page,
2145 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2146 return 0;
2147
2148 check_new_page_bad(page);
2149 return 1;
2150 }
2151
2152 static inline bool free_pages_prezeroed(void)
2153 {
2154 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2155 page_poisoning_enabled()) || want_init_on_free();
2156 }
2157
2158 #ifdef CONFIG_DEBUG_VM
2159 /*
2160 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2161 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2162 * also checked when pcp lists are refilled from the free lists.
2163 */
2164 static inline bool check_pcp_refill(struct page *page)
2165 {
2166 if (debug_pagealloc_enabled_static())
2167 return check_new_page(page);
2168 else
2169 return false;
2170 }
2171
2172 static inline bool check_new_pcp(struct page *page)
2173 {
2174 return check_new_page(page);
2175 }
2176 #else
2177 /*
2178 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2179 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2180 * enabled, they are also checked when being allocated from the pcp lists.
2181 */
2182 static inline bool check_pcp_refill(struct page *page)
2183 {
2184 return check_new_page(page);
2185 }
2186 static inline bool check_new_pcp(struct page *page)
2187 {
2188 if (debug_pagealloc_enabled_static())
2189 return check_new_page(page);
2190 else
2191 return false;
2192 }
2193 #endif /* CONFIG_DEBUG_VM */
2194
2195 static bool check_new_pages(struct page *page, unsigned int order)
2196 {
2197 int i;
2198 for (i = 0; i < (1 << order); i++) {
2199 struct page *p = page + i;
2200
2201 if (unlikely(check_new_page(p)))
2202 return true;
2203 }
2204
2205 return false;
2206 }
2207
2208 inline void post_alloc_hook(struct page *page, unsigned int order,
2209 gfp_t gfp_flags)
2210 {
2211 set_page_private(page, 0);
2212 set_page_refcounted(page);
2213
2214 arch_alloc_page(page, order);
2215 if (debug_pagealloc_enabled_static())
2216 kernel_map_pages(page, 1 << order, 1);
2217 kasan_alloc_pages(page, order);
2218 kernel_poison_pages(page, 1 << order, 1);
2219 set_page_owner(page, order, gfp_flags);
2220 }
2221
2222 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2223 unsigned int alloc_flags)
2224 {
2225 post_alloc_hook(page, order, gfp_flags);
2226
2227 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2228 kernel_init_free_pages(page, 1 << order);
2229
2230 if (order && (gfp_flags & __GFP_COMP))
2231 prep_compound_page(page, order);
2232
2233 /*
2234 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2235 * allocate the page. The expectation is that the caller is taking
2236 * steps that will free more memory. The caller should avoid the page
2237 * being used for !PFMEMALLOC purposes.
2238 */
2239 if (alloc_flags & ALLOC_NO_WATERMARKS)
2240 set_page_pfmemalloc(page);
2241 else
2242 clear_page_pfmemalloc(page);
2243 }
2244
2245 /*
2246 * Go through the free lists for the given migratetype and remove
2247 * the smallest available page from the freelists
2248 */
2249 static __always_inline
2250 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2251 int migratetype)
2252 {
2253 unsigned int current_order;
2254 struct free_area *area;
2255 struct page *page;
2256
2257 /* Find a page of the appropriate size in the preferred list */
2258 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2259 area = &(zone->free_area[current_order]);
2260 page = get_page_from_free_area(area, migratetype);
2261 if (!page)
2262 continue;
2263 del_page_from_free_list(page, zone, current_order);
2264 expand(zone, page, order, current_order, migratetype);
2265 set_pcppage_migratetype(page, migratetype);
2266 return page;
2267 }
2268
2269 return NULL;
2270 }
2271
2272
2273 /*
2274 * This array describes the order lists are fallen back to when
2275 * the free lists for the desirable migrate type are depleted
2276 */
2277 static int fallbacks[MIGRATE_TYPES][3] = {
2278 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2279 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2280 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2281 #ifdef CONFIG_CMA
2282 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2283 #endif
2284 #ifdef CONFIG_MEMORY_ISOLATION
2285 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2286 #endif
2287 };
2288
2289 #ifdef CONFIG_CMA
2290 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2291 unsigned int order)
2292 {
2293 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2294 }
2295 #else
2296 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2297 unsigned int order) { return NULL; }
2298 #endif
2299
2300 /*
2301 * Move the free pages in a range to the free lists of the requested type.
2302 * Note that start_page and end_pages are not aligned on a pageblock
2303 * boundary. If alignment is required, use move_freepages_block()
2304 */
2305 static int move_freepages(struct zone *zone,
2306 struct page *start_page, struct page *end_page,
2307 int migratetype, int *num_movable)
2308 {
2309 struct page *page;
2310 unsigned int order;
2311 int pages_moved = 0;
2312
2313 for (page = start_page; page <= end_page;) {
2314 if (!pfn_valid_within(page_to_pfn(page))) {
2315 page++;
2316 continue;
2317 }
2318
2319 if (!PageBuddy(page)) {
2320 /*
2321 * We assume that pages that could be isolated for
2322 * migration are movable. But we don't actually try
2323 * isolating, as that would be expensive.
2324 */
2325 if (num_movable &&
2326 (PageLRU(page) || __PageMovable(page)))
2327 (*num_movable)++;
2328
2329 page++;
2330 continue;
2331 }
2332
2333 /* Make sure we are not inadvertently changing nodes */
2334 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2335 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2336
2337 order = page_order(page);
2338 move_to_free_list(page, zone, order, migratetype);
2339 page += 1 << order;
2340 pages_moved += 1 << order;
2341 }
2342
2343 return pages_moved;
2344 }
2345
2346 int move_freepages_block(struct zone *zone, struct page *page,
2347 int migratetype, int *num_movable)
2348 {
2349 unsigned long start_pfn, end_pfn;
2350 struct page *start_page, *end_page;
2351
2352 if (num_movable)
2353 *num_movable = 0;
2354
2355 start_pfn = page_to_pfn(page);
2356 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2357 start_page = pfn_to_page(start_pfn);
2358 end_page = start_page + pageblock_nr_pages - 1;
2359 end_pfn = start_pfn + pageblock_nr_pages - 1;
2360
2361 /* Do not cross zone boundaries */
2362 if (!zone_spans_pfn(zone, start_pfn))
2363 start_page = page;
2364 if (!zone_spans_pfn(zone, end_pfn))
2365 return 0;
2366
2367 return move_freepages(zone, start_page, end_page, migratetype,
2368 num_movable);
2369 }
2370
2371 static void change_pageblock_range(struct page *pageblock_page,
2372 int start_order, int migratetype)
2373 {
2374 int nr_pageblocks = 1 << (start_order - pageblock_order);
2375
2376 while (nr_pageblocks--) {
2377 set_pageblock_migratetype(pageblock_page, migratetype);
2378 pageblock_page += pageblock_nr_pages;
2379 }
2380 }
2381
2382 /*
2383 * When we are falling back to another migratetype during allocation, try to
2384 * steal extra free pages from the same pageblocks to satisfy further
2385 * allocations, instead of polluting multiple pageblocks.
2386 *
2387 * If we are stealing a relatively large buddy page, it is likely there will
2388 * be more free pages in the pageblock, so try to steal them all. For
2389 * reclaimable and unmovable allocations, we steal regardless of page size,
2390 * as fragmentation caused by those allocations polluting movable pageblocks
2391 * is worse than movable allocations stealing from unmovable and reclaimable
2392 * pageblocks.
2393 */
2394 static bool can_steal_fallback(unsigned int order, int start_mt)
2395 {
2396 /*
2397 * Leaving this order check is intended, although there is
2398 * relaxed order check in next check. The reason is that
2399 * we can actually steal whole pageblock if this condition met,
2400 * but, below check doesn't guarantee it and that is just heuristic
2401 * so could be changed anytime.
2402 */
2403 if (order >= pageblock_order)
2404 return true;
2405
2406 if (order >= pageblock_order / 2 ||
2407 start_mt == MIGRATE_RECLAIMABLE ||
2408 start_mt == MIGRATE_UNMOVABLE ||
2409 page_group_by_mobility_disabled)
2410 return true;
2411
2412 return false;
2413 }
2414
2415 static inline void boost_watermark(struct zone *zone)
2416 {
2417 unsigned long max_boost;
2418
2419 if (!watermark_boost_factor)
2420 return;
2421 /*
2422 * Don't bother in zones that are unlikely to produce results.
2423 * On small machines, including kdump capture kernels running
2424 * in a small area, boosting the watermark can cause an out of
2425 * memory situation immediately.
2426 */
2427 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2428 return;
2429
2430 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2431 watermark_boost_factor, 10000);
2432
2433 /*
2434 * high watermark may be uninitialised if fragmentation occurs
2435 * very early in boot so do not boost. We do not fall
2436 * through and boost by pageblock_nr_pages as failing
2437 * allocations that early means that reclaim is not going
2438 * to help and it may even be impossible to reclaim the
2439 * boosted watermark resulting in a hang.
2440 */
2441 if (!max_boost)
2442 return;
2443
2444 max_boost = max(pageblock_nr_pages, max_boost);
2445
2446 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2447 max_boost);
2448 }
2449
2450 /*
2451 * This function implements actual steal behaviour. If order is large enough,
2452 * we can steal whole pageblock. If not, we first move freepages in this
2453 * pageblock to our migratetype and determine how many already-allocated pages
2454 * are there in the pageblock with a compatible migratetype. If at least half
2455 * of pages are free or compatible, we can change migratetype of the pageblock
2456 * itself, so pages freed in the future will be put on the correct free list.
2457 */
2458 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2459 unsigned int alloc_flags, int start_type, bool whole_block)
2460 {
2461 unsigned int current_order = page_order(page);
2462 int free_pages, movable_pages, alike_pages;
2463 int old_block_type;
2464
2465 old_block_type = get_pageblock_migratetype(page);
2466
2467 /*
2468 * This can happen due to races and we want to prevent broken
2469 * highatomic accounting.
2470 */
2471 if (is_migrate_highatomic(old_block_type))
2472 goto single_page;
2473
2474 /* Take ownership for orders >= pageblock_order */
2475 if (current_order >= pageblock_order) {
2476 change_pageblock_range(page, current_order, start_type);
2477 goto single_page;
2478 }
2479
2480 /*
2481 * Boost watermarks to increase reclaim pressure to reduce the
2482 * likelihood of future fallbacks. Wake kswapd now as the node
2483 * may be balanced overall and kswapd will not wake naturally.
2484 */
2485 boost_watermark(zone);
2486 if (alloc_flags & ALLOC_KSWAPD)
2487 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2488
2489 /* We are not allowed to try stealing from the whole block */
2490 if (!whole_block)
2491 goto single_page;
2492
2493 free_pages = move_freepages_block(zone, page, start_type,
2494 &movable_pages);
2495 /*
2496 * Determine how many pages are compatible with our allocation.
2497 * For movable allocation, it's the number of movable pages which
2498 * we just obtained. For other types it's a bit more tricky.
2499 */
2500 if (start_type == MIGRATE_MOVABLE) {
2501 alike_pages = movable_pages;
2502 } else {
2503 /*
2504 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2505 * to MOVABLE pageblock, consider all non-movable pages as
2506 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2507 * vice versa, be conservative since we can't distinguish the
2508 * exact migratetype of non-movable pages.
2509 */
2510 if (old_block_type == MIGRATE_MOVABLE)
2511 alike_pages = pageblock_nr_pages
2512 - (free_pages + movable_pages);
2513 else
2514 alike_pages = 0;
2515 }
2516
2517 /* moving whole block can fail due to zone boundary conditions */
2518 if (!free_pages)
2519 goto single_page;
2520
2521 /*
2522 * If a sufficient number of pages in the block are either free or of
2523 * comparable migratability as our allocation, claim the whole block.
2524 */
2525 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2526 page_group_by_mobility_disabled)
2527 set_pageblock_migratetype(page, start_type);
2528
2529 return;
2530
2531 single_page:
2532 move_to_free_list(page, zone, current_order, start_type);
2533 }
2534
2535 /*
2536 * Check whether there is a suitable fallback freepage with requested order.
2537 * If only_stealable is true, this function returns fallback_mt only if
2538 * we can steal other freepages all together. This would help to reduce
2539 * fragmentation due to mixed migratetype pages in one pageblock.
2540 */
2541 int find_suitable_fallback(struct free_area *area, unsigned int order,
2542 int migratetype, bool only_stealable, bool *can_steal)
2543 {
2544 int i;
2545 int fallback_mt;
2546
2547 if (area->nr_free == 0)
2548 return -1;
2549
2550 *can_steal = false;
2551 for (i = 0;; i++) {
2552 fallback_mt = fallbacks[migratetype][i];
2553 if (fallback_mt == MIGRATE_TYPES)
2554 break;
2555
2556 if (free_area_empty(area, fallback_mt))
2557 continue;
2558
2559 if (can_steal_fallback(order, migratetype))
2560 *can_steal = true;
2561
2562 if (!only_stealable)
2563 return fallback_mt;
2564
2565 if (*can_steal)
2566 return fallback_mt;
2567 }
2568
2569 return -1;
2570 }
2571
2572 /*
2573 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2574 * there are no empty page blocks that contain a page with a suitable order
2575 */
2576 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2577 unsigned int alloc_order)
2578 {
2579 int mt;
2580 unsigned long max_managed, flags;
2581
2582 /*
2583 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2584 * Check is race-prone but harmless.
2585 */
2586 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2587 if (zone->nr_reserved_highatomic >= max_managed)
2588 return;
2589
2590 spin_lock_irqsave(&zone->lock, flags);
2591
2592 /* Recheck the nr_reserved_highatomic limit under the lock */
2593 if (zone->nr_reserved_highatomic >= max_managed)
2594 goto out_unlock;
2595
2596 /* Yoink! */
2597 mt = get_pageblock_migratetype(page);
2598 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2599 && !is_migrate_cma(mt)) {
2600 zone->nr_reserved_highatomic += pageblock_nr_pages;
2601 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2602 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2603 }
2604
2605 out_unlock:
2606 spin_unlock_irqrestore(&zone->lock, flags);
2607 }
2608
2609 /*
2610 * Used when an allocation is about to fail under memory pressure. This
2611 * potentially hurts the reliability of high-order allocations when under
2612 * intense memory pressure but failed atomic allocations should be easier
2613 * to recover from than an OOM.
2614 *
2615 * If @force is true, try to unreserve a pageblock even though highatomic
2616 * pageblock is exhausted.
2617 */
2618 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2619 bool force)
2620 {
2621 struct zonelist *zonelist = ac->zonelist;
2622 unsigned long flags;
2623 struct zoneref *z;
2624 struct zone *zone;
2625 struct page *page;
2626 int order;
2627 bool ret;
2628
2629 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2630 ac->nodemask) {
2631 /*
2632 * Preserve at least one pageblock unless memory pressure
2633 * is really high.
2634 */
2635 if (!force && zone->nr_reserved_highatomic <=
2636 pageblock_nr_pages)
2637 continue;
2638
2639 spin_lock_irqsave(&zone->lock, flags);
2640 for (order = 0; order < MAX_ORDER; order++) {
2641 struct free_area *area = &(zone->free_area[order]);
2642
2643 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2644 if (!page)
2645 continue;
2646
2647 /*
2648 * In page freeing path, migratetype change is racy so
2649 * we can counter several free pages in a pageblock
2650 * in this loop althoug we changed the pageblock type
2651 * from highatomic to ac->migratetype. So we should
2652 * adjust the count once.
2653 */
2654 if (is_migrate_highatomic_page(page)) {
2655 /*
2656 * It should never happen but changes to
2657 * locking could inadvertently allow a per-cpu
2658 * drain to add pages to MIGRATE_HIGHATOMIC
2659 * while unreserving so be safe and watch for
2660 * underflows.
2661 */
2662 zone->nr_reserved_highatomic -= min(
2663 pageblock_nr_pages,
2664 zone->nr_reserved_highatomic);
2665 }
2666
2667 /*
2668 * Convert to ac->migratetype and avoid the normal
2669 * pageblock stealing heuristics. Minimally, the caller
2670 * is doing the work and needs the pages. More
2671 * importantly, if the block was always converted to
2672 * MIGRATE_UNMOVABLE or another type then the number
2673 * of pageblocks that cannot be completely freed
2674 * may increase.
2675 */
2676 set_pageblock_migratetype(page, ac->migratetype);
2677 ret = move_freepages_block(zone, page, ac->migratetype,
2678 NULL);
2679 if (ret) {
2680 spin_unlock_irqrestore(&zone->lock, flags);
2681 return ret;
2682 }
2683 }
2684 spin_unlock_irqrestore(&zone->lock, flags);
2685 }
2686
2687 return false;
2688 }
2689
2690 /*
2691 * Try finding a free buddy page on the fallback list and put it on the free
2692 * list of requested migratetype, possibly along with other pages from the same
2693 * block, depending on fragmentation avoidance heuristics. Returns true if
2694 * fallback was found so that __rmqueue_smallest() can grab it.
2695 *
2696 * The use of signed ints for order and current_order is a deliberate
2697 * deviation from the rest of this file, to make the for loop
2698 * condition simpler.
2699 */
2700 static __always_inline bool
2701 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2702 unsigned int alloc_flags)
2703 {
2704 struct free_area *area;
2705 int current_order;
2706 int min_order = order;
2707 struct page *page;
2708 int fallback_mt;
2709 bool can_steal;
2710
2711 /*
2712 * Do not steal pages from freelists belonging to other pageblocks
2713 * i.e. orders < pageblock_order. If there are no local zones free,
2714 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2715 */
2716 if (alloc_flags & ALLOC_NOFRAGMENT)
2717 min_order = pageblock_order;
2718
2719 /*
2720 * Find the largest available free page in the other list. This roughly
2721 * approximates finding the pageblock with the most free pages, which
2722 * would be too costly to do exactly.
2723 */
2724 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2725 --current_order) {
2726 area = &(zone->free_area[current_order]);
2727 fallback_mt = find_suitable_fallback(area, current_order,
2728 start_migratetype, false, &can_steal);
2729 if (fallback_mt == -1)
2730 continue;
2731
2732 /*
2733 * We cannot steal all free pages from the pageblock and the
2734 * requested migratetype is movable. In that case it's better to
2735 * steal and split the smallest available page instead of the
2736 * largest available page, because even if the next movable
2737 * allocation falls back into a different pageblock than this
2738 * one, it won't cause permanent fragmentation.
2739 */
2740 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2741 && current_order > order)
2742 goto find_smallest;
2743
2744 goto do_steal;
2745 }
2746
2747 return false;
2748
2749 find_smallest:
2750 for (current_order = order; current_order < MAX_ORDER;
2751 current_order++) {
2752 area = &(zone->free_area[current_order]);
2753 fallback_mt = find_suitable_fallback(area, current_order,
2754 start_migratetype, false, &can_steal);
2755 if (fallback_mt != -1)
2756 break;
2757 }
2758
2759 /*
2760 * This should not happen - we already found a suitable fallback
2761 * when looking for the largest page.
2762 */
2763 VM_BUG_ON(current_order == MAX_ORDER);
2764
2765 do_steal:
2766 page = get_page_from_free_area(area, fallback_mt);
2767
2768 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2769 can_steal);
2770
2771 trace_mm_page_alloc_extfrag(page, order, current_order,
2772 start_migratetype, fallback_mt);
2773
2774 return true;
2775
2776 }
2777
2778 /*
2779 * Do the hard work of removing an element from the buddy allocator.
2780 * Call me with the zone->lock already held.
2781 */
2782 static __always_inline struct page *
2783 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2784 unsigned int alloc_flags)
2785 {
2786 struct page *page;
2787
2788 #ifdef CONFIG_CMA
2789 /*
2790 * Balance movable allocations between regular and CMA areas by
2791 * allocating from CMA when over half of the zone's free memory
2792 * is in the CMA area.
2793 */
2794 if (alloc_flags & ALLOC_CMA &&
2795 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2796 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2797 page = __rmqueue_cma_fallback(zone, order);
2798 if (page)
2799 return page;
2800 }
2801 #endif
2802 retry:
2803 page = __rmqueue_smallest(zone, order, migratetype);
2804 if (unlikely(!page)) {
2805 if (alloc_flags & ALLOC_CMA)
2806 page = __rmqueue_cma_fallback(zone, order);
2807
2808 if (!page && __rmqueue_fallback(zone, order, migratetype,
2809 alloc_flags))
2810 goto retry;
2811 }
2812
2813 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2814 return page;
2815 }
2816
2817 /*
2818 * Obtain a specified number of elements from the buddy allocator, all under
2819 * a single hold of the lock, for efficiency. Add them to the supplied list.
2820 * Returns the number of new pages which were placed at *list.
2821 */
2822 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2823 unsigned long count, struct list_head *list,
2824 int migratetype, unsigned int alloc_flags)
2825 {
2826 int i, alloced = 0;
2827
2828 spin_lock(&zone->lock);
2829 for (i = 0; i < count; ++i) {
2830 struct page *page = __rmqueue(zone, order, migratetype,
2831 alloc_flags);
2832 if (unlikely(page == NULL))
2833 break;
2834
2835 if (unlikely(check_pcp_refill(page)))
2836 continue;
2837
2838 /*
2839 * Split buddy pages returned by expand() are received here in
2840 * physical page order. The page is added to the tail of
2841 * caller's list. From the callers perspective, the linked list
2842 * is ordered by page number under some conditions. This is
2843 * useful for IO devices that can forward direction from the
2844 * head, thus also in the physical page order. This is useful
2845 * for IO devices that can merge IO requests if the physical
2846 * pages are ordered properly.
2847 */
2848 list_add_tail(&page->lru, list);
2849 alloced++;
2850 if (is_migrate_cma(get_pcppage_migratetype(page)))
2851 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2852 -(1 << order));
2853 }
2854
2855 /*
2856 * i pages were removed from the buddy list even if some leak due
2857 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2858 * on i. Do not confuse with 'alloced' which is the number of
2859 * pages added to the pcp list.
2860 */
2861 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2862 spin_unlock(&zone->lock);
2863 return alloced;
2864 }
2865
2866 #ifdef CONFIG_NUMA
2867 /*
2868 * Called from the vmstat counter updater to drain pagesets of this
2869 * currently executing processor on remote nodes after they have
2870 * expired.
2871 *
2872 * Note that this function must be called with the thread pinned to
2873 * a single processor.
2874 */
2875 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2876 {
2877 unsigned long flags;
2878 int to_drain, batch;
2879
2880 local_irq_save(flags);
2881 batch = READ_ONCE(pcp->batch);
2882 to_drain = min(pcp->count, batch);
2883 if (to_drain > 0)
2884 free_pcppages_bulk(zone, to_drain, pcp);
2885 local_irq_restore(flags);
2886 }
2887 #endif
2888
2889 /*
2890 * Drain pcplists of the indicated processor and zone.
2891 *
2892 * The processor must either be the current processor and the
2893 * thread pinned to the current processor or a processor that
2894 * is not online.
2895 */
2896 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2897 {
2898 unsigned long flags;
2899 struct per_cpu_pageset *pset;
2900 struct per_cpu_pages *pcp;
2901
2902 local_irq_save(flags);
2903 pset = per_cpu_ptr(zone->pageset, cpu);
2904
2905 pcp = &pset->pcp;
2906 if (pcp->count)
2907 free_pcppages_bulk(zone, pcp->count, pcp);
2908 local_irq_restore(flags);
2909 }
2910
2911 /*
2912 * Drain pcplists of all zones on the indicated processor.
2913 *
2914 * The processor must either be the current processor and the
2915 * thread pinned to the current processor or a processor that
2916 * is not online.
2917 */
2918 static void drain_pages(unsigned int cpu)
2919 {
2920 struct zone *zone;
2921
2922 for_each_populated_zone(zone) {
2923 drain_pages_zone(cpu, zone);
2924 }
2925 }
2926
2927 /*
2928 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2929 *
2930 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2931 * the single zone's pages.
2932 */
2933 void drain_local_pages(struct zone *zone)
2934 {
2935 int cpu = smp_processor_id();
2936
2937 if (zone)
2938 drain_pages_zone(cpu, zone);
2939 else
2940 drain_pages(cpu);
2941 }
2942
2943 static void drain_local_pages_wq(struct work_struct *work)
2944 {
2945 struct pcpu_drain *drain;
2946
2947 drain = container_of(work, struct pcpu_drain, work);
2948
2949 /*
2950 * drain_all_pages doesn't use proper cpu hotplug protection so
2951 * we can race with cpu offline when the WQ can move this from
2952 * a cpu pinned worker to an unbound one. We can operate on a different
2953 * cpu which is allright but we also have to make sure to not move to
2954 * a different one.
2955 */
2956 preempt_disable();
2957 drain_local_pages(drain->zone);
2958 preempt_enable();
2959 }
2960
2961 /*
2962 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2963 *
2964 * When zone parameter is non-NULL, spill just the single zone's pages.
2965 *
2966 * Note that this can be extremely slow as the draining happens in a workqueue.
2967 */
2968 void drain_all_pages(struct zone *zone)
2969 {
2970 int cpu;
2971
2972 /*
2973 * Allocate in the BSS so we wont require allocation in
2974 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2975 */
2976 static cpumask_t cpus_with_pcps;
2977
2978 /*
2979 * Make sure nobody triggers this path before mm_percpu_wq is fully
2980 * initialized.
2981 */
2982 if (WARN_ON_ONCE(!mm_percpu_wq))
2983 return;
2984
2985 /*
2986 * Do not drain if one is already in progress unless it's specific to
2987 * a zone. Such callers are primarily CMA and memory hotplug and need
2988 * the drain to be complete when the call returns.
2989 */
2990 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2991 if (!zone)
2992 return;
2993 mutex_lock(&pcpu_drain_mutex);
2994 }
2995
2996 /*
2997 * We don't care about racing with CPU hotplug event
2998 * as offline notification will cause the notified
2999 * cpu to drain that CPU pcps and on_each_cpu_mask
3000 * disables preemption as part of its processing
3001 */
3002 for_each_online_cpu(cpu) {
3003 struct per_cpu_pageset *pcp;
3004 struct zone *z;
3005 bool has_pcps = false;
3006
3007 if (zone) {
3008 pcp = per_cpu_ptr(zone->pageset, cpu);
3009 if (pcp->pcp.count)
3010 has_pcps = true;
3011 } else {
3012 for_each_populated_zone(z) {
3013 pcp = per_cpu_ptr(z->pageset, cpu);
3014 if (pcp->pcp.count) {
3015 has_pcps = true;
3016 break;
3017 }
3018 }
3019 }
3020
3021 if (has_pcps)
3022 cpumask_set_cpu(cpu, &cpus_with_pcps);
3023 else
3024 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3025 }
3026
3027 for_each_cpu(cpu, &cpus_with_pcps) {
3028 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3029
3030 drain->zone = zone;
3031 INIT_WORK(&drain->work, drain_local_pages_wq);
3032 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3033 }
3034 for_each_cpu(cpu, &cpus_with_pcps)
3035 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3036
3037 mutex_unlock(&pcpu_drain_mutex);
3038 }
3039
3040 #ifdef CONFIG_HIBERNATION
3041
3042 /*
3043 * Touch the watchdog for every WD_PAGE_COUNT pages.
3044 */
3045 #define WD_PAGE_COUNT (128*1024)
3046
3047 void mark_free_pages(struct zone *zone)
3048 {
3049 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3050 unsigned long flags;
3051 unsigned int order, t;
3052 struct page *page;
3053
3054 if (zone_is_empty(zone))
3055 return;
3056
3057 spin_lock_irqsave(&zone->lock, flags);
3058
3059 max_zone_pfn = zone_end_pfn(zone);
3060 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3061 if (pfn_valid(pfn)) {
3062 page = pfn_to_page(pfn);
3063
3064 if (!--page_count) {
3065 touch_nmi_watchdog();
3066 page_count = WD_PAGE_COUNT;
3067 }
3068
3069 if (page_zone(page) != zone)
3070 continue;
3071
3072 if (!swsusp_page_is_forbidden(page))
3073 swsusp_unset_page_free(page);
3074 }
3075
3076 for_each_migratetype_order(order, t) {
3077 list_for_each_entry(page,
3078 &zone->free_area[order].free_list[t], lru) {
3079 unsigned long i;
3080
3081 pfn = page_to_pfn(page);
3082 for (i = 0; i < (1UL << order); i++) {
3083 if (!--page_count) {
3084 touch_nmi_watchdog();
3085 page_count = WD_PAGE_COUNT;
3086 }
3087 swsusp_set_page_free(pfn_to_page(pfn + i));
3088 }
3089 }
3090 }
3091 spin_unlock_irqrestore(&zone->lock, flags);
3092 }
3093 #endif /* CONFIG_PM */
3094
3095 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3096 {
3097 int migratetype;
3098
3099 if (!free_pcp_prepare(page))
3100 return false;
3101
3102 migratetype = get_pfnblock_migratetype(page, pfn);
3103 set_pcppage_migratetype(page, migratetype);
3104 return true;
3105 }
3106
3107 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3108 {
3109 struct zone *zone = page_zone(page);
3110 struct per_cpu_pages *pcp;
3111 int migratetype;
3112
3113 migratetype = get_pcppage_migratetype(page);
3114 __count_vm_event(PGFREE);
3115
3116 /*
3117 * We only track unmovable, reclaimable and movable on pcp lists.
3118 * Free ISOLATE pages back to the allocator because they are being
3119 * offlined but treat HIGHATOMIC as movable pages so we can get those
3120 * areas back if necessary. Otherwise, we may have to free
3121 * excessively into the page allocator
3122 */
3123 if (migratetype >= MIGRATE_PCPTYPES) {
3124 if (unlikely(is_migrate_isolate(migratetype))) {
3125 free_one_page(zone, page, pfn, 0, migratetype);
3126 return;
3127 }
3128 migratetype = MIGRATE_MOVABLE;
3129 }
3130
3131 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3132 list_add(&page->lru, &pcp->lists[migratetype]);
3133 pcp->count++;
3134 if (pcp->count >= pcp->high) {
3135 unsigned long batch = READ_ONCE(pcp->batch);
3136 free_pcppages_bulk(zone, batch, pcp);
3137 }
3138 }
3139
3140 /*
3141 * Free a 0-order page
3142 */
3143 void free_unref_page(struct page *page)
3144 {
3145 unsigned long flags;
3146 unsigned long pfn = page_to_pfn(page);
3147
3148 if (!free_unref_page_prepare(page, pfn))
3149 return;
3150
3151 local_irq_save(flags);
3152 free_unref_page_commit(page, pfn);
3153 local_irq_restore(flags);
3154 }
3155
3156 /*
3157 * Free a list of 0-order pages
3158 */
3159 void free_unref_page_list(struct list_head *list)
3160 {
3161 struct page *page, *next;
3162 unsigned long flags, pfn;
3163 int batch_count = 0;
3164
3165 /* Prepare pages for freeing */
3166 list_for_each_entry_safe(page, next, list, lru) {
3167 pfn = page_to_pfn(page);
3168 if (!free_unref_page_prepare(page, pfn))
3169 list_del(&page->lru);
3170 set_page_private(page, pfn);
3171 }
3172
3173 local_irq_save(flags);
3174 list_for_each_entry_safe(page, next, list, lru) {
3175 unsigned long pfn = page_private(page);
3176
3177 set_page_private(page, 0);
3178 trace_mm_page_free_batched(page);
3179 free_unref_page_commit(page, pfn);
3180
3181 /*
3182 * Guard against excessive IRQ disabled times when we get
3183 * a large list of pages to free.
3184 */
3185 if (++batch_count == SWAP_CLUSTER_MAX) {
3186 local_irq_restore(flags);
3187 batch_count = 0;
3188 local_irq_save(flags);
3189 }
3190 }
3191 local_irq_restore(flags);
3192 }
3193
3194 /*
3195 * split_page takes a non-compound higher-order page, and splits it into
3196 * n (1<<order) sub-pages: page[0..n]
3197 * Each sub-page must be freed individually.
3198 *
3199 * Note: this is probably too low level an operation for use in drivers.
3200 * Please consult with lkml before using this in your driver.
3201 */
3202 void split_page(struct page *page, unsigned int order)
3203 {
3204 int i;
3205
3206 VM_BUG_ON_PAGE(PageCompound(page), page);
3207 VM_BUG_ON_PAGE(!page_count(page), page);
3208
3209 for (i = 1; i < (1 << order); i++)
3210 set_page_refcounted(page + i);
3211 split_page_owner(page, order);
3212 }
3213 EXPORT_SYMBOL_GPL(split_page);
3214
3215 int __isolate_free_page(struct page *page, unsigned int order)
3216 {
3217 unsigned long watermark;
3218 struct zone *zone;
3219 int mt;
3220
3221 BUG_ON(!PageBuddy(page));
3222
3223 zone = page_zone(page);
3224 mt = get_pageblock_migratetype(page);
3225
3226 if (!is_migrate_isolate(mt)) {
3227 /*
3228 * Obey watermarks as if the page was being allocated. We can
3229 * emulate a high-order watermark check with a raised order-0
3230 * watermark, because we already know our high-order page
3231 * exists.
3232 */
3233 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3234 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3235 return 0;
3236
3237 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3238 }
3239
3240 /* Remove page from free list */
3241
3242 del_page_from_free_list(page, zone, order);
3243
3244 /*
3245 * Set the pageblock if the isolated page is at least half of a
3246 * pageblock
3247 */
3248 if (order >= pageblock_order - 1) {
3249 struct page *endpage = page + (1 << order) - 1;
3250 for (; page < endpage; page += pageblock_nr_pages) {
3251 int mt = get_pageblock_migratetype(page);
3252 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3253 && !is_migrate_highatomic(mt))
3254 set_pageblock_migratetype(page,
3255 MIGRATE_MOVABLE);
3256 }
3257 }
3258
3259
3260 return 1UL << order;
3261 }
3262
3263 /**
3264 * __putback_isolated_page - Return a now-isolated page back where we got it
3265 * @page: Page that was isolated
3266 * @order: Order of the isolated page
3267 * @mt: The page's pageblock's migratetype
3268 *
3269 * This function is meant to return a page pulled from the free lists via
3270 * __isolate_free_page back to the free lists they were pulled from.
3271 */
3272 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3273 {
3274 struct zone *zone = page_zone(page);
3275
3276 /* zone lock should be held when this function is called */
3277 lockdep_assert_held(&zone->lock);
3278
3279 /* Return isolated page to tail of freelist. */
3280 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3281 }
3282
3283 /*
3284 * Update NUMA hit/miss statistics
3285 *
3286 * Must be called with interrupts disabled.
3287 */
3288 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3289 {
3290 #ifdef CONFIG_NUMA
3291 enum numa_stat_item local_stat = NUMA_LOCAL;
3292
3293 /* skip numa counters update if numa stats is disabled */
3294 if (!static_branch_likely(&vm_numa_stat_key))
3295 return;
3296
3297 if (zone_to_nid(z) != numa_node_id())
3298 local_stat = NUMA_OTHER;
3299
3300 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3301 __inc_numa_state(z, NUMA_HIT);
3302 else {
3303 __inc_numa_state(z, NUMA_MISS);
3304 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3305 }
3306 __inc_numa_state(z, local_stat);
3307 #endif
3308 }
3309
3310 /* Remove page from the per-cpu list, caller must protect the list */
3311 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3312 unsigned int alloc_flags,
3313 struct per_cpu_pages *pcp,
3314 struct list_head *list)
3315 {
3316 struct page *page;
3317
3318 do {
3319 if (list_empty(list)) {
3320 pcp->count += rmqueue_bulk(zone, 0,
3321 pcp->batch, list,
3322 migratetype, alloc_flags);
3323 if (unlikely(list_empty(list)))
3324 return NULL;
3325 }
3326
3327 page = list_first_entry(list, struct page, lru);
3328 list_del(&page->lru);
3329 pcp->count--;
3330 } while (check_new_pcp(page));
3331
3332 return page;
3333 }
3334
3335 /* Lock and remove page from the per-cpu list */
3336 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3337 struct zone *zone, gfp_t gfp_flags,
3338 int migratetype, unsigned int alloc_flags)
3339 {
3340 struct per_cpu_pages *pcp;
3341 struct list_head *list;
3342 struct page *page;
3343 unsigned long flags;
3344
3345 local_irq_save(flags);
3346 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3347 list = &pcp->lists[migratetype];
3348 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3349 if (page) {
3350 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3351 zone_statistics(preferred_zone, zone);
3352 }
3353 local_irq_restore(flags);
3354 return page;
3355 }
3356
3357 /*
3358 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3359 */
3360 static inline
3361 struct page *rmqueue(struct zone *preferred_zone,
3362 struct zone *zone, unsigned int order,
3363 gfp_t gfp_flags, unsigned int alloc_flags,
3364 int migratetype)
3365 {
3366 unsigned long flags;
3367 struct page *page;
3368
3369 if (likely(order == 0)) {
3370 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3371 migratetype, alloc_flags);
3372 goto out;
3373 }
3374
3375 /*
3376 * We most definitely don't want callers attempting to
3377 * allocate greater than order-1 page units with __GFP_NOFAIL.
3378 */
3379 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3380 spin_lock_irqsave(&zone->lock, flags);
3381
3382 do {
3383 page = NULL;
3384 if (alloc_flags & ALLOC_HARDER) {
3385 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3386 if (page)
3387 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3388 }
3389 if (!page)
3390 page = __rmqueue(zone, order, migratetype, alloc_flags);
3391 } while (page && check_new_pages(page, order));
3392 spin_unlock(&zone->lock);
3393 if (!page)
3394 goto failed;
3395 __mod_zone_freepage_state(zone, -(1 << order),
3396 get_pcppage_migratetype(page));
3397
3398 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3399 zone_statistics(preferred_zone, zone);
3400 local_irq_restore(flags);
3401
3402 out:
3403 /* Separate test+clear to avoid unnecessary atomics */
3404 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3405 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3406 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3407 }
3408
3409 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3410 return page;
3411
3412 failed:
3413 local_irq_restore(flags);
3414 return NULL;
3415 }
3416
3417 #ifdef CONFIG_FAIL_PAGE_ALLOC
3418
3419 static struct {
3420 struct fault_attr attr;
3421
3422 bool ignore_gfp_highmem;
3423 bool ignore_gfp_reclaim;
3424 u32 min_order;
3425 } fail_page_alloc = {
3426 .attr = FAULT_ATTR_INITIALIZER,
3427 .ignore_gfp_reclaim = true,
3428 .ignore_gfp_highmem = true,
3429 .min_order = 1,
3430 };
3431
3432 static int __init setup_fail_page_alloc(char *str)
3433 {
3434 return setup_fault_attr(&fail_page_alloc.attr, str);
3435 }
3436 __setup("fail_page_alloc=", setup_fail_page_alloc);
3437
3438 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3439 {
3440 if (order < fail_page_alloc.min_order)
3441 return false;
3442 if (gfp_mask & __GFP_NOFAIL)
3443 return false;
3444 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3445 return false;
3446 if (fail_page_alloc.ignore_gfp_reclaim &&
3447 (gfp_mask & __GFP_DIRECT_RECLAIM))
3448 return false;
3449
3450 return should_fail(&fail_page_alloc.attr, 1 << order);
3451 }
3452
3453 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3454
3455 static int __init fail_page_alloc_debugfs(void)
3456 {
3457 umode_t mode = S_IFREG | 0600;
3458 struct dentry *dir;
3459
3460 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3461 &fail_page_alloc.attr);
3462
3463 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3464 &fail_page_alloc.ignore_gfp_reclaim);
3465 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3466 &fail_page_alloc.ignore_gfp_highmem);
3467 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3468
3469 return 0;
3470 }
3471
3472 late_initcall(fail_page_alloc_debugfs);
3473
3474 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3475
3476 #else /* CONFIG_FAIL_PAGE_ALLOC */
3477
3478 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3479 {
3480 return false;
3481 }
3482
3483 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3484
3485 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3486 {
3487 return __should_fail_alloc_page(gfp_mask, order);
3488 }
3489 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3490
3491 static inline long __zone_watermark_unusable_free(struct zone *z,
3492 unsigned int order, unsigned int alloc_flags)
3493 {
3494 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3495 long unusable_free = (1 << order) - 1;
3496
3497 /*
3498 * If the caller does not have rights to ALLOC_HARDER then subtract
3499 * the high-atomic reserves. This will over-estimate the size of the
3500 * atomic reserve but it avoids a search.
3501 */
3502 if (likely(!alloc_harder))
3503 unusable_free += z->nr_reserved_highatomic;
3504
3505 #ifdef CONFIG_CMA
3506 /* If allocation can't use CMA areas don't use free CMA pages */
3507 if (!(alloc_flags & ALLOC_CMA))
3508 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3509 #endif
3510
3511 return unusable_free;
3512 }
3513
3514 /*
3515 * Return true if free base pages are above 'mark'. For high-order checks it
3516 * will return true of the order-0 watermark is reached and there is at least
3517 * one free page of a suitable size. Checking now avoids taking the zone lock
3518 * to check in the allocation paths if no pages are free.
3519 */
3520 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3521 int highest_zoneidx, unsigned int alloc_flags,
3522 long free_pages)
3523 {
3524 long min = mark;
3525 int o;
3526 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3527
3528 /* free_pages may go negative - that's OK */
3529 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3530
3531 if (alloc_flags & ALLOC_HIGH)
3532 min -= min / 2;
3533
3534 if (unlikely(alloc_harder)) {
3535 /*
3536 * OOM victims can try even harder than normal ALLOC_HARDER
3537 * users on the grounds that it's definitely going to be in
3538 * the exit path shortly and free memory. Any allocation it
3539 * makes during the free path will be small and short-lived.
3540 */
3541 if (alloc_flags & ALLOC_OOM)
3542 min -= min / 2;
3543 else
3544 min -= min / 4;
3545 }
3546
3547 /*
3548 * Check watermarks for an order-0 allocation request. If these
3549 * are not met, then a high-order request also cannot go ahead
3550 * even if a suitable page happened to be free.
3551 */
3552 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3553 return false;
3554
3555 /* If this is an order-0 request then the watermark is fine */
3556 if (!order)
3557 return true;
3558
3559 /* For a high-order request, check at least one suitable page is free */
3560 for (o = order; o < MAX_ORDER; o++) {
3561 struct free_area *area = &z->free_area[o];
3562 int mt;
3563
3564 if (!area->nr_free)
3565 continue;
3566
3567 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3568 if (!free_area_empty(area, mt))
3569 return true;
3570 }
3571
3572 #ifdef CONFIG_CMA
3573 if ((alloc_flags & ALLOC_CMA) &&
3574 !free_area_empty(area, MIGRATE_CMA)) {
3575 return true;
3576 }
3577 #endif
3578 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3579 return true;
3580 }
3581 return false;
3582 }
3583
3584 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3585 int highest_zoneidx, unsigned int alloc_flags)
3586 {
3587 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3588 zone_page_state(z, NR_FREE_PAGES));
3589 }
3590
3591 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3592 unsigned long mark, int highest_zoneidx,
3593 unsigned int alloc_flags, gfp_t gfp_mask)
3594 {
3595 long free_pages;
3596
3597 free_pages = zone_page_state(z, NR_FREE_PAGES);
3598
3599 /*
3600 * Fast check for order-0 only. If this fails then the reserves
3601 * need to be calculated.
3602 */
3603 if (!order) {
3604 long fast_free;
3605
3606 fast_free = free_pages;
3607 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3608 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3609 return true;
3610 }
3611
3612 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3613 free_pages))
3614 return true;
3615 /*
3616 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3617 * when checking the min watermark. The min watermark is the
3618 * point where boosting is ignored so that kswapd is woken up
3619 * when below the low watermark.
3620 */
3621 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3622 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3623 mark = z->_watermark[WMARK_MIN];
3624 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3625 alloc_flags, free_pages);
3626 }
3627
3628 return false;
3629 }
3630
3631 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3632 unsigned long mark, int highest_zoneidx)
3633 {
3634 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3635
3636 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3637 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3638
3639 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3640 free_pages);
3641 }
3642
3643 #ifdef CONFIG_NUMA
3644 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3645 {
3646 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3647 node_reclaim_distance;
3648 }
3649 #else /* CONFIG_NUMA */
3650 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3651 {
3652 return true;
3653 }
3654 #endif /* CONFIG_NUMA */
3655
3656 /*
3657 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3658 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3659 * premature use of a lower zone may cause lowmem pressure problems that
3660 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3661 * probably too small. It only makes sense to spread allocations to avoid
3662 * fragmentation between the Normal and DMA32 zones.
3663 */
3664 static inline unsigned int
3665 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3666 {
3667 unsigned int alloc_flags;
3668
3669 /*
3670 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3671 * to save a branch.
3672 */
3673 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3674
3675 #ifdef CONFIG_ZONE_DMA32
3676 if (!zone)
3677 return alloc_flags;
3678
3679 if (zone_idx(zone) != ZONE_NORMAL)
3680 return alloc_flags;
3681
3682 /*
3683 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3684 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3685 * on UMA that if Normal is populated then so is DMA32.
3686 */
3687 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3688 if (nr_online_nodes > 1 && !populated_zone(--zone))
3689 return alloc_flags;
3690
3691 alloc_flags |= ALLOC_NOFRAGMENT;
3692 #endif /* CONFIG_ZONE_DMA32 */
3693 return alloc_flags;
3694 }
3695
3696 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3697 unsigned int alloc_flags)
3698 {
3699 #ifdef CONFIG_CMA
3700 unsigned int pflags = current->flags;
3701
3702 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3703 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3704 alloc_flags |= ALLOC_CMA;
3705
3706 #endif
3707 return alloc_flags;
3708 }
3709
3710 /*
3711 * get_page_from_freelist goes through the zonelist trying to allocate
3712 * a page.
3713 */
3714 static struct page *
3715 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3716 const struct alloc_context *ac)
3717 {
3718 struct zoneref *z;
3719 struct zone *zone;
3720 struct pglist_data *last_pgdat_dirty_limit = NULL;
3721 bool no_fallback;
3722
3723 retry:
3724 /*
3725 * Scan zonelist, looking for a zone with enough free.
3726 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3727 */
3728 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3729 z = ac->preferred_zoneref;
3730 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3731 ac->highest_zoneidx, ac->nodemask) {
3732 struct page *page;
3733 unsigned long mark;
3734
3735 if (cpusets_enabled() &&
3736 (alloc_flags & ALLOC_CPUSET) &&
3737 !__cpuset_zone_allowed(zone, gfp_mask))
3738 continue;
3739 /*
3740 * When allocating a page cache page for writing, we
3741 * want to get it from a node that is within its dirty
3742 * limit, such that no single node holds more than its
3743 * proportional share of globally allowed dirty pages.
3744 * The dirty limits take into account the node's
3745 * lowmem reserves and high watermark so that kswapd
3746 * should be able to balance it without having to
3747 * write pages from its LRU list.
3748 *
3749 * XXX: For now, allow allocations to potentially
3750 * exceed the per-node dirty limit in the slowpath
3751 * (spread_dirty_pages unset) before going into reclaim,
3752 * which is important when on a NUMA setup the allowed
3753 * nodes are together not big enough to reach the
3754 * global limit. The proper fix for these situations
3755 * will require awareness of nodes in the
3756 * dirty-throttling and the flusher threads.
3757 */
3758 if (ac->spread_dirty_pages) {
3759 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3760 continue;
3761
3762 if (!node_dirty_ok(zone->zone_pgdat)) {
3763 last_pgdat_dirty_limit = zone->zone_pgdat;
3764 continue;
3765 }
3766 }
3767
3768 if (no_fallback && nr_online_nodes > 1 &&
3769 zone != ac->preferred_zoneref->zone) {
3770 int local_nid;
3771
3772 /*
3773 * If moving to a remote node, retry but allow
3774 * fragmenting fallbacks. Locality is more important
3775 * than fragmentation avoidance.
3776 */
3777 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3778 if (zone_to_nid(zone) != local_nid) {
3779 alloc_flags &= ~ALLOC_NOFRAGMENT;
3780 goto retry;
3781 }
3782 }
3783
3784 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3785 if (!zone_watermark_fast(zone, order, mark,
3786 ac->highest_zoneidx, alloc_flags,
3787 gfp_mask)) {
3788 int ret;
3789
3790 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3791 /*
3792 * Watermark failed for this zone, but see if we can
3793 * grow this zone if it contains deferred pages.
3794 */
3795 if (static_branch_unlikely(&deferred_pages)) {
3796 if (_deferred_grow_zone(zone, order))
3797 goto try_this_zone;
3798 }
3799 #endif
3800 /* Checked here to keep the fast path fast */
3801 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3802 if (alloc_flags & ALLOC_NO_WATERMARKS)
3803 goto try_this_zone;
3804
3805 if (node_reclaim_mode == 0 ||
3806 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3807 continue;
3808
3809 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3810 switch (ret) {
3811 case NODE_RECLAIM_NOSCAN:
3812 /* did not scan */
3813 continue;
3814 case NODE_RECLAIM_FULL:
3815 /* scanned but unreclaimable */
3816 continue;
3817 default:
3818 /* did we reclaim enough */
3819 if (zone_watermark_ok(zone, order, mark,
3820 ac->highest_zoneidx, alloc_flags))
3821 goto try_this_zone;
3822
3823 continue;
3824 }
3825 }
3826
3827 try_this_zone:
3828 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3829 gfp_mask, alloc_flags, ac->migratetype);
3830 if (page) {
3831 prep_new_page(page, order, gfp_mask, alloc_flags);
3832
3833 /*
3834 * If this is a high-order atomic allocation then check
3835 * if the pageblock should be reserved for the future
3836 */
3837 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3838 reserve_highatomic_pageblock(page, zone, order);
3839
3840 return page;
3841 } else {
3842 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3843 /* Try again if zone has deferred pages */
3844 if (static_branch_unlikely(&deferred_pages)) {
3845 if (_deferred_grow_zone(zone, order))
3846 goto try_this_zone;
3847 }
3848 #endif
3849 }
3850 }
3851
3852 /*
3853 * It's possible on a UMA machine to get through all zones that are
3854 * fragmented. If avoiding fragmentation, reset and try again.
3855 */
3856 if (no_fallback) {
3857 alloc_flags &= ~ALLOC_NOFRAGMENT;
3858 goto retry;
3859 }
3860
3861 return NULL;
3862 }
3863
3864 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3865 {
3866 unsigned int filter = SHOW_MEM_FILTER_NODES;
3867
3868 /*
3869 * This documents exceptions given to allocations in certain
3870 * contexts that are allowed to allocate outside current's set
3871 * of allowed nodes.
3872 */
3873 if (!(gfp_mask & __GFP_NOMEMALLOC))
3874 if (tsk_is_oom_victim(current) ||
3875 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3876 filter &= ~SHOW_MEM_FILTER_NODES;
3877 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3878 filter &= ~SHOW_MEM_FILTER_NODES;
3879
3880 show_mem(filter, nodemask);
3881 }
3882
3883 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3884 {
3885 struct va_format vaf;
3886 va_list args;
3887 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3888
3889 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3890 return;
3891
3892 va_start(args, fmt);
3893 vaf.fmt = fmt;
3894 vaf.va = &args;
3895 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3896 current->comm, &vaf, gfp_mask, &gfp_mask,
3897 nodemask_pr_args(nodemask));
3898 va_end(args);
3899
3900 cpuset_print_current_mems_allowed();
3901 pr_cont("\n");
3902 dump_stack();
3903 warn_alloc_show_mem(gfp_mask, nodemask);
3904 }
3905
3906 static inline struct page *
3907 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3908 unsigned int alloc_flags,
3909 const struct alloc_context *ac)
3910 {
3911 struct page *page;
3912
3913 page = get_page_from_freelist(gfp_mask, order,
3914 alloc_flags|ALLOC_CPUSET, ac);
3915 /*
3916 * fallback to ignore cpuset restriction if our nodes
3917 * are depleted
3918 */
3919 if (!page)
3920 page = get_page_from_freelist(gfp_mask, order,
3921 alloc_flags, ac);
3922
3923 return page;
3924 }
3925
3926 static inline struct page *
3927 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3928 const struct alloc_context *ac, unsigned long *did_some_progress)
3929 {
3930 struct oom_control oc = {
3931 .zonelist = ac->zonelist,
3932 .nodemask = ac->nodemask,
3933 .memcg = NULL,
3934 .gfp_mask = gfp_mask,
3935 .order = order,
3936 };
3937 struct page *page;
3938
3939 *did_some_progress = 0;
3940
3941 /*
3942 * Acquire the oom lock. If that fails, somebody else is
3943 * making progress for us.
3944 */
3945 if (!mutex_trylock(&oom_lock)) {
3946 *did_some_progress = 1;
3947 schedule_timeout_uninterruptible(1);
3948 return NULL;
3949 }
3950
3951 /*
3952 * Go through the zonelist yet one more time, keep very high watermark
3953 * here, this is only to catch a parallel oom killing, we must fail if
3954 * we're still under heavy pressure. But make sure that this reclaim
3955 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3956 * allocation which will never fail due to oom_lock already held.
3957 */
3958 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3959 ~__GFP_DIRECT_RECLAIM, order,
3960 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3961 if (page)
3962 goto out;
3963
3964 /* Coredumps can quickly deplete all memory reserves */
3965 if (current->flags & PF_DUMPCORE)
3966 goto out;
3967 /* The OOM killer will not help higher order allocs */
3968 if (order > PAGE_ALLOC_COSTLY_ORDER)
3969 goto out;
3970 /*
3971 * We have already exhausted all our reclaim opportunities without any
3972 * success so it is time to admit defeat. We will skip the OOM killer
3973 * because it is very likely that the caller has a more reasonable
3974 * fallback than shooting a random task.
3975 */
3976 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3977 goto out;
3978 /* The OOM killer does not needlessly kill tasks for lowmem */
3979 if (ac->highest_zoneidx < ZONE_NORMAL)
3980 goto out;
3981 if (pm_suspended_storage())
3982 goto out;
3983 /*
3984 * XXX: GFP_NOFS allocations should rather fail than rely on
3985 * other request to make a forward progress.
3986 * We are in an unfortunate situation where out_of_memory cannot
3987 * do much for this context but let's try it to at least get
3988 * access to memory reserved if the current task is killed (see
3989 * out_of_memory). Once filesystems are ready to handle allocation
3990 * failures more gracefully we should just bail out here.
3991 */
3992
3993 /* The OOM killer may not free memory on a specific node */
3994 if (gfp_mask & __GFP_THISNODE)
3995 goto out;
3996
3997 /* Exhausted what can be done so it's blame time */
3998 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3999 *did_some_progress = 1;
4000
4001 /*
4002 * Help non-failing allocations by giving them access to memory
4003 * reserves
4004 */
4005 if (gfp_mask & __GFP_NOFAIL)
4006 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4007 ALLOC_NO_WATERMARKS, ac);
4008 }
4009 out:
4010 mutex_unlock(&oom_lock);
4011 return page;
4012 }
4013
4014 /*
4015 * Maximum number of compaction retries wit a progress before OOM
4016 * killer is consider as the only way to move forward.
4017 */
4018 #define MAX_COMPACT_RETRIES 16
4019
4020 #ifdef CONFIG_COMPACTION
4021 /* Try memory compaction for high-order allocations before reclaim */
4022 static struct page *
4023 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4024 unsigned int alloc_flags, const struct alloc_context *ac,
4025 enum compact_priority prio, enum compact_result *compact_result)
4026 {
4027 struct page *page = NULL;
4028 unsigned long pflags;
4029 unsigned int noreclaim_flag;
4030
4031 if (!order)
4032 return NULL;
4033
4034 psi_memstall_enter(&pflags);
4035 noreclaim_flag = memalloc_noreclaim_save();
4036
4037 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4038 prio, &page);
4039
4040 memalloc_noreclaim_restore(noreclaim_flag);
4041 psi_memstall_leave(&pflags);
4042
4043 /*
4044 * At least in one zone compaction wasn't deferred or skipped, so let's
4045 * count a compaction stall
4046 */
4047 count_vm_event(COMPACTSTALL);
4048
4049 /* Prep a captured page if available */
4050 if (page)
4051 prep_new_page(page, order, gfp_mask, alloc_flags);
4052
4053 /* Try get a page from the freelist if available */
4054 if (!page)
4055 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4056
4057 if (page) {
4058 struct zone *zone = page_zone(page);
4059
4060 zone->compact_blockskip_flush = false;
4061 compaction_defer_reset(zone, order, true);
4062 count_vm_event(COMPACTSUCCESS);
4063 return page;
4064 }
4065
4066 /*
4067 * It's bad if compaction run occurs and fails. The most likely reason
4068 * is that pages exist, but not enough to satisfy watermarks.
4069 */
4070 count_vm_event(COMPACTFAIL);
4071
4072 cond_resched();
4073
4074 return NULL;
4075 }
4076
4077 static inline bool
4078 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4079 enum compact_result compact_result,
4080 enum compact_priority *compact_priority,
4081 int *compaction_retries)
4082 {
4083 int max_retries = MAX_COMPACT_RETRIES;
4084 int min_priority;
4085 bool ret = false;
4086 int retries = *compaction_retries;
4087 enum compact_priority priority = *compact_priority;
4088
4089 if (!order)
4090 return false;
4091
4092 if (compaction_made_progress(compact_result))
4093 (*compaction_retries)++;
4094
4095 /*
4096 * compaction considers all the zone as desperately out of memory
4097 * so it doesn't really make much sense to retry except when the
4098 * failure could be caused by insufficient priority
4099 */
4100 if (compaction_failed(compact_result))
4101 goto check_priority;
4102
4103 /*
4104 * compaction was skipped because there are not enough order-0 pages
4105 * to work with, so we retry only if it looks like reclaim can help.
4106 */
4107 if (compaction_needs_reclaim(compact_result)) {
4108 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4109 goto out;
4110 }
4111
4112 /*
4113 * make sure the compaction wasn't deferred or didn't bail out early
4114 * due to locks contention before we declare that we should give up.
4115 * But the next retry should use a higher priority if allowed, so
4116 * we don't just keep bailing out endlessly.
4117 */
4118 if (compaction_withdrawn(compact_result)) {
4119 goto check_priority;
4120 }
4121
4122 /*
4123 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4124 * costly ones because they are de facto nofail and invoke OOM
4125 * killer to move on while costly can fail and users are ready
4126 * to cope with that. 1/4 retries is rather arbitrary but we
4127 * would need much more detailed feedback from compaction to
4128 * make a better decision.
4129 */
4130 if (order > PAGE_ALLOC_COSTLY_ORDER)
4131 max_retries /= 4;
4132 if (*compaction_retries <= max_retries) {
4133 ret = true;
4134 goto out;
4135 }
4136
4137 /*
4138 * Make sure there are attempts at the highest priority if we exhausted
4139 * all retries or failed at the lower priorities.
4140 */
4141 check_priority:
4142 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4143 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4144
4145 if (*compact_priority > min_priority) {
4146 (*compact_priority)--;
4147 *compaction_retries = 0;
4148 ret = true;
4149 }
4150 out:
4151 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4152 return ret;
4153 }
4154 #else
4155 static inline struct page *
4156 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4157 unsigned int alloc_flags, const struct alloc_context *ac,
4158 enum compact_priority prio, enum compact_result *compact_result)
4159 {
4160 *compact_result = COMPACT_SKIPPED;
4161 return NULL;
4162 }
4163
4164 static inline bool
4165 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4166 enum compact_result compact_result,
4167 enum compact_priority *compact_priority,
4168 int *compaction_retries)
4169 {
4170 struct zone *zone;
4171 struct zoneref *z;
4172
4173 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4174 return false;
4175
4176 /*
4177 * There are setups with compaction disabled which would prefer to loop
4178 * inside the allocator rather than hit the oom killer prematurely.
4179 * Let's give them a good hope and keep retrying while the order-0
4180 * watermarks are OK.
4181 */
4182 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4183 ac->highest_zoneidx, ac->nodemask) {
4184 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4185 ac->highest_zoneidx, alloc_flags))
4186 return true;
4187 }
4188 return false;
4189 }
4190 #endif /* CONFIG_COMPACTION */
4191
4192 #ifdef CONFIG_LOCKDEP
4193 static struct lockdep_map __fs_reclaim_map =
4194 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4195
4196 static bool __need_fs_reclaim(gfp_t gfp_mask)
4197 {
4198 gfp_mask = current_gfp_context(gfp_mask);
4199
4200 /* no reclaim without waiting on it */
4201 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4202 return false;
4203
4204 /* this guy won't enter reclaim */
4205 if (current->flags & PF_MEMALLOC)
4206 return false;
4207
4208 /* We're only interested __GFP_FS allocations for now */
4209 if (!(gfp_mask & __GFP_FS))
4210 return false;
4211
4212 if (gfp_mask & __GFP_NOLOCKDEP)
4213 return false;
4214
4215 return true;
4216 }
4217
4218 void __fs_reclaim_acquire(void)
4219 {
4220 lock_map_acquire(&__fs_reclaim_map);
4221 }
4222
4223 void __fs_reclaim_release(void)
4224 {
4225 lock_map_release(&__fs_reclaim_map);
4226 }
4227
4228 void fs_reclaim_acquire(gfp_t gfp_mask)
4229 {
4230 if (__need_fs_reclaim(gfp_mask))
4231 __fs_reclaim_acquire();
4232 }
4233 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4234
4235 void fs_reclaim_release(gfp_t gfp_mask)
4236 {
4237 if (__need_fs_reclaim(gfp_mask))
4238 __fs_reclaim_release();
4239 }
4240 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4241 #endif
4242
4243 /* Perform direct synchronous page reclaim */
4244 static int
4245 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4246 const struct alloc_context *ac)
4247 {
4248 int progress;
4249 unsigned int noreclaim_flag;
4250 unsigned long pflags;
4251
4252 cond_resched();
4253
4254 /* We now go into synchronous reclaim */
4255 cpuset_memory_pressure_bump();
4256 psi_memstall_enter(&pflags);
4257 fs_reclaim_acquire(gfp_mask);
4258 noreclaim_flag = memalloc_noreclaim_save();
4259
4260 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4261 ac->nodemask);
4262
4263 memalloc_noreclaim_restore(noreclaim_flag);
4264 fs_reclaim_release(gfp_mask);
4265 psi_memstall_leave(&pflags);
4266
4267 cond_resched();
4268
4269 return progress;
4270 }
4271
4272 /* The really slow allocator path where we enter direct reclaim */
4273 static inline struct page *
4274 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4275 unsigned int alloc_flags, const struct alloc_context *ac,
4276 unsigned long *did_some_progress)
4277 {
4278 struct page *page = NULL;
4279 bool drained = false;
4280
4281 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4282 if (unlikely(!(*did_some_progress)))
4283 return NULL;
4284
4285 retry:
4286 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4287
4288 /*
4289 * If an allocation failed after direct reclaim, it could be because
4290 * pages are pinned on the per-cpu lists or in high alloc reserves.
4291 * Shrink them and try again
4292 */
4293 if (!page && !drained) {
4294 unreserve_highatomic_pageblock(ac, false);
4295 drain_all_pages(NULL);
4296 drained = true;
4297 goto retry;
4298 }
4299
4300 return page;
4301 }
4302
4303 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4304 const struct alloc_context *ac)
4305 {
4306 struct zoneref *z;
4307 struct zone *zone;
4308 pg_data_t *last_pgdat = NULL;
4309 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4310
4311 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4312 ac->nodemask) {
4313 if (last_pgdat != zone->zone_pgdat)
4314 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4315 last_pgdat = zone->zone_pgdat;
4316 }
4317 }
4318
4319 static inline unsigned int
4320 gfp_to_alloc_flags(gfp_t gfp_mask)
4321 {
4322 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4323
4324 /*
4325 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4326 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4327 * to save two branches.
4328 */
4329 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4330 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4331
4332 /*
4333 * The caller may dip into page reserves a bit more if the caller
4334 * cannot run direct reclaim, or if the caller has realtime scheduling
4335 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4336 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4337 */
4338 alloc_flags |= (__force int)
4339 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4340
4341 if (gfp_mask & __GFP_ATOMIC) {
4342 /*
4343 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4344 * if it can't schedule.
4345 */
4346 if (!(gfp_mask & __GFP_NOMEMALLOC))
4347 alloc_flags |= ALLOC_HARDER;
4348 /*
4349 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4350 * comment for __cpuset_node_allowed().
4351 */
4352 alloc_flags &= ~ALLOC_CPUSET;
4353 } else if (unlikely(rt_task(current)) && !in_interrupt())
4354 alloc_flags |= ALLOC_HARDER;
4355
4356 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4357
4358 return alloc_flags;
4359 }
4360
4361 static bool oom_reserves_allowed(struct task_struct *tsk)
4362 {
4363 if (!tsk_is_oom_victim(tsk))
4364 return false;
4365
4366 /*
4367 * !MMU doesn't have oom reaper so give access to memory reserves
4368 * only to the thread with TIF_MEMDIE set
4369 */
4370 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4371 return false;
4372
4373 return true;
4374 }
4375
4376 /*
4377 * Distinguish requests which really need access to full memory
4378 * reserves from oom victims which can live with a portion of it
4379 */
4380 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4381 {
4382 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4383 return 0;
4384 if (gfp_mask & __GFP_MEMALLOC)
4385 return ALLOC_NO_WATERMARKS;
4386 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4387 return ALLOC_NO_WATERMARKS;
4388 if (!in_interrupt()) {
4389 if (current->flags & PF_MEMALLOC)
4390 return ALLOC_NO_WATERMARKS;
4391 else if (oom_reserves_allowed(current))
4392 return ALLOC_OOM;
4393 }
4394
4395 return 0;
4396 }
4397
4398 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4399 {
4400 return !!__gfp_pfmemalloc_flags(gfp_mask);
4401 }
4402
4403 /*
4404 * Checks whether it makes sense to retry the reclaim to make a forward progress
4405 * for the given allocation request.
4406 *
4407 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4408 * without success, or when we couldn't even meet the watermark if we
4409 * reclaimed all remaining pages on the LRU lists.
4410 *
4411 * Returns true if a retry is viable or false to enter the oom path.
4412 */
4413 static inline bool
4414 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4415 struct alloc_context *ac, int alloc_flags,
4416 bool did_some_progress, int *no_progress_loops)
4417 {
4418 struct zone *zone;
4419 struct zoneref *z;
4420 bool ret = false;
4421
4422 /*
4423 * Costly allocations might have made a progress but this doesn't mean
4424 * their order will become available due to high fragmentation so
4425 * always increment the no progress counter for them
4426 */
4427 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4428 *no_progress_loops = 0;
4429 else
4430 (*no_progress_loops)++;
4431
4432 /*
4433 * Make sure we converge to OOM if we cannot make any progress
4434 * several times in the row.
4435 */
4436 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4437 /* Before OOM, exhaust highatomic_reserve */
4438 return unreserve_highatomic_pageblock(ac, true);
4439 }
4440
4441 /*
4442 * Keep reclaiming pages while there is a chance this will lead
4443 * somewhere. If none of the target zones can satisfy our allocation
4444 * request even if all reclaimable pages are considered then we are
4445 * screwed and have to go OOM.
4446 */
4447 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4448 ac->highest_zoneidx, ac->nodemask) {
4449 unsigned long available;
4450 unsigned long reclaimable;
4451 unsigned long min_wmark = min_wmark_pages(zone);
4452 bool wmark;
4453
4454 available = reclaimable = zone_reclaimable_pages(zone);
4455 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4456
4457 /*
4458 * Would the allocation succeed if we reclaimed all
4459 * reclaimable pages?
4460 */
4461 wmark = __zone_watermark_ok(zone, order, min_wmark,
4462 ac->highest_zoneidx, alloc_flags, available);
4463 trace_reclaim_retry_zone(z, order, reclaimable,
4464 available, min_wmark, *no_progress_loops, wmark);
4465 if (wmark) {
4466 /*
4467 * If we didn't make any progress and have a lot of
4468 * dirty + writeback pages then we should wait for
4469 * an IO to complete to slow down the reclaim and
4470 * prevent from pre mature OOM
4471 */
4472 if (!did_some_progress) {
4473 unsigned long write_pending;
4474
4475 write_pending = zone_page_state_snapshot(zone,
4476 NR_ZONE_WRITE_PENDING);
4477
4478 if (2 * write_pending > reclaimable) {
4479 congestion_wait(BLK_RW_ASYNC, HZ/10);
4480 return true;
4481 }
4482 }
4483
4484 ret = true;
4485 goto out;
4486 }
4487 }
4488
4489 out:
4490 /*
4491 * Memory allocation/reclaim might be called from a WQ context and the
4492 * current implementation of the WQ concurrency control doesn't
4493 * recognize that a particular WQ is congested if the worker thread is
4494 * looping without ever sleeping. Therefore we have to do a short sleep
4495 * here rather than calling cond_resched().
4496 */
4497 if (current->flags & PF_WQ_WORKER)
4498 schedule_timeout_uninterruptible(1);
4499 else
4500 cond_resched();
4501 return ret;
4502 }
4503
4504 static inline bool
4505 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4506 {
4507 /*
4508 * It's possible that cpuset's mems_allowed and the nodemask from
4509 * mempolicy don't intersect. This should be normally dealt with by
4510 * policy_nodemask(), but it's possible to race with cpuset update in
4511 * such a way the check therein was true, and then it became false
4512 * before we got our cpuset_mems_cookie here.
4513 * This assumes that for all allocations, ac->nodemask can come only
4514 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4515 * when it does not intersect with the cpuset restrictions) or the
4516 * caller can deal with a violated nodemask.
4517 */
4518 if (cpusets_enabled() && ac->nodemask &&
4519 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4520 ac->nodemask = NULL;
4521 return true;
4522 }
4523
4524 /*
4525 * When updating a task's mems_allowed or mempolicy nodemask, it is
4526 * possible to race with parallel threads in such a way that our
4527 * allocation can fail while the mask is being updated. If we are about
4528 * to fail, check if the cpuset changed during allocation and if so,
4529 * retry.
4530 */
4531 if (read_mems_allowed_retry(cpuset_mems_cookie))
4532 return true;
4533
4534 return false;
4535 }
4536
4537 static inline struct page *
4538 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4539 struct alloc_context *ac)
4540 {
4541 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4542 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4543 struct page *page = NULL;
4544 unsigned int alloc_flags;
4545 unsigned long did_some_progress;
4546 enum compact_priority compact_priority;
4547 enum compact_result compact_result;
4548 int compaction_retries;
4549 int no_progress_loops;
4550 unsigned int cpuset_mems_cookie;
4551 int reserve_flags;
4552
4553 /*
4554 * We also sanity check to catch abuse of atomic reserves being used by
4555 * callers that are not in atomic context.
4556 */
4557 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4558 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4559 gfp_mask &= ~__GFP_ATOMIC;
4560
4561 retry_cpuset:
4562 compaction_retries = 0;
4563 no_progress_loops = 0;
4564 compact_priority = DEF_COMPACT_PRIORITY;
4565 cpuset_mems_cookie = read_mems_allowed_begin();
4566
4567 /*
4568 * The fast path uses conservative alloc_flags to succeed only until
4569 * kswapd needs to be woken up, and to avoid the cost of setting up
4570 * alloc_flags precisely. So we do that now.
4571 */
4572 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4573
4574 /*
4575 * We need to recalculate the starting point for the zonelist iterator
4576 * because we might have used different nodemask in the fast path, or
4577 * there was a cpuset modification and we are retrying - otherwise we
4578 * could end up iterating over non-eligible zones endlessly.
4579 */
4580 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4581 ac->highest_zoneidx, ac->nodemask);
4582 if (!ac->preferred_zoneref->zone)
4583 goto nopage;
4584
4585 if (alloc_flags & ALLOC_KSWAPD)
4586 wake_all_kswapds(order, gfp_mask, ac);
4587
4588 /*
4589 * The adjusted alloc_flags might result in immediate success, so try
4590 * that first
4591 */
4592 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4593 if (page)
4594 goto got_pg;
4595
4596 /*
4597 * For costly allocations, try direct compaction first, as it's likely
4598 * that we have enough base pages and don't need to reclaim. For non-
4599 * movable high-order allocations, do that as well, as compaction will
4600 * try prevent permanent fragmentation by migrating from blocks of the
4601 * same migratetype.
4602 * Don't try this for allocations that are allowed to ignore
4603 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4604 */
4605 if (can_direct_reclaim &&
4606 (costly_order ||
4607 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4608 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4609 page = __alloc_pages_direct_compact(gfp_mask, order,
4610 alloc_flags, ac,
4611 INIT_COMPACT_PRIORITY,
4612 &compact_result);
4613 if (page)
4614 goto got_pg;
4615
4616 /*
4617 * Checks for costly allocations with __GFP_NORETRY, which
4618 * includes some THP page fault allocations
4619 */
4620 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4621 /*
4622 * If allocating entire pageblock(s) and compaction
4623 * failed because all zones are below low watermarks
4624 * or is prohibited because it recently failed at this
4625 * order, fail immediately unless the allocator has
4626 * requested compaction and reclaim retry.
4627 *
4628 * Reclaim is
4629 * - potentially very expensive because zones are far
4630 * below their low watermarks or this is part of very
4631 * bursty high order allocations,
4632 * - not guaranteed to help because isolate_freepages()
4633 * may not iterate over freed pages as part of its
4634 * linear scan, and
4635 * - unlikely to make entire pageblocks free on its
4636 * own.
4637 */
4638 if (compact_result == COMPACT_SKIPPED ||
4639 compact_result == COMPACT_DEFERRED)
4640 goto nopage;
4641
4642 /*
4643 * Looks like reclaim/compaction is worth trying, but
4644 * sync compaction could be very expensive, so keep
4645 * using async compaction.
4646 */
4647 compact_priority = INIT_COMPACT_PRIORITY;
4648 }
4649 }
4650
4651 retry:
4652 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4653 if (alloc_flags & ALLOC_KSWAPD)
4654 wake_all_kswapds(order, gfp_mask, ac);
4655
4656 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4657 if (reserve_flags)
4658 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4659
4660 /*
4661 * Reset the nodemask and zonelist iterators if memory policies can be
4662 * ignored. These allocations are high priority and system rather than
4663 * user oriented.
4664 */
4665 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4666 ac->nodemask = NULL;
4667 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4668 ac->highest_zoneidx, ac->nodemask);
4669 }
4670
4671 /* Attempt with potentially adjusted zonelist and alloc_flags */
4672 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4673 if (page)
4674 goto got_pg;
4675
4676 /* Caller is not willing to reclaim, we can't balance anything */
4677 if (!can_direct_reclaim)
4678 goto nopage;
4679
4680 /* Avoid recursion of direct reclaim */
4681 if (current->flags & PF_MEMALLOC)
4682 goto nopage;
4683
4684 /* Try direct reclaim and then allocating */
4685 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4686 &did_some_progress);
4687 if (page)
4688 goto got_pg;
4689
4690 /* Try direct compaction and then allocating */
4691 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4692 compact_priority, &compact_result);
4693 if (page)
4694 goto got_pg;
4695
4696 /* Do not loop if specifically requested */
4697 if (gfp_mask & __GFP_NORETRY)
4698 goto nopage;
4699
4700 /*
4701 * Do not retry costly high order allocations unless they are
4702 * __GFP_RETRY_MAYFAIL
4703 */
4704 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4705 goto nopage;
4706
4707 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4708 did_some_progress > 0, &no_progress_loops))
4709 goto retry;
4710
4711 /*
4712 * It doesn't make any sense to retry for the compaction if the order-0
4713 * reclaim is not able to make any progress because the current
4714 * implementation of the compaction depends on the sufficient amount
4715 * of free memory (see __compaction_suitable)
4716 */
4717 if (did_some_progress > 0 &&
4718 should_compact_retry(ac, order, alloc_flags,
4719 compact_result, &compact_priority,
4720 &compaction_retries))
4721 goto retry;
4722
4723
4724 /* Deal with possible cpuset update races before we start OOM killing */
4725 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4726 goto retry_cpuset;
4727
4728 /* Reclaim has failed us, start killing things */
4729 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4730 if (page)
4731 goto got_pg;
4732
4733 /* Avoid allocations with no watermarks from looping endlessly */
4734 if (tsk_is_oom_victim(current) &&
4735 (alloc_flags & ALLOC_OOM ||
4736 (gfp_mask & __GFP_NOMEMALLOC)))
4737 goto nopage;
4738
4739 /* Retry as long as the OOM killer is making progress */
4740 if (did_some_progress) {
4741 no_progress_loops = 0;
4742 goto retry;
4743 }
4744
4745 nopage:
4746 /* Deal with possible cpuset update races before we fail */
4747 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4748 goto retry_cpuset;
4749
4750 /*
4751 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4752 * we always retry
4753 */
4754 if (gfp_mask & __GFP_NOFAIL) {
4755 /*
4756 * All existing users of the __GFP_NOFAIL are blockable, so warn
4757 * of any new users that actually require GFP_NOWAIT
4758 */
4759 if (WARN_ON_ONCE(!can_direct_reclaim))
4760 goto fail;
4761
4762 /*
4763 * PF_MEMALLOC request from this context is rather bizarre
4764 * because we cannot reclaim anything and only can loop waiting
4765 * for somebody to do a work for us
4766 */
4767 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4768
4769 /*
4770 * non failing costly orders are a hard requirement which we
4771 * are not prepared for much so let's warn about these users
4772 * so that we can identify them and convert them to something
4773 * else.
4774 */
4775 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4776
4777 /*
4778 * Help non-failing allocations by giving them access to memory
4779 * reserves but do not use ALLOC_NO_WATERMARKS because this
4780 * could deplete whole memory reserves which would just make
4781 * the situation worse
4782 */
4783 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4784 if (page)
4785 goto got_pg;
4786
4787 cond_resched();
4788 goto retry;
4789 }
4790 fail:
4791 warn_alloc(gfp_mask, ac->nodemask,
4792 "page allocation failure: order:%u", order);
4793 got_pg:
4794 return page;
4795 }
4796
4797 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4798 int preferred_nid, nodemask_t *nodemask,
4799 struct alloc_context *ac, gfp_t *alloc_mask,
4800 unsigned int *alloc_flags)
4801 {
4802 ac->highest_zoneidx = gfp_zone(gfp_mask);
4803 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4804 ac->nodemask = nodemask;
4805 ac->migratetype = gfp_migratetype(gfp_mask);
4806
4807 if (cpusets_enabled()) {
4808 *alloc_mask |= __GFP_HARDWALL;
4809 /*
4810 * When we are in the interrupt context, it is irrelevant
4811 * to the current task context. It means that any node ok.
4812 */
4813 if (!in_interrupt() && !ac->nodemask)
4814 ac->nodemask = &cpuset_current_mems_allowed;
4815 else
4816 *alloc_flags |= ALLOC_CPUSET;
4817 }
4818
4819 fs_reclaim_acquire(gfp_mask);
4820 fs_reclaim_release(gfp_mask);
4821
4822 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4823
4824 if (should_fail_alloc_page(gfp_mask, order))
4825 return false;
4826
4827 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4828
4829 return true;
4830 }
4831
4832 /* Determine whether to spread dirty pages and what the first usable zone */
4833 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4834 {
4835 /* Dirty zone balancing only done in the fast path */
4836 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4837
4838 /*
4839 * The preferred zone is used for statistics but crucially it is
4840 * also used as the starting point for the zonelist iterator. It
4841 * may get reset for allocations that ignore memory policies.
4842 */
4843 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4844 ac->highest_zoneidx, ac->nodemask);
4845 }
4846
4847 /*
4848 * This is the 'heart' of the zoned buddy allocator.
4849 */
4850 struct page *
4851 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4852 nodemask_t *nodemask)
4853 {
4854 struct page *page;
4855 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4856 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4857 struct alloc_context ac = { };
4858
4859 /*
4860 * There are several places where we assume that the order value is sane
4861 * so bail out early if the request is out of bound.
4862 */
4863 if (unlikely(order >= MAX_ORDER)) {
4864 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4865 return NULL;
4866 }
4867
4868 gfp_mask &= gfp_allowed_mask;
4869 alloc_mask = gfp_mask;
4870 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4871 return NULL;
4872
4873 finalise_ac(gfp_mask, &ac);
4874
4875 /*
4876 * Forbid the first pass from falling back to types that fragment
4877 * memory until all local zones are considered.
4878 */
4879 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4880
4881 /* First allocation attempt */
4882 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4883 if (likely(page))
4884 goto out;
4885
4886 /*
4887 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4888 * resp. GFP_NOIO which has to be inherited for all allocation requests
4889 * from a particular context which has been marked by
4890 * memalloc_no{fs,io}_{save,restore}.
4891 */
4892 alloc_mask = current_gfp_context(gfp_mask);
4893 ac.spread_dirty_pages = false;
4894
4895 /*
4896 * Restore the original nodemask if it was potentially replaced with
4897 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4898 */
4899 ac.nodemask = nodemask;
4900
4901 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4902
4903 out:
4904 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4905 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4906 __free_pages(page, order);
4907 page = NULL;
4908 }
4909
4910 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4911
4912 return page;
4913 }
4914 EXPORT_SYMBOL(__alloc_pages_nodemask);
4915
4916 /*
4917 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4918 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4919 * you need to access high mem.
4920 */
4921 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4922 {
4923 struct page *page;
4924
4925 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4926 if (!page)
4927 return 0;
4928 return (unsigned long) page_address(page);
4929 }
4930 EXPORT_SYMBOL(__get_free_pages);
4931
4932 unsigned long get_zeroed_page(gfp_t gfp_mask)
4933 {
4934 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4935 }
4936 EXPORT_SYMBOL(get_zeroed_page);
4937
4938 static inline void free_the_page(struct page *page, unsigned int order)
4939 {
4940 if (order == 0) /* Via pcp? */
4941 free_unref_page(page);
4942 else
4943 __free_pages_ok(page, order);
4944 }
4945
4946 void __free_pages(struct page *page, unsigned int order)
4947 {
4948 if (put_page_testzero(page))
4949 free_the_page(page, order);
4950 }
4951 EXPORT_SYMBOL(__free_pages);
4952
4953 void free_pages(unsigned long addr, unsigned int order)
4954 {
4955 if (addr != 0) {
4956 VM_BUG_ON(!virt_addr_valid((void *)addr));
4957 __free_pages(virt_to_page((void *)addr), order);
4958 }
4959 }
4960
4961 EXPORT_SYMBOL(free_pages);
4962
4963 /*
4964 * Page Fragment:
4965 * An arbitrary-length arbitrary-offset area of memory which resides
4966 * within a 0 or higher order page. Multiple fragments within that page
4967 * are individually refcounted, in the page's reference counter.
4968 *
4969 * The page_frag functions below provide a simple allocation framework for
4970 * page fragments. This is used by the network stack and network device
4971 * drivers to provide a backing region of memory for use as either an
4972 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4973 */
4974 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4975 gfp_t gfp_mask)
4976 {
4977 struct page *page = NULL;
4978 gfp_t gfp = gfp_mask;
4979
4980 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4981 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4982 __GFP_NOMEMALLOC;
4983 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4984 PAGE_FRAG_CACHE_MAX_ORDER);
4985 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4986 #endif
4987 if (unlikely(!page))
4988 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4989
4990 nc->va = page ? page_address(page) : NULL;
4991
4992 return page;
4993 }
4994
4995 void __page_frag_cache_drain(struct page *page, unsigned int count)
4996 {
4997 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4998
4999 if (page_ref_sub_and_test(page, count))
5000 free_the_page(page, compound_order(page));
5001 }
5002 EXPORT_SYMBOL(__page_frag_cache_drain);
5003
5004 void *page_frag_alloc(struct page_frag_cache *nc,
5005 unsigned int fragsz, gfp_t gfp_mask)
5006 {
5007 unsigned int size = PAGE_SIZE;
5008 struct page *page;
5009 int offset;
5010
5011 if (unlikely(!nc->va)) {
5012 refill:
5013 page = __page_frag_cache_refill(nc, gfp_mask);
5014 if (!page)
5015 return NULL;
5016
5017 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5018 /* if size can vary use size else just use PAGE_SIZE */
5019 size = nc->size;
5020 #endif
5021 /* Even if we own the page, we do not use atomic_set().
5022 * This would break get_page_unless_zero() users.
5023 */
5024 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5025
5026 /* reset page count bias and offset to start of new frag */
5027 nc->pfmemalloc = page_is_pfmemalloc(page);
5028 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5029 nc->offset = size;
5030 }
5031
5032 offset = nc->offset - fragsz;
5033 if (unlikely(offset < 0)) {
5034 page = virt_to_page(nc->va);
5035
5036 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5037 goto refill;
5038
5039 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5040 /* if size can vary use size else just use PAGE_SIZE */
5041 size = nc->size;
5042 #endif
5043 /* OK, page count is 0, we can safely set it */
5044 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5045
5046 /* reset page count bias and offset to start of new frag */
5047 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5048 offset = size - fragsz;
5049 }
5050
5051 nc->pagecnt_bias--;
5052 nc->offset = offset;
5053
5054 return nc->va + offset;
5055 }
5056 EXPORT_SYMBOL(page_frag_alloc);
5057
5058 /*
5059 * Frees a page fragment allocated out of either a compound or order 0 page.
5060 */
5061 void page_frag_free(void *addr)
5062 {
5063 struct page *page = virt_to_head_page(addr);
5064
5065 if (unlikely(put_page_testzero(page)))
5066 free_the_page(page, compound_order(page));
5067 }
5068 EXPORT_SYMBOL(page_frag_free);
5069
5070 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5071 size_t size)
5072 {
5073 if (addr) {
5074 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5075 unsigned long used = addr + PAGE_ALIGN(size);
5076
5077 split_page(virt_to_page((void *)addr), order);
5078 while (used < alloc_end) {
5079 free_page(used);
5080 used += PAGE_SIZE;
5081 }
5082 }
5083 return (void *)addr;
5084 }
5085
5086 /**
5087 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5088 * @size: the number of bytes to allocate
5089 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5090 *
5091 * This function is similar to alloc_pages(), except that it allocates the
5092 * minimum number of pages to satisfy the request. alloc_pages() can only
5093 * allocate memory in power-of-two pages.
5094 *
5095 * This function is also limited by MAX_ORDER.
5096 *
5097 * Memory allocated by this function must be released by free_pages_exact().
5098 *
5099 * Return: pointer to the allocated area or %NULL in case of error.
5100 */
5101 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5102 {
5103 unsigned int order = get_order(size);
5104 unsigned long addr;
5105
5106 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5107 gfp_mask &= ~__GFP_COMP;
5108
5109 addr = __get_free_pages(gfp_mask, order);
5110 return make_alloc_exact(addr, order, size);
5111 }
5112 EXPORT_SYMBOL(alloc_pages_exact);
5113
5114 /**
5115 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5116 * pages on a node.
5117 * @nid: the preferred node ID where memory should be allocated
5118 * @size: the number of bytes to allocate
5119 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5120 *
5121 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5122 * back.
5123 *
5124 * Return: pointer to the allocated area or %NULL in case of error.
5125 */
5126 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5127 {
5128 unsigned int order = get_order(size);
5129 struct page *p;
5130
5131 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5132 gfp_mask &= ~__GFP_COMP;
5133
5134 p = alloc_pages_node(nid, gfp_mask, order);
5135 if (!p)
5136 return NULL;
5137 return make_alloc_exact((unsigned long)page_address(p), order, size);
5138 }
5139
5140 /**
5141 * free_pages_exact - release memory allocated via alloc_pages_exact()
5142 * @virt: the value returned by alloc_pages_exact.
5143 * @size: size of allocation, same value as passed to alloc_pages_exact().
5144 *
5145 * Release the memory allocated by a previous call to alloc_pages_exact.
5146 */
5147 void free_pages_exact(void *virt, size_t size)
5148 {
5149 unsigned long addr = (unsigned long)virt;
5150 unsigned long end = addr + PAGE_ALIGN(size);
5151
5152 while (addr < end) {
5153 free_page(addr);
5154 addr += PAGE_SIZE;
5155 }
5156 }
5157 EXPORT_SYMBOL(free_pages_exact);
5158
5159 /**
5160 * nr_free_zone_pages - count number of pages beyond high watermark
5161 * @offset: The zone index of the highest zone
5162 *
5163 * nr_free_zone_pages() counts the number of pages which are beyond the
5164 * high watermark within all zones at or below a given zone index. For each
5165 * zone, the number of pages is calculated as:
5166 *
5167 * nr_free_zone_pages = managed_pages - high_pages
5168 *
5169 * Return: number of pages beyond high watermark.
5170 */
5171 static unsigned long nr_free_zone_pages(int offset)
5172 {
5173 struct zoneref *z;
5174 struct zone *zone;
5175
5176 /* Just pick one node, since fallback list is circular */
5177 unsigned long sum = 0;
5178
5179 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5180
5181 for_each_zone_zonelist(zone, z, zonelist, offset) {
5182 unsigned long size = zone_managed_pages(zone);
5183 unsigned long high = high_wmark_pages(zone);
5184 if (size > high)
5185 sum += size - high;
5186 }
5187
5188 return sum;
5189 }
5190
5191 /**
5192 * nr_free_buffer_pages - count number of pages beyond high watermark
5193 *
5194 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5195 * watermark within ZONE_DMA and ZONE_NORMAL.
5196 *
5197 * Return: number of pages beyond high watermark within ZONE_DMA and
5198 * ZONE_NORMAL.
5199 */
5200 unsigned long nr_free_buffer_pages(void)
5201 {
5202 return nr_free_zone_pages(gfp_zone(GFP_USER));
5203 }
5204 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5205
5206 static inline void show_node(struct zone *zone)
5207 {
5208 if (IS_ENABLED(CONFIG_NUMA))
5209 printk("Node %d ", zone_to_nid(zone));
5210 }
5211
5212 long si_mem_available(void)
5213 {
5214 long available;
5215 unsigned long pagecache;
5216 unsigned long wmark_low = 0;
5217 unsigned long pages[NR_LRU_LISTS];
5218 unsigned long reclaimable;
5219 struct zone *zone;
5220 int lru;
5221
5222 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5223 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5224
5225 for_each_zone(zone)
5226 wmark_low += low_wmark_pages(zone);
5227
5228 /*
5229 * Estimate the amount of memory available for userspace allocations,
5230 * without causing swapping.
5231 */
5232 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5233
5234 /*
5235 * Not all the page cache can be freed, otherwise the system will
5236 * start swapping. Assume at least half of the page cache, or the
5237 * low watermark worth of cache, needs to stay.
5238 */
5239 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5240 pagecache -= min(pagecache / 2, wmark_low);
5241 available += pagecache;
5242
5243 /*
5244 * Part of the reclaimable slab and other kernel memory consists of
5245 * items that are in use, and cannot be freed. Cap this estimate at the
5246 * low watermark.
5247 */
5248 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5249 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5250 available += reclaimable - min(reclaimable / 2, wmark_low);
5251
5252 if (available < 0)
5253 available = 0;
5254 return available;
5255 }
5256 EXPORT_SYMBOL_GPL(si_mem_available);
5257
5258 void si_meminfo(struct sysinfo *val)
5259 {
5260 val->totalram = totalram_pages();
5261 val->sharedram = global_node_page_state(NR_SHMEM);
5262 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5263 val->bufferram = nr_blockdev_pages();
5264 val->totalhigh = totalhigh_pages();
5265 val->freehigh = nr_free_highpages();
5266 val->mem_unit = PAGE_SIZE;
5267 }
5268
5269 EXPORT_SYMBOL(si_meminfo);
5270
5271 #ifdef CONFIG_NUMA
5272 void si_meminfo_node(struct sysinfo *val, int nid)
5273 {
5274 int zone_type; /* needs to be signed */
5275 unsigned long managed_pages = 0;
5276 unsigned long managed_highpages = 0;
5277 unsigned long free_highpages = 0;
5278 pg_data_t *pgdat = NODE_DATA(nid);
5279
5280 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5281 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5282 val->totalram = managed_pages;
5283 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5284 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5285 #ifdef CONFIG_HIGHMEM
5286 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5287 struct zone *zone = &pgdat->node_zones[zone_type];
5288
5289 if (is_highmem(zone)) {
5290 managed_highpages += zone_managed_pages(zone);
5291 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5292 }
5293 }
5294 val->totalhigh = managed_highpages;
5295 val->freehigh = free_highpages;
5296 #else
5297 val->totalhigh = managed_highpages;
5298 val->freehigh = free_highpages;
5299 #endif
5300 val->mem_unit = PAGE_SIZE;
5301 }
5302 #endif
5303
5304 /*
5305 * Determine whether the node should be displayed or not, depending on whether
5306 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5307 */
5308 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5309 {
5310 if (!(flags & SHOW_MEM_FILTER_NODES))
5311 return false;
5312
5313 /*
5314 * no node mask - aka implicit memory numa policy. Do not bother with
5315 * the synchronization - read_mems_allowed_begin - because we do not
5316 * have to be precise here.
5317 */
5318 if (!nodemask)
5319 nodemask = &cpuset_current_mems_allowed;
5320
5321 return !node_isset(nid, *nodemask);
5322 }
5323
5324 #define K(x) ((x) << (PAGE_SHIFT-10))
5325
5326 static void show_migration_types(unsigned char type)
5327 {
5328 static const char types[MIGRATE_TYPES] = {
5329 [MIGRATE_UNMOVABLE] = 'U',
5330 [MIGRATE_MOVABLE] = 'M',
5331 [MIGRATE_RECLAIMABLE] = 'E',
5332 [MIGRATE_HIGHATOMIC] = 'H',
5333 #ifdef CONFIG_CMA
5334 [MIGRATE_CMA] = 'C',
5335 #endif
5336 #ifdef CONFIG_MEMORY_ISOLATION
5337 [MIGRATE_ISOLATE] = 'I',
5338 #endif
5339 };
5340 char tmp[MIGRATE_TYPES + 1];
5341 char *p = tmp;
5342 int i;
5343
5344 for (i = 0; i < MIGRATE_TYPES; i++) {
5345 if (type & (1 << i))
5346 *p++ = types[i];
5347 }
5348
5349 *p = '\0';
5350 printk(KERN_CONT "(%s) ", tmp);
5351 }
5352
5353 /*
5354 * Show free area list (used inside shift_scroll-lock stuff)
5355 * We also calculate the percentage fragmentation. We do this by counting the
5356 * memory on each free list with the exception of the first item on the list.
5357 *
5358 * Bits in @filter:
5359 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5360 * cpuset.
5361 */
5362 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5363 {
5364 unsigned long free_pcp = 0;
5365 int cpu;
5366 struct zone *zone;
5367 pg_data_t *pgdat;
5368
5369 for_each_populated_zone(zone) {
5370 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5371 continue;
5372
5373 for_each_online_cpu(cpu)
5374 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5375 }
5376
5377 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5378 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5379 " unevictable:%lu dirty:%lu writeback:%lu\n"
5380 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5381 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5382 " free:%lu free_pcp:%lu free_cma:%lu\n",
5383 global_node_page_state(NR_ACTIVE_ANON),
5384 global_node_page_state(NR_INACTIVE_ANON),
5385 global_node_page_state(NR_ISOLATED_ANON),
5386 global_node_page_state(NR_ACTIVE_FILE),
5387 global_node_page_state(NR_INACTIVE_FILE),
5388 global_node_page_state(NR_ISOLATED_FILE),
5389 global_node_page_state(NR_UNEVICTABLE),
5390 global_node_page_state(NR_FILE_DIRTY),
5391 global_node_page_state(NR_WRITEBACK),
5392 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5393 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5394 global_node_page_state(NR_FILE_MAPPED),
5395 global_node_page_state(NR_SHMEM),
5396 global_zone_page_state(NR_PAGETABLE),
5397 global_zone_page_state(NR_BOUNCE),
5398 global_zone_page_state(NR_FREE_PAGES),
5399 free_pcp,
5400 global_zone_page_state(NR_FREE_CMA_PAGES));
5401
5402 for_each_online_pgdat(pgdat) {
5403 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5404 continue;
5405
5406 printk("Node %d"
5407 " active_anon:%lukB"
5408 " inactive_anon:%lukB"
5409 " active_file:%lukB"
5410 " inactive_file:%lukB"
5411 " unevictable:%lukB"
5412 " isolated(anon):%lukB"
5413 " isolated(file):%lukB"
5414 " mapped:%lukB"
5415 " dirty:%lukB"
5416 " writeback:%lukB"
5417 " shmem:%lukB"
5418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5419 " shmem_thp: %lukB"
5420 " shmem_pmdmapped: %lukB"
5421 " anon_thp: %lukB"
5422 #endif
5423 " writeback_tmp:%lukB"
5424 " kernel_stack:%lukB"
5425 #ifdef CONFIG_SHADOW_CALL_STACK
5426 " shadow_call_stack:%lukB"
5427 #endif
5428 " all_unreclaimable? %s"
5429 "\n",
5430 pgdat->node_id,
5431 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5432 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5433 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5434 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5435 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5436 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5437 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5438 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5439 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5440 K(node_page_state(pgdat, NR_WRITEBACK)),
5441 K(node_page_state(pgdat, NR_SHMEM)),
5442 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5443 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5444 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5445 * HPAGE_PMD_NR),
5446 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5447 #endif
5448 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5449 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5450 #ifdef CONFIG_SHADOW_CALL_STACK
5451 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5452 #endif
5453 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5454 "yes" : "no");
5455 }
5456
5457 for_each_populated_zone(zone) {
5458 int i;
5459
5460 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5461 continue;
5462
5463 free_pcp = 0;
5464 for_each_online_cpu(cpu)
5465 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5466
5467 show_node(zone);
5468 printk(KERN_CONT
5469 "%s"
5470 " free:%lukB"
5471 " min:%lukB"
5472 " low:%lukB"
5473 " high:%lukB"
5474 " reserved_highatomic:%luKB"
5475 " active_anon:%lukB"
5476 " inactive_anon:%lukB"
5477 " active_file:%lukB"
5478 " inactive_file:%lukB"
5479 " unevictable:%lukB"
5480 " writepending:%lukB"
5481 " present:%lukB"
5482 " managed:%lukB"
5483 " mlocked:%lukB"
5484 " pagetables:%lukB"
5485 " bounce:%lukB"
5486 " free_pcp:%lukB"
5487 " local_pcp:%ukB"
5488 " free_cma:%lukB"
5489 "\n",
5490 zone->name,
5491 K(zone_page_state(zone, NR_FREE_PAGES)),
5492 K(min_wmark_pages(zone)),
5493 K(low_wmark_pages(zone)),
5494 K(high_wmark_pages(zone)),
5495 K(zone->nr_reserved_highatomic),
5496 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5497 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5498 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5499 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5500 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5501 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5502 K(zone->present_pages),
5503 K(zone_managed_pages(zone)),
5504 K(zone_page_state(zone, NR_MLOCK)),
5505 K(zone_page_state(zone, NR_PAGETABLE)),
5506 K(zone_page_state(zone, NR_BOUNCE)),
5507 K(free_pcp),
5508 K(this_cpu_read(zone->pageset->pcp.count)),
5509 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5510 printk("lowmem_reserve[]:");
5511 for (i = 0; i < MAX_NR_ZONES; i++)
5512 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5513 printk(KERN_CONT "\n");
5514 }
5515
5516 for_each_populated_zone(zone) {
5517 unsigned int order;
5518 unsigned long nr[MAX_ORDER], flags, total = 0;
5519 unsigned char types[MAX_ORDER];
5520
5521 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5522 continue;
5523 show_node(zone);
5524 printk(KERN_CONT "%s: ", zone->name);
5525
5526 spin_lock_irqsave(&zone->lock, flags);
5527 for (order = 0; order < MAX_ORDER; order++) {
5528 struct free_area *area = &zone->free_area[order];
5529 int type;
5530
5531 nr[order] = area->nr_free;
5532 total += nr[order] << order;
5533
5534 types[order] = 0;
5535 for (type = 0; type < MIGRATE_TYPES; type++) {
5536 if (!free_area_empty(area, type))
5537 types[order] |= 1 << type;
5538 }
5539 }
5540 spin_unlock_irqrestore(&zone->lock, flags);
5541 for (order = 0; order < MAX_ORDER; order++) {
5542 printk(KERN_CONT "%lu*%lukB ",
5543 nr[order], K(1UL) << order);
5544 if (nr[order])
5545 show_migration_types(types[order]);
5546 }
5547 printk(KERN_CONT "= %lukB\n", K(total));
5548 }
5549
5550 hugetlb_show_meminfo();
5551
5552 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5553
5554 show_swap_cache_info();
5555 }
5556
5557 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5558 {
5559 zoneref->zone = zone;
5560 zoneref->zone_idx = zone_idx(zone);
5561 }
5562
5563 /*
5564 * Builds allocation fallback zone lists.
5565 *
5566 * Add all populated zones of a node to the zonelist.
5567 */
5568 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5569 {
5570 struct zone *zone;
5571 enum zone_type zone_type = MAX_NR_ZONES;
5572 int nr_zones = 0;
5573
5574 do {
5575 zone_type--;
5576 zone = pgdat->node_zones + zone_type;
5577 if (managed_zone(zone)) {
5578 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5579 check_highest_zone(zone_type);
5580 }
5581 } while (zone_type);
5582
5583 return nr_zones;
5584 }
5585
5586 #ifdef CONFIG_NUMA
5587
5588 static int __parse_numa_zonelist_order(char *s)
5589 {
5590 /*
5591 * We used to support different zonlists modes but they turned
5592 * out to be just not useful. Let's keep the warning in place
5593 * if somebody still use the cmd line parameter so that we do
5594 * not fail it silently
5595 */
5596 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5597 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5598 return -EINVAL;
5599 }
5600 return 0;
5601 }
5602
5603 char numa_zonelist_order[] = "Node";
5604
5605 /*
5606 * sysctl handler for numa_zonelist_order
5607 */
5608 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5609 void *buffer, size_t *length, loff_t *ppos)
5610 {
5611 if (write)
5612 return __parse_numa_zonelist_order(buffer);
5613 return proc_dostring(table, write, buffer, length, ppos);
5614 }
5615
5616
5617 #define MAX_NODE_LOAD (nr_online_nodes)
5618 static int node_load[MAX_NUMNODES];
5619
5620 /**
5621 * find_next_best_node - find the next node that should appear in a given node's fallback list
5622 * @node: node whose fallback list we're appending
5623 * @used_node_mask: nodemask_t of already used nodes
5624 *
5625 * We use a number of factors to determine which is the next node that should
5626 * appear on a given node's fallback list. The node should not have appeared
5627 * already in @node's fallback list, and it should be the next closest node
5628 * according to the distance array (which contains arbitrary distance values
5629 * from each node to each node in the system), and should also prefer nodes
5630 * with no CPUs, since presumably they'll have very little allocation pressure
5631 * on them otherwise.
5632 *
5633 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5634 */
5635 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5636 {
5637 int n, val;
5638 int min_val = INT_MAX;
5639 int best_node = NUMA_NO_NODE;
5640 const struct cpumask *tmp = cpumask_of_node(0);
5641
5642 /* Use the local node if we haven't already */
5643 if (!node_isset(node, *used_node_mask)) {
5644 node_set(node, *used_node_mask);
5645 return node;
5646 }
5647
5648 for_each_node_state(n, N_MEMORY) {
5649
5650 /* Don't want a node to appear more than once */
5651 if (node_isset(n, *used_node_mask))
5652 continue;
5653
5654 /* Use the distance array to find the distance */
5655 val = node_distance(node, n);
5656
5657 /* Penalize nodes under us ("prefer the next node") */
5658 val += (n < node);
5659
5660 /* Give preference to headless and unused nodes */
5661 tmp = cpumask_of_node(n);
5662 if (!cpumask_empty(tmp))
5663 val += PENALTY_FOR_NODE_WITH_CPUS;
5664
5665 /* Slight preference for less loaded node */
5666 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5667 val += node_load[n];
5668
5669 if (val < min_val) {
5670 min_val = val;
5671 best_node = n;
5672 }
5673 }
5674
5675 if (best_node >= 0)
5676 node_set(best_node, *used_node_mask);
5677
5678 return best_node;
5679 }
5680
5681
5682 /*
5683 * Build zonelists ordered by node and zones within node.
5684 * This results in maximum locality--normal zone overflows into local
5685 * DMA zone, if any--but risks exhausting DMA zone.
5686 */
5687 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5688 unsigned nr_nodes)
5689 {
5690 struct zoneref *zonerefs;
5691 int i;
5692
5693 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5694
5695 for (i = 0; i < nr_nodes; i++) {
5696 int nr_zones;
5697
5698 pg_data_t *node = NODE_DATA(node_order[i]);
5699
5700 nr_zones = build_zonerefs_node(node, zonerefs);
5701 zonerefs += nr_zones;
5702 }
5703 zonerefs->zone = NULL;
5704 zonerefs->zone_idx = 0;
5705 }
5706
5707 /*
5708 * Build gfp_thisnode zonelists
5709 */
5710 static void build_thisnode_zonelists(pg_data_t *pgdat)
5711 {
5712 struct zoneref *zonerefs;
5713 int nr_zones;
5714
5715 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5716 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5717 zonerefs += nr_zones;
5718 zonerefs->zone = NULL;
5719 zonerefs->zone_idx = 0;
5720 }
5721
5722 /*
5723 * Build zonelists ordered by zone and nodes within zones.
5724 * This results in conserving DMA zone[s] until all Normal memory is
5725 * exhausted, but results in overflowing to remote node while memory
5726 * may still exist in local DMA zone.
5727 */
5728
5729 static void build_zonelists(pg_data_t *pgdat)
5730 {
5731 static int node_order[MAX_NUMNODES];
5732 int node, load, nr_nodes = 0;
5733 nodemask_t used_mask = NODE_MASK_NONE;
5734 int local_node, prev_node;
5735
5736 /* NUMA-aware ordering of nodes */
5737 local_node = pgdat->node_id;
5738 load = nr_online_nodes;
5739 prev_node = local_node;
5740
5741 memset(node_order, 0, sizeof(node_order));
5742 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5743 /*
5744 * We don't want to pressure a particular node.
5745 * So adding penalty to the first node in same
5746 * distance group to make it round-robin.
5747 */
5748 if (node_distance(local_node, node) !=
5749 node_distance(local_node, prev_node))
5750 node_load[node] = load;
5751
5752 node_order[nr_nodes++] = node;
5753 prev_node = node;
5754 load--;
5755 }
5756
5757 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5758 build_thisnode_zonelists(pgdat);
5759 }
5760
5761 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5762 /*
5763 * Return node id of node used for "local" allocations.
5764 * I.e., first node id of first zone in arg node's generic zonelist.
5765 * Used for initializing percpu 'numa_mem', which is used primarily
5766 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5767 */
5768 int local_memory_node(int node)
5769 {
5770 struct zoneref *z;
5771
5772 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5773 gfp_zone(GFP_KERNEL),
5774 NULL);
5775 return zone_to_nid(z->zone);
5776 }
5777 #endif
5778
5779 static void setup_min_unmapped_ratio(void);
5780 static void setup_min_slab_ratio(void);
5781 #else /* CONFIG_NUMA */
5782
5783 static void build_zonelists(pg_data_t *pgdat)
5784 {
5785 int node, local_node;
5786 struct zoneref *zonerefs;
5787 int nr_zones;
5788
5789 local_node = pgdat->node_id;
5790
5791 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5792 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5793 zonerefs += nr_zones;
5794
5795 /*
5796 * Now we build the zonelist so that it contains the zones
5797 * of all the other nodes.
5798 * We don't want to pressure a particular node, so when
5799 * building the zones for node N, we make sure that the
5800 * zones coming right after the local ones are those from
5801 * node N+1 (modulo N)
5802 */
5803 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5804 if (!node_online(node))
5805 continue;
5806 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5807 zonerefs += nr_zones;
5808 }
5809 for (node = 0; node < local_node; node++) {
5810 if (!node_online(node))
5811 continue;
5812 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5813 zonerefs += nr_zones;
5814 }
5815
5816 zonerefs->zone = NULL;
5817 zonerefs->zone_idx = 0;
5818 }
5819
5820 #endif /* CONFIG_NUMA */
5821
5822 /*
5823 * Boot pageset table. One per cpu which is going to be used for all
5824 * zones and all nodes. The parameters will be set in such a way
5825 * that an item put on a list will immediately be handed over to
5826 * the buddy list. This is safe since pageset manipulation is done
5827 * with interrupts disabled.
5828 *
5829 * The boot_pagesets must be kept even after bootup is complete for
5830 * unused processors and/or zones. They do play a role for bootstrapping
5831 * hotplugged processors.
5832 *
5833 * zoneinfo_show() and maybe other functions do
5834 * not check if the processor is online before following the pageset pointer.
5835 * Other parts of the kernel may not check if the zone is available.
5836 */
5837 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5838 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5839 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5840
5841 static void __build_all_zonelists(void *data)
5842 {
5843 int nid;
5844 int __maybe_unused cpu;
5845 pg_data_t *self = data;
5846 static DEFINE_SPINLOCK(lock);
5847
5848 spin_lock(&lock);
5849
5850 #ifdef CONFIG_NUMA
5851 memset(node_load, 0, sizeof(node_load));
5852 #endif
5853
5854 /*
5855 * This node is hotadded and no memory is yet present. So just
5856 * building zonelists is fine - no need to touch other nodes.
5857 */
5858 if (self && !node_online(self->node_id)) {
5859 build_zonelists(self);
5860 } else {
5861 for_each_online_node(nid) {
5862 pg_data_t *pgdat = NODE_DATA(nid);
5863
5864 build_zonelists(pgdat);
5865 }
5866
5867 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5868 /*
5869 * We now know the "local memory node" for each node--
5870 * i.e., the node of the first zone in the generic zonelist.
5871 * Set up numa_mem percpu variable for on-line cpus. During
5872 * boot, only the boot cpu should be on-line; we'll init the
5873 * secondary cpus' numa_mem as they come on-line. During
5874 * node/memory hotplug, we'll fixup all on-line cpus.
5875 */
5876 for_each_online_cpu(cpu)
5877 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5878 #endif
5879 }
5880
5881 spin_unlock(&lock);
5882 }
5883
5884 static noinline void __init
5885 build_all_zonelists_init(void)
5886 {
5887 int cpu;
5888
5889 __build_all_zonelists(NULL);
5890
5891 /*
5892 * Initialize the boot_pagesets that are going to be used
5893 * for bootstrapping processors. The real pagesets for
5894 * each zone will be allocated later when the per cpu
5895 * allocator is available.
5896 *
5897 * boot_pagesets are used also for bootstrapping offline
5898 * cpus if the system is already booted because the pagesets
5899 * are needed to initialize allocators on a specific cpu too.
5900 * F.e. the percpu allocator needs the page allocator which
5901 * needs the percpu allocator in order to allocate its pagesets
5902 * (a chicken-egg dilemma).
5903 */
5904 for_each_possible_cpu(cpu)
5905 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5906
5907 mminit_verify_zonelist();
5908 cpuset_init_current_mems_allowed();
5909 }
5910
5911 /*
5912 * unless system_state == SYSTEM_BOOTING.
5913 *
5914 * __ref due to call of __init annotated helper build_all_zonelists_init
5915 * [protected by SYSTEM_BOOTING].
5916 */
5917 void __ref build_all_zonelists(pg_data_t *pgdat)
5918 {
5919 unsigned long vm_total_pages;
5920
5921 if (system_state == SYSTEM_BOOTING) {
5922 build_all_zonelists_init();
5923 } else {
5924 __build_all_zonelists(pgdat);
5925 /* cpuset refresh routine should be here */
5926 }
5927 /* Get the number of free pages beyond high watermark in all zones. */
5928 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5929 /*
5930 * Disable grouping by mobility if the number of pages in the
5931 * system is too low to allow the mechanism to work. It would be
5932 * more accurate, but expensive to check per-zone. This check is
5933 * made on memory-hotadd so a system can start with mobility
5934 * disabled and enable it later
5935 */
5936 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5937 page_group_by_mobility_disabled = 1;
5938 else
5939 page_group_by_mobility_disabled = 0;
5940
5941 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5942 nr_online_nodes,
5943 page_group_by_mobility_disabled ? "off" : "on",
5944 vm_total_pages);
5945 #ifdef CONFIG_NUMA
5946 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5947 #endif
5948 }
5949
5950 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5951 static bool __meminit
5952 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5953 {
5954 static struct memblock_region *r;
5955
5956 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5957 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5958 for_each_memblock(memory, r) {
5959 if (*pfn < memblock_region_memory_end_pfn(r))
5960 break;
5961 }
5962 }
5963 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5964 memblock_is_mirror(r)) {
5965 *pfn = memblock_region_memory_end_pfn(r);
5966 return true;
5967 }
5968 }
5969 return false;
5970 }
5971
5972 /*
5973 * Initially all pages are reserved - free ones are freed
5974 * up by memblock_free_all() once the early boot process is
5975 * done. Non-atomic initialization, single-pass.
5976 */
5977 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5978 unsigned long start_pfn, enum memmap_context context,
5979 struct vmem_altmap *altmap)
5980 {
5981 unsigned long pfn, end_pfn = start_pfn + size;
5982 struct page *page;
5983
5984 if (highest_memmap_pfn < end_pfn - 1)
5985 highest_memmap_pfn = end_pfn - 1;
5986
5987 #ifdef CONFIG_ZONE_DEVICE
5988 /*
5989 * Honor reservation requested by the driver for this ZONE_DEVICE
5990 * memory. We limit the total number of pages to initialize to just
5991 * those that might contain the memory mapping. We will defer the
5992 * ZONE_DEVICE page initialization until after we have released
5993 * the hotplug lock.
5994 */
5995 if (zone == ZONE_DEVICE) {
5996 if (!altmap)
5997 return;
5998
5999 if (start_pfn == altmap->base_pfn)
6000 start_pfn += altmap->reserve;
6001 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6002 }
6003 #endif
6004
6005 for (pfn = start_pfn; pfn < end_pfn; ) {
6006 /*
6007 * There can be holes in boot-time mem_map[]s handed to this
6008 * function. They do not exist on hotplugged memory.
6009 */
6010 if (context == MEMMAP_EARLY) {
6011 if (overlap_memmap_init(zone, &pfn))
6012 continue;
6013 if (defer_init(nid, pfn, end_pfn))
6014 break;
6015 }
6016
6017 page = pfn_to_page(pfn);
6018 __init_single_page(page, pfn, zone, nid);
6019 if (context == MEMMAP_HOTPLUG)
6020 __SetPageReserved(page);
6021
6022 /*
6023 * Mark the block movable so that blocks are reserved for
6024 * movable at startup. This will force kernel allocations
6025 * to reserve their blocks rather than leaking throughout
6026 * the address space during boot when many long-lived
6027 * kernel allocations are made.
6028 *
6029 * bitmap is created for zone's valid pfn range. but memmap
6030 * can be created for invalid pages (for alignment)
6031 * check here not to call set_pageblock_migratetype() against
6032 * pfn out of zone.
6033 */
6034 if (!(pfn & (pageblock_nr_pages - 1))) {
6035 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6036 cond_resched();
6037 }
6038 pfn++;
6039 }
6040 }
6041
6042 #ifdef CONFIG_ZONE_DEVICE
6043 void __ref memmap_init_zone_device(struct zone *zone,
6044 unsigned long start_pfn,
6045 unsigned long nr_pages,
6046 struct dev_pagemap *pgmap)
6047 {
6048 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6049 struct pglist_data *pgdat = zone->zone_pgdat;
6050 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6051 unsigned long zone_idx = zone_idx(zone);
6052 unsigned long start = jiffies;
6053 int nid = pgdat->node_id;
6054
6055 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6056 return;
6057
6058 /*
6059 * The call to memmap_init_zone should have already taken care
6060 * of the pages reserved for the memmap, so we can just jump to
6061 * the end of that region and start processing the device pages.
6062 */
6063 if (altmap) {
6064 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6065 nr_pages = end_pfn - start_pfn;
6066 }
6067
6068 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6069 struct page *page = pfn_to_page(pfn);
6070
6071 __init_single_page(page, pfn, zone_idx, nid);
6072
6073 /*
6074 * Mark page reserved as it will need to wait for onlining
6075 * phase for it to be fully associated with a zone.
6076 *
6077 * We can use the non-atomic __set_bit operation for setting
6078 * the flag as we are still initializing the pages.
6079 */
6080 __SetPageReserved(page);
6081
6082 /*
6083 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6084 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6085 * ever freed or placed on a driver-private list.
6086 */
6087 page->pgmap = pgmap;
6088 page->zone_device_data = NULL;
6089
6090 /*
6091 * Mark the block movable so that blocks are reserved for
6092 * movable at startup. This will force kernel allocations
6093 * to reserve their blocks rather than leaking throughout
6094 * the address space during boot when many long-lived
6095 * kernel allocations are made.
6096 *
6097 * bitmap is created for zone's valid pfn range. but memmap
6098 * can be created for invalid pages (for alignment)
6099 * check here not to call set_pageblock_migratetype() against
6100 * pfn out of zone.
6101 *
6102 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6103 * because this is done early in section_activate()
6104 */
6105 if (!(pfn & (pageblock_nr_pages - 1))) {
6106 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6107 cond_resched();
6108 }
6109 }
6110
6111 pr_info("%s initialised %lu pages in %ums\n", __func__,
6112 nr_pages, jiffies_to_msecs(jiffies - start));
6113 }
6114
6115 #endif
6116 static void __meminit zone_init_free_lists(struct zone *zone)
6117 {
6118 unsigned int order, t;
6119 for_each_migratetype_order(order, t) {
6120 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6121 zone->free_area[order].nr_free = 0;
6122 }
6123 }
6124
6125 void __meminit __weak memmap_init(unsigned long size, int nid,
6126 unsigned long zone,
6127 unsigned long range_start_pfn)
6128 {
6129 unsigned long start_pfn, end_pfn;
6130 unsigned long range_end_pfn = range_start_pfn + size;
6131 int i;
6132
6133 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6134 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6135 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6136
6137 if (end_pfn > start_pfn) {
6138 size = end_pfn - start_pfn;
6139 memmap_init_zone(size, nid, zone, start_pfn,
6140 MEMMAP_EARLY, NULL);
6141 }
6142 }
6143 }
6144
6145 static int zone_batchsize(struct zone *zone)
6146 {
6147 #ifdef CONFIG_MMU
6148 int batch;
6149
6150 /*
6151 * The per-cpu-pages pools are set to around 1000th of the
6152 * size of the zone.
6153 */
6154 batch = zone_managed_pages(zone) / 1024;
6155 /* But no more than a meg. */
6156 if (batch * PAGE_SIZE > 1024 * 1024)
6157 batch = (1024 * 1024) / PAGE_SIZE;
6158 batch /= 4; /* We effectively *= 4 below */
6159 if (batch < 1)
6160 batch = 1;
6161
6162 /*
6163 * Clamp the batch to a 2^n - 1 value. Having a power
6164 * of 2 value was found to be more likely to have
6165 * suboptimal cache aliasing properties in some cases.
6166 *
6167 * For example if 2 tasks are alternately allocating
6168 * batches of pages, one task can end up with a lot
6169 * of pages of one half of the possible page colors
6170 * and the other with pages of the other colors.
6171 */
6172 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6173
6174 return batch;
6175
6176 #else
6177 /* The deferral and batching of frees should be suppressed under NOMMU
6178 * conditions.
6179 *
6180 * The problem is that NOMMU needs to be able to allocate large chunks
6181 * of contiguous memory as there's no hardware page translation to
6182 * assemble apparent contiguous memory from discontiguous pages.
6183 *
6184 * Queueing large contiguous runs of pages for batching, however,
6185 * causes the pages to actually be freed in smaller chunks. As there
6186 * can be a significant delay between the individual batches being
6187 * recycled, this leads to the once large chunks of space being
6188 * fragmented and becoming unavailable for high-order allocations.
6189 */
6190 return 0;
6191 #endif
6192 }
6193
6194 /*
6195 * pcp->high and pcp->batch values are related and dependent on one another:
6196 * ->batch must never be higher then ->high.
6197 * The following function updates them in a safe manner without read side
6198 * locking.
6199 *
6200 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6201 * those fields changing asynchronously (acording to the above rule).
6202 *
6203 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6204 * outside of boot time (or some other assurance that no concurrent updaters
6205 * exist).
6206 */
6207 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6208 unsigned long batch)
6209 {
6210 /* start with a fail safe value for batch */
6211 pcp->batch = 1;
6212 smp_wmb();
6213
6214 /* Update high, then batch, in order */
6215 pcp->high = high;
6216 smp_wmb();
6217
6218 pcp->batch = batch;
6219 }
6220
6221 /* a companion to pageset_set_high() */
6222 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6223 {
6224 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6225 }
6226
6227 static void pageset_init(struct per_cpu_pageset *p)
6228 {
6229 struct per_cpu_pages *pcp;
6230 int migratetype;
6231
6232 memset(p, 0, sizeof(*p));
6233
6234 pcp = &p->pcp;
6235 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6236 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6237 }
6238
6239 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6240 {
6241 pageset_init(p);
6242 pageset_set_batch(p, batch);
6243 }
6244
6245 /*
6246 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6247 * to the value high for the pageset p.
6248 */
6249 static void pageset_set_high(struct per_cpu_pageset *p,
6250 unsigned long high)
6251 {
6252 unsigned long batch = max(1UL, high / 4);
6253 if ((high / 4) > (PAGE_SHIFT * 8))
6254 batch = PAGE_SHIFT * 8;
6255
6256 pageset_update(&p->pcp, high, batch);
6257 }
6258
6259 static void pageset_set_high_and_batch(struct zone *zone,
6260 struct per_cpu_pageset *pcp)
6261 {
6262 if (percpu_pagelist_fraction)
6263 pageset_set_high(pcp,
6264 (zone_managed_pages(zone) /
6265 percpu_pagelist_fraction));
6266 else
6267 pageset_set_batch(pcp, zone_batchsize(zone));
6268 }
6269
6270 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6271 {
6272 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6273
6274 pageset_init(pcp);
6275 pageset_set_high_and_batch(zone, pcp);
6276 }
6277
6278 void __meminit setup_zone_pageset(struct zone *zone)
6279 {
6280 int cpu;
6281 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6282 for_each_possible_cpu(cpu)
6283 zone_pageset_init(zone, cpu);
6284 }
6285
6286 /*
6287 * Allocate per cpu pagesets and initialize them.
6288 * Before this call only boot pagesets were available.
6289 */
6290 void __init setup_per_cpu_pageset(void)
6291 {
6292 struct pglist_data *pgdat;
6293 struct zone *zone;
6294 int __maybe_unused cpu;
6295
6296 for_each_populated_zone(zone)
6297 setup_zone_pageset(zone);
6298
6299 #ifdef CONFIG_NUMA
6300 /*
6301 * Unpopulated zones continue using the boot pagesets.
6302 * The numa stats for these pagesets need to be reset.
6303 * Otherwise, they will end up skewing the stats of
6304 * the nodes these zones are associated with.
6305 */
6306 for_each_possible_cpu(cpu) {
6307 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6308 memset(pcp->vm_numa_stat_diff, 0,
6309 sizeof(pcp->vm_numa_stat_diff));
6310 }
6311 #endif
6312
6313 for_each_online_pgdat(pgdat)
6314 pgdat->per_cpu_nodestats =
6315 alloc_percpu(struct per_cpu_nodestat);
6316 }
6317
6318 static __meminit void zone_pcp_init(struct zone *zone)
6319 {
6320 /*
6321 * per cpu subsystem is not up at this point. The following code
6322 * relies on the ability of the linker to provide the
6323 * offset of a (static) per cpu variable into the per cpu area.
6324 */
6325 zone->pageset = &boot_pageset;
6326
6327 if (populated_zone(zone))
6328 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6329 zone->name, zone->present_pages,
6330 zone_batchsize(zone));
6331 }
6332
6333 void __meminit init_currently_empty_zone(struct zone *zone,
6334 unsigned long zone_start_pfn,
6335 unsigned long size)
6336 {
6337 struct pglist_data *pgdat = zone->zone_pgdat;
6338 int zone_idx = zone_idx(zone) + 1;
6339
6340 if (zone_idx > pgdat->nr_zones)
6341 pgdat->nr_zones = zone_idx;
6342
6343 zone->zone_start_pfn = zone_start_pfn;
6344
6345 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6346 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6347 pgdat->node_id,
6348 (unsigned long)zone_idx(zone),
6349 zone_start_pfn, (zone_start_pfn + size));
6350
6351 zone_init_free_lists(zone);
6352 zone->initialized = 1;
6353 }
6354
6355 /**
6356 * get_pfn_range_for_nid - Return the start and end page frames for a node
6357 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6358 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6359 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6360 *
6361 * It returns the start and end page frame of a node based on information
6362 * provided by memblock_set_node(). If called for a node
6363 * with no available memory, a warning is printed and the start and end
6364 * PFNs will be 0.
6365 */
6366 void __init get_pfn_range_for_nid(unsigned int nid,
6367 unsigned long *start_pfn, unsigned long *end_pfn)
6368 {
6369 unsigned long this_start_pfn, this_end_pfn;
6370 int i;
6371
6372 *start_pfn = -1UL;
6373 *end_pfn = 0;
6374
6375 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6376 *start_pfn = min(*start_pfn, this_start_pfn);
6377 *end_pfn = max(*end_pfn, this_end_pfn);
6378 }
6379
6380 if (*start_pfn == -1UL)
6381 *start_pfn = 0;
6382 }
6383
6384 /*
6385 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6386 * assumption is made that zones within a node are ordered in monotonic
6387 * increasing memory addresses so that the "highest" populated zone is used
6388 */
6389 static void __init find_usable_zone_for_movable(void)
6390 {
6391 int zone_index;
6392 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6393 if (zone_index == ZONE_MOVABLE)
6394 continue;
6395
6396 if (arch_zone_highest_possible_pfn[zone_index] >
6397 arch_zone_lowest_possible_pfn[zone_index])
6398 break;
6399 }
6400
6401 VM_BUG_ON(zone_index == -1);
6402 movable_zone = zone_index;
6403 }
6404
6405 /*
6406 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6407 * because it is sized independent of architecture. Unlike the other zones,
6408 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6409 * in each node depending on the size of each node and how evenly kernelcore
6410 * is distributed. This helper function adjusts the zone ranges
6411 * provided by the architecture for a given node by using the end of the
6412 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6413 * zones within a node are in order of monotonic increases memory addresses
6414 */
6415 static void __init adjust_zone_range_for_zone_movable(int nid,
6416 unsigned long zone_type,
6417 unsigned long node_start_pfn,
6418 unsigned long node_end_pfn,
6419 unsigned long *zone_start_pfn,
6420 unsigned long *zone_end_pfn)
6421 {
6422 /* Only adjust if ZONE_MOVABLE is on this node */
6423 if (zone_movable_pfn[nid]) {
6424 /* Size ZONE_MOVABLE */
6425 if (zone_type == ZONE_MOVABLE) {
6426 *zone_start_pfn = zone_movable_pfn[nid];
6427 *zone_end_pfn = min(node_end_pfn,
6428 arch_zone_highest_possible_pfn[movable_zone]);
6429
6430 /* Adjust for ZONE_MOVABLE starting within this range */
6431 } else if (!mirrored_kernelcore &&
6432 *zone_start_pfn < zone_movable_pfn[nid] &&
6433 *zone_end_pfn > zone_movable_pfn[nid]) {
6434 *zone_end_pfn = zone_movable_pfn[nid];
6435
6436 /* Check if this whole range is within ZONE_MOVABLE */
6437 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6438 *zone_start_pfn = *zone_end_pfn;
6439 }
6440 }
6441
6442 /*
6443 * Return the number of pages a zone spans in a node, including holes
6444 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6445 */
6446 static unsigned long __init zone_spanned_pages_in_node(int nid,
6447 unsigned long zone_type,
6448 unsigned long node_start_pfn,
6449 unsigned long node_end_pfn,
6450 unsigned long *zone_start_pfn,
6451 unsigned long *zone_end_pfn)
6452 {
6453 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6454 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6455 /* When hotadd a new node from cpu_up(), the node should be empty */
6456 if (!node_start_pfn && !node_end_pfn)
6457 return 0;
6458
6459 /* Get the start and end of the zone */
6460 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6461 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6462 adjust_zone_range_for_zone_movable(nid, zone_type,
6463 node_start_pfn, node_end_pfn,
6464 zone_start_pfn, zone_end_pfn);
6465
6466 /* Check that this node has pages within the zone's required range */
6467 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6468 return 0;
6469
6470 /* Move the zone boundaries inside the node if necessary */
6471 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6472 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6473
6474 /* Return the spanned pages */
6475 return *zone_end_pfn - *zone_start_pfn;
6476 }
6477
6478 /*
6479 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6480 * then all holes in the requested range will be accounted for.
6481 */
6482 unsigned long __init __absent_pages_in_range(int nid,
6483 unsigned long range_start_pfn,
6484 unsigned long range_end_pfn)
6485 {
6486 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6487 unsigned long start_pfn, end_pfn;
6488 int i;
6489
6490 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6491 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6492 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6493 nr_absent -= end_pfn - start_pfn;
6494 }
6495 return nr_absent;
6496 }
6497
6498 /**
6499 * absent_pages_in_range - Return number of page frames in holes within a range
6500 * @start_pfn: The start PFN to start searching for holes
6501 * @end_pfn: The end PFN to stop searching for holes
6502 *
6503 * Return: the number of pages frames in memory holes within a range.
6504 */
6505 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6506 unsigned long end_pfn)
6507 {
6508 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6509 }
6510
6511 /* Return the number of page frames in holes in a zone on a node */
6512 static unsigned long __init zone_absent_pages_in_node(int nid,
6513 unsigned long zone_type,
6514 unsigned long node_start_pfn,
6515 unsigned long node_end_pfn)
6516 {
6517 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6518 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6519 unsigned long zone_start_pfn, zone_end_pfn;
6520 unsigned long nr_absent;
6521
6522 /* When hotadd a new node from cpu_up(), the node should be empty */
6523 if (!node_start_pfn && !node_end_pfn)
6524 return 0;
6525
6526 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6527 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6528
6529 adjust_zone_range_for_zone_movable(nid, zone_type,
6530 node_start_pfn, node_end_pfn,
6531 &zone_start_pfn, &zone_end_pfn);
6532 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6533
6534 /*
6535 * ZONE_MOVABLE handling.
6536 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6537 * and vice versa.
6538 */
6539 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6540 unsigned long start_pfn, end_pfn;
6541 struct memblock_region *r;
6542
6543 for_each_memblock(memory, r) {
6544 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6545 zone_start_pfn, zone_end_pfn);
6546 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6547 zone_start_pfn, zone_end_pfn);
6548
6549 if (zone_type == ZONE_MOVABLE &&
6550 memblock_is_mirror(r))
6551 nr_absent += end_pfn - start_pfn;
6552
6553 if (zone_type == ZONE_NORMAL &&
6554 !memblock_is_mirror(r))
6555 nr_absent += end_pfn - start_pfn;
6556 }
6557 }
6558
6559 return nr_absent;
6560 }
6561
6562 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6563 unsigned long node_start_pfn,
6564 unsigned long node_end_pfn)
6565 {
6566 unsigned long realtotalpages = 0, totalpages = 0;
6567 enum zone_type i;
6568
6569 for (i = 0; i < MAX_NR_ZONES; i++) {
6570 struct zone *zone = pgdat->node_zones + i;
6571 unsigned long zone_start_pfn, zone_end_pfn;
6572 unsigned long spanned, absent;
6573 unsigned long size, real_size;
6574
6575 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6576 node_start_pfn,
6577 node_end_pfn,
6578 &zone_start_pfn,
6579 &zone_end_pfn);
6580 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6581 node_start_pfn,
6582 node_end_pfn);
6583
6584 size = spanned;
6585 real_size = size - absent;
6586
6587 if (size)
6588 zone->zone_start_pfn = zone_start_pfn;
6589 else
6590 zone->zone_start_pfn = 0;
6591 zone->spanned_pages = size;
6592 zone->present_pages = real_size;
6593
6594 totalpages += size;
6595 realtotalpages += real_size;
6596 }
6597
6598 pgdat->node_spanned_pages = totalpages;
6599 pgdat->node_present_pages = realtotalpages;
6600 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6601 realtotalpages);
6602 }
6603
6604 #ifndef CONFIG_SPARSEMEM
6605 /*
6606 * Calculate the size of the zone->blockflags rounded to an unsigned long
6607 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6608 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6609 * round what is now in bits to nearest long in bits, then return it in
6610 * bytes.
6611 */
6612 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6613 {
6614 unsigned long usemapsize;
6615
6616 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6617 usemapsize = roundup(zonesize, pageblock_nr_pages);
6618 usemapsize = usemapsize >> pageblock_order;
6619 usemapsize *= NR_PAGEBLOCK_BITS;
6620 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6621
6622 return usemapsize / 8;
6623 }
6624
6625 static void __ref setup_usemap(struct pglist_data *pgdat,
6626 struct zone *zone,
6627 unsigned long zone_start_pfn,
6628 unsigned long zonesize)
6629 {
6630 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6631 zone->pageblock_flags = NULL;
6632 if (usemapsize) {
6633 zone->pageblock_flags =
6634 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6635 pgdat->node_id);
6636 if (!zone->pageblock_flags)
6637 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6638 usemapsize, zone->name, pgdat->node_id);
6639 }
6640 }
6641 #else
6642 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6643 unsigned long zone_start_pfn, unsigned long zonesize) {}
6644 #endif /* CONFIG_SPARSEMEM */
6645
6646 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6647
6648 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6649 void __init set_pageblock_order(void)
6650 {
6651 unsigned int order;
6652
6653 /* Check that pageblock_nr_pages has not already been setup */
6654 if (pageblock_order)
6655 return;
6656
6657 if (HPAGE_SHIFT > PAGE_SHIFT)
6658 order = HUGETLB_PAGE_ORDER;
6659 else
6660 order = MAX_ORDER - 1;
6661
6662 /*
6663 * Assume the largest contiguous order of interest is a huge page.
6664 * This value may be variable depending on boot parameters on IA64 and
6665 * powerpc.
6666 */
6667 pageblock_order = order;
6668 }
6669 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6670
6671 /*
6672 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6673 * is unused as pageblock_order is set at compile-time. See
6674 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6675 * the kernel config
6676 */
6677 void __init set_pageblock_order(void)
6678 {
6679 }
6680
6681 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6682
6683 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6684 unsigned long present_pages)
6685 {
6686 unsigned long pages = spanned_pages;
6687
6688 /*
6689 * Provide a more accurate estimation if there are holes within
6690 * the zone and SPARSEMEM is in use. If there are holes within the
6691 * zone, each populated memory region may cost us one or two extra
6692 * memmap pages due to alignment because memmap pages for each
6693 * populated regions may not be naturally aligned on page boundary.
6694 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6695 */
6696 if (spanned_pages > present_pages + (present_pages >> 4) &&
6697 IS_ENABLED(CONFIG_SPARSEMEM))
6698 pages = present_pages;
6699
6700 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6701 }
6702
6703 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6704 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6705 {
6706 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6707
6708 spin_lock_init(&ds_queue->split_queue_lock);
6709 INIT_LIST_HEAD(&ds_queue->split_queue);
6710 ds_queue->split_queue_len = 0;
6711 }
6712 #else
6713 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6714 #endif
6715
6716 #ifdef CONFIG_COMPACTION
6717 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6718 {
6719 init_waitqueue_head(&pgdat->kcompactd_wait);
6720 }
6721 #else
6722 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6723 #endif
6724
6725 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6726 {
6727 pgdat_resize_init(pgdat);
6728
6729 pgdat_init_split_queue(pgdat);
6730 pgdat_init_kcompactd(pgdat);
6731
6732 init_waitqueue_head(&pgdat->kswapd_wait);
6733 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6734
6735 pgdat_page_ext_init(pgdat);
6736 spin_lock_init(&pgdat->lru_lock);
6737 lruvec_init(&pgdat->__lruvec);
6738 }
6739
6740 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6741 unsigned long remaining_pages)
6742 {
6743 atomic_long_set(&zone->managed_pages, remaining_pages);
6744 zone_set_nid(zone, nid);
6745 zone->name = zone_names[idx];
6746 zone->zone_pgdat = NODE_DATA(nid);
6747 spin_lock_init(&zone->lock);
6748 zone_seqlock_init(zone);
6749 zone_pcp_init(zone);
6750 }
6751
6752 /*
6753 * Set up the zone data structures
6754 * - init pgdat internals
6755 * - init all zones belonging to this node
6756 *
6757 * NOTE: this function is only called during memory hotplug
6758 */
6759 #ifdef CONFIG_MEMORY_HOTPLUG
6760 void __ref free_area_init_core_hotplug(int nid)
6761 {
6762 enum zone_type z;
6763 pg_data_t *pgdat = NODE_DATA(nid);
6764
6765 pgdat_init_internals(pgdat);
6766 for (z = 0; z < MAX_NR_ZONES; z++)
6767 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6768 }
6769 #endif
6770
6771 /*
6772 * Set up the zone data structures:
6773 * - mark all pages reserved
6774 * - mark all memory queues empty
6775 * - clear the memory bitmaps
6776 *
6777 * NOTE: pgdat should get zeroed by caller.
6778 * NOTE: this function is only called during early init.
6779 */
6780 static void __init free_area_init_core(struct pglist_data *pgdat)
6781 {
6782 enum zone_type j;
6783 int nid = pgdat->node_id;
6784
6785 pgdat_init_internals(pgdat);
6786 pgdat->per_cpu_nodestats = &boot_nodestats;
6787
6788 for (j = 0; j < MAX_NR_ZONES; j++) {
6789 struct zone *zone = pgdat->node_zones + j;
6790 unsigned long size, freesize, memmap_pages;
6791 unsigned long zone_start_pfn = zone->zone_start_pfn;
6792
6793 size = zone->spanned_pages;
6794 freesize = zone->present_pages;
6795
6796 /*
6797 * Adjust freesize so that it accounts for how much memory
6798 * is used by this zone for memmap. This affects the watermark
6799 * and per-cpu initialisations
6800 */
6801 memmap_pages = calc_memmap_size(size, freesize);
6802 if (!is_highmem_idx(j)) {
6803 if (freesize >= memmap_pages) {
6804 freesize -= memmap_pages;
6805 if (memmap_pages)
6806 printk(KERN_DEBUG
6807 " %s zone: %lu pages used for memmap\n",
6808 zone_names[j], memmap_pages);
6809 } else
6810 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6811 zone_names[j], memmap_pages, freesize);
6812 }
6813
6814 /* Account for reserved pages */
6815 if (j == 0 && freesize > dma_reserve) {
6816 freesize -= dma_reserve;
6817 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6818 zone_names[0], dma_reserve);
6819 }
6820
6821 if (!is_highmem_idx(j))
6822 nr_kernel_pages += freesize;
6823 /* Charge for highmem memmap if there are enough kernel pages */
6824 else if (nr_kernel_pages > memmap_pages * 2)
6825 nr_kernel_pages -= memmap_pages;
6826 nr_all_pages += freesize;
6827
6828 /*
6829 * Set an approximate value for lowmem here, it will be adjusted
6830 * when the bootmem allocator frees pages into the buddy system.
6831 * And all highmem pages will be managed by the buddy system.
6832 */
6833 zone_init_internals(zone, j, nid, freesize);
6834
6835 if (!size)
6836 continue;
6837
6838 set_pageblock_order();
6839 setup_usemap(pgdat, zone, zone_start_pfn, size);
6840 init_currently_empty_zone(zone, zone_start_pfn, size);
6841 memmap_init(size, nid, j, zone_start_pfn);
6842 }
6843 }
6844
6845 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6846 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6847 {
6848 unsigned long __maybe_unused start = 0;
6849 unsigned long __maybe_unused offset = 0;
6850
6851 /* Skip empty nodes */
6852 if (!pgdat->node_spanned_pages)
6853 return;
6854
6855 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6856 offset = pgdat->node_start_pfn - start;
6857 /* ia64 gets its own node_mem_map, before this, without bootmem */
6858 if (!pgdat->node_mem_map) {
6859 unsigned long size, end;
6860 struct page *map;
6861
6862 /*
6863 * The zone's endpoints aren't required to be MAX_ORDER
6864 * aligned but the node_mem_map endpoints must be in order
6865 * for the buddy allocator to function correctly.
6866 */
6867 end = pgdat_end_pfn(pgdat);
6868 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6869 size = (end - start) * sizeof(struct page);
6870 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6871 pgdat->node_id);
6872 if (!map)
6873 panic("Failed to allocate %ld bytes for node %d memory map\n",
6874 size, pgdat->node_id);
6875 pgdat->node_mem_map = map + offset;
6876 }
6877 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6878 __func__, pgdat->node_id, (unsigned long)pgdat,
6879 (unsigned long)pgdat->node_mem_map);
6880 #ifndef CONFIG_NEED_MULTIPLE_NODES
6881 /*
6882 * With no DISCONTIG, the global mem_map is just set as node 0's
6883 */
6884 if (pgdat == NODE_DATA(0)) {
6885 mem_map = NODE_DATA(0)->node_mem_map;
6886 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6887 mem_map -= offset;
6888 }
6889 #endif
6890 }
6891 #else
6892 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6893 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6894
6895 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6896 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6897 {
6898 pgdat->first_deferred_pfn = ULONG_MAX;
6899 }
6900 #else
6901 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6902 #endif
6903
6904 static void __init free_area_init_node(int nid)
6905 {
6906 pg_data_t *pgdat = NODE_DATA(nid);
6907 unsigned long start_pfn = 0;
6908 unsigned long end_pfn = 0;
6909
6910 /* pg_data_t should be reset to zero when it's allocated */
6911 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6912
6913 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6914
6915 pgdat->node_id = nid;
6916 pgdat->node_start_pfn = start_pfn;
6917 pgdat->per_cpu_nodestats = NULL;
6918
6919 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6920 (u64)start_pfn << PAGE_SHIFT,
6921 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6922 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
6923
6924 alloc_node_mem_map(pgdat);
6925 pgdat_set_deferred_range(pgdat);
6926
6927 free_area_init_core(pgdat);
6928 }
6929
6930 void __init free_area_init_memoryless_node(int nid)
6931 {
6932 free_area_init_node(nid);
6933 }
6934
6935 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6936 /*
6937 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6938 * PageReserved(). Return the number of struct pages that were initialized.
6939 */
6940 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6941 {
6942 unsigned long pfn;
6943 u64 pgcnt = 0;
6944
6945 for (pfn = spfn; pfn < epfn; pfn++) {
6946 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6947 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6948 + pageblock_nr_pages - 1;
6949 continue;
6950 }
6951 /*
6952 * Use a fake node/zone (0) for now. Some of these pages
6953 * (in memblock.reserved but not in memblock.memory) will
6954 * get re-initialized via reserve_bootmem_region() later.
6955 */
6956 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6957 __SetPageReserved(pfn_to_page(pfn));
6958 pgcnt++;
6959 }
6960
6961 return pgcnt;
6962 }
6963
6964 /*
6965 * Only struct pages that are backed by physical memory are zeroed and
6966 * initialized by going through __init_single_page(). But, there are some
6967 * struct pages which are reserved in memblock allocator and their fields
6968 * may be accessed (for example page_to_pfn() on some configuration accesses
6969 * flags). We must explicitly initialize those struct pages.
6970 *
6971 * This function also addresses a similar issue where struct pages are left
6972 * uninitialized because the physical address range is not covered by
6973 * memblock.memory or memblock.reserved. That could happen when memblock
6974 * layout is manually configured via memmap=, or when the highest physical
6975 * address (max_pfn) does not end on a section boundary.
6976 */
6977 static void __init init_unavailable_mem(void)
6978 {
6979 phys_addr_t start, end;
6980 u64 i, pgcnt;
6981 phys_addr_t next = 0;
6982
6983 /*
6984 * Loop through unavailable ranges not covered by memblock.memory.
6985 */
6986 pgcnt = 0;
6987 for_each_mem_range(i, &memblock.memory, NULL,
6988 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6989 if (next < start)
6990 pgcnt += init_unavailable_range(PFN_DOWN(next),
6991 PFN_UP(start));
6992 next = end;
6993 }
6994
6995 /*
6996 * Early sections always have a fully populated memmap for the whole
6997 * section - see pfn_valid(). If the last section has holes at the
6998 * end and that section is marked "online", the memmap will be
6999 * considered initialized. Make sure that memmap has a well defined
7000 * state.
7001 */
7002 pgcnt += init_unavailable_range(PFN_DOWN(next),
7003 round_up(max_pfn, PAGES_PER_SECTION));
7004
7005 /*
7006 * Struct pages that do not have backing memory. This could be because
7007 * firmware is using some of this memory, or for some other reasons.
7008 */
7009 if (pgcnt)
7010 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7011 }
7012 #else
7013 static inline void __init init_unavailable_mem(void)
7014 {
7015 }
7016 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7017
7018 #if MAX_NUMNODES > 1
7019 /*
7020 * Figure out the number of possible node ids.
7021 */
7022 void __init setup_nr_node_ids(void)
7023 {
7024 unsigned int highest;
7025
7026 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7027 nr_node_ids = highest + 1;
7028 }
7029 #endif
7030
7031 /**
7032 * node_map_pfn_alignment - determine the maximum internode alignment
7033 *
7034 * This function should be called after node map is populated and sorted.
7035 * It calculates the maximum power of two alignment which can distinguish
7036 * all the nodes.
7037 *
7038 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7039 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7040 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7041 * shifted, 1GiB is enough and this function will indicate so.
7042 *
7043 * This is used to test whether pfn -> nid mapping of the chosen memory
7044 * model has fine enough granularity to avoid incorrect mapping for the
7045 * populated node map.
7046 *
7047 * Return: the determined alignment in pfn's. 0 if there is no alignment
7048 * requirement (single node).
7049 */
7050 unsigned long __init node_map_pfn_alignment(void)
7051 {
7052 unsigned long accl_mask = 0, last_end = 0;
7053 unsigned long start, end, mask;
7054 int last_nid = NUMA_NO_NODE;
7055 int i, nid;
7056
7057 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7058 if (!start || last_nid < 0 || last_nid == nid) {
7059 last_nid = nid;
7060 last_end = end;
7061 continue;
7062 }
7063
7064 /*
7065 * Start with a mask granular enough to pin-point to the
7066 * start pfn and tick off bits one-by-one until it becomes
7067 * too coarse to separate the current node from the last.
7068 */
7069 mask = ~((1 << __ffs(start)) - 1);
7070 while (mask && last_end <= (start & (mask << 1)))
7071 mask <<= 1;
7072
7073 /* accumulate all internode masks */
7074 accl_mask |= mask;
7075 }
7076
7077 /* convert mask to number of pages */
7078 return ~accl_mask + 1;
7079 }
7080
7081 /**
7082 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7083 *
7084 * Return: the minimum PFN based on information provided via
7085 * memblock_set_node().
7086 */
7087 unsigned long __init find_min_pfn_with_active_regions(void)
7088 {
7089 return PHYS_PFN(memblock_start_of_DRAM());
7090 }
7091
7092 /*
7093 * early_calculate_totalpages()
7094 * Sum pages in active regions for movable zone.
7095 * Populate N_MEMORY for calculating usable_nodes.
7096 */
7097 static unsigned long __init early_calculate_totalpages(void)
7098 {
7099 unsigned long totalpages = 0;
7100 unsigned long start_pfn, end_pfn;
7101 int i, nid;
7102
7103 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7104 unsigned long pages = end_pfn - start_pfn;
7105
7106 totalpages += pages;
7107 if (pages)
7108 node_set_state(nid, N_MEMORY);
7109 }
7110 return totalpages;
7111 }
7112
7113 /*
7114 * Find the PFN the Movable zone begins in each node. Kernel memory
7115 * is spread evenly between nodes as long as the nodes have enough
7116 * memory. When they don't, some nodes will have more kernelcore than
7117 * others
7118 */
7119 static void __init find_zone_movable_pfns_for_nodes(void)
7120 {
7121 int i, nid;
7122 unsigned long usable_startpfn;
7123 unsigned long kernelcore_node, kernelcore_remaining;
7124 /* save the state before borrow the nodemask */
7125 nodemask_t saved_node_state = node_states[N_MEMORY];
7126 unsigned long totalpages = early_calculate_totalpages();
7127 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7128 struct memblock_region *r;
7129
7130 /* Need to find movable_zone earlier when movable_node is specified. */
7131 find_usable_zone_for_movable();
7132
7133 /*
7134 * If movable_node is specified, ignore kernelcore and movablecore
7135 * options.
7136 */
7137 if (movable_node_is_enabled()) {
7138 for_each_memblock(memory, r) {
7139 if (!memblock_is_hotpluggable(r))
7140 continue;
7141
7142 nid = memblock_get_region_node(r);
7143
7144 usable_startpfn = PFN_DOWN(r->base);
7145 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7146 min(usable_startpfn, zone_movable_pfn[nid]) :
7147 usable_startpfn;
7148 }
7149
7150 goto out2;
7151 }
7152
7153 /*
7154 * If kernelcore=mirror is specified, ignore movablecore option
7155 */
7156 if (mirrored_kernelcore) {
7157 bool mem_below_4gb_not_mirrored = false;
7158
7159 for_each_memblock(memory, r) {
7160 if (memblock_is_mirror(r))
7161 continue;
7162
7163 nid = memblock_get_region_node(r);
7164
7165 usable_startpfn = memblock_region_memory_base_pfn(r);
7166
7167 if (usable_startpfn < 0x100000) {
7168 mem_below_4gb_not_mirrored = true;
7169 continue;
7170 }
7171
7172 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7173 min(usable_startpfn, zone_movable_pfn[nid]) :
7174 usable_startpfn;
7175 }
7176
7177 if (mem_below_4gb_not_mirrored)
7178 pr_warn("This configuration results in unmirrored kernel memory.\n");
7179
7180 goto out2;
7181 }
7182
7183 /*
7184 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7185 * amount of necessary memory.
7186 */
7187 if (required_kernelcore_percent)
7188 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7189 10000UL;
7190 if (required_movablecore_percent)
7191 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7192 10000UL;
7193
7194 /*
7195 * If movablecore= was specified, calculate what size of
7196 * kernelcore that corresponds so that memory usable for
7197 * any allocation type is evenly spread. If both kernelcore
7198 * and movablecore are specified, then the value of kernelcore
7199 * will be used for required_kernelcore if it's greater than
7200 * what movablecore would have allowed.
7201 */
7202 if (required_movablecore) {
7203 unsigned long corepages;
7204
7205 /*
7206 * Round-up so that ZONE_MOVABLE is at least as large as what
7207 * was requested by the user
7208 */
7209 required_movablecore =
7210 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7211 required_movablecore = min(totalpages, required_movablecore);
7212 corepages = totalpages - required_movablecore;
7213
7214 required_kernelcore = max(required_kernelcore, corepages);
7215 }
7216
7217 /*
7218 * If kernelcore was not specified or kernelcore size is larger
7219 * than totalpages, there is no ZONE_MOVABLE.
7220 */
7221 if (!required_kernelcore || required_kernelcore >= totalpages)
7222 goto out;
7223
7224 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7225 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7226
7227 restart:
7228 /* Spread kernelcore memory as evenly as possible throughout nodes */
7229 kernelcore_node = required_kernelcore / usable_nodes;
7230 for_each_node_state(nid, N_MEMORY) {
7231 unsigned long start_pfn, end_pfn;
7232
7233 /*
7234 * Recalculate kernelcore_node if the division per node
7235 * now exceeds what is necessary to satisfy the requested
7236 * amount of memory for the kernel
7237 */
7238 if (required_kernelcore < kernelcore_node)
7239 kernelcore_node = required_kernelcore / usable_nodes;
7240
7241 /*
7242 * As the map is walked, we track how much memory is usable
7243 * by the kernel using kernelcore_remaining. When it is
7244 * 0, the rest of the node is usable by ZONE_MOVABLE
7245 */
7246 kernelcore_remaining = kernelcore_node;
7247
7248 /* Go through each range of PFNs within this node */
7249 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7250 unsigned long size_pages;
7251
7252 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7253 if (start_pfn >= end_pfn)
7254 continue;
7255
7256 /* Account for what is only usable for kernelcore */
7257 if (start_pfn < usable_startpfn) {
7258 unsigned long kernel_pages;
7259 kernel_pages = min(end_pfn, usable_startpfn)
7260 - start_pfn;
7261
7262 kernelcore_remaining -= min(kernel_pages,
7263 kernelcore_remaining);
7264 required_kernelcore -= min(kernel_pages,
7265 required_kernelcore);
7266
7267 /* Continue if range is now fully accounted */
7268 if (end_pfn <= usable_startpfn) {
7269
7270 /*
7271 * Push zone_movable_pfn to the end so
7272 * that if we have to rebalance
7273 * kernelcore across nodes, we will
7274 * not double account here
7275 */
7276 zone_movable_pfn[nid] = end_pfn;
7277 continue;
7278 }
7279 start_pfn = usable_startpfn;
7280 }
7281
7282 /*
7283 * The usable PFN range for ZONE_MOVABLE is from
7284 * start_pfn->end_pfn. Calculate size_pages as the
7285 * number of pages used as kernelcore
7286 */
7287 size_pages = end_pfn - start_pfn;
7288 if (size_pages > kernelcore_remaining)
7289 size_pages = kernelcore_remaining;
7290 zone_movable_pfn[nid] = start_pfn + size_pages;
7291
7292 /*
7293 * Some kernelcore has been met, update counts and
7294 * break if the kernelcore for this node has been
7295 * satisfied
7296 */
7297 required_kernelcore -= min(required_kernelcore,
7298 size_pages);
7299 kernelcore_remaining -= size_pages;
7300 if (!kernelcore_remaining)
7301 break;
7302 }
7303 }
7304
7305 /*
7306 * If there is still required_kernelcore, we do another pass with one
7307 * less node in the count. This will push zone_movable_pfn[nid] further
7308 * along on the nodes that still have memory until kernelcore is
7309 * satisfied
7310 */
7311 usable_nodes--;
7312 if (usable_nodes && required_kernelcore > usable_nodes)
7313 goto restart;
7314
7315 out2:
7316 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7317 for (nid = 0; nid < MAX_NUMNODES; nid++)
7318 zone_movable_pfn[nid] =
7319 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7320
7321 out:
7322 /* restore the node_state */
7323 node_states[N_MEMORY] = saved_node_state;
7324 }
7325
7326 /* Any regular or high memory on that node ? */
7327 static void check_for_memory(pg_data_t *pgdat, int nid)
7328 {
7329 enum zone_type zone_type;
7330
7331 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7332 struct zone *zone = &pgdat->node_zones[zone_type];
7333 if (populated_zone(zone)) {
7334 if (IS_ENABLED(CONFIG_HIGHMEM))
7335 node_set_state(nid, N_HIGH_MEMORY);
7336 if (zone_type <= ZONE_NORMAL)
7337 node_set_state(nid, N_NORMAL_MEMORY);
7338 break;
7339 }
7340 }
7341 }
7342
7343 /*
7344 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7345 * such cases we allow max_zone_pfn sorted in the descending order
7346 */
7347 bool __weak arch_has_descending_max_zone_pfns(void)
7348 {
7349 return false;
7350 }
7351
7352 /**
7353 * free_area_init - Initialise all pg_data_t and zone data
7354 * @max_zone_pfn: an array of max PFNs for each zone
7355 *
7356 * This will call free_area_init_node() for each active node in the system.
7357 * Using the page ranges provided by memblock_set_node(), the size of each
7358 * zone in each node and their holes is calculated. If the maximum PFN
7359 * between two adjacent zones match, it is assumed that the zone is empty.
7360 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7361 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7362 * starts where the previous one ended. For example, ZONE_DMA32 starts
7363 * at arch_max_dma_pfn.
7364 */
7365 void __init free_area_init(unsigned long *max_zone_pfn)
7366 {
7367 unsigned long start_pfn, end_pfn;
7368 int i, nid, zone;
7369 bool descending;
7370
7371 /* Record where the zone boundaries are */
7372 memset(arch_zone_lowest_possible_pfn, 0,
7373 sizeof(arch_zone_lowest_possible_pfn));
7374 memset(arch_zone_highest_possible_pfn, 0,
7375 sizeof(arch_zone_highest_possible_pfn));
7376
7377 start_pfn = find_min_pfn_with_active_regions();
7378 descending = arch_has_descending_max_zone_pfns();
7379
7380 for (i = 0; i < MAX_NR_ZONES; i++) {
7381 if (descending)
7382 zone = MAX_NR_ZONES - i - 1;
7383 else
7384 zone = i;
7385
7386 if (zone == ZONE_MOVABLE)
7387 continue;
7388
7389 end_pfn = max(max_zone_pfn[zone], start_pfn);
7390 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7391 arch_zone_highest_possible_pfn[zone] = end_pfn;
7392
7393 start_pfn = end_pfn;
7394 }
7395
7396 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7397 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7398 find_zone_movable_pfns_for_nodes();
7399
7400 /* Print out the zone ranges */
7401 pr_info("Zone ranges:\n");
7402 for (i = 0; i < MAX_NR_ZONES; i++) {
7403 if (i == ZONE_MOVABLE)
7404 continue;
7405 pr_info(" %-8s ", zone_names[i]);
7406 if (arch_zone_lowest_possible_pfn[i] ==
7407 arch_zone_highest_possible_pfn[i])
7408 pr_cont("empty\n");
7409 else
7410 pr_cont("[mem %#018Lx-%#018Lx]\n",
7411 (u64)arch_zone_lowest_possible_pfn[i]
7412 << PAGE_SHIFT,
7413 ((u64)arch_zone_highest_possible_pfn[i]
7414 << PAGE_SHIFT) - 1);
7415 }
7416
7417 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7418 pr_info("Movable zone start for each node\n");
7419 for (i = 0; i < MAX_NUMNODES; i++) {
7420 if (zone_movable_pfn[i])
7421 pr_info(" Node %d: %#018Lx\n", i,
7422 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7423 }
7424
7425 /*
7426 * Print out the early node map, and initialize the
7427 * subsection-map relative to active online memory ranges to
7428 * enable future "sub-section" extensions of the memory map.
7429 */
7430 pr_info("Early memory node ranges\n");
7431 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7432 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7433 (u64)start_pfn << PAGE_SHIFT,
7434 ((u64)end_pfn << PAGE_SHIFT) - 1);
7435 subsection_map_init(start_pfn, end_pfn - start_pfn);
7436 }
7437
7438 /* Initialise every node */
7439 mminit_verify_pageflags_layout();
7440 setup_nr_node_ids();
7441 init_unavailable_mem();
7442 for_each_online_node(nid) {
7443 pg_data_t *pgdat = NODE_DATA(nid);
7444 free_area_init_node(nid);
7445
7446 /* Any memory on that node */
7447 if (pgdat->node_present_pages)
7448 node_set_state(nid, N_MEMORY);
7449 check_for_memory(pgdat, nid);
7450 }
7451 }
7452
7453 static int __init cmdline_parse_core(char *p, unsigned long *core,
7454 unsigned long *percent)
7455 {
7456 unsigned long long coremem;
7457 char *endptr;
7458
7459 if (!p)
7460 return -EINVAL;
7461
7462 /* Value may be a percentage of total memory, otherwise bytes */
7463 coremem = simple_strtoull(p, &endptr, 0);
7464 if (*endptr == '%') {
7465 /* Paranoid check for percent values greater than 100 */
7466 WARN_ON(coremem > 100);
7467
7468 *percent = coremem;
7469 } else {
7470 coremem = memparse(p, &p);
7471 /* Paranoid check that UL is enough for the coremem value */
7472 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7473
7474 *core = coremem >> PAGE_SHIFT;
7475 *percent = 0UL;
7476 }
7477 return 0;
7478 }
7479
7480 /*
7481 * kernelcore=size sets the amount of memory for use for allocations that
7482 * cannot be reclaimed or migrated.
7483 */
7484 static int __init cmdline_parse_kernelcore(char *p)
7485 {
7486 /* parse kernelcore=mirror */
7487 if (parse_option_str(p, "mirror")) {
7488 mirrored_kernelcore = true;
7489 return 0;
7490 }
7491
7492 return cmdline_parse_core(p, &required_kernelcore,
7493 &required_kernelcore_percent);
7494 }
7495
7496 /*
7497 * movablecore=size sets the amount of memory for use for allocations that
7498 * can be reclaimed or migrated.
7499 */
7500 static int __init cmdline_parse_movablecore(char *p)
7501 {
7502 return cmdline_parse_core(p, &required_movablecore,
7503 &required_movablecore_percent);
7504 }
7505
7506 early_param("kernelcore", cmdline_parse_kernelcore);
7507 early_param("movablecore", cmdline_parse_movablecore);
7508
7509 void adjust_managed_page_count(struct page *page, long count)
7510 {
7511 atomic_long_add(count, &page_zone(page)->managed_pages);
7512 totalram_pages_add(count);
7513 #ifdef CONFIG_HIGHMEM
7514 if (PageHighMem(page))
7515 totalhigh_pages_add(count);
7516 #endif
7517 }
7518 EXPORT_SYMBOL(adjust_managed_page_count);
7519
7520 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7521 {
7522 void *pos;
7523 unsigned long pages = 0;
7524
7525 start = (void *)PAGE_ALIGN((unsigned long)start);
7526 end = (void *)((unsigned long)end & PAGE_MASK);
7527 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7528 struct page *page = virt_to_page(pos);
7529 void *direct_map_addr;
7530
7531 /*
7532 * 'direct_map_addr' might be different from 'pos'
7533 * because some architectures' virt_to_page()
7534 * work with aliases. Getting the direct map
7535 * address ensures that we get a _writeable_
7536 * alias for the memset().
7537 */
7538 direct_map_addr = page_address(page);
7539 if ((unsigned int)poison <= 0xFF)
7540 memset(direct_map_addr, poison, PAGE_SIZE);
7541
7542 free_reserved_page(page);
7543 }
7544
7545 if (pages && s)
7546 pr_info("Freeing %s memory: %ldK\n",
7547 s, pages << (PAGE_SHIFT - 10));
7548
7549 return pages;
7550 }
7551
7552 #ifdef CONFIG_HIGHMEM
7553 void free_highmem_page(struct page *page)
7554 {
7555 __free_reserved_page(page);
7556 totalram_pages_inc();
7557 atomic_long_inc(&page_zone(page)->managed_pages);
7558 totalhigh_pages_inc();
7559 }
7560 #endif
7561
7562
7563 void __init mem_init_print_info(const char *str)
7564 {
7565 unsigned long physpages, codesize, datasize, rosize, bss_size;
7566 unsigned long init_code_size, init_data_size;
7567
7568 physpages = get_num_physpages();
7569 codesize = _etext - _stext;
7570 datasize = _edata - _sdata;
7571 rosize = __end_rodata - __start_rodata;
7572 bss_size = __bss_stop - __bss_start;
7573 init_data_size = __init_end - __init_begin;
7574 init_code_size = _einittext - _sinittext;
7575
7576 /*
7577 * Detect special cases and adjust section sizes accordingly:
7578 * 1) .init.* may be embedded into .data sections
7579 * 2) .init.text.* may be out of [__init_begin, __init_end],
7580 * please refer to arch/tile/kernel/vmlinux.lds.S.
7581 * 3) .rodata.* may be embedded into .text or .data sections.
7582 */
7583 #define adj_init_size(start, end, size, pos, adj) \
7584 do { \
7585 if (start <= pos && pos < end && size > adj) \
7586 size -= adj; \
7587 } while (0)
7588
7589 adj_init_size(__init_begin, __init_end, init_data_size,
7590 _sinittext, init_code_size);
7591 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7592 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7593 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7594 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7595
7596 #undef adj_init_size
7597
7598 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7599 #ifdef CONFIG_HIGHMEM
7600 ", %luK highmem"
7601 #endif
7602 "%s%s)\n",
7603 nr_free_pages() << (PAGE_SHIFT - 10),
7604 physpages << (PAGE_SHIFT - 10),
7605 codesize >> 10, datasize >> 10, rosize >> 10,
7606 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7607 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7608 totalcma_pages << (PAGE_SHIFT - 10),
7609 #ifdef CONFIG_HIGHMEM
7610 totalhigh_pages() << (PAGE_SHIFT - 10),
7611 #endif
7612 str ? ", " : "", str ? str : "");
7613 }
7614
7615 /**
7616 * set_dma_reserve - set the specified number of pages reserved in the first zone
7617 * @new_dma_reserve: The number of pages to mark reserved
7618 *
7619 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7620 * In the DMA zone, a significant percentage may be consumed by kernel image
7621 * and other unfreeable allocations which can skew the watermarks badly. This
7622 * function may optionally be used to account for unfreeable pages in the
7623 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7624 * smaller per-cpu batchsize.
7625 */
7626 void __init set_dma_reserve(unsigned long new_dma_reserve)
7627 {
7628 dma_reserve = new_dma_reserve;
7629 }
7630
7631 static int page_alloc_cpu_dead(unsigned int cpu)
7632 {
7633
7634 lru_add_drain_cpu(cpu);
7635 drain_pages(cpu);
7636
7637 /*
7638 * Spill the event counters of the dead processor
7639 * into the current processors event counters.
7640 * This artificially elevates the count of the current
7641 * processor.
7642 */
7643 vm_events_fold_cpu(cpu);
7644
7645 /*
7646 * Zero the differential counters of the dead processor
7647 * so that the vm statistics are consistent.
7648 *
7649 * This is only okay since the processor is dead and cannot
7650 * race with what we are doing.
7651 */
7652 cpu_vm_stats_fold(cpu);
7653 return 0;
7654 }
7655
7656 #ifdef CONFIG_NUMA
7657 int hashdist = HASHDIST_DEFAULT;
7658
7659 static int __init set_hashdist(char *str)
7660 {
7661 if (!str)
7662 return 0;
7663 hashdist = simple_strtoul(str, &str, 0);
7664 return 1;
7665 }
7666 __setup("hashdist=", set_hashdist);
7667 #endif
7668
7669 void __init page_alloc_init(void)
7670 {
7671 int ret;
7672
7673 #ifdef CONFIG_NUMA
7674 if (num_node_state(N_MEMORY) == 1)
7675 hashdist = 0;
7676 #endif
7677
7678 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7679 "mm/page_alloc:dead", NULL,
7680 page_alloc_cpu_dead);
7681 WARN_ON(ret < 0);
7682 }
7683
7684 /*
7685 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7686 * or min_free_kbytes changes.
7687 */
7688 static void calculate_totalreserve_pages(void)
7689 {
7690 struct pglist_data *pgdat;
7691 unsigned long reserve_pages = 0;
7692 enum zone_type i, j;
7693
7694 for_each_online_pgdat(pgdat) {
7695
7696 pgdat->totalreserve_pages = 0;
7697
7698 for (i = 0; i < MAX_NR_ZONES; i++) {
7699 struct zone *zone = pgdat->node_zones + i;
7700 long max = 0;
7701 unsigned long managed_pages = zone_managed_pages(zone);
7702
7703 /* Find valid and maximum lowmem_reserve in the zone */
7704 for (j = i; j < MAX_NR_ZONES; j++) {
7705 if (zone->lowmem_reserve[j] > max)
7706 max = zone->lowmem_reserve[j];
7707 }
7708
7709 /* we treat the high watermark as reserved pages. */
7710 max += high_wmark_pages(zone);
7711
7712 if (max > managed_pages)
7713 max = managed_pages;
7714
7715 pgdat->totalreserve_pages += max;
7716
7717 reserve_pages += max;
7718 }
7719 }
7720 totalreserve_pages = reserve_pages;
7721 }
7722
7723 /*
7724 * setup_per_zone_lowmem_reserve - called whenever
7725 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7726 * has a correct pages reserved value, so an adequate number of
7727 * pages are left in the zone after a successful __alloc_pages().
7728 */
7729 static void setup_per_zone_lowmem_reserve(void)
7730 {
7731 struct pglist_data *pgdat;
7732 enum zone_type j, idx;
7733
7734 for_each_online_pgdat(pgdat) {
7735 for (j = 0; j < MAX_NR_ZONES; j++) {
7736 struct zone *zone = pgdat->node_zones + j;
7737 unsigned long managed_pages = zone_managed_pages(zone);
7738
7739 zone->lowmem_reserve[j] = 0;
7740
7741 idx = j;
7742 while (idx) {
7743 struct zone *lower_zone;
7744
7745 idx--;
7746 lower_zone = pgdat->node_zones + idx;
7747
7748 if (!sysctl_lowmem_reserve_ratio[idx] ||
7749 !zone_managed_pages(lower_zone)) {
7750 lower_zone->lowmem_reserve[j] = 0;
7751 continue;
7752 } else {
7753 lower_zone->lowmem_reserve[j] =
7754 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7755 }
7756 managed_pages += zone_managed_pages(lower_zone);
7757 }
7758 }
7759 }
7760
7761 /* update totalreserve_pages */
7762 calculate_totalreserve_pages();
7763 }
7764
7765 static void __setup_per_zone_wmarks(void)
7766 {
7767 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7768 unsigned long lowmem_pages = 0;
7769 struct zone *zone;
7770 unsigned long flags;
7771
7772 /* Calculate total number of !ZONE_HIGHMEM pages */
7773 for_each_zone(zone) {
7774 if (!is_highmem(zone))
7775 lowmem_pages += zone_managed_pages(zone);
7776 }
7777
7778 for_each_zone(zone) {
7779 u64 tmp;
7780
7781 spin_lock_irqsave(&zone->lock, flags);
7782 tmp = (u64)pages_min * zone_managed_pages(zone);
7783 do_div(tmp, lowmem_pages);
7784 if (is_highmem(zone)) {
7785 /*
7786 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7787 * need highmem pages, so cap pages_min to a small
7788 * value here.
7789 *
7790 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7791 * deltas control async page reclaim, and so should
7792 * not be capped for highmem.
7793 */
7794 unsigned long min_pages;
7795
7796 min_pages = zone_managed_pages(zone) / 1024;
7797 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7798 zone->_watermark[WMARK_MIN] = min_pages;
7799 } else {
7800 /*
7801 * If it's a lowmem zone, reserve a number of pages
7802 * proportionate to the zone's size.
7803 */
7804 zone->_watermark[WMARK_MIN] = tmp;
7805 }
7806
7807 /*
7808 * Set the kswapd watermarks distance according to the
7809 * scale factor in proportion to available memory, but
7810 * ensure a minimum size on small systems.
7811 */
7812 tmp = max_t(u64, tmp >> 2,
7813 mult_frac(zone_managed_pages(zone),
7814 watermark_scale_factor, 10000));
7815
7816 zone->watermark_boost = 0;
7817 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7818 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7819
7820 spin_unlock_irqrestore(&zone->lock, flags);
7821 }
7822
7823 /* update totalreserve_pages */
7824 calculate_totalreserve_pages();
7825 }
7826
7827 /**
7828 * setup_per_zone_wmarks - called when min_free_kbytes changes
7829 * or when memory is hot-{added|removed}
7830 *
7831 * Ensures that the watermark[min,low,high] values for each zone are set
7832 * correctly with respect to min_free_kbytes.
7833 */
7834 void setup_per_zone_wmarks(void)
7835 {
7836 static DEFINE_SPINLOCK(lock);
7837
7838 spin_lock(&lock);
7839 __setup_per_zone_wmarks();
7840 spin_unlock(&lock);
7841 }
7842
7843 /*
7844 * Initialise min_free_kbytes.
7845 *
7846 * For small machines we want it small (128k min). For large machines
7847 * we want it large (256MB max). But it is not linear, because network
7848 * bandwidth does not increase linearly with machine size. We use
7849 *
7850 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7851 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7852 *
7853 * which yields
7854 *
7855 * 16MB: 512k
7856 * 32MB: 724k
7857 * 64MB: 1024k
7858 * 128MB: 1448k
7859 * 256MB: 2048k
7860 * 512MB: 2896k
7861 * 1024MB: 4096k
7862 * 2048MB: 5792k
7863 * 4096MB: 8192k
7864 * 8192MB: 11584k
7865 * 16384MB: 16384k
7866 */
7867 int __meminit init_per_zone_wmark_min(void)
7868 {
7869 unsigned long lowmem_kbytes;
7870 int new_min_free_kbytes;
7871
7872 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7873 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7874
7875 if (new_min_free_kbytes > user_min_free_kbytes) {
7876 min_free_kbytes = new_min_free_kbytes;
7877 if (min_free_kbytes < 128)
7878 min_free_kbytes = 128;
7879 if (min_free_kbytes > 262144)
7880 min_free_kbytes = 262144;
7881 } else {
7882 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7883 new_min_free_kbytes, user_min_free_kbytes);
7884 }
7885 setup_per_zone_wmarks();
7886 refresh_zone_stat_thresholds();
7887 setup_per_zone_lowmem_reserve();
7888
7889 #ifdef CONFIG_NUMA
7890 setup_min_unmapped_ratio();
7891 setup_min_slab_ratio();
7892 #endif
7893
7894 return 0;
7895 }
7896 postcore_initcall(init_per_zone_wmark_min)
7897
7898 /*
7899 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7900 * that we can call two helper functions whenever min_free_kbytes
7901 * changes.
7902 */
7903 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7904 void *buffer, size_t *length, loff_t *ppos)
7905 {
7906 int rc;
7907
7908 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7909 if (rc)
7910 return rc;
7911
7912 if (write) {
7913 user_min_free_kbytes = min_free_kbytes;
7914 setup_per_zone_wmarks();
7915 }
7916 return 0;
7917 }
7918
7919 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7920 void *buffer, size_t *length, loff_t *ppos)
7921 {
7922 int rc;
7923
7924 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7925 if (rc)
7926 return rc;
7927
7928 if (write)
7929 setup_per_zone_wmarks();
7930
7931 return 0;
7932 }
7933
7934 #ifdef CONFIG_NUMA
7935 static void setup_min_unmapped_ratio(void)
7936 {
7937 pg_data_t *pgdat;
7938 struct zone *zone;
7939
7940 for_each_online_pgdat(pgdat)
7941 pgdat->min_unmapped_pages = 0;
7942
7943 for_each_zone(zone)
7944 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7945 sysctl_min_unmapped_ratio) / 100;
7946 }
7947
7948
7949 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7950 void *buffer, size_t *length, loff_t *ppos)
7951 {
7952 int rc;
7953
7954 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7955 if (rc)
7956 return rc;
7957
7958 setup_min_unmapped_ratio();
7959
7960 return 0;
7961 }
7962
7963 static void setup_min_slab_ratio(void)
7964 {
7965 pg_data_t *pgdat;
7966 struct zone *zone;
7967
7968 for_each_online_pgdat(pgdat)
7969 pgdat->min_slab_pages = 0;
7970
7971 for_each_zone(zone)
7972 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7973 sysctl_min_slab_ratio) / 100;
7974 }
7975
7976 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7977 void *buffer, size_t *length, loff_t *ppos)
7978 {
7979 int rc;
7980
7981 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7982 if (rc)
7983 return rc;
7984
7985 setup_min_slab_ratio();
7986
7987 return 0;
7988 }
7989 #endif
7990
7991 /*
7992 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7993 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7994 * whenever sysctl_lowmem_reserve_ratio changes.
7995 *
7996 * The reserve ratio obviously has absolutely no relation with the
7997 * minimum watermarks. The lowmem reserve ratio can only make sense
7998 * if in function of the boot time zone sizes.
7999 */
8000 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8001 void *buffer, size_t *length, loff_t *ppos)
8002 {
8003 int i;
8004
8005 proc_dointvec_minmax(table, write, buffer, length, ppos);
8006
8007 for (i = 0; i < MAX_NR_ZONES; i++) {
8008 if (sysctl_lowmem_reserve_ratio[i] < 1)
8009 sysctl_lowmem_reserve_ratio[i] = 0;
8010 }
8011
8012 setup_per_zone_lowmem_reserve();
8013 return 0;
8014 }
8015
8016 static void __zone_pcp_update(struct zone *zone)
8017 {
8018 unsigned int cpu;
8019
8020 for_each_possible_cpu(cpu)
8021 pageset_set_high_and_batch(zone,
8022 per_cpu_ptr(zone->pageset, cpu));
8023 }
8024
8025 /*
8026 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8027 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8028 * pagelist can have before it gets flushed back to buddy allocator.
8029 */
8030 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8031 void *buffer, size_t *length, loff_t *ppos)
8032 {
8033 struct zone *zone;
8034 int old_percpu_pagelist_fraction;
8035 int ret;
8036
8037 mutex_lock(&pcp_batch_high_lock);
8038 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8039
8040 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8041 if (!write || ret < 0)
8042 goto out;
8043
8044 /* Sanity checking to avoid pcp imbalance */
8045 if (percpu_pagelist_fraction &&
8046 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8047 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8048 ret = -EINVAL;
8049 goto out;
8050 }
8051
8052 /* No change? */
8053 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8054 goto out;
8055
8056 for_each_populated_zone(zone)
8057 __zone_pcp_update(zone);
8058 out:
8059 mutex_unlock(&pcp_batch_high_lock);
8060 return ret;
8061 }
8062
8063 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8064 /*
8065 * Returns the number of pages that arch has reserved but
8066 * is not known to alloc_large_system_hash().
8067 */
8068 static unsigned long __init arch_reserved_kernel_pages(void)
8069 {
8070 return 0;
8071 }
8072 #endif
8073
8074 /*
8075 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8076 * machines. As memory size is increased the scale is also increased but at
8077 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8078 * quadruples the scale is increased by one, which means the size of hash table
8079 * only doubles, instead of quadrupling as well.
8080 * Because 32-bit systems cannot have large physical memory, where this scaling
8081 * makes sense, it is disabled on such platforms.
8082 */
8083 #if __BITS_PER_LONG > 32
8084 #define ADAPT_SCALE_BASE (64ul << 30)
8085 #define ADAPT_SCALE_SHIFT 2
8086 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8087 #endif
8088
8089 /*
8090 * allocate a large system hash table from bootmem
8091 * - it is assumed that the hash table must contain an exact power-of-2
8092 * quantity of entries
8093 * - limit is the number of hash buckets, not the total allocation size
8094 */
8095 void *__init alloc_large_system_hash(const char *tablename,
8096 unsigned long bucketsize,
8097 unsigned long numentries,
8098 int scale,
8099 int flags,
8100 unsigned int *_hash_shift,
8101 unsigned int *_hash_mask,
8102 unsigned long low_limit,
8103 unsigned long high_limit)
8104 {
8105 unsigned long long max = high_limit;
8106 unsigned long log2qty, size;
8107 void *table = NULL;
8108 gfp_t gfp_flags;
8109 bool virt;
8110
8111 /* allow the kernel cmdline to have a say */
8112 if (!numentries) {
8113 /* round applicable memory size up to nearest megabyte */
8114 numentries = nr_kernel_pages;
8115 numentries -= arch_reserved_kernel_pages();
8116
8117 /* It isn't necessary when PAGE_SIZE >= 1MB */
8118 if (PAGE_SHIFT < 20)
8119 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8120
8121 #if __BITS_PER_LONG > 32
8122 if (!high_limit) {
8123 unsigned long adapt;
8124
8125 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8126 adapt <<= ADAPT_SCALE_SHIFT)
8127 scale++;
8128 }
8129 #endif
8130
8131 /* limit to 1 bucket per 2^scale bytes of low memory */
8132 if (scale > PAGE_SHIFT)
8133 numentries >>= (scale - PAGE_SHIFT);
8134 else
8135 numentries <<= (PAGE_SHIFT - scale);
8136
8137 /* Make sure we've got at least a 0-order allocation.. */
8138 if (unlikely(flags & HASH_SMALL)) {
8139 /* Makes no sense without HASH_EARLY */
8140 WARN_ON(!(flags & HASH_EARLY));
8141 if (!(numentries >> *_hash_shift)) {
8142 numentries = 1UL << *_hash_shift;
8143 BUG_ON(!numentries);
8144 }
8145 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8146 numentries = PAGE_SIZE / bucketsize;
8147 }
8148 numentries = roundup_pow_of_two(numentries);
8149
8150 /* limit allocation size to 1/16 total memory by default */
8151 if (max == 0) {
8152 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8153 do_div(max, bucketsize);
8154 }
8155 max = min(max, 0x80000000ULL);
8156
8157 if (numentries < low_limit)
8158 numentries = low_limit;
8159 if (numentries > max)
8160 numentries = max;
8161
8162 log2qty = ilog2(numentries);
8163
8164 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8165 do {
8166 virt = false;
8167 size = bucketsize << log2qty;
8168 if (flags & HASH_EARLY) {
8169 if (flags & HASH_ZERO)
8170 table = memblock_alloc(size, SMP_CACHE_BYTES);
8171 else
8172 table = memblock_alloc_raw(size,
8173 SMP_CACHE_BYTES);
8174 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8175 table = __vmalloc(size, gfp_flags);
8176 virt = true;
8177 } else {
8178 /*
8179 * If bucketsize is not a power-of-two, we may free
8180 * some pages at the end of hash table which
8181 * alloc_pages_exact() automatically does
8182 */
8183 table = alloc_pages_exact(size, gfp_flags);
8184 kmemleak_alloc(table, size, 1, gfp_flags);
8185 }
8186 } while (!table && size > PAGE_SIZE && --log2qty);
8187
8188 if (!table)
8189 panic("Failed to allocate %s hash table\n", tablename);
8190
8191 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8192 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8193 virt ? "vmalloc" : "linear");
8194
8195 if (_hash_shift)
8196 *_hash_shift = log2qty;
8197 if (_hash_mask)
8198 *_hash_mask = (1 << log2qty) - 1;
8199
8200 return table;
8201 }
8202
8203 /*
8204 * This function checks whether pageblock includes unmovable pages or not.
8205 *
8206 * PageLRU check without isolation or lru_lock could race so that
8207 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8208 * check without lock_page also may miss some movable non-lru pages at
8209 * race condition. So you can't expect this function should be exact.
8210 *
8211 * Returns a page without holding a reference. If the caller wants to
8212 * dereference that page (e.g., dumping), it has to make sure that it
8213 * cannot get removed (e.g., via memory unplug) concurrently.
8214 *
8215 */
8216 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8217 int migratetype, int flags)
8218 {
8219 unsigned long iter = 0;
8220 unsigned long pfn = page_to_pfn(page);
8221
8222 /*
8223 * TODO we could make this much more efficient by not checking every
8224 * page in the range if we know all of them are in MOVABLE_ZONE and
8225 * that the movable zone guarantees that pages are migratable but
8226 * the later is not the case right now unfortunatelly. E.g. movablecore
8227 * can still lead to having bootmem allocations in zone_movable.
8228 */
8229
8230 if (is_migrate_cma_page(page)) {
8231 /*
8232 * CMA allocations (alloc_contig_range) really need to mark
8233 * isolate CMA pageblocks even when they are not movable in fact
8234 * so consider them movable here.
8235 */
8236 if (is_migrate_cma(migratetype))
8237 return NULL;
8238
8239 return page;
8240 }
8241
8242 for (; iter < pageblock_nr_pages; iter++) {
8243 if (!pfn_valid_within(pfn + iter))
8244 continue;
8245
8246 page = pfn_to_page(pfn + iter);
8247
8248 if (PageReserved(page))
8249 return page;
8250
8251 /*
8252 * If the zone is movable and we have ruled out all reserved
8253 * pages then it should be reasonably safe to assume the rest
8254 * is movable.
8255 */
8256 if (zone_idx(zone) == ZONE_MOVABLE)
8257 continue;
8258
8259 /*
8260 * Hugepages are not in LRU lists, but they're movable.
8261 * THPs are on the LRU, but need to be counted as #small pages.
8262 * We need not scan over tail pages because we don't
8263 * handle each tail page individually in migration.
8264 */
8265 if (PageHuge(page) || PageTransCompound(page)) {
8266 struct page *head = compound_head(page);
8267 unsigned int skip_pages;
8268
8269 if (PageHuge(page)) {
8270 if (!hugepage_migration_supported(page_hstate(head)))
8271 return page;
8272 } else if (!PageLRU(head) && !__PageMovable(head)) {
8273 return page;
8274 }
8275
8276 skip_pages = compound_nr(head) - (page - head);
8277 iter += skip_pages - 1;
8278 continue;
8279 }
8280
8281 /*
8282 * We can't use page_count without pin a page
8283 * because another CPU can free compound page.
8284 * This check already skips compound tails of THP
8285 * because their page->_refcount is zero at all time.
8286 */
8287 if (!page_ref_count(page)) {
8288 if (PageBuddy(page))
8289 iter += (1 << page_order(page)) - 1;
8290 continue;
8291 }
8292
8293 /*
8294 * The HWPoisoned page may be not in buddy system, and
8295 * page_count() is not 0.
8296 */
8297 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8298 continue;
8299
8300 /*
8301 * We treat all PageOffline() pages as movable when offlining
8302 * to give drivers a chance to decrement their reference count
8303 * in MEM_GOING_OFFLINE in order to indicate that these pages
8304 * can be offlined as there are no direct references anymore.
8305 * For actually unmovable PageOffline() where the driver does
8306 * not support this, we will fail later when trying to actually
8307 * move these pages that still have a reference count > 0.
8308 * (false negatives in this function only)
8309 */
8310 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8311 continue;
8312
8313 if (__PageMovable(page) || PageLRU(page))
8314 continue;
8315
8316 /*
8317 * If there are RECLAIMABLE pages, we need to check
8318 * it. But now, memory offline itself doesn't call
8319 * shrink_node_slabs() and it still to be fixed.
8320 */
8321 /*
8322 * If the page is not RAM, page_count()should be 0.
8323 * we don't need more check. This is an _used_ not-movable page.
8324 *
8325 * The problematic thing here is PG_reserved pages. PG_reserved
8326 * is set to both of a memory hole page and a _used_ kernel
8327 * page at boot.
8328 */
8329 return page;
8330 }
8331 return NULL;
8332 }
8333
8334 #ifdef CONFIG_CONTIG_ALLOC
8335 static unsigned long pfn_max_align_down(unsigned long pfn)
8336 {
8337 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8338 pageblock_nr_pages) - 1);
8339 }
8340
8341 static unsigned long pfn_max_align_up(unsigned long pfn)
8342 {
8343 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8344 pageblock_nr_pages));
8345 }
8346
8347 /* [start, end) must belong to a single zone. */
8348 static int __alloc_contig_migrate_range(struct compact_control *cc,
8349 unsigned long start, unsigned long end)
8350 {
8351 /* This function is based on compact_zone() from compaction.c. */
8352 unsigned int nr_reclaimed;
8353 unsigned long pfn = start;
8354 unsigned int tries = 0;
8355 int ret = 0;
8356 struct migration_target_control mtc = {
8357 .nid = zone_to_nid(cc->zone),
8358 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8359 };
8360
8361 migrate_prep();
8362
8363 while (pfn < end || !list_empty(&cc->migratepages)) {
8364 if (fatal_signal_pending(current)) {
8365 ret = -EINTR;
8366 break;
8367 }
8368
8369 if (list_empty(&cc->migratepages)) {
8370 cc->nr_migratepages = 0;
8371 pfn = isolate_migratepages_range(cc, pfn, end);
8372 if (!pfn) {
8373 ret = -EINTR;
8374 break;
8375 }
8376 tries = 0;
8377 } else if (++tries == 5) {
8378 ret = ret < 0 ? ret : -EBUSY;
8379 break;
8380 }
8381
8382 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8383 &cc->migratepages);
8384 cc->nr_migratepages -= nr_reclaimed;
8385
8386 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8387 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8388 }
8389 if (ret < 0) {
8390 putback_movable_pages(&cc->migratepages);
8391 return ret;
8392 }
8393 return 0;
8394 }
8395
8396 /**
8397 * alloc_contig_range() -- tries to allocate given range of pages
8398 * @start: start PFN to allocate
8399 * @end: one-past-the-last PFN to allocate
8400 * @migratetype: migratetype of the underlaying pageblocks (either
8401 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8402 * in range must have the same migratetype and it must
8403 * be either of the two.
8404 * @gfp_mask: GFP mask to use during compaction
8405 *
8406 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8407 * aligned. The PFN range must belong to a single zone.
8408 *
8409 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8410 * pageblocks in the range. Once isolated, the pageblocks should not
8411 * be modified by others.
8412 *
8413 * Return: zero on success or negative error code. On success all
8414 * pages which PFN is in [start, end) are allocated for the caller and
8415 * need to be freed with free_contig_range().
8416 */
8417 int alloc_contig_range(unsigned long start, unsigned long end,
8418 unsigned migratetype, gfp_t gfp_mask)
8419 {
8420 unsigned long outer_start, outer_end;
8421 unsigned int order;
8422 int ret = 0;
8423
8424 struct compact_control cc = {
8425 .nr_migratepages = 0,
8426 .order = -1,
8427 .zone = page_zone(pfn_to_page(start)),
8428 .mode = MIGRATE_SYNC,
8429 .ignore_skip_hint = true,
8430 .no_set_skip_hint = true,
8431 .gfp_mask = current_gfp_context(gfp_mask),
8432 .alloc_contig = true,
8433 };
8434 INIT_LIST_HEAD(&cc.migratepages);
8435
8436 /*
8437 * What we do here is we mark all pageblocks in range as
8438 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8439 * have different sizes, and due to the way page allocator
8440 * work, we align the range to biggest of the two pages so
8441 * that page allocator won't try to merge buddies from
8442 * different pageblocks and change MIGRATE_ISOLATE to some
8443 * other migration type.
8444 *
8445 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8446 * migrate the pages from an unaligned range (ie. pages that
8447 * we are interested in). This will put all the pages in
8448 * range back to page allocator as MIGRATE_ISOLATE.
8449 *
8450 * When this is done, we take the pages in range from page
8451 * allocator removing them from the buddy system. This way
8452 * page allocator will never consider using them.
8453 *
8454 * This lets us mark the pageblocks back as
8455 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8456 * aligned range but not in the unaligned, original range are
8457 * put back to page allocator so that buddy can use them.
8458 */
8459
8460 ret = start_isolate_page_range(pfn_max_align_down(start),
8461 pfn_max_align_up(end), migratetype, 0);
8462 if (ret < 0)
8463 return ret;
8464
8465 /*
8466 * In case of -EBUSY, we'd like to know which page causes problem.
8467 * So, just fall through. test_pages_isolated() has a tracepoint
8468 * which will report the busy page.
8469 *
8470 * It is possible that busy pages could become available before
8471 * the call to test_pages_isolated, and the range will actually be
8472 * allocated. So, if we fall through be sure to clear ret so that
8473 * -EBUSY is not accidentally used or returned to caller.
8474 */
8475 ret = __alloc_contig_migrate_range(&cc, start, end);
8476 if (ret && ret != -EBUSY)
8477 goto done;
8478 ret =0;
8479
8480 /*
8481 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8482 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8483 * more, all pages in [start, end) are free in page allocator.
8484 * What we are going to do is to allocate all pages from
8485 * [start, end) (that is remove them from page allocator).
8486 *
8487 * The only problem is that pages at the beginning and at the
8488 * end of interesting range may be not aligned with pages that
8489 * page allocator holds, ie. they can be part of higher order
8490 * pages. Because of this, we reserve the bigger range and
8491 * once this is done free the pages we are not interested in.
8492 *
8493 * We don't have to hold zone->lock here because the pages are
8494 * isolated thus they won't get removed from buddy.
8495 */
8496
8497 lru_add_drain_all();
8498
8499 order = 0;
8500 outer_start = start;
8501 while (!PageBuddy(pfn_to_page(outer_start))) {
8502 if (++order >= MAX_ORDER) {
8503 outer_start = start;
8504 break;
8505 }
8506 outer_start &= ~0UL << order;
8507 }
8508
8509 if (outer_start != start) {
8510 order = page_order(pfn_to_page(outer_start));
8511
8512 /*
8513 * outer_start page could be small order buddy page and
8514 * it doesn't include start page. Adjust outer_start
8515 * in this case to report failed page properly
8516 * on tracepoint in test_pages_isolated()
8517 */
8518 if (outer_start + (1UL << order) <= start)
8519 outer_start = start;
8520 }
8521
8522 /* Make sure the range is really isolated. */
8523 if (test_pages_isolated(outer_start, end, 0)) {
8524 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8525 __func__, outer_start, end);
8526 ret = -EBUSY;
8527 goto done;
8528 }
8529
8530 /* Grab isolated pages from freelists. */
8531 outer_end = isolate_freepages_range(&cc, outer_start, end);
8532 if (!outer_end) {
8533 ret = -EBUSY;
8534 goto done;
8535 }
8536
8537 /* Free head and tail (if any) */
8538 if (start != outer_start)
8539 free_contig_range(outer_start, start - outer_start);
8540 if (end != outer_end)
8541 free_contig_range(end, outer_end - end);
8542
8543 done:
8544 undo_isolate_page_range(pfn_max_align_down(start),
8545 pfn_max_align_up(end), migratetype);
8546 return ret;
8547 }
8548 EXPORT_SYMBOL(alloc_contig_range);
8549
8550 static int __alloc_contig_pages(unsigned long start_pfn,
8551 unsigned long nr_pages, gfp_t gfp_mask)
8552 {
8553 unsigned long end_pfn = start_pfn + nr_pages;
8554
8555 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8556 gfp_mask);
8557 }
8558
8559 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8560 unsigned long nr_pages)
8561 {
8562 unsigned long i, end_pfn = start_pfn + nr_pages;
8563 struct page *page;
8564
8565 for (i = start_pfn; i < end_pfn; i++) {
8566 page = pfn_to_online_page(i);
8567 if (!page)
8568 return false;
8569
8570 if (page_zone(page) != z)
8571 return false;
8572
8573 if (PageReserved(page))
8574 return false;
8575
8576 if (page_count(page) > 0)
8577 return false;
8578
8579 if (PageHuge(page))
8580 return false;
8581 }
8582 return true;
8583 }
8584
8585 static bool zone_spans_last_pfn(const struct zone *zone,
8586 unsigned long start_pfn, unsigned long nr_pages)
8587 {
8588 unsigned long last_pfn = start_pfn + nr_pages - 1;
8589
8590 return zone_spans_pfn(zone, last_pfn);
8591 }
8592
8593 /**
8594 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8595 * @nr_pages: Number of contiguous pages to allocate
8596 * @gfp_mask: GFP mask to limit search and used during compaction
8597 * @nid: Target node
8598 * @nodemask: Mask for other possible nodes
8599 *
8600 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8601 * on an applicable zonelist to find a contiguous pfn range which can then be
8602 * tried for allocation with alloc_contig_range(). This routine is intended
8603 * for allocation requests which can not be fulfilled with the buddy allocator.
8604 *
8605 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8606 * power of two then the alignment is guaranteed to be to the given nr_pages
8607 * (e.g. 1GB request would be aligned to 1GB).
8608 *
8609 * Allocated pages can be freed with free_contig_range() or by manually calling
8610 * __free_page() on each allocated page.
8611 *
8612 * Return: pointer to contiguous pages on success, or NULL if not successful.
8613 */
8614 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8615 int nid, nodemask_t *nodemask)
8616 {
8617 unsigned long ret, pfn, flags;
8618 struct zonelist *zonelist;
8619 struct zone *zone;
8620 struct zoneref *z;
8621
8622 zonelist = node_zonelist(nid, gfp_mask);
8623 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8624 gfp_zone(gfp_mask), nodemask) {
8625 spin_lock_irqsave(&zone->lock, flags);
8626
8627 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8628 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8629 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8630 /*
8631 * We release the zone lock here because
8632 * alloc_contig_range() will also lock the zone
8633 * at some point. If there's an allocation
8634 * spinning on this lock, it may win the race
8635 * and cause alloc_contig_range() to fail...
8636 */
8637 spin_unlock_irqrestore(&zone->lock, flags);
8638 ret = __alloc_contig_pages(pfn, nr_pages,
8639 gfp_mask);
8640 if (!ret)
8641 return pfn_to_page(pfn);
8642 spin_lock_irqsave(&zone->lock, flags);
8643 }
8644 pfn += nr_pages;
8645 }
8646 spin_unlock_irqrestore(&zone->lock, flags);
8647 }
8648 return NULL;
8649 }
8650 #endif /* CONFIG_CONTIG_ALLOC */
8651
8652 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8653 {
8654 unsigned int count = 0;
8655
8656 for (; nr_pages--; pfn++) {
8657 struct page *page = pfn_to_page(pfn);
8658
8659 count += page_count(page) != 1;
8660 __free_page(page);
8661 }
8662 WARN(count != 0, "%d pages are still in use!\n", count);
8663 }
8664 EXPORT_SYMBOL(free_contig_range);
8665
8666 /*
8667 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8668 * page high values need to be recalulated.
8669 */
8670 void __meminit zone_pcp_update(struct zone *zone)
8671 {
8672 mutex_lock(&pcp_batch_high_lock);
8673 __zone_pcp_update(zone);
8674 mutex_unlock(&pcp_batch_high_lock);
8675 }
8676
8677 void zone_pcp_reset(struct zone *zone)
8678 {
8679 unsigned long flags;
8680 int cpu;
8681 struct per_cpu_pageset *pset;
8682
8683 /* avoid races with drain_pages() */
8684 local_irq_save(flags);
8685 if (zone->pageset != &boot_pageset) {
8686 for_each_online_cpu(cpu) {
8687 pset = per_cpu_ptr(zone->pageset, cpu);
8688 drain_zonestat(zone, pset);
8689 }
8690 free_percpu(zone->pageset);
8691 zone->pageset = &boot_pageset;
8692 }
8693 local_irq_restore(flags);
8694 }
8695
8696 #ifdef CONFIG_MEMORY_HOTREMOVE
8697 /*
8698 * All pages in the range must be in a single zone and isolated
8699 * before calling this.
8700 */
8701 unsigned long
8702 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8703 {
8704 struct page *page;
8705 struct zone *zone;
8706 unsigned int order;
8707 unsigned long pfn;
8708 unsigned long flags;
8709 unsigned long offlined_pages = 0;
8710
8711 /* find the first valid pfn */
8712 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8713 if (pfn_valid(pfn))
8714 break;
8715 if (pfn == end_pfn)
8716 return offlined_pages;
8717
8718 offline_mem_sections(pfn, end_pfn);
8719 zone = page_zone(pfn_to_page(pfn));
8720 spin_lock_irqsave(&zone->lock, flags);
8721 pfn = start_pfn;
8722 while (pfn < end_pfn) {
8723 if (!pfn_valid(pfn)) {
8724 pfn++;
8725 continue;
8726 }
8727 page = pfn_to_page(pfn);
8728 /*
8729 * The HWPoisoned page may be not in buddy system, and
8730 * page_count() is not 0.
8731 */
8732 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8733 pfn++;
8734 offlined_pages++;
8735 continue;
8736 }
8737 /*
8738 * At this point all remaining PageOffline() pages have a
8739 * reference count of 0 and can simply be skipped.
8740 */
8741 if (PageOffline(page)) {
8742 BUG_ON(page_count(page));
8743 BUG_ON(PageBuddy(page));
8744 pfn++;
8745 offlined_pages++;
8746 continue;
8747 }
8748
8749 BUG_ON(page_count(page));
8750 BUG_ON(!PageBuddy(page));
8751 order = page_order(page);
8752 offlined_pages += 1 << order;
8753 del_page_from_free_list(page, zone, order);
8754 pfn += (1 << order);
8755 }
8756 spin_unlock_irqrestore(&zone->lock, flags);
8757
8758 return offlined_pages;
8759 }
8760 #endif
8761
8762 bool is_free_buddy_page(struct page *page)
8763 {
8764 struct zone *zone = page_zone(page);
8765 unsigned long pfn = page_to_pfn(page);
8766 unsigned long flags;
8767 unsigned int order;
8768
8769 spin_lock_irqsave(&zone->lock, flags);
8770 for (order = 0; order < MAX_ORDER; order++) {
8771 struct page *page_head = page - (pfn & ((1 << order) - 1));
8772
8773 if (PageBuddy(page_head) && page_order(page_head) >= order)
8774 break;
8775 }
8776 spin_unlock_irqrestore(&zone->lock, flags);
8777
8778 return order < MAX_ORDER;
8779 }
8780
8781 #ifdef CONFIG_MEMORY_FAILURE
8782 /*
8783 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8784 * test is performed under the zone lock to prevent a race against page
8785 * allocation.
8786 */
8787 bool set_hwpoison_free_buddy_page(struct page *page)
8788 {
8789 struct zone *zone = page_zone(page);
8790 unsigned long pfn = page_to_pfn(page);
8791 unsigned long flags;
8792 unsigned int order;
8793 bool hwpoisoned = false;
8794
8795 spin_lock_irqsave(&zone->lock, flags);
8796 for (order = 0; order < MAX_ORDER; order++) {
8797 struct page *page_head = page - (pfn & ((1 << order) - 1));
8798
8799 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8800 if (!TestSetPageHWPoison(page))
8801 hwpoisoned = true;
8802 break;
8803 }
8804 }
8805 spin_unlock_irqrestore(&zone->lock, flags);
8806
8807 return hwpoisoned;
8808 }
8809 #endif