]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40
41 #include <asm/tlbflush.h>
42 #include <asm/div64.h>
43 #include "internal.h"
44
45 /*
46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
47 * initializer cleaner
48 */
49 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
50 EXPORT_SYMBOL(node_online_map);
51 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
52 EXPORT_SYMBOL(node_possible_map);
53 unsigned long totalram_pages __read_mostly;
54 unsigned long totalhigh_pages __read_mostly;
55 unsigned long totalreserve_pages __read_mostly;
56 long nr_swap_pages;
57 int percpu_pagelist_fraction;
58
59 static void __free_pages_ok(struct page *page, unsigned int order);
60
61 /*
62 * results with 256, 32 in the lowmem_reserve sysctl:
63 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
64 * 1G machine -> (16M dma, 784M normal, 224M high)
65 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
66 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
67 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
68 *
69 * TBD: should special case ZONE_DMA32 machines here - in those we normally
70 * don't need any ZONE_NORMAL reservation
71 */
72 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
73
74 EXPORT_SYMBOL(totalram_pages);
75
76 /*
77 * Used by page_zone() to look up the address of the struct zone whose
78 * id is encoded in the upper bits of page->flags
79 */
80 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
81 EXPORT_SYMBOL(zone_table);
82
83 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
84 int min_free_kbytes = 1024;
85
86 unsigned long __initdata nr_kernel_pages;
87 unsigned long __initdata nr_all_pages;
88
89 #ifdef CONFIG_DEBUG_VM
90 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
91 {
92 int ret = 0;
93 unsigned seq;
94 unsigned long pfn = page_to_pfn(page);
95
96 do {
97 seq = zone_span_seqbegin(zone);
98 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
99 ret = 1;
100 else if (pfn < zone->zone_start_pfn)
101 ret = 1;
102 } while (zone_span_seqretry(zone, seq));
103
104 return ret;
105 }
106
107 static int page_is_consistent(struct zone *zone, struct page *page)
108 {
109 #ifdef CONFIG_HOLES_IN_ZONE
110 if (!pfn_valid(page_to_pfn(page)))
111 return 0;
112 #endif
113 if (zone != page_zone(page))
114 return 0;
115
116 return 1;
117 }
118 /*
119 * Temporary debugging check for pages not lying within a given zone.
120 */
121 static int bad_range(struct zone *zone, struct page *page)
122 {
123 if (page_outside_zone_boundaries(zone, page))
124 return 1;
125 if (!page_is_consistent(zone, page))
126 return 1;
127
128 return 0;
129 }
130
131 #else
132 static inline int bad_range(struct zone *zone, struct page *page)
133 {
134 return 0;
135 }
136 #endif
137
138 static void bad_page(struct page *page)
139 {
140 printk(KERN_EMERG "Bad page state in process '%s'\n"
141 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
142 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
143 KERN_EMERG "Backtrace:\n",
144 current->comm, page, (int)(2*sizeof(unsigned long)),
145 (unsigned long)page->flags, page->mapping,
146 page_mapcount(page), page_count(page));
147 dump_stack();
148 page->flags &= ~(1 << PG_lru |
149 1 << PG_private |
150 1 << PG_locked |
151 1 << PG_active |
152 1 << PG_dirty |
153 1 << PG_reclaim |
154 1 << PG_slab |
155 1 << PG_swapcache |
156 1 << PG_writeback |
157 1 << PG_buddy );
158 set_page_count(page, 0);
159 reset_page_mapcount(page);
160 page->mapping = NULL;
161 add_taint(TAINT_BAD_PAGE);
162 }
163
164 /*
165 * Higher-order pages are called "compound pages". They are structured thusly:
166 *
167 * The first PAGE_SIZE page is called the "head page".
168 *
169 * The remaining PAGE_SIZE pages are called "tail pages".
170 *
171 * All pages have PG_compound set. All pages have their ->private pointing at
172 * the head page (even the head page has this).
173 *
174 * The first tail page's ->lru.next holds the address of the compound page's
175 * put_page() function. Its ->lru.prev holds the order of allocation.
176 * This usage means that zero-order pages may not be compound.
177 */
178
179 static void free_compound_page(struct page *page)
180 {
181 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
182 }
183
184 static void prep_compound_page(struct page *page, unsigned long order)
185 {
186 int i;
187 int nr_pages = 1 << order;
188
189 page[1].lru.next = (void *)free_compound_page; /* set dtor */
190 page[1].lru.prev = (void *)order;
191 for (i = 0; i < nr_pages; i++) {
192 struct page *p = page + i;
193
194 __SetPageCompound(p);
195 set_page_private(p, (unsigned long)page);
196 }
197 }
198
199 static void destroy_compound_page(struct page *page, unsigned long order)
200 {
201 int i;
202 int nr_pages = 1 << order;
203
204 if (unlikely((unsigned long)page[1].lru.prev != order))
205 bad_page(page);
206
207 for (i = 0; i < nr_pages; i++) {
208 struct page *p = page + i;
209
210 if (unlikely(!PageCompound(p) |
211 (page_private(p) != (unsigned long)page)))
212 bad_page(page);
213 __ClearPageCompound(p);
214 }
215 }
216
217 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
218 {
219 int i;
220
221 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
222 /*
223 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
224 * and __GFP_HIGHMEM from hard or soft interrupt context.
225 */
226 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
227 for (i = 0; i < (1 << order); i++)
228 clear_highpage(page + i);
229 }
230
231 /*
232 * function for dealing with page's order in buddy system.
233 * zone->lock is already acquired when we use these.
234 * So, we don't need atomic page->flags operations here.
235 */
236 static inline unsigned long page_order(struct page *page)
237 {
238 return page_private(page);
239 }
240
241 static inline void set_page_order(struct page *page, int order)
242 {
243 set_page_private(page, order);
244 __SetPageBuddy(page);
245 }
246
247 static inline void rmv_page_order(struct page *page)
248 {
249 __ClearPageBuddy(page);
250 set_page_private(page, 0);
251 }
252
253 /*
254 * Locate the struct page for both the matching buddy in our
255 * pair (buddy1) and the combined O(n+1) page they form (page).
256 *
257 * 1) Any buddy B1 will have an order O twin B2 which satisfies
258 * the following equation:
259 * B2 = B1 ^ (1 << O)
260 * For example, if the starting buddy (buddy2) is #8 its order
261 * 1 buddy is #10:
262 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
263 *
264 * 2) Any buddy B will have an order O+1 parent P which
265 * satisfies the following equation:
266 * P = B & ~(1 << O)
267 *
268 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
269 */
270 static inline struct page *
271 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
272 {
273 unsigned long buddy_idx = page_idx ^ (1 << order);
274
275 return page + (buddy_idx - page_idx);
276 }
277
278 static inline unsigned long
279 __find_combined_index(unsigned long page_idx, unsigned int order)
280 {
281 return (page_idx & ~(1 << order));
282 }
283
284 /*
285 * This function checks whether a page is free && is the buddy
286 * we can do coalesce a page and its buddy if
287 * (a) the buddy is not in a hole &&
288 * (b) the buddy is in the buddy system &&
289 * (c) a page and its buddy have the same order.
290 *
291 * For recording whether a page is in the buddy system, we use PG_buddy.
292 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
293 *
294 * For recording page's order, we use page_private(page).
295 */
296 static inline int page_is_buddy(struct page *page, int order)
297 {
298 #ifdef CONFIG_HOLES_IN_ZONE
299 if (!pfn_valid(page_to_pfn(page)))
300 return 0;
301 #endif
302
303 if (PageBuddy(page) && page_order(page) == order) {
304 BUG_ON(page_count(page) != 0);
305 return 1;
306 }
307 return 0;
308 }
309
310 /*
311 * Freeing function for a buddy system allocator.
312 *
313 * The concept of a buddy system is to maintain direct-mapped table
314 * (containing bit values) for memory blocks of various "orders".
315 * The bottom level table contains the map for the smallest allocatable
316 * units of memory (here, pages), and each level above it describes
317 * pairs of units from the levels below, hence, "buddies".
318 * At a high level, all that happens here is marking the table entry
319 * at the bottom level available, and propagating the changes upward
320 * as necessary, plus some accounting needed to play nicely with other
321 * parts of the VM system.
322 * At each level, we keep a list of pages, which are heads of continuous
323 * free pages of length of (1 << order) and marked with PG_buddy. Page's
324 * order is recorded in page_private(page) field.
325 * So when we are allocating or freeing one, we can derive the state of the
326 * other. That is, if we allocate a small block, and both were
327 * free, the remainder of the region must be split into blocks.
328 * If a block is freed, and its buddy is also free, then this
329 * triggers coalescing into a block of larger size.
330 *
331 * -- wli
332 */
333
334 static inline void __free_one_page(struct page *page,
335 struct zone *zone, unsigned int order)
336 {
337 unsigned long page_idx;
338 int order_size = 1 << order;
339
340 if (unlikely(PageCompound(page)))
341 destroy_compound_page(page, order);
342
343 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
344
345 BUG_ON(page_idx & (order_size - 1));
346 BUG_ON(bad_range(zone, page));
347
348 zone->free_pages += order_size;
349 while (order < MAX_ORDER-1) {
350 unsigned long combined_idx;
351 struct free_area *area;
352 struct page *buddy;
353
354 buddy = __page_find_buddy(page, page_idx, order);
355 if (!page_is_buddy(buddy, order))
356 break; /* Move the buddy up one level. */
357
358 list_del(&buddy->lru);
359 area = zone->free_area + order;
360 area->nr_free--;
361 rmv_page_order(buddy);
362 combined_idx = __find_combined_index(page_idx, order);
363 page = page + (combined_idx - page_idx);
364 page_idx = combined_idx;
365 order++;
366 }
367 set_page_order(page, order);
368 list_add(&page->lru, &zone->free_area[order].free_list);
369 zone->free_area[order].nr_free++;
370 }
371
372 static inline int free_pages_check(struct page *page)
373 {
374 if (unlikely(page_mapcount(page) |
375 (page->mapping != NULL) |
376 (page_count(page) != 0) |
377 (page->flags & (
378 1 << PG_lru |
379 1 << PG_private |
380 1 << PG_locked |
381 1 << PG_active |
382 1 << PG_reclaim |
383 1 << PG_slab |
384 1 << PG_swapcache |
385 1 << PG_writeback |
386 1 << PG_reserved |
387 1 << PG_buddy ))))
388 bad_page(page);
389 if (PageDirty(page))
390 __ClearPageDirty(page);
391 /*
392 * For now, we report if PG_reserved was found set, but do not
393 * clear it, and do not free the page. But we shall soon need
394 * to do more, for when the ZERO_PAGE count wraps negative.
395 */
396 return PageReserved(page);
397 }
398
399 /*
400 * Frees a list of pages.
401 * Assumes all pages on list are in same zone, and of same order.
402 * count is the number of pages to free.
403 *
404 * If the zone was previously in an "all pages pinned" state then look to
405 * see if this freeing clears that state.
406 *
407 * And clear the zone's pages_scanned counter, to hold off the "all pages are
408 * pinned" detection logic.
409 */
410 static void free_pages_bulk(struct zone *zone, int count,
411 struct list_head *list, int order)
412 {
413 spin_lock(&zone->lock);
414 zone->all_unreclaimable = 0;
415 zone->pages_scanned = 0;
416 while (count--) {
417 struct page *page;
418
419 BUG_ON(list_empty(list));
420 page = list_entry(list->prev, struct page, lru);
421 /* have to delete it as __free_one_page list manipulates */
422 list_del(&page->lru);
423 __free_one_page(page, zone, order);
424 }
425 spin_unlock(&zone->lock);
426 }
427
428 static void free_one_page(struct zone *zone, struct page *page, int order)
429 {
430 LIST_HEAD(list);
431 list_add(&page->lru, &list);
432 free_pages_bulk(zone, 1, &list, order);
433 }
434
435 static void __free_pages_ok(struct page *page, unsigned int order)
436 {
437 unsigned long flags;
438 int i;
439 int reserved = 0;
440
441 arch_free_page(page, order);
442 if (!PageHighMem(page))
443 mutex_debug_check_no_locks_freed(page_address(page),
444 PAGE_SIZE<<order);
445
446 for (i = 0 ; i < (1 << order) ; ++i)
447 reserved += free_pages_check(page + i);
448 if (reserved)
449 return;
450
451 kernel_map_pages(page, 1 << order, 0);
452 local_irq_save(flags);
453 __mod_page_state(pgfree, 1 << order);
454 free_one_page(page_zone(page), page, order);
455 local_irq_restore(flags);
456 }
457
458 /*
459 * permit the bootmem allocator to evade page validation on high-order frees
460 */
461 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
462 {
463 if (order == 0) {
464 __ClearPageReserved(page);
465 set_page_count(page, 0);
466 set_page_refcounted(page);
467 __free_page(page);
468 } else {
469 int loop;
470
471 prefetchw(page);
472 for (loop = 0; loop < BITS_PER_LONG; loop++) {
473 struct page *p = &page[loop];
474
475 if (loop + 1 < BITS_PER_LONG)
476 prefetchw(p + 1);
477 __ClearPageReserved(p);
478 set_page_count(p, 0);
479 }
480
481 set_page_refcounted(page);
482 __free_pages(page, order);
483 }
484 }
485
486
487 /*
488 * The order of subdivision here is critical for the IO subsystem.
489 * Please do not alter this order without good reasons and regression
490 * testing. Specifically, as large blocks of memory are subdivided,
491 * the order in which smaller blocks are delivered depends on the order
492 * they're subdivided in this function. This is the primary factor
493 * influencing the order in which pages are delivered to the IO
494 * subsystem according to empirical testing, and this is also justified
495 * by considering the behavior of a buddy system containing a single
496 * large block of memory acted on by a series of small allocations.
497 * This behavior is a critical factor in sglist merging's success.
498 *
499 * -- wli
500 */
501 static inline void expand(struct zone *zone, struct page *page,
502 int low, int high, struct free_area *area)
503 {
504 unsigned long size = 1 << high;
505
506 while (high > low) {
507 area--;
508 high--;
509 size >>= 1;
510 BUG_ON(bad_range(zone, &page[size]));
511 list_add(&page[size].lru, &area->free_list);
512 area->nr_free++;
513 set_page_order(&page[size], high);
514 }
515 }
516
517 /*
518 * This page is about to be returned from the page allocator
519 */
520 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
521 {
522 if (unlikely(page_mapcount(page) |
523 (page->mapping != NULL) |
524 (page_count(page) != 0) |
525 (page->flags & (
526 1 << PG_lru |
527 1 << PG_private |
528 1 << PG_locked |
529 1 << PG_active |
530 1 << PG_dirty |
531 1 << PG_reclaim |
532 1 << PG_slab |
533 1 << PG_swapcache |
534 1 << PG_writeback |
535 1 << PG_reserved |
536 1 << PG_buddy ))))
537 bad_page(page);
538
539 /*
540 * For now, we report if PG_reserved was found set, but do not
541 * clear it, and do not allocate the page: as a safety net.
542 */
543 if (PageReserved(page))
544 return 1;
545
546 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
547 1 << PG_referenced | 1 << PG_arch_1 |
548 1 << PG_checked | 1 << PG_mappedtodisk);
549 set_page_private(page, 0);
550 set_page_refcounted(page);
551 kernel_map_pages(page, 1 << order, 1);
552
553 if (gfp_flags & __GFP_ZERO)
554 prep_zero_page(page, order, gfp_flags);
555
556 if (order && (gfp_flags & __GFP_COMP))
557 prep_compound_page(page, order);
558
559 return 0;
560 }
561
562 /*
563 * Do the hard work of removing an element from the buddy allocator.
564 * Call me with the zone->lock already held.
565 */
566 static struct page *__rmqueue(struct zone *zone, unsigned int order)
567 {
568 struct free_area * area;
569 unsigned int current_order;
570 struct page *page;
571
572 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
573 area = zone->free_area + current_order;
574 if (list_empty(&area->free_list))
575 continue;
576
577 page = list_entry(area->free_list.next, struct page, lru);
578 list_del(&page->lru);
579 rmv_page_order(page);
580 area->nr_free--;
581 zone->free_pages -= 1UL << order;
582 expand(zone, page, order, current_order, area);
583 return page;
584 }
585
586 return NULL;
587 }
588
589 /*
590 * Obtain a specified number of elements from the buddy allocator, all under
591 * a single hold of the lock, for efficiency. Add them to the supplied list.
592 * Returns the number of new pages which were placed at *list.
593 */
594 static int rmqueue_bulk(struct zone *zone, unsigned int order,
595 unsigned long count, struct list_head *list)
596 {
597 int i;
598
599 spin_lock(&zone->lock);
600 for (i = 0; i < count; ++i) {
601 struct page *page = __rmqueue(zone, order);
602 if (unlikely(page == NULL))
603 break;
604 list_add_tail(&page->lru, list);
605 }
606 spin_unlock(&zone->lock);
607 return i;
608 }
609
610 #ifdef CONFIG_NUMA
611 /*
612 * Called from the slab reaper to drain pagesets on a particular node that
613 * belong to the currently executing processor.
614 * Note that this function must be called with the thread pinned to
615 * a single processor.
616 */
617 void drain_node_pages(int nodeid)
618 {
619 int i, z;
620 unsigned long flags;
621
622 for (z = 0; z < MAX_NR_ZONES; z++) {
623 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
624 struct per_cpu_pageset *pset;
625
626 pset = zone_pcp(zone, smp_processor_id());
627 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
628 struct per_cpu_pages *pcp;
629
630 pcp = &pset->pcp[i];
631 if (pcp->count) {
632 local_irq_save(flags);
633 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
634 pcp->count = 0;
635 local_irq_restore(flags);
636 }
637 }
638 }
639 }
640 #endif
641
642 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
643 static void __drain_pages(unsigned int cpu)
644 {
645 unsigned long flags;
646 struct zone *zone;
647 int i;
648
649 for_each_zone(zone) {
650 struct per_cpu_pageset *pset;
651
652 pset = zone_pcp(zone, cpu);
653 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
654 struct per_cpu_pages *pcp;
655
656 pcp = &pset->pcp[i];
657 local_irq_save(flags);
658 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
659 pcp->count = 0;
660 local_irq_restore(flags);
661 }
662 }
663 }
664 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
665
666 #ifdef CONFIG_PM
667
668 void mark_free_pages(struct zone *zone)
669 {
670 unsigned long zone_pfn, flags;
671 int order;
672 struct list_head *curr;
673
674 if (!zone->spanned_pages)
675 return;
676
677 spin_lock_irqsave(&zone->lock, flags);
678 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
679 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
680
681 for (order = MAX_ORDER - 1; order >= 0; --order)
682 list_for_each(curr, &zone->free_area[order].free_list) {
683 unsigned long start_pfn, i;
684
685 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
686
687 for (i=0; i < (1<<order); i++)
688 SetPageNosaveFree(pfn_to_page(start_pfn+i));
689 }
690 spin_unlock_irqrestore(&zone->lock, flags);
691 }
692
693 /*
694 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
695 */
696 void drain_local_pages(void)
697 {
698 unsigned long flags;
699
700 local_irq_save(flags);
701 __drain_pages(smp_processor_id());
702 local_irq_restore(flags);
703 }
704 #endif /* CONFIG_PM */
705
706 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
707 {
708 #ifdef CONFIG_NUMA
709 pg_data_t *pg = z->zone_pgdat;
710 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
711 struct per_cpu_pageset *p;
712
713 p = zone_pcp(z, cpu);
714 if (pg == orig) {
715 p->numa_hit++;
716 } else {
717 p->numa_miss++;
718 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
719 }
720 if (pg == NODE_DATA(numa_node_id()))
721 p->local_node++;
722 else
723 p->other_node++;
724 #endif
725 }
726
727 /*
728 * Free a 0-order page
729 */
730 static void fastcall free_hot_cold_page(struct page *page, int cold)
731 {
732 struct zone *zone = page_zone(page);
733 struct per_cpu_pages *pcp;
734 unsigned long flags;
735
736 arch_free_page(page, 0);
737
738 if (PageAnon(page))
739 page->mapping = NULL;
740 if (free_pages_check(page))
741 return;
742
743 kernel_map_pages(page, 1, 0);
744
745 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
746 local_irq_save(flags);
747 __inc_page_state(pgfree);
748 list_add(&page->lru, &pcp->list);
749 pcp->count++;
750 if (pcp->count >= pcp->high) {
751 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
752 pcp->count -= pcp->batch;
753 }
754 local_irq_restore(flags);
755 put_cpu();
756 }
757
758 void fastcall free_hot_page(struct page *page)
759 {
760 free_hot_cold_page(page, 0);
761 }
762
763 void fastcall free_cold_page(struct page *page)
764 {
765 free_hot_cold_page(page, 1);
766 }
767
768 /*
769 * split_page takes a non-compound higher-order page, and splits it into
770 * n (1<<order) sub-pages: page[0..n]
771 * Each sub-page must be freed individually.
772 *
773 * Note: this is probably too low level an operation for use in drivers.
774 * Please consult with lkml before using this in your driver.
775 */
776 void split_page(struct page *page, unsigned int order)
777 {
778 int i;
779
780 BUG_ON(PageCompound(page));
781 BUG_ON(!page_count(page));
782 for (i = 1; i < (1 << order); i++)
783 set_page_refcounted(page + i);
784 }
785
786 /*
787 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
788 * we cheat by calling it from here, in the order > 0 path. Saves a branch
789 * or two.
790 */
791 static struct page *buffered_rmqueue(struct zonelist *zonelist,
792 struct zone *zone, int order, gfp_t gfp_flags)
793 {
794 unsigned long flags;
795 struct page *page;
796 int cold = !!(gfp_flags & __GFP_COLD);
797 int cpu;
798
799 again:
800 cpu = get_cpu();
801 if (likely(order == 0)) {
802 struct per_cpu_pages *pcp;
803
804 pcp = &zone_pcp(zone, cpu)->pcp[cold];
805 local_irq_save(flags);
806 if (!pcp->count) {
807 pcp->count += rmqueue_bulk(zone, 0,
808 pcp->batch, &pcp->list);
809 if (unlikely(!pcp->count))
810 goto failed;
811 }
812 page = list_entry(pcp->list.next, struct page, lru);
813 list_del(&page->lru);
814 pcp->count--;
815 } else {
816 spin_lock_irqsave(&zone->lock, flags);
817 page = __rmqueue(zone, order);
818 spin_unlock(&zone->lock);
819 if (!page)
820 goto failed;
821 }
822
823 __mod_page_state_zone(zone, pgalloc, 1 << order);
824 zone_statistics(zonelist, zone, cpu);
825 local_irq_restore(flags);
826 put_cpu();
827
828 BUG_ON(bad_range(zone, page));
829 if (prep_new_page(page, order, gfp_flags))
830 goto again;
831 return page;
832
833 failed:
834 local_irq_restore(flags);
835 put_cpu();
836 return NULL;
837 }
838
839 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
840 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
841 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
842 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
843 #define ALLOC_HARDER 0x10 /* try to alloc harder */
844 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
845 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
846
847 /*
848 * Return 1 if free pages are above 'mark'. This takes into account the order
849 * of the allocation.
850 */
851 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
852 int classzone_idx, int alloc_flags)
853 {
854 /* free_pages my go negative - that's OK */
855 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
856 int o;
857
858 if (alloc_flags & ALLOC_HIGH)
859 min -= min / 2;
860 if (alloc_flags & ALLOC_HARDER)
861 min -= min / 4;
862
863 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
864 return 0;
865 for (o = 0; o < order; o++) {
866 /* At the next order, this order's pages become unavailable */
867 free_pages -= z->free_area[o].nr_free << o;
868
869 /* Require fewer higher order pages to be free */
870 min >>= 1;
871
872 if (free_pages <= min)
873 return 0;
874 }
875 return 1;
876 }
877
878 /*
879 * get_page_from_freeliest goes through the zonelist trying to allocate
880 * a page.
881 */
882 static struct page *
883 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
884 struct zonelist *zonelist, int alloc_flags)
885 {
886 struct zone **z = zonelist->zones;
887 struct page *page = NULL;
888 int classzone_idx = zone_idx(*z);
889
890 /*
891 * Go through the zonelist once, looking for a zone with enough free.
892 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
893 */
894 do {
895 if ((alloc_flags & ALLOC_CPUSET) &&
896 !cpuset_zone_allowed(*z, gfp_mask))
897 continue;
898
899 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
900 unsigned long mark;
901 if (alloc_flags & ALLOC_WMARK_MIN)
902 mark = (*z)->pages_min;
903 else if (alloc_flags & ALLOC_WMARK_LOW)
904 mark = (*z)->pages_low;
905 else
906 mark = (*z)->pages_high;
907 if (!zone_watermark_ok(*z, order, mark,
908 classzone_idx, alloc_flags))
909 if (!zone_reclaim_mode ||
910 !zone_reclaim(*z, gfp_mask, order))
911 continue;
912 }
913
914 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
915 if (page) {
916 break;
917 }
918 } while (*(++z) != NULL);
919 return page;
920 }
921
922 /*
923 * This is the 'heart' of the zoned buddy allocator.
924 */
925 struct page * fastcall
926 __alloc_pages(gfp_t gfp_mask, unsigned int order,
927 struct zonelist *zonelist)
928 {
929 const gfp_t wait = gfp_mask & __GFP_WAIT;
930 struct zone **z;
931 struct page *page;
932 struct reclaim_state reclaim_state;
933 struct task_struct *p = current;
934 int do_retry;
935 int alloc_flags;
936 int did_some_progress;
937
938 might_sleep_if(wait);
939
940 restart:
941 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
942
943 if (unlikely(*z == NULL)) {
944 /* Should this ever happen?? */
945 return NULL;
946 }
947
948 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
949 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
950 if (page)
951 goto got_pg;
952
953 do {
954 if (cpuset_zone_allowed(*z, gfp_mask))
955 wakeup_kswapd(*z, order);
956 } while (*(++z));
957
958 /*
959 * OK, we're below the kswapd watermark and have kicked background
960 * reclaim. Now things get more complex, so set up alloc_flags according
961 * to how we want to proceed.
962 *
963 * The caller may dip into page reserves a bit more if the caller
964 * cannot run direct reclaim, or if the caller has realtime scheduling
965 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
966 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
967 */
968 alloc_flags = ALLOC_WMARK_MIN;
969 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
970 alloc_flags |= ALLOC_HARDER;
971 if (gfp_mask & __GFP_HIGH)
972 alloc_flags |= ALLOC_HIGH;
973 alloc_flags |= ALLOC_CPUSET;
974
975 /*
976 * Go through the zonelist again. Let __GFP_HIGH and allocations
977 * coming from realtime tasks go deeper into reserves.
978 *
979 * This is the last chance, in general, before the goto nopage.
980 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
981 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
982 */
983 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
984 if (page)
985 goto got_pg;
986
987 /* This allocation should allow future memory freeing. */
988
989 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
990 && !in_interrupt()) {
991 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
992 nofail_alloc:
993 /* go through the zonelist yet again, ignoring mins */
994 page = get_page_from_freelist(gfp_mask, order,
995 zonelist, ALLOC_NO_WATERMARKS);
996 if (page)
997 goto got_pg;
998 if (gfp_mask & __GFP_NOFAIL) {
999 blk_congestion_wait(WRITE, HZ/50);
1000 goto nofail_alloc;
1001 }
1002 }
1003 goto nopage;
1004 }
1005
1006 /* Atomic allocations - we can't balance anything */
1007 if (!wait)
1008 goto nopage;
1009
1010 rebalance:
1011 cond_resched();
1012
1013 /* We now go into synchronous reclaim */
1014 cpuset_memory_pressure_bump();
1015 p->flags |= PF_MEMALLOC;
1016 reclaim_state.reclaimed_slab = 0;
1017 p->reclaim_state = &reclaim_state;
1018
1019 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1020
1021 p->reclaim_state = NULL;
1022 p->flags &= ~PF_MEMALLOC;
1023
1024 cond_resched();
1025
1026 if (likely(did_some_progress)) {
1027 page = get_page_from_freelist(gfp_mask, order,
1028 zonelist, alloc_flags);
1029 if (page)
1030 goto got_pg;
1031 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1032 /*
1033 * Go through the zonelist yet one more time, keep
1034 * very high watermark here, this is only to catch
1035 * a parallel oom killing, we must fail if we're still
1036 * under heavy pressure.
1037 */
1038 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1039 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1040 if (page)
1041 goto got_pg;
1042
1043 out_of_memory(zonelist, gfp_mask, order);
1044 goto restart;
1045 }
1046
1047 /*
1048 * Don't let big-order allocations loop unless the caller explicitly
1049 * requests that. Wait for some write requests to complete then retry.
1050 *
1051 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1052 * <= 3, but that may not be true in other implementations.
1053 */
1054 do_retry = 0;
1055 if (!(gfp_mask & __GFP_NORETRY)) {
1056 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1057 do_retry = 1;
1058 if (gfp_mask & __GFP_NOFAIL)
1059 do_retry = 1;
1060 }
1061 if (do_retry) {
1062 blk_congestion_wait(WRITE, HZ/50);
1063 goto rebalance;
1064 }
1065
1066 nopage:
1067 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1068 printk(KERN_WARNING "%s: page allocation failure."
1069 " order:%d, mode:0x%x\n",
1070 p->comm, order, gfp_mask);
1071 dump_stack();
1072 show_mem();
1073 }
1074 got_pg:
1075 return page;
1076 }
1077
1078 EXPORT_SYMBOL(__alloc_pages);
1079
1080 /*
1081 * Common helper functions.
1082 */
1083 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1084 {
1085 struct page * page;
1086 page = alloc_pages(gfp_mask, order);
1087 if (!page)
1088 return 0;
1089 return (unsigned long) page_address(page);
1090 }
1091
1092 EXPORT_SYMBOL(__get_free_pages);
1093
1094 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1095 {
1096 struct page * page;
1097
1098 /*
1099 * get_zeroed_page() returns a 32-bit address, which cannot represent
1100 * a highmem page
1101 */
1102 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1103
1104 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1105 if (page)
1106 return (unsigned long) page_address(page);
1107 return 0;
1108 }
1109
1110 EXPORT_SYMBOL(get_zeroed_page);
1111
1112 void __pagevec_free(struct pagevec *pvec)
1113 {
1114 int i = pagevec_count(pvec);
1115
1116 while (--i >= 0)
1117 free_hot_cold_page(pvec->pages[i], pvec->cold);
1118 }
1119
1120 fastcall void __free_pages(struct page *page, unsigned int order)
1121 {
1122 if (put_page_testzero(page)) {
1123 if (order == 0)
1124 free_hot_page(page);
1125 else
1126 __free_pages_ok(page, order);
1127 }
1128 }
1129
1130 EXPORT_SYMBOL(__free_pages);
1131
1132 fastcall void free_pages(unsigned long addr, unsigned int order)
1133 {
1134 if (addr != 0) {
1135 BUG_ON(!virt_addr_valid((void *)addr));
1136 __free_pages(virt_to_page((void *)addr), order);
1137 }
1138 }
1139
1140 EXPORT_SYMBOL(free_pages);
1141
1142 /*
1143 * Total amount of free (allocatable) RAM:
1144 */
1145 unsigned int nr_free_pages(void)
1146 {
1147 unsigned int sum = 0;
1148 struct zone *zone;
1149
1150 for_each_zone(zone)
1151 sum += zone->free_pages;
1152
1153 return sum;
1154 }
1155
1156 EXPORT_SYMBOL(nr_free_pages);
1157
1158 #ifdef CONFIG_NUMA
1159 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1160 {
1161 unsigned int i, sum = 0;
1162
1163 for (i = 0; i < MAX_NR_ZONES; i++)
1164 sum += pgdat->node_zones[i].free_pages;
1165
1166 return sum;
1167 }
1168 #endif
1169
1170 static unsigned int nr_free_zone_pages(int offset)
1171 {
1172 /* Just pick one node, since fallback list is circular */
1173 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1174 unsigned int sum = 0;
1175
1176 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1177 struct zone **zonep = zonelist->zones;
1178 struct zone *zone;
1179
1180 for (zone = *zonep++; zone; zone = *zonep++) {
1181 unsigned long size = zone->present_pages;
1182 unsigned long high = zone->pages_high;
1183 if (size > high)
1184 sum += size - high;
1185 }
1186
1187 return sum;
1188 }
1189
1190 /*
1191 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1192 */
1193 unsigned int nr_free_buffer_pages(void)
1194 {
1195 return nr_free_zone_pages(gfp_zone(GFP_USER));
1196 }
1197
1198 /*
1199 * Amount of free RAM allocatable within all zones
1200 */
1201 unsigned int nr_free_pagecache_pages(void)
1202 {
1203 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1204 }
1205
1206 #ifdef CONFIG_HIGHMEM
1207 unsigned int nr_free_highpages (void)
1208 {
1209 pg_data_t *pgdat;
1210 unsigned int pages = 0;
1211
1212 for_each_online_pgdat(pgdat)
1213 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1214
1215 return pages;
1216 }
1217 #endif
1218
1219 #ifdef CONFIG_NUMA
1220 static void show_node(struct zone *zone)
1221 {
1222 printk("Node %d ", zone->zone_pgdat->node_id);
1223 }
1224 #else
1225 #define show_node(zone) do { } while (0)
1226 #endif
1227
1228 /*
1229 * Accumulate the page_state information across all CPUs.
1230 * The result is unavoidably approximate - it can change
1231 * during and after execution of this function.
1232 */
1233 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1234
1235 atomic_t nr_pagecache = ATOMIC_INIT(0);
1236 EXPORT_SYMBOL(nr_pagecache);
1237 #ifdef CONFIG_SMP
1238 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1239 #endif
1240
1241 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1242 {
1243 unsigned cpu;
1244
1245 memset(ret, 0, nr * sizeof(unsigned long));
1246 cpus_and(*cpumask, *cpumask, cpu_online_map);
1247
1248 for_each_cpu_mask(cpu, *cpumask) {
1249 unsigned long *in;
1250 unsigned long *out;
1251 unsigned off;
1252 unsigned next_cpu;
1253
1254 in = (unsigned long *)&per_cpu(page_states, cpu);
1255
1256 next_cpu = next_cpu(cpu, *cpumask);
1257 if (likely(next_cpu < NR_CPUS))
1258 prefetch(&per_cpu(page_states, next_cpu));
1259
1260 out = (unsigned long *)ret;
1261 for (off = 0; off < nr; off++)
1262 *out++ += *in++;
1263 }
1264 }
1265
1266 void get_page_state_node(struct page_state *ret, int node)
1267 {
1268 int nr;
1269 cpumask_t mask = node_to_cpumask(node);
1270
1271 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1272 nr /= sizeof(unsigned long);
1273
1274 __get_page_state(ret, nr+1, &mask);
1275 }
1276
1277 void get_page_state(struct page_state *ret)
1278 {
1279 int nr;
1280 cpumask_t mask = CPU_MASK_ALL;
1281
1282 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1283 nr /= sizeof(unsigned long);
1284
1285 __get_page_state(ret, nr + 1, &mask);
1286 }
1287
1288 void get_full_page_state(struct page_state *ret)
1289 {
1290 cpumask_t mask = CPU_MASK_ALL;
1291
1292 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1293 }
1294
1295 unsigned long read_page_state_offset(unsigned long offset)
1296 {
1297 unsigned long ret = 0;
1298 int cpu;
1299
1300 for_each_online_cpu(cpu) {
1301 unsigned long in;
1302
1303 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1304 ret += *((unsigned long *)in);
1305 }
1306 return ret;
1307 }
1308
1309 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1310 {
1311 void *ptr;
1312
1313 ptr = &__get_cpu_var(page_states);
1314 *(unsigned long *)(ptr + offset) += delta;
1315 }
1316 EXPORT_SYMBOL(__mod_page_state_offset);
1317
1318 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1319 {
1320 unsigned long flags;
1321 void *ptr;
1322
1323 local_irq_save(flags);
1324 ptr = &__get_cpu_var(page_states);
1325 *(unsigned long *)(ptr + offset) += delta;
1326 local_irq_restore(flags);
1327 }
1328 EXPORT_SYMBOL(mod_page_state_offset);
1329
1330 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1331 unsigned long *free, struct pglist_data *pgdat)
1332 {
1333 struct zone *zones = pgdat->node_zones;
1334 int i;
1335
1336 *active = 0;
1337 *inactive = 0;
1338 *free = 0;
1339 for (i = 0; i < MAX_NR_ZONES; i++) {
1340 *active += zones[i].nr_active;
1341 *inactive += zones[i].nr_inactive;
1342 *free += zones[i].free_pages;
1343 }
1344 }
1345
1346 void get_zone_counts(unsigned long *active,
1347 unsigned long *inactive, unsigned long *free)
1348 {
1349 struct pglist_data *pgdat;
1350
1351 *active = 0;
1352 *inactive = 0;
1353 *free = 0;
1354 for_each_online_pgdat(pgdat) {
1355 unsigned long l, m, n;
1356 __get_zone_counts(&l, &m, &n, pgdat);
1357 *active += l;
1358 *inactive += m;
1359 *free += n;
1360 }
1361 }
1362
1363 void si_meminfo(struct sysinfo *val)
1364 {
1365 val->totalram = totalram_pages;
1366 val->sharedram = 0;
1367 val->freeram = nr_free_pages();
1368 val->bufferram = nr_blockdev_pages();
1369 #ifdef CONFIG_HIGHMEM
1370 val->totalhigh = totalhigh_pages;
1371 val->freehigh = nr_free_highpages();
1372 #else
1373 val->totalhigh = 0;
1374 val->freehigh = 0;
1375 #endif
1376 val->mem_unit = PAGE_SIZE;
1377 }
1378
1379 EXPORT_SYMBOL(si_meminfo);
1380
1381 #ifdef CONFIG_NUMA
1382 void si_meminfo_node(struct sysinfo *val, int nid)
1383 {
1384 pg_data_t *pgdat = NODE_DATA(nid);
1385
1386 val->totalram = pgdat->node_present_pages;
1387 val->freeram = nr_free_pages_pgdat(pgdat);
1388 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1389 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1390 val->mem_unit = PAGE_SIZE;
1391 }
1392 #endif
1393
1394 #define K(x) ((x) << (PAGE_SHIFT-10))
1395
1396 /*
1397 * Show free area list (used inside shift_scroll-lock stuff)
1398 * We also calculate the percentage fragmentation. We do this by counting the
1399 * memory on each free list with the exception of the first item on the list.
1400 */
1401 void show_free_areas(void)
1402 {
1403 struct page_state ps;
1404 int cpu, temperature;
1405 unsigned long active;
1406 unsigned long inactive;
1407 unsigned long free;
1408 struct zone *zone;
1409
1410 for_each_zone(zone) {
1411 show_node(zone);
1412 printk("%s per-cpu:", zone->name);
1413
1414 if (!populated_zone(zone)) {
1415 printk(" empty\n");
1416 continue;
1417 } else
1418 printk("\n");
1419
1420 for_each_online_cpu(cpu) {
1421 struct per_cpu_pageset *pageset;
1422
1423 pageset = zone_pcp(zone, cpu);
1424
1425 for (temperature = 0; temperature < 2; temperature++)
1426 printk("cpu %d %s: high %d, batch %d used:%d\n",
1427 cpu,
1428 temperature ? "cold" : "hot",
1429 pageset->pcp[temperature].high,
1430 pageset->pcp[temperature].batch,
1431 pageset->pcp[temperature].count);
1432 }
1433 }
1434
1435 get_page_state(&ps);
1436 get_zone_counts(&active, &inactive, &free);
1437
1438 printk("Free pages: %11ukB (%ukB HighMem)\n",
1439 K(nr_free_pages()),
1440 K(nr_free_highpages()));
1441
1442 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1443 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1444 active,
1445 inactive,
1446 ps.nr_dirty,
1447 ps.nr_writeback,
1448 ps.nr_unstable,
1449 nr_free_pages(),
1450 ps.nr_slab,
1451 ps.nr_mapped,
1452 ps.nr_page_table_pages);
1453
1454 for_each_zone(zone) {
1455 int i;
1456
1457 show_node(zone);
1458 printk("%s"
1459 " free:%lukB"
1460 " min:%lukB"
1461 " low:%lukB"
1462 " high:%lukB"
1463 " active:%lukB"
1464 " inactive:%lukB"
1465 " present:%lukB"
1466 " pages_scanned:%lu"
1467 " all_unreclaimable? %s"
1468 "\n",
1469 zone->name,
1470 K(zone->free_pages),
1471 K(zone->pages_min),
1472 K(zone->pages_low),
1473 K(zone->pages_high),
1474 K(zone->nr_active),
1475 K(zone->nr_inactive),
1476 K(zone->present_pages),
1477 zone->pages_scanned,
1478 (zone->all_unreclaimable ? "yes" : "no")
1479 );
1480 printk("lowmem_reserve[]:");
1481 for (i = 0; i < MAX_NR_ZONES; i++)
1482 printk(" %lu", zone->lowmem_reserve[i]);
1483 printk("\n");
1484 }
1485
1486 for_each_zone(zone) {
1487 unsigned long nr, flags, order, total = 0;
1488
1489 show_node(zone);
1490 printk("%s: ", zone->name);
1491 if (!populated_zone(zone)) {
1492 printk("empty\n");
1493 continue;
1494 }
1495
1496 spin_lock_irqsave(&zone->lock, flags);
1497 for (order = 0; order < MAX_ORDER; order++) {
1498 nr = zone->free_area[order].nr_free;
1499 total += nr << order;
1500 printk("%lu*%lukB ", nr, K(1UL) << order);
1501 }
1502 spin_unlock_irqrestore(&zone->lock, flags);
1503 printk("= %lukB\n", K(total));
1504 }
1505
1506 show_swap_cache_info();
1507 }
1508
1509 /*
1510 * Builds allocation fallback zone lists.
1511 *
1512 * Add all populated zones of a node to the zonelist.
1513 */
1514 static int __init build_zonelists_node(pg_data_t *pgdat,
1515 struct zonelist *zonelist, int nr_zones, int zone_type)
1516 {
1517 struct zone *zone;
1518
1519 BUG_ON(zone_type > ZONE_HIGHMEM);
1520
1521 do {
1522 zone = pgdat->node_zones + zone_type;
1523 if (populated_zone(zone)) {
1524 #ifndef CONFIG_HIGHMEM
1525 BUG_ON(zone_type > ZONE_NORMAL);
1526 #endif
1527 zonelist->zones[nr_zones++] = zone;
1528 check_highest_zone(zone_type);
1529 }
1530 zone_type--;
1531
1532 } while (zone_type >= 0);
1533 return nr_zones;
1534 }
1535
1536 static inline int highest_zone(int zone_bits)
1537 {
1538 int res = ZONE_NORMAL;
1539 if (zone_bits & (__force int)__GFP_HIGHMEM)
1540 res = ZONE_HIGHMEM;
1541 if (zone_bits & (__force int)__GFP_DMA32)
1542 res = ZONE_DMA32;
1543 if (zone_bits & (__force int)__GFP_DMA)
1544 res = ZONE_DMA;
1545 return res;
1546 }
1547
1548 #ifdef CONFIG_NUMA
1549 #define MAX_NODE_LOAD (num_online_nodes())
1550 static int __initdata node_load[MAX_NUMNODES];
1551 /**
1552 * find_next_best_node - find the next node that should appear in a given node's fallback list
1553 * @node: node whose fallback list we're appending
1554 * @used_node_mask: nodemask_t of already used nodes
1555 *
1556 * We use a number of factors to determine which is the next node that should
1557 * appear on a given node's fallback list. The node should not have appeared
1558 * already in @node's fallback list, and it should be the next closest node
1559 * according to the distance array (which contains arbitrary distance values
1560 * from each node to each node in the system), and should also prefer nodes
1561 * with no CPUs, since presumably they'll have very little allocation pressure
1562 * on them otherwise.
1563 * It returns -1 if no node is found.
1564 */
1565 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1566 {
1567 int n, val;
1568 int min_val = INT_MAX;
1569 int best_node = -1;
1570
1571 /* Use the local node if we haven't already */
1572 if (!node_isset(node, *used_node_mask)) {
1573 node_set(node, *used_node_mask);
1574 return node;
1575 }
1576
1577 for_each_online_node(n) {
1578 cpumask_t tmp;
1579
1580 /* Don't want a node to appear more than once */
1581 if (node_isset(n, *used_node_mask))
1582 continue;
1583
1584 /* Use the distance array to find the distance */
1585 val = node_distance(node, n);
1586
1587 /* Penalize nodes under us ("prefer the next node") */
1588 val += (n < node);
1589
1590 /* Give preference to headless and unused nodes */
1591 tmp = node_to_cpumask(n);
1592 if (!cpus_empty(tmp))
1593 val += PENALTY_FOR_NODE_WITH_CPUS;
1594
1595 /* Slight preference for less loaded node */
1596 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1597 val += node_load[n];
1598
1599 if (val < min_val) {
1600 min_val = val;
1601 best_node = n;
1602 }
1603 }
1604
1605 if (best_node >= 0)
1606 node_set(best_node, *used_node_mask);
1607
1608 return best_node;
1609 }
1610
1611 static void __init build_zonelists(pg_data_t *pgdat)
1612 {
1613 int i, j, k, node, local_node;
1614 int prev_node, load;
1615 struct zonelist *zonelist;
1616 nodemask_t used_mask;
1617
1618 /* initialize zonelists */
1619 for (i = 0; i < GFP_ZONETYPES; i++) {
1620 zonelist = pgdat->node_zonelists + i;
1621 zonelist->zones[0] = NULL;
1622 }
1623
1624 /* NUMA-aware ordering of nodes */
1625 local_node = pgdat->node_id;
1626 load = num_online_nodes();
1627 prev_node = local_node;
1628 nodes_clear(used_mask);
1629 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1630 int distance = node_distance(local_node, node);
1631
1632 /*
1633 * If another node is sufficiently far away then it is better
1634 * to reclaim pages in a zone before going off node.
1635 */
1636 if (distance > RECLAIM_DISTANCE)
1637 zone_reclaim_mode = 1;
1638
1639 /*
1640 * We don't want to pressure a particular node.
1641 * So adding penalty to the first node in same
1642 * distance group to make it round-robin.
1643 */
1644
1645 if (distance != node_distance(local_node, prev_node))
1646 node_load[node] += load;
1647 prev_node = node;
1648 load--;
1649 for (i = 0; i < GFP_ZONETYPES; i++) {
1650 zonelist = pgdat->node_zonelists + i;
1651 for (j = 0; zonelist->zones[j] != NULL; j++);
1652
1653 k = highest_zone(i);
1654
1655 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1656 zonelist->zones[j] = NULL;
1657 }
1658 }
1659 }
1660
1661 #else /* CONFIG_NUMA */
1662
1663 static void __init build_zonelists(pg_data_t *pgdat)
1664 {
1665 int i, j, k, node, local_node;
1666
1667 local_node = pgdat->node_id;
1668 for (i = 0; i < GFP_ZONETYPES; i++) {
1669 struct zonelist *zonelist;
1670
1671 zonelist = pgdat->node_zonelists + i;
1672
1673 j = 0;
1674 k = highest_zone(i);
1675 j = build_zonelists_node(pgdat, zonelist, j, k);
1676 /*
1677 * Now we build the zonelist so that it contains the zones
1678 * of all the other nodes.
1679 * We don't want to pressure a particular node, so when
1680 * building the zones for node N, we make sure that the
1681 * zones coming right after the local ones are those from
1682 * node N+1 (modulo N)
1683 */
1684 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1685 if (!node_online(node))
1686 continue;
1687 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1688 }
1689 for (node = 0; node < local_node; node++) {
1690 if (!node_online(node))
1691 continue;
1692 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1693 }
1694
1695 zonelist->zones[j] = NULL;
1696 }
1697 }
1698
1699 #endif /* CONFIG_NUMA */
1700
1701 void __init build_all_zonelists(void)
1702 {
1703 int i;
1704
1705 for_each_online_node(i)
1706 build_zonelists(NODE_DATA(i));
1707 printk("Built %i zonelists\n", num_online_nodes());
1708 cpuset_init_current_mems_allowed();
1709 }
1710
1711 /*
1712 * Helper functions to size the waitqueue hash table.
1713 * Essentially these want to choose hash table sizes sufficiently
1714 * large so that collisions trying to wait on pages are rare.
1715 * But in fact, the number of active page waitqueues on typical
1716 * systems is ridiculously low, less than 200. So this is even
1717 * conservative, even though it seems large.
1718 *
1719 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1720 * waitqueues, i.e. the size of the waitq table given the number of pages.
1721 */
1722 #define PAGES_PER_WAITQUEUE 256
1723
1724 static inline unsigned long wait_table_size(unsigned long pages)
1725 {
1726 unsigned long size = 1;
1727
1728 pages /= PAGES_PER_WAITQUEUE;
1729
1730 while (size < pages)
1731 size <<= 1;
1732
1733 /*
1734 * Once we have dozens or even hundreds of threads sleeping
1735 * on IO we've got bigger problems than wait queue collision.
1736 * Limit the size of the wait table to a reasonable size.
1737 */
1738 size = min(size, 4096UL);
1739
1740 return max(size, 4UL);
1741 }
1742
1743 /*
1744 * This is an integer logarithm so that shifts can be used later
1745 * to extract the more random high bits from the multiplicative
1746 * hash function before the remainder is taken.
1747 */
1748 static inline unsigned long wait_table_bits(unsigned long size)
1749 {
1750 return ffz(~size);
1751 }
1752
1753 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1754
1755 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1756 unsigned long *zones_size, unsigned long *zholes_size)
1757 {
1758 unsigned long realtotalpages, totalpages = 0;
1759 int i;
1760
1761 for (i = 0; i < MAX_NR_ZONES; i++)
1762 totalpages += zones_size[i];
1763 pgdat->node_spanned_pages = totalpages;
1764
1765 realtotalpages = totalpages;
1766 if (zholes_size)
1767 for (i = 0; i < MAX_NR_ZONES; i++)
1768 realtotalpages -= zholes_size[i];
1769 pgdat->node_present_pages = realtotalpages;
1770 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1771 }
1772
1773
1774 /*
1775 * Initially all pages are reserved - free ones are freed
1776 * up by free_all_bootmem() once the early boot process is
1777 * done. Non-atomic initialization, single-pass.
1778 */
1779 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1780 unsigned long start_pfn)
1781 {
1782 struct page *page;
1783 unsigned long end_pfn = start_pfn + size;
1784 unsigned long pfn;
1785
1786 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1787 if (!early_pfn_valid(pfn))
1788 continue;
1789 page = pfn_to_page(pfn);
1790 set_page_links(page, zone, nid, pfn);
1791 init_page_count(page);
1792 reset_page_mapcount(page);
1793 SetPageReserved(page);
1794 INIT_LIST_HEAD(&page->lru);
1795 #ifdef WANT_PAGE_VIRTUAL
1796 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1797 if (!is_highmem_idx(zone))
1798 set_page_address(page, __va(pfn << PAGE_SHIFT));
1799 #endif
1800 }
1801 }
1802
1803 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1804 unsigned long size)
1805 {
1806 int order;
1807 for (order = 0; order < MAX_ORDER ; order++) {
1808 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1809 zone->free_area[order].nr_free = 0;
1810 }
1811 }
1812
1813 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1814 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1815 unsigned long size)
1816 {
1817 unsigned long snum = pfn_to_section_nr(pfn);
1818 unsigned long end = pfn_to_section_nr(pfn + size);
1819
1820 if (FLAGS_HAS_NODE)
1821 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1822 else
1823 for (; snum <= end; snum++)
1824 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1825 }
1826
1827 #ifndef __HAVE_ARCH_MEMMAP_INIT
1828 #define memmap_init(size, nid, zone, start_pfn) \
1829 memmap_init_zone((size), (nid), (zone), (start_pfn))
1830 #endif
1831
1832 static int __cpuinit zone_batchsize(struct zone *zone)
1833 {
1834 int batch;
1835
1836 /*
1837 * The per-cpu-pages pools are set to around 1000th of the
1838 * size of the zone. But no more than 1/2 of a meg.
1839 *
1840 * OK, so we don't know how big the cache is. So guess.
1841 */
1842 batch = zone->present_pages / 1024;
1843 if (batch * PAGE_SIZE > 512 * 1024)
1844 batch = (512 * 1024) / PAGE_SIZE;
1845 batch /= 4; /* We effectively *= 4 below */
1846 if (batch < 1)
1847 batch = 1;
1848
1849 /*
1850 * Clamp the batch to a 2^n - 1 value. Having a power
1851 * of 2 value was found to be more likely to have
1852 * suboptimal cache aliasing properties in some cases.
1853 *
1854 * For example if 2 tasks are alternately allocating
1855 * batches of pages, one task can end up with a lot
1856 * of pages of one half of the possible page colors
1857 * and the other with pages of the other colors.
1858 */
1859 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1860
1861 return batch;
1862 }
1863
1864 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1865 {
1866 struct per_cpu_pages *pcp;
1867
1868 memset(p, 0, sizeof(*p));
1869
1870 pcp = &p->pcp[0]; /* hot */
1871 pcp->count = 0;
1872 pcp->high = 6 * batch;
1873 pcp->batch = max(1UL, 1 * batch);
1874 INIT_LIST_HEAD(&pcp->list);
1875
1876 pcp = &p->pcp[1]; /* cold*/
1877 pcp->count = 0;
1878 pcp->high = 2 * batch;
1879 pcp->batch = max(1UL, batch/2);
1880 INIT_LIST_HEAD(&pcp->list);
1881 }
1882
1883 /*
1884 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1885 * to the value high for the pageset p.
1886 */
1887
1888 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1889 unsigned long high)
1890 {
1891 struct per_cpu_pages *pcp;
1892
1893 pcp = &p->pcp[0]; /* hot list */
1894 pcp->high = high;
1895 pcp->batch = max(1UL, high/4);
1896 if ((high/4) > (PAGE_SHIFT * 8))
1897 pcp->batch = PAGE_SHIFT * 8;
1898 }
1899
1900
1901 #ifdef CONFIG_NUMA
1902 /*
1903 * Boot pageset table. One per cpu which is going to be used for all
1904 * zones and all nodes. The parameters will be set in such a way
1905 * that an item put on a list will immediately be handed over to
1906 * the buddy list. This is safe since pageset manipulation is done
1907 * with interrupts disabled.
1908 *
1909 * Some NUMA counter updates may also be caught by the boot pagesets.
1910 *
1911 * The boot_pagesets must be kept even after bootup is complete for
1912 * unused processors and/or zones. They do play a role for bootstrapping
1913 * hotplugged processors.
1914 *
1915 * zoneinfo_show() and maybe other functions do
1916 * not check if the processor is online before following the pageset pointer.
1917 * Other parts of the kernel may not check if the zone is available.
1918 */
1919 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1920
1921 /*
1922 * Dynamically allocate memory for the
1923 * per cpu pageset array in struct zone.
1924 */
1925 static int __cpuinit process_zones(int cpu)
1926 {
1927 struct zone *zone, *dzone;
1928
1929 for_each_zone(zone) {
1930
1931 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1932 GFP_KERNEL, cpu_to_node(cpu));
1933 if (!zone_pcp(zone, cpu))
1934 goto bad;
1935
1936 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1937
1938 if (percpu_pagelist_fraction)
1939 setup_pagelist_highmark(zone_pcp(zone, cpu),
1940 (zone->present_pages / percpu_pagelist_fraction));
1941 }
1942
1943 return 0;
1944 bad:
1945 for_each_zone(dzone) {
1946 if (dzone == zone)
1947 break;
1948 kfree(zone_pcp(dzone, cpu));
1949 zone_pcp(dzone, cpu) = NULL;
1950 }
1951 return -ENOMEM;
1952 }
1953
1954 static inline void free_zone_pagesets(int cpu)
1955 {
1956 struct zone *zone;
1957
1958 for_each_zone(zone) {
1959 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1960
1961 zone_pcp(zone, cpu) = NULL;
1962 kfree(pset);
1963 }
1964 }
1965
1966 static int pageset_cpuup_callback(struct notifier_block *nfb,
1967 unsigned long action,
1968 void *hcpu)
1969 {
1970 int cpu = (long)hcpu;
1971 int ret = NOTIFY_OK;
1972
1973 switch (action) {
1974 case CPU_UP_PREPARE:
1975 if (process_zones(cpu))
1976 ret = NOTIFY_BAD;
1977 break;
1978 case CPU_UP_CANCELED:
1979 case CPU_DEAD:
1980 free_zone_pagesets(cpu);
1981 break;
1982 default:
1983 break;
1984 }
1985 return ret;
1986 }
1987
1988 static struct notifier_block pageset_notifier =
1989 { &pageset_cpuup_callback, NULL, 0 };
1990
1991 void __init setup_per_cpu_pageset(void)
1992 {
1993 int err;
1994
1995 /* Initialize per_cpu_pageset for cpu 0.
1996 * A cpuup callback will do this for every cpu
1997 * as it comes online
1998 */
1999 err = process_zones(smp_processor_id());
2000 BUG_ON(err);
2001 register_cpu_notifier(&pageset_notifier);
2002 }
2003
2004 #endif
2005
2006 static __meminit
2007 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2008 {
2009 int i;
2010 struct pglist_data *pgdat = zone->zone_pgdat;
2011
2012 /*
2013 * The per-page waitqueue mechanism uses hashed waitqueues
2014 * per zone.
2015 */
2016 zone->wait_table_size = wait_table_size(zone_size_pages);
2017 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
2018 zone->wait_table = (wait_queue_head_t *)
2019 alloc_bootmem_node(pgdat, zone->wait_table_size
2020 * sizeof(wait_queue_head_t));
2021
2022 for(i = 0; i < zone->wait_table_size; ++i)
2023 init_waitqueue_head(zone->wait_table + i);
2024 }
2025
2026 static __meminit void zone_pcp_init(struct zone *zone)
2027 {
2028 int cpu;
2029 unsigned long batch = zone_batchsize(zone);
2030
2031 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2032 #ifdef CONFIG_NUMA
2033 /* Early boot. Slab allocator not functional yet */
2034 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2035 setup_pageset(&boot_pageset[cpu],0);
2036 #else
2037 setup_pageset(zone_pcp(zone,cpu), batch);
2038 #endif
2039 }
2040 if (zone->present_pages)
2041 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2042 zone->name, zone->present_pages, batch);
2043 }
2044
2045 static __meminit void init_currently_empty_zone(struct zone *zone,
2046 unsigned long zone_start_pfn, unsigned long size)
2047 {
2048 struct pglist_data *pgdat = zone->zone_pgdat;
2049
2050 zone_wait_table_init(zone, size);
2051 pgdat->nr_zones = zone_idx(zone) + 1;
2052
2053 zone->zone_start_pfn = zone_start_pfn;
2054
2055 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2056
2057 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2058 }
2059
2060 /*
2061 * Set up the zone data structures:
2062 * - mark all pages reserved
2063 * - mark all memory queues empty
2064 * - clear the memory bitmaps
2065 */
2066 static void __init free_area_init_core(struct pglist_data *pgdat,
2067 unsigned long *zones_size, unsigned long *zholes_size)
2068 {
2069 unsigned long j;
2070 int nid = pgdat->node_id;
2071 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2072
2073 pgdat_resize_init(pgdat);
2074 pgdat->nr_zones = 0;
2075 init_waitqueue_head(&pgdat->kswapd_wait);
2076 pgdat->kswapd_max_order = 0;
2077
2078 for (j = 0; j < MAX_NR_ZONES; j++) {
2079 struct zone *zone = pgdat->node_zones + j;
2080 unsigned long size, realsize;
2081
2082 realsize = size = zones_size[j];
2083 if (zholes_size)
2084 realsize -= zholes_size[j];
2085
2086 if (j < ZONE_HIGHMEM)
2087 nr_kernel_pages += realsize;
2088 nr_all_pages += realsize;
2089
2090 zone->spanned_pages = size;
2091 zone->present_pages = realsize;
2092 zone->name = zone_names[j];
2093 spin_lock_init(&zone->lock);
2094 spin_lock_init(&zone->lru_lock);
2095 zone_seqlock_init(zone);
2096 zone->zone_pgdat = pgdat;
2097 zone->free_pages = 0;
2098
2099 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2100
2101 zone_pcp_init(zone);
2102 INIT_LIST_HEAD(&zone->active_list);
2103 INIT_LIST_HEAD(&zone->inactive_list);
2104 zone->nr_scan_active = 0;
2105 zone->nr_scan_inactive = 0;
2106 zone->nr_active = 0;
2107 zone->nr_inactive = 0;
2108 atomic_set(&zone->reclaim_in_progress, 0);
2109 if (!size)
2110 continue;
2111
2112 zonetable_add(zone, nid, j, zone_start_pfn, size);
2113 init_currently_empty_zone(zone, zone_start_pfn, size);
2114 zone_start_pfn += size;
2115 }
2116 }
2117
2118 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2119 {
2120 /* Skip empty nodes */
2121 if (!pgdat->node_spanned_pages)
2122 return;
2123
2124 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2125 /* ia64 gets its own node_mem_map, before this, without bootmem */
2126 if (!pgdat->node_mem_map) {
2127 unsigned long size;
2128 struct page *map;
2129
2130 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2131 map = alloc_remap(pgdat->node_id, size);
2132 if (!map)
2133 map = alloc_bootmem_node(pgdat, size);
2134 pgdat->node_mem_map = map;
2135 }
2136 #ifdef CONFIG_FLATMEM
2137 /*
2138 * With no DISCONTIG, the global mem_map is just set as node 0's
2139 */
2140 if (pgdat == NODE_DATA(0))
2141 mem_map = NODE_DATA(0)->node_mem_map;
2142 #endif
2143 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2144 }
2145
2146 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2147 unsigned long *zones_size, unsigned long node_start_pfn,
2148 unsigned long *zholes_size)
2149 {
2150 pgdat->node_id = nid;
2151 pgdat->node_start_pfn = node_start_pfn;
2152 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2153
2154 alloc_node_mem_map(pgdat);
2155
2156 free_area_init_core(pgdat, zones_size, zholes_size);
2157 }
2158
2159 #ifndef CONFIG_NEED_MULTIPLE_NODES
2160 static bootmem_data_t contig_bootmem_data;
2161 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2162
2163 EXPORT_SYMBOL(contig_page_data);
2164 #endif
2165
2166 void __init free_area_init(unsigned long *zones_size)
2167 {
2168 free_area_init_node(0, NODE_DATA(0), zones_size,
2169 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2170 }
2171
2172 #ifdef CONFIG_PROC_FS
2173
2174 #include <linux/seq_file.h>
2175
2176 static void *frag_start(struct seq_file *m, loff_t *pos)
2177 {
2178 pg_data_t *pgdat;
2179 loff_t node = *pos;
2180 for (pgdat = first_online_pgdat();
2181 pgdat && node;
2182 pgdat = next_online_pgdat(pgdat))
2183 --node;
2184
2185 return pgdat;
2186 }
2187
2188 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2189 {
2190 pg_data_t *pgdat = (pg_data_t *)arg;
2191
2192 (*pos)++;
2193 return next_online_pgdat(pgdat);
2194 }
2195
2196 static void frag_stop(struct seq_file *m, void *arg)
2197 {
2198 }
2199
2200 /*
2201 * This walks the free areas for each zone.
2202 */
2203 static int frag_show(struct seq_file *m, void *arg)
2204 {
2205 pg_data_t *pgdat = (pg_data_t *)arg;
2206 struct zone *zone;
2207 struct zone *node_zones = pgdat->node_zones;
2208 unsigned long flags;
2209 int order;
2210
2211 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2212 if (!populated_zone(zone))
2213 continue;
2214
2215 spin_lock_irqsave(&zone->lock, flags);
2216 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2217 for (order = 0; order < MAX_ORDER; ++order)
2218 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2219 spin_unlock_irqrestore(&zone->lock, flags);
2220 seq_putc(m, '\n');
2221 }
2222 return 0;
2223 }
2224
2225 struct seq_operations fragmentation_op = {
2226 .start = frag_start,
2227 .next = frag_next,
2228 .stop = frag_stop,
2229 .show = frag_show,
2230 };
2231
2232 /*
2233 * Output information about zones in @pgdat.
2234 */
2235 static int zoneinfo_show(struct seq_file *m, void *arg)
2236 {
2237 pg_data_t *pgdat = arg;
2238 struct zone *zone;
2239 struct zone *node_zones = pgdat->node_zones;
2240 unsigned long flags;
2241
2242 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2243 int i;
2244
2245 if (!populated_zone(zone))
2246 continue;
2247
2248 spin_lock_irqsave(&zone->lock, flags);
2249 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2250 seq_printf(m,
2251 "\n pages free %lu"
2252 "\n min %lu"
2253 "\n low %lu"
2254 "\n high %lu"
2255 "\n active %lu"
2256 "\n inactive %lu"
2257 "\n scanned %lu (a: %lu i: %lu)"
2258 "\n spanned %lu"
2259 "\n present %lu",
2260 zone->free_pages,
2261 zone->pages_min,
2262 zone->pages_low,
2263 zone->pages_high,
2264 zone->nr_active,
2265 zone->nr_inactive,
2266 zone->pages_scanned,
2267 zone->nr_scan_active, zone->nr_scan_inactive,
2268 zone->spanned_pages,
2269 zone->present_pages);
2270 seq_printf(m,
2271 "\n protection: (%lu",
2272 zone->lowmem_reserve[0]);
2273 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2274 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2275 seq_printf(m,
2276 ")"
2277 "\n pagesets");
2278 for_each_online_cpu(i) {
2279 struct per_cpu_pageset *pageset;
2280 int j;
2281
2282 pageset = zone_pcp(zone, i);
2283 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2284 if (pageset->pcp[j].count)
2285 break;
2286 }
2287 if (j == ARRAY_SIZE(pageset->pcp))
2288 continue;
2289 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2290 seq_printf(m,
2291 "\n cpu: %i pcp: %i"
2292 "\n count: %i"
2293 "\n high: %i"
2294 "\n batch: %i",
2295 i, j,
2296 pageset->pcp[j].count,
2297 pageset->pcp[j].high,
2298 pageset->pcp[j].batch);
2299 }
2300 #ifdef CONFIG_NUMA
2301 seq_printf(m,
2302 "\n numa_hit: %lu"
2303 "\n numa_miss: %lu"
2304 "\n numa_foreign: %lu"
2305 "\n interleave_hit: %lu"
2306 "\n local_node: %lu"
2307 "\n other_node: %lu",
2308 pageset->numa_hit,
2309 pageset->numa_miss,
2310 pageset->numa_foreign,
2311 pageset->interleave_hit,
2312 pageset->local_node,
2313 pageset->other_node);
2314 #endif
2315 }
2316 seq_printf(m,
2317 "\n all_unreclaimable: %u"
2318 "\n prev_priority: %i"
2319 "\n temp_priority: %i"
2320 "\n start_pfn: %lu",
2321 zone->all_unreclaimable,
2322 zone->prev_priority,
2323 zone->temp_priority,
2324 zone->zone_start_pfn);
2325 spin_unlock_irqrestore(&zone->lock, flags);
2326 seq_putc(m, '\n');
2327 }
2328 return 0;
2329 }
2330
2331 struct seq_operations zoneinfo_op = {
2332 .start = frag_start, /* iterate over all zones. The same as in
2333 * fragmentation. */
2334 .next = frag_next,
2335 .stop = frag_stop,
2336 .show = zoneinfo_show,
2337 };
2338
2339 static char *vmstat_text[] = {
2340 "nr_dirty",
2341 "nr_writeback",
2342 "nr_unstable",
2343 "nr_page_table_pages",
2344 "nr_mapped",
2345 "nr_slab",
2346
2347 "pgpgin",
2348 "pgpgout",
2349 "pswpin",
2350 "pswpout",
2351
2352 "pgalloc_high",
2353 "pgalloc_normal",
2354 "pgalloc_dma32",
2355 "pgalloc_dma",
2356
2357 "pgfree",
2358 "pgactivate",
2359 "pgdeactivate",
2360
2361 "pgfault",
2362 "pgmajfault",
2363
2364 "pgrefill_high",
2365 "pgrefill_normal",
2366 "pgrefill_dma32",
2367 "pgrefill_dma",
2368
2369 "pgsteal_high",
2370 "pgsteal_normal",
2371 "pgsteal_dma32",
2372 "pgsteal_dma",
2373
2374 "pgscan_kswapd_high",
2375 "pgscan_kswapd_normal",
2376 "pgscan_kswapd_dma32",
2377 "pgscan_kswapd_dma",
2378
2379 "pgscan_direct_high",
2380 "pgscan_direct_normal",
2381 "pgscan_direct_dma32",
2382 "pgscan_direct_dma",
2383
2384 "pginodesteal",
2385 "slabs_scanned",
2386 "kswapd_steal",
2387 "kswapd_inodesteal",
2388 "pageoutrun",
2389 "allocstall",
2390
2391 "pgrotated",
2392 "nr_bounce",
2393 };
2394
2395 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2396 {
2397 struct page_state *ps;
2398
2399 if (*pos >= ARRAY_SIZE(vmstat_text))
2400 return NULL;
2401
2402 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2403 m->private = ps;
2404 if (!ps)
2405 return ERR_PTR(-ENOMEM);
2406 get_full_page_state(ps);
2407 ps->pgpgin /= 2; /* sectors -> kbytes */
2408 ps->pgpgout /= 2;
2409 return (unsigned long *)ps + *pos;
2410 }
2411
2412 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2413 {
2414 (*pos)++;
2415 if (*pos >= ARRAY_SIZE(vmstat_text))
2416 return NULL;
2417 return (unsigned long *)m->private + *pos;
2418 }
2419
2420 static int vmstat_show(struct seq_file *m, void *arg)
2421 {
2422 unsigned long *l = arg;
2423 unsigned long off = l - (unsigned long *)m->private;
2424
2425 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2426 return 0;
2427 }
2428
2429 static void vmstat_stop(struct seq_file *m, void *arg)
2430 {
2431 kfree(m->private);
2432 m->private = NULL;
2433 }
2434
2435 struct seq_operations vmstat_op = {
2436 .start = vmstat_start,
2437 .next = vmstat_next,
2438 .stop = vmstat_stop,
2439 .show = vmstat_show,
2440 };
2441
2442 #endif /* CONFIG_PROC_FS */
2443
2444 #ifdef CONFIG_HOTPLUG_CPU
2445 static int page_alloc_cpu_notify(struct notifier_block *self,
2446 unsigned long action, void *hcpu)
2447 {
2448 int cpu = (unsigned long)hcpu;
2449 long *count;
2450 unsigned long *src, *dest;
2451
2452 if (action == CPU_DEAD) {
2453 int i;
2454
2455 /* Drain local pagecache count. */
2456 count = &per_cpu(nr_pagecache_local, cpu);
2457 atomic_add(*count, &nr_pagecache);
2458 *count = 0;
2459 local_irq_disable();
2460 __drain_pages(cpu);
2461
2462 /* Add dead cpu's page_states to our own. */
2463 dest = (unsigned long *)&__get_cpu_var(page_states);
2464 src = (unsigned long *)&per_cpu(page_states, cpu);
2465
2466 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2467 i++) {
2468 dest[i] += src[i];
2469 src[i] = 0;
2470 }
2471
2472 local_irq_enable();
2473 }
2474 return NOTIFY_OK;
2475 }
2476 #endif /* CONFIG_HOTPLUG_CPU */
2477
2478 void __init page_alloc_init(void)
2479 {
2480 hotcpu_notifier(page_alloc_cpu_notify, 0);
2481 }
2482
2483 /*
2484 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
2485 * or min_free_kbytes changes.
2486 */
2487 static void calculate_totalreserve_pages(void)
2488 {
2489 struct pglist_data *pgdat;
2490 unsigned long reserve_pages = 0;
2491 int i, j;
2492
2493 for_each_online_pgdat(pgdat) {
2494 for (i = 0; i < MAX_NR_ZONES; i++) {
2495 struct zone *zone = pgdat->node_zones + i;
2496 unsigned long max = 0;
2497
2498 /* Find valid and maximum lowmem_reserve in the zone */
2499 for (j = i; j < MAX_NR_ZONES; j++) {
2500 if (zone->lowmem_reserve[j] > max)
2501 max = zone->lowmem_reserve[j];
2502 }
2503
2504 /* we treat pages_high as reserved pages. */
2505 max += zone->pages_high;
2506
2507 if (max > zone->present_pages)
2508 max = zone->present_pages;
2509 reserve_pages += max;
2510 }
2511 }
2512 totalreserve_pages = reserve_pages;
2513 }
2514
2515 /*
2516 * setup_per_zone_lowmem_reserve - called whenever
2517 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2518 * has a correct pages reserved value, so an adequate number of
2519 * pages are left in the zone after a successful __alloc_pages().
2520 */
2521 static void setup_per_zone_lowmem_reserve(void)
2522 {
2523 struct pglist_data *pgdat;
2524 int j, idx;
2525
2526 for_each_online_pgdat(pgdat) {
2527 for (j = 0; j < MAX_NR_ZONES; j++) {
2528 struct zone *zone = pgdat->node_zones + j;
2529 unsigned long present_pages = zone->present_pages;
2530
2531 zone->lowmem_reserve[j] = 0;
2532
2533 for (idx = j-1; idx >= 0; idx--) {
2534 struct zone *lower_zone;
2535
2536 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2537 sysctl_lowmem_reserve_ratio[idx] = 1;
2538
2539 lower_zone = pgdat->node_zones + idx;
2540 lower_zone->lowmem_reserve[j] = present_pages /
2541 sysctl_lowmem_reserve_ratio[idx];
2542 present_pages += lower_zone->present_pages;
2543 }
2544 }
2545 }
2546
2547 /* update totalreserve_pages */
2548 calculate_totalreserve_pages();
2549 }
2550
2551 /*
2552 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2553 * that the pages_{min,low,high} values for each zone are set correctly
2554 * with respect to min_free_kbytes.
2555 */
2556 void setup_per_zone_pages_min(void)
2557 {
2558 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2559 unsigned long lowmem_pages = 0;
2560 struct zone *zone;
2561 unsigned long flags;
2562
2563 /* Calculate total number of !ZONE_HIGHMEM pages */
2564 for_each_zone(zone) {
2565 if (!is_highmem(zone))
2566 lowmem_pages += zone->present_pages;
2567 }
2568
2569 for_each_zone(zone) {
2570 u64 tmp;
2571
2572 spin_lock_irqsave(&zone->lru_lock, flags);
2573 tmp = (u64)pages_min * zone->present_pages;
2574 do_div(tmp, lowmem_pages);
2575 if (is_highmem(zone)) {
2576 /*
2577 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2578 * need highmem pages, so cap pages_min to a small
2579 * value here.
2580 *
2581 * The (pages_high-pages_low) and (pages_low-pages_min)
2582 * deltas controls asynch page reclaim, and so should
2583 * not be capped for highmem.
2584 */
2585 int min_pages;
2586
2587 min_pages = zone->present_pages / 1024;
2588 if (min_pages < SWAP_CLUSTER_MAX)
2589 min_pages = SWAP_CLUSTER_MAX;
2590 if (min_pages > 128)
2591 min_pages = 128;
2592 zone->pages_min = min_pages;
2593 } else {
2594 /*
2595 * If it's a lowmem zone, reserve a number of pages
2596 * proportionate to the zone's size.
2597 */
2598 zone->pages_min = tmp;
2599 }
2600
2601 zone->pages_low = zone->pages_min + (tmp >> 2);
2602 zone->pages_high = zone->pages_min + (tmp >> 1);
2603 spin_unlock_irqrestore(&zone->lru_lock, flags);
2604 }
2605
2606 /* update totalreserve_pages */
2607 calculate_totalreserve_pages();
2608 }
2609
2610 /*
2611 * Initialise min_free_kbytes.
2612 *
2613 * For small machines we want it small (128k min). For large machines
2614 * we want it large (64MB max). But it is not linear, because network
2615 * bandwidth does not increase linearly with machine size. We use
2616 *
2617 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2618 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2619 *
2620 * which yields
2621 *
2622 * 16MB: 512k
2623 * 32MB: 724k
2624 * 64MB: 1024k
2625 * 128MB: 1448k
2626 * 256MB: 2048k
2627 * 512MB: 2896k
2628 * 1024MB: 4096k
2629 * 2048MB: 5792k
2630 * 4096MB: 8192k
2631 * 8192MB: 11584k
2632 * 16384MB: 16384k
2633 */
2634 static int __init init_per_zone_pages_min(void)
2635 {
2636 unsigned long lowmem_kbytes;
2637
2638 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2639
2640 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2641 if (min_free_kbytes < 128)
2642 min_free_kbytes = 128;
2643 if (min_free_kbytes > 65536)
2644 min_free_kbytes = 65536;
2645 setup_per_zone_pages_min();
2646 setup_per_zone_lowmem_reserve();
2647 return 0;
2648 }
2649 module_init(init_per_zone_pages_min)
2650
2651 /*
2652 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2653 * that we can call two helper functions whenever min_free_kbytes
2654 * changes.
2655 */
2656 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2657 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2658 {
2659 proc_dointvec(table, write, file, buffer, length, ppos);
2660 setup_per_zone_pages_min();
2661 return 0;
2662 }
2663
2664 /*
2665 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2666 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2667 * whenever sysctl_lowmem_reserve_ratio changes.
2668 *
2669 * The reserve ratio obviously has absolutely no relation with the
2670 * pages_min watermarks. The lowmem reserve ratio can only make sense
2671 * if in function of the boot time zone sizes.
2672 */
2673 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2674 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2675 {
2676 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2677 setup_per_zone_lowmem_reserve();
2678 return 0;
2679 }
2680
2681 /*
2682 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2683 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2684 * can have before it gets flushed back to buddy allocator.
2685 */
2686
2687 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2688 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2689 {
2690 struct zone *zone;
2691 unsigned int cpu;
2692 int ret;
2693
2694 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2695 if (!write || (ret == -EINVAL))
2696 return ret;
2697 for_each_zone(zone) {
2698 for_each_online_cpu(cpu) {
2699 unsigned long high;
2700 high = zone->present_pages / percpu_pagelist_fraction;
2701 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2702 }
2703 }
2704 return 0;
2705 }
2706
2707 __initdata int hashdist = HASHDIST_DEFAULT;
2708
2709 #ifdef CONFIG_NUMA
2710 static int __init set_hashdist(char *str)
2711 {
2712 if (!str)
2713 return 0;
2714 hashdist = simple_strtoul(str, &str, 0);
2715 return 1;
2716 }
2717 __setup("hashdist=", set_hashdist);
2718 #endif
2719
2720 /*
2721 * allocate a large system hash table from bootmem
2722 * - it is assumed that the hash table must contain an exact power-of-2
2723 * quantity of entries
2724 * - limit is the number of hash buckets, not the total allocation size
2725 */
2726 void *__init alloc_large_system_hash(const char *tablename,
2727 unsigned long bucketsize,
2728 unsigned long numentries,
2729 int scale,
2730 int flags,
2731 unsigned int *_hash_shift,
2732 unsigned int *_hash_mask,
2733 unsigned long limit)
2734 {
2735 unsigned long long max = limit;
2736 unsigned long log2qty, size;
2737 void *table = NULL;
2738
2739 /* allow the kernel cmdline to have a say */
2740 if (!numentries) {
2741 /* round applicable memory size up to nearest megabyte */
2742 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2743 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2744 numentries >>= 20 - PAGE_SHIFT;
2745 numentries <<= 20 - PAGE_SHIFT;
2746
2747 /* limit to 1 bucket per 2^scale bytes of low memory */
2748 if (scale > PAGE_SHIFT)
2749 numentries >>= (scale - PAGE_SHIFT);
2750 else
2751 numentries <<= (PAGE_SHIFT - scale);
2752 }
2753 numentries = roundup_pow_of_two(numentries);
2754
2755 /* limit allocation size to 1/16 total memory by default */
2756 if (max == 0) {
2757 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2758 do_div(max, bucketsize);
2759 }
2760
2761 if (numentries > max)
2762 numentries = max;
2763
2764 log2qty = long_log2(numentries);
2765
2766 do {
2767 size = bucketsize << log2qty;
2768 if (flags & HASH_EARLY)
2769 table = alloc_bootmem(size);
2770 else if (hashdist)
2771 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2772 else {
2773 unsigned long order;
2774 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2775 ;
2776 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2777 }
2778 } while (!table && size > PAGE_SIZE && --log2qty);
2779
2780 if (!table)
2781 panic("Failed to allocate %s hash table\n", tablename);
2782
2783 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2784 tablename,
2785 (1U << log2qty),
2786 long_log2(size) - PAGE_SHIFT,
2787 size);
2788
2789 if (_hash_shift)
2790 *_hash_shift = log2qty;
2791 if (_hash_mask)
2792 *_hash_mask = (1 << log2qty) - 1;
2793
2794 return table;
2795 }
2796
2797 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2798 /*
2799 * pfn <-> page translation. out-of-line version.
2800 * (see asm-generic/memory_model.h)
2801 */
2802 #if defined(CONFIG_FLATMEM)
2803 struct page *pfn_to_page(unsigned long pfn)
2804 {
2805 return mem_map + (pfn - ARCH_PFN_OFFSET);
2806 }
2807 unsigned long page_to_pfn(struct page *page)
2808 {
2809 return (page - mem_map) + ARCH_PFN_OFFSET;
2810 }
2811 #elif defined(CONFIG_DISCONTIGMEM)
2812 struct page *pfn_to_page(unsigned long pfn)
2813 {
2814 int nid = arch_pfn_to_nid(pfn);
2815 return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid);
2816 }
2817 unsigned long page_to_pfn(struct page *page)
2818 {
2819 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
2820 return (page - pgdat->node_mem_map) + pgdat->node_start_pfn;
2821 }
2822 #elif defined(CONFIG_SPARSEMEM)
2823 struct page *pfn_to_page(unsigned long pfn)
2824 {
2825 return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn;
2826 }
2827
2828 unsigned long page_to_pfn(struct page *page)
2829 {
2830 long section_id = page_to_section(page);
2831 return page - __section_mem_map_addr(__nr_to_section(section_id));
2832 }
2833 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2834 EXPORT_SYMBOL(pfn_to_page);
2835 EXPORT_SYMBOL(page_to_pfn);
2836 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */