]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
kmemcheck: move hook into __alloc_pages_nodemask() for the page allocator
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page_ext.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/page_owner.h>
63
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
67 #include "internal.h"
68
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock);
71 #define MIN_PERCPU_PAGELIST_FRACTION (8)
72
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 int _node_numa_mem_[MAX_NUMNODES];
88 #endif
89
90 /*
91 * Array of node states.
92 */
93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 [N_POSSIBLE] = NODE_MASK_ALL,
95 [N_ONLINE] = { { [0] = 1UL } },
96 #ifndef CONFIG_NUMA
97 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
98 #ifdef CONFIG_HIGHMEM
99 [N_HIGH_MEMORY] = { { [0] = 1UL } },
100 #endif
101 #ifdef CONFIG_MOVABLE_NODE
102 [N_MEMORY] = { { [0] = 1UL } },
103 #endif
104 [N_CPU] = { { [0] = 1UL } },
105 #endif /* NUMA */
106 };
107 EXPORT_SYMBOL(node_states);
108
109 /* Protect totalram_pages and zone->managed_pages */
110 static DEFINE_SPINLOCK(managed_page_count_lock);
111
112 unsigned long totalram_pages __read_mostly;
113 unsigned long totalreserve_pages __read_mostly;
114 unsigned long totalcma_pages __read_mostly;
115 /*
116 * When calculating the number of globally allowed dirty pages, there
117 * is a certain number of per-zone reserves that should not be
118 * considered dirtyable memory. This is the sum of those reserves
119 * over all existing zones that contribute dirtyable memory.
120 */
121 unsigned long dirty_balance_reserve __read_mostly;
122
123 int percpu_pagelist_fraction;
124 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
125
126 #ifdef CONFIG_PM_SLEEP
127 /*
128 * The following functions are used by the suspend/hibernate code to temporarily
129 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
130 * while devices are suspended. To avoid races with the suspend/hibernate code,
131 * they should always be called with pm_mutex held (gfp_allowed_mask also should
132 * only be modified with pm_mutex held, unless the suspend/hibernate code is
133 * guaranteed not to run in parallel with that modification).
134 */
135
136 static gfp_t saved_gfp_mask;
137
138 void pm_restore_gfp_mask(void)
139 {
140 WARN_ON(!mutex_is_locked(&pm_mutex));
141 if (saved_gfp_mask) {
142 gfp_allowed_mask = saved_gfp_mask;
143 saved_gfp_mask = 0;
144 }
145 }
146
147 void pm_restrict_gfp_mask(void)
148 {
149 WARN_ON(!mutex_is_locked(&pm_mutex));
150 WARN_ON(saved_gfp_mask);
151 saved_gfp_mask = gfp_allowed_mask;
152 gfp_allowed_mask &= ~GFP_IOFS;
153 }
154
155 bool pm_suspended_storage(void)
156 {
157 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
158 return false;
159 return true;
160 }
161 #endif /* CONFIG_PM_SLEEP */
162
163 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
164 int pageblock_order __read_mostly;
165 #endif
166
167 static void __free_pages_ok(struct page *page, unsigned int order);
168
169 /*
170 * results with 256, 32 in the lowmem_reserve sysctl:
171 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
172 * 1G machine -> (16M dma, 784M normal, 224M high)
173 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
174 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
175 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
176 *
177 * TBD: should special case ZONE_DMA32 machines here - in those we normally
178 * don't need any ZONE_NORMAL reservation
179 */
180 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
181 #ifdef CONFIG_ZONE_DMA
182 256,
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 256,
186 #endif
187 #ifdef CONFIG_HIGHMEM
188 32,
189 #endif
190 32,
191 };
192
193 EXPORT_SYMBOL(totalram_pages);
194
195 static char * const zone_names[MAX_NR_ZONES] = {
196 #ifdef CONFIG_ZONE_DMA
197 "DMA",
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 "DMA32",
201 #endif
202 "Normal",
203 #ifdef CONFIG_HIGHMEM
204 "HighMem",
205 #endif
206 "Movable",
207 };
208
209 int min_free_kbytes = 1024;
210 int user_min_free_kbytes = -1;
211
212 static unsigned long __meminitdata nr_kernel_pages;
213 static unsigned long __meminitdata nr_all_pages;
214 static unsigned long __meminitdata dma_reserve;
215
216 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
217 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
218 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __initdata required_kernelcore;
220 static unsigned long __initdata required_movablecore;
221 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
222
223 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
224 int movable_zone;
225 EXPORT_SYMBOL(movable_zone);
226 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
227
228 #if MAX_NUMNODES > 1
229 int nr_node_ids __read_mostly = MAX_NUMNODES;
230 int nr_online_nodes __read_mostly = 1;
231 EXPORT_SYMBOL(nr_node_ids);
232 EXPORT_SYMBOL(nr_online_nodes);
233 #endif
234
235 int page_group_by_mobility_disabled __read_mostly;
236
237 void set_pageblock_migratetype(struct page *page, int migratetype)
238 {
239 if (unlikely(page_group_by_mobility_disabled &&
240 migratetype < MIGRATE_PCPTYPES))
241 migratetype = MIGRATE_UNMOVABLE;
242
243 set_pageblock_flags_group(page, (unsigned long)migratetype,
244 PB_migrate, PB_migrate_end);
245 }
246
247 bool oom_killer_disabled __read_mostly;
248
249 #ifdef CONFIG_DEBUG_VM
250 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
251 {
252 int ret = 0;
253 unsigned seq;
254 unsigned long pfn = page_to_pfn(page);
255 unsigned long sp, start_pfn;
256
257 do {
258 seq = zone_span_seqbegin(zone);
259 start_pfn = zone->zone_start_pfn;
260 sp = zone->spanned_pages;
261 if (!zone_spans_pfn(zone, pfn))
262 ret = 1;
263 } while (zone_span_seqretry(zone, seq));
264
265 if (ret)
266 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
267 pfn, zone_to_nid(zone), zone->name,
268 start_pfn, start_pfn + sp);
269
270 return ret;
271 }
272
273 static int page_is_consistent(struct zone *zone, struct page *page)
274 {
275 if (!pfn_valid_within(page_to_pfn(page)))
276 return 0;
277 if (zone != page_zone(page))
278 return 0;
279
280 return 1;
281 }
282 /*
283 * Temporary debugging check for pages not lying within a given zone.
284 */
285 static int bad_range(struct zone *zone, struct page *page)
286 {
287 if (page_outside_zone_boundaries(zone, page))
288 return 1;
289 if (!page_is_consistent(zone, page))
290 return 1;
291
292 return 0;
293 }
294 #else
295 static inline int bad_range(struct zone *zone, struct page *page)
296 {
297 return 0;
298 }
299 #endif
300
301 static void bad_page(struct page *page, const char *reason,
302 unsigned long bad_flags)
303 {
304 static unsigned long resume;
305 static unsigned long nr_shown;
306 static unsigned long nr_unshown;
307
308 /* Don't complain about poisoned pages */
309 if (PageHWPoison(page)) {
310 page_mapcount_reset(page); /* remove PageBuddy */
311 return;
312 }
313
314 /*
315 * Allow a burst of 60 reports, then keep quiet for that minute;
316 * or allow a steady drip of one report per second.
317 */
318 if (nr_shown == 60) {
319 if (time_before(jiffies, resume)) {
320 nr_unshown++;
321 goto out;
322 }
323 if (nr_unshown) {
324 printk(KERN_ALERT
325 "BUG: Bad page state: %lu messages suppressed\n",
326 nr_unshown);
327 nr_unshown = 0;
328 }
329 nr_shown = 0;
330 }
331 if (nr_shown++ == 0)
332 resume = jiffies + 60 * HZ;
333
334 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
335 current->comm, page_to_pfn(page));
336 dump_page_badflags(page, reason, bad_flags);
337
338 print_modules();
339 dump_stack();
340 out:
341 /* Leave bad fields for debug, except PageBuddy could make trouble */
342 page_mapcount_reset(page); /* remove PageBuddy */
343 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
344 }
345
346 /*
347 * Higher-order pages are called "compound pages". They are structured thusly:
348 *
349 * The first PAGE_SIZE page is called the "head page".
350 *
351 * The remaining PAGE_SIZE pages are called "tail pages".
352 *
353 * All pages have PG_compound set. All tail pages have their ->first_page
354 * pointing at the head page.
355 *
356 * The first tail page's ->lru.next holds the address of the compound page's
357 * put_page() function. Its ->lru.prev holds the order of allocation.
358 * This usage means that zero-order pages may not be compound.
359 */
360
361 static void free_compound_page(struct page *page)
362 {
363 __free_pages_ok(page, compound_order(page));
364 }
365
366 void prep_compound_page(struct page *page, unsigned long order)
367 {
368 int i;
369 int nr_pages = 1 << order;
370
371 set_compound_page_dtor(page, free_compound_page);
372 set_compound_order(page, order);
373 __SetPageHead(page);
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
376 set_page_count(p, 0);
377 p->first_page = page;
378 /* Make sure p->first_page is always valid for PageTail() */
379 smp_wmb();
380 __SetPageTail(p);
381 }
382 }
383
384 /* update __split_huge_page_refcount if you change this function */
385 static int destroy_compound_page(struct page *page, unsigned long order)
386 {
387 int i;
388 int nr_pages = 1 << order;
389 int bad = 0;
390
391 if (unlikely(compound_order(page) != order)) {
392 bad_page(page, "wrong compound order", 0);
393 bad++;
394 }
395
396 __ClearPageHead(page);
397
398 for (i = 1; i < nr_pages; i++) {
399 struct page *p = page + i;
400
401 if (unlikely(!PageTail(p))) {
402 bad_page(page, "PageTail not set", 0);
403 bad++;
404 } else if (unlikely(p->first_page != page)) {
405 bad_page(page, "first_page not consistent", 0);
406 bad++;
407 }
408 __ClearPageTail(p);
409 }
410
411 return bad;
412 }
413
414 static inline void prep_zero_page(struct page *page, unsigned int order,
415 gfp_t gfp_flags)
416 {
417 int i;
418
419 /*
420 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
421 * and __GFP_HIGHMEM from hard or soft interrupt context.
422 */
423 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
424 for (i = 0; i < (1 << order); i++)
425 clear_highpage(page + i);
426 }
427
428 #ifdef CONFIG_DEBUG_PAGEALLOC
429 unsigned int _debug_guardpage_minorder;
430 bool _debug_pagealloc_enabled __read_mostly;
431 bool _debug_guardpage_enabled __read_mostly;
432
433 static int __init early_debug_pagealloc(char *buf)
434 {
435 if (!buf)
436 return -EINVAL;
437
438 if (strcmp(buf, "on") == 0)
439 _debug_pagealloc_enabled = true;
440
441 return 0;
442 }
443 early_param("debug_pagealloc", early_debug_pagealloc);
444
445 static bool need_debug_guardpage(void)
446 {
447 /* If we don't use debug_pagealloc, we don't need guard page */
448 if (!debug_pagealloc_enabled())
449 return false;
450
451 return true;
452 }
453
454 static void init_debug_guardpage(void)
455 {
456 if (!debug_pagealloc_enabled())
457 return;
458
459 _debug_guardpage_enabled = true;
460 }
461
462 struct page_ext_operations debug_guardpage_ops = {
463 .need = need_debug_guardpage,
464 .init = init_debug_guardpage,
465 };
466
467 static int __init debug_guardpage_minorder_setup(char *buf)
468 {
469 unsigned long res;
470
471 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
472 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
473 return 0;
474 }
475 _debug_guardpage_minorder = res;
476 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
477 return 0;
478 }
479 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
480
481 static inline void set_page_guard(struct zone *zone, struct page *page,
482 unsigned int order, int migratetype)
483 {
484 struct page_ext *page_ext;
485
486 if (!debug_guardpage_enabled())
487 return;
488
489 page_ext = lookup_page_ext(page);
490 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
491
492 INIT_LIST_HEAD(&page->lru);
493 set_page_private(page, order);
494 /* Guard pages are not available for any usage */
495 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
496 }
497
498 static inline void clear_page_guard(struct zone *zone, struct page *page,
499 unsigned int order, int migratetype)
500 {
501 struct page_ext *page_ext;
502
503 if (!debug_guardpage_enabled())
504 return;
505
506 page_ext = lookup_page_ext(page);
507 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
508
509 set_page_private(page, 0);
510 if (!is_migrate_isolate(migratetype))
511 __mod_zone_freepage_state(zone, (1 << order), migratetype);
512 }
513 #else
514 struct page_ext_operations debug_guardpage_ops = { NULL, };
515 static inline void set_page_guard(struct zone *zone, struct page *page,
516 unsigned int order, int migratetype) {}
517 static inline void clear_page_guard(struct zone *zone, struct page *page,
518 unsigned int order, int migratetype) {}
519 #endif
520
521 static inline void set_page_order(struct page *page, unsigned int order)
522 {
523 set_page_private(page, order);
524 __SetPageBuddy(page);
525 }
526
527 static inline void rmv_page_order(struct page *page)
528 {
529 __ClearPageBuddy(page);
530 set_page_private(page, 0);
531 }
532
533 /*
534 * This function checks whether a page is free && is the buddy
535 * we can do coalesce a page and its buddy if
536 * (a) the buddy is not in a hole &&
537 * (b) the buddy is in the buddy system &&
538 * (c) a page and its buddy have the same order &&
539 * (d) a page and its buddy are in the same zone.
540 *
541 * For recording whether a page is in the buddy system, we set ->_mapcount
542 * PAGE_BUDDY_MAPCOUNT_VALUE.
543 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
544 * serialized by zone->lock.
545 *
546 * For recording page's order, we use page_private(page).
547 */
548 static inline int page_is_buddy(struct page *page, struct page *buddy,
549 unsigned int order)
550 {
551 if (!pfn_valid_within(page_to_pfn(buddy)))
552 return 0;
553
554 if (page_is_guard(buddy) && page_order(buddy) == order) {
555 if (page_zone_id(page) != page_zone_id(buddy))
556 return 0;
557
558 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
559
560 return 1;
561 }
562
563 if (PageBuddy(buddy) && page_order(buddy) == order) {
564 /*
565 * zone check is done late to avoid uselessly
566 * calculating zone/node ids for pages that could
567 * never merge.
568 */
569 if (page_zone_id(page) != page_zone_id(buddy))
570 return 0;
571
572 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
573
574 return 1;
575 }
576 return 0;
577 }
578
579 /*
580 * Freeing function for a buddy system allocator.
581 *
582 * The concept of a buddy system is to maintain direct-mapped table
583 * (containing bit values) for memory blocks of various "orders".
584 * The bottom level table contains the map for the smallest allocatable
585 * units of memory (here, pages), and each level above it describes
586 * pairs of units from the levels below, hence, "buddies".
587 * At a high level, all that happens here is marking the table entry
588 * at the bottom level available, and propagating the changes upward
589 * as necessary, plus some accounting needed to play nicely with other
590 * parts of the VM system.
591 * At each level, we keep a list of pages, which are heads of continuous
592 * free pages of length of (1 << order) and marked with _mapcount
593 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
594 * field.
595 * So when we are allocating or freeing one, we can derive the state of the
596 * other. That is, if we allocate a small block, and both were
597 * free, the remainder of the region must be split into blocks.
598 * If a block is freed, and its buddy is also free, then this
599 * triggers coalescing into a block of larger size.
600 *
601 * -- nyc
602 */
603
604 static inline void __free_one_page(struct page *page,
605 unsigned long pfn,
606 struct zone *zone, unsigned int order,
607 int migratetype)
608 {
609 unsigned long page_idx;
610 unsigned long combined_idx;
611 unsigned long uninitialized_var(buddy_idx);
612 struct page *buddy;
613 int max_order = MAX_ORDER;
614
615 VM_BUG_ON(!zone_is_initialized(zone));
616
617 if (unlikely(PageCompound(page)))
618 if (unlikely(destroy_compound_page(page, order)))
619 return;
620
621 VM_BUG_ON(migratetype == -1);
622 if (is_migrate_isolate(migratetype)) {
623 /*
624 * We restrict max order of merging to prevent merge
625 * between freepages on isolate pageblock and normal
626 * pageblock. Without this, pageblock isolation
627 * could cause incorrect freepage accounting.
628 */
629 max_order = min(MAX_ORDER, pageblock_order + 1);
630 } else {
631 __mod_zone_freepage_state(zone, 1 << order, migratetype);
632 }
633
634 page_idx = pfn & ((1 << max_order) - 1);
635
636 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
637 VM_BUG_ON_PAGE(bad_range(zone, page), page);
638
639 while (order < max_order - 1) {
640 buddy_idx = __find_buddy_index(page_idx, order);
641 buddy = page + (buddy_idx - page_idx);
642 if (!page_is_buddy(page, buddy, order))
643 break;
644 /*
645 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
646 * merge with it and move up one order.
647 */
648 if (page_is_guard(buddy)) {
649 clear_page_guard(zone, buddy, order, migratetype);
650 } else {
651 list_del(&buddy->lru);
652 zone->free_area[order].nr_free--;
653 rmv_page_order(buddy);
654 }
655 combined_idx = buddy_idx & page_idx;
656 page = page + (combined_idx - page_idx);
657 page_idx = combined_idx;
658 order++;
659 }
660 set_page_order(page, order);
661
662 /*
663 * If this is not the largest possible page, check if the buddy
664 * of the next-highest order is free. If it is, it's possible
665 * that pages are being freed that will coalesce soon. In case,
666 * that is happening, add the free page to the tail of the list
667 * so it's less likely to be used soon and more likely to be merged
668 * as a higher order page
669 */
670 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
671 struct page *higher_page, *higher_buddy;
672 combined_idx = buddy_idx & page_idx;
673 higher_page = page + (combined_idx - page_idx);
674 buddy_idx = __find_buddy_index(combined_idx, order + 1);
675 higher_buddy = higher_page + (buddy_idx - combined_idx);
676 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
677 list_add_tail(&page->lru,
678 &zone->free_area[order].free_list[migratetype]);
679 goto out;
680 }
681 }
682
683 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
684 out:
685 zone->free_area[order].nr_free++;
686 }
687
688 static inline int free_pages_check(struct page *page)
689 {
690 const char *bad_reason = NULL;
691 unsigned long bad_flags = 0;
692
693 if (unlikely(page_mapcount(page)))
694 bad_reason = "nonzero mapcount";
695 if (unlikely(page->mapping != NULL))
696 bad_reason = "non-NULL mapping";
697 if (unlikely(atomic_read(&page->_count) != 0))
698 bad_reason = "nonzero _count";
699 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
700 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
701 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
702 }
703 #ifdef CONFIG_MEMCG
704 if (unlikely(page->mem_cgroup))
705 bad_reason = "page still charged to cgroup";
706 #endif
707 if (unlikely(bad_reason)) {
708 bad_page(page, bad_reason, bad_flags);
709 return 1;
710 }
711 page_cpupid_reset_last(page);
712 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
713 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
714 return 0;
715 }
716
717 /*
718 * Frees a number of pages from the PCP lists
719 * Assumes all pages on list are in same zone, and of same order.
720 * count is the number of pages to free.
721 *
722 * If the zone was previously in an "all pages pinned" state then look to
723 * see if this freeing clears that state.
724 *
725 * And clear the zone's pages_scanned counter, to hold off the "all pages are
726 * pinned" detection logic.
727 */
728 static void free_pcppages_bulk(struct zone *zone, int count,
729 struct per_cpu_pages *pcp)
730 {
731 int migratetype = 0;
732 int batch_free = 0;
733 int to_free = count;
734 unsigned long nr_scanned;
735
736 spin_lock(&zone->lock);
737 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
738 if (nr_scanned)
739 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
740
741 while (to_free) {
742 struct page *page;
743 struct list_head *list;
744
745 /*
746 * Remove pages from lists in a round-robin fashion. A
747 * batch_free count is maintained that is incremented when an
748 * empty list is encountered. This is so more pages are freed
749 * off fuller lists instead of spinning excessively around empty
750 * lists
751 */
752 do {
753 batch_free++;
754 if (++migratetype == MIGRATE_PCPTYPES)
755 migratetype = 0;
756 list = &pcp->lists[migratetype];
757 } while (list_empty(list));
758
759 /* This is the only non-empty list. Free them all. */
760 if (batch_free == MIGRATE_PCPTYPES)
761 batch_free = to_free;
762
763 do {
764 int mt; /* migratetype of the to-be-freed page */
765
766 page = list_entry(list->prev, struct page, lru);
767 /* must delete as __free_one_page list manipulates */
768 list_del(&page->lru);
769 mt = get_freepage_migratetype(page);
770 if (unlikely(has_isolate_pageblock(zone)))
771 mt = get_pageblock_migratetype(page);
772
773 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
774 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
775 trace_mm_page_pcpu_drain(page, 0, mt);
776 } while (--to_free && --batch_free && !list_empty(list));
777 }
778 spin_unlock(&zone->lock);
779 }
780
781 static void free_one_page(struct zone *zone,
782 struct page *page, unsigned long pfn,
783 unsigned int order,
784 int migratetype)
785 {
786 unsigned long nr_scanned;
787 spin_lock(&zone->lock);
788 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
789 if (nr_scanned)
790 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
791
792 if (unlikely(has_isolate_pageblock(zone) ||
793 is_migrate_isolate(migratetype))) {
794 migratetype = get_pfnblock_migratetype(page, pfn);
795 }
796 __free_one_page(page, pfn, zone, order, migratetype);
797 spin_unlock(&zone->lock);
798 }
799
800 static bool free_pages_prepare(struct page *page, unsigned int order)
801 {
802 int i;
803 int bad = 0;
804
805 VM_BUG_ON_PAGE(PageTail(page), page);
806 VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
807
808 trace_mm_page_free(page, order);
809 kmemcheck_free_shadow(page, order);
810
811 if (PageAnon(page))
812 page->mapping = NULL;
813 for (i = 0; i < (1 << order); i++)
814 bad += free_pages_check(page + i);
815 if (bad)
816 return false;
817
818 reset_page_owner(page, order);
819
820 if (!PageHighMem(page)) {
821 debug_check_no_locks_freed(page_address(page),
822 PAGE_SIZE << order);
823 debug_check_no_obj_freed(page_address(page),
824 PAGE_SIZE << order);
825 }
826 arch_free_page(page, order);
827 kernel_map_pages(page, 1 << order, 0);
828
829 return true;
830 }
831
832 static void __free_pages_ok(struct page *page, unsigned int order)
833 {
834 unsigned long flags;
835 int migratetype;
836 unsigned long pfn = page_to_pfn(page);
837
838 if (!free_pages_prepare(page, order))
839 return;
840
841 migratetype = get_pfnblock_migratetype(page, pfn);
842 local_irq_save(flags);
843 __count_vm_events(PGFREE, 1 << order);
844 set_freepage_migratetype(page, migratetype);
845 free_one_page(page_zone(page), page, pfn, order, migratetype);
846 local_irq_restore(flags);
847 }
848
849 void __init __free_pages_bootmem(struct page *page, unsigned int order)
850 {
851 unsigned int nr_pages = 1 << order;
852 struct page *p = page;
853 unsigned int loop;
854
855 prefetchw(p);
856 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
857 prefetchw(p + 1);
858 __ClearPageReserved(p);
859 set_page_count(p, 0);
860 }
861 __ClearPageReserved(p);
862 set_page_count(p, 0);
863
864 page_zone(page)->managed_pages += nr_pages;
865 set_page_refcounted(page);
866 __free_pages(page, order);
867 }
868
869 #ifdef CONFIG_CMA
870 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
871 void __init init_cma_reserved_pageblock(struct page *page)
872 {
873 unsigned i = pageblock_nr_pages;
874 struct page *p = page;
875
876 do {
877 __ClearPageReserved(p);
878 set_page_count(p, 0);
879 } while (++p, --i);
880
881 set_pageblock_migratetype(page, MIGRATE_CMA);
882
883 if (pageblock_order >= MAX_ORDER) {
884 i = pageblock_nr_pages;
885 p = page;
886 do {
887 set_page_refcounted(p);
888 __free_pages(p, MAX_ORDER - 1);
889 p += MAX_ORDER_NR_PAGES;
890 } while (i -= MAX_ORDER_NR_PAGES);
891 } else {
892 set_page_refcounted(page);
893 __free_pages(page, pageblock_order);
894 }
895
896 adjust_managed_page_count(page, pageblock_nr_pages);
897 }
898 #endif
899
900 /*
901 * The order of subdivision here is critical for the IO subsystem.
902 * Please do not alter this order without good reasons and regression
903 * testing. Specifically, as large blocks of memory are subdivided,
904 * the order in which smaller blocks are delivered depends on the order
905 * they're subdivided in this function. This is the primary factor
906 * influencing the order in which pages are delivered to the IO
907 * subsystem according to empirical testing, and this is also justified
908 * by considering the behavior of a buddy system containing a single
909 * large block of memory acted on by a series of small allocations.
910 * This behavior is a critical factor in sglist merging's success.
911 *
912 * -- nyc
913 */
914 static inline void expand(struct zone *zone, struct page *page,
915 int low, int high, struct free_area *area,
916 int migratetype)
917 {
918 unsigned long size = 1 << high;
919
920 while (high > low) {
921 area--;
922 high--;
923 size >>= 1;
924 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
925
926 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
927 debug_guardpage_enabled() &&
928 high < debug_guardpage_minorder()) {
929 /*
930 * Mark as guard pages (or page), that will allow to
931 * merge back to allocator when buddy will be freed.
932 * Corresponding page table entries will not be touched,
933 * pages will stay not present in virtual address space
934 */
935 set_page_guard(zone, &page[size], high, migratetype);
936 continue;
937 }
938 list_add(&page[size].lru, &area->free_list[migratetype]);
939 area->nr_free++;
940 set_page_order(&page[size], high);
941 }
942 }
943
944 /*
945 * This page is about to be returned from the page allocator
946 */
947 static inline int check_new_page(struct page *page)
948 {
949 const char *bad_reason = NULL;
950 unsigned long bad_flags = 0;
951
952 if (unlikely(page_mapcount(page)))
953 bad_reason = "nonzero mapcount";
954 if (unlikely(page->mapping != NULL))
955 bad_reason = "non-NULL mapping";
956 if (unlikely(atomic_read(&page->_count) != 0))
957 bad_reason = "nonzero _count";
958 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
959 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
960 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
961 }
962 #ifdef CONFIG_MEMCG
963 if (unlikely(page->mem_cgroup))
964 bad_reason = "page still charged to cgroup";
965 #endif
966 if (unlikely(bad_reason)) {
967 bad_page(page, bad_reason, bad_flags);
968 return 1;
969 }
970 return 0;
971 }
972
973 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
974 {
975 int i;
976
977 for (i = 0; i < (1 << order); i++) {
978 struct page *p = page + i;
979 if (unlikely(check_new_page(p)))
980 return 1;
981 }
982
983 set_page_private(page, 0);
984 set_page_refcounted(page);
985
986 arch_alloc_page(page, order);
987 kernel_map_pages(page, 1 << order, 1);
988
989 if (gfp_flags & __GFP_ZERO)
990 prep_zero_page(page, order, gfp_flags);
991
992 if (order && (gfp_flags & __GFP_COMP))
993 prep_compound_page(page, order);
994
995 set_page_owner(page, order, gfp_flags);
996
997 return 0;
998 }
999
1000 /*
1001 * Go through the free lists for the given migratetype and remove
1002 * the smallest available page from the freelists
1003 */
1004 static inline
1005 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1006 int migratetype)
1007 {
1008 unsigned int current_order;
1009 struct free_area *area;
1010 struct page *page;
1011
1012 /* Find a page of the appropriate size in the preferred list */
1013 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1014 area = &(zone->free_area[current_order]);
1015 if (list_empty(&area->free_list[migratetype]))
1016 continue;
1017
1018 page = list_entry(area->free_list[migratetype].next,
1019 struct page, lru);
1020 list_del(&page->lru);
1021 rmv_page_order(page);
1022 area->nr_free--;
1023 expand(zone, page, order, current_order, area, migratetype);
1024 set_freepage_migratetype(page, migratetype);
1025 return page;
1026 }
1027
1028 return NULL;
1029 }
1030
1031
1032 /*
1033 * This array describes the order lists are fallen back to when
1034 * the free lists for the desirable migrate type are depleted
1035 */
1036 static int fallbacks[MIGRATE_TYPES][4] = {
1037 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1038 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1039 #ifdef CONFIG_CMA
1040 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1041 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1042 #else
1043 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1044 #endif
1045 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1046 #ifdef CONFIG_MEMORY_ISOLATION
1047 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1048 #endif
1049 };
1050
1051 /*
1052 * Move the free pages in a range to the free lists of the requested type.
1053 * Note that start_page and end_pages are not aligned on a pageblock
1054 * boundary. If alignment is required, use move_freepages_block()
1055 */
1056 int move_freepages(struct zone *zone,
1057 struct page *start_page, struct page *end_page,
1058 int migratetype)
1059 {
1060 struct page *page;
1061 unsigned long order;
1062 int pages_moved = 0;
1063
1064 #ifndef CONFIG_HOLES_IN_ZONE
1065 /*
1066 * page_zone is not safe to call in this context when
1067 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1068 * anyway as we check zone boundaries in move_freepages_block().
1069 * Remove at a later date when no bug reports exist related to
1070 * grouping pages by mobility
1071 */
1072 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1073 #endif
1074
1075 for (page = start_page; page <= end_page;) {
1076 /* Make sure we are not inadvertently changing nodes */
1077 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1078
1079 if (!pfn_valid_within(page_to_pfn(page))) {
1080 page++;
1081 continue;
1082 }
1083
1084 if (!PageBuddy(page)) {
1085 page++;
1086 continue;
1087 }
1088
1089 order = page_order(page);
1090 list_move(&page->lru,
1091 &zone->free_area[order].free_list[migratetype]);
1092 set_freepage_migratetype(page, migratetype);
1093 page += 1 << order;
1094 pages_moved += 1 << order;
1095 }
1096
1097 return pages_moved;
1098 }
1099
1100 int move_freepages_block(struct zone *zone, struct page *page,
1101 int migratetype)
1102 {
1103 unsigned long start_pfn, end_pfn;
1104 struct page *start_page, *end_page;
1105
1106 start_pfn = page_to_pfn(page);
1107 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1108 start_page = pfn_to_page(start_pfn);
1109 end_page = start_page + pageblock_nr_pages - 1;
1110 end_pfn = start_pfn + pageblock_nr_pages - 1;
1111
1112 /* Do not cross zone boundaries */
1113 if (!zone_spans_pfn(zone, start_pfn))
1114 start_page = page;
1115 if (!zone_spans_pfn(zone, end_pfn))
1116 return 0;
1117
1118 return move_freepages(zone, start_page, end_page, migratetype);
1119 }
1120
1121 static void change_pageblock_range(struct page *pageblock_page,
1122 int start_order, int migratetype)
1123 {
1124 int nr_pageblocks = 1 << (start_order - pageblock_order);
1125
1126 while (nr_pageblocks--) {
1127 set_pageblock_migratetype(pageblock_page, migratetype);
1128 pageblock_page += pageblock_nr_pages;
1129 }
1130 }
1131
1132 /*
1133 * If breaking a large block of pages, move all free pages to the preferred
1134 * allocation list. If falling back for a reclaimable kernel allocation, be
1135 * more aggressive about taking ownership of free pages.
1136 *
1137 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1138 * nor move CMA pages to different free lists. We don't want unmovable pages
1139 * to be allocated from MIGRATE_CMA areas.
1140 *
1141 * Returns the new migratetype of the pageblock (or the same old migratetype
1142 * if it was unchanged).
1143 */
1144 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1145 int start_type, int fallback_type)
1146 {
1147 int current_order = page_order(page);
1148
1149 /*
1150 * When borrowing from MIGRATE_CMA, we need to release the excess
1151 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1152 * is set to CMA so it is returned to the correct freelist in case
1153 * the page ends up being not actually allocated from the pcp lists.
1154 */
1155 if (is_migrate_cma(fallback_type))
1156 return fallback_type;
1157
1158 /* Take ownership for orders >= pageblock_order */
1159 if (current_order >= pageblock_order) {
1160 change_pageblock_range(page, current_order, start_type);
1161 return start_type;
1162 }
1163
1164 if (current_order >= pageblock_order / 2 ||
1165 start_type == MIGRATE_RECLAIMABLE ||
1166 page_group_by_mobility_disabled) {
1167 int pages;
1168
1169 pages = move_freepages_block(zone, page, start_type);
1170
1171 /* Claim the whole block if over half of it is free */
1172 if (pages >= (1 << (pageblock_order-1)) ||
1173 page_group_by_mobility_disabled) {
1174
1175 set_pageblock_migratetype(page, start_type);
1176 return start_type;
1177 }
1178
1179 }
1180
1181 return fallback_type;
1182 }
1183
1184 /* Remove an element from the buddy allocator from the fallback list */
1185 static inline struct page *
1186 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1187 {
1188 struct free_area *area;
1189 unsigned int current_order;
1190 struct page *page;
1191 int migratetype, new_type, i;
1192
1193 /* Find the largest possible block of pages in the other list */
1194 for (current_order = MAX_ORDER-1;
1195 current_order >= order && current_order <= MAX_ORDER-1;
1196 --current_order) {
1197 for (i = 0;; i++) {
1198 migratetype = fallbacks[start_migratetype][i];
1199
1200 /* MIGRATE_RESERVE handled later if necessary */
1201 if (migratetype == MIGRATE_RESERVE)
1202 break;
1203
1204 area = &(zone->free_area[current_order]);
1205 if (list_empty(&area->free_list[migratetype]))
1206 continue;
1207
1208 page = list_entry(area->free_list[migratetype].next,
1209 struct page, lru);
1210 area->nr_free--;
1211
1212 new_type = try_to_steal_freepages(zone, page,
1213 start_migratetype,
1214 migratetype);
1215
1216 /* Remove the page from the freelists */
1217 list_del(&page->lru);
1218 rmv_page_order(page);
1219
1220 expand(zone, page, order, current_order, area,
1221 new_type);
1222 /* The freepage_migratetype may differ from pageblock's
1223 * migratetype depending on the decisions in
1224 * try_to_steal_freepages. This is OK as long as it does
1225 * not differ for MIGRATE_CMA type.
1226 */
1227 set_freepage_migratetype(page, new_type);
1228
1229 trace_mm_page_alloc_extfrag(page, order, current_order,
1230 start_migratetype, migratetype, new_type);
1231
1232 return page;
1233 }
1234 }
1235
1236 return NULL;
1237 }
1238
1239 /*
1240 * Do the hard work of removing an element from the buddy allocator.
1241 * Call me with the zone->lock already held.
1242 */
1243 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1244 int migratetype)
1245 {
1246 struct page *page;
1247
1248 retry_reserve:
1249 page = __rmqueue_smallest(zone, order, migratetype);
1250
1251 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1252 page = __rmqueue_fallback(zone, order, migratetype);
1253
1254 /*
1255 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1256 * is used because __rmqueue_smallest is an inline function
1257 * and we want just one call site
1258 */
1259 if (!page) {
1260 migratetype = MIGRATE_RESERVE;
1261 goto retry_reserve;
1262 }
1263 }
1264
1265 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1266 return page;
1267 }
1268
1269 /*
1270 * Obtain a specified number of elements from the buddy allocator, all under
1271 * a single hold of the lock, for efficiency. Add them to the supplied list.
1272 * Returns the number of new pages which were placed at *list.
1273 */
1274 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1275 unsigned long count, struct list_head *list,
1276 int migratetype, bool cold)
1277 {
1278 int i;
1279
1280 spin_lock(&zone->lock);
1281 for (i = 0; i < count; ++i) {
1282 struct page *page = __rmqueue(zone, order, migratetype);
1283 if (unlikely(page == NULL))
1284 break;
1285
1286 /*
1287 * Split buddy pages returned by expand() are received here
1288 * in physical page order. The page is added to the callers and
1289 * list and the list head then moves forward. From the callers
1290 * perspective, the linked list is ordered by page number in
1291 * some conditions. This is useful for IO devices that can
1292 * merge IO requests if the physical pages are ordered
1293 * properly.
1294 */
1295 if (likely(!cold))
1296 list_add(&page->lru, list);
1297 else
1298 list_add_tail(&page->lru, list);
1299 list = &page->lru;
1300 if (is_migrate_cma(get_freepage_migratetype(page)))
1301 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1302 -(1 << order));
1303 }
1304 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1305 spin_unlock(&zone->lock);
1306 return i;
1307 }
1308
1309 #ifdef CONFIG_NUMA
1310 /*
1311 * Called from the vmstat counter updater to drain pagesets of this
1312 * currently executing processor on remote nodes after they have
1313 * expired.
1314 *
1315 * Note that this function must be called with the thread pinned to
1316 * a single processor.
1317 */
1318 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1319 {
1320 unsigned long flags;
1321 int to_drain, batch;
1322
1323 local_irq_save(flags);
1324 batch = ACCESS_ONCE(pcp->batch);
1325 to_drain = min(pcp->count, batch);
1326 if (to_drain > 0) {
1327 free_pcppages_bulk(zone, to_drain, pcp);
1328 pcp->count -= to_drain;
1329 }
1330 local_irq_restore(flags);
1331 }
1332 #endif
1333
1334 /*
1335 * Drain pcplists of the indicated processor and zone.
1336 *
1337 * The processor must either be the current processor and the
1338 * thread pinned to the current processor or a processor that
1339 * is not online.
1340 */
1341 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1342 {
1343 unsigned long flags;
1344 struct per_cpu_pageset *pset;
1345 struct per_cpu_pages *pcp;
1346
1347 local_irq_save(flags);
1348 pset = per_cpu_ptr(zone->pageset, cpu);
1349
1350 pcp = &pset->pcp;
1351 if (pcp->count) {
1352 free_pcppages_bulk(zone, pcp->count, pcp);
1353 pcp->count = 0;
1354 }
1355 local_irq_restore(flags);
1356 }
1357
1358 /*
1359 * Drain pcplists of all zones on the indicated processor.
1360 *
1361 * The processor must either be the current processor and the
1362 * thread pinned to the current processor or a processor that
1363 * is not online.
1364 */
1365 static void drain_pages(unsigned int cpu)
1366 {
1367 struct zone *zone;
1368
1369 for_each_populated_zone(zone) {
1370 drain_pages_zone(cpu, zone);
1371 }
1372 }
1373
1374 /*
1375 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1376 *
1377 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1378 * the single zone's pages.
1379 */
1380 void drain_local_pages(struct zone *zone)
1381 {
1382 int cpu = smp_processor_id();
1383
1384 if (zone)
1385 drain_pages_zone(cpu, zone);
1386 else
1387 drain_pages(cpu);
1388 }
1389
1390 /*
1391 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1392 *
1393 * When zone parameter is non-NULL, spill just the single zone's pages.
1394 *
1395 * Note that this code is protected against sending an IPI to an offline
1396 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1397 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1398 * nothing keeps CPUs from showing up after we populated the cpumask and
1399 * before the call to on_each_cpu_mask().
1400 */
1401 void drain_all_pages(struct zone *zone)
1402 {
1403 int cpu;
1404
1405 /*
1406 * Allocate in the BSS so we wont require allocation in
1407 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1408 */
1409 static cpumask_t cpus_with_pcps;
1410
1411 /*
1412 * We don't care about racing with CPU hotplug event
1413 * as offline notification will cause the notified
1414 * cpu to drain that CPU pcps and on_each_cpu_mask
1415 * disables preemption as part of its processing
1416 */
1417 for_each_online_cpu(cpu) {
1418 struct per_cpu_pageset *pcp;
1419 struct zone *z;
1420 bool has_pcps = false;
1421
1422 if (zone) {
1423 pcp = per_cpu_ptr(zone->pageset, cpu);
1424 if (pcp->pcp.count)
1425 has_pcps = true;
1426 } else {
1427 for_each_populated_zone(z) {
1428 pcp = per_cpu_ptr(z->pageset, cpu);
1429 if (pcp->pcp.count) {
1430 has_pcps = true;
1431 break;
1432 }
1433 }
1434 }
1435
1436 if (has_pcps)
1437 cpumask_set_cpu(cpu, &cpus_with_pcps);
1438 else
1439 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1440 }
1441 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1442 zone, 1);
1443 }
1444
1445 #ifdef CONFIG_HIBERNATION
1446
1447 void mark_free_pages(struct zone *zone)
1448 {
1449 unsigned long pfn, max_zone_pfn;
1450 unsigned long flags;
1451 unsigned int order, t;
1452 struct list_head *curr;
1453
1454 if (zone_is_empty(zone))
1455 return;
1456
1457 spin_lock_irqsave(&zone->lock, flags);
1458
1459 max_zone_pfn = zone_end_pfn(zone);
1460 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1461 if (pfn_valid(pfn)) {
1462 struct page *page = pfn_to_page(pfn);
1463
1464 if (!swsusp_page_is_forbidden(page))
1465 swsusp_unset_page_free(page);
1466 }
1467
1468 for_each_migratetype_order(order, t) {
1469 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1470 unsigned long i;
1471
1472 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1473 for (i = 0; i < (1UL << order); i++)
1474 swsusp_set_page_free(pfn_to_page(pfn + i));
1475 }
1476 }
1477 spin_unlock_irqrestore(&zone->lock, flags);
1478 }
1479 #endif /* CONFIG_PM */
1480
1481 /*
1482 * Free a 0-order page
1483 * cold == true ? free a cold page : free a hot page
1484 */
1485 void free_hot_cold_page(struct page *page, bool cold)
1486 {
1487 struct zone *zone = page_zone(page);
1488 struct per_cpu_pages *pcp;
1489 unsigned long flags;
1490 unsigned long pfn = page_to_pfn(page);
1491 int migratetype;
1492
1493 if (!free_pages_prepare(page, 0))
1494 return;
1495
1496 migratetype = get_pfnblock_migratetype(page, pfn);
1497 set_freepage_migratetype(page, migratetype);
1498 local_irq_save(flags);
1499 __count_vm_event(PGFREE);
1500
1501 /*
1502 * We only track unmovable, reclaimable and movable on pcp lists.
1503 * Free ISOLATE pages back to the allocator because they are being
1504 * offlined but treat RESERVE as movable pages so we can get those
1505 * areas back if necessary. Otherwise, we may have to free
1506 * excessively into the page allocator
1507 */
1508 if (migratetype >= MIGRATE_PCPTYPES) {
1509 if (unlikely(is_migrate_isolate(migratetype))) {
1510 free_one_page(zone, page, pfn, 0, migratetype);
1511 goto out;
1512 }
1513 migratetype = MIGRATE_MOVABLE;
1514 }
1515
1516 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1517 if (!cold)
1518 list_add(&page->lru, &pcp->lists[migratetype]);
1519 else
1520 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1521 pcp->count++;
1522 if (pcp->count >= pcp->high) {
1523 unsigned long batch = ACCESS_ONCE(pcp->batch);
1524 free_pcppages_bulk(zone, batch, pcp);
1525 pcp->count -= batch;
1526 }
1527
1528 out:
1529 local_irq_restore(flags);
1530 }
1531
1532 /*
1533 * Free a list of 0-order pages
1534 */
1535 void free_hot_cold_page_list(struct list_head *list, bool cold)
1536 {
1537 struct page *page, *next;
1538
1539 list_for_each_entry_safe(page, next, list, lru) {
1540 trace_mm_page_free_batched(page, cold);
1541 free_hot_cold_page(page, cold);
1542 }
1543 }
1544
1545 /*
1546 * split_page takes a non-compound higher-order page, and splits it into
1547 * n (1<<order) sub-pages: page[0..n]
1548 * Each sub-page must be freed individually.
1549 *
1550 * Note: this is probably too low level an operation for use in drivers.
1551 * Please consult with lkml before using this in your driver.
1552 */
1553 void split_page(struct page *page, unsigned int order)
1554 {
1555 int i;
1556
1557 VM_BUG_ON_PAGE(PageCompound(page), page);
1558 VM_BUG_ON_PAGE(!page_count(page), page);
1559
1560 #ifdef CONFIG_KMEMCHECK
1561 /*
1562 * Split shadow pages too, because free(page[0]) would
1563 * otherwise free the whole shadow.
1564 */
1565 if (kmemcheck_page_is_tracked(page))
1566 split_page(virt_to_page(page[0].shadow), order);
1567 #endif
1568
1569 set_page_owner(page, 0, 0);
1570 for (i = 1; i < (1 << order); i++) {
1571 set_page_refcounted(page + i);
1572 set_page_owner(page + i, 0, 0);
1573 }
1574 }
1575 EXPORT_SYMBOL_GPL(split_page);
1576
1577 int __isolate_free_page(struct page *page, unsigned int order)
1578 {
1579 unsigned long watermark;
1580 struct zone *zone;
1581 int mt;
1582
1583 BUG_ON(!PageBuddy(page));
1584
1585 zone = page_zone(page);
1586 mt = get_pageblock_migratetype(page);
1587
1588 if (!is_migrate_isolate(mt)) {
1589 /* Obey watermarks as if the page was being allocated */
1590 watermark = low_wmark_pages(zone) + (1 << order);
1591 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1592 return 0;
1593
1594 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1595 }
1596
1597 /* Remove page from free list */
1598 list_del(&page->lru);
1599 zone->free_area[order].nr_free--;
1600 rmv_page_order(page);
1601
1602 /* Set the pageblock if the isolated page is at least a pageblock */
1603 if (order >= pageblock_order - 1) {
1604 struct page *endpage = page + (1 << order) - 1;
1605 for (; page < endpage; page += pageblock_nr_pages) {
1606 int mt = get_pageblock_migratetype(page);
1607 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1608 set_pageblock_migratetype(page,
1609 MIGRATE_MOVABLE);
1610 }
1611 }
1612
1613 set_page_owner(page, order, 0);
1614 return 1UL << order;
1615 }
1616
1617 /*
1618 * Similar to split_page except the page is already free. As this is only
1619 * being used for migration, the migratetype of the block also changes.
1620 * As this is called with interrupts disabled, the caller is responsible
1621 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1622 * are enabled.
1623 *
1624 * Note: this is probably too low level an operation for use in drivers.
1625 * Please consult with lkml before using this in your driver.
1626 */
1627 int split_free_page(struct page *page)
1628 {
1629 unsigned int order;
1630 int nr_pages;
1631
1632 order = page_order(page);
1633
1634 nr_pages = __isolate_free_page(page, order);
1635 if (!nr_pages)
1636 return 0;
1637
1638 /* Split into individual pages */
1639 set_page_refcounted(page);
1640 split_page(page, order);
1641 return nr_pages;
1642 }
1643
1644 /*
1645 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1646 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1647 * or two.
1648 */
1649 static inline
1650 struct page *buffered_rmqueue(struct zone *preferred_zone,
1651 struct zone *zone, unsigned int order,
1652 gfp_t gfp_flags, int migratetype)
1653 {
1654 unsigned long flags;
1655 struct page *page;
1656 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1657
1658 again:
1659 if (likely(order == 0)) {
1660 struct per_cpu_pages *pcp;
1661 struct list_head *list;
1662
1663 local_irq_save(flags);
1664 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1665 list = &pcp->lists[migratetype];
1666 if (list_empty(list)) {
1667 pcp->count += rmqueue_bulk(zone, 0,
1668 pcp->batch, list,
1669 migratetype, cold);
1670 if (unlikely(list_empty(list)))
1671 goto failed;
1672 }
1673
1674 if (cold)
1675 page = list_entry(list->prev, struct page, lru);
1676 else
1677 page = list_entry(list->next, struct page, lru);
1678
1679 list_del(&page->lru);
1680 pcp->count--;
1681 } else {
1682 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1683 /*
1684 * __GFP_NOFAIL is not to be used in new code.
1685 *
1686 * All __GFP_NOFAIL callers should be fixed so that they
1687 * properly detect and handle allocation failures.
1688 *
1689 * We most definitely don't want callers attempting to
1690 * allocate greater than order-1 page units with
1691 * __GFP_NOFAIL.
1692 */
1693 WARN_ON_ONCE(order > 1);
1694 }
1695 spin_lock_irqsave(&zone->lock, flags);
1696 page = __rmqueue(zone, order, migratetype);
1697 spin_unlock(&zone->lock);
1698 if (!page)
1699 goto failed;
1700 __mod_zone_freepage_state(zone, -(1 << order),
1701 get_freepage_migratetype(page));
1702 }
1703
1704 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1705 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1706 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1707 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1708
1709 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1710 zone_statistics(preferred_zone, zone, gfp_flags);
1711 local_irq_restore(flags);
1712
1713 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1714 if (prep_new_page(page, order, gfp_flags))
1715 goto again;
1716 return page;
1717
1718 failed:
1719 local_irq_restore(flags);
1720 return NULL;
1721 }
1722
1723 #ifdef CONFIG_FAIL_PAGE_ALLOC
1724
1725 static struct {
1726 struct fault_attr attr;
1727
1728 u32 ignore_gfp_highmem;
1729 u32 ignore_gfp_wait;
1730 u32 min_order;
1731 } fail_page_alloc = {
1732 .attr = FAULT_ATTR_INITIALIZER,
1733 .ignore_gfp_wait = 1,
1734 .ignore_gfp_highmem = 1,
1735 .min_order = 1,
1736 };
1737
1738 static int __init setup_fail_page_alloc(char *str)
1739 {
1740 return setup_fault_attr(&fail_page_alloc.attr, str);
1741 }
1742 __setup("fail_page_alloc=", setup_fail_page_alloc);
1743
1744 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1745 {
1746 if (order < fail_page_alloc.min_order)
1747 return false;
1748 if (gfp_mask & __GFP_NOFAIL)
1749 return false;
1750 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1751 return false;
1752 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1753 return false;
1754
1755 return should_fail(&fail_page_alloc.attr, 1 << order);
1756 }
1757
1758 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1759
1760 static int __init fail_page_alloc_debugfs(void)
1761 {
1762 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1763 struct dentry *dir;
1764
1765 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1766 &fail_page_alloc.attr);
1767 if (IS_ERR(dir))
1768 return PTR_ERR(dir);
1769
1770 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1771 &fail_page_alloc.ignore_gfp_wait))
1772 goto fail;
1773 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1774 &fail_page_alloc.ignore_gfp_highmem))
1775 goto fail;
1776 if (!debugfs_create_u32("min-order", mode, dir,
1777 &fail_page_alloc.min_order))
1778 goto fail;
1779
1780 return 0;
1781 fail:
1782 debugfs_remove_recursive(dir);
1783
1784 return -ENOMEM;
1785 }
1786
1787 late_initcall(fail_page_alloc_debugfs);
1788
1789 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1790
1791 #else /* CONFIG_FAIL_PAGE_ALLOC */
1792
1793 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1794 {
1795 return false;
1796 }
1797
1798 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1799
1800 /*
1801 * Return true if free pages are above 'mark'. This takes into account the order
1802 * of the allocation.
1803 */
1804 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1805 unsigned long mark, int classzone_idx, int alloc_flags,
1806 long free_pages)
1807 {
1808 /* free_pages may go negative - that's OK */
1809 long min = mark;
1810 int o;
1811 long free_cma = 0;
1812
1813 free_pages -= (1 << order) - 1;
1814 if (alloc_flags & ALLOC_HIGH)
1815 min -= min / 2;
1816 if (alloc_flags & ALLOC_HARDER)
1817 min -= min / 4;
1818 #ifdef CONFIG_CMA
1819 /* If allocation can't use CMA areas don't use free CMA pages */
1820 if (!(alloc_flags & ALLOC_CMA))
1821 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1822 #endif
1823
1824 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1825 return false;
1826 for (o = 0; o < order; o++) {
1827 /* At the next order, this order's pages become unavailable */
1828 free_pages -= z->free_area[o].nr_free << o;
1829
1830 /* Require fewer higher order pages to be free */
1831 min >>= 1;
1832
1833 if (free_pages <= min)
1834 return false;
1835 }
1836 return true;
1837 }
1838
1839 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1840 int classzone_idx, int alloc_flags)
1841 {
1842 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1843 zone_page_state(z, NR_FREE_PAGES));
1844 }
1845
1846 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1847 unsigned long mark, int classzone_idx, int alloc_flags)
1848 {
1849 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1850
1851 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1852 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1853
1854 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1855 free_pages);
1856 }
1857
1858 #ifdef CONFIG_NUMA
1859 /*
1860 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1861 * skip over zones that are not allowed by the cpuset, or that have
1862 * been recently (in last second) found to be nearly full. See further
1863 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1864 * that have to skip over a lot of full or unallowed zones.
1865 *
1866 * If the zonelist cache is present in the passed zonelist, then
1867 * returns a pointer to the allowed node mask (either the current
1868 * tasks mems_allowed, or node_states[N_MEMORY].)
1869 *
1870 * If the zonelist cache is not available for this zonelist, does
1871 * nothing and returns NULL.
1872 *
1873 * If the fullzones BITMAP in the zonelist cache is stale (more than
1874 * a second since last zap'd) then we zap it out (clear its bits.)
1875 *
1876 * We hold off even calling zlc_setup, until after we've checked the
1877 * first zone in the zonelist, on the theory that most allocations will
1878 * be satisfied from that first zone, so best to examine that zone as
1879 * quickly as we can.
1880 */
1881 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1882 {
1883 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1884 nodemask_t *allowednodes; /* zonelist_cache approximation */
1885
1886 zlc = zonelist->zlcache_ptr;
1887 if (!zlc)
1888 return NULL;
1889
1890 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1891 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1892 zlc->last_full_zap = jiffies;
1893 }
1894
1895 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1896 &cpuset_current_mems_allowed :
1897 &node_states[N_MEMORY];
1898 return allowednodes;
1899 }
1900
1901 /*
1902 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1903 * if it is worth looking at further for free memory:
1904 * 1) Check that the zone isn't thought to be full (doesn't have its
1905 * bit set in the zonelist_cache fullzones BITMAP).
1906 * 2) Check that the zones node (obtained from the zonelist_cache
1907 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1908 * Return true (non-zero) if zone is worth looking at further, or
1909 * else return false (zero) if it is not.
1910 *
1911 * This check -ignores- the distinction between various watermarks,
1912 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1913 * found to be full for any variation of these watermarks, it will
1914 * be considered full for up to one second by all requests, unless
1915 * we are so low on memory on all allowed nodes that we are forced
1916 * into the second scan of the zonelist.
1917 *
1918 * In the second scan we ignore this zonelist cache and exactly
1919 * apply the watermarks to all zones, even it is slower to do so.
1920 * We are low on memory in the second scan, and should leave no stone
1921 * unturned looking for a free page.
1922 */
1923 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1924 nodemask_t *allowednodes)
1925 {
1926 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1927 int i; /* index of *z in zonelist zones */
1928 int n; /* node that zone *z is on */
1929
1930 zlc = zonelist->zlcache_ptr;
1931 if (!zlc)
1932 return 1;
1933
1934 i = z - zonelist->_zonerefs;
1935 n = zlc->z_to_n[i];
1936
1937 /* This zone is worth trying if it is allowed but not full */
1938 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1939 }
1940
1941 /*
1942 * Given 'z' scanning a zonelist, set the corresponding bit in
1943 * zlc->fullzones, so that subsequent attempts to allocate a page
1944 * from that zone don't waste time re-examining it.
1945 */
1946 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1947 {
1948 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1949 int i; /* index of *z in zonelist zones */
1950
1951 zlc = zonelist->zlcache_ptr;
1952 if (!zlc)
1953 return;
1954
1955 i = z - zonelist->_zonerefs;
1956
1957 set_bit(i, zlc->fullzones);
1958 }
1959
1960 /*
1961 * clear all zones full, called after direct reclaim makes progress so that
1962 * a zone that was recently full is not skipped over for up to a second
1963 */
1964 static void zlc_clear_zones_full(struct zonelist *zonelist)
1965 {
1966 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1967
1968 zlc = zonelist->zlcache_ptr;
1969 if (!zlc)
1970 return;
1971
1972 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1973 }
1974
1975 static bool zone_local(struct zone *local_zone, struct zone *zone)
1976 {
1977 return local_zone->node == zone->node;
1978 }
1979
1980 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1981 {
1982 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1983 RECLAIM_DISTANCE;
1984 }
1985
1986 #else /* CONFIG_NUMA */
1987
1988 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1989 {
1990 return NULL;
1991 }
1992
1993 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1994 nodemask_t *allowednodes)
1995 {
1996 return 1;
1997 }
1998
1999 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2000 {
2001 }
2002
2003 static void zlc_clear_zones_full(struct zonelist *zonelist)
2004 {
2005 }
2006
2007 static bool zone_local(struct zone *local_zone, struct zone *zone)
2008 {
2009 return true;
2010 }
2011
2012 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2013 {
2014 return true;
2015 }
2016
2017 #endif /* CONFIG_NUMA */
2018
2019 static void reset_alloc_batches(struct zone *preferred_zone)
2020 {
2021 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2022
2023 do {
2024 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2025 high_wmark_pages(zone) - low_wmark_pages(zone) -
2026 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2027 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2028 } while (zone++ != preferred_zone);
2029 }
2030
2031 /*
2032 * get_page_from_freelist goes through the zonelist trying to allocate
2033 * a page.
2034 */
2035 static struct page *
2036 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
2037 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
2038 struct zone *preferred_zone, int classzone_idx, int migratetype)
2039 {
2040 struct zoneref *z;
2041 struct page *page = NULL;
2042 struct zone *zone;
2043 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2044 int zlc_active = 0; /* set if using zonelist_cache */
2045 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2046 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2047 (gfp_mask & __GFP_WRITE);
2048 int nr_fair_skipped = 0;
2049 bool zonelist_rescan;
2050
2051 zonelist_scan:
2052 zonelist_rescan = false;
2053
2054 /*
2055 * Scan zonelist, looking for a zone with enough free.
2056 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2057 */
2058 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2059 high_zoneidx, nodemask) {
2060 unsigned long mark;
2061
2062 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2063 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2064 continue;
2065 if (cpusets_enabled() &&
2066 (alloc_flags & ALLOC_CPUSET) &&
2067 !cpuset_zone_allowed(zone, gfp_mask))
2068 continue;
2069 /*
2070 * Distribute pages in proportion to the individual
2071 * zone size to ensure fair page aging. The zone a
2072 * page was allocated in should have no effect on the
2073 * time the page has in memory before being reclaimed.
2074 */
2075 if (alloc_flags & ALLOC_FAIR) {
2076 if (!zone_local(preferred_zone, zone))
2077 break;
2078 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2079 nr_fair_skipped++;
2080 continue;
2081 }
2082 }
2083 /*
2084 * When allocating a page cache page for writing, we
2085 * want to get it from a zone that is within its dirty
2086 * limit, such that no single zone holds more than its
2087 * proportional share of globally allowed dirty pages.
2088 * The dirty limits take into account the zone's
2089 * lowmem reserves and high watermark so that kswapd
2090 * should be able to balance it without having to
2091 * write pages from its LRU list.
2092 *
2093 * This may look like it could increase pressure on
2094 * lower zones by failing allocations in higher zones
2095 * before they are full. But the pages that do spill
2096 * over are limited as the lower zones are protected
2097 * by this very same mechanism. It should not become
2098 * a practical burden to them.
2099 *
2100 * XXX: For now, allow allocations to potentially
2101 * exceed the per-zone dirty limit in the slowpath
2102 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2103 * which is important when on a NUMA setup the allowed
2104 * zones are together not big enough to reach the
2105 * global limit. The proper fix for these situations
2106 * will require awareness of zones in the
2107 * dirty-throttling and the flusher threads.
2108 */
2109 if (consider_zone_dirty && !zone_dirty_ok(zone))
2110 continue;
2111
2112 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2113 if (!zone_watermark_ok(zone, order, mark,
2114 classzone_idx, alloc_flags)) {
2115 int ret;
2116
2117 /* Checked here to keep the fast path fast */
2118 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2119 if (alloc_flags & ALLOC_NO_WATERMARKS)
2120 goto try_this_zone;
2121
2122 if (IS_ENABLED(CONFIG_NUMA) &&
2123 !did_zlc_setup && nr_online_nodes > 1) {
2124 /*
2125 * we do zlc_setup if there are multiple nodes
2126 * and before considering the first zone allowed
2127 * by the cpuset.
2128 */
2129 allowednodes = zlc_setup(zonelist, alloc_flags);
2130 zlc_active = 1;
2131 did_zlc_setup = 1;
2132 }
2133
2134 if (zone_reclaim_mode == 0 ||
2135 !zone_allows_reclaim(preferred_zone, zone))
2136 goto this_zone_full;
2137
2138 /*
2139 * As we may have just activated ZLC, check if the first
2140 * eligible zone has failed zone_reclaim recently.
2141 */
2142 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2143 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2144 continue;
2145
2146 ret = zone_reclaim(zone, gfp_mask, order);
2147 switch (ret) {
2148 case ZONE_RECLAIM_NOSCAN:
2149 /* did not scan */
2150 continue;
2151 case ZONE_RECLAIM_FULL:
2152 /* scanned but unreclaimable */
2153 continue;
2154 default:
2155 /* did we reclaim enough */
2156 if (zone_watermark_ok(zone, order, mark,
2157 classzone_idx, alloc_flags))
2158 goto try_this_zone;
2159
2160 /*
2161 * Failed to reclaim enough to meet watermark.
2162 * Only mark the zone full if checking the min
2163 * watermark or if we failed to reclaim just
2164 * 1<<order pages or else the page allocator
2165 * fastpath will prematurely mark zones full
2166 * when the watermark is between the low and
2167 * min watermarks.
2168 */
2169 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2170 ret == ZONE_RECLAIM_SOME)
2171 goto this_zone_full;
2172
2173 continue;
2174 }
2175 }
2176
2177 try_this_zone:
2178 page = buffered_rmqueue(preferred_zone, zone, order,
2179 gfp_mask, migratetype);
2180 if (page)
2181 break;
2182 this_zone_full:
2183 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2184 zlc_mark_zone_full(zonelist, z);
2185 }
2186
2187 if (page) {
2188 /*
2189 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2190 * necessary to allocate the page. The expectation is
2191 * that the caller is taking steps that will free more
2192 * memory. The caller should avoid the page being used
2193 * for !PFMEMALLOC purposes.
2194 */
2195 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2196 return page;
2197 }
2198
2199 /*
2200 * The first pass makes sure allocations are spread fairly within the
2201 * local node. However, the local node might have free pages left
2202 * after the fairness batches are exhausted, and remote zones haven't
2203 * even been considered yet. Try once more without fairness, and
2204 * include remote zones now, before entering the slowpath and waking
2205 * kswapd: prefer spilling to a remote zone over swapping locally.
2206 */
2207 if (alloc_flags & ALLOC_FAIR) {
2208 alloc_flags &= ~ALLOC_FAIR;
2209 if (nr_fair_skipped) {
2210 zonelist_rescan = true;
2211 reset_alloc_batches(preferred_zone);
2212 }
2213 if (nr_online_nodes > 1)
2214 zonelist_rescan = true;
2215 }
2216
2217 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2218 /* Disable zlc cache for second zonelist scan */
2219 zlc_active = 0;
2220 zonelist_rescan = true;
2221 }
2222
2223 if (zonelist_rescan)
2224 goto zonelist_scan;
2225
2226 return NULL;
2227 }
2228
2229 /*
2230 * Large machines with many possible nodes should not always dump per-node
2231 * meminfo in irq context.
2232 */
2233 static inline bool should_suppress_show_mem(void)
2234 {
2235 bool ret = false;
2236
2237 #if NODES_SHIFT > 8
2238 ret = in_interrupt();
2239 #endif
2240 return ret;
2241 }
2242
2243 static DEFINE_RATELIMIT_STATE(nopage_rs,
2244 DEFAULT_RATELIMIT_INTERVAL,
2245 DEFAULT_RATELIMIT_BURST);
2246
2247 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2248 {
2249 unsigned int filter = SHOW_MEM_FILTER_NODES;
2250
2251 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2252 debug_guardpage_minorder() > 0)
2253 return;
2254
2255 /*
2256 * This documents exceptions given to allocations in certain
2257 * contexts that are allowed to allocate outside current's set
2258 * of allowed nodes.
2259 */
2260 if (!(gfp_mask & __GFP_NOMEMALLOC))
2261 if (test_thread_flag(TIF_MEMDIE) ||
2262 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2263 filter &= ~SHOW_MEM_FILTER_NODES;
2264 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2265 filter &= ~SHOW_MEM_FILTER_NODES;
2266
2267 if (fmt) {
2268 struct va_format vaf;
2269 va_list args;
2270
2271 va_start(args, fmt);
2272
2273 vaf.fmt = fmt;
2274 vaf.va = &args;
2275
2276 pr_warn("%pV", &vaf);
2277
2278 va_end(args);
2279 }
2280
2281 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2282 current->comm, order, gfp_mask);
2283
2284 dump_stack();
2285 if (!should_suppress_show_mem())
2286 show_mem(filter);
2287 }
2288
2289 static inline int
2290 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2291 unsigned long did_some_progress,
2292 unsigned long pages_reclaimed)
2293 {
2294 /* Do not loop if specifically requested */
2295 if (gfp_mask & __GFP_NORETRY)
2296 return 0;
2297
2298 /* Always retry if specifically requested */
2299 if (gfp_mask & __GFP_NOFAIL)
2300 return 1;
2301
2302 /*
2303 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2304 * making forward progress without invoking OOM. Suspend also disables
2305 * storage devices so kswapd will not help. Bail if we are suspending.
2306 */
2307 if (!did_some_progress && pm_suspended_storage())
2308 return 0;
2309
2310 /*
2311 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2312 * means __GFP_NOFAIL, but that may not be true in other
2313 * implementations.
2314 */
2315 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2316 return 1;
2317
2318 /*
2319 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2320 * specified, then we retry until we no longer reclaim any pages
2321 * (above), or we've reclaimed an order of pages at least as
2322 * large as the allocation's order. In both cases, if the
2323 * allocation still fails, we stop retrying.
2324 */
2325 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2326 return 1;
2327
2328 return 0;
2329 }
2330
2331 static inline struct page *
2332 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2333 struct zonelist *zonelist, enum zone_type high_zoneidx,
2334 nodemask_t *nodemask, struct zone *preferred_zone,
2335 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2336 {
2337 struct page *page;
2338
2339 *did_some_progress = 0;
2340
2341 if (oom_killer_disabled)
2342 return NULL;
2343
2344 /*
2345 * Acquire the per-zone oom lock for each zone. If that
2346 * fails, somebody else is making progress for us.
2347 */
2348 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2349 *did_some_progress = 1;
2350 schedule_timeout_uninterruptible(1);
2351 return NULL;
2352 }
2353
2354 /*
2355 * PM-freezer should be notified that there might be an OOM killer on
2356 * its way to kill and wake somebody up. This is too early and we might
2357 * end up not killing anything but false positives are acceptable.
2358 * See freeze_processes.
2359 */
2360 note_oom_kill();
2361
2362 /*
2363 * Go through the zonelist yet one more time, keep very high watermark
2364 * here, this is only to catch a parallel oom killing, we must fail if
2365 * we're still under heavy pressure.
2366 */
2367 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2368 order, zonelist, high_zoneidx,
2369 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2370 preferred_zone, classzone_idx, migratetype);
2371 if (page)
2372 goto out;
2373
2374 if (!(gfp_mask & __GFP_NOFAIL)) {
2375 /* Coredumps can quickly deplete all memory reserves */
2376 if (current->flags & PF_DUMPCORE)
2377 goto out;
2378 /* The OOM killer will not help higher order allocs */
2379 if (order > PAGE_ALLOC_COSTLY_ORDER)
2380 goto out;
2381 /* The OOM killer does not needlessly kill tasks for lowmem */
2382 if (high_zoneidx < ZONE_NORMAL)
2383 goto out;
2384 /* The OOM killer does not compensate for light reclaim */
2385 if (!(gfp_mask & __GFP_FS))
2386 goto out;
2387 /*
2388 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2389 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2390 * The caller should handle page allocation failure by itself if
2391 * it specifies __GFP_THISNODE.
2392 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2393 */
2394 if (gfp_mask & __GFP_THISNODE)
2395 goto out;
2396 }
2397 /* Exhausted what can be done so it's blamo time */
2398 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2399 *did_some_progress = 1;
2400 out:
2401 oom_zonelist_unlock(zonelist, gfp_mask);
2402 return page;
2403 }
2404
2405 #ifdef CONFIG_COMPACTION
2406 /* Try memory compaction for high-order allocations before reclaim */
2407 static struct page *
2408 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2409 struct zonelist *zonelist, enum zone_type high_zoneidx,
2410 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2411 int classzone_idx, int migratetype, enum migrate_mode mode,
2412 int *contended_compaction, bool *deferred_compaction)
2413 {
2414 unsigned long compact_result;
2415 struct page *page;
2416
2417 if (!order)
2418 return NULL;
2419
2420 current->flags |= PF_MEMALLOC;
2421 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2422 nodemask, mode,
2423 contended_compaction,
2424 alloc_flags, classzone_idx);
2425 current->flags &= ~PF_MEMALLOC;
2426
2427 switch (compact_result) {
2428 case COMPACT_DEFERRED:
2429 *deferred_compaction = true;
2430 /* fall-through */
2431 case COMPACT_SKIPPED:
2432 return NULL;
2433 default:
2434 break;
2435 }
2436
2437 /*
2438 * At least in one zone compaction wasn't deferred or skipped, so let's
2439 * count a compaction stall
2440 */
2441 count_vm_event(COMPACTSTALL);
2442
2443 page = get_page_from_freelist(gfp_mask, nodemask,
2444 order, zonelist, high_zoneidx,
2445 alloc_flags & ~ALLOC_NO_WATERMARKS,
2446 preferred_zone, classzone_idx, migratetype);
2447
2448 if (page) {
2449 struct zone *zone = page_zone(page);
2450
2451 zone->compact_blockskip_flush = false;
2452 compaction_defer_reset(zone, order, true);
2453 count_vm_event(COMPACTSUCCESS);
2454 return page;
2455 }
2456
2457 /*
2458 * It's bad if compaction run occurs and fails. The most likely reason
2459 * is that pages exist, but not enough to satisfy watermarks.
2460 */
2461 count_vm_event(COMPACTFAIL);
2462
2463 cond_resched();
2464
2465 return NULL;
2466 }
2467 #else
2468 static inline struct page *
2469 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2470 struct zonelist *zonelist, enum zone_type high_zoneidx,
2471 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2472 int classzone_idx, int migratetype, enum migrate_mode mode,
2473 int *contended_compaction, bool *deferred_compaction)
2474 {
2475 return NULL;
2476 }
2477 #endif /* CONFIG_COMPACTION */
2478
2479 /* Perform direct synchronous page reclaim */
2480 static int
2481 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2482 nodemask_t *nodemask)
2483 {
2484 struct reclaim_state reclaim_state;
2485 int progress;
2486
2487 cond_resched();
2488
2489 /* We now go into synchronous reclaim */
2490 cpuset_memory_pressure_bump();
2491 current->flags |= PF_MEMALLOC;
2492 lockdep_set_current_reclaim_state(gfp_mask);
2493 reclaim_state.reclaimed_slab = 0;
2494 current->reclaim_state = &reclaim_state;
2495
2496 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2497
2498 current->reclaim_state = NULL;
2499 lockdep_clear_current_reclaim_state();
2500 current->flags &= ~PF_MEMALLOC;
2501
2502 cond_resched();
2503
2504 return progress;
2505 }
2506
2507 /* The really slow allocator path where we enter direct reclaim */
2508 static inline struct page *
2509 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2510 struct zonelist *zonelist, enum zone_type high_zoneidx,
2511 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2512 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2513 {
2514 struct page *page = NULL;
2515 bool drained = false;
2516
2517 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2518 nodemask);
2519 if (unlikely(!(*did_some_progress)))
2520 return NULL;
2521
2522 /* After successful reclaim, reconsider all zones for allocation */
2523 if (IS_ENABLED(CONFIG_NUMA))
2524 zlc_clear_zones_full(zonelist);
2525
2526 retry:
2527 page = get_page_from_freelist(gfp_mask, nodemask, order,
2528 zonelist, high_zoneidx,
2529 alloc_flags & ~ALLOC_NO_WATERMARKS,
2530 preferred_zone, classzone_idx,
2531 migratetype);
2532
2533 /*
2534 * If an allocation failed after direct reclaim, it could be because
2535 * pages are pinned on the per-cpu lists. Drain them and try again
2536 */
2537 if (!page && !drained) {
2538 drain_all_pages(NULL);
2539 drained = true;
2540 goto retry;
2541 }
2542
2543 return page;
2544 }
2545
2546 /*
2547 * This is called in the allocator slow-path if the allocation request is of
2548 * sufficient urgency to ignore watermarks and take other desperate measures
2549 */
2550 static inline struct page *
2551 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2552 struct zonelist *zonelist, enum zone_type high_zoneidx,
2553 nodemask_t *nodemask, struct zone *preferred_zone,
2554 int classzone_idx, int migratetype)
2555 {
2556 struct page *page;
2557
2558 do {
2559 page = get_page_from_freelist(gfp_mask, nodemask, order,
2560 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2561 preferred_zone, classzone_idx, migratetype);
2562
2563 if (!page && gfp_mask & __GFP_NOFAIL)
2564 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2565 } while (!page && (gfp_mask & __GFP_NOFAIL));
2566
2567 return page;
2568 }
2569
2570 static void wake_all_kswapds(unsigned int order,
2571 struct zonelist *zonelist,
2572 enum zone_type high_zoneidx,
2573 struct zone *preferred_zone,
2574 nodemask_t *nodemask)
2575 {
2576 struct zoneref *z;
2577 struct zone *zone;
2578
2579 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2580 high_zoneidx, nodemask)
2581 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2582 }
2583
2584 static inline int
2585 gfp_to_alloc_flags(gfp_t gfp_mask)
2586 {
2587 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2588 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2589
2590 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2591 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2592
2593 /*
2594 * The caller may dip into page reserves a bit more if the caller
2595 * cannot run direct reclaim, or if the caller has realtime scheduling
2596 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2597 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2598 */
2599 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2600
2601 if (atomic) {
2602 /*
2603 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2604 * if it can't schedule.
2605 */
2606 if (!(gfp_mask & __GFP_NOMEMALLOC))
2607 alloc_flags |= ALLOC_HARDER;
2608 /*
2609 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2610 * comment for __cpuset_node_allowed().
2611 */
2612 alloc_flags &= ~ALLOC_CPUSET;
2613 } else if (unlikely(rt_task(current)) && !in_interrupt())
2614 alloc_flags |= ALLOC_HARDER;
2615
2616 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2617 if (gfp_mask & __GFP_MEMALLOC)
2618 alloc_flags |= ALLOC_NO_WATERMARKS;
2619 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2620 alloc_flags |= ALLOC_NO_WATERMARKS;
2621 else if (!in_interrupt() &&
2622 ((current->flags & PF_MEMALLOC) ||
2623 unlikely(test_thread_flag(TIF_MEMDIE))))
2624 alloc_flags |= ALLOC_NO_WATERMARKS;
2625 }
2626 #ifdef CONFIG_CMA
2627 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2628 alloc_flags |= ALLOC_CMA;
2629 #endif
2630 return alloc_flags;
2631 }
2632
2633 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2634 {
2635 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2636 }
2637
2638 static inline struct page *
2639 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2640 struct zonelist *zonelist, enum zone_type high_zoneidx,
2641 nodemask_t *nodemask, struct zone *preferred_zone,
2642 int classzone_idx, int migratetype)
2643 {
2644 const gfp_t wait = gfp_mask & __GFP_WAIT;
2645 struct page *page = NULL;
2646 int alloc_flags;
2647 unsigned long pages_reclaimed = 0;
2648 unsigned long did_some_progress;
2649 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2650 bool deferred_compaction = false;
2651 int contended_compaction = COMPACT_CONTENDED_NONE;
2652
2653 /*
2654 * In the slowpath, we sanity check order to avoid ever trying to
2655 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2656 * be using allocators in order of preference for an area that is
2657 * too large.
2658 */
2659 if (order >= MAX_ORDER) {
2660 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2661 return NULL;
2662 }
2663
2664 /*
2665 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2666 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2667 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2668 * using a larger set of nodes after it has established that the
2669 * allowed per node queues are empty and that nodes are
2670 * over allocated.
2671 */
2672 if (IS_ENABLED(CONFIG_NUMA) &&
2673 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2674 goto nopage;
2675
2676 retry:
2677 if (!(gfp_mask & __GFP_NO_KSWAPD))
2678 wake_all_kswapds(order, zonelist, high_zoneidx,
2679 preferred_zone, nodemask);
2680
2681 /*
2682 * OK, we're below the kswapd watermark and have kicked background
2683 * reclaim. Now things get more complex, so set up alloc_flags according
2684 * to how we want to proceed.
2685 */
2686 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2687
2688 /*
2689 * Find the true preferred zone if the allocation is unconstrained by
2690 * cpusets.
2691 */
2692 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2693 struct zoneref *preferred_zoneref;
2694 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2695 NULL, &preferred_zone);
2696 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2697 }
2698
2699 /* This is the last chance, in general, before the goto nopage. */
2700 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2701 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2702 preferred_zone, classzone_idx, migratetype);
2703 if (page)
2704 goto got_pg;
2705
2706 /* Allocate without watermarks if the context allows */
2707 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2708 /*
2709 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2710 * the allocation is high priority and these type of
2711 * allocations are system rather than user orientated
2712 */
2713 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2714
2715 page = __alloc_pages_high_priority(gfp_mask, order,
2716 zonelist, high_zoneidx, nodemask,
2717 preferred_zone, classzone_idx, migratetype);
2718 if (page) {
2719 goto got_pg;
2720 }
2721 }
2722
2723 /* Atomic allocations - we can't balance anything */
2724 if (!wait) {
2725 /*
2726 * All existing users of the deprecated __GFP_NOFAIL are
2727 * blockable, so warn of any new users that actually allow this
2728 * type of allocation to fail.
2729 */
2730 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2731 goto nopage;
2732 }
2733
2734 /* Avoid recursion of direct reclaim */
2735 if (current->flags & PF_MEMALLOC)
2736 goto nopage;
2737
2738 /* Avoid allocations with no watermarks from looping endlessly */
2739 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2740 goto nopage;
2741
2742 /*
2743 * Try direct compaction. The first pass is asynchronous. Subsequent
2744 * attempts after direct reclaim are synchronous
2745 */
2746 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2747 high_zoneidx, nodemask, alloc_flags,
2748 preferred_zone,
2749 classzone_idx, migratetype,
2750 migration_mode, &contended_compaction,
2751 &deferred_compaction);
2752 if (page)
2753 goto got_pg;
2754
2755 /* Checks for THP-specific high-order allocations */
2756 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2757 /*
2758 * If compaction is deferred for high-order allocations, it is
2759 * because sync compaction recently failed. If this is the case
2760 * and the caller requested a THP allocation, we do not want
2761 * to heavily disrupt the system, so we fail the allocation
2762 * instead of entering direct reclaim.
2763 */
2764 if (deferred_compaction)
2765 goto nopage;
2766
2767 /*
2768 * In all zones where compaction was attempted (and not
2769 * deferred or skipped), lock contention has been detected.
2770 * For THP allocation we do not want to disrupt the others
2771 * so we fallback to base pages instead.
2772 */
2773 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2774 goto nopage;
2775
2776 /*
2777 * If compaction was aborted due to need_resched(), we do not
2778 * want to further increase allocation latency, unless it is
2779 * khugepaged trying to collapse.
2780 */
2781 if (contended_compaction == COMPACT_CONTENDED_SCHED
2782 && !(current->flags & PF_KTHREAD))
2783 goto nopage;
2784 }
2785
2786 /*
2787 * It can become very expensive to allocate transparent hugepages at
2788 * fault, so use asynchronous memory compaction for THP unless it is
2789 * khugepaged trying to collapse.
2790 */
2791 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2792 (current->flags & PF_KTHREAD))
2793 migration_mode = MIGRATE_SYNC_LIGHT;
2794
2795 /* Try direct reclaim and then allocating */
2796 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2797 zonelist, high_zoneidx,
2798 nodemask,
2799 alloc_flags, preferred_zone,
2800 classzone_idx, migratetype,
2801 &did_some_progress);
2802 if (page)
2803 goto got_pg;
2804
2805 /* Check if we should retry the allocation */
2806 pages_reclaimed += did_some_progress;
2807 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2808 pages_reclaimed)) {
2809 /*
2810 * If we fail to make progress by freeing individual
2811 * pages, but the allocation wants us to keep going,
2812 * start OOM killing tasks.
2813 */
2814 if (!did_some_progress) {
2815 page = __alloc_pages_may_oom(gfp_mask, order, zonelist,
2816 high_zoneidx, nodemask,
2817 preferred_zone, classzone_idx,
2818 migratetype,&did_some_progress);
2819 if (page)
2820 goto got_pg;
2821 if (!did_some_progress)
2822 goto nopage;
2823 }
2824 /* Wait for some write requests to complete then retry */
2825 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2826 goto retry;
2827 } else {
2828 /*
2829 * High-order allocations do not necessarily loop after
2830 * direct reclaim and reclaim/compaction depends on compaction
2831 * being called after reclaim so call directly if necessary
2832 */
2833 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2834 high_zoneidx, nodemask, alloc_flags,
2835 preferred_zone,
2836 classzone_idx, migratetype,
2837 migration_mode, &contended_compaction,
2838 &deferred_compaction);
2839 if (page)
2840 goto got_pg;
2841 }
2842
2843 nopage:
2844 warn_alloc_failed(gfp_mask, order, NULL);
2845 got_pg:
2846 return page;
2847 }
2848
2849 /*
2850 * This is the 'heart' of the zoned buddy allocator.
2851 */
2852 struct page *
2853 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2854 struct zonelist *zonelist, nodemask_t *nodemask)
2855 {
2856 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2857 struct zone *preferred_zone;
2858 struct zoneref *preferred_zoneref;
2859 struct page *page = NULL;
2860 int migratetype = gfpflags_to_migratetype(gfp_mask);
2861 unsigned int cpuset_mems_cookie;
2862 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2863 int classzone_idx;
2864 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2865
2866 gfp_mask &= gfp_allowed_mask;
2867
2868 lockdep_trace_alloc(gfp_mask);
2869
2870 might_sleep_if(gfp_mask & __GFP_WAIT);
2871
2872 if (should_fail_alloc_page(gfp_mask, order))
2873 return NULL;
2874
2875 /*
2876 * Check the zones suitable for the gfp_mask contain at least one
2877 * valid zone. It's possible to have an empty zonelist as a result
2878 * of GFP_THISNODE and a memoryless node
2879 */
2880 if (unlikely(!zonelist->_zonerefs->zone))
2881 return NULL;
2882
2883 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2884 alloc_flags |= ALLOC_CMA;
2885
2886 retry_cpuset:
2887 cpuset_mems_cookie = read_mems_allowed_begin();
2888
2889 /* The preferred zone is used for statistics later */
2890 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2891 nodemask ? : &cpuset_current_mems_allowed,
2892 &preferred_zone);
2893 if (!preferred_zone)
2894 goto out;
2895 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2896
2897 /* First allocation attempt */
2898 alloc_mask = gfp_mask|__GFP_HARDWALL;
2899 page = get_page_from_freelist(alloc_mask, nodemask, order, zonelist,
2900 high_zoneidx, alloc_flags, preferred_zone,
2901 classzone_idx, migratetype);
2902 if (unlikely(!page)) {
2903 /*
2904 * Runtime PM, block IO and its error handling path
2905 * can deadlock because I/O on the device might not
2906 * complete.
2907 */
2908 alloc_mask = memalloc_noio_flags(gfp_mask);
2909
2910 page = __alloc_pages_slowpath(alloc_mask, order,
2911 zonelist, high_zoneidx, nodemask,
2912 preferred_zone, classzone_idx, migratetype);
2913 }
2914
2915 if (kmemcheck_enabled && page)
2916 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2917
2918 trace_mm_page_alloc(page, order, alloc_mask, migratetype);
2919
2920 out:
2921 /*
2922 * When updating a task's mems_allowed, it is possible to race with
2923 * parallel threads in such a way that an allocation can fail while
2924 * the mask is being updated. If a page allocation is about to fail,
2925 * check if the cpuset changed during allocation and if so, retry.
2926 */
2927 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2928 goto retry_cpuset;
2929
2930 return page;
2931 }
2932 EXPORT_SYMBOL(__alloc_pages_nodemask);
2933
2934 /*
2935 * Common helper functions.
2936 */
2937 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2938 {
2939 struct page *page;
2940
2941 /*
2942 * __get_free_pages() returns a 32-bit address, which cannot represent
2943 * a highmem page
2944 */
2945 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2946
2947 page = alloc_pages(gfp_mask, order);
2948 if (!page)
2949 return 0;
2950 return (unsigned long) page_address(page);
2951 }
2952 EXPORT_SYMBOL(__get_free_pages);
2953
2954 unsigned long get_zeroed_page(gfp_t gfp_mask)
2955 {
2956 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2957 }
2958 EXPORT_SYMBOL(get_zeroed_page);
2959
2960 void __free_pages(struct page *page, unsigned int order)
2961 {
2962 if (put_page_testzero(page)) {
2963 if (order == 0)
2964 free_hot_cold_page(page, false);
2965 else
2966 __free_pages_ok(page, order);
2967 }
2968 }
2969
2970 EXPORT_SYMBOL(__free_pages);
2971
2972 void free_pages(unsigned long addr, unsigned int order)
2973 {
2974 if (addr != 0) {
2975 VM_BUG_ON(!virt_addr_valid((void *)addr));
2976 __free_pages(virt_to_page((void *)addr), order);
2977 }
2978 }
2979
2980 EXPORT_SYMBOL(free_pages);
2981
2982 /*
2983 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2984 * of the current memory cgroup.
2985 *
2986 * It should be used when the caller would like to use kmalloc, but since the
2987 * allocation is large, it has to fall back to the page allocator.
2988 */
2989 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2990 {
2991 struct page *page;
2992 struct mem_cgroup *memcg = NULL;
2993
2994 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2995 return NULL;
2996 page = alloc_pages(gfp_mask, order);
2997 memcg_kmem_commit_charge(page, memcg, order);
2998 return page;
2999 }
3000
3001 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3002 {
3003 struct page *page;
3004 struct mem_cgroup *memcg = NULL;
3005
3006 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3007 return NULL;
3008 page = alloc_pages_node(nid, gfp_mask, order);
3009 memcg_kmem_commit_charge(page, memcg, order);
3010 return page;
3011 }
3012
3013 /*
3014 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3015 * alloc_kmem_pages.
3016 */
3017 void __free_kmem_pages(struct page *page, unsigned int order)
3018 {
3019 memcg_kmem_uncharge_pages(page, order);
3020 __free_pages(page, order);
3021 }
3022
3023 void free_kmem_pages(unsigned long addr, unsigned int order)
3024 {
3025 if (addr != 0) {
3026 VM_BUG_ON(!virt_addr_valid((void *)addr));
3027 __free_kmem_pages(virt_to_page((void *)addr), order);
3028 }
3029 }
3030
3031 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3032 {
3033 if (addr) {
3034 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3035 unsigned long used = addr + PAGE_ALIGN(size);
3036
3037 split_page(virt_to_page((void *)addr), order);
3038 while (used < alloc_end) {
3039 free_page(used);
3040 used += PAGE_SIZE;
3041 }
3042 }
3043 return (void *)addr;
3044 }
3045
3046 /**
3047 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3048 * @size: the number of bytes to allocate
3049 * @gfp_mask: GFP flags for the allocation
3050 *
3051 * This function is similar to alloc_pages(), except that it allocates the
3052 * minimum number of pages to satisfy the request. alloc_pages() can only
3053 * allocate memory in power-of-two pages.
3054 *
3055 * This function is also limited by MAX_ORDER.
3056 *
3057 * Memory allocated by this function must be released by free_pages_exact().
3058 */
3059 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3060 {
3061 unsigned int order = get_order(size);
3062 unsigned long addr;
3063
3064 addr = __get_free_pages(gfp_mask, order);
3065 return make_alloc_exact(addr, order, size);
3066 }
3067 EXPORT_SYMBOL(alloc_pages_exact);
3068
3069 /**
3070 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3071 * pages on a node.
3072 * @nid: the preferred node ID where memory should be allocated
3073 * @size: the number of bytes to allocate
3074 * @gfp_mask: GFP flags for the allocation
3075 *
3076 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3077 * back.
3078 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3079 * but is not exact.
3080 */
3081 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3082 {
3083 unsigned order = get_order(size);
3084 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3085 if (!p)
3086 return NULL;
3087 return make_alloc_exact((unsigned long)page_address(p), order, size);
3088 }
3089
3090 /**
3091 * free_pages_exact - release memory allocated via alloc_pages_exact()
3092 * @virt: the value returned by alloc_pages_exact.
3093 * @size: size of allocation, same value as passed to alloc_pages_exact().
3094 *
3095 * Release the memory allocated by a previous call to alloc_pages_exact.
3096 */
3097 void free_pages_exact(void *virt, size_t size)
3098 {
3099 unsigned long addr = (unsigned long)virt;
3100 unsigned long end = addr + PAGE_ALIGN(size);
3101
3102 while (addr < end) {
3103 free_page(addr);
3104 addr += PAGE_SIZE;
3105 }
3106 }
3107 EXPORT_SYMBOL(free_pages_exact);
3108
3109 /**
3110 * nr_free_zone_pages - count number of pages beyond high watermark
3111 * @offset: The zone index of the highest zone
3112 *
3113 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3114 * high watermark within all zones at or below a given zone index. For each
3115 * zone, the number of pages is calculated as:
3116 * managed_pages - high_pages
3117 */
3118 static unsigned long nr_free_zone_pages(int offset)
3119 {
3120 struct zoneref *z;
3121 struct zone *zone;
3122
3123 /* Just pick one node, since fallback list is circular */
3124 unsigned long sum = 0;
3125
3126 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3127
3128 for_each_zone_zonelist(zone, z, zonelist, offset) {
3129 unsigned long size = zone->managed_pages;
3130 unsigned long high = high_wmark_pages(zone);
3131 if (size > high)
3132 sum += size - high;
3133 }
3134
3135 return sum;
3136 }
3137
3138 /**
3139 * nr_free_buffer_pages - count number of pages beyond high watermark
3140 *
3141 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3142 * watermark within ZONE_DMA and ZONE_NORMAL.
3143 */
3144 unsigned long nr_free_buffer_pages(void)
3145 {
3146 return nr_free_zone_pages(gfp_zone(GFP_USER));
3147 }
3148 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3149
3150 /**
3151 * nr_free_pagecache_pages - count number of pages beyond high watermark
3152 *
3153 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3154 * high watermark within all zones.
3155 */
3156 unsigned long nr_free_pagecache_pages(void)
3157 {
3158 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3159 }
3160
3161 static inline void show_node(struct zone *zone)
3162 {
3163 if (IS_ENABLED(CONFIG_NUMA))
3164 printk("Node %d ", zone_to_nid(zone));
3165 }
3166
3167 void si_meminfo(struct sysinfo *val)
3168 {
3169 val->totalram = totalram_pages;
3170 val->sharedram = global_page_state(NR_SHMEM);
3171 val->freeram = global_page_state(NR_FREE_PAGES);
3172 val->bufferram = nr_blockdev_pages();
3173 val->totalhigh = totalhigh_pages;
3174 val->freehigh = nr_free_highpages();
3175 val->mem_unit = PAGE_SIZE;
3176 }
3177
3178 EXPORT_SYMBOL(si_meminfo);
3179
3180 #ifdef CONFIG_NUMA
3181 void si_meminfo_node(struct sysinfo *val, int nid)
3182 {
3183 int zone_type; /* needs to be signed */
3184 unsigned long managed_pages = 0;
3185 pg_data_t *pgdat = NODE_DATA(nid);
3186
3187 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3188 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3189 val->totalram = managed_pages;
3190 val->sharedram = node_page_state(nid, NR_SHMEM);
3191 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3192 #ifdef CONFIG_HIGHMEM
3193 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3194 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3195 NR_FREE_PAGES);
3196 #else
3197 val->totalhigh = 0;
3198 val->freehigh = 0;
3199 #endif
3200 val->mem_unit = PAGE_SIZE;
3201 }
3202 #endif
3203
3204 /*
3205 * Determine whether the node should be displayed or not, depending on whether
3206 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3207 */
3208 bool skip_free_areas_node(unsigned int flags, int nid)
3209 {
3210 bool ret = false;
3211 unsigned int cpuset_mems_cookie;
3212
3213 if (!(flags & SHOW_MEM_FILTER_NODES))
3214 goto out;
3215
3216 do {
3217 cpuset_mems_cookie = read_mems_allowed_begin();
3218 ret = !node_isset(nid, cpuset_current_mems_allowed);
3219 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3220 out:
3221 return ret;
3222 }
3223
3224 #define K(x) ((x) << (PAGE_SHIFT-10))
3225
3226 static void show_migration_types(unsigned char type)
3227 {
3228 static const char types[MIGRATE_TYPES] = {
3229 [MIGRATE_UNMOVABLE] = 'U',
3230 [MIGRATE_RECLAIMABLE] = 'E',
3231 [MIGRATE_MOVABLE] = 'M',
3232 [MIGRATE_RESERVE] = 'R',
3233 #ifdef CONFIG_CMA
3234 [MIGRATE_CMA] = 'C',
3235 #endif
3236 #ifdef CONFIG_MEMORY_ISOLATION
3237 [MIGRATE_ISOLATE] = 'I',
3238 #endif
3239 };
3240 char tmp[MIGRATE_TYPES + 1];
3241 char *p = tmp;
3242 int i;
3243
3244 for (i = 0; i < MIGRATE_TYPES; i++) {
3245 if (type & (1 << i))
3246 *p++ = types[i];
3247 }
3248
3249 *p = '\0';
3250 printk("(%s) ", tmp);
3251 }
3252
3253 /*
3254 * Show free area list (used inside shift_scroll-lock stuff)
3255 * We also calculate the percentage fragmentation. We do this by counting the
3256 * memory on each free list with the exception of the first item on the list.
3257 * Suppresses nodes that are not allowed by current's cpuset if
3258 * SHOW_MEM_FILTER_NODES is passed.
3259 */
3260 void show_free_areas(unsigned int filter)
3261 {
3262 int cpu;
3263 struct zone *zone;
3264
3265 for_each_populated_zone(zone) {
3266 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3267 continue;
3268 show_node(zone);
3269 printk("%s per-cpu:\n", zone->name);
3270
3271 for_each_online_cpu(cpu) {
3272 struct per_cpu_pageset *pageset;
3273
3274 pageset = per_cpu_ptr(zone->pageset, cpu);
3275
3276 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3277 cpu, pageset->pcp.high,
3278 pageset->pcp.batch, pageset->pcp.count);
3279 }
3280 }
3281
3282 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3283 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3284 " unevictable:%lu"
3285 " dirty:%lu writeback:%lu unstable:%lu\n"
3286 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3287 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3288 " free_cma:%lu\n",
3289 global_page_state(NR_ACTIVE_ANON),
3290 global_page_state(NR_INACTIVE_ANON),
3291 global_page_state(NR_ISOLATED_ANON),
3292 global_page_state(NR_ACTIVE_FILE),
3293 global_page_state(NR_INACTIVE_FILE),
3294 global_page_state(NR_ISOLATED_FILE),
3295 global_page_state(NR_UNEVICTABLE),
3296 global_page_state(NR_FILE_DIRTY),
3297 global_page_state(NR_WRITEBACK),
3298 global_page_state(NR_UNSTABLE_NFS),
3299 global_page_state(NR_FREE_PAGES),
3300 global_page_state(NR_SLAB_RECLAIMABLE),
3301 global_page_state(NR_SLAB_UNRECLAIMABLE),
3302 global_page_state(NR_FILE_MAPPED),
3303 global_page_state(NR_SHMEM),
3304 global_page_state(NR_PAGETABLE),
3305 global_page_state(NR_BOUNCE),
3306 global_page_state(NR_FREE_CMA_PAGES));
3307
3308 for_each_populated_zone(zone) {
3309 int i;
3310
3311 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3312 continue;
3313 show_node(zone);
3314 printk("%s"
3315 " free:%lukB"
3316 " min:%lukB"
3317 " low:%lukB"
3318 " high:%lukB"
3319 " active_anon:%lukB"
3320 " inactive_anon:%lukB"
3321 " active_file:%lukB"
3322 " inactive_file:%lukB"
3323 " unevictable:%lukB"
3324 " isolated(anon):%lukB"
3325 " isolated(file):%lukB"
3326 " present:%lukB"
3327 " managed:%lukB"
3328 " mlocked:%lukB"
3329 " dirty:%lukB"
3330 " writeback:%lukB"
3331 " mapped:%lukB"
3332 " shmem:%lukB"
3333 " slab_reclaimable:%lukB"
3334 " slab_unreclaimable:%lukB"
3335 " kernel_stack:%lukB"
3336 " pagetables:%lukB"
3337 " unstable:%lukB"
3338 " bounce:%lukB"
3339 " free_cma:%lukB"
3340 " writeback_tmp:%lukB"
3341 " pages_scanned:%lu"
3342 " all_unreclaimable? %s"
3343 "\n",
3344 zone->name,
3345 K(zone_page_state(zone, NR_FREE_PAGES)),
3346 K(min_wmark_pages(zone)),
3347 K(low_wmark_pages(zone)),
3348 K(high_wmark_pages(zone)),
3349 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3350 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3351 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3352 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3353 K(zone_page_state(zone, NR_UNEVICTABLE)),
3354 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3355 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3356 K(zone->present_pages),
3357 K(zone->managed_pages),
3358 K(zone_page_state(zone, NR_MLOCK)),
3359 K(zone_page_state(zone, NR_FILE_DIRTY)),
3360 K(zone_page_state(zone, NR_WRITEBACK)),
3361 K(zone_page_state(zone, NR_FILE_MAPPED)),
3362 K(zone_page_state(zone, NR_SHMEM)),
3363 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3364 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3365 zone_page_state(zone, NR_KERNEL_STACK) *
3366 THREAD_SIZE / 1024,
3367 K(zone_page_state(zone, NR_PAGETABLE)),
3368 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3369 K(zone_page_state(zone, NR_BOUNCE)),
3370 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3371 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3372 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3373 (!zone_reclaimable(zone) ? "yes" : "no")
3374 );
3375 printk("lowmem_reserve[]:");
3376 for (i = 0; i < MAX_NR_ZONES; i++)
3377 printk(" %ld", zone->lowmem_reserve[i]);
3378 printk("\n");
3379 }
3380
3381 for_each_populated_zone(zone) {
3382 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3383 unsigned char types[MAX_ORDER];
3384
3385 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3386 continue;
3387 show_node(zone);
3388 printk("%s: ", zone->name);
3389
3390 spin_lock_irqsave(&zone->lock, flags);
3391 for (order = 0; order < MAX_ORDER; order++) {
3392 struct free_area *area = &zone->free_area[order];
3393 int type;
3394
3395 nr[order] = area->nr_free;
3396 total += nr[order] << order;
3397
3398 types[order] = 0;
3399 for (type = 0; type < MIGRATE_TYPES; type++) {
3400 if (!list_empty(&area->free_list[type]))
3401 types[order] |= 1 << type;
3402 }
3403 }
3404 spin_unlock_irqrestore(&zone->lock, flags);
3405 for (order = 0; order < MAX_ORDER; order++) {
3406 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3407 if (nr[order])
3408 show_migration_types(types[order]);
3409 }
3410 printk("= %lukB\n", K(total));
3411 }
3412
3413 hugetlb_show_meminfo();
3414
3415 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3416
3417 show_swap_cache_info();
3418 }
3419
3420 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3421 {
3422 zoneref->zone = zone;
3423 zoneref->zone_idx = zone_idx(zone);
3424 }
3425
3426 /*
3427 * Builds allocation fallback zone lists.
3428 *
3429 * Add all populated zones of a node to the zonelist.
3430 */
3431 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3432 int nr_zones)
3433 {
3434 struct zone *zone;
3435 enum zone_type zone_type = MAX_NR_ZONES;
3436
3437 do {
3438 zone_type--;
3439 zone = pgdat->node_zones + zone_type;
3440 if (populated_zone(zone)) {
3441 zoneref_set_zone(zone,
3442 &zonelist->_zonerefs[nr_zones++]);
3443 check_highest_zone(zone_type);
3444 }
3445 } while (zone_type);
3446
3447 return nr_zones;
3448 }
3449
3450
3451 /*
3452 * zonelist_order:
3453 * 0 = automatic detection of better ordering.
3454 * 1 = order by ([node] distance, -zonetype)
3455 * 2 = order by (-zonetype, [node] distance)
3456 *
3457 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3458 * the same zonelist. So only NUMA can configure this param.
3459 */
3460 #define ZONELIST_ORDER_DEFAULT 0
3461 #define ZONELIST_ORDER_NODE 1
3462 #define ZONELIST_ORDER_ZONE 2
3463
3464 /* zonelist order in the kernel.
3465 * set_zonelist_order() will set this to NODE or ZONE.
3466 */
3467 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3468 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3469
3470
3471 #ifdef CONFIG_NUMA
3472 /* The value user specified ....changed by config */
3473 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3474 /* string for sysctl */
3475 #define NUMA_ZONELIST_ORDER_LEN 16
3476 char numa_zonelist_order[16] = "default";
3477
3478 /*
3479 * interface for configure zonelist ordering.
3480 * command line option "numa_zonelist_order"
3481 * = "[dD]efault - default, automatic configuration.
3482 * = "[nN]ode - order by node locality, then by zone within node
3483 * = "[zZ]one - order by zone, then by locality within zone
3484 */
3485
3486 static int __parse_numa_zonelist_order(char *s)
3487 {
3488 if (*s == 'd' || *s == 'D') {
3489 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3490 } else if (*s == 'n' || *s == 'N') {
3491 user_zonelist_order = ZONELIST_ORDER_NODE;
3492 } else if (*s == 'z' || *s == 'Z') {
3493 user_zonelist_order = ZONELIST_ORDER_ZONE;
3494 } else {
3495 printk(KERN_WARNING
3496 "Ignoring invalid numa_zonelist_order value: "
3497 "%s\n", s);
3498 return -EINVAL;
3499 }
3500 return 0;
3501 }
3502
3503 static __init int setup_numa_zonelist_order(char *s)
3504 {
3505 int ret;
3506
3507 if (!s)
3508 return 0;
3509
3510 ret = __parse_numa_zonelist_order(s);
3511 if (ret == 0)
3512 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3513
3514 return ret;
3515 }
3516 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3517
3518 /*
3519 * sysctl handler for numa_zonelist_order
3520 */
3521 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3522 void __user *buffer, size_t *length,
3523 loff_t *ppos)
3524 {
3525 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3526 int ret;
3527 static DEFINE_MUTEX(zl_order_mutex);
3528
3529 mutex_lock(&zl_order_mutex);
3530 if (write) {
3531 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3532 ret = -EINVAL;
3533 goto out;
3534 }
3535 strcpy(saved_string, (char *)table->data);
3536 }
3537 ret = proc_dostring(table, write, buffer, length, ppos);
3538 if (ret)
3539 goto out;
3540 if (write) {
3541 int oldval = user_zonelist_order;
3542
3543 ret = __parse_numa_zonelist_order((char *)table->data);
3544 if (ret) {
3545 /*
3546 * bogus value. restore saved string
3547 */
3548 strncpy((char *)table->data, saved_string,
3549 NUMA_ZONELIST_ORDER_LEN);
3550 user_zonelist_order = oldval;
3551 } else if (oldval != user_zonelist_order) {
3552 mutex_lock(&zonelists_mutex);
3553 build_all_zonelists(NULL, NULL);
3554 mutex_unlock(&zonelists_mutex);
3555 }
3556 }
3557 out:
3558 mutex_unlock(&zl_order_mutex);
3559 return ret;
3560 }
3561
3562
3563 #define MAX_NODE_LOAD (nr_online_nodes)
3564 static int node_load[MAX_NUMNODES];
3565
3566 /**
3567 * find_next_best_node - find the next node that should appear in a given node's fallback list
3568 * @node: node whose fallback list we're appending
3569 * @used_node_mask: nodemask_t of already used nodes
3570 *
3571 * We use a number of factors to determine which is the next node that should
3572 * appear on a given node's fallback list. The node should not have appeared
3573 * already in @node's fallback list, and it should be the next closest node
3574 * according to the distance array (which contains arbitrary distance values
3575 * from each node to each node in the system), and should also prefer nodes
3576 * with no CPUs, since presumably they'll have very little allocation pressure
3577 * on them otherwise.
3578 * It returns -1 if no node is found.
3579 */
3580 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3581 {
3582 int n, val;
3583 int min_val = INT_MAX;
3584 int best_node = NUMA_NO_NODE;
3585 const struct cpumask *tmp = cpumask_of_node(0);
3586
3587 /* Use the local node if we haven't already */
3588 if (!node_isset(node, *used_node_mask)) {
3589 node_set(node, *used_node_mask);
3590 return node;
3591 }
3592
3593 for_each_node_state(n, N_MEMORY) {
3594
3595 /* Don't want a node to appear more than once */
3596 if (node_isset(n, *used_node_mask))
3597 continue;
3598
3599 /* Use the distance array to find the distance */
3600 val = node_distance(node, n);
3601
3602 /* Penalize nodes under us ("prefer the next node") */
3603 val += (n < node);
3604
3605 /* Give preference to headless and unused nodes */
3606 tmp = cpumask_of_node(n);
3607 if (!cpumask_empty(tmp))
3608 val += PENALTY_FOR_NODE_WITH_CPUS;
3609
3610 /* Slight preference for less loaded node */
3611 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3612 val += node_load[n];
3613
3614 if (val < min_val) {
3615 min_val = val;
3616 best_node = n;
3617 }
3618 }
3619
3620 if (best_node >= 0)
3621 node_set(best_node, *used_node_mask);
3622
3623 return best_node;
3624 }
3625
3626
3627 /*
3628 * Build zonelists ordered by node and zones within node.
3629 * This results in maximum locality--normal zone overflows into local
3630 * DMA zone, if any--but risks exhausting DMA zone.
3631 */
3632 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3633 {
3634 int j;
3635 struct zonelist *zonelist;
3636
3637 zonelist = &pgdat->node_zonelists[0];
3638 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3639 ;
3640 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3641 zonelist->_zonerefs[j].zone = NULL;
3642 zonelist->_zonerefs[j].zone_idx = 0;
3643 }
3644
3645 /*
3646 * Build gfp_thisnode zonelists
3647 */
3648 static void build_thisnode_zonelists(pg_data_t *pgdat)
3649 {
3650 int j;
3651 struct zonelist *zonelist;
3652
3653 zonelist = &pgdat->node_zonelists[1];
3654 j = build_zonelists_node(pgdat, zonelist, 0);
3655 zonelist->_zonerefs[j].zone = NULL;
3656 zonelist->_zonerefs[j].zone_idx = 0;
3657 }
3658
3659 /*
3660 * Build zonelists ordered by zone and nodes within zones.
3661 * This results in conserving DMA zone[s] until all Normal memory is
3662 * exhausted, but results in overflowing to remote node while memory
3663 * may still exist in local DMA zone.
3664 */
3665 static int node_order[MAX_NUMNODES];
3666
3667 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3668 {
3669 int pos, j, node;
3670 int zone_type; /* needs to be signed */
3671 struct zone *z;
3672 struct zonelist *zonelist;
3673
3674 zonelist = &pgdat->node_zonelists[0];
3675 pos = 0;
3676 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3677 for (j = 0; j < nr_nodes; j++) {
3678 node = node_order[j];
3679 z = &NODE_DATA(node)->node_zones[zone_type];
3680 if (populated_zone(z)) {
3681 zoneref_set_zone(z,
3682 &zonelist->_zonerefs[pos++]);
3683 check_highest_zone(zone_type);
3684 }
3685 }
3686 }
3687 zonelist->_zonerefs[pos].zone = NULL;
3688 zonelist->_zonerefs[pos].zone_idx = 0;
3689 }
3690
3691 #if defined(CONFIG_64BIT)
3692 /*
3693 * Devices that require DMA32/DMA are relatively rare and do not justify a
3694 * penalty to every machine in case the specialised case applies. Default
3695 * to Node-ordering on 64-bit NUMA machines
3696 */
3697 static int default_zonelist_order(void)
3698 {
3699 return ZONELIST_ORDER_NODE;
3700 }
3701 #else
3702 /*
3703 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3704 * by the kernel. If processes running on node 0 deplete the low memory zone
3705 * then reclaim will occur more frequency increasing stalls and potentially
3706 * be easier to OOM if a large percentage of the zone is under writeback or
3707 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3708 * Hence, default to zone ordering on 32-bit.
3709 */
3710 static int default_zonelist_order(void)
3711 {
3712 return ZONELIST_ORDER_ZONE;
3713 }
3714 #endif /* CONFIG_64BIT */
3715
3716 static void set_zonelist_order(void)
3717 {
3718 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3719 current_zonelist_order = default_zonelist_order();
3720 else
3721 current_zonelist_order = user_zonelist_order;
3722 }
3723
3724 static void build_zonelists(pg_data_t *pgdat)
3725 {
3726 int j, node, load;
3727 enum zone_type i;
3728 nodemask_t used_mask;
3729 int local_node, prev_node;
3730 struct zonelist *zonelist;
3731 int order = current_zonelist_order;
3732
3733 /* initialize zonelists */
3734 for (i = 0; i < MAX_ZONELISTS; i++) {
3735 zonelist = pgdat->node_zonelists + i;
3736 zonelist->_zonerefs[0].zone = NULL;
3737 zonelist->_zonerefs[0].zone_idx = 0;
3738 }
3739
3740 /* NUMA-aware ordering of nodes */
3741 local_node = pgdat->node_id;
3742 load = nr_online_nodes;
3743 prev_node = local_node;
3744 nodes_clear(used_mask);
3745
3746 memset(node_order, 0, sizeof(node_order));
3747 j = 0;
3748
3749 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3750 /*
3751 * We don't want to pressure a particular node.
3752 * So adding penalty to the first node in same
3753 * distance group to make it round-robin.
3754 */
3755 if (node_distance(local_node, node) !=
3756 node_distance(local_node, prev_node))
3757 node_load[node] = load;
3758
3759 prev_node = node;
3760 load--;
3761 if (order == ZONELIST_ORDER_NODE)
3762 build_zonelists_in_node_order(pgdat, node);
3763 else
3764 node_order[j++] = node; /* remember order */
3765 }
3766
3767 if (order == ZONELIST_ORDER_ZONE) {
3768 /* calculate node order -- i.e., DMA last! */
3769 build_zonelists_in_zone_order(pgdat, j);
3770 }
3771
3772 build_thisnode_zonelists(pgdat);
3773 }
3774
3775 /* Construct the zonelist performance cache - see further mmzone.h */
3776 static void build_zonelist_cache(pg_data_t *pgdat)
3777 {
3778 struct zonelist *zonelist;
3779 struct zonelist_cache *zlc;
3780 struct zoneref *z;
3781
3782 zonelist = &pgdat->node_zonelists[0];
3783 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3784 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3785 for (z = zonelist->_zonerefs; z->zone; z++)
3786 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3787 }
3788
3789 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3790 /*
3791 * Return node id of node used for "local" allocations.
3792 * I.e., first node id of first zone in arg node's generic zonelist.
3793 * Used for initializing percpu 'numa_mem', which is used primarily
3794 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3795 */
3796 int local_memory_node(int node)
3797 {
3798 struct zone *zone;
3799
3800 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3801 gfp_zone(GFP_KERNEL),
3802 NULL,
3803 &zone);
3804 return zone->node;
3805 }
3806 #endif
3807
3808 #else /* CONFIG_NUMA */
3809
3810 static void set_zonelist_order(void)
3811 {
3812 current_zonelist_order = ZONELIST_ORDER_ZONE;
3813 }
3814
3815 static void build_zonelists(pg_data_t *pgdat)
3816 {
3817 int node, local_node;
3818 enum zone_type j;
3819 struct zonelist *zonelist;
3820
3821 local_node = pgdat->node_id;
3822
3823 zonelist = &pgdat->node_zonelists[0];
3824 j = build_zonelists_node(pgdat, zonelist, 0);
3825
3826 /*
3827 * Now we build the zonelist so that it contains the zones
3828 * of all the other nodes.
3829 * We don't want to pressure a particular node, so when
3830 * building the zones for node N, we make sure that the
3831 * zones coming right after the local ones are those from
3832 * node N+1 (modulo N)
3833 */
3834 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3835 if (!node_online(node))
3836 continue;
3837 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3838 }
3839 for (node = 0; node < local_node; node++) {
3840 if (!node_online(node))
3841 continue;
3842 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3843 }
3844
3845 zonelist->_zonerefs[j].zone = NULL;
3846 zonelist->_zonerefs[j].zone_idx = 0;
3847 }
3848
3849 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3850 static void build_zonelist_cache(pg_data_t *pgdat)
3851 {
3852 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3853 }
3854
3855 #endif /* CONFIG_NUMA */
3856
3857 /*
3858 * Boot pageset table. One per cpu which is going to be used for all
3859 * zones and all nodes. The parameters will be set in such a way
3860 * that an item put on a list will immediately be handed over to
3861 * the buddy list. This is safe since pageset manipulation is done
3862 * with interrupts disabled.
3863 *
3864 * The boot_pagesets must be kept even after bootup is complete for
3865 * unused processors and/or zones. They do play a role for bootstrapping
3866 * hotplugged processors.
3867 *
3868 * zoneinfo_show() and maybe other functions do
3869 * not check if the processor is online before following the pageset pointer.
3870 * Other parts of the kernel may not check if the zone is available.
3871 */
3872 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3873 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3874 static void setup_zone_pageset(struct zone *zone);
3875
3876 /*
3877 * Global mutex to protect against size modification of zonelists
3878 * as well as to serialize pageset setup for the new populated zone.
3879 */
3880 DEFINE_MUTEX(zonelists_mutex);
3881
3882 /* return values int ....just for stop_machine() */
3883 static int __build_all_zonelists(void *data)
3884 {
3885 int nid;
3886 int cpu;
3887 pg_data_t *self = data;
3888
3889 #ifdef CONFIG_NUMA
3890 memset(node_load, 0, sizeof(node_load));
3891 #endif
3892
3893 if (self && !node_online(self->node_id)) {
3894 build_zonelists(self);
3895 build_zonelist_cache(self);
3896 }
3897
3898 for_each_online_node(nid) {
3899 pg_data_t *pgdat = NODE_DATA(nid);
3900
3901 build_zonelists(pgdat);
3902 build_zonelist_cache(pgdat);
3903 }
3904
3905 /*
3906 * Initialize the boot_pagesets that are going to be used
3907 * for bootstrapping processors. The real pagesets for
3908 * each zone will be allocated later when the per cpu
3909 * allocator is available.
3910 *
3911 * boot_pagesets are used also for bootstrapping offline
3912 * cpus if the system is already booted because the pagesets
3913 * are needed to initialize allocators on a specific cpu too.
3914 * F.e. the percpu allocator needs the page allocator which
3915 * needs the percpu allocator in order to allocate its pagesets
3916 * (a chicken-egg dilemma).
3917 */
3918 for_each_possible_cpu(cpu) {
3919 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3920
3921 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3922 /*
3923 * We now know the "local memory node" for each node--
3924 * i.e., the node of the first zone in the generic zonelist.
3925 * Set up numa_mem percpu variable for on-line cpus. During
3926 * boot, only the boot cpu should be on-line; we'll init the
3927 * secondary cpus' numa_mem as they come on-line. During
3928 * node/memory hotplug, we'll fixup all on-line cpus.
3929 */
3930 if (cpu_online(cpu))
3931 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3932 #endif
3933 }
3934
3935 return 0;
3936 }
3937
3938 /*
3939 * Called with zonelists_mutex held always
3940 * unless system_state == SYSTEM_BOOTING.
3941 */
3942 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3943 {
3944 set_zonelist_order();
3945
3946 if (system_state == SYSTEM_BOOTING) {
3947 __build_all_zonelists(NULL);
3948 mminit_verify_zonelist();
3949 cpuset_init_current_mems_allowed();
3950 } else {
3951 #ifdef CONFIG_MEMORY_HOTPLUG
3952 if (zone)
3953 setup_zone_pageset(zone);
3954 #endif
3955 /* we have to stop all cpus to guarantee there is no user
3956 of zonelist */
3957 stop_machine(__build_all_zonelists, pgdat, NULL);
3958 /* cpuset refresh routine should be here */
3959 }
3960 vm_total_pages = nr_free_pagecache_pages();
3961 /*
3962 * Disable grouping by mobility if the number of pages in the
3963 * system is too low to allow the mechanism to work. It would be
3964 * more accurate, but expensive to check per-zone. This check is
3965 * made on memory-hotadd so a system can start with mobility
3966 * disabled and enable it later
3967 */
3968 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3969 page_group_by_mobility_disabled = 1;
3970 else
3971 page_group_by_mobility_disabled = 0;
3972
3973 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
3974 "Total pages: %ld\n",
3975 nr_online_nodes,
3976 zonelist_order_name[current_zonelist_order],
3977 page_group_by_mobility_disabled ? "off" : "on",
3978 vm_total_pages);
3979 #ifdef CONFIG_NUMA
3980 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3981 #endif
3982 }
3983
3984 /*
3985 * Helper functions to size the waitqueue hash table.
3986 * Essentially these want to choose hash table sizes sufficiently
3987 * large so that collisions trying to wait on pages are rare.
3988 * But in fact, the number of active page waitqueues on typical
3989 * systems is ridiculously low, less than 200. So this is even
3990 * conservative, even though it seems large.
3991 *
3992 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3993 * waitqueues, i.e. the size of the waitq table given the number of pages.
3994 */
3995 #define PAGES_PER_WAITQUEUE 256
3996
3997 #ifndef CONFIG_MEMORY_HOTPLUG
3998 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3999 {
4000 unsigned long size = 1;
4001
4002 pages /= PAGES_PER_WAITQUEUE;
4003
4004 while (size < pages)
4005 size <<= 1;
4006
4007 /*
4008 * Once we have dozens or even hundreds of threads sleeping
4009 * on IO we've got bigger problems than wait queue collision.
4010 * Limit the size of the wait table to a reasonable size.
4011 */
4012 size = min(size, 4096UL);
4013
4014 return max(size, 4UL);
4015 }
4016 #else
4017 /*
4018 * A zone's size might be changed by hot-add, so it is not possible to determine
4019 * a suitable size for its wait_table. So we use the maximum size now.
4020 *
4021 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4022 *
4023 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4024 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4025 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4026 *
4027 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4028 * or more by the traditional way. (See above). It equals:
4029 *
4030 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4031 * ia64(16K page size) : = ( 8G + 4M)byte.
4032 * powerpc (64K page size) : = (32G +16M)byte.
4033 */
4034 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4035 {
4036 return 4096UL;
4037 }
4038 #endif
4039
4040 /*
4041 * This is an integer logarithm so that shifts can be used later
4042 * to extract the more random high bits from the multiplicative
4043 * hash function before the remainder is taken.
4044 */
4045 static inline unsigned long wait_table_bits(unsigned long size)
4046 {
4047 return ffz(~size);
4048 }
4049
4050 /*
4051 * Check if a pageblock contains reserved pages
4052 */
4053 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4054 {
4055 unsigned long pfn;
4056
4057 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4058 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4059 return 1;
4060 }
4061 return 0;
4062 }
4063
4064 /*
4065 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4066 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4067 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4068 * higher will lead to a bigger reserve which will get freed as contiguous
4069 * blocks as reclaim kicks in
4070 */
4071 static void setup_zone_migrate_reserve(struct zone *zone)
4072 {
4073 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4074 struct page *page;
4075 unsigned long block_migratetype;
4076 int reserve;
4077 int old_reserve;
4078
4079 /*
4080 * Get the start pfn, end pfn and the number of blocks to reserve
4081 * We have to be careful to be aligned to pageblock_nr_pages to
4082 * make sure that we always check pfn_valid for the first page in
4083 * the block.
4084 */
4085 start_pfn = zone->zone_start_pfn;
4086 end_pfn = zone_end_pfn(zone);
4087 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4088 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4089 pageblock_order;
4090
4091 /*
4092 * Reserve blocks are generally in place to help high-order atomic
4093 * allocations that are short-lived. A min_free_kbytes value that
4094 * would result in more than 2 reserve blocks for atomic allocations
4095 * is assumed to be in place to help anti-fragmentation for the
4096 * future allocation of hugepages at runtime.
4097 */
4098 reserve = min(2, reserve);
4099 old_reserve = zone->nr_migrate_reserve_block;
4100
4101 /* When memory hot-add, we almost always need to do nothing */
4102 if (reserve == old_reserve)
4103 return;
4104 zone->nr_migrate_reserve_block = reserve;
4105
4106 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4107 if (!pfn_valid(pfn))
4108 continue;
4109 page = pfn_to_page(pfn);
4110
4111 /* Watch out for overlapping nodes */
4112 if (page_to_nid(page) != zone_to_nid(zone))
4113 continue;
4114
4115 block_migratetype = get_pageblock_migratetype(page);
4116
4117 /* Only test what is necessary when the reserves are not met */
4118 if (reserve > 0) {
4119 /*
4120 * Blocks with reserved pages will never free, skip
4121 * them.
4122 */
4123 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4124 if (pageblock_is_reserved(pfn, block_end_pfn))
4125 continue;
4126
4127 /* If this block is reserved, account for it */
4128 if (block_migratetype == MIGRATE_RESERVE) {
4129 reserve--;
4130 continue;
4131 }
4132
4133 /* Suitable for reserving if this block is movable */
4134 if (block_migratetype == MIGRATE_MOVABLE) {
4135 set_pageblock_migratetype(page,
4136 MIGRATE_RESERVE);
4137 move_freepages_block(zone, page,
4138 MIGRATE_RESERVE);
4139 reserve--;
4140 continue;
4141 }
4142 } else if (!old_reserve) {
4143 /*
4144 * At boot time we don't need to scan the whole zone
4145 * for turning off MIGRATE_RESERVE.
4146 */
4147 break;
4148 }
4149
4150 /*
4151 * If the reserve is met and this is a previous reserved block,
4152 * take it back
4153 */
4154 if (block_migratetype == MIGRATE_RESERVE) {
4155 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4156 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4157 }
4158 }
4159 }
4160
4161 /*
4162 * Initially all pages are reserved - free ones are freed
4163 * up by free_all_bootmem() once the early boot process is
4164 * done. Non-atomic initialization, single-pass.
4165 */
4166 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4167 unsigned long start_pfn, enum memmap_context context)
4168 {
4169 struct page *page;
4170 unsigned long end_pfn = start_pfn + size;
4171 unsigned long pfn;
4172 struct zone *z;
4173
4174 if (highest_memmap_pfn < end_pfn - 1)
4175 highest_memmap_pfn = end_pfn - 1;
4176
4177 z = &NODE_DATA(nid)->node_zones[zone];
4178 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4179 /*
4180 * There can be holes in boot-time mem_map[]s
4181 * handed to this function. They do not
4182 * exist on hotplugged memory.
4183 */
4184 if (context == MEMMAP_EARLY) {
4185 if (!early_pfn_valid(pfn))
4186 continue;
4187 if (!early_pfn_in_nid(pfn, nid))
4188 continue;
4189 }
4190 page = pfn_to_page(pfn);
4191 set_page_links(page, zone, nid, pfn);
4192 mminit_verify_page_links(page, zone, nid, pfn);
4193 init_page_count(page);
4194 page_mapcount_reset(page);
4195 page_cpupid_reset_last(page);
4196 SetPageReserved(page);
4197 /*
4198 * Mark the block movable so that blocks are reserved for
4199 * movable at startup. This will force kernel allocations
4200 * to reserve their blocks rather than leaking throughout
4201 * the address space during boot when many long-lived
4202 * kernel allocations are made. Later some blocks near
4203 * the start are marked MIGRATE_RESERVE by
4204 * setup_zone_migrate_reserve()
4205 *
4206 * bitmap is created for zone's valid pfn range. but memmap
4207 * can be created for invalid pages (for alignment)
4208 * check here not to call set_pageblock_migratetype() against
4209 * pfn out of zone.
4210 */
4211 if ((z->zone_start_pfn <= pfn)
4212 && (pfn < zone_end_pfn(z))
4213 && !(pfn & (pageblock_nr_pages - 1)))
4214 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4215
4216 INIT_LIST_HEAD(&page->lru);
4217 #ifdef WANT_PAGE_VIRTUAL
4218 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4219 if (!is_highmem_idx(zone))
4220 set_page_address(page, __va(pfn << PAGE_SHIFT));
4221 #endif
4222 }
4223 }
4224
4225 static void __meminit zone_init_free_lists(struct zone *zone)
4226 {
4227 unsigned int order, t;
4228 for_each_migratetype_order(order, t) {
4229 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4230 zone->free_area[order].nr_free = 0;
4231 }
4232 }
4233
4234 #ifndef __HAVE_ARCH_MEMMAP_INIT
4235 #define memmap_init(size, nid, zone, start_pfn) \
4236 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4237 #endif
4238
4239 static int zone_batchsize(struct zone *zone)
4240 {
4241 #ifdef CONFIG_MMU
4242 int batch;
4243
4244 /*
4245 * The per-cpu-pages pools are set to around 1000th of the
4246 * size of the zone. But no more than 1/2 of a meg.
4247 *
4248 * OK, so we don't know how big the cache is. So guess.
4249 */
4250 batch = zone->managed_pages / 1024;
4251 if (batch * PAGE_SIZE > 512 * 1024)
4252 batch = (512 * 1024) / PAGE_SIZE;
4253 batch /= 4; /* We effectively *= 4 below */
4254 if (batch < 1)
4255 batch = 1;
4256
4257 /*
4258 * Clamp the batch to a 2^n - 1 value. Having a power
4259 * of 2 value was found to be more likely to have
4260 * suboptimal cache aliasing properties in some cases.
4261 *
4262 * For example if 2 tasks are alternately allocating
4263 * batches of pages, one task can end up with a lot
4264 * of pages of one half of the possible page colors
4265 * and the other with pages of the other colors.
4266 */
4267 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4268
4269 return batch;
4270
4271 #else
4272 /* The deferral and batching of frees should be suppressed under NOMMU
4273 * conditions.
4274 *
4275 * The problem is that NOMMU needs to be able to allocate large chunks
4276 * of contiguous memory as there's no hardware page translation to
4277 * assemble apparent contiguous memory from discontiguous pages.
4278 *
4279 * Queueing large contiguous runs of pages for batching, however,
4280 * causes the pages to actually be freed in smaller chunks. As there
4281 * can be a significant delay between the individual batches being
4282 * recycled, this leads to the once large chunks of space being
4283 * fragmented and becoming unavailable for high-order allocations.
4284 */
4285 return 0;
4286 #endif
4287 }
4288
4289 /*
4290 * pcp->high and pcp->batch values are related and dependent on one another:
4291 * ->batch must never be higher then ->high.
4292 * The following function updates them in a safe manner without read side
4293 * locking.
4294 *
4295 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4296 * those fields changing asynchronously (acording the the above rule).
4297 *
4298 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4299 * outside of boot time (or some other assurance that no concurrent updaters
4300 * exist).
4301 */
4302 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4303 unsigned long batch)
4304 {
4305 /* start with a fail safe value for batch */
4306 pcp->batch = 1;
4307 smp_wmb();
4308
4309 /* Update high, then batch, in order */
4310 pcp->high = high;
4311 smp_wmb();
4312
4313 pcp->batch = batch;
4314 }
4315
4316 /* a companion to pageset_set_high() */
4317 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4318 {
4319 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4320 }
4321
4322 static void pageset_init(struct per_cpu_pageset *p)
4323 {
4324 struct per_cpu_pages *pcp;
4325 int migratetype;
4326
4327 memset(p, 0, sizeof(*p));
4328
4329 pcp = &p->pcp;
4330 pcp->count = 0;
4331 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4332 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4333 }
4334
4335 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4336 {
4337 pageset_init(p);
4338 pageset_set_batch(p, batch);
4339 }
4340
4341 /*
4342 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4343 * to the value high for the pageset p.
4344 */
4345 static void pageset_set_high(struct per_cpu_pageset *p,
4346 unsigned long high)
4347 {
4348 unsigned long batch = max(1UL, high / 4);
4349 if ((high / 4) > (PAGE_SHIFT * 8))
4350 batch = PAGE_SHIFT * 8;
4351
4352 pageset_update(&p->pcp, high, batch);
4353 }
4354
4355 static void pageset_set_high_and_batch(struct zone *zone,
4356 struct per_cpu_pageset *pcp)
4357 {
4358 if (percpu_pagelist_fraction)
4359 pageset_set_high(pcp,
4360 (zone->managed_pages /
4361 percpu_pagelist_fraction));
4362 else
4363 pageset_set_batch(pcp, zone_batchsize(zone));
4364 }
4365
4366 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4367 {
4368 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4369
4370 pageset_init(pcp);
4371 pageset_set_high_and_batch(zone, pcp);
4372 }
4373
4374 static void __meminit setup_zone_pageset(struct zone *zone)
4375 {
4376 int cpu;
4377 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4378 for_each_possible_cpu(cpu)
4379 zone_pageset_init(zone, cpu);
4380 }
4381
4382 /*
4383 * Allocate per cpu pagesets and initialize them.
4384 * Before this call only boot pagesets were available.
4385 */
4386 void __init setup_per_cpu_pageset(void)
4387 {
4388 struct zone *zone;
4389
4390 for_each_populated_zone(zone)
4391 setup_zone_pageset(zone);
4392 }
4393
4394 static noinline __init_refok
4395 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4396 {
4397 int i;
4398 size_t alloc_size;
4399
4400 /*
4401 * The per-page waitqueue mechanism uses hashed waitqueues
4402 * per zone.
4403 */
4404 zone->wait_table_hash_nr_entries =
4405 wait_table_hash_nr_entries(zone_size_pages);
4406 zone->wait_table_bits =
4407 wait_table_bits(zone->wait_table_hash_nr_entries);
4408 alloc_size = zone->wait_table_hash_nr_entries
4409 * sizeof(wait_queue_head_t);
4410
4411 if (!slab_is_available()) {
4412 zone->wait_table = (wait_queue_head_t *)
4413 memblock_virt_alloc_node_nopanic(
4414 alloc_size, zone->zone_pgdat->node_id);
4415 } else {
4416 /*
4417 * This case means that a zone whose size was 0 gets new memory
4418 * via memory hot-add.
4419 * But it may be the case that a new node was hot-added. In
4420 * this case vmalloc() will not be able to use this new node's
4421 * memory - this wait_table must be initialized to use this new
4422 * node itself as well.
4423 * To use this new node's memory, further consideration will be
4424 * necessary.
4425 */
4426 zone->wait_table = vmalloc(alloc_size);
4427 }
4428 if (!zone->wait_table)
4429 return -ENOMEM;
4430
4431 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4432 init_waitqueue_head(zone->wait_table + i);
4433
4434 return 0;
4435 }
4436
4437 static __meminit void zone_pcp_init(struct zone *zone)
4438 {
4439 /*
4440 * per cpu subsystem is not up at this point. The following code
4441 * relies on the ability of the linker to provide the
4442 * offset of a (static) per cpu variable into the per cpu area.
4443 */
4444 zone->pageset = &boot_pageset;
4445
4446 if (populated_zone(zone))
4447 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4448 zone->name, zone->present_pages,
4449 zone_batchsize(zone));
4450 }
4451
4452 int __meminit init_currently_empty_zone(struct zone *zone,
4453 unsigned long zone_start_pfn,
4454 unsigned long size,
4455 enum memmap_context context)
4456 {
4457 struct pglist_data *pgdat = zone->zone_pgdat;
4458 int ret;
4459 ret = zone_wait_table_init(zone, size);
4460 if (ret)
4461 return ret;
4462 pgdat->nr_zones = zone_idx(zone) + 1;
4463
4464 zone->zone_start_pfn = zone_start_pfn;
4465
4466 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4467 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4468 pgdat->node_id,
4469 (unsigned long)zone_idx(zone),
4470 zone_start_pfn, (zone_start_pfn + size));
4471
4472 zone_init_free_lists(zone);
4473
4474 return 0;
4475 }
4476
4477 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4478 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4479 /*
4480 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4481 */
4482 int __meminit __early_pfn_to_nid(unsigned long pfn)
4483 {
4484 unsigned long start_pfn, end_pfn;
4485 int nid;
4486 /*
4487 * NOTE: The following SMP-unsafe globals are only used early in boot
4488 * when the kernel is running single-threaded.
4489 */
4490 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4491 static int __meminitdata last_nid;
4492
4493 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4494 return last_nid;
4495
4496 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4497 if (nid != -1) {
4498 last_start_pfn = start_pfn;
4499 last_end_pfn = end_pfn;
4500 last_nid = nid;
4501 }
4502
4503 return nid;
4504 }
4505 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4506
4507 int __meminit early_pfn_to_nid(unsigned long pfn)
4508 {
4509 int nid;
4510
4511 nid = __early_pfn_to_nid(pfn);
4512 if (nid >= 0)
4513 return nid;
4514 /* just returns 0 */
4515 return 0;
4516 }
4517
4518 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4519 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4520 {
4521 int nid;
4522
4523 nid = __early_pfn_to_nid(pfn);
4524 if (nid >= 0 && nid != node)
4525 return false;
4526 return true;
4527 }
4528 #endif
4529
4530 /**
4531 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4532 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4533 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4534 *
4535 * If an architecture guarantees that all ranges registered contain no holes
4536 * and may be freed, this this function may be used instead of calling
4537 * memblock_free_early_nid() manually.
4538 */
4539 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4540 {
4541 unsigned long start_pfn, end_pfn;
4542 int i, this_nid;
4543
4544 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4545 start_pfn = min(start_pfn, max_low_pfn);
4546 end_pfn = min(end_pfn, max_low_pfn);
4547
4548 if (start_pfn < end_pfn)
4549 memblock_free_early_nid(PFN_PHYS(start_pfn),
4550 (end_pfn - start_pfn) << PAGE_SHIFT,
4551 this_nid);
4552 }
4553 }
4554
4555 /**
4556 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4557 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4558 *
4559 * If an architecture guarantees that all ranges registered contain no holes and may
4560 * be freed, this function may be used instead of calling memory_present() manually.
4561 */
4562 void __init sparse_memory_present_with_active_regions(int nid)
4563 {
4564 unsigned long start_pfn, end_pfn;
4565 int i, this_nid;
4566
4567 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4568 memory_present(this_nid, start_pfn, end_pfn);
4569 }
4570
4571 /**
4572 * get_pfn_range_for_nid - Return the start and end page frames for a node
4573 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4574 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4575 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4576 *
4577 * It returns the start and end page frame of a node based on information
4578 * provided by memblock_set_node(). If called for a node
4579 * with no available memory, a warning is printed and the start and end
4580 * PFNs will be 0.
4581 */
4582 void __meminit get_pfn_range_for_nid(unsigned int nid,
4583 unsigned long *start_pfn, unsigned long *end_pfn)
4584 {
4585 unsigned long this_start_pfn, this_end_pfn;
4586 int i;
4587
4588 *start_pfn = -1UL;
4589 *end_pfn = 0;
4590
4591 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4592 *start_pfn = min(*start_pfn, this_start_pfn);
4593 *end_pfn = max(*end_pfn, this_end_pfn);
4594 }
4595
4596 if (*start_pfn == -1UL)
4597 *start_pfn = 0;
4598 }
4599
4600 /*
4601 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4602 * assumption is made that zones within a node are ordered in monotonic
4603 * increasing memory addresses so that the "highest" populated zone is used
4604 */
4605 static void __init find_usable_zone_for_movable(void)
4606 {
4607 int zone_index;
4608 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4609 if (zone_index == ZONE_MOVABLE)
4610 continue;
4611
4612 if (arch_zone_highest_possible_pfn[zone_index] >
4613 arch_zone_lowest_possible_pfn[zone_index])
4614 break;
4615 }
4616
4617 VM_BUG_ON(zone_index == -1);
4618 movable_zone = zone_index;
4619 }
4620
4621 /*
4622 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4623 * because it is sized independent of architecture. Unlike the other zones,
4624 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4625 * in each node depending on the size of each node and how evenly kernelcore
4626 * is distributed. This helper function adjusts the zone ranges
4627 * provided by the architecture for a given node by using the end of the
4628 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4629 * zones within a node are in order of monotonic increases memory addresses
4630 */
4631 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4632 unsigned long zone_type,
4633 unsigned long node_start_pfn,
4634 unsigned long node_end_pfn,
4635 unsigned long *zone_start_pfn,
4636 unsigned long *zone_end_pfn)
4637 {
4638 /* Only adjust if ZONE_MOVABLE is on this node */
4639 if (zone_movable_pfn[nid]) {
4640 /* Size ZONE_MOVABLE */
4641 if (zone_type == ZONE_MOVABLE) {
4642 *zone_start_pfn = zone_movable_pfn[nid];
4643 *zone_end_pfn = min(node_end_pfn,
4644 arch_zone_highest_possible_pfn[movable_zone]);
4645
4646 /* Adjust for ZONE_MOVABLE starting within this range */
4647 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4648 *zone_end_pfn > zone_movable_pfn[nid]) {
4649 *zone_end_pfn = zone_movable_pfn[nid];
4650
4651 /* Check if this whole range is within ZONE_MOVABLE */
4652 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4653 *zone_start_pfn = *zone_end_pfn;
4654 }
4655 }
4656
4657 /*
4658 * Return the number of pages a zone spans in a node, including holes
4659 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4660 */
4661 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4662 unsigned long zone_type,
4663 unsigned long node_start_pfn,
4664 unsigned long node_end_pfn,
4665 unsigned long *ignored)
4666 {
4667 unsigned long zone_start_pfn, zone_end_pfn;
4668
4669 /* Get the start and end of the zone */
4670 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4671 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4672 adjust_zone_range_for_zone_movable(nid, zone_type,
4673 node_start_pfn, node_end_pfn,
4674 &zone_start_pfn, &zone_end_pfn);
4675
4676 /* Check that this node has pages within the zone's required range */
4677 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4678 return 0;
4679
4680 /* Move the zone boundaries inside the node if necessary */
4681 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4682 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4683
4684 /* Return the spanned pages */
4685 return zone_end_pfn - zone_start_pfn;
4686 }
4687
4688 /*
4689 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4690 * then all holes in the requested range will be accounted for.
4691 */
4692 unsigned long __meminit __absent_pages_in_range(int nid,
4693 unsigned long range_start_pfn,
4694 unsigned long range_end_pfn)
4695 {
4696 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4697 unsigned long start_pfn, end_pfn;
4698 int i;
4699
4700 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4701 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4702 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4703 nr_absent -= end_pfn - start_pfn;
4704 }
4705 return nr_absent;
4706 }
4707
4708 /**
4709 * absent_pages_in_range - Return number of page frames in holes within a range
4710 * @start_pfn: The start PFN to start searching for holes
4711 * @end_pfn: The end PFN to stop searching for holes
4712 *
4713 * It returns the number of pages frames in memory holes within a range.
4714 */
4715 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4716 unsigned long end_pfn)
4717 {
4718 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4719 }
4720
4721 /* Return the number of page frames in holes in a zone on a node */
4722 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4723 unsigned long zone_type,
4724 unsigned long node_start_pfn,
4725 unsigned long node_end_pfn,
4726 unsigned long *ignored)
4727 {
4728 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4729 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4730 unsigned long zone_start_pfn, zone_end_pfn;
4731
4732 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4733 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4734
4735 adjust_zone_range_for_zone_movable(nid, zone_type,
4736 node_start_pfn, node_end_pfn,
4737 &zone_start_pfn, &zone_end_pfn);
4738 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4739 }
4740
4741 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4742 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4743 unsigned long zone_type,
4744 unsigned long node_start_pfn,
4745 unsigned long node_end_pfn,
4746 unsigned long *zones_size)
4747 {
4748 return zones_size[zone_type];
4749 }
4750
4751 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4752 unsigned long zone_type,
4753 unsigned long node_start_pfn,
4754 unsigned long node_end_pfn,
4755 unsigned long *zholes_size)
4756 {
4757 if (!zholes_size)
4758 return 0;
4759
4760 return zholes_size[zone_type];
4761 }
4762
4763 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4764
4765 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4766 unsigned long node_start_pfn,
4767 unsigned long node_end_pfn,
4768 unsigned long *zones_size,
4769 unsigned long *zholes_size)
4770 {
4771 unsigned long realtotalpages, totalpages = 0;
4772 enum zone_type i;
4773
4774 for (i = 0; i < MAX_NR_ZONES; i++)
4775 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4776 node_start_pfn,
4777 node_end_pfn,
4778 zones_size);
4779 pgdat->node_spanned_pages = totalpages;
4780
4781 realtotalpages = totalpages;
4782 for (i = 0; i < MAX_NR_ZONES; i++)
4783 realtotalpages -=
4784 zone_absent_pages_in_node(pgdat->node_id, i,
4785 node_start_pfn, node_end_pfn,
4786 zholes_size);
4787 pgdat->node_present_pages = realtotalpages;
4788 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4789 realtotalpages);
4790 }
4791
4792 #ifndef CONFIG_SPARSEMEM
4793 /*
4794 * Calculate the size of the zone->blockflags rounded to an unsigned long
4795 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4796 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4797 * round what is now in bits to nearest long in bits, then return it in
4798 * bytes.
4799 */
4800 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4801 {
4802 unsigned long usemapsize;
4803
4804 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4805 usemapsize = roundup(zonesize, pageblock_nr_pages);
4806 usemapsize = usemapsize >> pageblock_order;
4807 usemapsize *= NR_PAGEBLOCK_BITS;
4808 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4809
4810 return usemapsize / 8;
4811 }
4812
4813 static void __init setup_usemap(struct pglist_data *pgdat,
4814 struct zone *zone,
4815 unsigned long zone_start_pfn,
4816 unsigned long zonesize)
4817 {
4818 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4819 zone->pageblock_flags = NULL;
4820 if (usemapsize)
4821 zone->pageblock_flags =
4822 memblock_virt_alloc_node_nopanic(usemapsize,
4823 pgdat->node_id);
4824 }
4825 #else
4826 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4827 unsigned long zone_start_pfn, unsigned long zonesize) {}
4828 #endif /* CONFIG_SPARSEMEM */
4829
4830 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4831
4832 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4833 void __paginginit set_pageblock_order(void)
4834 {
4835 unsigned int order;
4836
4837 /* Check that pageblock_nr_pages has not already been setup */
4838 if (pageblock_order)
4839 return;
4840
4841 if (HPAGE_SHIFT > PAGE_SHIFT)
4842 order = HUGETLB_PAGE_ORDER;
4843 else
4844 order = MAX_ORDER - 1;
4845
4846 /*
4847 * Assume the largest contiguous order of interest is a huge page.
4848 * This value may be variable depending on boot parameters on IA64 and
4849 * powerpc.
4850 */
4851 pageblock_order = order;
4852 }
4853 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4854
4855 /*
4856 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4857 * is unused as pageblock_order is set at compile-time. See
4858 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4859 * the kernel config
4860 */
4861 void __paginginit set_pageblock_order(void)
4862 {
4863 }
4864
4865 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4866
4867 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4868 unsigned long present_pages)
4869 {
4870 unsigned long pages = spanned_pages;
4871
4872 /*
4873 * Provide a more accurate estimation if there are holes within
4874 * the zone and SPARSEMEM is in use. If there are holes within the
4875 * zone, each populated memory region may cost us one or two extra
4876 * memmap pages due to alignment because memmap pages for each
4877 * populated regions may not naturally algined on page boundary.
4878 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4879 */
4880 if (spanned_pages > present_pages + (present_pages >> 4) &&
4881 IS_ENABLED(CONFIG_SPARSEMEM))
4882 pages = present_pages;
4883
4884 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4885 }
4886
4887 /*
4888 * Set up the zone data structures:
4889 * - mark all pages reserved
4890 * - mark all memory queues empty
4891 * - clear the memory bitmaps
4892 *
4893 * NOTE: pgdat should get zeroed by caller.
4894 */
4895 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4896 unsigned long node_start_pfn, unsigned long node_end_pfn,
4897 unsigned long *zones_size, unsigned long *zholes_size)
4898 {
4899 enum zone_type j;
4900 int nid = pgdat->node_id;
4901 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4902 int ret;
4903
4904 pgdat_resize_init(pgdat);
4905 #ifdef CONFIG_NUMA_BALANCING
4906 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4907 pgdat->numabalancing_migrate_nr_pages = 0;
4908 pgdat->numabalancing_migrate_next_window = jiffies;
4909 #endif
4910 init_waitqueue_head(&pgdat->kswapd_wait);
4911 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4912 pgdat_page_ext_init(pgdat);
4913
4914 for (j = 0; j < MAX_NR_ZONES; j++) {
4915 struct zone *zone = pgdat->node_zones + j;
4916 unsigned long size, realsize, freesize, memmap_pages;
4917
4918 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4919 node_end_pfn, zones_size);
4920 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4921 node_start_pfn,
4922 node_end_pfn,
4923 zholes_size);
4924
4925 /*
4926 * Adjust freesize so that it accounts for how much memory
4927 * is used by this zone for memmap. This affects the watermark
4928 * and per-cpu initialisations
4929 */
4930 memmap_pages = calc_memmap_size(size, realsize);
4931 if (!is_highmem_idx(j)) {
4932 if (freesize >= memmap_pages) {
4933 freesize -= memmap_pages;
4934 if (memmap_pages)
4935 printk(KERN_DEBUG
4936 " %s zone: %lu pages used for memmap\n",
4937 zone_names[j], memmap_pages);
4938 } else
4939 printk(KERN_WARNING
4940 " %s zone: %lu pages exceeds freesize %lu\n",
4941 zone_names[j], memmap_pages, freesize);
4942 }
4943
4944 /* Account for reserved pages */
4945 if (j == 0 && freesize > dma_reserve) {
4946 freesize -= dma_reserve;
4947 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4948 zone_names[0], dma_reserve);
4949 }
4950
4951 if (!is_highmem_idx(j))
4952 nr_kernel_pages += freesize;
4953 /* Charge for highmem memmap if there are enough kernel pages */
4954 else if (nr_kernel_pages > memmap_pages * 2)
4955 nr_kernel_pages -= memmap_pages;
4956 nr_all_pages += freesize;
4957
4958 zone->spanned_pages = size;
4959 zone->present_pages = realsize;
4960 /*
4961 * Set an approximate value for lowmem here, it will be adjusted
4962 * when the bootmem allocator frees pages into the buddy system.
4963 * And all highmem pages will be managed by the buddy system.
4964 */
4965 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4966 #ifdef CONFIG_NUMA
4967 zone->node = nid;
4968 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4969 / 100;
4970 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4971 #endif
4972 zone->name = zone_names[j];
4973 spin_lock_init(&zone->lock);
4974 spin_lock_init(&zone->lru_lock);
4975 zone_seqlock_init(zone);
4976 zone->zone_pgdat = pgdat;
4977 zone_pcp_init(zone);
4978
4979 /* For bootup, initialized properly in watermark setup */
4980 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4981
4982 lruvec_init(&zone->lruvec);
4983 if (!size)
4984 continue;
4985
4986 set_pageblock_order();
4987 setup_usemap(pgdat, zone, zone_start_pfn, size);
4988 ret = init_currently_empty_zone(zone, zone_start_pfn,
4989 size, MEMMAP_EARLY);
4990 BUG_ON(ret);
4991 memmap_init(size, nid, j, zone_start_pfn);
4992 zone_start_pfn += size;
4993 }
4994 }
4995
4996 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4997 {
4998 /* Skip empty nodes */
4999 if (!pgdat->node_spanned_pages)
5000 return;
5001
5002 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5003 /* ia64 gets its own node_mem_map, before this, without bootmem */
5004 if (!pgdat->node_mem_map) {
5005 unsigned long size, start, end;
5006 struct page *map;
5007
5008 /*
5009 * The zone's endpoints aren't required to be MAX_ORDER
5010 * aligned but the node_mem_map endpoints must be in order
5011 * for the buddy allocator to function correctly.
5012 */
5013 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5014 end = pgdat_end_pfn(pgdat);
5015 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5016 size = (end - start) * sizeof(struct page);
5017 map = alloc_remap(pgdat->node_id, size);
5018 if (!map)
5019 map = memblock_virt_alloc_node_nopanic(size,
5020 pgdat->node_id);
5021 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5022 }
5023 #ifndef CONFIG_NEED_MULTIPLE_NODES
5024 /*
5025 * With no DISCONTIG, the global mem_map is just set as node 0's
5026 */
5027 if (pgdat == NODE_DATA(0)) {
5028 mem_map = NODE_DATA(0)->node_mem_map;
5029 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5030 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5031 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5032 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5033 }
5034 #endif
5035 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5036 }
5037
5038 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5039 unsigned long node_start_pfn, unsigned long *zholes_size)
5040 {
5041 pg_data_t *pgdat = NODE_DATA(nid);
5042 unsigned long start_pfn = 0;
5043 unsigned long end_pfn = 0;
5044
5045 /* pg_data_t should be reset to zero when it's allocated */
5046 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5047
5048 pgdat->node_id = nid;
5049 pgdat->node_start_pfn = node_start_pfn;
5050 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5051 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5052 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
5053 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
5054 #endif
5055 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5056 zones_size, zholes_size);
5057
5058 alloc_node_mem_map(pgdat);
5059 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5060 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5061 nid, (unsigned long)pgdat,
5062 (unsigned long)pgdat->node_mem_map);
5063 #endif
5064
5065 free_area_init_core(pgdat, start_pfn, end_pfn,
5066 zones_size, zholes_size);
5067 }
5068
5069 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5070
5071 #if MAX_NUMNODES > 1
5072 /*
5073 * Figure out the number of possible node ids.
5074 */
5075 void __init setup_nr_node_ids(void)
5076 {
5077 unsigned int node;
5078 unsigned int highest = 0;
5079
5080 for_each_node_mask(node, node_possible_map)
5081 highest = node;
5082 nr_node_ids = highest + 1;
5083 }
5084 #endif
5085
5086 /**
5087 * node_map_pfn_alignment - determine the maximum internode alignment
5088 *
5089 * This function should be called after node map is populated and sorted.
5090 * It calculates the maximum power of two alignment which can distinguish
5091 * all the nodes.
5092 *
5093 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5094 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5095 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5096 * shifted, 1GiB is enough and this function will indicate so.
5097 *
5098 * This is used to test whether pfn -> nid mapping of the chosen memory
5099 * model has fine enough granularity to avoid incorrect mapping for the
5100 * populated node map.
5101 *
5102 * Returns the determined alignment in pfn's. 0 if there is no alignment
5103 * requirement (single node).
5104 */
5105 unsigned long __init node_map_pfn_alignment(void)
5106 {
5107 unsigned long accl_mask = 0, last_end = 0;
5108 unsigned long start, end, mask;
5109 int last_nid = -1;
5110 int i, nid;
5111
5112 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5113 if (!start || last_nid < 0 || last_nid == nid) {
5114 last_nid = nid;
5115 last_end = end;
5116 continue;
5117 }
5118
5119 /*
5120 * Start with a mask granular enough to pin-point to the
5121 * start pfn and tick off bits one-by-one until it becomes
5122 * too coarse to separate the current node from the last.
5123 */
5124 mask = ~((1 << __ffs(start)) - 1);
5125 while (mask && last_end <= (start & (mask << 1)))
5126 mask <<= 1;
5127
5128 /* accumulate all internode masks */
5129 accl_mask |= mask;
5130 }
5131
5132 /* convert mask to number of pages */
5133 return ~accl_mask + 1;
5134 }
5135
5136 /* Find the lowest pfn for a node */
5137 static unsigned long __init find_min_pfn_for_node(int nid)
5138 {
5139 unsigned long min_pfn = ULONG_MAX;
5140 unsigned long start_pfn;
5141 int i;
5142
5143 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5144 min_pfn = min(min_pfn, start_pfn);
5145
5146 if (min_pfn == ULONG_MAX) {
5147 printk(KERN_WARNING
5148 "Could not find start_pfn for node %d\n", nid);
5149 return 0;
5150 }
5151
5152 return min_pfn;
5153 }
5154
5155 /**
5156 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5157 *
5158 * It returns the minimum PFN based on information provided via
5159 * memblock_set_node().
5160 */
5161 unsigned long __init find_min_pfn_with_active_regions(void)
5162 {
5163 return find_min_pfn_for_node(MAX_NUMNODES);
5164 }
5165
5166 /*
5167 * early_calculate_totalpages()
5168 * Sum pages in active regions for movable zone.
5169 * Populate N_MEMORY for calculating usable_nodes.
5170 */
5171 static unsigned long __init early_calculate_totalpages(void)
5172 {
5173 unsigned long totalpages = 0;
5174 unsigned long start_pfn, end_pfn;
5175 int i, nid;
5176
5177 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5178 unsigned long pages = end_pfn - start_pfn;
5179
5180 totalpages += pages;
5181 if (pages)
5182 node_set_state(nid, N_MEMORY);
5183 }
5184 return totalpages;
5185 }
5186
5187 /*
5188 * Find the PFN the Movable zone begins in each node. Kernel memory
5189 * is spread evenly between nodes as long as the nodes have enough
5190 * memory. When they don't, some nodes will have more kernelcore than
5191 * others
5192 */
5193 static void __init find_zone_movable_pfns_for_nodes(void)
5194 {
5195 int i, nid;
5196 unsigned long usable_startpfn;
5197 unsigned long kernelcore_node, kernelcore_remaining;
5198 /* save the state before borrow the nodemask */
5199 nodemask_t saved_node_state = node_states[N_MEMORY];
5200 unsigned long totalpages = early_calculate_totalpages();
5201 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5202 struct memblock_region *r;
5203
5204 /* Need to find movable_zone earlier when movable_node is specified. */
5205 find_usable_zone_for_movable();
5206
5207 /*
5208 * If movable_node is specified, ignore kernelcore and movablecore
5209 * options.
5210 */
5211 if (movable_node_is_enabled()) {
5212 for_each_memblock(memory, r) {
5213 if (!memblock_is_hotpluggable(r))
5214 continue;
5215
5216 nid = r->nid;
5217
5218 usable_startpfn = PFN_DOWN(r->base);
5219 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5220 min(usable_startpfn, zone_movable_pfn[nid]) :
5221 usable_startpfn;
5222 }
5223
5224 goto out2;
5225 }
5226
5227 /*
5228 * If movablecore=nn[KMG] was specified, calculate what size of
5229 * kernelcore that corresponds so that memory usable for
5230 * any allocation type is evenly spread. If both kernelcore
5231 * and movablecore are specified, then the value of kernelcore
5232 * will be used for required_kernelcore if it's greater than
5233 * what movablecore would have allowed.
5234 */
5235 if (required_movablecore) {
5236 unsigned long corepages;
5237
5238 /*
5239 * Round-up so that ZONE_MOVABLE is at least as large as what
5240 * was requested by the user
5241 */
5242 required_movablecore =
5243 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5244 corepages = totalpages - required_movablecore;
5245
5246 required_kernelcore = max(required_kernelcore, corepages);
5247 }
5248
5249 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5250 if (!required_kernelcore)
5251 goto out;
5252
5253 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5254 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5255
5256 restart:
5257 /* Spread kernelcore memory as evenly as possible throughout nodes */
5258 kernelcore_node = required_kernelcore / usable_nodes;
5259 for_each_node_state(nid, N_MEMORY) {
5260 unsigned long start_pfn, end_pfn;
5261
5262 /*
5263 * Recalculate kernelcore_node if the division per node
5264 * now exceeds what is necessary to satisfy the requested
5265 * amount of memory for the kernel
5266 */
5267 if (required_kernelcore < kernelcore_node)
5268 kernelcore_node = required_kernelcore / usable_nodes;
5269
5270 /*
5271 * As the map is walked, we track how much memory is usable
5272 * by the kernel using kernelcore_remaining. When it is
5273 * 0, the rest of the node is usable by ZONE_MOVABLE
5274 */
5275 kernelcore_remaining = kernelcore_node;
5276
5277 /* Go through each range of PFNs within this node */
5278 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5279 unsigned long size_pages;
5280
5281 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5282 if (start_pfn >= end_pfn)
5283 continue;
5284
5285 /* Account for what is only usable for kernelcore */
5286 if (start_pfn < usable_startpfn) {
5287 unsigned long kernel_pages;
5288 kernel_pages = min(end_pfn, usable_startpfn)
5289 - start_pfn;
5290
5291 kernelcore_remaining -= min(kernel_pages,
5292 kernelcore_remaining);
5293 required_kernelcore -= min(kernel_pages,
5294 required_kernelcore);
5295
5296 /* Continue if range is now fully accounted */
5297 if (end_pfn <= usable_startpfn) {
5298
5299 /*
5300 * Push zone_movable_pfn to the end so
5301 * that if we have to rebalance
5302 * kernelcore across nodes, we will
5303 * not double account here
5304 */
5305 zone_movable_pfn[nid] = end_pfn;
5306 continue;
5307 }
5308 start_pfn = usable_startpfn;
5309 }
5310
5311 /*
5312 * The usable PFN range for ZONE_MOVABLE is from
5313 * start_pfn->end_pfn. Calculate size_pages as the
5314 * number of pages used as kernelcore
5315 */
5316 size_pages = end_pfn - start_pfn;
5317 if (size_pages > kernelcore_remaining)
5318 size_pages = kernelcore_remaining;
5319 zone_movable_pfn[nid] = start_pfn + size_pages;
5320
5321 /*
5322 * Some kernelcore has been met, update counts and
5323 * break if the kernelcore for this node has been
5324 * satisfied
5325 */
5326 required_kernelcore -= min(required_kernelcore,
5327 size_pages);
5328 kernelcore_remaining -= size_pages;
5329 if (!kernelcore_remaining)
5330 break;
5331 }
5332 }
5333
5334 /*
5335 * If there is still required_kernelcore, we do another pass with one
5336 * less node in the count. This will push zone_movable_pfn[nid] further
5337 * along on the nodes that still have memory until kernelcore is
5338 * satisfied
5339 */
5340 usable_nodes--;
5341 if (usable_nodes && required_kernelcore > usable_nodes)
5342 goto restart;
5343
5344 out2:
5345 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5346 for (nid = 0; nid < MAX_NUMNODES; nid++)
5347 zone_movable_pfn[nid] =
5348 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5349
5350 out:
5351 /* restore the node_state */
5352 node_states[N_MEMORY] = saved_node_state;
5353 }
5354
5355 /* Any regular or high memory on that node ? */
5356 static void check_for_memory(pg_data_t *pgdat, int nid)
5357 {
5358 enum zone_type zone_type;
5359
5360 if (N_MEMORY == N_NORMAL_MEMORY)
5361 return;
5362
5363 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5364 struct zone *zone = &pgdat->node_zones[zone_type];
5365 if (populated_zone(zone)) {
5366 node_set_state(nid, N_HIGH_MEMORY);
5367 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5368 zone_type <= ZONE_NORMAL)
5369 node_set_state(nid, N_NORMAL_MEMORY);
5370 break;
5371 }
5372 }
5373 }
5374
5375 /**
5376 * free_area_init_nodes - Initialise all pg_data_t and zone data
5377 * @max_zone_pfn: an array of max PFNs for each zone
5378 *
5379 * This will call free_area_init_node() for each active node in the system.
5380 * Using the page ranges provided by memblock_set_node(), the size of each
5381 * zone in each node and their holes is calculated. If the maximum PFN
5382 * between two adjacent zones match, it is assumed that the zone is empty.
5383 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5384 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5385 * starts where the previous one ended. For example, ZONE_DMA32 starts
5386 * at arch_max_dma_pfn.
5387 */
5388 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5389 {
5390 unsigned long start_pfn, end_pfn;
5391 int i, nid;
5392
5393 /* Record where the zone boundaries are */
5394 memset(arch_zone_lowest_possible_pfn, 0,
5395 sizeof(arch_zone_lowest_possible_pfn));
5396 memset(arch_zone_highest_possible_pfn, 0,
5397 sizeof(arch_zone_highest_possible_pfn));
5398 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5399 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5400 for (i = 1; i < MAX_NR_ZONES; i++) {
5401 if (i == ZONE_MOVABLE)
5402 continue;
5403 arch_zone_lowest_possible_pfn[i] =
5404 arch_zone_highest_possible_pfn[i-1];
5405 arch_zone_highest_possible_pfn[i] =
5406 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5407 }
5408 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5409 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5410
5411 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5412 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5413 find_zone_movable_pfns_for_nodes();
5414
5415 /* Print out the zone ranges */
5416 pr_info("Zone ranges:\n");
5417 for (i = 0; i < MAX_NR_ZONES; i++) {
5418 if (i == ZONE_MOVABLE)
5419 continue;
5420 pr_info(" %-8s ", zone_names[i]);
5421 if (arch_zone_lowest_possible_pfn[i] ==
5422 arch_zone_highest_possible_pfn[i])
5423 pr_cont("empty\n");
5424 else
5425 pr_cont("[mem %0#10lx-%0#10lx]\n",
5426 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5427 (arch_zone_highest_possible_pfn[i]
5428 << PAGE_SHIFT) - 1);
5429 }
5430
5431 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5432 pr_info("Movable zone start for each node\n");
5433 for (i = 0; i < MAX_NUMNODES; i++) {
5434 if (zone_movable_pfn[i])
5435 pr_info(" Node %d: %#010lx\n", i,
5436 zone_movable_pfn[i] << PAGE_SHIFT);
5437 }
5438
5439 /* Print out the early node map */
5440 pr_info("Early memory node ranges\n");
5441 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5442 pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5443 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5444
5445 /* Initialise every node */
5446 mminit_verify_pageflags_layout();
5447 setup_nr_node_ids();
5448 for_each_online_node(nid) {
5449 pg_data_t *pgdat = NODE_DATA(nid);
5450 free_area_init_node(nid, NULL,
5451 find_min_pfn_for_node(nid), NULL);
5452
5453 /* Any memory on that node */
5454 if (pgdat->node_present_pages)
5455 node_set_state(nid, N_MEMORY);
5456 check_for_memory(pgdat, nid);
5457 }
5458 }
5459
5460 static int __init cmdline_parse_core(char *p, unsigned long *core)
5461 {
5462 unsigned long long coremem;
5463 if (!p)
5464 return -EINVAL;
5465
5466 coremem = memparse(p, &p);
5467 *core = coremem >> PAGE_SHIFT;
5468
5469 /* Paranoid check that UL is enough for the coremem value */
5470 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5471
5472 return 0;
5473 }
5474
5475 /*
5476 * kernelcore=size sets the amount of memory for use for allocations that
5477 * cannot be reclaimed or migrated.
5478 */
5479 static int __init cmdline_parse_kernelcore(char *p)
5480 {
5481 return cmdline_parse_core(p, &required_kernelcore);
5482 }
5483
5484 /*
5485 * movablecore=size sets the amount of memory for use for allocations that
5486 * can be reclaimed or migrated.
5487 */
5488 static int __init cmdline_parse_movablecore(char *p)
5489 {
5490 return cmdline_parse_core(p, &required_movablecore);
5491 }
5492
5493 early_param("kernelcore", cmdline_parse_kernelcore);
5494 early_param("movablecore", cmdline_parse_movablecore);
5495
5496 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5497
5498 void adjust_managed_page_count(struct page *page, long count)
5499 {
5500 spin_lock(&managed_page_count_lock);
5501 page_zone(page)->managed_pages += count;
5502 totalram_pages += count;
5503 #ifdef CONFIG_HIGHMEM
5504 if (PageHighMem(page))
5505 totalhigh_pages += count;
5506 #endif
5507 spin_unlock(&managed_page_count_lock);
5508 }
5509 EXPORT_SYMBOL(adjust_managed_page_count);
5510
5511 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5512 {
5513 void *pos;
5514 unsigned long pages = 0;
5515
5516 start = (void *)PAGE_ALIGN((unsigned long)start);
5517 end = (void *)((unsigned long)end & PAGE_MASK);
5518 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5519 if ((unsigned int)poison <= 0xFF)
5520 memset(pos, poison, PAGE_SIZE);
5521 free_reserved_page(virt_to_page(pos));
5522 }
5523
5524 if (pages && s)
5525 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5526 s, pages << (PAGE_SHIFT - 10), start, end);
5527
5528 return pages;
5529 }
5530 EXPORT_SYMBOL(free_reserved_area);
5531
5532 #ifdef CONFIG_HIGHMEM
5533 void free_highmem_page(struct page *page)
5534 {
5535 __free_reserved_page(page);
5536 totalram_pages++;
5537 page_zone(page)->managed_pages++;
5538 totalhigh_pages++;
5539 }
5540 #endif
5541
5542
5543 void __init mem_init_print_info(const char *str)
5544 {
5545 unsigned long physpages, codesize, datasize, rosize, bss_size;
5546 unsigned long init_code_size, init_data_size;
5547
5548 physpages = get_num_physpages();
5549 codesize = _etext - _stext;
5550 datasize = _edata - _sdata;
5551 rosize = __end_rodata - __start_rodata;
5552 bss_size = __bss_stop - __bss_start;
5553 init_data_size = __init_end - __init_begin;
5554 init_code_size = _einittext - _sinittext;
5555
5556 /*
5557 * Detect special cases and adjust section sizes accordingly:
5558 * 1) .init.* may be embedded into .data sections
5559 * 2) .init.text.* may be out of [__init_begin, __init_end],
5560 * please refer to arch/tile/kernel/vmlinux.lds.S.
5561 * 3) .rodata.* may be embedded into .text or .data sections.
5562 */
5563 #define adj_init_size(start, end, size, pos, adj) \
5564 do { \
5565 if (start <= pos && pos < end && size > adj) \
5566 size -= adj; \
5567 } while (0)
5568
5569 adj_init_size(__init_begin, __init_end, init_data_size,
5570 _sinittext, init_code_size);
5571 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5572 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5573 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5574 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5575
5576 #undef adj_init_size
5577
5578 pr_info("Memory: %luK/%luK available "
5579 "(%luK kernel code, %luK rwdata, %luK rodata, "
5580 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5581 #ifdef CONFIG_HIGHMEM
5582 ", %luK highmem"
5583 #endif
5584 "%s%s)\n",
5585 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5586 codesize >> 10, datasize >> 10, rosize >> 10,
5587 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5588 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5589 totalcma_pages << (PAGE_SHIFT-10),
5590 #ifdef CONFIG_HIGHMEM
5591 totalhigh_pages << (PAGE_SHIFT-10),
5592 #endif
5593 str ? ", " : "", str ? str : "");
5594 }
5595
5596 /**
5597 * set_dma_reserve - set the specified number of pages reserved in the first zone
5598 * @new_dma_reserve: The number of pages to mark reserved
5599 *
5600 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5601 * In the DMA zone, a significant percentage may be consumed by kernel image
5602 * and other unfreeable allocations which can skew the watermarks badly. This
5603 * function may optionally be used to account for unfreeable pages in the
5604 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5605 * smaller per-cpu batchsize.
5606 */
5607 void __init set_dma_reserve(unsigned long new_dma_reserve)
5608 {
5609 dma_reserve = new_dma_reserve;
5610 }
5611
5612 void __init free_area_init(unsigned long *zones_size)
5613 {
5614 free_area_init_node(0, zones_size,
5615 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5616 }
5617
5618 static int page_alloc_cpu_notify(struct notifier_block *self,
5619 unsigned long action, void *hcpu)
5620 {
5621 int cpu = (unsigned long)hcpu;
5622
5623 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5624 lru_add_drain_cpu(cpu);
5625 drain_pages(cpu);
5626
5627 /*
5628 * Spill the event counters of the dead processor
5629 * into the current processors event counters.
5630 * This artificially elevates the count of the current
5631 * processor.
5632 */
5633 vm_events_fold_cpu(cpu);
5634
5635 /*
5636 * Zero the differential counters of the dead processor
5637 * so that the vm statistics are consistent.
5638 *
5639 * This is only okay since the processor is dead and cannot
5640 * race with what we are doing.
5641 */
5642 cpu_vm_stats_fold(cpu);
5643 }
5644 return NOTIFY_OK;
5645 }
5646
5647 void __init page_alloc_init(void)
5648 {
5649 hotcpu_notifier(page_alloc_cpu_notify, 0);
5650 }
5651
5652 /*
5653 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5654 * or min_free_kbytes changes.
5655 */
5656 static void calculate_totalreserve_pages(void)
5657 {
5658 struct pglist_data *pgdat;
5659 unsigned long reserve_pages = 0;
5660 enum zone_type i, j;
5661
5662 for_each_online_pgdat(pgdat) {
5663 for (i = 0; i < MAX_NR_ZONES; i++) {
5664 struct zone *zone = pgdat->node_zones + i;
5665 long max = 0;
5666
5667 /* Find valid and maximum lowmem_reserve in the zone */
5668 for (j = i; j < MAX_NR_ZONES; j++) {
5669 if (zone->lowmem_reserve[j] > max)
5670 max = zone->lowmem_reserve[j];
5671 }
5672
5673 /* we treat the high watermark as reserved pages. */
5674 max += high_wmark_pages(zone);
5675
5676 if (max > zone->managed_pages)
5677 max = zone->managed_pages;
5678 reserve_pages += max;
5679 /*
5680 * Lowmem reserves are not available to
5681 * GFP_HIGHUSER page cache allocations and
5682 * kswapd tries to balance zones to their high
5683 * watermark. As a result, neither should be
5684 * regarded as dirtyable memory, to prevent a
5685 * situation where reclaim has to clean pages
5686 * in order to balance the zones.
5687 */
5688 zone->dirty_balance_reserve = max;
5689 }
5690 }
5691 dirty_balance_reserve = reserve_pages;
5692 totalreserve_pages = reserve_pages;
5693 }
5694
5695 /*
5696 * setup_per_zone_lowmem_reserve - called whenever
5697 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5698 * has a correct pages reserved value, so an adequate number of
5699 * pages are left in the zone after a successful __alloc_pages().
5700 */
5701 static void setup_per_zone_lowmem_reserve(void)
5702 {
5703 struct pglist_data *pgdat;
5704 enum zone_type j, idx;
5705
5706 for_each_online_pgdat(pgdat) {
5707 for (j = 0; j < MAX_NR_ZONES; j++) {
5708 struct zone *zone = pgdat->node_zones + j;
5709 unsigned long managed_pages = zone->managed_pages;
5710
5711 zone->lowmem_reserve[j] = 0;
5712
5713 idx = j;
5714 while (idx) {
5715 struct zone *lower_zone;
5716
5717 idx--;
5718
5719 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5720 sysctl_lowmem_reserve_ratio[idx] = 1;
5721
5722 lower_zone = pgdat->node_zones + idx;
5723 lower_zone->lowmem_reserve[j] = managed_pages /
5724 sysctl_lowmem_reserve_ratio[idx];
5725 managed_pages += lower_zone->managed_pages;
5726 }
5727 }
5728 }
5729
5730 /* update totalreserve_pages */
5731 calculate_totalreserve_pages();
5732 }
5733
5734 static void __setup_per_zone_wmarks(void)
5735 {
5736 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5737 unsigned long lowmem_pages = 0;
5738 struct zone *zone;
5739 unsigned long flags;
5740
5741 /* Calculate total number of !ZONE_HIGHMEM pages */
5742 for_each_zone(zone) {
5743 if (!is_highmem(zone))
5744 lowmem_pages += zone->managed_pages;
5745 }
5746
5747 for_each_zone(zone) {
5748 u64 tmp;
5749
5750 spin_lock_irqsave(&zone->lock, flags);
5751 tmp = (u64)pages_min * zone->managed_pages;
5752 do_div(tmp, lowmem_pages);
5753 if (is_highmem(zone)) {
5754 /*
5755 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5756 * need highmem pages, so cap pages_min to a small
5757 * value here.
5758 *
5759 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5760 * deltas controls asynch page reclaim, and so should
5761 * not be capped for highmem.
5762 */
5763 unsigned long min_pages;
5764
5765 min_pages = zone->managed_pages / 1024;
5766 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5767 zone->watermark[WMARK_MIN] = min_pages;
5768 } else {
5769 /*
5770 * If it's a lowmem zone, reserve a number of pages
5771 * proportionate to the zone's size.
5772 */
5773 zone->watermark[WMARK_MIN] = tmp;
5774 }
5775
5776 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5777 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5778
5779 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5780 high_wmark_pages(zone) - low_wmark_pages(zone) -
5781 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5782
5783 setup_zone_migrate_reserve(zone);
5784 spin_unlock_irqrestore(&zone->lock, flags);
5785 }
5786
5787 /* update totalreserve_pages */
5788 calculate_totalreserve_pages();
5789 }
5790
5791 /**
5792 * setup_per_zone_wmarks - called when min_free_kbytes changes
5793 * or when memory is hot-{added|removed}
5794 *
5795 * Ensures that the watermark[min,low,high] values for each zone are set
5796 * correctly with respect to min_free_kbytes.
5797 */
5798 void setup_per_zone_wmarks(void)
5799 {
5800 mutex_lock(&zonelists_mutex);
5801 __setup_per_zone_wmarks();
5802 mutex_unlock(&zonelists_mutex);
5803 }
5804
5805 /*
5806 * The inactive anon list should be small enough that the VM never has to
5807 * do too much work, but large enough that each inactive page has a chance
5808 * to be referenced again before it is swapped out.
5809 *
5810 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5811 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5812 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5813 * the anonymous pages are kept on the inactive list.
5814 *
5815 * total target max
5816 * memory ratio inactive anon
5817 * -------------------------------------
5818 * 10MB 1 5MB
5819 * 100MB 1 50MB
5820 * 1GB 3 250MB
5821 * 10GB 10 0.9GB
5822 * 100GB 31 3GB
5823 * 1TB 101 10GB
5824 * 10TB 320 32GB
5825 */
5826 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5827 {
5828 unsigned int gb, ratio;
5829
5830 /* Zone size in gigabytes */
5831 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5832 if (gb)
5833 ratio = int_sqrt(10 * gb);
5834 else
5835 ratio = 1;
5836
5837 zone->inactive_ratio = ratio;
5838 }
5839
5840 static void __meminit setup_per_zone_inactive_ratio(void)
5841 {
5842 struct zone *zone;
5843
5844 for_each_zone(zone)
5845 calculate_zone_inactive_ratio(zone);
5846 }
5847
5848 /*
5849 * Initialise min_free_kbytes.
5850 *
5851 * For small machines we want it small (128k min). For large machines
5852 * we want it large (64MB max). But it is not linear, because network
5853 * bandwidth does not increase linearly with machine size. We use
5854 *
5855 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5856 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5857 *
5858 * which yields
5859 *
5860 * 16MB: 512k
5861 * 32MB: 724k
5862 * 64MB: 1024k
5863 * 128MB: 1448k
5864 * 256MB: 2048k
5865 * 512MB: 2896k
5866 * 1024MB: 4096k
5867 * 2048MB: 5792k
5868 * 4096MB: 8192k
5869 * 8192MB: 11584k
5870 * 16384MB: 16384k
5871 */
5872 int __meminit init_per_zone_wmark_min(void)
5873 {
5874 unsigned long lowmem_kbytes;
5875 int new_min_free_kbytes;
5876
5877 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5878 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5879
5880 if (new_min_free_kbytes > user_min_free_kbytes) {
5881 min_free_kbytes = new_min_free_kbytes;
5882 if (min_free_kbytes < 128)
5883 min_free_kbytes = 128;
5884 if (min_free_kbytes > 65536)
5885 min_free_kbytes = 65536;
5886 } else {
5887 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5888 new_min_free_kbytes, user_min_free_kbytes);
5889 }
5890 setup_per_zone_wmarks();
5891 refresh_zone_stat_thresholds();
5892 setup_per_zone_lowmem_reserve();
5893 setup_per_zone_inactive_ratio();
5894 return 0;
5895 }
5896 module_init(init_per_zone_wmark_min)
5897
5898 /*
5899 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5900 * that we can call two helper functions whenever min_free_kbytes
5901 * changes.
5902 */
5903 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5904 void __user *buffer, size_t *length, loff_t *ppos)
5905 {
5906 int rc;
5907
5908 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5909 if (rc)
5910 return rc;
5911
5912 if (write) {
5913 user_min_free_kbytes = min_free_kbytes;
5914 setup_per_zone_wmarks();
5915 }
5916 return 0;
5917 }
5918
5919 #ifdef CONFIG_NUMA
5920 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5921 void __user *buffer, size_t *length, loff_t *ppos)
5922 {
5923 struct zone *zone;
5924 int rc;
5925
5926 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5927 if (rc)
5928 return rc;
5929
5930 for_each_zone(zone)
5931 zone->min_unmapped_pages = (zone->managed_pages *
5932 sysctl_min_unmapped_ratio) / 100;
5933 return 0;
5934 }
5935
5936 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5937 void __user *buffer, size_t *length, loff_t *ppos)
5938 {
5939 struct zone *zone;
5940 int rc;
5941
5942 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5943 if (rc)
5944 return rc;
5945
5946 for_each_zone(zone)
5947 zone->min_slab_pages = (zone->managed_pages *
5948 sysctl_min_slab_ratio) / 100;
5949 return 0;
5950 }
5951 #endif
5952
5953 /*
5954 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5955 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5956 * whenever sysctl_lowmem_reserve_ratio changes.
5957 *
5958 * The reserve ratio obviously has absolutely no relation with the
5959 * minimum watermarks. The lowmem reserve ratio can only make sense
5960 * if in function of the boot time zone sizes.
5961 */
5962 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5963 void __user *buffer, size_t *length, loff_t *ppos)
5964 {
5965 proc_dointvec_minmax(table, write, buffer, length, ppos);
5966 setup_per_zone_lowmem_reserve();
5967 return 0;
5968 }
5969
5970 /*
5971 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5972 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5973 * pagelist can have before it gets flushed back to buddy allocator.
5974 */
5975 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5976 void __user *buffer, size_t *length, loff_t *ppos)
5977 {
5978 struct zone *zone;
5979 int old_percpu_pagelist_fraction;
5980 int ret;
5981
5982 mutex_lock(&pcp_batch_high_lock);
5983 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5984
5985 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5986 if (!write || ret < 0)
5987 goto out;
5988
5989 /* Sanity checking to avoid pcp imbalance */
5990 if (percpu_pagelist_fraction &&
5991 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5992 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5993 ret = -EINVAL;
5994 goto out;
5995 }
5996
5997 /* No change? */
5998 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5999 goto out;
6000
6001 for_each_populated_zone(zone) {
6002 unsigned int cpu;
6003
6004 for_each_possible_cpu(cpu)
6005 pageset_set_high_and_batch(zone,
6006 per_cpu_ptr(zone->pageset, cpu));
6007 }
6008 out:
6009 mutex_unlock(&pcp_batch_high_lock);
6010 return ret;
6011 }
6012
6013 int hashdist = HASHDIST_DEFAULT;
6014
6015 #ifdef CONFIG_NUMA
6016 static int __init set_hashdist(char *str)
6017 {
6018 if (!str)
6019 return 0;
6020 hashdist = simple_strtoul(str, &str, 0);
6021 return 1;
6022 }
6023 __setup("hashdist=", set_hashdist);
6024 #endif
6025
6026 /*
6027 * allocate a large system hash table from bootmem
6028 * - it is assumed that the hash table must contain an exact power-of-2
6029 * quantity of entries
6030 * - limit is the number of hash buckets, not the total allocation size
6031 */
6032 void *__init alloc_large_system_hash(const char *tablename,
6033 unsigned long bucketsize,
6034 unsigned long numentries,
6035 int scale,
6036 int flags,
6037 unsigned int *_hash_shift,
6038 unsigned int *_hash_mask,
6039 unsigned long low_limit,
6040 unsigned long high_limit)
6041 {
6042 unsigned long long max = high_limit;
6043 unsigned long log2qty, size;
6044 void *table = NULL;
6045
6046 /* allow the kernel cmdline to have a say */
6047 if (!numentries) {
6048 /* round applicable memory size up to nearest megabyte */
6049 numentries = nr_kernel_pages;
6050
6051 /* It isn't necessary when PAGE_SIZE >= 1MB */
6052 if (PAGE_SHIFT < 20)
6053 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6054
6055 /* limit to 1 bucket per 2^scale bytes of low memory */
6056 if (scale > PAGE_SHIFT)
6057 numentries >>= (scale - PAGE_SHIFT);
6058 else
6059 numentries <<= (PAGE_SHIFT - scale);
6060
6061 /* Make sure we've got at least a 0-order allocation.. */
6062 if (unlikely(flags & HASH_SMALL)) {
6063 /* Makes no sense without HASH_EARLY */
6064 WARN_ON(!(flags & HASH_EARLY));
6065 if (!(numentries >> *_hash_shift)) {
6066 numentries = 1UL << *_hash_shift;
6067 BUG_ON(!numentries);
6068 }
6069 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6070 numentries = PAGE_SIZE / bucketsize;
6071 }
6072 numentries = roundup_pow_of_two(numentries);
6073
6074 /* limit allocation size to 1/16 total memory by default */
6075 if (max == 0) {
6076 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6077 do_div(max, bucketsize);
6078 }
6079 max = min(max, 0x80000000ULL);
6080
6081 if (numentries < low_limit)
6082 numentries = low_limit;
6083 if (numentries > max)
6084 numentries = max;
6085
6086 log2qty = ilog2(numentries);
6087
6088 do {
6089 size = bucketsize << log2qty;
6090 if (flags & HASH_EARLY)
6091 table = memblock_virt_alloc_nopanic(size, 0);
6092 else if (hashdist)
6093 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6094 else {
6095 /*
6096 * If bucketsize is not a power-of-two, we may free
6097 * some pages at the end of hash table which
6098 * alloc_pages_exact() automatically does
6099 */
6100 if (get_order(size) < MAX_ORDER) {
6101 table = alloc_pages_exact(size, GFP_ATOMIC);
6102 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6103 }
6104 }
6105 } while (!table && size > PAGE_SIZE && --log2qty);
6106
6107 if (!table)
6108 panic("Failed to allocate %s hash table\n", tablename);
6109
6110 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6111 tablename,
6112 (1UL << log2qty),
6113 ilog2(size) - PAGE_SHIFT,
6114 size);
6115
6116 if (_hash_shift)
6117 *_hash_shift = log2qty;
6118 if (_hash_mask)
6119 *_hash_mask = (1 << log2qty) - 1;
6120
6121 return table;
6122 }
6123
6124 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6125 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6126 unsigned long pfn)
6127 {
6128 #ifdef CONFIG_SPARSEMEM
6129 return __pfn_to_section(pfn)->pageblock_flags;
6130 #else
6131 return zone->pageblock_flags;
6132 #endif /* CONFIG_SPARSEMEM */
6133 }
6134
6135 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6136 {
6137 #ifdef CONFIG_SPARSEMEM
6138 pfn &= (PAGES_PER_SECTION-1);
6139 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6140 #else
6141 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6142 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6143 #endif /* CONFIG_SPARSEMEM */
6144 }
6145
6146 /**
6147 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6148 * @page: The page within the block of interest
6149 * @pfn: The target page frame number
6150 * @end_bitidx: The last bit of interest to retrieve
6151 * @mask: mask of bits that the caller is interested in
6152 *
6153 * Return: pageblock_bits flags
6154 */
6155 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6156 unsigned long end_bitidx,
6157 unsigned long mask)
6158 {
6159 struct zone *zone;
6160 unsigned long *bitmap;
6161 unsigned long bitidx, word_bitidx;
6162 unsigned long word;
6163
6164 zone = page_zone(page);
6165 bitmap = get_pageblock_bitmap(zone, pfn);
6166 bitidx = pfn_to_bitidx(zone, pfn);
6167 word_bitidx = bitidx / BITS_PER_LONG;
6168 bitidx &= (BITS_PER_LONG-1);
6169
6170 word = bitmap[word_bitidx];
6171 bitidx += end_bitidx;
6172 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6173 }
6174
6175 /**
6176 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6177 * @page: The page within the block of interest
6178 * @flags: The flags to set
6179 * @pfn: The target page frame number
6180 * @end_bitidx: The last bit of interest
6181 * @mask: mask of bits that the caller is interested in
6182 */
6183 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6184 unsigned long pfn,
6185 unsigned long end_bitidx,
6186 unsigned long mask)
6187 {
6188 struct zone *zone;
6189 unsigned long *bitmap;
6190 unsigned long bitidx, word_bitidx;
6191 unsigned long old_word, word;
6192
6193 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6194
6195 zone = page_zone(page);
6196 bitmap = get_pageblock_bitmap(zone, pfn);
6197 bitidx = pfn_to_bitidx(zone, pfn);
6198 word_bitidx = bitidx / BITS_PER_LONG;
6199 bitidx &= (BITS_PER_LONG-1);
6200
6201 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6202
6203 bitidx += end_bitidx;
6204 mask <<= (BITS_PER_LONG - bitidx - 1);
6205 flags <<= (BITS_PER_LONG - bitidx - 1);
6206
6207 word = ACCESS_ONCE(bitmap[word_bitidx]);
6208 for (;;) {
6209 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6210 if (word == old_word)
6211 break;
6212 word = old_word;
6213 }
6214 }
6215
6216 /*
6217 * This function checks whether pageblock includes unmovable pages or not.
6218 * If @count is not zero, it is okay to include less @count unmovable pages
6219 *
6220 * PageLRU check without isolation or lru_lock could race so that
6221 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6222 * expect this function should be exact.
6223 */
6224 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6225 bool skip_hwpoisoned_pages)
6226 {
6227 unsigned long pfn, iter, found;
6228 int mt;
6229
6230 /*
6231 * For avoiding noise data, lru_add_drain_all() should be called
6232 * If ZONE_MOVABLE, the zone never contains unmovable pages
6233 */
6234 if (zone_idx(zone) == ZONE_MOVABLE)
6235 return false;
6236 mt = get_pageblock_migratetype(page);
6237 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6238 return false;
6239
6240 pfn = page_to_pfn(page);
6241 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6242 unsigned long check = pfn + iter;
6243
6244 if (!pfn_valid_within(check))
6245 continue;
6246
6247 page = pfn_to_page(check);
6248
6249 /*
6250 * Hugepages are not in LRU lists, but they're movable.
6251 * We need not scan over tail pages bacause we don't
6252 * handle each tail page individually in migration.
6253 */
6254 if (PageHuge(page)) {
6255 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6256 continue;
6257 }
6258
6259 /*
6260 * We can't use page_count without pin a page
6261 * because another CPU can free compound page.
6262 * This check already skips compound tails of THP
6263 * because their page->_count is zero at all time.
6264 */
6265 if (!atomic_read(&page->_count)) {
6266 if (PageBuddy(page))
6267 iter += (1 << page_order(page)) - 1;
6268 continue;
6269 }
6270
6271 /*
6272 * The HWPoisoned page may be not in buddy system, and
6273 * page_count() is not 0.
6274 */
6275 if (skip_hwpoisoned_pages && PageHWPoison(page))
6276 continue;
6277
6278 if (!PageLRU(page))
6279 found++;
6280 /*
6281 * If there are RECLAIMABLE pages, we need to check
6282 * it. But now, memory offline itself doesn't call
6283 * shrink_node_slabs() and it still to be fixed.
6284 */
6285 /*
6286 * If the page is not RAM, page_count()should be 0.
6287 * we don't need more check. This is an _used_ not-movable page.
6288 *
6289 * The problematic thing here is PG_reserved pages. PG_reserved
6290 * is set to both of a memory hole page and a _used_ kernel
6291 * page at boot.
6292 */
6293 if (found > count)
6294 return true;
6295 }
6296 return false;
6297 }
6298
6299 bool is_pageblock_removable_nolock(struct page *page)
6300 {
6301 struct zone *zone;
6302 unsigned long pfn;
6303
6304 /*
6305 * We have to be careful here because we are iterating over memory
6306 * sections which are not zone aware so we might end up outside of
6307 * the zone but still within the section.
6308 * We have to take care about the node as well. If the node is offline
6309 * its NODE_DATA will be NULL - see page_zone.
6310 */
6311 if (!node_online(page_to_nid(page)))
6312 return false;
6313
6314 zone = page_zone(page);
6315 pfn = page_to_pfn(page);
6316 if (!zone_spans_pfn(zone, pfn))
6317 return false;
6318
6319 return !has_unmovable_pages(zone, page, 0, true);
6320 }
6321
6322 #ifdef CONFIG_CMA
6323
6324 static unsigned long pfn_max_align_down(unsigned long pfn)
6325 {
6326 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6327 pageblock_nr_pages) - 1);
6328 }
6329
6330 static unsigned long pfn_max_align_up(unsigned long pfn)
6331 {
6332 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6333 pageblock_nr_pages));
6334 }
6335
6336 /* [start, end) must belong to a single zone. */
6337 static int __alloc_contig_migrate_range(struct compact_control *cc,
6338 unsigned long start, unsigned long end)
6339 {
6340 /* This function is based on compact_zone() from compaction.c. */
6341 unsigned long nr_reclaimed;
6342 unsigned long pfn = start;
6343 unsigned int tries = 0;
6344 int ret = 0;
6345
6346 migrate_prep();
6347
6348 while (pfn < end || !list_empty(&cc->migratepages)) {
6349 if (fatal_signal_pending(current)) {
6350 ret = -EINTR;
6351 break;
6352 }
6353
6354 if (list_empty(&cc->migratepages)) {
6355 cc->nr_migratepages = 0;
6356 pfn = isolate_migratepages_range(cc, pfn, end);
6357 if (!pfn) {
6358 ret = -EINTR;
6359 break;
6360 }
6361 tries = 0;
6362 } else if (++tries == 5) {
6363 ret = ret < 0 ? ret : -EBUSY;
6364 break;
6365 }
6366
6367 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6368 &cc->migratepages);
6369 cc->nr_migratepages -= nr_reclaimed;
6370
6371 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6372 NULL, 0, cc->mode, MR_CMA);
6373 }
6374 if (ret < 0) {
6375 putback_movable_pages(&cc->migratepages);
6376 return ret;
6377 }
6378 return 0;
6379 }
6380
6381 /**
6382 * alloc_contig_range() -- tries to allocate given range of pages
6383 * @start: start PFN to allocate
6384 * @end: one-past-the-last PFN to allocate
6385 * @migratetype: migratetype of the underlaying pageblocks (either
6386 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6387 * in range must have the same migratetype and it must
6388 * be either of the two.
6389 *
6390 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6391 * aligned, however it's the caller's responsibility to guarantee that
6392 * we are the only thread that changes migrate type of pageblocks the
6393 * pages fall in.
6394 *
6395 * The PFN range must belong to a single zone.
6396 *
6397 * Returns zero on success or negative error code. On success all
6398 * pages which PFN is in [start, end) are allocated for the caller and
6399 * need to be freed with free_contig_range().
6400 */
6401 int alloc_contig_range(unsigned long start, unsigned long end,
6402 unsigned migratetype)
6403 {
6404 unsigned long outer_start, outer_end;
6405 int ret = 0, order;
6406
6407 struct compact_control cc = {
6408 .nr_migratepages = 0,
6409 .order = -1,
6410 .zone = page_zone(pfn_to_page(start)),
6411 .mode = MIGRATE_SYNC,
6412 .ignore_skip_hint = true,
6413 };
6414 INIT_LIST_HEAD(&cc.migratepages);
6415
6416 /*
6417 * What we do here is we mark all pageblocks in range as
6418 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6419 * have different sizes, and due to the way page allocator
6420 * work, we align the range to biggest of the two pages so
6421 * that page allocator won't try to merge buddies from
6422 * different pageblocks and change MIGRATE_ISOLATE to some
6423 * other migration type.
6424 *
6425 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6426 * migrate the pages from an unaligned range (ie. pages that
6427 * we are interested in). This will put all the pages in
6428 * range back to page allocator as MIGRATE_ISOLATE.
6429 *
6430 * When this is done, we take the pages in range from page
6431 * allocator removing them from the buddy system. This way
6432 * page allocator will never consider using them.
6433 *
6434 * This lets us mark the pageblocks back as
6435 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6436 * aligned range but not in the unaligned, original range are
6437 * put back to page allocator so that buddy can use them.
6438 */
6439
6440 ret = start_isolate_page_range(pfn_max_align_down(start),
6441 pfn_max_align_up(end), migratetype,
6442 false);
6443 if (ret)
6444 return ret;
6445
6446 ret = __alloc_contig_migrate_range(&cc, start, end);
6447 if (ret)
6448 goto done;
6449
6450 /*
6451 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6452 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6453 * more, all pages in [start, end) are free in page allocator.
6454 * What we are going to do is to allocate all pages from
6455 * [start, end) (that is remove them from page allocator).
6456 *
6457 * The only problem is that pages at the beginning and at the
6458 * end of interesting range may be not aligned with pages that
6459 * page allocator holds, ie. they can be part of higher order
6460 * pages. Because of this, we reserve the bigger range and
6461 * once this is done free the pages we are not interested in.
6462 *
6463 * We don't have to hold zone->lock here because the pages are
6464 * isolated thus they won't get removed from buddy.
6465 */
6466
6467 lru_add_drain_all();
6468 drain_all_pages(cc.zone);
6469
6470 order = 0;
6471 outer_start = start;
6472 while (!PageBuddy(pfn_to_page(outer_start))) {
6473 if (++order >= MAX_ORDER) {
6474 ret = -EBUSY;
6475 goto done;
6476 }
6477 outer_start &= ~0UL << order;
6478 }
6479
6480 /* Make sure the range is really isolated. */
6481 if (test_pages_isolated(outer_start, end, false)) {
6482 pr_info("%s: [%lx, %lx) PFNs busy\n",
6483 __func__, outer_start, end);
6484 ret = -EBUSY;
6485 goto done;
6486 }
6487
6488 /* Grab isolated pages from freelists. */
6489 outer_end = isolate_freepages_range(&cc, outer_start, end);
6490 if (!outer_end) {
6491 ret = -EBUSY;
6492 goto done;
6493 }
6494
6495 /* Free head and tail (if any) */
6496 if (start != outer_start)
6497 free_contig_range(outer_start, start - outer_start);
6498 if (end != outer_end)
6499 free_contig_range(end, outer_end - end);
6500
6501 done:
6502 undo_isolate_page_range(pfn_max_align_down(start),
6503 pfn_max_align_up(end), migratetype);
6504 return ret;
6505 }
6506
6507 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6508 {
6509 unsigned int count = 0;
6510
6511 for (; nr_pages--; pfn++) {
6512 struct page *page = pfn_to_page(pfn);
6513
6514 count += page_count(page) != 1;
6515 __free_page(page);
6516 }
6517 WARN(count != 0, "%d pages are still in use!\n", count);
6518 }
6519 #endif
6520
6521 #ifdef CONFIG_MEMORY_HOTPLUG
6522 /*
6523 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6524 * page high values need to be recalulated.
6525 */
6526 void __meminit zone_pcp_update(struct zone *zone)
6527 {
6528 unsigned cpu;
6529 mutex_lock(&pcp_batch_high_lock);
6530 for_each_possible_cpu(cpu)
6531 pageset_set_high_and_batch(zone,
6532 per_cpu_ptr(zone->pageset, cpu));
6533 mutex_unlock(&pcp_batch_high_lock);
6534 }
6535 #endif
6536
6537 void zone_pcp_reset(struct zone *zone)
6538 {
6539 unsigned long flags;
6540 int cpu;
6541 struct per_cpu_pageset *pset;
6542
6543 /* avoid races with drain_pages() */
6544 local_irq_save(flags);
6545 if (zone->pageset != &boot_pageset) {
6546 for_each_online_cpu(cpu) {
6547 pset = per_cpu_ptr(zone->pageset, cpu);
6548 drain_zonestat(zone, pset);
6549 }
6550 free_percpu(zone->pageset);
6551 zone->pageset = &boot_pageset;
6552 }
6553 local_irq_restore(flags);
6554 }
6555
6556 #ifdef CONFIG_MEMORY_HOTREMOVE
6557 /*
6558 * All pages in the range must be isolated before calling this.
6559 */
6560 void
6561 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6562 {
6563 struct page *page;
6564 struct zone *zone;
6565 unsigned int order, i;
6566 unsigned long pfn;
6567 unsigned long flags;
6568 /* find the first valid pfn */
6569 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6570 if (pfn_valid(pfn))
6571 break;
6572 if (pfn == end_pfn)
6573 return;
6574 zone = page_zone(pfn_to_page(pfn));
6575 spin_lock_irqsave(&zone->lock, flags);
6576 pfn = start_pfn;
6577 while (pfn < end_pfn) {
6578 if (!pfn_valid(pfn)) {
6579 pfn++;
6580 continue;
6581 }
6582 page = pfn_to_page(pfn);
6583 /*
6584 * The HWPoisoned page may be not in buddy system, and
6585 * page_count() is not 0.
6586 */
6587 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6588 pfn++;
6589 SetPageReserved(page);
6590 continue;
6591 }
6592
6593 BUG_ON(page_count(page));
6594 BUG_ON(!PageBuddy(page));
6595 order = page_order(page);
6596 #ifdef CONFIG_DEBUG_VM
6597 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6598 pfn, 1 << order, end_pfn);
6599 #endif
6600 list_del(&page->lru);
6601 rmv_page_order(page);
6602 zone->free_area[order].nr_free--;
6603 for (i = 0; i < (1 << order); i++)
6604 SetPageReserved((page+i));
6605 pfn += (1 << order);
6606 }
6607 spin_unlock_irqrestore(&zone->lock, flags);
6608 }
6609 #endif
6610
6611 #ifdef CONFIG_MEMORY_FAILURE
6612 bool is_free_buddy_page(struct page *page)
6613 {
6614 struct zone *zone = page_zone(page);
6615 unsigned long pfn = page_to_pfn(page);
6616 unsigned long flags;
6617 unsigned int order;
6618
6619 spin_lock_irqsave(&zone->lock, flags);
6620 for (order = 0; order < MAX_ORDER; order++) {
6621 struct page *page_head = page - (pfn & ((1 << order) - 1));
6622
6623 if (PageBuddy(page_head) && page_order(page_head) >= order)
6624 break;
6625 }
6626 spin_unlock_irqrestore(&zone->lock, flags);
6627
6628 return order < MAX_ORDER;
6629 }
6630 #endif