]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/page_alloc.c
Create the ZONE_MOVABLE zone
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
44
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
48
49 /*
50 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51 * initializer cleaner
52 */
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
59 long nr_swap_pages;
60 int percpu_pagelist_fraction;
61
62 static void __free_pages_ok(struct page *page, unsigned int order);
63
64 /*
65 * results with 256, 32 in the lowmem_reserve sysctl:
66 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67 * 1G machine -> (16M dma, 784M normal, 224M high)
68 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71 *
72 * TBD: should special case ZONE_DMA32 machines here - in those we normally
73 * don't need any ZONE_NORMAL reservation
74 */
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 #ifdef CONFIG_ZONE_DMA
77 256,
78 #endif
79 #ifdef CONFIG_ZONE_DMA32
80 256,
81 #endif
82 #ifdef CONFIG_HIGHMEM
83 32,
84 #endif
85 32,
86 };
87
88 EXPORT_SYMBOL(totalram_pages);
89
90 static char * const zone_names[MAX_NR_ZONES] = {
91 #ifdef CONFIG_ZONE_DMA
92 "DMA",
93 #endif
94 #ifdef CONFIG_ZONE_DMA32
95 "DMA32",
96 #endif
97 "Normal",
98 #ifdef CONFIG_HIGHMEM
99 "HighMem",
100 #endif
101 "Movable",
102 };
103
104 int min_free_kbytes = 1024;
105
106 unsigned long __meminitdata nr_kernel_pages;
107 unsigned long __meminitdata nr_all_pages;
108 static unsigned long __meminitdata dma_reserve;
109
110 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
111 /*
112 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
113 * ranges of memory (RAM) that may be registered with add_active_range().
114 * Ranges passed to add_active_range() will be merged if possible
115 * so the number of times add_active_range() can be called is
116 * related to the number of nodes and the number of holes
117 */
118 #ifdef CONFIG_MAX_ACTIVE_REGIONS
119 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
120 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
121 #else
122 #if MAX_NUMNODES >= 32
123 /* If there can be many nodes, allow up to 50 holes per node */
124 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
125 #else
126 /* By default, allow up to 256 distinct regions */
127 #define MAX_ACTIVE_REGIONS 256
128 #endif
129 #endif
130
131 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
132 static int __meminitdata nr_nodemap_entries;
133 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
134 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
135 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
136 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
137 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
138 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
139 unsigned long __initdata required_kernelcore;
140 unsigned long __initdata zone_movable_pfn[MAX_NUMNODES];
141
142 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
143 int movable_zone;
144 EXPORT_SYMBOL(movable_zone);
145 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
146
147 #if MAX_NUMNODES > 1
148 int nr_node_ids __read_mostly = MAX_NUMNODES;
149 EXPORT_SYMBOL(nr_node_ids);
150 #endif
151
152 #ifdef CONFIG_DEBUG_VM
153 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
154 {
155 int ret = 0;
156 unsigned seq;
157 unsigned long pfn = page_to_pfn(page);
158
159 do {
160 seq = zone_span_seqbegin(zone);
161 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
162 ret = 1;
163 else if (pfn < zone->zone_start_pfn)
164 ret = 1;
165 } while (zone_span_seqretry(zone, seq));
166
167 return ret;
168 }
169
170 static int page_is_consistent(struct zone *zone, struct page *page)
171 {
172 if (!pfn_valid_within(page_to_pfn(page)))
173 return 0;
174 if (zone != page_zone(page))
175 return 0;
176
177 return 1;
178 }
179 /*
180 * Temporary debugging check for pages not lying within a given zone.
181 */
182 static int bad_range(struct zone *zone, struct page *page)
183 {
184 if (page_outside_zone_boundaries(zone, page))
185 return 1;
186 if (!page_is_consistent(zone, page))
187 return 1;
188
189 return 0;
190 }
191 #else
192 static inline int bad_range(struct zone *zone, struct page *page)
193 {
194 return 0;
195 }
196 #endif
197
198 static void bad_page(struct page *page)
199 {
200 printk(KERN_EMERG "Bad page state in process '%s'\n"
201 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
202 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
203 KERN_EMERG "Backtrace:\n",
204 current->comm, page, (int)(2*sizeof(unsigned long)),
205 (unsigned long)page->flags, page->mapping,
206 page_mapcount(page), page_count(page));
207 dump_stack();
208 page->flags &= ~(1 << PG_lru |
209 1 << PG_private |
210 1 << PG_locked |
211 1 << PG_active |
212 1 << PG_dirty |
213 1 << PG_reclaim |
214 1 << PG_slab |
215 1 << PG_swapcache |
216 1 << PG_writeback |
217 1 << PG_buddy );
218 set_page_count(page, 0);
219 reset_page_mapcount(page);
220 page->mapping = NULL;
221 add_taint(TAINT_BAD_PAGE);
222 }
223
224 /*
225 * Higher-order pages are called "compound pages". They are structured thusly:
226 *
227 * The first PAGE_SIZE page is called the "head page".
228 *
229 * The remaining PAGE_SIZE pages are called "tail pages".
230 *
231 * All pages have PG_compound set. All pages have their ->private pointing at
232 * the head page (even the head page has this).
233 *
234 * The first tail page's ->lru.next holds the address of the compound page's
235 * put_page() function. Its ->lru.prev holds the order of allocation.
236 * This usage means that zero-order pages may not be compound.
237 */
238
239 static void free_compound_page(struct page *page)
240 {
241 __free_pages_ok(page, compound_order(page));
242 }
243
244 static void prep_compound_page(struct page *page, unsigned long order)
245 {
246 int i;
247 int nr_pages = 1 << order;
248
249 set_compound_page_dtor(page, free_compound_page);
250 set_compound_order(page, order);
251 __SetPageHead(page);
252 for (i = 1; i < nr_pages; i++) {
253 struct page *p = page + i;
254
255 __SetPageTail(p);
256 p->first_page = page;
257 }
258 }
259
260 static void destroy_compound_page(struct page *page, unsigned long order)
261 {
262 int i;
263 int nr_pages = 1 << order;
264
265 if (unlikely(compound_order(page) != order))
266 bad_page(page);
267
268 if (unlikely(!PageHead(page)))
269 bad_page(page);
270 __ClearPageHead(page);
271 for (i = 1; i < nr_pages; i++) {
272 struct page *p = page + i;
273
274 if (unlikely(!PageTail(p) |
275 (p->first_page != page)))
276 bad_page(page);
277 __ClearPageTail(p);
278 }
279 }
280
281 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
282 {
283 int i;
284
285 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
286 /*
287 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
288 * and __GFP_HIGHMEM from hard or soft interrupt context.
289 */
290 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
291 for (i = 0; i < (1 << order); i++)
292 clear_highpage(page + i);
293 }
294
295 /*
296 * function for dealing with page's order in buddy system.
297 * zone->lock is already acquired when we use these.
298 * So, we don't need atomic page->flags operations here.
299 */
300 static inline unsigned long page_order(struct page *page)
301 {
302 return page_private(page);
303 }
304
305 static inline void set_page_order(struct page *page, int order)
306 {
307 set_page_private(page, order);
308 __SetPageBuddy(page);
309 }
310
311 static inline void rmv_page_order(struct page *page)
312 {
313 __ClearPageBuddy(page);
314 set_page_private(page, 0);
315 }
316
317 /*
318 * Locate the struct page for both the matching buddy in our
319 * pair (buddy1) and the combined O(n+1) page they form (page).
320 *
321 * 1) Any buddy B1 will have an order O twin B2 which satisfies
322 * the following equation:
323 * B2 = B1 ^ (1 << O)
324 * For example, if the starting buddy (buddy2) is #8 its order
325 * 1 buddy is #10:
326 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
327 *
328 * 2) Any buddy B will have an order O+1 parent P which
329 * satisfies the following equation:
330 * P = B & ~(1 << O)
331 *
332 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
333 */
334 static inline struct page *
335 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
336 {
337 unsigned long buddy_idx = page_idx ^ (1 << order);
338
339 return page + (buddy_idx - page_idx);
340 }
341
342 static inline unsigned long
343 __find_combined_index(unsigned long page_idx, unsigned int order)
344 {
345 return (page_idx & ~(1 << order));
346 }
347
348 /*
349 * This function checks whether a page is free && is the buddy
350 * we can do coalesce a page and its buddy if
351 * (a) the buddy is not in a hole &&
352 * (b) the buddy is in the buddy system &&
353 * (c) a page and its buddy have the same order &&
354 * (d) a page and its buddy are in the same zone.
355 *
356 * For recording whether a page is in the buddy system, we use PG_buddy.
357 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
358 *
359 * For recording page's order, we use page_private(page).
360 */
361 static inline int page_is_buddy(struct page *page, struct page *buddy,
362 int order)
363 {
364 if (!pfn_valid_within(page_to_pfn(buddy)))
365 return 0;
366
367 if (page_zone_id(page) != page_zone_id(buddy))
368 return 0;
369
370 if (PageBuddy(buddy) && page_order(buddy) == order) {
371 BUG_ON(page_count(buddy) != 0);
372 return 1;
373 }
374 return 0;
375 }
376
377 /*
378 * Freeing function for a buddy system allocator.
379 *
380 * The concept of a buddy system is to maintain direct-mapped table
381 * (containing bit values) for memory blocks of various "orders".
382 * The bottom level table contains the map for the smallest allocatable
383 * units of memory (here, pages), and each level above it describes
384 * pairs of units from the levels below, hence, "buddies".
385 * At a high level, all that happens here is marking the table entry
386 * at the bottom level available, and propagating the changes upward
387 * as necessary, plus some accounting needed to play nicely with other
388 * parts of the VM system.
389 * At each level, we keep a list of pages, which are heads of continuous
390 * free pages of length of (1 << order) and marked with PG_buddy. Page's
391 * order is recorded in page_private(page) field.
392 * So when we are allocating or freeing one, we can derive the state of the
393 * other. That is, if we allocate a small block, and both were
394 * free, the remainder of the region must be split into blocks.
395 * If a block is freed, and its buddy is also free, then this
396 * triggers coalescing into a block of larger size.
397 *
398 * -- wli
399 */
400
401 static inline void __free_one_page(struct page *page,
402 struct zone *zone, unsigned int order)
403 {
404 unsigned long page_idx;
405 int order_size = 1 << order;
406
407 if (unlikely(PageCompound(page)))
408 destroy_compound_page(page, order);
409
410 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
411
412 VM_BUG_ON(page_idx & (order_size - 1));
413 VM_BUG_ON(bad_range(zone, page));
414
415 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
416 while (order < MAX_ORDER-1) {
417 unsigned long combined_idx;
418 struct free_area *area;
419 struct page *buddy;
420
421 buddy = __page_find_buddy(page, page_idx, order);
422 if (!page_is_buddy(page, buddy, order))
423 break; /* Move the buddy up one level. */
424
425 list_del(&buddy->lru);
426 area = zone->free_area + order;
427 area->nr_free--;
428 rmv_page_order(buddy);
429 combined_idx = __find_combined_index(page_idx, order);
430 page = page + (combined_idx - page_idx);
431 page_idx = combined_idx;
432 order++;
433 }
434 set_page_order(page, order);
435 list_add(&page->lru, &zone->free_area[order].free_list);
436 zone->free_area[order].nr_free++;
437 }
438
439 static inline int free_pages_check(struct page *page)
440 {
441 if (unlikely(page_mapcount(page) |
442 (page->mapping != NULL) |
443 (page_count(page) != 0) |
444 (page->flags & (
445 1 << PG_lru |
446 1 << PG_private |
447 1 << PG_locked |
448 1 << PG_active |
449 1 << PG_slab |
450 1 << PG_swapcache |
451 1 << PG_writeback |
452 1 << PG_reserved |
453 1 << PG_buddy ))))
454 bad_page(page);
455 /*
456 * PageReclaim == PageTail. It is only an error
457 * for PageReclaim to be set if PageCompound is clear.
458 */
459 if (unlikely(!PageCompound(page) && PageReclaim(page)))
460 bad_page(page);
461 if (PageDirty(page))
462 __ClearPageDirty(page);
463 /*
464 * For now, we report if PG_reserved was found set, but do not
465 * clear it, and do not free the page. But we shall soon need
466 * to do more, for when the ZERO_PAGE count wraps negative.
467 */
468 return PageReserved(page);
469 }
470
471 /*
472 * Frees a list of pages.
473 * Assumes all pages on list are in same zone, and of same order.
474 * count is the number of pages to free.
475 *
476 * If the zone was previously in an "all pages pinned" state then look to
477 * see if this freeing clears that state.
478 *
479 * And clear the zone's pages_scanned counter, to hold off the "all pages are
480 * pinned" detection logic.
481 */
482 static void free_pages_bulk(struct zone *zone, int count,
483 struct list_head *list, int order)
484 {
485 spin_lock(&zone->lock);
486 zone->all_unreclaimable = 0;
487 zone->pages_scanned = 0;
488 while (count--) {
489 struct page *page;
490
491 VM_BUG_ON(list_empty(list));
492 page = list_entry(list->prev, struct page, lru);
493 /* have to delete it as __free_one_page list manipulates */
494 list_del(&page->lru);
495 __free_one_page(page, zone, order);
496 }
497 spin_unlock(&zone->lock);
498 }
499
500 static void free_one_page(struct zone *zone, struct page *page, int order)
501 {
502 spin_lock(&zone->lock);
503 zone->all_unreclaimable = 0;
504 zone->pages_scanned = 0;
505 __free_one_page(page, zone, order);
506 spin_unlock(&zone->lock);
507 }
508
509 static void __free_pages_ok(struct page *page, unsigned int order)
510 {
511 unsigned long flags;
512 int i;
513 int reserved = 0;
514
515 for (i = 0 ; i < (1 << order) ; ++i)
516 reserved += free_pages_check(page + i);
517 if (reserved)
518 return;
519
520 if (!PageHighMem(page))
521 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
522 arch_free_page(page, order);
523 kernel_map_pages(page, 1 << order, 0);
524
525 local_irq_save(flags);
526 __count_vm_events(PGFREE, 1 << order);
527 free_one_page(page_zone(page), page, order);
528 local_irq_restore(flags);
529 }
530
531 /*
532 * permit the bootmem allocator to evade page validation on high-order frees
533 */
534 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
535 {
536 if (order == 0) {
537 __ClearPageReserved(page);
538 set_page_count(page, 0);
539 set_page_refcounted(page);
540 __free_page(page);
541 } else {
542 int loop;
543
544 prefetchw(page);
545 for (loop = 0; loop < BITS_PER_LONG; loop++) {
546 struct page *p = &page[loop];
547
548 if (loop + 1 < BITS_PER_LONG)
549 prefetchw(p + 1);
550 __ClearPageReserved(p);
551 set_page_count(p, 0);
552 }
553
554 set_page_refcounted(page);
555 __free_pages(page, order);
556 }
557 }
558
559
560 /*
561 * The order of subdivision here is critical for the IO subsystem.
562 * Please do not alter this order without good reasons and regression
563 * testing. Specifically, as large blocks of memory are subdivided,
564 * the order in which smaller blocks are delivered depends on the order
565 * they're subdivided in this function. This is the primary factor
566 * influencing the order in which pages are delivered to the IO
567 * subsystem according to empirical testing, and this is also justified
568 * by considering the behavior of a buddy system containing a single
569 * large block of memory acted on by a series of small allocations.
570 * This behavior is a critical factor in sglist merging's success.
571 *
572 * -- wli
573 */
574 static inline void expand(struct zone *zone, struct page *page,
575 int low, int high, struct free_area *area)
576 {
577 unsigned long size = 1 << high;
578
579 while (high > low) {
580 area--;
581 high--;
582 size >>= 1;
583 VM_BUG_ON(bad_range(zone, &page[size]));
584 list_add(&page[size].lru, &area->free_list);
585 area->nr_free++;
586 set_page_order(&page[size], high);
587 }
588 }
589
590 /*
591 * This page is about to be returned from the page allocator
592 */
593 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
594 {
595 if (unlikely(page_mapcount(page) |
596 (page->mapping != NULL) |
597 (page_count(page) != 0) |
598 (page->flags & (
599 1 << PG_lru |
600 1 << PG_private |
601 1 << PG_locked |
602 1 << PG_active |
603 1 << PG_dirty |
604 1 << PG_reclaim |
605 1 << PG_slab |
606 1 << PG_swapcache |
607 1 << PG_writeback |
608 1 << PG_reserved |
609 1 << PG_buddy ))))
610 bad_page(page);
611
612 /*
613 * For now, we report if PG_reserved was found set, but do not
614 * clear it, and do not allocate the page: as a safety net.
615 */
616 if (PageReserved(page))
617 return 1;
618
619 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
620 1 << PG_referenced | 1 << PG_arch_1 |
621 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
622 set_page_private(page, 0);
623 set_page_refcounted(page);
624
625 arch_alloc_page(page, order);
626 kernel_map_pages(page, 1 << order, 1);
627
628 if (gfp_flags & __GFP_ZERO)
629 prep_zero_page(page, order, gfp_flags);
630
631 if (order && (gfp_flags & __GFP_COMP))
632 prep_compound_page(page, order);
633
634 return 0;
635 }
636
637 /*
638 * Do the hard work of removing an element from the buddy allocator.
639 * Call me with the zone->lock already held.
640 */
641 static struct page *__rmqueue(struct zone *zone, unsigned int order)
642 {
643 struct free_area * area;
644 unsigned int current_order;
645 struct page *page;
646
647 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
648 area = zone->free_area + current_order;
649 if (list_empty(&area->free_list))
650 continue;
651
652 page = list_entry(area->free_list.next, struct page, lru);
653 list_del(&page->lru);
654 rmv_page_order(page);
655 area->nr_free--;
656 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
657 expand(zone, page, order, current_order, area);
658 return page;
659 }
660
661 return NULL;
662 }
663
664 /*
665 * Obtain a specified number of elements from the buddy allocator, all under
666 * a single hold of the lock, for efficiency. Add them to the supplied list.
667 * Returns the number of new pages which were placed at *list.
668 */
669 static int rmqueue_bulk(struct zone *zone, unsigned int order,
670 unsigned long count, struct list_head *list)
671 {
672 int i;
673
674 spin_lock(&zone->lock);
675 for (i = 0; i < count; ++i) {
676 struct page *page = __rmqueue(zone, order);
677 if (unlikely(page == NULL))
678 break;
679 list_add_tail(&page->lru, list);
680 }
681 spin_unlock(&zone->lock);
682 return i;
683 }
684
685 #ifdef CONFIG_NUMA
686 /*
687 * Called from the vmstat counter updater to drain pagesets of this
688 * currently executing processor on remote nodes after they have
689 * expired.
690 *
691 * Note that this function must be called with the thread pinned to
692 * a single processor.
693 */
694 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
695 {
696 unsigned long flags;
697 int to_drain;
698
699 local_irq_save(flags);
700 if (pcp->count >= pcp->batch)
701 to_drain = pcp->batch;
702 else
703 to_drain = pcp->count;
704 free_pages_bulk(zone, to_drain, &pcp->list, 0);
705 pcp->count -= to_drain;
706 local_irq_restore(flags);
707 }
708 #endif
709
710 static void __drain_pages(unsigned int cpu)
711 {
712 unsigned long flags;
713 struct zone *zone;
714 int i;
715
716 for_each_zone(zone) {
717 struct per_cpu_pageset *pset;
718
719 if (!populated_zone(zone))
720 continue;
721
722 pset = zone_pcp(zone, cpu);
723 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
724 struct per_cpu_pages *pcp;
725
726 pcp = &pset->pcp[i];
727 local_irq_save(flags);
728 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
729 pcp->count = 0;
730 local_irq_restore(flags);
731 }
732 }
733 }
734
735 #ifdef CONFIG_PM
736
737 void mark_free_pages(struct zone *zone)
738 {
739 unsigned long pfn, max_zone_pfn;
740 unsigned long flags;
741 int order;
742 struct list_head *curr;
743
744 if (!zone->spanned_pages)
745 return;
746
747 spin_lock_irqsave(&zone->lock, flags);
748
749 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
750 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
751 if (pfn_valid(pfn)) {
752 struct page *page = pfn_to_page(pfn);
753
754 if (!swsusp_page_is_forbidden(page))
755 swsusp_unset_page_free(page);
756 }
757
758 for (order = MAX_ORDER - 1; order >= 0; --order)
759 list_for_each(curr, &zone->free_area[order].free_list) {
760 unsigned long i;
761
762 pfn = page_to_pfn(list_entry(curr, struct page, lru));
763 for (i = 0; i < (1UL << order); i++)
764 swsusp_set_page_free(pfn_to_page(pfn + i));
765 }
766
767 spin_unlock_irqrestore(&zone->lock, flags);
768 }
769
770 /*
771 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
772 */
773 void drain_local_pages(void)
774 {
775 unsigned long flags;
776
777 local_irq_save(flags);
778 __drain_pages(smp_processor_id());
779 local_irq_restore(flags);
780 }
781 #endif /* CONFIG_PM */
782
783 /*
784 * Free a 0-order page
785 */
786 static void fastcall free_hot_cold_page(struct page *page, int cold)
787 {
788 struct zone *zone = page_zone(page);
789 struct per_cpu_pages *pcp;
790 unsigned long flags;
791
792 if (PageAnon(page))
793 page->mapping = NULL;
794 if (free_pages_check(page))
795 return;
796
797 if (!PageHighMem(page))
798 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
799 arch_free_page(page, 0);
800 kernel_map_pages(page, 1, 0);
801
802 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
803 local_irq_save(flags);
804 __count_vm_event(PGFREE);
805 list_add(&page->lru, &pcp->list);
806 pcp->count++;
807 if (pcp->count >= pcp->high) {
808 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
809 pcp->count -= pcp->batch;
810 }
811 local_irq_restore(flags);
812 put_cpu();
813 }
814
815 void fastcall free_hot_page(struct page *page)
816 {
817 free_hot_cold_page(page, 0);
818 }
819
820 void fastcall free_cold_page(struct page *page)
821 {
822 free_hot_cold_page(page, 1);
823 }
824
825 /*
826 * split_page takes a non-compound higher-order page, and splits it into
827 * n (1<<order) sub-pages: page[0..n]
828 * Each sub-page must be freed individually.
829 *
830 * Note: this is probably too low level an operation for use in drivers.
831 * Please consult with lkml before using this in your driver.
832 */
833 void split_page(struct page *page, unsigned int order)
834 {
835 int i;
836
837 VM_BUG_ON(PageCompound(page));
838 VM_BUG_ON(!page_count(page));
839 for (i = 1; i < (1 << order); i++)
840 set_page_refcounted(page + i);
841 }
842
843 /*
844 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
845 * we cheat by calling it from here, in the order > 0 path. Saves a branch
846 * or two.
847 */
848 static struct page *buffered_rmqueue(struct zonelist *zonelist,
849 struct zone *zone, int order, gfp_t gfp_flags)
850 {
851 unsigned long flags;
852 struct page *page;
853 int cold = !!(gfp_flags & __GFP_COLD);
854 int cpu;
855
856 again:
857 cpu = get_cpu();
858 if (likely(order == 0)) {
859 struct per_cpu_pages *pcp;
860
861 pcp = &zone_pcp(zone, cpu)->pcp[cold];
862 local_irq_save(flags);
863 if (!pcp->count) {
864 pcp->count = rmqueue_bulk(zone, 0,
865 pcp->batch, &pcp->list);
866 if (unlikely(!pcp->count))
867 goto failed;
868 }
869 page = list_entry(pcp->list.next, struct page, lru);
870 list_del(&page->lru);
871 pcp->count--;
872 } else {
873 spin_lock_irqsave(&zone->lock, flags);
874 page = __rmqueue(zone, order);
875 spin_unlock(&zone->lock);
876 if (!page)
877 goto failed;
878 }
879
880 __count_zone_vm_events(PGALLOC, zone, 1 << order);
881 zone_statistics(zonelist, zone);
882 local_irq_restore(flags);
883 put_cpu();
884
885 VM_BUG_ON(bad_range(zone, page));
886 if (prep_new_page(page, order, gfp_flags))
887 goto again;
888 return page;
889
890 failed:
891 local_irq_restore(flags);
892 put_cpu();
893 return NULL;
894 }
895
896 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
897 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
898 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
899 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
900 #define ALLOC_HARDER 0x10 /* try to alloc harder */
901 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
902 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
903
904 #ifdef CONFIG_FAIL_PAGE_ALLOC
905
906 static struct fail_page_alloc_attr {
907 struct fault_attr attr;
908
909 u32 ignore_gfp_highmem;
910 u32 ignore_gfp_wait;
911 u32 min_order;
912
913 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
914
915 struct dentry *ignore_gfp_highmem_file;
916 struct dentry *ignore_gfp_wait_file;
917 struct dentry *min_order_file;
918
919 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
920
921 } fail_page_alloc = {
922 .attr = FAULT_ATTR_INITIALIZER,
923 .ignore_gfp_wait = 1,
924 .ignore_gfp_highmem = 1,
925 .min_order = 1,
926 };
927
928 static int __init setup_fail_page_alloc(char *str)
929 {
930 return setup_fault_attr(&fail_page_alloc.attr, str);
931 }
932 __setup("fail_page_alloc=", setup_fail_page_alloc);
933
934 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
935 {
936 if (order < fail_page_alloc.min_order)
937 return 0;
938 if (gfp_mask & __GFP_NOFAIL)
939 return 0;
940 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
941 return 0;
942 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
943 return 0;
944
945 return should_fail(&fail_page_alloc.attr, 1 << order);
946 }
947
948 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
949
950 static int __init fail_page_alloc_debugfs(void)
951 {
952 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
953 struct dentry *dir;
954 int err;
955
956 err = init_fault_attr_dentries(&fail_page_alloc.attr,
957 "fail_page_alloc");
958 if (err)
959 return err;
960 dir = fail_page_alloc.attr.dentries.dir;
961
962 fail_page_alloc.ignore_gfp_wait_file =
963 debugfs_create_bool("ignore-gfp-wait", mode, dir,
964 &fail_page_alloc.ignore_gfp_wait);
965
966 fail_page_alloc.ignore_gfp_highmem_file =
967 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
968 &fail_page_alloc.ignore_gfp_highmem);
969 fail_page_alloc.min_order_file =
970 debugfs_create_u32("min-order", mode, dir,
971 &fail_page_alloc.min_order);
972
973 if (!fail_page_alloc.ignore_gfp_wait_file ||
974 !fail_page_alloc.ignore_gfp_highmem_file ||
975 !fail_page_alloc.min_order_file) {
976 err = -ENOMEM;
977 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
978 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
979 debugfs_remove(fail_page_alloc.min_order_file);
980 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
981 }
982
983 return err;
984 }
985
986 late_initcall(fail_page_alloc_debugfs);
987
988 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
989
990 #else /* CONFIG_FAIL_PAGE_ALLOC */
991
992 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
993 {
994 return 0;
995 }
996
997 #endif /* CONFIG_FAIL_PAGE_ALLOC */
998
999 /*
1000 * Return 1 if free pages are above 'mark'. This takes into account the order
1001 * of the allocation.
1002 */
1003 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1004 int classzone_idx, int alloc_flags)
1005 {
1006 /* free_pages my go negative - that's OK */
1007 long min = mark;
1008 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1009 int o;
1010
1011 if (alloc_flags & ALLOC_HIGH)
1012 min -= min / 2;
1013 if (alloc_flags & ALLOC_HARDER)
1014 min -= min / 4;
1015
1016 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1017 return 0;
1018 for (o = 0; o < order; o++) {
1019 /* At the next order, this order's pages become unavailable */
1020 free_pages -= z->free_area[o].nr_free << o;
1021
1022 /* Require fewer higher order pages to be free */
1023 min >>= 1;
1024
1025 if (free_pages <= min)
1026 return 0;
1027 }
1028 return 1;
1029 }
1030
1031 #ifdef CONFIG_NUMA
1032 /*
1033 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1034 * skip over zones that are not allowed by the cpuset, or that have
1035 * been recently (in last second) found to be nearly full. See further
1036 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1037 * that have to skip over alot of full or unallowed zones.
1038 *
1039 * If the zonelist cache is present in the passed in zonelist, then
1040 * returns a pointer to the allowed node mask (either the current
1041 * tasks mems_allowed, or node_online_map.)
1042 *
1043 * If the zonelist cache is not available for this zonelist, does
1044 * nothing and returns NULL.
1045 *
1046 * If the fullzones BITMAP in the zonelist cache is stale (more than
1047 * a second since last zap'd) then we zap it out (clear its bits.)
1048 *
1049 * We hold off even calling zlc_setup, until after we've checked the
1050 * first zone in the zonelist, on the theory that most allocations will
1051 * be satisfied from that first zone, so best to examine that zone as
1052 * quickly as we can.
1053 */
1054 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1055 {
1056 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1057 nodemask_t *allowednodes; /* zonelist_cache approximation */
1058
1059 zlc = zonelist->zlcache_ptr;
1060 if (!zlc)
1061 return NULL;
1062
1063 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1064 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1065 zlc->last_full_zap = jiffies;
1066 }
1067
1068 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1069 &cpuset_current_mems_allowed :
1070 &node_online_map;
1071 return allowednodes;
1072 }
1073
1074 /*
1075 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1076 * if it is worth looking at further for free memory:
1077 * 1) Check that the zone isn't thought to be full (doesn't have its
1078 * bit set in the zonelist_cache fullzones BITMAP).
1079 * 2) Check that the zones node (obtained from the zonelist_cache
1080 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1081 * Return true (non-zero) if zone is worth looking at further, or
1082 * else return false (zero) if it is not.
1083 *
1084 * This check -ignores- the distinction between various watermarks,
1085 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1086 * found to be full for any variation of these watermarks, it will
1087 * be considered full for up to one second by all requests, unless
1088 * we are so low on memory on all allowed nodes that we are forced
1089 * into the second scan of the zonelist.
1090 *
1091 * In the second scan we ignore this zonelist cache and exactly
1092 * apply the watermarks to all zones, even it is slower to do so.
1093 * We are low on memory in the second scan, and should leave no stone
1094 * unturned looking for a free page.
1095 */
1096 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1097 nodemask_t *allowednodes)
1098 {
1099 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1100 int i; /* index of *z in zonelist zones */
1101 int n; /* node that zone *z is on */
1102
1103 zlc = zonelist->zlcache_ptr;
1104 if (!zlc)
1105 return 1;
1106
1107 i = z - zonelist->zones;
1108 n = zlc->z_to_n[i];
1109
1110 /* This zone is worth trying if it is allowed but not full */
1111 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1112 }
1113
1114 /*
1115 * Given 'z' scanning a zonelist, set the corresponding bit in
1116 * zlc->fullzones, so that subsequent attempts to allocate a page
1117 * from that zone don't waste time re-examining it.
1118 */
1119 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1120 {
1121 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1122 int i; /* index of *z in zonelist zones */
1123
1124 zlc = zonelist->zlcache_ptr;
1125 if (!zlc)
1126 return;
1127
1128 i = z - zonelist->zones;
1129
1130 set_bit(i, zlc->fullzones);
1131 }
1132
1133 #else /* CONFIG_NUMA */
1134
1135 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1136 {
1137 return NULL;
1138 }
1139
1140 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1141 nodemask_t *allowednodes)
1142 {
1143 return 1;
1144 }
1145
1146 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1147 {
1148 }
1149 #endif /* CONFIG_NUMA */
1150
1151 /*
1152 * get_page_from_freelist goes through the zonelist trying to allocate
1153 * a page.
1154 */
1155 static struct page *
1156 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1157 struct zonelist *zonelist, int alloc_flags)
1158 {
1159 struct zone **z;
1160 struct page *page = NULL;
1161 int classzone_idx = zone_idx(zonelist->zones[0]);
1162 struct zone *zone;
1163 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1164 int zlc_active = 0; /* set if using zonelist_cache */
1165 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1166
1167 zonelist_scan:
1168 /*
1169 * Scan zonelist, looking for a zone with enough free.
1170 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1171 */
1172 z = zonelist->zones;
1173
1174 do {
1175 if (NUMA_BUILD && zlc_active &&
1176 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1177 continue;
1178 zone = *z;
1179 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1180 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1181 break;
1182 if ((alloc_flags & ALLOC_CPUSET) &&
1183 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1184 goto try_next_zone;
1185
1186 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1187 unsigned long mark;
1188 if (alloc_flags & ALLOC_WMARK_MIN)
1189 mark = zone->pages_min;
1190 else if (alloc_flags & ALLOC_WMARK_LOW)
1191 mark = zone->pages_low;
1192 else
1193 mark = zone->pages_high;
1194 if (!zone_watermark_ok(zone, order, mark,
1195 classzone_idx, alloc_flags)) {
1196 if (!zone_reclaim_mode ||
1197 !zone_reclaim(zone, gfp_mask, order))
1198 goto this_zone_full;
1199 }
1200 }
1201
1202 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1203 if (page)
1204 break;
1205 this_zone_full:
1206 if (NUMA_BUILD)
1207 zlc_mark_zone_full(zonelist, z);
1208 try_next_zone:
1209 if (NUMA_BUILD && !did_zlc_setup) {
1210 /* we do zlc_setup after the first zone is tried */
1211 allowednodes = zlc_setup(zonelist, alloc_flags);
1212 zlc_active = 1;
1213 did_zlc_setup = 1;
1214 }
1215 } while (*(++z) != NULL);
1216
1217 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1218 /* Disable zlc cache for second zonelist scan */
1219 zlc_active = 0;
1220 goto zonelist_scan;
1221 }
1222 return page;
1223 }
1224
1225 /*
1226 * This is the 'heart' of the zoned buddy allocator.
1227 */
1228 struct page * fastcall
1229 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1230 struct zonelist *zonelist)
1231 {
1232 const gfp_t wait = gfp_mask & __GFP_WAIT;
1233 struct zone **z;
1234 struct page *page;
1235 struct reclaim_state reclaim_state;
1236 struct task_struct *p = current;
1237 int do_retry;
1238 int alloc_flags;
1239 int did_some_progress;
1240
1241 might_sleep_if(wait);
1242
1243 if (should_fail_alloc_page(gfp_mask, order))
1244 return NULL;
1245
1246 restart:
1247 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1248
1249 if (unlikely(*z == NULL)) {
1250 /* Should this ever happen?? */
1251 return NULL;
1252 }
1253
1254 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1255 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1256 if (page)
1257 goto got_pg;
1258
1259 /*
1260 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1261 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1262 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1263 * using a larger set of nodes after it has established that the
1264 * allowed per node queues are empty and that nodes are
1265 * over allocated.
1266 */
1267 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1268 goto nopage;
1269
1270 for (z = zonelist->zones; *z; z++)
1271 wakeup_kswapd(*z, order);
1272
1273 /*
1274 * OK, we're below the kswapd watermark and have kicked background
1275 * reclaim. Now things get more complex, so set up alloc_flags according
1276 * to how we want to proceed.
1277 *
1278 * The caller may dip into page reserves a bit more if the caller
1279 * cannot run direct reclaim, or if the caller has realtime scheduling
1280 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1281 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1282 */
1283 alloc_flags = ALLOC_WMARK_MIN;
1284 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1285 alloc_flags |= ALLOC_HARDER;
1286 if (gfp_mask & __GFP_HIGH)
1287 alloc_flags |= ALLOC_HIGH;
1288 if (wait)
1289 alloc_flags |= ALLOC_CPUSET;
1290
1291 /*
1292 * Go through the zonelist again. Let __GFP_HIGH and allocations
1293 * coming from realtime tasks go deeper into reserves.
1294 *
1295 * This is the last chance, in general, before the goto nopage.
1296 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1297 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1298 */
1299 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1300 if (page)
1301 goto got_pg;
1302
1303 /* This allocation should allow future memory freeing. */
1304
1305 rebalance:
1306 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1307 && !in_interrupt()) {
1308 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1309 nofail_alloc:
1310 /* go through the zonelist yet again, ignoring mins */
1311 page = get_page_from_freelist(gfp_mask, order,
1312 zonelist, ALLOC_NO_WATERMARKS);
1313 if (page)
1314 goto got_pg;
1315 if (gfp_mask & __GFP_NOFAIL) {
1316 congestion_wait(WRITE, HZ/50);
1317 goto nofail_alloc;
1318 }
1319 }
1320 goto nopage;
1321 }
1322
1323 /* Atomic allocations - we can't balance anything */
1324 if (!wait)
1325 goto nopage;
1326
1327 cond_resched();
1328
1329 /* We now go into synchronous reclaim */
1330 cpuset_memory_pressure_bump();
1331 p->flags |= PF_MEMALLOC;
1332 reclaim_state.reclaimed_slab = 0;
1333 p->reclaim_state = &reclaim_state;
1334
1335 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1336
1337 p->reclaim_state = NULL;
1338 p->flags &= ~PF_MEMALLOC;
1339
1340 cond_resched();
1341
1342 if (likely(did_some_progress)) {
1343 page = get_page_from_freelist(gfp_mask, order,
1344 zonelist, alloc_flags);
1345 if (page)
1346 goto got_pg;
1347 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1348 /*
1349 * Go through the zonelist yet one more time, keep
1350 * very high watermark here, this is only to catch
1351 * a parallel oom killing, we must fail if we're still
1352 * under heavy pressure.
1353 */
1354 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1355 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1356 if (page)
1357 goto got_pg;
1358
1359 out_of_memory(zonelist, gfp_mask, order);
1360 goto restart;
1361 }
1362
1363 /*
1364 * Don't let big-order allocations loop unless the caller explicitly
1365 * requests that. Wait for some write requests to complete then retry.
1366 *
1367 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1368 * <= 3, but that may not be true in other implementations.
1369 */
1370 do_retry = 0;
1371 if (!(gfp_mask & __GFP_NORETRY)) {
1372 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1373 do_retry = 1;
1374 if (gfp_mask & __GFP_NOFAIL)
1375 do_retry = 1;
1376 }
1377 if (do_retry) {
1378 congestion_wait(WRITE, HZ/50);
1379 goto rebalance;
1380 }
1381
1382 nopage:
1383 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1384 printk(KERN_WARNING "%s: page allocation failure."
1385 " order:%d, mode:0x%x\n",
1386 p->comm, order, gfp_mask);
1387 dump_stack();
1388 show_mem();
1389 }
1390 got_pg:
1391 return page;
1392 }
1393
1394 EXPORT_SYMBOL(__alloc_pages);
1395
1396 /*
1397 * Common helper functions.
1398 */
1399 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1400 {
1401 struct page * page;
1402 page = alloc_pages(gfp_mask, order);
1403 if (!page)
1404 return 0;
1405 return (unsigned long) page_address(page);
1406 }
1407
1408 EXPORT_SYMBOL(__get_free_pages);
1409
1410 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1411 {
1412 struct page * page;
1413
1414 /*
1415 * get_zeroed_page() returns a 32-bit address, which cannot represent
1416 * a highmem page
1417 */
1418 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1419
1420 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1421 if (page)
1422 return (unsigned long) page_address(page);
1423 return 0;
1424 }
1425
1426 EXPORT_SYMBOL(get_zeroed_page);
1427
1428 void __pagevec_free(struct pagevec *pvec)
1429 {
1430 int i = pagevec_count(pvec);
1431
1432 while (--i >= 0)
1433 free_hot_cold_page(pvec->pages[i], pvec->cold);
1434 }
1435
1436 fastcall void __free_pages(struct page *page, unsigned int order)
1437 {
1438 if (put_page_testzero(page)) {
1439 if (order == 0)
1440 free_hot_page(page);
1441 else
1442 __free_pages_ok(page, order);
1443 }
1444 }
1445
1446 EXPORT_SYMBOL(__free_pages);
1447
1448 fastcall void free_pages(unsigned long addr, unsigned int order)
1449 {
1450 if (addr != 0) {
1451 VM_BUG_ON(!virt_addr_valid((void *)addr));
1452 __free_pages(virt_to_page((void *)addr), order);
1453 }
1454 }
1455
1456 EXPORT_SYMBOL(free_pages);
1457
1458 static unsigned int nr_free_zone_pages(int offset)
1459 {
1460 /* Just pick one node, since fallback list is circular */
1461 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1462 unsigned int sum = 0;
1463
1464 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1465 struct zone **zonep = zonelist->zones;
1466 struct zone *zone;
1467
1468 for (zone = *zonep++; zone; zone = *zonep++) {
1469 unsigned long size = zone->present_pages;
1470 unsigned long high = zone->pages_high;
1471 if (size > high)
1472 sum += size - high;
1473 }
1474
1475 return sum;
1476 }
1477
1478 /*
1479 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1480 */
1481 unsigned int nr_free_buffer_pages(void)
1482 {
1483 return nr_free_zone_pages(gfp_zone(GFP_USER));
1484 }
1485
1486 /*
1487 * Amount of free RAM allocatable within all zones
1488 */
1489 unsigned int nr_free_pagecache_pages(void)
1490 {
1491 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1492 }
1493
1494 static inline void show_node(struct zone *zone)
1495 {
1496 if (NUMA_BUILD)
1497 printk("Node %d ", zone_to_nid(zone));
1498 }
1499
1500 void si_meminfo(struct sysinfo *val)
1501 {
1502 val->totalram = totalram_pages;
1503 val->sharedram = 0;
1504 val->freeram = global_page_state(NR_FREE_PAGES);
1505 val->bufferram = nr_blockdev_pages();
1506 val->totalhigh = totalhigh_pages;
1507 val->freehigh = nr_free_highpages();
1508 val->mem_unit = PAGE_SIZE;
1509 }
1510
1511 EXPORT_SYMBOL(si_meminfo);
1512
1513 #ifdef CONFIG_NUMA
1514 void si_meminfo_node(struct sysinfo *val, int nid)
1515 {
1516 pg_data_t *pgdat = NODE_DATA(nid);
1517
1518 val->totalram = pgdat->node_present_pages;
1519 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1520 #ifdef CONFIG_HIGHMEM
1521 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1522 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1523 NR_FREE_PAGES);
1524 #else
1525 val->totalhigh = 0;
1526 val->freehigh = 0;
1527 #endif
1528 val->mem_unit = PAGE_SIZE;
1529 }
1530 #endif
1531
1532 #define K(x) ((x) << (PAGE_SHIFT-10))
1533
1534 /*
1535 * Show free area list (used inside shift_scroll-lock stuff)
1536 * We also calculate the percentage fragmentation. We do this by counting the
1537 * memory on each free list with the exception of the first item on the list.
1538 */
1539 void show_free_areas(void)
1540 {
1541 int cpu;
1542 struct zone *zone;
1543
1544 for_each_zone(zone) {
1545 if (!populated_zone(zone))
1546 continue;
1547
1548 show_node(zone);
1549 printk("%s per-cpu:\n", zone->name);
1550
1551 for_each_online_cpu(cpu) {
1552 struct per_cpu_pageset *pageset;
1553
1554 pageset = zone_pcp(zone, cpu);
1555
1556 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1557 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1558 cpu, pageset->pcp[0].high,
1559 pageset->pcp[0].batch, pageset->pcp[0].count,
1560 pageset->pcp[1].high, pageset->pcp[1].batch,
1561 pageset->pcp[1].count);
1562 }
1563 }
1564
1565 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1566 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1567 global_page_state(NR_ACTIVE),
1568 global_page_state(NR_INACTIVE),
1569 global_page_state(NR_FILE_DIRTY),
1570 global_page_state(NR_WRITEBACK),
1571 global_page_state(NR_UNSTABLE_NFS),
1572 global_page_state(NR_FREE_PAGES),
1573 global_page_state(NR_SLAB_RECLAIMABLE) +
1574 global_page_state(NR_SLAB_UNRECLAIMABLE),
1575 global_page_state(NR_FILE_MAPPED),
1576 global_page_state(NR_PAGETABLE),
1577 global_page_state(NR_BOUNCE));
1578
1579 for_each_zone(zone) {
1580 int i;
1581
1582 if (!populated_zone(zone))
1583 continue;
1584
1585 show_node(zone);
1586 printk("%s"
1587 " free:%lukB"
1588 " min:%lukB"
1589 " low:%lukB"
1590 " high:%lukB"
1591 " active:%lukB"
1592 " inactive:%lukB"
1593 " present:%lukB"
1594 " pages_scanned:%lu"
1595 " all_unreclaimable? %s"
1596 "\n",
1597 zone->name,
1598 K(zone_page_state(zone, NR_FREE_PAGES)),
1599 K(zone->pages_min),
1600 K(zone->pages_low),
1601 K(zone->pages_high),
1602 K(zone_page_state(zone, NR_ACTIVE)),
1603 K(zone_page_state(zone, NR_INACTIVE)),
1604 K(zone->present_pages),
1605 zone->pages_scanned,
1606 (zone->all_unreclaimable ? "yes" : "no")
1607 );
1608 printk("lowmem_reserve[]:");
1609 for (i = 0; i < MAX_NR_ZONES; i++)
1610 printk(" %lu", zone->lowmem_reserve[i]);
1611 printk("\n");
1612 }
1613
1614 for_each_zone(zone) {
1615 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1616
1617 if (!populated_zone(zone))
1618 continue;
1619
1620 show_node(zone);
1621 printk("%s: ", zone->name);
1622
1623 spin_lock_irqsave(&zone->lock, flags);
1624 for (order = 0; order < MAX_ORDER; order++) {
1625 nr[order] = zone->free_area[order].nr_free;
1626 total += nr[order] << order;
1627 }
1628 spin_unlock_irqrestore(&zone->lock, flags);
1629 for (order = 0; order < MAX_ORDER; order++)
1630 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1631 printk("= %lukB\n", K(total));
1632 }
1633
1634 show_swap_cache_info();
1635 }
1636
1637 /*
1638 * Builds allocation fallback zone lists.
1639 *
1640 * Add all populated zones of a node to the zonelist.
1641 */
1642 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1643 int nr_zones, enum zone_type zone_type)
1644 {
1645 struct zone *zone;
1646
1647 BUG_ON(zone_type >= MAX_NR_ZONES);
1648 zone_type++;
1649
1650 do {
1651 zone_type--;
1652 zone = pgdat->node_zones + zone_type;
1653 if (populated_zone(zone)) {
1654 zonelist->zones[nr_zones++] = zone;
1655 check_highest_zone(zone_type);
1656 }
1657
1658 } while (zone_type);
1659 return nr_zones;
1660 }
1661
1662
1663 /*
1664 * zonelist_order:
1665 * 0 = automatic detection of better ordering.
1666 * 1 = order by ([node] distance, -zonetype)
1667 * 2 = order by (-zonetype, [node] distance)
1668 *
1669 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1670 * the same zonelist. So only NUMA can configure this param.
1671 */
1672 #define ZONELIST_ORDER_DEFAULT 0
1673 #define ZONELIST_ORDER_NODE 1
1674 #define ZONELIST_ORDER_ZONE 2
1675
1676 /* zonelist order in the kernel.
1677 * set_zonelist_order() will set this to NODE or ZONE.
1678 */
1679 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1680 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1681
1682
1683 #ifdef CONFIG_NUMA
1684 /* The value user specified ....changed by config */
1685 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1686 /* string for sysctl */
1687 #define NUMA_ZONELIST_ORDER_LEN 16
1688 char numa_zonelist_order[16] = "default";
1689
1690 /*
1691 * interface for configure zonelist ordering.
1692 * command line option "numa_zonelist_order"
1693 * = "[dD]efault - default, automatic configuration.
1694 * = "[nN]ode - order by node locality, then by zone within node
1695 * = "[zZ]one - order by zone, then by locality within zone
1696 */
1697
1698 static int __parse_numa_zonelist_order(char *s)
1699 {
1700 if (*s == 'd' || *s == 'D') {
1701 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1702 } else if (*s == 'n' || *s == 'N') {
1703 user_zonelist_order = ZONELIST_ORDER_NODE;
1704 } else if (*s == 'z' || *s == 'Z') {
1705 user_zonelist_order = ZONELIST_ORDER_ZONE;
1706 } else {
1707 printk(KERN_WARNING
1708 "Ignoring invalid numa_zonelist_order value: "
1709 "%s\n", s);
1710 return -EINVAL;
1711 }
1712 return 0;
1713 }
1714
1715 static __init int setup_numa_zonelist_order(char *s)
1716 {
1717 if (s)
1718 return __parse_numa_zonelist_order(s);
1719 return 0;
1720 }
1721 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1722
1723 /*
1724 * sysctl handler for numa_zonelist_order
1725 */
1726 int numa_zonelist_order_handler(ctl_table *table, int write,
1727 struct file *file, void __user *buffer, size_t *length,
1728 loff_t *ppos)
1729 {
1730 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1731 int ret;
1732
1733 if (write)
1734 strncpy(saved_string, (char*)table->data,
1735 NUMA_ZONELIST_ORDER_LEN);
1736 ret = proc_dostring(table, write, file, buffer, length, ppos);
1737 if (ret)
1738 return ret;
1739 if (write) {
1740 int oldval = user_zonelist_order;
1741 if (__parse_numa_zonelist_order((char*)table->data)) {
1742 /*
1743 * bogus value. restore saved string
1744 */
1745 strncpy((char*)table->data, saved_string,
1746 NUMA_ZONELIST_ORDER_LEN);
1747 user_zonelist_order = oldval;
1748 } else if (oldval != user_zonelist_order)
1749 build_all_zonelists();
1750 }
1751 return 0;
1752 }
1753
1754
1755 #define MAX_NODE_LOAD (num_online_nodes())
1756 static int node_load[MAX_NUMNODES];
1757
1758 /**
1759 * find_next_best_node - find the next node that should appear in a given node's fallback list
1760 * @node: node whose fallback list we're appending
1761 * @used_node_mask: nodemask_t of already used nodes
1762 *
1763 * We use a number of factors to determine which is the next node that should
1764 * appear on a given node's fallback list. The node should not have appeared
1765 * already in @node's fallback list, and it should be the next closest node
1766 * according to the distance array (which contains arbitrary distance values
1767 * from each node to each node in the system), and should also prefer nodes
1768 * with no CPUs, since presumably they'll have very little allocation pressure
1769 * on them otherwise.
1770 * It returns -1 if no node is found.
1771 */
1772 static int find_next_best_node(int node, nodemask_t *used_node_mask)
1773 {
1774 int n, val;
1775 int min_val = INT_MAX;
1776 int best_node = -1;
1777
1778 /* Use the local node if we haven't already */
1779 if (!node_isset(node, *used_node_mask)) {
1780 node_set(node, *used_node_mask);
1781 return node;
1782 }
1783
1784 for_each_online_node(n) {
1785 cpumask_t tmp;
1786
1787 /* Don't want a node to appear more than once */
1788 if (node_isset(n, *used_node_mask))
1789 continue;
1790
1791 /* Use the distance array to find the distance */
1792 val = node_distance(node, n);
1793
1794 /* Penalize nodes under us ("prefer the next node") */
1795 val += (n < node);
1796
1797 /* Give preference to headless and unused nodes */
1798 tmp = node_to_cpumask(n);
1799 if (!cpus_empty(tmp))
1800 val += PENALTY_FOR_NODE_WITH_CPUS;
1801
1802 /* Slight preference for less loaded node */
1803 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1804 val += node_load[n];
1805
1806 if (val < min_val) {
1807 min_val = val;
1808 best_node = n;
1809 }
1810 }
1811
1812 if (best_node >= 0)
1813 node_set(best_node, *used_node_mask);
1814
1815 return best_node;
1816 }
1817
1818
1819 /*
1820 * Build zonelists ordered by node and zones within node.
1821 * This results in maximum locality--normal zone overflows into local
1822 * DMA zone, if any--but risks exhausting DMA zone.
1823 */
1824 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1825 {
1826 enum zone_type i;
1827 int j;
1828 struct zonelist *zonelist;
1829
1830 for (i = 0; i < MAX_NR_ZONES; i++) {
1831 zonelist = pgdat->node_zonelists + i;
1832 for (j = 0; zonelist->zones[j] != NULL; j++)
1833 ;
1834 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1835 zonelist->zones[j] = NULL;
1836 }
1837 }
1838
1839 /*
1840 * Build zonelists ordered by zone and nodes within zones.
1841 * This results in conserving DMA zone[s] until all Normal memory is
1842 * exhausted, but results in overflowing to remote node while memory
1843 * may still exist in local DMA zone.
1844 */
1845 static int node_order[MAX_NUMNODES];
1846
1847 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1848 {
1849 enum zone_type i;
1850 int pos, j, node;
1851 int zone_type; /* needs to be signed */
1852 struct zone *z;
1853 struct zonelist *zonelist;
1854
1855 for (i = 0; i < MAX_NR_ZONES; i++) {
1856 zonelist = pgdat->node_zonelists + i;
1857 pos = 0;
1858 for (zone_type = i; zone_type >= 0; zone_type--) {
1859 for (j = 0; j < nr_nodes; j++) {
1860 node = node_order[j];
1861 z = &NODE_DATA(node)->node_zones[zone_type];
1862 if (populated_zone(z)) {
1863 zonelist->zones[pos++] = z;
1864 check_highest_zone(zone_type);
1865 }
1866 }
1867 }
1868 zonelist->zones[pos] = NULL;
1869 }
1870 }
1871
1872 static int default_zonelist_order(void)
1873 {
1874 int nid, zone_type;
1875 unsigned long low_kmem_size,total_size;
1876 struct zone *z;
1877 int average_size;
1878 /*
1879 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1880 * If they are really small and used heavily, the system can fall
1881 * into OOM very easily.
1882 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1883 */
1884 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1885 low_kmem_size = 0;
1886 total_size = 0;
1887 for_each_online_node(nid) {
1888 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1889 z = &NODE_DATA(nid)->node_zones[zone_type];
1890 if (populated_zone(z)) {
1891 if (zone_type < ZONE_NORMAL)
1892 low_kmem_size += z->present_pages;
1893 total_size += z->present_pages;
1894 }
1895 }
1896 }
1897 if (!low_kmem_size || /* there are no DMA area. */
1898 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1899 return ZONELIST_ORDER_NODE;
1900 /*
1901 * look into each node's config.
1902 * If there is a node whose DMA/DMA32 memory is very big area on
1903 * local memory, NODE_ORDER may be suitable.
1904 */
1905 average_size = total_size / (num_online_nodes() + 1);
1906 for_each_online_node(nid) {
1907 low_kmem_size = 0;
1908 total_size = 0;
1909 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1910 z = &NODE_DATA(nid)->node_zones[zone_type];
1911 if (populated_zone(z)) {
1912 if (zone_type < ZONE_NORMAL)
1913 low_kmem_size += z->present_pages;
1914 total_size += z->present_pages;
1915 }
1916 }
1917 if (low_kmem_size &&
1918 total_size > average_size && /* ignore small node */
1919 low_kmem_size > total_size * 70/100)
1920 return ZONELIST_ORDER_NODE;
1921 }
1922 return ZONELIST_ORDER_ZONE;
1923 }
1924
1925 static void set_zonelist_order(void)
1926 {
1927 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1928 current_zonelist_order = default_zonelist_order();
1929 else
1930 current_zonelist_order = user_zonelist_order;
1931 }
1932
1933 static void build_zonelists(pg_data_t *pgdat)
1934 {
1935 int j, node, load;
1936 enum zone_type i;
1937 nodemask_t used_mask;
1938 int local_node, prev_node;
1939 struct zonelist *zonelist;
1940 int order = current_zonelist_order;
1941
1942 /* initialize zonelists */
1943 for (i = 0; i < MAX_NR_ZONES; i++) {
1944 zonelist = pgdat->node_zonelists + i;
1945 zonelist->zones[0] = NULL;
1946 }
1947
1948 /* NUMA-aware ordering of nodes */
1949 local_node = pgdat->node_id;
1950 load = num_online_nodes();
1951 prev_node = local_node;
1952 nodes_clear(used_mask);
1953
1954 memset(node_load, 0, sizeof(node_load));
1955 memset(node_order, 0, sizeof(node_order));
1956 j = 0;
1957
1958 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1959 int distance = node_distance(local_node, node);
1960
1961 /*
1962 * If another node is sufficiently far away then it is better
1963 * to reclaim pages in a zone before going off node.
1964 */
1965 if (distance > RECLAIM_DISTANCE)
1966 zone_reclaim_mode = 1;
1967
1968 /*
1969 * We don't want to pressure a particular node.
1970 * So adding penalty to the first node in same
1971 * distance group to make it round-robin.
1972 */
1973 if (distance != node_distance(local_node, prev_node))
1974 node_load[node] = load;
1975
1976 prev_node = node;
1977 load--;
1978 if (order == ZONELIST_ORDER_NODE)
1979 build_zonelists_in_node_order(pgdat, node);
1980 else
1981 node_order[j++] = node; /* remember order */
1982 }
1983
1984 if (order == ZONELIST_ORDER_ZONE) {
1985 /* calculate node order -- i.e., DMA last! */
1986 build_zonelists_in_zone_order(pgdat, j);
1987 }
1988 }
1989
1990 /* Construct the zonelist performance cache - see further mmzone.h */
1991 static void build_zonelist_cache(pg_data_t *pgdat)
1992 {
1993 int i;
1994
1995 for (i = 0; i < MAX_NR_ZONES; i++) {
1996 struct zonelist *zonelist;
1997 struct zonelist_cache *zlc;
1998 struct zone **z;
1999
2000 zonelist = pgdat->node_zonelists + i;
2001 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2002 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2003 for (z = zonelist->zones; *z; z++)
2004 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2005 }
2006 }
2007
2008
2009 #else /* CONFIG_NUMA */
2010
2011 static void set_zonelist_order(void)
2012 {
2013 current_zonelist_order = ZONELIST_ORDER_ZONE;
2014 }
2015
2016 static void build_zonelists(pg_data_t *pgdat)
2017 {
2018 int node, local_node;
2019 enum zone_type i,j;
2020
2021 local_node = pgdat->node_id;
2022 for (i = 0; i < MAX_NR_ZONES; i++) {
2023 struct zonelist *zonelist;
2024
2025 zonelist = pgdat->node_zonelists + i;
2026
2027 j = build_zonelists_node(pgdat, zonelist, 0, i);
2028 /*
2029 * Now we build the zonelist so that it contains the zones
2030 * of all the other nodes.
2031 * We don't want to pressure a particular node, so when
2032 * building the zones for node N, we make sure that the
2033 * zones coming right after the local ones are those from
2034 * node N+1 (modulo N)
2035 */
2036 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2037 if (!node_online(node))
2038 continue;
2039 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2040 }
2041 for (node = 0; node < local_node; node++) {
2042 if (!node_online(node))
2043 continue;
2044 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2045 }
2046
2047 zonelist->zones[j] = NULL;
2048 }
2049 }
2050
2051 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2052 static void build_zonelist_cache(pg_data_t *pgdat)
2053 {
2054 int i;
2055
2056 for (i = 0; i < MAX_NR_ZONES; i++)
2057 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2058 }
2059
2060 #endif /* CONFIG_NUMA */
2061
2062 /* return values int ....just for stop_machine_run() */
2063 static int __build_all_zonelists(void *dummy)
2064 {
2065 int nid;
2066
2067 for_each_online_node(nid) {
2068 build_zonelists(NODE_DATA(nid));
2069 build_zonelist_cache(NODE_DATA(nid));
2070 }
2071 return 0;
2072 }
2073
2074 void build_all_zonelists(void)
2075 {
2076 set_zonelist_order();
2077
2078 if (system_state == SYSTEM_BOOTING) {
2079 __build_all_zonelists(NULL);
2080 cpuset_init_current_mems_allowed();
2081 } else {
2082 /* we have to stop all cpus to guaranntee there is no user
2083 of zonelist */
2084 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2085 /* cpuset refresh routine should be here */
2086 }
2087 vm_total_pages = nr_free_pagecache_pages();
2088 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2089 num_online_nodes(),
2090 zonelist_order_name[current_zonelist_order],
2091 vm_total_pages);
2092 #ifdef CONFIG_NUMA
2093 printk("Policy zone: %s\n", zone_names[policy_zone]);
2094 #endif
2095 }
2096
2097 /*
2098 * Helper functions to size the waitqueue hash table.
2099 * Essentially these want to choose hash table sizes sufficiently
2100 * large so that collisions trying to wait on pages are rare.
2101 * But in fact, the number of active page waitqueues on typical
2102 * systems is ridiculously low, less than 200. So this is even
2103 * conservative, even though it seems large.
2104 *
2105 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2106 * waitqueues, i.e. the size of the waitq table given the number of pages.
2107 */
2108 #define PAGES_PER_WAITQUEUE 256
2109
2110 #ifndef CONFIG_MEMORY_HOTPLUG
2111 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2112 {
2113 unsigned long size = 1;
2114
2115 pages /= PAGES_PER_WAITQUEUE;
2116
2117 while (size < pages)
2118 size <<= 1;
2119
2120 /*
2121 * Once we have dozens or even hundreds of threads sleeping
2122 * on IO we've got bigger problems than wait queue collision.
2123 * Limit the size of the wait table to a reasonable size.
2124 */
2125 size = min(size, 4096UL);
2126
2127 return max(size, 4UL);
2128 }
2129 #else
2130 /*
2131 * A zone's size might be changed by hot-add, so it is not possible to determine
2132 * a suitable size for its wait_table. So we use the maximum size now.
2133 *
2134 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2135 *
2136 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2137 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2138 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2139 *
2140 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2141 * or more by the traditional way. (See above). It equals:
2142 *
2143 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2144 * ia64(16K page size) : = ( 8G + 4M)byte.
2145 * powerpc (64K page size) : = (32G +16M)byte.
2146 */
2147 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2148 {
2149 return 4096UL;
2150 }
2151 #endif
2152
2153 /*
2154 * This is an integer logarithm so that shifts can be used later
2155 * to extract the more random high bits from the multiplicative
2156 * hash function before the remainder is taken.
2157 */
2158 static inline unsigned long wait_table_bits(unsigned long size)
2159 {
2160 return ffz(~size);
2161 }
2162
2163 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2164
2165 /*
2166 * Initially all pages are reserved - free ones are freed
2167 * up by free_all_bootmem() once the early boot process is
2168 * done. Non-atomic initialization, single-pass.
2169 */
2170 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2171 unsigned long start_pfn, enum memmap_context context)
2172 {
2173 struct page *page;
2174 unsigned long end_pfn = start_pfn + size;
2175 unsigned long pfn;
2176
2177 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2178 /*
2179 * There can be holes in boot-time mem_map[]s
2180 * handed to this function. They do not
2181 * exist on hotplugged memory.
2182 */
2183 if (context == MEMMAP_EARLY) {
2184 if (!early_pfn_valid(pfn))
2185 continue;
2186 if (!early_pfn_in_nid(pfn, nid))
2187 continue;
2188 }
2189 page = pfn_to_page(pfn);
2190 set_page_links(page, zone, nid, pfn);
2191 init_page_count(page);
2192 reset_page_mapcount(page);
2193 SetPageReserved(page);
2194 INIT_LIST_HEAD(&page->lru);
2195 #ifdef WANT_PAGE_VIRTUAL
2196 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2197 if (!is_highmem_idx(zone))
2198 set_page_address(page, __va(pfn << PAGE_SHIFT));
2199 #endif
2200 }
2201 }
2202
2203 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2204 struct zone *zone, unsigned long size)
2205 {
2206 int order;
2207 for (order = 0; order < MAX_ORDER ; order++) {
2208 INIT_LIST_HEAD(&zone->free_area[order].free_list);
2209 zone->free_area[order].nr_free = 0;
2210 }
2211 }
2212
2213 #ifndef __HAVE_ARCH_MEMMAP_INIT
2214 #define memmap_init(size, nid, zone, start_pfn) \
2215 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2216 #endif
2217
2218 static int __devinit zone_batchsize(struct zone *zone)
2219 {
2220 int batch;
2221
2222 /*
2223 * The per-cpu-pages pools are set to around 1000th of the
2224 * size of the zone. But no more than 1/2 of a meg.
2225 *
2226 * OK, so we don't know how big the cache is. So guess.
2227 */
2228 batch = zone->present_pages / 1024;
2229 if (batch * PAGE_SIZE > 512 * 1024)
2230 batch = (512 * 1024) / PAGE_SIZE;
2231 batch /= 4; /* We effectively *= 4 below */
2232 if (batch < 1)
2233 batch = 1;
2234
2235 /*
2236 * Clamp the batch to a 2^n - 1 value. Having a power
2237 * of 2 value was found to be more likely to have
2238 * suboptimal cache aliasing properties in some cases.
2239 *
2240 * For example if 2 tasks are alternately allocating
2241 * batches of pages, one task can end up with a lot
2242 * of pages of one half of the possible page colors
2243 * and the other with pages of the other colors.
2244 */
2245 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2246
2247 return batch;
2248 }
2249
2250 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2251 {
2252 struct per_cpu_pages *pcp;
2253
2254 memset(p, 0, sizeof(*p));
2255
2256 pcp = &p->pcp[0]; /* hot */
2257 pcp->count = 0;
2258 pcp->high = 6 * batch;
2259 pcp->batch = max(1UL, 1 * batch);
2260 INIT_LIST_HEAD(&pcp->list);
2261
2262 pcp = &p->pcp[1]; /* cold*/
2263 pcp->count = 0;
2264 pcp->high = 2 * batch;
2265 pcp->batch = max(1UL, batch/2);
2266 INIT_LIST_HEAD(&pcp->list);
2267 }
2268
2269 /*
2270 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2271 * to the value high for the pageset p.
2272 */
2273
2274 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2275 unsigned long high)
2276 {
2277 struct per_cpu_pages *pcp;
2278
2279 pcp = &p->pcp[0]; /* hot list */
2280 pcp->high = high;
2281 pcp->batch = max(1UL, high/4);
2282 if ((high/4) > (PAGE_SHIFT * 8))
2283 pcp->batch = PAGE_SHIFT * 8;
2284 }
2285
2286
2287 #ifdef CONFIG_NUMA
2288 /*
2289 * Boot pageset table. One per cpu which is going to be used for all
2290 * zones and all nodes. The parameters will be set in such a way
2291 * that an item put on a list will immediately be handed over to
2292 * the buddy list. This is safe since pageset manipulation is done
2293 * with interrupts disabled.
2294 *
2295 * Some NUMA counter updates may also be caught by the boot pagesets.
2296 *
2297 * The boot_pagesets must be kept even after bootup is complete for
2298 * unused processors and/or zones. They do play a role for bootstrapping
2299 * hotplugged processors.
2300 *
2301 * zoneinfo_show() and maybe other functions do
2302 * not check if the processor is online before following the pageset pointer.
2303 * Other parts of the kernel may not check if the zone is available.
2304 */
2305 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2306
2307 /*
2308 * Dynamically allocate memory for the
2309 * per cpu pageset array in struct zone.
2310 */
2311 static int __cpuinit process_zones(int cpu)
2312 {
2313 struct zone *zone, *dzone;
2314
2315 for_each_zone(zone) {
2316
2317 if (!populated_zone(zone))
2318 continue;
2319
2320 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2321 GFP_KERNEL, cpu_to_node(cpu));
2322 if (!zone_pcp(zone, cpu))
2323 goto bad;
2324
2325 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2326
2327 if (percpu_pagelist_fraction)
2328 setup_pagelist_highmark(zone_pcp(zone, cpu),
2329 (zone->present_pages / percpu_pagelist_fraction));
2330 }
2331
2332 return 0;
2333 bad:
2334 for_each_zone(dzone) {
2335 if (dzone == zone)
2336 break;
2337 kfree(zone_pcp(dzone, cpu));
2338 zone_pcp(dzone, cpu) = NULL;
2339 }
2340 return -ENOMEM;
2341 }
2342
2343 static inline void free_zone_pagesets(int cpu)
2344 {
2345 struct zone *zone;
2346
2347 for_each_zone(zone) {
2348 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2349
2350 /* Free per_cpu_pageset if it is slab allocated */
2351 if (pset != &boot_pageset[cpu])
2352 kfree(pset);
2353 zone_pcp(zone, cpu) = NULL;
2354 }
2355 }
2356
2357 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2358 unsigned long action,
2359 void *hcpu)
2360 {
2361 int cpu = (long)hcpu;
2362 int ret = NOTIFY_OK;
2363
2364 switch (action) {
2365 case CPU_UP_PREPARE:
2366 case CPU_UP_PREPARE_FROZEN:
2367 if (process_zones(cpu))
2368 ret = NOTIFY_BAD;
2369 break;
2370 case CPU_UP_CANCELED:
2371 case CPU_UP_CANCELED_FROZEN:
2372 case CPU_DEAD:
2373 case CPU_DEAD_FROZEN:
2374 free_zone_pagesets(cpu);
2375 break;
2376 default:
2377 break;
2378 }
2379 return ret;
2380 }
2381
2382 static struct notifier_block __cpuinitdata pageset_notifier =
2383 { &pageset_cpuup_callback, NULL, 0 };
2384
2385 void __init setup_per_cpu_pageset(void)
2386 {
2387 int err;
2388
2389 /* Initialize per_cpu_pageset for cpu 0.
2390 * A cpuup callback will do this for every cpu
2391 * as it comes online
2392 */
2393 err = process_zones(smp_processor_id());
2394 BUG_ON(err);
2395 register_cpu_notifier(&pageset_notifier);
2396 }
2397
2398 #endif
2399
2400 static noinline __init_refok
2401 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2402 {
2403 int i;
2404 struct pglist_data *pgdat = zone->zone_pgdat;
2405 size_t alloc_size;
2406
2407 /*
2408 * The per-page waitqueue mechanism uses hashed waitqueues
2409 * per zone.
2410 */
2411 zone->wait_table_hash_nr_entries =
2412 wait_table_hash_nr_entries(zone_size_pages);
2413 zone->wait_table_bits =
2414 wait_table_bits(zone->wait_table_hash_nr_entries);
2415 alloc_size = zone->wait_table_hash_nr_entries
2416 * sizeof(wait_queue_head_t);
2417
2418 if (system_state == SYSTEM_BOOTING) {
2419 zone->wait_table = (wait_queue_head_t *)
2420 alloc_bootmem_node(pgdat, alloc_size);
2421 } else {
2422 /*
2423 * This case means that a zone whose size was 0 gets new memory
2424 * via memory hot-add.
2425 * But it may be the case that a new node was hot-added. In
2426 * this case vmalloc() will not be able to use this new node's
2427 * memory - this wait_table must be initialized to use this new
2428 * node itself as well.
2429 * To use this new node's memory, further consideration will be
2430 * necessary.
2431 */
2432 zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2433 }
2434 if (!zone->wait_table)
2435 return -ENOMEM;
2436
2437 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2438 init_waitqueue_head(zone->wait_table + i);
2439
2440 return 0;
2441 }
2442
2443 static __meminit void zone_pcp_init(struct zone *zone)
2444 {
2445 int cpu;
2446 unsigned long batch = zone_batchsize(zone);
2447
2448 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2449 #ifdef CONFIG_NUMA
2450 /* Early boot. Slab allocator not functional yet */
2451 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2452 setup_pageset(&boot_pageset[cpu],0);
2453 #else
2454 setup_pageset(zone_pcp(zone,cpu), batch);
2455 #endif
2456 }
2457 if (zone->present_pages)
2458 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2459 zone->name, zone->present_pages, batch);
2460 }
2461
2462 __meminit int init_currently_empty_zone(struct zone *zone,
2463 unsigned long zone_start_pfn,
2464 unsigned long size,
2465 enum memmap_context context)
2466 {
2467 struct pglist_data *pgdat = zone->zone_pgdat;
2468 int ret;
2469 ret = zone_wait_table_init(zone, size);
2470 if (ret)
2471 return ret;
2472 pgdat->nr_zones = zone_idx(zone) + 1;
2473
2474 zone->zone_start_pfn = zone_start_pfn;
2475
2476 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2477
2478 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2479
2480 return 0;
2481 }
2482
2483 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2484 /*
2485 * Basic iterator support. Return the first range of PFNs for a node
2486 * Note: nid == MAX_NUMNODES returns first region regardless of node
2487 */
2488 static int __meminit first_active_region_index_in_nid(int nid)
2489 {
2490 int i;
2491
2492 for (i = 0; i < nr_nodemap_entries; i++)
2493 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2494 return i;
2495
2496 return -1;
2497 }
2498
2499 /*
2500 * Basic iterator support. Return the next active range of PFNs for a node
2501 * Note: nid == MAX_NUMNODES returns next region regardles of node
2502 */
2503 static int __meminit next_active_region_index_in_nid(int index, int nid)
2504 {
2505 for (index = index + 1; index < nr_nodemap_entries; index++)
2506 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2507 return index;
2508
2509 return -1;
2510 }
2511
2512 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2513 /*
2514 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2515 * Architectures may implement their own version but if add_active_range()
2516 * was used and there are no special requirements, this is a convenient
2517 * alternative
2518 */
2519 int __meminit early_pfn_to_nid(unsigned long pfn)
2520 {
2521 int i;
2522
2523 for (i = 0; i < nr_nodemap_entries; i++) {
2524 unsigned long start_pfn = early_node_map[i].start_pfn;
2525 unsigned long end_pfn = early_node_map[i].end_pfn;
2526
2527 if (start_pfn <= pfn && pfn < end_pfn)
2528 return early_node_map[i].nid;
2529 }
2530
2531 return 0;
2532 }
2533 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2534
2535 /* Basic iterator support to walk early_node_map[] */
2536 #define for_each_active_range_index_in_nid(i, nid) \
2537 for (i = first_active_region_index_in_nid(nid); i != -1; \
2538 i = next_active_region_index_in_nid(i, nid))
2539
2540 /**
2541 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2542 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2543 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2544 *
2545 * If an architecture guarantees that all ranges registered with
2546 * add_active_ranges() contain no holes and may be freed, this
2547 * this function may be used instead of calling free_bootmem() manually.
2548 */
2549 void __init free_bootmem_with_active_regions(int nid,
2550 unsigned long max_low_pfn)
2551 {
2552 int i;
2553
2554 for_each_active_range_index_in_nid(i, nid) {
2555 unsigned long size_pages = 0;
2556 unsigned long end_pfn = early_node_map[i].end_pfn;
2557
2558 if (early_node_map[i].start_pfn >= max_low_pfn)
2559 continue;
2560
2561 if (end_pfn > max_low_pfn)
2562 end_pfn = max_low_pfn;
2563
2564 size_pages = end_pfn - early_node_map[i].start_pfn;
2565 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2566 PFN_PHYS(early_node_map[i].start_pfn),
2567 size_pages << PAGE_SHIFT);
2568 }
2569 }
2570
2571 /**
2572 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2573 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2574 *
2575 * If an architecture guarantees that all ranges registered with
2576 * add_active_ranges() contain no holes and may be freed, this
2577 * function may be used instead of calling memory_present() manually.
2578 */
2579 void __init sparse_memory_present_with_active_regions(int nid)
2580 {
2581 int i;
2582
2583 for_each_active_range_index_in_nid(i, nid)
2584 memory_present(early_node_map[i].nid,
2585 early_node_map[i].start_pfn,
2586 early_node_map[i].end_pfn);
2587 }
2588
2589 /**
2590 * push_node_boundaries - Push node boundaries to at least the requested boundary
2591 * @nid: The nid of the node to push the boundary for
2592 * @start_pfn: The start pfn of the node
2593 * @end_pfn: The end pfn of the node
2594 *
2595 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2596 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2597 * be hotplugged even though no physical memory exists. This function allows
2598 * an arch to push out the node boundaries so mem_map is allocated that can
2599 * be used later.
2600 */
2601 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2602 void __init push_node_boundaries(unsigned int nid,
2603 unsigned long start_pfn, unsigned long end_pfn)
2604 {
2605 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2606 nid, start_pfn, end_pfn);
2607
2608 /* Initialise the boundary for this node if necessary */
2609 if (node_boundary_end_pfn[nid] == 0)
2610 node_boundary_start_pfn[nid] = -1UL;
2611
2612 /* Update the boundaries */
2613 if (node_boundary_start_pfn[nid] > start_pfn)
2614 node_boundary_start_pfn[nid] = start_pfn;
2615 if (node_boundary_end_pfn[nid] < end_pfn)
2616 node_boundary_end_pfn[nid] = end_pfn;
2617 }
2618
2619 /* If necessary, push the node boundary out for reserve hotadd */
2620 static void __meminit account_node_boundary(unsigned int nid,
2621 unsigned long *start_pfn, unsigned long *end_pfn)
2622 {
2623 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2624 nid, *start_pfn, *end_pfn);
2625
2626 /* Return if boundary information has not been provided */
2627 if (node_boundary_end_pfn[nid] == 0)
2628 return;
2629
2630 /* Check the boundaries and update if necessary */
2631 if (node_boundary_start_pfn[nid] < *start_pfn)
2632 *start_pfn = node_boundary_start_pfn[nid];
2633 if (node_boundary_end_pfn[nid] > *end_pfn)
2634 *end_pfn = node_boundary_end_pfn[nid];
2635 }
2636 #else
2637 void __init push_node_boundaries(unsigned int nid,
2638 unsigned long start_pfn, unsigned long end_pfn) {}
2639
2640 static void __meminit account_node_boundary(unsigned int nid,
2641 unsigned long *start_pfn, unsigned long *end_pfn) {}
2642 #endif
2643
2644
2645 /**
2646 * get_pfn_range_for_nid - Return the start and end page frames for a node
2647 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2648 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2649 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2650 *
2651 * It returns the start and end page frame of a node based on information
2652 * provided by an arch calling add_active_range(). If called for a node
2653 * with no available memory, a warning is printed and the start and end
2654 * PFNs will be 0.
2655 */
2656 void __meminit get_pfn_range_for_nid(unsigned int nid,
2657 unsigned long *start_pfn, unsigned long *end_pfn)
2658 {
2659 int i;
2660 *start_pfn = -1UL;
2661 *end_pfn = 0;
2662
2663 for_each_active_range_index_in_nid(i, nid) {
2664 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2665 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2666 }
2667
2668 if (*start_pfn == -1UL) {
2669 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2670 *start_pfn = 0;
2671 }
2672
2673 /* Push the node boundaries out if requested */
2674 account_node_boundary(nid, start_pfn, end_pfn);
2675 }
2676
2677 /*
2678 * This finds a zone that can be used for ZONE_MOVABLE pages. The
2679 * assumption is made that zones within a node are ordered in monotonic
2680 * increasing memory addresses so that the "highest" populated zone is used
2681 */
2682 void __init find_usable_zone_for_movable(void)
2683 {
2684 int zone_index;
2685 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2686 if (zone_index == ZONE_MOVABLE)
2687 continue;
2688
2689 if (arch_zone_highest_possible_pfn[zone_index] >
2690 arch_zone_lowest_possible_pfn[zone_index])
2691 break;
2692 }
2693
2694 VM_BUG_ON(zone_index == -1);
2695 movable_zone = zone_index;
2696 }
2697
2698 /*
2699 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2700 * because it is sized independant of architecture. Unlike the other zones,
2701 * the starting point for ZONE_MOVABLE is not fixed. It may be different
2702 * in each node depending on the size of each node and how evenly kernelcore
2703 * is distributed. This helper function adjusts the zone ranges
2704 * provided by the architecture for a given node by using the end of the
2705 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2706 * zones within a node are in order of monotonic increases memory addresses
2707 */
2708 void __meminit adjust_zone_range_for_zone_movable(int nid,
2709 unsigned long zone_type,
2710 unsigned long node_start_pfn,
2711 unsigned long node_end_pfn,
2712 unsigned long *zone_start_pfn,
2713 unsigned long *zone_end_pfn)
2714 {
2715 /* Only adjust if ZONE_MOVABLE is on this node */
2716 if (zone_movable_pfn[nid]) {
2717 /* Size ZONE_MOVABLE */
2718 if (zone_type == ZONE_MOVABLE) {
2719 *zone_start_pfn = zone_movable_pfn[nid];
2720 *zone_end_pfn = min(node_end_pfn,
2721 arch_zone_highest_possible_pfn[movable_zone]);
2722
2723 /* Adjust for ZONE_MOVABLE starting within this range */
2724 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
2725 *zone_end_pfn > zone_movable_pfn[nid]) {
2726 *zone_end_pfn = zone_movable_pfn[nid];
2727
2728 /* Check if this whole range is within ZONE_MOVABLE */
2729 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
2730 *zone_start_pfn = *zone_end_pfn;
2731 }
2732 }
2733
2734 /*
2735 * Return the number of pages a zone spans in a node, including holes
2736 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2737 */
2738 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
2739 unsigned long zone_type,
2740 unsigned long *ignored)
2741 {
2742 unsigned long node_start_pfn, node_end_pfn;
2743 unsigned long zone_start_pfn, zone_end_pfn;
2744
2745 /* Get the start and end of the node and zone */
2746 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2747 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2748 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2749 adjust_zone_range_for_zone_movable(nid, zone_type,
2750 node_start_pfn, node_end_pfn,
2751 &zone_start_pfn, &zone_end_pfn);
2752
2753 /* Check that this node has pages within the zone's required range */
2754 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2755 return 0;
2756
2757 /* Move the zone boundaries inside the node if necessary */
2758 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2759 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2760
2761 /* Return the spanned pages */
2762 return zone_end_pfn - zone_start_pfn;
2763 }
2764
2765 /*
2766 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2767 * then all holes in the requested range will be accounted for.
2768 */
2769 unsigned long __meminit __absent_pages_in_range(int nid,
2770 unsigned long range_start_pfn,
2771 unsigned long range_end_pfn)
2772 {
2773 int i = 0;
2774 unsigned long prev_end_pfn = 0, hole_pages = 0;
2775 unsigned long start_pfn;
2776
2777 /* Find the end_pfn of the first active range of pfns in the node */
2778 i = first_active_region_index_in_nid(nid);
2779 if (i == -1)
2780 return 0;
2781
2782 /* Account for ranges before physical memory on this node */
2783 if (early_node_map[i].start_pfn > range_start_pfn)
2784 hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2785
2786 prev_end_pfn = early_node_map[i].start_pfn;
2787
2788 /* Find all holes for the zone within the node */
2789 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2790
2791 /* No need to continue if prev_end_pfn is outside the zone */
2792 if (prev_end_pfn >= range_end_pfn)
2793 break;
2794
2795 /* Make sure the end of the zone is not within the hole */
2796 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2797 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2798
2799 /* Update the hole size cound and move on */
2800 if (start_pfn > range_start_pfn) {
2801 BUG_ON(prev_end_pfn > start_pfn);
2802 hole_pages += start_pfn - prev_end_pfn;
2803 }
2804 prev_end_pfn = early_node_map[i].end_pfn;
2805 }
2806
2807 /* Account for ranges past physical memory on this node */
2808 if (range_end_pfn > prev_end_pfn)
2809 hole_pages += range_end_pfn -
2810 max(range_start_pfn, prev_end_pfn);
2811
2812 return hole_pages;
2813 }
2814
2815 /**
2816 * absent_pages_in_range - Return number of page frames in holes within a range
2817 * @start_pfn: The start PFN to start searching for holes
2818 * @end_pfn: The end PFN to stop searching for holes
2819 *
2820 * It returns the number of pages frames in memory holes within a range.
2821 */
2822 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2823 unsigned long end_pfn)
2824 {
2825 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2826 }
2827
2828 /* Return the number of page frames in holes in a zone on a node */
2829 static unsigned long __meminit zone_absent_pages_in_node(int nid,
2830 unsigned long zone_type,
2831 unsigned long *ignored)
2832 {
2833 unsigned long node_start_pfn, node_end_pfn;
2834 unsigned long zone_start_pfn, zone_end_pfn;
2835
2836 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2837 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2838 node_start_pfn);
2839 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2840 node_end_pfn);
2841
2842 adjust_zone_range_for_zone_movable(nid, zone_type,
2843 node_start_pfn, node_end_pfn,
2844 &zone_start_pfn, &zone_end_pfn);
2845 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2846 }
2847
2848 #else
2849 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
2850 unsigned long zone_type,
2851 unsigned long *zones_size)
2852 {
2853 return zones_size[zone_type];
2854 }
2855
2856 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
2857 unsigned long zone_type,
2858 unsigned long *zholes_size)
2859 {
2860 if (!zholes_size)
2861 return 0;
2862
2863 return zholes_size[zone_type];
2864 }
2865
2866 #endif
2867
2868 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2869 unsigned long *zones_size, unsigned long *zholes_size)
2870 {
2871 unsigned long realtotalpages, totalpages = 0;
2872 enum zone_type i;
2873
2874 for (i = 0; i < MAX_NR_ZONES; i++)
2875 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2876 zones_size);
2877 pgdat->node_spanned_pages = totalpages;
2878
2879 realtotalpages = totalpages;
2880 for (i = 0; i < MAX_NR_ZONES; i++)
2881 realtotalpages -=
2882 zone_absent_pages_in_node(pgdat->node_id, i,
2883 zholes_size);
2884 pgdat->node_present_pages = realtotalpages;
2885 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2886 realtotalpages);
2887 }
2888
2889 /*
2890 * Set up the zone data structures:
2891 * - mark all pages reserved
2892 * - mark all memory queues empty
2893 * - clear the memory bitmaps
2894 */
2895 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2896 unsigned long *zones_size, unsigned long *zholes_size)
2897 {
2898 enum zone_type j;
2899 int nid = pgdat->node_id;
2900 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2901 int ret;
2902
2903 pgdat_resize_init(pgdat);
2904 pgdat->nr_zones = 0;
2905 init_waitqueue_head(&pgdat->kswapd_wait);
2906 pgdat->kswapd_max_order = 0;
2907
2908 for (j = 0; j < MAX_NR_ZONES; j++) {
2909 struct zone *zone = pgdat->node_zones + j;
2910 unsigned long size, realsize, memmap_pages;
2911
2912 size = zone_spanned_pages_in_node(nid, j, zones_size);
2913 realsize = size - zone_absent_pages_in_node(nid, j,
2914 zholes_size);
2915
2916 /*
2917 * Adjust realsize so that it accounts for how much memory
2918 * is used by this zone for memmap. This affects the watermark
2919 * and per-cpu initialisations
2920 */
2921 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2922 if (realsize >= memmap_pages) {
2923 realsize -= memmap_pages;
2924 printk(KERN_DEBUG
2925 " %s zone: %lu pages used for memmap\n",
2926 zone_names[j], memmap_pages);
2927 } else
2928 printk(KERN_WARNING
2929 " %s zone: %lu pages exceeds realsize %lu\n",
2930 zone_names[j], memmap_pages, realsize);
2931
2932 /* Account for reserved pages */
2933 if (j == 0 && realsize > dma_reserve) {
2934 realsize -= dma_reserve;
2935 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2936 zone_names[0], dma_reserve);
2937 }
2938
2939 if (!is_highmem_idx(j))
2940 nr_kernel_pages += realsize;
2941 nr_all_pages += realsize;
2942
2943 zone->spanned_pages = size;
2944 zone->present_pages = realsize;
2945 #ifdef CONFIG_NUMA
2946 zone->node = nid;
2947 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2948 / 100;
2949 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2950 #endif
2951 zone->name = zone_names[j];
2952 spin_lock_init(&zone->lock);
2953 spin_lock_init(&zone->lru_lock);
2954 zone_seqlock_init(zone);
2955 zone->zone_pgdat = pgdat;
2956
2957 zone->prev_priority = DEF_PRIORITY;
2958
2959 zone_pcp_init(zone);
2960 INIT_LIST_HEAD(&zone->active_list);
2961 INIT_LIST_HEAD(&zone->inactive_list);
2962 zone->nr_scan_active = 0;
2963 zone->nr_scan_inactive = 0;
2964 zap_zone_vm_stats(zone);
2965 atomic_set(&zone->reclaim_in_progress, 0);
2966 if (!size)
2967 continue;
2968
2969 ret = init_currently_empty_zone(zone, zone_start_pfn,
2970 size, MEMMAP_EARLY);
2971 BUG_ON(ret);
2972 zone_start_pfn += size;
2973 }
2974 }
2975
2976 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
2977 {
2978 /* Skip empty nodes */
2979 if (!pgdat->node_spanned_pages)
2980 return;
2981
2982 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2983 /* ia64 gets its own node_mem_map, before this, without bootmem */
2984 if (!pgdat->node_mem_map) {
2985 unsigned long size, start, end;
2986 struct page *map;
2987
2988 /*
2989 * The zone's endpoints aren't required to be MAX_ORDER
2990 * aligned but the node_mem_map endpoints must be in order
2991 * for the buddy allocator to function correctly.
2992 */
2993 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2994 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2995 end = ALIGN(end, MAX_ORDER_NR_PAGES);
2996 size = (end - start) * sizeof(struct page);
2997 map = alloc_remap(pgdat->node_id, size);
2998 if (!map)
2999 map = alloc_bootmem_node(pgdat, size);
3000 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3001 }
3002 #ifndef CONFIG_NEED_MULTIPLE_NODES
3003 /*
3004 * With no DISCONTIG, the global mem_map is just set as node 0's
3005 */
3006 if (pgdat == NODE_DATA(0)) {
3007 mem_map = NODE_DATA(0)->node_mem_map;
3008 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3009 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3010 mem_map -= pgdat->node_start_pfn;
3011 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3012 }
3013 #endif
3014 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3015 }
3016
3017 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3018 unsigned long *zones_size, unsigned long node_start_pfn,
3019 unsigned long *zholes_size)
3020 {
3021 pgdat->node_id = nid;
3022 pgdat->node_start_pfn = node_start_pfn;
3023 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3024
3025 alloc_node_mem_map(pgdat);
3026
3027 free_area_init_core(pgdat, zones_size, zholes_size);
3028 }
3029
3030 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3031
3032 #if MAX_NUMNODES > 1
3033 /*
3034 * Figure out the number of possible node ids.
3035 */
3036 static void __init setup_nr_node_ids(void)
3037 {
3038 unsigned int node;
3039 unsigned int highest = 0;
3040
3041 for_each_node_mask(node, node_possible_map)
3042 highest = node;
3043 nr_node_ids = highest + 1;
3044 }
3045 #else
3046 static inline void setup_nr_node_ids(void)
3047 {
3048 }
3049 #endif
3050
3051 /**
3052 * add_active_range - Register a range of PFNs backed by physical memory
3053 * @nid: The node ID the range resides on
3054 * @start_pfn: The start PFN of the available physical memory
3055 * @end_pfn: The end PFN of the available physical memory
3056 *
3057 * These ranges are stored in an early_node_map[] and later used by
3058 * free_area_init_nodes() to calculate zone sizes and holes. If the
3059 * range spans a memory hole, it is up to the architecture to ensure
3060 * the memory is not freed by the bootmem allocator. If possible
3061 * the range being registered will be merged with existing ranges.
3062 */
3063 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3064 unsigned long end_pfn)
3065 {
3066 int i;
3067
3068 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3069 "%d entries of %d used\n",
3070 nid, start_pfn, end_pfn,
3071 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3072
3073 /* Merge with existing active regions if possible */
3074 for (i = 0; i < nr_nodemap_entries; i++) {
3075 if (early_node_map[i].nid != nid)
3076 continue;
3077
3078 /* Skip if an existing region covers this new one */
3079 if (start_pfn >= early_node_map[i].start_pfn &&
3080 end_pfn <= early_node_map[i].end_pfn)
3081 return;
3082
3083 /* Merge forward if suitable */
3084 if (start_pfn <= early_node_map[i].end_pfn &&
3085 end_pfn > early_node_map[i].end_pfn) {
3086 early_node_map[i].end_pfn = end_pfn;
3087 return;
3088 }
3089
3090 /* Merge backward if suitable */
3091 if (start_pfn < early_node_map[i].end_pfn &&
3092 end_pfn >= early_node_map[i].start_pfn) {
3093 early_node_map[i].start_pfn = start_pfn;
3094 return;
3095 }
3096 }
3097
3098 /* Check that early_node_map is large enough */
3099 if (i >= MAX_ACTIVE_REGIONS) {
3100 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3101 MAX_ACTIVE_REGIONS);
3102 return;
3103 }
3104
3105 early_node_map[i].nid = nid;
3106 early_node_map[i].start_pfn = start_pfn;
3107 early_node_map[i].end_pfn = end_pfn;
3108 nr_nodemap_entries = i + 1;
3109 }
3110
3111 /**
3112 * shrink_active_range - Shrink an existing registered range of PFNs
3113 * @nid: The node id the range is on that should be shrunk
3114 * @old_end_pfn: The old end PFN of the range
3115 * @new_end_pfn: The new PFN of the range
3116 *
3117 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3118 * The map is kept at the end physical page range that has already been
3119 * registered with add_active_range(). This function allows an arch to shrink
3120 * an existing registered range.
3121 */
3122 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3123 unsigned long new_end_pfn)
3124 {
3125 int i;
3126
3127 /* Find the old active region end and shrink */
3128 for_each_active_range_index_in_nid(i, nid)
3129 if (early_node_map[i].end_pfn == old_end_pfn) {
3130 early_node_map[i].end_pfn = new_end_pfn;
3131 break;
3132 }
3133 }
3134
3135 /**
3136 * remove_all_active_ranges - Remove all currently registered regions
3137 *
3138 * During discovery, it may be found that a table like SRAT is invalid
3139 * and an alternative discovery method must be used. This function removes
3140 * all currently registered regions.
3141 */
3142 void __init remove_all_active_ranges(void)
3143 {
3144 memset(early_node_map, 0, sizeof(early_node_map));
3145 nr_nodemap_entries = 0;
3146 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3147 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3148 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3149 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3150 }
3151
3152 /* Compare two active node_active_regions */
3153 static int __init cmp_node_active_region(const void *a, const void *b)
3154 {
3155 struct node_active_region *arange = (struct node_active_region *)a;
3156 struct node_active_region *brange = (struct node_active_region *)b;
3157
3158 /* Done this way to avoid overflows */
3159 if (arange->start_pfn > brange->start_pfn)
3160 return 1;
3161 if (arange->start_pfn < brange->start_pfn)
3162 return -1;
3163
3164 return 0;
3165 }
3166
3167 /* sort the node_map by start_pfn */
3168 static void __init sort_node_map(void)
3169 {
3170 sort(early_node_map, (size_t)nr_nodemap_entries,
3171 sizeof(struct node_active_region),
3172 cmp_node_active_region, NULL);
3173 }
3174
3175 /* Find the lowest pfn for a node */
3176 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3177 {
3178 int i;
3179 unsigned long min_pfn = ULONG_MAX;
3180
3181 /* Assuming a sorted map, the first range found has the starting pfn */
3182 for_each_active_range_index_in_nid(i, nid)
3183 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3184
3185 if (min_pfn == ULONG_MAX) {
3186 printk(KERN_WARNING
3187 "Could not find start_pfn for node %lu\n", nid);
3188 return 0;
3189 }
3190
3191 return min_pfn;
3192 }
3193
3194 /**
3195 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3196 *
3197 * It returns the minimum PFN based on information provided via
3198 * add_active_range().
3199 */
3200 unsigned long __init find_min_pfn_with_active_regions(void)
3201 {
3202 return find_min_pfn_for_node(MAX_NUMNODES);
3203 }
3204
3205 /**
3206 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3207 *
3208 * It returns the maximum PFN based on information provided via
3209 * add_active_range().
3210 */
3211 unsigned long __init find_max_pfn_with_active_regions(void)
3212 {
3213 int i;
3214 unsigned long max_pfn = 0;
3215
3216 for (i = 0; i < nr_nodemap_entries; i++)
3217 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3218
3219 return max_pfn;
3220 }
3221
3222 /*
3223 * Find the PFN the Movable zone begins in each node. Kernel memory
3224 * is spread evenly between nodes as long as the nodes have enough
3225 * memory. When they don't, some nodes will have more kernelcore than
3226 * others
3227 */
3228 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3229 {
3230 int i, nid;
3231 unsigned long usable_startpfn;
3232 unsigned long kernelcore_node, kernelcore_remaining;
3233 int usable_nodes = num_online_nodes();
3234
3235 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3236 if (!required_kernelcore)
3237 return;
3238
3239 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3240 find_usable_zone_for_movable();
3241 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3242
3243 restart:
3244 /* Spread kernelcore memory as evenly as possible throughout nodes */
3245 kernelcore_node = required_kernelcore / usable_nodes;
3246 for_each_online_node(nid) {
3247 /*
3248 * Recalculate kernelcore_node if the division per node
3249 * now exceeds what is necessary to satisfy the requested
3250 * amount of memory for the kernel
3251 */
3252 if (required_kernelcore < kernelcore_node)
3253 kernelcore_node = required_kernelcore / usable_nodes;
3254
3255 /*
3256 * As the map is walked, we track how much memory is usable
3257 * by the kernel using kernelcore_remaining. When it is
3258 * 0, the rest of the node is usable by ZONE_MOVABLE
3259 */
3260 kernelcore_remaining = kernelcore_node;
3261
3262 /* Go through each range of PFNs within this node */
3263 for_each_active_range_index_in_nid(i, nid) {
3264 unsigned long start_pfn, end_pfn;
3265 unsigned long size_pages;
3266
3267 start_pfn = max(early_node_map[i].start_pfn,
3268 zone_movable_pfn[nid]);
3269 end_pfn = early_node_map[i].end_pfn;
3270 if (start_pfn >= end_pfn)
3271 continue;
3272
3273 /* Account for what is only usable for kernelcore */
3274 if (start_pfn < usable_startpfn) {
3275 unsigned long kernel_pages;
3276 kernel_pages = min(end_pfn, usable_startpfn)
3277 - start_pfn;
3278
3279 kernelcore_remaining -= min(kernel_pages,
3280 kernelcore_remaining);
3281 required_kernelcore -= min(kernel_pages,
3282 required_kernelcore);
3283
3284 /* Continue if range is now fully accounted */
3285 if (end_pfn <= usable_startpfn) {
3286
3287 /*
3288 * Push zone_movable_pfn to the end so
3289 * that if we have to rebalance
3290 * kernelcore across nodes, we will
3291 * not double account here
3292 */
3293 zone_movable_pfn[nid] = end_pfn;
3294 continue;
3295 }
3296 start_pfn = usable_startpfn;
3297 }
3298
3299 /*
3300 * The usable PFN range for ZONE_MOVABLE is from
3301 * start_pfn->end_pfn. Calculate size_pages as the
3302 * number of pages used as kernelcore
3303 */
3304 size_pages = end_pfn - start_pfn;
3305 if (size_pages > kernelcore_remaining)
3306 size_pages = kernelcore_remaining;
3307 zone_movable_pfn[nid] = start_pfn + size_pages;
3308
3309 /*
3310 * Some kernelcore has been met, update counts and
3311 * break if the kernelcore for this node has been
3312 * satisified
3313 */
3314 required_kernelcore -= min(required_kernelcore,
3315 size_pages);
3316 kernelcore_remaining -= size_pages;
3317 if (!kernelcore_remaining)
3318 break;
3319 }
3320 }
3321
3322 /*
3323 * If there is still required_kernelcore, we do another pass with one
3324 * less node in the count. This will push zone_movable_pfn[nid] further
3325 * along on the nodes that still have memory until kernelcore is
3326 * satisified
3327 */
3328 usable_nodes--;
3329 if (usable_nodes && required_kernelcore > usable_nodes)
3330 goto restart;
3331
3332 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3333 for (nid = 0; nid < MAX_NUMNODES; nid++)
3334 zone_movable_pfn[nid] =
3335 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3336 }
3337
3338 /**
3339 * free_area_init_nodes - Initialise all pg_data_t and zone data
3340 * @max_zone_pfn: an array of max PFNs for each zone
3341 *
3342 * This will call free_area_init_node() for each active node in the system.
3343 * Using the page ranges provided by add_active_range(), the size of each
3344 * zone in each node and their holes is calculated. If the maximum PFN
3345 * between two adjacent zones match, it is assumed that the zone is empty.
3346 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3347 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3348 * starts where the previous one ended. For example, ZONE_DMA32 starts
3349 * at arch_max_dma_pfn.
3350 */
3351 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3352 {
3353 unsigned long nid;
3354 enum zone_type i;
3355
3356 /* Sort early_node_map as initialisation assumes it is sorted */
3357 sort_node_map();
3358
3359 /* Record where the zone boundaries are */
3360 memset(arch_zone_lowest_possible_pfn, 0,
3361 sizeof(arch_zone_lowest_possible_pfn));
3362 memset(arch_zone_highest_possible_pfn, 0,
3363 sizeof(arch_zone_highest_possible_pfn));
3364 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3365 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3366 for (i = 1; i < MAX_NR_ZONES; i++) {
3367 if (i == ZONE_MOVABLE)
3368 continue;
3369 arch_zone_lowest_possible_pfn[i] =
3370 arch_zone_highest_possible_pfn[i-1];
3371 arch_zone_highest_possible_pfn[i] =
3372 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3373 }
3374 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3375 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3376
3377 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3378 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3379 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3380
3381 /* Print out the zone ranges */
3382 printk("Zone PFN ranges:\n");
3383 for (i = 0; i < MAX_NR_ZONES; i++) {
3384 if (i == ZONE_MOVABLE)
3385 continue;
3386 printk(" %-8s %8lu -> %8lu\n",
3387 zone_names[i],
3388 arch_zone_lowest_possible_pfn[i],
3389 arch_zone_highest_possible_pfn[i]);
3390 }
3391
3392 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3393 printk("Movable zone start PFN for each node\n");
3394 for (i = 0; i < MAX_NUMNODES; i++) {
3395 if (zone_movable_pfn[i])
3396 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3397 }
3398
3399 /* Print out the early_node_map[] */
3400 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3401 for (i = 0; i < nr_nodemap_entries; i++)
3402 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3403 early_node_map[i].start_pfn,
3404 early_node_map[i].end_pfn);
3405
3406 /* Initialise every node */
3407 setup_nr_node_ids();
3408 for_each_online_node(nid) {
3409 pg_data_t *pgdat = NODE_DATA(nid);
3410 free_area_init_node(nid, pgdat, NULL,
3411 find_min_pfn_for_node(nid), NULL);
3412 }
3413 }
3414
3415 /*
3416 * kernelcore=size sets the amount of memory for use for allocations that
3417 * cannot be reclaimed or migrated.
3418 */
3419 int __init cmdline_parse_kernelcore(char *p)
3420 {
3421 unsigned long long coremem;
3422 if (!p)
3423 return -EINVAL;
3424
3425 coremem = memparse(p, &p);
3426 required_kernelcore = coremem >> PAGE_SHIFT;
3427
3428 /* Paranoid check that UL is enough for required_kernelcore */
3429 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3430
3431 return 0;
3432 }
3433 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3434
3435 /**
3436 * set_dma_reserve - set the specified number of pages reserved in the first zone
3437 * @new_dma_reserve: The number of pages to mark reserved
3438 *
3439 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3440 * In the DMA zone, a significant percentage may be consumed by kernel image
3441 * and other unfreeable allocations which can skew the watermarks badly. This
3442 * function may optionally be used to account for unfreeable pages in the
3443 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3444 * smaller per-cpu batchsize.
3445 */
3446 void __init set_dma_reserve(unsigned long new_dma_reserve)
3447 {
3448 dma_reserve = new_dma_reserve;
3449 }
3450
3451 #ifndef CONFIG_NEED_MULTIPLE_NODES
3452 static bootmem_data_t contig_bootmem_data;
3453 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3454
3455 EXPORT_SYMBOL(contig_page_data);
3456 #endif
3457
3458 void __init free_area_init(unsigned long *zones_size)
3459 {
3460 free_area_init_node(0, NODE_DATA(0), zones_size,
3461 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3462 }
3463
3464 static int page_alloc_cpu_notify(struct notifier_block *self,
3465 unsigned long action, void *hcpu)
3466 {
3467 int cpu = (unsigned long)hcpu;
3468
3469 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3470 local_irq_disable();
3471 __drain_pages(cpu);
3472 vm_events_fold_cpu(cpu);
3473 local_irq_enable();
3474 refresh_cpu_vm_stats(cpu);
3475 }
3476 return NOTIFY_OK;
3477 }
3478
3479 void __init page_alloc_init(void)
3480 {
3481 hotcpu_notifier(page_alloc_cpu_notify, 0);
3482 }
3483
3484 /*
3485 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3486 * or min_free_kbytes changes.
3487 */
3488 static void calculate_totalreserve_pages(void)
3489 {
3490 struct pglist_data *pgdat;
3491 unsigned long reserve_pages = 0;
3492 enum zone_type i, j;
3493
3494 for_each_online_pgdat(pgdat) {
3495 for (i = 0; i < MAX_NR_ZONES; i++) {
3496 struct zone *zone = pgdat->node_zones + i;
3497 unsigned long max = 0;
3498
3499 /* Find valid and maximum lowmem_reserve in the zone */
3500 for (j = i; j < MAX_NR_ZONES; j++) {
3501 if (zone->lowmem_reserve[j] > max)
3502 max = zone->lowmem_reserve[j];
3503 }
3504
3505 /* we treat pages_high as reserved pages. */
3506 max += zone->pages_high;
3507
3508 if (max > zone->present_pages)
3509 max = zone->present_pages;
3510 reserve_pages += max;
3511 }
3512 }
3513 totalreserve_pages = reserve_pages;
3514 }
3515
3516 /*
3517 * setup_per_zone_lowmem_reserve - called whenever
3518 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3519 * has a correct pages reserved value, so an adequate number of
3520 * pages are left in the zone after a successful __alloc_pages().
3521 */
3522 static void setup_per_zone_lowmem_reserve(void)
3523 {
3524 struct pglist_data *pgdat;
3525 enum zone_type j, idx;
3526
3527 for_each_online_pgdat(pgdat) {
3528 for (j = 0; j < MAX_NR_ZONES; j++) {
3529 struct zone *zone = pgdat->node_zones + j;
3530 unsigned long present_pages = zone->present_pages;
3531
3532 zone->lowmem_reserve[j] = 0;
3533
3534 idx = j;
3535 while (idx) {
3536 struct zone *lower_zone;
3537
3538 idx--;
3539
3540 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3541 sysctl_lowmem_reserve_ratio[idx] = 1;
3542
3543 lower_zone = pgdat->node_zones + idx;
3544 lower_zone->lowmem_reserve[j] = present_pages /
3545 sysctl_lowmem_reserve_ratio[idx];
3546 present_pages += lower_zone->present_pages;
3547 }
3548 }
3549 }
3550
3551 /* update totalreserve_pages */
3552 calculate_totalreserve_pages();
3553 }
3554
3555 /**
3556 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3557 *
3558 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3559 * with respect to min_free_kbytes.
3560 */
3561 void setup_per_zone_pages_min(void)
3562 {
3563 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3564 unsigned long lowmem_pages = 0;
3565 struct zone *zone;
3566 unsigned long flags;
3567
3568 /* Calculate total number of !ZONE_HIGHMEM pages */
3569 for_each_zone(zone) {
3570 if (!is_highmem(zone))
3571 lowmem_pages += zone->present_pages;
3572 }
3573
3574 for_each_zone(zone) {
3575 u64 tmp;
3576
3577 spin_lock_irqsave(&zone->lru_lock, flags);
3578 tmp = (u64)pages_min * zone->present_pages;
3579 do_div(tmp, lowmem_pages);
3580 if (is_highmem(zone)) {
3581 /*
3582 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3583 * need highmem pages, so cap pages_min to a small
3584 * value here.
3585 *
3586 * The (pages_high-pages_low) and (pages_low-pages_min)
3587 * deltas controls asynch page reclaim, and so should
3588 * not be capped for highmem.
3589 */
3590 int min_pages;
3591
3592 min_pages = zone->present_pages / 1024;
3593 if (min_pages < SWAP_CLUSTER_MAX)
3594 min_pages = SWAP_CLUSTER_MAX;
3595 if (min_pages > 128)
3596 min_pages = 128;
3597 zone->pages_min = min_pages;
3598 } else {
3599 /*
3600 * If it's a lowmem zone, reserve a number of pages
3601 * proportionate to the zone's size.
3602 */
3603 zone->pages_min = tmp;
3604 }
3605
3606 zone->pages_low = zone->pages_min + (tmp >> 2);
3607 zone->pages_high = zone->pages_min + (tmp >> 1);
3608 spin_unlock_irqrestore(&zone->lru_lock, flags);
3609 }
3610
3611 /* update totalreserve_pages */
3612 calculate_totalreserve_pages();
3613 }
3614
3615 /*
3616 * Initialise min_free_kbytes.
3617 *
3618 * For small machines we want it small (128k min). For large machines
3619 * we want it large (64MB max). But it is not linear, because network
3620 * bandwidth does not increase linearly with machine size. We use
3621 *
3622 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3623 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3624 *
3625 * which yields
3626 *
3627 * 16MB: 512k
3628 * 32MB: 724k
3629 * 64MB: 1024k
3630 * 128MB: 1448k
3631 * 256MB: 2048k
3632 * 512MB: 2896k
3633 * 1024MB: 4096k
3634 * 2048MB: 5792k
3635 * 4096MB: 8192k
3636 * 8192MB: 11584k
3637 * 16384MB: 16384k
3638 */
3639 static int __init init_per_zone_pages_min(void)
3640 {
3641 unsigned long lowmem_kbytes;
3642
3643 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3644
3645 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3646 if (min_free_kbytes < 128)
3647 min_free_kbytes = 128;
3648 if (min_free_kbytes > 65536)
3649 min_free_kbytes = 65536;
3650 setup_per_zone_pages_min();
3651 setup_per_zone_lowmem_reserve();
3652 return 0;
3653 }
3654 module_init(init_per_zone_pages_min)
3655
3656 /*
3657 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3658 * that we can call two helper functions whenever min_free_kbytes
3659 * changes.
3660 */
3661 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3662 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3663 {
3664 proc_dointvec(table, write, file, buffer, length, ppos);
3665 if (write)
3666 setup_per_zone_pages_min();
3667 return 0;
3668 }
3669
3670 #ifdef CONFIG_NUMA
3671 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3672 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3673 {
3674 struct zone *zone;
3675 int rc;
3676
3677 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3678 if (rc)
3679 return rc;
3680
3681 for_each_zone(zone)
3682 zone->min_unmapped_pages = (zone->present_pages *
3683 sysctl_min_unmapped_ratio) / 100;
3684 return 0;
3685 }
3686
3687 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3688 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3689 {
3690 struct zone *zone;
3691 int rc;
3692
3693 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3694 if (rc)
3695 return rc;
3696
3697 for_each_zone(zone)
3698 zone->min_slab_pages = (zone->present_pages *
3699 sysctl_min_slab_ratio) / 100;
3700 return 0;
3701 }
3702 #endif
3703
3704 /*
3705 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3706 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3707 * whenever sysctl_lowmem_reserve_ratio changes.
3708 *
3709 * The reserve ratio obviously has absolutely no relation with the
3710 * pages_min watermarks. The lowmem reserve ratio can only make sense
3711 * if in function of the boot time zone sizes.
3712 */
3713 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3714 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3715 {
3716 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3717 setup_per_zone_lowmem_reserve();
3718 return 0;
3719 }
3720
3721 /*
3722 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3723 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3724 * can have before it gets flushed back to buddy allocator.
3725 */
3726
3727 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3728 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3729 {
3730 struct zone *zone;
3731 unsigned int cpu;
3732 int ret;
3733
3734 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3735 if (!write || (ret == -EINVAL))
3736 return ret;
3737 for_each_zone(zone) {
3738 for_each_online_cpu(cpu) {
3739 unsigned long high;
3740 high = zone->present_pages / percpu_pagelist_fraction;
3741 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3742 }
3743 }
3744 return 0;
3745 }
3746
3747 int hashdist = HASHDIST_DEFAULT;
3748
3749 #ifdef CONFIG_NUMA
3750 static int __init set_hashdist(char *str)
3751 {
3752 if (!str)
3753 return 0;
3754 hashdist = simple_strtoul(str, &str, 0);
3755 return 1;
3756 }
3757 __setup("hashdist=", set_hashdist);
3758 #endif
3759
3760 /*
3761 * allocate a large system hash table from bootmem
3762 * - it is assumed that the hash table must contain an exact power-of-2
3763 * quantity of entries
3764 * - limit is the number of hash buckets, not the total allocation size
3765 */
3766 void *__init alloc_large_system_hash(const char *tablename,
3767 unsigned long bucketsize,
3768 unsigned long numentries,
3769 int scale,
3770 int flags,
3771 unsigned int *_hash_shift,
3772 unsigned int *_hash_mask,
3773 unsigned long limit)
3774 {
3775 unsigned long long max = limit;
3776 unsigned long log2qty, size;
3777 void *table = NULL;
3778
3779 /* allow the kernel cmdline to have a say */
3780 if (!numentries) {
3781 /* round applicable memory size up to nearest megabyte */
3782 numentries = nr_kernel_pages;
3783 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3784 numentries >>= 20 - PAGE_SHIFT;
3785 numentries <<= 20 - PAGE_SHIFT;
3786
3787 /* limit to 1 bucket per 2^scale bytes of low memory */
3788 if (scale > PAGE_SHIFT)
3789 numentries >>= (scale - PAGE_SHIFT);
3790 else
3791 numentries <<= (PAGE_SHIFT - scale);
3792
3793 /* Make sure we've got at least a 0-order allocation.. */
3794 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3795 numentries = PAGE_SIZE / bucketsize;
3796 }
3797 numentries = roundup_pow_of_two(numentries);
3798
3799 /* limit allocation size to 1/16 total memory by default */
3800 if (max == 0) {
3801 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3802 do_div(max, bucketsize);
3803 }
3804
3805 if (numentries > max)
3806 numentries = max;
3807
3808 log2qty = ilog2(numentries);
3809
3810 do {
3811 size = bucketsize << log2qty;
3812 if (flags & HASH_EARLY)
3813 table = alloc_bootmem(size);
3814 else if (hashdist)
3815 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3816 else {
3817 unsigned long order;
3818 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3819 ;
3820 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3821 /*
3822 * If bucketsize is not a power-of-two, we may free
3823 * some pages at the end of hash table.
3824 */
3825 if (table) {
3826 unsigned long alloc_end = (unsigned long)table +
3827 (PAGE_SIZE << order);
3828 unsigned long used = (unsigned long)table +
3829 PAGE_ALIGN(size);
3830 split_page(virt_to_page(table), order);
3831 while (used < alloc_end) {
3832 free_page(used);
3833 used += PAGE_SIZE;
3834 }
3835 }
3836 }
3837 } while (!table && size > PAGE_SIZE && --log2qty);
3838
3839 if (!table)
3840 panic("Failed to allocate %s hash table\n", tablename);
3841
3842 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
3843 tablename,
3844 (1U << log2qty),
3845 ilog2(size) - PAGE_SHIFT,
3846 size);
3847
3848 if (_hash_shift)
3849 *_hash_shift = log2qty;
3850 if (_hash_mask)
3851 *_hash_mask = (1 << log2qty) - 1;
3852
3853 return table;
3854 }
3855
3856 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3857 struct page *pfn_to_page(unsigned long pfn)
3858 {
3859 return __pfn_to_page(pfn);
3860 }
3861 unsigned long page_to_pfn(struct page *page)
3862 {
3863 return __page_to_pfn(page);
3864 }
3865 EXPORT_SYMBOL(pfn_to_page);
3866 EXPORT_SYMBOL(page_to_pfn);
3867 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3868
3869