]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
Merge tag 'drm-for-v4.12' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68
69 #include <asm/sections.h>
70 #include <asm/tlbflush.h>
71 #include <asm/div64.h>
72 #include "internal.h"
73
74 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75 static DEFINE_MUTEX(pcp_batch_high_lock);
76 #define MIN_PERCPU_PAGELIST_FRACTION (8)
77
78 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79 DEFINE_PER_CPU(int, numa_node);
80 EXPORT_PER_CPU_SYMBOL(numa_node);
81 #endif
82
83 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
84 /*
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
89 */
90 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
92 int _node_numa_mem_[MAX_NUMNODES];
93 #endif
94
95 /* work_structs for global per-cpu drains */
96 DEFINE_MUTEX(pcpu_drain_mutex);
97 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
98
99 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
100 volatile unsigned long latent_entropy __latent_entropy;
101 EXPORT_SYMBOL(latent_entropy);
102 #endif
103
104 /*
105 * Array of node states.
106 */
107 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
108 [N_POSSIBLE] = NODE_MASK_ALL,
109 [N_ONLINE] = { { [0] = 1UL } },
110 #ifndef CONFIG_NUMA
111 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
112 #ifdef CONFIG_HIGHMEM
113 [N_HIGH_MEMORY] = { { [0] = 1UL } },
114 #endif
115 #ifdef CONFIG_MOVABLE_NODE
116 [N_MEMORY] = { { [0] = 1UL } },
117 #endif
118 [N_CPU] = { { [0] = 1UL } },
119 #endif /* NUMA */
120 };
121 EXPORT_SYMBOL(node_states);
122
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock);
125
126 unsigned long totalram_pages __read_mostly;
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
129
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
132
133 /*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141 static inline int get_pcppage_migratetype(struct page *page)
142 {
143 return page->index;
144 }
145
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147 {
148 page->index = migratetype;
149 }
150
151 #ifdef CONFIG_PM_SLEEP
152 /*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
160
161 static gfp_t saved_gfp_mask;
162
163 void pm_restore_gfp_mask(void)
164 {
165 WARN_ON(!mutex_is_locked(&pm_mutex));
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
170 }
171
172 void pm_restrict_gfp_mask(void)
173 {
174 WARN_ON(!mutex_is_locked(&pm_mutex));
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
178 }
179
180 bool pm_suspended_storage(void)
181 {
182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 return false;
184 return true;
185 }
186 #endif /* CONFIG_PM_SLEEP */
187
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly;
190 #endif
191
192 static void __free_pages_ok(struct page *page, unsigned int order);
193
194 /*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
204 */
205 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206 #ifdef CONFIG_ZONE_DMA
207 256,
208 #endif
209 #ifdef CONFIG_ZONE_DMA32
210 256,
211 #endif
212 #ifdef CONFIG_HIGHMEM
213 32,
214 #endif
215 32,
216 };
217
218 EXPORT_SYMBOL(totalram_pages);
219
220 static char * const zone_names[MAX_NR_ZONES] = {
221 #ifdef CONFIG_ZONE_DMA
222 "DMA",
223 #endif
224 #ifdef CONFIG_ZONE_DMA32
225 "DMA32",
226 #endif
227 "Normal",
228 #ifdef CONFIG_HIGHMEM
229 "HighMem",
230 #endif
231 "Movable",
232 #ifdef CONFIG_ZONE_DEVICE
233 "Device",
234 #endif
235 };
236
237 char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242 #ifdef CONFIG_CMA
243 "CMA",
244 #endif
245 #ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247 #endif
248 };
249
250 compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253 #ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255 #endif
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258 #endif
259 };
260
261 int min_free_kbytes = 1024;
262 int user_min_free_kbytes = -1;
263 int watermark_scale_factor = 10;
264
265 static unsigned long __meminitdata nr_kernel_pages;
266 static unsigned long __meminitdata nr_all_pages;
267 static unsigned long __meminitdata dma_reserve;
268
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __initdata required_kernelcore;
273 static unsigned long __initdata required_movablecore;
274 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275 static bool mirrored_kernelcore;
276
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
281
282 #if MAX_NUMNODES > 1
283 int nr_node_ids __read_mostly = MAX_NUMNODES;
284 int nr_online_nodes __read_mostly = 1;
285 EXPORT_SYMBOL(nr_node_ids);
286 EXPORT_SYMBOL(nr_online_nodes);
287 #endif
288
289 int page_group_by_mobility_disabled __read_mostly;
290
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292 static inline void reset_deferred_meminit(pg_data_t *pgdat)
293 {
294 pgdat->first_deferred_pfn = ULONG_MAX;
295 }
296
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299 {
300 int nid = early_pfn_to_nid(pfn);
301
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 return true;
304
305 return false;
306 }
307
308 /*
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
311 */
312 static inline bool update_defer_init(pg_data_t *pgdat,
313 unsigned long pfn, unsigned long zone_end,
314 unsigned long *nr_initialised)
315 {
316 unsigned long max_initialise;
317
318 /* Always populate low zones for address-contrained allocations */
319 if (zone_end < pgdat_end_pfn(pgdat))
320 return true;
321 /*
322 * Initialise at least 2G of a node but also take into account that
323 * two large system hashes that can take up 1GB for 0.25TB/node.
324 */
325 max_initialise = max(2UL << (30 - PAGE_SHIFT),
326 (pgdat->node_spanned_pages >> 8));
327
328 (*nr_initialised)++;
329 if ((*nr_initialised > max_initialise) &&
330 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
331 pgdat->first_deferred_pfn = pfn;
332 return false;
333 }
334
335 return true;
336 }
337 #else
338 static inline void reset_deferred_meminit(pg_data_t *pgdat)
339 {
340 }
341
342 static inline bool early_page_uninitialised(unsigned long pfn)
343 {
344 return false;
345 }
346
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350 {
351 return true;
352 }
353 #endif
354
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358 {
359 #ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
364 }
365
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367 {
368 #ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
375 }
376
377 /**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390 {
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403 }
404
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408 {
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410 }
411
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413 {
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415 }
416
417 /**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429 {
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454 }
455
456 void set_pageblock_migratetype(struct page *page, int migratetype)
457 {
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
460 migratetype = MIGRATE_UNMOVABLE;
461
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464 }
465
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
468 {
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
472 unsigned long sp, start_pfn;
473
474 do {
475 seq = zone_span_seqbegin(zone);
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
478 if (!zone_spans_pfn(zone, pfn))
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
482 if (ret)
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
486
487 return ret;
488 }
489
490 static int page_is_consistent(struct zone *zone, struct page *page)
491 {
492 if (!pfn_valid_within(page_to_pfn(page)))
493 return 0;
494 if (zone != page_zone(page))
495 return 0;
496
497 return 1;
498 }
499 /*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502 static int bad_range(struct zone *zone, struct page *page)
503 {
504 if (page_outside_zone_boundaries(zone, page))
505 return 1;
506 if (!page_is_consistent(zone, page))
507 return 1;
508
509 return 0;
510 }
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
513 {
514 return 0;
515 }
516 #endif
517
518 static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
520 {
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /*
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
528 */
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 goto out;
533 }
534 if (nr_unshown) {
535 pr_alert(
536 "BUG: Bad page state: %lu messages suppressed\n",
537 nr_unshown);
538 nr_unshown = 0;
539 }
540 nr_shown = 0;
541 }
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
544
545 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
546 current->comm, page_to_pfn(page));
547 __dump_page(page, reason);
548 bad_flags &= page->flags;
549 if (bad_flags)
550 pr_alert("bad because of flags: %#lx(%pGp)\n",
551 bad_flags, &bad_flags);
552 dump_page_owner(page);
553
554 print_modules();
555 dump_stack();
556 out:
557 /* Leave bad fields for debug, except PageBuddy could make trouble */
558 page_mapcount_reset(page); /* remove PageBuddy */
559 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
560 }
561
562 /*
563 * Higher-order pages are called "compound pages". They are structured thusly:
564 *
565 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
566 *
567 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
569 *
570 * The first tail page's ->compound_dtor holds the offset in array of compound
571 * page destructors. See compound_page_dtors.
572 *
573 * The first tail page's ->compound_order holds the order of allocation.
574 * This usage means that zero-order pages may not be compound.
575 */
576
577 void free_compound_page(struct page *page)
578 {
579 __free_pages_ok(page, compound_order(page));
580 }
581
582 void prep_compound_page(struct page *page, unsigned int order)
583 {
584 int i;
585 int nr_pages = 1 << order;
586
587 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
588 set_compound_order(page, order);
589 __SetPageHead(page);
590 for (i = 1; i < nr_pages; i++) {
591 struct page *p = page + i;
592 set_page_count(p, 0);
593 p->mapping = TAIL_MAPPING;
594 set_compound_head(p, page);
595 }
596 atomic_set(compound_mapcount_ptr(page), -1);
597 }
598
599 #ifdef CONFIG_DEBUG_PAGEALLOC
600 unsigned int _debug_guardpage_minorder;
601 bool _debug_pagealloc_enabled __read_mostly
602 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
603 EXPORT_SYMBOL(_debug_pagealloc_enabled);
604 bool _debug_guardpage_enabled __read_mostly;
605
606 static int __init early_debug_pagealloc(char *buf)
607 {
608 if (!buf)
609 return -EINVAL;
610 return kstrtobool(buf, &_debug_pagealloc_enabled);
611 }
612 early_param("debug_pagealloc", early_debug_pagealloc);
613
614 static bool need_debug_guardpage(void)
615 {
616 /* If we don't use debug_pagealloc, we don't need guard page */
617 if (!debug_pagealloc_enabled())
618 return false;
619
620 if (!debug_guardpage_minorder())
621 return false;
622
623 return true;
624 }
625
626 static void init_debug_guardpage(void)
627 {
628 if (!debug_pagealloc_enabled())
629 return;
630
631 if (!debug_guardpage_minorder())
632 return;
633
634 _debug_guardpage_enabled = true;
635 }
636
637 struct page_ext_operations debug_guardpage_ops = {
638 .need = need_debug_guardpage,
639 .init = init_debug_guardpage,
640 };
641
642 static int __init debug_guardpage_minorder_setup(char *buf)
643 {
644 unsigned long res;
645
646 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
647 pr_err("Bad debug_guardpage_minorder value\n");
648 return 0;
649 }
650 _debug_guardpage_minorder = res;
651 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
652 return 0;
653 }
654 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
655
656 static inline bool set_page_guard(struct zone *zone, struct page *page,
657 unsigned int order, int migratetype)
658 {
659 struct page_ext *page_ext;
660
661 if (!debug_guardpage_enabled())
662 return false;
663
664 if (order >= debug_guardpage_minorder())
665 return false;
666
667 page_ext = lookup_page_ext(page);
668 if (unlikely(!page_ext))
669 return false;
670
671 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
672
673 INIT_LIST_HEAD(&page->lru);
674 set_page_private(page, order);
675 /* Guard pages are not available for any usage */
676 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
677
678 return true;
679 }
680
681 static inline void clear_page_guard(struct zone *zone, struct page *page,
682 unsigned int order, int migratetype)
683 {
684 struct page_ext *page_ext;
685
686 if (!debug_guardpage_enabled())
687 return;
688
689 page_ext = lookup_page_ext(page);
690 if (unlikely(!page_ext))
691 return;
692
693 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694
695 set_page_private(page, 0);
696 if (!is_migrate_isolate(migratetype))
697 __mod_zone_freepage_state(zone, (1 << order), migratetype);
698 }
699 #else
700 struct page_ext_operations debug_guardpage_ops;
701 static inline bool set_page_guard(struct zone *zone, struct page *page,
702 unsigned int order, int migratetype) { return false; }
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype) {}
705 #endif
706
707 static inline void set_page_order(struct page *page, unsigned int order)
708 {
709 set_page_private(page, order);
710 __SetPageBuddy(page);
711 }
712
713 static inline void rmv_page_order(struct page *page)
714 {
715 __ClearPageBuddy(page);
716 set_page_private(page, 0);
717 }
718
719 /*
720 * This function checks whether a page is free && is the buddy
721 * we can do coalesce a page and its buddy if
722 * (a) the buddy is not in a hole (check before calling!) &&
723 * (b) the buddy is in the buddy system &&
724 * (c) a page and its buddy have the same order &&
725 * (d) a page and its buddy are in the same zone.
726 *
727 * For recording whether a page is in the buddy system, we set ->_mapcount
728 * PAGE_BUDDY_MAPCOUNT_VALUE.
729 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
730 * serialized by zone->lock.
731 *
732 * For recording page's order, we use page_private(page).
733 */
734 static inline int page_is_buddy(struct page *page, struct page *buddy,
735 unsigned int order)
736 {
737 if (page_is_guard(buddy) && page_order(buddy) == order) {
738 if (page_zone_id(page) != page_zone_id(buddy))
739 return 0;
740
741 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
742
743 return 1;
744 }
745
746 if (PageBuddy(buddy) && page_order(buddy) == order) {
747 /*
748 * zone check is done late to avoid uselessly
749 * calculating zone/node ids for pages that could
750 * never merge.
751 */
752 if (page_zone_id(page) != page_zone_id(buddy))
753 return 0;
754
755 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
756
757 return 1;
758 }
759 return 0;
760 }
761
762 /*
763 * Freeing function for a buddy system allocator.
764 *
765 * The concept of a buddy system is to maintain direct-mapped table
766 * (containing bit values) for memory blocks of various "orders".
767 * The bottom level table contains the map for the smallest allocatable
768 * units of memory (here, pages), and each level above it describes
769 * pairs of units from the levels below, hence, "buddies".
770 * At a high level, all that happens here is marking the table entry
771 * at the bottom level available, and propagating the changes upward
772 * as necessary, plus some accounting needed to play nicely with other
773 * parts of the VM system.
774 * At each level, we keep a list of pages, which are heads of continuous
775 * free pages of length of (1 << order) and marked with _mapcount
776 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
777 * field.
778 * So when we are allocating or freeing one, we can derive the state of the
779 * other. That is, if we allocate a small block, and both were
780 * free, the remainder of the region must be split into blocks.
781 * If a block is freed, and its buddy is also free, then this
782 * triggers coalescing into a block of larger size.
783 *
784 * -- nyc
785 */
786
787 static inline void __free_one_page(struct page *page,
788 unsigned long pfn,
789 struct zone *zone, unsigned int order,
790 int migratetype)
791 {
792 unsigned long combined_pfn;
793 unsigned long uninitialized_var(buddy_pfn);
794 struct page *buddy;
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
798
799 VM_BUG_ON(!zone_is_initialized(zone));
800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
801
802 VM_BUG_ON(migratetype == -1);
803 if (likely(!is_migrate_isolate(migratetype)))
804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
805
806 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
807 VM_BUG_ON_PAGE(bad_range(zone, page), page);
808
809 continue_merging:
810 while (order < max_order - 1) {
811 buddy_pfn = __find_buddy_pfn(pfn, order);
812 buddy = page + (buddy_pfn - pfn);
813
814 if (!pfn_valid_within(buddy_pfn))
815 goto done_merging;
816 if (!page_is_buddy(page, buddy, order))
817 goto done_merging;
818 /*
819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 * merge with it and move up one order.
821 */
822 if (page_is_guard(buddy)) {
823 clear_page_guard(zone, buddy, order, migratetype);
824 } else {
825 list_del(&buddy->lru);
826 zone->free_area[order].nr_free--;
827 rmv_page_order(buddy);
828 }
829 combined_pfn = buddy_pfn & pfn;
830 page = page + (combined_pfn - pfn);
831 pfn = combined_pfn;
832 order++;
833 }
834 if (max_order < MAX_ORDER) {
835 /* If we are here, it means order is >= pageblock_order.
836 * We want to prevent merge between freepages on isolate
837 * pageblock and normal pageblock. Without this, pageblock
838 * isolation could cause incorrect freepage or CMA accounting.
839 *
840 * We don't want to hit this code for the more frequent
841 * low-order merging.
842 */
843 if (unlikely(has_isolate_pageblock(zone))) {
844 int buddy_mt;
845
846 buddy_pfn = __find_buddy_pfn(pfn, order);
847 buddy = page + (buddy_pfn - pfn);
848 buddy_mt = get_pageblock_migratetype(buddy);
849
850 if (migratetype != buddy_mt
851 && (is_migrate_isolate(migratetype) ||
852 is_migrate_isolate(buddy_mt)))
853 goto done_merging;
854 }
855 max_order++;
856 goto continue_merging;
857 }
858
859 done_merging:
860 set_page_order(page, order);
861
862 /*
863 * If this is not the largest possible page, check if the buddy
864 * of the next-highest order is free. If it is, it's possible
865 * that pages are being freed that will coalesce soon. In case,
866 * that is happening, add the free page to the tail of the list
867 * so it's less likely to be used soon and more likely to be merged
868 * as a higher order page
869 */
870 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
871 struct page *higher_page, *higher_buddy;
872 combined_pfn = buddy_pfn & pfn;
873 higher_page = page + (combined_pfn - pfn);
874 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
875 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
876 if (pfn_valid_within(buddy_pfn) &&
877 page_is_buddy(higher_page, higher_buddy, order + 1)) {
878 list_add_tail(&page->lru,
879 &zone->free_area[order].free_list[migratetype]);
880 goto out;
881 }
882 }
883
884 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
885 out:
886 zone->free_area[order].nr_free++;
887 }
888
889 /*
890 * A bad page could be due to a number of fields. Instead of multiple branches,
891 * try and check multiple fields with one check. The caller must do a detailed
892 * check if necessary.
893 */
894 static inline bool page_expected_state(struct page *page,
895 unsigned long check_flags)
896 {
897 if (unlikely(atomic_read(&page->_mapcount) != -1))
898 return false;
899
900 if (unlikely((unsigned long)page->mapping |
901 page_ref_count(page) |
902 #ifdef CONFIG_MEMCG
903 (unsigned long)page->mem_cgroup |
904 #endif
905 (page->flags & check_flags)))
906 return false;
907
908 return true;
909 }
910
911 static void free_pages_check_bad(struct page *page)
912 {
913 const char *bad_reason;
914 unsigned long bad_flags;
915
916 bad_reason = NULL;
917 bad_flags = 0;
918
919 if (unlikely(atomic_read(&page->_mapcount) != -1))
920 bad_reason = "nonzero mapcount";
921 if (unlikely(page->mapping != NULL))
922 bad_reason = "non-NULL mapping";
923 if (unlikely(page_ref_count(page) != 0))
924 bad_reason = "nonzero _refcount";
925 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
926 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
927 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
928 }
929 #ifdef CONFIG_MEMCG
930 if (unlikely(page->mem_cgroup))
931 bad_reason = "page still charged to cgroup";
932 #endif
933 bad_page(page, bad_reason, bad_flags);
934 }
935
936 static inline int free_pages_check(struct page *page)
937 {
938 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
939 return 0;
940
941 /* Something has gone sideways, find it */
942 free_pages_check_bad(page);
943 return 1;
944 }
945
946 static int free_tail_pages_check(struct page *head_page, struct page *page)
947 {
948 int ret = 1;
949
950 /*
951 * We rely page->lru.next never has bit 0 set, unless the page
952 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
953 */
954 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
955
956 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
957 ret = 0;
958 goto out;
959 }
960 switch (page - head_page) {
961 case 1:
962 /* the first tail page: ->mapping is compound_mapcount() */
963 if (unlikely(compound_mapcount(page))) {
964 bad_page(page, "nonzero compound_mapcount", 0);
965 goto out;
966 }
967 break;
968 case 2:
969 /*
970 * the second tail page: ->mapping is
971 * page_deferred_list().next -- ignore value.
972 */
973 break;
974 default:
975 if (page->mapping != TAIL_MAPPING) {
976 bad_page(page, "corrupted mapping in tail page", 0);
977 goto out;
978 }
979 break;
980 }
981 if (unlikely(!PageTail(page))) {
982 bad_page(page, "PageTail not set", 0);
983 goto out;
984 }
985 if (unlikely(compound_head(page) != head_page)) {
986 bad_page(page, "compound_head not consistent", 0);
987 goto out;
988 }
989 ret = 0;
990 out:
991 page->mapping = NULL;
992 clear_compound_head(page);
993 return ret;
994 }
995
996 static __always_inline bool free_pages_prepare(struct page *page,
997 unsigned int order, bool check_free)
998 {
999 int bad = 0;
1000
1001 VM_BUG_ON_PAGE(PageTail(page), page);
1002
1003 trace_mm_page_free(page, order);
1004 kmemcheck_free_shadow(page, order);
1005
1006 /*
1007 * Check tail pages before head page information is cleared to
1008 * avoid checking PageCompound for order-0 pages.
1009 */
1010 if (unlikely(order)) {
1011 bool compound = PageCompound(page);
1012 int i;
1013
1014 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1015
1016 if (compound)
1017 ClearPageDoubleMap(page);
1018 for (i = 1; i < (1 << order); i++) {
1019 if (compound)
1020 bad += free_tail_pages_check(page, page + i);
1021 if (unlikely(free_pages_check(page + i))) {
1022 bad++;
1023 continue;
1024 }
1025 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1026 }
1027 }
1028 if (PageMappingFlags(page))
1029 page->mapping = NULL;
1030 if (memcg_kmem_enabled() && PageKmemcg(page))
1031 memcg_kmem_uncharge(page, order);
1032 if (check_free)
1033 bad += free_pages_check(page);
1034 if (bad)
1035 return false;
1036
1037 page_cpupid_reset_last(page);
1038 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1039 reset_page_owner(page, order);
1040
1041 if (!PageHighMem(page)) {
1042 debug_check_no_locks_freed(page_address(page),
1043 PAGE_SIZE << order);
1044 debug_check_no_obj_freed(page_address(page),
1045 PAGE_SIZE << order);
1046 }
1047 arch_free_page(page, order);
1048 kernel_poison_pages(page, 1 << order, 0);
1049 kernel_map_pages(page, 1 << order, 0);
1050 kasan_free_pages(page, order);
1051
1052 return true;
1053 }
1054
1055 #ifdef CONFIG_DEBUG_VM
1056 static inline bool free_pcp_prepare(struct page *page)
1057 {
1058 return free_pages_prepare(page, 0, true);
1059 }
1060
1061 static inline bool bulkfree_pcp_prepare(struct page *page)
1062 {
1063 return false;
1064 }
1065 #else
1066 static bool free_pcp_prepare(struct page *page)
1067 {
1068 return free_pages_prepare(page, 0, false);
1069 }
1070
1071 static bool bulkfree_pcp_prepare(struct page *page)
1072 {
1073 return free_pages_check(page);
1074 }
1075 #endif /* CONFIG_DEBUG_VM */
1076
1077 /*
1078 * Frees a number of pages from the PCP lists
1079 * Assumes all pages on list are in same zone, and of same order.
1080 * count is the number of pages to free.
1081 *
1082 * If the zone was previously in an "all pages pinned" state then look to
1083 * see if this freeing clears that state.
1084 *
1085 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1086 * pinned" detection logic.
1087 */
1088 static void free_pcppages_bulk(struct zone *zone, int count,
1089 struct per_cpu_pages *pcp)
1090 {
1091 int migratetype = 0;
1092 int batch_free = 0;
1093 unsigned long nr_scanned;
1094 bool isolated_pageblocks;
1095
1096 spin_lock(&zone->lock);
1097 isolated_pageblocks = has_isolate_pageblock(zone);
1098 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1099 if (nr_scanned)
1100 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1101
1102 while (count) {
1103 struct page *page;
1104 struct list_head *list;
1105
1106 /*
1107 * Remove pages from lists in a round-robin fashion. A
1108 * batch_free count is maintained that is incremented when an
1109 * empty list is encountered. This is so more pages are freed
1110 * off fuller lists instead of spinning excessively around empty
1111 * lists
1112 */
1113 do {
1114 batch_free++;
1115 if (++migratetype == MIGRATE_PCPTYPES)
1116 migratetype = 0;
1117 list = &pcp->lists[migratetype];
1118 } while (list_empty(list));
1119
1120 /* This is the only non-empty list. Free them all. */
1121 if (batch_free == MIGRATE_PCPTYPES)
1122 batch_free = count;
1123
1124 do {
1125 int mt; /* migratetype of the to-be-freed page */
1126
1127 page = list_last_entry(list, struct page, lru);
1128 /* must delete as __free_one_page list manipulates */
1129 list_del(&page->lru);
1130
1131 mt = get_pcppage_migratetype(page);
1132 /* MIGRATE_ISOLATE page should not go to pcplists */
1133 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1134 /* Pageblock could have been isolated meanwhile */
1135 if (unlikely(isolated_pageblocks))
1136 mt = get_pageblock_migratetype(page);
1137
1138 if (bulkfree_pcp_prepare(page))
1139 continue;
1140
1141 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1142 trace_mm_page_pcpu_drain(page, 0, mt);
1143 } while (--count && --batch_free && !list_empty(list));
1144 }
1145 spin_unlock(&zone->lock);
1146 }
1147
1148 static void free_one_page(struct zone *zone,
1149 struct page *page, unsigned long pfn,
1150 unsigned int order,
1151 int migratetype)
1152 {
1153 unsigned long nr_scanned;
1154 spin_lock(&zone->lock);
1155 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1156 if (nr_scanned)
1157 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1158
1159 if (unlikely(has_isolate_pageblock(zone) ||
1160 is_migrate_isolate(migratetype))) {
1161 migratetype = get_pfnblock_migratetype(page, pfn);
1162 }
1163 __free_one_page(page, pfn, zone, order, migratetype);
1164 spin_unlock(&zone->lock);
1165 }
1166
1167 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1168 unsigned long zone, int nid)
1169 {
1170 set_page_links(page, zone, nid, pfn);
1171 init_page_count(page);
1172 page_mapcount_reset(page);
1173 page_cpupid_reset_last(page);
1174
1175 INIT_LIST_HEAD(&page->lru);
1176 #ifdef WANT_PAGE_VIRTUAL
1177 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1178 if (!is_highmem_idx(zone))
1179 set_page_address(page, __va(pfn << PAGE_SHIFT));
1180 #endif
1181 }
1182
1183 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1184 int nid)
1185 {
1186 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1187 }
1188
1189 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1190 static void init_reserved_page(unsigned long pfn)
1191 {
1192 pg_data_t *pgdat;
1193 int nid, zid;
1194
1195 if (!early_page_uninitialised(pfn))
1196 return;
1197
1198 nid = early_pfn_to_nid(pfn);
1199 pgdat = NODE_DATA(nid);
1200
1201 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1202 struct zone *zone = &pgdat->node_zones[zid];
1203
1204 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1205 break;
1206 }
1207 __init_single_pfn(pfn, zid, nid);
1208 }
1209 #else
1210 static inline void init_reserved_page(unsigned long pfn)
1211 {
1212 }
1213 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1214
1215 /*
1216 * Initialised pages do not have PageReserved set. This function is
1217 * called for each range allocated by the bootmem allocator and
1218 * marks the pages PageReserved. The remaining valid pages are later
1219 * sent to the buddy page allocator.
1220 */
1221 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1222 {
1223 unsigned long start_pfn = PFN_DOWN(start);
1224 unsigned long end_pfn = PFN_UP(end);
1225
1226 for (; start_pfn < end_pfn; start_pfn++) {
1227 if (pfn_valid(start_pfn)) {
1228 struct page *page = pfn_to_page(start_pfn);
1229
1230 init_reserved_page(start_pfn);
1231
1232 /* Avoid false-positive PageTail() */
1233 INIT_LIST_HEAD(&page->lru);
1234
1235 SetPageReserved(page);
1236 }
1237 }
1238 }
1239
1240 static void __free_pages_ok(struct page *page, unsigned int order)
1241 {
1242 unsigned long flags;
1243 int migratetype;
1244 unsigned long pfn = page_to_pfn(page);
1245
1246 if (!free_pages_prepare(page, order, true))
1247 return;
1248
1249 migratetype = get_pfnblock_migratetype(page, pfn);
1250 local_irq_save(flags);
1251 __count_vm_events(PGFREE, 1 << order);
1252 free_one_page(page_zone(page), page, pfn, order, migratetype);
1253 local_irq_restore(flags);
1254 }
1255
1256 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1257 {
1258 unsigned int nr_pages = 1 << order;
1259 struct page *p = page;
1260 unsigned int loop;
1261
1262 prefetchw(p);
1263 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1264 prefetchw(p + 1);
1265 __ClearPageReserved(p);
1266 set_page_count(p, 0);
1267 }
1268 __ClearPageReserved(p);
1269 set_page_count(p, 0);
1270
1271 page_zone(page)->managed_pages += nr_pages;
1272 set_page_refcounted(page);
1273 __free_pages(page, order);
1274 }
1275
1276 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1277 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1278
1279 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1280
1281 int __meminit early_pfn_to_nid(unsigned long pfn)
1282 {
1283 static DEFINE_SPINLOCK(early_pfn_lock);
1284 int nid;
1285
1286 spin_lock(&early_pfn_lock);
1287 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1288 if (nid < 0)
1289 nid = first_online_node;
1290 spin_unlock(&early_pfn_lock);
1291
1292 return nid;
1293 }
1294 #endif
1295
1296 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1297 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1298 struct mminit_pfnnid_cache *state)
1299 {
1300 int nid;
1301
1302 nid = __early_pfn_to_nid(pfn, state);
1303 if (nid >= 0 && nid != node)
1304 return false;
1305 return true;
1306 }
1307
1308 /* Only safe to use early in boot when initialisation is single-threaded */
1309 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1310 {
1311 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1312 }
1313
1314 #else
1315
1316 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1317 {
1318 return true;
1319 }
1320 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1321 struct mminit_pfnnid_cache *state)
1322 {
1323 return true;
1324 }
1325 #endif
1326
1327
1328 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1329 unsigned int order)
1330 {
1331 if (early_page_uninitialised(pfn))
1332 return;
1333 return __free_pages_boot_core(page, order);
1334 }
1335
1336 /*
1337 * Check that the whole (or subset of) a pageblock given by the interval of
1338 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1339 * with the migration of free compaction scanner. The scanners then need to
1340 * use only pfn_valid_within() check for arches that allow holes within
1341 * pageblocks.
1342 *
1343 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1344 *
1345 * It's possible on some configurations to have a setup like node0 node1 node0
1346 * i.e. it's possible that all pages within a zones range of pages do not
1347 * belong to a single zone. We assume that a border between node0 and node1
1348 * can occur within a single pageblock, but not a node0 node1 node0
1349 * interleaving within a single pageblock. It is therefore sufficient to check
1350 * the first and last page of a pageblock and avoid checking each individual
1351 * page in a pageblock.
1352 */
1353 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1354 unsigned long end_pfn, struct zone *zone)
1355 {
1356 struct page *start_page;
1357 struct page *end_page;
1358
1359 /* end_pfn is one past the range we are checking */
1360 end_pfn--;
1361
1362 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1363 return NULL;
1364
1365 start_page = pfn_to_page(start_pfn);
1366
1367 if (page_zone(start_page) != zone)
1368 return NULL;
1369
1370 end_page = pfn_to_page(end_pfn);
1371
1372 /* This gives a shorter code than deriving page_zone(end_page) */
1373 if (page_zone_id(start_page) != page_zone_id(end_page))
1374 return NULL;
1375
1376 return start_page;
1377 }
1378
1379 void set_zone_contiguous(struct zone *zone)
1380 {
1381 unsigned long block_start_pfn = zone->zone_start_pfn;
1382 unsigned long block_end_pfn;
1383
1384 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1385 for (; block_start_pfn < zone_end_pfn(zone);
1386 block_start_pfn = block_end_pfn,
1387 block_end_pfn += pageblock_nr_pages) {
1388
1389 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1390
1391 if (!__pageblock_pfn_to_page(block_start_pfn,
1392 block_end_pfn, zone))
1393 return;
1394 }
1395
1396 /* We confirm that there is no hole */
1397 zone->contiguous = true;
1398 }
1399
1400 void clear_zone_contiguous(struct zone *zone)
1401 {
1402 zone->contiguous = false;
1403 }
1404
1405 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1406 static void __init deferred_free_range(struct page *page,
1407 unsigned long pfn, int nr_pages)
1408 {
1409 int i;
1410
1411 if (!page)
1412 return;
1413
1414 /* Free a large naturally-aligned chunk if possible */
1415 if (nr_pages == pageblock_nr_pages &&
1416 (pfn & (pageblock_nr_pages - 1)) == 0) {
1417 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1418 __free_pages_boot_core(page, pageblock_order);
1419 return;
1420 }
1421
1422 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1423 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1424 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1425 __free_pages_boot_core(page, 0);
1426 }
1427 }
1428
1429 /* Completion tracking for deferred_init_memmap() threads */
1430 static atomic_t pgdat_init_n_undone __initdata;
1431 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1432
1433 static inline void __init pgdat_init_report_one_done(void)
1434 {
1435 if (atomic_dec_and_test(&pgdat_init_n_undone))
1436 complete(&pgdat_init_all_done_comp);
1437 }
1438
1439 /* Initialise remaining memory on a node */
1440 static int __init deferred_init_memmap(void *data)
1441 {
1442 pg_data_t *pgdat = data;
1443 int nid = pgdat->node_id;
1444 struct mminit_pfnnid_cache nid_init_state = { };
1445 unsigned long start = jiffies;
1446 unsigned long nr_pages = 0;
1447 unsigned long walk_start, walk_end;
1448 int i, zid;
1449 struct zone *zone;
1450 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1451 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1452
1453 if (first_init_pfn == ULONG_MAX) {
1454 pgdat_init_report_one_done();
1455 return 0;
1456 }
1457
1458 /* Bind memory initialisation thread to a local node if possible */
1459 if (!cpumask_empty(cpumask))
1460 set_cpus_allowed_ptr(current, cpumask);
1461
1462 /* Sanity check boundaries */
1463 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1464 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1465 pgdat->first_deferred_pfn = ULONG_MAX;
1466
1467 /* Only the highest zone is deferred so find it */
1468 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1469 zone = pgdat->node_zones + zid;
1470 if (first_init_pfn < zone_end_pfn(zone))
1471 break;
1472 }
1473
1474 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1475 unsigned long pfn, end_pfn;
1476 struct page *page = NULL;
1477 struct page *free_base_page = NULL;
1478 unsigned long free_base_pfn = 0;
1479 int nr_to_free = 0;
1480
1481 end_pfn = min(walk_end, zone_end_pfn(zone));
1482 pfn = first_init_pfn;
1483 if (pfn < walk_start)
1484 pfn = walk_start;
1485 if (pfn < zone->zone_start_pfn)
1486 pfn = zone->zone_start_pfn;
1487
1488 for (; pfn < end_pfn; pfn++) {
1489 if (!pfn_valid_within(pfn))
1490 goto free_range;
1491
1492 /*
1493 * Ensure pfn_valid is checked every
1494 * pageblock_nr_pages for memory holes
1495 */
1496 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1497 if (!pfn_valid(pfn)) {
1498 page = NULL;
1499 goto free_range;
1500 }
1501 }
1502
1503 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1504 page = NULL;
1505 goto free_range;
1506 }
1507
1508 /* Minimise pfn page lookups and scheduler checks */
1509 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1510 page++;
1511 } else {
1512 nr_pages += nr_to_free;
1513 deferred_free_range(free_base_page,
1514 free_base_pfn, nr_to_free);
1515 free_base_page = NULL;
1516 free_base_pfn = nr_to_free = 0;
1517
1518 page = pfn_to_page(pfn);
1519 cond_resched();
1520 }
1521
1522 if (page->flags) {
1523 VM_BUG_ON(page_zone(page) != zone);
1524 goto free_range;
1525 }
1526
1527 __init_single_page(page, pfn, zid, nid);
1528 if (!free_base_page) {
1529 free_base_page = page;
1530 free_base_pfn = pfn;
1531 nr_to_free = 0;
1532 }
1533 nr_to_free++;
1534
1535 /* Where possible, batch up pages for a single free */
1536 continue;
1537 free_range:
1538 /* Free the current block of pages to allocator */
1539 nr_pages += nr_to_free;
1540 deferred_free_range(free_base_page, free_base_pfn,
1541 nr_to_free);
1542 free_base_page = NULL;
1543 free_base_pfn = nr_to_free = 0;
1544 }
1545 /* Free the last block of pages to allocator */
1546 nr_pages += nr_to_free;
1547 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1548
1549 first_init_pfn = max(end_pfn, first_init_pfn);
1550 }
1551
1552 /* Sanity check that the next zone really is unpopulated */
1553 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1554
1555 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1556 jiffies_to_msecs(jiffies - start));
1557
1558 pgdat_init_report_one_done();
1559 return 0;
1560 }
1561 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1562
1563 void __init page_alloc_init_late(void)
1564 {
1565 struct zone *zone;
1566
1567 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1568 int nid;
1569
1570 /* There will be num_node_state(N_MEMORY) threads */
1571 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1572 for_each_node_state(nid, N_MEMORY) {
1573 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1574 }
1575
1576 /* Block until all are initialised */
1577 wait_for_completion(&pgdat_init_all_done_comp);
1578
1579 /* Reinit limits that are based on free pages after the kernel is up */
1580 files_maxfiles_init();
1581 #endif
1582
1583 for_each_populated_zone(zone)
1584 set_zone_contiguous(zone);
1585 }
1586
1587 #ifdef CONFIG_CMA
1588 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1589 void __init init_cma_reserved_pageblock(struct page *page)
1590 {
1591 unsigned i = pageblock_nr_pages;
1592 struct page *p = page;
1593
1594 do {
1595 __ClearPageReserved(p);
1596 set_page_count(p, 0);
1597 } while (++p, --i);
1598
1599 set_pageblock_migratetype(page, MIGRATE_CMA);
1600
1601 if (pageblock_order >= MAX_ORDER) {
1602 i = pageblock_nr_pages;
1603 p = page;
1604 do {
1605 set_page_refcounted(p);
1606 __free_pages(p, MAX_ORDER - 1);
1607 p += MAX_ORDER_NR_PAGES;
1608 } while (i -= MAX_ORDER_NR_PAGES);
1609 } else {
1610 set_page_refcounted(page);
1611 __free_pages(page, pageblock_order);
1612 }
1613
1614 adjust_managed_page_count(page, pageblock_nr_pages);
1615 }
1616 #endif
1617
1618 /*
1619 * The order of subdivision here is critical for the IO subsystem.
1620 * Please do not alter this order without good reasons and regression
1621 * testing. Specifically, as large blocks of memory are subdivided,
1622 * the order in which smaller blocks are delivered depends on the order
1623 * they're subdivided in this function. This is the primary factor
1624 * influencing the order in which pages are delivered to the IO
1625 * subsystem according to empirical testing, and this is also justified
1626 * by considering the behavior of a buddy system containing a single
1627 * large block of memory acted on by a series of small allocations.
1628 * This behavior is a critical factor in sglist merging's success.
1629 *
1630 * -- nyc
1631 */
1632 static inline void expand(struct zone *zone, struct page *page,
1633 int low, int high, struct free_area *area,
1634 int migratetype)
1635 {
1636 unsigned long size = 1 << high;
1637
1638 while (high > low) {
1639 area--;
1640 high--;
1641 size >>= 1;
1642 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1643
1644 /*
1645 * Mark as guard pages (or page), that will allow to
1646 * merge back to allocator when buddy will be freed.
1647 * Corresponding page table entries will not be touched,
1648 * pages will stay not present in virtual address space
1649 */
1650 if (set_page_guard(zone, &page[size], high, migratetype))
1651 continue;
1652
1653 list_add(&page[size].lru, &area->free_list[migratetype]);
1654 area->nr_free++;
1655 set_page_order(&page[size], high);
1656 }
1657 }
1658
1659 static void check_new_page_bad(struct page *page)
1660 {
1661 const char *bad_reason = NULL;
1662 unsigned long bad_flags = 0;
1663
1664 if (unlikely(atomic_read(&page->_mapcount) != -1))
1665 bad_reason = "nonzero mapcount";
1666 if (unlikely(page->mapping != NULL))
1667 bad_reason = "non-NULL mapping";
1668 if (unlikely(page_ref_count(page) != 0))
1669 bad_reason = "nonzero _count";
1670 if (unlikely(page->flags & __PG_HWPOISON)) {
1671 bad_reason = "HWPoisoned (hardware-corrupted)";
1672 bad_flags = __PG_HWPOISON;
1673 /* Don't complain about hwpoisoned pages */
1674 page_mapcount_reset(page); /* remove PageBuddy */
1675 return;
1676 }
1677 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1678 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1679 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1680 }
1681 #ifdef CONFIG_MEMCG
1682 if (unlikely(page->mem_cgroup))
1683 bad_reason = "page still charged to cgroup";
1684 #endif
1685 bad_page(page, bad_reason, bad_flags);
1686 }
1687
1688 /*
1689 * This page is about to be returned from the page allocator
1690 */
1691 static inline int check_new_page(struct page *page)
1692 {
1693 if (likely(page_expected_state(page,
1694 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1695 return 0;
1696
1697 check_new_page_bad(page);
1698 return 1;
1699 }
1700
1701 static inline bool free_pages_prezeroed(bool poisoned)
1702 {
1703 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1704 page_poisoning_enabled() && poisoned;
1705 }
1706
1707 #ifdef CONFIG_DEBUG_VM
1708 static bool check_pcp_refill(struct page *page)
1709 {
1710 return false;
1711 }
1712
1713 static bool check_new_pcp(struct page *page)
1714 {
1715 return check_new_page(page);
1716 }
1717 #else
1718 static bool check_pcp_refill(struct page *page)
1719 {
1720 return check_new_page(page);
1721 }
1722 static bool check_new_pcp(struct page *page)
1723 {
1724 return false;
1725 }
1726 #endif /* CONFIG_DEBUG_VM */
1727
1728 static bool check_new_pages(struct page *page, unsigned int order)
1729 {
1730 int i;
1731 for (i = 0; i < (1 << order); i++) {
1732 struct page *p = page + i;
1733
1734 if (unlikely(check_new_page(p)))
1735 return true;
1736 }
1737
1738 return false;
1739 }
1740
1741 inline void post_alloc_hook(struct page *page, unsigned int order,
1742 gfp_t gfp_flags)
1743 {
1744 set_page_private(page, 0);
1745 set_page_refcounted(page);
1746
1747 arch_alloc_page(page, order);
1748 kernel_map_pages(page, 1 << order, 1);
1749 kernel_poison_pages(page, 1 << order, 1);
1750 kasan_alloc_pages(page, order);
1751 set_page_owner(page, order, gfp_flags);
1752 }
1753
1754 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1755 unsigned int alloc_flags)
1756 {
1757 int i;
1758 bool poisoned = true;
1759
1760 for (i = 0; i < (1 << order); i++) {
1761 struct page *p = page + i;
1762 if (poisoned)
1763 poisoned &= page_is_poisoned(p);
1764 }
1765
1766 post_alloc_hook(page, order, gfp_flags);
1767
1768 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1769 for (i = 0; i < (1 << order); i++)
1770 clear_highpage(page + i);
1771
1772 if (order && (gfp_flags & __GFP_COMP))
1773 prep_compound_page(page, order);
1774
1775 /*
1776 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1777 * allocate the page. The expectation is that the caller is taking
1778 * steps that will free more memory. The caller should avoid the page
1779 * being used for !PFMEMALLOC purposes.
1780 */
1781 if (alloc_flags & ALLOC_NO_WATERMARKS)
1782 set_page_pfmemalloc(page);
1783 else
1784 clear_page_pfmemalloc(page);
1785 }
1786
1787 /*
1788 * Go through the free lists for the given migratetype and remove
1789 * the smallest available page from the freelists
1790 */
1791 static inline
1792 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1793 int migratetype)
1794 {
1795 unsigned int current_order;
1796 struct free_area *area;
1797 struct page *page;
1798
1799 /* Find a page of the appropriate size in the preferred list */
1800 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1801 area = &(zone->free_area[current_order]);
1802 page = list_first_entry_or_null(&area->free_list[migratetype],
1803 struct page, lru);
1804 if (!page)
1805 continue;
1806 list_del(&page->lru);
1807 rmv_page_order(page);
1808 area->nr_free--;
1809 expand(zone, page, order, current_order, area, migratetype);
1810 set_pcppage_migratetype(page, migratetype);
1811 return page;
1812 }
1813
1814 return NULL;
1815 }
1816
1817
1818 /*
1819 * This array describes the order lists are fallen back to when
1820 * the free lists for the desirable migrate type are depleted
1821 */
1822 static int fallbacks[MIGRATE_TYPES][4] = {
1823 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1824 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1825 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1826 #ifdef CONFIG_CMA
1827 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1828 #endif
1829 #ifdef CONFIG_MEMORY_ISOLATION
1830 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1831 #endif
1832 };
1833
1834 #ifdef CONFIG_CMA
1835 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1836 unsigned int order)
1837 {
1838 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1839 }
1840 #else
1841 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1842 unsigned int order) { return NULL; }
1843 #endif
1844
1845 /*
1846 * Move the free pages in a range to the free lists of the requested type.
1847 * Note that start_page and end_pages are not aligned on a pageblock
1848 * boundary. If alignment is required, use move_freepages_block()
1849 */
1850 int move_freepages(struct zone *zone,
1851 struct page *start_page, struct page *end_page,
1852 int migratetype)
1853 {
1854 struct page *page;
1855 unsigned int order;
1856 int pages_moved = 0;
1857
1858 #ifndef CONFIG_HOLES_IN_ZONE
1859 /*
1860 * page_zone is not safe to call in this context when
1861 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1862 * anyway as we check zone boundaries in move_freepages_block().
1863 * Remove at a later date when no bug reports exist related to
1864 * grouping pages by mobility
1865 */
1866 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1867 #endif
1868
1869 for (page = start_page; page <= end_page;) {
1870 if (!pfn_valid_within(page_to_pfn(page))) {
1871 page++;
1872 continue;
1873 }
1874
1875 /* Make sure we are not inadvertently changing nodes */
1876 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1877
1878 if (!PageBuddy(page)) {
1879 page++;
1880 continue;
1881 }
1882
1883 order = page_order(page);
1884 list_move(&page->lru,
1885 &zone->free_area[order].free_list[migratetype]);
1886 page += 1 << order;
1887 pages_moved += 1 << order;
1888 }
1889
1890 return pages_moved;
1891 }
1892
1893 int move_freepages_block(struct zone *zone, struct page *page,
1894 int migratetype)
1895 {
1896 unsigned long start_pfn, end_pfn;
1897 struct page *start_page, *end_page;
1898
1899 start_pfn = page_to_pfn(page);
1900 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1901 start_page = pfn_to_page(start_pfn);
1902 end_page = start_page + pageblock_nr_pages - 1;
1903 end_pfn = start_pfn + pageblock_nr_pages - 1;
1904
1905 /* Do not cross zone boundaries */
1906 if (!zone_spans_pfn(zone, start_pfn))
1907 start_page = page;
1908 if (!zone_spans_pfn(zone, end_pfn))
1909 return 0;
1910
1911 return move_freepages(zone, start_page, end_page, migratetype);
1912 }
1913
1914 static void change_pageblock_range(struct page *pageblock_page,
1915 int start_order, int migratetype)
1916 {
1917 int nr_pageblocks = 1 << (start_order - pageblock_order);
1918
1919 while (nr_pageblocks--) {
1920 set_pageblock_migratetype(pageblock_page, migratetype);
1921 pageblock_page += pageblock_nr_pages;
1922 }
1923 }
1924
1925 /*
1926 * When we are falling back to another migratetype during allocation, try to
1927 * steal extra free pages from the same pageblocks to satisfy further
1928 * allocations, instead of polluting multiple pageblocks.
1929 *
1930 * If we are stealing a relatively large buddy page, it is likely there will
1931 * be more free pages in the pageblock, so try to steal them all. For
1932 * reclaimable and unmovable allocations, we steal regardless of page size,
1933 * as fragmentation caused by those allocations polluting movable pageblocks
1934 * is worse than movable allocations stealing from unmovable and reclaimable
1935 * pageblocks.
1936 */
1937 static bool can_steal_fallback(unsigned int order, int start_mt)
1938 {
1939 /*
1940 * Leaving this order check is intended, although there is
1941 * relaxed order check in next check. The reason is that
1942 * we can actually steal whole pageblock if this condition met,
1943 * but, below check doesn't guarantee it and that is just heuristic
1944 * so could be changed anytime.
1945 */
1946 if (order >= pageblock_order)
1947 return true;
1948
1949 if (order >= pageblock_order / 2 ||
1950 start_mt == MIGRATE_RECLAIMABLE ||
1951 start_mt == MIGRATE_UNMOVABLE ||
1952 page_group_by_mobility_disabled)
1953 return true;
1954
1955 return false;
1956 }
1957
1958 /*
1959 * This function implements actual steal behaviour. If order is large enough,
1960 * we can steal whole pageblock. If not, we first move freepages in this
1961 * pageblock and check whether half of pages are moved or not. If half of
1962 * pages are moved, we can change migratetype of pageblock and permanently
1963 * use it's pages as requested migratetype in the future.
1964 */
1965 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1966 int start_type)
1967 {
1968 unsigned int current_order = page_order(page);
1969 int pages;
1970
1971 /* Take ownership for orders >= pageblock_order */
1972 if (current_order >= pageblock_order) {
1973 change_pageblock_range(page, current_order, start_type);
1974 return;
1975 }
1976
1977 pages = move_freepages_block(zone, page, start_type);
1978
1979 /* Claim the whole block if over half of it is free */
1980 if (pages >= (1 << (pageblock_order-1)) ||
1981 page_group_by_mobility_disabled)
1982 set_pageblock_migratetype(page, start_type);
1983 }
1984
1985 /*
1986 * Check whether there is a suitable fallback freepage with requested order.
1987 * If only_stealable is true, this function returns fallback_mt only if
1988 * we can steal other freepages all together. This would help to reduce
1989 * fragmentation due to mixed migratetype pages in one pageblock.
1990 */
1991 int find_suitable_fallback(struct free_area *area, unsigned int order,
1992 int migratetype, bool only_stealable, bool *can_steal)
1993 {
1994 int i;
1995 int fallback_mt;
1996
1997 if (area->nr_free == 0)
1998 return -1;
1999
2000 *can_steal = false;
2001 for (i = 0;; i++) {
2002 fallback_mt = fallbacks[migratetype][i];
2003 if (fallback_mt == MIGRATE_TYPES)
2004 break;
2005
2006 if (list_empty(&area->free_list[fallback_mt]))
2007 continue;
2008
2009 if (can_steal_fallback(order, migratetype))
2010 *can_steal = true;
2011
2012 if (!only_stealable)
2013 return fallback_mt;
2014
2015 if (*can_steal)
2016 return fallback_mt;
2017 }
2018
2019 return -1;
2020 }
2021
2022 /*
2023 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2024 * there are no empty page blocks that contain a page with a suitable order
2025 */
2026 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2027 unsigned int alloc_order)
2028 {
2029 int mt;
2030 unsigned long max_managed, flags;
2031
2032 /*
2033 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2034 * Check is race-prone but harmless.
2035 */
2036 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2037 if (zone->nr_reserved_highatomic >= max_managed)
2038 return;
2039
2040 spin_lock_irqsave(&zone->lock, flags);
2041
2042 /* Recheck the nr_reserved_highatomic limit under the lock */
2043 if (zone->nr_reserved_highatomic >= max_managed)
2044 goto out_unlock;
2045
2046 /* Yoink! */
2047 mt = get_pageblock_migratetype(page);
2048 if (mt != MIGRATE_HIGHATOMIC &&
2049 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2050 zone->nr_reserved_highatomic += pageblock_nr_pages;
2051 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2052 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2053 }
2054
2055 out_unlock:
2056 spin_unlock_irqrestore(&zone->lock, flags);
2057 }
2058
2059 /*
2060 * Used when an allocation is about to fail under memory pressure. This
2061 * potentially hurts the reliability of high-order allocations when under
2062 * intense memory pressure but failed atomic allocations should be easier
2063 * to recover from than an OOM.
2064 *
2065 * If @force is true, try to unreserve a pageblock even though highatomic
2066 * pageblock is exhausted.
2067 */
2068 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2069 bool force)
2070 {
2071 struct zonelist *zonelist = ac->zonelist;
2072 unsigned long flags;
2073 struct zoneref *z;
2074 struct zone *zone;
2075 struct page *page;
2076 int order;
2077 bool ret;
2078
2079 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2080 ac->nodemask) {
2081 /*
2082 * Preserve at least one pageblock unless memory pressure
2083 * is really high.
2084 */
2085 if (!force && zone->nr_reserved_highatomic <=
2086 pageblock_nr_pages)
2087 continue;
2088
2089 spin_lock_irqsave(&zone->lock, flags);
2090 for (order = 0; order < MAX_ORDER; order++) {
2091 struct free_area *area = &(zone->free_area[order]);
2092
2093 page = list_first_entry_or_null(
2094 &area->free_list[MIGRATE_HIGHATOMIC],
2095 struct page, lru);
2096 if (!page)
2097 continue;
2098
2099 /*
2100 * In page freeing path, migratetype change is racy so
2101 * we can counter several free pages in a pageblock
2102 * in this loop althoug we changed the pageblock type
2103 * from highatomic to ac->migratetype. So we should
2104 * adjust the count once.
2105 */
2106 if (get_pageblock_migratetype(page) ==
2107 MIGRATE_HIGHATOMIC) {
2108 /*
2109 * It should never happen but changes to
2110 * locking could inadvertently allow a per-cpu
2111 * drain to add pages to MIGRATE_HIGHATOMIC
2112 * while unreserving so be safe and watch for
2113 * underflows.
2114 */
2115 zone->nr_reserved_highatomic -= min(
2116 pageblock_nr_pages,
2117 zone->nr_reserved_highatomic);
2118 }
2119
2120 /*
2121 * Convert to ac->migratetype and avoid the normal
2122 * pageblock stealing heuristics. Minimally, the caller
2123 * is doing the work and needs the pages. More
2124 * importantly, if the block was always converted to
2125 * MIGRATE_UNMOVABLE or another type then the number
2126 * of pageblocks that cannot be completely freed
2127 * may increase.
2128 */
2129 set_pageblock_migratetype(page, ac->migratetype);
2130 ret = move_freepages_block(zone, page, ac->migratetype);
2131 if (ret) {
2132 spin_unlock_irqrestore(&zone->lock, flags);
2133 return ret;
2134 }
2135 }
2136 spin_unlock_irqrestore(&zone->lock, flags);
2137 }
2138
2139 return false;
2140 }
2141
2142 /* Remove an element from the buddy allocator from the fallback list */
2143 static inline struct page *
2144 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2145 {
2146 struct free_area *area;
2147 unsigned int current_order;
2148 struct page *page;
2149 int fallback_mt;
2150 bool can_steal;
2151
2152 /* Find the largest possible block of pages in the other list */
2153 for (current_order = MAX_ORDER-1;
2154 current_order >= order && current_order <= MAX_ORDER-1;
2155 --current_order) {
2156 area = &(zone->free_area[current_order]);
2157 fallback_mt = find_suitable_fallback(area, current_order,
2158 start_migratetype, false, &can_steal);
2159 if (fallback_mt == -1)
2160 continue;
2161
2162 page = list_first_entry(&area->free_list[fallback_mt],
2163 struct page, lru);
2164 if (can_steal &&
2165 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2166 steal_suitable_fallback(zone, page, start_migratetype);
2167
2168 /* Remove the page from the freelists */
2169 area->nr_free--;
2170 list_del(&page->lru);
2171 rmv_page_order(page);
2172
2173 expand(zone, page, order, current_order, area,
2174 start_migratetype);
2175 /*
2176 * The pcppage_migratetype may differ from pageblock's
2177 * migratetype depending on the decisions in
2178 * find_suitable_fallback(). This is OK as long as it does not
2179 * differ for MIGRATE_CMA pageblocks. Those can be used as
2180 * fallback only via special __rmqueue_cma_fallback() function
2181 */
2182 set_pcppage_migratetype(page, start_migratetype);
2183
2184 trace_mm_page_alloc_extfrag(page, order, current_order,
2185 start_migratetype, fallback_mt);
2186
2187 return page;
2188 }
2189
2190 return NULL;
2191 }
2192
2193 /*
2194 * Do the hard work of removing an element from the buddy allocator.
2195 * Call me with the zone->lock already held.
2196 */
2197 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2198 int migratetype)
2199 {
2200 struct page *page;
2201
2202 page = __rmqueue_smallest(zone, order, migratetype);
2203 if (unlikely(!page)) {
2204 if (migratetype == MIGRATE_MOVABLE)
2205 page = __rmqueue_cma_fallback(zone, order);
2206
2207 if (!page)
2208 page = __rmqueue_fallback(zone, order, migratetype);
2209 }
2210
2211 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2212 return page;
2213 }
2214
2215 /*
2216 * Obtain a specified number of elements from the buddy allocator, all under
2217 * a single hold of the lock, for efficiency. Add them to the supplied list.
2218 * Returns the number of new pages which were placed at *list.
2219 */
2220 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2221 unsigned long count, struct list_head *list,
2222 int migratetype, bool cold)
2223 {
2224 int i, alloced = 0;
2225
2226 spin_lock(&zone->lock);
2227 for (i = 0; i < count; ++i) {
2228 struct page *page = __rmqueue(zone, order, migratetype);
2229 if (unlikely(page == NULL))
2230 break;
2231
2232 if (unlikely(check_pcp_refill(page)))
2233 continue;
2234
2235 /*
2236 * Split buddy pages returned by expand() are received here
2237 * in physical page order. The page is added to the callers and
2238 * list and the list head then moves forward. From the callers
2239 * perspective, the linked list is ordered by page number in
2240 * some conditions. This is useful for IO devices that can
2241 * merge IO requests if the physical pages are ordered
2242 * properly.
2243 */
2244 if (likely(!cold))
2245 list_add(&page->lru, list);
2246 else
2247 list_add_tail(&page->lru, list);
2248 list = &page->lru;
2249 alloced++;
2250 if (is_migrate_cma(get_pcppage_migratetype(page)))
2251 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2252 -(1 << order));
2253 }
2254
2255 /*
2256 * i pages were removed from the buddy list even if some leak due
2257 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2258 * on i. Do not confuse with 'alloced' which is the number of
2259 * pages added to the pcp list.
2260 */
2261 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2262 spin_unlock(&zone->lock);
2263 return alloced;
2264 }
2265
2266 #ifdef CONFIG_NUMA
2267 /*
2268 * Called from the vmstat counter updater to drain pagesets of this
2269 * currently executing processor on remote nodes after they have
2270 * expired.
2271 *
2272 * Note that this function must be called with the thread pinned to
2273 * a single processor.
2274 */
2275 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2276 {
2277 unsigned long flags;
2278 int to_drain, batch;
2279
2280 local_irq_save(flags);
2281 batch = READ_ONCE(pcp->batch);
2282 to_drain = min(pcp->count, batch);
2283 if (to_drain > 0) {
2284 free_pcppages_bulk(zone, to_drain, pcp);
2285 pcp->count -= to_drain;
2286 }
2287 local_irq_restore(flags);
2288 }
2289 #endif
2290
2291 /*
2292 * Drain pcplists of the indicated processor and zone.
2293 *
2294 * The processor must either be the current processor and the
2295 * thread pinned to the current processor or a processor that
2296 * is not online.
2297 */
2298 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2299 {
2300 unsigned long flags;
2301 struct per_cpu_pageset *pset;
2302 struct per_cpu_pages *pcp;
2303
2304 local_irq_save(flags);
2305 pset = per_cpu_ptr(zone->pageset, cpu);
2306
2307 pcp = &pset->pcp;
2308 if (pcp->count) {
2309 free_pcppages_bulk(zone, pcp->count, pcp);
2310 pcp->count = 0;
2311 }
2312 local_irq_restore(flags);
2313 }
2314
2315 /*
2316 * Drain pcplists of all zones on the indicated processor.
2317 *
2318 * The processor must either be the current processor and the
2319 * thread pinned to the current processor or a processor that
2320 * is not online.
2321 */
2322 static void drain_pages(unsigned int cpu)
2323 {
2324 struct zone *zone;
2325
2326 for_each_populated_zone(zone) {
2327 drain_pages_zone(cpu, zone);
2328 }
2329 }
2330
2331 /*
2332 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2333 *
2334 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2335 * the single zone's pages.
2336 */
2337 void drain_local_pages(struct zone *zone)
2338 {
2339 int cpu = smp_processor_id();
2340
2341 if (zone)
2342 drain_pages_zone(cpu, zone);
2343 else
2344 drain_pages(cpu);
2345 }
2346
2347 static void drain_local_pages_wq(struct work_struct *work)
2348 {
2349 /*
2350 * drain_all_pages doesn't use proper cpu hotplug protection so
2351 * we can race with cpu offline when the WQ can move this from
2352 * a cpu pinned worker to an unbound one. We can operate on a different
2353 * cpu which is allright but we also have to make sure to not move to
2354 * a different one.
2355 */
2356 preempt_disable();
2357 drain_local_pages(NULL);
2358 preempt_enable();
2359 }
2360
2361 /*
2362 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2363 *
2364 * When zone parameter is non-NULL, spill just the single zone's pages.
2365 *
2366 * Note that this can be extremely slow as the draining happens in a workqueue.
2367 */
2368 void drain_all_pages(struct zone *zone)
2369 {
2370 int cpu;
2371
2372 /*
2373 * Allocate in the BSS so we wont require allocation in
2374 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2375 */
2376 static cpumask_t cpus_with_pcps;
2377
2378 /*
2379 * Make sure nobody triggers this path before mm_percpu_wq is fully
2380 * initialized.
2381 */
2382 if (WARN_ON_ONCE(!mm_percpu_wq))
2383 return;
2384
2385 /* Workqueues cannot recurse */
2386 if (current->flags & PF_WQ_WORKER)
2387 return;
2388
2389 /*
2390 * Do not drain if one is already in progress unless it's specific to
2391 * a zone. Such callers are primarily CMA and memory hotplug and need
2392 * the drain to be complete when the call returns.
2393 */
2394 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2395 if (!zone)
2396 return;
2397 mutex_lock(&pcpu_drain_mutex);
2398 }
2399
2400 /*
2401 * We don't care about racing with CPU hotplug event
2402 * as offline notification will cause the notified
2403 * cpu to drain that CPU pcps and on_each_cpu_mask
2404 * disables preemption as part of its processing
2405 */
2406 for_each_online_cpu(cpu) {
2407 struct per_cpu_pageset *pcp;
2408 struct zone *z;
2409 bool has_pcps = false;
2410
2411 if (zone) {
2412 pcp = per_cpu_ptr(zone->pageset, cpu);
2413 if (pcp->pcp.count)
2414 has_pcps = true;
2415 } else {
2416 for_each_populated_zone(z) {
2417 pcp = per_cpu_ptr(z->pageset, cpu);
2418 if (pcp->pcp.count) {
2419 has_pcps = true;
2420 break;
2421 }
2422 }
2423 }
2424
2425 if (has_pcps)
2426 cpumask_set_cpu(cpu, &cpus_with_pcps);
2427 else
2428 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2429 }
2430
2431 for_each_cpu(cpu, &cpus_with_pcps) {
2432 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2433 INIT_WORK(work, drain_local_pages_wq);
2434 queue_work_on(cpu, mm_percpu_wq, work);
2435 }
2436 for_each_cpu(cpu, &cpus_with_pcps)
2437 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2438
2439 mutex_unlock(&pcpu_drain_mutex);
2440 }
2441
2442 #ifdef CONFIG_HIBERNATION
2443
2444 void mark_free_pages(struct zone *zone)
2445 {
2446 unsigned long pfn, max_zone_pfn;
2447 unsigned long flags;
2448 unsigned int order, t;
2449 struct page *page;
2450
2451 if (zone_is_empty(zone))
2452 return;
2453
2454 spin_lock_irqsave(&zone->lock, flags);
2455
2456 max_zone_pfn = zone_end_pfn(zone);
2457 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2458 if (pfn_valid(pfn)) {
2459 page = pfn_to_page(pfn);
2460
2461 if (page_zone(page) != zone)
2462 continue;
2463
2464 if (!swsusp_page_is_forbidden(page))
2465 swsusp_unset_page_free(page);
2466 }
2467
2468 for_each_migratetype_order(order, t) {
2469 list_for_each_entry(page,
2470 &zone->free_area[order].free_list[t], lru) {
2471 unsigned long i;
2472
2473 pfn = page_to_pfn(page);
2474 for (i = 0; i < (1UL << order); i++)
2475 swsusp_set_page_free(pfn_to_page(pfn + i));
2476 }
2477 }
2478 spin_unlock_irqrestore(&zone->lock, flags);
2479 }
2480 #endif /* CONFIG_PM */
2481
2482 /*
2483 * Free a 0-order page
2484 * cold == true ? free a cold page : free a hot page
2485 */
2486 void free_hot_cold_page(struct page *page, bool cold)
2487 {
2488 struct zone *zone = page_zone(page);
2489 struct per_cpu_pages *pcp;
2490 unsigned long flags;
2491 unsigned long pfn = page_to_pfn(page);
2492 int migratetype;
2493
2494 if (!free_pcp_prepare(page))
2495 return;
2496
2497 migratetype = get_pfnblock_migratetype(page, pfn);
2498 set_pcppage_migratetype(page, migratetype);
2499 local_irq_save(flags);
2500 __count_vm_event(PGFREE);
2501
2502 /*
2503 * We only track unmovable, reclaimable and movable on pcp lists.
2504 * Free ISOLATE pages back to the allocator because they are being
2505 * offlined but treat RESERVE as movable pages so we can get those
2506 * areas back if necessary. Otherwise, we may have to free
2507 * excessively into the page allocator
2508 */
2509 if (migratetype >= MIGRATE_PCPTYPES) {
2510 if (unlikely(is_migrate_isolate(migratetype))) {
2511 free_one_page(zone, page, pfn, 0, migratetype);
2512 goto out;
2513 }
2514 migratetype = MIGRATE_MOVABLE;
2515 }
2516
2517 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2518 if (!cold)
2519 list_add(&page->lru, &pcp->lists[migratetype]);
2520 else
2521 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2522 pcp->count++;
2523 if (pcp->count >= pcp->high) {
2524 unsigned long batch = READ_ONCE(pcp->batch);
2525 free_pcppages_bulk(zone, batch, pcp);
2526 pcp->count -= batch;
2527 }
2528
2529 out:
2530 local_irq_restore(flags);
2531 }
2532
2533 /*
2534 * Free a list of 0-order pages
2535 */
2536 void free_hot_cold_page_list(struct list_head *list, bool cold)
2537 {
2538 struct page *page, *next;
2539
2540 list_for_each_entry_safe(page, next, list, lru) {
2541 trace_mm_page_free_batched(page, cold);
2542 free_hot_cold_page(page, cold);
2543 }
2544 }
2545
2546 /*
2547 * split_page takes a non-compound higher-order page, and splits it into
2548 * n (1<<order) sub-pages: page[0..n]
2549 * Each sub-page must be freed individually.
2550 *
2551 * Note: this is probably too low level an operation for use in drivers.
2552 * Please consult with lkml before using this in your driver.
2553 */
2554 void split_page(struct page *page, unsigned int order)
2555 {
2556 int i;
2557
2558 VM_BUG_ON_PAGE(PageCompound(page), page);
2559 VM_BUG_ON_PAGE(!page_count(page), page);
2560
2561 #ifdef CONFIG_KMEMCHECK
2562 /*
2563 * Split shadow pages too, because free(page[0]) would
2564 * otherwise free the whole shadow.
2565 */
2566 if (kmemcheck_page_is_tracked(page))
2567 split_page(virt_to_page(page[0].shadow), order);
2568 #endif
2569
2570 for (i = 1; i < (1 << order); i++)
2571 set_page_refcounted(page + i);
2572 split_page_owner(page, order);
2573 }
2574 EXPORT_SYMBOL_GPL(split_page);
2575
2576 int __isolate_free_page(struct page *page, unsigned int order)
2577 {
2578 unsigned long watermark;
2579 struct zone *zone;
2580 int mt;
2581
2582 BUG_ON(!PageBuddy(page));
2583
2584 zone = page_zone(page);
2585 mt = get_pageblock_migratetype(page);
2586
2587 if (!is_migrate_isolate(mt)) {
2588 /*
2589 * Obey watermarks as if the page was being allocated. We can
2590 * emulate a high-order watermark check with a raised order-0
2591 * watermark, because we already know our high-order page
2592 * exists.
2593 */
2594 watermark = min_wmark_pages(zone) + (1UL << order);
2595 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2596 return 0;
2597
2598 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2599 }
2600
2601 /* Remove page from free list */
2602 list_del(&page->lru);
2603 zone->free_area[order].nr_free--;
2604 rmv_page_order(page);
2605
2606 /*
2607 * Set the pageblock if the isolated page is at least half of a
2608 * pageblock
2609 */
2610 if (order >= pageblock_order - 1) {
2611 struct page *endpage = page + (1 << order) - 1;
2612 for (; page < endpage; page += pageblock_nr_pages) {
2613 int mt = get_pageblock_migratetype(page);
2614 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2615 && mt != MIGRATE_HIGHATOMIC)
2616 set_pageblock_migratetype(page,
2617 MIGRATE_MOVABLE);
2618 }
2619 }
2620
2621
2622 return 1UL << order;
2623 }
2624
2625 /*
2626 * Update NUMA hit/miss statistics
2627 *
2628 * Must be called with interrupts disabled.
2629 */
2630 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2631 {
2632 #ifdef CONFIG_NUMA
2633 enum zone_stat_item local_stat = NUMA_LOCAL;
2634
2635 if (z->node != numa_node_id())
2636 local_stat = NUMA_OTHER;
2637
2638 if (z->node == preferred_zone->node)
2639 __inc_zone_state(z, NUMA_HIT);
2640 else {
2641 __inc_zone_state(z, NUMA_MISS);
2642 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2643 }
2644 __inc_zone_state(z, local_stat);
2645 #endif
2646 }
2647
2648 /* Remove page from the per-cpu list, caller must protect the list */
2649 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2650 bool cold, struct per_cpu_pages *pcp,
2651 struct list_head *list)
2652 {
2653 struct page *page;
2654
2655 do {
2656 if (list_empty(list)) {
2657 pcp->count += rmqueue_bulk(zone, 0,
2658 pcp->batch, list,
2659 migratetype, cold);
2660 if (unlikely(list_empty(list)))
2661 return NULL;
2662 }
2663
2664 if (cold)
2665 page = list_last_entry(list, struct page, lru);
2666 else
2667 page = list_first_entry(list, struct page, lru);
2668
2669 list_del(&page->lru);
2670 pcp->count--;
2671 } while (check_new_pcp(page));
2672
2673 return page;
2674 }
2675
2676 /* Lock and remove page from the per-cpu list */
2677 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2678 struct zone *zone, unsigned int order,
2679 gfp_t gfp_flags, int migratetype)
2680 {
2681 struct per_cpu_pages *pcp;
2682 struct list_head *list;
2683 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2684 struct page *page;
2685 unsigned long flags;
2686
2687 local_irq_save(flags);
2688 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2689 list = &pcp->lists[migratetype];
2690 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2691 if (page) {
2692 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2693 zone_statistics(preferred_zone, zone);
2694 }
2695 local_irq_restore(flags);
2696 return page;
2697 }
2698
2699 /*
2700 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2701 */
2702 static inline
2703 struct page *rmqueue(struct zone *preferred_zone,
2704 struct zone *zone, unsigned int order,
2705 gfp_t gfp_flags, unsigned int alloc_flags,
2706 int migratetype)
2707 {
2708 unsigned long flags;
2709 struct page *page;
2710
2711 if (likely(order == 0)) {
2712 page = rmqueue_pcplist(preferred_zone, zone, order,
2713 gfp_flags, migratetype);
2714 goto out;
2715 }
2716
2717 /*
2718 * We most definitely don't want callers attempting to
2719 * allocate greater than order-1 page units with __GFP_NOFAIL.
2720 */
2721 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2722 spin_lock_irqsave(&zone->lock, flags);
2723
2724 do {
2725 page = NULL;
2726 if (alloc_flags & ALLOC_HARDER) {
2727 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2728 if (page)
2729 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2730 }
2731 if (!page)
2732 page = __rmqueue(zone, order, migratetype);
2733 } while (page && check_new_pages(page, order));
2734 spin_unlock(&zone->lock);
2735 if (!page)
2736 goto failed;
2737 __mod_zone_freepage_state(zone, -(1 << order),
2738 get_pcppage_migratetype(page));
2739
2740 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2741 zone_statistics(preferred_zone, zone);
2742 local_irq_restore(flags);
2743
2744 out:
2745 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2746 return page;
2747
2748 failed:
2749 local_irq_restore(flags);
2750 return NULL;
2751 }
2752
2753 #ifdef CONFIG_FAIL_PAGE_ALLOC
2754
2755 static struct {
2756 struct fault_attr attr;
2757
2758 bool ignore_gfp_highmem;
2759 bool ignore_gfp_reclaim;
2760 u32 min_order;
2761 } fail_page_alloc = {
2762 .attr = FAULT_ATTR_INITIALIZER,
2763 .ignore_gfp_reclaim = true,
2764 .ignore_gfp_highmem = true,
2765 .min_order = 1,
2766 };
2767
2768 static int __init setup_fail_page_alloc(char *str)
2769 {
2770 return setup_fault_attr(&fail_page_alloc.attr, str);
2771 }
2772 __setup("fail_page_alloc=", setup_fail_page_alloc);
2773
2774 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2775 {
2776 if (order < fail_page_alloc.min_order)
2777 return false;
2778 if (gfp_mask & __GFP_NOFAIL)
2779 return false;
2780 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2781 return false;
2782 if (fail_page_alloc.ignore_gfp_reclaim &&
2783 (gfp_mask & __GFP_DIRECT_RECLAIM))
2784 return false;
2785
2786 return should_fail(&fail_page_alloc.attr, 1 << order);
2787 }
2788
2789 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2790
2791 static int __init fail_page_alloc_debugfs(void)
2792 {
2793 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2794 struct dentry *dir;
2795
2796 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2797 &fail_page_alloc.attr);
2798 if (IS_ERR(dir))
2799 return PTR_ERR(dir);
2800
2801 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2802 &fail_page_alloc.ignore_gfp_reclaim))
2803 goto fail;
2804 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2805 &fail_page_alloc.ignore_gfp_highmem))
2806 goto fail;
2807 if (!debugfs_create_u32("min-order", mode, dir,
2808 &fail_page_alloc.min_order))
2809 goto fail;
2810
2811 return 0;
2812 fail:
2813 debugfs_remove_recursive(dir);
2814
2815 return -ENOMEM;
2816 }
2817
2818 late_initcall(fail_page_alloc_debugfs);
2819
2820 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2821
2822 #else /* CONFIG_FAIL_PAGE_ALLOC */
2823
2824 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2825 {
2826 return false;
2827 }
2828
2829 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2830
2831 /*
2832 * Return true if free base pages are above 'mark'. For high-order checks it
2833 * will return true of the order-0 watermark is reached and there is at least
2834 * one free page of a suitable size. Checking now avoids taking the zone lock
2835 * to check in the allocation paths if no pages are free.
2836 */
2837 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2838 int classzone_idx, unsigned int alloc_flags,
2839 long free_pages)
2840 {
2841 long min = mark;
2842 int o;
2843 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2844
2845 /* free_pages may go negative - that's OK */
2846 free_pages -= (1 << order) - 1;
2847
2848 if (alloc_flags & ALLOC_HIGH)
2849 min -= min / 2;
2850
2851 /*
2852 * If the caller does not have rights to ALLOC_HARDER then subtract
2853 * the high-atomic reserves. This will over-estimate the size of the
2854 * atomic reserve but it avoids a search.
2855 */
2856 if (likely(!alloc_harder))
2857 free_pages -= z->nr_reserved_highatomic;
2858 else
2859 min -= min / 4;
2860
2861 #ifdef CONFIG_CMA
2862 /* If allocation can't use CMA areas don't use free CMA pages */
2863 if (!(alloc_flags & ALLOC_CMA))
2864 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2865 #endif
2866
2867 /*
2868 * Check watermarks for an order-0 allocation request. If these
2869 * are not met, then a high-order request also cannot go ahead
2870 * even if a suitable page happened to be free.
2871 */
2872 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2873 return false;
2874
2875 /* If this is an order-0 request then the watermark is fine */
2876 if (!order)
2877 return true;
2878
2879 /* For a high-order request, check at least one suitable page is free */
2880 for (o = order; o < MAX_ORDER; o++) {
2881 struct free_area *area = &z->free_area[o];
2882 int mt;
2883
2884 if (!area->nr_free)
2885 continue;
2886
2887 if (alloc_harder)
2888 return true;
2889
2890 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2891 if (!list_empty(&area->free_list[mt]))
2892 return true;
2893 }
2894
2895 #ifdef CONFIG_CMA
2896 if ((alloc_flags & ALLOC_CMA) &&
2897 !list_empty(&area->free_list[MIGRATE_CMA])) {
2898 return true;
2899 }
2900 #endif
2901 }
2902 return false;
2903 }
2904
2905 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2906 int classzone_idx, unsigned int alloc_flags)
2907 {
2908 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2909 zone_page_state(z, NR_FREE_PAGES));
2910 }
2911
2912 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2913 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2914 {
2915 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2916 long cma_pages = 0;
2917
2918 #ifdef CONFIG_CMA
2919 /* If allocation can't use CMA areas don't use free CMA pages */
2920 if (!(alloc_flags & ALLOC_CMA))
2921 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2922 #endif
2923
2924 /*
2925 * Fast check for order-0 only. If this fails then the reserves
2926 * need to be calculated. There is a corner case where the check
2927 * passes but only the high-order atomic reserve are free. If
2928 * the caller is !atomic then it'll uselessly search the free
2929 * list. That corner case is then slower but it is harmless.
2930 */
2931 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2932 return true;
2933
2934 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2935 free_pages);
2936 }
2937
2938 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2939 unsigned long mark, int classzone_idx)
2940 {
2941 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2942
2943 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2944 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2945
2946 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2947 free_pages);
2948 }
2949
2950 #ifdef CONFIG_NUMA
2951 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2952 {
2953 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2954 RECLAIM_DISTANCE;
2955 }
2956 #else /* CONFIG_NUMA */
2957 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2958 {
2959 return true;
2960 }
2961 #endif /* CONFIG_NUMA */
2962
2963 /*
2964 * get_page_from_freelist goes through the zonelist trying to allocate
2965 * a page.
2966 */
2967 static struct page *
2968 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2969 const struct alloc_context *ac)
2970 {
2971 struct zoneref *z = ac->preferred_zoneref;
2972 struct zone *zone;
2973 struct pglist_data *last_pgdat_dirty_limit = NULL;
2974
2975 /*
2976 * Scan zonelist, looking for a zone with enough free.
2977 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2978 */
2979 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2980 ac->nodemask) {
2981 struct page *page;
2982 unsigned long mark;
2983
2984 if (cpusets_enabled() &&
2985 (alloc_flags & ALLOC_CPUSET) &&
2986 !__cpuset_zone_allowed(zone, gfp_mask))
2987 continue;
2988 /*
2989 * When allocating a page cache page for writing, we
2990 * want to get it from a node that is within its dirty
2991 * limit, such that no single node holds more than its
2992 * proportional share of globally allowed dirty pages.
2993 * The dirty limits take into account the node's
2994 * lowmem reserves and high watermark so that kswapd
2995 * should be able to balance it without having to
2996 * write pages from its LRU list.
2997 *
2998 * XXX: For now, allow allocations to potentially
2999 * exceed the per-node dirty limit in the slowpath
3000 * (spread_dirty_pages unset) before going into reclaim,
3001 * which is important when on a NUMA setup the allowed
3002 * nodes are together not big enough to reach the
3003 * global limit. The proper fix for these situations
3004 * will require awareness of nodes in the
3005 * dirty-throttling and the flusher threads.
3006 */
3007 if (ac->spread_dirty_pages) {
3008 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3009 continue;
3010
3011 if (!node_dirty_ok(zone->zone_pgdat)) {
3012 last_pgdat_dirty_limit = zone->zone_pgdat;
3013 continue;
3014 }
3015 }
3016
3017 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3018 if (!zone_watermark_fast(zone, order, mark,
3019 ac_classzone_idx(ac), alloc_flags)) {
3020 int ret;
3021
3022 /* Checked here to keep the fast path fast */
3023 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3024 if (alloc_flags & ALLOC_NO_WATERMARKS)
3025 goto try_this_zone;
3026
3027 if (node_reclaim_mode == 0 ||
3028 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3029 continue;
3030
3031 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3032 switch (ret) {
3033 case NODE_RECLAIM_NOSCAN:
3034 /* did not scan */
3035 continue;
3036 case NODE_RECLAIM_FULL:
3037 /* scanned but unreclaimable */
3038 continue;
3039 default:
3040 /* did we reclaim enough */
3041 if (zone_watermark_ok(zone, order, mark,
3042 ac_classzone_idx(ac), alloc_flags))
3043 goto try_this_zone;
3044
3045 continue;
3046 }
3047 }
3048
3049 try_this_zone:
3050 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3051 gfp_mask, alloc_flags, ac->migratetype);
3052 if (page) {
3053 prep_new_page(page, order, gfp_mask, alloc_flags);
3054
3055 /*
3056 * If this is a high-order atomic allocation then check
3057 * if the pageblock should be reserved for the future
3058 */
3059 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3060 reserve_highatomic_pageblock(page, zone, order);
3061
3062 return page;
3063 }
3064 }
3065
3066 return NULL;
3067 }
3068
3069 /*
3070 * Large machines with many possible nodes should not always dump per-node
3071 * meminfo in irq context.
3072 */
3073 static inline bool should_suppress_show_mem(void)
3074 {
3075 bool ret = false;
3076
3077 #if NODES_SHIFT > 8
3078 ret = in_interrupt();
3079 #endif
3080 return ret;
3081 }
3082
3083 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3084 {
3085 unsigned int filter = SHOW_MEM_FILTER_NODES;
3086 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3087
3088 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3089 return;
3090
3091 /*
3092 * This documents exceptions given to allocations in certain
3093 * contexts that are allowed to allocate outside current's set
3094 * of allowed nodes.
3095 */
3096 if (!(gfp_mask & __GFP_NOMEMALLOC))
3097 if (test_thread_flag(TIF_MEMDIE) ||
3098 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3099 filter &= ~SHOW_MEM_FILTER_NODES;
3100 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3101 filter &= ~SHOW_MEM_FILTER_NODES;
3102
3103 show_mem(filter, nodemask);
3104 }
3105
3106 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3107 {
3108 struct va_format vaf;
3109 va_list args;
3110 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3111 DEFAULT_RATELIMIT_BURST);
3112
3113 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3114 debug_guardpage_minorder() > 0)
3115 return;
3116
3117 pr_warn("%s: ", current->comm);
3118
3119 va_start(args, fmt);
3120 vaf.fmt = fmt;
3121 vaf.va = &args;
3122 pr_cont("%pV", &vaf);
3123 va_end(args);
3124
3125 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3126 if (nodemask)
3127 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3128 else
3129 pr_cont("(null)\n");
3130
3131 cpuset_print_current_mems_allowed();
3132
3133 dump_stack();
3134 warn_alloc_show_mem(gfp_mask, nodemask);
3135 }
3136
3137 static inline struct page *
3138 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3139 unsigned int alloc_flags,
3140 const struct alloc_context *ac)
3141 {
3142 struct page *page;
3143
3144 page = get_page_from_freelist(gfp_mask, order,
3145 alloc_flags|ALLOC_CPUSET, ac);
3146 /*
3147 * fallback to ignore cpuset restriction if our nodes
3148 * are depleted
3149 */
3150 if (!page)
3151 page = get_page_from_freelist(gfp_mask, order,
3152 alloc_flags, ac);
3153
3154 return page;
3155 }
3156
3157 static inline struct page *
3158 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3159 const struct alloc_context *ac, unsigned long *did_some_progress)
3160 {
3161 struct oom_control oc = {
3162 .zonelist = ac->zonelist,
3163 .nodemask = ac->nodemask,
3164 .memcg = NULL,
3165 .gfp_mask = gfp_mask,
3166 .order = order,
3167 };
3168 struct page *page;
3169
3170 *did_some_progress = 0;
3171
3172 /*
3173 * Acquire the oom lock. If that fails, somebody else is
3174 * making progress for us.
3175 */
3176 if (!mutex_trylock(&oom_lock)) {
3177 *did_some_progress = 1;
3178 schedule_timeout_uninterruptible(1);
3179 return NULL;
3180 }
3181
3182 /*
3183 * Go through the zonelist yet one more time, keep very high watermark
3184 * here, this is only to catch a parallel oom killing, we must fail if
3185 * we're still under heavy pressure.
3186 */
3187 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3188 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3189 if (page)
3190 goto out;
3191
3192 /* Coredumps can quickly deplete all memory reserves */
3193 if (current->flags & PF_DUMPCORE)
3194 goto out;
3195 /* The OOM killer will not help higher order allocs */
3196 if (order > PAGE_ALLOC_COSTLY_ORDER)
3197 goto out;
3198 /* The OOM killer does not needlessly kill tasks for lowmem */
3199 if (ac->high_zoneidx < ZONE_NORMAL)
3200 goto out;
3201 if (pm_suspended_storage())
3202 goto out;
3203 /*
3204 * XXX: GFP_NOFS allocations should rather fail than rely on
3205 * other request to make a forward progress.
3206 * We are in an unfortunate situation where out_of_memory cannot
3207 * do much for this context but let's try it to at least get
3208 * access to memory reserved if the current task is killed (see
3209 * out_of_memory). Once filesystems are ready to handle allocation
3210 * failures more gracefully we should just bail out here.
3211 */
3212
3213 /* The OOM killer may not free memory on a specific node */
3214 if (gfp_mask & __GFP_THISNODE)
3215 goto out;
3216
3217 /* Exhausted what can be done so it's blamo time */
3218 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3219 *did_some_progress = 1;
3220
3221 /*
3222 * Help non-failing allocations by giving them access to memory
3223 * reserves
3224 */
3225 if (gfp_mask & __GFP_NOFAIL)
3226 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3227 ALLOC_NO_WATERMARKS, ac);
3228 }
3229 out:
3230 mutex_unlock(&oom_lock);
3231 return page;
3232 }
3233
3234 /*
3235 * Maximum number of compaction retries wit a progress before OOM
3236 * killer is consider as the only way to move forward.
3237 */
3238 #define MAX_COMPACT_RETRIES 16
3239
3240 #ifdef CONFIG_COMPACTION
3241 /* Try memory compaction for high-order allocations before reclaim */
3242 static struct page *
3243 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3244 unsigned int alloc_flags, const struct alloc_context *ac,
3245 enum compact_priority prio, enum compact_result *compact_result)
3246 {
3247 struct page *page;
3248
3249 if (!order)
3250 return NULL;
3251
3252 current->flags |= PF_MEMALLOC;
3253 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3254 prio);
3255 current->flags &= ~PF_MEMALLOC;
3256
3257 if (*compact_result <= COMPACT_INACTIVE)
3258 return NULL;
3259
3260 /*
3261 * At least in one zone compaction wasn't deferred or skipped, so let's
3262 * count a compaction stall
3263 */
3264 count_vm_event(COMPACTSTALL);
3265
3266 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3267
3268 if (page) {
3269 struct zone *zone = page_zone(page);
3270
3271 zone->compact_blockskip_flush = false;
3272 compaction_defer_reset(zone, order, true);
3273 count_vm_event(COMPACTSUCCESS);
3274 return page;
3275 }
3276
3277 /*
3278 * It's bad if compaction run occurs and fails. The most likely reason
3279 * is that pages exist, but not enough to satisfy watermarks.
3280 */
3281 count_vm_event(COMPACTFAIL);
3282
3283 cond_resched();
3284
3285 return NULL;
3286 }
3287
3288 static inline bool
3289 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3290 enum compact_result compact_result,
3291 enum compact_priority *compact_priority,
3292 int *compaction_retries)
3293 {
3294 int max_retries = MAX_COMPACT_RETRIES;
3295 int min_priority;
3296 bool ret = false;
3297 int retries = *compaction_retries;
3298 enum compact_priority priority = *compact_priority;
3299
3300 if (!order)
3301 return false;
3302
3303 if (compaction_made_progress(compact_result))
3304 (*compaction_retries)++;
3305
3306 /*
3307 * compaction considers all the zone as desperately out of memory
3308 * so it doesn't really make much sense to retry except when the
3309 * failure could be caused by insufficient priority
3310 */
3311 if (compaction_failed(compact_result))
3312 goto check_priority;
3313
3314 /*
3315 * make sure the compaction wasn't deferred or didn't bail out early
3316 * due to locks contention before we declare that we should give up.
3317 * But do not retry if the given zonelist is not suitable for
3318 * compaction.
3319 */
3320 if (compaction_withdrawn(compact_result)) {
3321 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3322 goto out;
3323 }
3324
3325 /*
3326 * !costly requests are much more important than __GFP_REPEAT
3327 * costly ones because they are de facto nofail and invoke OOM
3328 * killer to move on while costly can fail and users are ready
3329 * to cope with that. 1/4 retries is rather arbitrary but we
3330 * would need much more detailed feedback from compaction to
3331 * make a better decision.
3332 */
3333 if (order > PAGE_ALLOC_COSTLY_ORDER)
3334 max_retries /= 4;
3335 if (*compaction_retries <= max_retries) {
3336 ret = true;
3337 goto out;
3338 }
3339
3340 /*
3341 * Make sure there are attempts at the highest priority if we exhausted
3342 * all retries or failed at the lower priorities.
3343 */
3344 check_priority:
3345 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3346 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3347
3348 if (*compact_priority > min_priority) {
3349 (*compact_priority)--;
3350 *compaction_retries = 0;
3351 ret = true;
3352 }
3353 out:
3354 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3355 return ret;
3356 }
3357 #else
3358 static inline struct page *
3359 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3360 unsigned int alloc_flags, const struct alloc_context *ac,
3361 enum compact_priority prio, enum compact_result *compact_result)
3362 {
3363 *compact_result = COMPACT_SKIPPED;
3364 return NULL;
3365 }
3366
3367 static inline bool
3368 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3369 enum compact_result compact_result,
3370 enum compact_priority *compact_priority,
3371 int *compaction_retries)
3372 {
3373 struct zone *zone;
3374 struct zoneref *z;
3375
3376 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3377 return false;
3378
3379 /*
3380 * There are setups with compaction disabled which would prefer to loop
3381 * inside the allocator rather than hit the oom killer prematurely.
3382 * Let's give them a good hope and keep retrying while the order-0
3383 * watermarks are OK.
3384 */
3385 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3386 ac->nodemask) {
3387 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3388 ac_classzone_idx(ac), alloc_flags))
3389 return true;
3390 }
3391 return false;
3392 }
3393 #endif /* CONFIG_COMPACTION */
3394
3395 /* Perform direct synchronous page reclaim */
3396 static int
3397 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3398 const struct alloc_context *ac)
3399 {
3400 struct reclaim_state reclaim_state;
3401 int progress;
3402
3403 cond_resched();
3404
3405 /* We now go into synchronous reclaim */
3406 cpuset_memory_pressure_bump();
3407 current->flags |= PF_MEMALLOC;
3408 lockdep_set_current_reclaim_state(gfp_mask);
3409 reclaim_state.reclaimed_slab = 0;
3410 current->reclaim_state = &reclaim_state;
3411
3412 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3413 ac->nodemask);
3414
3415 current->reclaim_state = NULL;
3416 lockdep_clear_current_reclaim_state();
3417 current->flags &= ~PF_MEMALLOC;
3418
3419 cond_resched();
3420
3421 return progress;
3422 }
3423
3424 /* The really slow allocator path where we enter direct reclaim */
3425 static inline struct page *
3426 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3427 unsigned int alloc_flags, const struct alloc_context *ac,
3428 unsigned long *did_some_progress)
3429 {
3430 struct page *page = NULL;
3431 bool drained = false;
3432
3433 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3434 if (unlikely(!(*did_some_progress)))
3435 return NULL;
3436
3437 retry:
3438 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3439
3440 /*
3441 * If an allocation failed after direct reclaim, it could be because
3442 * pages are pinned on the per-cpu lists or in high alloc reserves.
3443 * Shrink them them and try again
3444 */
3445 if (!page && !drained) {
3446 unreserve_highatomic_pageblock(ac, false);
3447 drain_all_pages(NULL);
3448 drained = true;
3449 goto retry;
3450 }
3451
3452 return page;
3453 }
3454
3455 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3456 {
3457 struct zoneref *z;
3458 struct zone *zone;
3459 pg_data_t *last_pgdat = NULL;
3460
3461 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3462 ac->high_zoneidx, ac->nodemask) {
3463 if (last_pgdat != zone->zone_pgdat)
3464 wakeup_kswapd(zone, order, ac->high_zoneidx);
3465 last_pgdat = zone->zone_pgdat;
3466 }
3467 }
3468
3469 static inline unsigned int
3470 gfp_to_alloc_flags(gfp_t gfp_mask)
3471 {
3472 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3473
3474 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3475 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3476
3477 /*
3478 * The caller may dip into page reserves a bit more if the caller
3479 * cannot run direct reclaim, or if the caller has realtime scheduling
3480 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3481 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3482 */
3483 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3484
3485 if (gfp_mask & __GFP_ATOMIC) {
3486 /*
3487 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3488 * if it can't schedule.
3489 */
3490 if (!(gfp_mask & __GFP_NOMEMALLOC))
3491 alloc_flags |= ALLOC_HARDER;
3492 /*
3493 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3494 * comment for __cpuset_node_allowed().
3495 */
3496 alloc_flags &= ~ALLOC_CPUSET;
3497 } else if (unlikely(rt_task(current)) && !in_interrupt())
3498 alloc_flags |= ALLOC_HARDER;
3499
3500 #ifdef CONFIG_CMA
3501 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3502 alloc_flags |= ALLOC_CMA;
3503 #endif
3504 return alloc_flags;
3505 }
3506
3507 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3508 {
3509 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3510 return false;
3511
3512 if (gfp_mask & __GFP_MEMALLOC)
3513 return true;
3514 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3515 return true;
3516 if (!in_interrupt() &&
3517 ((current->flags & PF_MEMALLOC) ||
3518 unlikely(test_thread_flag(TIF_MEMDIE))))
3519 return true;
3520
3521 return false;
3522 }
3523
3524 /*
3525 * Maximum number of reclaim retries without any progress before OOM killer
3526 * is consider as the only way to move forward.
3527 */
3528 #define MAX_RECLAIM_RETRIES 16
3529
3530 /*
3531 * Checks whether it makes sense to retry the reclaim to make a forward progress
3532 * for the given allocation request.
3533 * The reclaim feedback represented by did_some_progress (any progress during
3534 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3535 * any progress in a row) is considered as well as the reclaimable pages on the
3536 * applicable zone list (with a backoff mechanism which is a function of
3537 * no_progress_loops).
3538 *
3539 * Returns true if a retry is viable or false to enter the oom path.
3540 */
3541 static inline bool
3542 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3543 struct alloc_context *ac, int alloc_flags,
3544 bool did_some_progress, int *no_progress_loops)
3545 {
3546 struct zone *zone;
3547 struct zoneref *z;
3548
3549 /*
3550 * Costly allocations might have made a progress but this doesn't mean
3551 * their order will become available due to high fragmentation so
3552 * always increment the no progress counter for them
3553 */
3554 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3555 *no_progress_loops = 0;
3556 else
3557 (*no_progress_loops)++;
3558
3559 /*
3560 * Make sure we converge to OOM if we cannot make any progress
3561 * several times in the row.
3562 */
3563 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3564 /* Before OOM, exhaust highatomic_reserve */
3565 return unreserve_highatomic_pageblock(ac, true);
3566 }
3567
3568 /*
3569 * Keep reclaiming pages while there is a chance this will lead
3570 * somewhere. If none of the target zones can satisfy our allocation
3571 * request even if all reclaimable pages are considered then we are
3572 * screwed and have to go OOM.
3573 */
3574 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3575 ac->nodemask) {
3576 unsigned long available;
3577 unsigned long reclaimable;
3578 unsigned long min_wmark = min_wmark_pages(zone);
3579 bool wmark;
3580
3581 available = reclaimable = zone_reclaimable_pages(zone);
3582 available -= DIV_ROUND_UP((*no_progress_loops) * available,
3583 MAX_RECLAIM_RETRIES);
3584 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3585
3586 /*
3587 * Would the allocation succeed if we reclaimed the whole
3588 * available?
3589 */
3590 wmark = __zone_watermark_ok(zone, order, min_wmark,
3591 ac_classzone_idx(ac), alloc_flags, available);
3592 trace_reclaim_retry_zone(z, order, reclaimable,
3593 available, min_wmark, *no_progress_loops, wmark);
3594 if (wmark) {
3595 /*
3596 * If we didn't make any progress and have a lot of
3597 * dirty + writeback pages then we should wait for
3598 * an IO to complete to slow down the reclaim and
3599 * prevent from pre mature OOM
3600 */
3601 if (!did_some_progress) {
3602 unsigned long write_pending;
3603
3604 write_pending = zone_page_state_snapshot(zone,
3605 NR_ZONE_WRITE_PENDING);
3606
3607 if (2 * write_pending > reclaimable) {
3608 congestion_wait(BLK_RW_ASYNC, HZ/10);
3609 return true;
3610 }
3611 }
3612
3613 /*
3614 * Memory allocation/reclaim might be called from a WQ
3615 * context and the current implementation of the WQ
3616 * concurrency control doesn't recognize that
3617 * a particular WQ is congested if the worker thread is
3618 * looping without ever sleeping. Therefore we have to
3619 * do a short sleep here rather than calling
3620 * cond_resched().
3621 */
3622 if (current->flags & PF_WQ_WORKER)
3623 schedule_timeout_uninterruptible(1);
3624 else
3625 cond_resched();
3626
3627 return true;
3628 }
3629 }
3630
3631 return false;
3632 }
3633
3634 static inline struct page *
3635 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3636 struct alloc_context *ac)
3637 {
3638 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3639 struct page *page = NULL;
3640 unsigned int alloc_flags;
3641 unsigned long did_some_progress;
3642 enum compact_priority compact_priority;
3643 enum compact_result compact_result;
3644 int compaction_retries;
3645 int no_progress_loops;
3646 unsigned long alloc_start = jiffies;
3647 unsigned int stall_timeout = 10 * HZ;
3648 unsigned int cpuset_mems_cookie;
3649
3650 /*
3651 * In the slowpath, we sanity check order to avoid ever trying to
3652 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3653 * be using allocators in order of preference for an area that is
3654 * too large.
3655 */
3656 if (order >= MAX_ORDER) {
3657 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3658 return NULL;
3659 }
3660
3661 /*
3662 * We also sanity check to catch abuse of atomic reserves being used by
3663 * callers that are not in atomic context.
3664 */
3665 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3666 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3667 gfp_mask &= ~__GFP_ATOMIC;
3668
3669 retry_cpuset:
3670 compaction_retries = 0;
3671 no_progress_loops = 0;
3672 compact_priority = DEF_COMPACT_PRIORITY;
3673 cpuset_mems_cookie = read_mems_allowed_begin();
3674
3675 /*
3676 * The fast path uses conservative alloc_flags to succeed only until
3677 * kswapd needs to be woken up, and to avoid the cost of setting up
3678 * alloc_flags precisely. So we do that now.
3679 */
3680 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3681
3682 /*
3683 * We need to recalculate the starting point for the zonelist iterator
3684 * because we might have used different nodemask in the fast path, or
3685 * there was a cpuset modification and we are retrying - otherwise we
3686 * could end up iterating over non-eligible zones endlessly.
3687 */
3688 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3689 ac->high_zoneidx, ac->nodemask);
3690 if (!ac->preferred_zoneref->zone)
3691 goto nopage;
3692
3693 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3694 wake_all_kswapds(order, ac);
3695
3696 /*
3697 * The adjusted alloc_flags might result in immediate success, so try
3698 * that first
3699 */
3700 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3701 if (page)
3702 goto got_pg;
3703
3704 /*
3705 * For costly allocations, try direct compaction first, as it's likely
3706 * that we have enough base pages and don't need to reclaim. Don't try
3707 * that for allocations that are allowed to ignore watermarks, as the
3708 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3709 */
3710 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3711 !gfp_pfmemalloc_allowed(gfp_mask)) {
3712 page = __alloc_pages_direct_compact(gfp_mask, order,
3713 alloc_flags, ac,
3714 INIT_COMPACT_PRIORITY,
3715 &compact_result);
3716 if (page)
3717 goto got_pg;
3718
3719 /*
3720 * Checks for costly allocations with __GFP_NORETRY, which
3721 * includes THP page fault allocations
3722 */
3723 if (gfp_mask & __GFP_NORETRY) {
3724 /*
3725 * If compaction is deferred for high-order allocations,
3726 * it is because sync compaction recently failed. If
3727 * this is the case and the caller requested a THP
3728 * allocation, we do not want to heavily disrupt the
3729 * system, so we fail the allocation instead of entering
3730 * direct reclaim.
3731 */
3732 if (compact_result == COMPACT_DEFERRED)
3733 goto nopage;
3734
3735 /*
3736 * Looks like reclaim/compaction is worth trying, but
3737 * sync compaction could be very expensive, so keep
3738 * using async compaction.
3739 */
3740 compact_priority = INIT_COMPACT_PRIORITY;
3741 }
3742 }
3743
3744 retry:
3745 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3746 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3747 wake_all_kswapds(order, ac);
3748
3749 if (gfp_pfmemalloc_allowed(gfp_mask))
3750 alloc_flags = ALLOC_NO_WATERMARKS;
3751
3752 /*
3753 * Reset the zonelist iterators if memory policies can be ignored.
3754 * These allocations are high priority and system rather than user
3755 * orientated.
3756 */
3757 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3758 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3759 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3760 ac->high_zoneidx, ac->nodemask);
3761 }
3762
3763 /* Attempt with potentially adjusted zonelist and alloc_flags */
3764 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3765 if (page)
3766 goto got_pg;
3767
3768 /* Caller is not willing to reclaim, we can't balance anything */
3769 if (!can_direct_reclaim)
3770 goto nopage;
3771
3772 /* Make sure we know about allocations which stall for too long */
3773 if (time_after(jiffies, alloc_start + stall_timeout)) {
3774 warn_alloc(gfp_mask, ac->nodemask,
3775 "page allocation stalls for %ums, order:%u",
3776 jiffies_to_msecs(jiffies-alloc_start), order);
3777 stall_timeout += 10 * HZ;
3778 }
3779
3780 /* Avoid recursion of direct reclaim */
3781 if (current->flags & PF_MEMALLOC)
3782 goto nopage;
3783
3784 /* Try direct reclaim and then allocating */
3785 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3786 &did_some_progress);
3787 if (page)
3788 goto got_pg;
3789
3790 /* Try direct compaction and then allocating */
3791 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3792 compact_priority, &compact_result);
3793 if (page)
3794 goto got_pg;
3795
3796 /* Do not loop if specifically requested */
3797 if (gfp_mask & __GFP_NORETRY)
3798 goto nopage;
3799
3800 /*
3801 * Do not retry costly high order allocations unless they are
3802 * __GFP_REPEAT
3803 */
3804 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3805 goto nopage;
3806
3807 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3808 did_some_progress > 0, &no_progress_loops))
3809 goto retry;
3810
3811 /*
3812 * It doesn't make any sense to retry for the compaction if the order-0
3813 * reclaim is not able to make any progress because the current
3814 * implementation of the compaction depends on the sufficient amount
3815 * of free memory (see __compaction_suitable)
3816 */
3817 if (did_some_progress > 0 &&
3818 should_compact_retry(ac, order, alloc_flags,
3819 compact_result, &compact_priority,
3820 &compaction_retries))
3821 goto retry;
3822
3823 /*
3824 * It's possible we raced with cpuset update so the OOM would be
3825 * premature (see below the nopage: label for full explanation).
3826 */
3827 if (read_mems_allowed_retry(cpuset_mems_cookie))
3828 goto retry_cpuset;
3829
3830 /* Reclaim has failed us, start killing things */
3831 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3832 if (page)
3833 goto got_pg;
3834
3835 /* Avoid allocations with no watermarks from looping endlessly */
3836 if (test_thread_flag(TIF_MEMDIE))
3837 goto nopage;
3838
3839 /* Retry as long as the OOM killer is making progress */
3840 if (did_some_progress) {
3841 no_progress_loops = 0;
3842 goto retry;
3843 }
3844
3845 nopage:
3846 /*
3847 * When updating a task's mems_allowed or mempolicy nodemask, it is
3848 * possible to race with parallel threads in such a way that our
3849 * allocation can fail while the mask is being updated. If we are about
3850 * to fail, check if the cpuset changed during allocation and if so,
3851 * retry.
3852 */
3853 if (read_mems_allowed_retry(cpuset_mems_cookie))
3854 goto retry_cpuset;
3855
3856 /*
3857 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3858 * we always retry
3859 */
3860 if (gfp_mask & __GFP_NOFAIL) {
3861 /*
3862 * All existing users of the __GFP_NOFAIL are blockable, so warn
3863 * of any new users that actually require GFP_NOWAIT
3864 */
3865 if (WARN_ON_ONCE(!can_direct_reclaim))
3866 goto fail;
3867
3868 /*
3869 * PF_MEMALLOC request from this context is rather bizarre
3870 * because we cannot reclaim anything and only can loop waiting
3871 * for somebody to do a work for us
3872 */
3873 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3874
3875 /*
3876 * non failing costly orders are a hard requirement which we
3877 * are not prepared for much so let's warn about these users
3878 * so that we can identify them and convert them to something
3879 * else.
3880 */
3881 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3882
3883 /*
3884 * Help non-failing allocations by giving them access to memory
3885 * reserves but do not use ALLOC_NO_WATERMARKS because this
3886 * could deplete whole memory reserves which would just make
3887 * the situation worse
3888 */
3889 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3890 if (page)
3891 goto got_pg;
3892
3893 cond_resched();
3894 goto retry;
3895 }
3896 fail:
3897 warn_alloc(gfp_mask, ac->nodemask,
3898 "page allocation failure: order:%u", order);
3899 got_pg:
3900 return page;
3901 }
3902
3903 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3904 struct zonelist *zonelist, nodemask_t *nodemask,
3905 struct alloc_context *ac, gfp_t *alloc_mask,
3906 unsigned int *alloc_flags)
3907 {
3908 ac->high_zoneidx = gfp_zone(gfp_mask);
3909 ac->zonelist = zonelist;
3910 ac->nodemask = nodemask;
3911 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3912
3913 if (cpusets_enabled()) {
3914 *alloc_mask |= __GFP_HARDWALL;
3915 if (!ac->nodemask)
3916 ac->nodemask = &cpuset_current_mems_allowed;
3917 else
3918 *alloc_flags |= ALLOC_CPUSET;
3919 }
3920
3921 lockdep_trace_alloc(gfp_mask);
3922
3923 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3924
3925 if (should_fail_alloc_page(gfp_mask, order))
3926 return false;
3927
3928 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3929 *alloc_flags |= ALLOC_CMA;
3930
3931 return true;
3932 }
3933
3934 /* Determine whether to spread dirty pages and what the first usable zone */
3935 static inline void finalise_ac(gfp_t gfp_mask,
3936 unsigned int order, struct alloc_context *ac)
3937 {
3938 /* Dirty zone balancing only done in the fast path */
3939 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3940
3941 /*
3942 * The preferred zone is used for statistics but crucially it is
3943 * also used as the starting point for the zonelist iterator. It
3944 * may get reset for allocations that ignore memory policies.
3945 */
3946 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3947 ac->high_zoneidx, ac->nodemask);
3948 }
3949
3950 /*
3951 * This is the 'heart' of the zoned buddy allocator.
3952 */
3953 struct page *
3954 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3955 struct zonelist *zonelist, nodemask_t *nodemask)
3956 {
3957 struct page *page;
3958 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3959 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3960 struct alloc_context ac = { };
3961
3962 gfp_mask &= gfp_allowed_mask;
3963 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3964 return NULL;
3965
3966 finalise_ac(gfp_mask, order, &ac);
3967
3968 /* First allocation attempt */
3969 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3970 if (likely(page))
3971 goto out;
3972
3973 /*
3974 * Runtime PM, block IO and its error handling path can deadlock
3975 * because I/O on the device might not complete.
3976 */
3977 alloc_mask = memalloc_noio_flags(gfp_mask);
3978 ac.spread_dirty_pages = false;
3979
3980 /*
3981 * Restore the original nodemask if it was potentially replaced with
3982 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3983 */
3984 if (unlikely(ac.nodemask != nodemask))
3985 ac.nodemask = nodemask;
3986
3987 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3988
3989 out:
3990 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3991 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3992 __free_pages(page, order);
3993 page = NULL;
3994 }
3995
3996 if (kmemcheck_enabled && page)
3997 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3998
3999 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4000
4001 return page;
4002 }
4003 EXPORT_SYMBOL(__alloc_pages_nodemask);
4004
4005 /*
4006 * Common helper functions.
4007 */
4008 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4009 {
4010 struct page *page;
4011
4012 /*
4013 * __get_free_pages() returns a 32-bit address, which cannot represent
4014 * a highmem page
4015 */
4016 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4017
4018 page = alloc_pages(gfp_mask, order);
4019 if (!page)
4020 return 0;
4021 return (unsigned long) page_address(page);
4022 }
4023 EXPORT_SYMBOL(__get_free_pages);
4024
4025 unsigned long get_zeroed_page(gfp_t gfp_mask)
4026 {
4027 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4028 }
4029 EXPORT_SYMBOL(get_zeroed_page);
4030
4031 void __free_pages(struct page *page, unsigned int order)
4032 {
4033 if (put_page_testzero(page)) {
4034 if (order == 0)
4035 free_hot_cold_page(page, false);
4036 else
4037 __free_pages_ok(page, order);
4038 }
4039 }
4040
4041 EXPORT_SYMBOL(__free_pages);
4042
4043 void free_pages(unsigned long addr, unsigned int order)
4044 {
4045 if (addr != 0) {
4046 VM_BUG_ON(!virt_addr_valid((void *)addr));
4047 __free_pages(virt_to_page((void *)addr), order);
4048 }
4049 }
4050
4051 EXPORT_SYMBOL(free_pages);
4052
4053 /*
4054 * Page Fragment:
4055 * An arbitrary-length arbitrary-offset area of memory which resides
4056 * within a 0 or higher order page. Multiple fragments within that page
4057 * are individually refcounted, in the page's reference counter.
4058 *
4059 * The page_frag functions below provide a simple allocation framework for
4060 * page fragments. This is used by the network stack and network device
4061 * drivers to provide a backing region of memory for use as either an
4062 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4063 */
4064 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4065 gfp_t gfp_mask)
4066 {
4067 struct page *page = NULL;
4068 gfp_t gfp = gfp_mask;
4069
4070 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4071 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4072 __GFP_NOMEMALLOC;
4073 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4074 PAGE_FRAG_CACHE_MAX_ORDER);
4075 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4076 #endif
4077 if (unlikely(!page))
4078 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4079
4080 nc->va = page ? page_address(page) : NULL;
4081
4082 return page;
4083 }
4084
4085 void __page_frag_cache_drain(struct page *page, unsigned int count)
4086 {
4087 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4088
4089 if (page_ref_sub_and_test(page, count)) {
4090 unsigned int order = compound_order(page);
4091
4092 if (order == 0)
4093 free_hot_cold_page(page, false);
4094 else
4095 __free_pages_ok(page, order);
4096 }
4097 }
4098 EXPORT_SYMBOL(__page_frag_cache_drain);
4099
4100 void *page_frag_alloc(struct page_frag_cache *nc,
4101 unsigned int fragsz, gfp_t gfp_mask)
4102 {
4103 unsigned int size = PAGE_SIZE;
4104 struct page *page;
4105 int offset;
4106
4107 if (unlikely(!nc->va)) {
4108 refill:
4109 page = __page_frag_cache_refill(nc, gfp_mask);
4110 if (!page)
4111 return NULL;
4112
4113 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4114 /* if size can vary use size else just use PAGE_SIZE */
4115 size = nc->size;
4116 #endif
4117 /* Even if we own the page, we do not use atomic_set().
4118 * This would break get_page_unless_zero() users.
4119 */
4120 page_ref_add(page, size - 1);
4121
4122 /* reset page count bias and offset to start of new frag */
4123 nc->pfmemalloc = page_is_pfmemalloc(page);
4124 nc->pagecnt_bias = size;
4125 nc->offset = size;
4126 }
4127
4128 offset = nc->offset - fragsz;
4129 if (unlikely(offset < 0)) {
4130 page = virt_to_page(nc->va);
4131
4132 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4133 goto refill;
4134
4135 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4136 /* if size can vary use size else just use PAGE_SIZE */
4137 size = nc->size;
4138 #endif
4139 /* OK, page count is 0, we can safely set it */
4140 set_page_count(page, size);
4141
4142 /* reset page count bias and offset to start of new frag */
4143 nc->pagecnt_bias = size;
4144 offset = size - fragsz;
4145 }
4146
4147 nc->pagecnt_bias--;
4148 nc->offset = offset;
4149
4150 return nc->va + offset;
4151 }
4152 EXPORT_SYMBOL(page_frag_alloc);
4153
4154 /*
4155 * Frees a page fragment allocated out of either a compound or order 0 page.
4156 */
4157 void page_frag_free(void *addr)
4158 {
4159 struct page *page = virt_to_head_page(addr);
4160
4161 if (unlikely(put_page_testzero(page)))
4162 __free_pages_ok(page, compound_order(page));
4163 }
4164 EXPORT_SYMBOL(page_frag_free);
4165
4166 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4167 size_t size)
4168 {
4169 if (addr) {
4170 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4171 unsigned long used = addr + PAGE_ALIGN(size);
4172
4173 split_page(virt_to_page((void *)addr), order);
4174 while (used < alloc_end) {
4175 free_page(used);
4176 used += PAGE_SIZE;
4177 }
4178 }
4179 return (void *)addr;
4180 }
4181
4182 /**
4183 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4184 * @size: the number of bytes to allocate
4185 * @gfp_mask: GFP flags for the allocation
4186 *
4187 * This function is similar to alloc_pages(), except that it allocates the
4188 * minimum number of pages to satisfy the request. alloc_pages() can only
4189 * allocate memory in power-of-two pages.
4190 *
4191 * This function is also limited by MAX_ORDER.
4192 *
4193 * Memory allocated by this function must be released by free_pages_exact().
4194 */
4195 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4196 {
4197 unsigned int order = get_order(size);
4198 unsigned long addr;
4199
4200 addr = __get_free_pages(gfp_mask, order);
4201 return make_alloc_exact(addr, order, size);
4202 }
4203 EXPORT_SYMBOL(alloc_pages_exact);
4204
4205 /**
4206 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4207 * pages on a node.
4208 * @nid: the preferred node ID where memory should be allocated
4209 * @size: the number of bytes to allocate
4210 * @gfp_mask: GFP flags for the allocation
4211 *
4212 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4213 * back.
4214 */
4215 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4216 {
4217 unsigned int order = get_order(size);
4218 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4219 if (!p)
4220 return NULL;
4221 return make_alloc_exact((unsigned long)page_address(p), order, size);
4222 }
4223
4224 /**
4225 * free_pages_exact - release memory allocated via alloc_pages_exact()
4226 * @virt: the value returned by alloc_pages_exact.
4227 * @size: size of allocation, same value as passed to alloc_pages_exact().
4228 *
4229 * Release the memory allocated by a previous call to alloc_pages_exact.
4230 */
4231 void free_pages_exact(void *virt, size_t size)
4232 {
4233 unsigned long addr = (unsigned long)virt;
4234 unsigned long end = addr + PAGE_ALIGN(size);
4235
4236 while (addr < end) {
4237 free_page(addr);
4238 addr += PAGE_SIZE;
4239 }
4240 }
4241 EXPORT_SYMBOL(free_pages_exact);
4242
4243 /**
4244 * nr_free_zone_pages - count number of pages beyond high watermark
4245 * @offset: The zone index of the highest zone
4246 *
4247 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4248 * high watermark within all zones at or below a given zone index. For each
4249 * zone, the number of pages is calculated as:
4250 *
4251 * nr_free_zone_pages = managed_pages - high_pages
4252 */
4253 static unsigned long nr_free_zone_pages(int offset)
4254 {
4255 struct zoneref *z;
4256 struct zone *zone;
4257
4258 /* Just pick one node, since fallback list is circular */
4259 unsigned long sum = 0;
4260
4261 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4262
4263 for_each_zone_zonelist(zone, z, zonelist, offset) {
4264 unsigned long size = zone->managed_pages;
4265 unsigned long high = high_wmark_pages(zone);
4266 if (size > high)
4267 sum += size - high;
4268 }
4269
4270 return sum;
4271 }
4272
4273 /**
4274 * nr_free_buffer_pages - count number of pages beyond high watermark
4275 *
4276 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4277 * watermark within ZONE_DMA and ZONE_NORMAL.
4278 */
4279 unsigned long nr_free_buffer_pages(void)
4280 {
4281 return nr_free_zone_pages(gfp_zone(GFP_USER));
4282 }
4283 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4284
4285 /**
4286 * nr_free_pagecache_pages - count number of pages beyond high watermark
4287 *
4288 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4289 * high watermark within all zones.
4290 */
4291 unsigned long nr_free_pagecache_pages(void)
4292 {
4293 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4294 }
4295
4296 static inline void show_node(struct zone *zone)
4297 {
4298 if (IS_ENABLED(CONFIG_NUMA))
4299 printk("Node %d ", zone_to_nid(zone));
4300 }
4301
4302 long si_mem_available(void)
4303 {
4304 long available;
4305 unsigned long pagecache;
4306 unsigned long wmark_low = 0;
4307 unsigned long pages[NR_LRU_LISTS];
4308 struct zone *zone;
4309 int lru;
4310
4311 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4312 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4313
4314 for_each_zone(zone)
4315 wmark_low += zone->watermark[WMARK_LOW];
4316
4317 /*
4318 * Estimate the amount of memory available for userspace allocations,
4319 * without causing swapping.
4320 */
4321 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4322
4323 /*
4324 * Not all the page cache can be freed, otherwise the system will
4325 * start swapping. Assume at least half of the page cache, or the
4326 * low watermark worth of cache, needs to stay.
4327 */
4328 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4329 pagecache -= min(pagecache / 2, wmark_low);
4330 available += pagecache;
4331
4332 /*
4333 * Part of the reclaimable slab consists of items that are in use,
4334 * and cannot be freed. Cap this estimate at the low watermark.
4335 */
4336 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4337 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4338
4339 if (available < 0)
4340 available = 0;
4341 return available;
4342 }
4343 EXPORT_SYMBOL_GPL(si_mem_available);
4344
4345 void si_meminfo(struct sysinfo *val)
4346 {
4347 val->totalram = totalram_pages;
4348 val->sharedram = global_node_page_state(NR_SHMEM);
4349 val->freeram = global_page_state(NR_FREE_PAGES);
4350 val->bufferram = nr_blockdev_pages();
4351 val->totalhigh = totalhigh_pages;
4352 val->freehigh = nr_free_highpages();
4353 val->mem_unit = PAGE_SIZE;
4354 }
4355
4356 EXPORT_SYMBOL(si_meminfo);
4357
4358 #ifdef CONFIG_NUMA
4359 void si_meminfo_node(struct sysinfo *val, int nid)
4360 {
4361 int zone_type; /* needs to be signed */
4362 unsigned long managed_pages = 0;
4363 unsigned long managed_highpages = 0;
4364 unsigned long free_highpages = 0;
4365 pg_data_t *pgdat = NODE_DATA(nid);
4366
4367 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4368 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4369 val->totalram = managed_pages;
4370 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4371 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4372 #ifdef CONFIG_HIGHMEM
4373 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4374 struct zone *zone = &pgdat->node_zones[zone_type];
4375
4376 if (is_highmem(zone)) {
4377 managed_highpages += zone->managed_pages;
4378 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4379 }
4380 }
4381 val->totalhigh = managed_highpages;
4382 val->freehigh = free_highpages;
4383 #else
4384 val->totalhigh = managed_highpages;
4385 val->freehigh = free_highpages;
4386 #endif
4387 val->mem_unit = PAGE_SIZE;
4388 }
4389 #endif
4390
4391 /*
4392 * Determine whether the node should be displayed or not, depending on whether
4393 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4394 */
4395 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4396 {
4397 if (!(flags & SHOW_MEM_FILTER_NODES))
4398 return false;
4399
4400 /*
4401 * no node mask - aka implicit memory numa policy. Do not bother with
4402 * the synchronization - read_mems_allowed_begin - because we do not
4403 * have to be precise here.
4404 */
4405 if (!nodemask)
4406 nodemask = &cpuset_current_mems_allowed;
4407
4408 return !node_isset(nid, *nodemask);
4409 }
4410
4411 #define K(x) ((x) << (PAGE_SHIFT-10))
4412
4413 static void show_migration_types(unsigned char type)
4414 {
4415 static const char types[MIGRATE_TYPES] = {
4416 [MIGRATE_UNMOVABLE] = 'U',
4417 [MIGRATE_MOVABLE] = 'M',
4418 [MIGRATE_RECLAIMABLE] = 'E',
4419 [MIGRATE_HIGHATOMIC] = 'H',
4420 #ifdef CONFIG_CMA
4421 [MIGRATE_CMA] = 'C',
4422 #endif
4423 #ifdef CONFIG_MEMORY_ISOLATION
4424 [MIGRATE_ISOLATE] = 'I',
4425 #endif
4426 };
4427 char tmp[MIGRATE_TYPES + 1];
4428 char *p = tmp;
4429 int i;
4430
4431 for (i = 0; i < MIGRATE_TYPES; i++) {
4432 if (type & (1 << i))
4433 *p++ = types[i];
4434 }
4435
4436 *p = '\0';
4437 printk(KERN_CONT "(%s) ", tmp);
4438 }
4439
4440 /*
4441 * Show free area list (used inside shift_scroll-lock stuff)
4442 * We also calculate the percentage fragmentation. We do this by counting the
4443 * memory on each free list with the exception of the first item on the list.
4444 *
4445 * Bits in @filter:
4446 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4447 * cpuset.
4448 */
4449 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4450 {
4451 unsigned long free_pcp = 0;
4452 int cpu;
4453 struct zone *zone;
4454 pg_data_t *pgdat;
4455
4456 for_each_populated_zone(zone) {
4457 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4458 continue;
4459
4460 for_each_online_cpu(cpu)
4461 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4462 }
4463
4464 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4465 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4466 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4467 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4468 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4469 " free:%lu free_pcp:%lu free_cma:%lu\n",
4470 global_node_page_state(NR_ACTIVE_ANON),
4471 global_node_page_state(NR_INACTIVE_ANON),
4472 global_node_page_state(NR_ISOLATED_ANON),
4473 global_node_page_state(NR_ACTIVE_FILE),
4474 global_node_page_state(NR_INACTIVE_FILE),
4475 global_node_page_state(NR_ISOLATED_FILE),
4476 global_node_page_state(NR_UNEVICTABLE),
4477 global_node_page_state(NR_FILE_DIRTY),
4478 global_node_page_state(NR_WRITEBACK),
4479 global_node_page_state(NR_UNSTABLE_NFS),
4480 global_page_state(NR_SLAB_RECLAIMABLE),
4481 global_page_state(NR_SLAB_UNRECLAIMABLE),
4482 global_node_page_state(NR_FILE_MAPPED),
4483 global_node_page_state(NR_SHMEM),
4484 global_page_state(NR_PAGETABLE),
4485 global_page_state(NR_BOUNCE),
4486 global_page_state(NR_FREE_PAGES),
4487 free_pcp,
4488 global_page_state(NR_FREE_CMA_PAGES));
4489
4490 for_each_online_pgdat(pgdat) {
4491 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4492 continue;
4493
4494 printk("Node %d"
4495 " active_anon:%lukB"
4496 " inactive_anon:%lukB"
4497 " active_file:%lukB"
4498 " inactive_file:%lukB"
4499 " unevictable:%lukB"
4500 " isolated(anon):%lukB"
4501 " isolated(file):%lukB"
4502 " mapped:%lukB"
4503 " dirty:%lukB"
4504 " writeback:%lukB"
4505 " shmem:%lukB"
4506 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4507 " shmem_thp: %lukB"
4508 " shmem_pmdmapped: %lukB"
4509 " anon_thp: %lukB"
4510 #endif
4511 " writeback_tmp:%lukB"
4512 " unstable:%lukB"
4513 " pages_scanned:%lu"
4514 " all_unreclaimable? %s"
4515 "\n",
4516 pgdat->node_id,
4517 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4518 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4519 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4520 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4521 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4522 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4523 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4524 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4525 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4526 K(node_page_state(pgdat, NR_WRITEBACK)),
4527 K(node_page_state(pgdat, NR_SHMEM)),
4528 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4529 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4530 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4531 * HPAGE_PMD_NR),
4532 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4533 #endif
4534 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4535 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4536 node_page_state(pgdat, NR_PAGES_SCANNED),
4537 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4538 }
4539
4540 for_each_populated_zone(zone) {
4541 int i;
4542
4543 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4544 continue;
4545
4546 free_pcp = 0;
4547 for_each_online_cpu(cpu)
4548 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4549
4550 show_node(zone);
4551 printk(KERN_CONT
4552 "%s"
4553 " free:%lukB"
4554 " min:%lukB"
4555 " low:%lukB"
4556 " high:%lukB"
4557 " active_anon:%lukB"
4558 " inactive_anon:%lukB"
4559 " active_file:%lukB"
4560 " inactive_file:%lukB"
4561 " unevictable:%lukB"
4562 " writepending:%lukB"
4563 " present:%lukB"
4564 " managed:%lukB"
4565 " mlocked:%lukB"
4566 " slab_reclaimable:%lukB"
4567 " slab_unreclaimable:%lukB"
4568 " kernel_stack:%lukB"
4569 " pagetables:%lukB"
4570 " bounce:%lukB"
4571 " free_pcp:%lukB"
4572 " local_pcp:%ukB"
4573 " free_cma:%lukB"
4574 "\n",
4575 zone->name,
4576 K(zone_page_state(zone, NR_FREE_PAGES)),
4577 K(min_wmark_pages(zone)),
4578 K(low_wmark_pages(zone)),
4579 K(high_wmark_pages(zone)),
4580 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4581 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4582 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4583 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4584 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4585 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4586 K(zone->present_pages),
4587 K(zone->managed_pages),
4588 K(zone_page_state(zone, NR_MLOCK)),
4589 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4590 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4591 zone_page_state(zone, NR_KERNEL_STACK_KB),
4592 K(zone_page_state(zone, NR_PAGETABLE)),
4593 K(zone_page_state(zone, NR_BOUNCE)),
4594 K(free_pcp),
4595 K(this_cpu_read(zone->pageset->pcp.count)),
4596 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4597 printk("lowmem_reserve[]:");
4598 for (i = 0; i < MAX_NR_ZONES; i++)
4599 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4600 printk(KERN_CONT "\n");
4601 }
4602
4603 for_each_populated_zone(zone) {
4604 unsigned int order;
4605 unsigned long nr[MAX_ORDER], flags, total = 0;
4606 unsigned char types[MAX_ORDER];
4607
4608 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4609 continue;
4610 show_node(zone);
4611 printk(KERN_CONT "%s: ", zone->name);
4612
4613 spin_lock_irqsave(&zone->lock, flags);
4614 for (order = 0; order < MAX_ORDER; order++) {
4615 struct free_area *area = &zone->free_area[order];
4616 int type;
4617
4618 nr[order] = area->nr_free;
4619 total += nr[order] << order;
4620
4621 types[order] = 0;
4622 for (type = 0; type < MIGRATE_TYPES; type++) {
4623 if (!list_empty(&area->free_list[type]))
4624 types[order] |= 1 << type;
4625 }
4626 }
4627 spin_unlock_irqrestore(&zone->lock, flags);
4628 for (order = 0; order < MAX_ORDER; order++) {
4629 printk(KERN_CONT "%lu*%lukB ",
4630 nr[order], K(1UL) << order);
4631 if (nr[order])
4632 show_migration_types(types[order]);
4633 }
4634 printk(KERN_CONT "= %lukB\n", K(total));
4635 }
4636
4637 hugetlb_show_meminfo();
4638
4639 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4640
4641 show_swap_cache_info();
4642 }
4643
4644 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4645 {
4646 zoneref->zone = zone;
4647 zoneref->zone_idx = zone_idx(zone);
4648 }
4649
4650 /*
4651 * Builds allocation fallback zone lists.
4652 *
4653 * Add all populated zones of a node to the zonelist.
4654 */
4655 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4656 int nr_zones)
4657 {
4658 struct zone *zone;
4659 enum zone_type zone_type = MAX_NR_ZONES;
4660
4661 do {
4662 zone_type--;
4663 zone = pgdat->node_zones + zone_type;
4664 if (managed_zone(zone)) {
4665 zoneref_set_zone(zone,
4666 &zonelist->_zonerefs[nr_zones++]);
4667 check_highest_zone(zone_type);
4668 }
4669 } while (zone_type);
4670
4671 return nr_zones;
4672 }
4673
4674
4675 /*
4676 * zonelist_order:
4677 * 0 = automatic detection of better ordering.
4678 * 1 = order by ([node] distance, -zonetype)
4679 * 2 = order by (-zonetype, [node] distance)
4680 *
4681 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4682 * the same zonelist. So only NUMA can configure this param.
4683 */
4684 #define ZONELIST_ORDER_DEFAULT 0
4685 #define ZONELIST_ORDER_NODE 1
4686 #define ZONELIST_ORDER_ZONE 2
4687
4688 /* zonelist order in the kernel.
4689 * set_zonelist_order() will set this to NODE or ZONE.
4690 */
4691 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4692 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4693
4694
4695 #ifdef CONFIG_NUMA
4696 /* The value user specified ....changed by config */
4697 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4698 /* string for sysctl */
4699 #define NUMA_ZONELIST_ORDER_LEN 16
4700 char numa_zonelist_order[16] = "default";
4701
4702 /*
4703 * interface for configure zonelist ordering.
4704 * command line option "numa_zonelist_order"
4705 * = "[dD]efault - default, automatic configuration.
4706 * = "[nN]ode - order by node locality, then by zone within node
4707 * = "[zZ]one - order by zone, then by locality within zone
4708 */
4709
4710 static int __parse_numa_zonelist_order(char *s)
4711 {
4712 if (*s == 'd' || *s == 'D') {
4713 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4714 } else if (*s == 'n' || *s == 'N') {
4715 user_zonelist_order = ZONELIST_ORDER_NODE;
4716 } else if (*s == 'z' || *s == 'Z') {
4717 user_zonelist_order = ZONELIST_ORDER_ZONE;
4718 } else {
4719 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4720 return -EINVAL;
4721 }
4722 return 0;
4723 }
4724
4725 static __init int setup_numa_zonelist_order(char *s)
4726 {
4727 int ret;
4728
4729 if (!s)
4730 return 0;
4731
4732 ret = __parse_numa_zonelist_order(s);
4733 if (ret == 0)
4734 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4735
4736 return ret;
4737 }
4738 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4739
4740 /*
4741 * sysctl handler for numa_zonelist_order
4742 */
4743 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4744 void __user *buffer, size_t *length,
4745 loff_t *ppos)
4746 {
4747 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4748 int ret;
4749 static DEFINE_MUTEX(zl_order_mutex);
4750
4751 mutex_lock(&zl_order_mutex);
4752 if (write) {
4753 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4754 ret = -EINVAL;
4755 goto out;
4756 }
4757 strcpy(saved_string, (char *)table->data);
4758 }
4759 ret = proc_dostring(table, write, buffer, length, ppos);
4760 if (ret)
4761 goto out;
4762 if (write) {
4763 int oldval = user_zonelist_order;
4764
4765 ret = __parse_numa_zonelist_order((char *)table->data);
4766 if (ret) {
4767 /*
4768 * bogus value. restore saved string
4769 */
4770 strncpy((char *)table->data, saved_string,
4771 NUMA_ZONELIST_ORDER_LEN);
4772 user_zonelist_order = oldval;
4773 } else if (oldval != user_zonelist_order) {
4774 mutex_lock(&zonelists_mutex);
4775 build_all_zonelists(NULL, NULL);
4776 mutex_unlock(&zonelists_mutex);
4777 }
4778 }
4779 out:
4780 mutex_unlock(&zl_order_mutex);
4781 return ret;
4782 }
4783
4784
4785 #define MAX_NODE_LOAD (nr_online_nodes)
4786 static int node_load[MAX_NUMNODES];
4787
4788 /**
4789 * find_next_best_node - find the next node that should appear in a given node's fallback list
4790 * @node: node whose fallback list we're appending
4791 * @used_node_mask: nodemask_t of already used nodes
4792 *
4793 * We use a number of factors to determine which is the next node that should
4794 * appear on a given node's fallback list. The node should not have appeared
4795 * already in @node's fallback list, and it should be the next closest node
4796 * according to the distance array (which contains arbitrary distance values
4797 * from each node to each node in the system), and should also prefer nodes
4798 * with no CPUs, since presumably they'll have very little allocation pressure
4799 * on them otherwise.
4800 * It returns -1 if no node is found.
4801 */
4802 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4803 {
4804 int n, val;
4805 int min_val = INT_MAX;
4806 int best_node = NUMA_NO_NODE;
4807 const struct cpumask *tmp = cpumask_of_node(0);
4808
4809 /* Use the local node if we haven't already */
4810 if (!node_isset(node, *used_node_mask)) {
4811 node_set(node, *used_node_mask);
4812 return node;
4813 }
4814
4815 for_each_node_state(n, N_MEMORY) {
4816
4817 /* Don't want a node to appear more than once */
4818 if (node_isset(n, *used_node_mask))
4819 continue;
4820
4821 /* Use the distance array to find the distance */
4822 val = node_distance(node, n);
4823
4824 /* Penalize nodes under us ("prefer the next node") */
4825 val += (n < node);
4826
4827 /* Give preference to headless and unused nodes */
4828 tmp = cpumask_of_node(n);
4829 if (!cpumask_empty(tmp))
4830 val += PENALTY_FOR_NODE_WITH_CPUS;
4831
4832 /* Slight preference for less loaded node */
4833 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4834 val += node_load[n];
4835
4836 if (val < min_val) {
4837 min_val = val;
4838 best_node = n;
4839 }
4840 }
4841
4842 if (best_node >= 0)
4843 node_set(best_node, *used_node_mask);
4844
4845 return best_node;
4846 }
4847
4848
4849 /*
4850 * Build zonelists ordered by node and zones within node.
4851 * This results in maximum locality--normal zone overflows into local
4852 * DMA zone, if any--but risks exhausting DMA zone.
4853 */
4854 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4855 {
4856 int j;
4857 struct zonelist *zonelist;
4858
4859 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4860 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4861 ;
4862 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4863 zonelist->_zonerefs[j].zone = NULL;
4864 zonelist->_zonerefs[j].zone_idx = 0;
4865 }
4866
4867 /*
4868 * Build gfp_thisnode zonelists
4869 */
4870 static void build_thisnode_zonelists(pg_data_t *pgdat)
4871 {
4872 int j;
4873 struct zonelist *zonelist;
4874
4875 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4876 j = build_zonelists_node(pgdat, zonelist, 0);
4877 zonelist->_zonerefs[j].zone = NULL;
4878 zonelist->_zonerefs[j].zone_idx = 0;
4879 }
4880
4881 /*
4882 * Build zonelists ordered by zone and nodes within zones.
4883 * This results in conserving DMA zone[s] until all Normal memory is
4884 * exhausted, but results in overflowing to remote node while memory
4885 * may still exist in local DMA zone.
4886 */
4887 static int node_order[MAX_NUMNODES];
4888
4889 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4890 {
4891 int pos, j, node;
4892 int zone_type; /* needs to be signed */
4893 struct zone *z;
4894 struct zonelist *zonelist;
4895
4896 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4897 pos = 0;
4898 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4899 for (j = 0; j < nr_nodes; j++) {
4900 node = node_order[j];
4901 z = &NODE_DATA(node)->node_zones[zone_type];
4902 if (managed_zone(z)) {
4903 zoneref_set_zone(z,
4904 &zonelist->_zonerefs[pos++]);
4905 check_highest_zone(zone_type);
4906 }
4907 }
4908 }
4909 zonelist->_zonerefs[pos].zone = NULL;
4910 zonelist->_zonerefs[pos].zone_idx = 0;
4911 }
4912
4913 #if defined(CONFIG_64BIT)
4914 /*
4915 * Devices that require DMA32/DMA are relatively rare and do not justify a
4916 * penalty to every machine in case the specialised case applies. Default
4917 * to Node-ordering on 64-bit NUMA machines
4918 */
4919 static int default_zonelist_order(void)
4920 {
4921 return ZONELIST_ORDER_NODE;
4922 }
4923 #else
4924 /*
4925 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4926 * by the kernel. If processes running on node 0 deplete the low memory zone
4927 * then reclaim will occur more frequency increasing stalls and potentially
4928 * be easier to OOM if a large percentage of the zone is under writeback or
4929 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4930 * Hence, default to zone ordering on 32-bit.
4931 */
4932 static int default_zonelist_order(void)
4933 {
4934 return ZONELIST_ORDER_ZONE;
4935 }
4936 #endif /* CONFIG_64BIT */
4937
4938 static void set_zonelist_order(void)
4939 {
4940 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4941 current_zonelist_order = default_zonelist_order();
4942 else
4943 current_zonelist_order = user_zonelist_order;
4944 }
4945
4946 static void build_zonelists(pg_data_t *pgdat)
4947 {
4948 int i, node, load;
4949 nodemask_t used_mask;
4950 int local_node, prev_node;
4951 struct zonelist *zonelist;
4952 unsigned int order = current_zonelist_order;
4953
4954 /* initialize zonelists */
4955 for (i = 0; i < MAX_ZONELISTS; i++) {
4956 zonelist = pgdat->node_zonelists + i;
4957 zonelist->_zonerefs[0].zone = NULL;
4958 zonelist->_zonerefs[0].zone_idx = 0;
4959 }
4960
4961 /* NUMA-aware ordering of nodes */
4962 local_node = pgdat->node_id;
4963 load = nr_online_nodes;
4964 prev_node = local_node;
4965 nodes_clear(used_mask);
4966
4967 memset(node_order, 0, sizeof(node_order));
4968 i = 0;
4969
4970 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4971 /*
4972 * We don't want to pressure a particular node.
4973 * So adding penalty to the first node in same
4974 * distance group to make it round-robin.
4975 */
4976 if (node_distance(local_node, node) !=
4977 node_distance(local_node, prev_node))
4978 node_load[node] = load;
4979
4980 prev_node = node;
4981 load--;
4982 if (order == ZONELIST_ORDER_NODE)
4983 build_zonelists_in_node_order(pgdat, node);
4984 else
4985 node_order[i++] = node; /* remember order */
4986 }
4987
4988 if (order == ZONELIST_ORDER_ZONE) {
4989 /* calculate node order -- i.e., DMA last! */
4990 build_zonelists_in_zone_order(pgdat, i);
4991 }
4992
4993 build_thisnode_zonelists(pgdat);
4994 }
4995
4996 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4997 /*
4998 * Return node id of node used for "local" allocations.
4999 * I.e., first node id of first zone in arg node's generic zonelist.
5000 * Used for initializing percpu 'numa_mem', which is used primarily
5001 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5002 */
5003 int local_memory_node(int node)
5004 {
5005 struct zoneref *z;
5006
5007 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5008 gfp_zone(GFP_KERNEL),
5009 NULL);
5010 return z->zone->node;
5011 }
5012 #endif
5013
5014 static void setup_min_unmapped_ratio(void);
5015 static void setup_min_slab_ratio(void);
5016 #else /* CONFIG_NUMA */
5017
5018 static void set_zonelist_order(void)
5019 {
5020 current_zonelist_order = ZONELIST_ORDER_ZONE;
5021 }
5022
5023 static void build_zonelists(pg_data_t *pgdat)
5024 {
5025 int node, local_node;
5026 enum zone_type j;
5027 struct zonelist *zonelist;
5028
5029 local_node = pgdat->node_id;
5030
5031 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5032 j = build_zonelists_node(pgdat, zonelist, 0);
5033
5034 /*
5035 * Now we build the zonelist so that it contains the zones
5036 * of all the other nodes.
5037 * We don't want to pressure a particular node, so when
5038 * building the zones for node N, we make sure that the
5039 * zones coming right after the local ones are those from
5040 * node N+1 (modulo N)
5041 */
5042 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5043 if (!node_online(node))
5044 continue;
5045 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5046 }
5047 for (node = 0; node < local_node; node++) {
5048 if (!node_online(node))
5049 continue;
5050 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5051 }
5052
5053 zonelist->_zonerefs[j].zone = NULL;
5054 zonelist->_zonerefs[j].zone_idx = 0;
5055 }
5056
5057 #endif /* CONFIG_NUMA */
5058
5059 /*
5060 * Boot pageset table. One per cpu which is going to be used for all
5061 * zones and all nodes. The parameters will be set in such a way
5062 * that an item put on a list will immediately be handed over to
5063 * the buddy list. This is safe since pageset manipulation is done
5064 * with interrupts disabled.
5065 *
5066 * The boot_pagesets must be kept even after bootup is complete for
5067 * unused processors and/or zones. They do play a role for bootstrapping
5068 * hotplugged processors.
5069 *
5070 * zoneinfo_show() and maybe other functions do
5071 * not check if the processor is online before following the pageset pointer.
5072 * Other parts of the kernel may not check if the zone is available.
5073 */
5074 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5075 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5076 static void setup_zone_pageset(struct zone *zone);
5077
5078 /*
5079 * Global mutex to protect against size modification of zonelists
5080 * as well as to serialize pageset setup for the new populated zone.
5081 */
5082 DEFINE_MUTEX(zonelists_mutex);
5083
5084 /* return values int ....just for stop_machine() */
5085 static int __build_all_zonelists(void *data)
5086 {
5087 int nid;
5088 int cpu;
5089 pg_data_t *self = data;
5090
5091 #ifdef CONFIG_NUMA
5092 memset(node_load, 0, sizeof(node_load));
5093 #endif
5094
5095 if (self && !node_online(self->node_id)) {
5096 build_zonelists(self);
5097 }
5098
5099 for_each_online_node(nid) {
5100 pg_data_t *pgdat = NODE_DATA(nid);
5101
5102 build_zonelists(pgdat);
5103 }
5104
5105 /*
5106 * Initialize the boot_pagesets that are going to be used
5107 * for bootstrapping processors. The real pagesets for
5108 * each zone will be allocated later when the per cpu
5109 * allocator is available.
5110 *
5111 * boot_pagesets are used also for bootstrapping offline
5112 * cpus if the system is already booted because the pagesets
5113 * are needed to initialize allocators on a specific cpu too.
5114 * F.e. the percpu allocator needs the page allocator which
5115 * needs the percpu allocator in order to allocate its pagesets
5116 * (a chicken-egg dilemma).
5117 */
5118 for_each_possible_cpu(cpu) {
5119 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5120
5121 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5122 /*
5123 * We now know the "local memory node" for each node--
5124 * i.e., the node of the first zone in the generic zonelist.
5125 * Set up numa_mem percpu variable for on-line cpus. During
5126 * boot, only the boot cpu should be on-line; we'll init the
5127 * secondary cpus' numa_mem as they come on-line. During
5128 * node/memory hotplug, we'll fixup all on-line cpus.
5129 */
5130 if (cpu_online(cpu))
5131 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5132 #endif
5133 }
5134
5135 return 0;
5136 }
5137
5138 static noinline void __init
5139 build_all_zonelists_init(void)
5140 {
5141 __build_all_zonelists(NULL);
5142 mminit_verify_zonelist();
5143 cpuset_init_current_mems_allowed();
5144 }
5145
5146 /*
5147 * Called with zonelists_mutex held always
5148 * unless system_state == SYSTEM_BOOTING.
5149 *
5150 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5151 * [we're only called with non-NULL zone through __meminit paths] and
5152 * (2) call of __init annotated helper build_all_zonelists_init
5153 * [protected by SYSTEM_BOOTING].
5154 */
5155 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5156 {
5157 set_zonelist_order();
5158
5159 if (system_state == SYSTEM_BOOTING) {
5160 build_all_zonelists_init();
5161 } else {
5162 #ifdef CONFIG_MEMORY_HOTPLUG
5163 if (zone)
5164 setup_zone_pageset(zone);
5165 #endif
5166 /* we have to stop all cpus to guarantee there is no user
5167 of zonelist */
5168 stop_machine(__build_all_zonelists, pgdat, NULL);
5169 /* cpuset refresh routine should be here */
5170 }
5171 vm_total_pages = nr_free_pagecache_pages();
5172 /*
5173 * Disable grouping by mobility if the number of pages in the
5174 * system is too low to allow the mechanism to work. It would be
5175 * more accurate, but expensive to check per-zone. This check is
5176 * made on memory-hotadd so a system can start with mobility
5177 * disabled and enable it later
5178 */
5179 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5180 page_group_by_mobility_disabled = 1;
5181 else
5182 page_group_by_mobility_disabled = 0;
5183
5184 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5185 nr_online_nodes,
5186 zonelist_order_name[current_zonelist_order],
5187 page_group_by_mobility_disabled ? "off" : "on",
5188 vm_total_pages);
5189 #ifdef CONFIG_NUMA
5190 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5191 #endif
5192 }
5193
5194 /*
5195 * Initially all pages are reserved - free ones are freed
5196 * up by free_all_bootmem() once the early boot process is
5197 * done. Non-atomic initialization, single-pass.
5198 */
5199 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5200 unsigned long start_pfn, enum memmap_context context)
5201 {
5202 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5203 unsigned long end_pfn = start_pfn + size;
5204 pg_data_t *pgdat = NODE_DATA(nid);
5205 unsigned long pfn;
5206 unsigned long nr_initialised = 0;
5207 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5208 struct memblock_region *r = NULL, *tmp;
5209 #endif
5210
5211 if (highest_memmap_pfn < end_pfn - 1)
5212 highest_memmap_pfn = end_pfn - 1;
5213
5214 /*
5215 * Honor reservation requested by the driver for this ZONE_DEVICE
5216 * memory
5217 */
5218 if (altmap && start_pfn == altmap->base_pfn)
5219 start_pfn += altmap->reserve;
5220
5221 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5222 /*
5223 * There can be holes in boot-time mem_map[]s handed to this
5224 * function. They do not exist on hotplugged memory.
5225 */
5226 if (context != MEMMAP_EARLY)
5227 goto not_early;
5228
5229 if (!early_pfn_valid(pfn)) {
5230 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5231 /*
5232 * Skip to the pfn preceding the next valid one (or
5233 * end_pfn), such that we hit a valid pfn (or end_pfn)
5234 * on our next iteration of the loop.
5235 */
5236 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5237 #endif
5238 continue;
5239 }
5240 if (!early_pfn_in_nid(pfn, nid))
5241 continue;
5242 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5243 break;
5244
5245 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5246 /*
5247 * Check given memblock attribute by firmware which can affect
5248 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5249 * mirrored, it's an overlapped memmap init. skip it.
5250 */
5251 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5252 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5253 for_each_memblock(memory, tmp)
5254 if (pfn < memblock_region_memory_end_pfn(tmp))
5255 break;
5256 r = tmp;
5257 }
5258 if (pfn >= memblock_region_memory_base_pfn(r) &&
5259 memblock_is_mirror(r)) {
5260 /* already initialized as NORMAL */
5261 pfn = memblock_region_memory_end_pfn(r);
5262 continue;
5263 }
5264 }
5265 #endif
5266
5267 not_early:
5268 /*
5269 * Mark the block movable so that blocks are reserved for
5270 * movable at startup. This will force kernel allocations
5271 * to reserve their blocks rather than leaking throughout
5272 * the address space during boot when many long-lived
5273 * kernel allocations are made.
5274 *
5275 * bitmap is created for zone's valid pfn range. but memmap
5276 * can be created for invalid pages (for alignment)
5277 * check here not to call set_pageblock_migratetype() against
5278 * pfn out of zone.
5279 */
5280 if (!(pfn & (pageblock_nr_pages - 1))) {
5281 struct page *page = pfn_to_page(pfn);
5282
5283 __init_single_page(page, pfn, zone, nid);
5284 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5285 } else {
5286 __init_single_pfn(pfn, zone, nid);
5287 }
5288 }
5289 }
5290
5291 static void __meminit zone_init_free_lists(struct zone *zone)
5292 {
5293 unsigned int order, t;
5294 for_each_migratetype_order(order, t) {
5295 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5296 zone->free_area[order].nr_free = 0;
5297 }
5298 }
5299
5300 #ifndef __HAVE_ARCH_MEMMAP_INIT
5301 #define memmap_init(size, nid, zone, start_pfn) \
5302 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5303 #endif
5304
5305 static int zone_batchsize(struct zone *zone)
5306 {
5307 #ifdef CONFIG_MMU
5308 int batch;
5309
5310 /*
5311 * The per-cpu-pages pools are set to around 1000th of the
5312 * size of the zone. But no more than 1/2 of a meg.
5313 *
5314 * OK, so we don't know how big the cache is. So guess.
5315 */
5316 batch = zone->managed_pages / 1024;
5317 if (batch * PAGE_SIZE > 512 * 1024)
5318 batch = (512 * 1024) / PAGE_SIZE;
5319 batch /= 4; /* We effectively *= 4 below */
5320 if (batch < 1)
5321 batch = 1;
5322
5323 /*
5324 * Clamp the batch to a 2^n - 1 value. Having a power
5325 * of 2 value was found to be more likely to have
5326 * suboptimal cache aliasing properties in some cases.
5327 *
5328 * For example if 2 tasks are alternately allocating
5329 * batches of pages, one task can end up with a lot
5330 * of pages of one half of the possible page colors
5331 * and the other with pages of the other colors.
5332 */
5333 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5334
5335 return batch;
5336
5337 #else
5338 /* The deferral and batching of frees should be suppressed under NOMMU
5339 * conditions.
5340 *
5341 * The problem is that NOMMU needs to be able to allocate large chunks
5342 * of contiguous memory as there's no hardware page translation to
5343 * assemble apparent contiguous memory from discontiguous pages.
5344 *
5345 * Queueing large contiguous runs of pages for batching, however,
5346 * causes the pages to actually be freed in smaller chunks. As there
5347 * can be a significant delay between the individual batches being
5348 * recycled, this leads to the once large chunks of space being
5349 * fragmented and becoming unavailable for high-order allocations.
5350 */
5351 return 0;
5352 #endif
5353 }
5354
5355 /*
5356 * pcp->high and pcp->batch values are related and dependent on one another:
5357 * ->batch must never be higher then ->high.
5358 * The following function updates them in a safe manner without read side
5359 * locking.
5360 *
5361 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5362 * those fields changing asynchronously (acording the the above rule).
5363 *
5364 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5365 * outside of boot time (or some other assurance that no concurrent updaters
5366 * exist).
5367 */
5368 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5369 unsigned long batch)
5370 {
5371 /* start with a fail safe value for batch */
5372 pcp->batch = 1;
5373 smp_wmb();
5374
5375 /* Update high, then batch, in order */
5376 pcp->high = high;
5377 smp_wmb();
5378
5379 pcp->batch = batch;
5380 }
5381
5382 /* a companion to pageset_set_high() */
5383 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5384 {
5385 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5386 }
5387
5388 static void pageset_init(struct per_cpu_pageset *p)
5389 {
5390 struct per_cpu_pages *pcp;
5391 int migratetype;
5392
5393 memset(p, 0, sizeof(*p));
5394
5395 pcp = &p->pcp;
5396 pcp->count = 0;
5397 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5398 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5399 }
5400
5401 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5402 {
5403 pageset_init(p);
5404 pageset_set_batch(p, batch);
5405 }
5406
5407 /*
5408 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5409 * to the value high for the pageset p.
5410 */
5411 static void pageset_set_high(struct per_cpu_pageset *p,
5412 unsigned long high)
5413 {
5414 unsigned long batch = max(1UL, high / 4);
5415 if ((high / 4) > (PAGE_SHIFT * 8))
5416 batch = PAGE_SHIFT * 8;
5417
5418 pageset_update(&p->pcp, high, batch);
5419 }
5420
5421 static void pageset_set_high_and_batch(struct zone *zone,
5422 struct per_cpu_pageset *pcp)
5423 {
5424 if (percpu_pagelist_fraction)
5425 pageset_set_high(pcp,
5426 (zone->managed_pages /
5427 percpu_pagelist_fraction));
5428 else
5429 pageset_set_batch(pcp, zone_batchsize(zone));
5430 }
5431
5432 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5433 {
5434 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5435
5436 pageset_init(pcp);
5437 pageset_set_high_and_batch(zone, pcp);
5438 }
5439
5440 static void __meminit setup_zone_pageset(struct zone *zone)
5441 {
5442 int cpu;
5443 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5444 for_each_possible_cpu(cpu)
5445 zone_pageset_init(zone, cpu);
5446 }
5447
5448 /*
5449 * Allocate per cpu pagesets and initialize them.
5450 * Before this call only boot pagesets were available.
5451 */
5452 void __init setup_per_cpu_pageset(void)
5453 {
5454 struct pglist_data *pgdat;
5455 struct zone *zone;
5456
5457 for_each_populated_zone(zone)
5458 setup_zone_pageset(zone);
5459
5460 for_each_online_pgdat(pgdat)
5461 pgdat->per_cpu_nodestats =
5462 alloc_percpu(struct per_cpu_nodestat);
5463 }
5464
5465 static __meminit void zone_pcp_init(struct zone *zone)
5466 {
5467 /*
5468 * per cpu subsystem is not up at this point. The following code
5469 * relies on the ability of the linker to provide the
5470 * offset of a (static) per cpu variable into the per cpu area.
5471 */
5472 zone->pageset = &boot_pageset;
5473
5474 if (populated_zone(zone))
5475 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5476 zone->name, zone->present_pages,
5477 zone_batchsize(zone));
5478 }
5479
5480 int __meminit init_currently_empty_zone(struct zone *zone,
5481 unsigned long zone_start_pfn,
5482 unsigned long size)
5483 {
5484 struct pglist_data *pgdat = zone->zone_pgdat;
5485
5486 pgdat->nr_zones = zone_idx(zone) + 1;
5487
5488 zone->zone_start_pfn = zone_start_pfn;
5489
5490 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5491 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5492 pgdat->node_id,
5493 (unsigned long)zone_idx(zone),
5494 zone_start_pfn, (zone_start_pfn + size));
5495
5496 zone_init_free_lists(zone);
5497 zone->initialized = 1;
5498
5499 return 0;
5500 }
5501
5502 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5503 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5504
5505 /*
5506 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5507 */
5508 int __meminit __early_pfn_to_nid(unsigned long pfn,
5509 struct mminit_pfnnid_cache *state)
5510 {
5511 unsigned long start_pfn, end_pfn;
5512 int nid;
5513
5514 if (state->last_start <= pfn && pfn < state->last_end)
5515 return state->last_nid;
5516
5517 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5518 if (nid != -1) {
5519 state->last_start = start_pfn;
5520 state->last_end = end_pfn;
5521 state->last_nid = nid;
5522 }
5523
5524 return nid;
5525 }
5526 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5527
5528 /**
5529 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5530 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5531 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5532 *
5533 * If an architecture guarantees that all ranges registered contain no holes
5534 * and may be freed, this this function may be used instead of calling
5535 * memblock_free_early_nid() manually.
5536 */
5537 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5538 {
5539 unsigned long start_pfn, end_pfn;
5540 int i, this_nid;
5541
5542 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5543 start_pfn = min(start_pfn, max_low_pfn);
5544 end_pfn = min(end_pfn, max_low_pfn);
5545
5546 if (start_pfn < end_pfn)
5547 memblock_free_early_nid(PFN_PHYS(start_pfn),
5548 (end_pfn - start_pfn) << PAGE_SHIFT,
5549 this_nid);
5550 }
5551 }
5552
5553 /**
5554 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5555 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5556 *
5557 * If an architecture guarantees that all ranges registered contain no holes and may
5558 * be freed, this function may be used instead of calling memory_present() manually.
5559 */
5560 void __init sparse_memory_present_with_active_regions(int nid)
5561 {
5562 unsigned long start_pfn, end_pfn;
5563 int i, this_nid;
5564
5565 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5566 memory_present(this_nid, start_pfn, end_pfn);
5567 }
5568
5569 /**
5570 * get_pfn_range_for_nid - Return the start and end page frames for a node
5571 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5572 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5573 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5574 *
5575 * It returns the start and end page frame of a node based on information
5576 * provided by memblock_set_node(). If called for a node
5577 * with no available memory, a warning is printed and the start and end
5578 * PFNs will be 0.
5579 */
5580 void __meminit get_pfn_range_for_nid(unsigned int nid,
5581 unsigned long *start_pfn, unsigned long *end_pfn)
5582 {
5583 unsigned long this_start_pfn, this_end_pfn;
5584 int i;
5585
5586 *start_pfn = -1UL;
5587 *end_pfn = 0;
5588
5589 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5590 *start_pfn = min(*start_pfn, this_start_pfn);
5591 *end_pfn = max(*end_pfn, this_end_pfn);
5592 }
5593
5594 if (*start_pfn == -1UL)
5595 *start_pfn = 0;
5596 }
5597
5598 /*
5599 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5600 * assumption is made that zones within a node are ordered in monotonic
5601 * increasing memory addresses so that the "highest" populated zone is used
5602 */
5603 static void __init find_usable_zone_for_movable(void)
5604 {
5605 int zone_index;
5606 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5607 if (zone_index == ZONE_MOVABLE)
5608 continue;
5609
5610 if (arch_zone_highest_possible_pfn[zone_index] >
5611 arch_zone_lowest_possible_pfn[zone_index])
5612 break;
5613 }
5614
5615 VM_BUG_ON(zone_index == -1);
5616 movable_zone = zone_index;
5617 }
5618
5619 /*
5620 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5621 * because it is sized independent of architecture. Unlike the other zones,
5622 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5623 * in each node depending on the size of each node and how evenly kernelcore
5624 * is distributed. This helper function adjusts the zone ranges
5625 * provided by the architecture for a given node by using the end of the
5626 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5627 * zones within a node are in order of monotonic increases memory addresses
5628 */
5629 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5630 unsigned long zone_type,
5631 unsigned long node_start_pfn,
5632 unsigned long node_end_pfn,
5633 unsigned long *zone_start_pfn,
5634 unsigned long *zone_end_pfn)
5635 {
5636 /* Only adjust if ZONE_MOVABLE is on this node */
5637 if (zone_movable_pfn[nid]) {
5638 /* Size ZONE_MOVABLE */
5639 if (zone_type == ZONE_MOVABLE) {
5640 *zone_start_pfn = zone_movable_pfn[nid];
5641 *zone_end_pfn = min(node_end_pfn,
5642 arch_zone_highest_possible_pfn[movable_zone]);
5643
5644 /* Adjust for ZONE_MOVABLE starting within this range */
5645 } else if (!mirrored_kernelcore &&
5646 *zone_start_pfn < zone_movable_pfn[nid] &&
5647 *zone_end_pfn > zone_movable_pfn[nid]) {
5648 *zone_end_pfn = zone_movable_pfn[nid];
5649
5650 /* Check if this whole range is within ZONE_MOVABLE */
5651 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5652 *zone_start_pfn = *zone_end_pfn;
5653 }
5654 }
5655
5656 /*
5657 * Return the number of pages a zone spans in a node, including holes
5658 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5659 */
5660 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5661 unsigned long zone_type,
5662 unsigned long node_start_pfn,
5663 unsigned long node_end_pfn,
5664 unsigned long *zone_start_pfn,
5665 unsigned long *zone_end_pfn,
5666 unsigned long *ignored)
5667 {
5668 /* When hotadd a new node from cpu_up(), the node should be empty */
5669 if (!node_start_pfn && !node_end_pfn)
5670 return 0;
5671
5672 /* Get the start and end of the zone */
5673 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5674 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5675 adjust_zone_range_for_zone_movable(nid, zone_type,
5676 node_start_pfn, node_end_pfn,
5677 zone_start_pfn, zone_end_pfn);
5678
5679 /* Check that this node has pages within the zone's required range */
5680 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5681 return 0;
5682
5683 /* Move the zone boundaries inside the node if necessary */
5684 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5685 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5686
5687 /* Return the spanned pages */
5688 return *zone_end_pfn - *zone_start_pfn;
5689 }
5690
5691 /*
5692 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5693 * then all holes in the requested range will be accounted for.
5694 */
5695 unsigned long __meminit __absent_pages_in_range(int nid,
5696 unsigned long range_start_pfn,
5697 unsigned long range_end_pfn)
5698 {
5699 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5700 unsigned long start_pfn, end_pfn;
5701 int i;
5702
5703 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5704 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5705 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5706 nr_absent -= end_pfn - start_pfn;
5707 }
5708 return nr_absent;
5709 }
5710
5711 /**
5712 * absent_pages_in_range - Return number of page frames in holes within a range
5713 * @start_pfn: The start PFN to start searching for holes
5714 * @end_pfn: The end PFN to stop searching for holes
5715 *
5716 * It returns the number of pages frames in memory holes within a range.
5717 */
5718 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5719 unsigned long end_pfn)
5720 {
5721 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5722 }
5723
5724 /* Return the number of page frames in holes in a zone on a node */
5725 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5726 unsigned long zone_type,
5727 unsigned long node_start_pfn,
5728 unsigned long node_end_pfn,
5729 unsigned long *ignored)
5730 {
5731 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5732 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5733 unsigned long zone_start_pfn, zone_end_pfn;
5734 unsigned long nr_absent;
5735
5736 /* When hotadd a new node from cpu_up(), the node should be empty */
5737 if (!node_start_pfn && !node_end_pfn)
5738 return 0;
5739
5740 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5741 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5742
5743 adjust_zone_range_for_zone_movable(nid, zone_type,
5744 node_start_pfn, node_end_pfn,
5745 &zone_start_pfn, &zone_end_pfn);
5746 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5747
5748 /*
5749 * ZONE_MOVABLE handling.
5750 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5751 * and vice versa.
5752 */
5753 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5754 unsigned long start_pfn, end_pfn;
5755 struct memblock_region *r;
5756
5757 for_each_memblock(memory, r) {
5758 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5759 zone_start_pfn, zone_end_pfn);
5760 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5761 zone_start_pfn, zone_end_pfn);
5762
5763 if (zone_type == ZONE_MOVABLE &&
5764 memblock_is_mirror(r))
5765 nr_absent += end_pfn - start_pfn;
5766
5767 if (zone_type == ZONE_NORMAL &&
5768 !memblock_is_mirror(r))
5769 nr_absent += end_pfn - start_pfn;
5770 }
5771 }
5772
5773 return nr_absent;
5774 }
5775
5776 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5777 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5778 unsigned long zone_type,
5779 unsigned long node_start_pfn,
5780 unsigned long node_end_pfn,
5781 unsigned long *zone_start_pfn,
5782 unsigned long *zone_end_pfn,
5783 unsigned long *zones_size)
5784 {
5785 unsigned int zone;
5786
5787 *zone_start_pfn = node_start_pfn;
5788 for (zone = 0; zone < zone_type; zone++)
5789 *zone_start_pfn += zones_size[zone];
5790
5791 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5792
5793 return zones_size[zone_type];
5794 }
5795
5796 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5797 unsigned long zone_type,
5798 unsigned long node_start_pfn,
5799 unsigned long node_end_pfn,
5800 unsigned long *zholes_size)
5801 {
5802 if (!zholes_size)
5803 return 0;
5804
5805 return zholes_size[zone_type];
5806 }
5807
5808 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5809
5810 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5811 unsigned long node_start_pfn,
5812 unsigned long node_end_pfn,
5813 unsigned long *zones_size,
5814 unsigned long *zholes_size)
5815 {
5816 unsigned long realtotalpages = 0, totalpages = 0;
5817 enum zone_type i;
5818
5819 for (i = 0; i < MAX_NR_ZONES; i++) {
5820 struct zone *zone = pgdat->node_zones + i;
5821 unsigned long zone_start_pfn, zone_end_pfn;
5822 unsigned long size, real_size;
5823
5824 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5825 node_start_pfn,
5826 node_end_pfn,
5827 &zone_start_pfn,
5828 &zone_end_pfn,
5829 zones_size);
5830 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5831 node_start_pfn, node_end_pfn,
5832 zholes_size);
5833 if (size)
5834 zone->zone_start_pfn = zone_start_pfn;
5835 else
5836 zone->zone_start_pfn = 0;
5837 zone->spanned_pages = size;
5838 zone->present_pages = real_size;
5839
5840 totalpages += size;
5841 realtotalpages += real_size;
5842 }
5843
5844 pgdat->node_spanned_pages = totalpages;
5845 pgdat->node_present_pages = realtotalpages;
5846 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5847 realtotalpages);
5848 }
5849
5850 #ifndef CONFIG_SPARSEMEM
5851 /*
5852 * Calculate the size of the zone->blockflags rounded to an unsigned long
5853 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5854 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5855 * round what is now in bits to nearest long in bits, then return it in
5856 * bytes.
5857 */
5858 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5859 {
5860 unsigned long usemapsize;
5861
5862 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5863 usemapsize = roundup(zonesize, pageblock_nr_pages);
5864 usemapsize = usemapsize >> pageblock_order;
5865 usemapsize *= NR_PAGEBLOCK_BITS;
5866 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5867
5868 return usemapsize / 8;
5869 }
5870
5871 static void __init setup_usemap(struct pglist_data *pgdat,
5872 struct zone *zone,
5873 unsigned long zone_start_pfn,
5874 unsigned long zonesize)
5875 {
5876 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5877 zone->pageblock_flags = NULL;
5878 if (usemapsize)
5879 zone->pageblock_flags =
5880 memblock_virt_alloc_node_nopanic(usemapsize,
5881 pgdat->node_id);
5882 }
5883 #else
5884 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5885 unsigned long zone_start_pfn, unsigned long zonesize) {}
5886 #endif /* CONFIG_SPARSEMEM */
5887
5888 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5889
5890 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5891 void __paginginit set_pageblock_order(void)
5892 {
5893 unsigned int order;
5894
5895 /* Check that pageblock_nr_pages has not already been setup */
5896 if (pageblock_order)
5897 return;
5898
5899 if (HPAGE_SHIFT > PAGE_SHIFT)
5900 order = HUGETLB_PAGE_ORDER;
5901 else
5902 order = MAX_ORDER - 1;
5903
5904 /*
5905 * Assume the largest contiguous order of interest is a huge page.
5906 * This value may be variable depending on boot parameters on IA64 and
5907 * powerpc.
5908 */
5909 pageblock_order = order;
5910 }
5911 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5912
5913 /*
5914 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5915 * is unused as pageblock_order is set at compile-time. See
5916 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5917 * the kernel config
5918 */
5919 void __paginginit set_pageblock_order(void)
5920 {
5921 }
5922
5923 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5924
5925 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5926 unsigned long present_pages)
5927 {
5928 unsigned long pages = spanned_pages;
5929
5930 /*
5931 * Provide a more accurate estimation if there are holes within
5932 * the zone and SPARSEMEM is in use. If there are holes within the
5933 * zone, each populated memory region may cost us one or two extra
5934 * memmap pages due to alignment because memmap pages for each
5935 * populated regions may not be naturally aligned on page boundary.
5936 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5937 */
5938 if (spanned_pages > present_pages + (present_pages >> 4) &&
5939 IS_ENABLED(CONFIG_SPARSEMEM))
5940 pages = present_pages;
5941
5942 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5943 }
5944
5945 /*
5946 * Set up the zone data structures:
5947 * - mark all pages reserved
5948 * - mark all memory queues empty
5949 * - clear the memory bitmaps
5950 *
5951 * NOTE: pgdat should get zeroed by caller.
5952 */
5953 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5954 {
5955 enum zone_type j;
5956 int nid = pgdat->node_id;
5957 int ret;
5958
5959 pgdat_resize_init(pgdat);
5960 #ifdef CONFIG_NUMA_BALANCING
5961 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5962 pgdat->numabalancing_migrate_nr_pages = 0;
5963 pgdat->numabalancing_migrate_next_window = jiffies;
5964 #endif
5965 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5966 spin_lock_init(&pgdat->split_queue_lock);
5967 INIT_LIST_HEAD(&pgdat->split_queue);
5968 pgdat->split_queue_len = 0;
5969 #endif
5970 init_waitqueue_head(&pgdat->kswapd_wait);
5971 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5972 #ifdef CONFIG_COMPACTION
5973 init_waitqueue_head(&pgdat->kcompactd_wait);
5974 #endif
5975 pgdat_page_ext_init(pgdat);
5976 spin_lock_init(&pgdat->lru_lock);
5977 lruvec_init(node_lruvec(pgdat));
5978
5979 for (j = 0; j < MAX_NR_ZONES; j++) {
5980 struct zone *zone = pgdat->node_zones + j;
5981 unsigned long size, realsize, freesize, memmap_pages;
5982 unsigned long zone_start_pfn = zone->zone_start_pfn;
5983
5984 size = zone->spanned_pages;
5985 realsize = freesize = zone->present_pages;
5986
5987 /*
5988 * Adjust freesize so that it accounts for how much memory
5989 * is used by this zone for memmap. This affects the watermark
5990 * and per-cpu initialisations
5991 */
5992 memmap_pages = calc_memmap_size(size, realsize);
5993 if (!is_highmem_idx(j)) {
5994 if (freesize >= memmap_pages) {
5995 freesize -= memmap_pages;
5996 if (memmap_pages)
5997 printk(KERN_DEBUG
5998 " %s zone: %lu pages used for memmap\n",
5999 zone_names[j], memmap_pages);
6000 } else
6001 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6002 zone_names[j], memmap_pages, freesize);
6003 }
6004
6005 /* Account for reserved pages */
6006 if (j == 0 && freesize > dma_reserve) {
6007 freesize -= dma_reserve;
6008 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6009 zone_names[0], dma_reserve);
6010 }
6011
6012 if (!is_highmem_idx(j))
6013 nr_kernel_pages += freesize;
6014 /* Charge for highmem memmap if there are enough kernel pages */
6015 else if (nr_kernel_pages > memmap_pages * 2)
6016 nr_kernel_pages -= memmap_pages;
6017 nr_all_pages += freesize;
6018
6019 /*
6020 * Set an approximate value for lowmem here, it will be adjusted
6021 * when the bootmem allocator frees pages into the buddy system.
6022 * And all highmem pages will be managed by the buddy system.
6023 */
6024 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6025 #ifdef CONFIG_NUMA
6026 zone->node = nid;
6027 #endif
6028 zone->name = zone_names[j];
6029 zone->zone_pgdat = pgdat;
6030 spin_lock_init(&zone->lock);
6031 zone_seqlock_init(zone);
6032 zone_pcp_init(zone);
6033
6034 if (!size)
6035 continue;
6036
6037 set_pageblock_order();
6038 setup_usemap(pgdat, zone, zone_start_pfn, size);
6039 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6040 BUG_ON(ret);
6041 memmap_init(size, nid, j, zone_start_pfn);
6042 }
6043 }
6044
6045 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6046 {
6047 unsigned long __maybe_unused start = 0;
6048 unsigned long __maybe_unused offset = 0;
6049
6050 /* Skip empty nodes */
6051 if (!pgdat->node_spanned_pages)
6052 return;
6053
6054 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6055 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6056 offset = pgdat->node_start_pfn - start;
6057 /* ia64 gets its own node_mem_map, before this, without bootmem */
6058 if (!pgdat->node_mem_map) {
6059 unsigned long size, end;
6060 struct page *map;
6061
6062 /*
6063 * The zone's endpoints aren't required to be MAX_ORDER
6064 * aligned but the node_mem_map endpoints must be in order
6065 * for the buddy allocator to function correctly.
6066 */
6067 end = pgdat_end_pfn(pgdat);
6068 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6069 size = (end - start) * sizeof(struct page);
6070 map = alloc_remap(pgdat->node_id, size);
6071 if (!map)
6072 map = memblock_virt_alloc_node_nopanic(size,
6073 pgdat->node_id);
6074 pgdat->node_mem_map = map + offset;
6075 }
6076 #ifndef CONFIG_NEED_MULTIPLE_NODES
6077 /*
6078 * With no DISCONTIG, the global mem_map is just set as node 0's
6079 */
6080 if (pgdat == NODE_DATA(0)) {
6081 mem_map = NODE_DATA(0)->node_mem_map;
6082 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6083 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6084 mem_map -= offset;
6085 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6086 }
6087 #endif
6088 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6089 }
6090
6091 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6092 unsigned long node_start_pfn, unsigned long *zholes_size)
6093 {
6094 pg_data_t *pgdat = NODE_DATA(nid);
6095 unsigned long start_pfn = 0;
6096 unsigned long end_pfn = 0;
6097
6098 /* pg_data_t should be reset to zero when it's allocated */
6099 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6100
6101 reset_deferred_meminit(pgdat);
6102 pgdat->node_id = nid;
6103 pgdat->node_start_pfn = node_start_pfn;
6104 pgdat->per_cpu_nodestats = NULL;
6105 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6106 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6107 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6108 (u64)start_pfn << PAGE_SHIFT,
6109 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6110 #else
6111 start_pfn = node_start_pfn;
6112 #endif
6113 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6114 zones_size, zholes_size);
6115
6116 alloc_node_mem_map(pgdat);
6117 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6118 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6119 nid, (unsigned long)pgdat,
6120 (unsigned long)pgdat->node_mem_map);
6121 #endif
6122
6123 free_area_init_core(pgdat);
6124 }
6125
6126 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6127
6128 #if MAX_NUMNODES > 1
6129 /*
6130 * Figure out the number of possible node ids.
6131 */
6132 void __init setup_nr_node_ids(void)
6133 {
6134 unsigned int highest;
6135
6136 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6137 nr_node_ids = highest + 1;
6138 }
6139 #endif
6140
6141 /**
6142 * node_map_pfn_alignment - determine the maximum internode alignment
6143 *
6144 * This function should be called after node map is populated and sorted.
6145 * It calculates the maximum power of two alignment which can distinguish
6146 * all the nodes.
6147 *
6148 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6149 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6150 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6151 * shifted, 1GiB is enough and this function will indicate so.
6152 *
6153 * This is used to test whether pfn -> nid mapping of the chosen memory
6154 * model has fine enough granularity to avoid incorrect mapping for the
6155 * populated node map.
6156 *
6157 * Returns the determined alignment in pfn's. 0 if there is no alignment
6158 * requirement (single node).
6159 */
6160 unsigned long __init node_map_pfn_alignment(void)
6161 {
6162 unsigned long accl_mask = 0, last_end = 0;
6163 unsigned long start, end, mask;
6164 int last_nid = -1;
6165 int i, nid;
6166
6167 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6168 if (!start || last_nid < 0 || last_nid == nid) {
6169 last_nid = nid;
6170 last_end = end;
6171 continue;
6172 }
6173
6174 /*
6175 * Start with a mask granular enough to pin-point to the
6176 * start pfn and tick off bits one-by-one until it becomes
6177 * too coarse to separate the current node from the last.
6178 */
6179 mask = ~((1 << __ffs(start)) - 1);
6180 while (mask && last_end <= (start & (mask << 1)))
6181 mask <<= 1;
6182
6183 /* accumulate all internode masks */
6184 accl_mask |= mask;
6185 }
6186
6187 /* convert mask to number of pages */
6188 return ~accl_mask + 1;
6189 }
6190
6191 /* Find the lowest pfn for a node */
6192 static unsigned long __init find_min_pfn_for_node(int nid)
6193 {
6194 unsigned long min_pfn = ULONG_MAX;
6195 unsigned long start_pfn;
6196 int i;
6197
6198 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6199 min_pfn = min(min_pfn, start_pfn);
6200
6201 if (min_pfn == ULONG_MAX) {
6202 pr_warn("Could not find start_pfn for node %d\n", nid);
6203 return 0;
6204 }
6205
6206 return min_pfn;
6207 }
6208
6209 /**
6210 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6211 *
6212 * It returns the minimum PFN based on information provided via
6213 * memblock_set_node().
6214 */
6215 unsigned long __init find_min_pfn_with_active_regions(void)
6216 {
6217 return find_min_pfn_for_node(MAX_NUMNODES);
6218 }
6219
6220 /*
6221 * early_calculate_totalpages()
6222 * Sum pages in active regions for movable zone.
6223 * Populate N_MEMORY for calculating usable_nodes.
6224 */
6225 static unsigned long __init early_calculate_totalpages(void)
6226 {
6227 unsigned long totalpages = 0;
6228 unsigned long start_pfn, end_pfn;
6229 int i, nid;
6230
6231 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6232 unsigned long pages = end_pfn - start_pfn;
6233
6234 totalpages += pages;
6235 if (pages)
6236 node_set_state(nid, N_MEMORY);
6237 }
6238 return totalpages;
6239 }
6240
6241 /*
6242 * Find the PFN the Movable zone begins in each node. Kernel memory
6243 * is spread evenly between nodes as long as the nodes have enough
6244 * memory. When they don't, some nodes will have more kernelcore than
6245 * others
6246 */
6247 static void __init find_zone_movable_pfns_for_nodes(void)
6248 {
6249 int i, nid;
6250 unsigned long usable_startpfn;
6251 unsigned long kernelcore_node, kernelcore_remaining;
6252 /* save the state before borrow the nodemask */
6253 nodemask_t saved_node_state = node_states[N_MEMORY];
6254 unsigned long totalpages = early_calculate_totalpages();
6255 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6256 struct memblock_region *r;
6257
6258 /* Need to find movable_zone earlier when movable_node is specified. */
6259 find_usable_zone_for_movable();
6260
6261 /*
6262 * If movable_node is specified, ignore kernelcore and movablecore
6263 * options.
6264 */
6265 if (movable_node_is_enabled()) {
6266 for_each_memblock(memory, r) {
6267 if (!memblock_is_hotpluggable(r))
6268 continue;
6269
6270 nid = r->nid;
6271
6272 usable_startpfn = PFN_DOWN(r->base);
6273 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6274 min(usable_startpfn, zone_movable_pfn[nid]) :
6275 usable_startpfn;
6276 }
6277
6278 goto out2;
6279 }
6280
6281 /*
6282 * If kernelcore=mirror is specified, ignore movablecore option
6283 */
6284 if (mirrored_kernelcore) {
6285 bool mem_below_4gb_not_mirrored = false;
6286
6287 for_each_memblock(memory, r) {
6288 if (memblock_is_mirror(r))
6289 continue;
6290
6291 nid = r->nid;
6292
6293 usable_startpfn = memblock_region_memory_base_pfn(r);
6294
6295 if (usable_startpfn < 0x100000) {
6296 mem_below_4gb_not_mirrored = true;
6297 continue;
6298 }
6299
6300 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6301 min(usable_startpfn, zone_movable_pfn[nid]) :
6302 usable_startpfn;
6303 }
6304
6305 if (mem_below_4gb_not_mirrored)
6306 pr_warn("This configuration results in unmirrored kernel memory.");
6307
6308 goto out2;
6309 }
6310
6311 /*
6312 * If movablecore=nn[KMG] was specified, calculate what size of
6313 * kernelcore that corresponds so that memory usable for
6314 * any allocation type is evenly spread. If both kernelcore
6315 * and movablecore are specified, then the value of kernelcore
6316 * will be used for required_kernelcore if it's greater than
6317 * what movablecore would have allowed.
6318 */
6319 if (required_movablecore) {
6320 unsigned long corepages;
6321
6322 /*
6323 * Round-up so that ZONE_MOVABLE is at least as large as what
6324 * was requested by the user
6325 */
6326 required_movablecore =
6327 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6328 required_movablecore = min(totalpages, required_movablecore);
6329 corepages = totalpages - required_movablecore;
6330
6331 required_kernelcore = max(required_kernelcore, corepages);
6332 }
6333
6334 /*
6335 * If kernelcore was not specified or kernelcore size is larger
6336 * than totalpages, there is no ZONE_MOVABLE.
6337 */
6338 if (!required_kernelcore || required_kernelcore >= totalpages)
6339 goto out;
6340
6341 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6342 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6343
6344 restart:
6345 /* Spread kernelcore memory as evenly as possible throughout nodes */
6346 kernelcore_node = required_kernelcore / usable_nodes;
6347 for_each_node_state(nid, N_MEMORY) {
6348 unsigned long start_pfn, end_pfn;
6349
6350 /*
6351 * Recalculate kernelcore_node if the division per node
6352 * now exceeds what is necessary to satisfy the requested
6353 * amount of memory for the kernel
6354 */
6355 if (required_kernelcore < kernelcore_node)
6356 kernelcore_node = required_kernelcore / usable_nodes;
6357
6358 /*
6359 * As the map is walked, we track how much memory is usable
6360 * by the kernel using kernelcore_remaining. When it is
6361 * 0, the rest of the node is usable by ZONE_MOVABLE
6362 */
6363 kernelcore_remaining = kernelcore_node;
6364
6365 /* Go through each range of PFNs within this node */
6366 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6367 unsigned long size_pages;
6368
6369 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6370 if (start_pfn >= end_pfn)
6371 continue;
6372
6373 /* Account for what is only usable for kernelcore */
6374 if (start_pfn < usable_startpfn) {
6375 unsigned long kernel_pages;
6376 kernel_pages = min(end_pfn, usable_startpfn)
6377 - start_pfn;
6378
6379 kernelcore_remaining -= min(kernel_pages,
6380 kernelcore_remaining);
6381 required_kernelcore -= min(kernel_pages,
6382 required_kernelcore);
6383
6384 /* Continue if range is now fully accounted */
6385 if (end_pfn <= usable_startpfn) {
6386
6387 /*
6388 * Push zone_movable_pfn to the end so
6389 * that if we have to rebalance
6390 * kernelcore across nodes, we will
6391 * not double account here
6392 */
6393 zone_movable_pfn[nid] = end_pfn;
6394 continue;
6395 }
6396 start_pfn = usable_startpfn;
6397 }
6398
6399 /*
6400 * The usable PFN range for ZONE_MOVABLE is from
6401 * start_pfn->end_pfn. Calculate size_pages as the
6402 * number of pages used as kernelcore
6403 */
6404 size_pages = end_pfn - start_pfn;
6405 if (size_pages > kernelcore_remaining)
6406 size_pages = kernelcore_remaining;
6407 zone_movable_pfn[nid] = start_pfn + size_pages;
6408
6409 /*
6410 * Some kernelcore has been met, update counts and
6411 * break if the kernelcore for this node has been
6412 * satisfied
6413 */
6414 required_kernelcore -= min(required_kernelcore,
6415 size_pages);
6416 kernelcore_remaining -= size_pages;
6417 if (!kernelcore_remaining)
6418 break;
6419 }
6420 }
6421
6422 /*
6423 * If there is still required_kernelcore, we do another pass with one
6424 * less node in the count. This will push zone_movable_pfn[nid] further
6425 * along on the nodes that still have memory until kernelcore is
6426 * satisfied
6427 */
6428 usable_nodes--;
6429 if (usable_nodes && required_kernelcore > usable_nodes)
6430 goto restart;
6431
6432 out2:
6433 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6434 for (nid = 0; nid < MAX_NUMNODES; nid++)
6435 zone_movable_pfn[nid] =
6436 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6437
6438 out:
6439 /* restore the node_state */
6440 node_states[N_MEMORY] = saved_node_state;
6441 }
6442
6443 /* Any regular or high memory on that node ? */
6444 static void check_for_memory(pg_data_t *pgdat, int nid)
6445 {
6446 enum zone_type zone_type;
6447
6448 if (N_MEMORY == N_NORMAL_MEMORY)
6449 return;
6450
6451 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6452 struct zone *zone = &pgdat->node_zones[zone_type];
6453 if (populated_zone(zone)) {
6454 node_set_state(nid, N_HIGH_MEMORY);
6455 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6456 zone_type <= ZONE_NORMAL)
6457 node_set_state(nid, N_NORMAL_MEMORY);
6458 break;
6459 }
6460 }
6461 }
6462
6463 /**
6464 * free_area_init_nodes - Initialise all pg_data_t and zone data
6465 * @max_zone_pfn: an array of max PFNs for each zone
6466 *
6467 * This will call free_area_init_node() for each active node in the system.
6468 * Using the page ranges provided by memblock_set_node(), the size of each
6469 * zone in each node and their holes is calculated. If the maximum PFN
6470 * between two adjacent zones match, it is assumed that the zone is empty.
6471 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6472 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6473 * starts where the previous one ended. For example, ZONE_DMA32 starts
6474 * at arch_max_dma_pfn.
6475 */
6476 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6477 {
6478 unsigned long start_pfn, end_pfn;
6479 int i, nid;
6480
6481 /* Record where the zone boundaries are */
6482 memset(arch_zone_lowest_possible_pfn, 0,
6483 sizeof(arch_zone_lowest_possible_pfn));
6484 memset(arch_zone_highest_possible_pfn, 0,
6485 sizeof(arch_zone_highest_possible_pfn));
6486
6487 start_pfn = find_min_pfn_with_active_regions();
6488
6489 for (i = 0; i < MAX_NR_ZONES; i++) {
6490 if (i == ZONE_MOVABLE)
6491 continue;
6492
6493 end_pfn = max(max_zone_pfn[i], start_pfn);
6494 arch_zone_lowest_possible_pfn[i] = start_pfn;
6495 arch_zone_highest_possible_pfn[i] = end_pfn;
6496
6497 start_pfn = end_pfn;
6498 }
6499
6500 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6501 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6502 find_zone_movable_pfns_for_nodes();
6503
6504 /* Print out the zone ranges */
6505 pr_info("Zone ranges:\n");
6506 for (i = 0; i < MAX_NR_ZONES; i++) {
6507 if (i == ZONE_MOVABLE)
6508 continue;
6509 pr_info(" %-8s ", zone_names[i]);
6510 if (arch_zone_lowest_possible_pfn[i] ==
6511 arch_zone_highest_possible_pfn[i])
6512 pr_cont("empty\n");
6513 else
6514 pr_cont("[mem %#018Lx-%#018Lx]\n",
6515 (u64)arch_zone_lowest_possible_pfn[i]
6516 << PAGE_SHIFT,
6517 ((u64)arch_zone_highest_possible_pfn[i]
6518 << PAGE_SHIFT) - 1);
6519 }
6520
6521 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6522 pr_info("Movable zone start for each node\n");
6523 for (i = 0; i < MAX_NUMNODES; i++) {
6524 if (zone_movable_pfn[i])
6525 pr_info(" Node %d: %#018Lx\n", i,
6526 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6527 }
6528
6529 /* Print out the early node map */
6530 pr_info("Early memory node ranges\n");
6531 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6532 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6533 (u64)start_pfn << PAGE_SHIFT,
6534 ((u64)end_pfn << PAGE_SHIFT) - 1);
6535
6536 /* Initialise every node */
6537 mminit_verify_pageflags_layout();
6538 setup_nr_node_ids();
6539 for_each_online_node(nid) {
6540 pg_data_t *pgdat = NODE_DATA(nid);
6541 free_area_init_node(nid, NULL,
6542 find_min_pfn_for_node(nid), NULL);
6543
6544 /* Any memory on that node */
6545 if (pgdat->node_present_pages)
6546 node_set_state(nid, N_MEMORY);
6547 check_for_memory(pgdat, nid);
6548 }
6549 }
6550
6551 static int __init cmdline_parse_core(char *p, unsigned long *core)
6552 {
6553 unsigned long long coremem;
6554 if (!p)
6555 return -EINVAL;
6556
6557 coremem = memparse(p, &p);
6558 *core = coremem >> PAGE_SHIFT;
6559
6560 /* Paranoid check that UL is enough for the coremem value */
6561 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6562
6563 return 0;
6564 }
6565
6566 /*
6567 * kernelcore=size sets the amount of memory for use for allocations that
6568 * cannot be reclaimed or migrated.
6569 */
6570 static int __init cmdline_parse_kernelcore(char *p)
6571 {
6572 /* parse kernelcore=mirror */
6573 if (parse_option_str(p, "mirror")) {
6574 mirrored_kernelcore = true;
6575 return 0;
6576 }
6577
6578 return cmdline_parse_core(p, &required_kernelcore);
6579 }
6580
6581 /*
6582 * movablecore=size sets the amount of memory for use for allocations that
6583 * can be reclaimed or migrated.
6584 */
6585 static int __init cmdline_parse_movablecore(char *p)
6586 {
6587 return cmdline_parse_core(p, &required_movablecore);
6588 }
6589
6590 early_param("kernelcore", cmdline_parse_kernelcore);
6591 early_param("movablecore", cmdline_parse_movablecore);
6592
6593 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6594
6595 void adjust_managed_page_count(struct page *page, long count)
6596 {
6597 spin_lock(&managed_page_count_lock);
6598 page_zone(page)->managed_pages += count;
6599 totalram_pages += count;
6600 #ifdef CONFIG_HIGHMEM
6601 if (PageHighMem(page))
6602 totalhigh_pages += count;
6603 #endif
6604 spin_unlock(&managed_page_count_lock);
6605 }
6606 EXPORT_SYMBOL(adjust_managed_page_count);
6607
6608 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6609 {
6610 void *pos;
6611 unsigned long pages = 0;
6612
6613 start = (void *)PAGE_ALIGN((unsigned long)start);
6614 end = (void *)((unsigned long)end & PAGE_MASK);
6615 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6616 if ((unsigned int)poison <= 0xFF)
6617 memset(pos, poison, PAGE_SIZE);
6618 free_reserved_page(virt_to_page(pos));
6619 }
6620
6621 if (pages && s)
6622 pr_info("Freeing %s memory: %ldK\n",
6623 s, pages << (PAGE_SHIFT - 10));
6624
6625 return pages;
6626 }
6627 EXPORT_SYMBOL(free_reserved_area);
6628
6629 #ifdef CONFIG_HIGHMEM
6630 void free_highmem_page(struct page *page)
6631 {
6632 __free_reserved_page(page);
6633 totalram_pages++;
6634 page_zone(page)->managed_pages++;
6635 totalhigh_pages++;
6636 }
6637 #endif
6638
6639
6640 void __init mem_init_print_info(const char *str)
6641 {
6642 unsigned long physpages, codesize, datasize, rosize, bss_size;
6643 unsigned long init_code_size, init_data_size;
6644
6645 physpages = get_num_physpages();
6646 codesize = _etext - _stext;
6647 datasize = _edata - _sdata;
6648 rosize = __end_rodata - __start_rodata;
6649 bss_size = __bss_stop - __bss_start;
6650 init_data_size = __init_end - __init_begin;
6651 init_code_size = _einittext - _sinittext;
6652
6653 /*
6654 * Detect special cases and adjust section sizes accordingly:
6655 * 1) .init.* may be embedded into .data sections
6656 * 2) .init.text.* may be out of [__init_begin, __init_end],
6657 * please refer to arch/tile/kernel/vmlinux.lds.S.
6658 * 3) .rodata.* may be embedded into .text or .data sections.
6659 */
6660 #define adj_init_size(start, end, size, pos, adj) \
6661 do { \
6662 if (start <= pos && pos < end && size > adj) \
6663 size -= adj; \
6664 } while (0)
6665
6666 adj_init_size(__init_begin, __init_end, init_data_size,
6667 _sinittext, init_code_size);
6668 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6669 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6670 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6671 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6672
6673 #undef adj_init_size
6674
6675 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6676 #ifdef CONFIG_HIGHMEM
6677 ", %luK highmem"
6678 #endif
6679 "%s%s)\n",
6680 nr_free_pages() << (PAGE_SHIFT - 10),
6681 physpages << (PAGE_SHIFT - 10),
6682 codesize >> 10, datasize >> 10, rosize >> 10,
6683 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6684 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6685 totalcma_pages << (PAGE_SHIFT - 10),
6686 #ifdef CONFIG_HIGHMEM
6687 totalhigh_pages << (PAGE_SHIFT - 10),
6688 #endif
6689 str ? ", " : "", str ? str : "");
6690 }
6691
6692 /**
6693 * set_dma_reserve - set the specified number of pages reserved in the first zone
6694 * @new_dma_reserve: The number of pages to mark reserved
6695 *
6696 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6697 * In the DMA zone, a significant percentage may be consumed by kernel image
6698 * and other unfreeable allocations which can skew the watermarks badly. This
6699 * function may optionally be used to account for unfreeable pages in the
6700 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6701 * smaller per-cpu batchsize.
6702 */
6703 void __init set_dma_reserve(unsigned long new_dma_reserve)
6704 {
6705 dma_reserve = new_dma_reserve;
6706 }
6707
6708 void __init free_area_init(unsigned long *zones_size)
6709 {
6710 free_area_init_node(0, zones_size,
6711 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6712 }
6713
6714 static int page_alloc_cpu_dead(unsigned int cpu)
6715 {
6716
6717 lru_add_drain_cpu(cpu);
6718 drain_pages(cpu);
6719
6720 /*
6721 * Spill the event counters of the dead processor
6722 * into the current processors event counters.
6723 * This artificially elevates the count of the current
6724 * processor.
6725 */
6726 vm_events_fold_cpu(cpu);
6727
6728 /*
6729 * Zero the differential counters of the dead processor
6730 * so that the vm statistics are consistent.
6731 *
6732 * This is only okay since the processor is dead and cannot
6733 * race with what we are doing.
6734 */
6735 cpu_vm_stats_fold(cpu);
6736 return 0;
6737 }
6738
6739 void __init page_alloc_init(void)
6740 {
6741 int ret;
6742
6743 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6744 "mm/page_alloc:dead", NULL,
6745 page_alloc_cpu_dead);
6746 WARN_ON(ret < 0);
6747 }
6748
6749 /*
6750 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6751 * or min_free_kbytes changes.
6752 */
6753 static void calculate_totalreserve_pages(void)
6754 {
6755 struct pglist_data *pgdat;
6756 unsigned long reserve_pages = 0;
6757 enum zone_type i, j;
6758
6759 for_each_online_pgdat(pgdat) {
6760
6761 pgdat->totalreserve_pages = 0;
6762
6763 for (i = 0; i < MAX_NR_ZONES; i++) {
6764 struct zone *zone = pgdat->node_zones + i;
6765 long max = 0;
6766
6767 /* Find valid and maximum lowmem_reserve in the zone */
6768 for (j = i; j < MAX_NR_ZONES; j++) {
6769 if (zone->lowmem_reserve[j] > max)
6770 max = zone->lowmem_reserve[j];
6771 }
6772
6773 /* we treat the high watermark as reserved pages. */
6774 max += high_wmark_pages(zone);
6775
6776 if (max > zone->managed_pages)
6777 max = zone->managed_pages;
6778
6779 pgdat->totalreserve_pages += max;
6780
6781 reserve_pages += max;
6782 }
6783 }
6784 totalreserve_pages = reserve_pages;
6785 }
6786
6787 /*
6788 * setup_per_zone_lowmem_reserve - called whenever
6789 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6790 * has a correct pages reserved value, so an adequate number of
6791 * pages are left in the zone after a successful __alloc_pages().
6792 */
6793 static void setup_per_zone_lowmem_reserve(void)
6794 {
6795 struct pglist_data *pgdat;
6796 enum zone_type j, idx;
6797
6798 for_each_online_pgdat(pgdat) {
6799 for (j = 0; j < MAX_NR_ZONES; j++) {
6800 struct zone *zone = pgdat->node_zones + j;
6801 unsigned long managed_pages = zone->managed_pages;
6802
6803 zone->lowmem_reserve[j] = 0;
6804
6805 idx = j;
6806 while (idx) {
6807 struct zone *lower_zone;
6808
6809 idx--;
6810
6811 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6812 sysctl_lowmem_reserve_ratio[idx] = 1;
6813
6814 lower_zone = pgdat->node_zones + idx;
6815 lower_zone->lowmem_reserve[j] = managed_pages /
6816 sysctl_lowmem_reserve_ratio[idx];
6817 managed_pages += lower_zone->managed_pages;
6818 }
6819 }
6820 }
6821
6822 /* update totalreserve_pages */
6823 calculate_totalreserve_pages();
6824 }
6825
6826 static void __setup_per_zone_wmarks(void)
6827 {
6828 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6829 unsigned long lowmem_pages = 0;
6830 struct zone *zone;
6831 unsigned long flags;
6832
6833 /* Calculate total number of !ZONE_HIGHMEM pages */
6834 for_each_zone(zone) {
6835 if (!is_highmem(zone))
6836 lowmem_pages += zone->managed_pages;
6837 }
6838
6839 for_each_zone(zone) {
6840 u64 tmp;
6841
6842 spin_lock_irqsave(&zone->lock, flags);
6843 tmp = (u64)pages_min * zone->managed_pages;
6844 do_div(tmp, lowmem_pages);
6845 if (is_highmem(zone)) {
6846 /*
6847 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6848 * need highmem pages, so cap pages_min to a small
6849 * value here.
6850 *
6851 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6852 * deltas control asynch page reclaim, and so should
6853 * not be capped for highmem.
6854 */
6855 unsigned long min_pages;
6856
6857 min_pages = zone->managed_pages / 1024;
6858 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6859 zone->watermark[WMARK_MIN] = min_pages;
6860 } else {
6861 /*
6862 * If it's a lowmem zone, reserve a number of pages
6863 * proportionate to the zone's size.
6864 */
6865 zone->watermark[WMARK_MIN] = tmp;
6866 }
6867
6868 /*
6869 * Set the kswapd watermarks distance according to the
6870 * scale factor in proportion to available memory, but
6871 * ensure a minimum size on small systems.
6872 */
6873 tmp = max_t(u64, tmp >> 2,
6874 mult_frac(zone->managed_pages,
6875 watermark_scale_factor, 10000));
6876
6877 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6878 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6879
6880 spin_unlock_irqrestore(&zone->lock, flags);
6881 }
6882
6883 /* update totalreserve_pages */
6884 calculate_totalreserve_pages();
6885 }
6886
6887 /**
6888 * setup_per_zone_wmarks - called when min_free_kbytes changes
6889 * or when memory is hot-{added|removed}
6890 *
6891 * Ensures that the watermark[min,low,high] values for each zone are set
6892 * correctly with respect to min_free_kbytes.
6893 */
6894 void setup_per_zone_wmarks(void)
6895 {
6896 mutex_lock(&zonelists_mutex);
6897 __setup_per_zone_wmarks();
6898 mutex_unlock(&zonelists_mutex);
6899 }
6900
6901 /*
6902 * Initialise min_free_kbytes.
6903 *
6904 * For small machines we want it small (128k min). For large machines
6905 * we want it large (64MB max). But it is not linear, because network
6906 * bandwidth does not increase linearly with machine size. We use
6907 *
6908 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6909 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6910 *
6911 * which yields
6912 *
6913 * 16MB: 512k
6914 * 32MB: 724k
6915 * 64MB: 1024k
6916 * 128MB: 1448k
6917 * 256MB: 2048k
6918 * 512MB: 2896k
6919 * 1024MB: 4096k
6920 * 2048MB: 5792k
6921 * 4096MB: 8192k
6922 * 8192MB: 11584k
6923 * 16384MB: 16384k
6924 */
6925 int __meminit init_per_zone_wmark_min(void)
6926 {
6927 unsigned long lowmem_kbytes;
6928 int new_min_free_kbytes;
6929
6930 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6931 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6932
6933 if (new_min_free_kbytes > user_min_free_kbytes) {
6934 min_free_kbytes = new_min_free_kbytes;
6935 if (min_free_kbytes < 128)
6936 min_free_kbytes = 128;
6937 if (min_free_kbytes > 65536)
6938 min_free_kbytes = 65536;
6939 } else {
6940 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6941 new_min_free_kbytes, user_min_free_kbytes);
6942 }
6943 setup_per_zone_wmarks();
6944 refresh_zone_stat_thresholds();
6945 setup_per_zone_lowmem_reserve();
6946
6947 #ifdef CONFIG_NUMA
6948 setup_min_unmapped_ratio();
6949 setup_min_slab_ratio();
6950 #endif
6951
6952 return 0;
6953 }
6954 core_initcall(init_per_zone_wmark_min)
6955
6956 /*
6957 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6958 * that we can call two helper functions whenever min_free_kbytes
6959 * changes.
6960 */
6961 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6962 void __user *buffer, size_t *length, loff_t *ppos)
6963 {
6964 int rc;
6965
6966 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6967 if (rc)
6968 return rc;
6969
6970 if (write) {
6971 user_min_free_kbytes = min_free_kbytes;
6972 setup_per_zone_wmarks();
6973 }
6974 return 0;
6975 }
6976
6977 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6978 void __user *buffer, size_t *length, loff_t *ppos)
6979 {
6980 int rc;
6981
6982 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6983 if (rc)
6984 return rc;
6985
6986 if (write)
6987 setup_per_zone_wmarks();
6988
6989 return 0;
6990 }
6991
6992 #ifdef CONFIG_NUMA
6993 static void setup_min_unmapped_ratio(void)
6994 {
6995 pg_data_t *pgdat;
6996 struct zone *zone;
6997
6998 for_each_online_pgdat(pgdat)
6999 pgdat->min_unmapped_pages = 0;
7000
7001 for_each_zone(zone)
7002 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7003 sysctl_min_unmapped_ratio) / 100;
7004 }
7005
7006
7007 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7008 void __user *buffer, size_t *length, loff_t *ppos)
7009 {
7010 int rc;
7011
7012 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7013 if (rc)
7014 return rc;
7015
7016 setup_min_unmapped_ratio();
7017
7018 return 0;
7019 }
7020
7021 static void setup_min_slab_ratio(void)
7022 {
7023 pg_data_t *pgdat;
7024 struct zone *zone;
7025
7026 for_each_online_pgdat(pgdat)
7027 pgdat->min_slab_pages = 0;
7028
7029 for_each_zone(zone)
7030 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7031 sysctl_min_slab_ratio) / 100;
7032 }
7033
7034 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7035 void __user *buffer, size_t *length, loff_t *ppos)
7036 {
7037 int rc;
7038
7039 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7040 if (rc)
7041 return rc;
7042
7043 setup_min_slab_ratio();
7044
7045 return 0;
7046 }
7047 #endif
7048
7049 /*
7050 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7051 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7052 * whenever sysctl_lowmem_reserve_ratio changes.
7053 *
7054 * The reserve ratio obviously has absolutely no relation with the
7055 * minimum watermarks. The lowmem reserve ratio can only make sense
7056 * if in function of the boot time zone sizes.
7057 */
7058 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7059 void __user *buffer, size_t *length, loff_t *ppos)
7060 {
7061 proc_dointvec_minmax(table, write, buffer, length, ppos);
7062 setup_per_zone_lowmem_reserve();
7063 return 0;
7064 }
7065
7066 /*
7067 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7068 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7069 * pagelist can have before it gets flushed back to buddy allocator.
7070 */
7071 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7072 void __user *buffer, size_t *length, loff_t *ppos)
7073 {
7074 struct zone *zone;
7075 int old_percpu_pagelist_fraction;
7076 int ret;
7077
7078 mutex_lock(&pcp_batch_high_lock);
7079 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7080
7081 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7082 if (!write || ret < 0)
7083 goto out;
7084
7085 /* Sanity checking to avoid pcp imbalance */
7086 if (percpu_pagelist_fraction &&
7087 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7088 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7089 ret = -EINVAL;
7090 goto out;
7091 }
7092
7093 /* No change? */
7094 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7095 goto out;
7096
7097 for_each_populated_zone(zone) {
7098 unsigned int cpu;
7099
7100 for_each_possible_cpu(cpu)
7101 pageset_set_high_and_batch(zone,
7102 per_cpu_ptr(zone->pageset, cpu));
7103 }
7104 out:
7105 mutex_unlock(&pcp_batch_high_lock);
7106 return ret;
7107 }
7108
7109 #ifdef CONFIG_NUMA
7110 int hashdist = HASHDIST_DEFAULT;
7111
7112 static int __init set_hashdist(char *str)
7113 {
7114 if (!str)
7115 return 0;
7116 hashdist = simple_strtoul(str, &str, 0);
7117 return 1;
7118 }
7119 __setup("hashdist=", set_hashdist);
7120 #endif
7121
7122 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7123 /*
7124 * Returns the number of pages that arch has reserved but
7125 * is not known to alloc_large_system_hash().
7126 */
7127 static unsigned long __init arch_reserved_kernel_pages(void)
7128 {
7129 return 0;
7130 }
7131 #endif
7132
7133 /*
7134 * allocate a large system hash table from bootmem
7135 * - it is assumed that the hash table must contain an exact power-of-2
7136 * quantity of entries
7137 * - limit is the number of hash buckets, not the total allocation size
7138 */
7139 void *__init alloc_large_system_hash(const char *tablename,
7140 unsigned long bucketsize,
7141 unsigned long numentries,
7142 int scale,
7143 int flags,
7144 unsigned int *_hash_shift,
7145 unsigned int *_hash_mask,
7146 unsigned long low_limit,
7147 unsigned long high_limit)
7148 {
7149 unsigned long long max = high_limit;
7150 unsigned long log2qty, size;
7151 void *table = NULL;
7152
7153 /* allow the kernel cmdline to have a say */
7154 if (!numentries) {
7155 /* round applicable memory size up to nearest megabyte */
7156 numentries = nr_kernel_pages;
7157 numentries -= arch_reserved_kernel_pages();
7158
7159 /* It isn't necessary when PAGE_SIZE >= 1MB */
7160 if (PAGE_SHIFT < 20)
7161 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7162
7163 /* limit to 1 bucket per 2^scale bytes of low memory */
7164 if (scale > PAGE_SHIFT)
7165 numentries >>= (scale - PAGE_SHIFT);
7166 else
7167 numentries <<= (PAGE_SHIFT - scale);
7168
7169 /* Make sure we've got at least a 0-order allocation.. */
7170 if (unlikely(flags & HASH_SMALL)) {
7171 /* Makes no sense without HASH_EARLY */
7172 WARN_ON(!(flags & HASH_EARLY));
7173 if (!(numentries >> *_hash_shift)) {
7174 numentries = 1UL << *_hash_shift;
7175 BUG_ON(!numentries);
7176 }
7177 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7178 numentries = PAGE_SIZE / bucketsize;
7179 }
7180 numentries = roundup_pow_of_two(numentries);
7181
7182 /* limit allocation size to 1/16 total memory by default */
7183 if (max == 0) {
7184 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7185 do_div(max, bucketsize);
7186 }
7187 max = min(max, 0x80000000ULL);
7188
7189 if (numentries < low_limit)
7190 numentries = low_limit;
7191 if (numentries > max)
7192 numentries = max;
7193
7194 log2qty = ilog2(numentries);
7195
7196 do {
7197 size = bucketsize << log2qty;
7198 if (flags & HASH_EARLY)
7199 table = memblock_virt_alloc_nopanic(size, 0);
7200 else if (hashdist)
7201 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7202 else {
7203 /*
7204 * If bucketsize is not a power-of-two, we may free
7205 * some pages at the end of hash table which
7206 * alloc_pages_exact() automatically does
7207 */
7208 if (get_order(size) < MAX_ORDER) {
7209 table = alloc_pages_exact(size, GFP_ATOMIC);
7210 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7211 }
7212 }
7213 } while (!table && size > PAGE_SIZE && --log2qty);
7214
7215 if (!table)
7216 panic("Failed to allocate %s hash table\n", tablename);
7217
7218 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7219 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7220
7221 if (_hash_shift)
7222 *_hash_shift = log2qty;
7223 if (_hash_mask)
7224 *_hash_mask = (1 << log2qty) - 1;
7225
7226 return table;
7227 }
7228
7229 /*
7230 * This function checks whether pageblock includes unmovable pages or not.
7231 * If @count is not zero, it is okay to include less @count unmovable pages
7232 *
7233 * PageLRU check without isolation or lru_lock could race so that
7234 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7235 * check without lock_page also may miss some movable non-lru pages at
7236 * race condition. So you can't expect this function should be exact.
7237 */
7238 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7239 bool skip_hwpoisoned_pages)
7240 {
7241 unsigned long pfn, iter, found;
7242 int mt;
7243
7244 /*
7245 * For avoiding noise data, lru_add_drain_all() should be called
7246 * If ZONE_MOVABLE, the zone never contains unmovable pages
7247 */
7248 if (zone_idx(zone) == ZONE_MOVABLE)
7249 return false;
7250 mt = get_pageblock_migratetype(page);
7251 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7252 return false;
7253
7254 pfn = page_to_pfn(page);
7255 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7256 unsigned long check = pfn + iter;
7257
7258 if (!pfn_valid_within(check))
7259 continue;
7260
7261 page = pfn_to_page(check);
7262
7263 /*
7264 * Hugepages are not in LRU lists, but they're movable.
7265 * We need not scan over tail pages bacause we don't
7266 * handle each tail page individually in migration.
7267 */
7268 if (PageHuge(page)) {
7269 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7270 continue;
7271 }
7272
7273 /*
7274 * We can't use page_count without pin a page
7275 * because another CPU can free compound page.
7276 * This check already skips compound tails of THP
7277 * because their page->_refcount is zero at all time.
7278 */
7279 if (!page_ref_count(page)) {
7280 if (PageBuddy(page))
7281 iter += (1 << page_order(page)) - 1;
7282 continue;
7283 }
7284
7285 /*
7286 * The HWPoisoned page may be not in buddy system, and
7287 * page_count() is not 0.
7288 */
7289 if (skip_hwpoisoned_pages && PageHWPoison(page))
7290 continue;
7291
7292 if (__PageMovable(page))
7293 continue;
7294
7295 if (!PageLRU(page))
7296 found++;
7297 /*
7298 * If there are RECLAIMABLE pages, we need to check
7299 * it. But now, memory offline itself doesn't call
7300 * shrink_node_slabs() and it still to be fixed.
7301 */
7302 /*
7303 * If the page is not RAM, page_count()should be 0.
7304 * we don't need more check. This is an _used_ not-movable page.
7305 *
7306 * The problematic thing here is PG_reserved pages. PG_reserved
7307 * is set to both of a memory hole page and a _used_ kernel
7308 * page at boot.
7309 */
7310 if (found > count)
7311 return true;
7312 }
7313 return false;
7314 }
7315
7316 bool is_pageblock_removable_nolock(struct page *page)
7317 {
7318 struct zone *zone;
7319 unsigned long pfn;
7320
7321 /*
7322 * We have to be careful here because we are iterating over memory
7323 * sections which are not zone aware so we might end up outside of
7324 * the zone but still within the section.
7325 * We have to take care about the node as well. If the node is offline
7326 * its NODE_DATA will be NULL - see page_zone.
7327 */
7328 if (!node_online(page_to_nid(page)))
7329 return false;
7330
7331 zone = page_zone(page);
7332 pfn = page_to_pfn(page);
7333 if (!zone_spans_pfn(zone, pfn))
7334 return false;
7335
7336 return !has_unmovable_pages(zone, page, 0, true);
7337 }
7338
7339 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7340
7341 static unsigned long pfn_max_align_down(unsigned long pfn)
7342 {
7343 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7344 pageblock_nr_pages) - 1);
7345 }
7346
7347 static unsigned long pfn_max_align_up(unsigned long pfn)
7348 {
7349 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7350 pageblock_nr_pages));
7351 }
7352
7353 /* [start, end) must belong to a single zone. */
7354 static int __alloc_contig_migrate_range(struct compact_control *cc,
7355 unsigned long start, unsigned long end)
7356 {
7357 /* This function is based on compact_zone() from compaction.c. */
7358 unsigned long nr_reclaimed;
7359 unsigned long pfn = start;
7360 unsigned int tries = 0;
7361 int ret = 0;
7362
7363 migrate_prep();
7364
7365 while (pfn < end || !list_empty(&cc->migratepages)) {
7366 if (fatal_signal_pending(current)) {
7367 ret = -EINTR;
7368 break;
7369 }
7370
7371 if (list_empty(&cc->migratepages)) {
7372 cc->nr_migratepages = 0;
7373 pfn = isolate_migratepages_range(cc, pfn, end);
7374 if (!pfn) {
7375 ret = -EINTR;
7376 break;
7377 }
7378 tries = 0;
7379 } else if (++tries == 5) {
7380 ret = ret < 0 ? ret : -EBUSY;
7381 break;
7382 }
7383
7384 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7385 &cc->migratepages);
7386 cc->nr_migratepages -= nr_reclaimed;
7387
7388 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7389 NULL, 0, cc->mode, MR_CMA);
7390 }
7391 if (ret < 0) {
7392 putback_movable_pages(&cc->migratepages);
7393 return ret;
7394 }
7395 return 0;
7396 }
7397
7398 /**
7399 * alloc_contig_range() -- tries to allocate given range of pages
7400 * @start: start PFN to allocate
7401 * @end: one-past-the-last PFN to allocate
7402 * @migratetype: migratetype of the underlaying pageblocks (either
7403 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7404 * in range must have the same migratetype and it must
7405 * be either of the two.
7406 * @gfp_mask: GFP mask to use during compaction
7407 *
7408 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7409 * aligned, however it's the caller's responsibility to guarantee that
7410 * we are the only thread that changes migrate type of pageblocks the
7411 * pages fall in.
7412 *
7413 * The PFN range must belong to a single zone.
7414 *
7415 * Returns zero on success or negative error code. On success all
7416 * pages which PFN is in [start, end) are allocated for the caller and
7417 * need to be freed with free_contig_range().
7418 */
7419 int alloc_contig_range(unsigned long start, unsigned long end,
7420 unsigned migratetype, gfp_t gfp_mask)
7421 {
7422 unsigned long outer_start, outer_end;
7423 unsigned int order;
7424 int ret = 0;
7425
7426 struct compact_control cc = {
7427 .nr_migratepages = 0,
7428 .order = -1,
7429 .zone = page_zone(pfn_to_page(start)),
7430 .mode = MIGRATE_SYNC,
7431 .ignore_skip_hint = true,
7432 .gfp_mask = memalloc_noio_flags(gfp_mask),
7433 };
7434 INIT_LIST_HEAD(&cc.migratepages);
7435
7436 /*
7437 * What we do here is we mark all pageblocks in range as
7438 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7439 * have different sizes, and due to the way page allocator
7440 * work, we align the range to biggest of the two pages so
7441 * that page allocator won't try to merge buddies from
7442 * different pageblocks and change MIGRATE_ISOLATE to some
7443 * other migration type.
7444 *
7445 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7446 * migrate the pages from an unaligned range (ie. pages that
7447 * we are interested in). This will put all the pages in
7448 * range back to page allocator as MIGRATE_ISOLATE.
7449 *
7450 * When this is done, we take the pages in range from page
7451 * allocator removing them from the buddy system. This way
7452 * page allocator will never consider using them.
7453 *
7454 * This lets us mark the pageblocks back as
7455 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7456 * aligned range but not in the unaligned, original range are
7457 * put back to page allocator so that buddy can use them.
7458 */
7459
7460 ret = start_isolate_page_range(pfn_max_align_down(start),
7461 pfn_max_align_up(end), migratetype,
7462 false);
7463 if (ret)
7464 return ret;
7465
7466 /*
7467 * In case of -EBUSY, we'd like to know which page causes problem.
7468 * So, just fall through. We will check it in test_pages_isolated().
7469 */
7470 ret = __alloc_contig_migrate_range(&cc, start, end);
7471 if (ret && ret != -EBUSY)
7472 goto done;
7473
7474 /*
7475 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7476 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7477 * more, all pages in [start, end) are free in page allocator.
7478 * What we are going to do is to allocate all pages from
7479 * [start, end) (that is remove them from page allocator).
7480 *
7481 * The only problem is that pages at the beginning and at the
7482 * end of interesting range may be not aligned with pages that
7483 * page allocator holds, ie. they can be part of higher order
7484 * pages. Because of this, we reserve the bigger range and
7485 * once this is done free the pages we are not interested in.
7486 *
7487 * We don't have to hold zone->lock here because the pages are
7488 * isolated thus they won't get removed from buddy.
7489 */
7490
7491 lru_add_drain_all();
7492 drain_all_pages(cc.zone);
7493
7494 order = 0;
7495 outer_start = start;
7496 while (!PageBuddy(pfn_to_page(outer_start))) {
7497 if (++order >= MAX_ORDER) {
7498 outer_start = start;
7499 break;
7500 }
7501 outer_start &= ~0UL << order;
7502 }
7503
7504 if (outer_start != start) {
7505 order = page_order(pfn_to_page(outer_start));
7506
7507 /*
7508 * outer_start page could be small order buddy page and
7509 * it doesn't include start page. Adjust outer_start
7510 * in this case to report failed page properly
7511 * on tracepoint in test_pages_isolated()
7512 */
7513 if (outer_start + (1UL << order) <= start)
7514 outer_start = start;
7515 }
7516
7517 /* Make sure the range is really isolated. */
7518 if (test_pages_isolated(outer_start, end, false)) {
7519 pr_info("%s: [%lx, %lx) PFNs busy\n",
7520 __func__, outer_start, end);
7521 ret = -EBUSY;
7522 goto done;
7523 }
7524
7525 /* Grab isolated pages from freelists. */
7526 outer_end = isolate_freepages_range(&cc, outer_start, end);
7527 if (!outer_end) {
7528 ret = -EBUSY;
7529 goto done;
7530 }
7531
7532 /* Free head and tail (if any) */
7533 if (start != outer_start)
7534 free_contig_range(outer_start, start - outer_start);
7535 if (end != outer_end)
7536 free_contig_range(end, outer_end - end);
7537
7538 done:
7539 undo_isolate_page_range(pfn_max_align_down(start),
7540 pfn_max_align_up(end), migratetype);
7541 return ret;
7542 }
7543
7544 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7545 {
7546 unsigned int count = 0;
7547
7548 for (; nr_pages--; pfn++) {
7549 struct page *page = pfn_to_page(pfn);
7550
7551 count += page_count(page) != 1;
7552 __free_page(page);
7553 }
7554 WARN(count != 0, "%d pages are still in use!\n", count);
7555 }
7556 #endif
7557
7558 #ifdef CONFIG_MEMORY_HOTPLUG
7559 /*
7560 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7561 * page high values need to be recalulated.
7562 */
7563 void __meminit zone_pcp_update(struct zone *zone)
7564 {
7565 unsigned cpu;
7566 mutex_lock(&pcp_batch_high_lock);
7567 for_each_possible_cpu(cpu)
7568 pageset_set_high_and_batch(zone,
7569 per_cpu_ptr(zone->pageset, cpu));
7570 mutex_unlock(&pcp_batch_high_lock);
7571 }
7572 #endif
7573
7574 void zone_pcp_reset(struct zone *zone)
7575 {
7576 unsigned long flags;
7577 int cpu;
7578 struct per_cpu_pageset *pset;
7579
7580 /* avoid races with drain_pages() */
7581 local_irq_save(flags);
7582 if (zone->pageset != &boot_pageset) {
7583 for_each_online_cpu(cpu) {
7584 pset = per_cpu_ptr(zone->pageset, cpu);
7585 drain_zonestat(zone, pset);
7586 }
7587 free_percpu(zone->pageset);
7588 zone->pageset = &boot_pageset;
7589 }
7590 local_irq_restore(flags);
7591 }
7592
7593 #ifdef CONFIG_MEMORY_HOTREMOVE
7594 /*
7595 * All pages in the range must be in a single zone and isolated
7596 * before calling this.
7597 */
7598 void
7599 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7600 {
7601 struct page *page;
7602 struct zone *zone;
7603 unsigned int order, i;
7604 unsigned long pfn;
7605 unsigned long flags;
7606 /* find the first valid pfn */
7607 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7608 if (pfn_valid(pfn))
7609 break;
7610 if (pfn == end_pfn)
7611 return;
7612 zone = page_zone(pfn_to_page(pfn));
7613 spin_lock_irqsave(&zone->lock, flags);
7614 pfn = start_pfn;
7615 while (pfn < end_pfn) {
7616 if (!pfn_valid(pfn)) {
7617 pfn++;
7618 continue;
7619 }
7620 page = pfn_to_page(pfn);
7621 /*
7622 * The HWPoisoned page may be not in buddy system, and
7623 * page_count() is not 0.
7624 */
7625 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7626 pfn++;
7627 SetPageReserved(page);
7628 continue;
7629 }
7630
7631 BUG_ON(page_count(page));
7632 BUG_ON(!PageBuddy(page));
7633 order = page_order(page);
7634 #ifdef CONFIG_DEBUG_VM
7635 pr_info("remove from free list %lx %d %lx\n",
7636 pfn, 1 << order, end_pfn);
7637 #endif
7638 list_del(&page->lru);
7639 rmv_page_order(page);
7640 zone->free_area[order].nr_free--;
7641 for (i = 0; i < (1 << order); i++)
7642 SetPageReserved((page+i));
7643 pfn += (1 << order);
7644 }
7645 spin_unlock_irqrestore(&zone->lock, flags);
7646 }
7647 #endif
7648
7649 bool is_free_buddy_page(struct page *page)
7650 {
7651 struct zone *zone = page_zone(page);
7652 unsigned long pfn = page_to_pfn(page);
7653 unsigned long flags;
7654 unsigned int order;
7655
7656 spin_lock_irqsave(&zone->lock, flags);
7657 for (order = 0; order < MAX_ORDER; order++) {
7658 struct page *page_head = page - (pfn & ((1 << order) - 1));
7659
7660 if (PageBuddy(page_head) && page_order(page_head) >= order)
7661 break;
7662 }
7663 spin_unlock_irqrestore(&zone->lock, flags);
7664
7665 return order < MAX_ORDER;
7666 }