]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
Merge tag 'mips_5.14_1' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84
85 /* No special request */
86 #define FPI_NONE ((__force fpi_t)0)
87
88 /*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
98 /*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
110 /*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124
125 struct pagesets {
126 local_lock_t lock;
127 #if defined(CONFIG_DEBUG_INFO_BTF) && \
128 !defined(CONFIG_DEBUG_LOCK_ALLOC) && \
129 !defined(CONFIG_PAHOLE_HAS_ZEROSIZE_PERCPU_SUPPORT)
130 /*
131 * pahole 1.21 and earlier gets confused by zero-sized per-CPU
132 * variables and produces invalid BTF. Ensure that
133 * sizeof(struct pagesets) != 0 for older versions of pahole.
134 */
135 char __pahole_hack;
136 #warning "pahole too old to support zero-sized struct pagesets"
137 #endif
138 };
139 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
140 .lock = INIT_LOCAL_LOCK(lock),
141 };
142
143 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
144 DEFINE_PER_CPU(int, numa_node);
145 EXPORT_PER_CPU_SYMBOL(numa_node);
146 #endif
147
148 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
149
150 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
151 /*
152 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
153 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
154 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
155 * defined in <linux/topology.h>.
156 */
157 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
158 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
159 #endif
160
161 /* work_structs for global per-cpu drains */
162 struct pcpu_drain {
163 struct zone *zone;
164 struct work_struct work;
165 };
166 static DEFINE_MUTEX(pcpu_drain_mutex);
167 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
168
169 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
170 volatile unsigned long latent_entropy __latent_entropy;
171 EXPORT_SYMBOL(latent_entropy);
172 #endif
173
174 /*
175 * Array of node states.
176 */
177 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
178 [N_POSSIBLE] = NODE_MASK_ALL,
179 [N_ONLINE] = { { [0] = 1UL } },
180 #ifndef CONFIG_NUMA
181 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
182 #ifdef CONFIG_HIGHMEM
183 [N_HIGH_MEMORY] = { { [0] = 1UL } },
184 #endif
185 [N_MEMORY] = { { [0] = 1UL } },
186 [N_CPU] = { { [0] = 1UL } },
187 #endif /* NUMA */
188 };
189 EXPORT_SYMBOL(node_states);
190
191 atomic_long_t _totalram_pages __read_mostly;
192 EXPORT_SYMBOL(_totalram_pages);
193 unsigned long totalreserve_pages __read_mostly;
194 unsigned long totalcma_pages __read_mostly;
195
196 int percpu_pagelist_high_fraction;
197 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
198 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
199 EXPORT_SYMBOL(init_on_alloc);
200
201 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
202 EXPORT_SYMBOL(init_on_free);
203
204 static bool _init_on_alloc_enabled_early __read_mostly
205 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
206 static int __init early_init_on_alloc(char *buf)
207 {
208
209 return kstrtobool(buf, &_init_on_alloc_enabled_early);
210 }
211 early_param("init_on_alloc", early_init_on_alloc);
212
213 static bool _init_on_free_enabled_early __read_mostly
214 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
215 static int __init early_init_on_free(char *buf)
216 {
217 return kstrtobool(buf, &_init_on_free_enabled_early);
218 }
219 early_param("init_on_free", early_init_on_free);
220
221 /*
222 * A cached value of the page's pageblock's migratetype, used when the page is
223 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
224 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
225 * Also the migratetype set in the page does not necessarily match the pcplist
226 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
227 * other index - this ensures that it will be put on the correct CMA freelist.
228 */
229 static inline int get_pcppage_migratetype(struct page *page)
230 {
231 return page->index;
232 }
233
234 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
235 {
236 page->index = migratetype;
237 }
238
239 #ifdef CONFIG_PM_SLEEP
240 /*
241 * The following functions are used by the suspend/hibernate code to temporarily
242 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
243 * while devices are suspended. To avoid races with the suspend/hibernate code,
244 * they should always be called with system_transition_mutex held
245 * (gfp_allowed_mask also should only be modified with system_transition_mutex
246 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
247 * with that modification).
248 */
249
250 static gfp_t saved_gfp_mask;
251
252 void pm_restore_gfp_mask(void)
253 {
254 WARN_ON(!mutex_is_locked(&system_transition_mutex));
255 if (saved_gfp_mask) {
256 gfp_allowed_mask = saved_gfp_mask;
257 saved_gfp_mask = 0;
258 }
259 }
260
261 void pm_restrict_gfp_mask(void)
262 {
263 WARN_ON(!mutex_is_locked(&system_transition_mutex));
264 WARN_ON(saved_gfp_mask);
265 saved_gfp_mask = gfp_allowed_mask;
266 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
267 }
268
269 bool pm_suspended_storage(void)
270 {
271 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
272 return false;
273 return true;
274 }
275 #endif /* CONFIG_PM_SLEEP */
276
277 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
278 unsigned int pageblock_order __read_mostly;
279 #endif
280
281 static void __free_pages_ok(struct page *page, unsigned int order,
282 fpi_t fpi_flags);
283
284 /*
285 * results with 256, 32 in the lowmem_reserve sysctl:
286 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
287 * 1G machine -> (16M dma, 784M normal, 224M high)
288 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
289 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
290 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
291 *
292 * TBD: should special case ZONE_DMA32 machines here - in those we normally
293 * don't need any ZONE_NORMAL reservation
294 */
295 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
296 #ifdef CONFIG_ZONE_DMA
297 [ZONE_DMA] = 256,
298 #endif
299 #ifdef CONFIG_ZONE_DMA32
300 [ZONE_DMA32] = 256,
301 #endif
302 [ZONE_NORMAL] = 32,
303 #ifdef CONFIG_HIGHMEM
304 [ZONE_HIGHMEM] = 0,
305 #endif
306 [ZONE_MOVABLE] = 0,
307 };
308
309 static char * const zone_names[MAX_NR_ZONES] = {
310 #ifdef CONFIG_ZONE_DMA
311 "DMA",
312 #endif
313 #ifdef CONFIG_ZONE_DMA32
314 "DMA32",
315 #endif
316 "Normal",
317 #ifdef CONFIG_HIGHMEM
318 "HighMem",
319 #endif
320 "Movable",
321 #ifdef CONFIG_ZONE_DEVICE
322 "Device",
323 #endif
324 };
325
326 const char * const migratetype_names[MIGRATE_TYPES] = {
327 "Unmovable",
328 "Movable",
329 "Reclaimable",
330 "HighAtomic",
331 #ifdef CONFIG_CMA
332 "CMA",
333 #endif
334 #ifdef CONFIG_MEMORY_ISOLATION
335 "Isolate",
336 #endif
337 };
338
339 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
340 [NULL_COMPOUND_DTOR] = NULL,
341 [COMPOUND_PAGE_DTOR] = free_compound_page,
342 #ifdef CONFIG_HUGETLB_PAGE
343 [HUGETLB_PAGE_DTOR] = free_huge_page,
344 #endif
345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
346 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
347 #endif
348 };
349
350 int min_free_kbytes = 1024;
351 int user_min_free_kbytes = -1;
352 int watermark_boost_factor __read_mostly = 15000;
353 int watermark_scale_factor = 10;
354
355 static unsigned long nr_kernel_pages __initdata;
356 static unsigned long nr_all_pages __initdata;
357 static unsigned long dma_reserve __initdata;
358
359 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
360 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
361 static unsigned long required_kernelcore __initdata;
362 static unsigned long required_kernelcore_percent __initdata;
363 static unsigned long required_movablecore __initdata;
364 static unsigned long required_movablecore_percent __initdata;
365 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
366 static bool mirrored_kernelcore __meminitdata;
367
368 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
369 int movable_zone;
370 EXPORT_SYMBOL(movable_zone);
371
372 #if MAX_NUMNODES > 1
373 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
374 unsigned int nr_online_nodes __read_mostly = 1;
375 EXPORT_SYMBOL(nr_node_ids);
376 EXPORT_SYMBOL(nr_online_nodes);
377 #endif
378
379 int page_group_by_mobility_disabled __read_mostly;
380
381 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
382 /*
383 * During boot we initialize deferred pages on-demand, as needed, but once
384 * page_alloc_init_late() has finished, the deferred pages are all initialized,
385 * and we can permanently disable that path.
386 */
387 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
388
389 /*
390 * Calling kasan_poison_pages() only after deferred memory initialization
391 * has completed. Poisoning pages during deferred memory init will greatly
392 * lengthen the process and cause problem in large memory systems as the
393 * deferred pages initialization is done with interrupt disabled.
394 *
395 * Assuming that there will be no reference to those newly initialized
396 * pages before they are ever allocated, this should have no effect on
397 * KASAN memory tracking as the poison will be properly inserted at page
398 * allocation time. The only corner case is when pages are allocated by
399 * on-demand allocation and then freed again before the deferred pages
400 * initialization is done, but this is not likely to happen.
401 */
402 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
403 {
404 return static_branch_unlikely(&deferred_pages) ||
405 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
406 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
407 PageSkipKASanPoison(page);
408 }
409
410 /* Returns true if the struct page for the pfn is uninitialised */
411 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
412 {
413 int nid = early_pfn_to_nid(pfn);
414
415 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
416 return true;
417
418 return false;
419 }
420
421 /*
422 * Returns true when the remaining initialisation should be deferred until
423 * later in the boot cycle when it can be parallelised.
424 */
425 static bool __meminit
426 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
427 {
428 static unsigned long prev_end_pfn, nr_initialised;
429
430 /*
431 * prev_end_pfn static that contains the end of previous zone
432 * No need to protect because called very early in boot before smp_init.
433 */
434 if (prev_end_pfn != end_pfn) {
435 prev_end_pfn = end_pfn;
436 nr_initialised = 0;
437 }
438
439 /* Always populate low zones for address-constrained allocations */
440 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
441 return false;
442
443 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
444 return true;
445 /*
446 * We start only with one section of pages, more pages are added as
447 * needed until the rest of deferred pages are initialized.
448 */
449 nr_initialised++;
450 if ((nr_initialised > PAGES_PER_SECTION) &&
451 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
452 NODE_DATA(nid)->first_deferred_pfn = pfn;
453 return true;
454 }
455 return false;
456 }
457 #else
458 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
459 {
460 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
461 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
462 PageSkipKASanPoison(page);
463 }
464
465 static inline bool early_page_uninitialised(unsigned long pfn)
466 {
467 return false;
468 }
469
470 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
471 {
472 return false;
473 }
474 #endif
475
476 /* Return a pointer to the bitmap storing bits affecting a block of pages */
477 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
478 unsigned long pfn)
479 {
480 #ifdef CONFIG_SPARSEMEM
481 return section_to_usemap(__pfn_to_section(pfn));
482 #else
483 return page_zone(page)->pageblock_flags;
484 #endif /* CONFIG_SPARSEMEM */
485 }
486
487 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
488 {
489 #ifdef CONFIG_SPARSEMEM
490 pfn &= (PAGES_PER_SECTION-1);
491 #else
492 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
493 #endif /* CONFIG_SPARSEMEM */
494 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
495 }
496
497 static __always_inline
498 unsigned long __get_pfnblock_flags_mask(const struct page *page,
499 unsigned long pfn,
500 unsigned long mask)
501 {
502 unsigned long *bitmap;
503 unsigned long bitidx, word_bitidx;
504 unsigned long word;
505
506 bitmap = get_pageblock_bitmap(page, pfn);
507 bitidx = pfn_to_bitidx(page, pfn);
508 word_bitidx = bitidx / BITS_PER_LONG;
509 bitidx &= (BITS_PER_LONG-1);
510
511 word = bitmap[word_bitidx];
512 return (word >> bitidx) & mask;
513 }
514
515 /**
516 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
517 * @page: The page within the block of interest
518 * @pfn: The target page frame number
519 * @mask: mask of bits that the caller is interested in
520 *
521 * Return: pageblock_bits flags
522 */
523 unsigned long get_pfnblock_flags_mask(const struct page *page,
524 unsigned long pfn, unsigned long mask)
525 {
526 return __get_pfnblock_flags_mask(page, pfn, mask);
527 }
528
529 static __always_inline int get_pfnblock_migratetype(const struct page *page,
530 unsigned long pfn)
531 {
532 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
533 }
534
535 /**
536 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
537 * @page: The page within the block of interest
538 * @flags: The flags to set
539 * @pfn: The target page frame number
540 * @mask: mask of bits that the caller is interested in
541 */
542 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
543 unsigned long pfn,
544 unsigned long mask)
545 {
546 unsigned long *bitmap;
547 unsigned long bitidx, word_bitidx;
548 unsigned long old_word, word;
549
550 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
551 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
552
553 bitmap = get_pageblock_bitmap(page, pfn);
554 bitidx = pfn_to_bitidx(page, pfn);
555 word_bitidx = bitidx / BITS_PER_LONG;
556 bitidx &= (BITS_PER_LONG-1);
557
558 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
559
560 mask <<= bitidx;
561 flags <<= bitidx;
562
563 word = READ_ONCE(bitmap[word_bitidx]);
564 for (;;) {
565 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
566 if (word == old_word)
567 break;
568 word = old_word;
569 }
570 }
571
572 void set_pageblock_migratetype(struct page *page, int migratetype)
573 {
574 if (unlikely(page_group_by_mobility_disabled &&
575 migratetype < MIGRATE_PCPTYPES))
576 migratetype = MIGRATE_UNMOVABLE;
577
578 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
579 page_to_pfn(page), MIGRATETYPE_MASK);
580 }
581
582 #ifdef CONFIG_DEBUG_VM
583 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
584 {
585 int ret = 0;
586 unsigned seq;
587 unsigned long pfn = page_to_pfn(page);
588 unsigned long sp, start_pfn;
589
590 do {
591 seq = zone_span_seqbegin(zone);
592 start_pfn = zone->zone_start_pfn;
593 sp = zone->spanned_pages;
594 if (!zone_spans_pfn(zone, pfn))
595 ret = 1;
596 } while (zone_span_seqretry(zone, seq));
597
598 if (ret)
599 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
600 pfn, zone_to_nid(zone), zone->name,
601 start_pfn, start_pfn + sp);
602
603 return ret;
604 }
605
606 static int page_is_consistent(struct zone *zone, struct page *page)
607 {
608 if (!pfn_valid_within(page_to_pfn(page)))
609 return 0;
610 if (zone != page_zone(page))
611 return 0;
612
613 return 1;
614 }
615 /*
616 * Temporary debugging check for pages not lying within a given zone.
617 */
618 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
619 {
620 if (page_outside_zone_boundaries(zone, page))
621 return 1;
622 if (!page_is_consistent(zone, page))
623 return 1;
624
625 return 0;
626 }
627 #else
628 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
629 {
630 return 0;
631 }
632 #endif
633
634 static void bad_page(struct page *page, const char *reason)
635 {
636 static unsigned long resume;
637 static unsigned long nr_shown;
638 static unsigned long nr_unshown;
639
640 /*
641 * Allow a burst of 60 reports, then keep quiet for that minute;
642 * or allow a steady drip of one report per second.
643 */
644 if (nr_shown == 60) {
645 if (time_before(jiffies, resume)) {
646 nr_unshown++;
647 goto out;
648 }
649 if (nr_unshown) {
650 pr_alert(
651 "BUG: Bad page state: %lu messages suppressed\n",
652 nr_unshown);
653 nr_unshown = 0;
654 }
655 nr_shown = 0;
656 }
657 if (nr_shown++ == 0)
658 resume = jiffies + 60 * HZ;
659
660 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
661 current->comm, page_to_pfn(page));
662 dump_page(page, reason);
663
664 print_modules();
665 dump_stack();
666 out:
667 /* Leave bad fields for debug, except PageBuddy could make trouble */
668 page_mapcount_reset(page); /* remove PageBuddy */
669 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
670 }
671
672 static inline unsigned int order_to_pindex(int migratetype, int order)
673 {
674 int base = order;
675
676 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
677 if (order > PAGE_ALLOC_COSTLY_ORDER) {
678 VM_BUG_ON(order != pageblock_order);
679 base = PAGE_ALLOC_COSTLY_ORDER + 1;
680 }
681 #else
682 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
683 #endif
684
685 return (MIGRATE_PCPTYPES * base) + migratetype;
686 }
687
688 static inline int pindex_to_order(unsigned int pindex)
689 {
690 int order = pindex / MIGRATE_PCPTYPES;
691
692 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
693 if (order > PAGE_ALLOC_COSTLY_ORDER) {
694 order = pageblock_order;
695 VM_BUG_ON(order != pageblock_order);
696 }
697 #else
698 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
699 #endif
700
701 return order;
702 }
703
704 static inline bool pcp_allowed_order(unsigned int order)
705 {
706 if (order <= PAGE_ALLOC_COSTLY_ORDER)
707 return true;
708 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
709 if (order == pageblock_order)
710 return true;
711 #endif
712 return false;
713 }
714
715 static inline void free_the_page(struct page *page, unsigned int order)
716 {
717 if (pcp_allowed_order(order)) /* Via pcp? */
718 free_unref_page(page, order);
719 else
720 __free_pages_ok(page, order, FPI_NONE);
721 }
722
723 /*
724 * Higher-order pages are called "compound pages". They are structured thusly:
725 *
726 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
727 *
728 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
729 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
730 *
731 * The first tail page's ->compound_dtor holds the offset in array of compound
732 * page destructors. See compound_page_dtors.
733 *
734 * The first tail page's ->compound_order holds the order of allocation.
735 * This usage means that zero-order pages may not be compound.
736 */
737
738 void free_compound_page(struct page *page)
739 {
740 mem_cgroup_uncharge(page);
741 free_the_page(page, compound_order(page));
742 }
743
744 void prep_compound_page(struct page *page, unsigned int order)
745 {
746 int i;
747 int nr_pages = 1 << order;
748
749 __SetPageHead(page);
750 for (i = 1; i < nr_pages; i++) {
751 struct page *p = page + i;
752 p->mapping = TAIL_MAPPING;
753 set_compound_head(p, page);
754 }
755
756 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
757 set_compound_order(page, order);
758 atomic_set(compound_mapcount_ptr(page), -1);
759 if (hpage_pincount_available(page))
760 atomic_set(compound_pincount_ptr(page), 0);
761 }
762
763 #ifdef CONFIG_DEBUG_PAGEALLOC
764 unsigned int _debug_guardpage_minorder;
765
766 bool _debug_pagealloc_enabled_early __read_mostly
767 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
768 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
769 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
770 EXPORT_SYMBOL(_debug_pagealloc_enabled);
771
772 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
773
774 static int __init early_debug_pagealloc(char *buf)
775 {
776 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
777 }
778 early_param("debug_pagealloc", early_debug_pagealloc);
779
780 static int __init debug_guardpage_minorder_setup(char *buf)
781 {
782 unsigned long res;
783
784 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
785 pr_err("Bad debug_guardpage_minorder value\n");
786 return 0;
787 }
788 _debug_guardpage_minorder = res;
789 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
790 return 0;
791 }
792 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
793
794 static inline bool set_page_guard(struct zone *zone, struct page *page,
795 unsigned int order, int migratetype)
796 {
797 if (!debug_guardpage_enabled())
798 return false;
799
800 if (order >= debug_guardpage_minorder())
801 return false;
802
803 __SetPageGuard(page);
804 INIT_LIST_HEAD(&page->lru);
805 set_page_private(page, order);
806 /* Guard pages are not available for any usage */
807 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
808
809 return true;
810 }
811
812 static inline void clear_page_guard(struct zone *zone, struct page *page,
813 unsigned int order, int migratetype)
814 {
815 if (!debug_guardpage_enabled())
816 return;
817
818 __ClearPageGuard(page);
819
820 set_page_private(page, 0);
821 if (!is_migrate_isolate(migratetype))
822 __mod_zone_freepage_state(zone, (1 << order), migratetype);
823 }
824 #else
825 static inline bool set_page_guard(struct zone *zone, struct page *page,
826 unsigned int order, int migratetype) { return false; }
827 static inline void clear_page_guard(struct zone *zone, struct page *page,
828 unsigned int order, int migratetype) {}
829 #endif
830
831 /*
832 * Enable static keys related to various memory debugging and hardening options.
833 * Some override others, and depend on early params that are evaluated in the
834 * order of appearance. So we need to first gather the full picture of what was
835 * enabled, and then make decisions.
836 */
837 void init_mem_debugging_and_hardening(void)
838 {
839 bool page_poisoning_requested = false;
840
841 #ifdef CONFIG_PAGE_POISONING
842 /*
843 * Page poisoning is debug page alloc for some arches. If
844 * either of those options are enabled, enable poisoning.
845 */
846 if (page_poisoning_enabled() ||
847 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
848 debug_pagealloc_enabled())) {
849 static_branch_enable(&_page_poisoning_enabled);
850 page_poisoning_requested = true;
851 }
852 #endif
853
854 if (_init_on_alloc_enabled_early) {
855 if (page_poisoning_requested)
856 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
857 "will take precedence over init_on_alloc\n");
858 else
859 static_branch_enable(&init_on_alloc);
860 }
861 if (_init_on_free_enabled_early) {
862 if (page_poisoning_requested)
863 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
864 "will take precedence over init_on_free\n");
865 else
866 static_branch_enable(&init_on_free);
867 }
868
869 #ifdef CONFIG_DEBUG_PAGEALLOC
870 if (!debug_pagealloc_enabled())
871 return;
872
873 static_branch_enable(&_debug_pagealloc_enabled);
874
875 if (!debug_guardpage_minorder())
876 return;
877
878 static_branch_enable(&_debug_guardpage_enabled);
879 #endif
880 }
881
882 static inline void set_buddy_order(struct page *page, unsigned int order)
883 {
884 set_page_private(page, order);
885 __SetPageBuddy(page);
886 }
887
888 /*
889 * This function checks whether a page is free && is the buddy
890 * we can coalesce a page and its buddy if
891 * (a) the buddy is not in a hole (check before calling!) &&
892 * (b) the buddy is in the buddy system &&
893 * (c) a page and its buddy have the same order &&
894 * (d) a page and its buddy are in the same zone.
895 *
896 * For recording whether a page is in the buddy system, we set PageBuddy.
897 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
898 *
899 * For recording page's order, we use page_private(page).
900 */
901 static inline bool page_is_buddy(struct page *page, struct page *buddy,
902 unsigned int order)
903 {
904 if (!page_is_guard(buddy) && !PageBuddy(buddy))
905 return false;
906
907 if (buddy_order(buddy) != order)
908 return false;
909
910 /*
911 * zone check is done late to avoid uselessly calculating
912 * zone/node ids for pages that could never merge.
913 */
914 if (page_zone_id(page) != page_zone_id(buddy))
915 return false;
916
917 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
918
919 return true;
920 }
921
922 #ifdef CONFIG_COMPACTION
923 static inline struct capture_control *task_capc(struct zone *zone)
924 {
925 struct capture_control *capc = current->capture_control;
926
927 return unlikely(capc) &&
928 !(current->flags & PF_KTHREAD) &&
929 !capc->page &&
930 capc->cc->zone == zone ? capc : NULL;
931 }
932
933 static inline bool
934 compaction_capture(struct capture_control *capc, struct page *page,
935 int order, int migratetype)
936 {
937 if (!capc || order != capc->cc->order)
938 return false;
939
940 /* Do not accidentally pollute CMA or isolated regions*/
941 if (is_migrate_cma(migratetype) ||
942 is_migrate_isolate(migratetype))
943 return false;
944
945 /*
946 * Do not let lower order allocations pollute a movable pageblock.
947 * This might let an unmovable request use a reclaimable pageblock
948 * and vice-versa but no more than normal fallback logic which can
949 * have trouble finding a high-order free page.
950 */
951 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
952 return false;
953
954 capc->page = page;
955 return true;
956 }
957
958 #else
959 static inline struct capture_control *task_capc(struct zone *zone)
960 {
961 return NULL;
962 }
963
964 static inline bool
965 compaction_capture(struct capture_control *capc, struct page *page,
966 int order, int migratetype)
967 {
968 return false;
969 }
970 #endif /* CONFIG_COMPACTION */
971
972 /* Used for pages not on another list */
973 static inline void add_to_free_list(struct page *page, struct zone *zone,
974 unsigned int order, int migratetype)
975 {
976 struct free_area *area = &zone->free_area[order];
977
978 list_add(&page->lru, &area->free_list[migratetype]);
979 area->nr_free++;
980 }
981
982 /* Used for pages not on another list */
983 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
984 unsigned int order, int migratetype)
985 {
986 struct free_area *area = &zone->free_area[order];
987
988 list_add_tail(&page->lru, &area->free_list[migratetype]);
989 area->nr_free++;
990 }
991
992 /*
993 * Used for pages which are on another list. Move the pages to the tail
994 * of the list - so the moved pages won't immediately be considered for
995 * allocation again (e.g., optimization for memory onlining).
996 */
997 static inline void move_to_free_list(struct page *page, struct zone *zone,
998 unsigned int order, int migratetype)
999 {
1000 struct free_area *area = &zone->free_area[order];
1001
1002 list_move_tail(&page->lru, &area->free_list[migratetype]);
1003 }
1004
1005 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1006 unsigned int order)
1007 {
1008 /* clear reported state and update reported page count */
1009 if (page_reported(page))
1010 __ClearPageReported(page);
1011
1012 list_del(&page->lru);
1013 __ClearPageBuddy(page);
1014 set_page_private(page, 0);
1015 zone->free_area[order].nr_free--;
1016 }
1017
1018 /*
1019 * If this is not the largest possible page, check if the buddy
1020 * of the next-highest order is free. If it is, it's possible
1021 * that pages are being freed that will coalesce soon. In case,
1022 * that is happening, add the free page to the tail of the list
1023 * so it's less likely to be used soon and more likely to be merged
1024 * as a higher order page
1025 */
1026 static inline bool
1027 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1028 struct page *page, unsigned int order)
1029 {
1030 struct page *higher_page, *higher_buddy;
1031 unsigned long combined_pfn;
1032
1033 if (order >= MAX_ORDER - 2)
1034 return false;
1035
1036 if (!pfn_valid_within(buddy_pfn))
1037 return false;
1038
1039 combined_pfn = buddy_pfn & pfn;
1040 higher_page = page + (combined_pfn - pfn);
1041 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1042 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1043
1044 return pfn_valid_within(buddy_pfn) &&
1045 page_is_buddy(higher_page, higher_buddy, order + 1);
1046 }
1047
1048 /*
1049 * Freeing function for a buddy system allocator.
1050 *
1051 * The concept of a buddy system is to maintain direct-mapped table
1052 * (containing bit values) for memory blocks of various "orders".
1053 * The bottom level table contains the map for the smallest allocatable
1054 * units of memory (here, pages), and each level above it describes
1055 * pairs of units from the levels below, hence, "buddies".
1056 * At a high level, all that happens here is marking the table entry
1057 * at the bottom level available, and propagating the changes upward
1058 * as necessary, plus some accounting needed to play nicely with other
1059 * parts of the VM system.
1060 * At each level, we keep a list of pages, which are heads of continuous
1061 * free pages of length of (1 << order) and marked with PageBuddy.
1062 * Page's order is recorded in page_private(page) field.
1063 * So when we are allocating or freeing one, we can derive the state of the
1064 * other. That is, if we allocate a small block, and both were
1065 * free, the remainder of the region must be split into blocks.
1066 * If a block is freed, and its buddy is also free, then this
1067 * triggers coalescing into a block of larger size.
1068 *
1069 * -- nyc
1070 */
1071
1072 static inline void __free_one_page(struct page *page,
1073 unsigned long pfn,
1074 struct zone *zone, unsigned int order,
1075 int migratetype, fpi_t fpi_flags)
1076 {
1077 struct capture_control *capc = task_capc(zone);
1078 unsigned long buddy_pfn;
1079 unsigned long combined_pfn;
1080 unsigned int max_order;
1081 struct page *buddy;
1082 bool to_tail;
1083
1084 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1085
1086 VM_BUG_ON(!zone_is_initialized(zone));
1087 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1088
1089 VM_BUG_ON(migratetype == -1);
1090 if (likely(!is_migrate_isolate(migratetype)))
1091 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1092
1093 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1094 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1095
1096 continue_merging:
1097 while (order < max_order) {
1098 if (compaction_capture(capc, page, order, migratetype)) {
1099 __mod_zone_freepage_state(zone, -(1 << order),
1100 migratetype);
1101 return;
1102 }
1103 buddy_pfn = __find_buddy_pfn(pfn, order);
1104 buddy = page + (buddy_pfn - pfn);
1105
1106 if (!pfn_valid_within(buddy_pfn))
1107 goto done_merging;
1108 if (!page_is_buddy(page, buddy, order))
1109 goto done_merging;
1110 /*
1111 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1112 * merge with it and move up one order.
1113 */
1114 if (page_is_guard(buddy))
1115 clear_page_guard(zone, buddy, order, migratetype);
1116 else
1117 del_page_from_free_list(buddy, zone, order);
1118 combined_pfn = buddy_pfn & pfn;
1119 page = page + (combined_pfn - pfn);
1120 pfn = combined_pfn;
1121 order++;
1122 }
1123 if (order < MAX_ORDER - 1) {
1124 /* If we are here, it means order is >= pageblock_order.
1125 * We want to prevent merge between freepages on isolate
1126 * pageblock and normal pageblock. Without this, pageblock
1127 * isolation could cause incorrect freepage or CMA accounting.
1128 *
1129 * We don't want to hit this code for the more frequent
1130 * low-order merging.
1131 */
1132 if (unlikely(has_isolate_pageblock(zone))) {
1133 int buddy_mt;
1134
1135 buddy_pfn = __find_buddy_pfn(pfn, order);
1136 buddy = page + (buddy_pfn - pfn);
1137 buddy_mt = get_pageblock_migratetype(buddy);
1138
1139 if (migratetype != buddy_mt
1140 && (is_migrate_isolate(migratetype) ||
1141 is_migrate_isolate(buddy_mt)))
1142 goto done_merging;
1143 }
1144 max_order = order + 1;
1145 goto continue_merging;
1146 }
1147
1148 done_merging:
1149 set_buddy_order(page, order);
1150
1151 if (fpi_flags & FPI_TO_TAIL)
1152 to_tail = true;
1153 else if (is_shuffle_order(order))
1154 to_tail = shuffle_pick_tail();
1155 else
1156 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1157
1158 if (to_tail)
1159 add_to_free_list_tail(page, zone, order, migratetype);
1160 else
1161 add_to_free_list(page, zone, order, migratetype);
1162
1163 /* Notify page reporting subsystem of freed page */
1164 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1165 page_reporting_notify_free(order);
1166 }
1167
1168 /*
1169 * A bad page could be due to a number of fields. Instead of multiple branches,
1170 * try and check multiple fields with one check. The caller must do a detailed
1171 * check if necessary.
1172 */
1173 static inline bool page_expected_state(struct page *page,
1174 unsigned long check_flags)
1175 {
1176 if (unlikely(atomic_read(&page->_mapcount) != -1))
1177 return false;
1178
1179 if (unlikely((unsigned long)page->mapping |
1180 page_ref_count(page) |
1181 #ifdef CONFIG_MEMCG
1182 page->memcg_data |
1183 #endif
1184 (page->flags & check_flags)))
1185 return false;
1186
1187 return true;
1188 }
1189
1190 static const char *page_bad_reason(struct page *page, unsigned long flags)
1191 {
1192 const char *bad_reason = NULL;
1193
1194 if (unlikely(atomic_read(&page->_mapcount) != -1))
1195 bad_reason = "nonzero mapcount";
1196 if (unlikely(page->mapping != NULL))
1197 bad_reason = "non-NULL mapping";
1198 if (unlikely(page_ref_count(page) != 0))
1199 bad_reason = "nonzero _refcount";
1200 if (unlikely(page->flags & flags)) {
1201 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1202 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1203 else
1204 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1205 }
1206 #ifdef CONFIG_MEMCG
1207 if (unlikely(page->memcg_data))
1208 bad_reason = "page still charged to cgroup";
1209 #endif
1210 return bad_reason;
1211 }
1212
1213 static void check_free_page_bad(struct page *page)
1214 {
1215 bad_page(page,
1216 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1217 }
1218
1219 static inline int check_free_page(struct page *page)
1220 {
1221 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1222 return 0;
1223
1224 /* Something has gone sideways, find it */
1225 check_free_page_bad(page);
1226 return 1;
1227 }
1228
1229 static int free_tail_pages_check(struct page *head_page, struct page *page)
1230 {
1231 int ret = 1;
1232
1233 /*
1234 * We rely page->lru.next never has bit 0 set, unless the page
1235 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1236 */
1237 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1238
1239 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1240 ret = 0;
1241 goto out;
1242 }
1243 switch (page - head_page) {
1244 case 1:
1245 /* the first tail page: ->mapping may be compound_mapcount() */
1246 if (unlikely(compound_mapcount(page))) {
1247 bad_page(page, "nonzero compound_mapcount");
1248 goto out;
1249 }
1250 break;
1251 case 2:
1252 /*
1253 * the second tail page: ->mapping is
1254 * deferred_list.next -- ignore value.
1255 */
1256 break;
1257 default:
1258 if (page->mapping != TAIL_MAPPING) {
1259 bad_page(page, "corrupted mapping in tail page");
1260 goto out;
1261 }
1262 break;
1263 }
1264 if (unlikely(!PageTail(page))) {
1265 bad_page(page, "PageTail not set");
1266 goto out;
1267 }
1268 if (unlikely(compound_head(page) != head_page)) {
1269 bad_page(page, "compound_head not consistent");
1270 goto out;
1271 }
1272 ret = 0;
1273 out:
1274 page->mapping = NULL;
1275 clear_compound_head(page);
1276 return ret;
1277 }
1278
1279 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1280 {
1281 int i;
1282
1283 if (zero_tags) {
1284 for (i = 0; i < numpages; i++)
1285 tag_clear_highpage(page + i);
1286 return;
1287 }
1288
1289 /* s390's use of memset() could override KASAN redzones. */
1290 kasan_disable_current();
1291 for (i = 0; i < numpages; i++) {
1292 u8 tag = page_kasan_tag(page + i);
1293 page_kasan_tag_reset(page + i);
1294 clear_highpage(page + i);
1295 page_kasan_tag_set(page + i, tag);
1296 }
1297 kasan_enable_current();
1298 }
1299
1300 static __always_inline bool free_pages_prepare(struct page *page,
1301 unsigned int order, bool check_free, fpi_t fpi_flags)
1302 {
1303 int bad = 0;
1304 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1305
1306 VM_BUG_ON_PAGE(PageTail(page), page);
1307
1308 trace_mm_page_free(page, order);
1309
1310 if (unlikely(PageHWPoison(page)) && !order) {
1311 /*
1312 * Do not let hwpoison pages hit pcplists/buddy
1313 * Untie memcg state and reset page's owner
1314 */
1315 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1316 __memcg_kmem_uncharge_page(page, order);
1317 reset_page_owner(page, order);
1318 return false;
1319 }
1320
1321 /*
1322 * Check tail pages before head page information is cleared to
1323 * avoid checking PageCompound for order-0 pages.
1324 */
1325 if (unlikely(order)) {
1326 bool compound = PageCompound(page);
1327 int i;
1328
1329 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1330
1331 if (compound)
1332 ClearPageDoubleMap(page);
1333 for (i = 1; i < (1 << order); i++) {
1334 if (compound)
1335 bad += free_tail_pages_check(page, page + i);
1336 if (unlikely(check_free_page(page + i))) {
1337 bad++;
1338 continue;
1339 }
1340 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1341 }
1342 }
1343 if (PageMappingFlags(page))
1344 page->mapping = NULL;
1345 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1346 __memcg_kmem_uncharge_page(page, order);
1347 if (check_free)
1348 bad += check_free_page(page);
1349 if (bad)
1350 return false;
1351
1352 page_cpupid_reset_last(page);
1353 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1354 reset_page_owner(page, order);
1355
1356 if (!PageHighMem(page)) {
1357 debug_check_no_locks_freed(page_address(page),
1358 PAGE_SIZE << order);
1359 debug_check_no_obj_freed(page_address(page),
1360 PAGE_SIZE << order);
1361 }
1362
1363 kernel_poison_pages(page, 1 << order);
1364
1365 /*
1366 * As memory initialization might be integrated into KASAN,
1367 * kasan_free_pages and kernel_init_free_pages must be
1368 * kept together to avoid discrepancies in behavior.
1369 *
1370 * With hardware tag-based KASAN, memory tags must be set before the
1371 * page becomes unavailable via debug_pagealloc or arch_free_page.
1372 */
1373 if (kasan_has_integrated_init()) {
1374 if (!skip_kasan_poison)
1375 kasan_free_pages(page, order);
1376 } else {
1377 bool init = want_init_on_free();
1378
1379 if (init)
1380 kernel_init_free_pages(page, 1 << order, false);
1381 if (!skip_kasan_poison)
1382 kasan_poison_pages(page, order, init);
1383 }
1384
1385 /*
1386 * arch_free_page() can make the page's contents inaccessible. s390
1387 * does this. So nothing which can access the page's contents should
1388 * happen after this.
1389 */
1390 arch_free_page(page, order);
1391
1392 debug_pagealloc_unmap_pages(page, 1 << order);
1393
1394 return true;
1395 }
1396
1397 #ifdef CONFIG_DEBUG_VM
1398 /*
1399 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1400 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1401 * moved from pcp lists to free lists.
1402 */
1403 static bool free_pcp_prepare(struct page *page, unsigned int order)
1404 {
1405 return free_pages_prepare(page, order, true, FPI_NONE);
1406 }
1407
1408 static bool bulkfree_pcp_prepare(struct page *page)
1409 {
1410 if (debug_pagealloc_enabled_static())
1411 return check_free_page(page);
1412 else
1413 return false;
1414 }
1415 #else
1416 /*
1417 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1418 * moving from pcp lists to free list in order to reduce overhead. With
1419 * debug_pagealloc enabled, they are checked also immediately when being freed
1420 * to the pcp lists.
1421 */
1422 static bool free_pcp_prepare(struct page *page, unsigned int order)
1423 {
1424 if (debug_pagealloc_enabled_static())
1425 return free_pages_prepare(page, order, true, FPI_NONE);
1426 else
1427 return free_pages_prepare(page, order, false, FPI_NONE);
1428 }
1429
1430 static bool bulkfree_pcp_prepare(struct page *page)
1431 {
1432 return check_free_page(page);
1433 }
1434 #endif /* CONFIG_DEBUG_VM */
1435
1436 static inline void prefetch_buddy(struct page *page)
1437 {
1438 unsigned long pfn = page_to_pfn(page);
1439 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1440 struct page *buddy = page + (buddy_pfn - pfn);
1441
1442 prefetch(buddy);
1443 }
1444
1445 /*
1446 * Frees a number of pages from the PCP lists
1447 * Assumes all pages on list are in same zone, and of same order.
1448 * count is the number of pages to free.
1449 *
1450 * If the zone was previously in an "all pages pinned" state then look to
1451 * see if this freeing clears that state.
1452 *
1453 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1454 * pinned" detection logic.
1455 */
1456 static void free_pcppages_bulk(struct zone *zone, int count,
1457 struct per_cpu_pages *pcp)
1458 {
1459 int pindex = 0;
1460 int batch_free = 0;
1461 int nr_freed = 0;
1462 unsigned int order;
1463 int prefetch_nr = READ_ONCE(pcp->batch);
1464 bool isolated_pageblocks;
1465 struct page *page, *tmp;
1466 LIST_HEAD(head);
1467
1468 /*
1469 * Ensure proper count is passed which otherwise would stuck in the
1470 * below while (list_empty(list)) loop.
1471 */
1472 count = min(pcp->count, count);
1473 while (count > 0) {
1474 struct list_head *list;
1475
1476 /*
1477 * Remove pages from lists in a round-robin fashion. A
1478 * batch_free count is maintained that is incremented when an
1479 * empty list is encountered. This is so more pages are freed
1480 * off fuller lists instead of spinning excessively around empty
1481 * lists
1482 */
1483 do {
1484 batch_free++;
1485 if (++pindex == NR_PCP_LISTS)
1486 pindex = 0;
1487 list = &pcp->lists[pindex];
1488 } while (list_empty(list));
1489
1490 /* This is the only non-empty list. Free them all. */
1491 if (batch_free == NR_PCP_LISTS)
1492 batch_free = count;
1493
1494 order = pindex_to_order(pindex);
1495 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1496 do {
1497 page = list_last_entry(list, struct page, lru);
1498 /* must delete to avoid corrupting pcp list */
1499 list_del(&page->lru);
1500 nr_freed += 1 << order;
1501 count -= 1 << order;
1502
1503 if (bulkfree_pcp_prepare(page))
1504 continue;
1505
1506 /* Encode order with the migratetype */
1507 page->index <<= NR_PCP_ORDER_WIDTH;
1508 page->index |= order;
1509
1510 list_add_tail(&page->lru, &head);
1511
1512 /*
1513 * We are going to put the page back to the global
1514 * pool, prefetch its buddy to speed up later access
1515 * under zone->lock. It is believed the overhead of
1516 * an additional test and calculating buddy_pfn here
1517 * can be offset by reduced memory latency later. To
1518 * avoid excessive prefetching due to large count, only
1519 * prefetch buddy for the first pcp->batch nr of pages.
1520 */
1521 if (prefetch_nr) {
1522 prefetch_buddy(page);
1523 prefetch_nr--;
1524 }
1525 } while (count > 0 && --batch_free && !list_empty(list));
1526 }
1527 pcp->count -= nr_freed;
1528
1529 /*
1530 * local_lock_irq held so equivalent to spin_lock_irqsave for
1531 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1532 */
1533 spin_lock(&zone->lock);
1534 isolated_pageblocks = has_isolate_pageblock(zone);
1535
1536 /*
1537 * Use safe version since after __free_one_page(),
1538 * page->lru.next will not point to original list.
1539 */
1540 list_for_each_entry_safe(page, tmp, &head, lru) {
1541 int mt = get_pcppage_migratetype(page);
1542
1543 /* mt has been encoded with the order (see above) */
1544 order = mt & NR_PCP_ORDER_MASK;
1545 mt >>= NR_PCP_ORDER_WIDTH;
1546
1547 /* MIGRATE_ISOLATE page should not go to pcplists */
1548 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1549 /* Pageblock could have been isolated meanwhile */
1550 if (unlikely(isolated_pageblocks))
1551 mt = get_pageblock_migratetype(page);
1552
1553 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1554 trace_mm_page_pcpu_drain(page, order, mt);
1555 }
1556 spin_unlock(&zone->lock);
1557 }
1558
1559 static void free_one_page(struct zone *zone,
1560 struct page *page, unsigned long pfn,
1561 unsigned int order,
1562 int migratetype, fpi_t fpi_flags)
1563 {
1564 unsigned long flags;
1565
1566 spin_lock_irqsave(&zone->lock, flags);
1567 if (unlikely(has_isolate_pageblock(zone) ||
1568 is_migrate_isolate(migratetype))) {
1569 migratetype = get_pfnblock_migratetype(page, pfn);
1570 }
1571 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1572 spin_unlock_irqrestore(&zone->lock, flags);
1573 }
1574
1575 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1576 unsigned long zone, int nid)
1577 {
1578 mm_zero_struct_page(page);
1579 set_page_links(page, zone, nid, pfn);
1580 init_page_count(page);
1581 page_mapcount_reset(page);
1582 page_cpupid_reset_last(page);
1583 page_kasan_tag_reset(page);
1584
1585 INIT_LIST_HEAD(&page->lru);
1586 #ifdef WANT_PAGE_VIRTUAL
1587 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1588 if (!is_highmem_idx(zone))
1589 set_page_address(page, __va(pfn << PAGE_SHIFT));
1590 #endif
1591 }
1592
1593 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1594 static void __meminit init_reserved_page(unsigned long pfn)
1595 {
1596 pg_data_t *pgdat;
1597 int nid, zid;
1598
1599 if (!early_page_uninitialised(pfn))
1600 return;
1601
1602 nid = early_pfn_to_nid(pfn);
1603 pgdat = NODE_DATA(nid);
1604
1605 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1606 struct zone *zone = &pgdat->node_zones[zid];
1607
1608 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1609 break;
1610 }
1611 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1612 }
1613 #else
1614 static inline void init_reserved_page(unsigned long pfn)
1615 {
1616 }
1617 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1618
1619 /*
1620 * Initialised pages do not have PageReserved set. This function is
1621 * called for each range allocated by the bootmem allocator and
1622 * marks the pages PageReserved. The remaining valid pages are later
1623 * sent to the buddy page allocator.
1624 */
1625 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1626 {
1627 unsigned long start_pfn = PFN_DOWN(start);
1628 unsigned long end_pfn = PFN_UP(end);
1629
1630 for (; start_pfn < end_pfn; start_pfn++) {
1631 if (pfn_valid(start_pfn)) {
1632 struct page *page = pfn_to_page(start_pfn);
1633
1634 init_reserved_page(start_pfn);
1635
1636 /* Avoid false-positive PageTail() */
1637 INIT_LIST_HEAD(&page->lru);
1638
1639 /*
1640 * no need for atomic set_bit because the struct
1641 * page is not visible yet so nobody should
1642 * access it yet.
1643 */
1644 __SetPageReserved(page);
1645 }
1646 }
1647 }
1648
1649 static void __free_pages_ok(struct page *page, unsigned int order,
1650 fpi_t fpi_flags)
1651 {
1652 unsigned long flags;
1653 int migratetype;
1654 unsigned long pfn = page_to_pfn(page);
1655 struct zone *zone = page_zone(page);
1656
1657 if (!free_pages_prepare(page, order, true, fpi_flags))
1658 return;
1659
1660 migratetype = get_pfnblock_migratetype(page, pfn);
1661
1662 spin_lock_irqsave(&zone->lock, flags);
1663 if (unlikely(has_isolate_pageblock(zone) ||
1664 is_migrate_isolate(migratetype))) {
1665 migratetype = get_pfnblock_migratetype(page, pfn);
1666 }
1667 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1668 spin_unlock_irqrestore(&zone->lock, flags);
1669
1670 __count_vm_events(PGFREE, 1 << order);
1671 }
1672
1673 void __free_pages_core(struct page *page, unsigned int order)
1674 {
1675 unsigned int nr_pages = 1 << order;
1676 struct page *p = page;
1677 unsigned int loop;
1678
1679 /*
1680 * When initializing the memmap, __init_single_page() sets the refcount
1681 * of all pages to 1 ("allocated"/"not free"). We have to set the
1682 * refcount of all involved pages to 0.
1683 */
1684 prefetchw(p);
1685 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1686 prefetchw(p + 1);
1687 __ClearPageReserved(p);
1688 set_page_count(p, 0);
1689 }
1690 __ClearPageReserved(p);
1691 set_page_count(p, 0);
1692
1693 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1694
1695 /*
1696 * Bypass PCP and place fresh pages right to the tail, primarily
1697 * relevant for memory onlining.
1698 */
1699 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1700 }
1701
1702 #ifdef CONFIG_NUMA
1703
1704 /*
1705 * During memory init memblocks map pfns to nids. The search is expensive and
1706 * this caches recent lookups. The implementation of __early_pfn_to_nid
1707 * treats start/end as pfns.
1708 */
1709 struct mminit_pfnnid_cache {
1710 unsigned long last_start;
1711 unsigned long last_end;
1712 int last_nid;
1713 };
1714
1715 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1716
1717 /*
1718 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1719 */
1720 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1721 struct mminit_pfnnid_cache *state)
1722 {
1723 unsigned long start_pfn, end_pfn;
1724 int nid;
1725
1726 if (state->last_start <= pfn && pfn < state->last_end)
1727 return state->last_nid;
1728
1729 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1730 if (nid != NUMA_NO_NODE) {
1731 state->last_start = start_pfn;
1732 state->last_end = end_pfn;
1733 state->last_nid = nid;
1734 }
1735
1736 return nid;
1737 }
1738
1739 int __meminit early_pfn_to_nid(unsigned long pfn)
1740 {
1741 static DEFINE_SPINLOCK(early_pfn_lock);
1742 int nid;
1743
1744 spin_lock(&early_pfn_lock);
1745 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1746 if (nid < 0)
1747 nid = first_online_node;
1748 spin_unlock(&early_pfn_lock);
1749
1750 return nid;
1751 }
1752 #endif /* CONFIG_NUMA */
1753
1754 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1755 unsigned int order)
1756 {
1757 if (early_page_uninitialised(pfn))
1758 return;
1759 __free_pages_core(page, order);
1760 }
1761
1762 /*
1763 * Check that the whole (or subset of) a pageblock given by the interval of
1764 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1765 * with the migration of free compaction scanner. The scanners then need to
1766 * use only pfn_valid_within() check for arches that allow holes within
1767 * pageblocks.
1768 *
1769 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1770 *
1771 * It's possible on some configurations to have a setup like node0 node1 node0
1772 * i.e. it's possible that all pages within a zones range of pages do not
1773 * belong to a single zone. We assume that a border between node0 and node1
1774 * can occur within a single pageblock, but not a node0 node1 node0
1775 * interleaving within a single pageblock. It is therefore sufficient to check
1776 * the first and last page of a pageblock and avoid checking each individual
1777 * page in a pageblock.
1778 */
1779 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1780 unsigned long end_pfn, struct zone *zone)
1781 {
1782 struct page *start_page;
1783 struct page *end_page;
1784
1785 /* end_pfn is one past the range we are checking */
1786 end_pfn--;
1787
1788 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1789 return NULL;
1790
1791 start_page = pfn_to_online_page(start_pfn);
1792 if (!start_page)
1793 return NULL;
1794
1795 if (page_zone(start_page) != zone)
1796 return NULL;
1797
1798 end_page = pfn_to_page(end_pfn);
1799
1800 /* This gives a shorter code than deriving page_zone(end_page) */
1801 if (page_zone_id(start_page) != page_zone_id(end_page))
1802 return NULL;
1803
1804 return start_page;
1805 }
1806
1807 void set_zone_contiguous(struct zone *zone)
1808 {
1809 unsigned long block_start_pfn = zone->zone_start_pfn;
1810 unsigned long block_end_pfn;
1811
1812 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1813 for (; block_start_pfn < zone_end_pfn(zone);
1814 block_start_pfn = block_end_pfn,
1815 block_end_pfn += pageblock_nr_pages) {
1816
1817 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1818
1819 if (!__pageblock_pfn_to_page(block_start_pfn,
1820 block_end_pfn, zone))
1821 return;
1822 cond_resched();
1823 }
1824
1825 /* We confirm that there is no hole */
1826 zone->contiguous = true;
1827 }
1828
1829 void clear_zone_contiguous(struct zone *zone)
1830 {
1831 zone->contiguous = false;
1832 }
1833
1834 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1835 static void __init deferred_free_range(unsigned long pfn,
1836 unsigned long nr_pages)
1837 {
1838 struct page *page;
1839 unsigned long i;
1840
1841 if (!nr_pages)
1842 return;
1843
1844 page = pfn_to_page(pfn);
1845
1846 /* Free a large naturally-aligned chunk if possible */
1847 if (nr_pages == pageblock_nr_pages &&
1848 (pfn & (pageblock_nr_pages - 1)) == 0) {
1849 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1850 __free_pages_core(page, pageblock_order);
1851 return;
1852 }
1853
1854 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1855 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1856 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1857 __free_pages_core(page, 0);
1858 }
1859 }
1860
1861 /* Completion tracking for deferred_init_memmap() threads */
1862 static atomic_t pgdat_init_n_undone __initdata;
1863 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1864
1865 static inline void __init pgdat_init_report_one_done(void)
1866 {
1867 if (atomic_dec_and_test(&pgdat_init_n_undone))
1868 complete(&pgdat_init_all_done_comp);
1869 }
1870
1871 /*
1872 * Returns true if page needs to be initialized or freed to buddy allocator.
1873 *
1874 * First we check if pfn is valid on architectures where it is possible to have
1875 * holes within pageblock_nr_pages. On systems where it is not possible, this
1876 * function is optimized out.
1877 *
1878 * Then, we check if a current large page is valid by only checking the validity
1879 * of the head pfn.
1880 */
1881 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1882 {
1883 if (!pfn_valid_within(pfn))
1884 return false;
1885 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1886 return false;
1887 return true;
1888 }
1889
1890 /*
1891 * Free pages to buddy allocator. Try to free aligned pages in
1892 * pageblock_nr_pages sizes.
1893 */
1894 static void __init deferred_free_pages(unsigned long pfn,
1895 unsigned long end_pfn)
1896 {
1897 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1898 unsigned long nr_free = 0;
1899
1900 for (; pfn < end_pfn; pfn++) {
1901 if (!deferred_pfn_valid(pfn)) {
1902 deferred_free_range(pfn - nr_free, nr_free);
1903 nr_free = 0;
1904 } else if (!(pfn & nr_pgmask)) {
1905 deferred_free_range(pfn - nr_free, nr_free);
1906 nr_free = 1;
1907 } else {
1908 nr_free++;
1909 }
1910 }
1911 /* Free the last block of pages to allocator */
1912 deferred_free_range(pfn - nr_free, nr_free);
1913 }
1914
1915 /*
1916 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1917 * by performing it only once every pageblock_nr_pages.
1918 * Return number of pages initialized.
1919 */
1920 static unsigned long __init deferred_init_pages(struct zone *zone,
1921 unsigned long pfn,
1922 unsigned long end_pfn)
1923 {
1924 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1925 int nid = zone_to_nid(zone);
1926 unsigned long nr_pages = 0;
1927 int zid = zone_idx(zone);
1928 struct page *page = NULL;
1929
1930 for (; pfn < end_pfn; pfn++) {
1931 if (!deferred_pfn_valid(pfn)) {
1932 page = NULL;
1933 continue;
1934 } else if (!page || !(pfn & nr_pgmask)) {
1935 page = pfn_to_page(pfn);
1936 } else {
1937 page++;
1938 }
1939 __init_single_page(page, pfn, zid, nid);
1940 nr_pages++;
1941 }
1942 return (nr_pages);
1943 }
1944
1945 /*
1946 * This function is meant to pre-load the iterator for the zone init.
1947 * Specifically it walks through the ranges until we are caught up to the
1948 * first_init_pfn value and exits there. If we never encounter the value we
1949 * return false indicating there are no valid ranges left.
1950 */
1951 static bool __init
1952 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1953 unsigned long *spfn, unsigned long *epfn,
1954 unsigned long first_init_pfn)
1955 {
1956 u64 j;
1957
1958 /*
1959 * Start out by walking through the ranges in this zone that have
1960 * already been initialized. We don't need to do anything with them
1961 * so we just need to flush them out of the system.
1962 */
1963 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1964 if (*epfn <= first_init_pfn)
1965 continue;
1966 if (*spfn < first_init_pfn)
1967 *spfn = first_init_pfn;
1968 *i = j;
1969 return true;
1970 }
1971
1972 return false;
1973 }
1974
1975 /*
1976 * Initialize and free pages. We do it in two loops: first we initialize
1977 * struct page, then free to buddy allocator, because while we are
1978 * freeing pages we can access pages that are ahead (computing buddy
1979 * page in __free_one_page()).
1980 *
1981 * In order to try and keep some memory in the cache we have the loop
1982 * broken along max page order boundaries. This way we will not cause
1983 * any issues with the buddy page computation.
1984 */
1985 static unsigned long __init
1986 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1987 unsigned long *end_pfn)
1988 {
1989 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1990 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1991 unsigned long nr_pages = 0;
1992 u64 j = *i;
1993
1994 /* First we loop through and initialize the page values */
1995 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1996 unsigned long t;
1997
1998 if (mo_pfn <= *start_pfn)
1999 break;
2000
2001 t = min(mo_pfn, *end_pfn);
2002 nr_pages += deferred_init_pages(zone, *start_pfn, t);
2003
2004 if (mo_pfn < *end_pfn) {
2005 *start_pfn = mo_pfn;
2006 break;
2007 }
2008 }
2009
2010 /* Reset values and now loop through freeing pages as needed */
2011 swap(j, *i);
2012
2013 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2014 unsigned long t;
2015
2016 if (mo_pfn <= spfn)
2017 break;
2018
2019 t = min(mo_pfn, epfn);
2020 deferred_free_pages(spfn, t);
2021
2022 if (mo_pfn <= epfn)
2023 break;
2024 }
2025
2026 return nr_pages;
2027 }
2028
2029 static void __init
2030 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2031 void *arg)
2032 {
2033 unsigned long spfn, epfn;
2034 struct zone *zone = arg;
2035 u64 i;
2036
2037 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2038
2039 /*
2040 * Initialize and free pages in MAX_ORDER sized increments so that we
2041 * can avoid introducing any issues with the buddy allocator.
2042 */
2043 while (spfn < end_pfn) {
2044 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2045 cond_resched();
2046 }
2047 }
2048
2049 /* An arch may override for more concurrency. */
2050 __weak int __init
2051 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2052 {
2053 return 1;
2054 }
2055
2056 /* Initialise remaining memory on a node */
2057 static int __init deferred_init_memmap(void *data)
2058 {
2059 pg_data_t *pgdat = data;
2060 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2061 unsigned long spfn = 0, epfn = 0;
2062 unsigned long first_init_pfn, flags;
2063 unsigned long start = jiffies;
2064 struct zone *zone;
2065 int zid, max_threads;
2066 u64 i;
2067
2068 /* Bind memory initialisation thread to a local node if possible */
2069 if (!cpumask_empty(cpumask))
2070 set_cpus_allowed_ptr(current, cpumask);
2071
2072 pgdat_resize_lock(pgdat, &flags);
2073 first_init_pfn = pgdat->first_deferred_pfn;
2074 if (first_init_pfn == ULONG_MAX) {
2075 pgdat_resize_unlock(pgdat, &flags);
2076 pgdat_init_report_one_done();
2077 return 0;
2078 }
2079
2080 /* Sanity check boundaries */
2081 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2082 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2083 pgdat->first_deferred_pfn = ULONG_MAX;
2084
2085 /*
2086 * Once we unlock here, the zone cannot be grown anymore, thus if an
2087 * interrupt thread must allocate this early in boot, zone must be
2088 * pre-grown prior to start of deferred page initialization.
2089 */
2090 pgdat_resize_unlock(pgdat, &flags);
2091
2092 /* Only the highest zone is deferred so find it */
2093 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2094 zone = pgdat->node_zones + zid;
2095 if (first_init_pfn < zone_end_pfn(zone))
2096 break;
2097 }
2098
2099 /* If the zone is empty somebody else may have cleared out the zone */
2100 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2101 first_init_pfn))
2102 goto zone_empty;
2103
2104 max_threads = deferred_page_init_max_threads(cpumask);
2105
2106 while (spfn < epfn) {
2107 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2108 struct padata_mt_job job = {
2109 .thread_fn = deferred_init_memmap_chunk,
2110 .fn_arg = zone,
2111 .start = spfn,
2112 .size = epfn_align - spfn,
2113 .align = PAGES_PER_SECTION,
2114 .min_chunk = PAGES_PER_SECTION,
2115 .max_threads = max_threads,
2116 };
2117
2118 padata_do_multithreaded(&job);
2119 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2120 epfn_align);
2121 }
2122 zone_empty:
2123 /* Sanity check that the next zone really is unpopulated */
2124 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2125
2126 pr_info("node %d deferred pages initialised in %ums\n",
2127 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2128
2129 pgdat_init_report_one_done();
2130 return 0;
2131 }
2132
2133 /*
2134 * If this zone has deferred pages, try to grow it by initializing enough
2135 * deferred pages to satisfy the allocation specified by order, rounded up to
2136 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2137 * of SECTION_SIZE bytes by initializing struct pages in increments of
2138 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2139 *
2140 * Return true when zone was grown, otherwise return false. We return true even
2141 * when we grow less than requested, to let the caller decide if there are
2142 * enough pages to satisfy the allocation.
2143 *
2144 * Note: We use noinline because this function is needed only during boot, and
2145 * it is called from a __ref function _deferred_grow_zone. This way we are
2146 * making sure that it is not inlined into permanent text section.
2147 */
2148 static noinline bool __init
2149 deferred_grow_zone(struct zone *zone, unsigned int order)
2150 {
2151 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2152 pg_data_t *pgdat = zone->zone_pgdat;
2153 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2154 unsigned long spfn, epfn, flags;
2155 unsigned long nr_pages = 0;
2156 u64 i;
2157
2158 /* Only the last zone may have deferred pages */
2159 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2160 return false;
2161
2162 pgdat_resize_lock(pgdat, &flags);
2163
2164 /*
2165 * If someone grew this zone while we were waiting for spinlock, return
2166 * true, as there might be enough pages already.
2167 */
2168 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2169 pgdat_resize_unlock(pgdat, &flags);
2170 return true;
2171 }
2172
2173 /* If the zone is empty somebody else may have cleared out the zone */
2174 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2175 first_deferred_pfn)) {
2176 pgdat->first_deferred_pfn = ULONG_MAX;
2177 pgdat_resize_unlock(pgdat, &flags);
2178 /* Retry only once. */
2179 return first_deferred_pfn != ULONG_MAX;
2180 }
2181
2182 /*
2183 * Initialize and free pages in MAX_ORDER sized increments so
2184 * that we can avoid introducing any issues with the buddy
2185 * allocator.
2186 */
2187 while (spfn < epfn) {
2188 /* update our first deferred PFN for this section */
2189 first_deferred_pfn = spfn;
2190
2191 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2192 touch_nmi_watchdog();
2193
2194 /* We should only stop along section boundaries */
2195 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2196 continue;
2197
2198 /* If our quota has been met we can stop here */
2199 if (nr_pages >= nr_pages_needed)
2200 break;
2201 }
2202
2203 pgdat->first_deferred_pfn = spfn;
2204 pgdat_resize_unlock(pgdat, &flags);
2205
2206 return nr_pages > 0;
2207 }
2208
2209 /*
2210 * deferred_grow_zone() is __init, but it is called from
2211 * get_page_from_freelist() during early boot until deferred_pages permanently
2212 * disables this call. This is why we have refdata wrapper to avoid warning,
2213 * and to ensure that the function body gets unloaded.
2214 */
2215 static bool __ref
2216 _deferred_grow_zone(struct zone *zone, unsigned int order)
2217 {
2218 return deferred_grow_zone(zone, order);
2219 }
2220
2221 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2222
2223 void __init page_alloc_init_late(void)
2224 {
2225 struct zone *zone;
2226 int nid;
2227
2228 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2229
2230 /* There will be num_node_state(N_MEMORY) threads */
2231 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2232 for_each_node_state(nid, N_MEMORY) {
2233 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2234 }
2235
2236 /* Block until all are initialised */
2237 wait_for_completion(&pgdat_init_all_done_comp);
2238
2239 /*
2240 * We initialized the rest of the deferred pages. Permanently disable
2241 * on-demand struct page initialization.
2242 */
2243 static_branch_disable(&deferred_pages);
2244
2245 /* Reinit limits that are based on free pages after the kernel is up */
2246 files_maxfiles_init();
2247 #endif
2248
2249 buffer_init();
2250
2251 /* Discard memblock private memory */
2252 memblock_discard();
2253
2254 for_each_node_state(nid, N_MEMORY)
2255 shuffle_free_memory(NODE_DATA(nid));
2256
2257 for_each_populated_zone(zone)
2258 set_zone_contiguous(zone);
2259 }
2260
2261 #ifdef CONFIG_CMA
2262 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2263 void __init init_cma_reserved_pageblock(struct page *page)
2264 {
2265 unsigned i = pageblock_nr_pages;
2266 struct page *p = page;
2267
2268 do {
2269 __ClearPageReserved(p);
2270 set_page_count(p, 0);
2271 } while (++p, --i);
2272
2273 set_pageblock_migratetype(page, MIGRATE_CMA);
2274
2275 if (pageblock_order >= MAX_ORDER) {
2276 i = pageblock_nr_pages;
2277 p = page;
2278 do {
2279 set_page_refcounted(p);
2280 __free_pages(p, MAX_ORDER - 1);
2281 p += MAX_ORDER_NR_PAGES;
2282 } while (i -= MAX_ORDER_NR_PAGES);
2283 } else {
2284 set_page_refcounted(page);
2285 __free_pages(page, pageblock_order);
2286 }
2287
2288 adjust_managed_page_count(page, pageblock_nr_pages);
2289 page_zone(page)->cma_pages += pageblock_nr_pages;
2290 }
2291 #endif
2292
2293 /*
2294 * The order of subdivision here is critical for the IO subsystem.
2295 * Please do not alter this order without good reasons and regression
2296 * testing. Specifically, as large blocks of memory are subdivided,
2297 * the order in which smaller blocks are delivered depends on the order
2298 * they're subdivided in this function. This is the primary factor
2299 * influencing the order in which pages are delivered to the IO
2300 * subsystem according to empirical testing, and this is also justified
2301 * by considering the behavior of a buddy system containing a single
2302 * large block of memory acted on by a series of small allocations.
2303 * This behavior is a critical factor in sglist merging's success.
2304 *
2305 * -- nyc
2306 */
2307 static inline void expand(struct zone *zone, struct page *page,
2308 int low, int high, int migratetype)
2309 {
2310 unsigned long size = 1 << high;
2311
2312 while (high > low) {
2313 high--;
2314 size >>= 1;
2315 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2316
2317 /*
2318 * Mark as guard pages (or page), that will allow to
2319 * merge back to allocator when buddy will be freed.
2320 * Corresponding page table entries will not be touched,
2321 * pages will stay not present in virtual address space
2322 */
2323 if (set_page_guard(zone, &page[size], high, migratetype))
2324 continue;
2325
2326 add_to_free_list(&page[size], zone, high, migratetype);
2327 set_buddy_order(&page[size], high);
2328 }
2329 }
2330
2331 static void check_new_page_bad(struct page *page)
2332 {
2333 if (unlikely(page->flags & __PG_HWPOISON)) {
2334 /* Don't complain about hwpoisoned pages */
2335 page_mapcount_reset(page); /* remove PageBuddy */
2336 return;
2337 }
2338
2339 bad_page(page,
2340 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2341 }
2342
2343 /*
2344 * This page is about to be returned from the page allocator
2345 */
2346 static inline int check_new_page(struct page *page)
2347 {
2348 if (likely(page_expected_state(page,
2349 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2350 return 0;
2351
2352 check_new_page_bad(page);
2353 return 1;
2354 }
2355
2356 #ifdef CONFIG_DEBUG_VM
2357 /*
2358 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2359 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2360 * also checked when pcp lists are refilled from the free lists.
2361 */
2362 static inline bool check_pcp_refill(struct page *page)
2363 {
2364 if (debug_pagealloc_enabled_static())
2365 return check_new_page(page);
2366 else
2367 return false;
2368 }
2369
2370 static inline bool check_new_pcp(struct page *page)
2371 {
2372 return check_new_page(page);
2373 }
2374 #else
2375 /*
2376 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2377 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2378 * enabled, they are also checked when being allocated from the pcp lists.
2379 */
2380 static inline bool check_pcp_refill(struct page *page)
2381 {
2382 return check_new_page(page);
2383 }
2384 static inline bool check_new_pcp(struct page *page)
2385 {
2386 if (debug_pagealloc_enabled_static())
2387 return check_new_page(page);
2388 else
2389 return false;
2390 }
2391 #endif /* CONFIG_DEBUG_VM */
2392
2393 static bool check_new_pages(struct page *page, unsigned int order)
2394 {
2395 int i;
2396 for (i = 0; i < (1 << order); i++) {
2397 struct page *p = page + i;
2398
2399 if (unlikely(check_new_page(p)))
2400 return true;
2401 }
2402
2403 return false;
2404 }
2405
2406 inline void post_alloc_hook(struct page *page, unsigned int order,
2407 gfp_t gfp_flags)
2408 {
2409 set_page_private(page, 0);
2410 set_page_refcounted(page);
2411
2412 arch_alloc_page(page, order);
2413 debug_pagealloc_map_pages(page, 1 << order);
2414
2415 /*
2416 * Page unpoisoning must happen before memory initialization.
2417 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2418 * allocations and the page unpoisoning code will complain.
2419 */
2420 kernel_unpoison_pages(page, 1 << order);
2421
2422 /*
2423 * As memory initialization might be integrated into KASAN,
2424 * kasan_alloc_pages and kernel_init_free_pages must be
2425 * kept together to avoid discrepancies in behavior.
2426 */
2427 if (kasan_has_integrated_init()) {
2428 kasan_alloc_pages(page, order, gfp_flags);
2429 } else {
2430 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2431
2432 kasan_unpoison_pages(page, order, init);
2433 if (init)
2434 kernel_init_free_pages(page, 1 << order,
2435 gfp_flags & __GFP_ZEROTAGS);
2436 }
2437
2438 set_page_owner(page, order, gfp_flags);
2439 }
2440
2441 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2442 unsigned int alloc_flags)
2443 {
2444 post_alloc_hook(page, order, gfp_flags);
2445
2446 if (order && (gfp_flags & __GFP_COMP))
2447 prep_compound_page(page, order);
2448
2449 /*
2450 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2451 * allocate the page. The expectation is that the caller is taking
2452 * steps that will free more memory. The caller should avoid the page
2453 * being used for !PFMEMALLOC purposes.
2454 */
2455 if (alloc_flags & ALLOC_NO_WATERMARKS)
2456 set_page_pfmemalloc(page);
2457 else
2458 clear_page_pfmemalloc(page);
2459 }
2460
2461 /*
2462 * Go through the free lists for the given migratetype and remove
2463 * the smallest available page from the freelists
2464 */
2465 static __always_inline
2466 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2467 int migratetype)
2468 {
2469 unsigned int current_order;
2470 struct free_area *area;
2471 struct page *page;
2472
2473 /* Find a page of the appropriate size in the preferred list */
2474 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2475 area = &(zone->free_area[current_order]);
2476 page = get_page_from_free_area(area, migratetype);
2477 if (!page)
2478 continue;
2479 del_page_from_free_list(page, zone, current_order);
2480 expand(zone, page, order, current_order, migratetype);
2481 set_pcppage_migratetype(page, migratetype);
2482 return page;
2483 }
2484
2485 return NULL;
2486 }
2487
2488
2489 /*
2490 * This array describes the order lists are fallen back to when
2491 * the free lists for the desirable migrate type are depleted
2492 */
2493 static int fallbacks[MIGRATE_TYPES][3] = {
2494 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2495 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2496 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2497 #ifdef CONFIG_CMA
2498 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2499 #endif
2500 #ifdef CONFIG_MEMORY_ISOLATION
2501 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2502 #endif
2503 };
2504
2505 #ifdef CONFIG_CMA
2506 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2507 unsigned int order)
2508 {
2509 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2510 }
2511 #else
2512 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2513 unsigned int order) { return NULL; }
2514 #endif
2515
2516 /*
2517 * Move the free pages in a range to the freelist tail of the requested type.
2518 * Note that start_page and end_pages are not aligned on a pageblock
2519 * boundary. If alignment is required, use move_freepages_block()
2520 */
2521 static int move_freepages(struct zone *zone,
2522 unsigned long start_pfn, unsigned long end_pfn,
2523 int migratetype, int *num_movable)
2524 {
2525 struct page *page;
2526 unsigned long pfn;
2527 unsigned int order;
2528 int pages_moved = 0;
2529
2530 for (pfn = start_pfn; pfn <= end_pfn;) {
2531 if (!pfn_valid_within(pfn)) {
2532 pfn++;
2533 continue;
2534 }
2535
2536 page = pfn_to_page(pfn);
2537 if (!PageBuddy(page)) {
2538 /*
2539 * We assume that pages that could be isolated for
2540 * migration are movable. But we don't actually try
2541 * isolating, as that would be expensive.
2542 */
2543 if (num_movable &&
2544 (PageLRU(page) || __PageMovable(page)))
2545 (*num_movable)++;
2546 pfn++;
2547 continue;
2548 }
2549
2550 /* Make sure we are not inadvertently changing nodes */
2551 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2552 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2553
2554 order = buddy_order(page);
2555 move_to_free_list(page, zone, order, migratetype);
2556 pfn += 1 << order;
2557 pages_moved += 1 << order;
2558 }
2559
2560 return pages_moved;
2561 }
2562
2563 int move_freepages_block(struct zone *zone, struct page *page,
2564 int migratetype, int *num_movable)
2565 {
2566 unsigned long start_pfn, end_pfn, pfn;
2567
2568 if (num_movable)
2569 *num_movable = 0;
2570
2571 pfn = page_to_pfn(page);
2572 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2573 end_pfn = start_pfn + pageblock_nr_pages - 1;
2574
2575 /* Do not cross zone boundaries */
2576 if (!zone_spans_pfn(zone, start_pfn))
2577 start_pfn = pfn;
2578 if (!zone_spans_pfn(zone, end_pfn))
2579 return 0;
2580
2581 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2582 num_movable);
2583 }
2584
2585 static void change_pageblock_range(struct page *pageblock_page,
2586 int start_order, int migratetype)
2587 {
2588 int nr_pageblocks = 1 << (start_order - pageblock_order);
2589
2590 while (nr_pageblocks--) {
2591 set_pageblock_migratetype(pageblock_page, migratetype);
2592 pageblock_page += pageblock_nr_pages;
2593 }
2594 }
2595
2596 /*
2597 * When we are falling back to another migratetype during allocation, try to
2598 * steal extra free pages from the same pageblocks to satisfy further
2599 * allocations, instead of polluting multiple pageblocks.
2600 *
2601 * If we are stealing a relatively large buddy page, it is likely there will
2602 * be more free pages in the pageblock, so try to steal them all. For
2603 * reclaimable and unmovable allocations, we steal regardless of page size,
2604 * as fragmentation caused by those allocations polluting movable pageblocks
2605 * is worse than movable allocations stealing from unmovable and reclaimable
2606 * pageblocks.
2607 */
2608 static bool can_steal_fallback(unsigned int order, int start_mt)
2609 {
2610 /*
2611 * Leaving this order check is intended, although there is
2612 * relaxed order check in next check. The reason is that
2613 * we can actually steal whole pageblock if this condition met,
2614 * but, below check doesn't guarantee it and that is just heuristic
2615 * so could be changed anytime.
2616 */
2617 if (order >= pageblock_order)
2618 return true;
2619
2620 if (order >= pageblock_order / 2 ||
2621 start_mt == MIGRATE_RECLAIMABLE ||
2622 start_mt == MIGRATE_UNMOVABLE ||
2623 page_group_by_mobility_disabled)
2624 return true;
2625
2626 return false;
2627 }
2628
2629 static inline bool boost_watermark(struct zone *zone)
2630 {
2631 unsigned long max_boost;
2632
2633 if (!watermark_boost_factor)
2634 return false;
2635 /*
2636 * Don't bother in zones that are unlikely to produce results.
2637 * On small machines, including kdump capture kernels running
2638 * in a small area, boosting the watermark can cause an out of
2639 * memory situation immediately.
2640 */
2641 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2642 return false;
2643
2644 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2645 watermark_boost_factor, 10000);
2646
2647 /*
2648 * high watermark may be uninitialised if fragmentation occurs
2649 * very early in boot so do not boost. We do not fall
2650 * through and boost by pageblock_nr_pages as failing
2651 * allocations that early means that reclaim is not going
2652 * to help and it may even be impossible to reclaim the
2653 * boosted watermark resulting in a hang.
2654 */
2655 if (!max_boost)
2656 return false;
2657
2658 max_boost = max(pageblock_nr_pages, max_boost);
2659
2660 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2661 max_boost);
2662
2663 return true;
2664 }
2665
2666 /*
2667 * This function implements actual steal behaviour. If order is large enough,
2668 * we can steal whole pageblock. If not, we first move freepages in this
2669 * pageblock to our migratetype and determine how many already-allocated pages
2670 * are there in the pageblock with a compatible migratetype. If at least half
2671 * of pages are free or compatible, we can change migratetype of the pageblock
2672 * itself, so pages freed in the future will be put on the correct free list.
2673 */
2674 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2675 unsigned int alloc_flags, int start_type, bool whole_block)
2676 {
2677 unsigned int current_order = buddy_order(page);
2678 int free_pages, movable_pages, alike_pages;
2679 int old_block_type;
2680
2681 old_block_type = get_pageblock_migratetype(page);
2682
2683 /*
2684 * This can happen due to races and we want to prevent broken
2685 * highatomic accounting.
2686 */
2687 if (is_migrate_highatomic(old_block_type))
2688 goto single_page;
2689
2690 /* Take ownership for orders >= pageblock_order */
2691 if (current_order >= pageblock_order) {
2692 change_pageblock_range(page, current_order, start_type);
2693 goto single_page;
2694 }
2695
2696 /*
2697 * Boost watermarks to increase reclaim pressure to reduce the
2698 * likelihood of future fallbacks. Wake kswapd now as the node
2699 * may be balanced overall and kswapd will not wake naturally.
2700 */
2701 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2702 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2703
2704 /* We are not allowed to try stealing from the whole block */
2705 if (!whole_block)
2706 goto single_page;
2707
2708 free_pages = move_freepages_block(zone, page, start_type,
2709 &movable_pages);
2710 /*
2711 * Determine how many pages are compatible with our allocation.
2712 * For movable allocation, it's the number of movable pages which
2713 * we just obtained. For other types it's a bit more tricky.
2714 */
2715 if (start_type == MIGRATE_MOVABLE) {
2716 alike_pages = movable_pages;
2717 } else {
2718 /*
2719 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2720 * to MOVABLE pageblock, consider all non-movable pages as
2721 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2722 * vice versa, be conservative since we can't distinguish the
2723 * exact migratetype of non-movable pages.
2724 */
2725 if (old_block_type == MIGRATE_MOVABLE)
2726 alike_pages = pageblock_nr_pages
2727 - (free_pages + movable_pages);
2728 else
2729 alike_pages = 0;
2730 }
2731
2732 /* moving whole block can fail due to zone boundary conditions */
2733 if (!free_pages)
2734 goto single_page;
2735
2736 /*
2737 * If a sufficient number of pages in the block are either free or of
2738 * comparable migratability as our allocation, claim the whole block.
2739 */
2740 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2741 page_group_by_mobility_disabled)
2742 set_pageblock_migratetype(page, start_type);
2743
2744 return;
2745
2746 single_page:
2747 move_to_free_list(page, zone, current_order, start_type);
2748 }
2749
2750 /*
2751 * Check whether there is a suitable fallback freepage with requested order.
2752 * If only_stealable is true, this function returns fallback_mt only if
2753 * we can steal other freepages all together. This would help to reduce
2754 * fragmentation due to mixed migratetype pages in one pageblock.
2755 */
2756 int find_suitable_fallback(struct free_area *area, unsigned int order,
2757 int migratetype, bool only_stealable, bool *can_steal)
2758 {
2759 int i;
2760 int fallback_mt;
2761
2762 if (area->nr_free == 0)
2763 return -1;
2764
2765 *can_steal = false;
2766 for (i = 0;; i++) {
2767 fallback_mt = fallbacks[migratetype][i];
2768 if (fallback_mt == MIGRATE_TYPES)
2769 break;
2770
2771 if (free_area_empty(area, fallback_mt))
2772 continue;
2773
2774 if (can_steal_fallback(order, migratetype))
2775 *can_steal = true;
2776
2777 if (!only_stealable)
2778 return fallback_mt;
2779
2780 if (*can_steal)
2781 return fallback_mt;
2782 }
2783
2784 return -1;
2785 }
2786
2787 /*
2788 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2789 * there are no empty page blocks that contain a page with a suitable order
2790 */
2791 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2792 unsigned int alloc_order)
2793 {
2794 int mt;
2795 unsigned long max_managed, flags;
2796
2797 /*
2798 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2799 * Check is race-prone but harmless.
2800 */
2801 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2802 if (zone->nr_reserved_highatomic >= max_managed)
2803 return;
2804
2805 spin_lock_irqsave(&zone->lock, flags);
2806
2807 /* Recheck the nr_reserved_highatomic limit under the lock */
2808 if (zone->nr_reserved_highatomic >= max_managed)
2809 goto out_unlock;
2810
2811 /* Yoink! */
2812 mt = get_pageblock_migratetype(page);
2813 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2814 && !is_migrate_cma(mt)) {
2815 zone->nr_reserved_highatomic += pageblock_nr_pages;
2816 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2817 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2818 }
2819
2820 out_unlock:
2821 spin_unlock_irqrestore(&zone->lock, flags);
2822 }
2823
2824 /*
2825 * Used when an allocation is about to fail under memory pressure. This
2826 * potentially hurts the reliability of high-order allocations when under
2827 * intense memory pressure but failed atomic allocations should be easier
2828 * to recover from than an OOM.
2829 *
2830 * If @force is true, try to unreserve a pageblock even though highatomic
2831 * pageblock is exhausted.
2832 */
2833 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2834 bool force)
2835 {
2836 struct zonelist *zonelist = ac->zonelist;
2837 unsigned long flags;
2838 struct zoneref *z;
2839 struct zone *zone;
2840 struct page *page;
2841 int order;
2842 bool ret;
2843
2844 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2845 ac->nodemask) {
2846 /*
2847 * Preserve at least one pageblock unless memory pressure
2848 * is really high.
2849 */
2850 if (!force && zone->nr_reserved_highatomic <=
2851 pageblock_nr_pages)
2852 continue;
2853
2854 spin_lock_irqsave(&zone->lock, flags);
2855 for (order = 0; order < MAX_ORDER; order++) {
2856 struct free_area *area = &(zone->free_area[order]);
2857
2858 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2859 if (!page)
2860 continue;
2861
2862 /*
2863 * In page freeing path, migratetype change is racy so
2864 * we can counter several free pages in a pageblock
2865 * in this loop although we changed the pageblock type
2866 * from highatomic to ac->migratetype. So we should
2867 * adjust the count once.
2868 */
2869 if (is_migrate_highatomic_page(page)) {
2870 /*
2871 * It should never happen but changes to
2872 * locking could inadvertently allow a per-cpu
2873 * drain to add pages to MIGRATE_HIGHATOMIC
2874 * while unreserving so be safe and watch for
2875 * underflows.
2876 */
2877 zone->nr_reserved_highatomic -= min(
2878 pageblock_nr_pages,
2879 zone->nr_reserved_highatomic);
2880 }
2881
2882 /*
2883 * Convert to ac->migratetype and avoid the normal
2884 * pageblock stealing heuristics. Minimally, the caller
2885 * is doing the work and needs the pages. More
2886 * importantly, if the block was always converted to
2887 * MIGRATE_UNMOVABLE or another type then the number
2888 * of pageblocks that cannot be completely freed
2889 * may increase.
2890 */
2891 set_pageblock_migratetype(page, ac->migratetype);
2892 ret = move_freepages_block(zone, page, ac->migratetype,
2893 NULL);
2894 if (ret) {
2895 spin_unlock_irqrestore(&zone->lock, flags);
2896 return ret;
2897 }
2898 }
2899 spin_unlock_irqrestore(&zone->lock, flags);
2900 }
2901
2902 return false;
2903 }
2904
2905 /*
2906 * Try finding a free buddy page on the fallback list and put it on the free
2907 * list of requested migratetype, possibly along with other pages from the same
2908 * block, depending on fragmentation avoidance heuristics. Returns true if
2909 * fallback was found so that __rmqueue_smallest() can grab it.
2910 *
2911 * The use of signed ints for order and current_order is a deliberate
2912 * deviation from the rest of this file, to make the for loop
2913 * condition simpler.
2914 */
2915 static __always_inline bool
2916 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2917 unsigned int alloc_flags)
2918 {
2919 struct free_area *area;
2920 int current_order;
2921 int min_order = order;
2922 struct page *page;
2923 int fallback_mt;
2924 bool can_steal;
2925
2926 /*
2927 * Do not steal pages from freelists belonging to other pageblocks
2928 * i.e. orders < pageblock_order. If there are no local zones free,
2929 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2930 */
2931 if (alloc_flags & ALLOC_NOFRAGMENT)
2932 min_order = pageblock_order;
2933
2934 /*
2935 * Find the largest available free page in the other list. This roughly
2936 * approximates finding the pageblock with the most free pages, which
2937 * would be too costly to do exactly.
2938 */
2939 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2940 --current_order) {
2941 area = &(zone->free_area[current_order]);
2942 fallback_mt = find_suitable_fallback(area, current_order,
2943 start_migratetype, false, &can_steal);
2944 if (fallback_mt == -1)
2945 continue;
2946
2947 /*
2948 * We cannot steal all free pages from the pageblock and the
2949 * requested migratetype is movable. In that case it's better to
2950 * steal and split the smallest available page instead of the
2951 * largest available page, because even if the next movable
2952 * allocation falls back into a different pageblock than this
2953 * one, it won't cause permanent fragmentation.
2954 */
2955 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2956 && current_order > order)
2957 goto find_smallest;
2958
2959 goto do_steal;
2960 }
2961
2962 return false;
2963
2964 find_smallest:
2965 for (current_order = order; current_order < MAX_ORDER;
2966 current_order++) {
2967 area = &(zone->free_area[current_order]);
2968 fallback_mt = find_suitable_fallback(area, current_order,
2969 start_migratetype, false, &can_steal);
2970 if (fallback_mt != -1)
2971 break;
2972 }
2973
2974 /*
2975 * This should not happen - we already found a suitable fallback
2976 * when looking for the largest page.
2977 */
2978 VM_BUG_ON(current_order == MAX_ORDER);
2979
2980 do_steal:
2981 page = get_page_from_free_area(area, fallback_mt);
2982
2983 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2984 can_steal);
2985
2986 trace_mm_page_alloc_extfrag(page, order, current_order,
2987 start_migratetype, fallback_mt);
2988
2989 return true;
2990
2991 }
2992
2993 /*
2994 * Do the hard work of removing an element from the buddy allocator.
2995 * Call me with the zone->lock already held.
2996 */
2997 static __always_inline struct page *
2998 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2999 unsigned int alloc_flags)
3000 {
3001 struct page *page;
3002
3003 if (IS_ENABLED(CONFIG_CMA)) {
3004 /*
3005 * Balance movable allocations between regular and CMA areas by
3006 * allocating from CMA when over half of the zone's free memory
3007 * is in the CMA area.
3008 */
3009 if (alloc_flags & ALLOC_CMA &&
3010 zone_page_state(zone, NR_FREE_CMA_PAGES) >
3011 zone_page_state(zone, NR_FREE_PAGES) / 2) {
3012 page = __rmqueue_cma_fallback(zone, order);
3013 if (page)
3014 goto out;
3015 }
3016 }
3017 retry:
3018 page = __rmqueue_smallest(zone, order, migratetype);
3019 if (unlikely(!page)) {
3020 if (alloc_flags & ALLOC_CMA)
3021 page = __rmqueue_cma_fallback(zone, order);
3022
3023 if (!page && __rmqueue_fallback(zone, order, migratetype,
3024 alloc_flags))
3025 goto retry;
3026 }
3027 out:
3028 if (page)
3029 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3030 return page;
3031 }
3032
3033 /*
3034 * Obtain a specified number of elements from the buddy allocator, all under
3035 * a single hold of the lock, for efficiency. Add them to the supplied list.
3036 * Returns the number of new pages which were placed at *list.
3037 */
3038 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3039 unsigned long count, struct list_head *list,
3040 int migratetype, unsigned int alloc_flags)
3041 {
3042 int i, allocated = 0;
3043
3044 /*
3045 * local_lock_irq held so equivalent to spin_lock_irqsave for
3046 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3047 */
3048 spin_lock(&zone->lock);
3049 for (i = 0; i < count; ++i) {
3050 struct page *page = __rmqueue(zone, order, migratetype,
3051 alloc_flags);
3052 if (unlikely(page == NULL))
3053 break;
3054
3055 if (unlikely(check_pcp_refill(page)))
3056 continue;
3057
3058 /*
3059 * Split buddy pages returned by expand() are received here in
3060 * physical page order. The page is added to the tail of
3061 * caller's list. From the callers perspective, the linked list
3062 * is ordered by page number under some conditions. This is
3063 * useful for IO devices that can forward direction from the
3064 * head, thus also in the physical page order. This is useful
3065 * for IO devices that can merge IO requests if the physical
3066 * pages are ordered properly.
3067 */
3068 list_add_tail(&page->lru, list);
3069 allocated++;
3070 if (is_migrate_cma(get_pcppage_migratetype(page)))
3071 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3072 -(1 << order));
3073 }
3074
3075 /*
3076 * i pages were removed from the buddy list even if some leak due
3077 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3078 * on i. Do not confuse with 'allocated' which is the number of
3079 * pages added to the pcp list.
3080 */
3081 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3082 spin_unlock(&zone->lock);
3083 return allocated;
3084 }
3085
3086 #ifdef CONFIG_NUMA
3087 /*
3088 * Called from the vmstat counter updater to drain pagesets of this
3089 * currently executing processor on remote nodes after they have
3090 * expired.
3091 *
3092 * Note that this function must be called with the thread pinned to
3093 * a single processor.
3094 */
3095 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3096 {
3097 unsigned long flags;
3098 int to_drain, batch;
3099
3100 local_lock_irqsave(&pagesets.lock, flags);
3101 batch = READ_ONCE(pcp->batch);
3102 to_drain = min(pcp->count, batch);
3103 if (to_drain > 0)
3104 free_pcppages_bulk(zone, to_drain, pcp);
3105 local_unlock_irqrestore(&pagesets.lock, flags);
3106 }
3107 #endif
3108
3109 /*
3110 * Drain pcplists of the indicated processor and zone.
3111 *
3112 * The processor must either be the current processor and the
3113 * thread pinned to the current processor or a processor that
3114 * is not online.
3115 */
3116 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3117 {
3118 unsigned long flags;
3119 struct per_cpu_pages *pcp;
3120
3121 local_lock_irqsave(&pagesets.lock, flags);
3122
3123 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3124 if (pcp->count)
3125 free_pcppages_bulk(zone, pcp->count, pcp);
3126
3127 local_unlock_irqrestore(&pagesets.lock, flags);
3128 }
3129
3130 /*
3131 * Drain pcplists of all zones on the indicated processor.
3132 *
3133 * The processor must either be the current processor and the
3134 * thread pinned to the current processor or a processor that
3135 * is not online.
3136 */
3137 static void drain_pages(unsigned int cpu)
3138 {
3139 struct zone *zone;
3140
3141 for_each_populated_zone(zone) {
3142 drain_pages_zone(cpu, zone);
3143 }
3144 }
3145
3146 /*
3147 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3148 *
3149 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3150 * the single zone's pages.
3151 */
3152 void drain_local_pages(struct zone *zone)
3153 {
3154 int cpu = smp_processor_id();
3155
3156 if (zone)
3157 drain_pages_zone(cpu, zone);
3158 else
3159 drain_pages(cpu);
3160 }
3161
3162 static void drain_local_pages_wq(struct work_struct *work)
3163 {
3164 struct pcpu_drain *drain;
3165
3166 drain = container_of(work, struct pcpu_drain, work);
3167
3168 /*
3169 * drain_all_pages doesn't use proper cpu hotplug protection so
3170 * we can race with cpu offline when the WQ can move this from
3171 * a cpu pinned worker to an unbound one. We can operate on a different
3172 * cpu which is alright but we also have to make sure to not move to
3173 * a different one.
3174 */
3175 preempt_disable();
3176 drain_local_pages(drain->zone);
3177 preempt_enable();
3178 }
3179
3180 /*
3181 * The implementation of drain_all_pages(), exposing an extra parameter to
3182 * drain on all cpus.
3183 *
3184 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3185 * not empty. The check for non-emptiness can however race with a free to
3186 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3187 * that need the guarantee that every CPU has drained can disable the
3188 * optimizing racy check.
3189 */
3190 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3191 {
3192 int cpu;
3193
3194 /*
3195 * Allocate in the BSS so we won't require allocation in
3196 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3197 */
3198 static cpumask_t cpus_with_pcps;
3199
3200 /*
3201 * Make sure nobody triggers this path before mm_percpu_wq is fully
3202 * initialized.
3203 */
3204 if (WARN_ON_ONCE(!mm_percpu_wq))
3205 return;
3206
3207 /*
3208 * Do not drain if one is already in progress unless it's specific to
3209 * a zone. Such callers are primarily CMA and memory hotplug and need
3210 * the drain to be complete when the call returns.
3211 */
3212 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3213 if (!zone)
3214 return;
3215 mutex_lock(&pcpu_drain_mutex);
3216 }
3217
3218 /*
3219 * We don't care about racing with CPU hotplug event
3220 * as offline notification will cause the notified
3221 * cpu to drain that CPU pcps and on_each_cpu_mask
3222 * disables preemption as part of its processing
3223 */
3224 for_each_online_cpu(cpu) {
3225 struct per_cpu_pages *pcp;
3226 struct zone *z;
3227 bool has_pcps = false;
3228
3229 if (force_all_cpus) {
3230 /*
3231 * The pcp.count check is racy, some callers need a
3232 * guarantee that no cpu is missed.
3233 */
3234 has_pcps = true;
3235 } else if (zone) {
3236 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3237 if (pcp->count)
3238 has_pcps = true;
3239 } else {
3240 for_each_populated_zone(z) {
3241 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3242 if (pcp->count) {
3243 has_pcps = true;
3244 break;
3245 }
3246 }
3247 }
3248
3249 if (has_pcps)
3250 cpumask_set_cpu(cpu, &cpus_with_pcps);
3251 else
3252 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3253 }
3254
3255 for_each_cpu(cpu, &cpus_with_pcps) {
3256 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3257
3258 drain->zone = zone;
3259 INIT_WORK(&drain->work, drain_local_pages_wq);
3260 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3261 }
3262 for_each_cpu(cpu, &cpus_with_pcps)
3263 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3264
3265 mutex_unlock(&pcpu_drain_mutex);
3266 }
3267
3268 /*
3269 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3270 *
3271 * When zone parameter is non-NULL, spill just the single zone's pages.
3272 *
3273 * Note that this can be extremely slow as the draining happens in a workqueue.
3274 */
3275 void drain_all_pages(struct zone *zone)
3276 {
3277 __drain_all_pages(zone, false);
3278 }
3279
3280 #ifdef CONFIG_HIBERNATION
3281
3282 /*
3283 * Touch the watchdog for every WD_PAGE_COUNT pages.
3284 */
3285 #define WD_PAGE_COUNT (128*1024)
3286
3287 void mark_free_pages(struct zone *zone)
3288 {
3289 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3290 unsigned long flags;
3291 unsigned int order, t;
3292 struct page *page;
3293
3294 if (zone_is_empty(zone))
3295 return;
3296
3297 spin_lock_irqsave(&zone->lock, flags);
3298
3299 max_zone_pfn = zone_end_pfn(zone);
3300 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3301 if (pfn_valid(pfn)) {
3302 page = pfn_to_page(pfn);
3303
3304 if (!--page_count) {
3305 touch_nmi_watchdog();
3306 page_count = WD_PAGE_COUNT;
3307 }
3308
3309 if (page_zone(page) != zone)
3310 continue;
3311
3312 if (!swsusp_page_is_forbidden(page))
3313 swsusp_unset_page_free(page);
3314 }
3315
3316 for_each_migratetype_order(order, t) {
3317 list_for_each_entry(page,
3318 &zone->free_area[order].free_list[t], lru) {
3319 unsigned long i;
3320
3321 pfn = page_to_pfn(page);
3322 for (i = 0; i < (1UL << order); i++) {
3323 if (!--page_count) {
3324 touch_nmi_watchdog();
3325 page_count = WD_PAGE_COUNT;
3326 }
3327 swsusp_set_page_free(pfn_to_page(pfn + i));
3328 }
3329 }
3330 }
3331 spin_unlock_irqrestore(&zone->lock, flags);
3332 }
3333 #endif /* CONFIG_PM */
3334
3335 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3336 unsigned int order)
3337 {
3338 int migratetype;
3339
3340 if (!free_pcp_prepare(page, order))
3341 return false;
3342
3343 migratetype = get_pfnblock_migratetype(page, pfn);
3344 set_pcppage_migratetype(page, migratetype);
3345 return true;
3346 }
3347
3348 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3349 {
3350 int min_nr_free, max_nr_free;
3351
3352 /* Check for PCP disabled or boot pageset */
3353 if (unlikely(high < batch))
3354 return 1;
3355
3356 /* Leave at least pcp->batch pages on the list */
3357 min_nr_free = batch;
3358 max_nr_free = high - batch;
3359
3360 /*
3361 * Double the number of pages freed each time there is subsequent
3362 * freeing of pages without any allocation.
3363 */
3364 batch <<= pcp->free_factor;
3365 if (batch < max_nr_free)
3366 pcp->free_factor++;
3367 batch = clamp(batch, min_nr_free, max_nr_free);
3368
3369 return batch;
3370 }
3371
3372 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3373 {
3374 int high = READ_ONCE(pcp->high);
3375
3376 if (unlikely(!high))
3377 return 0;
3378
3379 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3380 return high;
3381
3382 /*
3383 * If reclaim is active, limit the number of pages that can be
3384 * stored on pcp lists
3385 */
3386 return min(READ_ONCE(pcp->batch) << 2, high);
3387 }
3388
3389 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3390 int migratetype, unsigned int order)
3391 {
3392 struct zone *zone = page_zone(page);
3393 struct per_cpu_pages *pcp;
3394 int high;
3395 int pindex;
3396
3397 __count_vm_event(PGFREE);
3398 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3399 pindex = order_to_pindex(migratetype, order);
3400 list_add(&page->lru, &pcp->lists[pindex]);
3401 pcp->count += 1 << order;
3402 high = nr_pcp_high(pcp, zone);
3403 if (pcp->count >= high) {
3404 int batch = READ_ONCE(pcp->batch);
3405
3406 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3407 }
3408 }
3409
3410 /*
3411 * Free a pcp page
3412 */
3413 void free_unref_page(struct page *page, unsigned int order)
3414 {
3415 unsigned long flags;
3416 unsigned long pfn = page_to_pfn(page);
3417 int migratetype;
3418
3419 if (!free_unref_page_prepare(page, pfn, order))
3420 return;
3421
3422 /*
3423 * We only track unmovable, reclaimable and movable on pcp lists.
3424 * Place ISOLATE pages on the isolated list because they are being
3425 * offlined but treat HIGHATOMIC as movable pages so we can get those
3426 * areas back if necessary. Otherwise, we may have to free
3427 * excessively into the page allocator
3428 */
3429 migratetype = get_pcppage_migratetype(page);
3430 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3431 if (unlikely(is_migrate_isolate(migratetype))) {
3432 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3433 return;
3434 }
3435 migratetype = MIGRATE_MOVABLE;
3436 }
3437
3438 local_lock_irqsave(&pagesets.lock, flags);
3439 free_unref_page_commit(page, pfn, migratetype, order);
3440 local_unlock_irqrestore(&pagesets.lock, flags);
3441 }
3442
3443 /*
3444 * Free a list of 0-order pages
3445 */
3446 void free_unref_page_list(struct list_head *list)
3447 {
3448 struct page *page, *next;
3449 unsigned long flags, pfn;
3450 int batch_count = 0;
3451 int migratetype;
3452
3453 /* Prepare pages for freeing */
3454 list_for_each_entry_safe(page, next, list, lru) {
3455 pfn = page_to_pfn(page);
3456 if (!free_unref_page_prepare(page, pfn, 0))
3457 list_del(&page->lru);
3458
3459 /*
3460 * Free isolated pages directly to the allocator, see
3461 * comment in free_unref_page.
3462 */
3463 migratetype = get_pcppage_migratetype(page);
3464 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3465 if (unlikely(is_migrate_isolate(migratetype))) {
3466 list_del(&page->lru);
3467 free_one_page(page_zone(page), page, pfn, 0,
3468 migratetype, FPI_NONE);
3469 continue;
3470 }
3471
3472 /*
3473 * Non-isolated types over MIGRATE_PCPTYPES get added
3474 * to the MIGRATE_MOVABLE pcp list.
3475 */
3476 set_pcppage_migratetype(page, MIGRATE_MOVABLE);
3477 }
3478
3479 set_page_private(page, pfn);
3480 }
3481
3482 local_lock_irqsave(&pagesets.lock, flags);
3483 list_for_each_entry_safe(page, next, list, lru) {
3484 pfn = page_private(page);
3485 set_page_private(page, 0);
3486 migratetype = get_pcppage_migratetype(page);
3487 trace_mm_page_free_batched(page);
3488 free_unref_page_commit(page, pfn, migratetype, 0);
3489
3490 /*
3491 * Guard against excessive IRQ disabled times when we get
3492 * a large list of pages to free.
3493 */
3494 if (++batch_count == SWAP_CLUSTER_MAX) {
3495 local_unlock_irqrestore(&pagesets.lock, flags);
3496 batch_count = 0;
3497 local_lock_irqsave(&pagesets.lock, flags);
3498 }
3499 }
3500 local_unlock_irqrestore(&pagesets.lock, flags);
3501 }
3502
3503 /*
3504 * split_page takes a non-compound higher-order page, and splits it into
3505 * n (1<<order) sub-pages: page[0..n]
3506 * Each sub-page must be freed individually.
3507 *
3508 * Note: this is probably too low level an operation for use in drivers.
3509 * Please consult with lkml before using this in your driver.
3510 */
3511 void split_page(struct page *page, unsigned int order)
3512 {
3513 int i;
3514
3515 VM_BUG_ON_PAGE(PageCompound(page), page);
3516 VM_BUG_ON_PAGE(!page_count(page), page);
3517
3518 for (i = 1; i < (1 << order); i++)
3519 set_page_refcounted(page + i);
3520 split_page_owner(page, 1 << order);
3521 split_page_memcg(page, 1 << order);
3522 }
3523 EXPORT_SYMBOL_GPL(split_page);
3524
3525 int __isolate_free_page(struct page *page, unsigned int order)
3526 {
3527 unsigned long watermark;
3528 struct zone *zone;
3529 int mt;
3530
3531 BUG_ON(!PageBuddy(page));
3532
3533 zone = page_zone(page);
3534 mt = get_pageblock_migratetype(page);
3535
3536 if (!is_migrate_isolate(mt)) {
3537 /*
3538 * Obey watermarks as if the page was being allocated. We can
3539 * emulate a high-order watermark check with a raised order-0
3540 * watermark, because we already know our high-order page
3541 * exists.
3542 */
3543 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3544 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3545 return 0;
3546
3547 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3548 }
3549
3550 /* Remove page from free list */
3551
3552 del_page_from_free_list(page, zone, order);
3553
3554 /*
3555 * Set the pageblock if the isolated page is at least half of a
3556 * pageblock
3557 */
3558 if (order >= pageblock_order - 1) {
3559 struct page *endpage = page + (1 << order) - 1;
3560 for (; page < endpage; page += pageblock_nr_pages) {
3561 int mt = get_pageblock_migratetype(page);
3562 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3563 && !is_migrate_highatomic(mt))
3564 set_pageblock_migratetype(page,
3565 MIGRATE_MOVABLE);
3566 }
3567 }
3568
3569
3570 return 1UL << order;
3571 }
3572
3573 /**
3574 * __putback_isolated_page - Return a now-isolated page back where we got it
3575 * @page: Page that was isolated
3576 * @order: Order of the isolated page
3577 * @mt: The page's pageblock's migratetype
3578 *
3579 * This function is meant to return a page pulled from the free lists via
3580 * __isolate_free_page back to the free lists they were pulled from.
3581 */
3582 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3583 {
3584 struct zone *zone = page_zone(page);
3585
3586 /* zone lock should be held when this function is called */
3587 lockdep_assert_held(&zone->lock);
3588
3589 /* Return isolated page to tail of freelist. */
3590 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3591 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3592 }
3593
3594 /*
3595 * Update NUMA hit/miss statistics
3596 *
3597 * Must be called with interrupts disabled.
3598 */
3599 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3600 long nr_account)
3601 {
3602 #ifdef CONFIG_NUMA
3603 enum numa_stat_item local_stat = NUMA_LOCAL;
3604
3605 /* skip numa counters update if numa stats is disabled */
3606 if (!static_branch_likely(&vm_numa_stat_key))
3607 return;
3608
3609 if (zone_to_nid(z) != numa_node_id())
3610 local_stat = NUMA_OTHER;
3611
3612 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3613 __count_numa_events(z, NUMA_HIT, nr_account);
3614 else {
3615 __count_numa_events(z, NUMA_MISS, nr_account);
3616 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3617 }
3618 __count_numa_events(z, local_stat, nr_account);
3619 #endif
3620 }
3621
3622 /* Remove page from the per-cpu list, caller must protect the list */
3623 static inline
3624 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3625 int migratetype,
3626 unsigned int alloc_flags,
3627 struct per_cpu_pages *pcp,
3628 struct list_head *list)
3629 {
3630 struct page *page;
3631
3632 do {
3633 if (list_empty(list)) {
3634 int batch = READ_ONCE(pcp->batch);
3635 int alloced;
3636
3637 /*
3638 * Scale batch relative to order if batch implies
3639 * free pages can be stored on the PCP. Batch can
3640 * be 1 for small zones or for boot pagesets which
3641 * should never store free pages as the pages may
3642 * belong to arbitrary zones.
3643 */
3644 if (batch > 1)
3645 batch = max(batch >> order, 2);
3646 alloced = rmqueue_bulk(zone, order,
3647 batch, list,
3648 migratetype, alloc_flags);
3649
3650 pcp->count += alloced << order;
3651 if (unlikely(list_empty(list)))
3652 return NULL;
3653 }
3654
3655 page = list_first_entry(list, struct page, lru);
3656 list_del(&page->lru);
3657 pcp->count -= 1 << order;
3658 } while (check_new_pcp(page));
3659
3660 return page;
3661 }
3662
3663 /* Lock and remove page from the per-cpu list */
3664 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3665 struct zone *zone, unsigned int order,
3666 gfp_t gfp_flags, int migratetype,
3667 unsigned int alloc_flags)
3668 {
3669 struct per_cpu_pages *pcp;
3670 struct list_head *list;
3671 struct page *page;
3672 unsigned long flags;
3673
3674 local_lock_irqsave(&pagesets.lock, flags);
3675
3676 /*
3677 * On allocation, reduce the number of pages that are batch freed.
3678 * See nr_pcp_free() where free_factor is increased for subsequent
3679 * frees.
3680 */
3681 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3682 pcp->free_factor >>= 1;
3683 list = &pcp->lists[order_to_pindex(migratetype, order)];
3684 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3685 local_unlock_irqrestore(&pagesets.lock, flags);
3686 if (page) {
3687 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3688 zone_statistics(preferred_zone, zone, 1);
3689 }
3690 return page;
3691 }
3692
3693 /*
3694 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3695 */
3696 static inline
3697 struct page *rmqueue(struct zone *preferred_zone,
3698 struct zone *zone, unsigned int order,
3699 gfp_t gfp_flags, unsigned int alloc_flags,
3700 int migratetype)
3701 {
3702 unsigned long flags;
3703 struct page *page;
3704
3705 if (likely(pcp_allowed_order(order))) {
3706 /*
3707 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3708 * we need to skip it when CMA area isn't allowed.
3709 */
3710 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3711 migratetype != MIGRATE_MOVABLE) {
3712 page = rmqueue_pcplist(preferred_zone, zone, order,
3713 gfp_flags, migratetype, alloc_flags);
3714 goto out;
3715 }
3716 }
3717
3718 /*
3719 * We most definitely don't want callers attempting to
3720 * allocate greater than order-1 page units with __GFP_NOFAIL.
3721 */
3722 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3723 spin_lock_irqsave(&zone->lock, flags);
3724
3725 do {
3726 page = NULL;
3727 /*
3728 * order-0 request can reach here when the pcplist is skipped
3729 * due to non-CMA allocation context. HIGHATOMIC area is
3730 * reserved for high-order atomic allocation, so order-0
3731 * request should skip it.
3732 */
3733 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3734 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3735 if (page)
3736 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3737 }
3738 if (!page)
3739 page = __rmqueue(zone, order, migratetype, alloc_flags);
3740 } while (page && check_new_pages(page, order));
3741 if (!page)
3742 goto failed;
3743
3744 __mod_zone_freepage_state(zone, -(1 << order),
3745 get_pcppage_migratetype(page));
3746 spin_unlock_irqrestore(&zone->lock, flags);
3747
3748 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3749 zone_statistics(preferred_zone, zone, 1);
3750
3751 out:
3752 /* Separate test+clear to avoid unnecessary atomics */
3753 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3754 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3755 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3756 }
3757
3758 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3759 return page;
3760
3761 failed:
3762 spin_unlock_irqrestore(&zone->lock, flags);
3763 return NULL;
3764 }
3765
3766 #ifdef CONFIG_FAIL_PAGE_ALLOC
3767
3768 static struct {
3769 struct fault_attr attr;
3770
3771 bool ignore_gfp_highmem;
3772 bool ignore_gfp_reclaim;
3773 u32 min_order;
3774 } fail_page_alloc = {
3775 .attr = FAULT_ATTR_INITIALIZER,
3776 .ignore_gfp_reclaim = true,
3777 .ignore_gfp_highmem = true,
3778 .min_order = 1,
3779 };
3780
3781 static int __init setup_fail_page_alloc(char *str)
3782 {
3783 return setup_fault_attr(&fail_page_alloc.attr, str);
3784 }
3785 __setup("fail_page_alloc=", setup_fail_page_alloc);
3786
3787 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3788 {
3789 if (order < fail_page_alloc.min_order)
3790 return false;
3791 if (gfp_mask & __GFP_NOFAIL)
3792 return false;
3793 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3794 return false;
3795 if (fail_page_alloc.ignore_gfp_reclaim &&
3796 (gfp_mask & __GFP_DIRECT_RECLAIM))
3797 return false;
3798
3799 return should_fail(&fail_page_alloc.attr, 1 << order);
3800 }
3801
3802 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3803
3804 static int __init fail_page_alloc_debugfs(void)
3805 {
3806 umode_t mode = S_IFREG | 0600;
3807 struct dentry *dir;
3808
3809 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3810 &fail_page_alloc.attr);
3811
3812 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3813 &fail_page_alloc.ignore_gfp_reclaim);
3814 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3815 &fail_page_alloc.ignore_gfp_highmem);
3816 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3817
3818 return 0;
3819 }
3820
3821 late_initcall(fail_page_alloc_debugfs);
3822
3823 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3824
3825 #else /* CONFIG_FAIL_PAGE_ALLOC */
3826
3827 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3828 {
3829 return false;
3830 }
3831
3832 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3833
3834 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3835 {
3836 return __should_fail_alloc_page(gfp_mask, order);
3837 }
3838 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3839
3840 static inline long __zone_watermark_unusable_free(struct zone *z,
3841 unsigned int order, unsigned int alloc_flags)
3842 {
3843 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3844 long unusable_free = (1 << order) - 1;
3845
3846 /*
3847 * If the caller does not have rights to ALLOC_HARDER then subtract
3848 * the high-atomic reserves. This will over-estimate the size of the
3849 * atomic reserve but it avoids a search.
3850 */
3851 if (likely(!alloc_harder))
3852 unusable_free += z->nr_reserved_highatomic;
3853
3854 #ifdef CONFIG_CMA
3855 /* If allocation can't use CMA areas don't use free CMA pages */
3856 if (!(alloc_flags & ALLOC_CMA))
3857 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3858 #endif
3859
3860 return unusable_free;
3861 }
3862
3863 /*
3864 * Return true if free base pages are above 'mark'. For high-order checks it
3865 * will return true of the order-0 watermark is reached and there is at least
3866 * one free page of a suitable size. Checking now avoids taking the zone lock
3867 * to check in the allocation paths if no pages are free.
3868 */
3869 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3870 int highest_zoneidx, unsigned int alloc_flags,
3871 long free_pages)
3872 {
3873 long min = mark;
3874 int o;
3875 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3876
3877 /* free_pages may go negative - that's OK */
3878 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3879
3880 if (alloc_flags & ALLOC_HIGH)
3881 min -= min / 2;
3882
3883 if (unlikely(alloc_harder)) {
3884 /*
3885 * OOM victims can try even harder than normal ALLOC_HARDER
3886 * users on the grounds that it's definitely going to be in
3887 * the exit path shortly and free memory. Any allocation it
3888 * makes during the free path will be small and short-lived.
3889 */
3890 if (alloc_flags & ALLOC_OOM)
3891 min -= min / 2;
3892 else
3893 min -= min / 4;
3894 }
3895
3896 /*
3897 * Check watermarks for an order-0 allocation request. If these
3898 * are not met, then a high-order request also cannot go ahead
3899 * even if a suitable page happened to be free.
3900 */
3901 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3902 return false;
3903
3904 /* If this is an order-0 request then the watermark is fine */
3905 if (!order)
3906 return true;
3907
3908 /* For a high-order request, check at least one suitable page is free */
3909 for (o = order; o < MAX_ORDER; o++) {
3910 struct free_area *area = &z->free_area[o];
3911 int mt;
3912
3913 if (!area->nr_free)
3914 continue;
3915
3916 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3917 if (!free_area_empty(area, mt))
3918 return true;
3919 }
3920
3921 #ifdef CONFIG_CMA
3922 if ((alloc_flags & ALLOC_CMA) &&
3923 !free_area_empty(area, MIGRATE_CMA)) {
3924 return true;
3925 }
3926 #endif
3927 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3928 return true;
3929 }
3930 return false;
3931 }
3932
3933 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3934 int highest_zoneidx, unsigned int alloc_flags)
3935 {
3936 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3937 zone_page_state(z, NR_FREE_PAGES));
3938 }
3939
3940 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3941 unsigned long mark, int highest_zoneidx,
3942 unsigned int alloc_flags, gfp_t gfp_mask)
3943 {
3944 long free_pages;
3945
3946 free_pages = zone_page_state(z, NR_FREE_PAGES);
3947
3948 /*
3949 * Fast check for order-0 only. If this fails then the reserves
3950 * need to be calculated.
3951 */
3952 if (!order) {
3953 long fast_free;
3954
3955 fast_free = free_pages;
3956 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3957 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3958 return true;
3959 }
3960
3961 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3962 free_pages))
3963 return true;
3964 /*
3965 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3966 * when checking the min watermark. The min watermark is the
3967 * point where boosting is ignored so that kswapd is woken up
3968 * when below the low watermark.
3969 */
3970 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3971 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3972 mark = z->_watermark[WMARK_MIN];
3973 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3974 alloc_flags, free_pages);
3975 }
3976
3977 return false;
3978 }
3979
3980 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3981 unsigned long mark, int highest_zoneidx)
3982 {
3983 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3984
3985 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3986 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3987
3988 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3989 free_pages);
3990 }
3991
3992 #ifdef CONFIG_NUMA
3993 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3994 {
3995 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3996 node_reclaim_distance;
3997 }
3998 #else /* CONFIG_NUMA */
3999 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4000 {
4001 return true;
4002 }
4003 #endif /* CONFIG_NUMA */
4004
4005 /*
4006 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4007 * fragmentation is subtle. If the preferred zone was HIGHMEM then
4008 * premature use of a lower zone may cause lowmem pressure problems that
4009 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4010 * probably too small. It only makes sense to spread allocations to avoid
4011 * fragmentation between the Normal and DMA32 zones.
4012 */
4013 static inline unsigned int
4014 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4015 {
4016 unsigned int alloc_flags;
4017
4018 /*
4019 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4020 * to save a branch.
4021 */
4022 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4023
4024 #ifdef CONFIG_ZONE_DMA32
4025 if (!zone)
4026 return alloc_flags;
4027
4028 if (zone_idx(zone) != ZONE_NORMAL)
4029 return alloc_flags;
4030
4031 /*
4032 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4033 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4034 * on UMA that if Normal is populated then so is DMA32.
4035 */
4036 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4037 if (nr_online_nodes > 1 && !populated_zone(--zone))
4038 return alloc_flags;
4039
4040 alloc_flags |= ALLOC_NOFRAGMENT;
4041 #endif /* CONFIG_ZONE_DMA32 */
4042 return alloc_flags;
4043 }
4044
4045 /* Must be called after current_gfp_context() which can change gfp_mask */
4046 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4047 unsigned int alloc_flags)
4048 {
4049 #ifdef CONFIG_CMA
4050 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4051 alloc_flags |= ALLOC_CMA;
4052 #endif
4053 return alloc_flags;
4054 }
4055
4056 /*
4057 * get_page_from_freelist goes through the zonelist trying to allocate
4058 * a page.
4059 */
4060 static struct page *
4061 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4062 const struct alloc_context *ac)
4063 {
4064 struct zoneref *z;
4065 struct zone *zone;
4066 struct pglist_data *last_pgdat_dirty_limit = NULL;
4067 bool no_fallback;
4068
4069 retry:
4070 /*
4071 * Scan zonelist, looking for a zone with enough free.
4072 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4073 */
4074 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4075 z = ac->preferred_zoneref;
4076 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4077 ac->nodemask) {
4078 struct page *page;
4079 unsigned long mark;
4080
4081 if (cpusets_enabled() &&
4082 (alloc_flags & ALLOC_CPUSET) &&
4083 !__cpuset_zone_allowed(zone, gfp_mask))
4084 continue;
4085 /*
4086 * When allocating a page cache page for writing, we
4087 * want to get it from a node that is within its dirty
4088 * limit, such that no single node holds more than its
4089 * proportional share of globally allowed dirty pages.
4090 * The dirty limits take into account the node's
4091 * lowmem reserves and high watermark so that kswapd
4092 * should be able to balance it without having to
4093 * write pages from its LRU list.
4094 *
4095 * XXX: For now, allow allocations to potentially
4096 * exceed the per-node dirty limit in the slowpath
4097 * (spread_dirty_pages unset) before going into reclaim,
4098 * which is important when on a NUMA setup the allowed
4099 * nodes are together not big enough to reach the
4100 * global limit. The proper fix for these situations
4101 * will require awareness of nodes in the
4102 * dirty-throttling and the flusher threads.
4103 */
4104 if (ac->spread_dirty_pages) {
4105 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4106 continue;
4107
4108 if (!node_dirty_ok(zone->zone_pgdat)) {
4109 last_pgdat_dirty_limit = zone->zone_pgdat;
4110 continue;
4111 }
4112 }
4113
4114 if (no_fallback && nr_online_nodes > 1 &&
4115 zone != ac->preferred_zoneref->zone) {
4116 int local_nid;
4117
4118 /*
4119 * If moving to a remote node, retry but allow
4120 * fragmenting fallbacks. Locality is more important
4121 * than fragmentation avoidance.
4122 */
4123 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4124 if (zone_to_nid(zone) != local_nid) {
4125 alloc_flags &= ~ALLOC_NOFRAGMENT;
4126 goto retry;
4127 }
4128 }
4129
4130 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4131 if (!zone_watermark_fast(zone, order, mark,
4132 ac->highest_zoneidx, alloc_flags,
4133 gfp_mask)) {
4134 int ret;
4135
4136 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4137 /*
4138 * Watermark failed for this zone, but see if we can
4139 * grow this zone if it contains deferred pages.
4140 */
4141 if (static_branch_unlikely(&deferred_pages)) {
4142 if (_deferred_grow_zone(zone, order))
4143 goto try_this_zone;
4144 }
4145 #endif
4146 /* Checked here to keep the fast path fast */
4147 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4148 if (alloc_flags & ALLOC_NO_WATERMARKS)
4149 goto try_this_zone;
4150
4151 if (!node_reclaim_enabled() ||
4152 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4153 continue;
4154
4155 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4156 switch (ret) {
4157 case NODE_RECLAIM_NOSCAN:
4158 /* did not scan */
4159 continue;
4160 case NODE_RECLAIM_FULL:
4161 /* scanned but unreclaimable */
4162 continue;
4163 default:
4164 /* did we reclaim enough */
4165 if (zone_watermark_ok(zone, order, mark,
4166 ac->highest_zoneidx, alloc_flags))
4167 goto try_this_zone;
4168
4169 continue;
4170 }
4171 }
4172
4173 try_this_zone:
4174 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4175 gfp_mask, alloc_flags, ac->migratetype);
4176 if (page) {
4177 prep_new_page(page, order, gfp_mask, alloc_flags);
4178
4179 /*
4180 * If this is a high-order atomic allocation then check
4181 * if the pageblock should be reserved for the future
4182 */
4183 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4184 reserve_highatomic_pageblock(page, zone, order);
4185
4186 return page;
4187 } else {
4188 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4189 /* Try again if zone has deferred pages */
4190 if (static_branch_unlikely(&deferred_pages)) {
4191 if (_deferred_grow_zone(zone, order))
4192 goto try_this_zone;
4193 }
4194 #endif
4195 }
4196 }
4197
4198 /*
4199 * It's possible on a UMA machine to get through all zones that are
4200 * fragmented. If avoiding fragmentation, reset and try again.
4201 */
4202 if (no_fallback) {
4203 alloc_flags &= ~ALLOC_NOFRAGMENT;
4204 goto retry;
4205 }
4206
4207 return NULL;
4208 }
4209
4210 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4211 {
4212 unsigned int filter = SHOW_MEM_FILTER_NODES;
4213
4214 /*
4215 * This documents exceptions given to allocations in certain
4216 * contexts that are allowed to allocate outside current's set
4217 * of allowed nodes.
4218 */
4219 if (!(gfp_mask & __GFP_NOMEMALLOC))
4220 if (tsk_is_oom_victim(current) ||
4221 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4222 filter &= ~SHOW_MEM_FILTER_NODES;
4223 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4224 filter &= ~SHOW_MEM_FILTER_NODES;
4225
4226 show_mem(filter, nodemask);
4227 }
4228
4229 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4230 {
4231 struct va_format vaf;
4232 va_list args;
4233 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4234
4235 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4236 return;
4237
4238 va_start(args, fmt);
4239 vaf.fmt = fmt;
4240 vaf.va = &args;
4241 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4242 current->comm, &vaf, gfp_mask, &gfp_mask,
4243 nodemask_pr_args(nodemask));
4244 va_end(args);
4245
4246 cpuset_print_current_mems_allowed();
4247 pr_cont("\n");
4248 dump_stack();
4249 warn_alloc_show_mem(gfp_mask, nodemask);
4250 }
4251
4252 static inline struct page *
4253 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4254 unsigned int alloc_flags,
4255 const struct alloc_context *ac)
4256 {
4257 struct page *page;
4258
4259 page = get_page_from_freelist(gfp_mask, order,
4260 alloc_flags|ALLOC_CPUSET, ac);
4261 /*
4262 * fallback to ignore cpuset restriction if our nodes
4263 * are depleted
4264 */
4265 if (!page)
4266 page = get_page_from_freelist(gfp_mask, order,
4267 alloc_flags, ac);
4268
4269 return page;
4270 }
4271
4272 static inline struct page *
4273 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4274 const struct alloc_context *ac, unsigned long *did_some_progress)
4275 {
4276 struct oom_control oc = {
4277 .zonelist = ac->zonelist,
4278 .nodemask = ac->nodemask,
4279 .memcg = NULL,
4280 .gfp_mask = gfp_mask,
4281 .order = order,
4282 };
4283 struct page *page;
4284
4285 *did_some_progress = 0;
4286
4287 /*
4288 * Acquire the oom lock. If that fails, somebody else is
4289 * making progress for us.
4290 */
4291 if (!mutex_trylock(&oom_lock)) {
4292 *did_some_progress = 1;
4293 schedule_timeout_uninterruptible(1);
4294 return NULL;
4295 }
4296
4297 /*
4298 * Go through the zonelist yet one more time, keep very high watermark
4299 * here, this is only to catch a parallel oom killing, we must fail if
4300 * we're still under heavy pressure. But make sure that this reclaim
4301 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4302 * allocation which will never fail due to oom_lock already held.
4303 */
4304 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4305 ~__GFP_DIRECT_RECLAIM, order,
4306 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4307 if (page)
4308 goto out;
4309
4310 /* Coredumps can quickly deplete all memory reserves */
4311 if (current->flags & PF_DUMPCORE)
4312 goto out;
4313 /* The OOM killer will not help higher order allocs */
4314 if (order > PAGE_ALLOC_COSTLY_ORDER)
4315 goto out;
4316 /*
4317 * We have already exhausted all our reclaim opportunities without any
4318 * success so it is time to admit defeat. We will skip the OOM killer
4319 * because it is very likely that the caller has a more reasonable
4320 * fallback than shooting a random task.
4321 *
4322 * The OOM killer may not free memory on a specific node.
4323 */
4324 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4325 goto out;
4326 /* The OOM killer does not needlessly kill tasks for lowmem */
4327 if (ac->highest_zoneidx < ZONE_NORMAL)
4328 goto out;
4329 if (pm_suspended_storage())
4330 goto out;
4331 /*
4332 * XXX: GFP_NOFS allocations should rather fail than rely on
4333 * other request to make a forward progress.
4334 * We are in an unfortunate situation where out_of_memory cannot
4335 * do much for this context but let's try it to at least get
4336 * access to memory reserved if the current task is killed (see
4337 * out_of_memory). Once filesystems are ready to handle allocation
4338 * failures more gracefully we should just bail out here.
4339 */
4340
4341 /* Exhausted what can be done so it's blame time */
4342 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4343 *did_some_progress = 1;
4344
4345 /*
4346 * Help non-failing allocations by giving them access to memory
4347 * reserves
4348 */
4349 if (gfp_mask & __GFP_NOFAIL)
4350 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4351 ALLOC_NO_WATERMARKS, ac);
4352 }
4353 out:
4354 mutex_unlock(&oom_lock);
4355 return page;
4356 }
4357
4358 /*
4359 * Maximum number of compaction retries with a progress before OOM
4360 * killer is consider as the only way to move forward.
4361 */
4362 #define MAX_COMPACT_RETRIES 16
4363
4364 #ifdef CONFIG_COMPACTION
4365 /* Try memory compaction for high-order allocations before reclaim */
4366 static struct page *
4367 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4368 unsigned int alloc_flags, const struct alloc_context *ac,
4369 enum compact_priority prio, enum compact_result *compact_result)
4370 {
4371 struct page *page = NULL;
4372 unsigned long pflags;
4373 unsigned int noreclaim_flag;
4374
4375 if (!order)
4376 return NULL;
4377
4378 psi_memstall_enter(&pflags);
4379 noreclaim_flag = memalloc_noreclaim_save();
4380
4381 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4382 prio, &page);
4383
4384 memalloc_noreclaim_restore(noreclaim_flag);
4385 psi_memstall_leave(&pflags);
4386
4387 if (*compact_result == COMPACT_SKIPPED)
4388 return NULL;
4389 /*
4390 * At least in one zone compaction wasn't deferred or skipped, so let's
4391 * count a compaction stall
4392 */
4393 count_vm_event(COMPACTSTALL);
4394
4395 /* Prep a captured page if available */
4396 if (page)
4397 prep_new_page(page, order, gfp_mask, alloc_flags);
4398
4399 /* Try get a page from the freelist if available */
4400 if (!page)
4401 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4402
4403 if (page) {
4404 struct zone *zone = page_zone(page);
4405
4406 zone->compact_blockskip_flush = false;
4407 compaction_defer_reset(zone, order, true);
4408 count_vm_event(COMPACTSUCCESS);
4409 return page;
4410 }
4411
4412 /*
4413 * It's bad if compaction run occurs and fails. The most likely reason
4414 * is that pages exist, but not enough to satisfy watermarks.
4415 */
4416 count_vm_event(COMPACTFAIL);
4417
4418 cond_resched();
4419
4420 return NULL;
4421 }
4422
4423 static inline bool
4424 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4425 enum compact_result compact_result,
4426 enum compact_priority *compact_priority,
4427 int *compaction_retries)
4428 {
4429 int max_retries = MAX_COMPACT_RETRIES;
4430 int min_priority;
4431 bool ret = false;
4432 int retries = *compaction_retries;
4433 enum compact_priority priority = *compact_priority;
4434
4435 if (!order)
4436 return false;
4437
4438 if (fatal_signal_pending(current))
4439 return false;
4440
4441 if (compaction_made_progress(compact_result))
4442 (*compaction_retries)++;
4443
4444 /*
4445 * compaction considers all the zone as desperately out of memory
4446 * so it doesn't really make much sense to retry except when the
4447 * failure could be caused by insufficient priority
4448 */
4449 if (compaction_failed(compact_result))
4450 goto check_priority;
4451
4452 /*
4453 * compaction was skipped because there are not enough order-0 pages
4454 * to work with, so we retry only if it looks like reclaim can help.
4455 */
4456 if (compaction_needs_reclaim(compact_result)) {
4457 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4458 goto out;
4459 }
4460
4461 /*
4462 * make sure the compaction wasn't deferred or didn't bail out early
4463 * due to locks contention before we declare that we should give up.
4464 * But the next retry should use a higher priority if allowed, so
4465 * we don't just keep bailing out endlessly.
4466 */
4467 if (compaction_withdrawn(compact_result)) {
4468 goto check_priority;
4469 }
4470
4471 /*
4472 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4473 * costly ones because they are de facto nofail and invoke OOM
4474 * killer to move on while costly can fail and users are ready
4475 * to cope with that. 1/4 retries is rather arbitrary but we
4476 * would need much more detailed feedback from compaction to
4477 * make a better decision.
4478 */
4479 if (order > PAGE_ALLOC_COSTLY_ORDER)
4480 max_retries /= 4;
4481 if (*compaction_retries <= max_retries) {
4482 ret = true;
4483 goto out;
4484 }
4485
4486 /*
4487 * Make sure there are attempts at the highest priority if we exhausted
4488 * all retries or failed at the lower priorities.
4489 */
4490 check_priority:
4491 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4492 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4493
4494 if (*compact_priority > min_priority) {
4495 (*compact_priority)--;
4496 *compaction_retries = 0;
4497 ret = true;
4498 }
4499 out:
4500 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4501 return ret;
4502 }
4503 #else
4504 static inline struct page *
4505 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4506 unsigned int alloc_flags, const struct alloc_context *ac,
4507 enum compact_priority prio, enum compact_result *compact_result)
4508 {
4509 *compact_result = COMPACT_SKIPPED;
4510 return NULL;
4511 }
4512
4513 static inline bool
4514 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4515 enum compact_result compact_result,
4516 enum compact_priority *compact_priority,
4517 int *compaction_retries)
4518 {
4519 struct zone *zone;
4520 struct zoneref *z;
4521
4522 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4523 return false;
4524
4525 /*
4526 * There are setups with compaction disabled which would prefer to loop
4527 * inside the allocator rather than hit the oom killer prematurely.
4528 * Let's give them a good hope and keep retrying while the order-0
4529 * watermarks are OK.
4530 */
4531 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4532 ac->highest_zoneidx, ac->nodemask) {
4533 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4534 ac->highest_zoneidx, alloc_flags))
4535 return true;
4536 }
4537 return false;
4538 }
4539 #endif /* CONFIG_COMPACTION */
4540
4541 #ifdef CONFIG_LOCKDEP
4542 static struct lockdep_map __fs_reclaim_map =
4543 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4544
4545 static bool __need_reclaim(gfp_t gfp_mask)
4546 {
4547 /* no reclaim without waiting on it */
4548 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4549 return false;
4550
4551 /* this guy won't enter reclaim */
4552 if (current->flags & PF_MEMALLOC)
4553 return false;
4554
4555 if (gfp_mask & __GFP_NOLOCKDEP)
4556 return false;
4557
4558 return true;
4559 }
4560
4561 void __fs_reclaim_acquire(void)
4562 {
4563 lock_map_acquire(&__fs_reclaim_map);
4564 }
4565
4566 void __fs_reclaim_release(void)
4567 {
4568 lock_map_release(&__fs_reclaim_map);
4569 }
4570
4571 void fs_reclaim_acquire(gfp_t gfp_mask)
4572 {
4573 gfp_mask = current_gfp_context(gfp_mask);
4574
4575 if (__need_reclaim(gfp_mask)) {
4576 if (gfp_mask & __GFP_FS)
4577 __fs_reclaim_acquire();
4578
4579 #ifdef CONFIG_MMU_NOTIFIER
4580 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4581 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4582 #endif
4583
4584 }
4585 }
4586 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4587
4588 void fs_reclaim_release(gfp_t gfp_mask)
4589 {
4590 gfp_mask = current_gfp_context(gfp_mask);
4591
4592 if (__need_reclaim(gfp_mask)) {
4593 if (gfp_mask & __GFP_FS)
4594 __fs_reclaim_release();
4595 }
4596 }
4597 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4598 #endif
4599
4600 /* Perform direct synchronous page reclaim */
4601 static unsigned long
4602 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4603 const struct alloc_context *ac)
4604 {
4605 unsigned int noreclaim_flag;
4606 unsigned long pflags, progress;
4607
4608 cond_resched();
4609
4610 /* We now go into synchronous reclaim */
4611 cpuset_memory_pressure_bump();
4612 psi_memstall_enter(&pflags);
4613 fs_reclaim_acquire(gfp_mask);
4614 noreclaim_flag = memalloc_noreclaim_save();
4615
4616 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4617 ac->nodemask);
4618
4619 memalloc_noreclaim_restore(noreclaim_flag);
4620 fs_reclaim_release(gfp_mask);
4621 psi_memstall_leave(&pflags);
4622
4623 cond_resched();
4624
4625 return progress;
4626 }
4627
4628 /* The really slow allocator path where we enter direct reclaim */
4629 static inline struct page *
4630 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4631 unsigned int alloc_flags, const struct alloc_context *ac,
4632 unsigned long *did_some_progress)
4633 {
4634 struct page *page = NULL;
4635 bool drained = false;
4636
4637 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4638 if (unlikely(!(*did_some_progress)))
4639 return NULL;
4640
4641 retry:
4642 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4643
4644 /*
4645 * If an allocation failed after direct reclaim, it could be because
4646 * pages are pinned on the per-cpu lists or in high alloc reserves.
4647 * Shrink them and try again
4648 */
4649 if (!page && !drained) {
4650 unreserve_highatomic_pageblock(ac, false);
4651 drain_all_pages(NULL);
4652 drained = true;
4653 goto retry;
4654 }
4655
4656 return page;
4657 }
4658
4659 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4660 const struct alloc_context *ac)
4661 {
4662 struct zoneref *z;
4663 struct zone *zone;
4664 pg_data_t *last_pgdat = NULL;
4665 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4666
4667 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4668 ac->nodemask) {
4669 if (last_pgdat != zone->zone_pgdat)
4670 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4671 last_pgdat = zone->zone_pgdat;
4672 }
4673 }
4674
4675 static inline unsigned int
4676 gfp_to_alloc_flags(gfp_t gfp_mask)
4677 {
4678 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4679
4680 /*
4681 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4682 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4683 * to save two branches.
4684 */
4685 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4686 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4687
4688 /*
4689 * The caller may dip into page reserves a bit more if the caller
4690 * cannot run direct reclaim, or if the caller has realtime scheduling
4691 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4692 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4693 */
4694 alloc_flags |= (__force int)
4695 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4696
4697 if (gfp_mask & __GFP_ATOMIC) {
4698 /*
4699 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4700 * if it can't schedule.
4701 */
4702 if (!(gfp_mask & __GFP_NOMEMALLOC))
4703 alloc_flags |= ALLOC_HARDER;
4704 /*
4705 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4706 * comment for __cpuset_node_allowed().
4707 */
4708 alloc_flags &= ~ALLOC_CPUSET;
4709 } else if (unlikely(rt_task(current)) && !in_interrupt())
4710 alloc_flags |= ALLOC_HARDER;
4711
4712 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4713
4714 return alloc_flags;
4715 }
4716
4717 static bool oom_reserves_allowed(struct task_struct *tsk)
4718 {
4719 if (!tsk_is_oom_victim(tsk))
4720 return false;
4721
4722 /*
4723 * !MMU doesn't have oom reaper so give access to memory reserves
4724 * only to the thread with TIF_MEMDIE set
4725 */
4726 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4727 return false;
4728
4729 return true;
4730 }
4731
4732 /*
4733 * Distinguish requests which really need access to full memory
4734 * reserves from oom victims which can live with a portion of it
4735 */
4736 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4737 {
4738 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4739 return 0;
4740 if (gfp_mask & __GFP_MEMALLOC)
4741 return ALLOC_NO_WATERMARKS;
4742 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4743 return ALLOC_NO_WATERMARKS;
4744 if (!in_interrupt()) {
4745 if (current->flags & PF_MEMALLOC)
4746 return ALLOC_NO_WATERMARKS;
4747 else if (oom_reserves_allowed(current))
4748 return ALLOC_OOM;
4749 }
4750
4751 return 0;
4752 }
4753
4754 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4755 {
4756 return !!__gfp_pfmemalloc_flags(gfp_mask);
4757 }
4758
4759 /*
4760 * Checks whether it makes sense to retry the reclaim to make a forward progress
4761 * for the given allocation request.
4762 *
4763 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4764 * without success, or when we couldn't even meet the watermark if we
4765 * reclaimed all remaining pages on the LRU lists.
4766 *
4767 * Returns true if a retry is viable or false to enter the oom path.
4768 */
4769 static inline bool
4770 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4771 struct alloc_context *ac, int alloc_flags,
4772 bool did_some_progress, int *no_progress_loops)
4773 {
4774 struct zone *zone;
4775 struct zoneref *z;
4776 bool ret = false;
4777
4778 /*
4779 * Costly allocations might have made a progress but this doesn't mean
4780 * their order will become available due to high fragmentation so
4781 * always increment the no progress counter for them
4782 */
4783 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4784 *no_progress_loops = 0;
4785 else
4786 (*no_progress_loops)++;
4787
4788 /*
4789 * Make sure we converge to OOM if we cannot make any progress
4790 * several times in the row.
4791 */
4792 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4793 /* Before OOM, exhaust highatomic_reserve */
4794 return unreserve_highatomic_pageblock(ac, true);
4795 }
4796
4797 /*
4798 * Keep reclaiming pages while there is a chance this will lead
4799 * somewhere. If none of the target zones can satisfy our allocation
4800 * request even if all reclaimable pages are considered then we are
4801 * screwed and have to go OOM.
4802 */
4803 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4804 ac->highest_zoneidx, ac->nodemask) {
4805 unsigned long available;
4806 unsigned long reclaimable;
4807 unsigned long min_wmark = min_wmark_pages(zone);
4808 bool wmark;
4809
4810 available = reclaimable = zone_reclaimable_pages(zone);
4811 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4812
4813 /*
4814 * Would the allocation succeed if we reclaimed all
4815 * reclaimable pages?
4816 */
4817 wmark = __zone_watermark_ok(zone, order, min_wmark,
4818 ac->highest_zoneidx, alloc_flags, available);
4819 trace_reclaim_retry_zone(z, order, reclaimable,
4820 available, min_wmark, *no_progress_loops, wmark);
4821 if (wmark) {
4822 /*
4823 * If we didn't make any progress and have a lot of
4824 * dirty + writeback pages then we should wait for
4825 * an IO to complete to slow down the reclaim and
4826 * prevent from pre mature OOM
4827 */
4828 if (!did_some_progress) {
4829 unsigned long write_pending;
4830
4831 write_pending = zone_page_state_snapshot(zone,
4832 NR_ZONE_WRITE_PENDING);
4833
4834 if (2 * write_pending > reclaimable) {
4835 congestion_wait(BLK_RW_ASYNC, HZ/10);
4836 return true;
4837 }
4838 }
4839
4840 ret = true;
4841 goto out;
4842 }
4843 }
4844
4845 out:
4846 /*
4847 * Memory allocation/reclaim might be called from a WQ context and the
4848 * current implementation of the WQ concurrency control doesn't
4849 * recognize that a particular WQ is congested if the worker thread is
4850 * looping without ever sleeping. Therefore we have to do a short sleep
4851 * here rather than calling cond_resched().
4852 */
4853 if (current->flags & PF_WQ_WORKER)
4854 schedule_timeout_uninterruptible(1);
4855 else
4856 cond_resched();
4857 return ret;
4858 }
4859
4860 static inline bool
4861 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4862 {
4863 /*
4864 * It's possible that cpuset's mems_allowed and the nodemask from
4865 * mempolicy don't intersect. This should be normally dealt with by
4866 * policy_nodemask(), but it's possible to race with cpuset update in
4867 * such a way the check therein was true, and then it became false
4868 * before we got our cpuset_mems_cookie here.
4869 * This assumes that for all allocations, ac->nodemask can come only
4870 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4871 * when it does not intersect with the cpuset restrictions) or the
4872 * caller can deal with a violated nodemask.
4873 */
4874 if (cpusets_enabled() && ac->nodemask &&
4875 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4876 ac->nodemask = NULL;
4877 return true;
4878 }
4879
4880 /*
4881 * When updating a task's mems_allowed or mempolicy nodemask, it is
4882 * possible to race with parallel threads in such a way that our
4883 * allocation can fail while the mask is being updated. If we are about
4884 * to fail, check if the cpuset changed during allocation and if so,
4885 * retry.
4886 */
4887 if (read_mems_allowed_retry(cpuset_mems_cookie))
4888 return true;
4889
4890 return false;
4891 }
4892
4893 static inline struct page *
4894 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4895 struct alloc_context *ac)
4896 {
4897 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4898 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4899 struct page *page = NULL;
4900 unsigned int alloc_flags;
4901 unsigned long did_some_progress;
4902 enum compact_priority compact_priority;
4903 enum compact_result compact_result;
4904 int compaction_retries;
4905 int no_progress_loops;
4906 unsigned int cpuset_mems_cookie;
4907 int reserve_flags;
4908
4909 /*
4910 * We also sanity check to catch abuse of atomic reserves being used by
4911 * callers that are not in atomic context.
4912 */
4913 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4914 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4915 gfp_mask &= ~__GFP_ATOMIC;
4916
4917 retry_cpuset:
4918 compaction_retries = 0;
4919 no_progress_loops = 0;
4920 compact_priority = DEF_COMPACT_PRIORITY;
4921 cpuset_mems_cookie = read_mems_allowed_begin();
4922
4923 /*
4924 * The fast path uses conservative alloc_flags to succeed only until
4925 * kswapd needs to be woken up, and to avoid the cost of setting up
4926 * alloc_flags precisely. So we do that now.
4927 */
4928 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4929
4930 /*
4931 * We need to recalculate the starting point for the zonelist iterator
4932 * because we might have used different nodemask in the fast path, or
4933 * there was a cpuset modification and we are retrying - otherwise we
4934 * could end up iterating over non-eligible zones endlessly.
4935 */
4936 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4937 ac->highest_zoneidx, ac->nodemask);
4938 if (!ac->preferred_zoneref->zone)
4939 goto nopage;
4940
4941 if (alloc_flags & ALLOC_KSWAPD)
4942 wake_all_kswapds(order, gfp_mask, ac);
4943
4944 /*
4945 * The adjusted alloc_flags might result in immediate success, so try
4946 * that first
4947 */
4948 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4949 if (page)
4950 goto got_pg;
4951
4952 /*
4953 * For costly allocations, try direct compaction first, as it's likely
4954 * that we have enough base pages and don't need to reclaim. For non-
4955 * movable high-order allocations, do that as well, as compaction will
4956 * try prevent permanent fragmentation by migrating from blocks of the
4957 * same migratetype.
4958 * Don't try this for allocations that are allowed to ignore
4959 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4960 */
4961 if (can_direct_reclaim &&
4962 (costly_order ||
4963 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4964 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4965 page = __alloc_pages_direct_compact(gfp_mask, order,
4966 alloc_flags, ac,
4967 INIT_COMPACT_PRIORITY,
4968 &compact_result);
4969 if (page)
4970 goto got_pg;
4971
4972 /*
4973 * Checks for costly allocations with __GFP_NORETRY, which
4974 * includes some THP page fault allocations
4975 */
4976 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4977 /*
4978 * If allocating entire pageblock(s) and compaction
4979 * failed because all zones are below low watermarks
4980 * or is prohibited because it recently failed at this
4981 * order, fail immediately unless the allocator has
4982 * requested compaction and reclaim retry.
4983 *
4984 * Reclaim is
4985 * - potentially very expensive because zones are far
4986 * below their low watermarks or this is part of very
4987 * bursty high order allocations,
4988 * - not guaranteed to help because isolate_freepages()
4989 * may not iterate over freed pages as part of its
4990 * linear scan, and
4991 * - unlikely to make entire pageblocks free on its
4992 * own.
4993 */
4994 if (compact_result == COMPACT_SKIPPED ||
4995 compact_result == COMPACT_DEFERRED)
4996 goto nopage;
4997
4998 /*
4999 * Looks like reclaim/compaction is worth trying, but
5000 * sync compaction could be very expensive, so keep
5001 * using async compaction.
5002 */
5003 compact_priority = INIT_COMPACT_PRIORITY;
5004 }
5005 }
5006
5007 retry:
5008 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5009 if (alloc_flags & ALLOC_KSWAPD)
5010 wake_all_kswapds(order, gfp_mask, ac);
5011
5012 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5013 if (reserve_flags)
5014 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5015
5016 /*
5017 * Reset the nodemask and zonelist iterators if memory policies can be
5018 * ignored. These allocations are high priority and system rather than
5019 * user oriented.
5020 */
5021 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5022 ac->nodemask = NULL;
5023 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5024 ac->highest_zoneidx, ac->nodemask);
5025 }
5026
5027 /* Attempt with potentially adjusted zonelist and alloc_flags */
5028 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5029 if (page)
5030 goto got_pg;
5031
5032 /* Caller is not willing to reclaim, we can't balance anything */
5033 if (!can_direct_reclaim)
5034 goto nopage;
5035
5036 /* Avoid recursion of direct reclaim */
5037 if (current->flags & PF_MEMALLOC)
5038 goto nopage;
5039
5040 /* Try direct reclaim and then allocating */
5041 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5042 &did_some_progress);
5043 if (page)
5044 goto got_pg;
5045
5046 /* Try direct compaction and then allocating */
5047 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5048 compact_priority, &compact_result);
5049 if (page)
5050 goto got_pg;
5051
5052 /* Do not loop if specifically requested */
5053 if (gfp_mask & __GFP_NORETRY)
5054 goto nopage;
5055
5056 /*
5057 * Do not retry costly high order allocations unless they are
5058 * __GFP_RETRY_MAYFAIL
5059 */
5060 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5061 goto nopage;
5062
5063 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5064 did_some_progress > 0, &no_progress_loops))
5065 goto retry;
5066
5067 /*
5068 * It doesn't make any sense to retry for the compaction if the order-0
5069 * reclaim is not able to make any progress because the current
5070 * implementation of the compaction depends on the sufficient amount
5071 * of free memory (see __compaction_suitable)
5072 */
5073 if (did_some_progress > 0 &&
5074 should_compact_retry(ac, order, alloc_flags,
5075 compact_result, &compact_priority,
5076 &compaction_retries))
5077 goto retry;
5078
5079
5080 /* Deal with possible cpuset update races before we start OOM killing */
5081 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5082 goto retry_cpuset;
5083
5084 /* Reclaim has failed us, start killing things */
5085 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5086 if (page)
5087 goto got_pg;
5088
5089 /* Avoid allocations with no watermarks from looping endlessly */
5090 if (tsk_is_oom_victim(current) &&
5091 (alloc_flags & ALLOC_OOM ||
5092 (gfp_mask & __GFP_NOMEMALLOC)))
5093 goto nopage;
5094
5095 /* Retry as long as the OOM killer is making progress */
5096 if (did_some_progress) {
5097 no_progress_loops = 0;
5098 goto retry;
5099 }
5100
5101 nopage:
5102 /* Deal with possible cpuset update races before we fail */
5103 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5104 goto retry_cpuset;
5105
5106 /*
5107 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5108 * we always retry
5109 */
5110 if (gfp_mask & __GFP_NOFAIL) {
5111 /*
5112 * All existing users of the __GFP_NOFAIL are blockable, so warn
5113 * of any new users that actually require GFP_NOWAIT
5114 */
5115 if (WARN_ON_ONCE(!can_direct_reclaim))
5116 goto fail;
5117
5118 /*
5119 * PF_MEMALLOC request from this context is rather bizarre
5120 * because we cannot reclaim anything and only can loop waiting
5121 * for somebody to do a work for us
5122 */
5123 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5124
5125 /*
5126 * non failing costly orders are a hard requirement which we
5127 * are not prepared for much so let's warn about these users
5128 * so that we can identify them and convert them to something
5129 * else.
5130 */
5131 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5132
5133 /*
5134 * Help non-failing allocations by giving them access to memory
5135 * reserves but do not use ALLOC_NO_WATERMARKS because this
5136 * could deplete whole memory reserves which would just make
5137 * the situation worse
5138 */
5139 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5140 if (page)
5141 goto got_pg;
5142
5143 cond_resched();
5144 goto retry;
5145 }
5146 fail:
5147 warn_alloc(gfp_mask, ac->nodemask,
5148 "page allocation failure: order:%u", order);
5149 got_pg:
5150 return page;
5151 }
5152
5153 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5154 int preferred_nid, nodemask_t *nodemask,
5155 struct alloc_context *ac, gfp_t *alloc_gfp,
5156 unsigned int *alloc_flags)
5157 {
5158 ac->highest_zoneidx = gfp_zone(gfp_mask);
5159 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5160 ac->nodemask = nodemask;
5161 ac->migratetype = gfp_migratetype(gfp_mask);
5162
5163 if (cpusets_enabled()) {
5164 *alloc_gfp |= __GFP_HARDWALL;
5165 /*
5166 * When we are in the interrupt context, it is irrelevant
5167 * to the current task context. It means that any node ok.
5168 */
5169 if (!in_interrupt() && !ac->nodemask)
5170 ac->nodemask = &cpuset_current_mems_allowed;
5171 else
5172 *alloc_flags |= ALLOC_CPUSET;
5173 }
5174
5175 fs_reclaim_acquire(gfp_mask);
5176 fs_reclaim_release(gfp_mask);
5177
5178 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5179
5180 if (should_fail_alloc_page(gfp_mask, order))
5181 return false;
5182
5183 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5184
5185 /* Dirty zone balancing only done in the fast path */
5186 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5187
5188 /*
5189 * The preferred zone is used for statistics but crucially it is
5190 * also used as the starting point for the zonelist iterator. It
5191 * may get reset for allocations that ignore memory policies.
5192 */
5193 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5194 ac->highest_zoneidx, ac->nodemask);
5195
5196 return true;
5197 }
5198
5199 /*
5200 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5201 * @gfp: GFP flags for the allocation
5202 * @preferred_nid: The preferred NUMA node ID to allocate from
5203 * @nodemask: Set of nodes to allocate from, may be NULL
5204 * @nr_pages: The number of pages desired on the list or array
5205 * @page_list: Optional list to store the allocated pages
5206 * @page_array: Optional array to store the pages
5207 *
5208 * This is a batched version of the page allocator that attempts to
5209 * allocate nr_pages quickly. Pages are added to page_list if page_list
5210 * is not NULL, otherwise it is assumed that the page_array is valid.
5211 *
5212 * For lists, nr_pages is the number of pages that should be allocated.
5213 *
5214 * For arrays, only NULL elements are populated with pages and nr_pages
5215 * is the maximum number of pages that will be stored in the array.
5216 *
5217 * Returns the number of pages on the list or array.
5218 */
5219 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5220 nodemask_t *nodemask, int nr_pages,
5221 struct list_head *page_list,
5222 struct page **page_array)
5223 {
5224 struct page *page;
5225 unsigned long flags;
5226 struct zone *zone;
5227 struct zoneref *z;
5228 struct per_cpu_pages *pcp;
5229 struct list_head *pcp_list;
5230 struct alloc_context ac;
5231 gfp_t alloc_gfp;
5232 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5233 int nr_populated = 0, nr_account = 0;
5234
5235 if (unlikely(nr_pages <= 0))
5236 return 0;
5237
5238 /*
5239 * Skip populated array elements to determine if any pages need
5240 * to be allocated before disabling IRQs.
5241 */
5242 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5243 nr_populated++;
5244
5245 /* Already populated array? */
5246 if (unlikely(page_array && nr_pages - nr_populated == 0))
5247 return nr_populated;
5248
5249 /* Use the single page allocator for one page. */
5250 if (nr_pages - nr_populated == 1)
5251 goto failed;
5252
5253 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5254 gfp &= gfp_allowed_mask;
5255 alloc_gfp = gfp;
5256 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5257 return 0;
5258 gfp = alloc_gfp;
5259
5260 /* Find an allowed local zone that meets the low watermark. */
5261 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5262 unsigned long mark;
5263
5264 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5265 !__cpuset_zone_allowed(zone, gfp)) {
5266 continue;
5267 }
5268
5269 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5270 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5271 goto failed;
5272 }
5273
5274 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5275 if (zone_watermark_fast(zone, 0, mark,
5276 zonelist_zone_idx(ac.preferred_zoneref),
5277 alloc_flags, gfp)) {
5278 break;
5279 }
5280 }
5281
5282 /*
5283 * If there are no allowed local zones that meets the watermarks then
5284 * try to allocate a single page and reclaim if necessary.
5285 */
5286 if (unlikely(!zone))
5287 goto failed;
5288
5289 /* Attempt the batch allocation */
5290 local_lock_irqsave(&pagesets.lock, flags);
5291 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5292 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5293
5294 while (nr_populated < nr_pages) {
5295
5296 /* Skip existing pages */
5297 if (page_array && page_array[nr_populated]) {
5298 nr_populated++;
5299 continue;
5300 }
5301
5302 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5303 pcp, pcp_list);
5304 if (unlikely(!page)) {
5305 /* Try and get at least one page */
5306 if (!nr_populated)
5307 goto failed_irq;
5308 break;
5309 }
5310 nr_account++;
5311
5312 prep_new_page(page, 0, gfp, 0);
5313 if (page_list)
5314 list_add(&page->lru, page_list);
5315 else
5316 page_array[nr_populated] = page;
5317 nr_populated++;
5318 }
5319
5320 local_unlock_irqrestore(&pagesets.lock, flags);
5321
5322 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5323 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5324
5325 return nr_populated;
5326
5327 failed_irq:
5328 local_unlock_irqrestore(&pagesets.lock, flags);
5329
5330 failed:
5331 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5332 if (page) {
5333 if (page_list)
5334 list_add(&page->lru, page_list);
5335 else
5336 page_array[nr_populated] = page;
5337 nr_populated++;
5338 }
5339
5340 return nr_populated;
5341 }
5342 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5343
5344 /*
5345 * This is the 'heart' of the zoned buddy allocator.
5346 */
5347 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5348 nodemask_t *nodemask)
5349 {
5350 struct page *page;
5351 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5352 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5353 struct alloc_context ac = { };
5354
5355 /*
5356 * There are several places where we assume that the order value is sane
5357 * so bail out early if the request is out of bound.
5358 */
5359 if (unlikely(order >= MAX_ORDER)) {
5360 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5361 return NULL;
5362 }
5363
5364 gfp &= gfp_allowed_mask;
5365 /*
5366 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5367 * resp. GFP_NOIO which has to be inherited for all allocation requests
5368 * from a particular context which has been marked by
5369 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5370 * movable zones are not used during allocation.
5371 */
5372 gfp = current_gfp_context(gfp);
5373 alloc_gfp = gfp;
5374 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5375 &alloc_gfp, &alloc_flags))
5376 return NULL;
5377
5378 /*
5379 * Forbid the first pass from falling back to types that fragment
5380 * memory until all local zones are considered.
5381 */
5382 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5383
5384 /* First allocation attempt */
5385 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5386 if (likely(page))
5387 goto out;
5388
5389 alloc_gfp = gfp;
5390 ac.spread_dirty_pages = false;
5391
5392 /*
5393 * Restore the original nodemask if it was potentially replaced with
5394 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5395 */
5396 ac.nodemask = nodemask;
5397
5398 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5399
5400 out:
5401 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5402 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5403 __free_pages(page, order);
5404 page = NULL;
5405 }
5406
5407 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5408
5409 return page;
5410 }
5411 EXPORT_SYMBOL(__alloc_pages);
5412
5413 /*
5414 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5415 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5416 * you need to access high mem.
5417 */
5418 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5419 {
5420 struct page *page;
5421
5422 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5423 if (!page)
5424 return 0;
5425 return (unsigned long) page_address(page);
5426 }
5427 EXPORT_SYMBOL(__get_free_pages);
5428
5429 unsigned long get_zeroed_page(gfp_t gfp_mask)
5430 {
5431 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5432 }
5433 EXPORT_SYMBOL(get_zeroed_page);
5434
5435 /**
5436 * __free_pages - Free pages allocated with alloc_pages().
5437 * @page: The page pointer returned from alloc_pages().
5438 * @order: The order of the allocation.
5439 *
5440 * This function can free multi-page allocations that are not compound
5441 * pages. It does not check that the @order passed in matches that of
5442 * the allocation, so it is easy to leak memory. Freeing more memory
5443 * than was allocated will probably emit a warning.
5444 *
5445 * If the last reference to this page is speculative, it will be released
5446 * by put_page() which only frees the first page of a non-compound
5447 * allocation. To prevent the remaining pages from being leaked, we free
5448 * the subsequent pages here. If you want to use the page's reference
5449 * count to decide when to free the allocation, you should allocate a
5450 * compound page, and use put_page() instead of __free_pages().
5451 *
5452 * Context: May be called in interrupt context or while holding a normal
5453 * spinlock, but not in NMI context or while holding a raw spinlock.
5454 */
5455 void __free_pages(struct page *page, unsigned int order)
5456 {
5457 if (put_page_testzero(page))
5458 free_the_page(page, order);
5459 else if (!PageHead(page))
5460 while (order-- > 0)
5461 free_the_page(page + (1 << order), order);
5462 }
5463 EXPORT_SYMBOL(__free_pages);
5464
5465 void free_pages(unsigned long addr, unsigned int order)
5466 {
5467 if (addr != 0) {
5468 VM_BUG_ON(!virt_addr_valid((void *)addr));
5469 __free_pages(virt_to_page((void *)addr), order);
5470 }
5471 }
5472
5473 EXPORT_SYMBOL(free_pages);
5474
5475 /*
5476 * Page Fragment:
5477 * An arbitrary-length arbitrary-offset area of memory which resides
5478 * within a 0 or higher order page. Multiple fragments within that page
5479 * are individually refcounted, in the page's reference counter.
5480 *
5481 * The page_frag functions below provide a simple allocation framework for
5482 * page fragments. This is used by the network stack and network device
5483 * drivers to provide a backing region of memory for use as either an
5484 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5485 */
5486 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5487 gfp_t gfp_mask)
5488 {
5489 struct page *page = NULL;
5490 gfp_t gfp = gfp_mask;
5491
5492 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5493 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5494 __GFP_NOMEMALLOC;
5495 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5496 PAGE_FRAG_CACHE_MAX_ORDER);
5497 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5498 #endif
5499 if (unlikely(!page))
5500 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5501
5502 nc->va = page ? page_address(page) : NULL;
5503
5504 return page;
5505 }
5506
5507 void __page_frag_cache_drain(struct page *page, unsigned int count)
5508 {
5509 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5510
5511 if (page_ref_sub_and_test(page, count))
5512 free_the_page(page, compound_order(page));
5513 }
5514 EXPORT_SYMBOL(__page_frag_cache_drain);
5515
5516 void *page_frag_alloc_align(struct page_frag_cache *nc,
5517 unsigned int fragsz, gfp_t gfp_mask,
5518 unsigned int align_mask)
5519 {
5520 unsigned int size = PAGE_SIZE;
5521 struct page *page;
5522 int offset;
5523
5524 if (unlikely(!nc->va)) {
5525 refill:
5526 page = __page_frag_cache_refill(nc, gfp_mask);
5527 if (!page)
5528 return NULL;
5529
5530 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5531 /* if size can vary use size else just use PAGE_SIZE */
5532 size = nc->size;
5533 #endif
5534 /* Even if we own the page, we do not use atomic_set().
5535 * This would break get_page_unless_zero() users.
5536 */
5537 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5538
5539 /* reset page count bias and offset to start of new frag */
5540 nc->pfmemalloc = page_is_pfmemalloc(page);
5541 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5542 nc->offset = size;
5543 }
5544
5545 offset = nc->offset - fragsz;
5546 if (unlikely(offset < 0)) {
5547 page = virt_to_page(nc->va);
5548
5549 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5550 goto refill;
5551
5552 if (unlikely(nc->pfmemalloc)) {
5553 free_the_page(page, compound_order(page));
5554 goto refill;
5555 }
5556
5557 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5558 /* if size can vary use size else just use PAGE_SIZE */
5559 size = nc->size;
5560 #endif
5561 /* OK, page count is 0, we can safely set it */
5562 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5563
5564 /* reset page count bias and offset to start of new frag */
5565 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5566 offset = size - fragsz;
5567 }
5568
5569 nc->pagecnt_bias--;
5570 offset &= align_mask;
5571 nc->offset = offset;
5572
5573 return nc->va + offset;
5574 }
5575 EXPORT_SYMBOL(page_frag_alloc_align);
5576
5577 /*
5578 * Frees a page fragment allocated out of either a compound or order 0 page.
5579 */
5580 void page_frag_free(void *addr)
5581 {
5582 struct page *page = virt_to_head_page(addr);
5583
5584 if (unlikely(put_page_testzero(page)))
5585 free_the_page(page, compound_order(page));
5586 }
5587 EXPORT_SYMBOL(page_frag_free);
5588
5589 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5590 size_t size)
5591 {
5592 if (addr) {
5593 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5594 unsigned long used = addr + PAGE_ALIGN(size);
5595
5596 split_page(virt_to_page((void *)addr), order);
5597 while (used < alloc_end) {
5598 free_page(used);
5599 used += PAGE_SIZE;
5600 }
5601 }
5602 return (void *)addr;
5603 }
5604
5605 /**
5606 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5607 * @size: the number of bytes to allocate
5608 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5609 *
5610 * This function is similar to alloc_pages(), except that it allocates the
5611 * minimum number of pages to satisfy the request. alloc_pages() can only
5612 * allocate memory in power-of-two pages.
5613 *
5614 * This function is also limited by MAX_ORDER.
5615 *
5616 * Memory allocated by this function must be released by free_pages_exact().
5617 *
5618 * Return: pointer to the allocated area or %NULL in case of error.
5619 */
5620 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5621 {
5622 unsigned int order = get_order(size);
5623 unsigned long addr;
5624
5625 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5626 gfp_mask &= ~__GFP_COMP;
5627
5628 addr = __get_free_pages(gfp_mask, order);
5629 return make_alloc_exact(addr, order, size);
5630 }
5631 EXPORT_SYMBOL(alloc_pages_exact);
5632
5633 /**
5634 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5635 * pages on a node.
5636 * @nid: the preferred node ID where memory should be allocated
5637 * @size: the number of bytes to allocate
5638 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5639 *
5640 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5641 * back.
5642 *
5643 * Return: pointer to the allocated area or %NULL in case of error.
5644 */
5645 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5646 {
5647 unsigned int order = get_order(size);
5648 struct page *p;
5649
5650 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5651 gfp_mask &= ~__GFP_COMP;
5652
5653 p = alloc_pages_node(nid, gfp_mask, order);
5654 if (!p)
5655 return NULL;
5656 return make_alloc_exact((unsigned long)page_address(p), order, size);
5657 }
5658
5659 /**
5660 * free_pages_exact - release memory allocated via alloc_pages_exact()
5661 * @virt: the value returned by alloc_pages_exact.
5662 * @size: size of allocation, same value as passed to alloc_pages_exact().
5663 *
5664 * Release the memory allocated by a previous call to alloc_pages_exact.
5665 */
5666 void free_pages_exact(void *virt, size_t size)
5667 {
5668 unsigned long addr = (unsigned long)virt;
5669 unsigned long end = addr + PAGE_ALIGN(size);
5670
5671 while (addr < end) {
5672 free_page(addr);
5673 addr += PAGE_SIZE;
5674 }
5675 }
5676 EXPORT_SYMBOL(free_pages_exact);
5677
5678 /**
5679 * nr_free_zone_pages - count number of pages beyond high watermark
5680 * @offset: The zone index of the highest zone
5681 *
5682 * nr_free_zone_pages() counts the number of pages which are beyond the
5683 * high watermark within all zones at or below a given zone index. For each
5684 * zone, the number of pages is calculated as:
5685 *
5686 * nr_free_zone_pages = managed_pages - high_pages
5687 *
5688 * Return: number of pages beyond high watermark.
5689 */
5690 static unsigned long nr_free_zone_pages(int offset)
5691 {
5692 struct zoneref *z;
5693 struct zone *zone;
5694
5695 /* Just pick one node, since fallback list is circular */
5696 unsigned long sum = 0;
5697
5698 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5699
5700 for_each_zone_zonelist(zone, z, zonelist, offset) {
5701 unsigned long size = zone_managed_pages(zone);
5702 unsigned long high = high_wmark_pages(zone);
5703 if (size > high)
5704 sum += size - high;
5705 }
5706
5707 return sum;
5708 }
5709
5710 /**
5711 * nr_free_buffer_pages - count number of pages beyond high watermark
5712 *
5713 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5714 * watermark within ZONE_DMA and ZONE_NORMAL.
5715 *
5716 * Return: number of pages beyond high watermark within ZONE_DMA and
5717 * ZONE_NORMAL.
5718 */
5719 unsigned long nr_free_buffer_pages(void)
5720 {
5721 return nr_free_zone_pages(gfp_zone(GFP_USER));
5722 }
5723 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5724
5725 static inline void show_node(struct zone *zone)
5726 {
5727 if (IS_ENABLED(CONFIG_NUMA))
5728 printk("Node %d ", zone_to_nid(zone));
5729 }
5730
5731 long si_mem_available(void)
5732 {
5733 long available;
5734 unsigned long pagecache;
5735 unsigned long wmark_low = 0;
5736 unsigned long pages[NR_LRU_LISTS];
5737 unsigned long reclaimable;
5738 struct zone *zone;
5739 int lru;
5740
5741 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5742 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5743
5744 for_each_zone(zone)
5745 wmark_low += low_wmark_pages(zone);
5746
5747 /*
5748 * Estimate the amount of memory available for userspace allocations,
5749 * without causing swapping.
5750 */
5751 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5752
5753 /*
5754 * Not all the page cache can be freed, otherwise the system will
5755 * start swapping. Assume at least half of the page cache, or the
5756 * low watermark worth of cache, needs to stay.
5757 */
5758 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5759 pagecache -= min(pagecache / 2, wmark_low);
5760 available += pagecache;
5761
5762 /*
5763 * Part of the reclaimable slab and other kernel memory consists of
5764 * items that are in use, and cannot be freed. Cap this estimate at the
5765 * low watermark.
5766 */
5767 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5768 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5769 available += reclaimable - min(reclaimable / 2, wmark_low);
5770
5771 if (available < 0)
5772 available = 0;
5773 return available;
5774 }
5775 EXPORT_SYMBOL_GPL(si_mem_available);
5776
5777 void si_meminfo(struct sysinfo *val)
5778 {
5779 val->totalram = totalram_pages();
5780 val->sharedram = global_node_page_state(NR_SHMEM);
5781 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5782 val->bufferram = nr_blockdev_pages();
5783 val->totalhigh = totalhigh_pages();
5784 val->freehigh = nr_free_highpages();
5785 val->mem_unit = PAGE_SIZE;
5786 }
5787
5788 EXPORT_SYMBOL(si_meminfo);
5789
5790 #ifdef CONFIG_NUMA
5791 void si_meminfo_node(struct sysinfo *val, int nid)
5792 {
5793 int zone_type; /* needs to be signed */
5794 unsigned long managed_pages = 0;
5795 unsigned long managed_highpages = 0;
5796 unsigned long free_highpages = 0;
5797 pg_data_t *pgdat = NODE_DATA(nid);
5798
5799 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5800 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5801 val->totalram = managed_pages;
5802 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5803 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5804 #ifdef CONFIG_HIGHMEM
5805 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5806 struct zone *zone = &pgdat->node_zones[zone_type];
5807
5808 if (is_highmem(zone)) {
5809 managed_highpages += zone_managed_pages(zone);
5810 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5811 }
5812 }
5813 val->totalhigh = managed_highpages;
5814 val->freehigh = free_highpages;
5815 #else
5816 val->totalhigh = managed_highpages;
5817 val->freehigh = free_highpages;
5818 #endif
5819 val->mem_unit = PAGE_SIZE;
5820 }
5821 #endif
5822
5823 /*
5824 * Determine whether the node should be displayed or not, depending on whether
5825 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5826 */
5827 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5828 {
5829 if (!(flags & SHOW_MEM_FILTER_NODES))
5830 return false;
5831
5832 /*
5833 * no node mask - aka implicit memory numa policy. Do not bother with
5834 * the synchronization - read_mems_allowed_begin - because we do not
5835 * have to be precise here.
5836 */
5837 if (!nodemask)
5838 nodemask = &cpuset_current_mems_allowed;
5839
5840 return !node_isset(nid, *nodemask);
5841 }
5842
5843 #define K(x) ((x) << (PAGE_SHIFT-10))
5844
5845 static void show_migration_types(unsigned char type)
5846 {
5847 static const char types[MIGRATE_TYPES] = {
5848 [MIGRATE_UNMOVABLE] = 'U',
5849 [MIGRATE_MOVABLE] = 'M',
5850 [MIGRATE_RECLAIMABLE] = 'E',
5851 [MIGRATE_HIGHATOMIC] = 'H',
5852 #ifdef CONFIG_CMA
5853 [MIGRATE_CMA] = 'C',
5854 #endif
5855 #ifdef CONFIG_MEMORY_ISOLATION
5856 [MIGRATE_ISOLATE] = 'I',
5857 #endif
5858 };
5859 char tmp[MIGRATE_TYPES + 1];
5860 char *p = tmp;
5861 int i;
5862
5863 for (i = 0; i < MIGRATE_TYPES; i++) {
5864 if (type & (1 << i))
5865 *p++ = types[i];
5866 }
5867
5868 *p = '\0';
5869 printk(KERN_CONT "(%s) ", tmp);
5870 }
5871
5872 /*
5873 * Show free area list (used inside shift_scroll-lock stuff)
5874 * We also calculate the percentage fragmentation. We do this by counting the
5875 * memory on each free list with the exception of the first item on the list.
5876 *
5877 * Bits in @filter:
5878 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5879 * cpuset.
5880 */
5881 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5882 {
5883 unsigned long free_pcp = 0;
5884 int cpu;
5885 struct zone *zone;
5886 pg_data_t *pgdat;
5887
5888 for_each_populated_zone(zone) {
5889 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5890 continue;
5891
5892 for_each_online_cpu(cpu)
5893 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5894 }
5895
5896 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5897 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5898 " unevictable:%lu dirty:%lu writeback:%lu\n"
5899 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5900 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5901 " free:%lu free_pcp:%lu free_cma:%lu\n",
5902 global_node_page_state(NR_ACTIVE_ANON),
5903 global_node_page_state(NR_INACTIVE_ANON),
5904 global_node_page_state(NR_ISOLATED_ANON),
5905 global_node_page_state(NR_ACTIVE_FILE),
5906 global_node_page_state(NR_INACTIVE_FILE),
5907 global_node_page_state(NR_ISOLATED_FILE),
5908 global_node_page_state(NR_UNEVICTABLE),
5909 global_node_page_state(NR_FILE_DIRTY),
5910 global_node_page_state(NR_WRITEBACK),
5911 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5912 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5913 global_node_page_state(NR_FILE_MAPPED),
5914 global_node_page_state(NR_SHMEM),
5915 global_node_page_state(NR_PAGETABLE),
5916 global_zone_page_state(NR_BOUNCE),
5917 global_zone_page_state(NR_FREE_PAGES),
5918 free_pcp,
5919 global_zone_page_state(NR_FREE_CMA_PAGES));
5920
5921 for_each_online_pgdat(pgdat) {
5922 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5923 continue;
5924
5925 printk("Node %d"
5926 " active_anon:%lukB"
5927 " inactive_anon:%lukB"
5928 " active_file:%lukB"
5929 " inactive_file:%lukB"
5930 " unevictable:%lukB"
5931 " isolated(anon):%lukB"
5932 " isolated(file):%lukB"
5933 " mapped:%lukB"
5934 " dirty:%lukB"
5935 " writeback:%lukB"
5936 " shmem:%lukB"
5937 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5938 " shmem_thp: %lukB"
5939 " shmem_pmdmapped: %lukB"
5940 " anon_thp: %lukB"
5941 #endif
5942 " writeback_tmp:%lukB"
5943 " kernel_stack:%lukB"
5944 #ifdef CONFIG_SHADOW_CALL_STACK
5945 " shadow_call_stack:%lukB"
5946 #endif
5947 " pagetables:%lukB"
5948 " all_unreclaimable? %s"
5949 "\n",
5950 pgdat->node_id,
5951 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5952 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5953 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5954 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5955 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5956 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5957 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5958 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5959 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5960 K(node_page_state(pgdat, NR_WRITEBACK)),
5961 K(node_page_state(pgdat, NR_SHMEM)),
5962 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5963 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5964 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5965 K(node_page_state(pgdat, NR_ANON_THPS)),
5966 #endif
5967 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5968 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5969 #ifdef CONFIG_SHADOW_CALL_STACK
5970 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5971 #endif
5972 K(node_page_state(pgdat, NR_PAGETABLE)),
5973 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5974 "yes" : "no");
5975 }
5976
5977 for_each_populated_zone(zone) {
5978 int i;
5979
5980 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5981 continue;
5982
5983 free_pcp = 0;
5984 for_each_online_cpu(cpu)
5985 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5986
5987 show_node(zone);
5988 printk(KERN_CONT
5989 "%s"
5990 " free:%lukB"
5991 " min:%lukB"
5992 " low:%lukB"
5993 " high:%lukB"
5994 " reserved_highatomic:%luKB"
5995 " active_anon:%lukB"
5996 " inactive_anon:%lukB"
5997 " active_file:%lukB"
5998 " inactive_file:%lukB"
5999 " unevictable:%lukB"
6000 " writepending:%lukB"
6001 " present:%lukB"
6002 " managed:%lukB"
6003 " mlocked:%lukB"
6004 " bounce:%lukB"
6005 " free_pcp:%lukB"
6006 " local_pcp:%ukB"
6007 " free_cma:%lukB"
6008 "\n",
6009 zone->name,
6010 K(zone_page_state(zone, NR_FREE_PAGES)),
6011 K(min_wmark_pages(zone)),
6012 K(low_wmark_pages(zone)),
6013 K(high_wmark_pages(zone)),
6014 K(zone->nr_reserved_highatomic),
6015 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6016 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6017 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6018 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6019 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6020 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6021 K(zone->present_pages),
6022 K(zone_managed_pages(zone)),
6023 K(zone_page_state(zone, NR_MLOCK)),
6024 K(zone_page_state(zone, NR_BOUNCE)),
6025 K(free_pcp),
6026 K(this_cpu_read(zone->per_cpu_pageset->count)),
6027 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6028 printk("lowmem_reserve[]:");
6029 for (i = 0; i < MAX_NR_ZONES; i++)
6030 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6031 printk(KERN_CONT "\n");
6032 }
6033
6034 for_each_populated_zone(zone) {
6035 unsigned int order;
6036 unsigned long nr[MAX_ORDER], flags, total = 0;
6037 unsigned char types[MAX_ORDER];
6038
6039 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6040 continue;
6041 show_node(zone);
6042 printk(KERN_CONT "%s: ", zone->name);
6043
6044 spin_lock_irqsave(&zone->lock, flags);
6045 for (order = 0; order < MAX_ORDER; order++) {
6046 struct free_area *area = &zone->free_area[order];
6047 int type;
6048
6049 nr[order] = area->nr_free;
6050 total += nr[order] << order;
6051
6052 types[order] = 0;
6053 for (type = 0; type < MIGRATE_TYPES; type++) {
6054 if (!free_area_empty(area, type))
6055 types[order] |= 1 << type;
6056 }
6057 }
6058 spin_unlock_irqrestore(&zone->lock, flags);
6059 for (order = 0; order < MAX_ORDER; order++) {
6060 printk(KERN_CONT "%lu*%lukB ",
6061 nr[order], K(1UL) << order);
6062 if (nr[order])
6063 show_migration_types(types[order]);
6064 }
6065 printk(KERN_CONT "= %lukB\n", K(total));
6066 }
6067
6068 hugetlb_show_meminfo();
6069
6070 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6071
6072 show_swap_cache_info();
6073 }
6074
6075 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6076 {
6077 zoneref->zone = zone;
6078 zoneref->zone_idx = zone_idx(zone);
6079 }
6080
6081 /*
6082 * Builds allocation fallback zone lists.
6083 *
6084 * Add all populated zones of a node to the zonelist.
6085 */
6086 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6087 {
6088 struct zone *zone;
6089 enum zone_type zone_type = MAX_NR_ZONES;
6090 int nr_zones = 0;
6091
6092 do {
6093 zone_type--;
6094 zone = pgdat->node_zones + zone_type;
6095 if (managed_zone(zone)) {
6096 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6097 check_highest_zone(zone_type);
6098 }
6099 } while (zone_type);
6100
6101 return nr_zones;
6102 }
6103
6104 #ifdef CONFIG_NUMA
6105
6106 static int __parse_numa_zonelist_order(char *s)
6107 {
6108 /*
6109 * We used to support different zonelists modes but they turned
6110 * out to be just not useful. Let's keep the warning in place
6111 * if somebody still use the cmd line parameter so that we do
6112 * not fail it silently
6113 */
6114 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6115 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6116 return -EINVAL;
6117 }
6118 return 0;
6119 }
6120
6121 char numa_zonelist_order[] = "Node";
6122
6123 /*
6124 * sysctl handler for numa_zonelist_order
6125 */
6126 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6127 void *buffer, size_t *length, loff_t *ppos)
6128 {
6129 if (write)
6130 return __parse_numa_zonelist_order(buffer);
6131 return proc_dostring(table, write, buffer, length, ppos);
6132 }
6133
6134
6135 #define MAX_NODE_LOAD (nr_online_nodes)
6136 static int node_load[MAX_NUMNODES];
6137
6138 /**
6139 * find_next_best_node - find the next node that should appear in a given node's fallback list
6140 * @node: node whose fallback list we're appending
6141 * @used_node_mask: nodemask_t of already used nodes
6142 *
6143 * We use a number of factors to determine which is the next node that should
6144 * appear on a given node's fallback list. The node should not have appeared
6145 * already in @node's fallback list, and it should be the next closest node
6146 * according to the distance array (which contains arbitrary distance values
6147 * from each node to each node in the system), and should also prefer nodes
6148 * with no CPUs, since presumably they'll have very little allocation pressure
6149 * on them otherwise.
6150 *
6151 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6152 */
6153 static int find_next_best_node(int node, nodemask_t *used_node_mask)
6154 {
6155 int n, val;
6156 int min_val = INT_MAX;
6157 int best_node = NUMA_NO_NODE;
6158
6159 /* Use the local node if we haven't already */
6160 if (!node_isset(node, *used_node_mask)) {
6161 node_set(node, *used_node_mask);
6162 return node;
6163 }
6164
6165 for_each_node_state(n, N_MEMORY) {
6166
6167 /* Don't want a node to appear more than once */
6168 if (node_isset(n, *used_node_mask))
6169 continue;
6170
6171 /* Use the distance array to find the distance */
6172 val = node_distance(node, n);
6173
6174 /* Penalize nodes under us ("prefer the next node") */
6175 val += (n < node);
6176
6177 /* Give preference to headless and unused nodes */
6178 if (!cpumask_empty(cpumask_of_node(n)))
6179 val += PENALTY_FOR_NODE_WITH_CPUS;
6180
6181 /* Slight preference for less loaded node */
6182 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6183 val += node_load[n];
6184
6185 if (val < min_val) {
6186 min_val = val;
6187 best_node = n;
6188 }
6189 }
6190
6191 if (best_node >= 0)
6192 node_set(best_node, *used_node_mask);
6193
6194 return best_node;
6195 }
6196
6197
6198 /*
6199 * Build zonelists ordered by node and zones within node.
6200 * This results in maximum locality--normal zone overflows into local
6201 * DMA zone, if any--but risks exhausting DMA zone.
6202 */
6203 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6204 unsigned nr_nodes)
6205 {
6206 struct zoneref *zonerefs;
6207 int i;
6208
6209 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6210
6211 for (i = 0; i < nr_nodes; i++) {
6212 int nr_zones;
6213
6214 pg_data_t *node = NODE_DATA(node_order[i]);
6215
6216 nr_zones = build_zonerefs_node(node, zonerefs);
6217 zonerefs += nr_zones;
6218 }
6219 zonerefs->zone = NULL;
6220 zonerefs->zone_idx = 0;
6221 }
6222
6223 /*
6224 * Build gfp_thisnode zonelists
6225 */
6226 static void build_thisnode_zonelists(pg_data_t *pgdat)
6227 {
6228 struct zoneref *zonerefs;
6229 int nr_zones;
6230
6231 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6232 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6233 zonerefs += nr_zones;
6234 zonerefs->zone = NULL;
6235 zonerefs->zone_idx = 0;
6236 }
6237
6238 /*
6239 * Build zonelists ordered by zone and nodes within zones.
6240 * This results in conserving DMA zone[s] until all Normal memory is
6241 * exhausted, but results in overflowing to remote node while memory
6242 * may still exist in local DMA zone.
6243 */
6244
6245 static void build_zonelists(pg_data_t *pgdat)
6246 {
6247 static int node_order[MAX_NUMNODES];
6248 int node, load, nr_nodes = 0;
6249 nodemask_t used_mask = NODE_MASK_NONE;
6250 int local_node, prev_node;
6251
6252 /* NUMA-aware ordering of nodes */
6253 local_node = pgdat->node_id;
6254 load = nr_online_nodes;
6255 prev_node = local_node;
6256
6257 memset(node_order, 0, sizeof(node_order));
6258 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6259 /*
6260 * We don't want to pressure a particular node.
6261 * So adding penalty to the first node in same
6262 * distance group to make it round-robin.
6263 */
6264 if (node_distance(local_node, node) !=
6265 node_distance(local_node, prev_node))
6266 node_load[node] = load;
6267
6268 node_order[nr_nodes++] = node;
6269 prev_node = node;
6270 load--;
6271 }
6272
6273 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6274 build_thisnode_zonelists(pgdat);
6275 }
6276
6277 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6278 /*
6279 * Return node id of node used for "local" allocations.
6280 * I.e., first node id of first zone in arg node's generic zonelist.
6281 * Used for initializing percpu 'numa_mem', which is used primarily
6282 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6283 */
6284 int local_memory_node(int node)
6285 {
6286 struct zoneref *z;
6287
6288 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6289 gfp_zone(GFP_KERNEL),
6290 NULL);
6291 return zone_to_nid(z->zone);
6292 }
6293 #endif
6294
6295 static void setup_min_unmapped_ratio(void);
6296 static void setup_min_slab_ratio(void);
6297 #else /* CONFIG_NUMA */
6298
6299 static void build_zonelists(pg_data_t *pgdat)
6300 {
6301 int node, local_node;
6302 struct zoneref *zonerefs;
6303 int nr_zones;
6304
6305 local_node = pgdat->node_id;
6306
6307 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6308 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6309 zonerefs += nr_zones;
6310
6311 /*
6312 * Now we build the zonelist so that it contains the zones
6313 * of all the other nodes.
6314 * We don't want to pressure a particular node, so when
6315 * building the zones for node N, we make sure that the
6316 * zones coming right after the local ones are those from
6317 * node N+1 (modulo N)
6318 */
6319 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6320 if (!node_online(node))
6321 continue;
6322 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6323 zonerefs += nr_zones;
6324 }
6325 for (node = 0; node < local_node; node++) {
6326 if (!node_online(node))
6327 continue;
6328 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6329 zonerefs += nr_zones;
6330 }
6331
6332 zonerefs->zone = NULL;
6333 zonerefs->zone_idx = 0;
6334 }
6335
6336 #endif /* CONFIG_NUMA */
6337
6338 /*
6339 * Boot pageset table. One per cpu which is going to be used for all
6340 * zones and all nodes. The parameters will be set in such a way
6341 * that an item put on a list will immediately be handed over to
6342 * the buddy list. This is safe since pageset manipulation is done
6343 * with interrupts disabled.
6344 *
6345 * The boot_pagesets must be kept even after bootup is complete for
6346 * unused processors and/or zones. They do play a role for bootstrapping
6347 * hotplugged processors.
6348 *
6349 * zoneinfo_show() and maybe other functions do
6350 * not check if the processor is online before following the pageset pointer.
6351 * Other parts of the kernel may not check if the zone is available.
6352 */
6353 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6354 /* These effectively disable the pcplists in the boot pageset completely */
6355 #define BOOT_PAGESET_HIGH 0
6356 #define BOOT_PAGESET_BATCH 1
6357 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6358 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6359 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6360
6361 static void __build_all_zonelists(void *data)
6362 {
6363 int nid;
6364 int __maybe_unused cpu;
6365 pg_data_t *self = data;
6366 static DEFINE_SPINLOCK(lock);
6367
6368 spin_lock(&lock);
6369
6370 #ifdef CONFIG_NUMA
6371 memset(node_load, 0, sizeof(node_load));
6372 #endif
6373
6374 /*
6375 * This node is hotadded and no memory is yet present. So just
6376 * building zonelists is fine - no need to touch other nodes.
6377 */
6378 if (self && !node_online(self->node_id)) {
6379 build_zonelists(self);
6380 } else {
6381 for_each_online_node(nid) {
6382 pg_data_t *pgdat = NODE_DATA(nid);
6383
6384 build_zonelists(pgdat);
6385 }
6386
6387 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6388 /*
6389 * We now know the "local memory node" for each node--
6390 * i.e., the node of the first zone in the generic zonelist.
6391 * Set up numa_mem percpu variable for on-line cpus. During
6392 * boot, only the boot cpu should be on-line; we'll init the
6393 * secondary cpus' numa_mem as they come on-line. During
6394 * node/memory hotplug, we'll fixup all on-line cpus.
6395 */
6396 for_each_online_cpu(cpu)
6397 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6398 #endif
6399 }
6400
6401 spin_unlock(&lock);
6402 }
6403
6404 static noinline void __init
6405 build_all_zonelists_init(void)
6406 {
6407 int cpu;
6408
6409 __build_all_zonelists(NULL);
6410
6411 /*
6412 * Initialize the boot_pagesets that are going to be used
6413 * for bootstrapping processors. The real pagesets for
6414 * each zone will be allocated later when the per cpu
6415 * allocator is available.
6416 *
6417 * boot_pagesets are used also for bootstrapping offline
6418 * cpus if the system is already booted because the pagesets
6419 * are needed to initialize allocators on a specific cpu too.
6420 * F.e. the percpu allocator needs the page allocator which
6421 * needs the percpu allocator in order to allocate its pagesets
6422 * (a chicken-egg dilemma).
6423 */
6424 for_each_possible_cpu(cpu)
6425 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6426
6427 mminit_verify_zonelist();
6428 cpuset_init_current_mems_allowed();
6429 }
6430
6431 /*
6432 * unless system_state == SYSTEM_BOOTING.
6433 *
6434 * __ref due to call of __init annotated helper build_all_zonelists_init
6435 * [protected by SYSTEM_BOOTING].
6436 */
6437 void __ref build_all_zonelists(pg_data_t *pgdat)
6438 {
6439 unsigned long vm_total_pages;
6440
6441 if (system_state == SYSTEM_BOOTING) {
6442 build_all_zonelists_init();
6443 } else {
6444 __build_all_zonelists(pgdat);
6445 /* cpuset refresh routine should be here */
6446 }
6447 /* Get the number of free pages beyond high watermark in all zones. */
6448 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6449 /*
6450 * Disable grouping by mobility if the number of pages in the
6451 * system is too low to allow the mechanism to work. It would be
6452 * more accurate, but expensive to check per-zone. This check is
6453 * made on memory-hotadd so a system can start with mobility
6454 * disabled and enable it later
6455 */
6456 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6457 page_group_by_mobility_disabled = 1;
6458 else
6459 page_group_by_mobility_disabled = 0;
6460
6461 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6462 nr_online_nodes,
6463 page_group_by_mobility_disabled ? "off" : "on",
6464 vm_total_pages);
6465 #ifdef CONFIG_NUMA
6466 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6467 #endif
6468 }
6469
6470 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6471 static bool __meminit
6472 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6473 {
6474 static struct memblock_region *r;
6475
6476 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6477 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6478 for_each_mem_region(r) {
6479 if (*pfn < memblock_region_memory_end_pfn(r))
6480 break;
6481 }
6482 }
6483 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6484 memblock_is_mirror(r)) {
6485 *pfn = memblock_region_memory_end_pfn(r);
6486 return true;
6487 }
6488 }
6489 return false;
6490 }
6491
6492 /*
6493 * Initially all pages are reserved - free ones are freed
6494 * up by memblock_free_all() once the early boot process is
6495 * done. Non-atomic initialization, single-pass.
6496 *
6497 * All aligned pageblocks are initialized to the specified migratetype
6498 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6499 * zone stats (e.g., nr_isolate_pageblock) are touched.
6500 */
6501 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6502 unsigned long start_pfn, unsigned long zone_end_pfn,
6503 enum meminit_context context,
6504 struct vmem_altmap *altmap, int migratetype)
6505 {
6506 unsigned long pfn, end_pfn = start_pfn + size;
6507 struct page *page;
6508
6509 if (highest_memmap_pfn < end_pfn - 1)
6510 highest_memmap_pfn = end_pfn - 1;
6511
6512 #ifdef CONFIG_ZONE_DEVICE
6513 /*
6514 * Honor reservation requested by the driver for this ZONE_DEVICE
6515 * memory. We limit the total number of pages to initialize to just
6516 * those that might contain the memory mapping. We will defer the
6517 * ZONE_DEVICE page initialization until after we have released
6518 * the hotplug lock.
6519 */
6520 if (zone == ZONE_DEVICE) {
6521 if (!altmap)
6522 return;
6523
6524 if (start_pfn == altmap->base_pfn)
6525 start_pfn += altmap->reserve;
6526 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6527 }
6528 #endif
6529
6530 for (pfn = start_pfn; pfn < end_pfn; ) {
6531 /*
6532 * There can be holes in boot-time mem_map[]s handed to this
6533 * function. They do not exist on hotplugged memory.
6534 */
6535 if (context == MEMINIT_EARLY) {
6536 if (overlap_memmap_init(zone, &pfn))
6537 continue;
6538 if (defer_init(nid, pfn, zone_end_pfn))
6539 break;
6540 }
6541
6542 page = pfn_to_page(pfn);
6543 __init_single_page(page, pfn, zone, nid);
6544 if (context == MEMINIT_HOTPLUG)
6545 __SetPageReserved(page);
6546
6547 /*
6548 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6549 * such that unmovable allocations won't be scattered all
6550 * over the place during system boot.
6551 */
6552 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6553 set_pageblock_migratetype(page, migratetype);
6554 cond_resched();
6555 }
6556 pfn++;
6557 }
6558 }
6559
6560 #ifdef CONFIG_ZONE_DEVICE
6561 void __ref memmap_init_zone_device(struct zone *zone,
6562 unsigned long start_pfn,
6563 unsigned long nr_pages,
6564 struct dev_pagemap *pgmap)
6565 {
6566 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6567 struct pglist_data *pgdat = zone->zone_pgdat;
6568 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6569 unsigned long zone_idx = zone_idx(zone);
6570 unsigned long start = jiffies;
6571 int nid = pgdat->node_id;
6572
6573 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6574 return;
6575
6576 /*
6577 * The call to memmap_init should have already taken care
6578 * of the pages reserved for the memmap, so we can just jump to
6579 * the end of that region and start processing the device pages.
6580 */
6581 if (altmap) {
6582 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6583 nr_pages = end_pfn - start_pfn;
6584 }
6585
6586 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6587 struct page *page = pfn_to_page(pfn);
6588
6589 __init_single_page(page, pfn, zone_idx, nid);
6590
6591 /*
6592 * Mark page reserved as it will need to wait for onlining
6593 * phase for it to be fully associated with a zone.
6594 *
6595 * We can use the non-atomic __set_bit operation for setting
6596 * the flag as we are still initializing the pages.
6597 */
6598 __SetPageReserved(page);
6599
6600 /*
6601 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6602 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6603 * ever freed or placed on a driver-private list.
6604 */
6605 page->pgmap = pgmap;
6606 page->zone_device_data = NULL;
6607
6608 /*
6609 * Mark the block movable so that blocks are reserved for
6610 * movable at startup. This will force kernel allocations
6611 * to reserve their blocks rather than leaking throughout
6612 * the address space during boot when many long-lived
6613 * kernel allocations are made.
6614 *
6615 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6616 * because this is done early in section_activate()
6617 */
6618 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6619 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6620 cond_resched();
6621 }
6622 }
6623
6624 pr_info("%s initialised %lu pages in %ums\n", __func__,
6625 nr_pages, jiffies_to_msecs(jiffies - start));
6626 }
6627
6628 #endif
6629 static void __meminit zone_init_free_lists(struct zone *zone)
6630 {
6631 unsigned int order, t;
6632 for_each_migratetype_order(order, t) {
6633 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6634 zone->free_area[order].nr_free = 0;
6635 }
6636 }
6637
6638 #if !defined(CONFIG_FLATMEM)
6639 /*
6640 * Only struct pages that correspond to ranges defined by memblock.memory
6641 * are zeroed and initialized by going through __init_single_page() during
6642 * memmap_init_zone_range().
6643 *
6644 * But, there could be struct pages that correspond to holes in
6645 * memblock.memory. This can happen because of the following reasons:
6646 * - physical memory bank size is not necessarily the exact multiple of the
6647 * arbitrary section size
6648 * - early reserved memory may not be listed in memblock.memory
6649 * - memory layouts defined with memmap= kernel parameter may not align
6650 * nicely with memmap sections
6651 *
6652 * Explicitly initialize those struct pages so that:
6653 * - PG_Reserved is set
6654 * - zone and node links point to zone and node that span the page if the
6655 * hole is in the middle of a zone
6656 * - zone and node links point to adjacent zone/node if the hole falls on
6657 * the zone boundary; the pages in such holes will be prepended to the
6658 * zone/node above the hole except for the trailing pages in the last
6659 * section that will be appended to the zone/node below.
6660 */
6661 static void __init init_unavailable_range(unsigned long spfn,
6662 unsigned long epfn,
6663 int zone, int node)
6664 {
6665 unsigned long pfn;
6666 u64 pgcnt = 0;
6667
6668 for (pfn = spfn; pfn < epfn; pfn++) {
6669 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6670 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6671 + pageblock_nr_pages - 1;
6672 continue;
6673 }
6674 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6675 __SetPageReserved(pfn_to_page(pfn));
6676 pgcnt++;
6677 }
6678
6679 if (pgcnt)
6680 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6681 node, zone_names[zone], pgcnt);
6682 }
6683 #else
6684 static inline void init_unavailable_range(unsigned long spfn,
6685 unsigned long epfn,
6686 int zone, int node)
6687 {
6688 }
6689 #endif
6690
6691 static void __init memmap_init_zone_range(struct zone *zone,
6692 unsigned long start_pfn,
6693 unsigned long end_pfn,
6694 unsigned long *hole_pfn)
6695 {
6696 unsigned long zone_start_pfn = zone->zone_start_pfn;
6697 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6698 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6699
6700 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6701 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6702
6703 if (start_pfn >= end_pfn)
6704 return;
6705
6706 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6707 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6708
6709 if (*hole_pfn < start_pfn)
6710 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6711
6712 *hole_pfn = end_pfn;
6713 }
6714
6715 static void __init memmap_init(void)
6716 {
6717 unsigned long start_pfn, end_pfn;
6718 unsigned long hole_pfn = 0;
6719 int i, j, zone_id, nid;
6720
6721 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6722 struct pglist_data *node = NODE_DATA(nid);
6723
6724 for (j = 0; j < MAX_NR_ZONES; j++) {
6725 struct zone *zone = node->node_zones + j;
6726
6727 if (!populated_zone(zone))
6728 continue;
6729
6730 memmap_init_zone_range(zone, start_pfn, end_pfn,
6731 &hole_pfn);
6732 zone_id = j;
6733 }
6734 }
6735
6736 #ifdef CONFIG_SPARSEMEM
6737 /*
6738 * Initialize the memory map for hole in the range [memory_end,
6739 * section_end].
6740 * Append the pages in this hole to the highest zone in the last
6741 * node.
6742 * The call to init_unavailable_range() is outside the ifdef to
6743 * silence the compiler warining about zone_id set but not used;
6744 * for FLATMEM it is a nop anyway
6745 */
6746 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6747 if (hole_pfn < end_pfn)
6748 #endif
6749 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6750 }
6751
6752 static int zone_batchsize(struct zone *zone)
6753 {
6754 #ifdef CONFIG_MMU
6755 int batch;
6756
6757 /*
6758 * The number of pages to batch allocate is either ~0.1%
6759 * of the zone or 1MB, whichever is smaller. The batch
6760 * size is striking a balance between allocation latency
6761 * and zone lock contention.
6762 */
6763 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6764 batch /= 4; /* We effectively *= 4 below */
6765 if (batch < 1)
6766 batch = 1;
6767
6768 /*
6769 * Clamp the batch to a 2^n - 1 value. Having a power
6770 * of 2 value was found to be more likely to have
6771 * suboptimal cache aliasing properties in some cases.
6772 *
6773 * For example if 2 tasks are alternately allocating
6774 * batches of pages, one task can end up with a lot
6775 * of pages of one half of the possible page colors
6776 * and the other with pages of the other colors.
6777 */
6778 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6779
6780 return batch;
6781
6782 #else
6783 /* The deferral and batching of frees should be suppressed under NOMMU
6784 * conditions.
6785 *
6786 * The problem is that NOMMU needs to be able to allocate large chunks
6787 * of contiguous memory as there's no hardware page translation to
6788 * assemble apparent contiguous memory from discontiguous pages.
6789 *
6790 * Queueing large contiguous runs of pages for batching, however,
6791 * causes the pages to actually be freed in smaller chunks. As there
6792 * can be a significant delay between the individual batches being
6793 * recycled, this leads to the once large chunks of space being
6794 * fragmented and becoming unavailable for high-order allocations.
6795 */
6796 return 0;
6797 #endif
6798 }
6799
6800 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6801 {
6802 #ifdef CONFIG_MMU
6803 int high;
6804 int nr_split_cpus;
6805 unsigned long total_pages;
6806
6807 if (!percpu_pagelist_high_fraction) {
6808 /*
6809 * By default, the high value of the pcp is based on the zone
6810 * low watermark so that if they are full then background
6811 * reclaim will not be started prematurely.
6812 */
6813 total_pages = low_wmark_pages(zone);
6814 } else {
6815 /*
6816 * If percpu_pagelist_high_fraction is configured, the high
6817 * value is based on a fraction of the managed pages in the
6818 * zone.
6819 */
6820 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6821 }
6822
6823 /*
6824 * Split the high value across all online CPUs local to the zone. Note
6825 * that early in boot that CPUs may not be online yet and that during
6826 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6827 * onlined. For memory nodes that have no CPUs, split pcp->high across
6828 * all online CPUs to mitigate the risk that reclaim is triggered
6829 * prematurely due to pages stored on pcp lists.
6830 */
6831 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6832 if (!nr_split_cpus)
6833 nr_split_cpus = num_online_cpus();
6834 high = total_pages / nr_split_cpus;
6835
6836 /*
6837 * Ensure high is at least batch*4. The multiple is based on the
6838 * historical relationship between high and batch.
6839 */
6840 high = max(high, batch << 2);
6841
6842 return high;
6843 #else
6844 return 0;
6845 #endif
6846 }
6847
6848 /*
6849 * pcp->high and pcp->batch values are related and generally batch is lower
6850 * than high. They are also related to pcp->count such that count is lower
6851 * than high, and as soon as it reaches high, the pcplist is flushed.
6852 *
6853 * However, guaranteeing these relations at all times would require e.g. write
6854 * barriers here but also careful usage of read barriers at the read side, and
6855 * thus be prone to error and bad for performance. Thus the update only prevents
6856 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6857 * can cope with those fields changing asynchronously, and fully trust only the
6858 * pcp->count field on the local CPU with interrupts disabled.
6859 *
6860 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6861 * outside of boot time (or some other assurance that no concurrent updaters
6862 * exist).
6863 */
6864 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6865 unsigned long batch)
6866 {
6867 WRITE_ONCE(pcp->batch, batch);
6868 WRITE_ONCE(pcp->high, high);
6869 }
6870
6871 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6872 {
6873 int pindex;
6874
6875 memset(pcp, 0, sizeof(*pcp));
6876 memset(pzstats, 0, sizeof(*pzstats));
6877
6878 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6879 INIT_LIST_HEAD(&pcp->lists[pindex]);
6880
6881 /*
6882 * Set batch and high values safe for a boot pageset. A true percpu
6883 * pageset's initialization will update them subsequently. Here we don't
6884 * need to be as careful as pageset_update() as nobody can access the
6885 * pageset yet.
6886 */
6887 pcp->high = BOOT_PAGESET_HIGH;
6888 pcp->batch = BOOT_PAGESET_BATCH;
6889 pcp->free_factor = 0;
6890 }
6891
6892 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6893 unsigned long batch)
6894 {
6895 struct per_cpu_pages *pcp;
6896 int cpu;
6897
6898 for_each_possible_cpu(cpu) {
6899 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6900 pageset_update(pcp, high, batch);
6901 }
6902 }
6903
6904 /*
6905 * Calculate and set new high and batch values for all per-cpu pagesets of a
6906 * zone based on the zone's size.
6907 */
6908 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6909 {
6910 int new_high, new_batch;
6911
6912 new_batch = max(1, zone_batchsize(zone));
6913 new_high = zone_highsize(zone, new_batch, cpu_online);
6914
6915 if (zone->pageset_high == new_high &&
6916 zone->pageset_batch == new_batch)
6917 return;
6918
6919 zone->pageset_high = new_high;
6920 zone->pageset_batch = new_batch;
6921
6922 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6923 }
6924
6925 void __meminit setup_zone_pageset(struct zone *zone)
6926 {
6927 int cpu;
6928
6929 /* Size may be 0 on !SMP && !NUMA */
6930 if (sizeof(struct per_cpu_zonestat) > 0)
6931 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6932
6933 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6934 for_each_possible_cpu(cpu) {
6935 struct per_cpu_pages *pcp;
6936 struct per_cpu_zonestat *pzstats;
6937
6938 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6939 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6940 per_cpu_pages_init(pcp, pzstats);
6941 }
6942
6943 zone_set_pageset_high_and_batch(zone, 0);
6944 }
6945
6946 /*
6947 * Allocate per cpu pagesets and initialize them.
6948 * Before this call only boot pagesets were available.
6949 */
6950 void __init setup_per_cpu_pageset(void)
6951 {
6952 struct pglist_data *pgdat;
6953 struct zone *zone;
6954 int __maybe_unused cpu;
6955
6956 for_each_populated_zone(zone)
6957 setup_zone_pageset(zone);
6958
6959 #ifdef CONFIG_NUMA
6960 /*
6961 * Unpopulated zones continue using the boot pagesets.
6962 * The numa stats for these pagesets need to be reset.
6963 * Otherwise, they will end up skewing the stats of
6964 * the nodes these zones are associated with.
6965 */
6966 for_each_possible_cpu(cpu) {
6967 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6968 memset(pzstats->vm_numa_event, 0,
6969 sizeof(pzstats->vm_numa_event));
6970 }
6971 #endif
6972
6973 for_each_online_pgdat(pgdat)
6974 pgdat->per_cpu_nodestats =
6975 alloc_percpu(struct per_cpu_nodestat);
6976 }
6977
6978 static __meminit void zone_pcp_init(struct zone *zone)
6979 {
6980 /*
6981 * per cpu subsystem is not up at this point. The following code
6982 * relies on the ability of the linker to provide the
6983 * offset of a (static) per cpu variable into the per cpu area.
6984 */
6985 zone->per_cpu_pageset = &boot_pageset;
6986 zone->per_cpu_zonestats = &boot_zonestats;
6987 zone->pageset_high = BOOT_PAGESET_HIGH;
6988 zone->pageset_batch = BOOT_PAGESET_BATCH;
6989
6990 if (populated_zone(zone))
6991 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6992 zone->present_pages, zone_batchsize(zone));
6993 }
6994
6995 void __meminit init_currently_empty_zone(struct zone *zone,
6996 unsigned long zone_start_pfn,
6997 unsigned long size)
6998 {
6999 struct pglist_data *pgdat = zone->zone_pgdat;
7000 int zone_idx = zone_idx(zone) + 1;
7001
7002 if (zone_idx > pgdat->nr_zones)
7003 pgdat->nr_zones = zone_idx;
7004
7005 zone->zone_start_pfn = zone_start_pfn;
7006
7007 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7008 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7009 pgdat->node_id,
7010 (unsigned long)zone_idx(zone),
7011 zone_start_pfn, (zone_start_pfn + size));
7012
7013 zone_init_free_lists(zone);
7014 zone->initialized = 1;
7015 }
7016
7017 /**
7018 * get_pfn_range_for_nid - Return the start and end page frames for a node
7019 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7020 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7021 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7022 *
7023 * It returns the start and end page frame of a node based on information
7024 * provided by memblock_set_node(). If called for a node
7025 * with no available memory, a warning is printed and the start and end
7026 * PFNs will be 0.
7027 */
7028 void __init get_pfn_range_for_nid(unsigned int nid,
7029 unsigned long *start_pfn, unsigned long *end_pfn)
7030 {
7031 unsigned long this_start_pfn, this_end_pfn;
7032 int i;
7033
7034 *start_pfn = -1UL;
7035 *end_pfn = 0;
7036
7037 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7038 *start_pfn = min(*start_pfn, this_start_pfn);
7039 *end_pfn = max(*end_pfn, this_end_pfn);
7040 }
7041
7042 if (*start_pfn == -1UL)
7043 *start_pfn = 0;
7044 }
7045
7046 /*
7047 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7048 * assumption is made that zones within a node are ordered in monotonic
7049 * increasing memory addresses so that the "highest" populated zone is used
7050 */
7051 static void __init find_usable_zone_for_movable(void)
7052 {
7053 int zone_index;
7054 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7055 if (zone_index == ZONE_MOVABLE)
7056 continue;
7057
7058 if (arch_zone_highest_possible_pfn[zone_index] >
7059 arch_zone_lowest_possible_pfn[zone_index])
7060 break;
7061 }
7062
7063 VM_BUG_ON(zone_index == -1);
7064 movable_zone = zone_index;
7065 }
7066
7067 /*
7068 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7069 * because it is sized independent of architecture. Unlike the other zones,
7070 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7071 * in each node depending on the size of each node and how evenly kernelcore
7072 * is distributed. This helper function adjusts the zone ranges
7073 * provided by the architecture for a given node by using the end of the
7074 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7075 * zones within a node are in order of monotonic increases memory addresses
7076 */
7077 static void __init adjust_zone_range_for_zone_movable(int nid,
7078 unsigned long zone_type,
7079 unsigned long node_start_pfn,
7080 unsigned long node_end_pfn,
7081 unsigned long *zone_start_pfn,
7082 unsigned long *zone_end_pfn)
7083 {
7084 /* Only adjust if ZONE_MOVABLE is on this node */
7085 if (zone_movable_pfn[nid]) {
7086 /* Size ZONE_MOVABLE */
7087 if (zone_type == ZONE_MOVABLE) {
7088 *zone_start_pfn = zone_movable_pfn[nid];
7089 *zone_end_pfn = min(node_end_pfn,
7090 arch_zone_highest_possible_pfn[movable_zone]);
7091
7092 /* Adjust for ZONE_MOVABLE starting within this range */
7093 } else if (!mirrored_kernelcore &&
7094 *zone_start_pfn < zone_movable_pfn[nid] &&
7095 *zone_end_pfn > zone_movable_pfn[nid]) {
7096 *zone_end_pfn = zone_movable_pfn[nid];
7097
7098 /* Check if this whole range is within ZONE_MOVABLE */
7099 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7100 *zone_start_pfn = *zone_end_pfn;
7101 }
7102 }
7103
7104 /*
7105 * Return the number of pages a zone spans in a node, including holes
7106 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7107 */
7108 static unsigned long __init zone_spanned_pages_in_node(int nid,
7109 unsigned long zone_type,
7110 unsigned long node_start_pfn,
7111 unsigned long node_end_pfn,
7112 unsigned long *zone_start_pfn,
7113 unsigned long *zone_end_pfn)
7114 {
7115 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7116 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7117 /* When hotadd a new node from cpu_up(), the node should be empty */
7118 if (!node_start_pfn && !node_end_pfn)
7119 return 0;
7120
7121 /* Get the start and end of the zone */
7122 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7123 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7124 adjust_zone_range_for_zone_movable(nid, zone_type,
7125 node_start_pfn, node_end_pfn,
7126 zone_start_pfn, zone_end_pfn);
7127
7128 /* Check that this node has pages within the zone's required range */
7129 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7130 return 0;
7131
7132 /* Move the zone boundaries inside the node if necessary */
7133 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7134 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7135
7136 /* Return the spanned pages */
7137 return *zone_end_pfn - *zone_start_pfn;
7138 }
7139
7140 /*
7141 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7142 * then all holes in the requested range will be accounted for.
7143 */
7144 unsigned long __init __absent_pages_in_range(int nid,
7145 unsigned long range_start_pfn,
7146 unsigned long range_end_pfn)
7147 {
7148 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7149 unsigned long start_pfn, end_pfn;
7150 int i;
7151
7152 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7153 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7154 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7155 nr_absent -= end_pfn - start_pfn;
7156 }
7157 return nr_absent;
7158 }
7159
7160 /**
7161 * absent_pages_in_range - Return number of page frames in holes within a range
7162 * @start_pfn: The start PFN to start searching for holes
7163 * @end_pfn: The end PFN to stop searching for holes
7164 *
7165 * Return: the number of pages frames in memory holes within a range.
7166 */
7167 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7168 unsigned long end_pfn)
7169 {
7170 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7171 }
7172
7173 /* Return the number of page frames in holes in a zone on a node */
7174 static unsigned long __init zone_absent_pages_in_node(int nid,
7175 unsigned long zone_type,
7176 unsigned long node_start_pfn,
7177 unsigned long node_end_pfn)
7178 {
7179 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7180 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7181 unsigned long zone_start_pfn, zone_end_pfn;
7182 unsigned long nr_absent;
7183
7184 /* When hotadd a new node from cpu_up(), the node should be empty */
7185 if (!node_start_pfn && !node_end_pfn)
7186 return 0;
7187
7188 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7189 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7190
7191 adjust_zone_range_for_zone_movable(nid, zone_type,
7192 node_start_pfn, node_end_pfn,
7193 &zone_start_pfn, &zone_end_pfn);
7194 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7195
7196 /*
7197 * ZONE_MOVABLE handling.
7198 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7199 * and vice versa.
7200 */
7201 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7202 unsigned long start_pfn, end_pfn;
7203 struct memblock_region *r;
7204
7205 for_each_mem_region(r) {
7206 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7207 zone_start_pfn, zone_end_pfn);
7208 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7209 zone_start_pfn, zone_end_pfn);
7210
7211 if (zone_type == ZONE_MOVABLE &&
7212 memblock_is_mirror(r))
7213 nr_absent += end_pfn - start_pfn;
7214
7215 if (zone_type == ZONE_NORMAL &&
7216 !memblock_is_mirror(r))
7217 nr_absent += end_pfn - start_pfn;
7218 }
7219 }
7220
7221 return nr_absent;
7222 }
7223
7224 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7225 unsigned long node_start_pfn,
7226 unsigned long node_end_pfn)
7227 {
7228 unsigned long realtotalpages = 0, totalpages = 0;
7229 enum zone_type i;
7230
7231 for (i = 0; i < MAX_NR_ZONES; i++) {
7232 struct zone *zone = pgdat->node_zones + i;
7233 unsigned long zone_start_pfn, zone_end_pfn;
7234 unsigned long spanned, absent;
7235 unsigned long size, real_size;
7236
7237 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7238 node_start_pfn,
7239 node_end_pfn,
7240 &zone_start_pfn,
7241 &zone_end_pfn);
7242 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7243 node_start_pfn,
7244 node_end_pfn);
7245
7246 size = spanned;
7247 real_size = size - absent;
7248
7249 if (size)
7250 zone->zone_start_pfn = zone_start_pfn;
7251 else
7252 zone->zone_start_pfn = 0;
7253 zone->spanned_pages = size;
7254 zone->present_pages = real_size;
7255
7256 totalpages += size;
7257 realtotalpages += real_size;
7258 }
7259
7260 pgdat->node_spanned_pages = totalpages;
7261 pgdat->node_present_pages = realtotalpages;
7262 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7263 }
7264
7265 #ifndef CONFIG_SPARSEMEM
7266 /*
7267 * Calculate the size of the zone->blockflags rounded to an unsigned long
7268 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7269 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7270 * round what is now in bits to nearest long in bits, then return it in
7271 * bytes.
7272 */
7273 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7274 {
7275 unsigned long usemapsize;
7276
7277 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7278 usemapsize = roundup(zonesize, pageblock_nr_pages);
7279 usemapsize = usemapsize >> pageblock_order;
7280 usemapsize *= NR_PAGEBLOCK_BITS;
7281 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7282
7283 return usemapsize / 8;
7284 }
7285
7286 static void __ref setup_usemap(struct zone *zone)
7287 {
7288 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7289 zone->spanned_pages);
7290 zone->pageblock_flags = NULL;
7291 if (usemapsize) {
7292 zone->pageblock_flags =
7293 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7294 zone_to_nid(zone));
7295 if (!zone->pageblock_flags)
7296 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7297 usemapsize, zone->name, zone_to_nid(zone));
7298 }
7299 }
7300 #else
7301 static inline void setup_usemap(struct zone *zone) {}
7302 #endif /* CONFIG_SPARSEMEM */
7303
7304 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7305
7306 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7307 void __init set_pageblock_order(void)
7308 {
7309 unsigned int order;
7310
7311 /* Check that pageblock_nr_pages has not already been setup */
7312 if (pageblock_order)
7313 return;
7314
7315 if (HPAGE_SHIFT > PAGE_SHIFT)
7316 order = HUGETLB_PAGE_ORDER;
7317 else
7318 order = MAX_ORDER - 1;
7319
7320 /*
7321 * Assume the largest contiguous order of interest is a huge page.
7322 * This value may be variable depending on boot parameters on IA64 and
7323 * powerpc.
7324 */
7325 pageblock_order = order;
7326 }
7327 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7328
7329 /*
7330 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7331 * is unused as pageblock_order is set at compile-time. See
7332 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7333 * the kernel config
7334 */
7335 void __init set_pageblock_order(void)
7336 {
7337 }
7338
7339 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7340
7341 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7342 unsigned long present_pages)
7343 {
7344 unsigned long pages = spanned_pages;
7345
7346 /*
7347 * Provide a more accurate estimation if there are holes within
7348 * the zone and SPARSEMEM is in use. If there are holes within the
7349 * zone, each populated memory region may cost us one or two extra
7350 * memmap pages due to alignment because memmap pages for each
7351 * populated regions may not be naturally aligned on page boundary.
7352 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7353 */
7354 if (spanned_pages > present_pages + (present_pages >> 4) &&
7355 IS_ENABLED(CONFIG_SPARSEMEM))
7356 pages = present_pages;
7357
7358 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7359 }
7360
7361 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7362 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7363 {
7364 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7365
7366 spin_lock_init(&ds_queue->split_queue_lock);
7367 INIT_LIST_HEAD(&ds_queue->split_queue);
7368 ds_queue->split_queue_len = 0;
7369 }
7370 #else
7371 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7372 #endif
7373
7374 #ifdef CONFIG_COMPACTION
7375 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7376 {
7377 init_waitqueue_head(&pgdat->kcompactd_wait);
7378 }
7379 #else
7380 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7381 #endif
7382
7383 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7384 {
7385 pgdat_resize_init(pgdat);
7386
7387 pgdat_init_split_queue(pgdat);
7388 pgdat_init_kcompactd(pgdat);
7389
7390 init_waitqueue_head(&pgdat->kswapd_wait);
7391 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7392
7393 pgdat_page_ext_init(pgdat);
7394 lruvec_init(&pgdat->__lruvec);
7395 }
7396
7397 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7398 unsigned long remaining_pages)
7399 {
7400 atomic_long_set(&zone->managed_pages, remaining_pages);
7401 zone_set_nid(zone, nid);
7402 zone->name = zone_names[idx];
7403 zone->zone_pgdat = NODE_DATA(nid);
7404 spin_lock_init(&zone->lock);
7405 zone_seqlock_init(zone);
7406 zone_pcp_init(zone);
7407 }
7408
7409 /*
7410 * Set up the zone data structures
7411 * - init pgdat internals
7412 * - init all zones belonging to this node
7413 *
7414 * NOTE: this function is only called during memory hotplug
7415 */
7416 #ifdef CONFIG_MEMORY_HOTPLUG
7417 void __ref free_area_init_core_hotplug(int nid)
7418 {
7419 enum zone_type z;
7420 pg_data_t *pgdat = NODE_DATA(nid);
7421
7422 pgdat_init_internals(pgdat);
7423 for (z = 0; z < MAX_NR_ZONES; z++)
7424 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7425 }
7426 #endif
7427
7428 /*
7429 * Set up the zone data structures:
7430 * - mark all pages reserved
7431 * - mark all memory queues empty
7432 * - clear the memory bitmaps
7433 *
7434 * NOTE: pgdat should get zeroed by caller.
7435 * NOTE: this function is only called during early init.
7436 */
7437 static void __init free_area_init_core(struct pglist_data *pgdat)
7438 {
7439 enum zone_type j;
7440 int nid = pgdat->node_id;
7441
7442 pgdat_init_internals(pgdat);
7443 pgdat->per_cpu_nodestats = &boot_nodestats;
7444
7445 for (j = 0; j < MAX_NR_ZONES; j++) {
7446 struct zone *zone = pgdat->node_zones + j;
7447 unsigned long size, freesize, memmap_pages;
7448
7449 size = zone->spanned_pages;
7450 freesize = zone->present_pages;
7451
7452 /*
7453 * Adjust freesize so that it accounts for how much memory
7454 * is used by this zone for memmap. This affects the watermark
7455 * and per-cpu initialisations
7456 */
7457 memmap_pages = calc_memmap_size(size, freesize);
7458 if (!is_highmem_idx(j)) {
7459 if (freesize >= memmap_pages) {
7460 freesize -= memmap_pages;
7461 if (memmap_pages)
7462 pr_debug(" %s zone: %lu pages used for memmap\n",
7463 zone_names[j], memmap_pages);
7464 } else
7465 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7466 zone_names[j], memmap_pages, freesize);
7467 }
7468
7469 /* Account for reserved pages */
7470 if (j == 0 && freesize > dma_reserve) {
7471 freesize -= dma_reserve;
7472 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7473 }
7474
7475 if (!is_highmem_idx(j))
7476 nr_kernel_pages += freesize;
7477 /* Charge for highmem memmap if there are enough kernel pages */
7478 else if (nr_kernel_pages > memmap_pages * 2)
7479 nr_kernel_pages -= memmap_pages;
7480 nr_all_pages += freesize;
7481
7482 /*
7483 * Set an approximate value for lowmem here, it will be adjusted
7484 * when the bootmem allocator frees pages into the buddy system.
7485 * And all highmem pages will be managed by the buddy system.
7486 */
7487 zone_init_internals(zone, j, nid, freesize);
7488
7489 if (!size)
7490 continue;
7491
7492 set_pageblock_order();
7493 setup_usemap(zone);
7494 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7495 }
7496 }
7497
7498 #ifdef CONFIG_FLATMEM
7499 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7500 {
7501 unsigned long __maybe_unused start = 0;
7502 unsigned long __maybe_unused offset = 0;
7503
7504 /* Skip empty nodes */
7505 if (!pgdat->node_spanned_pages)
7506 return;
7507
7508 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7509 offset = pgdat->node_start_pfn - start;
7510 /* ia64 gets its own node_mem_map, before this, without bootmem */
7511 if (!pgdat->node_mem_map) {
7512 unsigned long size, end;
7513 struct page *map;
7514
7515 /*
7516 * The zone's endpoints aren't required to be MAX_ORDER
7517 * aligned but the node_mem_map endpoints must be in order
7518 * for the buddy allocator to function correctly.
7519 */
7520 end = pgdat_end_pfn(pgdat);
7521 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7522 size = (end - start) * sizeof(struct page);
7523 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7524 pgdat->node_id);
7525 if (!map)
7526 panic("Failed to allocate %ld bytes for node %d memory map\n",
7527 size, pgdat->node_id);
7528 pgdat->node_mem_map = map + offset;
7529 }
7530 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7531 __func__, pgdat->node_id, (unsigned long)pgdat,
7532 (unsigned long)pgdat->node_mem_map);
7533 #ifndef CONFIG_NUMA
7534 /*
7535 * With no DISCONTIG, the global mem_map is just set as node 0's
7536 */
7537 if (pgdat == NODE_DATA(0)) {
7538 mem_map = NODE_DATA(0)->node_mem_map;
7539 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7540 mem_map -= offset;
7541 }
7542 #endif
7543 }
7544 #else
7545 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7546 #endif /* CONFIG_FLATMEM */
7547
7548 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7549 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7550 {
7551 pgdat->first_deferred_pfn = ULONG_MAX;
7552 }
7553 #else
7554 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7555 #endif
7556
7557 static void __init free_area_init_node(int nid)
7558 {
7559 pg_data_t *pgdat = NODE_DATA(nid);
7560 unsigned long start_pfn = 0;
7561 unsigned long end_pfn = 0;
7562
7563 /* pg_data_t should be reset to zero when it's allocated */
7564 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7565
7566 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7567
7568 pgdat->node_id = nid;
7569 pgdat->node_start_pfn = start_pfn;
7570 pgdat->per_cpu_nodestats = NULL;
7571
7572 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7573 (u64)start_pfn << PAGE_SHIFT,
7574 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7575 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7576
7577 alloc_node_mem_map(pgdat);
7578 pgdat_set_deferred_range(pgdat);
7579
7580 free_area_init_core(pgdat);
7581 }
7582
7583 void __init free_area_init_memoryless_node(int nid)
7584 {
7585 free_area_init_node(nid);
7586 }
7587
7588 #if MAX_NUMNODES > 1
7589 /*
7590 * Figure out the number of possible node ids.
7591 */
7592 void __init setup_nr_node_ids(void)
7593 {
7594 unsigned int highest;
7595
7596 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7597 nr_node_ids = highest + 1;
7598 }
7599 #endif
7600
7601 /**
7602 * node_map_pfn_alignment - determine the maximum internode alignment
7603 *
7604 * This function should be called after node map is populated and sorted.
7605 * It calculates the maximum power of two alignment which can distinguish
7606 * all the nodes.
7607 *
7608 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7609 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7610 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7611 * shifted, 1GiB is enough and this function will indicate so.
7612 *
7613 * This is used to test whether pfn -> nid mapping of the chosen memory
7614 * model has fine enough granularity to avoid incorrect mapping for the
7615 * populated node map.
7616 *
7617 * Return: the determined alignment in pfn's. 0 if there is no alignment
7618 * requirement (single node).
7619 */
7620 unsigned long __init node_map_pfn_alignment(void)
7621 {
7622 unsigned long accl_mask = 0, last_end = 0;
7623 unsigned long start, end, mask;
7624 int last_nid = NUMA_NO_NODE;
7625 int i, nid;
7626
7627 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7628 if (!start || last_nid < 0 || last_nid == nid) {
7629 last_nid = nid;
7630 last_end = end;
7631 continue;
7632 }
7633
7634 /*
7635 * Start with a mask granular enough to pin-point to the
7636 * start pfn and tick off bits one-by-one until it becomes
7637 * too coarse to separate the current node from the last.
7638 */
7639 mask = ~((1 << __ffs(start)) - 1);
7640 while (mask && last_end <= (start & (mask << 1)))
7641 mask <<= 1;
7642
7643 /* accumulate all internode masks */
7644 accl_mask |= mask;
7645 }
7646
7647 /* convert mask to number of pages */
7648 return ~accl_mask + 1;
7649 }
7650
7651 /**
7652 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7653 *
7654 * Return: the minimum PFN based on information provided via
7655 * memblock_set_node().
7656 */
7657 unsigned long __init find_min_pfn_with_active_regions(void)
7658 {
7659 return PHYS_PFN(memblock_start_of_DRAM());
7660 }
7661
7662 /*
7663 * early_calculate_totalpages()
7664 * Sum pages in active regions for movable zone.
7665 * Populate N_MEMORY for calculating usable_nodes.
7666 */
7667 static unsigned long __init early_calculate_totalpages(void)
7668 {
7669 unsigned long totalpages = 0;
7670 unsigned long start_pfn, end_pfn;
7671 int i, nid;
7672
7673 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7674 unsigned long pages = end_pfn - start_pfn;
7675
7676 totalpages += pages;
7677 if (pages)
7678 node_set_state(nid, N_MEMORY);
7679 }
7680 return totalpages;
7681 }
7682
7683 /*
7684 * Find the PFN the Movable zone begins in each node. Kernel memory
7685 * is spread evenly between nodes as long as the nodes have enough
7686 * memory. When they don't, some nodes will have more kernelcore than
7687 * others
7688 */
7689 static void __init find_zone_movable_pfns_for_nodes(void)
7690 {
7691 int i, nid;
7692 unsigned long usable_startpfn;
7693 unsigned long kernelcore_node, kernelcore_remaining;
7694 /* save the state before borrow the nodemask */
7695 nodemask_t saved_node_state = node_states[N_MEMORY];
7696 unsigned long totalpages = early_calculate_totalpages();
7697 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7698 struct memblock_region *r;
7699
7700 /* Need to find movable_zone earlier when movable_node is specified. */
7701 find_usable_zone_for_movable();
7702
7703 /*
7704 * If movable_node is specified, ignore kernelcore and movablecore
7705 * options.
7706 */
7707 if (movable_node_is_enabled()) {
7708 for_each_mem_region(r) {
7709 if (!memblock_is_hotpluggable(r))
7710 continue;
7711
7712 nid = memblock_get_region_node(r);
7713
7714 usable_startpfn = PFN_DOWN(r->base);
7715 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7716 min(usable_startpfn, zone_movable_pfn[nid]) :
7717 usable_startpfn;
7718 }
7719
7720 goto out2;
7721 }
7722
7723 /*
7724 * If kernelcore=mirror is specified, ignore movablecore option
7725 */
7726 if (mirrored_kernelcore) {
7727 bool mem_below_4gb_not_mirrored = false;
7728
7729 for_each_mem_region(r) {
7730 if (memblock_is_mirror(r))
7731 continue;
7732
7733 nid = memblock_get_region_node(r);
7734
7735 usable_startpfn = memblock_region_memory_base_pfn(r);
7736
7737 if (usable_startpfn < 0x100000) {
7738 mem_below_4gb_not_mirrored = true;
7739 continue;
7740 }
7741
7742 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7743 min(usable_startpfn, zone_movable_pfn[nid]) :
7744 usable_startpfn;
7745 }
7746
7747 if (mem_below_4gb_not_mirrored)
7748 pr_warn("This configuration results in unmirrored kernel memory.\n");
7749
7750 goto out2;
7751 }
7752
7753 /*
7754 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7755 * amount of necessary memory.
7756 */
7757 if (required_kernelcore_percent)
7758 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7759 10000UL;
7760 if (required_movablecore_percent)
7761 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7762 10000UL;
7763
7764 /*
7765 * If movablecore= was specified, calculate what size of
7766 * kernelcore that corresponds so that memory usable for
7767 * any allocation type is evenly spread. If both kernelcore
7768 * and movablecore are specified, then the value of kernelcore
7769 * will be used for required_kernelcore if it's greater than
7770 * what movablecore would have allowed.
7771 */
7772 if (required_movablecore) {
7773 unsigned long corepages;
7774
7775 /*
7776 * Round-up so that ZONE_MOVABLE is at least as large as what
7777 * was requested by the user
7778 */
7779 required_movablecore =
7780 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7781 required_movablecore = min(totalpages, required_movablecore);
7782 corepages = totalpages - required_movablecore;
7783
7784 required_kernelcore = max(required_kernelcore, corepages);
7785 }
7786
7787 /*
7788 * If kernelcore was not specified or kernelcore size is larger
7789 * than totalpages, there is no ZONE_MOVABLE.
7790 */
7791 if (!required_kernelcore || required_kernelcore >= totalpages)
7792 goto out;
7793
7794 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7795 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7796
7797 restart:
7798 /* Spread kernelcore memory as evenly as possible throughout nodes */
7799 kernelcore_node = required_kernelcore / usable_nodes;
7800 for_each_node_state(nid, N_MEMORY) {
7801 unsigned long start_pfn, end_pfn;
7802
7803 /*
7804 * Recalculate kernelcore_node if the division per node
7805 * now exceeds what is necessary to satisfy the requested
7806 * amount of memory for the kernel
7807 */
7808 if (required_kernelcore < kernelcore_node)
7809 kernelcore_node = required_kernelcore / usable_nodes;
7810
7811 /*
7812 * As the map is walked, we track how much memory is usable
7813 * by the kernel using kernelcore_remaining. When it is
7814 * 0, the rest of the node is usable by ZONE_MOVABLE
7815 */
7816 kernelcore_remaining = kernelcore_node;
7817
7818 /* Go through each range of PFNs within this node */
7819 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7820 unsigned long size_pages;
7821
7822 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7823 if (start_pfn >= end_pfn)
7824 continue;
7825
7826 /* Account for what is only usable for kernelcore */
7827 if (start_pfn < usable_startpfn) {
7828 unsigned long kernel_pages;
7829 kernel_pages = min(end_pfn, usable_startpfn)
7830 - start_pfn;
7831
7832 kernelcore_remaining -= min(kernel_pages,
7833 kernelcore_remaining);
7834 required_kernelcore -= min(kernel_pages,
7835 required_kernelcore);
7836
7837 /* Continue if range is now fully accounted */
7838 if (end_pfn <= usable_startpfn) {
7839
7840 /*
7841 * Push zone_movable_pfn to the end so
7842 * that if we have to rebalance
7843 * kernelcore across nodes, we will
7844 * not double account here
7845 */
7846 zone_movable_pfn[nid] = end_pfn;
7847 continue;
7848 }
7849 start_pfn = usable_startpfn;
7850 }
7851
7852 /*
7853 * The usable PFN range for ZONE_MOVABLE is from
7854 * start_pfn->end_pfn. Calculate size_pages as the
7855 * number of pages used as kernelcore
7856 */
7857 size_pages = end_pfn - start_pfn;
7858 if (size_pages > kernelcore_remaining)
7859 size_pages = kernelcore_remaining;
7860 zone_movable_pfn[nid] = start_pfn + size_pages;
7861
7862 /*
7863 * Some kernelcore has been met, update counts and
7864 * break if the kernelcore for this node has been
7865 * satisfied
7866 */
7867 required_kernelcore -= min(required_kernelcore,
7868 size_pages);
7869 kernelcore_remaining -= size_pages;
7870 if (!kernelcore_remaining)
7871 break;
7872 }
7873 }
7874
7875 /*
7876 * If there is still required_kernelcore, we do another pass with one
7877 * less node in the count. This will push zone_movable_pfn[nid] further
7878 * along on the nodes that still have memory until kernelcore is
7879 * satisfied
7880 */
7881 usable_nodes--;
7882 if (usable_nodes && required_kernelcore > usable_nodes)
7883 goto restart;
7884
7885 out2:
7886 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7887 for (nid = 0; nid < MAX_NUMNODES; nid++)
7888 zone_movable_pfn[nid] =
7889 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7890
7891 out:
7892 /* restore the node_state */
7893 node_states[N_MEMORY] = saved_node_state;
7894 }
7895
7896 /* Any regular or high memory on that node ? */
7897 static void check_for_memory(pg_data_t *pgdat, int nid)
7898 {
7899 enum zone_type zone_type;
7900
7901 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7902 struct zone *zone = &pgdat->node_zones[zone_type];
7903 if (populated_zone(zone)) {
7904 if (IS_ENABLED(CONFIG_HIGHMEM))
7905 node_set_state(nid, N_HIGH_MEMORY);
7906 if (zone_type <= ZONE_NORMAL)
7907 node_set_state(nid, N_NORMAL_MEMORY);
7908 break;
7909 }
7910 }
7911 }
7912
7913 /*
7914 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7915 * such cases we allow max_zone_pfn sorted in the descending order
7916 */
7917 bool __weak arch_has_descending_max_zone_pfns(void)
7918 {
7919 return false;
7920 }
7921
7922 /**
7923 * free_area_init - Initialise all pg_data_t and zone data
7924 * @max_zone_pfn: an array of max PFNs for each zone
7925 *
7926 * This will call free_area_init_node() for each active node in the system.
7927 * Using the page ranges provided by memblock_set_node(), the size of each
7928 * zone in each node and their holes is calculated. If the maximum PFN
7929 * between two adjacent zones match, it is assumed that the zone is empty.
7930 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7931 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7932 * starts where the previous one ended. For example, ZONE_DMA32 starts
7933 * at arch_max_dma_pfn.
7934 */
7935 void __init free_area_init(unsigned long *max_zone_pfn)
7936 {
7937 unsigned long start_pfn, end_pfn;
7938 int i, nid, zone;
7939 bool descending;
7940
7941 /* Record where the zone boundaries are */
7942 memset(arch_zone_lowest_possible_pfn, 0,
7943 sizeof(arch_zone_lowest_possible_pfn));
7944 memset(arch_zone_highest_possible_pfn, 0,
7945 sizeof(arch_zone_highest_possible_pfn));
7946
7947 start_pfn = find_min_pfn_with_active_regions();
7948 descending = arch_has_descending_max_zone_pfns();
7949
7950 for (i = 0; i < MAX_NR_ZONES; i++) {
7951 if (descending)
7952 zone = MAX_NR_ZONES - i - 1;
7953 else
7954 zone = i;
7955
7956 if (zone == ZONE_MOVABLE)
7957 continue;
7958
7959 end_pfn = max(max_zone_pfn[zone], start_pfn);
7960 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7961 arch_zone_highest_possible_pfn[zone] = end_pfn;
7962
7963 start_pfn = end_pfn;
7964 }
7965
7966 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7967 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7968 find_zone_movable_pfns_for_nodes();
7969
7970 /* Print out the zone ranges */
7971 pr_info("Zone ranges:\n");
7972 for (i = 0; i < MAX_NR_ZONES; i++) {
7973 if (i == ZONE_MOVABLE)
7974 continue;
7975 pr_info(" %-8s ", zone_names[i]);
7976 if (arch_zone_lowest_possible_pfn[i] ==
7977 arch_zone_highest_possible_pfn[i])
7978 pr_cont("empty\n");
7979 else
7980 pr_cont("[mem %#018Lx-%#018Lx]\n",
7981 (u64)arch_zone_lowest_possible_pfn[i]
7982 << PAGE_SHIFT,
7983 ((u64)arch_zone_highest_possible_pfn[i]
7984 << PAGE_SHIFT) - 1);
7985 }
7986
7987 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7988 pr_info("Movable zone start for each node\n");
7989 for (i = 0; i < MAX_NUMNODES; i++) {
7990 if (zone_movable_pfn[i])
7991 pr_info(" Node %d: %#018Lx\n", i,
7992 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7993 }
7994
7995 /*
7996 * Print out the early node map, and initialize the
7997 * subsection-map relative to active online memory ranges to
7998 * enable future "sub-section" extensions of the memory map.
7999 */
8000 pr_info("Early memory node ranges\n");
8001 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8002 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8003 (u64)start_pfn << PAGE_SHIFT,
8004 ((u64)end_pfn << PAGE_SHIFT) - 1);
8005 subsection_map_init(start_pfn, end_pfn - start_pfn);
8006 }
8007
8008 /* Initialise every node */
8009 mminit_verify_pageflags_layout();
8010 setup_nr_node_ids();
8011 for_each_online_node(nid) {
8012 pg_data_t *pgdat = NODE_DATA(nid);
8013 free_area_init_node(nid);
8014
8015 /* Any memory on that node */
8016 if (pgdat->node_present_pages)
8017 node_set_state(nid, N_MEMORY);
8018 check_for_memory(pgdat, nid);
8019 }
8020
8021 memmap_init();
8022 }
8023
8024 static int __init cmdline_parse_core(char *p, unsigned long *core,
8025 unsigned long *percent)
8026 {
8027 unsigned long long coremem;
8028 char *endptr;
8029
8030 if (!p)
8031 return -EINVAL;
8032
8033 /* Value may be a percentage of total memory, otherwise bytes */
8034 coremem = simple_strtoull(p, &endptr, 0);
8035 if (*endptr == '%') {
8036 /* Paranoid check for percent values greater than 100 */
8037 WARN_ON(coremem > 100);
8038
8039 *percent = coremem;
8040 } else {
8041 coremem = memparse(p, &p);
8042 /* Paranoid check that UL is enough for the coremem value */
8043 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8044
8045 *core = coremem >> PAGE_SHIFT;
8046 *percent = 0UL;
8047 }
8048 return 0;
8049 }
8050
8051 /*
8052 * kernelcore=size sets the amount of memory for use for allocations that
8053 * cannot be reclaimed or migrated.
8054 */
8055 static int __init cmdline_parse_kernelcore(char *p)
8056 {
8057 /* parse kernelcore=mirror */
8058 if (parse_option_str(p, "mirror")) {
8059 mirrored_kernelcore = true;
8060 return 0;
8061 }
8062
8063 return cmdline_parse_core(p, &required_kernelcore,
8064 &required_kernelcore_percent);
8065 }
8066
8067 /*
8068 * movablecore=size sets the amount of memory for use for allocations that
8069 * can be reclaimed or migrated.
8070 */
8071 static int __init cmdline_parse_movablecore(char *p)
8072 {
8073 return cmdline_parse_core(p, &required_movablecore,
8074 &required_movablecore_percent);
8075 }
8076
8077 early_param("kernelcore", cmdline_parse_kernelcore);
8078 early_param("movablecore", cmdline_parse_movablecore);
8079
8080 void adjust_managed_page_count(struct page *page, long count)
8081 {
8082 atomic_long_add(count, &page_zone(page)->managed_pages);
8083 totalram_pages_add(count);
8084 #ifdef CONFIG_HIGHMEM
8085 if (PageHighMem(page))
8086 totalhigh_pages_add(count);
8087 #endif
8088 }
8089 EXPORT_SYMBOL(adjust_managed_page_count);
8090
8091 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8092 {
8093 void *pos;
8094 unsigned long pages = 0;
8095
8096 start = (void *)PAGE_ALIGN((unsigned long)start);
8097 end = (void *)((unsigned long)end & PAGE_MASK);
8098 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8099 struct page *page = virt_to_page(pos);
8100 void *direct_map_addr;
8101
8102 /*
8103 * 'direct_map_addr' might be different from 'pos'
8104 * because some architectures' virt_to_page()
8105 * work with aliases. Getting the direct map
8106 * address ensures that we get a _writeable_
8107 * alias for the memset().
8108 */
8109 direct_map_addr = page_address(page);
8110 /*
8111 * Perform a kasan-unchecked memset() since this memory
8112 * has not been initialized.
8113 */
8114 direct_map_addr = kasan_reset_tag(direct_map_addr);
8115 if ((unsigned int)poison <= 0xFF)
8116 memset(direct_map_addr, poison, PAGE_SIZE);
8117
8118 free_reserved_page(page);
8119 }
8120
8121 if (pages && s)
8122 pr_info("Freeing %s memory: %ldK\n",
8123 s, pages << (PAGE_SHIFT - 10));
8124
8125 return pages;
8126 }
8127
8128 void __init mem_init_print_info(void)
8129 {
8130 unsigned long physpages, codesize, datasize, rosize, bss_size;
8131 unsigned long init_code_size, init_data_size;
8132
8133 physpages = get_num_physpages();
8134 codesize = _etext - _stext;
8135 datasize = _edata - _sdata;
8136 rosize = __end_rodata - __start_rodata;
8137 bss_size = __bss_stop - __bss_start;
8138 init_data_size = __init_end - __init_begin;
8139 init_code_size = _einittext - _sinittext;
8140
8141 /*
8142 * Detect special cases and adjust section sizes accordingly:
8143 * 1) .init.* may be embedded into .data sections
8144 * 2) .init.text.* may be out of [__init_begin, __init_end],
8145 * please refer to arch/tile/kernel/vmlinux.lds.S.
8146 * 3) .rodata.* may be embedded into .text or .data sections.
8147 */
8148 #define adj_init_size(start, end, size, pos, adj) \
8149 do { \
8150 if (start <= pos && pos < end && size > adj) \
8151 size -= adj; \
8152 } while (0)
8153
8154 adj_init_size(__init_begin, __init_end, init_data_size,
8155 _sinittext, init_code_size);
8156 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8157 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8158 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8159 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8160
8161 #undef adj_init_size
8162
8163 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8164 #ifdef CONFIG_HIGHMEM
8165 ", %luK highmem"
8166 #endif
8167 ")\n",
8168 nr_free_pages() << (PAGE_SHIFT - 10),
8169 physpages << (PAGE_SHIFT - 10),
8170 codesize >> 10, datasize >> 10, rosize >> 10,
8171 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8172 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8173 totalcma_pages << (PAGE_SHIFT - 10)
8174 #ifdef CONFIG_HIGHMEM
8175 , totalhigh_pages() << (PAGE_SHIFT - 10)
8176 #endif
8177 );
8178 }
8179
8180 /**
8181 * set_dma_reserve - set the specified number of pages reserved in the first zone
8182 * @new_dma_reserve: The number of pages to mark reserved
8183 *
8184 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8185 * In the DMA zone, a significant percentage may be consumed by kernel image
8186 * and other unfreeable allocations which can skew the watermarks badly. This
8187 * function may optionally be used to account for unfreeable pages in the
8188 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8189 * smaller per-cpu batchsize.
8190 */
8191 void __init set_dma_reserve(unsigned long new_dma_reserve)
8192 {
8193 dma_reserve = new_dma_reserve;
8194 }
8195
8196 static int page_alloc_cpu_dead(unsigned int cpu)
8197 {
8198 struct zone *zone;
8199
8200 lru_add_drain_cpu(cpu);
8201 drain_pages(cpu);
8202
8203 /*
8204 * Spill the event counters of the dead processor
8205 * into the current processors event counters.
8206 * This artificially elevates the count of the current
8207 * processor.
8208 */
8209 vm_events_fold_cpu(cpu);
8210
8211 /*
8212 * Zero the differential counters of the dead processor
8213 * so that the vm statistics are consistent.
8214 *
8215 * This is only okay since the processor is dead and cannot
8216 * race with what we are doing.
8217 */
8218 cpu_vm_stats_fold(cpu);
8219
8220 for_each_populated_zone(zone)
8221 zone_pcp_update(zone, 0);
8222
8223 return 0;
8224 }
8225
8226 static int page_alloc_cpu_online(unsigned int cpu)
8227 {
8228 struct zone *zone;
8229
8230 for_each_populated_zone(zone)
8231 zone_pcp_update(zone, 1);
8232 return 0;
8233 }
8234
8235 #ifdef CONFIG_NUMA
8236 int hashdist = HASHDIST_DEFAULT;
8237
8238 static int __init set_hashdist(char *str)
8239 {
8240 if (!str)
8241 return 0;
8242 hashdist = simple_strtoul(str, &str, 0);
8243 return 1;
8244 }
8245 __setup("hashdist=", set_hashdist);
8246 #endif
8247
8248 void __init page_alloc_init(void)
8249 {
8250 int ret;
8251
8252 #ifdef CONFIG_NUMA
8253 if (num_node_state(N_MEMORY) == 1)
8254 hashdist = 0;
8255 #endif
8256
8257 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8258 "mm/page_alloc:pcp",
8259 page_alloc_cpu_online,
8260 page_alloc_cpu_dead);
8261 WARN_ON(ret < 0);
8262 }
8263
8264 /*
8265 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8266 * or min_free_kbytes changes.
8267 */
8268 static void calculate_totalreserve_pages(void)
8269 {
8270 struct pglist_data *pgdat;
8271 unsigned long reserve_pages = 0;
8272 enum zone_type i, j;
8273
8274 for_each_online_pgdat(pgdat) {
8275
8276 pgdat->totalreserve_pages = 0;
8277
8278 for (i = 0; i < MAX_NR_ZONES; i++) {
8279 struct zone *zone = pgdat->node_zones + i;
8280 long max = 0;
8281 unsigned long managed_pages = zone_managed_pages(zone);
8282
8283 /* Find valid and maximum lowmem_reserve in the zone */
8284 for (j = i; j < MAX_NR_ZONES; j++) {
8285 if (zone->lowmem_reserve[j] > max)
8286 max = zone->lowmem_reserve[j];
8287 }
8288
8289 /* we treat the high watermark as reserved pages. */
8290 max += high_wmark_pages(zone);
8291
8292 if (max > managed_pages)
8293 max = managed_pages;
8294
8295 pgdat->totalreserve_pages += max;
8296
8297 reserve_pages += max;
8298 }
8299 }
8300 totalreserve_pages = reserve_pages;
8301 }
8302
8303 /*
8304 * setup_per_zone_lowmem_reserve - called whenever
8305 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8306 * has a correct pages reserved value, so an adequate number of
8307 * pages are left in the zone after a successful __alloc_pages().
8308 */
8309 static void setup_per_zone_lowmem_reserve(void)
8310 {
8311 struct pglist_data *pgdat;
8312 enum zone_type i, j;
8313
8314 for_each_online_pgdat(pgdat) {
8315 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8316 struct zone *zone = &pgdat->node_zones[i];
8317 int ratio = sysctl_lowmem_reserve_ratio[i];
8318 bool clear = !ratio || !zone_managed_pages(zone);
8319 unsigned long managed_pages = 0;
8320
8321 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8322 struct zone *upper_zone = &pgdat->node_zones[j];
8323
8324 managed_pages += zone_managed_pages(upper_zone);
8325
8326 if (clear)
8327 zone->lowmem_reserve[j] = 0;
8328 else
8329 zone->lowmem_reserve[j] = managed_pages / ratio;
8330 }
8331 }
8332 }
8333
8334 /* update totalreserve_pages */
8335 calculate_totalreserve_pages();
8336 }
8337
8338 static void __setup_per_zone_wmarks(void)
8339 {
8340 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8341 unsigned long lowmem_pages = 0;
8342 struct zone *zone;
8343 unsigned long flags;
8344
8345 /* Calculate total number of !ZONE_HIGHMEM pages */
8346 for_each_zone(zone) {
8347 if (!is_highmem(zone))
8348 lowmem_pages += zone_managed_pages(zone);
8349 }
8350
8351 for_each_zone(zone) {
8352 u64 tmp;
8353
8354 spin_lock_irqsave(&zone->lock, flags);
8355 tmp = (u64)pages_min * zone_managed_pages(zone);
8356 do_div(tmp, lowmem_pages);
8357 if (is_highmem(zone)) {
8358 /*
8359 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8360 * need highmem pages, so cap pages_min to a small
8361 * value here.
8362 *
8363 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8364 * deltas control async page reclaim, and so should
8365 * not be capped for highmem.
8366 */
8367 unsigned long min_pages;
8368
8369 min_pages = zone_managed_pages(zone) / 1024;
8370 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8371 zone->_watermark[WMARK_MIN] = min_pages;
8372 } else {
8373 /*
8374 * If it's a lowmem zone, reserve a number of pages
8375 * proportionate to the zone's size.
8376 */
8377 zone->_watermark[WMARK_MIN] = tmp;
8378 }
8379
8380 /*
8381 * Set the kswapd watermarks distance according to the
8382 * scale factor in proportion to available memory, but
8383 * ensure a minimum size on small systems.
8384 */
8385 tmp = max_t(u64, tmp >> 2,
8386 mult_frac(zone_managed_pages(zone),
8387 watermark_scale_factor, 10000));
8388
8389 zone->watermark_boost = 0;
8390 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8391 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8392
8393 spin_unlock_irqrestore(&zone->lock, flags);
8394 }
8395
8396 /* update totalreserve_pages */
8397 calculate_totalreserve_pages();
8398 }
8399
8400 /**
8401 * setup_per_zone_wmarks - called when min_free_kbytes changes
8402 * or when memory is hot-{added|removed}
8403 *
8404 * Ensures that the watermark[min,low,high] values for each zone are set
8405 * correctly with respect to min_free_kbytes.
8406 */
8407 void setup_per_zone_wmarks(void)
8408 {
8409 struct zone *zone;
8410 static DEFINE_SPINLOCK(lock);
8411
8412 spin_lock(&lock);
8413 __setup_per_zone_wmarks();
8414 spin_unlock(&lock);
8415
8416 /*
8417 * The watermark size have changed so update the pcpu batch
8418 * and high limits or the limits may be inappropriate.
8419 */
8420 for_each_zone(zone)
8421 zone_pcp_update(zone, 0);
8422 }
8423
8424 /*
8425 * Initialise min_free_kbytes.
8426 *
8427 * For small machines we want it small (128k min). For large machines
8428 * we want it large (256MB max). But it is not linear, because network
8429 * bandwidth does not increase linearly with machine size. We use
8430 *
8431 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8432 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8433 *
8434 * which yields
8435 *
8436 * 16MB: 512k
8437 * 32MB: 724k
8438 * 64MB: 1024k
8439 * 128MB: 1448k
8440 * 256MB: 2048k
8441 * 512MB: 2896k
8442 * 1024MB: 4096k
8443 * 2048MB: 5792k
8444 * 4096MB: 8192k
8445 * 8192MB: 11584k
8446 * 16384MB: 16384k
8447 */
8448 int __meminit init_per_zone_wmark_min(void)
8449 {
8450 unsigned long lowmem_kbytes;
8451 int new_min_free_kbytes;
8452
8453 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8454 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8455
8456 if (new_min_free_kbytes > user_min_free_kbytes) {
8457 min_free_kbytes = new_min_free_kbytes;
8458 if (min_free_kbytes < 128)
8459 min_free_kbytes = 128;
8460 if (min_free_kbytes > 262144)
8461 min_free_kbytes = 262144;
8462 } else {
8463 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8464 new_min_free_kbytes, user_min_free_kbytes);
8465 }
8466 setup_per_zone_wmarks();
8467 refresh_zone_stat_thresholds();
8468 setup_per_zone_lowmem_reserve();
8469
8470 #ifdef CONFIG_NUMA
8471 setup_min_unmapped_ratio();
8472 setup_min_slab_ratio();
8473 #endif
8474
8475 khugepaged_min_free_kbytes_update();
8476
8477 return 0;
8478 }
8479 postcore_initcall(init_per_zone_wmark_min)
8480
8481 /*
8482 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8483 * that we can call two helper functions whenever min_free_kbytes
8484 * changes.
8485 */
8486 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8487 void *buffer, size_t *length, loff_t *ppos)
8488 {
8489 int rc;
8490
8491 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8492 if (rc)
8493 return rc;
8494
8495 if (write) {
8496 user_min_free_kbytes = min_free_kbytes;
8497 setup_per_zone_wmarks();
8498 }
8499 return 0;
8500 }
8501
8502 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8503 void *buffer, size_t *length, loff_t *ppos)
8504 {
8505 int rc;
8506
8507 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8508 if (rc)
8509 return rc;
8510
8511 if (write)
8512 setup_per_zone_wmarks();
8513
8514 return 0;
8515 }
8516
8517 #ifdef CONFIG_NUMA
8518 static void setup_min_unmapped_ratio(void)
8519 {
8520 pg_data_t *pgdat;
8521 struct zone *zone;
8522
8523 for_each_online_pgdat(pgdat)
8524 pgdat->min_unmapped_pages = 0;
8525
8526 for_each_zone(zone)
8527 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8528 sysctl_min_unmapped_ratio) / 100;
8529 }
8530
8531
8532 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8533 void *buffer, size_t *length, loff_t *ppos)
8534 {
8535 int rc;
8536
8537 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8538 if (rc)
8539 return rc;
8540
8541 setup_min_unmapped_ratio();
8542
8543 return 0;
8544 }
8545
8546 static void setup_min_slab_ratio(void)
8547 {
8548 pg_data_t *pgdat;
8549 struct zone *zone;
8550
8551 for_each_online_pgdat(pgdat)
8552 pgdat->min_slab_pages = 0;
8553
8554 for_each_zone(zone)
8555 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8556 sysctl_min_slab_ratio) / 100;
8557 }
8558
8559 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8560 void *buffer, size_t *length, loff_t *ppos)
8561 {
8562 int rc;
8563
8564 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8565 if (rc)
8566 return rc;
8567
8568 setup_min_slab_ratio();
8569
8570 return 0;
8571 }
8572 #endif
8573
8574 /*
8575 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8576 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8577 * whenever sysctl_lowmem_reserve_ratio changes.
8578 *
8579 * The reserve ratio obviously has absolutely no relation with the
8580 * minimum watermarks. The lowmem reserve ratio can only make sense
8581 * if in function of the boot time zone sizes.
8582 */
8583 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8584 void *buffer, size_t *length, loff_t *ppos)
8585 {
8586 int i;
8587
8588 proc_dointvec_minmax(table, write, buffer, length, ppos);
8589
8590 for (i = 0; i < MAX_NR_ZONES; i++) {
8591 if (sysctl_lowmem_reserve_ratio[i] < 1)
8592 sysctl_lowmem_reserve_ratio[i] = 0;
8593 }
8594
8595 setup_per_zone_lowmem_reserve();
8596 return 0;
8597 }
8598
8599 /*
8600 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8601 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8602 * pagelist can have before it gets flushed back to buddy allocator.
8603 */
8604 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8605 int write, void *buffer, size_t *length, loff_t *ppos)
8606 {
8607 struct zone *zone;
8608 int old_percpu_pagelist_high_fraction;
8609 int ret;
8610
8611 mutex_lock(&pcp_batch_high_lock);
8612 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8613
8614 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8615 if (!write || ret < 0)
8616 goto out;
8617
8618 /* Sanity checking to avoid pcp imbalance */
8619 if (percpu_pagelist_high_fraction &&
8620 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8621 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8622 ret = -EINVAL;
8623 goto out;
8624 }
8625
8626 /* No change? */
8627 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8628 goto out;
8629
8630 for_each_populated_zone(zone)
8631 zone_set_pageset_high_and_batch(zone, 0);
8632 out:
8633 mutex_unlock(&pcp_batch_high_lock);
8634 return ret;
8635 }
8636
8637 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8638 /*
8639 * Returns the number of pages that arch has reserved but
8640 * is not known to alloc_large_system_hash().
8641 */
8642 static unsigned long __init arch_reserved_kernel_pages(void)
8643 {
8644 return 0;
8645 }
8646 #endif
8647
8648 /*
8649 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8650 * machines. As memory size is increased the scale is also increased but at
8651 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8652 * quadruples the scale is increased by one, which means the size of hash table
8653 * only doubles, instead of quadrupling as well.
8654 * Because 32-bit systems cannot have large physical memory, where this scaling
8655 * makes sense, it is disabled on such platforms.
8656 */
8657 #if __BITS_PER_LONG > 32
8658 #define ADAPT_SCALE_BASE (64ul << 30)
8659 #define ADAPT_SCALE_SHIFT 2
8660 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8661 #endif
8662
8663 /*
8664 * allocate a large system hash table from bootmem
8665 * - it is assumed that the hash table must contain an exact power-of-2
8666 * quantity of entries
8667 * - limit is the number of hash buckets, not the total allocation size
8668 */
8669 void *__init alloc_large_system_hash(const char *tablename,
8670 unsigned long bucketsize,
8671 unsigned long numentries,
8672 int scale,
8673 int flags,
8674 unsigned int *_hash_shift,
8675 unsigned int *_hash_mask,
8676 unsigned long low_limit,
8677 unsigned long high_limit)
8678 {
8679 unsigned long long max = high_limit;
8680 unsigned long log2qty, size;
8681 void *table = NULL;
8682 gfp_t gfp_flags;
8683 bool virt;
8684 bool huge;
8685
8686 /* allow the kernel cmdline to have a say */
8687 if (!numentries) {
8688 /* round applicable memory size up to nearest megabyte */
8689 numentries = nr_kernel_pages;
8690 numentries -= arch_reserved_kernel_pages();
8691
8692 /* It isn't necessary when PAGE_SIZE >= 1MB */
8693 if (PAGE_SHIFT < 20)
8694 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8695
8696 #if __BITS_PER_LONG > 32
8697 if (!high_limit) {
8698 unsigned long adapt;
8699
8700 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8701 adapt <<= ADAPT_SCALE_SHIFT)
8702 scale++;
8703 }
8704 #endif
8705
8706 /* limit to 1 bucket per 2^scale bytes of low memory */
8707 if (scale > PAGE_SHIFT)
8708 numentries >>= (scale - PAGE_SHIFT);
8709 else
8710 numentries <<= (PAGE_SHIFT - scale);
8711
8712 /* Make sure we've got at least a 0-order allocation.. */
8713 if (unlikely(flags & HASH_SMALL)) {
8714 /* Makes no sense without HASH_EARLY */
8715 WARN_ON(!(flags & HASH_EARLY));
8716 if (!(numentries >> *_hash_shift)) {
8717 numentries = 1UL << *_hash_shift;
8718 BUG_ON(!numentries);
8719 }
8720 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8721 numentries = PAGE_SIZE / bucketsize;
8722 }
8723 numentries = roundup_pow_of_two(numentries);
8724
8725 /* limit allocation size to 1/16 total memory by default */
8726 if (max == 0) {
8727 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8728 do_div(max, bucketsize);
8729 }
8730 max = min(max, 0x80000000ULL);
8731
8732 if (numentries < low_limit)
8733 numentries = low_limit;
8734 if (numentries > max)
8735 numentries = max;
8736
8737 log2qty = ilog2(numentries);
8738
8739 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8740 do {
8741 virt = false;
8742 size = bucketsize << log2qty;
8743 if (flags & HASH_EARLY) {
8744 if (flags & HASH_ZERO)
8745 table = memblock_alloc(size, SMP_CACHE_BYTES);
8746 else
8747 table = memblock_alloc_raw(size,
8748 SMP_CACHE_BYTES);
8749 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8750 table = __vmalloc(size, gfp_flags);
8751 virt = true;
8752 huge = is_vm_area_hugepages(table);
8753 } else {
8754 /*
8755 * If bucketsize is not a power-of-two, we may free
8756 * some pages at the end of hash table which
8757 * alloc_pages_exact() automatically does
8758 */
8759 table = alloc_pages_exact(size, gfp_flags);
8760 kmemleak_alloc(table, size, 1, gfp_flags);
8761 }
8762 } while (!table && size > PAGE_SIZE && --log2qty);
8763
8764 if (!table)
8765 panic("Failed to allocate %s hash table\n", tablename);
8766
8767 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8768 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8769 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8770
8771 if (_hash_shift)
8772 *_hash_shift = log2qty;
8773 if (_hash_mask)
8774 *_hash_mask = (1 << log2qty) - 1;
8775
8776 return table;
8777 }
8778
8779 /*
8780 * This function checks whether pageblock includes unmovable pages or not.
8781 *
8782 * PageLRU check without isolation or lru_lock could race so that
8783 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8784 * check without lock_page also may miss some movable non-lru pages at
8785 * race condition. So you can't expect this function should be exact.
8786 *
8787 * Returns a page without holding a reference. If the caller wants to
8788 * dereference that page (e.g., dumping), it has to make sure that it
8789 * cannot get removed (e.g., via memory unplug) concurrently.
8790 *
8791 */
8792 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8793 int migratetype, int flags)
8794 {
8795 unsigned long iter = 0;
8796 unsigned long pfn = page_to_pfn(page);
8797 unsigned long offset = pfn % pageblock_nr_pages;
8798
8799 if (is_migrate_cma_page(page)) {
8800 /*
8801 * CMA allocations (alloc_contig_range) really need to mark
8802 * isolate CMA pageblocks even when they are not movable in fact
8803 * so consider them movable here.
8804 */
8805 if (is_migrate_cma(migratetype))
8806 return NULL;
8807
8808 return page;
8809 }
8810
8811 for (; iter < pageblock_nr_pages - offset; iter++) {
8812 if (!pfn_valid_within(pfn + iter))
8813 continue;
8814
8815 page = pfn_to_page(pfn + iter);
8816
8817 /*
8818 * Both, bootmem allocations and memory holes are marked
8819 * PG_reserved and are unmovable. We can even have unmovable
8820 * allocations inside ZONE_MOVABLE, for example when
8821 * specifying "movablecore".
8822 */
8823 if (PageReserved(page))
8824 return page;
8825
8826 /*
8827 * If the zone is movable and we have ruled out all reserved
8828 * pages then it should be reasonably safe to assume the rest
8829 * is movable.
8830 */
8831 if (zone_idx(zone) == ZONE_MOVABLE)
8832 continue;
8833
8834 /*
8835 * Hugepages are not in LRU lists, but they're movable.
8836 * THPs are on the LRU, but need to be counted as #small pages.
8837 * We need not scan over tail pages because we don't
8838 * handle each tail page individually in migration.
8839 */
8840 if (PageHuge(page) || PageTransCompound(page)) {
8841 struct page *head = compound_head(page);
8842 unsigned int skip_pages;
8843
8844 if (PageHuge(page)) {
8845 if (!hugepage_migration_supported(page_hstate(head)))
8846 return page;
8847 } else if (!PageLRU(head) && !__PageMovable(head)) {
8848 return page;
8849 }
8850
8851 skip_pages = compound_nr(head) - (page - head);
8852 iter += skip_pages - 1;
8853 continue;
8854 }
8855
8856 /*
8857 * We can't use page_count without pin a page
8858 * because another CPU can free compound page.
8859 * This check already skips compound tails of THP
8860 * because their page->_refcount is zero at all time.
8861 */
8862 if (!page_ref_count(page)) {
8863 if (PageBuddy(page))
8864 iter += (1 << buddy_order(page)) - 1;
8865 continue;
8866 }
8867
8868 /*
8869 * The HWPoisoned page may be not in buddy system, and
8870 * page_count() is not 0.
8871 */
8872 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8873 continue;
8874
8875 /*
8876 * We treat all PageOffline() pages as movable when offlining
8877 * to give drivers a chance to decrement their reference count
8878 * in MEM_GOING_OFFLINE in order to indicate that these pages
8879 * can be offlined as there are no direct references anymore.
8880 * For actually unmovable PageOffline() where the driver does
8881 * not support this, we will fail later when trying to actually
8882 * move these pages that still have a reference count > 0.
8883 * (false negatives in this function only)
8884 */
8885 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8886 continue;
8887
8888 if (__PageMovable(page) || PageLRU(page))
8889 continue;
8890
8891 /*
8892 * If there are RECLAIMABLE pages, we need to check
8893 * it. But now, memory offline itself doesn't call
8894 * shrink_node_slabs() and it still to be fixed.
8895 */
8896 return page;
8897 }
8898 return NULL;
8899 }
8900
8901 #ifdef CONFIG_CONTIG_ALLOC
8902 static unsigned long pfn_max_align_down(unsigned long pfn)
8903 {
8904 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8905 pageblock_nr_pages) - 1);
8906 }
8907
8908 static unsigned long pfn_max_align_up(unsigned long pfn)
8909 {
8910 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8911 pageblock_nr_pages));
8912 }
8913
8914 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8915 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8916 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8917 static void alloc_contig_dump_pages(struct list_head *page_list)
8918 {
8919 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8920
8921 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8922 struct page *page;
8923
8924 dump_stack();
8925 list_for_each_entry(page, page_list, lru)
8926 dump_page(page, "migration failure");
8927 }
8928 }
8929 #else
8930 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8931 {
8932 }
8933 #endif
8934
8935 /* [start, end) must belong to a single zone. */
8936 static int __alloc_contig_migrate_range(struct compact_control *cc,
8937 unsigned long start, unsigned long end)
8938 {
8939 /* This function is based on compact_zone() from compaction.c. */
8940 unsigned int nr_reclaimed;
8941 unsigned long pfn = start;
8942 unsigned int tries = 0;
8943 int ret = 0;
8944 struct migration_target_control mtc = {
8945 .nid = zone_to_nid(cc->zone),
8946 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8947 };
8948
8949 lru_cache_disable();
8950
8951 while (pfn < end || !list_empty(&cc->migratepages)) {
8952 if (fatal_signal_pending(current)) {
8953 ret = -EINTR;
8954 break;
8955 }
8956
8957 if (list_empty(&cc->migratepages)) {
8958 cc->nr_migratepages = 0;
8959 ret = isolate_migratepages_range(cc, pfn, end);
8960 if (ret && ret != -EAGAIN)
8961 break;
8962 pfn = cc->migrate_pfn;
8963 tries = 0;
8964 } else if (++tries == 5) {
8965 ret = -EBUSY;
8966 break;
8967 }
8968
8969 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8970 &cc->migratepages);
8971 cc->nr_migratepages -= nr_reclaimed;
8972
8973 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8974 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8975
8976 /*
8977 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8978 * to retry again over this error, so do the same here.
8979 */
8980 if (ret == -ENOMEM)
8981 break;
8982 }
8983
8984 lru_cache_enable();
8985 if (ret < 0) {
8986 if (ret == -EBUSY)
8987 alloc_contig_dump_pages(&cc->migratepages);
8988 putback_movable_pages(&cc->migratepages);
8989 return ret;
8990 }
8991 return 0;
8992 }
8993
8994 /**
8995 * alloc_contig_range() -- tries to allocate given range of pages
8996 * @start: start PFN to allocate
8997 * @end: one-past-the-last PFN to allocate
8998 * @migratetype: migratetype of the underlying pageblocks (either
8999 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9000 * in range must have the same migratetype and it must
9001 * be either of the two.
9002 * @gfp_mask: GFP mask to use during compaction
9003 *
9004 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9005 * aligned. The PFN range must belong to a single zone.
9006 *
9007 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9008 * pageblocks in the range. Once isolated, the pageblocks should not
9009 * be modified by others.
9010 *
9011 * Return: zero on success or negative error code. On success all
9012 * pages which PFN is in [start, end) are allocated for the caller and
9013 * need to be freed with free_contig_range().
9014 */
9015 int alloc_contig_range(unsigned long start, unsigned long end,
9016 unsigned migratetype, gfp_t gfp_mask)
9017 {
9018 unsigned long outer_start, outer_end;
9019 unsigned int order;
9020 int ret = 0;
9021
9022 struct compact_control cc = {
9023 .nr_migratepages = 0,
9024 .order = -1,
9025 .zone = page_zone(pfn_to_page(start)),
9026 .mode = MIGRATE_SYNC,
9027 .ignore_skip_hint = true,
9028 .no_set_skip_hint = true,
9029 .gfp_mask = current_gfp_context(gfp_mask),
9030 .alloc_contig = true,
9031 };
9032 INIT_LIST_HEAD(&cc.migratepages);
9033
9034 /*
9035 * What we do here is we mark all pageblocks in range as
9036 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9037 * have different sizes, and due to the way page allocator
9038 * work, we align the range to biggest of the two pages so
9039 * that page allocator won't try to merge buddies from
9040 * different pageblocks and change MIGRATE_ISOLATE to some
9041 * other migration type.
9042 *
9043 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9044 * migrate the pages from an unaligned range (ie. pages that
9045 * we are interested in). This will put all the pages in
9046 * range back to page allocator as MIGRATE_ISOLATE.
9047 *
9048 * When this is done, we take the pages in range from page
9049 * allocator removing them from the buddy system. This way
9050 * page allocator will never consider using them.
9051 *
9052 * This lets us mark the pageblocks back as
9053 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9054 * aligned range but not in the unaligned, original range are
9055 * put back to page allocator so that buddy can use them.
9056 */
9057
9058 ret = start_isolate_page_range(pfn_max_align_down(start),
9059 pfn_max_align_up(end), migratetype, 0);
9060 if (ret)
9061 return ret;
9062
9063 drain_all_pages(cc.zone);
9064
9065 /*
9066 * In case of -EBUSY, we'd like to know which page causes problem.
9067 * So, just fall through. test_pages_isolated() has a tracepoint
9068 * which will report the busy page.
9069 *
9070 * It is possible that busy pages could become available before
9071 * the call to test_pages_isolated, and the range will actually be
9072 * allocated. So, if we fall through be sure to clear ret so that
9073 * -EBUSY is not accidentally used or returned to caller.
9074 */
9075 ret = __alloc_contig_migrate_range(&cc, start, end);
9076 if (ret && ret != -EBUSY)
9077 goto done;
9078 ret = 0;
9079
9080 /*
9081 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9082 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9083 * more, all pages in [start, end) are free in page allocator.
9084 * What we are going to do is to allocate all pages from
9085 * [start, end) (that is remove them from page allocator).
9086 *
9087 * The only problem is that pages at the beginning and at the
9088 * end of interesting range may be not aligned with pages that
9089 * page allocator holds, ie. they can be part of higher order
9090 * pages. Because of this, we reserve the bigger range and
9091 * once this is done free the pages we are not interested in.
9092 *
9093 * We don't have to hold zone->lock here because the pages are
9094 * isolated thus they won't get removed from buddy.
9095 */
9096
9097 order = 0;
9098 outer_start = start;
9099 while (!PageBuddy(pfn_to_page(outer_start))) {
9100 if (++order >= MAX_ORDER) {
9101 outer_start = start;
9102 break;
9103 }
9104 outer_start &= ~0UL << order;
9105 }
9106
9107 if (outer_start != start) {
9108 order = buddy_order(pfn_to_page(outer_start));
9109
9110 /*
9111 * outer_start page could be small order buddy page and
9112 * it doesn't include start page. Adjust outer_start
9113 * in this case to report failed page properly
9114 * on tracepoint in test_pages_isolated()
9115 */
9116 if (outer_start + (1UL << order) <= start)
9117 outer_start = start;
9118 }
9119
9120 /* Make sure the range is really isolated. */
9121 if (test_pages_isolated(outer_start, end, 0)) {
9122 ret = -EBUSY;
9123 goto done;
9124 }
9125
9126 /* Grab isolated pages from freelists. */
9127 outer_end = isolate_freepages_range(&cc, outer_start, end);
9128 if (!outer_end) {
9129 ret = -EBUSY;
9130 goto done;
9131 }
9132
9133 /* Free head and tail (if any) */
9134 if (start != outer_start)
9135 free_contig_range(outer_start, start - outer_start);
9136 if (end != outer_end)
9137 free_contig_range(end, outer_end - end);
9138
9139 done:
9140 undo_isolate_page_range(pfn_max_align_down(start),
9141 pfn_max_align_up(end), migratetype);
9142 return ret;
9143 }
9144 EXPORT_SYMBOL(alloc_contig_range);
9145
9146 static int __alloc_contig_pages(unsigned long start_pfn,
9147 unsigned long nr_pages, gfp_t gfp_mask)
9148 {
9149 unsigned long end_pfn = start_pfn + nr_pages;
9150
9151 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9152 gfp_mask);
9153 }
9154
9155 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9156 unsigned long nr_pages)
9157 {
9158 unsigned long i, end_pfn = start_pfn + nr_pages;
9159 struct page *page;
9160
9161 for (i = start_pfn; i < end_pfn; i++) {
9162 page = pfn_to_online_page(i);
9163 if (!page)
9164 return false;
9165
9166 if (page_zone(page) != z)
9167 return false;
9168
9169 if (PageReserved(page))
9170 return false;
9171 }
9172 return true;
9173 }
9174
9175 static bool zone_spans_last_pfn(const struct zone *zone,
9176 unsigned long start_pfn, unsigned long nr_pages)
9177 {
9178 unsigned long last_pfn = start_pfn + nr_pages - 1;
9179
9180 return zone_spans_pfn(zone, last_pfn);
9181 }
9182
9183 /**
9184 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9185 * @nr_pages: Number of contiguous pages to allocate
9186 * @gfp_mask: GFP mask to limit search and used during compaction
9187 * @nid: Target node
9188 * @nodemask: Mask for other possible nodes
9189 *
9190 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9191 * on an applicable zonelist to find a contiguous pfn range which can then be
9192 * tried for allocation with alloc_contig_range(). This routine is intended
9193 * for allocation requests which can not be fulfilled with the buddy allocator.
9194 *
9195 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9196 * power of two then the alignment is guaranteed to be to the given nr_pages
9197 * (e.g. 1GB request would be aligned to 1GB).
9198 *
9199 * Allocated pages can be freed with free_contig_range() or by manually calling
9200 * __free_page() on each allocated page.
9201 *
9202 * Return: pointer to contiguous pages on success, or NULL if not successful.
9203 */
9204 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9205 int nid, nodemask_t *nodemask)
9206 {
9207 unsigned long ret, pfn, flags;
9208 struct zonelist *zonelist;
9209 struct zone *zone;
9210 struct zoneref *z;
9211
9212 zonelist = node_zonelist(nid, gfp_mask);
9213 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9214 gfp_zone(gfp_mask), nodemask) {
9215 spin_lock_irqsave(&zone->lock, flags);
9216
9217 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9218 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9219 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9220 /*
9221 * We release the zone lock here because
9222 * alloc_contig_range() will also lock the zone
9223 * at some point. If there's an allocation
9224 * spinning on this lock, it may win the race
9225 * and cause alloc_contig_range() to fail...
9226 */
9227 spin_unlock_irqrestore(&zone->lock, flags);
9228 ret = __alloc_contig_pages(pfn, nr_pages,
9229 gfp_mask);
9230 if (!ret)
9231 return pfn_to_page(pfn);
9232 spin_lock_irqsave(&zone->lock, flags);
9233 }
9234 pfn += nr_pages;
9235 }
9236 spin_unlock_irqrestore(&zone->lock, flags);
9237 }
9238 return NULL;
9239 }
9240 #endif /* CONFIG_CONTIG_ALLOC */
9241
9242 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9243 {
9244 unsigned long count = 0;
9245
9246 for (; nr_pages--; pfn++) {
9247 struct page *page = pfn_to_page(pfn);
9248
9249 count += page_count(page) != 1;
9250 __free_page(page);
9251 }
9252 WARN(count != 0, "%lu pages are still in use!\n", count);
9253 }
9254 EXPORT_SYMBOL(free_contig_range);
9255
9256 /*
9257 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9258 * page high values need to be recalculated.
9259 */
9260 void zone_pcp_update(struct zone *zone, int cpu_online)
9261 {
9262 mutex_lock(&pcp_batch_high_lock);
9263 zone_set_pageset_high_and_batch(zone, cpu_online);
9264 mutex_unlock(&pcp_batch_high_lock);
9265 }
9266
9267 /*
9268 * Effectively disable pcplists for the zone by setting the high limit to 0
9269 * and draining all cpus. A concurrent page freeing on another CPU that's about
9270 * to put the page on pcplist will either finish before the drain and the page
9271 * will be drained, or observe the new high limit and skip the pcplist.
9272 *
9273 * Must be paired with a call to zone_pcp_enable().
9274 */
9275 void zone_pcp_disable(struct zone *zone)
9276 {
9277 mutex_lock(&pcp_batch_high_lock);
9278 __zone_set_pageset_high_and_batch(zone, 0, 1);
9279 __drain_all_pages(zone, true);
9280 }
9281
9282 void zone_pcp_enable(struct zone *zone)
9283 {
9284 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9285 mutex_unlock(&pcp_batch_high_lock);
9286 }
9287
9288 void zone_pcp_reset(struct zone *zone)
9289 {
9290 int cpu;
9291 struct per_cpu_zonestat *pzstats;
9292
9293 if (zone->per_cpu_pageset != &boot_pageset) {
9294 for_each_online_cpu(cpu) {
9295 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9296 drain_zonestat(zone, pzstats);
9297 }
9298 free_percpu(zone->per_cpu_pageset);
9299 free_percpu(zone->per_cpu_zonestats);
9300 zone->per_cpu_pageset = &boot_pageset;
9301 zone->per_cpu_zonestats = &boot_zonestats;
9302 }
9303 }
9304
9305 #ifdef CONFIG_MEMORY_HOTREMOVE
9306 /*
9307 * All pages in the range must be in a single zone, must not contain holes,
9308 * must span full sections, and must be isolated before calling this function.
9309 */
9310 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9311 {
9312 unsigned long pfn = start_pfn;
9313 struct page *page;
9314 struct zone *zone;
9315 unsigned int order;
9316 unsigned long flags;
9317
9318 offline_mem_sections(pfn, end_pfn);
9319 zone = page_zone(pfn_to_page(pfn));
9320 spin_lock_irqsave(&zone->lock, flags);
9321 while (pfn < end_pfn) {
9322 page = pfn_to_page(pfn);
9323 /*
9324 * The HWPoisoned page may be not in buddy system, and
9325 * page_count() is not 0.
9326 */
9327 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9328 pfn++;
9329 continue;
9330 }
9331 /*
9332 * At this point all remaining PageOffline() pages have a
9333 * reference count of 0 and can simply be skipped.
9334 */
9335 if (PageOffline(page)) {
9336 BUG_ON(page_count(page));
9337 BUG_ON(PageBuddy(page));
9338 pfn++;
9339 continue;
9340 }
9341
9342 BUG_ON(page_count(page));
9343 BUG_ON(!PageBuddy(page));
9344 order = buddy_order(page);
9345 del_page_from_free_list(page, zone, order);
9346 pfn += (1 << order);
9347 }
9348 spin_unlock_irqrestore(&zone->lock, flags);
9349 }
9350 #endif
9351
9352 bool is_free_buddy_page(struct page *page)
9353 {
9354 struct zone *zone = page_zone(page);
9355 unsigned long pfn = page_to_pfn(page);
9356 unsigned long flags;
9357 unsigned int order;
9358
9359 spin_lock_irqsave(&zone->lock, flags);
9360 for (order = 0; order < MAX_ORDER; order++) {
9361 struct page *page_head = page - (pfn & ((1 << order) - 1));
9362
9363 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9364 break;
9365 }
9366 spin_unlock_irqrestore(&zone->lock, flags);
9367
9368 return order < MAX_ORDER;
9369 }
9370
9371 #ifdef CONFIG_MEMORY_FAILURE
9372 /*
9373 * Break down a higher-order page in sub-pages, and keep our target out of
9374 * buddy allocator.
9375 */
9376 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9377 struct page *target, int low, int high,
9378 int migratetype)
9379 {
9380 unsigned long size = 1 << high;
9381 struct page *current_buddy, *next_page;
9382
9383 while (high > low) {
9384 high--;
9385 size >>= 1;
9386
9387 if (target >= &page[size]) {
9388 next_page = page + size;
9389 current_buddy = page;
9390 } else {
9391 next_page = page;
9392 current_buddy = page + size;
9393 }
9394
9395 if (set_page_guard(zone, current_buddy, high, migratetype))
9396 continue;
9397
9398 if (current_buddy != target) {
9399 add_to_free_list(current_buddy, zone, high, migratetype);
9400 set_buddy_order(current_buddy, high);
9401 page = next_page;
9402 }
9403 }
9404 }
9405
9406 /*
9407 * Take a page that will be marked as poisoned off the buddy allocator.
9408 */
9409 bool take_page_off_buddy(struct page *page)
9410 {
9411 struct zone *zone = page_zone(page);
9412 unsigned long pfn = page_to_pfn(page);
9413 unsigned long flags;
9414 unsigned int order;
9415 bool ret = false;
9416
9417 spin_lock_irqsave(&zone->lock, flags);
9418 for (order = 0; order < MAX_ORDER; order++) {
9419 struct page *page_head = page - (pfn & ((1 << order) - 1));
9420 int page_order = buddy_order(page_head);
9421
9422 if (PageBuddy(page_head) && page_order >= order) {
9423 unsigned long pfn_head = page_to_pfn(page_head);
9424 int migratetype = get_pfnblock_migratetype(page_head,
9425 pfn_head);
9426
9427 del_page_from_free_list(page_head, zone, page_order);
9428 break_down_buddy_pages(zone, page_head, page, 0,
9429 page_order, migratetype);
9430 if (!is_migrate_isolate(migratetype))
9431 __mod_zone_freepage_state(zone, -1, migratetype);
9432 ret = true;
9433 break;
9434 }
9435 if (page_count(page_head) > 0)
9436 break;
9437 }
9438 spin_unlock_irqrestore(&zone->lock, flags);
9439 return ret;
9440 }
9441 #endif