]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
mm/page_alloc: restrict max order of merging on isolated pageblock
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page-debug-flags.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62
63 #include <asm/sections.h>
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
66 #include "internal.h"
67
68 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69 static DEFINE_MUTEX(pcp_batch_high_lock);
70 #define MIN_PERCPU_PAGELIST_FRACTION (8)
71
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node);
74 EXPORT_PER_CPU_SYMBOL(numa_node);
75 #endif
76
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
78 /*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86 int _node_numa_mem_[MAX_NUMNODES];
87 #endif
88
89 /*
90 * Array of node states.
91 */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 [N_CPU] = { { [0] = 1UL } },
104 #endif /* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119 unsigned long dirty_balance_reserve __read_mostly;
120
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123
124 #ifdef CONFIG_PM_SLEEP
125 /*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
133
134 static gfp_t saved_gfp_mask;
135
136 void pm_restore_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
143 }
144
145 void pm_restrict_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
151 }
152
153 bool pm_suspended_storage(void)
154 {
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164
165 static void __free_pages_ok(struct page *page, unsigned int order);
166
167 /*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
177 */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 32,
187 #endif
188 32,
189 };
190
191 EXPORT_SYMBOL(totalram_pages);
192
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 "DMA32",
199 #endif
200 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 "HighMem",
203 #endif
204 "Movable",
205 };
206
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes = -1;
209
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232
233 int page_group_by_mobility_disabled __read_mostly;
234
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
239 migratetype = MIGRATE_UNMOVABLE;
240
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243 }
244
245 bool oom_killer_disabled __read_mostly;
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
267
268 return ret;
269 }
270
271 static int page_is_consistent(struct zone *zone, struct page *page)
272 {
273 if (!pfn_valid_within(page_to_pfn(page)))
274 return 0;
275 if (zone != page_zone(page))
276 return 0;
277
278 return 1;
279 }
280 /*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283 static int bad_range(struct zone *zone, struct page *page)
284 {
285 if (page_outside_zone_boundaries(zone, page))
286 return 1;
287 if (!page_is_consistent(zone, page))
288 return 1;
289
290 return 0;
291 }
292 #else
293 static inline int bad_range(struct zone *zone, struct page *page)
294 {
295 return 0;
296 }
297 #endif
298
299 static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
301 {
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
308 page_mapcount_reset(page); /* remove PageBuddy */
309 return;
310 }
311
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
333 current->comm, page_to_pfn(page));
334 dump_page_badflags(page, reason, bad_flags);
335
336 print_modules();
337 dump_stack();
338 out:
339 /* Leave bad fields for debug, except PageBuddy could make trouble */
340 page_mapcount_reset(page); /* remove PageBuddy */
341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
342 }
343
344 /*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
353 *
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
357 */
358
359 static void free_compound_page(struct page *page)
360 {
361 __free_pages_ok(page, compound_order(page));
362 }
363
364 void prep_compound_page(struct page *page, unsigned long order)
365 {
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
374 set_page_count(p, 0);
375 p->first_page = page;
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
379 }
380 }
381
382 /* update __split_huge_page_refcount if you change this function */
383 static int destroy_compound_page(struct page *page, unsigned long order)
384 {
385 int i;
386 int nr_pages = 1 << order;
387 int bad = 0;
388
389 if (unlikely(compound_order(page) != order)) {
390 bad_page(page, "wrong compound order", 0);
391 bad++;
392 }
393
394 __ClearPageHead(page);
395
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
398
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
404 bad++;
405 }
406 __ClearPageTail(p);
407 }
408
409 return bad;
410 }
411
412 static inline void prep_zero_page(struct page *page, unsigned int order,
413 gfp_t gfp_flags)
414 {
415 int i;
416
417 /*
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 */
421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
422 for (i = 0; i < (1 << order); i++)
423 clear_highpage(page + i);
424 }
425
426 #ifdef CONFIG_DEBUG_PAGEALLOC
427 unsigned int _debug_guardpage_minorder;
428
429 static int __init debug_guardpage_minorder_setup(char *buf)
430 {
431 unsigned long res;
432
433 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
434 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
435 return 0;
436 }
437 _debug_guardpage_minorder = res;
438 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
439 return 0;
440 }
441 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
442
443 static inline void set_page_guard_flag(struct page *page)
444 {
445 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446 }
447
448 static inline void clear_page_guard_flag(struct page *page)
449 {
450 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
451 }
452 #else
453 static inline void set_page_guard_flag(struct page *page) { }
454 static inline void clear_page_guard_flag(struct page *page) { }
455 #endif
456
457 static inline void set_page_order(struct page *page, unsigned int order)
458 {
459 set_page_private(page, order);
460 __SetPageBuddy(page);
461 }
462
463 static inline void rmv_page_order(struct page *page)
464 {
465 __ClearPageBuddy(page);
466 set_page_private(page, 0);
467 }
468
469 /*
470 * This function checks whether a page is free && is the buddy
471 * we can do coalesce a page and its buddy if
472 * (a) the buddy is not in a hole &&
473 * (b) the buddy is in the buddy system &&
474 * (c) a page and its buddy have the same order &&
475 * (d) a page and its buddy are in the same zone.
476 *
477 * For recording whether a page is in the buddy system, we set ->_mapcount
478 * PAGE_BUDDY_MAPCOUNT_VALUE.
479 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
480 * serialized by zone->lock.
481 *
482 * For recording page's order, we use page_private(page).
483 */
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
485 unsigned int order)
486 {
487 if (!pfn_valid_within(page_to_pfn(buddy)))
488 return 0;
489
490 if (page_is_guard(buddy) && page_order(buddy) == order) {
491 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
492
493 if (page_zone_id(page) != page_zone_id(buddy))
494 return 0;
495
496 return 1;
497 }
498
499 if (PageBuddy(buddy) && page_order(buddy) == order) {
500 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
501
502 /*
503 * zone check is done late to avoid uselessly
504 * calculating zone/node ids for pages that could
505 * never merge.
506 */
507 if (page_zone_id(page) != page_zone_id(buddy))
508 return 0;
509
510 return 1;
511 }
512 return 0;
513 }
514
515 /*
516 * Freeing function for a buddy system allocator.
517 *
518 * The concept of a buddy system is to maintain direct-mapped table
519 * (containing bit values) for memory blocks of various "orders".
520 * The bottom level table contains the map for the smallest allocatable
521 * units of memory (here, pages), and each level above it describes
522 * pairs of units from the levels below, hence, "buddies".
523 * At a high level, all that happens here is marking the table entry
524 * at the bottom level available, and propagating the changes upward
525 * as necessary, plus some accounting needed to play nicely with other
526 * parts of the VM system.
527 * At each level, we keep a list of pages, which are heads of continuous
528 * free pages of length of (1 << order) and marked with _mapcount
529 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
530 * field.
531 * So when we are allocating or freeing one, we can derive the state of the
532 * other. That is, if we allocate a small block, and both were
533 * free, the remainder of the region must be split into blocks.
534 * If a block is freed, and its buddy is also free, then this
535 * triggers coalescing into a block of larger size.
536 *
537 * -- nyc
538 */
539
540 static inline void __free_one_page(struct page *page,
541 unsigned long pfn,
542 struct zone *zone, unsigned int order,
543 int migratetype)
544 {
545 unsigned long page_idx;
546 unsigned long combined_idx;
547 unsigned long uninitialized_var(buddy_idx);
548 struct page *buddy;
549 int max_order = MAX_ORDER;
550
551 VM_BUG_ON(!zone_is_initialized(zone));
552
553 if (unlikely(PageCompound(page)))
554 if (unlikely(destroy_compound_page(page, order)))
555 return;
556
557 VM_BUG_ON(migratetype == -1);
558 if (is_migrate_isolate(migratetype)) {
559 /*
560 * We restrict max order of merging to prevent merge
561 * between freepages on isolate pageblock and normal
562 * pageblock. Without this, pageblock isolation
563 * could cause incorrect freepage accounting.
564 */
565 max_order = min(MAX_ORDER, pageblock_order + 1);
566 } else {
567 __mod_zone_freepage_state(zone, 1 << order, migratetype);
568 }
569
570 page_idx = pfn & ((1 << max_order) - 1);
571
572 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
573 VM_BUG_ON_PAGE(bad_range(zone, page), page);
574
575 while (order < max_order - 1) {
576 buddy_idx = __find_buddy_index(page_idx, order);
577 buddy = page + (buddy_idx - page_idx);
578 if (!page_is_buddy(page, buddy, order))
579 break;
580 /*
581 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
582 * merge with it and move up one order.
583 */
584 if (page_is_guard(buddy)) {
585 clear_page_guard_flag(buddy);
586 set_page_private(page, 0);
587 __mod_zone_freepage_state(zone, 1 << order,
588 migratetype);
589 } else {
590 list_del(&buddy->lru);
591 zone->free_area[order].nr_free--;
592 rmv_page_order(buddy);
593 }
594 combined_idx = buddy_idx & page_idx;
595 page = page + (combined_idx - page_idx);
596 page_idx = combined_idx;
597 order++;
598 }
599 set_page_order(page, order);
600
601 /*
602 * If this is not the largest possible page, check if the buddy
603 * of the next-highest order is free. If it is, it's possible
604 * that pages are being freed that will coalesce soon. In case,
605 * that is happening, add the free page to the tail of the list
606 * so it's less likely to be used soon and more likely to be merged
607 * as a higher order page
608 */
609 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
610 struct page *higher_page, *higher_buddy;
611 combined_idx = buddy_idx & page_idx;
612 higher_page = page + (combined_idx - page_idx);
613 buddy_idx = __find_buddy_index(combined_idx, order + 1);
614 higher_buddy = higher_page + (buddy_idx - combined_idx);
615 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
616 list_add_tail(&page->lru,
617 &zone->free_area[order].free_list[migratetype]);
618 goto out;
619 }
620 }
621
622 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
623 out:
624 zone->free_area[order].nr_free++;
625 }
626
627 static inline int free_pages_check(struct page *page)
628 {
629 const char *bad_reason = NULL;
630 unsigned long bad_flags = 0;
631
632 if (unlikely(page_mapcount(page)))
633 bad_reason = "nonzero mapcount";
634 if (unlikely(page->mapping != NULL))
635 bad_reason = "non-NULL mapping";
636 if (unlikely(atomic_read(&page->_count) != 0))
637 bad_reason = "nonzero _count";
638 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
639 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
640 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
641 }
642 if (unlikely(mem_cgroup_bad_page_check(page)))
643 bad_reason = "cgroup check failed";
644 if (unlikely(bad_reason)) {
645 bad_page(page, bad_reason, bad_flags);
646 return 1;
647 }
648 page_cpupid_reset_last(page);
649 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
650 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
651 return 0;
652 }
653
654 /*
655 * Frees a number of pages from the PCP lists
656 * Assumes all pages on list are in same zone, and of same order.
657 * count is the number of pages to free.
658 *
659 * If the zone was previously in an "all pages pinned" state then look to
660 * see if this freeing clears that state.
661 *
662 * And clear the zone's pages_scanned counter, to hold off the "all pages are
663 * pinned" detection logic.
664 */
665 static void free_pcppages_bulk(struct zone *zone, int count,
666 struct per_cpu_pages *pcp)
667 {
668 int migratetype = 0;
669 int batch_free = 0;
670 int to_free = count;
671 unsigned long nr_scanned;
672
673 spin_lock(&zone->lock);
674 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
675 if (nr_scanned)
676 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
677
678 while (to_free) {
679 struct page *page;
680 struct list_head *list;
681
682 /*
683 * Remove pages from lists in a round-robin fashion. A
684 * batch_free count is maintained that is incremented when an
685 * empty list is encountered. This is so more pages are freed
686 * off fuller lists instead of spinning excessively around empty
687 * lists
688 */
689 do {
690 batch_free++;
691 if (++migratetype == MIGRATE_PCPTYPES)
692 migratetype = 0;
693 list = &pcp->lists[migratetype];
694 } while (list_empty(list));
695
696 /* This is the only non-empty list. Free them all. */
697 if (batch_free == MIGRATE_PCPTYPES)
698 batch_free = to_free;
699
700 do {
701 int mt; /* migratetype of the to-be-freed page */
702
703 page = list_entry(list->prev, struct page, lru);
704 /* must delete as __free_one_page list manipulates */
705 list_del(&page->lru);
706 mt = get_freepage_migratetype(page);
707 if (unlikely(has_isolate_pageblock(zone)))
708 mt = get_pageblock_migratetype(page);
709
710 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
711 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
712 trace_mm_page_pcpu_drain(page, 0, mt);
713 } while (--to_free && --batch_free && !list_empty(list));
714 }
715 spin_unlock(&zone->lock);
716 }
717
718 static void free_one_page(struct zone *zone,
719 struct page *page, unsigned long pfn,
720 unsigned int order,
721 int migratetype)
722 {
723 unsigned long nr_scanned;
724 spin_lock(&zone->lock);
725 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
726 if (nr_scanned)
727 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
728
729 if (unlikely(has_isolate_pageblock(zone) ||
730 is_migrate_isolate(migratetype))) {
731 migratetype = get_pfnblock_migratetype(page, pfn);
732 }
733 __free_one_page(page, pfn, zone, order, migratetype);
734 spin_unlock(&zone->lock);
735 }
736
737 static bool free_pages_prepare(struct page *page, unsigned int order)
738 {
739 int i;
740 int bad = 0;
741
742 trace_mm_page_free(page, order);
743 kmemcheck_free_shadow(page, order);
744
745 if (PageAnon(page))
746 page->mapping = NULL;
747 for (i = 0; i < (1 << order); i++)
748 bad += free_pages_check(page + i);
749 if (bad)
750 return false;
751
752 if (!PageHighMem(page)) {
753 debug_check_no_locks_freed(page_address(page),
754 PAGE_SIZE << order);
755 debug_check_no_obj_freed(page_address(page),
756 PAGE_SIZE << order);
757 }
758 arch_free_page(page, order);
759 kernel_map_pages(page, 1 << order, 0);
760
761 return true;
762 }
763
764 static void __free_pages_ok(struct page *page, unsigned int order)
765 {
766 unsigned long flags;
767 int migratetype;
768 unsigned long pfn = page_to_pfn(page);
769
770 if (!free_pages_prepare(page, order))
771 return;
772
773 migratetype = get_pfnblock_migratetype(page, pfn);
774 local_irq_save(flags);
775 __count_vm_events(PGFREE, 1 << order);
776 set_freepage_migratetype(page, migratetype);
777 free_one_page(page_zone(page), page, pfn, order, migratetype);
778 local_irq_restore(flags);
779 }
780
781 void __init __free_pages_bootmem(struct page *page, unsigned int order)
782 {
783 unsigned int nr_pages = 1 << order;
784 struct page *p = page;
785 unsigned int loop;
786
787 prefetchw(p);
788 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
789 prefetchw(p + 1);
790 __ClearPageReserved(p);
791 set_page_count(p, 0);
792 }
793 __ClearPageReserved(p);
794 set_page_count(p, 0);
795
796 page_zone(page)->managed_pages += nr_pages;
797 set_page_refcounted(page);
798 __free_pages(page, order);
799 }
800
801 #ifdef CONFIG_CMA
802 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
803 void __init init_cma_reserved_pageblock(struct page *page)
804 {
805 unsigned i = pageblock_nr_pages;
806 struct page *p = page;
807
808 do {
809 __ClearPageReserved(p);
810 set_page_count(p, 0);
811 } while (++p, --i);
812
813 set_pageblock_migratetype(page, MIGRATE_CMA);
814
815 if (pageblock_order >= MAX_ORDER) {
816 i = pageblock_nr_pages;
817 p = page;
818 do {
819 set_page_refcounted(p);
820 __free_pages(p, MAX_ORDER - 1);
821 p += MAX_ORDER_NR_PAGES;
822 } while (i -= MAX_ORDER_NR_PAGES);
823 } else {
824 set_page_refcounted(page);
825 __free_pages(page, pageblock_order);
826 }
827
828 adjust_managed_page_count(page, pageblock_nr_pages);
829 }
830 #endif
831
832 /*
833 * The order of subdivision here is critical for the IO subsystem.
834 * Please do not alter this order without good reasons and regression
835 * testing. Specifically, as large blocks of memory are subdivided,
836 * the order in which smaller blocks are delivered depends on the order
837 * they're subdivided in this function. This is the primary factor
838 * influencing the order in which pages are delivered to the IO
839 * subsystem according to empirical testing, and this is also justified
840 * by considering the behavior of a buddy system containing a single
841 * large block of memory acted on by a series of small allocations.
842 * This behavior is a critical factor in sglist merging's success.
843 *
844 * -- nyc
845 */
846 static inline void expand(struct zone *zone, struct page *page,
847 int low, int high, struct free_area *area,
848 int migratetype)
849 {
850 unsigned long size = 1 << high;
851
852 while (high > low) {
853 area--;
854 high--;
855 size >>= 1;
856 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
857
858 #ifdef CONFIG_DEBUG_PAGEALLOC
859 if (high < debug_guardpage_minorder()) {
860 /*
861 * Mark as guard pages (or page), that will allow to
862 * merge back to allocator when buddy will be freed.
863 * Corresponding page table entries will not be touched,
864 * pages will stay not present in virtual address space
865 */
866 INIT_LIST_HEAD(&page[size].lru);
867 set_page_guard_flag(&page[size]);
868 set_page_private(&page[size], high);
869 /* Guard pages are not available for any usage */
870 __mod_zone_freepage_state(zone, -(1 << high),
871 migratetype);
872 continue;
873 }
874 #endif
875 list_add(&page[size].lru, &area->free_list[migratetype]);
876 area->nr_free++;
877 set_page_order(&page[size], high);
878 }
879 }
880
881 /*
882 * This page is about to be returned from the page allocator
883 */
884 static inline int check_new_page(struct page *page)
885 {
886 const char *bad_reason = NULL;
887 unsigned long bad_flags = 0;
888
889 if (unlikely(page_mapcount(page)))
890 bad_reason = "nonzero mapcount";
891 if (unlikely(page->mapping != NULL))
892 bad_reason = "non-NULL mapping";
893 if (unlikely(atomic_read(&page->_count) != 0))
894 bad_reason = "nonzero _count";
895 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
896 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
897 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
898 }
899 if (unlikely(mem_cgroup_bad_page_check(page)))
900 bad_reason = "cgroup check failed";
901 if (unlikely(bad_reason)) {
902 bad_page(page, bad_reason, bad_flags);
903 return 1;
904 }
905 return 0;
906 }
907
908 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
909 {
910 int i;
911
912 for (i = 0; i < (1 << order); i++) {
913 struct page *p = page + i;
914 if (unlikely(check_new_page(p)))
915 return 1;
916 }
917
918 set_page_private(page, 0);
919 set_page_refcounted(page);
920
921 arch_alloc_page(page, order);
922 kernel_map_pages(page, 1 << order, 1);
923
924 if (gfp_flags & __GFP_ZERO)
925 prep_zero_page(page, order, gfp_flags);
926
927 if (order && (gfp_flags & __GFP_COMP))
928 prep_compound_page(page, order);
929
930 return 0;
931 }
932
933 /*
934 * Go through the free lists for the given migratetype and remove
935 * the smallest available page from the freelists
936 */
937 static inline
938 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
939 int migratetype)
940 {
941 unsigned int current_order;
942 struct free_area *area;
943 struct page *page;
944
945 /* Find a page of the appropriate size in the preferred list */
946 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
947 area = &(zone->free_area[current_order]);
948 if (list_empty(&area->free_list[migratetype]))
949 continue;
950
951 page = list_entry(area->free_list[migratetype].next,
952 struct page, lru);
953 list_del(&page->lru);
954 rmv_page_order(page);
955 area->nr_free--;
956 expand(zone, page, order, current_order, area, migratetype);
957 set_freepage_migratetype(page, migratetype);
958 return page;
959 }
960
961 return NULL;
962 }
963
964
965 /*
966 * This array describes the order lists are fallen back to when
967 * the free lists for the desirable migrate type are depleted
968 */
969 static int fallbacks[MIGRATE_TYPES][4] = {
970 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
971 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
972 #ifdef CONFIG_CMA
973 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
974 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
975 #else
976 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
977 #endif
978 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
979 #ifdef CONFIG_MEMORY_ISOLATION
980 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
981 #endif
982 };
983
984 /*
985 * Move the free pages in a range to the free lists of the requested type.
986 * Note that start_page and end_pages are not aligned on a pageblock
987 * boundary. If alignment is required, use move_freepages_block()
988 */
989 int move_freepages(struct zone *zone,
990 struct page *start_page, struct page *end_page,
991 int migratetype)
992 {
993 struct page *page;
994 unsigned long order;
995 int pages_moved = 0;
996
997 #ifndef CONFIG_HOLES_IN_ZONE
998 /*
999 * page_zone is not safe to call in this context when
1000 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1001 * anyway as we check zone boundaries in move_freepages_block().
1002 * Remove at a later date when no bug reports exist related to
1003 * grouping pages by mobility
1004 */
1005 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1006 #endif
1007
1008 for (page = start_page; page <= end_page;) {
1009 /* Make sure we are not inadvertently changing nodes */
1010 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1011
1012 if (!pfn_valid_within(page_to_pfn(page))) {
1013 page++;
1014 continue;
1015 }
1016
1017 if (!PageBuddy(page)) {
1018 page++;
1019 continue;
1020 }
1021
1022 order = page_order(page);
1023 list_move(&page->lru,
1024 &zone->free_area[order].free_list[migratetype]);
1025 set_freepage_migratetype(page, migratetype);
1026 page += 1 << order;
1027 pages_moved += 1 << order;
1028 }
1029
1030 return pages_moved;
1031 }
1032
1033 int move_freepages_block(struct zone *zone, struct page *page,
1034 int migratetype)
1035 {
1036 unsigned long start_pfn, end_pfn;
1037 struct page *start_page, *end_page;
1038
1039 start_pfn = page_to_pfn(page);
1040 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1041 start_page = pfn_to_page(start_pfn);
1042 end_page = start_page + pageblock_nr_pages - 1;
1043 end_pfn = start_pfn + pageblock_nr_pages - 1;
1044
1045 /* Do not cross zone boundaries */
1046 if (!zone_spans_pfn(zone, start_pfn))
1047 start_page = page;
1048 if (!zone_spans_pfn(zone, end_pfn))
1049 return 0;
1050
1051 return move_freepages(zone, start_page, end_page, migratetype);
1052 }
1053
1054 static void change_pageblock_range(struct page *pageblock_page,
1055 int start_order, int migratetype)
1056 {
1057 int nr_pageblocks = 1 << (start_order - pageblock_order);
1058
1059 while (nr_pageblocks--) {
1060 set_pageblock_migratetype(pageblock_page, migratetype);
1061 pageblock_page += pageblock_nr_pages;
1062 }
1063 }
1064
1065 /*
1066 * If breaking a large block of pages, move all free pages to the preferred
1067 * allocation list. If falling back for a reclaimable kernel allocation, be
1068 * more aggressive about taking ownership of free pages.
1069 *
1070 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1071 * nor move CMA pages to different free lists. We don't want unmovable pages
1072 * to be allocated from MIGRATE_CMA areas.
1073 *
1074 * Returns the new migratetype of the pageblock (or the same old migratetype
1075 * if it was unchanged).
1076 */
1077 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1078 int start_type, int fallback_type)
1079 {
1080 int current_order = page_order(page);
1081
1082 /*
1083 * When borrowing from MIGRATE_CMA, we need to release the excess
1084 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1085 * is set to CMA so it is returned to the correct freelist in case
1086 * the page ends up being not actually allocated from the pcp lists.
1087 */
1088 if (is_migrate_cma(fallback_type))
1089 return fallback_type;
1090
1091 /* Take ownership for orders >= pageblock_order */
1092 if (current_order >= pageblock_order) {
1093 change_pageblock_range(page, current_order, start_type);
1094 return start_type;
1095 }
1096
1097 if (current_order >= pageblock_order / 2 ||
1098 start_type == MIGRATE_RECLAIMABLE ||
1099 page_group_by_mobility_disabled) {
1100 int pages;
1101
1102 pages = move_freepages_block(zone, page, start_type);
1103
1104 /* Claim the whole block if over half of it is free */
1105 if (pages >= (1 << (pageblock_order-1)) ||
1106 page_group_by_mobility_disabled) {
1107
1108 set_pageblock_migratetype(page, start_type);
1109 return start_type;
1110 }
1111
1112 }
1113
1114 return fallback_type;
1115 }
1116
1117 /* Remove an element from the buddy allocator from the fallback list */
1118 static inline struct page *
1119 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1120 {
1121 struct free_area *area;
1122 unsigned int current_order;
1123 struct page *page;
1124 int migratetype, new_type, i;
1125
1126 /* Find the largest possible block of pages in the other list */
1127 for (current_order = MAX_ORDER-1;
1128 current_order >= order && current_order <= MAX_ORDER-1;
1129 --current_order) {
1130 for (i = 0;; i++) {
1131 migratetype = fallbacks[start_migratetype][i];
1132
1133 /* MIGRATE_RESERVE handled later if necessary */
1134 if (migratetype == MIGRATE_RESERVE)
1135 break;
1136
1137 area = &(zone->free_area[current_order]);
1138 if (list_empty(&area->free_list[migratetype]))
1139 continue;
1140
1141 page = list_entry(area->free_list[migratetype].next,
1142 struct page, lru);
1143 area->nr_free--;
1144
1145 new_type = try_to_steal_freepages(zone, page,
1146 start_migratetype,
1147 migratetype);
1148
1149 /* Remove the page from the freelists */
1150 list_del(&page->lru);
1151 rmv_page_order(page);
1152
1153 expand(zone, page, order, current_order, area,
1154 new_type);
1155 /* The freepage_migratetype may differ from pageblock's
1156 * migratetype depending on the decisions in
1157 * try_to_steal_freepages. This is OK as long as it does
1158 * not differ for MIGRATE_CMA type.
1159 */
1160 set_freepage_migratetype(page, new_type);
1161
1162 trace_mm_page_alloc_extfrag(page, order, current_order,
1163 start_migratetype, migratetype, new_type);
1164
1165 return page;
1166 }
1167 }
1168
1169 return NULL;
1170 }
1171
1172 /*
1173 * Do the hard work of removing an element from the buddy allocator.
1174 * Call me with the zone->lock already held.
1175 */
1176 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1177 int migratetype)
1178 {
1179 struct page *page;
1180
1181 retry_reserve:
1182 page = __rmqueue_smallest(zone, order, migratetype);
1183
1184 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1185 page = __rmqueue_fallback(zone, order, migratetype);
1186
1187 /*
1188 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1189 * is used because __rmqueue_smallest is an inline function
1190 * and we want just one call site
1191 */
1192 if (!page) {
1193 migratetype = MIGRATE_RESERVE;
1194 goto retry_reserve;
1195 }
1196 }
1197
1198 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1199 return page;
1200 }
1201
1202 /*
1203 * Obtain a specified number of elements from the buddy allocator, all under
1204 * a single hold of the lock, for efficiency. Add them to the supplied list.
1205 * Returns the number of new pages which were placed at *list.
1206 */
1207 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1208 unsigned long count, struct list_head *list,
1209 int migratetype, bool cold)
1210 {
1211 int i;
1212
1213 spin_lock(&zone->lock);
1214 for (i = 0; i < count; ++i) {
1215 struct page *page = __rmqueue(zone, order, migratetype);
1216 if (unlikely(page == NULL))
1217 break;
1218
1219 /*
1220 * Split buddy pages returned by expand() are received here
1221 * in physical page order. The page is added to the callers and
1222 * list and the list head then moves forward. From the callers
1223 * perspective, the linked list is ordered by page number in
1224 * some conditions. This is useful for IO devices that can
1225 * merge IO requests if the physical pages are ordered
1226 * properly.
1227 */
1228 if (likely(!cold))
1229 list_add(&page->lru, list);
1230 else
1231 list_add_tail(&page->lru, list);
1232 list = &page->lru;
1233 if (is_migrate_cma(get_freepage_migratetype(page)))
1234 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1235 -(1 << order));
1236 }
1237 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1238 spin_unlock(&zone->lock);
1239 return i;
1240 }
1241
1242 #ifdef CONFIG_NUMA
1243 /*
1244 * Called from the vmstat counter updater to drain pagesets of this
1245 * currently executing processor on remote nodes after they have
1246 * expired.
1247 *
1248 * Note that this function must be called with the thread pinned to
1249 * a single processor.
1250 */
1251 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1252 {
1253 unsigned long flags;
1254 int to_drain, batch;
1255
1256 local_irq_save(flags);
1257 batch = ACCESS_ONCE(pcp->batch);
1258 to_drain = min(pcp->count, batch);
1259 if (to_drain > 0) {
1260 free_pcppages_bulk(zone, to_drain, pcp);
1261 pcp->count -= to_drain;
1262 }
1263 local_irq_restore(flags);
1264 }
1265 #endif
1266
1267 /*
1268 * Drain pages of the indicated processor.
1269 *
1270 * The processor must either be the current processor and the
1271 * thread pinned to the current processor or a processor that
1272 * is not online.
1273 */
1274 static void drain_pages(unsigned int cpu)
1275 {
1276 unsigned long flags;
1277 struct zone *zone;
1278
1279 for_each_populated_zone(zone) {
1280 struct per_cpu_pageset *pset;
1281 struct per_cpu_pages *pcp;
1282
1283 local_irq_save(flags);
1284 pset = per_cpu_ptr(zone->pageset, cpu);
1285
1286 pcp = &pset->pcp;
1287 if (pcp->count) {
1288 free_pcppages_bulk(zone, pcp->count, pcp);
1289 pcp->count = 0;
1290 }
1291 local_irq_restore(flags);
1292 }
1293 }
1294
1295 /*
1296 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1297 */
1298 void drain_local_pages(void *arg)
1299 {
1300 drain_pages(smp_processor_id());
1301 }
1302
1303 /*
1304 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1305 *
1306 * Note that this code is protected against sending an IPI to an offline
1307 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1308 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1309 * nothing keeps CPUs from showing up after we populated the cpumask and
1310 * before the call to on_each_cpu_mask().
1311 */
1312 void drain_all_pages(void)
1313 {
1314 int cpu;
1315 struct per_cpu_pageset *pcp;
1316 struct zone *zone;
1317
1318 /*
1319 * Allocate in the BSS so we wont require allocation in
1320 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1321 */
1322 static cpumask_t cpus_with_pcps;
1323
1324 /*
1325 * We don't care about racing with CPU hotplug event
1326 * as offline notification will cause the notified
1327 * cpu to drain that CPU pcps and on_each_cpu_mask
1328 * disables preemption as part of its processing
1329 */
1330 for_each_online_cpu(cpu) {
1331 bool has_pcps = false;
1332 for_each_populated_zone(zone) {
1333 pcp = per_cpu_ptr(zone->pageset, cpu);
1334 if (pcp->pcp.count) {
1335 has_pcps = true;
1336 break;
1337 }
1338 }
1339 if (has_pcps)
1340 cpumask_set_cpu(cpu, &cpus_with_pcps);
1341 else
1342 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1343 }
1344 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1345 }
1346
1347 #ifdef CONFIG_HIBERNATION
1348
1349 void mark_free_pages(struct zone *zone)
1350 {
1351 unsigned long pfn, max_zone_pfn;
1352 unsigned long flags;
1353 unsigned int order, t;
1354 struct list_head *curr;
1355
1356 if (zone_is_empty(zone))
1357 return;
1358
1359 spin_lock_irqsave(&zone->lock, flags);
1360
1361 max_zone_pfn = zone_end_pfn(zone);
1362 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1363 if (pfn_valid(pfn)) {
1364 struct page *page = pfn_to_page(pfn);
1365
1366 if (!swsusp_page_is_forbidden(page))
1367 swsusp_unset_page_free(page);
1368 }
1369
1370 for_each_migratetype_order(order, t) {
1371 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1372 unsigned long i;
1373
1374 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1375 for (i = 0; i < (1UL << order); i++)
1376 swsusp_set_page_free(pfn_to_page(pfn + i));
1377 }
1378 }
1379 spin_unlock_irqrestore(&zone->lock, flags);
1380 }
1381 #endif /* CONFIG_PM */
1382
1383 /*
1384 * Free a 0-order page
1385 * cold == true ? free a cold page : free a hot page
1386 */
1387 void free_hot_cold_page(struct page *page, bool cold)
1388 {
1389 struct zone *zone = page_zone(page);
1390 struct per_cpu_pages *pcp;
1391 unsigned long flags;
1392 unsigned long pfn = page_to_pfn(page);
1393 int migratetype;
1394
1395 if (!free_pages_prepare(page, 0))
1396 return;
1397
1398 migratetype = get_pfnblock_migratetype(page, pfn);
1399 set_freepage_migratetype(page, migratetype);
1400 local_irq_save(flags);
1401 __count_vm_event(PGFREE);
1402
1403 /*
1404 * We only track unmovable, reclaimable and movable on pcp lists.
1405 * Free ISOLATE pages back to the allocator because they are being
1406 * offlined but treat RESERVE as movable pages so we can get those
1407 * areas back if necessary. Otherwise, we may have to free
1408 * excessively into the page allocator
1409 */
1410 if (migratetype >= MIGRATE_PCPTYPES) {
1411 if (unlikely(is_migrate_isolate(migratetype))) {
1412 free_one_page(zone, page, pfn, 0, migratetype);
1413 goto out;
1414 }
1415 migratetype = MIGRATE_MOVABLE;
1416 }
1417
1418 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1419 if (!cold)
1420 list_add(&page->lru, &pcp->lists[migratetype]);
1421 else
1422 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1423 pcp->count++;
1424 if (pcp->count >= pcp->high) {
1425 unsigned long batch = ACCESS_ONCE(pcp->batch);
1426 free_pcppages_bulk(zone, batch, pcp);
1427 pcp->count -= batch;
1428 }
1429
1430 out:
1431 local_irq_restore(flags);
1432 }
1433
1434 /*
1435 * Free a list of 0-order pages
1436 */
1437 void free_hot_cold_page_list(struct list_head *list, bool cold)
1438 {
1439 struct page *page, *next;
1440
1441 list_for_each_entry_safe(page, next, list, lru) {
1442 trace_mm_page_free_batched(page, cold);
1443 free_hot_cold_page(page, cold);
1444 }
1445 }
1446
1447 /*
1448 * split_page takes a non-compound higher-order page, and splits it into
1449 * n (1<<order) sub-pages: page[0..n]
1450 * Each sub-page must be freed individually.
1451 *
1452 * Note: this is probably too low level an operation for use in drivers.
1453 * Please consult with lkml before using this in your driver.
1454 */
1455 void split_page(struct page *page, unsigned int order)
1456 {
1457 int i;
1458
1459 VM_BUG_ON_PAGE(PageCompound(page), page);
1460 VM_BUG_ON_PAGE(!page_count(page), page);
1461
1462 #ifdef CONFIG_KMEMCHECK
1463 /*
1464 * Split shadow pages too, because free(page[0]) would
1465 * otherwise free the whole shadow.
1466 */
1467 if (kmemcheck_page_is_tracked(page))
1468 split_page(virt_to_page(page[0].shadow), order);
1469 #endif
1470
1471 for (i = 1; i < (1 << order); i++)
1472 set_page_refcounted(page + i);
1473 }
1474 EXPORT_SYMBOL_GPL(split_page);
1475
1476 int __isolate_free_page(struct page *page, unsigned int order)
1477 {
1478 unsigned long watermark;
1479 struct zone *zone;
1480 int mt;
1481
1482 BUG_ON(!PageBuddy(page));
1483
1484 zone = page_zone(page);
1485 mt = get_pageblock_migratetype(page);
1486
1487 if (!is_migrate_isolate(mt)) {
1488 /* Obey watermarks as if the page was being allocated */
1489 watermark = low_wmark_pages(zone) + (1 << order);
1490 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1491 return 0;
1492
1493 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1494 }
1495
1496 /* Remove page from free list */
1497 list_del(&page->lru);
1498 zone->free_area[order].nr_free--;
1499 rmv_page_order(page);
1500
1501 /* Set the pageblock if the isolated page is at least a pageblock */
1502 if (order >= pageblock_order - 1) {
1503 struct page *endpage = page + (1 << order) - 1;
1504 for (; page < endpage; page += pageblock_nr_pages) {
1505 int mt = get_pageblock_migratetype(page);
1506 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1507 set_pageblock_migratetype(page,
1508 MIGRATE_MOVABLE);
1509 }
1510 }
1511
1512 return 1UL << order;
1513 }
1514
1515 /*
1516 * Similar to split_page except the page is already free. As this is only
1517 * being used for migration, the migratetype of the block also changes.
1518 * As this is called with interrupts disabled, the caller is responsible
1519 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1520 * are enabled.
1521 *
1522 * Note: this is probably too low level an operation for use in drivers.
1523 * Please consult with lkml before using this in your driver.
1524 */
1525 int split_free_page(struct page *page)
1526 {
1527 unsigned int order;
1528 int nr_pages;
1529
1530 order = page_order(page);
1531
1532 nr_pages = __isolate_free_page(page, order);
1533 if (!nr_pages)
1534 return 0;
1535
1536 /* Split into individual pages */
1537 set_page_refcounted(page);
1538 split_page(page, order);
1539 return nr_pages;
1540 }
1541
1542 /*
1543 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1544 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1545 * or two.
1546 */
1547 static inline
1548 struct page *buffered_rmqueue(struct zone *preferred_zone,
1549 struct zone *zone, unsigned int order,
1550 gfp_t gfp_flags, int migratetype)
1551 {
1552 unsigned long flags;
1553 struct page *page;
1554 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1555
1556 again:
1557 if (likely(order == 0)) {
1558 struct per_cpu_pages *pcp;
1559 struct list_head *list;
1560
1561 local_irq_save(flags);
1562 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1563 list = &pcp->lists[migratetype];
1564 if (list_empty(list)) {
1565 pcp->count += rmqueue_bulk(zone, 0,
1566 pcp->batch, list,
1567 migratetype, cold);
1568 if (unlikely(list_empty(list)))
1569 goto failed;
1570 }
1571
1572 if (cold)
1573 page = list_entry(list->prev, struct page, lru);
1574 else
1575 page = list_entry(list->next, struct page, lru);
1576
1577 list_del(&page->lru);
1578 pcp->count--;
1579 } else {
1580 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1581 /*
1582 * __GFP_NOFAIL is not to be used in new code.
1583 *
1584 * All __GFP_NOFAIL callers should be fixed so that they
1585 * properly detect and handle allocation failures.
1586 *
1587 * We most definitely don't want callers attempting to
1588 * allocate greater than order-1 page units with
1589 * __GFP_NOFAIL.
1590 */
1591 WARN_ON_ONCE(order > 1);
1592 }
1593 spin_lock_irqsave(&zone->lock, flags);
1594 page = __rmqueue(zone, order, migratetype);
1595 spin_unlock(&zone->lock);
1596 if (!page)
1597 goto failed;
1598 __mod_zone_freepage_state(zone, -(1 << order),
1599 get_freepage_migratetype(page));
1600 }
1601
1602 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1603 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1604 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1605 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1606
1607 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1608 zone_statistics(preferred_zone, zone, gfp_flags);
1609 local_irq_restore(flags);
1610
1611 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1612 if (prep_new_page(page, order, gfp_flags))
1613 goto again;
1614 return page;
1615
1616 failed:
1617 local_irq_restore(flags);
1618 return NULL;
1619 }
1620
1621 #ifdef CONFIG_FAIL_PAGE_ALLOC
1622
1623 static struct {
1624 struct fault_attr attr;
1625
1626 u32 ignore_gfp_highmem;
1627 u32 ignore_gfp_wait;
1628 u32 min_order;
1629 } fail_page_alloc = {
1630 .attr = FAULT_ATTR_INITIALIZER,
1631 .ignore_gfp_wait = 1,
1632 .ignore_gfp_highmem = 1,
1633 .min_order = 1,
1634 };
1635
1636 static int __init setup_fail_page_alloc(char *str)
1637 {
1638 return setup_fault_attr(&fail_page_alloc.attr, str);
1639 }
1640 __setup("fail_page_alloc=", setup_fail_page_alloc);
1641
1642 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1643 {
1644 if (order < fail_page_alloc.min_order)
1645 return false;
1646 if (gfp_mask & __GFP_NOFAIL)
1647 return false;
1648 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1649 return false;
1650 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1651 return false;
1652
1653 return should_fail(&fail_page_alloc.attr, 1 << order);
1654 }
1655
1656 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1657
1658 static int __init fail_page_alloc_debugfs(void)
1659 {
1660 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1661 struct dentry *dir;
1662
1663 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1664 &fail_page_alloc.attr);
1665 if (IS_ERR(dir))
1666 return PTR_ERR(dir);
1667
1668 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1669 &fail_page_alloc.ignore_gfp_wait))
1670 goto fail;
1671 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1672 &fail_page_alloc.ignore_gfp_highmem))
1673 goto fail;
1674 if (!debugfs_create_u32("min-order", mode, dir,
1675 &fail_page_alloc.min_order))
1676 goto fail;
1677
1678 return 0;
1679 fail:
1680 debugfs_remove_recursive(dir);
1681
1682 return -ENOMEM;
1683 }
1684
1685 late_initcall(fail_page_alloc_debugfs);
1686
1687 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1688
1689 #else /* CONFIG_FAIL_PAGE_ALLOC */
1690
1691 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1692 {
1693 return false;
1694 }
1695
1696 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1697
1698 /*
1699 * Return true if free pages are above 'mark'. This takes into account the order
1700 * of the allocation.
1701 */
1702 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1703 unsigned long mark, int classzone_idx, int alloc_flags,
1704 long free_pages)
1705 {
1706 /* free_pages my go negative - that's OK */
1707 long min = mark;
1708 int o;
1709 long free_cma = 0;
1710
1711 free_pages -= (1 << order) - 1;
1712 if (alloc_flags & ALLOC_HIGH)
1713 min -= min / 2;
1714 if (alloc_flags & ALLOC_HARDER)
1715 min -= min / 4;
1716 #ifdef CONFIG_CMA
1717 /* If allocation can't use CMA areas don't use free CMA pages */
1718 if (!(alloc_flags & ALLOC_CMA))
1719 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1720 #endif
1721
1722 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1723 return false;
1724 for (o = 0; o < order; o++) {
1725 /* At the next order, this order's pages become unavailable */
1726 free_pages -= z->free_area[o].nr_free << o;
1727
1728 /* Require fewer higher order pages to be free */
1729 min >>= 1;
1730
1731 if (free_pages <= min)
1732 return false;
1733 }
1734 return true;
1735 }
1736
1737 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1738 int classzone_idx, int alloc_flags)
1739 {
1740 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1741 zone_page_state(z, NR_FREE_PAGES));
1742 }
1743
1744 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1745 unsigned long mark, int classzone_idx, int alloc_flags)
1746 {
1747 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1748
1749 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1750 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1751
1752 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1753 free_pages);
1754 }
1755
1756 #ifdef CONFIG_NUMA
1757 /*
1758 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1759 * skip over zones that are not allowed by the cpuset, or that have
1760 * been recently (in last second) found to be nearly full. See further
1761 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1762 * that have to skip over a lot of full or unallowed zones.
1763 *
1764 * If the zonelist cache is present in the passed zonelist, then
1765 * returns a pointer to the allowed node mask (either the current
1766 * tasks mems_allowed, or node_states[N_MEMORY].)
1767 *
1768 * If the zonelist cache is not available for this zonelist, does
1769 * nothing and returns NULL.
1770 *
1771 * If the fullzones BITMAP in the zonelist cache is stale (more than
1772 * a second since last zap'd) then we zap it out (clear its bits.)
1773 *
1774 * We hold off even calling zlc_setup, until after we've checked the
1775 * first zone in the zonelist, on the theory that most allocations will
1776 * be satisfied from that first zone, so best to examine that zone as
1777 * quickly as we can.
1778 */
1779 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1780 {
1781 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1782 nodemask_t *allowednodes; /* zonelist_cache approximation */
1783
1784 zlc = zonelist->zlcache_ptr;
1785 if (!zlc)
1786 return NULL;
1787
1788 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1789 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1790 zlc->last_full_zap = jiffies;
1791 }
1792
1793 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1794 &cpuset_current_mems_allowed :
1795 &node_states[N_MEMORY];
1796 return allowednodes;
1797 }
1798
1799 /*
1800 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1801 * if it is worth looking at further for free memory:
1802 * 1) Check that the zone isn't thought to be full (doesn't have its
1803 * bit set in the zonelist_cache fullzones BITMAP).
1804 * 2) Check that the zones node (obtained from the zonelist_cache
1805 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1806 * Return true (non-zero) if zone is worth looking at further, or
1807 * else return false (zero) if it is not.
1808 *
1809 * This check -ignores- the distinction between various watermarks,
1810 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1811 * found to be full for any variation of these watermarks, it will
1812 * be considered full for up to one second by all requests, unless
1813 * we are so low on memory on all allowed nodes that we are forced
1814 * into the second scan of the zonelist.
1815 *
1816 * In the second scan we ignore this zonelist cache and exactly
1817 * apply the watermarks to all zones, even it is slower to do so.
1818 * We are low on memory in the second scan, and should leave no stone
1819 * unturned looking for a free page.
1820 */
1821 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1822 nodemask_t *allowednodes)
1823 {
1824 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1825 int i; /* index of *z in zonelist zones */
1826 int n; /* node that zone *z is on */
1827
1828 zlc = zonelist->zlcache_ptr;
1829 if (!zlc)
1830 return 1;
1831
1832 i = z - zonelist->_zonerefs;
1833 n = zlc->z_to_n[i];
1834
1835 /* This zone is worth trying if it is allowed but not full */
1836 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1837 }
1838
1839 /*
1840 * Given 'z' scanning a zonelist, set the corresponding bit in
1841 * zlc->fullzones, so that subsequent attempts to allocate a page
1842 * from that zone don't waste time re-examining it.
1843 */
1844 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1845 {
1846 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1847 int i; /* index of *z in zonelist zones */
1848
1849 zlc = zonelist->zlcache_ptr;
1850 if (!zlc)
1851 return;
1852
1853 i = z - zonelist->_zonerefs;
1854
1855 set_bit(i, zlc->fullzones);
1856 }
1857
1858 /*
1859 * clear all zones full, called after direct reclaim makes progress so that
1860 * a zone that was recently full is not skipped over for up to a second
1861 */
1862 static void zlc_clear_zones_full(struct zonelist *zonelist)
1863 {
1864 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1865
1866 zlc = zonelist->zlcache_ptr;
1867 if (!zlc)
1868 return;
1869
1870 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1871 }
1872
1873 static bool zone_local(struct zone *local_zone, struct zone *zone)
1874 {
1875 return local_zone->node == zone->node;
1876 }
1877
1878 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1879 {
1880 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1881 RECLAIM_DISTANCE;
1882 }
1883
1884 #else /* CONFIG_NUMA */
1885
1886 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1887 {
1888 return NULL;
1889 }
1890
1891 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1892 nodemask_t *allowednodes)
1893 {
1894 return 1;
1895 }
1896
1897 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1898 {
1899 }
1900
1901 static void zlc_clear_zones_full(struct zonelist *zonelist)
1902 {
1903 }
1904
1905 static bool zone_local(struct zone *local_zone, struct zone *zone)
1906 {
1907 return true;
1908 }
1909
1910 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1911 {
1912 return true;
1913 }
1914
1915 #endif /* CONFIG_NUMA */
1916
1917 static void reset_alloc_batches(struct zone *preferred_zone)
1918 {
1919 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1920
1921 do {
1922 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1923 high_wmark_pages(zone) - low_wmark_pages(zone) -
1924 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1925 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1926 } while (zone++ != preferred_zone);
1927 }
1928
1929 /*
1930 * get_page_from_freelist goes through the zonelist trying to allocate
1931 * a page.
1932 */
1933 static struct page *
1934 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1935 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1936 struct zone *preferred_zone, int classzone_idx, int migratetype)
1937 {
1938 struct zoneref *z;
1939 struct page *page = NULL;
1940 struct zone *zone;
1941 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1942 int zlc_active = 0; /* set if using zonelist_cache */
1943 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1944 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1945 (gfp_mask & __GFP_WRITE);
1946 int nr_fair_skipped = 0;
1947 bool zonelist_rescan;
1948
1949 zonelist_scan:
1950 zonelist_rescan = false;
1951
1952 /*
1953 * Scan zonelist, looking for a zone with enough free.
1954 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1955 */
1956 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1957 high_zoneidx, nodemask) {
1958 unsigned long mark;
1959
1960 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1961 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1962 continue;
1963 if (cpusets_enabled() &&
1964 (alloc_flags & ALLOC_CPUSET) &&
1965 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1966 continue;
1967 /*
1968 * Distribute pages in proportion to the individual
1969 * zone size to ensure fair page aging. The zone a
1970 * page was allocated in should have no effect on the
1971 * time the page has in memory before being reclaimed.
1972 */
1973 if (alloc_flags & ALLOC_FAIR) {
1974 if (!zone_local(preferred_zone, zone))
1975 break;
1976 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
1977 nr_fair_skipped++;
1978 continue;
1979 }
1980 }
1981 /*
1982 * When allocating a page cache page for writing, we
1983 * want to get it from a zone that is within its dirty
1984 * limit, such that no single zone holds more than its
1985 * proportional share of globally allowed dirty pages.
1986 * The dirty limits take into account the zone's
1987 * lowmem reserves and high watermark so that kswapd
1988 * should be able to balance it without having to
1989 * write pages from its LRU list.
1990 *
1991 * This may look like it could increase pressure on
1992 * lower zones by failing allocations in higher zones
1993 * before they are full. But the pages that do spill
1994 * over are limited as the lower zones are protected
1995 * by this very same mechanism. It should not become
1996 * a practical burden to them.
1997 *
1998 * XXX: For now, allow allocations to potentially
1999 * exceed the per-zone dirty limit in the slowpath
2000 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2001 * which is important when on a NUMA setup the allowed
2002 * zones are together not big enough to reach the
2003 * global limit. The proper fix for these situations
2004 * will require awareness of zones in the
2005 * dirty-throttling and the flusher threads.
2006 */
2007 if (consider_zone_dirty && !zone_dirty_ok(zone))
2008 continue;
2009
2010 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2011 if (!zone_watermark_ok(zone, order, mark,
2012 classzone_idx, alloc_flags)) {
2013 int ret;
2014
2015 /* Checked here to keep the fast path fast */
2016 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2017 if (alloc_flags & ALLOC_NO_WATERMARKS)
2018 goto try_this_zone;
2019
2020 if (IS_ENABLED(CONFIG_NUMA) &&
2021 !did_zlc_setup && nr_online_nodes > 1) {
2022 /*
2023 * we do zlc_setup if there are multiple nodes
2024 * and before considering the first zone allowed
2025 * by the cpuset.
2026 */
2027 allowednodes = zlc_setup(zonelist, alloc_flags);
2028 zlc_active = 1;
2029 did_zlc_setup = 1;
2030 }
2031
2032 if (zone_reclaim_mode == 0 ||
2033 !zone_allows_reclaim(preferred_zone, zone))
2034 goto this_zone_full;
2035
2036 /*
2037 * As we may have just activated ZLC, check if the first
2038 * eligible zone has failed zone_reclaim recently.
2039 */
2040 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2041 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2042 continue;
2043
2044 ret = zone_reclaim(zone, gfp_mask, order);
2045 switch (ret) {
2046 case ZONE_RECLAIM_NOSCAN:
2047 /* did not scan */
2048 continue;
2049 case ZONE_RECLAIM_FULL:
2050 /* scanned but unreclaimable */
2051 continue;
2052 default:
2053 /* did we reclaim enough */
2054 if (zone_watermark_ok(zone, order, mark,
2055 classzone_idx, alloc_flags))
2056 goto try_this_zone;
2057
2058 /*
2059 * Failed to reclaim enough to meet watermark.
2060 * Only mark the zone full if checking the min
2061 * watermark or if we failed to reclaim just
2062 * 1<<order pages or else the page allocator
2063 * fastpath will prematurely mark zones full
2064 * when the watermark is between the low and
2065 * min watermarks.
2066 */
2067 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2068 ret == ZONE_RECLAIM_SOME)
2069 goto this_zone_full;
2070
2071 continue;
2072 }
2073 }
2074
2075 try_this_zone:
2076 page = buffered_rmqueue(preferred_zone, zone, order,
2077 gfp_mask, migratetype);
2078 if (page)
2079 break;
2080 this_zone_full:
2081 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2082 zlc_mark_zone_full(zonelist, z);
2083 }
2084
2085 if (page) {
2086 /*
2087 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2088 * necessary to allocate the page. The expectation is
2089 * that the caller is taking steps that will free more
2090 * memory. The caller should avoid the page being used
2091 * for !PFMEMALLOC purposes.
2092 */
2093 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2094 return page;
2095 }
2096
2097 /*
2098 * The first pass makes sure allocations are spread fairly within the
2099 * local node. However, the local node might have free pages left
2100 * after the fairness batches are exhausted, and remote zones haven't
2101 * even been considered yet. Try once more without fairness, and
2102 * include remote zones now, before entering the slowpath and waking
2103 * kswapd: prefer spilling to a remote zone over swapping locally.
2104 */
2105 if (alloc_flags & ALLOC_FAIR) {
2106 alloc_flags &= ~ALLOC_FAIR;
2107 if (nr_fair_skipped) {
2108 zonelist_rescan = true;
2109 reset_alloc_batches(preferred_zone);
2110 }
2111 if (nr_online_nodes > 1)
2112 zonelist_rescan = true;
2113 }
2114
2115 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2116 /* Disable zlc cache for second zonelist scan */
2117 zlc_active = 0;
2118 zonelist_rescan = true;
2119 }
2120
2121 if (zonelist_rescan)
2122 goto zonelist_scan;
2123
2124 return NULL;
2125 }
2126
2127 /*
2128 * Large machines with many possible nodes should not always dump per-node
2129 * meminfo in irq context.
2130 */
2131 static inline bool should_suppress_show_mem(void)
2132 {
2133 bool ret = false;
2134
2135 #if NODES_SHIFT > 8
2136 ret = in_interrupt();
2137 #endif
2138 return ret;
2139 }
2140
2141 static DEFINE_RATELIMIT_STATE(nopage_rs,
2142 DEFAULT_RATELIMIT_INTERVAL,
2143 DEFAULT_RATELIMIT_BURST);
2144
2145 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2146 {
2147 unsigned int filter = SHOW_MEM_FILTER_NODES;
2148
2149 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2150 debug_guardpage_minorder() > 0)
2151 return;
2152
2153 /*
2154 * This documents exceptions given to allocations in certain
2155 * contexts that are allowed to allocate outside current's set
2156 * of allowed nodes.
2157 */
2158 if (!(gfp_mask & __GFP_NOMEMALLOC))
2159 if (test_thread_flag(TIF_MEMDIE) ||
2160 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2161 filter &= ~SHOW_MEM_FILTER_NODES;
2162 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2163 filter &= ~SHOW_MEM_FILTER_NODES;
2164
2165 if (fmt) {
2166 struct va_format vaf;
2167 va_list args;
2168
2169 va_start(args, fmt);
2170
2171 vaf.fmt = fmt;
2172 vaf.va = &args;
2173
2174 pr_warn("%pV", &vaf);
2175
2176 va_end(args);
2177 }
2178
2179 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2180 current->comm, order, gfp_mask);
2181
2182 dump_stack();
2183 if (!should_suppress_show_mem())
2184 show_mem(filter);
2185 }
2186
2187 static inline int
2188 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2189 unsigned long did_some_progress,
2190 unsigned long pages_reclaimed)
2191 {
2192 /* Do not loop if specifically requested */
2193 if (gfp_mask & __GFP_NORETRY)
2194 return 0;
2195
2196 /* Always retry if specifically requested */
2197 if (gfp_mask & __GFP_NOFAIL)
2198 return 1;
2199
2200 /*
2201 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2202 * making forward progress without invoking OOM. Suspend also disables
2203 * storage devices so kswapd will not help. Bail if we are suspending.
2204 */
2205 if (!did_some_progress && pm_suspended_storage())
2206 return 0;
2207
2208 /*
2209 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2210 * means __GFP_NOFAIL, but that may not be true in other
2211 * implementations.
2212 */
2213 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2214 return 1;
2215
2216 /*
2217 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2218 * specified, then we retry until we no longer reclaim any pages
2219 * (above), or we've reclaimed an order of pages at least as
2220 * large as the allocation's order. In both cases, if the
2221 * allocation still fails, we stop retrying.
2222 */
2223 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2224 return 1;
2225
2226 return 0;
2227 }
2228
2229 static inline struct page *
2230 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2231 struct zonelist *zonelist, enum zone_type high_zoneidx,
2232 nodemask_t *nodemask, struct zone *preferred_zone,
2233 int classzone_idx, int migratetype)
2234 {
2235 struct page *page;
2236
2237 /* Acquire the per-zone oom lock for each zone */
2238 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2239 schedule_timeout_uninterruptible(1);
2240 return NULL;
2241 }
2242
2243 /*
2244 * PM-freezer should be notified that there might be an OOM killer on
2245 * its way to kill and wake somebody up. This is too early and we might
2246 * end up not killing anything but false positives are acceptable.
2247 * See freeze_processes.
2248 */
2249 note_oom_kill();
2250
2251 /*
2252 * Go through the zonelist yet one more time, keep very high watermark
2253 * here, this is only to catch a parallel oom killing, we must fail if
2254 * we're still under heavy pressure.
2255 */
2256 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2257 order, zonelist, high_zoneidx,
2258 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2259 preferred_zone, classzone_idx, migratetype);
2260 if (page)
2261 goto out;
2262
2263 if (!(gfp_mask & __GFP_NOFAIL)) {
2264 /* The OOM killer will not help higher order allocs */
2265 if (order > PAGE_ALLOC_COSTLY_ORDER)
2266 goto out;
2267 /* The OOM killer does not needlessly kill tasks for lowmem */
2268 if (high_zoneidx < ZONE_NORMAL)
2269 goto out;
2270 /*
2271 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2272 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2273 * The caller should handle page allocation failure by itself if
2274 * it specifies __GFP_THISNODE.
2275 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2276 */
2277 if (gfp_mask & __GFP_THISNODE)
2278 goto out;
2279 }
2280 /* Exhausted what can be done so it's blamo time */
2281 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2282
2283 out:
2284 oom_zonelist_unlock(zonelist, gfp_mask);
2285 return page;
2286 }
2287
2288 #ifdef CONFIG_COMPACTION
2289 /* Try memory compaction for high-order allocations before reclaim */
2290 static struct page *
2291 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2292 struct zonelist *zonelist, enum zone_type high_zoneidx,
2293 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2294 int classzone_idx, int migratetype, enum migrate_mode mode,
2295 int *contended_compaction, bool *deferred_compaction)
2296 {
2297 struct zone *last_compact_zone = NULL;
2298 unsigned long compact_result;
2299 struct page *page;
2300
2301 if (!order)
2302 return NULL;
2303
2304 current->flags |= PF_MEMALLOC;
2305 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2306 nodemask, mode,
2307 contended_compaction,
2308 &last_compact_zone);
2309 current->flags &= ~PF_MEMALLOC;
2310
2311 switch (compact_result) {
2312 case COMPACT_DEFERRED:
2313 *deferred_compaction = true;
2314 /* fall-through */
2315 case COMPACT_SKIPPED:
2316 return NULL;
2317 default:
2318 break;
2319 }
2320
2321 /*
2322 * At least in one zone compaction wasn't deferred or skipped, so let's
2323 * count a compaction stall
2324 */
2325 count_vm_event(COMPACTSTALL);
2326
2327 /* Page migration frees to the PCP lists but we want merging */
2328 drain_pages(get_cpu());
2329 put_cpu();
2330
2331 page = get_page_from_freelist(gfp_mask, nodemask,
2332 order, zonelist, high_zoneidx,
2333 alloc_flags & ~ALLOC_NO_WATERMARKS,
2334 preferred_zone, classzone_idx, migratetype);
2335
2336 if (page) {
2337 struct zone *zone = page_zone(page);
2338
2339 zone->compact_blockskip_flush = false;
2340 compaction_defer_reset(zone, order, true);
2341 count_vm_event(COMPACTSUCCESS);
2342 return page;
2343 }
2344
2345 /*
2346 * last_compact_zone is where try_to_compact_pages thought allocation
2347 * should succeed, so it did not defer compaction. But here we know
2348 * that it didn't succeed, so we do the defer.
2349 */
2350 if (last_compact_zone && mode != MIGRATE_ASYNC)
2351 defer_compaction(last_compact_zone, order);
2352
2353 /*
2354 * It's bad if compaction run occurs and fails. The most likely reason
2355 * is that pages exist, but not enough to satisfy watermarks.
2356 */
2357 count_vm_event(COMPACTFAIL);
2358
2359 cond_resched();
2360
2361 return NULL;
2362 }
2363 #else
2364 static inline struct page *
2365 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2366 struct zonelist *zonelist, enum zone_type high_zoneidx,
2367 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2368 int classzone_idx, int migratetype, enum migrate_mode mode,
2369 int *contended_compaction, bool *deferred_compaction)
2370 {
2371 return NULL;
2372 }
2373 #endif /* CONFIG_COMPACTION */
2374
2375 /* Perform direct synchronous page reclaim */
2376 static int
2377 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2378 nodemask_t *nodemask)
2379 {
2380 struct reclaim_state reclaim_state;
2381 int progress;
2382
2383 cond_resched();
2384
2385 /* We now go into synchronous reclaim */
2386 cpuset_memory_pressure_bump();
2387 current->flags |= PF_MEMALLOC;
2388 lockdep_set_current_reclaim_state(gfp_mask);
2389 reclaim_state.reclaimed_slab = 0;
2390 current->reclaim_state = &reclaim_state;
2391
2392 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2393
2394 current->reclaim_state = NULL;
2395 lockdep_clear_current_reclaim_state();
2396 current->flags &= ~PF_MEMALLOC;
2397
2398 cond_resched();
2399
2400 return progress;
2401 }
2402
2403 /* The really slow allocator path where we enter direct reclaim */
2404 static inline struct page *
2405 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2406 struct zonelist *zonelist, enum zone_type high_zoneidx,
2407 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2408 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2409 {
2410 struct page *page = NULL;
2411 bool drained = false;
2412
2413 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2414 nodemask);
2415 if (unlikely(!(*did_some_progress)))
2416 return NULL;
2417
2418 /* After successful reclaim, reconsider all zones for allocation */
2419 if (IS_ENABLED(CONFIG_NUMA))
2420 zlc_clear_zones_full(zonelist);
2421
2422 retry:
2423 page = get_page_from_freelist(gfp_mask, nodemask, order,
2424 zonelist, high_zoneidx,
2425 alloc_flags & ~ALLOC_NO_WATERMARKS,
2426 preferred_zone, classzone_idx,
2427 migratetype);
2428
2429 /*
2430 * If an allocation failed after direct reclaim, it could be because
2431 * pages are pinned on the per-cpu lists. Drain them and try again
2432 */
2433 if (!page && !drained) {
2434 drain_all_pages();
2435 drained = true;
2436 goto retry;
2437 }
2438
2439 return page;
2440 }
2441
2442 /*
2443 * This is called in the allocator slow-path if the allocation request is of
2444 * sufficient urgency to ignore watermarks and take other desperate measures
2445 */
2446 static inline struct page *
2447 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2448 struct zonelist *zonelist, enum zone_type high_zoneidx,
2449 nodemask_t *nodemask, struct zone *preferred_zone,
2450 int classzone_idx, int migratetype)
2451 {
2452 struct page *page;
2453
2454 do {
2455 page = get_page_from_freelist(gfp_mask, nodemask, order,
2456 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2457 preferred_zone, classzone_idx, migratetype);
2458
2459 if (!page && gfp_mask & __GFP_NOFAIL)
2460 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2461 } while (!page && (gfp_mask & __GFP_NOFAIL));
2462
2463 return page;
2464 }
2465
2466 static void wake_all_kswapds(unsigned int order,
2467 struct zonelist *zonelist,
2468 enum zone_type high_zoneidx,
2469 struct zone *preferred_zone,
2470 nodemask_t *nodemask)
2471 {
2472 struct zoneref *z;
2473 struct zone *zone;
2474
2475 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2476 high_zoneidx, nodemask)
2477 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2478 }
2479
2480 static inline int
2481 gfp_to_alloc_flags(gfp_t gfp_mask)
2482 {
2483 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2484 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2485
2486 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2487 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2488
2489 /*
2490 * The caller may dip into page reserves a bit more if the caller
2491 * cannot run direct reclaim, or if the caller has realtime scheduling
2492 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2493 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2494 */
2495 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2496
2497 if (atomic) {
2498 /*
2499 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2500 * if it can't schedule.
2501 */
2502 if (!(gfp_mask & __GFP_NOMEMALLOC))
2503 alloc_flags |= ALLOC_HARDER;
2504 /*
2505 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2506 * comment for __cpuset_node_allowed_softwall().
2507 */
2508 alloc_flags &= ~ALLOC_CPUSET;
2509 } else if (unlikely(rt_task(current)) && !in_interrupt())
2510 alloc_flags |= ALLOC_HARDER;
2511
2512 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2513 if (gfp_mask & __GFP_MEMALLOC)
2514 alloc_flags |= ALLOC_NO_WATERMARKS;
2515 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2516 alloc_flags |= ALLOC_NO_WATERMARKS;
2517 else if (!in_interrupt() &&
2518 ((current->flags & PF_MEMALLOC) ||
2519 unlikely(test_thread_flag(TIF_MEMDIE))))
2520 alloc_flags |= ALLOC_NO_WATERMARKS;
2521 }
2522 #ifdef CONFIG_CMA
2523 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2524 alloc_flags |= ALLOC_CMA;
2525 #endif
2526 return alloc_flags;
2527 }
2528
2529 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2530 {
2531 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2532 }
2533
2534 static inline struct page *
2535 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2536 struct zonelist *zonelist, enum zone_type high_zoneidx,
2537 nodemask_t *nodemask, struct zone *preferred_zone,
2538 int classzone_idx, int migratetype)
2539 {
2540 const gfp_t wait = gfp_mask & __GFP_WAIT;
2541 struct page *page = NULL;
2542 int alloc_flags;
2543 unsigned long pages_reclaimed = 0;
2544 unsigned long did_some_progress;
2545 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2546 bool deferred_compaction = false;
2547 int contended_compaction = COMPACT_CONTENDED_NONE;
2548
2549 /*
2550 * In the slowpath, we sanity check order to avoid ever trying to
2551 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2552 * be using allocators in order of preference for an area that is
2553 * too large.
2554 */
2555 if (order >= MAX_ORDER) {
2556 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2557 return NULL;
2558 }
2559
2560 /*
2561 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2562 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2563 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2564 * using a larger set of nodes after it has established that the
2565 * allowed per node queues are empty and that nodes are
2566 * over allocated.
2567 */
2568 if (IS_ENABLED(CONFIG_NUMA) &&
2569 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2570 goto nopage;
2571
2572 restart:
2573 if (!(gfp_mask & __GFP_NO_KSWAPD))
2574 wake_all_kswapds(order, zonelist, high_zoneidx,
2575 preferred_zone, nodemask);
2576
2577 /*
2578 * OK, we're below the kswapd watermark and have kicked background
2579 * reclaim. Now things get more complex, so set up alloc_flags according
2580 * to how we want to proceed.
2581 */
2582 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2583
2584 /*
2585 * Find the true preferred zone if the allocation is unconstrained by
2586 * cpusets.
2587 */
2588 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2589 struct zoneref *preferred_zoneref;
2590 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2591 NULL, &preferred_zone);
2592 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2593 }
2594
2595 rebalance:
2596 /* This is the last chance, in general, before the goto nopage. */
2597 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2598 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2599 preferred_zone, classzone_idx, migratetype);
2600 if (page)
2601 goto got_pg;
2602
2603 /* Allocate without watermarks if the context allows */
2604 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2605 /*
2606 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2607 * the allocation is high priority and these type of
2608 * allocations are system rather than user orientated
2609 */
2610 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2611
2612 page = __alloc_pages_high_priority(gfp_mask, order,
2613 zonelist, high_zoneidx, nodemask,
2614 preferred_zone, classzone_idx, migratetype);
2615 if (page) {
2616 goto got_pg;
2617 }
2618 }
2619
2620 /* Atomic allocations - we can't balance anything */
2621 if (!wait) {
2622 /*
2623 * All existing users of the deprecated __GFP_NOFAIL are
2624 * blockable, so warn of any new users that actually allow this
2625 * type of allocation to fail.
2626 */
2627 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2628 goto nopage;
2629 }
2630
2631 /* Avoid recursion of direct reclaim */
2632 if (current->flags & PF_MEMALLOC)
2633 goto nopage;
2634
2635 /* Avoid allocations with no watermarks from looping endlessly */
2636 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2637 goto nopage;
2638
2639 /*
2640 * Try direct compaction. The first pass is asynchronous. Subsequent
2641 * attempts after direct reclaim are synchronous
2642 */
2643 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2644 high_zoneidx, nodemask, alloc_flags,
2645 preferred_zone,
2646 classzone_idx, migratetype,
2647 migration_mode, &contended_compaction,
2648 &deferred_compaction);
2649 if (page)
2650 goto got_pg;
2651
2652 /* Checks for THP-specific high-order allocations */
2653 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2654 /*
2655 * If compaction is deferred for high-order allocations, it is
2656 * because sync compaction recently failed. If this is the case
2657 * and the caller requested a THP allocation, we do not want
2658 * to heavily disrupt the system, so we fail the allocation
2659 * instead of entering direct reclaim.
2660 */
2661 if (deferred_compaction)
2662 goto nopage;
2663
2664 /*
2665 * In all zones where compaction was attempted (and not
2666 * deferred or skipped), lock contention has been detected.
2667 * For THP allocation we do not want to disrupt the others
2668 * so we fallback to base pages instead.
2669 */
2670 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2671 goto nopage;
2672
2673 /*
2674 * If compaction was aborted due to need_resched(), we do not
2675 * want to further increase allocation latency, unless it is
2676 * khugepaged trying to collapse.
2677 */
2678 if (contended_compaction == COMPACT_CONTENDED_SCHED
2679 && !(current->flags & PF_KTHREAD))
2680 goto nopage;
2681 }
2682
2683 /*
2684 * It can become very expensive to allocate transparent hugepages at
2685 * fault, so use asynchronous memory compaction for THP unless it is
2686 * khugepaged trying to collapse.
2687 */
2688 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2689 (current->flags & PF_KTHREAD))
2690 migration_mode = MIGRATE_SYNC_LIGHT;
2691
2692 /* Try direct reclaim and then allocating */
2693 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2694 zonelist, high_zoneidx,
2695 nodemask,
2696 alloc_flags, preferred_zone,
2697 classzone_idx, migratetype,
2698 &did_some_progress);
2699 if (page)
2700 goto got_pg;
2701
2702 /*
2703 * If we failed to make any progress reclaiming, then we are
2704 * running out of options and have to consider going OOM
2705 */
2706 if (!did_some_progress) {
2707 if (oom_gfp_allowed(gfp_mask)) {
2708 if (oom_killer_disabled)
2709 goto nopage;
2710 /* Coredumps can quickly deplete all memory reserves */
2711 if ((current->flags & PF_DUMPCORE) &&
2712 !(gfp_mask & __GFP_NOFAIL))
2713 goto nopage;
2714 page = __alloc_pages_may_oom(gfp_mask, order,
2715 zonelist, high_zoneidx,
2716 nodemask, preferred_zone,
2717 classzone_idx, migratetype);
2718 if (page)
2719 goto got_pg;
2720
2721 if (!(gfp_mask & __GFP_NOFAIL)) {
2722 /*
2723 * The oom killer is not called for high-order
2724 * allocations that may fail, so if no progress
2725 * is being made, there are no other options and
2726 * retrying is unlikely to help.
2727 */
2728 if (order > PAGE_ALLOC_COSTLY_ORDER)
2729 goto nopage;
2730 /*
2731 * The oom killer is not called for lowmem
2732 * allocations to prevent needlessly killing
2733 * innocent tasks.
2734 */
2735 if (high_zoneidx < ZONE_NORMAL)
2736 goto nopage;
2737 }
2738
2739 goto restart;
2740 }
2741 }
2742
2743 /* Check if we should retry the allocation */
2744 pages_reclaimed += did_some_progress;
2745 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2746 pages_reclaimed)) {
2747 /* Wait for some write requests to complete then retry */
2748 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2749 goto rebalance;
2750 } else {
2751 /*
2752 * High-order allocations do not necessarily loop after
2753 * direct reclaim and reclaim/compaction depends on compaction
2754 * being called after reclaim so call directly if necessary
2755 */
2756 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2757 high_zoneidx, nodemask, alloc_flags,
2758 preferred_zone,
2759 classzone_idx, migratetype,
2760 migration_mode, &contended_compaction,
2761 &deferred_compaction);
2762 if (page)
2763 goto got_pg;
2764 }
2765
2766 nopage:
2767 warn_alloc_failed(gfp_mask, order, NULL);
2768 return page;
2769 got_pg:
2770 if (kmemcheck_enabled)
2771 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2772
2773 return page;
2774 }
2775
2776 /*
2777 * This is the 'heart' of the zoned buddy allocator.
2778 */
2779 struct page *
2780 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2781 struct zonelist *zonelist, nodemask_t *nodemask)
2782 {
2783 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2784 struct zone *preferred_zone;
2785 struct zoneref *preferred_zoneref;
2786 struct page *page = NULL;
2787 int migratetype = gfpflags_to_migratetype(gfp_mask);
2788 unsigned int cpuset_mems_cookie;
2789 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2790 int classzone_idx;
2791
2792 gfp_mask &= gfp_allowed_mask;
2793
2794 lockdep_trace_alloc(gfp_mask);
2795
2796 might_sleep_if(gfp_mask & __GFP_WAIT);
2797
2798 if (should_fail_alloc_page(gfp_mask, order))
2799 return NULL;
2800
2801 /*
2802 * Check the zones suitable for the gfp_mask contain at least one
2803 * valid zone. It's possible to have an empty zonelist as a result
2804 * of GFP_THISNODE and a memoryless node
2805 */
2806 if (unlikely(!zonelist->_zonerefs->zone))
2807 return NULL;
2808
2809 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2810 alloc_flags |= ALLOC_CMA;
2811
2812 retry_cpuset:
2813 cpuset_mems_cookie = read_mems_allowed_begin();
2814
2815 /* The preferred zone is used for statistics later */
2816 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2817 nodemask ? : &cpuset_current_mems_allowed,
2818 &preferred_zone);
2819 if (!preferred_zone)
2820 goto out;
2821 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2822
2823 /* First allocation attempt */
2824 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2825 zonelist, high_zoneidx, alloc_flags,
2826 preferred_zone, classzone_idx, migratetype);
2827 if (unlikely(!page)) {
2828 /*
2829 * Runtime PM, block IO and its error handling path
2830 * can deadlock because I/O on the device might not
2831 * complete.
2832 */
2833 gfp_mask = memalloc_noio_flags(gfp_mask);
2834 page = __alloc_pages_slowpath(gfp_mask, order,
2835 zonelist, high_zoneidx, nodemask,
2836 preferred_zone, classzone_idx, migratetype);
2837 }
2838
2839 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2840
2841 out:
2842 /*
2843 * When updating a task's mems_allowed, it is possible to race with
2844 * parallel threads in such a way that an allocation can fail while
2845 * the mask is being updated. If a page allocation is about to fail,
2846 * check if the cpuset changed during allocation and if so, retry.
2847 */
2848 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2849 goto retry_cpuset;
2850
2851 return page;
2852 }
2853 EXPORT_SYMBOL(__alloc_pages_nodemask);
2854
2855 /*
2856 * Common helper functions.
2857 */
2858 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2859 {
2860 struct page *page;
2861
2862 /*
2863 * __get_free_pages() returns a 32-bit address, which cannot represent
2864 * a highmem page
2865 */
2866 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2867
2868 page = alloc_pages(gfp_mask, order);
2869 if (!page)
2870 return 0;
2871 return (unsigned long) page_address(page);
2872 }
2873 EXPORT_SYMBOL(__get_free_pages);
2874
2875 unsigned long get_zeroed_page(gfp_t gfp_mask)
2876 {
2877 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2878 }
2879 EXPORT_SYMBOL(get_zeroed_page);
2880
2881 void __free_pages(struct page *page, unsigned int order)
2882 {
2883 if (put_page_testzero(page)) {
2884 if (order == 0)
2885 free_hot_cold_page(page, false);
2886 else
2887 __free_pages_ok(page, order);
2888 }
2889 }
2890
2891 EXPORT_SYMBOL(__free_pages);
2892
2893 void free_pages(unsigned long addr, unsigned int order)
2894 {
2895 if (addr != 0) {
2896 VM_BUG_ON(!virt_addr_valid((void *)addr));
2897 __free_pages(virt_to_page((void *)addr), order);
2898 }
2899 }
2900
2901 EXPORT_SYMBOL(free_pages);
2902
2903 /*
2904 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2905 * of the current memory cgroup.
2906 *
2907 * It should be used when the caller would like to use kmalloc, but since the
2908 * allocation is large, it has to fall back to the page allocator.
2909 */
2910 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2911 {
2912 struct page *page;
2913 struct mem_cgroup *memcg = NULL;
2914
2915 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2916 return NULL;
2917 page = alloc_pages(gfp_mask, order);
2918 memcg_kmem_commit_charge(page, memcg, order);
2919 return page;
2920 }
2921
2922 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2923 {
2924 struct page *page;
2925 struct mem_cgroup *memcg = NULL;
2926
2927 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2928 return NULL;
2929 page = alloc_pages_node(nid, gfp_mask, order);
2930 memcg_kmem_commit_charge(page, memcg, order);
2931 return page;
2932 }
2933
2934 /*
2935 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2936 * alloc_kmem_pages.
2937 */
2938 void __free_kmem_pages(struct page *page, unsigned int order)
2939 {
2940 memcg_kmem_uncharge_pages(page, order);
2941 __free_pages(page, order);
2942 }
2943
2944 void free_kmem_pages(unsigned long addr, unsigned int order)
2945 {
2946 if (addr != 0) {
2947 VM_BUG_ON(!virt_addr_valid((void *)addr));
2948 __free_kmem_pages(virt_to_page((void *)addr), order);
2949 }
2950 }
2951
2952 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2953 {
2954 if (addr) {
2955 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2956 unsigned long used = addr + PAGE_ALIGN(size);
2957
2958 split_page(virt_to_page((void *)addr), order);
2959 while (used < alloc_end) {
2960 free_page(used);
2961 used += PAGE_SIZE;
2962 }
2963 }
2964 return (void *)addr;
2965 }
2966
2967 /**
2968 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2969 * @size: the number of bytes to allocate
2970 * @gfp_mask: GFP flags for the allocation
2971 *
2972 * This function is similar to alloc_pages(), except that it allocates the
2973 * minimum number of pages to satisfy the request. alloc_pages() can only
2974 * allocate memory in power-of-two pages.
2975 *
2976 * This function is also limited by MAX_ORDER.
2977 *
2978 * Memory allocated by this function must be released by free_pages_exact().
2979 */
2980 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2981 {
2982 unsigned int order = get_order(size);
2983 unsigned long addr;
2984
2985 addr = __get_free_pages(gfp_mask, order);
2986 return make_alloc_exact(addr, order, size);
2987 }
2988 EXPORT_SYMBOL(alloc_pages_exact);
2989
2990 /**
2991 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2992 * pages on a node.
2993 * @nid: the preferred node ID where memory should be allocated
2994 * @size: the number of bytes to allocate
2995 * @gfp_mask: GFP flags for the allocation
2996 *
2997 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2998 * back.
2999 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3000 * but is not exact.
3001 */
3002 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3003 {
3004 unsigned order = get_order(size);
3005 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3006 if (!p)
3007 return NULL;
3008 return make_alloc_exact((unsigned long)page_address(p), order, size);
3009 }
3010
3011 /**
3012 * free_pages_exact - release memory allocated via alloc_pages_exact()
3013 * @virt: the value returned by alloc_pages_exact.
3014 * @size: size of allocation, same value as passed to alloc_pages_exact().
3015 *
3016 * Release the memory allocated by a previous call to alloc_pages_exact.
3017 */
3018 void free_pages_exact(void *virt, size_t size)
3019 {
3020 unsigned long addr = (unsigned long)virt;
3021 unsigned long end = addr + PAGE_ALIGN(size);
3022
3023 while (addr < end) {
3024 free_page(addr);
3025 addr += PAGE_SIZE;
3026 }
3027 }
3028 EXPORT_SYMBOL(free_pages_exact);
3029
3030 /**
3031 * nr_free_zone_pages - count number of pages beyond high watermark
3032 * @offset: The zone index of the highest zone
3033 *
3034 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3035 * high watermark within all zones at or below a given zone index. For each
3036 * zone, the number of pages is calculated as:
3037 * managed_pages - high_pages
3038 */
3039 static unsigned long nr_free_zone_pages(int offset)
3040 {
3041 struct zoneref *z;
3042 struct zone *zone;
3043
3044 /* Just pick one node, since fallback list is circular */
3045 unsigned long sum = 0;
3046
3047 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3048
3049 for_each_zone_zonelist(zone, z, zonelist, offset) {
3050 unsigned long size = zone->managed_pages;
3051 unsigned long high = high_wmark_pages(zone);
3052 if (size > high)
3053 sum += size - high;
3054 }
3055
3056 return sum;
3057 }
3058
3059 /**
3060 * nr_free_buffer_pages - count number of pages beyond high watermark
3061 *
3062 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3063 * watermark within ZONE_DMA and ZONE_NORMAL.
3064 */
3065 unsigned long nr_free_buffer_pages(void)
3066 {
3067 return nr_free_zone_pages(gfp_zone(GFP_USER));
3068 }
3069 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3070
3071 /**
3072 * nr_free_pagecache_pages - count number of pages beyond high watermark
3073 *
3074 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3075 * high watermark within all zones.
3076 */
3077 unsigned long nr_free_pagecache_pages(void)
3078 {
3079 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3080 }
3081
3082 static inline void show_node(struct zone *zone)
3083 {
3084 if (IS_ENABLED(CONFIG_NUMA))
3085 printk("Node %d ", zone_to_nid(zone));
3086 }
3087
3088 void si_meminfo(struct sysinfo *val)
3089 {
3090 val->totalram = totalram_pages;
3091 val->sharedram = global_page_state(NR_SHMEM);
3092 val->freeram = global_page_state(NR_FREE_PAGES);
3093 val->bufferram = nr_blockdev_pages();
3094 val->totalhigh = totalhigh_pages;
3095 val->freehigh = nr_free_highpages();
3096 val->mem_unit = PAGE_SIZE;
3097 }
3098
3099 EXPORT_SYMBOL(si_meminfo);
3100
3101 #ifdef CONFIG_NUMA
3102 void si_meminfo_node(struct sysinfo *val, int nid)
3103 {
3104 int zone_type; /* needs to be signed */
3105 unsigned long managed_pages = 0;
3106 pg_data_t *pgdat = NODE_DATA(nid);
3107
3108 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3109 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3110 val->totalram = managed_pages;
3111 val->sharedram = node_page_state(nid, NR_SHMEM);
3112 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3113 #ifdef CONFIG_HIGHMEM
3114 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3115 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3116 NR_FREE_PAGES);
3117 #else
3118 val->totalhigh = 0;
3119 val->freehigh = 0;
3120 #endif
3121 val->mem_unit = PAGE_SIZE;
3122 }
3123 #endif
3124
3125 /*
3126 * Determine whether the node should be displayed or not, depending on whether
3127 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3128 */
3129 bool skip_free_areas_node(unsigned int flags, int nid)
3130 {
3131 bool ret = false;
3132 unsigned int cpuset_mems_cookie;
3133
3134 if (!(flags & SHOW_MEM_FILTER_NODES))
3135 goto out;
3136
3137 do {
3138 cpuset_mems_cookie = read_mems_allowed_begin();
3139 ret = !node_isset(nid, cpuset_current_mems_allowed);
3140 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3141 out:
3142 return ret;
3143 }
3144
3145 #define K(x) ((x) << (PAGE_SHIFT-10))
3146
3147 static void show_migration_types(unsigned char type)
3148 {
3149 static const char types[MIGRATE_TYPES] = {
3150 [MIGRATE_UNMOVABLE] = 'U',
3151 [MIGRATE_RECLAIMABLE] = 'E',
3152 [MIGRATE_MOVABLE] = 'M',
3153 [MIGRATE_RESERVE] = 'R',
3154 #ifdef CONFIG_CMA
3155 [MIGRATE_CMA] = 'C',
3156 #endif
3157 #ifdef CONFIG_MEMORY_ISOLATION
3158 [MIGRATE_ISOLATE] = 'I',
3159 #endif
3160 };
3161 char tmp[MIGRATE_TYPES + 1];
3162 char *p = tmp;
3163 int i;
3164
3165 for (i = 0; i < MIGRATE_TYPES; i++) {
3166 if (type & (1 << i))
3167 *p++ = types[i];
3168 }
3169
3170 *p = '\0';
3171 printk("(%s) ", tmp);
3172 }
3173
3174 /*
3175 * Show free area list (used inside shift_scroll-lock stuff)
3176 * We also calculate the percentage fragmentation. We do this by counting the
3177 * memory on each free list with the exception of the first item on the list.
3178 * Suppresses nodes that are not allowed by current's cpuset if
3179 * SHOW_MEM_FILTER_NODES is passed.
3180 */
3181 void show_free_areas(unsigned int filter)
3182 {
3183 int cpu;
3184 struct zone *zone;
3185
3186 for_each_populated_zone(zone) {
3187 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3188 continue;
3189 show_node(zone);
3190 printk("%s per-cpu:\n", zone->name);
3191
3192 for_each_online_cpu(cpu) {
3193 struct per_cpu_pageset *pageset;
3194
3195 pageset = per_cpu_ptr(zone->pageset, cpu);
3196
3197 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3198 cpu, pageset->pcp.high,
3199 pageset->pcp.batch, pageset->pcp.count);
3200 }
3201 }
3202
3203 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3204 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3205 " unevictable:%lu"
3206 " dirty:%lu writeback:%lu unstable:%lu\n"
3207 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3208 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3209 " free_cma:%lu\n",
3210 global_page_state(NR_ACTIVE_ANON),
3211 global_page_state(NR_INACTIVE_ANON),
3212 global_page_state(NR_ISOLATED_ANON),
3213 global_page_state(NR_ACTIVE_FILE),
3214 global_page_state(NR_INACTIVE_FILE),
3215 global_page_state(NR_ISOLATED_FILE),
3216 global_page_state(NR_UNEVICTABLE),
3217 global_page_state(NR_FILE_DIRTY),
3218 global_page_state(NR_WRITEBACK),
3219 global_page_state(NR_UNSTABLE_NFS),
3220 global_page_state(NR_FREE_PAGES),
3221 global_page_state(NR_SLAB_RECLAIMABLE),
3222 global_page_state(NR_SLAB_UNRECLAIMABLE),
3223 global_page_state(NR_FILE_MAPPED),
3224 global_page_state(NR_SHMEM),
3225 global_page_state(NR_PAGETABLE),
3226 global_page_state(NR_BOUNCE),
3227 global_page_state(NR_FREE_CMA_PAGES));
3228
3229 for_each_populated_zone(zone) {
3230 int i;
3231
3232 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3233 continue;
3234 show_node(zone);
3235 printk("%s"
3236 " free:%lukB"
3237 " min:%lukB"
3238 " low:%lukB"
3239 " high:%lukB"
3240 " active_anon:%lukB"
3241 " inactive_anon:%lukB"
3242 " active_file:%lukB"
3243 " inactive_file:%lukB"
3244 " unevictable:%lukB"
3245 " isolated(anon):%lukB"
3246 " isolated(file):%lukB"
3247 " present:%lukB"
3248 " managed:%lukB"
3249 " mlocked:%lukB"
3250 " dirty:%lukB"
3251 " writeback:%lukB"
3252 " mapped:%lukB"
3253 " shmem:%lukB"
3254 " slab_reclaimable:%lukB"
3255 " slab_unreclaimable:%lukB"
3256 " kernel_stack:%lukB"
3257 " pagetables:%lukB"
3258 " unstable:%lukB"
3259 " bounce:%lukB"
3260 " free_cma:%lukB"
3261 " writeback_tmp:%lukB"
3262 " pages_scanned:%lu"
3263 " all_unreclaimable? %s"
3264 "\n",
3265 zone->name,
3266 K(zone_page_state(zone, NR_FREE_PAGES)),
3267 K(min_wmark_pages(zone)),
3268 K(low_wmark_pages(zone)),
3269 K(high_wmark_pages(zone)),
3270 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3271 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3272 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3273 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3274 K(zone_page_state(zone, NR_UNEVICTABLE)),
3275 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3276 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3277 K(zone->present_pages),
3278 K(zone->managed_pages),
3279 K(zone_page_state(zone, NR_MLOCK)),
3280 K(zone_page_state(zone, NR_FILE_DIRTY)),
3281 K(zone_page_state(zone, NR_WRITEBACK)),
3282 K(zone_page_state(zone, NR_FILE_MAPPED)),
3283 K(zone_page_state(zone, NR_SHMEM)),
3284 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3285 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3286 zone_page_state(zone, NR_KERNEL_STACK) *
3287 THREAD_SIZE / 1024,
3288 K(zone_page_state(zone, NR_PAGETABLE)),
3289 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3290 K(zone_page_state(zone, NR_BOUNCE)),
3291 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3292 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3293 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3294 (!zone_reclaimable(zone) ? "yes" : "no")
3295 );
3296 printk("lowmem_reserve[]:");
3297 for (i = 0; i < MAX_NR_ZONES; i++)
3298 printk(" %ld", zone->lowmem_reserve[i]);
3299 printk("\n");
3300 }
3301
3302 for_each_populated_zone(zone) {
3303 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3304 unsigned char types[MAX_ORDER];
3305
3306 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3307 continue;
3308 show_node(zone);
3309 printk("%s: ", zone->name);
3310
3311 spin_lock_irqsave(&zone->lock, flags);
3312 for (order = 0; order < MAX_ORDER; order++) {
3313 struct free_area *area = &zone->free_area[order];
3314 int type;
3315
3316 nr[order] = area->nr_free;
3317 total += nr[order] << order;
3318
3319 types[order] = 0;
3320 for (type = 0; type < MIGRATE_TYPES; type++) {
3321 if (!list_empty(&area->free_list[type]))
3322 types[order] |= 1 << type;
3323 }
3324 }
3325 spin_unlock_irqrestore(&zone->lock, flags);
3326 for (order = 0; order < MAX_ORDER; order++) {
3327 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3328 if (nr[order])
3329 show_migration_types(types[order]);
3330 }
3331 printk("= %lukB\n", K(total));
3332 }
3333
3334 hugetlb_show_meminfo();
3335
3336 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3337
3338 show_swap_cache_info();
3339 }
3340
3341 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3342 {
3343 zoneref->zone = zone;
3344 zoneref->zone_idx = zone_idx(zone);
3345 }
3346
3347 /*
3348 * Builds allocation fallback zone lists.
3349 *
3350 * Add all populated zones of a node to the zonelist.
3351 */
3352 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3353 int nr_zones)
3354 {
3355 struct zone *zone;
3356 enum zone_type zone_type = MAX_NR_ZONES;
3357
3358 do {
3359 zone_type--;
3360 zone = pgdat->node_zones + zone_type;
3361 if (populated_zone(zone)) {
3362 zoneref_set_zone(zone,
3363 &zonelist->_zonerefs[nr_zones++]);
3364 check_highest_zone(zone_type);
3365 }
3366 } while (zone_type);
3367
3368 return nr_zones;
3369 }
3370
3371
3372 /*
3373 * zonelist_order:
3374 * 0 = automatic detection of better ordering.
3375 * 1 = order by ([node] distance, -zonetype)
3376 * 2 = order by (-zonetype, [node] distance)
3377 *
3378 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3379 * the same zonelist. So only NUMA can configure this param.
3380 */
3381 #define ZONELIST_ORDER_DEFAULT 0
3382 #define ZONELIST_ORDER_NODE 1
3383 #define ZONELIST_ORDER_ZONE 2
3384
3385 /* zonelist order in the kernel.
3386 * set_zonelist_order() will set this to NODE or ZONE.
3387 */
3388 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3389 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3390
3391
3392 #ifdef CONFIG_NUMA
3393 /* The value user specified ....changed by config */
3394 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3395 /* string for sysctl */
3396 #define NUMA_ZONELIST_ORDER_LEN 16
3397 char numa_zonelist_order[16] = "default";
3398
3399 /*
3400 * interface for configure zonelist ordering.
3401 * command line option "numa_zonelist_order"
3402 * = "[dD]efault - default, automatic configuration.
3403 * = "[nN]ode - order by node locality, then by zone within node
3404 * = "[zZ]one - order by zone, then by locality within zone
3405 */
3406
3407 static int __parse_numa_zonelist_order(char *s)
3408 {
3409 if (*s == 'd' || *s == 'D') {
3410 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3411 } else if (*s == 'n' || *s == 'N') {
3412 user_zonelist_order = ZONELIST_ORDER_NODE;
3413 } else if (*s == 'z' || *s == 'Z') {
3414 user_zonelist_order = ZONELIST_ORDER_ZONE;
3415 } else {
3416 printk(KERN_WARNING
3417 "Ignoring invalid numa_zonelist_order value: "
3418 "%s\n", s);
3419 return -EINVAL;
3420 }
3421 return 0;
3422 }
3423
3424 static __init int setup_numa_zonelist_order(char *s)
3425 {
3426 int ret;
3427
3428 if (!s)
3429 return 0;
3430
3431 ret = __parse_numa_zonelist_order(s);
3432 if (ret == 0)
3433 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3434
3435 return ret;
3436 }
3437 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3438
3439 /*
3440 * sysctl handler for numa_zonelist_order
3441 */
3442 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3443 void __user *buffer, size_t *length,
3444 loff_t *ppos)
3445 {
3446 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3447 int ret;
3448 static DEFINE_MUTEX(zl_order_mutex);
3449
3450 mutex_lock(&zl_order_mutex);
3451 if (write) {
3452 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3453 ret = -EINVAL;
3454 goto out;
3455 }
3456 strcpy(saved_string, (char *)table->data);
3457 }
3458 ret = proc_dostring(table, write, buffer, length, ppos);
3459 if (ret)
3460 goto out;
3461 if (write) {
3462 int oldval = user_zonelist_order;
3463
3464 ret = __parse_numa_zonelist_order((char *)table->data);
3465 if (ret) {
3466 /*
3467 * bogus value. restore saved string
3468 */
3469 strncpy((char *)table->data, saved_string,
3470 NUMA_ZONELIST_ORDER_LEN);
3471 user_zonelist_order = oldval;
3472 } else if (oldval != user_zonelist_order) {
3473 mutex_lock(&zonelists_mutex);
3474 build_all_zonelists(NULL, NULL);
3475 mutex_unlock(&zonelists_mutex);
3476 }
3477 }
3478 out:
3479 mutex_unlock(&zl_order_mutex);
3480 return ret;
3481 }
3482
3483
3484 #define MAX_NODE_LOAD (nr_online_nodes)
3485 static int node_load[MAX_NUMNODES];
3486
3487 /**
3488 * find_next_best_node - find the next node that should appear in a given node's fallback list
3489 * @node: node whose fallback list we're appending
3490 * @used_node_mask: nodemask_t of already used nodes
3491 *
3492 * We use a number of factors to determine which is the next node that should
3493 * appear on a given node's fallback list. The node should not have appeared
3494 * already in @node's fallback list, and it should be the next closest node
3495 * according to the distance array (which contains arbitrary distance values
3496 * from each node to each node in the system), and should also prefer nodes
3497 * with no CPUs, since presumably they'll have very little allocation pressure
3498 * on them otherwise.
3499 * It returns -1 if no node is found.
3500 */
3501 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3502 {
3503 int n, val;
3504 int min_val = INT_MAX;
3505 int best_node = NUMA_NO_NODE;
3506 const struct cpumask *tmp = cpumask_of_node(0);
3507
3508 /* Use the local node if we haven't already */
3509 if (!node_isset(node, *used_node_mask)) {
3510 node_set(node, *used_node_mask);
3511 return node;
3512 }
3513
3514 for_each_node_state(n, N_MEMORY) {
3515
3516 /* Don't want a node to appear more than once */
3517 if (node_isset(n, *used_node_mask))
3518 continue;
3519
3520 /* Use the distance array to find the distance */
3521 val = node_distance(node, n);
3522
3523 /* Penalize nodes under us ("prefer the next node") */
3524 val += (n < node);
3525
3526 /* Give preference to headless and unused nodes */
3527 tmp = cpumask_of_node(n);
3528 if (!cpumask_empty(tmp))
3529 val += PENALTY_FOR_NODE_WITH_CPUS;
3530
3531 /* Slight preference for less loaded node */
3532 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3533 val += node_load[n];
3534
3535 if (val < min_val) {
3536 min_val = val;
3537 best_node = n;
3538 }
3539 }
3540
3541 if (best_node >= 0)
3542 node_set(best_node, *used_node_mask);
3543
3544 return best_node;
3545 }
3546
3547
3548 /*
3549 * Build zonelists ordered by node and zones within node.
3550 * This results in maximum locality--normal zone overflows into local
3551 * DMA zone, if any--but risks exhausting DMA zone.
3552 */
3553 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3554 {
3555 int j;
3556 struct zonelist *zonelist;
3557
3558 zonelist = &pgdat->node_zonelists[0];
3559 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3560 ;
3561 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3562 zonelist->_zonerefs[j].zone = NULL;
3563 zonelist->_zonerefs[j].zone_idx = 0;
3564 }
3565
3566 /*
3567 * Build gfp_thisnode zonelists
3568 */
3569 static void build_thisnode_zonelists(pg_data_t *pgdat)
3570 {
3571 int j;
3572 struct zonelist *zonelist;
3573
3574 zonelist = &pgdat->node_zonelists[1];
3575 j = build_zonelists_node(pgdat, zonelist, 0);
3576 zonelist->_zonerefs[j].zone = NULL;
3577 zonelist->_zonerefs[j].zone_idx = 0;
3578 }
3579
3580 /*
3581 * Build zonelists ordered by zone and nodes within zones.
3582 * This results in conserving DMA zone[s] until all Normal memory is
3583 * exhausted, but results in overflowing to remote node while memory
3584 * may still exist in local DMA zone.
3585 */
3586 static int node_order[MAX_NUMNODES];
3587
3588 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3589 {
3590 int pos, j, node;
3591 int zone_type; /* needs to be signed */
3592 struct zone *z;
3593 struct zonelist *zonelist;
3594
3595 zonelist = &pgdat->node_zonelists[0];
3596 pos = 0;
3597 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3598 for (j = 0; j < nr_nodes; j++) {
3599 node = node_order[j];
3600 z = &NODE_DATA(node)->node_zones[zone_type];
3601 if (populated_zone(z)) {
3602 zoneref_set_zone(z,
3603 &zonelist->_zonerefs[pos++]);
3604 check_highest_zone(zone_type);
3605 }
3606 }
3607 }
3608 zonelist->_zonerefs[pos].zone = NULL;
3609 zonelist->_zonerefs[pos].zone_idx = 0;
3610 }
3611
3612 #if defined(CONFIG_64BIT)
3613 /*
3614 * Devices that require DMA32/DMA are relatively rare and do not justify a
3615 * penalty to every machine in case the specialised case applies. Default
3616 * to Node-ordering on 64-bit NUMA machines
3617 */
3618 static int default_zonelist_order(void)
3619 {
3620 return ZONELIST_ORDER_NODE;
3621 }
3622 #else
3623 /*
3624 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3625 * by the kernel. If processes running on node 0 deplete the low memory zone
3626 * then reclaim will occur more frequency increasing stalls and potentially
3627 * be easier to OOM if a large percentage of the zone is under writeback or
3628 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3629 * Hence, default to zone ordering on 32-bit.
3630 */
3631 static int default_zonelist_order(void)
3632 {
3633 return ZONELIST_ORDER_ZONE;
3634 }
3635 #endif /* CONFIG_64BIT */
3636
3637 static void set_zonelist_order(void)
3638 {
3639 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3640 current_zonelist_order = default_zonelist_order();
3641 else
3642 current_zonelist_order = user_zonelist_order;
3643 }
3644
3645 static void build_zonelists(pg_data_t *pgdat)
3646 {
3647 int j, node, load;
3648 enum zone_type i;
3649 nodemask_t used_mask;
3650 int local_node, prev_node;
3651 struct zonelist *zonelist;
3652 int order = current_zonelist_order;
3653
3654 /* initialize zonelists */
3655 for (i = 0; i < MAX_ZONELISTS; i++) {
3656 zonelist = pgdat->node_zonelists + i;
3657 zonelist->_zonerefs[0].zone = NULL;
3658 zonelist->_zonerefs[0].zone_idx = 0;
3659 }
3660
3661 /* NUMA-aware ordering of nodes */
3662 local_node = pgdat->node_id;
3663 load = nr_online_nodes;
3664 prev_node = local_node;
3665 nodes_clear(used_mask);
3666
3667 memset(node_order, 0, sizeof(node_order));
3668 j = 0;
3669
3670 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3671 /*
3672 * We don't want to pressure a particular node.
3673 * So adding penalty to the first node in same
3674 * distance group to make it round-robin.
3675 */
3676 if (node_distance(local_node, node) !=
3677 node_distance(local_node, prev_node))
3678 node_load[node] = load;
3679
3680 prev_node = node;
3681 load--;
3682 if (order == ZONELIST_ORDER_NODE)
3683 build_zonelists_in_node_order(pgdat, node);
3684 else
3685 node_order[j++] = node; /* remember order */
3686 }
3687
3688 if (order == ZONELIST_ORDER_ZONE) {
3689 /* calculate node order -- i.e., DMA last! */
3690 build_zonelists_in_zone_order(pgdat, j);
3691 }
3692
3693 build_thisnode_zonelists(pgdat);
3694 }
3695
3696 /* Construct the zonelist performance cache - see further mmzone.h */
3697 static void build_zonelist_cache(pg_data_t *pgdat)
3698 {
3699 struct zonelist *zonelist;
3700 struct zonelist_cache *zlc;
3701 struct zoneref *z;
3702
3703 zonelist = &pgdat->node_zonelists[0];
3704 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3705 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3706 for (z = zonelist->_zonerefs; z->zone; z++)
3707 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3708 }
3709
3710 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3711 /*
3712 * Return node id of node used for "local" allocations.
3713 * I.e., first node id of first zone in arg node's generic zonelist.
3714 * Used for initializing percpu 'numa_mem', which is used primarily
3715 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3716 */
3717 int local_memory_node(int node)
3718 {
3719 struct zone *zone;
3720
3721 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3722 gfp_zone(GFP_KERNEL),
3723 NULL,
3724 &zone);
3725 return zone->node;
3726 }
3727 #endif
3728
3729 #else /* CONFIG_NUMA */
3730
3731 static void set_zonelist_order(void)
3732 {
3733 current_zonelist_order = ZONELIST_ORDER_ZONE;
3734 }
3735
3736 static void build_zonelists(pg_data_t *pgdat)
3737 {
3738 int node, local_node;
3739 enum zone_type j;
3740 struct zonelist *zonelist;
3741
3742 local_node = pgdat->node_id;
3743
3744 zonelist = &pgdat->node_zonelists[0];
3745 j = build_zonelists_node(pgdat, zonelist, 0);
3746
3747 /*
3748 * Now we build the zonelist so that it contains the zones
3749 * of all the other nodes.
3750 * We don't want to pressure a particular node, so when
3751 * building the zones for node N, we make sure that the
3752 * zones coming right after the local ones are those from
3753 * node N+1 (modulo N)
3754 */
3755 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3756 if (!node_online(node))
3757 continue;
3758 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3759 }
3760 for (node = 0; node < local_node; node++) {
3761 if (!node_online(node))
3762 continue;
3763 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3764 }
3765
3766 zonelist->_zonerefs[j].zone = NULL;
3767 zonelist->_zonerefs[j].zone_idx = 0;
3768 }
3769
3770 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3771 static void build_zonelist_cache(pg_data_t *pgdat)
3772 {
3773 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3774 }
3775
3776 #endif /* CONFIG_NUMA */
3777
3778 /*
3779 * Boot pageset table. One per cpu which is going to be used for all
3780 * zones and all nodes. The parameters will be set in such a way
3781 * that an item put on a list will immediately be handed over to
3782 * the buddy list. This is safe since pageset manipulation is done
3783 * with interrupts disabled.
3784 *
3785 * The boot_pagesets must be kept even after bootup is complete for
3786 * unused processors and/or zones. They do play a role for bootstrapping
3787 * hotplugged processors.
3788 *
3789 * zoneinfo_show() and maybe other functions do
3790 * not check if the processor is online before following the pageset pointer.
3791 * Other parts of the kernel may not check if the zone is available.
3792 */
3793 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3794 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3795 static void setup_zone_pageset(struct zone *zone);
3796
3797 /*
3798 * Global mutex to protect against size modification of zonelists
3799 * as well as to serialize pageset setup for the new populated zone.
3800 */
3801 DEFINE_MUTEX(zonelists_mutex);
3802
3803 /* return values int ....just for stop_machine() */
3804 static int __build_all_zonelists(void *data)
3805 {
3806 int nid;
3807 int cpu;
3808 pg_data_t *self = data;
3809
3810 #ifdef CONFIG_NUMA
3811 memset(node_load, 0, sizeof(node_load));
3812 #endif
3813
3814 if (self && !node_online(self->node_id)) {
3815 build_zonelists(self);
3816 build_zonelist_cache(self);
3817 }
3818
3819 for_each_online_node(nid) {
3820 pg_data_t *pgdat = NODE_DATA(nid);
3821
3822 build_zonelists(pgdat);
3823 build_zonelist_cache(pgdat);
3824 }
3825
3826 /*
3827 * Initialize the boot_pagesets that are going to be used
3828 * for bootstrapping processors. The real pagesets for
3829 * each zone will be allocated later when the per cpu
3830 * allocator is available.
3831 *
3832 * boot_pagesets are used also for bootstrapping offline
3833 * cpus if the system is already booted because the pagesets
3834 * are needed to initialize allocators on a specific cpu too.
3835 * F.e. the percpu allocator needs the page allocator which
3836 * needs the percpu allocator in order to allocate its pagesets
3837 * (a chicken-egg dilemma).
3838 */
3839 for_each_possible_cpu(cpu) {
3840 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3841
3842 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3843 /*
3844 * We now know the "local memory node" for each node--
3845 * i.e., the node of the first zone in the generic zonelist.
3846 * Set up numa_mem percpu variable for on-line cpus. During
3847 * boot, only the boot cpu should be on-line; we'll init the
3848 * secondary cpus' numa_mem as they come on-line. During
3849 * node/memory hotplug, we'll fixup all on-line cpus.
3850 */
3851 if (cpu_online(cpu))
3852 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3853 #endif
3854 }
3855
3856 return 0;
3857 }
3858
3859 /*
3860 * Called with zonelists_mutex held always
3861 * unless system_state == SYSTEM_BOOTING.
3862 */
3863 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3864 {
3865 set_zonelist_order();
3866
3867 if (system_state == SYSTEM_BOOTING) {
3868 __build_all_zonelists(NULL);
3869 mminit_verify_zonelist();
3870 cpuset_init_current_mems_allowed();
3871 } else {
3872 #ifdef CONFIG_MEMORY_HOTPLUG
3873 if (zone)
3874 setup_zone_pageset(zone);
3875 #endif
3876 /* we have to stop all cpus to guarantee there is no user
3877 of zonelist */
3878 stop_machine(__build_all_zonelists, pgdat, NULL);
3879 /* cpuset refresh routine should be here */
3880 }
3881 vm_total_pages = nr_free_pagecache_pages();
3882 /*
3883 * Disable grouping by mobility if the number of pages in the
3884 * system is too low to allow the mechanism to work. It would be
3885 * more accurate, but expensive to check per-zone. This check is
3886 * made on memory-hotadd so a system can start with mobility
3887 * disabled and enable it later
3888 */
3889 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3890 page_group_by_mobility_disabled = 1;
3891 else
3892 page_group_by_mobility_disabled = 0;
3893
3894 printk("Built %i zonelists in %s order, mobility grouping %s. "
3895 "Total pages: %ld\n",
3896 nr_online_nodes,
3897 zonelist_order_name[current_zonelist_order],
3898 page_group_by_mobility_disabled ? "off" : "on",
3899 vm_total_pages);
3900 #ifdef CONFIG_NUMA
3901 printk("Policy zone: %s\n", zone_names[policy_zone]);
3902 #endif
3903 }
3904
3905 /*
3906 * Helper functions to size the waitqueue hash table.
3907 * Essentially these want to choose hash table sizes sufficiently
3908 * large so that collisions trying to wait on pages are rare.
3909 * But in fact, the number of active page waitqueues on typical
3910 * systems is ridiculously low, less than 200. So this is even
3911 * conservative, even though it seems large.
3912 *
3913 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3914 * waitqueues, i.e. the size of the waitq table given the number of pages.
3915 */
3916 #define PAGES_PER_WAITQUEUE 256
3917
3918 #ifndef CONFIG_MEMORY_HOTPLUG
3919 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3920 {
3921 unsigned long size = 1;
3922
3923 pages /= PAGES_PER_WAITQUEUE;
3924
3925 while (size < pages)
3926 size <<= 1;
3927
3928 /*
3929 * Once we have dozens or even hundreds of threads sleeping
3930 * on IO we've got bigger problems than wait queue collision.
3931 * Limit the size of the wait table to a reasonable size.
3932 */
3933 size = min(size, 4096UL);
3934
3935 return max(size, 4UL);
3936 }
3937 #else
3938 /*
3939 * A zone's size might be changed by hot-add, so it is not possible to determine
3940 * a suitable size for its wait_table. So we use the maximum size now.
3941 *
3942 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3943 *
3944 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3945 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3946 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3947 *
3948 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3949 * or more by the traditional way. (See above). It equals:
3950 *
3951 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3952 * ia64(16K page size) : = ( 8G + 4M)byte.
3953 * powerpc (64K page size) : = (32G +16M)byte.
3954 */
3955 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3956 {
3957 return 4096UL;
3958 }
3959 #endif
3960
3961 /*
3962 * This is an integer logarithm so that shifts can be used later
3963 * to extract the more random high bits from the multiplicative
3964 * hash function before the remainder is taken.
3965 */
3966 static inline unsigned long wait_table_bits(unsigned long size)
3967 {
3968 return ffz(~size);
3969 }
3970
3971 /*
3972 * Check if a pageblock contains reserved pages
3973 */
3974 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3975 {
3976 unsigned long pfn;
3977
3978 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3979 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3980 return 1;
3981 }
3982 return 0;
3983 }
3984
3985 /*
3986 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3987 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3988 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3989 * higher will lead to a bigger reserve which will get freed as contiguous
3990 * blocks as reclaim kicks in
3991 */
3992 static void setup_zone_migrate_reserve(struct zone *zone)
3993 {
3994 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3995 struct page *page;
3996 unsigned long block_migratetype;
3997 int reserve;
3998 int old_reserve;
3999
4000 /*
4001 * Get the start pfn, end pfn and the number of blocks to reserve
4002 * We have to be careful to be aligned to pageblock_nr_pages to
4003 * make sure that we always check pfn_valid for the first page in
4004 * the block.
4005 */
4006 start_pfn = zone->zone_start_pfn;
4007 end_pfn = zone_end_pfn(zone);
4008 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4009 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4010 pageblock_order;
4011
4012 /*
4013 * Reserve blocks are generally in place to help high-order atomic
4014 * allocations that are short-lived. A min_free_kbytes value that
4015 * would result in more than 2 reserve blocks for atomic allocations
4016 * is assumed to be in place to help anti-fragmentation for the
4017 * future allocation of hugepages at runtime.
4018 */
4019 reserve = min(2, reserve);
4020 old_reserve = zone->nr_migrate_reserve_block;
4021
4022 /* When memory hot-add, we almost always need to do nothing */
4023 if (reserve == old_reserve)
4024 return;
4025 zone->nr_migrate_reserve_block = reserve;
4026
4027 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4028 if (!pfn_valid(pfn))
4029 continue;
4030 page = pfn_to_page(pfn);
4031
4032 /* Watch out for overlapping nodes */
4033 if (page_to_nid(page) != zone_to_nid(zone))
4034 continue;
4035
4036 block_migratetype = get_pageblock_migratetype(page);
4037
4038 /* Only test what is necessary when the reserves are not met */
4039 if (reserve > 0) {
4040 /*
4041 * Blocks with reserved pages will never free, skip
4042 * them.
4043 */
4044 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4045 if (pageblock_is_reserved(pfn, block_end_pfn))
4046 continue;
4047
4048 /* If this block is reserved, account for it */
4049 if (block_migratetype == MIGRATE_RESERVE) {
4050 reserve--;
4051 continue;
4052 }
4053
4054 /* Suitable for reserving if this block is movable */
4055 if (block_migratetype == MIGRATE_MOVABLE) {
4056 set_pageblock_migratetype(page,
4057 MIGRATE_RESERVE);
4058 move_freepages_block(zone, page,
4059 MIGRATE_RESERVE);
4060 reserve--;
4061 continue;
4062 }
4063 } else if (!old_reserve) {
4064 /*
4065 * At boot time we don't need to scan the whole zone
4066 * for turning off MIGRATE_RESERVE.
4067 */
4068 break;
4069 }
4070
4071 /*
4072 * If the reserve is met and this is a previous reserved block,
4073 * take it back
4074 */
4075 if (block_migratetype == MIGRATE_RESERVE) {
4076 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4077 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4078 }
4079 }
4080 }
4081
4082 /*
4083 * Initially all pages are reserved - free ones are freed
4084 * up by free_all_bootmem() once the early boot process is
4085 * done. Non-atomic initialization, single-pass.
4086 */
4087 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4088 unsigned long start_pfn, enum memmap_context context)
4089 {
4090 struct page *page;
4091 unsigned long end_pfn = start_pfn + size;
4092 unsigned long pfn;
4093 struct zone *z;
4094
4095 if (highest_memmap_pfn < end_pfn - 1)
4096 highest_memmap_pfn = end_pfn - 1;
4097
4098 z = &NODE_DATA(nid)->node_zones[zone];
4099 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4100 /*
4101 * There can be holes in boot-time mem_map[]s
4102 * handed to this function. They do not
4103 * exist on hotplugged memory.
4104 */
4105 if (context == MEMMAP_EARLY) {
4106 if (!early_pfn_valid(pfn))
4107 continue;
4108 if (!early_pfn_in_nid(pfn, nid))
4109 continue;
4110 }
4111 page = pfn_to_page(pfn);
4112 set_page_links(page, zone, nid, pfn);
4113 mminit_verify_page_links(page, zone, nid, pfn);
4114 init_page_count(page);
4115 page_mapcount_reset(page);
4116 page_cpupid_reset_last(page);
4117 SetPageReserved(page);
4118 /*
4119 * Mark the block movable so that blocks are reserved for
4120 * movable at startup. This will force kernel allocations
4121 * to reserve their blocks rather than leaking throughout
4122 * the address space during boot when many long-lived
4123 * kernel allocations are made. Later some blocks near
4124 * the start are marked MIGRATE_RESERVE by
4125 * setup_zone_migrate_reserve()
4126 *
4127 * bitmap is created for zone's valid pfn range. but memmap
4128 * can be created for invalid pages (for alignment)
4129 * check here not to call set_pageblock_migratetype() against
4130 * pfn out of zone.
4131 */
4132 if ((z->zone_start_pfn <= pfn)
4133 && (pfn < zone_end_pfn(z))
4134 && !(pfn & (pageblock_nr_pages - 1)))
4135 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4136
4137 INIT_LIST_HEAD(&page->lru);
4138 #ifdef WANT_PAGE_VIRTUAL
4139 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4140 if (!is_highmem_idx(zone))
4141 set_page_address(page, __va(pfn << PAGE_SHIFT));
4142 #endif
4143 }
4144 }
4145
4146 static void __meminit zone_init_free_lists(struct zone *zone)
4147 {
4148 unsigned int order, t;
4149 for_each_migratetype_order(order, t) {
4150 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4151 zone->free_area[order].nr_free = 0;
4152 }
4153 }
4154
4155 #ifndef __HAVE_ARCH_MEMMAP_INIT
4156 #define memmap_init(size, nid, zone, start_pfn) \
4157 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4158 #endif
4159
4160 static int zone_batchsize(struct zone *zone)
4161 {
4162 #ifdef CONFIG_MMU
4163 int batch;
4164
4165 /*
4166 * The per-cpu-pages pools are set to around 1000th of the
4167 * size of the zone. But no more than 1/2 of a meg.
4168 *
4169 * OK, so we don't know how big the cache is. So guess.
4170 */
4171 batch = zone->managed_pages / 1024;
4172 if (batch * PAGE_SIZE > 512 * 1024)
4173 batch = (512 * 1024) / PAGE_SIZE;
4174 batch /= 4; /* We effectively *= 4 below */
4175 if (batch < 1)
4176 batch = 1;
4177
4178 /*
4179 * Clamp the batch to a 2^n - 1 value. Having a power
4180 * of 2 value was found to be more likely to have
4181 * suboptimal cache aliasing properties in some cases.
4182 *
4183 * For example if 2 tasks are alternately allocating
4184 * batches of pages, one task can end up with a lot
4185 * of pages of one half of the possible page colors
4186 * and the other with pages of the other colors.
4187 */
4188 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4189
4190 return batch;
4191
4192 #else
4193 /* The deferral and batching of frees should be suppressed under NOMMU
4194 * conditions.
4195 *
4196 * The problem is that NOMMU needs to be able to allocate large chunks
4197 * of contiguous memory as there's no hardware page translation to
4198 * assemble apparent contiguous memory from discontiguous pages.
4199 *
4200 * Queueing large contiguous runs of pages for batching, however,
4201 * causes the pages to actually be freed in smaller chunks. As there
4202 * can be a significant delay between the individual batches being
4203 * recycled, this leads to the once large chunks of space being
4204 * fragmented and becoming unavailable for high-order allocations.
4205 */
4206 return 0;
4207 #endif
4208 }
4209
4210 /*
4211 * pcp->high and pcp->batch values are related and dependent on one another:
4212 * ->batch must never be higher then ->high.
4213 * The following function updates them in a safe manner without read side
4214 * locking.
4215 *
4216 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4217 * those fields changing asynchronously (acording the the above rule).
4218 *
4219 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4220 * outside of boot time (or some other assurance that no concurrent updaters
4221 * exist).
4222 */
4223 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4224 unsigned long batch)
4225 {
4226 /* start with a fail safe value for batch */
4227 pcp->batch = 1;
4228 smp_wmb();
4229
4230 /* Update high, then batch, in order */
4231 pcp->high = high;
4232 smp_wmb();
4233
4234 pcp->batch = batch;
4235 }
4236
4237 /* a companion to pageset_set_high() */
4238 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4239 {
4240 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4241 }
4242
4243 static void pageset_init(struct per_cpu_pageset *p)
4244 {
4245 struct per_cpu_pages *pcp;
4246 int migratetype;
4247
4248 memset(p, 0, sizeof(*p));
4249
4250 pcp = &p->pcp;
4251 pcp->count = 0;
4252 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4253 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4254 }
4255
4256 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4257 {
4258 pageset_init(p);
4259 pageset_set_batch(p, batch);
4260 }
4261
4262 /*
4263 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4264 * to the value high for the pageset p.
4265 */
4266 static void pageset_set_high(struct per_cpu_pageset *p,
4267 unsigned long high)
4268 {
4269 unsigned long batch = max(1UL, high / 4);
4270 if ((high / 4) > (PAGE_SHIFT * 8))
4271 batch = PAGE_SHIFT * 8;
4272
4273 pageset_update(&p->pcp, high, batch);
4274 }
4275
4276 static void pageset_set_high_and_batch(struct zone *zone,
4277 struct per_cpu_pageset *pcp)
4278 {
4279 if (percpu_pagelist_fraction)
4280 pageset_set_high(pcp,
4281 (zone->managed_pages /
4282 percpu_pagelist_fraction));
4283 else
4284 pageset_set_batch(pcp, zone_batchsize(zone));
4285 }
4286
4287 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4288 {
4289 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4290
4291 pageset_init(pcp);
4292 pageset_set_high_and_batch(zone, pcp);
4293 }
4294
4295 static void __meminit setup_zone_pageset(struct zone *zone)
4296 {
4297 int cpu;
4298 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4299 for_each_possible_cpu(cpu)
4300 zone_pageset_init(zone, cpu);
4301 }
4302
4303 /*
4304 * Allocate per cpu pagesets and initialize them.
4305 * Before this call only boot pagesets were available.
4306 */
4307 void __init setup_per_cpu_pageset(void)
4308 {
4309 struct zone *zone;
4310
4311 for_each_populated_zone(zone)
4312 setup_zone_pageset(zone);
4313 }
4314
4315 static noinline __init_refok
4316 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4317 {
4318 int i;
4319 size_t alloc_size;
4320
4321 /*
4322 * The per-page waitqueue mechanism uses hashed waitqueues
4323 * per zone.
4324 */
4325 zone->wait_table_hash_nr_entries =
4326 wait_table_hash_nr_entries(zone_size_pages);
4327 zone->wait_table_bits =
4328 wait_table_bits(zone->wait_table_hash_nr_entries);
4329 alloc_size = zone->wait_table_hash_nr_entries
4330 * sizeof(wait_queue_head_t);
4331
4332 if (!slab_is_available()) {
4333 zone->wait_table = (wait_queue_head_t *)
4334 memblock_virt_alloc_node_nopanic(
4335 alloc_size, zone->zone_pgdat->node_id);
4336 } else {
4337 /*
4338 * This case means that a zone whose size was 0 gets new memory
4339 * via memory hot-add.
4340 * But it may be the case that a new node was hot-added. In
4341 * this case vmalloc() will not be able to use this new node's
4342 * memory - this wait_table must be initialized to use this new
4343 * node itself as well.
4344 * To use this new node's memory, further consideration will be
4345 * necessary.
4346 */
4347 zone->wait_table = vmalloc(alloc_size);
4348 }
4349 if (!zone->wait_table)
4350 return -ENOMEM;
4351
4352 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4353 init_waitqueue_head(zone->wait_table + i);
4354
4355 return 0;
4356 }
4357
4358 static __meminit void zone_pcp_init(struct zone *zone)
4359 {
4360 /*
4361 * per cpu subsystem is not up at this point. The following code
4362 * relies on the ability of the linker to provide the
4363 * offset of a (static) per cpu variable into the per cpu area.
4364 */
4365 zone->pageset = &boot_pageset;
4366
4367 if (populated_zone(zone))
4368 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4369 zone->name, zone->present_pages,
4370 zone_batchsize(zone));
4371 }
4372
4373 int __meminit init_currently_empty_zone(struct zone *zone,
4374 unsigned long zone_start_pfn,
4375 unsigned long size,
4376 enum memmap_context context)
4377 {
4378 struct pglist_data *pgdat = zone->zone_pgdat;
4379 int ret;
4380 ret = zone_wait_table_init(zone, size);
4381 if (ret)
4382 return ret;
4383 pgdat->nr_zones = zone_idx(zone) + 1;
4384
4385 zone->zone_start_pfn = zone_start_pfn;
4386
4387 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4388 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4389 pgdat->node_id,
4390 (unsigned long)zone_idx(zone),
4391 zone_start_pfn, (zone_start_pfn + size));
4392
4393 zone_init_free_lists(zone);
4394
4395 return 0;
4396 }
4397
4398 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4399 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4400 /*
4401 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4402 */
4403 int __meminit __early_pfn_to_nid(unsigned long pfn)
4404 {
4405 unsigned long start_pfn, end_pfn;
4406 int nid;
4407 /*
4408 * NOTE: The following SMP-unsafe globals are only used early in boot
4409 * when the kernel is running single-threaded.
4410 */
4411 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4412 static int __meminitdata last_nid;
4413
4414 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4415 return last_nid;
4416
4417 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4418 if (nid != -1) {
4419 last_start_pfn = start_pfn;
4420 last_end_pfn = end_pfn;
4421 last_nid = nid;
4422 }
4423
4424 return nid;
4425 }
4426 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4427
4428 int __meminit early_pfn_to_nid(unsigned long pfn)
4429 {
4430 int nid;
4431
4432 nid = __early_pfn_to_nid(pfn);
4433 if (nid >= 0)
4434 return nid;
4435 /* just returns 0 */
4436 return 0;
4437 }
4438
4439 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4440 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4441 {
4442 int nid;
4443
4444 nid = __early_pfn_to_nid(pfn);
4445 if (nid >= 0 && nid != node)
4446 return false;
4447 return true;
4448 }
4449 #endif
4450
4451 /**
4452 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4453 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4454 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4455 *
4456 * If an architecture guarantees that all ranges registered contain no holes
4457 * and may be freed, this this function may be used instead of calling
4458 * memblock_free_early_nid() manually.
4459 */
4460 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4461 {
4462 unsigned long start_pfn, end_pfn;
4463 int i, this_nid;
4464
4465 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4466 start_pfn = min(start_pfn, max_low_pfn);
4467 end_pfn = min(end_pfn, max_low_pfn);
4468
4469 if (start_pfn < end_pfn)
4470 memblock_free_early_nid(PFN_PHYS(start_pfn),
4471 (end_pfn - start_pfn) << PAGE_SHIFT,
4472 this_nid);
4473 }
4474 }
4475
4476 /**
4477 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4478 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4479 *
4480 * If an architecture guarantees that all ranges registered contain no holes and may
4481 * be freed, this function may be used instead of calling memory_present() manually.
4482 */
4483 void __init sparse_memory_present_with_active_regions(int nid)
4484 {
4485 unsigned long start_pfn, end_pfn;
4486 int i, this_nid;
4487
4488 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4489 memory_present(this_nid, start_pfn, end_pfn);
4490 }
4491
4492 /**
4493 * get_pfn_range_for_nid - Return the start and end page frames for a node
4494 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4495 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4496 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4497 *
4498 * It returns the start and end page frame of a node based on information
4499 * provided by memblock_set_node(). If called for a node
4500 * with no available memory, a warning is printed and the start and end
4501 * PFNs will be 0.
4502 */
4503 void __meminit get_pfn_range_for_nid(unsigned int nid,
4504 unsigned long *start_pfn, unsigned long *end_pfn)
4505 {
4506 unsigned long this_start_pfn, this_end_pfn;
4507 int i;
4508
4509 *start_pfn = -1UL;
4510 *end_pfn = 0;
4511
4512 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4513 *start_pfn = min(*start_pfn, this_start_pfn);
4514 *end_pfn = max(*end_pfn, this_end_pfn);
4515 }
4516
4517 if (*start_pfn == -1UL)
4518 *start_pfn = 0;
4519 }
4520
4521 /*
4522 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4523 * assumption is made that zones within a node are ordered in monotonic
4524 * increasing memory addresses so that the "highest" populated zone is used
4525 */
4526 static void __init find_usable_zone_for_movable(void)
4527 {
4528 int zone_index;
4529 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4530 if (zone_index == ZONE_MOVABLE)
4531 continue;
4532
4533 if (arch_zone_highest_possible_pfn[zone_index] >
4534 arch_zone_lowest_possible_pfn[zone_index])
4535 break;
4536 }
4537
4538 VM_BUG_ON(zone_index == -1);
4539 movable_zone = zone_index;
4540 }
4541
4542 /*
4543 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4544 * because it is sized independent of architecture. Unlike the other zones,
4545 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4546 * in each node depending on the size of each node and how evenly kernelcore
4547 * is distributed. This helper function adjusts the zone ranges
4548 * provided by the architecture for a given node by using the end of the
4549 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4550 * zones within a node are in order of monotonic increases memory addresses
4551 */
4552 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4553 unsigned long zone_type,
4554 unsigned long node_start_pfn,
4555 unsigned long node_end_pfn,
4556 unsigned long *zone_start_pfn,
4557 unsigned long *zone_end_pfn)
4558 {
4559 /* Only adjust if ZONE_MOVABLE is on this node */
4560 if (zone_movable_pfn[nid]) {
4561 /* Size ZONE_MOVABLE */
4562 if (zone_type == ZONE_MOVABLE) {
4563 *zone_start_pfn = zone_movable_pfn[nid];
4564 *zone_end_pfn = min(node_end_pfn,
4565 arch_zone_highest_possible_pfn[movable_zone]);
4566
4567 /* Adjust for ZONE_MOVABLE starting within this range */
4568 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4569 *zone_end_pfn > zone_movable_pfn[nid]) {
4570 *zone_end_pfn = zone_movable_pfn[nid];
4571
4572 /* Check if this whole range is within ZONE_MOVABLE */
4573 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4574 *zone_start_pfn = *zone_end_pfn;
4575 }
4576 }
4577
4578 /*
4579 * Return the number of pages a zone spans in a node, including holes
4580 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4581 */
4582 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4583 unsigned long zone_type,
4584 unsigned long node_start_pfn,
4585 unsigned long node_end_pfn,
4586 unsigned long *ignored)
4587 {
4588 unsigned long zone_start_pfn, zone_end_pfn;
4589
4590 /* Get the start and end of the zone */
4591 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4592 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4593 adjust_zone_range_for_zone_movable(nid, zone_type,
4594 node_start_pfn, node_end_pfn,
4595 &zone_start_pfn, &zone_end_pfn);
4596
4597 /* Check that this node has pages within the zone's required range */
4598 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4599 return 0;
4600
4601 /* Move the zone boundaries inside the node if necessary */
4602 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4603 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4604
4605 /* Return the spanned pages */
4606 return zone_end_pfn - zone_start_pfn;
4607 }
4608
4609 /*
4610 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4611 * then all holes in the requested range will be accounted for.
4612 */
4613 unsigned long __meminit __absent_pages_in_range(int nid,
4614 unsigned long range_start_pfn,
4615 unsigned long range_end_pfn)
4616 {
4617 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4618 unsigned long start_pfn, end_pfn;
4619 int i;
4620
4621 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4622 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4623 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4624 nr_absent -= end_pfn - start_pfn;
4625 }
4626 return nr_absent;
4627 }
4628
4629 /**
4630 * absent_pages_in_range - Return number of page frames in holes within a range
4631 * @start_pfn: The start PFN to start searching for holes
4632 * @end_pfn: The end PFN to stop searching for holes
4633 *
4634 * It returns the number of pages frames in memory holes within a range.
4635 */
4636 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4637 unsigned long end_pfn)
4638 {
4639 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4640 }
4641
4642 /* Return the number of page frames in holes in a zone on a node */
4643 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4644 unsigned long zone_type,
4645 unsigned long node_start_pfn,
4646 unsigned long node_end_pfn,
4647 unsigned long *ignored)
4648 {
4649 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4650 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4651 unsigned long zone_start_pfn, zone_end_pfn;
4652
4653 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4654 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4655
4656 adjust_zone_range_for_zone_movable(nid, zone_type,
4657 node_start_pfn, node_end_pfn,
4658 &zone_start_pfn, &zone_end_pfn);
4659 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4660 }
4661
4662 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4663 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4664 unsigned long zone_type,
4665 unsigned long node_start_pfn,
4666 unsigned long node_end_pfn,
4667 unsigned long *zones_size)
4668 {
4669 return zones_size[zone_type];
4670 }
4671
4672 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4673 unsigned long zone_type,
4674 unsigned long node_start_pfn,
4675 unsigned long node_end_pfn,
4676 unsigned long *zholes_size)
4677 {
4678 if (!zholes_size)
4679 return 0;
4680
4681 return zholes_size[zone_type];
4682 }
4683
4684 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4685
4686 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4687 unsigned long node_start_pfn,
4688 unsigned long node_end_pfn,
4689 unsigned long *zones_size,
4690 unsigned long *zholes_size)
4691 {
4692 unsigned long realtotalpages, totalpages = 0;
4693 enum zone_type i;
4694
4695 for (i = 0; i < MAX_NR_ZONES; i++)
4696 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4697 node_start_pfn,
4698 node_end_pfn,
4699 zones_size);
4700 pgdat->node_spanned_pages = totalpages;
4701
4702 realtotalpages = totalpages;
4703 for (i = 0; i < MAX_NR_ZONES; i++)
4704 realtotalpages -=
4705 zone_absent_pages_in_node(pgdat->node_id, i,
4706 node_start_pfn, node_end_pfn,
4707 zholes_size);
4708 pgdat->node_present_pages = realtotalpages;
4709 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4710 realtotalpages);
4711 }
4712
4713 #ifndef CONFIG_SPARSEMEM
4714 /*
4715 * Calculate the size of the zone->blockflags rounded to an unsigned long
4716 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4717 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4718 * round what is now in bits to nearest long in bits, then return it in
4719 * bytes.
4720 */
4721 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4722 {
4723 unsigned long usemapsize;
4724
4725 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4726 usemapsize = roundup(zonesize, pageblock_nr_pages);
4727 usemapsize = usemapsize >> pageblock_order;
4728 usemapsize *= NR_PAGEBLOCK_BITS;
4729 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4730
4731 return usemapsize / 8;
4732 }
4733
4734 static void __init setup_usemap(struct pglist_data *pgdat,
4735 struct zone *zone,
4736 unsigned long zone_start_pfn,
4737 unsigned long zonesize)
4738 {
4739 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4740 zone->pageblock_flags = NULL;
4741 if (usemapsize)
4742 zone->pageblock_flags =
4743 memblock_virt_alloc_node_nopanic(usemapsize,
4744 pgdat->node_id);
4745 }
4746 #else
4747 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4748 unsigned long zone_start_pfn, unsigned long zonesize) {}
4749 #endif /* CONFIG_SPARSEMEM */
4750
4751 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4752
4753 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4754 void __paginginit set_pageblock_order(void)
4755 {
4756 unsigned int order;
4757
4758 /* Check that pageblock_nr_pages has not already been setup */
4759 if (pageblock_order)
4760 return;
4761
4762 if (HPAGE_SHIFT > PAGE_SHIFT)
4763 order = HUGETLB_PAGE_ORDER;
4764 else
4765 order = MAX_ORDER - 1;
4766
4767 /*
4768 * Assume the largest contiguous order of interest is a huge page.
4769 * This value may be variable depending on boot parameters on IA64 and
4770 * powerpc.
4771 */
4772 pageblock_order = order;
4773 }
4774 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4775
4776 /*
4777 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4778 * is unused as pageblock_order is set at compile-time. See
4779 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4780 * the kernel config
4781 */
4782 void __paginginit set_pageblock_order(void)
4783 {
4784 }
4785
4786 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4787
4788 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4789 unsigned long present_pages)
4790 {
4791 unsigned long pages = spanned_pages;
4792
4793 /*
4794 * Provide a more accurate estimation if there are holes within
4795 * the zone and SPARSEMEM is in use. If there are holes within the
4796 * zone, each populated memory region may cost us one or two extra
4797 * memmap pages due to alignment because memmap pages for each
4798 * populated regions may not naturally algined on page boundary.
4799 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4800 */
4801 if (spanned_pages > present_pages + (present_pages >> 4) &&
4802 IS_ENABLED(CONFIG_SPARSEMEM))
4803 pages = present_pages;
4804
4805 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4806 }
4807
4808 /*
4809 * Set up the zone data structures:
4810 * - mark all pages reserved
4811 * - mark all memory queues empty
4812 * - clear the memory bitmaps
4813 *
4814 * NOTE: pgdat should get zeroed by caller.
4815 */
4816 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4817 unsigned long node_start_pfn, unsigned long node_end_pfn,
4818 unsigned long *zones_size, unsigned long *zholes_size)
4819 {
4820 enum zone_type j;
4821 int nid = pgdat->node_id;
4822 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4823 int ret;
4824
4825 pgdat_resize_init(pgdat);
4826 #ifdef CONFIG_NUMA_BALANCING
4827 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4828 pgdat->numabalancing_migrate_nr_pages = 0;
4829 pgdat->numabalancing_migrate_next_window = jiffies;
4830 #endif
4831 init_waitqueue_head(&pgdat->kswapd_wait);
4832 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4833 pgdat_page_cgroup_init(pgdat);
4834
4835 for (j = 0; j < MAX_NR_ZONES; j++) {
4836 struct zone *zone = pgdat->node_zones + j;
4837 unsigned long size, realsize, freesize, memmap_pages;
4838
4839 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4840 node_end_pfn, zones_size);
4841 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4842 node_start_pfn,
4843 node_end_pfn,
4844 zholes_size);
4845
4846 /*
4847 * Adjust freesize so that it accounts for how much memory
4848 * is used by this zone for memmap. This affects the watermark
4849 * and per-cpu initialisations
4850 */
4851 memmap_pages = calc_memmap_size(size, realsize);
4852 if (freesize >= memmap_pages) {
4853 freesize -= memmap_pages;
4854 if (memmap_pages)
4855 printk(KERN_DEBUG
4856 " %s zone: %lu pages used for memmap\n",
4857 zone_names[j], memmap_pages);
4858 } else
4859 printk(KERN_WARNING
4860 " %s zone: %lu pages exceeds freesize %lu\n",
4861 zone_names[j], memmap_pages, freesize);
4862
4863 /* Account for reserved pages */
4864 if (j == 0 && freesize > dma_reserve) {
4865 freesize -= dma_reserve;
4866 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4867 zone_names[0], dma_reserve);
4868 }
4869
4870 if (!is_highmem_idx(j))
4871 nr_kernel_pages += freesize;
4872 /* Charge for highmem memmap if there are enough kernel pages */
4873 else if (nr_kernel_pages > memmap_pages * 2)
4874 nr_kernel_pages -= memmap_pages;
4875 nr_all_pages += freesize;
4876
4877 zone->spanned_pages = size;
4878 zone->present_pages = realsize;
4879 /*
4880 * Set an approximate value for lowmem here, it will be adjusted
4881 * when the bootmem allocator frees pages into the buddy system.
4882 * And all highmem pages will be managed by the buddy system.
4883 */
4884 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4885 #ifdef CONFIG_NUMA
4886 zone->node = nid;
4887 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4888 / 100;
4889 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4890 #endif
4891 zone->name = zone_names[j];
4892 spin_lock_init(&zone->lock);
4893 spin_lock_init(&zone->lru_lock);
4894 zone_seqlock_init(zone);
4895 zone->zone_pgdat = pgdat;
4896 zone_pcp_init(zone);
4897
4898 /* For bootup, initialized properly in watermark setup */
4899 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4900
4901 lruvec_init(&zone->lruvec);
4902 if (!size)
4903 continue;
4904
4905 set_pageblock_order();
4906 setup_usemap(pgdat, zone, zone_start_pfn, size);
4907 ret = init_currently_empty_zone(zone, zone_start_pfn,
4908 size, MEMMAP_EARLY);
4909 BUG_ON(ret);
4910 memmap_init(size, nid, j, zone_start_pfn);
4911 zone_start_pfn += size;
4912 }
4913 }
4914
4915 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4916 {
4917 /* Skip empty nodes */
4918 if (!pgdat->node_spanned_pages)
4919 return;
4920
4921 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4922 /* ia64 gets its own node_mem_map, before this, without bootmem */
4923 if (!pgdat->node_mem_map) {
4924 unsigned long size, start, end;
4925 struct page *map;
4926
4927 /*
4928 * The zone's endpoints aren't required to be MAX_ORDER
4929 * aligned but the node_mem_map endpoints must be in order
4930 * for the buddy allocator to function correctly.
4931 */
4932 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4933 end = pgdat_end_pfn(pgdat);
4934 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4935 size = (end - start) * sizeof(struct page);
4936 map = alloc_remap(pgdat->node_id, size);
4937 if (!map)
4938 map = memblock_virt_alloc_node_nopanic(size,
4939 pgdat->node_id);
4940 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4941 }
4942 #ifndef CONFIG_NEED_MULTIPLE_NODES
4943 /*
4944 * With no DISCONTIG, the global mem_map is just set as node 0's
4945 */
4946 if (pgdat == NODE_DATA(0)) {
4947 mem_map = NODE_DATA(0)->node_mem_map;
4948 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4949 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4950 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4951 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4952 }
4953 #endif
4954 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4955 }
4956
4957 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4958 unsigned long node_start_pfn, unsigned long *zholes_size)
4959 {
4960 pg_data_t *pgdat = NODE_DATA(nid);
4961 unsigned long start_pfn = 0;
4962 unsigned long end_pfn = 0;
4963
4964 /* pg_data_t should be reset to zero when it's allocated */
4965 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4966
4967 pgdat->node_id = nid;
4968 pgdat->node_start_pfn = node_start_pfn;
4969 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4970 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4971 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
4972 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
4973 #endif
4974 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4975 zones_size, zholes_size);
4976
4977 alloc_node_mem_map(pgdat);
4978 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4979 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4980 nid, (unsigned long)pgdat,
4981 (unsigned long)pgdat->node_mem_map);
4982 #endif
4983
4984 free_area_init_core(pgdat, start_pfn, end_pfn,
4985 zones_size, zholes_size);
4986 }
4987
4988 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4989
4990 #if MAX_NUMNODES > 1
4991 /*
4992 * Figure out the number of possible node ids.
4993 */
4994 void __init setup_nr_node_ids(void)
4995 {
4996 unsigned int node;
4997 unsigned int highest = 0;
4998
4999 for_each_node_mask(node, node_possible_map)
5000 highest = node;
5001 nr_node_ids = highest + 1;
5002 }
5003 #endif
5004
5005 /**
5006 * node_map_pfn_alignment - determine the maximum internode alignment
5007 *
5008 * This function should be called after node map is populated and sorted.
5009 * It calculates the maximum power of two alignment which can distinguish
5010 * all the nodes.
5011 *
5012 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5013 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5014 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5015 * shifted, 1GiB is enough and this function will indicate so.
5016 *
5017 * This is used to test whether pfn -> nid mapping of the chosen memory
5018 * model has fine enough granularity to avoid incorrect mapping for the
5019 * populated node map.
5020 *
5021 * Returns the determined alignment in pfn's. 0 if there is no alignment
5022 * requirement (single node).
5023 */
5024 unsigned long __init node_map_pfn_alignment(void)
5025 {
5026 unsigned long accl_mask = 0, last_end = 0;
5027 unsigned long start, end, mask;
5028 int last_nid = -1;
5029 int i, nid;
5030
5031 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5032 if (!start || last_nid < 0 || last_nid == nid) {
5033 last_nid = nid;
5034 last_end = end;
5035 continue;
5036 }
5037
5038 /*
5039 * Start with a mask granular enough to pin-point to the
5040 * start pfn and tick off bits one-by-one until it becomes
5041 * too coarse to separate the current node from the last.
5042 */
5043 mask = ~((1 << __ffs(start)) - 1);
5044 while (mask && last_end <= (start & (mask << 1)))
5045 mask <<= 1;
5046
5047 /* accumulate all internode masks */
5048 accl_mask |= mask;
5049 }
5050
5051 /* convert mask to number of pages */
5052 return ~accl_mask + 1;
5053 }
5054
5055 /* Find the lowest pfn for a node */
5056 static unsigned long __init find_min_pfn_for_node(int nid)
5057 {
5058 unsigned long min_pfn = ULONG_MAX;
5059 unsigned long start_pfn;
5060 int i;
5061
5062 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5063 min_pfn = min(min_pfn, start_pfn);
5064
5065 if (min_pfn == ULONG_MAX) {
5066 printk(KERN_WARNING
5067 "Could not find start_pfn for node %d\n", nid);
5068 return 0;
5069 }
5070
5071 return min_pfn;
5072 }
5073
5074 /**
5075 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5076 *
5077 * It returns the minimum PFN based on information provided via
5078 * memblock_set_node().
5079 */
5080 unsigned long __init find_min_pfn_with_active_regions(void)
5081 {
5082 return find_min_pfn_for_node(MAX_NUMNODES);
5083 }
5084
5085 /*
5086 * early_calculate_totalpages()
5087 * Sum pages in active regions for movable zone.
5088 * Populate N_MEMORY for calculating usable_nodes.
5089 */
5090 static unsigned long __init early_calculate_totalpages(void)
5091 {
5092 unsigned long totalpages = 0;
5093 unsigned long start_pfn, end_pfn;
5094 int i, nid;
5095
5096 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5097 unsigned long pages = end_pfn - start_pfn;
5098
5099 totalpages += pages;
5100 if (pages)
5101 node_set_state(nid, N_MEMORY);
5102 }
5103 return totalpages;
5104 }
5105
5106 /*
5107 * Find the PFN the Movable zone begins in each node. Kernel memory
5108 * is spread evenly between nodes as long as the nodes have enough
5109 * memory. When they don't, some nodes will have more kernelcore than
5110 * others
5111 */
5112 static void __init find_zone_movable_pfns_for_nodes(void)
5113 {
5114 int i, nid;
5115 unsigned long usable_startpfn;
5116 unsigned long kernelcore_node, kernelcore_remaining;
5117 /* save the state before borrow the nodemask */
5118 nodemask_t saved_node_state = node_states[N_MEMORY];
5119 unsigned long totalpages = early_calculate_totalpages();
5120 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5121 struct memblock_region *r;
5122
5123 /* Need to find movable_zone earlier when movable_node is specified. */
5124 find_usable_zone_for_movable();
5125
5126 /*
5127 * If movable_node is specified, ignore kernelcore and movablecore
5128 * options.
5129 */
5130 if (movable_node_is_enabled()) {
5131 for_each_memblock(memory, r) {
5132 if (!memblock_is_hotpluggable(r))
5133 continue;
5134
5135 nid = r->nid;
5136
5137 usable_startpfn = PFN_DOWN(r->base);
5138 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5139 min(usable_startpfn, zone_movable_pfn[nid]) :
5140 usable_startpfn;
5141 }
5142
5143 goto out2;
5144 }
5145
5146 /*
5147 * If movablecore=nn[KMG] was specified, calculate what size of
5148 * kernelcore that corresponds so that memory usable for
5149 * any allocation type is evenly spread. If both kernelcore
5150 * and movablecore are specified, then the value of kernelcore
5151 * will be used for required_kernelcore if it's greater than
5152 * what movablecore would have allowed.
5153 */
5154 if (required_movablecore) {
5155 unsigned long corepages;
5156
5157 /*
5158 * Round-up so that ZONE_MOVABLE is at least as large as what
5159 * was requested by the user
5160 */
5161 required_movablecore =
5162 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5163 corepages = totalpages - required_movablecore;
5164
5165 required_kernelcore = max(required_kernelcore, corepages);
5166 }
5167
5168 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5169 if (!required_kernelcore)
5170 goto out;
5171
5172 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5173 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5174
5175 restart:
5176 /* Spread kernelcore memory as evenly as possible throughout nodes */
5177 kernelcore_node = required_kernelcore / usable_nodes;
5178 for_each_node_state(nid, N_MEMORY) {
5179 unsigned long start_pfn, end_pfn;
5180
5181 /*
5182 * Recalculate kernelcore_node if the division per node
5183 * now exceeds what is necessary to satisfy the requested
5184 * amount of memory for the kernel
5185 */
5186 if (required_kernelcore < kernelcore_node)
5187 kernelcore_node = required_kernelcore / usable_nodes;
5188
5189 /*
5190 * As the map is walked, we track how much memory is usable
5191 * by the kernel using kernelcore_remaining. When it is
5192 * 0, the rest of the node is usable by ZONE_MOVABLE
5193 */
5194 kernelcore_remaining = kernelcore_node;
5195
5196 /* Go through each range of PFNs within this node */
5197 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5198 unsigned long size_pages;
5199
5200 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5201 if (start_pfn >= end_pfn)
5202 continue;
5203
5204 /* Account for what is only usable for kernelcore */
5205 if (start_pfn < usable_startpfn) {
5206 unsigned long kernel_pages;
5207 kernel_pages = min(end_pfn, usable_startpfn)
5208 - start_pfn;
5209
5210 kernelcore_remaining -= min(kernel_pages,
5211 kernelcore_remaining);
5212 required_kernelcore -= min(kernel_pages,
5213 required_kernelcore);
5214
5215 /* Continue if range is now fully accounted */
5216 if (end_pfn <= usable_startpfn) {
5217
5218 /*
5219 * Push zone_movable_pfn to the end so
5220 * that if we have to rebalance
5221 * kernelcore across nodes, we will
5222 * not double account here
5223 */
5224 zone_movable_pfn[nid] = end_pfn;
5225 continue;
5226 }
5227 start_pfn = usable_startpfn;
5228 }
5229
5230 /*
5231 * The usable PFN range for ZONE_MOVABLE is from
5232 * start_pfn->end_pfn. Calculate size_pages as the
5233 * number of pages used as kernelcore
5234 */
5235 size_pages = end_pfn - start_pfn;
5236 if (size_pages > kernelcore_remaining)
5237 size_pages = kernelcore_remaining;
5238 zone_movable_pfn[nid] = start_pfn + size_pages;
5239
5240 /*
5241 * Some kernelcore has been met, update counts and
5242 * break if the kernelcore for this node has been
5243 * satisfied
5244 */
5245 required_kernelcore -= min(required_kernelcore,
5246 size_pages);
5247 kernelcore_remaining -= size_pages;
5248 if (!kernelcore_remaining)
5249 break;
5250 }
5251 }
5252
5253 /*
5254 * If there is still required_kernelcore, we do another pass with one
5255 * less node in the count. This will push zone_movable_pfn[nid] further
5256 * along on the nodes that still have memory until kernelcore is
5257 * satisfied
5258 */
5259 usable_nodes--;
5260 if (usable_nodes && required_kernelcore > usable_nodes)
5261 goto restart;
5262
5263 out2:
5264 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5265 for (nid = 0; nid < MAX_NUMNODES; nid++)
5266 zone_movable_pfn[nid] =
5267 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5268
5269 out:
5270 /* restore the node_state */
5271 node_states[N_MEMORY] = saved_node_state;
5272 }
5273
5274 /* Any regular or high memory on that node ? */
5275 static void check_for_memory(pg_data_t *pgdat, int nid)
5276 {
5277 enum zone_type zone_type;
5278
5279 if (N_MEMORY == N_NORMAL_MEMORY)
5280 return;
5281
5282 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5283 struct zone *zone = &pgdat->node_zones[zone_type];
5284 if (populated_zone(zone)) {
5285 node_set_state(nid, N_HIGH_MEMORY);
5286 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5287 zone_type <= ZONE_NORMAL)
5288 node_set_state(nid, N_NORMAL_MEMORY);
5289 break;
5290 }
5291 }
5292 }
5293
5294 /**
5295 * free_area_init_nodes - Initialise all pg_data_t and zone data
5296 * @max_zone_pfn: an array of max PFNs for each zone
5297 *
5298 * This will call free_area_init_node() for each active node in the system.
5299 * Using the page ranges provided by memblock_set_node(), the size of each
5300 * zone in each node and their holes is calculated. If the maximum PFN
5301 * between two adjacent zones match, it is assumed that the zone is empty.
5302 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5303 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5304 * starts where the previous one ended. For example, ZONE_DMA32 starts
5305 * at arch_max_dma_pfn.
5306 */
5307 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5308 {
5309 unsigned long start_pfn, end_pfn;
5310 int i, nid;
5311
5312 /* Record where the zone boundaries are */
5313 memset(arch_zone_lowest_possible_pfn, 0,
5314 sizeof(arch_zone_lowest_possible_pfn));
5315 memset(arch_zone_highest_possible_pfn, 0,
5316 sizeof(arch_zone_highest_possible_pfn));
5317 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5318 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5319 for (i = 1; i < MAX_NR_ZONES; i++) {
5320 if (i == ZONE_MOVABLE)
5321 continue;
5322 arch_zone_lowest_possible_pfn[i] =
5323 arch_zone_highest_possible_pfn[i-1];
5324 arch_zone_highest_possible_pfn[i] =
5325 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5326 }
5327 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5328 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5329
5330 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5331 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5332 find_zone_movable_pfns_for_nodes();
5333
5334 /* Print out the zone ranges */
5335 printk("Zone ranges:\n");
5336 for (i = 0; i < MAX_NR_ZONES; i++) {
5337 if (i == ZONE_MOVABLE)
5338 continue;
5339 printk(KERN_CONT " %-8s ", zone_names[i]);
5340 if (arch_zone_lowest_possible_pfn[i] ==
5341 arch_zone_highest_possible_pfn[i])
5342 printk(KERN_CONT "empty\n");
5343 else
5344 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5345 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5346 (arch_zone_highest_possible_pfn[i]
5347 << PAGE_SHIFT) - 1);
5348 }
5349
5350 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5351 printk("Movable zone start for each node\n");
5352 for (i = 0; i < MAX_NUMNODES; i++) {
5353 if (zone_movable_pfn[i])
5354 printk(" Node %d: %#010lx\n", i,
5355 zone_movable_pfn[i] << PAGE_SHIFT);
5356 }
5357
5358 /* Print out the early node map */
5359 printk("Early memory node ranges\n");
5360 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5361 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5362 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5363
5364 /* Initialise every node */
5365 mminit_verify_pageflags_layout();
5366 setup_nr_node_ids();
5367 for_each_online_node(nid) {
5368 pg_data_t *pgdat = NODE_DATA(nid);
5369 free_area_init_node(nid, NULL,
5370 find_min_pfn_for_node(nid), NULL);
5371
5372 /* Any memory on that node */
5373 if (pgdat->node_present_pages)
5374 node_set_state(nid, N_MEMORY);
5375 check_for_memory(pgdat, nid);
5376 }
5377 }
5378
5379 static int __init cmdline_parse_core(char *p, unsigned long *core)
5380 {
5381 unsigned long long coremem;
5382 if (!p)
5383 return -EINVAL;
5384
5385 coremem = memparse(p, &p);
5386 *core = coremem >> PAGE_SHIFT;
5387
5388 /* Paranoid check that UL is enough for the coremem value */
5389 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5390
5391 return 0;
5392 }
5393
5394 /*
5395 * kernelcore=size sets the amount of memory for use for allocations that
5396 * cannot be reclaimed or migrated.
5397 */
5398 static int __init cmdline_parse_kernelcore(char *p)
5399 {
5400 return cmdline_parse_core(p, &required_kernelcore);
5401 }
5402
5403 /*
5404 * movablecore=size sets the amount of memory for use for allocations that
5405 * can be reclaimed or migrated.
5406 */
5407 static int __init cmdline_parse_movablecore(char *p)
5408 {
5409 return cmdline_parse_core(p, &required_movablecore);
5410 }
5411
5412 early_param("kernelcore", cmdline_parse_kernelcore);
5413 early_param("movablecore", cmdline_parse_movablecore);
5414
5415 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5416
5417 void adjust_managed_page_count(struct page *page, long count)
5418 {
5419 spin_lock(&managed_page_count_lock);
5420 page_zone(page)->managed_pages += count;
5421 totalram_pages += count;
5422 #ifdef CONFIG_HIGHMEM
5423 if (PageHighMem(page))
5424 totalhigh_pages += count;
5425 #endif
5426 spin_unlock(&managed_page_count_lock);
5427 }
5428 EXPORT_SYMBOL(adjust_managed_page_count);
5429
5430 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5431 {
5432 void *pos;
5433 unsigned long pages = 0;
5434
5435 start = (void *)PAGE_ALIGN((unsigned long)start);
5436 end = (void *)((unsigned long)end & PAGE_MASK);
5437 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5438 if ((unsigned int)poison <= 0xFF)
5439 memset(pos, poison, PAGE_SIZE);
5440 free_reserved_page(virt_to_page(pos));
5441 }
5442
5443 if (pages && s)
5444 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5445 s, pages << (PAGE_SHIFT - 10), start, end);
5446
5447 return pages;
5448 }
5449 EXPORT_SYMBOL(free_reserved_area);
5450
5451 #ifdef CONFIG_HIGHMEM
5452 void free_highmem_page(struct page *page)
5453 {
5454 __free_reserved_page(page);
5455 totalram_pages++;
5456 page_zone(page)->managed_pages++;
5457 totalhigh_pages++;
5458 }
5459 #endif
5460
5461
5462 void __init mem_init_print_info(const char *str)
5463 {
5464 unsigned long physpages, codesize, datasize, rosize, bss_size;
5465 unsigned long init_code_size, init_data_size;
5466
5467 physpages = get_num_physpages();
5468 codesize = _etext - _stext;
5469 datasize = _edata - _sdata;
5470 rosize = __end_rodata - __start_rodata;
5471 bss_size = __bss_stop - __bss_start;
5472 init_data_size = __init_end - __init_begin;
5473 init_code_size = _einittext - _sinittext;
5474
5475 /*
5476 * Detect special cases and adjust section sizes accordingly:
5477 * 1) .init.* may be embedded into .data sections
5478 * 2) .init.text.* may be out of [__init_begin, __init_end],
5479 * please refer to arch/tile/kernel/vmlinux.lds.S.
5480 * 3) .rodata.* may be embedded into .text or .data sections.
5481 */
5482 #define adj_init_size(start, end, size, pos, adj) \
5483 do { \
5484 if (start <= pos && pos < end && size > adj) \
5485 size -= adj; \
5486 } while (0)
5487
5488 adj_init_size(__init_begin, __init_end, init_data_size,
5489 _sinittext, init_code_size);
5490 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5491 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5492 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5493 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5494
5495 #undef adj_init_size
5496
5497 printk("Memory: %luK/%luK available "
5498 "(%luK kernel code, %luK rwdata, %luK rodata, "
5499 "%luK init, %luK bss, %luK reserved"
5500 #ifdef CONFIG_HIGHMEM
5501 ", %luK highmem"
5502 #endif
5503 "%s%s)\n",
5504 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5505 codesize >> 10, datasize >> 10, rosize >> 10,
5506 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5507 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5508 #ifdef CONFIG_HIGHMEM
5509 totalhigh_pages << (PAGE_SHIFT-10),
5510 #endif
5511 str ? ", " : "", str ? str : "");
5512 }
5513
5514 /**
5515 * set_dma_reserve - set the specified number of pages reserved in the first zone
5516 * @new_dma_reserve: The number of pages to mark reserved
5517 *
5518 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5519 * In the DMA zone, a significant percentage may be consumed by kernel image
5520 * and other unfreeable allocations which can skew the watermarks badly. This
5521 * function may optionally be used to account for unfreeable pages in the
5522 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5523 * smaller per-cpu batchsize.
5524 */
5525 void __init set_dma_reserve(unsigned long new_dma_reserve)
5526 {
5527 dma_reserve = new_dma_reserve;
5528 }
5529
5530 void __init free_area_init(unsigned long *zones_size)
5531 {
5532 free_area_init_node(0, zones_size,
5533 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5534 }
5535
5536 static int page_alloc_cpu_notify(struct notifier_block *self,
5537 unsigned long action, void *hcpu)
5538 {
5539 int cpu = (unsigned long)hcpu;
5540
5541 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5542 lru_add_drain_cpu(cpu);
5543 drain_pages(cpu);
5544
5545 /*
5546 * Spill the event counters of the dead processor
5547 * into the current processors event counters.
5548 * This artificially elevates the count of the current
5549 * processor.
5550 */
5551 vm_events_fold_cpu(cpu);
5552
5553 /*
5554 * Zero the differential counters of the dead processor
5555 * so that the vm statistics are consistent.
5556 *
5557 * This is only okay since the processor is dead and cannot
5558 * race with what we are doing.
5559 */
5560 cpu_vm_stats_fold(cpu);
5561 }
5562 return NOTIFY_OK;
5563 }
5564
5565 void __init page_alloc_init(void)
5566 {
5567 hotcpu_notifier(page_alloc_cpu_notify, 0);
5568 }
5569
5570 /*
5571 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5572 * or min_free_kbytes changes.
5573 */
5574 static void calculate_totalreserve_pages(void)
5575 {
5576 struct pglist_data *pgdat;
5577 unsigned long reserve_pages = 0;
5578 enum zone_type i, j;
5579
5580 for_each_online_pgdat(pgdat) {
5581 for (i = 0; i < MAX_NR_ZONES; i++) {
5582 struct zone *zone = pgdat->node_zones + i;
5583 long max = 0;
5584
5585 /* Find valid and maximum lowmem_reserve in the zone */
5586 for (j = i; j < MAX_NR_ZONES; j++) {
5587 if (zone->lowmem_reserve[j] > max)
5588 max = zone->lowmem_reserve[j];
5589 }
5590
5591 /* we treat the high watermark as reserved pages. */
5592 max += high_wmark_pages(zone);
5593
5594 if (max > zone->managed_pages)
5595 max = zone->managed_pages;
5596 reserve_pages += max;
5597 /*
5598 * Lowmem reserves are not available to
5599 * GFP_HIGHUSER page cache allocations and
5600 * kswapd tries to balance zones to their high
5601 * watermark. As a result, neither should be
5602 * regarded as dirtyable memory, to prevent a
5603 * situation where reclaim has to clean pages
5604 * in order to balance the zones.
5605 */
5606 zone->dirty_balance_reserve = max;
5607 }
5608 }
5609 dirty_balance_reserve = reserve_pages;
5610 totalreserve_pages = reserve_pages;
5611 }
5612
5613 /*
5614 * setup_per_zone_lowmem_reserve - called whenever
5615 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5616 * has a correct pages reserved value, so an adequate number of
5617 * pages are left in the zone after a successful __alloc_pages().
5618 */
5619 static void setup_per_zone_lowmem_reserve(void)
5620 {
5621 struct pglist_data *pgdat;
5622 enum zone_type j, idx;
5623
5624 for_each_online_pgdat(pgdat) {
5625 for (j = 0; j < MAX_NR_ZONES; j++) {
5626 struct zone *zone = pgdat->node_zones + j;
5627 unsigned long managed_pages = zone->managed_pages;
5628
5629 zone->lowmem_reserve[j] = 0;
5630
5631 idx = j;
5632 while (idx) {
5633 struct zone *lower_zone;
5634
5635 idx--;
5636
5637 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5638 sysctl_lowmem_reserve_ratio[idx] = 1;
5639
5640 lower_zone = pgdat->node_zones + idx;
5641 lower_zone->lowmem_reserve[j] = managed_pages /
5642 sysctl_lowmem_reserve_ratio[idx];
5643 managed_pages += lower_zone->managed_pages;
5644 }
5645 }
5646 }
5647
5648 /* update totalreserve_pages */
5649 calculate_totalreserve_pages();
5650 }
5651
5652 static void __setup_per_zone_wmarks(void)
5653 {
5654 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5655 unsigned long lowmem_pages = 0;
5656 struct zone *zone;
5657 unsigned long flags;
5658
5659 /* Calculate total number of !ZONE_HIGHMEM pages */
5660 for_each_zone(zone) {
5661 if (!is_highmem(zone))
5662 lowmem_pages += zone->managed_pages;
5663 }
5664
5665 for_each_zone(zone) {
5666 u64 tmp;
5667
5668 spin_lock_irqsave(&zone->lock, flags);
5669 tmp = (u64)pages_min * zone->managed_pages;
5670 do_div(tmp, lowmem_pages);
5671 if (is_highmem(zone)) {
5672 /*
5673 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5674 * need highmem pages, so cap pages_min to a small
5675 * value here.
5676 *
5677 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5678 * deltas controls asynch page reclaim, and so should
5679 * not be capped for highmem.
5680 */
5681 unsigned long min_pages;
5682
5683 min_pages = zone->managed_pages / 1024;
5684 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5685 zone->watermark[WMARK_MIN] = min_pages;
5686 } else {
5687 /*
5688 * If it's a lowmem zone, reserve a number of pages
5689 * proportionate to the zone's size.
5690 */
5691 zone->watermark[WMARK_MIN] = tmp;
5692 }
5693
5694 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5695 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5696
5697 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5698 high_wmark_pages(zone) - low_wmark_pages(zone) -
5699 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5700
5701 setup_zone_migrate_reserve(zone);
5702 spin_unlock_irqrestore(&zone->lock, flags);
5703 }
5704
5705 /* update totalreserve_pages */
5706 calculate_totalreserve_pages();
5707 }
5708
5709 /**
5710 * setup_per_zone_wmarks - called when min_free_kbytes changes
5711 * or when memory is hot-{added|removed}
5712 *
5713 * Ensures that the watermark[min,low,high] values for each zone are set
5714 * correctly with respect to min_free_kbytes.
5715 */
5716 void setup_per_zone_wmarks(void)
5717 {
5718 mutex_lock(&zonelists_mutex);
5719 __setup_per_zone_wmarks();
5720 mutex_unlock(&zonelists_mutex);
5721 }
5722
5723 /*
5724 * The inactive anon list should be small enough that the VM never has to
5725 * do too much work, but large enough that each inactive page has a chance
5726 * to be referenced again before it is swapped out.
5727 *
5728 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5729 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5730 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5731 * the anonymous pages are kept on the inactive list.
5732 *
5733 * total target max
5734 * memory ratio inactive anon
5735 * -------------------------------------
5736 * 10MB 1 5MB
5737 * 100MB 1 50MB
5738 * 1GB 3 250MB
5739 * 10GB 10 0.9GB
5740 * 100GB 31 3GB
5741 * 1TB 101 10GB
5742 * 10TB 320 32GB
5743 */
5744 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5745 {
5746 unsigned int gb, ratio;
5747
5748 /* Zone size in gigabytes */
5749 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5750 if (gb)
5751 ratio = int_sqrt(10 * gb);
5752 else
5753 ratio = 1;
5754
5755 zone->inactive_ratio = ratio;
5756 }
5757
5758 static void __meminit setup_per_zone_inactive_ratio(void)
5759 {
5760 struct zone *zone;
5761
5762 for_each_zone(zone)
5763 calculate_zone_inactive_ratio(zone);
5764 }
5765
5766 /*
5767 * Initialise min_free_kbytes.
5768 *
5769 * For small machines we want it small (128k min). For large machines
5770 * we want it large (64MB max). But it is not linear, because network
5771 * bandwidth does not increase linearly with machine size. We use
5772 *
5773 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5774 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5775 *
5776 * which yields
5777 *
5778 * 16MB: 512k
5779 * 32MB: 724k
5780 * 64MB: 1024k
5781 * 128MB: 1448k
5782 * 256MB: 2048k
5783 * 512MB: 2896k
5784 * 1024MB: 4096k
5785 * 2048MB: 5792k
5786 * 4096MB: 8192k
5787 * 8192MB: 11584k
5788 * 16384MB: 16384k
5789 */
5790 int __meminit init_per_zone_wmark_min(void)
5791 {
5792 unsigned long lowmem_kbytes;
5793 int new_min_free_kbytes;
5794
5795 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5796 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5797
5798 if (new_min_free_kbytes > user_min_free_kbytes) {
5799 min_free_kbytes = new_min_free_kbytes;
5800 if (min_free_kbytes < 128)
5801 min_free_kbytes = 128;
5802 if (min_free_kbytes > 65536)
5803 min_free_kbytes = 65536;
5804 } else {
5805 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5806 new_min_free_kbytes, user_min_free_kbytes);
5807 }
5808 setup_per_zone_wmarks();
5809 refresh_zone_stat_thresholds();
5810 setup_per_zone_lowmem_reserve();
5811 setup_per_zone_inactive_ratio();
5812 return 0;
5813 }
5814 module_init(init_per_zone_wmark_min)
5815
5816 /*
5817 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5818 * that we can call two helper functions whenever min_free_kbytes
5819 * changes.
5820 */
5821 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5822 void __user *buffer, size_t *length, loff_t *ppos)
5823 {
5824 int rc;
5825
5826 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5827 if (rc)
5828 return rc;
5829
5830 if (write) {
5831 user_min_free_kbytes = min_free_kbytes;
5832 setup_per_zone_wmarks();
5833 }
5834 return 0;
5835 }
5836
5837 #ifdef CONFIG_NUMA
5838 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5839 void __user *buffer, size_t *length, loff_t *ppos)
5840 {
5841 struct zone *zone;
5842 int rc;
5843
5844 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5845 if (rc)
5846 return rc;
5847
5848 for_each_zone(zone)
5849 zone->min_unmapped_pages = (zone->managed_pages *
5850 sysctl_min_unmapped_ratio) / 100;
5851 return 0;
5852 }
5853
5854 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5855 void __user *buffer, size_t *length, loff_t *ppos)
5856 {
5857 struct zone *zone;
5858 int rc;
5859
5860 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5861 if (rc)
5862 return rc;
5863
5864 for_each_zone(zone)
5865 zone->min_slab_pages = (zone->managed_pages *
5866 sysctl_min_slab_ratio) / 100;
5867 return 0;
5868 }
5869 #endif
5870
5871 /*
5872 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5873 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5874 * whenever sysctl_lowmem_reserve_ratio changes.
5875 *
5876 * The reserve ratio obviously has absolutely no relation with the
5877 * minimum watermarks. The lowmem reserve ratio can only make sense
5878 * if in function of the boot time zone sizes.
5879 */
5880 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5881 void __user *buffer, size_t *length, loff_t *ppos)
5882 {
5883 proc_dointvec_minmax(table, write, buffer, length, ppos);
5884 setup_per_zone_lowmem_reserve();
5885 return 0;
5886 }
5887
5888 /*
5889 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5890 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5891 * pagelist can have before it gets flushed back to buddy allocator.
5892 */
5893 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5894 void __user *buffer, size_t *length, loff_t *ppos)
5895 {
5896 struct zone *zone;
5897 int old_percpu_pagelist_fraction;
5898 int ret;
5899
5900 mutex_lock(&pcp_batch_high_lock);
5901 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5902
5903 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5904 if (!write || ret < 0)
5905 goto out;
5906
5907 /* Sanity checking to avoid pcp imbalance */
5908 if (percpu_pagelist_fraction &&
5909 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5910 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5911 ret = -EINVAL;
5912 goto out;
5913 }
5914
5915 /* No change? */
5916 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5917 goto out;
5918
5919 for_each_populated_zone(zone) {
5920 unsigned int cpu;
5921
5922 for_each_possible_cpu(cpu)
5923 pageset_set_high_and_batch(zone,
5924 per_cpu_ptr(zone->pageset, cpu));
5925 }
5926 out:
5927 mutex_unlock(&pcp_batch_high_lock);
5928 return ret;
5929 }
5930
5931 int hashdist = HASHDIST_DEFAULT;
5932
5933 #ifdef CONFIG_NUMA
5934 static int __init set_hashdist(char *str)
5935 {
5936 if (!str)
5937 return 0;
5938 hashdist = simple_strtoul(str, &str, 0);
5939 return 1;
5940 }
5941 __setup("hashdist=", set_hashdist);
5942 #endif
5943
5944 /*
5945 * allocate a large system hash table from bootmem
5946 * - it is assumed that the hash table must contain an exact power-of-2
5947 * quantity of entries
5948 * - limit is the number of hash buckets, not the total allocation size
5949 */
5950 void *__init alloc_large_system_hash(const char *tablename,
5951 unsigned long bucketsize,
5952 unsigned long numentries,
5953 int scale,
5954 int flags,
5955 unsigned int *_hash_shift,
5956 unsigned int *_hash_mask,
5957 unsigned long low_limit,
5958 unsigned long high_limit)
5959 {
5960 unsigned long long max = high_limit;
5961 unsigned long log2qty, size;
5962 void *table = NULL;
5963
5964 /* allow the kernel cmdline to have a say */
5965 if (!numentries) {
5966 /* round applicable memory size up to nearest megabyte */
5967 numentries = nr_kernel_pages;
5968
5969 /* It isn't necessary when PAGE_SIZE >= 1MB */
5970 if (PAGE_SHIFT < 20)
5971 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5972
5973 /* limit to 1 bucket per 2^scale bytes of low memory */
5974 if (scale > PAGE_SHIFT)
5975 numentries >>= (scale - PAGE_SHIFT);
5976 else
5977 numentries <<= (PAGE_SHIFT - scale);
5978
5979 /* Make sure we've got at least a 0-order allocation.. */
5980 if (unlikely(flags & HASH_SMALL)) {
5981 /* Makes no sense without HASH_EARLY */
5982 WARN_ON(!(flags & HASH_EARLY));
5983 if (!(numentries >> *_hash_shift)) {
5984 numentries = 1UL << *_hash_shift;
5985 BUG_ON(!numentries);
5986 }
5987 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5988 numentries = PAGE_SIZE / bucketsize;
5989 }
5990 numentries = roundup_pow_of_two(numentries);
5991
5992 /* limit allocation size to 1/16 total memory by default */
5993 if (max == 0) {
5994 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5995 do_div(max, bucketsize);
5996 }
5997 max = min(max, 0x80000000ULL);
5998
5999 if (numentries < low_limit)
6000 numentries = low_limit;
6001 if (numentries > max)
6002 numentries = max;
6003
6004 log2qty = ilog2(numentries);
6005
6006 do {
6007 size = bucketsize << log2qty;
6008 if (flags & HASH_EARLY)
6009 table = memblock_virt_alloc_nopanic(size, 0);
6010 else if (hashdist)
6011 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6012 else {
6013 /*
6014 * If bucketsize is not a power-of-two, we may free
6015 * some pages at the end of hash table which
6016 * alloc_pages_exact() automatically does
6017 */
6018 if (get_order(size) < MAX_ORDER) {
6019 table = alloc_pages_exact(size, GFP_ATOMIC);
6020 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6021 }
6022 }
6023 } while (!table && size > PAGE_SIZE && --log2qty);
6024
6025 if (!table)
6026 panic("Failed to allocate %s hash table\n", tablename);
6027
6028 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6029 tablename,
6030 (1UL << log2qty),
6031 ilog2(size) - PAGE_SHIFT,
6032 size);
6033
6034 if (_hash_shift)
6035 *_hash_shift = log2qty;
6036 if (_hash_mask)
6037 *_hash_mask = (1 << log2qty) - 1;
6038
6039 return table;
6040 }
6041
6042 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6043 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6044 unsigned long pfn)
6045 {
6046 #ifdef CONFIG_SPARSEMEM
6047 return __pfn_to_section(pfn)->pageblock_flags;
6048 #else
6049 return zone->pageblock_flags;
6050 #endif /* CONFIG_SPARSEMEM */
6051 }
6052
6053 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6054 {
6055 #ifdef CONFIG_SPARSEMEM
6056 pfn &= (PAGES_PER_SECTION-1);
6057 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6058 #else
6059 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6060 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6061 #endif /* CONFIG_SPARSEMEM */
6062 }
6063
6064 /**
6065 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6066 * @page: The page within the block of interest
6067 * @pfn: The target page frame number
6068 * @end_bitidx: The last bit of interest to retrieve
6069 * @mask: mask of bits that the caller is interested in
6070 *
6071 * Return: pageblock_bits flags
6072 */
6073 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6074 unsigned long end_bitidx,
6075 unsigned long mask)
6076 {
6077 struct zone *zone;
6078 unsigned long *bitmap;
6079 unsigned long bitidx, word_bitidx;
6080 unsigned long word;
6081
6082 zone = page_zone(page);
6083 bitmap = get_pageblock_bitmap(zone, pfn);
6084 bitidx = pfn_to_bitidx(zone, pfn);
6085 word_bitidx = bitidx / BITS_PER_LONG;
6086 bitidx &= (BITS_PER_LONG-1);
6087
6088 word = bitmap[word_bitidx];
6089 bitidx += end_bitidx;
6090 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6091 }
6092
6093 /**
6094 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6095 * @page: The page within the block of interest
6096 * @flags: The flags to set
6097 * @pfn: The target page frame number
6098 * @end_bitidx: The last bit of interest
6099 * @mask: mask of bits that the caller is interested in
6100 */
6101 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6102 unsigned long pfn,
6103 unsigned long end_bitidx,
6104 unsigned long mask)
6105 {
6106 struct zone *zone;
6107 unsigned long *bitmap;
6108 unsigned long bitidx, word_bitidx;
6109 unsigned long old_word, word;
6110
6111 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6112
6113 zone = page_zone(page);
6114 bitmap = get_pageblock_bitmap(zone, pfn);
6115 bitidx = pfn_to_bitidx(zone, pfn);
6116 word_bitidx = bitidx / BITS_PER_LONG;
6117 bitidx &= (BITS_PER_LONG-1);
6118
6119 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6120
6121 bitidx += end_bitidx;
6122 mask <<= (BITS_PER_LONG - bitidx - 1);
6123 flags <<= (BITS_PER_LONG - bitidx - 1);
6124
6125 word = ACCESS_ONCE(bitmap[word_bitidx]);
6126 for (;;) {
6127 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6128 if (word == old_word)
6129 break;
6130 word = old_word;
6131 }
6132 }
6133
6134 /*
6135 * This function checks whether pageblock includes unmovable pages or not.
6136 * If @count is not zero, it is okay to include less @count unmovable pages
6137 *
6138 * PageLRU check without isolation or lru_lock could race so that
6139 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6140 * expect this function should be exact.
6141 */
6142 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6143 bool skip_hwpoisoned_pages)
6144 {
6145 unsigned long pfn, iter, found;
6146 int mt;
6147
6148 /*
6149 * For avoiding noise data, lru_add_drain_all() should be called
6150 * If ZONE_MOVABLE, the zone never contains unmovable pages
6151 */
6152 if (zone_idx(zone) == ZONE_MOVABLE)
6153 return false;
6154 mt = get_pageblock_migratetype(page);
6155 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6156 return false;
6157
6158 pfn = page_to_pfn(page);
6159 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6160 unsigned long check = pfn + iter;
6161
6162 if (!pfn_valid_within(check))
6163 continue;
6164
6165 page = pfn_to_page(check);
6166
6167 /*
6168 * Hugepages are not in LRU lists, but they're movable.
6169 * We need not scan over tail pages bacause we don't
6170 * handle each tail page individually in migration.
6171 */
6172 if (PageHuge(page)) {
6173 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6174 continue;
6175 }
6176
6177 /*
6178 * We can't use page_count without pin a page
6179 * because another CPU can free compound page.
6180 * This check already skips compound tails of THP
6181 * because their page->_count is zero at all time.
6182 */
6183 if (!atomic_read(&page->_count)) {
6184 if (PageBuddy(page))
6185 iter += (1 << page_order(page)) - 1;
6186 continue;
6187 }
6188
6189 /*
6190 * The HWPoisoned page may be not in buddy system, and
6191 * page_count() is not 0.
6192 */
6193 if (skip_hwpoisoned_pages && PageHWPoison(page))
6194 continue;
6195
6196 if (!PageLRU(page))
6197 found++;
6198 /*
6199 * If there are RECLAIMABLE pages, we need to check it.
6200 * But now, memory offline itself doesn't call shrink_slab()
6201 * and it still to be fixed.
6202 */
6203 /*
6204 * If the page is not RAM, page_count()should be 0.
6205 * we don't need more check. This is an _used_ not-movable page.
6206 *
6207 * The problematic thing here is PG_reserved pages. PG_reserved
6208 * is set to both of a memory hole page and a _used_ kernel
6209 * page at boot.
6210 */
6211 if (found > count)
6212 return true;
6213 }
6214 return false;
6215 }
6216
6217 bool is_pageblock_removable_nolock(struct page *page)
6218 {
6219 struct zone *zone;
6220 unsigned long pfn;
6221
6222 /*
6223 * We have to be careful here because we are iterating over memory
6224 * sections which are not zone aware so we might end up outside of
6225 * the zone but still within the section.
6226 * We have to take care about the node as well. If the node is offline
6227 * its NODE_DATA will be NULL - see page_zone.
6228 */
6229 if (!node_online(page_to_nid(page)))
6230 return false;
6231
6232 zone = page_zone(page);
6233 pfn = page_to_pfn(page);
6234 if (!zone_spans_pfn(zone, pfn))
6235 return false;
6236
6237 return !has_unmovable_pages(zone, page, 0, true);
6238 }
6239
6240 #ifdef CONFIG_CMA
6241
6242 static unsigned long pfn_max_align_down(unsigned long pfn)
6243 {
6244 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6245 pageblock_nr_pages) - 1);
6246 }
6247
6248 static unsigned long pfn_max_align_up(unsigned long pfn)
6249 {
6250 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6251 pageblock_nr_pages));
6252 }
6253
6254 /* [start, end) must belong to a single zone. */
6255 static int __alloc_contig_migrate_range(struct compact_control *cc,
6256 unsigned long start, unsigned long end)
6257 {
6258 /* This function is based on compact_zone() from compaction.c. */
6259 unsigned long nr_reclaimed;
6260 unsigned long pfn = start;
6261 unsigned int tries = 0;
6262 int ret = 0;
6263
6264 migrate_prep();
6265
6266 while (pfn < end || !list_empty(&cc->migratepages)) {
6267 if (fatal_signal_pending(current)) {
6268 ret = -EINTR;
6269 break;
6270 }
6271
6272 if (list_empty(&cc->migratepages)) {
6273 cc->nr_migratepages = 0;
6274 pfn = isolate_migratepages_range(cc, pfn, end);
6275 if (!pfn) {
6276 ret = -EINTR;
6277 break;
6278 }
6279 tries = 0;
6280 } else if (++tries == 5) {
6281 ret = ret < 0 ? ret : -EBUSY;
6282 break;
6283 }
6284
6285 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6286 &cc->migratepages);
6287 cc->nr_migratepages -= nr_reclaimed;
6288
6289 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6290 NULL, 0, cc->mode, MR_CMA);
6291 }
6292 if (ret < 0) {
6293 putback_movable_pages(&cc->migratepages);
6294 return ret;
6295 }
6296 return 0;
6297 }
6298
6299 /**
6300 * alloc_contig_range() -- tries to allocate given range of pages
6301 * @start: start PFN to allocate
6302 * @end: one-past-the-last PFN to allocate
6303 * @migratetype: migratetype of the underlaying pageblocks (either
6304 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6305 * in range must have the same migratetype and it must
6306 * be either of the two.
6307 *
6308 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6309 * aligned, however it's the caller's responsibility to guarantee that
6310 * we are the only thread that changes migrate type of pageblocks the
6311 * pages fall in.
6312 *
6313 * The PFN range must belong to a single zone.
6314 *
6315 * Returns zero on success or negative error code. On success all
6316 * pages which PFN is in [start, end) are allocated for the caller and
6317 * need to be freed with free_contig_range().
6318 */
6319 int alloc_contig_range(unsigned long start, unsigned long end,
6320 unsigned migratetype)
6321 {
6322 unsigned long outer_start, outer_end;
6323 int ret = 0, order;
6324
6325 struct compact_control cc = {
6326 .nr_migratepages = 0,
6327 .order = -1,
6328 .zone = page_zone(pfn_to_page(start)),
6329 .mode = MIGRATE_SYNC,
6330 .ignore_skip_hint = true,
6331 };
6332 INIT_LIST_HEAD(&cc.migratepages);
6333
6334 /*
6335 * What we do here is we mark all pageblocks in range as
6336 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6337 * have different sizes, and due to the way page allocator
6338 * work, we align the range to biggest of the two pages so
6339 * that page allocator won't try to merge buddies from
6340 * different pageblocks and change MIGRATE_ISOLATE to some
6341 * other migration type.
6342 *
6343 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6344 * migrate the pages from an unaligned range (ie. pages that
6345 * we are interested in). This will put all the pages in
6346 * range back to page allocator as MIGRATE_ISOLATE.
6347 *
6348 * When this is done, we take the pages in range from page
6349 * allocator removing them from the buddy system. This way
6350 * page allocator will never consider using them.
6351 *
6352 * This lets us mark the pageblocks back as
6353 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6354 * aligned range but not in the unaligned, original range are
6355 * put back to page allocator so that buddy can use them.
6356 */
6357
6358 ret = start_isolate_page_range(pfn_max_align_down(start),
6359 pfn_max_align_up(end), migratetype,
6360 false);
6361 if (ret)
6362 return ret;
6363
6364 ret = __alloc_contig_migrate_range(&cc, start, end);
6365 if (ret)
6366 goto done;
6367
6368 /*
6369 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6370 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6371 * more, all pages in [start, end) are free in page allocator.
6372 * What we are going to do is to allocate all pages from
6373 * [start, end) (that is remove them from page allocator).
6374 *
6375 * The only problem is that pages at the beginning and at the
6376 * end of interesting range may be not aligned with pages that
6377 * page allocator holds, ie. they can be part of higher order
6378 * pages. Because of this, we reserve the bigger range and
6379 * once this is done free the pages we are not interested in.
6380 *
6381 * We don't have to hold zone->lock here because the pages are
6382 * isolated thus they won't get removed from buddy.
6383 */
6384
6385 lru_add_drain_all();
6386 drain_all_pages();
6387
6388 order = 0;
6389 outer_start = start;
6390 while (!PageBuddy(pfn_to_page(outer_start))) {
6391 if (++order >= MAX_ORDER) {
6392 ret = -EBUSY;
6393 goto done;
6394 }
6395 outer_start &= ~0UL << order;
6396 }
6397
6398 /* Make sure the range is really isolated. */
6399 if (test_pages_isolated(outer_start, end, false)) {
6400 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6401 outer_start, end);
6402 ret = -EBUSY;
6403 goto done;
6404 }
6405
6406
6407 /* Grab isolated pages from freelists. */
6408 outer_end = isolate_freepages_range(&cc, outer_start, end);
6409 if (!outer_end) {
6410 ret = -EBUSY;
6411 goto done;
6412 }
6413
6414 /* Free head and tail (if any) */
6415 if (start != outer_start)
6416 free_contig_range(outer_start, start - outer_start);
6417 if (end != outer_end)
6418 free_contig_range(end, outer_end - end);
6419
6420 done:
6421 undo_isolate_page_range(pfn_max_align_down(start),
6422 pfn_max_align_up(end), migratetype);
6423 return ret;
6424 }
6425
6426 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6427 {
6428 unsigned int count = 0;
6429
6430 for (; nr_pages--; pfn++) {
6431 struct page *page = pfn_to_page(pfn);
6432
6433 count += page_count(page) != 1;
6434 __free_page(page);
6435 }
6436 WARN(count != 0, "%d pages are still in use!\n", count);
6437 }
6438 #endif
6439
6440 #ifdef CONFIG_MEMORY_HOTPLUG
6441 /*
6442 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6443 * page high values need to be recalulated.
6444 */
6445 void __meminit zone_pcp_update(struct zone *zone)
6446 {
6447 unsigned cpu;
6448 mutex_lock(&pcp_batch_high_lock);
6449 for_each_possible_cpu(cpu)
6450 pageset_set_high_and_batch(zone,
6451 per_cpu_ptr(zone->pageset, cpu));
6452 mutex_unlock(&pcp_batch_high_lock);
6453 }
6454 #endif
6455
6456 void zone_pcp_reset(struct zone *zone)
6457 {
6458 unsigned long flags;
6459 int cpu;
6460 struct per_cpu_pageset *pset;
6461
6462 /* avoid races with drain_pages() */
6463 local_irq_save(flags);
6464 if (zone->pageset != &boot_pageset) {
6465 for_each_online_cpu(cpu) {
6466 pset = per_cpu_ptr(zone->pageset, cpu);
6467 drain_zonestat(zone, pset);
6468 }
6469 free_percpu(zone->pageset);
6470 zone->pageset = &boot_pageset;
6471 }
6472 local_irq_restore(flags);
6473 }
6474
6475 #ifdef CONFIG_MEMORY_HOTREMOVE
6476 /*
6477 * All pages in the range must be isolated before calling this.
6478 */
6479 void
6480 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6481 {
6482 struct page *page;
6483 struct zone *zone;
6484 unsigned int order, i;
6485 unsigned long pfn;
6486 unsigned long flags;
6487 /* find the first valid pfn */
6488 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6489 if (pfn_valid(pfn))
6490 break;
6491 if (pfn == end_pfn)
6492 return;
6493 zone = page_zone(pfn_to_page(pfn));
6494 spin_lock_irqsave(&zone->lock, flags);
6495 pfn = start_pfn;
6496 while (pfn < end_pfn) {
6497 if (!pfn_valid(pfn)) {
6498 pfn++;
6499 continue;
6500 }
6501 page = pfn_to_page(pfn);
6502 /*
6503 * The HWPoisoned page may be not in buddy system, and
6504 * page_count() is not 0.
6505 */
6506 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6507 pfn++;
6508 SetPageReserved(page);
6509 continue;
6510 }
6511
6512 BUG_ON(page_count(page));
6513 BUG_ON(!PageBuddy(page));
6514 order = page_order(page);
6515 #ifdef CONFIG_DEBUG_VM
6516 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6517 pfn, 1 << order, end_pfn);
6518 #endif
6519 list_del(&page->lru);
6520 rmv_page_order(page);
6521 zone->free_area[order].nr_free--;
6522 for (i = 0; i < (1 << order); i++)
6523 SetPageReserved((page+i));
6524 pfn += (1 << order);
6525 }
6526 spin_unlock_irqrestore(&zone->lock, flags);
6527 }
6528 #endif
6529
6530 #ifdef CONFIG_MEMORY_FAILURE
6531 bool is_free_buddy_page(struct page *page)
6532 {
6533 struct zone *zone = page_zone(page);
6534 unsigned long pfn = page_to_pfn(page);
6535 unsigned long flags;
6536 unsigned int order;
6537
6538 spin_lock_irqsave(&zone->lock, flags);
6539 for (order = 0; order < MAX_ORDER; order++) {
6540 struct page *page_head = page - (pfn & ((1 << order) - 1));
6541
6542 if (PageBuddy(page_head) && page_order(page_head) >= order)
6543 break;
6544 }
6545 spin_unlock_irqrestore(&zone->lock, flags);
6546
6547 return order < MAX_ORDER;
6548 }
6549 #endif