]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
Merge git://git.infradead.org/users/willy/linux-nvme
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 #endif
88
89 /*
90 * Array of node states.
91 */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 [N_CPU] = { { [0] = 1UL } },
104 #endif /* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119 unsigned long dirty_balance_reserve __read_mostly;
120
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123
124 #ifdef CONFIG_PM_SLEEP
125 /*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
133
134 static gfp_t saved_gfp_mask;
135
136 void pm_restore_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
143 }
144
145 void pm_restrict_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
151 }
152
153 bool pm_suspended_storage(void)
154 {
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164
165 static void __free_pages_ok(struct page *page, unsigned int order);
166
167 /*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
177 */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 32,
187 #endif
188 32,
189 };
190
191 EXPORT_SYMBOL(totalram_pages);
192
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 "DMA32",
199 #endif
200 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 "HighMem",
203 #endif
204 "Movable",
205 };
206
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes = -1;
209
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232
233 int page_group_by_mobility_disabled __read_mostly;
234
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
239 migratetype = MIGRATE_UNMOVABLE;
240
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243 }
244
245 bool oom_killer_disabled __read_mostly;
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
267 return ret;
268 }
269
270 static int page_is_consistent(struct zone *zone, struct page *page)
271 {
272 if (!pfn_valid_within(page_to_pfn(page)))
273 return 0;
274 if (zone != page_zone(page))
275 return 0;
276
277 return 1;
278 }
279 /*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282 static int bad_range(struct zone *zone, struct page *page)
283 {
284 if (page_outside_zone_boundaries(zone, page))
285 return 1;
286 if (!page_is_consistent(zone, page))
287 return 1;
288
289 return 0;
290 }
291 #else
292 static inline int bad_range(struct zone *zone, struct page *page)
293 {
294 return 0;
295 }
296 #endif
297
298 static void bad_page(struct page *page, const char *reason,
299 unsigned long bad_flags)
300 {
301 static unsigned long resume;
302 static unsigned long nr_shown;
303 static unsigned long nr_unshown;
304
305 /* Don't complain about poisoned pages */
306 if (PageHWPoison(page)) {
307 page_mapcount_reset(page); /* remove PageBuddy */
308 return;
309 }
310
311 /*
312 * Allow a burst of 60 reports, then keep quiet for that minute;
313 * or allow a steady drip of one report per second.
314 */
315 if (nr_shown == 60) {
316 if (time_before(jiffies, resume)) {
317 nr_unshown++;
318 goto out;
319 }
320 if (nr_unshown) {
321 printk(KERN_ALERT
322 "BUG: Bad page state: %lu messages suppressed\n",
323 nr_unshown);
324 nr_unshown = 0;
325 }
326 nr_shown = 0;
327 }
328 if (nr_shown++ == 0)
329 resume = jiffies + 60 * HZ;
330
331 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
332 current->comm, page_to_pfn(page));
333 dump_page_badflags(page, reason, bad_flags);
334
335 print_modules();
336 dump_stack();
337 out:
338 /* Leave bad fields for debug, except PageBuddy could make trouble */
339 page_mapcount_reset(page); /* remove PageBuddy */
340 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
341 }
342
343 /*
344 * Higher-order pages are called "compound pages". They are structured thusly:
345 *
346 * The first PAGE_SIZE page is called the "head page".
347 *
348 * The remaining PAGE_SIZE pages are called "tail pages".
349 *
350 * All pages have PG_compound set. All tail pages have their ->first_page
351 * pointing at the head page.
352 *
353 * The first tail page's ->lru.next holds the address of the compound page's
354 * put_page() function. Its ->lru.prev holds the order of allocation.
355 * This usage means that zero-order pages may not be compound.
356 */
357
358 static void free_compound_page(struct page *page)
359 {
360 __free_pages_ok(page, compound_order(page));
361 }
362
363 void prep_compound_page(struct page *page, unsigned long order)
364 {
365 int i;
366 int nr_pages = 1 << order;
367
368 set_compound_page_dtor(page, free_compound_page);
369 set_compound_order(page, order);
370 __SetPageHead(page);
371 for (i = 1; i < nr_pages; i++) {
372 struct page *p = page + i;
373 set_page_count(p, 0);
374 p->first_page = page;
375 /* Make sure p->first_page is always valid for PageTail() */
376 smp_wmb();
377 __SetPageTail(p);
378 }
379 }
380
381 /* update __split_huge_page_refcount if you change this function */
382 static int destroy_compound_page(struct page *page, unsigned long order)
383 {
384 int i;
385 int nr_pages = 1 << order;
386 int bad = 0;
387
388 if (unlikely(compound_order(page) != order)) {
389 bad_page(page, "wrong compound order", 0);
390 bad++;
391 }
392
393 __ClearPageHead(page);
394
395 for (i = 1; i < nr_pages; i++) {
396 struct page *p = page + i;
397
398 if (unlikely(!PageTail(p))) {
399 bad_page(page, "PageTail not set", 0);
400 bad++;
401 } else if (unlikely(p->first_page != page)) {
402 bad_page(page, "first_page not consistent", 0);
403 bad++;
404 }
405 __ClearPageTail(p);
406 }
407
408 return bad;
409 }
410
411 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
412 {
413 int i;
414
415 /*
416 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
417 * and __GFP_HIGHMEM from hard or soft interrupt context.
418 */
419 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
420 for (i = 0; i < (1 << order); i++)
421 clear_highpage(page + i);
422 }
423
424 #ifdef CONFIG_DEBUG_PAGEALLOC
425 unsigned int _debug_guardpage_minorder;
426
427 static int __init debug_guardpage_minorder_setup(char *buf)
428 {
429 unsigned long res;
430
431 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
432 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
433 return 0;
434 }
435 _debug_guardpage_minorder = res;
436 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
437 return 0;
438 }
439 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
440
441 static inline void set_page_guard_flag(struct page *page)
442 {
443 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
444 }
445
446 static inline void clear_page_guard_flag(struct page *page)
447 {
448 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
449 }
450 #else
451 static inline void set_page_guard_flag(struct page *page) { }
452 static inline void clear_page_guard_flag(struct page *page) { }
453 #endif
454
455 static inline void set_page_order(struct page *page, int order)
456 {
457 set_page_private(page, order);
458 __SetPageBuddy(page);
459 }
460
461 static inline void rmv_page_order(struct page *page)
462 {
463 __ClearPageBuddy(page);
464 set_page_private(page, 0);
465 }
466
467 /*
468 * Locate the struct page for both the matching buddy in our
469 * pair (buddy1) and the combined O(n+1) page they form (page).
470 *
471 * 1) Any buddy B1 will have an order O twin B2 which satisfies
472 * the following equation:
473 * B2 = B1 ^ (1 << O)
474 * For example, if the starting buddy (buddy2) is #8 its order
475 * 1 buddy is #10:
476 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
477 *
478 * 2) Any buddy B will have an order O+1 parent P which
479 * satisfies the following equation:
480 * P = B & ~(1 << O)
481 *
482 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
483 */
484 static inline unsigned long
485 __find_buddy_index(unsigned long page_idx, unsigned int order)
486 {
487 return page_idx ^ (1 << order);
488 }
489
490 /*
491 * This function checks whether a page is free && is the buddy
492 * we can do coalesce a page and its buddy if
493 * (a) the buddy is not in a hole &&
494 * (b) the buddy is in the buddy system &&
495 * (c) a page and its buddy have the same order &&
496 * (d) a page and its buddy are in the same zone.
497 *
498 * For recording whether a page is in the buddy system, we set ->_mapcount
499 * PAGE_BUDDY_MAPCOUNT_VALUE.
500 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
501 * serialized by zone->lock.
502 *
503 * For recording page's order, we use page_private(page).
504 */
505 static inline int page_is_buddy(struct page *page, struct page *buddy,
506 int order)
507 {
508 if (!pfn_valid_within(page_to_pfn(buddy)))
509 return 0;
510
511 if (page_zone_id(page) != page_zone_id(buddy))
512 return 0;
513
514 if (page_is_guard(buddy) && page_order(buddy) == order) {
515 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
516 return 1;
517 }
518
519 if (PageBuddy(buddy) && page_order(buddy) == order) {
520 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
521 return 1;
522 }
523 return 0;
524 }
525
526 /*
527 * Freeing function for a buddy system allocator.
528 *
529 * The concept of a buddy system is to maintain direct-mapped table
530 * (containing bit values) for memory blocks of various "orders".
531 * The bottom level table contains the map for the smallest allocatable
532 * units of memory (here, pages), and each level above it describes
533 * pairs of units from the levels below, hence, "buddies".
534 * At a high level, all that happens here is marking the table entry
535 * at the bottom level available, and propagating the changes upward
536 * as necessary, plus some accounting needed to play nicely with other
537 * parts of the VM system.
538 * At each level, we keep a list of pages, which are heads of continuous
539 * free pages of length of (1 << order) and marked with _mapcount
540 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
541 * field.
542 * So when we are allocating or freeing one, we can derive the state of the
543 * other. That is, if we allocate a small block, and both were
544 * free, the remainder of the region must be split into blocks.
545 * If a block is freed, and its buddy is also free, then this
546 * triggers coalescing into a block of larger size.
547 *
548 * -- nyc
549 */
550
551 static inline void __free_one_page(struct page *page,
552 struct zone *zone, unsigned int order,
553 int migratetype)
554 {
555 unsigned long page_idx;
556 unsigned long combined_idx;
557 unsigned long uninitialized_var(buddy_idx);
558 struct page *buddy;
559
560 VM_BUG_ON(!zone_is_initialized(zone));
561
562 if (unlikely(PageCompound(page)))
563 if (unlikely(destroy_compound_page(page, order)))
564 return;
565
566 VM_BUG_ON(migratetype == -1);
567
568 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
569
570 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
571 VM_BUG_ON_PAGE(bad_range(zone, page), page);
572
573 while (order < MAX_ORDER-1) {
574 buddy_idx = __find_buddy_index(page_idx, order);
575 buddy = page + (buddy_idx - page_idx);
576 if (!page_is_buddy(page, buddy, order))
577 break;
578 /*
579 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
580 * merge with it and move up one order.
581 */
582 if (page_is_guard(buddy)) {
583 clear_page_guard_flag(buddy);
584 set_page_private(page, 0);
585 __mod_zone_freepage_state(zone, 1 << order,
586 migratetype);
587 } else {
588 list_del(&buddy->lru);
589 zone->free_area[order].nr_free--;
590 rmv_page_order(buddy);
591 }
592 combined_idx = buddy_idx & page_idx;
593 page = page + (combined_idx - page_idx);
594 page_idx = combined_idx;
595 order++;
596 }
597 set_page_order(page, order);
598
599 /*
600 * If this is not the largest possible page, check if the buddy
601 * of the next-highest order is free. If it is, it's possible
602 * that pages are being freed that will coalesce soon. In case,
603 * that is happening, add the free page to the tail of the list
604 * so it's less likely to be used soon and more likely to be merged
605 * as a higher order page
606 */
607 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
608 struct page *higher_page, *higher_buddy;
609 combined_idx = buddy_idx & page_idx;
610 higher_page = page + (combined_idx - page_idx);
611 buddy_idx = __find_buddy_index(combined_idx, order + 1);
612 higher_buddy = higher_page + (buddy_idx - combined_idx);
613 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
614 list_add_tail(&page->lru,
615 &zone->free_area[order].free_list[migratetype]);
616 goto out;
617 }
618 }
619
620 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
621 out:
622 zone->free_area[order].nr_free++;
623 }
624
625 static inline int free_pages_check(struct page *page)
626 {
627 const char *bad_reason = NULL;
628 unsigned long bad_flags = 0;
629
630 if (unlikely(page_mapcount(page)))
631 bad_reason = "nonzero mapcount";
632 if (unlikely(page->mapping != NULL))
633 bad_reason = "non-NULL mapping";
634 if (unlikely(atomic_read(&page->_count) != 0))
635 bad_reason = "nonzero _count";
636 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
637 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
638 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
639 }
640 if (unlikely(mem_cgroup_bad_page_check(page)))
641 bad_reason = "cgroup check failed";
642 if (unlikely(bad_reason)) {
643 bad_page(page, bad_reason, bad_flags);
644 return 1;
645 }
646 page_cpupid_reset_last(page);
647 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
648 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
649 return 0;
650 }
651
652 /*
653 * Frees a number of pages from the PCP lists
654 * Assumes all pages on list are in same zone, and of same order.
655 * count is the number of pages to free.
656 *
657 * If the zone was previously in an "all pages pinned" state then look to
658 * see if this freeing clears that state.
659 *
660 * And clear the zone's pages_scanned counter, to hold off the "all pages are
661 * pinned" detection logic.
662 */
663 static void free_pcppages_bulk(struct zone *zone, int count,
664 struct per_cpu_pages *pcp)
665 {
666 int migratetype = 0;
667 int batch_free = 0;
668 int to_free = count;
669
670 spin_lock(&zone->lock);
671 zone->pages_scanned = 0;
672
673 while (to_free) {
674 struct page *page;
675 struct list_head *list;
676
677 /*
678 * Remove pages from lists in a round-robin fashion. A
679 * batch_free count is maintained that is incremented when an
680 * empty list is encountered. This is so more pages are freed
681 * off fuller lists instead of spinning excessively around empty
682 * lists
683 */
684 do {
685 batch_free++;
686 if (++migratetype == MIGRATE_PCPTYPES)
687 migratetype = 0;
688 list = &pcp->lists[migratetype];
689 } while (list_empty(list));
690
691 /* This is the only non-empty list. Free them all. */
692 if (batch_free == MIGRATE_PCPTYPES)
693 batch_free = to_free;
694
695 do {
696 int mt; /* migratetype of the to-be-freed page */
697
698 page = list_entry(list->prev, struct page, lru);
699 /* must delete as __free_one_page list manipulates */
700 list_del(&page->lru);
701 mt = get_freepage_migratetype(page);
702 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
703 __free_one_page(page, zone, 0, mt);
704 trace_mm_page_pcpu_drain(page, 0, mt);
705 if (likely(!is_migrate_isolate_page(page))) {
706 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
707 if (is_migrate_cma(mt))
708 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
709 }
710 } while (--to_free && --batch_free && !list_empty(list));
711 }
712 spin_unlock(&zone->lock);
713 }
714
715 static void free_one_page(struct zone *zone, struct page *page, int order,
716 int migratetype)
717 {
718 spin_lock(&zone->lock);
719 zone->pages_scanned = 0;
720
721 __free_one_page(page, zone, order, migratetype);
722 if (unlikely(!is_migrate_isolate(migratetype)))
723 __mod_zone_freepage_state(zone, 1 << order, migratetype);
724 spin_unlock(&zone->lock);
725 }
726
727 static bool free_pages_prepare(struct page *page, unsigned int order)
728 {
729 int i;
730 int bad = 0;
731
732 trace_mm_page_free(page, order);
733 kmemcheck_free_shadow(page, order);
734
735 if (PageAnon(page))
736 page->mapping = NULL;
737 for (i = 0; i < (1 << order); i++)
738 bad += free_pages_check(page + i);
739 if (bad)
740 return false;
741
742 if (!PageHighMem(page)) {
743 debug_check_no_locks_freed(page_address(page),
744 PAGE_SIZE << order);
745 debug_check_no_obj_freed(page_address(page),
746 PAGE_SIZE << order);
747 }
748 arch_free_page(page, order);
749 kernel_map_pages(page, 1 << order, 0);
750
751 return true;
752 }
753
754 static void __free_pages_ok(struct page *page, unsigned int order)
755 {
756 unsigned long flags;
757 int migratetype;
758
759 if (!free_pages_prepare(page, order))
760 return;
761
762 local_irq_save(flags);
763 __count_vm_events(PGFREE, 1 << order);
764 migratetype = get_pageblock_migratetype(page);
765 set_freepage_migratetype(page, migratetype);
766 free_one_page(page_zone(page), page, order, migratetype);
767 local_irq_restore(flags);
768 }
769
770 void __init __free_pages_bootmem(struct page *page, unsigned int order)
771 {
772 unsigned int nr_pages = 1 << order;
773 struct page *p = page;
774 unsigned int loop;
775
776 prefetchw(p);
777 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
778 prefetchw(p + 1);
779 __ClearPageReserved(p);
780 set_page_count(p, 0);
781 }
782 __ClearPageReserved(p);
783 set_page_count(p, 0);
784
785 page_zone(page)->managed_pages += nr_pages;
786 set_page_refcounted(page);
787 __free_pages(page, order);
788 }
789
790 #ifdef CONFIG_CMA
791 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
792 void __init init_cma_reserved_pageblock(struct page *page)
793 {
794 unsigned i = pageblock_nr_pages;
795 struct page *p = page;
796
797 do {
798 __ClearPageReserved(p);
799 set_page_count(p, 0);
800 } while (++p, --i);
801
802 set_page_refcounted(page);
803 set_pageblock_migratetype(page, MIGRATE_CMA);
804 __free_pages(page, pageblock_order);
805 adjust_managed_page_count(page, pageblock_nr_pages);
806 }
807 #endif
808
809 /*
810 * The order of subdivision here is critical for the IO subsystem.
811 * Please do not alter this order without good reasons and regression
812 * testing. Specifically, as large blocks of memory are subdivided,
813 * the order in which smaller blocks are delivered depends on the order
814 * they're subdivided in this function. This is the primary factor
815 * influencing the order in which pages are delivered to the IO
816 * subsystem according to empirical testing, and this is also justified
817 * by considering the behavior of a buddy system containing a single
818 * large block of memory acted on by a series of small allocations.
819 * This behavior is a critical factor in sglist merging's success.
820 *
821 * -- nyc
822 */
823 static inline void expand(struct zone *zone, struct page *page,
824 int low, int high, struct free_area *area,
825 int migratetype)
826 {
827 unsigned long size = 1 << high;
828
829 while (high > low) {
830 area--;
831 high--;
832 size >>= 1;
833 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
834
835 #ifdef CONFIG_DEBUG_PAGEALLOC
836 if (high < debug_guardpage_minorder()) {
837 /*
838 * Mark as guard pages (or page), that will allow to
839 * merge back to allocator when buddy will be freed.
840 * Corresponding page table entries will not be touched,
841 * pages will stay not present in virtual address space
842 */
843 INIT_LIST_HEAD(&page[size].lru);
844 set_page_guard_flag(&page[size]);
845 set_page_private(&page[size], high);
846 /* Guard pages are not available for any usage */
847 __mod_zone_freepage_state(zone, -(1 << high),
848 migratetype);
849 continue;
850 }
851 #endif
852 list_add(&page[size].lru, &area->free_list[migratetype]);
853 area->nr_free++;
854 set_page_order(&page[size], high);
855 }
856 }
857
858 /*
859 * This page is about to be returned from the page allocator
860 */
861 static inline int check_new_page(struct page *page)
862 {
863 const char *bad_reason = NULL;
864 unsigned long bad_flags = 0;
865
866 if (unlikely(page_mapcount(page)))
867 bad_reason = "nonzero mapcount";
868 if (unlikely(page->mapping != NULL))
869 bad_reason = "non-NULL mapping";
870 if (unlikely(atomic_read(&page->_count) != 0))
871 bad_reason = "nonzero _count";
872 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
873 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
874 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
875 }
876 if (unlikely(mem_cgroup_bad_page_check(page)))
877 bad_reason = "cgroup check failed";
878 if (unlikely(bad_reason)) {
879 bad_page(page, bad_reason, bad_flags);
880 return 1;
881 }
882 return 0;
883 }
884
885 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
886 {
887 int i;
888
889 for (i = 0; i < (1 << order); i++) {
890 struct page *p = page + i;
891 if (unlikely(check_new_page(p)))
892 return 1;
893 }
894
895 set_page_private(page, 0);
896 set_page_refcounted(page);
897
898 arch_alloc_page(page, order);
899 kernel_map_pages(page, 1 << order, 1);
900
901 if (gfp_flags & __GFP_ZERO)
902 prep_zero_page(page, order, gfp_flags);
903
904 if (order && (gfp_flags & __GFP_COMP))
905 prep_compound_page(page, order);
906
907 return 0;
908 }
909
910 /*
911 * Go through the free lists for the given migratetype and remove
912 * the smallest available page from the freelists
913 */
914 static inline
915 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
916 int migratetype)
917 {
918 unsigned int current_order;
919 struct free_area *area;
920 struct page *page;
921
922 /* Find a page of the appropriate size in the preferred list */
923 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
924 area = &(zone->free_area[current_order]);
925 if (list_empty(&area->free_list[migratetype]))
926 continue;
927
928 page = list_entry(area->free_list[migratetype].next,
929 struct page, lru);
930 list_del(&page->lru);
931 rmv_page_order(page);
932 area->nr_free--;
933 expand(zone, page, order, current_order, area, migratetype);
934 return page;
935 }
936
937 return NULL;
938 }
939
940
941 /*
942 * This array describes the order lists are fallen back to when
943 * the free lists for the desirable migrate type are depleted
944 */
945 static int fallbacks[MIGRATE_TYPES][4] = {
946 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
947 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
948 #ifdef CONFIG_CMA
949 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
950 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
951 #else
952 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
953 #endif
954 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
955 #ifdef CONFIG_MEMORY_ISOLATION
956 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
957 #endif
958 };
959
960 /*
961 * Move the free pages in a range to the free lists of the requested type.
962 * Note that start_page and end_pages are not aligned on a pageblock
963 * boundary. If alignment is required, use move_freepages_block()
964 */
965 int move_freepages(struct zone *zone,
966 struct page *start_page, struct page *end_page,
967 int migratetype)
968 {
969 struct page *page;
970 unsigned long order;
971 int pages_moved = 0;
972
973 #ifndef CONFIG_HOLES_IN_ZONE
974 /*
975 * page_zone is not safe to call in this context when
976 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
977 * anyway as we check zone boundaries in move_freepages_block().
978 * Remove at a later date when no bug reports exist related to
979 * grouping pages by mobility
980 */
981 BUG_ON(page_zone(start_page) != page_zone(end_page));
982 #endif
983
984 for (page = start_page; page <= end_page;) {
985 /* Make sure we are not inadvertently changing nodes */
986 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
987
988 if (!pfn_valid_within(page_to_pfn(page))) {
989 page++;
990 continue;
991 }
992
993 if (!PageBuddy(page)) {
994 page++;
995 continue;
996 }
997
998 order = page_order(page);
999 list_move(&page->lru,
1000 &zone->free_area[order].free_list[migratetype]);
1001 set_freepage_migratetype(page, migratetype);
1002 page += 1 << order;
1003 pages_moved += 1 << order;
1004 }
1005
1006 return pages_moved;
1007 }
1008
1009 int move_freepages_block(struct zone *zone, struct page *page,
1010 int migratetype)
1011 {
1012 unsigned long start_pfn, end_pfn;
1013 struct page *start_page, *end_page;
1014
1015 start_pfn = page_to_pfn(page);
1016 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1017 start_page = pfn_to_page(start_pfn);
1018 end_page = start_page + pageblock_nr_pages - 1;
1019 end_pfn = start_pfn + pageblock_nr_pages - 1;
1020
1021 /* Do not cross zone boundaries */
1022 if (!zone_spans_pfn(zone, start_pfn))
1023 start_page = page;
1024 if (!zone_spans_pfn(zone, end_pfn))
1025 return 0;
1026
1027 return move_freepages(zone, start_page, end_page, migratetype);
1028 }
1029
1030 static void change_pageblock_range(struct page *pageblock_page,
1031 int start_order, int migratetype)
1032 {
1033 int nr_pageblocks = 1 << (start_order - pageblock_order);
1034
1035 while (nr_pageblocks--) {
1036 set_pageblock_migratetype(pageblock_page, migratetype);
1037 pageblock_page += pageblock_nr_pages;
1038 }
1039 }
1040
1041 /*
1042 * If breaking a large block of pages, move all free pages to the preferred
1043 * allocation list. If falling back for a reclaimable kernel allocation, be
1044 * more aggressive about taking ownership of free pages.
1045 *
1046 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1047 * nor move CMA pages to different free lists. We don't want unmovable pages
1048 * to be allocated from MIGRATE_CMA areas.
1049 *
1050 * Returns the new migratetype of the pageblock (or the same old migratetype
1051 * if it was unchanged).
1052 */
1053 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1054 int start_type, int fallback_type)
1055 {
1056 int current_order = page_order(page);
1057
1058 /*
1059 * When borrowing from MIGRATE_CMA, we need to release the excess
1060 * buddy pages to CMA itself.
1061 */
1062 if (is_migrate_cma(fallback_type))
1063 return fallback_type;
1064
1065 /* Take ownership for orders >= pageblock_order */
1066 if (current_order >= pageblock_order) {
1067 change_pageblock_range(page, current_order, start_type);
1068 return start_type;
1069 }
1070
1071 if (current_order >= pageblock_order / 2 ||
1072 start_type == MIGRATE_RECLAIMABLE ||
1073 page_group_by_mobility_disabled) {
1074 int pages;
1075
1076 pages = move_freepages_block(zone, page, start_type);
1077
1078 /* Claim the whole block if over half of it is free */
1079 if (pages >= (1 << (pageblock_order-1)) ||
1080 page_group_by_mobility_disabled) {
1081
1082 set_pageblock_migratetype(page, start_type);
1083 return start_type;
1084 }
1085
1086 }
1087
1088 return fallback_type;
1089 }
1090
1091 /* Remove an element from the buddy allocator from the fallback list */
1092 static inline struct page *
1093 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1094 {
1095 struct free_area *area;
1096 int current_order;
1097 struct page *page;
1098 int migratetype, new_type, i;
1099
1100 /* Find the largest possible block of pages in the other list */
1101 for (current_order = MAX_ORDER-1; current_order >= order;
1102 --current_order) {
1103 for (i = 0;; i++) {
1104 migratetype = fallbacks[start_migratetype][i];
1105
1106 /* MIGRATE_RESERVE handled later if necessary */
1107 if (migratetype == MIGRATE_RESERVE)
1108 break;
1109
1110 area = &(zone->free_area[current_order]);
1111 if (list_empty(&area->free_list[migratetype]))
1112 continue;
1113
1114 page = list_entry(area->free_list[migratetype].next,
1115 struct page, lru);
1116 area->nr_free--;
1117
1118 new_type = try_to_steal_freepages(zone, page,
1119 start_migratetype,
1120 migratetype);
1121
1122 /* Remove the page from the freelists */
1123 list_del(&page->lru);
1124 rmv_page_order(page);
1125
1126 expand(zone, page, order, current_order, area,
1127 new_type);
1128
1129 trace_mm_page_alloc_extfrag(page, order, current_order,
1130 start_migratetype, migratetype, new_type);
1131
1132 return page;
1133 }
1134 }
1135
1136 return NULL;
1137 }
1138
1139 /*
1140 * Do the hard work of removing an element from the buddy allocator.
1141 * Call me with the zone->lock already held.
1142 */
1143 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1144 int migratetype)
1145 {
1146 struct page *page;
1147
1148 retry_reserve:
1149 page = __rmqueue_smallest(zone, order, migratetype);
1150
1151 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1152 page = __rmqueue_fallback(zone, order, migratetype);
1153
1154 /*
1155 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1156 * is used because __rmqueue_smallest is an inline function
1157 * and we want just one call site
1158 */
1159 if (!page) {
1160 migratetype = MIGRATE_RESERVE;
1161 goto retry_reserve;
1162 }
1163 }
1164
1165 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1166 return page;
1167 }
1168
1169 /*
1170 * Obtain a specified number of elements from the buddy allocator, all under
1171 * a single hold of the lock, for efficiency. Add them to the supplied list.
1172 * Returns the number of new pages which were placed at *list.
1173 */
1174 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1175 unsigned long count, struct list_head *list,
1176 int migratetype, int cold)
1177 {
1178 int mt = migratetype, i;
1179
1180 spin_lock(&zone->lock);
1181 for (i = 0; i < count; ++i) {
1182 struct page *page = __rmqueue(zone, order, migratetype);
1183 if (unlikely(page == NULL))
1184 break;
1185
1186 /*
1187 * Split buddy pages returned by expand() are received here
1188 * in physical page order. The page is added to the callers and
1189 * list and the list head then moves forward. From the callers
1190 * perspective, the linked list is ordered by page number in
1191 * some conditions. This is useful for IO devices that can
1192 * merge IO requests if the physical pages are ordered
1193 * properly.
1194 */
1195 if (likely(cold == 0))
1196 list_add(&page->lru, list);
1197 else
1198 list_add_tail(&page->lru, list);
1199 if (IS_ENABLED(CONFIG_CMA)) {
1200 mt = get_pageblock_migratetype(page);
1201 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1202 mt = migratetype;
1203 }
1204 set_freepage_migratetype(page, mt);
1205 list = &page->lru;
1206 if (is_migrate_cma(mt))
1207 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1208 -(1 << order));
1209 }
1210 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1211 spin_unlock(&zone->lock);
1212 return i;
1213 }
1214
1215 #ifdef CONFIG_NUMA
1216 /*
1217 * Called from the vmstat counter updater to drain pagesets of this
1218 * currently executing processor on remote nodes after they have
1219 * expired.
1220 *
1221 * Note that this function must be called with the thread pinned to
1222 * a single processor.
1223 */
1224 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1225 {
1226 unsigned long flags;
1227 int to_drain;
1228 unsigned long batch;
1229
1230 local_irq_save(flags);
1231 batch = ACCESS_ONCE(pcp->batch);
1232 if (pcp->count >= batch)
1233 to_drain = batch;
1234 else
1235 to_drain = pcp->count;
1236 if (to_drain > 0) {
1237 free_pcppages_bulk(zone, to_drain, pcp);
1238 pcp->count -= to_drain;
1239 }
1240 local_irq_restore(flags);
1241 }
1242 #endif
1243
1244 /*
1245 * Drain pages of the indicated processor.
1246 *
1247 * The processor must either be the current processor and the
1248 * thread pinned to the current processor or a processor that
1249 * is not online.
1250 */
1251 static void drain_pages(unsigned int cpu)
1252 {
1253 unsigned long flags;
1254 struct zone *zone;
1255
1256 for_each_populated_zone(zone) {
1257 struct per_cpu_pageset *pset;
1258 struct per_cpu_pages *pcp;
1259
1260 local_irq_save(flags);
1261 pset = per_cpu_ptr(zone->pageset, cpu);
1262
1263 pcp = &pset->pcp;
1264 if (pcp->count) {
1265 free_pcppages_bulk(zone, pcp->count, pcp);
1266 pcp->count = 0;
1267 }
1268 local_irq_restore(flags);
1269 }
1270 }
1271
1272 /*
1273 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1274 */
1275 void drain_local_pages(void *arg)
1276 {
1277 drain_pages(smp_processor_id());
1278 }
1279
1280 /*
1281 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1282 *
1283 * Note that this code is protected against sending an IPI to an offline
1284 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1285 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1286 * nothing keeps CPUs from showing up after we populated the cpumask and
1287 * before the call to on_each_cpu_mask().
1288 */
1289 void drain_all_pages(void)
1290 {
1291 int cpu;
1292 struct per_cpu_pageset *pcp;
1293 struct zone *zone;
1294
1295 /*
1296 * Allocate in the BSS so we wont require allocation in
1297 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1298 */
1299 static cpumask_t cpus_with_pcps;
1300
1301 /*
1302 * We don't care about racing with CPU hotplug event
1303 * as offline notification will cause the notified
1304 * cpu to drain that CPU pcps and on_each_cpu_mask
1305 * disables preemption as part of its processing
1306 */
1307 for_each_online_cpu(cpu) {
1308 bool has_pcps = false;
1309 for_each_populated_zone(zone) {
1310 pcp = per_cpu_ptr(zone->pageset, cpu);
1311 if (pcp->pcp.count) {
1312 has_pcps = true;
1313 break;
1314 }
1315 }
1316 if (has_pcps)
1317 cpumask_set_cpu(cpu, &cpus_with_pcps);
1318 else
1319 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1320 }
1321 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1322 }
1323
1324 #ifdef CONFIG_HIBERNATION
1325
1326 void mark_free_pages(struct zone *zone)
1327 {
1328 unsigned long pfn, max_zone_pfn;
1329 unsigned long flags;
1330 int order, t;
1331 struct list_head *curr;
1332
1333 if (zone_is_empty(zone))
1334 return;
1335
1336 spin_lock_irqsave(&zone->lock, flags);
1337
1338 max_zone_pfn = zone_end_pfn(zone);
1339 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1340 if (pfn_valid(pfn)) {
1341 struct page *page = pfn_to_page(pfn);
1342
1343 if (!swsusp_page_is_forbidden(page))
1344 swsusp_unset_page_free(page);
1345 }
1346
1347 for_each_migratetype_order(order, t) {
1348 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1349 unsigned long i;
1350
1351 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1352 for (i = 0; i < (1UL << order); i++)
1353 swsusp_set_page_free(pfn_to_page(pfn + i));
1354 }
1355 }
1356 spin_unlock_irqrestore(&zone->lock, flags);
1357 }
1358 #endif /* CONFIG_PM */
1359
1360 /*
1361 * Free a 0-order page
1362 * cold == 1 ? free a cold page : free a hot page
1363 */
1364 void free_hot_cold_page(struct page *page, int cold)
1365 {
1366 struct zone *zone = page_zone(page);
1367 struct per_cpu_pages *pcp;
1368 unsigned long flags;
1369 int migratetype;
1370
1371 if (!free_pages_prepare(page, 0))
1372 return;
1373
1374 migratetype = get_pageblock_migratetype(page);
1375 set_freepage_migratetype(page, migratetype);
1376 local_irq_save(flags);
1377 __count_vm_event(PGFREE);
1378
1379 /*
1380 * We only track unmovable, reclaimable and movable on pcp lists.
1381 * Free ISOLATE pages back to the allocator because they are being
1382 * offlined but treat RESERVE as movable pages so we can get those
1383 * areas back if necessary. Otherwise, we may have to free
1384 * excessively into the page allocator
1385 */
1386 if (migratetype >= MIGRATE_PCPTYPES) {
1387 if (unlikely(is_migrate_isolate(migratetype))) {
1388 free_one_page(zone, page, 0, migratetype);
1389 goto out;
1390 }
1391 migratetype = MIGRATE_MOVABLE;
1392 }
1393
1394 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1395 if (cold)
1396 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1397 else
1398 list_add(&page->lru, &pcp->lists[migratetype]);
1399 pcp->count++;
1400 if (pcp->count >= pcp->high) {
1401 unsigned long batch = ACCESS_ONCE(pcp->batch);
1402 free_pcppages_bulk(zone, batch, pcp);
1403 pcp->count -= batch;
1404 }
1405
1406 out:
1407 local_irq_restore(flags);
1408 }
1409
1410 /*
1411 * Free a list of 0-order pages
1412 */
1413 void free_hot_cold_page_list(struct list_head *list, int cold)
1414 {
1415 struct page *page, *next;
1416
1417 list_for_each_entry_safe(page, next, list, lru) {
1418 trace_mm_page_free_batched(page, cold);
1419 free_hot_cold_page(page, cold);
1420 }
1421 }
1422
1423 /*
1424 * split_page takes a non-compound higher-order page, and splits it into
1425 * n (1<<order) sub-pages: page[0..n]
1426 * Each sub-page must be freed individually.
1427 *
1428 * Note: this is probably too low level an operation for use in drivers.
1429 * Please consult with lkml before using this in your driver.
1430 */
1431 void split_page(struct page *page, unsigned int order)
1432 {
1433 int i;
1434
1435 VM_BUG_ON_PAGE(PageCompound(page), page);
1436 VM_BUG_ON_PAGE(!page_count(page), page);
1437
1438 #ifdef CONFIG_KMEMCHECK
1439 /*
1440 * Split shadow pages too, because free(page[0]) would
1441 * otherwise free the whole shadow.
1442 */
1443 if (kmemcheck_page_is_tracked(page))
1444 split_page(virt_to_page(page[0].shadow), order);
1445 #endif
1446
1447 for (i = 1; i < (1 << order); i++)
1448 set_page_refcounted(page + i);
1449 }
1450 EXPORT_SYMBOL_GPL(split_page);
1451
1452 static int __isolate_free_page(struct page *page, unsigned int order)
1453 {
1454 unsigned long watermark;
1455 struct zone *zone;
1456 int mt;
1457
1458 BUG_ON(!PageBuddy(page));
1459
1460 zone = page_zone(page);
1461 mt = get_pageblock_migratetype(page);
1462
1463 if (!is_migrate_isolate(mt)) {
1464 /* Obey watermarks as if the page was being allocated */
1465 watermark = low_wmark_pages(zone) + (1 << order);
1466 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1467 return 0;
1468
1469 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1470 }
1471
1472 /* Remove page from free list */
1473 list_del(&page->lru);
1474 zone->free_area[order].nr_free--;
1475 rmv_page_order(page);
1476
1477 /* Set the pageblock if the isolated page is at least a pageblock */
1478 if (order >= pageblock_order - 1) {
1479 struct page *endpage = page + (1 << order) - 1;
1480 for (; page < endpage; page += pageblock_nr_pages) {
1481 int mt = get_pageblock_migratetype(page);
1482 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1483 set_pageblock_migratetype(page,
1484 MIGRATE_MOVABLE);
1485 }
1486 }
1487
1488 return 1UL << order;
1489 }
1490
1491 /*
1492 * Similar to split_page except the page is already free. As this is only
1493 * being used for migration, the migratetype of the block also changes.
1494 * As this is called with interrupts disabled, the caller is responsible
1495 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1496 * are enabled.
1497 *
1498 * Note: this is probably too low level an operation for use in drivers.
1499 * Please consult with lkml before using this in your driver.
1500 */
1501 int split_free_page(struct page *page)
1502 {
1503 unsigned int order;
1504 int nr_pages;
1505
1506 order = page_order(page);
1507
1508 nr_pages = __isolate_free_page(page, order);
1509 if (!nr_pages)
1510 return 0;
1511
1512 /* Split into individual pages */
1513 set_page_refcounted(page);
1514 split_page(page, order);
1515 return nr_pages;
1516 }
1517
1518 /*
1519 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1520 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1521 * or two.
1522 */
1523 static inline
1524 struct page *buffered_rmqueue(struct zone *preferred_zone,
1525 struct zone *zone, int order, gfp_t gfp_flags,
1526 int migratetype)
1527 {
1528 unsigned long flags;
1529 struct page *page;
1530 int cold = !!(gfp_flags & __GFP_COLD);
1531
1532 again:
1533 if (likely(order == 0)) {
1534 struct per_cpu_pages *pcp;
1535 struct list_head *list;
1536
1537 local_irq_save(flags);
1538 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1539 list = &pcp->lists[migratetype];
1540 if (list_empty(list)) {
1541 pcp->count += rmqueue_bulk(zone, 0,
1542 pcp->batch, list,
1543 migratetype, cold);
1544 if (unlikely(list_empty(list)))
1545 goto failed;
1546 }
1547
1548 if (cold)
1549 page = list_entry(list->prev, struct page, lru);
1550 else
1551 page = list_entry(list->next, struct page, lru);
1552
1553 list_del(&page->lru);
1554 pcp->count--;
1555 } else {
1556 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1557 /*
1558 * __GFP_NOFAIL is not to be used in new code.
1559 *
1560 * All __GFP_NOFAIL callers should be fixed so that they
1561 * properly detect and handle allocation failures.
1562 *
1563 * We most definitely don't want callers attempting to
1564 * allocate greater than order-1 page units with
1565 * __GFP_NOFAIL.
1566 */
1567 WARN_ON_ONCE(order > 1);
1568 }
1569 spin_lock_irqsave(&zone->lock, flags);
1570 page = __rmqueue(zone, order, migratetype);
1571 spin_unlock(&zone->lock);
1572 if (!page)
1573 goto failed;
1574 __mod_zone_freepage_state(zone, -(1 << order),
1575 get_pageblock_migratetype(page));
1576 }
1577
1578 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1579
1580 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1581 zone_statistics(preferred_zone, zone, gfp_flags);
1582 local_irq_restore(flags);
1583
1584 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1585 if (prep_new_page(page, order, gfp_flags))
1586 goto again;
1587 return page;
1588
1589 failed:
1590 local_irq_restore(flags);
1591 return NULL;
1592 }
1593
1594 #ifdef CONFIG_FAIL_PAGE_ALLOC
1595
1596 static struct {
1597 struct fault_attr attr;
1598
1599 u32 ignore_gfp_highmem;
1600 u32 ignore_gfp_wait;
1601 u32 min_order;
1602 } fail_page_alloc = {
1603 .attr = FAULT_ATTR_INITIALIZER,
1604 .ignore_gfp_wait = 1,
1605 .ignore_gfp_highmem = 1,
1606 .min_order = 1,
1607 };
1608
1609 static int __init setup_fail_page_alloc(char *str)
1610 {
1611 return setup_fault_attr(&fail_page_alloc.attr, str);
1612 }
1613 __setup("fail_page_alloc=", setup_fail_page_alloc);
1614
1615 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1616 {
1617 if (order < fail_page_alloc.min_order)
1618 return false;
1619 if (gfp_mask & __GFP_NOFAIL)
1620 return false;
1621 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1622 return false;
1623 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1624 return false;
1625
1626 return should_fail(&fail_page_alloc.attr, 1 << order);
1627 }
1628
1629 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1630
1631 static int __init fail_page_alloc_debugfs(void)
1632 {
1633 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1634 struct dentry *dir;
1635
1636 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1637 &fail_page_alloc.attr);
1638 if (IS_ERR(dir))
1639 return PTR_ERR(dir);
1640
1641 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1642 &fail_page_alloc.ignore_gfp_wait))
1643 goto fail;
1644 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1645 &fail_page_alloc.ignore_gfp_highmem))
1646 goto fail;
1647 if (!debugfs_create_u32("min-order", mode, dir,
1648 &fail_page_alloc.min_order))
1649 goto fail;
1650
1651 return 0;
1652 fail:
1653 debugfs_remove_recursive(dir);
1654
1655 return -ENOMEM;
1656 }
1657
1658 late_initcall(fail_page_alloc_debugfs);
1659
1660 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1661
1662 #else /* CONFIG_FAIL_PAGE_ALLOC */
1663
1664 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1665 {
1666 return false;
1667 }
1668
1669 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1670
1671 /*
1672 * Return true if free pages are above 'mark'. This takes into account the order
1673 * of the allocation.
1674 */
1675 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1676 int classzone_idx, int alloc_flags, long free_pages)
1677 {
1678 /* free_pages my go negative - that's OK */
1679 long min = mark;
1680 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1681 int o;
1682 long free_cma = 0;
1683
1684 free_pages -= (1 << order) - 1;
1685 if (alloc_flags & ALLOC_HIGH)
1686 min -= min / 2;
1687 if (alloc_flags & ALLOC_HARDER)
1688 min -= min / 4;
1689 #ifdef CONFIG_CMA
1690 /* If allocation can't use CMA areas don't use free CMA pages */
1691 if (!(alloc_flags & ALLOC_CMA))
1692 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1693 #endif
1694
1695 if (free_pages - free_cma <= min + lowmem_reserve)
1696 return false;
1697 for (o = 0; o < order; o++) {
1698 /* At the next order, this order's pages become unavailable */
1699 free_pages -= z->free_area[o].nr_free << o;
1700
1701 /* Require fewer higher order pages to be free */
1702 min >>= 1;
1703
1704 if (free_pages <= min)
1705 return false;
1706 }
1707 return true;
1708 }
1709
1710 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1711 int classzone_idx, int alloc_flags)
1712 {
1713 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1714 zone_page_state(z, NR_FREE_PAGES));
1715 }
1716
1717 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1718 int classzone_idx, int alloc_flags)
1719 {
1720 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1721
1722 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1723 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1724
1725 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1726 free_pages);
1727 }
1728
1729 #ifdef CONFIG_NUMA
1730 /*
1731 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1732 * skip over zones that are not allowed by the cpuset, or that have
1733 * been recently (in last second) found to be nearly full. See further
1734 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1735 * that have to skip over a lot of full or unallowed zones.
1736 *
1737 * If the zonelist cache is present in the passed zonelist, then
1738 * returns a pointer to the allowed node mask (either the current
1739 * tasks mems_allowed, or node_states[N_MEMORY].)
1740 *
1741 * If the zonelist cache is not available for this zonelist, does
1742 * nothing and returns NULL.
1743 *
1744 * If the fullzones BITMAP in the zonelist cache is stale (more than
1745 * a second since last zap'd) then we zap it out (clear its bits.)
1746 *
1747 * We hold off even calling zlc_setup, until after we've checked the
1748 * first zone in the zonelist, on the theory that most allocations will
1749 * be satisfied from that first zone, so best to examine that zone as
1750 * quickly as we can.
1751 */
1752 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1753 {
1754 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1755 nodemask_t *allowednodes; /* zonelist_cache approximation */
1756
1757 zlc = zonelist->zlcache_ptr;
1758 if (!zlc)
1759 return NULL;
1760
1761 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1762 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1763 zlc->last_full_zap = jiffies;
1764 }
1765
1766 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1767 &cpuset_current_mems_allowed :
1768 &node_states[N_MEMORY];
1769 return allowednodes;
1770 }
1771
1772 /*
1773 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1774 * if it is worth looking at further for free memory:
1775 * 1) Check that the zone isn't thought to be full (doesn't have its
1776 * bit set in the zonelist_cache fullzones BITMAP).
1777 * 2) Check that the zones node (obtained from the zonelist_cache
1778 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1779 * Return true (non-zero) if zone is worth looking at further, or
1780 * else return false (zero) if it is not.
1781 *
1782 * This check -ignores- the distinction between various watermarks,
1783 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1784 * found to be full for any variation of these watermarks, it will
1785 * be considered full for up to one second by all requests, unless
1786 * we are so low on memory on all allowed nodes that we are forced
1787 * into the second scan of the zonelist.
1788 *
1789 * In the second scan we ignore this zonelist cache and exactly
1790 * apply the watermarks to all zones, even it is slower to do so.
1791 * We are low on memory in the second scan, and should leave no stone
1792 * unturned looking for a free page.
1793 */
1794 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1795 nodemask_t *allowednodes)
1796 {
1797 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1798 int i; /* index of *z in zonelist zones */
1799 int n; /* node that zone *z is on */
1800
1801 zlc = zonelist->zlcache_ptr;
1802 if (!zlc)
1803 return 1;
1804
1805 i = z - zonelist->_zonerefs;
1806 n = zlc->z_to_n[i];
1807
1808 /* This zone is worth trying if it is allowed but not full */
1809 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1810 }
1811
1812 /*
1813 * Given 'z' scanning a zonelist, set the corresponding bit in
1814 * zlc->fullzones, so that subsequent attempts to allocate a page
1815 * from that zone don't waste time re-examining it.
1816 */
1817 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1818 {
1819 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1820 int i; /* index of *z in zonelist zones */
1821
1822 zlc = zonelist->zlcache_ptr;
1823 if (!zlc)
1824 return;
1825
1826 i = z - zonelist->_zonerefs;
1827
1828 set_bit(i, zlc->fullzones);
1829 }
1830
1831 /*
1832 * clear all zones full, called after direct reclaim makes progress so that
1833 * a zone that was recently full is not skipped over for up to a second
1834 */
1835 static void zlc_clear_zones_full(struct zonelist *zonelist)
1836 {
1837 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1838
1839 zlc = zonelist->zlcache_ptr;
1840 if (!zlc)
1841 return;
1842
1843 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1844 }
1845
1846 static bool zone_local(struct zone *local_zone, struct zone *zone)
1847 {
1848 return local_zone->node == zone->node;
1849 }
1850
1851 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1852 {
1853 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1854 }
1855
1856 static void __paginginit init_zone_allows_reclaim(int nid)
1857 {
1858 int i;
1859
1860 for_each_node_state(i, N_MEMORY)
1861 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1862 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1863 else
1864 zone_reclaim_mode = 1;
1865 }
1866
1867 #else /* CONFIG_NUMA */
1868
1869 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1870 {
1871 return NULL;
1872 }
1873
1874 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1875 nodemask_t *allowednodes)
1876 {
1877 return 1;
1878 }
1879
1880 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1881 {
1882 }
1883
1884 static void zlc_clear_zones_full(struct zonelist *zonelist)
1885 {
1886 }
1887
1888 static bool zone_local(struct zone *local_zone, struct zone *zone)
1889 {
1890 return true;
1891 }
1892
1893 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1894 {
1895 return true;
1896 }
1897
1898 static inline void init_zone_allows_reclaim(int nid)
1899 {
1900 }
1901 #endif /* CONFIG_NUMA */
1902
1903 /*
1904 * get_page_from_freelist goes through the zonelist trying to allocate
1905 * a page.
1906 */
1907 static struct page *
1908 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1909 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1910 struct zone *preferred_zone, int migratetype)
1911 {
1912 struct zoneref *z;
1913 struct page *page = NULL;
1914 int classzone_idx;
1915 struct zone *zone;
1916 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1917 int zlc_active = 0; /* set if using zonelist_cache */
1918 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1919
1920 classzone_idx = zone_idx(preferred_zone);
1921 zonelist_scan:
1922 /*
1923 * Scan zonelist, looking for a zone with enough free.
1924 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1925 */
1926 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1927 high_zoneidx, nodemask) {
1928 unsigned long mark;
1929
1930 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1931 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1932 continue;
1933 if ((alloc_flags & ALLOC_CPUSET) &&
1934 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1935 continue;
1936 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1937 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1938 goto try_this_zone;
1939 /*
1940 * Distribute pages in proportion to the individual
1941 * zone size to ensure fair page aging. The zone a
1942 * page was allocated in should have no effect on the
1943 * time the page has in memory before being reclaimed.
1944 */
1945 if (alloc_flags & ALLOC_FAIR) {
1946 if (!zone_local(preferred_zone, zone))
1947 continue;
1948 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1949 continue;
1950 }
1951 /*
1952 * When allocating a page cache page for writing, we
1953 * want to get it from a zone that is within its dirty
1954 * limit, such that no single zone holds more than its
1955 * proportional share of globally allowed dirty pages.
1956 * The dirty limits take into account the zone's
1957 * lowmem reserves and high watermark so that kswapd
1958 * should be able to balance it without having to
1959 * write pages from its LRU list.
1960 *
1961 * This may look like it could increase pressure on
1962 * lower zones by failing allocations in higher zones
1963 * before they are full. But the pages that do spill
1964 * over are limited as the lower zones are protected
1965 * by this very same mechanism. It should not become
1966 * a practical burden to them.
1967 *
1968 * XXX: For now, allow allocations to potentially
1969 * exceed the per-zone dirty limit in the slowpath
1970 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1971 * which is important when on a NUMA setup the allowed
1972 * zones are together not big enough to reach the
1973 * global limit. The proper fix for these situations
1974 * will require awareness of zones in the
1975 * dirty-throttling and the flusher threads.
1976 */
1977 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1978 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1979 goto this_zone_full;
1980
1981 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1982 if (!zone_watermark_ok(zone, order, mark,
1983 classzone_idx, alloc_flags)) {
1984 int ret;
1985
1986 if (IS_ENABLED(CONFIG_NUMA) &&
1987 !did_zlc_setup && nr_online_nodes > 1) {
1988 /*
1989 * we do zlc_setup if there are multiple nodes
1990 * and before considering the first zone allowed
1991 * by the cpuset.
1992 */
1993 allowednodes = zlc_setup(zonelist, alloc_flags);
1994 zlc_active = 1;
1995 did_zlc_setup = 1;
1996 }
1997
1998 if (zone_reclaim_mode == 0 ||
1999 !zone_allows_reclaim(preferred_zone, zone))
2000 goto this_zone_full;
2001
2002 /*
2003 * As we may have just activated ZLC, check if the first
2004 * eligible zone has failed zone_reclaim recently.
2005 */
2006 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2007 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2008 continue;
2009
2010 ret = zone_reclaim(zone, gfp_mask, order);
2011 switch (ret) {
2012 case ZONE_RECLAIM_NOSCAN:
2013 /* did not scan */
2014 continue;
2015 case ZONE_RECLAIM_FULL:
2016 /* scanned but unreclaimable */
2017 continue;
2018 default:
2019 /* did we reclaim enough */
2020 if (zone_watermark_ok(zone, order, mark,
2021 classzone_idx, alloc_flags))
2022 goto try_this_zone;
2023
2024 /*
2025 * Failed to reclaim enough to meet watermark.
2026 * Only mark the zone full if checking the min
2027 * watermark or if we failed to reclaim just
2028 * 1<<order pages or else the page allocator
2029 * fastpath will prematurely mark zones full
2030 * when the watermark is between the low and
2031 * min watermarks.
2032 */
2033 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2034 ret == ZONE_RECLAIM_SOME)
2035 goto this_zone_full;
2036
2037 continue;
2038 }
2039 }
2040
2041 try_this_zone:
2042 page = buffered_rmqueue(preferred_zone, zone, order,
2043 gfp_mask, migratetype);
2044 if (page)
2045 break;
2046 this_zone_full:
2047 if (IS_ENABLED(CONFIG_NUMA))
2048 zlc_mark_zone_full(zonelist, z);
2049 }
2050
2051 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2052 /* Disable zlc cache for second zonelist scan */
2053 zlc_active = 0;
2054 goto zonelist_scan;
2055 }
2056
2057 if (page)
2058 /*
2059 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2060 * necessary to allocate the page. The expectation is
2061 * that the caller is taking steps that will free more
2062 * memory. The caller should avoid the page being used
2063 * for !PFMEMALLOC purposes.
2064 */
2065 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2066
2067 return page;
2068 }
2069
2070 /*
2071 * Large machines with many possible nodes should not always dump per-node
2072 * meminfo in irq context.
2073 */
2074 static inline bool should_suppress_show_mem(void)
2075 {
2076 bool ret = false;
2077
2078 #if NODES_SHIFT > 8
2079 ret = in_interrupt();
2080 #endif
2081 return ret;
2082 }
2083
2084 static DEFINE_RATELIMIT_STATE(nopage_rs,
2085 DEFAULT_RATELIMIT_INTERVAL,
2086 DEFAULT_RATELIMIT_BURST);
2087
2088 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2089 {
2090 unsigned int filter = SHOW_MEM_FILTER_NODES;
2091
2092 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2093 debug_guardpage_minorder() > 0)
2094 return;
2095
2096 /*
2097 * This documents exceptions given to allocations in certain
2098 * contexts that are allowed to allocate outside current's set
2099 * of allowed nodes.
2100 */
2101 if (!(gfp_mask & __GFP_NOMEMALLOC))
2102 if (test_thread_flag(TIF_MEMDIE) ||
2103 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2104 filter &= ~SHOW_MEM_FILTER_NODES;
2105 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2106 filter &= ~SHOW_MEM_FILTER_NODES;
2107
2108 if (fmt) {
2109 struct va_format vaf;
2110 va_list args;
2111
2112 va_start(args, fmt);
2113
2114 vaf.fmt = fmt;
2115 vaf.va = &args;
2116
2117 pr_warn("%pV", &vaf);
2118
2119 va_end(args);
2120 }
2121
2122 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2123 current->comm, order, gfp_mask);
2124
2125 dump_stack();
2126 if (!should_suppress_show_mem())
2127 show_mem(filter);
2128 }
2129
2130 static inline int
2131 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2132 unsigned long did_some_progress,
2133 unsigned long pages_reclaimed)
2134 {
2135 /* Do not loop if specifically requested */
2136 if (gfp_mask & __GFP_NORETRY)
2137 return 0;
2138
2139 /* Always retry if specifically requested */
2140 if (gfp_mask & __GFP_NOFAIL)
2141 return 1;
2142
2143 /*
2144 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2145 * making forward progress without invoking OOM. Suspend also disables
2146 * storage devices so kswapd will not help. Bail if we are suspending.
2147 */
2148 if (!did_some_progress && pm_suspended_storage())
2149 return 0;
2150
2151 /*
2152 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2153 * means __GFP_NOFAIL, but that may not be true in other
2154 * implementations.
2155 */
2156 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2157 return 1;
2158
2159 /*
2160 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2161 * specified, then we retry until we no longer reclaim any pages
2162 * (above), or we've reclaimed an order of pages at least as
2163 * large as the allocation's order. In both cases, if the
2164 * allocation still fails, we stop retrying.
2165 */
2166 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2167 return 1;
2168
2169 return 0;
2170 }
2171
2172 static inline struct page *
2173 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2174 struct zonelist *zonelist, enum zone_type high_zoneidx,
2175 nodemask_t *nodemask, struct zone *preferred_zone,
2176 int migratetype)
2177 {
2178 struct page *page;
2179
2180 /* Acquire the OOM killer lock for the zones in zonelist */
2181 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2182 schedule_timeout_uninterruptible(1);
2183 return NULL;
2184 }
2185
2186 /*
2187 * Go through the zonelist yet one more time, keep very high watermark
2188 * here, this is only to catch a parallel oom killing, we must fail if
2189 * we're still under heavy pressure.
2190 */
2191 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2192 order, zonelist, high_zoneidx,
2193 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2194 preferred_zone, migratetype);
2195 if (page)
2196 goto out;
2197
2198 if (!(gfp_mask & __GFP_NOFAIL)) {
2199 /* The OOM killer will not help higher order allocs */
2200 if (order > PAGE_ALLOC_COSTLY_ORDER)
2201 goto out;
2202 /* The OOM killer does not needlessly kill tasks for lowmem */
2203 if (high_zoneidx < ZONE_NORMAL)
2204 goto out;
2205 /*
2206 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2207 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2208 * The caller should handle page allocation failure by itself if
2209 * it specifies __GFP_THISNODE.
2210 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2211 */
2212 if (gfp_mask & __GFP_THISNODE)
2213 goto out;
2214 }
2215 /* Exhausted what can be done so it's blamo time */
2216 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2217
2218 out:
2219 clear_zonelist_oom(zonelist, gfp_mask);
2220 return page;
2221 }
2222
2223 #ifdef CONFIG_COMPACTION
2224 /* Try memory compaction for high-order allocations before reclaim */
2225 static struct page *
2226 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2227 struct zonelist *zonelist, enum zone_type high_zoneidx,
2228 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2229 int migratetype, bool sync_migration,
2230 bool *contended_compaction, bool *deferred_compaction,
2231 unsigned long *did_some_progress)
2232 {
2233 if (!order)
2234 return NULL;
2235
2236 if (compaction_deferred(preferred_zone, order)) {
2237 *deferred_compaction = true;
2238 return NULL;
2239 }
2240
2241 current->flags |= PF_MEMALLOC;
2242 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2243 nodemask, sync_migration,
2244 contended_compaction);
2245 current->flags &= ~PF_MEMALLOC;
2246
2247 if (*did_some_progress != COMPACT_SKIPPED) {
2248 struct page *page;
2249
2250 /* Page migration frees to the PCP lists but we want merging */
2251 drain_pages(get_cpu());
2252 put_cpu();
2253
2254 page = get_page_from_freelist(gfp_mask, nodemask,
2255 order, zonelist, high_zoneidx,
2256 alloc_flags & ~ALLOC_NO_WATERMARKS,
2257 preferred_zone, migratetype);
2258 if (page) {
2259 preferred_zone->compact_blockskip_flush = false;
2260 compaction_defer_reset(preferred_zone, order, true);
2261 count_vm_event(COMPACTSUCCESS);
2262 return page;
2263 }
2264
2265 /*
2266 * It's bad if compaction run occurs and fails.
2267 * The most likely reason is that pages exist,
2268 * but not enough to satisfy watermarks.
2269 */
2270 count_vm_event(COMPACTFAIL);
2271
2272 /*
2273 * As async compaction considers a subset of pageblocks, only
2274 * defer if the failure was a sync compaction failure.
2275 */
2276 if (sync_migration)
2277 defer_compaction(preferred_zone, order);
2278
2279 cond_resched();
2280 }
2281
2282 return NULL;
2283 }
2284 #else
2285 static inline struct page *
2286 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2287 struct zonelist *zonelist, enum zone_type high_zoneidx,
2288 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2289 int migratetype, bool sync_migration,
2290 bool *contended_compaction, bool *deferred_compaction,
2291 unsigned long *did_some_progress)
2292 {
2293 return NULL;
2294 }
2295 #endif /* CONFIG_COMPACTION */
2296
2297 /* Perform direct synchronous page reclaim */
2298 static int
2299 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2300 nodemask_t *nodemask)
2301 {
2302 struct reclaim_state reclaim_state;
2303 int progress;
2304
2305 cond_resched();
2306
2307 /* We now go into synchronous reclaim */
2308 cpuset_memory_pressure_bump();
2309 current->flags |= PF_MEMALLOC;
2310 lockdep_set_current_reclaim_state(gfp_mask);
2311 reclaim_state.reclaimed_slab = 0;
2312 current->reclaim_state = &reclaim_state;
2313
2314 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2315
2316 current->reclaim_state = NULL;
2317 lockdep_clear_current_reclaim_state();
2318 current->flags &= ~PF_MEMALLOC;
2319
2320 cond_resched();
2321
2322 return progress;
2323 }
2324
2325 /* The really slow allocator path where we enter direct reclaim */
2326 static inline struct page *
2327 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2328 struct zonelist *zonelist, enum zone_type high_zoneidx,
2329 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2330 int migratetype, unsigned long *did_some_progress)
2331 {
2332 struct page *page = NULL;
2333 bool drained = false;
2334
2335 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2336 nodemask);
2337 if (unlikely(!(*did_some_progress)))
2338 return NULL;
2339
2340 /* After successful reclaim, reconsider all zones for allocation */
2341 if (IS_ENABLED(CONFIG_NUMA))
2342 zlc_clear_zones_full(zonelist);
2343
2344 retry:
2345 page = get_page_from_freelist(gfp_mask, nodemask, order,
2346 zonelist, high_zoneidx,
2347 alloc_flags & ~ALLOC_NO_WATERMARKS,
2348 preferred_zone, migratetype);
2349
2350 /*
2351 * If an allocation failed after direct reclaim, it could be because
2352 * pages are pinned on the per-cpu lists. Drain them and try again
2353 */
2354 if (!page && !drained) {
2355 drain_all_pages();
2356 drained = true;
2357 goto retry;
2358 }
2359
2360 return page;
2361 }
2362
2363 /*
2364 * This is called in the allocator slow-path if the allocation request is of
2365 * sufficient urgency to ignore watermarks and take other desperate measures
2366 */
2367 static inline struct page *
2368 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2369 struct zonelist *zonelist, enum zone_type high_zoneidx,
2370 nodemask_t *nodemask, struct zone *preferred_zone,
2371 int migratetype)
2372 {
2373 struct page *page;
2374
2375 do {
2376 page = get_page_from_freelist(gfp_mask, nodemask, order,
2377 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2378 preferred_zone, migratetype);
2379
2380 if (!page && gfp_mask & __GFP_NOFAIL)
2381 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2382 } while (!page && (gfp_mask & __GFP_NOFAIL));
2383
2384 return page;
2385 }
2386
2387 static void reset_alloc_batches(struct zonelist *zonelist,
2388 enum zone_type high_zoneidx,
2389 struct zone *preferred_zone)
2390 {
2391 struct zoneref *z;
2392 struct zone *zone;
2393
2394 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2395 /*
2396 * Only reset the batches of zones that were actually
2397 * considered in the fairness pass, we don't want to
2398 * trash fairness information for zones that are not
2399 * actually part of this zonelist's round-robin cycle.
2400 */
2401 if (!zone_local(preferred_zone, zone))
2402 continue;
2403 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2404 high_wmark_pages(zone) - low_wmark_pages(zone) -
2405 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2406 }
2407 }
2408
2409 static void wake_all_kswapds(unsigned int order,
2410 struct zonelist *zonelist,
2411 enum zone_type high_zoneidx,
2412 struct zone *preferred_zone)
2413 {
2414 struct zoneref *z;
2415 struct zone *zone;
2416
2417 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2418 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2419 }
2420
2421 static inline int
2422 gfp_to_alloc_flags(gfp_t gfp_mask)
2423 {
2424 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2425 const gfp_t wait = gfp_mask & __GFP_WAIT;
2426
2427 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2428 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2429
2430 /*
2431 * The caller may dip into page reserves a bit more if the caller
2432 * cannot run direct reclaim, or if the caller has realtime scheduling
2433 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2434 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2435 */
2436 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2437
2438 if (!wait) {
2439 /*
2440 * Not worth trying to allocate harder for
2441 * __GFP_NOMEMALLOC even if it can't schedule.
2442 */
2443 if (!(gfp_mask & __GFP_NOMEMALLOC))
2444 alloc_flags |= ALLOC_HARDER;
2445 /*
2446 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2447 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2448 */
2449 alloc_flags &= ~ALLOC_CPUSET;
2450 } else if (unlikely(rt_task(current)) && !in_interrupt())
2451 alloc_flags |= ALLOC_HARDER;
2452
2453 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2454 if (gfp_mask & __GFP_MEMALLOC)
2455 alloc_flags |= ALLOC_NO_WATERMARKS;
2456 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2457 alloc_flags |= ALLOC_NO_WATERMARKS;
2458 else if (!in_interrupt() &&
2459 ((current->flags & PF_MEMALLOC) ||
2460 unlikely(test_thread_flag(TIF_MEMDIE))))
2461 alloc_flags |= ALLOC_NO_WATERMARKS;
2462 }
2463 #ifdef CONFIG_CMA
2464 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2465 alloc_flags |= ALLOC_CMA;
2466 #endif
2467 return alloc_flags;
2468 }
2469
2470 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2471 {
2472 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2473 }
2474
2475 static inline struct page *
2476 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2477 struct zonelist *zonelist, enum zone_type high_zoneidx,
2478 nodemask_t *nodemask, struct zone *preferred_zone,
2479 int migratetype)
2480 {
2481 const gfp_t wait = gfp_mask & __GFP_WAIT;
2482 struct page *page = NULL;
2483 int alloc_flags;
2484 unsigned long pages_reclaimed = 0;
2485 unsigned long did_some_progress;
2486 bool sync_migration = false;
2487 bool deferred_compaction = false;
2488 bool contended_compaction = false;
2489
2490 /*
2491 * In the slowpath, we sanity check order to avoid ever trying to
2492 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2493 * be using allocators in order of preference for an area that is
2494 * too large.
2495 */
2496 if (order >= MAX_ORDER) {
2497 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2498 return NULL;
2499 }
2500
2501 /*
2502 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2503 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2504 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2505 * using a larger set of nodes after it has established that the
2506 * allowed per node queues are empty and that nodes are
2507 * over allocated.
2508 */
2509 if (IS_ENABLED(CONFIG_NUMA) &&
2510 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2511 goto nopage;
2512
2513 restart:
2514 if (!(gfp_mask & __GFP_NO_KSWAPD))
2515 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
2516
2517 /*
2518 * OK, we're below the kswapd watermark and have kicked background
2519 * reclaim. Now things get more complex, so set up alloc_flags according
2520 * to how we want to proceed.
2521 */
2522 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2523
2524 /*
2525 * Find the true preferred zone if the allocation is unconstrained by
2526 * cpusets.
2527 */
2528 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2529 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2530 &preferred_zone);
2531
2532 rebalance:
2533 /* This is the last chance, in general, before the goto nopage. */
2534 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2535 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2536 preferred_zone, migratetype);
2537 if (page)
2538 goto got_pg;
2539
2540 /* Allocate without watermarks if the context allows */
2541 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2542 /*
2543 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2544 * the allocation is high priority and these type of
2545 * allocations are system rather than user orientated
2546 */
2547 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2548
2549 page = __alloc_pages_high_priority(gfp_mask, order,
2550 zonelist, high_zoneidx, nodemask,
2551 preferred_zone, migratetype);
2552 if (page) {
2553 goto got_pg;
2554 }
2555 }
2556
2557 /* Atomic allocations - we can't balance anything */
2558 if (!wait) {
2559 /*
2560 * All existing users of the deprecated __GFP_NOFAIL are
2561 * blockable, so warn of any new users that actually allow this
2562 * type of allocation to fail.
2563 */
2564 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2565 goto nopage;
2566 }
2567
2568 /* Avoid recursion of direct reclaim */
2569 if (current->flags & PF_MEMALLOC)
2570 goto nopage;
2571
2572 /* Avoid allocations with no watermarks from looping endlessly */
2573 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2574 goto nopage;
2575
2576 /*
2577 * Try direct compaction. The first pass is asynchronous. Subsequent
2578 * attempts after direct reclaim are synchronous
2579 */
2580 page = __alloc_pages_direct_compact(gfp_mask, order,
2581 zonelist, high_zoneidx,
2582 nodemask,
2583 alloc_flags, preferred_zone,
2584 migratetype, sync_migration,
2585 &contended_compaction,
2586 &deferred_compaction,
2587 &did_some_progress);
2588 if (page)
2589 goto got_pg;
2590 sync_migration = true;
2591
2592 /*
2593 * If compaction is deferred for high-order allocations, it is because
2594 * sync compaction recently failed. In this is the case and the caller
2595 * requested a movable allocation that does not heavily disrupt the
2596 * system then fail the allocation instead of entering direct reclaim.
2597 */
2598 if ((deferred_compaction || contended_compaction) &&
2599 (gfp_mask & __GFP_NO_KSWAPD))
2600 goto nopage;
2601
2602 /* Try direct reclaim and then allocating */
2603 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2604 zonelist, high_zoneidx,
2605 nodemask,
2606 alloc_flags, preferred_zone,
2607 migratetype, &did_some_progress);
2608 if (page)
2609 goto got_pg;
2610
2611 /*
2612 * If we failed to make any progress reclaiming, then we are
2613 * running out of options and have to consider going OOM
2614 */
2615 if (!did_some_progress) {
2616 if (oom_gfp_allowed(gfp_mask)) {
2617 if (oom_killer_disabled)
2618 goto nopage;
2619 /* Coredumps can quickly deplete all memory reserves */
2620 if ((current->flags & PF_DUMPCORE) &&
2621 !(gfp_mask & __GFP_NOFAIL))
2622 goto nopage;
2623 page = __alloc_pages_may_oom(gfp_mask, order,
2624 zonelist, high_zoneidx,
2625 nodemask, preferred_zone,
2626 migratetype);
2627 if (page)
2628 goto got_pg;
2629
2630 if (!(gfp_mask & __GFP_NOFAIL)) {
2631 /*
2632 * The oom killer is not called for high-order
2633 * allocations that may fail, so if no progress
2634 * is being made, there are no other options and
2635 * retrying is unlikely to help.
2636 */
2637 if (order > PAGE_ALLOC_COSTLY_ORDER)
2638 goto nopage;
2639 /*
2640 * The oom killer is not called for lowmem
2641 * allocations to prevent needlessly killing
2642 * innocent tasks.
2643 */
2644 if (high_zoneidx < ZONE_NORMAL)
2645 goto nopage;
2646 }
2647
2648 goto restart;
2649 }
2650 }
2651
2652 /* Check if we should retry the allocation */
2653 pages_reclaimed += did_some_progress;
2654 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2655 pages_reclaimed)) {
2656 /* Wait for some write requests to complete then retry */
2657 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2658 goto rebalance;
2659 } else {
2660 /*
2661 * High-order allocations do not necessarily loop after
2662 * direct reclaim and reclaim/compaction depends on compaction
2663 * being called after reclaim so call directly if necessary
2664 */
2665 page = __alloc_pages_direct_compact(gfp_mask, order,
2666 zonelist, high_zoneidx,
2667 nodemask,
2668 alloc_flags, preferred_zone,
2669 migratetype, sync_migration,
2670 &contended_compaction,
2671 &deferred_compaction,
2672 &did_some_progress);
2673 if (page)
2674 goto got_pg;
2675 }
2676
2677 nopage:
2678 warn_alloc_failed(gfp_mask, order, NULL);
2679 return page;
2680 got_pg:
2681 if (kmemcheck_enabled)
2682 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2683
2684 return page;
2685 }
2686
2687 /*
2688 * This is the 'heart' of the zoned buddy allocator.
2689 */
2690 struct page *
2691 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2692 struct zonelist *zonelist, nodemask_t *nodemask)
2693 {
2694 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2695 struct zone *preferred_zone;
2696 struct page *page = NULL;
2697 int migratetype = allocflags_to_migratetype(gfp_mask);
2698 unsigned int cpuset_mems_cookie;
2699 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2700 struct mem_cgroup *memcg = NULL;
2701
2702 gfp_mask &= gfp_allowed_mask;
2703
2704 lockdep_trace_alloc(gfp_mask);
2705
2706 might_sleep_if(gfp_mask & __GFP_WAIT);
2707
2708 if (should_fail_alloc_page(gfp_mask, order))
2709 return NULL;
2710
2711 /*
2712 * Check the zones suitable for the gfp_mask contain at least one
2713 * valid zone. It's possible to have an empty zonelist as a result
2714 * of GFP_THISNODE and a memoryless node
2715 */
2716 if (unlikely(!zonelist->_zonerefs->zone))
2717 return NULL;
2718
2719 /*
2720 * Will only have any effect when __GFP_KMEMCG is set. This is
2721 * verified in the (always inline) callee
2722 */
2723 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2724 return NULL;
2725
2726 retry_cpuset:
2727 cpuset_mems_cookie = read_mems_allowed_begin();
2728
2729 /* The preferred zone is used for statistics later */
2730 first_zones_zonelist(zonelist, high_zoneidx,
2731 nodemask ? : &cpuset_current_mems_allowed,
2732 &preferred_zone);
2733 if (!preferred_zone)
2734 goto out;
2735
2736 #ifdef CONFIG_CMA
2737 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2738 alloc_flags |= ALLOC_CMA;
2739 #endif
2740 retry:
2741 /* First allocation attempt */
2742 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2743 zonelist, high_zoneidx, alloc_flags,
2744 preferred_zone, migratetype);
2745 if (unlikely(!page)) {
2746 /*
2747 * The first pass makes sure allocations are spread
2748 * fairly within the local node. However, the local
2749 * node might have free pages left after the fairness
2750 * batches are exhausted, and remote zones haven't
2751 * even been considered yet. Try once more without
2752 * fairness, and include remote zones now, before
2753 * entering the slowpath and waking kswapd: prefer
2754 * spilling to a remote zone over swapping locally.
2755 */
2756 if (alloc_flags & ALLOC_FAIR) {
2757 reset_alloc_batches(zonelist, high_zoneidx,
2758 preferred_zone);
2759 alloc_flags &= ~ALLOC_FAIR;
2760 goto retry;
2761 }
2762 /*
2763 * Runtime PM, block IO and its error handling path
2764 * can deadlock because I/O on the device might not
2765 * complete.
2766 */
2767 gfp_mask = memalloc_noio_flags(gfp_mask);
2768 page = __alloc_pages_slowpath(gfp_mask, order,
2769 zonelist, high_zoneidx, nodemask,
2770 preferred_zone, migratetype);
2771 }
2772
2773 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2774
2775 out:
2776 /*
2777 * When updating a task's mems_allowed, it is possible to race with
2778 * parallel threads in such a way that an allocation can fail while
2779 * the mask is being updated. If a page allocation is about to fail,
2780 * check if the cpuset changed during allocation and if so, retry.
2781 */
2782 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2783 goto retry_cpuset;
2784
2785 memcg_kmem_commit_charge(page, memcg, order);
2786
2787 return page;
2788 }
2789 EXPORT_SYMBOL(__alloc_pages_nodemask);
2790
2791 /*
2792 * Common helper functions.
2793 */
2794 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2795 {
2796 struct page *page;
2797
2798 /*
2799 * __get_free_pages() returns a 32-bit address, which cannot represent
2800 * a highmem page
2801 */
2802 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2803
2804 page = alloc_pages(gfp_mask, order);
2805 if (!page)
2806 return 0;
2807 return (unsigned long) page_address(page);
2808 }
2809 EXPORT_SYMBOL(__get_free_pages);
2810
2811 unsigned long get_zeroed_page(gfp_t gfp_mask)
2812 {
2813 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2814 }
2815 EXPORT_SYMBOL(get_zeroed_page);
2816
2817 void __free_pages(struct page *page, unsigned int order)
2818 {
2819 if (put_page_testzero(page)) {
2820 if (order == 0)
2821 free_hot_cold_page(page, 0);
2822 else
2823 __free_pages_ok(page, order);
2824 }
2825 }
2826
2827 EXPORT_SYMBOL(__free_pages);
2828
2829 void free_pages(unsigned long addr, unsigned int order)
2830 {
2831 if (addr != 0) {
2832 VM_BUG_ON(!virt_addr_valid((void *)addr));
2833 __free_pages(virt_to_page((void *)addr), order);
2834 }
2835 }
2836
2837 EXPORT_SYMBOL(free_pages);
2838
2839 /*
2840 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2841 * pages allocated with __GFP_KMEMCG.
2842 *
2843 * Those pages are accounted to a particular memcg, embedded in the
2844 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2845 * for that information only to find out that it is NULL for users who have no
2846 * interest in that whatsoever, we provide these functions.
2847 *
2848 * The caller knows better which flags it relies on.
2849 */
2850 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2851 {
2852 memcg_kmem_uncharge_pages(page, order);
2853 __free_pages(page, order);
2854 }
2855
2856 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2857 {
2858 if (addr != 0) {
2859 VM_BUG_ON(!virt_addr_valid((void *)addr));
2860 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2861 }
2862 }
2863
2864 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2865 {
2866 if (addr) {
2867 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2868 unsigned long used = addr + PAGE_ALIGN(size);
2869
2870 split_page(virt_to_page((void *)addr), order);
2871 while (used < alloc_end) {
2872 free_page(used);
2873 used += PAGE_SIZE;
2874 }
2875 }
2876 return (void *)addr;
2877 }
2878
2879 /**
2880 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2881 * @size: the number of bytes to allocate
2882 * @gfp_mask: GFP flags for the allocation
2883 *
2884 * This function is similar to alloc_pages(), except that it allocates the
2885 * minimum number of pages to satisfy the request. alloc_pages() can only
2886 * allocate memory in power-of-two pages.
2887 *
2888 * This function is also limited by MAX_ORDER.
2889 *
2890 * Memory allocated by this function must be released by free_pages_exact().
2891 */
2892 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2893 {
2894 unsigned int order = get_order(size);
2895 unsigned long addr;
2896
2897 addr = __get_free_pages(gfp_mask, order);
2898 return make_alloc_exact(addr, order, size);
2899 }
2900 EXPORT_SYMBOL(alloc_pages_exact);
2901
2902 /**
2903 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2904 * pages on a node.
2905 * @nid: the preferred node ID where memory should be allocated
2906 * @size: the number of bytes to allocate
2907 * @gfp_mask: GFP flags for the allocation
2908 *
2909 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2910 * back.
2911 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2912 * but is not exact.
2913 */
2914 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2915 {
2916 unsigned order = get_order(size);
2917 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2918 if (!p)
2919 return NULL;
2920 return make_alloc_exact((unsigned long)page_address(p), order, size);
2921 }
2922 EXPORT_SYMBOL(alloc_pages_exact_nid);
2923
2924 /**
2925 * free_pages_exact - release memory allocated via alloc_pages_exact()
2926 * @virt: the value returned by alloc_pages_exact.
2927 * @size: size of allocation, same value as passed to alloc_pages_exact().
2928 *
2929 * Release the memory allocated by a previous call to alloc_pages_exact.
2930 */
2931 void free_pages_exact(void *virt, size_t size)
2932 {
2933 unsigned long addr = (unsigned long)virt;
2934 unsigned long end = addr + PAGE_ALIGN(size);
2935
2936 while (addr < end) {
2937 free_page(addr);
2938 addr += PAGE_SIZE;
2939 }
2940 }
2941 EXPORT_SYMBOL(free_pages_exact);
2942
2943 /**
2944 * nr_free_zone_pages - count number of pages beyond high watermark
2945 * @offset: The zone index of the highest zone
2946 *
2947 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2948 * high watermark within all zones at or below a given zone index. For each
2949 * zone, the number of pages is calculated as:
2950 * managed_pages - high_pages
2951 */
2952 static unsigned long nr_free_zone_pages(int offset)
2953 {
2954 struct zoneref *z;
2955 struct zone *zone;
2956
2957 /* Just pick one node, since fallback list is circular */
2958 unsigned long sum = 0;
2959
2960 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2961
2962 for_each_zone_zonelist(zone, z, zonelist, offset) {
2963 unsigned long size = zone->managed_pages;
2964 unsigned long high = high_wmark_pages(zone);
2965 if (size > high)
2966 sum += size - high;
2967 }
2968
2969 return sum;
2970 }
2971
2972 /**
2973 * nr_free_buffer_pages - count number of pages beyond high watermark
2974 *
2975 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2976 * watermark within ZONE_DMA and ZONE_NORMAL.
2977 */
2978 unsigned long nr_free_buffer_pages(void)
2979 {
2980 return nr_free_zone_pages(gfp_zone(GFP_USER));
2981 }
2982 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2983
2984 /**
2985 * nr_free_pagecache_pages - count number of pages beyond high watermark
2986 *
2987 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2988 * high watermark within all zones.
2989 */
2990 unsigned long nr_free_pagecache_pages(void)
2991 {
2992 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2993 }
2994
2995 static inline void show_node(struct zone *zone)
2996 {
2997 if (IS_ENABLED(CONFIG_NUMA))
2998 printk("Node %d ", zone_to_nid(zone));
2999 }
3000
3001 void si_meminfo(struct sysinfo *val)
3002 {
3003 val->totalram = totalram_pages;
3004 val->sharedram = 0;
3005 val->freeram = global_page_state(NR_FREE_PAGES);
3006 val->bufferram = nr_blockdev_pages();
3007 val->totalhigh = totalhigh_pages;
3008 val->freehigh = nr_free_highpages();
3009 val->mem_unit = PAGE_SIZE;
3010 }
3011
3012 EXPORT_SYMBOL(si_meminfo);
3013
3014 #ifdef CONFIG_NUMA
3015 void si_meminfo_node(struct sysinfo *val, int nid)
3016 {
3017 int zone_type; /* needs to be signed */
3018 unsigned long managed_pages = 0;
3019 pg_data_t *pgdat = NODE_DATA(nid);
3020
3021 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3022 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3023 val->totalram = managed_pages;
3024 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3025 #ifdef CONFIG_HIGHMEM
3026 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3027 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3028 NR_FREE_PAGES);
3029 #else
3030 val->totalhigh = 0;
3031 val->freehigh = 0;
3032 #endif
3033 val->mem_unit = PAGE_SIZE;
3034 }
3035 #endif
3036
3037 /*
3038 * Determine whether the node should be displayed or not, depending on whether
3039 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3040 */
3041 bool skip_free_areas_node(unsigned int flags, int nid)
3042 {
3043 bool ret = false;
3044 unsigned int cpuset_mems_cookie;
3045
3046 if (!(flags & SHOW_MEM_FILTER_NODES))
3047 goto out;
3048
3049 do {
3050 cpuset_mems_cookie = read_mems_allowed_begin();
3051 ret = !node_isset(nid, cpuset_current_mems_allowed);
3052 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3053 out:
3054 return ret;
3055 }
3056
3057 #define K(x) ((x) << (PAGE_SHIFT-10))
3058
3059 static void show_migration_types(unsigned char type)
3060 {
3061 static const char types[MIGRATE_TYPES] = {
3062 [MIGRATE_UNMOVABLE] = 'U',
3063 [MIGRATE_RECLAIMABLE] = 'E',
3064 [MIGRATE_MOVABLE] = 'M',
3065 [MIGRATE_RESERVE] = 'R',
3066 #ifdef CONFIG_CMA
3067 [MIGRATE_CMA] = 'C',
3068 #endif
3069 #ifdef CONFIG_MEMORY_ISOLATION
3070 [MIGRATE_ISOLATE] = 'I',
3071 #endif
3072 };
3073 char tmp[MIGRATE_TYPES + 1];
3074 char *p = tmp;
3075 int i;
3076
3077 for (i = 0; i < MIGRATE_TYPES; i++) {
3078 if (type & (1 << i))
3079 *p++ = types[i];
3080 }
3081
3082 *p = '\0';
3083 printk("(%s) ", tmp);
3084 }
3085
3086 /*
3087 * Show free area list (used inside shift_scroll-lock stuff)
3088 * We also calculate the percentage fragmentation. We do this by counting the
3089 * memory on each free list with the exception of the first item on the list.
3090 * Suppresses nodes that are not allowed by current's cpuset if
3091 * SHOW_MEM_FILTER_NODES is passed.
3092 */
3093 void show_free_areas(unsigned int filter)
3094 {
3095 int cpu;
3096 struct zone *zone;
3097
3098 for_each_populated_zone(zone) {
3099 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3100 continue;
3101 show_node(zone);
3102 printk("%s per-cpu:\n", zone->name);
3103
3104 for_each_online_cpu(cpu) {
3105 struct per_cpu_pageset *pageset;
3106
3107 pageset = per_cpu_ptr(zone->pageset, cpu);
3108
3109 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3110 cpu, pageset->pcp.high,
3111 pageset->pcp.batch, pageset->pcp.count);
3112 }
3113 }
3114
3115 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3116 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3117 " unevictable:%lu"
3118 " dirty:%lu writeback:%lu unstable:%lu\n"
3119 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3120 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3121 " free_cma:%lu\n",
3122 global_page_state(NR_ACTIVE_ANON),
3123 global_page_state(NR_INACTIVE_ANON),
3124 global_page_state(NR_ISOLATED_ANON),
3125 global_page_state(NR_ACTIVE_FILE),
3126 global_page_state(NR_INACTIVE_FILE),
3127 global_page_state(NR_ISOLATED_FILE),
3128 global_page_state(NR_UNEVICTABLE),
3129 global_page_state(NR_FILE_DIRTY),
3130 global_page_state(NR_WRITEBACK),
3131 global_page_state(NR_UNSTABLE_NFS),
3132 global_page_state(NR_FREE_PAGES),
3133 global_page_state(NR_SLAB_RECLAIMABLE),
3134 global_page_state(NR_SLAB_UNRECLAIMABLE),
3135 global_page_state(NR_FILE_MAPPED),
3136 global_page_state(NR_SHMEM),
3137 global_page_state(NR_PAGETABLE),
3138 global_page_state(NR_BOUNCE),
3139 global_page_state(NR_FREE_CMA_PAGES));
3140
3141 for_each_populated_zone(zone) {
3142 int i;
3143
3144 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3145 continue;
3146 show_node(zone);
3147 printk("%s"
3148 " free:%lukB"
3149 " min:%lukB"
3150 " low:%lukB"
3151 " high:%lukB"
3152 " active_anon:%lukB"
3153 " inactive_anon:%lukB"
3154 " active_file:%lukB"
3155 " inactive_file:%lukB"
3156 " unevictable:%lukB"
3157 " isolated(anon):%lukB"
3158 " isolated(file):%lukB"
3159 " present:%lukB"
3160 " managed:%lukB"
3161 " mlocked:%lukB"
3162 " dirty:%lukB"
3163 " writeback:%lukB"
3164 " mapped:%lukB"
3165 " shmem:%lukB"
3166 " slab_reclaimable:%lukB"
3167 " slab_unreclaimable:%lukB"
3168 " kernel_stack:%lukB"
3169 " pagetables:%lukB"
3170 " unstable:%lukB"
3171 " bounce:%lukB"
3172 " free_cma:%lukB"
3173 " writeback_tmp:%lukB"
3174 " pages_scanned:%lu"
3175 " all_unreclaimable? %s"
3176 "\n",
3177 zone->name,
3178 K(zone_page_state(zone, NR_FREE_PAGES)),
3179 K(min_wmark_pages(zone)),
3180 K(low_wmark_pages(zone)),
3181 K(high_wmark_pages(zone)),
3182 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3183 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3184 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3185 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3186 K(zone_page_state(zone, NR_UNEVICTABLE)),
3187 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3188 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3189 K(zone->present_pages),
3190 K(zone->managed_pages),
3191 K(zone_page_state(zone, NR_MLOCK)),
3192 K(zone_page_state(zone, NR_FILE_DIRTY)),
3193 K(zone_page_state(zone, NR_WRITEBACK)),
3194 K(zone_page_state(zone, NR_FILE_MAPPED)),
3195 K(zone_page_state(zone, NR_SHMEM)),
3196 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3197 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3198 zone_page_state(zone, NR_KERNEL_STACK) *
3199 THREAD_SIZE / 1024,
3200 K(zone_page_state(zone, NR_PAGETABLE)),
3201 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3202 K(zone_page_state(zone, NR_BOUNCE)),
3203 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3204 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3205 zone->pages_scanned,
3206 (!zone_reclaimable(zone) ? "yes" : "no")
3207 );
3208 printk("lowmem_reserve[]:");
3209 for (i = 0; i < MAX_NR_ZONES; i++)
3210 printk(" %lu", zone->lowmem_reserve[i]);
3211 printk("\n");
3212 }
3213
3214 for_each_populated_zone(zone) {
3215 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3216 unsigned char types[MAX_ORDER];
3217
3218 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3219 continue;
3220 show_node(zone);
3221 printk("%s: ", zone->name);
3222
3223 spin_lock_irqsave(&zone->lock, flags);
3224 for (order = 0; order < MAX_ORDER; order++) {
3225 struct free_area *area = &zone->free_area[order];
3226 int type;
3227
3228 nr[order] = area->nr_free;
3229 total += nr[order] << order;
3230
3231 types[order] = 0;
3232 for (type = 0; type < MIGRATE_TYPES; type++) {
3233 if (!list_empty(&area->free_list[type]))
3234 types[order] |= 1 << type;
3235 }
3236 }
3237 spin_unlock_irqrestore(&zone->lock, flags);
3238 for (order = 0; order < MAX_ORDER; order++) {
3239 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3240 if (nr[order])
3241 show_migration_types(types[order]);
3242 }
3243 printk("= %lukB\n", K(total));
3244 }
3245
3246 hugetlb_show_meminfo();
3247
3248 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3249
3250 show_swap_cache_info();
3251 }
3252
3253 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3254 {
3255 zoneref->zone = zone;
3256 zoneref->zone_idx = zone_idx(zone);
3257 }
3258
3259 /*
3260 * Builds allocation fallback zone lists.
3261 *
3262 * Add all populated zones of a node to the zonelist.
3263 */
3264 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3265 int nr_zones)
3266 {
3267 struct zone *zone;
3268 enum zone_type zone_type = MAX_NR_ZONES;
3269
3270 do {
3271 zone_type--;
3272 zone = pgdat->node_zones + zone_type;
3273 if (populated_zone(zone)) {
3274 zoneref_set_zone(zone,
3275 &zonelist->_zonerefs[nr_zones++]);
3276 check_highest_zone(zone_type);
3277 }
3278 } while (zone_type);
3279
3280 return nr_zones;
3281 }
3282
3283
3284 /*
3285 * zonelist_order:
3286 * 0 = automatic detection of better ordering.
3287 * 1 = order by ([node] distance, -zonetype)
3288 * 2 = order by (-zonetype, [node] distance)
3289 *
3290 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3291 * the same zonelist. So only NUMA can configure this param.
3292 */
3293 #define ZONELIST_ORDER_DEFAULT 0
3294 #define ZONELIST_ORDER_NODE 1
3295 #define ZONELIST_ORDER_ZONE 2
3296
3297 /* zonelist order in the kernel.
3298 * set_zonelist_order() will set this to NODE or ZONE.
3299 */
3300 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3301 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3302
3303
3304 #ifdef CONFIG_NUMA
3305 /* The value user specified ....changed by config */
3306 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3307 /* string for sysctl */
3308 #define NUMA_ZONELIST_ORDER_LEN 16
3309 char numa_zonelist_order[16] = "default";
3310
3311 /*
3312 * interface for configure zonelist ordering.
3313 * command line option "numa_zonelist_order"
3314 * = "[dD]efault - default, automatic configuration.
3315 * = "[nN]ode - order by node locality, then by zone within node
3316 * = "[zZ]one - order by zone, then by locality within zone
3317 */
3318
3319 static int __parse_numa_zonelist_order(char *s)
3320 {
3321 if (*s == 'd' || *s == 'D') {
3322 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3323 } else if (*s == 'n' || *s == 'N') {
3324 user_zonelist_order = ZONELIST_ORDER_NODE;
3325 } else if (*s == 'z' || *s == 'Z') {
3326 user_zonelist_order = ZONELIST_ORDER_ZONE;
3327 } else {
3328 printk(KERN_WARNING
3329 "Ignoring invalid numa_zonelist_order value: "
3330 "%s\n", s);
3331 return -EINVAL;
3332 }
3333 return 0;
3334 }
3335
3336 static __init int setup_numa_zonelist_order(char *s)
3337 {
3338 int ret;
3339
3340 if (!s)
3341 return 0;
3342
3343 ret = __parse_numa_zonelist_order(s);
3344 if (ret == 0)
3345 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3346
3347 return ret;
3348 }
3349 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3350
3351 /*
3352 * sysctl handler for numa_zonelist_order
3353 */
3354 int numa_zonelist_order_handler(ctl_table *table, int write,
3355 void __user *buffer, size_t *length,
3356 loff_t *ppos)
3357 {
3358 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3359 int ret;
3360 static DEFINE_MUTEX(zl_order_mutex);
3361
3362 mutex_lock(&zl_order_mutex);
3363 if (write) {
3364 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3365 ret = -EINVAL;
3366 goto out;
3367 }
3368 strcpy(saved_string, (char *)table->data);
3369 }
3370 ret = proc_dostring(table, write, buffer, length, ppos);
3371 if (ret)
3372 goto out;
3373 if (write) {
3374 int oldval = user_zonelist_order;
3375
3376 ret = __parse_numa_zonelist_order((char *)table->data);
3377 if (ret) {
3378 /*
3379 * bogus value. restore saved string
3380 */
3381 strncpy((char *)table->data, saved_string,
3382 NUMA_ZONELIST_ORDER_LEN);
3383 user_zonelist_order = oldval;
3384 } else if (oldval != user_zonelist_order) {
3385 mutex_lock(&zonelists_mutex);
3386 build_all_zonelists(NULL, NULL);
3387 mutex_unlock(&zonelists_mutex);
3388 }
3389 }
3390 out:
3391 mutex_unlock(&zl_order_mutex);
3392 return ret;
3393 }
3394
3395
3396 #define MAX_NODE_LOAD (nr_online_nodes)
3397 static int node_load[MAX_NUMNODES];
3398
3399 /**
3400 * find_next_best_node - find the next node that should appear in a given node's fallback list
3401 * @node: node whose fallback list we're appending
3402 * @used_node_mask: nodemask_t of already used nodes
3403 *
3404 * We use a number of factors to determine which is the next node that should
3405 * appear on a given node's fallback list. The node should not have appeared
3406 * already in @node's fallback list, and it should be the next closest node
3407 * according to the distance array (which contains arbitrary distance values
3408 * from each node to each node in the system), and should also prefer nodes
3409 * with no CPUs, since presumably they'll have very little allocation pressure
3410 * on them otherwise.
3411 * It returns -1 if no node is found.
3412 */
3413 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3414 {
3415 int n, val;
3416 int min_val = INT_MAX;
3417 int best_node = NUMA_NO_NODE;
3418 const struct cpumask *tmp = cpumask_of_node(0);
3419
3420 /* Use the local node if we haven't already */
3421 if (!node_isset(node, *used_node_mask)) {
3422 node_set(node, *used_node_mask);
3423 return node;
3424 }
3425
3426 for_each_node_state(n, N_MEMORY) {
3427
3428 /* Don't want a node to appear more than once */
3429 if (node_isset(n, *used_node_mask))
3430 continue;
3431
3432 /* Use the distance array to find the distance */
3433 val = node_distance(node, n);
3434
3435 /* Penalize nodes under us ("prefer the next node") */
3436 val += (n < node);
3437
3438 /* Give preference to headless and unused nodes */
3439 tmp = cpumask_of_node(n);
3440 if (!cpumask_empty(tmp))
3441 val += PENALTY_FOR_NODE_WITH_CPUS;
3442
3443 /* Slight preference for less loaded node */
3444 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3445 val += node_load[n];
3446
3447 if (val < min_val) {
3448 min_val = val;
3449 best_node = n;
3450 }
3451 }
3452
3453 if (best_node >= 0)
3454 node_set(best_node, *used_node_mask);
3455
3456 return best_node;
3457 }
3458
3459
3460 /*
3461 * Build zonelists ordered by node and zones within node.
3462 * This results in maximum locality--normal zone overflows into local
3463 * DMA zone, if any--but risks exhausting DMA zone.
3464 */
3465 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3466 {
3467 int j;
3468 struct zonelist *zonelist;
3469
3470 zonelist = &pgdat->node_zonelists[0];
3471 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3472 ;
3473 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3474 zonelist->_zonerefs[j].zone = NULL;
3475 zonelist->_zonerefs[j].zone_idx = 0;
3476 }
3477
3478 /*
3479 * Build gfp_thisnode zonelists
3480 */
3481 static void build_thisnode_zonelists(pg_data_t *pgdat)
3482 {
3483 int j;
3484 struct zonelist *zonelist;
3485
3486 zonelist = &pgdat->node_zonelists[1];
3487 j = build_zonelists_node(pgdat, zonelist, 0);
3488 zonelist->_zonerefs[j].zone = NULL;
3489 zonelist->_zonerefs[j].zone_idx = 0;
3490 }
3491
3492 /*
3493 * Build zonelists ordered by zone and nodes within zones.
3494 * This results in conserving DMA zone[s] until all Normal memory is
3495 * exhausted, but results in overflowing to remote node while memory
3496 * may still exist in local DMA zone.
3497 */
3498 static int node_order[MAX_NUMNODES];
3499
3500 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3501 {
3502 int pos, j, node;
3503 int zone_type; /* needs to be signed */
3504 struct zone *z;
3505 struct zonelist *zonelist;
3506
3507 zonelist = &pgdat->node_zonelists[0];
3508 pos = 0;
3509 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3510 for (j = 0; j < nr_nodes; j++) {
3511 node = node_order[j];
3512 z = &NODE_DATA(node)->node_zones[zone_type];
3513 if (populated_zone(z)) {
3514 zoneref_set_zone(z,
3515 &zonelist->_zonerefs[pos++]);
3516 check_highest_zone(zone_type);
3517 }
3518 }
3519 }
3520 zonelist->_zonerefs[pos].zone = NULL;
3521 zonelist->_zonerefs[pos].zone_idx = 0;
3522 }
3523
3524 static int default_zonelist_order(void)
3525 {
3526 int nid, zone_type;
3527 unsigned long low_kmem_size, total_size;
3528 struct zone *z;
3529 int average_size;
3530 /*
3531 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3532 * If they are really small and used heavily, the system can fall
3533 * into OOM very easily.
3534 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3535 */
3536 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3537 low_kmem_size = 0;
3538 total_size = 0;
3539 for_each_online_node(nid) {
3540 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3541 z = &NODE_DATA(nid)->node_zones[zone_type];
3542 if (populated_zone(z)) {
3543 if (zone_type < ZONE_NORMAL)
3544 low_kmem_size += z->managed_pages;
3545 total_size += z->managed_pages;
3546 } else if (zone_type == ZONE_NORMAL) {
3547 /*
3548 * If any node has only lowmem, then node order
3549 * is preferred to allow kernel allocations
3550 * locally; otherwise, they can easily infringe
3551 * on other nodes when there is an abundance of
3552 * lowmem available to allocate from.
3553 */
3554 return ZONELIST_ORDER_NODE;
3555 }
3556 }
3557 }
3558 if (!low_kmem_size || /* there are no DMA area. */
3559 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3560 return ZONELIST_ORDER_NODE;
3561 /*
3562 * look into each node's config.
3563 * If there is a node whose DMA/DMA32 memory is very big area on
3564 * local memory, NODE_ORDER may be suitable.
3565 */
3566 average_size = total_size /
3567 (nodes_weight(node_states[N_MEMORY]) + 1);
3568 for_each_online_node(nid) {
3569 low_kmem_size = 0;
3570 total_size = 0;
3571 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3572 z = &NODE_DATA(nid)->node_zones[zone_type];
3573 if (populated_zone(z)) {
3574 if (zone_type < ZONE_NORMAL)
3575 low_kmem_size += z->present_pages;
3576 total_size += z->present_pages;
3577 }
3578 }
3579 if (low_kmem_size &&
3580 total_size > average_size && /* ignore small node */
3581 low_kmem_size > total_size * 70/100)
3582 return ZONELIST_ORDER_NODE;
3583 }
3584 return ZONELIST_ORDER_ZONE;
3585 }
3586
3587 static void set_zonelist_order(void)
3588 {
3589 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3590 current_zonelist_order = default_zonelist_order();
3591 else
3592 current_zonelist_order = user_zonelist_order;
3593 }
3594
3595 static void build_zonelists(pg_data_t *pgdat)
3596 {
3597 int j, node, load;
3598 enum zone_type i;
3599 nodemask_t used_mask;
3600 int local_node, prev_node;
3601 struct zonelist *zonelist;
3602 int order = current_zonelist_order;
3603
3604 /* initialize zonelists */
3605 for (i = 0; i < MAX_ZONELISTS; i++) {
3606 zonelist = pgdat->node_zonelists + i;
3607 zonelist->_zonerefs[0].zone = NULL;
3608 zonelist->_zonerefs[0].zone_idx = 0;
3609 }
3610
3611 /* NUMA-aware ordering of nodes */
3612 local_node = pgdat->node_id;
3613 load = nr_online_nodes;
3614 prev_node = local_node;
3615 nodes_clear(used_mask);
3616
3617 memset(node_order, 0, sizeof(node_order));
3618 j = 0;
3619
3620 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3621 /*
3622 * We don't want to pressure a particular node.
3623 * So adding penalty to the first node in same
3624 * distance group to make it round-robin.
3625 */
3626 if (node_distance(local_node, node) !=
3627 node_distance(local_node, prev_node))
3628 node_load[node] = load;
3629
3630 prev_node = node;
3631 load--;
3632 if (order == ZONELIST_ORDER_NODE)
3633 build_zonelists_in_node_order(pgdat, node);
3634 else
3635 node_order[j++] = node; /* remember order */
3636 }
3637
3638 if (order == ZONELIST_ORDER_ZONE) {
3639 /* calculate node order -- i.e., DMA last! */
3640 build_zonelists_in_zone_order(pgdat, j);
3641 }
3642
3643 build_thisnode_zonelists(pgdat);
3644 }
3645
3646 /* Construct the zonelist performance cache - see further mmzone.h */
3647 static void build_zonelist_cache(pg_data_t *pgdat)
3648 {
3649 struct zonelist *zonelist;
3650 struct zonelist_cache *zlc;
3651 struct zoneref *z;
3652
3653 zonelist = &pgdat->node_zonelists[0];
3654 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3655 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3656 for (z = zonelist->_zonerefs; z->zone; z++)
3657 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3658 }
3659
3660 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3661 /*
3662 * Return node id of node used for "local" allocations.
3663 * I.e., first node id of first zone in arg node's generic zonelist.
3664 * Used for initializing percpu 'numa_mem', which is used primarily
3665 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3666 */
3667 int local_memory_node(int node)
3668 {
3669 struct zone *zone;
3670
3671 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3672 gfp_zone(GFP_KERNEL),
3673 NULL,
3674 &zone);
3675 return zone->node;
3676 }
3677 #endif
3678
3679 #else /* CONFIG_NUMA */
3680
3681 static void set_zonelist_order(void)
3682 {
3683 current_zonelist_order = ZONELIST_ORDER_ZONE;
3684 }
3685
3686 static void build_zonelists(pg_data_t *pgdat)
3687 {
3688 int node, local_node;
3689 enum zone_type j;
3690 struct zonelist *zonelist;
3691
3692 local_node = pgdat->node_id;
3693
3694 zonelist = &pgdat->node_zonelists[0];
3695 j = build_zonelists_node(pgdat, zonelist, 0);
3696
3697 /*
3698 * Now we build the zonelist so that it contains the zones
3699 * of all the other nodes.
3700 * We don't want to pressure a particular node, so when
3701 * building the zones for node N, we make sure that the
3702 * zones coming right after the local ones are those from
3703 * node N+1 (modulo N)
3704 */
3705 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3706 if (!node_online(node))
3707 continue;
3708 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3709 }
3710 for (node = 0; node < local_node; node++) {
3711 if (!node_online(node))
3712 continue;
3713 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3714 }
3715
3716 zonelist->_zonerefs[j].zone = NULL;
3717 zonelist->_zonerefs[j].zone_idx = 0;
3718 }
3719
3720 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3721 static void build_zonelist_cache(pg_data_t *pgdat)
3722 {
3723 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3724 }
3725
3726 #endif /* CONFIG_NUMA */
3727
3728 /*
3729 * Boot pageset table. One per cpu which is going to be used for all
3730 * zones and all nodes. The parameters will be set in such a way
3731 * that an item put on a list will immediately be handed over to
3732 * the buddy list. This is safe since pageset manipulation is done
3733 * with interrupts disabled.
3734 *
3735 * The boot_pagesets must be kept even after bootup is complete for
3736 * unused processors and/or zones. They do play a role for bootstrapping
3737 * hotplugged processors.
3738 *
3739 * zoneinfo_show() and maybe other functions do
3740 * not check if the processor is online before following the pageset pointer.
3741 * Other parts of the kernel may not check if the zone is available.
3742 */
3743 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3744 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3745 static void setup_zone_pageset(struct zone *zone);
3746
3747 /*
3748 * Global mutex to protect against size modification of zonelists
3749 * as well as to serialize pageset setup for the new populated zone.
3750 */
3751 DEFINE_MUTEX(zonelists_mutex);
3752
3753 /* return values int ....just for stop_machine() */
3754 static int __build_all_zonelists(void *data)
3755 {
3756 int nid;
3757 int cpu;
3758 pg_data_t *self = data;
3759
3760 #ifdef CONFIG_NUMA
3761 memset(node_load, 0, sizeof(node_load));
3762 #endif
3763
3764 if (self && !node_online(self->node_id)) {
3765 build_zonelists(self);
3766 build_zonelist_cache(self);
3767 }
3768
3769 for_each_online_node(nid) {
3770 pg_data_t *pgdat = NODE_DATA(nid);
3771
3772 build_zonelists(pgdat);
3773 build_zonelist_cache(pgdat);
3774 }
3775
3776 /*
3777 * Initialize the boot_pagesets that are going to be used
3778 * for bootstrapping processors. The real pagesets for
3779 * each zone will be allocated later when the per cpu
3780 * allocator is available.
3781 *
3782 * boot_pagesets are used also for bootstrapping offline
3783 * cpus if the system is already booted because the pagesets
3784 * are needed to initialize allocators on a specific cpu too.
3785 * F.e. the percpu allocator needs the page allocator which
3786 * needs the percpu allocator in order to allocate its pagesets
3787 * (a chicken-egg dilemma).
3788 */
3789 for_each_possible_cpu(cpu) {
3790 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3791
3792 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3793 /*
3794 * We now know the "local memory node" for each node--
3795 * i.e., the node of the first zone in the generic zonelist.
3796 * Set up numa_mem percpu variable for on-line cpus. During
3797 * boot, only the boot cpu should be on-line; we'll init the
3798 * secondary cpus' numa_mem as they come on-line. During
3799 * node/memory hotplug, we'll fixup all on-line cpus.
3800 */
3801 if (cpu_online(cpu))
3802 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3803 #endif
3804 }
3805
3806 return 0;
3807 }
3808
3809 /*
3810 * Called with zonelists_mutex held always
3811 * unless system_state == SYSTEM_BOOTING.
3812 */
3813 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3814 {
3815 set_zonelist_order();
3816
3817 if (system_state == SYSTEM_BOOTING) {
3818 __build_all_zonelists(NULL);
3819 mminit_verify_zonelist();
3820 cpuset_init_current_mems_allowed();
3821 } else {
3822 #ifdef CONFIG_MEMORY_HOTPLUG
3823 if (zone)
3824 setup_zone_pageset(zone);
3825 #endif
3826 /* we have to stop all cpus to guarantee there is no user
3827 of zonelist */
3828 stop_machine(__build_all_zonelists, pgdat, NULL);
3829 /* cpuset refresh routine should be here */
3830 }
3831 vm_total_pages = nr_free_pagecache_pages();
3832 /*
3833 * Disable grouping by mobility if the number of pages in the
3834 * system is too low to allow the mechanism to work. It would be
3835 * more accurate, but expensive to check per-zone. This check is
3836 * made on memory-hotadd so a system can start with mobility
3837 * disabled and enable it later
3838 */
3839 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3840 page_group_by_mobility_disabled = 1;
3841 else
3842 page_group_by_mobility_disabled = 0;
3843
3844 printk("Built %i zonelists in %s order, mobility grouping %s. "
3845 "Total pages: %ld\n",
3846 nr_online_nodes,
3847 zonelist_order_name[current_zonelist_order],
3848 page_group_by_mobility_disabled ? "off" : "on",
3849 vm_total_pages);
3850 #ifdef CONFIG_NUMA
3851 printk("Policy zone: %s\n", zone_names[policy_zone]);
3852 #endif
3853 }
3854
3855 /*
3856 * Helper functions to size the waitqueue hash table.
3857 * Essentially these want to choose hash table sizes sufficiently
3858 * large so that collisions trying to wait on pages are rare.
3859 * But in fact, the number of active page waitqueues on typical
3860 * systems is ridiculously low, less than 200. So this is even
3861 * conservative, even though it seems large.
3862 *
3863 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3864 * waitqueues, i.e. the size of the waitq table given the number of pages.
3865 */
3866 #define PAGES_PER_WAITQUEUE 256
3867
3868 #ifndef CONFIG_MEMORY_HOTPLUG
3869 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3870 {
3871 unsigned long size = 1;
3872
3873 pages /= PAGES_PER_WAITQUEUE;
3874
3875 while (size < pages)
3876 size <<= 1;
3877
3878 /*
3879 * Once we have dozens or even hundreds of threads sleeping
3880 * on IO we've got bigger problems than wait queue collision.
3881 * Limit the size of the wait table to a reasonable size.
3882 */
3883 size = min(size, 4096UL);
3884
3885 return max(size, 4UL);
3886 }
3887 #else
3888 /*
3889 * A zone's size might be changed by hot-add, so it is not possible to determine
3890 * a suitable size for its wait_table. So we use the maximum size now.
3891 *
3892 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3893 *
3894 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3895 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3896 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3897 *
3898 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3899 * or more by the traditional way. (See above). It equals:
3900 *
3901 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3902 * ia64(16K page size) : = ( 8G + 4M)byte.
3903 * powerpc (64K page size) : = (32G +16M)byte.
3904 */
3905 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3906 {
3907 return 4096UL;
3908 }
3909 #endif
3910
3911 /*
3912 * This is an integer logarithm so that shifts can be used later
3913 * to extract the more random high bits from the multiplicative
3914 * hash function before the remainder is taken.
3915 */
3916 static inline unsigned long wait_table_bits(unsigned long size)
3917 {
3918 return ffz(~size);
3919 }
3920
3921 /*
3922 * Check if a pageblock contains reserved pages
3923 */
3924 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3925 {
3926 unsigned long pfn;
3927
3928 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3929 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3930 return 1;
3931 }
3932 return 0;
3933 }
3934
3935 /*
3936 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3937 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3938 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3939 * higher will lead to a bigger reserve which will get freed as contiguous
3940 * blocks as reclaim kicks in
3941 */
3942 static void setup_zone_migrate_reserve(struct zone *zone)
3943 {
3944 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3945 struct page *page;
3946 unsigned long block_migratetype;
3947 int reserve;
3948 int old_reserve;
3949
3950 /*
3951 * Get the start pfn, end pfn and the number of blocks to reserve
3952 * We have to be careful to be aligned to pageblock_nr_pages to
3953 * make sure that we always check pfn_valid for the first page in
3954 * the block.
3955 */
3956 start_pfn = zone->zone_start_pfn;
3957 end_pfn = zone_end_pfn(zone);
3958 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3959 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3960 pageblock_order;
3961
3962 /*
3963 * Reserve blocks are generally in place to help high-order atomic
3964 * allocations that are short-lived. A min_free_kbytes value that
3965 * would result in more than 2 reserve blocks for atomic allocations
3966 * is assumed to be in place to help anti-fragmentation for the
3967 * future allocation of hugepages at runtime.
3968 */
3969 reserve = min(2, reserve);
3970 old_reserve = zone->nr_migrate_reserve_block;
3971
3972 /* When memory hot-add, we almost always need to do nothing */
3973 if (reserve == old_reserve)
3974 return;
3975 zone->nr_migrate_reserve_block = reserve;
3976
3977 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3978 if (!pfn_valid(pfn))
3979 continue;
3980 page = pfn_to_page(pfn);
3981
3982 /* Watch out for overlapping nodes */
3983 if (page_to_nid(page) != zone_to_nid(zone))
3984 continue;
3985
3986 block_migratetype = get_pageblock_migratetype(page);
3987
3988 /* Only test what is necessary when the reserves are not met */
3989 if (reserve > 0) {
3990 /*
3991 * Blocks with reserved pages will never free, skip
3992 * them.
3993 */
3994 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3995 if (pageblock_is_reserved(pfn, block_end_pfn))
3996 continue;
3997
3998 /* If this block is reserved, account for it */
3999 if (block_migratetype == MIGRATE_RESERVE) {
4000 reserve--;
4001 continue;
4002 }
4003
4004 /* Suitable for reserving if this block is movable */
4005 if (block_migratetype == MIGRATE_MOVABLE) {
4006 set_pageblock_migratetype(page,
4007 MIGRATE_RESERVE);
4008 move_freepages_block(zone, page,
4009 MIGRATE_RESERVE);
4010 reserve--;
4011 continue;
4012 }
4013 } else if (!old_reserve) {
4014 /*
4015 * At boot time we don't need to scan the whole zone
4016 * for turning off MIGRATE_RESERVE.
4017 */
4018 break;
4019 }
4020
4021 /*
4022 * If the reserve is met and this is a previous reserved block,
4023 * take it back
4024 */
4025 if (block_migratetype == MIGRATE_RESERVE) {
4026 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4027 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4028 }
4029 }
4030 }
4031
4032 /*
4033 * Initially all pages are reserved - free ones are freed
4034 * up by free_all_bootmem() once the early boot process is
4035 * done. Non-atomic initialization, single-pass.
4036 */
4037 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4038 unsigned long start_pfn, enum memmap_context context)
4039 {
4040 struct page *page;
4041 unsigned long end_pfn = start_pfn + size;
4042 unsigned long pfn;
4043 struct zone *z;
4044
4045 if (highest_memmap_pfn < end_pfn - 1)
4046 highest_memmap_pfn = end_pfn - 1;
4047
4048 z = &NODE_DATA(nid)->node_zones[zone];
4049 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4050 /*
4051 * There can be holes in boot-time mem_map[]s
4052 * handed to this function. They do not
4053 * exist on hotplugged memory.
4054 */
4055 if (context == MEMMAP_EARLY) {
4056 if (!early_pfn_valid(pfn))
4057 continue;
4058 if (!early_pfn_in_nid(pfn, nid))
4059 continue;
4060 }
4061 page = pfn_to_page(pfn);
4062 set_page_links(page, zone, nid, pfn);
4063 mminit_verify_page_links(page, zone, nid, pfn);
4064 init_page_count(page);
4065 page_mapcount_reset(page);
4066 page_cpupid_reset_last(page);
4067 SetPageReserved(page);
4068 /*
4069 * Mark the block movable so that blocks are reserved for
4070 * movable at startup. This will force kernel allocations
4071 * to reserve their blocks rather than leaking throughout
4072 * the address space during boot when many long-lived
4073 * kernel allocations are made. Later some blocks near
4074 * the start are marked MIGRATE_RESERVE by
4075 * setup_zone_migrate_reserve()
4076 *
4077 * bitmap is created for zone's valid pfn range. but memmap
4078 * can be created for invalid pages (for alignment)
4079 * check here not to call set_pageblock_migratetype() against
4080 * pfn out of zone.
4081 */
4082 if ((z->zone_start_pfn <= pfn)
4083 && (pfn < zone_end_pfn(z))
4084 && !(pfn & (pageblock_nr_pages - 1)))
4085 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4086
4087 INIT_LIST_HEAD(&page->lru);
4088 #ifdef WANT_PAGE_VIRTUAL
4089 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4090 if (!is_highmem_idx(zone))
4091 set_page_address(page, __va(pfn << PAGE_SHIFT));
4092 #endif
4093 }
4094 }
4095
4096 static void __meminit zone_init_free_lists(struct zone *zone)
4097 {
4098 int order, t;
4099 for_each_migratetype_order(order, t) {
4100 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4101 zone->free_area[order].nr_free = 0;
4102 }
4103 }
4104
4105 #ifndef __HAVE_ARCH_MEMMAP_INIT
4106 #define memmap_init(size, nid, zone, start_pfn) \
4107 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4108 #endif
4109
4110 static int __meminit zone_batchsize(struct zone *zone)
4111 {
4112 #ifdef CONFIG_MMU
4113 int batch;
4114
4115 /*
4116 * The per-cpu-pages pools are set to around 1000th of the
4117 * size of the zone. But no more than 1/2 of a meg.
4118 *
4119 * OK, so we don't know how big the cache is. So guess.
4120 */
4121 batch = zone->managed_pages / 1024;
4122 if (batch * PAGE_SIZE > 512 * 1024)
4123 batch = (512 * 1024) / PAGE_SIZE;
4124 batch /= 4; /* We effectively *= 4 below */
4125 if (batch < 1)
4126 batch = 1;
4127
4128 /*
4129 * Clamp the batch to a 2^n - 1 value. Having a power
4130 * of 2 value was found to be more likely to have
4131 * suboptimal cache aliasing properties in some cases.
4132 *
4133 * For example if 2 tasks are alternately allocating
4134 * batches of pages, one task can end up with a lot
4135 * of pages of one half of the possible page colors
4136 * and the other with pages of the other colors.
4137 */
4138 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4139
4140 return batch;
4141
4142 #else
4143 /* The deferral and batching of frees should be suppressed under NOMMU
4144 * conditions.
4145 *
4146 * The problem is that NOMMU needs to be able to allocate large chunks
4147 * of contiguous memory as there's no hardware page translation to
4148 * assemble apparent contiguous memory from discontiguous pages.
4149 *
4150 * Queueing large contiguous runs of pages for batching, however,
4151 * causes the pages to actually be freed in smaller chunks. As there
4152 * can be a significant delay between the individual batches being
4153 * recycled, this leads to the once large chunks of space being
4154 * fragmented and becoming unavailable for high-order allocations.
4155 */
4156 return 0;
4157 #endif
4158 }
4159
4160 /*
4161 * pcp->high and pcp->batch values are related and dependent on one another:
4162 * ->batch must never be higher then ->high.
4163 * The following function updates them in a safe manner without read side
4164 * locking.
4165 *
4166 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4167 * those fields changing asynchronously (acording the the above rule).
4168 *
4169 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4170 * outside of boot time (or some other assurance that no concurrent updaters
4171 * exist).
4172 */
4173 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4174 unsigned long batch)
4175 {
4176 /* start with a fail safe value for batch */
4177 pcp->batch = 1;
4178 smp_wmb();
4179
4180 /* Update high, then batch, in order */
4181 pcp->high = high;
4182 smp_wmb();
4183
4184 pcp->batch = batch;
4185 }
4186
4187 /* a companion to pageset_set_high() */
4188 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4189 {
4190 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4191 }
4192
4193 static void pageset_init(struct per_cpu_pageset *p)
4194 {
4195 struct per_cpu_pages *pcp;
4196 int migratetype;
4197
4198 memset(p, 0, sizeof(*p));
4199
4200 pcp = &p->pcp;
4201 pcp->count = 0;
4202 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4203 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4204 }
4205
4206 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4207 {
4208 pageset_init(p);
4209 pageset_set_batch(p, batch);
4210 }
4211
4212 /*
4213 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4214 * to the value high for the pageset p.
4215 */
4216 static void pageset_set_high(struct per_cpu_pageset *p,
4217 unsigned long high)
4218 {
4219 unsigned long batch = max(1UL, high / 4);
4220 if ((high / 4) > (PAGE_SHIFT * 8))
4221 batch = PAGE_SHIFT * 8;
4222
4223 pageset_update(&p->pcp, high, batch);
4224 }
4225
4226 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4227 struct per_cpu_pageset *pcp)
4228 {
4229 if (percpu_pagelist_fraction)
4230 pageset_set_high(pcp,
4231 (zone->managed_pages /
4232 percpu_pagelist_fraction));
4233 else
4234 pageset_set_batch(pcp, zone_batchsize(zone));
4235 }
4236
4237 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4238 {
4239 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4240
4241 pageset_init(pcp);
4242 pageset_set_high_and_batch(zone, pcp);
4243 }
4244
4245 static void __meminit setup_zone_pageset(struct zone *zone)
4246 {
4247 int cpu;
4248 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4249 for_each_possible_cpu(cpu)
4250 zone_pageset_init(zone, cpu);
4251 }
4252
4253 /*
4254 * Allocate per cpu pagesets and initialize them.
4255 * Before this call only boot pagesets were available.
4256 */
4257 void __init setup_per_cpu_pageset(void)
4258 {
4259 struct zone *zone;
4260
4261 for_each_populated_zone(zone)
4262 setup_zone_pageset(zone);
4263 }
4264
4265 static noinline __init_refok
4266 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4267 {
4268 int i;
4269 size_t alloc_size;
4270
4271 /*
4272 * The per-page waitqueue mechanism uses hashed waitqueues
4273 * per zone.
4274 */
4275 zone->wait_table_hash_nr_entries =
4276 wait_table_hash_nr_entries(zone_size_pages);
4277 zone->wait_table_bits =
4278 wait_table_bits(zone->wait_table_hash_nr_entries);
4279 alloc_size = zone->wait_table_hash_nr_entries
4280 * sizeof(wait_queue_head_t);
4281
4282 if (!slab_is_available()) {
4283 zone->wait_table = (wait_queue_head_t *)
4284 memblock_virt_alloc_node_nopanic(
4285 alloc_size, zone->zone_pgdat->node_id);
4286 } else {
4287 /*
4288 * This case means that a zone whose size was 0 gets new memory
4289 * via memory hot-add.
4290 * But it may be the case that a new node was hot-added. In
4291 * this case vmalloc() will not be able to use this new node's
4292 * memory - this wait_table must be initialized to use this new
4293 * node itself as well.
4294 * To use this new node's memory, further consideration will be
4295 * necessary.
4296 */
4297 zone->wait_table = vmalloc(alloc_size);
4298 }
4299 if (!zone->wait_table)
4300 return -ENOMEM;
4301
4302 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4303 init_waitqueue_head(zone->wait_table + i);
4304
4305 return 0;
4306 }
4307
4308 static __meminit void zone_pcp_init(struct zone *zone)
4309 {
4310 /*
4311 * per cpu subsystem is not up at this point. The following code
4312 * relies on the ability of the linker to provide the
4313 * offset of a (static) per cpu variable into the per cpu area.
4314 */
4315 zone->pageset = &boot_pageset;
4316
4317 if (populated_zone(zone))
4318 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4319 zone->name, zone->present_pages,
4320 zone_batchsize(zone));
4321 }
4322
4323 int __meminit init_currently_empty_zone(struct zone *zone,
4324 unsigned long zone_start_pfn,
4325 unsigned long size,
4326 enum memmap_context context)
4327 {
4328 struct pglist_data *pgdat = zone->zone_pgdat;
4329 int ret;
4330 ret = zone_wait_table_init(zone, size);
4331 if (ret)
4332 return ret;
4333 pgdat->nr_zones = zone_idx(zone) + 1;
4334
4335 zone->zone_start_pfn = zone_start_pfn;
4336
4337 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4338 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4339 pgdat->node_id,
4340 (unsigned long)zone_idx(zone),
4341 zone_start_pfn, (zone_start_pfn + size));
4342
4343 zone_init_free_lists(zone);
4344
4345 return 0;
4346 }
4347
4348 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4349 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4350 /*
4351 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4352 * Architectures may implement their own version but if add_active_range()
4353 * was used and there are no special requirements, this is a convenient
4354 * alternative
4355 */
4356 int __meminit __early_pfn_to_nid(unsigned long pfn)
4357 {
4358 unsigned long start_pfn, end_pfn;
4359 int nid;
4360 /*
4361 * NOTE: The following SMP-unsafe globals are only used early in boot
4362 * when the kernel is running single-threaded.
4363 */
4364 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4365 static int __meminitdata last_nid;
4366
4367 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4368 return last_nid;
4369
4370 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4371 if (nid != -1) {
4372 last_start_pfn = start_pfn;
4373 last_end_pfn = end_pfn;
4374 last_nid = nid;
4375 }
4376
4377 return nid;
4378 }
4379 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4380
4381 int __meminit early_pfn_to_nid(unsigned long pfn)
4382 {
4383 int nid;
4384
4385 nid = __early_pfn_to_nid(pfn);
4386 if (nid >= 0)
4387 return nid;
4388 /* just returns 0 */
4389 return 0;
4390 }
4391
4392 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4393 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4394 {
4395 int nid;
4396
4397 nid = __early_pfn_to_nid(pfn);
4398 if (nid >= 0 && nid != node)
4399 return false;
4400 return true;
4401 }
4402 #endif
4403
4404 /**
4405 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4406 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4407 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4408 *
4409 * If an architecture guarantees that all ranges registered with
4410 * add_active_ranges() contain no holes and may be freed, this
4411 * this function may be used instead of calling memblock_free_early_nid()
4412 * manually.
4413 */
4414 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4415 {
4416 unsigned long start_pfn, end_pfn;
4417 int i, this_nid;
4418
4419 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4420 start_pfn = min(start_pfn, max_low_pfn);
4421 end_pfn = min(end_pfn, max_low_pfn);
4422
4423 if (start_pfn < end_pfn)
4424 memblock_free_early_nid(PFN_PHYS(start_pfn),
4425 (end_pfn - start_pfn) << PAGE_SHIFT,
4426 this_nid);
4427 }
4428 }
4429
4430 /**
4431 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4432 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4433 *
4434 * If an architecture guarantees that all ranges registered with
4435 * add_active_ranges() contain no holes and may be freed, this
4436 * function may be used instead of calling memory_present() manually.
4437 */
4438 void __init sparse_memory_present_with_active_regions(int nid)
4439 {
4440 unsigned long start_pfn, end_pfn;
4441 int i, this_nid;
4442
4443 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4444 memory_present(this_nid, start_pfn, end_pfn);
4445 }
4446
4447 /**
4448 * get_pfn_range_for_nid - Return the start and end page frames for a node
4449 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4450 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4451 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4452 *
4453 * It returns the start and end page frame of a node based on information
4454 * provided by an arch calling add_active_range(). If called for a node
4455 * with no available memory, a warning is printed and the start and end
4456 * PFNs will be 0.
4457 */
4458 void __meminit get_pfn_range_for_nid(unsigned int nid,
4459 unsigned long *start_pfn, unsigned long *end_pfn)
4460 {
4461 unsigned long this_start_pfn, this_end_pfn;
4462 int i;
4463
4464 *start_pfn = -1UL;
4465 *end_pfn = 0;
4466
4467 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4468 *start_pfn = min(*start_pfn, this_start_pfn);
4469 *end_pfn = max(*end_pfn, this_end_pfn);
4470 }
4471
4472 if (*start_pfn == -1UL)
4473 *start_pfn = 0;
4474 }
4475
4476 /*
4477 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4478 * assumption is made that zones within a node are ordered in monotonic
4479 * increasing memory addresses so that the "highest" populated zone is used
4480 */
4481 static void __init find_usable_zone_for_movable(void)
4482 {
4483 int zone_index;
4484 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4485 if (zone_index == ZONE_MOVABLE)
4486 continue;
4487
4488 if (arch_zone_highest_possible_pfn[zone_index] >
4489 arch_zone_lowest_possible_pfn[zone_index])
4490 break;
4491 }
4492
4493 VM_BUG_ON(zone_index == -1);
4494 movable_zone = zone_index;
4495 }
4496
4497 /*
4498 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4499 * because it is sized independent of architecture. Unlike the other zones,
4500 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4501 * in each node depending on the size of each node and how evenly kernelcore
4502 * is distributed. This helper function adjusts the zone ranges
4503 * provided by the architecture for a given node by using the end of the
4504 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4505 * zones within a node are in order of monotonic increases memory addresses
4506 */
4507 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4508 unsigned long zone_type,
4509 unsigned long node_start_pfn,
4510 unsigned long node_end_pfn,
4511 unsigned long *zone_start_pfn,
4512 unsigned long *zone_end_pfn)
4513 {
4514 /* Only adjust if ZONE_MOVABLE is on this node */
4515 if (zone_movable_pfn[nid]) {
4516 /* Size ZONE_MOVABLE */
4517 if (zone_type == ZONE_MOVABLE) {
4518 *zone_start_pfn = zone_movable_pfn[nid];
4519 *zone_end_pfn = min(node_end_pfn,
4520 arch_zone_highest_possible_pfn[movable_zone]);
4521
4522 /* Adjust for ZONE_MOVABLE starting within this range */
4523 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4524 *zone_end_pfn > zone_movable_pfn[nid]) {
4525 *zone_end_pfn = zone_movable_pfn[nid];
4526
4527 /* Check if this whole range is within ZONE_MOVABLE */
4528 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4529 *zone_start_pfn = *zone_end_pfn;
4530 }
4531 }
4532
4533 /*
4534 * Return the number of pages a zone spans in a node, including holes
4535 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4536 */
4537 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4538 unsigned long zone_type,
4539 unsigned long node_start_pfn,
4540 unsigned long node_end_pfn,
4541 unsigned long *ignored)
4542 {
4543 unsigned long zone_start_pfn, zone_end_pfn;
4544
4545 /* Get the start and end of the zone */
4546 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4547 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4548 adjust_zone_range_for_zone_movable(nid, zone_type,
4549 node_start_pfn, node_end_pfn,
4550 &zone_start_pfn, &zone_end_pfn);
4551
4552 /* Check that this node has pages within the zone's required range */
4553 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4554 return 0;
4555
4556 /* Move the zone boundaries inside the node if necessary */
4557 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4558 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4559
4560 /* Return the spanned pages */
4561 return zone_end_pfn - zone_start_pfn;
4562 }
4563
4564 /*
4565 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4566 * then all holes in the requested range will be accounted for.
4567 */
4568 unsigned long __meminit __absent_pages_in_range(int nid,
4569 unsigned long range_start_pfn,
4570 unsigned long range_end_pfn)
4571 {
4572 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4573 unsigned long start_pfn, end_pfn;
4574 int i;
4575
4576 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4577 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4578 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4579 nr_absent -= end_pfn - start_pfn;
4580 }
4581 return nr_absent;
4582 }
4583
4584 /**
4585 * absent_pages_in_range - Return number of page frames in holes within a range
4586 * @start_pfn: The start PFN to start searching for holes
4587 * @end_pfn: The end PFN to stop searching for holes
4588 *
4589 * It returns the number of pages frames in memory holes within a range.
4590 */
4591 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4592 unsigned long end_pfn)
4593 {
4594 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4595 }
4596
4597 /* Return the number of page frames in holes in a zone on a node */
4598 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4599 unsigned long zone_type,
4600 unsigned long node_start_pfn,
4601 unsigned long node_end_pfn,
4602 unsigned long *ignored)
4603 {
4604 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4605 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4606 unsigned long zone_start_pfn, zone_end_pfn;
4607
4608 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4609 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4610
4611 adjust_zone_range_for_zone_movable(nid, zone_type,
4612 node_start_pfn, node_end_pfn,
4613 &zone_start_pfn, &zone_end_pfn);
4614 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4615 }
4616
4617 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4618 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4619 unsigned long zone_type,
4620 unsigned long node_start_pfn,
4621 unsigned long node_end_pfn,
4622 unsigned long *zones_size)
4623 {
4624 return zones_size[zone_type];
4625 }
4626
4627 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4628 unsigned long zone_type,
4629 unsigned long node_start_pfn,
4630 unsigned long node_end_pfn,
4631 unsigned long *zholes_size)
4632 {
4633 if (!zholes_size)
4634 return 0;
4635
4636 return zholes_size[zone_type];
4637 }
4638
4639 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4640
4641 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4642 unsigned long node_start_pfn,
4643 unsigned long node_end_pfn,
4644 unsigned long *zones_size,
4645 unsigned long *zholes_size)
4646 {
4647 unsigned long realtotalpages, totalpages = 0;
4648 enum zone_type i;
4649
4650 for (i = 0; i < MAX_NR_ZONES; i++)
4651 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4652 node_start_pfn,
4653 node_end_pfn,
4654 zones_size);
4655 pgdat->node_spanned_pages = totalpages;
4656
4657 realtotalpages = totalpages;
4658 for (i = 0; i < MAX_NR_ZONES; i++)
4659 realtotalpages -=
4660 zone_absent_pages_in_node(pgdat->node_id, i,
4661 node_start_pfn, node_end_pfn,
4662 zholes_size);
4663 pgdat->node_present_pages = realtotalpages;
4664 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4665 realtotalpages);
4666 }
4667
4668 #ifndef CONFIG_SPARSEMEM
4669 /*
4670 * Calculate the size of the zone->blockflags rounded to an unsigned long
4671 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4672 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4673 * round what is now in bits to nearest long in bits, then return it in
4674 * bytes.
4675 */
4676 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4677 {
4678 unsigned long usemapsize;
4679
4680 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4681 usemapsize = roundup(zonesize, pageblock_nr_pages);
4682 usemapsize = usemapsize >> pageblock_order;
4683 usemapsize *= NR_PAGEBLOCK_BITS;
4684 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4685
4686 return usemapsize / 8;
4687 }
4688
4689 static void __init setup_usemap(struct pglist_data *pgdat,
4690 struct zone *zone,
4691 unsigned long zone_start_pfn,
4692 unsigned long zonesize)
4693 {
4694 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4695 zone->pageblock_flags = NULL;
4696 if (usemapsize)
4697 zone->pageblock_flags =
4698 memblock_virt_alloc_node_nopanic(usemapsize,
4699 pgdat->node_id);
4700 }
4701 #else
4702 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4703 unsigned long zone_start_pfn, unsigned long zonesize) {}
4704 #endif /* CONFIG_SPARSEMEM */
4705
4706 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4707
4708 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4709 void __paginginit set_pageblock_order(void)
4710 {
4711 unsigned int order;
4712
4713 /* Check that pageblock_nr_pages has not already been setup */
4714 if (pageblock_order)
4715 return;
4716
4717 if (HPAGE_SHIFT > PAGE_SHIFT)
4718 order = HUGETLB_PAGE_ORDER;
4719 else
4720 order = MAX_ORDER - 1;
4721
4722 /*
4723 * Assume the largest contiguous order of interest is a huge page.
4724 * This value may be variable depending on boot parameters on IA64 and
4725 * powerpc.
4726 */
4727 pageblock_order = order;
4728 }
4729 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4730
4731 /*
4732 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4733 * is unused as pageblock_order is set at compile-time. See
4734 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4735 * the kernel config
4736 */
4737 void __paginginit set_pageblock_order(void)
4738 {
4739 }
4740
4741 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4742
4743 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4744 unsigned long present_pages)
4745 {
4746 unsigned long pages = spanned_pages;
4747
4748 /*
4749 * Provide a more accurate estimation if there are holes within
4750 * the zone and SPARSEMEM is in use. If there are holes within the
4751 * zone, each populated memory region may cost us one or two extra
4752 * memmap pages due to alignment because memmap pages for each
4753 * populated regions may not naturally algined on page boundary.
4754 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4755 */
4756 if (spanned_pages > present_pages + (present_pages >> 4) &&
4757 IS_ENABLED(CONFIG_SPARSEMEM))
4758 pages = present_pages;
4759
4760 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4761 }
4762
4763 /*
4764 * Set up the zone data structures:
4765 * - mark all pages reserved
4766 * - mark all memory queues empty
4767 * - clear the memory bitmaps
4768 *
4769 * NOTE: pgdat should get zeroed by caller.
4770 */
4771 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4772 unsigned long node_start_pfn, unsigned long node_end_pfn,
4773 unsigned long *zones_size, unsigned long *zholes_size)
4774 {
4775 enum zone_type j;
4776 int nid = pgdat->node_id;
4777 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4778 int ret;
4779
4780 pgdat_resize_init(pgdat);
4781 #ifdef CONFIG_NUMA_BALANCING
4782 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4783 pgdat->numabalancing_migrate_nr_pages = 0;
4784 pgdat->numabalancing_migrate_next_window = jiffies;
4785 #endif
4786 init_waitqueue_head(&pgdat->kswapd_wait);
4787 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4788 pgdat_page_cgroup_init(pgdat);
4789
4790 for (j = 0; j < MAX_NR_ZONES; j++) {
4791 struct zone *zone = pgdat->node_zones + j;
4792 unsigned long size, realsize, freesize, memmap_pages;
4793
4794 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4795 node_end_pfn, zones_size);
4796 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4797 node_start_pfn,
4798 node_end_pfn,
4799 zholes_size);
4800
4801 /*
4802 * Adjust freesize so that it accounts for how much memory
4803 * is used by this zone for memmap. This affects the watermark
4804 * and per-cpu initialisations
4805 */
4806 memmap_pages = calc_memmap_size(size, realsize);
4807 if (freesize >= memmap_pages) {
4808 freesize -= memmap_pages;
4809 if (memmap_pages)
4810 printk(KERN_DEBUG
4811 " %s zone: %lu pages used for memmap\n",
4812 zone_names[j], memmap_pages);
4813 } else
4814 printk(KERN_WARNING
4815 " %s zone: %lu pages exceeds freesize %lu\n",
4816 zone_names[j], memmap_pages, freesize);
4817
4818 /* Account for reserved pages */
4819 if (j == 0 && freesize > dma_reserve) {
4820 freesize -= dma_reserve;
4821 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4822 zone_names[0], dma_reserve);
4823 }
4824
4825 if (!is_highmem_idx(j))
4826 nr_kernel_pages += freesize;
4827 /* Charge for highmem memmap if there are enough kernel pages */
4828 else if (nr_kernel_pages > memmap_pages * 2)
4829 nr_kernel_pages -= memmap_pages;
4830 nr_all_pages += freesize;
4831
4832 zone->spanned_pages = size;
4833 zone->present_pages = realsize;
4834 /*
4835 * Set an approximate value for lowmem here, it will be adjusted
4836 * when the bootmem allocator frees pages into the buddy system.
4837 * And all highmem pages will be managed by the buddy system.
4838 */
4839 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4840 #ifdef CONFIG_NUMA
4841 zone->node = nid;
4842 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4843 / 100;
4844 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4845 #endif
4846 zone->name = zone_names[j];
4847 spin_lock_init(&zone->lock);
4848 spin_lock_init(&zone->lru_lock);
4849 zone_seqlock_init(zone);
4850 zone->zone_pgdat = pgdat;
4851 zone_pcp_init(zone);
4852
4853 /* For bootup, initialized properly in watermark setup */
4854 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4855
4856 lruvec_init(&zone->lruvec);
4857 if (!size)
4858 continue;
4859
4860 set_pageblock_order();
4861 setup_usemap(pgdat, zone, zone_start_pfn, size);
4862 ret = init_currently_empty_zone(zone, zone_start_pfn,
4863 size, MEMMAP_EARLY);
4864 BUG_ON(ret);
4865 memmap_init(size, nid, j, zone_start_pfn);
4866 zone_start_pfn += size;
4867 }
4868 }
4869
4870 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4871 {
4872 /* Skip empty nodes */
4873 if (!pgdat->node_spanned_pages)
4874 return;
4875
4876 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4877 /* ia64 gets its own node_mem_map, before this, without bootmem */
4878 if (!pgdat->node_mem_map) {
4879 unsigned long size, start, end;
4880 struct page *map;
4881
4882 /*
4883 * The zone's endpoints aren't required to be MAX_ORDER
4884 * aligned but the node_mem_map endpoints must be in order
4885 * for the buddy allocator to function correctly.
4886 */
4887 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4888 end = pgdat_end_pfn(pgdat);
4889 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4890 size = (end - start) * sizeof(struct page);
4891 map = alloc_remap(pgdat->node_id, size);
4892 if (!map)
4893 map = memblock_virt_alloc_node_nopanic(size,
4894 pgdat->node_id);
4895 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4896 }
4897 #ifndef CONFIG_NEED_MULTIPLE_NODES
4898 /*
4899 * With no DISCONTIG, the global mem_map is just set as node 0's
4900 */
4901 if (pgdat == NODE_DATA(0)) {
4902 mem_map = NODE_DATA(0)->node_mem_map;
4903 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4904 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4905 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4906 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4907 }
4908 #endif
4909 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4910 }
4911
4912 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4913 unsigned long node_start_pfn, unsigned long *zholes_size)
4914 {
4915 pg_data_t *pgdat = NODE_DATA(nid);
4916 unsigned long start_pfn = 0;
4917 unsigned long end_pfn = 0;
4918
4919 /* pg_data_t should be reset to zero when it's allocated */
4920 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4921
4922 pgdat->node_id = nid;
4923 pgdat->node_start_pfn = node_start_pfn;
4924 if (node_state(nid, N_MEMORY))
4925 init_zone_allows_reclaim(nid);
4926 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4927 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4928 #endif
4929 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4930 zones_size, zholes_size);
4931
4932 alloc_node_mem_map(pgdat);
4933 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4934 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4935 nid, (unsigned long)pgdat,
4936 (unsigned long)pgdat->node_mem_map);
4937 #endif
4938
4939 free_area_init_core(pgdat, start_pfn, end_pfn,
4940 zones_size, zholes_size);
4941 }
4942
4943 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4944
4945 #if MAX_NUMNODES > 1
4946 /*
4947 * Figure out the number of possible node ids.
4948 */
4949 void __init setup_nr_node_ids(void)
4950 {
4951 unsigned int node;
4952 unsigned int highest = 0;
4953
4954 for_each_node_mask(node, node_possible_map)
4955 highest = node;
4956 nr_node_ids = highest + 1;
4957 }
4958 #endif
4959
4960 /**
4961 * node_map_pfn_alignment - determine the maximum internode alignment
4962 *
4963 * This function should be called after node map is populated and sorted.
4964 * It calculates the maximum power of two alignment which can distinguish
4965 * all the nodes.
4966 *
4967 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4968 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4969 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4970 * shifted, 1GiB is enough and this function will indicate so.
4971 *
4972 * This is used to test whether pfn -> nid mapping of the chosen memory
4973 * model has fine enough granularity to avoid incorrect mapping for the
4974 * populated node map.
4975 *
4976 * Returns the determined alignment in pfn's. 0 if there is no alignment
4977 * requirement (single node).
4978 */
4979 unsigned long __init node_map_pfn_alignment(void)
4980 {
4981 unsigned long accl_mask = 0, last_end = 0;
4982 unsigned long start, end, mask;
4983 int last_nid = -1;
4984 int i, nid;
4985
4986 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4987 if (!start || last_nid < 0 || last_nid == nid) {
4988 last_nid = nid;
4989 last_end = end;
4990 continue;
4991 }
4992
4993 /*
4994 * Start with a mask granular enough to pin-point to the
4995 * start pfn and tick off bits one-by-one until it becomes
4996 * too coarse to separate the current node from the last.
4997 */
4998 mask = ~((1 << __ffs(start)) - 1);
4999 while (mask && last_end <= (start & (mask << 1)))
5000 mask <<= 1;
5001
5002 /* accumulate all internode masks */
5003 accl_mask |= mask;
5004 }
5005
5006 /* convert mask to number of pages */
5007 return ~accl_mask + 1;
5008 }
5009
5010 /* Find the lowest pfn for a node */
5011 static unsigned long __init find_min_pfn_for_node(int nid)
5012 {
5013 unsigned long min_pfn = ULONG_MAX;
5014 unsigned long start_pfn;
5015 int i;
5016
5017 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5018 min_pfn = min(min_pfn, start_pfn);
5019
5020 if (min_pfn == ULONG_MAX) {
5021 printk(KERN_WARNING
5022 "Could not find start_pfn for node %d\n", nid);
5023 return 0;
5024 }
5025
5026 return min_pfn;
5027 }
5028
5029 /**
5030 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5031 *
5032 * It returns the minimum PFN based on information provided via
5033 * add_active_range().
5034 */
5035 unsigned long __init find_min_pfn_with_active_regions(void)
5036 {
5037 return find_min_pfn_for_node(MAX_NUMNODES);
5038 }
5039
5040 /*
5041 * early_calculate_totalpages()
5042 * Sum pages in active regions for movable zone.
5043 * Populate N_MEMORY for calculating usable_nodes.
5044 */
5045 static unsigned long __init early_calculate_totalpages(void)
5046 {
5047 unsigned long totalpages = 0;
5048 unsigned long start_pfn, end_pfn;
5049 int i, nid;
5050
5051 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5052 unsigned long pages = end_pfn - start_pfn;
5053
5054 totalpages += pages;
5055 if (pages)
5056 node_set_state(nid, N_MEMORY);
5057 }
5058 return totalpages;
5059 }
5060
5061 /*
5062 * Find the PFN the Movable zone begins in each node. Kernel memory
5063 * is spread evenly between nodes as long as the nodes have enough
5064 * memory. When they don't, some nodes will have more kernelcore than
5065 * others
5066 */
5067 static void __init find_zone_movable_pfns_for_nodes(void)
5068 {
5069 int i, nid;
5070 unsigned long usable_startpfn;
5071 unsigned long kernelcore_node, kernelcore_remaining;
5072 /* save the state before borrow the nodemask */
5073 nodemask_t saved_node_state = node_states[N_MEMORY];
5074 unsigned long totalpages = early_calculate_totalpages();
5075 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5076 struct memblock_region *r;
5077
5078 /* Need to find movable_zone earlier when movable_node is specified. */
5079 find_usable_zone_for_movable();
5080
5081 /*
5082 * If movable_node is specified, ignore kernelcore and movablecore
5083 * options.
5084 */
5085 if (movable_node_is_enabled()) {
5086 for_each_memblock(memory, r) {
5087 if (!memblock_is_hotpluggable(r))
5088 continue;
5089
5090 nid = r->nid;
5091
5092 usable_startpfn = PFN_DOWN(r->base);
5093 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5094 min(usable_startpfn, zone_movable_pfn[nid]) :
5095 usable_startpfn;
5096 }
5097
5098 goto out2;
5099 }
5100
5101 /*
5102 * If movablecore=nn[KMG] was specified, calculate what size of
5103 * kernelcore that corresponds so that memory usable for
5104 * any allocation type is evenly spread. If both kernelcore
5105 * and movablecore are specified, then the value of kernelcore
5106 * will be used for required_kernelcore if it's greater than
5107 * what movablecore would have allowed.
5108 */
5109 if (required_movablecore) {
5110 unsigned long corepages;
5111
5112 /*
5113 * Round-up so that ZONE_MOVABLE is at least as large as what
5114 * was requested by the user
5115 */
5116 required_movablecore =
5117 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5118 corepages = totalpages - required_movablecore;
5119
5120 required_kernelcore = max(required_kernelcore, corepages);
5121 }
5122
5123 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5124 if (!required_kernelcore)
5125 goto out;
5126
5127 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5128 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5129
5130 restart:
5131 /* Spread kernelcore memory as evenly as possible throughout nodes */
5132 kernelcore_node = required_kernelcore / usable_nodes;
5133 for_each_node_state(nid, N_MEMORY) {
5134 unsigned long start_pfn, end_pfn;
5135
5136 /*
5137 * Recalculate kernelcore_node if the division per node
5138 * now exceeds what is necessary to satisfy the requested
5139 * amount of memory for the kernel
5140 */
5141 if (required_kernelcore < kernelcore_node)
5142 kernelcore_node = required_kernelcore / usable_nodes;
5143
5144 /*
5145 * As the map is walked, we track how much memory is usable
5146 * by the kernel using kernelcore_remaining. When it is
5147 * 0, the rest of the node is usable by ZONE_MOVABLE
5148 */
5149 kernelcore_remaining = kernelcore_node;
5150
5151 /* Go through each range of PFNs within this node */
5152 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5153 unsigned long size_pages;
5154
5155 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5156 if (start_pfn >= end_pfn)
5157 continue;
5158
5159 /* Account for what is only usable for kernelcore */
5160 if (start_pfn < usable_startpfn) {
5161 unsigned long kernel_pages;
5162 kernel_pages = min(end_pfn, usable_startpfn)
5163 - start_pfn;
5164
5165 kernelcore_remaining -= min(kernel_pages,
5166 kernelcore_remaining);
5167 required_kernelcore -= min(kernel_pages,
5168 required_kernelcore);
5169
5170 /* Continue if range is now fully accounted */
5171 if (end_pfn <= usable_startpfn) {
5172
5173 /*
5174 * Push zone_movable_pfn to the end so
5175 * that if we have to rebalance
5176 * kernelcore across nodes, we will
5177 * not double account here
5178 */
5179 zone_movable_pfn[nid] = end_pfn;
5180 continue;
5181 }
5182 start_pfn = usable_startpfn;
5183 }
5184
5185 /*
5186 * The usable PFN range for ZONE_MOVABLE is from
5187 * start_pfn->end_pfn. Calculate size_pages as the
5188 * number of pages used as kernelcore
5189 */
5190 size_pages = end_pfn - start_pfn;
5191 if (size_pages > kernelcore_remaining)
5192 size_pages = kernelcore_remaining;
5193 zone_movable_pfn[nid] = start_pfn + size_pages;
5194
5195 /*
5196 * Some kernelcore has been met, update counts and
5197 * break if the kernelcore for this node has been
5198 * satisfied
5199 */
5200 required_kernelcore -= min(required_kernelcore,
5201 size_pages);
5202 kernelcore_remaining -= size_pages;
5203 if (!kernelcore_remaining)
5204 break;
5205 }
5206 }
5207
5208 /*
5209 * If there is still required_kernelcore, we do another pass with one
5210 * less node in the count. This will push zone_movable_pfn[nid] further
5211 * along on the nodes that still have memory until kernelcore is
5212 * satisfied
5213 */
5214 usable_nodes--;
5215 if (usable_nodes && required_kernelcore > usable_nodes)
5216 goto restart;
5217
5218 out2:
5219 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5220 for (nid = 0; nid < MAX_NUMNODES; nid++)
5221 zone_movable_pfn[nid] =
5222 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5223
5224 out:
5225 /* restore the node_state */
5226 node_states[N_MEMORY] = saved_node_state;
5227 }
5228
5229 /* Any regular or high memory on that node ? */
5230 static void check_for_memory(pg_data_t *pgdat, int nid)
5231 {
5232 enum zone_type zone_type;
5233
5234 if (N_MEMORY == N_NORMAL_MEMORY)
5235 return;
5236
5237 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5238 struct zone *zone = &pgdat->node_zones[zone_type];
5239 if (populated_zone(zone)) {
5240 node_set_state(nid, N_HIGH_MEMORY);
5241 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5242 zone_type <= ZONE_NORMAL)
5243 node_set_state(nid, N_NORMAL_MEMORY);
5244 break;
5245 }
5246 }
5247 }
5248
5249 /**
5250 * free_area_init_nodes - Initialise all pg_data_t and zone data
5251 * @max_zone_pfn: an array of max PFNs for each zone
5252 *
5253 * This will call free_area_init_node() for each active node in the system.
5254 * Using the page ranges provided by add_active_range(), the size of each
5255 * zone in each node and their holes is calculated. If the maximum PFN
5256 * between two adjacent zones match, it is assumed that the zone is empty.
5257 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5258 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5259 * starts where the previous one ended. For example, ZONE_DMA32 starts
5260 * at arch_max_dma_pfn.
5261 */
5262 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5263 {
5264 unsigned long start_pfn, end_pfn;
5265 int i, nid;
5266
5267 /* Record where the zone boundaries are */
5268 memset(arch_zone_lowest_possible_pfn, 0,
5269 sizeof(arch_zone_lowest_possible_pfn));
5270 memset(arch_zone_highest_possible_pfn, 0,
5271 sizeof(arch_zone_highest_possible_pfn));
5272 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5273 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5274 for (i = 1; i < MAX_NR_ZONES; i++) {
5275 if (i == ZONE_MOVABLE)
5276 continue;
5277 arch_zone_lowest_possible_pfn[i] =
5278 arch_zone_highest_possible_pfn[i-1];
5279 arch_zone_highest_possible_pfn[i] =
5280 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5281 }
5282 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5283 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5284
5285 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5286 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5287 find_zone_movable_pfns_for_nodes();
5288
5289 /* Print out the zone ranges */
5290 printk("Zone ranges:\n");
5291 for (i = 0; i < MAX_NR_ZONES; i++) {
5292 if (i == ZONE_MOVABLE)
5293 continue;
5294 printk(KERN_CONT " %-8s ", zone_names[i]);
5295 if (arch_zone_lowest_possible_pfn[i] ==
5296 arch_zone_highest_possible_pfn[i])
5297 printk(KERN_CONT "empty\n");
5298 else
5299 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5300 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5301 (arch_zone_highest_possible_pfn[i]
5302 << PAGE_SHIFT) - 1);
5303 }
5304
5305 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5306 printk("Movable zone start for each node\n");
5307 for (i = 0; i < MAX_NUMNODES; i++) {
5308 if (zone_movable_pfn[i])
5309 printk(" Node %d: %#010lx\n", i,
5310 zone_movable_pfn[i] << PAGE_SHIFT);
5311 }
5312
5313 /* Print out the early node map */
5314 printk("Early memory node ranges\n");
5315 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5316 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5317 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5318
5319 /* Initialise every node */
5320 mminit_verify_pageflags_layout();
5321 setup_nr_node_ids();
5322 for_each_online_node(nid) {
5323 pg_data_t *pgdat = NODE_DATA(nid);
5324 free_area_init_node(nid, NULL,
5325 find_min_pfn_for_node(nid), NULL);
5326
5327 /* Any memory on that node */
5328 if (pgdat->node_present_pages)
5329 node_set_state(nid, N_MEMORY);
5330 check_for_memory(pgdat, nid);
5331 }
5332 }
5333
5334 static int __init cmdline_parse_core(char *p, unsigned long *core)
5335 {
5336 unsigned long long coremem;
5337 if (!p)
5338 return -EINVAL;
5339
5340 coremem = memparse(p, &p);
5341 *core = coremem >> PAGE_SHIFT;
5342
5343 /* Paranoid check that UL is enough for the coremem value */
5344 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5345
5346 return 0;
5347 }
5348
5349 /*
5350 * kernelcore=size sets the amount of memory for use for allocations that
5351 * cannot be reclaimed or migrated.
5352 */
5353 static int __init cmdline_parse_kernelcore(char *p)
5354 {
5355 return cmdline_parse_core(p, &required_kernelcore);
5356 }
5357
5358 /*
5359 * movablecore=size sets the amount of memory for use for allocations that
5360 * can be reclaimed or migrated.
5361 */
5362 static int __init cmdline_parse_movablecore(char *p)
5363 {
5364 return cmdline_parse_core(p, &required_movablecore);
5365 }
5366
5367 early_param("kernelcore", cmdline_parse_kernelcore);
5368 early_param("movablecore", cmdline_parse_movablecore);
5369
5370 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5371
5372 void adjust_managed_page_count(struct page *page, long count)
5373 {
5374 spin_lock(&managed_page_count_lock);
5375 page_zone(page)->managed_pages += count;
5376 totalram_pages += count;
5377 #ifdef CONFIG_HIGHMEM
5378 if (PageHighMem(page))
5379 totalhigh_pages += count;
5380 #endif
5381 spin_unlock(&managed_page_count_lock);
5382 }
5383 EXPORT_SYMBOL(adjust_managed_page_count);
5384
5385 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5386 {
5387 void *pos;
5388 unsigned long pages = 0;
5389
5390 start = (void *)PAGE_ALIGN((unsigned long)start);
5391 end = (void *)((unsigned long)end & PAGE_MASK);
5392 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5393 if ((unsigned int)poison <= 0xFF)
5394 memset(pos, poison, PAGE_SIZE);
5395 free_reserved_page(virt_to_page(pos));
5396 }
5397
5398 if (pages && s)
5399 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5400 s, pages << (PAGE_SHIFT - 10), start, end);
5401
5402 return pages;
5403 }
5404 EXPORT_SYMBOL(free_reserved_area);
5405
5406 #ifdef CONFIG_HIGHMEM
5407 void free_highmem_page(struct page *page)
5408 {
5409 __free_reserved_page(page);
5410 totalram_pages++;
5411 page_zone(page)->managed_pages++;
5412 totalhigh_pages++;
5413 }
5414 #endif
5415
5416
5417 void __init mem_init_print_info(const char *str)
5418 {
5419 unsigned long physpages, codesize, datasize, rosize, bss_size;
5420 unsigned long init_code_size, init_data_size;
5421
5422 physpages = get_num_physpages();
5423 codesize = _etext - _stext;
5424 datasize = _edata - _sdata;
5425 rosize = __end_rodata - __start_rodata;
5426 bss_size = __bss_stop - __bss_start;
5427 init_data_size = __init_end - __init_begin;
5428 init_code_size = _einittext - _sinittext;
5429
5430 /*
5431 * Detect special cases and adjust section sizes accordingly:
5432 * 1) .init.* may be embedded into .data sections
5433 * 2) .init.text.* may be out of [__init_begin, __init_end],
5434 * please refer to arch/tile/kernel/vmlinux.lds.S.
5435 * 3) .rodata.* may be embedded into .text or .data sections.
5436 */
5437 #define adj_init_size(start, end, size, pos, adj) \
5438 do { \
5439 if (start <= pos && pos < end && size > adj) \
5440 size -= adj; \
5441 } while (0)
5442
5443 adj_init_size(__init_begin, __init_end, init_data_size,
5444 _sinittext, init_code_size);
5445 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5446 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5447 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5448 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5449
5450 #undef adj_init_size
5451
5452 printk("Memory: %luK/%luK available "
5453 "(%luK kernel code, %luK rwdata, %luK rodata, "
5454 "%luK init, %luK bss, %luK reserved"
5455 #ifdef CONFIG_HIGHMEM
5456 ", %luK highmem"
5457 #endif
5458 "%s%s)\n",
5459 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5460 codesize >> 10, datasize >> 10, rosize >> 10,
5461 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5462 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5463 #ifdef CONFIG_HIGHMEM
5464 totalhigh_pages << (PAGE_SHIFT-10),
5465 #endif
5466 str ? ", " : "", str ? str : "");
5467 }
5468
5469 /**
5470 * set_dma_reserve - set the specified number of pages reserved in the first zone
5471 * @new_dma_reserve: The number of pages to mark reserved
5472 *
5473 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5474 * In the DMA zone, a significant percentage may be consumed by kernel image
5475 * and other unfreeable allocations which can skew the watermarks badly. This
5476 * function may optionally be used to account for unfreeable pages in the
5477 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5478 * smaller per-cpu batchsize.
5479 */
5480 void __init set_dma_reserve(unsigned long new_dma_reserve)
5481 {
5482 dma_reserve = new_dma_reserve;
5483 }
5484
5485 void __init free_area_init(unsigned long *zones_size)
5486 {
5487 free_area_init_node(0, zones_size,
5488 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5489 }
5490
5491 static int page_alloc_cpu_notify(struct notifier_block *self,
5492 unsigned long action, void *hcpu)
5493 {
5494 int cpu = (unsigned long)hcpu;
5495
5496 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5497 lru_add_drain_cpu(cpu);
5498 drain_pages(cpu);
5499
5500 /*
5501 * Spill the event counters of the dead processor
5502 * into the current processors event counters.
5503 * This artificially elevates the count of the current
5504 * processor.
5505 */
5506 vm_events_fold_cpu(cpu);
5507
5508 /*
5509 * Zero the differential counters of the dead processor
5510 * so that the vm statistics are consistent.
5511 *
5512 * This is only okay since the processor is dead and cannot
5513 * race with what we are doing.
5514 */
5515 cpu_vm_stats_fold(cpu);
5516 }
5517 return NOTIFY_OK;
5518 }
5519
5520 void __init page_alloc_init(void)
5521 {
5522 hotcpu_notifier(page_alloc_cpu_notify, 0);
5523 }
5524
5525 /*
5526 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5527 * or min_free_kbytes changes.
5528 */
5529 static void calculate_totalreserve_pages(void)
5530 {
5531 struct pglist_data *pgdat;
5532 unsigned long reserve_pages = 0;
5533 enum zone_type i, j;
5534
5535 for_each_online_pgdat(pgdat) {
5536 for (i = 0; i < MAX_NR_ZONES; i++) {
5537 struct zone *zone = pgdat->node_zones + i;
5538 unsigned long max = 0;
5539
5540 /* Find valid and maximum lowmem_reserve in the zone */
5541 for (j = i; j < MAX_NR_ZONES; j++) {
5542 if (zone->lowmem_reserve[j] > max)
5543 max = zone->lowmem_reserve[j];
5544 }
5545
5546 /* we treat the high watermark as reserved pages. */
5547 max += high_wmark_pages(zone);
5548
5549 if (max > zone->managed_pages)
5550 max = zone->managed_pages;
5551 reserve_pages += max;
5552 /*
5553 * Lowmem reserves are not available to
5554 * GFP_HIGHUSER page cache allocations and
5555 * kswapd tries to balance zones to their high
5556 * watermark. As a result, neither should be
5557 * regarded as dirtyable memory, to prevent a
5558 * situation where reclaim has to clean pages
5559 * in order to balance the zones.
5560 */
5561 zone->dirty_balance_reserve = max;
5562 }
5563 }
5564 dirty_balance_reserve = reserve_pages;
5565 totalreserve_pages = reserve_pages;
5566 }
5567
5568 /*
5569 * setup_per_zone_lowmem_reserve - called whenever
5570 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5571 * has a correct pages reserved value, so an adequate number of
5572 * pages are left in the zone after a successful __alloc_pages().
5573 */
5574 static void setup_per_zone_lowmem_reserve(void)
5575 {
5576 struct pglist_data *pgdat;
5577 enum zone_type j, idx;
5578
5579 for_each_online_pgdat(pgdat) {
5580 for (j = 0; j < MAX_NR_ZONES; j++) {
5581 struct zone *zone = pgdat->node_zones + j;
5582 unsigned long managed_pages = zone->managed_pages;
5583
5584 zone->lowmem_reserve[j] = 0;
5585
5586 idx = j;
5587 while (idx) {
5588 struct zone *lower_zone;
5589
5590 idx--;
5591
5592 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5593 sysctl_lowmem_reserve_ratio[idx] = 1;
5594
5595 lower_zone = pgdat->node_zones + idx;
5596 lower_zone->lowmem_reserve[j] = managed_pages /
5597 sysctl_lowmem_reserve_ratio[idx];
5598 managed_pages += lower_zone->managed_pages;
5599 }
5600 }
5601 }
5602
5603 /* update totalreserve_pages */
5604 calculate_totalreserve_pages();
5605 }
5606
5607 static void __setup_per_zone_wmarks(void)
5608 {
5609 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5610 unsigned long lowmem_pages = 0;
5611 struct zone *zone;
5612 unsigned long flags;
5613
5614 /* Calculate total number of !ZONE_HIGHMEM pages */
5615 for_each_zone(zone) {
5616 if (!is_highmem(zone))
5617 lowmem_pages += zone->managed_pages;
5618 }
5619
5620 for_each_zone(zone) {
5621 u64 tmp;
5622
5623 spin_lock_irqsave(&zone->lock, flags);
5624 tmp = (u64)pages_min * zone->managed_pages;
5625 do_div(tmp, lowmem_pages);
5626 if (is_highmem(zone)) {
5627 /*
5628 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5629 * need highmem pages, so cap pages_min to a small
5630 * value here.
5631 *
5632 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5633 * deltas controls asynch page reclaim, and so should
5634 * not be capped for highmem.
5635 */
5636 unsigned long min_pages;
5637
5638 min_pages = zone->managed_pages / 1024;
5639 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5640 zone->watermark[WMARK_MIN] = min_pages;
5641 } else {
5642 /*
5643 * If it's a lowmem zone, reserve a number of pages
5644 * proportionate to the zone's size.
5645 */
5646 zone->watermark[WMARK_MIN] = tmp;
5647 }
5648
5649 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5650 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5651
5652 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5653 high_wmark_pages(zone) -
5654 low_wmark_pages(zone) -
5655 zone_page_state(zone, NR_ALLOC_BATCH));
5656
5657 setup_zone_migrate_reserve(zone);
5658 spin_unlock_irqrestore(&zone->lock, flags);
5659 }
5660
5661 /* update totalreserve_pages */
5662 calculate_totalreserve_pages();
5663 }
5664
5665 /**
5666 * setup_per_zone_wmarks - called when min_free_kbytes changes
5667 * or when memory is hot-{added|removed}
5668 *
5669 * Ensures that the watermark[min,low,high] values for each zone are set
5670 * correctly with respect to min_free_kbytes.
5671 */
5672 void setup_per_zone_wmarks(void)
5673 {
5674 mutex_lock(&zonelists_mutex);
5675 __setup_per_zone_wmarks();
5676 mutex_unlock(&zonelists_mutex);
5677 }
5678
5679 /*
5680 * The inactive anon list should be small enough that the VM never has to
5681 * do too much work, but large enough that each inactive page has a chance
5682 * to be referenced again before it is swapped out.
5683 *
5684 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5685 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5686 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5687 * the anonymous pages are kept on the inactive list.
5688 *
5689 * total target max
5690 * memory ratio inactive anon
5691 * -------------------------------------
5692 * 10MB 1 5MB
5693 * 100MB 1 50MB
5694 * 1GB 3 250MB
5695 * 10GB 10 0.9GB
5696 * 100GB 31 3GB
5697 * 1TB 101 10GB
5698 * 10TB 320 32GB
5699 */
5700 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5701 {
5702 unsigned int gb, ratio;
5703
5704 /* Zone size in gigabytes */
5705 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5706 if (gb)
5707 ratio = int_sqrt(10 * gb);
5708 else
5709 ratio = 1;
5710
5711 zone->inactive_ratio = ratio;
5712 }
5713
5714 static void __meminit setup_per_zone_inactive_ratio(void)
5715 {
5716 struct zone *zone;
5717
5718 for_each_zone(zone)
5719 calculate_zone_inactive_ratio(zone);
5720 }
5721
5722 /*
5723 * Initialise min_free_kbytes.
5724 *
5725 * For small machines we want it small (128k min). For large machines
5726 * we want it large (64MB max). But it is not linear, because network
5727 * bandwidth does not increase linearly with machine size. We use
5728 *
5729 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5730 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5731 *
5732 * which yields
5733 *
5734 * 16MB: 512k
5735 * 32MB: 724k
5736 * 64MB: 1024k
5737 * 128MB: 1448k
5738 * 256MB: 2048k
5739 * 512MB: 2896k
5740 * 1024MB: 4096k
5741 * 2048MB: 5792k
5742 * 4096MB: 8192k
5743 * 8192MB: 11584k
5744 * 16384MB: 16384k
5745 */
5746 int __meminit init_per_zone_wmark_min(void)
5747 {
5748 unsigned long lowmem_kbytes;
5749 int new_min_free_kbytes;
5750
5751 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5752 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5753
5754 if (new_min_free_kbytes > user_min_free_kbytes) {
5755 min_free_kbytes = new_min_free_kbytes;
5756 if (min_free_kbytes < 128)
5757 min_free_kbytes = 128;
5758 if (min_free_kbytes > 65536)
5759 min_free_kbytes = 65536;
5760 } else {
5761 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5762 new_min_free_kbytes, user_min_free_kbytes);
5763 }
5764 setup_per_zone_wmarks();
5765 refresh_zone_stat_thresholds();
5766 setup_per_zone_lowmem_reserve();
5767 setup_per_zone_inactive_ratio();
5768 return 0;
5769 }
5770 module_init(init_per_zone_wmark_min)
5771
5772 /*
5773 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5774 * that we can call two helper functions whenever min_free_kbytes
5775 * changes.
5776 */
5777 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5778 void __user *buffer, size_t *length, loff_t *ppos)
5779 {
5780 int rc;
5781
5782 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5783 if (rc)
5784 return rc;
5785
5786 if (write) {
5787 user_min_free_kbytes = min_free_kbytes;
5788 setup_per_zone_wmarks();
5789 }
5790 return 0;
5791 }
5792
5793 #ifdef CONFIG_NUMA
5794 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5795 void __user *buffer, size_t *length, loff_t *ppos)
5796 {
5797 struct zone *zone;
5798 int rc;
5799
5800 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5801 if (rc)
5802 return rc;
5803
5804 for_each_zone(zone)
5805 zone->min_unmapped_pages = (zone->managed_pages *
5806 sysctl_min_unmapped_ratio) / 100;
5807 return 0;
5808 }
5809
5810 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5811 void __user *buffer, size_t *length, loff_t *ppos)
5812 {
5813 struct zone *zone;
5814 int rc;
5815
5816 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5817 if (rc)
5818 return rc;
5819
5820 for_each_zone(zone)
5821 zone->min_slab_pages = (zone->managed_pages *
5822 sysctl_min_slab_ratio) / 100;
5823 return 0;
5824 }
5825 #endif
5826
5827 /*
5828 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5829 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5830 * whenever sysctl_lowmem_reserve_ratio changes.
5831 *
5832 * The reserve ratio obviously has absolutely no relation with the
5833 * minimum watermarks. The lowmem reserve ratio can only make sense
5834 * if in function of the boot time zone sizes.
5835 */
5836 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5837 void __user *buffer, size_t *length, loff_t *ppos)
5838 {
5839 proc_dointvec_minmax(table, write, buffer, length, ppos);
5840 setup_per_zone_lowmem_reserve();
5841 return 0;
5842 }
5843
5844 /*
5845 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5846 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5847 * pagelist can have before it gets flushed back to buddy allocator.
5848 */
5849 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5850 void __user *buffer, size_t *length, loff_t *ppos)
5851 {
5852 struct zone *zone;
5853 unsigned int cpu;
5854 int ret;
5855
5856 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5857 if (!write || (ret < 0))
5858 return ret;
5859
5860 mutex_lock(&pcp_batch_high_lock);
5861 for_each_populated_zone(zone) {
5862 unsigned long high;
5863 high = zone->managed_pages / percpu_pagelist_fraction;
5864 for_each_possible_cpu(cpu)
5865 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5866 high);
5867 }
5868 mutex_unlock(&pcp_batch_high_lock);
5869 return 0;
5870 }
5871
5872 int hashdist = HASHDIST_DEFAULT;
5873
5874 #ifdef CONFIG_NUMA
5875 static int __init set_hashdist(char *str)
5876 {
5877 if (!str)
5878 return 0;
5879 hashdist = simple_strtoul(str, &str, 0);
5880 return 1;
5881 }
5882 __setup("hashdist=", set_hashdist);
5883 #endif
5884
5885 /*
5886 * allocate a large system hash table from bootmem
5887 * - it is assumed that the hash table must contain an exact power-of-2
5888 * quantity of entries
5889 * - limit is the number of hash buckets, not the total allocation size
5890 */
5891 void *__init alloc_large_system_hash(const char *tablename,
5892 unsigned long bucketsize,
5893 unsigned long numentries,
5894 int scale,
5895 int flags,
5896 unsigned int *_hash_shift,
5897 unsigned int *_hash_mask,
5898 unsigned long low_limit,
5899 unsigned long high_limit)
5900 {
5901 unsigned long long max = high_limit;
5902 unsigned long log2qty, size;
5903 void *table = NULL;
5904
5905 /* allow the kernel cmdline to have a say */
5906 if (!numentries) {
5907 /* round applicable memory size up to nearest megabyte */
5908 numentries = nr_kernel_pages;
5909
5910 /* It isn't necessary when PAGE_SIZE >= 1MB */
5911 if (PAGE_SHIFT < 20)
5912 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5913
5914 /* limit to 1 bucket per 2^scale bytes of low memory */
5915 if (scale > PAGE_SHIFT)
5916 numentries >>= (scale - PAGE_SHIFT);
5917 else
5918 numentries <<= (PAGE_SHIFT - scale);
5919
5920 /* Make sure we've got at least a 0-order allocation.. */
5921 if (unlikely(flags & HASH_SMALL)) {
5922 /* Makes no sense without HASH_EARLY */
5923 WARN_ON(!(flags & HASH_EARLY));
5924 if (!(numentries >> *_hash_shift)) {
5925 numentries = 1UL << *_hash_shift;
5926 BUG_ON(!numentries);
5927 }
5928 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5929 numentries = PAGE_SIZE / bucketsize;
5930 }
5931 numentries = roundup_pow_of_two(numentries);
5932
5933 /* limit allocation size to 1/16 total memory by default */
5934 if (max == 0) {
5935 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5936 do_div(max, bucketsize);
5937 }
5938 max = min(max, 0x80000000ULL);
5939
5940 if (numentries < low_limit)
5941 numentries = low_limit;
5942 if (numentries > max)
5943 numentries = max;
5944
5945 log2qty = ilog2(numentries);
5946
5947 do {
5948 size = bucketsize << log2qty;
5949 if (flags & HASH_EARLY)
5950 table = memblock_virt_alloc_nopanic(size, 0);
5951 else if (hashdist)
5952 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5953 else {
5954 /*
5955 * If bucketsize is not a power-of-two, we may free
5956 * some pages at the end of hash table which
5957 * alloc_pages_exact() automatically does
5958 */
5959 if (get_order(size) < MAX_ORDER) {
5960 table = alloc_pages_exact(size, GFP_ATOMIC);
5961 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5962 }
5963 }
5964 } while (!table && size > PAGE_SIZE && --log2qty);
5965
5966 if (!table)
5967 panic("Failed to allocate %s hash table\n", tablename);
5968
5969 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5970 tablename,
5971 (1UL << log2qty),
5972 ilog2(size) - PAGE_SHIFT,
5973 size);
5974
5975 if (_hash_shift)
5976 *_hash_shift = log2qty;
5977 if (_hash_mask)
5978 *_hash_mask = (1 << log2qty) - 1;
5979
5980 return table;
5981 }
5982
5983 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5984 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5985 unsigned long pfn)
5986 {
5987 #ifdef CONFIG_SPARSEMEM
5988 return __pfn_to_section(pfn)->pageblock_flags;
5989 #else
5990 return zone->pageblock_flags;
5991 #endif /* CONFIG_SPARSEMEM */
5992 }
5993
5994 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5995 {
5996 #ifdef CONFIG_SPARSEMEM
5997 pfn &= (PAGES_PER_SECTION-1);
5998 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5999 #else
6000 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6001 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6002 #endif /* CONFIG_SPARSEMEM */
6003 }
6004
6005 /**
6006 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
6007 * @page: The page within the block of interest
6008 * @start_bitidx: The first bit of interest to retrieve
6009 * @end_bitidx: The last bit of interest
6010 * returns pageblock_bits flags
6011 */
6012 unsigned long get_pageblock_flags_group(struct page *page,
6013 int start_bitidx, int end_bitidx)
6014 {
6015 struct zone *zone;
6016 unsigned long *bitmap;
6017 unsigned long pfn, bitidx;
6018 unsigned long flags = 0;
6019 unsigned long value = 1;
6020
6021 zone = page_zone(page);
6022 pfn = page_to_pfn(page);
6023 bitmap = get_pageblock_bitmap(zone, pfn);
6024 bitidx = pfn_to_bitidx(zone, pfn);
6025
6026 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6027 if (test_bit(bitidx + start_bitidx, bitmap))
6028 flags |= value;
6029
6030 return flags;
6031 }
6032
6033 /**
6034 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
6035 * @page: The page within the block of interest
6036 * @start_bitidx: The first bit of interest
6037 * @end_bitidx: The last bit of interest
6038 * @flags: The flags to set
6039 */
6040 void set_pageblock_flags_group(struct page *page, unsigned long flags,
6041 int start_bitidx, int end_bitidx)
6042 {
6043 struct zone *zone;
6044 unsigned long *bitmap;
6045 unsigned long pfn, bitidx;
6046 unsigned long value = 1;
6047
6048 zone = page_zone(page);
6049 pfn = page_to_pfn(page);
6050 bitmap = get_pageblock_bitmap(zone, pfn);
6051 bitidx = pfn_to_bitidx(zone, pfn);
6052 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6053
6054 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6055 if (flags & value)
6056 __set_bit(bitidx + start_bitidx, bitmap);
6057 else
6058 __clear_bit(bitidx + start_bitidx, bitmap);
6059 }
6060
6061 /*
6062 * This function checks whether pageblock includes unmovable pages or not.
6063 * If @count is not zero, it is okay to include less @count unmovable pages
6064 *
6065 * PageLRU check without isolation or lru_lock could race so that
6066 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6067 * expect this function should be exact.
6068 */
6069 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6070 bool skip_hwpoisoned_pages)
6071 {
6072 unsigned long pfn, iter, found;
6073 int mt;
6074
6075 /*
6076 * For avoiding noise data, lru_add_drain_all() should be called
6077 * If ZONE_MOVABLE, the zone never contains unmovable pages
6078 */
6079 if (zone_idx(zone) == ZONE_MOVABLE)
6080 return false;
6081 mt = get_pageblock_migratetype(page);
6082 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6083 return false;
6084
6085 pfn = page_to_pfn(page);
6086 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6087 unsigned long check = pfn + iter;
6088
6089 if (!pfn_valid_within(check))
6090 continue;
6091
6092 page = pfn_to_page(check);
6093
6094 /*
6095 * Hugepages are not in LRU lists, but they're movable.
6096 * We need not scan over tail pages bacause we don't
6097 * handle each tail page individually in migration.
6098 */
6099 if (PageHuge(page)) {
6100 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6101 continue;
6102 }
6103
6104 /*
6105 * We can't use page_count without pin a page
6106 * because another CPU can free compound page.
6107 * This check already skips compound tails of THP
6108 * because their page->_count is zero at all time.
6109 */
6110 if (!atomic_read(&page->_count)) {
6111 if (PageBuddy(page))
6112 iter += (1 << page_order(page)) - 1;
6113 continue;
6114 }
6115
6116 /*
6117 * The HWPoisoned page may be not in buddy system, and
6118 * page_count() is not 0.
6119 */
6120 if (skip_hwpoisoned_pages && PageHWPoison(page))
6121 continue;
6122
6123 if (!PageLRU(page))
6124 found++;
6125 /*
6126 * If there are RECLAIMABLE pages, we need to check it.
6127 * But now, memory offline itself doesn't call shrink_slab()
6128 * and it still to be fixed.
6129 */
6130 /*
6131 * If the page is not RAM, page_count()should be 0.
6132 * we don't need more check. This is an _used_ not-movable page.
6133 *
6134 * The problematic thing here is PG_reserved pages. PG_reserved
6135 * is set to both of a memory hole page and a _used_ kernel
6136 * page at boot.
6137 */
6138 if (found > count)
6139 return true;
6140 }
6141 return false;
6142 }
6143
6144 bool is_pageblock_removable_nolock(struct page *page)
6145 {
6146 struct zone *zone;
6147 unsigned long pfn;
6148
6149 /*
6150 * We have to be careful here because we are iterating over memory
6151 * sections which are not zone aware so we might end up outside of
6152 * the zone but still within the section.
6153 * We have to take care about the node as well. If the node is offline
6154 * its NODE_DATA will be NULL - see page_zone.
6155 */
6156 if (!node_online(page_to_nid(page)))
6157 return false;
6158
6159 zone = page_zone(page);
6160 pfn = page_to_pfn(page);
6161 if (!zone_spans_pfn(zone, pfn))
6162 return false;
6163
6164 return !has_unmovable_pages(zone, page, 0, true);
6165 }
6166
6167 #ifdef CONFIG_CMA
6168
6169 static unsigned long pfn_max_align_down(unsigned long pfn)
6170 {
6171 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6172 pageblock_nr_pages) - 1);
6173 }
6174
6175 static unsigned long pfn_max_align_up(unsigned long pfn)
6176 {
6177 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6178 pageblock_nr_pages));
6179 }
6180
6181 /* [start, end) must belong to a single zone. */
6182 static int __alloc_contig_migrate_range(struct compact_control *cc,
6183 unsigned long start, unsigned long end)
6184 {
6185 /* This function is based on compact_zone() from compaction.c. */
6186 unsigned long nr_reclaimed;
6187 unsigned long pfn = start;
6188 unsigned int tries = 0;
6189 int ret = 0;
6190
6191 migrate_prep();
6192
6193 while (pfn < end || !list_empty(&cc->migratepages)) {
6194 if (fatal_signal_pending(current)) {
6195 ret = -EINTR;
6196 break;
6197 }
6198
6199 if (list_empty(&cc->migratepages)) {
6200 cc->nr_migratepages = 0;
6201 pfn = isolate_migratepages_range(cc->zone, cc,
6202 pfn, end, true);
6203 if (!pfn) {
6204 ret = -EINTR;
6205 break;
6206 }
6207 tries = 0;
6208 } else if (++tries == 5) {
6209 ret = ret < 0 ? ret : -EBUSY;
6210 break;
6211 }
6212
6213 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6214 &cc->migratepages);
6215 cc->nr_migratepages -= nr_reclaimed;
6216
6217 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6218 0, MIGRATE_SYNC, MR_CMA);
6219 }
6220 if (ret < 0) {
6221 putback_movable_pages(&cc->migratepages);
6222 return ret;
6223 }
6224 return 0;
6225 }
6226
6227 /**
6228 * alloc_contig_range() -- tries to allocate given range of pages
6229 * @start: start PFN to allocate
6230 * @end: one-past-the-last PFN to allocate
6231 * @migratetype: migratetype of the underlaying pageblocks (either
6232 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6233 * in range must have the same migratetype and it must
6234 * be either of the two.
6235 *
6236 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6237 * aligned, however it's the caller's responsibility to guarantee that
6238 * we are the only thread that changes migrate type of pageblocks the
6239 * pages fall in.
6240 *
6241 * The PFN range must belong to a single zone.
6242 *
6243 * Returns zero on success or negative error code. On success all
6244 * pages which PFN is in [start, end) are allocated for the caller and
6245 * need to be freed with free_contig_range().
6246 */
6247 int alloc_contig_range(unsigned long start, unsigned long end,
6248 unsigned migratetype)
6249 {
6250 unsigned long outer_start, outer_end;
6251 int ret = 0, order;
6252
6253 struct compact_control cc = {
6254 .nr_migratepages = 0,
6255 .order = -1,
6256 .zone = page_zone(pfn_to_page(start)),
6257 .sync = true,
6258 .ignore_skip_hint = true,
6259 };
6260 INIT_LIST_HEAD(&cc.migratepages);
6261
6262 /*
6263 * What we do here is we mark all pageblocks in range as
6264 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6265 * have different sizes, and due to the way page allocator
6266 * work, we align the range to biggest of the two pages so
6267 * that page allocator won't try to merge buddies from
6268 * different pageblocks and change MIGRATE_ISOLATE to some
6269 * other migration type.
6270 *
6271 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6272 * migrate the pages from an unaligned range (ie. pages that
6273 * we are interested in). This will put all the pages in
6274 * range back to page allocator as MIGRATE_ISOLATE.
6275 *
6276 * When this is done, we take the pages in range from page
6277 * allocator removing them from the buddy system. This way
6278 * page allocator will never consider using them.
6279 *
6280 * This lets us mark the pageblocks back as
6281 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6282 * aligned range but not in the unaligned, original range are
6283 * put back to page allocator so that buddy can use them.
6284 */
6285
6286 ret = start_isolate_page_range(pfn_max_align_down(start),
6287 pfn_max_align_up(end), migratetype,
6288 false);
6289 if (ret)
6290 return ret;
6291
6292 ret = __alloc_contig_migrate_range(&cc, start, end);
6293 if (ret)
6294 goto done;
6295
6296 /*
6297 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6298 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6299 * more, all pages in [start, end) are free in page allocator.
6300 * What we are going to do is to allocate all pages from
6301 * [start, end) (that is remove them from page allocator).
6302 *
6303 * The only problem is that pages at the beginning and at the
6304 * end of interesting range may be not aligned with pages that
6305 * page allocator holds, ie. they can be part of higher order
6306 * pages. Because of this, we reserve the bigger range and
6307 * once this is done free the pages we are not interested in.
6308 *
6309 * We don't have to hold zone->lock here because the pages are
6310 * isolated thus they won't get removed from buddy.
6311 */
6312
6313 lru_add_drain_all();
6314 drain_all_pages();
6315
6316 order = 0;
6317 outer_start = start;
6318 while (!PageBuddy(pfn_to_page(outer_start))) {
6319 if (++order >= MAX_ORDER) {
6320 ret = -EBUSY;
6321 goto done;
6322 }
6323 outer_start &= ~0UL << order;
6324 }
6325
6326 /* Make sure the range is really isolated. */
6327 if (test_pages_isolated(outer_start, end, false)) {
6328 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6329 outer_start, end);
6330 ret = -EBUSY;
6331 goto done;
6332 }
6333
6334
6335 /* Grab isolated pages from freelists. */
6336 outer_end = isolate_freepages_range(&cc, outer_start, end);
6337 if (!outer_end) {
6338 ret = -EBUSY;
6339 goto done;
6340 }
6341
6342 /* Free head and tail (if any) */
6343 if (start != outer_start)
6344 free_contig_range(outer_start, start - outer_start);
6345 if (end != outer_end)
6346 free_contig_range(end, outer_end - end);
6347
6348 done:
6349 undo_isolate_page_range(pfn_max_align_down(start),
6350 pfn_max_align_up(end), migratetype);
6351 return ret;
6352 }
6353
6354 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6355 {
6356 unsigned int count = 0;
6357
6358 for (; nr_pages--; pfn++) {
6359 struct page *page = pfn_to_page(pfn);
6360
6361 count += page_count(page) != 1;
6362 __free_page(page);
6363 }
6364 WARN(count != 0, "%d pages are still in use!\n", count);
6365 }
6366 #endif
6367
6368 #ifdef CONFIG_MEMORY_HOTPLUG
6369 /*
6370 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6371 * page high values need to be recalulated.
6372 */
6373 void __meminit zone_pcp_update(struct zone *zone)
6374 {
6375 unsigned cpu;
6376 mutex_lock(&pcp_batch_high_lock);
6377 for_each_possible_cpu(cpu)
6378 pageset_set_high_and_batch(zone,
6379 per_cpu_ptr(zone->pageset, cpu));
6380 mutex_unlock(&pcp_batch_high_lock);
6381 }
6382 #endif
6383
6384 void zone_pcp_reset(struct zone *zone)
6385 {
6386 unsigned long flags;
6387 int cpu;
6388 struct per_cpu_pageset *pset;
6389
6390 /* avoid races with drain_pages() */
6391 local_irq_save(flags);
6392 if (zone->pageset != &boot_pageset) {
6393 for_each_online_cpu(cpu) {
6394 pset = per_cpu_ptr(zone->pageset, cpu);
6395 drain_zonestat(zone, pset);
6396 }
6397 free_percpu(zone->pageset);
6398 zone->pageset = &boot_pageset;
6399 }
6400 local_irq_restore(flags);
6401 }
6402
6403 #ifdef CONFIG_MEMORY_HOTREMOVE
6404 /*
6405 * All pages in the range must be isolated before calling this.
6406 */
6407 void
6408 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6409 {
6410 struct page *page;
6411 struct zone *zone;
6412 int order, i;
6413 unsigned long pfn;
6414 unsigned long flags;
6415 /* find the first valid pfn */
6416 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6417 if (pfn_valid(pfn))
6418 break;
6419 if (pfn == end_pfn)
6420 return;
6421 zone = page_zone(pfn_to_page(pfn));
6422 spin_lock_irqsave(&zone->lock, flags);
6423 pfn = start_pfn;
6424 while (pfn < end_pfn) {
6425 if (!pfn_valid(pfn)) {
6426 pfn++;
6427 continue;
6428 }
6429 page = pfn_to_page(pfn);
6430 /*
6431 * The HWPoisoned page may be not in buddy system, and
6432 * page_count() is not 0.
6433 */
6434 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6435 pfn++;
6436 SetPageReserved(page);
6437 continue;
6438 }
6439
6440 BUG_ON(page_count(page));
6441 BUG_ON(!PageBuddy(page));
6442 order = page_order(page);
6443 #ifdef CONFIG_DEBUG_VM
6444 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6445 pfn, 1 << order, end_pfn);
6446 #endif
6447 list_del(&page->lru);
6448 rmv_page_order(page);
6449 zone->free_area[order].nr_free--;
6450 for (i = 0; i < (1 << order); i++)
6451 SetPageReserved((page+i));
6452 pfn += (1 << order);
6453 }
6454 spin_unlock_irqrestore(&zone->lock, flags);
6455 }
6456 #endif
6457
6458 #ifdef CONFIG_MEMORY_FAILURE
6459 bool is_free_buddy_page(struct page *page)
6460 {
6461 struct zone *zone = page_zone(page);
6462 unsigned long pfn = page_to_pfn(page);
6463 unsigned long flags;
6464 int order;
6465
6466 spin_lock_irqsave(&zone->lock, flags);
6467 for (order = 0; order < MAX_ORDER; order++) {
6468 struct page *page_head = page - (pfn & ((1 << order) - 1));
6469
6470 if (PageBuddy(page_head) && page_order(page_head) >= order)
6471 break;
6472 }
6473 spin_unlock_irqrestore(&zone->lock, flags);
6474
6475 return order < MAX_ORDER;
6476 }
6477 #endif
6478
6479 static const struct trace_print_flags pageflag_names[] = {
6480 {1UL << PG_locked, "locked" },
6481 {1UL << PG_error, "error" },
6482 {1UL << PG_referenced, "referenced" },
6483 {1UL << PG_uptodate, "uptodate" },
6484 {1UL << PG_dirty, "dirty" },
6485 {1UL << PG_lru, "lru" },
6486 {1UL << PG_active, "active" },
6487 {1UL << PG_slab, "slab" },
6488 {1UL << PG_owner_priv_1, "owner_priv_1" },
6489 {1UL << PG_arch_1, "arch_1" },
6490 {1UL << PG_reserved, "reserved" },
6491 {1UL << PG_private, "private" },
6492 {1UL << PG_private_2, "private_2" },
6493 {1UL << PG_writeback, "writeback" },
6494 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6495 {1UL << PG_head, "head" },
6496 {1UL << PG_tail, "tail" },
6497 #else
6498 {1UL << PG_compound, "compound" },
6499 #endif
6500 {1UL << PG_swapcache, "swapcache" },
6501 {1UL << PG_mappedtodisk, "mappedtodisk" },
6502 {1UL << PG_reclaim, "reclaim" },
6503 {1UL << PG_swapbacked, "swapbacked" },
6504 {1UL << PG_unevictable, "unevictable" },
6505 #ifdef CONFIG_MMU
6506 {1UL << PG_mlocked, "mlocked" },
6507 #endif
6508 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6509 {1UL << PG_uncached, "uncached" },
6510 #endif
6511 #ifdef CONFIG_MEMORY_FAILURE
6512 {1UL << PG_hwpoison, "hwpoison" },
6513 #endif
6514 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6515 {1UL << PG_compound_lock, "compound_lock" },
6516 #endif
6517 };
6518
6519 static void dump_page_flags(unsigned long flags)
6520 {
6521 const char *delim = "";
6522 unsigned long mask;
6523 int i;
6524
6525 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6526
6527 printk(KERN_ALERT "page flags: %#lx(", flags);
6528
6529 /* remove zone id */
6530 flags &= (1UL << NR_PAGEFLAGS) - 1;
6531
6532 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6533
6534 mask = pageflag_names[i].mask;
6535 if ((flags & mask) != mask)
6536 continue;
6537
6538 flags &= ~mask;
6539 printk("%s%s", delim, pageflag_names[i].name);
6540 delim = "|";
6541 }
6542
6543 /* check for left over flags */
6544 if (flags)
6545 printk("%s%#lx", delim, flags);
6546
6547 printk(")\n");
6548 }
6549
6550 void dump_page_badflags(struct page *page, const char *reason,
6551 unsigned long badflags)
6552 {
6553 printk(KERN_ALERT
6554 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6555 page, atomic_read(&page->_count), page_mapcount(page),
6556 page->mapping, page->index);
6557 dump_page_flags(page->flags);
6558 if (reason)
6559 pr_alert("page dumped because: %s\n", reason);
6560 if (page->flags & badflags) {
6561 pr_alert("bad because of flags:\n");
6562 dump_page_flags(page->flags & badflags);
6563 }
6564 mem_cgroup_print_bad_page(page);
6565 }
6566
6567 void dump_page(struct page *page, const char *reason)
6568 {
6569 dump_page_badflags(page, reason, 0);
6570 }
6571 EXPORT_SYMBOL(dump_page);