]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
mm: use phys_addr_t for reserve_bootmem_region() arguments
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121
122 /*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 return page->index;
133 }
134
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 page->index = migratetype;
138 }
139
140 #ifdef CONFIG_PM_SLEEP
141 /*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
149
150 static gfp_t saved_gfp_mask;
151
152 void pm_restore_gfp_mask(void)
153 {
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
159 }
160
161 void pm_restrict_gfp_mask(void)
162 {
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168
169 bool pm_suspended_storage(void)
170 {
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180
181 static void __free_pages_ok(struct page *page, unsigned int order);
182
183 /*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
193 */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 32,
203 #endif
204 32,
205 };
206
207 EXPORT_SYMBOL(totalram_pages);
208
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
224 };
225
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231 #ifdef CONFIG_CMA
232 "CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236 #endif
237 };
238
239 compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247 #endif
248 };
249
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277
278 int page_group_by_mobility_disabled __read_mostly;
279
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 return true;
291
292 return false;
293 }
294
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301 }
302
303 /*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310 {
311 unsigned long max_initialise;
312
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
322
323 (*nr_initialised)++;
324 if ((*nr_initialised > max_initialise) &&
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 return false;
340 }
341
342 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343 {
344 return false;
345 }
346
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350 {
351 return true;
352 }
353 #endif
354
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358 {
359 #ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
364 }
365
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367 {
368 #ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
375 }
376
377 /**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390 {
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403 }
404
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408 {
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410 }
411
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413 {
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415 }
416
417 /**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429 {
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454 }
455
456 void set_pageblock_migratetype(struct page *page, int migratetype)
457 {
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
460 migratetype = MIGRATE_UNMOVABLE;
461
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464 }
465
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
468 {
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
472 unsigned long sp, start_pfn;
473
474 do {
475 seq = zone_span_seqbegin(zone);
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
478 if (!zone_spans_pfn(zone, pfn))
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
482 if (ret)
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
486
487 return ret;
488 }
489
490 static int page_is_consistent(struct zone *zone, struct page *page)
491 {
492 if (!pfn_valid_within(page_to_pfn(page)))
493 return 0;
494 if (zone != page_zone(page))
495 return 0;
496
497 return 1;
498 }
499 /*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502 static int bad_range(struct zone *zone, struct page *page)
503 {
504 if (page_outside_zone_boundaries(zone, page))
505 return 1;
506 if (!page_is_consistent(zone, page))
507 return 1;
508
509 return 0;
510 }
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
513 {
514 return 0;
515 }
516 #endif
517
518 static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
520 {
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /* Don't complain about poisoned pages */
526 if (PageHWPoison(page)) {
527 page_mapcount_reset(page); /* remove PageBuddy */
528 return;
529 }
530
531 /*
532 * Allow a burst of 60 reports, then keep quiet for that minute;
533 * or allow a steady drip of one report per second.
534 */
535 if (nr_shown == 60) {
536 if (time_before(jiffies, resume)) {
537 nr_unshown++;
538 goto out;
539 }
540 if (nr_unshown) {
541 pr_alert(
542 "BUG: Bad page state: %lu messages suppressed\n",
543 nr_unshown);
544 nr_unshown = 0;
545 }
546 nr_shown = 0;
547 }
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
550
551 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
552 current->comm, page_to_pfn(page));
553 __dump_page(page, reason);
554 bad_flags &= page->flags;
555 if (bad_flags)
556 pr_alert("bad because of flags: %#lx(%pGp)\n",
557 bad_flags, &bad_flags);
558 dump_page_owner(page);
559
560 print_modules();
561 dump_stack();
562 out:
563 /* Leave bad fields for debug, except PageBuddy could make trouble */
564 page_mapcount_reset(page); /* remove PageBuddy */
565 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
566 }
567
568 /*
569 * Higher-order pages are called "compound pages". They are structured thusly:
570 *
571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
572 *
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
575 *
576 * The first tail page's ->compound_dtor holds the offset in array of compound
577 * page destructors. See compound_page_dtors.
578 *
579 * The first tail page's ->compound_order holds the order of allocation.
580 * This usage means that zero-order pages may not be compound.
581 */
582
583 void free_compound_page(struct page *page)
584 {
585 __free_pages_ok(page, compound_order(page));
586 }
587
588 void prep_compound_page(struct page *page, unsigned int order)
589 {
590 int i;
591 int nr_pages = 1 << order;
592
593 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
594 set_compound_order(page, order);
595 __SetPageHead(page);
596 for (i = 1; i < nr_pages; i++) {
597 struct page *p = page + i;
598 set_page_count(p, 0);
599 p->mapping = TAIL_MAPPING;
600 set_compound_head(p, page);
601 }
602 atomic_set(compound_mapcount_ptr(page), -1);
603 }
604
605 #ifdef CONFIG_DEBUG_PAGEALLOC
606 unsigned int _debug_guardpage_minorder;
607 bool _debug_pagealloc_enabled __read_mostly
608 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
609 EXPORT_SYMBOL(_debug_pagealloc_enabled);
610 bool _debug_guardpage_enabled __read_mostly;
611
612 static int __init early_debug_pagealloc(char *buf)
613 {
614 if (!buf)
615 return -EINVAL;
616 return kstrtobool(buf, &_debug_pagealloc_enabled);
617 }
618 early_param("debug_pagealloc", early_debug_pagealloc);
619
620 static bool need_debug_guardpage(void)
621 {
622 /* If we don't use debug_pagealloc, we don't need guard page */
623 if (!debug_pagealloc_enabled())
624 return false;
625
626 return true;
627 }
628
629 static void init_debug_guardpage(void)
630 {
631 if (!debug_pagealloc_enabled())
632 return;
633
634 _debug_guardpage_enabled = true;
635 }
636
637 struct page_ext_operations debug_guardpage_ops = {
638 .need = need_debug_guardpage,
639 .init = init_debug_guardpage,
640 };
641
642 static int __init debug_guardpage_minorder_setup(char *buf)
643 {
644 unsigned long res;
645
646 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
647 pr_err("Bad debug_guardpage_minorder value\n");
648 return 0;
649 }
650 _debug_guardpage_minorder = res;
651 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
652 return 0;
653 }
654 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
655
656 static inline void set_page_guard(struct zone *zone, struct page *page,
657 unsigned int order, int migratetype)
658 {
659 struct page_ext *page_ext;
660
661 if (!debug_guardpage_enabled())
662 return;
663
664 page_ext = lookup_page_ext(page);
665 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
666
667 INIT_LIST_HEAD(&page->lru);
668 set_page_private(page, order);
669 /* Guard pages are not available for any usage */
670 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
671 }
672
673 static inline void clear_page_guard(struct zone *zone, struct page *page,
674 unsigned int order, int migratetype)
675 {
676 struct page_ext *page_ext;
677
678 if (!debug_guardpage_enabled())
679 return;
680
681 page_ext = lookup_page_ext(page);
682 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
683
684 set_page_private(page, 0);
685 if (!is_migrate_isolate(migratetype))
686 __mod_zone_freepage_state(zone, (1 << order), migratetype);
687 }
688 #else
689 struct page_ext_operations debug_guardpage_ops = { NULL, };
690 static inline void set_page_guard(struct zone *zone, struct page *page,
691 unsigned int order, int migratetype) {}
692 static inline void clear_page_guard(struct zone *zone, struct page *page,
693 unsigned int order, int migratetype) {}
694 #endif
695
696 static inline void set_page_order(struct page *page, unsigned int order)
697 {
698 set_page_private(page, order);
699 __SetPageBuddy(page);
700 }
701
702 static inline void rmv_page_order(struct page *page)
703 {
704 __ClearPageBuddy(page);
705 set_page_private(page, 0);
706 }
707
708 /*
709 * This function checks whether a page is free && is the buddy
710 * we can do coalesce a page and its buddy if
711 * (a) the buddy is not in a hole &&
712 * (b) the buddy is in the buddy system &&
713 * (c) a page and its buddy have the same order &&
714 * (d) a page and its buddy are in the same zone.
715 *
716 * For recording whether a page is in the buddy system, we set ->_mapcount
717 * PAGE_BUDDY_MAPCOUNT_VALUE.
718 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
719 * serialized by zone->lock.
720 *
721 * For recording page's order, we use page_private(page).
722 */
723 static inline int page_is_buddy(struct page *page, struct page *buddy,
724 unsigned int order)
725 {
726 if (!pfn_valid_within(page_to_pfn(buddy)))
727 return 0;
728
729 if (page_is_guard(buddy) && page_order(buddy) == order) {
730 if (page_zone_id(page) != page_zone_id(buddy))
731 return 0;
732
733 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
734
735 return 1;
736 }
737
738 if (PageBuddy(buddy) && page_order(buddy) == order) {
739 /*
740 * zone check is done late to avoid uselessly
741 * calculating zone/node ids for pages that could
742 * never merge.
743 */
744 if (page_zone_id(page) != page_zone_id(buddy))
745 return 0;
746
747 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
748
749 return 1;
750 }
751 return 0;
752 }
753
754 /*
755 * Freeing function for a buddy system allocator.
756 *
757 * The concept of a buddy system is to maintain direct-mapped table
758 * (containing bit values) for memory blocks of various "orders".
759 * The bottom level table contains the map for the smallest allocatable
760 * units of memory (here, pages), and each level above it describes
761 * pairs of units from the levels below, hence, "buddies".
762 * At a high level, all that happens here is marking the table entry
763 * at the bottom level available, and propagating the changes upward
764 * as necessary, plus some accounting needed to play nicely with other
765 * parts of the VM system.
766 * At each level, we keep a list of pages, which are heads of continuous
767 * free pages of length of (1 << order) and marked with _mapcount
768 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
769 * field.
770 * So when we are allocating or freeing one, we can derive the state of the
771 * other. That is, if we allocate a small block, and both were
772 * free, the remainder of the region must be split into blocks.
773 * If a block is freed, and its buddy is also free, then this
774 * triggers coalescing into a block of larger size.
775 *
776 * -- nyc
777 */
778
779 static inline void __free_one_page(struct page *page,
780 unsigned long pfn,
781 struct zone *zone, unsigned int order,
782 int migratetype)
783 {
784 unsigned long page_idx;
785 unsigned long combined_idx;
786 unsigned long uninitialized_var(buddy_idx);
787 struct page *buddy;
788 unsigned int max_order;
789
790 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
791
792 VM_BUG_ON(!zone_is_initialized(zone));
793 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
794
795 VM_BUG_ON(migratetype == -1);
796 if (likely(!is_migrate_isolate(migratetype)))
797 __mod_zone_freepage_state(zone, 1 << order, migratetype);
798
799 page_idx = pfn & ((1 << MAX_ORDER) - 1);
800
801 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
802 VM_BUG_ON_PAGE(bad_range(zone, page), page);
803
804 continue_merging:
805 while (order < max_order - 1) {
806 buddy_idx = __find_buddy_index(page_idx, order);
807 buddy = page + (buddy_idx - page_idx);
808 if (!page_is_buddy(page, buddy, order))
809 goto done_merging;
810 /*
811 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
812 * merge with it and move up one order.
813 */
814 if (page_is_guard(buddy)) {
815 clear_page_guard(zone, buddy, order, migratetype);
816 } else {
817 list_del(&buddy->lru);
818 zone->free_area[order].nr_free--;
819 rmv_page_order(buddy);
820 }
821 combined_idx = buddy_idx & page_idx;
822 page = page + (combined_idx - page_idx);
823 page_idx = combined_idx;
824 order++;
825 }
826 if (max_order < MAX_ORDER) {
827 /* If we are here, it means order is >= pageblock_order.
828 * We want to prevent merge between freepages on isolate
829 * pageblock and normal pageblock. Without this, pageblock
830 * isolation could cause incorrect freepage or CMA accounting.
831 *
832 * We don't want to hit this code for the more frequent
833 * low-order merging.
834 */
835 if (unlikely(has_isolate_pageblock(zone))) {
836 int buddy_mt;
837
838 buddy_idx = __find_buddy_index(page_idx, order);
839 buddy = page + (buddy_idx - page_idx);
840 buddy_mt = get_pageblock_migratetype(buddy);
841
842 if (migratetype != buddy_mt
843 && (is_migrate_isolate(migratetype) ||
844 is_migrate_isolate(buddy_mt)))
845 goto done_merging;
846 }
847 max_order++;
848 goto continue_merging;
849 }
850
851 done_merging:
852 set_page_order(page, order);
853
854 /*
855 * If this is not the largest possible page, check if the buddy
856 * of the next-highest order is free. If it is, it's possible
857 * that pages are being freed that will coalesce soon. In case,
858 * that is happening, add the free page to the tail of the list
859 * so it's less likely to be used soon and more likely to be merged
860 * as a higher order page
861 */
862 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
863 struct page *higher_page, *higher_buddy;
864 combined_idx = buddy_idx & page_idx;
865 higher_page = page + (combined_idx - page_idx);
866 buddy_idx = __find_buddy_index(combined_idx, order + 1);
867 higher_buddy = higher_page + (buddy_idx - combined_idx);
868 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
869 list_add_tail(&page->lru,
870 &zone->free_area[order].free_list[migratetype]);
871 goto out;
872 }
873 }
874
875 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
876 out:
877 zone->free_area[order].nr_free++;
878 }
879
880 /*
881 * A bad page could be due to a number of fields. Instead of multiple branches,
882 * try and check multiple fields with one check. The caller must do a detailed
883 * check if necessary.
884 */
885 static inline bool page_expected_state(struct page *page,
886 unsigned long check_flags)
887 {
888 if (unlikely(atomic_read(&page->_mapcount) != -1))
889 return false;
890
891 if (unlikely((unsigned long)page->mapping |
892 page_ref_count(page) |
893 #ifdef CONFIG_MEMCG
894 (unsigned long)page->mem_cgroup |
895 #endif
896 (page->flags & check_flags)))
897 return false;
898
899 return true;
900 }
901
902 static void free_pages_check_bad(struct page *page)
903 {
904 const char *bad_reason;
905 unsigned long bad_flags;
906
907 bad_reason = NULL;
908 bad_flags = 0;
909
910 if (unlikely(atomic_read(&page->_mapcount) != -1))
911 bad_reason = "nonzero mapcount";
912 if (unlikely(page->mapping != NULL))
913 bad_reason = "non-NULL mapping";
914 if (unlikely(page_ref_count(page) != 0))
915 bad_reason = "nonzero _refcount";
916 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
917 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
918 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
919 }
920 #ifdef CONFIG_MEMCG
921 if (unlikely(page->mem_cgroup))
922 bad_reason = "page still charged to cgroup";
923 #endif
924 bad_page(page, bad_reason, bad_flags);
925 }
926
927 static inline int free_pages_check(struct page *page)
928 {
929 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
930 return 0;
931
932 /* Something has gone sideways, find it */
933 free_pages_check_bad(page);
934 return 1;
935 }
936
937 static int free_tail_pages_check(struct page *head_page, struct page *page)
938 {
939 int ret = 1;
940
941 /*
942 * We rely page->lru.next never has bit 0 set, unless the page
943 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
944 */
945 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
946
947 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
948 ret = 0;
949 goto out;
950 }
951 switch (page - head_page) {
952 case 1:
953 /* the first tail page: ->mapping is compound_mapcount() */
954 if (unlikely(compound_mapcount(page))) {
955 bad_page(page, "nonzero compound_mapcount", 0);
956 goto out;
957 }
958 break;
959 case 2:
960 /*
961 * the second tail page: ->mapping is
962 * page_deferred_list().next -- ignore value.
963 */
964 break;
965 default:
966 if (page->mapping != TAIL_MAPPING) {
967 bad_page(page, "corrupted mapping in tail page", 0);
968 goto out;
969 }
970 break;
971 }
972 if (unlikely(!PageTail(page))) {
973 bad_page(page, "PageTail not set", 0);
974 goto out;
975 }
976 if (unlikely(compound_head(page) != head_page)) {
977 bad_page(page, "compound_head not consistent", 0);
978 goto out;
979 }
980 ret = 0;
981 out:
982 page->mapping = NULL;
983 clear_compound_head(page);
984 return ret;
985 }
986
987 static __always_inline bool free_pages_prepare(struct page *page,
988 unsigned int order, bool check_free)
989 {
990 int bad = 0;
991
992 VM_BUG_ON_PAGE(PageTail(page), page);
993
994 trace_mm_page_free(page, order);
995 kmemcheck_free_shadow(page, order);
996 kasan_free_pages(page, order);
997
998 /*
999 * Check tail pages before head page information is cleared to
1000 * avoid checking PageCompound for order-0 pages.
1001 */
1002 if (unlikely(order)) {
1003 bool compound = PageCompound(page);
1004 int i;
1005
1006 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1007
1008 for (i = 1; i < (1 << order); i++) {
1009 if (compound)
1010 bad += free_tail_pages_check(page, page + i);
1011 if (unlikely(free_pages_check(page + i))) {
1012 bad++;
1013 continue;
1014 }
1015 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1016 }
1017 }
1018 if (PageAnonHead(page))
1019 page->mapping = NULL;
1020 if (check_free)
1021 bad += free_pages_check(page);
1022 if (bad)
1023 return false;
1024
1025 page_cpupid_reset_last(page);
1026 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1027 reset_page_owner(page, order);
1028
1029 if (!PageHighMem(page)) {
1030 debug_check_no_locks_freed(page_address(page),
1031 PAGE_SIZE << order);
1032 debug_check_no_obj_freed(page_address(page),
1033 PAGE_SIZE << order);
1034 }
1035 arch_free_page(page, order);
1036 kernel_poison_pages(page, 1 << order, 0);
1037 kernel_map_pages(page, 1 << order, 0);
1038
1039 return true;
1040 }
1041
1042 #ifdef CONFIG_DEBUG_VM
1043 static inline bool free_pcp_prepare(struct page *page)
1044 {
1045 return free_pages_prepare(page, 0, true);
1046 }
1047
1048 static inline bool bulkfree_pcp_prepare(struct page *page)
1049 {
1050 return false;
1051 }
1052 #else
1053 static bool free_pcp_prepare(struct page *page)
1054 {
1055 return free_pages_prepare(page, 0, false);
1056 }
1057
1058 static bool bulkfree_pcp_prepare(struct page *page)
1059 {
1060 return free_pages_check(page);
1061 }
1062 #endif /* CONFIG_DEBUG_VM */
1063
1064 /*
1065 * Frees a number of pages from the PCP lists
1066 * Assumes all pages on list are in same zone, and of same order.
1067 * count is the number of pages to free.
1068 *
1069 * If the zone was previously in an "all pages pinned" state then look to
1070 * see if this freeing clears that state.
1071 *
1072 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1073 * pinned" detection logic.
1074 */
1075 static void free_pcppages_bulk(struct zone *zone, int count,
1076 struct per_cpu_pages *pcp)
1077 {
1078 int migratetype = 0;
1079 int batch_free = 0;
1080 unsigned long nr_scanned;
1081 bool isolated_pageblocks;
1082
1083 spin_lock(&zone->lock);
1084 isolated_pageblocks = has_isolate_pageblock(zone);
1085 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1086 if (nr_scanned)
1087 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1088
1089 while (count) {
1090 struct page *page;
1091 struct list_head *list;
1092
1093 /*
1094 * Remove pages from lists in a round-robin fashion. A
1095 * batch_free count is maintained that is incremented when an
1096 * empty list is encountered. This is so more pages are freed
1097 * off fuller lists instead of spinning excessively around empty
1098 * lists
1099 */
1100 do {
1101 batch_free++;
1102 if (++migratetype == MIGRATE_PCPTYPES)
1103 migratetype = 0;
1104 list = &pcp->lists[migratetype];
1105 } while (list_empty(list));
1106
1107 /* This is the only non-empty list. Free them all. */
1108 if (batch_free == MIGRATE_PCPTYPES)
1109 batch_free = count;
1110
1111 do {
1112 int mt; /* migratetype of the to-be-freed page */
1113
1114 page = list_last_entry(list, struct page, lru);
1115 /* must delete as __free_one_page list manipulates */
1116 list_del(&page->lru);
1117
1118 mt = get_pcppage_migratetype(page);
1119 /* MIGRATE_ISOLATE page should not go to pcplists */
1120 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1121 /* Pageblock could have been isolated meanwhile */
1122 if (unlikely(isolated_pageblocks))
1123 mt = get_pageblock_migratetype(page);
1124
1125 if (bulkfree_pcp_prepare(page))
1126 continue;
1127
1128 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1129 trace_mm_page_pcpu_drain(page, 0, mt);
1130 } while (--count && --batch_free && !list_empty(list));
1131 }
1132 spin_unlock(&zone->lock);
1133 }
1134
1135 static void free_one_page(struct zone *zone,
1136 struct page *page, unsigned long pfn,
1137 unsigned int order,
1138 int migratetype)
1139 {
1140 unsigned long nr_scanned;
1141 spin_lock(&zone->lock);
1142 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1143 if (nr_scanned)
1144 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1145
1146 if (unlikely(has_isolate_pageblock(zone) ||
1147 is_migrate_isolate(migratetype))) {
1148 migratetype = get_pfnblock_migratetype(page, pfn);
1149 }
1150 __free_one_page(page, pfn, zone, order, migratetype);
1151 spin_unlock(&zone->lock);
1152 }
1153
1154 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1155 unsigned long zone, int nid)
1156 {
1157 set_page_links(page, zone, nid, pfn);
1158 init_page_count(page);
1159 page_mapcount_reset(page);
1160 page_cpupid_reset_last(page);
1161
1162 INIT_LIST_HEAD(&page->lru);
1163 #ifdef WANT_PAGE_VIRTUAL
1164 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1165 if (!is_highmem_idx(zone))
1166 set_page_address(page, __va(pfn << PAGE_SHIFT));
1167 #endif
1168 }
1169
1170 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1171 int nid)
1172 {
1173 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1174 }
1175
1176 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1177 static void init_reserved_page(unsigned long pfn)
1178 {
1179 pg_data_t *pgdat;
1180 int nid, zid;
1181
1182 if (!early_page_uninitialised(pfn))
1183 return;
1184
1185 nid = early_pfn_to_nid(pfn);
1186 pgdat = NODE_DATA(nid);
1187
1188 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1189 struct zone *zone = &pgdat->node_zones[zid];
1190
1191 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1192 break;
1193 }
1194 __init_single_pfn(pfn, zid, nid);
1195 }
1196 #else
1197 static inline void init_reserved_page(unsigned long pfn)
1198 {
1199 }
1200 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1201
1202 /*
1203 * Initialised pages do not have PageReserved set. This function is
1204 * called for each range allocated by the bootmem allocator and
1205 * marks the pages PageReserved. The remaining valid pages are later
1206 * sent to the buddy page allocator.
1207 */
1208 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1209 {
1210 unsigned long start_pfn = PFN_DOWN(start);
1211 unsigned long end_pfn = PFN_UP(end);
1212
1213 for (; start_pfn < end_pfn; start_pfn++) {
1214 if (pfn_valid(start_pfn)) {
1215 struct page *page = pfn_to_page(start_pfn);
1216
1217 init_reserved_page(start_pfn);
1218
1219 /* Avoid false-positive PageTail() */
1220 INIT_LIST_HEAD(&page->lru);
1221
1222 SetPageReserved(page);
1223 }
1224 }
1225 }
1226
1227 static void __free_pages_ok(struct page *page, unsigned int order)
1228 {
1229 unsigned long flags;
1230 int migratetype;
1231 unsigned long pfn = page_to_pfn(page);
1232
1233 if (!free_pages_prepare(page, order, true))
1234 return;
1235
1236 migratetype = get_pfnblock_migratetype(page, pfn);
1237 local_irq_save(flags);
1238 __count_vm_events(PGFREE, 1 << order);
1239 free_one_page(page_zone(page), page, pfn, order, migratetype);
1240 local_irq_restore(flags);
1241 }
1242
1243 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1244 {
1245 unsigned int nr_pages = 1 << order;
1246 struct page *p = page;
1247 unsigned int loop;
1248
1249 prefetchw(p);
1250 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1251 prefetchw(p + 1);
1252 __ClearPageReserved(p);
1253 set_page_count(p, 0);
1254 }
1255 __ClearPageReserved(p);
1256 set_page_count(p, 0);
1257
1258 page_zone(page)->managed_pages += nr_pages;
1259 set_page_refcounted(page);
1260 __free_pages(page, order);
1261 }
1262
1263 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1264 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1265
1266 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1267
1268 int __meminit early_pfn_to_nid(unsigned long pfn)
1269 {
1270 static DEFINE_SPINLOCK(early_pfn_lock);
1271 int nid;
1272
1273 spin_lock(&early_pfn_lock);
1274 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1275 if (nid < 0)
1276 nid = 0;
1277 spin_unlock(&early_pfn_lock);
1278
1279 return nid;
1280 }
1281 #endif
1282
1283 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1284 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1285 struct mminit_pfnnid_cache *state)
1286 {
1287 int nid;
1288
1289 nid = __early_pfn_to_nid(pfn, state);
1290 if (nid >= 0 && nid != node)
1291 return false;
1292 return true;
1293 }
1294
1295 /* Only safe to use early in boot when initialisation is single-threaded */
1296 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1297 {
1298 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1299 }
1300
1301 #else
1302
1303 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1304 {
1305 return true;
1306 }
1307 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1308 struct mminit_pfnnid_cache *state)
1309 {
1310 return true;
1311 }
1312 #endif
1313
1314
1315 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1316 unsigned int order)
1317 {
1318 if (early_page_uninitialised(pfn))
1319 return;
1320 return __free_pages_boot_core(page, order);
1321 }
1322
1323 /*
1324 * Check that the whole (or subset of) a pageblock given by the interval of
1325 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1326 * with the migration of free compaction scanner. The scanners then need to
1327 * use only pfn_valid_within() check for arches that allow holes within
1328 * pageblocks.
1329 *
1330 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1331 *
1332 * It's possible on some configurations to have a setup like node0 node1 node0
1333 * i.e. it's possible that all pages within a zones range of pages do not
1334 * belong to a single zone. We assume that a border between node0 and node1
1335 * can occur within a single pageblock, but not a node0 node1 node0
1336 * interleaving within a single pageblock. It is therefore sufficient to check
1337 * the first and last page of a pageblock and avoid checking each individual
1338 * page in a pageblock.
1339 */
1340 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1341 unsigned long end_pfn, struct zone *zone)
1342 {
1343 struct page *start_page;
1344 struct page *end_page;
1345
1346 /* end_pfn is one past the range we are checking */
1347 end_pfn--;
1348
1349 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1350 return NULL;
1351
1352 start_page = pfn_to_page(start_pfn);
1353
1354 if (page_zone(start_page) != zone)
1355 return NULL;
1356
1357 end_page = pfn_to_page(end_pfn);
1358
1359 /* This gives a shorter code than deriving page_zone(end_page) */
1360 if (page_zone_id(start_page) != page_zone_id(end_page))
1361 return NULL;
1362
1363 return start_page;
1364 }
1365
1366 void set_zone_contiguous(struct zone *zone)
1367 {
1368 unsigned long block_start_pfn = zone->zone_start_pfn;
1369 unsigned long block_end_pfn;
1370
1371 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1372 for (; block_start_pfn < zone_end_pfn(zone);
1373 block_start_pfn = block_end_pfn,
1374 block_end_pfn += pageblock_nr_pages) {
1375
1376 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1377
1378 if (!__pageblock_pfn_to_page(block_start_pfn,
1379 block_end_pfn, zone))
1380 return;
1381 }
1382
1383 /* We confirm that there is no hole */
1384 zone->contiguous = true;
1385 }
1386
1387 void clear_zone_contiguous(struct zone *zone)
1388 {
1389 zone->contiguous = false;
1390 }
1391
1392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1393 static void __init deferred_free_range(struct page *page,
1394 unsigned long pfn, int nr_pages)
1395 {
1396 int i;
1397
1398 if (!page)
1399 return;
1400
1401 /* Free a large naturally-aligned chunk if possible */
1402 if (nr_pages == MAX_ORDER_NR_PAGES &&
1403 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1404 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1405 __free_pages_boot_core(page, MAX_ORDER-1);
1406 return;
1407 }
1408
1409 for (i = 0; i < nr_pages; i++, page++)
1410 __free_pages_boot_core(page, 0);
1411 }
1412
1413 /* Completion tracking for deferred_init_memmap() threads */
1414 static atomic_t pgdat_init_n_undone __initdata;
1415 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1416
1417 static inline void __init pgdat_init_report_one_done(void)
1418 {
1419 if (atomic_dec_and_test(&pgdat_init_n_undone))
1420 complete(&pgdat_init_all_done_comp);
1421 }
1422
1423 /* Initialise remaining memory on a node */
1424 static int __init deferred_init_memmap(void *data)
1425 {
1426 pg_data_t *pgdat = data;
1427 int nid = pgdat->node_id;
1428 struct mminit_pfnnid_cache nid_init_state = { };
1429 unsigned long start = jiffies;
1430 unsigned long nr_pages = 0;
1431 unsigned long walk_start, walk_end;
1432 int i, zid;
1433 struct zone *zone;
1434 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1435 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1436
1437 if (first_init_pfn == ULONG_MAX) {
1438 pgdat_init_report_one_done();
1439 return 0;
1440 }
1441
1442 /* Bind memory initialisation thread to a local node if possible */
1443 if (!cpumask_empty(cpumask))
1444 set_cpus_allowed_ptr(current, cpumask);
1445
1446 /* Sanity check boundaries */
1447 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1448 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1449 pgdat->first_deferred_pfn = ULONG_MAX;
1450
1451 /* Only the highest zone is deferred so find it */
1452 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1453 zone = pgdat->node_zones + zid;
1454 if (first_init_pfn < zone_end_pfn(zone))
1455 break;
1456 }
1457
1458 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1459 unsigned long pfn, end_pfn;
1460 struct page *page = NULL;
1461 struct page *free_base_page = NULL;
1462 unsigned long free_base_pfn = 0;
1463 int nr_to_free = 0;
1464
1465 end_pfn = min(walk_end, zone_end_pfn(zone));
1466 pfn = first_init_pfn;
1467 if (pfn < walk_start)
1468 pfn = walk_start;
1469 if (pfn < zone->zone_start_pfn)
1470 pfn = zone->zone_start_pfn;
1471
1472 for (; pfn < end_pfn; pfn++) {
1473 if (!pfn_valid_within(pfn))
1474 goto free_range;
1475
1476 /*
1477 * Ensure pfn_valid is checked every
1478 * MAX_ORDER_NR_PAGES for memory holes
1479 */
1480 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1481 if (!pfn_valid(pfn)) {
1482 page = NULL;
1483 goto free_range;
1484 }
1485 }
1486
1487 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1488 page = NULL;
1489 goto free_range;
1490 }
1491
1492 /* Minimise pfn page lookups and scheduler checks */
1493 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1494 page++;
1495 } else {
1496 nr_pages += nr_to_free;
1497 deferred_free_range(free_base_page,
1498 free_base_pfn, nr_to_free);
1499 free_base_page = NULL;
1500 free_base_pfn = nr_to_free = 0;
1501
1502 page = pfn_to_page(pfn);
1503 cond_resched();
1504 }
1505
1506 if (page->flags) {
1507 VM_BUG_ON(page_zone(page) != zone);
1508 goto free_range;
1509 }
1510
1511 __init_single_page(page, pfn, zid, nid);
1512 if (!free_base_page) {
1513 free_base_page = page;
1514 free_base_pfn = pfn;
1515 nr_to_free = 0;
1516 }
1517 nr_to_free++;
1518
1519 /* Where possible, batch up pages for a single free */
1520 continue;
1521 free_range:
1522 /* Free the current block of pages to allocator */
1523 nr_pages += nr_to_free;
1524 deferred_free_range(free_base_page, free_base_pfn,
1525 nr_to_free);
1526 free_base_page = NULL;
1527 free_base_pfn = nr_to_free = 0;
1528 }
1529
1530 first_init_pfn = max(end_pfn, first_init_pfn);
1531 }
1532
1533 /* Sanity check that the next zone really is unpopulated */
1534 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1535
1536 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1537 jiffies_to_msecs(jiffies - start));
1538
1539 pgdat_init_report_one_done();
1540 return 0;
1541 }
1542 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1543
1544 void __init page_alloc_init_late(void)
1545 {
1546 struct zone *zone;
1547
1548 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1549 int nid;
1550
1551 /* There will be num_node_state(N_MEMORY) threads */
1552 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1553 for_each_node_state(nid, N_MEMORY) {
1554 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1555 }
1556
1557 /* Block until all are initialised */
1558 wait_for_completion(&pgdat_init_all_done_comp);
1559
1560 /* Reinit limits that are based on free pages after the kernel is up */
1561 files_maxfiles_init();
1562 #endif
1563
1564 for_each_populated_zone(zone)
1565 set_zone_contiguous(zone);
1566 }
1567
1568 #ifdef CONFIG_CMA
1569 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1570 void __init init_cma_reserved_pageblock(struct page *page)
1571 {
1572 unsigned i = pageblock_nr_pages;
1573 struct page *p = page;
1574
1575 do {
1576 __ClearPageReserved(p);
1577 set_page_count(p, 0);
1578 } while (++p, --i);
1579
1580 set_pageblock_migratetype(page, MIGRATE_CMA);
1581
1582 if (pageblock_order >= MAX_ORDER) {
1583 i = pageblock_nr_pages;
1584 p = page;
1585 do {
1586 set_page_refcounted(p);
1587 __free_pages(p, MAX_ORDER - 1);
1588 p += MAX_ORDER_NR_PAGES;
1589 } while (i -= MAX_ORDER_NR_PAGES);
1590 } else {
1591 set_page_refcounted(page);
1592 __free_pages(page, pageblock_order);
1593 }
1594
1595 adjust_managed_page_count(page, pageblock_nr_pages);
1596 }
1597 #endif
1598
1599 /*
1600 * The order of subdivision here is critical for the IO subsystem.
1601 * Please do not alter this order without good reasons and regression
1602 * testing. Specifically, as large blocks of memory are subdivided,
1603 * the order in which smaller blocks are delivered depends on the order
1604 * they're subdivided in this function. This is the primary factor
1605 * influencing the order in which pages are delivered to the IO
1606 * subsystem according to empirical testing, and this is also justified
1607 * by considering the behavior of a buddy system containing a single
1608 * large block of memory acted on by a series of small allocations.
1609 * This behavior is a critical factor in sglist merging's success.
1610 *
1611 * -- nyc
1612 */
1613 static inline void expand(struct zone *zone, struct page *page,
1614 int low, int high, struct free_area *area,
1615 int migratetype)
1616 {
1617 unsigned long size = 1 << high;
1618
1619 while (high > low) {
1620 area--;
1621 high--;
1622 size >>= 1;
1623 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1624
1625 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1626 debug_guardpage_enabled() &&
1627 high < debug_guardpage_minorder()) {
1628 /*
1629 * Mark as guard pages (or page), that will allow to
1630 * merge back to allocator when buddy will be freed.
1631 * Corresponding page table entries will not be touched,
1632 * pages will stay not present in virtual address space
1633 */
1634 set_page_guard(zone, &page[size], high, migratetype);
1635 continue;
1636 }
1637 list_add(&page[size].lru, &area->free_list[migratetype]);
1638 area->nr_free++;
1639 set_page_order(&page[size], high);
1640 }
1641 }
1642
1643 static void check_new_page_bad(struct page *page)
1644 {
1645 const char *bad_reason = NULL;
1646 unsigned long bad_flags = 0;
1647
1648 if (unlikely(atomic_read(&page->_mapcount) != -1))
1649 bad_reason = "nonzero mapcount";
1650 if (unlikely(page->mapping != NULL))
1651 bad_reason = "non-NULL mapping";
1652 if (unlikely(page_ref_count(page) != 0))
1653 bad_reason = "nonzero _count";
1654 if (unlikely(page->flags & __PG_HWPOISON)) {
1655 bad_reason = "HWPoisoned (hardware-corrupted)";
1656 bad_flags = __PG_HWPOISON;
1657 }
1658 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1659 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1660 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1661 }
1662 #ifdef CONFIG_MEMCG
1663 if (unlikely(page->mem_cgroup))
1664 bad_reason = "page still charged to cgroup";
1665 #endif
1666 bad_page(page, bad_reason, bad_flags);
1667 }
1668
1669 /*
1670 * This page is about to be returned from the page allocator
1671 */
1672 static inline int check_new_page(struct page *page)
1673 {
1674 if (likely(page_expected_state(page,
1675 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1676 return 0;
1677
1678 check_new_page_bad(page);
1679 return 1;
1680 }
1681
1682 static inline bool free_pages_prezeroed(bool poisoned)
1683 {
1684 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1685 page_poisoning_enabled() && poisoned;
1686 }
1687
1688 #ifdef CONFIG_DEBUG_VM
1689 static bool check_pcp_refill(struct page *page)
1690 {
1691 return false;
1692 }
1693
1694 static bool check_new_pcp(struct page *page)
1695 {
1696 return check_new_page(page);
1697 }
1698 #else
1699 static bool check_pcp_refill(struct page *page)
1700 {
1701 return check_new_page(page);
1702 }
1703 static bool check_new_pcp(struct page *page)
1704 {
1705 return false;
1706 }
1707 #endif /* CONFIG_DEBUG_VM */
1708
1709 static bool check_new_pages(struct page *page, unsigned int order)
1710 {
1711 int i;
1712 for (i = 0; i < (1 << order); i++) {
1713 struct page *p = page + i;
1714
1715 if (unlikely(check_new_page(p)))
1716 return true;
1717 }
1718
1719 return false;
1720 }
1721
1722 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1723 unsigned int alloc_flags)
1724 {
1725 int i;
1726 bool poisoned = true;
1727
1728 for (i = 0; i < (1 << order); i++) {
1729 struct page *p = page + i;
1730 if (poisoned)
1731 poisoned &= page_is_poisoned(p);
1732 }
1733
1734 set_page_private(page, 0);
1735 set_page_refcounted(page);
1736
1737 arch_alloc_page(page, order);
1738 kernel_map_pages(page, 1 << order, 1);
1739 kernel_poison_pages(page, 1 << order, 1);
1740 kasan_alloc_pages(page, order);
1741
1742 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1743 for (i = 0; i < (1 << order); i++)
1744 clear_highpage(page + i);
1745
1746 if (order && (gfp_flags & __GFP_COMP))
1747 prep_compound_page(page, order);
1748
1749 set_page_owner(page, order, gfp_flags);
1750
1751 /*
1752 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1753 * allocate the page. The expectation is that the caller is taking
1754 * steps that will free more memory. The caller should avoid the page
1755 * being used for !PFMEMALLOC purposes.
1756 */
1757 if (alloc_flags & ALLOC_NO_WATERMARKS)
1758 set_page_pfmemalloc(page);
1759 else
1760 clear_page_pfmemalloc(page);
1761 }
1762
1763 /*
1764 * Go through the free lists for the given migratetype and remove
1765 * the smallest available page from the freelists
1766 */
1767 static inline
1768 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1769 int migratetype)
1770 {
1771 unsigned int current_order;
1772 struct free_area *area;
1773 struct page *page;
1774
1775 /* Find a page of the appropriate size in the preferred list */
1776 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1777 area = &(zone->free_area[current_order]);
1778 page = list_first_entry_or_null(&area->free_list[migratetype],
1779 struct page, lru);
1780 if (!page)
1781 continue;
1782 list_del(&page->lru);
1783 rmv_page_order(page);
1784 area->nr_free--;
1785 expand(zone, page, order, current_order, area, migratetype);
1786 set_pcppage_migratetype(page, migratetype);
1787 return page;
1788 }
1789
1790 return NULL;
1791 }
1792
1793
1794 /*
1795 * This array describes the order lists are fallen back to when
1796 * the free lists for the desirable migrate type are depleted
1797 */
1798 static int fallbacks[MIGRATE_TYPES][4] = {
1799 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1800 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1801 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1802 #ifdef CONFIG_CMA
1803 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1804 #endif
1805 #ifdef CONFIG_MEMORY_ISOLATION
1806 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1807 #endif
1808 };
1809
1810 #ifdef CONFIG_CMA
1811 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1812 unsigned int order)
1813 {
1814 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1815 }
1816 #else
1817 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1818 unsigned int order) { return NULL; }
1819 #endif
1820
1821 /*
1822 * Move the free pages in a range to the free lists of the requested type.
1823 * Note that start_page and end_pages are not aligned on a pageblock
1824 * boundary. If alignment is required, use move_freepages_block()
1825 */
1826 int move_freepages(struct zone *zone,
1827 struct page *start_page, struct page *end_page,
1828 int migratetype)
1829 {
1830 struct page *page;
1831 unsigned int order;
1832 int pages_moved = 0;
1833
1834 #ifndef CONFIG_HOLES_IN_ZONE
1835 /*
1836 * page_zone is not safe to call in this context when
1837 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1838 * anyway as we check zone boundaries in move_freepages_block().
1839 * Remove at a later date when no bug reports exist related to
1840 * grouping pages by mobility
1841 */
1842 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1843 #endif
1844
1845 for (page = start_page; page <= end_page;) {
1846 /* Make sure we are not inadvertently changing nodes */
1847 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1848
1849 if (!pfn_valid_within(page_to_pfn(page))) {
1850 page++;
1851 continue;
1852 }
1853
1854 if (!PageBuddy(page)) {
1855 page++;
1856 continue;
1857 }
1858
1859 order = page_order(page);
1860 list_move(&page->lru,
1861 &zone->free_area[order].free_list[migratetype]);
1862 page += 1 << order;
1863 pages_moved += 1 << order;
1864 }
1865
1866 return pages_moved;
1867 }
1868
1869 int move_freepages_block(struct zone *zone, struct page *page,
1870 int migratetype)
1871 {
1872 unsigned long start_pfn, end_pfn;
1873 struct page *start_page, *end_page;
1874
1875 start_pfn = page_to_pfn(page);
1876 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1877 start_page = pfn_to_page(start_pfn);
1878 end_page = start_page + pageblock_nr_pages - 1;
1879 end_pfn = start_pfn + pageblock_nr_pages - 1;
1880
1881 /* Do not cross zone boundaries */
1882 if (!zone_spans_pfn(zone, start_pfn))
1883 start_page = page;
1884 if (!zone_spans_pfn(zone, end_pfn))
1885 return 0;
1886
1887 return move_freepages(zone, start_page, end_page, migratetype);
1888 }
1889
1890 static void change_pageblock_range(struct page *pageblock_page,
1891 int start_order, int migratetype)
1892 {
1893 int nr_pageblocks = 1 << (start_order - pageblock_order);
1894
1895 while (nr_pageblocks--) {
1896 set_pageblock_migratetype(pageblock_page, migratetype);
1897 pageblock_page += pageblock_nr_pages;
1898 }
1899 }
1900
1901 /*
1902 * When we are falling back to another migratetype during allocation, try to
1903 * steal extra free pages from the same pageblocks to satisfy further
1904 * allocations, instead of polluting multiple pageblocks.
1905 *
1906 * If we are stealing a relatively large buddy page, it is likely there will
1907 * be more free pages in the pageblock, so try to steal them all. For
1908 * reclaimable and unmovable allocations, we steal regardless of page size,
1909 * as fragmentation caused by those allocations polluting movable pageblocks
1910 * is worse than movable allocations stealing from unmovable and reclaimable
1911 * pageblocks.
1912 */
1913 static bool can_steal_fallback(unsigned int order, int start_mt)
1914 {
1915 /*
1916 * Leaving this order check is intended, although there is
1917 * relaxed order check in next check. The reason is that
1918 * we can actually steal whole pageblock if this condition met,
1919 * but, below check doesn't guarantee it and that is just heuristic
1920 * so could be changed anytime.
1921 */
1922 if (order >= pageblock_order)
1923 return true;
1924
1925 if (order >= pageblock_order / 2 ||
1926 start_mt == MIGRATE_RECLAIMABLE ||
1927 start_mt == MIGRATE_UNMOVABLE ||
1928 page_group_by_mobility_disabled)
1929 return true;
1930
1931 return false;
1932 }
1933
1934 /*
1935 * This function implements actual steal behaviour. If order is large enough,
1936 * we can steal whole pageblock. If not, we first move freepages in this
1937 * pageblock and check whether half of pages are moved or not. If half of
1938 * pages are moved, we can change migratetype of pageblock and permanently
1939 * use it's pages as requested migratetype in the future.
1940 */
1941 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1942 int start_type)
1943 {
1944 unsigned int current_order = page_order(page);
1945 int pages;
1946
1947 /* Take ownership for orders >= pageblock_order */
1948 if (current_order >= pageblock_order) {
1949 change_pageblock_range(page, current_order, start_type);
1950 return;
1951 }
1952
1953 pages = move_freepages_block(zone, page, start_type);
1954
1955 /* Claim the whole block if over half of it is free */
1956 if (pages >= (1 << (pageblock_order-1)) ||
1957 page_group_by_mobility_disabled)
1958 set_pageblock_migratetype(page, start_type);
1959 }
1960
1961 /*
1962 * Check whether there is a suitable fallback freepage with requested order.
1963 * If only_stealable is true, this function returns fallback_mt only if
1964 * we can steal other freepages all together. This would help to reduce
1965 * fragmentation due to mixed migratetype pages in one pageblock.
1966 */
1967 int find_suitable_fallback(struct free_area *area, unsigned int order,
1968 int migratetype, bool only_stealable, bool *can_steal)
1969 {
1970 int i;
1971 int fallback_mt;
1972
1973 if (area->nr_free == 0)
1974 return -1;
1975
1976 *can_steal = false;
1977 for (i = 0;; i++) {
1978 fallback_mt = fallbacks[migratetype][i];
1979 if (fallback_mt == MIGRATE_TYPES)
1980 break;
1981
1982 if (list_empty(&area->free_list[fallback_mt]))
1983 continue;
1984
1985 if (can_steal_fallback(order, migratetype))
1986 *can_steal = true;
1987
1988 if (!only_stealable)
1989 return fallback_mt;
1990
1991 if (*can_steal)
1992 return fallback_mt;
1993 }
1994
1995 return -1;
1996 }
1997
1998 /*
1999 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2000 * there are no empty page blocks that contain a page with a suitable order
2001 */
2002 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2003 unsigned int alloc_order)
2004 {
2005 int mt;
2006 unsigned long max_managed, flags;
2007
2008 /*
2009 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2010 * Check is race-prone but harmless.
2011 */
2012 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2013 if (zone->nr_reserved_highatomic >= max_managed)
2014 return;
2015
2016 spin_lock_irqsave(&zone->lock, flags);
2017
2018 /* Recheck the nr_reserved_highatomic limit under the lock */
2019 if (zone->nr_reserved_highatomic >= max_managed)
2020 goto out_unlock;
2021
2022 /* Yoink! */
2023 mt = get_pageblock_migratetype(page);
2024 if (mt != MIGRATE_HIGHATOMIC &&
2025 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2026 zone->nr_reserved_highatomic += pageblock_nr_pages;
2027 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2028 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2029 }
2030
2031 out_unlock:
2032 spin_unlock_irqrestore(&zone->lock, flags);
2033 }
2034
2035 /*
2036 * Used when an allocation is about to fail under memory pressure. This
2037 * potentially hurts the reliability of high-order allocations when under
2038 * intense memory pressure but failed atomic allocations should be easier
2039 * to recover from than an OOM.
2040 */
2041 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2042 {
2043 struct zonelist *zonelist = ac->zonelist;
2044 unsigned long flags;
2045 struct zoneref *z;
2046 struct zone *zone;
2047 struct page *page;
2048 int order;
2049
2050 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2051 ac->nodemask) {
2052 /* Preserve at least one pageblock */
2053 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2054 continue;
2055
2056 spin_lock_irqsave(&zone->lock, flags);
2057 for (order = 0; order < MAX_ORDER; order++) {
2058 struct free_area *area = &(zone->free_area[order]);
2059
2060 page = list_first_entry_or_null(
2061 &area->free_list[MIGRATE_HIGHATOMIC],
2062 struct page, lru);
2063 if (!page)
2064 continue;
2065
2066 /*
2067 * It should never happen but changes to locking could
2068 * inadvertently allow a per-cpu drain to add pages
2069 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2070 * and watch for underflows.
2071 */
2072 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2073 zone->nr_reserved_highatomic);
2074
2075 /*
2076 * Convert to ac->migratetype and avoid the normal
2077 * pageblock stealing heuristics. Minimally, the caller
2078 * is doing the work and needs the pages. More
2079 * importantly, if the block was always converted to
2080 * MIGRATE_UNMOVABLE or another type then the number
2081 * of pageblocks that cannot be completely freed
2082 * may increase.
2083 */
2084 set_pageblock_migratetype(page, ac->migratetype);
2085 move_freepages_block(zone, page, ac->migratetype);
2086 spin_unlock_irqrestore(&zone->lock, flags);
2087 return;
2088 }
2089 spin_unlock_irqrestore(&zone->lock, flags);
2090 }
2091 }
2092
2093 /* Remove an element from the buddy allocator from the fallback list */
2094 static inline struct page *
2095 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2096 {
2097 struct free_area *area;
2098 unsigned int current_order;
2099 struct page *page;
2100 int fallback_mt;
2101 bool can_steal;
2102
2103 /* Find the largest possible block of pages in the other list */
2104 for (current_order = MAX_ORDER-1;
2105 current_order >= order && current_order <= MAX_ORDER-1;
2106 --current_order) {
2107 area = &(zone->free_area[current_order]);
2108 fallback_mt = find_suitable_fallback(area, current_order,
2109 start_migratetype, false, &can_steal);
2110 if (fallback_mt == -1)
2111 continue;
2112
2113 page = list_first_entry(&area->free_list[fallback_mt],
2114 struct page, lru);
2115 if (can_steal)
2116 steal_suitable_fallback(zone, page, start_migratetype);
2117
2118 /* Remove the page from the freelists */
2119 area->nr_free--;
2120 list_del(&page->lru);
2121 rmv_page_order(page);
2122
2123 expand(zone, page, order, current_order, area,
2124 start_migratetype);
2125 /*
2126 * The pcppage_migratetype may differ from pageblock's
2127 * migratetype depending on the decisions in
2128 * find_suitable_fallback(). This is OK as long as it does not
2129 * differ for MIGRATE_CMA pageblocks. Those can be used as
2130 * fallback only via special __rmqueue_cma_fallback() function
2131 */
2132 set_pcppage_migratetype(page, start_migratetype);
2133
2134 trace_mm_page_alloc_extfrag(page, order, current_order,
2135 start_migratetype, fallback_mt);
2136
2137 return page;
2138 }
2139
2140 return NULL;
2141 }
2142
2143 /*
2144 * Do the hard work of removing an element from the buddy allocator.
2145 * Call me with the zone->lock already held.
2146 */
2147 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2148 int migratetype)
2149 {
2150 struct page *page;
2151
2152 page = __rmqueue_smallest(zone, order, migratetype);
2153 if (unlikely(!page)) {
2154 if (migratetype == MIGRATE_MOVABLE)
2155 page = __rmqueue_cma_fallback(zone, order);
2156
2157 if (!page)
2158 page = __rmqueue_fallback(zone, order, migratetype);
2159 }
2160
2161 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2162 return page;
2163 }
2164
2165 /*
2166 * Obtain a specified number of elements from the buddy allocator, all under
2167 * a single hold of the lock, for efficiency. Add them to the supplied list.
2168 * Returns the number of new pages which were placed at *list.
2169 */
2170 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2171 unsigned long count, struct list_head *list,
2172 int migratetype, bool cold)
2173 {
2174 int i;
2175
2176 spin_lock(&zone->lock);
2177 for (i = 0; i < count; ++i) {
2178 struct page *page = __rmqueue(zone, order, migratetype);
2179 if (unlikely(page == NULL))
2180 break;
2181
2182 if (unlikely(check_pcp_refill(page)))
2183 continue;
2184
2185 /*
2186 * Split buddy pages returned by expand() are received here
2187 * in physical page order. The page is added to the callers and
2188 * list and the list head then moves forward. From the callers
2189 * perspective, the linked list is ordered by page number in
2190 * some conditions. This is useful for IO devices that can
2191 * merge IO requests if the physical pages are ordered
2192 * properly.
2193 */
2194 if (likely(!cold))
2195 list_add(&page->lru, list);
2196 else
2197 list_add_tail(&page->lru, list);
2198 list = &page->lru;
2199 if (is_migrate_cma(get_pcppage_migratetype(page)))
2200 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2201 -(1 << order));
2202 }
2203 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2204 spin_unlock(&zone->lock);
2205 return i;
2206 }
2207
2208 #ifdef CONFIG_NUMA
2209 /*
2210 * Called from the vmstat counter updater to drain pagesets of this
2211 * currently executing processor on remote nodes after they have
2212 * expired.
2213 *
2214 * Note that this function must be called with the thread pinned to
2215 * a single processor.
2216 */
2217 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2218 {
2219 unsigned long flags;
2220 int to_drain, batch;
2221
2222 local_irq_save(flags);
2223 batch = READ_ONCE(pcp->batch);
2224 to_drain = min(pcp->count, batch);
2225 if (to_drain > 0) {
2226 free_pcppages_bulk(zone, to_drain, pcp);
2227 pcp->count -= to_drain;
2228 }
2229 local_irq_restore(flags);
2230 }
2231 #endif
2232
2233 /*
2234 * Drain pcplists of the indicated processor and zone.
2235 *
2236 * The processor must either be the current processor and the
2237 * thread pinned to the current processor or a processor that
2238 * is not online.
2239 */
2240 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2241 {
2242 unsigned long flags;
2243 struct per_cpu_pageset *pset;
2244 struct per_cpu_pages *pcp;
2245
2246 local_irq_save(flags);
2247 pset = per_cpu_ptr(zone->pageset, cpu);
2248
2249 pcp = &pset->pcp;
2250 if (pcp->count) {
2251 free_pcppages_bulk(zone, pcp->count, pcp);
2252 pcp->count = 0;
2253 }
2254 local_irq_restore(flags);
2255 }
2256
2257 /*
2258 * Drain pcplists of all zones on the indicated processor.
2259 *
2260 * The processor must either be the current processor and the
2261 * thread pinned to the current processor or a processor that
2262 * is not online.
2263 */
2264 static void drain_pages(unsigned int cpu)
2265 {
2266 struct zone *zone;
2267
2268 for_each_populated_zone(zone) {
2269 drain_pages_zone(cpu, zone);
2270 }
2271 }
2272
2273 /*
2274 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2275 *
2276 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2277 * the single zone's pages.
2278 */
2279 void drain_local_pages(struct zone *zone)
2280 {
2281 int cpu = smp_processor_id();
2282
2283 if (zone)
2284 drain_pages_zone(cpu, zone);
2285 else
2286 drain_pages(cpu);
2287 }
2288
2289 /*
2290 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2291 *
2292 * When zone parameter is non-NULL, spill just the single zone's pages.
2293 *
2294 * Note that this code is protected against sending an IPI to an offline
2295 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2296 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2297 * nothing keeps CPUs from showing up after we populated the cpumask and
2298 * before the call to on_each_cpu_mask().
2299 */
2300 void drain_all_pages(struct zone *zone)
2301 {
2302 int cpu;
2303
2304 /*
2305 * Allocate in the BSS so we wont require allocation in
2306 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2307 */
2308 static cpumask_t cpus_with_pcps;
2309
2310 /*
2311 * We don't care about racing with CPU hotplug event
2312 * as offline notification will cause the notified
2313 * cpu to drain that CPU pcps and on_each_cpu_mask
2314 * disables preemption as part of its processing
2315 */
2316 for_each_online_cpu(cpu) {
2317 struct per_cpu_pageset *pcp;
2318 struct zone *z;
2319 bool has_pcps = false;
2320
2321 if (zone) {
2322 pcp = per_cpu_ptr(zone->pageset, cpu);
2323 if (pcp->pcp.count)
2324 has_pcps = true;
2325 } else {
2326 for_each_populated_zone(z) {
2327 pcp = per_cpu_ptr(z->pageset, cpu);
2328 if (pcp->pcp.count) {
2329 has_pcps = true;
2330 break;
2331 }
2332 }
2333 }
2334
2335 if (has_pcps)
2336 cpumask_set_cpu(cpu, &cpus_with_pcps);
2337 else
2338 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2339 }
2340 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2341 zone, 1);
2342 }
2343
2344 #ifdef CONFIG_HIBERNATION
2345
2346 void mark_free_pages(struct zone *zone)
2347 {
2348 unsigned long pfn, max_zone_pfn;
2349 unsigned long flags;
2350 unsigned int order, t;
2351 struct page *page;
2352
2353 if (zone_is_empty(zone))
2354 return;
2355
2356 spin_lock_irqsave(&zone->lock, flags);
2357
2358 max_zone_pfn = zone_end_pfn(zone);
2359 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2360 if (pfn_valid(pfn)) {
2361 page = pfn_to_page(pfn);
2362
2363 if (page_zone(page) != zone)
2364 continue;
2365
2366 if (!swsusp_page_is_forbidden(page))
2367 swsusp_unset_page_free(page);
2368 }
2369
2370 for_each_migratetype_order(order, t) {
2371 list_for_each_entry(page,
2372 &zone->free_area[order].free_list[t], lru) {
2373 unsigned long i;
2374
2375 pfn = page_to_pfn(page);
2376 for (i = 0; i < (1UL << order); i++)
2377 swsusp_set_page_free(pfn_to_page(pfn + i));
2378 }
2379 }
2380 spin_unlock_irqrestore(&zone->lock, flags);
2381 }
2382 #endif /* CONFIG_PM */
2383
2384 /*
2385 * Free a 0-order page
2386 * cold == true ? free a cold page : free a hot page
2387 */
2388 void free_hot_cold_page(struct page *page, bool cold)
2389 {
2390 struct zone *zone = page_zone(page);
2391 struct per_cpu_pages *pcp;
2392 unsigned long flags;
2393 unsigned long pfn = page_to_pfn(page);
2394 int migratetype;
2395
2396 if (!free_pcp_prepare(page))
2397 return;
2398
2399 migratetype = get_pfnblock_migratetype(page, pfn);
2400 set_pcppage_migratetype(page, migratetype);
2401 local_irq_save(flags);
2402 __count_vm_event(PGFREE);
2403
2404 /*
2405 * We only track unmovable, reclaimable and movable on pcp lists.
2406 * Free ISOLATE pages back to the allocator because they are being
2407 * offlined but treat RESERVE as movable pages so we can get those
2408 * areas back if necessary. Otherwise, we may have to free
2409 * excessively into the page allocator
2410 */
2411 if (migratetype >= MIGRATE_PCPTYPES) {
2412 if (unlikely(is_migrate_isolate(migratetype))) {
2413 free_one_page(zone, page, pfn, 0, migratetype);
2414 goto out;
2415 }
2416 migratetype = MIGRATE_MOVABLE;
2417 }
2418
2419 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2420 if (!cold)
2421 list_add(&page->lru, &pcp->lists[migratetype]);
2422 else
2423 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2424 pcp->count++;
2425 if (pcp->count >= pcp->high) {
2426 unsigned long batch = READ_ONCE(pcp->batch);
2427 free_pcppages_bulk(zone, batch, pcp);
2428 pcp->count -= batch;
2429 }
2430
2431 out:
2432 local_irq_restore(flags);
2433 }
2434
2435 /*
2436 * Free a list of 0-order pages
2437 */
2438 void free_hot_cold_page_list(struct list_head *list, bool cold)
2439 {
2440 struct page *page, *next;
2441
2442 list_for_each_entry_safe(page, next, list, lru) {
2443 trace_mm_page_free_batched(page, cold);
2444 free_hot_cold_page(page, cold);
2445 }
2446 }
2447
2448 /*
2449 * split_page takes a non-compound higher-order page, and splits it into
2450 * n (1<<order) sub-pages: page[0..n]
2451 * Each sub-page must be freed individually.
2452 *
2453 * Note: this is probably too low level an operation for use in drivers.
2454 * Please consult with lkml before using this in your driver.
2455 */
2456 void split_page(struct page *page, unsigned int order)
2457 {
2458 int i;
2459 gfp_t gfp_mask;
2460
2461 VM_BUG_ON_PAGE(PageCompound(page), page);
2462 VM_BUG_ON_PAGE(!page_count(page), page);
2463
2464 #ifdef CONFIG_KMEMCHECK
2465 /*
2466 * Split shadow pages too, because free(page[0]) would
2467 * otherwise free the whole shadow.
2468 */
2469 if (kmemcheck_page_is_tracked(page))
2470 split_page(virt_to_page(page[0].shadow), order);
2471 #endif
2472
2473 gfp_mask = get_page_owner_gfp(page);
2474 set_page_owner(page, 0, gfp_mask);
2475 for (i = 1; i < (1 << order); i++) {
2476 set_page_refcounted(page + i);
2477 set_page_owner(page + i, 0, gfp_mask);
2478 }
2479 }
2480 EXPORT_SYMBOL_GPL(split_page);
2481
2482 int __isolate_free_page(struct page *page, unsigned int order)
2483 {
2484 unsigned long watermark;
2485 struct zone *zone;
2486 int mt;
2487
2488 BUG_ON(!PageBuddy(page));
2489
2490 zone = page_zone(page);
2491 mt = get_pageblock_migratetype(page);
2492
2493 if (!is_migrate_isolate(mt)) {
2494 /* Obey watermarks as if the page was being allocated */
2495 watermark = low_wmark_pages(zone) + (1 << order);
2496 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2497 return 0;
2498
2499 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2500 }
2501
2502 /* Remove page from free list */
2503 list_del(&page->lru);
2504 zone->free_area[order].nr_free--;
2505 rmv_page_order(page);
2506
2507 set_page_owner(page, order, __GFP_MOVABLE);
2508
2509 /* Set the pageblock if the isolated page is at least a pageblock */
2510 if (order >= pageblock_order - 1) {
2511 struct page *endpage = page + (1 << order) - 1;
2512 for (; page < endpage; page += pageblock_nr_pages) {
2513 int mt = get_pageblock_migratetype(page);
2514 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2515 set_pageblock_migratetype(page,
2516 MIGRATE_MOVABLE);
2517 }
2518 }
2519
2520
2521 return 1UL << order;
2522 }
2523
2524 /*
2525 * Similar to split_page except the page is already free. As this is only
2526 * being used for migration, the migratetype of the block also changes.
2527 * As this is called with interrupts disabled, the caller is responsible
2528 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2529 * are enabled.
2530 *
2531 * Note: this is probably too low level an operation for use in drivers.
2532 * Please consult with lkml before using this in your driver.
2533 */
2534 int split_free_page(struct page *page)
2535 {
2536 unsigned int order;
2537 int nr_pages;
2538
2539 order = page_order(page);
2540
2541 nr_pages = __isolate_free_page(page, order);
2542 if (!nr_pages)
2543 return 0;
2544
2545 /* Split into individual pages */
2546 set_page_refcounted(page);
2547 split_page(page, order);
2548 return nr_pages;
2549 }
2550
2551 /*
2552 * Update NUMA hit/miss statistics
2553 *
2554 * Must be called with interrupts disabled.
2555 *
2556 * When __GFP_OTHER_NODE is set assume the node of the preferred
2557 * zone is the local node. This is useful for daemons who allocate
2558 * memory on behalf of other processes.
2559 */
2560 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2561 gfp_t flags)
2562 {
2563 #ifdef CONFIG_NUMA
2564 int local_nid = numa_node_id();
2565 enum zone_stat_item local_stat = NUMA_LOCAL;
2566
2567 if (unlikely(flags & __GFP_OTHER_NODE)) {
2568 local_stat = NUMA_OTHER;
2569 local_nid = preferred_zone->node;
2570 }
2571
2572 if (z->node == local_nid) {
2573 __inc_zone_state(z, NUMA_HIT);
2574 __inc_zone_state(z, local_stat);
2575 } else {
2576 __inc_zone_state(z, NUMA_MISS);
2577 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2578 }
2579 #endif
2580 }
2581
2582 /*
2583 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2584 */
2585 static inline
2586 struct page *buffered_rmqueue(struct zone *preferred_zone,
2587 struct zone *zone, unsigned int order,
2588 gfp_t gfp_flags, unsigned int alloc_flags,
2589 int migratetype)
2590 {
2591 unsigned long flags;
2592 struct page *page;
2593 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2594
2595 if (likely(order == 0)) {
2596 struct per_cpu_pages *pcp;
2597 struct list_head *list;
2598
2599 local_irq_save(flags);
2600 do {
2601 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2602 list = &pcp->lists[migratetype];
2603 if (list_empty(list)) {
2604 pcp->count += rmqueue_bulk(zone, 0,
2605 pcp->batch, list,
2606 migratetype, cold);
2607 if (unlikely(list_empty(list)))
2608 goto failed;
2609 }
2610
2611 if (cold)
2612 page = list_last_entry(list, struct page, lru);
2613 else
2614 page = list_first_entry(list, struct page, lru);
2615 } while (page && check_new_pcp(page));
2616
2617 __dec_zone_state(zone, NR_ALLOC_BATCH);
2618 list_del(&page->lru);
2619 pcp->count--;
2620 } else {
2621 /*
2622 * We most definitely don't want callers attempting to
2623 * allocate greater than order-1 page units with __GFP_NOFAIL.
2624 */
2625 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2626 spin_lock_irqsave(&zone->lock, flags);
2627
2628 do {
2629 page = NULL;
2630 if (alloc_flags & ALLOC_HARDER) {
2631 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2632 if (page)
2633 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2634 }
2635 if (!page)
2636 page = __rmqueue(zone, order, migratetype);
2637 } while (page && check_new_pages(page, order));
2638 spin_unlock(&zone->lock);
2639 if (!page)
2640 goto failed;
2641 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2642 __mod_zone_freepage_state(zone, -(1 << order),
2643 get_pcppage_migratetype(page));
2644 }
2645
2646 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2647 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2648 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2649
2650 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2651 zone_statistics(preferred_zone, zone, gfp_flags);
2652 local_irq_restore(flags);
2653
2654 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2655 return page;
2656
2657 failed:
2658 local_irq_restore(flags);
2659 return NULL;
2660 }
2661
2662 #ifdef CONFIG_FAIL_PAGE_ALLOC
2663
2664 static struct {
2665 struct fault_attr attr;
2666
2667 bool ignore_gfp_highmem;
2668 bool ignore_gfp_reclaim;
2669 u32 min_order;
2670 } fail_page_alloc = {
2671 .attr = FAULT_ATTR_INITIALIZER,
2672 .ignore_gfp_reclaim = true,
2673 .ignore_gfp_highmem = true,
2674 .min_order = 1,
2675 };
2676
2677 static int __init setup_fail_page_alloc(char *str)
2678 {
2679 return setup_fault_attr(&fail_page_alloc.attr, str);
2680 }
2681 __setup("fail_page_alloc=", setup_fail_page_alloc);
2682
2683 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2684 {
2685 if (order < fail_page_alloc.min_order)
2686 return false;
2687 if (gfp_mask & __GFP_NOFAIL)
2688 return false;
2689 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2690 return false;
2691 if (fail_page_alloc.ignore_gfp_reclaim &&
2692 (gfp_mask & __GFP_DIRECT_RECLAIM))
2693 return false;
2694
2695 return should_fail(&fail_page_alloc.attr, 1 << order);
2696 }
2697
2698 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2699
2700 static int __init fail_page_alloc_debugfs(void)
2701 {
2702 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2703 struct dentry *dir;
2704
2705 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2706 &fail_page_alloc.attr);
2707 if (IS_ERR(dir))
2708 return PTR_ERR(dir);
2709
2710 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2711 &fail_page_alloc.ignore_gfp_reclaim))
2712 goto fail;
2713 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2714 &fail_page_alloc.ignore_gfp_highmem))
2715 goto fail;
2716 if (!debugfs_create_u32("min-order", mode, dir,
2717 &fail_page_alloc.min_order))
2718 goto fail;
2719
2720 return 0;
2721 fail:
2722 debugfs_remove_recursive(dir);
2723
2724 return -ENOMEM;
2725 }
2726
2727 late_initcall(fail_page_alloc_debugfs);
2728
2729 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2730
2731 #else /* CONFIG_FAIL_PAGE_ALLOC */
2732
2733 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2734 {
2735 return false;
2736 }
2737
2738 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2739
2740 /*
2741 * Return true if free base pages are above 'mark'. For high-order checks it
2742 * will return true of the order-0 watermark is reached and there is at least
2743 * one free page of a suitable size. Checking now avoids taking the zone lock
2744 * to check in the allocation paths if no pages are free.
2745 */
2746 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2747 int classzone_idx, unsigned int alloc_flags,
2748 long free_pages)
2749 {
2750 long min = mark;
2751 int o;
2752 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2753
2754 /* free_pages may go negative - that's OK */
2755 free_pages -= (1 << order) - 1;
2756
2757 if (alloc_flags & ALLOC_HIGH)
2758 min -= min / 2;
2759
2760 /*
2761 * If the caller does not have rights to ALLOC_HARDER then subtract
2762 * the high-atomic reserves. This will over-estimate the size of the
2763 * atomic reserve but it avoids a search.
2764 */
2765 if (likely(!alloc_harder))
2766 free_pages -= z->nr_reserved_highatomic;
2767 else
2768 min -= min / 4;
2769
2770 #ifdef CONFIG_CMA
2771 /* If allocation can't use CMA areas don't use free CMA pages */
2772 if (!(alloc_flags & ALLOC_CMA))
2773 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2774 #endif
2775
2776 /*
2777 * Check watermarks for an order-0 allocation request. If these
2778 * are not met, then a high-order request also cannot go ahead
2779 * even if a suitable page happened to be free.
2780 */
2781 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2782 return false;
2783
2784 /* If this is an order-0 request then the watermark is fine */
2785 if (!order)
2786 return true;
2787
2788 /* For a high-order request, check at least one suitable page is free */
2789 for (o = order; o < MAX_ORDER; o++) {
2790 struct free_area *area = &z->free_area[o];
2791 int mt;
2792
2793 if (!area->nr_free)
2794 continue;
2795
2796 if (alloc_harder)
2797 return true;
2798
2799 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2800 if (!list_empty(&area->free_list[mt]))
2801 return true;
2802 }
2803
2804 #ifdef CONFIG_CMA
2805 if ((alloc_flags & ALLOC_CMA) &&
2806 !list_empty(&area->free_list[MIGRATE_CMA])) {
2807 return true;
2808 }
2809 #endif
2810 }
2811 return false;
2812 }
2813
2814 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2815 int classzone_idx, unsigned int alloc_flags)
2816 {
2817 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2818 zone_page_state(z, NR_FREE_PAGES));
2819 }
2820
2821 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2822 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2823 {
2824 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2825 long cma_pages = 0;
2826
2827 #ifdef CONFIG_CMA
2828 /* If allocation can't use CMA areas don't use free CMA pages */
2829 if (!(alloc_flags & ALLOC_CMA))
2830 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2831 #endif
2832
2833 /*
2834 * Fast check for order-0 only. If this fails then the reserves
2835 * need to be calculated. There is a corner case where the check
2836 * passes but only the high-order atomic reserve are free. If
2837 * the caller is !atomic then it'll uselessly search the free
2838 * list. That corner case is then slower but it is harmless.
2839 */
2840 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2841 return true;
2842
2843 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2844 free_pages);
2845 }
2846
2847 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2848 unsigned long mark, int classzone_idx)
2849 {
2850 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2851
2852 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2853 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2854
2855 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2856 free_pages);
2857 }
2858
2859 #ifdef CONFIG_NUMA
2860 static bool zone_local(struct zone *local_zone, struct zone *zone)
2861 {
2862 return local_zone->node == zone->node;
2863 }
2864
2865 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2866 {
2867 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2868 RECLAIM_DISTANCE;
2869 }
2870 #else /* CONFIG_NUMA */
2871 static bool zone_local(struct zone *local_zone, struct zone *zone)
2872 {
2873 return true;
2874 }
2875
2876 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2877 {
2878 return true;
2879 }
2880 #endif /* CONFIG_NUMA */
2881
2882 static void reset_alloc_batches(struct zone *preferred_zone)
2883 {
2884 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2885
2886 do {
2887 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2888 high_wmark_pages(zone) - low_wmark_pages(zone) -
2889 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2890 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2891 } while (zone++ != preferred_zone);
2892 }
2893
2894 /*
2895 * get_page_from_freelist goes through the zonelist trying to allocate
2896 * a page.
2897 */
2898 static struct page *
2899 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2900 const struct alloc_context *ac)
2901 {
2902 struct zoneref *z = ac->preferred_zoneref;
2903 struct zone *zone;
2904 bool fair_skipped = false;
2905 bool apply_fair = (alloc_flags & ALLOC_FAIR);
2906
2907 zonelist_scan:
2908 /*
2909 * Scan zonelist, looking for a zone with enough free.
2910 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2911 */
2912 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2913 ac->nodemask) {
2914 struct page *page;
2915 unsigned long mark;
2916
2917 if (cpusets_enabled() &&
2918 (alloc_flags & ALLOC_CPUSET) &&
2919 !__cpuset_zone_allowed(zone, gfp_mask))
2920 continue;
2921 /*
2922 * Distribute pages in proportion to the individual
2923 * zone size to ensure fair page aging. The zone a
2924 * page was allocated in should have no effect on the
2925 * time the page has in memory before being reclaimed.
2926 */
2927 if (apply_fair) {
2928 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2929 fair_skipped = true;
2930 continue;
2931 }
2932 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
2933 if (fair_skipped)
2934 goto reset_fair;
2935 apply_fair = false;
2936 }
2937 }
2938 /*
2939 * When allocating a page cache page for writing, we
2940 * want to get it from a zone that is within its dirty
2941 * limit, such that no single zone holds more than its
2942 * proportional share of globally allowed dirty pages.
2943 * The dirty limits take into account the zone's
2944 * lowmem reserves and high watermark so that kswapd
2945 * should be able to balance it without having to
2946 * write pages from its LRU list.
2947 *
2948 * This may look like it could increase pressure on
2949 * lower zones by failing allocations in higher zones
2950 * before they are full. But the pages that do spill
2951 * over are limited as the lower zones are protected
2952 * by this very same mechanism. It should not become
2953 * a practical burden to them.
2954 *
2955 * XXX: For now, allow allocations to potentially
2956 * exceed the per-zone dirty limit in the slowpath
2957 * (spread_dirty_pages unset) before going into reclaim,
2958 * which is important when on a NUMA setup the allowed
2959 * zones are together not big enough to reach the
2960 * global limit. The proper fix for these situations
2961 * will require awareness of zones in the
2962 * dirty-throttling and the flusher threads.
2963 */
2964 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2965 continue;
2966
2967 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2968 if (!zone_watermark_fast(zone, order, mark,
2969 ac_classzone_idx(ac), alloc_flags)) {
2970 int ret;
2971
2972 /* Checked here to keep the fast path fast */
2973 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2974 if (alloc_flags & ALLOC_NO_WATERMARKS)
2975 goto try_this_zone;
2976
2977 if (zone_reclaim_mode == 0 ||
2978 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2979 continue;
2980
2981 ret = zone_reclaim(zone, gfp_mask, order);
2982 switch (ret) {
2983 case ZONE_RECLAIM_NOSCAN:
2984 /* did not scan */
2985 continue;
2986 case ZONE_RECLAIM_FULL:
2987 /* scanned but unreclaimable */
2988 continue;
2989 default:
2990 /* did we reclaim enough */
2991 if (zone_watermark_ok(zone, order, mark,
2992 ac_classzone_idx(ac), alloc_flags))
2993 goto try_this_zone;
2994
2995 continue;
2996 }
2997 }
2998
2999 try_this_zone:
3000 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
3001 gfp_mask, alloc_flags, ac->migratetype);
3002 if (page) {
3003 prep_new_page(page, order, gfp_mask, alloc_flags);
3004
3005 /*
3006 * If this is a high-order atomic allocation then check
3007 * if the pageblock should be reserved for the future
3008 */
3009 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3010 reserve_highatomic_pageblock(page, zone, order);
3011
3012 return page;
3013 }
3014 }
3015
3016 /*
3017 * The first pass makes sure allocations are spread fairly within the
3018 * local node. However, the local node might have free pages left
3019 * after the fairness batches are exhausted, and remote zones haven't
3020 * even been considered yet. Try once more without fairness, and
3021 * include remote zones now, before entering the slowpath and waking
3022 * kswapd: prefer spilling to a remote zone over swapping locally.
3023 */
3024 if (fair_skipped) {
3025 reset_fair:
3026 apply_fair = false;
3027 fair_skipped = false;
3028 reset_alloc_batches(ac->preferred_zoneref->zone);
3029 goto zonelist_scan;
3030 }
3031
3032 return NULL;
3033 }
3034
3035 /*
3036 * Large machines with many possible nodes should not always dump per-node
3037 * meminfo in irq context.
3038 */
3039 static inline bool should_suppress_show_mem(void)
3040 {
3041 bool ret = false;
3042
3043 #if NODES_SHIFT > 8
3044 ret = in_interrupt();
3045 #endif
3046 return ret;
3047 }
3048
3049 static DEFINE_RATELIMIT_STATE(nopage_rs,
3050 DEFAULT_RATELIMIT_INTERVAL,
3051 DEFAULT_RATELIMIT_BURST);
3052
3053 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
3054 {
3055 unsigned int filter = SHOW_MEM_FILTER_NODES;
3056
3057 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3058 debug_guardpage_minorder() > 0)
3059 return;
3060
3061 /*
3062 * This documents exceptions given to allocations in certain
3063 * contexts that are allowed to allocate outside current's set
3064 * of allowed nodes.
3065 */
3066 if (!(gfp_mask & __GFP_NOMEMALLOC))
3067 if (test_thread_flag(TIF_MEMDIE) ||
3068 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3069 filter &= ~SHOW_MEM_FILTER_NODES;
3070 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3071 filter &= ~SHOW_MEM_FILTER_NODES;
3072
3073 if (fmt) {
3074 struct va_format vaf;
3075 va_list args;
3076
3077 va_start(args, fmt);
3078
3079 vaf.fmt = fmt;
3080 vaf.va = &args;
3081
3082 pr_warn("%pV", &vaf);
3083
3084 va_end(args);
3085 }
3086
3087 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3088 current->comm, order, gfp_mask, &gfp_mask);
3089 dump_stack();
3090 if (!should_suppress_show_mem())
3091 show_mem(filter);
3092 }
3093
3094 static inline struct page *
3095 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3096 const struct alloc_context *ac, unsigned long *did_some_progress)
3097 {
3098 struct oom_control oc = {
3099 .zonelist = ac->zonelist,
3100 .nodemask = ac->nodemask,
3101 .gfp_mask = gfp_mask,
3102 .order = order,
3103 };
3104 struct page *page;
3105
3106 *did_some_progress = 0;
3107
3108 /*
3109 * Acquire the oom lock. If that fails, somebody else is
3110 * making progress for us.
3111 */
3112 if (!mutex_trylock(&oom_lock)) {
3113 *did_some_progress = 1;
3114 schedule_timeout_uninterruptible(1);
3115 return NULL;
3116 }
3117
3118 /*
3119 * Go through the zonelist yet one more time, keep very high watermark
3120 * here, this is only to catch a parallel oom killing, we must fail if
3121 * we're still under heavy pressure.
3122 */
3123 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3124 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3125 if (page)
3126 goto out;
3127
3128 if (!(gfp_mask & __GFP_NOFAIL)) {
3129 /* Coredumps can quickly deplete all memory reserves */
3130 if (current->flags & PF_DUMPCORE)
3131 goto out;
3132 /* The OOM killer will not help higher order allocs */
3133 if (order > PAGE_ALLOC_COSTLY_ORDER)
3134 goto out;
3135 /* The OOM killer does not needlessly kill tasks for lowmem */
3136 if (ac->high_zoneidx < ZONE_NORMAL)
3137 goto out;
3138 if (pm_suspended_storage())
3139 goto out;
3140 /*
3141 * XXX: GFP_NOFS allocations should rather fail than rely on
3142 * other request to make a forward progress.
3143 * We are in an unfortunate situation where out_of_memory cannot
3144 * do much for this context but let's try it to at least get
3145 * access to memory reserved if the current task is killed (see
3146 * out_of_memory). Once filesystems are ready to handle allocation
3147 * failures more gracefully we should just bail out here.
3148 */
3149
3150 /* The OOM killer may not free memory on a specific node */
3151 if (gfp_mask & __GFP_THISNODE)
3152 goto out;
3153 }
3154 /* Exhausted what can be done so it's blamo time */
3155 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3156 *did_some_progress = 1;
3157
3158 if (gfp_mask & __GFP_NOFAIL) {
3159 page = get_page_from_freelist(gfp_mask, order,
3160 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3161 /*
3162 * fallback to ignore cpuset restriction if our nodes
3163 * are depleted
3164 */
3165 if (!page)
3166 page = get_page_from_freelist(gfp_mask, order,
3167 ALLOC_NO_WATERMARKS, ac);
3168 }
3169 }
3170 out:
3171 mutex_unlock(&oom_lock);
3172 return page;
3173 }
3174
3175
3176 /*
3177 * Maximum number of compaction retries wit a progress before OOM
3178 * killer is consider as the only way to move forward.
3179 */
3180 #define MAX_COMPACT_RETRIES 16
3181
3182 #ifdef CONFIG_COMPACTION
3183 /* Try memory compaction for high-order allocations before reclaim */
3184 static struct page *
3185 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3186 unsigned int alloc_flags, const struct alloc_context *ac,
3187 enum migrate_mode mode, enum compact_result *compact_result)
3188 {
3189 struct page *page;
3190 int contended_compaction;
3191
3192 if (!order)
3193 return NULL;
3194
3195 current->flags |= PF_MEMALLOC;
3196 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3197 mode, &contended_compaction);
3198 current->flags &= ~PF_MEMALLOC;
3199
3200 if (*compact_result <= COMPACT_INACTIVE)
3201 return NULL;
3202
3203 /*
3204 * At least in one zone compaction wasn't deferred or skipped, so let's
3205 * count a compaction stall
3206 */
3207 count_vm_event(COMPACTSTALL);
3208
3209 page = get_page_from_freelist(gfp_mask, order,
3210 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3211
3212 if (page) {
3213 struct zone *zone = page_zone(page);
3214
3215 zone->compact_blockskip_flush = false;
3216 compaction_defer_reset(zone, order, true);
3217 count_vm_event(COMPACTSUCCESS);
3218 return page;
3219 }
3220
3221 /*
3222 * It's bad if compaction run occurs and fails. The most likely reason
3223 * is that pages exist, but not enough to satisfy watermarks.
3224 */
3225 count_vm_event(COMPACTFAIL);
3226
3227 /*
3228 * In all zones where compaction was attempted (and not
3229 * deferred or skipped), lock contention has been detected.
3230 * For THP allocation we do not want to disrupt the others
3231 * so we fallback to base pages instead.
3232 */
3233 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3234 *compact_result = COMPACT_CONTENDED;
3235
3236 /*
3237 * If compaction was aborted due to need_resched(), we do not
3238 * want to further increase allocation latency, unless it is
3239 * khugepaged trying to collapse.
3240 */
3241 if (contended_compaction == COMPACT_CONTENDED_SCHED
3242 && !(current->flags & PF_KTHREAD))
3243 *compact_result = COMPACT_CONTENDED;
3244
3245 cond_resched();
3246
3247 return NULL;
3248 }
3249
3250 static inline bool
3251 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3252 enum compact_result compact_result, enum migrate_mode *migrate_mode,
3253 int compaction_retries)
3254 {
3255 int max_retries = MAX_COMPACT_RETRIES;
3256
3257 if (!order)
3258 return false;
3259
3260 /*
3261 * compaction considers all the zone as desperately out of memory
3262 * so it doesn't really make much sense to retry except when the
3263 * failure could be caused by weak migration mode.
3264 */
3265 if (compaction_failed(compact_result)) {
3266 if (*migrate_mode == MIGRATE_ASYNC) {
3267 *migrate_mode = MIGRATE_SYNC_LIGHT;
3268 return true;
3269 }
3270 return false;
3271 }
3272
3273 /*
3274 * make sure the compaction wasn't deferred or didn't bail out early
3275 * due to locks contention before we declare that we should give up.
3276 * But do not retry if the given zonelist is not suitable for
3277 * compaction.
3278 */
3279 if (compaction_withdrawn(compact_result))
3280 return compaction_zonelist_suitable(ac, order, alloc_flags);
3281
3282 /*
3283 * !costly requests are much more important than __GFP_REPEAT
3284 * costly ones because they are de facto nofail and invoke OOM
3285 * killer to move on while costly can fail and users are ready
3286 * to cope with that. 1/4 retries is rather arbitrary but we
3287 * would need much more detailed feedback from compaction to
3288 * make a better decision.
3289 */
3290 if (order > PAGE_ALLOC_COSTLY_ORDER)
3291 max_retries /= 4;
3292 if (compaction_retries <= max_retries)
3293 return true;
3294
3295 return false;
3296 }
3297 #else
3298 static inline struct page *
3299 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3300 unsigned int alloc_flags, const struct alloc_context *ac,
3301 enum migrate_mode mode, enum compact_result *compact_result)
3302 {
3303 *compact_result = COMPACT_SKIPPED;
3304 return NULL;
3305 }
3306
3307 static inline bool
3308 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3309 enum compact_result compact_result,
3310 enum migrate_mode *migrate_mode,
3311 int compaction_retries)
3312 {
3313 struct zone *zone;
3314 struct zoneref *z;
3315
3316 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3317 return false;
3318
3319 /*
3320 * There are setups with compaction disabled which would prefer to loop
3321 * inside the allocator rather than hit the oom killer prematurely.
3322 * Let's give them a good hope and keep retrying while the order-0
3323 * watermarks are OK.
3324 */
3325 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3326 ac->nodemask) {
3327 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3328 ac_classzone_idx(ac), alloc_flags))
3329 return true;
3330 }
3331 return false;
3332 }
3333 #endif /* CONFIG_COMPACTION */
3334
3335 /* Perform direct synchronous page reclaim */
3336 static int
3337 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3338 const struct alloc_context *ac)
3339 {
3340 struct reclaim_state reclaim_state;
3341 int progress;
3342
3343 cond_resched();
3344
3345 /* We now go into synchronous reclaim */
3346 cpuset_memory_pressure_bump();
3347 current->flags |= PF_MEMALLOC;
3348 lockdep_set_current_reclaim_state(gfp_mask);
3349 reclaim_state.reclaimed_slab = 0;
3350 current->reclaim_state = &reclaim_state;
3351
3352 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3353 ac->nodemask);
3354
3355 current->reclaim_state = NULL;
3356 lockdep_clear_current_reclaim_state();
3357 current->flags &= ~PF_MEMALLOC;
3358
3359 cond_resched();
3360
3361 return progress;
3362 }
3363
3364 /* The really slow allocator path where we enter direct reclaim */
3365 static inline struct page *
3366 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3367 unsigned int alloc_flags, const struct alloc_context *ac,
3368 unsigned long *did_some_progress)
3369 {
3370 struct page *page = NULL;
3371 bool drained = false;
3372
3373 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3374 if (unlikely(!(*did_some_progress)))
3375 return NULL;
3376
3377 retry:
3378 page = get_page_from_freelist(gfp_mask, order,
3379 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3380
3381 /*
3382 * If an allocation failed after direct reclaim, it could be because
3383 * pages are pinned on the per-cpu lists or in high alloc reserves.
3384 * Shrink them them and try again
3385 */
3386 if (!page && !drained) {
3387 unreserve_highatomic_pageblock(ac);
3388 drain_all_pages(NULL);
3389 drained = true;
3390 goto retry;
3391 }
3392
3393 return page;
3394 }
3395
3396 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3397 {
3398 struct zoneref *z;
3399 struct zone *zone;
3400
3401 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3402 ac->high_zoneidx, ac->nodemask)
3403 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3404 }
3405
3406 static inline unsigned int
3407 gfp_to_alloc_flags(gfp_t gfp_mask)
3408 {
3409 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3410
3411 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3412 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3413
3414 /*
3415 * The caller may dip into page reserves a bit more if the caller
3416 * cannot run direct reclaim, or if the caller has realtime scheduling
3417 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3418 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3419 */
3420 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3421
3422 if (gfp_mask & __GFP_ATOMIC) {
3423 /*
3424 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3425 * if it can't schedule.
3426 */
3427 if (!(gfp_mask & __GFP_NOMEMALLOC))
3428 alloc_flags |= ALLOC_HARDER;
3429 /*
3430 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3431 * comment for __cpuset_node_allowed().
3432 */
3433 alloc_flags &= ~ALLOC_CPUSET;
3434 } else if (unlikely(rt_task(current)) && !in_interrupt())
3435 alloc_flags |= ALLOC_HARDER;
3436
3437 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3438 if (gfp_mask & __GFP_MEMALLOC)
3439 alloc_flags |= ALLOC_NO_WATERMARKS;
3440 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3441 alloc_flags |= ALLOC_NO_WATERMARKS;
3442 else if (!in_interrupt() &&
3443 ((current->flags & PF_MEMALLOC) ||
3444 unlikely(test_thread_flag(TIF_MEMDIE))))
3445 alloc_flags |= ALLOC_NO_WATERMARKS;
3446 }
3447 #ifdef CONFIG_CMA
3448 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3449 alloc_flags |= ALLOC_CMA;
3450 #endif
3451 return alloc_flags;
3452 }
3453
3454 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3455 {
3456 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3457 }
3458
3459 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3460 {
3461 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3462 }
3463
3464 /*
3465 * Maximum number of reclaim retries without any progress before OOM killer
3466 * is consider as the only way to move forward.
3467 */
3468 #define MAX_RECLAIM_RETRIES 16
3469
3470 /*
3471 * Checks whether it makes sense to retry the reclaim to make a forward progress
3472 * for the given allocation request.
3473 * The reclaim feedback represented by did_some_progress (any progress during
3474 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3475 * any progress in a row) is considered as well as the reclaimable pages on the
3476 * applicable zone list (with a backoff mechanism which is a function of
3477 * no_progress_loops).
3478 *
3479 * Returns true if a retry is viable or false to enter the oom path.
3480 */
3481 static inline bool
3482 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3483 struct alloc_context *ac, int alloc_flags,
3484 bool did_some_progress, int no_progress_loops)
3485 {
3486 struct zone *zone;
3487 struct zoneref *z;
3488
3489 /*
3490 * Make sure we converge to OOM if we cannot make any progress
3491 * several times in the row.
3492 */
3493 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3494 return false;
3495
3496 /*
3497 * Keep reclaiming pages while there is a chance this will lead somewhere.
3498 * If none of the target zones can satisfy our allocation request even
3499 * if all reclaimable pages are considered then we are screwed and have
3500 * to go OOM.
3501 */
3502 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3503 ac->nodemask) {
3504 unsigned long available;
3505 unsigned long reclaimable;
3506
3507 available = reclaimable = zone_reclaimable_pages(zone);
3508 available -= DIV_ROUND_UP(no_progress_loops * available,
3509 MAX_RECLAIM_RETRIES);
3510 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3511
3512 /*
3513 * Would the allocation succeed if we reclaimed the whole
3514 * available?
3515 */
3516 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3517 ac_classzone_idx(ac), alloc_flags, available)) {
3518 /*
3519 * If we didn't make any progress and have a lot of
3520 * dirty + writeback pages then we should wait for
3521 * an IO to complete to slow down the reclaim and
3522 * prevent from pre mature OOM
3523 */
3524 if (!did_some_progress) {
3525 unsigned long writeback;
3526 unsigned long dirty;
3527
3528 writeback = zone_page_state_snapshot(zone,
3529 NR_WRITEBACK);
3530 dirty = zone_page_state_snapshot(zone, NR_FILE_DIRTY);
3531
3532 if (2*(writeback + dirty) > reclaimable) {
3533 congestion_wait(BLK_RW_ASYNC, HZ/10);
3534 return true;
3535 }
3536 }
3537
3538 /*
3539 * Memory allocation/reclaim might be called from a WQ
3540 * context and the current implementation of the WQ
3541 * concurrency control doesn't recognize that
3542 * a particular WQ is congested if the worker thread is
3543 * looping without ever sleeping. Therefore we have to
3544 * do a short sleep here rather than calling
3545 * cond_resched().
3546 */
3547 if (current->flags & PF_WQ_WORKER)
3548 schedule_timeout_uninterruptible(1);
3549 else
3550 cond_resched();
3551
3552 return true;
3553 }
3554 }
3555
3556 return false;
3557 }
3558
3559 static inline struct page *
3560 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3561 struct alloc_context *ac)
3562 {
3563 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3564 struct page *page = NULL;
3565 unsigned int alloc_flags;
3566 unsigned long did_some_progress;
3567 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3568 enum compact_result compact_result;
3569 int compaction_retries = 0;
3570 int no_progress_loops = 0;
3571
3572 /*
3573 * In the slowpath, we sanity check order to avoid ever trying to
3574 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3575 * be using allocators in order of preference for an area that is
3576 * too large.
3577 */
3578 if (order >= MAX_ORDER) {
3579 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3580 return NULL;
3581 }
3582
3583 /*
3584 * We also sanity check to catch abuse of atomic reserves being used by
3585 * callers that are not in atomic context.
3586 */
3587 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3588 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3589 gfp_mask &= ~__GFP_ATOMIC;
3590
3591 retry:
3592 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3593 wake_all_kswapds(order, ac);
3594
3595 /*
3596 * OK, we're below the kswapd watermark and have kicked background
3597 * reclaim. Now things get more complex, so set up alloc_flags according
3598 * to how we want to proceed.
3599 */
3600 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3601
3602 /* This is the last chance, in general, before the goto nopage. */
3603 page = get_page_from_freelist(gfp_mask, order,
3604 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3605 if (page)
3606 goto got_pg;
3607
3608 /* Allocate without watermarks if the context allows */
3609 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3610 /*
3611 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3612 * the allocation is high priority and these type of
3613 * allocations are system rather than user orientated
3614 */
3615 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3616 page = get_page_from_freelist(gfp_mask, order,
3617 ALLOC_NO_WATERMARKS, ac);
3618 if (page)
3619 goto got_pg;
3620 }
3621
3622 /* Caller is not willing to reclaim, we can't balance anything */
3623 if (!can_direct_reclaim) {
3624 /*
3625 * All existing users of the __GFP_NOFAIL are blockable, so warn
3626 * of any new users that actually allow this type of allocation
3627 * to fail.
3628 */
3629 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3630 goto nopage;
3631 }
3632
3633 /* Avoid recursion of direct reclaim */
3634 if (current->flags & PF_MEMALLOC) {
3635 /*
3636 * __GFP_NOFAIL request from this context is rather bizarre
3637 * because we cannot reclaim anything and only can loop waiting
3638 * for somebody to do a work for us.
3639 */
3640 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3641 cond_resched();
3642 goto retry;
3643 }
3644 goto nopage;
3645 }
3646
3647 /* Avoid allocations with no watermarks from looping endlessly */
3648 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3649 goto nopage;
3650
3651 /*
3652 * Try direct compaction. The first pass is asynchronous. Subsequent
3653 * attempts after direct reclaim are synchronous
3654 */
3655 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3656 migration_mode,
3657 &compact_result);
3658 if (page)
3659 goto got_pg;
3660
3661 /* Checks for THP-specific high-order allocations */
3662 if (is_thp_gfp_mask(gfp_mask)) {
3663 /*
3664 * If compaction is deferred for high-order allocations, it is
3665 * because sync compaction recently failed. If this is the case
3666 * and the caller requested a THP allocation, we do not want
3667 * to heavily disrupt the system, so we fail the allocation
3668 * instead of entering direct reclaim.
3669 */
3670 if (compact_result == COMPACT_DEFERRED)
3671 goto nopage;
3672
3673 /*
3674 * Compaction is contended so rather back off than cause
3675 * excessive stalls.
3676 */
3677 if(compact_result == COMPACT_CONTENDED)
3678 goto nopage;
3679 }
3680
3681 if (order && compaction_made_progress(compact_result))
3682 compaction_retries++;
3683
3684 /* Try direct reclaim and then allocating */
3685 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3686 &did_some_progress);
3687 if (page)
3688 goto got_pg;
3689
3690 /* Do not loop if specifically requested */
3691 if (gfp_mask & __GFP_NORETRY)
3692 goto noretry;
3693
3694 /*
3695 * Do not retry costly high order allocations unless they are
3696 * __GFP_REPEAT
3697 */
3698 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3699 goto noretry;
3700
3701 /*
3702 * Costly allocations might have made a progress but this doesn't mean
3703 * their order will become available due to high fragmentation so
3704 * always increment the no progress counter for them
3705 */
3706 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3707 no_progress_loops = 0;
3708 else
3709 no_progress_loops++;
3710
3711 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3712 did_some_progress > 0, no_progress_loops))
3713 goto retry;
3714
3715 /*
3716 * It doesn't make any sense to retry for the compaction if the order-0
3717 * reclaim is not able to make any progress because the current
3718 * implementation of the compaction depends on the sufficient amount
3719 * of free memory (see __compaction_suitable)
3720 */
3721 if (did_some_progress > 0 &&
3722 should_compact_retry(ac, order, alloc_flags,
3723 compact_result, &migration_mode,
3724 compaction_retries))
3725 goto retry;
3726
3727 /* Reclaim has failed us, start killing things */
3728 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3729 if (page)
3730 goto got_pg;
3731
3732 /* Retry as long as the OOM killer is making progress */
3733 if (did_some_progress) {
3734 no_progress_loops = 0;
3735 goto retry;
3736 }
3737
3738 noretry:
3739 /*
3740 * High-order allocations do not necessarily loop after direct reclaim
3741 * and reclaim/compaction depends on compaction being called after
3742 * reclaim so call directly if necessary.
3743 * It can become very expensive to allocate transparent hugepages at
3744 * fault, so use asynchronous memory compaction for THP unless it is
3745 * khugepaged trying to collapse. All other requests should tolerate
3746 * at least light sync migration.
3747 */
3748 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3749 migration_mode = MIGRATE_ASYNC;
3750 else
3751 migration_mode = MIGRATE_SYNC_LIGHT;
3752 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3753 ac, migration_mode,
3754 &compact_result);
3755 if (page)
3756 goto got_pg;
3757 nopage:
3758 warn_alloc_failed(gfp_mask, order, NULL);
3759 got_pg:
3760 return page;
3761 }
3762
3763 /*
3764 * This is the 'heart' of the zoned buddy allocator.
3765 */
3766 struct page *
3767 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3768 struct zonelist *zonelist, nodemask_t *nodemask)
3769 {
3770 struct page *page;
3771 unsigned int cpuset_mems_cookie;
3772 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
3773 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3774 struct alloc_context ac = {
3775 .high_zoneidx = gfp_zone(gfp_mask),
3776 .zonelist = zonelist,
3777 .nodemask = nodemask,
3778 .migratetype = gfpflags_to_migratetype(gfp_mask),
3779 };
3780
3781 if (cpusets_enabled()) {
3782 alloc_mask |= __GFP_HARDWALL;
3783 alloc_flags |= ALLOC_CPUSET;
3784 if (!ac.nodemask)
3785 ac.nodemask = &cpuset_current_mems_allowed;
3786 }
3787
3788 gfp_mask &= gfp_allowed_mask;
3789
3790 lockdep_trace_alloc(gfp_mask);
3791
3792 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3793
3794 if (should_fail_alloc_page(gfp_mask, order))
3795 return NULL;
3796
3797 /*
3798 * Check the zones suitable for the gfp_mask contain at least one
3799 * valid zone. It's possible to have an empty zonelist as a result
3800 * of __GFP_THISNODE and a memoryless node
3801 */
3802 if (unlikely(!zonelist->_zonerefs->zone))
3803 return NULL;
3804
3805 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3806 alloc_flags |= ALLOC_CMA;
3807
3808 retry_cpuset:
3809 cpuset_mems_cookie = read_mems_allowed_begin();
3810
3811 /* Dirty zone balancing only done in the fast path */
3812 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3813
3814 /* The preferred zone is used for statistics later */
3815 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3816 ac.high_zoneidx, ac.nodemask);
3817 if (!ac.preferred_zoneref) {
3818 page = NULL;
3819 goto no_zone;
3820 }
3821
3822 /* First allocation attempt */
3823 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3824 if (likely(page))
3825 goto out;
3826
3827 /*
3828 * Runtime PM, block IO and its error handling path can deadlock
3829 * because I/O on the device might not complete.
3830 */
3831 alloc_mask = memalloc_noio_flags(gfp_mask);
3832 ac.spread_dirty_pages = false;
3833
3834 /*
3835 * Restore the original nodemask if it was potentially replaced with
3836 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3837 */
3838 if (cpusets_enabled())
3839 ac.nodemask = nodemask;
3840 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3841
3842 no_zone:
3843 /*
3844 * When updating a task's mems_allowed, it is possible to race with
3845 * parallel threads in such a way that an allocation can fail while
3846 * the mask is being updated. If a page allocation is about to fail,
3847 * check if the cpuset changed during allocation and if so, retry.
3848 */
3849 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3850 alloc_mask = gfp_mask;
3851 goto retry_cpuset;
3852 }
3853
3854 out:
3855 if (kmemcheck_enabled && page)
3856 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3857
3858 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3859
3860 return page;
3861 }
3862 EXPORT_SYMBOL(__alloc_pages_nodemask);
3863
3864 /*
3865 * Common helper functions.
3866 */
3867 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3868 {
3869 struct page *page;
3870
3871 /*
3872 * __get_free_pages() returns a 32-bit address, which cannot represent
3873 * a highmem page
3874 */
3875 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3876
3877 page = alloc_pages(gfp_mask, order);
3878 if (!page)
3879 return 0;
3880 return (unsigned long) page_address(page);
3881 }
3882 EXPORT_SYMBOL(__get_free_pages);
3883
3884 unsigned long get_zeroed_page(gfp_t gfp_mask)
3885 {
3886 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3887 }
3888 EXPORT_SYMBOL(get_zeroed_page);
3889
3890 void __free_pages(struct page *page, unsigned int order)
3891 {
3892 if (put_page_testzero(page)) {
3893 if (order == 0)
3894 free_hot_cold_page(page, false);
3895 else
3896 __free_pages_ok(page, order);
3897 }
3898 }
3899
3900 EXPORT_SYMBOL(__free_pages);
3901
3902 void free_pages(unsigned long addr, unsigned int order)
3903 {
3904 if (addr != 0) {
3905 VM_BUG_ON(!virt_addr_valid((void *)addr));
3906 __free_pages(virt_to_page((void *)addr), order);
3907 }
3908 }
3909
3910 EXPORT_SYMBOL(free_pages);
3911
3912 /*
3913 * Page Fragment:
3914 * An arbitrary-length arbitrary-offset area of memory which resides
3915 * within a 0 or higher order page. Multiple fragments within that page
3916 * are individually refcounted, in the page's reference counter.
3917 *
3918 * The page_frag functions below provide a simple allocation framework for
3919 * page fragments. This is used by the network stack and network device
3920 * drivers to provide a backing region of memory for use as either an
3921 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3922 */
3923 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3924 gfp_t gfp_mask)
3925 {
3926 struct page *page = NULL;
3927 gfp_t gfp = gfp_mask;
3928
3929 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3930 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3931 __GFP_NOMEMALLOC;
3932 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3933 PAGE_FRAG_CACHE_MAX_ORDER);
3934 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3935 #endif
3936 if (unlikely(!page))
3937 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3938
3939 nc->va = page ? page_address(page) : NULL;
3940
3941 return page;
3942 }
3943
3944 void *__alloc_page_frag(struct page_frag_cache *nc,
3945 unsigned int fragsz, gfp_t gfp_mask)
3946 {
3947 unsigned int size = PAGE_SIZE;
3948 struct page *page;
3949 int offset;
3950
3951 if (unlikely(!nc->va)) {
3952 refill:
3953 page = __page_frag_refill(nc, gfp_mask);
3954 if (!page)
3955 return NULL;
3956
3957 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3958 /* if size can vary use size else just use PAGE_SIZE */
3959 size = nc->size;
3960 #endif
3961 /* Even if we own the page, we do not use atomic_set().
3962 * This would break get_page_unless_zero() users.
3963 */
3964 page_ref_add(page, size - 1);
3965
3966 /* reset page count bias and offset to start of new frag */
3967 nc->pfmemalloc = page_is_pfmemalloc(page);
3968 nc->pagecnt_bias = size;
3969 nc->offset = size;
3970 }
3971
3972 offset = nc->offset - fragsz;
3973 if (unlikely(offset < 0)) {
3974 page = virt_to_page(nc->va);
3975
3976 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3977 goto refill;
3978
3979 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3980 /* if size can vary use size else just use PAGE_SIZE */
3981 size = nc->size;
3982 #endif
3983 /* OK, page count is 0, we can safely set it */
3984 set_page_count(page, size);
3985
3986 /* reset page count bias and offset to start of new frag */
3987 nc->pagecnt_bias = size;
3988 offset = size - fragsz;
3989 }
3990
3991 nc->pagecnt_bias--;
3992 nc->offset = offset;
3993
3994 return nc->va + offset;
3995 }
3996 EXPORT_SYMBOL(__alloc_page_frag);
3997
3998 /*
3999 * Frees a page fragment allocated out of either a compound or order 0 page.
4000 */
4001 void __free_page_frag(void *addr)
4002 {
4003 struct page *page = virt_to_head_page(addr);
4004
4005 if (unlikely(put_page_testzero(page)))
4006 __free_pages_ok(page, compound_order(page));
4007 }
4008 EXPORT_SYMBOL(__free_page_frag);
4009
4010 /*
4011 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
4012 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
4013 * equivalent to alloc_pages.
4014 *
4015 * It should be used when the caller would like to use kmalloc, but since the
4016 * allocation is large, it has to fall back to the page allocator.
4017 */
4018 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
4019 {
4020 struct page *page;
4021
4022 page = alloc_pages(gfp_mask, order);
4023 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4024 __free_pages(page, order);
4025 page = NULL;
4026 }
4027 return page;
4028 }
4029
4030 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
4031 {
4032 struct page *page;
4033
4034 page = alloc_pages_node(nid, gfp_mask, order);
4035 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
4036 __free_pages(page, order);
4037 page = NULL;
4038 }
4039 return page;
4040 }
4041
4042 /*
4043 * __free_kmem_pages and free_kmem_pages will free pages allocated with
4044 * alloc_kmem_pages.
4045 */
4046 void __free_kmem_pages(struct page *page, unsigned int order)
4047 {
4048 memcg_kmem_uncharge(page, order);
4049 __free_pages(page, order);
4050 }
4051
4052 void free_kmem_pages(unsigned long addr, unsigned int order)
4053 {
4054 if (addr != 0) {
4055 VM_BUG_ON(!virt_addr_valid((void *)addr));
4056 __free_kmem_pages(virt_to_page((void *)addr), order);
4057 }
4058 }
4059
4060 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4061 size_t size)
4062 {
4063 if (addr) {
4064 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4065 unsigned long used = addr + PAGE_ALIGN(size);
4066
4067 split_page(virt_to_page((void *)addr), order);
4068 while (used < alloc_end) {
4069 free_page(used);
4070 used += PAGE_SIZE;
4071 }
4072 }
4073 return (void *)addr;
4074 }
4075
4076 /**
4077 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4078 * @size: the number of bytes to allocate
4079 * @gfp_mask: GFP flags for the allocation
4080 *
4081 * This function is similar to alloc_pages(), except that it allocates the
4082 * minimum number of pages to satisfy the request. alloc_pages() can only
4083 * allocate memory in power-of-two pages.
4084 *
4085 * This function is also limited by MAX_ORDER.
4086 *
4087 * Memory allocated by this function must be released by free_pages_exact().
4088 */
4089 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4090 {
4091 unsigned int order = get_order(size);
4092 unsigned long addr;
4093
4094 addr = __get_free_pages(gfp_mask, order);
4095 return make_alloc_exact(addr, order, size);
4096 }
4097 EXPORT_SYMBOL(alloc_pages_exact);
4098
4099 /**
4100 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4101 * pages on a node.
4102 * @nid: the preferred node ID where memory should be allocated
4103 * @size: the number of bytes to allocate
4104 * @gfp_mask: GFP flags for the allocation
4105 *
4106 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4107 * back.
4108 */
4109 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4110 {
4111 unsigned int order = get_order(size);
4112 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4113 if (!p)
4114 return NULL;
4115 return make_alloc_exact((unsigned long)page_address(p), order, size);
4116 }
4117
4118 /**
4119 * free_pages_exact - release memory allocated via alloc_pages_exact()
4120 * @virt: the value returned by alloc_pages_exact.
4121 * @size: size of allocation, same value as passed to alloc_pages_exact().
4122 *
4123 * Release the memory allocated by a previous call to alloc_pages_exact.
4124 */
4125 void free_pages_exact(void *virt, size_t size)
4126 {
4127 unsigned long addr = (unsigned long)virt;
4128 unsigned long end = addr + PAGE_ALIGN(size);
4129
4130 while (addr < end) {
4131 free_page(addr);
4132 addr += PAGE_SIZE;
4133 }
4134 }
4135 EXPORT_SYMBOL(free_pages_exact);
4136
4137 /**
4138 * nr_free_zone_pages - count number of pages beyond high watermark
4139 * @offset: The zone index of the highest zone
4140 *
4141 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4142 * high watermark within all zones at or below a given zone index. For each
4143 * zone, the number of pages is calculated as:
4144 * managed_pages - high_pages
4145 */
4146 static unsigned long nr_free_zone_pages(int offset)
4147 {
4148 struct zoneref *z;
4149 struct zone *zone;
4150
4151 /* Just pick one node, since fallback list is circular */
4152 unsigned long sum = 0;
4153
4154 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4155
4156 for_each_zone_zonelist(zone, z, zonelist, offset) {
4157 unsigned long size = zone->managed_pages;
4158 unsigned long high = high_wmark_pages(zone);
4159 if (size > high)
4160 sum += size - high;
4161 }
4162
4163 return sum;
4164 }
4165
4166 /**
4167 * nr_free_buffer_pages - count number of pages beyond high watermark
4168 *
4169 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4170 * watermark within ZONE_DMA and ZONE_NORMAL.
4171 */
4172 unsigned long nr_free_buffer_pages(void)
4173 {
4174 return nr_free_zone_pages(gfp_zone(GFP_USER));
4175 }
4176 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4177
4178 /**
4179 * nr_free_pagecache_pages - count number of pages beyond high watermark
4180 *
4181 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4182 * high watermark within all zones.
4183 */
4184 unsigned long nr_free_pagecache_pages(void)
4185 {
4186 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4187 }
4188
4189 static inline void show_node(struct zone *zone)
4190 {
4191 if (IS_ENABLED(CONFIG_NUMA))
4192 printk("Node %d ", zone_to_nid(zone));
4193 }
4194
4195 long si_mem_available(void)
4196 {
4197 long available;
4198 unsigned long pagecache;
4199 unsigned long wmark_low = 0;
4200 unsigned long pages[NR_LRU_LISTS];
4201 struct zone *zone;
4202 int lru;
4203
4204 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4205 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4206
4207 for_each_zone(zone)
4208 wmark_low += zone->watermark[WMARK_LOW];
4209
4210 /*
4211 * Estimate the amount of memory available for userspace allocations,
4212 * without causing swapping.
4213 */
4214 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4215
4216 /*
4217 * Not all the page cache can be freed, otherwise the system will
4218 * start swapping. Assume at least half of the page cache, or the
4219 * low watermark worth of cache, needs to stay.
4220 */
4221 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4222 pagecache -= min(pagecache / 2, wmark_low);
4223 available += pagecache;
4224
4225 /*
4226 * Part of the reclaimable slab consists of items that are in use,
4227 * and cannot be freed. Cap this estimate at the low watermark.
4228 */
4229 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4230 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4231
4232 if (available < 0)
4233 available = 0;
4234 return available;
4235 }
4236 EXPORT_SYMBOL_GPL(si_mem_available);
4237
4238 void si_meminfo(struct sysinfo *val)
4239 {
4240 val->totalram = totalram_pages;
4241 val->sharedram = global_page_state(NR_SHMEM);
4242 val->freeram = global_page_state(NR_FREE_PAGES);
4243 val->bufferram = nr_blockdev_pages();
4244 val->totalhigh = totalhigh_pages;
4245 val->freehigh = nr_free_highpages();
4246 val->mem_unit = PAGE_SIZE;
4247 }
4248
4249 EXPORT_SYMBOL(si_meminfo);
4250
4251 #ifdef CONFIG_NUMA
4252 void si_meminfo_node(struct sysinfo *val, int nid)
4253 {
4254 int zone_type; /* needs to be signed */
4255 unsigned long managed_pages = 0;
4256 unsigned long managed_highpages = 0;
4257 unsigned long free_highpages = 0;
4258 pg_data_t *pgdat = NODE_DATA(nid);
4259
4260 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4261 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4262 val->totalram = managed_pages;
4263 val->sharedram = node_page_state(nid, NR_SHMEM);
4264 val->freeram = node_page_state(nid, NR_FREE_PAGES);
4265 #ifdef CONFIG_HIGHMEM
4266 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4267 struct zone *zone = &pgdat->node_zones[zone_type];
4268
4269 if (is_highmem(zone)) {
4270 managed_highpages += zone->managed_pages;
4271 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4272 }
4273 }
4274 val->totalhigh = managed_highpages;
4275 val->freehigh = free_highpages;
4276 #else
4277 val->totalhigh = managed_highpages;
4278 val->freehigh = free_highpages;
4279 #endif
4280 val->mem_unit = PAGE_SIZE;
4281 }
4282 #endif
4283
4284 /*
4285 * Determine whether the node should be displayed or not, depending on whether
4286 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4287 */
4288 bool skip_free_areas_node(unsigned int flags, int nid)
4289 {
4290 bool ret = false;
4291 unsigned int cpuset_mems_cookie;
4292
4293 if (!(flags & SHOW_MEM_FILTER_NODES))
4294 goto out;
4295
4296 do {
4297 cpuset_mems_cookie = read_mems_allowed_begin();
4298 ret = !node_isset(nid, cpuset_current_mems_allowed);
4299 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4300 out:
4301 return ret;
4302 }
4303
4304 #define K(x) ((x) << (PAGE_SHIFT-10))
4305
4306 static void show_migration_types(unsigned char type)
4307 {
4308 static const char types[MIGRATE_TYPES] = {
4309 [MIGRATE_UNMOVABLE] = 'U',
4310 [MIGRATE_MOVABLE] = 'M',
4311 [MIGRATE_RECLAIMABLE] = 'E',
4312 [MIGRATE_HIGHATOMIC] = 'H',
4313 #ifdef CONFIG_CMA
4314 [MIGRATE_CMA] = 'C',
4315 #endif
4316 #ifdef CONFIG_MEMORY_ISOLATION
4317 [MIGRATE_ISOLATE] = 'I',
4318 #endif
4319 };
4320 char tmp[MIGRATE_TYPES + 1];
4321 char *p = tmp;
4322 int i;
4323
4324 for (i = 0; i < MIGRATE_TYPES; i++) {
4325 if (type & (1 << i))
4326 *p++ = types[i];
4327 }
4328
4329 *p = '\0';
4330 printk("(%s) ", tmp);
4331 }
4332
4333 /*
4334 * Show free area list (used inside shift_scroll-lock stuff)
4335 * We also calculate the percentage fragmentation. We do this by counting the
4336 * memory on each free list with the exception of the first item on the list.
4337 *
4338 * Bits in @filter:
4339 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4340 * cpuset.
4341 */
4342 void show_free_areas(unsigned int filter)
4343 {
4344 unsigned long free_pcp = 0;
4345 int cpu;
4346 struct zone *zone;
4347
4348 for_each_populated_zone(zone) {
4349 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4350 continue;
4351
4352 for_each_online_cpu(cpu)
4353 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4354 }
4355
4356 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4357 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4358 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4359 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4360 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4361 " free:%lu free_pcp:%lu free_cma:%lu\n",
4362 global_page_state(NR_ACTIVE_ANON),
4363 global_page_state(NR_INACTIVE_ANON),
4364 global_page_state(NR_ISOLATED_ANON),
4365 global_page_state(NR_ACTIVE_FILE),
4366 global_page_state(NR_INACTIVE_FILE),
4367 global_page_state(NR_ISOLATED_FILE),
4368 global_page_state(NR_UNEVICTABLE),
4369 global_page_state(NR_FILE_DIRTY),
4370 global_page_state(NR_WRITEBACK),
4371 global_page_state(NR_UNSTABLE_NFS),
4372 global_page_state(NR_SLAB_RECLAIMABLE),
4373 global_page_state(NR_SLAB_UNRECLAIMABLE),
4374 global_page_state(NR_FILE_MAPPED),
4375 global_page_state(NR_SHMEM),
4376 global_page_state(NR_PAGETABLE),
4377 global_page_state(NR_BOUNCE),
4378 global_page_state(NR_FREE_PAGES),
4379 free_pcp,
4380 global_page_state(NR_FREE_CMA_PAGES));
4381
4382 for_each_populated_zone(zone) {
4383 int i;
4384
4385 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4386 continue;
4387
4388 free_pcp = 0;
4389 for_each_online_cpu(cpu)
4390 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4391
4392 show_node(zone);
4393 printk("%s"
4394 " free:%lukB"
4395 " min:%lukB"
4396 " low:%lukB"
4397 " high:%lukB"
4398 " active_anon:%lukB"
4399 " inactive_anon:%lukB"
4400 " active_file:%lukB"
4401 " inactive_file:%lukB"
4402 " unevictable:%lukB"
4403 " isolated(anon):%lukB"
4404 " isolated(file):%lukB"
4405 " present:%lukB"
4406 " managed:%lukB"
4407 " mlocked:%lukB"
4408 " dirty:%lukB"
4409 " writeback:%lukB"
4410 " mapped:%lukB"
4411 " shmem:%lukB"
4412 " slab_reclaimable:%lukB"
4413 " slab_unreclaimable:%lukB"
4414 " kernel_stack:%lukB"
4415 " pagetables:%lukB"
4416 " unstable:%lukB"
4417 " bounce:%lukB"
4418 " free_pcp:%lukB"
4419 " local_pcp:%ukB"
4420 " free_cma:%lukB"
4421 " writeback_tmp:%lukB"
4422 " pages_scanned:%lu"
4423 " all_unreclaimable? %s"
4424 "\n",
4425 zone->name,
4426 K(zone_page_state(zone, NR_FREE_PAGES)),
4427 K(min_wmark_pages(zone)),
4428 K(low_wmark_pages(zone)),
4429 K(high_wmark_pages(zone)),
4430 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4431 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4432 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4433 K(zone_page_state(zone, NR_INACTIVE_FILE)),
4434 K(zone_page_state(zone, NR_UNEVICTABLE)),
4435 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4436 K(zone_page_state(zone, NR_ISOLATED_FILE)),
4437 K(zone->present_pages),
4438 K(zone->managed_pages),
4439 K(zone_page_state(zone, NR_MLOCK)),
4440 K(zone_page_state(zone, NR_FILE_DIRTY)),
4441 K(zone_page_state(zone, NR_WRITEBACK)),
4442 K(zone_page_state(zone, NR_FILE_MAPPED)),
4443 K(zone_page_state(zone, NR_SHMEM)),
4444 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4445 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4446 zone_page_state(zone, NR_KERNEL_STACK) *
4447 THREAD_SIZE / 1024,
4448 K(zone_page_state(zone, NR_PAGETABLE)),
4449 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4450 K(zone_page_state(zone, NR_BOUNCE)),
4451 K(free_pcp),
4452 K(this_cpu_read(zone->pageset->pcp.count)),
4453 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4454 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
4455 K(zone_page_state(zone, NR_PAGES_SCANNED)),
4456 (!zone_reclaimable(zone) ? "yes" : "no")
4457 );
4458 printk("lowmem_reserve[]:");
4459 for (i = 0; i < MAX_NR_ZONES; i++)
4460 printk(" %ld", zone->lowmem_reserve[i]);
4461 printk("\n");
4462 }
4463
4464 for_each_populated_zone(zone) {
4465 unsigned int order;
4466 unsigned long nr[MAX_ORDER], flags, total = 0;
4467 unsigned char types[MAX_ORDER];
4468
4469 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4470 continue;
4471 show_node(zone);
4472 printk("%s: ", zone->name);
4473
4474 spin_lock_irqsave(&zone->lock, flags);
4475 for (order = 0; order < MAX_ORDER; order++) {
4476 struct free_area *area = &zone->free_area[order];
4477 int type;
4478
4479 nr[order] = area->nr_free;
4480 total += nr[order] << order;
4481
4482 types[order] = 0;
4483 for (type = 0; type < MIGRATE_TYPES; type++) {
4484 if (!list_empty(&area->free_list[type]))
4485 types[order] |= 1 << type;
4486 }
4487 }
4488 spin_unlock_irqrestore(&zone->lock, flags);
4489 for (order = 0; order < MAX_ORDER; order++) {
4490 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4491 if (nr[order])
4492 show_migration_types(types[order]);
4493 }
4494 printk("= %lukB\n", K(total));
4495 }
4496
4497 hugetlb_show_meminfo();
4498
4499 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4500
4501 show_swap_cache_info();
4502 }
4503
4504 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4505 {
4506 zoneref->zone = zone;
4507 zoneref->zone_idx = zone_idx(zone);
4508 }
4509
4510 /*
4511 * Builds allocation fallback zone lists.
4512 *
4513 * Add all populated zones of a node to the zonelist.
4514 */
4515 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4516 int nr_zones)
4517 {
4518 struct zone *zone;
4519 enum zone_type zone_type = MAX_NR_ZONES;
4520
4521 do {
4522 zone_type--;
4523 zone = pgdat->node_zones + zone_type;
4524 if (populated_zone(zone)) {
4525 zoneref_set_zone(zone,
4526 &zonelist->_zonerefs[nr_zones++]);
4527 check_highest_zone(zone_type);
4528 }
4529 } while (zone_type);
4530
4531 return nr_zones;
4532 }
4533
4534
4535 /*
4536 * zonelist_order:
4537 * 0 = automatic detection of better ordering.
4538 * 1 = order by ([node] distance, -zonetype)
4539 * 2 = order by (-zonetype, [node] distance)
4540 *
4541 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4542 * the same zonelist. So only NUMA can configure this param.
4543 */
4544 #define ZONELIST_ORDER_DEFAULT 0
4545 #define ZONELIST_ORDER_NODE 1
4546 #define ZONELIST_ORDER_ZONE 2
4547
4548 /* zonelist order in the kernel.
4549 * set_zonelist_order() will set this to NODE or ZONE.
4550 */
4551 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4552 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4553
4554
4555 #ifdef CONFIG_NUMA
4556 /* The value user specified ....changed by config */
4557 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4558 /* string for sysctl */
4559 #define NUMA_ZONELIST_ORDER_LEN 16
4560 char numa_zonelist_order[16] = "default";
4561
4562 /*
4563 * interface for configure zonelist ordering.
4564 * command line option "numa_zonelist_order"
4565 * = "[dD]efault - default, automatic configuration.
4566 * = "[nN]ode - order by node locality, then by zone within node
4567 * = "[zZ]one - order by zone, then by locality within zone
4568 */
4569
4570 static int __parse_numa_zonelist_order(char *s)
4571 {
4572 if (*s == 'd' || *s == 'D') {
4573 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4574 } else if (*s == 'n' || *s == 'N') {
4575 user_zonelist_order = ZONELIST_ORDER_NODE;
4576 } else if (*s == 'z' || *s == 'Z') {
4577 user_zonelist_order = ZONELIST_ORDER_ZONE;
4578 } else {
4579 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4580 return -EINVAL;
4581 }
4582 return 0;
4583 }
4584
4585 static __init int setup_numa_zonelist_order(char *s)
4586 {
4587 int ret;
4588
4589 if (!s)
4590 return 0;
4591
4592 ret = __parse_numa_zonelist_order(s);
4593 if (ret == 0)
4594 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4595
4596 return ret;
4597 }
4598 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4599
4600 /*
4601 * sysctl handler for numa_zonelist_order
4602 */
4603 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4604 void __user *buffer, size_t *length,
4605 loff_t *ppos)
4606 {
4607 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4608 int ret;
4609 static DEFINE_MUTEX(zl_order_mutex);
4610
4611 mutex_lock(&zl_order_mutex);
4612 if (write) {
4613 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4614 ret = -EINVAL;
4615 goto out;
4616 }
4617 strcpy(saved_string, (char *)table->data);
4618 }
4619 ret = proc_dostring(table, write, buffer, length, ppos);
4620 if (ret)
4621 goto out;
4622 if (write) {
4623 int oldval = user_zonelist_order;
4624
4625 ret = __parse_numa_zonelist_order((char *)table->data);
4626 if (ret) {
4627 /*
4628 * bogus value. restore saved string
4629 */
4630 strncpy((char *)table->data, saved_string,
4631 NUMA_ZONELIST_ORDER_LEN);
4632 user_zonelist_order = oldval;
4633 } else if (oldval != user_zonelist_order) {
4634 mutex_lock(&zonelists_mutex);
4635 build_all_zonelists(NULL, NULL);
4636 mutex_unlock(&zonelists_mutex);
4637 }
4638 }
4639 out:
4640 mutex_unlock(&zl_order_mutex);
4641 return ret;
4642 }
4643
4644
4645 #define MAX_NODE_LOAD (nr_online_nodes)
4646 static int node_load[MAX_NUMNODES];
4647
4648 /**
4649 * find_next_best_node - find the next node that should appear in a given node's fallback list
4650 * @node: node whose fallback list we're appending
4651 * @used_node_mask: nodemask_t of already used nodes
4652 *
4653 * We use a number of factors to determine which is the next node that should
4654 * appear on a given node's fallback list. The node should not have appeared
4655 * already in @node's fallback list, and it should be the next closest node
4656 * according to the distance array (which contains arbitrary distance values
4657 * from each node to each node in the system), and should also prefer nodes
4658 * with no CPUs, since presumably they'll have very little allocation pressure
4659 * on them otherwise.
4660 * It returns -1 if no node is found.
4661 */
4662 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4663 {
4664 int n, val;
4665 int min_val = INT_MAX;
4666 int best_node = NUMA_NO_NODE;
4667 const struct cpumask *tmp = cpumask_of_node(0);
4668
4669 /* Use the local node if we haven't already */
4670 if (!node_isset(node, *used_node_mask)) {
4671 node_set(node, *used_node_mask);
4672 return node;
4673 }
4674
4675 for_each_node_state(n, N_MEMORY) {
4676
4677 /* Don't want a node to appear more than once */
4678 if (node_isset(n, *used_node_mask))
4679 continue;
4680
4681 /* Use the distance array to find the distance */
4682 val = node_distance(node, n);
4683
4684 /* Penalize nodes under us ("prefer the next node") */
4685 val += (n < node);
4686
4687 /* Give preference to headless and unused nodes */
4688 tmp = cpumask_of_node(n);
4689 if (!cpumask_empty(tmp))
4690 val += PENALTY_FOR_NODE_WITH_CPUS;
4691
4692 /* Slight preference for less loaded node */
4693 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4694 val += node_load[n];
4695
4696 if (val < min_val) {
4697 min_val = val;
4698 best_node = n;
4699 }
4700 }
4701
4702 if (best_node >= 0)
4703 node_set(best_node, *used_node_mask);
4704
4705 return best_node;
4706 }
4707
4708
4709 /*
4710 * Build zonelists ordered by node and zones within node.
4711 * This results in maximum locality--normal zone overflows into local
4712 * DMA zone, if any--but risks exhausting DMA zone.
4713 */
4714 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4715 {
4716 int j;
4717 struct zonelist *zonelist;
4718
4719 zonelist = &pgdat->node_zonelists[0];
4720 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4721 ;
4722 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4723 zonelist->_zonerefs[j].zone = NULL;
4724 zonelist->_zonerefs[j].zone_idx = 0;
4725 }
4726
4727 /*
4728 * Build gfp_thisnode zonelists
4729 */
4730 static void build_thisnode_zonelists(pg_data_t *pgdat)
4731 {
4732 int j;
4733 struct zonelist *zonelist;
4734
4735 zonelist = &pgdat->node_zonelists[1];
4736 j = build_zonelists_node(pgdat, zonelist, 0);
4737 zonelist->_zonerefs[j].zone = NULL;
4738 zonelist->_zonerefs[j].zone_idx = 0;
4739 }
4740
4741 /*
4742 * Build zonelists ordered by zone and nodes within zones.
4743 * This results in conserving DMA zone[s] until all Normal memory is
4744 * exhausted, but results in overflowing to remote node while memory
4745 * may still exist in local DMA zone.
4746 */
4747 static int node_order[MAX_NUMNODES];
4748
4749 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4750 {
4751 int pos, j, node;
4752 int zone_type; /* needs to be signed */
4753 struct zone *z;
4754 struct zonelist *zonelist;
4755
4756 zonelist = &pgdat->node_zonelists[0];
4757 pos = 0;
4758 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4759 for (j = 0; j < nr_nodes; j++) {
4760 node = node_order[j];
4761 z = &NODE_DATA(node)->node_zones[zone_type];
4762 if (populated_zone(z)) {
4763 zoneref_set_zone(z,
4764 &zonelist->_zonerefs[pos++]);
4765 check_highest_zone(zone_type);
4766 }
4767 }
4768 }
4769 zonelist->_zonerefs[pos].zone = NULL;
4770 zonelist->_zonerefs[pos].zone_idx = 0;
4771 }
4772
4773 #if defined(CONFIG_64BIT)
4774 /*
4775 * Devices that require DMA32/DMA are relatively rare and do not justify a
4776 * penalty to every machine in case the specialised case applies. Default
4777 * to Node-ordering on 64-bit NUMA machines
4778 */
4779 static int default_zonelist_order(void)
4780 {
4781 return ZONELIST_ORDER_NODE;
4782 }
4783 #else
4784 /*
4785 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4786 * by the kernel. If processes running on node 0 deplete the low memory zone
4787 * then reclaim will occur more frequency increasing stalls and potentially
4788 * be easier to OOM if a large percentage of the zone is under writeback or
4789 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4790 * Hence, default to zone ordering on 32-bit.
4791 */
4792 static int default_zonelist_order(void)
4793 {
4794 return ZONELIST_ORDER_ZONE;
4795 }
4796 #endif /* CONFIG_64BIT */
4797
4798 static void set_zonelist_order(void)
4799 {
4800 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4801 current_zonelist_order = default_zonelist_order();
4802 else
4803 current_zonelist_order = user_zonelist_order;
4804 }
4805
4806 static void build_zonelists(pg_data_t *pgdat)
4807 {
4808 int i, node, load;
4809 nodemask_t used_mask;
4810 int local_node, prev_node;
4811 struct zonelist *zonelist;
4812 unsigned int order = current_zonelist_order;
4813
4814 /* initialize zonelists */
4815 for (i = 0; i < MAX_ZONELISTS; i++) {
4816 zonelist = pgdat->node_zonelists + i;
4817 zonelist->_zonerefs[0].zone = NULL;
4818 zonelist->_zonerefs[0].zone_idx = 0;
4819 }
4820
4821 /* NUMA-aware ordering of nodes */
4822 local_node = pgdat->node_id;
4823 load = nr_online_nodes;
4824 prev_node = local_node;
4825 nodes_clear(used_mask);
4826
4827 memset(node_order, 0, sizeof(node_order));
4828 i = 0;
4829
4830 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4831 /*
4832 * We don't want to pressure a particular node.
4833 * So adding penalty to the first node in same
4834 * distance group to make it round-robin.
4835 */
4836 if (node_distance(local_node, node) !=
4837 node_distance(local_node, prev_node))
4838 node_load[node] = load;
4839
4840 prev_node = node;
4841 load--;
4842 if (order == ZONELIST_ORDER_NODE)
4843 build_zonelists_in_node_order(pgdat, node);
4844 else
4845 node_order[i++] = node; /* remember order */
4846 }
4847
4848 if (order == ZONELIST_ORDER_ZONE) {
4849 /* calculate node order -- i.e., DMA last! */
4850 build_zonelists_in_zone_order(pgdat, i);
4851 }
4852
4853 build_thisnode_zonelists(pgdat);
4854 }
4855
4856 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4857 /*
4858 * Return node id of node used for "local" allocations.
4859 * I.e., first node id of first zone in arg node's generic zonelist.
4860 * Used for initializing percpu 'numa_mem', which is used primarily
4861 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4862 */
4863 int local_memory_node(int node)
4864 {
4865 struct zoneref *z;
4866
4867 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4868 gfp_zone(GFP_KERNEL),
4869 NULL);
4870 return z->zone->node;
4871 }
4872 #endif
4873
4874 #else /* CONFIG_NUMA */
4875
4876 static void set_zonelist_order(void)
4877 {
4878 current_zonelist_order = ZONELIST_ORDER_ZONE;
4879 }
4880
4881 static void build_zonelists(pg_data_t *pgdat)
4882 {
4883 int node, local_node;
4884 enum zone_type j;
4885 struct zonelist *zonelist;
4886
4887 local_node = pgdat->node_id;
4888
4889 zonelist = &pgdat->node_zonelists[0];
4890 j = build_zonelists_node(pgdat, zonelist, 0);
4891
4892 /*
4893 * Now we build the zonelist so that it contains the zones
4894 * of all the other nodes.
4895 * We don't want to pressure a particular node, so when
4896 * building the zones for node N, we make sure that the
4897 * zones coming right after the local ones are those from
4898 * node N+1 (modulo N)
4899 */
4900 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4901 if (!node_online(node))
4902 continue;
4903 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4904 }
4905 for (node = 0; node < local_node; node++) {
4906 if (!node_online(node))
4907 continue;
4908 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4909 }
4910
4911 zonelist->_zonerefs[j].zone = NULL;
4912 zonelist->_zonerefs[j].zone_idx = 0;
4913 }
4914
4915 #endif /* CONFIG_NUMA */
4916
4917 /*
4918 * Boot pageset table. One per cpu which is going to be used for all
4919 * zones and all nodes. The parameters will be set in such a way
4920 * that an item put on a list will immediately be handed over to
4921 * the buddy list. This is safe since pageset manipulation is done
4922 * with interrupts disabled.
4923 *
4924 * The boot_pagesets must be kept even after bootup is complete for
4925 * unused processors and/or zones. They do play a role for bootstrapping
4926 * hotplugged processors.
4927 *
4928 * zoneinfo_show() and maybe other functions do
4929 * not check if the processor is online before following the pageset pointer.
4930 * Other parts of the kernel may not check if the zone is available.
4931 */
4932 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4933 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4934 static void setup_zone_pageset(struct zone *zone);
4935
4936 /*
4937 * Global mutex to protect against size modification of zonelists
4938 * as well as to serialize pageset setup for the new populated zone.
4939 */
4940 DEFINE_MUTEX(zonelists_mutex);
4941
4942 /* return values int ....just for stop_machine() */
4943 static int __build_all_zonelists(void *data)
4944 {
4945 int nid;
4946 int cpu;
4947 pg_data_t *self = data;
4948
4949 #ifdef CONFIG_NUMA
4950 memset(node_load, 0, sizeof(node_load));
4951 #endif
4952
4953 if (self && !node_online(self->node_id)) {
4954 build_zonelists(self);
4955 }
4956
4957 for_each_online_node(nid) {
4958 pg_data_t *pgdat = NODE_DATA(nid);
4959
4960 build_zonelists(pgdat);
4961 }
4962
4963 /*
4964 * Initialize the boot_pagesets that are going to be used
4965 * for bootstrapping processors. The real pagesets for
4966 * each zone will be allocated later when the per cpu
4967 * allocator is available.
4968 *
4969 * boot_pagesets are used also for bootstrapping offline
4970 * cpus if the system is already booted because the pagesets
4971 * are needed to initialize allocators on a specific cpu too.
4972 * F.e. the percpu allocator needs the page allocator which
4973 * needs the percpu allocator in order to allocate its pagesets
4974 * (a chicken-egg dilemma).
4975 */
4976 for_each_possible_cpu(cpu) {
4977 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4978
4979 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4980 /*
4981 * We now know the "local memory node" for each node--
4982 * i.e., the node of the first zone in the generic zonelist.
4983 * Set up numa_mem percpu variable for on-line cpus. During
4984 * boot, only the boot cpu should be on-line; we'll init the
4985 * secondary cpus' numa_mem as they come on-line. During
4986 * node/memory hotplug, we'll fixup all on-line cpus.
4987 */
4988 if (cpu_online(cpu))
4989 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4990 #endif
4991 }
4992
4993 return 0;
4994 }
4995
4996 static noinline void __init
4997 build_all_zonelists_init(void)
4998 {
4999 __build_all_zonelists(NULL);
5000 mminit_verify_zonelist();
5001 cpuset_init_current_mems_allowed();
5002 }
5003
5004 /*
5005 * Called with zonelists_mutex held always
5006 * unless system_state == SYSTEM_BOOTING.
5007 *
5008 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5009 * [we're only called with non-NULL zone through __meminit paths] and
5010 * (2) call of __init annotated helper build_all_zonelists_init
5011 * [protected by SYSTEM_BOOTING].
5012 */
5013 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5014 {
5015 set_zonelist_order();
5016
5017 if (system_state == SYSTEM_BOOTING) {
5018 build_all_zonelists_init();
5019 } else {
5020 #ifdef CONFIG_MEMORY_HOTPLUG
5021 if (zone)
5022 setup_zone_pageset(zone);
5023 #endif
5024 /* we have to stop all cpus to guarantee there is no user
5025 of zonelist */
5026 stop_machine(__build_all_zonelists, pgdat, NULL);
5027 /* cpuset refresh routine should be here */
5028 }
5029 vm_total_pages = nr_free_pagecache_pages();
5030 /*
5031 * Disable grouping by mobility if the number of pages in the
5032 * system is too low to allow the mechanism to work. It would be
5033 * more accurate, but expensive to check per-zone. This check is
5034 * made on memory-hotadd so a system can start with mobility
5035 * disabled and enable it later
5036 */
5037 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5038 page_group_by_mobility_disabled = 1;
5039 else
5040 page_group_by_mobility_disabled = 0;
5041
5042 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5043 nr_online_nodes,
5044 zonelist_order_name[current_zonelist_order],
5045 page_group_by_mobility_disabled ? "off" : "on",
5046 vm_total_pages);
5047 #ifdef CONFIG_NUMA
5048 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5049 #endif
5050 }
5051
5052 /*
5053 * Helper functions to size the waitqueue hash table.
5054 * Essentially these want to choose hash table sizes sufficiently
5055 * large so that collisions trying to wait on pages are rare.
5056 * But in fact, the number of active page waitqueues on typical
5057 * systems is ridiculously low, less than 200. So this is even
5058 * conservative, even though it seems large.
5059 *
5060 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
5061 * waitqueues, i.e. the size of the waitq table given the number of pages.
5062 */
5063 #define PAGES_PER_WAITQUEUE 256
5064
5065 #ifndef CONFIG_MEMORY_HOTPLUG
5066 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5067 {
5068 unsigned long size = 1;
5069
5070 pages /= PAGES_PER_WAITQUEUE;
5071
5072 while (size < pages)
5073 size <<= 1;
5074
5075 /*
5076 * Once we have dozens or even hundreds of threads sleeping
5077 * on IO we've got bigger problems than wait queue collision.
5078 * Limit the size of the wait table to a reasonable size.
5079 */
5080 size = min(size, 4096UL);
5081
5082 return max(size, 4UL);
5083 }
5084 #else
5085 /*
5086 * A zone's size might be changed by hot-add, so it is not possible to determine
5087 * a suitable size for its wait_table. So we use the maximum size now.
5088 *
5089 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
5090 *
5091 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
5092 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
5093 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
5094 *
5095 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
5096 * or more by the traditional way. (See above). It equals:
5097 *
5098 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
5099 * ia64(16K page size) : = ( 8G + 4M)byte.
5100 * powerpc (64K page size) : = (32G +16M)byte.
5101 */
5102 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5103 {
5104 return 4096UL;
5105 }
5106 #endif
5107
5108 /*
5109 * This is an integer logarithm so that shifts can be used later
5110 * to extract the more random high bits from the multiplicative
5111 * hash function before the remainder is taken.
5112 */
5113 static inline unsigned long wait_table_bits(unsigned long size)
5114 {
5115 return ffz(~size);
5116 }
5117
5118 /*
5119 * Initially all pages are reserved - free ones are freed
5120 * up by free_all_bootmem() once the early boot process is
5121 * done. Non-atomic initialization, single-pass.
5122 */
5123 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5124 unsigned long start_pfn, enum memmap_context context)
5125 {
5126 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5127 unsigned long end_pfn = start_pfn + size;
5128 pg_data_t *pgdat = NODE_DATA(nid);
5129 unsigned long pfn;
5130 unsigned long nr_initialised = 0;
5131 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5132 struct memblock_region *r = NULL, *tmp;
5133 #endif
5134
5135 if (highest_memmap_pfn < end_pfn - 1)
5136 highest_memmap_pfn = end_pfn - 1;
5137
5138 /*
5139 * Honor reservation requested by the driver for this ZONE_DEVICE
5140 * memory
5141 */
5142 if (altmap && start_pfn == altmap->base_pfn)
5143 start_pfn += altmap->reserve;
5144
5145 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5146 /*
5147 * There can be holes in boot-time mem_map[]s handed to this
5148 * function. They do not exist on hotplugged memory.
5149 */
5150 if (context != MEMMAP_EARLY)
5151 goto not_early;
5152
5153 if (!early_pfn_valid(pfn))
5154 continue;
5155 if (!early_pfn_in_nid(pfn, nid))
5156 continue;
5157 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5158 break;
5159
5160 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5161 /*
5162 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5163 * from zone_movable_pfn[nid] to end of each node should be
5164 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5165 */
5166 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5167 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5168 continue;
5169
5170 /*
5171 * Check given memblock attribute by firmware which can affect
5172 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5173 * mirrored, it's an overlapped memmap init. skip it.
5174 */
5175 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5176 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5177 for_each_memblock(memory, tmp)
5178 if (pfn < memblock_region_memory_end_pfn(tmp))
5179 break;
5180 r = tmp;
5181 }
5182 if (pfn >= memblock_region_memory_base_pfn(r) &&
5183 memblock_is_mirror(r)) {
5184 /* already initialized as NORMAL */
5185 pfn = memblock_region_memory_end_pfn(r);
5186 continue;
5187 }
5188 }
5189 #endif
5190
5191 not_early:
5192 /*
5193 * Mark the block movable so that blocks are reserved for
5194 * movable at startup. This will force kernel allocations
5195 * to reserve their blocks rather than leaking throughout
5196 * the address space during boot when many long-lived
5197 * kernel allocations are made.
5198 *
5199 * bitmap is created for zone's valid pfn range. but memmap
5200 * can be created for invalid pages (for alignment)
5201 * check here not to call set_pageblock_migratetype() against
5202 * pfn out of zone.
5203 */
5204 if (!(pfn & (pageblock_nr_pages - 1))) {
5205 struct page *page = pfn_to_page(pfn);
5206
5207 __init_single_page(page, pfn, zone, nid);
5208 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5209 } else {
5210 __init_single_pfn(pfn, zone, nid);
5211 }
5212 }
5213 }
5214
5215 static void __meminit zone_init_free_lists(struct zone *zone)
5216 {
5217 unsigned int order, t;
5218 for_each_migratetype_order(order, t) {
5219 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5220 zone->free_area[order].nr_free = 0;
5221 }
5222 }
5223
5224 #ifndef __HAVE_ARCH_MEMMAP_INIT
5225 #define memmap_init(size, nid, zone, start_pfn) \
5226 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5227 #endif
5228
5229 static int zone_batchsize(struct zone *zone)
5230 {
5231 #ifdef CONFIG_MMU
5232 int batch;
5233
5234 /*
5235 * The per-cpu-pages pools are set to around 1000th of the
5236 * size of the zone. But no more than 1/2 of a meg.
5237 *
5238 * OK, so we don't know how big the cache is. So guess.
5239 */
5240 batch = zone->managed_pages / 1024;
5241 if (batch * PAGE_SIZE > 512 * 1024)
5242 batch = (512 * 1024) / PAGE_SIZE;
5243 batch /= 4; /* We effectively *= 4 below */
5244 if (batch < 1)
5245 batch = 1;
5246
5247 /*
5248 * Clamp the batch to a 2^n - 1 value. Having a power
5249 * of 2 value was found to be more likely to have
5250 * suboptimal cache aliasing properties in some cases.
5251 *
5252 * For example if 2 tasks are alternately allocating
5253 * batches of pages, one task can end up with a lot
5254 * of pages of one half of the possible page colors
5255 * and the other with pages of the other colors.
5256 */
5257 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5258
5259 return batch;
5260
5261 #else
5262 /* The deferral and batching of frees should be suppressed under NOMMU
5263 * conditions.
5264 *
5265 * The problem is that NOMMU needs to be able to allocate large chunks
5266 * of contiguous memory as there's no hardware page translation to
5267 * assemble apparent contiguous memory from discontiguous pages.
5268 *
5269 * Queueing large contiguous runs of pages for batching, however,
5270 * causes the pages to actually be freed in smaller chunks. As there
5271 * can be a significant delay between the individual batches being
5272 * recycled, this leads to the once large chunks of space being
5273 * fragmented and becoming unavailable for high-order allocations.
5274 */
5275 return 0;
5276 #endif
5277 }
5278
5279 /*
5280 * pcp->high and pcp->batch values are related and dependent on one another:
5281 * ->batch must never be higher then ->high.
5282 * The following function updates them in a safe manner without read side
5283 * locking.
5284 *
5285 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5286 * those fields changing asynchronously (acording the the above rule).
5287 *
5288 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5289 * outside of boot time (or some other assurance that no concurrent updaters
5290 * exist).
5291 */
5292 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5293 unsigned long batch)
5294 {
5295 /* start with a fail safe value for batch */
5296 pcp->batch = 1;
5297 smp_wmb();
5298
5299 /* Update high, then batch, in order */
5300 pcp->high = high;
5301 smp_wmb();
5302
5303 pcp->batch = batch;
5304 }
5305
5306 /* a companion to pageset_set_high() */
5307 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5308 {
5309 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5310 }
5311
5312 static void pageset_init(struct per_cpu_pageset *p)
5313 {
5314 struct per_cpu_pages *pcp;
5315 int migratetype;
5316
5317 memset(p, 0, sizeof(*p));
5318
5319 pcp = &p->pcp;
5320 pcp->count = 0;
5321 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5322 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5323 }
5324
5325 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5326 {
5327 pageset_init(p);
5328 pageset_set_batch(p, batch);
5329 }
5330
5331 /*
5332 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5333 * to the value high for the pageset p.
5334 */
5335 static void pageset_set_high(struct per_cpu_pageset *p,
5336 unsigned long high)
5337 {
5338 unsigned long batch = max(1UL, high / 4);
5339 if ((high / 4) > (PAGE_SHIFT * 8))
5340 batch = PAGE_SHIFT * 8;
5341
5342 pageset_update(&p->pcp, high, batch);
5343 }
5344
5345 static void pageset_set_high_and_batch(struct zone *zone,
5346 struct per_cpu_pageset *pcp)
5347 {
5348 if (percpu_pagelist_fraction)
5349 pageset_set_high(pcp,
5350 (zone->managed_pages /
5351 percpu_pagelist_fraction));
5352 else
5353 pageset_set_batch(pcp, zone_batchsize(zone));
5354 }
5355
5356 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5357 {
5358 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5359
5360 pageset_init(pcp);
5361 pageset_set_high_and_batch(zone, pcp);
5362 }
5363
5364 static void __meminit setup_zone_pageset(struct zone *zone)
5365 {
5366 int cpu;
5367 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5368 for_each_possible_cpu(cpu)
5369 zone_pageset_init(zone, cpu);
5370 }
5371
5372 /*
5373 * Allocate per cpu pagesets and initialize them.
5374 * Before this call only boot pagesets were available.
5375 */
5376 void __init setup_per_cpu_pageset(void)
5377 {
5378 struct zone *zone;
5379
5380 for_each_populated_zone(zone)
5381 setup_zone_pageset(zone);
5382 }
5383
5384 static noinline __init_refok
5385 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5386 {
5387 int i;
5388 size_t alloc_size;
5389
5390 /*
5391 * The per-page waitqueue mechanism uses hashed waitqueues
5392 * per zone.
5393 */
5394 zone->wait_table_hash_nr_entries =
5395 wait_table_hash_nr_entries(zone_size_pages);
5396 zone->wait_table_bits =
5397 wait_table_bits(zone->wait_table_hash_nr_entries);
5398 alloc_size = zone->wait_table_hash_nr_entries
5399 * sizeof(wait_queue_head_t);
5400
5401 if (!slab_is_available()) {
5402 zone->wait_table = (wait_queue_head_t *)
5403 memblock_virt_alloc_node_nopanic(
5404 alloc_size, zone->zone_pgdat->node_id);
5405 } else {
5406 /*
5407 * This case means that a zone whose size was 0 gets new memory
5408 * via memory hot-add.
5409 * But it may be the case that a new node was hot-added. In
5410 * this case vmalloc() will not be able to use this new node's
5411 * memory - this wait_table must be initialized to use this new
5412 * node itself as well.
5413 * To use this new node's memory, further consideration will be
5414 * necessary.
5415 */
5416 zone->wait_table = vmalloc(alloc_size);
5417 }
5418 if (!zone->wait_table)
5419 return -ENOMEM;
5420
5421 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5422 init_waitqueue_head(zone->wait_table + i);
5423
5424 return 0;
5425 }
5426
5427 static __meminit void zone_pcp_init(struct zone *zone)
5428 {
5429 /*
5430 * per cpu subsystem is not up at this point. The following code
5431 * relies on the ability of the linker to provide the
5432 * offset of a (static) per cpu variable into the per cpu area.
5433 */
5434 zone->pageset = &boot_pageset;
5435
5436 if (populated_zone(zone))
5437 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5438 zone->name, zone->present_pages,
5439 zone_batchsize(zone));
5440 }
5441
5442 int __meminit init_currently_empty_zone(struct zone *zone,
5443 unsigned long zone_start_pfn,
5444 unsigned long size)
5445 {
5446 struct pglist_data *pgdat = zone->zone_pgdat;
5447 int ret;
5448 ret = zone_wait_table_init(zone, size);
5449 if (ret)
5450 return ret;
5451 pgdat->nr_zones = zone_idx(zone) + 1;
5452
5453 zone->zone_start_pfn = zone_start_pfn;
5454
5455 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5456 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5457 pgdat->node_id,
5458 (unsigned long)zone_idx(zone),
5459 zone_start_pfn, (zone_start_pfn + size));
5460
5461 zone_init_free_lists(zone);
5462
5463 return 0;
5464 }
5465
5466 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5467 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5468
5469 /*
5470 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5471 */
5472 int __meminit __early_pfn_to_nid(unsigned long pfn,
5473 struct mminit_pfnnid_cache *state)
5474 {
5475 unsigned long start_pfn, end_pfn;
5476 int nid;
5477
5478 if (state->last_start <= pfn && pfn < state->last_end)
5479 return state->last_nid;
5480
5481 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5482 if (nid != -1) {
5483 state->last_start = start_pfn;
5484 state->last_end = end_pfn;
5485 state->last_nid = nid;
5486 }
5487
5488 return nid;
5489 }
5490 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5491
5492 /**
5493 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5494 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5495 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5496 *
5497 * If an architecture guarantees that all ranges registered contain no holes
5498 * and may be freed, this this function may be used instead of calling
5499 * memblock_free_early_nid() manually.
5500 */
5501 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5502 {
5503 unsigned long start_pfn, end_pfn;
5504 int i, this_nid;
5505
5506 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5507 start_pfn = min(start_pfn, max_low_pfn);
5508 end_pfn = min(end_pfn, max_low_pfn);
5509
5510 if (start_pfn < end_pfn)
5511 memblock_free_early_nid(PFN_PHYS(start_pfn),
5512 (end_pfn - start_pfn) << PAGE_SHIFT,
5513 this_nid);
5514 }
5515 }
5516
5517 /**
5518 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5519 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5520 *
5521 * If an architecture guarantees that all ranges registered contain no holes and may
5522 * be freed, this function may be used instead of calling memory_present() manually.
5523 */
5524 void __init sparse_memory_present_with_active_regions(int nid)
5525 {
5526 unsigned long start_pfn, end_pfn;
5527 int i, this_nid;
5528
5529 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5530 memory_present(this_nid, start_pfn, end_pfn);
5531 }
5532
5533 /**
5534 * get_pfn_range_for_nid - Return the start and end page frames for a node
5535 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5536 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5537 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5538 *
5539 * It returns the start and end page frame of a node based on information
5540 * provided by memblock_set_node(). If called for a node
5541 * with no available memory, a warning is printed and the start and end
5542 * PFNs will be 0.
5543 */
5544 void __meminit get_pfn_range_for_nid(unsigned int nid,
5545 unsigned long *start_pfn, unsigned long *end_pfn)
5546 {
5547 unsigned long this_start_pfn, this_end_pfn;
5548 int i;
5549
5550 *start_pfn = -1UL;
5551 *end_pfn = 0;
5552
5553 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5554 *start_pfn = min(*start_pfn, this_start_pfn);
5555 *end_pfn = max(*end_pfn, this_end_pfn);
5556 }
5557
5558 if (*start_pfn == -1UL)
5559 *start_pfn = 0;
5560 }
5561
5562 /*
5563 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5564 * assumption is made that zones within a node are ordered in monotonic
5565 * increasing memory addresses so that the "highest" populated zone is used
5566 */
5567 static void __init find_usable_zone_for_movable(void)
5568 {
5569 int zone_index;
5570 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5571 if (zone_index == ZONE_MOVABLE)
5572 continue;
5573
5574 if (arch_zone_highest_possible_pfn[zone_index] >
5575 arch_zone_lowest_possible_pfn[zone_index])
5576 break;
5577 }
5578
5579 VM_BUG_ON(zone_index == -1);
5580 movable_zone = zone_index;
5581 }
5582
5583 /*
5584 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5585 * because it is sized independent of architecture. Unlike the other zones,
5586 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5587 * in each node depending on the size of each node and how evenly kernelcore
5588 * is distributed. This helper function adjusts the zone ranges
5589 * provided by the architecture for a given node by using the end of the
5590 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5591 * zones within a node are in order of monotonic increases memory addresses
5592 */
5593 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5594 unsigned long zone_type,
5595 unsigned long node_start_pfn,
5596 unsigned long node_end_pfn,
5597 unsigned long *zone_start_pfn,
5598 unsigned long *zone_end_pfn)
5599 {
5600 /* Only adjust if ZONE_MOVABLE is on this node */
5601 if (zone_movable_pfn[nid]) {
5602 /* Size ZONE_MOVABLE */
5603 if (zone_type == ZONE_MOVABLE) {
5604 *zone_start_pfn = zone_movable_pfn[nid];
5605 *zone_end_pfn = min(node_end_pfn,
5606 arch_zone_highest_possible_pfn[movable_zone]);
5607
5608 /* Check if this whole range is within ZONE_MOVABLE */
5609 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5610 *zone_start_pfn = *zone_end_pfn;
5611 }
5612 }
5613
5614 /*
5615 * Return the number of pages a zone spans in a node, including holes
5616 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5617 */
5618 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5619 unsigned long zone_type,
5620 unsigned long node_start_pfn,
5621 unsigned long node_end_pfn,
5622 unsigned long *zone_start_pfn,
5623 unsigned long *zone_end_pfn,
5624 unsigned long *ignored)
5625 {
5626 /* When hotadd a new node from cpu_up(), the node should be empty */
5627 if (!node_start_pfn && !node_end_pfn)
5628 return 0;
5629
5630 /* Get the start and end of the zone */
5631 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5632 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5633 adjust_zone_range_for_zone_movable(nid, zone_type,
5634 node_start_pfn, node_end_pfn,
5635 zone_start_pfn, zone_end_pfn);
5636
5637 /* Check that this node has pages within the zone's required range */
5638 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5639 return 0;
5640
5641 /* Move the zone boundaries inside the node if necessary */
5642 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5643 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5644
5645 /* Return the spanned pages */
5646 return *zone_end_pfn - *zone_start_pfn;
5647 }
5648
5649 /*
5650 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5651 * then all holes in the requested range will be accounted for.
5652 */
5653 unsigned long __meminit __absent_pages_in_range(int nid,
5654 unsigned long range_start_pfn,
5655 unsigned long range_end_pfn)
5656 {
5657 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5658 unsigned long start_pfn, end_pfn;
5659 int i;
5660
5661 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5662 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5663 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5664 nr_absent -= end_pfn - start_pfn;
5665 }
5666 return nr_absent;
5667 }
5668
5669 /**
5670 * absent_pages_in_range - Return number of page frames in holes within a range
5671 * @start_pfn: The start PFN to start searching for holes
5672 * @end_pfn: The end PFN to stop searching for holes
5673 *
5674 * It returns the number of pages frames in memory holes within a range.
5675 */
5676 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5677 unsigned long end_pfn)
5678 {
5679 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5680 }
5681
5682 /* Return the number of page frames in holes in a zone on a node */
5683 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5684 unsigned long zone_type,
5685 unsigned long node_start_pfn,
5686 unsigned long node_end_pfn,
5687 unsigned long *ignored)
5688 {
5689 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5690 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5691 unsigned long zone_start_pfn, zone_end_pfn;
5692 unsigned long nr_absent;
5693
5694 /* When hotadd a new node from cpu_up(), the node should be empty */
5695 if (!node_start_pfn && !node_end_pfn)
5696 return 0;
5697
5698 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5699 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5700
5701 adjust_zone_range_for_zone_movable(nid, zone_type,
5702 node_start_pfn, node_end_pfn,
5703 &zone_start_pfn, &zone_end_pfn);
5704 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5705
5706 /*
5707 * ZONE_MOVABLE handling.
5708 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5709 * and vice versa.
5710 */
5711 if (zone_movable_pfn[nid]) {
5712 if (mirrored_kernelcore) {
5713 unsigned long start_pfn, end_pfn;
5714 struct memblock_region *r;
5715
5716 for_each_memblock(memory, r) {
5717 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5718 zone_start_pfn, zone_end_pfn);
5719 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5720 zone_start_pfn, zone_end_pfn);
5721
5722 if (zone_type == ZONE_MOVABLE &&
5723 memblock_is_mirror(r))
5724 nr_absent += end_pfn - start_pfn;
5725
5726 if (zone_type == ZONE_NORMAL &&
5727 !memblock_is_mirror(r))
5728 nr_absent += end_pfn - start_pfn;
5729 }
5730 } else {
5731 if (zone_type == ZONE_NORMAL)
5732 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5733 }
5734 }
5735
5736 return nr_absent;
5737 }
5738
5739 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5740 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5741 unsigned long zone_type,
5742 unsigned long node_start_pfn,
5743 unsigned long node_end_pfn,
5744 unsigned long *zone_start_pfn,
5745 unsigned long *zone_end_pfn,
5746 unsigned long *zones_size)
5747 {
5748 unsigned int zone;
5749
5750 *zone_start_pfn = node_start_pfn;
5751 for (zone = 0; zone < zone_type; zone++)
5752 *zone_start_pfn += zones_size[zone];
5753
5754 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5755
5756 return zones_size[zone_type];
5757 }
5758
5759 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5760 unsigned long zone_type,
5761 unsigned long node_start_pfn,
5762 unsigned long node_end_pfn,
5763 unsigned long *zholes_size)
5764 {
5765 if (!zholes_size)
5766 return 0;
5767
5768 return zholes_size[zone_type];
5769 }
5770
5771 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5772
5773 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5774 unsigned long node_start_pfn,
5775 unsigned long node_end_pfn,
5776 unsigned long *zones_size,
5777 unsigned long *zholes_size)
5778 {
5779 unsigned long realtotalpages = 0, totalpages = 0;
5780 enum zone_type i;
5781
5782 for (i = 0; i < MAX_NR_ZONES; i++) {
5783 struct zone *zone = pgdat->node_zones + i;
5784 unsigned long zone_start_pfn, zone_end_pfn;
5785 unsigned long size, real_size;
5786
5787 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5788 node_start_pfn,
5789 node_end_pfn,
5790 &zone_start_pfn,
5791 &zone_end_pfn,
5792 zones_size);
5793 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5794 node_start_pfn, node_end_pfn,
5795 zholes_size);
5796 if (size)
5797 zone->zone_start_pfn = zone_start_pfn;
5798 else
5799 zone->zone_start_pfn = 0;
5800 zone->spanned_pages = size;
5801 zone->present_pages = real_size;
5802
5803 totalpages += size;
5804 realtotalpages += real_size;
5805 }
5806
5807 pgdat->node_spanned_pages = totalpages;
5808 pgdat->node_present_pages = realtotalpages;
5809 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5810 realtotalpages);
5811 }
5812
5813 #ifndef CONFIG_SPARSEMEM
5814 /*
5815 * Calculate the size of the zone->blockflags rounded to an unsigned long
5816 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5817 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5818 * round what is now in bits to nearest long in bits, then return it in
5819 * bytes.
5820 */
5821 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5822 {
5823 unsigned long usemapsize;
5824
5825 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5826 usemapsize = roundup(zonesize, pageblock_nr_pages);
5827 usemapsize = usemapsize >> pageblock_order;
5828 usemapsize *= NR_PAGEBLOCK_BITS;
5829 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5830
5831 return usemapsize / 8;
5832 }
5833
5834 static void __init setup_usemap(struct pglist_data *pgdat,
5835 struct zone *zone,
5836 unsigned long zone_start_pfn,
5837 unsigned long zonesize)
5838 {
5839 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5840 zone->pageblock_flags = NULL;
5841 if (usemapsize)
5842 zone->pageblock_flags =
5843 memblock_virt_alloc_node_nopanic(usemapsize,
5844 pgdat->node_id);
5845 }
5846 #else
5847 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5848 unsigned long zone_start_pfn, unsigned long zonesize) {}
5849 #endif /* CONFIG_SPARSEMEM */
5850
5851 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5852
5853 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5854 void __paginginit set_pageblock_order(void)
5855 {
5856 unsigned int order;
5857
5858 /* Check that pageblock_nr_pages has not already been setup */
5859 if (pageblock_order)
5860 return;
5861
5862 if (HPAGE_SHIFT > PAGE_SHIFT)
5863 order = HUGETLB_PAGE_ORDER;
5864 else
5865 order = MAX_ORDER - 1;
5866
5867 /*
5868 * Assume the largest contiguous order of interest is a huge page.
5869 * This value may be variable depending on boot parameters on IA64 and
5870 * powerpc.
5871 */
5872 pageblock_order = order;
5873 }
5874 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5875
5876 /*
5877 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5878 * is unused as pageblock_order is set at compile-time. See
5879 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5880 * the kernel config
5881 */
5882 void __paginginit set_pageblock_order(void)
5883 {
5884 }
5885
5886 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5887
5888 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5889 unsigned long present_pages)
5890 {
5891 unsigned long pages = spanned_pages;
5892
5893 /*
5894 * Provide a more accurate estimation if there are holes within
5895 * the zone and SPARSEMEM is in use. If there are holes within the
5896 * zone, each populated memory region may cost us one or two extra
5897 * memmap pages due to alignment because memmap pages for each
5898 * populated regions may not naturally algined on page boundary.
5899 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5900 */
5901 if (spanned_pages > present_pages + (present_pages >> 4) &&
5902 IS_ENABLED(CONFIG_SPARSEMEM))
5903 pages = present_pages;
5904
5905 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5906 }
5907
5908 /*
5909 * Set up the zone data structures:
5910 * - mark all pages reserved
5911 * - mark all memory queues empty
5912 * - clear the memory bitmaps
5913 *
5914 * NOTE: pgdat should get zeroed by caller.
5915 */
5916 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5917 {
5918 enum zone_type j;
5919 int nid = pgdat->node_id;
5920 int ret;
5921
5922 pgdat_resize_init(pgdat);
5923 #ifdef CONFIG_NUMA_BALANCING
5924 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5925 pgdat->numabalancing_migrate_nr_pages = 0;
5926 pgdat->numabalancing_migrate_next_window = jiffies;
5927 #endif
5928 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5929 spin_lock_init(&pgdat->split_queue_lock);
5930 INIT_LIST_HEAD(&pgdat->split_queue);
5931 pgdat->split_queue_len = 0;
5932 #endif
5933 init_waitqueue_head(&pgdat->kswapd_wait);
5934 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5935 #ifdef CONFIG_COMPACTION
5936 init_waitqueue_head(&pgdat->kcompactd_wait);
5937 #endif
5938 pgdat_page_ext_init(pgdat);
5939
5940 for (j = 0; j < MAX_NR_ZONES; j++) {
5941 struct zone *zone = pgdat->node_zones + j;
5942 unsigned long size, realsize, freesize, memmap_pages;
5943 unsigned long zone_start_pfn = zone->zone_start_pfn;
5944
5945 size = zone->spanned_pages;
5946 realsize = freesize = zone->present_pages;
5947
5948 /*
5949 * Adjust freesize so that it accounts for how much memory
5950 * is used by this zone for memmap. This affects the watermark
5951 * and per-cpu initialisations
5952 */
5953 memmap_pages = calc_memmap_size(size, realsize);
5954 if (!is_highmem_idx(j)) {
5955 if (freesize >= memmap_pages) {
5956 freesize -= memmap_pages;
5957 if (memmap_pages)
5958 printk(KERN_DEBUG
5959 " %s zone: %lu pages used for memmap\n",
5960 zone_names[j], memmap_pages);
5961 } else
5962 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5963 zone_names[j], memmap_pages, freesize);
5964 }
5965
5966 /* Account for reserved pages */
5967 if (j == 0 && freesize > dma_reserve) {
5968 freesize -= dma_reserve;
5969 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5970 zone_names[0], dma_reserve);
5971 }
5972
5973 if (!is_highmem_idx(j))
5974 nr_kernel_pages += freesize;
5975 /* Charge for highmem memmap if there are enough kernel pages */
5976 else if (nr_kernel_pages > memmap_pages * 2)
5977 nr_kernel_pages -= memmap_pages;
5978 nr_all_pages += freesize;
5979
5980 /*
5981 * Set an approximate value for lowmem here, it will be adjusted
5982 * when the bootmem allocator frees pages into the buddy system.
5983 * And all highmem pages will be managed by the buddy system.
5984 */
5985 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5986 #ifdef CONFIG_NUMA
5987 zone->node = nid;
5988 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5989 / 100;
5990 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5991 #endif
5992 zone->name = zone_names[j];
5993 spin_lock_init(&zone->lock);
5994 spin_lock_init(&zone->lru_lock);
5995 zone_seqlock_init(zone);
5996 zone->zone_pgdat = pgdat;
5997 zone_pcp_init(zone);
5998
5999 /* For bootup, initialized properly in watermark setup */
6000 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
6001
6002 lruvec_init(&zone->lruvec);
6003 if (!size)
6004 continue;
6005
6006 set_pageblock_order();
6007 setup_usemap(pgdat, zone, zone_start_pfn, size);
6008 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6009 BUG_ON(ret);
6010 memmap_init(size, nid, j, zone_start_pfn);
6011 }
6012 }
6013
6014 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
6015 {
6016 unsigned long __maybe_unused start = 0;
6017 unsigned long __maybe_unused offset = 0;
6018
6019 /* Skip empty nodes */
6020 if (!pgdat->node_spanned_pages)
6021 return;
6022
6023 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6024 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6025 offset = pgdat->node_start_pfn - start;
6026 /* ia64 gets its own node_mem_map, before this, without bootmem */
6027 if (!pgdat->node_mem_map) {
6028 unsigned long size, end;
6029 struct page *map;
6030
6031 /*
6032 * The zone's endpoints aren't required to be MAX_ORDER
6033 * aligned but the node_mem_map endpoints must be in order
6034 * for the buddy allocator to function correctly.
6035 */
6036 end = pgdat_end_pfn(pgdat);
6037 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6038 size = (end - start) * sizeof(struct page);
6039 map = alloc_remap(pgdat->node_id, size);
6040 if (!map)
6041 map = memblock_virt_alloc_node_nopanic(size,
6042 pgdat->node_id);
6043 pgdat->node_mem_map = map + offset;
6044 }
6045 #ifndef CONFIG_NEED_MULTIPLE_NODES
6046 /*
6047 * With no DISCONTIG, the global mem_map is just set as node 0's
6048 */
6049 if (pgdat == NODE_DATA(0)) {
6050 mem_map = NODE_DATA(0)->node_mem_map;
6051 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6052 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6053 mem_map -= offset;
6054 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6055 }
6056 #endif
6057 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6058 }
6059
6060 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6061 unsigned long node_start_pfn, unsigned long *zholes_size)
6062 {
6063 pg_data_t *pgdat = NODE_DATA(nid);
6064 unsigned long start_pfn = 0;
6065 unsigned long end_pfn = 0;
6066
6067 /* pg_data_t should be reset to zero when it's allocated */
6068 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
6069
6070 reset_deferred_meminit(pgdat);
6071 pgdat->node_id = nid;
6072 pgdat->node_start_pfn = node_start_pfn;
6073 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6074 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6075 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6076 (u64)start_pfn << PAGE_SHIFT,
6077 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6078 #else
6079 start_pfn = node_start_pfn;
6080 #endif
6081 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6082 zones_size, zholes_size);
6083
6084 alloc_node_mem_map(pgdat);
6085 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6086 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6087 nid, (unsigned long)pgdat,
6088 (unsigned long)pgdat->node_mem_map);
6089 #endif
6090
6091 free_area_init_core(pgdat);
6092 }
6093
6094 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6095
6096 #if MAX_NUMNODES > 1
6097 /*
6098 * Figure out the number of possible node ids.
6099 */
6100 void __init setup_nr_node_ids(void)
6101 {
6102 unsigned int highest;
6103
6104 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6105 nr_node_ids = highest + 1;
6106 }
6107 #endif
6108
6109 /**
6110 * node_map_pfn_alignment - determine the maximum internode alignment
6111 *
6112 * This function should be called after node map is populated and sorted.
6113 * It calculates the maximum power of two alignment which can distinguish
6114 * all the nodes.
6115 *
6116 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6117 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6118 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6119 * shifted, 1GiB is enough and this function will indicate so.
6120 *
6121 * This is used to test whether pfn -> nid mapping of the chosen memory
6122 * model has fine enough granularity to avoid incorrect mapping for the
6123 * populated node map.
6124 *
6125 * Returns the determined alignment in pfn's. 0 if there is no alignment
6126 * requirement (single node).
6127 */
6128 unsigned long __init node_map_pfn_alignment(void)
6129 {
6130 unsigned long accl_mask = 0, last_end = 0;
6131 unsigned long start, end, mask;
6132 int last_nid = -1;
6133 int i, nid;
6134
6135 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6136 if (!start || last_nid < 0 || last_nid == nid) {
6137 last_nid = nid;
6138 last_end = end;
6139 continue;
6140 }
6141
6142 /*
6143 * Start with a mask granular enough to pin-point to the
6144 * start pfn and tick off bits one-by-one until it becomes
6145 * too coarse to separate the current node from the last.
6146 */
6147 mask = ~((1 << __ffs(start)) - 1);
6148 while (mask && last_end <= (start & (mask << 1)))
6149 mask <<= 1;
6150
6151 /* accumulate all internode masks */
6152 accl_mask |= mask;
6153 }
6154
6155 /* convert mask to number of pages */
6156 return ~accl_mask + 1;
6157 }
6158
6159 /* Find the lowest pfn for a node */
6160 static unsigned long __init find_min_pfn_for_node(int nid)
6161 {
6162 unsigned long min_pfn = ULONG_MAX;
6163 unsigned long start_pfn;
6164 int i;
6165
6166 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6167 min_pfn = min(min_pfn, start_pfn);
6168
6169 if (min_pfn == ULONG_MAX) {
6170 pr_warn("Could not find start_pfn for node %d\n", nid);
6171 return 0;
6172 }
6173
6174 return min_pfn;
6175 }
6176
6177 /**
6178 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6179 *
6180 * It returns the minimum PFN based on information provided via
6181 * memblock_set_node().
6182 */
6183 unsigned long __init find_min_pfn_with_active_regions(void)
6184 {
6185 return find_min_pfn_for_node(MAX_NUMNODES);
6186 }
6187
6188 /*
6189 * early_calculate_totalpages()
6190 * Sum pages in active regions for movable zone.
6191 * Populate N_MEMORY for calculating usable_nodes.
6192 */
6193 static unsigned long __init early_calculate_totalpages(void)
6194 {
6195 unsigned long totalpages = 0;
6196 unsigned long start_pfn, end_pfn;
6197 int i, nid;
6198
6199 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6200 unsigned long pages = end_pfn - start_pfn;
6201
6202 totalpages += pages;
6203 if (pages)
6204 node_set_state(nid, N_MEMORY);
6205 }
6206 return totalpages;
6207 }
6208
6209 /*
6210 * Find the PFN the Movable zone begins in each node. Kernel memory
6211 * is spread evenly between nodes as long as the nodes have enough
6212 * memory. When they don't, some nodes will have more kernelcore than
6213 * others
6214 */
6215 static void __init find_zone_movable_pfns_for_nodes(void)
6216 {
6217 int i, nid;
6218 unsigned long usable_startpfn;
6219 unsigned long kernelcore_node, kernelcore_remaining;
6220 /* save the state before borrow the nodemask */
6221 nodemask_t saved_node_state = node_states[N_MEMORY];
6222 unsigned long totalpages = early_calculate_totalpages();
6223 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6224 struct memblock_region *r;
6225
6226 /* Need to find movable_zone earlier when movable_node is specified. */
6227 find_usable_zone_for_movable();
6228
6229 /*
6230 * If movable_node is specified, ignore kernelcore and movablecore
6231 * options.
6232 */
6233 if (movable_node_is_enabled()) {
6234 for_each_memblock(memory, r) {
6235 if (!memblock_is_hotpluggable(r))
6236 continue;
6237
6238 nid = r->nid;
6239
6240 usable_startpfn = PFN_DOWN(r->base);
6241 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6242 min(usable_startpfn, zone_movable_pfn[nid]) :
6243 usable_startpfn;
6244 }
6245
6246 goto out2;
6247 }
6248
6249 /*
6250 * If kernelcore=mirror is specified, ignore movablecore option
6251 */
6252 if (mirrored_kernelcore) {
6253 bool mem_below_4gb_not_mirrored = false;
6254
6255 for_each_memblock(memory, r) {
6256 if (memblock_is_mirror(r))
6257 continue;
6258
6259 nid = r->nid;
6260
6261 usable_startpfn = memblock_region_memory_base_pfn(r);
6262
6263 if (usable_startpfn < 0x100000) {
6264 mem_below_4gb_not_mirrored = true;
6265 continue;
6266 }
6267
6268 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6269 min(usable_startpfn, zone_movable_pfn[nid]) :
6270 usable_startpfn;
6271 }
6272
6273 if (mem_below_4gb_not_mirrored)
6274 pr_warn("This configuration results in unmirrored kernel memory.");
6275
6276 goto out2;
6277 }
6278
6279 /*
6280 * If movablecore=nn[KMG] was specified, calculate what size of
6281 * kernelcore that corresponds so that memory usable for
6282 * any allocation type is evenly spread. If both kernelcore
6283 * and movablecore are specified, then the value of kernelcore
6284 * will be used for required_kernelcore if it's greater than
6285 * what movablecore would have allowed.
6286 */
6287 if (required_movablecore) {
6288 unsigned long corepages;
6289
6290 /*
6291 * Round-up so that ZONE_MOVABLE is at least as large as what
6292 * was requested by the user
6293 */
6294 required_movablecore =
6295 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6296 required_movablecore = min(totalpages, required_movablecore);
6297 corepages = totalpages - required_movablecore;
6298
6299 required_kernelcore = max(required_kernelcore, corepages);
6300 }
6301
6302 /*
6303 * If kernelcore was not specified or kernelcore size is larger
6304 * than totalpages, there is no ZONE_MOVABLE.
6305 */
6306 if (!required_kernelcore || required_kernelcore >= totalpages)
6307 goto out;
6308
6309 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6310 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6311
6312 restart:
6313 /* Spread kernelcore memory as evenly as possible throughout nodes */
6314 kernelcore_node = required_kernelcore / usable_nodes;
6315 for_each_node_state(nid, N_MEMORY) {
6316 unsigned long start_pfn, end_pfn;
6317
6318 /*
6319 * Recalculate kernelcore_node if the division per node
6320 * now exceeds what is necessary to satisfy the requested
6321 * amount of memory for the kernel
6322 */
6323 if (required_kernelcore < kernelcore_node)
6324 kernelcore_node = required_kernelcore / usable_nodes;
6325
6326 /*
6327 * As the map is walked, we track how much memory is usable
6328 * by the kernel using kernelcore_remaining. When it is
6329 * 0, the rest of the node is usable by ZONE_MOVABLE
6330 */
6331 kernelcore_remaining = kernelcore_node;
6332
6333 /* Go through each range of PFNs within this node */
6334 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6335 unsigned long size_pages;
6336
6337 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6338 if (start_pfn >= end_pfn)
6339 continue;
6340
6341 /* Account for what is only usable for kernelcore */
6342 if (start_pfn < usable_startpfn) {
6343 unsigned long kernel_pages;
6344 kernel_pages = min(end_pfn, usable_startpfn)
6345 - start_pfn;
6346
6347 kernelcore_remaining -= min(kernel_pages,
6348 kernelcore_remaining);
6349 required_kernelcore -= min(kernel_pages,
6350 required_kernelcore);
6351
6352 /* Continue if range is now fully accounted */
6353 if (end_pfn <= usable_startpfn) {
6354
6355 /*
6356 * Push zone_movable_pfn to the end so
6357 * that if we have to rebalance
6358 * kernelcore across nodes, we will
6359 * not double account here
6360 */
6361 zone_movable_pfn[nid] = end_pfn;
6362 continue;
6363 }
6364 start_pfn = usable_startpfn;
6365 }
6366
6367 /*
6368 * The usable PFN range for ZONE_MOVABLE is from
6369 * start_pfn->end_pfn. Calculate size_pages as the
6370 * number of pages used as kernelcore
6371 */
6372 size_pages = end_pfn - start_pfn;
6373 if (size_pages > kernelcore_remaining)
6374 size_pages = kernelcore_remaining;
6375 zone_movable_pfn[nid] = start_pfn + size_pages;
6376
6377 /*
6378 * Some kernelcore has been met, update counts and
6379 * break if the kernelcore for this node has been
6380 * satisfied
6381 */
6382 required_kernelcore -= min(required_kernelcore,
6383 size_pages);
6384 kernelcore_remaining -= size_pages;
6385 if (!kernelcore_remaining)
6386 break;
6387 }
6388 }
6389
6390 /*
6391 * If there is still required_kernelcore, we do another pass with one
6392 * less node in the count. This will push zone_movable_pfn[nid] further
6393 * along on the nodes that still have memory until kernelcore is
6394 * satisfied
6395 */
6396 usable_nodes--;
6397 if (usable_nodes && required_kernelcore > usable_nodes)
6398 goto restart;
6399
6400 out2:
6401 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6402 for (nid = 0; nid < MAX_NUMNODES; nid++)
6403 zone_movable_pfn[nid] =
6404 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6405
6406 out:
6407 /* restore the node_state */
6408 node_states[N_MEMORY] = saved_node_state;
6409 }
6410
6411 /* Any regular or high memory on that node ? */
6412 static void check_for_memory(pg_data_t *pgdat, int nid)
6413 {
6414 enum zone_type zone_type;
6415
6416 if (N_MEMORY == N_NORMAL_MEMORY)
6417 return;
6418
6419 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6420 struct zone *zone = &pgdat->node_zones[zone_type];
6421 if (populated_zone(zone)) {
6422 node_set_state(nid, N_HIGH_MEMORY);
6423 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6424 zone_type <= ZONE_NORMAL)
6425 node_set_state(nid, N_NORMAL_MEMORY);
6426 break;
6427 }
6428 }
6429 }
6430
6431 /**
6432 * free_area_init_nodes - Initialise all pg_data_t and zone data
6433 * @max_zone_pfn: an array of max PFNs for each zone
6434 *
6435 * This will call free_area_init_node() for each active node in the system.
6436 * Using the page ranges provided by memblock_set_node(), the size of each
6437 * zone in each node and their holes is calculated. If the maximum PFN
6438 * between two adjacent zones match, it is assumed that the zone is empty.
6439 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6440 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6441 * starts where the previous one ended. For example, ZONE_DMA32 starts
6442 * at arch_max_dma_pfn.
6443 */
6444 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6445 {
6446 unsigned long start_pfn, end_pfn;
6447 int i, nid;
6448
6449 /* Record where the zone boundaries are */
6450 memset(arch_zone_lowest_possible_pfn, 0,
6451 sizeof(arch_zone_lowest_possible_pfn));
6452 memset(arch_zone_highest_possible_pfn, 0,
6453 sizeof(arch_zone_highest_possible_pfn));
6454 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6455 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6456 for (i = 1; i < MAX_NR_ZONES; i++) {
6457 if (i == ZONE_MOVABLE)
6458 continue;
6459 arch_zone_lowest_possible_pfn[i] =
6460 arch_zone_highest_possible_pfn[i-1];
6461 arch_zone_highest_possible_pfn[i] =
6462 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6463 }
6464 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6465 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6466
6467 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6468 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6469 find_zone_movable_pfns_for_nodes();
6470
6471 /* Print out the zone ranges */
6472 pr_info("Zone ranges:\n");
6473 for (i = 0; i < MAX_NR_ZONES; i++) {
6474 if (i == ZONE_MOVABLE)
6475 continue;
6476 pr_info(" %-8s ", zone_names[i]);
6477 if (arch_zone_lowest_possible_pfn[i] ==
6478 arch_zone_highest_possible_pfn[i])
6479 pr_cont("empty\n");
6480 else
6481 pr_cont("[mem %#018Lx-%#018Lx]\n",
6482 (u64)arch_zone_lowest_possible_pfn[i]
6483 << PAGE_SHIFT,
6484 ((u64)arch_zone_highest_possible_pfn[i]
6485 << PAGE_SHIFT) - 1);
6486 }
6487
6488 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6489 pr_info("Movable zone start for each node\n");
6490 for (i = 0; i < MAX_NUMNODES; i++) {
6491 if (zone_movable_pfn[i])
6492 pr_info(" Node %d: %#018Lx\n", i,
6493 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6494 }
6495
6496 /* Print out the early node map */
6497 pr_info("Early memory node ranges\n");
6498 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6499 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6500 (u64)start_pfn << PAGE_SHIFT,
6501 ((u64)end_pfn << PAGE_SHIFT) - 1);
6502
6503 /* Initialise every node */
6504 mminit_verify_pageflags_layout();
6505 setup_nr_node_ids();
6506 for_each_online_node(nid) {
6507 pg_data_t *pgdat = NODE_DATA(nid);
6508 free_area_init_node(nid, NULL,
6509 find_min_pfn_for_node(nid), NULL);
6510
6511 /* Any memory on that node */
6512 if (pgdat->node_present_pages)
6513 node_set_state(nid, N_MEMORY);
6514 check_for_memory(pgdat, nid);
6515 }
6516 }
6517
6518 static int __init cmdline_parse_core(char *p, unsigned long *core)
6519 {
6520 unsigned long long coremem;
6521 if (!p)
6522 return -EINVAL;
6523
6524 coremem = memparse(p, &p);
6525 *core = coremem >> PAGE_SHIFT;
6526
6527 /* Paranoid check that UL is enough for the coremem value */
6528 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6529
6530 return 0;
6531 }
6532
6533 /*
6534 * kernelcore=size sets the amount of memory for use for allocations that
6535 * cannot be reclaimed or migrated.
6536 */
6537 static int __init cmdline_parse_kernelcore(char *p)
6538 {
6539 /* parse kernelcore=mirror */
6540 if (parse_option_str(p, "mirror")) {
6541 mirrored_kernelcore = true;
6542 return 0;
6543 }
6544
6545 return cmdline_parse_core(p, &required_kernelcore);
6546 }
6547
6548 /*
6549 * movablecore=size sets the amount of memory for use for allocations that
6550 * can be reclaimed or migrated.
6551 */
6552 static int __init cmdline_parse_movablecore(char *p)
6553 {
6554 return cmdline_parse_core(p, &required_movablecore);
6555 }
6556
6557 early_param("kernelcore", cmdline_parse_kernelcore);
6558 early_param("movablecore", cmdline_parse_movablecore);
6559
6560 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6561
6562 void adjust_managed_page_count(struct page *page, long count)
6563 {
6564 spin_lock(&managed_page_count_lock);
6565 page_zone(page)->managed_pages += count;
6566 totalram_pages += count;
6567 #ifdef CONFIG_HIGHMEM
6568 if (PageHighMem(page))
6569 totalhigh_pages += count;
6570 #endif
6571 spin_unlock(&managed_page_count_lock);
6572 }
6573 EXPORT_SYMBOL(adjust_managed_page_count);
6574
6575 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6576 {
6577 void *pos;
6578 unsigned long pages = 0;
6579
6580 start = (void *)PAGE_ALIGN((unsigned long)start);
6581 end = (void *)((unsigned long)end & PAGE_MASK);
6582 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6583 if ((unsigned int)poison <= 0xFF)
6584 memset(pos, poison, PAGE_SIZE);
6585 free_reserved_page(virt_to_page(pos));
6586 }
6587
6588 if (pages && s)
6589 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6590 s, pages << (PAGE_SHIFT - 10), start, end);
6591
6592 return pages;
6593 }
6594 EXPORT_SYMBOL(free_reserved_area);
6595
6596 #ifdef CONFIG_HIGHMEM
6597 void free_highmem_page(struct page *page)
6598 {
6599 __free_reserved_page(page);
6600 totalram_pages++;
6601 page_zone(page)->managed_pages++;
6602 totalhigh_pages++;
6603 }
6604 #endif
6605
6606
6607 void __init mem_init_print_info(const char *str)
6608 {
6609 unsigned long physpages, codesize, datasize, rosize, bss_size;
6610 unsigned long init_code_size, init_data_size;
6611
6612 physpages = get_num_physpages();
6613 codesize = _etext - _stext;
6614 datasize = _edata - _sdata;
6615 rosize = __end_rodata - __start_rodata;
6616 bss_size = __bss_stop - __bss_start;
6617 init_data_size = __init_end - __init_begin;
6618 init_code_size = _einittext - _sinittext;
6619
6620 /*
6621 * Detect special cases and adjust section sizes accordingly:
6622 * 1) .init.* may be embedded into .data sections
6623 * 2) .init.text.* may be out of [__init_begin, __init_end],
6624 * please refer to arch/tile/kernel/vmlinux.lds.S.
6625 * 3) .rodata.* may be embedded into .text or .data sections.
6626 */
6627 #define adj_init_size(start, end, size, pos, adj) \
6628 do { \
6629 if (start <= pos && pos < end && size > adj) \
6630 size -= adj; \
6631 } while (0)
6632
6633 adj_init_size(__init_begin, __init_end, init_data_size,
6634 _sinittext, init_code_size);
6635 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6636 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6637 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6638 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6639
6640 #undef adj_init_size
6641
6642 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6643 #ifdef CONFIG_HIGHMEM
6644 ", %luK highmem"
6645 #endif
6646 "%s%s)\n",
6647 nr_free_pages() << (PAGE_SHIFT - 10),
6648 physpages << (PAGE_SHIFT - 10),
6649 codesize >> 10, datasize >> 10, rosize >> 10,
6650 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6651 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6652 totalcma_pages << (PAGE_SHIFT - 10),
6653 #ifdef CONFIG_HIGHMEM
6654 totalhigh_pages << (PAGE_SHIFT - 10),
6655 #endif
6656 str ? ", " : "", str ? str : "");
6657 }
6658
6659 /**
6660 * set_dma_reserve - set the specified number of pages reserved in the first zone
6661 * @new_dma_reserve: The number of pages to mark reserved
6662 *
6663 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6664 * In the DMA zone, a significant percentage may be consumed by kernel image
6665 * and other unfreeable allocations which can skew the watermarks badly. This
6666 * function may optionally be used to account for unfreeable pages in the
6667 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6668 * smaller per-cpu batchsize.
6669 */
6670 void __init set_dma_reserve(unsigned long new_dma_reserve)
6671 {
6672 dma_reserve = new_dma_reserve;
6673 }
6674
6675 void __init free_area_init(unsigned long *zones_size)
6676 {
6677 free_area_init_node(0, zones_size,
6678 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6679 }
6680
6681 static int page_alloc_cpu_notify(struct notifier_block *self,
6682 unsigned long action, void *hcpu)
6683 {
6684 int cpu = (unsigned long)hcpu;
6685
6686 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6687 lru_add_drain_cpu(cpu);
6688 drain_pages(cpu);
6689
6690 /*
6691 * Spill the event counters of the dead processor
6692 * into the current processors event counters.
6693 * This artificially elevates the count of the current
6694 * processor.
6695 */
6696 vm_events_fold_cpu(cpu);
6697
6698 /*
6699 * Zero the differential counters of the dead processor
6700 * so that the vm statistics are consistent.
6701 *
6702 * This is only okay since the processor is dead and cannot
6703 * race with what we are doing.
6704 */
6705 cpu_vm_stats_fold(cpu);
6706 }
6707 return NOTIFY_OK;
6708 }
6709
6710 void __init page_alloc_init(void)
6711 {
6712 hotcpu_notifier(page_alloc_cpu_notify, 0);
6713 }
6714
6715 /*
6716 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6717 * or min_free_kbytes changes.
6718 */
6719 static void calculate_totalreserve_pages(void)
6720 {
6721 struct pglist_data *pgdat;
6722 unsigned long reserve_pages = 0;
6723 enum zone_type i, j;
6724
6725 for_each_online_pgdat(pgdat) {
6726 for (i = 0; i < MAX_NR_ZONES; i++) {
6727 struct zone *zone = pgdat->node_zones + i;
6728 long max = 0;
6729
6730 /* Find valid and maximum lowmem_reserve in the zone */
6731 for (j = i; j < MAX_NR_ZONES; j++) {
6732 if (zone->lowmem_reserve[j] > max)
6733 max = zone->lowmem_reserve[j];
6734 }
6735
6736 /* we treat the high watermark as reserved pages. */
6737 max += high_wmark_pages(zone);
6738
6739 if (max > zone->managed_pages)
6740 max = zone->managed_pages;
6741
6742 zone->totalreserve_pages = max;
6743
6744 reserve_pages += max;
6745 }
6746 }
6747 totalreserve_pages = reserve_pages;
6748 }
6749
6750 /*
6751 * setup_per_zone_lowmem_reserve - called whenever
6752 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6753 * has a correct pages reserved value, so an adequate number of
6754 * pages are left in the zone after a successful __alloc_pages().
6755 */
6756 static void setup_per_zone_lowmem_reserve(void)
6757 {
6758 struct pglist_data *pgdat;
6759 enum zone_type j, idx;
6760
6761 for_each_online_pgdat(pgdat) {
6762 for (j = 0; j < MAX_NR_ZONES; j++) {
6763 struct zone *zone = pgdat->node_zones + j;
6764 unsigned long managed_pages = zone->managed_pages;
6765
6766 zone->lowmem_reserve[j] = 0;
6767
6768 idx = j;
6769 while (idx) {
6770 struct zone *lower_zone;
6771
6772 idx--;
6773
6774 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6775 sysctl_lowmem_reserve_ratio[idx] = 1;
6776
6777 lower_zone = pgdat->node_zones + idx;
6778 lower_zone->lowmem_reserve[j] = managed_pages /
6779 sysctl_lowmem_reserve_ratio[idx];
6780 managed_pages += lower_zone->managed_pages;
6781 }
6782 }
6783 }
6784
6785 /* update totalreserve_pages */
6786 calculate_totalreserve_pages();
6787 }
6788
6789 static void __setup_per_zone_wmarks(void)
6790 {
6791 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6792 unsigned long lowmem_pages = 0;
6793 struct zone *zone;
6794 unsigned long flags;
6795
6796 /* Calculate total number of !ZONE_HIGHMEM pages */
6797 for_each_zone(zone) {
6798 if (!is_highmem(zone))
6799 lowmem_pages += zone->managed_pages;
6800 }
6801
6802 for_each_zone(zone) {
6803 u64 tmp;
6804
6805 spin_lock_irqsave(&zone->lock, flags);
6806 tmp = (u64)pages_min * zone->managed_pages;
6807 do_div(tmp, lowmem_pages);
6808 if (is_highmem(zone)) {
6809 /*
6810 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6811 * need highmem pages, so cap pages_min to a small
6812 * value here.
6813 *
6814 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6815 * deltas control asynch page reclaim, and so should
6816 * not be capped for highmem.
6817 */
6818 unsigned long min_pages;
6819
6820 min_pages = zone->managed_pages / 1024;
6821 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6822 zone->watermark[WMARK_MIN] = min_pages;
6823 } else {
6824 /*
6825 * If it's a lowmem zone, reserve a number of pages
6826 * proportionate to the zone's size.
6827 */
6828 zone->watermark[WMARK_MIN] = tmp;
6829 }
6830
6831 /*
6832 * Set the kswapd watermarks distance according to the
6833 * scale factor in proportion to available memory, but
6834 * ensure a minimum size on small systems.
6835 */
6836 tmp = max_t(u64, tmp >> 2,
6837 mult_frac(zone->managed_pages,
6838 watermark_scale_factor, 10000));
6839
6840 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6841 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6842
6843 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6844 high_wmark_pages(zone) - low_wmark_pages(zone) -
6845 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6846
6847 spin_unlock_irqrestore(&zone->lock, flags);
6848 }
6849
6850 /* update totalreserve_pages */
6851 calculate_totalreserve_pages();
6852 }
6853
6854 /**
6855 * setup_per_zone_wmarks - called when min_free_kbytes changes
6856 * or when memory is hot-{added|removed}
6857 *
6858 * Ensures that the watermark[min,low,high] values for each zone are set
6859 * correctly with respect to min_free_kbytes.
6860 */
6861 void setup_per_zone_wmarks(void)
6862 {
6863 mutex_lock(&zonelists_mutex);
6864 __setup_per_zone_wmarks();
6865 mutex_unlock(&zonelists_mutex);
6866 }
6867
6868 /*
6869 * Initialise min_free_kbytes.
6870 *
6871 * For small machines we want it small (128k min). For large machines
6872 * we want it large (64MB max). But it is not linear, because network
6873 * bandwidth does not increase linearly with machine size. We use
6874 *
6875 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6876 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6877 *
6878 * which yields
6879 *
6880 * 16MB: 512k
6881 * 32MB: 724k
6882 * 64MB: 1024k
6883 * 128MB: 1448k
6884 * 256MB: 2048k
6885 * 512MB: 2896k
6886 * 1024MB: 4096k
6887 * 2048MB: 5792k
6888 * 4096MB: 8192k
6889 * 8192MB: 11584k
6890 * 16384MB: 16384k
6891 */
6892 int __meminit init_per_zone_wmark_min(void)
6893 {
6894 unsigned long lowmem_kbytes;
6895 int new_min_free_kbytes;
6896
6897 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6898 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6899
6900 if (new_min_free_kbytes > user_min_free_kbytes) {
6901 min_free_kbytes = new_min_free_kbytes;
6902 if (min_free_kbytes < 128)
6903 min_free_kbytes = 128;
6904 if (min_free_kbytes > 65536)
6905 min_free_kbytes = 65536;
6906 } else {
6907 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6908 new_min_free_kbytes, user_min_free_kbytes);
6909 }
6910 setup_per_zone_wmarks();
6911 refresh_zone_stat_thresholds();
6912 setup_per_zone_lowmem_reserve();
6913 return 0;
6914 }
6915 core_initcall(init_per_zone_wmark_min)
6916
6917 /*
6918 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6919 * that we can call two helper functions whenever min_free_kbytes
6920 * changes.
6921 */
6922 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6923 void __user *buffer, size_t *length, loff_t *ppos)
6924 {
6925 int rc;
6926
6927 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6928 if (rc)
6929 return rc;
6930
6931 if (write) {
6932 user_min_free_kbytes = min_free_kbytes;
6933 setup_per_zone_wmarks();
6934 }
6935 return 0;
6936 }
6937
6938 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6939 void __user *buffer, size_t *length, loff_t *ppos)
6940 {
6941 int rc;
6942
6943 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6944 if (rc)
6945 return rc;
6946
6947 if (write)
6948 setup_per_zone_wmarks();
6949
6950 return 0;
6951 }
6952
6953 #ifdef CONFIG_NUMA
6954 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6955 void __user *buffer, size_t *length, loff_t *ppos)
6956 {
6957 struct zone *zone;
6958 int rc;
6959
6960 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6961 if (rc)
6962 return rc;
6963
6964 for_each_zone(zone)
6965 zone->min_unmapped_pages = (zone->managed_pages *
6966 sysctl_min_unmapped_ratio) / 100;
6967 return 0;
6968 }
6969
6970 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6971 void __user *buffer, size_t *length, loff_t *ppos)
6972 {
6973 struct zone *zone;
6974 int rc;
6975
6976 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6977 if (rc)
6978 return rc;
6979
6980 for_each_zone(zone)
6981 zone->min_slab_pages = (zone->managed_pages *
6982 sysctl_min_slab_ratio) / 100;
6983 return 0;
6984 }
6985 #endif
6986
6987 /*
6988 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6989 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6990 * whenever sysctl_lowmem_reserve_ratio changes.
6991 *
6992 * The reserve ratio obviously has absolutely no relation with the
6993 * minimum watermarks. The lowmem reserve ratio can only make sense
6994 * if in function of the boot time zone sizes.
6995 */
6996 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6997 void __user *buffer, size_t *length, loff_t *ppos)
6998 {
6999 proc_dointvec_minmax(table, write, buffer, length, ppos);
7000 setup_per_zone_lowmem_reserve();
7001 return 0;
7002 }
7003
7004 /*
7005 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7006 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7007 * pagelist can have before it gets flushed back to buddy allocator.
7008 */
7009 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7010 void __user *buffer, size_t *length, loff_t *ppos)
7011 {
7012 struct zone *zone;
7013 int old_percpu_pagelist_fraction;
7014 int ret;
7015
7016 mutex_lock(&pcp_batch_high_lock);
7017 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7018
7019 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7020 if (!write || ret < 0)
7021 goto out;
7022
7023 /* Sanity checking to avoid pcp imbalance */
7024 if (percpu_pagelist_fraction &&
7025 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7026 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7027 ret = -EINVAL;
7028 goto out;
7029 }
7030
7031 /* No change? */
7032 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7033 goto out;
7034
7035 for_each_populated_zone(zone) {
7036 unsigned int cpu;
7037
7038 for_each_possible_cpu(cpu)
7039 pageset_set_high_and_batch(zone,
7040 per_cpu_ptr(zone->pageset, cpu));
7041 }
7042 out:
7043 mutex_unlock(&pcp_batch_high_lock);
7044 return ret;
7045 }
7046
7047 #ifdef CONFIG_NUMA
7048 int hashdist = HASHDIST_DEFAULT;
7049
7050 static int __init set_hashdist(char *str)
7051 {
7052 if (!str)
7053 return 0;
7054 hashdist = simple_strtoul(str, &str, 0);
7055 return 1;
7056 }
7057 __setup("hashdist=", set_hashdist);
7058 #endif
7059
7060 /*
7061 * allocate a large system hash table from bootmem
7062 * - it is assumed that the hash table must contain an exact power-of-2
7063 * quantity of entries
7064 * - limit is the number of hash buckets, not the total allocation size
7065 */
7066 void *__init alloc_large_system_hash(const char *tablename,
7067 unsigned long bucketsize,
7068 unsigned long numentries,
7069 int scale,
7070 int flags,
7071 unsigned int *_hash_shift,
7072 unsigned int *_hash_mask,
7073 unsigned long low_limit,
7074 unsigned long high_limit)
7075 {
7076 unsigned long long max = high_limit;
7077 unsigned long log2qty, size;
7078 void *table = NULL;
7079
7080 /* allow the kernel cmdline to have a say */
7081 if (!numentries) {
7082 /* round applicable memory size up to nearest megabyte */
7083 numentries = nr_kernel_pages;
7084
7085 /* It isn't necessary when PAGE_SIZE >= 1MB */
7086 if (PAGE_SHIFT < 20)
7087 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7088
7089 /* limit to 1 bucket per 2^scale bytes of low memory */
7090 if (scale > PAGE_SHIFT)
7091 numentries >>= (scale - PAGE_SHIFT);
7092 else
7093 numentries <<= (PAGE_SHIFT - scale);
7094
7095 /* Make sure we've got at least a 0-order allocation.. */
7096 if (unlikely(flags & HASH_SMALL)) {
7097 /* Makes no sense without HASH_EARLY */
7098 WARN_ON(!(flags & HASH_EARLY));
7099 if (!(numentries >> *_hash_shift)) {
7100 numentries = 1UL << *_hash_shift;
7101 BUG_ON(!numentries);
7102 }
7103 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7104 numentries = PAGE_SIZE / bucketsize;
7105 }
7106 numentries = roundup_pow_of_two(numentries);
7107
7108 /* limit allocation size to 1/16 total memory by default */
7109 if (max == 0) {
7110 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7111 do_div(max, bucketsize);
7112 }
7113 max = min(max, 0x80000000ULL);
7114
7115 if (numentries < low_limit)
7116 numentries = low_limit;
7117 if (numentries > max)
7118 numentries = max;
7119
7120 log2qty = ilog2(numentries);
7121
7122 do {
7123 size = bucketsize << log2qty;
7124 if (flags & HASH_EARLY)
7125 table = memblock_virt_alloc_nopanic(size, 0);
7126 else if (hashdist)
7127 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7128 else {
7129 /*
7130 * If bucketsize is not a power-of-two, we may free
7131 * some pages at the end of hash table which
7132 * alloc_pages_exact() automatically does
7133 */
7134 if (get_order(size) < MAX_ORDER) {
7135 table = alloc_pages_exact(size, GFP_ATOMIC);
7136 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7137 }
7138 }
7139 } while (!table && size > PAGE_SIZE && --log2qty);
7140
7141 if (!table)
7142 panic("Failed to allocate %s hash table\n", tablename);
7143
7144 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7145 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7146
7147 if (_hash_shift)
7148 *_hash_shift = log2qty;
7149 if (_hash_mask)
7150 *_hash_mask = (1 << log2qty) - 1;
7151
7152 return table;
7153 }
7154
7155 /*
7156 * This function checks whether pageblock includes unmovable pages or not.
7157 * If @count is not zero, it is okay to include less @count unmovable pages
7158 *
7159 * PageLRU check without isolation or lru_lock could race so that
7160 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7161 * expect this function should be exact.
7162 */
7163 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7164 bool skip_hwpoisoned_pages)
7165 {
7166 unsigned long pfn, iter, found;
7167 int mt;
7168
7169 /*
7170 * For avoiding noise data, lru_add_drain_all() should be called
7171 * If ZONE_MOVABLE, the zone never contains unmovable pages
7172 */
7173 if (zone_idx(zone) == ZONE_MOVABLE)
7174 return false;
7175 mt = get_pageblock_migratetype(page);
7176 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7177 return false;
7178
7179 pfn = page_to_pfn(page);
7180 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7181 unsigned long check = pfn + iter;
7182
7183 if (!pfn_valid_within(check))
7184 continue;
7185
7186 page = pfn_to_page(check);
7187
7188 /*
7189 * Hugepages are not in LRU lists, but they're movable.
7190 * We need not scan over tail pages bacause we don't
7191 * handle each tail page individually in migration.
7192 */
7193 if (PageHuge(page)) {
7194 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7195 continue;
7196 }
7197
7198 /*
7199 * We can't use page_count without pin a page
7200 * because another CPU can free compound page.
7201 * This check already skips compound tails of THP
7202 * because their page->_refcount is zero at all time.
7203 */
7204 if (!page_ref_count(page)) {
7205 if (PageBuddy(page))
7206 iter += (1 << page_order(page)) - 1;
7207 continue;
7208 }
7209
7210 /*
7211 * The HWPoisoned page may be not in buddy system, and
7212 * page_count() is not 0.
7213 */
7214 if (skip_hwpoisoned_pages && PageHWPoison(page))
7215 continue;
7216
7217 if (!PageLRU(page))
7218 found++;
7219 /*
7220 * If there are RECLAIMABLE pages, we need to check
7221 * it. But now, memory offline itself doesn't call
7222 * shrink_node_slabs() and it still to be fixed.
7223 */
7224 /*
7225 * If the page is not RAM, page_count()should be 0.
7226 * we don't need more check. This is an _used_ not-movable page.
7227 *
7228 * The problematic thing here is PG_reserved pages. PG_reserved
7229 * is set to both of a memory hole page and a _used_ kernel
7230 * page at boot.
7231 */
7232 if (found > count)
7233 return true;
7234 }
7235 return false;
7236 }
7237
7238 bool is_pageblock_removable_nolock(struct page *page)
7239 {
7240 struct zone *zone;
7241 unsigned long pfn;
7242
7243 /*
7244 * We have to be careful here because we are iterating over memory
7245 * sections which are not zone aware so we might end up outside of
7246 * the zone but still within the section.
7247 * We have to take care about the node as well. If the node is offline
7248 * its NODE_DATA will be NULL - see page_zone.
7249 */
7250 if (!node_online(page_to_nid(page)))
7251 return false;
7252
7253 zone = page_zone(page);
7254 pfn = page_to_pfn(page);
7255 if (!zone_spans_pfn(zone, pfn))
7256 return false;
7257
7258 return !has_unmovable_pages(zone, page, 0, true);
7259 }
7260
7261 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7262
7263 static unsigned long pfn_max_align_down(unsigned long pfn)
7264 {
7265 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7266 pageblock_nr_pages) - 1);
7267 }
7268
7269 static unsigned long pfn_max_align_up(unsigned long pfn)
7270 {
7271 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7272 pageblock_nr_pages));
7273 }
7274
7275 /* [start, end) must belong to a single zone. */
7276 static int __alloc_contig_migrate_range(struct compact_control *cc,
7277 unsigned long start, unsigned long end)
7278 {
7279 /* This function is based on compact_zone() from compaction.c. */
7280 unsigned long nr_reclaimed;
7281 unsigned long pfn = start;
7282 unsigned int tries = 0;
7283 int ret = 0;
7284
7285 migrate_prep();
7286
7287 while (pfn < end || !list_empty(&cc->migratepages)) {
7288 if (fatal_signal_pending(current)) {
7289 ret = -EINTR;
7290 break;
7291 }
7292
7293 if (list_empty(&cc->migratepages)) {
7294 cc->nr_migratepages = 0;
7295 pfn = isolate_migratepages_range(cc, pfn, end);
7296 if (!pfn) {
7297 ret = -EINTR;
7298 break;
7299 }
7300 tries = 0;
7301 } else if (++tries == 5) {
7302 ret = ret < 0 ? ret : -EBUSY;
7303 break;
7304 }
7305
7306 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7307 &cc->migratepages);
7308 cc->nr_migratepages -= nr_reclaimed;
7309
7310 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7311 NULL, 0, cc->mode, MR_CMA);
7312 }
7313 if (ret < 0) {
7314 putback_movable_pages(&cc->migratepages);
7315 return ret;
7316 }
7317 return 0;
7318 }
7319
7320 /**
7321 * alloc_contig_range() -- tries to allocate given range of pages
7322 * @start: start PFN to allocate
7323 * @end: one-past-the-last PFN to allocate
7324 * @migratetype: migratetype of the underlaying pageblocks (either
7325 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7326 * in range must have the same migratetype and it must
7327 * be either of the two.
7328 *
7329 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7330 * aligned, however it's the caller's responsibility to guarantee that
7331 * we are the only thread that changes migrate type of pageblocks the
7332 * pages fall in.
7333 *
7334 * The PFN range must belong to a single zone.
7335 *
7336 * Returns zero on success or negative error code. On success all
7337 * pages which PFN is in [start, end) are allocated for the caller and
7338 * need to be freed with free_contig_range().
7339 */
7340 int alloc_contig_range(unsigned long start, unsigned long end,
7341 unsigned migratetype)
7342 {
7343 unsigned long outer_start, outer_end;
7344 unsigned int order;
7345 int ret = 0;
7346
7347 struct compact_control cc = {
7348 .nr_migratepages = 0,
7349 .order = -1,
7350 .zone = page_zone(pfn_to_page(start)),
7351 .mode = MIGRATE_SYNC,
7352 .ignore_skip_hint = true,
7353 };
7354 INIT_LIST_HEAD(&cc.migratepages);
7355
7356 /*
7357 * What we do here is we mark all pageblocks in range as
7358 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7359 * have different sizes, and due to the way page allocator
7360 * work, we align the range to biggest of the two pages so
7361 * that page allocator won't try to merge buddies from
7362 * different pageblocks and change MIGRATE_ISOLATE to some
7363 * other migration type.
7364 *
7365 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7366 * migrate the pages from an unaligned range (ie. pages that
7367 * we are interested in). This will put all the pages in
7368 * range back to page allocator as MIGRATE_ISOLATE.
7369 *
7370 * When this is done, we take the pages in range from page
7371 * allocator removing them from the buddy system. This way
7372 * page allocator will never consider using them.
7373 *
7374 * This lets us mark the pageblocks back as
7375 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7376 * aligned range but not in the unaligned, original range are
7377 * put back to page allocator so that buddy can use them.
7378 */
7379
7380 ret = start_isolate_page_range(pfn_max_align_down(start),
7381 pfn_max_align_up(end), migratetype,
7382 false);
7383 if (ret)
7384 return ret;
7385
7386 /*
7387 * In case of -EBUSY, we'd like to know which page causes problem.
7388 * So, just fall through. We will check it in test_pages_isolated().
7389 */
7390 ret = __alloc_contig_migrate_range(&cc, start, end);
7391 if (ret && ret != -EBUSY)
7392 goto done;
7393
7394 /*
7395 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7396 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7397 * more, all pages in [start, end) are free in page allocator.
7398 * What we are going to do is to allocate all pages from
7399 * [start, end) (that is remove them from page allocator).
7400 *
7401 * The only problem is that pages at the beginning and at the
7402 * end of interesting range may be not aligned with pages that
7403 * page allocator holds, ie. they can be part of higher order
7404 * pages. Because of this, we reserve the bigger range and
7405 * once this is done free the pages we are not interested in.
7406 *
7407 * We don't have to hold zone->lock here because the pages are
7408 * isolated thus they won't get removed from buddy.
7409 */
7410
7411 lru_add_drain_all();
7412 drain_all_pages(cc.zone);
7413
7414 order = 0;
7415 outer_start = start;
7416 while (!PageBuddy(pfn_to_page(outer_start))) {
7417 if (++order >= MAX_ORDER) {
7418 outer_start = start;
7419 break;
7420 }
7421 outer_start &= ~0UL << order;
7422 }
7423
7424 if (outer_start != start) {
7425 order = page_order(pfn_to_page(outer_start));
7426
7427 /*
7428 * outer_start page could be small order buddy page and
7429 * it doesn't include start page. Adjust outer_start
7430 * in this case to report failed page properly
7431 * on tracepoint in test_pages_isolated()
7432 */
7433 if (outer_start + (1UL << order) <= start)
7434 outer_start = start;
7435 }
7436
7437 /* Make sure the range is really isolated. */
7438 if (test_pages_isolated(outer_start, end, false)) {
7439 pr_info("%s: [%lx, %lx) PFNs busy\n",
7440 __func__, outer_start, end);
7441 ret = -EBUSY;
7442 goto done;
7443 }
7444
7445 /* Grab isolated pages from freelists. */
7446 outer_end = isolate_freepages_range(&cc, outer_start, end);
7447 if (!outer_end) {
7448 ret = -EBUSY;
7449 goto done;
7450 }
7451
7452 /* Free head and tail (if any) */
7453 if (start != outer_start)
7454 free_contig_range(outer_start, start - outer_start);
7455 if (end != outer_end)
7456 free_contig_range(end, outer_end - end);
7457
7458 done:
7459 undo_isolate_page_range(pfn_max_align_down(start),
7460 pfn_max_align_up(end), migratetype);
7461 return ret;
7462 }
7463
7464 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7465 {
7466 unsigned int count = 0;
7467
7468 for (; nr_pages--; pfn++) {
7469 struct page *page = pfn_to_page(pfn);
7470
7471 count += page_count(page) != 1;
7472 __free_page(page);
7473 }
7474 WARN(count != 0, "%d pages are still in use!\n", count);
7475 }
7476 #endif
7477
7478 #ifdef CONFIG_MEMORY_HOTPLUG
7479 /*
7480 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7481 * page high values need to be recalulated.
7482 */
7483 void __meminit zone_pcp_update(struct zone *zone)
7484 {
7485 unsigned cpu;
7486 mutex_lock(&pcp_batch_high_lock);
7487 for_each_possible_cpu(cpu)
7488 pageset_set_high_and_batch(zone,
7489 per_cpu_ptr(zone->pageset, cpu));
7490 mutex_unlock(&pcp_batch_high_lock);
7491 }
7492 #endif
7493
7494 void zone_pcp_reset(struct zone *zone)
7495 {
7496 unsigned long flags;
7497 int cpu;
7498 struct per_cpu_pageset *pset;
7499
7500 /* avoid races with drain_pages() */
7501 local_irq_save(flags);
7502 if (zone->pageset != &boot_pageset) {
7503 for_each_online_cpu(cpu) {
7504 pset = per_cpu_ptr(zone->pageset, cpu);
7505 drain_zonestat(zone, pset);
7506 }
7507 free_percpu(zone->pageset);
7508 zone->pageset = &boot_pageset;
7509 }
7510 local_irq_restore(flags);
7511 }
7512
7513 #ifdef CONFIG_MEMORY_HOTREMOVE
7514 /*
7515 * All pages in the range must be in a single zone and isolated
7516 * before calling this.
7517 */
7518 void
7519 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7520 {
7521 struct page *page;
7522 struct zone *zone;
7523 unsigned int order, i;
7524 unsigned long pfn;
7525 unsigned long flags;
7526 /* find the first valid pfn */
7527 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7528 if (pfn_valid(pfn))
7529 break;
7530 if (pfn == end_pfn)
7531 return;
7532 zone = page_zone(pfn_to_page(pfn));
7533 spin_lock_irqsave(&zone->lock, flags);
7534 pfn = start_pfn;
7535 while (pfn < end_pfn) {
7536 if (!pfn_valid(pfn)) {
7537 pfn++;
7538 continue;
7539 }
7540 page = pfn_to_page(pfn);
7541 /*
7542 * The HWPoisoned page may be not in buddy system, and
7543 * page_count() is not 0.
7544 */
7545 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7546 pfn++;
7547 SetPageReserved(page);
7548 continue;
7549 }
7550
7551 BUG_ON(page_count(page));
7552 BUG_ON(!PageBuddy(page));
7553 order = page_order(page);
7554 #ifdef CONFIG_DEBUG_VM
7555 pr_info("remove from free list %lx %d %lx\n",
7556 pfn, 1 << order, end_pfn);
7557 #endif
7558 list_del(&page->lru);
7559 rmv_page_order(page);
7560 zone->free_area[order].nr_free--;
7561 for (i = 0; i < (1 << order); i++)
7562 SetPageReserved((page+i));
7563 pfn += (1 << order);
7564 }
7565 spin_unlock_irqrestore(&zone->lock, flags);
7566 }
7567 #endif
7568
7569 bool is_free_buddy_page(struct page *page)
7570 {
7571 struct zone *zone = page_zone(page);
7572 unsigned long pfn = page_to_pfn(page);
7573 unsigned long flags;
7574 unsigned int order;
7575
7576 spin_lock_irqsave(&zone->lock, flags);
7577 for (order = 0; order < MAX_ORDER; order++) {
7578 struct page *page_head = page - (pfn & ((1 << order) - 1));
7579
7580 if (PageBuddy(page_head) && page_order(page_head) >= order)
7581 break;
7582 }
7583 spin_unlock_irqrestore(&zone->lock, flags);
7584
7585 return order < MAX_ORDER;
7586 }