]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
mm/hotplug: mark memory hotplug code in page_alloc.c as __meminit
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
65 #include "internal.h"
66
67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68 DEFINE_PER_CPU(int, numa_node);
69 EXPORT_PER_CPU_SYMBOL(numa_node);
70 #endif
71
72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 /*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81 #endif
82
83 /*
84 * Array of node states.
85 */
86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89 #ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 #ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93 #endif
94 [N_CPU] = { { [0] = 1UL } },
95 #endif /* NUMA */
96 };
97 EXPORT_SYMBOL(node_states);
98
99 unsigned long totalram_pages __read_mostly;
100 unsigned long totalreserve_pages __read_mostly;
101 /*
102 * When calculating the number of globally allowed dirty pages, there
103 * is a certain number of per-zone reserves that should not be
104 * considered dirtyable memory. This is the sum of those reserves
105 * over all existing zones that contribute dirtyable memory.
106 */
107 unsigned long dirty_balance_reserve __read_mostly;
108
109 int percpu_pagelist_fraction;
110 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
111
112 #ifdef CONFIG_PM_SLEEP
113 /*
114 * The following functions are used by the suspend/hibernate code to temporarily
115 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
116 * while devices are suspended. To avoid races with the suspend/hibernate code,
117 * they should always be called with pm_mutex held (gfp_allowed_mask also should
118 * only be modified with pm_mutex held, unless the suspend/hibernate code is
119 * guaranteed not to run in parallel with that modification).
120 */
121
122 static gfp_t saved_gfp_mask;
123
124 void pm_restore_gfp_mask(void)
125 {
126 WARN_ON(!mutex_is_locked(&pm_mutex));
127 if (saved_gfp_mask) {
128 gfp_allowed_mask = saved_gfp_mask;
129 saved_gfp_mask = 0;
130 }
131 }
132
133 void pm_restrict_gfp_mask(void)
134 {
135 WARN_ON(!mutex_is_locked(&pm_mutex));
136 WARN_ON(saved_gfp_mask);
137 saved_gfp_mask = gfp_allowed_mask;
138 gfp_allowed_mask &= ~GFP_IOFS;
139 }
140
141 bool pm_suspended_storage(void)
142 {
143 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
144 return false;
145 return true;
146 }
147 #endif /* CONFIG_PM_SLEEP */
148
149 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
150 int pageblock_order __read_mostly;
151 #endif
152
153 static void __free_pages_ok(struct page *page, unsigned int order);
154
155 /*
156 * results with 256, 32 in the lowmem_reserve sysctl:
157 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
158 * 1G machine -> (16M dma, 784M normal, 224M high)
159 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
160 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
161 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
162 *
163 * TBD: should special case ZONE_DMA32 machines here - in those we normally
164 * don't need any ZONE_NORMAL reservation
165 */
166 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
167 #ifdef CONFIG_ZONE_DMA
168 256,
169 #endif
170 #ifdef CONFIG_ZONE_DMA32
171 256,
172 #endif
173 #ifdef CONFIG_HIGHMEM
174 32,
175 #endif
176 32,
177 };
178
179 EXPORT_SYMBOL(totalram_pages);
180
181 static char * const zone_names[MAX_NR_ZONES] = {
182 #ifdef CONFIG_ZONE_DMA
183 "DMA",
184 #endif
185 #ifdef CONFIG_ZONE_DMA32
186 "DMA32",
187 #endif
188 "Normal",
189 #ifdef CONFIG_HIGHMEM
190 "HighMem",
191 #endif
192 "Movable",
193 };
194
195 int min_free_kbytes = 1024;
196
197 static unsigned long __meminitdata nr_kernel_pages;
198 static unsigned long __meminitdata nr_all_pages;
199 static unsigned long __meminitdata dma_reserve;
200
201 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
202 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __initdata required_kernelcore;
205 static unsigned long __initdata required_movablecore;
206 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
207
208 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
209 int movable_zone;
210 EXPORT_SYMBOL(movable_zone);
211 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
212
213 #if MAX_NUMNODES > 1
214 int nr_node_ids __read_mostly = MAX_NUMNODES;
215 int nr_online_nodes __read_mostly = 1;
216 EXPORT_SYMBOL(nr_node_ids);
217 EXPORT_SYMBOL(nr_online_nodes);
218 #endif
219
220 int page_group_by_mobility_disabled __read_mostly;
221
222 static void set_pageblock_migratetype(struct page *page, int migratetype)
223 {
224
225 if (unlikely(page_group_by_mobility_disabled))
226 migratetype = MIGRATE_UNMOVABLE;
227
228 set_pageblock_flags_group(page, (unsigned long)migratetype,
229 PB_migrate, PB_migrate_end);
230 }
231
232 bool oom_killer_disabled __read_mostly;
233
234 #ifdef CONFIG_DEBUG_VM
235 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
236 {
237 int ret = 0;
238 unsigned seq;
239 unsigned long pfn = page_to_pfn(page);
240
241 do {
242 seq = zone_span_seqbegin(zone);
243 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
244 ret = 1;
245 else if (pfn < zone->zone_start_pfn)
246 ret = 1;
247 } while (zone_span_seqretry(zone, seq));
248
249 return ret;
250 }
251
252 static int page_is_consistent(struct zone *zone, struct page *page)
253 {
254 if (!pfn_valid_within(page_to_pfn(page)))
255 return 0;
256 if (zone != page_zone(page))
257 return 0;
258
259 return 1;
260 }
261 /*
262 * Temporary debugging check for pages not lying within a given zone.
263 */
264 static int bad_range(struct zone *zone, struct page *page)
265 {
266 if (page_outside_zone_boundaries(zone, page))
267 return 1;
268 if (!page_is_consistent(zone, page))
269 return 1;
270
271 return 0;
272 }
273 #else
274 static inline int bad_range(struct zone *zone, struct page *page)
275 {
276 return 0;
277 }
278 #endif
279
280 static void bad_page(struct page *page)
281 {
282 static unsigned long resume;
283 static unsigned long nr_shown;
284 static unsigned long nr_unshown;
285
286 /* Don't complain about poisoned pages */
287 if (PageHWPoison(page)) {
288 reset_page_mapcount(page); /* remove PageBuddy */
289 return;
290 }
291
292 /*
293 * Allow a burst of 60 reports, then keep quiet for that minute;
294 * or allow a steady drip of one report per second.
295 */
296 if (nr_shown == 60) {
297 if (time_before(jiffies, resume)) {
298 nr_unshown++;
299 goto out;
300 }
301 if (nr_unshown) {
302 printk(KERN_ALERT
303 "BUG: Bad page state: %lu messages suppressed\n",
304 nr_unshown);
305 nr_unshown = 0;
306 }
307 nr_shown = 0;
308 }
309 if (nr_shown++ == 0)
310 resume = jiffies + 60 * HZ;
311
312 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
313 current->comm, page_to_pfn(page));
314 dump_page(page);
315
316 print_modules();
317 dump_stack();
318 out:
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 reset_page_mapcount(page); /* remove PageBuddy */
321 add_taint(TAINT_BAD_PAGE);
322 }
323
324 /*
325 * Higher-order pages are called "compound pages". They are structured thusly:
326 *
327 * The first PAGE_SIZE page is called the "head page".
328 *
329 * The remaining PAGE_SIZE pages are called "tail pages".
330 *
331 * All pages have PG_compound set. All tail pages have their ->first_page
332 * pointing at the head page.
333 *
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
337 */
338
339 static void free_compound_page(struct page *page)
340 {
341 __free_pages_ok(page, compound_order(page));
342 }
343
344 void prep_compound_page(struct page *page, unsigned long order)
345 {
346 int i;
347 int nr_pages = 1 << order;
348
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
354 __SetPageTail(p);
355 set_page_count(p, 0);
356 p->first_page = page;
357 }
358 }
359
360 /* update __split_huge_page_refcount if you change this function */
361 static int destroy_compound_page(struct page *page, unsigned long order)
362 {
363 int i;
364 int nr_pages = 1 << order;
365 int bad = 0;
366
367 if (unlikely(compound_order(page) != order) ||
368 unlikely(!PageHead(page))) {
369 bad_page(page);
370 bad++;
371 }
372
373 __ClearPageHead(page);
374
375 for (i = 1; i < nr_pages; i++) {
376 struct page *p = page + i;
377
378 if (unlikely(!PageTail(p) || (p->first_page != page))) {
379 bad_page(page);
380 bad++;
381 }
382 __ClearPageTail(p);
383 }
384
385 return bad;
386 }
387
388 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
389 {
390 int i;
391
392 /*
393 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
394 * and __GFP_HIGHMEM from hard or soft interrupt context.
395 */
396 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
397 for (i = 0; i < (1 << order); i++)
398 clear_highpage(page + i);
399 }
400
401 #ifdef CONFIG_DEBUG_PAGEALLOC
402 unsigned int _debug_guardpage_minorder;
403
404 static int __init debug_guardpage_minorder_setup(char *buf)
405 {
406 unsigned long res;
407
408 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
409 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
410 return 0;
411 }
412 _debug_guardpage_minorder = res;
413 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
414 return 0;
415 }
416 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
417
418 static inline void set_page_guard_flag(struct page *page)
419 {
420 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
421 }
422
423 static inline void clear_page_guard_flag(struct page *page)
424 {
425 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
426 }
427 #else
428 static inline void set_page_guard_flag(struct page *page) { }
429 static inline void clear_page_guard_flag(struct page *page) { }
430 #endif
431
432 static inline void set_page_order(struct page *page, int order)
433 {
434 set_page_private(page, order);
435 __SetPageBuddy(page);
436 }
437
438 static inline void rmv_page_order(struct page *page)
439 {
440 __ClearPageBuddy(page);
441 set_page_private(page, 0);
442 }
443
444 /*
445 * Locate the struct page for both the matching buddy in our
446 * pair (buddy1) and the combined O(n+1) page they form (page).
447 *
448 * 1) Any buddy B1 will have an order O twin B2 which satisfies
449 * the following equation:
450 * B2 = B1 ^ (1 << O)
451 * For example, if the starting buddy (buddy2) is #8 its order
452 * 1 buddy is #10:
453 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
454 *
455 * 2) Any buddy B will have an order O+1 parent P which
456 * satisfies the following equation:
457 * P = B & ~(1 << O)
458 *
459 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
460 */
461 static inline unsigned long
462 __find_buddy_index(unsigned long page_idx, unsigned int order)
463 {
464 return page_idx ^ (1 << order);
465 }
466
467 /*
468 * This function checks whether a page is free && is the buddy
469 * we can do coalesce a page and its buddy if
470 * (a) the buddy is not in a hole &&
471 * (b) the buddy is in the buddy system &&
472 * (c) a page and its buddy have the same order &&
473 * (d) a page and its buddy are in the same zone.
474 *
475 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
476 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
477 *
478 * For recording page's order, we use page_private(page).
479 */
480 static inline int page_is_buddy(struct page *page, struct page *buddy,
481 int order)
482 {
483 if (!pfn_valid_within(page_to_pfn(buddy)))
484 return 0;
485
486 if (page_zone_id(page) != page_zone_id(buddy))
487 return 0;
488
489 if (page_is_guard(buddy) && page_order(buddy) == order) {
490 VM_BUG_ON(page_count(buddy) != 0);
491 return 1;
492 }
493
494 if (PageBuddy(buddy) && page_order(buddy) == order) {
495 VM_BUG_ON(page_count(buddy) != 0);
496 return 1;
497 }
498 return 0;
499 }
500
501 /*
502 * Freeing function for a buddy system allocator.
503 *
504 * The concept of a buddy system is to maintain direct-mapped table
505 * (containing bit values) for memory blocks of various "orders".
506 * The bottom level table contains the map for the smallest allocatable
507 * units of memory (here, pages), and each level above it describes
508 * pairs of units from the levels below, hence, "buddies".
509 * At a high level, all that happens here is marking the table entry
510 * at the bottom level available, and propagating the changes upward
511 * as necessary, plus some accounting needed to play nicely with other
512 * parts of the VM system.
513 * At each level, we keep a list of pages, which are heads of continuous
514 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
515 * order is recorded in page_private(page) field.
516 * So when we are allocating or freeing one, we can derive the state of the
517 * other. That is, if we allocate a small block, and both were
518 * free, the remainder of the region must be split into blocks.
519 * If a block is freed, and its buddy is also free, then this
520 * triggers coalescing into a block of larger size.
521 *
522 * -- wli
523 */
524
525 static inline void __free_one_page(struct page *page,
526 struct zone *zone, unsigned int order,
527 int migratetype)
528 {
529 unsigned long page_idx;
530 unsigned long combined_idx;
531 unsigned long uninitialized_var(buddy_idx);
532 struct page *buddy;
533
534 if (unlikely(PageCompound(page)))
535 if (unlikely(destroy_compound_page(page, order)))
536 return;
537
538 VM_BUG_ON(migratetype == -1);
539
540 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
541
542 VM_BUG_ON(page_idx & ((1 << order) - 1));
543 VM_BUG_ON(bad_range(zone, page));
544
545 while (order < MAX_ORDER-1) {
546 buddy_idx = __find_buddy_index(page_idx, order);
547 buddy = page + (buddy_idx - page_idx);
548 if (!page_is_buddy(page, buddy, order))
549 break;
550 /*
551 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
552 * merge with it and move up one order.
553 */
554 if (page_is_guard(buddy)) {
555 clear_page_guard_flag(buddy);
556 set_page_private(page, 0);
557 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
558 } else {
559 list_del(&buddy->lru);
560 zone->free_area[order].nr_free--;
561 rmv_page_order(buddy);
562 }
563 combined_idx = buddy_idx & page_idx;
564 page = page + (combined_idx - page_idx);
565 page_idx = combined_idx;
566 order++;
567 }
568 set_page_order(page, order);
569
570 /*
571 * If this is not the largest possible page, check if the buddy
572 * of the next-highest order is free. If it is, it's possible
573 * that pages are being freed that will coalesce soon. In case,
574 * that is happening, add the free page to the tail of the list
575 * so it's less likely to be used soon and more likely to be merged
576 * as a higher order page
577 */
578 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
579 struct page *higher_page, *higher_buddy;
580 combined_idx = buddy_idx & page_idx;
581 higher_page = page + (combined_idx - page_idx);
582 buddy_idx = __find_buddy_index(combined_idx, order + 1);
583 higher_buddy = page + (buddy_idx - combined_idx);
584 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
585 list_add_tail(&page->lru,
586 &zone->free_area[order].free_list[migratetype]);
587 goto out;
588 }
589 }
590
591 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
592 out:
593 zone->free_area[order].nr_free++;
594 }
595
596 /*
597 * free_page_mlock() -- clean up attempts to free and mlocked() page.
598 * Page should not be on lru, so no need to fix that up.
599 * free_pages_check() will verify...
600 */
601 static inline void free_page_mlock(struct page *page)
602 {
603 __dec_zone_page_state(page, NR_MLOCK);
604 __count_vm_event(UNEVICTABLE_MLOCKFREED);
605 }
606
607 static inline int free_pages_check(struct page *page)
608 {
609 if (unlikely(page_mapcount(page) |
610 (page->mapping != NULL) |
611 (atomic_read(&page->_count) != 0) |
612 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
613 (mem_cgroup_bad_page_check(page)))) {
614 bad_page(page);
615 return 1;
616 }
617 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
618 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
619 return 0;
620 }
621
622 /*
623 * Frees a number of pages from the PCP lists
624 * Assumes all pages on list are in same zone, and of same order.
625 * count is the number of pages to free.
626 *
627 * If the zone was previously in an "all pages pinned" state then look to
628 * see if this freeing clears that state.
629 *
630 * And clear the zone's pages_scanned counter, to hold off the "all pages are
631 * pinned" detection logic.
632 */
633 static void free_pcppages_bulk(struct zone *zone, int count,
634 struct per_cpu_pages *pcp)
635 {
636 int migratetype = 0;
637 int batch_free = 0;
638 int to_free = count;
639
640 spin_lock(&zone->lock);
641 zone->all_unreclaimable = 0;
642 zone->pages_scanned = 0;
643
644 while (to_free) {
645 struct page *page;
646 struct list_head *list;
647
648 /*
649 * Remove pages from lists in a round-robin fashion. A
650 * batch_free count is maintained that is incremented when an
651 * empty list is encountered. This is so more pages are freed
652 * off fuller lists instead of spinning excessively around empty
653 * lists
654 */
655 do {
656 batch_free++;
657 if (++migratetype == MIGRATE_PCPTYPES)
658 migratetype = 0;
659 list = &pcp->lists[migratetype];
660 } while (list_empty(list));
661
662 /* This is the only non-empty list. Free them all. */
663 if (batch_free == MIGRATE_PCPTYPES)
664 batch_free = to_free;
665
666 do {
667 page = list_entry(list->prev, struct page, lru);
668 /* must delete as __free_one_page list manipulates */
669 list_del(&page->lru);
670 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
671 __free_one_page(page, zone, 0, page_private(page));
672 trace_mm_page_pcpu_drain(page, 0, page_private(page));
673 } while (--to_free && --batch_free && !list_empty(list));
674 }
675 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
676 spin_unlock(&zone->lock);
677 }
678
679 static void free_one_page(struct zone *zone, struct page *page, int order,
680 int migratetype)
681 {
682 spin_lock(&zone->lock);
683 zone->all_unreclaimable = 0;
684 zone->pages_scanned = 0;
685
686 __free_one_page(page, zone, order, migratetype);
687 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
688 spin_unlock(&zone->lock);
689 }
690
691 static bool free_pages_prepare(struct page *page, unsigned int order)
692 {
693 int i;
694 int bad = 0;
695
696 trace_mm_page_free(page, order);
697 kmemcheck_free_shadow(page, order);
698
699 if (PageAnon(page))
700 page->mapping = NULL;
701 for (i = 0; i < (1 << order); i++)
702 bad += free_pages_check(page + i);
703 if (bad)
704 return false;
705
706 if (!PageHighMem(page)) {
707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 debug_check_no_obj_freed(page_address(page),
709 PAGE_SIZE << order);
710 }
711 arch_free_page(page, order);
712 kernel_map_pages(page, 1 << order, 0);
713
714 return true;
715 }
716
717 static void __free_pages_ok(struct page *page, unsigned int order)
718 {
719 unsigned long flags;
720 int wasMlocked = __TestClearPageMlocked(page);
721
722 if (!free_pages_prepare(page, order))
723 return;
724
725 local_irq_save(flags);
726 if (unlikely(wasMlocked))
727 free_page_mlock(page);
728 __count_vm_events(PGFREE, 1 << order);
729 free_one_page(page_zone(page), page, order,
730 get_pageblock_migratetype(page));
731 local_irq_restore(flags);
732 }
733
734 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
735 {
736 unsigned int nr_pages = 1 << order;
737 unsigned int loop;
738
739 prefetchw(page);
740 for (loop = 0; loop < nr_pages; loop++) {
741 struct page *p = &page[loop];
742
743 if (loop + 1 < nr_pages)
744 prefetchw(p + 1);
745 __ClearPageReserved(p);
746 set_page_count(p, 0);
747 }
748
749 set_page_refcounted(page);
750 __free_pages(page, order);
751 }
752
753 #ifdef CONFIG_CMA
754 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
755 void __init init_cma_reserved_pageblock(struct page *page)
756 {
757 unsigned i = pageblock_nr_pages;
758 struct page *p = page;
759
760 do {
761 __ClearPageReserved(p);
762 set_page_count(p, 0);
763 } while (++p, --i);
764
765 set_page_refcounted(page);
766 set_pageblock_migratetype(page, MIGRATE_CMA);
767 __free_pages(page, pageblock_order);
768 totalram_pages += pageblock_nr_pages;
769 }
770 #endif
771
772 /*
773 * The order of subdivision here is critical for the IO subsystem.
774 * Please do not alter this order without good reasons and regression
775 * testing. Specifically, as large blocks of memory are subdivided,
776 * the order in which smaller blocks are delivered depends on the order
777 * they're subdivided in this function. This is the primary factor
778 * influencing the order in which pages are delivered to the IO
779 * subsystem according to empirical testing, and this is also justified
780 * by considering the behavior of a buddy system containing a single
781 * large block of memory acted on by a series of small allocations.
782 * This behavior is a critical factor in sglist merging's success.
783 *
784 * -- wli
785 */
786 static inline void expand(struct zone *zone, struct page *page,
787 int low, int high, struct free_area *area,
788 int migratetype)
789 {
790 unsigned long size = 1 << high;
791
792 while (high > low) {
793 area--;
794 high--;
795 size >>= 1;
796 VM_BUG_ON(bad_range(zone, &page[size]));
797
798 #ifdef CONFIG_DEBUG_PAGEALLOC
799 if (high < debug_guardpage_minorder()) {
800 /*
801 * Mark as guard pages (or page), that will allow to
802 * merge back to allocator when buddy will be freed.
803 * Corresponding page table entries will not be touched,
804 * pages will stay not present in virtual address space
805 */
806 INIT_LIST_HEAD(&page[size].lru);
807 set_page_guard_flag(&page[size]);
808 set_page_private(&page[size], high);
809 /* Guard pages are not available for any usage */
810 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << high));
811 continue;
812 }
813 #endif
814 list_add(&page[size].lru, &area->free_list[migratetype]);
815 area->nr_free++;
816 set_page_order(&page[size], high);
817 }
818 }
819
820 /*
821 * This page is about to be returned from the page allocator
822 */
823 static inline int check_new_page(struct page *page)
824 {
825 if (unlikely(page_mapcount(page) |
826 (page->mapping != NULL) |
827 (atomic_read(&page->_count) != 0) |
828 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
829 (mem_cgroup_bad_page_check(page)))) {
830 bad_page(page);
831 return 1;
832 }
833 return 0;
834 }
835
836 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
837 {
838 int i;
839
840 for (i = 0; i < (1 << order); i++) {
841 struct page *p = page + i;
842 if (unlikely(check_new_page(p)))
843 return 1;
844 }
845
846 set_page_private(page, 0);
847 set_page_refcounted(page);
848
849 arch_alloc_page(page, order);
850 kernel_map_pages(page, 1 << order, 1);
851
852 if (gfp_flags & __GFP_ZERO)
853 prep_zero_page(page, order, gfp_flags);
854
855 if (order && (gfp_flags & __GFP_COMP))
856 prep_compound_page(page, order);
857
858 return 0;
859 }
860
861 /*
862 * Go through the free lists for the given migratetype and remove
863 * the smallest available page from the freelists
864 */
865 static inline
866 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
867 int migratetype)
868 {
869 unsigned int current_order;
870 struct free_area * area;
871 struct page *page;
872
873 /* Find a page of the appropriate size in the preferred list */
874 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
875 area = &(zone->free_area[current_order]);
876 if (list_empty(&area->free_list[migratetype]))
877 continue;
878
879 page = list_entry(area->free_list[migratetype].next,
880 struct page, lru);
881 list_del(&page->lru);
882 rmv_page_order(page);
883 area->nr_free--;
884 expand(zone, page, order, current_order, area, migratetype);
885 return page;
886 }
887
888 return NULL;
889 }
890
891
892 /*
893 * This array describes the order lists are fallen back to when
894 * the free lists for the desirable migrate type are depleted
895 */
896 static int fallbacks[MIGRATE_TYPES][4] = {
897 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
898 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
899 #ifdef CONFIG_CMA
900 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
901 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
902 #else
903 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
904 #endif
905 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
906 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
907 };
908
909 /*
910 * Move the free pages in a range to the free lists of the requested type.
911 * Note that start_page and end_pages are not aligned on a pageblock
912 * boundary. If alignment is required, use move_freepages_block()
913 */
914 static int move_freepages(struct zone *zone,
915 struct page *start_page, struct page *end_page,
916 int migratetype)
917 {
918 struct page *page;
919 unsigned long order;
920 int pages_moved = 0;
921
922 #ifndef CONFIG_HOLES_IN_ZONE
923 /*
924 * page_zone is not safe to call in this context when
925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
926 * anyway as we check zone boundaries in move_freepages_block().
927 * Remove at a later date when no bug reports exist related to
928 * grouping pages by mobility
929 */
930 BUG_ON(page_zone(start_page) != page_zone(end_page));
931 #endif
932
933 for (page = start_page; page <= end_page;) {
934 /* Make sure we are not inadvertently changing nodes */
935 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
936
937 if (!pfn_valid_within(page_to_pfn(page))) {
938 page++;
939 continue;
940 }
941
942 if (!PageBuddy(page)) {
943 page++;
944 continue;
945 }
946
947 order = page_order(page);
948 list_move(&page->lru,
949 &zone->free_area[order].free_list[migratetype]);
950 page += 1 << order;
951 pages_moved += 1 << order;
952 }
953
954 return pages_moved;
955 }
956
957 static int move_freepages_block(struct zone *zone, struct page *page,
958 int migratetype)
959 {
960 unsigned long start_pfn, end_pfn;
961 struct page *start_page, *end_page;
962
963 start_pfn = page_to_pfn(page);
964 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
965 start_page = pfn_to_page(start_pfn);
966 end_page = start_page + pageblock_nr_pages - 1;
967 end_pfn = start_pfn + pageblock_nr_pages - 1;
968
969 /* Do not cross zone boundaries */
970 if (start_pfn < zone->zone_start_pfn)
971 start_page = page;
972 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
973 return 0;
974
975 return move_freepages(zone, start_page, end_page, migratetype);
976 }
977
978 static void change_pageblock_range(struct page *pageblock_page,
979 int start_order, int migratetype)
980 {
981 int nr_pageblocks = 1 << (start_order - pageblock_order);
982
983 while (nr_pageblocks--) {
984 set_pageblock_migratetype(pageblock_page, migratetype);
985 pageblock_page += pageblock_nr_pages;
986 }
987 }
988
989 /* Remove an element from the buddy allocator from the fallback list */
990 static inline struct page *
991 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
992 {
993 struct free_area * area;
994 int current_order;
995 struct page *page;
996 int migratetype, i;
997
998 /* Find the largest possible block of pages in the other list */
999 for (current_order = MAX_ORDER-1; current_order >= order;
1000 --current_order) {
1001 for (i = 0;; i++) {
1002 migratetype = fallbacks[start_migratetype][i];
1003
1004 /* MIGRATE_RESERVE handled later if necessary */
1005 if (migratetype == MIGRATE_RESERVE)
1006 break;
1007
1008 area = &(zone->free_area[current_order]);
1009 if (list_empty(&area->free_list[migratetype]))
1010 continue;
1011
1012 page = list_entry(area->free_list[migratetype].next,
1013 struct page, lru);
1014 area->nr_free--;
1015
1016 /*
1017 * If breaking a large block of pages, move all free
1018 * pages to the preferred allocation list. If falling
1019 * back for a reclaimable kernel allocation, be more
1020 * aggressive about taking ownership of free pages
1021 *
1022 * On the other hand, never change migration
1023 * type of MIGRATE_CMA pageblocks nor move CMA
1024 * pages on different free lists. We don't
1025 * want unmovable pages to be allocated from
1026 * MIGRATE_CMA areas.
1027 */
1028 if (!is_migrate_cma(migratetype) &&
1029 (unlikely(current_order >= pageblock_order / 2) ||
1030 start_migratetype == MIGRATE_RECLAIMABLE ||
1031 page_group_by_mobility_disabled)) {
1032 int pages;
1033 pages = move_freepages_block(zone, page,
1034 start_migratetype);
1035
1036 /* Claim the whole block if over half of it is free */
1037 if (pages >= (1 << (pageblock_order-1)) ||
1038 page_group_by_mobility_disabled)
1039 set_pageblock_migratetype(page,
1040 start_migratetype);
1041
1042 migratetype = start_migratetype;
1043 }
1044
1045 /* Remove the page from the freelists */
1046 list_del(&page->lru);
1047 rmv_page_order(page);
1048
1049 /* Take ownership for orders >= pageblock_order */
1050 if (current_order >= pageblock_order &&
1051 !is_migrate_cma(migratetype))
1052 change_pageblock_range(page, current_order,
1053 start_migratetype);
1054
1055 expand(zone, page, order, current_order, area,
1056 is_migrate_cma(migratetype)
1057 ? migratetype : start_migratetype);
1058
1059 trace_mm_page_alloc_extfrag(page, order, current_order,
1060 start_migratetype, migratetype);
1061
1062 return page;
1063 }
1064 }
1065
1066 return NULL;
1067 }
1068
1069 /*
1070 * Do the hard work of removing an element from the buddy allocator.
1071 * Call me with the zone->lock already held.
1072 */
1073 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1074 int migratetype)
1075 {
1076 struct page *page;
1077
1078 retry_reserve:
1079 page = __rmqueue_smallest(zone, order, migratetype);
1080
1081 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1082 page = __rmqueue_fallback(zone, order, migratetype);
1083
1084 /*
1085 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1086 * is used because __rmqueue_smallest is an inline function
1087 * and we want just one call site
1088 */
1089 if (!page) {
1090 migratetype = MIGRATE_RESERVE;
1091 goto retry_reserve;
1092 }
1093 }
1094
1095 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1096 return page;
1097 }
1098
1099 /*
1100 * Obtain a specified number of elements from the buddy allocator, all under
1101 * a single hold of the lock, for efficiency. Add them to the supplied list.
1102 * Returns the number of new pages which were placed at *list.
1103 */
1104 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1105 unsigned long count, struct list_head *list,
1106 int migratetype, int cold)
1107 {
1108 int mt = migratetype, i;
1109
1110 spin_lock(&zone->lock);
1111 for (i = 0; i < count; ++i) {
1112 struct page *page = __rmqueue(zone, order, migratetype);
1113 if (unlikely(page == NULL))
1114 break;
1115
1116 /*
1117 * Split buddy pages returned by expand() are received here
1118 * in physical page order. The page is added to the callers and
1119 * list and the list head then moves forward. From the callers
1120 * perspective, the linked list is ordered by page number in
1121 * some conditions. This is useful for IO devices that can
1122 * merge IO requests if the physical pages are ordered
1123 * properly.
1124 */
1125 if (likely(cold == 0))
1126 list_add(&page->lru, list);
1127 else
1128 list_add_tail(&page->lru, list);
1129 if (IS_ENABLED(CONFIG_CMA)) {
1130 mt = get_pageblock_migratetype(page);
1131 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1132 mt = migratetype;
1133 }
1134 set_page_private(page, mt);
1135 list = &page->lru;
1136 }
1137 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1138 spin_unlock(&zone->lock);
1139 return i;
1140 }
1141
1142 #ifdef CONFIG_NUMA
1143 /*
1144 * Called from the vmstat counter updater to drain pagesets of this
1145 * currently executing processor on remote nodes after they have
1146 * expired.
1147 *
1148 * Note that this function must be called with the thread pinned to
1149 * a single processor.
1150 */
1151 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1152 {
1153 unsigned long flags;
1154 int to_drain;
1155
1156 local_irq_save(flags);
1157 if (pcp->count >= pcp->batch)
1158 to_drain = pcp->batch;
1159 else
1160 to_drain = pcp->count;
1161 if (to_drain > 0) {
1162 free_pcppages_bulk(zone, to_drain, pcp);
1163 pcp->count -= to_drain;
1164 }
1165 local_irq_restore(flags);
1166 }
1167 #endif
1168
1169 /*
1170 * Drain pages of the indicated processor.
1171 *
1172 * The processor must either be the current processor and the
1173 * thread pinned to the current processor or a processor that
1174 * is not online.
1175 */
1176 static void drain_pages(unsigned int cpu)
1177 {
1178 unsigned long flags;
1179 struct zone *zone;
1180
1181 for_each_populated_zone(zone) {
1182 struct per_cpu_pageset *pset;
1183 struct per_cpu_pages *pcp;
1184
1185 local_irq_save(flags);
1186 pset = per_cpu_ptr(zone->pageset, cpu);
1187
1188 pcp = &pset->pcp;
1189 if (pcp->count) {
1190 free_pcppages_bulk(zone, pcp->count, pcp);
1191 pcp->count = 0;
1192 }
1193 local_irq_restore(flags);
1194 }
1195 }
1196
1197 /*
1198 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1199 */
1200 void drain_local_pages(void *arg)
1201 {
1202 drain_pages(smp_processor_id());
1203 }
1204
1205 /*
1206 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1207 *
1208 * Note that this code is protected against sending an IPI to an offline
1209 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1210 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1211 * nothing keeps CPUs from showing up after we populated the cpumask and
1212 * before the call to on_each_cpu_mask().
1213 */
1214 void drain_all_pages(void)
1215 {
1216 int cpu;
1217 struct per_cpu_pageset *pcp;
1218 struct zone *zone;
1219
1220 /*
1221 * Allocate in the BSS so we wont require allocation in
1222 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1223 */
1224 static cpumask_t cpus_with_pcps;
1225
1226 /*
1227 * We don't care about racing with CPU hotplug event
1228 * as offline notification will cause the notified
1229 * cpu to drain that CPU pcps and on_each_cpu_mask
1230 * disables preemption as part of its processing
1231 */
1232 for_each_online_cpu(cpu) {
1233 bool has_pcps = false;
1234 for_each_populated_zone(zone) {
1235 pcp = per_cpu_ptr(zone->pageset, cpu);
1236 if (pcp->pcp.count) {
1237 has_pcps = true;
1238 break;
1239 }
1240 }
1241 if (has_pcps)
1242 cpumask_set_cpu(cpu, &cpus_with_pcps);
1243 else
1244 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1245 }
1246 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1247 }
1248
1249 #ifdef CONFIG_HIBERNATION
1250
1251 void mark_free_pages(struct zone *zone)
1252 {
1253 unsigned long pfn, max_zone_pfn;
1254 unsigned long flags;
1255 int order, t;
1256 struct list_head *curr;
1257
1258 if (!zone->spanned_pages)
1259 return;
1260
1261 spin_lock_irqsave(&zone->lock, flags);
1262
1263 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1264 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1265 if (pfn_valid(pfn)) {
1266 struct page *page = pfn_to_page(pfn);
1267
1268 if (!swsusp_page_is_forbidden(page))
1269 swsusp_unset_page_free(page);
1270 }
1271
1272 for_each_migratetype_order(order, t) {
1273 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1274 unsigned long i;
1275
1276 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1277 for (i = 0; i < (1UL << order); i++)
1278 swsusp_set_page_free(pfn_to_page(pfn + i));
1279 }
1280 }
1281 spin_unlock_irqrestore(&zone->lock, flags);
1282 }
1283 #endif /* CONFIG_PM */
1284
1285 /*
1286 * Free a 0-order page
1287 * cold == 1 ? free a cold page : free a hot page
1288 */
1289 void free_hot_cold_page(struct page *page, int cold)
1290 {
1291 struct zone *zone = page_zone(page);
1292 struct per_cpu_pages *pcp;
1293 unsigned long flags;
1294 int migratetype;
1295 int wasMlocked = __TestClearPageMlocked(page);
1296
1297 if (!free_pages_prepare(page, 0))
1298 return;
1299
1300 migratetype = get_pageblock_migratetype(page);
1301 set_page_private(page, migratetype);
1302 local_irq_save(flags);
1303 if (unlikely(wasMlocked))
1304 free_page_mlock(page);
1305 __count_vm_event(PGFREE);
1306
1307 /*
1308 * We only track unmovable, reclaimable and movable on pcp lists.
1309 * Free ISOLATE pages back to the allocator because they are being
1310 * offlined but treat RESERVE as movable pages so we can get those
1311 * areas back if necessary. Otherwise, we may have to free
1312 * excessively into the page allocator
1313 */
1314 if (migratetype >= MIGRATE_PCPTYPES) {
1315 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1316 free_one_page(zone, page, 0, migratetype);
1317 goto out;
1318 }
1319 migratetype = MIGRATE_MOVABLE;
1320 }
1321
1322 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1323 if (cold)
1324 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1325 else
1326 list_add(&page->lru, &pcp->lists[migratetype]);
1327 pcp->count++;
1328 if (pcp->count >= pcp->high) {
1329 free_pcppages_bulk(zone, pcp->batch, pcp);
1330 pcp->count -= pcp->batch;
1331 }
1332
1333 out:
1334 local_irq_restore(flags);
1335 }
1336
1337 /*
1338 * Free a list of 0-order pages
1339 */
1340 void free_hot_cold_page_list(struct list_head *list, int cold)
1341 {
1342 struct page *page, *next;
1343
1344 list_for_each_entry_safe(page, next, list, lru) {
1345 trace_mm_page_free_batched(page, cold);
1346 free_hot_cold_page(page, cold);
1347 }
1348 }
1349
1350 /*
1351 * split_page takes a non-compound higher-order page, and splits it into
1352 * n (1<<order) sub-pages: page[0..n]
1353 * Each sub-page must be freed individually.
1354 *
1355 * Note: this is probably too low level an operation for use in drivers.
1356 * Please consult with lkml before using this in your driver.
1357 */
1358 void split_page(struct page *page, unsigned int order)
1359 {
1360 int i;
1361
1362 VM_BUG_ON(PageCompound(page));
1363 VM_BUG_ON(!page_count(page));
1364
1365 #ifdef CONFIG_KMEMCHECK
1366 /*
1367 * Split shadow pages too, because free(page[0]) would
1368 * otherwise free the whole shadow.
1369 */
1370 if (kmemcheck_page_is_tracked(page))
1371 split_page(virt_to_page(page[0].shadow), order);
1372 #endif
1373
1374 for (i = 1; i < (1 << order); i++)
1375 set_page_refcounted(page + i);
1376 }
1377
1378 /*
1379 * Similar to split_page except the page is already free. As this is only
1380 * being used for migration, the migratetype of the block also changes.
1381 * As this is called with interrupts disabled, the caller is responsible
1382 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1383 * are enabled.
1384 *
1385 * Note: this is probably too low level an operation for use in drivers.
1386 * Please consult with lkml before using this in your driver.
1387 */
1388 int split_free_page(struct page *page)
1389 {
1390 unsigned int order;
1391 unsigned long watermark;
1392 struct zone *zone;
1393
1394 BUG_ON(!PageBuddy(page));
1395
1396 zone = page_zone(page);
1397 order = page_order(page);
1398
1399 /* Obey watermarks as if the page was being allocated */
1400 watermark = low_wmark_pages(zone) + (1 << order);
1401 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1402 return 0;
1403
1404 /* Remove page from free list */
1405 list_del(&page->lru);
1406 zone->free_area[order].nr_free--;
1407 rmv_page_order(page);
1408 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1409
1410 /* Split into individual pages */
1411 set_page_refcounted(page);
1412 split_page(page, order);
1413
1414 if (order >= pageblock_order - 1) {
1415 struct page *endpage = page + (1 << order) - 1;
1416 for (; page < endpage; page += pageblock_nr_pages) {
1417 int mt = get_pageblock_migratetype(page);
1418 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1419 set_pageblock_migratetype(page,
1420 MIGRATE_MOVABLE);
1421 }
1422 }
1423
1424 return 1 << order;
1425 }
1426
1427 /*
1428 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1429 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1430 * or two.
1431 */
1432 static inline
1433 struct page *buffered_rmqueue(struct zone *preferred_zone,
1434 struct zone *zone, int order, gfp_t gfp_flags,
1435 int migratetype)
1436 {
1437 unsigned long flags;
1438 struct page *page;
1439 int cold = !!(gfp_flags & __GFP_COLD);
1440
1441 again:
1442 if (likely(order == 0)) {
1443 struct per_cpu_pages *pcp;
1444 struct list_head *list;
1445
1446 local_irq_save(flags);
1447 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1448 list = &pcp->lists[migratetype];
1449 if (list_empty(list)) {
1450 pcp->count += rmqueue_bulk(zone, 0,
1451 pcp->batch, list,
1452 migratetype, cold);
1453 if (unlikely(list_empty(list)))
1454 goto failed;
1455 }
1456
1457 if (cold)
1458 page = list_entry(list->prev, struct page, lru);
1459 else
1460 page = list_entry(list->next, struct page, lru);
1461
1462 list_del(&page->lru);
1463 pcp->count--;
1464 } else {
1465 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1466 /*
1467 * __GFP_NOFAIL is not to be used in new code.
1468 *
1469 * All __GFP_NOFAIL callers should be fixed so that they
1470 * properly detect and handle allocation failures.
1471 *
1472 * We most definitely don't want callers attempting to
1473 * allocate greater than order-1 page units with
1474 * __GFP_NOFAIL.
1475 */
1476 WARN_ON_ONCE(order > 1);
1477 }
1478 spin_lock_irqsave(&zone->lock, flags);
1479 page = __rmqueue(zone, order, migratetype);
1480 spin_unlock(&zone->lock);
1481 if (!page)
1482 goto failed;
1483 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1484 }
1485
1486 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1487 zone_statistics(preferred_zone, zone, gfp_flags);
1488 local_irq_restore(flags);
1489
1490 VM_BUG_ON(bad_range(zone, page));
1491 if (prep_new_page(page, order, gfp_flags))
1492 goto again;
1493 return page;
1494
1495 failed:
1496 local_irq_restore(flags);
1497 return NULL;
1498 }
1499
1500 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1501 #define ALLOC_WMARK_MIN WMARK_MIN
1502 #define ALLOC_WMARK_LOW WMARK_LOW
1503 #define ALLOC_WMARK_HIGH WMARK_HIGH
1504 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1505
1506 /* Mask to get the watermark bits */
1507 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1508
1509 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1510 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1511 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1512
1513 #ifdef CONFIG_FAIL_PAGE_ALLOC
1514
1515 static struct {
1516 struct fault_attr attr;
1517
1518 u32 ignore_gfp_highmem;
1519 u32 ignore_gfp_wait;
1520 u32 min_order;
1521 } fail_page_alloc = {
1522 .attr = FAULT_ATTR_INITIALIZER,
1523 .ignore_gfp_wait = 1,
1524 .ignore_gfp_highmem = 1,
1525 .min_order = 1,
1526 };
1527
1528 static int __init setup_fail_page_alloc(char *str)
1529 {
1530 return setup_fault_attr(&fail_page_alloc.attr, str);
1531 }
1532 __setup("fail_page_alloc=", setup_fail_page_alloc);
1533
1534 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1535 {
1536 if (order < fail_page_alloc.min_order)
1537 return false;
1538 if (gfp_mask & __GFP_NOFAIL)
1539 return false;
1540 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1541 return false;
1542 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1543 return false;
1544
1545 return should_fail(&fail_page_alloc.attr, 1 << order);
1546 }
1547
1548 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1549
1550 static int __init fail_page_alloc_debugfs(void)
1551 {
1552 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1553 struct dentry *dir;
1554
1555 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1556 &fail_page_alloc.attr);
1557 if (IS_ERR(dir))
1558 return PTR_ERR(dir);
1559
1560 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1561 &fail_page_alloc.ignore_gfp_wait))
1562 goto fail;
1563 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1564 &fail_page_alloc.ignore_gfp_highmem))
1565 goto fail;
1566 if (!debugfs_create_u32("min-order", mode, dir,
1567 &fail_page_alloc.min_order))
1568 goto fail;
1569
1570 return 0;
1571 fail:
1572 debugfs_remove_recursive(dir);
1573
1574 return -ENOMEM;
1575 }
1576
1577 late_initcall(fail_page_alloc_debugfs);
1578
1579 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1580
1581 #else /* CONFIG_FAIL_PAGE_ALLOC */
1582
1583 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1584 {
1585 return false;
1586 }
1587
1588 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1589
1590 /*
1591 * Return true if free pages are above 'mark'. This takes into account the order
1592 * of the allocation.
1593 */
1594 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1595 int classzone_idx, int alloc_flags, long free_pages)
1596 {
1597 /* free_pages my go negative - that's OK */
1598 long min = mark;
1599 int o;
1600
1601 free_pages -= (1 << order) - 1;
1602 if (alloc_flags & ALLOC_HIGH)
1603 min -= min / 2;
1604 if (alloc_flags & ALLOC_HARDER)
1605 min -= min / 4;
1606
1607 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1608 return false;
1609 for (o = 0; o < order; o++) {
1610 /* At the next order, this order's pages become unavailable */
1611 free_pages -= z->free_area[o].nr_free << o;
1612
1613 /* Require fewer higher order pages to be free */
1614 min >>= 1;
1615
1616 if (free_pages <= min)
1617 return false;
1618 }
1619 return true;
1620 }
1621
1622 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1623 int classzone_idx, int alloc_flags)
1624 {
1625 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1626 zone_page_state(z, NR_FREE_PAGES));
1627 }
1628
1629 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1630 int classzone_idx, int alloc_flags)
1631 {
1632 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1633
1634 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1635 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1636
1637 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1638 free_pages);
1639 }
1640
1641 #ifdef CONFIG_NUMA
1642 /*
1643 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1644 * skip over zones that are not allowed by the cpuset, or that have
1645 * been recently (in last second) found to be nearly full. See further
1646 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1647 * that have to skip over a lot of full or unallowed zones.
1648 *
1649 * If the zonelist cache is present in the passed in zonelist, then
1650 * returns a pointer to the allowed node mask (either the current
1651 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1652 *
1653 * If the zonelist cache is not available for this zonelist, does
1654 * nothing and returns NULL.
1655 *
1656 * If the fullzones BITMAP in the zonelist cache is stale (more than
1657 * a second since last zap'd) then we zap it out (clear its bits.)
1658 *
1659 * We hold off even calling zlc_setup, until after we've checked the
1660 * first zone in the zonelist, on the theory that most allocations will
1661 * be satisfied from that first zone, so best to examine that zone as
1662 * quickly as we can.
1663 */
1664 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1665 {
1666 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1667 nodemask_t *allowednodes; /* zonelist_cache approximation */
1668
1669 zlc = zonelist->zlcache_ptr;
1670 if (!zlc)
1671 return NULL;
1672
1673 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1674 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1675 zlc->last_full_zap = jiffies;
1676 }
1677
1678 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1679 &cpuset_current_mems_allowed :
1680 &node_states[N_HIGH_MEMORY];
1681 return allowednodes;
1682 }
1683
1684 /*
1685 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1686 * if it is worth looking at further for free memory:
1687 * 1) Check that the zone isn't thought to be full (doesn't have its
1688 * bit set in the zonelist_cache fullzones BITMAP).
1689 * 2) Check that the zones node (obtained from the zonelist_cache
1690 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1691 * Return true (non-zero) if zone is worth looking at further, or
1692 * else return false (zero) if it is not.
1693 *
1694 * This check -ignores- the distinction between various watermarks,
1695 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1696 * found to be full for any variation of these watermarks, it will
1697 * be considered full for up to one second by all requests, unless
1698 * we are so low on memory on all allowed nodes that we are forced
1699 * into the second scan of the zonelist.
1700 *
1701 * In the second scan we ignore this zonelist cache and exactly
1702 * apply the watermarks to all zones, even it is slower to do so.
1703 * We are low on memory in the second scan, and should leave no stone
1704 * unturned looking for a free page.
1705 */
1706 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1707 nodemask_t *allowednodes)
1708 {
1709 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1710 int i; /* index of *z in zonelist zones */
1711 int n; /* node that zone *z is on */
1712
1713 zlc = zonelist->zlcache_ptr;
1714 if (!zlc)
1715 return 1;
1716
1717 i = z - zonelist->_zonerefs;
1718 n = zlc->z_to_n[i];
1719
1720 /* This zone is worth trying if it is allowed but not full */
1721 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1722 }
1723
1724 /*
1725 * Given 'z' scanning a zonelist, set the corresponding bit in
1726 * zlc->fullzones, so that subsequent attempts to allocate a page
1727 * from that zone don't waste time re-examining it.
1728 */
1729 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1730 {
1731 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1732 int i; /* index of *z in zonelist zones */
1733
1734 zlc = zonelist->zlcache_ptr;
1735 if (!zlc)
1736 return;
1737
1738 i = z - zonelist->_zonerefs;
1739
1740 set_bit(i, zlc->fullzones);
1741 }
1742
1743 /*
1744 * clear all zones full, called after direct reclaim makes progress so that
1745 * a zone that was recently full is not skipped over for up to a second
1746 */
1747 static void zlc_clear_zones_full(struct zonelist *zonelist)
1748 {
1749 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1750
1751 zlc = zonelist->zlcache_ptr;
1752 if (!zlc)
1753 return;
1754
1755 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1756 }
1757
1758 #else /* CONFIG_NUMA */
1759
1760 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1761 {
1762 return NULL;
1763 }
1764
1765 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1766 nodemask_t *allowednodes)
1767 {
1768 return 1;
1769 }
1770
1771 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1772 {
1773 }
1774
1775 static void zlc_clear_zones_full(struct zonelist *zonelist)
1776 {
1777 }
1778 #endif /* CONFIG_NUMA */
1779
1780 /*
1781 * get_page_from_freelist goes through the zonelist trying to allocate
1782 * a page.
1783 */
1784 static struct page *
1785 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1786 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1787 struct zone *preferred_zone, int migratetype)
1788 {
1789 struct zoneref *z;
1790 struct page *page = NULL;
1791 int classzone_idx;
1792 struct zone *zone;
1793 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1794 int zlc_active = 0; /* set if using zonelist_cache */
1795 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1796
1797 classzone_idx = zone_idx(preferred_zone);
1798 zonelist_scan:
1799 /*
1800 * Scan zonelist, looking for a zone with enough free.
1801 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1802 */
1803 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1804 high_zoneidx, nodemask) {
1805 if (NUMA_BUILD && zlc_active &&
1806 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1807 continue;
1808 if ((alloc_flags & ALLOC_CPUSET) &&
1809 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1810 continue;
1811 /*
1812 * When allocating a page cache page for writing, we
1813 * want to get it from a zone that is within its dirty
1814 * limit, such that no single zone holds more than its
1815 * proportional share of globally allowed dirty pages.
1816 * The dirty limits take into account the zone's
1817 * lowmem reserves and high watermark so that kswapd
1818 * should be able to balance it without having to
1819 * write pages from its LRU list.
1820 *
1821 * This may look like it could increase pressure on
1822 * lower zones by failing allocations in higher zones
1823 * before they are full. But the pages that do spill
1824 * over are limited as the lower zones are protected
1825 * by this very same mechanism. It should not become
1826 * a practical burden to them.
1827 *
1828 * XXX: For now, allow allocations to potentially
1829 * exceed the per-zone dirty limit in the slowpath
1830 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1831 * which is important when on a NUMA setup the allowed
1832 * zones are together not big enough to reach the
1833 * global limit. The proper fix for these situations
1834 * will require awareness of zones in the
1835 * dirty-throttling and the flusher threads.
1836 */
1837 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1838 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1839 goto this_zone_full;
1840
1841 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1842 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1843 unsigned long mark;
1844 int ret;
1845
1846 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1847 if (zone_watermark_ok(zone, order, mark,
1848 classzone_idx, alloc_flags))
1849 goto try_this_zone;
1850
1851 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1852 /*
1853 * we do zlc_setup if there are multiple nodes
1854 * and before considering the first zone allowed
1855 * by the cpuset.
1856 */
1857 allowednodes = zlc_setup(zonelist, alloc_flags);
1858 zlc_active = 1;
1859 did_zlc_setup = 1;
1860 }
1861
1862 if (zone_reclaim_mode == 0)
1863 goto this_zone_full;
1864
1865 /*
1866 * As we may have just activated ZLC, check if the first
1867 * eligible zone has failed zone_reclaim recently.
1868 */
1869 if (NUMA_BUILD && zlc_active &&
1870 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1871 continue;
1872
1873 ret = zone_reclaim(zone, gfp_mask, order);
1874 switch (ret) {
1875 case ZONE_RECLAIM_NOSCAN:
1876 /* did not scan */
1877 continue;
1878 case ZONE_RECLAIM_FULL:
1879 /* scanned but unreclaimable */
1880 continue;
1881 default:
1882 /* did we reclaim enough */
1883 if (!zone_watermark_ok(zone, order, mark,
1884 classzone_idx, alloc_flags))
1885 goto this_zone_full;
1886 }
1887 }
1888
1889 try_this_zone:
1890 page = buffered_rmqueue(preferred_zone, zone, order,
1891 gfp_mask, migratetype);
1892 if (page)
1893 break;
1894 this_zone_full:
1895 if (NUMA_BUILD)
1896 zlc_mark_zone_full(zonelist, z);
1897 }
1898
1899 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1900 /* Disable zlc cache for second zonelist scan */
1901 zlc_active = 0;
1902 goto zonelist_scan;
1903 }
1904 return page;
1905 }
1906
1907 /*
1908 * Large machines with many possible nodes should not always dump per-node
1909 * meminfo in irq context.
1910 */
1911 static inline bool should_suppress_show_mem(void)
1912 {
1913 bool ret = false;
1914
1915 #if NODES_SHIFT > 8
1916 ret = in_interrupt();
1917 #endif
1918 return ret;
1919 }
1920
1921 static DEFINE_RATELIMIT_STATE(nopage_rs,
1922 DEFAULT_RATELIMIT_INTERVAL,
1923 DEFAULT_RATELIMIT_BURST);
1924
1925 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1926 {
1927 unsigned int filter = SHOW_MEM_FILTER_NODES;
1928
1929 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
1930 debug_guardpage_minorder() > 0)
1931 return;
1932
1933 /*
1934 * This documents exceptions given to allocations in certain
1935 * contexts that are allowed to allocate outside current's set
1936 * of allowed nodes.
1937 */
1938 if (!(gfp_mask & __GFP_NOMEMALLOC))
1939 if (test_thread_flag(TIF_MEMDIE) ||
1940 (current->flags & (PF_MEMALLOC | PF_EXITING)))
1941 filter &= ~SHOW_MEM_FILTER_NODES;
1942 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1943 filter &= ~SHOW_MEM_FILTER_NODES;
1944
1945 if (fmt) {
1946 struct va_format vaf;
1947 va_list args;
1948
1949 va_start(args, fmt);
1950
1951 vaf.fmt = fmt;
1952 vaf.va = &args;
1953
1954 pr_warn("%pV", &vaf);
1955
1956 va_end(args);
1957 }
1958
1959 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1960 current->comm, order, gfp_mask);
1961
1962 dump_stack();
1963 if (!should_suppress_show_mem())
1964 show_mem(filter);
1965 }
1966
1967 static inline int
1968 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1969 unsigned long did_some_progress,
1970 unsigned long pages_reclaimed)
1971 {
1972 /* Do not loop if specifically requested */
1973 if (gfp_mask & __GFP_NORETRY)
1974 return 0;
1975
1976 /* Always retry if specifically requested */
1977 if (gfp_mask & __GFP_NOFAIL)
1978 return 1;
1979
1980 /*
1981 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
1982 * making forward progress without invoking OOM. Suspend also disables
1983 * storage devices so kswapd will not help. Bail if we are suspending.
1984 */
1985 if (!did_some_progress && pm_suspended_storage())
1986 return 0;
1987
1988 /*
1989 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1990 * means __GFP_NOFAIL, but that may not be true in other
1991 * implementations.
1992 */
1993 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1994 return 1;
1995
1996 /*
1997 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1998 * specified, then we retry until we no longer reclaim any pages
1999 * (above), or we've reclaimed an order of pages at least as
2000 * large as the allocation's order. In both cases, if the
2001 * allocation still fails, we stop retrying.
2002 */
2003 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2004 return 1;
2005
2006 return 0;
2007 }
2008
2009 static inline struct page *
2010 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2011 struct zonelist *zonelist, enum zone_type high_zoneidx,
2012 nodemask_t *nodemask, struct zone *preferred_zone,
2013 int migratetype)
2014 {
2015 struct page *page;
2016
2017 /* Acquire the OOM killer lock for the zones in zonelist */
2018 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2019 schedule_timeout_uninterruptible(1);
2020 return NULL;
2021 }
2022
2023 /*
2024 * Go through the zonelist yet one more time, keep very high watermark
2025 * here, this is only to catch a parallel oom killing, we must fail if
2026 * we're still under heavy pressure.
2027 */
2028 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2029 order, zonelist, high_zoneidx,
2030 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2031 preferred_zone, migratetype);
2032 if (page)
2033 goto out;
2034
2035 if (!(gfp_mask & __GFP_NOFAIL)) {
2036 /* The OOM killer will not help higher order allocs */
2037 if (order > PAGE_ALLOC_COSTLY_ORDER)
2038 goto out;
2039 /* The OOM killer does not needlessly kill tasks for lowmem */
2040 if (high_zoneidx < ZONE_NORMAL)
2041 goto out;
2042 /*
2043 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2044 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2045 * The caller should handle page allocation failure by itself if
2046 * it specifies __GFP_THISNODE.
2047 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2048 */
2049 if (gfp_mask & __GFP_THISNODE)
2050 goto out;
2051 }
2052 /* Exhausted what can be done so it's blamo time */
2053 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2054
2055 out:
2056 clear_zonelist_oom(zonelist, gfp_mask);
2057 return page;
2058 }
2059
2060 #ifdef CONFIG_COMPACTION
2061 /* Try memory compaction for high-order allocations before reclaim */
2062 static struct page *
2063 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2064 struct zonelist *zonelist, enum zone_type high_zoneidx,
2065 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2066 int migratetype, bool sync_migration,
2067 bool *deferred_compaction,
2068 unsigned long *did_some_progress)
2069 {
2070 struct page *page;
2071
2072 if (!order)
2073 return NULL;
2074
2075 if (compaction_deferred(preferred_zone, order)) {
2076 *deferred_compaction = true;
2077 return NULL;
2078 }
2079
2080 current->flags |= PF_MEMALLOC;
2081 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2082 nodemask, sync_migration);
2083 current->flags &= ~PF_MEMALLOC;
2084 if (*did_some_progress != COMPACT_SKIPPED) {
2085
2086 /* Page migration frees to the PCP lists but we want merging */
2087 drain_pages(get_cpu());
2088 put_cpu();
2089
2090 page = get_page_from_freelist(gfp_mask, nodemask,
2091 order, zonelist, high_zoneidx,
2092 alloc_flags, preferred_zone,
2093 migratetype);
2094 if (page) {
2095 preferred_zone->compact_considered = 0;
2096 preferred_zone->compact_defer_shift = 0;
2097 if (order >= preferred_zone->compact_order_failed)
2098 preferred_zone->compact_order_failed = order + 1;
2099 count_vm_event(COMPACTSUCCESS);
2100 return page;
2101 }
2102
2103 /*
2104 * It's bad if compaction run occurs and fails.
2105 * The most likely reason is that pages exist,
2106 * but not enough to satisfy watermarks.
2107 */
2108 count_vm_event(COMPACTFAIL);
2109
2110 /*
2111 * As async compaction considers a subset of pageblocks, only
2112 * defer if the failure was a sync compaction failure.
2113 */
2114 if (sync_migration)
2115 defer_compaction(preferred_zone, order);
2116
2117 cond_resched();
2118 }
2119
2120 return NULL;
2121 }
2122 #else
2123 static inline struct page *
2124 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2125 struct zonelist *zonelist, enum zone_type high_zoneidx,
2126 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2127 int migratetype, bool sync_migration,
2128 bool *deferred_compaction,
2129 unsigned long *did_some_progress)
2130 {
2131 return NULL;
2132 }
2133 #endif /* CONFIG_COMPACTION */
2134
2135 /* Perform direct synchronous page reclaim */
2136 static int
2137 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2138 nodemask_t *nodemask)
2139 {
2140 struct reclaim_state reclaim_state;
2141 int progress;
2142
2143 cond_resched();
2144
2145 /* We now go into synchronous reclaim */
2146 cpuset_memory_pressure_bump();
2147 current->flags |= PF_MEMALLOC;
2148 lockdep_set_current_reclaim_state(gfp_mask);
2149 reclaim_state.reclaimed_slab = 0;
2150 current->reclaim_state = &reclaim_state;
2151
2152 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2153
2154 current->reclaim_state = NULL;
2155 lockdep_clear_current_reclaim_state();
2156 current->flags &= ~PF_MEMALLOC;
2157
2158 cond_resched();
2159
2160 return progress;
2161 }
2162
2163 /* The really slow allocator path where we enter direct reclaim */
2164 static inline struct page *
2165 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2166 struct zonelist *zonelist, enum zone_type high_zoneidx,
2167 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2168 int migratetype, unsigned long *did_some_progress)
2169 {
2170 struct page *page = NULL;
2171 bool drained = false;
2172
2173 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2174 nodemask);
2175 if (unlikely(!(*did_some_progress)))
2176 return NULL;
2177
2178 /* After successful reclaim, reconsider all zones for allocation */
2179 if (NUMA_BUILD)
2180 zlc_clear_zones_full(zonelist);
2181
2182 retry:
2183 page = get_page_from_freelist(gfp_mask, nodemask, order,
2184 zonelist, high_zoneidx,
2185 alloc_flags, preferred_zone,
2186 migratetype);
2187
2188 /*
2189 * If an allocation failed after direct reclaim, it could be because
2190 * pages are pinned on the per-cpu lists. Drain them and try again
2191 */
2192 if (!page && !drained) {
2193 drain_all_pages();
2194 drained = true;
2195 goto retry;
2196 }
2197
2198 return page;
2199 }
2200
2201 /*
2202 * This is called in the allocator slow-path if the allocation request is of
2203 * sufficient urgency to ignore watermarks and take other desperate measures
2204 */
2205 static inline struct page *
2206 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2207 struct zonelist *zonelist, enum zone_type high_zoneidx,
2208 nodemask_t *nodemask, struct zone *preferred_zone,
2209 int migratetype)
2210 {
2211 struct page *page;
2212
2213 do {
2214 page = get_page_from_freelist(gfp_mask, nodemask, order,
2215 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2216 preferred_zone, migratetype);
2217
2218 if (!page && gfp_mask & __GFP_NOFAIL)
2219 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2220 } while (!page && (gfp_mask & __GFP_NOFAIL));
2221
2222 return page;
2223 }
2224
2225 static inline
2226 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2227 enum zone_type high_zoneidx,
2228 enum zone_type classzone_idx)
2229 {
2230 struct zoneref *z;
2231 struct zone *zone;
2232
2233 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2234 wakeup_kswapd(zone, order, classzone_idx);
2235 }
2236
2237 static inline int
2238 gfp_to_alloc_flags(gfp_t gfp_mask)
2239 {
2240 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2241 const gfp_t wait = gfp_mask & __GFP_WAIT;
2242
2243 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2244 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2245
2246 /*
2247 * The caller may dip into page reserves a bit more if the caller
2248 * cannot run direct reclaim, or if the caller has realtime scheduling
2249 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2250 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2251 */
2252 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2253
2254 if (!wait) {
2255 /*
2256 * Not worth trying to allocate harder for
2257 * __GFP_NOMEMALLOC even if it can't schedule.
2258 */
2259 if (!(gfp_mask & __GFP_NOMEMALLOC))
2260 alloc_flags |= ALLOC_HARDER;
2261 /*
2262 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2263 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2264 */
2265 alloc_flags &= ~ALLOC_CPUSET;
2266 } else if (unlikely(rt_task(current)) && !in_interrupt())
2267 alloc_flags |= ALLOC_HARDER;
2268
2269 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2270 if (!in_interrupt() &&
2271 ((current->flags & PF_MEMALLOC) ||
2272 unlikely(test_thread_flag(TIF_MEMDIE))))
2273 alloc_flags |= ALLOC_NO_WATERMARKS;
2274 }
2275
2276 return alloc_flags;
2277 }
2278
2279 static inline struct page *
2280 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2281 struct zonelist *zonelist, enum zone_type high_zoneidx,
2282 nodemask_t *nodemask, struct zone *preferred_zone,
2283 int migratetype)
2284 {
2285 const gfp_t wait = gfp_mask & __GFP_WAIT;
2286 struct page *page = NULL;
2287 int alloc_flags;
2288 unsigned long pages_reclaimed = 0;
2289 unsigned long did_some_progress;
2290 bool sync_migration = false;
2291 bool deferred_compaction = false;
2292
2293 /*
2294 * In the slowpath, we sanity check order to avoid ever trying to
2295 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2296 * be using allocators in order of preference for an area that is
2297 * too large.
2298 */
2299 if (order >= MAX_ORDER) {
2300 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2301 return NULL;
2302 }
2303
2304 /*
2305 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2306 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2307 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2308 * using a larger set of nodes after it has established that the
2309 * allowed per node queues are empty and that nodes are
2310 * over allocated.
2311 */
2312 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2313 goto nopage;
2314
2315 restart:
2316 if (!(gfp_mask & __GFP_NO_KSWAPD))
2317 wake_all_kswapd(order, zonelist, high_zoneidx,
2318 zone_idx(preferred_zone));
2319
2320 /*
2321 * OK, we're below the kswapd watermark and have kicked background
2322 * reclaim. Now things get more complex, so set up alloc_flags according
2323 * to how we want to proceed.
2324 */
2325 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2326
2327 /*
2328 * Find the true preferred zone if the allocation is unconstrained by
2329 * cpusets.
2330 */
2331 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2332 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2333 &preferred_zone);
2334
2335 rebalance:
2336 /* This is the last chance, in general, before the goto nopage. */
2337 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2338 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2339 preferred_zone, migratetype);
2340 if (page)
2341 goto got_pg;
2342
2343 /* Allocate without watermarks if the context allows */
2344 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2345 page = __alloc_pages_high_priority(gfp_mask, order,
2346 zonelist, high_zoneidx, nodemask,
2347 preferred_zone, migratetype);
2348 if (page)
2349 goto got_pg;
2350 }
2351
2352 /* Atomic allocations - we can't balance anything */
2353 if (!wait)
2354 goto nopage;
2355
2356 /* Avoid recursion of direct reclaim */
2357 if (current->flags & PF_MEMALLOC)
2358 goto nopage;
2359
2360 /* Avoid allocations with no watermarks from looping endlessly */
2361 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2362 goto nopage;
2363
2364 /*
2365 * Try direct compaction. The first pass is asynchronous. Subsequent
2366 * attempts after direct reclaim are synchronous
2367 */
2368 page = __alloc_pages_direct_compact(gfp_mask, order,
2369 zonelist, high_zoneidx,
2370 nodemask,
2371 alloc_flags, preferred_zone,
2372 migratetype, sync_migration,
2373 &deferred_compaction,
2374 &did_some_progress);
2375 if (page)
2376 goto got_pg;
2377 sync_migration = true;
2378
2379 /*
2380 * If compaction is deferred for high-order allocations, it is because
2381 * sync compaction recently failed. In this is the case and the caller
2382 * has requested the system not be heavily disrupted, fail the
2383 * allocation now instead of entering direct reclaim
2384 */
2385 if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
2386 goto nopage;
2387
2388 /* Try direct reclaim and then allocating */
2389 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2390 zonelist, high_zoneidx,
2391 nodemask,
2392 alloc_flags, preferred_zone,
2393 migratetype, &did_some_progress);
2394 if (page)
2395 goto got_pg;
2396
2397 /*
2398 * If we failed to make any progress reclaiming, then we are
2399 * running out of options and have to consider going OOM
2400 */
2401 if (!did_some_progress) {
2402 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2403 if (oom_killer_disabled)
2404 goto nopage;
2405 /* Coredumps can quickly deplete all memory reserves */
2406 if ((current->flags & PF_DUMPCORE) &&
2407 !(gfp_mask & __GFP_NOFAIL))
2408 goto nopage;
2409 page = __alloc_pages_may_oom(gfp_mask, order,
2410 zonelist, high_zoneidx,
2411 nodemask, preferred_zone,
2412 migratetype);
2413 if (page)
2414 goto got_pg;
2415
2416 if (!(gfp_mask & __GFP_NOFAIL)) {
2417 /*
2418 * The oom killer is not called for high-order
2419 * allocations that may fail, so if no progress
2420 * is being made, there are no other options and
2421 * retrying is unlikely to help.
2422 */
2423 if (order > PAGE_ALLOC_COSTLY_ORDER)
2424 goto nopage;
2425 /*
2426 * The oom killer is not called for lowmem
2427 * allocations to prevent needlessly killing
2428 * innocent tasks.
2429 */
2430 if (high_zoneidx < ZONE_NORMAL)
2431 goto nopage;
2432 }
2433
2434 goto restart;
2435 }
2436 }
2437
2438 /* Check if we should retry the allocation */
2439 pages_reclaimed += did_some_progress;
2440 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2441 pages_reclaimed)) {
2442 /* Wait for some write requests to complete then retry */
2443 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2444 goto rebalance;
2445 } else {
2446 /*
2447 * High-order allocations do not necessarily loop after
2448 * direct reclaim and reclaim/compaction depends on compaction
2449 * being called after reclaim so call directly if necessary
2450 */
2451 page = __alloc_pages_direct_compact(gfp_mask, order,
2452 zonelist, high_zoneidx,
2453 nodemask,
2454 alloc_flags, preferred_zone,
2455 migratetype, sync_migration,
2456 &deferred_compaction,
2457 &did_some_progress);
2458 if (page)
2459 goto got_pg;
2460 }
2461
2462 nopage:
2463 warn_alloc_failed(gfp_mask, order, NULL);
2464 return page;
2465 got_pg:
2466 if (kmemcheck_enabled)
2467 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2468 return page;
2469
2470 }
2471
2472 /*
2473 * This is the 'heart' of the zoned buddy allocator.
2474 */
2475 struct page *
2476 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2477 struct zonelist *zonelist, nodemask_t *nodemask)
2478 {
2479 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2480 struct zone *preferred_zone;
2481 struct page *page = NULL;
2482 int migratetype = allocflags_to_migratetype(gfp_mask);
2483 unsigned int cpuset_mems_cookie;
2484
2485 gfp_mask &= gfp_allowed_mask;
2486
2487 lockdep_trace_alloc(gfp_mask);
2488
2489 might_sleep_if(gfp_mask & __GFP_WAIT);
2490
2491 if (should_fail_alloc_page(gfp_mask, order))
2492 return NULL;
2493
2494 /*
2495 * Check the zones suitable for the gfp_mask contain at least one
2496 * valid zone. It's possible to have an empty zonelist as a result
2497 * of GFP_THISNODE and a memoryless node
2498 */
2499 if (unlikely(!zonelist->_zonerefs->zone))
2500 return NULL;
2501
2502 retry_cpuset:
2503 cpuset_mems_cookie = get_mems_allowed();
2504
2505 /* The preferred zone is used for statistics later */
2506 first_zones_zonelist(zonelist, high_zoneidx,
2507 nodemask ? : &cpuset_current_mems_allowed,
2508 &preferred_zone);
2509 if (!preferred_zone)
2510 goto out;
2511
2512 /* First allocation attempt */
2513 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2514 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2515 preferred_zone, migratetype);
2516 if (unlikely(!page))
2517 page = __alloc_pages_slowpath(gfp_mask, order,
2518 zonelist, high_zoneidx, nodemask,
2519 preferred_zone, migratetype);
2520
2521 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2522
2523 out:
2524 /*
2525 * When updating a task's mems_allowed, it is possible to race with
2526 * parallel threads in such a way that an allocation can fail while
2527 * the mask is being updated. If a page allocation is about to fail,
2528 * check if the cpuset changed during allocation and if so, retry.
2529 */
2530 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2531 goto retry_cpuset;
2532
2533 return page;
2534 }
2535 EXPORT_SYMBOL(__alloc_pages_nodemask);
2536
2537 /*
2538 * Common helper functions.
2539 */
2540 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2541 {
2542 struct page *page;
2543
2544 /*
2545 * __get_free_pages() returns a 32-bit address, which cannot represent
2546 * a highmem page
2547 */
2548 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2549
2550 page = alloc_pages(gfp_mask, order);
2551 if (!page)
2552 return 0;
2553 return (unsigned long) page_address(page);
2554 }
2555 EXPORT_SYMBOL(__get_free_pages);
2556
2557 unsigned long get_zeroed_page(gfp_t gfp_mask)
2558 {
2559 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2560 }
2561 EXPORT_SYMBOL(get_zeroed_page);
2562
2563 void __free_pages(struct page *page, unsigned int order)
2564 {
2565 if (put_page_testzero(page)) {
2566 if (order == 0)
2567 free_hot_cold_page(page, 0);
2568 else
2569 __free_pages_ok(page, order);
2570 }
2571 }
2572
2573 EXPORT_SYMBOL(__free_pages);
2574
2575 void free_pages(unsigned long addr, unsigned int order)
2576 {
2577 if (addr != 0) {
2578 VM_BUG_ON(!virt_addr_valid((void *)addr));
2579 __free_pages(virt_to_page((void *)addr), order);
2580 }
2581 }
2582
2583 EXPORT_SYMBOL(free_pages);
2584
2585 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2586 {
2587 if (addr) {
2588 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2589 unsigned long used = addr + PAGE_ALIGN(size);
2590
2591 split_page(virt_to_page((void *)addr), order);
2592 while (used < alloc_end) {
2593 free_page(used);
2594 used += PAGE_SIZE;
2595 }
2596 }
2597 return (void *)addr;
2598 }
2599
2600 /**
2601 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2602 * @size: the number of bytes to allocate
2603 * @gfp_mask: GFP flags for the allocation
2604 *
2605 * This function is similar to alloc_pages(), except that it allocates the
2606 * minimum number of pages to satisfy the request. alloc_pages() can only
2607 * allocate memory in power-of-two pages.
2608 *
2609 * This function is also limited by MAX_ORDER.
2610 *
2611 * Memory allocated by this function must be released by free_pages_exact().
2612 */
2613 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2614 {
2615 unsigned int order = get_order(size);
2616 unsigned long addr;
2617
2618 addr = __get_free_pages(gfp_mask, order);
2619 return make_alloc_exact(addr, order, size);
2620 }
2621 EXPORT_SYMBOL(alloc_pages_exact);
2622
2623 /**
2624 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2625 * pages on a node.
2626 * @nid: the preferred node ID where memory should be allocated
2627 * @size: the number of bytes to allocate
2628 * @gfp_mask: GFP flags for the allocation
2629 *
2630 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2631 * back.
2632 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2633 * but is not exact.
2634 */
2635 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2636 {
2637 unsigned order = get_order(size);
2638 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2639 if (!p)
2640 return NULL;
2641 return make_alloc_exact((unsigned long)page_address(p), order, size);
2642 }
2643 EXPORT_SYMBOL(alloc_pages_exact_nid);
2644
2645 /**
2646 * free_pages_exact - release memory allocated via alloc_pages_exact()
2647 * @virt: the value returned by alloc_pages_exact.
2648 * @size: size of allocation, same value as passed to alloc_pages_exact().
2649 *
2650 * Release the memory allocated by a previous call to alloc_pages_exact.
2651 */
2652 void free_pages_exact(void *virt, size_t size)
2653 {
2654 unsigned long addr = (unsigned long)virt;
2655 unsigned long end = addr + PAGE_ALIGN(size);
2656
2657 while (addr < end) {
2658 free_page(addr);
2659 addr += PAGE_SIZE;
2660 }
2661 }
2662 EXPORT_SYMBOL(free_pages_exact);
2663
2664 static unsigned int nr_free_zone_pages(int offset)
2665 {
2666 struct zoneref *z;
2667 struct zone *zone;
2668
2669 /* Just pick one node, since fallback list is circular */
2670 unsigned int sum = 0;
2671
2672 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2673
2674 for_each_zone_zonelist(zone, z, zonelist, offset) {
2675 unsigned long size = zone->present_pages;
2676 unsigned long high = high_wmark_pages(zone);
2677 if (size > high)
2678 sum += size - high;
2679 }
2680
2681 return sum;
2682 }
2683
2684 /*
2685 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2686 */
2687 unsigned int nr_free_buffer_pages(void)
2688 {
2689 return nr_free_zone_pages(gfp_zone(GFP_USER));
2690 }
2691 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2692
2693 /*
2694 * Amount of free RAM allocatable within all zones
2695 */
2696 unsigned int nr_free_pagecache_pages(void)
2697 {
2698 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2699 }
2700
2701 static inline void show_node(struct zone *zone)
2702 {
2703 if (NUMA_BUILD)
2704 printk("Node %d ", zone_to_nid(zone));
2705 }
2706
2707 void si_meminfo(struct sysinfo *val)
2708 {
2709 val->totalram = totalram_pages;
2710 val->sharedram = 0;
2711 val->freeram = global_page_state(NR_FREE_PAGES);
2712 val->bufferram = nr_blockdev_pages();
2713 val->totalhigh = totalhigh_pages;
2714 val->freehigh = nr_free_highpages();
2715 val->mem_unit = PAGE_SIZE;
2716 }
2717
2718 EXPORT_SYMBOL(si_meminfo);
2719
2720 #ifdef CONFIG_NUMA
2721 void si_meminfo_node(struct sysinfo *val, int nid)
2722 {
2723 pg_data_t *pgdat = NODE_DATA(nid);
2724
2725 val->totalram = pgdat->node_present_pages;
2726 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2727 #ifdef CONFIG_HIGHMEM
2728 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2729 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2730 NR_FREE_PAGES);
2731 #else
2732 val->totalhigh = 0;
2733 val->freehigh = 0;
2734 #endif
2735 val->mem_unit = PAGE_SIZE;
2736 }
2737 #endif
2738
2739 /*
2740 * Determine whether the node should be displayed or not, depending on whether
2741 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2742 */
2743 bool skip_free_areas_node(unsigned int flags, int nid)
2744 {
2745 bool ret = false;
2746 unsigned int cpuset_mems_cookie;
2747
2748 if (!(flags & SHOW_MEM_FILTER_NODES))
2749 goto out;
2750
2751 do {
2752 cpuset_mems_cookie = get_mems_allowed();
2753 ret = !node_isset(nid, cpuset_current_mems_allowed);
2754 } while (!put_mems_allowed(cpuset_mems_cookie));
2755 out:
2756 return ret;
2757 }
2758
2759 #define K(x) ((x) << (PAGE_SHIFT-10))
2760
2761 /*
2762 * Show free area list (used inside shift_scroll-lock stuff)
2763 * We also calculate the percentage fragmentation. We do this by counting the
2764 * memory on each free list with the exception of the first item on the list.
2765 * Suppresses nodes that are not allowed by current's cpuset if
2766 * SHOW_MEM_FILTER_NODES is passed.
2767 */
2768 void show_free_areas(unsigned int filter)
2769 {
2770 int cpu;
2771 struct zone *zone;
2772
2773 for_each_populated_zone(zone) {
2774 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2775 continue;
2776 show_node(zone);
2777 printk("%s per-cpu:\n", zone->name);
2778
2779 for_each_online_cpu(cpu) {
2780 struct per_cpu_pageset *pageset;
2781
2782 pageset = per_cpu_ptr(zone->pageset, cpu);
2783
2784 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2785 cpu, pageset->pcp.high,
2786 pageset->pcp.batch, pageset->pcp.count);
2787 }
2788 }
2789
2790 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2791 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2792 " unevictable:%lu"
2793 " dirty:%lu writeback:%lu unstable:%lu\n"
2794 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2795 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2796 global_page_state(NR_ACTIVE_ANON),
2797 global_page_state(NR_INACTIVE_ANON),
2798 global_page_state(NR_ISOLATED_ANON),
2799 global_page_state(NR_ACTIVE_FILE),
2800 global_page_state(NR_INACTIVE_FILE),
2801 global_page_state(NR_ISOLATED_FILE),
2802 global_page_state(NR_UNEVICTABLE),
2803 global_page_state(NR_FILE_DIRTY),
2804 global_page_state(NR_WRITEBACK),
2805 global_page_state(NR_UNSTABLE_NFS),
2806 global_page_state(NR_FREE_PAGES),
2807 global_page_state(NR_SLAB_RECLAIMABLE),
2808 global_page_state(NR_SLAB_UNRECLAIMABLE),
2809 global_page_state(NR_FILE_MAPPED),
2810 global_page_state(NR_SHMEM),
2811 global_page_state(NR_PAGETABLE),
2812 global_page_state(NR_BOUNCE));
2813
2814 for_each_populated_zone(zone) {
2815 int i;
2816
2817 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2818 continue;
2819 show_node(zone);
2820 printk("%s"
2821 " free:%lukB"
2822 " min:%lukB"
2823 " low:%lukB"
2824 " high:%lukB"
2825 " active_anon:%lukB"
2826 " inactive_anon:%lukB"
2827 " active_file:%lukB"
2828 " inactive_file:%lukB"
2829 " unevictable:%lukB"
2830 " isolated(anon):%lukB"
2831 " isolated(file):%lukB"
2832 " present:%lukB"
2833 " mlocked:%lukB"
2834 " dirty:%lukB"
2835 " writeback:%lukB"
2836 " mapped:%lukB"
2837 " shmem:%lukB"
2838 " slab_reclaimable:%lukB"
2839 " slab_unreclaimable:%lukB"
2840 " kernel_stack:%lukB"
2841 " pagetables:%lukB"
2842 " unstable:%lukB"
2843 " bounce:%lukB"
2844 " writeback_tmp:%lukB"
2845 " pages_scanned:%lu"
2846 " all_unreclaimable? %s"
2847 "\n",
2848 zone->name,
2849 K(zone_page_state(zone, NR_FREE_PAGES)),
2850 K(min_wmark_pages(zone)),
2851 K(low_wmark_pages(zone)),
2852 K(high_wmark_pages(zone)),
2853 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2854 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2855 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2856 K(zone_page_state(zone, NR_INACTIVE_FILE)),
2857 K(zone_page_state(zone, NR_UNEVICTABLE)),
2858 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2859 K(zone_page_state(zone, NR_ISOLATED_FILE)),
2860 K(zone->present_pages),
2861 K(zone_page_state(zone, NR_MLOCK)),
2862 K(zone_page_state(zone, NR_FILE_DIRTY)),
2863 K(zone_page_state(zone, NR_WRITEBACK)),
2864 K(zone_page_state(zone, NR_FILE_MAPPED)),
2865 K(zone_page_state(zone, NR_SHMEM)),
2866 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2867 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2868 zone_page_state(zone, NR_KERNEL_STACK) *
2869 THREAD_SIZE / 1024,
2870 K(zone_page_state(zone, NR_PAGETABLE)),
2871 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2872 K(zone_page_state(zone, NR_BOUNCE)),
2873 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2874 zone->pages_scanned,
2875 (zone->all_unreclaimable ? "yes" : "no")
2876 );
2877 printk("lowmem_reserve[]:");
2878 for (i = 0; i < MAX_NR_ZONES; i++)
2879 printk(" %lu", zone->lowmem_reserve[i]);
2880 printk("\n");
2881 }
2882
2883 for_each_populated_zone(zone) {
2884 unsigned long nr[MAX_ORDER], flags, order, total = 0;
2885
2886 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2887 continue;
2888 show_node(zone);
2889 printk("%s: ", zone->name);
2890
2891 spin_lock_irqsave(&zone->lock, flags);
2892 for (order = 0; order < MAX_ORDER; order++) {
2893 nr[order] = zone->free_area[order].nr_free;
2894 total += nr[order] << order;
2895 }
2896 spin_unlock_irqrestore(&zone->lock, flags);
2897 for (order = 0; order < MAX_ORDER; order++)
2898 printk("%lu*%lukB ", nr[order], K(1UL) << order);
2899 printk("= %lukB\n", K(total));
2900 }
2901
2902 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2903
2904 show_swap_cache_info();
2905 }
2906
2907 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2908 {
2909 zoneref->zone = zone;
2910 zoneref->zone_idx = zone_idx(zone);
2911 }
2912
2913 /*
2914 * Builds allocation fallback zone lists.
2915 *
2916 * Add all populated zones of a node to the zonelist.
2917 */
2918 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2919 int nr_zones, enum zone_type zone_type)
2920 {
2921 struct zone *zone;
2922
2923 BUG_ON(zone_type >= MAX_NR_ZONES);
2924 zone_type++;
2925
2926 do {
2927 zone_type--;
2928 zone = pgdat->node_zones + zone_type;
2929 if (populated_zone(zone)) {
2930 zoneref_set_zone(zone,
2931 &zonelist->_zonerefs[nr_zones++]);
2932 check_highest_zone(zone_type);
2933 }
2934
2935 } while (zone_type);
2936 return nr_zones;
2937 }
2938
2939
2940 /*
2941 * zonelist_order:
2942 * 0 = automatic detection of better ordering.
2943 * 1 = order by ([node] distance, -zonetype)
2944 * 2 = order by (-zonetype, [node] distance)
2945 *
2946 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2947 * the same zonelist. So only NUMA can configure this param.
2948 */
2949 #define ZONELIST_ORDER_DEFAULT 0
2950 #define ZONELIST_ORDER_NODE 1
2951 #define ZONELIST_ORDER_ZONE 2
2952
2953 /* zonelist order in the kernel.
2954 * set_zonelist_order() will set this to NODE or ZONE.
2955 */
2956 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2957 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2958
2959
2960 #ifdef CONFIG_NUMA
2961 /* The value user specified ....changed by config */
2962 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2963 /* string for sysctl */
2964 #define NUMA_ZONELIST_ORDER_LEN 16
2965 char numa_zonelist_order[16] = "default";
2966
2967 /*
2968 * interface for configure zonelist ordering.
2969 * command line option "numa_zonelist_order"
2970 * = "[dD]efault - default, automatic configuration.
2971 * = "[nN]ode - order by node locality, then by zone within node
2972 * = "[zZ]one - order by zone, then by locality within zone
2973 */
2974
2975 static int __parse_numa_zonelist_order(char *s)
2976 {
2977 if (*s == 'd' || *s == 'D') {
2978 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2979 } else if (*s == 'n' || *s == 'N') {
2980 user_zonelist_order = ZONELIST_ORDER_NODE;
2981 } else if (*s == 'z' || *s == 'Z') {
2982 user_zonelist_order = ZONELIST_ORDER_ZONE;
2983 } else {
2984 printk(KERN_WARNING
2985 "Ignoring invalid numa_zonelist_order value: "
2986 "%s\n", s);
2987 return -EINVAL;
2988 }
2989 return 0;
2990 }
2991
2992 static __init int setup_numa_zonelist_order(char *s)
2993 {
2994 int ret;
2995
2996 if (!s)
2997 return 0;
2998
2999 ret = __parse_numa_zonelist_order(s);
3000 if (ret == 0)
3001 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3002
3003 return ret;
3004 }
3005 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3006
3007 /*
3008 * sysctl handler for numa_zonelist_order
3009 */
3010 int numa_zonelist_order_handler(ctl_table *table, int write,
3011 void __user *buffer, size_t *length,
3012 loff_t *ppos)
3013 {
3014 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3015 int ret;
3016 static DEFINE_MUTEX(zl_order_mutex);
3017
3018 mutex_lock(&zl_order_mutex);
3019 if (write)
3020 strcpy(saved_string, (char*)table->data);
3021 ret = proc_dostring(table, write, buffer, length, ppos);
3022 if (ret)
3023 goto out;
3024 if (write) {
3025 int oldval = user_zonelist_order;
3026 if (__parse_numa_zonelist_order((char*)table->data)) {
3027 /*
3028 * bogus value. restore saved string
3029 */
3030 strncpy((char*)table->data, saved_string,
3031 NUMA_ZONELIST_ORDER_LEN);
3032 user_zonelist_order = oldval;
3033 } else if (oldval != user_zonelist_order) {
3034 mutex_lock(&zonelists_mutex);
3035 build_all_zonelists(NULL, NULL);
3036 mutex_unlock(&zonelists_mutex);
3037 }
3038 }
3039 out:
3040 mutex_unlock(&zl_order_mutex);
3041 return ret;
3042 }
3043
3044
3045 #define MAX_NODE_LOAD (nr_online_nodes)
3046 static int node_load[MAX_NUMNODES];
3047
3048 /**
3049 * find_next_best_node - find the next node that should appear in a given node's fallback list
3050 * @node: node whose fallback list we're appending
3051 * @used_node_mask: nodemask_t of already used nodes
3052 *
3053 * We use a number of factors to determine which is the next node that should
3054 * appear on a given node's fallback list. The node should not have appeared
3055 * already in @node's fallback list, and it should be the next closest node
3056 * according to the distance array (which contains arbitrary distance values
3057 * from each node to each node in the system), and should also prefer nodes
3058 * with no CPUs, since presumably they'll have very little allocation pressure
3059 * on them otherwise.
3060 * It returns -1 if no node is found.
3061 */
3062 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3063 {
3064 int n, val;
3065 int min_val = INT_MAX;
3066 int best_node = -1;
3067 const struct cpumask *tmp = cpumask_of_node(0);
3068
3069 /* Use the local node if we haven't already */
3070 if (!node_isset(node, *used_node_mask)) {
3071 node_set(node, *used_node_mask);
3072 return node;
3073 }
3074
3075 for_each_node_state(n, N_HIGH_MEMORY) {
3076
3077 /* Don't want a node to appear more than once */
3078 if (node_isset(n, *used_node_mask))
3079 continue;
3080
3081 /* Use the distance array to find the distance */
3082 val = node_distance(node, n);
3083
3084 /* Penalize nodes under us ("prefer the next node") */
3085 val += (n < node);
3086
3087 /* Give preference to headless and unused nodes */
3088 tmp = cpumask_of_node(n);
3089 if (!cpumask_empty(tmp))
3090 val += PENALTY_FOR_NODE_WITH_CPUS;
3091
3092 /* Slight preference for less loaded node */
3093 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3094 val += node_load[n];
3095
3096 if (val < min_val) {
3097 min_val = val;
3098 best_node = n;
3099 }
3100 }
3101
3102 if (best_node >= 0)
3103 node_set(best_node, *used_node_mask);
3104
3105 return best_node;
3106 }
3107
3108
3109 /*
3110 * Build zonelists ordered by node and zones within node.
3111 * This results in maximum locality--normal zone overflows into local
3112 * DMA zone, if any--but risks exhausting DMA zone.
3113 */
3114 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3115 {
3116 int j;
3117 struct zonelist *zonelist;
3118
3119 zonelist = &pgdat->node_zonelists[0];
3120 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3121 ;
3122 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3123 MAX_NR_ZONES - 1);
3124 zonelist->_zonerefs[j].zone = NULL;
3125 zonelist->_zonerefs[j].zone_idx = 0;
3126 }
3127
3128 /*
3129 * Build gfp_thisnode zonelists
3130 */
3131 static void build_thisnode_zonelists(pg_data_t *pgdat)
3132 {
3133 int j;
3134 struct zonelist *zonelist;
3135
3136 zonelist = &pgdat->node_zonelists[1];
3137 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3138 zonelist->_zonerefs[j].zone = NULL;
3139 zonelist->_zonerefs[j].zone_idx = 0;
3140 }
3141
3142 /*
3143 * Build zonelists ordered by zone and nodes within zones.
3144 * This results in conserving DMA zone[s] until all Normal memory is
3145 * exhausted, but results in overflowing to remote node while memory
3146 * may still exist in local DMA zone.
3147 */
3148 static int node_order[MAX_NUMNODES];
3149
3150 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3151 {
3152 int pos, j, node;
3153 int zone_type; /* needs to be signed */
3154 struct zone *z;
3155 struct zonelist *zonelist;
3156
3157 zonelist = &pgdat->node_zonelists[0];
3158 pos = 0;
3159 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3160 for (j = 0; j < nr_nodes; j++) {
3161 node = node_order[j];
3162 z = &NODE_DATA(node)->node_zones[zone_type];
3163 if (populated_zone(z)) {
3164 zoneref_set_zone(z,
3165 &zonelist->_zonerefs[pos++]);
3166 check_highest_zone(zone_type);
3167 }
3168 }
3169 }
3170 zonelist->_zonerefs[pos].zone = NULL;
3171 zonelist->_zonerefs[pos].zone_idx = 0;
3172 }
3173
3174 static int default_zonelist_order(void)
3175 {
3176 int nid, zone_type;
3177 unsigned long low_kmem_size,total_size;
3178 struct zone *z;
3179 int average_size;
3180 /*
3181 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3182 * If they are really small and used heavily, the system can fall
3183 * into OOM very easily.
3184 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3185 */
3186 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3187 low_kmem_size = 0;
3188 total_size = 0;
3189 for_each_online_node(nid) {
3190 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3191 z = &NODE_DATA(nid)->node_zones[zone_type];
3192 if (populated_zone(z)) {
3193 if (zone_type < ZONE_NORMAL)
3194 low_kmem_size += z->present_pages;
3195 total_size += z->present_pages;
3196 } else if (zone_type == ZONE_NORMAL) {
3197 /*
3198 * If any node has only lowmem, then node order
3199 * is preferred to allow kernel allocations
3200 * locally; otherwise, they can easily infringe
3201 * on other nodes when there is an abundance of
3202 * lowmem available to allocate from.
3203 */
3204 return ZONELIST_ORDER_NODE;
3205 }
3206 }
3207 }
3208 if (!low_kmem_size || /* there are no DMA area. */
3209 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3210 return ZONELIST_ORDER_NODE;
3211 /*
3212 * look into each node's config.
3213 * If there is a node whose DMA/DMA32 memory is very big area on
3214 * local memory, NODE_ORDER may be suitable.
3215 */
3216 average_size = total_size /
3217 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3218 for_each_online_node(nid) {
3219 low_kmem_size = 0;
3220 total_size = 0;
3221 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3222 z = &NODE_DATA(nid)->node_zones[zone_type];
3223 if (populated_zone(z)) {
3224 if (zone_type < ZONE_NORMAL)
3225 low_kmem_size += z->present_pages;
3226 total_size += z->present_pages;
3227 }
3228 }
3229 if (low_kmem_size &&
3230 total_size > average_size && /* ignore small node */
3231 low_kmem_size > total_size * 70/100)
3232 return ZONELIST_ORDER_NODE;
3233 }
3234 return ZONELIST_ORDER_ZONE;
3235 }
3236
3237 static void set_zonelist_order(void)
3238 {
3239 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3240 current_zonelist_order = default_zonelist_order();
3241 else
3242 current_zonelist_order = user_zonelist_order;
3243 }
3244
3245 static void build_zonelists(pg_data_t *pgdat)
3246 {
3247 int j, node, load;
3248 enum zone_type i;
3249 nodemask_t used_mask;
3250 int local_node, prev_node;
3251 struct zonelist *zonelist;
3252 int order = current_zonelist_order;
3253
3254 /* initialize zonelists */
3255 for (i = 0; i < MAX_ZONELISTS; i++) {
3256 zonelist = pgdat->node_zonelists + i;
3257 zonelist->_zonerefs[0].zone = NULL;
3258 zonelist->_zonerefs[0].zone_idx = 0;
3259 }
3260
3261 /* NUMA-aware ordering of nodes */
3262 local_node = pgdat->node_id;
3263 load = nr_online_nodes;
3264 prev_node = local_node;
3265 nodes_clear(used_mask);
3266
3267 memset(node_order, 0, sizeof(node_order));
3268 j = 0;
3269
3270 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3271 int distance = node_distance(local_node, node);
3272
3273 /*
3274 * If another node is sufficiently far away then it is better
3275 * to reclaim pages in a zone before going off node.
3276 */
3277 if (distance > RECLAIM_DISTANCE)
3278 zone_reclaim_mode = 1;
3279
3280 /*
3281 * We don't want to pressure a particular node.
3282 * So adding penalty to the first node in same
3283 * distance group to make it round-robin.
3284 */
3285 if (distance != node_distance(local_node, prev_node))
3286 node_load[node] = load;
3287
3288 prev_node = node;
3289 load--;
3290 if (order == ZONELIST_ORDER_NODE)
3291 build_zonelists_in_node_order(pgdat, node);
3292 else
3293 node_order[j++] = node; /* remember order */
3294 }
3295
3296 if (order == ZONELIST_ORDER_ZONE) {
3297 /* calculate node order -- i.e., DMA last! */
3298 build_zonelists_in_zone_order(pgdat, j);
3299 }
3300
3301 build_thisnode_zonelists(pgdat);
3302 }
3303
3304 /* Construct the zonelist performance cache - see further mmzone.h */
3305 static void build_zonelist_cache(pg_data_t *pgdat)
3306 {
3307 struct zonelist *zonelist;
3308 struct zonelist_cache *zlc;
3309 struct zoneref *z;
3310
3311 zonelist = &pgdat->node_zonelists[0];
3312 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3313 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3314 for (z = zonelist->_zonerefs; z->zone; z++)
3315 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3316 }
3317
3318 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3319 /*
3320 * Return node id of node used for "local" allocations.
3321 * I.e., first node id of first zone in arg node's generic zonelist.
3322 * Used for initializing percpu 'numa_mem', which is used primarily
3323 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3324 */
3325 int local_memory_node(int node)
3326 {
3327 struct zone *zone;
3328
3329 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3330 gfp_zone(GFP_KERNEL),
3331 NULL,
3332 &zone);
3333 return zone->node;
3334 }
3335 #endif
3336
3337 #else /* CONFIG_NUMA */
3338
3339 static void set_zonelist_order(void)
3340 {
3341 current_zonelist_order = ZONELIST_ORDER_ZONE;
3342 }
3343
3344 static void build_zonelists(pg_data_t *pgdat)
3345 {
3346 int node, local_node;
3347 enum zone_type j;
3348 struct zonelist *zonelist;
3349
3350 local_node = pgdat->node_id;
3351
3352 zonelist = &pgdat->node_zonelists[0];
3353 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3354
3355 /*
3356 * Now we build the zonelist so that it contains the zones
3357 * of all the other nodes.
3358 * We don't want to pressure a particular node, so when
3359 * building the zones for node N, we make sure that the
3360 * zones coming right after the local ones are those from
3361 * node N+1 (modulo N)
3362 */
3363 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3364 if (!node_online(node))
3365 continue;
3366 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3367 MAX_NR_ZONES - 1);
3368 }
3369 for (node = 0; node < local_node; node++) {
3370 if (!node_online(node))
3371 continue;
3372 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3373 MAX_NR_ZONES - 1);
3374 }
3375
3376 zonelist->_zonerefs[j].zone = NULL;
3377 zonelist->_zonerefs[j].zone_idx = 0;
3378 }
3379
3380 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3381 static void build_zonelist_cache(pg_data_t *pgdat)
3382 {
3383 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3384 }
3385
3386 #endif /* CONFIG_NUMA */
3387
3388 /*
3389 * Boot pageset table. One per cpu which is going to be used for all
3390 * zones and all nodes. The parameters will be set in such a way
3391 * that an item put on a list will immediately be handed over to
3392 * the buddy list. This is safe since pageset manipulation is done
3393 * with interrupts disabled.
3394 *
3395 * The boot_pagesets must be kept even after bootup is complete for
3396 * unused processors and/or zones. They do play a role for bootstrapping
3397 * hotplugged processors.
3398 *
3399 * zoneinfo_show() and maybe other functions do
3400 * not check if the processor is online before following the pageset pointer.
3401 * Other parts of the kernel may not check if the zone is available.
3402 */
3403 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3404 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3405 static void setup_zone_pageset(struct zone *zone);
3406
3407 /*
3408 * Global mutex to protect against size modification of zonelists
3409 * as well as to serialize pageset setup for the new populated zone.
3410 */
3411 DEFINE_MUTEX(zonelists_mutex);
3412
3413 /* return values int ....just for stop_machine() */
3414 static int __build_all_zonelists(void *data)
3415 {
3416 int nid;
3417 int cpu;
3418 pg_data_t *self = data;
3419
3420 #ifdef CONFIG_NUMA
3421 memset(node_load, 0, sizeof(node_load));
3422 #endif
3423
3424 if (self && !node_online(self->node_id)) {
3425 build_zonelists(self);
3426 build_zonelist_cache(self);
3427 }
3428
3429 for_each_online_node(nid) {
3430 pg_data_t *pgdat = NODE_DATA(nid);
3431
3432 build_zonelists(pgdat);
3433 build_zonelist_cache(pgdat);
3434 }
3435
3436 /*
3437 * Initialize the boot_pagesets that are going to be used
3438 * for bootstrapping processors. The real pagesets for
3439 * each zone will be allocated later when the per cpu
3440 * allocator is available.
3441 *
3442 * boot_pagesets are used also for bootstrapping offline
3443 * cpus if the system is already booted because the pagesets
3444 * are needed to initialize allocators on a specific cpu too.
3445 * F.e. the percpu allocator needs the page allocator which
3446 * needs the percpu allocator in order to allocate its pagesets
3447 * (a chicken-egg dilemma).
3448 */
3449 for_each_possible_cpu(cpu) {
3450 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3451
3452 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3453 /*
3454 * We now know the "local memory node" for each node--
3455 * i.e., the node of the first zone in the generic zonelist.
3456 * Set up numa_mem percpu variable for on-line cpus. During
3457 * boot, only the boot cpu should be on-line; we'll init the
3458 * secondary cpus' numa_mem as they come on-line. During
3459 * node/memory hotplug, we'll fixup all on-line cpus.
3460 */
3461 if (cpu_online(cpu))
3462 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3463 #endif
3464 }
3465
3466 return 0;
3467 }
3468
3469 /*
3470 * Called with zonelists_mutex held always
3471 * unless system_state == SYSTEM_BOOTING.
3472 */
3473 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3474 {
3475 set_zonelist_order();
3476
3477 if (system_state == SYSTEM_BOOTING) {
3478 __build_all_zonelists(NULL);
3479 mminit_verify_zonelist();
3480 cpuset_init_current_mems_allowed();
3481 } else {
3482 /* we have to stop all cpus to guarantee there is no user
3483 of zonelist */
3484 #ifdef CONFIG_MEMORY_HOTPLUG
3485 if (zone)
3486 setup_zone_pageset(zone);
3487 #endif
3488 stop_machine(__build_all_zonelists, pgdat, NULL);
3489 /* cpuset refresh routine should be here */
3490 }
3491 vm_total_pages = nr_free_pagecache_pages();
3492 /*
3493 * Disable grouping by mobility if the number of pages in the
3494 * system is too low to allow the mechanism to work. It would be
3495 * more accurate, but expensive to check per-zone. This check is
3496 * made on memory-hotadd so a system can start with mobility
3497 * disabled and enable it later
3498 */
3499 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3500 page_group_by_mobility_disabled = 1;
3501 else
3502 page_group_by_mobility_disabled = 0;
3503
3504 printk("Built %i zonelists in %s order, mobility grouping %s. "
3505 "Total pages: %ld\n",
3506 nr_online_nodes,
3507 zonelist_order_name[current_zonelist_order],
3508 page_group_by_mobility_disabled ? "off" : "on",
3509 vm_total_pages);
3510 #ifdef CONFIG_NUMA
3511 printk("Policy zone: %s\n", zone_names[policy_zone]);
3512 #endif
3513 }
3514
3515 /*
3516 * Helper functions to size the waitqueue hash table.
3517 * Essentially these want to choose hash table sizes sufficiently
3518 * large so that collisions trying to wait on pages are rare.
3519 * But in fact, the number of active page waitqueues on typical
3520 * systems is ridiculously low, less than 200. So this is even
3521 * conservative, even though it seems large.
3522 *
3523 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3524 * waitqueues, i.e. the size of the waitq table given the number of pages.
3525 */
3526 #define PAGES_PER_WAITQUEUE 256
3527
3528 #ifndef CONFIG_MEMORY_HOTPLUG
3529 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3530 {
3531 unsigned long size = 1;
3532
3533 pages /= PAGES_PER_WAITQUEUE;
3534
3535 while (size < pages)
3536 size <<= 1;
3537
3538 /*
3539 * Once we have dozens or even hundreds of threads sleeping
3540 * on IO we've got bigger problems than wait queue collision.
3541 * Limit the size of the wait table to a reasonable size.
3542 */
3543 size = min(size, 4096UL);
3544
3545 return max(size, 4UL);
3546 }
3547 #else
3548 /*
3549 * A zone's size might be changed by hot-add, so it is not possible to determine
3550 * a suitable size for its wait_table. So we use the maximum size now.
3551 *
3552 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3553 *
3554 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3555 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3556 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3557 *
3558 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3559 * or more by the traditional way. (See above). It equals:
3560 *
3561 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3562 * ia64(16K page size) : = ( 8G + 4M)byte.
3563 * powerpc (64K page size) : = (32G +16M)byte.
3564 */
3565 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3566 {
3567 return 4096UL;
3568 }
3569 #endif
3570
3571 /*
3572 * This is an integer logarithm so that shifts can be used later
3573 * to extract the more random high bits from the multiplicative
3574 * hash function before the remainder is taken.
3575 */
3576 static inline unsigned long wait_table_bits(unsigned long size)
3577 {
3578 return ffz(~size);
3579 }
3580
3581 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3582
3583 /*
3584 * Check if a pageblock contains reserved pages
3585 */
3586 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3587 {
3588 unsigned long pfn;
3589
3590 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3591 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3592 return 1;
3593 }
3594 return 0;
3595 }
3596
3597 /*
3598 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3599 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3600 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3601 * higher will lead to a bigger reserve which will get freed as contiguous
3602 * blocks as reclaim kicks in
3603 */
3604 static void setup_zone_migrate_reserve(struct zone *zone)
3605 {
3606 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3607 struct page *page;
3608 unsigned long block_migratetype;
3609 int reserve;
3610
3611 /*
3612 * Get the start pfn, end pfn and the number of blocks to reserve
3613 * We have to be careful to be aligned to pageblock_nr_pages to
3614 * make sure that we always check pfn_valid for the first page in
3615 * the block.
3616 */
3617 start_pfn = zone->zone_start_pfn;
3618 end_pfn = start_pfn + zone->spanned_pages;
3619 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3620 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3621 pageblock_order;
3622
3623 /*
3624 * Reserve blocks are generally in place to help high-order atomic
3625 * allocations that are short-lived. A min_free_kbytes value that
3626 * would result in more than 2 reserve blocks for atomic allocations
3627 * is assumed to be in place to help anti-fragmentation for the
3628 * future allocation of hugepages at runtime.
3629 */
3630 reserve = min(2, reserve);
3631
3632 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3633 if (!pfn_valid(pfn))
3634 continue;
3635 page = pfn_to_page(pfn);
3636
3637 /* Watch out for overlapping nodes */
3638 if (page_to_nid(page) != zone_to_nid(zone))
3639 continue;
3640
3641 block_migratetype = get_pageblock_migratetype(page);
3642
3643 /* Only test what is necessary when the reserves are not met */
3644 if (reserve > 0) {
3645 /*
3646 * Blocks with reserved pages will never free, skip
3647 * them.
3648 */
3649 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3650 if (pageblock_is_reserved(pfn, block_end_pfn))
3651 continue;
3652
3653 /* If this block is reserved, account for it */
3654 if (block_migratetype == MIGRATE_RESERVE) {
3655 reserve--;
3656 continue;
3657 }
3658
3659 /* Suitable for reserving if this block is movable */
3660 if (block_migratetype == MIGRATE_MOVABLE) {
3661 set_pageblock_migratetype(page,
3662 MIGRATE_RESERVE);
3663 move_freepages_block(zone, page,
3664 MIGRATE_RESERVE);
3665 reserve--;
3666 continue;
3667 }
3668 }
3669
3670 /*
3671 * If the reserve is met and this is a previous reserved block,
3672 * take it back
3673 */
3674 if (block_migratetype == MIGRATE_RESERVE) {
3675 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3676 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3677 }
3678 }
3679 }
3680
3681 /*
3682 * Initially all pages are reserved - free ones are freed
3683 * up by free_all_bootmem() once the early boot process is
3684 * done. Non-atomic initialization, single-pass.
3685 */
3686 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3687 unsigned long start_pfn, enum memmap_context context)
3688 {
3689 struct page *page;
3690 unsigned long end_pfn = start_pfn + size;
3691 unsigned long pfn;
3692 struct zone *z;
3693
3694 if (highest_memmap_pfn < end_pfn - 1)
3695 highest_memmap_pfn = end_pfn - 1;
3696
3697 z = &NODE_DATA(nid)->node_zones[zone];
3698 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3699 /*
3700 * There can be holes in boot-time mem_map[]s
3701 * handed to this function. They do not
3702 * exist on hotplugged memory.
3703 */
3704 if (context == MEMMAP_EARLY) {
3705 if (!early_pfn_valid(pfn))
3706 continue;
3707 if (!early_pfn_in_nid(pfn, nid))
3708 continue;
3709 }
3710 page = pfn_to_page(pfn);
3711 set_page_links(page, zone, nid, pfn);
3712 mminit_verify_page_links(page, zone, nid, pfn);
3713 init_page_count(page);
3714 reset_page_mapcount(page);
3715 SetPageReserved(page);
3716 /*
3717 * Mark the block movable so that blocks are reserved for
3718 * movable at startup. This will force kernel allocations
3719 * to reserve their blocks rather than leaking throughout
3720 * the address space during boot when many long-lived
3721 * kernel allocations are made. Later some blocks near
3722 * the start are marked MIGRATE_RESERVE by
3723 * setup_zone_migrate_reserve()
3724 *
3725 * bitmap is created for zone's valid pfn range. but memmap
3726 * can be created for invalid pages (for alignment)
3727 * check here not to call set_pageblock_migratetype() against
3728 * pfn out of zone.
3729 */
3730 if ((z->zone_start_pfn <= pfn)
3731 && (pfn < z->zone_start_pfn + z->spanned_pages)
3732 && !(pfn & (pageblock_nr_pages - 1)))
3733 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3734
3735 INIT_LIST_HEAD(&page->lru);
3736 #ifdef WANT_PAGE_VIRTUAL
3737 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3738 if (!is_highmem_idx(zone))
3739 set_page_address(page, __va(pfn << PAGE_SHIFT));
3740 #endif
3741 }
3742 }
3743
3744 static void __meminit zone_init_free_lists(struct zone *zone)
3745 {
3746 int order, t;
3747 for_each_migratetype_order(order, t) {
3748 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3749 zone->free_area[order].nr_free = 0;
3750 }
3751 }
3752
3753 #ifndef __HAVE_ARCH_MEMMAP_INIT
3754 #define memmap_init(size, nid, zone, start_pfn) \
3755 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3756 #endif
3757
3758 static int __meminit zone_batchsize(struct zone *zone)
3759 {
3760 #ifdef CONFIG_MMU
3761 int batch;
3762
3763 /*
3764 * The per-cpu-pages pools are set to around 1000th of the
3765 * size of the zone. But no more than 1/2 of a meg.
3766 *
3767 * OK, so we don't know how big the cache is. So guess.
3768 */
3769 batch = zone->present_pages / 1024;
3770 if (batch * PAGE_SIZE > 512 * 1024)
3771 batch = (512 * 1024) / PAGE_SIZE;
3772 batch /= 4; /* We effectively *= 4 below */
3773 if (batch < 1)
3774 batch = 1;
3775
3776 /*
3777 * Clamp the batch to a 2^n - 1 value. Having a power
3778 * of 2 value was found to be more likely to have
3779 * suboptimal cache aliasing properties in some cases.
3780 *
3781 * For example if 2 tasks are alternately allocating
3782 * batches of pages, one task can end up with a lot
3783 * of pages of one half of the possible page colors
3784 * and the other with pages of the other colors.
3785 */
3786 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3787
3788 return batch;
3789
3790 #else
3791 /* The deferral and batching of frees should be suppressed under NOMMU
3792 * conditions.
3793 *
3794 * The problem is that NOMMU needs to be able to allocate large chunks
3795 * of contiguous memory as there's no hardware page translation to
3796 * assemble apparent contiguous memory from discontiguous pages.
3797 *
3798 * Queueing large contiguous runs of pages for batching, however,
3799 * causes the pages to actually be freed in smaller chunks. As there
3800 * can be a significant delay between the individual batches being
3801 * recycled, this leads to the once large chunks of space being
3802 * fragmented and becoming unavailable for high-order allocations.
3803 */
3804 return 0;
3805 #endif
3806 }
3807
3808 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3809 {
3810 struct per_cpu_pages *pcp;
3811 int migratetype;
3812
3813 memset(p, 0, sizeof(*p));
3814
3815 pcp = &p->pcp;
3816 pcp->count = 0;
3817 pcp->high = 6 * batch;
3818 pcp->batch = max(1UL, 1 * batch);
3819 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3820 INIT_LIST_HEAD(&pcp->lists[migratetype]);
3821 }
3822
3823 /*
3824 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3825 * to the value high for the pageset p.
3826 */
3827
3828 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3829 unsigned long high)
3830 {
3831 struct per_cpu_pages *pcp;
3832
3833 pcp = &p->pcp;
3834 pcp->high = high;
3835 pcp->batch = max(1UL, high/4);
3836 if ((high/4) > (PAGE_SHIFT * 8))
3837 pcp->batch = PAGE_SHIFT * 8;
3838 }
3839
3840 static void __meminit setup_zone_pageset(struct zone *zone)
3841 {
3842 int cpu;
3843
3844 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3845
3846 for_each_possible_cpu(cpu) {
3847 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3848
3849 setup_pageset(pcp, zone_batchsize(zone));
3850
3851 if (percpu_pagelist_fraction)
3852 setup_pagelist_highmark(pcp,
3853 (zone->present_pages /
3854 percpu_pagelist_fraction));
3855 }
3856 }
3857
3858 /*
3859 * Allocate per cpu pagesets and initialize them.
3860 * Before this call only boot pagesets were available.
3861 */
3862 void __init setup_per_cpu_pageset(void)
3863 {
3864 struct zone *zone;
3865
3866 for_each_populated_zone(zone)
3867 setup_zone_pageset(zone);
3868 }
3869
3870 static noinline __init_refok
3871 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3872 {
3873 int i;
3874 struct pglist_data *pgdat = zone->zone_pgdat;
3875 size_t alloc_size;
3876
3877 /*
3878 * The per-page waitqueue mechanism uses hashed waitqueues
3879 * per zone.
3880 */
3881 zone->wait_table_hash_nr_entries =
3882 wait_table_hash_nr_entries(zone_size_pages);
3883 zone->wait_table_bits =
3884 wait_table_bits(zone->wait_table_hash_nr_entries);
3885 alloc_size = zone->wait_table_hash_nr_entries
3886 * sizeof(wait_queue_head_t);
3887
3888 if (!slab_is_available()) {
3889 zone->wait_table = (wait_queue_head_t *)
3890 alloc_bootmem_node_nopanic(pgdat, alloc_size);
3891 } else {
3892 /*
3893 * This case means that a zone whose size was 0 gets new memory
3894 * via memory hot-add.
3895 * But it may be the case that a new node was hot-added. In
3896 * this case vmalloc() will not be able to use this new node's
3897 * memory - this wait_table must be initialized to use this new
3898 * node itself as well.
3899 * To use this new node's memory, further consideration will be
3900 * necessary.
3901 */
3902 zone->wait_table = vmalloc(alloc_size);
3903 }
3904 if (!zone->wait_table)
3905 return -ENOMEM;
3906
3907 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3908 init_waitqueue_head(zone->wait_table + i);
3909
3910 return 0;
3911 }
3912
3913 static __meminit void zone_pcp_init(struct zone *zone)
3914 {
3915 /*
3916 * per cpu subsystem is not up at this point. The following code
3917 * relies on the ability of the linker to provide the
3918 * offset of a (static) per cpu variable into the per cpu area.
3919 */
3920 zone->pageset = &boot_pageset;
3921
3922 if (zone->present_pages)
3923 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3924 zone->name, zone->present_pages,
3925 zone_batchsize(zone));
3926 }
3927
3928 int __meminit init_currently_empty_zone(struct zone *zone,
3929 unsigned long zone_start_pfn,
3930 unsigned long size,
3931 enum memmap_context context)
3932 {
3933 struct pglist_data *pgdat = zone->zone_pgdat;
3934 int ret;
3935 ret = zone_wait_table_init(zone, size);
3936 if (ret)
3937 return ret;
3938 pgdat->nr_zones = zone_idx(zone) + 1;
3939
3940 zone->zone_start_pfn = zone_start_pfn;
3941
3942 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3943 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3944 pgdat->node_id,
3945 (unsigned long)zone_idx(zone),
3946 zone_start_pfn, (zone_start_pfn + size));
3947
3948 zone_init_free_lists(zone);
3949
3950 return 0;
3951 }
3952
3953 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
3954 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3955 /*
3956 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3957 * Architectures may implement their own version but if add_active_range()
3958 * was used and there are no special requirements, this is a convenient
3959 * alternative
3960 */
3961 int __meminit __early_pfn_to_nid(unsigned long pfn)
3962 {
3963 unsigned long start_pfn, end_pfn;
3964 int i, nid;
3965
3966 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
3967 if (start_pfn <= pfn && pfn < end_pfn)
3968 return nid;
3969 /* This is a memory hole */
3970 return -1;
3971 }
3972 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3973
3974 int __meminit early_pfn_to_nid(unsigned long pfn)
3975 {
3976 int nid;
3977
3978 nid = __early_pfn_to_nid(pfn);
3979 if (nid >= 0)
3980 return nid;
3981 /* just returns 0 */
3982 return 0;
3983 }
3984
3985 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3986 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3987 {
3988 int nid;
3989
3990 nid = __early_pfn_to_nid(pfn);
3991 if (nid >= 0 && nid != node)
3992 return false;
3993 return true;
3994 }
3995 #endif
3996
3997 /**
3998 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3999 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4000 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4001 *
4002 * If an architecture guarantees that all ranges registered with
4003 * add_active_ranges() contain no holes and may be freed, this
4004 * this function may be used instead of calling free_bootmem() manually.
4005 */
4006 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4007 {
4008 unsigned long start_pfn, end_pfn;
4009 int i, this_nid;
4010
4011 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4012 start_pfn = min(start_pfn, max_low_pfn);
4013 end_pfn = min(end_pfn, max_low_pfn);
4014
4015 if (start_pfn < end_pfn)
4016 free_bootmem_node(NODE_DATA(this_nid),
4017 PFN_PHYS(start_pfn),
4018 (end_pfn - start_pfn) << PAGE_SHIFT);
4019 }
4020 }
4021
4022 /**
4023 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4024 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4025 *
4026 * If an architecture guarantees that all ranges registered with
4027 * add_active_ranges() contain no holes and may be freed, this
4028 * function may be used instead of calling memory_present() manually.
4029 */
4030 void __init sparse_memory_present_with_active_regions(int nid)
4031 {
4032 unsigned long start_pfn, end_pfn;
4033 int i, this_nid;
4034
4035 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4036 memory_present(this_nid, start_pfn, end_pfn);
4037 }
4038
4039 /**
4040 * get_pfn_range_for_nid - Return the start and end page frames for a node
4041 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4042 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4043 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4044 *
4045 * It returns the start and end page frame of a node based on information
4046 * provided by an arch calling add_active_range(). If called for a node
4047 * with no available memory, a warning is printed and the start and end
4048 * PFNs will be 0.
4049 */
4050 void __meminit get_pfn_range_for_nid(unsigned int nid,
4051 unsigned long *start_pfn, unsigned long *end_pfn)
4052 {
4053 unsigned long this_start_pfn, this_end_pfn;
4054 int i;
4055
4056 *start_pfn = -1UL;
4057 *end_pfn = 0;
4058
4059 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4060 *start_pfn = min(*start_pfn, this_start_pfn);
4061 *end_pfn = max(*end_pfn, this_end_pfn);
4062 }
4063
4064 if (*start_pfn == -1UL)
4065 *start_pfn = 0;
4066 }
4067
4068 /*
4069 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4070 * assumption is made that zones within a node are ordered in monotonic
4071 * increasing memory addresses so that the "highest" populated zone is used
4072 */
4073 static void __init find_usable_zone_for_movable(void)
4074 {
4075 int zone_index;
4076 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4077 if (zone_index == ZONE_MOVABLE)
4078 continue;
4079
4080 if (arch_zone_highest_possible_pfn[zone_index] >
4081 arch_zone_lowest_possible_pfn[zone_index])
4082 break;
4083 }
4084
4085 VM_BUG_ON(zone_index == -1);
4086 movable_zone = zone_index;
4087 }
4088
4089 /*
4090 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4091 * because it is sized independent of architecture. Unlike the other zones,
4092 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4093 * in each node depending on the size of each node and how evenly kernelcore
4094 * is distributed. This helper function adjusts the zone ranges
4095 * provided by the architecture for a given node by using the end of the
4096 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4097 * zones within a node are in order of monotonic increases memory addresses
4098 */
4099 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4100 unsigned long zone_type,
4101 unsigned long node_start_pfn,
4102 unsigned long node_end_pfn,
4103 unsigned long *zone_start_pfn,
4104 unsigned long *zone_end_pfn)
4105 {
4106 /* Only adjust if ZONE_MOVABLE is on this node */
4107 if (zone_movable_pfn[nid]) {
4108 /* Size ZONE_MOVABLE */
4109 if (zone_type == ZONE_MOVABLE) {
4110 *zone_start_pfn = zone_movable_pfn[nid];
4111 *zone_end_pfn = min(node_end_pfn,
4112 arch_zone_highest_possible_pfn[movable_zone]);
4113
4114 /* Adjust for ZONE_MOVABLE starting within this range */
4115 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4116 *zone_end_pfn > zone_movable_pfn[nid]) {
4117 *zone_end_pfn = zone_movable_pfn[nid];
4118
4119 /* Check if this whole range is within ZONE_MOVABLE */
4120 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4121 *zone_start_pfn = *zone_end_pfn;
4122 }
4123 }
4124
4125 /*
4126 * Return the number of pages a zone spans in a node, including holes
4127 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4128 */
4129 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4130 unsigned long zone_type,
4131 unsigned long *ignored)
4132 {
4133 unsigned long node_start_pfn, node_end_pfn;
4134 unsigned long zone_start_pfn, zone_end_pfn;
4135
4136 /* Get the start and end of the node and zone */
4137 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4138 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4139 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4140 adjust_zone_range_for_zone_movable(nid, zone_type,
4141 node_start_pfn, node_end_pfn,
4142 &zone_start_pfn, &zone_end_pfn);
4143
4144 /* Check that this node has pages within the zone's required range */
4145 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4146 return 0;
4147
4148 /* Move the zone boundaries inside the node if necessary */
4149 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4150 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4151
4152 /* Return the spanned pages */
4153 return zone_end_pfn - zone_start_pfn;
4154 }
4155
4156 /*
4157 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4158 * then all holes in the requested range will be accounted for.
4159 */
4160 unsigned long __meminit __absent_pages_in_range(int nid,
4161 unsigned long range_start_pfn,
4162 unsigned long range_end_pfn)
4163 {
4164 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4165 unsigned long start_pfn, end_pfn;
4166 int i;
4167
4168 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4169 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4170 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4171 nr_absent -= end_pfn - start_pfn;
4172 }
4173 return nr_absent;
4174 }
4175
4176 /**
4177 * absent_pages_in_range - Return number of page frames in holes within a range
4178 * @start_pfn: The start PFN to start searching for holes
4179 * @end_pfn: The end PFN to stop searching for holes
4180 *
4181 * It returns the number of pages frames in memory holes within a range.
4182 */
4183 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4184 unsigned long end_pfn)
4185 {
4186 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4187 }
4188
4189 /* Return the number of page frames in holes in a zone on a node */
4190 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4191 unsigned long zone_type,
4192 unsigned long *ignored)
4193 {
4194 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4195 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4196 unsigned long node_start_pfn, node_end_pfn;
4197 unsigned long zone_start_pfn, zone_end_pfn;
4198
4199 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4200 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4201 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4202
4203 adjust_zone_range_for_zone_movable(nid, zone_type,
4204 node_start_pfn, node_end_pfn,
4205 &zone_start_pfn, &zone_end_pfn);
4206 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4207 }
4208
4209 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4210 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4211 unsigned long zone_type,
4212 unsigned long *zones_size)
4213 {
4214 return zones_size[zone_type];
4215 }
4216
4217 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4218 unsigned long zone_type,
4219 unsigned long *zholes_size)
4220 {
4221 if (!zholes_size)
4222 return 0;
4223
4224 return zholes_size[zone_type];
4225 }
4226
4227 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4228
4229 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4230 unsigned long *zones_size, unsigned long *zholes_size)
4231 {
4232 unsigned long realtotalpages, totalpages = 0;
4233 enum zone_type i;
4234
4235 for (i = 0; i < MAX_NR_ZONES; i++)
4236 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4237 zones_size);
4238 pgdat->node_spanned_pages = totalpages;
4239
4240 realtotalpages = totalpages;
4241 for (i = 0; i < MAX_NR_ZONES; i++)
4242 realtotalpages -=
4243 zone_absent_pages_in_node(pgdat->node_id, i,
4244 zholes_size);
4245 pgdat->node_present_pages = realtotalpages;
4246 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4247 realtotalpages);
4248 }
4249
4250 #ifndef CONFIG_SPARSEMEM
4251 /*
4252 * Calculate the size of the zone->blockflags rounded to an unsigned long
4253 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4254 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4255 * round what is now in bits to nearest long in bits, then return it in
4256 * bytes.
4257 */
4258 static unsigned long __init usemap_size(unsigned long zonesize)
4259 {
4260 unsigned long usemapsize;
4261
4262 usemapsize = roundup(zonesize, pageblock_nr_pages);
4263 usemapsize = usemapsize >> pageblock_order;
4264 usemapsize *= NR_PAGEBLOCK_BITS;
4265 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4266
4267 return usemapsize / 8;
4268 }
4269
4270 static void __init setup_usemap(struct pglist_data *pgdat,
4271 struct zone *zone, unsigned long zonesize)
4272 {
4273 unsigned long usemapsize = usemap_size(zonesize);
4274 zone->pageblock_flags = NULL;
4275 if (usemapsize)
4276 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4277 usemapsize);
4278 }
4279 #else
4280 static inline void setup_usemap(struct pglist_data *pgdat,
4281 struct zone *zone, unsigned long zonesize) {}
4282 #endif /* CONFIG_SPARSEMEM */
4283
4284 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4285
4286 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4287 void __init set_pageblock_order(void)
4288 {
4289 unsigned int order;
4290
4291 /* Check that pageblock_nr_pages has not already been setup */
4292 if (pageblock_order)
4293 return;
4294
4295 if (HPAGE_SHIFT > PAGE_SHIFT)
4296 order = HUGETLB_PAGE_ORDER;
4297 else
4298 order = MAX_ORDER - 1;
4299
4300 /*
4301 * Assume the largest contiguous order of interest is a huge page.
4302 * This value may be variable depending on boot parameters on IA64 and
4303 * powerpc.
4304 */
4305 pageblock_order = order;
4306 }
4307 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4308
4309 /*
4310 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4311 * is unused as pageblock_order is set at compile-time. See
4312 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4313 * the kernel config
4314 */
4315 void __init set_pageblock_order(void)
4316 {
4317 }
4318
4319 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4320
4321 /*
4322 * Set up the zone data structures:
4323 * - mark all pages reserved
4324 * - mark all memory queues empty
4325 * - clear the memory bitmaps
4326 */
4327 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4328 unsigned long *zones_size, unsigned long *zholes_size)
4329 {
4330 enum zone_type j;
4331 int nid = pgdat->node_id;
4332 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4333 int ret;
4334
4335 pgdat_resize_init(pgdat);
4336 pgdat->nr_zones = 0;
4337 init_waitqueue_head(&pgdat->kswapd_wait);
4338 pgdat->kswapd_max_order = 0;
4339 pgdat_page_cgroup_init(pgdat);
4340
4341 for (j = 0; j < MAX_NR_ZONES; j++) {
4342 struct zone *zone = pgdat->node_zones + j;
4343 unsigned long size, realsize, memmap_pages;
4344
4345 size = zone_spanned_pages_in_node(nid, j, zones_size);
4346 realsize = size - zone_absent_pages_in_node(nid, j,
4347 zholes_size);
4348
4349 /*
4350 * Adjust realsize so that it accounts for how much memory
4351 * is used by this zone for memmap. This affects the watermark
4352 * and per-cpu initialisations
4353 */
4354 memmap_pages =
4355 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4356 if (realsize >= memmap_pages) {
4357 realsize -= memmap_pages;
4358 if (memmap_pages)
4359 printk(KERN_DEBUG
4360 " %s zone: %lu pages used for memmap\n",
4361 zone_names[j], memmap_pages);
4362 } else
4363 printk(KERN_WARNING
4364 " %s zone: %lu pages exceeds realsize %lu\n",
4365 zone_names[j], memmap_pages, realsize);
4366
4367 /* Account for reserved pages */
4368 if (j == 0 && realsize > dma_reserve) {
4369 realsize -= dma_reserve;
4370 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4371 zone_names[0], dma_reserve);
4372 }
4373
4374 if (!is_highmem_idx(j))
4375 nr_kernel_pages += realsize;
4376 nr_all_pages += realsize;
4377
4378 zone->spanned_pages = size;
4379 zone->present_pages = realsize;
4380 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
4381 zone->compact_cached_free_pfn = zone->zone_start_pfn +
4382 zone->spanned_pages;
4383 zone->compact_cached_free_pfn &= ~(pageblock_nr_pages-1);
4384 #endif
4385 #ifdef CONFIG_NUMA
4386 zone->node = nid;
4387 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4388 / 100;
4389 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4390 #endif
4391 zone->name = zone_names[j];
4392 spin_lock_init(&zone->lock);
4393 spin_lock_init(&zone->lru_lock);
4394 zone_seqlock_init(zone);
4395 zone->zone_pgdat = pgdat;
4396
4397 zone_pcp_init(zone);
4398 lruvec_init(&zone->lruvec, zone);
4399 zap_zone_vm_stats(zone);
4400 zone->flags = 0;
4401 if (!size)
4402 continue;
4403
4404 set_pageblock_order();
4405 setup_usemap(pgdat, zone, size);
4406 ret = init_currently_empty_zone(zone, zone_start_pfn,
4407 size, MEMMAP_EARLY);
4408 BUG_ON(ret);
4409 memmap_init(size, nid, j, zone_start_pfn);
4410 zone_start_pfn += size;
4411 }
4412 }
4413
4414 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4415 {
4416 /* Skip empty nodes */
4417 if (!pgdat->node_spanned_pages)
4418 return;
4419
4420 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4421 /* ia64 gets its own node_mem_map, before this, without bootmem */
4422 if (!pgdat->node_mem_map) {
4423 unsigned long size, start, end;
4424 struct page *map;
4425
4426 /*
4427 * The zone's endpoints aren't required to be MAX_ORDER
4428 * aligned but the node_mem_map endpoints must be in order
4429 * for the buddy allocator to function correctly.
4430 */
4431 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4432 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4433 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4434 size = (end - start) * sizeof(struct page);
4435 map = alloc_remap(pgdat->node_id, size);
4436 if (!map)
4437 map = alloc_bootmem_node_nopanic(pgdat, size);
4438 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4439 }
4440 #ifndef CONFIG_NEED_MULTIPLE_NODES
4441 /*
4442 * With no DISCONTIG, the global mem_map is just set as node 0's
4443 */
4444 if (pgdat == NODE_DATA(0)) {
4445 mem_map = NODE_DATA(0)->node_mem_map;
4446 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4447 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4448 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4449 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4450 }
4451 #endif
4452 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4453 }
4454
4455 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4456 unsigned long node_start_pfn, unsigned long *zholes_size)
4457 {
4458 pg_data_t *pgdat = NODE_DATA(nid);
4459
4460 pgdat->node_id = nid;
4461 pgdat->node_start_pfn = node_start_pfn;
4462 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4463
4464 alloc_node_mem_map(pgdat);
4465 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4466 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4467 nid, (unsigned long)pgdat,
4468 (unsigned long)pgdat->node_mem_map);
4469 #endif
4470
4471 free_area_init_core(pgdat, zones_size, zholes_size);
4472 }
4473
4474 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4475
4476 #if MAX_NUMNODES > 1
4477 /*
4478 * Figure out the number of possible node ids.
4479 */
4480 static void __init setup_nr_node_ids(void)
4481 {
4482 unsigned int node;
4483 unsigned int highest = 0;
4484
4485 for_each_node_mask(node, node_possible_map)
4486 highest = node;
4487 nr_node_ids = highest + 1;
4488 }
4489 #else
4490 static inline void setup_nr_node_ids(void)
4491 {
4492 }
4493 #endif
4494
4495 /**
4496 * node_map_pfn_alignment - determine the maximum internode alignment
4497 *
4498 * This function should be called after node map is populated and sorted.
4499 * It calculates the maximum power of two alignment which can distinguish
4500 * all the nodes.
4501 *
4502 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4503 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4504 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4505 * shifted, 1GiB is enough and this function will indicate so.
4506 *
4507 * This is used to test whether pfn -> nid mapping of the chosen memory
4508 * model has fine enough granularity to avoid incorrect mapping for the
4509 * populated node map.
4510 *
4511 * Returns the determined alignment in pfn's. 0 if there is no alignment
4512 * requirement (single node).
4513 */
4514 unsigned long __init node_map_pfn_alignment(void)
4515 {
4516 unsigned long accl_mask = 0, last_end = 0;
4517 unsigned long start, end, mask;
4518 int last_nid = -1;
4519 int i, nid;
4520
4521 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4522 if (!start || last_nid < 0 || last_nid == nid) {
4523 last_nid = nid;
4524 last_end = end;
4525 continue;
4526 }
4527
4528 /*
4529 * Start with a mask granular enough to pin-point to the
4530 * start pfn and tick off bits one-by-one until it becomes
4531 * too coarse to separate the current node from the last.
4532 */
4533 mask = ~((1 << __ffs(start)) - 1);
4534 while (mask && last_end <= (start & (mask << 1)))
4535 mask <<= 1;
4536
4537 /* accumulate all internode masks */
4538 accl_mask |= mask;
4539 }
4540
4541 /* convert mask to number of pages */
4542 return ~accl_mask + 1;
4543 }
4544
4545 /* Find the lowest pfn for a node */
4546 static unsigned long __init find_min_pfn_for_node(int nid)
4547 {
4548 unsigned long min_pfn = ULONG_MAX;
4549 unsigned long start_pfn;
4550 int i;
4551
4552 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4553 min_pfn = min(min_pfn, start_pfn);
4554
4555 if (min_pfn == ULONG_MAX) {
4556 printk(KERN_WARNING
4557 "Could not find start_pfn for node %d\n", nid);
4558 return 0;
4559 }
4560
4561 return min_pfn;
4562 }
4563
4564 /**
4565 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4566 *
4567 * It returns the minimum PFN based on information provided via
4568 * add_active_range().
4569 */
4570 unsigned long __init find_min_pfn_with_active_regions(void)
4571 {
4572 return find_min_pfn_for_node(MAX_NUMNODES);
4573 }
4574
4575 /*
4576 * early_calculate_totalpages()
4577 * Sum pages in active regions for movable zone.
4578 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4579 */
4580 static unsigned long __init early_calculate_totalpages(void)
4581 {
4582 unsigned long totalpages = 0;
4583 unsigned long start_pfn, end_pfn;
4584 int i, nid;
4585
4586 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4587 unsigned long pages = end_pfn - start_pfn;
4588
4589 totalpages += pages;
4590 if (pages)
4591 node_set_state(nid, N_HIGH_MEMORY);
4592 }
4593 return totalpages;
4594 }
4595
4596 /*
4597 * Find the PFN the Movable zone begins in each node. Kernel memory
4598 * is spread evenly between nodes as long as the nodes have enough
4599 * memory. When they don't, some nodes will have more kernelcore than
4600 * others
4601 */
4602 static void __init find_zone_movable_pfns_for_nodes(void)
4603 {
4604 int i, nid;
4605 unsigned long usable_startpfn;
4606 unsigned long kernelcore_node, kernelcore_remaining;
4607 /* save the state before borrow the nodemask */
4608 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4609 unsigned long totalpages = early_calculate_totalpages();
4610 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4611
4612 /*
4613 * If movablecore was specified, calculate what size of
4614 * kernelcore that corresponds so that memory usable for
4615 * any allocation type is evenly spread. If both kernelcore
4616 * and movablecore are specified, then the value of kernelcore
4617 * will be used for required_kernelcore if it's greater than
4618 * what movablecore would have allowed.
4619 */
4620 if (required_movablecore) {
4621 unsigned long corepages;
4622
4623 /*
4624 * Round-up so that ZONE_MOVABLE is at least as large as what
4625 * was requested by the user
4626 */
4627 required_movablecore =
4628 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4629 corepages = totalpages - required_movablecore;
4630
4631 required_kernelcore = max(required_kernelcore, corepages);
4632 }
4633
4634 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4635 if (!required_kernelcore)
4636 goto out;
4637
4638 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4639 find_usable_zone_for_movable();
4640 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4641
4642 restart:
4643 /* Spread kernelcore memory as evenly as possible throughout nodes */
4644 kernelcore_node = required_kernelcore / usable_nodes;
4645 for_each_node_state(nid, N_HIGH_MEMORY) {
4646 unsigned long start_pfn, end_pfn;
4647
4648 /*
4649 * Recalculate kernelcore_node if the division per node
4650 * now exceeds what is necessary to satisfy the requested
4651 * amount of memory for the kernel
4652 */
4653 if (required_kernelcore < kernelcore_node)
4654 kernelcore_node = required_kernelcore / usable_nodes;
4655
4656 /*
4657 * As the map is walked, we track how much memory is usable
4658 * by the kernel using kernelcore_remaining. When it is
4659 * 0, the rest of the node is usable by ZONE_MOVABLE
4660 */
4661 kernelcore_remaining = kernelcore_node;
4662
4663 /* Go through each range of PFNs within this node */
4664 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4665 unsigned long size_pages;
4666
4667 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4668 if (start_pfn >= end_pfn)
4669 continue;
4670
4671 /* Account for what is only usable for kernelcore */
4672 if (start_pfn < usable_startpfn) {
4673 unsigned long kernel_pages;
4674 kernel_pages = min(end_pfn, usable_startpfn)
4675 - start_pfn;
4676
4677 kernelcore_remaining -= min(kernel_pages,
4678 kernelcore_remaining);
4679 required_kernelcore -= min(kernel_pages,
4680 required_kernelcore);
4681
4682 /* Continue if range is now fully accounted */
4683 if (end_pfn <= usable_startpfn) {
4684
4685 /*
4686 * Push zone_movable_pfn to the end so
4687 * that if we have to rebalance
4688 * kernelcore across nodes, we will
4689 * not double account here
4690 */
4691 zone_movable_pfn[nid] = end_pfn;
4692 continue;
4693 }
4694 start_pfn = usable_startpfn;
4695 }
4696
4697 /*
4698 * The usable PFN range for ZONE_MOVABLE is from
4699 * start_pfn->end_pfn. Calculate size_pages as the
4700 * number of pages used as kernelcore
4701 */
4702 size_pages = end_pfn - start_pfn;
4703 if (size_pages > kernelcore_remaining)
4704 size_pages = kernelcore_remaining;
4705 zone_movable_pfn[nid] = start_pfn + size_pages;
4706
4707 /*
4708 * Some kernelcore has been met, update counts and
4709 * break if the kernelcore for this node has been
4710 * satisified
4711 */
4712 required_kernelcore -= min(required_kernelcore,
4713 size_pages);
4714 kernelcore_remaining -= size_pages;
4715 if (!kernelcore_remaining)
4716 break;
4717 }
4718 }
4719
4720 /*
4721 * If there is still required_kernelcore, we do another pass with one
4722 * less node in the count. This will push zone_movable_pfn[nid] further
4723 * along on the nodes that still have memory until kernelcore is
4724 * satisified
4725 */
4726 usable_nodes--;
4727 if (usable_nodes && required_kernelcore > usable_nodes)
4728 goto restart;
4729
4730 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4731 for (nid = 0; nid < MAX_NUMNODES; nid++)
4732 zone_movable_pfn[nid] =
4733 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4734
4735 out:
4736 /* restore the node_state */
4737 node_states[N_HIGH_MEMORY] = saved_node_state;
4738 }
4739
4740 /* Any regular memory on that node ? */
4741 static void __init check_for_regular_memory(pg_data_t *pgdat)
4742 {
4743 #ifdef CONFIG_HIGHMEM
4744 enum zone_type zone_type;
4745
4746 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4747 struct zone *zone = &pgdat->node_zones[zone_type];
4748 if (zone->present_pages) {
4749 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4750 break;
4751 }
4752 }
4753 #endif
4754 }
4755
4756 /**
4757 * free_area_init_nodes - Initialise all pg_data_t and zone data
4758 * @max_zone_pfn: an array of max PFNs for each zone
4759 *
4760 * This will call free_area_init_node() for each active node in the system.
4761 * Using the page ranges provided by add_active_range(), the size of each
4762 * zone in each node and their holes is calculated. If the maximum PFN
4763 * between two adjacent zones match, it is assumed that the zone is empty.
4764 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4765 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4766 * starts where the previous one ended. For example, ZONE_DMA32 starts
4767 * at arch_max_dma_pfn.
4768 */
4769 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4770 {
4771 unsigned long start_pfn, end_pfn;
4772 int i, nid;
4773
4774 /* Record where the zone boundaries are */
4775 memset(arch_zone_lowest_possible_pfn, 0,
4776 sizeof(arch_zone_lowest_possible_pfn));
4777 memset(arch_zone_highest_possible_pfn, 0,
4778 sizeof(arch_zone_highest_possible_pfn));
4779 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4780 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4781 for (i = 1; i < MAX_NR_ZONES; i++) {
4782 if (i == ZONE_MOVABLE)
4783 continue;
4784 arch_zone_lowest_possible_pfn[i] =
4785 arch_zone_highest_possible_pfn[i-1];
4786 arch_zone_highest_possible_pfn[i] =
4787 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4788 }
4789 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4790 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4791
4792 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4793 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4794 find_zone_movable_pfns_for_nodes();
4795
4796 /* Print out the zone ranges */
4797 printk("Zone ranges:\n");
4798 for (i = 0; i < MAX_NR_ZONES; i++) {
4799 if (i == ZONE_MOVABLE)
4800 continue;
4801 printk(KERN_CONT " %-8s ", zone_names[i]);
4802 if (arch_zone_lowest_possible_pfn[i] ==
4803 arch_zone_highest_possible_pfn[i])
4804 printk(KERN_CONT "empty\n");
4805 else
4806 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4807 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4808 (arch_zone_highest_possible_pfn[i]
4809 << PAGE_SHIFT) - 1);
4810 }
4811
4812 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4813 printk("Movable zone start for each node\n");
4814 for (i = 0; i < MAX_NUMNODES; i++) {
4815 if (zone_movable_pfn[i])
4816 printk(" Node %d: %#010lx\n", i,
4817 zone_movable_pfn[i] << PAGE_SHIFT);
4818 }
4819
4820 /* Print out the early_node_map[] */
4821 printk("Early memory node ranges\n");
4822 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4823 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
4824 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4825
4826 /* Initialise every node */
4827 mminit_verify_pageflags_layout();
4828 setup_nr_node_ids();
4829 for_each_online_node(nid) {
4830 pg_data_t *pgdat = NODE_DATA(nid);
4831 free_area_init_node(nid, NULL,
4832 find_min_pfn_for_node(nid), NULL);
4833
4834 /* Any memory on that node */
4835 if (pgdat->node_present_pages)
4836 node_set_state(nid, N_HIGH_MEMORY);
4837 check_for_regular_memory(pgdat);
4838 }
4839 }
4840
4841 static int __init cmdline_parse_core(char *p, unsigned long *core)
4842 {
4843 unsigned long long coremem;
4844 if (!p)
4845 return -EINVAL;
4846
4847 coremem = memparse(p, &p);
4848 *core = coremem >> PAGE_SHIFT;
4849
4850 /* Paranoid check that UL is enough for the coremem value */
4851 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4852
4853 return 0;
4854 }
4855
4856 /*
4857 * kernelcore=size sets the amount of memory for use for allocations that
4858 * cannot be reclaimed or migrated.
4859 */
4860 static int __init cmdline_parse_kernelcore(char *p)
4861 {
4862 return cmdline_parse_core(p, &required_kernelcore);
4863 }
4864
4865 /*
4866 * movablecore=size sets the amount of memory for use for allocations that
4867 * can be reclaimed or migrated.
4868 */
4869 static int __init cmdline_parse_movablecore(char *p)
4870 {
4871 return cmdline_parse_core(p, &required_movablecore);
4872 }
4873
4874 early_param("kernelcore", cmdline_parse_kernelcore);
4875 early_param("movablecore", cmdline_parse_movablecore);
4876
4877 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4878
4879 /**
4880 * set_dma_reserve - set the specified number of pages reserved in the first zone
4881 * @new_dma_reserve: The number of pages to mark reserved
4882 *
4883 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4884 * In the DMA zone, a significant percentage may be consumed by kernel image
4885 * and other unfreeable allocations which can skew the watermarks badly. This
4886 * function may optionally be used to account for unfreeable pages in the
4887 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4888 * smaller per-cpu batchsize.
4889 */
4890 void __init set_dma_reserve(unsigned long new_dma_reserve)
4891 {
4892 dma_reserve = new_dma_reserve;
4893 }
4894
4895 void __init free_area_init(unsigned long *zones_size)
4896 {
4897 free_area_init_node(0, zones_size,
4898 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4899 }
4900
4901 static int page_alloc_cpu_notify(struct notifier_block *self,
4902 unsigned long action, void *hcpu)
4903 {
4904 int cpu = (unsigned long)hcpu;
4905
4906 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4907 lru_add_drain_cpu(cpu);
4908 drain_pages(cpu);
4909
4910 /*
4911 * Spill the event counters of the dead processor
4912 * into the current processors event counters.
4913 * This artificially elevates the count of the current
4914 * processor.
4915 */
4916 vm_events_fold_cpu(cpu);
4917
4918 /*
4919 * Zero the differential counters of the dead processor
4920 * so that the vm statistics are consistent.
4921 *
4922 * This is only okay since the processor is dead and cannot
4923 * race with what we are doing.
4924 */
4925 refresh_cpu_vm_stats(cpu);
4926 }
4927 return NOTIFY_OK;
4928 }
4929
4930 void __init page_alloc_init(void)
4931 {
4932 hotcpu_notifier(page_alloc_cpu_notify, 0);
4933 }
4934
4935 /*
4936 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4937 * or min_free_kbytes changes.
4938 */
4939 static void calculate_totalreserve_pages(void)
4940 {
4941 struct pglist_data *pgdat;
4942 unsigned long reserve_pages = 0;
4943 enum zone_type i, j;
4944
4945 for_each_online_pgdat(pgdat) {
4946 for (i = 0; i < MAX_NR_ZONES; i++) {
4947 struct zone *zone = pgdat->node_zones + i;
4948 unsigned long max = 0;
4949
4950 /* Find valid and maximum lowmem_reserve in the zone */
4951 for (j = i; j < MAX_NR_ZONES; j++) {
4952 if (zone->lowmem_reserve[j] > max)
4953 max = zone->lowmem_reserve[j];
4954 }
4955
4956 /* we treat the high watermark as reserved pages. */
4957 max += high_wmark_pages(zone);
4958
4959 if (max > zone->present_pages)
4960 max = zone->present_pages;
4961 reserve_pages += max;
4962 /*
4963 * Lowmem reserves are not available to
4964 * GFP_HIGHUSER page cache allocations and
4965 * kswapd tries to balance zones to their high
4966 * watermark. As a result, neither should be
4967 * regarded as dirtyable memory, to prevent a
4968 * situation where reclaim has to clean pages
4969 * in order to balance the zones.
4970 */
4971 zone->dirty_balance_reserve = max;
4972 }
4973 }
4974 dirty_balance_reserve = reserve_pages;
4975 totalreserve_pages = reserve_pages;
4976 }
4977
4978 /*
4979 * setup_per_zone_lowmem_reserve - called whenever
4980 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4981 * has a correct pages reserved value, so an adequate number of
4982 * pages are left in the zone after a successful __alloc_pages().
4983 */
4984 static void setup_per_zone_lowmem_reserve(void)
4985 {
4986 struct pglist_data *pgdat;
4987 enum zone_type j, idx;
4988
4989 for_each_online_pgdat(pgdat) {
4990 for (j = 0; j < MAX_NR_ZONES; j++) {
4991 struct zone *zone = pgdat->node_zones + j;
4992 unsigned long present_pages = zone->present_pages;
4993
4994 zone->lowmem_reserve[j] = 0;
4995
4996 idx = j;
4997 while (idx) {
4998 struct zone *lower_zone;
4999
5000 idx--;
5001
5002 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5003 sysctl_lowmem_reserve_ratio[idx] = 1;
5004
5005 lower_zone = pgdat->node_zones + idx;
5006 lower_zone->lowmem_reserve[j] = present_pages /
5007 sysctl_lowmem_reserve_ratio[idx];
5008 present_pages += lower_zone->present_pages;
5009 }
5010 }
5011 }
5012
5013 /* update totalreserve_pages */
5014 calculate_totalreserve_pages();
5015 }
5016
5017 static void __setup_per_zone_wmarks(void)
5018 {
5019 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5020 unsigned long lowmem_pages = 0;
5021 struct zone *zone;
5022 unsigned long flags;
5023
5024 /* Calculate total number of !ZONE_HIGHMEM pages */
5025 for_each_zone(zone) {
5026 if (!is_highmem(zone))
5027 lowmem_pages += zone->present_pages;
5028 }
5029
5030 for_each_zone(zone) {
5031 u64 tmp;
5032
5033 spin_lock_irqsave(&zone->lock, flags);
5034 tmp = (u64)pages_min * zone->present_pages;
5035 do_div(tmp, lowmem_pages);
5036 if (is_highmem(zone)) {
5037 /*
5038 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5039 * need highmem pages, so cap pages_min to a small
5040 * value here.
5041 *
5042 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5043 * deltas controls asynch page reclaim, and so should
5044 * not be capped for highmem.
5045 */
5046 int min_pages;
5047
5048 min_pages = zone->present_pages / 1024;
5049 if (min_pages < SWAP_CLUSTER_MAX)
5050 min_pages = SWAP_CLUSTER_MAX;
5051 if (min_pages > 128)
5052 min_pages = 128;
5053 zone->watermark[WMARK_MIN] = min_pages;
5054 } else {
5055 /*
5056 * If it's a lowmem zone, reserve a number of pages
5057 * proportionate to the zone's size.
5058 */
5059 zone->watermark[WMARK_MIN] = tmp;
5060 }
5061
5062 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5063 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5064
5065 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5066 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5067 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5068
5069 setup_zone_migrate_reserve(zone);
5070 spin_unlock_irqrestore(&zone->lock, flags);
5071 }
5072
5073 /* update totalreserve_pages */
5074 calculate_totalreserve_pages();
5075 }
5076
5077 /**
5078 * setup_per_zone_wmarks - called when min_free_kbytes changes
5079 * or when memory is hot-{added|removed}
5080 *
5081 * Ensures that the watermark[min,low,high] values for each zone are set
5082 * correctly with respect to min_free_kbytes.
5083 */
5084 void setup_per_zone_wmarks(void)
5085 {
5086 mutex_lock(&zonelists_mutex);
5087 __setup_per_zone_wmarks();
5088 mutex_unlock(&zonelists_mutex);
5089 }
5090
5091 /*
5092 * The inactive anon list should be small enough that the VM never has to
5093 * do too much work, but large enough that each inactive page has a chance
5094 * to be referenced again before it is swapped out.
5095 *
5096 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5097 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5098 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5099 * the anonymous pages are kept on the inactive list.
5100 *
5101 * total target max
5102 * memory ratio inactive anon
5103 * -------------------------------------
5104 * 10MB 1 5MB
5105 * 100MB 1 50MB
5106 * 1GB 3 250MB
5107 * 10GB 10 0.9GB
5108 * 100GB 31 3GB
5109 * 1TB 101 10GB
5110 * 10TB 320 32GB
5111 */
5112 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5113 {
5114 unsigned int gb, ratio;
5115
5116 /* Zone size in gigabytes */
5117 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5118 if (gb)
5119 ratio = int_sqrt(10 * gb);
5120 else
5121 ratio = 1;
5122
5123 zone->inactive_ratio = ratio;
5124 }
5125
5126 static void __meminit setup_per_zone_inactive_ratio(void)
5127 {
5128 struct zone *zone;
5129
5130 for_each_zone(zone)
5131 calculate_zone_inactive_ratio(zone);
5132 }
5133
5134 /*
5135 * Initialise min_free_kbytes.
5136 *
5137 * For small machines we want it small (128k min). For large machines
5138 * we want it large (64MB max). But it is not linear, because network
5139 * bandwidth does not increase linearly with machine size. We use
5140 *
5141 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5142 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5143 *
5144 * which yields
5145 *
5146 * 16MB: 512k
5147 * 32MB: 724k
5148 * 64MB: 1024k
5149 * 128MB: 1448k
5150 * 256MB: 2048k
5151 * 512MB: 2896k
5152 * 1024MB: 4096k
5153 * 2048MB: 5792k
5154 * 4096MB: 8192k
5155 * 8192MB: 11584k
5156 * 16384MB: 16384k
5157 */
5158 int __meminit init_per_zone_wmark_min(void)
5159 {
5160 unsigned long lowmem_kbytes;
5161
5162 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5163
5164 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5165 if (min_free_kbytes < 128)
5166 min_free_kbytes = 128;
5167 if (min_free_kbytes > 65536)
5168 min_free_kbytes = 65536;
5169 setup_per_zone_wmarks();
5170 refresh_zone_stat_thresholds();
5171 setup_per_zone_lowmem_reserve();
5172 setup_per_zone_inactive_ratio();
5173 return 0;
5174 }
5175 module_init(init_per_zone_wmark_min)
5176
5177 /*
5178 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5179 * that we can call two helper functions whenever min_free_kbytes
5180 * changes.
5181 */
5182 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5183 void __user *buffer, size_t *length, loff_t *ppos)
5184 {
5185 proc_dointvec(table, write, buffer, length, ppos);
5186 if (write)
5187 setup_per_zone_wmarks();
5188 return 0;
5189 }
5190
5191 #ifdef CONFIG_NUMA
5192 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5193 void __user *buffer, size_t *length, loff_t *ppos)
5194 {
5195 struct zone *zone;
5196 int rc;
5197
5198 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5199 if (rc)
5200 return rc;
5201
5202 for_each_zone(zone)
5203 zone->min_unmapped_pages = (zone->present_pages *
5204 sysctl_min_unmapped_ratio) / 100;
5205 return 0;
5206 }
5207
5208 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5209 void __user *buffer, size_t *length, loff_t *ppos)
5210 {
5211 struct zone *zone;
5212 int rc;
5213
5214 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5215 if (rc)
5216 return rc;
5217
5218 for_each_zone(zone)
5219 zone->min_slab_pages = (zone->present_pages *
5220 sysctl_min_slab_ratio) / 100;
5221 return 0;
5222 }
5223 #endif
5224
5225 /*
5226 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5227 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5228 * whenever sysctl_lowmem_reserve_ratio changes.
5229 *
5230 * The reserve ratio obviously has absolutely no relation with the
5231 * minimum watermarks. The lowmem reserve ratio can only make sense
5232 * if in function of the boot time zone sizes.
5233 */
5234 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5235 void __user *buffer, size_t *length, loff_t *ppos)
5236 {
5237 proc_dointvec_minmax(table, write, buffer, length, ppos);
5238 setup_per_zone_lowmem_reserve();
5239 return 0;
5240 }
5241
5242 /*
5243 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5244 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5245 * can have before it gets flushed back to buddy allocator.
5246 */
5247
5248 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5249 void __user *buffer, size_t *length, loff_t *ppos)
5250 {
5251 struct zone *zone;
5252 unsigned int cpu;
5253 int ret;
5254
5255 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5256 if (!write || (ret < 0))
5257 return ret;
5258 for_each_populated_zone(zone) {
5259 for_each_possible_cpu(cpu) {
5260 unsigned long high;
5261 high = zone->present_pages / percpu_pagelist_fraction;
5262 setup_pagelist_highmark(
5263 per_cpu_ptr(zone->pageset, cpu), high);
5264 }
5265 }
5266 return 0;
5267 }
5268
5269 int hashdist = HASHDIST_DEFAULT;
5270
5271 #ifdef CONFIG_NUMA
5272 static int __init set_hashdist(char *str)
5273 {
5274 if (!str)
5275 return 0;
5276 hashdist = simple_strtoul(str, &str, 0);
5277 return 1;
5278 }
5279 __setup("hashdist=", set_hashdist);
5280 #endif
5281
5282 /*
5283 * allocate a large system hash table from bootmem
5284 * - it is assumed that the hash table must contain an exact power-of-2
5285 * quantity of entries
5286 * - limit is the number of hash buckets, not the total allocation size
5287 */
5288 void *__init alloc_large_system_hash(const char *tablename,
5289 unsigned long bucketsize,
5290 unsigned long numentries,
5291 int scale,
5292 int flags,
5293 unsigned int *_hash_shift,
5294 unsigned int *_hash_mask,
5295 unsigned long low_limit,
5296 unsigned long high_limit)
5297 {
5298 unsigned long long max = high_limit;
5299 unsigned long log2qty, size;
5300 void *table = NULL;
5301
5302 /* allow the kernel cmdline to have a say */
5303 if (!numentries) {
5304 /* round applicable memory size up to nearest megabyte */
5305 numentries = nr_kernel_pages;
5306 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5307 numentries >>= 20 - PAGE_SHIFT;
5308 numentries <<= 20 - PAGE_SHIFT;
5309
5310 /* limit to 1 bucket per 2^scale bytes of low memory */
5311 if (scale > PAGE_SHIFT)
5312 numentries >>= (scale - PAGE_SHIFT);
5313 else
5314 numentries <<= (PAGE_SHIFT - scale);
5315
5316 /* Make sure we've got at least a 0-order allocation.. */
5317 if (unlikely(flags & HASH_SMALL)) {
5318 /* Makes no sense without HASH_EARLY */
5319 WARN_ON(!(flags & HASH_EARLY));
5320 if (!(numentries >> *_hash_shift)) {
5321 numentries = 1UL << *_hash_shift;
5322 BUG_ON(!numentries);
5323 }
5324 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5325 numentries = PAGE_SIZE / bucketsize;
5326 }
5327 numentries = roundup_pow_of_two(numentries);
5328
5329 /* limit allocation size to 1/16 total memory by default */
5330 if (max == 0) {
5331 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5332 do_div(max, bucketsize);
5333 }
5334 max = min(max, 0x80000000ULL);
5335
5336 if (numentries < low_limit)
5337 numentries = low_limit;
5338 if (numentries > max)
5339 numentries = max;
5340
5341 log2qty = ilog2(numentries);
5342
5343 do {
5344 size = bucketsize << log2qty;
5345 if (flags & HASH_EARLY)
5346 table = alloc_bootmem_nopanic(size);
5347 else if (hashdist)
5348 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5349 else {
5350 /*
5351 * If bucketsize is not a power-of-two, we may free
5352 * some pages at the end of hash table which
5353 * alloc_pages_exact() automatically does
5354 */
5355 if (get_order(size) < MAX_ORDER) {
5356 table = alloc_pages_exact(size, GFP_ATOMIC);
5357 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5358 }
5359 }
5360 } while (!table && size > PAGE_SIZE && --log2qty);
5361
5362 if (!table)
5363 panic("Failed to allocate %s hash table\n", tablename);
5364
5365 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5366 tablename,
5367 (1UL << log2qty),
5368 ilog2(size) - PAGE_SHIFT,
5369 size);
5370
5371 if (_hash_shift)
5372 *_hash_shift = log2qty;
5373 if (_hash_mask)
5374 *_hash_mask = (1 << log2qty) - 1;
5375
5376 return table;
5377 }
5378
5379 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5380 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5381 unsigned long pfn)
5382 {
5383 #ifdef CONFIG_SPARSEMEM
5384 return __pfn_to_section(pfn)->pageblock_flags;
5385 #else
5386 return zone->pageblock_flags;
5387 #endif /* CONFIG_SPARSEMEM */
5388 }
5389
5390 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5391 {
5392 #ifdef CONFIG_SPARSEMEM
5393 pfn &= (PAGES_PER_SECTION-1);
5394 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5395 #else
5396 pfn = pfn - zone->zone_start_pfn;
5397 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5398 #endif /* CONFIG_SPARSEMEM */
5399 }
5400
5401 /**
5402 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5403 * @page: The page within the block of interest
5404 * @start_bitidx: The first bit of interest to retrieve
5405 * @end_bitidx: The last bit of interest
5406 * returns pageblock_bits flags
5407 */
5408 unsigned long get_pageblock_flags_group(struct page *page,
5409 int start_bitidx, int end_bitidx)
5410 {
5411 struct zone *zone;
5412 unsigned long *bitmap;
5413 unsigned long pfn, bitidx;
5414 unsigned long flags = 0;
5415 unsigned long value = 1;
5416
5417 zone = page_zone(page);
5418 pfn = page_to_pfn(page);
5419 bitmap = get_pageblock_bitmap(zone, pfn);
5420 bitidx = pfn_to_bitidx(zone, pfn);
5421
5422 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5423 if (test_bit(bitidx + start_bitidx, bitmap))
5424 flags |= value;
5425
5426 return flags;
5427 }
5428
5429 /**
5430 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5431 * @page: The page within the block of interest
5432 * @start_bitidx: The first bit of interest
5433 * @end_bitidx: The last bit of interest
5434 * @flags: The flags to set
5435 */
5436 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5437 int start_bitidx, int end_bitidx)
5438 {
5439 struct zone *zone;
5440 unsigned long *bitmap;
5441 unsigned long pfn, bitidx;
5442 unsigned long value = 1;
5443
5444 zone = page_zone(page);
5445 pfn = page_to_pfn(page);
5446 bitmap = get_pageblock_bitmap(zone, pfn);
5447 bitidx = pfn_to_bitidx(zone, pfn);
5448 VM_BUG_ON(pfn < zone->zone_start_pfn);
5449 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5450
5451 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5452 if (flags & value)
5453 __set_bit(bitidx + start_bitidx, bitmap);
5454 else
5455 __clear_bit(bitidx + start_bitidx, bitmap);
5456 }
5457
5458 /*
5459 * This function checks whether pageblock includes unmovable pages or not.
5460 * If @count is not zero, it is okay to include less @count unmovable pages
5461 *
5462 * PageLRU check wihtout isolation or lru_lock could race so that
5463 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5464 * expect this function should be exact.
5465 */
5466 static bool
5467 __has_unmovable_pages(struct zone *zone, struct page *page, int count)
5468 {
5469 unsigned long pfn, iter, found;
5470 int mt;
5471
5472 /*
5473 * For avoiding noise data, lru_add_drain_all() should be called
5474 * If ZONE_MOVABLE, the zone never contains unmovable pages
5475 */
5476 if (zone_idx(zone) == ZONE_MOVABLE)
5477 return false;
5478 mt = get_pageblock_migratetype(page);
5479 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5480 return false;
5481
5482 pfn = page_to_pfn(page);
5483 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5484 unsigned long check = pfn + iter;
5485
5486 if (!pfn_valid_within(check))
5487 continue;
5488
5489 page = pfn_to_page(check);
5490 /*
5491 * We can't use page_count without pin a page
5492 * because another CPU can free compound page.
5493 * This check already skips compound tails of THP
5494 * because their page->_count is zero at all time.
5495 */
5496 if (!atomic_read(&page->_count)) {
5497 if (PageBuddy(page))
5498 iter += (1 << page_order(page)) - 1;
5499 continue;
5500 }
5501
5502 if (!PageLRU(page))
5503 found++;
5504 /*
5505 * If there are RECLAIMABLE pages, we need to check it.
5506 * But now, memory offline itself doesn't call shrink_slab()
5507 * and it still to be fixed.
5508 */
5509 /*
5510 * If the page is not RAM, page_count()should be 0.
5511 * we don't need more check. This is an _used_ not-movable page.
5512 *
5513 * The problematic thing here is PG_reserved pages. PG_reserved
5514 * is set to both of a memory hole page and a _used_ kernel
5515 * page at boot.
5516 */
5517 if (found > count)
5518 return true;
5519 }
5520 return false;
5521 }
5522
5523 bool is_pageblock_removable_nolock(struct page *page)
5524 {
5525 struct zone *zone;
5526 unsigned long pfn;
5527
5528 /*
5529 * We have to be careful here because we are iterating over memory
5530 * sections which are not zone aware so we might end up outside of
5531 * the zone but still within the section.
5532 * We have to take care about the node as well. If the node is offline
5533 * its NODE_DATA will be NULL - see page_zone.
5534 */
5535 if (!node_online(page_to_nid(page)))
5536 return false;
5537
5538 zone = page_zone(page);
5539 pfn = page_to_pfn(page);
5540 if (zone->zone_start_pfn > pfn ||
5541 zone->zone_start_pfn + zone->spanned_pages <= pfn)
5542 return false;
5543
5544 return !__has_unmovable_pages(zone, page, 0);
5545 }
5546
5547 int set_migratetype_isolate(struct page *page)
5548 {
5549 struct zone *zone;
5550 unsigned long flags, pfn;
5551 struct memory_isolate_notify arg;
5552 int notifier_ret;
5553 int ret = -EBUSY;
5554
5555 zone = page_zone(page);
5556
5557 spin_lock_irqsave(&zone->lock, flags);
5558
5559 pfn = page_to_pfn(page);
5560 arg.start_pfn = pfn;
5561 arg.nr_pages = pageblock_nr_pages;
5562 arg.pages_found = 0;
5563
5564 /*
5565 * It may be possible to isolate a pageblock even if the
5566 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5567 * notifier chain is used by balloon drivers to return the
5568 * number of pages in a range that are held by the balloon
5569 * driver to shrink memory. If all the pages are accounted for
5570 * by balloons, are free, or on the LRU, isolation can continue.
5571 * Later, for example, when memory hotplug notifier runs, these
5572 * pages reported as "can be isolated" should be isolated(freed)
5573 * by the balloon driver through the memory notifier chain.
5574 */
5575 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5576 notifier_ret = notifier_to_errno(notifier_ret);
5577 if (notifier_ret)
5578 goto out;
5579 /*
5580 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5581 * We just check MOVABLE pages.
5582 */
5583 if (!__has_unmovable_pages(zone, page, arg.pages_found))
5584 ret = 0;
5585 /*
5586 * Unmovable means "not-on-lru" pages. If Unmovable pages are
5587 * larger than removable-by-driver pages reported by notifier,
5588 * we'll fail.
5589 */
5590
5591 out:
5592 if (!ret) {
5593 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5594 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5595 }
5596
5597 spin_unlock_irqrestore(&zone->lock, flags);
5598 if (!ret)
5599 drain_all_pages();
5600 return ret;
5601 }
5602
5603 void unset_migratetype_isolate(struct page *page, unsigned migratetype)
5604 {
5605 struct zone *zone;
5606 unsigned long flags;
5607 zone = page_zone(page);
5608 spin_lock_irqsave(&zone->lock, flags);
5609 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5610 goto out;
5611 set_pageblock_migratetype(page, migratetype);
5612 move_freepages_block(zone, page, migratetype);
5613 out:
5614 spin_unlock_irqrestore(&zone->lock, flags);
5615 }
5616
5617 #ifdef CONFIG_CMA
5618
5619 static unsigned long pfn_max_align_down(unsigned long pfn)
5620 {
5621 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5622 pageblock_nr_pages) - 1);
5623 }
5624
5625 static unsigned long pfn_max_align_up(unsigned long pfn)
5626 {
5627 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5628 pageblock_nr_pages));
5629 }
5630
5631 static struct page *
5632 __alloc_contig_migrate_alloc(struct page *page, unsigned long private,
5633 int **resultp)
5634 {
5635 gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
5636
5637 if (PageHighMem(page))
5638 gfp_mask |= __GFP_HIGHMEM;
5639
5640 return alloc_page(gfp_mask);
5641 }
5642
5643 /* [start, end) must belong to a single zone. */
5644 static int __alloc_contig_migrate_range(unsigned long start, unsigned long end)
5645 {
5646 /* This function is based on compact_zone() from compaction.c. */
5647
5648 unsigned long pfn = start;
5649 unsigned int tries = 0;
5650 int ret = 0;
5651
5652 struct compact_control cc = {
5653 .nr_migratepages = 0,
5654 .order = -1,
5655 .zone = page_zone(pfn_to_page(start)),
5656 .sync = true,
5657 };
5658 INIT_LIST_HEAD(&cc.migratepages);
5659
5660 migrate_prep_local();
5661
5662 while (pfn < end || !list_empty(&cc.migratepages)) {
5663 if (fatal_signal_pending(current)) {
5664 ret = -EINTR;
5665 break;
5666 }
5667
5668 if (list_empty(&cc.migratepages)) {
5669 cc.nr_migratepages = 0;
5670 pfn = isolate_migratepages_range(cc.zone, &cc,
5671 pfn, end);
5672 if (!pfn) {
5673 ret = -EINTR;
5674 break;
5675 }
5676 tries = 0;
5677 } else if (++tries == 5) {
5678 ret = ret < 0 ? ret : -EBUSY;
5679 break;
5680 }
5681
5682 ret = migrate_pages(&cc.migratepages,
5683 __alloc_contig_migrate_alloc,
5684 0, false, MIGRATE_SYNC);
5685 }
5686
5687 putback_lru_pages(&cc.migratepages);
5688 return ret > 0 ? 0 : ret;
5689 }
5690
5691 /*
5692 * Update zone's cma pages counter used for watermark level calculation.
5693 */
5694 static inline void __update_cma_watermarks(struct zone *zone, int count)
5695 {
5696 unsigned long flags;
5697 spin_lock_irqsave(&zone->lock, flags);
5698 zone->min_cma_pages += count;
5699 spin_unlock_irqrestore(&zone->lock, flags);
5700 setup_per_zone_wmarks();
5701 }
5702
5703 /*
5704 * Trigger memory pressure bump to reclaim some pages in order to be able to
5705 * allocate 'count' pages in single page units. Does similar work as
5706 *__alloc_pages_slowpath() function.
5707 */
5708 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5709 {
5710 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5711 struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5712 int did_some_progress = 0;
5713 int order = 1;
5714
5715 /*
5716 * Increase level of watermarks to force kswapd do his job
5717 * to stabilise at new watermark level.
5718 */
5719 __update_cma_watermarks(zone, count);
5720
5721 /* Obey watermarks as if the page was being allocated */
5722 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5723 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5724
5725 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5726 NULL);
5727 if (!did_some_progress) {
5728 /* Exhausted what can be done so it's blamo time */
5729 out_of_memory(zonelist, gfp_mask, order, NULL, false);
5730 }
5731 }
5732
5733 /* Restore original watermark levels. */
5734 __update_cma_watermarks(zone, -count);
5735
5736 return count;
5737 }
5738
5739 /**
5740 * alloc_contig_range() -- tries to allocate given range of pages
5741 * @start: start PFN to allocate
5742 * @end: one-past-the-last PFN to allocate
5743 * @migratetype: migratetype of the underlaying pageblocks (either
5744 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
5745 * in range must have the same migratetype and it must
5746 * be either of the two.
5747 *
5748 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5749 * aligned, however it's the caller's responsibility to guarantee that
5750 * we are the only thread that changes migrate type of pageblocks the
5751 * pages fall in.
5752 *
5753 * The PFN range must belong to a single zone.
5754 *
5755 * Returns zero on success or negative error code. On success all
5756 * pages which PFN is in [start, end) are allocated for the caller and
5757 * need to be freed with free_contig_range().
5758 */
5759 int alloc_contig_range(unsigned long start, unsigned long end,
5760 unsigned migratetype)
5761 {
5762 struct zone *zone = page_zone(pfn_to_page(start));
5763 unsigned long outer_start, outer_end;
5764 int ret = 0, order;
5765
5766 /*
5767 * What we do here is we mark all pageblocks in range as
5768 * MIGRATE_ISOLATE. Because pageblock and max order pages may
5769 * have different sizes, and due to the way page allocator
5770 * work, we align the range to biggest of the two pages so
5771 * that page allocator won't try to merge buddies from
5772 * different pageblocks and change MIGRATE_ISOLATE to some
5773 * other migration type.
5774 *
5775 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5776 * migrate the pages from an unaligned range (ie. pages that
5777 * we are interested in). This will put all the pages in
5778 * range back to page allocator as MIGRATE_ISOLATE.
5779 *
5780 * When this is done, we take the pages in range from page
5781 * allocator removing them from the buddy system. This way
5782 * page allocator will never consider using them.
5783 *
5784 * This lets us mark the pageblocks back as
5785 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5786 * aligned range but not in the unaligned, original range are
5787 * put back to page allocator so that buddy can use them.
5788 */
5789
5790 ret = start_isolate_page_range(pfn_max_align_down(start),
5791 pfn_max_align_up(end), migratetype);
5792 if (ret)
5793 goto done;
5794
5795 ret = __alloc_contig_migrate_range(start, end);
5796 if (ret)
5797 goto done;
5798
5799 /*
5800 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5801 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
5802 * more, all pages in [start, end) are free in page allocator.
5803 * What we are going to do is to allocate all pages from
5804 * [start, end) (that is remove them from page allocator).
5805 *
5806 * The only problem is that pages at the beginning and at the
5807 * end of interesting range may be not aligned with pages that
5808 * page allocator holds, ie. they can be part of higher order
5809 * pages. Because of this, we reserve the bigger range and
5810 * once this is done free the pages we are not interested in.
5811 *
5812 * We don't have to hold zone->lock here because the pages are
5813 * isolated thus they won't get removed from buddy.
5814 */
5815
5816 lru_add_drain_all();
5817 drain_all_pages();
5818
5819 order = 0;
5820 outer_start = start;
5821 while (!PageBuddy(pfn_to_page(outer_start))) {
5822 if (++order >= MAX_ORDER) {
5823 ret = -EBUSY;
5824 goto done;
5825 }
5826 outer_start &= ~0UL << order;
5827 }
5828
5829 /* Make sure the range is really isolated. */
5830 if (test_pages_isolated(outer_start, end)) {
5831 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5832 outer_start, end);
5833 ret = -EBUSY;
5834 goto done;
5835 }
5836
5837 /*
5838 * Reclaim enough pages to make sure that contiguous allocation
5839 * will not starve the system.
5840 */
5841 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5842
5843 /* Grab isolated pages from freelists. */
5844 outer_end = isolate_freepages_range(outer_start, end);
5845 if (!outer_end) {
5846 ret = -EBUSY;
5847 goto done;
5848 }
5849
5850 /* Free head and tail (if any) */
5851 if (start != outer_start)
5852 free_contig_range(outer_start, start - outer_start);
5853 if (end != outer_end)
5854 free_contig_range(end, outer_end - end);
5855
5856 done:
5857 undo_isolate_page_range(pfn_max_align_down(start),
5858 pfn_max_align_up(end), migratetype);
5859 return ret;
5860 }
5861
5862 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5863 {
5864 for (; nr_pages--; ++pfn)
5865 __free_page(pfn_to_page(pfn));
5866 }
5867 #endif
5868
5869 #ifdef CONFIG_MEMORY_HOTPLUG
5870 static int __meminit __zone_pcp_update(void *data)
5871 {
5872 struct zone *zone = data;
5873 int cpu;
5874 unsigned long batch = zone_batchsize(zone), flags;
5875
5876 for_each_possible_cpu(cpu) {
5877 struct per_cpu_pageset *pset;
5878 struct per_cpu_pages *pcp;
5879
5880 pset = per_cpu_ptr(zone->pageset, cpu);
5881 pcp = &pset->pcp;
5882
5883 local_irq_save(flags);
5884 if (pcp->count > 0)
5885 free_pcppages_bulk(zone, pcp->count, pcp);
5886 setup_pageset(pset, batch);
5887 local_irq_restore(flags);
5888 }
5889 return 0;
5890 }
5891
5892 void __meminit zone_pcp_update(struct zone *zone)
5893 {
5894 stop_machine(__zone_pcp_update, zone, NULL);
5895 }
5896 #endif
5897
5898 #ifdef CONFIG_MEMORY_HOTREMOVE
5899 void zone_pcp_reset(struct zone *zone)
5900 {
5901 unsigned long flags;
5902
5903 /* avoid races with drain_pages() */
5904 local_irq_save(flags);
5905 if (zone->pageset != &boot_pageset) {
5906 free_percpu(zone->pageset);
5907 zone->pageset = &boot_pageset;
5908 }
5909 local_irq_restore(flags);
5910 }
5911
5912 /*
5913 * All pages in the range must be isolated before calling this.
5914 */
5915 void
5916 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5917 {
5918 struct page *page;
5919 struct zone *zone;
5920 int order, i;
5921 unsigned long pfn;
5922 unsigned long flags;
5923 /* find the first valid pfn */
5924 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5925 if (pfn_valid(pfn))
5926 break;
5927 if (pfn == end_pfn)
5928 return;
5929 zone = page_zone(pfn_to_page(pfn));
5930 spin_lock_irqsave(&zone->lock, flags);
5931 pfn = start_pfn;
5932 while (pfn < end_pfn) {
5933 if (!pfn_valid(pfn)) {
5934 pfn++;
5935 continue;
5936 }
5937 page = pfn_to_page(pfn);
5938 BUG_ON(page_count(page));
5939 BUG_ON(!PageBuddy(page));
5940 order = page_order(page);
5941 #ifdef CONFIG_DEBUG_VM
5942 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5943 pfn, 1 << order, end_pfn);
5944 #endif
5945 list_del(&page->lru);
5946 rmv_page_order(page);
5947 zone->free_area[order].nr_free--;
5948 __mod_zone_page_state(zone, NR_FREE_PAGES,
5949 - (1UL << order));
5950 for (i = 0; i < (1 << order); i++)
5951 SetPageReserved((page+i));
5952 pfn += (1 << order);
5953 }
5954 spin_unlock_irqrestore(&zone->lock, flags);
5955 }
5956 #endif
5957
5958 #ifdef CONFIG_MEMORY_FAILURE
5959 bool is_free_buddy_page(struct page *page)
5960 {
5961 struct zone *zone = page_zone(page);
5962 unsigned long pfn = page_to_pfn(page);
5963 unsigned long flags;
5964 int order;
5965
5966 spin_lock_irqsave(&zone->lock, flags);
5967 for (order = 0; order < MAX_ORDER; order++) {
5968 struct page *page_head = page - (pfn & ((1 << order) - 1));
5969
5970 if (PageBuddy(page_head) && page_order(page_head) >= order)
5971 break;
5972 }
5973 spin_unlock_irqrestore(&zone->lock, flags);
5974
5975 return order < MAX_ORDER;
5976 }
5977 #endif
5978
5979 static const struct trace_print_flags pageflag_names[] = {
5980 {1UL << PG_locked, "locked" },
5981 {1UL << PG_error, "error" },
5982 {1UL << PG_referenced, "referenced" },
5983 {1UL << PG_uptodate, "uptodate" },
5984 {1UL << PG_dirty, "dirty" },
5985 {1UL << PG_lru, "lru" },
5986 {1UL << PG_active, "active" },
5987 {1UL << PG_slab, "slab" },
5988 {1UL << PG_owner_priv_1, "owner_priv_1" },
5989 {1UL << PG_arch_1, "arch_1" },
5990 {1UL << PG_reserved, "reserved" },
5991 {1UL << PG_private, "private" },
5992 {1UL << PG_private_2, "private_2" },
5993 {1UL << PG_writeback, "writeback" },
5994 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5995 {1UL << PG_head, "head" },
5996 {1UL << PG_tail, "tail" },
5997 #else
5998 {1UL << PG_compound, "compound" },
5999 #endif
6000 {1UL << PG_swapcache, "swapcache" },
6001 {1UL << PG_mappedtodisk, "mappedtodisk" },
6002 {1UL << PG_reclaim, "reclaim" },
6003 {1UL << PG_swapbacked, "swapbacked" },
6004 {1UL << PG_unevictable, "unevictable" },
6005 #ifdef CONFIG_MMU
6006 {1UL << PG_mlocked, "mlocked" },
6007 #endif
6008 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6009 {1UL << PG_uncached, "uncached" },
6010 #endif
6011 #ifdef CONFIG_MEMORY_FAILURE
6012 {1UL << PG_hwpoison, "hwpoison" },
6013 #endif
6014 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6015 {1UL << PG_compound_lock, "compound_lock" },
6016 #endif
6017 };
6018
6019 static void dump_page_flags(unsigned long flags)
6020 {
6021 const char *delim = "";
6022 unsigned long mask;
6023 int i;
6024
6025 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6026
6027 printk(KERN_ALERT "page flags: %#lx(", flags);
6028
6029 /* remove zone id */
6030 flags &= (1UL << NR_PAGEFLAGS) - 1;
6031
6032 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6033
6034 mask = pageflag_names[i].mask;
6035 if ((flags & mask) != mask)
6036 continue;
6037
6038 flags &= ~mask;
6039 printk("%s%s", delim, pageflag_names[i].name);
6040 delim = "|";
6041 }
6042
6043 /* check for left over flags */
6044 if (flags)
6045 printk("%s%#lx", delim, flags);
6046
6047 printk(")\n");
6048 }
6049
6050 void dump_page(struct page *page)
6051 {
6052 printk(KERN_ALERT
6053 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6054 page, atomic_read(&page->_count), page_mapcount(page),
6055 page->mapping, page->index);
6056 dump_page_flags(page->flags);
6057 mem_cgroup_print_bad_page(page);
6058 }