]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
Merge branch 'master' of git://git.kernel.org/pub/scm/fs/xfs/xfs
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53
54 /*
55 * Array of node states.
56 */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 unsigned long highest_memmap_pfn __read_mostly;
73 int percpu_pagelist_fraction;
74
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78
79 static void __free_pages_ok(struct page *page, unsigned int order);
80
81 /*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
91 */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 32,
101 #endif
102 32,
103 };
104
105 EXPORT_SYMBOL(totalram_pages);
106
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
119 };
120
121 int min_free_kbytes = 1024;
122
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 /*
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
134 */
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
147
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169
170 int page_group_by_mobility_disabled __read_mostly;
171
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
176 }
177
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
184
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
192
193 return ret;
194 }
195
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
202
203 return 1;
204 }
205 /*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
214
215 return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 return 0;
221 }
222 #endif
223
224 static void bad_page(struct page *page)
225 {
226 static unsigned long resume;
227 static unsigned long nr_shown;
228 static unsigned long nr_unshown;
229
230 /*
231 * Allow a burst of 60 reports, then keep quiet for that minute;
232 * or allow a steady drip of one report per second.
233 */
234 if (nr_shown == 60) {
235 if (time_before(jiffies, resume)) {
236 nr_unshown++;
237 goto out;
238 }
239 if (nr_unshown) {
240 printk(KERN_ALERT
241 "BUG: Bad page state: %lu messages suppressed\n",
242 nr_unshown);
243 nr_unshown = 0;
244 }
245 nr_shown = 0;
246 }
247 if (nr_shown++ == 0)
248 resume = jiffies + 60 * HZ;
249
250 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
251 current->comm, page_to_pfn(page));
252 printk(KERN_ALERT
253 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
254 page, (void *)page->flags, page_count(page),
255 page_mapcount(page), page->mapping, page->index);
256
257 dump_stack();
258 out:
259 /* Leave bad fields for debug, except PageBuddy could make trouble */
260 __ClearPageBuddy(page);
261 add_taint(TAINT_BAD_PAGE);
262 }
263
264 /*
265 * Higher-order pages are called "compound pages". They are structured thusly:
266 *
267 * The first PAGE_SIZE page is called the "head page".
268 *
269 * The remaining PAGE_SIZE pages are called "tail pages".
270 *
271 * All pages have PG_compound set. All pages have their ->private pointing at
272 * the head page (even the head page has this).
273 *
274 * The first tail page's ->lru.next holds the address of the compound page's
275 * put_page() function. Its ->lru.prev holds the order of allocation.
276 * This usage means that zero-order pages may not be compound.
277 */
278
279 static void free_compound_page(struct page *page)
280 {
281 __free_pages_ok(page, compound_order(page));
282 }
283
284 void prep_compound_page(struct page *page, unsigned long order)
285 {
286 int i;
287 int nr_pages = 1 << order;
288
289 set_compound_page_dtor(page, free_compound_page);
290 set_compound_order(page, order);
291 __SetPageHead(page);
292 for (i = 1; i < nr_pages; i++) {
293 struct page *p = page + i;
294
295 __SetPageTail(p);
296 p->first_page = page;
297 }
298 }
299
300 #ifdef CONFIG_HUGETLBFS
301 void prep_compound_gigantic_page(struct page *page, unsigned long order)
302 {
303 int i;
304 int nr_pages = 1 << order;
305 struct page *p = page + 1;
306
307 set_compound_page_dtor(page, free_compound_page);
308 set_compound_order(page, order);
309 __SetPageHead(page);
310 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
311 __SetPageTail(p);
312 p->first_page = page;
313 }
314 }
315 #endif
316
317 static int destroy_compound_page(struct page *page, unsigned long order)
318 {
319 int i;
320 int nr_pages = 1 << order;
321 int bad = 0;
322
323 if (unlikely(compound_order(page) != order) ||
324 unlikely(!PageHead(page))) {
325 bad_page(page);
326 bad++;
327 }
328
329 __ClearPageHead(page);
330
331 for (i = 1; i < nr_pages; i++) {
332 struct page *p = page + i;
333
334 if (unlikely(!PageTail(p) | (p->first_page != page))) {
335 bad_page(page);
336 bad++;
337 }
338 __ClearPageTail(p);
339 }
340
341 return bad;
342 }
343
344 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
345 {
346 int i;
347
348 /*
349 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
350 * and __GFP_HIGHMEM from hard or soft interrupt context.
351 */
352 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
353 for (i = 0; i < (1 << order); i++)
354 clear_highpage(page + i);
355 }
356
357 static inline void set_page_order(struct page *page, int order)
358 {
359 set_page_private(page, order);
360 __SetPageBuddy(page);
361 }
362
363 static inline void rmv_page_order(struct page *page)
364 {
365 __ClearPageBuddy(page);
366 set_page_private(page, 0);
367 }
368
369 /*
370 * Locate the struct page for both the matching buddy in our
371 * pair (buddy1) and the combined O(n+1) page they form (page).
372 *
373 * 1) Any buddy B1 will have an order O twin B2 which satisfies
374 * the following equation:
375 * B2 = B1 ^ (1 << O)
376 * For example, if the starting buddy (buddy2) is #8 its order
377 * 1 buddy is #10:
378 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
379 *
380 * 2) Any buddy B will have an order O+1 parent P which
381 * satisfies the following equation:
382 * P = B & ~(1 << O)
383 *
384 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
385 */
386 static inline struct page *
387 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
388 {
389 unsigned long buddy_idx = page_idx ^ (1 << order);
390
391 return page + (buddy_idx - page_idx);
392 }
393
394 static inline unsigned long
395 __find_combined_index(unsigned long page_idx, unsigned int order)
396 {
397 return (page_idx & ~(1 << order));
398 }
399
400 /*
401 * This function checks whether a page is free && is the buddy
402 * we can do coalesce a page and its buddy if
403 * (a) the buddy is not in a hole &&
404 * (b) the buddy is in the buddy system &&
405 * (c) a page and its buddy have the same order &&
406 * (d) a page and its buddy are in the same zone.
407 *
408 * For recording whether a page is in the buddy system, we use PG_buddy.
409 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
410 *
411 * For recording page's order, we use page_private(page).
412 */
413 static inline int page_is_buddy(struct page *page, struct page *buddy,
414 int order)
415 {
416 if (!pfn_valid_within(page_to_pfn(buddy)))
417 return 0;
418
419 if (page_zone_id(page) != page_zone_id(buddy))
420 return 0;
421
422 if (PageBuddy(buddy) && page_order(buddy) == order) {
423 BUG_ON(page_count(buddy) != 0);
424 return 1;
425 }
426 return 0;
427 }
428
429 /*
430 * Freeing function for a buddy system allocator.
431 *
432 * The concept of a buddy system is to maintain direct-mapped table
433 * (containing bit values) for memory blocks of various "orders".
434 * The bottom level table contains the map for the smallest allocatable
435 * units of memory (here, pages), and each level above it describes
436 * pairs of units from the levels below, hence, "buddies".
437 * At a high level, all that happens here is marking the table entry
438 * at the bottom level available, and propagating the changes upward
439 * as necessary, plus some accounting needed to play nicely with other
440 * parts of the VM system.
441 * At each level, we keep a list of pages, which are heads of continuous
442 * free pages of length of (1 << order) and marked with PG_buddy. Page's
443 * order is recorded in page_private(page) field.
444 * So when we are allocating or freeing one, we can derive the state of the
445 * other. That is, if we allocate a small block, and both were
446 * free, the remainder of the region must be split into blocks.
447 * If a block is freed, and its buddy is also free, then this
448 * triggers coalescing into a block of larger size.
449 *
450 * -- wli
451 */
452
453 static inline void __free_one_page(struct page *page,
454 struct zone *zone, unsigned int order)
455 {
456 unsigned long page_idx;
457 int order_size = 1 << order;
458 int migratetype = get_pageblock_migratetype(page);
459
460 if (unlikely(PageCompound(page)))
461 if (unlikely(destroy_compound_page(page, order)))
462 return;
463
464 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
465
466 VM_BUG_ON(page_idx & (order_size - 1));
467 VM_BUG_ON(bad_range(zone, page));
468
469 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
470 while (order < MAX_ORDER-1) {
471 unsigned long combined_idx;
472 struct page *buddy;
473
474 buddy = __page_find_buddy(page, page_idx, order);
475 if (!page_is_buddy(page, buddy, order))
476 break;
477
478 /* Our buddy is free, merge with it and move up one order. */
479 list_del(&buddy->lru);
480 zone->free_area[order].nr_free--;
481 rmv_page_order(buddy);
482 combined_idx = __find_combined_index(page_idx, order);
483 page = page + (combined_idx - page_idx);
484 page_idx = combined_idx;
485 order++;
486 }
487 set_page_order(page, order);
488 list_add(&page->lru,
489 &zone->free_area[order].free_list[migratetype]);
490 zone->free_area[order].nr_free++;
491 }
492
493 static inline int free_pages_check(struct page *page)
494 {
495 free_page_mlock(page);
496 if (unlikely(page_mapcount(page) |
497 (page->mapping != NULL) |
498 (page_count(page) != 0) |
499 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
500 bad_page(page);
501 return 1;
502 }
503 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
504 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
505 return 0;
506 }
507
508 /*
509 * Frees a list of pages.
510 * Assumes all pages on list are in same zone, and of same order.
511 * count is the number of pages to free.
512 *
513 * If the zone was previously in an "all pages pinned" state then look to
514 * see if this freeing clears that state.
515 *
516 * And clear the zone's pages_scanned counter, to hold off the "all pages are
517 * pinned" detection logic.
518 */
519 static void free_pages_bulk(struct zone *zone, int count,
520 struct list_head *list, int order)
521 {
522 spin_lock(&zone->lock);
523 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
524 zone->pages_scanned = 0;
525 while (count--) {
526 struct page *page;
527
528 VM_BUG_ON(list_empty(list));
529 page = list_entry(list->prev, struct page, lru);
530 /* have to delete it as __free_one_page list manipulates */
531 list_del(&page->lru);
532 __free_one_page(page, zone, order);
533 }
534 spin_unlock(&zone->lock);
535 }
536
537 static void free_one_page(struct zone *zone, struct page *page, int order)
538 {
539 spin_lock(&zone->lock);
540 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
541 zone->pages_scanned = 0;
542 __free_one_page(page, zone, order);
543 spin_unlock(&zone->lock);
544 }
545
546 static void __free_pages_ok(struct page *page, unsigned int order)
547 {
548 unsigned long flags;
549 int i;
550 int bad = 0;
551
552 for (i = 0 ; i < (1 << order) ; ++i)
553 bad += free_pages_check(page + i);
554 if (bad)
555 return;
556
557 if (!PageHighMem(page)) {
558 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
559 debug_check_no_obj_freed(page_address(page),
560 PAGE_SIZE << order);
561 }
562 arch_free_page(page, order);
563 kernel_map_pages(page, 1 << order, 0);
564
565 local_irq_save(flags);
566 __count_vm_events(PGFREE, 1 << order);
567 free_one_page(page_zone(page), page, order);
568 local_irq_restore(flags);
569 }
570
571 /*
572 * permit the bootmem allocator to evade page validation on high-order frees
573 */
574 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
575 {
576 if (order == 0) {
577 __ClearPageReserved(page);
578 set_page_count(page, 0);
579 set_page_refcounted(page);
580 __free_page(page);
581 } else {
582 int loop;
583
584 prefetchw(page);
585 for (loop = 0; loop < BITS_PER_LONG; loop++) {
586 struct page *p = &page[loop];
587
588 if (loop + 1 < BITS_PER_LONG)
589 prefetchw(p + 1);
590 __ClearPageReserved(p);
591 set_page_count(p, 0);
592 }
593
594 set_page_refcounted(page);
595 __free_pages(page, order);
596 }
597 }
598
599
600 /*
601 * The order of subdivision here is critical for the IO subsystem.
602 * Please do not alter this order without good reasons and regression
603 * testing. Specifically, as large blocks of memory are subdivided,
604 * the order in which smaller blocks are delivered depends on the order
605 * they're subdivided in this function. This is the primary factor
606 * influencing the order in which pages are delivered to the IO
607 * subsystem according to empirical testing, and this is also justified
608 * by considering the behavior of a buddy system containing a single
609 * large block of memory acted on by a series of small allocations.
610 * This behavior is a critical factor in sglist merging's success.
611 *
612 * -- wli
613 */
614 static inline void expand(struct zone *zone, struct page *page,
615 int low, int high, struct free_area *area,
616 int migratetype)
617 {
618 unsigned long size = 1 << high;
619
620 while (high > low) {
621 area--;
622 high--;
623 size >>= 1;
624 VM_BUG_ON(bad_range(zone, &page[size]));
625 list_add(&page[size].lru, &area->free_list[migratetype]);
626 area->nr_free++;
627 set_page_order(&page[size], high);
628 }
629 }
630
631 /*
632 * This page is about to be returned from the page allocator
633 */
634 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
635 {
636 if (unlikely(page_mapcount(page) |
637 (page->mapping != NULL) |
638 (page_count(page) != 0) |
639 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
640 bad_page(page);
641 return 1;
642 }
643
644 set_page_private(page, 0);
645 set_page_refcounted(page);
646
647 arch_alloc_page(page, order);
648 kernel_map_pages(page, 1 << order, 1);
649
650 if (gfp_flags & __GFP_ZERO)
651 prep_zero_page(page, order, gfp_flags);
652
653 if (order && (gfp_flags & __GFP_COMP))
654 prep_compound_page(page, order);
655
656 return 0;
657 }
658
659 /*
660 * Go through the free lists for the given migratetype and remove
661 * the smallest available page from the freelists
662 */
663 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
664 int migratetype)
665 {
666 unsigned int current_order;
667 struct free_area * area;
668 struct page *page;
669
670 /* Find a page of the appropriate size in the preferred list */
671 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
672 area = &(zone->free_area[current_order]);
673 if (list_empty(&area->free_list[migratetype]))
674 continue;
675
676 page = list_entry(area->free_list[migratetype].next,
677 struct page, lru);
678 list_del(&page->lru);
679 rmv_page_order(page);
680 area->nr_free--;
681 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
682 expand(zone, page, order, current_order, area, migratetype);
683 return page;
684 }
685
686 return NULL;
687 }
688
689
690 /*
691 * This array describes the order lists are fallen back to when
692 * the free lists for the desirable migrate type are depleted
693 */
694 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
695 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
696 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
697 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
699 };
700
701 /*
702 * Move the free pages in a range to the free lists of the requested type.
703 * Note that start_page and end_pages are not aligned on a pageblock
704 * boundary. If alignment is required, use move_freepages_block()
705 */
706 static int move_freepages(struct zone *zone,
707 struct page *start_page, struct page *end_page,
708 int migratetype)
709 {
710 struct page *page;
711 unsigned long order;
712 int pages_moved = 0;
713
714 #ifndef CONFIG_HOLES_IN_ZONE
715 /*
716 * page_zone is not safe to call in this context when
717 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
718 * anyway as we check zone boundaries in move_freepages_block().
719 * Remove at a later date when no bug reports exist related to
720 * grouping pages by mobility
721 */
722 BUG_ON(page_zone(start_page) != page_zone(end_page));
723 #endif
724
725 for (page = start_page; page <= end_page;) {
726 /* Make sure we are not inadvertently changing nodes */
727 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
728
729 if (!pfn_valid_within(page_to_pfn(page))) {
730 page++;
731 continue;
732 }
733
734 if (!PageBuddy(page)) {
735 page++;
736 continue;
737 }
738
739 order = page_order(page);
740 list_del(&page->lru);
741 list_add(&page->lru,
742 &zone->free_area[order].free_list[migratetype]);
743 page += 1 << order;
744 pages_moved += 1 << order;
745 }
746
747 return pages_moved;
748 }
749
750 static int move_freepages_block(struct zone *zone, struct page *page,
751 int migratetype)
752 {
753 unsigned long start_pfn, end_pfn;
754 struct page *start_page, *end_page;
755
756 start_pfn = page_to_pfn(page);
757 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
758 start_page = pfn_to_page(start_pfn);
759 end_page = start_page + pageblock_nr_pages - 1;
760 end_pfn = start_pfn + pageblock_nr_pages - 1;
761
762 /* Do not cross zone boundaries */
763 if (start_pfn < zone->zone_start_pfn)
764 start_page = page;
765 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
766 return 0;
767
768 return move_freepages(zone, start_page, end_page, migratetype);
769 }
770
771 /* Remove an element from the buddy allocator from the fallback list */
772 static struct page *__rmqueue_fallback(struct zone *zone, int order,
773 int start_migratetype)
774 {
775 struct free_area * area;
776 int current_order;
777 struct page *page;
778 int migratetype, i;
779
780 /* Find the largest possible block of pages in the other list */
781 for (current_order = MAX_ORDER-1; current_order >= order;
782 --current_order) {
783 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
784 migratetype = fallbacks[start_migratetype][i];
785
786 /* MIGRATE_RESERVE handled later if necessary */
787 if (migratetype == MIGRATE_RESERVE)
788 continue;
789
790 area = &(zone->free_area[current_order]);
791 if (list_empty(&area->free_list[migratetype]))
792 continue;
793
794 page = list_entry(area->free_list[migratetype].next,
795 struct page, lru);
796 area->nr_free--;
797
798 /*
799 * If breaking a large block of pages, move all free
800 * pages to the preferred allocation list. If falling
801 * back for a reclaimable kernel allocation, be more
802 * agressive about taking ownership of free pages
803 */
804 if (unlikely(current_order >= (pageblock_order >> 1)) ||
805 start_migratetype == MIGRATE_RECLAIMABLE) {
806 unsigned long pages;
807 pages = move_freepages_block(zone, page,
808 start_migratetype);
809
810 /* Claim the whole block if over half of it is free */
811 if (pages >= (1 << (pageblock_order-1)))
812 set_pageblock_migratetype(page,
813 start_migratetype);
814
815 migratetype = start_migratetype;
816 }
817
818 /* Remove the page from the freelists */
819 list_del(&page->lru);
820 rmv_page_order(page);
821 __mod_zone_page_state(zone, NR_FREE_PAGES,
822 -(1UL << order));
823
824 if (current_order == pageblock_order)
825 set_pageblock_migratetype(page,
826 start_migratetype);
827
828 expand(zone, page, order, current_order, area, migratetype);
829 return page;
830 }
831 }
832
833 /* Use MIGRATE_RESERVE rather than fail an allocation */
834 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
835 }
836
837 /*
838 * Do the hard work of removing an element from the buddy allocator.
839 * Call me with the zone->lock already held.
840 */
841 static struct page *__rmqueue(struct zone *zone, unsigned int order,
842 int migratetype)
843 {
844 struct page *page;
845
846 page = __rmqueue_smallest(zone, order, migratetype);
847
848 if (unlikely(!page))
849 page = __rmqueue_fallback(zone, order, migratetype);
850
851 return page;
852 }
853
854 /*
855 * Obtain a specified number of elements from the buddy allocator, all under
856 * a single hold of the lock, for efficiency. Add them to the supplied list.
857 * Returns the number of new pages which were placed at *list.
858 */
859 static int rmqueue_bulk(struct zone *zone, unsigned int order,
860 unsigned long count, struct list_head *list,
861 int migratetype)
862 {
863 int i;
864
865 spin_lock(&zone->lock);
866 for (i = 0; i < count; ++i) {
867 struct page *page = __rmqueue(zone, order, migratetype);
868 if (unlikely(page == NULL))
869 break;
870
871 /*
872 * Split buddy pages returned by expand() are received here
873 * in physical page order. The page is added to the callers and
874 * list and the list head then moves forward. From the callers
875 * perspective, the linked list is ordered by page number in
876 * some conditions. This is useful for IO devices that can
877 * merge IO requests if the physical pages are ordered
878 * properly.
879 */
880 list_add(&page->lru, list);
881 set_page_private(page, migratetype);
882 list = &page->lru;
883 }
884 spin_unlock(&zone->lock);
885 return i;
886 }
887
888 #ifdef CONFIG_NUMA
889 /*
890 * Called from the vmstat counter updater to drain pagesets of this
891 * currently executing processor on remote nodes after they have
892 * expired.
893 *
894 * Note that this function must be called with the thread pinned to
895 * a single processor.
896 */
897 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
898 {
899 unsigned long flags;
900 int to_drain;
901
902 local_irq_save(flags);
903 if (pcp->count >= pcp->batch)
904 to_drain = pcp->batch;
905 else
906 to_drain = pcp->count;
907 free_pages_bulk(zone, to_drain, &pcp->list, 0);
908 pcp->count -= to_drain;
909 local_irq_restore(flags);
910 }
911 #endif
912
913 /*
914 * Drain pages of the indicated processor.
915 *
916 * The processor must either be the current processor and the
917 * thread pinned to the current processor or a processor that
918 * is not online.
919 */
920 static void drain_pages(unsigned int cpu)
921 {
922 unsigned long flags;
923 struct zone *zone;
924
925 for_each_zone(zone) {
926 struct per_cpu_pageset *pset;
927 struct per_cpu_pages *pcp;
928
929 if (!populated_zone(zone))
930 continue;
931
932 pset = zone_pcp(zone, cpu);
933
934 pcp = &pset->pcp;
935 local_irq_save(flags);
936 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
937 pcp->count = 0;
938 local_irq_restore(flags);
939 }
940 }
941
942 /*
943 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
944 */
945 void drain_local_pages(void *arg)
946 {
947 drain_pages(smp_processor_id());
948 }
949
950 /*
951 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
952 */
953 void drain_all_pages(void)
954 {
955 on_each_cpu(drain_local_pages, NULL, 1);
956 }
957
958 #ifdef CONFIG_HIBERNATION
959
960 void mark_free_pages(struct zone *zone)
961 {
962 unsigned long pfn, max_zone_pfn;
963 unsigned long flags;
964 int order, t;
965 struct list_head *curr;
966
967 if (!zone->spanned_pages)
968 return;
969
970 spin_lock_irqsave(&zone->lock, flags);
971
972 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
973 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
974 if (pfn_valid(pfn)) {
975 struct page *page = pfn_to_page(pfn);
976
977 if (!swsusp_page_is_forbidden(page))
978 swsusp_unset_page_free(page);
979 }
980
981 for_each_migratetype_order(order, t) {
982 list_for_each(curr, &zone->free_area[order].free_list[t]) {
983 unsigned long i;
984
985 pfn = page_to_pfn(list_entry(curr, struct page, lru));
986 for (i = 0; i < (1UL << order); i++)
987 swsusp_set_page_free(pfn_to_page(pfn + i));
988 }
989 }
990 spin_unlock_irqrestore(&zone->lock, flags);
991 }
992 #endif /* CONFIG_PM */
993
994 /*
995 * Free a 0-order page
996 */
997 static void free_hot_cold_page(struct page *page, int cold)
998 {
999 struct zone *zone = page_zone(page);
1000 struct per_cpu_pages *pcp;
1001 unsigned long flags;
1002
1003 if (PageAnon(page))
1004 page->mapping = NULL;
1005 if (free_pages_check(page))
1006 return;
1007
1008 if (!PageHighMem(page)) {
1009 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1010 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1011 }
1012 arch_free_page(page, 0);
1013 kernel_map_pages(page, 1, 0);
1014
1015 pcp = &zone_pcp(zone, get_cpu())->pcp;
1016 local_irq_save(flags);
1017 __count_vm_event(PGFREE);
1018 if (cold)
1019 list_add_tail(&page->lru, &pcp->list);
1020 else
1021 list_add(&page->lru, &pcp->list);
1022 set_page_private(page, get_pageblock_migratetype(page));
1023 pcp->count++;
1024 if (pcp->count >= pcp->high) {
1025 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1026 pcp->count -= pcp->batch;
1027 }
1028 local_irq_restore(flags);
1029 put_cpu();
1030 }
1031
1032 void free_hot_page(struct page *page)
1033 {
1034 free_hot_cold_page(page, 0);
1035 }
1036
1037 void free_cold_page(struct page *page)
1038 {
1039 free_hot_cold_page(page, 1);
1040 }
1041
1042 /*
1043 * split_page takes a non-compound higher-order page, and splits it into
1044 * n (1<<order) sub-pages: page[0..n]
1045 * Each sub-page must be freed individually.
1046 *
1047 * Note: this is probably too low level an operation for use in drivers.
1048 * Please consult with lkml before using this in your driver.
1049 */
1050 void split_page(struct page *page, unsigned int order)
1051 {
1052 int i;
1053
1054 VM_BUG_ON(PageCompound(page));
1055 VM_BUG_ON(!page_count(page));
1056 for (i = 1; i < (1 << order); i++)
1057 set_page_refcounted(page + i);
1058 }
1059
1060 /*
1061 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1062 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1063 * or two.
1064 */
1065 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1066 struct zone *zone, int order, gfp_t gfp_flags)
1067 {
1068 unsigned long flags;
1069 struct page *page;
1070 int cold = !!(gfp_flags & __GFP_COLD);
1071 int cpu;
1072 int migratetype = allocflags_to_migratetype(gfp_flags);
1073
1074 again:
1075 cpu = get_cpu();
1076 if (likely(order == 0)) {
1077 struct per_cpu_pages *pcp;
1078
1079 pcp = &zone_pcp(zone, cpu)->pcp;
1080 local_irq_save(flags);
1081 if (!pcp->count) {
1082 pcp->count = rmqueue_bulk(zone, 0,
1083 pcp->batch, &pcp->list, migratetype);
1084 if (unlikely(!pcp->count))
1085 goto failed;
1086 }
1087
1088 /* Find a page of the appropriate migrate type */
1089 if (cold) {
1090 list_for_each_entry_reverse(page, &pcp->list, lru)
1091 if (page_private(page) == migratetype)
1092 break;
1093 } else {
1094 list_for_each_entry(page, &pcp->list, lru)
1095 if (page_private(page) == migratetype)
1096 break;
1097 }
1098
1099 /* Allocate more to the pcp list if necessary */
1100 if (unlikely(&page->lru == &pcp->list)) {
1101 pcp->count += rmqueue_bulk(zone, 0,
1102 pcp->batch, &pcp->list, migratetype);
1103 page = list_entry(pcp->list.next, struct page, lru);
1104 }
1105
1106 list_del(&page->lru);
1107 pcp->count--;
1108 } else {
1109 spin_lock_irqsave(&zone->lock, flags);
1110 page = __rmqueue(zone, order, migratetype);
1111 spin_unlock(&zone->lock);
1112 if (!page)
1113 goto failed;
1114 }
1115
1116 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1117 zone_statistics(preferred_zone, zone);
1118 local_irq_restore(flags);
1119 put_cpu();
1120
1121 VM_BUG_ON(bad_range(zone, page));
1122 if (prep_new_page(page, order, gfp_flags))
1123 goto again;
1124 return page;
1125
1126 failed:
1127 local_irq_restore(flags);
1128 put_cpu();
1129 return NULL;
1130 }
1131
1132 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1133 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1134 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1135 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1136 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1137 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1138 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1139
1140 #ifdef CONFIG_FAIL_PAGE_ALLOC
1141
1142 static struct fail_page_alloc_attr {
1143 struct fault_attr attr;
1144
1145 u32 ignore_gfp_highmem;
1146 u32 ignore_gfp_wait;
1147 u32 min_order;
1148
1149 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1150
1151 struct dentry *ignore_gfp_highmem_file;
1152 struct dentry *ignore_gfp_wait_file;
1153 struct dentry *min_order_file;
1154
1155 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1156
1157 } fail_page_alloc = {
1158 .attr = FAULT_ATTR_INITIALIZER,
1159 .ignore_gfp_wait = 1,
1160 .ignore_gfp_highmem = 1,
1161 .min_order = 1,
1162 };
1163
1164 static int __init setup_fail_page_alloc(char *str)
1165 {
1166 return setup_fault_attr(&fail_page_alloc.attr, str);
1167 }
1168 __setup("fail_page_alloc=", setup_fail_page_alloc);
1169
1170 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1171 {
1172 if (order < fail_page_alloc.min_order)
1173 return 0;
1174 if (gfp_mask & __GFP_NOFAIL)
1175 return 0;
1176 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1177 return 0;
1178 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1179 return 0;
1180
1181 return should_fail(&fail_page_alloc.attr, 1 << order);
1182 }
1183
1184 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1185
1186 static int __init fail_page_alloc_debugfs(void)
1187 {
1188 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1189 struct dentry *dir;
1190 int err;
1191
1192 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1193 "fail_page_alloc");
1194 if (err)
1195 return err;
1196 dir = fail_page_alloc.attr.dentries.dir;
1197
1198 fail_page_alloc.ignore_gfp_wait_file =
1199 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1200 &fail_page_alloc.ignore_gfp_wait);
1201
1202 fail_page_alloc.ignore_gfp_highmem_file =
1203 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1204 &fail_page_alloc.ignore_gfp_highmem);
1205 fail_page_alloc.min_order_file =
1206 debugfs_create_u32("min-order", mode, dir,
1207 &fail_page_alloc.min_order);
1208
1209 if (!fail_page_alloc.ignore_gfp_wait_file ||
1210 !fail_page_alloc.ignore_gfp_highmem_file ||
1211 !fail_page_alloc.min_order_file) {
1212 err = -ENOMEM;
1213 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1214 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1215 debugfs_remove(fail_page_alloc.min_order_file);
1216 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1217 }
1218
1219 return err;
1220 }
1221
1222 late_initcall(fail_page_alloc_debugfs);
1223
1224 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1225
1226 #else /* CONFIG_FAIL_PAGE_ALLOC */
1227
1228 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1229 {
1230 return 0;
1231 }
1232
1233 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1234
1235 /*
1236 * Return 1 if free pages are above 'mark'. This takes into account the order
1237 * of the allocation.
1238 */
1239 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1240 int classzone_idx, int alloc_flags)
1241 {
1242 /* free_pages my go negative - that's OK */
1243 long min = mark;
1244 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1245 int o;
1246
1247 if (alloc_flags & ALLOC_HIGH)
1248 min -= min / 2;
1249 if (alloc_flags & ALLOC_HARDER)
1250 min -= min / 4;
1251
1252 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1253 return 0;
1254 for (o = 0; o < order; o++) {
1255 /* At the next order, this order's pages become unavailable */
1256 free_pages -= z->free_area[o].nr_free << o;
1257
1258 /* Require fewer higher order pages to be free */
1259 min >>= 1;
1260
1261 if (free_pages <= min)
1262 return 0;
1263 }
1264 return 1;
1265 }
1266
1267 #ifdef CONFIG_NUMA
1268 /*
1269 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1270 * skip over zones that are not allowed by the cpuset, or that have
1271 * been recently (in last second) found to be nearly full. See further
1272 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1273 * that have to skip over a lot of full or unallowed zones.
1274 *
1275 * If the zonelist cache is present in the passed in zonelist, then
1276 * returns a pointer to the allowed node mask (either the current
1277 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1278 *
1279 * If the zonelist cache is not available for this zonelist, does
1280 * nothing and returns NULL.
1281 *
1282 * If the fullzones BITMAP in the zonelist cache is stale (more than
1283 * a second since last zap'd) then we zap it out (clear its bits.)
1284 *
1285 * We hold off even calling zlc_setup, until after we've checked the
1286 * first zone in the zonelist, on the theory that most allocations will
1287 * be satisfied from that first zone, so best to examine that zone as
1288 * quickly as we can.
1289 */
1290 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1291 {
1292 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1293 nodemask_t *allowednodes; /* zonelist_cache approximation */
1294
1295 zlc = zonelist->zlcache_ptr;
1296 if (!zlc)
1297 return NULL;
1298
1299 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1300 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1301 zlc->last_full_zap = jiffies;
1302 }
1303
1304 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1305 &cpuset_current_mems_allowed :
1306 &node_states[N_HIGH_MEMORY];
1307 return allowednodes;
1308 }
1309
1310 /*
1311 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1312 * if it is worth looking at further for free memory:
1313 * 1) Check that the zone isn't thought to be full (doesn't have its
1314 * bit set in the zonelist_cache fullzones BITMAP).
1315 * 2) Check that the zones node (obtained from the zonelist_cache
1316 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1317 * Return true (non-zero) if zone is worth looking at further, or
1318 * else return false (zero) if it is not.
1319 *
1320 * This check -ignores- the distinction between various watermarks,
1321 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1322 * found to be full for any variation of these watermarks, it will
1323 * be considered full for up to one second by all requests, unless
1324 * we are so low on memory on all allowed nodes that we are forced
1325 * into the second scan of the zonelist.
1326 *
1327 * In the second scan we ignore this zonelist cache and exactly
1328 * apply the watermarks to all zones, even it is slower to do so.
1329 * We are low on memory in the second scan, and should leave no stone
1330 * unturned looking for a free page.
1331 */
1332 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1333 nodemask_t *allowednodes)
1334 {
1335 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1336 int i; /* index of *z in zonelist zones */
1337 int n; /* node that zone *z is on */
1338
1339 zlc = zonelist->zlcache_ptr;
1340 if (!zlc)
1341 return 1;
1342
1343 i = z - zonelist->_zonerefs;
1344 n = zlc->z_to_n[i];
1345
1346 /* This zone is worth trying if it is allowed but not full */
1347 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1348 }
1349
1350 /*
1351 * Given 'z' scanning a zonelist, set the corresponding bit in
1352 * zlc->fullzones, so that subsequent attempts to allocate a page
1353 * from that zone don't waste time re-examining it.
1354 */
1355 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1356 {
1357 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1358 int i; /* index of *z in zonelist zones */
1359
1360 zlc = zonelist->zlcache_ptr;
1361 if (!zlc)
1362 return;
1363
1364 i = z - zonelist->_zonerefs;
1365
1366 set_bit(i, zlc->fullzones);
1367 }
1368
1369 #else /* CONFIG_NUMA */
1370
1371 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1372 {
1373 return NULL;
1374 }
1375
1376 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1377 nodemask_t *allowednodes)
1378 {
1379 return 1;
1380 }
1381
1382 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1383 {
1384 }
1385 #endif /* CONFIG_NUMA */
1386
1387 /*
1388 * get_page_from_freelist goes through the zonelist trying to allocate
1389 * a page.
1390 */
1391 static struct page *
1392 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1393 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1394 {
1395 struct zoneref *z;
1396 struct page *page = NULL;
1397 int classzone_idx;
1398 struct zone *zone, *preferred_zone;
1399 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1400 int zlc_active = 0; /* set if using zonelist_cache */
1401 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1402
1403 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1404 &preferred_zone);
1405 if (!preferred_zone)
1406 return NULL;
1407
1408 classzone_idx = zone_idx(preferred_zone);
1409
1410 zonelist_scan:
1411 /*
1412 * Scan zonelist, looking for a zone with enough free.
1413 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1414 */
1415 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1416 high_zoneidx, nodemask) {
1417 if (NUMA_BUILD && zlc_active &&
1418 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1419 continue;
1420 if ((alloc_flags & ALLOC_CPUSET) &&
1421 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1422 goto try_next_zone;
1423
1424 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1425 unsigned long mark;
1426 if (alloc_flags & ALLOC_WMARK_MIN)
1427 mark = zone->pages_min;
1428 else if (alloc_flags & ALLOC_WMARK_LOW)
1429 mark = zone->pages_low;
1430 else
1431 mark = zone->pages_high;
1432 if (!zone_watermark_ok(zone, order, mark,
1433 classzone_idx, alloc_flags)) {
1434 if (!zone_reclaim_mode ||
1435 !zone_reclaim(zone, gfp_mask, order))
1436 goto this_zone_full;
1437 }
1438 }
1439
1440 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1441 if (page)
1442 break;
1443 this_zone_full:
1444 if (NUMA_BUILD)
1445 zlc_mark_zone_full(zonelist, z);
1446 try_next_zone:
1447 if (NUMA_BUILD && !did_zlc_setup) {
1448 /* we do zlc_setup after the first zone is tried */
1449 allowednodes = zlc_setup(zonelist, alloc_flags);
1450 zlc_active = 1;
1451 did_zlc_setup = 1;
1452 }
1453 }
1454
1455 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1456 /* Disable zlc cache for second zonelist scan */
1457 zlc_active = 0;
1458 goto zonelist_scan;
1459 }
1460 return page;
1461 }
1462
1463 /*
1464 * This is the 'heart' of the zoned buddy allocator.
1465 */
1466 struct page *
1467 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1468 struct zonelist *zonelist, nodemask_t *nodemask)
1469 {
1470 const gfp_t wait = gfp_mask & __GFP_WAIT;
1471 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1472 struct zoneref *z;
1473 struct zone *zone;
1474 struct page *page;
1475 struct reclaim_state reclaim_state;
1476 struct task_struct *p = current;
1477 int do_retry;
1478 int alloc_flags;
1479 unsigned long did_some_progress;
1480 unsigned long pages_reclaimed = 0;
1481
1482 lockdep_trace_alloc(gfp_mask);
1483
1484 might_sleep_if(wait);
1485
1486 if (should_fail_alloc_page(gfp_mask, order))
1487 return NULL;
1488
1489 restart:
1490 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1491
1492 if (unlikely(!z->zone)) {
1493 /*
1494 * Happens if we have an empty zonelist as a result of
1495 * GFP_THISNODE being used on a memoryless node
1496 */
1497 return NULL;
1498 }
1499
1500 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1501 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1502 if (page)
1503 goto got_pg;
1504
1505 /*
1506 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1507 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1508 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1509 * using a larger set of nodes after it has established that the
1510 * allowed per node queues are empty and that nodes are
1511 * over allocated.
1512 */
1513 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1514 goto nopage;
1515
1516 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1517 wakeup_kswapd(zone, order);
1518
1519 /*
1520 * OK, we're below the kswapd watermark and have kicked background
1521 * reclaim. Now things get more complex, so set up alloc_flags according
1522 * to how we want to proceed.
1523 *
1524 * The caller may dip into page reserves a bit more if the caller
1525 * cannot run direct reclaim, or if the caller has realtime scheduling
1526 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1527 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1528 */
1529 alloc_flags = ALLOC_WMARK_MIN;
1530 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1531 alloc_flags |= ALLOC_HARDER;
1532 if (gfp_mask & __GFP_HIGH)
1533 alloc_flags |= ALLOC_HIGH;
1534 if (wait)
1535 alloc_flags |= ALLOC_CPUSET;
1536
1537 /*
1538 * Go through the zonelist again. Let __GFP_HIGH and allocations
1539 * coming from realtime tasks go deeper into reserves.
1540 *
1541 * This is the last chance, in general, before the goto nopage.
1542 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1543 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1544 */
1545 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1546 high_zoneidx, alloc_flags);
1547 if (page)
1548 goto got_pg;
1549
1550 /* This allocation should allow future memory freeing. */
1551
1552 rebalance:
1553 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1554 && !in_interrupt()) {
1555 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1556 nofail_alloc:
1557 /* go through the zonelist yet again, ignoring mins */
1558 page = get_page_from_freelist(gfp_mask, nodemask, order,
1559 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1560 if (page)
1561 goto got_pg;
1562 if (gfp_mask & __GFP_NOFAIL) {
1563 congestion_wait(WRITE, HZ/50);
1564 goto nofail_alloc;
1565 }
1566 }
1567 goto nopage;
1568 }
1569
1570 /* Atomic allocations - we can't balance anything */
1571 if (!wait)
1572 goto nopage;
1573
1574 cond_resched();
1575
1576 /* We now go into synchronous reclaim */
1577 cpuset_memory_pressure_bump();
1578 /*
1579 * The task's cpuset might have expanded its set of allowable nodes
1580 */
1581 cpuset_update_task_memory_state();
1582 p->flags |= PF_MEMALLOC;
1583
1584 lockdep_set_current_reclaim_state(gfp_mask);
1585 reclaim_state.reclaimed_slab = 0;
1586 p->reclaim_state = &reclaim_state;
1587
1588 did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1589
1590 p->reclaim_state = NULL;
1591 lockdep_clear_current_reclaim_state();
1592 p->flags &= ~PF_MEMALLOC;
1593
1594 cond_resched();
1595
1596 if (order != 0)
1597 drain_all_pages();
1598
1599 if (likely(did_some_progress)) {
1600 page = get_page_from_freelist(gfp_mask, nodemask, order,
1601 zonelist, high_zoneidx, alloc_flags);
1602 if (page)
1603 goto got_pg;
1604 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1605 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1606 schedule_timeout_uninterruptible(1);
1607 goto restart;
1608 }
1609
1610 /*
1611 * Go through the zonelist yet one more time, keep
1612 * very high watermark here, this is only to catch
1613 * a parallel oom killing, we must fail if we're still
1614 * under heavy pressure.
1615 */
1616 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1617 order, zonelist, high_zoneidx,
1618 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1619 if (page) {
1620 clear_zonelist_oom(zonelist, gfp_mask);
1621 goto got_pg;
1622 }
1623
1624 /* The OOM killer will not help higher order allocs so fail */
1625 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1626 clear_zonelist_oom(zonelist, gfp_mask);
1627 goto nopage;
1628 }
1629
1630 out_of_memory(zonelist, gfp_mask, order);
1631 clear_zonelist_oom(zonelist, gfp_mask);
1632 goto restart;
1633 }
1634
1635 /*
1636 * Don't let big-order allocations loop unless the caller explicitly
1637 * requests that. Wait for some write requests to complete then retry.
1638 *
1639 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1640 * means __GFP_NOFAIL, but that may not be true in other
1641 * implementations.
1642 *
1643 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1644 * specified, then we retry until we no longer reclaim any pages
1645 * (above), or we've reclaimed an order of pages at least as
1646 * large as the allocation's order. In both cases, if the
1647 * allocation still fails, we stop retrying.
1648 */
1649 pages_reclaimed += did_some_progress;
1650 do_retry = 0;
1651 if (!(gfp_mask & __GFP_NORETRY)) {
1652 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1653 do_retry = 1;
1654 } else {
1655 if (gfp_mask & __GFP_REPEAT &&
1656 pages_reclaimed < (1 << order))
1657 do_retry = 1;
1658 }
1659 if (gfp_mask & __GFP_NOFAIL)
1660 do_retry = 1;
1661 }
1662 if (do_retry) {
1663 congestion_wait(WRITE, HZ/50);
1664 goto rebalance;
1665 }
1666
1667 nopage:
1668 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1669 printk(KERN_WARNING "%s: page allocation failure."
1670 " order:%d, mode:0x%x\n",
1671 p->comm, order, gfp_mask);
1672 dump_stack();
1673 show_mem();
1674 }
1675 got_pg:
1676 return page;
1677 }
1678 EXPORT_SYMBOL(__alloc_pages_internal);
1679
1680 /*
1681 * Common helper functions.
1682 */
1683 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1684 {
1685 struct page * page;
1686 page = alloc_pages(gfp_mask, order);
1687 if (!page)
1688 return 0;
1689 return (unsigned long) page_address(page);
1690 }
1691
1692 EXPORT_SYMBOL(__get_free_pages);
1693
1694 unsigned long get_zeroed_page(gfp_t gfp_mask)
1695 {
1696 struct page * page;
1697
1698 /*
1699 * get_zeroed_page() returns a 32-bit address, which cannot represent
1700 * a highmem page
1701 */
1702 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1703
1704 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1705 if (page)
1706 return (unsigned long) page_address(page);
1707 return 0;
1708 }
1709
1710 EXPORT_SYMBOL(get_zeroed_page);
1711
1712 void __pagevec_free(struct pagevec *pvec)
1713 {
1714 int i = pagevec_count(pvec);
1715
1716 while (--i >= 0)
1717 free_hot_cold_page(pvec->pages[i], pvec->cold);
1718 }
1719
1720 void __free_pages(struct page *page, unsigned int order)
1721 {
1722 if (put_page_testzero(page)) {
1723 if (order == 0)
1724 free_hot_page(page);
1725 else
1726 __free_pages_ok(page, order);
1727 }
1728 }
1729
1730 EXPORT_SYMBOL(__free_pages);
1731
1732 void free_pages(unsigned long addr, unsigned int order)
1733 {
1734 if (addr != 0) {
1735 VM_BUG_ON(!virt_addr_valid((void *)addr));
1736 __free_pages(virt_to_page((void *)addr), order);
1737 }
1738 }
1739
1740 EXPORT_SYMBOL(free_pages);
1741
1742 /**
1743 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1744 * @size: the number of bytes to allocate
1745 * @gfp_mask: GFP flags for the allocation
1746 *
1747 * This function is similar to alloc_pages(), except that it allocates the
1748 * minimum number of pages to satisfy the request. alloc_pages() can only
1749 * allocate memory in power-of-two pages.
1750 *
1751 * This function is also limited by MAX_ORDER.
1752 *
1753 * Memory allocated by this function must be released by free_pages_exact().
1754 */
1755 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1756 {
1757 unsigned int order = get_order(size);
1758 unsigned long addr;
1759
1760 addr = __get_free_pages(gfp_mask, order);
1761 if (addr) {
1762 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1763 unsigned long used = addr + PAGE_ALIGN(size);
1764
1765 split_page(virt_to_page(addr), order);
1766 while (used < alloc_end) {
1767 free_page(used);
1768 used += PAGE_SIZE;
1769 }
1770 }
1771
1772 return (void *)addr;
1773 }
1774 EXPORT_SYMBOL(alloc_pages_exact);
1775
1776 /**
1777 * free_pages_exact - release memory allocated via alloc_pages_exact()
1778 * @virt: the value returned by alloc_pages_exact.
1779 * @size: size of allocation, same value as passed to alloc_pages_exact().
1780 *
1781 * Release the memory allocated by a previous call to alloc_pages_exact.
1782 */
1783 void free_pages_exact(void *virt, size_t size)
1784 {
1785 unsigned long addr = (unsigned long)virt;
1786 unsigned long end = addr + PAGE_ALIGN(size);
1787
1788 while (addr < end) {
1789 free_page(addr);
1790 addr += PAGE_SIZE;
1791 }
1792 }
1793 EXPORT_SYMBOL(free_pages_exact);
1794
1795 static unsigned int nr_free_zone_pages(int offset)
1796 {
1797 struct zoneref *z;
1798 struct zone *zone;
1799
1800 /* Just pick one node, since fallback list is circular */
1801 unsigned int sum = 0;
1802
1803 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1804
1805 for_each_zone_zonelist(zone, z, zonelist, offset) {
1806 unsigned long size = zone->present_pages;
1807 unsigned long high = zone->pages_high;
1808 if (size > high)
1809 sum += size - high;
1810 }
1811
1812 return sum;
1813 }
1814
1815 /*
1816 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1817 */
1818 unsigned int nr_free_buffer_pages(void)
1819 {
1820 return nr_free_zone_pages(gfp_zone(GFP_USER));
1821 }
1822 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1823
1824 /*
1825 * Amount of free RAM allocatable within all zones
1826 */
1827 unsigned int nr_free_pagecache_pages(void)
1828 {
1829 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1830 }
1831
1832 static inline void show_node(struct zone *zone)
1833 {
1834 if (NUMA_BUILD)
1835 printk("Node %d ", zone_to_nid(zone));
1836 }
1837
1838 void si_meminfo(struct sysinfo *val)
1839 {
1840 val->totalram = totalram_pages;
1841 val->sharedram = 0;
1842 val->freeram = global_page_state(NR_FREE_PAGES);
1843 val->bufferram = nr_blockdev_pages();
1844 val->totalhigh = totalhigh_pages;
1845 val->freehigh = nr_free_highpages();
1846 val->mem_unit = PAGE_SIZE;
1847 }
1848
1849 EXPORT_SYMBOL(si_meminfo);
1850
1851 #ifdef CONFIG_NUMA
1852 void si_meminfo_node(struct sysinfo *val, int nid)
1853 {
1854 pg_data_t *pgdat = NODE_DATA(nid);
1855
1856 val->totalram = pgdat->node_present_pages;
1857 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1858 #ifdef CONFIG_HIGHMEM
1859 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1860 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1861 NR_FREE_PAGES);
1862 #else
1863 val->totalhigh = 0;
1864 val->freehigh = 0;
1865 #endif
1866 val->mem_unit = PAGE_SIZE;
1867 }
1868 #endif
1869
1870 #define K(x) ((x) << (PAGE_SHIFT-10))
1871
1872 /*
1873 * Show free area list (used inside shift_scroll-lock stuff)
1874 * We also calculate the percentage fragmentation. We do this by counting the
1875 * memory on each free list with the exception of the first item on the list.
1876 */
1877 void show_free_areas(void)
1878 {
1879 int cpu;
1880 struct zone *zone;
1881
1882 for_each_zone(zone) {
1883 if (!populated_zone(zone))
1884 continue;
1885
1886 show_node(zone);
1887 printk("%s per-cpu:\n", zone->name);
1888
1889 for_each_online_cpu(cpu) {
1890 struct per_cpu_pageset *pageset;
1891
1892 pageset = zone_pcp(zone, cpu);
1893
1894 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1895 cpu, pageset->pcp.high,
1896 pageset->pcp.batch, pageset->pcp.count);
1897 }
1898 }
1899
1900 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1901 " inactive_file:%lu"
1902 //TODO: check/adjust line lengths
1903 #ifdef CONFIG_UNEVICTABLE_LRU
1904 " unevictable:%lu"
1905 #endif
1906 " dirty:%lu writeback:%lu unstable:%lu\n"
1907 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1908 global_page_state(NR_ACTIVE_ANON),
1909 global_page_state(NR_ACTIVE_FILE),
1910 global_page_state(NR_INACTIVE_ANON),
1911 global_page_state(NR_INACTIVE_FILE),
1912 #ifdef CONFIG_UNEVICTABLE_LRU
1913 global_page_state(NR_UNEVICTABLE),
1914 #endif
1915 global_page_state(NR_FILE_DIRTY),
1916 global_page_state(NR_WRITEBACK),
1917 global_page_state(NR_UNSTABLE_NFS),
1918 global_page_state(NR_FREE_PAGES),
1919 global_page_state(NR_SLAB_RECLAIMABLE) +
1920 global_page_state(NR_SLAB_UNRECLAIMABLE),
1921 global_page_state(NR_FILE_MAPPED),
1922 global_page_state(NR_PAGETABLE),
1923 global_page_state(NR_BOUNCE));
1924
1925 for_each_zone(zone) {
1926 int i;
1927
1928 if (!populated_zone(zone))
1929 continue;
1930
1931 show_node(zone);
1932 printk("%s"
1933 " free:%lukB"
1934 " min:%lukB"
1935 " low:%lukB"
1936 " high:%lukB"
1937 " active_anon:%lukB"
1938 " inactive_anon:%lukB"
1939 " active_file:%lukB"
1940 " inactive_file:%lukB"
1941 #ifdef CONFIG_UNEVICTABLE_LRU
1942 " unevictable:%lukB"
1943 #endif
1944 " present:%lukB"
1945 " pages_scanned:%lu"
1946 " all_unreclaimable? %s"
1947 "\n",
1948 zone->name,
1949 K(zone_page_state(zone, NR_FREE_PAGES)),
1950 K(zone->pages_min),
1951 K(zone->pages_low),
1952 K(zone->pages_high),
1953 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1954 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1955 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1956 K(zone_page_state(zone, NR_INACTIVE_FILE)),
1957 #ifdef CONFIG_UNEVICTABLE_LRU
1958 K(zone_page_state(zone, NR_UNEVICTABLE)),
1959 #endif
1960 K(zone->present_pages),
1961 zone->pages_scanned,
1962 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1963 );
1964 printk("lowmem_reserve[]:");
1965 for (i = 0; i < MAX_NR_ZONES; i++)
1966 printk(" %lu", zone->lowmem_reserve[i]);
1967 printk("\n");
1968 }
1969
1970 for_each_zone(zone) {
1971 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1972
1973 if (!populated_zone(zone))
1974 continue;
1975
1976 show_node(zone);
1977 printk("%s: ", zone->name);
1978
1979 spin_lock_irqsave(&zone->lock, flags);
1980 for (order = 0; order < MAX_ORDER; order++) {
1981 nr[order] = zone->free_area[order].nr_free;
1982 total += nr[order] << order;
1983 }
1984 spin_unlock_irqrestore(&zone->lock, flags);
1985 for (order = 0; order < MAX_ORDER; order++)
1986 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1987 printk("= %lukB\n", K(total));
1988 }
1989
1990 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1991
1992 show_swap_cache_info();
1993 }
1994
1995 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1996 {
1997 zoneref->zone = zone;
1998 zoneref->zone_idx = zone_idx(zone);
1999 }
2000
2001 /*
2002 * Builds allocation fallback zone lists.
2003 *
2004 * Add all populated zones of a node to the zonelist.
2005 */
2006 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2007 int nr_zones, enum zone_type zone_type)
2008 {
2009 struct zone *zone;
2010
2011 BUG_ON(zone_type >= MAX_NR_ZONES);
2012 zone_type++;
2013
2014 do {
2015 zone_type--;
2016 zone = pgdat->node_zones + zone_type;
2017 if (populated_zone(zone)) {
2018 zoneref_set_zone(zone,
2019 &zonelist->_zonerefs[nr_zones++]);
2020 check_highest_zone(zone_type);
2021 }
2022
2023 } while (zone_type);
2024 return nr_zones;
2025 }
2026
2027
2028 /*
2029 * zonelist_order:
2030 * 0 = automatic detection of better ordering.
2031 * 1 = order by ([node] distance, -zonetype)
2032 * 2 = order by (-zonetype, [node] distance)
2033 *
2034 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2035 * the same zonelist. So only NUMA can configure this param.
2036 */
2037 #define ZONELIST_ORDER_DEFAULT 0
2038 #define ZONELIST_ORDER_NODE 1
2039 #define ZONELIST_ORDER_ZONE 2
2040
2041 /* zonelist order in the kernel.
2042 * set_zonelist_order() will set this to NODE or ZONE.
2043 */
2044 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2045 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2046
2047
2048 #ifdef CONFIG_NUMA
2049 /* The value user specified ....changed by config */
2050 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2051 /* string for sysctl */
2052 #define NUMA_ZONELIST_ORDER_LEN 16
2053 char numa_zonelist_order[16] = "default";
2054
2055 /*
2056 * interface for configure zonelist ordering.
2057 * command line option "numa_zonelist_order"
2058 * = "[dD]efault - default, automatic configuration.
2059 * = "[nN]ode - order by node locality, then by zone within node
2060 * = "[zZ]one - order by zone, then by locality within zone
2061 */
2062
2063 static int __parse_numa_zonelist_order(char *s)
2064 {
2065 if (*s == 'd' || *s == 'D') {
2066 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2067 } else if (*s == 'n' || *s == 'N') {
2068 user_zonelist_order = ZONELIST_ORDER_NODE;
2069 } else if (*s == 'z' || *s == 'Z') {
2070 user_zonelist_order = ZONELIST_ORDER_ZONE;
2071 } else {
2072 printk(KERN_WARNING
2073 "Ignoring invalid numa_zonelist_order value: "
2074 "%s\n", s);
2075 return -EINVAL;
2076 }
2077 return 0;
2078 }
2079
2080 static __init int setup_numa_zonelist_order(char *s)
2081 {
2082 if (s)
2083 return __parse_numa_zonelist_order(s);
2084 return 0;
2085 }
2086 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2087
2088 /*
2089 * sysctl handler for numa_zonelist_order
2090 */
2091 int numa_zonelist_order_handler(ctl_table *table, int write,
2092 struct file *file, void __user *buffer, size_t *length,
2093 loff_t *ppos)
2094 {
2095 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2096 int ret;
2097
2098 if (write)
2099 strncpy(saved_string, (char*)table->data,
2100 NUMA_ZONELIST_ORDER_LEN);
2101 ret = proc_dostring(table, write, file, buffer, length, ppos);
2102 if (ret)
2103 return ret;
2104 if (write) {
2105 int oldval = user_zonelist_order;
2106 if (__parse_numa_zonelist_order((char*)table->data)) {
2107 /*
2108 * bogus value. restore saved string
2109 */
2110 strncpy((char*)table->data, saved_string,
2111 NUMA_ZONELIST_ORDER_LEN);
2112 user_zonelist_order = oldval;
2113 } else if (oldval != user_zonelist_order)
2114 build_all_zonelists();
2115 }
2116 return 0;
2117 }
2118
2119
2120 #define MAX_NODE_LOAD (num_online_nodes())
2121 static int node_load[MAX_NUMNODES];
2122
2123 /**
2124 * find_next_best_node - find the next node that should appear in a given node's fallback list
2125 * @node: node whose fallback list we're appending
2126 * @used_node_mask: nodemask_t of already used nodes
2127 *
2128 * We use a number of factors to determine which is the next node that should
2129 * appear on a given node's fallback list. The node should not have appeared
2130 * already in @node's fallback list, and it should be the next closest node
2131 * according to the distance array (which contains arbitrary distance values
2132 * from each node to each node in the system), and should also prefer nodes
2133 * with no CPUs, since presumably they'll have very little allocation pressure
2134 * on them otherwise.
2135 * It returns -1 if no node is found.
2136 */
2137 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2138 {
2139 int n, val;
2140 int min_val = INT_MAX;
2141 int best_node = -1;
2142 node_to_cpumask_ptr(tmp, 0);
2143
2144 /* Use the local node if we haven't already */
2145 if (!node_isset(node, *used_node_mask)) {
2146 node_set(node, *used_node_mask);
2147 return node;
2148 }
2149
2150 for_each_node_state(n, N_HIGH_MEMORY) {
2151
2152 /* Don't want a node to appear more than once */
2153 if (node_isset(n, *used_node_mask))
2154 continue;
2155
2156 /* Use the distance array to find the distance */
2157 val = node_distance(node, n);
2158
2159 /* Penalize nodes under us ("prefer the next node") */
2160 val += (n < node);
2161
2162 /* Give preference to headless and unused nodes */
2163 node_to_cpumask_ptr_next(tmp, n);
2164 if (!cpus_empty(*tmp))
2165 val += PENALTY_FOR_NODE_WITH_CPUS;
2166
2167 /* Slight preference for less loaded node */
2168 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2169 val += node_load[n];
2170
2171 if (val < min_val) {
2172 min_val = val;
2173 best_node = n;
2174 }
2175 }
2176
2177 if (best_node >= 0)
2178 node_set(best_node, *used_node_mask);
2179
2180 return best_node;
2181 }
2182
2183
2184 /*
2185 * Build zonelists ordered by node and zones within node.
2186 * This results in maximum locality--normal zone overflows into local
2187 * DMA zone, if any--but risks exhausting DMA zone.
2188 */
2189 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2190 {
2191 int j;
2192 struct zonelist *zonelist;
2193
2194 zonelist = &pgdat->node_zonelists[0];
2195 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2196 ;
2197 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2198 MAX_NR_ZONES - 1);
2199 zonelist->_zonerefs[j].zone = NULL;
2200 zonelist->_zonerefs[j].zone_idx = 0;
2201 }
2202
2203 /*
2204 * Build gfp_thisnode zonelists
2205 */
2206 static void build_thisnode_zonelists(pg_data_t *pgdat)
2207 {
2208 int j;
2209 struct zonelist *zonelist;
2210
2211 zonelist = &pgdat->node_zonelists[1];
2212 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2213 zonelist->_zonerefs[j].zone = NULL;
2214 zonelist->_zonerefs[j].zone_idx = 0;
2215 }
2216
2217 /*
2218 * Build zonelists ordered by zone and nodes within zones.
2219 * This results in conserving DMA zone[s] until all Normal memory is
2220 * exhausted, but results in overflowing to remote node while memory
2221 * may still exist in local DMA zone.
2222 */
2223 static int node_order[MAX_NUMNODES];
2224
2225 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2226 {
2227 int pos, j, node;
2228 int zone_type; /* needs to be signed */
2229 struct zone *z;
2230 struct zonelist *zonelist;
2231
2232 zonelist = &pgdat->node_zonelists[0];
2233 pos = 0;
2234 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2235 for (j = 0; j < nr_nodes; j++) {
2236 node = node_order[j];
2237 z = &NODE_DATA(node)->node_zones[zone_type];
2238 if (populated_zone(z)) {
2239 zoneref_set_zone(z,
2240 &zonelist->_zonerefs[pos++]);
2241 check_highest_zone(zone_type);
2242 }
2243 }
2244 }
2245 zonelist->_zonerefs[pos].zone = NULL;
2246 zonelist->_zonerefs[pos].zone_idx = 0;
2247 }
2248
2249 static int default_zonelist_order(void)
2250 {
2251 int nid, zone_type;
2252 unsigned long low_kmem_size,total_size;
2253 struct zone *z;
2254 int average_size;
2255 /*
2256 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2257 * If they are really small and used heavily, the system can fall
2258 * into OOM very easily.
2259 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2260 */
2261 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2262 low_kmem_size = 0;
2263 total_size = 0;
2264 for_each_online_node(nid) {
2265 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2266 z = &NODE_DATA(nid)->node_zones[zone_type];
2267 if (populated_zone(z)) {
2268 if (zone_type < ZONE_NORMAL)
2269 low_kmem_size += z->present_pages;
2270 total_size += z->present_pages;
2271 }
2272 }
2273 }
2274 if (!low_kmem_size || /* there are no DMA area. */
2275 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2276 return ZONELIST_ORDER_NODE;
2277 /*
2278 * look into each node's config.
2279 * If there is a node whose DMA/DMA32 memory is very big area on
2280 * local memory, NODE_ORDER may be suitable.
2281 */
2282 average_size = total_size /
2283 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2284 for_each_online_node(nid) {
2285 low_kmem_size = 0;
2286 total_size = 0;
2287 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2288 z = &NODE_DATA(nid)->node_zones[zone_type];
2289 if (populated_zone(z)) {
2290 if (zone_type < ZONE_NORMAL)
2291 low_kmem_size += z->present_pages;
2292 total_size += z->present_pages;
2293 }
2294 }
2295 if (low_kmem_size &&
2296 total_size > average_size && /* ignore small node */
2297 low_kmem_size > total_size * 70/100)
2298 return ZONELIST_ORDER_NODE;
2299 }
2300 return ZONELIST_ORDER_ZONE;
2301 }
2302
2303 static void set_zonelist_order(void)
2304 {
2305 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2306 current_zonelist_order = default_zonelist_order();
2307 else
2308 current_zonelist_order = user_zonelist_order;
2309 }
2310
2311 static void build_zonelists(pg_data_t *pgdat)
2312 {
2313 int j, node, load;
2314 enum zone_type i;
2315 nodemask_t used_mask;
2316 int local_node, prev_node;
2317 struct zonelist *zonelist;
2318 int order = current_zonelist_order;
2319
2320 /* initialize zonelists */
2321 for (i = 0; i < MAX_ZONELISTS; i++) {
2322 zonelist = pgdat->node_zonelists + i;
2323 zonelist->_zonerefs[0].zone = NULL;
2324 zonelist->_zonerefs[0].zone_idx = 0;
2325 }
2326
2327 /* NUMA-aware ordering of nodes */
2328 local_node = pgdat->node_id;
2329 load = num_online_nodes();
2330 prev_node = local_node;
2331 nodes_clear(used_mask);
2332
2333 memset(node_load, 0, sizeof(node_load));
2334 memset(node_order, 0, sizeof(node_order));
2335 j = 0;
2336
2337 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2338 int distance = node_distance(local_node, node);
2339
2340 /*
2341 * If another node is sufficiently far away then it is better
2342 * to reclaim pages in a zone before going off node.
2343 */
2344 if (distance > RECLAIM_DISTANCE)
2345 zone_reclaim_mode = 1;
2346
2347 /*
2348 * We don't want to pressure a particular node.
2349 * So adding penalty to the first node in same
2350 * distance group to make it round-robin.
2351 */
2352 if (distance != node_distance(local_node, prev_node))
2353 node_load[node] = load;
2354
2355 prev_node = node;
2356 load--;
2357 if (order == ZONELIST_ORDER_NODE)
2358 build_zonelists_in_node_order(pgdat, node);
2359 else
2360 node_order[j++] = node; /* remember order */
2361 }
2362
2363 if (order == ZONELIST_ORDER_ZONE) {
2364 /* calculate node order -- i.e., DMA last! */
2365 build_zonelists_in_zone_order(pgdat, j);
2366 }
2367
2368 build_thisnode_zonelists(pgdat);
2369 }
2370
2371 /* Construct the zonelist performance cache - see further mmzone.h */
2372 static void build_zonelist_cache(pg_data_t *pgdat)
2373 {
2374 struct zonelist *zonelist;
2375 struct zonelist_cache *zlc;
2376 struct zoneref *z;
2377
2378 zonelist = &pgdat->node_zonelists[0];
2379 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2380 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2381 for (z = zonelist->_zonerefs; z->zone; z++)
2382 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2383 }
2384
2385
2386 #else /* CONFIG_NUMA */
2387
2388 static void set_zonelist_order(void)
2389 {
2390 current_zonelist_order = ZONELIST_ORDER_ZONE;
2391 }
2392
2393 static void build_zonelists(pg_data_t *pgdat)
2394 {
2395 int node, local_node;
2396 enum zone_type j;
2397 struct zonelist *zonelist;
2398
2399 local_node = pgdat->node_id;
2400
2401 zonelist = &pgdat->node_zonelists[0];
2402 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2403
2404 /*
2405 * Now we build the zonelist so that it contains the zones
2406 * of all the other nodes.
2407 * We don't want to pressure a particular node, so when
2408 * building the zones for node N, we make sure that the
2409 * zones coming right after the local ones are those from
2410 * node N+1 (modulo N)
2411 */
2412 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2413 if (!node_online(node))
2414 continue;
2415 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2416 MAX_NR_ZONES - 1);
2417 }
2418 for (node = 0; node < local_node; node++) {
2419 if (!node_online(node))
2420 continue;
2421 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2422 MAX_NR_ZONES - 1);
2423 }
2424
2425 zonelist->_zonerefs[j].zone = NULL;
2426 zonelist->_zonerefs[j].zone_idx = 0;
2427 }
2428
2429 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2430 static void build_zonelist_cache(pg_data_t *pgdat)
2431 {
2432 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2433 }
2434
2435 #endif /* CONFIG_NUMA */
2436
2437 /* return values int ....just for stop_machine() */
2438 static int __build_all_zonelists(void *dummy)
2439 {
2440 int nid;
2441
2442 for_each_online_node(nid) {
2443 pg_data_t *pgdat = NODE_DATA(nid);
2444
2445 build_zonelists(pgdat);
2446 build_zonelist_cache(pgdat);
2447 }
2448 return 0;
2449 }
2450
2451 void build_all_zonelists(void)
2452 {
2453 set_zonelist_order();
2454
2455 if (system_state == SYSTEM_BOOTING) {
2456 __build_all_zonelists(NULL);
2457 mminit_verify_zonelist();
2458 cpuset_init_current_mems_allowed();
2459 } else {
2460 /* we have to stop all cpus to guarantee there is no user
2461 of zonelist */
2462 stop_machine(__build_all_zonelists, NULL, NULL);
2463 /* cpuset refresh routine should be here */
2464 }
2465 vm_total_pages = nr_free_pagecache_pages();
2466 /*
2467 * Disable grouping by mobility if the number of pages in the
2468 * system is too low to allow the mechanism to work. It would be
2469 * more accurate, but expensive to check per-zone. This check is
2470 * made on memory-hotadd so a system can start with mobility
2471 * disabled and enable it later
2472 */
2473 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2474 page_group_by_mobility_disabled = 1;
2475 else
2476 page_group_by_mobility_disabled = 0;
2477
2478 printk("Built %i zonelists in %s order, mobility grouping %s. "
2479 "Total pages: %ld\n",
2480 num_online_nodes(),
2481 zonelist_order_name[current_zonelist_order],
2482 page_group_by_mobility_disabled ? "off" : "on",
2483 vm_total_pages);
2484 #ifdef CONFIG_NUMA
2485 printk("Policy zone: %s\n", zone_names[policy_zone]);
2486 #endif
2487 }
2488
2489 /*
2490 * Helper functions to size the waitqueue hash table.
2491 * Essentially these want to choose hash table sizes sufficiently
2492 * large so that collisions trying to wait on pages are rare.
2493 * But in fact, the number of active page waitqueues on typical
2494 * systems is ridiculously low, less than 200. So this is even
2495 * conservative, even though it seems large.
2496 *
2497 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2498 * waitqueues, i.e. the size of the waitq table given the number of pages.
2499 */
2500 #define PAGES_PER_WAITQUEUE 256
2501
2502 #ifndef CONFIG_MEMORY_HOTPLUG
2503 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2504 {
2505 unsigned long size = 1;
2506
2507 pages /= PAGES_PER_WAITQUEUE;
2508
2509 while (size < pages)
2510 size <<= 1;
2511
2512 /*
2513 * Once we have dozens or even hundreds of threads sleeping
2514 * on IO we've got bigger problems than wait queue collision.
2515 * Limit the size of the wait table to a reasonable size.
2516 */
2517 size = min(size, 4096UL);
2518
2519 return max(size, 4UL);
2520 }
2521 #else
2522 /*
2523 * A zone's size might be changed by hot-add, so it is not possible to determine
2524 * a suitable size for its wait_table. So we use the maximum size now.
2525 *
2526 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2527 *
2528 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2529 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2530 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2531 *
2532 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2533 * or more by the traditional way. (See above). It equals:
2534 *
2535 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2536 * ia64(16K page size) : = ( 8G + 4M)byte.
2537 * powerpc (64K page size) : = (32G +16M)byte.
2538 */
2539 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2540 {
2541 return 4096UL;
2542 }
2543 #endif
2544
2545 /*
2546 * This is an integer logarithm so that shifts can be used later
2547 * to extract the more random high bits from the multiplicative
2548 * hash function before the remainder is taken.
2549 */
2550 static inline unsigned long wait_table_bits(unsigned long size)
2551 {
2552 return ffz(~size);
2553 }
2554
2555 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2556
2557 /*
2558 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2559 * of blocks reserved is based on zone->pages_min. The memory within the
2560 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2561 * higher will lead to a bigger reserve which will get freed as contiguous
2562 * blocks as reclaim kicks in
2563 */
2564 static void setup_zone_migrate_reserve(struct zone *zone)
2565 {
2566 unsigned long start_pfn, pfn, end_pfn;
2567 struct page *page;
2568 unsigned long reserve, block_migratetype;
2569
2570 /* Get the start pfn, end pfn and the number of blocks to reserve */
2571 start_pfn = zone->zone_start_pfn;
2572 end_pfn = start_pfn + zone->spanned_pages;
2573 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2574 pageblock_order;
2575
2576 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2577 if (!pfn_valid(pfn))
2578 continue;
2579 page = pfn_to_page(pfn);
2580
2581 /* Watch out for overlapping nodes */
2582 if (page_to_nid(page) != zone_to_nid(zone))
2583 continue;
2584
2585 /* Blocks with reserved pages will never free, skip them. */
2586 if (PageReserved(page))
2587 continue;
2588
2589 block_migratetype = get_pageblock_migratetype(page);
2590
2591 /* If this block is reserved, account for it */
2592 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2593 reserve--;
2594 continue;
2595 }
2596
2597 /* Suitable for reserving if this block is movable */
2598 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2599 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2600 move_freepages_block(zone, page, MIGRATE_RESERVE);
2601 reserve--;
2602 continue;
2603 }
2604
2605 /*
2606 * If the reserve is met and this is a previous reserved block,
2607 * take it back
2608 */
2609 if (block_migratetype == MIGRATE_RESERVE) {
2610 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2611 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2612 }
2613 }
2614 }
2615
2616 /*
2617 * Initially all pages are reserved - free ones are freed
2618 * up by free_all_bootmem() once the early boot process is
2619 * done. Non-atomic initialization, single-pass.
2620 */
2621 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2622 unsigned long start_pfn, enum memmap_context context)
2623 {
2624 struct page *page;
2625 unsigned long end_pfn = start_pfn + size;
2626 unsigned long pfn;
2627 struct zone *z;
2628
2629 if (highest_memmap_pfn < end_pfn - 1)
2630 highest_memmap_pfn = end_pfn - 1;
2631
2632 z = &NODE_DATA(nid)->node_zones[zone];
2633 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2634 /*
2635 * There can be holes in boot-time mem_map[]s
2636 * handed to this function. They do not
2637 * exist on hotplugged memory.
2638 */
2639 if (context == MEMMAP_EARLY) {
2640 if (!early_pfn_valid(pfn))
2641 continue;
2642 if (!early_pfn_in_nid(pfn, nid))
2643 continue;
2644 }
2645 page = pfn_to_page(pfn);
2646 set_page_links(page, zone, nid, pfn);
2647 mminit_verify_page_links(page, zone, nid, pfn);
2648 init_page_count(page);
2649 reset_page_mapcount(page);
2650 SetPageReserved(page);
2651 /*
2652 * Mark the block movable so that blocks are reserved for
2653 * movable at startup. This will force kernel allocations
2654 * to reserve their blocks rather than leaking throughout
2655 * the address space during boot when many long-lived
2656 * kernel allocations are made. Later some blocks near
2657 * the start are marked MIGRATE_RESERVE by
2658 * setup_zone_migrate_reserve()
2659 *
2660 * bitmap is created for zone's valid pfn range. but memmap
2661 * can be created for invalid pages (for alignment)
2662 * check here not to call set_pageblock_migratetype() against
2663 * pfn out of zone.
2664 */
2665 if ((z->zone_start_pfn <= pfn)
2666 && (pfn < z->zone_start_pfn + z->spanned_pages)
2667 && !(pfn & (pageblock_nr_pages - 1)))
2668 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2669
2670 INIT_LIST_HEAD(&page->lru);
2671 #ifdef WANT_PAGE_VIRTUAL
2672 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2673 if (!is_highmem_idx(zone))
2674 set_page_address(page, __va(pfn << PAGE_SHIFT));
2675 #endif
2676 }
2677 }
2678
2679 static void __meminit zone_init_free_lists(struct zone *zone)
2680 {
2681 int order, t;
2682 for_each_migratetype_order(order, t) {
2683 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2684 zone->free_area[order].nr_free = 0;
2685 }
2686 }
2687
2688 #ifndef __HAVE_ARCH_MEMMAP_INIT
2689 #define memmap_init(size, nid, zone, start_pfn) \
2690 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2691 #endif
2692
2693 static int zone_batchsize(struct zone *zone)
2694 {
2695 int batch;
2696
2697 /*
2698 * The per-cpu-pages pools are set to around 1000th of the
2699 * size of the zone. But no more than 1/2 of a meg.
2700 *
2701 * OK, so we don't know how big the cache is. So guess.
2702 */
2703 batch = zone->present_pages / 1024;
2704 if (batch * PAGE_SIZE > 512 * 1024)
2705 batch = (512 * 1024) / PAGE_SIZE;
2706 batch /= 4; /* We effectively *= 4 below */
2707 if (batch < 1)
2708 batch = 1;
2709
2710 /*
2711 * Clamp the batch to a 2^n - 1 value. Having a power
2712 * of 2 value was found to be more likely to have
2713 * suboptimal cache aliasing properties in some cases.
2714 *
2715 * For example if 2 tasks are alternately allocating
2716 * batches of pages, one task can end up with a lot
2717 * of pages of one half of the possible page colors
2718 * and the other with pages of the other colors.
2719 */
2720 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2721
2722 return batch;
2723 }
2724
2725 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2726 {
2727 struct per_cpu_pages *pcp;
2728
2729 memset(p, 0, sizeof(*p));
2730
2731 pcp = &p->pcp;
2732 pcp->count = 0;
2733 pcp->high = 6 * batch;
2734 pcp->batch = max(1UL, 1 * batch);
2735 INIT_LIST_HEAD(&pcp->list);
2736 }
2737
2738 /*
2739 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2740 * to the value high for the pageset p.
2741 */
2742
2743 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2744 unsigned long high)
2745 {
2746 struct per_cpu_pages *pcp;
2747
2748 pcp = &p->pcp;
2749 pcp->high = high;
2750 pcp->batch = max(1UL, high/4);
2751 if ((high/4) > (PAGE_SHIFT * 8))
2752 pcp->batch = PAGE_SHIFT * 8;
2753 }
2754
2755
2756 #ifdef CONFIG_NUMA
2757 /*
2758 * Boot pageset table. One per cpu which is going to be used for all
2759 * zones and all nodes. The parameters will be set in such a way
2760 * that an item put on a list will immediately be handed over to
2761 * the buddy list. This is safe since pageset manipulation is done
2762 * with interrupts disabled.
2763 *
2764 * Some NUMA counter updates may also be caught by the boot pagesets.
2765 *
2766 * The boot_pagesets must be kept even after bootup is complete for
2767 * unused processors and/or zones. They do play a role for bootstrapping
2768 * hotplugged processors.
2769 *
2770 * zoneinfo_show() and maybe other functions do
2771 * not check if the processor is online before following the pageset pointer.
2772 * Other parts of the kernel may not check if the zone is available.
2773 */
2774 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2775
2776 /*
2777 * Dynamically allocate memory for the
2778 * per cpu pageset array in struct zone.
2779 */
2780 static int __cpuinit process_zones(int cpu)
2781 {
2782 struct zone *zone, *dzone;
2783 int node = cpu_to_node(cpu);
2784
2785 node_set_state(node, N_CPU); /* this node has a cpu */
2786
2787 for_each_zone(zone) {
2788
2789 if (!populated_zone(zone))
2790 continue;
2791
2792 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2793 GFP_KERNEL, node);
2794 if (!zone_pcp(zone, cpu))
2795 goto bad;
2796
2797 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2798
2799 if (percpu_pagelist_fraction)
2800 setup_pagelist_highmark(zone_pcp(zone, cpu),
2801 (zone->present_pages / percpu_pagelist_fraction));
2802 }
2803
2804 return 0;
2805 bad:
2806 for_each_zone(dzone) {
2807 if (!populated_zone(dzone))
2808 continue;
2809 if (dzone == zone)
2810 break;
2811 kfree(zone_pcp(dzone, cpu));
2812 zone_pcp(dzone, cpu) = NULL;
2813 }
2814 return -ENOMEM;
2815 }
2816
2817 static inline void free_zone_pagesets(int cpu)
2818 {
2819 struct zone *zone;
2820
2821 for_each_zone(zone) {
2822 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2823
2824 /* Free per_cpu_pageset if it is slab allocated */
2825 if (pset != &boot_pageset[cpu])
2826 kfree(pset);
2827 zone_pcp(zone, cpu) = NULL;
2828 }
2829 }
2830
2831 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2832 unsigned long action,
2833 void *hcpu)
2834 {
2835 int cpu = (long)hcpu;
2836 int ret = NOTIFY_OK;
2837
2838 switch (action) {
2839 case CPU_UP_PREPARE:
2840 case CPU_UP_PREPARE_FROZEN:
2841 if (process_zones(cpu))
2842 ret = NOTIFY_BAD;
2843 break;
2844 case CPU_UP_CANCELED:
2845 case CPU_UP_CANCELED_FROZEN:
2846 case CPU_DEAD:
2847 case CPU_DEAD_FROZEN:
2848 free_zone_pagesets(cpu);
2849 break;
2850 default:
2851 break;
2852 }
2853 return ret;
2854 }
2855
2856 static struct notifier_block __cpuinitdata pageset_notifier =
2857 { &pageset_cpuup_callback, NULL, 0 };
2858
2859 void __init setup_per_cpu_pageset(void)
2860 {
2861 int err;
2862
2863 /* Initialize per_cpu_pageset for cpu 0.
2864 * A cpuup callback will do this for every cpu
2865 * as it comes online
2866 */
2867 err = process_zones(smp_processor_id());
2868 BUG_ON(err);
2869 register_cpu_notifier(&pageset_notifier);
2870 }
2871
2872 #endif
2873
2874 static noinline __init_refok
2875 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2876 {
2877 int i;
2878 struct pglist_data *pgdat = zone->zone_pgdat;
2879 size_t alloc_size;
2880
2881 /*
2882 * The per-page waitqueue mechanism uses hashed waitqueues
2883 * per zone.
2884 */
2885 zone->wait_table_hash_nr_entries =
2886 wait_table_hash_nr_entries(zone_size_pages);
2887 zone->wait_table_bits =
2888 wait_table_bits(zone->wait_table_hash_nr_entries);
2889 alloc_size = zone->wait_table_hash_nr_entries
2890 * sizeof(wait_queue_head_t);
2891
2892 if (!slab_is_available()) {
2893 zone->wait_table = (wait_queue_head_t *)
2894 alloc_bootmem_node(pgdat, alloc_size);
2895 } else {
2896 /*
2897 * This case means that a zone whose size was 0 gets new memory
2898 * via memory hot-add.
2899 * But it may be the case that a new node was hot-added. In
2900 * this case vmalloc() will not be able to use this new node's
2901 * memory - this wait_table must be initialized to use this new
2902 * node itself as well.
2903 * To use this new node's memory, further consideration will be
2904 * necessary.
2905 */
2906 zone->wait_table = vmalloc(alloc_size);
2907 }
2908 if (!zone->wait_table)
2909 return -ENOMEM;
2910
2911 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2912 init_waitqueue_head(zone->wait_table + i);
2913
2914 return 0;
2915 }
2916
2917 static __meminit void zone_pcp_init(struct zone *zone)
2918 {
2919 int cpu;
2920 unsigned long batch = zone_batchsize(zone);
2921
2922 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2923 #ifdef CONFIG_NUMA
2924 /* Early boot. Slab allocator not functional yet */
2925 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2926 setup_pageset(&boot_pageset[cpu],0);
2927 #else
2928 setup_pageset(zone_pcp(zone,cpu), batch);
2929 #endif
2930 }
2931 if (zone->present_pages)
2932 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2933 zone->name, zone->present_pages, batch);
2934 }
2935
2936 __meminit int init_currently_empty_zone(struct zone *zone,
2937 unsigned long zone_start_pfn,
2938 unsigned long size,
2939 enum memmap_context context)
2940 {
2941 struct pglist_data *pgdat = zone->zone_pgdat;
2942 int ret;
2943 ret = zone_wait_table_init(zone, size);
2944 if (ret)
2945 return ret;
2946 pgdat->nr_zones = zone_idx(zone) + 1;
2947
2948 zone->zone_start_pfn = zone_start_pfn;
2949
2950 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2951 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2952 pgdat->node_id,
2953 (unsigned long)zone_idx(zone),
2954 zone_start_pfn, (zone_start_pfn + size));
2955
2956 zone_init_free_lists(zone);
2957
2958 return 0;
2959 }
2960
2961 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2962 /*
2963 * Basic iterator support. Return the first range of PFNs for a node
2964 * Note: nid == MAX_NUMNODES returns first region regardless of node
2965 */
2966 static int __meminit first_active_region_index_in_nid(int nid)
2967 {
2968 int i;
2969
2970 for (i = 0; i < nr_nodemap_entries; i++)
2971 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2972 return i;
2973
2974 return -1;
2975 }
2976
2977 /*
2978 * Basic iterator support. Return the next active range of PFNs for a node
2979 * Note: nid == MAX_NUMNODES returns next region regardless of node
2980 */
2981 static int __meminit next_active_region_index_in_nid(int index, int nid)
2982 {
2983 for (index = index + 1; index < nr_nodemap_entries; index++)
2984 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2985 return index;
2986
2987 return -1;
2988 }
2989
2990 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2991 /*
2992 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2993 * Architectures may implement their own version but if add_active_range()
2994 * was used and there are no special requirements, this is a convenient
2995 * alternative
2996 */
2997 int __meminit __early_pfn_to_nid(unsigned long pfn)
2998 {
2999 int i;
3000
3001 for (i = 0; i < nr_nodemap_entries; i++) {
3002 unsigned long start_pfn = early_node_map[i].start_pfn;
3003 unsigned long end_pfn = early_node_map[i].end_pfn;
3004
3005 if (start_pfn <= pfn && pfn < end_pfn)
3006 return early_node_map[i].nid;
3007 }
3008 /* This is a memory hole */
3009 return -1;
3010 }
3011 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3012
3013 int __meminit early_pfn_to_nid(unsigned long pfn)
3014 {
3015 int nid;
3016
3017 nid = __early_pfn_to_nid(pfn);
3018 if (nid >= 0)
3019 return nid;
3020 /* just returns 0 */
3021 return 0;
3022 }
3023
3024 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3025 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3026 {
3027 int nid;
3028
3029 nid = __early_pfn_to_nid(pfn);
3030 if (nid >= 0 && nid != node)
3031 return false;
3032 return true;
3033 }
3034 #endif
3035
3036 /* Basic iterator support to walk early_node_map[] */
3037 #define for_each_active_range_index_in_nid(i, nid) \
3038 for (i = first_active_region_index_in_nid(nid); i != -1; \
3039 i = next_active_region_index_in_nid(i, nid))
3040
3041 /**
3042 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3043 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3044 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3045 *
3046 * If an architecture guarantees that all ranges registered with
3047 * add_active_ranges() contain no holes and may be freed, this
3048 * this function may be used instead of calling free_bootmem() manually.
3049 */
3050 void __init free_bootmem_with_active_regions(int nid,
3051 unsigned long max_low_pfn)
3052 {
3053 int i;
3054
3055 for_each_active_range_index_in_nid(i, nid) {
3056 unsigned long size_pages = 0;
3057 unsigned long end_pfn = early_node_map[i].end_pfn;
3058
3059 if (early_node_map[i].start_pfn >= max_low_pfn)
3060 continue;
3061
3062 if (end_pfn > max_low_pfn)
3063 end_pfn = max_low_pfn;
3064
3065 size_pages = end_pfn - early_node_map[i].start_pfn;
3066 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3067 PFN_PHYS(early_node_map[i].start_pfn),
3068 size_pages << PAGE_SHIFT);
3069 }
3070 }
3071
3072 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3073 {
3074 int i;
3075 int ret;
3076
3077 for_each_active_range_index_in_nid(i, nid) {
3078 ret = work_fn(early_node_map[i].start_pfn,
3079 early_node_map[i].end_pfn, data);
3080 if (ret)
3081 break;
3082 }
3083 }
3084 /**
3085 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3086 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3087 *
3088 * If an architecture guarantees that all ranges registered with
3089 * add_active_ranges() contain no holes and may be freed, this
3090 * function may be used instead of calling memory_present() manually.
3091 */
3092 void __init sparse_memory_present_with_active_regions(int nid)
3093 {
3094 int i;
3095
3096 for_each_active_range_index_in_nid(i, nid)
3097 memory_present(early_node_map[i].nid,
3098 early_node_map[i].start_pfn,
3099 early_node_map[i].end_pfn);
3100 }
3101
3102 /**
3103 * push_node_boundaries - Push node boundaries to at least the requested boundary
3104 * @nid: The nid of the node to push the boundary for
3105 * @start_pfn: The start pfn of the node
3106 * @end_pfn: The end pfn of the node
3107 *
3108 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3109 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3110 * be hotplugged even though no physical memory exists. This function allows
3111 * an arch to push out the node boundaries so mem_map is allocated that can
3112 * be used later.
3113 */
3114 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3115 void __init push_node_boundaries(unsigned int nid,
3116 unsigned long start_pfn, unsigned long end_pfn)
3117 {
3118 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3119 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3120 nid, start_pfn, end_pfn);
3121
3122 /* Initialise the boundary for this node if necessary */
3123 if (node_boundary_end_pfn[nid] == 0)
3124 node_boundary_start_pfn[nid] = -1UL;
3125
3126 /* Update the boundaries */
3127 if (node_boundary_start_pfn[nid] > start_pfn)
3128 node_boundary_start_pfn[nid] = start_pfn;
3129 if (node_boundary_end_pfn[nid] < end_pfn)
3130 node_boundary_end_pfn[nid] = end_pfn;
3131 }
3132
3133 /* If necessary, push the node boundary out for reserve hotadd */
3134 static void __meminit account_node_boundary(unsigned int nid,
3135 unsigned long *start_pfn, unsigned long *end_pfn)
3136 {
3137 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3138 "Entering account_node_boundary(%u, %lu, %lu)\n",
3139 nid, *start_pfn, *end_pfn);
3140
3141 /* Return if boundary information has not been provided */
3142 if (node_boundary_end_pfn[nid] == 0)
3143 return;
3144
3145 /* Check the boundaries and update if necessary */
3146 if (node_boundary_start_pfn[nid] < *start_pfn)
3147 *start_pfn = node_boundary_start_pfn[nid];
3148 if (node_boundary_end_pfn[nid] > *end_pfn)
3149 *end_pfn = node_boundary_end_pfn[nid];
3150 }
3151 #else
3152 void __init push_node_boundaries(unsigned int nid,
3153 unsigned long start_pfn, unsigned long end_pfn) {}
3154
3155 static void __meminit account_node_boundary(unsigned int nid,
3156 unsigned long *start_pfn, unsigned long *end_pfn) {}
3157 #endif
3158
3159
3160 /**
3161 * get_pfn_range_for_nid - Return the start and end page frames for a node
3162 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3163 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3164 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3165 *
3166 * It returns the start and end page frame of a node based on information
3167 * provided by an arch calling add_active_range(). If called for a node
3168 * with no available memory, a warning is printed and the start and end
3169 * PFNs will be 0.
3170 */
3171 void __meminit get_pfn_range_for_nid(unsigned int nid,
3172 unsigned long *start_pfn, unsigned long *end_pfn)
3173 {
3174 int i;
3175 *start_pfn = -1UL;
3176 *end_pfn = 0;
3177
3178 for_each_active_range_index_in_nid(i, nid) {
3179 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3180 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3181 }
3182
3183 if (*start_pfn == -1UL)
3184 *start_pfn = 0;
3185
3186 /* Push the node boundaries out if requested */
3187 account_node_boundary(nid, start_pfn, end_pfn);
3188 }
3189
3190 /*
3191 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3192 * assumption is made that zones within a node are ordered in monotonic
3193 * increasing memory addresses so that the "highest" populated zone is used
3194 */
3195 static void __init find_usable_zone_for_movable(void)
3196 {
3197 int zone_index;
3198 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3199 if (zone_index == ZONE_MOVABLE)
3200 continue;
3201
3202 if (arch_zone_highest_possible_pfn[zone_index] >
3203 arch_zone_lowest_possible_pfn[zone_index])
3204 break;
3205 }
3206
3207 VM_BUG_ON(zone_index == -1);
3208 movable_zone = zone_index;
3209 }
3210
3211 /*
3212 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3213 * because it is sized independant of architecture. Unlike the other zones,
3214 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3215 * in each node depending on the size of each node and how evenly kernelcore
3216 * is distributed. This helper function adjusts the zone ranges
3217 * provided by the architecture for a given node by using the end of the
3218 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3219 * zones within a node are in order of monotonic increases memory addresses
3220 */
3221 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3222 unsigned long zone_type,
3223 unsigned long node_start_pfn,
3224 unsigned long node_end_pfn,
3225 unsigned long *zone_start_pfn,
3226 unsigned long *zone_end_pfn)
3227 {
3228 /* Only adjust if ZONE_MOVABLE is on this node */
3229 if (zone_movable_pfn[nid]) {
3230 /* Size ZONE_MOVABLE */
3231 if (zone_type == ZONE_MOVABLE) {
3232 *zone_start_pfn = zone_movable_pfn[nid];
3233 *zone_end_pfn = min(node_end_pfn,
3234 arch_zone_highest_possible_pfn[movable_zone]);
3235
3236 /* Adjust for ZONE_MOVABLE starting within this range */
3237 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3238 *zone_end_pfn > zone_movable_pfn[nid]) {
3239 *zone_end_pfn = zone_movable_pfn[nid];
3240
3241 /* Check if this whole range is within ZONE_MOVABLE */
3242 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3243 *zone_start_pfn = *zone_end_pfn;
3244 }
3245 }
3246
3247 /*
3248 * Return the number of pages a zone spans in a node, including holes
3249 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3250 */
3251 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3252 unsigned long zone_type,
3253 unsigned long *ignored)
3254 {
3255 unsigned long node_start_pfn, node_end_pfn;
3256 unsigned long zone_start_pfn, zone_end_pfn;
3257
3258 /* Get the start and end of the node and zone */
3259 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3260 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3261 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3262 adjust_zone_range_for_zone_movable(nid, zone_type,
3263 node_start_pfn, node_end_pfn,
3264 &zone_start_pfn, &zone_end_pfn);
3265
3266 /* Check that this node has pages within the zone's required range */
3267 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3268 return 0;
3269
3270 /* Move the zone boundaries inside the node if necessary */
3271 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3272 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3273
3274 /* Return the spanned pages */
3275 return zone_end_pfn - zone_start_pfn;
3276 }
3277
3278 /*
3279 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3280 * then all holes in the requested range will be accounted for.
3281 */
3282 static unsigned long __meminit __absent_pages_in_range(int nid,
3283 unsigned long range_start_pfn,
3284 unsigned long range_end_pfn)
3285 {
3286 int i = 0;
3287 unsigned long prev_end_pfn = 0, hole_pages = 0;
3288 unsigned long start_pfn;
3289
3290 /* Find the end_pfn of the first active range of pfns in the node */
3291 i = first_active_region_index_in_nid(nid);
3292 if (i == -1)
3293 return 0;
3294
3295 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3296
3297 /* Account for ranges before physical memory on this node */
3298 if (early_node_map[i].start_pfn > range_start_pfn)
3299 hole_pages = prev_end_pfn - range_start_pfn;
3300
3301 /* Find all holes for the zone within the node */
3302 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3303
3304 /* No need to continue if prev_end_pfn is outside the zone */
3305 if (prev_end_pfn >= range_end_pfn)
3306 break;
3307
3308 /* Make sure the end of the zone is not within the hole */
3309 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3310 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3311
3312 /* Update the hole size cound and move on */
3313 if (start_pfn > range_start_pfn) {
3314 BUG_ON(prev_end_pfn > start_pfn);
3315 hole_pages += start_pfn - prev_end_pfn;
3316 }
3317 prev_end_pfn = early_node_map[i].end_pfn;
3318 }
3319
3320 /* Account for ranges past physical memory on this node */
3321 if (range_end_pfn > prev_end_pfn)
3322 hole_pages += range_end_pfn -
3323 max(range_start_pfn, prev_end_pfn);
3324
3325 return hole_pages;
3326 }
3327
3328 /**
3329 * absent_pages_in_range - Return number of page frames in holes within a range
3330 * @start_pfn: The start PFN to start searching for holes
3331 * @end_pfn: The end PFN to stop searching for holes
3332 *
3333 * It returns the number of pages frames in memory holes within a range.
3334 */
3335 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3336 unsigned long end_pfn)
3337 {
3338 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3339 }
3340
3341 /* Return the number of page frames in holes in a zone on a node */
3342 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3343 unsigned long zone_type,
3344 unsigned long *ignored)
3345 {
3346 unsigned long node_start_pfn, node_end_pfn;
3347 unsigned long zone_start_pfn, zone_end_pfn;
3348
3349 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3350 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3351 node_start_pfn);
3352 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3353 node_end_pfn);
3354
3355 adjust_zone_range_for_zone_movable(nid, zone_type,
3356 node_start_pfn, node_end_pfn,
3357 &zone_start_pfn, &zone_end_pfn);
3358 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3359 }
3360
3361 #else
3362 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3363 unsigned long zone_type,
3364 unsigned long *zones_size)
3365 {
3366 return zones_size[zone_type];
3367 }
3368
3369 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3370 unsigned long zone_type,
3371 unsigned long *zholes_size)
3372 {
3373 if (!zholes_size)
3374 return 0;
3375
3376 return zholes_size[zone_type];
3377 }
3378
3379 #endif
3380
3381 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3382 unsigned long *zones_size, unsigned long *zholes_size)
3383 {
3384 unsigned long realtotalpages, totalpages = 0;
3385 enum zone_type i;
3386
3387 for (i = 0; i < MAX_NR_ZONES; i++)
3388 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3389 zones_size);
3390 pgdat->node_spanned_pages = totalpages;
3391
3392 realtotalpages = totalpages;
3393 for (i = 0; i < MAX_NR_ZONES; i++)
3394 realtotalpages -=
3395 zone_absent_pages_in_node(pgdat->node_id, i,
3396 zholes_size);
3397 pgdat->node_present_pages = realtotalpages;
3398 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3399 realtotalpages);
3400 }
3401
3402 #ifndef CONFIG_SPARSEMEM
3403 /*
3404 * Calculate the size of the zone->blockflags rounded to an unsigned long
3405 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3406 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3407 * round what is now in bits to nearest long in bits, then return it in
3408 * bytes.
3409 */
3410 static unsigned long __init usemap_size(unsigned long zonesize)
3411 {
3412 unsigned long usemapsize;
3413
3414 usemapsize = roundup(zonesize, pageblock_nr_pages);
3415 usemapsize = usemapsize >> pageblock_order;
3416 usemapsize *= NR_PAGEBLOCK_BITS;
3417 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3418
3419 return usemapsize / 8;
3420 }
3421
3422 static void __init setup_usemap(struct pglist_data *pgdat,
3423 struct zone *zone, unsigned long zonesize)
3424 {
3425 unsigned long usemapsize = usemap_size(zonesize);
3426 zone->pageblock_flags = NULL;
3427 if (usemapsize)
3428 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3429 }
3430 #else
3431 static void inline setup_usemap(struct pglist_data *pgdat,
3432 struct zone *zone, unsigned long zonesize) {}
3433 #endif /* CONFIG_SPARSEMEM */
3434
3435 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3436
3437 /* Return a sensible default order for the pageblock size. */
3438 static inline int pageblock_default_order(void)
3439 {
3440 if (HPAGE_SHIFT > PAGE_SHIFT)
3441 return HUGETLB_PAGE_ORDER;
3442
3443 return MAX_ORDER-1;
3444 }
3445
3446 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3447 static inline void __init set_pageblock_order(unsigned int order)
3448 {
3449 /* Check that pageblock_nr_pages has not already been setup */
3450 if (pageblock_order)
3451 return;
3452
3453 /*
3454 * Assume the largest contiguous order of interest is a huge page.
3455 * This value may be variable depending on boot parameters on IA64
3456 */
3457 pageblock_order = order;
3458 }
3459 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3460
3461 /*
3462 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3463 * and pageblock_default_order() are unused as pageblock_order is set
3464 * at compile-time. See include/linux/pageblock-flags.h for the values of
3465 * pageblock_order based on the kernel config
3466 */
3467 static inline int pageblock_default_order(unsigned int order)
3468 {
3469 return MAX_ORDER-1;
3470 }
3471 #define set_pageblock_order(x) do {} while (0)
3472
3473 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3474
3475 /*
3476 * Set up the zone data structures:
3477 * - mark all pages reserved
3478 * - mark all memory queues empty
3479 * - clear the memory bitmaps
3480 */
3481 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3482 unsigned long *zones_size, unsigned long *zholes_size)
3483 {
3484 enum zone_type j;
3485 int nid = pgdat->node_id;
3486 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3487 int ret;
3488
3489 pgdat_resize_init(pgdat);
3490 pgdat->nr_zones = 0;
3491 init_waitqueue_head(&pgdat->kswapd_wait);
3492 pgdat->kswapd_max_order = 0;
3493 pgdat_page_cgroup_init(pgdat);
3494
3495 for (j = 0; j < MAX_NR_ZONES; j++) {
3496 struct zone *zone = pgdat->node_zones + j;
3497 unsigned long size, realsize, memmap_pages;
3498 enum lru_list l;
3499
3500 size = zone_spanned_pages_in_node(nid, j, zones_size);
3501 realsize = size - zone_absent_pages_in_node(nid, j,
3502 zholes_size);
3503
3504 /*
3505 * Adjust realsize so that it accounts for how much memory
3506 * is used by this zone for memmap. This affects the watermark
3507 * and per-cpu initialisations
3508 */
3509 memmap_pages =
3510 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3511 if (realsize >= memmap_pages) {
3512 realsize -= memmap_pages;
3513 if (memmap_pages)
3514 printk(KERN_DEBUG
3515 " %s zone: %lu pages used for memmap\n",
3516 zone_names[j], memmap_pages);
3517 } else
3518 printk(KERN_WARNING
3519 " %s zone: %lu pages exceeds realsize %lu\n",
3520 zone_names[j], memmap_pages, realsize);
3521
3522 /* Account for reserved pages */
3523 if (j == 0 && realsize > dma_reserve) {
3524 realsize -= dma_reserve;
3525 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3526 zone_names[0], dma_reserve);
3527 }
3528
3529 if (!is_highmem_idx(j))
3530 nr_kernel_pages += realsize;
3531 nr_all_pages += realsize;
3532
3533 zone->spanned_pages = size;
3534 zone->present_pages = realsize;
3535 #ifdef CONFIG_NUMA
3536 zone->node = nid;
3537 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3538 / 100;
3539 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3540 #endif
3541 zone->name = zone_names[j];
3542 spin_lock_init(&zone->lock);
3543 spin_lock_init(&zone->lru_lock);
3544 zone_seqlock_init(zone);
3545 zone->zone_pgdat = pgdat;
3546
3547 zone->prev_priority = DEF_PRIORITY;
3548
3549 zone_pcp_init(zone);
3550 for_each_lru(l) {
3551 INIT_LIST_HEAD(&zone->lru[l].list);
3552 zone->lru[l].nr_scan = 0;
3553 }
3554 zone->reclaim_stat.recent_rotated[0] = 0;
3555 zone->reclaim_stat.recent_rotated[1] = 0;
3556 zone->reclaim_stat.recent_scanned[0] = 0;
3557 zone->reclaim_stat.recent_scanned[1] = 0;
3558 zap_zone_vm_stats(zone);
3559 zone->flags = 0;
3560 if (!size)
3561 continue;
3562
3563 set_pageblock_order(pageblock_default_order());
3564 setup_usemap(pgdat, zone, size);
3565 ret = init_currently_empty_zone(zone, zone_start_pfn,
3566 size, MEMMAP_EARLY);
3567 BUG_ON(ret);
3568 memmap_init(size, nid, j, zone_start_pfn);
3569 zone_start_pfn += size;
3570 }
3571 }
3572
3573 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3574 {
3575 /* Skip empty nodes */
3576 if (!pgdat->node_spanned_pages)
3577 return;
3578
3579 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3580 /* ia64 gets its own node_mem_map, before this, without bootmem */
3581 if (!pgdat->node_mem_map) {
3582 unsigned long size, start, end;
3583 struct page *map;
3584
3585 /*
3586 * The zone's endpoints aren't required to be MAX_ORDER
3587 * aligned but the node_mem_map endpoints must be in order
3588 * for the buddy allocator to function correctly.
3589 */
3590 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3591 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3592 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3593 size = (end - start) * sizeof(struct page);
3594 map = alloc_remap(pgdat->node_id, size);
3595 if (!map)
3596 map = alloc_bootmem_node(pgdat, size);
3597 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3598 }
3599 #ifndef CONFIG_NEED_MULTIPLE_NODES
3600 /*
3601 * With no DISCONTIG, the global mem_map is just set as node 0's
3602 */
3603 if (pgdat == NODE_DATA(0)) {
3604 mem_map = NODE_DATA(0)->node_mem_map;
3605 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3606 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3607 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3608 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3609 }
3610 #endif
3611 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3612 }
3613
3614 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3615 unsigned long node_start_pfn, unsigned long *zholes_size)
3616 {
3617 pg_data_t *pgdat = NODE_DATA(nid);
3618
3619 pgdat->node_id = nid;
3620 pgdat->node_start_pfn = node_start_pfn;
3621 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3622
3623 alloc_node_mem_map(pgdat);
3624 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3625 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3626 nid, (unsigned long)pgdat,
3627 (unsigned long)pgdat->node_mem_map);
3628 #endif
3629
3630 free_area_init_core(pgdat, zones_size, zholes_size);
3631 }
3632
3633 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3634
3635 #if MAX_NUMNODES > 1
3636 /*
3637 * Figure out the number of possible node ids.
3638 */
3639 static void __init setup_nr_node_ids(void)
3640 {
3641 unsigned int node;
3642 unsigned int highest = 0;
3643
3644 for_each_node_mask(node, node_possible_map)
3645 highest = node;
3646 nr_node_ids = highest + 1;
3647 }
3648 #else
3649 static inline void setup_nr_node_ids(void)
3650 {
3651 }
3652 #endif
3653
3654 /**
3655 * add_active_range - Register a range of PFNs backed by physical memory
3656 * @nid: The node ID the range resides on
3657 * @start_pfn: The start PFN of the available physical memory
3658 * @end_pfn: The end PFN of the available physical memory
3659 *
3660 * These ranges are stored in an early_node_map[] and later used by
3661 * free_area_init_nodes() to calculate zone sizes and holes. If the
3662 * range spans a memory hole, it is up to the architecture to ensure
3663 * the memory is not freed by the bootmem allocator. If possible
3664 * the range being registered will be merged with existing ranges.
3665 */
3666 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3667 unsigned long end_pfn)
3668 {
3669 int i;
3670
3671 mminit_dprintk(MMINIT_TRACE, "memory_register",
3672 "Entering add_active_range(%d, %#lx, %#lx) "
3673 "%d entries of %d used\n",
3674 nid, start_pfn, end_pfn,
3675 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3676
3677 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3678
3679 /* Merge with existing active regions if possible */
3680 for (i = 0; i < nr_nodemap_entries; i++) {
3681 if (early_node_map[i].nid != nid)
3682 continue;
3683
3684 /* Skip if an existing region covers this new one */
3685 if (start_pfn >= early_node_map[i].start_pfn &&
3686 end_pfn <= early_node_map[i].end_pfn)
3687 return;
3688
3689 /* Merge forward if suitable */
3690 if (start_pfn <= early_node_map[i].end_pfn &&
3691 end_pfn > early_node_map[i].end_pfn) {
3692 early_node_map[i].end_pfn = end_pfn;
3693 return;
3694 }
3695
3696 /* Merge backward if suitable */
3697 if (start_pfn < early_node_map[i].end_pfn &&
3698 end_pfn >= early_node_map[i].start_pfn) {
3699 early_node_map[i].start_pfn = start_pfn;
3700 return;
3701 }
3702 }
3703
3704 /* Check that early_node_map is large enough */
3705 if (i >= MAX_ACTIVE_REGIONS) {
3706 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3707 MAX_ACTIVE_REGIONS);
3708 return;
3709 }
3710
3711 early_node_map[i].nid = nid;
3712 early_node_map[i].start_pfn = start_pfn;
3713 early_node_map[i].end_pfn = end_pfn;
3714 nr_nodemap_entries = i + 1;
3715 }
3716
3717 /**
3718 * remove_active_range - Shrink an existing registered range of PFNs
3719 * @nid: The node id the range is on that should be shrunk
3720 * @start_pfn: The new PFN of the range
3721 * @end_pfn: The new PFN of the range
3722 *
3723 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3724 * The map is kept near the end physical page range that has already been
3725 * registered. This function allows an arch to shrink an existing registered
3726 * range.
3727 */
3728 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3729 unsigned long end_pfn)
3730 {
3731 int i, j;
3732 int removed = 0;
3733
3734 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3735 nid, start_pfn, end_pfn);
3736
3737 /* Find the old active region end and shrink */
3738 for_each_active_range_index_in_nid(i, nid) {
3739 if (early_node_map[i].start_pfn >= start_pfn &&
3740 early_node_map[i].end_pfn <= end_pfn) {
3741 /* clear it */
3742 early_node_map[i].start_pfn = 0;
3743 early_node_map[i].end_pfn = 0;
3744 removed = 1;
3745 continue;
3746 }
3747 if (early_node_map[i].start_pfn < start_pfn &&
3748 early_node_map[i].end_pfn > start_pfn) {
3749 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3750 early_node_map[i].end_pfn = start_pfn;
3751 if (temp_end_pfn > end_pfn)
3752 add_active_range(nid, end_pfn, temp_end_pfn);
3753 continue;
3754 }
3755 if (early_node_map[i].start_pfn >= start_pfn &&
3756 early_node_map[i].end_pfn > end_pfn &&
3757 early_node_map[i].start_pfn < end_pfn) {
3758 early_node_map[i].start_pfn = end_pfn;
3759 continue;
3760 }
3761 }
3762
3763 if (!removed)
3764 return;
3765
3766 /* remove the blank ones */
3767 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3768 if (early_node_map[i].nid != nid)
3769 continue;
3770 if (early_node_map[i].end_pfn)
3771 continue;
3772 /* we found it, get rid of it */
3773 for (j = i; j < nr_nodemap_entries - 1; j++)
3774 memcpy(&early_node_map[j], &early_node_map[j+1],
3775 sizeof(early_node_map[j]));
3776 j = nr_nodemap_entries - 1;
3777 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3778 nr_nodemap_entries--;
3779 }
3780 }
3781
3782 /**
3783 * remove_all_active_ranges - Remove all currently registered regions
3784 *
3785 * During discovery, it may be found that a table like SRAT is invalid
3786 * and an alternative discovery method must be used. This function removes
3787 * all currently registered regions.
3788 */
3789 void __init remove_all_active_ranges(void)
3790 {
3791 memset(early_node_map, 0, sizeof(early_node_map));
3792 nr_nodemap_entries = 0;
3793 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3794 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3795 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3796 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3797 }
3798
3799 /* Compare two active node_active_regions */
3800 static int __init cmp_node_active_region(const void *a, const void *b)
3801 {
3802 struct node_active_region *arange = (struct node_active_region *)a;
3803 struct node_active_region *brange = (struct node_active_region *)b;
3804
3805 /* Done this way to avoid overflows */
3806 if (arange->start_pfn > brange->start_pfn)
3807 return 1;
3808 if (arange->start_pfn < brange->start_pfn)
3809 return -1;
3810
3811 return 0;
3812 }
3813
3814 /* sort the node_map by start_pfn */
3815 static void __init sort_node_map(void)
3816 {
3817 sort(early_node_map, (size_t)nr_nodemap_entries,
3818 sizeof(struct node_active_region),
3819 cmp_node_active_region, NULL);
3820 }
3821
3822 /* Find the lowest pfn for a node */
3823 static unsigned long __init find_min_pfn_for_node(int nid)
3824 {
3825 int i;
3826 unsigned long min_pfn = ULONG_MAX;
3827
3828 /* Assuming a sorted map, the first range found has the starting pfn */
3829 for_each_active_range_index_in_nid(i, nid)
3830 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3831
3832 if (min_pfn == ULONG_MAX) {
3833 printk(KERN_WARNING
3834 "Could not find start_pfn for node %d\n", nid);
3835 return 0;
3836 }
3837
3838 return min_pfn;
3839 }
3840
3841 /**
3842 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3843 *
3844 * It returns the minimum PFN based on information provided via
3845 * add_active_range().
3846 */
3847 unsigned long __init find_min_pfn_with_active_regions(void)
3848 {
3849 return find_min_pfn_for_node(MAX_NUMNODES);
3850 }
3851
3852 /*
3853 * early_calculate_totalpages()
3854 * Sum pages in active regions for movable zone.
3855 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3856 */
3857 static unsigned long __init early_calculate_totalpages(void)
3858 {
3859 int i;
3860 unsigned long totalpages = 0;
3861
3862 for (i = 0; i < nr_nodemap_entries; i++) {
3863 unsigned long pages = early_node_map[i].end_pfn -
3864 early_node_map[i].start_pfn;
3865 totalpages += pages;
3866 if (pages)
3867 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3868 }
3869 return totalpages;
3870 }
3871
3872 /*
3873 * Find the PFN the Movable zone begins in each node. Kernel memory
3874 * is spread evenly between nodes as long as the nodes have enough
3875 * memory. When they don't, some nodes will have more kernelcore than
3876 * others
3877 */
3878 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3879 {
3880 int i, nid;
3881 unsigned long usable_startpfn;
3882 unsigned long kernelcore_node, kernelcore_remaining;
3883 unsigned long totalpages = early_calculate_totalpages();
3884 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3885
3886 /*
3887 * If movablecore was specified, calculate what size of
3888 * kernelcore that corresponds so that memory usable for
3889 * any allocation type is evenly spread. If both kernelcore
3890 * and movablecore are specified, then the value of kernelcore
3891 * will be used for required_kernelcore if it's greater than
3892 * what movablecore would have allowed.
3893 */
3894 if (required_movablecore) {
3895 unsigned long corepages;
3896
3897 /*
3898 * Round-up so that ZONE_MOVABLE is at least as large as what
3899 * was requested by the user
3900 */
3901 required_movablecore =
3902 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3903 corepages = totalpages - required_movablecore;
3904
3905 required_kernelcore = max(required_kernelcore, corepages);
3906 }
3907
3908 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3909 if (!required_kernelcore)
3910 return;
3911
3912 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3913 find_usable_zone_for_movable();
3914 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3915
3916 restart:
3917 /* Spread kernelcore memory as evenly as possible throughout nodes */
3918 kernelcore_node = required_kernelcore / usable_nodes;
3919 for_each_node_state(nid, N_HIGH_MEMORY) {
3920 /*
3921 * Recalculate kernelcore_node if the division per node
3922 * now exceeds what is necessary to satisfy the requested
3923 * amount of memory for the kernel
3924 */
3925 if (required_kernelcore < kernelcore_node)
3926 kernelcore_node = required_kernelcore / usable_nodes;
3927
3928 /*
3929 * As the map is walked, we track how much memory is usable
3930 * by the kernel using kernelcore_remaining. When it is
3931 * 0, the rest of the node is usable by ZONE_MOVABLE
3932 */
3933 kernelcore_remaining = kernelcore_node;
3934
3935 /* Go through each range of PFNs within this node */
3936 for_each_active_range_index_in_nid(i, nid) {
3937 unsigned long start_pfn, end_pfn;
3938 unsigned long size_pages;
3939
3940 start_pfn = max(early_node_map[i].start_pfn,
3941 zone_movable_pfn[nid]);
3942 end_pfn = early_node_map[i].end_pfn;
3943 if (start_pfn >= end_pfn)
3944 continue;
3945
3946 /* Account for what is only usable for kernelcore */
3947 if (start_pfn < usable_startpfn) {
3948 unsigned long kernel_pages;
3949 kernel_pages = min(end_pfn, usable_startpfn)
3950 - start_pfn;
3951
3952 kernelcore_remaining -= min(kernel_pages,
3953 kernelcore_remaining);
3954 required_kernelcore -= min(kernel_pages,
3955 required_kernelcore);
3956
3957 /* Continue if range is now fully accounted */
3958 if (end_pfn <= usable_startpfn) {
3959
3960 /*
3961 * Push zone_movable_pfn to the end so
3962 * that if we have to rebalance
3963 * kernelcore across nodes, we will
3964 * not double account here
3965 */
3966 zone_movable_pfn[nid] = end_pfn;
3967 continue;
3968 }
3969 start_pfn = usable_startpfn;
3970 }
3971
3972 /*
3973 * The usable PFN range for ZONE_MOVABLE is from
3974 * start_pfn->end_pfn. Calculate size_pages as the
3975 * number of pages used as kernelcore
3976 */
3977 size_pages = end_pfn - start_pfn;
3978 if (size_pages > kernelcore_remaining)
3979 size_pages = kernelcore_remaining;
3980 zone_movable_pfn[nid] = start_pfn + size_pages;
3981
3982 /*
3983 * Some kernelcore has been met, update counts and
3984 * break if the kernelcore for this node has been
3985 * satisified
3986 */
3987 required_kernelcore -= min(required_kernelcore,
3988 size_pages);
3989 kernelcore_remaining -= size_pages;
3990 if (!kernelcore_remaining)
3991 break;
3992 }
3993 }
3994
3995 /*
3996 * If there is still required_kernelcore, we do another pass with one
3997 * less node in the count. This will push zone_movable_pfn[nid] further
3998 * along on the nodes that still have memory until kernelcore is
3999 * satisified
4000 */
4001 usable_nodes--;
4002 if (usable_nodes && required_kernelcore > usable_nodes)
4003 goto restart;
4004
4005 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4006 for (nid = 0; nid < MAX_NUMNODES; nid++)
4007 zone_movable_pfn[nid] =
4008 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4009 }
4010
4011 /* Any regular memory on that node ? */
4012 static void check_for_regular_memory(pg_data_t *pgdat)
4013 {
4014 #ifdef CONFIG_HIGHMEM
4015 enum zone_type zone_type;
4016
4017 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4018 struct zone *zone = &pgdat->node_zones[zone_type];
4019 if (zone->present_pages)
4020 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4021 }
4022 #endif
4023 }
4024
4025 /**
4026 * free_area_init_nodes - Initialise all pg_data_t and zone data
4027 * @max_zone_pfn: an array of max PFNs for each zone
4028 *
4029 * This will call free_area_init_node() for each active node in the system.
4030 * Using the page ranges provided by add_active_range(), the size of each
4031 * zone in each node and their holes is calculated. If the maximum PFN
4032 * between two adjacent zones match, it is assumed that the zone is empty.
4033 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4034 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4035 * starts where the previous one ended. For example, ZONE_DMA32 starts
4036 * at arch_max_dma_pfn.
4037 */
4038 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4039 {
4040 unsigned long nid;
4041 int i;
4042
4043 /* Sort early_node_map as initialisation assumes it is sorted */
4044 sort_node_map();
4045
4046 /* Record where the zone boundaries are */
4047 memset(arch_zone_lowest_possible_pfn, 0,
4048 sizeof(arch_zone_lowest_possible_pfn));
4049 memset(arch_zone_highest_possible_pfn, 0,
4050 sizeof(arch_zone_highest_possible_pfn));
4051 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4052 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4053 for (i = 1; i < MAX_NR_ZONES; i++) {
4054 if (i == ZONE_MOVABLE)
4055 continue;
4056 arch_zone_lowest_possible_pfn[i] =
4057 arch_zone_highest_possible_pfn[i-1];
4058 arch_zone_highest_possible_pfn[i] =
4059 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4060 }
4061 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4062 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4063
4064 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4065 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4066 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4067
4068 /* Print out the zone ranges */
4069 printk("Zone PFN ranges:\n");
4070 for (i = 0; i < MAX_NR_ZONES; i++) {
4071 if (i == ZONE_MOVABLE)
4072 continue;
4073 printk(" %-8s %0#10lx -> %0#10lx\n",
4074 zone_names[i],
4075 arch_zone_lowest_possible_pfn[i],
4076 arch_zone_highest_possible_pfn[i]);
4077 }
4078
4079 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4080 printk("Movable zone start PFN for each node\n");
4081 for (i = 0; i < MAX_NUMNODES; i++) {
4082 if (zone_movable_pfn[i])
4083 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4084 }
4085
4086 /* Print out the early_node_map[] */
4087 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4088 for (i = 0; i < nr_nodemap_entries; i++)
4089 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4090 early_node_map[i].start_pfn,
4091 early_node_map[i].end_pfn);
4092
4093 /* Initialise every node */
4094 mminit_verify_pageflags_layout();
4095 setup_nr_node_ids();
4096 for_each_online_node(nid) {
4097 pg_data_t *pgdat = NODE_DATA(nid);
4098 free_area_init_node(nid, NULL,
4099 find_min_pfn_for_node(nid), NULL);
4100
4101 /* Any memory on that node */
4102 if (pgdat->node_present_pages)
4103 node_set_state(nid, N_HIGH_MEMORY);
4104 check_for_regular_memory(pgdat);
4105 }
4106 }
4107
4108 static int __init cmdline_parse_core(char *p, unsigned long *core)
4109 {
4110 unsigned long long coremem;
4111 if (!p)
4112 return -EINVAL;
4113
4114 coremem = memparse(p, &p);
4115 *core = coremem >> PAGE_SHIFT;
4116
4117 /* Paranoid check that UL is enough for the coremem value */
4118 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4119
4120 return 0;
4121 }
4122
4123 /*
4124 * kernelcore=size sets the amount of memory for use for allocations that
4125 * cannot be reclaimed or migrated.
4126 */
4127 static int __init cmdline_parse_kernelcore(char *p)
4128 {
4129 return cmdline_parse_core(p, &required_kernelcore);
4130 }
4131
4132 /*
4133 * movablecore=size sets the amount of memory for use for allocations that
4134 * can be reclaimed or migrated.
4135 */
4136 static int __init cmdline_parse_movablecore(char *p)
4137 {
4138 return cmdline_parse_core(p, &required_movablecore);
4139 }
4140
4141 early_param("kernelcore", cmdline_parse_kernelcore);
4142 early_param("movablecore", cmdline_parse_movablecore);
4143
4144 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4145
4146 /**
4147 * set_dma_reserve - set the specified number of pages reserved in the first zone
4148 * @new_dma_reserve: The number of pages to mark reserved
4149 *
4150 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4151 * In the DMA zone, a significant percentage may be consumed by kernel image
4152 * and other unfreeable allocations which can skew the watermarks badly. This
4153 * function may optionally be used to account for unfreeable pages in the
4154 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4155 * smaller per-cpu batchsize.
4156 */
4157 void __init set_dma_reserve(unsigned long new_dma_reserve)
4158 {
4159 dma_reserve = new_dma_reserve;
4160 }
4161
4162 #ifndef CONFIG_NEED_MULTIPLE_NODES
4163 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4164 EXPORT_SYMBOL(contig_page_data);
4165 #endif
4166
4167 void __init free_area_init(unsigned long *zones_size)
4168 {
4169 free_area_init_node(0, zones_size,
4170 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4171 }
4172
4173 static int page_alloc_cpu_notify(struct notifier_block *self,
4174 unsigned long action, void *hcpu)
4175 {
4176 int cpu = (unsigned long)hcpu;
4177
4178 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4179 drain_pages(cpu);
4180
4181 /*
4182 * Spill the event counters of the dead processor
4183 * into the current processors event counters.
4184 * This artificially elevates the count of the current
4185 * processor.
4186 */
4187 vm_events_fold_cpu(cpu);
4188
4189 /*
4190 * Zero the differential counters of the dead processor
4191 * so that the vm statistics are consistent.
4192 *
4193 * This is only okay since the processor is dead and cannot
4194 * race with what we are doing.
4195 */
4196 refresh_cpu_vm_stats(cpu);
4197 }
4198 return NOTIFY_OK;
4199 }
4200
4201 void __init page_alloc_init(void)
4202 {
4203 hotcpu_notifier(page_alloc_cpu_notify, 0);
4204 }
4205
4206 /*
4207 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4208 * or min_free_kbytes changes.
4209 */
4210 static void calculate_totalreserve_pages(void)
4211 {
4212 struct pglist_data *pgdat;
4213 unsigned long reserve_pages = 0;
4214 enum zone_type i, j;
4215
4216 for_each_online_pgdat(pgdat) {
4217 for (i = 0; i < MAX_NR_ZONES; i++) {
4218 struct zone *zone = pgdat->node_zones + i;
4219 unsigned long max = 0;
4220
4221 /* Find valid and maximum lowmem_reserve in the zone */
4222 for (j = i; j < MAX_NR_ZONES; j++) {
4223 if (zone->lowmem_reserve[j] > max)
4224 max = zone->lowmem_reserve[j];
4225 }
4226
4227 /* we treat pages_high as reserved pages. */
4228 max += zone->pages_high;
4229
4230 if (max > zone->present_pages)
4231 max = zone->present_pages;
4232 reserve_pages += max;
4233 }
4234 }
4235 totalreserve_pages = reserve_pages;
4236 }
4237
4238 /*
4239 * setup_per_zone_lowmem_reserve - called whenever
4240 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4241 * has a correct pages reserved value, so an adequate number of
4242 * pages are left in the zone after a successful __alloc_pages().
4243 */
4244 static void setup_per_zone_lowmem_reserve(void)
4245 {
4246 struct pglist_data *pgdat;
4247 enum zone_type j, idx;
4248
4249 for_each_online_pgdat(pgdat) {
4250 for (j = 0; j < MAX_NR_ZONES; j++) {
4251 struct zone *zone = pgdat->node_zones + j;
4252 unsigned long present_pages = zone->present_pages;
4253
4254 zone->lowmem_reserve[j] = 0;
4255
4256 idx = j;
4257 while (idx) {
4258 struct zone *lower_zone;
4259
4260 idx--;
4261
4262 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4263 sysctl_lowmem_reserve_ratio[idx] = 1;
4264
4265 lower_zone = pgdat->node_zones + idx;
4266 lower_zone->lowmem_reserve[j] = present_pages /
4267 sysctl_lowmem_reserve_ratio[idx];
4268 present_pages += lower_zone->present_pages;
4269 }
4270 }
4271 }
4272
4273 /* update totalreserve_pages */
4274 calculate_totalreserve_pages();
4275 }
4276
4277 /**
4278 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4279 *
4280 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4281 * with respect to min_free_kbytes.
4282 */
4283 void setup_per_zone_pages_min(void)
4284 {
4285 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4286 unsigned long lowmem_pages = 0;
4287 struct zone *zone;
4288 unsigned long flags;
4289
4290 /* Calculate total number of !ZONE_HIGHMEM pages */
4291 for_each_zone(zone) {
4292 if (!is_highmem(zone))
4293 lowmem_pages += zone->present_pages;
4294 }
4295
4296 for_each_zone(zone) {
4297 u64 tmp;
4298
4299 spin_lock_irqsave(&zone->lock, flags);
4300 tmp = (u64)pages_min * zone->present_pages;
4301 do_div(tmp, lowmem_pages);
4302 if (is_highmem(zone)) {
4303 /*
4304 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4305 * need highmem pages, so cap pages_min to a small
4306 * value here.
4307 *
4308 * The (pages_high-pages_low) and (pages_low-pages_min)
4309 * deltas controls asynch page reclaim, and so should
4310 * not be capped for highmem.
4311 */
4312 int min_pages;
4313
4314 min_pages = zone->present_pages / 1024;
4315 if (min_pages < SWAP_CLUSTER_MAX)
4316 min_pages = SWAP_CLUSTER_MAX;
4317 if (min_pages > 128)
4318 min_pages = 128;
4319 zone->pages_min = min_pages;
4320 } else {
4321 /*
4322 * If it's a lowmem zone, reserve a number of pages
4323 * proportionate to the zone's size.
4324 */
4325 zone->pages_min = tmp;
4326 }
4327
4328 zone->pages_low = zone->pages_min + (tmp >> 2);
4329 zone->pages_high = zone->pages_min + (tmp >> 1);
4330 setup_zone_migrate_reserve(zone);
4331 spin_unlock_irqrestore(&zone->lock, flags);
4332 }
4333
4334 /* update totalreserve_pages */
4335 calculate_totalreserve_pages();
4336 }
4337
4338 /**
4339 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4340 *
4341 * The inactive anon list should be small enough that the VM never has to
4342 * do too much work, but large enough that each inactive page has a chance
4343 * to be referenced again before it is swapped out.
4344 *
4345 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4346 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4347 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4348 * the anonymous pages are kept on the inactive list.
4349 *
4350 * total target max
4351 * memory ratio inactive anon
4352 * -------------------------------------
4353 * 10MB 1 5MB
4354 * 100MB 1 50MB
4355 * 1GB 3 250MB
4356 * 10GB 10 0.9GB
4357 * 100GB 31 3GB
4358 * 1TB 101 10GB
4359 * 10TB 320 32GB
4360 */
4361 static void setup_per_zone_inactive_ratio(void)
4362 {
4363 struct zone *zone;
4364
4365 for_each_zone(zone) {
4366 unsigned int gb, ratio;
4367
4368 /* Zone size in gigabytes */
4369 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4370 ratio = int_sqrt(10 * gb);
4371 if (!ratio)
4372 ratio = 1;
4373
4374 zone->inactive_ratio = ratio;
4375 }
4376 }
4377
4378 /*
4379 * Initialise min_free_kbytes.
4380 *
4381 * For small machines we want it small (128k min). For large machines
4382 * we want it large (64MB max). But it is not linear, because network
4383 * bandwidth does not increase linearly with machine size. We use
4384 *
4385 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4386 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4387 *
4388 * which yields
4389 *
4390 * 16MB: 512k
4391 * 32MB: 724k
4392 * 64MB: 1024k
4393 * 128MB: 1448k
4394 * 256MB: 2048k
4395 * 512MB: 2896k
4396 * 1024MB: 4096k
4397 * 2048MB: 5792k
4398 * 4096MB: 8192k
4399 * 8192MB: 11584k
4400 * 16384MB: 16384k
4401 */
4402 static int __init init_per_zone_pages_min(void)
4403 {
4404 unsigned long lowmem_kbytes;
4405
4406 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4407
4408 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4409 if (min_free_kbytes < 128)
4410 min_free_kbytes = 128;
4411 if (min_free_kbytes > 65536)
4412 min_free_kbytes = 65536;
4413 setup_per_zone_pages_min();
4414 setup_per_zone_lowmem_reserve();
4415 setup_per_zone_inactive_ratio();
4416 return 0;
4417 }
4418 module_init(init_per_zone_pages_min)
4419
4420 /*
4421 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4422 * that we can call two helper functions whenever min_free_kbytes
4423 * changes.
4424 */
4425 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4426 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4427 {
4428 proc_dointvec(table, write, file, buffer, length, ppos);
4429 if (write)
4430 setup_per_zone_pages_min();
4431 return 0;
4432 }
4433
4434 #ifdef CONFIG_NUMA
4435 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4436 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4437 {
4438 struct zone *zone;
4439 int rc;
4440
4441 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4442 if (rc)
4443 return rc;
4444
4445 for_each_zone(zone)
4446 zone->min_unmapped_pages = (zone->present_pages *
4447 sysctl_min_unmapped_ratio) / 100;
4448 return 0;
4449 }
4450
4451 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4452 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4453 {
4454 struct zone *zone;
4455 int rc;
4456
4457 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4458 if (rc)
4459 return rc;
4460
4461 for_each_zone(zone)
4462 zone->min_slab_pages = (zone->present_pages *
4463 sysctl_min_slab_ratio) / 100;
4464 return 0;
4465 }
4466 #endif
4467
4468 /*
4469 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4470 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4471 * whenever sysctl_lowmem_reserve_ratio changes.
4472 *
4473 * The reserve ratio obviously has absolutely no relation with the
4474 * pages_min watermarks. The lowmem reserve ratio can only make sense
4475 * if in function of the boot time zone sizes.
4476 */
4477 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4478 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4479 {
4480 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4481 setup_per_zone_lowmem_reserve();
4482 return 0;
4483 }
4484
4485 /*
4486 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4487 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4488 * can have before it gets flushed back to buddy allocator.
4489 */
4490
4491 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4492 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4493 {
4494 struct zone *zone;
4495 unsigned int cpu;
4496 int ret;
4497
4498 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4499 if (!write || (ret == -EINVAL))
4500 return ret;
4501 for_each_zone(zone) {
4502 for_each_online_cpu(cpu) {
4503 unsigned long high;
4504 high = zone->present_pages / percpu_pagelist_fraction;
4505 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4506 }
4507 }
4508 return 0;
4509 }
4510
4511 int hashdist = HASHDIST_DEFAULT;
4512
4513 #ifdef CONFIG_NUMA
4514 static int __init set_hashdist(char *str)
4515 {
4516 if (!str)
4517 return 0;
4518 hashdist = simple_strtoul(str, &str, 0);
4519 return 1;
4520 }
4521 __setup("hashdist=", set_hashdist);
4522 #endif
4523
4524 /*
4525 * allocate a large system hash table from bootmem
4526 * - it is assumed that the hash table must contain an exact power-of-2
4527 * quantity of entries
4528 * - limit is the number of hash buckets, not the total allocation size
4529 */
4530 void *__init alloc_large_system_hash(const char *tablename,
4531 unsigned long bucketsize,
4532 unsigned long numentries,
4533 int scale,
4534 int flags,
4535 unsigned int *_hash_shift,
4536 unsigned int *_hash_mask,
4537 unsigned long limit)
4538 {
4539 unsigned long long max = limit;
4540 unsigned long log2qty, size;
4541 void *table = NULL;
4542
4543 /* allow the kernel cmdline to have a say */
4544 if (!numentries) {
4545 /* round applicable memory size up to nearest megabyte */
4546 numentries = nr_kernel_pages;
4547 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4548 numentries >>= 20 - PAGE_SHIFT;
4549 numentries <<= 20 - PAGE_SHIFT;
4550
4551 /* limit to 1 bucket per 2^scale bytes of low memory */
4552 if (scale > PAGE_SHIFT)
4553 numentries >>= (scale - PAGE_SHIFT);
4554 else
4555 numentries <<= (PAGE_SHIFT - scale);
4556
4557 /* Make sure we've got at least a 0-order allocation.. */
4558 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4559 numentries = PAGE_SIZE / bucketsize;
4560 }
4561 numentries = roundup_pow_of_two(numentries);
4562
4563 /* limit allocation size to 1/16 total memory by default */
4564 if (max == 0) {
4565 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4566 do_div(max, bucketsize);
4567 }
4568
4569 if (numentries > max)
4570 numentries = max;
4571
4572 log2qty = ilog2(numentries);
4573
4574 do {
4575 size = bucketsize << log2qty;
4576 if (flags & HASH_EARLY)
4577 table = alloc_bootmem_nopanic(size);
4578 else if (hashdist)
4579 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4580 else {
4581 unsigned long order = get_order(size);
4582 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4583 /*
4584 * If bucketsize is not a power-of-two, we may free
4585 * some pages at the end of hash table.
4586 */
4587 if (table) {
4588 unsigned long alloc_end = (unsigned long)table +
4589 (PAGE_SIZE << order);
4590 unsigned long used = (unsigned long)table +
4591 PAGE_ALIGN(size);
4592 split_page(virt_to_page(table), order);
4593 while (used < alloc_end) {
4594 free_page(used);
4595 used += PAGE_SIZE;
4596 }
4597 }
4598 }
4599 } while (!table && size > PAGE_SIZE && --log2qty);
4600
4601 if (!table)
4602 panic("Failed to allocate %s hash table\n", tablename);
4603
4604 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4605 tablename,
4606 (1U << log2qty),
4607 ilog2(size) - PAGE_SHIFT,
4608 size);
4609
4610 if (_hash_shift)
4611 *_hash_shift = log2qty;
4612 if (_hash_mask)
4613 *_hash_mask = (1 << log2qty) - 1;
4614
4615 return table;
4616 }
4617
4618 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4619 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4620 unsigned long pfn)
4621 {
4622 #ifdef CONFIG_SPARSEMEM
4623 return __pfn_to_section(pfn)->pageblock_flags;
4624 #else
4625 return zone->pageblock_flags;
4626 #endif /* CONFIG_SPARSEMEM */
4627 }
4628
4629 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4630 {
4631 #ifdef CONFIG_SPARSEMEM
4632 pfn &= (PAGES_PER_SECTION-1);
4633 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4634 #else
4635 pfn = pfn - zone->zone_start_pfn;
4636 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4637 #endif /* CONFIG_SPARSEMEM */
4638 }
4639
4640 /**
4641 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4642 * @page: The page within the block of interest
4643 * @start_bitidx: The first bit of interest to retrieve
4644 * @end_bitidx: The last bit of interest
4645 * returns pageblock_bits flags
4646 */
4647 unsigned long get_pageblock_flags_group(struct page *page,
4648 int start_bitidx, int end_bitidx)
4649 {
4650 struct zone *zone;
4651 unsigned long *bitmap;
4652 unsigned long pfn, bitidx;
4653 unsigned long flags = 0;
4654 unsigned long value = 1;
4655
4656 zone = page_zone(page);
4657 pfn = page_to_pfn(page);
4658 bitmap = get_pageblock_bitmap(zone, pfn);
4659 bitidx = pfn_to_bitidx(zone, pfn);
4660
4661 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4662 if (test_bit(bitidx + start_bitidx, bitmap))
4663 flags |= value;
4664
4665 return flags;
4666 }
4667
4668 /**
4669 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4670 * @page: The page within the block of interest
4671 * @start_bitidx: The first bit of interest
4672 * @end_bitidx: The last bit of interest
4673 * @flags: The flags to set
4674 */
4675 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4676 int start_bitidx, int end_bitidx)
4677 {
4678 struct zone *zone;
4679 unsigned long *bitmap;
4680 unsigned long pfn, bitidx;
4681 unsigned long value = 1;
4682
4683 zone = page_zone(page);
4684 pfn = page_to_pfn(page);
4685 bitmap = get_pageblock_bitmap(zone, pfn);
4686 bitidx = pfn_to_bitidx(zone, pfn);
4687 VM_BUG_ON(pfn < zone->zone_start_pfn);
4688 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4689
4690 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4691 if (flags & value)
4692 __set_bit(bitidx + start_bitidx, bitmap);
4693 else
4694 __clear_bit(bitidx + start_bitidx, bitmap);
4695 }
4696
4697 /*
4698 * This is designed as sub function...plz see page_isolation.c also.
4699 * set/clear page block's type to be ISOLATE.
4700 * page allocater never alloc memory from ISOLATE block.
4701 */
4702
4703 int set_migratetype_isolate(struct page *page)
4704 {
4705 struct zone *zone;
4706 unsigned long flags;
4707 int ret = -EBUSY;
4708
4709 zone = page_zone(page);
4710 spin_lock_irqsave(&zone->lock, flags);
4711 /*
4712 * In future, more migrate types will be able to be isolation target.
4713 */
4714 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4715 goto out;
4716 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4717 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4718 ret = 0;
4719 out:
4720 spin_unlock_irqrestore(&zone->lock, flags);
4721 if (!ret)
4722 drain_all_pages();
4723 return ret;
4724 }
4725
4726 void unset_migratetype_isolate(struct page *page)
4727 {
4728 struct zone *zone;
4729 unsigned long flags;
4730 zone = page_zone(page);
4731 spin_lock_irqsave(&zone->lock, flags);
4732 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4733 goto out;
4734 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4735 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4736 out:
4737 spin_unlock_irqrestore(&zone->lock, flags);
4738 }
4739
4740 #ifdef CONFIG_MEMORY_HOTREMOVE
4741 /*
4742 * All pages in the range must be isolated before calling this.
4743 */
4744 void
4745 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4746 {
4747 struct page *page;
4748 struct zone *zone;
4749 int order, i;
4750 unsigned long pfn;
4751 unsigned long flags;
4752 /* find the first valid pfn */
4753 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4754 if (pfn_valid(pfn))
4755 break;
4756 if (pfn == end_pfn)
4757 return;
4758 zone = page_zone(pfn_to_page(pfn));
4759 spin_lock_irqsave(&zone->lock, flags);
4760 pfn = start_pfn;
4761 while (pfn < end_pfn) {
4762 if (!pfn_valid(pfn)) {
4763 pfn++;
4764 continue;
4765 }
4766 page = pfn_to_page(pfn);
4767 BUG_ON(page_count(page));
4768 BUG_ON(!PageBuddy(page));
4769 order = page_order(page);
4770 #ifdef CONFIG_DEBUG_VM
4771 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4772 pfn, 1 << order, end_pfn);
4773 #endif
4774 list_del(&page->lru);
4775 rmv_page_order(page);
4776 zone->free_area[order].nr_free--;
4777 __mod_zone_page_state(zone, NR_FREE_PAGES,
4778 - (1UL << order));
4779 for (i = 0; i < (1 << order); i++)
4780 SetPageReserved((page+i));
4781 pfn += (1 << order);
4782 }
4783 spin_unlock_irqrestore(&zone->lock, flags);
4784 }
4785 #endif