]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
mm/page_alloc: add freepage on isolate pageblock to correct buddy list
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page-debug-flags.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62
63 #include <asm/sections.h>
64 #include <asm/tlbflush.h>
65 #include <asm/div64.h>
66 #include "internal.h"
67
68 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
69 static DEFINE_MUTEX(pcp_batch_high_lock);
70 #define MIN_PERCPU_PAGELIST_FRACTION (8)
71
72 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
73 DEFINE_PER_CPU(int, numa_node);
74 EXPORT_PER_CPU_SYMBOL(numa_node);
75 #endif
76
77 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
78 /*
79 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
80 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
81 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
82 * defined in <linux/topology.h>.
83 */
84 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
85 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
86 int _node_numa_mem_[MAX_NUMNODES];
87 #endif
88
89 /*
90 * Array of node states.
91 */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 [N_CPU] = { { [0] = 1UL } },
104 #endif /* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119 unsigned long dirty_balance_reserve __read_mostly;
120
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123
124 #ifdef CONFIG_PM_SLEEP
125 /*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
133
134 static gfp_t saved_gfp_mask;
135
136 void pm_restore_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
143 }
144
145 void pm_restrict_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
151 }
152
153 bool pm_suspended_storage(void)
154 {
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164
165 static void __free_pages_ok(struct page *page, unsigned int order);
166
167 /*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
177 */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 32,
187 #endif
188 32,
189 };
190
191 EXPORT_SYMBOL(totalram_pages);
192
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 "DMA32",
199 #endif
200 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 "HighMem",
203 #endif
204 "Movable",
205 };
206
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes = -1;
209
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232
233 int page_group_by_mobility_disabled __read_mostly;
234
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
239 migratetype = MIGRATE_UNMOVABLE;
240
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243 }
244
245 bool oom_killer_disabled __read_mostly;
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
265 pfn, zone_to_nid(zone), zone->name,
266 start_pfn, start_pfn + sp);
267
268 return ret;
269 }
270
271 static int page_is_consistent(struct zone *zone, struct page *page)
272 {
273 if (!pfn_valid_within(page_to_pfn(page)))
274 return 0;
275 if (zone != page_zone(page))
276 return 0;
277
278 return 1;
279 }
280 /*
281 * Temporary debugging check for pages not lying within a given zone.
282 */
283 static int bad_range(struct zone *zone, struct page *page)
284 {
285 if (page_outside_zone_boundaries(zone, page))
286 return 1;
287 if (!page_is_consistent(zone, page))
288 return 1;
289
290 return 0;
291 }
292 #else
293 static inline int bad_range(struct zone *zone, struct page *page)
294 {
295 return 0;
296 }
297 #endif
298
299 static void bad_page(struct page *page, const char *reason,
300 unsigned long bad_flags)
301 {
302 static unsigned long resume;
303 static unsigned long nr_shown;
304 static unsigned long nr_unshown;
305
306 /* Don't complain about poisoned pages */
307 if (PageHWPoison(page)) {
308 page_mapcount_reset(page); /* remove PageBuddy */
309 return;
310 }
311
312 /*
313 * Allow a burst of 60 reports, then keep quiet for that minute;
314 * or allow a steady drip of one report per second.
315 */
316 if (nr_shown == 60) {
317 if (time_before(jiffies, resume)) {
318 nr_unshown++;
319 goto out;
320 }
321 if (nr_unshown) {
322 printk(KERN_ALERT
323 "BUG: Bad page state: %lu messages suppressed\n",
324 nr_unshown);
325 nr_unshown = 0;
326 }
327 nr_shown = 0;
328 }
329 if (nr_shown++ == 0)
330 resume = jiffies + 60 * HZ;
331
332 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
333 current->comm, page_to_pfn(page));
334 dump_page_badflags(page, reason, bad_flags);
335
336 print_modules();
337 dump_stack();
338 out:
339 /* Leave bad fields for debug, except PageBuddy could make trouble */
340 page_mapcount_reset(page); /* remove PageBuddy */
341 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
342 }
343
344 /*
345 * Higher-order pages are called "compound pages". They are structured thusly:
346 *
347 * The first PAGE_SIZE page is called the "head page".
348 *
349 * The remaining PAGE_SIZE pages are called "tail pages".
350 *
351 * All pages have PG_compound set. All tail pages have their ->first_page
352 * pointing at the head page.
353 *
354 * The first tail page's ->lru.next holds the address of the compound page's
355 * put_page() function. Its ->lru.prev holds the order of allocation.
356 * This usage means that zero-order pages may not be compound.
357 */
358
359 static void free_compound_page(struct page *page)
360 {
361 __free_pages_ok(page, compound_order(page));
362 }
363
364 void prep_compound_page(struct page *page, unsigned long order)
365 {
366 int i;
367 int nr_pages = 1 << order;
368
369 set_compound_page_dtor(page, free_compound_page);
370 set_compound_order(page, order);
371 __SetPageHead(page);
372 for (i = 1; i < nr_pages; i++) {
373 struct page *p = page + i;
374 set_page_count(p, 0);
375 p->first_page = page;
376 /* Make sure p->first_page is always valid for PageTail() */
377 smp_wmb();
378 __SetPageTail(p);
379 }
380 }
381
382 /* update __split_huge_page_refcount if you change this function */
383 static int destroy_compound_page(struct page *page, unsigned long order)
384 {
385 int i;
386 int nr_pages = 1 << order;
387 int bad = 0;
388
389 if (unlikely(compound_order(page) != order)) {
390 bad_page(page, "wrong compound order", 0);
391 bad++;
392 }
393
394 __ClearPageHead(page);
395
396 for (i = 1; i < nr_pages; i++) {
397 struct page *p = page + i;
398
399 if (unlikely(!PageTail(p))) {
400 bad_page(page, "PageTail not set", 0);
401 bad++;
402 } else if (unlikely(p->first_page != page)) {
403 bad_page(page, "first_page not consistent", 0);
404 bad++;
405 }
406 __ClearPageTail(p);
407 }
408
409 return bad;
410 }
411
412 static inline void prep_zero_page(struct page *page, unsigned int order,
413 gfp_t gfp_flags)
414 {
415 int i;
416
417 /*
418 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
419 * and __GFP_HIGHMEM from hard or soft interrupt context.
420 */
421 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
422 for (i = 0; i < (1 << order); i++)
423 clear_highpage(page + i);
424 }
425
426 #ifdef CONFIG_DEBUG_PAGEALLOC
427 unsigned int _debug_guardpage_minorder;
428
429 static int __init debug_guardpage_minorder_setup(char *buf)
430 {
431 unsigned long res;
432
433 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
434 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
435 return 0;
436 }
437 _debug_guardpage_minorder = res;
438 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
439 return 0;
440 }
441 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
442
443 static inline void set_page_guard_flag(struct page *page)
444 {
445 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
446 }
447
448 static inline void clear_page_guard_flag(struct page *page)
449 {
450 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
451 }
452 #else
453 static inline void set_page_guard_flag(struct page *page) { }
454 static inline void clear_page_guard_flag(struct page *page) { }
455 #endif
456
457 static inline void set_page_order(struct page *page, unsigned int order)
458 {
459 set_page_private(page, order);
460 __SetPageBuddy(page);
461 }
462
463 static inline void rmv_page_order(struct page *page)
464 {
465 __ClearPageBuddy(page);
466 set_page_private(page, 0);
467 }
468
469 /*
470 * Locate the struct page for both the matching buddy in our
471 * pair (buddy1) and the combined O(n+1) page they form (page).
472 *
473 * 1) Any buddy B1 will have an order O twin B2 which satisfies
474 * the following equation:
475 * B2 = B1 ^ (1 << O)
476 * For example, if the starting buddy (buddy2) is #8 its order
477 * 1 buddy is #10:
478 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
479 *
480 * 2) Any buddy B will have an order O+1 parent P which
481 * satisfies the following equation:
482 * P = B & ~(1 << O)
483 *
484 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
485 */
486 static inline unsigned long
487 __find_buddy_index(unsigned long page_idx, unsigned int order)
488 {
489 return page_idx ^ (1 << order);
490 }
491
492 /*
493 * This function checks whether a page is free && is the buddy
494 * we can do coalesce a page and its buddy if
495 * (a) the buddy is not in a hole &&
496 * (b) the buddy is in the buddy system &&
497 * (c) a page and its buddy have the same order &&
498 * (d) a page and its buddy are in the same zone.
499 *
500 * For recording whether a page is in the buddy system, we set ->_mapcount
501 * PAGE_BUDDY_MAPCOUNT_VALUE.
502 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
503 * serialized by zone->lock.
504 *
505 * For recording page's order, we use page_private(page).
506 */
507 static inline int page_is_buddy(struct page *page, struct page *buddy,
508 unsigned int order)
509 {
510 if (!pfn_valid_within(page_to_pfn(buddy)))
511 return 0;
512
513 if (page_is_guard(buddy) && page_order(buddy) == order) {
514 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
515
516 if (page_zone_id(page) != page_zone_id(buddy))
517 return 0;
518
519 return 1;
520 }
521
522 if (PageBuddy(buddy) && page_order(buddy) == order) {
523 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
524
525 /*
526 * zone check is done late to avoid uselessly
527 * calculating zone/node ids for pages that could
528 * never merge.
529 */
530 if (page_zone_id(page) != page_zone_id(buddy))
531 return 0;
532
533 return 1;
534 }
535 return 0;
536 }
537
538 /*
539 * Freeing function for a buddy system allocator.
540 *
541 * The concept of a buddy system is to maintain direct-mapped table
542 * (containing bit values) for memory blocks of various "orders".
543 * The bottom level table contains the map for the smallest allocatable
544 * units of memory (here, pages), and each level above it describes
545 * pairs of units from the levels below, hence, "buddies".
546 * At a high level, all that happens here is marking the table entry
547 * at the bottom level available, and propagating the changes upward
548 * as necessary, plus some accounting needed to play nicely with other
549 * parts of the VM system.
550 * At each level, we keep a list of pages, which are heads of continuous
551 * free pages of length of (1 << order) and marked with _mapcount
552 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
553 * field.
554 * So when we are allocating or freeing one, we can derive the state of the
555 * other. That is, if we allocate a small block, and both were
556 * free, the remainder of the region must be split into blocks.
557 * If a block is freed, and its buddy is also free, then this
558 * triggers coalescing into a block of larger size.
559 *
560 * -- nyc
561 */
562
563 static inline void __free_one_page(struct page *page,
564 unsigned long pfn,
565 struct zone *zone, unsigned int order,
566 int migratetype)
567 {
568 unsigned long page_idx;
569 unsigned long combined_idx;
570 unsigned long uninitialized_var(buddy_idx);
571 struct page *buddy;
572
573 VM_BUG_ON(!zone_is_initialized(zone));
574
575 if (unlikely(PageCompound(page)))
576 if (unlikely(destroy_compound_page(page, order)))
577 return;
578
579 VM_BUG_ON(migratetype == -1);
580
581 page_idx = pfn & ((1 << MAX_ORDER) - 1);
582
583 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
584 VM_BUG_ON_PAGE(bad_range(zone, page), page);
585
586 while (order < MAX_ORDER-1) {
587 buddy_idx = __find_buddy_index(page_idx, order);
588 buddy = page + (buddy_idx - page_idx);
589 if (!page_is_buddy(page, buddy, order))
590 break;
591 /*
592 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
593 * merge with it and move up one order.
594 */
595 if (page_is_guard(buddy)) {
596 clear_page_guard_flag(buddy);
597 set_page_private(page, 0);
598 __mod_zone_freepage_state(zone, 1 << order,
599 migratetype);
600 } else {
601 list_del(&buddy->lru);
602 zone->free_area[order].nr_free--;
603 rmv_page_order(buddy);
604 }
605 combined_idx = buddy_idx & page_idx;
606 page = page + (combined_idx - page_idx);
607 page_idx = combined_idx;
608 order++;
609 }
610 set_page_order(page, order);
611
612 /*
613 * If this is not the largest possible page, check if the buddy
614 * of the next-highest order is free. If it is, it's possible
615 * that pages are being freed that will coalesce soon. In case,
616 * that is happening, add the free page to the tail of the list
617 * so it's less likely to be used soon and more likely to be merged
618 * as a higher order page
619 */
620 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
621 struct page *higher_page, *higher_buddy;
622 combined_idx = buddy_idx & page_idx;
623 higher_page = page + (combined_idx - page_idx);
624 buddy_idx = __find_buddy_index(combined_idx, order + 1);
625 higher_buddy = higher_page + (buddy_idx - combined_idx);
626 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
627 list_add_tail(&page->lru,
628 &zone->free_area[order].free_list[migratetype]);
629 goto out;
630 }
631 }
632
633 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
634 out:
635 zone->free_area[order].nr_free++;
636 }
637
638 static inline int free_pages_check(struct page *page)
639 {
640 const char *bad_reason = NULL;
641 unsigned long bad_flags = 0;
642
643 if (unlikely(page_mapcount(page)))
644 bad_reason = "nonzero mapcount";
645 if (unlikely(page->mapping != NULL))
646 bad_reason = "non-NULL mapping";
647 if (unlikely(atomic_read(&page->_count) != 0))
648 bad_reason = "nonzero _count";
649 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
650 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
651 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
652 }
653 if (unlikely(mem_cgroup_bad_page_check(page)))
654 bad_reason = "cgroup check failed";
655 if (unlikely(bad_reason)) {
656 bad_page(page, bad_reason, bad_flags);
657 return 1;
658 }
659 page_cpupid_reset_last(page);
660 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
661 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
662 return 0;
663 }
664
665 /*
666 * Frees a number of pages from the PCP lists
667 * Assumes all pages on list are in same zone, and of same order.
668 * count is the number of pages to free.
669 *
670 * If the zone was previously in an "all pages pinned" state then look to
671 * see if this freeing clears that state.
672 *
673 * And clear the zone's pages_scanned counter, to hold off the "all pages are
674 * pinned" detection logic.
675 */
676 static void free_pcppages_bulk(struct zone *zone, int count,
677 struct per_cpu_pages *pcp)
678 {
679 int migratetype = 0;
680 int batch_free = 0;
681 int to_free = count;
682 unsigned long nr_scanned;
683
684 spin_lock(&zone->lock);
685 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
686 if (nr_scanned)
687 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
688
689 while (to_free) {
690 struct page *page;
691 struct list_head *list;
692
693 /*
694 * Remove pages from lists in a round-robin fashion. A
695 * batch_free count is maintained that is incremented when an
696 * empty list is encountered. This is so more pages are freed
697 * off fuller lists instead of spinning excessively around empty
698 * lists
699 */
700 do {
701 batch_free++;
702 if (++migratetype == MIGRATE_PCPTYPES)
703 migratetype = 0;
704 list = &pcp->lists[migratetype];
705 } while (list_empty(list));
706
707 /* This is the only non-empty list. Free them all. */
708 if (batch_free == MIGRATE_PCPTYPES)
709 batch_free = to_free;
710
711 do {
712 int mt; /* migratetype of the to-be-freed page */
713
714 page = list_entry(list->prev, struct page, lru);
715 /* must delete as __free_one_page list manipulates */
716 list_del(&page->lru);
717 mt = get_freepage_migratetype(page);
718 if (unlikely(has_isolate_pageblock(zone))) {
719 mt = get_pageblock_migratetype(page);
720 if (is_migrate_isolate(mt))
721 goto skip_counting;
722 }
723 __mod_zone_freepage_state(zone, 1, mt);
724
725 skip_counting:
726 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
727 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
728 trace_mm_page_pcpu_drain(page, 0, mt);
729 } while (--to_free && --batch_free && !list_empty(list));
730 }
731 spin_unlock(&zone->lock);
732 }
733
734 static void free_one_page(struct zone *zone,
735 struct page *page, unsigned long pfn,
736 unsigned int order,
737 int migratetype)
738 {
739 unsigned long nr_scanned;
740 spin_lock(&zone->lock);
741 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
742 if (nr_scanned)
743 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
744
745 if (unlikely(has_isolate_pageblock(zone) ||
746 is_migrate_isolate(migratetype))) {
747 migratetype = get_pfnblock_migratetype(page, pfn);
748 if (is_migrate_isolate(migratetype))
749 goto skip_counting;
750 }
751 __mod_zone_freepage_state(zone, 1 << order, migratetype);
752
753 skip_counting:
754 __free_one_page(page, pfn, zone, order, migratetype);
755 spin_unlock(&zone->lock);
756 }
757
758 static bool free_pages_prepare(struct page *page, unsigned int order)
759 {
760 int i;
761 int bad = 0;
762
763 trace_mm_page_free(page, order);
764 kmemcheck_free_shadow(page, order);
765
766 if (PageAnon(page))
767 page->mapping = NULL;
768 for (i = 0; i < (1 << order); i++)
769 bad += free_pages_check(page + i);
770 if (bad)
771 return false;
772
773 if (!PageHighMem(page)) {
774 debug_check_no_locks_freed(page_address(page),
775 PAGE_SIZE << order);
776 debug_check_no_obj_freed(page_address(page),
777 PAGE_SIZE << order);
778 }
779 arch_free_page(page, order);
780 kernel_map_pages(page, 1 << order, 0);
781
782 return true;
783 }
784
785 static void __free_pages_ok(struct page *page, unsigned int order)
786 {
787 unsigned long flags;
788 int migratetype;
789 unsigned long pfn = page_to_pfn(page);
790
791 if (!free_pages_prepare(page, order))
792 return;
793
794 migratetype = get_pfnblock_migratetype(page, pfn);
795 local_irq_save(flags);
796 __count_vm_events(PGFREE, 1 << order);
797 set_freepage_migratetype(page, migratetype);
798 free_one_page(page_zone(page), page, pfn, order, migratetype);
799 local_irq_restore(flags);
800 }
801
802 void __init __free_pages_bootmem(struct page *page, unsigned int order)
803 {
804 unsigned int nr_pages = 1 << order;
805 struct page *p = page;
806 unsigned int loop;
807
808 prefetchw(p);
809 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
810 prefetchw(p + 1);
811 __ClearPageReserved(p);
812 set_page_count(p, 0);
813 }
814 __ClearPageReserved(p);
815 set_page_count(p, 0);
816
817 page_zone(page)->managed_pages += nr_pages;
818 set_page_refcounted(page);
819 __free_pages(page, order);
820 }
821
822 #ifdef CONFIG_CMA
823 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
824 void __init init_cma_reserved_pageblock(struct page *page)
825 {
826 unsigned i = pageblock_nr_pages;
827 struct page *p = page;
828
829 do {
830 __ClearPageReserved(p);
831 set_page_count(p, 0);
832 } while (++p, --i);
833
834 set_pageblock_migratetype(page, MIGRATE_CMA);
835
836 if (pageblock_order >= MAX_ORDER) {
837 i = pageblock_nr_pages;
838 p = page;
839 do {
840 set_page_refcounted(p);
841 __free_pages(p, MAX_ORDER - 1);
842 p += MAX_ORDER_NR_PAGES;
843 } while (i -= MAX_ORDER_NR_PAGES);
844 } else {
845 set_page_refcounted(page);
846 __free_pages(page, pageblock_order);
847 }
848
849 adjust_managed_page_count(page, pageblock_nr_pages);
850 }
851 #endif
852
853 /*
854 * The order of subdivision here is critical for the IO subsystem.
855 * Please do not alter this order without good reasons and regression
856 * testing. Specifically, as large blocks of memory are subdivided,
857 * the order in which smaller blocks are delivered depends on the order
858 * they're subdivided in this function. This is the primary factor
859 * influencing the order in which pages are delivered to the IO
860 * subsystem according to empirical testing, and this is also justified
861 * by considering the behavior of a buddy system containing a single
862 * large block of memory acted on by a series of small allocations.
863 * This behavior is a critical factor in sglist merging's success.
864 *
865 * -- nyc
866 */
867 static inline void expand(struct zone *zone, struct page *page,
868 int low, int high, struct free_area *area,
869 int migratetype)
870 {
871 unsigned long size = 1 << high;
872
873 while (high > low) {
874 area--;
875 high--;
876 size >>= 1;
877 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
878
879 #ifdef CONFIG_DEBUG_PAGEALLOC
880 if (high < debug_guardpage_minorder()) {
881 /*
882 * Mark as guard pages (or page), that will allow to
883 * merge back to allocator when buddy will be freed.
884 * Corresponding page table entries will not be touched,
885 * pages will stay not present in virtual address space
886 */
887 INIT_LIST_HEAD(&page[size].lru);
888 set_page_guard_flag(&page[size]);
889 set_page_private(&page[size], high);
890 /* Guard pages are not available for any usage */
891 __mod_zone_freepage_state(zone, -(1 << high),
892 migratetype);
893 continue;
894 }
895 #endif
896 list_add(&page[size].lru, &area->free_list[migratetype]);
897 area->nr_free++;
898 set_page_order(&page[size], high);
899 }
900 }
901
902 /*
903 * This page is about to be returned from the page allocator
904 */
905 static inline int check_new_page(struct page *page)
906 {
907 const char *bad_reason = NULL;
908 unsigned long bad_flags = 0;
909
910 if (unlikely(page_mapcount(page)))
911 bad_reason = "nonzero mapcount";
912 if (unlikely(page->mapping != NULL))
913 bad_reason = "non-NULL mapping";
914 if (unlikely(atomic_read(&page->_count) != 0))
915 bad_reason = "nonzero _count";
916 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
917 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
918 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
919 }
920 if (unlikely(mem_cgroup_bad_page_check(page)))
921 bad_reason = "cgroup check failed";
922 if (unlikely(bad_reason)) {
923 bad_page(page, bad_reason, bad_flags);
924 return 1;
925 }
926 return 0;
927 }
928
929 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
930 {
931 int i;
932
933 for (i = 0; i < (1 << order); i++) {
934 struct page *p = page + i;
935 if (unlikely(check_new_page(p)))
936 return 1;
937 }
938
939 set_page_private(page, 0);
940 set_page_refcounted(page);
941
942 arch_alloc_page(page, order);
943 kernel_map_pages(page, 1 << order, 1);
944
945 if (gfp_flags & __GFP_ZERO)
946 prep_zero_page(page, order, gfp_flags);
947
948 if (order && (gfp_flags & __GFP_COMP))
949 prep_compound_page(page, order);
950
951 return 0;
952 }
953
954 /*
955 * Go through the free lists for the given migratetype and remove
956 * the smallest available page from the freelists
957 */
958 static inline
959 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
960 int migratetype)
961 {
962 unsigned int current_order;
963 struct free_area *area;
964 struct page *page;
965
966 /* Find a page of the appropriate size in the preferred list */
967 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
968 area = &(zone->free_area[current_order]);
969 if (list_empty(&area->free_list[migratetype]))
970 continue;
971
972 page = list_entry(area->free_list[migratetype].next,
973 struct page, lru);
974 list_del(&page->lru);
975 rmv_page_order(page);
976 area->nr_free--;
977 expand(zone, page, order, current_order, area, migratetype);
978 set_freepage_migratetype(page, migratetype);
979 return page;
980 }
981
982 return NULL;
983 }
984
985
986 /*
987 * This array describes the order lists are fallen back to when
988 * the free lists for the desirable migrate type are depleted
989 */
990 static int fallbacks[MIGRATE_TYPES][4] = {
991 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
992 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
993 #ifdef CONFIG_CMA
994 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
995 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
996 #else
997 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
998 #endif
999 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1000 #ifdef CONFIG_MEMORY_ISOLATION
1001 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1002 #endif
1003 };
1004
1005 /*
1006 * Move the free pages in a range to the free lists of the requested type.
1007 * Note that start_page and end_pages are not aligned on a pageblock
1008 * boundary. If alignment is required, use move_freepages_block()
1009 */
1010 int move_freepages(struct zone *zone,
1011 struct page *start_page, struct page *end_page,
1012 int migratetype)
1013 {
1014 struct page *page;
1015 unsigned long order;
1016 int pages_moved = 0;
1017
1018 #ifndef CONFIG_HOLES_IN_ZONE
1019 /*
1020 * page_zone is not safe to call in this context when
1021 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1022 * anyway as we check zone boundaries in move_freepages_block().
1023 * Remove at a later date when no bug reports exist related to
1024 * grouping pages by mobility
1025 */
1026 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1027 #endif
1028
1029 for (page = start_page; page <= end_page;) {
1030 /* Make sure we are not inadvertently changing nodes */
1031 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1032
1033 if (!pfn_valid_within(page_to_pfn(page))) {
1034 page++;
1035 continue;
1036 }
1037
1038 if (!PageBuddy(page)) {
1039 page++;
1040 continue;
1041 }
1042
1043 order = page_order(page);
1044 list_move(&page->lru,
1045 &zone->free_area[order].free_list[migratetype]);
1046 set_freepage_migratetype(page, migratetype);
1047 page += 1 << order;
1048 pages_moved += 1 << order;
1049 }
1050
1051 return pages_moved;
1052 }
1053
1054 int move_freepages_block(struct zone *zone, struct page *page,
1055 int migratetype)
1056 {
1057 unsigned long start_pfn, end_pfn;
1058 struct page *start_page, *end_page;
1059
1060 start_pfn = page_to_pfn(page);
1061 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1062 start_page = pfn_to_page(start_pfn);
1063 end_page = start_page + pageblock_nr_pages - 1;
1064 end_pfn = start_pfn + pageblock_nr_pages - 1;
1065
1066 /* Do not cross zone boundaries */
1067 if (!zone_spans_pfn(zone, start_pfn))
1068 start_page = page;
1069 if (!zone_spans_pfn(zone, end_pfn))
1070 return 0;
1071
1072 return move_freepages(zone, start_page, end_page, migratetype);
1073 }
1074
1075 static void change_pageblock_range(struct page *pageblock_page,
1076 int start_order, int migratetype)
1077 {
1078 int nr_pageblocks = 1 << (start_order - pageblock_order);
1079
1080 while (nr_pageblocks--) {
1081 set_pageblock_migratetype(pageblock_page, migratetype);
1082 pageblock_page += pageblock_nr_pages;
1083 }
1084 }
1085
1086 /*
1087 * If breaking a large block of pages, move all free pages to the preferred
1088 * allocation list. If falling back for a reclaimable kernel allocation, be
1089 * more aggressive about taking ownership of free pages.
1090 *
1091 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1092 * nor move CMA pages to different free lists. We don't want unmovable pages
1093 * to be allocated from MIGRATE_CMA areas.
1094 *
1095 * Returns the new migratetype of the pageblock (or the same old migratetype
1096 * if it was unchanged).
1097 */
1098 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1099 int start_type, int fallback_type)
1100 {
1101 int current_order = page_order(page);
1102
1103 /*
1104 * When borrowing from MIGRATE_CMA, we need to release the excess
1105 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1106 * is set to CMA so it is returned to the correct freelist in case
1107 * the page ends up being not actually allocated from the pcp lists.
1108 */
1109 if (is_migrate_cma(fallback_type))
1110 return fallback_type;
1111
1112 /* Take ownership for orders >= pageblock_order */
1113 if (current_order >= pageblock_order) {
1114 change_pageblock_range(page, current_order, start_type);
1115 return start_type;
1116 }
1117
1118 if (current_order >= pageblock_order / 2 ||
1119 start_type == MIGRATE_RECLAIMABLE ||
1120 page_group_by_mobility_disabled) {
1121 int pages;
1122
1123 pages = move_freepages_block(zone, page, start_type);
1124
1125 /* Claim the whole block if over half of it is free */
1126 if (pages >= (1 << (pageblock_order-1)) ||
1127 page_group_by_mobility_disabled) {
1128
1129 set_pageblock_migratetype(page, start_type);
1130 return start_type;
1131 }
1132
1133 }
1134
1135 return fallback_type;
1136 }
1137
1138 /* Remove an element from the buddy allocator from the fallback list */
1139 static inline struct page *
1140 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1141 {
1142 struct free_area *area;
1143 unsigned int current_order;
1144 struct page *page;
1145 int migratetype, new_type, i;
1146
1147 /* Find the largest possible block of pages in the other list */
1148 for (current_order = MAX_ORDER-1;
1149 current_order >= order && current_order <= MAX_ORDER-1;
1150 --current_order) {
1151 for (i = 0;; i++) {
1152 migratetype = fallbacks[start_migratetype][i];
1153
1154 /* MIGRATE_RESERVE handled later if necessary */
1155 if (migratetype == MIGRATE_RESERVE)
1156 break;
1157
1158 area = &(zone->free_area[current_order]);
1159 if (list_empty(&area->free_list[migratetype]))
1160 continue;
1161
1162 page = list_entry(area->free_list[migratetype].next,
1163 struct page, lru);
1164 area->nr_free--;
1165
1166 new_type = try_to_steal_freepages(zone, page,
1167 start_migratetype,
1168 migratetype);
1169
1170 /* Remove the page from the freelists */
1171 list_del(&page->lru);
1172 rmv_page_order(page);
1173
1174 expand(zone, page, order, current_order, area,
1175 new_type);
1176 /* The freepage_migratetype may differ from pageblock's
1177 * migratetype depending on the decisions in
1178 * try_to_steal_freepages. This is OK as long as it does
1179 * not differ for MIGRATE_CMA type.
1180 */
1181 set_freepage_migratetype(page, new_type);
1182
1183 trace_mm_page_alloc_extfrag(page, order, current_order,
1184 start_migratetype, migratetype, new_type);
1185
1186 return page;
1187 }
1188 }
1189
1190 return NULL;
1191 }
1192
1193 /*
1194 * Do the hard work of removing an element from the buddy allocator.
1195 * Call me with the zone->lock already held.
1196 */
1197 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1198 int migratetype)
1199 {
1200 struct page *page;
1201
1202 retry_reserve:
1203 page = __rmqueue_smallest(zone, order, migratetype);
1204
1205 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1206 page = __rmqueue_fallback(zone, order, migratetype);
1207
1208 /*
1209 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1210 * is used because __rmqueue_smallest is an inline function
1211 * and we want just one call site
1212 */
1213 if (!page) {
1214 migratetype = MIGRATE_RESERVE;
1215 goto retry_reserve;
1216 }
1217 }
1218
1219 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1220 return page;
1221 }
1222
1223 /*
1224 * Obtain a specified number of elements from the buddy allocator, all under
1225 * a single hold of the lock, for efficiency. Add them to the supplied list.
1226 * Returns the number of new pages which were placed at *list.
1227 */
1228 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1229 unsigned long count, struct list_head *list,
1230 int migratetype, bool cold)
1231 {
1232 int i;
1233
1234 spin_lock(&zone->lock);
1235 for (i = 0; i < count; ++i) {
1236 struct page *page = __rmqueue(zone, order, migratetype);
1237 if (unlikely(page == NULL))
1238 break;
1239
1240 /*
1241 * Split buddy pages returned by expand() are received here
1242 * in physical page order. The page is added to the callers and
1243 * list and the list head then moves forward. From the callers
1244 * perspective, the linked list is ordered by page number in
1245 * some conditions. This is useful for IO devices that can
1246 * merge IO requests if the physical pages are ordered
1247 * properly.
1248 */
1249 if (likely(!cold))
1250 list_add(&page->lru, list);
1251 else
1252 list_add_tail(&page->lru, list);
1253 list = &page->lru;
1254 if (is_migrate_cma(get_freepage_migratetype(page)))
1255 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1256 -(1 << order));
1257 }
1258 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1259 spin_unlock(&zone->lock);
1260 return i;
1261 }
1262
1263 #ifdef CONFIG_NUMA
1264 /*
1265 * Called from the vmstat counter updater to drain pagesets of this
1266 * currently executing processor on remote nodes after they have
1267 * expired.
1268 *
1269 * Note that this function must be called with the thread pinned to
1270 * a single processor.
1271 */
1272 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1273 {
1274 unsigned long flags;
1275 int to_drain, batch;
1276
1277 local_irq_save(flags);
1278 batch = ACCESS_ONCE(pcp->batch);
1279 to_drain = min(pcp->count, batch);
1280 if (to_drain > 0) {
1281 free_pcppages_bulk(zone, to_drain, pcp);
1282 pcp->count -= to_drain;
1283 }
1284 local_irq_restore(flags);
1285 }
1286 #endif
1287
1288 /*
1289 * Drain pages of the indicated processor.
1290 *
1291 * The processor must either be the current processor and the
1292 * thread pinned to the current processor or a processor that
1293 * is not online.
1294 */
1295 static void drain_pages(unsigned int cpu)
1296 {
1297 unsigned long flags;
1298 struct zone *zone;
1299
1300 for_each_populated_zone(zone) {
1301 struct per_cpu_pageset *pset;
1302 struct per_cpu_pages *pcp;
1303
1304 local_irq_save(flags);
1305 pset = per_cpu_ptr(zone->pageset, cpu);
1306
1307 pcp = &pset->pcp;
1308 if (pcp->count) {
1309 free_pcppages_bulk(zone, pcp->count, pcp);
1310 pcp->count = 0;
1311 }
1312 local_irq_restore(flags);
1313 }
1314 }
1315
1316 /*
1317 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1318 */
1319 void drain_local_pages(void *arg)
1320 {
1321 drain_pages(smp_processor_id());
1322 }
1323
1324 /*
1325 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1326 *
1327 * Note that this code is protected against sending an IPI to an offline
1328 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1329 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1330 * nothing keeps CPUs from showing up after we populated the cpumask and
1331 * before the call to on_each_cpu_mask().
1332 */
1333 void drain_all_pages(void)
1334 {
1335 int cpu;
1336 struct per_cpu_pageset *pcp;
1337 struct zone *zone;
1338
1339 /*
1340 * Allocate in the BSS so we wont require allocation in
1341 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1342 */
1343 static cpumask_t cpus_with_pcps;
1344
1345 /*
1346 * We don't care about racing with CPU hotplug event
1347 * as offline notification will cause the notified
1348 * cpu to drain that CPU pcps and on_each_cpu_mask
1349 * disables preemption as part of its processing
1350 */
1351 for_each_online_cpu(cpu) {
1352 bool has_pcps = false;
1353 for_each_populated_zone(zone) {
1354 pcp = per_cpu_ptr(zone->pageset, cpu);
1355 if (pcp->pcp.count) {
1356 has_pcps = true;
1357 break;
1358 }
1359 }
1360 if (has_pcps)
1361 cpumask_set_cpu(cpu, &cpus_with_pcps);
1362 else
1363 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1364 }
1365 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1366 }
1367
1368 #ifdef CONFIG_HIBERNATION
1369
1370 void mark_free_pages(struct zone *zone)
1371 {
1372 unsigned long pfn, max_zone_pfn;
1373 unsigned long flags;
1374 unsigned int order, t;
1375 struct list_head *curr;
1376
1377 if (zone_is_empty(zone))
1378 return;
1379
1380 spin_lock_irqsave(&zone->lock, flags);
1381
1382 max_zone_pfn = zone_end_pfn(zone);
1383 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1384 if (pfn_valid(pfn)) {
1385 struct page *page = pfn_to_page(pfn);
1386
1387 if (!swsusp_page_is_forbidden(page))
1388 swsusp_unset_page_free(page);
1389 }
1390
1391 for_each_migratetype_order(order, t) {
1392 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1393 unsigned long i;
1394
1395 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1396 for (i = 0; i < (1UL << order); i++)
1397 swsusp_set_page_free(pfn_to_page(pfn + i));
1398 }
1399 }
1400 spin_unlock_irqrestore(&zone->lock, flags);
1401 }
1402 #endif /* CONFIG_PM */
1403
1404 /*
1405 * Free a 0-order page
1406 * cold == true ? free a cold page : free a hot page
1407 */
1408 void free_hot_cold_page(struct page *page, bool cold)
1409 {
1410 struct zone *zone = page_zone(page);
1411 struct per_cpu_pages *pcp;
1412 unsigned long flags;
1413 unsigned long pfn = page_to_pfn(page);
1414 int migratetype;
1415
1416 if (!free_pages_prepare(page, 0))
1417 return;
1418
1419 migratetype = get_pfnblock_migratetype(page, pfn);
1420 set_freepage_migratetype(page, migratetype);
1421 local_irq_save(flags);
1422 __count_vm_event(PGFREE);
1423
1424 /*
1425 * We only track unmovable, reclaimable and movable on pcp lists.
1426 * Free ISOLATE pages back to the allocator because they are being
1427 * offlined but treat RESERVE as movable pages so we can get those
1428 * areas back if necessary. Otherwise, we may have to free
1429 * excessively into the page allocator
1430 */
1431 if (migratetype >= MIGRATE_PCPTYPES) {
1432 if (unlikely(is_migrate_isolate(migratetype))) {
1433 free_one_page(zone, page, pfn, 0, migratetype);
1434 goto out;
1435 }
1436 migratetype = MIGRATE_MOVABLE;
1437 }
1438
1439 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1440 if (!cold)
1441 list_add(&page->lru, &pcp->lists[migratetype]);
1442 else
1443 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1444 pcp->count++;
1445 if (pcp->count >= pcp->high) {
1446 unsigned long batch = ACCESS_ONCE(pcp->batch);
1447 free_pcppages_bulk(zone, batch, pcp);
1448 pcp->count -= batch;
1449 }
1450
1451 out:
1452 local_irq_restore(flags);
1453 }
1454
1455 /*
1456 * Free a list of 0-order pages
1457 */
1458 void free_hot_cold_page_list(struct list_head *list, bool cold)
1459 {
1460 struct page *page, *next;
1461
1462 list_for_each_entry_safe(page, next, list, lru) {
1463 trace_mm_page_free_batched(page, cold);
1464 free_hot_cold_page(page, cold);
1465 }
1466 }
1467
1468 /*
1469 * split_page takes a non-compound higher-order page, and splits it into
1470 * n (1<<order) sub-pages: page[0..n]
1471 * Each sub-page must be freed individually.
1472 *
1473 * Note: this is probably too low level an operation for use in drivers.
1474 * Please consult with lkml before using this in your driver.
1475 */
1476 void split_page(struct page *page, unsigned int order)
1477 {
1478 int i;
1479
1480 VM_BUG_ON_PAGE(PageCompound(page), page);
1481 VM_BUG_ON_PAGE(!page_count(page), page);
1482
1483 #ifdef CONFIG_KMEMCHECK
1484 /*
1485 * Split shadow pages too, because free(page[0]) would
1486 * otherwise free the whole shadow.
1487 */
1488 if (kmemcheck_page_is_tracked(page))
1489 split_page(virt_to_page(page[0].shadow), order);
1490 #endif
1491
1492 for (i = 1; i < (1 << order); i++)
1493 set_page_refcounted(page + i);
1494 }
1495 EXPORT_SYMBOL_GPL(split_page);
1496
1497 static int __isolate_free_page(struct page *page, unsigned int order)
1498 {
1499 unsigned long watermark;
1500 struct zone *zone;
1501 int mt;
1502
1503 BUG_ON(!PageBuddy(page));
1504
1505 zone = page_zone(page);
1506 mt = get_pageblock_migratetype(page);
1507
1508 if (!is_migrate_isolate(mt)) {
1509 /* Obey watermarks as if the page was being allocated */
1510 watermark = low_wmark_pages(zone) + (1 << order);
1511 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1512 return 0;
1513
1514 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1515 }
1516
1517 /* Remove page from free list */
1518 list_del(&page->lru);
1519 zone->free_area[order].nr_free--;
1520 rmv_page_order(page);
1521
1522 /* Set the pageblock if the isolated page is at least a pageblock */
1523 if (order >= pageblock_order - 1) {
1524 struct page *endpage = page + (1 << order) - 1;
1525 for (; page < endpage; page += pageblock_nr_pages) {
1526 int mt = get_pageblock_migratetype(page);
1527 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1528 set_pageblock_migratetype(page,
1529 MIGRATE_MOVABLE);
1530 }
1531 }
1532
1533 return 1UL << order;
1534 }
1535
1536 /*
1537 * Similar to split_page except the page is already free. As this is only
1538 * being used for migration, the migratetype of the block also changes.
1539 * As this is called with interrupts disabled, the caller is responsible
1540 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1541 * are enabled.
1542 *
1543 * Note: this is probably too low level an operation for use in drivers.
1544 * Please consult with lkml before using this in your driver.
1545 */
1546 int split_free_page(struct page *page)
1547 {
1548 unsigned int order;
1549 int nr_pages;
1550
1551 order = page_order(page);
1552
1553 nr_pages = __isolate_free_page(page, order);
1554 if (!nr_pages)
1555 return 0;
1556
1557 /* Split into individual pages */
1558 set_page_refcounted(page);
1559 split_page(page, order);
1560 return nr_pages;
1561 }
1562
1563 /*
1564 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1565 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1566 * or two.
1567 */
1568 static inline
1569 struct page *buffered_rmqueue(struct zone *preferred_zone,
1570 struct zone *zone, unsigned int order,
1571 gfp_t gfp_flags, int migratetype)
1572 {
1573 unsigned long flags;
1574 struct page *page;
1575 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1576
1577 again:
1578 if (likely(order == 0)) {
1579 struct per_cpu_pages *pcp;
1580 struct list_head *list;
1581
1582 local_irq_save(flags);
1583 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1584 list = &pcp->lists[migratetype];
1585 if (list_empty(list)) {
1586 pcp->count += rmqueue_bulk(zone, 0,
1587 pcp->batch, list,
1588 migratetype, cold);
1589 if (unlikely(list_empty(list)))
1590 goto failed;
1591 }
1592
1593 if (cold)
1594 page = list_entry(list->prev, struct page, lru);
1595 else
1596 page = list_entry(list->next, struct page, lru);
1597
1598 list_del(&page->lru);
1599 pcp->count--;
1600 } else {
1601 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1602 /*
1603 * __GFP_NOFAIL is not to be used in new code.
1604 *
1605 * All __GFP_NOFAIL callers should be fixed so that they
1606 * properly detect and handle allocation failures.
1607 *
1608 * We most definitely don't want callers attempting to
1609 * allocate greater than order-1 page units with
1610 * __GFP_NOFAIL.
1611 */
1612 WARN_ON_ONCE(order > 1);
1613 }
1614 spin_lock_irqsave(&zone->lock, flags);
1615 page = __rmqueue(zone, order, migratetype);
1616 spin_unlock(&zone->lock);
1617 if (!page)
1618 goto failed;
1619 __mod_zone_freepage_state(zone, -(1 << order),
1620 get_freepage_migratetype(page));
1621 }
1622
1623 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1624 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1625 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1626 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1627
1628 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1629 zone_statistics(preferred_zone, zone, gfp_flags);
1630 local_irq_restore(flags);
1631
1632 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1633 if (prep_new_page(page, order, gfp_flags))
1634 goto again;
1635 return page;
1636
1637 failed:
1638 local_irq_restore(flags);
1639 return NULL;
1640 }
1641
1642 #ifdef CONFIG_FAIL_PAGE_ALLOC
1643
1644 static struct {
1645 struct fault_attr attr;
1646
1647 u32 ignore_gfp_highmem;
1648 u32 ignore_gfp_wait;
1649 u32 min_order;
1650 } fail_page_alloc = {
1651 .attr = FAULT_ATTR_INITIALIZER,
1652 .ignore_gfp_wait = 1,
1653 .ignore_gfp_highmem = 1,
1654 .min_order = 1,
1655 };
1656
1657 static int __init setup_fail_page_alloc(char *str)
1658 {
1659 return setup_fault_attr(&fail_page_alloc.attr, str);
1660 }
1661 __setup("fail_page_alloc=", setup_fail_page_alloc);
1662
1663 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1664 {
1665 if (order < fail_page_alloc.min_order)
1666 return false;
1667 if (gfp_mask & __GFP_NOFAIL)
1668 return false;
1669 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1670 return false;
1671 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1672 return false;
1673
1674 return should_fail(&fail_page_alloc.attr, 1 << order);
1675 }
1676
1677 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1678
1679 static int __init fail_page_alloc_debugfs(void)
1680 {
1681 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1682 struct dentry *dir;
1683
1684 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1685 &fail_page_alloc.attr);
1686 if (IS_ERR(dir))
1687 return PTR_ERR(dir);
1688
1689 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1690 &fail_page_alloc.ignore_gfp_wait))
1691 goto fail;
1692 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1693 &fail_page_alloc.ignore_gfp_highmem))
1694 goto fail;
1695 if (!debugfs_create_u32("min-order", mode, dir,
1696 &fail_page_alloc.min_order))
1697 goto fail;
1698
1699 return 0;
1700 fail:
1701 debugfs_remove_recursive(dir);
1702
1703 return -ENOMEM;
1704 }
1705
1706 late_initcall(fail_page_alloc_debugfs);
1707
1708 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1709
1710 #else /* CONFIG_FAIL_PAGE_ALLOC */
1711
1712 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1713 {
1714 return false;
1715 }
1716
1717 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1718
1719 /*
1720 * Return true if free pages are above 'mark'. This takes into account the order
1721 * of the allocation.
1722 */
1723 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1724 unsigned long mark, int classzone_idx, int alloc_flags,
1725 long free_pages)
1726 {
1727 /* free_pages my go negative - that's OK */
1728 long min = mark;
1729 int o;
1730 long free_cma = 0;
1731
1732 free_pages -= (1 << order) - 1;
1733 if (alloc_flags & ALLOC_HIGH)
1734 min -= min / 2;
1735 if (alloc_flags & ALLOC_HARDER)
1736 min -= min / 4;
1737 #ifdef CONFIG_CMA
1738 /* If allocation can't use CMA areas don't use free CMA pages */
1739 if (!(alloc_flags & ALLOC_CMA))
1740 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1741 #endif
1742
1743 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1744 return false;
1745 for (o = 0; o < order; o++) {
1746 /* At the next order, this order's pages become unavailable */
1747 free_pages -= z->free_area[o].nr_free << o;
1748
1749 /* Require fewer higher order pages to be free */
1750 min >>= 1;
1751
1752 if (free_pages <= min)
1753 return false;
1754 }
1755 return true;
1756 }
1757
1758 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1759 int classzone_idx, int alloc_flags)
1760 {
1761 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1762 zone_page_state(z, NR_FREE_PAGES));
1763 }
1764
1765 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1766 unsigned long mark, int classzone_idx, int alloc_flags)
1767 {
1768 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1769
1770 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1771 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1772
1773 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1774 free_pages);
1775 }
1776
1777 #ifdef CONFIG_NUMA
1778 /*
1779 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1780 * skip over zones that are not allowed by the cpuset, or that have
1781 * been recently (in last second) found to be nearly full. See further
1782 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1783 * that have to skip over a lot of full or unallowed zones.
1784 *
1785 * If the zonelist cache is present in the passed zonelist, then
1786 * returns a pointer to the allowed node mask (either the current
1787 * tasks mems_allowed, or node_states[N_MEMORY].)
1788 *
1789 * If the zonelist cache is not available for this zonelist, does
1790 * nothing and returns NULL.
1791 *
1792 * If the fullzones BITMAP in the zonelist cache is stale (more than
1793 * a second since last zap'd) then we zap it out (clear its bits.)
1794 *
1795 * We hold off even calling zlc_setup, until after we've checked the
1796 * first zone in the zonelist, on the theory that most allocations will
1797 * be satisfied from that first zone, so best to examine that zone as
1798 * quickly as we can.
1799 */
1800 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1801 {
1802 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1803 nodemask_t *allowednodes; /* zonelist_cache approximation */
1804
1805 zlc = zonelist->zlcache_ptr;
1806 if (!zlc)
1807 return NULL;
1808
1809 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1810 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1811 zlc->last_full_zap = jiffies;
1812 }
1813
1814 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1815 &cpuset_current_mems_allowed :
1816 &node_states[N_MEMORY];
1817 return allowednodes;
1818 }
1819
1820 /*
1821 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1822 * if it is worth looking at further for free memory:
1823 * 1) Check that the zone isn't thought to be full (doesn't have its
1824 * bit set in the zonelist_cache fullzones BITMAP).
1825 * 2) Check that the zones node (obtained from the zonelist_cache
1826 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1827 * Return true (non-zero) if zone is worth looking at further, or
1828 * else return false (zero) if it is not.
1829 *
1830 * This check -ignores- the distinction between various watermarks,
1831 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1832 * found to be full for any variation of these watermarks, it will
1833 * be considered full for up to one second by all requests, unless
1834 * we are so low on memory on all allowed nodes that we are forced
1835 * into the second scan of the zonelist.
1836 *
1837 * In the second scan we ignore this zonelist cache and exactly
1838 * apply the watermarks to all zones, even it is slower to do so.
1839 * We are low on memory in the second scan, and should leave no stone
1840 * unturned looking for a free page.
1841 */
1842 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1843 nodemask_t *allowednodes)
1844 {
1845 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1846 int i; /* index of *z in zonelist zones */
1847 int n; /* node that zone *z is on */
1848
1849 zlc = zonelist->zlcache_ptr;
1850 if (!zlc)
1851 return 1;
1852
1853 i = z - zonelist->_zonerefs;
1854 n = zlc->z_to_n[i];
1855
1856 /* This zone is worth trying if it is allowed but not full */
1857 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1858 }
1859
1860 /*
1861 * Given 'z' scanning a zonelist, set the corresponding bit in
1862 * zlc->fullzones, so that subsequent attempts to allocate a page
1863 * from that zone don't waste time re-examining it.
1864 */
1865 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1866 {
1867 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1868 int i; /* index of *z in zonelist zones */
1869
1870 zlc = zonelist->zlcache_ptr;
1871 if (!zlc)
1872 return;
1873
1874 i = z - zonelist->_zonerefs;
1875
1876 set_bit(i, zlc->fullzones);
1877 }
1878
1879 /*
1880 * clear all zones full, called after direct reclaim makes progress so that
1881 * a zone that was recently full is not skipped over for up to a second
1882 */
1883 static void zlc_clear_zones_full(struct zonelist *zonelist)
1884 {
1885 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1886
1887 zlc = zonelist->zlcache_ptr;
1888 if (!zlc)
1889 return;
1890
1891 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1892 }
1893
1894 static bool zone_local(struct zone *local_zone, struct zone *zone)
1895 {
1896 return local_zone->node == zone->node;
1897 }
1898
1899 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1900 {
1901 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1902 RECLAIM_DISTANCE;
1903 }
1904
1905 #else /* CONFIG_NUMA */
1906
1907 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1908 {
1909 return NULL;
1910 }
1911
1912 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1913 nodemask_t *allowednodes)
1914 {
1915 return 1;
1916 }
1917
1918 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1919 {
1920 }
1921
1922 static void zlc_clear_zones_full(struct zonelist *zonelist)
1923 {
1924 }
1925
1926 static bool zone_local(struct zone *local_zone, struct zone *zone)
1927 {
1928 return true;
1929 }
1930
1931 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1932 {
1933 return true;
1934 }
1935
1936 #endif /* CONFIG_NUMA */
1937
1938 static void reset_alloc_batches(struct zone *preferred_zone)
1939 {
1940 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1941
1942 do {
1943 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1944 high_wmark_pages(zone) - low_wmark_pages(zone) -
1945 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1946 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1947 } while (zone++ != preferred_zone);
1948 }
1949
1950 /*
1951 * get_page_from_freelist goes through the zonelist trying to allocate
1952 * a page.
1953 */
1954 static struct page *
1955 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1956 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1957 struct zone *preferred_zone, int classzone_idx, int migratetype)
1958 {
1959 struct zoneref *z;
1960 struct page *page = NULL;
1961 struct zone *zone;
1962 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1963 int zlc_active = 0; /* set if using zonelist_cache */
1964 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1965 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1966 (gfp_mask & __GFP_WRITE);
1967 int nr_fair_skipped = 0;
1968 bool zonelist_rescan;
1969
1970 zonelist_scan:
1971 zonelist_rescan = false;
1972
1973 /*
1974 * Scan zonelist, looking for a zone with enough free.
1975 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1976 */
1977 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1978 high_zoneidx, nodemask) {
1979 unsigned long mark;
1980
1981 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1982 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1983 continue;
1984 if (cpusets_enabled() &&
1985 (alloc_flags & ALLOC_CPUSET) &&
1986 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1987 continue;
1988 /*
1989 * Distribute pages in proportion to the individual
1990 * zone size to ensure fair page aging. The zone a
1991 * page was allocated in should have no effect on the
1992 * time the page has in memory before being reclaimed.
1993 */
1994 if (alloc_flags & ALLOC_FAIR) {
1995 if (!zone_local(preferred_zone, zone))
1996 break;
1997 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
1998 nr_fair_skipped++;
1999 continue;
2000 }
2001 }
2002 /*
2003 * When allocating a page cache page for writing, we
2004 * want to get it from a zone that is within its dirty
2005 * limit, such that no single zone holds more than its
2006 * proportional share of globally allowed dirty pages.
2007 * The dirty limits take into account the zone's
2008 * lowmem reserves and high watermark so that kswapd
2009 * should be able to balance it without having to
2010 * write pages from its LRU list.
2011 *
2012 * This may look like it could increase pressure on
2013 * lower zones by failing allocations in higher zones
2014 * before they are full. But the pages that do spill
2015 * over are limited as the lower zones are protected
2016 * by this very same mechanism. It should not become
2017 * a practical burden to them.
2018 *
2019 * XXX: For now, allow allocations to potentially
2020 * exceed the per-zone dirty limit in the slowpath
2021 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2022 * which is important when on a NUMA setup the allowed
2023 * zones are together not big enough to reach the
2024 * global limit. The proper fix for these situations
2025 * will require awareness of zones in the
2026 * dirty-throttling and the flusher threads.
2027 */
2028 if (consider_zone_dirty && !zone_dirty_ok(zone))
2029 continue;
2030
2031 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2032 if (!zone_watermark_ok(zone, order, mark,
2033 classzone_idx, alloc_flags)) {
2034 int ret;
2035
2036 /* Checked here to keep the fast path fast */
2037 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2038 if (alloc_flags & ALLOC_NO_WATERMARKS)
2039 goto try_this_zone;
2040
2041 if (IS_ENABLED(CONFIG_NUMA) &&
2042 !did_zlc_setup && nr_online_nodes > 1) {
2043 /*
2044 * we do zlc_setup if there are multiple nodes
2045 * and before considering the first zone allowed
2046 * by the cpuset.
2047 */
2048 allowednodes = zlc_setup(zonelist, alloc_flags);
2049 zlc_active = 1;
2050 did_zlc_setup = 1;
2051 }
2052
2053 if (zone_reclaim_mode == 0 ||
2054 !zone_allows_reclaim(preferred_zone, zone))
2055 goto this_zone_full;
2056
2057 /*
2058 * As we may have just activated ZLC, check if the first
2059 * eligible zone has failed zone_reclaim recently.
2060 */
2061 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2062 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2063 continue;
2064
2065 ret = zone_reclaim(zone, gfp_mask, order);
2066 switch (ret) {
2067 case ZONE_RECLAIM_NOSCAN:
2068 /* did not scan */
2069 continue;
2070 case ZONE_RECLAIM_FULL:
2071 /* scanned but unreclaimable */
2072 continue;
2073 default:
2074 /* did we reclaim enough */
2075 if (zone_watermark_ok(zone, order, mark,
2076 classzone_idx, alloc_flags))
2077 goto try_this_zone;
2078
2079 /*
2080 * Failed to reclaim enough to meet watermark.
2081 * Only mark the zone full if checking the min
2082 * watermark or if we failed to reclaim just
2083 * 1<<order pages or else the page allocator
2084 * fastpath will prematurely mark zones full
2085 * when the watermark is between the low and
2086 * min watermarks.
2087 */
2088 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2089 ret == ZONE_RECLAIM_SOME)
2090 goto this_zone_full;
2091
2092 continue;
2093 }
2094 }
2095
2096 try_this_zone:
2097 page = buffered_rmqueue(preferred_zone, zone, order,
2098 gfp_mask, migratetype);
2099 if (page)
2100 break;
2101 this_zone_full:
2102 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2103 zlc_mark_zone_full(zonelist, z);
2104 }
2105
2106 if (page) {
2107 /*
2108 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2109 * necessary to allocate the page. The expectation is
2110 * that the caller is taking steps that will free more
2111 * memory. The caller should avoid the page being used
2112 * for !PFMEMALLOC purposes.
2113 */
2114 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2115 return page;
2116 }
2117
2118 /*
2119 * The first pass makes sure allocations are spread fairly within the
2120 * local node. However, the local node might have free pages left
2121 * after the fairness batches are exhausted, and remote zones haven't
2122 * even been considered yet. Try once more without fairness, and
2123 * include remote zones now, before entering the slowpath and waking
2124 * kswapd: prefer spilling to a remote zone over swapping locally.
2125 */
2126 if (alloc_flags & ALLOC_FAIR) {
2127 alloc_flags &= ~ALLOC_FAIR;
2128 if (nr_fair_skipped) {
2129 zonelist_rescan = true;
2130 reset_alloc_batches(preferred_zone);
2131 }
2132 if (nr_online_nodes > 1)
2133 zonelist_rescan = true;
2134 }
2135
2136 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2137 /* Disable zlc cache for second zonelist scan */
2138 zlc_active = 0;
2139 zonelist_rescan = true;
2140 }
2141
2142 if (zonelist_rescan)
2143 goto zonelist_scan;
2144
2145 return NULL;
2146 }
2147
2148 /*
2149 * Large machines with many possible nodes should not always dump per-node
2150 * meminfo in irq context.
2151 */
2152 static inline bool should_suppress_show_mem(void)
2153 {
2154 bool ret = false;
2155
2156 #if NODES_SHIFT > 8
2157 ret = in_interrupt();
2158 #endif
2159 return ret;
2160 }
2161
2162 static DEFINE_RATELIMIT_STATE(nopage_rs,
2163 DEFAULT_RATELIMIT_INTERVAL,
2164 DEFAULT_RATELIMIT_BURST);
2165
2166 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2167 {
2168 unsigned int filter = SHOW_MEM_FILTER_NODES;
2169
2170 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2171 debug_guardpage_minorder() > 0)
2172 return;
2173
2174 /*
2175 * This documents exceptions given to allocations in certain
2176 * contexts that are allowed to allocate outside current's set
2177 * of allowed nodes.
2178 */
2179 if (!(gfp_mask & __GFP_NOMEMALLOC))
2180 if (test_thread_flag(TIF_MEMDIE) ||
2181 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2182 filter &= ~SHOW_MEM_FILTER_NODES;
2183 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2184 filter &= ~SHOW_MEM_FILTER_NODES;
2185
2186 if (fmt) {
2187 struct va_format vaf;
2188 va_list args;
2189
2190 va_start(args, fmt);
2191
2192 vaf.fmt = fmt;
2193 vaf.va = &args;
2194
2195 pr_warn("%pV", &vaf);
2196
2197 va_end(args);
2198 }
2199
2200 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2201 current->comm, order, gfp_mask);
2202
2203 dump_stack();
2204 if (!should_suppress_show_mem())
2205 show_mem(filter);
2206 }
2207
2208 static inline int
2209 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2210 unsigned long did_some_progress,
2211 unsigned long pages_reclaimed)
2212 {
2213 /* Do not loop if specifically requested */
2214 if (gfp_mask & __GFP_NORETRY)
2215 return 0;
2216
2217 /* Always retry if specifically requested */
2218 if (gfp_mask & __GFP_NOFAIL)
2219 return 1;
2220
2221 /*
2222 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2223 * making forward progress without invoking OOM. Suspend also disables
2224 * storage devices so kswapd will not help. Bail if we are suspending.
2225 */
2226 if (!did_some_progress && pm_suspended_storage())
2227 return 0;
2228
2229 /*
2230 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2231 * means __GFP_NOFAIL, but that may not be true in other
2232 * implementations.
2233 */
2234 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2235 return 1;
2236
2237 /*
2238 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2239 * specified, then we retry until we no longer reclaim any pages
2240 * (above), or we've reclaimed an order of pages at least as
2241 * large as the allocation's order. In both cases, if the
2242 * allocation still fails, we stop retrying.
2243 */
2244 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2245 return 1;
2246
2247 return 0;
2248 }
2249
2250 static inline struct page *
2251 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2252 struct zonelist *zonelist, enum zone_type high_zoneidx,
2253 nodemask_t *nodemask, struct zone *preferred_zone,
2254 int classzone_idx, int migratetype)
2255 {
2256 struct page *page;
2257
2258 /* Acquire the per-zone oom lock for each zone */
2259 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2260 schedule_timeout_uninterruptible(1);
2261 return NULL;
2262 }
2263
2264 /*
2265 * PM-freezer should be notified that there might be an OOM killer on
2266 * its way to kill and wake somebody up. This is too early and we might
2267 * end up not killing anything but false positives are acceptable.
2268 * See freeze_processes.
2269 */
2270 note_oom_kill();
2271
2272 /*
2273 * Go through the zonelist yet one more time, keep very high watermark
2274 * here, this is only to catch a parallel oom killing, we must fail if
2275 * we're still under heavy pressure.
2276 */
2277 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2278 order, zonelist, high_zoneidx,
2279 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2280 preferred_zone, classzone_idx, migratetype);
2281 if (page)
2282 goto out;
2283
2284 if (!(gfp_mask & __GFP_NOFAIL)) {
2285 /* The OOM killer will not help higher order allocs */
2286 if (order > PAGE_ALLOC_COSTLY_ORDER)
2287 goto out;
2288 /* The OOM killer does not needlessly kill tasks for lowmem */
2289 if (high_zoneidx < ZONE_NORMAL)
2290 goto out;
2291 /*
2292 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2293 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2294 * The caller should handle page allocation failure by itself if
2295 * it specifies __GFP_THISNODE.
2296 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2297 */
2298 if (gfp_mask & __GFP_THISNODE)
2299 goto out;
2300 }
2301 /* Exhausted what can be done so it's blamo time */
2302 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2303
2304 out:
2305 oom_zonelist_unlock(zonelist, gfp_mask);
2306 return page;
2307 }
2308
2309 #ifdef CONFIG_COMPACTION
2310 /* Try memory compaction for high-order allocations before reclaim */
2311 static struct page *
2312 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2313 struct zonelist *zonelist, enum zone_type high_zoneidx,
2314 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2315 int classzone_idx, int migratetype, enum migrate_mode mode,
2316 int *contended_compaction, bool *deferred_compaction)
2317 {
2318 struct zone *last_compact_zone = NULL;
2319 unsigned long compact_result;
2320 struct page *page;
2321
2322 if (!order)
2323 return NULL;
2324
2325 current->flags |= PF_MEMALLOC;
2326 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2327 nodemask, mode,
2328 contended_compaction,
2329 &last_compact_zone);
2330 current->flags &= ~PF_MEMALLOC;
2331
2332 switch (compact_result) {
2333 case COMPACT_DEFERRED:
2334 *deferred_compaction = true;
2335 /* fall-through */
2336 case COMPACT_SKIPPED:
2337 return NULL;
2338 default:
2339 break;
2340 }
2341
2342 /*
2343 * At least in one zone compaction wasn't deferred or skipped, so let's
2344 * count a compaction stall
2345 */
2346 count_vm_event(COMPACTSTALL);
2347
2348 /* Page migration frees to the PCP lists but we want merging */
2349 drain_pages(get_cpu());
2350 put_cpu();
2351
2352 page = get_page_from_freelist(gfp_mask, nodemask,
2353 order, zonelist, high_zoneidx,
2354 alloc_flags & ~ALLOC_NO_WATERMARKS,
2355 preferred_zone, classzone_idx, migratetype);
2356
2357 if (page) {
2358 struct zone *zone = page_zone(page);
2359
2360 zone->compact_blockskip_flush = false;
2361 compaction_defer_reset(zone, order, true);
2362 count_vm_event(COMPACTSUCCESS);
2363 return page;
2364 }
2365
2366 /*
2367 * last_compact_zone is where try_to_compact_pages thought allocation
2368 * should succeed, so it did not defer compaction. But here we know
2369 * that it didn't succeed, so we do the defer.
2370 */
2371 if (last_compact_zone && mode != MIGRATE_ASYNC)
2372 defer_compaction(last_compact_zone, order);
2373
2374 /*
2375 * It's bad if compaction run occurs and fails. The most likely reason
2376 * is that pages exist, but not enough to satisfy watermarks.
2377 */
2378 count_vm_event(COMPACTFAIL);
2379
2380 cond_resched();
2381
2382 return NULL;
2383 }
2384 #else
2385 static inline struct page *
2386 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2387 struct zonelist *zonelist, enum zone_type high_zoneidx,
2388 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2389 int classzone_idx, int migratetype, enum migrate_mode mode,
2390 int *contended_compaction, bool *deferred_compaction)
2391 {
2392 return NULL;
2393 }
2394 #endif /* CONFIG_COMPACTION */
2395
2396 /* Perform direct synchronous page reclaim */
2397 static int
2398 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2399 nodemask_t *nodemask)
2400 {
2401 struct reclaim_state reclaim_state;
2402 int progress;
2403
2404 cond_resched();
2405
2406 /* We now go into synchronous reclaim */
2407 cpuset_memory_pressure_bump();
2408 current->flags |= PF_MEMALLOC;
2409 lockdep_set_current_reclaim_state(gfp_mask);
2410 reclaim_state.reclaimed_slab = 0;
2411 current->reclaim_state = &reclaim_state;
2412
2413 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2414
2415 current->reclaim_state = NULL;
2416 lockdep_clear_current_reclaim_state();
2417 current->flags &= ~PF_MEMALLOC;
2418
2419 cond_resched();
2420
2421 return progress;
2422 }
2423
2424 /* The really slow allocator path where we enter direct reclaim */
2425 static inline struct page *
2426 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2427 struct zonelist *zonelist, enum zone_type high_zoneidx,
2428 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2429 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2430 {
2431 struct page *page = NULL;
2432 bool drained = false;
2433
2434 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2435 nodemask);
2436 if (unlikely(!(*did_some_progress)))
2437 return NULL;
2438
2439 /* After successful reclaim, reconsider all zones for allocation */
2440 if (IS_ENABLED(CONFIG_NUMA))
2441 zlc_clear_zones_full(zonelist);
2442
2443 retry:
2444 page = get_page_from_freelist(gfp_mask, nodemask, order,
2445 zonelist, high_zoneidx,
2446 alloc_flags & ~ALLOC_NO_WATERMARKS,
2447 preferred_zone, classzone_idx,
2448 migratetype);
2449
2450 /*
2451 * If an allocation failed after direct reclaim, it could be because
2452 * pages are pinned on the per-cpu lists. Drain them and try again
2453 */
2454 if (!page && !drained) {
2455 drain_all_pages();
2456 drained = true;
2457 goto retry;
2458 }
2459
2460 return page;
2461 }
2462
2463 /*
2464 * This is called in the allocator slow-path if the allocation request is of
2465 * sufficient urgency to ignore watermarks and take other desperate measures
2466 */
2467 static inline struct page *
2468 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2469 struct zonelist *zonelist, enum zone_type high_zoneidx,
2470 nodemask_t *nodemask, struct zone *preferred_zone,
2471 int classzone_idx, int migratetype)
2472 {
2473 struct page *page;
2474
2475 do {
2476 page = get_page_from_freelist(gfp_mask, nodemask, order,
2477 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2478 preferred_zone, classzone_idx, migratetype);
2479
2480 if (!page && gfp_mask & __GFP_NOFAIL)
2481 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2482 } while (!page && (gfp_mask & __GFP_NOFAIL));
2483
2484 return page;
2485 }
2486
2487 static void wake_all_kswapds(unsigned int order,
2488 struct zonelist *zonelist,
2489 enum zone_type high_zoneidx,
2490 struct zone *preferred_zone,
2491 nodemask_t *nodemask)
2492 {
2493 struct zoneref *z;
2494 struct zone *zone;
2495
2496 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2497 high_zoneidx, nodemask)
2498 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2499 }
2500
2501 static inline int
2502 gfp_to_alloc_flags(gfp_t gfp_mask)
2503 {
2504 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2505 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2506
2507 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2508 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2509
2510 /*
2511 * The caller may dip into page reserves a bit more if the caller
2512 * cannot run direct reclaim, or if the caller has realtime scheduling
2513 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2514 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2515 */
2516 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2517
2518 if (atomic) {
2519 /*
2520 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2521 * if it can't schedule.
2522 */
2523 if (!(gfp_mask & __GFP_NOMEMALLOC))
2524 alloc_flags |= ALLOC_HARDER;
2525 /*
2526 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2527 * comment for __cpuset_node_allowed_softwall().
2528 */
2529 alloc_flags &= ~ALLOC_CPUSET;
2530 } else if (unlikely(rt_task(current)) && !in_interrupt())
2531 alloc_flags |= ALLOC_HARDER;
2532
2533 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2534 if (gfp_mask & __GFP_MEMALLOC)
2535 alloc_flags |= ALLOC_NO_WATERMARKS;
2536 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2537 alloc_flags |= ALLOC_NO_WATERMARKS;
2538 else if (!in_interrupt() &&
2539 ((current->flags & PF_MEMALLOC) ||
2540 unlikely(test_thread_flag(TIF_MEMDIE))))
2541 alloc_flags |= ALLOC_NO_WATERMARKS;
2542 }
2543 #ifdef CONFIG_CMA
2544 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2545 alloc_flags |= ALLOC_CMA;
2546 #endif
2547 return alloc_flags;
2548 }
2549
2550 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2551 {
2552 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2553 }
2554
2555 static inline struct page *
2556 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2557 struct zonelist *zonelist, enum zone_type high_zoneidx,
2558 nodemask_t *nodemask, struct zone *preferred_zone,
2559 int classzone_idx, int migratetype)
2560 {
2561 const gfp_t wait = gfp_mask & __GFP_WAIT;
2562 struct page *page = NULL;
2563 int alloc_flags;
2564 unsigned long pages_reclaimed = 0;
2565 unsigned long did_some_progress;
2566 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2567 bool deferred_compaction = false;
2568 int contended_compaction = COMPACT_CONTENDED_NONE;
2569
2570 /*
2571 * In the slowpath, we sanity check order to avoid ever trying to
2572 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2573 * be using allocators in order of preference for an area that is
2574 * too large.
2575 */
2576 if (order >= MAX_ORDER) {
2577 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2578 return NULL;
2579 }
2580
2581 /*
2582 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2583 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2584 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2585 * using a larger set of nodes after it has established that the
2586 * allowed per node queues are empty and that nodes are
2587 * over allocated.
2588 */
2589 if (IS_ENABLED(CONFIG_NUMA) &&
2590 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2591 goto nopage;
2592
2593 restart:
2594 if (!(gfp_mask & __GFP_NO_KSWAPD))
2595 wake_all_kswapds(order, zonelist, high_zoneidx,
2596 preferred_zone, nodemask);
2597
2598 /*
2599 * OK, we're below the kswapd watermark and have kicked background
2600 * reclaim. Now things get more complex, so set up alloc_flags according
2601 * to how we want to proceed.
2602 */
2603 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2604
2605 /*
2606 * Find the true preferred zone if the allocation is unconstrained by
2607 * cpusets.
2608 */
2609 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2610 struct zoneref *preferred_zoneref;
2611 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2612 NULL, &preferred_zone);
2613 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2614 }
2615
2616 rebalance:
2617 /* This is the last chance, in general, before the goto nopage. */
2618 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2619 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2620 preferred_zone, classzone_idx, migratetype);
2621 if (page)
2622 goto got_pg;
2623
2624 /* Allocate without watermarks if the context allows */
2625 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2626 /*
2627 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2628 * the allocation is high priority and these type of
2629 * allocations are system rather than user orientated
2630 */
2631 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2632
2633 page = __alloc_pages_high_priority(gfp_mask, order,
2634 zonelist, high_zoneidx, nodemask,
2635 preferred_zone, classzone_idx, migratetype);
2636 if (page) {
2637 goto got_pg;
2638 }
2639 }
2640
2641 /* Atomic allocations - we can't balance anything */
2642 if (!wait) {
2643 /*
2644 * All existing users of the deprecated __GFP_NOFAIL are
2645 * blockable, so warn of any new users that actually allow this
2646 * type of allocation to fail.
2647 */
2648 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2649 goto nopage;
2650 }
2651
2652 /* Avoid recursion of direct reclaim */
2653 if (current->flags & PF_MEMALLOC)
2654 goto nopage;
2655
2656 /* Avoid allocations with no watermarks from looping endlessly */
2657 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2658 goto nopage;
2659
2660 /*
2661 * Try direct compaction. The first pass is asynchronous. Subsequent
2662 * attempts after direct reclaim are synchronous
2663 */
2664 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2665 high_zoneidx, nodemask, alloc_flags,
2666 preferred_zone,
2667 classzone_idx, migratetype,
2668 migration_mode, &contended_compaction,
2669 &deferred_compaction);
2670 if (page)
2671 goto got_pg;
2672
2673 /* Checks for THP-specific high-order allocations */
2674 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2675 /*
2676 * If compaction is deferred for high-order allocations, it is
2677 * because sync compaction recently failed. If this is the case
2678 * and the caller requested a THP allocation, we do not want
2679 * to heavily disrupt the system, so we fail the allocation
2680 * instead of entering direct reclaim.
2681 */
2682 if (deferred_compaction)
2683 goto nopage;
2684
2685 /*
2686 * In all zones where compaction was attempted (and not
2687 * deferred or skipped), lock contention has been detected.
2688 * For THP allocation we do not want to disrupt the others
2689 * so we fallback to base pages instead.
2690 */
2691 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2692 goto nopage;
2693
2694 /*
2695 * If compaction was aborted due to need_resched(), we do not
2696 * want to further increase allocation latency, unless it is
2697 * khugepaged trying to collapse.
2698 */
2699 if (contended_compaction == COMPACT_CONTENDED_SCHED
2700 && !(current->flags & PF_KTHREAD))
2701 goto nopage;
2702 }
2703
2704 /*
2705 * It can become very expensive to allocate transparent hugepages at
2706 * fault, so use asynchronous memory compaction for THP unless it is
2707 * khugepaged trying to collapse.
2708 */
2709 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2710 (current->flags & PF_KTHREAD))
2711 migration_mode = MIGRATE_SYNC_LIGHT;
2712
2713 /* Try direct reclaim and then allocating */
2714 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2715 zonelist, high_zoneidx,
2716 nodemask,
2717 alloc_flags, preferred_zone,
2718 classzone_idx, migratetype,
2719 &did_some_progress);
2720 if (page)
2721 goto got_pg;
2722
2723 /*
2724 * If we failed to make any progress reclaiming, then we are
2725 * running out of options and have to consider going OOM
2726 */
2727 if (!did_some_progress) {
2728 if (oom_gfp_allowed(gfp_mask)) {
2729 if (oom_killer_disabled)
2730 goto nopage;
2731 /* Coredumps can quickly deplete all memory reserves */
2732 if ((current->flags & PF_DUMPCORE) &&
2733 !(gfp_mask & __GFP_NOFAIL))
2734 goto nopage;
2735 page = __alloc_pages_may_oom(gfp_mask, order,
2736 zonelist, high_zoneidx,
2737 nodemask, preferred_zone,
2738 classzone_idx, migratetype);
2739 if (page)
2740 goto got_pg;
2741
2742 if (!(gfp_mask & __GFP_NOFAIL)) {
2743 /*
2744 * The oom killer is not called for high-order
2745 * allocations that may fail, so if no progress
2746 * is being made, there are no other options and
2747 * retrying is unlikely to help.
2748 */
2749 if (order > PAGE_ALLOC_COSTLY_ORDER)
2750 goto nopage;
2751 /*
2752 * The oom killer is not called for lowmem
2753 * allocations to prevent needlessly killing
2754 * innocent tasks.
2755 */
2756 if (high_zoneidx < ZONE_NORMAL)
2757 goto nopage;
2758 }
2759
2760 goto restart;
2761 }
2762 }
2763
2764 /* Check if we should retry the allocation */
2765 pages_reclaimed += did_some_progress;
2766 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2767 pages_reclaimed)) {
2768 /* Wait for some write requests to complete then retry */
2769 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2770 goto rebalance;
2771 } else {
2772 /*
2773 * High-order allocations do not necessarily loop after
2774 * direct reclaim and reclaim/compaction depends on compaction
2775 * being called after reclaim so call directly if necessary
2776 */
2777 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2778 high_zoneidx, nodemask, alloc_flags,
2779 preferred_zone,
2780 classzone_idx, migratetype,
2781 migration_mode, &contended_compaction,
2782 &deferred_compaction);
2783 if (page)
2784 goto got_pg;
2785 }
2786
2787 nopage:
2788 warn_alloc_failed(gfp_mask, order, NULL);
2789 return page;
2790 got_pg:
2791 if (kmemcheck_enabled)
2792 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2793
2794 return page;
2795 }
2796
2797 /*
2798 * This is the 'heart' of the zoned buddy allocator.
2799 */
2800 struct page *
2801 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2802 struct zonelist *zonelist, nodemask_t *nodemask)
2803 {
2804 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2805 struct zone *preferred_zone;
2806 struct zoneref *preferred_zoneref;
2807 struct page *page = NULL;
2808 int migratetype = gfpflags_to_migratetype(gfp_mask);
2809 unsigned int cpuset_mems_cookie;
2810 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2811 int classzone_idx;
2812
2813 gfp_mask &= gfp_allowed_mask;
2814
2815 lockdep_trace_alloc(gfp_mask);
2816
2817 might_sleep_if(gfp_mask & __GFP_WAIT);
2818
2819 if (should_fail_alloc_page(gfp_mask, order))
2820 return NULL;
2821
2822 /*
2823 * Check the zones suitable for the gfp_mask contain at least one
2824 * valid zone. It's possible to have an empty zonelist as a result
2825 * of GFP_THISNODE and a memoryless node
2826 */
2827 if (unlikely(!zonelist->_zonerefs->zone))
2828 return NULL;
2829
2830 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2831 alloc_flags |= ALLOC_CMA;
2832
2833 retry_cpuset:
2834 cpuset_mems_cookie = read_mems_allowed_begin();
2835
2836 /* The preferred zone is used for statistics later */
2837 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2838 nodemask ? : &cpuset_current_mems_allowed,
2839 &preferred_zone);
2840 if (!preferred_zone)
2841 goto out;
2842 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2843
2844 /* First allocation attempt */
2845 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2846 zonelist, high_zoneidx, alloc_flags,
2847 preferred_zone, classzone_idx, migratetype);
2848 if (unlikely(!page)) {
2849 /*
2850 * Runtime PM, block IO and its error handling path
2851 * can deadlock because I/O on the device might not
2852 * complete.
2853 */
2854 gfp_mask = memalloc_noio_flags(gfp_mask);
2855 page = __alloc_pages_slowpath(gfp_mask, order,
2856 zonelist, high_zoneidx, nodemask,
2857 preferred_zone, classzone_idx, migratetype);
2858 }
2859
2860 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2861
2862 out:
2863 /*
2864 * When updating a task's mems_allowed, it is possible to race with
2865 * parallel threads in such a way that an allocation can fail while
2866 * the mask is being updated. If a page allocation is about to fail,
2867 * check if the cpuset changed during allocation and if so, retry.
2868 */
2869 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2870 goto retry_cpuset;
2871
2872 return page;
2873 }
2874 EXPORT_SYMBOL(__alloc_pages_nodemask);
2875
2876 /*
2877 * Common helper functions.
2878 */
2879 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2880 {
2881 struct page *page;
2882
2883 /*
2884 * __get_free_pages() returns a 32-bit address, which cannot represent
2885 * a highmem page
2886 */
2887 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2888
2889 page = alloc_pages(gfp_mask, order);
2890 if (!page)
2891 return 0;
2892 return (unsigned long) page_address(page);
2893 }
2894 EXPORT_SYMBOL(__get_free_pages);
2895
2896 unsigned long get_zeroed_page(gfp_t gfp_mask)
2897 {
2898 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2899 }
2900 EXPORT_SYMBOL(get_zeroed_page);
2901
2902 void __free_pages(struct page *page, unsigned int order)
2903 {
2904 if (put_page_testzero(page)) {
2905 if (order == 0)
2906 free_hot_cold_page(page, false);
2907 else
2908 __free_pages_ok(page, order);
2909 }
2910 }
2911
2912 EXPORT_SYMBOL(__free_pages);
2913
2914 void free_pages(unsigned long addr, unsigned int order)
2915 {
2916 if (addr != 0) {
2917 VM_BUG_ON(!virt_addr_valid((void *)addr));
2918 __free_pages(virt_to_page((void *)addr), order);
2919 }
2920 }
2921
2922 EXPORT_SYMBOL(free_pages);
2923
2924 /*
2925 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2926 * of the current memory cgroup.
2927 *
2928 * It should be used when the caller would like to use kmalloc, but since the
2929 * allocation is large, it has to fall back to the page allocator.
2930 */
2931 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2932 {
2933 struct page *page;
2934 struct mem_cgroup *memcg = NULL;
2935
2936 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2937 return NULL;
2938 page = alloc_pages(gfp_mask, order);
2939 memcg_kmem_commit_charge(page, memcg, order);
2940 return page;
2941 }
2942
2943 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2944 {
2945 struct page *page;
2946 struct mem_cgroup *memcg = NULL;
2947
2948 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2949 return NULL;
2950 page = alloc_pages_node(nid, gfp_mask, order);
2951 memcg_kmem_commit_charge(page, memcg, order);
2952 return page;
2953 }
2954
2955 /*
2956 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2957 * alloc_kmem_pages.
2958 */
2959 void __free_kmem_pages(struct page *page, unsigned int order)
2960 {
2961 memcg_kmem_uncharge_pages(page, order);
2962 __free_pages(page, order);
2963 }
2964
2965 void free_kmem_pages(unsigned long addr, unsigned int order)
2966 {
2967 if (addr != 0) {
2968 VM_BUG_ON(!virt_addr_valid((void *)addr));
2969 __free_kmem_pages(virt_to_page((void *)addr), order);
2970 }
2971 }
2972
2973 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2974 {
2975 if (addr) {
2976 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2977 unsigned long used = addr + PAGE_ALIGN(size);
2978
2979 split_page(virt_to_page((void *)addr), order);
2980 while (used < alloc_end) {
2981 free_page(used);
2982 used += PAGE_SIZE;
2983 }
2984 }
2985 return (void *)addr;
2986 }
2987
2988 /**
2989 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2990 * @size: the number of bytes to allocate
2991 * @gfp_mask: GFP flags for the allocation
2992 *
2993 * This function is similar to alloc_pages(), except that it allocates the
2994 * minimum number of pages to satisfy the request. alloc_pages() can only
2995 * allocate memory in power-of-two pages.
2996 *
2997 * This function is also limited by MAX_ORDER.
2998 *
2999 * Memory allocated by this function must be released by free_pages_exact().
3000 */
3001 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3002 {
3003 unsigned int order = get_order(size);
3004 unsigned long addr;
3005
3006 addr = __get_free_pages(gfp_mask, order);
3007 return make_alloc_exact(addr, order, size);
3008 }
3009 EXPORT_SYMBOL(alloc_pages_exact);
3010
3011 /**
3012 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3013 * pages on a node.
3014 * @nid: the preferred node ID where memory should be allocated
3015 * @size: the number of bytes to allocate
3016 * @gfp_mask: GFP flags for the allocation
3017 *
3018 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3019 * back.
3020 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3021 * but is not exact.
3022 */
3023 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3024 {
3025 unsigned order = get_order(size);
3026 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3027 if (!p)
3028 return NULL;
3029 return make_alloc_exact((unsigned long)page_address(p), order, size);
3030 }
3031
3032 /**
3033 * free_pages_exact - release memory allocated via alloc_pages_exact()
3034 * @virt: the value returned by alloc_pages_exact.
3035 * @size: size of allocation, same value as passed to alloc_pages_exact().
3036 *
3037 * Release the memory allocated by a previous call to alloc_pages_exact.
3038 */
3039 void free_pages_exact(void *virt, size_t size)
3040 {
3041 unsigned long addr = (unsigned long)virt;
3042 unsigned long end = addr + PAGE_ALIGN(size);
3043
3044 while (addr < end) {
3045 free_page(addr);
3046 addr += PAGE_SIZE;
3047 }
3048 }
3049 EXPORT_SYMBOL(free_pages_exact);
3050
3051 /**
3052 * nr_free_zone_pages - count number of pages beyond high watermark
3053 * @offset: The zone index of the highest zone
3054 *
3055 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3056 * high watermark within all zones at or below a given zone index. For each
3057 * zone, the number of pages is calculated as:
3058 * managed_pages - high_pages
3059 */
3060 static unsigned long nr_free_zone_pages(int offset)
3061 {
3062 struct zoneref *z;
3063 struct zone *zone;
3064
3065 /* Just pick one node, since fallback list is circular */
3066 unsigned long sum = 0;
3067
3068 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3069
3070 for_each_zone_zonelist(zone, z, zonelist, offset) {
3071 unsigned long size = zone->managed_pages;
3072 unsigned long high = high_wmark_pages(zone);
3073 if (size > high)
3074 sum += size - high;
3075 }
3076
3077 return sum;
3078 }
3079
3080 /**
3081 * nr_free_buffer_pages - count number of pages beyond high watermark
3082 *
3083 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3084 * watermark within ZONE_DMA and ZONE_NORMAL.
3085 */
3086 unsigned long nr_free_buffer_pages(void)
3087 {
3088 return nr_free_zone_pages(gfp_zone(GFP_USER));
3089 }
3090 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3091
3092 /**
3093 * nr_free_pagecache_pages - count number of pages beyond high watermark
3094 *
3095 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3096 * high watermark within all zones.
3097 */
3098 unsigned long nr_free_pagecache_pages(void)
3099 {
3100 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3101 }
3102
3103 static inline void show_node(struct zone *zone)
3104 {
3105 if (IS_ENABLED(CONFIG_NUMA))
3106 printk("Node %d ", zone_to_nid(zone));
3107 }
3108
3109 void si_meminfo(struct sysinfo *val)
3110 {
3111 val->totalram = totalram_pages;
3112 val->sharedram = global_page_state(NR_SHMEM);
3113 val->freeram = global_page_state(NR_FREE_PAGES);
3114 val->bufferram = nr_blockdev_pages();
3115 val->totalhigh = totalhigh_pages;
3116 val->freehigh = nr_free_highpages();
3117 val->mem_unit = PAGE_SIZE;
3118 }
3119
3120 EXPORT_SYMBOL(si_meminfo);
3121
3122 #ifdef CONFIG_NUMA
3123 void si_meminfo_node(struct sysinfo *val, int nid)
3124 {
3125 int zone_type; /* needs to be signed */
3126 unsigned long managed_pages = 0;
3127 pg_data_t *pgdat = NODE_DATA(nid);
3128
3129 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3130 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3131 val->totalram = managed_pages;
3132 val->sharedram = node_page_state(nid, NR_SHMEM);
3133 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3134 #ifdef CONFIG_HIGHMEM
3135 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3136 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3137 NR_FREE_PAGES);
3138 #else
3139 val->totalhigh = 0;
3140 val->freehigh = 0;
3141 #endif
3142 val->mem_unit = PAGE_SIZE;
3143 }
3144 #endif
3145
3146 /*
3147 * Determine whether the node should be displayed or not, depending on whether
3148 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3149 */
3150 bool skip_free_areas_node(unsigned int flags, int nid)
3151 {
3152 bool ret = false;
3153 unsigned int cpuset_mems_cookie;
3154
3155 if (!(flags & SHOW_MEM_FILTER_NODES))
3156 goto out;
3157
3158 do {
3159 cpuset_mems_cookie = read_mems_allowed_begin();
3160 ret = !node_isset(nid, cpuset_current_mems_allowed);
3161 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3162 out:
3163 return ret;
3164 }
3165
3166 #define K(x) ((x) << (PAGE_SHIFT-10))
3167
3168 static void show_migration_types(unsigned char type)
3169 {
3170 static const char types[MIGRATE_TYPES] = {
3171 [MIGRATE_UNMOVABLE] = 'U',
3172 [MIGRATE_RECLAIMABLE] = 'E',
3173 [MIGRATE_MOVABLE] = 'M',
3174 [MIGRATE_RESERVE] = 'R',
3175 #ifdef CONFIG_CMA
3176 [MIGRATE_CMA] = 'C',
3177 #endif
3178 #ifdef CONFIG_MEMORY_ISOLATION
3179 [MIGRATE_ISOLATE] = 'I',
3180 #endif
3181 };
3182 char tmp[MIGRATE_TYPES + 1];
3183 char *p = tmp;
3184 int i;
3185
3186 for (i = 0; i < MIGRATE_TYPES; i++) {
3187 if (type & (1 << i))
3188 *p++ = types[i];
3189 }
3190
3191 *p = '\0';
3192 printk("(%s) ", tmp);
3193 }
3194
3195 /*
3196 * Show free area list (used inside shift_scroll-lock stuff)
3197 * We also calculate the percentage fragmentation. We do this by counting the
3198 * memory on each free list with the exception of the first item on the list.
3199 * Suppresses nodes that are not allowed by current's cpuset if
3200 * SHOW_MEM_FILTER_NODES is passed.
3201 */
3202 void show_free_areas(unsigned int filter)
3203 {
3204 int cpu;
3205 struct zone *zone;
3206
3207 for_each_populated_zone(zone) {
3208 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3209 continue;
3210 show_node(zone);
3211 printk("%s per-cpu:\n", zone->name);
3212
3213 for_each_online_cpu(cpu) {
3214 struct per_cpu_pageset *pageset;
3215
3216 pageset = per_cpu_ptr(zone->pageset, cpu);
3217
3218 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3219 cpu, pageset->pcp.high,
3220 pageset->pcp.batch, pageset->pcp.count);
3221 }
3222 }
3223
3224 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3225 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3226 " unevictable:%lu"
3227 " dirty:%lu writeback:%lu unstable:%lu\n"
3228 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3229 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3230 " free_cma:%lu\n",
3231 global_page_state(NR_ACTIVE_ANON),
3232 global_page_state(NR_INACTIVE_ANON),
3233 global_page_state(NR_ISOLATED_ANON),
3234 global_page_state(NR_ACTIVE_FILE),
3235 global_page_state(NR_INACTIVE_FILE),
3236 global_page_state(NR_ISOLATED_FILE),
3237 global_page_state(NR_UNEVICTABLE),
3238 global_page_state(NR_FILE_DIRTY),
3239 global_page_state(NR_WRITEBACK),
3240 global_page_state(NR_UNSTABLE_NFS),
3241 global_page_state(NR_FREE_PAGES),
3242 global_page_state(NR_SLAB_RECLAIMABLE),
3243 global_page_state(NR_SLAB_UNRECLAIMABLE),
3244 global_page_state(NR_FILE_MAPPED),
3245 global_page_state(NR_SHMEM),
3246 global_page_state(NR_PAGETABLE),
3247 global_page_state(NR_BOUNCE),
3248 global_page_state(NR_FREE_CMA_PAGES));
3249
3250 for_each_populated_zone(zone) {
3251 int i;
3252
3253 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3254 continue;
3255 show_node(zone);
3256 printk("%s"
3257 " free:%lukB"
3258 " min:%lukB"
3259 " low:%lukB"
3260 " high:%lukB"
3261 " active_anon:%lukB"
3262 " inactive_anon:%lukB"
3263 " active_file:%lukB"
3264 " inactive_file:%lukB"
3265 " unevictable:%lukB"
3266 " isolated(anon):%lukB"
3267 " isolated(file):%lukB"
3268 " present:%lukB"
3269 " managed:%lukB"
3270 " mlocked:%lukB"
3271 " dirty:%lukB"
3272 " writeback:%lukB"
3273 " mapped:%lukB"
3274 " shmem:%lukB"
3275 " slab_reclaimable:%lukB"
3276 " slab_unreclaimable:%lukB"
3277 " kernel_stack:%lukB"
3278 " pagetables:%lukB"
3279 " unstable:%lukB"
3280 " bounce:%lukB"
3281 " free_cma:%lukB"
3282 " writeback_tmp:%lukB"
3283 " pages_scanned:%lu"
3284 " all_unreclaimable? %s"
3285 "\n",
3286 zone->name,
3287 K(zone_page_state(zone, NR_FREE_PAGES)),
3288 K(min_wmark_pages(zone)),
3289 K(low_wmark_pages(zone)),
3290 K(high_wmark_pages(zone)),
3291 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3292 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3293 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3294 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3295 K(zone_page_state(zone, NR_UNEVICTABLE)),
3296 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3297 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3298 K(zone->present_pages),
3299 K(zone->managed_pages),
3300 K(zone_page_state(zone, NR_MLOCK)),
3301 K(zone_page_state(zone, NR_FILE_DIRTY)),
3302 K(zone_page_state(zone, NR_WRITEBACK)),
3303 K(zone_page_state(zone, NR_FILE_MAPPED)),
3304 K(zone_page_state(zone, NR_SHMEM)),
3305 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3306 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3307 zone_page_state(zone, NR_KERNEL_STACK) *
3308 THREAD_SIZE / 1024,
3309 K(zone_page_state(zone, NR_PAGETABLE)),
3310 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3311 K(zone_page_state(zone, NR_BOUNCE)),
3312 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3313 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3314 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3315 (!zone_reclaimable(zone) ? "yes" : "no")
3316 );
3317 printk("lowmem_reserve[]:");
3318 for (i = 0; i < MAX_NR_ZONES; i++)
3319 printk(" %ld", zone->lowmem_reserve[i]);
3320 printk("\n");
3321 }
3322
3323 for_each_populated_zone(zone) {
3324 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3325 unsigned char types[MAX_ORDER];
3326
3327 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3328 continue;
3329 show_node(zone);
3330 printk("%s: ", zone->name);
3331
3332 spin_lock_irqsave(&zone->lock, flags);
3333 for (order = 0; order < MAX_ORDER; order++) {
3334 struct free_area *area = &zone->free_area[order];
3335 int type;
3336
3337 nr[order] = area->nr_free;
3338 total += nr[order] << order;
3339
3340 types[order] = 0;
3341 for (type = 0; type < MIGRATE_TYPES; type++) {
3342 if (!list_empty(&area->free_list[type]))
3343 types[order] |= 1 << type;
3344 }
3345 }
3346 spin_unlock_irqrestore(&zone->lock, flags);
3347 for (order = 0; order < MAX_ORDER; order++) {
3348 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3349 if (nr[order])
3350 show_migration_types(types[order]);
3351 }
3352 printk("= %lukB\n", K(total));
3353 }
3354
3355 hugetlb_show_meminfo();
3356
3357 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3358
3359 show_swap_cache_info();
3360 }
3361
3362 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3363 {
3364 zoneref->zone = zone;
3365 zoneref->zone_idx = zone_idx(zone);
3366 }
3367
3368 /*
3369 * Builds allocation fallback zone lists.
3370 *
3371 * Add all populated zones of a node to the zonelist.
3372 */
3373 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3374 int nr_zones)
3375 {
3376 struct zone *zone;
3377 enum zone_type zone_type = MAX_NR_ZONES;
3378
3379 do {
3380 zone_type--;
3381 zone = pgdat->node_zones + zone_type;
3382 if (populated_zone(zone)) {
3383 zoneref_set_zone(zone,
3384 &zonelist->_zonerefs[nr_zones++]);
3385 check_highest_zone(zone_type);
3386 }
3387 } while (zone_type);
3388
3389 return nr_zones;
3390 }
3391
3392
3393 /*
3394 * zonelist_order:
3395 * 0 = automatic detection of better ordering.
3396 * 1 = order by ([node] distance, -zonetype)
3397 * 2 = order by (-zonetype, [node] distance)
3398 *
3399 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3400 * the same zonelist. So only NUMA can configure this param.
3401 */
3402 #define ZONELIST_ORDER_DEFAULT 0
3403 #define ZONELIST_ORDER_NODE 1
3404 #define ZONELIST_ORDER_ZONE 2
3405
3406 /* zonelist order in the kernel.
3407 * set_zonelist_order() will set this to NODE or ZONE.
3408 */
3409 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3410 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3411
3412
3413 #ifdef CONFIG_NUMA
3414 /* The value user specified ....changed by config */
3415 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3416 /* string for sysctl */
3417 #define NUMA_ZONELIST_ORDER_LEN 16
3418 char numa_zonelist_order[16] = "default";
3419
3420 /*
3421 * interface for configure zonelist ordering.
3422 * command line option "numa_zonelist_order"
3423 * = "[dD]efault - default, automatic configuration.
3424 * = "[nN]ode - order by node locality, then by zone within node
3425 * = "[zZ]one - order by zone, then by locality within zone
3426 */
3427
3428 static int __parse_numa_zonelist_order(char *s)
3429 {
3430 if (*s == 'd' || *s == 'D') {
3431 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3432 } else if (*s == 'n' || *s == 'N') {
3433 user_zonelist_order = ZONELIST_ORDER_NODE;
3434 } else if (*s == 'z' || *s == 'Z') {
3435 user_zonelist_order = ZONELIST_ORDER_ZONE;
3436 } else {
3437 printk(KERN_WARNING
3438 "Ignoring invalid numa_zonelist_order value: "
3439 "%s\n", s);
3440 return -EINVAL;
3441 }
3442 return 0;
3443 }
3444
3445 static __init int setup_numa_zonelist_order(char *s)
3446 {
3447 int ret;
3448
3449 if (!s)
3450 return 0;
3451
3452 ret = __parse_numa_zonelist_order(s);
3453 if (ret == 0)
3454 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3455
3456 return ret;
3457 }
3458 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3459
3460 /*
3461 * sysctl handler for numa_zonelist_order
3462 */
3463 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3464 void __user *buffer, size_t *length,
3465 loff_t *ppos)
3466 {
3467 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3468 int ret;
3469 static DEFINE_MUTEX(zl_order_mutex);
3470
3471 mutex_lock(&zl_order_mutex);
3472 if (write) {
3473 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3474 ret = -EINVAL;
3475 goto out;
3476 }
3477 strcpy(saved_string, (char *)table->data);
3478 }
3479 ret = proc_dostring(table, write, buffer, length, ppos);
3480 if (ret)
3481 goto out;
3482 if (write) {
3483 int oldval = user_zonelist_order;
3484
3485 ret = __parse_numa_zonelist_order((char *)table->data);
3486 if (ret) {
3487 /*
3488 * bogus value. restore saved string
3489 */
3490 strncpy((char *)table->data, saved_string,
3491 NUMA_ZONELIST_ORDER_LEN);
3492 user_zonelist_order = oldval;
3493 } else if (oldval != user_zonelist_order) {
3494 mutex_lock(&zonelists_mutex);
3495 build_all_zonelists(NULL, NULL);
3496 mutex_unlock(&zonelists_mutex);
3497 }
3498 }
3499 out:
3500 mutex_unlock(&zl_order_mutex);
3501 return ret;
3502 }
3503
3504
3505 #define MAX_NODE_LOAD (nr_online_nodes)
3506 static int node_load[MAX_NUMNODES];
3507
3508 /**
3509 * find_next_best_node - find the next node that should appear in a given node's fallback list
3510 * @node: node whose fallback list we're appending
3511 * @used_node_mask: nodemask_t of already used nodes
3512 *
3513 * We use a number of factors to determine which is the next node that should
3514 * appear on a given node's fallback list. The node should not have appeared
3515 * already in @node's fallback list, and it should be the next closest node
3516 * according to the distance array (which contains arbitrary distance values
3517 * from each node to each node in the system), and should also prefer nodes
3518 * with no CPUs, since presumably they'll have very little allocation pressure
3519 * on them otherwise.
3520 * It returns -1 if no node is found.
3521 */
3522 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3523 {
3524 int n, val;
3525 int min_val = INT_MAX;
3526 int best_node = NUMA_NO_NODE;
3527 const struct cpumask *tmp = cpumask_of_node(0);
3528
3529 /* Use the local node if we haven't already */
3530 if (!node_isset(node, *used_node_mask)) {
3531 node_set(node, *used_node_mask);
3532 return node;
3533 }
3534
3535 for_each_node_state(n, N_MEMORY) {
3536
3537 /* Don't want a node to appear more than once */
3538 if (node_isset(n, *used_node_mask))
3539 continue;
3540
3541 /* Use the distance array to find the distance */
3542 val = node_distance(node, n);
3543
3544 /* Penalize nodes under us ("prefer the next node") */
3545 val += (n < node);
3546
3547 /* Give preference to headless and unused nodes */
3548 tmp = cpumask_of_node(n);
3549 if (!cpumask_empty(tmp))
3550 val += PENALTY_FOR_NODE_WITH_CPUS;
3551
3552 /* Slight preference for less loaded node */
3553 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3554 val += node_load[n];
3555
3556 if (val < min_val) {
3557 min_val = val;
3558 best_node = n;
3559 }
3560 }
3561
3562 if (best_node >= 0)
3563 node_set(best_node, *used_node_mask);
3564
3565 return best_node;
3566 }
3567
3568
3569 /*
3570 * Build zonelists ordered by node and zones within node.
3571 * This results in maximum locality--normal zone overflows into local
3572 * DMA zone, if any--but risks exhausting DMA zone.
3573 */
3574 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3575 {
3576 int j;
3577 struct zonelist *zonelist;
3578
3579 zonelist = &pgdat->node_zonelists[0];
3580 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3581 ;
3582 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3583 zonelist->_zonerefs[j].zone = NULL;
3584 zonelist->_zonerefs[j].zone_idx = 0;
3585 }
3586
3587 /*
3588 * Build gfp_thisnode zonelists
3589 */
3590 static void build_thisnode_zonelists(pg_data_t *pgdat)
3591 {
3592 int j;
3593 struct zonelist *zonelist;
3594
3595 zonelist = &pgdat->node_zonelists[1];
3596 j = build_zonelists_node(pgdat, zonelist, 0);
3597 zonelist->_zonerefs[j].zone = NULL;
3598 zonelist->_zonerefs[j].zone_idx = 0;
3599 }
3600
3601 /*
3602 * Build zonelists ordered by zone and nodes within zones.
3603 * This results in conserving DMA zone[s] until all Normal memory is
3604 * exhausted, but results in overflowing to remote node while memory
3605 * may still exist in local DMA zone.
3606 */
3607 static int node_order[MAX_NUMNODES];
3608
3609 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3610 {
3611 int pos, j, node;
3612 int zone_type; /* needs to be signed */
3613 struct zone *z;
3614 struct zonelist *zonelist;
3615
3616 zonelist = &pgdat->node_zonelists[0];
3617 pos = 0;
3618 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3619 for (j = 0; j < nr_nodes; j++) {
3620 node = node_order[j];
3621 z = &NODE_DATA(node)->node_zones[zone_type];
3622 if (populated_zone(z)) {
3623 zoneref_set_zone(z,
3624 &zonelist->_zonerefs[pos++]);
3625 check_highest_zone(zone_type);
3626 }
3627 }
3628 }
3629 zonelist->_zonerefs[pos].zone = NULL;
3630 zonelist->_zonerefs[pos].zone_idx = 0;
3631 }
3632
3633 #if defined(CONFIG_64BIT)
3634 /*
3635 * Devices that require DMA32/DMA are relatively rare and do not justify a
3636 * penalty to every machine in case the specialised case applies. Default
3637 * to Node-ordering on 64-bit NUMA machines
3638 */
3639 static int default_zonelist_order(void)
3640 {
3641 return ZONELIST_ORDER_NODE;
3642 }
3643 #else
3644 /*
3645 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3646 * by the kernel. If processes running on node 0 deplete the low memory zone
3647 * then reclaim will occur more frequency increasing stalls and potentially
3648 * be easier to OOM if a large percentage of the zone is under writeback or
3649 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3650 * Hence, default to zone ordering on 32-bit.
3651 */
3652 static int default_zonelist_order(void)
3653 {
3654 return ZONELIST_ORDER_ZONE;
3655 }
3656 #endif /* CONFIG_64BIT */
3657
3658 static void set_zonelist_order(void)
3659 {
3660 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3661 current_zonelist_order = default_zonelist_order();
3662 else
3663 current_zonelist_order = user_zonelist_order;
3664 }
3665
3666 static void build_zonelists(pg_data_t *pgdat)
3667 {
3668 int j, node, load;
3669 enum zone_type i;
3670 nodemask_t used_mask;
3671 int local_node, prev_node;
3672 struct zonelist *zonelist;
3673 int order = current_zonelist_order;
3674
3675 /* initialize zonelists */
3676 for (i = 0; i < MAX_ZONELISTS; i++) {
3677 zonelist = pgdat->node_zonelists + i;
3678 zonelist->_zonerefs[0].zone = NULL;
3679 zonelist->_zonerefs[0].zone_idx = 0;
3680 }
3681
3682 /* NUMA-aware ordering of nodes */
3683 local_node = pgdat->node_id;
3684 load = nr_online_nodes;
3685 prev_node = local_node;
3686 nodes_clear(used_mask);
3687
3688 memset(node_order, 0, sizeof(node_order));
3689 j = 0;
3690
3691 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3692 /*
3693 * We don't want to pressure a particular node.
3694 * So adding penalty to the first node in same
3695 * distance group to make it round-robin.
3696 */
3697 if (node_distance(local_node, node) !=
3698 node_distance(local_node, prev_node))
3699 node_load[node] = load;
3700
3701 prev_node = node;
3702 load--;
3703 if (order == ZONELIST_ORDER_NODE)
3704 build_zonelists_in_node_order(pgdat, node);
3705 else
3706 node_order[j++] = node; /* remember order */
3707 }
3708
3709 if (order == ZONELIST_ORDER_ZONE) {
3710 /* calculate node order -- i.e., DMA last! */
3711 build_zonelists_in_zone_order(pgdat, j);
3712 }
3713
3714 build_thisnode_zonelists(pgdat);
3715 }
3716
3717 /* Construct the zonelist performance cache - see further mmzone.h */
3718 static void build_zonelist_cache(pg_data_t *pgdat)
3719 {
3720 struct zonelist *zonelist;
3721 struct zonelist_cache *zlc;
3722 struct zoneref *z;
3723
3724 zonelist = &pgdat->node_zonelists[0];
3725 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3726 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3727 for (z = zonelist->_zonerefs; z->zone; z++)
3728 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3729 }
3730
3731 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3732 /*
3733 * Return node id of node used for "local" allocations.
3734 * I.e., first node id of first zone in arg node's generic zonelist.
3735 * Used for initializing percpu 'numa_mem', which is used primarily
3736 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3737 */
3738 int local_memory_node(int node)
3739 {
3740 struct zone *zone;
3741
3742 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3743 gfp_zone(GFP_KERNEL),
3744 NULL,
3745 &zone);
3746 return zone->node;
3747 }
3748 #endif
3749
3750 #else /* CONFIG_NUMA */
3751
3752 static void set_zonelist_order(void)
3753 {
3754 current_zonelist_order = ZONELIST_ORDER_ZONE;
3755 }
3756
3757 static void build_zonelists(pg_data_t *pgdat)
3758 {
3759 int node, local_node;
3760 enum zone_type j;
3761 struct zonelist *zonelist;
3762
3763 local_node = pgdat->node_id;
3764
3765 zonelist = &pgdat->node_zonelists[0];
3766 j = build_zonelists_node(pgdat, zonelist, 0);
3767
3768 /*
3769 * Now we build the zonelist so that it contains the zones
3770 * of all the other nodes.
3771 * We don't want to pressure a particular node, so when
3772 * building the zones for node N, we make sure that the
3773 * zones coming right after the local ones are those from
3774 * node N+1 (modulo N)
3775 */
3776 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3777 if (!node_online(node))
3778 continue;
3779 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3780 }
3781 for (node = 0; node < local_node; node++) {
3782 if (!node_online(node))
3783 continue;
3784 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3785 }
3786
3787 zonelist->_zonerefs[j].zone = NULL;
3788 zonelist->_zonerefs[j].zone_idx = 0;
3789 }
3790
3791 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3792 static void build_zonelist_cache(pg_data_t *pgdat)
3793 {
3794 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3795 }
3796
3797 #endif /* CONFIG_NUMA */
3798
3799 /*
3800 * Boot pageset table. One per cpu which is going to be used for all
3801 * zones and all nodes. The parameters will be set in such a way
3802 * that an item put on a list will immediately be handed over to
3803 * the buddy list. This is safe since pageset manipulation is done
3804 * with interrupts disabled.
3805 *
3806 * The boot_pagesets must be kept even after bootup is complete for
3807 * unused processors and/or zones. They do play a role for bootstrapping
3808 * hotplugged processors.
3809 *
3810 * zoneinfo_show() and maybe other functions do
3811 * not check if the processor is online before following the pageset pointer.
3812 * Other parts of the kernel may not check if the zone is available.
3813 */
3814 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3815 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3816 static void setup_zone_pageset(struct zone *zone);
3817
3818 /*
3819 * Global mutex to protect against size modification of zonelists
3820 * as well as to serialize pageset setup for the new populated zone.
3821 */
3822 DEFINE_MUTEX(zonelists_mutex);
3823
3824 /* return values int ....just for stop_machine() */
3825 static int __build_all_zonelists(void *data)
3826 {
3827 int nid;
3828 int cpu;
3829 pg_data_t *self = data;
3830
3831 #ifdef CONFIG_NUMA
3832 memset(node_load, 0, sizeof(node_load));
3833 #endif
3834
3835 if (self && !node_online(self->node_id)) {
3836 build_zonelists(self);
3837 build_zonelist_cache(self);
3838 }
3839
3840 for_each_online_node(nid) {
3841 pg_data_t *pgdat = NODE_DATA(nid);
3842
3843 build_zonelists(pgdat);
3844 build_zonelist_cache(pgdat);
3845 }
3846
3847 /*
3848 * Initialize the boot_pagesets that are going to be used
3849 * for bootstrapping processors. The real pagesets for
3850 * each zone will be allocated later when the per cpu
3851 * allocator is available.
3852 *
3853 * boot_pagesets are used also for bootstrapping offline
3854 * cpus if the system is already booted because the pagesets
3855 * are needed to initialize allocators on a specific cpu too.
3856 * F.e. the percpu allocator needs the page allocator which
3857 * needs the percpu allocator in order to allocate its pagesets
3858 * (a chicken-egg dilemma).
3859 */
3860 for_each_possible_cpu(cpu) {
3861 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3862
3863 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3864 /*
3865 * We now know the "local memory node" for each node--
3866 * i.e., the node of the first zone in the generic zonelist.
3867 * Set up numa_mem percpu variable for on-line cpus. During
3868 * boot, only the boot cpu should be on-line; we'll init the
3869 * secondary cpus' numa_mem as they come on-line. During
3870 * node/memory hotplug, we'll fixup all on-line cpus.
3871 */
3872 if (cpu_online(cpu))
3873 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3874 #endif
3875 }
3876
3877 return 0;
3878 }
3879
3880 /*
3881 * Called with zonelists_mutex held always
3882 * unless system_state == SYSTEM_BOOTING.
3883 */
3884 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3885 {
3886 set_zonelist_order();
3887
3888 if (system_state == SYSTEM_BOOTING) {
3889 __build_all_zonelists(NULL);
3890 mminit_verify_zonelist();
3891 cpuset_init_current_mems_allowed();
3892 } else {
3893 #ifdef CONFIG_MEMORY_HOTPLUG
3894 if (zone)
3895 setup_zone_pageset(zone);
3896 #endif
3897 /* we have to stop all cpus to guarantee there is no user
3898 of zonelist */
3899 stop_machine(__build_all_zonelists, pgdat, NULL);
3900 /* cpuset refresh routine should be here */
3901 }
3902 vm_total_pages = nr_free_pagecache_pages();
3903 /*
3904 * Disable grouping by mobility if the number of pages in the
3905 * system is too low to allow the mechanism to work. It would be
3906 * more accurate, but expensive to check per-zone. This check is
3907 * made on memory-hotadd so a system can start with mobility
3908 * disabled and enable it later
3909 */
3910 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3911 page_group_by_mobility_disabled = 1;
3912 else
3913 page_group_by_mobility_disabled = 0;
3914
3915 printk("Built %i zonelists in %s order, mobility grouping %s. "
3916 "Total pages: %ld\n",
3917 nr_online_nodes,
3918 zonelist_order_name[current_zonelist_order],
3919 page_group_by_mobility_disabled ? "off" : "on",
3920 vm_total_pages);
3921 #ifdef CONFIG_NUMA
3922 printk("Policy zone: %s\n", zone_names[policy_zone]);
3923 #endif
3924 }
3925
3926 /*
3927 * Helper functions to size the waitqueue hash table.
3928 * Essentially these want to choose hash table sizes sufficiently
3929 * large so that collisions trying to wait on pages are rare.
3930 * But in fact, the number of active page waitqueues on typical
3931 * systems is ridiculously low, less than 200. So this is even
3932 * conservative, even though it seems large.
3933 *
3934 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3935 * waitqueues, i.e. the size of the waitq table given the number of pages.
3936 */
3937 #define PAGES_PER_WAITQUEUE 256
3938
3939 #ifndef CONFIG_MEMORY_HOTPLUG
3940 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3941 {
3942 unsigned long size = 1;
3943
3944 pages /= PAGES_PER_WAITQUEUE;
3945
3946 while (size < pages)
3947 size <<= 1;
3948
3949 /*
3950 * Once we have dozens or even hundreds of threads sleeping
3951 * on IO we've got bigger problems than wait queue collision.
3952 * Limit the size of the wait table to a reasonable size.
3953 */
3954 size = min(size, 4096UL);
3955
3956 return max(size, 4UL);
3957 }
3958 #else
3959 /*
3960 * A zone's size might be changed by hot-add, so it is not possible to determine
3961 * a suitable size for its wait_table. So we use the maximum size now.
3962 *
3963 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3964 *
3965 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3966 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3967 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3968 *
3969 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3970 * or more by the traditional way. (See above). It equals:
3971 *
3972 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3973 * ia64(16K page size) : = ( 8G + 4M)byte.
3974 * powerpc (64K page size) : = (32G +16M)byte.
3975 */
3976 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3977 {
3978 return 4096UL;
3979 }
3980 #endif
3981
3982 /*
3983 * This is an integer logarithm so that shifts can be used later
3984 * to extract the more random high bits from the multiplicative
3985 * hash function before the remainder is taken.
3986 */
3987 static inline unsigned long wait_table_bits(unsigned long size)
3988 {
3989 return ffz(~size);
3990 }
3991
3992 /*
3993 * Check if a pageblock contains reserved pages
3994 */
3995 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3996 {
3997 unsigned long pfn;
3998
3999 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4000 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4001 return 1;
4002 }
4003 return 0;
4004 }
4005
4006 /*
4007 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4008 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4009 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4010 * higher will lead to a bigger reserve which will get freed as contiguous
4011 * blocks as reclaim kicks in
4012 */
4013 static void setup_zone_migrate_reserve(struct zone *zone)
4014 {
4015 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4016 struct page *page;
4017 unsigned long block_migratetype;
4018 int reserve;
4019 int old_reserve;
4020
4021 /*
4022 * Get the start pfn, end pfn and the number of blocks to reserve
4023 * We have to be careful to be aligned to pageblock_nr_pages to
4024 * make sure that we always check pfn_valid for the first page in
4025 * the block.
4026 */
4027 start_pfn = zone->zone_start_pfn;
4028 end_pfn = zone_end_pfn(zone);
4029 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4030 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4031 pageblock_order;
4032
4033 /*
4034 * Reserve blocks are generally in place to help high-order atomic
4035 * allocations that are short-lived. A min_free_kbytes value that
4036 * would result in more than 2 reserve blocks for atomic allocations
4037 * is assumed to be in place to help anti-fragmentation for the
4038 * future allocation of hugepages at runtime.
4039 */
4040 reserve = min(2, reserve);
4041 old_reserve = zone->nr_migrate_reserve_block;
4042
4043 /* When memory hot-add, we almost always need to do nothing */
4044 if (reserve == old_reserve)
4045 return;
4046 zone->nr_migrate_reserve_block = reserve;
4047
4048 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4049 if (!pfn_valid(pfn))
4050 continue;
4051 page = pfn_to_page(pfn);
4052
4053 /* Watch out for overlapping nodes */
4054 if (page_to_nid(page) != zone_to_nid(zone))
4055 continue;
4056
4057 block_migratetype = get_pageblock_migratetype(page);
4058
4059 /* Only test what is necessary when the reserves are not met */
4060 if (reserve > 0) {
4061 /*
4062 * Blocks with reserved pages will never free, skip
4063 * them.
4064 */
4065 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4066 if (pageblock_is_reserved(pfn, block_end_pfn))
4067 continue;
4068
4069 /* If this block is reserved, account for it */
4070 if (block_migratetype == MIGRATE_RESERVE) {
4071 reserve--;
4072 continue;
4073 }
4074
4075 /* Suitable for reserving if this block is movable */
4076 if (block_migratetype == MIGRATE_MOVABLE) {
4077 set_pageblock_migratetype(page,
4078 MIGRATE_RESERVE);
4079 move_freepages_block(zone, page,
4080 MIGRATE_RESERVE);
4081 reserve--;
4082 continue;
4083 }
4084 } else if (!old_reserve) {
4085 /*
4086 * At boot time we don't need to scan the whole zone
4087 * for turning off MIGRATE_RESERVE.
4088 */
4089 break;
4090 }
4091
4092 /*
4093 * If the reserve is met and this is a previous reserved block,
4094 * take it back
4095 */
4096 if (block_migratetype == MIGRATE_RESERVE) {
4097 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4098 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4099 }
4100 }
4101 }
4102
4103 /*
4104 * Initially all pages are reserved - free ones are freed
4105 * up by free_all_bootmem() once the early boot process is
4106 * done. Non-atomic initialization, single-pass.
4107 */
4108 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4109 unsigned long start_pfn, enum memmap_context context)
4110 {
4111 struct page *page;
4112 unsigned long end_pfn = start_pfn + size;
4113 unsigned long pfn;
4114 struct zone *z;
4115
4116 if (highest_memmap_pfn < end_pfn - 1)
4117 highest_memmap_pfn = end_pfn - 1;
4118
4119 z = &NODE_DATA(nid)->node_zones[zone];
4120 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4121 /*
4122 * There can be holes in boot-time mem_map[]s
4123 * handed to this function. They do not
4124 * exist on hotplugged memory.
4125 */
4126 if (context == MEMMAP_EARLY) {
4127 if (!early_pfn_valid(pfn))
4128 continue;
4129 if (!early_pfn_in_nid(pfn, nid))
4130 continue;
4131 }
4132 page = pfn_to_page(pfn);
4133 set_page_links(page, zone, nid, pfn);
4134 mminit_verify_page_links(page, zone, nid, pfn);
4135 init_page_count(page);
4136 page_mapcount_reset(page);
4137 page_cpupid_reset_last(page);
4138 SetPageReserved(page);
4139 /*
4140 * Mark the block movable so that blocks are reserved for
4141 * movable at startup. This will force kernel allocations
4142 * to reserve their blocks rather than leaking throughout
4143 * the address space during boot when many long-lived
4144 * kernel allocations are made. Later some blocks near
4145 * the start are marked MIGRATE_RESERVE by
4146 * setup_zone_migrate_reserve()
4147 *
4148 * bitmap is created for zone's valid pfn range. but memmap
4149 * can be created for invalid pages (for alignment)
4150 * check here not to call set_pageblock_migratetype() against
4151 * pfn out of zone.
4152 */
4153 if ((z->zone_start_pfn <= pfn)
4154 && (pfn < zone_end_pfn(z))
4155 && !(pfn & (pageblock_nr_pages - 1)))
4156 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4157
4158 INIT_LIST_HEAD(&page->lru);
4159 #ifdef WANT_PAGE_VIRTUAL
4160 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4161 if (!is_highmem_idx(zone))
4162 set_page_address(page, __va(pfn << PAGE_SHIFT));
4163 #endif
4164 }
4165 }
4166
4167 static void __meminit zone_init_free_lists(struct zone *zone)
4168 {
4169 unsigned int order, t;
4170 for_each_migratetype_order(order, t) {
4171 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4172 zone->free_area[order].nr_free = 0;
4173 }
4174 }
4175
4176 #ifndef __HAVE_ARCH_MEMMAP_INIT
4177 #define memmap_init(size, nid, zone, start_pfn) \
4178 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4179 #endif
4180
4181 static int zone_batchsize(struct zone *zone)
4182 {
4183 #ifdef CONFIG_MMU
4184 int batch;
4185
4186 /*
4187 * The per-cpu-pages pools are set to around 1000th of the
4188 * size of the zone. But no more than 1/2 of a meg.
4189 *
4190 * OK, so we don't know how big the cache is. So guess.
4191 */
4192 batch = zone->managed_pages / 1024;
4193 if (batch * PAGE_SIZE > 512 * 1024)
4194 batch = (512 * 1024) / PAGE_SIZE;
4195 batch /= 4; /* We effectively *= 4 below */
4196 if (batch < 1)
4197 batch = 1;
4198
4199 /*
4200 * Clamp the batch to a 2^n - 1 value. Having a power
4201 * of 2 value was found to be more likely to have
4202 * suboptimal cache aliasing properties in some cases.
4203 *
4204 * For example if 2 tasks are alternately allocating
4205 * batches of pages, one task can end up with a lot
4206 * of pages of one half of the possible page colors
4207 * and the other with pages of the other colors.
4208 */
4209 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4210
4211 return batch;
4212
4213 #else
4214 /* The deferral and batching of frees should be suppressed under NOMMU
4215 * conditions.
4216 *
4217 * The problem is that NOMMU needs to be able to allocate large chunks
4218 * of contiguous memory as there's no hardware page translation to
4219 * assemble apparent contiguous memory from discontiguous pages.
4220 *
4221 * Queueing large contiguous runs of pages for batching, however,
4222 * causes the pages to actually be freed in smaller chunks. As there
4223 * can be a significant delay between the individual batches being
4224 * recycled, this leads to the once large chunks of space being
4225 * fragmented and becoming unavailable for high-order allocations.
4226 */
4227 return 0;
4228 #endif
4229 }
4230
4231 /*
4232 * pcp->high and pcp->batch values are related and dependent on one another:
4233 * ->batch must never be higher then ->high.
4234 * The following function updates them in a safe manner without read side
4235 * locking.
4236 *
4237 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4238 * those fields changing asynchronously (acording the the above rule).
4239 *
4240 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4241 * outside of boot time (or some other assurance that no concurrent updaters
4242 * exist).
4243 */
4244 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4245 unsigned long batch)
4246 {
4247 /* start with a fail safe value for batch */
4248 pcp->batch = 1;
4249 smp_wmb();
4250
4251 /* Update high, then batch, in order */
4252 pcp->high = high;
4253 smp_wmb();
4254
4255 pcp->batch = batch;
4256 }
4257
4258 /* a companion to pageset_set_high() */
4259 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4260 {
4261 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4262 }
4263
4264 static void pageset_init(struct per_cpu_pageset *p)
4265 {
4266 struct per_cpu_pages *pcp;
4267 int migratetype;
4268
4269 memset(p, 0, sizeof(*p));
4270
4271 pcp = &p->pcp;
4272 pcp->count = 0;
4273 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4274 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4275 }
4276
4277 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4278 {
4279 pageset_init(p);
4280 pageset_set_batch(p, batch);
4281 }
4282
4283 /*
4284 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4285 * to the value high for the pageset p.
4286 */
4287 static void pageset_set_high(struct per_cpu_pageset *p,
4288 unsigned long high)
4289 {
4290 unsigned long batch = max(1UL, high / 4);
4291 if ((high / 4) > (PAGE_SHIFT * 8))
4292 batch = PAGE_SHIFT * 8;
4293
4294 pageset_update(&p->pcp, high, batch);
4295 }
4296
4297 static void pageset_set_high_and_batch(struct zone *zone,
4298 struct per_cpu_pageset *pcp)
4299 {
4300 if (percpu_pagelist_fraction)
4301 pageset_set_high(pcp,
4302 (zone->managed_pages /
4303 percpu_pagelist_fraction));
4304 else
4305 pageset_set_batch(pcp, zone_batchsize(zone));
4306 }
4307
4308 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4309 {
4310 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4311
4312 pageset_init(pcp);
4313 pageset_set_high_and_batch(zone, pcp);
4314 }
4315
4316 static void __meminit setup_zone_pageset(struct zone *zone)
4317 {
4318 int cpu;
4319 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4320 for_each_possible_cpu(cpu)
4321 zone_pageset_init(zone, cpu);
4322 }
4323
4324 /*
4325 * Allocate per cpu pagesets and initialize them.
4326 * Before this call only boot pagesets were available.
4327 */
4328 void __init setup_per_cpu_pageset(void)
4329 {
4330 struct zone *zone;
4331
4332 for_each_populated_zone(zone)
4333 setup_zone_pageset(zone);
4334 }
4335
4336 static noinline __init_refok
4337 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4338 {
4339 int i;
4340 size_t alloc_size;
4341
4342 /*
4343 * The per-page waitqueue mechanism uses hashed waitqueues
4344 * per zone.
4345 */
4346 zone->wait_table_hash_nr_entries =
4347 wait_table_hash_nr_entries(zone_size_pages);
4348 zone->wait_table_bits =
4349 wait_table_bits(zone->wait_table_hash_nr_entries);
4350 alloc_size = zone->wait_table_hash_nr_entries
4351 * sizeof(wait_queue_head_t);
4352
4353 if (!slab_is_available()) {
4354 zone->wait_table = (wait_queue_head_t *)
4355 memblock_virt_alloc_node_nopanic(
4356 alloc_size, zone->zone_pgdat->node_id);
4357 } else {
4358 /*
4359 * This case means that a zone whose size was 0 gets new memory
4360 * via memory hot-add.
4361 * But it may be the case that a new node was hot-added. In
4362 * this case vmalloc() will not be able to use this new node's
4363 * memory - this wait_table must be initialized to use this new
4364 * node itself as well.
4365 * To use this new node's memory, further consideration will be
4366 * necessary.
4367 */
4368 zone->wait_table = vmalloc(alloc_size);
4369 }
4370 if (!zone->wait_table)
4371 return -ENOMEM;
4372
4373 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4374 init_waitqueue_head(zone->wait_table + i);
4375
4376 return 0;
4377 }
4378
4379 static __meminit void zone_pcp_init(struct zone *zone)
4380 {
4381 /*
4382 * per cpu subsystem is not up at this point. The following code
4383 * relies on the ability of the linker to provide the
4384 * offset of a (static) per cpu variable into the per cpu area.
4385 */
4386 zone->pageset = &boot_pageset;
4387
4388 if (populated_zone(zone))
4389 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4390 zone->name, zone->present_pages,
4391 zone_batchsize(zone));
4392 }
4393
4394 int __meminit init_currently_empty_zone(struct zone *zone,
4395 unsigned long zone_start_pfn,
4396 unsigned long size,
4397 enum memmap_context context)
4398 {
4399 struct pglist_data *pgdat = zone->zone_pgdat;
4400 int ret;
4401 ret = zone_wait_table_init(zone, size);
4402 if (ret)
4403 return ret;
4404 pgdat->nr_zones = zone_idx(zone) + 1;
4405
4406 zone->zone_start_pfn = zone_start_pfn;
4407
4408 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4409 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4410 pgdat->node_id,
4411 (unsigned long)zone_idx(zone),
4412 zone_start_pfn, (zone_start_pfn + size));
4413
4414 zone_init_free_lists(zone);
4415
4416 return 0;
4417 }
4418
4419 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4420 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4421 /*
4422 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4423 */
4424 int __meminit __early_pfn_to_nid(unsigned long pfn)
4425 {
4426 unsigned long start_pfn, end_pfn;
4427 int nid;
4428 /*
4429 * NOTE: The following SMP-unsafe globals are only used early in boot
4430 * when the kernel is running single-threaded.
4431 */
4432 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4433 static int __meminitdata last_nid;
4434
4435 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4436 return last_nid;
4437
4438 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4439 if (nid != -1) {
4440 last_start_pfn = start_pfn;
4441 last_end_pfn = end_pfn;
4442 last_nid = nid;
4443 }
4444
4445 return nid;
4446 }
4447 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4448
4449 int __meminit early_pfn_to_nid(unsigned long pfn)
4450 {
4451 int nid;
4452
4453 nid = __early_pfn_to_nid(pfn);
4454 if (nid >= 0)
4455 return nid;
4456 /* just returns 0 */
4457 return 0;
4458 }
4459
4460 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4461 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4462 {
4463 int nid;
4464
4465 nid = __early_pfn_to_nid(pfn);
4466 if (nid >= 0 && nid != node)
4467 return false;
4468 return true;
4469 }
4470 #endif
4471
4472 /**
4473 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4474 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4475 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4476 *
4477 * If an architecture guarantees that all ranges registered contain no holes
4478 * and may be freed, this this function may be used instead of calling
4479 * memblock_free_early_nid() manually.
4480 */
4481 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4482 {
4483 unsigned long start_pfn, end_pfn;
4484 int i, this_nid;
4485
4486 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4487 start_pfn = min(start_pfn, max_low_pfn);
4488 end_pfn = min(end_pfn, max_low_pfn);
4489
4490 if (start_pfn < end_pfn)
4491 memblock_free_early_nid(PFN_PHYS(start_pfn),
4492 (end_pfn - start_pfn) << PAGE_SHIFT,
4493 this_nid);
4494 }
4495 }
4496
4497 /**
4498 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4499 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4500 *
4501 * If an architecture guarantees that all ranges registered contain no holes and may
4502 * be freed, this function may be used instead of calling memory_present() manually.
4503 */
4504 void __init sparse_memory_present_with_active_regions(int nid)
4505 {
4506 unsigned long start_pfn, end_pfn;
4507 int i, this_nid;
4508
4509 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4510 memory_present(this_nid, start_pfn, end_pfn);
4511 }
4512
4513 /**
4514 * get_pfn_range_for_nid - Return the start and end page frames for a node
4515 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4516 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4517 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4518 *
4519 * It returns the start and end page frame of a node based on information
4520 * provided by memblock_set_node(). If called for a node
4521 * with no available memory, a warning is printed and the start and end
4522 * PFNs will be 0.
4523 */
4524 void __meminit get_pfn_range_for_nid(unsigned int nid,
4525 unsigned long *start_pfn, unsigned long *end_pfn)
4526 {
4527 unsigned long this_start_pfn, this_end_pfn;
4528 int i;
4529
4530 *start_pfn = -1UL;
4531 *end_pfn = 0;
4532
4533 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4534 *start_pfn = min(*start_pfn, this_start_pfn);
4535 *end_pfn = max(*end_pfn, this_end_pfn);
4536 }
4537
4538 if (*start_pfn == -1UL)
4539 *start_pfn = 0;
4540 }
4541
4542 /*
4543 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4544 * assumption is made that zones within a node are ordered in monotonic
4545 * increasing memory addresses so that the "highest" populated zone is used
4546 */
4547 static void __init find_usable_zone_for_movable(void)
4548 {
4549 int zone_index;
4550 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4551 if (zone_index == ZONE_MOVABLE)
4552 continue;
4553
4554 if (arch_zone_highest_possible_pfn[zone_index] >
4555 arch_zone_lowest_possible_pfn[zone_index])
4556 break;
4557 }
4558
4559 VM_BUG_ON(zone_index == -1);
4560 movable_zone = zone_index;
4561 }
4562
4563 /*
4564 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4565 * because it is sized independent of architecture. Unlike the other zones,
4566 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4567 * in each node depending on the size of each node and how evenly kernelcore
4568 * is distributed. This helper function adjusts the zone ranges
4569 * provided by the architecture for a given node by using the end of the
4570 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4571 * zones within a node are in order of monotonic increases memory addresses
4572 */
4573 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4574 unsigned long zone_type,
4575 unsigned long node_start_pfn,
4576 unsigned long node_end_pfn,
4577 unsigned long *zone_start_pfn,
4578 unsigned long *zone_end_pfn)
4579 {
4580 /* Only adjust if ZONE_MOVABLE is on this node */
4581 if (zone_movable_pfn[nid]) {
4582 /* Size ZONE_MOVABLE */
4583 if (zone_type == ZONE_MOVABLE) {
4584 *zone_start_pfn = zone_movable_pfn[nid];
4585 *zone_end_pfn = min(node_end_pfn,
4586 arch_zone_highest_possible_pfn[movable_zone]);
4587
4588 /* Adjust for ZONE_MOVABLE starting within this range */
4589 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4590 *zone_end_pfn > zone_movable_pfn[nid]) {
4591 *zone_end_pfn = zone_movable_pfn[nid];
4592
4593 /* Check if this whole range is within ZONE_MOVABLE */
4594 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4595 *zone_start_pfn = *zone_end_pfn;
4596 }
4597 }
4598
4599 /*
4600 * Return the number of pages a zone spans in a node, including holes
4601 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4602 */
4603 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4604 unsigned long zone_type,
4605 unsigned long node_start_pfn,
4606 unsigned long node_end_pfn,
4607 unsigned long *ignored)
4608 {
4609 unsigned long zone_start_pfn, zone_end_pfn;
4610
4611 /* Get the start and end of the zone */
4612 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4613 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4614 adjust_zone_range_for_zone_movable(nid, zone_type,
4615 node_start_pfn, node_end_pfn,
4616 &zone_start_pfn, &zone_end_pfn);
4617
4618 /* Check that this node has pages within the zone's required range */
4619 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4620 return 0;
4621
4622 /* Move the zone boundaries inside the node if necessary */
4623 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4624 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4625
4626 /* Return the spanned pages */
4627 return zone_end_pfn - zone_start_pfn;
4628 }
4629
4630 /*
4631 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4632 * then all holes in the requested range will be accounted for.
4633 */
4634 unsigned long __meminit __absent_pages_in_range(int nid,
4635 unsigned long range_start_pfn,
4636 unsigned long range_end_pfn)
4637 {
4638 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4639 unsigned long start_pfn, end_pfn;
4640 int i;
4641
4642 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4643 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4644 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4645 nr_absent -= end_pfn - start_pfn;
4646 }
4647 return nr_absent;
4648 }
4649
4650 /**
4651 * absent_pages_in_range - Return number of page frames in holes within a range
4652 * @start_pfn: The start PFN to start searching for holes
4653 * @end_pfn: The end PFN to stop searching for holes
4654 *
4655 * It returns the number of pages frames in memory holes within a range.
4656 */
4657 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4658 unsigned long end_pfn)
4659 {
4660 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4661 }
4662
4663 /* Return the number of page frames in holes in a zone on a node */
4664 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4665 unsigned long zone_type,
4666 unsigned long node_start_pfn,
4667 unsigned long node_end_pfn,
4668 unsigned long *ignored)
4669 {
4670 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4671 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4672 unsigned long zone_start_pfn, zone_end_pfn;
4673
4674 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4675 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4676
4677 adjust_zone_range_for_zone_movable(nid, zone_type,
4678 node_start_pfn, node_end_pfn,
4679 &zone_start_pfn, &zone_end_pfn);
4680 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4681 }
4682
4683 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4684 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4685 unsigned long zone_type,
4686 unsigned long node_start_pfn,
4687 unsigned long node_end_pfn,
4688 unsigned long *zones_size)
4689 {
4690 return zones_size[zone_type];
4691 }
4692
4693 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4694 unsigned long zone_type,
4695 unsigned long node_start_pfn,
4696 unsigned long node_end_pfn,
4697 unsigned long *zholes_size)
4698 {
4699 if (!zholes_size)
4700 return 0;
4701
4702 return zholes_size[zone_type];
4703 }
4704
4705 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4706
4707 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4708 unsigned long node_start_pfn,
4709 unsigned long node_end_pfn,
4710 unsigned long *zones_size,
4711 unsigned long *zholes_size)
4712 {
4713 unsigned long realtotalpages, totalpages = 0;
4714 enum zone_type i;
4715
4716 for (i = 0; i < MAX_NR_ZONES; i++)
4717 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4718 node_start_pfn,
4719 node_end_pfn,
4720 zones_size);
4721 pgdat->node_spanned_pages = totalpages;
4722
4723 realtotalpages = totalpages;
4724 for (i = 0; i < MAX_NR_ZONES; i++)
4725 realtotalpages -=
4726 zone_absent_pages_in_node(pgdat->node_id, i,
4727 node_start_pfn, node_end_pfn,
4728 zholes_size);
4729 pgdat->node_present_pages = realtotalpages;
4730 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4731 realtotalpages);
4732 }
4733
4734 #ifndef CONFIG_SPARSEMEM
4735 /*
4736 * Calculate the size of the zone->blockflags rounded to an unsigned long
4737 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4738 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4739 * round what is now in bits to nearest long in bits, then return it in
4740 * bytes.
4741 */
4742 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4743 {
4744 unsigned long usemapsize;
4745
4746 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4747 usemapsize = roundup(zonesize, pageblock_nr_pages);
4748 usemapsize = usemapsize >> pageblock_order;
4749 usemapsize *= NR_PAGEBLOCK_BITS;
4750 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4751
4752 return usemapsize / 8;
4753 }
4754
4755 static void __init setup_usemap(struct pglist_data *pgdat,
4756 struct zone *zone,
4757 unsigned long zone_start_pfn,
4758 unsigned long zonesize)
4759 {
4760 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4761 zone->pageblock_flags = NULL;
4762 if (usemapsize)
4763 zone->pageblock_flags =
4764 memblock_virt_alloc_node_nopanic(usemapsize,
4765 pgdat->node_id);
4766 }
4767 #else
4768 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4769 unsigned long zone_start_pfn, unsigned long zonesize) {}
4770 #endif /* CONFIG_SPARSEMEM */
4771
4772 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4773
4774 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4775 void __paginginit set_pageblock_order(void)
4776 {
4777 unsigned int order;
4778
4779 /* Check that pageblock_nr_pages has not already been setup */
4780 if (pageblock_order)
4781 return;
4782
4783 if (HPAGE_SHIFT > PAGE_SHIFT)
4784 order = HUGETLB_PAGE_ORDER;
4785 else
4786 order = MAX_ORDER - 1;
4787
4788 /*
4789 * Assume the largest contiguous order of interest is a huge page.
4790 * This value may be variable depending on boot parameters on IA64 and
4791 * powerpc.
4792 */
4793 pageblock_order = order;
4794 }
4795 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4796
4797 /*
4798 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4799 * is unused as pageblock_order is set at compile-time. See
4800 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4801 * the kernel config
4802 */
4803 void __paginginit set_pageblock_order(void)
4804 {
4805 }
4806
4807 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4808
4809 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4810 unsigned long present_pages)
4811 {
4812 unsigned long pages = spanned_pages;
4813
4814 /*
4815 * Provide a more accurate estimation if there are holes within
4816 * the zone and SPARSEMEM is in use. If there are holes within the
4817 * zone, each populated memory region may cost us one or two extra
4818 * memmap pages due to alignment because memmap pages for each
4819 * populated regions may not naturally algined on page boundary.
4820 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4821 */
4822 if (spanned_pages > present_pages + (present_pages >> 4) &&
4823 IS_ENABLED(CONFIG_SPARSEMEM))
4824 pages = present_pages;
4825
4826 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4827 }
4828
4829 /*
4830 * Set up the zone data structures:
4831 * - mark all pages reserved
4832 * - mark all memory queues empty
4833 * - clear the memory bitmaps
4834 *
4835 * NOTE: pgdat should get zeroed by caller.
4836 */
4837 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4838 unsigned long node_start_pfn, unsigned long node_end_pfn,
4839 unsigned long *zones_size, unsigned long *zholes_size)
4840 {
4841 enum zone_type j;
4842 int nid = pgdat->node_id;
4843 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4844 int ret;
4845
4846 pgdat_resize_init(pgdat);
4847 #ifdef CONFIG_NUMA_BALANCING
4848 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4849 pgdat->numabalancing_migrate_nr_pages = 0;
4850 pgdat->numabalancing_migrate_next_window = jiffies;
4851 #endif
4852 init_waitqueue_head(&pgdat->kswapd_wait);
4853 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4854 pgdat_page_cgroup_init(pgdat);
4855
4856 for (j = 0; j < MAX_NR_ZONES; j++) {
4857 struct zone *zone = pgdat->node_zones + j;
4858 unsigned long size, realsize, freesize, memmap_pages;
4859
4860 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4861 node_end_pfn, zones_size);
4862 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4863 node_start_pfn,
4864 node_end_pfn,
4865 zholes_size);
4866
4867 /*
4868 * Adjust freesize so that it accounts for how much memory
4869 * is used by this zone for memmap. This affects the watermark
4870 * and per-cpu initialisations
4871 */
4872 memmap_pages = calc_memmap_size(size, realsize);
4873 if (freesize >= memmap_pages) {
4874 freesize -= memmap_pages;
4875 if (memmap_pages)
4876 printk(KERN_DEBUG
4877 " %s zone: %lu pages used for memmap\n",
4878 zone_names[j], memmap_pages);
4879 } else
4880 printk(KERN_WARNING
4881 " %s zone: %lu pages exceeds freesize %lu\n",
4882 zone_names[j], memmap_pages, freesize);
4883
4884 /* Account for reserved pages */
4885 if (j == 0 && freesize > dma_reserve) {
4886 freesize -= dma_reserve;
4887 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4888 zone_names[0], dma_reserve);
4889 }
4890
4891 if (!is_highmem_idx(j))
4892 nr_kernel_pages += freesize;
4893 /* Charge for highmem memmap if there are enough kernel pages */
4894 else if (nr_kernel_pages > memmap_pages * 2)
4895 nr_kernel_pages -= memmap_pages;
4896 nr_all_pages += freesize;
4897
4898 zone->spanned_pages = size;
4899 zone->present_pages = realsize;
4900 /*
4901 * Set an approximate value for lowmem here, it will be adjusted
4902 * when the bootmem allocator frees pages into the buddy system.
4903 * And all highmem pages will be managed by the buddy system.
4904 */
4905 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4906 #ifdef CONFIG_NUMA
4907 zone->node = nid;
4908 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4909 / 100;
4910 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4911 #endif
4912 zone->name = zone_names[j];
4913 spin_lock_init(&zone->lock);
4914 spin_lock_init(&zone->lru_lock);
4915 zone_seqlock_init(zone);
4916 zone->zone_pgdat = pgdat;
4917 zone_pcp_init(zone);
4918
4919 /* For bootup, initialized properly in watermark setup */
4920 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4921
4922 lruvec_init(&zone->lruvec);
4923 if (!size)
4924 continue;
4925
4926 set_pageblock_order();
4927 setup_usemap(pgdat, zone, zone_start_pfn, size);
4928 ret = init_currently_empty_zone(zone, zone_start_pfn,
4929 size, MEMMAP_EARLY);
4930 BUG_ON(ret);
4931 memmap_init(size, nid, j, zone_start_pfn);
4932 zone_start_pfn += size;
4933 }
4934 }
4935
4936 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4937 {
4938 /* Skip empty nodes */
4939 if (!pgdat->node_spanned_pages)
4940 return;
4941
4942 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4943 /* ia64 gets its own node_mem_map, before this, without bootmem */
4944 if (!pgdat->node_mem_map) {
4945 unsigned long size, start, end;
4946 struct page *map;
4947
4948 /*
4949 * The zone's endpoints aren't required to be MAX_ORDER
4950 * aligned but the node_mem_map endpoints must be in order
4951 * for the buddy allocator to function correctly.
4952 */
4953 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4954 end = pgdat_end_pfn(pgdat);
4955 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4956 size = (end - start) * sizeof(struct page);
4957 map = alloc_remap(pgdat->node_id, size);
4958 if (!map)
4959 map = memblock_virt_alloc_node_nopanic(size,
4960 pgdat->node_id);
4961 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4962 }
4963 #ifndef CONFIG_NEED_MULTIPLE_NODES
4964 /*
4965 * With no DISCONTIG, the global mem_map is just set as node 0's
4966 */
4967 if (pgdat == NODE_DATA(0)) {
4968 mem_map = NODE_DATA(0)->node_mem_map;
4969 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4970 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4971 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4972 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4973 }
4974 #endif
4975 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4976 }
4977
4978 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4979 unsigned long node_start_pfn, unsigned long *zholes_size)
4980 {
4981 pg_data_t *pgdat = NODE_DATA(nid);
4982 unsigned long start_pfn = 0;
4983 unsigned long end_pfn = 0;
4984
4985 /* pg_data_t should be reset to zero when it's allocated */
4986 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4987
4988 pgdat->node_id = nid;
4989 pgdat->node_start_pfn = node_start_pfn;
4990 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4991 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4992 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
4993 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
4994 #endif
4995 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4996 zones_size, zholes_size);
4997
4998 alloc_node_mem_map(pgdat);
4999 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5000 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5001 nid, (unsigned long)pgdat,
5002 (unsigned long)pgdat->node_mem_map);
5003 #endif
5004
5005 free_area_init_core(pgdat, start_pfn, end_pfn,
5006 zones_size, zholes_size);
5007 }
5008
5009 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5010
5011 #if MAX_NUMNODES > 1
5012 /*
5013 * Figure out the number of possible node ids.
5014 */
5015 void __init setup_nr_node_ids(void)
5016 {
5017 unsigned int node;
5018 unsigned int highest = 0;
5019
5020 for_each_node_mask(node, node_possible_map)
5021 highest = node;
5022 nr_node_ids = highest + 1;
5023 }
5024 #endif
5025
5026 /**
5027 * node_map_pfn_alignment - determine the maximum internode alignment
5028 *
5029 * This function should be called after node map is populated and sorted.
5030 * It calculates the maximum power of two alignment which can distinguish
5031 * all the nodes.
5032 *
5033 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5034 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5035 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5036 * shifted, 1GiB is enough and this function will indicate so.
5037 *
5038 * This is used to test whether pfn -> nid mapping of the chosen memory
5039 * model has fine enough granularity to avoid incorrect mapping for the
5040 * populated node map.
5041 *
5042 * Returns the determined alignment in pfn's. 0 if there is no alignment
5043 * requirement (single node).
5044 */
5045 unsigned long __init node_map_pfn_alignment(void)
5046 {
5047 unsigned long accl_mask = 0, last_end = 0;
5048 unsigned long start, end, mask;
5049 int last_nid = -1;
5050 int i, nid;
5051
5052 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5053 if (!start || last_nid < 0 || last_nid == nid) {
5054 last_nid = nid;
5055 last_end = end;
5056 continue;
5057 }
5058
5059 /*
5060 * Start with a mask granular enough to pin-point to the
5061 * start pfn and tick off bits one-by-one until it becomes
5062 * too coarse to separate the current node from the last.
5063 */
5064 mask = ~((1 << __ffs(start)) - 1);
5065 while (mask && last_end <= (start & (mask << 1)))
5066 mask <<= 1;
5067
5068 /* accumulate all internode masks */
5069 accl_mask |= mask;
5070 }
5071
5072 /* convert mask to number of pages */
5073 return ~accl_mask + 1;
5074 }
5075
5076 /* Find the lowest pfn for a node */
5077 static unsigned long __init find_min_pfn_for_node(int nid)
5078 {
5079 unsigned long min_pfn = ULONG_MAX;
5080 unsigned long start_pfn;
5081 int i;
5082
5083 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5084 min_pfn = min(min_pfn, start_pfn);
5085
5086 if (min_pfn == ULONG_MAX) {
5087 printk(KERN_WARNING
5088 "Could not find start_pfn for node %d\n", nid);
5089 return 0;
5090 }
5091
5092 return min_pfn;
5093 }
5094
5095 /**
5096 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5097 *
5098 * It returns the minimum PFN based on information provided via
5099 * memblock_set_node().
5100 */
5101 unsigned long __init find_min_pfn_with_active_regions(void)
5102 {
5103 return find_min_pfn_for_node(MAX_NUMNODES);
5104 }
5105
5106 /*
5107 * early_calculate_totalpages()
5108 * Sum pages in active regions for movable zone.
5109 * Populate N_MEMORY for calculating usable_nodes.
5110 */
5111 static unsigned long __init early_calculate_totalpages(void)
5112 {
5113 unsigned long totalpages = 0;
5114 unsigned long start_pfn, end_pfn;
5115 int i, nid;
5116
5117 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5118 unsigned long pages = end_pfn - start_pfn;
5119
5120 totalpages += pages;
5121 if (pages)
5122 node_set_state(nid, N_MEMORY);
5123 }
5124 return totalpages;
5125 }
5126
5127 /*
5128 * Find the PFN the Movable zone begins in each node. Kernel memory
5129 * is spread evenly between nodes as long as the nodes have enough
5130 * memory. When they don't, some nodes will have more kernelcore than
5131 * others
5132 */
5133 static void __init find_zone_movable_pfns_for_nodes(void)
5134 {
5135 int i, nid;
5136 unsigned long usable_startpfn;
5137 unsigned long kernelcore_node, kernelcore_remaining;
5138 /* save the state before borrow the nodemask */
5139 nodemask_t saved_node_state = node_states[N_MEMORY];
5140 unsigned long totalpages = early_calculate_totalpages();
5141 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5142 struct memblock_region *r;
5143
5144 /* Need to find movable_zone earlier when movable_node is specified. */
5145 find_usable_zone_for_movable();
5146
5147 /*
5148 * If movable_node is specified, ignore kernelcore and movablecore
5149 * options.
5150 */
5151 if (movable_node_is_enabled()) {
5152 for_each_memblock(memory, r) {
5153 if (!memblock_is_hotpluggable(r))
5154 continue;
5155
5156 nid = r->nid;
5157
5158 usable_startpfn = PFN_DOWN(r->base);
5159 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5160 min(usable_startpfn, zone_movable_pfn[nid]) :
5161 usable_startpfn;
5162 }
5163
5164 goto out2;
5165 }
5166
5167 /*
5168 * If movablecore=nn[KMG] was specified, calculate what size of
5169 * kernelcore that corresponds so that memory usable for
5170 * any allocation type is evenly spread. If both kernelcore
5171 * and movablecore are specified, then the value of kernelcore
5172 * will be used for required_kernelcore if it's greater than
5173 * what movablecore would have allowed.
5174 */
5175 if (required_movablecore) {
5176 unsigned long corepages;
5177
5178 /*
5179 * Round-up so that ZONE_MOVABLE is at least as large as what
5180 * was requested by the user
5181 */
5182 required_movablecore =
5183 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5184 corepages = totalpages - required_movablecore;
5185
5186 required_kernelcore = max(required_kernelcore, corepages);
5187 }
5188
5189 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5190 if (!required_kernelcore)
5191 goto out;
5192
5193 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5194 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5195
5196 restart:
5197 /* Spread kernelcore memory as evenly as possible throughout nodes */
5198 kernelcore_node = required_kernelcore / usable_nodes;
5199 for_each_node_state(nid, N_MEMORY) {
5200 unsigned long start_pfn, end_pfn;
5201
5202 /*
5203 * Recalculate kernelcore_node if the division per node
5204 * now exceeds what is necessary to satisfy the requested
5205 * amount of memory for the kernel
5206 */
5207 if (required_kernelcore < kernelcore_node)
5208 kernelcore_node = required_kernelcore / usable_nodes;
5209
5210 /*
5211 * As the map is walked, we track how much memory is usable
5212 * by the kernel using kernelcore_remaining. When it is
5213 * 0, the rest of the node is usable by ZONE_MOVABLE
5214 */
5215 kernelcore_remaining = kernelcore_node;
5216
5217 /* Go through each range of PFNs within this node */
5218 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5219 unsigned long size_pages;
5220
5221 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5222 if (start_pfn >= end_pfn)
5223 continue;
5224
5225 /* Account for what is only usable for kernelcore */
5226 if (start_pfn < usable_startpfn) {
5227 unsigned long kernel_pages;
5228 kernel_pages = min(end_pfn, usable_startpfn)
5229 - start_pfn;
5230
5231 kernelcore_remaining -= min(kernel_pages,
5232 kernelcore_remaining);
5233 required_kernelcore -= min(kernel_pages,
5234 required_kernelcore);
5235
5236 /* Continue if range is now fully accounted */
5237 if (end_pfn <= usable_startpfn) {
5238
5239 /*
5240 * Push zone_movable_pfn to the end so
5241 * that if we have to rebalance
5242 * kernelcore across nodes, we will
5243 * not double account here
5244 */
5245 zone_movable_pfn[nid] = end_pfn;
5246 continue;
5247 }
5248 start_pfn = usable_startpfn;
5249 }
5250
5251 /*
5252 * The usable PFN range for ZONE_MOVABLE is from
5253 * start_pfn->end_pfn. Calculate size_pages as the
5254 * number of pages used as kernelcore
5255 */
5256 size_pages = end_pfn - start_pfn;
5257 if (size_pages > kernelcore_remaining)
5258 size_pages = kernelcore_remaining;
5259 zone_movable_pfn[nid] = start_pfn + size_pages;
5260
5261 /*
5262 * Some kernelcore has been met, update counts and
5263 * break if the kernelcore for this node has been
5264 * satisfied
5265 */
5266 required_kernelcore -= min(required_kernelcore,
5267 size_pages);
5268 kernelcore_remaining -= size_pages;
5269 if (!kernelcore_remaining)
5270 break;
5271 }
5272 }
5273
5274 /*
5275 * If there is still required_kernelcore, we do another pass with one
5276 * less node in the count. This will push zone_movable_pfn[nid] further
5277 * along on the nodes that still have memory until kernelcore is
5278 * satisfied
5279 */
5280 usable_nodes--;
5281 if (usable_nodes && required_kernelcore > usable_nodes)
5282 goto restart;
5283
5284 out2:
5285 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5286 for (nid = 0; nid < MAX_NUMNODES; nid++)
5287 zone_movable_pfn[nid] =
5288 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5289
5290 out:
5291 /* restore the node_state */
5292 node_states[N_MEMORY] = saved_node_state;
5293 }
5294
5295 /* Any regular or high memory on that node ? */
5296 static void check_for_memory(pg_data_t *pgdat, int nid)
5297 {
5298 enum zone_type zone_type;
5299
5300 if (N_MEMORY == N_NORMAL_MEMORY)
5301 return;
5302
5303 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5304 struct zone *zone = &pgdat->node_zones[zone_type];
5305 if (populated_zone(zone)) {
5306 node_set_state(nid, N_HIGH_MEMORY);
5307 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5308 zone_type <= ZONE_NORMAL)
5309 node_set_state(nid, N_NORMAL_MEMORY);
5310 break;
5311 }
5312 }
5313 }
5314
5315 /**
5316 * free_area_init_nodes - Initialise all pg_data_t and zone data
5317 * @max_zone_pfn: an array of max PFNs for each zone
5318 *
5319 * This will call free_area_init_node() for each active node in the system.
5320 * Using the page ranges provided by memblock_set_node(), the size of each
5321 * zone in each node and their holes is calculated. If the maximum PFN
5322 * between two adjacent zones match, it is assumed that the zone is empty.
5323 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5324 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5325 * starts where the previous one ended. For example, ZONE_DMA32 starts
5326 * at arch_max_dma_pfn.
5327 */
5328 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5329 {
5330 unsigned long start_pfn, end_pfn;
5331 int i, nid;
5332
5333 /* Record where the zone boundaries are */
5334 memset(arch_zone_lowest_possible_pfn, 0,
5335 sizeof(arch_zone_lowest_possible_pfn));
5336 memset(arch_zone_highest_possible_pfn, 0,
5337 sizeof(arch_zone_highest_possible_pfn));
5338 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5339 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5340 for (i = 1; i < MAX_NR_ZONES; i++) {
5341 if (i == ZONE_MOVABLE)
5342 continue;
5343 arch_zone_lowest_possible_pfn[i] =
5344 arch_zone_highest_possible_pfn[i-1];
5345 arch_zone_highest_possible_pfn[i] =
5346 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5347 }
5348 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5349 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5350
5351 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5352 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5353 find_zone_movable_pfns_for_nodes();
5354
5355 /* Print out the zone ranges */
5356 printk("Zone ranges:\n");
5357 for (i = 0; i < MAX_NR_ZONES; i++) {
5358 if (i == ZONE_MOVABLE)
5359 continue;
5360 printk(KERN_CONT " %-8s ", zone_names[i]);
5361 if (arch_zone_lowest_possible_pfn[i] ==
5362 arch_zone_highest_possible_pfn[i])
5363 printk(KERN_CONT "empty\n");
5364 else
5365 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5366 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5367 (arch_zone_highest_possible_pfn[i]
5368 << PAGE_SHIFT) - 1);
5369 }
5370
5371 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5372 printk("Movable zone start for each node\n");
5373 for (i = 0; i < MAX_NUMNODES; i++) {
5374 if (zone_movable_pfn[i])
5375 printk(" Node %d: %#010lx\n", i,
5376 zone_movable_pfn[i] << PAGE_SHIFT);
5377 }
5378
5379 /* Print out the early node map */
5380 printk("Early memory node ranges\n");
5381 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5382 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5383 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5384
5385 /* Initialise every node */
5386 mminit_verify_pageflags_layout();
5387 setup_nr_node_ids();
5388 for_each_online_node(nid) {
5389 pg_data_t *pgdat = NODE_DATA(nid);
5390 free_area_init_node(nid, NULL,
5391 find_min_pfn_for_node(nid), NULL);
5392
5393 /* Any memory on that node */
5394 if (pgdat->node_present_pages)
5395 node_set_state(nid, N_MEMORY);
5396 check_for_memory(pgdat, nid);
5397 }
5398 }
5399
5400 static int __init cmdline_parse_core(char *p, unsigned long *core)
5401 {
5402 unsigned long long coremem;
5403 if (!p)
5404 return -EINVAL;
5405
5406 coremem = memparse(p, &p);
5407 *core = coremem >> PAGE_SHIFT;
5408
5409 /* Paranoid check that UL is enough for the coremem value */
5410 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5411
5412 return 0;
5413 }
5414
5415 /*
5416 * kernelcore=size sets the amount of memory for use for allocations that
5417 * cannot be reclaimed or migrated.
5418 */
5419 static int __init cmdline_parse_kernelcore(char *p)
5420 {
5421 return cmdline_parse_core(p, &required_kernelcore);
5422 }
5423
5424 /*
5425 * movablecore=size sets the amount of memory for use for allocations that
5426 * can be reclaimed or migrated.
5427 */
5428 static int __init cmdline_parse_movablecore(char *p)
5429 {
5430 return cmdline_parse_core(p, &required_movablecore);
5431 }
5432
5433 early_param("kernelcore", cmdline_parse_kernelcore);
5434 early_param("movablecore", cmdline_parse_movablecore);
5435
5436 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5437
5438 void adjust_managed_page_count(struct page *page, long count)
5439 {
5440 spin_lock(&managed_page_count_lock);
5441 page_zone(page)->managed_pages += count;
5442 totalram_pages += count;
5443 #ifdef CONFIG_HIGHMEM
5444 if (PageHighMem(page))
5445 totalhigh_pages += count;
5446 #endif
5447 spin_unlock(&managed_page_count_lock);
5448 }
5449 EXPORT_SYMBOL(adjust_managed_page_count);
5450
5451 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5452 {
5453 void *pos;
5454 unsigned long pages = 0;
5455
5456 start = (void *)PAGE_ALIGN((unsigned long)start);
5457 end = (void *)((unsigned long)end & PAGE_MASK);
5458 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5459 if ((unsigned int)poison <= 0xFF)
5460 memset(pos, poison, PAGE_SIZE);
5461 free_reserved_page(virt_to_page(pos));
5462 }
5463
5464 if (pages && s)
5465 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5466 s, pages << (PAGE_SHIFT - 10), start, end);
5467
5468 return pages;
5469 }
5470 EXPORT_SYMBOL(free_reserved_area);
5471
5472 #ifdef CONFIG_HIGHMEM
5473 void free_highmem_page(struct page *page)
5474 {
5475 __free_reserved_page(page);
5476 totalram_pages++;
5477 page_zone(page)->managed_pages++;
5478 totalhigh_pages++;
5479 }
5480 #endif
5481
5482
5483 void __init mem_init_print_info(const char *str)
5484 {
5485 unsigned long physpages, codesize, datasize, rosize, bss_size;
5486 unsigned long init_code_size, init_data_size;
5487
5488 physpages = get_num_physpages();
5489 codesize = _etext - _stext;
5490 datasize = _edata - _sdata;
5491 rosize = __end_rodata - __start_rodata;
5492 bss_size = __bss_stop - __bss_start;
5493 init_data_size = __init_end - __init_begin;
5494 init_code_size = _einittext - _sinittext;
5495
5496 /*
5497 * Detect special cases and adjust section sizes accordingly:
5498 * 1) .init.* may be embedded into .data sections
5499 * 2) .init.text.* may be out of [__init_begin, __init_end],
5500 * please refer to arch/tile/kernel/vmlinux.lds.S.
5501 * 3) .rodata.* may be embedded into .text or .data sections.
5502 */
5503 #define adj_init_size(start, end, size, pos, adj) \
5504 do { \
5505 if (start <= pos && pos < end && size > adj) \
5506 size -= adj; \
5507 } while (0)
5508
5509 adj_init_size(__init_begin, __init_end, init_data_size,
5510 _sinittext, init_code_size);
5511 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5512 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5513 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5514 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5515
5516 #undef adj_init_size
5517
5518 printk("Memory: %luK/%luK available "
5519 "(%luK kernel code, %luK rwdata, %luK rodata, "
5520 "%luK init, %luK bss, %luK reserved"
5521 #ifdef CONFIG_HIGHMEM
5522 ", %luK highmem"
5523 #endif
5524 "%s%s)\n",
5525 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5526 codesize >> 10, datasize >> 10, rosize >> 10,
5527 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5528 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5529 #ifdef CONFIG_HIGHMEM
5530 totalhigh_pages << (PAGE_SHIFT-10),
5531 #endif
5532 str ? ", " : "", str ? str : "");
5533 }
5534
5535 /**
5536 * set_dma_reserve - set the specified number of pages reserved in the first zone
5537 * @new_dma_reserve: The number of pages to mark reserved
5538 *
5539 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5540 * In the DMA zone, a significant percentage may be consumed by kernel image
5541 * and other unfreeable allocations which can skew the watermarks badly. This
5542 * function may optionally be used to account for unfreeable pages in the
5543 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5544 * smaller per-cpu batchsize.
5545 */
5546 void __init set_dma_reserve(unsigned long new_dma_reserve)
5547 {
5548 dma_reserve = new_dma_reserve;
5549 }
5550
5551 void __init free_area_init(unsigned long *zones_size)
5552 {
5553 free_area_init_node(0, zones_size,
5554 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5555 }
5556
5557 static int page_alloc_cpu_notify(struct notifier_block *self,
5558 unsigned long action, void *hcpu)
5559 {
5560 int cpu = (unsigned long)hcpu;
5561
5562 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5563 lru_add_drain_cpu(cpu);
5564 drain_pages(cpu);
5565
5566 /*
5567 * Spill the event counters of the dead processor
5568 * into the current processors event counters.
5569 * This artificially elevates the count of the current
5570 * processor.
5571 */
5572 vm_events_fold_cpu(cpu);
5573
5574 /*
5575 * Zero the differential counters of the dead processor
5576 * so that the vm statistics are consistent.
5577 *
5578 * This is only okay since the processor is dead and cannot
5579 * race with what we are doing.
5580 */
5581 cpu_vm_stats_fold(cpu);
5582 }
5583 return NOTIFY_OK;
5584 }
5585
5586 void __init page_alloc_init(void)
5587 {
5588 hotcpu_notifier(page_alloc_cpu_notify, 0);
5589 }
5590
5591 /*
5592 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5593 * or min_free_kbytes changes.
5594 */
5595 static void calculate_totalreserve_pages(void)
5596 {
5597 struct pglist_data *pgdat;
5598 unsigned long reserve_pages = 0;
5599 enum zone_type i, j;
5600
5601 for_each_online_pgdat(pgdat) {
5602 for (i = 0; i < MAX_NR_ZONES; i++) {
5603 struct zone *zone = pgdat->node_zones + i;
5604 long max = 0;
5605
5606 /* Find valid and maximum lowmem_reserve in the zone */
5607 for (j = i; j < MAX_NR_ZONES; j++) {
5608 if (zone->lowmem_reserve[j] > max)
5609 max = zone->lowmem_reserve[j];
5610 }
5611
5612 /* we treat the high watermark as reserved pages. */
5613 max += high_wmark_pages(zone);
5614
5615 if (max > zone->managed_pages)
5616 max = zone->managed_pages;
5617 reserve_pages += max;
5618 /*
5619 * Lowmem reserves are not available to
5620 * GFP_HIGHUSER page cache allocations and
5621 * kswapd tries to balance zones to their high
5622 * watermark. As a result, neither should be
5623 * regarded as dirtyable memory, to prevent a
5624 * situation where reclaim has to clean pages
5625 * in order to balance the zones.
5626 */
5627 zone->dirty_balance_reserve = max;
5628 }
5629 }
5630 dirty_balance_reserve = reserve_pages;
5631 totalreserve_pages = reserve_pages;
5632 }
5633
5634 /*
5635 * setup_per_zone_lowmem_reserve - called whenever
5636 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5637 * has a correct pages reserved value, so an adequate number of
5638 * pages are left in the zone after a successful __alloc_pages().
5639 */
5640 static void setup_per_zone_lowmem_reserve(void)
5641 {
5642 struct pglist_data *pgdat;
5643 enum zone_type j, idx;
5644
5645 for_each_online_pgdat(pgdat) {
5646 for (j = 0; j < MAX_NR_ZONES; j++) {
5647 struct zone *zone = pgdat->node_zones + j;
5648 unsigned long managed_pages = zone->managed_pages;
5649
5650 zone->lowmem_reserve[j] = 0;
5651
5652 idx = j;
5653 while (idx) {
5654 struct zone *lower_zone;
5655
5656 idx--;
5657
5658 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5659 sysctl_lowmem_reserve_ratio[idx] = 1;
5660
5661 lower_zone = pgdat->node_zones + idx;
5662 lower_zone->lowmem_reserve[j] = managed_pages /
5663 sysctl_lowmem_reserve_ratio[idx];
5664 managed_pages += lower_zone->managed_pages;
5665 }
5666 }
5667 }
5668
5669 /* update totalreserve_pages */
5670 calculate_totalreserve_pages();
5671 }
5672
5673 static void __setup_per_zone_wmarks(void)
5674 {
5675 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5676 unsigned long lowmem_pages = 0;
5677 struct zone *zone;
5678 unsigned long flags;
5679
5680 /* Calculate total number of !ZONE_HIGHMEM pages */
5681 for_each_zone(zone) {
5682 if (!is_highmem(zone))
5683 lowmem_pages += zone->managed_pages;
5684 }
5685
5686 for_each_zone(zone) {
5687 u64 tmp;
5688
5689 spin_lock_irqsave(&zone->lock, flags);
5690 tmp = (u64)pages_min * zone->managed_pages;
5691 do_div(tmp, lowmem_pages);
5692 if (is_highmem(zone)) {
5693 /*
5694 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5695 * need highmem pages, so cap pages_min to a small
5696 * value here.
5697 *
5698 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5699 * deltas controls asynch page reclaim, and so should
5700 * not be capped for highmem.
5701 */
5702 unsigned long min_pages;
5703
5704 min_pages = zone->managed_pages / 1024;
5705 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5706 zone->watermark[WMARK_MIN] = min_pages;
5707 } else {
5708 /*
5709 * If it's a lowmem zone, reserve a number of pages
5710 * proportionate to the zone's size.
5711 */
5712 zone->watermark[WMARK_MIN] = tmp;
5713 }
5714
5715 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5716 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5717
5718 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5719 high_wmark_pages(zone) - low_wmark_pages(zone) -
5720 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5721
5722 setup_zone_migrate_reserve(zone);
5723 spin_unlock_irqrestore(&zone->lock, flags);
5724 }
5725
5726 /* update totalreserve_pages */
5727 calculate_totalreserve_pages();
5728 }
5729
5730 /**
5731 * setup_per_zone_wmarks - called when min_free_kbytes changes
5732 * or when memory is hot-{added|removed}
5733 *
5734 * Ensures that the watermark[min,low,high] values for each zone are set
5735 * correctly with respect to min_free_kbytes.
5736 */
5737 void setup_per_zone_wmarks(void)
5738 {
5739 mutex_lock(&zonelists_mutex);
5740 __setup_per_zone_wmarks();
5741 mutex_unlock(&zonelists_mutex);
5742 }
5743
5744 /*
5745 * The inactive anon list should be small enough that the VM never has to
5746 * do too much work, but large enough that each inactive page has a chance
5747 * to be referenced again before it is swapped out.
5748 *
5749 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5750 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5751 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5752 * the anonymous pages are kept on the inactive list.
5753 *
5754 * total target max
5755 * memory ratio inactive anon
5756 * -------------------------------------
5757 * 10MB 1 5MB
5758 * 100MB 1 50MB
5759 * 1GB 3 250MB
5760 * 10GB 10 0.9GB
5761 * 100GB 31 3GB
5762 * 1TB 101 10GB
5763 * 10TB 320 32GB
5764 */
5765 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5766 {
5767 unsigned int gb, ratio;
5768
5769 /* Zone size in gigabytes */
5770 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5771 if (gb)
5772 ratio = int_sqrt(10 * gb);
5773 else
5774 ratio = 1;
5775
5776 zone->inactive_ratio = ratio;
5777 }
5778
5779 static void __meminit setup_per_zone_inactive_ratio(void)
5780 {
5781 struct zone *zone;
5782
5783 for_each_zone(zone)
5784 calculate_zone_inactive_ratio(zone);
5785 }
5786
5787 /*
5788 * Initialise min_free_kbytes.
5789 *
5790 * For small machines we want it small (128k min). For large machines
5791 * we want it large (64MB max). But it is not linear, because network
5792 * bandwidth does not increase linearly with machine size. We use
5793 *
5794 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5795 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5796 *
5797 * which yields
5798 *
5799 * 16MB: 512k
5800 * 32MB: 724k
5801 * 64MB: 1024k
5802 * 128MB: 1448k
5803 * 256MB: 2048k
5804 * 512MB: 2896k
5805 * 1024MB: 4096k
5806 * 2048MB: 5792k
5807 * 4096MB: 8192k
5808 * 8192MB: 11584k
5809 * 16384MB: 16384k
5810 */
5811 int __meminit init_per_zone_wmark_min(void)
5812 {
5813 unsigned long lowmem_kbytes;
5814 int new_min_free_kbytes;
5815
5816 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5817 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5818
5819 if (new_min_free_kbytes > user_min_free_kbytes) {
5820 min_free_kbytes = new_min_free_kbytes;
5821 if (min_free_kbytes < 128)
5822 min_free_kbytes = 128;
5823 if (min_free_kbytes > 65536)
5824 min_free_kbytes = 65536;
5825 } else {
5826 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5827 new_min_free_kbytes, user_min_free_kbytes);
5828 }
5829 setup_per_zone_wmarks();
5830 refresh_zone_stat_thresholds();
5831 setup_per_zone_lowmem_reserve();
5832 setup_per_zone_inactive_ratio();
5833 return 0;
5834 }
5835 module_init(init_per_zone_wmark_min)
5836
5837 /*
5838 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5839 * that we can call two helper functions whenever min_free_kbytes
5840 * changes.
5841 */
5842 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5843 void __user *buffer, size_t *length, loff_t *ppos)
5844 {
5845 int rc;
5846
5847 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5848 if (rc)
5849 return rc;
5850
5851 if (write) {
5852 user_min_free_kbytes = min_free_kbytes;
5853 setup_per_zone_wmarks();
5854 }
5855 return 0;
5856 }
5857
5858 #ifdef CONFIG_NUMA
5859 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5860 void __user *buffer, size_t *length, loff_t *ppos)
5861 {
5862 struct zone *zone;
5863 int rc;
5864
5865 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5866 if (rc)
5867 return rc;
5868
5869 for_each_zone(zone)
5870 zone->min_unmapped_pages = (zone->managed_pages *
5871 sysctl_min_unmapped_ratio) / 100;
5872 return 0;
5873 }
5874
5875 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5876 void __user *buffer, size_t *length, loff_t *ppos)
5877 {
5878 struct zone *zone;
5879 int rc;
5880
5881 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5882 if (rc)
5883 return rc;
5884
5885 for_each_zone(zone)
5886 zone->min_slab_pages = (zone->managed_pages *
5887 sysctl_min_slab_ratio) / 100;
5888 return 0;
5889 }
5890 #endif
5891
5892 /*
5893 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5894 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5895 * whenever sysctl_lowmem_reserve_ratio changes.
5896 *
5897 * The reserve ratio obviously has absolutely no relation with the
5898 * minimum watermarks. The lowmem reserve ratio can only make sense
5899 * if in function of the boot time zone sizes.
5900 */
5901 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5902 void __user *buffer, size_t *length, loff_t *ppos)
5903 {
5904 proc_dointvec_minmax(table, write, buffer, length, ppos);
5905 setup_per_zone_lowmem_reserve();
5906 return 0;
5907 }
5908
5909 /*
5910 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5911 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5912 * pagelist can have before it gets flushed back to buddy allocator.
5913 */
5914 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5915 void __user *buffer, size_t *length, loff_t *ppos)
5916 {
5917 struct zone *zone;
5918 int old_percpu_pagelist_fraction;
5919 int ret;
5920
5921 mutex_lock(&pcp_batch_high_lock);
5922 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5923
5924 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5925 if (!write || ret < 0)
5926 goto out;
5927
5928 /* Sanity checking to avoid pcp imbalance */
5929 if (percpu_pagelist_fraction &&
5930 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5931 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5932 ret = -EINVAL;
5933 goto out;
5934 }
5935
5936 /* No change? */
5937 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5938 goto out;
5939
5940 for_each_populated_zone(zone) {
5941 unsigned int cpu;
5942
5943 for_each_possible_cpu(cpu)
5944 pageset_set_high_and_batch(zone,
5945 per_cpu_ptr(zone->pageset, cpu));
5946 }
5947 out:
5948 mutex_unlock(&pcp_batch_high_lock);
5949 return ret;
5950 }
5951
5952 int hashdist = HASHDIST_DEFAULT;
5953
5954 #ifdef CONFIG_NUMA
5955 static int __init set_hashdist(char *str)
5956 {
5957 if (!str)
5958 return 0;
5959 hashdist = simple_strtoul(str, &str, 0);
5960 return 1;
5961 }
5962 __setup("hashdist=", set_hashdist);
5963 #endif
5964
5965 /*
5966 * allocate a large system hash table from bootmem
5967 * - it is assumed that the hash table must contain an exact power-of-2
5968 * quantity of entries
5969 * - limit is the number of hash buckets, not the total allocation size
5970 */
5971 void *__init alloc_large_system_hash(const char *tablename,
5972 unsigned long bucketsize,
5973 unsigned long numentries,
5974 int scale,
5975 int flags,
5976 unsigned int *_hash_shift,
5977 unsigned int *_hash_mask,
5978 unsigned long low_limit,
5979 unsigned long high_limit)
5980 {
5981 unsigned long long max = high_limit;
5982 unsigned long log2qty, size;
5983 void *table = NULL;
5984
5985 /* allow the kernel cmdline to have a say */
5986 if (!numentries) {
5987 /* round applicable memory size up to nearest megabyte */
5988 numentries = nr_kernel_pages;
5989
5990 /* It isn't necessary when PAGE_SIZE >= 1MB */
5991 if (PAGE_SHIFT < 20)
5992 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5993
5994 /* limit to 1 bucket per 2^scale bytes of low memory */
5995 if (scale > PAGE_SHIFT)
5996 numentries >>= (scale - PAGE_SHIFT);
5997 else
5998 numentries <<= (PAGE_SHIFT - scale);
5999
6000 /* Make sure we've got at least a 0-order allocation.. */
6001 if (unlikely(flags & HASH_SMALL)) {
6002 /* Makes no sense without HASH_EARLY */
6003 WARN_ON(!(flags & HASH_EARLY));
6004 if (!(numentries >> *_hash_shift)) {
6005 numentries = 1UL << *_hash_shift;
6006 BUG_ON(!numentries);
6007 }
6008 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6009 numentries = PAGE_SIZE / bucketsize;
6010 }
6011 numentries = roundup_pow_of_two(numentries);
6012
6013 /* limit allocation size to 1/16 total memory by default */
6014 if (max == 0) {
6015 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6016 do_div(max, bucketsize);
6017 }
6018 max = min(max, 0x80000000ULL);
6019
6020 if (numentries < low_limit)
6021 numentries = low_limit;
6022 if (numentries > max)
6023 numentries = max;
6024
6025 log2qty = ilog2(numentries);
6026
6027 do {
6028 size = bucketsize << log2qty;
6029 if (flags & HASH_EARLY)
6030 table = memblock_virt_alloc_nopanic(size, 0);
6031 else if (hashdist)
6032 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6033 else {
6034 /*
6035 * If bucketsize is not a power-of-two, we may free
6036 * some pages at the end of hash table which
6037 * alloc_pages_exact() automatically does
6038 */
6039 if (get_order(size) < MAX_ORDER) {
6040 table = alloc_pages_exact(size, GFP_ATOMIC);
6041 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6042 }
6043 }
6044 } while (!table && size > PAGE_SIZE && --log2qty);
6045
6046 if (!table)
6047 panic("Failed to allocate %s hash table\n", tablename);
6048
6049 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6050 tablename,
6051 (1UL << log2qty),
6052 ilog2(size) - PAGE_SHIFT,
6053 size);
6054
6055 if (_hash_shift)
6056 *_hash_shift = log2qty;
6057 if (_hash_mask)
6058 *_hash_mask = (1 << log2qty) - 1;
6059
6060 return table;
6061 }
6062
6063 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6064 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6065 unsigned long pfn)
6066 {
6067 #ifdef CONFIG_SPARSEMEM
6068 return __pfn_to_section(pfn)->pageblock_flags;
6069 #else
6070 return zone->pageblock_flags;
6071 #endif /* CONFIG_SPARSEMEM */
6072 }
6073
6074 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6075 {
6076 #ifdef CONFIG_SPARSEMEM
6077 pfn &= (PAGES_PER_SECTION-1);
6078 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6079 #else
6080 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6081 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6082 #endif /* CONFIG_SPARSEMEM */
6083 }
6084
6085 /**
6086 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6087 * @page: The page within the block of interest
6088 * @pfn: The target page frame number
6089 * @end_bitidx: The last bit of interest to retrieve
6090 * @mask: mask of bits that the caller is interested in
6091 *
6092 * Return: pageblock_bits flags
6093 */
6094 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6095 unsigned long end_bitidx,
6096 unsigned long mask)
6097 {
6098 struct zone *zone;
6099 unsigned long *bitmap;
6100 unsigned long bitidx, word_bitidx;
6101 unsigned long word;
6102
6103 zone = page_zone(page);
6104 bitmap = get_pageblock_bitmap(zone, pfn);
6105 bitidx = pfn_to_bitidx(zone, pfn);
6106 word_bitidx = bitidx / BITS_PER_LONG;
6107 bitidx &= (BITS_PER_LONG-1);
6108
6109 word = bitmap[word_bitidx];
6110 bitidx += end_bitidx;
6111 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6112 }
6113
6114 /**
6115 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6116 * @page: The page within the block of interest
6117 * @flags: The flags to set
6118 * @pfn: The target page frame number
6119 * @end_bitidx: The last bit of interest
6120 * @mask: mask of bits that the caller is interested in
6121 */
6122 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6123 unsigned long pfn,
6124 unsigned long end_bitidx,
6125 unsigned long mask)
6126 {
6127 struct zone *zone;
6128 unsigned long *bitmap;
6129 unsigned long bitidx, word_bitidx;
6130 unsigned long old_word, word;
6131
6132 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6133
6134 zone = page_zone(page);
6135 bitmap = get_pageblock_bitmap(zone, pfn);
6136 bitidx = pfn_to_bitidx(zone, pfn);
6137 word_bitidx = bitidx / BITS_PER_LONG;
6138 bitidx &= (BITS_PER_LONG-1);
6139
6140 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6141
6142 bitidx += end_bitidx;
6143 mask <<= (BITS_PER_LONG - bitidx - 1);
6144 flags <<= (BITS_PER_LONG - bitidx - 1);
6145
6146 word = ACCESS_ONCE(bitmap[word_bitidx]);
6147 for (;;) {
6148 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6149 if (word == old_word)
6150 break;
6151 word = old_word;
6152 }
6153 }
6154
6155 /*
6156 * This function checks whether pageblock includes unmovable pages or not.
6157 * If @count is not zero, it is okay to include less @count unmovable pages
6158 *
6159 * PageLRU check without isolation or lru_lock could race so that
6160 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6161 * expect this function should be exact.
6162 */
6163 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6164 bool skip_hwpoisoned_pages)
6165 {
6166 unsigned long pfn, iter, found;
6167 int mt;
6168
6169 /*
6170 * For avoiding noise data, lru_add_drain_all() should be called
6171 * If ZONE_MOVABLE, the zone never contains unmovable pages
6172 */
6173 if (zone_idx(zone) == ZONE_MOVABLE)
6174 return false;
6175 mt = get_pageblock_migratetype(page);
6176 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6177 return false;
6178
6179 pfn = page_to_pfn(page);
6180 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6181 unsigned long check = pfn + iter;
6182
6183 if (!pfn_valid_within(check))
6184 continue;
6185
6186 page = pfn_to_page(check);
6187
6188 /*
6189 * Hugepages are not in LRU lists, but they're movable.
6190 * We need not scan over tail pages bacause we don't
6191 * handle each tail page individually in migration.
6192 */
6193 if (PageHuge(page)) {
6194 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6195 continue;
6196 }
6197
6198 /*
6199 * We can't use page_count without pin a page
6200 * because another CPU can free compound page.
6201 * This check already skips compound tails of THP
6202 * because their page->_count is zero at all time.
6203 */
6204 if (!atomic_read(&page->_count)) {
6205 if (PageBuddy(page))
6206 iter += (1 << page_order(page)) - 1;
6207 continue;
6208 }
6209
6210 /*
6211 * The HWPoisoned page may be not in buddy system, and
6212 * page_count() is not 0.
6213 */
6214 if (skip_hwpoisoned_pages && PageHWPoison(page))
6215 continue;
6216
6217 if (!PageLRU(page))
6218 found++;
6219 /*
6220 * If there are RECLAIMABLE pages, we need to check it.
6221 * But now, memory offline itself doesn't call shrink_slab()
6222 * and it still to be fixed.
6223 */
6224 /*
6225 * If the page is not RAM, page_count()should be 0.
6226 * we don't need more check. This is an _used_ not-movable page.
6227 *
6228 * The problematic thing here is PG_reserved pages. PG_reserved
6229 * is set to both of a memory hole page and a _used_ kernel
6230 * page at boot.
6231 */
6232 if (found > count)
6233 return true;
6234 }
6235 return false;
6236 }
6237
6238 bool is_pageblock_removable_nolock(struct page *page)
6239 {
6240 struct zone *zone;
6241 unsigned long pfn;
6242
6243 /*
6244 * We have to be careful here because we are iterating over memory
6245 * sections which are not zone aware so we might end up outside of
6246 * the zone but still within the section.
6247 * We have to take care about the node as well. If the node is offline
6248 * its NODE_DATA will be NULL - see page_zone.
6249 */
6250 if (!node_online(page_to_nid(page)))
6251 return false;
6252
6253 zone = page_zone(page);
6254 pfn = page_to_pfn(page);
6255 if (!zone_spans_pfn(zone, pfn))
6256 return false;
6257
6258 return !has_unmovable_pages(zone, page, 0, true);
6259 }
6260
6261 #ifdef CONFIG_CMA
6262
6263 static unsigned long pfn_max_align_down(unsigned long pfn)
6264 {
6265 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6266 pageblock_nr_pages) - 1);
6267 }
6268
6269 static unsigned long pfn_max_align_up(unsigned long pfn)
6270 {
6271 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6272 pageblock_nr_pages));
6273 }
6274
6275 /* [start, end) must belong to a single zone. */
6276 static int __alloc_contig_migrate_range(struct compact_control *cc,
6277 unsigned long start, unsigned long end)
6278 {
6279 /* This function is based on compact_zone() from compaction.c. */
6280 unsigned long nr_reclaimed;
6281 unsigned long pfn = start;
6282 unsigned int tries = 0;
6283 int ret = 0;
6284
6285 migrate_prep();
6286
6287 while (pfn < end || !list_empty(&cc->migratepages)) {
6288 if (fatal_signal_pending(current)) {
6289 ret = -EINTR;
6290 break;
6291 }
6292
6293 if (list_empty(&cc->migratepages)) {
6294 cc->nr_migratepages = 0;
6295 pfn = isolate_migratepages_range(cc, pfn, end);
6296 if (!pfn) {
6297 ret = -EINTR;
6298 break;
6299 }
6300 tries = 0;
6301 } else if (++tries == 5) {
6302 ret = ret < 0 ? ret : -EBUSY;
6303 break;
6304 }
6305
6306 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6307 &cc->migratepages);
6308 cc->nr_migratepages -= nr_reclaimed;
6309
6310 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6311 NULL, 0, cc->mode, MR_CMA);
6312 }
6313 if (ret < 0) {
6314 putback_movable_pages(&cc->migratepages);
6315 return ret;
6316 }
6317 return 0;
6318 }
6319
6320 /**
6321 * alloc_contig_range() -- tries to allocate given range of pages
6322 * @start: start PFN to allocate
6323 * @end: one-past-the-last PFN to allocate
6324 * @migratetype: migratetype of the underlaying pageblocks (either
6325 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6326 * in range must have the same migratetype and it must
6327 * be either of the two.
6328 *
6329 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6330 * aligned, however it's the caller's responsibility to guarantee that
6331 * we are the only thread that changes migrate type of pageblocks the
6332 * pages fall in.
6333 *
6334 * The PFN range must belong to a single zone.
6335 *
6336 * Returns zero on success or negative error code. On success all
6337 * pages which PFN is in [start, end) are allocated for the caller and
6338 * need to be freed with free_contig_range().
6339 */
6340 int alloc_contig_range(unsigned long start, unsigned long end,
6341 unsigned migratetype)
6342 {
6343 unsigned long outer_start, outer_end;
6344 int ret = 0, order;
6345
6346 struct compact_control cc = {
6347 .nr_migratepages = 0,
6348 .order = -1,
6349 .zone = page_zone(pfn_to_page(start)),
6350 .mode = MIGRATE_SYNC,
6351 .ignore_skip_hint = true,
6352 };
6353 INIT_LIST_HEAD(&cc.migratepages);
6354
6355 /*
6356 * What we do here is we mark all pageblocks in range as
6357 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6358 * have different sizes, and due to the way page allocator
6359 * work, we align the range to biggest of the two pages so
6360 * that page allocator won't try to merge buddies from
6361 * different pageblocks and change MIGRATE_ISOLATE to some
6362 * other migration type.
6363 *
6364 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6365 * migrate the pages from an unaligned range (ie. pages that
6366 * we are interested in). This will put all the pages in
6367 * range back to page allocator as MIGRATE_ISOLATE.
6368 *
6369 * When this is done, we take the pages in range from page
6370 * allocator removing them from the buddy system. This way
6371 * page allocator will never consider using them.
6372 *
6373 * This lets us mark the pageblocks back as
6374 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6375 * aligned range but not in the unaligned, original range are
6376 * put back to page allocator so that buddy can use them.
6377 */
6378
6379 ret = start_isolate_page_range(pfn_max_align_down(start),
6380 pfn_max_align_up(end), migratetype,
6381 false);
6382 if (ret)
6383 return ret;
6384
6385 ret = __alloc_contig_migrate_range(&cc, start, end);
6386 if (ret)
6387 goto done;
6388
6389 /*
6390 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6391 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6392 * more, all pages in [start, end) are free in page allocator.
6393 * What we are going to do is to allocate all pages from
6394 * [start, end) (that is remove them from page allocator).
6395 *
6396 * The only problem is that pages at the beginning and at the
6397 * end of interesting range may be not aligned with pages that
6398 * page allocator holds, ie. they can be part of higher order
6399 * pages. Because of this, we reserve the bigger range and
6400 * once this is done free the pages we are not interested in.
6401 *
6402 * We don't have to hold zone->lock here because the pages are
6403 * isolated thus they won't get removed from buddy.
6404 */
6405
6406 lru_add_drain_all();
6407 drain_all_pages();
6408
6409 order = 0;
6410 outer_start = start;
6411 while (!PageBuddy(pfn_to_page(outer_start))) {
6412 if (++order >= MAX_ORDER) {
6413 ret = -EBUSY;
6414 goto done;
6415 }
6416 outer_start &= ~0UL << order;
6417 }
6418
6419 /* Make sure the range is really isolated. */
6420 if (test_pages_isolated(outer_start, end, false)) {
6421 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6422 outer_start, end);
6423 ret = -EBUSY;
6424 goto done;
6425 }
6426
6427
6428 /* Grab isolated pages from freelists. */
6429 outer_end = isolate_freepages_range(&cc, outer_start, end);
6430 if (!outer_end) {
6431 ret = -EBUSY;
6432 goto done;
6433 }
6434
6435 /* Free head and tail (if any) */
6436 if (start != outer_start)
6437 free_contig_range(outer_start, start - outer_start);
6438 if (end != outer_end)
6439 free_contig_range(end, outer_end - end);
6440
6441 done:
6442 undo_isolate_page_range(pfn_max_align_down(start),
6443 pfn_max_align_up(end), migratetype);
6444 return ret;
6445 }
6446
6447 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6448 {
6449 unsigned int count = 0;
6450
6451 for (; nr_pages--; pfn++) {
6452 struct page *page = pfn_to_page(pfn);
6453
6454 count += page_count(page) != 1;
6455 __free_page(page);
6456 }
6457 WARN(count != 0, "%d pages are still in use!\n", count);
6458 }
6459 #endif
6460
6461 #ifdef CONFIG_MEMORY_HOTPLUG
6462 /*
6463 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6464 * page high values need to be recalulated.
6465 */
6466 void __meminit zone_pcp_update(struct zone *zone)
6467 {
6468 unsigned cpu;
6469 mutex_lock(&pcp_batch_high_lock);
6470 for_each_possible_cpu(cpu)
6471 pageset_set_high_and_batch(zone,
6472 per_cpu_ptr(zone->pageset, cpu));
6473 mutex_unlock(&pcp_batch_high_lock);
6474 }
6475 #endif
6476
6477 void zone_pcp_reset(struct zone *zone)
6478 {
6479 unsigned long flags;
6480 int cpu;
6481 struct per_cpu_pageset *pset;
6482
6483 /* avoid races with drain_pages() */
6484 local_irq_save(flags);
6485 if (zone->pageset != &boot_pageset) {
6486 for_each_online_cpu(cpu) {
6487 pset = per_cpu_ptr(zone->pageset, cpu);
6488 drain_zonestat(zone, pset);
6489 }
6490 free_percpu(zone->pageset);
6491 zone->pageset = &boot_pageset;
6492 }
6493 local_irq_restore(flags);
6494 }
6495
6496 #ifdef CONFIG_MEMORY_HOTREMOVE
6497 /*
6498 * All pages in the range must be isolated before calling this.
6499 */
6500 void
6501 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6502 {
6503 struct page *page;
6504 struct zone *zone;
6505 unsigned int order, i;
6506 unsigned long pfn;
6507 unsigned long flags;
6508 /* find the first valid pfn */
6509 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6510 if (pfn_valid(pfn))
6511 break;
6512 if (pfn == end_pfn)
6513 return;
6514 zone = page_zone(pfn_to_page(pfn));
6515 spin_lock_irqsave(&zone->lock, flags);
6516 pfn = start_pfn;
6517 while (pfn < end_pfn) {
6518 if (!pfn_valid(pfn)) {
6519 pfn++;
6520 continue;
6521 }
6522 page = pfn_to_page(pfn);
6523 /*
6524 * The HWPoisoned page may be not in buddy system, and
6525 * page_count() is not 0.
6526 */
6527 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6528 pfn++;
6529 SetPageReserved(page);
6530 continue;
6531 }
6532
6533 BUG_ON(page_count(page));
6534 BUG_ON(!PageBuddy(page));
6535 order = page_order(page);
6536 #ifdef CONFIG_DEBUG_VM
6537 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6538 pfn, 1 << order, end_pfn);
6539 #endif
6540 list_del(&page->lru);
6541 rmv_page_order(page);
6542 zone->free_area[order].nr_free--;
6543 for (i = 0; i < (1 << order); i++)
6544 SetPageReserved((page+i));
6545 pfn += (1 << order);
6546 }
6547 spin_unlock_irqrestore(&zone->lock, flags);
6548 }
6549 #endif
6550
6551 #ifdef CONFIG_MEMORY_FAILURE
6552 bool is_free_buddy_page(struct page *page)
6553 {
6554 struct zone *zone = page_zone(page);
6555 unsigned long pfn = page_to_pfn(page);
6556 unsigned long flags;
6557 unsigned int order;
6558
6559 spin_lock_irqsave(&zone->lock, flags);
6560 for (order = 0; order < MAX_ORDER; order++) {
6561 struct page *page_head = page - (pfn & ((1 << order) - 1));
6562
6563 if (PageBuddy(page_head) && page_order(page_head) >= order)
6564 break;
6565 }
6566 spin_unlock_irqrestore(&zone->lock, flags);
6567
6568 return order < MAX_ORDER;
6569 }
6570 #endif