]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
Merge tag 'for-4.15-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
106 #endif
107
108 /*
109 * Array of node states.
110 */
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
114 #ifndef CONFIG_NUMA
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
118 #endif
119 [N_MEMORY] = { { [0] = 1UL } },
120 [N_CPU] = { { [0] = 1UL } },
121 #endif /* NUMA */
122 };
123 EXPORT_SYMBOL(node_states);
124
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock);
127
128 unsigned long totalram_pages __read_mostly;
129 unsigned long totalreserve_pages __read_mostly;
130 unsigned long totalcma_pages __read_mostly;
131
132 int percpu_pagelist_fraction;
133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134
135 /*
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
142 */
143 static inline int get_pcppage_migratetype(struct page *page)
144 {
145 return page->index;
146 }
147
148 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149 {
150 page->index = migratetype;
151 }
152
153 #ifdef CONFIG_PM_SLEEP
154 /*
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
160 * guaranteed not to run in parallel with that modification).
161 */
162
163 static gfp_t saved_gfp_mask;
164
165 void pm_restore_gfp_mask(void)
166 {
167 WARN_ON(!mutex_is_locked(&pm_mutex));
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
171 }
172 }
173
174 void pm_restrict_gfp_mask(void)
175 {
176 WARN_ON(!mutex_is_locked(&pm_mutex));
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180 }
181
182 bool pm_suspended_storage(void)
183 {
184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 return false;
186 return true;
187 }
188 #endif /* CONFIG_PM_SLEEP */
189
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly;
192 #endif
193
194 static void __free_pages_ok(struct page *page, unsigned int order);
195
196 /*
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203 *
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
206 */
207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
208 #ifdef CONFIG_ZONE_DMA
209 256,
210 #endif
211 #ifdef CONFIG_ZONE_DMA32
212 256,
213 #endif
214 #ifdef CONFIG_HIGHMEM
215 32,
216 #endif
217 32,
218 };
219
220 EXPORT_SYMBOL(totalram_pages);
221
222 static char * const zone_names[MAX_NR_ZONES] = {
223 #ifdef CONFIG_ZONE_DMA
224 "DMA",
225 #endif
226 #ifdef CONFIG_ZONE_DMA32
227 "DMA32",
228 #endif
229 "Normal",
230 #ifdef CONFIG_HIGHMEM
231 "HighMem",
232 #endif
233 "Movable",
234 #ifdef CONFIG_ZONE_DEVICE
235 "Device",
236 #endif
237 };
238
239 char * const migratetype_names[MIGRATE_TYPES] = {
240 "Unmovable",
241 "Movable",
242 "Reclaimable",
243 "HighAtomic",
244 #ifdef CONFIG_CMA
245 "CMA",
246 #endif
247 #ifdef CONFIG_MEMORY_ISOLATION
248 "Isolate",
249 #endif
250 };
251
252 compound_page_dtor * const compound_page_dtors[] = {
253 NULL,
254 free_compound_page,
255 #ifdef CONFIG_HUGETLB_PAGE
256 free_huge_page,
257 #endif
258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 free_transhuge_page,
260 #endif
261 };
262
263 int min_free_kbytes = 1024;
264 int user_min_free_kbytes = -1;
265 int watermark_scale_factor = 10;
266
267 static unsigned long __meminitdata nr_kernel_pages;
268 static unsigned long __meminitdata nr_all_pages;
269 static unsigned long __meminitdata dma_reserve;
270
271 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
272 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
274 static unsigned long __initdata required_kernelcore;
275 static unsigned long __initdata required_movablecore;
276 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
277 static bool mirrored_kernelcore;
278
279 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
280 int movable_zone;
281 EXPORT_SYMBOL(movable_zone);
282 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
283
284 #if MAX_NUMNODES > 1
285 int nr_node_ids __read_mostly = MAX_NUMNODES;
286 int nr_online_nodes __read_mostly = 1;
287 EXPORT_SYMBOL(nr_node_ids);
288 EXPORT_SYMBOL(nr_online_nodes);
289 #endif
290
291 int page_group_by_mobility_disabled __read_mostly;
292
293 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
294
295 /*
296 * Determine how many pages need to be initialized durig early boot
297 * (non-deferred initialization).
298 * The value of first_deferred_pfn will be set later, once non-deferred pages
299 * are initialized, but for now set it ULONG_MAX.
300 */
301 static inline void reset_deferred_meminit(pg_data_t *pgdat)
302 {
303 phys_addr_t start_addr, end_addr;
304 unsigned long max_pgcnt;
305 unsigned long reserved;
306
307 /*
308 * Initialise at least 2G of a node but also take into account that
309 * two large system hashes that can take up 1GB for 0.25TB/node.
310 */
311 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
312 (pgdat->node_spanned_pages >> 8));
313
314 /*
315 * Compensate the all the memblock reservations (e.g. crash kernel)
316 * from the initial estimation to make sure we will initialize enough
317 * memory to boot.
318 */
319 start_addr = PFN_PHYS(pgdat->node_start_pfn);
320 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
321 reserved = memblock_reserved_memory_within(start_addr, end_addr);
322 max_pgcnt += PHYS_PFN(reserved);
323
324 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
325 pgdat->first_deferred_pfn = ULONG_MAX;
326 }
327
328 /* Returns true if the struct page for the pfn is uninitialised */
329 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
330 {
331 int nid = early_pfn_to_nid(pfn);
332
333 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
334 return true;
335
336 return false;
337 }
338
339 /*
340 * Returns false when the remaining initialisation should be deferred until
341 * later in the boot cycle when it can be parallelised.
342 */
343 static inline bool update_defer_init(pg_data_t *pgdat,
344 unsigned long pfn, unsigned long zone_end,
345 unsigned long *nr_initialised)
346 {
347 /* Always populate low zones for address-contrained allocations */
348 if (zone_end < pgdat_end_pfn(pgdat))
349 return true;
350 (*nr_initialised)++;
351 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
352 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
353 pgdat->first_deferred_pfn = pfn;
354 return false;
355 }
356
357 return true;
358 }
359 #else
360 static inline void reset_deferred_meminit(pg_data_t *pgdat)
361 {
362 }
363
364 static inline bool early_page_uninitialised(unsigned long pfn)
365 {
366 return false;
367 }
368
369 static inline bool update_defer_init(pg_data_t *pgdat,
370 unsigned long pfn, unsigned long zone_end,
371 unsigned long *nr_initialised)
372 {
373 return true;
374 }
375 #endif
376
377 /* Return a pointer to the bitmap storing bits affecting a block of pages */
378 static inline unsigned long *get_pageblock_bitmap(struct page *page,
379 unsigned long pfn)
380 {
381 #ifdef CONFIG_SPARSEMEM
382 return __pfn_to_section(pfn)->pageblock_flags;
383 #else
384 return page_zone(page)->pageblock_flags;
385 #endif /* CONFIG_SPARSEMEM */
386 }
387
388 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
389 {
390 #ifdef CONFIG_SPARSEMEM
391 pfn &= (PAGES_PER_SECTION-1);
392 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
393 #else
394 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
395 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
396 #endif /* CONFIG_SPARSEMEM */
397 }
398
399 /**
400 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
401 * @page: The page within the block of interest
402 * @pfn: The target page frame number
403 * @end_bitidx: The last bit of interest to retrieve
404 * @mask: mask of bits that the caller is interested in
405 *
406 * Return: pageblock_bits flags
407 */
408 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
409 unsigned long pfn,
410 unsigned long end_bitidx,
411 unsigned long mask)
412 {
413 unsigned long *bitmap;
414 unsigned long bitidx, word_bitidx;
415 unsigned long word;
416
417 bitmap = get_pageblock_bitmap(page, pfn);
418 bitidx = pfn_to_bitidx(page, pfn);
419 word_bitidx = bitidx / BITS_PER_LONG;
420 bitidx &= (BITS_PER_LONG-1);
421
422 word = bitmap[word_bitidx];
423 bitidx += end_bitidx;
424 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
425 }
426
427 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
428 unsigned long end_bitidx,
429 unsigned long mask)
430 {
431 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
432 }
433
434 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
435 {
436 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
437 }
438
439 /**
440 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
441 * @page: The page within the block of interest
442 * @flags: The flags to set
443 * @pfn: The target page frame number
444 * @end_bitidx: The last bit of interest
445 * @mask: mask of bits that the caller is interested in
446 */
447 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
448 unsigned long pfn,
449 unsigned long end_bitidx,
450 unsigned long mask)
451 {
452 unsigned long *bitmap;
453 unsigned long bitidx, word_bitidx;
454 unsigned long old_word, word;
455
456 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
457
458 bitmap = get_pageblock_bitmap(page, pfn);
459 bitidx = pfn_to_bitidx(page, pfn);
460 word_bitidx = bitidx / BITS_PER_LONG;
461 bitidx &= (BITS_PER_LONG-1);
462
463 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
464
465 bitidx += end_bitidx;
466 mask <<= (BITS_PER_LONG - bitidx - 1);
467 flags <<= (BITS_PER_LONG - bitidx - 1);
468
469 word = READ_ONCE(bitmap[word_bitidx]);
470 for (;;) {
471 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
472 if (word == old_word)
473 break;
474 word = old_word;
475 }
476 }
477
478 void set_pageblock_migratetype(struct page *page, int migratetype)
479 {
480 if (unlikely(page_group_by_mobility_disabled &&
481 migratetype < MIGRATE_PCPTYPES))
482 migratetype = MIGRATE_UNMOVABLE;
483
484 set_pageblock_flags_group(page, (unsigned long)migratetype,
485 PB_migrate, PB_migrate_end);
486 }
487
488 #ifdef CONFIG_DEBUG_VM
489 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
490 {
491 int ret = 0;
492 unsigned seq;
493 unsigned long pfn = page_to_pfn(page);
494 unsigned long sp, start_pfn;
495
496 do {
497 seq = zone_span_seqbegin(zone);
498 start_pfn = zone->zone_start_pfn;
499 sp = zone->spanned_pages;
500 if (!zone_spans_pfn(zone, pfn))
501 ret = 1;
502 } while (zone_span_seqretry(zone, seq));
503
504 if (ret)
505 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
506 pfn, zone_to_nid(zone), zone->name,
507 start_pfn, start_pfn + sp);
508
509 return ret;
510 }
511
512 static int page_is_consistent(struct zone *zone, struct page *page)
513 {
514 if (!pfn_valid_within(page_to_pfn(page)))
515 return 0;
516 if (zone != page_zone(page))
517 return 0;
518
519 return 1;
520 }
521 /*
522 * Temporary debugging check for pages not lying within a given zone.
523 */
524 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
525 {
526 if (page_outside_zone_boundaries(zone, page))
527 return 1;
528 if (!page_is_consistent(zone, page))
529 return 1;
530
531 return 0;
532 }
533 #else
534 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
535 {
536 return 0;
537 }
538 #endif
539
540 static void bad_page(struct page *page, const char *reason,
541 unsigned long bad_flags)
542 {
543 static unsigned long resume;
544 static unsigned long nr_shown;
545 static unsigned long nr_unshown;
546
547 /*
548 * Allow a burst of 60 reports, then keep quiet for that minute;
549 * or allow a steady drip of one report per second.
550 */
551 if (nr_shown == 60) {
552 if (time_before(jiffies, resume)) {
553 nr_unshown++;
554 goto out;
555 }
556 if (nr_unshown) {
557 pr_alert(
558 "BUG: Bad page state: %lu messages suppressed\n",
559 nr_unshown);
560 nr_unshown = 0;
561 }
562 nr_shown = 0;
563 }
564 if (nr_shown++ == 0)
565 resume = jiffies + 60 * HZ;
566
567 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
568 current->comm, page_to_pfn(page));
569 __dump_page(page, reason);
570 bad_flags &= page->flags;
571 if (bad_flags)
572 pr_alert("bad because of flags: %#lx(%pGp)\n",
573 bad_flags, &bad_flags);
574 dump_page_owner(page);
575
576 print_modules();
577 dump_stack();
578 out:
579 /* Leave bad fields for debug, except PageBuddy could make trouble */
580 page_mapcount_reset(page); /* remove PageBuddy */
581 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
582 }
583
584 /*
585 * Higher-order pages are called "compound pages". They are structured thusly:
586 *
587 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
588 *
589 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
590 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
591 *
592 * The first tail page's ->compound_dtor holds the offset in array of compound
593 * page destructors. See compound_page_dtors.
594 *
595 * The first tail page's ->compound_order holds the order of allocation.
596 * This usage means that zero-order pages may not be compound.
597 */
598
599 void free_compound_page(struct page *page)
600 {
601 __free_pages_ok(page, compound_order(page));
602 }
603
604 void prep_compound_page(struct page *page, unsigned int order)
605 {
606 int i;
607 int nr_pages = 1 << order;
608
609 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
610 set_compound_order(page, order);
611 __SetPageHead(page);
612 for (i = 1; i < nr_pages; i++) {
613 struct page *p = page + i;
614 set_page_count(p, 0);
615 p->mapping = TAIL_MAPPING;
616 set_compound_head(p, page);
617 }
618 atomic_set(compound_mapcount_ptr(page), -1);
619 }
620
621 #ifdef CONFIG_DEBUG_PAGEALLOC
622 unsigned int _debug_guardpage_minorder;
623 bool _debug_pagealloc_enabled __read_mostly
624 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
625 EXPORT_SYMBOL(_debug_pagealloc_enabled);
626 bool _debug_guardpage_enabled __read_mostly;
627
628 static int __init early_debug_pagealloc(char *buf)
629 {
630 if (!buf)
631 return -EINVAL;
632 return kstrtobool(buf, &_debug_pagealloc_enabled);
633 }
634 early_param("debug_pagealloc", early_debug_pagealloc);
635
636 static bool need_debug_guardpage(void)
637 {
638 /* If we don't use debug_pagealloc, we don't need guard page */
639 if (!debug_pagealloc_enabled())
640 return false;
641
642 if (!debug_guardpage_minorder())
643 return false;
644
645 return true;
646 }
647
648 static void init_debug_guardpage(void)
649 {
650 if (!debug_pagealloc_enabled())
651 return;
652
653 if (!debug_guardpage_minorder())
654 return;
655
656 _debug_guardpage_enabled = true;
657 }
658
659 struct page_ext_operations debug_guardpage_ops = {
660 .need = need_debug_guardpage,
661 .init = init_debug_guardpage,
662 };
663
664 static int __init debug_guardpage_minorder_setup(char *buf)
665 {
666 unsigned long res;
667
668 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
669 pr_err("Bad debug_guardpage_minorder value\n");
670 return 0;
671 }
672 _debug_guardpage_minorder = res;
673 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
674 return 0;
675 }
676 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
677
678 static inline bool set_page_guard(struct zone *zone, struct page *page,
679 unsigned int order, int migratetype)
680 {
681 struct page_ext *page_ext;
682
683 if (!debug_guardpage_enabled())
684 return false;
685
686 if (order >= debug_guardpage_minorder())
687 return false;
688
689 page_ext = lookup_page_ext(page);
690 if (unlikely(!page_ext))
691 return false;
692
693 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694
695 INIT_LIST_HEAD(&page->lru);
696 set_page_private(page, order);
697 /* Guard pages are not available for any usage */
698 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
699
700 return true;
701 }
702
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype)
705 {
706 struct page_ext *page_ext;
707
708 if (!debug_guardpage_enabled())
709 return;
710
711 page_ext = lookup_page_ext(page);
712 if (unlikely(!page_ext))
713 return;
714
715 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
716
717 set_page_private(page, 0);
718 if (!is_migrate_isolate(migratetype))
719 __mod_zone_freepage_state(zone, (1 << order), migratetype);
720 }
721 #else
722 struct page_ext_operations debug_guardpage_ops;
723 static inline bool set_page_guard(struct zone *zone, struct page *page,
724 unsigned int order, int migratetype) { return false; }
725 static inline void clear_page_guard(struct zone *zone, struct page *page,
726 unsigned int order, int migratetype) {}
727 #endif
728
729 static inline void set_page_order(struct page *page, unsigned int order)
730 {
731 set_page_private(page, order);
732 __SetPageBuddy(page);
733 }
734
735 static inline void rmv_page_order(struct page *page)
736 {
737 __ClearPageBuddy(page);
738 set_page_private(page, 0);
739 }
740
741 /*
742 * This function checks whether a page is free && is the buddy
743 * we can do coalesce a page and its buddy if
744 * (a) the buddy is not in a hole (check before calling!) &&
745 * (b) the buddy is in the buddy system &&
746 * (c) a page and its buddy have the same order &&
747 * (d) a page and its buddy are in the same zone.
748 *
749 * For recording whether a page is in the buddy system, we set ->_mapcount
750 * PAGE_BUDDY_MAPCOUNT_VALUE.
751 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
752 * serialized by zone->lock.
753 *
754 * For recording page's order, we use page_private(page).
755 */
756 static inline int page_is_buddy(struct page *page, struct page *buddy,
757 unsigned int order)
758 {
759 if (page_is_guard(buddy) && page_order(buddy) == order) {
760 if (page_zone_id(page) != page_zone_id(buddy))
761 return 0;
762
763 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
764
765 return 1;
766 }
767
768 if (PageBuddy(buddy) && page_order(buddy) == order) {
769 /*
770 * zone check is done late to avoid uselessly
771 * calculating zone/node ids for pages that could
772 * never merge.
773 */
774 if (page_zone_id(page) != page_zone_id(buddy))
775 return 0;
776
777 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
778
779 return 1;
780 }
781 return 0;
782 }
783
784 /*
785 * Freeing function for a buddy system allocator.
786 *
787 * The concept of a buddy system is to maintain direct-mapped table
788 * (containing bit values) for memory blocks of various "orders".
789 * The bottom level table contains the map for the smallest allocatable
790 * units of memory (here, pages), and each level above it describes
791 * pairs of units from the levels below, hence, "buddies".
792 * At a high level, all that happens here is marking the table entry
793 * at the bottom level available, and propagating the changes upward
794 * as necessary, plus some accounting needed to play nicely with other
795 * parts of the VM system.
796 * At each level, we keep a list of pages, which are heads of continuous
797 * free pages of length of (1 << order) and marked with _mapcount
798 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
799 * field.
800 * So when we are allocating or freeing one, we can derive the state of the
801 * other. That is, if we allocate a small block, and both were
802 * free, the remainder of the region must be split into blocks.
803 * If a block is freed, and its buddy is also free, then this
804 * triggers coalescing into a block of larger size.
805 *
806 * -- nyc
807 */
808
809 static inline void __free_one_page(struct page *page,
810 unsigned long pfn,
811 struct zone *zone, unsigned int order,
812 int migratetype)
813 {
814 unsigned long combined_pfn;
815 unsigned long uninitialized_var(buddy_pfn);
816 struct page *buddy;
817 unsigned int max_order;
818
819 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
820
821 VM_BUG_ON(!zone_is_initialized(zone));
822 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
823
824 VM_BUG_ON(migratetype == -1);
825 if (likely(!is_migrate_isolate(migratetype)))
826 __mod_zone_freepage_state(zone, 1 << order, migratetype);
827
828 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
829 VM_BUG_ON_PAGE(bad_range(zone, page), page);
830
831 continue_merging:
832 while (order < max_order - 1) {
833 buddy_pfn = __find_buddy_pfn(pfn, order);
834 buddy = page + (buddy_pfn - pfn);
835
836 if (!pfn_valid_within(buddy_pfn))
837 goto done_merging;
838 if (!page_is_buddy(page, buddy, order))
839 goto done_merging;
840 /*
841 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
842 * merge with it and move up one order.
843 */
844 if (page_is_guard(buddy)) {
845 clear_page_guard(zone, buddy, order, migratetype);
846 } else {
847 list_del(&buddy->lru);
848 zone->free_area[order].nr_free--;
849 rmv_page_order(buddy);
850 }
851 combined_pfn = buddy_pfn & pfn;
852 page = page + (combined_pfn - pfn);
853 pfn = combined_pfn;
854 order++;
855 }
856 if (max_order < MAX_ORDER) {
857 /* If we are here, it means order is >= pageblock_order.
858 * We want to prevent merge between freepages on isolate
859 * pageblock and normal pageblock. Without this, pageblock
860 * isolation could cause incorrect freepage or CMA accounting.
861 *
862 * We don't want to hit this code for the more frequent
863 * low-order merging.
864 */
865 if (unlikely(has_isolate_pageblock(zone))) {
866 int buddy_mt;
867
868 buddy_pfn = __find_buddy_pfn(pfn, order);
869 buddy = page + (buddy_pfn - pfn);
870 buddy_mt = get_pageblock_migratetype(buddy);
871
872 if (migratetype != buddy_mt
873 && (is_migrate_isolate(migratetype) ||
874 is_migrate_isolate(buddy_mt)))
875 goto done_merging;
876 }
877 max_order++;
878 goto continue_merging;
879 }
880
881 done_merging:
882 set_page_order(page, order);
883
884 /*
885 * If this is not the largest possible page, check if the buddy
886 * of the next-highest order is free. If it is, it's possible
887 * that pages are being freed that will coalesce soon. In case,
888 * that is happening, add the free page to the tail of the list
889 * so it's less likely to be used soon and more likely to be merged
890 * as a higher order page
891 */
892 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
893 struct page *higher_page, *higher_buddy;
894 combined_pfn = buddy_pfn & pfn;
895 higher_page = page + (combined_pfn - pfn);
896 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
897 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
898 if (pfn_valid_within(buddy_pfn) &&
899 page_is_buddy(higher_page, higher_buddy, order + 1)) {
900 list_add_tail(&page->lru,
901 &zone->free_area[order].free_list[migratetype]);
902 goto out;
903 }
904 }
905
906 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
907 out:
908 zone->free_area[order].nr_free++;
909 }
910
911 /*
912 * A bad page could be due to a number of fields. Instead of multiple branches,
913 * try and check multiple fields with one check. The caller must do a detailed
914 * check if necessary.
915 */
916 static inline bool page_expected_state(struct page *page,
917 unsigned long check_flags)
918 {
919 if (unlikely(atomic_read(&page->_mapcount) != -1))
920 return false;
921
922 if (unlikely((unsigned long)page->mapping |
923 page_ref_count(page) |
924 #ifdef CONFIG_MEMCG
925 (unsigned long)page->mem_cgroup |
926 #endif
927 (page->flags & check_flags)))
928 return false;
929
930 return true;
931 }
932
933 static void free_pages_check_bad(struct page *page)
934 {
935 const char *bad_reason;
936 unsigned long bad_flags;
937
938 bad_reason = NULL;
939 bad_flags = 0;
940
941 if (unlikely(atomic_read(&page->_mapcount) != -1))
942 bad_reason = "nonzero mapcount";
943 if (unlikely(page->mapping != NULL))
944 bad_reason = "non-NULL mapping";
945 if (unlikely(page_ref_count(page) != 0))
946 bad_reason = "nonzero _refcount";
947 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
948 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
949 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
950 }
951 #ifdef CONFIG_MEMCG
952 if (unlikely(page->mem_cgroup))
953 bad_reason = "page still charged to cgroup";
954 #endif
955 bad_page(page, bad_reason, bad_flags);
956 }
957
958 static inline int free_pages_check(struct page *page)
959 {
960 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
961 return 0;
962
963 /* Something has gone sideways, find it */
964 free_pages_check_bad(page);
965 return 1;
966 }
967
968 static int free_tail_pages_check(struct page *head_page, struct page *page)
969 {
970 int ret = 1;
971
972 /*
973 * We rely page->lru.next never has bit 0 set, unless the page
974 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
975 */
976 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
977
978 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
979 ret = 0;
980 goto out;
981 }
982 switch (page - head_page) {
983 case 1:
984 /* the first tail page: ->mapping is compound_mapcount() */
985 if (unlikely(compound_mapcount(page))) {
986 bad_page(page, "nonzero compound_mapcount", 0);
987 goto out;
988 }
989 break;
990 case 2:
991 /*
992 * the second tail page: ->mapping is
993 * page_deferred_list().next -- ignore value.
994 */
995 break;
996 default:
997 if (page->mapping != TAIL_MAPPING) {
998 bad_page(page, "corrupted mapping in tail page", 0);
999 goto out;
1000 }
1001 break;
1002 }
1003 if (unlikely(!PageTail(page))) {
1004 bad_page(page, "PageTail not set", 0);
1005 goto out;
1006 }
1007 if (unlikely(compound_head(page) != head_page)) {
1008 bad_page(page, "compound_head not consistent", 0);
1009 goto out;
1010 }
1011 ret = 0;
1012 out:
1013 page->mapping = NULL;
1014 clear_compound_head(page);
1015 return ret;
1016 }
1017
1018 static __always_inline bool free_pages_prepare(struct page *page,
1019 unsigned int order, bool check_free)
1020 {
1021 int bad = 0;
1022
1023 VM_BUG_ON_PAGE(PageTail(page), page);
1024
1025 trace_mm_page_free(page, order);
1026
1027 /*
1028 * Check tail pages before head page information is cleared to
1029 * avoid checking PageCompound for order-0 pages.
1030 */
1031 if (unlikely(order)) {
1032 bool compound = PageCompound(page);
1033 int i;
1034
1035 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1036
1037 if (compound)
1038 ClearPageDoubleMap(page);
1039 for (i = 1; i < (1 << order); i++) {
1040 if (compound)
1041 bad += free_tail_pages_check(page, page + i);
1042 if (unlikely(free_pages_check(page + i))) {
1043 bad++;
1044 continue;
1045 }
1046 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1047 }
1048 }
1049 if (PageMappingFlags(page))
1050 page->mapping = NULL;
1051 if (memcg_kmem_enabled() && PageKmemcg(page))
1052 memcg_kmem_uncharge(page, order);
1053 if (check_free)
1054 bad += free_pages_check(page);
1055 if (bad)
1056 return false;
1057
1058 page_cpupid_reset_last(page);
1059 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1060 reset_page_owner(page, order);
1061
1062 if (!PageHighMem(page)) {
1063 debug_check_no_locks_freed(page_address(page),
1064 PAGE_SIZE << order);
1065 debug_check_no_obj_freed(page_address(page),
1066 PAGE_SIZE << order);
1067 }
1068 arch_free_page(page, order);
1069 kernel_poison_pages(page, 1 << order, 0);
1070 kernel_map_pages(page, 1 << order, 0);
1071 kasan_free_pages(page, order);
1072
1073 return true;
1074 }
1075
1076 #ifdef CONFIG_DEBUG_VM
1077 static inline bool free_pcp_prepare(struct page *page)
1078 {
1079 return free_pages_prepare(page, 0, true);
1080 }
1081
1082 static inline bool bulkfree_pcp_prepare(struct page *page)
1083 {
1084 return false;
1085 }
1086 #else
1087 static bool free_pcp_prepare(struct page *page)
1088 {
1089 return free_pages_prepare(page, 0, false);
1090 }
1091
1092 static bool bulkfree_pcp_prepare(struct page *page)
1093 {
1094 return free_pages_check(page);
1095 }
1096 #endif /* CONFIG_DEBUG_VM */
1097
1098 /*
1099 * Frees a number of pages from the PCP lists
1100 * Assumes all pages on list are in same zone, and of same order.
1101 * count is the number of pages to free.
1102 *
1103 * If the zone was previously in an "all pages pinned" state then look to
1104 * see if this freeing clears that state.
1105 *
1106 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1107 * pinned" detection logic.
1108 */
1109 static void free_pcppages_bulk(struct zone *zone, int count,
1110 struct per_cpu_pages *pcp)
1111 {
1112 int migratetype = 0;
1113 int batch_free = 0;
1114 bool isolated_pageblocks;
1115
1116 spin_lock(&zone->lock);
1117 isolated_pageblocks = has_isolate_pageblock(zone);
1118
1119 while (count) {
1120 struct page *page;
1121 struct list_head *list;
1122
1123 /*
1124 * Remove pages from lists in a round-robin fashion. A
1125 * batch_free count is maintained that is incremented when an
1126 * empty list is encountered. This is so more pages are freed
1127 * off fuller lists instead of spinning excessively around empty
1128 * lists
1129 */
1130 do {
1131 batch_free++;
1132 if (++migratetype == MIGRATE_PCPTYPES)
1133 migratetype = 0;
1134 list = &pcp->lists[migratetype];
1135 } while (list_empty(list));
1136
1137 /* This is the only non-empty list. Free them all. */
1138 if (batch_free == MIGRATE_PCPTYPES)
1139 batch_free = count;
1140
1141 do {
1142 int mt; /* migratetype of the to-be-freed page */
1143
1144 page = list_last_entry(list, struct page, lru);
1145 /* must delete as __free_one_page list manipulates */
1146 list_del(&page->lru);
1147
1148 mt = get_pcppage_migratetype(page);
1149 /* MIGRATE_ISOLATE page should not go to pcplists */
1150 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1151 /* Pageblock could have been isolated meanwhile */
1152 if (unlikely(isolated_pageblocks))
1153 mt = get_pageblock_migratetype(page);
1154
1155 if (bulkfree_pcp_prepare(page))
1156 continue;
1157
1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 trace_mm_page_pcpu_drain(page, 0, mt);
1160 } while (--count && --batch_free && !list_empty(list));
1161 }
1162 spin_unlock(&zone->lock);
1163 }
1164
1165 static void free_one_page(struct zone *zone,
1166 struct page *page, unsigned long pfn,
1167 unsigned int order,
1168 int migratetype)
1169 {
1170 spin_lock(&zone->lock);
1171 if (unlikely(has_isolate_pageblock(zone) ||
1172 is_migrate_isolate(migratetype))) {
1173 migratetype = get_pfnblock_migratetype(page, pfn);
1174 }
1175 __free_one_page(page, pfn, zone, order, migratetype);
1176 spin_unlock(&zone->lock);
1177 }
1178
1179 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1180 unsigned long zone, int nid)
1181 {
1182 mm_zero_struct_page(page);
1183 set_page_links(page, zone, nid, pfn);
1184 init_page_count(page);
1185 page_mapcount_reset(page);
1186 page_cpupid_reset_last(page);
1187
1188 INIT_LIST_HEAD(&page->lru);
1189 #ifdef WANT_PAGE_VIRTUAL
1190 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1191 if (!is_highmem_idx(zone))
1192 set_page_address(page, __va(pfn << PAGE_SHIFT));
1193 #endif
1194 }
1195
1196 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1197 int nid)
1198 {
1199 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1200 }
1201
1202 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1203 static void __meminit init_reserved_page(unsigned long pfn)
1204 {
1205 pg_data_t *pgdat;
1206 int nid, zid;
1207
1208 if (!early_page_uninitialised(pfn))
1209 return;
1210
1211 nid = early_pfn_to_nid(pfn);
1212 pgdat = NODE_DATA(nid);
1213
1214 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1215 struct zone *zone = &pgdat->node_zones[zid];
1216
1217 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1218 break;
1219 }
1220 __init_single_pfn(pfn, zid, nid);
1221 }
1222 #else
1223 static inline void init_reserved_page(unsigned long pfn)
1224 {
1225 }
1226 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1227
1228 /*
1229 * Initialised pages do not have PageReserved set. This function is
1230 * called for each range allocated by the bootmem allocator and
1231 * marks the pages PageReserved. The remaining valid pages are later
1232 * sent to the buddy page allocator.
1233 */
1234 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1235 {
1236 unsigned long start_pfn = PFN_DOWN(start);
1237 unsigned long end_pfn = PFN_UP(end);
1238
1239 for (; start_pfn < end_pfn; start_pfn++) {
1240 if (pfn_valid(start_pfn)) {
1241 struct page *page = pfn_to_page(start_pfn);
1242
1243 init_reserved_page(start_pfn);
1244
1245 /* Avoid false-positive PageTail() */
1246 INIT_LIST_HEAD(&page->lru);
1247
1248 SetPageReserved(page);
1249 }
1250 }
1251 }
1252
1253 static void __free_pages_ok(struct page *page, unsigned int order)
1254 {
1255 unsigned long flags;
1256 int migratetype;
1257 unsigned long pfn = page_to_pfn(page);
1258
1259 if (!free_pages_prepare(page, order, true))
1260 return;
1261
1262 migratetype = get_pfnblock_migratetype(page, pfn);
1263 local_irq_save(flags);
1264 __count_vm_events(PGFREE, 1 << order);
1265 free_one_page(page_zone(page), page, pfn, order, migratetype);
1266 local_irq_restore(flags);
1267 }
1268
1269 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1270 {
1271 unsigned int nr_pages = 1 << order;
1272 struct page *p = page;
1273 unsigned int loop;
1274
1275 prefetchw(p);
1276 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1277 prefetchw(p + 1);
1278 __ClearPageReserved(p);
1279 set_page_count(p, 0);
1280 }
1281 __ClearPageReserved(p);
1282 set_page_count(p, 0);
1283
1284 page_zone(page)->managed_pages += nr_pages;
1285 set_page_refcounted(page);
1286 __free_pages(page, order);
1287 }
1288
1289 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1290 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1291
1292 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1293
1294 int __meminit early_pfn_to_nid(unsigned long pfn)
1295 {
1296 static DEFINE_SPINLOCK(early_pfn_lock);
1297 int nid;
1298
1299 spin_lock(&early_pfn_lock);
1300 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1301 if (nid < 0)
1302 nid = first_online_node;
1303 spin_unlock(&early_pfn_lock);
1304
1305 return nid;
1306 }
1307 #endif
1308
1309 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1310 static inline bool __meminit __maybe_unused
1311 meminit_pfn_in_nid(unsigned long pfn, int node,
1312 struct mminit_pfnnid_cache *state)
1313 {
1314 int nid;
1315
1316 nid = __early_pfn_to_nid(pfn, state);
1317 if (nid >= 0 && nid != node)
1318 return false;
1319 return true;
1320 }
1321
1322 /* Only safe to use early in boot when initialisation is single-threaded */
1323 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1324 {
1325 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1326 }
1327
1328 #else
1329
1330 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1331 {
1332 return true;
1333 }
1334 static inline bool __meminit __maybe_unused
1335 meminit_pfn_in_nid(unsigned long pfn, int node,
1336 struct mminit_pfnnid_cache *state)
1337 {
1338 return true;
1339 }
1340 #endif
1341
1342
1343 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1344 unsigned int order)
1345 {
1346 if (early_page_uninitialised(pfn))
1347 return;
1348 return __free_pages_boot_core(page, order);
1349 }
1350
1351 /*
1352 * Check that the whole (or subset of) a pageblock given by the interval of
1353 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1354 * with the migration of free compaction scanner. The scanners then need to
1355 * use only pfn_valid_within() check for arches that allow holes within
1356 * pageblocks.
1357 *
1358 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1359 *
1360 * It's possible on some configurations to have a setup like node0 node1 node0
1361 * i.e. it's possible that all pages within a zones range of pages do not
1362 * belong to a single zone. We assume that a border between node0 and node1
1363 * can occur within a single pageblock, but not a node0 node1 node0
1364 * interleaving within a single pageblock. It is therefore sufficient to check
1365 * the first and last page of a pageblock and avoid checking each individual
1366 * page in a pageblock.
1367 */
1368 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1369 unsigned long end_pfn, struct zone *zone)
1370 {
1371 struct page *start_page;
1372 struct page *end_page;
1373
1374 /* end_pfn is one past the range we are checking */
1375 end_pfn--;
1376
1377 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1378 return NULL;
1379
1380 start_page = pfn_to_online_page(start_pfn);
1381 if (!start_page)
1382 return NULL;
1383
1384 if (page_zone(start_page) != zone)
1385 return NULL;
1386
1387 end_page = pfn_to_page(end_pfn);
1388
1389 /* This gives a shorter code than deriving page_zone(end_page) */
1390 if (page_zone_id(start_page) != page_zone_id(end_page))
1391 return NULL;
1392
1393 return start_page;
1394 }
1395
1396 void set_zone_contiguous(struct zone *zone)
1397 {
1398 unsigned long block_start_pfn = zone->zone_start_pfn;
1399 unsigned long block_end_pfn;
1400
1401 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1402 for (; block_start_pfn < zone_end_pfn(zone);
1403 block_start_pfn = block_end_pfn,
1404 block_end_pfn += pageblock_nr_pages) {
1405
1406 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1407
1408 if (!__pageblock_pfn_to_page(block_start_pfn,
1409 block_end_pfn, zone))
1410 return;
1411 }
1412
1413 /* We confirm that there is no hole */
1414 zone->contiguous = true;
1415 }
1416
1417 void clear_zone_contiguous(struct zone *zone)
1418 {
1419 zone->contiguous = false;
1420 }
1421
1422 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1423 static void __init deferred_free_range(unsigned long pfn,
1424 unsigned long nr_pages)
1425 {
1426 struct page *page;
1427 unsigned long i;
1428
1429 if (!nr_pages)
1430 return;
1431
1432 page = pfn_to_page(pfn);
1433
1434 /* Free a large naturally-aligned chunk if possible */
1435 if (nr_pages == pageblock_nr_pages &&
1436 (pfn & (pageblock_nr_pages - 1)) == 0) {
1437 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1438 __free_pages_boot_core(page, pageblock_order);
1439 return;
1440 }
1441
1442 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1443 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1444 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1445 __free_pages_boot_core(page, 0);
1446 }
1447 }
1448
1449 /* Completion tracking for deferred_init_memmap() threads */
1450 static atomic_t pgdat_init_n_undone __initdata;
1451 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1452
1453 static inline void __init pgdat_init_report_one_done(void)
1454 {
1455 if (atomic_dec_and_test(&pgdat_init_n_undone))
1456 complete(&pgdat_init_all_done_comp);
1457 }
1458
1459 /*
1460 * Helper for deferred_init_range, free the given range, reset the counters, and
1461 * return number of pages freed.
1462 */
1463 static inline unsigned long __init __def_free(unsigned long *nr_free,
1464 unsigned long *free_base_pfn,
1465 struct page **page)
1466 {
1467 unsigned long nr = *nr_free;
1468
1469 deferred_free_range(*free_base_pfn, nr);
1470 *free_base_pfn = 0;
1471 *nr_free = 0;
1472 *page = NULL;
1473
1474 return nr;
1475 }
1476
1477 static unsigned long __init deferred_init_range(int nid, int zid,
1478 unsigned long start_pfn,
1479 unsigned long end_pfn)
1480 {
1481 struct mminit_pfnnid_cache nid_init_state = { };
1482 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1483 unsigned long free_base_pfn = 0;
1484 unsigned long nr_pages = 0;
1485 unsigned long nr_free = 0;
1486 struct page *page = NULL;
1487 unsigned long pfn;
1488
1489 /*
1490 * First we check if pfn is valid on architectures where it is possible
1491 * to have holes within pageblock_nr_pages. On systems where it is not
1492 * possible, this function is optimized out.
1493 *
1494 * Then, we check if a current large page is valid by only checking the
1495 * validity of the head pfn.
1496 *
1497 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1498 * within a node: a pfn is between start and end of a node, but does not
1499 * belong to this memory node.
1500 *
1501 * Finally, we minimize pfn page lookups and scheduler checks by
1502 * performing it only once every pageblock_nr_pages.
1503 *
1504 * We do it in two loops: first we initialize struct page, than free to
1505 * buddy allocator, becuse while we are freeing pages we can access
1506 * pages that are ahead (computing buddy page in __free_one_page()).
1507 */
1508 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1509 if (!pfn_valid_within(pfn))
1510 continue;
1511 if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1512 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1513 if (page && (pfn & nr_pgmask))
1514 page++;
1515 else
1516 page = pfn_to_page(pfn);
1517 __init_single_page(page, pfn, zid, nid);
1518 cond_resched();
1519 }
1520 }
1521 }
1522
1523 page = NULL;
1524 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1525 if (!pfn_valid_within(pfn)) {
1526 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1527 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1528 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1529 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1530 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1531 } else if (page && (pfn & nr_pgmask)) {
1532 page++;
1533 nr_free++;
1534 } else {
1535 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1536 page = pfn_to_page(pfn);
1537 free_base_pfn = pfn;
1538 nr_free = 1;
1539 cond_resched();
1540 }
1541 }
1542 /* Free the last block of pages to allocator */
1543 nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1544
1545 return nr_pages;
1546 }
1547
1548 /* Initialise remaining memory on a node */
1549 static int __init deferred_init_memmap(void *data)
1550 {
1551 pg_data_t *pgdat = data;
1552 int nid = pgdat->node_id;
1553 unsigned long start = jiffies;
1554 unsigned long nr_pages = 0;
1555 unsigned long spfn, epfn;
1556 phys_addr_t spa, epa;
1557 int zid;
1558 struct zone *zone;
1559 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1560 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1561 u64 i;
1562
1563 if (first_init_pfn == ULONG_MAX) {
1564 pgdat_init_report_one_done();
1565 return 0;
1566 }
1567
1568 /* Bind memory initialisation thread to a local node if possible */
1569 if (!cpumask_empty(cpumask))
1570 set_cpus_allowed_ptr(current, cpumask);
1571
1572 /* Sanity check boundaries */
1573 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1574 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1575 pgdat->first_deferred_pfn = ULONG_MAX;
1576
1577 /* Only the highest zone is deferred so find it */
1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 zone = pgdat->node_zones + zid;
1580 if (first_init_pfn < zone_end_pfn(zone))
1581 break;
1582 }
1583 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1584
1585 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1586 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1587 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1588 nr_pages += deferred_init_range(nid, zid, spfn, epfn);
1589 }
1590
1591 /* Sanity check that the next zone really is unpopulated */
1592 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1593
1594 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1595 jiffies_to_msecs(jiffies - start));
1596
1597 pgdat_init_report_one_done();
1598 return 0;
1599 }
1600 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1601
1602 void __init page_alloc_init_late(void)
1603 {
1604 struct zone *zone;
1605
1606 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1607 int nid;
1608
1609 /* There will be num_node_state(N_MEMORY) threads */
1610 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1611 for_each_node_state(nid, N_MEMORY) {
1612 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1613 }
1614
1615 /* Block until all are initialised */
1616 wait_for_completion(&pgdat_init_all_done_comp);
1617
1618 /* Reinit limits that are based on free pages after the kernel is up */
1619 files_maxfiles_init();
1620 #endif
1621 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1622 /* Discard memblock private memory */
1623 memblock_discard();
1624 #endif
1625
1626 for_each_populated_zone(zone)
1627 set_zone_contiguous(zone);
1628 }
1629
1630 #ifdef CONFIG_CMA
1631 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1632 void __init init_cma_reserved_pageblock(struct page *page)
1633 {
1634 unsigned i = pageblock_nr_pages;
1635 struct page *p = page;
1636
1637 do {
1638 __ClearPageReserved(p);
1639 set_page_count(p, 0);
1640 } while (++p, --i);
1641
1642 set_pageblock_migratetype(page, MIGRATE_CMA);
1643
1644 if (pageblock_order >= MAX_ORDER) {
1645 i = pageblock_nr_pages;
1646 p = page;
1647 do {
1648 set_page_refcounted(p);
1649 __free_pages(p, MAX_ORDER - 1);
1650 p += MAX_ORDER_NR_PAGES;
1651 } while (i -= MAX_ORDER_NR_PAGES);
1652 } else {
1653 set_page_refcounted(page);
1654 __free_pages(page, pageblock_order);
1655 }
1656
1657 adjust_managed_page_count(page, pageblock_nr_pages);
1658 }
1659 #endif
1660
1661 /*
1662 * The order of subdivision here is critical for the IO subsystem.
1663 * Please do not alter this order without good reasons and regression
1664 * testing. Specifically, as large blocks of memory are subdivided,
1665 * the order in which smaller blocks are delivered depends on the order
1666 * they're subdivided in this function. This is the primary factor
1667 * influencing the order in which pages are delivered to the IO
1668 * subsystem according to empirical testing, and this is also justified
1669 * by considering the behavior of a buddy system containing a single
1670 * large block of memory acted on by a series of small allocations.
1671 * This behavior is a critical factor in sglist merging's success.
1672 *
1673 * -- nyc
1674 */
1675 static inline void expand(struct zone *zone, struct page *page,
1676 int low, int high, struct free_area *area,
1677 int migratetype)
1678 {
1679 unsigned long size = 1 << high;
1680
1681 while (high > low) {
1682 area--;
1683 high--;
1684 size >>= 1;
1685 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1686
1687 /*
1688 * Mark as guard pages (or page), that will allow to
1689 * merge back to allocator when buddy will be freed.
1690 * Corresponding page table entries will not be touched,
1691 * pages will stay not present in virtual address space
1692 */
1693 if (set_page_guard(zone, &page[size], high, migratetype))
1694 continue;
1695
1696 list_add(&page[size].lru, &area->free_list[migratetype]);
1697 area->nr_free++;
1698 set_page_order(&page[size], high);
1699 }
1700 }
1701
1702 static void check_new_page_bad(struct page *page)
1703 {
1704 const char *bad_reason = NULL;
1705 unsigned long bad_flags = 0;
1706
1707 if (unlikely(atomic_read(&page->_mapcount) != -1))
1708 bad_reason = "nonzero mapcount";
1709 if (unlikely(page->mapping != NULL))
1710 bad_reason = "non-NULL mapping";
1711 if (unlikely(page_ref_count(page) != 0))
1712 bad_reason = "nonzero _count";
1713 if (unlikely(page->flags & __PG_HWPOISON)) {
1714 bad_reason = "HWPoisoned (hardware-corrupted)";
1715 bad_flags = __PG_HWPOISON;
1716 /* Don't complain about hwpoisoned pages */
1717 page_mapcount_reset(page); /* remove PageBuddy */
1718 return;
1719 }
1720 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1721 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1722 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1723 }
1724 #ifdef CONFIG_MEMCG
1725 if (unlikely(page->mem_cgroup))
1726 bad_reason = "page still charged to cgroup";
1727 #endif
1728 bad_page(page, bad_reason, bad_flags);
1729 }
1730
1731 /*
1732 * This page is about to be returned from the page allocator
1733 */
1734 static inline int check_new_page(struct page *page)
1735 {
1736 if (likely(page_expected_state(page,
1737 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1738 return 0;
1739
1740 check_new_page_bad(page);
1741 return 1;
1742 }
1743
1744 static inline bool free_pages_prezeroed(void)
1745 {
1746 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1747 page_poisoning_enabled();
1748 }
1749
1750 #ifdef CONFIG_DEBUG_VM
1751 static bool check_pcp_refill(struct page *page)
1752 {
1753 return false;
1754 }
1755
1756 static bool check_new_pcp(struct page *page)
1757 {
1758 return check_new_page(page);
1759 }
1760 #else
1761 static bool check_pcp_refill(struct page *page)
1762 {
1763 return check_new_page(page);
1764 }
1765 static bool check_new_pcp(struct page *page)
1766 {
1767 return false;
1768 }
1769 #endif /* CONFIG_DEBUG_VM */
1770
1771 static bool check_new_pages(struct page *page, unsigned int order)
1772 {
1773 int i;
1774 for (i = 0; i < (1 << order); i++) {
1775 struct page *p = page + i;
1776
1777 if (unlikely(check_new_page(p)))
1778 return true;
1779 }
1780
1781 return false;
1782 }
1783
1784 inline void post_alloc_hook(struct page *page, unsigned int order,
1785 gfp_t gfp_flags)
1786 {
1787 set_page_private(page, 0);
1788 set_page_refcounted(page);
1789
1790 arch_alloc_page(page, order);
1791 kernel_map_pages(page, 1 << order, 1);
1792 kernel_poison_pages(page, 1 << order, 1);
1793 kasan_alloc_pages(page, order);
1794 set_page_owner(page, order, gfp_flags);
1795 }
1796
1797 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1798 unsigned int alloc_flags)
1799 {
1800 int i;
1801
1802 post_alloc_hook(page, order, gfp_flags);
1803
1804 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1805 for (i = 0; i < (1 << order); i++)
1806 clear_highpage(page + i);
1807
1808 if (order && (gfp_flags & __GFP_COMP))
1809 prep_compound_page(page, order);
1810
1811 /*
1812 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1813 * allocate the page. The expectation is that the caller is taking
1814 * steps that will free more memory. The caller should avoid the page
1815 * being used for !PFMEMALLOC purposes.
1816 */
1817 if (alloc_flags & ALLOC_NO_WATERMARKS)
1818 set_page_pfmemalloc(page);
1819 else
1820 clear_page_pfmemalloc(page);
1821 }
1822
1823 /*
1824 * Go through the free lists for the given migratetype and remove
1825 * the smallest available page from the freelists
1826 */
1827 static __always_inline
1828 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1829 int migratetype)
1830 {
1831 unsigned int current_order;
1832 struct free_area *area;
1833 struct page *page;
1834
1835 /* Find a page of the appropriate size in the preferred list */
1836 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1837 area = &(zone->free_area[current_order]);
1838 page = list_first_entry_or_null(&area->free_list[migratetype],
1839 struct page, lru);
1840 if (!page)
1841 continue;
1842 list_del(&page->lru);
1843 rmv_page_order(page);
1844 area->nr_free--;
1845 expand(zone, page, order, current_order, area, migratetype);
1846 set_pcppage_migratetype(page, migratetype);
1847 return page;
1848 }
1849
1850 return NULL;
1851 }
1852
1853
1854 /*
1855 * This array describes the order lists are fallen back to when
1856 * the free lists for the desirable migrate type are depleted
1857 */
1858 static int fallbacks[MIGRATE_TYPES][4] = {
1859 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1860 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1861 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1862 #ifdef CONFIG_CMA
1863 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1864 #endif
1865 #ifdef CONFIG_MEMORY_ISOLATION
1866 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1867 #endif
1868 };
1869
1870 #ifdef CONFIG_CMA
1871 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1872 unsigned int order)
1873 {
1874 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1875 }
1876 #else
1877 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1878 unsigned int order) { return NULL; }
1879 #endif
1880
1881 /*
1882 * Move the free pages in a range to the free lists of the requested type.
1883 * Note that start_page and end_pages are not aligned on a pageblock
1884 * boundary. If alignment is required, use move_freepages_block()
1885 */
1886 static int move_freepages(struct zone *zone,
1887 struct page *start_page, struct page *end_page,
1888 int migratetype, int *num_movable)
1889 {
1890 struct page *page;
1891 unsigned int order;
1892 int pages_moved = 0;
1893
1894 #ifndef CONFIG_HOLES_IN_ZONE
1895 /*
1896 * page_zone is not safe to call in this context when
1897 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1898 * anyway as we check zone boundaries in move_freepages_block().
1899 * Remove at a later date when no bug reports exist related to
1900 * grouping pages by mobility
1901 */
1902 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1903 #endif
1904
1905 if (num_movable)
1906 *num_movable = 0;
1907
1908 for (page = start_page; page <= end_page;) {
1909 if (!pfn_valid_within(page_to_pfn(page))) {
1910 page++;
1911 continue;
1912 }
1913
1914 /* Make sure we are not inadvertently changing nodes */
1915 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1916
1917 if (!PageBuddy(page)) {
1918 /*
1919 * We assume that pages that could be isolated for
1920 * migration are movable. But we don't actually try
1921 * isolating, as that would be expensive.
1922 */
1923 if (num_movable &&
1924 (PageLRU(page) || __PageMovable(page)))
1925 (*num_movable)++;
1926
1927 page++;
1928 continue;
1929 }
1930
1931 order = page_order(page);
1932 list_move(&page->lru,
1933 &zone->free_area[order].free_list[migratetype]);
1934 page += 1 << order;
1935 pages_moved += 1 << order;
1936 }
1937
1938 return pages_moved;
1939 }
1940
1941 int move_freepages_block(struct zone *zone, struct page *page,
1942 int migratetype, int *num_movable)
1943 {
1944 unsigned long start_pfn, end_pfn;
1945 struct page *start_page, *end_page;
1946
1947 start_pfn = page_to_pfn(page);
1948 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1949 start_page = pfn_to_page(start_pfn);
1950 end_page = start_page + pageblock_nr_pages - 1;
1951 end_pfn = start_pfn + pageblock_nr_pages - 1;
1952
1953 /* Do not cross zone boundaries */
1954 if (!zone_spans_pfn(zone, start_pfn))
1955 start_page = page;
1956 if (!zone_spans_pfn(zone, end_pfn))
1957 return 0;
1958
1959 return move_freepages(zone, start_page, end_page, migratetype,
1960 num_movable);
1961 }
1962
1963 static void change_pageblock_range(struct page *pageblock_page,
1964 int start_order, int migratetype)
1965 {
1966 int nr_pageblocks = 1 << (start_order - pageblock_order);
1967
1968 while (nr_pageblocks--) {
1969 set_pageblock_migratetype(pageblock_page, migratetype);
1970 pageblock_page += pageblock_nr_pages;
1971 }
1972 }
1973
1974 /*
1975 * When we are falling back to another migratetype during allocation, try to
1976 * steal extra free pages from the same pageblocks to satisfy further
1977 * allocations, instead of polluting multiple pageblocks.
1978 *
1979 * If we are stealing a relatively large buddy page, it is likely there will
1980 * be more free pages in the pageblock, so try to steal them all. For
1981 * reclaimable and unmovable allocations, we steal regardless of page size,
1982 * as fragmentation caused by those allocations polluting movable pageblocks
1983 * is worse than movable allocations stealing from unmovable and reclaimable
1984 * pageblocks.
1985 */
1986 static bool can_steal_fallback(unsigned int order, int start_mt)
1987 {
1988 /*
1989 * Leaving this order check is intended, although there is
1990 * relaxed order check in next check. The reason is that
1991 * we can actually steal whole pageblock if this condition met,
1992 * but, below check doesn't guarantee it and that is just heuristic
1993 * so could be changed anytime.
1994 */
1995 if (order >= pageblock_order)
1996 return true;
1997
1998 if (order >= pageblock_order / 2 ||
1999 start_mt == MIGRATE_RECLAIMABLE ||
2000 start_mt == MIGRATE_UNMOVABLE ||
2001 page_group_by_mobility_disabled)
2002 return true;
2003
2004 return false;
2005 }
2006
2007 /*
2008 * This function implements actual steal behaviour. If order is large enough,
2009 * we can steal whole pageblock. If not, we first move freepages in this
2010 * pageblock to our migratetype and determine how many already-allocated pages
2011 * are there in the pageblock with a compatible migratetype. If at least half
2012 * of pages are free or compatible, we can change migratetype of the pageblock
2013 * itself, so pages freed in the future will be put on the correct free list.
2014 */
2015 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2016 int start_type, bool whole_block)
2017 {
2018 unsigned int current_order = page_order(page);
2019 struct free_area *area;
2020 int free_pages, movable_pages, alike_pages;
2021 int old_block_type;
2022
2023 old_block_type = get_pageblock_migratetype(page);
2024
2025 /*
2026 * This can happen due to races and we want to prevent broken
2027 * highatomic accounting.
2028 */
2029 if (is_migrate_highatomic(old_block_type))
2030 goto single_page;
2031
2032 /* Take ownership for orders >= pageblock_order */
2033 if (current_order >= pageblock_order) {
2034 change_pageblock_range(page, current_order, start_type);
2035 goto single_page;
2036 }
2037
2038 /* We are not allowed to try stealing from the whole block */
2039 if (!whole_block)
2040 goto single_page;
2041
2042 free_pages = move_freepages_block(zone, page, start_type,
2043 &movable_pages);
2044 /*
2045 * Determine how many pages are compatible with our allocation.
2046 * For movable allocation, it's the number of movable pages which
2047 * we just obtained. For other types it's a bit more tricky.
2048 */
2049 if (start_type == MIGRATE_MOVABLE) {
2050 alike_pages = movable_pages;
2051 } else {
2052 /*
2053 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2054 * to MOVABLE pageblock, consider all non-movable pages as
2055 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2056 * vice versa, be conservative since we can't distinguish the
2057 * exact migratetype of non-movable pages.
2058 */
2059 if (old_block_type == MIGRATE_MOVABLE)
2060 alike_pages = pageblock_nr_pages
2061 - (free_pages + movable_pages);
2062 else
2063 alike_pages = 0;
2064 }
2065
2066 /* moving whole block can fail due to zone boundary conditions */
2067 if (!free_pages)
2068 goto single_page;
2069
2070 /*
2071 * If a sufficient number of pages in the block are either free or of
2072 * comparable migratability as our allocation, claim the whole block.
2073 */
2074 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2075 page_group_by_mobility_disabled)
2076 set_pageblock_migratetype(page, start_type);
2077
2078 return;
2079
2080 single_page:
2081 area = &zone->free_area[current_order];
2082 list_move(&page->lru, &area->free_list[start_type]);
2083 }
2084
2085 /*
2086 * Check whether there is a suitable fallback freepage with requested order.
2087 * If only_stealable is true, this function returns fallback_mt only if
2088 * we can steal other freepages all together. This would help to reduce
2089 * fragmentation due to mixed migratetype pages in one pageblock.
2090 */
2091 int find_suitable_fallback(struct free_area *area, unsigned int order,
2092 int migratetype, bool only_stealable, bool *can_steal)
2093 {
2094 int i;
2095 int fallback_mt;
2096
2097 if (area->nr_free == 0)
2098 return -1;
2099
2100 *can_steal = false;
2101 for (i = 0;; i++) {
2102 fallback_mt = fallbacks[migratetype][i];
2103 if (fallback_mt == MIGRATE_TYPES)
2104 break;
2105
2106 if (list_empty(&area->free_list[fallback_mt]))
2107 continue;
2108
2109 if (can_steal_fallback(order, migratetype))
2110 *can_steal = true;
2111
2112 if (!only_stealable)
2113 return fallback_mt;
2114
2115 if (*can_steal)
2116 return fallback_mt;
2117 }
2118
2119 return -1;
2120 }
2121
2122 /*
2123 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2124 * there are no empty page blocks that contain a page with a suitable order
2125 */
2126 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2127 unsigned int alloc_order)
2128 {
2129 int mt;
2130 unsigned long max_managed, flags;
2131
2132 /*
2133 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2134 * Check is race-prone but harmless.
2135 */
2136 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2137 if (zone->nr_reserved_highatomic >= max_managed)
2138 return;
2139
2140 spin_lock_irqsave(&zone->lock, flags);
2141
2142 /* Recheck the nr_reserved_highatomic limit under the lock */
2143 if (zone->nr_reserved_highatomic >= max_managed)
2144 goto out_unlock;
2145
2146 /* Yoink! */
2147 mt = get_pageblock_migratetype(page);
2148 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2149 && !is_migrate_cma(mt)) {
2150 zone->nr_reserved_highatomic += pageblock_nr_pages;
2151 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2152 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2153 }
2154
2155 out_unlock:
2156 spin_unlock_irqrestore(&zone->lock, flags);
2157 }
2158
2159 /*
2160 * Used when an allocation is about to fail under memory pressure. This
2161 * potentially hurts the reliability of high-order allocations when under
2162 * intense memory pressure but failed atomic allocations should be easier
2163 * to recover from than an OOM.
2164 *
2165 * If @force is true, try to unreserve a pageblock even though highatomic
2166 * pageblock is exhausted.
2167 */
2168 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2169 bool force)
2170 {
2171 struct zonelist *zonelist = ac->zonelist;
2172 unsigned long flags;
2173 struct zoneref *z;
2174 struct zone *zone;
2175 struct page *page;
2176 int order;
2177 bool ret;
2178
2179 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2180 ac->nodemask) {
2181 /*
2182 * Preserve at least one pageblock unless memory pressure
2183 * is really high.
2184 */
2185 if (!force && zone->nr_reserved_highatomic <=
2186 pageblock_nr_pages)
2187 continue;
2188
2189 spin_lock_irqsave(&zone->lock, flags);
2190 for (order = 0; order < MAX_ORDER; order++) {
2191 struct free_area *area = &(zone->free_area[order]);
2192
2193 page = list_first_entry_or_null(
2194 &area->free_list[MIGRATE_HIGHATOMIC],
2195 struct page, lru);
2196 if (!page)
2197 continue;
2198
2199 /*
2200 * In page freeing path, migratetype change is racy so
2201 * we can counter several free pages in a pageblock
2202 * in this loop althoug we changed the pageblock type
2203 * from highatomic to ac->migratetype. So we should
2204 * adjust the count once.
2205 */
2206 if (is_migrate_highatomic_page(page)) {
2207 /*
2208 * It should never happen but changes to
2209 * locking could inadvertently allow a per-cpu
2210 * drain to add pages to MIGRATE_HIGHATOMIC
2211 * while unreserving so be safe and watch for
2212 * underflows.
2213 */
2214 zone->nr_reserved_highatomic -= min(
2215 pageblock_nr_pages,
2216 zone->nr_reserved_highatomic);
2217 }
2218
2219 /*
2220 * Convert to ac->migratetype and avoid the normal
2221 * pageblock stealing heuristics. Minimally, the caller
2222 * is doing the work and needs the pages. More
2223 * importantly, if the block was always converted to
2224 * MIGRATE_UNMOVABLE or another type then the number
2225 * of pageblocks that cannot be completely freed
2226 * may increase.
2227 */
2228 set_pageblock_migratetype(page, ac->migratetype);
2229 ret = move_freepages_block(zone, page, ac->migratetype,
2230 NULL);
2231 if (ret) {
2232 spin_unlock_irqrestore(&zone->lock, flags);
2233 return ret;
2234 }
2235 }
2236 spin_unlock_irqrestore(&zone->lock, flags);
2237 }
2238
2239 return false;
2240 }
2241
2242 /*
2243 * Try finding a free buddy page on the fallback list and put it on the free
2244 * list of requested migratetype, possibly along with other pages from the same
2245 * block, depending on fragmentation avoidance heuristics. Returns true if
2246 * fallback was found so that __rmqueue_smallest() can grab it.
2247 *
2248 * The use of signed ints for order and current_order is a deliberate
2249 * deviation from the rest of this file, to make the for loop
2250 * condition simpler.
2251 */
2252 static __always_inline bool
2253 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2254 {
2255 struct free_area *area;
2256 int current_order;
2257 struct page *page;
2258 int fallback_mt;
2259 bool can_steal;
2260
2261 /*
2262 * Find the largest available free page in the other list. This roughly
2263 * approximates finding the pageblock with the most free pages, which
2264 * would be too costly to do exactly.
2265 */
2266 for (current_order = MAX_ORDER - 1; current_order >= order;
2267 --current_order) {
2268 area = &(zone->free_area[current_order]);
2269 fallback_mt = find_suitable_fallback(area, current_order,
2270 start_migratetype, false, &can_steal);
2271 if (fallback_mt == -1)
2272 continue;
2273
2274 /*
2275 * We cannot steal all free pages from the pageblock and the
2276 * requested migratetype is movable. In that case it's better to
2277 * steal and split the smallest available page instead of the
2278 * largest available page, because even if the next movable
2279 * allocation falls back into a different pageblock than this
2280 * one, it won't cause permanent fragmentation.
2281 */
2282 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2283 && current_order > order)
2284 goto find_smallest;
2285
2286 goto do_steal;
2287 }
2288
2289 return false;
2290
2291 find_smallest:
2292 for (current_order = order; current_order < MAX_ORDER;
2293 current_order++) {
2294 area = &(zone->free_area[current_order]);
2295 fallback_mt = find_suitable_fallback(area, current_order,
2296 start_migratetype, false, &can_steal);
2297 if (fallback_mt != -1)
2298 break;
2299 }
2300
2301 /*
2302 * This should not happen - we already found a suitable fallback
2303 * when looking for the largest page.
2304 */
2305 VM_BUG_ON(current_order == MAX_ORDER);
2306
2307 do_steal:
2308 page = list_first_entry(&area->free_list[fallback_mt],
2309 struct page, lru);
2310
2311 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2312
2313 trace_mm_page_alloc_extfrag(page, order, current_order,
2314 start_migratetype, fallback_mt);
2315
2316 return true;
2317
2318 }
2319
2320 /*
2321 * Do the hard work of removing an element from the buddy allocator.
2322 * Call me with the zone->lock already held.
2323 */
2324 static __always_inline struct page *
2325 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2326 {
2327 struct page *page;
2328
2329 retry:
2330 page = __rmqueue_smallest(zone, order, migratetype);
2331 if (unlikely(!page)) {
2332 if (migratetype == MIGRATE_MOVABLE)
2333 page = __rmqueue_cma_fallback(zone, order);
2334
2335 if (!page && __rmqueue_fallback(zone, order, migratetype))
2336 goto retry;
2337 }
2338
2339 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2340 return page;
2341 }
2342
2343 /*
2344 * Obtain a specified number of elements from the buddy allocator, all under
2345 * a single hold of the lock, for efficiency. Add them to the supplied list.
2346 * Returns the number of new pages which were placed at *list.
2347 */
2348 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2349 unsigned long count, struct list_head *list,
2350 int migratetype)
2351 {
2352 int i, alloced = 0;
2353
2354 spin_lock(&zone->lock);
2355 for (i = 0; i < count; ++i) {
2356 struct page *page = __rmqueue(zone, order, migratetype);
2357 if (unlikely(page == NULL))
2358 break;
2359
2360 if (unlikely(check_pcp_refill(page)))
2361 continue;
2362
2363 /*
2364 * Split buddy pages returned by expand() are received here in
2365 * physical page order. The page is added to the tail of
2366 * caller's list. From the callers perspective, the linked list
2367 * is ordered by page number under some conditions. This is
2368 * useful for IO devices that can forward direction from the
2369 * head, thus also in the physical page order. This is useful
2370 * for IO devices that can merge IO requests if the physical
2371 * pages are ordered properly.
2372 */
2373 list_add_tail(&page->lru, list);
2374 alloced++;
2375 if (is_migrate_cma(get_pcppage_migratetype(page)))
2376 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2377 -(1 << order));
2378 }
2379
2380 /*
2381 * i pages were removed from the buddy list even if some leak due
2382 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2383 * on i. Do not confuse with 'alloced' which is the number of
2384 * pages added to the pcp list.
2385 */
2386 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2387 spin_unlock(&zone->lock);
2388 return alloced;
2389 }
2390
2391 #ifdef CONFIG_NUMA
2392 /*
2393 * Called from the vmstat counter updater to drain pagesets of this
2394 * currently executing processor on remote nodes after they have
2395 * expired.
2396 *
2397 * Note that this function must be called with the thread pinned to
2398 * a single processor.
2399 */
2400 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2401 {
2402 unsigned long flags;
2403 int to_drain, batch;
2404
2405 local_irq_save(flags);
2406 batch = READ_ONCE(pcp->batch);
2407 to_drain = min(pcp->count, batch);
2408 if (to_drain > 0) {
2409 free_pcppages_bulk(zone, to_drain, pcp);
2410 pcp->count -= to_drain;
2411 }
2412 local_irq_restore(flags);
2413 }
2414 #endif
2415
2416 /*
2417 * Drain pcplists of the indicated processor and zone.
2418 *
2419 * The processor must either be the current processor and the
2420 * thread pinned to the current processor or a processor that
2421 * is not online.
2422 */
2423 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2424 {
2425 unsigned long flags;
2426 struct per_cpu_pageset *pset;
2427 struct per_cpu_pages *pcp;
2428
2429 local_irq_save(flags);
2430 pset = per_cpu_ptr(zone->pageset, cpu);
2431
2432 pcp = &pset->pcp;
2433 if (pcp->count) {
2434 free_pcppages_bulk(zone, pcp->count, pcp);
2435 pcp->count = 0;
2436 }
2437 local_irq_restore(flags);
2438 }
2439
2440 /*
2441 * Drain pcplists of all zones on the indicated processor.
2442 *
2443 * The processor must either be the current processor and the
2444 * thread pinned to the current processor or a processor that
2445 * is not online.
2446 */
2447 static void drain_pages(unsigned int cpu)
2448 {
2449 struct zone *zone;
2450
2451 for_each_populated_zone(zone) {
2452 drain_pages_zone(cpu, zone);
2453 }
2454 }
2455
2456 /*
2457 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2458 *
2459 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2460 * the single zone's pages.
2461 */
2462 void drain_local_pages(struct zone *zone)
2463 {
2464 int cpu = smp_processor_id();
2465
2466 if (zone)
2467 drain_pages_zone(cpu, zone);
2468 else
2469 drain_pages(cpu);
2470 }
2471
2472 static void drain_local_pages_wq(struct work_struct *work)
2473 {
2474 /*
2475 * drain_all_pages doesn't use proper cpu hotplug protection so
2476 * we can race with cpu offline when the WQ can move this from
2477 * a cpu pinned worker to an unbound one. We can operate on a different
2478 * cpu which is allright but we also have to make sure to not move to
2479 * a different one.
2480 */
2481 preempt_disable();
2482 drain_local_pages(NULL);
2483 preempt_enable();
2484 }
2485
2486 /*
2487 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2488 *
2489 * When zone parameter is non-NULL, spill just the single zone's pages.
2490 *
2491 * Note that this can be extremely slow as the draining happens in a workqueue.
2492 */
2493 void drain_all_pages(struct zone *zone)
2494 {
2495 int cpu;
2496
2497 /*
2498 * Allocate in the BSS so we wont require allocation in
2499 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2500 */
2501 static cpumask_t cpus_with_pcps;
2502
2503 /*
2504 * Make sure nobody triggers this path before mm_percpu_wq is fully
2505 * initialized.
2506 */
2507 if (WARN_ON_ONCE(!mm_percpu_wq))
2508 return;
2509
2510 /*
2511 * Do not drain if one is already in progress unless it's specific to
2512 * a zone. Such callers are primarily CMA and memory hotplug and need
2513 * the drain to be complete when the call returns.
2514 */
2515 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2516 if (!zone)
2517 return;
2518 mutex_lock(&pcpu_drain_mutex);
2519 }
2520
2521 /*
2522 * We don't care about racing with CPU hotplug event
2523 * as offline notification will cause the notified
2524 * cpu to drain that CPU pcps and on_each_cpu_mask
2525 * disables preemption as part of its processing
2526 */
2527 for_each_online_cpu(cpu) {
2528 struct per_cpu_pageset *pcp;
2529 struct zone *z;
2530 bool has_pcps = false;
2531
2532 if (zone) {
2533 pcp = per_cpu_ptr(zone->pageset, cpu);
2534 if (pcp->pcp.count)
2535 has_pcps = true;
2536 } else {
2537 for_each_populated_zone(z) {
2538 pcp = per_cpu_ptr(z->pageset, cpu);
2539 if (pcp->pcp.count) {
2540 has_pcps = true;
2541 break;
2542 }
2543 }
2544 }
2545
2546 if (has_pcps)
2547 cpumask_set_cpu(cpu, &cpus_with_pcps);
2548 else
2549 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2550 }
2551
2552 for_each_cpu(cpu, &cpus_with_pcps) {
2553 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2554 INIT_WORK(work, drain_local_pages_wq);
2555 queue_work_on(cpu, mm_percpu_wq, work);
2556 }
2557 for_each_cpu(cpu, &cpus_with_pcps)
2558 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2559
2560 mutex_unlock(&pcpu_drain_mutex);
2561 }
2562
2563 #ifdef CONFIG_HIBERNATION
2564
2565 /*
2566 * Touch the watchdog for every WD_PAGE_COUNT pages.
2567 */
2568 #define WD_PAGE_COUNT (128*1024)
2569
2570 void mark_free_pages(struct zone *zone)
2571 {
2572 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2573 unsigned long flags;
2574 unsigned int order, t;
2575 struct page *page;
2576
2577 if (zone_is_empty(zone))
2578 return;
2579
2580 spin_lock_irqsave(&zone->lock, flags);
2581
2582 max_zone_pfn = zone_end_pfn(zone);
2583 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2584 if (pfn_valid(pfn)) {
2585 page = pfn_to_page(pfn);
2586
2587 if (!--page_count) {
2588 touch_nmi_watchdog();
2589 page_count = WD_PAGE_COUNT;
2590 }
2591
2592 if (page_zone(page) != zone)
2593 continue;
2594
2595 if (!swsusp_page_is_forbidden(page))
2596 swsusp_unset_page_free(page);
2597 }
2598
2599 for_each_migratetype_order(order, t) {
2600 list_for_each_entry(page,
2601 &zone->free_area[order].free_list[t], lru) {
2602 unsigned long i;
2603
2604 pfn = page_to_pfn(page);
2605 for (i = 0; i < (1UL << order); i++) {
2606 if (!--page_count) {
2607 touch_nmi_watchdog();
2608 page_count = WD_PAGE_COUNT;
2609 }
2610 swsusp_set_page_free(pfn_to_page(pfn + i));
2611 }
2612 }
2613 }
2614 spin_unlock_irqrestore(&zone->lock, flags);
2615 }
2616 #endif /* CONFIG_PM */
2617
2618 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2619 {
2620 int migratetype;
2621
2622 if (!free_pcp_prepare(page))
2623 return false;
2624
2625 migratetype = get_pfnblock_migratetype(page, pfn);
2626 set_pcppage_migratetype(page, migratetype);
2627 return true;
2628 }
2629
2630 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2631 {
2632 struct zone *zone = page_zone(page);
2633 struct per_cpu_pages *pcp;
2634 int migratetype;
2635
2636 migratetype = get_pcppage_migratetype(page);
2637 __count_vm_event(PGFREE);
2638
2639 /*
2640 * We only track unmovable, reclaimable and movable on pcp lists.
2641 * Free ISOLATE pages back to the allocator because they are being
2642 * offlined but treat HIGHATOMIC as movable pages so we can get those
2643 * areas back if necessary. Otherwise, we may have to free
2644 * excessively into the page allocator
2645 */
2646 if (migratetype >= MIGRATE_PCPTYPES) {
2647 if (unlikely(is_migrate_isolate(migratetype))) {
2648 free_one_page(zone, page, pfn, 0, migratetype);
2649 return;
2650 }
2651 migratetype = MIGRATE_MOVABLE;
2652 }
2653
2654 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2655 list_add(&page->lru, &pcp->lists[migratetype]);
2656 pcp->count++;
2657 if (pcp->count >= pcp->high) {
2658 unsigned long batch = READ_ONCE(pcp->batch);
2659 free_pcppages_bulk(zone, batch, pcp);
2660 pcp->count -= batch;
2661 }
2662 }
2663
2664 /*
2665 * Free a 0-order page
2666 */
2667 void free_unref_page(struct page *page)
2668 {
2669 unsigned long flags;
2670 unsigned long pfn = page_to_pfn(page);
2671
2672 if (!free_unref_page_prepare(page, pfn))
2673 return;
2674
2675 local_irq_save(flags);
2676 free_unref_page_commit(page, pfn);
2677 local_irq_restore(flags);
2678 }
2679
2680 /*
2681 * Free a list of 0-order pages
2682 */
2683 void free_unref_page_list(struct list_head *list)
2684 {
2685 struct page *page, *next;
2686 unsigned long flags, pfn;
2687 int batch_count = 0;
2688
2689 /* Prepare pages for freeing */
2690 list_for_each_entry_safe(page, next, list, lru) {
2691 pfn = page_to_pfn(page);
2692 if (!free_unref_page_prepare(page, pfn))
2693 list_del(&page->lru);
2694 set_page_private(page, pfn);
2695 }
2696
2697 local_irq_save(flags);
2698 list_for_each_entry_safe(page, next, list, lru) {
2699 unsigned long pfn = page_private(page);
2700
2701 set_page_private(page, 0);
2702 trace_mm_page_free_batched(page);
2703 free_unref_page_commit(page, pfn);
2704
2705 /*
2706 * Guard against excessive IRQ disabled times when we get
2707 * a large list of pages to free.
2708 */
2709 if (++batch_count == SWAP_CLUSTER_MAX) {
2710 local_irq_restore(flags);
2711 batch_count = 0;
2712 local_irq_save(flags);
2713 }
2714 }
2715 local_irq_restore(flags);
2716 }
2717
2718 /*
2719 * split_page takes a non-compound higher-order page, and splits it into
2720 * n (1<<order) sub-pages: page[0..n]
2721 * Each sub-page must be freed individually.
2722 *
2723 * Note: this is probably too low level an operation for use in drivers.
2724 * Please consult with lkml before using this in your driver.
2725 */
2726 void split_page(struct page *page, unsigned int order)
2727 {
2728 int i;
2729
2730 VM_BUG_ON_PAGE(PageCompound(page), page);
2731 VM_BUG_ON_PAGE(!page_count(page), page);
2732
2733 for (i = 1; i < (1 << order); i++)
2734 set_page_refcounted(page + i);
2735 split_page_owner(page, order);
2736 }
2737 EXPORT_SYMBOL_GPL(split_page);
2738
2739 int __isolate_free_page(struct page *page, unsigned int order)
2740 {
2741 unsigned long watermark;
2742 struct zone *zone;
2743 int mt;
2744
2745 BUG_ON(!PageBuddy(page));
2746
2747 zone = page_zone(page);
2748 mt = get_pageblock_migratetype(page);
2749
2750 if (!is_migrate_isolate(mt)) {
2751 /*
2752 * Obey watermarks as if the page was being allocated. We can
2753 * emulate a high-order watermark check with a raised order-0
2754 * watermark, because we already know our high-order page
2755 * exists.
2756 */
2757 watermark = min_wmark_pages(zone) + (1UL << order);
2758 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2759 return 0;
2760
2761 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2762 }
2763
2764 /* Remove page from free list */
2765 list_del(&page->lru);
2766 zone->free_area[order].nr_free--;
2767 rmv_page_order(page);
2768
2769 /*
2770 * Set the pageblock if the isolated page is at least half of a
2771 * pageblock
2772 */
2773 if (order >= pageblock_order - 1) {
2774 struct page *endpage = page + (1 << order) - 1;
2775 for (; page < endpage; page += pageblock_nr_pages) {
2776 int mt = get_pageblock_migratetype(page);
2777 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2778 && !is_migrate_highatomic(mt))
2779 set_pageblock_migratetype(page,
2780 MIGRATE_MOVABLE);
2781 }
2782 }
2783
2784
2785 return 1UL << order;
2786 }
2787
2788 /*
2789 * Update NUMA hit/miss statistics
2790 *
2791 * Must be called with interrupts disabled.
2792 */
2793 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2794 {
2795 #ifdef CONFIG_NUMA
2796 enum numa_stat_item local_stat = NUMA_LOCAL;
2797
2798 /* skip numa counters update if numa stats is disabled */
2799 if (!static_branch_likely(&vm_numa_stat_key))
2800 return;
2801
2802 if (z->node != numa_node_id())
2803 local_stat = NUMA_OTHER;
2804
2805 if (z->node == preferred_zone->node)
2806 __inc_numa_state(z, NUMA_HIT);
2807 else {
2808 __inc_numa_state(z, NUMA_MISS);
2809 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2810 }
2811 __inc_numa_state(z, local_stat);
2812 #endif
2813 }
2814
2815 /* Remove page from the per-cpu list, caller must protect the list */
2816 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2817 struct per_cpu_pages *pcp,
2818 struct list_head *list)
2819 {
2820 struct page *page;
2821
2822 do {
2823 if (list_empty(list)) {
2824 pcp->count += rmqueue_bulk(zone, 0,
2825 pcp->batch, list,
2826 migratetype);
2827 if (unlikely(list_empty(list)))
2828 return NULL;
2829 }
2830
2831 page = list_first_entry(list, struct page, lru);
2832 list_del(&page->lru);
2833 pcp->count--;
2834 } while (check_new_pcp(page));
2835
2836 return page;
2837 }
2838
2839 /* Lock and remove page from the per-cpu list */
2840 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2841 struct zone *zone, unsigned int order,
2842 gfp_t gfp_flags, int migratetype)
2843 {
2844 struct per_cpu_pages *pcp;
2845 struct list_head *list;
2846 struct page *page;
2847 unsigned long flags;
2848
2849 local_irq_save(flags);
2850 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2851 list = &pcp->lists[migratetype];
2852 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
2853 if (page) {
2854 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2855 zone_statistics(preferred_zone, zone);
2856 }
2857 local_irq_restore(flags);
2858 return page;
2859 }
2860
2861 /*
2862 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2863 */
2864 static inline
2865 struct page *rmqueue(struct zone *preferred_zone,
2866 struct zone *zone, unsigned int order,
2867 gfp_t gfp_flags, unsigned int alloc_flags,
2868 int migratetype)
2869 {
2870 unsigned long flags;
2871 struct page *page;
2872
2873 if (likely(order == 0)) {
2874 page = rmqueue_pcplist(preferred_zone, zone, order,
2875 gfp_flags, migratetype);
2876 goto out;
2877 }
2878
2879 /*
2880 * We most definitely don't want callers attempting to
2881 * allocate greater than order-1 page units with __GFP_NOFAIL.
2882 */
2883 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2884 spin_lock_irqsave(&zone->lock, flags);
2885
2886 do {
2887 page = NULL;
2888 if (alloc_flags & ALLOC_HARDER) {
2889 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2890 if (page)
2891 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2892 }
2893 if (!page)
2894 page = __rmqueue(zone, order, migratetype);
2895 } while (page && check_new_pages(page, order));
2896 spin_unlock(&zone->lock);
2897 if (!page)
2898 goto failed;
2899 __mod_zone_freepage_state(zone, -(1 << order),
2900 get_pcppage_migratetype(page));
2901
2902 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2903 zone_statistics(preferred_zone, zone);
2904 local_irq_restore(flags);
2905
2906 out:
2907 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2908 return page;
2909
2910 failed:
2911 local_irq_restore(flags);
2912 return NULL;
2913 }
2914
2915 #ifdef CONFIG_FAIL_PAGE_ALLOC
2916
2917 static struct {
2918 struct fault_attr attr;
2919
2920 bool ignore_gfp_highmem;
2921 bool ignore_gfp_reclaim;
2922 u32 min_order;
2923 } fail_page_alloc = {
2924 .attr = FAULT_ATTR_INITIALIZER,
2925 .ignore_gfp_reclaim = true,
2926 .ignore_gfp_highmem = true,
2927 .min_order = 1,
2928 };
2929
2930 static int __init setup_fail_page_alloc(char *str)
2931 {
2932 return setup_fault_attr(&fail_page_alloc.attr, str);
2933 }
2934 __setup("fail_page_alloc=", setup_fail_page_alloc);
2935
2936 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2937 {
2938 if (order < fail_page_alloc.min_order)
2939 return false;
2940 if (gfp_mask & __GFP_NOFAIL)
2941 return false;
2942 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2943 return false;
2944 if (fail_page_alloc.ignore_gfp_reclaim &&
2945 (gfp_mask & __GFP_DIRECT_RECLAIM))
2946 return false;
2947
2948 return should_fail(&fail_page_alloc.attr, 1 << order);
2949 }
2950
2951 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2952
2953 static int __init fail_page_alloc_debugfs(void)
2954 {
2955 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2956 struct dentry *dir;
2957
2958 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2959 &fail_page_alloc.attr);
2960 if (IS_ERR(dir))
2961 return PTR_ERR(dir);
2962
2963 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2964 &fail_page_alloc.ignore_gfp_reclaim))
2965 goto fail;
2966 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2967 &fail_page_alloc.ignore_gfp_highmem))
2968 goto fail;
2969 if (!debugfs_create_u32("min-order", mode, dir,
2970 &fail_page_alloc.min_order))
2971 goto fail;
2972
2973 return 0;
2974 fail:
2975 debugfs_remove_recursive(dir);
2976
2977 return -ENOMEM;
2978 }
2979
2980 late_initcall(fail_page_alloc_debugfs);
2981
2982 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2983
2984 #else /* CONFIG_FAIL_PAGE_ALLOC */
2985
2986 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2987 {
2988 return false;
2989 }
2990
2991 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2992
2993 /*
2994 * Return true if free base pages are above 'mark'. For high-order checks it
2995 * will return true of the order-0 watermark is reached and there is at least
2996 * one free page of a suitable size. Checking now avoids taking the zone lock
2997 * to check in the allocation paths if no pages are free.
2998 */
2999 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3000 int classzone_idx, unsigned int alloc_flags,
3001 long free_pages)
3002 {
3003 long min = mark;
3004 int o;
3005 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3006
3007 /* free_pages may go negative - that's OK */
3008 free_pages -= (1 << order) - 1;
3009
3010 if (alloc_flags & ALLOC_HIGH)
3011 min -= min / 2;
3012
3013 /*
3014 * If the caller does not have rights to ALLOC_HARDER then subtract
3015 * the high-atomic reserves. This will over-estimate the size of the
3016 * atomic reserve but it avoids a search.
3017 */
3018 if (likely(!alloc_harder)) {
3019 free_pages -= z->nr_reserved_highatomic;
3020 } else {
3021 /*
3022 * OOM victims can try even harder than normal ALLOC_HARDER
3023 * users on the grounds that it's definitely going to be in
3024 * the exit path shortly and free memory. Any allocation it
3025 * makes during the free path will be small and short-lived.
3026 */
3027 if (alloc_flags & ALLOC_OOM)
3028 min -= min / 2;
3029 else
3030 min -= min / 4;
3031 }
3032
3033
3034 #ifdef CONFIG_CMA
3035 /* If allocation can't use CMA areas don't use free CMA pages */
3036 if (!(alloc_flags & ALLOC_CMA))
3037 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3038 #endif
3039
3040 /*
3041 * Check watermarks for an order-0 allocation request. If these
3042 * are not met, then a high-order request also cannot go ahead
3043 * even if a suitable page happened to be free.
3044 */
3045 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3046 return false;
3047
3048 /* If this is an order-0 request then the watermark is fine */
3049 if (!order)
3050 return true;
3051
3052 /* For a high-order request, check at least one suitable page is free */
3053 for (o = order; o < MAX_ORDER; o++) {
3054 struct free_area *area = &z->free_area[o];
3055 int mt;
3056
3057 if (!area->nr_free)
3058 continue;
3059
3060 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3061 if (!list_empty(&area->free_list[mt]))
3062 return true;
3063 }
3064
3065 #ifdef CONFIG_CMA
3066 if ((alloc_flags & ALLOC_CMA) &&
3067 !list_empty(&area->free_list[MIGRATE_CMA])) {
3068 return true;
3069 }
3070 #endif
3071 if (alloc_harder &&
3072 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3073 return true;
3074 }
3075 return false;
3076 }
3077
3078 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3079 int classzone_idx, unsigned int alloc_flags)
3080 {
3081 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3082 zone_page_state(z, NR_FREE_PAGES));
3083 }
3084
3085 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3086 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3087 {
3088 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3089 long cma_pages = 0;
3090
3091 #ifdef CONFIG_CMA
3092 /* If allocation can't use CMA areas don't use free CMA pages */
3093 if (!(alloc_flags & ALLOC_CMA))
3094 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3095 #endif
3096
3097 /*
3098 * Fast check for order-0 only. If this fails then the reserves
3099 * need to be calculated. There is a corner case where the check
3100 * passes but only the high-order atomic reserve are free. If
3101 * the caller is !atomic then it'll uselessly search the free
3102 * list. That corner case is then slower but it is harmless.
3103 */
3104 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3105 return true;
3106
3107 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3108 free_pages);
3109 }
3110
3111 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3112 unsigned long mark, int classzone_idx)
3113 {
3114 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3115
3116 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3117 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3118
3119 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3120 free_pages);
3121 }
3122
3123 #ifdef CONFIG_NUMA
3124 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3125 {
3126 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3127 RECLAIM_DISTANCE;
3128 }
3129 #else /* CONFIG_NUMA */
3130 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3131 {
3132 return true;
3133 }
3134 #endif /* CONFIG_NUMA */
3135
3136 /*
3137 * get_page_from_freelist goes through the zonelist trying to allocate
3138 * a page.
3139 */
3140 static struct page *
3141 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3142 const struct alloc_context *ac)
3143 {
3144 struct zoneref *z = ac->preferred_zoneref;
3145 struct zone *zone;
3146 struct pglist_data *last_pgdat_dirty_limit = NULL;
3147
3148 /*
3149 * Scan zonelist, looking for a zone with enough free.
3150 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3151 */
3152 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3153 ac->nodemask) {
3154 struct page *page;
3155 unsigned long mark;
3156
3157 if (cpusets_enabled() &&
3158 (alloc_flags & ALLOC_CPUSET) &&
3159 !__cpuset_zone_allowed(zone, gfp_mask))
3160 continue;
3161 /*
3162 * When allocating a page cache page for writing, we
3163 * want to get it from a node that is within its dirty
3164 * limit, such that no single node holds more than its
3165 * proportional share of globally allowed dirty pages.
3166 * The dirty limits take into account the node's
3167 * lowmem reserves and high watermark so that kswapd
3168 * should be able to balance it without having to
3169 * write pages from its LRU list.
3170 *
3171 * XXX: For now, allow allocations to potentially
3172 * exceed the per-node dirty limit in the slowpath
3173 * (spread_dirty_pages unset) before going into reclaim,
3174 * which is important when on a NUMA setup the allowed
3175 * nodes are together not big enough to reach the
3176 * global limit. The proper fix for these situations
3177 * will require awareness of nodes in the
3178 * dirty-throttling and the flusher threads.
3179 */
3180 if (ac->spread_dirty_pages) {
3181 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3182 continue;
3183
3184 if (!node_dirty_ok(zone->zone_pgdat)) {
3185 last_pgdat_dirty_limit = zone->zone_pgdat;
3186 continue;
3187 }
3188 }
3189
3190 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3191 if (!zone_watermark_fast(zone, order, mark,
3192 ac_classzone_idx(ac), alloc_flags)) {
3193 int ret;
3194
3195 /* Checked here to keep the fast path fast */
3196 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3197 if (alloc_flags & ALLOC_NO_WATERMARKS)
3198 goto try_this_zone;
3199
3200 if (node_reclaim_mode == 0 ||
3201 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3202 continue;
3203
3204 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3205 switch (ret) {
3206 case NODE_RECLAIM_NOSCAN:
3207 /* did not scan */
3208 continue;
3209 case NODE_RECLAIM_FULL:
3210 /* scanned but unreclaimable */
3211 continue;
3212 default:
3213 /* did we reclaim enough */
3214 if (zone_watermark_ok(zone, order, mark,
3215 ac_classzone_idx(ac), alloc_flags))
3216 goto try_this_zone;
3217
3218 continue;
3219 }
3220 }
3221
3222 try_this_zone:
3223 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3224 gfp_mask, alloc_flags, ac->migratetype);
3225 if (page) {
3226 prep_new_page(page, order, gfp_mask, alloc_flags);
3227
3228 /*
3229 * If this is a high-order atomic allocation then check
3230 * if the pageblock should be reserved for the future
3231 */
3232 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3233 reserve_highatomic_pageblock(page, zone, order);
3234
3235 return page;
3236 }
3237 }
3238
3239 return NULL;
3240 }
3241
3242 /*
3243 * Large machines with many possible nodes should not always dump per-node
3244 * meminfo in irq context.
3245 */
3246 static inline bool should_suppress_show_mem(void)
3247 {
3248 bool ret = false;
3249
3250 #if NODES_SHIFT > 8
3251 ret = in_interrupt();
3252 #endif
3253 return ret;
3254 }
3255
3256 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3257 {
3258 unsigned int filter = SHOW_MEM_FILTER_NODES;
3259 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3260
3261 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3262 return;
3263
3264 /*
3265 * This documents exceptions given to allocations in certain
3266 * contexts that are allowed to allocate outside current's set
3267 * of allowed nodes.
3268 */
3269 if (!(gfp_mask & __GFP_NOMEMALLOC))
3270 if (tsk_is_oom_victim(current) ||
3271 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3272 filter &= ~SHOW_MEM_FILTER_NODES;
3273 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3274 filter &= ~SHOW_MEM_FILTER_NODES;
3275
3276 show_mem(filter, nodemask);
3277 }
3278
3279 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3280 {
3281 struct va_format vaf;
3282 va_list args;
3283 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3284 DEFAULT_RATELIMIT_BURST);
3285
3286 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3287 return;
3288
3289 va_start(args, fmt);
3290 vaf.fmt = fmt;
3291 vaf.va = &args;
3292 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3293 current->comm, &vaf, gfp_mask, &gfp_mask,
3294 nodemask_pr_args(nodemask));
3295 va_end(args);
3296
3297 cpuset_print_current_mems_allowed();
3298
3299 dump_stack();
3300 warn_alloc_show_mem(gfp_mask, nodemask);
3301 }
3302
3303 static inline struct page *
3304 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3305 unsigned int alloc_flags,
3306 const struct alloc_context *ac)
3307 {
3308 struct page *page;
3309
3310 page = get_page_from_freelist(gfp_mask, order,
3311 alloc_flags|ALLOC_CPUSET, ac);
3312 /*
3313 * fallback to ignore cpuset restriction if our nodes
3314 * are depleted
3315 */
3316 if (!page)
3317 page = get_page_from_freelist(gfp_mask, order,
3318 alloc_flags, ac);
3319
3320 return page;
3321 }
3322
3323 static inline struct page *
3324 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3325 const struct alloc_context *ac, unsigned long *did_some_progress)
3326 {
3327 struct oom_control oc = {
3328 .zonelist = ac->zonelist,
3329 .nodemask = ac->nodemask,
3330 .memcg = NULL,
3331 .gfp_mask = gfp_mask,
3332 .order = order,
3333 };
3334 struct page *page;
3335
3336 *did_some_progress = 0;
3337
3338 /*
3339 * Acquire the oom lock. If that fails, somebody else is
3340 * making progress for us.
3341 */
3342 if (!mutex_trylock(&oom_lock)) {
3343 *did_some_progress = 1;
3344 schedule_timeout_uninterruptible(1);
3345 return NULL;
3346 }
3347
3348 /*
3349 * Go through the zonelist yet one more time, keep very high watermark
3350 * here, this is only to catch a parallel oom killing, we must fail if
3351 * we're still under heavy pressure. But make sure that this reclaim
3352 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3353 * allocation which will never fail due to oom_lock already held.
3354 */
3355 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3356 ~__GFP_DIRECT_RECLAIM, order,
3357 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3358 if (page)
3359 goto out;
3360
3361 /* Coredumps can quickly deplete all memory reserves */
3362 if (current->flags & PF_DUMPCORE)
3363 goto out;
3364 /* The OOM killer will not help higher order allocs */
3365 if (order > PAGE_ALLOC_COSTLY_ORDER)
3366 goto out;
3367 /*
3368 * We have already exhausted all our reclaim opportunities without any
3369 * success so it is time to admit defeat. We will skip the OOM killer
3370 * because it is very likely that the caller has a more reasonable
3371 * fallback than shooting a random task.
3372 */
3373 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3374 goto out;
3375 /* The OOM killer does not needlessly kill tasks for lowmem */
3376 if (ac->high_zoneidx < ZONE_NORMAL)
3377 goto out;
3378 if (pm_suspended_storage())
3379 goto out;
3380 /*
3381 * XXX: GFP_NOFS allocations should rather fail than rely on
3382 * other request to make a forward progress.
3383 * We are in an unfortunate situation where out_of_memory cannot
3384 * do much for this context but let's try it to at least get
3385 * access to memory reserved if the current task is killed (see
3386 * out_of_memory). Once filesystems are ready to handle allocation
3387 * failures more gracefully we should just bail out here.
3388 */
3389
3390 /* The OOM killer may not free memory on a specific node */
3391 if (gfp_mask & __GFP_THISNODE)
3392 goto out;
3393
3394 /* Exhausted what can be done so it's blamo time */
3395 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3396 *did_some_progress = 1;
3397
3398 /*
3399 * Help non-failing allocations by giving them access to memory
3400 * reserves
3401 */
3402 if (gfp_mask & __GFP_NOFAIL)
3403 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3404 ALLOC_NO_WATERMARKS, ac);
3405 }
3406 out:
3407 mutex_unlock(&oom_lock);
3408 return page;
3409 }
3410
3411 /*
3412 * Maximum number of compaction retries wit a progress before OOM
3413 * killer is consider as the only way to move forward.
3414 */
3415 #define MAX_COMPACT_RETRIES 16
3416
3417 #ifdef CONFIG_COMPACTION
3418 /* Try memory compaction for high-order allocations before reclaim */
3419 static struct page *
3420 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3421 unsigned int alloc_flags, const struct alloc_context *ac,
3422 enum compact_priority prio, enum compact_result *compact_result)
3423 {
3424 struct page *page;
3425 unsigned int noreclaim_flag;
3426
3427 if (!order)
3428 return NULL;
3429
3430 noreclaim_flag = memalloc_noreclaim_save();
3431 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3432 prio);
3433 memalloc_noreclaim_restore(noreclaim_flag);
3434
3435 if (*compact_result <= COMPACT_INACTIVE)
3436 return NULL;
3437
3438 /*
3439 * At least in one zone compaction wasn't deferred or skipped, so let's
3440 * count a compaction stall
3441 */
3442 count_vm_event(COMPACTSTALL);
3443
3444 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3445
3446 if (page) {
3447 struct zone *zone = page_zone(page);
3448
3449 zone->compact_blockskip_flush = false;
3450 compaction_defer_reset(zone, order, true);
3451 count_vm_event(COMPACTSUCCESS);
3452 return page;
3453 }
3454
3455 /*
3456 * It's bad if compaction run occurs and fails. The most likely reason
3457 * is that pages exist, but not enough to satisfy watermarks.
3458 */
3459 count_vm_event(COMPACTFAIL);
3460
3461 cond_resched();
3462
3463 return NULL;
3464 }
3465
3466 static inline bool
3467 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3468 enum compact_result compact_result,
3469 enum compact_priority *compact_priority,
3470 int *compaction_retries)
3471 {
3472 int max_retries = MAX_COMPACT_RETRIES;
3473 int min_priority;
3474 bool ret = false;
3475 int retries = *compaction_retries;
3476 enum compact_priority priority = *compact_priority;
3477
3478 if (!order)
3479 return false;
3480
3481 if (compaction_made_progress(compact_result))
3482 (*compaction_retries)++;
3483
3484 /*
3485 * compaction considers all the zone as desperately out of memory
3486 * so it doesn't really make much sense to retry except when the
3487 * failure could be caused by insufficient priority
3488 */
3489 if (compaction_failed(compact_result))
3490 goto check_priority;
3491
3492 /*
3493 * make sure the compaction wasn't deferred or didn't bail out early
3494 * due to locks contention before we declare that we should give up.
3495 * But do not retry if the given zonelist is not suitable for
3496 * compaction.
3497 */
3498 if (compaction_withdrawn(compact_result)) {
3499 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3500 goto out;
3501 }
3502
3503 /*
3504 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3505 * costly ones because they are de facto nofail and invoke OOM
3506 * killer to move on while costly can fail and users are ready
3507 * to cope with that. 1/4 retries is rather arbitrary but we
3508 * would need much more detailed feedback from compaction to
3509 * make a better decision.
3510 */
3511 if (order > PAGE_ALLOC_COSTLY_ORDER)
3512 max_retries /= 4;
3513 if (*compaction_retries <= max_retries) {
3514 ret = true;
3515 goto out;
3516 }
3517
3518 /*
3519 * Make sure there are attempts at the highest priority if we exhausted
3520 * all retries or failed at the lower priorities.
3521 */
3522 check_priority:
3523 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3524 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3525
3526 if (*compact_priority > min_priority) {
3527 (*compact_priority)--;
3528 *compaction_retries = 0;
3529 ret = true;
3530 }
3531 out:
3532 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3533 return ret;
3534 }
3535 #else
3536 static inline struct page *
3537 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3538 unsigned int alloc_flags, const struct alloc_context *ac,
3539 enum compact_priority prio, enum compact_result *compact_result)
3540 {
3541 *compact_result = COMPACT_SKIPPED;
3542 return NULL;
3543 }
3544
3545 static inline bool
3546 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3547 enum compact_result compact_result,
3548 enum compact_priority *compact_priority,
3549 int *compaction_retries)
3550 {
3551 struct zone *zone;
3552 struct zoneref *z;
3553
3554 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3555 return false;
3556
3557 /*
3558 * There are setups with compaction disabled which would prefer to loop
3559 * inside the allocator rather than hit the oom killer prematurely.
3560 * Let's give them a good hope and keep retrying while the order-0
3561 * watermarks are OK.
3562 */
3563 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3564 ac->nodemask) {
3565 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3566 ac_classzone_idx(ac), alloc_flags))
3567 return true;
3568 }
3569 return false;
3570 }
3571 #endif /* CONFIG_COMPACTION */
3572
3573 #ifdef CONFIG_LOCKDEP
3574 struct lockdep_map __fs_reclaim_map =
3575 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3576
3577 static bool __need_fs_reclaim(gfp_t gfp_mask)
3578 {
3579 gfp_mask = current_gfp_context(gfp_mask);
3580
3581 /* no reclaim without waiting on it */
3582 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3583 return false;
3584
3585 /* this guy won't enter reclaim */
3586 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3587 return false;
3588
3589 /* We're only interested __GFP_FS allocations for now */
3590 if (!(gfp_mask & __GFP_FS))
3591 return false;
3592
3593 if (gfp_mask & __GFP_NOLOCKDEP)
3594 return false;
3595
3596 return true;
3597 }
3598
3599 void fs_reclaim_acquire(gfp_t gfp_mask)
3600 {
3601 if (__need_fs_reclaim(gfp_mask))
3602 lock_map_acquire(&__fs_reclaim_map);
3603 }
3604 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3605
3606 void fs_reclaim_release(gfp_t gfp_mask)
3607 {
3608 if (__need_fs_reclaim(gfp_mask))
3609 lock_map_release(&__fs_reclaim_map);
3610 }
3611 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3612 #endif
3613
3614 /* Perform direct synchronous page reclaim */
3615 static int
3616 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3617 const struct alloc_context *ac)
3618 {
3619 struct reclaim_state reclaim_state;
3620 int progress;
3621 unsigned int noreclaim_flag;
3622
3623 cond_resched();
3624
3625 /* We now go into synchronous reclaim */
3626 cpuset_memory_pressure_bump();
3627 noreclaim_flag = memalloc_noreclaim_save();
3628 fs_reclaim_acquire(gfp_mask);
3629 reclaim_state.reclaimed_slab = 0;
3630 current->reclaim_state = &reclaim_state;
3631
3632 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3633 ac->nodemask);
3634
3635 current->reclaim_state = NULL;
3636 fs_reclaim_release(gfp_mask);
3637 memalloc_noreclaim_restore(noreclaim_flag);
3638
3639 cond_resched();
3640
3641 return progress;
3642 }
3643
3644 /* The really slow allocator path where we enter direct reclaim */
3645 static inline struct page *
3646 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3647 unsigned int alloc_flags, const struct alloc_context *ac,
3648 unsigned long *did_some_progress)
3649 {
3650 struct page *page = NULL;
3651 bool drained = false;
3652
3653 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3654 if (unlikely(!(*did_some_progress)))
3655 return NULL;
3656
3657 retry:
3658 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3659
3660 /*
3661 * If an allocation failed after direct reclaim, it could be because
3662 * pages are pinned on the per-cpu lists or in high alloc reserves.
3663 * Shrink them them and try again
3664 */
3665 if (!page && !drained) {
3666 unreserve_highatomic_pageblock(ac, false);
3667 drain_all_pages(NULL);
3668 drained = true;
3669 goto retry;
3670 }
3671
3672 return page;
3673 }
3674
3675 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3676 {
3677 struct zoneref *z;
3678 struct zone *zone;
3679 pg_data_t *last_pgdat = NULL;
3680
3681 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3682 ac->high_zoneidx, ac->nodemask) {
3683 if (last_pgdat != zone->zone_pgdat)
3684 wakeup_kswapd(zone, order, ac->high_zoneidx);
3685 last_pgdat = zone->zone_pgdat;
3686 }
3687 }
3688
3689 static inline unsigned int
3690 gfp_to_alloc_flags(gfp_t gfp_mask)
3691 {
3692 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3693
3694 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3695 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3696
3697 /*
3698 * The caller may dip into page reserves a bit more if the caller
3699 * cannot run direct reclaim, or if the caller has realtime scheduling
3700 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3701 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3702 */
3703 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3704
3705 if (gfp_mask & __GFP_ATOMIC) {
3706 /*
3707 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3708 * if it can't schedule.
3709 */
3710 if (!(gfp_mask & __GFP_NOMEMALLOC))
3711 alloc_flags |= ALLOC_HARDER;
3712 /*
3713 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3714 * comment for __cpuset_node_allowed().
3715 */
3716 alloc_flags &= ~ALLOC_CPUSET;
3717 } else if (unlikely(rt_task(current)) && !in_interrupt())
3718 alloc_flags |= ALLOC_HARDER;
3719
3720 #ifdef CONFIG_CMA
3721 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3722 alloc_flags |= ALLOC_CMA;
3723 #endif
3724 return alloc_flags;
3725 }
3726
3727 static bool oom_reserves_allowed(struct task_struct *tsk)
3728 {
3729 if (!tsk_is_oom_victim(tsk))
3730 return false;
3731
3732 /*
3733 * !MMU doesn't have oom reaper so give access to memory reserves
3734 * only to the thread with TIF_MEMDIE set
3735 */
3736 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3737 return false;
3738
3739 return true;
3740 }
3741
3742 /*
3743 * Distinguish requests which really need access to full memory
3744 * reserves from oom victims which can live with a portion of it
3745 */
3746 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3747 {
3748 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3749 return 0;
3750 if (gfp_mask & __GFP_MEMALLOC)
3751 return ALLOC_NO_WATERMARKS;
3752 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3753 return ALLOC_NO_WATERMARKS;
3754 if (!in_interrupt()) {
3755 if (current->flags & PF_MEMALLOC)
3756 return ALLOC_NO_WATERMARKS;
3757 else if (oom_reserves_allowed(current))
3758 return ALLOC_OOM;
3759 }
3760
3761 return 0;
3762 }
3763
3764 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3765 {
3766 return !!__gfp_pfmemalloc_flags(gfp_mask);
3767 }
3768
3769 /*
3770 * Checks whether it makes sense to retry the reclaim to make a forward progress
3771 * for the given allocation request.
3772 *
3773 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3774 * without success, or when we couldn't even meet the watermark if we
3775 * reclaimed all remaining pages on the LRU lists.
3776 *
3777 * Returns true if a retry is viable or false to enter the oom path.
3778 */
3779 static inline bool
3780 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3781 struct alloc_context *ac, int alloc_flags,
3782 bool did_some_progress, int *no_progress_loops)
3783 {
3784 struct zone *zone;
3785 struct zoneref *z;
3786
3787 /*
3788 * Costly allocations might have made a progress but this doesn't mean
3789 * their order will become available due to high fragmentation so
3790 * always increment the no progress counter for them
3791 */
3792 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3793 *no_progress_loops = 0;
3794 else
3795 (*no_progress_loops)++;
3796
3797 /*
3798 * Make sure we converge to OOM if we cannot make any progress
3799 * several times in the row.
3800 */
3801 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3802 /* Before OOM, exhaust highatomic_reserve */
3803 return unreserve_highatomic_pageblock(ac, true);
3804 }
3805
3806 /*
3807 * Keep reclaiming pages while there is a chance this will lead
3808 * somewhere. If none of the target zones can satisfy our allocation
3809 * request even if all reclaimable pages are considered then we are
3810 * screwed and have to go OOM.
3811 */
3812 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3813 ac->nodemask) {
3814 unsigned long available;
3815 unsigned long reclaimable;
3816 unsigned long min_wmark = min_wmark_pages(zone);
3817 bool wmark;
3818
3819 available = reclaimable = zone_reclaimable_pages(zone);
3820 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3821
3822 /*
3823 * Would the allocation succeed if we reclaimed all
3824 * reclaimable pages?
3825 */
3826 wmark = __zone_watermark_ok(zone, order, min_wmark,
3827 ac_classzone_idx(ac), alloc_flags, available);
3828 trace_reclaim_retry_zone(z, order, reclaimable,
3829 available, min_wmark, *no_progress_loops, wmark);
3830 if (wmark) {
3831 /*
3832 * If we didn't make any progress and have a lot of
3833 * dirty + writeback pages then we should wait for
3834 * an IO to complete to slow down the reclaim and
3835 * prevent from pre mature OOM
3836 */
3837 if (!did_some_progress) {
3838 unsigned long write_pending;
3839
3840 write_pending = zone_page_state_snapshot(zone,
3841 NR_ZONE_WRITE_PENDING);
3842
3843 if (2 * write_pending > reclaimable) {
3844 congestion_wait(BLK_RW_ASYNC, HZ/10);
3845 return true;
3846 }
3847 }
3848
3849 /*
3850 * Memory allocation/reclaim might be called from a WQ
3851 * context and the current implementation of the WQ
3852 * concurrency control doesn't recognize that
3853 * a particular WQ is congested if the worker thread is
3854 * looping without ever sleeping. Therefore we have to
3855 * do a short sleep here rather than calling
3856 * cond_resched().
3857 */
3858 if (current->flags & PF_WQ_WORKER)
3859 schedule_timeout_uninterruptible(1);
3860 else
3861 cond_resched();
3862
3863 return true;
3864 }
3865 }
3866
3867 return false;
3868 }
3869
3870 static inline bool
3871 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3872 {
3873 /*
3874 * It's possible that cpuset's mems_allowed and the nodemask from
3875 * mempolicy don't intersect. This should be normally dealt with by
3876 * policy_nodemask(), but it's possible to race with cpuset update in
3877 * such a way the check therein was true, and then it became false
3878 * before we got our cpuset_mems_cookie here.
3879 * This assumes that for all allocations, ac->nodemask can come only
3880 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3881 * when it does not intersect with the cpuset restrictions) or the
3882 * caller can deal with a violated nodemask.
3883 */
3884 if (cpusets_enabled() && ac->nodemask &&
3885 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3886 ac->nodemask = NULL;
3887 return true;
3888 }
3889
3890 /*
3891 * When updating a task's mems_allowed or mempolicy nodemask, it is
3892 * possible to race with parallel threads in such a way that our
3893 * allocation can fail while the mask is being updated. If we are about
3894 * to fail, check if the cpuset changed during allocation and if so,
3895 * retry.
3896 */
3897 if (read_mems_allowed_retry(cpuset_mems_cookie))
3898 return true;
3899
3900 return false;
3901 }
3902
3903 static inline struct page *
3904 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3905 struct alloc_context *ac)
3906 {
3907 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3908 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3909 struct page *page = NULL;
3910 unsigned int alloc_flags;
3911 unsigned long did_some_progress;
3912 enum compact_priority compact_priority;
3913 enum compact_result compact_result;
3914 int compaction_retries;
3915 int no_progress_loops;
3916 unsigned int cpuset_mems_cookie;
3917 int reserve_flags;
3918
3919 /*
3920 * In the slowpath, we sanity check order to avoid ever trying to
3921 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3922 * be using allocators in order of preference for an area that is
3923 * too large.
3924 */
3925 if (order >= MAX_ORDER) {
3926 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3927 return NULL;
3928 }
3929
3930 /*
3931 * We also sanity check to catch abuse of atomic reserves being used by
3932 * callers that are not in atomic context.
3933 */
3934 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3935 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3936 gfp_mask &= ~__GFP_ATOMIC;
3937
3938 retry_cpuset:
3939 compaction_retries = 0;
3940 no_progress_loops = 0;
3941 compact_priority = DEF_COMPACT_PRIORITY;
3942 cpuset_mems_cookie = read_mems_allowed_begin();
3943
3944 /*
3945 * The fast path uses conservative alloc_flags to succeed only until
3946 * kswapd needs to be woken up, and to avoid the cost of setting up
3947 * alloc_flags precisely. So we do that now.
3948 */
3949 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3950
3951 /*
3952 * We need to recalculate the starting point for the zonelist iterator
3953 * because we might have used different nodemask in the fast path, or
3954 * there was a cpuset modification and we are retrying - otherwise we
3955 * could end up iterating over non-eligible zones endlessly.
3956 */
3957 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3958 ac->high_zoneidx, ac->nodemask);
3959 if (!ac->preferred_zoneref->zone)
3960 goto nopage;
3961
3962 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3963 wake_all_kswapds(order, ac);
3964
3965 /*
3966 * The adjusted alloc_flags might result in immediate success, so try
3967 * that first
3968 */
3969 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3970 if (page)
3971 goto got_pg;
3972
3973 /*
3974 * For costly allocations, try direct compaction first, as it's likely
3975 * that we have enough base pages and don't need to reclaim. For non-
3976 * movable high-order allocations, do that as well, as compaction will
3977 * try prevent permanent fragmentation by migrating from blocks of the
3978 * same migratetype.
3979 * Don't try this for allocations that are allowed to ignore
3980 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3981 */
3982 if (can_direct_reclaim &&
3983 (costly_order ||
3984 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3985 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3986 page = __alloc_pages_direct_compact(gfp_mask, order,
3987 alloc_flags, ac,
3988 INIT_COMPACT_PRIORITY,
3989 &compact_result);
3990 if (page)
3991 goto got_pg;
3992
3993 /*
3994 * Checks for costly allocations with __GFP_NORETRY, which
3995 * includes THP page fault allocations
3996 */
3997 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3998 /*
3999 * If compaction is deferred for high-order allocations,
4000 * it is because sync compaction recently failed. If
4001 * this is the case and the caller requested a THP
4002 * allocation, we do not want to heavily disrupt the
4003 * system, so we fail the allocation instead of entering
4004 * direct reclaim.
4005 */
4006 if (compact_result == COMPACT_DEFERRED)
4007 goto nopage;
4008
4009 /*
4010 * Looks like reclaim/compaction is worth trying, but
4011 * sync compaction could be very expensive, so keep
4012 * using async compaction.
4013 */
4014 compact_priority = INIT_COMPACT_PRIORITY;
4015 }
4016 }
4017
4018 retry:
4019 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4020 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4021 wake_all_kswapds(order, ac);
4022
4023 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4024 if (reserve_flags)
4025 alloc_flags = reserve_flags;
4026
4027 /*
4028 * Reset the zonelist iterators if memory policies can be ignored.
4029 * These allocations are high priority and system rather than user
4030 * orientated.
4031 */
4032 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4033 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4034 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4035 ac->high_zoneidx, ac->nodemask);
4036 }
4037
4038 /* Attempt with potentially adjusted zonelist and alloc_flags */
4039 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4040 if (page)
4041 goto got_pg;
4042
4043 /* Caller is not willing to reclaim, we can't balance anything */
4044 if (!can_direct_reclaim)
4045 goto nopage;
4046
4047 /* Avoid recursion of direct reclaim */
4048 if (current->flags & PF_MEMALLOC)
4049 goto nopage;
4050
4051 /* Try direct reclaim and then allocating */
4052 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4053 &did_some_progress);
4054 if (page)
4055 goto got_pg;
4056
4057 /* Try direct compaction and then allocating */
4058 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4059 compact_priority, &compact_result);
4060 if (page)
4061 goto got_pg;
4062
4063 /* Do not loop if specifically requested */
4064 if (gfp_mask & __GFP_NORETRY)
4065 goto nopage;
4066
4067 /*
4068 * Do not retry costly high order allocations unless they are
4069 * __GFP_RETRY_MAYFAIL
4070 */
4071 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4072 goto nopage;
4073
4074 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4075 did_some_progress > 0, &no_progress_loops))
4076 goto retry;
4077
4078 /*
4079 * It doesn't make any sense to retry for the compaction if the order-0
4080 * reclaim is not able to make any progress because the current
4081 * implementation of the compaction depends on the sufficient amount
4082 * of free memory (see __compaction_suitable)
4083 */
4084 if (did_some_progress > 0 &&
4085 should_compact_retry(ac, order, alloc_flags,
4086 compact_result, &compact_priority,
4087 &compaction_retries))
4088 goto retry;
4089
4090
4091 /* Deal with possible cpuset update races before we start OOM killing */
4092 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4093 goto retry_cpuset;
4094
4095 /* Reclaim has failed us, start killing things */
4096 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4097 if (page)
4098 goto got_pg;
4099
4100 /* Avoid allocations with no watermarks from looping endlessly */
4101 if (tsk_is_oom_victim(current) &&
4102 (alloc_flags == ALLOC_OOM ||
4103 (gfp_mask & __GFP_NOMEMALLOC)))
4104 goto nopage;
4105
4106 /* Retry as long as the OOM killer is making progress */
4107 if (did_some_progress) {
4108 no_progress_loops = 0;
4109 goto retry;
4110 }
4111
4112 nopage:
4113 /* Deal with possible cpuset update races before we fail */
4114 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4115 goto retry_cpuset;
4116
4117 /*
4118 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4119 * we always retry
4120 */
4121 if (gfp_mask & __GFP_NOFAIL) {
4122 /*
4123 * All existing users of the __GFP_NOFAIL are blockable, so warn
4124 * of any new users that actually require GFP_NOWAIT
4125 */
4126 if (WARN_ON_ONCE(!can_direct_reclaim))
4127 goto fail;
4128
4129 /*
4130 * PF_MEMALLOC request from this context is rather bizarre
4131 * because we cannot reclaim anything and only can loop waiting
4132 * for somebody to do a work for us
4133 */
4134 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4135
4136 /*
4137 * non failing costly orders are a hard requirement which we
4138 * are not prepared for much so let's warn about these users
4139 * so that we can identify them and convert them to something
4140 * else.
4141 */
4142 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4143
4144 /*
4145 * Help non-failing allocations by giving them access to memory
4146 * reserves but do not use ALLOC_NO_WATERMARKS because this
4147 * could deplete whole memory reserves which would just make
4148 * the situation worse
4149 */
4150 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4151 if (page)
4152 goto got_pg;
4153
4154 cond_resched();
4155 goto retry;
4156 }
4157 fail:
4158 warn_alloc(gfp_mask, ac->nodemask,
4159 "page allocation failure: order:%u", order);
4160 got_pg:
4161 return page;
4162 }
4163
4164 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4165 int preferred_nid, nodemask_t *nodemask,
4166 struct alloc_context *ac, gfp_t *alloc_mask,
4167 unsigned int *alloc_flags)
4168 {
4169 ac->high_zoneidx = gfp_zone(gfp_mask);
4170 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4171 ac->nodemask = nodemask;
4172 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4173
4174 if (cpusets_enabled()) {
4175 *alloc_mask |= __GFP_HARDWALL;
4176 if (!ac->nodemask)
4177 ac->nodemask = &cpuset_current_mems_allowed;
4178 else
4179 *alloc_flags |= ALLOC_CPUSET;
4180 }
4181
4182 fs_reclaim_acquire(gfp_mask);
4183 fs_reclaim_release(gfp_mask);
4184
4185 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4186
4187 if (should_fail_alloc_page(gfp_mask, order))
4188 return false;
4189
4190 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4191 *alloc_flags |= ALLOC_CMA;
4192
4193 return true;
4194 }
4195
4196 /* Determine whether to spread dirty pages and what the first usable zone */
4197 static inline void finalise_ac(gfp_t gfp_mask,
4198 unsigned int order, struct alloc_context *ac)
4199 {
4200 /* Dirty zone balancing only done in the fast path */
4201 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4202
4203 /*
4204 * The preferred zone is used for statistics but crucially it is
4205 * also used as the starting point for the zonelist iterator. It
4206 * may get reset for allocations that ignore memory policies.
4207 */
4208 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4209 ac->high_zoneidx, ac->nodemask);
4210 }
4211
4212 /*
4213 * This is the 'heart' of the zoned buddy allocator.
4214 */
4215 struct page *
4216 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4217 nodemask_t *nodemask)
4218 {
4219 struct page *page;
4220 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4221 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4222 struct alloc_context ac = { };
4223
4224 gfp_mask &= gfp_allowed_mask;
4225 alloc_mask = gfp_mask;
4226 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4227 return NULL;
4228
4229 finalise_ac(gfp_mask, order, &ac);
4230
4231 /* First allocation attempt */
4232 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4233 if (likely(page))
4234 goto out;
4235
4236 /*
4237 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4238 * resp. GFP_NOIO which has to be inherited for all allocation requests
4239 * from a particular context which has been marked by
4240 * memalloc_no{fs,io}_{save,restore}.
4241 */
4242 alloc_mask = current_gfp_context(gfp_mask);
4243 ac.spread_dirty_pages = false;
4244
4245 /*
4246 * Restore the original nodemask if it was potentially replaced with
4247 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4248 */
4249 if (unlikely(ac.nodemask != nodemask))
4250 ac.nodemask = nodemask;
4251
4252 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4253
4254 out:
4255 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4256 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4257 __free_pages(page, order);
4258 page = NULL;
4259 }
4260
4261 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4262
4263 return page;
4264 }
4265 EXPORT_SYMBOL(__alloc_pages_nodemask);
4266
4267 /*
4268 * Common helper functions.
4269 */
4270 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4271 {
4272 struct page *page;
4273
4274 /*
4275 * __get_free_pages() returns a 32-bit address, which cannot represent
4276 * a highmem page
4277 */
4278 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4279
4280 page = alloc_pages(gfp_mask, order);
4281 if (!page)
4282 return 0;
4283 return (unsigned long) page_address(page);
4284 }
4285 EXPORT_SYMBOL(__get_free_pages);
4286
4287 unsigned long get_zeroed_page(gfp_t gfp_mask)
4288 {
4289 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4290 }
4291 EXPORT_SYMBOL(get_zeroed_page);
4292
4293 void __free_pages(struct page *page, unsigned int order)
4294 {
4295 if (put_page_testzero(page)) {
4296 if (order == 0)
4297 free_unref_page(page);
4298 else
4299 __free_pages_ok(page, order);
4300 }
4301 }
4302
4303 EXPORT_SYMBOL(__free_pages);
4304
4305 void free_pages(unsigned long addr, unsigned int order)
4306 {
4307 if (addr != 0) {
4308 VM_BUG_ON(!virt_addr_valid((void *)addr));
4309 __free_pages(virt_to_page((void *)addr), order);
4310 }
4311 }
4312
4313 EXPORT_SYMBOL(free_pages);
4314
4315 /*
4316 * Page Fragment:
4317 * An arbitrary-length arbitrary-offset area of memory which resides
4318 * within a 0 or higher order page. Multiple fragments within that page
4319 * are individually refcounted, in the page's reference counter.
4320 *
4321 * The page_frag functions below provide a simple allocation framework for
4322 * page fragments. This is used by the network stack and network device
4323 * drivers to provide a backing region of memory for use as either an
4324 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4325 */
4326 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4327 gfp_t gfp_mask)
4328 {
4329 struct page *page = NULL;
4330 gfp_t gfp = gfp_mask;
4331
4332 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4333 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4334 __GFP_NOMEMALLOC;
4335 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4336 PAGE_FRAG_CACHE_MAX_ORDER);
4337 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4338 #endif
4339 if (unlikely(!page))
4340 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4341
4342 nc->va = page ? page_address(page) : NULL;
4343
4344 return page;
4345 }
4346
4347 void __page_frag_cache_drain(struct page *page, unsigned int count)
4348 {
4349 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4350
4351 if (page_ref_sub_and_test(page, count)) {
4352 unsigned int order = compound_order(page);
4353
4354 if (order == 0)
4355 free_unref_page(page);
4356 else
4357 __free_pages_ok(page, order);
4358 }
4359 }
4360 EXPORT_SYMBOL(__page_frag_cache_drain);
4361
4362 void *page_frag_alloc(struct page_frag_cache *nc,
4363 unsigned int fragsz, gfp_t gfp_mask)
4364 {
4365 unsigned int size = PAGE_SIZE;
4366 struct page *page;
4367 int offset;
4368
4369 if (unlikely(!nc->va)) {
4370 refill:
4371 page = __page_frag_cache_refill(nc, gfp_mask);
4372 if (!page)
4373 return NULL;
4374
4375 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4376 /* if size can vary use size else just use PAGE_SIZE */
4377 size = nc->size;
4378 #endif
4379 /* Even if we own the page, we do not use atomic_set().
4380 * This would break get_page_unless_zero() users.
4381 */
4382 page_ref_add(page, size - 1);
4383
4384 /* reset page count bias and offset to start of new frag */
4385 nc->pfmemalloc = page_is_pfmemalloc(page);
4386 nc->pagecnt_bias = size;
4387 nc->offset = size;
4388 }
4389
4390 offset = nc->offset - fragsz;
4391 if (unlikely(offset < 0)) {
4392 page = virt_to_page(nc->va);
4393
4394 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4395 goto refill;
4396
4397 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4398 /* if size can vary use size else just use PAGE_SIZE */
4399 size = nc->size;
4400 #endif
4401 /* OK, page count is 0, we can safely set it */
4402 set_page_count(page, size);
4403
4404 /* reset page count bias and offset to start of new frag */
4405 nc->pagecnt_bias = size;
4406 offset = size - fragsz;
4407 }
4408
4409 nc->pagecnt_bias--;
4410 nc->offset = offset;
4411
4412 return nc->va + offset;
4413 }
4414 EXPORT_SYMBOL(page_frag_alloc);
4415
4416 /*
4417 * Frees a page fragment allocated out of either a compound or order 0 page.
4418 */
4419 void page_frag_free(void *addr)
4420 {
4421 struct page *page = virt_to_head_page(addr);
4422
4423 if (unlikely(put_page_testzero(page)))
4424 __free_pages_ok(page, compound_order(page));
4425 }
4426 EXPORT_SYMBOL(page_frag_free);
4427
4428 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4429 size_t size)
4430 {
4431 if (addr) {
4432 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4433 unsigned long used = addr + PAGE_ALIGN(size);
4434
4435 split_page(virt_to_page((void *)addr), order);
4436 while (used < alloc_end) {
4437 free_page(used);
4438 used += PAGE_SIZE;
4439 }
4440 }
4441 return (void *)addr;
4442 }
4443
4444 /**
4445 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4446 * @size: the number of bytes to allocate
4447 * @gfp_mask: GFP flags for the allocation
4448 *
4449 * This function is similar to alloc_pages(), except that it allocates the
4450 * minimum number of pages to satisfy the request. alloc_pages() can only
4451 * allocate memory in power-of-two pages.
4452 *
4453 * This function is also limited by MAX_ORDER.
4454 *
4455 * Memory allocated by this function must be released by free_pages_exact().
4456 */
4457 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4458 {
4459 unsigned int order = get_order(size);
4460 unsigned long addr;
4461
4462 addr = __get_free_pages(gfp_mask, order);
4463 return make_alloc_exact(addr, order, size);
4464 }
4465 EXPORT_SYMBOL(alloc_pages_exact);
4466
4467 /**
4468 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4469 * pages on a node.
4470 * @nid: the preferred node ID where memory should be allocated
4471 * @size: the number of bytes to allocate
4472 * @gfp_mask: GFP flags for the allocation
4473 *
4474 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4475 * back.
4476 */
4477 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4478 {
4479 unsigned int order = get_order(size);
4480 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4481 if (!p)
4482 return NULL;
4483 return make_alloc_exact((unsigned long)page_address(p), order, size);
4484 }
4485
4486 /**
4487 * free_pages_exact - release memory allocated via alloc_pages_exact()
4488 * @virt: the value returned by alloc_pages_exact.
4489 * @size: size of allocation, same value as passed to alloc_pages_exact().
4490 *
4491 * Release the memory allocated by a previous call to alloc_pages_exact.
4492 */
4493 void free_pages_exact(void *virt, size_t size)
4494 {
4495 unsigned long addr = (unsigned long)virt;
4496 unsigned long end = addr + PAGE_ALIGN(size);
4497
4498 while (addr < end) {
4499 free_page(addr);
4500 addr += PAGE_SIZE;
4501 }
4502 }
4503 EXPORT_SYMBOL(free_pages_exact);
4504
4505 /**
4506 * nr_free_zone_pages - count number of pages beyond high watermark
4507 * @offset: The zone index of the highest zone
4508 *
4509 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4510 * high watermark within all zones at or below a given zone index. For each
4511 * zone, the number of pages is calculated as:
4512 *
4513 * nr_free_zone_pages = managed_pages - high_pages
4514 */
4515 static unsigned long nr_free_zone_pages(int offset)
4516 {
4517 struct zoneref *z;
4518 struct zone *zone;
4519
4520 /* Just pick one node, since fallback list is circular */
4521 unsigned long sum = 0;
4522
4523 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4524
4525 for_each_zone_zonelist(zone, z, zonelist, offset) {
4526 unsigned long size = zone->managed_pages;
4527 unsigned long high = high_wmark_pages(zone);
4528 if (size > high)
4529 sum += size - high;
4530 }
4531
4532 return sum;
4533 }
4534
4535 /**
4536 * nr_free_buffer_pages - count number of pages beyond high watermark
4537 *
4538 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4539 * watermark within ZONE_DMA and ZONE_NORMAL.
4540 */
4541 unsigned long nr_free_buffer_pages(void)
4542 {
4543 return nr_free_zone_pages(gfp_zone(GFP_USER));
4544 }
4545 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4546
4547 /**
4548 * nr_free_pagecache_pages - count number of pages beyond high watermark
4549 *
4550 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4551 * high watermark within all zones.
4552 */
4553 unsigned long nr_free_pagecache_pages(void)
4554 {
4555 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4556 }
4557
4558 static inline void show_node(struct zone *zone)
4559 {
4560 if (IS_ENABLED(CONFIG_NUMA))
4561 printk("Node %d ", zone_to_nid(zone));
4562 }
4563
4564 long si_mem_available(void)
4565 {
4566 long available;
4567 unsigned long pagecache;
4568 unsigned long wmark_low = 0;
4569 unsigned long pages[NR_LRU_LISTS];
4570 struct zone *zone;
4571 int lru;
4572
4573 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4574 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4575
4576 for_each_zone(zone)
4577 wmark_low += zone->watermark[WMARK_LOW];
4578
4579 /*
4580 * Estimate the amount of memory available for userspace allocations,
4581 * without causing swapping.
4582 */
4583 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4584
4585 /*
4586 * Not all the page cache can be freed, otherwise the system will
4587 * start swapping. Assume at least half of the page cache, or the
4588 * low watermark worth of cache, needs to stay.
4589 */
4590 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4591 pagecache -= min(pagecache / 2, wmark_low);
4592 available += pagecache;
4593
4594 /*
4595 * Part of the reclaimable slab consists of items that are in use,
4596 * and cannot be freed. Cap this estimate at the low watermark.
4597 */
4598 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4599 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4600 wmark_low);
4601
4602 if (available < 0)
4603 available = 0;
4604 return available;
4605 }
4606 EXPORT_SYMBOL_GPL(si_mem_available);
4607
4608 void si_meminfo(struct sysinfo *val)
4609 {
4610 val->totalram = totalram_pages;
4611 val->sharedram = global_node_page_state(NR_SHMEM);
4612 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4613 val->bufferram = nr_blockdev_pages();
4614 val->totalhigh = totalhigh_pages;
4615 val->freehigh = nr_free_highpages();
4616 val->mem_unit = PAGE_SIZE;
4617 }
4618
4619 EXPORT_SYMBOL(si_meminfo);
4620
4621 #ifdef CONFIG_NUMA
4622 void si_meminfo_node(struct sysinfo *val, int nid)
4623 {
4624 int zone_type; /* needs to be signed */
4625 unsigned long managed_pages = 0;
4626 unsigned long managed_highpages = 0;
4627 unsigned long free_highpages = 0;
4628 pg_data_t *pgdat = NODE_DATA(nid);
4629
4630 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4631 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4632 val->totalram = managed_pages;
4633 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4634 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4635 #ifdef CONFIG_HIGHMEM
4636 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4637 struct zone *zone = &pgdat->node_zones[zone_type];
4638
4639 if (is_highmem(zone)) {
4640 managed_highpages += zone->managed_pages;
4641 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4642 }
4643 }
4644 val->totalhigh = managed_highpages;
4645 val->freehigh = free_highpages;
4646 #else
4647 val->totalhigh = managed_highpages;
4648 val->freehigh = free_highpages;
4649 #endif
4650 val->mem_unit = PAGE_SIZE;
4651 }
4652 #endif
4653
4654 /*
4655 * Determine whether the node should be displayed or not, depending on whether
4656 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4657 */
4658 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4659 {
4660 if (!(flags & SHOW_MEM_FILTER_NODES))
4661 return false;
4662
4663 /*
4664 * no node mask - aka implicit memory numa policy. Do not bother with
4665 * the synchronization - read_mems_allowed_begin - because we do not
4666 * have to be precise here.
4667 */
4668 if (!nodemask)
4669 nodemask = &cpuset_current_mems_allowed;
4670
4671 return !node_isset(nid, *nodemask);
4672 }
4673
4674 #define K(x) ((x) << (PAGE_SHIFT-10))
4675
4676 static void show_migration_types(unsigned char type)
4677 {
4678 static const char types[MIGRATE_TYPES] = {
4679 [MIGRATE_UNMOVABLE] = 'U',
4680 [MIGRATE_MOVABLE] = 'M',
4681 [MIGRATE_RECLAIMABLE] = 'E',
4682 [MIGRATE_HIGHATOMIC] = 'H',
4683 #ifdef CONFIG_CMA
4684 [MIGRATE_CMA] = 'C',
4685 #endif
4686 #ifdef CONFIG_MEMORY_ISOLATION
4687 [MIGRATE_ISOLATE] = 'I',
4688 #endif
4689 };
4690 char tmp[MIGRATE_TYPES + 1];
4691 char *p = tmp;
4692 int i;
4693
4694 for (i = 0; i < MIGRATE_TYPES; i++) {
4695 if (type & (1 << i))
4696 *p++ = types[i];
4697 }
4698
4699 *p = '\0';
4700 printk(KERN_CONT "(%s) ", tmp);
4701 }
4702
4703 /*
4704 * Show free area list (used inside shift_scroll-lock stuff)
4705 * We also calculate the percentage fragmentation. We do this by counting the
4706 * memory on each free list with the exception of the first item on the list.
4707 *
4708 * Bits in @filter:
4709 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4710 * cpuset.
4711 */
4712 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4713 {
4714 unsigned long free_pcp = 0;
4715 int cpu;
4716 struct zone *zone;
4717 pg_data_t *pgdat;
4718
4719 for_each_populated_zone(zone) {
4720 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4721 continue;
4722
4723 for_each_online_cpu(cpu)
4724 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4725 }
4726
4727 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4728 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4729 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4730 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4731 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4732 " free:%lu free_pcp:%lu free_cma:%lu\n",
4733 global_node_page_state(NR_ACTIVE_ANON),
4734 global_node_page_state(NR_INACTIVE_ANON),
4735 global_node_page_state(NR_ISOLATED_ANON),
4736 global_node_page_state(NR_ACTIVE_FILE),
4737 global_node_page_state(NR_INACTIVE_FILE),
4738 global_node_page_state(NR_ISOLATED_FILE),
4739 global_node_page_state(NR_UNEVICTABLE),
4740 global_node_page_state(NR_FILE_DIRTY),
4741 global_node_page_state(NR_WRITEBACK),
4742 global_node_page_state(NR_UNSTABLE_NFS),
4743 global_node_page_state(NR_SLAB_RECLAIMABLE),
4744 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4745 global_node_page_state(NR_FILE_MAPPED),
4746 global_node_page_state(NR_SHMEM),
4747 global_zone_page_state(NR_PAGETABLE),
4748 global_zone_page_state(NR_BOUNCE),
4749 global_zone_page_state(NR_FREE_PAGES),
4750 free_pcp,
4751 global_zone_page_state(NR_FREE_CMA_PAGES));
4752
4753 for_each_online_pgdat(pgdat) {
4754 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4755 continue;
4756
4757 printk("Node %d"
4758 " active_anon:%lukB"
4759 " inactive_anon:%lukB"
4760 " active_file:%lukB"
4761 " inactive_file:%lukB"
4762 " unevictable:%lukB"
4763 " isolated(anon):%lukB"
4764 " isolated(file):%lukB"
4765 " mapped:%lukB"
4766 " dirty:%lukB"
4767 " writeback:%lukB"
4768 " shmem:%lukB"
4769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4770 " shmem_thp: %lukB"
4771 " shmem_pmdmapped: %lukB"
4772 " anon_thp: %lukB"
4773 #endif
4774 " writeback_tmp:%lukB"
4775 " unstable:%lukB"
4776 " all_unreclaimable? %s"
4777 "\n",
4778 pgdat->node_id,
4779 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4780 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4781 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4782 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4783 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4784 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4785 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4786 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4787 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4788 K(node_page_state(pgdat, NR_WRITEBACK)),
4789 K(node_page_state(pgdat, NR_SHMEM)),
4790 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4791 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4792 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4793 * HPAGE_PMD_NR),
4794 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4795 #endif
4796 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4797 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4798 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4799 "yes" : "no");
4800 }
4801
4802 for_each_populated_zone(zone) {
4803 int i;
4804
4805 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4806 continue;
4807
4808 free_pcp = 0;
4809 for_each_online_cpu(cpu)
4810 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4811
4812 show_node(zone);
4813 printk(KERN_CONT
4814 "%s"
4815 " free:%lukB"
4816 " min:%lukB"
4817 " low:%lukB"
4818 " high:%lukB"
4819 " active_anon:%lukB"
4820 " inactive_anon:%lukB"
4821 " active_file:%lukB"
4822 " inactive_file:%lukB"
4823 " unevictable:%lukB"
4824 " writepending:%lukB"
4825 " present:%lukB"
4826 " managed:%lukB"
4827 " mlocked:%lukB"
4828 " kernel_stack:%lukB"
4829 " pagetables:%lukB"
4830 " bounce:%lukB"
4831 " free_pcp:%lukB"
4832 " local_pcp:%ukB"
4833 " free_cma:%lukB"
4834 "\n",
4835 zone->name,
4836 K(zone_page_state(zone, NR_FREE_PAGES)),
4837 K(min_wmark_pages(zone)),
4838 K(low_wmark_pages(zone)),
4839 K(high_wmark_pages(zone)),
4840 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4841 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4842 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4843 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4844 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4845 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4846 K(zone->present_pages),
4847 K(zone->managed_pages),
4848 K(zone_page_state(zone, NR_MLOCK)),
4849 zone_page_state(zone, NR_KERNEL_STACK_KB),
4850 K(zone_page_state(zone, NR_PAGETABLE)),
4851 K(zone_page_state(zone, NR_BOUNCE)),
4852 K(free_pcp),
4853 K(this_cpu_read(zone->pageset->pcp.count)),
4854 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4855 printk("lowmem_reserve[]:");
4856 for (i = 0; i < MAX_NR_ZONES; i++)
4857 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4858 printk(KERN_CONT "\n");
4859 }
4860
4861 for_each_populated_zone(zone) {
4862 unsigned int order;
4863 unsigned long nr[MAX_ORDER], flags, total = 0;
4864 unsigned char types[MAX_ORDER];
4865
4866 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4867 continue;
4868 show_node(zone);
4869 printk(KERN_CONT "%s: ", zone->name);
4870
4871 spin_lock_irqsave(&zone->lock, flags);
4872 for (order = 0; order < MAX_ORDER; order++) {
4873 struct free_area *area = &zone->free_area[order];
4874 int type;
4875
4876 nr[order] = area->nr_free;
4877 total += nr[order] << order;
4878
4879 types[order] = 0;
4880 for (type = 0; type < MIGRATE_TYPES; type++) {
4881 if (!list_empty(&area->free_list[type]))
4882 types[order] |= 1 << type;
4883 }
4884 }
4885 spin_unlock_irqrestore(&zone->lock, flags);
4886 for (order = 0; order < MAX_ORDER; order++) {
4887 printk(KERN_CONT "%lu*%lukB ",
4888 nr[order], K(1UL) << order);
4889 if (nr[order])
4890 show_migration_types(types[order]);
4891 }
4892 printk(KERN_CONT "= %lukB\n", K(total));
4893 }
4894
4895 hugetlb_show_meminfo();
4896
4897 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4898
4899 show_swap_cache_info();
4900 }
4901
4902 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4903 {
4904 zoneref->zone = zone;
4905 zoneref->zone_idx = zone_idx(zone);
4906 }
4907
4908 /*
4909 * Builds allocation fallback zone lists.
4910 *
4911 * Add all populated zones of a node to the zonelist.
4912 */
4913 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4914 {
4915 struct zone *zone;
4916 enum zone_type zone_type = MAX_NR_ZONES;
4917 int nr_zones = 0;
4918
4919 do {
4920 zone_type--;
4921 zone = pgdat->node_zones + zone_type;
4922 if (managed_zone(zone)) {
4923 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4924 check_highest_zone(zone_type);
4925 }
4926 } while (zone_type);
4927
4928 return nr_zones;
4929 }
4930
4931 #ifdef CONFIG_NUMA
4932
4933 static int __parse_numa_zonelist_order(char *s)
4934 {
4935 /*
4936 * We used to support different zonlists modes but they turned
4937 * out to be just not useful. Let's keep the warning in place
4938 * if somebody still use the cmd line parameter so that we do
4939 * not fail it silently
4940 */
4941 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4942 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4943 return -EINVAL;
4944 }
4945 return 0;
4946 }
4947
4948 static __init int setup_numa_zonelist_order(char *s)
4949 {
4950 if (!s)
4951 return 0;
4952
4953 return __parse_numa_zonelist_order(s);
4954 }
4955 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4956
4957 char numa_zonelist_order[] = "Node";
4958
4959 /*
4960 * sysctl handler for numa_zonelist_order
4961 */
4962 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4963 void __user *buffer, size_t *length,
4964 loff_t *ppos)
4965 {
4966 char *str;
4967 int ret;
4968
4969 if (!write)
4970 return proc_dostring(table, write, buffer, length, ppos);
4971 str = memdup_user_nul(buffer, 16);
4972 if (IS_ERR(str))
4973 return PTR_ERR(str);
4974
4975 ret = __parse_numa_zonelist_order(str);
4976 kfree(str);
4977 return ret;
4978 }
4979
4980
4981 #define MAX_NODE_LOAD (nr_online_nodes)
4982 static int node_load[MAX_NUMNODES];
4983
4984 /**
4985 * find_next_best_node - find the next node that should appear in a given node's fallback list
4986 * @node: node whose fallback list we're appending
4987 * @used_node_mask: nodemask_t of already used nodes
4988 *
4989 * We use a number of factors to determine which is the next node that should
4990 * appear on a given node's fallback list. The node should not have appeared
4991 * already in @node's fallback list, and it should be the next closest node
4992 * according to the distance array (which contains arbitrary distance values
4993 * from each node to each node in the system), and should also prefer nodes
4994 * with no CPUs, since presumably they'll have very little allocation pressure
4995 * on them otherwise.
4996 * It returns -1 if no node is found.
4997 */
4998 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4999 {
5000 int n, val;
5001 int min_val = INT_MAX;
5002 int best_node = NUMA_NO_NODE;
5003 const struct cpumask *tmp = cpumask_of_node(0);
5004
5005 /* Use the local node if we haven't already */
5006 if (!node_isset(node, *used_node_mask)) {
5007 node_set(node, *used_node_mask);
5008 return node;
5009 }
5010
5011 for_each_node_state(n, N_MEMORY) {
5012
5013 /* Don't want a node to appear more than once */
5014 if (node_isset(n, *used_node_mask))
5015 continue;
5016
5017 /* Use the distance array to find the distance */
5018 val = node_distance(node, n);
5019
5020 /* Penalize nodes under us ("prefer the next node") */
5021 val += (n < node);
5022
5023 /* Give preference to headless and unused nodes */
5024 tmp = cpumask_of_node(n);
5025 if (!cpumask_empty(tmp))
5026 val += PENALTY_FOR_NODE_WITH_CPUS;
5027
5028 /* Slight preference for less loaded node */
5029 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5030 val += node_load[n];
5031
5032 if (val < min_val) {
5033 min_val = val;
5034 best_node = n;
5035 }
5036 }
5037
5038 if (best_node >= 0)
5039 node_set(best_node, *used_node_mask);
5040
5041 return best_node;
5042 }
5043
5044
5045 /*
5046 * Build zonelists ordered by node and zones within node.
5047 * This results in maximum locality--normal zone overflows into local
5048 * DMA zone, if any--but risks exhausting DMA zone.
5049 */
5050 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5051 unsigned nr_nodes)
5052 {
5053 struct zoneref *zonerefs;
5054 int i;
5055
5056 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5057
5058 for (i = 0; i < nr_nodes; i++) {
5059 int nr_zones;
5060
5061 pg_data_t *node = NODE_DATA(node_order[i]);
5062
5063 nr_zones = build_zonerefs_node(node, zonerefs);
5064 zonerefs += nr_zones;
5065 }
5066 zonerefs->zone = NULL;
5067 zonerefs->zone_idx = 0;
5068 }
5069
5070 /*
5071 * Build gfp_thisnode zonelists
5072 */
5073 static void build_thisnode_zonelists(pg_data_t *pgdat)
5074 {
5075 struct zoneref *zonerefs;
5076 int nr_zones;
5077
5078 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5079 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5080 zonerefs += nr_zones;
5081 zonerefs->zone = NULL;
5082 zonerefs->zone_idx = 0;
5083 }
5084
5085 /*
5086 * Build zonelists ordered by zone and nodes within zones.
5087 * This results in conserving DMA zone[s] until all Normal memory is
5088 * exhausted, but results in overflowing to remote node while memory
5089 * may still exist in local DMA zone.
5090 */
5091
5092 static void build_zonelists(pg_data_t *pgdat)
5093 {
5094 static int node_order[MAX_NUMNODES];
5095 int node, load, nr_nodes = 0;
5096 nodemask_t used_mask;
5097 int local_node, prev_node;
5098
5099 /* NUMA-aware ordering of nodes */
5100 local_node = pgdat->node_id;
5101 load = nr_online_nodes;
5102 prev_node = local_node;
5103 nodes_clear(used_mask);
5104
5105 memset(node_order, 0, sizeof(node_order));
5106 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5107 /*
5108 * We don't want to pressure a particular node.
5109 * So adding penalty to the first node in same
5110 * distance group to make it round-robin.
5111 */
5112 if (node_distance(local_node, node) !=
5113 node_distance(local_node, prev_node))
5114 node_load[node] = load;
5115
5116 node_order[nr_nodes++] = node;
5117 prev_node = node;
5118 load--;
5119 }
5120
5121 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5122 build_thisnode_zonelists(pgdat);
5123 }
5124
5125 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5126 /*
5127 * Return node id of node used for "local" allocations.
5128 * I.e., first node id of first zone in arg node's generic zonelist.
5129 * Used for initializing percpu 'numa_mem', which is used primarily
5130 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5131 */
5132 int local_memory_node(int node)
5133 {
5134 struct zoneref *z;
5135
5136 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5137 gfp_zone(GFP_KERNEL),
5138 NULL);
5139 return z->zone->node;
5140 }
5141 #endif
5142
5143 static void setup_min_unmapped_ratio(void);
5144 static void setup_min_slab_ratio(void);
5145 #else /* CONFIG_NUMA */
5146
5147 static void build_zonelists(pg_data_t *pgdat)
5148 {
5149 int node, local_node;
5150 struct zoneref *zonerefs;
5151 int nr_zones;
5152
5153 local_node = pgdat->node_id;
5154
5155 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5156 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5157 zonerefs += nr_zones;
5158
5159 /*
5160 * Now we build the zonelist so that it contains the zones
5161 * of all the other nodes.
5162 * We don't want to pressure a particular node, so when
5163 * building the zones for node N, we make sure that the
5164 * zones coming right after the local ones are those from
5165 * node N+1 (modulo N)
5166 */
5167 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5168 if (!node_online(node))
5169 continue;
5170 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5171 zonerefs += nr_zones;
5172 }
5173 for (node = 0; node < local_node; node++) {
5174 if (!node_online(node))
5175 continue;
5176 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5177 zonerefs += nr_zones;
5178 }
5179
5180 zonerefs->zone = NULL;
5181 zonerefs->zone_idx = 0;
5182 }
5183
5184 #endif /* CONFIG_NUMA */
5185
5186 /*
5187 * Boot pageset table. One per cpu which is going to be used for all
5188 * zones and all nodes. The parameters will be set in such a way
5189 * that an item put on a list will immediately be handed over to
5190 * the buddy list. This is safe since pageset manipulation is done
5191 * with interrupts disabled.
5192 *
5193 * The boot_pagesets must be kept even after bootup is complete for
5194 * unused processors and/or zones. They do play a role for bootstrapping
5195 * hotplugged processors.
5196 *
5197 * zoneinfo_show() and maybe other functions do
5198 * not check if the processor is online before following the pageset pointer.
5199 * Other parts of the kernel may not check if the zone is available.
5200 */
5201 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5202 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5203 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5204
5205 static void __build_all_zonelists(void *data)
5206 {
5207 int nid;
5208 int __maybe_unused cpu;
5209 pg_data_t *self = data;
5210 static DEFINE_SPINLOCK(lock);
5211
5212 spin_lock(&lock);
5213
5214 #ifdef CONFIG_NUMA
5215 memset(node_load, 0, sizeof(node_load));
5216 #endif
5217
5218 /*
5219 * This node is hotadded and no memory is yet present. So just
5220 * building zonelists is fine - no need to touch other nodes.
5221 */
5222 if (self && !node_online(self->node_id)) {
5223 build_zonelists(self);
5224 } else {
5225 for_each_online_node(nid) {
5226 pg_data_t *pgdat = NODE_DATA(nid);
5227
5228 build_zonelists(pgdat);
5229 }
5230
5231 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5232 /*
5233 * We now know the "local memory node" for each node--
5234 * i.e., the node of the first zone in the generic zonelist.
5235 * Set up numa_mem percpu variable for on-line cpus. During
5236 * boot, only the boot cpu should be on-line; we'll init the
5237 * secondary cpus' numa_mem as they come on-line. During
5238 * node/memory hotplug, we'll fixup all on-line cpus.
5239 */
5240 for_each_online_cpu(cpu)
5241 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5242 #endif
5243 }
5244
5245 spin_unlock(&lock);
5246 }
5247
5248 static noinline void __init
5249 build_all_zonelists_init(void)
5250 {
5251 int cpu;
5252
5253 __build_all_zonelists(NULL);
5254
5255 /*
5256 * Initialize the boot_pagesets that are going to be used
5257 * for bootstrapping processors. The real pagesets for
5258 * each zone will be allocated later when the per cpu
5259 * allocator is available.
5260 *
5261 * boot_pagesets are used also for bootstrapping offline
5262 * cpus if the system is already booted because the pagesets
5263 * are needed to initialize allocators on a specific cpu too.
5264 * F.e. the percpu allocator needs the page allocator which
5265 * needs the percpu allocator in order to allocate its pagesets
5266 * (a chicken-egg dilemma).
5267 */
5268 for_each_possible_cpu(cpu)
5269 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5270
5271 mminit_verify_zonelist();
5272 cpuset_init_current_mems_allowed();
5273 }
5274
5275 /*
5276 * unless system_state == SYSTEM_BOOTING.
5277 *
5278 * __ref due to call of __init annotated helper build_all_zonelists_init
5279 * [protected by SYSTEM_BOOTING].
5280 */
5281 void __ref build_all_zonelists(pg_data_t *pgdat)
5282 {
5283 if (system_state == SYSTEM_BOOTING) {
5284 build_all_zonelists_init();
5285 } else {
5286 __build_all_zonelists(pgdat);
5287 /* cpuset refresh routine should be here */
5288 }
5289 vm_total_pages = nr_free_pagecache_pages();
5290 /*
5291 * Disable grouping by mobility if the number of pages in the
5292 * system is too low to allow the mechanism to work. It would be
5293 * more accurate, but expensive to check per-zone. This check is
5294 * made on memory-hotadd so a system can start with mobility
5295 * disabled and enable it later
5296 */
5297 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5298 page_group_by_mobility_disabled = 1;
5299 else
5300 page_group_by_mobility_disabled = 0;
5301
5302 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5303 nr_online_nodes,
5304 page_group_by_mobility_disabled ? "off" : "on",
5305 vm_total_pages);
5306 #ifdef CONFIG_NUMA
5307 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5308 #endif
5309 }
5310
5311 /*
5312 * Initially all pages are reserved - free ones are freed
5313 * up by free_all_bootmem() once the early boot process is
5314 * done. Non-atomic initialization, single-pass.
5315 */
5316 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5317 unsigned long start_pfn, enum memmap_context context)
5318 {
5319 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5320 unsigned long end_pfn = start_pfn + size;
5321 pg_data_t *pgdat = NODE_DATA(nid);
5322 unsigned long pfn;
5323 unsigned long nr_initialised = 0;
5324 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5325 struct memblock_region *r = NULL, *tmp;
5326 #endif
5327
5328 if (highest_memmap_pfn < end_pfn - 1)
5329 highest_memmap_pfn = end_pfn - 1;
5330
5331 /*
5332 * Honor reservation requested by the driver for this ZONE_DEVICE
5333 * memory
5334 */
5335 if (altmap && start_pfn == altmap->base_pfn)
5336 start_pfn += altmap->reserve;
5337
5338 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5339 /*
5340 * There can be holes in boot-time mem_map[]s handed to this
5341 * function. They do not exist on hotplugged memory.
5342 */
5343 if (context != MEMMAP_EARLY)
5344 goto not_early;
5345
5346 if (!early_pfn_valid(pfn)) {
5347 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5348 /*
5349 * Skip to the pfn preceding the next valid one (or
5350 * end_pfn), such that we hit a valid pfn (or end_pfn)
5351 * on our next iteration of the loop.
5352 */
5353 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5354 #endif
5355 continue;
5356 }
5357 if (!early_pfn_in_nid(pfn, nid))
5358 continue;
5359 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5360 break;
5361
5362 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5363 /*
5364 * Check given memblock attribute by firmware which can affect
5365 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5366 * mirrored, it's an overlapped memmap init. skip it.
5367 */
5368 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5369 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5370 for_each_memblock(memory, tmp)
5371 if (pfn < memblock_region_memory_end_pfn(tmp))
5372 break;
5373 r = tmp;
5374 }
5375 if (pfn >= memblock_region_memory_base_pfn(r) &&
5376 memblock_is_mirror(r)) {
5377 /* already initialized as NORMAL */
5378 pfn = memblock_region_memory_end_pfn(r);
5379 continue;
5380 }
5381 }
5382 #endif
5383
5384 not_early:
5385 /*
5386 * Mark the block movable so that blocks are reserved for
5387 * movable at startup. This will force kernel allocations
5388 * to reserve their blocks rather than leaking throughout
5389 * the address space during boot when many long-lived
5390 * kernel allocations are made.
5391 *
5392 * bitmap is created for zone's valid pfn range. but memmap
5393 * can be created for invalid pages (for alignment)
5394 * check here not to call set_pageblock_migratetype() against
5395 * pfn out of zone.
5396 */
5397 if (!(pfn & (pageblock_nr_pages - 1))) {
5398 struct page *page = pfn_to_page(pfn);
5399
5400 __init_single_page(page, pfn, zone, nid);
5401 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5402 cond_resched();
5403 } else {
5404 __init_single_pfn(pfn, zone, nid);
5405 }
5406 }
5407 }
5408
5409 static void __meminit zone_init_free_lists(struct zone *zone)
5410 {
5411 unsigned int order, t;
5412 for_each_migratetype_order(order, t) {
5413 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5414 zone->free_area[order].nr_free = 0;
5415 }
5416 }
5417
5418 #ifndef __HAVE_ARCH_MEMMAP_INIT
5419 #define memmap_init(size, nid, zone, start_pfn) \
5420 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5421 #endif
5422
5423 static int zone_batchsize(struct zone *zone)
5424 {
5425 #ifdef CONFIG_MMU
5426 int batch;
5427
5428 /*
5429 * The per-cpu-pages pools are set to around 1000th of the
5430 * size of the zone. But no more than 1/2 of a meg.
5431 *
5432 * OK, so we don't know how big the cache is. So guess.
5433 */
5434 batch = zone->managed_pages / 1024;
5435 if (batch * PAGE_SIZE > 512 * 1024)
5436 batch = (512 * 1024) / PAGE_SIZE;
5437 batch /= 4; /* We effectively *= 4 below */
5438 if (batch < 1)
5439 batch = 1;
5440
5441 /*
5442 * Clamp the batch to a 2^n - 1 value. Having a power
5443 * of 2 value was found to be more likely to have
5444 * suboptimal cache aliasing properties in some cases.
5445 *
5446 * For example if 2 tasks are alternately allocating
5447 * batches of pages, one task can end up with a lot
5448 * of pages of one half of the possible page colors
5449 * and the other with pages of the other colors.
5450 */
5451 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5452
5453 return batch;
5454
5455 #else
5456 /* The deferral and batching of frees should be suppressed under NOMMU
5457 * conditions.
5458 *
5459 * The problem is that NOMMU needs to be able to allocate large chunks
5460 * of contiguous memory as there's no hardware page translation to
5461 * assemble apparent contiguous memory from discontiguous pages.
5462 *
5463 * Queueing large contiguous runs of pages for batching, however,
5464 * causes the pages to actually be freed in smaller chunks. As there
5465 * can be a significant delay between the individual batches being
5466 * recycled, this leads to the once large chunks of space being
5467 * fragmented and becoming unavailable for high-order allocations.
5468 */
5469 return 0;
5470 #endif
5471 }
5472
5473 /*
5474 * pcp->high and pcp->batch values are related and dependent on one another:
5475 * ->batch must never be higher then ->high.
5476 * The following function updates them in a safe manner without read side
5477 * locking.
5478 *
5479 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5480 * those fields changing asynchronously (acording the the above rule).
5481 *
5482 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5483 * outside of boot time (or some other assurance that no concurrent updaters
5484 * exist).
5485 */
5486 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5487 unsigned long batch)
5488 {
5489 /* start with a fail safe value for batch */
5490 pcp->batch = 1;
5491 smp_wmb();
5492
5493 /* Update high, then batch, in order */
5494 pcp->high = high;
5495 smp_wmb();
5496
5497 pcp->batch = batch;
5498 }
5499
5500 /* a companion to pageset_set_high() */
5501 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5502 {
5503 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5504 }
5505
5506 static void pageset_init(struct per_cpu_pageset *p)
5507 {
5508 struct per_cpu_pages *pcp;
5509 int migratetype;
5510
5511 memset(p, 0, sizeof(*p));
5512
5513 pcp = &p->pcp;
5514 pcp->count = 0;
5515 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5516 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5517 }
5518
5519 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5520 {
5521 pageset_init(p);
5522 pageset_set_batch(p, batch);
5523 }
5524
5525 /*
5526 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5527 * to the value high for the pageset p.
5528 */
5529 static void pageset_set_high(struct per_cpu_pageset *p,
5530 unsigned long high)
5531 {
5532 unsigned long batch = max(1UL, high / 4);
5533 if ((high / 4) > (PAGE_SHIFT * 8))
5534 batch = PAGE_SHIFT * 8;
5535
5536 pageset_update(&p->pcp, high, batch);
5537 }
5538
5539 static void pageset_set_high_and_batch(struct zone *zone,
5540 struct per_cpu_pageset *pcp)
5541 {
5542 if (percpu_pagelist_fraction)
5543 pageset_set_high(pcp,
5544 (zone->managed_pages /
5545 percpu_pagelist_fraction));
5546 else
5547 pageset_set_batch(pcp, zone_batchsize(zone));
5548 }
5549
5550 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5551 {
5552 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5553
5554 pageset_init(pcp);
5555 pageset_set_high_and_batch(zone, pcp);
5556 }
5557
5558 void __meminit setup_zone_pageset(struct zone *zone)
5559 {
5560 int cpu;
5561 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5562 for_each_possible_cpu(cpu)
5563 zone_pageset_init(zone, cpu);
5564 }
5565
5566 /*
5567 * Allocate per cpu pagesets and initialize them.
5568 * Before this call only boot pagesets were available.
5569 */
5570 void __init setup_per_cpu_pageset(void)
5571 {
5572 struct pglist_data *pgdat;
5573 struct zone *zone;
5574
5575 for_each_populated_zone(zone)
5576 setup_zone_pageset(zone);
5577
5578 for_each_online_pgdat(pgdat)
5579 pgdat->per_cpu_nodestats =
5580 alloc_percpu(struct per_cpu_nodestat);
5581 }
5582
5583 static __meminit void zone_pcp_init(struct zone *zone)
5584 {
5585 /*
5586 * per cpu subsystem is not up at this point. The following code
5587 * relies on the ability of the linker to provide the
5588 * offset of a (static) per cpu variable into the per cpu area.
5589 */
5590 zone->pageset = &boot_pageset;
5591
5592 if (populated_zone(zone))
5593 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5594 zone->name, zone->present_pages,
5595 zone_batchsize(zone));
5596 }
5597
5598 void __meminit init_currently_empty_zone(struct zone *zone,
5599 unsigned long zone_start_pfn,
5600 unsigned long size)
5601 {
5602 struct pglist_data *pgdat = zone->zone_pgdat;
5603
5604 pgdat->nr_zones = zone_idx(zone) + 1;
5605
5606 zone->zone_start_pfn = zone_start_pfn;
5607
5608 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5609 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5610 pgdat->node_id,
5611 (unsigned long)zone_idx(zone),
5612 zone_start_pfn, (zone_start_pfn + size));
5613
5614 zone_init_free_lists(zone);
5615 zone->initialized = 1;
5616 }
5617
5618 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5619 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5620
5621 /*
5622 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5623 */
5624 int __meminit __early_pfn_to_nid(unsigned long pfn,
5625 struct mminit_pfnnid_cache *state)
5626 {
5627 unsigned long start_pfn, end_pfn;
5628 int nid;
5629
5630 if (state->last_start <= pfn && pfn < state->last_end)
5631 return state->last_nid;
5632
5633 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5634 if (nid != -1) {
5635 state->last_start = start_pfn;
5636 state->last_end = end_pfn;
5637 state->last_nid = nid;
5638 }
5639
5640 return nid;
5641 }
5642 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5643
5644 /**
5645 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5646 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5647 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5648 *
5649 * If an architecture guarantees that all ranges registered contain no holes
5650 * and may be freed, this this function may be used instead of calling
5651 * memblock_free_early_nid() manually.
5652 */
5653 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5654 {
5655 unsigned long start_pfn, end_pfn;
5656 int i, this_nid;
5657
5658 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5659 start_pfn = min(start_pfn, max_low_pfn);
5660 end_pfn = min(end_pfn, max_low_pfn);
5661
5662 if (start_pfn < end_pfn)
5663 memblock_free_early_nid(PFN_PHYS(start_pfn),
5664 (end_pfn - start_pfn) << PAGE_SHIFT,
5665 this_nid);
5666 }
5667 }
5668
5669 /**
5670 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5671 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5672 *
5673 * If an architecture guarantees that all ranges registered contain no holes and may
5674 * be freed, this function may be used instead of calling memory_present() manually.
5675 */
5676 void __init sparse_memory_present_with_active_regions(int nid)
5677 {
5678 unsigned long start_pfn, end_pfn;
5679 int i, this_nid;
5680
5681 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5682 memory_present(this_nid, start_pfn, end_pfn);
5683 }
5684
5685 /**
5686 * get_pfn_range_for_nid - Return the start and end page frames for a node
5687 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5688 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5689 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5690 *
5691 * It returns the start and end page frame of a node based on information
5692 * provided by memblock_set_node(). If called for a node
5693 * with no available memory, a warning is printed and the start and end
5694 * PFNs will be 0.
5695 */
5696 void __meminit get_pfn_range_for_nid(unsigned int nid,
5697 unsigned long *start_pfn, unsigned long *end_pfn)
5698 {
5699 unsigned long this_start_pfn, this_end_pfn;
5700 int i;
5701
5702 *start_pfn = -1UL;
5703 *end_pfn = 0;
5704
5705 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5706 *start_pfn = min(*start_pfn, this_start_pfn);
5707 *end_pfn = max(*end_pfn, this_end_pfn);
5708 }
5709
5710 if (*start_pfn == -1UL)
5711 *start_pfn = 0;
5712 }
5713
5714 /*
5715 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5716 * assumption is made that zones within a node are ordered in monotonic
5717 * increasing memory addresses so that the "highest" populated zone is used
5718 */
5719 static void __init find_usable_zone_for_movable(void)
5720 {
5721 int zone_index;
5722 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5723 if (zone_index == ZONE_MOVABLE)
5724 continue;
5725
5726 if (arch_zone_highest_possible_pfn[zone_index] >
5727 arch_zone_lowest_possible_pfn[zone_index])
5728 break;
5729 }
5730
5731 VM_BUG_ON(zone_index == -1);
5732 movable_zone = zone_index;
5733 }
5734
5735 /*
5736 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5737 * because it is sized independent of architecture. Unlike the other zones,
5738 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5739 * in each node depending on the size of each node and how evenly kernelcore
5740 * is distributed. This helper function adjusts the zone ranges
5741 * provided by the architecture for a given node by using the end of the
5742 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5743 * zones within a node are in order of monotonic increases memory addresses
5744 */
5745 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5746 unsigned long zone_type,
5747 unsigned long node_start_pfn,
5748 unsigned long node_end_pfn,
5749 unsigned long *zone_start_pfn,
5750 unsigned long *zone_end_pfn)
5751 {
5752 /* Only adjust if ZONE_MOVABLE is on this node */
5753 if (zone_movable_pfn[nid]) {
5754 /* Size ZONE_MOVABLE */
5755 if (zone_type == ZONE_MOVABLE) {
5756 *zone_start_pfn = zone_movable_pfn[nid];
5757 *zone_end_pfn = min(node_end_pfn,
5758 arch_zone_highest_possible_pfn[movable_zone]);
5759
5760 /* Adjust for ZONE_MOVABLE starting within this range */
5761 } else if (!mirrored_kernelcore &&
5762 *zone_start_pfn < zone_movable_pfn[nid] &&
5763 *zone_end_pfn > zone_movable_pfn[nid]) {
5764 *zone_end_pfn = zone_movable_pfn[nid];
5765
5766 /* Check if this whole range is within ZONE_MOVABLE */
5767 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5768 *zone_start_pfn = *zone_end_pfn;
5769 }
5770 }
5771
5772 /*
5773 * Return the number of pages a zone spans in a node, including holes
5774 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5775 */
5776 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5777 unsigned long zone_type,
5778 unsigned long node_start_pfn,
5779 unsigned long node_end_pfn,
5780 unsigned long *zone_start_pfn,
5781 unsigned long *zone_end_pfn,
5782 unsigned long *ignored)
5783 {
5784 /* When hotadd a new node from cpu_up(), the node should be empty */
5785 if (!node_start_pfn && !node_end_pfn)
5786 return 0;
5787
5788 /* Get the start and end of the zone */
5789 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5790 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5791 adjust_zone_range_for_zone_movable(nid, zone_type,
5792 node_start_pfn, node_end_pfn,
5793 zone_start_pfn, zone_end_pfn);
5794
5795 /* Check that this node has pages within the zone's required range */
5796 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5797 return 0;
5798
5799 /* Move the zone boundaries inside the node if necessary */
5800 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5801 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5802
5803 /* Return the spanned pages */
5804 return *zone_end_pfn - *zone_start_pfn;
5805 }
5806
5807 /*
5808 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5809 * then all holes in the requested range will be accounted for.
5810 */
5811 unsigned long __meminit __absent_pages_in_range(int nid,
5812 unsigned long range_start_pfn,
5813 unsigned long range_end_pfn)
5814 {
5815 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5816 unsigned long start_pfn, end_pfn;
5817 int i;
5818
5819 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5820 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5821 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5822 nr_absent -= end_pfn - start_pfn;
5823 }
5824 return nr_absent;
5825 }
5826
5827 /**
5828 * absent_pages_in_range - Return number of page frames in holes within a range
5829 * @start_pfn: The start PFN to start searching for holes
5830 * @end_pfn: The end PFN to stop searching for holes
5831 *
5832 * It returns the number of pages frames in memory holes within a range.
5833 */
5834 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5835 unsigned long end_pfn)
5836 {
5837 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5838 }
5839
5840 /* Return the number of page frames in holes in a zone on a node */
5841 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5842 unsigned long zone_type,
5843 unsigned long node_start_pfn,
5844 unsigned long node_end_pfn,
5845 unsigned long *ignored)
5846 {
5847 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5848 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5849 unsigned long zone_start_pfn, zone_end_pfn;
5850 unsigned long nr_absent;
5851
5852 /* When hotadd a new node from cpu_up(), the node should be empty */
5853 if (!node_start_pfn && !node_end_pfn)
5854 return 0;
5855
5856 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5857 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5858
5859 adjust_zone_range_for_zone_movable(nid, zone_type,
5860 node_start_pfn, node_end_pfn,
5861 &zone_start_pfn, &zone_end_pfn);
5862 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5863
5864 /*
5865 * ZONE_MOVABLE handling.
5866 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5867 * and vice versa.
5868 */
5869 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5870 unsigned long start_pfn, end_pfn;
5871 struct memblock_region *r;
5872
5873 for_each_memblock(memory, r) {
5874 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5875 zone_start_pfn, zone_end_pfn);
5876 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5877 zone_start_pfn, zone_end_pfn);
5878
5879 if (zone_type == ZONE_MOVABLE &&
5880 memblock_is_mirror(r))
5881 nr_absent += end_pfn - start_pfn;
5882
5883 if (zone_type == ZONE_NORMAL &&
5884 !memblock_is_mirror(r))
5885 nr_absent += end_pfn - start_pfn;
5886 }
5887 }
5888
5889 return nr_absent;
5890 }
5891
5892 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5893 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5894 unsigned long zone_type,
5895 unsigned long node_start_pfn,
5896 unsigned long node_end_pfn,
5897 unsigned long *zone_start_pfn,
5898 unsigned long *zone_end_pfn,
5899 unsigned long *zones_size)
5900 {
5901 unsigned int zone;
5902
5903 *zone_start_pfn = node_start_pfn;
5904 for (zone = 0; zone < zone_type; zone++)
5905 *zone_start_pfn += zones_size[zone];
5906
5907 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5908
5909 return zones_size[zone_type];
5910 }
5911
5912 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5913 unsigned long zone_type,
5914 unsigned long node_start_pfn,
5915 unsigned long node_end_pfn,
5916 unsigned long *zholes_size)
5917 {
5918 if (!zholes_size)
5919 return 0;
5920
5921 return zholes_size[zone_type];
5922 }
5923
5924 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5925
5926 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5927 unsigned long node_start_pfn,
5928 unsigned long node_end_pfn,
5929 unsigned long *zones_size,
5930 unsigned long *zholes_size)
5931 {
5932 unsigned long realtotalpages = 0, totalpages = 0;
5933 enum zone_type i;
5934
5935 for (i = 0; i < MAX_NR_ZONES; i++) {
5936 struct zone *zone = pgdat->node_zones + i;
5937 unsigned long zone_start_pfn, zone_end_pfn;
5938 unsigned long size, real_size;
5939
5940 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5941 node_start_pfn,
5942 node_end_pfn,
5943 &zone_start_pfn,
5944 &zone_end_pfn,
5945 zones_size);
5946 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5947 node_start_pfn, node_end_pfn,
5948 zholes_size);
5949 if (size)
5950 zone->zone_start_pfn = zone_start_pfn;
5951 else
5952 zone->zone_start_pfn = 0;
5953 zone->spanned_pages = size;
5954 zone->present_pages = real_size;
5955
5956 totalpages += size;
5957 realtotalpages += real_size;
5958 }
5959
5960 pgdat->node_spanned_pages = totalpages;
5961 pgdat->node_present_pages = realtotalpages;
5962 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5963 realtotalpages);
5964 }
5965
5966 #ifndef CONFIG_SPARSEMEM
5967 /*
5968 * Calculate the size of the zone->blockflags rounded to an unsigned long
5969 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5970 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5971 * round what is now in bits to nearest long in bits, then return it in
5972 * bytes.
5973 */
5974 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5975 {
5976 unsigned long usemapsize;
5977
5978 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5979 usemapsize = roundup(zonesize, pageblock_nr_pages);
5980 usemapsize = usemapsize >> pageblock_order;
5981 usemapsize *= NR_PAGEBLOCK_BITS;
5982 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5983
5984 return usemapsize / 8;
5985 }
5986
5987 static void __init setup_usemap(struct pglist_data *pgdat,
5988 struct zone *zone,
5989 unsigned long zone_start_pfn,
5990 unsigned long zonesize)
5991 {
5992 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5993 zone->pageblock_flags = NULL;
5994 if (usemapsize)
5995 zone->pageblock_flags =
5996 memblock_virt_alloc_node_nopanic(usemapsize,
5997 pgdat->node_id);
5998 }
5999 #else
6000 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6001 unsigned long zone_start_pfn, unsigned long zonesize) {}
6002 #endif /* CONFIG_SPARSEMEM */
6003
6004 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6005
6006 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6007 void __paginginit set_pageblock_order(void)
6008 {
6009 unsigned int order;
6010
6011 /* Check that pageblock_nr_pages has not already been setup */
6012 if (pageblock_order)
6013 return;
6014
6015 if (HPAGE_SHIFT > PAGE_SHIFT)
6016 order = HUGETLB_PAGE_ORDER;
6017 else
6018 order = MAX_ORDER - 1;
6019
6020 /*
6021 * Assume the largest contiguous order of interest is a huge page.
6022 * This value may be variable depending on boot parameters on IA64 and
6023 * powerpc.
6024 */
6025 pageblock_order = order;
6026 }
6027 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6028
6029 /*
6030 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6031 * is unused as pageblock_order is set at compile-time. See
6032 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6033 * the kernel config
6034 */
6035 void __paginginit set_pageblock_order(void)
6036 {
6037 }
6038
6039 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6040
6041 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6042 unsigned long present_pages)
6043 {
6044 unsigned long pages = spanned_pages;
6045
6046 /*
6047 * Provide a more accurate estimation if there are holes within
6048 * the zone and SPARSEMEM is in use. If there are holes within the
6049 * zone, each populated memory region may cost us one or two extra
6050 * memmap pages due to alignment because memmap pages for each
6051 * populated regions may not be naturally aligned on page boundary.
6052 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6053 */
6054 if (spanned_pages > present_pages + (present_pages >> 4) &&
6055 IS_ENABLED(CONFIG_SPARSEMEM))
6056 pages = present_pages;
6057
6058 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6059 }
6060
6061 /*
6062 * Set up the zone data structures:
6063 * - mark all pages reserved
6064 * - mark all memory queues empty
6065 * - clear the memory bitmaps
6066 *
6067 * NOTE: pgdat should get zeroed by caller.
6068 */
6069 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6070 {
6071 enum zone_type j;
6072 int nid = pgdat->node_id;
6073
6074 pgdat_resize_init(pgdat);
6075 #ifdef CONFIG_NUMA_BALANCING
6076 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6077 pgdat->numabalancing_migrate_nr_pages = 0;
6078 pgdat->numabalancing_migrate_next_window = jiffies;
6079 #endif
6080 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6081 spin_lock_init(&pgdat->split_queue_lock);
6082 INIT_LIST_HEAD(&pgdat->split_queue);
6083 pgdat->split_queue_len = 0;
6084 #endif
6085 init_waitqueue_head(&pgdat->kswapd_wait);
6086 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6087 #ifdef CONFIG_COMPACTION
6088 init_waitqueue_head(&pgdat->kcompactd_wait);
6089 #endif
6090 pgdat_page_ext_init(pgdat);
6091 spin_lock_init(&pgdat->lru_lock);
6092 lruvec_init(node_lruvec(pgdat));
6093
6094 pgdat->per_cpu_nodestats = &boot_nodestats;
6095
6096 for (j = 0; j < MAX_NR_ZONES; j++) {
6097 struct zone *zone = pgdat->node_zones + j;
6098 unsigned long size, realsize, freesize, memmap_pages;
6099 unsigned long zone_start_pfn = zone->zone_start_pfn;
6100
6101 size = zone->spanned_pages;
6102 realsize = freesize = zone->present_pages;
6103
6104 /*
6105 * Adjust freesize so that it accounts for how much memory
6106 * is used by this zone for memmap. This affects the watermark
6107 * and per-cpu initialisations
6108 */
6109 memmap_pages = calc_memmap_size(size, realsize);
6110 if (!is_highmem_idx(j)) {
6111 if (freesize >= memmap_pages) {
6112 freesize -= memmap_pages;
6113 if (memmap_pages)
6114 printk(KERN_DEBUG
6115 " %s zone: %lu pages used for memmap\n",
6116 zone_names[j], memmap_pages);
6117 } else
6118 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6119 zone_names[j], memmap_pages, freesize);
6120 }
6121
6122 /* Account for reserved pages */
6123 if (j == 0 && freesize > dma_reserve) {
6124 freesize -= dma_reserve;
6125 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6126 zone_names[0], dma_reserve);
6127 }
6128
6129 if (!is_highmem_idx(j))
6130 nr_kernel_pages += freesize;
6131 /* Charge for highmem memmap if there are enough kernel pages */
6132 else if (nr_kernel_pages > memmap_pages * 2)
6133 nr_kernel_pages -= memmap_pages;
6134 nr_all_pages += freesize;
6135
6136 /*
6137 * Set an approximate value for lowmem here, it will be adjusted
6138 * when the bootmem allocator frees pages into the buddy system.
6139 * And all highmem pages will be managed by the buddy system.
6140 */
6141 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6142 #ifdef CONFIG_NUMA
6143 zone->node = nid;
6144 #endif
6145 zone->name = zone_names[j];
6146 zone->zone_pgdat = pgdat;
6147 spin_lock_init(&zone->lock);
6148 zone_seqlock_init(zone);
6149 zone_pcp_init(zone);
6150
6151 if (!size)
6152 continue;
6153
6154 set_pageblock_order();
6155 setup_usemap(pgdat, zone, zone_start_pfn, size);
6156 init_currently_empty_zone(zone, zone_start_pfn, size);
6157 memmap_init(size, nid, j, zone_start_pfn);
6158 }
6159 }
6160
6161 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6162 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6163 {
6164 unsigned long __maybe_unused start = 0;
6165 unsigned long __maybe_unused offset = 0;
6166
6167 /* Skip empty nodes */
6168 if (!pgdat->node_spanned_pages)
6169 return;
6170
6171 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6172 offset = pgdat->node_start_pfn - start;
6173 /* ia64 gets its own node_mem_map, before this, without bootmem */
6174 if (!pgdat->node_mem_map) {
6175 unsigned long size, end;
6176 struct page *map;
6177
6178 /*
6179 * The zone's endpoints aren't required to be MAX_ORDER
6180 * aligned but the node_mem_map endpoints must be in order
6181 * for the buddy allocator to function correctly.
6182 */
6183 end = pgdat_end_pfn(pgdat);
6184 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6185 size = (end - start) * sizeof(struct page);
6186 map = alloc_remap(pgdat->node_id, size);
6187 if (!map)
6188 map = memblock_virt_alloc_node_nopanic(size,
6189 pgdat->node_id);
6190 pgdat->node_mem_map = map + offset;
6191 }
6192 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6193 __func__, pgdat->node_id, (unsigned long)pgdat,
6194 (unsigned long)pgdat->node_mem_map);
6195 #ifndef CONFIG_NEED_MULTIPLE_NODES
6196 /*
6197 * With no DISCONTIG, the global mem_map is just set as node 0's
6198 */
6199 if (pgdat == NODE_DATA(0)) {
6200 mem_map = NODE_DATA(0)->node_mem_map;
6201 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6202 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6203 mem_map -= offset;
6204 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6205 }
6206 #endif
6207 }
6208 #else
6209 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6210 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6211
6212 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6213 unsigned long node_start_pfn, unsigned long *zholes_size)
6214 {
6215 pg_data_t *pgdat = NODE_DATA(nid);
6216 unsigned long start_pfn = 0;
6217 unsigned long end_pfn = 0;
6218
6219 /* pg_data_t should be reset to zero when it's allocated */
6220 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6221
6222 pgdat->node_id = nid;
6223 pgdat->node_start_pfn = node_start_pfn;
6224 pgdat->per_cpu_nodestats = NULL;
6225 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6226 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6227 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6228 (u64)start_pfn << PAGE_SHIFT,
6229 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6230 #else
6231 start_pfn = node_start_pfn;
6232 #endif
6233 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6234 zones_size, zholes_size);
6235
6236 alloc_node_mem_map(pgdat);
6237
6238 reset_deferred_meminit(pgdat);
6239 free_area_init_core(pgdat);
6240 }
6241
6242 #ifdef CONFIG_HAVE_MEMBLOCK
6243 /*
6244 * Only struct pages that are backed by physical memory are zeroed and
6245 * initialized by going through __init_single_page(). But, there are some
6246 * struct pages which are reserved in memblock allocator and their fields
6247 * may be accessed (for example page_to_pfn() on some configuration accesses
6248 * flags). We must explicitly zero those struct pages.
6249 */
6250 void __paginginit zero_resv_unavail(void)
6251 {
6252 phys_addr_t start, end;
6253 unsigned long pfn;
6254 u64 i, pgcnt;
6255
6256 /*
6257 * Loop through ranges that are reserved, but do not have reported
6258 * physical memory backing.
6259 */
6260 pgcnt = 0;
6261 for_each_resv_unavail_range(i, &start, &end) {
6262 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6263 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6264 continue;
6265 mm_zero_struct_page(pfn_to_page(pfn));
6266 pgcnt++;
6267 }
6268 }
6269
6270 /*
6271 * Struct pages that do not have backing memory. This could be because
6272 * firmware is using some of this memory, or for some other reasons.
6273 * Once memblock is changed so such behaviour is not allowed: i.e.
6274 * list of "reserved" memory must be a subset of list of "memory", then
6275 * this code can be removed.
6276 */
6277 if (pgcnt)
6278 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6279 }
6280 #endif /* CONFIG_HAVE_MEMBLOCK */
6281
6282 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6283
6284 #if MAX_NUMNODES > 1
6285 /*
6286 * Figure out the number of possible node ids.
6287 */
6288 void __init setup_nr_node_ids(void)
6289 {
6290 unsigned int highest;
6291
6292 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6293 nr_node_ids = highest + 1;
6294 }
6295 #endif
6296
6297 /**
6298 * node_map_pfn_alignment - determine the maximum internode alignment
6299 *
6300 * This function should be called after node map is populated and sorted.
6301 * It calculates the maximum power of two alignment which can distinguish
6302 * all the nodes.
6303 *
6304 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6305 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6306 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6307 * shifted, 1GiB is enough and this function will indicate so.
6308 *
6309 * This is used to test whether pfn -> nid mapping of the chosen memory
6310 * model has fine enough granularity to avoid incorrect mapping for the
6311 * populated node map.
6312 *
6313 * Returns the determined alignment in pfn's. 0 if there is no alignment
6314 * requirement (single node).
6315 */
6316 unsigned long __init node_map_pfn_alignment(void)
6317 {
6318 unsigned long accl_mask = 0, last_end = 0;
6319 unsigned long start, end, mask;
6320 int last_nid = -1;
6321 int i, nid;
6322
6323 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6324 if (!start || last_nid < 0 || last_nid == nid) {
6325 last_nid = nid;
6326 last_end = end;
6327 continue;
6328 }
6329
6330 /*
6331 * Start with a mask granular enough to pin-point to the
6332 * start pfn and tick off bits one-by-one until it becomes
6333 * too coarse to separate the current node from the last.
6334 */
6335 mask = ~((1 << __ffs(start)) - 1);
6336 while (mask && last_end <= (start & (mask << 1)))
6337 mask <<= 1;
6338
6339 /* accumulate all internode masks */
6340 accl_mask |= mask;
6341 }
6342
6343 /* convert mask to number of pages */
6344 return ~accl_mask + 1;
6345 }
6346
6347 /* Find the lowest pfn for a node */
6348 static unsigned long __init find_min_pfn_for_node(int nid)
6349 {
6350 unsigned long min_pfn = ULONG_MAX;
6351 unsigned long start_pfn;
6352 int i;
6353
6354 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6355 min_pfn = min(min_pfn, start_pfn);
6356
6357 if (min_pfn == ULONG_MAX) {
6358 pr_warn("Could not find start_pfn for node %d\n", nid);
6359 return 0;
6360 }
6361
6362 return min_pfn;
6363 }
6364
6365 /**
6366 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6367 *
6368 * It returns the minimum PFN based on information provided via
6369 * memblock_set_node().
6370 */
6371 unsigned long __init find_min_pfn_with_active_regions(void)
6372 {
6373 return find_min_pfn_for_node(MAX_NUMNODES);
6374 }
6375
6376 /*
6377 * early_calculate_totalpages()
6378 * Sum pages in active regions for movable zone.
6379 * Populate N_MEMORY for calculating usable_nodes.
6380 */
6381 static unsigned long __init early_calculate_totalpages(void)
6382 {
6383 unsigned long totalpages = 0;
6384 unsigned long start_pfn, end_pfn;
6385 int i, nid;
6386
6387 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6388 unsigned long pages = end_pfn - start_pfn;
6389
6390 totalpages += pages;
6391 if (pages)
6392 node_set_state(nid, N_MEMORY);
6393 }
6394 return totalpages;
6395 }
6396
6397 /*
6398 * Find the PFN the Movable zone begins in each node. Kernel memory
6399 * is spread evenly between nodes as long as the nodes have enough
6400 * memory. When they don't, some nodes will have more kernelcore than
6401 * others
6402 */
6403 static void __init find_zone_movable_pfns_for_nodes(void)
6404 {
6405 int i, nid;
6406 unsigned long usable_startpfn;
6407 unsigned long kernelcore_node, kernelcore_remaining;
6408 /* save the state before borrow the nodemask */
6409 nodemask_t saved_node_state = node_states[N_MEMORY];
6410 unsigned long totalpages = early_calculate_totalpages();
6411 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6412 struct memblock_region *r;
6413
6414 /* Need to find movable_zone earlier when movable_node is specified. */
6415 find_usable_zone_for_movable();
6416
6417 /*
6418 * If movable_node is specified, ignore kernelcore and movablecore
6419 * options.
6420 */
6421 if (movable_node_is_enabled()) {
6422 for_each_memblock(memory, r) {
6423 if (!memblock_is_hotpluggable(r))
6424 continue;
6425
6426 nid = r->nid;
6427
6428 usable_startpfn = PFN_DOWN(r->base);
6429 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6430 min(usable_startpfn, zone_movable_pfn[nid]) :
6431 usable_startpfn;
6432 }
6433
6434 goto out2;
6435 }
6436
6437 /*
6438 * If kernelcore=mirror is specified, ignore movablecore option
6439 */
6440 if (mirrored_kernelcore) {
6441 bool mem_below_4gb_not_mirrored = false;
6442
6443 for_each_memblock(memory, r) {
6444 if (memblock_is_mirror(r))
6445 continue;
6446
6447 nid = r->nid;
6448
6449 usable_startpfn = memblock_region_memory_base_pfn(r);
6450
6451 if (usable_startpfn < 0x100000) {
6452 mem_below_4gb_not_mirrored = true;
6453 continue;
6454 }
6455
6456 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6457 min(usable_startpfn, zone_movable_pfn[nid]) :
6458 usable_startpfn;
6459 }
6460
6461 if (mem_below_4gb_not_mirrored)
6462 pr_warn("This configuration results in unmirrored kernel memory.");
6463
6464 goto out2;
6465 }
6466
6467 /*
6468 * If movablecore=nn[KMG] was specified, calculate what size of
6469 * kernelcore that corresponds so that memory usable for
6470 * any allocation type is evenly spread. If both kernelcore
6471 * and movablecore are specified, then the value of kernelcore
6472 * will be used for required_kernelcore if it's greater than
6473 * what movablecore would have allowed.
6474 */
6475 if (required_movablecore) {
6476 unsigned long corepages;
6477
6478 /*
6479 * Round-up so that ZONE_MOVABLE is at least as large as what
6480 * was requested by the user
6481 */
6482 required_movablecore =
6483 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6484 required_movablecore = min(totalpages, required_movablecore);
6485 corepages = totalpages - required_movablecore;
6486
6487 required_kernelcore = max(required_kernelcore, corepages);
6488 }
6489
6490 /*
6491 * If kernelcore was not specified or kernelcore size is larger
6492 * than totalpages, there is no ZONE_MOVABLE.
6493 */
6494 if (!required_kernelcore || required_kernelcore >= totalpages)
6495 goto out;
6496
6497 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6498 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6499
6500 restart:
6501 /* Spread kernelcore memory as evenly as possible throughout nodes */
6502 kernelcore_node = required_kernelcore / usable_nodes;
6503 for_each_node_state(nid, N_MEMORY) {
6504 unsigned long start_pfn, end_pfn;
6505
6506 /*
6507 * Recalculate kernelcore_node if the division per node
6508 * now exceeds what is necessary to satisfy the requested
6509 * amount of memory for the kernel
6510 */
6511 if (required_kernelcore < kernelcore_node)
6512 kernelcore_node = required_kernelcore / usable_nodes;
6513
6514 /*
6515 * As the map is walked, we track how much memory is usable
6516 * by the kernel using kernelcore_remaining. When it is
6517 * 0, the rest of the node is usable by ZONE_MOVABLE
6518 */
6519 kernelcore_remaining = kernelcore_node;
6520
6521 /* Go through each range of PFNs within this node */
6522 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6523 unsigned long size_pages;
6524
6525 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6526 if (start_pfn >= end_pfn)
6527 continue;
6528
6529 /* Account for what is only usable for kernelcore */
6530 if (start_pfn < usable_startpfn) {
6531 unsigned long kernel_pages;
6532 kernel_pages = min(end_pfn, usable_startpfn)
6533 - start_pfn;
6534
6535 kernelcore_remaining -= min(kernel_pages,
6536 kernelcore_remaining);
6537 required_kernelcore -= min(kernel_pages,
6538 required_kernelcore);
6539
6540 /* Continue if range is now fully accounted */
6541 if (end_pfn <= usable_startpfn) {
6542
6543 /*
6544 * Push zone_movable_pfn to the end so
6545 * that if we have to rebalance
6546 * kernelcore across nodes, we will
6547 * not double account here
6548 */
6549 zone_movable_pfn[nid] = end_pfn;
6550 continue;
6551 }
6552 start_pfn = usable_startpfn;
6553 }
6554
6555 /*
6556 * The usable PFN range for ZONE_MOVABLE is from
6557 * start_pfn->end_pfn. Calculate size_pages as the
6558 * number of pages used as kernelcore
6559 */
6560 size_pages = end_pfn - start_pfn;
6561 if (size_pages > kernelcore_remaining)
6562 size_pages = kernelcore_remaining;
6563 zone_movable_pfn[nid] = start_pfn + size_pages;
6564
6565 /*
6566 * Some kernelcore has been met, update counts and
6567 * break if the kernelcore for this node has been
6568 * satisfied
6569 */
6570 required_kernelcore -= min(required_kernelcore,
6571 size_pages);
6572 kernelcore_remaining -= size_pages;
6573 if (!kernelcore_remaining)
6574 break;
6575 }
6576 }
6577
6578 /*
6579 * If there is still required_kernelcore, we do another pass with one
6580 * less node in the count. This will push zone_movable_pfn[nid] further
6581 * along on the nodes that still have memory until kernelcore is
6582 * satisfied
6583 */
6584 usable_nodes--;
6585 if (usable_nodes && required_kernelcore > usable_nodes)
6586 goto restart;
6587
6588 out2:
6589 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6590 for (nid = 0; nid < MAX_NUMNODES; nid++)
6591 zone_movable_pfn[nid] =
6592 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6593
6594 out:
6595 /* restore the node_state */
6596 node_states[N_MEMORY] = saved_node_state;
6597 }
6598
6599 /* Any regular or high memory on that node ? */
6600 static void check_for_memory(pg_data_t *pgdat, int nid)
6601 {
6602 enum zone_type zone_type;
6603
6604 if (N_MEMORY == N_NORMAL_MEMORY)
6605 return;
6606
6607 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6608 struct zone *zone = &pgdat->node_zones[zone_type];
6609 if (populated_zone(zone)) {
6610 node_set_state(nid, N_HIGH_MEMORY);
6611 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6612 zone_type <= ZONE_NORMAL)
6613 node_set_state(nid, N_NORMAL_MEMORY);
6614 break;
6615 }
6616 }
6617 }
6618
6619 /**
6620 * free_area_init_nodes - Initialise all pg_data_t and zone data
6621 * @max_zone_pfn: an array of max PFNs for each zone
6622 *
6623 * This will call free_area_init_node() for each active node in the system.
6624 * Using the page ranges provided by memblock_set_node(), the size of each
6625 * zone in each node and their holes is calculated. If the maximum PFN
6626 * between two adjacent zones match, it is assumed that the zone is empty.
6627 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6628 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6629 * starts where the previous one ended. For example, ZONE_DMA32 starts
6630 * at arch_max_dma_pfn.
6631 */
6632 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6633 {
6634 unsigned long start_pfn, end_pfn;
6635 int i, nid;
6636
6637 /* Record where the zone boundaries are */
6638 memset(arch_zone_lowest_possible_pfn, 0,
6639 sizeof(arch_zone_lowest_possible_pfn));
6640 memset(arch_zone_highest_possible_pfn, 0,
6641 sizeof(arch_zone_highest_possible_pfn));
6642
6643 start_pfn = find_min_pfn_with_active_regions();
6644
6645 for (i = 0; i < MAX_NR_ZONES; i++) {
6646 if (i == ZONE_MOVABLE)
6647 continue;
6648
6649 end_pfn = max(max_zone_pfn[i], start_pfn);
6650 arch_zone_lowest_possible_pfn[i] = start_pfn;
6651 arch_zone_highest_possible_pfn[i] = end_pfn;
6652
6653 start_pfn = end_pfn;
6654 }
6655
6656 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6657 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6658 find_zone_movable_pfns_for_nodes();
6659
6660 /* Print out the zone ranges */
6661 pr_info("Zone ranges:\n");
6662 for (i = 0; i < MAX_NR_ZONES; i++) {
6663 if (i == ZONE_MOVABLE)
6664 continue;
6665 pr_info(" %-8s ", zone_names[i]);
6666 if (arch_zone_lowest_possible_pfn[i] ==
6667 arch_zone_highest_possible_pfn[i])
6668 pr_cont("empty\n");
6669 else
6670 pr_cont("[mem %#018Lx-%#018Lx]\n",
6671 (u64)arch_zone_lowest_possible_pfn[i]
6672 << PAGE_SHIFT,
6673 ((u64)arch_zone_highest_possible_pfn[i]
6674 << PAGE_SHIFT) - 1);
6675 }
6676
6677 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6678 pr_info("Movable zone start for each node\n");
6679 for (i = 0; i < MAX_NUMNODES; i++) {
6680 if (zone_movable_pfn[i])
6681 pr_info(" Node %d: %#018Lx\n", i,
6682 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6683 }
6684
6685 /* Print out the early node map */
6686 pr_info("Early memory node ranges\n");
6687 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6688 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6689 (u64)start_pfn << PAGE_SHIFT,
6690 ((u64)end_pfn << PAGE_SHIFT) - 1);
6691
6692 /* Initialise every node */
6693 mminit_verify_pageflags_layout();
6694 setup_nr_node_ids();
6695 for_each_online_node(nid) {
6696 pg_data_t *pgdat = NODE_DATA(nid);
6697 free_area_init_node(nid, NULL,
6698 find_min_pfn_for_node(nid), NULL);
6699
6700 /* Any memory on that node */
6701 if (pgdat->node_present_pages)
6702 node_set_state(nid, N_MEMORY);
6703 check_for_memory(pgdat, nid);
6704 }
6705 zero_resv_unavail();
6706 }
6707
6708 static int __init cmdline_parse_core(char *p, unsigned long *core)
6709 {
6710 unsigned long long coremem;
6711 if (!p)
6712 return -EINVAL;
6713
6714 coremem = memparse(p, &p);
6715 *core = coremem >> PAGE_SHIFT;
6716
6717 /* Paranoid check that UL is enough for the coremem value */
6718 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6719
6720 return 0;
6721 }
6722
6723 /*
6724 * kernelcore=size sets the amount of memory for use for allocations that
6725 * cannot be reclaimed or migrated.
6726 */
6727 static int __init cmdline_parse_kernelcore(char *p)
6728 {
6729 /* parse kernelcore=mirror */
6730 if (parse_option_str(p, "mirror")) {
6731 mirrored_kernelcore = true;
6732 return 0;
6733 }
6734
6735 return cmdline_parse_core(p, &required_kernelcore);
6736 }
6737
6738 /*
6739 * movablecore=size sets the amount of memory for use for allocations that
6740 * can be reclaimed or migrated.
6741 */
6742 static int __init cmdline_parse_movablecore(char *p)
6743 {
6744 return cmdline_parse_core(p, &required_movablecore);
6745 }
6746
6747 early_param("kernelcore", cmdline_parse_kernelcore);
6748 early_param("movablecore", cmdline_parse_movablecore);
6749
6750 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6751
6752 void adjust_managed_page_count(struct page *page, long count)
6753 {
6754 spin_lock(&managed_page_count_lock);
6755 page_zone(page)->managed_pages += count;
6756 totalram_pages += count;
6757 #ifdef CONFIG_HIGHMEM
6758 if (PageHighMem(page))
6759 totalhigh_pages += count;
6760 #endif
6761 spin_unlock(&managed_page_count_lock);
6762 }
6763 EXPORT_SYMBOL(adjust_managed_page_count);
6764
6765 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6766 {
6767 void *pos;
6768 unsigned long pages = 0;
6769
6770 start = (void *)PAGE_ALIGN((unsigned long)start);
6771 end = (void *)((unsigned long)end & PAGE_MASK);
6772 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6773 if ((unsigned int)poison <= 0xFF)
6774 memset(pos, poison, PAGE_SIZE);
6775 free_reserved_page(virt_to_page(pos));
6776 }
6777
6778 if (pages && s)
6779 pr_info("Freeing %s memory: %ldK\n",
6780 s, pages << (PAGE_SHIFT - 10));
6781
6782 return pages;
6783 }
6784 EXPORT_SYMBOL(free_reserved_area);
6785
6786 #ifdef CONFIG_HIGHMEM
6787 void free_highmem_page(struct page *page)
6788 {
6789 __free_reserved_page(page);
6790 totalram_pages++;
6791 page_zone(page)->managed_pages++;
6792 totalhigh_pages++;
6793 }
6794 #endif
6795
6796
6797 void __init mem_init_print_info(const char *str)
6798 {
6799 unsigned long physpages, codesize, datasize, rosize, bss_size;
6800 unsigned long init_code_size, init_data_size;
6801
6802 physpages = get_num_physpages();
6803 codesize = _etext - _stext;
6804 datasize = _edata - _sdata;
6805 rosize = __end_rodata - __start_rodata;
6806 bss_size = __bss_stop - __bss_start;
6807 init_data_size = __init_end - __init_begin;
6808 init_code_size = _einittext - _sinittext;
6809
6810 /*
6811 * Detect special cases and adjust section sizes accordingly:
6812 * 1) .init.* may be embedded into .data sections
6813 * 2) .init.text.* may be out of [__init_begin, __init_end],
6814 * please refer to arch/tile/kernel/vmlinux.lds.S.
6815 * 3) .rodata.* may be embedded into .text or .data sections.
6816 */
6817 #define adj_init_size(start, end, size, pos, adj) \
6818 do { \
6819 if (start <= pos && pos < end && size > adj) \
6820 size -= adj; \
6821 } while (0)
6822
6823 adj_init_size(__init_begin, __init_end, init_data_size,
6824 _sinittext, init_code_size);
6825 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6826 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6827 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6828 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6829
6830 #undef adj_init_size
6831
6832 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6833 #ifdef CONFIG_HIGHMEM
6834 ", %luK highmem"
6835 #endif
6836 "%s%s)\n",
6837 nr_free_pages() << (PAGE_SHIFT - 10),
6838 physpages << (PAGE_SHIFT - 10),
6839 codesize >> 10, datasize >> 10, rosize >> 10,
6840 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6841 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6842 totalcma_pages << (PAGE_SHIFT - 10),
6843 #ifdef CONFIG_HIGHMEM
6844 totalhigh_pages << (PAGE_SHIFT - 10),
6845 #endif
6846 str ? ", " : "", str ? str : "");
6847 }
6848
6849 /**
6850 * set_dma_reserve - set the specified number of pages reserved in the first zone
6851 * @new_dma_reserve: The number of pages to mark reserved
6852 *
6853 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6854 * In the DMA zone, a significant percentage may be consumed by kernel image
6855 * and other unfreeable allocations which can skew the watermarks badly. This
6856 * function may optionally be used to account for unfreeable pages in the
6857 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6858 * smaller per-cpu batchsize.
6859 */
6860 void __init set_dma_reserve(unsigned long new_dma_reserve)
6861 {
6862 dma_reserve = new_dma_reserve;
6863 }
6864
6865 void __init free_area_init(unsigned long *zones_size)
6866 {
6867 free_area_init_node(0, zones_size,
6868 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6869 zero_resv_unavail();
6870 }
6871
6872 static int page_alloc_cpu_dead(unsigned int cpu)
6873 {
6874
6875 lru_add_drain_cpu(cpu);
6876 drain_pages(cpu);
6877
6878 /*
6879 * Spill the event counters of the dead processor
6880 * into the current processors event counters.
6881 * This artificially elevates the count of the current
6882 * processor.
6883 */
6884 vm_events_fold_cpu(cpu);
6885
6886 /*
6887 * Zero the differential counters of the dead processor
6888 * so that the vm statistics are consistent.
6889 *
6890 * This is only okay since the processor is dead and cannot
6891 * race with what we are doing.
6892 */
6893 cpu_vm_stats_fold(cpu);
6894 return 0;
6895 }
6896
6897 void __init page_alloc_init(void)
6898 {
6899 int ret;
6900
6901 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6902 "mm/page_alloc:dead", NULL,
6903 page_alloc_cpu_dead);
6904 WARN_ON(ret < 0);
6905 }
6906
6907 /*
6908 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6909 * or min_free_kbytes changes.
6910 */
6911 static void calculate_totalreserve_pages(void)
6912 {
6913 struct pglist_data *pgdat;
6914 unsigned long reserve_pages = 0;
6915 enum zone_type i, j;
6916
6917 for_each_online_pgdat(pgdat) {
6918
6919 pgdat->totalreserve_pages = 0;
6920
6921 for (i = 0; i < MAX_NR_ZONES; i++) {
6922 struct zone *zone = pgdat->node_zones + i;
6923 long max = 0;
6924
6925 /* Find valid and maximum lowmem_reserve in the zone */
6926 for (j = i; j < MAX_NR_ZONES; j++) {
6927 if (zone->lowmem_reserve[j] > max)
6928 max = zone->lowmem_reserve[j];
6929 }
6930
6931 /* we treat the high watermark as reserved pages. */
6932 max += high_wmark_pages(zone);
6933
6934 if (max > zone->managed_pages)
6935 max = zone->managed_pages;
6936
6937 pgdat->totalreserve_pages += max;
6938
6939 reserve_pages += max;
6940 }
6941 }
6942 totalreserve_pages = reserve_pages;
6943 }
6944
6945 /*
6946 * setup_per_zone_lowmem_reserve - called whenever
6947 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6948 * has a correct pages reserved value, so an adequate number of
6949 * pages are left in the zone after a successful __alloc_pages().
6950 */
6951 static void setup_per_zone_lowmem_reserve(void)
6952 {
6953 struct pglist_data *pgdat;
6954 enum zone_type j, idx;
6955
6956 for_each_online_pgdat(pgdat) {
6957 for (j = 0; j < MAX_NR_ZONES; j++) {
6958 struct zone *zone = pgdat->node_zones + j;
6959 unsigned long managed_pages = zone->managed_pages;
6960
6961 zone->lowmem_reserve[j] = 0;
6962
6963 idx = j;
6964 while (idx) {
6965 struct zone *lower_zone;
6966
6967 idx--;
6968
6969 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6970 sysctl_lowmem_reserve_ratio[idx] = 1;
6971
6972 lower_zone = pgdat->node_zones + idx;
6973 lower_zone->lowmem_reserve[j] = managed_pages /
6974 sysctl_lowmem_reserve_ratio[idx];
6975 managed_pages += lower_zone->managed_pages;
6976 }
6977 }
6978 }
6979
6980 /* update totalreserve_pages */
6981 calculate_totalreserve_pages();
6982 }
6983
6984 static void __setup_per_zone_wmarks(void)
6985 {
6986 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6987 unsigned long lowmem_pages = 0;
6988 struct zone *zone;
6989 unsigned long flags;
6990
6991 /* Calculate total number of !ZONE_HIGHMEM pages */
6992 for_each_zone(zone) {
6993 if (!is_highmem(zone))
6994 lowmem_pages += zone->managed_pages;
6995 }
6996
6997 for_each_zone(zone) {
6998 u64 tmp;
6999
7000 spin_lock_irqsave(&zone->lock, flags);
7001 tmp = (u64)pages_min * zone->managed_pages;
7002 do_div(tmp, lowmem_pages);
7003 if (is_highmem(zone)) {
7004 /*
7005 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7006 * need highmem pages, so cap pages_min to a small
7007 * value here.
7008 *
7009 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7010 * deltas control asynch page reclaim, and so should
7011 * not be capped for highmem.
7012 */
7013 unsigned long min_pages;
7014
7015 min_pages = zone->managed_pages / 1024;
7016 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7017 zone->watermark[WMARK_MIN] = min_pages;
7018 } else {
7019 /*
7020 * If it's a lowmem zone, reserve a number of pages
7021 * proportionate to the zone's size.
7022 */
7023 zone->watermark[WMARK_MIN] = tmp;
7024 }
7025
7026 /*
7027 * Set the kswapd watermarks distance according to the
7028 * scale factor in proportion to available memory, but
7029 * ensure a minimum size on small systems.
7030 */
7031 tmp = max_t(u64, tmp >> 2,
7032 mult_frac(zone->managed_pages,
7033 watermark_scale_factor, 10000));
7034
7035 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7036 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7037
7038 spin_unlock_irqrestore(&zone->lock, flags);
7039 }
7040
7041 /* update totalreserve_pages */
7042 calculate_totalreserve_pages();
7043 }
7044
7045 /**
7046 * setup_per_zone_wmarks - called when min_free_kbytes changes
7047 * or when memory is hot-{added|removed}
7048 *
7049 * Ensures that the watermark[min,low,high] values for each zone are set
7050 * correctly with respect to min_free_kbytes.
7051 */
7052 void setup_per_zone_wmarks(void)
7053 {
7054 static DEFINE_SPINLOCK(lock);
7055
7056 spin_lock(&lock);
7057 __setup_per_zone_wmarks();
7058 spin_unlock(&lock);
7059 }
7060
7061 /*
7062 * Initialise min_free_kbytes.
7063 *
7064 * For small machines we want it small (128k min). For large machines
7065 * we want it large (64MB max). But it is not linear, because network
7066 * bandwidth does not increase linearly with machine size. We use
7067 *
7068 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7069 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7070 *
7071 * which yields
7072 *
7073 * 16MB: 512k
7074 * 32MB: 724k
7075 * 64MB: 1024k
7076 * 128MB: 1448k
7077 * 256MB: 2048k
7078 * 512MB: 2896k
7079 * 1024MB: 4096k
7080 * 2048MB: 5792k
7081 * 4096MB: 8192k
7082 * 8192MB: 11584k
7083 * 16384MB: 16384k
7084 */
7085 int __meminit init_per_zone_wmark_min(void)
7086 {
7087 unsigned long lowmem_kbytes;
7088 int new_min_free_kbytes;
7089
7090 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7091 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7092
7093 if (new_min_free_kbytes > user_min_free_kbytes) {
7094 min_free_kbytes = new_min_free_kbytes;
7095 if (min_free_kbytes < 128)
7096 min_free_kbytes = 128;
7097 if (min_free_kbytes > 65536)
7098 min_free_kbytes = 65536;
7099 } else {
7100 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7101 new_min_free_kbytes, user_min_free_kbytes);
7102 }
7103 setup_per_zone_wmarks();
7104 refresh_zone_stat_thresholds();
7105 setup_per_zone_lowmem_reserve();
7106
7107 #ifdef CONFIG_NUMA
7108 setup_min_unmapped_ratio();
7109 setup_min_slab_ratio();
7110 #endif
7111
7112 return 0;
7113 }
7114 core_initcall(init_per_zone_wmark_min)
7115
7116 /*
7117 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7118 * that we can call two helper functions whenever min_free_kbytes
7119 * changes.
7120 */
7121 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7122 void __user *buffer, size_t *length, loff_t *ppos)
7123 {
7124 int rc;
7125
7126 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7127 if (rc)
7128 return rc;
7129
7130 if (write) {
7131 user_min_free_kbytes = min_free_kbytes;
7132 setup_per_zone_wmarks();
7133 }
7134 return 0;
7135 }
7136
7137 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7138 void __user *buffer, size_t *length, loff_t *ppos)
7139 {
7140 int rc;
7141
7142 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7143 if (rc)
7144 return rc;
7145
7146 if (write)
7147 setup_per_zone_wmarks();
7148
7149 return 0;
7150 }
7151
7152 #ifdef CONFIG_NUMA
7153 static void setup_min_unmapped_ratio(void)
7154 {
7155 pg_data_t *pgdat;
7156 struct zone *zone;
7157
7158 for_each_online_pgdat(pgdat)
7159 pgdat->min_unmapped_pages = 0;
7160
7161 for_each_zone(zone)
7162 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7163 sysctl_min_unmapped_ratio) / 100;
7164 }
7165
7166
7167 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7168 void __user *buffer, size_t *length, loff_t *ppos)
7169 {
7170 int rc;
7171
7172 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7173 if (rc)
7174 return rc;
7175
7176 setup_min_unmapped_ratio();
7177
7178 return 0;
7179 }
7180
7181 static void setup_min_slab_ratio(void)
7182 {
7183 pg_data_t *pgdat;
7184 struct zone *zone;
7185
7186 for_each_online_pgdat(pgdat)
7187 pgdat->min_slab_pages = 0;
7188
7189 for_each_zone(zone)
7190 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7191 sysctl_min_slab_ratio) / 100;
7192 }
7193
7194 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7195 void __user *buffer, size_t *length, loff_t *ppos)
7196 {
7197 int rc;
7198
7199 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7200 if (rc)
7201 return rc;
7202
7203 setup_min_slab_ratio();
7204
7205 return 0;
7206 }
7207 #endif
7208
7209 /*
7210 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7211 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7212 * whenever sysctl_lowmem_reserve_ratio changes.
7213 *
7214 * The reserve ratio obviously has absolutely no relation with the
7215 * minimum watermarks. The lowmem reserve ratio can only make sense
7216 * if in function of the boot time zone sizes.
7217 */
7218 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7219 void __user *buffer, size_t *length, loff_t *ppos)
7220 {
7221 proc_dointvec_minmax(table, write, buffer, length, ppos);
7222 setup_per_zone_lowmem_reserve();
7223 return 0;
7224 }
7225
7226 /*
7227 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7228 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7229 * pagelist can have before it gets flushed back to buddy allocator.
7230 */
7231 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7232 void __user *buffer, size_t *length, loff_t *ppos)
7233 {
7234 struct zone *zone;
7235 int old_percpu_pagelist_fraction;
7236 int ret;
7237
7238 mutex_lock(&pcp_batch_high_lock);
7239 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7240
7241 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7242 if (!write || ret < 0)
7243 goto out;
7244
7245 /* Sanity checking to avoid pcp imbalance */
7246 if (percpu_pagelist_fraction &&
7247 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7248 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7249 ret = -EINVAL;
7250 goto out;
7251 }
7252
7253 /* No change? */
7254 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7255 goto out;
7256
7257 for_each_populated_zone(zone) {
7258 unsigned int cpu;
7259
7260 for_each_possible_cpu(cpu)
7261 pageset_set_high_and_batch(zone,
7262 per_cpu_ptr(zone->pageset, cpu));
7263 }
7264 out:
7265 mutex_unlock(&pcp_batch_high_lock);
7266 return ret;
7267 }
7268
7269 #ifdef CONFIG_NUMA
7270 int hashdist = HASHDIST_DEFAULT;
7271
7272 static int __init set_hashdist(char *str)
7273 {
7274 if (!str)
7275 return 0;
7276 hashdist = simple_strtoul(str, &str, 0);
7277 return 1;
7278 }
7279 __setup("hashdist=", set_hashdist);
7280 #endif
7281
7282 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7283 /*
7284 * Returns the number of pages that arch has reserved but
7285 * is not known to alloc_large_system_hash().
7286 */
7287 static unsigned long __init arch_reserved_kernel_pages(void)
7288 {
7289 return 0;
7290 }
7291 #endif
7292
7293 /*
7294 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7295 * machines. As memory size is increased the scale is also increased but at
7296 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7297 * quadruples the scale is increased by one, which means the size of hash table
7298 * only doubles, instead of quadrupling as well.
7299 * Because 32-bit systems cannot have large physical memory, where this scaling
7300 * makes sense, it is disabled on such platforms.
7301 */
7302 #if __BITS_PER_LONG > 32
7303 #define ADAPT_SCALE_BASE (64ul << 30)
7304 #define ADAPT_SCALE_SHIFT 2
7305 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7306 #endif
7307
7308 /*
7309 * allocate a large system hash table from bootmem
7310 * - it is assumed that the hash table must contain an exact power-of-2
7311 * quantity of entries
7312 * - limit is the number of hash buckets, not the total allocation size
7313 */
7314 void *__init alloc_large_system_hash(const char *tablename,
7315 unsigned long bucketsize,
7316 unsigned long numentries,
7317 int scale,
7318 int flags,
7319 unsigned int *_hash_shift,
7320 unsigned int *_hash_mask,
7321 unsigned long low_limit,
7322 unsigned long high_limit)
7323 {
7324 unsigned long long max = high_limit;
7325 unsigned long log2qty, size;
7326 void *table = NULL;
7327 gfp_t gfp_flags;
7328
7329 /* allow the kernel cmdline to have a say */
7330 if (!numentries) {
7331 /* round applicable memory size up to nearest megabyte */
7332 numentries = nr_kernel_pages;
7333 numentries -= arch_reserved_kernel_pages();
7334
7335 /* It isn't necessary when PAGE_SIZE >= 1MB */
7336 if (PAGE_SHIFT < 20)
7337 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7338
7339 #if __BITS_PER_LONG > 32
7340 if (!high_limit) {
7341 unsigned long adapt;
7342
7343 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7344 adapt <<= ADAPT_SCALE_SHIFT)
7345 scale++;
7346 }
7347 #endif
7348
7349 /* limit to 1 bucket per 2^scale bytes of low memory */
7350 if (scale > PAGE_SHIFT)
7351 numentries >>= (scale - PAGE_SHIFT);
7352 else
7353 numentries <<= (PAGE_SHIFT - scale);
7354
7355 /* Make sure we've got at least a 0-order allocation.. */
7356 if (unlikely(flags & HASH_SMALL)) {
7357 /* Makes no sense without HASH_EARLY */
7358 WARN_ON(!(flags & HASH_EARLY));
7359 if (!(numentries >> *_hash_shift)) {
7360 numentries = 1UL << *_hash_shift;
7361 BUG_ON(!numentries);
7362 }
7363 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7364 numentries = PAGE_SIZE / bucketsize;
7365 }
7366 numentries = roundup_pow_of_two(numentries);
7367
7368 /* limit allocation size to 1/16 total memory by default */
7369 if (max == 0) {
7370 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7371 do_div(max, bucketsize);
7372 }
7373 max = min(max, 0x80000000ULL);
7374
7375 if (numentries < low_limit)
7376 numentries = low_limit;
7377 if (numentries > max)
7378 numentries = max;
7379
7380 log2qty = ilog2(numentries);
7381
7382 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7383 do {
7384 size = bucketsize << log2qty;
7385 if (flags & HASH_EARLY) {
7386 if (flags & HASH_ZERO)
7387 table = memblock_virt_alloc_nopanic(size, 0);
7388 else
7389 table = memblock_virt_alloc_raw(size, 0);
7390 } else if (hashdist) {
7391 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7392 } else {
7393 /*
7394 * If bucketsize is not a power-of-two, we may free
7395 * some pages at the end of hash table which
7396 * alloc_pages_exact() automatically does
7397 */
7398 if (get_order(size) < MAX_ORDER) {
7399 table = alloc_pages_exact(size, gfp_flags);
7400 kmemleak_alloc(table, size, 1, gfp_flags);
7401 }
7402 }
7403 } while (!table && size > PAGE_SIZE && --log2qty);
7404
7405 if (!table)
7406 panic("Failed to allocate %s hash table\n", tablename);
7407
7408 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7409 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7410
7411 if (_hash_shift)
7412 *_hash_shift = log2qty;
7413 if (_hash_mask)
7414 *_hash_mask = (1 << log2qty) - 1;
7415
7416 return table;
7417 }
7418
7419 /*
7420 * This function checks whether pageblock includes unmovable pages or not.
7421 * If @count is not zero, it is okay to include less @count unmovable pages
7422 *
7423 * PageLRU check without isolation or lru_lock could race so that
7424 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7425 * check without lock_page also may miss some movable non-lru pages at
7426 * race condition. So you can't expect this function should be exact.
7427 */
7428 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7429 int migratetype,
7430 bool skip_hwpoisoned_pages)
7431 {
7432 unsigned long pfn, iter, found;
7433
7434 /*
7435 * For avoiding noise data, lru_add_drain_all() should be called
7436 * If ZONE_MOVABLE, the zone never contains unmovable pages
7437 */
7438 if (zone_idx(zone) == ZONE_MOVABLE)
7439 return false;
7440
7441 /*
7442 * CMA allocations (alloc_contig_range) really need to mark isolate
7443 * CMA pageblocks even when they are not movable in fact so consider
7444 * them movable here.
7445 */
7446 if (is_migrate_cma(migratetype) &&
7447 is_migrate_cma(get_pageblock_migratetype(page)))
7448 return false;
7449
7450 pfn = page_to_pfn(page);
7451 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7452 unsigned long check = pfn + iter;
7453
7454 if (!pfn_valid_within(check))
7455 continue;
7456
7457 page = pfn_to_page(check);
7458
7459 if (PageReserved(page))
7460 return true;
7461
7462 /*
7463 * Hugepages are not in LRU lists, but they're movable.
7464 * We need not scan over tail pages bacause we don't
7465 * handle each tail page individually in migration.
7466 */
7467 if (PageHuge(page)) {
7468 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7469 continue;
7470 }
7471
7472 /*
7473 * We can't use page_count without pin a page
7474 * because another CPU can free compound page.
7475 * This check already skips compound tails of THP
7476 * because their page->_refcount is zero at all time.
7477 */
7478 if (!page_ref_count(page)) {
7479 if (PageBuddy(page))
7480 iter += (1 << page_order(page)) - 1;
7481 continue;
7482 }
7483
7484 /*
7485 * The HWPoisoned page may be not in buddy system, and
7486 * page_count() is not 0.
7487 */
7488 if (skip_hwpoisoned_pages && PageHWPoison(page))
7489 continue;
7490
7491 if (__PageMovable(page))
7492 continue;
7493
7494 if (!PageLRU(page))
7495 found++;
7496 /*
7497 * If there are RECLAIMABLE pages, we need to check
7498 * it. But now, memory offline itself doesn't call
7499 * shrink_node_slabs() and it still to be fixed.
7500 */
7501 /*
7502 * If the page is not RAM, page_count()should be 0.
7503 * we don't need more check. This is an _used_ not-movable page.
7504 *
7505 * The problematic thing here is PG_reserved pages. PG_reserved
7506 * is set to both of a memory hole page and a _used_ kernel
7507 * page at boot.
7508 */
7509 if (found > count)
7510 return true;
7511 }
7512 return false;
7513 }
7514
7515 bool is_pageblock_removable_nolock(struct page *page)
7516 {
7517 struct zone *zone;
7518 unsigned long pfn;
7519
7520 /*
7521 * We have to be careful here because we are iterating over memory
7522 * sections which are not zone aware so we might end up outside of
7523 * the zone but still within the section.
7524 * We have to take care about the node as well. If the node is offline
7525 * its NODE_DATA will be NULL - see page_zone.
7526 */
7527 if (!node_online(page_to_nid(page)))
7528 return false;
7529
7530 zone = page_zone(page);
7531 pfn = page_to_pfn(page);
7532 if (!zone_spans_pfn(zone, pfn))
7533 return false;
7534
7535 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7536 }
7537
7538 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7539
7540 static unsigned long pfn_max_align_down(unsigned long pfn)
7541 {
7542 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7543 pageblock_nr_pages) - 1);
7544 }
7545
7546 static unsigned long pfn_max_align_up(unsigned long pfn)
7547 {
7548 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7549 pageblock_nr_pages));
7550 }
7551
7552 /* [start, end) must belong to a single zone. */
7553 static int __alloc_contig_migrate_range(struct compact_control *cc,
7554 unsigned long start, unsigned long end)
7555 {
7556 /* This function is based on compact_zone() from compaction.c. */
7557 unsigned long nr_reclaimed;
7558 unsigned long pfn = start;
7559 unsigned int tries = 0;
7560 int ret = 0;
7561
7562 migrate_prep();
7563
7564 while (pfn < end || !list_empty(&cc->migratepages)) {
7565 if (fatal_signal_pending(current)) {
7566 ret = -EINTR;
7567 break;
7568 }
7569
7570 if (list_empty(&cc->migratepages)) {
7571 cc->nr_migratepages = 0;
7572 pfn = isolate_migratepages_range(cc, pfn, end);
7573 if (!pfn) {
7574 ret = -EINTR;
7575 break;
7576 }
7577 tries = 0;
7578 } else if (++tries == 5) {
7579 ret = ret < 0 ? ret : -EBUSY;
7580 break;
7581 }
7582
7583 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7584 &cc->migratepages);
7585 cc->nr_migratepages -= nr_reclaimed;
7586
7587 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7588 NULL, 0, cc->mode, MR_CMA);
7589 }
7590 if (ret < 0) {
7591 putback_movable_pages(&cc->migratepages);
7592 return ret;
7593 }
7594 return 0;
7595 }
7596
7597 /**
7598 * alloc_contig_range() -- tries to allocate given range of pages
7599 * @start: start PFN to allocate
7600 * @end: one-past-the-last PFN to allocate
7601 * @migratetype: migratetype of the underlaying pageblocks (either
7602 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7603 * in range must have the same migratetype and it must
7604 * be either of the two.
7605 * @gfp_mask: GFP mask to use during compaction
7606 *
7607 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7608 * aligned, however it's the caller's responsibility to guarantee that
7609 * we are the only thread that changes migrate type of pageblocks the
7610 * pages fall in.
7611 *
7612 * The PFN range must belong to a single zone.
7613 *
7614 * Returns zero on success or negative error code. On success all
7615 * pages which PFN is in [start, end) are allocated for the caller and
7616 * need to be freed with free_contig_range().
7617 */
7618 int alloc_contig_range(unsigned long start, unsigned long end,
7619 unsigned migratetype, gfp_t gfp_mask)
7620 {
7621 unsigned long outer_start, outer_end;
7622 unsigned int order;
7623 int ret = 0;
7624
7625 struct compact_control cc = {
7626 .nr_migratepages = 0,
7627 .order = -1,
7628 .zone = page_zone(pfn_to_page(start)),
7629 .mode = MIGRATE_SYNC,
7630 .ignore_skip_hint = true,
7631 .no_set_skip_hint = true,
7632 .gfp_mask = current_gfp_context(gfp_mask),
7633 };
7634 INIT_LIST_HEAD(&cc.migratepages);
7635
7636 /*
7637 * What we do here is we mark all pageblocks in range as
7638 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7639 * have different sizes, and due to the way page allocator
7640 * work, we align the range to biggest of the two pages so
7641 * that page allocator won't try to merge buddies from
7642 * different pageblocks and change MIGRATE_ISOLATE to some
7643 * other migration type.
7644 *
7645 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7646 * migrate the pages from an unaligned range (ie. pages that
7647 * we are interested in). This will put all the pages in
7648 * range back to page allocator as MIGRATE_ISOLATE.
7649 *
7650 * When this is done, we take the pages in range from page
7651 * allocator removing them from the buddy system. This way
7652 * page allocator will never consider using them.
7653 *
7654 * This lets us mark the pageblocks back as
7655 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7656 * aligned range but not in the unaligned, original range are
7657 * put back to page allocator so that buddy can use them.
7658 */
7659
7660 ret = start_isolate_page_range(pfn_max_align_down(start),
7661 pfn_max_align_up(end), migratetype,
7662 false);
7663 if (ret)
7664 return ret;
7665
7666 /*
7667 * In case of -EBUSY, we'd like to know which page causes problem.
7668 * So, just fall through. test_pages_isolated() has a tracepoint
7669 * which will report the busy page.
7670 *
7671 * It is possible that busy pages could become available before
7672 * the call to test_pages_isolated, and the range will actually be
7673 * allocated. So, if we fall through be sure to clear ret so that
7674 * -EBUSY is not accidentally used or returned to caller.
7675 */
7676 ret = __alloc_contig_migrate_range(&cc, start, end);
7677 if (ret && ret != -EBUSY)
7678 goto done;
7679 ret =0;
7680
7681 /*
7682 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7683 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7684 * more, all pages in [start, end) are free in page allocator.
7685 * What we are going to do is to allocate all pages from
7686 * [start, end) (that is remove them from page allocator).
7687 *
7688 * The only problem is that pages at the beginning and at the
7689 * end of interesting range may be not aligned with pages that
7690 * page allocator holds, ie. they can be part of higher order
7691 * pages. Because of this, we reserve the bigger range and
7692 * once this is done free the pages we are not interested in.
7693 *
7694 * We don't have to hold zone->lock here because the pages are
7695 * isolated thus they won't get removed from buddy.
7696 */
7697
7698 lru_add_drain_all();
7699 drain_all_pages(cc.zone);
7700
7701 order = 0;
7702 outer_start = start;
7703 while (!PageBuddy(pfn_to_page(outer_start))) {
7704 if (++order >= MAX_ORDER) {
7705 outer_start = start;
7706 break;
7707 }
7708 outer_start &= ~0UL << order;
7709 }
7710
7711 if (outer_start != start) {
7712 order = page_order(pfn_to_page(outer_start));
7713
7714 /*
7715 * outer_start page could be small order buddy page and
7716 * it doesn't include start page. Adjust outer_start
7717 * in this case to report failed page properly
7718 * on tracepoint in test_pages_isolated()
7719 */
7720 if (outer_start + (1UL << order) <= start)
7721 outer_start = start;
7722 }
7723
7724 /* Make sure the range is really isolated. */
7725 if (test_pages_isolated(outer_start, end, false)) {
7726 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7727 __func__, outer_start, end);
7728 ret = -EBUSY;
7729 goto done;
7730 }
7731
7732 /* Grab isolated pages from freelists. */
7733 outer_end = isolate_freepages_range(&cc, outer_start, end);
7734 if (!outer_end) {
7735 ret = -EBUSY;
7736 goto done;
7737 }
7738
7739 /* Free head and tail (if any) */
7740 if (start != outer_start)
7741 free_contig_range(outer_start, start - outer_start);
7742 if (end != outer_end)
7743 free_contig_range(end, outer_end - end);
7744
7745 done:
7746 undo_isolate_page_range(pfn_max_align_down(start),
7747 pfn_max_align_up(end), migratetype);
7748 return ret;
7749 }
7750
7751 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7752 {
7753 unsigned int count = 0;
7754
7755 for (; nr_pages--; pfn++) {
7756 struct page *page = pfn_to_page(pfn);
7757
7758 count += page_count(page) != 1;
7759 __free_page(page);
7760 }
7761 WARN(count != 0, "%d pages are still in use!\n", count);
7762 }
7763 #endif
7764
7765 #ifdef CONFIG_MEMORY_HOTPLUG
7766 /*
7767 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7768 * page high values need to be recalulated.
7769 */
7770 void __meminit zone_pcp_update(struct zone *zone)
7771 {
7772 unsigned cpu;
7773 mutex_lock(&pcp_batch_high_lock);
7774 for_each_possible_cpu(cpu)
7775 pageset_set_high_and_batch(zone,
7776 per_cpu_ptr(zone->pageset, cpu));
7777 mutex_unlock(&pcp_batch_high_lock);
7778 }
7779 #endif
7780
7781 void zone_pcp_reset(struct zone *zone)
7782 {
7783 unsigned long flags;
7784 int cpu;
7785 struct per_cpu_pageset *pset;
7786
7787 /* avoid races with drain_pages() */
7788 local_irq_save(flags);
7789 if (zone->pageset != &boot_pageset) {
7790 for_each_online_cpu(cpu) {
7791 pset = per_cpu_ptr(zone->pageset, cpu);
7792 drain_zonestat(zone, pset);
7793 }
7794 free_percpu(zone->pageset);
7795 zone->pageset = &boot_pageset;
7796 }
7797 local_irq_restore(flags);
7798 }
7799
7800 #ifdef CONFIG_MEMORY_HOTREMOVE
7801 /*
7802 * All pages in the range must be in a single zone and isolated
7803 * before calling this.
7804 */
7805 void
7806 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7807 {
7808 struct page *page;
7809 struct zone *zone;
7810 unsigned int order, i;
7811 unsigned long pfn;
7812 unsigned long flags;
7813 /* find the first valid pfn */
7814 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7815 if (pfn_valid(pfn))
7816 break;
7817 if (pfn == end_pfn)
7818 return;
7819 offline_mem_sections(pfn, end_pfn);
7820 zone = page_zone(pfn_to_page(pfn));
7821 spin_lock_irqsave(&zone->lock, flags);
7822 pfn = start_pfn;
7823 while (pfn < end_pfn) {
7824 if (!pfn_valid(pfn)) {
7825 pfn++;
7826 continue;
7827 }
7828 page = pfn_to_page(pfn);
7829 /*
7830 * The HWPoisoned page may be not in buddy system, and
7831 * page_count() is not 0.
7832 */
7833 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7834 pfn++;
7835 SetPageReserved(page);
7836 continue;
7837 }
7838
7839 BUG_ON(page_count(page));
7840 BUG_ON(!PageBuddy(page));
7841 order = page_order(page);
7842 #ifdef CONFIG_DEBUG_VM
7843 pr_info("remove from free list %lx %d %lx\n",
7844 pfn, 1 << order, end_pfn);
7845 #endif
7846 list_del(&page->lru);
7847 rmv_page_order(page);
7848 zone->free_area[order].nr_free--;
7849 for (i = 0; i < (1 << order); i++)
7850 SetPageReserved((page+i));
7851 pfn += (1 << order);
7852 }
7853 spin_unlock_irqrestore(&zone->lock, flags);
7854 }
7855 #endif
7856
7857 bool is_free_buddy_page(struct page *page)
7858 {
7859 struct zone *zone = page_zone(page);
7860 unsigned long pfn = page_to_pfn(page);
7861 unsigned long flags;
7862 unsigned int order;
7863
7864 spin_lock_irqsave(&zone->lock, flags);
7865 for (order = 0; order < MAX_ORDER; order++) {
7866 struct page *page_head = page - (pfn & ((1 << order) - 1));
7867
7868 if (PageBuddy(page_head) && page_order(page_head) >= order)
7869 break;
7870 }
7871 spin_unlock_irqrestore(&zone->lock, flags);
7872
7873 return order < MAX_ORDER;
7874 }