]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
Merge branch 'for-3.14' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 #endif
88
89 /*
90 * Array of node states.
91 */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 [N_CPU] = { { [0] = 1UL } },
104 #endif /* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119 unsigned long dirty_balance_reserve __read_mostly;
120
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123
124 #ifdef CONFIG_PM_SLEEP
125 /*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
133
134 static gfp_t saved_gfp_mask;
135
136 void pm_restore_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
143 }
144
145 void pm_restrict_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
151 }
152
153 bool pm_suspended_storage(void)
154 {
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164
165 static void __free_pages_ok(struct page *page, unsigned int order);
166
167 /*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
177 */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 32,
187 #endif
188 32,
189 };
190
191 EXPORT_SYMBOL(totalram_pages);
192
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 "DMA32",
199 #endif
200 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 "HighMem",
203 #endif
204 "Movable",
205 };
206
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes;
209
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232
233 int page_group_by_mobility_disabled __read_mostly;
234
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
239 migratetype = MIGRATE_UNMOVABLE;
240
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243 }
244
245 bool oom_killer_disabled __read_mostly;
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
267 return ret;
268 }
269
270 static int page_is_consistent(struct zone *zone, struct page *page)
271 {
272 if (!pfn_valid_within(page_to_pfn(page)))
273 return 0;
274 if (zone != page_zone(page))
275 return 0;
276
277 return 1;
278 }
279 /*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282 static int bad_range(struct zone *zone, struct page *page)
283 {
284 if (page_outside_zone_boundaries(zone, page))
285 return 1;
286 if (!page_is_consistent(zone, page))
287 return 1;
288
289 return 0;
290 }
291 #else
292 static inline int bad_range(struct zone *zone, struct page *page)
293 {
294 return 0;
295 }
296 #endif
297
298 static void bad_page(struct page *page)
299 {
300 static unsigned long resume;
301 static unsigned long nr_shown;
302 static unsigned long nr_unshown;
303
304 /* Don't complain about poisoned pages */
305 if (PageHWPoison(page)) {
306 page_mapcount_reset(page); /* remove PageBuddy */
307 return;
308 }
309
310 /*
311 * Allow a burst of 60 reports, then keep quiet for that minute;
312 * or allow a steady drip of one report per second.
313 */
314 if (nr_shown == 60) {
315 if (time_before(jiffies, resume)) {
316 nr_unshown++;
317 goto out;
318 }
319 if (nr_unshown) {
320 printk(KERN_ALERT
321 "BUG: Bad page state: %lu messages suppressed\n",
322 nr_unshown);
323 nr_unshown = 0;
324 }
325 nr_shown = 0;
326 }
327 if (nr_shown++ == 0)
328 resume = jiffies + 60 * HZ;
329
330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
331 current->comm, page_to_pfn(page));
332 dump_page(page);
333
334 print_modules();
335 dump_stack();
336 out:
337 /* Leave bad fields for debug, except PageBuddy could make trouble */
338 page_mapcount_reset(page); /* remove PageBuddy */
339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
340 }
341
342 /*
343 * Higher-order pages are called "compound pages". They are structured thusly:
344 *
345 * The first PAGE_SIZE page is called the "head page".
346 *
347 * The remaining PAGE_SIZE pages are called "tail pages".
348 *
349 * All pages have PG_compound set. All tail pages have their ->first_page
350 * pointing at the head page.
351 *
352 * The first tail page's ->lru.next holds the address of the compound page's
353 * put_page() function. Its ->lru.prev holds the order of allocation.
354 * This usage means that zero-order pages may not be compound.
355 */
356
357 static void free_compound_page(struct page *page)
358 {
359 __free_pages_ok(page, compound_order(page));
360 }
361
362 void prep_compound_page(struct page *page, unsigned long order)
363 {
364 int i;
365 int nr_pages = 1 << order;
366
367 set_compound_page_dtor(page, free_compound_page);
368 set_compound_order(page, order);
369 __SetPageHead(page);
370 for (i = 1; i < nr_pages; i++) {
371 struct page *p = page + i;
372 __SetPageTail(p);
373 set_page_count(p, 0);
374 p->first_page = page;
375 }
376 }
377
378 /* update __split_huge_page_refcount if you change this function */
379 static int destroy_compound_page(struct page *page, unsigned long order)
380 {
381 int i;
382 int nr_pages = 1 << order;
383 int bad = 0;
384
385 if (unlikely(compound_order(page) != order)) {
386 bad_page(page);
387 bad++;
388 }
389
390 __ClearPageHead(page);
391
392 for (i = 1; i < nr_pages; i++) {
393 struct page *p = page + i;
394
395 if (unlikely(!PageTail(p) || (p->first_page != page))) {
396 bad_page(page);
397 bad++;
398 }
399 __ClearPageTail(p);
400 }
401
402 return bad;
403 }
404
405 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
406 {
407 int i;
408
409 /*
410 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
411 * and __GFP_HIGHMEM from hard or soft interrupt context.
412 */
413 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
414 for (i = 0; i < (1 << order); i++)
415 clear_highpage(page + i);
416 }
417
418 #ifdef CONFIG_DEBUG_PAGEALLOC
419 unsigned int _debug_guardpage_minorder;
420
421 static int __init debug_guardpage_minorder_setup(char *buf)
422 {
423 unsigned long res;
424
425 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
426 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
427 return 0;
428 }
429 _debug_guardpage_minorder = res;
430 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
431 return 0;
432 }
433 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
434
435 static inline void set_page_guard_flag(struct page *page)
436 {
437 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
438 }
439
440 static inline void clear_page_guard_flag(struct page *page)
441 {
442 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
443 }
444 #else
445 static inline void set_page_guard_flag(struct page *page) { }
446 static inline void clear_page_guard_flag(struct page *page) { }
447 #endif
448
449 static inline void set_page_order(struct page *page, int order)
450 {
451 set_page_private(page, order);
452 __SetPageBuddy(page);
453 }
454
455 static inline void rmv_page_order(struct page *page)
456 {
457 __ClearPageBuddy(page);
458 set_page_private(page, 0);
459 }
460
461 /*
462 * Locate the struct page for both the matching buddy in our
463 * pair (buddy1) and the combined O(n+1) page they form (page).
464 *
465 * 1) Any buddy B1 will have an order O twin B2 which satisfies
466 * the following equation:
467 * B2 = B1 ^ (1 << O)
468 * For example, if the starting buddy (buddy2) is #8 its order
469 * 1 buddy is #10:
470 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
471 *
472 * 2) Any buddy B will have an order O+1 parent P which
473 * satisfies the following equation:
474 * P = B & ~(1 << O)
475 *
476 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
477 */
478 static inline unsigned long
479 __find_buddy_index(unsigned long page_idx, unsigned int order)
480 {
481 return page_idx ^ (1 << order);
482 }
483
484 /*
485 * This function checks whether a page is free && is the buddy
486 * we can do coalesce a page and its buddy if
487 * (a) the buddy is not in a hole &&
488 * (b) the buddy is in the buddy system &&
489 * (c) a page and its buddy have the same order &&
490 * (d) a page and its buddy are in the same zone.
491 *
492 * For recording whether a page is in the buddy system, we set ->_mapcount
493 * PAGE_BUDDY_MAPCOUNT_VALUE.
494 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
495 * serialized by zone->lock.
496 *
497 * For recording page's order, we use page_private(page).
498 */
499 static inline int page_is_buddy(struct page *page, struct page *buddy,
500 int order)
501 {
502 if (!pfn_valid_within(page_to_pfn(buddy)))
503 return 0;
504
505 if (page_zone_id(page) != page_zone_id(buddy))
506 return 0;
507
508 if (page_is_guard(buddy) && page_order(buddy) == order) {
509 VM_BUG_ON(page_count(buddy) != 0);
510 return 1;
511 }
512
513 if (PageBuddy(buddy) && page_order(buddy) == order) {
514 VM_BUG_ON(page_count(buddy) != 0);
515 return 1;
516 }
517 return 0;
518 }
519
520 /*
521 * Freeing function for a buddy system allocator.
522 *
523 * The concept of a buddy system is to maintain direct-mapped table
524 * (containing bit values) for memory blocks of various "orders".
525 * The bottom level table contains the map for the smallest allocatable
526 * units of memory (here, pages), and each level above it describes
527 * pairs of units from the levels below, hence, "buddies".
528 * At a high level, all that happens here is marking the table entry
529 * at the bottom level available, and propagating the changes upward
530 * as necessary, plus some accounting needed to play nicely with other
531 * parts of the VM system.
532 * At each level, we keep a list of pages, which are heads of continuous
533 * free pages of length of (1 << order) and marked with _mapcount
534 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
535 * field.
536 * So when we are allocating or freeing one, we can derive the state of the
537 * other. That is, if we allocate a small block, and both were
538 * free, the remainder of the region must be split into blocks.
539 * If a block is freed, and its buddy is also free, then this
540 * triggers coalescing into a block of larger size.
541 *
542 * -- nyc
543 */
544
545 static inline void __free_one_page(struct page *page,
546 struct zone *zone, unsigned int order,
547 int migratetype)
548 {
549 unsigned long page_idx;
550 unsigned long combined_idx;
551 unsigned long uninitialized_var(buddy_idx);
552 struct page *buddy;
553
554 VM_BUG_ON(!zone_is_initialized(zone));
555
556 if (unlikely(PageCompound(page)))
557 if (unlikely(destroy_compound_page(page, order)))
558 return;
559
560 VM_BUG_ON(migratetype == -1);
561
562 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
563
564 VM_BUG_ON(page_idx & ((1 << order) - 1));
565 VM_BUG_ON(bad_range(zone, page));
566
567 while (order < MAX_ORDER-1) {
568 buddy_idx = __find_buddy_index(page_idx, order);
569 buddy = page + (buddy_idx - page_idx);
570 if (!page_is_buddy(page, buddy, order))
571 break;
572 /*
573 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
574 * merge with it and move up one order.
575 */
576 if (page_is_guard(buddy)) {
577 clear_page_guard_flag(buddy);
578 set_page_private(page, 0);
579 __mod_zone_freepage_state(zone, 1 << order,
580 migratetype);
581 } else {
582 list_del(&buddy->lru);
583 zone->free_area[order].nr_free--;
584 rmv_page_order(buddy);
585 }
586 combined_idx = buddy_idx & page_idx;
587 page = page + (combined_idx - page_idx);
588 page_idx = combined_idx;
589 order++;
590 }
591 set_page_order(page, order);
592
593 /*
594 * If this is not the largest possible page, check if the buddy
595 * of the next-highest order is free. If it is, it's possible
596 * that pages are being freed that will coalesce soon. In case,
597 * that is happening, add the free page to the tail of the list
598 * so it's less likely to be used soon and more likely to be merged
599 * as a higher order page
600 */
601 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
602 struct page *higher_page, *higher_buddy;
603 combined_idx = buddy_idx & page_idx;
604 higher_page = page + (combined_idx - page_idx);
605 buddy_idx = __find_buddy_index(combined_idx, order + 1);
606 higher_buddy = higher_page + (buddy_idx - combined_idx);
607 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
608 list_add_tail(&page->lru,
609 &zone->free_area[order].free_list[migratetype]);
610 goto out;
611 }
612 }
613
614 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
615 out:
616 zone->free_area[order].nr_free++;
617 }
618
619 static inline int free_pages_check(struct page *page)
620 {
621 if (unlikely(page_mapcount(page) |
622 (page->mapping != NULL) |
623 (atomic_read(&page->_count) != 0) |
624 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
625 (mem_cgroup_bad_page_check(page)))) {
626 bad_page(page);
627 return 1;
628 }
629 page_cpupid_reset_last(page);
630 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
631 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
632 return 0;
633 }
634
635 /*
636 * Frees a number of pages from the PCP lists
637 * Assumes all pages on list are in same zone, and of same order.
638 * count is the number of pages to free.
639 *
640 * If the zone was previously in an "all pages pinned" state then look to
641 * see if this freeing clears that state.
642 *
643 * And clear the zone's pages_scanned counter, to hold off the "all pages are
644 * pinned" detection logic.
645 */
646 static void free_pcppages_bulk(struct zone *zone, int count,
647 struct per_cpu_pages *pcp)
648 {
649 int migratetype = 0;
650 int batch_free = 0;
651 int to_free = count;
652
653 spin_lock(&zone->lock);
654 zone->pages_scanned = 0;
655
656 while (to_free) {
657 struct page *page;
658 struct list_head *list;
659
660 /*
661 * Remove pages from lists in a round-robin fashion. A
662 * batch_free count is maintained that is incremented when an
663 * empty list is encountered. This is so more pages are freed
664 * off fuller lists instead of spinning excessively around empty
665 * lists
666 */
667 do {
668 batch_free++;
669 if (++migratetype == MIGRATE_PCPTYPES)
670 migratetype = 0;
671 list = &pcp->lists[migratetype];
672 } while (list_empty(list));
673
674 /* This is the only non-empty list. Free them all. */
675 if (batch_free == MIGRATE_PCPTYPES)
676 batch_free = to_free;
677
678 do {
679 int mt; /* migratetype of the to-be-freed page */
680
681 page = list_entry(list->prev, struct page, lru);
682 /* must delete as __free_one_page list manipulates */
683 list_del(&page->lru);
684 mt = get_freepage_migratetype(page);
685 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
686 __free_one_page(page, zone, 0, mt);
687 trace_mm_page_pcpu_drain(page, 0, mt);
688 if (likely(!is_migrate_isolate_page(page))) {
689 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
690 if (is_migrate_cma(mt))
691 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
692 }
693 } while (--to_free && --batch_free && !list_empty(list));
694 }
695 spin_unlock(&zone->lock);
696 }
697
698 static void free_one_page(struct zone *zone, struct page *page, int order,
699 int migratetype)
700 {
701 spin_lock(&zone->lock);
702 zone->pages_scanned = 0;
703
704 __free_one_page(page, zone, order, migratetype);
705 if (unlikely(!is_migrate_isolate(migratetype)))
706 __mod_zone_freepage_state(zone, 1 << order, migratetype);
707 spin_unlock(&zone->lock);
708 }
709
710 static bool free_pages_prepare(struct page *page, unsigned int order)
711 {
712 int i;
713 int bad = 0;
714
715 trace_mm_page_free(page, order);
716 kmemcheck_free_shadow(page, order);
717
718 if (PageAnon(page))
719 page->mapping = NULL;
720 for (i = 0; i < (1 << order); i++)
721 bad += free_pages_check(page + i);
722 if (bad)
723 return false;
724
725 if (!PageHighMem(page)) {
726 debug_check_no_locks_freed(page_address(page),
727 PAGE_SIZE << order);
728 debug_check_no_obj_freed(page_address(page),
729 PAGE_SIZE << order);
730 }
731 arch_free_page(page, order);
732 kernel_map_pages(page, 1 << order, 0);
733
734 return true;
735 }
736
737 static void __free_pages_ok(struct page *page, unsigned int order)
738 {
739 unsigned long flags;
740 int migratetype;
741
742 if (!free_pages_prepare(page, order))
743 return;
744
745 local_irq_save(flags);
746 __count_vm_events(PGFREE, 1 << order);
747 migratetype = get_pageblock_migratetype(page);
748 set_freepage_migratetype(page, migratetype);
749 free_one_page(page_zone(page), page, order, migratetype);
750 local_irq_restore(flags);
751 }
752
753 void __init __free_pages_bootmem(struct page *page, unsigned int order)
754 {
755 unsigned int nr_pages = 1 << order;
756 struct page *p = page;
757 unsigned int loop;
758
759 prefetchw(p);
760 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
761 prefetchw(p + 1);
762 __ClearPageReserved(p);
763 set_page_count(p, 0);
764 }
765 __ClearPageReserved(p);
766 set_page_count(p, 0);
767
768 page_zone(page)->managed_pages += nr_pages;
769 set_page_refcounted(page);
770 __free_pages(page, order);
771 }
772
773 #ifdef CONFIG_CMA
774 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
775 void __init init_cma_reserved_pageblock(struct page *page)
776 {
777 unsigned i = pageblock_nr_pages;
778 struct page *p = page;
779
780 do {
781 __ClearPageReserved(p);
782 set_page_count(p, 0);
783 } while (++p, --i);
784
785 set_page_refcounted(page);
786 set_pageblock_migratetype(page, MIGRATE_CMA);
787 __free_pages(page, pageblock_order);
788 adjust_managed_page_count(page, pageblock_nr_pages);
789 }
790 #endif
791
792 /*
793 * The order of subdivision here is critical for the IO subsystem.
794 * Please do not alter this order without good reasons and regression
795 * testing. Specifically, as large blocks of memory are subdivided,
796 * the order in which smaller blocks are delivered depends on the order
797 * they're subdivided in this function. This is the primary factor
798 * influencing the order in which pages are delivered to the IO
799 * subsystem according to empirical testing, and this is also justified
800 * by considering the behavior of a buddy system containing a single
801 * large block of memory acted on by a series of small allocations.
802 * This behavior is a critical factor in sglist merging's success.
803 *
804 * -- nyc
805 */
806 static inline void expand(struct zone *zone, struct page *page,
807 int low, int high, struct free_area *area,
808 int migratetype)
809 {
810 unsigned long size = 1 << high;
811
812 while (high > low) {
813 area--;
814 high--;
815 size >>= 1;
816 VM_BUG_ON(bad_range(zone, &page[size]));
817
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 if (high < debug_guardpage_minorder()) {
820 /*
821 * Mark as guard pages (or page), that will allow to
822 * merge back to allocator when buddy will be freed.
823 * Corresponding page table entries will not be touched,
824 * pages will stay not present in virtual address space
825 */
826 INIT_LIST_HEAD(&page[size].lru);
827 set_page_guard_flag(&page[size]);
828 set_page_private(&page[size], high);
829 /* Guard pages are not available for any usage */
830 __mod_zone_freepage_state(zone, -(1 << high),
831 migratetype);
832 continue;
833 }
834 #endif
835 list_add(&page[size].lru, &area->free_list[migratetype]);
836 area->nr_free++;
837 set_page_order(&page[size], high);
838 }
839 }
840
841 /*
842 * This page is about to be returned from the page allocator
843 */
844 static inline int check_new_page(struct page *page)
845 {
846 if (unlikely(page_mapcount(page) |
847 (page->mapping != NULL) |
848 (atomic_read(&page->_count) != 0) |
849 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
850 (mem_cgroup_bad_page_check(page)))) {
851 bad_page(page);
852 return 1;
853 }
854 return 0;
855 }
856
857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
858 {
859 int i;
860
861 for (i = 0; i < (1 << order); i++) {
862 struct page *p = page + i;
863 if (unlikely(check_new_page(p)))
864 return 1;
865 }
866
867 set_page_private(page, 0);
868 set_page_refcounted(page);
869
870 arch_alloc_page(page, order);
871 kernel_map_pages(page, 1 << order, 1);
872
873 if (gfp_flags & __GFP_ZERO)
874 prep_zero_page(page, order, gfp_flags);
875
876 if (order && (gfp_flags & __GFP_COMP))
877 prep_compound_page(page, order);
878
879 return 0;
880 }
881
882 /*
883 * Go through the free lists for the given migratetype and remove
884 * the smallest available page from the freelists
885 */
886 static inline
887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
888 int migratetype)
889 {
890 unsigned int current_order;
891 struct free_area *area;
892 struct page *page;
893
894 /* Find a page of the appropriate size in the preferred list */
895 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
896 area = &(zone->free_area[current_order]);
897 if (list_empty(&area->free_list[migratetype]))
898 continue;
899
900 page = list_entry(area->free_list[migratetype].next,
901 struct page, lru);
902 list_del(&page->lru);
903 rmv_page_order(page);
904 area->nr_free--;
905 expand(zone, page, order, current_order, area, migratetype);
906 return page;
907 }
908
909 return NULL;
910 }
911
912
913 /*
914 * This array describes the order lists are fallen back to when
915 * the free lists for the desirable migrate type are depleted
916 */
917 static int fallbacks[MIGRATE_TYPES][4] = {
918 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
920 #ifdef CONFIG_CMA
921 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
923 #else
924 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
925 #endif
926 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
927 #ifdef CONFIG_MEMORY_ISOLATION
928 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
929 #endif
930 };
931
932 /*
933 * Move the free pages in a range to the free lists of the requested type.
934 * Note that start_page and end_pages are not aligned on a pageblock
935 * boundary. If alignment is required, use move_freepages_block()
936 */
937 int move_freepages(struct zone *zone,
938 struct page *start_page, struct page *end_page,
939 int migratetype)
940 {
941 struct page *page;
942 unsigned long order;
943 int pages_moved = 0;
944
945 #ifndef CONFIG_HOLES_IN_ZONE
946 /*
947 * page_zone is not safe to call in this context when
948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
949 * anyway as we check zone boundaries in move_freepages_block().
950 * Remove at a later date when no bug reports exist related to
951 * grouping pages by mobility
952 */
953 BUG_ON(page_zone(start_page) != page_zone(end_page));
954 #endif
955
956 for (page = start_page; page <= end_page;) {
957 /* Make sure we are not inadvertently changing nodes */
958 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
959
960 if (!pfn_valid_within(page_to_pfn(page))) {
961 page++;
962 continue;
963 }
964
965 if (!PageBuddy(page)) {
966 page++;
967 continue;
968 }
969
970 order = page_order(page);
971 list_move(&page->lru,
972 &zone->free_area[order].free_list[migratetype]);
973 set_freepage_migratetype(page, migratetype);
974 page += 1 << order;
975 pages_moved += 1 << order;
976 }
977
978 return pages_moved;
979 }
980
981 int move_freepages_block(struct zone *zone, struct page *page,
982 int migratetype)
983 {
984 unsigned long start_pfn, end_pfn;
985 struct page *start_page, *end_page;
986
987 start_pfn = page_to_pfn(page);
988 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
989 start_page = pfn_to_page(start_pfn);
990 end_page = start_page + pageblock_nr_pages - 1;
991 end_pfn = start_pfn + pageblock_nr_pages - 1;
992
993 /* Do not cross zone boundaries */
994 if (!zone_spans_pfn(zone, start_pfn))
995 start_page = page;
996 if (!zone_spans_pfn(zone, end_pfn))
997 return 0;
998
999 return move_freepages(zone, start_page, end_page, migratetype);
1000 }
1001
1002 static void change_pageblock_range(struct page *pageblock_page,
1003 int start_order, int migratetype)
1004 {
1005 int nr_pageblocks = 1 << (start_order - pageblock_order);
1006
1007 while (nr_pageblocks--) {
1008 set_pageblock_migratetype(pageblock_page, migratetype);
1009 pageblock_page += pageblock_nr_pages;
1010 }
1011 }
1012
1013 /*
1014 * If breaking a large block of pages, move all free pages to the preferred
1015 * allocation list. If falling back for a reclaimable kernel allocation, be
1016 * more aggressive about taking ownership of free pages.
1017 *
1018 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1019 * nor move CMA pages to different free lists. We don't want unmovable pages
1020 * to be allocated from MIGRATE_CMA areas.
1021 *
1022 * Returns the new migratetype of the pageblock (or the same old migratetype
1023 * if it was unchanged).
1024 */
1025 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1026 int start_type, int fallback_type)
1027 {
1028 int current_order = page_order(page);
1029
1030 /*
1031 * When borrowing from MIGRATE_CMA, we need to release the excess
1032 * buddy pages to CMA itself.
1033 */
1034 if (is_migrate_cma(fallback_type))
1035 return fallback_type;
1036
1037 /* Take ownership for orders >= pageblock_order */
1038 if (current_order >= pageblock_order) {
1039 change_pageblock_range(page, current_order, start_type);
1040 return start_type;
1041 }
1042
1043 if (current_order >= pageblock_order / 2 ||
1044 start_type == MIGRATE_RECLAIMABLE ||
1045 page_group_by_mobility_disabled) {
1046 int pages;
1047
1048 pages = move_freepages_block(zone, page, start_type);
1049
1050 /* Claim the whole block if over half of it is free */
1051 if (pages >= (1 << (pageblock_order-1)) ||
1052 page_group_by_mobility_disabled) {
1053
1054 set_pageblock_migratetype(page, start_type);
1055 return start_type;
1056 }
1057
1058 }
1059
1060 return fallback_type;
1061 }
1062
1063 /* Remove an element from the buddy allocator from the fallback list */
1064 static inline struct page *
1065 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1066 {
1067 struct free_area *area;
1068 int current_order;
1069 struct page *page;
1070 int migratetype, new_type, i;
1071
1072 /* Find the largest possible block of pages in the other list */
1073 for (current_order = MAX_ORDER-1; current_order >= order;
1074 --current_order) {
1075 for (i = 0;; i++) {
1076 migratetype = fallbacks[start_migratetype][i];
1077
1078 /* MIGRATE_RESERVE handled later if necessary */
1079 if (migratetype == MIGRATE_RESERVE)
1080 break;
1081
1082 area = &(zone->free_area[current_order]);
1083 if (list_empty(&area->free_list[migratetype]))
1084 continue;
1085
1086 page = list_entry(area->free_list[migratetype].next,
1087 struct page, lru);
1088 area->nr_free--;
1089
1090 new_type = try_to_steal_freepages(zone, page,
1091 start_migratetype,
1092 migratetype);
1093
1094 /* Remove the page from the freelists */
1095 list_del(&page->lru);
1096 rmv_page_order(page);
1097
1098 expand(zone, page, order, current_order, area,
1099 new_type);
1100
1101 trace_mm_page_alloc_extfrag(page, order, current_order,
1102 start_migratetype, migratetype, new_type);
1103
1104 return page;
1105 }
1106 }
1107
1108 return NULL;
1109 }
1110
1111 /*
1112 * Do the hard work of removing an element from the buddy allocator.
1113 * Call me with the zone->lock already held.
1114 */
1115 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1116 int migratetype)
1117 {
1118 struct page *page;
1119
1120 retry_reserve:
1121 page = __rmqueue_smallest(zone, order, migratetype);
1122
1123 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1124 page = __rmqueue_fallback(zone, order, migratetype);
1125
1126 /*
1127 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1128 * is used because __rmqueue_smallest is an inline function
1129 * and we want just one call site
1130 */
1131 if (!page) {
1132 migratetype = MIGRATE_RESERVE;
1133 goto retry_reserve;
1134 }
1135 }
1136
1137 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1138 return page;
1139 }
1140
1141 /*
1142 * Obtain a specified number of elements from the buddy allocator, all under
1143 * a single hold of the lock, for efficiency. Add them to the supplied list.
1144 * Returns the number of new pages which were placed at *list.
1145 */
1146 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1147 unsigned long count, struct list_head *list,
1148 int migratetype, int cold)
1149 {
1150 int mt = migratetype, i;
1151
1152 spin_lock(&zone->lock);
1153 for (i = 0; i < count; ++i) {
1154 struct page *page = __rmqueue(zone, order, migratetype);
1155 if (unlikely(page == NULL))
1156 break;
1157
1158 /*
1159 * Split buddy pages returned by expand() are received here
1160 * in physical page order. The page is added to the callers and
1161 * list and the list head then moves forward. From the callers
1162 * perspective, the linked list is ordered by page number in
1163 * some conditions. This is useful for IO devices that can
1164 * merge IO requests if the physical pages are ordered
1165 * properly.
1166 */
1167 if (likely(cold == 0))
1168 list_add(&page->lru, list);
1169 else
1170 list_add_tail(&page->lru, list);
1171 if (IS_ENABLED(CONFIG_CMA)) {
1172 mt = get_pageblock_migratetype(page);
1173 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1174 mt = migratetype;
1175 }
1176 set_freepage_migratetype(page, mt);
1177 list = &page->lru;
1178 if (is_migrate_cma(mt))
1179 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1180 -(1 << order));
1181 }
1182 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1183 spin_unlock(&zone->lock);
1184 return i;
1185 }
1186
1187 #ifdef CONFIG_NUMA
1188 /*
1189 * Called from the vmstat counter updater to drain pagesets of this
1190 * currently executing processor on remote nodes after they have
1191 * expired.
1192 *
1193 * Note that this function must be called with the thread pinned to
1194 * a single processor.
1195 */
1196 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1197 {
1198 unsigned long flags;
1199 int to_drain;
1200 unsigned long batch;
1201
1202 local_irq_save(flags);
1203 batch = ACCESS_ONCE(pcp->batch);
1204 if (pcp->count >= batch)
1205 to_drain = batch;
1206 else
1207 to_drain = pcp->count;
1208 if (to_drain > 0) {
1209 free_pcppages_bulk(zone, to_drain, pcp);
1210 pcp->count -= to_drain;
1211 }
1212 local_irq_restore(flags);
1213 }
1214 #endif
1215
1216 /*
1217 * Drain pages of the indicated processor.
1218 *
1219 * The processor must either be the current processor and the
1220 * thread pinned to the current processor or a processor that
1221 * is not online.
1222 */
1223 static void drain_pages(unsigned int cpu)
1224 {
1225 unsigned long flags;
1226 struct zone *zone;
1227
1228 for_each_populated_zone(zone) {
1229 struct per_cpu_pageset *pset;
1230 struct per_cpu_pages *pcp;
1231
1232 local_irq_save(flags);
1233 pset = per_cpu_ptr(zone->pageset, cpu);
1234
1235 pcp = &pset->pcp;
1236 if (pcp->count) {
1237 free_pcppages_bulk(zone, pcp->count, pcp);
1238 pcp->count = 0;
1239 }
1240 local_irq_restore(flags);
1241 }
1242 }
1243
1244 /*
1245 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1246 */
1247 void drain_local_pages(void *arg)
1248 {
1249 drain_pages(smp_processor_id());
1250 }
1251
1252 /*
1253 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1254 *
1255 * Note that this code is protected against sending an IPI to an offline
1256 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1257 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1258 * nothing keeps CPUs from showing up after we populated the cpumask and
1259 * before the call to on_each_cpu_mask().
1260 */
1261 void drain_all_pages(void)
1262 {
1263 int cpu;
1264 struct per_cpu_pageset *pcp;
1265 struct zone *zone;
1266
1267 /*
1268 * Allocate in the BSS so we wont require allocation in
1269 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1270 */
1271 static cpumask_t cpus_with_pcps;
1272
1273 /*
1274 * We don't care about racing with CPU hotplug event
1275 * as offline notification will cause the notified
1276 * cpu to drain that CPU pcps and on_each_cpu_mask
1277 * disables preemption as part of its processing
1278 */
1279 for_each_online_cpu(cpu) {
1280 bool has_pcps = false;
1281 for_each_populated_zone(zone) {
1282 pcp = per_cpu_ptr(zone->pageset, cpu);
1283 if (pcp->pcp.count) {
1284 has_pcps = true;
1285 break;
1286 }
1287 }
1288 if (has_pcps)
1289 cpumask_set_cpu(cpu, &cpus_with_pcps);
1290 else
1291 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1292 }
1293 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1294 }
1295
1296 #ifdef CONFIG_HIBERNATION
1297
1298 void mark_free_pages(struct zone *zone)
1299 {
1300 unsigned long pfn, max_zone_pfn;
1301 unsigned long flags;
1302 int order, t;
1303 struct list_head *curr;
1304
1305 if (zone_is_empty(zone))
1306 return;
1307
1308 spin_lock_irqsave(&zone->lock, flags);
1309
1310 max_zone_pfn = zone_end_pfn(zone);
1311 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1312 if (pfn_valid(pfn)) {
1313 struct page *page = pfn_to_page(pfn);
1314
1315 if (!swsusp_page_is_forbidden(page))
1316 swsusp_unset_page_free(page);
1317 }
1318
1319 for_each_migratetype_order(order, t) {
1320 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1321 unsigned long i;
1322
1323 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1324 for (i = 0; i < (1UL << order); i++)
1325 swsusp_set_page_free(pfn_to_page(pfn + i));
1326 }
1327 }
1328 spin_unlock_irqrestore(&zone->lock, flags);
1329 }
1330 #endif /* CONFIG_PM */
1331
1332 /*
1333 * Free a 0-order page
1334 * cold == 1 ? free a cold page : free a hot page
1335 */
1336 void free_hot_cold_page(struct page *page, int cold)
1337 {
1338 struct zone *zone = page_zone(page);
1339 struct per_cpu_pages *pcp;
1340 unsigned long flags;
1341 int migratetype;
1342
1343 if (!free_pages_prepare(page, 0))
1344 return;
1345
1346 migratetype = get_pageblock_migratetype(page);
1347 set_freepage_migratetype(page, migratetype);
1348 local_irq_save(flags);
1349 __count_vm_event(PGFREE);
1350
1351 /*
1352 * We only track unmovable, reclaimable and movable on pcp lists.
1353 * Free ISOLATE pages back to the allocator because they are being
1354 * offlined but treat RESERVE as movable pages so we can get those
1355 * areas back if necessary. Otherwise, we may have to free
1356 * excessively into the page allocator
1357 */
1358 if (migratetype >= MIGRATE_PCPTYPES) {
1359 if (unlikely(is_migrate_isolate(migratetype))) {
1360 free_one_page(zone, page, 0, migratetype);
1361 goto out;
1362 }
1363 migratetype = MIGRATE_MOVABLE;
1364 }
1365
1366 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1367 if (cold)
1368 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1369 else
1370 list_add(&page->lru, &pcp->lists[migratetype]);
1371 pcp->count++;
1372 if (pcp->count >= pcp->high) {
1373 unsigned long batch = ACCESS_ONCE(pcp->batch);
1374 free_pcppages_bulk(zone, batch, pcp);
1375 pcp->count -= batch;
1376 }
1377
1378 out:
1379 local_irq_restore(flags);
1380 }
1381
1382 /*
1383 * Free a list of 0-order pages
1384 */
1385 void free_hot_cold_page_list(struct list_head *list, int cold)
1386 {
1387 struct page *page, *next;
1388
1389 list_for_each_entry_safe(page, next, list, lru) {
1390 trace_mm_page_free_batched(page, cold);
1391 free_hot_cold_page(page, cold);
1392 }
1393 }
1394
1395 /*
1396 * split_page takes a non-compound higher-order page, and splits it into
1397 * n (1<<order) sub-pages: page[0..n]
1398 * Each sub-page must be freed individually.
1399 *
1400 * Note: this is probably too low level an operation for use in drivers.
1401 * Please consult with lkml before using this in your driver.
1402 */
1403 void split_page(struct page *page, unsigned int order)
1404 {
1405 int i;
1406
1407 VM_BUG_ON(PageCompound(page));
1408 VM_BUG_ON(!page_count(page));
1409
1410 #ifdef CONFIG_KMEMCHECK
1411 /*
1412 * Split shadow pages too, because free(page[0]) would
1413 * otherwise free the whole shadow.
1414 */
1415 if (kmemcheck_page_is_tracked(page))
1416 split_page(virt_to_page(page[0].shadow), order);
1417 #endif
1418
1419 for (i = 1; i < (1 << order); i++)
1420 set_page_refcounted(page + i);
1421 }
1422 EXPORT_SYMBOL_GPL(split_page);
1423
1424 static int __isolate_free_page(struct page *page, unsigned int order)
1425 {
1426 unsigned long watermark;
1427 struct zone *zone;
1428 int mt;
1429
1430 BUG_ON(!PageBuddy(page));
1431
1432 zone = page_zone(page);
1433 mt = get_pageblock_migratetype(page);
1434
1435 if (!is_migrate_isolate(mt)) {
1436 /* Obey watermarks as if the page was being allocated */
1437 watermark = low_wmark_pages(zone) + (1 << order);
1438 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1439 return 0;
1440
1441 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1442 }
1443
1444 /* Remove page from free list */
1445 list_del(&page->lru);
1446 zone->free_area[order].nr_free--;
1447 rmv_page_order(page);
1448
1449 /* Set the pageblock if the isolated page is at least a pageblock */
1450 if (order >= pageblock_order - 1) {
1451 struct page *endpage = page + (1 << order) - 1;
1452 for (; page < endpage; page += pageblock_nr_pages) {
1453 int mt = get_pageblock_migratetype(page);
1454 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1455 set_pageblock_migratetype(page,
1456 MIGRATE_MOVABLE);
1457 }
1458 }
1459
1460 return 1UL << order;
1461 }
1462
1463 /*
1464 * Similar to split_page except the page is already free. As this is only
1465 * being used for migration, the migratetype of the block also changes.
1466 * As this is called with interrupts disabled, the caller is responsible
1467 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1468 * are enabled.
1469 *
1470 * Note: this is probably too low level an operation for use in drivers.
1471 * Please consult with lkml before using this in your driver.
1472 */
1473 int split_free_page(struct page *page)
1474 {
1475 unsigned int order;
1476 int nr_pages;
1477
1478 order = page_order(page);
1479
1480 nr_pages = __isolate_free_page(page, order);
1481 if (!nr_pages)
1482 return 0;
1483
1484 /* Split into individual pages */
1485 set_page_refcounted(page);
1486 split_page(page, order);
1487 return nr_pages;
1488 }
1489
1490 /*
1491 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1492 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1493 * or two.
1494 */
1495 static inline
1496 struct page *buffered_rmqueue(struct zone *preferred_zone,
1497 struct zone *zone, int order, gfp_t gfp_flags,
1498 int migratetype)
1499 {
1500 unsigned long flags;
1501 struct page *page;
1502 int cold = !!(gfp_flags & __GFP_COLD);
1503
1504 again:
1505 if (likely(order == 0)) {
1506 struct per_cpu_pages *pcp;
1507 struct list_head *list;
1508
1509 local_irq_save(flags);
1510 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1511 list = &pcp->lists[migratetype];
1512 if (list_empty(list)) {
1513 pcp->count += rmqueue_bulk(zone, 0,
1514 pcp->batch, list,
1515 migratetype, cold);
1516 if (unlikely(list_empty(list)))
1517 goto failed;
1518 }
1519
1520 if (cold)
1521 page = list_entry(list->prev, struct page, lru);
1522 else
1523 page = list_entry(list->next, struct page, lru);
1524
1525 list_del(&page->lru);
1526 pcp->count--;
1527 } else {
1528 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1529 /*
1530 * __GFP_NOFAIL is not to be used in new code.
1531 *
1532 * All __GFP_NOFAIL callers should be fixed so that they
1533 * properly detect and handle allocation failures.
1534 *
1535 * We most definitely don't want callers attempting to
1536 * allocate greater than order-1 page units with
1537 * __GFP_NOFAIL.
1538 */
1539 WARN_ON_ONCE(order > 1);
1540 }
1541 spin_lock_irqsave(&zone->lock, flags);
1542 page = __rmqueue(zone, order, migratetype);
1543 spin_unlock(&zone->lock);
1544 if (!page)
1545 goto failed;
1546 __mod_zone_freepage_state(zone, -(1 << order),
1547 get_pageblock_migratetype(page));
1548 }
1549
1550 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1551 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1552 zone_statistics(preferred_zone, zone, gfp_flags);
1553 local_irq_restore(flags);
1554
1555 VM_BUG_ON(bad_range(zone, page));
1556 if (prep_new_page(page, order, gfp_flags))
1557 goto again;
1558 return page;
1559
1560 failed:
1561 local_irq_restore(flags);
1562 return NULL;
1563 }
1564
1565 #ifdef CONFIG_FAIL_PAGE_ALLOC
1566
1567 static struct {
1568 struct fault_attr attr;
1569
1570 u32 ignore_gfp_highmem;
1571 u32 ignore_gfp_wait;
1572 u32 min_order;
1573 } fail_page_alloc = {
1574 .attr = FAULT_ATTR_INITIALIZER,
1575 .ignore_gfp_wait = 1,
1576 .ignore_gfp_highmem = 1,
1577 .min_order = 1,
1578 };
1579
1580 static int __init setup_fail_page_alloc(char *str)
1581 {
1582 return setup_fault_attr(&fail_page_alloc.attr, str);
1583 }
1584 __setup("fail_page_alloc=", setup_fail_page_alloc);
1585
1586 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1587 {
1588 if (order < fail_page_alloc.min_order)
1589 return false;
1590 if (gfp_mask & __GFP_NOFAIL)
1591 return false;
1592 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1593 return false;
1594 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1595 return false;
1596
1597 return should_fail(&fail_page_alloc.attr, 1 << order);
1598 }
1599
1600 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1601
1602 static int __init fail_page_alloc_debugfs(void)
1603 {
1604 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1605 struct dentry *dir;
1606
1607 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1608 &fail_page_alloc.attr);
1609 if (IS_ERR(dir))
1610 return PTR_ERR(dir);
1611
1612 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1613 &fail_page_alloc.ignore_gfp_wait))
1614 goto fail;
1615 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1616 &fail_page_alloc.ignore_gfp_highmem))
1617 goto fail;
1618 if (!debugfs_create_u32("min-order", mode, dir,
1619 &fail_page_alloc.min_order))
1620 goto fail;
1621
1622 return 0;
1623 fail:
1624 debugfs_remove_recursive(dir);
1625
1626 return -ENOMEM;
1627 }
1628
1629 late_initcall(fail_page_alloc_debugfs);
1630
1631 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1632
1633 #else /* CONFIG_FAIL_PAGE_ALLOC */
1634
1635 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1636 {
1637 return false;
1638 }
1639
1640 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1641
1642 /*
1643 * Return true if free pages are above 'mark'. This takes into account the order
1644 * of the allocation.
1645 */
1646 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1647 int classzone_idx, int alloc_flags, long free_pages)
1648 {
1649 /* free_pages my go negative - that's OK */
1650 long min = mark;
1651 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1652 int o;
1653 long free_cma = 0;
1654
1655 free_pages -= (1 << order) - 1;
1656 if (alloc_flags & ALLOC_HIGH)
1657 min -= min / 2;
1658 if (alloc_flags & ALLOC_HARDER)
1659 min -= min / 4;
1660 #ifdef CONFIG_CMA
1661 /* If allocation can't use CMA areas don't use free CMA pages */
1662 if (!(alloc_flags & ALLOC_CMA))
1663 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1664 #endif
1665
1666 if (free_pages - free_cma <= min + lowmem_reserve)
1667 return false;
1668 for (o = 0; o < order; o++) {
1669 /* At the next order, this order's pages become unavailable */
1670 free_pages -= z->free_area[o].nr_free << o;
1671
1672 /* Require fewer higher order pages to be free */
1673 min >>= 1;
1674
1675 if (free_pages <= min)
1676 return false;
1677 }
1678 return true;
1679 }
1680
1681 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1682 int classzone_idx, int alloc_flags)
1683 {
1684 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1685 zone_page_state(z, NR_FREE_PAGES));
1686 }
1687
1688 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1689 int classzone_idx, int alloc_flags)
1690 {
1691 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1692
1693 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1694 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1695
1696 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1697 free_pages);
1698 }
1699
1700 #ifdef CONFIG_NUMA
1701 /*
1702 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1703 * skip over zones that are not allowed by the cpuset, or that have
1704 * been recently (in last second) found to be nearly full. See further
1705 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1706 * that have to skip over a lot of full or unallowed zones.
1707 *
1708 * If the zonelist cache is present in the passed zonelist, then
1709 * returns a pointer to the allowed node mask (either the current
1710 * tasks mems_allowed, or node_states[N_MEMORY].)
1711 *
1712 * If the zonelist cache is not available for this zonelist, does
1713 * nothing and returns NULL.
1714 *
1715 * If the fullzones BITMAP in the zonelist cache is stale (more than
1716 * a second since last zap'd) then we zap it out (clear its bits.)
1717 *
1718 * We hold off even calling zlc_setup, until after we've checked the
1719 * first zone in the zonelist, on the theory that most allocations will
1720 * be satisfied from that first zone, so best to examine that zone as
1721 * quickly as we can.
1722 */
1723 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1724 {
1725 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1726 nodemask_t *allowednodes; /* zonelist_cache approximation */
1727
1728 zlc = zonelist->zlcache_ptr;
1729 if (!zlc)
1730 return NULL;
1731
1732 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1733 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1734 zlc->last_full_zap = jiffies;
1735 }
1736
1737 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1738 &cpuset_current_mems_allowed :
1739 &node_states[N_MEMORY];
1740 return allowednodes;
1741 }
1742
1743 /*
1744 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1745 * if it is worth looking at further for free memory:
1746 * 1) Check that the zone isn't thought to be full (doesn't have its
1747 * bit set in the zonelist_cache fullzones BITMAP).
1748 * 2) Check that the zones node (obtained from the zonelist_cache
1749 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1750 * Return true (non-zero) if zone is worth looking at further, or
1751 * else return false (zero) if it is not.
1752 *
1753 * This check -ignores- the distinction between various watermarks,
1754 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1755 * found to be full for any variation of these watermarks, it will
1756 * be considered full for up to one second by all requests, unless
1757 * we are so low on memory on all allowed nodes that we are forced
1758 * into the second scan of the zonelist.
1759 *
1760 * In the second scan we ignore this zonelist cache and exactly
1761 * apply the watermarks to all zones, even it is slower to do so.
1762 * We are low on memory in the second scan, and should leave no stone
1763 * unturned looking for a free page.
1764 */
1765 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1766 nodemask_t *allowednodes)
1767 {
1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1769 int i; /* index of *z in zonelist zones */
1770 int n; /* node that zone *z is on */
1771
1772 zlc = zonelist->zlcache_ptr;
1773 if (!zlc)
1774 return 1;
1775
1776 i = z - zonelist->_zonerefs;
1777 n = zlc->z_to_n[i];
1778
1779 /* This zone is worth trying if it is allowed but not full */
1780 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1781 }
1782
1783 /*
1784 * Given 'z' scanning a zonelist, set the corresponding bit in
1785 * zlc->fullzones, so that subsequent attempts to allocate a page
1786 * from that zone don't waste time re-examining it.
1787 */
1788 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1789 {
1790 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1791 int i; /* index of *z in zonelist zones */
1792
1793 zlc = zonelist->zlcache_ptr;
1794 if (!zlc)
1795 return;
1796
1797 i = z - zonelist->_zonerefs;
1798
1799 set_bit(i, zlc->fullzones);
1800 }
1801
1802 /*
1803 * clear all zones full, called after direct reclaim makes progress so that
1804 * a zone that was recently full is not skipped over for up to a second
1805 */
1806 static void zlc_clear_zones_full(struct zonelist *zonelist)
1807 {
1808 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1809
1810 zlc = zonelist->zlcache_ptr;
1811 if (!zlc)
1812 return;
1813
1814 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1815 }
1816
1817 static bool zone_local(struct zone *local_zone, struct zone *zone)
1818 {
1819 return local_zone->node == zone->node;
1820 }
1821
1822 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1823 {
1824 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1825 }
1826
1827 static void __paginginit init_zone_allows_reclaim(int nid)
1828 {
1829 int i;
1830
1831 for_each_online_node(i)
1832 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1833 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1834 else
1835 zone_reclaim_mode = 1;
1836 }
1837
1838 #else /* CONFIG_NUMA */
1839
1840 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1841 {
1842 return NULL;
1843 }
1844
1845 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1846 nodemask_t *allowednodes)
1847 {
1848 return 1;
1849 }
1850
1851 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1852 {
1853 }
1854
1855 static void zlc_clear_zones_full(struct zonelist *zonelist)
1856 {
1857 }
1858
1859 static bool zone_local(struct zone *local_zone, struct zone *zone)
1860 {
1861 return true;
1862 }
1863
1864 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1865 {
1866 return true;
1867 }
1868
1869 static inline void init_zone_allows_reclaim(int nid)
1870 {
1871 }
1872 #endif /* CONFIG_NUMA */
1873
1874 /*
1875 * get_page_from_freelist goes through the zonelist trying to allocate
1876 * a page.
1877 */
1878 static struct page *
1879 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1880 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1881 struct zone *preferred_zone, int migratetype)
1882 {
1883 struct zoneref *z;
1884 struct page *page = NULL;
1885 int classzone_idx;
1886 struct zone *zone;
1887 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1888 int zlc_active = 0; /* set if using zonelist_cache */
1889 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1890
1891 classzone_idx = zone_idx(preferred_zone);
1892 zonelist_scan:
1893 /*
1894 * Scan zonelist, looking for a zone with enough free.
1895 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1896 */
1897 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1898 high_zoneidx, nodemask) {
1899 unsigned long mark;
1900
1901 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1902 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1903 continue;
1904 if ((alloc_flags & ALLOC_CPUSET) &&
1905 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1906 continue;
1907 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1908 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1909 goto try_this_zone;
1910 /*
1911 * Distribute pages in proportion to the individual
1912 * zone size to ensure fair page aging. The zone a
1913 * page was allocated in should have no effect on the
1914 * time the page has in memory before being reclaimed.
1915 *
1916 * Try to stay in local zones in the fastpath. If
1917 * that fails, the slowpath is entered, which will do
1918 * another pass starting with the local zones, but
1919 * ultimately fall back to remote zones that do not
1920 * partake in the fairness round-robin cycle of this
1921 * zonelist.
1922 */
1923 if (alloc_flags & ALLOC_WMARK_LOW) {
1924 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1925 continue;
1926 if (!zone_local(preferred_zone, zone))
1927 continue;
1928 }
1929 /*
1930 * When allocating a page cache page for writing, we
1931 * want to get it from a zone that is within its dirty
1932 * limit, such that no single zone holds more than its
1933 * proportional share of globally allowed dirty pages.
1934 * The dirty limits take into account the zone's
1935 * lowmem reserves and high watermark so that kswapd
1936 * should be able to balance it without having to
1937 * write pages from its LRU list.
1938 *
1939 * This may look like it could increase pressure on
1940 * lower zones by failing allocations in higher zones
1941 * before they are full. But the pages that do spill
1942 * over are limited as the lower zones are protected
1943 * by this very same mechanism. It should not become
1944 * a practical burden to them.
1945 *
1946 * XXX: For now, allow allocations to potentially
1947 * exceed the per-zone dirty limit in the slowpath
1948 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1949 * which is important when on a NUMA setup the allowed
1950 * zones are together not big enough to reach the
1951 * global limit. The proper fix for these situations
1952 * will require awareness of zones in the
1953 * dirty-throttling and the flusher threads.
1954 */
1955 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1956 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1957 goto this_zone_full;
1958
1959 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1960 if (!zone_watermark_ok(zone, order, mark,
1961 classzone_idx, alloc_flags)) {
1962 int ret;
1963
1964 if (IS_ENABLED(CONFIG_NUMA) &&
1965 !did_zlc_setup && nr_online_nodes > 1) {
1966 /*
1967 * we do zlc_setup if there are multiple nodes
1968 * and before considering the first zone allowed
1969 * by the cpuset.
1970 */
1971 allowednodes = zlc_setup(zonelist, alloc_flags);
1972 zlc_active = 1;
1973 did_zlc_setup = 1;
1974 }
1975
1976 if (zone_reclaim_mode == 0 ||
1977 !zone_allows_reclaim(preferred_zone, zone))
1978 goto this_zone_full;
1979
1980 /*
1981 * As we may have just activated ZLC, check if the first
1982 * eligible zone has failed zone_reclaim recently.
1983 */
1984 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1985 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1986 continue;
1987
1988 ret = zone_reclaim(zone, gfp_mask, order);
1989 switch (ret) {
1990 case ZONE_RECLAIM_NOSCAN:
1991 /* did not scan */
1992 continue;
1993 case ZONE_RECLAIM_FULL:
1994 /* scanned but unreclaimable */
1995 continue;
1996 default:
1997 /* did we reclaim enough */
1998 if (zone_watermark_ok(zone, order, mark,
1999 classzone_idx, alloc_flags))
2000 goto try_this_zone;
2001
2002 /*
2003 * Failed to reclaim enough to meet watermark.
2004 * Only mark the zone full if checking the min
2005 * watermark or if we failed to reclaim just
2006 * 1<<order pages or else the page allocator
2007 * fastpath will prematurely mark zones full
2008 * when the watermark is between the low and
2009 * min watermarks.
2010 */
2011 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2012 ret == ZONE_RECLAIM_SOME)
2013 goto this_zone_full;
2014
2015 continue;
2016 }
2017 }
2018
2019 try_this_zone:
2020 page = buffered_rmqueue(preferred_zone, zone, order,
2021 gfp_mask, migratetype);
2022 if (page)
2023 break;
2024 this_zone_full:
2025 if (IS_ENABLED(CONFIG_NUMA))
2026 zlc_mark_zone_full(zonelist, z);
2027 }
2028
2029 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2030 /* Disable zlc cache for second zonelist scan */
2031 zlc_active = 0;
2032 goto zonelist_scan;
2033 }
2034
2035 if (page)
2036 /*
2037 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2038 * necessary to allocate the page. The expectation is
2039 * that the caller is taking steps that will free more
2040 * memory. The caller should avoid the page being used
2041 * for !PFMEMALLOC purposes.
2042 */
2043 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2044
2045 return page;
2046 }
2047
2048 /*
2049 * Large machines with many possible nodes should not always dump per-node
2050 * meminfo in irq context.
2051 */
2052 static inline bool should_suppress_show_mem(void)
2053 {
2054 bool ret = false;
2055
2056 #if NODES_SHIFT > 8
2057 ret = in_interrupt();
2058 #endif
2059 return ret;
2060 }
2061
2062 static DEFINE_RATELIMIT_STATE(nopage_rs,
2063 DEFAULT_RATELIMIT_INTERVAL,
2064 DEFAULT_RATELIMIT_BURST);
2065
2066 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2067 {
2068 unsigned int filter = SHOW_MEM_FILTER_NODES;
2069
2070 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2071 debug_guardpage_minorder() > 0)
2072 return;
2073
2074 /*
2075 * Walking all memory to count page types is very expensive and should
2076 * be inhibited in non-blockable contexts.
2077 */
2078 if (!(gfp_mask & __GFP_WAIT))
2079 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2080
2081 /*
2082 * This documents exceptions given to allocations in certain
2083 * contexts that are allowed to allocate outside current's set
2084 * of allowed nodes.
2085 */
2086 if (!(gfp_mask & __GFP_NOMEMALLOC))
2087 if (test_thread_flag(TIF_MEMDIE) ||
2088 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2089 filter &= ~SHOW_MEM_FILTER_NODES;
2090 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2091 filter &= ~SHOW_MEM_FILTER_NODES;
2092
2093 if (fmt) {
2094 struct va_format vaf;
2095 va_list args;
2096
2097 va_start(args, fmt);
2098
2099 vaf.fmt = fmt;
2100 vaf.va = &args;
2101
2102 pr_warn("%pV", &vaf);
2103
2104 va_end(args);
2105 }
2106
2107 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2108 current->comm, order, gfp_mask);
2109
2110 dump_stack();
2111 if (!should_suppress_show_mem())
2112 show_mem(filter);
2113 }
2114
2115 static inline int
2116 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2117 unsigned long did_some_progress,
2118 unsigned long pages_reclaimed)
2119 {
2120 /* Do not loop if specifically requested */
2121 if (gfp_mask & __GFP_NORETRY)
2122 return 0;
2123
2124 /* Always retry if specifically requested */
2125 if (gfp_mask & __GFP_NOFAIL)
2126 return 1;
2127
2128 /*
2129 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2130 * making forward progress without invoking OOM. Suspend also disables
2131 * storage devices so kswapd will not help. Bail if we are suspending.
2132 */
2133 if (!did_some_progress && pm_suspended_storage())
2134 return 0;
2135
2136 /*
2137 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2138 * means __GFP_NOFAIL, but that may not be true in other
2139 * implementations.
2140 */
2141 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2142 return 1;
2143
2144 /*
2145 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2146 * specified, then we retry until we no longer reclaim any pages
2147 * (above), or we've reclaimed an order of pages at least as
2148 * large as the allocation's order. In both cases, if the
2149 * allocation still fails, we stop retrying.
2150 */
2151 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2152 return 1;
2153
2154 return 0;
2155 }
2156
2157 static inline struct page *
2158 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2159 struct zonelist *zonelist, enum zone_type high_zoneidx,
2160 nodemask_t *nodemask, struct zone *preferred_zone,
2161 int migratetype)
2162 {
2163 struct page *page;
2164
2165 /* Acquire the OOM killer lock for the zones in zonelist */
2166 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2167 schedule_timeout_uninterruptible(1);
2168 return NULL;
2169 }
2170
2171 /*
2172 * Go through the zonelist yet one more time, keep very high watermark
2173 * here, this is only to catch a parallel oom killing, we must fail if
2174 * we're still under heavy pressure.
2175 */
2176 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2177 order, zonelist, high_zoneidx,
2178 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2179 preferred_zone, migratetype);
2180 if (page)
2181 goto out;
2182
2183 if (!(gfp_mask & __GFP_NOFAIL)) {
2184 /* The OOM killer will not help higher order allocs */
2185 if (order > PAGE_ALLOC_COSTLY_ORDER)
2186 goto out;
2187 /* The OOM killer does not needlessly kill tasks for lowmem */
2188 if (high_zoneidx < ZONE_NORMAL)
2189 goto out;
2190 /*
2191 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2192 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2193 * The caller should handle page allocation failure by itself if
2194 * it specifies __GFP_THISNODE.
2195 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2196 */
2197 if (gfp_mask & __GFP_THISNODE)
2198 goto out;
2199 }
2200 /* Exhausted what can be done so it's blamo time */
2201 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2202
2203 out:
2204 clear_zonelist_oom(zonelist, gfp_mask);
2205 return page;
2206 }
2207
2208 #ifdef CONFIG_COMPACTION
2209 /* Try memory compaction for high-order allocations before reclaim */
2210 static struct page *
2211 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2212 struct zonelist *zonelist, enum zone_type high_zoneidx,
2213 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2214 int migratetype, bool sync_migration,
2215 bool *contended_compaction, bool *deferred_compaction,
2216 unsigned long *did_some_progress)
2217 {
2218 if (!order)
2219 return NULL;
2220
2221 if (compaction_deferred(preferred_zone, order)) {
2222 *deferred_compaction = true;
2223 return NULL;
2224 }
2225
2226 current->flags |= PF_MEMALLOC;
2227 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2228 nodemask, sync_migration,
2229 contended_compaction);
2230 current->flags &= ~PF_MEMALLOC;
2231
2232 if (*did_some_progress != COMPACT_SKIPPED) {
2233 struct page *page;
2234
2235 /* Page migration frees to the PCP lists but we want merging */
2236 drain_pages(get_cpu());
2237 put_cpu();
2238
2239 page = get_page_from_freelist(gfp_mask, nodemask,
2240 order, zonelist, high_zoneidx,
2241 alloc_flags & ~ALLOC_NO_WATERMARKS,
2242 preferred_zone, migratetype);
2243 if (page) {
2244 preferred_zone->compact_blockskip_flush = false;
2245 preferred_zone->compact_considered = 0;
2246 preferred_zone->compact_defer_shift = 0;
2247 if (order >= preferred_zone->compact_order_failed)
2248 preferred_zone->compact_order_failed = order + 1;
2249 count_vm_event(COMPACTSUCCESS);
2250 return page;
2251 }
2252
2253 /*
2254 * It's bad if compaction run occurs and fails.
2255 * The most likely reason is that pages exist,
2256 * but not enough to satisfy watermarks.
2257 */
2258 count_vm_event(COMPACTFAIL);
2259
2260 /*
2261 * As async compaction considers a subset of pageblocks, only
2262 * defer if the failure was a sync compaction failure.
2263 */
2264 if (sync_migration)
2265 defer_compaction(preferred_zone, order);
2266
2267 cond_resched();
2268 }
2269
2270 return NULL;
2271 }
2272 #else
2273 static inline struct page *
2274 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2275 struct zonelist *zonelist, enum zone_type high_zoneidx,
2276 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2277 int migratetype, bool sync_migration,
2278 bool *contended_compaction, bool *deferred_compaction,
2279 unsigned long *did_some_progress)
2280 {
2281 return NULL;
2282 }
2283 #endif /* CONFIG_COMPACTION */
2284
2285 /* Perform direct synchronous page reclaim */
2286 static int
2287 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2288 nodemask_t *nodemask)
2289 {
2290 struct reclaim_state reclaim_state;
2291 int progress;
2292
2293 cond_resched();
2294
2295 /* We now go into synchronous reclaim */
2296 cpuset_memory_pressure_bump();
2297 current->flags |= PF_MEMALLOC;
2298 lockdep_set_current_reclaim_state(gfp_mask);
2299 reclaim_state.reclaimed_slab = 0;
2300 current->reclaim_state = &reclaim_state;
2301
2302 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2303
2304 current->reclaim_state = NULL;
2305 lockdep_clear_current_reclaim_state();
2306 current->flags &= ~PF_MEMALLOC;
2307
2308 cond_resched();
2309
2310 return progress;
2311 }
2312
2313 /* The really slow allocator path where we enter direct reclaim */
2314 static inline struct page *
2315 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2316 struct zonelist *zonelist, enum zone_type high_zoneidx,
2317 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2318 int migratetype, unsigned long *did_some_progress)
2319 {
2320 struct page *page = NULL;
2321 bool drained = false;
2322
2323 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2324 nodemask);
2325 if (unlikely(!(*did_some_progress)))
2326 return NULL;
2327
2328 /* After successful reclaim, reconsider all zones for allocation */
2329 if (IS_ENABLED(CONFIG_NUMA))
2330 zlc_clear_zones_full(zonelist);
2331
2332 retry:
2333 page = get_page_from_freelist(gfp_mask, nodemask, order,
2334 zonelist, high_zoneidx,
2335 alloc_flags & ~ALLOC_NO_WATERMARKS,
2336 preferred_zone, migratetype);
2337
2338 /*
2339 * If an allocation failed after direct reclaim, it could be because
2340 * pages are pinned on the per-cpu lists. Drain them and try again
2341 */
2342 if (!page && !drained) {
2343 drain_all_pages();
2344 drained = true;
2345 goto retry;
2346 }
2347
2348 return page;
2349 }
2350
2351 /*
2352 * This is called in the allocator slow-path if the allocation request is of
2353 * sufficient urgency to ignore watermarks and take other desperate measures
2354 */
2355 static inline struct page *
2356 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2357 struct zonelist *zonelist, enum zone_type high_zoneidx,
2358 nodemask_t *nodemask, struct zone *preferred_zone,
2359 int migratetype)
2360 {
2361 struct page *page;
2362
2363 do {
2364 page = get_page_from_freelist(gfp_mask, nodemask, order,
2365 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2366 preferred_zone, migratetype);
2367
2368 if (!page && gfp_mask & __GFP_NOFAIL)
2369 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2370 } while (!page && (gfp_mask & __GFP_NOFAIL));
2371
2372 return page;
2373 }
2374
2375 static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2376 struct zonelist *zonelist,
2377 enum zone_type high_zoneidx,
2378 struct zone *preferred_zone)
2379 {
2380 struct zoneref *z;
2381 struct zone *zone;
2382
2383 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2384 if (!(gfp_mask & __GFP_NO_KSWAPD))
2385 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2386 /*
2387 * Only reset the batches of zones that were actually
2388 * considered in the fast path, we don't want to
2389 * thrash fairness information for zones that are not
2390 * actually part of this zonelist's round-robin cycle.
2391 */
2392 if (!zone_local(preferred_zone, zone))
2393 continue;
2394 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2395 high_wmark_pages(zone) -
2396 low_wmark_pages(zone) -
2397 zone_page_state(zone, NR_ALLOC_BATCH));
2398 }
2399 }
2400
2401 static inline int
2402 gfp_to_alloc_flags(gfp_t gfp_mask)
2403 {
2404 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2405 const gfp_t wait = gfp_mask & __GFP_WAIT;
2406
2407 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2408 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2409
2410 /*
2411 * The caller may dip into page reserves a bit more if the caller
2412 * cannot run direct reclaim, or if the caller has realtime scheduling
2413 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2414 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2415 */
2416 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2417
2418 if (!wait) {
2419 /*
2420 * Not worth trying to allocate harder for
2421 * __GFP_NOMEMALLOC even if it can't schedule.
2422 */
2423 if (!(gfp_mask & __GFP_NOMEMALLOC))
2424 alloc_flags |= ALLOC_HARDER;
2425 /*
2426 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2427 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2428 */
2429 alloc_flags &= ~ALLOC_CPUSET;
2430 } else if (unlikely(rt_task(current)) && !in_interrupt())
2431 alloc_flags |= ALLOC_HARDER;
2432
2433 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2434 if (gfp_mask & __GFP_MEMALLOC)
2435 alloc_flags |= ALLOC_NO_WATERMARKS;
2436 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2437 alloc_flags |= ALLOC_NO_WATERMARKS;
2438 else if (!in_interrupt() &&
2439 ((current->flags & PF_MEMALLOC) ||
2440 unlikely(test_thread_flag(TIF_MEMDIE))))
2441 alloc_flags |= ALLOC_NO_WATERMARKS;
2442 }
2443 #ifdef CONFIG_CMA
2444 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2445 alloc_flags |= ALLOC_CMA;
2446 #endif
2447 return alloc_flags;
2448 }
2449
2450 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2451 {
2452 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2453 }
2454
2455 static inline struct page *
2456 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2457 struct zonelist *zonelist, enum zone_type high_zoneidx,
2458 nodemask_t *nodemask, struct zone *preferred_zone,
2459 int migratetype)
2460 {
2461 const gfp_t wait = gfp_mask & __GFP_WAIT;
2462 struct page *page = NULL;
2463 int alloc_flags;
2464 unsigned long pages_reclaimed = 0;
2465 unsigned long did_some_progress;
2466 bool sync_migration = false;
2467 bool deferred_compaction = false;
2468 bool contended_compaction = false;
2469
2470 /*
2471 * In the slowpath, we sanity check order to avoid ever trying to
2472 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2473 * be using allocators in order of preference for an area that is
2474 * too large.
2475 */
2476 if (order >= MAX_ORDER) {
2477 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2478 return NULL;
2479 }
2480
2481 /*
2482 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2483 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2484 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2485 * using a larger set of nodes after it has established that the
2486 * allowed per node queues are empty and that nodes are
2487 * over allocated.
2488 */
2489 if (IS_ENABLED(CONFIG_NUMA) &&
2490 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2491 goto nopage;
2492
2493 restart:
2494 prepare_slowpath(gfp_mask, order, zonelist,
2495 high_zoneidx, preferred_zone);
2496
2497 /*
2498 * OK, we're below the kswapd watermark and have kicked background
2499 * reclaim. Now things get more complex, so set up alloc_flags according
2500 * to how we want to proceed.
2501 */
2502 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2503
2504 /*
2505 * Find the true preferred zone if the allocation is unconstrained by
2506 * cpusets.
2507 */
2508 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2509 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2510 &preferred_zone);
2511
2512 rebalance:
2513 /* This is the last chance, in general, before the goto nopage. */
2514 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2515 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2516 preferred_zone, migratetype);
2517 if (page)
2518 goto got_pg;
2519
2520 /* Allocate without watermarks if the context allows */
2521 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2522 /*
2523 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2524 * the allocation is high priority and these type of
2525 * allocations are system rather than user orientated
2526 */
2527 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2528
2529 page = __alloc_pages_high_priority(gfp_mask, order,
2530 zonelist, high_zoneidx, nodemask,
2531 preferred_zone, migratetype);
2532 if (page) {
2533 goto got_pg;
2534 }
2535 }
2536
2537 /* Atomic allocations - we can't balance anything */
2538 if (!wait)
2539 goto nopage;
2540
2541 /* Avoid recursion of direct reclaim */
2542 if (current->flags & PF_MEMALLOC)
2543 goto nopage;
2544
2545 /* Avoid allocations with no watermarks from looping endlessly */
2546 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2547 goto nopage;
2548
2549 /*
2550 * Try direct compaction. The first pass is asynchronous. Subsequent
2551 * attempts after direct reclaim are synchronous
2552 */
2553 page = __alloc_pages_direct_compact(gfp_mask, order,
2554 zonelist, high_zoneidx,
2555 nodemask,
2556 alloc_flags, preferred_zone,
2557 migratetype, sync_migration,
2558 &contended_compaction,
2559 &deferred_compaction,
2560 &did_some_progress);
2561 if (page)
2562 goto got_pg;
2563 sync_migration = true;
2564
2565 /*
2566 * If compaction is deferred for high-order allocations, it is because
2567 * sync compaction recently failed. In this is the case and the caller
2568 * requested a movable allocation that does not heavily disrupt the
2569 * system then fail the allocation instead of entering direct reclaim.
2570 */
2571 if ((deferred_compaction || contended_compaction) &&
2572 (gfp_mask & __GFP_NO_KSWAPD))
2573 goto nopage;
2574
2575 /* Try direct reclaim and then allocating */
2576 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2577 zonelist, high_zoneidx,
2578 nodemask,
2579 alloc_flags, preferred_zone,
2580 migratetype, &did_some_progress);
2581 if (page)
2582 goto got_pg;
2583
2584 /*
2585 * If we failed to make any progress reclaiming, then we are
2586 * running out of options and have to consider going OOM
2587 */
2588 if (!did_some_progress) {
2589 if (oom_gfp_allowed(gfp_mask)) {
2590 if (oom_killer_disabled)
2591 goto nopage;
2592 /* Coredumps can quickly deplete all memory reserves */
2593 if ((current->flags & PF_DUMPCORE) &&
2594 !(gfp_mask & __GFP_NOFAIL))
2595 goto nopage;
2596 page = __alloc_pages_may_oom(gfp_mask, order,
2597 zonelist, high_zoneidx,
2598 nodemask, preferred_zone,
2599 migratetype);
2600 if (page)
2601 goto got_pg;
2602
2603 if (!(gfp_mask & __GFP_NOFAIL)) {
2604 /*
2605 * The oom killer is not called for high-order
2606 * allocations that may fail, so if no progress
2607 * is being made, there are no other options and
2608 * retrying is unlikely to help.
2609 */
2610 if (order > PAGE_ALLOC_COSTLY_ORDER)
2611 goto nopage;
2612 /*
2613 * The oom killer is not called for lowmem
2614 * allocations to prevent needlessly killing
2615 * innocent tasks.
2616 */
2617 if (high_zoneidx < ZONE_NORMAL)
2618 goto nopage;
2619 }
2620
2621 goto restart;
2622 }
2623 }
2624
2625 /* Check if we should retry the allocation */
2626 pages_reclaimed += did_some_progress;
2627 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2628 pages_reclaimed)) {
2629 /* Wait for some write requests to complete then retry */
2630 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2631 goto rebalance;
2632 } else {
2633 /*
2634 * High-order allocations do not necessarily loop after
2635 * direct reclaim and reclaim/compaction depends on compaction
2636 * being called after reclaim so call directly if necessary
2637 */
2638 page = __alloc_pages_direct_compact(gfp_mask, order,
2639 zonelist, high_zoneidx,
2640 nodemask,
2641 alloc_flags, preferred_zone,
2642 migratetype, sync_migration,
2643 &contended_compaction,
2644 &deferred_compaction,
2645 &did_some_progress);
2646 if (page)
2647 goto got_pg;
2648 }
2649
2650 nopage:
2651 warn_alloc_failed(gfp_mask, order, NULL);
2652 return page;
2653 got_pg:
2654 if (kmemcheck_enabled)
2655 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2656
2657 return page;
2658 }
2659
2660 /*
2661 * This is the 'heart' of the zoned buddy allocator.
2662 */
2663 struct page *
2664 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2665 struct zonelist *zonelist, nodemask_t *nodemask)
2666 {
2667 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2668 struct zone *preferred_zone;
2669 struct page *page = NULL;
2670 int migratetype = allocflags_to_migratetype(gfp_mask);
2671 unsigned int cpuset_mems_cookie;
2672 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2673 struct mem_cgroup *memcg = NULL;
2674
2675 gfp_mask &= gfp_allowed_mask;
2676
2677 lockdep_trace_alloc(gfp_mask);
2678
2679 might_sleep_if(gfp_mask & __GFP_WAIT);
2680
2681 if (should_fail_alloc_page(gfp_mask, order))
2682 return NULL;
2683
2684 /*
2685 * Check the zones suitable for the gfp_mask contain at least one
2686 * valid zone. It's possible to have an empty zonelist as a result
2687 * of GFP_THISNODE and a memoryless node
2688 */
2689 if (unlikely(!zonelist->_zonerefs->zone))
2690 return NULL;
2691
2692 /*
2693 * Will only have any effect when __GFP_KMEMCG is set. This is
2694 * verified in the (always inline) callee
2695 */
2696 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2697 return NULL;
2698
2699 retry_cpuset:
2700 cpuset_mems_cookie = get_mems_allowed();
2701
2702 /* The preferred zone is used for statistics later */
2703 first_zones_zonelist(zonelist, high_zoneidx,
2704 nodemask ? : &cpuset_current_mems_allowed,
2705 &preferred_zone);
2706 if (!preferred_zone)
2707 goto out;
2708
2709 #ifdef CONFIG_CMA
2710 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2711 alloc_flags |= ALLOC_CMA;
2712 #endif
2713 /* First allocation attempt */
2714 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2715 zonelist, high_zoneidx, alloc_flags,
2716 preferred_zone, migratetype);
2717 if (unlikely(!page)) {
2718 /*
2719 * Runtime PM, block IO and its error handling path
2720 * can deadlock because I/O on the device might not
2721 * complete.
2722 */
2723 gfp_mask = memalloc_noio_flags(gfp_mask);
2724 page = __alloc_pages_slowpath(gfp_mask, order,
2725 zonelist, high_zoneidx, nodemask,
2726 preferred_zone, migratetype);
2727 }
2728
2729 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2730
2731 out:
2732 /*
2733 * When updating a task's mems_allowed, it is possible to race with
2734 * parallel threads in such a way that an allocation can fail while
2735 * the mask is being updated. If a page allocation is about to fail,
2736 * check if the cpuset changed during allocation and if so, retry.
2737 */
2738 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2739 goto retry_cpuset;
2740
2741 memcg_kmem_commit_charge(page, memcg, order);
2742
2743 return page;
2744 }
2745 EXPORT_SYMBOL(__alloc_pages_nodemask);
2746
2747 /*
2748 * Common helper functions.
2749 */
2750 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2751 {
2752 struct page *page;
2753
2754 /*
2755 * __get_free_pages() returns a 32-bit address, which cannot represent
2756 * a highmem page
2757 */
2758 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2759
2760 page = alloc_pages(gfp_mask, order);
2761 if (!page)
2762 return 0;
2763 return (unsigned long) page_address(page);
2764 }
2765 EXPORT_SYMBOL(__get_free_pages);
2766
2767 unsigned long get_zeroed_page(gfp_t gfp_mask)
2768 {
2769 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2770 }
2771 EXPORT_SYMBOL(get_zeroed_page);
2772
2773 void __free_pages(struct page *page, unsigned int order)
2774 {
2775 if (put_page_testzero(page)) {
2776 if (order == 0)
2777 free_hot_cold_page(page, 0);
2778 else
2779 __free_pages_ok(page, order);
2780 }
2781 }
2782
2783 EXPORT_SYMBOL(__free_pages);
2784
2785 void free_pages(unsigned long addr, unsigned int order)
2786 {
2787 if (addr != 0) {
2788 VM_BUG_ON(!virt_addr_valid((void *)addr));
2789 __free_pages(virt_to_page((void *)addr), order);
2790 }
2791 }
2792
2793 EXPORT_SYMBOL(free_pages);
2794
2795 /*
2796 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2797 * pages allocated with __GFP_KMEMCG.
2798 *
2799 * Those pages are accounted to a particular memcg, embedded in the
2800 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2801 * for that information only to find out that it is NULL for users who have no
2802 * interest in that whatsoever, we provide these functions.
2803 *
2804 * The caller knows better which flags it relies on.
2805 */
2806 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2807 {
2808 memcg_kmem_uncharge_pages(page, order);
2809 __free_pages(page, order);
2810 }
2811
2812 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2813 {
2814 if (addr != 0) {
2815 VM_BUG_ON(!virt_addr_valid((void *)addr));
2816 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2817 }
2818 }
2819
2820 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2821 {
2822 if (addr) {
2823 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2824 unsigned long used = addr + PAGE_ALIGN(size);
2825
2826 split_page(virt_to_page((void *)addr), order);
2827 while (used < alloc_end) {
2828 free_page(used);
2829 used += PAGE_SIZE;
2830 }
2831 }
2832 return (void *)addr;
2833 }
2834
2835 /**
2836 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2837 * @size: the number of bytes to allocate
2838 * @gfp_mask: GFP flags for the allocation
2839 *
2840 * This function is similar to alloc_pages(), except that it allocates the
2841 * minimum number of pages to satisfy the request. alloc_pages() can only
2842 * allocate memory in power-of-two pages.
2843 *
2844 * This function is also limited by MAX_ORDER.
2845 *
2846 * Memory allocated by this function must be released by free_pages_exact().
2847 */
2848 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2849 {
2850 unsigned int order = get_order(size);
2851 unsigned long addr;
2852
2853 addr = __get_free_pages(gfp_mask, order);
2854 return make_alloc_exact(addr, order, size);
2855 }
2856 EXPORT_SYMBOL(alloc_pages_exact);
2857
2858 /**
2859 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2860 * pages on a node.
2861 * @nid: the preferred node ID where memory should be allocated
2862 * @size: the number of bytes to allocate
2863 * @gfp_mask: GFP flags for the allocation
2864 *
2865 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2866 * back.
2867 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2868 * but is not exact.
2869 */
2870 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2871 {
2872 unsigned order = get_order(size);
2873 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2874 if (!p)
2875 return NULL;
2876 return make_alloc_exact((unsigned long)page_address(p), order, size);
2877 }
2878 EXPORT_SYMBOL(alloc_pages_exact_nid);
2879
2880 /**
2881 * free_pages_exact - release memory allocated via alloc_pages_exact()
2882 * @virt: the value returned by alloc_pages_exact.
2883 * @size: size of allocation, same value as passed to alloc_pages_exact().
2884 *
2885 * Release the memory allocated by a previous call to alloc_pages_exact.
2886 */
2887 void free_pages_exact(void *virt, size_t size)
2888 {
2889 unsigned long addr = (unsigned long)virt;
2890 unsigned long end = addr + PAGE_ALIGN(size);
2891
2892 while (addr < end) {
2893 free_page(addr);
2894 addr += PAGE_SIZE;
2895 }
2896 }
2897 EXPORT_SYMBOL(free_pages_exact);
2898
2899 /**
2900 * nr_free_zone_pages - count number of pages beyond high watermark
2901 * @offset: The zone index of the highest zone
2902 *
2903 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2904 * high watermark within all zones at or below a given zone index. For each
2905 * zone, the number of pages is calculated as:
2906 * managed_pages - high_pages
2907 */
2908 static unsigned long nr_free_zone_pages(int offset)
2909 {
2910 struct zoneref *z;
2911 struct zone *zone;
2912
2913 /* Just pick one node, since fallback list is circular */
2914 unsigned long sum = 0;
2915
2916 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2917
2918 for_each_zone_zonelist(zone, z, zonelist, offset) {
2919 unsigned long size = zone->managed_pages;
2920 unsigned long high = high_wmark_pages(zone);
2921 if (size > high)
2922 sum += size - high;
2923 }
2924
2925 return sum;
2926 }
2927
2928 /**
2929 * nr_free_buffer_pages - count number of pages beyond high watermark
2930 *
2931 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2932 * watermark within ZONE_DMA and ZONE_NORMAL.
2933 */
2934 unsigned long nr_free_buffer_pages(void)
2935 {
2936 return nr_free_zone_pages(gfp_zone(GFP_USER));
2937 }
2938 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2939
2940 /**
2941 * nr_free_pagecache_pages - count number of pages beyond high watermark
2942 *
2943 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2944 * high watermark within all zones.
2945 */
2946 unsigned long nr_free_pagecache_pages(void)
2947 {
2948 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2949 }
2950
2951 static inline void show_node(struct zone *zone)
2952 {
2953 if (IS_ENABLED(CONFIG_NUMA))
2954 printk("Node %d ", zone_to_nid(zone));
2955 }
2956
2957 void si_meminfo(struct sysinfo *val)
2958 {
2959 val->totalram = totalram_pages;
2960 val->sharedram = 0;
2961 val->freeram = global_page_state(NR_FREE_PAGES);
2962 val->bufferram = nr_blockdev_pages();
2963 val->totalhigh = totalhigh_pages;
2964 val->freehigh = nr_free_highpages();
2965 val->mem_unit = PAGE_SIZE;
2966 }
2967
2968 EXPORT_SYMBOL(si_meminfo);
2969
2970 #ifdef CONFIG_NUMA
2971 void si_meminfo_node(struct sysinfo *val, int nid)
2972 {
2973 int zone_type; /* needs to be signed */
2974 unsigned long managed_pages = 0;
2975 pg_data_t *pgdat = NODE_DATA(nid);
2976
2977 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2978 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2979 val->totalram = managed_pages;
2980 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2981 #ifdef CONFIG_HIGHMEM
2982 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2983 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2984 NR_FREE_PAGES);
2985 #else
2986 val->totalhigh = 0;
2987 val->freehigh = 0;
2988 #endif
2989 val->mem_unit = PAGE_SIZE;
2990 }
2991 #endif
2992
2993 /*
2994 * Determine whether the node should be displayed or not, depending on whether
2995 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2996 */
2997 bool skip_free_areas_node(unsigned int flags, int nid)
2998 {
2999 bool ret = false;
3000 unsigned int cpuset_mems_cookie;
3001
3002 if (!(flags & SHOW_MEM_FILTER_NODES))
3003 goto out;
3004
3005 do {
3006 cpuset_mems_cookie = get_mems_allowed();
3007 ret = !node_isset(nid, cpuset_current_mems_allowed);
3008 } while (!put_mems_allowed(cpuset_mems_cookie));
3009 out:
3010 return ret;
3011 }
3012
3013 #define K(x) ((x) << (PAGE_SHIFT-10))
3014
3015 static void show_migration_types(unsigned char type)
3016 {
3017 static const char types[MIGRATE_TYPES] = {
3018 [MIGRATE_UNMOVABLE] = 'U',
3019 [MIGRATE_RECLAIMABLE] = 'E',
3020 [MIGRATE_MOVABLE] = 'M',
3021 [MIGRATE_RESERVE] = 'R',
3022 #ifdef CONFIG_CMA
3023 [MIGRATE_CMA] = 'C',
3024 #endif
3025 #ifdef CONFIG_MEMORY_ISOLATION
3026 [MIGRATE_ISOLATE] = 'I',
3027 #endif
3028 };
3029 char tmp[MIGRATE_TYPES + 1];
3030 char *p = tmp;
3031 int i;
3032
3033 for (i = 0; i < MIGRATE_TYPES; i++) {
3034 if (type & (1 << i))
3035 *p++ = types[i];
3036 }
3037
3038 *p = '\0';
3039 printk("(%s) ", tmp);
3040 }
3041
3042 /*
3043 * Show free area list (used inside shift_scroll-lock stuff)
3044 * We also calculate the percentage fragmentation. We do this by counting the
3045 * memory on each free list with the exception of the first item on the list.
3046 * Suppresses nodes that are not allowed by current's cpuset if
3047 * SHOW_MEM_FILTER_NODES is passed.
3048 */
3049 void show_free_areas(unsigned int filter)
3050 {
3051 int cpu;
3052 struct zone *zone;
3053
3054 for_each_populated_zone(zone) {
3055 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3056 continue;
3057 show_node(zone);
3058 printk("%s per-cpu:\n", zone->name);
3059
3060 for_each_online_cpu(cpu) {
3061 struct per_cpu_pageset *pageset;
3062
3063 pageset = per_cpu_ptr(zone->pageset, cpu);
3064
3065 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3066 cpu, pageset->pcp.high,
3067 pageset->pcp.batch, pageset->pcp.count);
3068 }
3069 }
3070
3071 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3072 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3073 " unevictable:%lu"
3074 " dirty:%lu writeback:%lu unstable:%lu\n"
3075 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3076 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3077 " free_cma:%lu\n",
3078 global_page_state(NR_ACTIVE_ANON),
3079 global_page_state(NR_INACTIVE_ANON),
3080 global_page_state(NR_ISOLATED_ANON),
3081 global_page_state(NR_ACTIVE_FILE),
3082 global_page_state(NR_INACTIVE_FILE),
3083 global_page_state(NR_ISOLATED_FILE),
3084 global_page_state(NR_UNEVICTABLE),
3085 global_page_state(NR_FILE_DIRTY),
3086 global_page_state(NR_WRITEBACK),
3087 global_page_state(NR_UNSTABLE_NFS),
3088 global_page_state(NR_FREE_PAGES),
3089 global_page_state(NR_SLAB_RECLAIMABLE),
3090 global_page_state(NR_SLAB_UNRECLAIMABLE),
3091 global_page_state(NR_FILE_MAPPED),
3092 global_page_state(NR_SHMEM),
3093 global_page_state(NR_PAGETABLE),
3094 global_page_state(NR_BOUNCE),
3095 global_page_state(NR_FREE_CMA_PAGES));
3096
3097 for_each_populated_zone(zone) {
3098 int i;
3099
3100 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3101 continue;
3102 show_node(zone);
3103 printk("%s"
3104 " free:%lukB"
3105 " min:%lukB"
3106 " low:%lukB"
3107 " high:%lukB"
3108 " active_anon:%lukB"
3109 " inactive_anon:%lukB"
3110 " active_file:%lukB"
3111 " inactive_file:%lukB"
3112 " unevictable:%lukB"
3113 " isolated(anon):%lukB"
3114 " isolated(file):%lukB"
3115 " present:%lukB"
3116 " managed:%lukB"
3117 " mlocked:%lukB"
3118 " dirty:%lukB"
3119 " writeback:%lukB"
3120 " mapped:%lukB"
3121 " shmem:%lukB"
3122 " slab_reclaimable:%lukB"
3123 " slab_unreclaimable:%lukB"
3124 " kernel_stack:%lukB"
3125 " pagetables:%lukB"
3126 " unstable:%lukB"
3127 " bounce:%lukB"
3128 " free_cma:%lukB"
3129 " writeback_tmp:%lukB"
3130 " pages_scanned:%lu"
3131 " all_unreclaimable? %s"
3132 "\n",
3133 zone->name,
3134 K(zone_page_state(zone, NR_FREE_PAGES)),
3135 K(min_wmark_pages(zone)),
3136 K(low_wmark_pages(zone)),
3137 K(high_wmark_pages(zone)),
3138 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3139 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3140 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3141 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3142 K(zone_page_state(zone, NR_UNEVICTABLE)),
3143 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3144 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3145 K(zone->present_pages),
3146 K(zone->managed_pages),
3147 K(zone_page_state(zone, NR_MLOCK)),
3148 K(zone_page_state(zone, NR_FILE_DIRTY)),
3149 K(zone_page_state(zone, NR_WRITEBACK)),
3150 K(zone_page_state(zone, NR_FILE_MAPPED)),
3151 K(zone_page_state(zone, NR_SHMEM)),
3152 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3153 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3154 zone_page_state(zone, NR_KERNEL_STACK) *
3155 THREAD_SIZE / 1024,
3156 K(zone_page_state(zone, NR_PAGETABLE)),
3157 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3158 K(zone_page_state(zone, NR_BOUNCE)),
3159 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3160 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3161 zone->pages_scanned,
3162 (!zone_reclaimable(zone) ? "yes" : "no")
3163 );
3164 printk("lowmem_reserve[]:");
3165 for (i = 0; i < MAX_NR_ZONES; i++)
3166 printk(" %lu", zone->lowmem_reserve[i]);
3167 printk("\n");
3168 }
3169
3170 for_each_populated_zone(zone) {
3171 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3172 unsigned char types[MAX_ORDER];
3173
3174 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3175 continue;
3176 show_node(zone);
3177 printk("%s: ", zone->name);
3178
3179 spin_lock_irqsave(&zone->lock, flags);
3180 for (order = 0; order < MAX_ORDER; order++) {
3181 struct free_area *area = &zone->free_area[order];
3182 int type;
3183
3184 nr[order] = area->nr_free;
3185 total += nr[order] << order;
3186
3187 types[order] = 0;
3188 for (type = 0; type < MIGRATE_TYPES; type++) {
3189 if (!list_empty(&area->free_list[type]))
3190 types[order] |= 1 << type;
3191 }
3192 }
3193 spin_unlock_irqrestore(&zone->lock, flags);
3194 for (order = 0; order < MAX_ORDER; order++) {
3195 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3196 if (nr[order])
3197 show_migration_types(types[order]);
3198 }
3199 printk("= %lukB\n", K(total));
3200 }
3201
3202 hugetlb_show_meminfo();
3203
3204 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3205
3206 show_swap_cache_info();
3207 }
3208
3209 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3210 {
3211 zoneref->zone = zone;
3212 zoneref->zone_idx = zone_idx(zone);
3213 }
3214
3215 /*
3216 * Builds allocation fallback zone lists.
3217 *
3218 * Add all populated zones of a node to the zonelist.
3219 */
3220 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3221 int nr_zones)
3222 {
3223 struct zone *zone;
3224 enum zone_type zone_type = MAX_NR_ZONES;
3225
3226 do {
3227 zone_type--;
3228 zone = pgdat->node_zones + zone_type;
3229 if (populated_zone(zone)) {
3230 zoneref_set_zone(zone,
3231 &zonelist->_zonerefs[nr_zones++]);
3232 check_highest_zone(zone_type);
3233 }
3234 } while (zone_type);
3235
3236 return nr_zones;
3237 }
3238
3239
3240 /*
3241 * zonelist_order:
3242 * 0 = automatic detection of better ordering.
3243 * 1 = order by ([node] distance, -zonetype)
3244 * 2 = order by (-zonetype, [node] distance)
3245 *
3246 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3247 * the same zonelist. So only NUMA can configure this param.
3248 */
3249 #define ZONELIST_ORDER_DEFAULT 0
3250 #define ZONELIST_ORDER_NODE 1
3251 #define ZONELIST_ORDER_ZONE 2
3252
3253 /* zonelist order in the kernel.
3254 * set_zonelist_order() will set this to NODE or ZONE.
3255 */
3256 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3257 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3258
3259
3260 #ifdef CONFIG_NUMA
3261 /* The value user specified ....changed by config */
3262 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3263 /* string for sysctl */
3264 #define NUMA_ZONELIST_ORDER_LEN 16
3265 char numa_zonelist_order[16] = "default";
3266
3267 /*
3268 * interface for configure zonelist ordering.
3269 * command line option "numa_zonelist_order"
3270 * = "[dD]efault - default, automatic configuration.
3271 * = "[nN]ode - order by node locality, then by zone within node
3272 * = "[zZ]one - order by zone, then by locality within zone
3273 */
3274
3275 static int __parse_numa_zonelist_order(char *s)
3276 {
3277 if (*s == 'd' || *s == 'D') {
3278 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3279 } else if (*s == 'n' || *s == 'N') {
3280 user_zonelist_order = ZONELIST_ORDER_NODE;
3281 } else if (*s == 'z' || *s == 'Z') {
3282 user_zonelist_order = ZONELIST_ORDER_ZONE;
3283 } else {
3284 printk(KERN_WARNING
3285 "Ignoring invalid numa_zonelist_order value: "
3286 "%s\n", s);
3287 return -EINVAL;
3288 }
3289 return 0;
3290 }
3291
3292 static __init int setup_numa_zonelist_order(char *s)
3293 {
3294 int ret;
3295
3296 if (!s)
3297 return 0;
3298
3299 ret = __parse_numa_zonelist_order(s);
3300 if (ret == 0)
3301 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3302
3303 return ret;
3304 }
3305 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3306
3307 /*
3308 * sysctl handler for numa_zonelist_order
3309 */
3310 int numa_zonelist_order_handler(ctl_table *table, int write,
3311 void __user *buffer, size_t *length,
3312 loff_t *ppos)
3313 {
3314 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3315 int ret;
3316 static DEFINE_MUTEX(zl_order_mutex);
3317
3318 mutex_lock(&zl_order_mutex);
3319 if (write) {
3320 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3321 ret = -EINVAL;
3322 goto out;
3323 }
3324 strcpy(saved_string, (char *)table->data);
3325 }
3326 ret = proc_dostring(table, write, buffer, length, ppos);
3327 if (ret)
3328 goto out;
3329 if (write) {
3330 int oldval = user_zonelist_order;
3331
3332 ret = __parse_numa_zonelist_order((char *)table->data);
3333 if (ret) {
3334 /*
3335 * bogus value. restore saved string
3336 */
3337 strncpy((char *)table->data, saved_string,
3338 NUMA_ZONELIST_ORDER_LEN);
3339 user_zonelist_order = oldval;
3340 } else if (oldval != user_zonelist_order) {
3341 mutex_lock(&zonelists_mutex);
3342 build_all_zonelists(NULL, NULL);
3343 mutex_unlock(&zonelists_mutex);
3344 }
3345 }
3346 out:
3347 mutex_unlock(&zl_order_mutex);
3348 return ret;
3349 }
3350
3351
3352 #define MAX_NODE_LOAD (nr_online_nodes)
3353 static int node_load[MAX_NUMNODES];
3354
3355 /**
3356 * find_next_best_node - find the next node that should appear in a given node's fallback list
3357 * @node: node whose fallback list we're appending
3358 * @used_node_mask: nodemask_t of already used nodes
3359 *
3360 * We use a number of factors to determine which is the next node that should
3361 * appear on a given node's fallback list. The node should not have appeared
3362 * already in @node's fallback list, and it should be the next closest node
3363 * according to the distance array (which contains arbitrary distance values
3364 * from each node to each node in the system), and should also prefer nodes
3365 * with no CPUs, since presumably they'll have very little allocation pressure
3366 * on them otherwise.
3367 * It returns -1 if no node is found.
3368 */
3369 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3370 {
3371 int n, val;
3372 int min_val = INT_MAX;
3373 int best_node = NUMA_NO_NODE;
3374 const struct cpumask *tmp = cpumask_of_node(0);
3375
3376 /* Use the local node if we haven't already */
3377 if (!node_isset(node, *used_node_mask)) {
3378 node_set(node, *used_node_mask);
3379 return node;
3380 }
3381
3382 for_each_node_state(n, N_MEMORY) {
3383
3384 /* Don't want a node to appear more than once */
3385 if (node_isset(n, *used_node_mask))
3386 continue;
3387
3388 /* Use the distance array to find the distance */
3389 val = node_distance(node, n);
3390
3391 /* Penalize nodes under us ("prefer the next node") */
3392 val += (n < node);
3393
3394 /* Give preference to headless and unused nodes */
3395 tmp = cpumask_of_node(n);
3396 if (!cpumask_empty(tmp))
3397 val += PENALTY_FOR_NODE_WITH_CPUS;
3398
3399 /* Slight preference for less loaded node */
3400 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3401 val += node_load[n];
3402
3403 if (val < min_val) {
3404 min_val = val;
3405 best_node = n;
3406 }
3407 }
3408
3409 if (best_node >= 0)
3410 node_set(best_node, *used_node_mask);
3411
3412 return best_node;
3413 }
3414
3415
3416 /*
3417 * Build zonelists ordered by node and zones within node.
3418 * This results in maximum locality--normal zone overflows into local
3419 * DMA zone, if any--but risks exhausting DMA zone.
3420 */
3421 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3422 {
3423 int j;
3424 struct zonelist *zonelist;
3425
3426 zonelist = &pgdat->node_zonelists[0];
3427 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3428 ;
3429 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3430 zonelist->_zonerefs[j].zone = NULL;
3431 zonelist->_zonerefs[j].zone_idx = 0;
3432 }
3433
3434 /*
3435 * Build gfp_thisnode zonelists
3436 */
3437 static void build_thisnode_zonelists(pg_data_t *pgdat)
3438 {
3439 int j;
3440 struct zonelist *zonelist;
3441
3442 zonelist = &pgdat->node_zonelists[1];
3443 j = build_zonelists_node(pgdat, zonelist, 0);
3444 zonelist->_zonerefs[j].zone = NULL;
3445 zonelist->_zonerefs[j].zone_idx = 0;
3446 }
3447
3448 /*
3449 * Build zonelists ordered by zone and nodes within zones.
3450 * This results in conserving DMA zone[s] until all Normal memory is
3451 * exhausted, but results in overflowing to remote node while memory
3452 * may still exist in local DMA zone.
3453 */
3454 static int node_order[MAX_NUMNODES];
3455
3456 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3457 {
3458 int pos, j, node;
3459 int zone_type; /* needs to be signed */
3460 struct zone *z;
3461 struct zonelist *zonelist;
3462
3463 zonelist = &pgdat->node_zonelists[0];
3464 pos = 0;
3465 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3466 for (j = 0; j < nr_nodes; j++) {
3467 node = node_order[j];
3468 z = &NODE_DATA(node)->node_zones[zone_type];
3469 if (populated_zone(z)) {
3470 zoneref_set_zone(z,
3471 &zonelist->_zonerefs[pos++]);
3472 check_highest_zone(zone_type);
3473 }
3474 }
3475 }
3476 zonelist->_zonerefs[pos].zone = NULL;
3477 zonelist->_zonerefs[pos].zone_idx = 0;
3478 }
3479
3480 static int default_zonelist_order(void)
3481 {
3482 int nid, zone_type;
3483 unsigned long low_kmem_size, total_size;
3484 struct zone *z;
3485 int average_size;
3486 /*
3487 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3488 * If they are really small and used heavily, the system can fall
3489 * into OOM very easily.
3490 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3491 */
3492 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3493 low_kmem_size = 0;
3494 total_size = 0;
3495 for_each_online_node(nid) {
3496 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3497 z = &NODE_DATA(nid)->node_zones[zone_type];
3498 if (populated_zone(z)) {
3499 if (zone_type < ZONE_NORMAL)
3500 low_kmem_size += z->managed_pages;
3501 total_size += z->managed_pages;
3502 } else if (zone_type == ZONE_NORMAL) {
3503 /*
3504 * If any node has only lowmem, then node order
3505 * is preferred to allow kernel allocations
3506 * locally; otherwise, they can easily infringe
3507 * on other nodes when there is an abundance of
3508 * lowmem available to allocate from.
3509 */
3510 return ZONELIST_ORDER_NODE;
3511 }
3512 }
3513 }
3514 if (!low_kmem_size || /* there are no DMA area. */
3515 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3516 return ZONELIST_ORDER_NODE;
3517 /*
3518 * look into each node's config.
3519 * If there is a node whose DMA/DMA32 memory is very big area on
3520 * local memory, NODE_ORDER may be suitable.
3521 */
3522 average_size = total_size /
3523 (nodes_weight(node_states[N_MEMORY]) + 1);
3524 for_each_online_node(nid) {
3525 low_kmem_size = 0;
3526 total_size = 0;
3527 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3528 z = &NODE_DATA(nid)->node_zones[zone_type];
3529 if (populated_zone(z)) {
3530 if (zone_type < ZONE_NORMAL)
3531 low_kmem_size += z->present_pages;
3532 total_size += z->present_pages;
3533 }
3534 }
3535 if (low_kmem_size &&
3536 total_size > average_size && /* ignore small node */
3537 low_kmem_size > total_size * 70/100)
3538 return ZONELIST_ORDER_NODE;
3539 }
3540 return ZONELIST_ORDER_ZONE;
3541 }
3542
3543 static void set_zonelist_order(void)
3544 {
3545 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3546 current_zonelist_order = default_zonelist_order();
3547 else
3548 current_zonelist_order = user_zonelist_order;
3549 }
3550
3551 static void build_zonelists(pg_data_t *pgdat)
3552 {
3553 int j, node, load;
3554 enum zone_type i;
3555 nodemask_t used_mask;
3556 int local_node, prev_node;
3557 struct zonelist *zonelist;
3558 int order = current_zonelist_order;
3559
3560 /* initialize zonelists */
3561 for (i = 0; i < MAX_ZONELISTS; i++) {
3562 zonelist = pgdat->node_zonelists + i;
3563 zonelist->_zonerefs[0].zone = NULL;
3564 zonelist->_zonerefs[0].zone_idx = 0;
3565 }
3566
3567 /* NUMA-aware ordering of nodes */
3568 local_node = pgdat->node_id;
3569 load = nr_online_nodes;
3570 prev_node = local_node;
3571 nodes_clear(used_mask);
3572
3573 memset(node_order, 0, sizeof(node_order));
3574 j = 0;
3575
3576 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3577 /*
3578 * We don't want to pressure a particular node.
3579 * So adding penalty to the first node in same
3580 * distance group to make it round-robin.
3581 */
3582 if (node_distance(local_node, node) !=
3583 node_distance(local_node, prev_node))
3584 node_load[node] = load;
3585
3586 prev_node = node;
3587 load--;
3588 if (order == ZONELIST_ORDER_NODE)
3589 build_zonelists_in_node_order(pgdat, node);
3590 else
3591 node_order[j++] = node; /* remember order */
3592 }
3593
3594 if (order == ZONELIST_ORDER_ZONE) {
3595 /* calculate node order -- i.e., DMA last! */
3596 build_zonelists_in_zone_order(pgdat, j);
3597 }
3598
3599 build_thisnode_zonelists(pgdat);
3600 }
3601
3602 /* Construct the zonelist performance cache - see further mmzone.h */
3603 static void build_zonelist_cache(pg_data_t *pgdat)
3604 {
3605 struct zonelist *zonelist;
3606 struct zonelist_cache *zlc;
3607 struct zoneref *z;
3608
3609 zonelist = &pgdat->node_zonelists[0];
3610 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3611 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3612 for (z = zonelist->_zonerefs; z->zone; z++)
3613 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3614 }
3615
3616 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3617 /*
3618 * Return node id of node used for "local" allocations.
3619 * I.e., first node id of first zone in arg node's generic zonelist.
3620 * Used for initializing percpu 'numa_mem', which is used primarily
3621 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3622 */
3623 int local_memory_node(int node)
3624 {
3625 struct zone *zone;
3626
3627 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3628 gfp_zone(GFP_KERNEL),
3629 NULL,
3630 &zone);
3631 return zone->node;
3632 }
3633 #endif
3634
3635 #else /* CONFIG_NUMA */
3636
3637 static void set_zonelist_order(void)
3638 {
3639 current_zonelist_order = ZONELIST_ORDER_ZONE;
3640 }
3641
3642 static void build_zonelists(pg_data_t *pgdat)
3643 {
3644 int node, local_node;
3645 enum zone_type j;
3646 struct zonelist *zonelist;
3647
3648 local_node = pgdat->node_id;
3649
3650 zonelist = &pgdat->node_zonelists[0];
3651 j = build_zonelists_node(pgdat, zonelist, 0);
3652
3653 /*
3654 * Now we build the zonelist so that it contains the zones
3655 * of all the other nodes.
3656 * We don't want to pressure a particular node, so when
3657 * building the zones for node N, we make sure that the
3658 * zones coming right after the local ones are those from
3659 * node N+1 (modulo N)
3660 */
3661 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3662 if (!node_online(node))
3663 continue;
3664 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3665 }
3666 for (node = 0; node < local_node; node++) {
3667 if (!node_online(node))
3668 continue;
3669 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3670 }
3671
3672 zonelist->_zonerefs[j].zone = NULL;
3673 zonelist->_zonerefs[j].zone_idx = 0;
3674 }
3675
3676 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3677 static void build_zonelist_cache(pg_data_t *pgdat)
3678 {
3679 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3680 }
3681
3682 #endif /* CONFIG_NUMA */
3683
3684 /*
3685 * Boot pageset table. One per cpu which is going to be used for all
3686 * zones and all nodes. The parameters will be set in such a way
3687 * that an item put on a list will immediately be handed over to
3688 * the buddy list. This is safe since pageset manipulation is done
3689 * with interrupts disabled.
3690 *
3691 * The boot_pagesets must be kept even after bootup is complete for
3692 * unused processors and/or zones. They do play a role for bootstrapping
3693 * hotplugged processors.
3694 *
3695 * zoneinfo_show() and maybe other functions do
3696 * not check if the processor is online before following the pageset pointer.
3697 * Other parts of the kernel may not check if the zone is available.
3698 */
3699 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3700 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3701 static void setup_zone_pageset(struct zone *zone);
3702
3703 /*
3704 * Global mutex to protect against size modification of zonelists
3705 * as well as to serialize pageset setup for the new populated zone.
3706 */
3707 DEFINE_MUTEX(zonelists_mutex);
3708
3709 /* return values int ....just for stop_machine() */
3710 static int __build_all_zonelists(void *data)
3711 {
3712 int nid;
3713 int cpu;
3714 pg_data_t *self = data;
3715
3716 #ifdef CONFIG_NUMA
3717 memset(node_load, 0, sizeof(node_load));
3718 #endif
3719
3720 if (self && !node_online(self->node_id)) {
3721 build_zonelists(self);
3722 build_zonelist_cache(self);
3723 }
3724
3725 for_each_online_node(nid) {
3726 pg_data_t *pgdat = NODE_DATA(nid);
3727
3728 build_zonelists(pgdat);
3729 build_zonelist_cache(pgdat);
3730 }
3731
3732 /*
3733 * Initialize the boot_pagesets that are going to be used
3734 * for bootstrapping processors. The real pagesets for
3735 * each zone will be allocated later when the per cpu
3736 * allocator is available.
3737 *
3738 * boot_pagesets are used also for bootstrapping offline
3739 * cpus if the system is already booted because the pagesets
3740 * are needed to initialize allocators on a specific cpu too.
3741 * F.e. the percpu allocator needs the page allocator which
3742 * needs the percpu allocator in order to allocate its pagesets
3743 * (a chicken-egg dilemma).
3744 */
3745 for_each_possible_cpu(cpu) {
3746 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3747
3748 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3749 /*
3750 * We now know the "local memory node" for each node--
3751 * i.e., the node of the first zone in the generic zonelist.
3752 * Set up numa_mem percpu variable for on-line cpus. During
3753 * boot, only the boot cpu should be on-line; we'll init the
3754 * secondary cpus' numa_mem as they come on-line. During
3755 * node/memory hotplug, we'll fixup all on-line cpus.
3756 */
3757 if (cpu_online(cpu))
3758 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3759 #endif
3760 }
3761
3762 return 0;
3763 }
3764
3765 /*
3766 * Called with zonelists_mutex held always
3767 * unless system_state == SYSTEM_BOOTING.
3768 */
3769 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3770 {
3771 set_zonelist_order();
3772
3773 if (system_state == SYSTEM_BOOTING) {
3774 __build_all_zonelists(NULL);
3775 mminit_verify_zonelist();
3776 cpuset_init_current_mems_allowed();
3777 } else {
3778 #ifdef CONFIG_MEMORY_HOTPLUG
3779 if (zone)
3780 setup_zone_pageset(zone);
3781 #endif
3782 /* we have to stop all cpus to guarantee there is no user
3783 of zonelist */
3784 stop_machine(__build_all_zonelists, pgdat, NULL);
3785 /* cpuset refresh routine should be here */
3786 }
3787 vm_total_pages = nr_free_pagecache_pages();
3788 /*
3789 * Disable grouping by mobility if the number of pages in the
3790 * system is too low to allow the mechanism to work. It would be
3791 * more accurate, but expensive to check per-zone. This check is
3792 * made on memory-hotadd so a system can start with mobility
3793 * disabled and enable it later
3794 */
3795 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3796 page_group_by_mobility_disabled = 1;
3797 else
3798 page_group_by_mobility_disabled = 0;
3799
3800 printk("Built %i zonelists in %s order, mobility grouping %s. "
3801 "Total pages: %ld\n",
3802 nr_online_nodes,
3803 zonelist_order_name[current_zonelist_order],
3804 page_group_by_mobility_disabled ? "off" : "on",
3805 vm_total_pages);
3806 #ifdef CONFIG_NUMA
3807 printk("Policy zone: %s\n", zone_names[policy_zone]);
3808 #endif
3809 }
3810
3811 /*
3812 * Helper functions to size the waitqueue hash table.
3813 * Essentially these want to choose hash table sizes sufficiently
3814 * large so that collisions trying to wait on pages are rare.
3815 * But in fact, the number of active page waitqueues on typical
3816 * systems is ridiculously low, less than 200. So this is even
3817 * conservative, even though it seems large.
3818 *
3819 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3820 * waitqueues, i.e. the size of the waitq table given the number of pages.
3821 */
3822 #define PAGES_PER_WAITQUEUE 256
3823
3824 #ifndef CONFIG_MEMORY_HOTPLUG
3825 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3826 {
3827 unsigned long size = 1;
3828
3829 pages /= PAGES_PER_WAITQUEUE;
3830
3831 while (size < pages)
3832 size <<= 1;
3833
3834 /*
3835 * Once we have dozens or even hundreds of threads sleeping
3836 * on IO we've got bigger problems than wait queue collision.
3837 * Limit the size of the wait table to a reasonable size.
3838 */
3839 size = min(size, 4096UL);
3840
3841 return max(size, 4UL);
3842 }
3843 #else
3844 /*
3845 * A zone's size might be changed by hot-add, so it is not possible to determine
3846 * a suitable size for its wait_table. So we use the maximum size now.
3847 *
3848 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3849 *
3850 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3851 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3852 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3853 *
3854 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3855 * or more by the traditional way. (See above). It equals:
3856 *
3857 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3858 * ia64(16K page size) : = ( 8G + 4M)byte.
3859 * powerpc (64K page size) : = (32G +16M)byte.
3860 */
3861 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3862 {
3863 return 4096UL;
3864 }
3865 #endif
3866
3867 /*
3868 * This is an integer logarithm so that shifts can be used later
3869 * to extract the more random high bits from the multiplicative
3870 * hash function before the remainder is taken.
3871 */
3872 static inline unsigned long wait_table_bits(unsigned long size)
3873 {
3874 return ffz(~size);
3875 }
3876
3877 /*
3878 * Check if a pageblock contains reserved pages
3879 */
3880 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3881 {
3882 unsigned long pfn;
3883
3884 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3885 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3886 return 1;
3887 }
3888 return 0;
3889 }
3890
3891 /*
3892 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3893 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3894 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3895 * higher will lead to a bigger reserve which will get freed as contiguous
3896 * blocks as reclaim kicks in
3897 */
3898 static void setup_zone_migrate_reserve(struct zone *zone)
3899 {
3900 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3901 struct page *page;
3902 unsigned long block_migratetype;
3903 int reserve;
3904
3905 /*
3906 * Get the start pfn, end pfn and the number of blocks to reserve
3907 * We have to be careful to be aligned to pageblock_nr_pages to
3908 * make sure that we always check pfn_valid for the first page in
3909 * the block.
3910 */
3911 start_pfn = zone->zone_start_pfn;
3912 end_pfn = zone_end_pfn(zone);
3913 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3914 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3915 pageblock_order;
3916
3917 /*
3918 * Reserve blocks are generally in place to help high-order atomic
3919 * allocations that are short-lived. A min_free_kbytes value that
3920 * would result in more than 2 reserve blocks for atomic allocations
3921 * is assumed to be in place to help anti-fragmentation for the
3922 * future allocation of hugepages at runtime.
3923 */
3924 reserve = min(2, reserve);
3925
3926 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3927 if (!pfn_valid(pfn))
3928 continue;
3929 page = pfn_to_page(pfn);
3930
3931 /* Watch out for overlapping nodes */
3932 if (page_to_nid(page) != zone_to_nid(zone))
3933 continue;
3934
3935 block_migratetype = get_pageblock_migratetype(page);
3936
3937 /* Only test what is necessary when the reserves are not met */
3938 if (reserve > 0) {
3939 /*
3940 * Blocks with reserved pages will never free, skip
3941 * them.
3942 */
3943 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3944 if (pageblock_is_reserved(pfn, block_end_pfn))
3945 continue;
3946
3947 /* If this block is reserved, account for it */
3948 if (block_migratetype == MIGRATE_RESERVE) {
3949 reserve--;
3950 continue;
3951 }
3952
3953 /* Suitable for reserving if this block is movable */
3954 if (block_migratetype == MIGRATE_MOVABLE) {
3955 set_pageblock_migratetype(page,
3956 MIGRATE_RESERVE);
3957 move_freepages_block(zone, page,
3958 MIGRATE_RESERVE);
3959 reserve--;
3960 continue;
3961 }
3962 }
3963
3964 /*
3965 * If the reserve is met and this is a previous reserved block,
3966 * take it back
3967 */
3968 if (block_migratetype == MIGRATE_RESERVE) {
3969 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3970 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3971 }
3972 }
3973 }
3974
3975 /*
3976 * Initially all pages are reserved - free ones are freed
3977 * up by free_all_bootmem() once the early boot process is
3978 * done. Non-atomic initialization, single-pass.
3979 */
3980 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3981 unsigned long start_pfn, enum memmap_context context)
3982 {
3983 struct page *page;
3984 unsigned long end_pfn = start_pfn + size;
3985 unsigned long pfn;
3986 struct zone *z;
3987
3988 if (highest_memmap_pfn < end_pfn - 1)
3989 highest_memmap_pfn = end_pfn - 1;
3990
3991 z = &NODE_DATA(nid)->node_zones[zone];
3992 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3993 /*
3994 * There can be holes in boot-time mem_map[]s
3995 * handed to this function. They do not
3996 * exist on hotplugged memory.
3997 */
3998 if (context == MEMMAP_EARLY) {
3999 if (!early_pfn_valid(pfn))
4000 continue;
4001 if (!early_pfn_in_nid(pfn, nid))
4002 continue;
4003 }
4004 page = pfn_to_page(pfn);
4005 set_page_links(page, zone, nid, pfn);
4006 mminit_verify_page_links(page, zone, nid, pfn);
4007 init_page_count(page);
4008 page_mapcount_reset(page);
4009 page_cpupid_reset_last(page);
4010 SetPageReserved(page);
4011 /*
4012 * Mark the block movable so that blocks are reserved for
4013 * movable at startup. This will force kernel allocations
4014 * to reserve their blocks rather than leaking throughout
4015 * the address space during boot when many long-lived
4016 * kernel allocations are made. Later some blocks near
4017 * the start are marked MIGRATE_RESERVE by
4018 * setup_zone_migrate_reserve()
4019 *
4020 * bitmap is created for zone's valid pfn range. but memmap
4021 * can be created for invalid pages (for alignment)
4022 * check here not to call set_pageblock_migratetype() against
4023 * pfn out of zone.
4024 */
4025 if ((z->zone_start_pfn <= pfn)
4026 && (pfn < zone_end_pfn(z))
4027 && !(pfn & (pageblock_nr_pages - 1)))
4028 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4029
4030 INIT_LIST_HEAD(&page->lru);
4031 #ifdef WANT_PAGE_VIRTUAL
4032 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4033 if (!is_highmem_idx(zone))
4034 set_page_address(page, __va(pfn << PAGE_SHIFT));
4035 #endif
4036 }
4037 }
4038
4039 static void __meminit zone_init_free_lists(struct zone *zone)
4040 {
4041 int order, t;
4042 for_each_migratetype_order(order, t) {
4043 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4044 zone->free_area[order].nr_free = 0;
4045 }
4046 }
4047
4048 #ifndef __HAVE_ARCH_MEMMAP_INIT
4049 #define memmap_init(size, nid, zone, start_pfn) \
4050 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4051 #endif
4052
4053 static int __meminit zone_batchsize(struct zone *zone)
4054 {
4055 #ifdef CONFIG_MMU
4056 int batch;
4057
4058 /*
4059 * The per-cpu-pages pools are set to around 1000th of the
4060 * size of the zone. But no more than 1/2 of a meg.
4061 *
4062 * OK, so we don't know how big the cache is. So guess.
4063 */
4064 batch = zone->managed_pages / 1024;
4065 if (batch * PAGE_SIZE > 512 * 1024)
4066 batch = (512 * 1024) / PAGE_SIZE;
4067 batch /= 4; /* We effectively *= 4 below */
4068 if (batch < 1)
4069 batch = 1;
4070
4071 /*
4072 * Clamp the batch to a 2^n - 1 value. Having a power
4073 * of 2 value was found to be more likely to have
4074 * suboptimal cache aliasing properties in some cases.
4075 *
4076 * For example if 2 tasks are alternately allocating
4077 * batches of pages, one task can end up with a lot
4078 * of pages of one half of the possible page colors
4079 * and the other with pages of the other colors.
4080 */
4081 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4082
4083 return batch;
4084
4085 #else
4086 /* The deferral and batching of frees should be suppressed under NOMMU
4087 * conditions.
4088 *
4089 * The problem is that NOMMU needs to be able to allocate large chunks
4090 * of contiguous memory as there's no hardware page translation to
4091 * assemble apparent contiguous memory from discontiguous pages.
4092 *
4093 * Queueing large contiguous runs of pages for batching, however,
4094 * causes the pages to actually be freed in smaller chunks. As there
4095 * can be a significant delay between the individual batches being
4096 * recycled, this leads to the once large chunks of space being
4097 * fragmented and becoming unavailable for high-order allocations.
4098 */
4099 return 0;
4100 #endif
4101 }
4102
4103 /*
4104 * pcp->high and pcp->batch values are related and dependent on one another:
4105 * ->batch must never be higher then ->high.
4106 * The following function updates them in a safe manner without read side
4107 * locking.
4108 *
4109 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4110 * those fields changing asynchronously (acording the the above rule).
4111 *
4112 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4113 * outside of boot time (or some other assurance that no concurrent updaters
4114 * exist).
4115 */
4116 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4117 unsigned long batch)
4118 {
4119 /* start with a fail safe value for batch */
4120 pcp->batch = 1;
4121 smp_wmb();
4122
4123 /* Update high, then batch, in order */
4124 pcp->high = high;
4125 smp_wmb();
4126
4127 pcp->batch = batch;
4128 }
4129
4130 /* a companion to pageset_set_high() */
4131 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4132 {
4133 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4134 }
4135
4136 static void pageset_init(struct per_cpu_pageset *p)
4137 {
4138 struct per_cpu_pages *pcp;
4139 int migratetype;
4140
4141 memset(p, 0, sizeof(*p));
4142
4143 pcp = &p->pcp;
4144 pcp->count = 0;
4145 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4146 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4147 }
4148
4149 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4150 {
4151 pageset_init(p);
4152 pageset_set_batch(p, batch);
4153 }
4154
4155 /*
4156 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4157 * to the value high for the pageset p.
4158 */
4159 static void pageset_set_high(struct per_cpu_pageset *p,
4160 unsigned long high)
4161 {
4162 unsigned long batch = max(1UL, high / 4);
4163 if ((high / 4) > (PAGE_SHIFT * 8))
4164 batch = PAGE_SHIFT * 8;
4165
4166 pageset_update(&p->pcp, high, batch);
4167 }
4168
4169 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4170 struct per_cpu_pageset *pcp)
4171 {
4172 if (percpu_pagelist_fraction)
4173 pageset_set_high(pcp,
4174 (zone->managed_pages /
4175 percpu_pagelist_fraction));
4176 else
4177 pageset_set_batch(pcp, zone_batchsize(zone));
4178 }
4179
4180 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4181 {
4182 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4183
4184 pageset_init(pcp);
4185 pageset_set_high_and_batch(zone, pcp);
4186 }
4187
4188 static void __meminit setup_zone_pageset(struct zone *zone)
4189 {
4190 int cpu;
4191 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4192 for_each_possible_cpu(cpu)
4193 zone_pageset_init(zone, cpu);
4194 }
4195
4196 /*
4197 * Allocate per cpu pagesets and initialize them.
4198 * Before this call only boot pagesets were available.
4199 */
4200 void __init setup_per_cpu_pageset(void)
4201 {
4202 struct zone *zone;
4203
4204 for_each_populated_zone(zone)
4205 setup_zone_pageset(zone);
4206 }
4207
4208 static noinline __init_refok
4209 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4210 {
4211 int i;
4212 struct pglist_data *pgdat = zone->zone_pgdat;
4213 size_t alloc_size;
4214
4215 /*
4216 * The per-page waitqueue mechanism uses hashed waitqueues
4217 * per zone.
4218 */
4219 zone->wait_table_hash_nr_entries =
4220 wait_table_hash_nr_entries(zone_size_pages);
4221 zone->wait_table_bits =
4222 wait_table_bits(zone->wait_table_hash_nr_entries);
4223 alloc_size = zone->wait_table_hash_nr_entries
4224 * sizeof(wait_queue_head_t);
4225
4226 if (!slab_is_available()) {
4227 zone->wait_table = (wait_queue_head_t *)
4228 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4229 } else {
4230 /*
4231 * This case means that a zone whose size was 0 gets new memory
4232 * via memory hot-add.
4233 * But it may be the case that a new node was hot-added. In
4234 * this case vmalloc() will not be able to use this new node's
4235 * memory - this wait_table must be initialized to use this new
4236 * node itself as well.
4237 * To use this new node's memory, further consideration will be
4238 * necessary.
4239 */
4240 zone->wait_table = vmalloc(alloc_size);
4241 }
4242 if (!zone->wait_table)
4243 return -ENOMEM;
4244
4245 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4246 init_waitqueue_head(zone->wait_table + i);
4247
4248 return 0;
4249 }
4250
4251 static __meminit void zone_pcp_init(struct zone *zone)
4252 {
4253 /*
4254 * per cpu subsystem is not up at this point. The following code
4255 * relies on the ability of the linker to provide the
4256 * offset of a (static) per cpu variable into the per cpu area.
4257 */
4258 zone->pageset = &boot_pageset;
4259
4260 if (populated_zone(zone))
4261 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4262 zone->name, zone->present_pages,
4263 zone_batchsize(zone));
4264 }
4265
4266 int __meminit init_currently_empty_zone(struct zone *zone,
4267 unsigned long zone_start_pfn,
4268 unsigned long size,
4269 enum memmap_context context)
4270 {
4271 struct pglist_data *pgdat = zone->zone_pgdat;
4272 int ret;
4273 ret = zone_wait_table_init(zone, size);
4274 if (ret)
4275 return ret;
4276 pgdat->nr_zones = zone_idx(zone) + 1;
4277
4278 zone->zone_start_pfn = zone_start_pfn;
4279
4280 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4281 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4282 pgdat->node_id,
4283 (unsigned long)zone_idx(zone),
4284 zone_start_pfn, (zone_start_pfn + size));
4285
4286 zone_init_free_lists(zone);
4287
4288 return 0;
4289 }
4290
4291 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4292 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4293 /*
4294 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4295 * Architectures may implement their own version but if add_active_range()
4296 * was used and there are no special requirements, this is a convenient
4297 * alternative
4298 */
4299 int __meminit __early_pfn_to_nid(unsigned long pfn)
4300 {
4301 unsigned long start_pfn, end_pfn;
4302 int nid;
4303 /*
4304 * NOTE: The following SMP-unsafe globals are only used early in boot
4305 * when the kernel is running single-threaded.
4306 */
4307 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4308 static int __meminitdata last_nid;
4309
4310 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4311 return last_nid;
4312
4313 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4314 if (nid != -1) {
4315 last_start_pfn = start_pfn;
4316 last_end_pfn = end_pfn;
4317 last_nid = nid;
4318 }
4319
4320 return nid;
4321 }
4322 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4323
4324 int __meminit early_pfn_to_nid(unsigned long pfn)
4325 {
4326 int nid;
4327
4328 nid = __early_pfn_to_nid(pfn);
4329 if (nid >= 0)
4330 return nid;
4331 /* just returns 0 */
4332 return 0;
4333 }
4334
4335 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4336 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4337 {
4338 int nid;
4339
4340 nid = __early_pfn_to_nid(pfn);
4341 if (nid >= 0 && nid != node)
4342 return false;
4343 return true;
4344 }
4345 #endif
4346
4347 /**
4348 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4349 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4350 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4351 *
4352 * If an architecture guarantees that all ranges registered with
4353 * add_active_ranges() contain no holes and may be freed, this
4354 * this function may be used instead of calling free_bootmem() manually.
4355 */
4356 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4357 {
4358 unsigned long start_pfn, end_pfn;
4359 int i, this_nid;
4360
4361 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4362 start_pfn = min(start_pfn, max_low_pfn);
4363 end_pfn = min(end_pfn, max_low_pfn);
4364
4365 if (start_pfn < end_pfn)
4366 free_bootmem_node(NODE_DATA(this_nid),
4367 PFN_PHYS(start_pfn),
4368 (end_pfn - start_pfn) << PAGE_SHIFT);
4369 }
4370 }
4371
4372 /**
4373 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4374 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4375 *
4376 * If an architecture guarantees that all ranges registered with
4377 * add_active_ranges() contain no holes and may be freed, this
4378 * function may be used instead of calling memory_present() manually.
4379 */
4380 void __init sparse_memory_present_with_active_regions(int nid)
4381 {
4382 unsigned long start_pfn, end_pfn;
4383 int i, this_nid;
4384
4385 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4386 memory_present(this_nid, start_pfn, end_pfn);
4387 }
4388
4389 /**
4390 * get_pfn_range_for_nid - Return the start and end page frames for a node
4391 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4392 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4393 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4394 *
4395 * It returns the start and end page frame of a node based on information
4396 * provided by an arch calling add_active_range(). If called for a node
4397 * with no available memory, a warning is printed and the start and end
4398 * PFNs will be 0.
4399 */
4400 void __meminit get_pfn_range_for_nid(unsigned int nid,
4401 unsigned long *start_pfn, unsigned long *end_pfn)
4402 {
4403 unsigned long this_start_pfn, this_end_pfn;
4404 int i;
4405
4406 *start_pfn = -1UL;
4407 *end_pfn = 0;
4408
4409 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4410 *start_pfn = min(*start_pfn, this_start_pfn);
4411 *end_pfn = max(*end_pfn, this_end_pfn);
4412 }
4413
4414 if (*start_pfn == -1UL)
4415 *start_pfn = 0;
4416 }
4417
4418 /*
4419 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4420 * assumption is made that zones within a node are ordered in monotonic
4421 * increasing memory addresses so that the "highest" populated zone is used
4422 */
4423 static void __init find_usable_zone_for_movable(void)
4424 {
4425 int zone_index;
4426 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4427 if (zone_index == ZONE_MOVABLE)
4428 continue;
4429
4430 if (arch_zone_highest_possible_pfn[zone_index] >
4431 arch_zone_lowest_possible_pfn[zone_index])
4432 break;
4433 }
4434
4435 VM_BUG_ON(zone_index == -1);
4436 movable_zone = zone_index;
4437 }
4438
4439 /*
4440 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4441 * because it is sized independent of architecture. Unlike the other zones,
4442 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4443 * in each node depending on the size of each node and how evenly kernelcore
4444 * is distributed. This helper function adjusts the zone ranges
4445 * provided by the architecture for a given node by using the end of the
4446 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4447 * zones within a node are in order of monotonic increases memory addresses
4448 */
4449 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4450 unsigned long zone_type,
4451 unsigned long node_start_pfn,
4452 unsigned long node_end_pfn,
4453 unsigned long *zone_start_pfn,
4454 unsigned long *zone_end_pfn)
4455 {
4456 /* Only adjust if ZONE_MOVABLE is on this node */
4457 if (zone_movable_pfn[nid]) {
4458 /* Size ZONE_MOVABLE */
4459 if (zone_type == ZONE_MOVABLE) {
4460 *zone_start_pfn = zone_movable_pfn[nid];
4461 *zone_end_pfn = min(node_end_pfn,
4462 arch_zone_highest_possible_pfn[movable_zone]);
4463
4464 /* Adjust for ZONE_MOVABLE starting within this range */
4465 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4466 *zone_end_pfn > zone_movable_pfn[nid]) {
4467 *zone_end_pfn = zone_movable_pfn[nid];
4468
4469 /* Check if this whole range is within ZONE_MOVABLE */
4470 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4471 *zone_start_pfn = *zone_end_pfn;
4472 }
4473 }
4474
4475 /*
4476 * Return the number of pages a zone spans in a node, including holes
4477 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4478 */
4479 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4480 unsigned long zone_type,
4481 unsigned long node_start_pfn,
4482 unsigned long node_end_pfn,
4483 unsigned long *ignored)
4484 {
4485 unsigned long zone_start_pfn, zone_end_pfn;
4486
4487 /* Get the start and end of the zone */
4488 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4489 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4490 adjust_zone_range_for_zone_movable(nid, zone_type,
4491 node_start_pfn, node_end_pfn,
4492 &zone_start_pfn, &zone_end_pfn);
4493
4494 /* Check that this node has pages within the zone's required range */
4495 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4496 return 0;
4497
4498 /* Move the zone boundaries inside the node if necessary */
4499 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4500 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4501
4502 /* Return the spanned pages */
4503 return zone_end_pfn - zone_start_pfn;
4504 }
4505
4506 /*
4507 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4508 * then all holes in the requested range will be accounted for.
4509 */
4510 unsigned long __meminit __absent_pages_in_range(int nid,
4511 unsigned long range_start_pfn,
4512 unsigned long range_end_pfn)
4513 {
4514 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4515 unsigned long start_pfn, end_pfn;
4516 int i;
4517
4518 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4519 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4520 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4521 nr_absent -= end_pfn - start_pfn;
4522 }
4523 return nr_absent;
4524 }
4525
4526 /**
4527 * absent_pages_in_range - Return number of page frames in holes within a range
4528 * @start_pfn: The start PFN to start searching for holes
4529 * @end_pfn: The end PFN to stop searching for holes
4530 *
4531 * It returns the number of pages frames in memory holes within a range.
4532 */
4533 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4534 unsigned long end_pfn)
4535 {
4536 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4537 }
4538
4539 /* Return the number of page frames in holes in a zone on a node */
4540 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4541 unsigned long zone_type,
4542 unsigned long node_start_pfn,
4543 unsigned long node_end_pfn,
4544 unsigned long *ignored)
4545 {
4546 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4547 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4548 unsigned long zone_start_pfn, zone_end_pfn;
4549
4550 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4551 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4552
4553 adjust_zone_range_for_zone_movable(nid, zone_type,
4554 node_start_pfn, node_end_pfn,
4555 &zone_start_pfn, &zone_end_pfn);
4556 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4557 }
4558
4559 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4560 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4561 unsigned long zone_type,
4562 unsigned long node_start_pfn,
4563 unsigned long node_end_pfn,
4564 unsigned long *zones_size)
4565 {
4566 return zones_size[zone_type];
4567 }
4568
4569 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4570 unsigned long zone_type,
4571 unsigned long node_start_pfn,
4572 unsigned long node_end_pfn,
4573 unsigned long *zholes_size)
4574 {
4575 if (!zholes_size)
4576 return 0;
4577
4578 return zholes_size[zone_type];
4579 }
4580
4581 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4582
4583 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4584 unsigned long node_start_pfn,
4585 unsigned long node_end_pfn,
4586 unsigned long *zones_size,
4587 unsigned long *zholes_size)
4588 {
4589 unsigned long realtotalpages, totalpages = 0;
4590 enum zone_type i;
4591
4592 for (i = 0; i < MAX_NR_ZONES; i++)
4593 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4594 node_start_pfn,
4595 node_end_pfn,
4596 zones_size);
4597 pgdat->node_spanned_pages = totalpages;
4598
4599 realtotalpages = totalpages;
4600 for (i = 0; i < MAX_NR_ZONES; i++)
4601 realtotalpages -=
4602 zone_absent_pages_in_node(pgdat->node_id, i,
4603 node_start_pfn, node_end_pfn,
4604 zholes_size);
4605 pgdat->node_present_pages = realtotalpages;
4606 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4607 realtotalpages);
4608 }
4609
4610 #ifndef CONFIG_SPARSEMEM
4611 /*
4612 * Calculate the size of the zone->blockflags rounded to an unsigned long
4613 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4614 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4615 * round what is now in bits to nearest long in bits, then return it in
4616 * bytes.
4617 */
4618 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4619 {
4620 unsigned long usemapsize;
4621
4622 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4623 usemapsize = roundup(zonesize, pageblock_nr_pages);
4624 usemapsize = usemapsize >> pageblock_order;
4625 usemapsize *= NR_PAGEBLOCK_BITS;
4626 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4627
4628 return usemapsize / 8;
4629 }
4630
4631 static void __init setup_usemap(struct pglist_data *pgdat,
4632 struct zone *zone,
4633 unsigned long zone_start_pfn,
4634 unsigned long zonesize)
4635 {
4636 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4637 zone->pageblock_flags = NULL;
4638 if (usemapsize)
4639 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4640 usemapsize);
4641 }
4642 #else
4643 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4644 unsigned long zone_start_pfn, unsigned long zonesize) {}
4645 #endif /* CONFIG_SPARSEMEM */
4646
4647 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4648
4649 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4650 void __paginginit set_pageblock_order(void)
4651 {
4652 unsigned int order;
4653
4654 /* Check that pageblock_nr_pages has not already been setup */
4655 if (pageblock_order)
4656 return;
4657
4658 if (HPAGE_SHIFT > PAGE_SHIFT)
4659 order = HUGETLB_PAGE_ORDER;
4660 else
4661 order = MAX_ORDER - 1;
4662
4663 /*
4664 * Assume the largest contiguous order of interest is a huge page.
4665 * This value may be variable depending on boot parameters on IA64 and
4666 * powerpc.
4667 */
4668 pageblock_order = order;
4669 }
4670 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4671
4672 /*
4673 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4674 * is unused as pageblock_order is set at compile-time. See
4675 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4676 * the kernel config
4677 */
4678 void __paginginit set_pageblock_order(void)
4679 {
4680 }
4681
4682 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4683
4684 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4685 unsigned long present_pages)
4686 {
4687 unsigned long pages = spanned_pages;
4688
4689 /*
4690 * Provide a more accurate estimation if there are holes within
4691 * the zone and SPARSEMEM is in use. If there are holes within the
4692 * zone, each populated memory region may cost us one or two extra
4693 * memmap pages due to alignment because memmap pages for each
4694 * populated regions may not naturally algined on page boundary.
4695 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4696 */
4697 if (spanned_pages > present_pages + (present_pages >> 4) &&
4698 IS_ENABLED(CONFIG_SPARSEMEM))
4699 pages = present_pages;
4700
4701 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4702 }
4703
4704 /*
4705 * Set up the zone data structures:
4706 * - mark all pages reserved
4707 * - mark all memory queues empty
4708 * - clear the memory bitmaps
4709 *
4710 * NOTE: pgdat should get zeroed by caller.
4711 */
4712 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4713 unsigned long node_start_pfn, unsigned long node_end_pfn,
4714 unsigned long *zones_size, unsigned long *zholes_size)
4715 {
4716 enum zone_type j;
4717 int nid = pgdat->node_id;
4718 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4719 int ret;
4720
4721 pgdat_resize_init(pgdat);
4722 #ifdef CONFIG_NUMA_BALANCING
4723 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4724 pgdat->numabalancing_migrate_nr_pages = 0;
4725 pgdat->numabalancing_migrate_next_window = jiffies;
4726 #endif
4727 init_waitqueue_head(&pgdat->kswapd_wait);
4728 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4729 pgdat_page_cgroup_init(pgdat);
4730
4731 for (j = 0; j < MAX_NR_ZONES; j++) {
4732 struct zone *zone = pgdat->node_zones + j;
4733 unsigned long size, realsize, freesize, memmap_pages;
4734
4735 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4736 node_end_pfn, zones_size);
4737 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4738 node_start_pfn,
4739 node_end_pfn,
4740 zholes_size);
4741
4742 /*
4743 * Adjust freesize so that it accounts for how much memory
4744 * is used by this zone for memmap. This affects the watermark
4745 * and per-cpu initialisations
4746 */
4747 memmap_pages = calc_memmap_size(size, realsize);
4748 if (freesize >= memmap_pages) {
4749 freesize -= memmap_pages;
4750 if (memmap_pages)
4751 printk(KERN_DEBUG
4752 " %s zone: %lu pages used for memmap\n",
4753 zone_names[j], memmap_pages);
4754 } else
4755 printk(KERN_WARNING
4756 " %s zone: %lu pages exceeds freesize %lu\n",
4757 zone_names[j], memmap_pages, freesize);
4758
4759 /* Account for reserved pages */
4760 if (j == 0 && freesize > dma_reserve) {
4761 freesize -= dma_reserve;
4762 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4763 zone_names[0], dma_reserve);
4764 }
4765
4766 if (!is_highmem_idx(j))
4767 nr_kernel_pages += freesize;
4768 /* Charge for highmem memmap if there are enough kernel pages */
4769 else if (nr_kernel_pages > memmap_pages * 2)
4770 nr_kernel_pages -= memmap_pages;
4771 nr_all_pages += freesize;
4772
4773 zone->spanned_pages = size;
4774 zone->present_pages = realsize;
4775 /*
4776 * Set an approximate value for lowmem here, it will be adjusted
4777 * when the bootmem allocator frees pages into the buddy system.
4778 * And all highmem pages will be managed by the buddy system.
4779 */
4780 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4781 #ifdef CONFIG_NUMA
4782 zone->node = nid;
4783 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4784 / 100;
4785 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4786 #endif
4787 zone->name = zone_names[j];
4788 spin_lock_init(&zone->lock);
4789 spin_lock_init(&zone->lru_lock);
4790 zone_seqlock_init(zone);
4791 zone->zone_pgdat = pgdat;
4792 zone_pcp_init(zone);
4793
4794 /* For bootup, initialized properly in watermark setup */
4795 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4796
4797 lruvec_init(&zone->lruvec);
4798 if (!size)
4799 continue;
4800
4801 set_pageblock_order();
4802 setup_usemap(pgdat, zone, zone_start_pfn, size);
4803 ret = init_currently_empty_zone(zone, zone_start_pfn,
4804 size, MEMMAP_EARLY);
4805 BUG_ON(ret);
4806 memmap_init(size, nid, j, zone_start_pfn);
4807 zone_start_pfn += size;
4808 }
4809 }
4810
4811 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4812 {
4813 /* Skip empty nodes */
4814 if (!pgdat->node_spanned_pages)
4815 return;
4816
4817 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4818 /* ia64 gets its own node_mem_map, before this, without bootmem */
4819 if (!pgdat->node_mem_map) {
4820 unsigned long size, start, end;
4821 struct page *map;
4822
4823 /*
4824 * The zone's endpoints aren't required to be MAX_ORDER
4825 * aligned but the node_mem_map endpoints must be in order
4826 * for the buddy allocator to function correctly.
4827 */
4828 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4829 end = pgdat_end_pfn(pgdat);
4830 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4831 size = (end - start) * sizeof(struct page);
4832 map = alloc_remap(pgdat->node_id, size);
4833 if (!map)
4834 map = alloc_bootmem_node_nopanic(pgdat, size);
4835 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4836 }
4837 #ifndef CONFIG_NEED_MULTIPLE_NODES
4838 /*
4839 * With no DISCONTIG, the global mem_map is just set as node 0's
4840 */
4841 if (pgdat == NODE_DATA(0)) {
4842 mem_map = NODE_DATA(0)->node_mem_map;
4843 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4844 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4845 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4846 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4847 }
4848 #endif
4849 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4850 }
4851
4852 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4853 unsigned long node_start_pfn, unsigned long *zholes_size)
4854 {
4855 pg_data_t *pgdat = NODE_DATA(nid);
4856 unsigned long start_pfn = 0;
4857 unsigned long end_pfn = 0;
4858
4859 /* pg_data_t should be reset to zero when it's allocated */
4860 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4861
4862 pgdat->node_id = nid;
4863 pgdat->node_start_pfn = node_start_pfn;
4864 init_zone_allows_reclaim(nid);
4865 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4866 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4867 #endif
4868 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4869 zones_size, zholes_size);
4870
4871 alloc_node_mem_map(pgdat);
4872 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4873 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4874 nid, (unsigned long)pgdat,
4875 (unsigned long)pgdat->node_mem_map);
4876 #endif
4877
4878 free_area_init_core(pgdat, start_pfn, end_pfn,
4879 zones_size, zholes_size);
4880 }
4881
4882 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4883
4884 #if MAX_NUMNODES > 1
4885 /*
4886 * Figure out the number of possible node ids.
4887 */
4888 void __init setup_nr_node_ids(void)
4889 {
4890 unsigned int node;
4891 unsigned int highest = 0;
4892
4893 for_each_node_mask(node, node_possible_map)
4894 highest = node;
4895 nr_node_ids = highest + 1;
4896 }
4897 #endif
4898
4899 /**
4900 * node_map_pfn_alignment - determine the maximum internode alignment
4901 *
4902 * This function should be called after node map is populated and sorted.
4903 * It calculates the maximum power of two alignment which can distinguish
4904 * all the nodes.
4905 *
4906 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4907 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4908 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4909 * shifted, 1GiB is enough and this function will indicate so.
4910 *
4911 * This is used to test whether pfn -> nid mapping of the chosen memory
4912 * model has fine enough granularity to avoid incorrect mapping for the
4913 * populated node map.
4914 *
4915 * Returns the determined alignment in pfn's. 0 if there is no alignment
4916 * requirement (single node).
4917 */
4918 unsigned long __init node_map_pfn_alignment(void)
4919 {
4920 unsigned long accl_mask = 0, last_end = 0;
4921 unsigned long start, end, mask;
4922 int last_nid = -1;
4923 int i, nid;
4924
4925 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4926 if (!start || last_nid < 0 || last_nid == nid) {
4927 last_nid = nid;
4928 last_end = end;
4929 continue;
4930 }
4931
4932 /*
4933 * Start with a mask granular enough to pin-point to the
4934 * start pfn and tick off bits one-by-one until it becomes
4935 * too coarse to separate the current node from the last.
4936 */
4937 mask = ~((1 << __ffs(start)) - 1);
4938 while (mask && last_end <= (start & (mask << 1)))
4939 mask <<= 1;
4940
4941 /* accumulate all internode masks */
4942 accl_mask |= mask;
4943 }
4944
4945 /* convert mask to number of pages */
4946 return ~accl_mask + 1;
4947 }
4948
4949 /* Find the lowest pfn for a node */
4950 static unsigned long __init find_min_pfn_for_node(int nid)
4951 {
4952 unsigned long min_pfn = ULONG_MAX;
4953 unsigned long start_pfn;
4954 int i;
4955
4956 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4957 min_pfn = min(min_pfn, start_pfn);
4958
4959 if (min_pfn == ULONG_MAX) {
4960 printk(KERN_WARNING
4961 "Could not find start_pfn for node %d\n", nid);
4962 return 0;
4963 }
4964
4965 return min_pfn;
4966 }
4967
4968 /**
4969 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4970 *
4971 * It returns the minimum PFN based on information provided via
4972 * add_active_range().
4973 */
4974 unsigned long __init find_min_pfn_with_active_regions(void)
4975 {
4976 return find_min_pfn_for_node(MAX_NUMNODES);
4977 }
4978
4979 /*
4980 * early_calculate_totalpages()
4981 * Sum pages in active regions for movable zone.
4982 * Populate N_MEMORY for calculating usable_nodes.
4983 */
4984 static unsigned long __init early_calculate_totalpages(void)
4985 {
4986 unsigned long totalpages = 0;
4987 unsigned long start_pfn, end_pfn;
4988 int i, nid;
4989
4990 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4991 unsigned long pages = end_pfn - start_pfn;
4992
4993 totalpages += pages;
4994 if (pages)
4995 node_set_state(nid, N_MEMORY);
4996 }
4997 return totalpages;
4998 }
4999
5000 /*
5001 * Find the PFN the Movable zone begins in each node. Kernel memory
5002 * is spread evenly between nodes as long as the nodes have enough
5003 * memory. When they don't, some nodes will have more kernelcore than
5004 * others
5005 */
5006 static void __init find_zone_movable_pfns_for_nodes(void)
5007 {
5008 int i, nid;
5009 unsigned long usable_startpfn;
5010 unsigned long kernelcore_node, kernelcore_remaining;
5011 /* save the state before borrow the nodemask */
5012 nodemask_t saved_node_state = node_states[N_MEMORY];
5013 unsigned long totalpages = early_calculate_totalpages();
5014 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5015
5016 /*
5017 * If movablecore was specified, calculate what size of
5018 * kernelcore that corresponds so that memory usable for
5019 * any allocation type is evenly spread. If both kernelcore
5020 * and movablecore are specified, then the value of kernelcore
5021 * will be used for required_kernelcore if it's greater than
5022 * what movablecore would have allowed.
5023 */
5024 if (required_movablecore) {
5025 unsigned long corepages;
5026
5027 /*
5028 * Round-up so that ZONE_MOVABLE is at least as large as what
5029 * was requested by the user
5030 */
5031 required_movablecore =
5032 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5033 corepages = totalpages - required_movablecore;
5034
5035 required_kernelcore = max(required_kernelcore, corepages);
5036 }
5037
5038 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5039 if (!required_kernelcore)
5040 goto out;
5041
5042 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5043 find_usable_zone_for_movable();
5044 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5045
5046 restart:
5047 /* Spread kernelcore memory as evenly as possible throughout nodes */
5048 kernelcore_node = required_kernelcore / usable_nodes;
5049 for_each_node_state(nid, N_MEMORY) {
5050 unsigned long start_pfn, end_pfn;
5051
5052 /*
5053 * Recalculate kernelcore_node if the division per node
5054 * now exceeds what is necessary to satisfy the requested
5055 * amount of memory for the kernel
5056 */
5057 if (required_kernelcore < kernelcore_node)
5058 kernelcore_node = required_kernelcore / usable_nodes;
5059
5060 /*
5061 * As the map is walked, we track how much memory is usable
5062 * by the kernel using kernelcore_remaining. When it is
5063 * 0, the rest of the node is usable by ZONE_MOVABLE
5064 */
5065 kernelcore_remaining = kernelcore_node;
5066
5067 /* Go through each range of PFNs within this node */
5068 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5069 unsigned long size_pages;
5070
5071 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5072 if (start_pfn >= end_pfn)
5073 continue;
5074
5075 /* Account for what is only usable for kernelcore */
5076 if (start_pfn < usable_startpfn) {
5077 unsigned long kernel_pages;
5078 kernel_pages = min(end_pfn, usable_startpfn)
5079 - start_pfn;
5080
5081 kernelcore_remaining -= min(kernel_pages,
5082 kernelcore_remaining);
5083 required_kernelcore -= min(kernel_pages,
5084 required_kernelcore);
5085
5086 /* Continue if range is now fully accounted */
5087 if (end_pfn <= usable_startpfn) {
5088
5089 /*
5090 * Push zone_movable_pfn to the end so
5091 * that if we have to rebalance
5092 * kernelcore across nodes, we will
5093 * not double account here
5094 */
5095 zone_movable_pfn[nid] = end_pfn;
5096 continue;
5097 }
5098 start_pfn = usable_startpfn;
5099 }
5100
5101 /*
5102 * The usable PFN range for ZONE_MOVABLE is from
5103 * start_pfn->end_pfn. Calculate size_pages as the
5104 * number of pages used as kernelcore
5105 */
5106 size_pages = end_pfn - start_pfn;
5107 if (size_pages > kernelcore_remaining)
5108 size_pages = kernelcore_remaining;
5109 zone_movable_pfn[nid] = start_pfn + size_pages;
5110
5111 /*
5112 * Some kernelcore has been met, update counts and
5113 * break if the kernelcore for this node has been
5114 * satisfied
5115 */
5116 required_kernelcore -= min(required_kernelcore,
5117 size_pages);
5118 kernelcore_remaining -= size_pages;
5119 if (!kernelcore_remaining)
5120 break;
5121 }
5122 }
5123
5124 /*
5125 * If there is still required_kernelcore, we do another pass with one
5126 * less node in the count. This will push zone_movable_pfn[nid] further
5127 * along on the nodes that still have memory until kernelcore is
5128 * satisfied
5129 */
5130 usable_nodes--;
5131 if (usable_nodes && required_kernelcore > usable_nodes)
5132 goto restart;
5133
5134 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5135 for (nid = 0; nid < MAX_NUMNODES; nid++)
5136 zone_movable_pfn[nid] =
5137 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5138
5139 out:
5140 /* restore the node_state */
5141 node_states[N_MEMORY] = saved_node_state;
5142 }
5143
5144 /* Any regular or high memory on that node ? */
5145 static void check_for_memory(pg_data_t *pgdat, int nid)
5146 {
5147 enum zone_type zone_type;
5148
5149 if (N_MEMORY == N_NORMAL_MEMORY)
5150 return;
5151
5152 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5153 struct zone *zone = &pgdat->node_zones[zone_type];
5154 if (populated_zone(zone)) {
5155 node_set_state(nid, N_HIGH_MEMORY);
5156 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5157 zone_type <= ZONE_NORMAL)
5158 node_set_state(nid, N_NORMAL_MEMORY);
5159 break;
5160 }
5161 }
5162 }
5163
5164 /**
5165 * free_area_init_nodes - Initialise all pg_data_t and zone data
5166 * @max_zone_pfn: an array of max PFNs for each zone
5167 *
5168 * This will call free_area_init_node() for each active node in the system.
5169 * Using the page ranges provided by add_active_range(), the size of each
5170 * zone in each node and their holes is calculated. If the maximum PFN
5171 * between two adjacent zones match, it is assumed that the zone is empty.
5172 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5173 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5174 * starts where the previous one ended. For example, ZONE_DMA32 starts
5175 * at arch_max_dma_pfn.
5176 */
5177 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5178 {
5179 unsigned long start_pfn, end_pfn;
5180 int i, nid;
5181
5182 /* Record where the zone boundaries are */
5183 memset(arch_zone_lowest_possible_pfn, 0,
5184 sizeof(arch_zone_lowest_possible_pfn));
5185 memset(arch_zone_highest_possible_pfn, 0,
5186 sizeof(arch_zone_highest_possible_pfn));
5187 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5188 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5189 for (i = 1; i < MAX_NR_ZONES; i++) {
5190 if (i == ZONE_MOVABLE)
5191 continue;
5192 arch_zone_lowest_possible_pfn[i] =
5193 arch_zone_highest_possible_pfn[i-1];
5194 arch_zone_highest_possible_pfn[i] =
5195 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5196 }
5197 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5198 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5199
5200 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5201 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5202 find_zone_movable_pfns_for_nodes();
5203
5204 /* Print out the zone ranges */
5205 printk("Zone ranges:\n");
5206 for (i = 0; i < MAX_NR_ZONES; i++) {
5207 if (i == ZONE_MOVABLE)
5208 continue;
5209 printk(KERN_CONT " %-8s ", zone_names[i]);
5210 if (arch_zone_lowest_possible_pfn[i] ==
5211 arch_zone_highest_possible_pfn[i])
5212 printk(KERN_CONT "empty\n");
5213 else
5214 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5215 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5216 (arch_zone_highest_possible_pfn[i]
5217 << PAGE_SHIFT) - 1);
5218 }
5219
5220 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5221 printk("Movable zone start for each node\n");
5222 for (i = 0; i < MAX_NUMNODES; i++) {
5223 if (zone_movable_pfn[i])
5224 printk(" Node %d: %#010lx\n", i,
5225 zone_movable_pfn[i] << PAGE_SHIFT);
5226 }
5227
5228 /* Print out the early node map */
5229 printk("Early memory node ranges\n");
5230 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5231 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5232 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5233
5234 /* Initialise every node */
5235 mminit_verify_pageflags_layout();
5236 setup_nr_node_ids();
5237 for_each_online_node(nid) {
5238 pg_data_t *pgdat = NODE_DATA(nid);
5239 free_area_init_node(nid, NULL,
5240 find_min_pfn_for_node(nid), NULL);
5241
5242 /* Any memory on that node */
5243 if (pgdat->node_present_pages)
5244 node_set_state(nid, N_MEMORY);
5245 check_for_memory(pgdat, nid);
5246 }
5247 }
5248
5249 static int __init cmdline_parse_core(char *p, unsigned long *core)
5250 {
5251 unsigned long long coremem;
5252 if (!p)
5253 return -EINVAL;
5254
5255 coremem = memparse(p, &p);
5256 *core = coremem >> PAGE_SHIFT;
5257
5258 /* Paranoid check that UL is enough for the coremem value */
5259 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5260
5261 return 0;
5262 }
5263
5264 /*
5265 * kernelcore=size sets the amount of memory for use for allocations that
5266 * cannot be reclaimed or migrated.
5267 */
5268 static int __init cmdline_parse_kernelcore(char *p)
5269 {
5270 return cmdline_parse_core(p, &required_kernelcore);
5271 }
5272
5273 /*
5274 * movablecore=size sets the amount of memory for use for allocations that
5275 * can be reclaimed or migrated.
5276 */
5277 static int __init cmdline_parse_movablecore(char *p)
5278 {
5279 return cmdline_parse_core(p, &required_movablecore);
5280 }
5281
5282 early_param("kernelcore", cmdline_parse_kernelcore);
5283 early_param("movablecore", cmdline_parse_movablecore);
5284
5285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5286
5287 void adjust_managed_page_count(struct page *page, long count)
5288 {
5289 spin_lock(&managed_page_count_lock);
5290 page_zone(page)->managed_pages += count;
5291 totalram_pages += count;
5292 #ifdef CONFIG_HIGHMEM
5293 if (PageHighMem(page))
5294 totalhigh_pages += count;
5295 #endif
5296 spin_unlock(&managed_page_count_lock);
5297 }
5298 EXPORT_SYMBOL(adjust_managed_page_count);
5299
5300 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5301 {
5302 void *pos;
5303 unsigned long pages = 0;
5304
5305 start = (void *)PAGE_ALIGN((unsigned long)start);
5306 end = (void *)((unsigned long)end & PAGE_MASK);
5307 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5308 if ((unsigned int)poison <= 0xFF)
5309 memset(pos, poison, PAGE_SIZE);
5310 free_reserved_page(virt_to_page(pos));
5311 }
5312
5313 if (pages && s)
5314 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5315 s, pages << (PAGE_SHIFT - 10), start, end);
5316
5317 return pages;
5318 }
5319 EXPORT_SYMBOL(free_reserved_area);
5320
5321 #ifdef CONFIG_HIGHMEM
5322 void free_highmem_page(struct page *page)
5323 {
5324 __free_reserved_page(page);
5325 totalram_pages++;
5326 page_zone(page)->managed_pages++;
5327 totalhigh_pages++;
5328 }
5329 #endif
5330
5331
5332 void __init mem_init_print_info(const char *str)
5333 {
5334 unsigned long physpages, codesize, datasize, rosize, bss_size;
5335 unsigned long init_code_size, init_data_size;
5336
5337 physpages = get_num_physpages();
5338 codesize = _etext - _stext;
5339 datasize = _edata - _sdata;
5340 rosize = __end_rodata - __start_rodata;
5341 bss_size = __bss_stop - __bss_start;
5342 init_data_size = __init_end - __init_begin;
5343 init_code_size = _einittext - _sinittext;
5344
5345 /*
5346 * Detect special cases and adjust section sizes accordingly:
5347 * 1) .init.* may be embedded into .data sections
5348 * 2) .init.text.* may be out of [__init_begin, __init_end],
5349 * please refer to arch/tile/kernel/vmlinux.lds.S.
5350 * 3) .rodata.* may be embedded into .text or .data sections.
5351 */
5352 #define adj_init_size(start, end, size, pos, adj) \
5353 do { \
5354 if (start <= pos && pos < end && size > adj) \
5355 size -= adj; \
5356 } while (0)
5357
5358 adj_init_size(__init_begin, __init_end, init_data_size,
5359 _sinittext, init_code_size);
5360 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5361 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5362 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5363 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5364
5365 #undef adj_init_size
5366
5367 printk("Memory: %luK/%luK available "
5368 "(%luK kernel code, %luK rwdata, %luK rodata, "
5369 "%luK init, %luK bss, %luK reserved"
5370 #ifdef CONFIG_HIGHMEM
5371 ", %luK highmem"
5372 #endif
5373 "%s%s)\n",
5374 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5375 codesize >> 10, datasize >> 10, rosize >> 10,
5376 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5377 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5378 #ifdef CONFIG_HIGHMEM
5379 totalhigh_pages << (PAGE_SHIFT-10),
5380 #endif
5381 str ? ", " : "", str ? str : "");
5382 }
5383
5384 /**
5385 * set_dma_reserve - set the specified number of pages reserved in the first zone
5386 * @new_dma_reserve: The number of pages to mark reserved
5387 *
5388 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5389 * In the DMA zone, a significant percentage may be consumed by kernel image
5390 * and other unfreeable allocations which can skew the watermarks badly. This
5391 * function may optionally be used to account for unfreeable pages in the
5392 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5393 * smaller per-cpu batchsize.
5394 */
5395 void __init set_dma_reserve(unsigned long new_dma_reserve)
5396 {
5397 dma_reserve = new_dma_reserve;
5398 }
5399
5400 void __init free_area_init(unsigned long *zones_size)
5401 {
5402 free_area_init_node(0, zones_size,
5403 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5404 }
5405
5406 static int page_alloc_cpu_notify(struct notifier_block *self,
5407 unsigned long action, void *hcpu)
5408 {
5409 int cpu = (unsigned long)hcpu;
5410
5411 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5412 lru_add_drain_cpu(cpu);
5413 drain_pages(cpu);
5414
5415 /*
5416 * Spill the event counters of the dead processor
5417 * into the current processors event counters.
5418 * This artificially elevates the count of the current
5419 * processor.
5420 */
5421 vm_events_fold_cpu(cpu);
5422
5423 /*
5424 * Zero the differential counters of the dead processor
5425 * so that the vm statistics are consistent.
5426 *
5427 * This is only okay since the processor is dead and cannot
5428 * race with what we are doing.
5429 */
5430 cpu_vm_stats_fold(cpu);
5431 }
5432 return NOTIFY_OK;
5433 }
5434
5435 void __init page_alloc_init(void)
5436 {
5437 hotcpu_notifier(page_alloc_cpu_notify, 0);
5438 }
5439
5440 /*
5441 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5442 * or min_free_kbytes changes.
5443 */
5444 static void calculate_totalreserve_pages(void)
5445 {
5446 struct pglist_data *pgdat;
5447 unsigned long reserve_pages = 0;
5448 enum zone_type i, j;
5449
5450 for_each_online_pgdat(pgdat) {
5451 for (i = 0; i < MAX_NR_ZONES; i++) {
5452 struct zone *zone = pgdat->node_zones + i;
5453 unsigned long max = 0;
5454
5455 /* Find valid and maximum lowmem_reserve in the zone */
5456 for (j = i; j < MAX_NR_ZONES; j++) {
5457 if (zone->lowmem_reserve[j] > max)
5458 max = zone->lowmem_reserve[j];
5459 }
5460
5461 /* we treat the high watermark as reserved pages. */
5462 max += high_wmark_pages(zone);
5463
5464 if (max > zone->managed_pages)
5465 max = zone->managed_pages;
5466 reserve_pages += max;
5467 /*
5468 * Lowmem reserves are not available to
5469 * GFP_HIGHUSER page cache allocations and
5470 * kswapd tries to balance zones to their high
5471 * watermark. As a result, neither should be
5472 * regarded as dirtyable memory, to prevent a
5473 * situation where reclaim has to clean pages
5474 * in order to balance the zones.
5475 */
5476 zone->dirty_balance_reserve = max;
5477 }
5478 }
5479 dirty_balance_reserve = reserve_pages;
5480 totalreserve_pages = reserve_pages;
5481 }
5482
5483 /*
5484 * setup_per_zone_lowmem_reserve - called whenever
5485 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5486 * has a correct pages reserved value, so an adequate number of
5487 * pages are left in the zone after a successful __alloc_pages().
5488 */
5489 static void setup_per_zone_lowmem_reserve(void)
5490 {
5491 struct pglist_data *pgdat;
5492 enum zone_type j, idx;
5493
5494 for_each_online_pgdat(pgdat) {
5495 for (j = 0; j < MAX_NR_ZONES; j++) {
5496 struct zone *zone = pgdat->node_zones + j;
5497 unsigned long managed_pages = zone->managed_pages;
5498
5499 zone->lowmem_reserve[j] = 0;
5500
5501 idx = j;
5502 while (idx) {
5503 struct zone *lower_zone;
5504
5505 idx--;
5506
5507 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5508 sysctl_lowmem_reserve_ratio[idx] = 1;
5509
5510 lower_zone = pgdat->node_zones + idx;
5511 lower_zone->lowmem_reserve[j] = managed_pages /
5512 sysctl_lowmem_reserve_ratio[idx];
5513 managed_pages += lower_zone->managed_pages;
5514 }
5515 }
5516 }
5517
5518 /* update totalreserve_pages */
5519 calculate_totalreserve_pages();
5520 }
5521
5522 static void __setup_per_zone_wmarks(void)
5523 {
5524 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5525 unsigned long lowmem_pages = 0;
5526 struct zone *zone;
5527 unsigned long flags;
5528
5529 /* Calculate total number of !ZONE_HIGHMEM pages */
5530 for_each_zone(zone) {
5531 if (!is_highmem(zone))
5532 lowmem_pages += zone->managed_pages;
5533 }
5534
5535 for_each_zone(zone) {
5536 u64 tmp;
5537
5538 spin_lock_irqsave(&zone->lock, flags);
5539 tmp = (u64)pages_min * zone->managed_pages;
5540 do_div(tmp, lowmem_pages);
5541 if (is_highmem(zone)) {
5542 /*
5543 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5544 * need highmem pages, so cap pages_min to a small
5545 * value here.
5546 *
5547 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5548 * deltas controls asynch page reclaim, and so should
5549 * not be capped for highmem.
5550 */
5551 unsigned long min_pages;
5552
5553 min_pages = zone->managed_pages / 1024;
5554 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5555 zone->watermark[WMARK_MIN] = min_pages;
5556 } else {
5557 /*
5558 * If it's a lowmem zone, reserve a number of pages
5559 * proportionate to the zone's size.
5560 */
5561 zone->watermark[WMARK_MIN] = tmp;
5562 }
5563
5564 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5565 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5566
5567 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5568 high_wmark_pages(zone) -
5569 low_wmark_pages(zone) -
5570 zone_page_state(zone, NR_ALLOC_BATCH));
5571
5572 setup_zone_migrate_reserve(zone);
5573 spin_unlock_irqrestore(&zone->lock, flags);
5574 }
5575
5576 /* update totalreserve_pages */
5577 calculate_totalreserve_pages();
5578 }
5579
5580 /**
5581 * setup_per_zone_wmarks - called when min_free_kbytes changes
5582 * or when memory is hot-{added|removed}
5583 *
5584 * Ensures that the watermark[min,low,high] values for each zone are set
5585 * correctly with respect to min_free_kbytes.
5586 */
5587 void setup_per_zone_wmarks(void)
5588 {
5589 mutex_lock(&zonelists_mutex);
5590 __setup_per_zone_wmarks();
5591 mutex_unlock(&zonelists_mutex);
5592 }
5593
5594 /*
5595 * The inactive anon list should be small enough that the VM never has to
5596 * do too much work, but large enough that each inactive page has a chance
5597 * to be referenced again before it is swapped out.
5598 *
5599 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5600 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5601 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5602 * the anonymous pages are kept on the inactive list.
5603 *
5604 * total target max
5605 * memory ratio inactive anon
5606 * -------------------------------------
5607 * 10MB 1 5MB
5608 * 100MB 1 50MB
5609 * 1GB 3 250MB
5610 * 10GB 10 0.9GB
5611 * 100GB 31 3GB
5612 * 1TB 101 10GB
5613 * 10TB 320 32GB
5614 */
5615 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5616 {
5617 unsigned int gb, ratio;
5618
5619 /* Zone size in gigabytes */
5620 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5621 if (gb)
5622 ratio = int_sqrt(10 * gb);
5623 else
5624 ratio = 1;
5625
5626 zone->inactive_ratio = ratio;
5627 }
5628
5629 static void __meminit setup_per_zone_inactive_ratio(void)
5630 {
5631 struct zone *zone;
5632
5633 for_each_zone(zone)
5634 calculate_zone_inactive_ratio(zone);
5635 }
5636
5637 /*
5638 * Initialise min_free_kbytes.
5639 *
5640 * For small machines we want it small (128k min). For large machines
5641 * we want it large (64MB max). But it is not linear, because network
5642 * bandwidth does not increase linearly with machine size. We use
5643 *
5644 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5645 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5646 *
5647 * which yields
5648 *
5649 * 16MB: 512k
5650 * 32MB: 724k
5651 * 64MB: 1024k
5652 * 128MB: 1448k
5653 * 256MB: 2048k
5654 * 512MB: 2896k
5655 * 1024MB: 4096k
5656 * 2048MB: 5792k
5657 * 4096MB: 8192k
5658 * 8192MB: 11584k
5659 * 16384MB: 16384k
5660 */
5661 int __meminit init_per_zone_wmark_min(void)
5662 {
5663 unsigned long lowmem_kbytes;
5664 int new_min_free_kbytes;
5665
5666 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5667 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5668
5669 if (new_min_free_kbytes > user_min_free_kbytes) {
5670 min_free_kbytes = new_min_free_kbytes;
5671 if (min_free_kbytes < 128)
5672 min_free_kbytes = 128;
5673 if (min_free_kbytes > 65536)
5674 min_free_kbytes = 65536;
5675 } else {
5676 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5677 new_min_free_kbytes, user_min_free_kbytes);
5678 }
5679 setup_per_zone_wmarks();
5680 refresh_zone_stat_thresholds();
5681 setup_per_zone_lowmem_reserve();
5682 setup_per_zone_inactive_ratio();
5683 return 0;
5684 }
5685 module_init(init_per_zone_wmark_min)
5686
5687 /*
5688 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5689 * that we can call two helper functions whenever min_free_kbytes
5690 * changes.
5691 */
5692 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5693 void __user *buffer, size_t *length, loff_t *ppos)
5694 {
5695 proc_dointvec(table, write, buffer, length, ppos);
5696 if (write) {
5697 user_min_free_kbytes = min_free_kbytes;
5698 setup_per_zone_wmarks();
5699 }
5700 return 0;
5701 }
5702
5703 #ifdef CONFIG_NUMA
5704 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5705 void __user *buffer, size_t *length, loff_t *ppos)
5706 {
5707 struct zone *zone;
5708 int rc;
5709
5710 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5711 if (rc)
5712 return rc;
5713
5714 for_each_zone(zone)
5715 zone->min_unmapped_pages = (zone->managed_pages *
5716 sysctl_min_unmapped_ratio) / 100;
5717 return 0;
5718 }
5719
5720 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5721 void __user *buffer, size_t *length, loff_t *ppos)
5722 {
5723 struct zone *zone;
5724 int rc;
5725
5726 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5727 if (rc)
5728 return rc;
5729
5730 for_each_zone(zone)
5731 zone->min_slab_pages = (zone->managed_pages *
5732 sysctl_min_slab_ratio) / 100;
5733 return 0;
5734 }
5735 #endif
5736
5737 /*
5738 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5739 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5740 * whenever sysctl_lowmem_reserve_ratio changes.
5741 *
5742 * The reserve ratio obviously has absolutely no relation with the
5743 * minimum watermarks. The lowmem reserve ratio can only make sense
5744 * if in function of the boot time zone sizes.
5745 */
5746 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5747 void __user *buffer, size_t *length, loff_t *ppos)
5748 {
5749 proc_dointvec_minmax(table, write, buffer, length, ppos);
5750 setup_per_zone_lowmem_reserve();
5751 return 0;
5752 }
5753
5754 /*
5755 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5756 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5757 * pagelist can have before it gets flushed back to buddy allocator.
5758 */
5759 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5760 void __user *buffer, size_t *length, loff_t *ppos)
5761 {
5762 struct zone *zone;
5763 unsigned int cpu;
5764 int ret;
5765
5766 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5767 if (!write || (ret < 0))
5768 return ret;
5769
5770 mutex_lock(&pcp_batch_high_lock);
5771 for_each_populated_zone(zone) {
5772 unsigned long high;
5773 high = zone->managed_pages / percpu_pagelist_fraction;
5774 for_each_possible_cpu(cpu)
5775 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5776 high);
5777 }
5778 mutex_unlock(&pcp_batch_high_lock);
5779 return 0;
5780 }
5781
5782 int hashdist = HASHDIST_DEFAULT;
5783
5784 #ifdef CONFIG_NUMA
5785 static int __init set_hashdist(char *str)
5786 {
5787 if (!str)
5788 return 0;
5789 hashdist = simple_strtoul(str, &str, 0);
5790 return 1;
5791 }
5792 __setup("hashdist=", set_hashdist);
5793 #endif
5794
5795 /*
5796 * allocate a large system hash table from bootmem
5797 * - it is assumed that the hash table must contain an exact power-of-2
5798 * quantity of entries
5799 * - limit is the number of hash buckets, not the total allocation size
5800 */
5801 void *__init alloc_large_system_hash(const char *tablename,
5802 unsigned long bucketsize,
5803 unsigned long numentries,
5804 int scale,
5805 int flags,
5806 unsigned int *_hash_shift,
5807 unsigned int *_hash_mask,
5808 unsigned long low_limit,
5809 unsigned long high_limit)
5810 {
5811 unsigned long long max = high_limit;
5812 unsigned long log2qty, size;
5813 void *table = NULL;
5814
5815 /* allow the kernel cmdline to have a say */
5816 if (!numentries) {
5817 /* round applicable memory size up to nearest megabyte */
5818 numentries = nr_kernel_pages;
5819
5820 /* It isn't necessary when PAGE_SIZE >= 1MB */
5821 if (PAGE_SHIFT < 20)
5822 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5823
5824 /* limit to 1 bucket per 2^scale bytes of low memory */
5825 if (scale > PAGE_SHIFT)
5826 numentries >>= (scale - PAGE_SHIFT);
5827 else
5828 numentries <<= (PAGE_SHIFT - scale);
5829
5830 /* Make sure we've got at least a 0-order allocation.. */
5831 if (unlikely(flags & HASH_SMALL)) {
5832 /* Makes no sense without HASH_EARLY */
5833 WARN_ON(!(flags & HASH_EARLY));
5834 if (!(numentries >> *_hash_shift)) {
5835 numentries = 1UL << *_hash_shift;
5836 BUG_ON(!numentries);
5837 }
5838 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5839 numentries = PAGE_SIZE / bucketsize;
5840 }
5841 numentries = roundup_pow_of_two(numentries);
5842
5843 /* limit allocation size to 1/16 total memory by default */
5844 if (max == 0) {
5845 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5846 do_div(max, bucketsize);
5847 }
5848 max = min(max, 0x80000000ULL);
5849
5850 if (numentries < low_limit)
5851 numentries = low_limit;
5852 if (numentries > max)
5853 numentries = max;
5854
5855 log2qty = ilog2(numentries);
5856
5857 do {
5858 size = bucketsize << log2qty;
5859 if (flags & HASH_EARLY)
5860 table = alloc_bootmem_nopanic(size);
5861 else if (hashdist)
5862 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5863 else {
5864 /*
5865 * If bucketsize is not a power-of-two, we may free
5866 * some pages at the end of hash table which
5867 * alloc_pages_exact() automatically does
5868 */
5869 if (get_order(size) < MAX_ORDER) {
5870 table = alloc_pages_exact(size, GFP_ATOMIC);
5871 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5872 }
5873 }
5874 } while (!table && size > PAGE_SIZE && --log2qty);
5875
5876 if (!table)
5877 panic("Failed to allocate %s hash table\n", tablename);
5878
5879 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5880 tablename,
5881 (1UL << log2qty),
5882 ilog2(size) - PAGE_SHIFT,
5883 size);
5884
5885 if (_hash_shift)
5886 *_hash_shift = log2qty;
5887 if (_hash_mask)
5888 *_hash_mask = (1 << log2qty) - 1;
5889
5890 return table;
5891 }
5892
5893 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5894 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5895 unsigned long pfn)
5896 {
5897 #ifdef CONFIG_SPARSEMEM
5898 return __pfn_to_section(pfn)->pageblock_flags;
5899 #else
5900 return zone->pageblock_flags;
5901 #endif /* CONFIG_SPARSEMEM */
5902 }
5903
5904 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5905 {
5906 #ifdef CONFIG_SPARSEMEM
5907 pfn &= (PAGES_PER_SECTION-1);
5908 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5909 #else
5910 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5911 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5912 #endif /* CONFIG_SPARSEMEM */
5913 }
5914
5915 /**
5916 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5917 * @page: The page within the block of interest
5918 * @start_bitidx: The first bit of interest to retrieve
5919 * @end_bitidx: The last bit of interest
5920 * returns pageblock_bits flags
5921 */
5922 unsigned long get_pageblock_flags_group(struct page *page,
5923 int start_bitidx, int end_bitidx)
5924 {
5925 struct zone *zone;
5926 unsigned long *bitmap;
5927 unsigned long pfn, bitidx;
5928 unsigned long flags = 0;
5929 unsigned long value = 1;
5930
5931 zone = page_zone(page);
5932 pfn = page_to_pfn(page);
5933 bitmap = get_pageblock_bitmap(zone, pfn);
5934 bitidx = pfn_to_bitidx(zone, pfn);
5935
5936 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5937 if (test_bit(bitidx + start_bitidx, bitmap))
5938 flags |= value;
5939
5940 return flags;
5941 }
5942
5943 /**
5944 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5945 * @page: The page within the block of interest
5946 * @start_bitidx: The first bit of interest
5947 * @end_bitidx: The last bit of interest
5948 * @flags: The flags to set
5949 */
5950 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5951 int start_bitidx, int end_bitidx)
5952 {
5953 struct zone *zone;
5954 unsigned long *bitmap;
5955 unsigned long pfn, bitidx;
5956 unsigned long value = 1;
5957
5958 zone = page_zone(page);
5959 pfn = page_to_pfn(page);
5960 bitmap = get_pageblock_bitmap(zone, pfn);
5961 bitidx = pfn_to_bitidx(zone, pfn);
5962 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5963
5964 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5965 if (flags & value)
5966 __set_bit(bitidx + start_bitidx, bitmap);
5967 else
5968 __clear_bit(bitidx + start_bitidx, bitmap);
5969 }
5970
5971 /*
5972 * This function checks whether pageblock includes unmovable pages or not.
5973 * If @count is not zero, it is okay to include less @count unmovable pages
5974 *
5975 * PageLRU check without isolation or lru_lock could race so that
5976 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5977 * expect this function should be exact.
5978 */
5979 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5980 bool skip_hwpoisoned_pages)
5981 {
5982 unsigned long pfn, iter, found;
5983 int mt;
5984
5985 /*
5986 * For avoiding noise data, lru_add_drain_all() should be called
5987 * If ZONE_MOVABLE, the zone never contains unmovable pages
5988 */
5989 if (zone_idx(zone) == ZONE_MOVABLE)
5990 return false;
5991 mt = get_pageblock_migratetype(page);
5992 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5993 return false;
5994
5995 pfn = page_to_pfn(page);
5996 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5997 unsigned long check = pfn + iter;
5998
5999 if (!pfn_valid_within(check))
6000 continue;
6001
6002 page = pfn_to_page(check);
6003
6004 /*
6005 * Hugepages are not in LRU lists, but they're movable.
6006 * We need not scan over tail pages bacause we don't
6007 * handle each tail page individually in migration.
6008 */
6009 if (PageHuge(page)) {
6010 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6011 continue;
6012 }
6013
6014 /*
6015 * We can't use page_count without pin a page
6016 * because another CPU can free compound page.
6017 * This check already skips compound tails of THP
6018 * because their page->_count is zero at all time.
6019 */
6020 if (!atomic_read(&page->_count)) {
6021 if (PageBuddy(page))
6022 iter += (1 << page_order(page)) - 1;
6023 continue;
6024 }
6025
6026 /*
6027 * The HWPoisoned page may be not in buddy system, and
6028 * page_count() is not 0.
6029 */
6030 if (skip_hwpoisoned_pages && PageHWPoison(page))
6031 continue;
6032
6033 if (!PageLRU(page))
6034 found++;
6035 /*
6036 * If there are RECLAIMABLE pages, we need to check it.
6037 * But now, memory offline itself doesn't call shrink_slab()
6038 * and it still to be fixed.
6039 */
6040 /*
6041 * If the page is not RAM, page_count()should be 0.
6042 * we don't need more check. This is an _used_ not-movable page.
6043 *
6044 * The problematic thing here is PG_reserved pages. PG_reserved
6045 * is set to both of a memory hole page and a _used_ kernel
6046 * page at boot.
6047 */
6048 if (found > count)
6049 return true;
6050 }
6051 return false;
6052 }
6053
6054 bool is_pageblock_removable_nolock(struct page *page)
6055 {
6056 struct zone *zone;
6057 unsigned long pfn;
6058
6059 /*
6060 * We have to be careful here because we are iterating over memory
6061 * sections which are not zone aware so we might end up outside of
6062 * the zone but still within the section.
6063 * We have to take care about the node as well. If the node is offline
6064 * its NODE_DATA will be NULL - see page_zone.
6065 */
6066 if (!node_online(page_to_nid(page)))
6067 return false;
6068
6069 zone = page_zone(page);
6070 pfn = page_to_pfn(page);
6071 if (!zone_spans_pfn(zone, pfn))
6072 return false;
6073
6074 return !has_unmovable_pages(zone, page, 0, true);
6075 }
6076
6077 #ifdef CONFIG_CMA
6078
6079 static unsigned long pfn_max_align_down(unsigned long pfn)
6080 {
6081 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6082 pageblock_nr_pages) - 1);
6083 }
6084
6085 static unsigned long pfn_max_align_up(unsigned long pfn)
6086 {
6087 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6088 pageblock_nr_pages));
6089 }
6090
6091 /* [start, end) must belong to a single zone. */
6092 static int __alloc_contig_migrate_range(struct compact_control *cc,
6093 unsigned long start, unsigned long end)
6094 {
6095 /* This function is based on compact_zone() from compaction.c. */
6096 unsigned long nr_reclaimed;
6097 unsigned long pfn = start;
6098 unsigned int tries = 0;
6099 int ret = 0;
6100
6101 migrate_prep();
6102
6103 while (pfn < end || !list_empty(&cc->migratepages)) {
6104 if (fatal_signal_pending(current)) {
6105 ret = -EINTR;
6106 break;
6107 }
6108
6109 if (list_empty(&cc->migratepages)) {
6110 cc->nr_migratepages = 0;
6111 pfn = isolate_migratepages_range(cc->zone, cc,
6112 pfn, end, true);
6113 if (!pfn) {
6114 ret = -EINTR;
6115 break;
6116 }
6117 tries = 0;
6118 } else if (++tries == 5) {
6119 ret = ret < 0 ? ret : -EBUSY;
6120 break;
6121 }
6122
6123 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6124 &cc->migratepages);
6125 cc->nr_migratepages -= nr_reclaimed;
6126
6127 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6128 0, MIGRATE_SYNC, MR_CMA);
6129 }
6130 if (ret < 0) {
6131 putback_movable_pages(&cc->migratepages);
6132 return ret;
6133 }
6134 return 0;
6135 }
6136
6137 /**
6138 * alloc_contig_range() -- tries to allocate given range of pages
6139 * @start: start PFN to allocate
6140 * @end: one-past-the-last PFN to allocate
6141 * @migratetype: migratetype of the underlaying pageblocks (either
6142 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6143 * in range must have the same migratetype and it must
6144 * be either of the two.
6145 *
6146 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6147 * aligned, however it's the caller's responsibility to guarantee that
6148 * we are the only thread that changes migrate type of pageblocks the
6149 * pages fall in.
6150 *
6151 * The PFN range must belong to a single zone.
6152 *
6153 * Returns zero on success or negative error code. On success all
6154 * pages which PFN is in [start, end) are allocated for the caller and
6155 * need to be freed with free_contig_range().
6156 */
6157 int alloc_contig_range(unsigned long start, unsigned long end,
6158 unsigned migratetype)
6159 {
6160 unsigned long outer_start, outer_end;
6161 int ret = 0, order;
6162
6163 struct compact_control cc = {
6164 .nr_migratepages = 0,
6165 .order = -1,
6166 .zone = page_zone(pfn_to_page(start)),
6167 .sync = true,
6168 .ignore_skip_hint = true,
6169 };
6170 INIT_LIST_HEAD(&cc.migratepages);
6171
6172 /*
6173 * What we do here is we mark all pageblocks in range as
6174 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6175 * have different sizes, and due to the way page allocator
6176 * work, we align the range to biggest of the two pages so
6177 * that page allocator won't try to merge buddies from
6178 * different pageblocks and change MIGRATE_ISOLATE to some
6179 * other migration type.
6180 *
6181 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6182 * migrate the pages from an unaligned range (ie. pages that
6183 * we are interested in). This will put all the pages in
6184 * range back to page allocator as MIGRATE_ISOLATE.
6185 *
6186 * When this is done, we take the pages in range from page
6187 * allocator removing them from the buddy system. This way
6188 * page allocator will never consider using them.
6189 *
6190 * This lets us mark the pageblocks back as
6191 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6192 * aligned range but not in the unaligned, original range are
6193 * put back to page allocator so that buddy can use them.
6194 */
6195
6196 ret = start_isolate_page_range(pfn_max_align_down(start),
6197 pfn_max_align_up(end), migratetype,
6198 false);
6199 if (ret)
6200 return ret;
6201
6202 ret = __alloc_contig_migrate_range(&cc, start, end);
6203 if (ret)
6204 goto done;
6205
6206 /*
6207 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6208 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6209 * more, all pages in [start, end) are free in page allocator.
6210 * What we are going to do is to allocate all pages from
6211 * [start, end) (that is remove them from page allocator).
6212 *
6213 * The only problem is that pages at the beginning and at the
6214 * end of interesting range may be not aligned with pages that
6215 * page allocator holds, ie. they can be part of higher order
6216 * pages. Because of this, we reserve the bigger range and
6217 * once this is done free the pages we are not interested in.
6218 *
6219 * We don't have to hold zone->lock here because the pages are
6220 * isolated thus they won't get removed from buddy.
6221 */
6222
6223 lru_add_drain_all();
6224 drain_all_pages();
6225
6226 order = 0;
6227 outer_start = start;
6228 while (!PageBuddy(pfn_to_page(outer_start))) {
6229 if (++order >= MAX_ORDER) {
6230 ret = -EBUSY;
6231 goto done;
6232 }
6233 outer_start &= ~0UL << order;
6234 }
6235
6236 /* Make sure the range is really isolated. */
6237 if (test_pages_isolated(outer_start, end, false)) {
6238 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6239 outer_start, end);
6240 ret = -EBUSY;
6241 goto done;
6242 }
6243
6244
6245 /* Grab isolated pages from freelists. */
6246 outer_end = isolate_freepages_range(&cc, outer_start, end);
6247 if (!outer_end) {
6248 ret = -EBUSY;
6249 goto done;
6250 }
6251
6252 /* Free head and tail (if any) */
6253 if (start != outer_start)
6254 free_contig_range(outer_start, start - outer_start);
6255 if (end != outer_end)
6256 free_contig_range(end, outer_end - end);
6257
6258 done:
6259 undo_isolate_page_range(pfn_max_align_down(start),
6260 pfn_max_align_up(end), migratetype);
6261 return ret;
6262 }
6263
6264 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6265 {
6266 unsigned int count = 0;
6267
6268 for (; nr_pages--; pfn++) {
6269 struct page *page = pfn_to_page(pfn);
6270
6271 count += page_count(page) != 1;
6272 __free_page(page);
6273 }
6274 WARN(count != 0, "%d pages are still in use!\n", count);
6275 }
6276 #endif
6277
6278 #ifdef CONFIG_MEMORY_HOTPLUG
6279 /*
6280 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6281 * page high values need to be recalulated.
6282 */
6283 void __meminit zone_pcp_update(struct zone *zone)
6284 {
6285 unsigned cpu;
6286 mutex_lock(&pcp_batch_high_lock);
6287 for_each_possible_cpu(cpu)
6288 pageset_set_high_and_batch(zone,
6289 per_cpu_ptr(zone->pageset, cpu));
6290 mutex_unlock(&pcp_batch_high_lock);
6291 }
6292 #endif
6293
6294 void zone_pcp_reset(struct zone *zone)
6295 {
6296 unsigned long flags;
6297 int cpu;
6298 struct per_cpu_pageset *pset;
6299
6300 /* avoid races with drain_pages() */
6301 local_irq_save(flags);
6302 if (zone->pageset != &boot_pageset) {
6303 for_each_online_cpu(cpu) {
6304 pset = per_cpu_ptr(zone->pageset, cpu);
6305 drain_zonestat(zone, pset);
6306 }
6307 free_percpu(zone->pageset);
6308 zone->pageset = &boot_pageset;
6309 }
6310 local_irq_restore(flags);
6311 }
6312
6313 #ifdef CONFIG_MEMORY_HOTREMOVE
6314 /*
6315 * All pages in the range must be isolated before calling this.
6316 */
6317 void
6318 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6319 {
6320 struct page *page;
6321 struct zone *zone;
6322 int order, i;
6323 unsigned long pfn;
6324 unsigned long flags;
6325 /* find the first valid pfn */
6326 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6327 if (pfn_valid(pfn))
6328 break;
6329 if (pfn == end_pfn)
6330 return;
6331 zone = page_zone(pfn_to_page(pfn));
6332 spin_lock_irqsave(&zone->lock, flags);
6333 pfn = start_pfn;
6334 while (pfn < end_pfn) {
6335 if (!pfn_valid(pfn)) {
6336 pfn++;
6337 continue;
6338 }
6339 page = pfn_to_page(pfn);
6340 /*
6341 * The HWPoisoned page may be not in buddy system, and
6342 * page_count() is not 0.
6343 */
6344 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6345 pfn++;
6346 SetPageReserved(page);
6347 continue;
6348 }
6349
6350 BUG_ON(page_count(page));
6351 BUG_ON(!PageBuddy(page));
6352 order = page_order(page);
6353 #ifdef CONFIG_DEBUG_VM
6354 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6355 pfn, 1 << order, end_pfn);
6356 #endif
6357 list_del(&page->lru);
6358 rmv_page_order(page);
6359 zone->free_area[order].nr_free--;
6360 for (i = 0; i < (1 << order); i++)
6361 SetPageReserved((page+i));
6362 pfn += (1 << order);
6363 }
6364 spin_unlock_irqrestore(&zone->lock, flags);
6365 }
6366 #endif
6367
6368 #ifdef CONFIG_MEMORY_FAILURE
6369 bool is_free_buddy_page(struct page *page)
6370 {
6371 struct zone *zone = page_zone(page);
6372 unsigned long pfn = page_to_pfn(page);
6373 unsigned long flags;
6374 int order;
6375
6376 spin_lock_irqsave(&zone->lock, flags);
6377 for (order = 0; order < MAX_ORDER; order++) {
6378 struct page *page_head = page - (pfn & ((1 << order) - 1));
6379
6380 if (PageBuddy(page_head) && page_order(page_head) >= order)
6381 break;
6382 }
6383 spin_unlock_irqrestore(&zone->lock, flags);
6384
6385 return order < MAX_ORDER;
6386 }
6387 #endif
6388
6389 static const struct trace_print_flags pageflag_names[] = {
6390 {1UL << PG_locked, "locked" },
6391 {1UL << PG_error, "error" },
6392 {1UL << PG_referenced, "referenced" },
6393 {1UL << PG_uptodate, "uptodate" },
6394 {1UL << PG_dirty, "dirty" },
6395 {1UL << PG_lru, "lru" },
6396 {1UL << PG_active, "active" },
6397 {1UL << PG_slab, "slab" },
6398 {1UL << PG_owner_priv_1, "owner_priv_1" },
6399 {1UL << PG_arch_1, "arch_1" },
6400 {1UL << PG_reserved, "reserved" },
6401 {1UL << PG_private, "private" },
6402 {1UL << PG_private_2, "private_2" },
6403 {1UL << PG_writeback, "writeback" },
6404 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6405 {1UL << PG_head, "head" },
6406 {1UL << PG_tail, "tail" },
6407 #else
6408 {1UL << PG_compound, "compound" },
6409 #endif
6410 {1UL << PG_swapcache, "swapcache" },
6411 {1UL << PG_mappedtodisk, "mappedtodisk" },
6412 {1UL << PG_reclaim, "reclaim" },
6413 {1UL << PG_swapbacked, "swapbacked" },
6414 {1UL << PG_unevictable, "unevictable" },
6415 #ifdef CONFIG_MMU
6416 {1UL << PG_mlocked, "mlocked" },
6417 #endif
6418 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6419 {1UL << PG_uncached, "uncached" },
6420 #endif
6421 #ifdef CONFIG_MEMORY_FAILURE
6422 {1UL << PG_hwpoison, "hwpoison" },
6423 #endif
6424 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6425 {1UL << PG_compound_lock, "compound_lock" },
6426 #endif
6427 };
6428
6429 static void dump_page_flags(unsigned long flags)
6430 {
6431 const char *delim = "";
6432 unsigned long mask;
6433 int i;
6434
6435 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6436
6437 printk(KERN_ALERT "page flags: %#lx(", flags);
6438
6439 /* remove zone id */
6440 flags &= (1UL << NR_PAGEFLAGS) - 1;
6441
6442 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6443
6444 mask = pageflag_names[i].mask;
6445 if ((flags & mask) != mask)
6446 continue;
6447
6448 flags &= ~mask;
6449 printk("%s%s", delim, pageflag_names[i].name);
6450 delim = "|";
6451 }
6452
6453 /* check for left over flags */
6454 if (flags)
6455 printk("%s%#lx", delim, flags);
6456
6457 printk(")\n");
6458 }
6459
6460 void dump_page(struct page *page)
6461 {
6462 printk(KERN_ALERT
6463 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6464 page, atomic_read(&page->_count), page_mapcount(page),
6465 page->mapping, page->index);
6466 dump_page_flags(page->flags);
6467 mem_cgroup_print_bad_page(page);
6468 }