]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
Memoryless nodes: drop one memoryless node boot warning
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
44
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
48
49 /*
50 * Array of node states.
51 */
52 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
53 [N_POSSIBLE] = NODE_MASK_ALL,
54 [N_ONLINE] = { { [0] = 1UL } },
55 #ifndef CONFIG_NUMA
56 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
57 #ifdef CONFIG_HIGHMEM
58 [N_HIGH_MEMORY] = { { [0] = 1UL } },
59 #endif
60 [N_CPU] = { { [0] = 1UL } },
61 #endif /* NUMA */
62 };
63 EXPORT_SYMBOL(node_states);
64
65 unsigned long totalram_pages __read_mostly;
66 unsigned long totalreserve_pages __read_mostly;
67 long nr_swap_pages;
68 int percpu_pagelist_fraction;
69
70 static void __free_pages_ok(struct page *page, unsigned int order);
71
72 /*
73 * results with 256, 32 in the lowmem_reserve sysctl:
74 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
75 * 1G machine -> (16M dma, 784M normal, 224M high)
76 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
77 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
78 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
79 *
80 * TBD: should special case ZONE_DMA32 machines here - in those we normally
81 * don't need any ZONE_NORMAL reservation
82 */
83 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
84 #ifdef CONFIG_ZONE_DMA
85 256,
86 #endif
87 #ifdef CONFIG_ZONE_DMA32
88 256,
89 #endif
90 #ifdef CONFIG_HIGHMEM
91 32,
92 #endif
93 32,
94 };
95
96 EXPORT_SYMBOL(totalram_pages);
97
98 static char * const zone_names[MAX_NR_ZONES] = {
99 #ifdef CONFIG_ZONE_DMA
100 "DMA",
101 #endif
102 #ifdef CONFIG_ZONE_DMA32
103 "DMA32",
104 #endif
105 "Normal",
106 #ifdef CONFIG_HIGHMEM
107 "HighMem",
108 #endif
109 "Movable",
110 };
111
112 int min_free_kbytes = 1024;
113
114 unsigned long __meminitdata nr_kernel_pages;
115 unsigned long __meminitdata nr_all_pages;
116 static unsigned long __meminitdata dma_reserve;
117
118 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
119 /*
120 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
121 * ranges of memory (RAM) that may be registered with add_active_range().
122 * Ranges passed to add_active_range() will be merged if possible
123 * so the number of times add_active_range() can be called is
124 * related to the number of nodes and the number of holes
125 */
126 #ifdef CONFIG_MAX_ACTIVE_REGIONS
127 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
128 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
129 #else
130 #if MAX_NUMNODES >= 32
131 /* If there can be many nodes, allow up to 50 holes per node */
132 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
133 #else
134 /* By default, allow up to 256 distinct regions */
135 #define MAX_ACTIVE_REGIONS 256
136 #endif
137 #endif
138
139 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
140 static int __meminitdata nr_nodemap_entries;
141 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
142 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
143 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
144 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
145 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
146 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
147 unsigned long __initdata required_kernelcore;
148 unsigned long __initdata required_movablecore;
149 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
150
151 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
152 int movable_zone;
153 EXPORT_SYMBOL(movable_zone);
154 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
155
156 #if MAX_NUMNODES > 1
157 int nr_node_ids __read_mostly = MAX_NUMNODES;
158 EXPORT_SYMBOL(nr_node_ids);
159 #endif
160
161 #ifdef CONFIG_DEBUG_VM
162 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
163 {
164 int ret = 0;
165 unsigned seq;
166 unsigned long pfn = page_to_pfn(page);
167
168 do {
169 seq = zone_span_seqbegin(zone);
170 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
171 ret = 1;
172 else if (pfn < zone->zone_start_pfn)
173 ret = 1;
174 } while (zone_span_seqretry(zone, seq));
175
176 return ret;
177 }
178
179 static int page_is_consistent(struct zone *zone, struct page *page)
180 {
181 if (!pfn_valid_within(page_to_pfn(page)))
182 return 0;
183 if (zone != page_zone(page))
184 return 0;
185
186 return 1;
187 }
188 /*
189 * Temporary debugging check for pages not lying within a given zone.
190 */
191 static int bad_range(struct zone *zone, struct page *page)
192 {
193 if (page_outside_zone_boundaries(zone, page))
194 return 1;
195 if (!page_is_consistent(zone, page))
196 return 1;
197
198 return 0;
199 }
200 #else
201 static inline int bad_range(struct zone *zone, struct page *page)
202 {
203 return 0;
204 }
205 #endif
206
207 static void bad_page(struct page *page)
208 {
209 printk(KERN_EMERG "Bad page state in process '%s'\n"
210 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
211 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
212 KERN_EMERG "Backtrace:\n",
213 current->comm, page, (int)(2*sizeof(unsigned long)),
214 (unsigned long)page->flags, page->mapping,
215 page_mapcount(page), page_count(page));
216 dump_stack();
217 page->flags &= ~(1 << PG_lru |
218 1 << PG_private |
219 1 << PG_locked |
220 1 << PG_active |
221 1 << PG_dirty |
222 1 << PG_reclaim |
223 1 << PG_slab |
224 1 << PG_swapcache |
225 1 << PG_writeback |
226 1 << PG_buddy );
227 set_page_count(page, 0);
228 reset_page_mapcount(page);
229 page->mapping = NULL;
230 add_taint(TAINT_BAD_PAGE);
231 }
232
233 /*
234 * Higher-order pages are called "compound pages". They are structured thusly:
235 *
236 * The first PAGE_SIZE page is called the "head page".
237 *
238 * The remaining PAGE_SIZE pages are called "tail pages".
239 *
240 * All pages have PG_compound set. All pages have their ->private pointing at
241 * the head page (even the head page has this).
242 *
243 * The first tail page's ->lru.next holds the address of the compound page's
244 * put_page() function. Its ->lru.prev holds the order of allocation.
245 * This usage means that zero-order pages may not be compound.
246 */
247
248 static void free_compound_page(struct page *page)
249 {
250 __free_pages_ok(page, compound_order(page));
251 }
252
253 static void prep_compound_page(struct page *page, unsigned long order)
254 {
255 int i;
256 int nr_pages = 1 << order;
257
258 set_compound_page_dtor(page, free_compound_page);
259 set_compound_order(page, order);
260 __SetPageHead(page);
261 for (i = 1; i < nr_pages; i++) {
262 struct page *p = page + i;
263
264 __SetPageTail(p);
265 p->first_page = page;
266 }
267 }
268
269 static void destroy_compound_page(struct page *page, unsigned long order)
270 {
271 int i;
272 int nr_pages = 1 << order;
273
274 if (unlikely(compound_order(page) != order))
275 bad_page(page);
276
277 if (unlikely(!PageHead(page)))
278 bad_page(page);
279 __ClearPageHead(page);
280 for (i = 1; i < nr_pages; i++) {
281 struct page *p = page + i;
282
283 if (unlikely(!PageTail(p) |
284 (p->first_page != page)))
285 bad_page(page);
286 __ClearPageTail(p);
287 }
288 }
289
290 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
291 {
292 int i;
293
294 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
295 /*
296 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
297 * and __GFP_HIGHMEM from hard or soft interrupt context.
298 */
299 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
300 for (i = 0; i < (1 << order); i++)
301 clear_highpage(page + i);
302 }
303
304 /*
305 * function for dealing with page's order in buddy system.
306 * zone->lock is already acquired when we use these.
307 * So, we don't need atomic page->flags operations here.
308 */
309 static inline unsigned long page_order(struct page *page)
310 {
311 return page_private(page);
312 }
313
314 static inline void set_page_order(struct page *page, int order)
315 {
316 set_page_private(page, order);
317 __SetPageBuddy(page);
318 }
319
320 static inline void rmv_page_order(struct page *page)
321 {
322 __ClearPageBuddy(page);
323 set_page_private(page, 0);
324 }
325
326 /*
327 * Locate the struct page for both the matching buddy in our
328 * pair (buddy1) and the combined O(n+1) page they form (page).
329 *
330 * 1) Any buddy B1 will have an order O twin B2 which satisfies
331 * the following equation:
332 * B2 = B1 ^ (1 << O)
333 * For example, if the starting buddy (buddy2) is #8 its order
334 * 1 buddy is #10:
335 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
336 *
337 * 2) Any buddy B will have an order O+1 parent P which
338 * satisfies the following equation:
339 * P = B & ~(1 << O)
340 *
341 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
342 */
343 static inline struct page *
344 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
345 {
346 unsigned long buddy_idx = page_idx ^ (1 << order);
347
348 return page + (buddy_idx - page_idx);
349 }
350
351 static inline unsigned long
352 __find_combined_index(unsigned long page_idx, unsigned int order)
353 {
354 return (page_idx & ~(1 << order));
355 }
356
357 /*
358 * This function checks whether a page is free && is the buddy
359 * we can do coalesce a page and its buddy if
360 * (a) the buddy is not in a hole &&
361 * (b) the buddy is in the buddy system &&
362 * (c) a page and its buddy have the same order &&
363 * (d) a page and its buddy are in the same zone.
364 *
365 * For recording whether a page is in the buddy system, we use PG_buddy.
366 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
367 *
368 * For recording page's order, we use page_private(page).
369 */
370 static inline int page_is_buddy(struct page *page, struct page *buddy,
371 int order)
372 {
373 if (!pfn_valid_within(page_to_pfn(buddy)))
374 return 0;
375
376 if (page_zone_id(page) != page_zone_id(buddy))
377 return 0;
378
379 if (PageBuddy(buddy) && page_order(buddy) == order) {
380 BUG_ON(page_count(buddy) != 0);
381 return 1;
382 }
383 return 0;
384 }
385
386 /*
387 * Freeing function for a buddy system allocator.
388 *
389 * The concept of a buddy system is to maintain direct-mapped table
390 * (containing bit values) for memory blocks of various "orders".
391 * The bottom level table contains the map for the smallest allocatable
392 * units of memory (here, pages), and each level above it describes
393 * pairs of units from the levels below, hence, "buddies".
394 * At a high level, all that happens here is marking the table entry
395 * at the bottom level available, and propagating the changes upward
396 * as necessary, plus some accounting needed to play nicely with other
397 * parts of the VM system.
398 * At each level, we keep a list of pages, which are heads of continuous
399 * free pages of length of (1 << order) and marked with PG_buddy. Page's
400 * order is recorded in page_private(page) field.
401 * So when we are allocating or freeing one, we can derive the state of the
402 * other. That is, if we allocate a small block, and both were
403 * free, the remainder of the region must be split into blocks.
404 * If a block is freed, and its buddy is also free, then this
405 * triggers coalescing into a block of larger size.
406 *
407 * -- wli
408 */
409
410 static inline void __free_one_page(struct page *page,
411 struct zone *zone, unsigned int order)
412 {
413 unsigned long page_idx;
414 int order_size = 1 << order;
415
416 if (unlikely(PageCompound(page)))
417 destroy_compound_page(page, order);
418
419 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
420
421 VM_BUG_ON(page_idx & (order_size - 1));
422 VM_BUG_ON(bad_range(zone, page));
423
424 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
425 while (order < MAX_ORDER-1) {
426 unsigned long combined_idx;
427 struct free_area *area;
428 struct page *buddy;
429
430 buddy = __page_find_buddy(page, page_idx, order);
431 if (!page_is_buddy(page, buddy, order))
432 break; /* Move the buddy up one level. */
433
434 list_del(&buddy->lru);
435 area = zone->free_area + order;
436 area->nr_free--;
437 rmv_page_order(buddy);
438 combined_idx = __find_combined_index(page_idx, order);
439 page = page + (combined_idx - page_idx);
440 page_idx = combined_idx;
441 order++;
442 }
443 set_page_order(page, order);
444 list_add(&page->lru, &zone->free_area[order].free_list);
445 zone->free_area[order].nr_free++;
446 }
447
448 static inline int free_pages_check(struct page *page)
449 {
450 if (unlikely(page_mapcount(page) |
451 (page->mapping != NULL) |
452 (page_count(page) != 0) |
453 (page->flags & (
454 1 << PG_lru |
455 1 << PG_private |
456 1 << PG_locked |
457 1 << PG_active |
458 1 << PG_slab |
459 1 << PG_swapcache |
460 1 << PG_writeback |
461 1 << PG_reserved |
462 1 << PG_buddy ))))
463 bad_page(page);
464 if (PageDirty(page))
465 __ClearPageDirty(page);
466 /*
467 * For now, we report if PG_reserved was found set, but do not
468 * clear it, and do not free the page. But we shall soon need
469 * to do more, for when the ZERO_PAGE count wraps negative.
470 */
471 return PageReserved(page);
472 }
473
474 /*
475 * Frees a list of pages.
476 * Assumes all pages on list are in same zone, and of same order.
477 * count is the number of pages to free.
478 *
479 * If the zone was previously in an "all pages pinned" state then look to
480 * see if this freeing clears that state.
481 *
482 * And clear the zone's pages_scanned counter, to hold off the "all pages are
483 * pinned" detection logic.
484 */
485 static void free_pages_bulk(struct zone *zone, int count,
486 struct list_head *list, int order)
487 {
488 spin_lock(&zone->lock);
489 zone->all_unreclaimable = 0;
490 zone->pages_scanned = 0;
491 while (count--) {
492 struct page *page;
493
494 VM_BUG_ON(list_empty(list));
495 page = list_entry(list->prev, struct page, lru);
496 /* have to delete it as __free_one_page list manipulates */
497 list_del(&page->lru);
498 __free_one_page(page, zone, order);
499 }
500 spin_unlock(&zone->lock);
501 }
502
503 static void free_one_page(struct zone *zone, struct page *page, int order)
504 {
505 spin_lock(&zone->lock);
506 zone->all_unreclaimable = 0;
507 zone->pages_scanned = 0;
508 __free_one_page(page, zone, order);
509 spin_unlock(&zone->lock);
510 }
511
512 static void __free_pages_ok(struct page *page, unsigned int order)
513 {
514 unsigned long flags;
515 int i;
516 int reserved = 0;
517
518 for (i = 0 ; i < (1 << order) ; ++i)
519 reserved += free_pages_check(page + i);
520 if (reserved)
521 return;
522
523 if (!PageHighMem(page))
524 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
525 arch_free_page(page, order);
526 kernel_map_pages(page, 1 << order, 0);
527
528 local_irq_save(flags);
529 __count_vm_events(PGFREE, 1 << order);
530 free_one_page(page_zone(page), page, order);
531 local_irq_restore(flags);
532 }
533
534 /*
535 * permit the bootmem allocator to evade page validation on high-order frees
536 */
537 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
538 {
539 if (order == 0) {
540 __ClearPageReserved(page);
541 set_page_count(page, 0);
542 set_page_refcounted(page);
543 __free_page(page);
544 } else {
545 int loop;
546
547 prefetchw(page);
548 for (loop = 0; loop < BITS_PER_LONG; loop++) {
549 struct page *p = &page[loop];
550
551 if (loop + 1 < BITS_PER_LONG)
552 prefetchw(p + 1);
553 __ClearPageReserved(p);
554 set_page_count(p, 0);
555 }
556
557 set_page_refcounted(page);
558 __free_pages(page, order);
559 }
560 }
561
562
563 /*
564 * The order of subdivision here is critical for the IO subsystem.
565 * Please do not alter this order without good reasons and regression
566 * testing. Specifically, as large blocks of memory are subdivided,
567 * the order in which smaller blocks are delivered depends on the order
568 * they're subdivided in this function. This is the primary factor
569 * influencing the order in which pages are delivered to the IO
570 * subsystem according to empirical testing, and this is also justified
571 * by considering the behavior of a buddy system containing a single
572 * large block of memory acted on by a series of small allocations.
573 * This behavior is a critical factor in sglist merging's success.
574 *
575 * -- wli
576 */
577 static inline void expand(struct zone *zone, struct page *page,
578 int low, int high, struct free_area *area)
579 {
580 unsigned long size = 1 << high;
581
582 while (high > low) {
583 area--;
584 high--;
585 size >>= 1;
586 VM_BUG_ON(bad_range(zone, &page[size]));
587 list_add(&page[size].lru, &area->free_list);
588 area->nr_free++;
589 set_page_order(&page[size], high);
590 }
591 }
592
593 /*
594 * This page is about to be returned from the page allocator
595 */
596 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
597 {
598 if (unlikely(page_mapcount(page) |
599 (page->mapping != NULL) |
600 (page_count(page) != 0) |
601 (page->flags & (
602 1 << PG_lru |
603 1 << PG_private |
604 1 << PG_locked |
605 1 << PG_active |
606 1 << PG_dirty |
607 1 << PG_slab |
608 1 << PG_swapcache |
609 1 << PG_writeback |
610 1 << PG_reserved |
611 1 << PG_buddy ))))
612 bad_page(page);
613
614 /*
615 * For now, we report if PG_reserved was found set, but do not
616 * clear it, and do not allocate the page: as a safety net.
617 */
618 if (PageReserved(page))
619 return 1;
620
621 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
622 1 << PG_referenced | 1 << PG_arch_1 |
623 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
624 set_page_private(page, 0);
625 set_page_refcounted(page);
626
627 arch_alloc_page(page, order);
628 kernel_map_pages(page, 1 << order, 1);
629
630 if (gfp_flags & __GFP_ZERO)
631 prep_zero_page(page, order, gfp_flags);
632
633 if (order && (gfp_flags & __GFP_COMP))
634 prep_compound_page(page, order);
635
636 return 0;
637 }
638
639 /*
640 * Do the hard work of removing an element from the buddy allocator.
641 * Call me with the zone->lock already held.
642 */
643 static struct page *__rmqueue(struct zone *zone, unsigned int order)
644 {
645 struct free_area * area;
646 unsigned int current_order;
647 struct page *page;
648
649 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
650 area = zone->free_area + current_order;
651 if (list_empty(&area->free_list))
652 continue;
653
654 page = list_entry(area->free_list.next, struct page, lru);
655 list_del(&page->lru);
656 rmv_page_order(page);
657 area->nr_free--;
658 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
659 expand(zone, page, order, current_order, area);
660 return page;
661 }
662
663 return NULL;
664 }
665
666 /*
667 * Obtain a specified number of elements from the buddy allocator, all under
668 * a single hold of the lock, for efficiency. Add them to the supplied list.
669 * Returns the number of new pages which were placed at *list.
670 */
671 static int rmqueue_bulk(struct zone *zone, unsigned int order,
672 unsigned long count, struct list_head *list)
673 {
674 int i;
675
676 spin_lock(&zone->lock);
677 for (i = 0; i < count; ++i) {
678 struct page *page = __rmqueue(zone, order);
679 if (unlikely(page == NULL))
680 break;
681 list_add_tail(&page->lru, list);
682 }
683 spin_unlock(&zone->lock);
684 return i;
685 }
686
687 #ifdef CONFIG_NUMA
688 /*
689 * Called from the vmstat counter updater to drain pagesets of this
690 * currently executing processor on remote nodes after they have
691 * expired.
692 *
693 * Note that this function must be called with the thread pinned to
694 * a single processor.
695 */
696 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
697 {
698 unsigned long flags;
699 int to_drain;
700
701 local_irq_save(flags);
702 if (pcp->count >= pcp->batch)
703 to_drain = pcp->batch;
704 else
705 to_drain = pcp->count;
706 free_pages_bulk(zone, to_drain, &pcp->list, 0);
707 pcp->count -= to_drain;
708 local_irq_restore(flags);
709 }
710 #endif
711
712 static void __drain_pages(unsigned int cpu)
713 {
714 unsigned long flags;
715 struct zone *zone;
716 int i;
717
718 for_each_zone(zone) {
719 struct per_cpu_pageset *pset;
720
721 if (!populated_zone(zone))
722 continue;
723
724 pset = zone_pcp(zone, cpu);
725 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
726 struct per_cpu_pages *pcp;
727
728 pcp = &pset->pcp[i];
729 local_irq_save(flags);
730 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
731 pcp->count = 0;
732 local_irq_restore(flags);
733 }
734 }
735 }
736
737 #ifdef CONFIG_HIBERNATION
738
739 void mark_free_pages(struct zone *zone)
740 {
741 unsigned long pfn, max_zone_pfn;
742 unsigned long flags;
743 int order;
744 struct list_head *curr;
745
746 if (!zone->spanned_pages)
747 return;
748
749 spin_lock_irqsave(&zone->lock, flags);
750
751 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
752 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
753 if (pfn_valid(pfn)) {
754 struct page *page = pfn_to_page(pfn);
755
756 if (!swsusp_page_is_forbidden(page))
757 swsusp_unset_page_free(page);
758 }
759
760 for (order = MAX_ORDER - 1; order >= 0; --order)
761 list_for_each(curr, &zone->free_area[order].free_list) {
762 unsigned long i;
763
764 pfn = page_to_pfn(list_entry(curr, struct page, lru));
765 for (i = 0; i < (1UL << order); i++)
766 swsusp_set_page_free(pfn_to_page(pfn + i));
767 }
768
769 spin_unlock_irqrestore(&zone->lock, flags);
770 }
771
772 /*
773 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
774 */
775 void drain_local_pages(void)
776 {
777 unsigned long flags;
778
779 local_irq_save(flags);
780 __drain_pages(smp_processor_id());
781 local_irq_restore(flags);
782 }
783 #endif /* CONFIG_HIBERNATION */
784
785 /*
786 * Free a 0-order page
787 */
788 static void fastcall free_hot_cold_page(struct page *page, int cold)
789 {
790 struct zone *zone = page_zone(page);
791 struct per_cpu_pages *pcp;
792 unsigned long flags;
793
794 if (PageAnon(page))
795 page->mapping = NULL;
796 if (free_pages_check(page))
797 return;
798
799 if (!PageHighMem(page))
800 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
801 arch_free_page(page, 0);
802 kernel_map_pages(page, 1, 0);
803
804 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
805 local_irq_save(flags);
806 __count_vm_event(PGFREE);
807 list_add(&page->lru, &pcp->list);
808 pcp->count++;
809 if (pcp->count >= pcp->high) {
810 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
811 pcp->count -= pcp->batch;
812 }
813 local_irq_restore(flags);
814 put_cpu();
815 }
816
817 void fastcall free_hot_page(struct page *page)
818 {
819 free_hot_cold_page(page, 0);
820 }
821
822 void fastcall free_cold_page(struct page *page)
823 {
824 free_hot_cold_page(page, 1);
825 }
826
827 /*
828 * split_page takes a non-compound higher-order page, and splits it into
829 * n (1<<order) sub-pages: page[0..n]
830 * Each sub-page must be freed individually.
831 *
832 * Note: this is probably too low level an operation for use in drivers.
833 * Please consult with lkml before using this in your driver.
834 */
835 void split_page(struct page *page, unsigned int order)
836 {
837 int i;
838
839 VM_BUG_ON(PageCompound(page));
840 VM_BUG_ON(!page_count(page));
841 for (i = 1; i < (1 << order); i++)
842 set_page_refcounted(page + i);
843 }
844
845 /*
846 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
847 * we cheat by calling it from here, in the order > 0 path. Saves a branch
848 * or two.
849 */
850 static struct page *buffered_rmqueue(struct zonelist *zonelist,
851 struct zone *zone, int order, gfp_t gfp_flags)
852 {
853 unsigned long flags;
854 struct page *page;
855 int cold = !!(gfp_flags & __GFP_COLD);
856 int cpu;
857
858 again:
859 cpu = get_cpu();
860 if (likely(order == 0)) {
861 struct per_cpu_pages *pcp;
862
863 pcp = &zone_pcp(zone, cpu)->pcp[cold];
864 local_irq_save(flags);
865 if (!pcp->count) {
866 pcp->count = rmqueue_bulk(zone, 0,
867 pcp->batch, &pcp->list);
868 if (unlikely(!pcp->count))
869 goto failed;
870 }
871 page = list_entry(pcp->list.next, struct page, lru);
872 list_del(&page->lru);
873 pcp->count--;
874 } else {
875 spin_lock_irqsave(&zone->lock, flags);
876 page = __rmqueue(zone, order);
877 spin_unlock(&zone->lock);
878 if (!page)
879 goto failed;
880 }
881
882 __count_zone_vm_events(PGALLOC, zone, 1 << order);
883 zone_statistics(zonelist, zone);
884 local_irq_restore(flags);
885 put_cpu();
886
887 VM_BUG_ON(bad_range(zone, page));
888 if (prep_new_page(page, order, gfp_flags))
889 goto again;
890 return page;
891
892 failed:
893 local_irq_restore(flags);
894 put_cpu();
895 return NULL;
896 }
897
898 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
899 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
900 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
901 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
902 #define ALLOC_HARDER 0x10 /* try to alloc harder */
903 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
904 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
905
906 #ifdef CONFIG_FAIL_PAGE_ALLOC
907
908 static struct fail_page_alloc_attr {
909 struct fault_attr attr;
910
911 u32 ignore_gfp_highmem;
912 u32 ignore_gfp_wait;
913 u32 min_order;
914
915 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
916
917 struct dentry *ignore_gfp_highmem_file;
918 struct dentry *ignore_gfp_wait_file;
919 struct dentry *min_order_file;
920
921 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
922
923 } fail_page_alloc = {
924 .attr = FAULT_ATTR_INITIALIZER,
925 .ignore_gfp_wait = 1,
926 .ignore_gfp_highmem = 1,
927 .min_order = 1,
928 };
929
930 static int __init setup_fail_page_alloc(char *str)
931 {
932 return setup_fault_attr(&fail_page_alloc.attr, str);
933 }
934 __setup("fail_page_alloc=", setup_fail_page_alloc);
935
936 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
937 {
938 if (order < fail_page_alloc.min_order)
939 return 0;
940 if (gfp_mask & __GFP_NOFAIL)
941 return 0;
942 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
943 return 0;
944 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
945 return 0;
946
947 return should_fail(&fail_page_alloc.attr, 1 << order);
948 }
949
950 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
951
952 static int __init fail_page_alloc_debugfs(void)
953 {
954 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
955 struct dentry *dir;
956 int err;
957
958 err = init_fault_attr_dentries(&fail_page_alloc.attr,
959 "fail_page_alloc");
960 if (err)
961 return err;
962 dir = fail_page_alloc.attr.dentries.dir;
963
964 fail_page_alloc.ignore_gfp_wait_file =
965 debugfs_create_bool("ignore-gfp-wait", mode, dir,
966 &fail_page_alloc.ignore_gfp_wait);
967
968 fail_page_alloc.ignore_gfp_highmem_file =
969 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
970 &fail_page_alloc.ignore_gfp_highmem);
971 fail_page_alloc.min_order_file =
972 debugfs_create_u32("min-order", mode, dir,
973 &fail_page_alloc.min_order);
974
975 if (!fail_page_alloc.ignore_gfp_wait_file ||
976 !fail_page_alloc.ignore_gfp_highmem_file ||
977 !fail_page_alloc.min_order_file) {
978 err = -ENOMEM;
979 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
980 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
981 debugfs_remove(fail_page_alloc.min_order_file);
982 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
983 }
984
985 return err;
986 }
987
988 late_initcall(fail_page_alloc_debugfs);
989
990 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
991
992 #else /* CONFIG_FAIL_PAGE_ALLOC */
993
994 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
995 {
996 return 0;
997 }
998
999 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1000
1001 /*
1002 * Return 1 if free pages are above 'mark'. This takes into account the order
1003 * of the allocation.
1004 */
1005 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1006 int classzone_idx, int alloc_flags)
1007 {
1008 /* free_pages my go negative - that's OK */
1009 long min = mark;
1010 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1011 int o;
1012
1013 if (alloc_flags & ALLOC_HIGH)
1014 min -= min / 2;
1015 if (alloc_flags & ALLOC_HARDER)
1016 min -= min / 4;
1017
1018 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1019 return 0;
1020 for (o = 0; o < order; o++) {
1021 /* At the next order, this order's pages become unavailable */
1022 free_pages -= z->free_area[o].nr_free << o;
1023
1024 /* Require fewer higher order pages to be free */
1025 min >>= 1;
1026
1027 if (free_pages <= min)
1028 return 0;
1029 }
1030 return 1;
1031 }
1032
1033 #ifdef CONFIG_NUMA
1034 /*
1035 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1036 * skip over zones that are not allowed by the cpuset, or that have
1037 * been recently (in last second) found to be nearly full. See further
1038 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1039 * that have to skip over alot of full or unallowed zones.
1040 *
1041 * If the zonelist cache is present in the passed in zonelist, then
1042 * returns a pointer to the allowed node mask (either the current
1043 * tasks mems_allowed, or node_online_map.)
1044 *
1045 * If the zonelist cache is not available for this zonelist, does
1046 * nothing and returns NULL.
1047 *
1048 * If the fullzones BITMAP in the zonelist cache is stale (more than
1049 * a second since last zap'd) then we zap it out (clear its bits.)
1050 *
1051 * We hold off even calling zlc_setup, until after we've checked the
1052 * first zone in the zonelist, on the theory that most allocations will
1053 * be satisfied from that first zone, so best to examine that zone as
1054 * quickly as we can.
1055 */
1056 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1057 {
1058 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1059 nodemask_t *allowednodes; /* zonelist_cache approximation */
1060
1061 zlc = zonelist->zlcache_ptr;
1062 if (!zlc)
1063 return NULL;
1064
1065 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1066 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1067 zlc->last_full_zap = jiffies;
1068 }
1069
1070 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1071 &cpuset_current_mems_allowed :
1072 &node_online_map;
1073 return allowednodes;
1074 }
1075
1076 /*
1077 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1078 * if it is worth looking at further for free memory:
1079 * 1) Check that the zone isn't thought to be full (doesn't have its
1080 * bit set in the zonelist_cache fullzones BITMAP).
1081 * 2) Check that the zones node (obtained from the zonelist_cache
1082 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1083 * Return true (non-zero) if zone is worth looking at further, or
1084 * else return false (zero) if it is not.
1085 *
1086 * This check -ignores- the distinction between various watermarks,
1087 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1088 * found to be full for any variation of these watermarks, it will
1089 * be considered full for up to one second by all requests, unless
1090 * we are so low on memory on all allowed nodes that we are forced
1091 * into the second scan of the zonelist.
1092 *
1093 * In the second scan we ignore this zonelist cache and exactly
1094 * apply the watermarks to all zones, even it is slower to do so.
1095 * We are low on memory in the second scan, and should leave no stone
1096 * unturned looking for a free page.
1097 */
1098 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1099 nodemask_t *allowednodes)
1100 {
1101 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1102 int i; /* index of *z in zonelist zones */
1103 int n; /* node that zone *z is on */
1104
1105 zlc = zonelist->zlcache_ptr;
1106 if (!zlc)
1107 return 1;
1108
1109 i = z - zonelist->zones;
1110 n = zlc->z_to_n[i];
1111
1112 /* This zone is worth trying if it is allowed but not full */
1113 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1114 }
1115
1116 /*
1117 * Given 'z' scanning a zonelist, set the corresponding bit in
1118 * zlc->fullzones, so that subsequent attempts to allocate a page
1119 * from that zone don't waste time re-examining it.
1120 */
1121 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1122 {
1123 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1124 int i; /* index of *z in zonelist zones */
1125
1126 zlc = zonelist->zlcache_ptr;
1127 if (!zlc)
1128 return;
1129
1130 i = z - zonelist->zones;
1131
1132 set_bit(i, zlc->fullzones);
1133 }
1134
1135 #else /* CONFIG_NUMA */
1136
1137 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1138 {
1139 return NULL;
1140 }
1141
1142 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1143 nodemask_t *allowednodes)
1144 {
1145 return 1;
1146 }
1147
1148 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1149 {
1150 }
1151 #endif /* CONFIG_NUMA */
1152
1153 /*
1154 * get_page_from_freelist goes through the zonelist trying to allocate
1155 * a page.
1156 */
1157 static struct page *
1158 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1159 struct zonelist *zonelist, int alloc_flags)
1160 {
1161 struct zone **z;
1162 struct page *page = NULL;
1163 int classzone_idx = zone_idx(zonelist->zones[0]);
1164 struct zone *zone;
1165 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1166 int zlc_active = 0; /* set if using zonelist_cache */
1167 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1168 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
1169
1170 zonelist_scan:
1171 /*
1172 * Scan zonelist, looking for a zone with enough free.
1173 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1174 */
1175 z = zonelist->zones;
1176
1177 do {
1178 /*
1179 * In NUMA, this could be a policy zonelist which contains
1180 * zones that may not be allowed by the current gfp_mask.
1181 * Check the zone is allowed by the current flags
1182 */
1183 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1184 if (highest_zoneidx == -1)
1185 highest_zoneidx = gfp_zone(gfp_mask);
1186 if (zone_idx(*z) > highest_zoneidx)
1187 continue;
1188 }
1189
1190 if (NUMA_BUILD && zlc_active &&
1191 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1192 continue;
1193 zone = *z;
1194 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1195 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1196 break;
1197 if ((alloc_flags & ALLOC_CPUSET) &&
1198 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1199 goto try_next_zone;
1200
1201 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1202 unsigned long mark;
1203 if (alloc_flags & ALLOC_WMARK_MIN)
1204 mark = zone->pages_min;
1205 else if (alloc_flags & ALLOC_WMARK_LOW)
1206 mark = zone->pages_low;
1207 else
1208 mark = zone->pages_high;
1209 if (!zone_watermark_ok(zone, order, mark,
1210 classzone_idx, alloc_flags)) {
1211 if (!zone_reclaim_mode ||
1212 !zone_reclaim(zone, gfp_mask, order))
1213 goto this_zone_full;
1214 }
1215 }
1216
1217 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1218 if (page)
1219 break;
1220 this_zone_full:
1221 if (NUMA_BUILD)
1222 zlc_mark_zone_full(zonelist, z);
1223 try_next_zone:
1224 if (NUMA_BUILD && !did_zlc_setup) {
1225 /* we do zlc_setup after the first zone is tried */
1226 allowednodes = zlc_setup(zonelist, alloc_flags);
1227 zlc_active = 1;
1228 did_zlc_setup = 1;
1229 }
1230 } while (*(++z) != NULL);
1231
1232 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1233 /* Disable zlc cache for second zonelist scan */
1234 zlc_active = 0;
1235 goto zonelist_scan;
1236 }
1237 return page;
1238 }
1239
1240 /*
1241 * This is the 'heart' of the zoned buddy allocator.
1242 */
1243 struct page * fastcall
1244 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1245 struct zonelist *zonelist)
1246 {
1247 const gfp_t wait = gfp_mask & __GFP_WAIT;
1248 struct zone **z;
1249 struct page *page;
1250 struct reclaim_state reclaim_state;
1251 struct task_struct *p = current;
1252 int do_retry;
1253 int alloc_flags;
1254 int did_some_progress;
1255
1256 might_sleep_if(wait);
1257
1258 if (should_fail_alloc_page(gfp_mask, order))
1259 return NULL;
1260
1261 restart:
1262 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1263
1264 if (unlikely(*z == NULL)) {
1265 /* Should this ever happen?? */
1266 return NULL;
1267 }
1268
1269 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1270 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1271 if (page)
1272 goto got_pg;
1273
1274 /*
1275 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1276 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1277 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1278 * using a larger set of nodes after it has established that the
1279 * allowed per node queues are empty and that nodes are
1280 * over allocated.
1281 */
1282 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1283 goto nopage;
1284
1285 for (z = zonelist->zones; *z; z++)
1286 wakeup_kswapd(*z, order);
1287
1288 /*
1289 * OK, we're below the kswapd watermark and have kicked background
1290 * reclaim. Now things get more complex, so set up alloc_flags according
1291 * to how we want to proceed.
1292 *
1293 * The caller may dip into page reserves a bit more if the caller
1294 * cannot run direct reclaim, or if the caller has realtime scheduling
1295 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1296 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1297 */
1298 alloc_flags = ALLOC_WMARK_MIN;
1299 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1300 alloc_flags |= ALLOC_HARDER;
1301 if (gfp_mask & __GFP_HIGH)
1302 alloc_flags |= ALLOC_HIGH;
1303 if (wait)
1304 alloc_flags |= ALLOC_CPUSET;
1305
1306 /*
1307 * Go through the zonelist again. Let __GFP_HIGH and allocations
1308 * coming from realtime tasks go deeper into reserves.
1309 *
1310 * This is the last chance, in general, before the goto nopage.
1311 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1312 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1313 */
1314 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1315 if (page)
1316 goto got_pg;
1317
1318 /* This allocation should allow future memory freeing. */
1319
1320 rebalance:
1321 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1322 && !in_interrupt()) {
1323 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1324 nofail_alloc:
1325 /* go through the zonelist yet again, ignoring mins */
1326 page = get_page_from_freelist(gfp_mask, order,
1327 zonelist, ALLOC_NO_WATERMARKS);
1328 if (page)
1329 goto got_pg;
1330 if (gfp_mask & __GFP_NOFAIL) {
1331 congestion_wait(WRITE, HZ/50);
1332 goto nofail_alloc;
1333 }
1334 }
1335 goto nopage;
1336 }
1337
1338 /* Atomic allocations - we can't balance anything */
1339 if (!wait)
1340 goto nopage;
1341
1342 cond_resched();
1343
1344 /* We now go into synchronous reclaim */
1345 cpuset_memory_pressure_bump();
1346 p->flags |= PF_MEMALLOC;
1347 reclaim_state.reclaimed_slab = 0;
1348 p->reclaim_state = &reclaim_state;
1349
1350 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1351
1352 p->reclaim_state = NULL;
1353 p->flags &= ~PF_MEMALLOC;
1354
1355 cond_resched();
1356
1357 if (likely(did_some_progress)) {
1358 page = get_page_from_freelist(gfp_mask, order,
1359 zonelist, alloc_flags);
1360 if (page)
1361 goto got_pg;
1362 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1363 /*
1364 * Go through the zonelist yet one more time, keep
1365 * very high watermark here, this is only to catch
1366 * a parallel oom killing, we must fail if we're still
1367 * under heavy pressure.
1368 */
1369 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1370 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1371 if (page)
1372 goto got_pg;
1373
1374 /* The OOM killer will not help higher order allocs so fail */
1375 if (order > PAGE_ALLOC_COSTLY_ORDER)
1376 goto nopage;
1377
1378 out_of_memory(zonelist, gfp_mask, order);
1379 goto restart;
1380 }
1381
1382 /*
1383 * Don't let big-order allocations loop unless the caller explicitly
1384 * requests that. Wait for some write requests to complete then retry.
1385 *
1386 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1387 * <= 3, but that may not be true in other implementations.
1388 */
1389 do_retry = 0;
1390 if (!(gfp_mask & __GFP_NORETRY)) {
1391 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1392 (gfp_mask & __GFP_REPEAT))
1393 do_retry = 1;
1394 if (gfp_mask & __GFP_NOFAIL)
1395 do_retry = 1;
1396 }
1397 if (do_retry) {
1398 congestion_wait(WRITE, HZ/50);
1399 goto rebalance;
1400 }
1401
1402 nopage:
1403 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1404 printk(KERN_WARNING "%s: page allocation failure."
1405 " order:%d, mode:0x%x\n",
1406 p->comm, order, gfp_mask);
1407 dump_stack();
1408 show_mem();
1409 }
1410 got_pg:
1411 return page;
1412 }
1413
1414 EXPORT_SYMBOL(__alloc_pages);
1415
1416 /*
1417 * Common helper functions.
1418 */
1419 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1420 {
1421 struct page * page;
1422 page = alloc_pages(gfp_mask, order);
1423 if (!page)
1424 return 0;
1425 return (unsigned long) page_address(page);
1426 }
1427
1428 EXPORT_SYMBOL(__get_free_pages);
1429
1430 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1431 {
1432 struct page * page;
1433
1434 /*
1435 * get_zeroed_page() returns a 32-bit address, which cannot represent
1436 * a highmem page
1437 */
1438 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1439
1440 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1441 if (page)
1442 return (unsigned long) page_address(page);
1443 return 0;
1444 }
1445
1446 EXPORT_SYMBOL(get_zeroed_page);
1447
1448 void __pagevec_free(struct pagevec *pvec)
1449 {
1450 int i = pagevec_count(pvec);
1451
1452 while (--i >= 0)
1453 free_hot_cold_page(pvec->pages[i], pvec->cold);
1454 }
1455
1456 fastcall void __free_pages(struct page *page, unsigned int order)
1457 {
1458 if (put_page_testzero(page)) {
1459 if (order == 0)
1460 free_hot_page(page);
1461 else
1462 __free_pages_ok(page, order);
1463 }
1464 }
1465
1466 EXPORT_SYMBOL(__free_pages);
1467
1468 fastcall void free_pages(unsigned long addr, unsigned int order)
1469 {
1470 if (addr != 0) {
1471 VM_BUG_ON(!virt_addr_valid((void *)addr));
1472 __free_pages(virt_to_page((void *)addr), order);
1473 }
1474 }
1475
1476 EXPORT_SYMBOL(free_pages);
1477
1478 static unsigned int nr_free_zone_pages(int offset)
1479 {
1480 /* Just pick one node, since fallback list is circular */
1481 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1482 unsigned int sum = 0;
1483
1484 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1485 struct zone **zonep = zonelist->zones;
1486 struct zone *zone;
1487
1488 for (zone = *zonep++; zone; zone = *zonep++) {
1489 unsigned long size = zone->present_pages;
1490 unsigned long high = zone->pages_high;
1491 if (size > high)
1492 sum += size - high;
1493 }
1494
1495 return sum;
1496 }
1497
1498 /*
1499 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1500 */
1501 unsigned int nr_free_buffer_pages(void)
1502 {
1503 return nr_free_zone_pages(gfp_zone(GFP_USER));
1504 }
1505 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1506
1507 /*
1508 * Amount of free RAM allocatable within all zones
1509 */
1510 unsigned int nr_free_pagecache_pages(void)
1511 {
1512 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1513 }
1514
1515 static inline void show_node(struct zone *zone)
1516 {
1517 if (NUMA_BUILD)
1518 printk("Node %d ", zone_to_nid(zone));
1519 }
1520
1521 void si_meminfo(struct sysinfo *val)
1522 {
1523 val->totalram = totalram_pages;
1524 val->sharedram = 0;
1525 val->freeram = global_page_state(NR_FREE_PAGES);
1526 val->bufferram = nr_blockdev_pages();
1527 val->totalhigh = totalhigh_pages;
1528 val->freehigh = nr_free_highpages();
1529 val->mem_unit = PAGE_SIZE;
1530 }
1531
1532 EXPORT_SYMBOL(si_meminfo);
1533
1534 #ifdef CONFIG_NUMA
1535 void si_meminfo_node(struct sysinfo *val, int nid)
1536 {
1537 pg_data_t *pgdat = NODE_DATA(nid);
1538
1539 val->totalram = pgdat->node_present_pages;
1540 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1541 #ifdef CONFIG_HIGHMEM
1542 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1543 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1544 NR_FREE_PAGES);
1545 #else
1546 val->totalhigh = 0;
1547 val->freehigh = 0;
1548 #endif
1549 val->mem_unit = PAGE_SIZE;
1550 }
1551 #endif
1552
1553 #define K(x) ((x) << (PAGE_SHIFT-10))
1554
1555 /*
1556 * Show free area list (used inside shift_scroll-lock stuff)
1557 * We also calculate the percentage fragmentation. We do this by counting the
1558 * memory on each free list with the exception of the first item on the list.
1559 */
1560 void show_free_areas(void)
1561 {
1562 int cpu;
1563 struct zone *zone;
1564
1565 for_each_zone(zone) {
1566 if (!populated_zone(zone))
1567 continue;
1568
1569 show_node(zone);
1570 printk("%s per-cpu:\n", zone->name);
1571
1572 for_each_online_cpu(cpu) {
1573 struct per_cpu_pageset *pageset;
1574
1575 pageset = zone_pcp(zone, cpu);
1576
1577 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1578 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1579 cpu, pageset->pcp[0].high,
1580 pageset->pcp[0].batch, pageset->pcp[0].count,
1581 pageset->pcp[1].high, pageset->pcp[1].batch,
1582 pageset->pcp[1].count);
1583 }
1584 }
1585
1586 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1587 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1588 global_page_state(NR_ACTIVE),
1589 global_page_state(NR_INACTIVE),
1590 global_page_state(NR_FILE_DIRTY),
1591 global_page_state(NR_WRITEBACK),
1592 global_page_state(NR_UNSTABLE_NFS),
1593 global_page_state(NR_FREE_PAGES),
1594 global_page_state(NR_SLAB_RECLAIMABLE) +
1595 global_page_state(NR_SLAB_UNRECLAIMABLE),
1596 global_page_state(NR_FILE_MAPPED),
1597 global_page_state(NR_PAGETABLE),
1598 global_page_state(NR_BOUNCE));
1599
1600 for_each_zone(zone) {
1601 int i;
1602
1603 if (!populated_zone(zone))
1604 continue;
1605
1606 show_node(zone);
1607 printk("%s"
1608 " free:%lukB"
1609 " min:%lukB"
1610 " low:%lukB"
1611 " high:%lukB"
1612 " active:%lukB"
1613 " inactive:%lukB"
1614 " present:%lukB"
1615 " pages_scanned:%lu"
1616 " all_unreclaimable? %s"
1617 "\n",
1618 zone->name,
1619 K(zone_page_state(zone, NR_FREE_PAGES)),
1620 K(zone->pages_min),
1621 K(zone->pages_low),
1622 K(zone->pages_high),
1623 K(zone_page_state(zone, NR_ACTIVE)),
1624 K(zone_page_state(zone, NR_INACTIVE)),
1625 K(zone->present_pages),
1626 zone->pages_scanned,
1627 (zone->all_unreclaimable ? "yes" : "no")
1628 );
1629 printk("lowmem_reserve[]:");
1630 for (i = 0; i < MAX_NR_ZONES; i++)
1631 printk(" %lu", zone->lowmem_reserve[i]);
1632 printk("\n");
1633 }
1634
1635 for_each_zone(zone) {
1636 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1637
1638 if (!populated_zone(zone))
1639 continue;
1640
1641 show_node(zone);
1642 printk("%s: ", zone->name);
1643
1644 spin_lock_irqsave(&zone->lock, flags);
1645 for (order = 0; order < MAX_ORDER; order++) {
1646 nr[order] = zone->free_area[order].nr_free;
1647 total += nr[order] << order;
1648 }
1649 spin_unlock_irqrestore(&zone->lock, flags);
1650 for (order = 0; order < MAX_ORDER; order++)
1651 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1652 printk("= %lukB\n", K(total));
1653 }
1654
1655 show_swap_cache_info();
1656 }
1657
1658 /*
1659 * Builds allocation fallback zone lists.
1660 *
1661 * Add all populated zones of a node to the zonelist.
1662 */
1663 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1664 int nr_zones, enum zone_type zone_type)
1665 {
1666 struct zone *zone;
1667
1668 BUG_ON(zone_type >= MAX_NR_ZONES);
1669 zone_type++;
1670
1671 do {
1672 zone_type--;
1673 zone = pgdat->node_zones + zone_type;
1674 if (populated_zone(zone)) {
1675 zonelist->zones[nr_zones++] = zone;
1676 check_highest_zone(zone_type);
1677 }
1678
1679 } while (zone_type);
1680 return nr_zones;
1681 }
1682
1683
1684 /*
1685 * zonelist_order:
1686 * 0 = automatic detection of better ordering.
1687 * 1 = order by ([node] distance, -zonetype)
1688 * 2 = order by (-zonetype, [node] distance)
1689 *
1690 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1691 * the same zonelist. So only NUMA can configure this param.
1692 */
1693 #define ZONELIST_ORDER_DEFAULT 0
1694 #define ZONELIST_ORDER_NODE 1
1695 #define ZONELIST_ORDER_ZONE 2
1696
1697 /* zonelist order in the kernel.
1698 * set_zonelist_order() will set this to NODE or ZONE.
1699 */
1700 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1701 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1702
1703
1704 #ifdef CONFIG_NUMA
1705 /* The value user specified ....changed by config */
1706 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1707 /* string for sysctl */
1708 #define NUMA_ZONELIST_ORDER_LEN 16
1709 char numa_zonelist_order[16] = "default";
1710
1711 /*
1712 * interface for configure zonelist ordering.
1713 * command line option "numa_zonelist_order"
1714 * = "[dD]efault - default, automatic configuration.
1715 * = "[nN]ode - order by node locality, then by zone within node
1716 * = "[zZ]one - order by zone, then by locality within zone
1717 */
1718
1719 static int __parse_numa_zonelist_order(char *s)
1720 {
1721 if (*s == 'd' || *s == 'D') {
1722 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1723 } else if (*s == 'n' || *s == 'N') {
1724 user_zonelist_order = ZONELIST_ORDER_NODE;
1725 } else if (*s == 'z' || *s == 'Z') {
1726 user_zonelist_order = ZONELIST_ORDER_ZONE;
1727 } else {
1728 printk(KERN_WARNING
1729 "Ignoring invalid numa_zonelist_order value: "
1730 "%s\n", s);
1731 return -EINVAL;
1732 }
1733 return 0;
1734 }
1735
1736 static __init int setup_numa_zonelist_order(char *s)
1737 {
1738 if (s)
1739 return __parse_numa_zonelist_order(s);
1740 return 0;
1741 }
1742 early_param("numa_zonelist_order", setup_numa_zonelist_order);
1743
1744 /*
1745 * sysctl handler for numa_zonelist_order
1746 */
1747 int numa_zonelist_order_handler(ctl_table *table, int write,
1748 struct file *file, void __user *buffer, size_t *length,
1749 loff_t *ppos)
1750 {
1751 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1752 int ret;
1753
1754 if (write)
1755 strncpy(saved_string, (char*)table->data,
1756 NUMA_ZONELIST_ORDER_LEN);
1757 ret = proc_dostring(table, write, file, buffer, length, ppos);
1758 if (ret)
1759 return ret;
1760 if (write) {
1761 int oldval = user_zonelist_order;
1762 if (__parse_numa_zonelist_order((char*)table->data)) {
1763 /*
1764 * bogus value. restore saved string
1765 */
1766 strncpy((char*)table->data, saved_string,
1767 NUMA_ZONELIST_ORDER_LEN);
1768 user_zonelist_order = oldval;
1769 } else if (oldval != user_zonelist_order)
1770 build_all_zonelists();
1771 }
1772 return 0;
1773 }
1774
1775
1776 #define MAX_NODE_LOAD (num_online_nodes())
1777 static int node_load[MAX_NUMNODES];
1778
1779 /**
1780 * find_next_best_node - find the next node that should appear in a given node's fallback list
1781 * @node: node whose fallback list we're appending
1782 * @used_node_mask: nodemask_t of already used nodes
1783 *
1784 * We use a number of factors to determine which is the next node that should
1785 * appear on a given node's fallback list. The node should not have appeared
1786 * already in @node's fallback list, and it should be the next closest node
1787 * according to the distance array (which contains arbitrary distance values
1788 * from each node to each node in the system), and should also prefer nodes
1789 * with no CPUs, since presumably they'll have very little allocation pressure
1790 * on them otherwise.
1791 * It returns -1 if no node is found.
1792 */
1793 static int find_next_best_node(int node, nodemask_t *used_node_mask)
1794 {
1795 int n, val;
1796 int min_val = INT_MAX;
1797 int best_node = -1;
1798
1799 /* Use the local node if we haven't already */
1800 if (!node_isset(node, *used_node_mask)) {
1801 node_set(node, *used_node_mask);
1802 return node;
1803 }
1804
1805 for_each_online_node(n) {
1806 cpumask_t tmp;
1807
1808 /* Don't want a node to appear more than once */
1809 if (node_isset(n, *used_node_mask))
1810 continue;
1811
1812 /* Use the distance array to find the distance */
1813 val = node_distance(node, n);
1814
1815 /* Penalize nodes under us ("prefer the next node") */
1816 val += (n < node);
1817
1818 /* Give preference to headless and unused nodes */
1819 tmp = node_to_cpumask(n);
1820 if (!cpus_empty(tmp))
1821 val += PENALTY_FOR_NODE_WITH_CPUS;
1822
1823 /* Slight preference for less loaded node */
1824 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1825 val += node_load[n];
1826
1827 if (val < min_val) {
1828 min_val = val;
1829 best_node = n;
1830 }
1831 }
1832
1833 if (best_node >= 0)
1834 node_set(best_node, *used_node_mask);
1835
1836 return best_node;
1837 }
1838
1839
1840 /*
1841 * Build zonelists ordered by node and zones within node.
1842 * This results in maximum locality--normal zone overflows into local
1843 * DMA zone, if any--but risks exhausting DMA zone.
1844 */
1845 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1846 {
1847 enum zone_type i;
1848 int j;
1849 struct zonelist *zonelist;
1850
1851 for (i = 0; i < MAX_NR_ZONES; i++) {
1852 zonelist = pgdat->node_zonelists + i;
1853 for (j = 0; zonelist->zones[j] != NULL; j++)
1854 ;
1855 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1856 zonelist->zones[j] = NULL;
1857 }
1858 }
1859
1860 /*
1861 * Build zonelists ordered by zone and nodes within zones.
1862 * This results in conserving DMA zone[s] until all Normal memory is
1863 * exhausted, but results in overflowing to remote node while memory
1864 * may still exist in local DMA zone.
1865 */
1866 static int node_order[MAX_NUMNODES];
1867
1868 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1869 {
1870 enum zone_type i;
1871 int pos, j, node;
1872 int zone_type; /* needs to be signed */
1873 struct zone *z;
1874 struct zonelist *zonelist;
1875
1876 for (i = 0; i < MAX_NR_ZONES; i++) {
1877 zonelist = pgdat->node_zonelists + i;
1878 pos = 0;
1879 for (zone_type = i; zone_type >= 0; zone_type--) {
1880 for (j = 0; j < nr_nodes; j++) {
1881 node = node_order[j];
1882 z = &NODE_DATA(node)->node_zones[zone_type];
1883 if (populated_zone(z)) {
1884 zonelist->zones[pos++] = z;
1885 check_highest_zone(zone_type);
1886 }
1887 }
1888 }
1889 zonelist->zones[pos] = NULL;
1890 }
1891 }
1892
1893 static int default_zonelist_order(void)
1894 {
1895 int nid, zone_type;
1896 unsigned long low_kmem_size,total_size;
1897 struct zone *z;
1898 int average_size;
1899 /*
1900 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1901 * If they are really small and used heavily, the system can fall
1902 * into OOM very easily.
1903 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1904 */
1905 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1906 low_kmem_size = 0;
1907 total_size = 0;
1908 for_each_online_node(nid) {
1909 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1910 z = &NODE_DATA(nid)->node_zones[zone_type];
1911 if (populated_zone(z)) {
1912 if (zone_type < ZONE_NORMAL)
1913 low_kmem_size += z->present_pages;
1914 total_size += z->present_pages;
1915 }
1916 }
1917 }
1918 if (!low_kmem_size || /* there are no DMA area. */
1919 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1920 return ZONELIST_ORDER_NODE;
1921 /*
1922 * look into each node's config.
1923 * If there is a node whose DMA/DMA32 memory is very big area on
1924 * local memory, NODE_ORDER may be suitable.
1925 */
1926 average_size = total_size / (num_online_nodes() + 1);
1927 for_each_online_node(nid) {
1928 low_kmem_size = 0;
1929 total_size = 0;
1930 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1931 z = &NODE_DATA(nid)->node_zones[zone_type];
1932 if (populated_zone(z)) {
1933 if (zone_type < ZONE_NORMAL)
1934 low_kmem_size += z->present_pages;
1935 total_size += z->present_pages;
1936 }
1937 }
1938 if (low_kmem_size &&
1939 total_size > average_size && /* ignore small node */
1940 low_kmem_size > total_size * 70/100)
1941 return ZONELIST_ORDER_NODE;
1942 }
1943 return ZONELIST_ORDER_ZONE;
1944 }
1945
1946 static void set_zonelist_order(void)
1947 {
1948 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1949 current_zonelist_order = default_zonelist_order();
1950 else
1951 current_zonelist_order = user_zonelist_order;
1952 }
1953
1954 static void build_zonelists(pg_data_t *pgdat)
1955 {
1956 int j, node, load;
1957 enum zone_type i;
1958 nodemask_t used_mask;
1959 int local_node, prev_node;
1960 struct zonelist *zonelist;
1961 int order = current_zonelist_order;
1962
1963 /* initialize zonelists */
1964 for (i = 0; i < MAX_NR_ZONES; i++) {
1965 zonelist = pgdat->node_zonelists + i;
1966 zonelist->zones[0] = NULL;
1967 }
1968
1969 /* NUMA-aware ordering of nodes */
1970 local_node = pgdat->node_id;
1971 load = num_online_nodes();
1972 prev_node = local_node;
1973 nodes_clear(used_mask);
1974
1975 memset(node_load, 0, sizeof(node_load));
1976 memset(node_order, 0, sizeof(node_order));
1977 j = 0;
1978
1979 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1980 int distance = node_distance(local_node, node);
1981
1982 /*
1983 * If another node is sufficiently far away then it is better
1984 * to reclaim pages in a zone before going off node.
1985 */
1986 if (distance > RECLAIM_DISTANCE)
1987 zone_reclaim_mode = 1;
1988
1989 /*
1990 * We don't want to pressure a particular node.
1991 * So adding penalty to the first node in same
1992 * distance group to make it round-robin.
1993 */
1994 if (distance != node_distance(local_node, prev_node))
1995 node_load[node] = load;
1996
1997 prev_node = node;
1998 load--;
1999 if (order == ZONELIST_ORDER_NODE)
2000 build_zonelists_in_node_order(pgdat, node);
2001 else
2002 node_order[j++] = node; /* remember order */
2003 }
2004
2005 if (order == ZONELIST_ORDER_ZONE) {
2006 /* calculate node order -- i.e., DMA last! */
2007 build_zonelists_in_zone_order(pgdat, j);
2008 }
2009 }
2010
2011 /* Construct the zonelist performance cache - see further mmzone.h */
2012 static void build_zonelist_cache(pg_data_t *pgdat)
2013 {
2014 int i;
2015
2016 for (i = 0; i < MAX_NR_ZONES; i++) {
2017 struct zonelist *zonelist;
2018 struct zonelist_cache *zlc;
2019 struct zone **z;
2020
2021 zonelist = pgdat->node_zonelists + i;
2022 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2023 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2024 for (z = zonelist->zones; *z; z++)
2025 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2026 }
2027 }
2028
2029
2030 #else /* CONFIG_NUMA */
2031
2032 static void set_zonelist_order(void)
2033 {
2034 current_zonelist_order = ZONELIST_ORDER_ZONE;
2035 }
2036
2037 static void build_zonelists(pg_data_t *pgdat)
2038 {
2039 int node, local_node;
2040 enum zone_type i,j;
2041
2042 local_node = pgdat->node_id;
2043 for (i = 0; i < MAX_NR_ZONES; i++) {
2044 struct zonelist *zonelist;
2045
2046 zonelist = pgdat->node_zonelists + i;
2047
2048 j = build_zonelists_node(pgdat, zonelist, 0, i);
2049 /*
2050 * Now we build the zonelist so that it contains the zones
2051 * of all the other nodes.
2052 * We don't want to pressure a particular node, so when
2053 * building the zones for node N, we make sure that the
2054 * zones coming right after the local ones are those from
2055 * node N+1 (modulo N)
2056 */
2057 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2058 if (!node_online(node))
2059 continue;
2060 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2061 }
2062 for (node = 0; node < local_node; node++) {
2063 if (!node_online(node))
2064 continue;
2065 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
2066 }
2067
2068 zonelist->zones[j] = NULL;
2069 }
2070 }
2071
2072 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2073 static void build_zonelist_cache(pg_data_t *pgdat)
2074 {
2075 int i;
2076
2077 for (i = 0; i < MAX_NR_ZONES; i++)
2078 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2079 }
2080
2081 #endif /* CONFIG_NUMA */
2082
2083 /* Any regular memory on that node ? */
2084 static void check_for_regular_memory(pg_data_t *pgdat)
2085 {
2086 #ifdef CONFIG_HIGHMEM
2087 enum zone_type zone_type;
2088
2089 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
2090 struct zone *zone = &pgdat->node_zones[zone_type];
2091 if (zone->present_pages)
2092 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
2093 }
2094 #endif
2095 }
2096
2097 /* return values int ....just for stop_machine_run() */
2098 static int __build_all_zonelists(void *dummy)
2099 {
2100 int nid;
2101
2102 for_each_online_node(nid) {
2103 pg_data_t *pgdat = NODE_DATA(nid);
2104
2105 build_zonelists(pgdat);
2106 build_zonelist_cache(pgdat);
2107
2108 /* Any memory on that node */
2109 if (pgdat->node_present_pages)
2110 node_set_state(nid, N_HIGH_MEMORY);
2111 check_for_regular_memory(pgdat);
2112 }
2113 return 0;
2114 }
2115
2116 void build_all_zonelists(void)
2117 {
2118 set_zonelist_order();
2119
2120 if (system_state == SYSTEM_BOOTING) {
2121 __build_all_zonelists(NULL);
2122 cpuset_init_current_mems_allowed();
2123 } else {
2124 /* we have to stop all cpus to guaranntee there is no user
2125 of zonelist */
2126 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2127 /* cpuset refresh routine should be here */
2128 }
2129 vm_total_pages = nr_free_pagecache_pages();
2130 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2131 num_online_nodes(),
2132 zonelist_order_name[current_zonelist_order],
2133 vm_total_pages);
2134 #ifdef CONFIG_NUMA
2135 printk("Policy zone: %s\n", zone_names[policy_zone]);
2136 #endif
2137 }
2138
2139 /*
2140 * Helper functions to size the waitqueue hash table.
2141 * Essentially these want to choose hash table sizes sufficiently
2142 * large so that collisions trying to wait on pages are rare.
2143 * But in fact, the number of active page waitqueues on typical
2144 * systems is ridiculously low, less than 200. So this is even
2145 * conservative, even though it seems large.
2146 *
2147 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2148 * waitqueues, i.e. the size of the waitq table given the number of pages.
2149 */
2150 #define PAGES_PER_WAITQUEUE 256
2151
2152 #ifndef CONFIG_MEMORY_HOTPLUG
2153 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2154 {
2155 unsigned long size = 1;
2156
2157 pages /= PAGES_PER_WAITQUEUE;
2158
2159 while (size < pages)
2160 size <<= 1;
2161
2162 /*
2163 * Once we have dozens or even hundreds of threads sleeping
2164 * on IO we've got bigger problems than wait queue collision.
2165 * Limit the size of the wait table to a reasonable size.
2166 */
2167 size = min(size, 4096UL);
2168
2169 return max(size, 4UL);
2170 }
2171 #else
2172 /*
2173 * A zone's size might be changed by hot-add, so it is not possible to determine
2174 * a suitable size for its wait_table. So we use the maximum size now.
2175 *
2176 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2177 *
2178 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2179 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2180 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2181 *
2182 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2183 * or more by the traditional way. (See above). It equals:
2184 *
2185 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2186 * ia64(16K page size) : = ( 8G + 4M)byte.
2187 * powerpc (64K page size) : = (32G +16M)byte.
2188 */
2189 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2190 {
2191 return 4096UL;
2192 }
2193 #endif
2194
2195 /*
2196 * This is an integer logarithm so that shifts can be used later
2197 * to extract the more random high bits from the multiplicative
2198 * hash function before the remainder is taken.
2199 */
2200 static inline unsigned long wait_table_bits(unsigned long size)
2201 {
2202 return ffz(~size);
2203 }
2204
2205 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2206
2207 /*
2208 * Initially all pages are reserved - free ones are freed
2209 * up by free_all_bootmem() once the early boot process is
2210 * done. Non-atomic initialization, single-pass.
2211 */
2212 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2213 unsigned long start_pfn, enum memmap_context context)
2214 {
2215 struct page *page;
2216 unsigned long end_pfn = start_pfn + size;
2217 unsigned long pfn;
2218
2219 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2220 /*
2221 * There can be holes in boot-time mem_map[]s
2222 * handed to this function. They do not
2223 * exist on hotplugged memory.
2224 */
2225 if (context == MEMMAP_EARLY) {
2226 if (!early_pfn_valid(pfn))
2227 continue;
2228 if (!early_pfn_in_nid(pfn, nid))
2229 continue;
2230 }
2231 page = pfn_to_page(pfn);
2232 set_page_links(page, zone, nid, pfn);
2233 init_page_count(page);
2234 reset_page_mapcount(page);
2235 SetPageReserved(page);
2236 INIT_LIST_HEAD(&page->lru);
2237 #ifdef WANT_PAGE_VIRTUAL
2238 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2239 if (!is_highmem_idx(zone))
2240 set_page_address(page, __va(pfn << PAGE_SHIFT));
2241 #endif
2242 }
2243 }
2244
2245 static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2246 struct zone *zone, unsigned long size)
2247 {
2248 int order;
2249 for (order = 0; order < MAX_ORDER ; order++) {
2250 INIT_LIST_HEAD(&zone->free_area[order].free_list);
2251 zone->free_area[order].nr_free = 0;
2252 }
2253 }
2254
2255 #ifndef __HAVE_ARCH_MEMMAP_INIT
2256 #define memmap_init(size, nid, zone, start_pfn) \
2257 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2258 #endif
2259
2260 static int __devinit zone_batchsize(struct zone *zone)
2261 {
2262 int batch;
2263
2264 /*
2265 * The per-cpu-pages pools are set to around 1000th of the
2266 * size of the zone. But no more than 1/2 of a meg.
2267 *
2268 * OK, so we don't know how big the cache is. So guess.
2269 */
2270 batch = zone->present_pages / 1024;
2271 if (batch * PAGE_SIZE > 512 * 1024)
2272 batch = (512 * 1024) / PAGE_SIZE;
2273 batch /= 4; /* We effectively *= 4 below */
2274 if (batch < 1)
2275 batch = 1;
2276
2277 /*
2278 * Clamp the batch to a 2^n - 1 value. Having a power
2279 * of 2 value was found to be more likely to have
2280 * suboptimal cache aliasing properties in some cases.
2281 *
2282 * For example if 2 tasks are alternately allocating
2283 * batches of pages, one task can end up with a lot
2284 * of pages of one half of the possible page colors
2285 * and the other with pages of the other colors.
2286 */
2287 batch = (1 << (fls(batch + batch/2)-1)) - 1;
2288
2289 return batch;
2290 }
2291
2292 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2293 {
2294 struct per_cpu_pages *pcp;
2295
2296 memset(p, 0, sizeof(*p));
2297
2298 pcp = &p->pcp[0]; /* hot */
2299 pcp->count = 0;
2300 pcp->high = 6 * batch;
2301 pcp->batch = max(1UL, 1 * batch);
2302 INIT_LIST_HEAD(&pcp->list);
2303
2304 pcp = &p->pcp[1]; /* cold*/
2305 pcp->count = 0;
2306 pcp->high = 2 * batch;
2307 pcp->batch = max(1UL, batch/2);
2308 INIT_LIST_HEAD(&pcp->list);
2309 }
2310
2311 /*
2312 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2313 * to the value high for the pageset p.
2314 */
2315
2316 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2317 unsigned long high)
2318 {
2319 struct per_cpu_pages *pcp;
2320
2321 pcp = &p->pcp[0]; /* hot list */
2322 pcp->high = high;
2323 pcp->batch = max(1UL, high/4);
2324 if ((high/4) > (PAGE_SHIFT * 8))
2325 pcp->batch = PAGE_SHIFT * 8;
2326 }
2327
2328
2329 #ifdef CONFIG_NUMA
2330 /*
2331 * Boot pageset table. One per cpu which is going to be used for all
2332 * zones and all nodes. The parameters will be set in such a way
2333 * that an item put on a list will immediately be handed over to
2334 * the buddy list. This is safe since pageset manipulation is done
2335 * with interrupts disabled.
2336 *
2337 * Some NUMA counter updates may also be caught by the boot pagesets.
2338 *
2339 * The boot_pagesets must be kept even after bootup is complete for
2340 * unused processors and/or zones. They do play a role for bootstrapping
2341 * hotplugged processors.
2342 *
2343 * zoneinfo_show() and maybe other functions do
2344 * not check if the processor is online before following the pageset pointer.
2345 * Other parts of the kernel may not check if the zone is available.
2346 */
2347 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2348
2349 /*
2350 * Dynamically allocate memory for the
2351 * per cpu pageset array in struct zone.
2352 */
2353 static int __cpuinit process_zones(int cpu)
2354 {
2355 struct zone *zone, *dzone;
2356 int node = cpu_to_node(cpu);
2357
2358 node_set_state(node, N_CPU); /* this node has a cpu */
2359
2360 for_each_zone(zone) {
2361
2362 if (!populated_zone(zone))
2363 continue;
2364
2365 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2366 GFP_KERNEL, node);
2367 if (!zone_pcp(zone, cpu))
2368 goto bad;
2369
2370 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2371
2372 if (percpu_pagelist_fraction)
2373 setup_pagelist_highmark(zone_pcp(zone, cpu),
2374 (zone->present_pages / percpu_pagelist_fraction));
2375 }
2376
2377 return 0;
2378 bad:
2379 for_each_zone(dzone) {
2380 if (!populated_zone(dzone))
2381 continue;
2382 if (dzone == zone)
2383 break;
2384 kfree(zone_pcp(dzone, cpu));
2385 zone_pcp(dzone, cpu) = NULL;
2386 }
2387 return -ENOMEM;
2388 }
2389
2390 static inline void free_zone_pagesets(int cpu)
2391 {
2392 struct zone *zone;
2393
2394 for_each_zone(zone) {
2395 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2396
2397 /* Free per_cpu_pageset if it is slab allocated */
2398 if (pset != &boot_pageset[cpu])
2399 kfree(pset);
2400 zone_pcp(zone, cpu) = NULL;
2401 }
2402 }
2403
2404 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2405 unsigned long action,
2406 void *hcpu)
2407 {
2408 int cpu = (long)hcpu;
2409 int ret = NOTIFY_OK;
2410
2411 switch (action) {
2412 case CPU_UP_PREPARE:
2413 case CPU_UP_PREPARE_FROZEN:
2414 if (process_zones(cpu))
2415 ret = NOTIFY_BAD;
2416 break;
2417 case CPU_UP_CANCELED:
2418 case CPU_UP_CANCELED_FROZEN:
2419 case CPU_DEAD:
2420 case CPU_DEAD_FROZEN:
2421 free_zone_pagesets(cpu);
2422 break;
2423 default:
2424 break;
2425 }
2426 return ret;
2427 }
2428
2429 static struct notifier_block __cpuinitdata pageset_notifier =
2430 { &pageset_cpuup_callback, NULL, 0 };
2431
2432 void __init setup_per_cpu_pageset(void)
2433 {
2434 int err;
2435
2436 /* Initialize per_cpu_pageset for cpu 0.
2437 * A cpuup callback will do this for every cpu
2438 * as it comes online
2439 */
2440 err = process_zones(smp_processor_id());
2441 BUG_ON(err);
2442 register_cpu_notifier(&pageset_notifier);
2443 }
2444
2445 #endif
2446
2447 static noinline __init_refok
2448 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2449 {
2450 int i;
2451 struct pglist_data *pgdat = zone->zone_pgdat;
2452 size_t alloc_size;
2453
2454 /*
2455 * The per-page waitqueue mechanism uses hashed waitqueues
2456 * per zone.
2457 */
2458 zone->wait_table_hash_nr_entries =
2459 wait_table_hash_nr_entries(zone_size_pages);
2460 zone->wait_table_bits =
2461 wait_table_bits(zone->wait_table_hash_nr_entries);
2462 alloc_size = zone->wait_table_hash_nr_entries
2463 * sizeof(wait_queue_head_t);
2464
2465 if (system_state == SYSTEM_BOOTING) {
2466 zone->wait_table = (wait_queue_head_t *)
2467 alloc_bootmem_node(pgdat, alloc_size);
2468 } else {
2469 /*
2470 * This case means that a zone whose size was 0 gets new memory
2471 * via memory hot-add.
2472 * But it may be the case that a new node was hot-added. In
2473 * this case vmalloc() will not be able to use this new node's
2474 * memory - this wait_table must be initialized to use this new
2475 * node itself as well.
2476 * To use this new node's memory, further consideration will be
2477 * necessary.
2478 */
2479 zone->wait_table = vmalloc(alloc_size);
2480 }
2481 if (!zone->wait_table)
2482 return -ENOMEM;
2483
2484 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2485 init_waitqueue_head(zone->wait_table + i);
2486
2487 return 0;
2488 }
2489
2490 static __meminit void zone_pcp_init(struct zone *zone)
2491 {
2492 int cpu;
2493 unsigned long batch = zone_batchsize(zone);
2494
2495 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2496 #ifdef CONFIG_NUMA
2497 /* Early boot. Slab allocator not functional yet */
2498 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2499 setup_pageset(&boot_pageset[cpu],0);
2500 #else
2501 setup_pageset(zone_pcp(zone,cpu), batch);
2502 #endif
2503 }
2504 if (zone->present_pages)
2505 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2506 zone->name, zone->present_pages, batch);
2507 }
2508
2509 __meminit int init_currently_empty_zone(struct zone *zone,
2510 unsigned long zone_start_pfn,
2511 unsigned long size,
2512 enum memmap_context context)
2513 {
2514 struct pglist_data *pgdat = zone->zone_pgdat;
2515 int ret;
2516 ret = zone_wait_table_init(zone, size);
2517 if (ret)
2518 return ret;
2519 pgdat->nr_zones = zone_idx(zone) + 1;
2520
2521 zone->zone_start_pfn = zone_start_pfn;
2522
2523 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2524
2525 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2526
2527 return 0;
2528 }
2529
2530 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2531 /*
2532 * Basic iterator support. Return the first range of PFNs for a node
2533 * Note: nid == MAX_NUMNODES returns first region regardless of node
2534 */
2535 static int __meminit first_active_region_index_in_nid(int nid)
2536 {
2537 int i;
2538
2539 for (i = 0; i < nr_nodemap_entries; i++)
2540 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2541 return i;
2542
2543 return -1;
2544 }
2545
2546 /*
2547 * Basic iterator support. Return the next active range of PFNs for a node
2548 * Note: nid == MAX_NUMNODES returns next region regardles of node
2549 */
2550 static int __meminit next_active_region_index_in_nid(int index, int nid)
2551 {
2552 for (index = index + 1; index < nr_nodemap_entries; index++)
2553 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2554 return index;
2555
2556 return -1;
2557 }
2558
2559 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2560 /*
2561 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2562 * Architectures may implement their own version but if add_active_range()
2563 * was used and there are no special requirements, this is a convenient
2564 * alternative
2565 */
2566 int __meminit early_pfn_to_nid(unsigned long pfn)
2567 {
2568 int i;
2569
2570 for (i = 0; i < nr_nodemap_entries; i++) {
2571 unsigned long start_pfn = early_node_map[i].start_pfn;
2572 unsigned long end_pfn = early_node_map[i].end_pfn;
2573
2574 if (start_pfn <= pfn && pfn < end_pfn)
2575 return early_node_map[i].nid;
2576 }
2577
2578 return 0;
2579 }
2580 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2581
2582 /* Basic iterator support to walk early_node_map[] */
2583 #define for_each_active_range_index_in_nid(i, nid) \
2584 for (i = first_active_region_index_in_nid(nid); i != -1; \
2585 i = next_active_region_index_in_nid(i, nid))
2586
2587 /**
2588 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2589 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2590 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2591 *
2592 * If an architecture guarantees that all ranges registered with
2593 * add_active_ranges() contain no holes and may be freed, this
2594 * this function may be used instead of calling free_bootmem() manually.
2595 */
2596 void __init free_bootmem_with_active_regions(int nid,
2597 unsigned long max_low_pfn)
2598 {
2599 int i;
2600
2601 for_each_active_range_index_in_nid(i, nid) {
2602 unsigned long size_pages = 0;
2603 unsigned long end_pfn = early_node_map[i].end_pfn;
2604
2605 if (early_node_map[i].start_pfn >= max_low_pfn)
2606 continue;
2607
2608 if (end_pfn > max_low_pfn)
2609 end_pfn = max_low_pfn;
2610
2611 size_pages = end_pfn - early_node_map[i].start_pfn;
2612 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2613 PFN_PHYS(early_node_map[i].start_pfn),
2614 size_pages << PAGE_SHIFT);
2615 }
2616 }
2617
2618 /**
2619 * sparse_memory_present_with_active_regions - Call memory_present for each active range
2620 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2621 *
2622 * If an architecture guarantees that all ranges registered with
2623 * add_active_ranges() contain no holes and may be freed, this
2624 * function may be used instead of calling memory_present() manually.
2625 */
2626 void __init sparse_memory_present_with_active_regions(int nid)
2627 {
2628 int i;
2629
2630 for_each_active_range_index_in_nid(i, nid)
2631 memory_present(early_node_map[i].nid,
2632 early_node_map[i].start_pfn,
2633 early_node_map[i].end_pfn);
2634 }
2635
2636 /**
2637 * push_node_boundaries - Push node boundaries to at least the requested boundary
2638 * @nid: The nid of the node to push the boundary for
2639 * @start_pfn: The start pfn of the node
2640 * @end_pfn: The end pfn of the node
2641 *
2642 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2643 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2644 * be hotplugged even though no physical memory exists. This function allows
2645 * an arch to push out the node boundaries so mem_map is allocated that can
2646 * be used later.
2647 */
2648 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2649 void __init push_node_boundaries(unsigned int nid,
2650 unsigned long start_pfn, unsigned long end_pfn)
2651 {
2652 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2653 nid, start_pfn, end_pfn);
2654
2655 /* Initialise the boundary for this node if necessary */
2656 if (node_boundary_end_pfn[nid] == 0)
2657 node_boundary_start_pfn[nid] = -1UL;
2658
2659 /* Update the boundaries */
2660 if (node_boundary_start_pfn[nid] > start_pfn)
2661 node_boundary_start_pfn[nid] = start_pfn;
2662 if (node_boundary_end_pfn[nid] < end_pfn)
2663 node_boundary_end_pfn[nid] = end_pfn;
2664 }
2665
2666 /* If necessary, push the node boundary out for reserve hotadd */
2667 static void __meminit account_node_boundary(unsigned int nid,
2668 unsigned long *start_pfn, unsigned long *end_pfn)
2669 {
2670 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2671 nid, *start_pfn, *end_pfn);
2672
2673 /* Return if boundary information has not been provided */
2674 if (node_boundary_end_pfn[nid] == 0)
2675 return;
2676
2677 /* Check the boundaries and update if necessary */
2678 if (node_boundary_start_pfn[nid] < *start_pfn)
2679 *start_pfn = node_boundary_start_pfn[nid];
2680 if (node_boundary_end_pfn[nid] > *end_pfn)
2681 *end_pfn = node_boundary_end_pfn[nid];
2682 }
2683 #else
2684 void __init push_node_boundaries(unsigned int nid,
2685 unsigned long start_pfn, unsigned long end_pfn) {}
2686
2687 static void __meminit account_node_boundary(unsigned int nid,
2688 unsigned long *start_pfn, unsigned long *end_pfn) {}
2689 #endif
2690
2691
2692 /**
2693 * get_pfn_range_for_nid - Return the start and end page frames for a node
2694 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2695 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2696 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2697 *
2698 * It returns the start and end page frame of a node based on information
2699 * provided by an arch calling add_active_range(). If called for a node
2700 * with no available memory, a warning is printed and the start and end
2701 * PFNs will be 0.
2702 */
2703 void __meminit get_pfn_range_for_nid(unsigned int nid,
2704 unsigned long *start_pfn, unsigned long *end_pfn)
2705 {
2706 int i;
2707 *start_pfn = -1UL;
2708 *end_pfn = 0;
2709
2710 for_each_active_range_index_in_nid(i, nid) {
2711 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2712 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2713 }
2714
2715 if (*start_pfn == -1UL)
2716 *start_pfn = 0;
2717
2718 /* Push the node boundaries out if requested */
2719 account_node_boundary(nid, start_pfn, end_pfn);
2720 }
2721
2722 /*
2723 * This finds a zone that can be used for ZONE_MOVABLE pages. The
2724 * assumption is made that zones within a node are ordered in monotonic
2725 * increasing memory addresses so that the "highest" populated zone is used
2726 */
2727 void __init find_usable_zone_for_movable(void)
2728 {
2729 int zone_index;
2730 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2731 if (zone_index == ZONE_MOVABLE)
2732 continue;
2733
2734 if (arch_zone_highest_possible_pfn[zone_index] >
2735 arch_zone_lowest_possible_pfn[zone_index])
2736 break;
2737 }
2738
2739 VM_BUG_ON(zone_index == -1);
2740 movable_zone = zone_index;
2741 }
2742
2743 /*
2744 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2745 * because it is sized independant of architecture. Unlike the other zones,
2746 * the starting point for ZONE_MOVABLE is not fixed. It may be different
2747 * in each node depending on the size of each node and how evenly kernelcore
2748 * is distributed. This helper function adjusts the zone ranges
2749 * provided by the architecture for a given node by using the end of the
2750 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2751 * zones within a node are in order of monotonic increases memory addresses
2752 */
2753 void __meminit adjust_zone_range_for_zone_movable(int nid,
2754 unsigned long zone_type,
2755 unsigned long node_start_pfn,
2756 unsigned long node_end_pfn,
2757 unsigned long *zone_start_pfn,
2758 unsigned long *zone_end_pfn)
2759 {
2760 /* Only adjust if ZONE_MOVABLE is on this node */
2761 if (zone_movable_pfn[nid]) {
2762 /* Size ZONE_MOVABLE */
2763 if (zone_type == ZONE_MOVABLE) {
2764 *zone_start_pfn = zone_movable_pfn[nid];
2765 *zone_end_pfn = min(node_end_pfn,
2766 arch_zone_highest_possible_pfn[movable_zone]);
2767
2768 /* Adjust for ZONE_MOVABLE starting within this range */
2769 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
2770 *zone_end_pfn > zone_movable_pfn[nid]) {
2771 *zone_end_pfn = zone_movable_pfn[nid];
2772
2773 /* Check if this whole range is within ZONE_MOVABLE */
2774 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
2775 *zone_start_pfn = *zone_end_pfn;
2776 }
2777 }
2778
2779 /*
2780 * Return the number of pages a zone spans in a node, including holes
2781 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2782 */
2783 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
2784 unsigned long zone_type,
2785 unsigned long *ignored)
2786 {
2787 unsigned long node_start_pfn, node_end_pfn;
2788 unsigned long zone_start_pfn, zone_end_pfn;
2789
2790 /* Get the start and end of the node and zone */
2791 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2792 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2793 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2794 adjust_zone_range_for_zone_movable(nid, zone_type,
2795 node_start_pfn, node_end_pfn,
2796 &zone_start_pfn, &zone_end_pfn);
2797
2798 /* Check that this node has pages within the zone's required range */
2799 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2800 return 0;
2801
2802 /* Move the zone boundaries inside the node if necessary */
2803 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2804 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2805
2806 /* Return the spanned pages */
2807 return zone_end_pfn - zone_start_pfn;
2808 }
2809
2810 /*
2811 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2812 * then all holes in the requested range will be accounted for.
2813 */
2814 unsigned long __meminit __absent_pages_in_range(int nid,
2815 unsigned long range_start_pfn,
2816 unsigned long range_end_pfn)
2817 {
2818 int i = 0;
2819 unsigned long prev_end_pfn = 0, hole_pages = 0;
2820 unsigned long start_pfn;
2821
2822 /* Find the end_pfn of the first active range of pfns in the node */
2823 i = first_active_region_index_in_nid(nid);
2824 if (i == -1)
2825 return 0;
2826
2827 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2828
2829 /* Account for ranges before physical memory on this node */
2830 if (early_node_map[i].start_pfn > range_start_pfn)
2831 hole_pages = prev_end_pfn - range_start_pfn;
2832
2833 /* Find all holes for the zone within the node */
2834 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2835
2836 /* No need to continue if prev_end_pfn is outside the zone */
2837 if (prev_end_pfn >= range_end_pfn)
2838 break;
2839
2840 /* Make sure the end of the zone is not within the hole */
2841 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2842 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2843
2844 /* Update the hole size cound and move on */
2845 if (start_pfn > range_start_pfn) {
2846 BUG_ON(prev_end_pfn > start_pfn);
2847 hole_pages += start_pfn - prev_end_pfn;
2848 }
2849 prev_end_pfn = early_node_map[i].end_pfn;
2850 }
2851
2852 /* Account for ranges past physical memory on this node */
2853 if (range_end_pfn > prev_end_pfn)
2854 hole_pages += range_end_pfn -
2855 max(range_start_pfn, prev_end_pfn);
2856
2857 return hole_pages;
2858 }
2859
2860 /**
2861 * absent_pages_in_range - Return number of page frames in holes within a range
2862 * @start_pfn: The start PFN to start searching for holes
2863 * @end_pfn: The end PFN to stop searching for holes
2864 *
2865 * It returns the number of pages frames in memory holes within a range.
2866 */
2867 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2868 unsigned long end_pfn)
2869 {
2870 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2871 }
2872
2873 /* Return the number of page frames in holes in a zone on a node */
2874 static unsigned long __meminit zone_absent_pages_in_node(int nid,
2875 unsigned long zone_type,
2876 unsigned long *ignored)
2877 {
2878 unsigned long node_start_pfn, node_end_pfn;
2879 unsigned long zone_start_pfn, zone_end_pfn;
2880
2881 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2882 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2883 node_start_pfn);
2884 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2885 node_end_pfn);
2886
2887 adjust_zone_range_for_zone_movable(nid, zone_type,
2888 node_start_pfn, node_end_pfn,
2889 &zone_start_pfn, &zone_end_pfn);
2890 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2891 }
2892
2893 #else
2894 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
2895 unsigned long zone_type,
2896 unsigned long *zones_size)
2897 {
2898 return zones_size[zone_type];
2899 }
2900
2901 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
2902 unsigned long zone_type,
2903 unsigned long *zholes_size)
2904 {
2905 if (!zholes_size)
2906 return 0;
2907
2908 return zholes_size[zone_type];
2909 }
2910
2911 #endif
2912
2913 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
2914 unsigned long *zones_size, unsigned long *zholes_size)
2915 {
2916 unsigned long realtotalpages, totalpages = 0;
2917 enum zone_type i;
2918
2919 for (i = 0; i < MAX_NR_ZONES; i++)
2920 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2921 zones_size);
2922 pgdat->node_spanned_pages = totalpages;
2923
2924 realtotalpages = totalpages;
2925 for (i = 0; i < MAX_NR_ZONES; i++)
2926 realtotalpages -=
2927 zone_absent_pages_in_node(pgdat->node_id, i,
2928 zholes_size);
2929 pgdat->node_present_pages = realtotalpages;
2930 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2931 realtotalpages);
2932 }
2933
2934 /*
2935 * Set up the zone data structures:
2936 * - mark all pages reserved
2937 * - mark all memory queues empty
2938 * - clear the memory bitmaps
2939 */
2940 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2941 unsigned long *zones_size, unsigned long *zholes_size)
2942 {
2943 enum zone_type j;
2944 int nid = pgdat->node_id;
2945 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2946 int ret;
2947
2948 pgdat_resize_init(pgdat);
2949 pgdat->nr_zones = 0;
2950 init_waitqueue_head(&pgdat->kswapd_wait);
2951 pgdat->kswapd_max_order = 0;
2952
2953 for (j = 0; j < MAX_NR_ZONES; j++) {
2954 struct zone *zone = pgdat->node_zones + j;
2955 unsigned long size, realsize, memmap_pages;
2956
2957 size = zone_spanned_pages_in_node(nid, j, zones_size);
2958 realsize = size - zone_absent_pages_in_node(nid, j,
2959 zholes_size);
2960
2961 /*
2962 * Adjust realsize so that it accounts for how much memory
2963 * is used by this zone for memmap. This affects the watermark
2964 * and per-cpu initialisations
2965 */
2966 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2967 if (realsize >= memmap_pages) {
2968 realsize -= memmap_pages;
2969 printk(KERN_DEBUG
2970 " %s zone: %lu pages used for memmap\n",
2971 zone_names[j], memmap_pages);
2972 } else
2973 printk(KERN_WARNING
2974 " %s zone: %lu pages exceeds realsize %lu\n",
2975 zone_names[j], memmap_pages, realsize);
2976
2977 /* Account for reserved pages */
2978 if (j == 0 && realsize > dma_reserve) {
2979 realsize -= dma_reserve;
2980 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2981 zone_names[0], dma_reserve);
2982 }
2983
2984 if (!is_highmem_idx(j))
2985 nr_kernel_pages += realsize;
2986 nr_all_pages += realsize;
2987
2988 zone->spanned_pages = size;
2989 zone->present_pages = realsize;
2990 #ifdef CONFIG_NUMA
2991 zone->node = nid;
2992 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2993 / 100;
2994 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2995 #endif
2996 zone->name = zone_names[j];
2997 spin_lock_init(&zone->lock);
2998 spin_lock_init(&zone->lru_lock);
2999 zone_seqlock_init(zone);
3000 zone->zone_pgdat = pgdat;
3001
3002 zone->prev_priority = DEF_PRIORITY;
3003
3004 zone_pcp_init(zone);
3005 INIT_LIST_HEAD(&zone->active_list);
3006 INIT_LIST_HEAD(&zone->inactive_list);
3007 zone->nr_scan_active = 0;
3008 zone->nr_scan_inactive = 0;
3009 zap_zone_vm_stats(zone);
3010 atomic_set(&zone->reclaim_in_progress, 0);
3011 if (!size)
3012 continue;
3013
3014 ret = init_currently_empty_zone(zone, zone_start_pfn,
3015 size, MEMMAP_EARLY);
3016 BUG_ON(ret);
3017 zone_start_pfn += size;
3018 }
3019 }
3020
3021 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3022 {
3023 /* Skip empty nodes */
3024 if (!pgdat->node_spanned_pages)
3025 return;
3026
3027 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3028 /* ia64 gets its own node_mem_map, before this, without bootmem */
3029 if (!pgdat->node_mem_map) {
3030 unsigned long size, start, end;
3031 struct page *map;
3032
3033 /*
3034 * The zone's endpoints aren't required to be MAX_ORDER
3035 * aligned but the node_mem_map endpoints must be in order
3036 * for the buddy allocator to function correctly.
3037 */
3038 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3039 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3040 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3041 size = (end - start) * sizeof(struct page);
3042 map = alloc_remap(pgdat->node_id, size);
3043 if (!map)
3044 map = alloc_bootmem_node(pgdat, size);
3045 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3046 }
3047 #ifndef CONFIG_NEED_MULTIPLE_NODES
3048 /*
3049 * With no DISCONTIG, the global mem_map is just set as node 0's
3050 */
3051 if (pgdat == NODE_DATA(0)) {
3052 mem_map = NODE_DATA(0)->node_mem_map;
3053 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3054 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3055 mem_map -= pgdat->node_start_pfn;
3056 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3057 }
3058 #endif
3059 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3060 }
3061
3062 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
3063 unsigned long *zones_size, unsigned long node_start_pfn,
3064 unsigned long *zholes_size)
3065 {
3066 pgdat->node_id = nid;
3067 pgdat->node_start_pfn = node_start_pfn;
3068 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3069
3070 alloc_node_mem_map(pgdat);
3071
3072 free_area_init_core(pgdat, zones_size, zholes_size);
3073 }
3074
3075 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3076
3077 #if MAX_NUMNODES > 1
3078 /*
3079 * Figure out the number of possible node ids.
3080 */
3081 static void __init setup_nr_node_ids(void)
3082 {
3083 unsigned int node;
3084 unsigned int highest = 0;
3085
3086 for_each_node_mask(node, node_possible_map)
3087 highest = node;
3088 nr_node_ids = highest + 1;
3089 }
3090 #else
3091 static inline void setup_nr_node_ids(void)
3092 {
3093 }
3094 #endif
3095
3096 /**
3097 * add_active_range - Register a range of PFNs backed by physical memory
3098 * @nid: The node ID the range resides on
3099 * @start_pfn: The start PFN of the available physical memory
3100 * @end_pfn: The end PFN of the available physical memory
3101 *
3102 * These ranges are stored in an early_node_map[] and later used by
3103 * free_area_init_nodes() to calculate zone sizes and holes. If the
3104 * range spans a memory hole, it is up to the architecture to ensure
3105 * the memory is not freed by the bootmem allocator. If possible
3106 * the range being registered will be merged with existing ranges.
3107 */
3108 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3109 unsigned long end_pfn)
3110 {
3111 int i;
3112
3113 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3114 "%d entries of %d used\n",
3115 nid, start_pfn, end_pfn,
3116 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3117
3118 /* Merge with existing active regions if possible */
3119 for (i = 0; i < nr_nodemap_entries; i++) {
3120 if (early_node_map[i].nid != nid)
3121 continue;
3122
3123 /* Skip if an existing region covers this new one */
3124 if (start_pfn >= early_node_map[i].start_pfn &&
3125 end_pfn <= early_node_map[i].end_pfn)
3126 return;
3127
3128 /* Merge forward if suitable */
3129 if (start_pfn <= early_node_map[i].end_pfn &&
3130 end_pfn > early_node_map[i].end_pfn) {
3131 early_node_map[i].end_pfn = end_pfn;
3132 return;
3133 }
3134
3135 /* Merge backward if suitable */
3136 if (start_pfn < early_node_map[i].end_pfn &&
3137 end_pfn >= early_node_map[i].start_pfn) {
3138 early_node_map[i].start_pfn = start_pfn;
3139 return;
3140 }
3141 }
3142
3143 /* Check that early_node_map is large enough */
3144 if (i >= MAX_ACTIVE_REGIONS) {
3145 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3146 MAX_ACTIVE_REGIONS);
3147 return;
3148 }
3149
3150 early_node_map[i].nid = nid;
3151 early_node_map[i].start_pfn = start_pfn;
3152 early_node_map[i].end_pfn = end_pfn;
3153 nr_nodemap_entries = i + 1;
3154 }
3155
3156 /**
3157 * shrink_active_range - Shrink an existing registered range of PFNs
3158 * @nid: The node id the range is on that should be shrunk
3159 * @old_end_pfn: The old end PFN of the range
3160 * @new_end_pfn: The new PFN of the range
3161 *
3162 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3163 * The map is kept at the end physical page range that has already been
3164 * registered with add_active_range(). This function allows an arch to shrink
3165 * an existing registered range.
3166 */
3167 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3168 unsigned long new_end_pfn)
3169 {
3170 int i;
3171
3172 /* Find the old active region end and shrink */
3173 for_each_active_range_index_in_nid(i, nid)
3174 if (early_node_map[i].end_pfn == old_end_pfn) {
3175 early_node_map[i].end_pfn = new_end_pfn;
3176 break;
3177 }
3178 }
3179
3180 /**
3181 * remove_all_active_ranges - Remove all currently registered regions
3182 *
3183 * During discovery, it may be found that a table like SRAT is invalid
3184 * and an alternative discovery method must be used. This function removes
3185 * all currently registered regions.
3186 */
3187 void __init remove_all_active_ranges(void)
3188 {
3189 memset(early_node_map, 0, sizeof(early_node_map));
3190 nr_nodemap_entries = 0;
3191 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3192 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3193 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3194 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3195 }
3196
3197 /* Compare two active node_active_regions */
3198 static int __init cmp_node_active_region(const void *a, const void *b)
3199 {
3200 struct node_active_region *arange = (struct node_active_region *)a;
3201 struct node_active_region *brange = (struct node_active_region *)b;
3202
3203 /* Done this way to avoid overflows */
3204 if (arange->start_pfn > brange->start_pfn)
3205 return 1;
3206 if (arange->start_pfn < brange->start_pfn)
3207 return -1;
3208
3209 return 0;
3210 }
3211
3212 /* sort the node_map by start_pfn */
3213 static void __init sort_node_map(void)
3214 {
3215 sort(early_node_map, (size_t)nr_nodemap_entries,
3216 sizeof(struct node_active_region),
3217 cmp_node_active_region, NULL);
3218 }
3219
3220 /* Find the lowest pfn for a node */
3221 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3222 {
3223 int i;
3224 unsigned long min_pfn = ULONG_MAX;
3225
3226 /* Assuming a sorted map, the first range found has the starting pfn */
3227 for_each_active_range_index_in_nid(i, nid)
3228 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3229
3230 if (min_pfn == ULONG_MAX) {
3231 printk(KERN_WARNING
3232 "Could not find start_pfn for node %lu\n", nid);
3233 return 0;
3234 }
3235
3236 return min_pfn;
3237 }
3238
3239 /**
3240 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3241 *
3242 * It returns the minimum PFN based on information provided via
3243 * add_active_range().
3244 */
3245 unsigned long __init find_min_pfn_with_active_regions(void)
3246 {
3247 return find_min_pfn_for_node(MAX_NUMNODES);
3248 }
3249
3250 /**
3251 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3252 *
3253 * It returns the maximum PFN based on information provided via
3254 * add_active_range().
3255 */
3256 unsigned long __init find_max_pfn_with_active_regions(void)
3257 {
3258 int i;
3259 unsigned long max_pfn = 0;
3260
3261 for (i = 0; i < nr_nodemap_entries; i++)
3262 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3263
3264 return max_pfn;
3265 }
3266
3267 unsigned long __init early_calculate_totalpages(void)
3268 {
3269 int i;
3270 unsigned long totalpages = 0;
3271
3272 for (i = 0; i < nr_nodemap_entries; i++)
3273 totalpages += early_node_map[i].end_pfn -
3274 early_node_map[i].start_pfn;
3275
3276 return totalpages;
3277 }
3278
3279 /*
3280 * Find the PFN the Movable zone begins in each node. Kernel memory
3281 * is spread evenly between nodes as long as the nodes have enough
3282 * memory. When they don't, some nodes will have more kernelcore than
3283 * others
3284 */
3285 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3286 {
3287 int i, nid;
3288 unsigned long usable_startpfn;
3289 unsigned long kernelcore_node, kernelcore_remaining;
3290 int usable_nodes = num_online_nodes();
3291
3292 /*
3293 * If movablecore was specified, calculate what size of
3294 * kernelcore that corresponds so that memory usable for
3295 * any allocation type is evenly spread. If both kernelcore
3296 * and movablecore are specified, then the value of kernelcore
3297 * will be used for required_kernelcore if it's greater than
3298 * what movablecore would have allowed.
3299 */
3300 if (required_movablecore) {
3301 unsigned long totalpages = early_calculate_totalpages();
3302 unsigned long corepages;
3303
3304 /*
3305 * Round-up so that ZONE_MOVABLE is at least as large as what
3306 * was requested by the user
3307 */
3308 required_movablecore =
3309 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3310 corepages = totalpages - required_movablecore;
3311
3312 required_kernelcore = max(required_kernelcore, corepages);
3313 }
3314
3315 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3316 if (!required_kernelcore)
3317 return;
3318
3319 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3320 find_usable_zone_for_movable();
3321 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3322
3323 restart:
3324 /* Spread kernelcore memory as evenly as possible throughout nodes */
3325 kernelcore_node = required_kernelcore / usable_nodes;
3326 for_each_online_node(nid) {
3327 /*
3328 * Recalculate kernelcore_node if the division per node
3329 * now exceeds what is necessary to satisfy the requested
3330 * amount of memory for the kernel
3331 */
3332 if (required_kernelcore < kernelcore_node)
3333 kernelcore_node = required_kernelcore / usable_nodes;
3334
3335 /*
3336 * As the map is walked, we track how much memory is usable
3337 * by the kernel using kernelcore_remaining. When it is
3338 * 0, the rest of the node is usable by ZONE_MOVABLE
3339 */
3340 kernelcore_remaining = kernelcore_node;
3341
3342 /* Go through each range of PFNs within this node */
3343 for_each_active_range_index_in_nid(i, nid) {
3344 unsigned long start_pfn, end_pfn;
3345 unsigned long size_pages;
3346
3347 start_pfn = max(early_node_map[i].start_pfn,
3348 zone_movable_pfn[nid]);
3349 end_pfn = early_node_map[i].end_pfn;
3350 if (start_pfn >= end_pfn)
3351 continue;
3352
3353 /* Account for what is only usable for kernelcore */
3354 if (start_pfn < usable_startpfn) {
3355 unsigned long kernel_pages;
3356 kernel_pages = min(end_pfn, usable_startpfn)
3357 - start_pfn;
3358
3359 kernelcore_remaining -= min(kernel_pages,
3360 kernelcore_remaining);
3361 required_kernelcore -= min(kernel_pages,
3362 required_kernelcore);
3363
3364 /* Continue if range is now fully accounted */
3365 if (end_pfn <= usable_startpfn) {
3366
3367 /*
3368 * Push zone_movable_pfn to the end so
3369 * that if we have to rebalance
3370 * kernelcore across nodes, we will
3371 * not double account here
3372 */
3373 zone_movable_pfn[nid] = end_pfn;
3374 continue;
3375 }
3376 start_pfn = usable_startpfn;
3377 }
3378
3379 /*
3380 * The usable PFN range for ZONE_MOVABLE is from
3381 * start_pfn->end_pfn. Calculate size_pages as the
3382 * number of pages used as kernelcore
3383 */
3384 size_pages = end_pfn - start_pfn;
3385 if (size_pages > kernelcore_remaining)
3386 size_pages = kernelcore_remaining;
3387 zone_movable_pfn[nid] = start_pfn + size_pages;
3388
3389 /*
3390 * Some kernelcore has been met, update counts and
3391 * break if the kernelcore for this node has been
3392 * satisified
3393 */
3394 required_kernelcore -= min(required_kernelcore,
3395 size_pages);
3396 kernelcore_remaining -= size_pages;
3397 if (!kernelcore_remaining)
3398 break;
3399 }
3400 }
3401
3402 /*
3403 * If there is still required_kernelcore, we do another pass with one
3404 * less node in the count. This will push zone_movable_pfn[nid] further
3405 * along on the nodes that still have memory until kernelcore is
3406 * satisified
3407 */
3408 usable_nodes--;
3409 if (usable_nodes && required_kernelcore > usable_nodes)
3410 goto restart;
3411
3412 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3413 for (nid = 0; nid < MAX_NUMNODES; nid++)
3414 zone_movable_pfn[nid] =
3415 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3416 }
3417
3418 /**
3419 * free_area_init_nodes - Initialise all pg_data_t and zone data
3420 * @max_zone_pfn: an array of max PFNs for each zone
3421 *
3422 * This will call free_area_init_node() for each active node in the system.
3423 * Using the page ranges provided by add_active_range(), the size of each
3424 * zone in each node and their holes is calculated. If the maximum PFN
3425 * between two adjacent zones match, it is assumed that the zone is empty.
3426 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3427 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3428 * starts where the previous one ended. For example, ZONE_DMA32 starts
3429 * at arch_max_dma_pfn.
3430 */
3431 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3432 {
3433 unsigned long nid;
3434 enum zone_type i;
3435
3436 /* Sort early_node_map as initialisation assumes it is sorted */
3437 sort_node_map();
3438
3439 /* Record where the zone boundaries are */
3440 memset(arch_zone_lowest_possible_pfn, 0,
3441 sizeof(arch_zone_lowest_possible_pfn));
3442 memset(arch_zone_highest_possible_pfn, 0,
3443 sizeof(arch_zone_highest_possible_pfn));
3444 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3445 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3446 for (i = 1; i < MAX_NR_ZONES; i++) {
3447 if (i == ZONE_MOVABLE)
3448 continue;
3449 arch_zone_lowest_possible_pfn[i] =
3450 arch_zone_highest_possible_pfn[i-1];
3451 arch_zone_highest_possible_pfn[i] =
3452 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3453 }
3454 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3455 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3456
3457 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3458 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3459 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3460
3461 /* Print out the zone ranges */
3462 printk("Zone PFN ranges:\n");
3463 for (i = 0; i < MAX_NR_ZONES; i++) {
3464 if (i == ZONE_MOVABLE)
3465 continue;
3466 printk(" %-8s %8lu -> %8lu\n",
3467 zone_names[i],
3468 arch_zone_lowest_possible_pfn[i],
3469 arch_zone_highest_possible_pfn[i]);
3470 }
3471
3472 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3473 printk("Movable zone start PFN for each node\n");
3474 for (i = 0; i < MAX_NUMNODES; i++) {
3475 if (zone_movable_pfn[i])
3476 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3477 }
3478
3479 /* Print out the early_node_map[] */
3480 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3481 for (i = 0; i < nr_nodemap_entries; i++)
3482 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3483 early_node_map[i].start_pfn,
3484 early_node_map[i].end_pfn);
3485
3486 /* Initialise every node */
3487 setup_nr_node_ids();
3488 for_each_online_node(nid) {
3489 pg_data_t *pgdat = NODE_DATA(nid);
3490 free_area_init_node(nid, pgdat, NULL,
3491 find_min_pfn_for_node(nid), NULL);
3492 }
3493 }
3494
3495 static int __init cmdline_parse_core(char *p, unsigned long *core)
3496 {
3497 unsigned long long coremem;
3498 if (!p)
3499 return -EINVAL;
3500
3501 coremem = memparse(p, &p);
3502 *core = coremem >> PAGE_SHIFT;
3503
3504 /* Paranoid check that UL is enough for the coremem value */
3505 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3506
3507 return 0;
3508 }
3509
3510 /*
3511 * kernelcore=size sets the amount of memory for use for allocations that
3512 * cannot be reclaimed or migrated.
3513 */
3514 static int __init cmdline_parse_kernelcore(char *p)
3515 {
3516 return cmdline_parse_core(p, &required_kernelcore);
3517 }
3518
3519 /*
3520 * movablecore=size sets the amount of memory for use for allocations that
3521 * can be reclaimed or migrated.
3522 */
3523 static int __init cmdline_parse_movablecore(char *p)
3524 {
3525 return cmdline_parse_core(p, &required_movablecore);
3526 }
3527
3528 early_param("kernelcore", cmdline_parse_kernelcore);
3529 early_param("movablecore", cmdline_parse_movablecore);
3530
3531 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3532
3533 /**
3534 * set_dma_reserve - set the specified number of pages reserved in the first zone
3535 * @new_dma_reserve: The number of pages to mark reserved
3536 *
3537 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3538 * In the DMA zone, a significant percentage may be consumed by kernel image
3539 * and other unfreeable allocations which can skew the watermarks badly. This
3540 * function may optionally be used to account for unfreeable pages in the
3541 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3542 * smaller per-cpu batchsize.
3543 */
3544 void __init set_dma_reserve(unsigned long new_dma_reserve)
3545 {
3546 dma_reserve = new_dma_reserve;
3547 }
3548
3549 #ifndef CONFIG_NEED_MULTIPLE_NODES
3550 static bootmem_data_t contig_bootmem_data;
3551 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3552
3553 EXPORT_SYMBOL(contig_page_data);
3554 #endif
3555
3556 void __init free_area_init(unsigned long *zones_size)
3557 {
3558 free_area_init_node(0, NODE_DATA(0), zones_size,
3559 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3560 }
3561
3562 static int page_alloc_cpu_notify(struct notifier_block *self,
3563 unsigned long action, void *hcpu)
3564 {
3565 int cpu = (unsigned long)hcpu;
3566
3567 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
3568 local_irq_disable();
3569 __drain_pages(cpu);
3570 vm_events_fold_cpu(cpu);
3571 local_irq_enable();
3572 refresh_cpu_vm_stats(cpu);
3573 }
3574 return NOTIFY_OK;
3575 }
3576
3577 void __init page_alloc_init(void)
3578 {
3579 hotcpu_notifier(page_alloc_cpu_notify, 0);
3580 }
3581
3582 /*
3583 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3584 * or min_free_kbytes changes.
3585 */
3586 static void calculate_totalreserve_pages(void)
3587 {
3588 struct pglist_data *pgdat;
3589 unsigned long reserve_pages = 0;
3590 enum zone_type i, j;
3591
3592 for_each_online_pgdat(pgdat) {
3593 for (i = 0; i < MAX_NR_ZONES; i++) {
3594 struct zone *zone = pgdat->node_zones + i;
3595 unsigned long max = 0;
3596
3597 /* Find valid and maximum lowmem_reserve in the zone */
3598 for (j = i; j < MAX_NR_ZONES; j++) {
3599 if (zone->lowmem_reserve[j] > max)
3600 max = zone->lowmem_reserve[j];
3601 }
3602
3603 /* we treat pages_high as reserved pages. */
3604 max += zone->pages_high;
3605
3606 if (max > zone->present_pages)
3607 max = zone->present_pages;
3608 reserve_pages += max;
3609 }
3610 }
3611 totalreserve_pages = reserve_pages;
3612 }
3613
3614 /*
3615 * setup_per_zone_lowmem_reserve - called whenever
3616 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3617 * has a correct pages reserved value, so an adequate number of
3618 * pages are left in the zone after a successful __alloc_pages().
3619 */
3620 static void setup_per_zone_lowmem_reserve(void)
3621 {
3622 struct pglist_data *pgdat;
3623 enum zone_type j, idx;
3624
3625 for_each_online_pgdat(pgdat) {
3626 for (j = 0; j < MAX_NR_ZONES; j++) {
3627 struct zone *zone = pgdat->node_zones + j;
3628 unsigned long present_pages = zone->present_pages;
3629
3630 zone->lowmem_reserve[j] = 0;
3631
3632 idx = j;
3633 while (idx) {
3634 struct zone *lower_zone;
3635
3636 idx--;
3637
3638 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3639 sysctl_lowmem_reserve_ratio[idx] = 1;
3640
3641 lower_zone = pgdat->node_zones + idx;
3642 lower_zone->lowmem_reserve[j] = present_pages /
3643 sysctl_lowmem_reserve_ratio[idx];
3644 present_pages += lower_zone->present_pages;
3645 }
3646 }
3647 }
3648
3649 /* update totalreserve_pages */
3650 calculate_totalreserve_pages();
3651 }
3652
3653 /**
3654 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3655 *
3656 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3657 * with respect to min_free_kbytes.
3658 */
3659 void setup_per_zone_pages_min(void)
3660 {
3661 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3662 unsigned long lowmem_pages = 0;
3663 struct zone *zone;
3664 unsigned long flags;
3665
3666 /* Calculate total number of !ZONE_HIGHMEM pages */
3667 for_each_zone(zone) {
3668 if (!is_highmem(zone))
3669 lowmem_pages += zone->present_pages;
3670 }
3671
3672 for_each_zone(zone) {
3673 u64 tmp;
3674
3675 spin_lock_irqsave(&zone->lru_lock, flags);
3676 tmp = (u64)pages_min * zone->present_pages;
3677 do_div(tmp, lowmem_pages);
3678 if (is_highmem(zone)) {
3679 /*
3680 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3681 * need highmem pages, so cap pages_min to a small
3682 * value here.
3683 *
3684 * The (pages_high-pages_low) and (pages_low-pages_min)
3685 * deltas controls asynch page reclaim, and so should
3686 * not be capped for highmem.
3687 */
3688 int min_pages;
3689
3690 min_pages = zone->present_pages / 1024;
3691 if (min_pages < SWAP_CLUSTER_MAX)
3692 min_pages = SWAP_CLUSTER_MAX;
3693 if (min_pages > 128)
3694 min_pages = 128;
3695 zone->pages_min = min_pages;
3696 } else {
3697 /*
3698 * If it's a lowmem zone, reserve a number of pages
3699 * proportionate to the zone's size.
3700 */
3701 zone->pages_min = tmp;
3702 }
3703
3704 zone->pages_low = zone->pages_min + (tmp >> 2);
3705 zone->pages_high = zone->pages_min + (tmp >> 1);
3706 spin_unlock_irqrestore(&zone->lru_lock, flags);
3707 }
3708
3709 /* update totalreserve_pages */
3710 calculate_totalreserve_pages();
3711 }
3712
3713 /*
3714 * Initialise min_free_kbytes.
3715 *
3716 * For small machines we want it small (128k min). For large machines
3717 * we want it large (64MB max). But it is not linear, because network
3718 * bandwidth does not increase linearly with machine size. We use
3719 *
3720 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3721 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3722 *
3723 * which yields
3724 *
3725 * 16MB: 512k
3726 * 32MB: 724k
3727 * 64MB: 1024k
3728 * 128MB: 1448k
3729 * 256MB: 2048k
3730 * 512MB: 2896k
3731 * 1024MB: 4096k
3732 * 2048MB: 5792k
3733 * 4096MB: 8192k
3734 * 8192MB: 11584k
3735 * 16384MB: 16384k
3736 */
3737 static int __init init_per_zone_pages_min(void)
3738 {
3739 unsigned long lowmem_kbytes;
3740
3741 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3742
3743 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3744 if (min_free_kbytes < 128)
3745 min_free_kbytes = 128;
3746 if (min_free_kbytes > 65536)
3747 min_free_kbytes = 65536;
3748 setup_per_zone_pages_min();
3749 setup_per_zone_lowmem_reserve();
3750 return 0;
3751 }
3752 module_init(init_per_zone_pages_min)
3753
3754 /*
3755 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3756 * that we can call two helper functions whenever min_free_kbytes
3757 * changes.
3758 */
3759 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3760 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3761 {
3762 proc_dointvec(table, write, file, buffer, length, ppos);
3763 if (write)
3764 setup_per_zone_pages_min();
3765 return 0;
3766 }
3767
3768 #ifdef CONFIG_NUMA
3769 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3770 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3771 {
3772 struct zone *zone;
3773 int rc;
3774
3775 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3776 if (rc)
3777 return rc;
3778
3779 for_each_zone(zone)
3780 zone->min_unmapped_pages = (zone->present_pages *
3781 sysctl_min_unmapped_ratio) / 100;
3782 return 0;
3783 }
3784
3785 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3786 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3787 {
3788 struct zone *zone;
3789 int rc;
3790
3791 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3792 if (rc)
3793 return rc;
3794
3795 for_each_zone(zone)
3796 zone->min_slab_pages = (zone->present_pages *
3797 sysctl_min_slab_ratio) / 100;
3798 return 0;
3799 }
3800 #endif
3801
3802 /*
3803 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3804 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3805 * whenever sysctl_lowmem_reserve_ratio changes.
3806 *
3807 * The reserve ratio obviously has absolutely no relation with the
3808 * pages_min watermarks. The lowmem reserve ratio can only make sense
3809 * if in function of the boot time zone sizes.
3810 */
3811 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3812 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3813 {
3814 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3815 setup_per_zone_lowmem_reserve();
3816 return 0;
3817 }
3818
3819 /*
3820 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3821 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3822 * can have before it gets flushed back to buddy allocator.
3823 */
3824
3825 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3826 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3827 {
3828 struct zone *zone;
3829 unsigned int cpu;
3830 int ret;
3831
3832 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3833 if (!write || (ret == -EINVAL))
3834 return ret;
3835 for_each_zone(zone) {
3836 for_each_online_cpu(cpu) {
3837 unsigned long high;
3838 high = zone->present_pages / percpu_pagelist_fraction;
3839 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3840 }
3841 }
3842 return 0;
3843 }
3844
3845 int hashdist = HASHDIST_DEFAULT;
3846
3847 #ifdef CONFIG_NUMA
3848 static int __init set_hashdist(char *str)
3849 {
3850 if (!str)
3851 return 0;
3852 hashdist = simple_strtoul(str, &str, 0);
3853 return 1;
3854 }
3855 __setup("hashdist=", set_hashdist);
3856 #endif
3857
3858 /*
3859 * allocate a large system hash table from bootmem
3860 * - it is assumed that the hash table must contain an exact power-of-2
3861 * quantity of entries
3862 * - limit is the number of hash buckets, not the total allocation size
3863 */
3864 void *__init alloc_large_system_hash(const char *tablename,
3865 unsigned long bucketsize,
3866 unsigned long numentries,
3867 int scale,
3868 int flags,
3869 unsigned int *_hash_shift,
3870 unsigned int *_hash_mask,
3871 unsigned long limit)
3872 {
3873 unsigned long long max = limit;
3874 unsigned long log2qty, size;
3875 void *table = NULL;
3876
3877 /* allow the kernel cmdline to have a say */
3878 if (!numentries) {
3879 /* round applicable memory size up to nearest megabyte */
3880 numentries = nr_kernel_pages;
3881 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3882 numentries >>= 20 - PAGE_SHIFT;
3883 numentries <<= 20 - PAGE_SHIFT;
3884
3885 /* limit to 1 bucket per 2^scale bytes of low memory */
3886 if (scale > PAGE_SHIFT)
3887 numentries >>= (scale - PAGE_SHIFT);
3888 else
3889 numentries <<= (PAGE_SHIFT - scale);
3890
3891 /* Make sure we've got at least a 0-order allocation.. */
3892 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3893 numentries = PAGE_SIZE / bucketsize;
3894 }
3895 numentries = roundup_pow_of_two(numentries);
3896
3897 /* limit allocation size to 1/16 total memory by default */
3898 if (max == 0) {
3899 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3900 do_div(max, bucketsize);
3901 }
3902
3903 if (numentries > max)
3904 numentries = max;
3905
3906 log2qty = ilog2(numentries);
3907
3908 do {
3909 size = bucketsize << log2qty;
3910 if (flags & HASH_EARLY)
3911 table = alloc_bootmem(size);
3912 else if (hashdist)
3913 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3914 else {
3915 unsigned long order;
3916 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3917 ;
3918 table = (void*) __get_free_pages(GFP_ATOMIC, order);
3919 /*
3920 * If bucketsize is not a power-of-two, we may free
3921 * some pages at the end of hash table.
3922 */
3923 if (table) {
3924 unsigned long alloc_end = (unsigned long)table +
3925 (PAGE_SIZE << order);
3926 unsigned long used = (unsigned long)table +
3927 PAGE_ALIGN(size);
3928 split_page(virt_to_page(table), order);
3929 while (used < alloc_end) {
3930 free_page(used);
3931 used += PAGE_SIZE;
3932 }
3933 }
3934 }
3935 } while (!table && size > PAGE_SIZE && --log2qty);
3936
3937 if (!table)
3938 panic("Failed to allocate %s hash table\n", tablename);
3939
3940 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
3941 tablename,
3942 (1U << log2qty),
3943 ilog2(size) - PAGE_SHIFT,
3944 size);
3945
3946 if (_hash_shift)
3947 *_hash_shift = log2qty;
3948 if (_hash_mask)
3949 *_hash_mask = (1 << log2qty) - 1;
3950
3951 return table;
3952 }
3953
3954 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3955 struct page *pfn_to_page(unsigned long pfn)
3956 {
3957 return __pfn_to_page(pfn);
3958 }
3959 unsigned long page_to_pfn(struct page *page)
3960 {
3961 return __page_to_pfn(page);
3962 }
3963 EXPORT_SYMBOL(pfn_to_page);
3964 EXPORT_SYMBOL(page_to_pfn);
3965 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3966
3967