]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
mm/page_alloc.c: drop dead destroy_compound_page()
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page_ext.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/page_owner.h>
63
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
67 #include "internal.h"
68
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock);
71 #define MIN_PERCPU_PAGELIST_FRACTION (8)
72
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 int _node_numa_mem_[MAX_NUMNODES];
88 #endif
89
90 /*
91 * Array of node states.
92 */
93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 [N_POSSIBLE] = NODE_MASK_ALL,
95 [N_ONLINE] = { { [0] = 1UL } },
96 #ifndef CONFIG_NUMA
97 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
98 #ifdef CONFIG_HIGHMEM
99 [N_HIGH_MEMORY] = { { [0] = 1UL } },
100 #endif
101 #ifdef CONFIG_MOVABLE_NODE
102 [N_MEMORY] = { { [0] = 1UL } },
103 #endif
104 [N_CPU] = { { [0] = 1UL } },
105 #endif /* NUMA */
106 };
107 EXPORT_SYMBOL(node_states);
108
109 /* Protect totalram_pages and zone->managed_pages */
110 static DEFINE_SPINLOCK(managed_page_count_lock);
111
112 unsigned long totalram_pages __read_mostly;
113 unsigned long totalreserve_pages __read_mostly;
114 unsigned long totalcma_pages __read_mostly;
115 /*
116 * When calculating the number of globally allowed dirty pages, there
117 * is a certain number of per-zone reserves that should not be
118 * considered dirtyable memory. This is the sum of those reserves
119 * over all existing zones that contribute dirtyable memory.
120 */
121 unsigned long dirty_balance_reserve __read_mostly;
122
123 int percpu_pagelist_fraction;
124 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
125
126 #ifdef CONFIG_PM_SLEEP
127 /*
128 * The following functions are used by the suspend/hibernate code to temporarily
129 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
130 * while devices are suspended. To avoid races with the suspend/hibernate code,
131 * they should always be called with pm_mutex held (gfp_allowed_mask also should
132 * only be modified with pm_mutex held, unless the suspend/hibernate code is
133 * guaranteed not to run in parallel with that modification).
134 */
135
136 static gfp_t saved_gfp_mask;
137
138 void pm_restore_gfp_mask(void)
139 {
140 WARN_ON(!mutex_is_locked(&pm_mutex));
141 if (saved_gfp_mask) {
142 gfp_allowed_mask = saved_gfp_mask;
143 saved_gfp_mask = 0;
144 }
145 }
146
147 void pm_restrict_gfp_mask(void)
148 {
149 WARN_ON(!mutex_is_locked(&pm_mutex));
150 WARN_ON(saved_gfp_mask);
151 saved_gfp_mask = gfp_allowed_mask;
152 gfp_allowed_mask &= ~GFP_IOFS;
153 }
154
155 bool pm_suspended_storage(void)
156 {
157 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
158 return false;
159 return true;
160 }
161 #endif /* CONFIG_PM_SLEEP */
162
163 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
164 int pageblock_order __read_mostly;
165 #endif
166
167 static void __free_pages_ok(struct page *page, unsigned int order);
168
169 /*
170 * results with 256, 32 in the lowmem_reserve sysctl:
171 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
172 * 1G machine -> (16M dma, 784M normal, 224M high)
173 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
174 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
175 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
176 *
177 * TBD: should special case ZONE_DMA32 machines here - in those we normally
178 * don't need any ZONE_NORMAL reservation
179 */
180 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
181 #ifdef CONFIG_ZONE_DMA
182 256,
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 256,
186 #endif
187 #ifdef CONFIG_HIGHMEM
188 32,
189 #endif
190 32,
191 };
192
193 EXPORT_SYMBOL(totalram_pages);
194
195 static char * const zone_names[MAX_NR_ZONES] = {
196 #ifdef CONFIG_ZONE_DMA
197 "DMA",
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 "DMA32",
201 #endif
202 "Normal",
203 #ifdef CONFIG_HIGHMEM
204 "HighMem",
205 #endif
206 "Movable",
207 };
208
209 int min_free_kbytes = 1024;
210 int user_min_free_kbytes = -1;
211
212 static unsigned long __meminitdata nr_kernel_pages;
213 static unsigned long __meminitdata nr_all_pages;
214 static unsigned long __meminitdata dma_reserve;
215
216 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
217 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
218 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
219 static unsigned long __initdata required_kernelcore;
220 static unsigned long __initdata required_movablecore;
221 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
222
223 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
224 int movable_zone;
225 EXPORT_SYMBOL(movable_zone);
226 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
227
228 #if MAX_NUMNODES > 1
229 int nr_node_ids __read_mostly = MAX_NUMNODES;
230 int nr_online_nodes __read_mostly = 1;
231 EXPORT_SYMBOL(nr_node_ids);
232 EXPORT_SYMBOL(nr_online_nodes);
233 #endif
234
235 int page_group_by_mobility_disabled __read_mostly;
236
237 void set_pageblock_migratetype(struct page *page, int migratetype)
238 {
239 if (unlikely(page_group_by_mobility_disabled &&
240 migratetype < MIGRATE_PCPTYPES))
241 migratetype = MIGRATE_UNMOVABLE;
242
243 set_pageblock_flags_group(page, (unsigned long)migratetype,
244 PB_migrate, PB_migrate_end);
245 }
246
247 bool oom_killer_disabled __read_mostly;
248
249 #ifdef CONFIG_DEBUG_VM
250 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
251 {
252 int ret = 0;
253 unsigned seq;
254 unsigned long pfn = page_to_pfn(page);
255 unsigned long sp, start_pfn;
256
257 do {
258 seq = zone_span_seqbegin(zone);
259 start_pfn = zone->zone_start_pfn;
260 sp = zone->spanned_pages;
261 if (!zone_spans_pfn(zone, pfn))
262 ret = 1;
263 } while (zone_span_seqretry(zone, seq));
264
265 if (ret)
266 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
267 pfn, zone_to_nid(zone), zone->name,
268 start_pfn, start_pfn + sp);
269
270 return ret;
271 }
272
273 static int page_is_consistent(struct zone *zone, struct page *page)
274 {
275 if (!pfn_valid_within(page_to_pfn(page)))
276 return 0;
277 if (zone != page_zone(page))
278 return 0;
279
280 return 1;
281 }
282 /*
283 * Temporary debugging check for pages not lying within a given zone.
284 */
285 static int bad_range(struct zone *zone, struct page *page)
286 {
287 if (page_outside_zone_boundaries(zone, page))
288 return 1;
289 if (!page_is_consistent(zone, page))
290 return 1;
291
292 return 0;
293 }
294 #else
295 static inline int bad_range(struct zone *zone, struct page *page)
296 {
297 return 0;
298 }
299 #endif
300
301 static void bad_page(struct page *page, const char *reason,
302 unsigned long bad_flags)
303 {
304 static unsigned long resume;
305 static unsigned long nr_shown;
306 static unsigned long nr_unshown;
307
308 /* Don't complain about poisoned pages */
309 if (PageHWPoison(page)) {
310 page_mapcount_reset(page); /* remove PageBuddy */
311 return;
312 }
313
314 /*
315 * Allow a burst of 60 reports, then keep quiet for that minute;
316 * or allow a steady drip of one report per second.
317 */
318 if (nr_shown == 60) {
319 if (time_before(jiffies, resume)) {
320 nr_unshown++;
321 goto out;
322 }
323 if (nr_unshown) {
324 printk(KERN_ALERT
325 "BUG: Bad page state: %lu messages suppressed\n",
326 nr_unshown);
327 nr_unshown = 0;
328 }
329 nr_shown = 0;
330 }
331 if (nr_shown++ == 0)
332 resume = jiffies + 60 * HZ;
333
334 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
335 current->comm, page_to_pfn(page));
336 dump_page_badflags(page, reason, bad_flags);
337
338 print_modules();
339 dump_stack();
340 out:
341 /* Leave bad fields for debug, except PageBuddy could make trouble */
342 page_mapcount_reset(page); /* remove PageBuddy */
343 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
344 }
345
346 /*
347 * Higher-order pages are called "compound pages". They are structured thusly:
348 *
349 * The first PAGE_SIZE page is called the "head page".
350 *
351 * The remaining PAGE_SIZE pages are called "tail pages".
352 *
353 * All pages have PG_compound set. All tail pages have their ->first_page
354 * pointing at the head page.
355 *
356 * The first tail page's ->lru.next holds the address of the compound page's
357 * put_page() function. Its ->lru.prev holds the order of allocation.
358 * This usage means that zero-order pages may not be compound.
359 */
360
361 static void free_compound_page(struct page *page)
362 {
363 __free_pages_ok(page, compound_order(page));
364 }
365
366 void prep_compound_page(struct page *page, unsigned long order)
367 {
368 int i;
369 int nr_pages = 1 << order;
370
371 set_compound_page_dtor(page, free_compound_page);
372 set_compound_order(page, order);
373 __SetPageHead(page);
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
376 set_page_count(p, 0);
377 p->first_page = page;
378 /* Make sure p->first_page is always valid for PageTail() */
379 smp_wmb();
380 __SetPageTail(p);
381 }
382 }
383
384 static inline void prep_zero_page(struct page *page, unsigned int order,
385 gfp_t gfp_flags)
386 {
387 int i;
388
389 /*
390 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
391 * and __GFP_HIGHMEM from hard or soft interrupt context.
392 */
393 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
394 for (i = 0; i < (1 << order); i++)
395 clear_highpage(page + i);
396 }
397
398 #ifdef CONFIG_DEBUG_PAGEALLOC
399 unsigned int _debug_guardpage_minorder;
400 bool _debug_pagealloc_enabled __read_mostly;
401 bool _debug_guardpage_enabled __read_mostly;
402
403 static int __init early_debug_pagealloc(char *buf)
404 {
405 if (!buf)
406 return -EINVAL;
407
408 if (strcmp(buf, "on") == 0)
409 _debug_pagealloc_enabled = true;
410
411 return 0;
412 }
413 early_param("debug_pagealloc", early_debug_pagealloc);
414
415 static bool need_debug_guardpage(void)
416 {
417 /* If we don't use debug_pagealloc, we don't need guard page */
418 if (!debug_pagealloc_enabled())
419 return false;
420
421 return true;
422 }
423
424 static void init_debug_guardpage(void)
425 {
426 if (!debug_pagealloc_enabled())
427 return;
428
429 _debug_guardpage_enabled = true;
430 }
431
432 struct page_ext_operations debug_guardpage_ops = {
433 .need = need_debug_guardpage,
434 .init = init_debug_guardpage,
435 };
436
437 static int __init debug_guardpage_minorder_setup(char *buf)
438 {
439 unsigned long res;
440
441 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
442 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
443 return 0;
444 }
445 _debug_guardpage_minorder = res;
446 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
447 return 0;
448 }
449 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
450
451 static inline void set_page_guard(struct zone *zone, struct page *page,
452 unsigned int order, int migratetype)
453 {
454 struct page_ext *page_ext;
455
456 if (!debug_guardpage_enabled())
457 return;
458
459 page_ext = lookup_page_ext(page);
460 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
461
462 INIT_LIST_HEAD(&page->lru);
463 set_page_private(page, order);
464 /* Guard pages are not available for any usage */
465 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
466 }
467
468 static inline void clear_page_guard(struct zone *zone, struct page *page,
469 unsigned int order, int migratetype)
470 {
471 struct page_ext *page_ext;
472
473 if (!debug_guardpage_enabled())
474 return;
475
476 page_ext = lookup_page_ext(page);
477 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
478
479 set_page_private(page, 0);
480 if (!is_migrate_isolate(migratetype))
481 __mod_zone_freepage_state(zone, (1 << order), migratetype);
482 }
483 #else
484 struct page_ext_operations debug_guardpage_ops = { NULL, };
485 static inline void set_page_guard(struct zone *zone, struct page *page,
486 unsigned int order, int migratetype) {}
487 static inline void clear_page_guard(struct zone *zone, struct page *page,
488 unsigned int order, int migratetype) {}
489 #endif
490
491 static inline void set_page_order(struct page *page, unsigned int order)
492 {
493 set_page_private(page, order);
494 __SetPageBuddy(page);
495 }
496
497 static inline void rmv_page_order(struct page *page)
498 {
499 __ClearPageBuddy(page);
500 set_page_private(page, 0);
501 }
502
503 /*
504 * This function checks whether a page is free && is the buddy
505 * we can do coalesce a page and its buddy if
506 * (a) the buddy is not in a hole &&
507 * (b) the buddy is in the buddy system &&
508 * (c) a page and its buddy have the same order &&
509 * (d) a page and its buddy are in the same zone.
510 *
511 * For recording whether a page is in the buddy system, we set ->_mapcount
512 * PAGE_BUDDY_MAPCOUNT_VALUE.
513 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
514 * serialized by zone->lock.
515 *
516 * For recording page's order, we use page_private(page).
517 */
518 static inline int page_is_buddy(struct page *page, struct page *buddy,
519 unsigned int order)
520 {
521 if (!pfn_valid_within(page_to_pfn(buddy)))
522 return 0;
523
524 if (page_is_guard(buddy) && page_order(buddy) == order) {
525 if (page_zone_id(page) != page_zone_id(buddy))
526 return 0;
527
528 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
529
530 return 1;
531 }
532
533 if (PageBuddy(buddy) && page_order(buddy) == order) {
534 /*
535 * zone check is done late to avoid uselessly
536 * calculating zone/node ids for pages that could
537 * never merge.
538 */
539 if (page_zone_id(page) != page_zone_id(buddy))
540 return 0;
541
542 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
543
544 return 1;
545 }
546 return 0;
547 }
548
549 /*
550 * Freeing function for a buddy system allocator.
551 *
552 * The concept of a buddy system is to maintain direct-mapped table
553 * (containing bit values) for memory blocks of various "orders".
554 * The bottom level table contains the map for the smallest allocatable
555 * units of memory (here, pages), and each level above it describes
556 * pairs of units from the levels below, hence, "buddies".
557 * At a high level, all that happens here is marking the table entry
558 * at the bottom level available, and propagating the changes upward
559 * as necessary, plus some accounting needed to play nicely with other
560 * parts of the VM system.
561 * At each level, we keep a list of pages, which are heads of continuous
562 * free pages of length of (1 << order) and marked with _mapcount
563 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
564 * field.
565 * So when we are allocating or freeing one, we can derive the state of the
566 * other. That is, if we allocate a small block, and both were
567 * free, the remainder of the region must be split into blocks.
568 * If a block is freed, and its buddy is also free, then this
569 * triggers coalescing into a block of larger size.
570 *
571 * -- nyc
572 */
573
574 static inline void __free_one_page(struct page *page,
575 unsigned long pfn,
576 struct zone *zone, unsigned int order,
577 int migratetype)
578 {
579 unsigned long page_idx;
580 unsigned long combined_idx;
581 unsigned long uninitialized_var(buddy_idx);
582 struct page *buddy;
583 int max_order = MAX_ORDER;
584
585 VM_BUG_ON(!zone_is_initialized(zone));
586 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
587
588 VM_BUG_ON(migratetype == -1);
589 if (is_migrate_isolate(migratetype)) {
590 /*
591 * We restrict max order of merging to prevent merge
592 * between freepages on isolate pageblock and normal
593 * pageblock. Without this, pageblock isolation
594 * could cause incorrect freepage accounting.
595 */
596 max_order = min(MAX_ORDER, pageblock_order + 1);
597 } else {
598 __mod_zone_freepage_state(zone, 1 << order, migratetype);
599 }
600
601 page_idx = pfn & ((1 << max_order) - 1);
602
603 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
604 VM_BUG_ON_PAGE(bad_range(zone, page), page);
605
606 while (order < max_order - 1) {
607 buddy_idx = __find_buddy_index(page_idx, order);
608 buddy = page + (buddy_idx - page_idx);
609 if (!page_is_buddy(page, buddy, order))
610 break;
611 /*
612 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
613 * merge with it and move up one order.
614 */
615 if (page_is_guard(buddy)) {
616 clear_page_guard(zone, buddy, order, migratetype);
617 } else {
618 list_del(&buddy->lru);
619 zone->free_area[order].nr_free--;
620 rmv_page_order(buddy);
621 }
622 combined_idx = buddy_idx & page_idx;
623 page = page + (combined_idx - page_idx);
624 page_idx = combined_idx;
625 order++;
626 }
627 set_page_order(page, order);
628
629 /*
630 * If this is not the largest possible page, check if the buddy
631 * of the next-highest order is free. If it is, it's possible
632 * that pages are being freed that will coalesce soon. In case,
633 * that is happening, add the free page to the tail of the list
634 * so it's less likely to be used soon and more likely to be merged
635 * as a higher order page
636 */
637 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
638 struct page *higher_page, *higher_buddy;
639 combined_idx = buddy_idx & page_idx;
640 higher_page = page + (combined_idx - page_idx);
641 buddy_idx = __find_buddy_index(combined_idx, order + 1);
642 higher_buddy = higher_page + (buddy_idx - combined_idx);
643 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
644 list_add_tail(&page->lru,
645 &zone->free_area[order].free_list[migratetype]);
646 goto out;
647 }
648 }
649
650 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
651 out:
652 zone->free_area[order].nr_free++;
653 }
654
655 static inline int free_pages_check(struct page *page)
656 {
657 const char *bad_reason = NULL;
658 unsigned long bad_flags = 0;
659
660 if (unlikely(page_mapcount(page)))
661 bad_reason = "nonzero mapcount";
662 if (unlikely(page->mapping != NULL))
663 bad_reason = "non-NULL mapping";
664 if (unlikely(atomic_read(&page->_count) != 0))
665 bad_reason = "nonzero _count";
666 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
667 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
668 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
669 }
670 #ifdef CONFIG_MEMCG
671 if (unlikely(page->mem_cgroup))
672 bad_reason = "page still charged to cgroup";
673 #endif
674 if (unlikely(bad_reason)) {
675 bad_page(page, bad_reason, bad_flags);
676 return 1;
677 }
678 page_cpupid_reset_last(page);
679 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
680 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
681 return 0;
682 }
683
684 /*
685 * Frees a number of pages from the PCP lists
686 * Assumes all pages on list are in same zone, and of same order.
687 * count is the number of pages to free.
688 *
689 * If the zone was previously in an "all pages pinned" state then look to
690 * see if this freeing clears that state.
691 *
692 * And clear the zone's pages_scanned counter, to hold off the "all pages are
693 * pinned" detection logic.
694 */
695 static void free_pcppages_bulk(struct zone *zone, int count,
696 struct per_cpu_pages *pcp)
697 {
698 int migratetype = 0;
699 int batch_free = 0;
700 int to_free = count;
701 unsigned long nr_scanned;
702
703 spin_lock(&zone->lock);
704 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
705 if (nr_scanned)
706 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
707
708 while (to_free) {
709 struct page *page;
710 struct list_head *list;
711
712 /*
713 * Remove pages from lists in a round-robin fashion. A
714 * batch_free count is maintained that is incremented when an
715 * empty list is encountered. This is so more pages are freed
716 * off fuller lists instead of spinning excessively around empty
717 * lists
718 */
719 do {
720 batch_free++;
721 if (++migratetype == MIGRATE_PCPTYPES)
722 migratetype = 0;
723 list = &pcp->lists[migratetype];
724 } while (list_empty(list));
725
726 /* This is the only non-empty list. Free them all. */
727 if (batch_free == MIGRATE_PCPTYPES)
728 batch_free = to_free;
729
730 do {
731 int mt; /* migratetype of the to-be-freed page */
732
733 page = list_entry(list->prev, struct page, lru);
734 /* must delete as __free_one_page list manipulates */
735 list_del(&page->lru);
736 mt = get_freepage_migratetype(page);
737 if (unlikely(has_isolate_pageblock(zone)))
738 mt = get_pageblock_migratetype(page);
739
740 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
741 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
742 trace_mm_page_pcpu_drain(page, 0, mt);
743 } while (--to_free && --batch_free && !list_empty(list));
744 }
745 spin_unlock(&zone->lock);
746 }
747
748 static void free_one_page(struct zone *zone,
749 struct page *page, unsigned long pfn,
750 unsigned int order,
751 int migratetype)
752 {
753 unsigned long nr_scanned;
754 spin_lock(&zone->lock);
755 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
756 if (nr_scanned)
757 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
758
759 if (unlikely(has_isolate_pageblock(zone) ||
760 is_migrate_isolate(migratetype))) {
761 migratetype = get_pfnblock_migratetype(page, pfn);
762 }
763 __free_one_page(page, pfn, zone, order, migratetype);
764 spin_unlock(&zone->lock);
765 }
766
767 static bool free_pages_prepare(struct page *page, unsigned int order)
768 {
769 int i;
770 int bad = 0;
771
772 VM_BUG_ON_PAGE(PageTail(page), page);
773 VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
774
775 trace_mm_page_free(page, order);
776 kmemcheck_free_shadow(page, order);
777
778 if (PageAnon(page))
779 page->mapping = NULL;
780 for (i = 0; i < (1 << order); i++)
781 bad += free_pages_check(page + i);
782 if (bad)
783 return false;
784
785 reset_page_owner(page, order);
786
787 if (!PageHighMem(page)) {
788 debug_check_no_locks_freed(page_address(page),
789 PAGE_SIZE << order);
790 debug_check_no_obj_freed(page_address(page),
791 PAGE_SIZE << order);
792 }
793 arch_free_page(page, order);
794 kernel_map_pages(page, 1 << order, 0);
795
796 return true;
797 }
798
799 static void __free_pages_ok(struct page *page, unsigned int order)
800 {
801 unsigned long flags;
802 int migratetype;
803 unsigned long pfn = page_to_pfn(page);
804
805 if (!free_pages_prepare(page, order))
806 return;
807
808 migratetype = get_pfnblock_migratetype(page, pfn);
809 local_irq_save(flags);
810 __count_vm_events(PGFREE, 1 << order);
811 set_freepage_migratetype(page, migratetype);
812 free_one_page(page_zone(page), page, pfn, order, migratetype);
813 local_irq_restore(flags);
814 }
815
816 void __init __free_pages_bootmem(struct page *page, unsigned int order)
817 {
818 unsigned int nr_pages = 1 << order;
819 struct page *p = page;
820 unsigned int loop;
821
822 prefetchw(p);
823 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
824 prefetchw(p + 1);
825 __ClearPageReserved(p);
826 set_page_count(p, 0);
827 }
828 __ClearPageReserved(p);
829 set_page_count(p, 0);
830
831 page_zone(page)->managed_pages += nr_pages;
832 set_page_refcounted(page);
833 __free_pages(page, order);
834 }
835
836 #ifdef CONFIG_CMA
837 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
838 void __init init_cma_reserved_pageblock(struct page *page)
839 {
840 unsigned i = pageblock_nr_pages;
841 struct page *p = page;
842
843 do {
844 __ClearPageReserved(p);
845 set_page_count(p, 0);
846 } while (++p, --i);
847
848 set_pageblock_migratetype(page, MIGRATE_CMA);
849
850 if (pageblock_order >= MAX_ORDER) {
851 i = pageblock_nr_pages;
852 p = page;
853 do {
854 set_page_refcounted(p);
855 __free_pages(p, MAX_ORDER - 1);
856 p += MAX_ORDER_NR_PAGES;
857 } while (i -= MAX_ORDER_NR_PAGES);
858 } else {
859 set_page_refcounted(page);
860 __free_pages(page, pageblock_order);
861 }
862
863 adjust_managed_page_count(page, pageblock_nr_pages);
864 }
865 #endif
866
867 /*
868 * The order of subdivision here is critical for the IO subsystem.
869 * Please do not alter this order without good reasons and regression
870 * testing. Specifically, as large blocks of memory are subdivided,
871 * the order in which smaller blocks are delivered depends on the order
872 * they're subdivided in this function. This is the primary factor
873 * influencing the order in which pages are delivered to the IO
874 * subsystem according to empirical testing, and this is also justified
875 * by considering the behavior of a buddy system containing a single
876 * large block of memory acted on by a series of small allocations.
877 * This behavior is a critical factor in sglist merging's success.
878 *
879 * -- nyc
880 */
881 static inline void expand(struct zone *zone, struct page *page,
882 int low, int high, struct free_area *area,
883 int migratetype)
884 {
885 unsigned long size = 1 << high;
886
887 while (high > low) {
888 area--;
889 high--;
890 size >>= 1;
891 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
892
893 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
894 debug_guardpage_enabled() &&
895 high < debug_guardpage_minorder()) {
896 /*
897 * Mark as guard pages (or page), that will allow to
898 * merge back to allocator when buddy will be freed.
899 * Corresponding page table entries will not be touched,
900 * pages will stay not present in virtual address space
901 */
902 set_page_guard(zone, &page[size], high, migratetype);
903 continue;
904 }
905 list_add(&page[size].lru, &area->free_list[migratetype]);
906 area->nr_free++;
907 set_page_order(&page[size], high);
908 }
909 }
910
911 /*
912 * This page is about to be returned from the page allocator
913 */
914 static inline int check_new_page(struct page *page)
915 {
916 const char *bad_reason = NULL;
917 unsigned long bad_flags = 0;
918
919 if (unlikely(page_mapcount(page)))
920 bad_reason = "nonzero mapcount";
921 if (unlikely(page->mapping != NULL))
922 bad_reason = "non-NULL mapping";
923 if (unlikely(atomic_read(&page->_count) != 0))
924 bad_reason = "nonzero _count";
925 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
926 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
927 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
928 }
929 #ifdef CONFIG_MEMCG
930 if (unlikely(page->mem_cgroup))
931 bad_reason = "page still charged to cgroup";
932 #endif
933 if (unlikely(bad_reason)) {
934 bad_page(page, bad_reason, bad_flags);
935 return 1;
936 }
937 return 0;
938 }
939
940 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
941 int alloc_flags)
942 {
943 int i;
944
945 for (i = 0; i < (1 << order); i++) {
946 struct page *p = page + i;
947 if (unlikely(check_new_page(p)))
948 return 1;
949 }
950
951 set_page_private(page, 0);
952 set_page_refcounted(page);
953
954 arch_alloc_page(page, order);
955 kernel_map_pages(page, 1 << order, 1);
956
957 if (gfp_flags & __GFP_ZERO)
958 prep_zero_page(page, order, gfp_flags);
959
960 if (order && (gfp_flags & __GFP_COMP))
961 prep_compound_page(page, order);
962
963 set_page_owner(page, order, gfp_flags);
964
965 /*
966 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
967 * allocate the page. The expectation is that the caller is taking
968 * steps that will free more memory. The caller should avoid the page
969 * being used for !PFMEMALLOC purposes.
970 */
971 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
972
973 return 0;
974 }
975
976 /*
977 * Go through the free lists for the given migratetype and remove
978 * the smallest available page from the freelists
979 */
980 static inline
981 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
982 int migratetype)
983 {
984 unsigned int current_order;
985 struct free_area *area;
986 struct page *page;
987
988 /* Find a page of the appropriate size in the preferred list */
989 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
990 area = &(zone->free_area[current_order]);
991 if (list_empty(&area->free_list[migratetype]))
992 continue;
993
994 page = list_entry(area->free_list[migratetype].next,
995 struct page, lru);
996 list_del(&page->lru);
997 rmv_page_order(page);
998 area->nr_free--;
999 expand(zone, page, order, current_order, area, migratetype);
1000 set_freepage_migratetype(page, migratetype);
1001 return page;
1002 }
1003
1004 return NULL;
1005 }
1006
1007
1008 /*
1009 * This array describes the order lists are fallen back to when
1010 * the free lists for the desirable migrate type are depleted
1011 */
1012 static int fallbacks[MIGRATE_TYPES][4] = {
1013 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1014 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1015 #ifdef CONFIG_CMA
1016 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1017 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1018 #else
1019 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1020 #endif
1021 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1022 #ifdef CONFIG_MEMORY_ISOLATION
1023 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1024 #endif
1025 };
1026
1027 /*
1028 * Move the free pages in a range to the free lists of the requested type.
1029 * Note that start_page and end_pages are not aligned on a pageblock
1030 * boundary. If alignment is required, use move_freepages_block()
1031 */
1032 int move_freepages(struct zone *zone,
1033 struct page *start_page, struct page *end_page,
1034 int migratetype)
1035 {
1036 struct page *page;
1037 unsigned long order;
1038 int pages_moved = 0;
1039
1040 #ifndef CONFIG_HOLES_IN_ZONE
1041 /*
1042 * page_zone is not safe to call in this context when
1043 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1044 * anyway as we check zone boundaries in move_freepages_block().
1045 * Remove at a later date when no bug reports exist related to
1046 * grouping pages by mobility
1047 */
1048 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1049 #endif
1050
1051 for (page = start_page; page <= end_page;) {
1052 /* Make sure we are not inadvertently changing nodes */
1053 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1054
1055 if (!pfn_valid_within(page_to_pfn(page))) {
1056 page++;
1057 continue;
1058 }
1059
1060 if (!PageBuddy(page)) {
1061 page++;
1062 continue;
1063 }
1064
1065 order = page_order(page);
1066 list_move(&page->lru,
1067 &zone->free_area[order].free_list[migratetype]);
1068 set_freepage_migratetype(page, migratetype);
1069 page += 1 << order;
1070 pages_moved += 1 << order;
1071 }
1072
1073 return pages_moved;
1074 }
1075
1076 int move_freepages_block(struct zone *zone, struct page *page,
1077 int migratetype)
1078 {
1079 unsigned long start_pfn, end_pfn;
1080 struct page *start_page, *end_page;
1081
1082 start_pfn = page_to_pfn(page);
1083 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1084 start_page = pfn_to_page(start_pfn);
1085 end_page = start_page + pageblock_nr_pages - 1;
1086 end_pfn = start_pfn + pageblock_nr_pages - 1;
1087
1088 /* Do not cross zone boundaries */
1089 if (!zone_spans_pfn(zone, start_pfn))
1090 start_page = page;
1091 if (!zone_spans_pfn(zone, end_pfn))
1092 return 0;
1093
1094 return move_freepages(zone, start_page, end_page, migratetype);
1095 }
1096
1097 static void change_pageblock_range(struct page *pageblock_page,
1098 int start_order, int migratetype)
1099 {
1100 int nr_pageblocks = 1 << (start_order - pageblock_order);
1101
1102 while (nr_pageblocks--) {
1103 set_pageblock_migratetype(pageblock_page, migratetype);
1104 pageblock_page += pageblock_nr_pages;
1105 }
1106 }
1107
1108 /*
1109 * If breaking a large block of pages, move all free pages to the preferred
1110 * allocation list. If falling back for a reclaimable kernel allocation, be
1111 * more aggressive about taking ownership of free pages.
1112 *
1113 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1114 * nor move CMA pages to different free lists. We don't want unmovable pages
1115 * to be allocated from MIGRATE_CMA areas.
1116 *
1117 * Returns the new migratetype of the pageblock (or the same old migratetype
1118 * if it was unchanged).
1119 */
1120 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1121 int start_type, int fallback_type)
1122 {
1123 int current_order = page_order(page);
1124
1125 /*
1126 * When borrowing from MIGRATE_CMA, we need to release the excess
1127 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1128 * is set to CMA so it is returned to the correct freelist in case
1129 * the page ends up being not actually allocated from the pcp lists.
1130 */
1131 if (is_migrate_cma(fallback_type))
1132 return fallback_type;
1133
1134 /* Take ownership for orders >= pageblock_order */
1135 if (current_order >= pageblock_order) {
1136 change_pageblock_range(page, current_order, start_type);
1137 return start_type;
1138 }
1139
1140 if (current_order >= pageblock_order / 2 ||
1141 start_type == MIGRATE_RECLAIMABLE ||
1142 page_group_by_mobility_disabled) {
1143 int pages;
1144
1145 pages = move_freepages_block(zone, page, start_type);
1146
1147 /* Claim the whole block if over half of it is free */
1148 if (pages >= (1 << (pageblock_order-1)) ||
1149 page_group_by_mobility_disabled) {
1150
1151 set_pageblock_migratetype(page, start_type);
1152 return start_type;
1153 }
1154
1155 }
1156
1157 return fallback_type;
1158 }
1159
1160 /* Remove an element from the buddy allocator from the fallback list */
1161 static inline struct page *
1162 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1163 {
1164 struct free_area *area;
1165 unsigned int current_order;
1166 struct page *page;
1167 int migratetype, new_type, i;
1168
1169 /* Find the largest possible block of pages in the other list */
1170 for (current_order = MAX_ORDER-1;
1171 current_order >= order && current_order <= MAX_ORDER-1;
1172 --current_order) {
1173 for (i = 0;; i++) {
1174 migratetype = fallbacks[start_migratetype][i];
1175
1176 /* MIGRATE_RESERVE handled later if necessary */
1177 if (migratetype == MIGRATE_RESERVE)
1178 break;
1179
1180 area = &(zone->free_area[current_order]);
1181 if (list_empty(&area->free_list[migratetype]))
1182 continue;
1183
1184 page = list_entry(area->free_list[migratetype].next,
1185 struct page, lru);
1186 area->nr_free--;
1187
1188 new_type = try_to_steal_freepages(zone, page,
1189 start_migratetype,
1190 migratetype);
1191
1192 /* Remove the page from the freelists */
1193 list_del(&page->lru);
1194 rmv_page_order(page);
1195
1196 expand(zone, page, order, current_order, area,
1197 new_type);
1198 /* The freepage_migratetype may differ from pageblock's
1199 * migratetype depending on the decisions in
1200 * try_to_steal_freepages. This is OK as long as it does
1201 * not differ for MIGRATE_CMA type.
1202 */
1203 set_freepage_migratetype(page, new_type);
1204
1205 trace_mm_page_alloc_extfrag(page, order, current_order,
1206 start_migratetype, migratetype, new_type);
1207
1208 return page;
1209 }
1210 }
1211
1212 return NULL;
1213 }
1214
1215 /*
1216 * Do the hard work of removing an element from the buddy allocator.
1217 * Call me with the zone->lock already held.
1218 */
1219 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1220 int migratetype)
1221 {
1222 struct page *page;
1223
1224 retry_reserve:
1225 page = __rmqueue_smallest(zone, order, migratetype);
1226
1227 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1228 page = __rmqueue_fallback(zone, order, migratetype);
1229
1230 /*
1231 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1232 * is used because __rmqueue_smallest is an inline function
1233 * and we want just one call site
1234 */
1235 if (!page) {
1236 migratetype = MIGRATE_RESERVE;
1237 goto retry_reserve;
1238 }
1239 }
1240
1241 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1242 return page;
1243 }
1244
1245 /*
1246 * Obtain a specified number of elements from the buddy allocator, all under
1247 * a single hold of the lock, for efficiency. Add them to the supplied list.
1248 * Returns the number of new pages which were placed at *list.
1249 */
1250 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1251 unsigned long count, struct list_head *list,
1252 int migratetype, bool cold)
1253 {
1254 int i;
1255
1256 spin_lock(&zone->lock);
1257 for (i = 0; i < count; ++i) {
1258 struct page *page = __rmqueue(zone, order, migratetype);
1259 if (unlikely(page == NULL))
1260 break;
1261
1262 /*
1263 * Split buddy pages returned by expand() are received here
1264 * in physical page order. The page is added to the callers and
1265 * list and the list head then moves forward. From the callers
1266 * perspective, the linked list is ordered by page number in
1267 * some conditions. This is useful for IO devices that can
1268 * merge IO requests if the physical pages are ordered
1269 * properly.
1270 */
1271 if (likely(!cold))
1272 list_add(&page->lru, list);
1273 else
1274 list_add_tail(&page->lru, list);
1275 list = &page->lru;
1276 if (is_migrate_cma(get_freepage_migratetype(page)))
1277 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1278 -(1 << order));
1279 }
1280 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1281 spin_unlock(&zone->lock);
1282 return i;
1283 }
1284
1285 #ifdef CONFIG_NUMA
1286 /*
1287 * Called from the vmstat counter updater to drain pagesets of this
1288 * currently executing processor on remote nodes after they have
1289 * expired.
1290 *
1291 * Note that this function must be called with the thread pinned to
1292 * a single processor.
1293 */
1294 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1295 {
1296 unsigned long flags;
1297 int to_drain, batch;
1298
1299 local_irq_save(flags);
1300 batch = ACCESS_ONCE(pcp->batch);
1301 to_drain = min(pcp->count, batch);
1302 if (to_drain > 0) {
1303 free_pcppages_bulk(zone, to_drain, pcp);
1304 pcp->count -= to_drain;
1305 }
1306 local_irq_restore(flags);
1307 }
1308 #endif
1309
1310 /*
1311 * Drain pcplists of the indicated processor and zone.
1312 *
1313 * The processor must either be the current processor and the
1314 * thread pinned to the current processor or a processor that
1315 * is not online.
1316 */
1317 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1318 {
1319 unsigned long flags;
1320 struct per_cpu_pageset *pset;
1321 struct per_cpu_pages *pcp;
1322
1323 local_irq_save(flags);
1324 pset = per_cpu_ptr(zone->pageset, cpu);
1325
1326 pcp = &pset->pcp;
1327 if (pcp->count) {
1328 free_pcppages_bulk(zone, pcp->count, pcp);
1329 pcp->count = 0;
1330 }
1331 local_irq_restore(flags);
1332 }
1333
1334 /*
1335 * Drain pcplists of all zones on the indicated processor.
1336 *
1337 * The processor must either be the current processor and the
1338 * thread pinned to the current processor or a processor that
1339 * is not online.
1340 */
1341 static void drain_pages(unsigned int cpu)
1342 {
1343 struct zone *zone;
1344
1345 for_each_populated_zone(zone) {
1346 drain_pages_zone(cpu, zone);
1347 }
1348 }
1349
1350 /*
1351 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1352 *
1353 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1354 * the single zone's pages.
1355 */
1356 void drain_local_pages(struct zone *zone)
1357 {
1358 int cpu = smp_processor_id();
1359
1360 if (zone)
1361 drain_pages_zone(cpu, zone);
1362 else
1363 drain_pages(cpu);
1364 }
1365
1366 /*
1367 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1368 *
1369 * When zone parameter is non-NULL, spill just the single zone's pages.
1370 *
1371 * Note that this code is protected against sending an IPI to an offline
1372 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1373 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1374 * nothing keeps CPUs from showing up after we populated the cpumask and
1375 * before the call to on_each_cpu_mask().
1376 */
1377 void drain_all_pages(struct zone *zone)
1378 {
1379 int cpu;
1380
1381 /*
1382 * Allocate in the BSS so we wont require allocation in
1383 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1384 */
1385 static cpumask_t cpus_with_pcps;
1386
1387 /*
1388 * We don't care about racing with CPU hotplug event
1389 * as offline notification will cause the notified
1390 * cpu to drain that CPU pcps and on_each_cpu_mask
1391 * disables preemption as part of its processing
1392 */
1393 for_each_online_cpu(cpu) {
1394 struct per_cpu_pageset *pcp;
1395 struct zone *z;
1396 bool has_pcps = false;
1397
1398 if (zone) {
1399 pcp = per_cpu_ptr(zone->pageset, cpu);
1400 if (pcp->pcp.count)
1401 has_pcps = true;
1402 } else {
1403 for_each_populated_zone(z) {
1404 pcp = per_cpu_ptr(z->pageset, cpu);
1405 if (pcp->pcp.count) {
1406 has_pcps = true;
1407 break;
1408 }
1409 }
1410 }
1411
1412 if (has_pcps)
1413 cpumask_set_cpu(cpu, &cpus_with_pcps);
1414 else
1415 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1416 }
1417 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1418 zone, 1);
1419 }
1420
1421 #ifdef CONFIG_HIBERNATION
1422
1423 void mark_free_pages(struct zone *zone)
1424 {
1425 unsigned long pfn, max_zone_pfn;
1426 unsigned long flags;
1427 unsigned int order, t;
1428 struct list_head *curr;
1429
1430 if (zone_is_empty(zone))
1431 return;
1432
1433 spin_lock_irqsave(&zone->lock, flags);
1434
1435 max_zone_pfn = zone_end_pfn(zone);
1436 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1437 if (pfn_valid(pfn)) {
1438 struct page *page = pfn_to_page(pfn);
1439
1440 if (!swsusp_page_is_forbidden(page))
1441 swsusp_unset_page_free(page);
1442 }
1443
1444 for_each_migratetype_order(order, t) {
1445 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1446 unsigned long i;
1447
1448 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1449 for (i = 0; i < (1UL << order); i++)
1450 swsusp_set_page_free(pfn_to_page(pfn + i));
1451 }
1452 }
1453 spin_unlock_irqrestore(&zone->lock, flags);
1454 }
1455 #endif /* CONFIG_PM */
1456
1457 /*
1458 * Free a 0-order page
1459 * cold == true ? free a cold page : free a hot page
1460 */
1461 void free_hot_cold_page(struct page *page, bool cold)
1462 {
1463 struct zone *zone = page_zone(page);
1464 struct per_cpu_pages *pcp;
1465 unsigned long flags;
1466 unsigned long pfn = page_to_pfn(page);
1467 int migratetype;
1468
1469 if (!free_pages_prepare(page, 0))
1470 return;
1471
1472 migratetype = get_pfnblock_migratetype(page, pfn);
1473 set_freepage_migratetype(page, migratetype);
1474 local_irq_save(flags);
1475 __count_vm_event(PGFREE);
1476
1477 /*
1478 * We only track unmovable, reclaimable and movable on pcp lists.
1479 * Free ISOLATE pages back to the allocator because they are being
1480 * offlined but treat RESERVE as movable pages so we can get those
1481 * areas back if necessary. Otherwise, we may have to free
1482 * excessively into the page allocator
1483 */
1484 if (migratetype >= MIGRATE_PCPTYPES) {
1485 if (unlikely(is_migrate_isolate(migratetype))) {
1486 free_one_page(zone, page, pfn, 0, migratetype);
1487 goto out;
1488 }
1489 migratetype = MIGRATE_MOVABLE;
1490 }
1491
1492 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1493 if (!cold)
1494 list_add(&page->lru, &pcp->lists[migratetype]);
1495 else
1496 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1497 pcp->count++;
1498 if (pcp->count >= pcp->high) {
1499 unsigned long batch = ACCESS_ONCE(pcp->batch);
1500 free_pcppages_bulk(zone, batch, pcp);
1501 pcp->count -= batch;
1502 }
1503
1504 out:
1505 local_irq_restore(flags);
1506 }
1507
1508 /*
1509 * Free a list of 0-order pages
1510 */
1511 void free_hot_cold_page_list(struct list_head *list, bool cold)
1512 {
1513 struct page *page, *next;
1514
1515 list_for_each_entry_safe(page, next, list, lru) {
1516 trace_mm_page_free_batched(page, cold);
1517 free_hot_cold_page(page, cold);
1518 }
1519 }
1520
1521 /*
1522 * split_page takes a non-compound higher-order page, and splits it into
1523 * n (1<<order) sub-pages: page[0..n]
1524 * Each sub-page must be freed individually.
1525 *
1526 * Note: this is probably too low level an operation for use in drivers.
1527 * Please consult with lkml before using this in your driver.
1528 */
1529 void split_page(struct page *page, unsigned int order)
1530 {
1531 int i;
1532
1533 VM_BUG_ON_PAGE(PageCompound(page), page);
1534 VM_BUG_ON_PAGE(!page_count(page), page);
1535
1536 #ifdef CONFIG_KMEMCHECK
1537 /*
1538 * Split shadow pages too, because free(page[0]) would
1539 * otherwise free the whole shadow.
1540 */
1541 if (kmemcheck_page_is_tracked(page))
1542 split_page(virt_to_page(page[0].shadow), order);
1543 #endif
1544
1545 set_page_owner(page, 0, 0);
1546 for (i = 1; i < (1 << order); i++) {
1547 set_page_refcounted(page + i);
1548 set_page_owner(page + i, 0, 0);
1549 }
1550 }
1551 EXPORT_SYMBOL_GPL(split_page);
1552
1553 int __isolate_free_page(struct page *page, unsigned int order)
1554 {
1555 unsigned long watermark;
1556 struct zone *zone;
1557 int mt;
1558
1559 BUG_ON(!PageBuddy(page));
1560
1561 zone = page_zone(page);
1562 mt = get_pageblock_migratetype(page);
1563
1564 if (!is_migrate_isolate(mt)) {
1565 /* Obey watermarks as if the page was being allocated */
1566 watermark = low_wmark_pages(zone) + (1 << order);
1567 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1568 return 0;
1569
1570 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1571 }
1572
1573 /* Remove page from free list */
1574 list_del(&page->lru);
1575 zone->free_area[order].nr_free--;
1576 rmv_page_order(page);
1577
1578 /* Set the pageblock if the isolated page is at least a pageblock */
1579 if (order >= pageblock_order - 1) {
1580 struct page *endpage = page + (1 << order) - 1;
1581 for (; page < endpage; page += pageblock_nr_pages) {
1582 int mt = get_pageblock_migratetype(page);
1583 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1584 set_pageblock_migratetype(page,
1585 MIGRATE_MOVABLE);
1586 }
1587 }
1588
1589 set_page_owner(page, order, 0);
1590 return 1UL << order;
1591 }
1592
1593 /*
1594 * Similar to split_page except the page is already free. As this is only
1595 * being used for migration, the migratetype of the block also changes.
1596 * As this is called with interrupts disabled, the caller is responsible
1597 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1598 * are enabled.
1599 *
1600 * Note: this is probably too low level an operation for use in drivers.
1601 * Please consult with lkml before using this in your driver.
1602 */
1603 int split_free_page(struct page *page)
1604 {
1605 unsigned int order;
1606 int nr_pages;
1607
1608 order = page_order(page);
1609
1610 nr_pages = __isolate_free_page(page, order);
1611 if (!nr_pages)
1612 return 0;
1613
1614 /* Split into individual pages */
1615 set_page_refcounted(page);
1616 split_page(page, order);
1617 return nr_pages;
1618 }
1619
1620 /*
1621 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1622 */
1623 static inline
1624 struct page *buffered_rmqueue(struct zone *preferred_zone,
1625 struct zone *zone, unsigned int order,
1626 gfp_t gfp_flags, int migratetype)
1627 {
1628 unsigned long flags;
1629 struct page *page;
1630 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1631
1632 if (likely(order == 0)) {
1633 struct per_cpu_pages *pcp;
1634 struct list_head *list;
1635
1636 local_irq_save(flags);
1637 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1638 list = &pcp->lists[migratetype];
1639 if (list_empty(list)) {
1640 pcp->count += rmqueue_bulk(zone, 0,
1641 pcp->batch, list,
1642 migratetype, cold);
1643 if (unlikely(list_empty(list)))
1644 goto failed;
1645 }
1646
1647 if (cold)
1648 page = list_entry(list->prev, struct page, lru);
1649 else
1650 page = list_entry(list->next, struct page, lru);
1651
1652 list_del(&page->lru);
1653 pcp->count--;
1654 } else {
1655 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1656 /*
1657 * __GFP_NOFAIL is not to be used in new code.
1658 *
1659 * All __GFP_NOFAIL callers should be fixed so that they
1660 * properly detect and handle allocation failures.
1661 *
1662 * We most definitely don't want callers attempting to
1663 * allocate greater than order-1 page units with
1664 * __GFP_NOFAIL.
1665 */
1666 WARN_ON_ONCE(order > 1);
1667 }
1668 spin_lock_irqsave(&zone->lock, flags);
1669 page = __rmqueue(zone, order, migratetype);
1670 spin_unlock(&zone->lock);
1671 if (!page)
1672 goto failed;
1673 __mod_zone_freepage_state(zone, -(1 << order),
1674 get_freepage_migratetype(page));
1675 }
1676
1677 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1678 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1679 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1680 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1681
1682 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1683 zone_statistics(preferred_zone, zone, gfp_flags);
1684 local_irq_restore(flags);
1685
1686 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1687 return page;
1688
1689 failed:
1690 local_irq_restore(flags);
1691 return NULL;
1692 }
1693
1694 #ifdef CONFIG_FAIL_PAGE_ALLOC
1695
1696 static struct {
1697 struct fault_attr attr;
1698
1699 u32 ignore_gfp_highmem;
1700 u32 ignore_gfp_wait;
1701 u32 min_order;
1702 } fail_page_alloc = {
1703 .attr = FAULT_ATTR_INITIALIZER,
1704 .ignore_gfp_wait = 1,
1705 .ignore_gfp_highmem = 1,
1706 .min_order = 1,
1707 };
1708
1709 static int __init setup_fail_page_alloc(char *str)
1710 {
1711 return setup_fault_attr(&fail_page_alloc.attr, str);
1712 }
1713 __setup("fail_page_alloc=", setup_fail_page_alloc);
1714
1715 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1716 {
1717 if (order < fail_page_alloc.min_order)
1718 return false;
1719 if (gfp_mask & __GFP_NOFAIL)
1720 return false;
1721 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1722 return false;
1723 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1724 return false;
1725
1726 return should_fail(&fail_page_alloc.attr, 1 << order);
1727 }
1728
1729 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1730
1731 static int __init fail_page_alloc_debugfs(void)
1732 {
1733 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1734 struct dentry *dir;
1735
1736 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1737 &fail_page_alloc.attr);
1738 if (IS_ERR(dir))
1739 return PTR_ERR(dir);
1740
1741 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1742 &fail_page_alloc.ignore_gfp_wait))
1743 goto fail;
1744 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1745 &fail_page_alloc.ignore_gfp_highmem))
1746 goto fail;
1747 if (!debugfs_create_u32("min-order", mode, dir,
1748 &fail_page_alloc.min_order))
1749 goto fail;
1750
1751 return 0;
1752 fail:
1753 debugfs_remove_recursive(dir);
1754
1755 return -ENOMEM;
1756 }
1757
1758 late_initcall(fail_page_alloc_debugfs);
1759
1760 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1761
1762 #else /* CONFIG_FAIL_PAGE_ALLOC */
1763
1764 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1765 {
1766 return false;
1767 }
1768
1769 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1770
1771 /*
1772 * Return true if free pages are above 'mark'. This takes into account the order
1773 * of the allocation.
1774 */
1775 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1776 unsigned long mark, int classzone_idx, int alloc_flags,
1777 long free_pages)
1778 {
1779 /* free_pages may go negative - that's OK */
1780 long min = mark;
1781 int o;
1782 long free_cma = 0;
1783
1784 free_pages -= (1 << order) - 1;
1785 if (alloc_flags & ALLOC_HIGH)
1786 min -= min / 2;
1787 if (alloc_flags & ALLOC_HARDER)
1788 min -= min / 4;
1789 #ifdef CONFIG_CMA
1790 /* If allocation can't use CMA areas don't use free CMA pages */
1791 if (!(alloc_flags & ALLOC_CMA))
1792 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1793 #endif
1794
1795 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1796 return false;
1797 for (o = 0; o < order; o++) {
1798 /* At the next order, this order's pages become unavailable */
1799 free_pages -= z->free_area[o].nr_free << o;
1800
1801 /* Require fewer higher order pages to be free */
1802 min >>= 1;
1803
1804 if (free_pages <= min)
1805 return false;
1806 }
1807 return true;
1808 }
1809
1810 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1811 int classzone_idx, int alloc_flags)
1812 {
1813 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1814 zone_page_state(z, NR_FREE_PAGES));
1815 }
1816
1817 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1818 unsigned long mark, int classzone_idx, int alloc_flags)
1819 {
1820 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1821
1822 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1823 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1824
1825 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1826 free_pages);
1827 }
1828
1829 #ifdef CONFIG_NUMA
1830 /*
1831 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1832 * skip over zones that are not allowed by the cpuset, or that have
1833 * been recently (in last second) found to be nearly full. See further
1834 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1835 * that have to skip over a lot of full or unallowed zones.
1836 *
1837 * If the zonelist cache is present in the passed zonelist, then
1838 * returns a pointer to the allowed node mask (either the current
1839 * tasks mems_allowed, or node_states[N_MEMORY].)
1840 *
1841 * If the zonelist cache is not available for this zonelist, does
1842 * nothing and returns NULL.
1843 *
1844 * If the fullzones BITMAP in the zonelist cache is stale (more than
1845 * a second since last zap'd) then we zap it out (clear its bits.)
1846 *
1847 * We hold off even calling zlc_setup, until after we've checked the
1848 * first zone in the zonelist, on the theory that most allocations will
1849 * be satisfied from that first zone, so best to examine that zone as
1850 * quickly as we can.
1851 */
1852 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1853 {
1854 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1855 nodemask_t *allowednodes; /* zonelist_cache approximation */
1856
1857 zlc = zonelist->zlcache_ptr;
1858 if (!zlc)
1859 return NULL;
1860
1861 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1862 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1863 zlc->last_full_zap = jiffies;
1864 }
1865
1866 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1867 &cpuset_current_mems_allowed :
1868 &node_states[N_MEMORY];
1869 return allowednodes;
1870 }
1871
1872 /*
1873 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1874 * if it is worth looking at further for free memory:
1875 * 1) Check that the zone isn't thought to be full (doesn't have its
1876 * bit set in the zonelist_cache fullzones BITMAP).
1877 * 2) Check that the zones node (obtained from the zonelist_cache
1878 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1879 * Return true (non-zero) if zone is worth looking at further, or
1880 * else return false (zero) if it is not.
1881 *
1882 * This check -ignores- the distinction between various watermarks,
1883 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1884 * found to be full for any variation of these watermarks, it will
1885 * be considered full for up to one second by all requests, unless
1886 * we are so low on memory on all allowed nodes that we are forced
1887 * into the second scan of the zonelist.
1888 *
1889 * In the second scan we ignore this zonelist cache and exactly
1890 * apply the watermarks to all zones, even it is slower to do so.
1891 * We are low on memory in the second scan, and should leave no stone
1892 * unturned looking for a free page.
1893 */
1894 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1895 nodemask_t *allowednodes)
1896 {
1897 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1898 int i; /* index of *z in zonelist zones */
1899 int n; /* node that zone *z is on */
1900
1901 zlc = zonelist->zlcache_ptr;
1902 if (!zlc)
1903 return 1;
1904
1905 i = z - zonelist->_zonerefs;
1906 n = zlc->z_to_n[i];
1907
1908 /* This zone is worth trying if it is allowed but not full */
1909 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1910 }
1911
1912 /*
1913 * Given 'z' scanning a zonelist, set the corresponding bit in
1914 * zlc->fullzones, so that subsequent attempts to allocate a page
1915 * from that zone don't waste time re-examining it.
1916 */
1917 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1918 {
1919 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1920 int i; /* index of *z in zonelist zones */
1921
1922 zlc = zonelist->zlcache_ptr;
1923 if (!zlc)
1924 return;
1925
1926 i = z - zonelist->_zonerefs;
1927
1928 set_bit(i, zlc->fullzones);
1929 }
1930
1931 /*
1932 * clear all zones full, called after direct reclaim makes progress so that
1933 * a zone that was recently full is not skipped over for up to a second
1934 */
1935 static void zlc_clear_zones_full(struct zonelist *zonelist)
1936 {
1937 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1938
1939 zlc = zonelist->zlcache_ptr;
1940 if (!zlc)
1941 return;
1942
1943 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1944 }
1945
1946 static bool zone_local(struct zone *local_zone, struct zone *zone)
1947 {
1948 return local_zone->node == zone->node;
1949 }
1950
1951 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1952 {
1953 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1954 RECLAIM_DISTANCE;
1955 }
1956
1957 #else /* CONFIG_NUMA */
1958
1959 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1960 {
1961 return NULL;
1962 }
1963
1964 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1965 nodemask_t *allowednodes)
1966 {
1967 return 1;
1968 }
1969
1970 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1971 {
1972 }
1973
1974 static void zlc_clear_zones_full(struct zonelist *zonelist)
1975 {
1976 }
1977
1978 static bool zone_local(struct zone *local_zone, struct zone *zone)
1979 {
1980 return true;
1981 }
1982
1983 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1984 {
1985 return true;
1986 }
1987
1988 #endif /* CONFIG_NUMA */
1989
1990 static void reset_alloc_batches(struct zone *preferred_zone)
1991 {
1992 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
1993
1994 do {
1995 mod_zone_page_state(zone, NR_ALLOC_BATCH,
1996 high_wmark_pages(zone) - low_wmark_pages(zone) -
1997 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
1998 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1999 } while (zone++ != preferred_zone);
2000 }
2001
2002 /*
2003 * get_page_from_freelist goes through the zonelist trying to allocate
2004 * a page.
2005 */
2006 static struct page *
2007 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2008 const struct alloc_context *ac)
2009 {
2010 struct zonelist *zonelist = ac->zonelist;
2011 struct zoneref *z;
2012 struct page *page = NULL;
2013 struct zone *zone;
2014 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2015 int zlc_active = 0; /* set if using zonelist_cache */
2016 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2017 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2018 (gfp_mask & __GFP_WRITE);
2019 int nr_fair_skipped = 0;
2020 bool zonelist_rescan;
2021
2022 zonelist_scan:
2023 zonelist_rescan = false;
2024
2025 /*
2026 * Scan zonelist, looking for a zone with enough free.
2027 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2028 */
2029 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2030 ac->nodemask) {
2031 unsigned long mark;
2032
2033 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2034 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2035 continue;
2036 if (cpusets_enabled() &&
2037 (alloc_flags & ALLOC_CPUSET) &&
2038 !cpuset_zone_allowed(zone, gfp_mask))
2039 continue;
2040 /*
2041 * Distribute pages in proportion to the individual
2042 * zone size to ensure fair page aging. The zone a
2043 * page was allocated in should have no effect on the
2044 * time the page has in memory before being reclaimed.
2045 */
2046 if (alloc_flags & ALLOC_FAIR) {
2047 if (!zone_local(ac->preferred_zone, zone))
2048 break;
2049 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2050 nr_fair_skipped++;
2051 continue;
2052 }
2053 }
2054 /*
2055 * When allocating a page cache page for writing, we
2056 * want to get it from a zone that is within its dirty
2057 * limit, such that no single zone holds more than its
2058 * proportional share of globally allowed dirty pages.
2059 * The dirty limits take into account the zone's
2060 * lowmem reserves and high watermark so that kswapd
2061 * should be able to balance it without having to
2062 * write pages from its LRU list.
2063 *
2064 * This may look like it could increase pressure on
2065 * lower zones by failing allocations in higher zones
2066 * before they are full. But the pages that do spill
2067 * over are limited as the lower zones are protected
2068 * by this very same mechanism. It should not become
2069 * a practical burden to them.
2070 *
2071 * XXX: For now, allow allocations to potentially
2072 * exceed the per-zone dirty limit in the slowpath
2073 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2074 * which is important when on a NUMA setup the allowed
2075 * zones are together not big enough to reach the
2076 * global limit. The proper fix for these situations
2077 * will require awareness of zones in the
2078 * dirty-throttling and the flusher threads.
2079 */
2080 if (consider_zone_dirty && !zone_dirty_ok(zone))
2081 continue;
2082
2083 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2084 if (!zone_watermark_ok(zone, order, mark,
2085 ac->classzone_idx, alloc_flags)) {
2086 int ret;
2087
2088 /* Checked here to keep the fast path fast */
2089 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2090 if (alloc_flags & ALLOC_NO_WATERMARKS)
2091 goto try_this_zone;
2092
2093 if (IS_ENABLED(CONFIG_NUMA) &&
2094 !did_zlc_setup && nr_online_nodes > 1) {
2095 /*
2096 * we do zlc_setup if there are multiple nodes
2097 * and before considering the first zone allowed
2098 * by the cpuset.
2099 */
2100 allowednodes = zlc_setup(zonelist, alloc_flags);
2101 zlc_active = 1;
2102 did_zlc_setup = 1;
2103 }
2104
2105 if (zone_reclaim_mode == 0 ||
2106 !zone_allows_reclaim(ac->preferred_zone, zone))
2107 goto this_zone_full;
2108
2109 /*
2110 * As we may have just activated ZLC, check if the first
2111 * eligible zone has failed zone_reclaim recently.
2112 */
2113 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2114 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2115 continue;
2116
2117 ret = zone_reclaim(zone, gfp_mask, order);
2118 switch (ret) {
2119 case ZONE_RECLAIM_NOSCAN:
2120 /* did not scan */
2121 continue;
2122 case ZONE_RECLAIM_FULL:
2123 /* scanned but unreclaimable */
2124 continue;
2125 default:
2126 /* did we reclaim enough */
2127 if (zone_watermark_ok(zone, order, mark,
2128 ac->classzone_idx, alloc_flags))
2129 goto try_this_zone;
2130
2131 /*
2132 * Failed to reclaim enough to meet watermark.
2133 * Only mark the zone full if checking the min
2134 * watermark or if we failed to reclaim just
2135 * 1<<order pages or else the page allocator
2136 * fastpath will prematurely mark zones full
2137 * when the watermark is between the low and
2138 * min watermarks.
2139 */
2140 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2141 ret == ZONE_RECLAIM_SOME)
2142 goto this_zone_full;
2143
2144 continue;
2145 }
2146 }
2147
2148 try_this_zone:
2149 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2150 gfp_mask, ac->migratetype);
2151 if (page) {
2152 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2153 goto try_this_zone;
2154 return page;
2155 }
2156 this_zone_full:
2157 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2158 zlc_mark_zone_full(zonelist, z);
2159 }
2160
2161 /*
2162 * The first pass makes sure allocations are spread fairly within the
2163 * local node. However, the local node might have free pages left
2164 * after the fairness batches are exhausted, and remote zones haven't
2165 * even been considered yet. Try once more without fairness, and
2166 * include remote zones now, before entering the slowpath and waking
2167 * kswapd: prefer spilling to a remote zone over swapping locally.
2168 */
2169 if (alloc_flags & ALLOC_FAIR) {
2170 alloc_flags &= ~ALLOC_FAIR;
2171 if (nr_fair_skipped) {
2172 zonelist_rescan = true;
2173 reset_alloc_batches(ac->preferred_zone);
2174 }
2175 if (nr_online_nodes > 1)
2176 zonelist_rescan = true;
2177 }
2178
2179 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2180 /* Disable zlc cache for second zonelist scan */
2181 zlc_active = 0;
2182 zonelist_rescan = true;
2183 }
2184
2185 if (zonelist_rescan)
2186 goto zonelist_scan;
2187
2188 return NULL;
2189 }
2190
2191 /*
2192 * Large machines with many possible nodes should not always dump per-node
2193 * meminfo in irq context.
2194 */
2195 static inline bool should_suppress_show_mem(void)
2196 {
2197 bool ret = false;
2198
2199 #if NODES_SHIFT > 8
2200 ret = in_interrupt();
2201 #endif
2202 return ret;
2203 }
2204
2205 static DEFINE_RATELIMIT_STATE(nopage_rs,
2206 DEFAULT_RATELIMIT_INTERVAL,
2207 DEFAULT_RATELIMIT_BURST);
2208
2209 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2210 {
2211 unsigned int filter = SHOW_MEM_FILTER_NODES;
2212
2213 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2214 debug_guardpage_minorder() > 0)
2215 return;
2216
2217 /*
2218 * This documents exceptions given to allocations in certain
2219 * contexts that are allowed to allocate outside current's set
2220 * of allowed nodes.
2221 */
2222 if (!(gfp_mask & __GFP_NOMEMALLOC))
2223 if (test_thread_flag(TIF_MEMDIE) ||
2224 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2225 filter &= ~SHOW_MEM_FILTER_NODES;
2226 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2227 filter &= ~SHOW_MEM_FILTER_NODES;
2228
2229 if (fmt) {
2230 struct va_format vaf;
2231 va_list args;
2232
2233 va_start(args, fmt);
2234
2235 vaf.fmt = fmt;
2236 vaf.va = &args;
2237
2238 pr_warn("%pV", &vaf);
2239
2240 va_end(args);
2241 }
2242
2243 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2244 current->comm, order, gfp_mask);
2245
2246 dump_stack();
2247 if (!should_suppress_show_mem())
2248 show_mem(filter);
2249 }
2250
2251 static inline int
2252 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2253 unsigned long did_some_progress,
2254 unsigned long pages_reclaimed)
2255 {
2256 /* Do not loop if specifically requested */
2257 if (gfp_mask & __GFP_NORETRY)
2258 return 0;
2259
2260 /* Always retry if specifically requested */
2261 if (gfp_mask & __GFP_NOFAIL)
2262 return 1;
2263
2264 /*
2265 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2266 * making forward progress without invoking OOM. Suspend also disables
2267 * storage devices so kswapd will not help. Bail if we are suspending.
2268 */
2269 if (!did_some_progress && pm_suspended_storage())
2270 return 0;
2271
2272 /*
2273 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2274 * means __GFP_NOFAIL, but that may not be true in other
2275 * implementations.
2276 */
2277 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2278 return 1;
2279
2280 /*
2281 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2282 * specified, then we retry until we no longer reclaim any pages
2283 * (above), or we've reclaimed an order of pages at least as
2284 * large as the allocation's order. In both cases, if the
2285 * allocation still fails, we stop retrying.
2286 */
2287 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2288 return 1;
2289
2290 return 0;
2291 }
2292
2293 static inline struct page *
2294 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2295 const struct alloc_context *ac, unsigned long *did_some_progress)
2296 {
2297 struct page *page;
2298
2299 *did_some_progress = 0;
2300
2301 if (oom_killer_disabled)
2302 return NULL;
2303
2304 /*
2305 * Acquire the per-zone oom lock for each zone. If that
2306 * fails, somebody else is making progress for us.
2307 */
2308 if (!oom_zonelist_trylock(ac->zonelist, gfp_mask)) {
2309 *did_some_progress = 1;
2310 schedule_timeout_uninterruptible(1);
2311 return NULL;
2312 }
2313
2314 /*
2315 * PM-freezer should be notified that there might be an OOM killer on
2316 * its way to kill and wake somebody up. This is too early and we might
2317 * end up not killing anything but false positives are acceptable.
2318 * See freeze_processes.
2319 */
2320 note_oom_kill();
2321
2322 /*
2323 * Go through the zonelist yet one more time, keep very high watermark
2324 * here, this is only to catch a parallel oom killing, we must fail if
2325 * we're still under heavy pressure.
2326 */
2327 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2328 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2329 if (page)
2330 goto out;
2331
2332 if (!(gfp_mask & __GFP_NOFAIL)) {
2333 /* Coredumps can quickly deplete all memory reserves */
2334 if (current->flags & PF_DUMPCORE)
2335 goto out;
2336 /* The OOM killer will not help higher order allocs */
2337 if (order > PAGE_ALLOC_COSTLY_ORDER)
2338 goto out;
2339 /* The OOM killer does not needlessly kill tasks for lowmem */
2340 if (ac->high_zoneidx < ZONE_NORMAL)
2341 goto out;
2342 /* The OOM killer does not compensate for light reclaim */
2343 if (!(gfp_mask & __GFP_FS))
2344 goto out;
2345 /*
2346 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2347 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2348 * The caller should handle page allocation failure by itself if
2349 * it specifies __GFP_THISNODE.
2350 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2351 */
2352 if (gfp_mask & __GFP_THISNODE)
2353 goto out;
2354 }
2355 /* Exhausted what can be done so it's blamo time */
2356 out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false);
2357 *did_some_progress = 1;
2358 out:
2359 oom_zonelist_unlock(ac->zonelist, gfp_mask);
2360 return page;
2361 }
2362
2363 #ifdef CONFIG_COMPACTION
2364 /* Try memory compaction for high-order allocations before reclaim */
2365 static struct page *
2366 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2367 int alloc_flags, const struct alloc_context *ac,
2368 enum migrate_mode mode, int *contended_compaction,
2369 bool *deferred_compaction)
2370 {
2371 unsigned long compact_result;
2372 struct page *page;
2373
2374 if (!order)
2375 return NULL;
2376
2377 current->flags |= PF_MEMALLOC;
2378 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2379 mode, contended_compaction);
2380 current->flags &= ~PF_MEMALLOC;
2381
2382 switch (compact_result) {
2383 case COMPACT_DEFERRED:
2384 *deferred_compaction = true;
2385 /* fall-through */
2386 case COMPACT_SKIPPED:
2387 return NULL;
2388 default:
2389 break;
2390 }
2391
2392 /*
2393 * At least in one zone compaction wasn't deferred or skipped, so let's
2394 * count a compaction stall
2395 */
2396 count_vm_event(COMPACTSTALL);
2397
2398 page = get_page_from_freelist(gfp_mask, order,
2399 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2400
2401 if (page) {
2402 struct zone *zone = page_zone(page);
2403
2404 zone->compact_blockskip_flush = false;
2405 compaction_defer_reset(zone, order, true);
2406 count_vm_event(COMPACTSUCCESS);
2407 return page;
2408 }
2409
2410 /*
2411 * It's bad if compaction run occurs and fails. The most likely reason
2412 * is that pages exist, but not enough to satisfy watermarks.
2413 */
2414 count_vm_event(COMPACTFAIL);
2415
2416 cond_resched();
2417
2418 return NULL;
2419 }
2420 #else
2421 static inline struct page *
2422 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2423 int alloc_flags, const struct alloc_context *ac,
2424 enum migrate_mode mode, int *contended_compaction,
2425 bool *deferred_compaction)
2426 {
2427 return NULL;
2428 }
2429 #endif /* CONFIG_COMPACTION */
2430
2431 /* Perform direct synchronous page reclaim */
2432 static int
2433 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2434 const struct alloc_context *ac)
2435 {
2436 struct reclaim_state reclaim_state;
2437 int progress;
2438
2439 cond_resched();
2440
2441 /* We now go into synchronous reclaim */
2442 cpuset_memory_pressure_bump();
2443 current->flags |= PF_MEMALLOC;
2444 lockdep_set_current_reclaim_state(gfp_mask);
2445 reclaim_state.reclaimed_slab = 0;
2446 current->reclaim_state = &reclaim_state;
2447
2448 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2449 ac->nodemask);
2450
2451 current->reclaim_state = NULL;
2452 lockdep_clear_current_reclaim_state();
2453 current->flags &= ~PF_MEMALLOC;
2454
2455 cond_resched();
2456
2457 return progress;
2458 }
2459
2460 /* The really slow allocator path where we enter direct reclaim */
2461 static inline struct page *
2462 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2463 int alloc_flags, const struct alloc_context *ac,
2464 unsigned long *did_some_progress)
2465 {
2466 struct page *page = NULL;
2467 bool drained = false;
2468
2469 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2470 if (unlikely(!(*did_some_progress)))
2471 return NULL;
2472
2473 /* After successful reclaim, reconsider all zones for allocation */
2474 if (IS_ENABLED(CONFIG_NUMA))
2475 zlc_clear_zones_full(ac->zonelist);
2476
2477 retry:
2478 page = get_page_from_freelist(gfp_mask, order,
2479 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2480
2481 /*
2482 * If an allocation failed after direct reclaim, it could be because
2483 * pages are pinned on the per-cpu lists. Drain them and try again
2484 */
2485 if (!page && !drained) {
2486 drain_all_pages(NULL);
2487 drained = true;
2488 goto retry;
2489 }
2490
2491 return page;
2492 }
2493
2494 /*
2495 * This is called in the allocator slow-path if the allocation request is of
2496 * sufficient urgency to ignore watermarks and take other desperate measures
2497 */
2498 static inline struct page *
2499 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2500 const struct alloc_context *ac)
2501 {
2502 struct page *page;
2503
2504 do {
2505 page = get_page_from_freelist(gfp_mask, order,
2506 ALLOC_NO_WATERMARKS, ac);
2507
2508 if (!page && gfp_mask & __GFP_NOFAIL)
2509 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2510 HZ/50);
2511 } while (!page && (gfp_mask & __GFP_NOFAIL));
2512
2513 return page;
2514 }
2515
2516 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2517 {
2518 struct zoneref *z;
2519 struct zone *zone;
2520
2521 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2522 ac->high_zoneidx, ac->nodemask)
2523 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2524 }
2525
2526 static inline int
2527 gfp_to_alloc_flags(gfp_t gfp_mask)
2528 {
2529 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2530 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2531
2532 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2533 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2534
2535 /*
2536 * The caller may dip into page reserves a bit more if the caller
2537 * cannot run direct reclaim, or if the caller has realtime scheduling
2538 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2539 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2540 */
2541 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2542
2543 if (atomic) {
2544 /*
2545 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2546 * if it can't schedule.
2547 */
2548 if (!(gfp_mask & __GFP_NOMEMALLOC))
2549 alloc_flags |= ALLOC_HARDER;
2550 /*
2551 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2552 * comment for __cpuset_node_allowed().
2553 */
2554 alloc_flags &= ~ALLOC_CPUSET;
2555 } else if (unlikely(rt_task(current)) && !in_interrupt())
2556 alloc_flags |= ALLOC_HARDER;
2557
2558 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2559 if (gfp_mask & __GFP_MEMALLOC)
2560 alloc_flags |= ALLOC_NO_WATERMARKS;
2561 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2562 alloc_flags |= ALLOC_NO_WATERMARKS;
2563 else if (!in_interrupt() &&
2564 ((current->flags & PF_MEMALLOC) ||
2565 unlikely(test_thread_flag(TIF_MEMDIE))))
2566 alloc_flags |= ALLOC_NO_WATERMARKS;
2567 }
2568 #ifdef CONFIG_CMA
2569 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2570 alloc_flags |= ALLOC_CMA;
2571 #endif
2572 return alloc_flags;
2573 }
2574
2575 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2576 {
2577 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2578 }
2579
2580 static inline struct page *
2581 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2582 struct alloc_context *ac)
2583 {
2584 const gfp_t wait = gfp_mask & __GFP_WAIT;
2585 struct page *page = NULL;
2586 int alloc_flags;
2587 unsigned long pages_reclaimed = 0;
2588 unsigned long did_some_progress;
2589 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2590 bool deferred_compaction = false;
2591 int contended_compaction = COMPACT_CONTENDED_NONE;
2592
2593 /*
2594 * In the slowpath, we sanity check order to avoid ever trying to
2595 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2596 * be using allocators in order of preference for an area that is
2597 * too large.
2598 */
2599 if (order >= MAX_ORDER) {
2600 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2601 return NULL;
2602 }
2603
2604 /*
2605 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2606 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2607 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2608 * using a larger set of nodes after it has established that the
2609 * allowed per node queues are empty and that nodes are
2610 * over allocated.
2611 */
2612 if (IS_ENABLED(CONFIG_NUMA) &&
2613 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2614 goto nopage;
2615
2616 retry:
2617 if (!(gfp_mask & __GFP_NO_KSWAPD))
2618 wake_all_kswapds(order, ac);
2619
2620 /*
2621 * OK, we're below the kswapd watermark and have kicked background
2622 * reclaim. Now things get more complex, so set up alloc_flags according
2623 * to how we want to proceed.
2624 */
2625 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2626
2627 /*
2628 * Find the true preferred zone if the allocation is unconstrained by
2629 * cpusets.
2630 */
2631 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2632 struct zoneref *preferred_zoneref;
2633 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2634 ac->high_zoneidx, NULL, &ac->preferred_zone);
2635 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
2636 }
2637
2638 /* This is the last chance, in general, before the goto nopage. */
2639 page = get_page_from_freelist(gfp_mask, order,
2640 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2641 if (page)
2642 goto got_pg;
2643
2644 /* Allocate without watermarks if the context allows */
2645 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2646 /*
2647 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2648 * the allocation is high priority and these type of
2649 * allocations are system rather than user orientated
2650 */
2651 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
2652
2653 page = __alloc_pages_high_priority(gfp_mask, order, ac);
2654
2655 if (page) {
2656 goto got_pg;
2657 }
2658 }
2659
2660 /* Atomic allocations - we can't balance anything */
2661 if (!wait) {
2662 /*
2663 * All existing users of the deprecated __GFP_NOFAIL are
2664 * blockable, so warn of any new users that actually allow this
2665 * type of allocation to fail.
2666 */
2667 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2668 goto nopage;
2669 }
2670
2671 /* Avoid recursion of direct reclaim */
2672 if (current->flags & PF_MEMALLOC)
2673 goto nopage;
2674
2675 /* Avoid allocations with no watermarks from looping endlessly */
2676 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2677 goto nopage;
2678
2679 /*
2680 * Try direct compaction. The first pass is asynchronous. Subsequent
2681 * attempts after direct reclaim are synchronous
2682 */
2683 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
2684 migration_mode,
2685 &contended_compaction,
2686 &deferred_compaction);
2687 if (page)
2688 goto got_pg;
2689
2690 /* Checks for THP-specific high-order allocations */
2691 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2692 /*
2693 * If compaction is deferred for high-order allocations, it is
2694 * because sync compaction recently failed. If this is the case
2695 * and the caller requested a THP allocation, we do not want
2696 * to heavily disrupt the system, so we fail the allocation
2697 * instead of entering direct reclaim.
2698 */
2699 if (deferred_compaction)
2700 goto nopage;
2701
2702 /*
2703 * In all zones where compaction was attempted (and not
2704 * deferred or skipped), lock contention has been detected.
2705 * For THP allocation we do not want to disrupt the others
2706 * so we fallback to base pages instead.
2707 */
2708 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2709 goto nopage;
2710
2711 /*
2712 * If compaction was aborted due to need_resched(), we do not
2713 * want to further increase allocation latency, unless it is
2714 * khugepaged trying to collapse.
2715 */
2716 if (contended_compaction == COMPACT_CONTENDED_SCHED
2717 && !(current->flags & PF_KTHREAD))
2718 goto nopage;
2719 }
2720
2721 /*
2722 * It can become very expensive to allocate transparent hugepages at
2723 * fault, so use asynchronous memory compaction for THP unless it is
2724 * khugepaged trying to collapse.
2725 */
2726 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2727 (current->flags & PF_KTHREAD))
2728 migration_mode = MIGRATE_SYNC_LIGHT;
2729
2730 /* Try direct reclaim and then allocating */
2731 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
2732 &did_some_progress);
2733 if (page)
2734 goto got_pg;
2735
2736 /* Check if we should retry the allocation */
2737 pages_reclaimed += did_some_progress;
2738 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2739 pages_reclaimed)) {
2740 /*
2741 * If we fail to make progress by freeing individual
2742 * pages, but the allocation wants us to keep going,
2743 * start OOM killing tasks.
2744 */
2745 if (!did_some_progress) {
2746 page = __alloc_pages_may_oom(gfp_mask, order, ac,
2747 &did_some_progress);
2748 if (page)
2749 goto got_pg;
2750 if (!did_some_progress)
2751 goto nopage;
2752 }
2753 /* Wait for some write requests to complete then retry */
2754 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
2755 goto retry;
2756 } else {
2757 /*
2758 * High-order allocations do not necessarily loop after
2759 * direct reclaim and reclaim/compaction depends on compaction
2760 * being called after reclaim so call directly if necessary
2761 */
2762 page = __alloc_pages_direct_compact(gfp_mask, order,
2763 alloc_flags, ac, migration_mode,
2764 &contended_compaction,
2765 &deferred_compaction);
2766 if (page)
2767 goto got_pg;
2768 }
2769
2770 nopage:
2771 warn_alloc_failed(gfp_mask, order, NULL);
2772 got_pg:
2773 return page;
2774 }
2775
2776 /*
2777 * This is the 'heart' of the zoned buddy allocator.
2778 */
2779 struct page *
2780 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2781 struct zonelist *zonelist, nodemask_t *nodemask)
2782 {
2783 struct zoneref *preferred_zoneref;
2784 struct page *page = NULL;
2785 unsigned int cpuset_mems_cookie;
2786 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2787 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
2788 struct alloc_context ac = {
2789 .high_zoneidx = gfp_zone(gfp_mask),
2790 .nodemask = nodemask,
2791 .migratetype = gfpflags_to_migratetype(gfp_mask),
2792 };
2793
2794 gfp_mask &= gfp_allowed_mask;
2795
2796 lockdep_trace_alloc(gfp_mask);
2797
2798 might_sleep_if(gfp_mask & __GFP_WAIT);
2799
2800 if (should_fail_alloc_page(gfp_mask, order))
2801 return NULL;
2802
2803 /*
2804 * Check the zones suitable for the gfp_mask contain at least one
2805 * valid zone. It's possible to have an empty zonelist as a result
2806 * of GFP_THISNODE and a memoryless node
2807 */
2808 if (unlikely(!zonelist->_zonerefs->zone))
2809 return NULL;
2810
2811 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
2812 alloc_flags |= ALLOC_CMA;
2813
2814 retry_cpuset:
2815 cpuset_mems_cookie = read_mems_allowed_begin();
2816
2817 /* We set it here, as __alloc_pages_slowpath might have changed it */
2818 ac.zonelist = zonelist;
2819 /* The preferred zone is used for statistics later */
2820 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
2821 ac.nodemask ? : &cpuset_current_mems_allowed,
2822 &ac.preferred_zone);
2823 if (!ac.preferred_zone)
2824 goto out;
2825 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
2826
2827 /* First allocation attempt */
2828 alloc_mask = gfp_mask|__GFP_HARDWALL;
2829 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
2830 if (unlikely(!page)) {
2831 /*
2832 * Runtime PM, block IO and its error handling path
2833 * can deadlock because I/O on the device might not
2834 * complete.
2835 */
2836 alloc_mask = memalloc_noio_flags(gfp_mask);
2837
2838 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
2839 }
2840
2841 if (kmemcheck_enabled && page)
2842 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2843
2844 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
2845
2846 out:
2847 /*
2848 * When updating a task's mems_allowed, it is possible to race with
2849 * parallel threads in such a way that an allocation can fail while
2850 * the mask is being updated. If a page allocation is about to fail,
2851 * check if the cpuset changed during allocation and if so, retry.
2852 */
2853 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2854 goto retry_cpuset;
2855
2856 return page;
2857 }
2858 EXPORT_SYMBOL(__alloc_pages_nodemask);
2859
2860 /*
2861 * Common helper functions.
2862 */
2863 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2864 {
2865 struct page *page;
2866
2867 /*
2868 * __get_free_pages() returns a 32-bit address, which cannot represent
2869 * a highmem page
2870 */
2871 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2872
2873 page = alloc_pages(gfp_mask, order);
2874 if (!page)
2875 return 0;
2876 return (unsigned long) page_address(page);
2877 }
2878 EXPORT_SYMBOL(__get_free_pages);
2879
2880 unsigned long get_zeroed_page(gfp_t gfp_mask)
2881 {
2882 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2883 }
2884 EXPORT_SYMBOL(get_zeroed_page);
2885
2886 void __free_pages(struct page *page, unsigned int order)
2887 {
2888 if (put_page_testzero(page)) {
2889 if (order == 0)
2890 free_hot_cold_page(page, false);
2891 else
2892 __free_pages_ok(page, order);
2893 }
2894 }
2895
2896 EXPORT_SYMBOL(__free_pages);
2897
2898 void free_pages(unsigned long addr, unsigned int order)
2899 {
2900 if (addr != 0) {
2901 VM_BUG_ON(!virt_addr_valid((void *)addr));
2902 __free_pages(virt_to_page((void *)addr), order);
2903 }
2904 }
2905
2906 EXPORT_SYMBOL(free_pages);
2907
2908 /*
2909 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2910 * of the current memory cgroup.
2911 *
2912 * It should be used when the caller would like to use kmalloc, but since the
2913 * allocation is large, it has to fall back to the page allocator.
2914 */
2915 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2916 {
2917 struct page *page;
2918 struct mem_cgroup *memcg = NULL;
2919
2920 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2921 return NULL;
2922 page = alloc_pages(gfp_mask, order);
2923 memcg_kmem_commit_charge(page, memcg, order);
2924 return page;
2925 }
2926
2927 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2928 {
2929 struct page *page;
2930 struct mem_cgroup *memcg = NULL;
2931
2932 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2933 return NULL;
2934 page = alloc_pages_node(nid, gfp_mask, order);
2935 memcg_kmem_commit_charge(page, memcg, order);
2936 return page;
2937 }
2938
2939 /*
2940 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2941 * alloc_kmem_pages.
2942 */
2943 void __free_kmem_pages(struct page *page, unsigned int order)
2944 {
2945 memcg_kmem_uncharge_pages(page, order);
2946 __free_pages(page, order);
2947 }
2948
2949 void free_kmem_pages(unsigned long addr, unsigned int order)
2950 {
2951 if (addr != 0) {
2952 VM_BUG_ON(!virt_addr_valid((void *)addr));
2953 __free_kmem_pages(virt_to_page((void *)addr), order);
2954 }
2955 }
2956
2957 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2958 {
2959 if (addr) {
2960 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2961 unsigned long used = addr + PAGE_ALIGN(size);
2962
2963 split_page(virt_to_page((void *)addr), order);
2964 while (used < alloc_end) {
2965 free_page(used);
2966 used += PAGE_SIZE;
2967 }
2968 }
2969 return (void *)addr;
2970 }
2971
2972 /**
2973 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2974 * @size: the number of bytes to allocate
2975 * @gfp_mask: GFP flags for the allocation
2976 *
2977 * This function is similar to alloc_pages(), except that it allocates the
2978 * minimum number of pages to satisfy the request. alloc_pages() can only
2979 * allocate memory in power-of-two pages.
2980 *
2981 * This function is also limited by MAX_ORDER.
2982 *
2983 * Memory allocated by this function must be released by free_pages_exact().
2984 */
2985 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2986 {
2987 unsigned int order = get_order(size);
2988 unsigned long addr;
2989
2990 addr = __get_free_pages(gfp_mask, order);
2991 return make_alloc_exact(addr, order, size);
2992 }
2993 EXPORT_SYMBOL(alloc_pages_exact);
2994
2995 /**
2996 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2997 * pages on a node.
2998 * @nid: the preferred node ID where memory should be allocated
2999 * @size: the number of bytes to allocate
3000 * @gfp_mask: GFP flags for the allocation
3001 *
3002 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3003 * back.
3004 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3005 * but is not exact.
3006 */
3007 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3008 {
3009 unsigned order = get_order(size);
3010 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3011 if (!p)
3012 return NULL;
3013 return make_alloc_exact((unsigned long)page_address(p), order, size);
3014 }
3015
3016 /**
3017 * free_pages_exact - release memory allocated via alloc_pages_exact()
3018 * @virt: the value returned by alloc_pages_exact.
3019 * @size: size of allocation, same value as passed to alloc_pages_exact().
3020 *
3021 * Release the memory allocated by a previous call to alloc_pages_exact.
3022 */
3023 void free_pages_exact(void *virt, size_t size)
3024 {
3025 unsigned long addr = (unsigned long)virt;
3026 unsigned long end = addr + PAGE_ALIGN(size);
3027
3028 while (addr < end) {
3029 free_page(addr);
3030 addr += PAGE_SIZE;
3031 }
3032 }
3033 EXPORT_SYMBOL(free_pages_exact);
3034
3035 /**
3036 * nr_free_zone_pages - count number of pages beyond high watermark
3037 * @offset: The zone index of the highest zone
3038 *
3039 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3040 * high watermark within all zones at or below a given zone index. For each
3041 * zone, the number of pages is calculated as:
3042 * managed_pages - high_pages
3043 */
3044 static unsigned long nr_free_zone_pages(int offset)
3045 {
3046 struct zoneref *z;
3047 struct zone *zone;
3048
3049 /* Just pick one node, since fallback list is circular */
3050 unsigned long sum = 0;
3051
3052 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3053
3054 for_each_zone_zonelist(zone, z, zonelist, offset) {
3055 unsigned long size = zone->managed_pages;
3056 unsigned long high = high_wmark_pages(zone);
3057 if (size > high)
3058 sum += size - high;
3059 }
3060
3061 return sum;
3062 }
3063
3064 /**
3065 * nr_free_buffer_pages - count number of pages beyond high watermark
3066 *
3067 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3068 * watermark within ZONE_DMA and ZONE_NORMAL.
3069 */
3070 unsigned long nr_free_buffer_pages(void)
3071 {
3072 return nr_free_zone_pages(gfp_zone(GFP_USER));
3073 }
3074 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3075
3076 /**
3077 * nr_free_pagecache_pages - count number of pages beyond high watermark
3078 *
3079 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3080 * high watermark within all zones.
3081 */
3082 unsigned long nr_free_pagecache_pages(void)
3083 {
3084 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3085 }
3086
3087 static inline void show_node(struct zone *zone)
3088 {
3089 if (IS_ENABLED(CONFIG_NUMA))
3090 printk("Node %d ", zone_to_nid(zone));
3091 }
3092
3093 void si_meminfo(struct sysinfo *val)
3094 {
3095 val->totalram = totalram_pages;
3096 val->sharedram = global_page_state(NR_SHMEM);
3097 val->freeram = global_page_state(NR_FREE_PAGES);
3098 val->bufferram = nr_blockdev_pages();
3099 val->totalhigh = totalhigh_pages;
3100 val->freehigh = nr_free_highpages();
3101 val->mem_unit = PAGE_SIZE;
3102 }
3103
3104 EXPORT_SYMBOL(si_meminfo);
3105
3106 #ifdef CONFIG_NUMA
3107 void si_meminfo_node(struct sysinfo *val, int nid)
3108 {
3109 int zone_type; /* needs to be signed */
3110 unsigned long managed_pages = 0;
3111 pg_data_t *pgdat = NODE_DATA(nid);
3112
3113 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3114 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3115 val->totalram = managed_pages;
3116 val->sharedram = node_page_state(nid, NR_SHMEM);
3117 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3118 #ifdef CONFIG_HIGHMEM
3119 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3120 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3121 NR_FREE_PAGES);
3122 #else
3123 val->totalhigh = 0;
3124 val->freehigh = 0;
3125 #endif
3126 val->mem_unit = PAGE_SIZE;
3127 }
3128 #endif
3129
3130 /*
3131 * Determine whether the node should be displayed or not, depending on whether
3132 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3133 */
3134 bool skip_free_areas_node(unsigned int flags, int nid)
3135 {
3136 bool ret = false;
3137 unsigned int cpuset_mems_cookie;
3138
3139 if (!(flags & SHOW_MEM_FILTER_NODES))
3140 goto out;
3141
3142 do {
3143 cpuset_mems_cookie = read_mems_allowed_begin();
3144 ret = !node_isset(nid, cpuset_current_mems_allowed);
3145 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3146 out:
3147 return ret;
3148 }
3149
3150 #define K(x) ((x) << (PAGE_SHIFT-10))
3151
3152 static void show_migration_types(unsigned char type)
3153 {
3154 static const char types[MIGRATE_TYPES] = {
3155 [MIGRATE_UNMOVABLE] = 'U',
3156 [MIGRATE_RECLAIMABLE] = 'E',
3157 [MIGRATE_MOVABLE] = 'M',
3158 [MIGRATE_RESERVE] = 'R',
3159 #ifdef CONFIG_CMA
3160 [MIGRATE_CMA] = 'C',
3161 #endif
3162 #ifdef CONFIG_MEMORY_ISOLATION
3163 [MIGRATE_ISOLATE] = 'I',
3164 #endif
3165 };
3166 char tmp[MIGRATE_TYPES + 1];
3167 char *p = tmp;
3168 int i;
3169
3170 for (i = 0; i < MIGRATE_TYPES; i++) {
3171 if (type & (1 << i))
3172 *p++ = types[i];
3173 }
3174
3175 *p = '\0';
3176 printk("(%s) ", tmp);
3177 }
3178
3179 /*
3180 * Show free area list (used inside shift_scroll-lock stuff)
3181 * We also calculate the percentage fragmentation. We do this by counting the
3182 * memory on each free list with the exception of the first item on the list.
3183 * Suppresses nodes that are not allowed by current's cpuset if
3184 * SHOW_MEM_FILTER_NODES is passed.
3185 */
3186 void show_free_areas(unsigned int filter)
3187 {
3188 int cpu;
3189 struct zone *zone;
3190
3191 for_each_populated_zone(zone) {
3192 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3193 continue;
3194 show_node(zone);
3195 printk("%s per-cpu:\n", zone->name);
3196
3197 for_each_online_cpu(cpu) {
3198 struct per_cpu_pageset *pageset;
3199
3200 pageset = per_cpu_ptr(zone->pageset, cpu);
3201
3202 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3203 cpu, pageset->pcp.high,
3204 pageset->pcp.batch, pageset->pcp.count);
3205 }
3206 }
3207
3208 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3209 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3210 " unevictable:%lu"
3211 " dirty:%lu writeback:%lu unstable:%lu\n"
3212 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3213 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3214 " free_cma:%lu\n",
3215 global_page_state(NR_ACTIVE_ANON),
3216 global_page_state(NR_INACTIVE_ANON),
3217 global_page_state(NR_ISOLATED_ANON),
3218 global_page_state(NR_ACTIVE_FILE),
3219 global_page_state(NR_INACTIVE_FILE),
3220 global_page_state(NR_ISOLATED_FILE),
3221 global_page_state(NR_UNEVICTABLE),
3222 global_page_state(NR_FILE_DIRTY),
3223 global_page_state(NR_WRITEBACK),
3224 global_page_state(NR_UNSTABLE_NFS),
3225 global_page_state(NR_FREE_PAGES),
3226 global_page_state(NR_SLAB_RECLAIMABLE),
3227 global_page_state(NR_SLAB_UNRECLAIMABLE),
3228 global_page_state(NR_FILE_MAPPED),
3229 global_page_state(NR_SHMEM),
3230 global_page_state(NR_PAGETABLE),
3231 global_page_state(NR_BOUNCE),
3232 global_page_state(NR_FREE_CMA_PAGES));
3233
3234 for_each_populated_zone(zone) {
3235 int i;
3236
3237 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3238 continue;
3239 show_node(zone);
3240 printk("%s"
3241 " free:%lukB"
3242 " min:%lukB"
3243 " low:%lukB"
3244 " high:%lukB"
3245 " active_anon:%lukB"
3246 " inactive_anon:%lukB"
3247 " active_file:%lukB"
3248 " inactive_file:%lukB"
3249 " unevictable:%lukB"
3250 " isolated(anon):%lukB"
3251 " isolated(file):%lukB"
3252 " present:%lukB"
3253 " managed:%lukB"
3254 " mlocked:%lukB"
3255 " dirty:%lukB"
3256 " writeback:%lukB"
3257 " mapped:%lukB"
3258 " shmem:%lukB"
3259 " slab_reclaimable:%lukB"
3260 " slab_unreclaimable:%lukB"
3261 " kernel_stack:%lukB"
3262 " pagetables:%lukB"
3263 " unstable:%lukB"
3264 " bounce:%lukB"
3265 " free_cma:%lukB"
3266 " writeback_tmp:%lukB"
3267 " pages_scanned:%lu"
3268 " all_unreclaimable? %s"
3269 "\n",
3270 zone->name,
3271 K(zone_page_state(zone, NR_FREE_PAGES)),
3272 K(min_wmark_pages(zone)),
3273 K(low_wmark_pages(zone)),
3274 K(high_wmark_pages(zone)),
3275 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3276 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3277 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3278 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3279 K(zone_page_state(zone, NR_UNEVICTABLE)),
3280 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3281 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3282 K(zone->present_pages),
3283 K(zone->managed_pages),
3284 K(zone_page_state(zone, NR_MLOCK)),
3285 K(zone_page_state(zone, NR_FILE_DIRTY)),
3286 K(zone_page_state(zone, NR_WRITEBACK)),
3287 K(zone_page_state(zone, NR_FILE_MAPPED)),
3288 K(zone_page_state(zone, NR_SHMEM)),
3289 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3290 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3291 zone_page_state(zone, NR_KERNEL_STACK) *
3292 THREAD_SIZE / 1024,
3293 K(zone_page_state(zone, NR_PAGETABLE)),
3294 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3295 K(zone_page_state(zone, NR_BOUNCE)),
3296 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3297 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3298 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3299 (!zone_reclaimable(zone) ? "yes" : "no")
3300 );
3301 printk("lowmem_reserve[]:");
3302 for (i = 0; i < MAX_NR_ZONES; i++)
3303 printk(" %ld", zone->lowmem_reserve[i]);
3304 printk("\n");
3305 }
3306
3307 for_each_populated_zone(zone) {
3308 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3309 unsigned char types[MAX_ORDER];
3310
3311 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3312 continue;
3313 show_node(zone);
3314 printk("%s: ", zone->name);
3315
3316 spin_lock_irqsave(&zone->lock, flags);
3317 for (order = 0; order < MAX_ORDER; order++) {
3318 struct free_area *area = &zone->free_area[order];
3319 int type;
3320
3321 nr[order] = area->nr_free;
3322 total += nr[order] << order;
3323
3324 types[order] = 0;
3325 for (type = 0; type < MIGRATE_TYPES; type++) {
3326 if (!list_empty(&area->free_list[type]))
3327 types[order] |= 1 << type;
3328 }
3329 }
3330 spin_unlock_irqrestore(&zone->lock, flags);
3331 for (order = 0; order < MAX_ORDER; order++) {
3332 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3333 if (nr[order])
3334 show_migration_types(types[order]);
3335 }
3336 printk("= %lukB\n", K(total));
3337 }
3338
3339 hugetlb_show_meminfo();
3340
3341 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3342
3343 show_swap_cache_info();
3344 }
3345
3346 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3347 {
3348 zoneref->zone = zone;
3349 zoneref->zone_idx = zone_idx(zone);
3350 }
3351
3352 /*
3353 * Builds allocation fallback zone lists.
3354 *
3355 * Add all populated zones of a node to the zonelist.
3356 */
3357 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3358 int nr_zones)
3359 {
3360 struct zone *zone;
3361 enum zone_type zone_type = MAX_NR_ZONES;
3362
3363 do {
3364 zone_type--;
3365 zone = pgdat->node_zones + zone_type;
3366 if (populated_zone(zone)) {
3367 zoneref_set_zone(zone,
3368 &zonelist->_zonerefs[nr_zones++]);
3369 check_highest_zone(zone_type);
3370 }
3371 } while (zone_type);
3372
3373 return nr_zones;
3374 }
3375
3376
3377 /*
3378 * zonelist_order:
3379 * 0 = automatic detection of better ordering.
3380 * 1 = order by ([node] distance, -zonetype)
3381 * 2 = order by (-zonetype, [node] distance)
3382 *
3383 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3384 * the same zonelist. So only NUMA can configure this param.
3385 */
3386 #define ZONELIST_ORDER_DEFAULT 0
3387 #define ZONELIST_ORDER_NODE 1
3388 #define ZONELIST_ORDER_ZONE 2
3389
3390 /* zonelist order in the kernel.
3391 * set_zonelist_order() will set this to NODE or ZONE.
3392 */
3393 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3394 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3395
3396
3397 #ifdef CONFIG_NUMA
3398 /* The value user specified ....changed by config */
3399 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3400 /* string for sysctl */
3401 #define NUMA_ZONELIST_ORDER_LEN 16
3402 char numa_zonelist_order[16] = "default";
3403
3404 /*
3405 * interface for configure zonelist ordering.
3406 * command line option "numa_zonelist_order"
3407 * = "[dD]efault - default, automatic configuration.
3408 * = "[nN]ode - order by node locality, then by zone within node
3409 * = "[zZ]one - order by zone, then by locality within zone
3410 */
3411
3412 static int __parse_numa_zonelist_order(char *s)
3413 {
3414 if (*s == 'd' || *s == 'D') {
3415 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3416 } else if (*s == 'n' || *s == 'N') {
3417 user_zonelist_order = ZONELIST_ORDER_NODE;
3418 } else if (*s == 'z' || *s == 'Z') {
3419 user_zonelist_order = ZONELIST_ORDER_ZONE;
3420 } else {
3421 printk(KERN_WARNING
3422 "Ignoring invalid numa_zonelist_order value: "
3423 "%s\n", s);
3424 return -EINVAL;
3425 }
3426 return 0;
3427 }
3428
3429 static __init int setup_numa_zonelist_order(char *s)
3430 {
3431 int ret;
3432
3433 if (!s)
3434 return 0;
3435
3436 ret = __parse_numa_zonelist_order(s);
3437 if (ret == 0)
3438 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3439
3440 return ret;
3441 }
3442 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3443
3444 /*
3445 * sysctl handler for numa_zonelist_order
3446 */
3447 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3448 void __user *buffer, size_t *length,
3449 loff_t *ppos)
3450 {
3451 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3452 int ret;
3453 static DEFINE_MUTEX(zl_order_mutex);
3454
3455 mutex_lock(&zl_order_mutex);
3456 if (write) {
3457 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3458 ret = -EINVAL;
3459 goto out;
3460 }
3461 strcpy(saved_string, (char *)table->data);
3462 }
3463 ret = proc_dostring(table, write, buffer, length, ppos);
3464 if (ret)
3465 goto out;
3466 if (write) {
3467 int oldval = user_zonelist_order;
3468
3469 ret = __parse_numa_zonelist_order((char *)table->data);
3470 if (ret) {
3471 /*
3472 * bogus value. restore saved string
3473 */
3474 strncpy((char *)table->data, saved_string,
3475 NUMA_ZONELIST_ORDER_LEN);
3476 user_zonelist_order = oldval;
3477 } else if (oldval != user_zonelist_order) {
3478 mutex_lock(&zonelists_mutex);
3479 build_all_zonelists(NULL, NULL);
3480 mutex_unlock(&zonelists_mutex);
3481 }
3482 }
3483 out:
3484 mutex_unlock(&zl_order_mutex);
3485 return ret;
3486 }
3487
3488
3489 #define MAX_NODE_LOAD (nr_online_nodes)
3490 static int node_load[MAX_NUMNODES];
3491
3492 /**
3493 * find_next_best_node - find the next node that should appear in a given node's fallback list
3494 * @node: node whose fallback list we're appending
3495 * @used_node_mask: nodemask_t of already used nodes
3496 *
3497 * We use a number of factors to determine which is the next node that should
3498 * appear on a given node's fallback list. The node should not have appeared
3499 * already in @node's fallback list, and it should be the next closest node
3500 * according to the distance array (which contains arbitrary distance values
3501 * from each node to each node in the system), and should also prefer nodes
3502 * with no CPUs, since presumably they'll have very little allocation pressure
3503 * on them otherwise.
3504 * It returns -1 if no node is found.
3505 */
3506 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3507 {
3508 int n, val;
3509 int min_val = INT_MAX;
3510 int best_node = NUMA_NO_NODE;
3511 const struct cpumask *tmp = cpumask_of_node(0);
3512
3513 /* Use the local node if we haven't already */
3514 if (!node_isset(node, *used_node_mask)) {
3515 node_set(node, *used_node_mask);
3516 return node;
3517 }
3518
3519 for_each_node_state(n, N_MEMORY) {
3520
3521 /* Don't want a node to appear more than once */
3522 if (node_isset(n, *used_node_mask))
3523 continue;
3524
3525 /* Use the distance array to find the distance */
3526 val = node_distance(node, n);
3527
3528 /* Penalize nodes under us ("prefer the next node") */
3529 val += (n < node);
3530
3531 /* Give preference to headless and unused nodes */
3532 tmp = cpumask_of_node(n);
3533 if (!cpumask_empty(tmp))
3534 val += PENALTY_FOR_NODE_WITH_CPUS;
3535
3536 /* Slight preference for less loaded node */
3537 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3538 val += node_load[n];
3539
3540 if (val < min_val) {
3541 min_val = val;
3542 best_node = n;
3543 }
3544 }
3545
3546 if (best_node >= 0)
3547 node_set(best_node, *used_node_mask);
3548
3549 return best_node;
3550 }
3551
3552
3553 /*
3554 * Build zonelists ordered by node and zones within node.
3555 * This results in maximum locality--normal zone overflows into local
3556 * DMA zone, if any--but risks exhausting DMA zone.
3557 */
3558 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3559 {
3560 int j;
3561 struct zonelist *zonelist;
3562
3563 zonelist = &pgdat->node_zonelists[0];
3564 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3565 ;
3566 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3567 zonelist->_zonerefs[j].zone = NULL;
3568 zonelist->_zonerefs[j].zone_idx = 0;
3569 }
3570
3571 /*
3572 * Build gfp_thisnode zonelists
3573 */
3574 static void build_thisnode_zonelists(pg_data_t *pgdat)
3575 {
3576 int j;
3577 struct zonelist *zonelist;
3578
3579 zonelist = &pgdat->node_zonelists[1];
3580 j = build_zonelists_node(pgdat, zonelist, 0);
3581 zonelist->_zonerefs[j].zone = NULL;
3582 zonelist->_zonerefs[j].zone_idx = 0;
3583 }
3584
3585 /*
3586 * Build zonelists ordered by zone and nodes within zones.
3587 * This results in conserving DMA zone[s] until all Normal memory is
3588 * exhausted, but results in overflowing to remote node while memory
3589 * may still exist in local DMA zone.
3590 */
3591 static int node_order[MAX_NUMNODES];
3592
3593 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3594 {
3595 int pos, j, node;
3596 int zone_type; /* needs to be signed */
3597 struct zone *z;
3598 struct zonelist *zonelist;
3599
3600 zonelist = &pgdat->node_zonelists[0];
3601 pos = 0;
3602 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3603 for (j = 0; j < nr_nodes; j++) {
3604 node = node_order[j];
3605 z = &NODE_DATA(node)->node_zones[zone_type];
3606 if (populated_zone(z)) {
3607 zoneref_set_zone(z,
3608 &zonelist->_zonerefs[pos++]);
3609 check_highest_zone(zone_type);
3610 }
3611 }
3612 }
3613 zonelist->_zonerefs[pos].zone = NULL;
3614 zonelist->_zonerefs[pos].zone_idx = 0;
3615 }
3616
3617 #if defined(CONFIG_64BIT)
3618 /*
3619 * Devices that require DMA32/DMA are relatively rare and do not justify a
3620 * penalty to every machine in case the specialised case applies. Default
3621 * to Node-ordering on 64-bit NUMA machines
3622 */
3623 static int default_zonelist_order(void)
3624 {
3625 return ZONELIST_ORDER_NODE;
3626 }
3627 #else
3628 /*
3629 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3630 * by the kernel. If processes running on node 0 deplete the low memory zone
3631 * then reclaim will occur more frequency increasing stalls and potentially
3632 * be easier to OOM if a large percentage of the zone is under writeback or
3633 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3634 * Hence, default to zone ordering on 32-bit.
3635 */
3636 static int default_zonelist_order(void)
3637 {
3638 return ZONELIST_ORDER_ZONE;
3639 }
3640 #endif /* CONFIG_64BIT */
3641
3642 static void set_zonelist_order(void)
3643 {
3644 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3645 current_zonelist_order = default_zonelist_order();
3646 else
3647 current_zonelist_order = user_zonelist_order;
3648 }
3649
3650 static void build_zonelists(pg_data_t *pgdat)
3651 {
3652 int j, node, load;
3653 enum zone_type i;
3654 nodemask_t used_mask;
3655 int local_node, prev_node;
3656 struct zonelist *zonelist;
3657 int order = current_zonelist_order;
3658
3659 /* initialize zonelists */
3660 for (i = 0; i < MAX_ZONELISTS; i++) {
3661 zonelist = pgdat->node_zonelists + i;
3662 zonelist->_zonerefs[0].zone = NULL;
3663 zonelist->_zonerefs[0].zone_idx = 0;
3664 }
3665
3666 /* NUMA-aware ordering of nodes */
3667 local_node = pgdat->node_id;
3668 load = nr_online_nodes;
3669 prev_node = local_node;
3670 nodes_clear(used_mask);
3671
3672 memset(node_order, 0, sizeof(node_order));
3673 j = 0;
3674
3675 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3676 /*
3677 * We don't want to pressure a particular node.
3678 * So adding penalty to the first node in same
3679 * distance group to make it round-robin.
3680 */
3681 if (node_distance(local_node, node) !=
3682 node_distance(local_node, prev_node))
3683 node_load[node] = load;
3684
3685 prev_node = node;
3686 load--;
3687 if (order == ZONELIST_ORDER_NODE)
3688 build_zonelists_in_node_order(pgdat, node);
3689 else
3690 node_order[j++] = node; /* remember order */
3691 }
3692
3693 if (order == ZONELIST_ORDER_ZONE) {
3694 /* calculate node order -- i.e., DMA last! */
3695 build_zonelists_in_zone_order(pgdat, j);
3696 }
3697
3698 build_thisnode_zonelists(pgdat);
3699 }
3700
3701 /* Construct the zonelist performance cache - see further mmzone.h */
3702 static void build_zonelist_cache(pg_data_t *pgdat)
3703 {
3704 struct zonelist *zonelist;
3705 struct zonelist_cache *zlc;
3706 struct zoneref *z;
3707
3708 zonelist = &pgdat->node_zonelists[0];
3709 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3710 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3711 for (z = zonelist->_zonerefs; z->zone; z++)
3712 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3713 }
3714
3715 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3716 /*
3717 * Return node id of node used for "local" allocations.
3718 * I.e., first node id of first zone in arg node's generic zonelist.
3719 * Used for initializing percpu 'numa_mem', which is used primarily
3720 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3721 */
3722 int local_memory_node(int node)
3723 {
3724 struct zone *zone;
3725
3726 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3727 gfp_zone(GFP_KERNEL),
3728 NULL,
3729 &zone);
3730 return zone->node;
3731 }
3732 #endif
3733
3734 #else /* CONFIG_NUMA */
3735
3736 static void set_zonelist_order(void)
3737 {
3738 current_zonelist_order = ZONELIST_ORDER_ZONE;
3739 }
3740
3741 static void build_zonelists(pg_data_t *pgdat)
3742 {
3743 int node, local_node;
3744 enum zone_type j;
3745 struct zonelist *zonelist;
3746
3747 local_node = pgdat->node_id;
3748
3749 zonelist = &pgdat->node_zonelists[0];
3750 j = build_zonelists_node(pgdat, zonelist, 0);
3751
3752 /*
3753 * Now we build the zonelist so that it contains the zones
3754 * of all the other nodes.
3755 * We don't want to pressure a particular node, so when
3756 * building the zones for node N, we make sure that the
3757 * zones coming right after the local ones are those from
3758 * node N+1 (modulo N)
3759 */
3760 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3761 if (!node_online(node))
3762 continue;
3763 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3764 }
3765 for (node = 0; node < local_node; node++) {
3766 if (!node_online(node))
3767 continue;
3768 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3769 }
3770
3771 zonelist->_zonerefs[j].zone = NULL;
3772 zonelist->_zonerefs[j].zone_idx = 0;
3773 }
3774
3775 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3776 static void build_zonelist_cache(pg_data_t *pgdat)
3777 {
3778 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3779 }
3780
3781 #endif /* CONFIG_NUMA */
3782
3783 /*
3784 * Boot pageset table. One per cpu which is going to be used for all
3785 * zones and all nodes. The parameters will be set in such a way
3786 * that an item put on a list will immediately be handed over to
3787 * the buddy list. This is safe since pageset manipulation is done
3788 * with interrupts disabled.
3789 *
3790 * The boot_pagesets must be kept even after bootup is complete for
3791 * unused processors and/or zones. They do play a role for bootstrapping
3792 * hotplugged processors.
3793 *
3794 * zoneinfo_show() and maybe other functions do
3795 * not check if the processor is online before following the pageset pointer.
3796 * Other parts of the kernel may not check if the zone is available.
3797 */
3798 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3799 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3800 static void setup_zone_pageset(struct zone *zone);
3801
3802 /*
3803 * Global mutex to protect against size modification of zonelists
3804 * as well as to serialize pageset setup for the new populated zone.
3805 */
3806 DEFINE_MUTEX(zonelists_mutex);
3807
3808 /* return values int ....just for stop_machine() */
3809 static int __build_all_zonelists(void *data)
3810 {
3811 int nid;
3812 int cpu;
3813 pg_data_t *self = data;
3814
3815 #ifdef CONFIG_NUMA
3816 memset(node_load, 0, sizeof(node_load));
3817 #endif
3818
3819 if (self && !node_online(self->node_id)) {
3820 build_zonelists(self);
3821 build_zonelist_cache(self);
3822 }
3823
3824 for_each_online_node(nid) {
3825 pg_data_t *pgdat = NODE_DATA(nid);
3826
3827 build_zonelists(pgdat);
3828 build_zonelist_cache(pgdat);
3829 }
3830
3831 /*
3832 * Initialize the boot_pagesets that are going to be used
3833 * for bootstrapping processors. The real pagesets for
3834 * each zone will be allocated later when the per cpu
3835 * allocator is available.
3836 *
3837 * boot_pagesets are used also for bootstrapping offline
3838 * cpus if the system is already booted because the pagesets
3839 * are needed to initialize allocators on a specific cpu too.
3840 * F.e. the percpu allocator needs the page allocator which
3841 * needs the percpu allocator in order to allocate its pagesets
3842 * (a chicken-egg dilemma).
3843 */
3844 for_each_possible_cpu(cpu) {
3845 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3846
3847 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3848 /*
3849 * We now know the "local memory node" for each node--
3850 * i.e., the node of the first zone in the generic zonelist.
3851 * Set up numa_mem percpu variable for on-line cpus. During
3852 * boot, only the boot cpu should be on-line; we'll init the
3853 * secondary cpus' numa_mem as they come on-line. During
3854 * node/memory hotplug, we'll fixup all on-line cpus.
3855 */
3856 if (cpu_online(cpu))
3857 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3858 #endif
3859 }
3860
3861 return 0;
3862 }
3863
3864 /*
3865 * Called with zonelists_mutex held always
3866 * unless system_state == SYSTEM_BOOTING.
3867 */
3868 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3869 {
3870 set_zonelist_order();
3871
3872 if (system_state == SYSTEM_BOOTING) {
3873 __build_all_zonelists(NULL);
3874 mminit_verify_zonelist();
3875 cpuset_init_current_mems_allowed();
3876 } else {
3877 #ifdef CONFIG_MEMORY_HOTPLUG
3878 if (zone)
3879 setup_zone_pageset(zone);
3880 #endif
3881 /* we have to stop all cpus to guarantee there is no user
3882 of zonelist */
3883 stop_machine(__build_all_zonelists, pgdat, NULL);
3884 /* cpuset refresh routine should be here */
3885 }
3886 vm_total_pages = nr_free_pagecache_pages();
3887 /*
3888 * Disable grouping by mobility if the number of pages in the
3889 * system is too low to allow the mechanism to work. It would be
3890 * more accurate, but expensive to check per-zone. This check is
3891 * made on memory-hotadd so a system can start with mobility
3892 * disabled and enable it later
3893 */
3894 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3895 page_group_by_mobility_disabled = 1;
3896 else
3897 page_group_by_mobility_disabled = 0;
3898
3899 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
3900 "Total pages: %ld\n",
3901 nr_online_nodes,
3902 zonelist_order_name[current_zonelist_order],
3903 page_group_by_mobility_disabled ? "off" : "on",
3904 vm_total_pages);
3905 #ifdef CONFIG_NUMA
3906 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3907 #endif
3908 }
3909
3910 /*
3911 * Helper functions to size the waitqueue hash table.
3912 * Essentially these want to choose hash table sizes sufficiently
3913 * large so that collisions trying to wait on pages are rare.
3914 * But in fact, the number of active page waitqueues on typical
3915 * systems is ridiculously low, less than 200. So this is even
3916 * conservative, even though it seems large.
3917 *
3918 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3919 * waitqueues, i.e. the size of the waitq table given the number of pages.
3920 */
3921 #define PAGES_PER_WAITQUEUE 256
3922
3923 #ifndef CONFIG_MEMORY_HOTPLUG
3924 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3925 {
3926 unsigned long size = 1;
3927
3928 pages /= PAGES_PER_WAITQUEUE;
3929
3930 while (size < pages)
3931 size <<= 1;
3932
3933 /*
3934 * Once we have dozens or even hundreds of threads sleeping
3935 * on IO we've got bigger problems than wait queue collision.
3936 * Limit the size of the wait table to a reasonable size.
3937 */
3938 size = min(size, 4096UL);
3939
3940 return max(size, 4UL);
3941 }
3942 #else
3943 /*
3944 * A zone's size might be changed by hot-add, so it is not possible to determine
3945 * a suitable size for its wait_table. So we use the maximum size now.
3946 *
3947 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3948 *
3949 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3950 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3951 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3952 *
3953 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3954 * or more by the traditional way. (See above). It equals:
3955 *
3956 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3957 * ia64(16K page size) : = ( 8G + 4M)byte.
3958 * powerpc (64K page size) : = (32G +16M)byte.
3959 */
3960 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3961 {
3962 return 4096UL;
3963 }
3964 #endif
3965
3966 /*
3967 * This is an integer logarithm so that shifts can be used later
3968 * to extract the more random high bits from the multiplicative
3969 * hash function before the remainder is taken.
3970 */
3971 static inline unsigned long wait_table_bits(unsigned long size)
3972 {
3973 return ffz(~size);
3974 }
3975
3976 /*
3977 * Check if a pageblock contains reserved pages
3978 */
3979 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3980 {
3981 unsigned long pfn;
3982
3983 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3984 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3985 return 1;
3986 }
3987 return 0;
3988 }
3989
3990 /*
3991 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3992 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3993 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3994 * higher will lead to a bigger reserve which will get freed as contiguous
3995 * blocks as reclaim kicks in
3996 */
3997 static void setup_zone_migrate_reserve(struct zone *zone)
3998 {
3999 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4000 struct page *page;
4001 unsigned long block_migratetype;
4002 int reserve;
4003 int old_reserve;
4004
4005 /*
4006 * Get the start pfn, end pfn and the number of blocks to reserve
4007 * We have to be careful to be aligned to pageblock_nr_pages to
4008 * make sure that we always check pfn_valid for the first page in
4009 * the block.
4010 */
4011 start_pfn = zone->zone_start_pfn;
4012 end_pfn = zone_end_pfn(zone);
4013 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4014 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4015 pageblock_order;
4016
4017 /*
4018 * Reserve blocks are generally in place to help high-order atomic
4019 * allocations that are short-lived. A min_free_kbytes value that
4020 * would result in more than 2 reserve blocks for atomic allocations
4021 * is assumed to be in place to help anti-fragmentation for the
4022 * future allocation of hugepages at runtime.
4023 */
4024 reserve = min(2, reserve);
4025 old_reserve = zone->nr_migrate_reserve_block;
4026
4027 /* When memory hot-add, we almost always need to do nothing */
4028 if (reserve == old_reserve)
4029 return;
4030 zone->nr_migrate_reserve_block = reserve;
4031
4032 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4033 if (!pfn_valid(pfn))
4034 continue;
4035 page = pfn_to_page(pfn);
4036
4037 /* Watch out for overlapping nodes */
4038 if (page_to_nid(page) != zone_to_nid(zone))
4039 continue;
4040
4041 block_migratetype = get_pageblock_migratetype(page);
4042
4043 /* Only test what is necessary when the reserves are not met */
4044 if (reserve > 0) {
4045 /*
4046 * Blocks with reserved pages will never free, skip
4047 * them.
4048 */
4049 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4050 if (pageblock_is_reserved(pfn, block_end_pfn))
4051 continue;
4052
4053 /* If this block is reserved, account for it */
4054 if (block_migratetype == MIGRATE_RESERVE) {
4055 reserve--;
4056 continue;
4057 }
4058
4059 /* Suitable for reserving if this block is movable */
4060 if (block_migratetype == MIGRATE_MOVABLE) {
4061 set_pageblock_migratetype(page,
4062 MIGRATE_RESERVE);
4063 move_freepages_block(zone, page,
4064 MIGRATE_RESERVE);
4065 reserve--;
4066 continue;
4067 }
4068 } else if (!old_reserve) {
4069 /*
4070 * At boot time we don't need to scan the whole zone
4071 * for turning off MIGRATE_RESERVE.
4072 */
4073 break;
4074 }
4075
4076 /*
4077 * If the reserve is met and this is a previous reserved block,
4078 * take it back
4079 */
4080 if (block_migratetype == MIGRATE_RESERVE) {
4081 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4082 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4083 }
4084 }
4085 }
4086
4087 /*
4088 * Initially all pages are reserved - free ones are freed
4089 * up by free_all_bootmem() once the early boot process is
4090 * done. Non-atomic initialization, single-pass.
4091 */
4092 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4093 unsigned long start_pfn, enum memmap_context context)
4094 {
4095 struct page *page;
4096 unsigned long end_pfn = start_pfn + size;
4097 unsigned long pfn;
4098 struct zone *z;
4099
4100 if (highest_memmap_pfn < end_pfn - 1)
4101 highest_memmap_pfn = end_pfn - 1;
4102
4103 z = &NODE_DATA(nid)->node_zones[zone];
4104 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4105 /*
4106 * There can be holes in boot-time mem_map[]s
4107 * handed to this function. They do not
4108 * exist on hotplugged memory.
4109 */
4110 if (context == MEMMAP_EARLY) {
4111 if (!early_pfn_valid(pfn))
4112 continue;
4113 if (!early_pfn_in_nid(pfn, nid))
4114 continue;
4115 }
4116 page = pfn_to_page(pfn);
4117 set_page_links(page, zone, nid, pfn);
4118 mminit_verify_page_links(page, zone, nid, pfn);
4119 init_page_count(page);
4120 page_mapcount_reset(page);
4121 page_cpupid_reset_last(page);
4122 SetPageReserved(page);
4123 /*
4124 * Mark the block movable so that blocks are reserved for
4125 * movable at startup. This will force kernel allocations
4126 * to reserve their blocks rather than leaking throughout
4127 * the address space during boot when many long-lived
4128 * kernel allocations are made. Later some blocks near
4129 * the start are marked MIGRATE_RESERVE by
4130 * setup_zone_migrate_reserve()
4131 *
4132 * bitmap is created for zone's valid pfn range. but memmap
4133 * can be created for invalid pages (for alignment)
4134 * check here not to call set_pageblock_migratetype() against
4135 * pfn out of zone.
4136 */
4137 if ((z->zone_start_pfn <= pfn)
4138 && (pfn < zone_end_pfn(z))
4139 && !(pfn & (pageblock_nr_pages - 1)))
4140 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4141
4142 INIT_LIST_HEAD(&page->lru);
4143 #ifdef WANT_PAGE_VIRTUAL
4144 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4145 if (!is_highmem_idx(zone))
4146 set_page_address(page, __va(pfn << PAGE_SHIFT));
4147 #endif
4148 }
4149 }
4150
4151 static void __meminit zone_init_free_lists(struct zone *zone)
4152 {
4153 unsigned int order, t;
4154 for_each_migratetype_order(order, t) {
4155 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4156 zone->free_area[order].nr_free = 0;
4157 }
4158 }
4159
4160 #ifndef __HAVE_ARCH_MEMMAP_INIT
4161 #define memmap_init(size, nid, zone, start_pfn) \
4162 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4163 #endif
4164
4165 static int zone_batchsize(struct zone *zone)
4166 {
4167 #ifdef CONFIG_MMU
4168 int batch;
4169
4170 /*
4171 * The per-cpu-pages pools are set to around 1000th of the
4172 * size of the zone. But no more than 1/2 of a meg.
4173 *
4174 * OK, so we don't know how big the cache is. So guess.
4175 */
4176 batch = zone->managed_pages / 1024;
4177 if (batch * PAGE_SIZE > 512 * 1024)
4178 batch = (512 * 1024) / PAGE_SIZE;
4179 batch /= 4; /* We effectively *= 4 below */
4180 if (batch < 1)
4181 batch = 1;
4182
4183 /*
4184 * Clamp the batch to a 2^n - 1 value. Having a power
4185 * of 2 value was found to be more likely to have
4186 * suboptimal cache aliasing properties in some cases.
4187 *
4188 * For example if 2 tasks are alternately allocating
4189 * batches of pages, one task can end up with a lot
4190 * of pages of one half of the possible page colors
4191 * and the other with pages of the other colors.
4192 */
4193 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4194
4195 return batch;
4196
4197 #else
4198 /* The deferral and batching of frees should be suppressed under NOMMU
4199 * conditions.
4200 *
4201 * The problem is that NOMMU needs to be able to allocate large chunks
4202 * of contiguous memory as there's no hardware page translation to
4203 * assemble apparent contiguous memory from discontiguous pages.
4204 *
4205 * Queueing large contiguous runs of pages for batching, however,
4206 * causes the pages to actually be freed in smaller chunks. As there
4207 * can be a significant delay between the individual batches being
4208 * recycled, this leads to the once large chunks of space being
4209 * fragmented and becoming unavailable for high-order allocations.
4210 */
4211 return 0;
4212 #endif
4213 }
4214
4215 /*
4216 * pcp->high and pcp->batch values are related and dependent on one another:
4217 * ->batch must never be higher then ->high.
4218 * The following function updates them in a safe manner without read side
4219 * locking.
4220 *
4221 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4222 * those fields changing asynchronously (acording the the above rule).
4223 *
4224 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4225 * outside of boot time (or some other assurance that no concurrent updaters
4226 * exist).
4227 */
4228 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4229 unsigned long batch)
4230 {
4231 /* start with a fail safe value for batch */
4232 pcp->batch = 1;
4233 smp_wmb();
4234
4235 /* Update high, then batch, in order */
4236 pcp->high = high;
4237 smp_wmb();
4238
4239 pcp->batch = batch;
4240 }
4241
4242 /* a companion to pageset_set_high() */
4243 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4244 {
4245 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4246 }
4247
4248 static void pageset_init(struct per_cpu_pageset *p)
4249 {
4250 struct per_cpu_pages *pcp;
4251 int migratetype;
4252
4253 memset(p, 0, sizeof(*p));
4254
4255 pcp = &p->pcp;
4256 pcp->count = 0;
4257 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4258 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4259 }
4260
4261 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4262 {
4263 pageset_init(p);
4264 pageset_set_batch(p, batch);
4265 }
4266
4267 /*
4268 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4269 * to the value high for the pageset p.
4270 */
4271 static void pageset_set_high(struct per_cpu_pageset *p,
4272 unsigned long high)
4273 {
4274 unsigned long batch = max(1UL, high / 4);
4275 if ((high / 4) > (PAGE_SHIFT * 8))
4276 batch = PAGE_SHIFT * 8;
4277
4278 pageset_update(&p->pcp, high, batch);
4279 }
4280
4281 static void pageset_set_high_and_batch(struct zone *zone,
4282 struct per_cpu_pageset *pcp)
4283 {
4284 if (percpu_pagelist_fraction)
4285 pageset_set_high(pcp,
4286 (zone->managed_pages /
4287 percpu_pagelist_fraction));
4288 else
4289 pageset_set_batch(pcp, zone_batchsize(zone));
4290 }
4291
4292 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4293 {
4294 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4295
4296 pageset_init(pcp);
4297 pageset_set_high_and_batch(zone, pcp);
4298 }
4299
4300 static void __meminit setup_zone_pageset(struct zone *zone)
4301 {
4302 int cpu;
4303 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4304 for_each_possible_cpu(cpu)
4305 zone_pageset_init(zone, cpu);
4306 }
4307
4308 /*
4309 * Allocate per cpu pagesets and initialize them.
4310 * Before this call only boot pagesets were available.
4311 */
4312 void __init setup_per_cpu_pageset(void)
4313 {
4314 struct zone *zone;
4315
4316 for_each_populated_zone(zone)
4317 setup_zone_pageset(zone);
4318 }
4319
4320 static noinline __init_refok
4321 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4322 {
4323 int i;
4324 size_t alloc_size;
4325
4326 /*
4327 * The per-page waitqueue mechanism uses hashed waitqueues
4328 * per zone.
4329 */
4330 zone->wait_table_hash_nr_entries =
4331 wait_table_hash_nr_entries(zone_size_pages);
4332 zone->wait_table_bits =
4333 wait_table_bits(zone->wait_table_hash_nr_entries);
4334 alloc_size = zone->wait_table_hash_nr_entries
4335 * sizeof(wait_queue_head_t);
4336
4337 if (!slab_is_available()) {
4338 zone->wait_table = (wait_queue_head_t *)
4339 memblock_virt_alloc_node_nopanic(
4340 alloc_size, zone->zone_pgdat->node_id);
4341 } else {
4342 /*
4343 * This case means that a zone whose size was 0 gets new memory
4344 * via memory hot-add.
4345 * But it may be the case that a new node was hot-added. In
4346 * this case vmalloc() will not be able to use this new node's
4347 * memory - this wait_table must be initialized to use this new
4348 * node itself as well.
4349 * To use this new node's memory, further consideration will be
4350 * necessary.
4351 */
4352 zone->wait_table = vmalloc(alloc_size);
4353 }
4354 if (!zone->wait_table)
4355 return -ENOMEM;
4356
4357 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4358 init_waitqueue_head(zone->wait_table + i);
4359
4360 return 0;
4361 }
4362
4363 static __meminit void zone_pcp_init(struct zone *zone)
4364 {
4365 /*
4366 * per cpu subsystem is not up at this point. The following code
4367 * relies on the ability of the linker to provide the
4368 * offset of a (static) per cpu variable into the per cpu area.
4369 */
4370 zone->pageset = &boot_pageset;
4371
4372 if (populated_zone(zone))
4373 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4374 zone->name, zone->present_pages,
4375 zone_batchsize(zone));
4376 }
4377
4378 int __meminit init_currently_empty_zone(struct zone *zone,
4379 unsigned long zone_start_pfn,
4380 unsigned long size,
4381 enum memmap_context context)
4382 {
4383 struct pglist_data *pgdat = zone->zone_pgdat;
4384 int ret;
4385 ret = zone_wait_table_init(zone, size);
4386 if (ret)
4387 return ret;
4388 pgdat->nr_zones = zone_idx(zone) + 1;
4389
4390 zone->zone_start_pfn = zone_start_pfn;
4391
4392 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4393 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4394 pgdat->node_id,
4395 (unsigned long)zone_idx(zone),
4396 zone_start_pfn, (zone_start_pfn + size));
4397
4398 zone_init_free_lists(zone);
4399
4400 return 0;
4401 }
4402
4403 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4404 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4405 /*
4406 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4407 */
4408 int __meminit __early_pfn_to_nid(unsigned long pfn)
4409 {
4410 unsigned long start_pfn, end_pfn;
4411 int nid;
4412 /*
4413 * NOTE: The following SMP-unsafe globals are only used early in boot
4414 * when the kernel is running single-threaded.
4415 */
4416 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4417 static int __meminitdata last_nid;
4418
4419 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4420 return last_nid;
4421
4422 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4423 if (nid != -1) {
4424 last_start_pfn = start_pfn;
4425 last_end_pfn = end_pfn;
4426 last_nid = nid;
4427 }
4428
4429 return nid;
4430 }
4431 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4432
4433 int __meminit early_pfn_to_nid(unsigned long pfn)
4434 {
4435 int nid;
4436
4437 nid = __early_pfn_to_nid(pfn);
4438 if (nid >= 0)
4439 return nid;
4440 /* just returns 0 */
4441 return 0;
4442 }
4443
4444 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4445 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4446 {
4447 int nid;
4448
4449 nid = __early_pfn_to_nid(pfn);
4450 if (nid >= 0 && nid != node)
4451 return false;
4452 return true;
4453 }
4454 #endif
4455
4456 /**
4457 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4458 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4459 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4460 *
4461 * If an architecture guarantees that all ranges registered contain no holes
4462 * and may be freed, this this function may be used instead of calling
4463 * memblock_free_early_nid() manually.
4464 */
4465 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4466 {
4467 unsigned long start_pfn, end_pfn;
4468 int i, this_nid;
4469
4470 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4471 start_pfn = min(start_pfn, max_low_pfn);
4472 end_pfn = min(end_pfn, max_low_pfn);
4473
4474 if (start_pfn < end_pfn)
4475 memblock_free_early_nid(PFN_PHYS(start_pfn),
4476 (end_pfn - start_pfn) << PAGE_SHIFT,
4477 this_nid);
4478 }
4479 }
4480
4481 /**
4482 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4483 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4484 *
4485 * If an architecture guarantees that all ranges registered contain no holes and may
4486 * be freed, this function may be used instead of calling memory_present() manually.
4487 */
4488 void __init sparse_memory_present_with_active_regions(int nid)
4489 {
4490 unsigned long start_pfn, end_pfn;
4491 int i, this_nid;
4492
4493 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4494 memory_present(this_nid, start_pfn, end_pfn);
4495 }
4496
4497 /**
4498 * get_pfn_range_for_nid - Return the start and end page frames for a node
4499 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4500 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4501 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4502 *
4503 * It returns the start and end page frame of a node based on information
4504 * provided by memblock_set_node(). If called for a node
4505 * with no available memory, a warning is printed and the start and end
4506 * PFNs will be 0.
4507 */
4508 void __meminit get_pfn_range_for_nid(unsigned int nid,
4509 unsigned long *start_pfn, unsigned long *end_pfn)
4510 {
4511 unsigned long this_start_pfn, this_end_pfn;
4512 int i;
4513
4514 *start_pfn = -1UL;
4515 *end_pfn = 0;
4516
4517 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4518 *start_pfn = min(*start_pfn, this_start_pfn);
4519 *end_pfn = max(*end_pfn, this_end_pfn);
4520 }
4521
4522 if (*start_pfn == -1UL)
4523 *start_pfn = 0;
4524 }
4525
4526 /*
4527 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4528 * assumption is made that zones within a node are ordered in monotonic
4529 * increasing memory addresses so that the "highest" populated zone is used
4530 */
4531 static void __init find_usable_zone_for_movable(void)
4532 {
4533 int zone_index;
4534 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4535 if (zone_index == ZONE_MOVABLE)
4536 continue;
4537
4538 if (arch_zone_highest_possible_pfn[zone_index] >
4539 arch_zone_lowest_possible_pfn[zone_index])
4540 break;
4541 }
4542
4543 VM_BUG_ON(zone_index == -1);
4544 movable_zone = zone_index;
4545 }
4546
4547 /*
4548 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4549 * because it is sized independent of architecture. Unlike the other zones,
4550 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4551 * in each node depending on the size of each node and how evenly kernelcore
4552 * is distributed. This helper function adjusts the zone ranges
4553 * provided by the architecture for a given node by using the end of the
4554 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4555 * zones within a node are in order of monotonic increases memory addresses
4556 */
4557 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4558 unsigned long zone_type,
4559 unsigned long node_start_pfn,
4560 unsigned long node_end_pfn,
4561 unsigned long *zone_start_pfn,
4562 unsigned long *zone_end_pfn)
4563 {
4564 /* Only adjust if ZONE_MOVABLE is on this node */
4565 if (zone_movable_pfn[nid]) {
4566 /* Size ZONE_MOVABLE */
4567 if (zone_type == ZONE_MOVABLE) {
4568 *zone_start_pfn = zone_movable_pfn[nid];
4569 *zone_end_pfn = min(node_end_pfn,
4570 arch_zone_highest_possible_pfn[movable_zone]);
4571
4572 /* Adjust for ZONE_MOVABLE starting within this range */
4573 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4574 *zone_end_pfn > zone_movable_pfn[nid]) {
4575 *zone_end_pfn = zone_movable_pfn[nid];
4576
4577 /* Check if this whole range is within ZONE_MOVABLE */
4578 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4579 *zone_start_pfn = *zone_end_pfn;
4580 }
4581 }
4582
4583 /*
4584 * Return the number of pages a zone spans in a node, including holes
4585 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4586 */
4587 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4588 unsigned long zone_type,
4589 unsigned long node_start_pfn,
4590 unsigned long node_end_pfn,
4591 unsigned long *ignored)
4592 {
4593 unsigned long zone_start_pfn, zone_end_pfn;
4594
4595 /* Get the start and end of the zone */
4596 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4597 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4598 adjust_zone_range_for_zone_movable(nid, zone_type,
4599 node_start_pfn, node_end_pfn,
4600 &zone_start_pfn, &zone_end_pfn);
4601
4602 /* Check that this node has pages within the zone's required range */
4603 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4604 return 0;
4605
4606 /* Move the zone boundaries inside the node if necessary */
4607 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4608 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4609
4610 /* Return the spanned pages */
4611 return zone_end_pfn - zone_start_pfn;
4612 }
4613
4614 /*
4615 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4616 * then all holes in the requested range will be accounted for.
4617 */
4618 unsigned long __meminit __absent_pages_in_range(int nid,
4619 unsigned long range_start_pfn,
4620 unsigned long range_end_pfn)
4621 {
4622 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4623 unsigned long start_pfn, end_pfn;
4624 int i;
4625
4626 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4627 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4628 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4629 nr_absent -= end_pfn - start_pfn;
4630 }
4631 return nr_absent;
4632 }
4633
4634 /**
4635 * absent_pages_in_range - Return number of page frames in holes within a range
4636 * @start_pfn: The start PFN to start searching for holes
4637 * @end_pfn: The end PFN to stop searching for holes
4638 *
4639 * It returns the number of pages frames in memory holes within a range.
4640 */
4641 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4642 unsigned long end_pfn)
4643 {
4644 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4645 }
4646
4647 /* Return the number of page frames in holes in a zone on a node */
4648 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4649 unsigned long zone_type,
4650 unsigned long node_start_pfn,
4651 unsigned long node_end_pfn,
4652 unsigned long *ignored)
4653 {
4654 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4655 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4656 unsigned long zone_start_pfn, zone_end_pfn;
4657
4658 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4659 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4660
4661 adjust_zone_range_for_zone_movable(nid, zone_type,
4662 node_start_pfn, node_end_pfn,
4663 &zone_start_pfn, &zone_end_pfn);
4664 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4665 }
4666
4667 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4668 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4669 unsigned long zone_type,
4670 unsigned long node_start_pfn,
4671 unsigned long node_end_pfn,
4672 unsigned long *zones_size)
4673 {
4674 return zones_size[zone_type];
4675 }
4676
4677 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4678 unsigned long zone_type,
4679 unsigned long node_start_pfn,
4680 unsigned long node_end_pfn,
4681 unsigned long *zholes_size)
4682 {
4683 if (!zholes_size)
4684 return 0;
4685
4686 return zholes_size[zone_type];
4687 }
4688
4689 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4690
4691 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4692 unsigned long node_start_pfn,
4693 unsigned long node_end_pfn,
4694 unsigned long *zones_size,
4695 unsigned long *zholes_size)
4696 {
4697 unsigned long realtotalpages, totalpages = 0;
4698 enum zone_type i;
4699
4700 for (i = 0; i < MAX_NR_ZONES; i++)
4701 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4702 node_start_pfn,
4703 node_end_pfn,
4704 zones_size);
4705 pgdat->node_spanned_pages = totalpages;
4706
4707 realtotalpages = totalpages;
4708 for (i = 0; i < MAX_NR_ZONES; i++)
4709 realtotalpages -=
4710 zone_absent_pages_in_node(pgdat->node_id, i,
4711 node_start_pfn, node_end_pfn,
4712 zholes_size);
4713 pgdat->node_present_pages = realtotalpages;
4714 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4715 realtotalpages);
4716 }
4717
4718 #ifndef CONFIG_SPARSEMEM
4719 /*
4720 * Calculate the size of the zone->blockflags rounded to an unsigned long
4721 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4722 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4723 * round what is now in bits to nearest long in bits, then return it in
4724 * bytes.
4725 */
4726 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4727 {
4728 unsigned long usemapsize;
4729
4730 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4731 usemapsize = roundup(zonesize, pageblock_nr_pages);
4732 usemapsize = usemapsize >> pageblock_order;
4733 usemapsize *= NR_PAGEBLOCK_BITS;
4734 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4735
4736 return usemapsize / 8;
4737 }
4738
4739 static void __init setup_usemap(struct pglist_data *pgdat,
4740 struct zone *zone,
4741 unsigned long zone_start_pfn,
4742 unsigned long zonesize)
4743 {
4744 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4745 zone->pageblock_flags = NULL;
4746 if (usemapsize)
4747 zone->pageblock_flags =
4748 memblock_virt_alloc_node_nopanic(usemapsize,
4749 pgdat->node_id);
4750 }
4751 #else
4752 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4753 unsigned long zone_start_pfn, unsigned long zonesize) {}
4754 #endif /* CONFIG_SPARSEMEM */
4755
4756 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4757
4758 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4759 void __paginginit set_pageblock_order(void)
4760 {
4761 unsigned int order;
4762
4763 /* Check that pageblock_nr_pages has not already been setup */
4764 if (pageblock_order)
4765 return;
4766
4767 if (HPAGE_SHIFT > PAGE_SHIFT)
4768 order = HUGETLB_PAGE_ORDER;
4769 else
4770 order = MAX_ORDER - 1;
4771
4772 /*
4773 * Assume the largest contiguous order of interest is a huge page.
4774 * This value may be variable depending on boot parameters on IA64 and
4775 * powerpc.
4776 */
4777 pageblock_order = order;
4778 }
4779 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4780
4781 /*
4782 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4783 * is unused as pageblock_order is set at compile-time. See
4784 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4785 * the kernel config
4786 */
4787 void __paginginit set_pageblock_order(void)
4788 {
4789 }
4790
4791 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4792
4793 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4794 unsigned long present_pages)
4795 {
4796 unsigned long pages = spanned_pages;
4797
4798 /*
4799 * Provide a more accurate estimation if there are holes within
4800 * the zone and SPARSEMEM is in use. If there are holes within the
4801 * zone, each populated memory region may cost us one or two extra
4802 * memmap pages due to alignment because memmap pages for each
4803 * populated regions may not naturally algined on page boundary.
4804 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4805 */
4806 if (spanned_pages > present_pages + (present_pages >> 4) &&
4807 IS_ENABLED(CONFIG_SPARSEMEM))
4808 pages = present_pages;
4809
4810 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4811 }
4812
4813 /*
4814 * Set up the zone data structures:
4815 * - mark all pages reserved
4816 * - mark all memory queues empty
4817 * - clear the memory bitmaps
4818 *
4819 * NOTE: pgdat should get zeroed by caller.
4820 */
4821 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4822 unsigned long node_start_pfn, unsigned long node_end_pfn,
4823 unsigned long *zones_size, unsigned long *zholes_size)
4824 {
4825 enum zone_type j;
4826 int nid = pgdat->node_id;
4827 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4828 int ret;
4829
4830 pgdat_resize_init(pgdat);
4831 #ifdef CONFIG_NUMA_BALANCING
4832 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4833 pgdat->numabalancing_migrate_nr_pages = 0;
4834 pgdat->numabalancing_migrate_next_window = jiffies;
4835 #endif
4836 init_waitqueue_head(&pgdat->kswapd_wait);
4837 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4838 pgdat_page_ext_init(pgdat);
4839
4840 for (j = 0; j < MAX_NR_ZONES; j++) {
4841 struct zone *zone = pgdat->node_zones + j;
4842 unsigned long size, realsize, freesize, memmap_pages;
4843
4844 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4845 node_end_pfn, zones_size);
4846 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4847 node_start_pfn,
4848 node_end_pfn,
4849 zholes_size);
4850
4851 /*
4852 * Adjust freesize so that it accounts for how much memory
4853 * is used by this zone for memmap. This affects the watermark
4854 * and per-cpu initialisations
4855 */
4856 memmap_pages = calc_memmap_size(size, realsize);
4857 if (!is_highmem_idx(j)) {
4858 if (freesize >= memmap_pages) {
4859 freesize -= memmap_pages;
4860 if (memmap_pages)
4861 printk(KERN_DEBUG
4862 " %s zone: %lu pages used for memmap\n",
4863 zone_names[j], memmap_pages);
4864 } else
4865 printk(KERN_WARNING
4866 " %s zone: %lu pages exceeds freesize %lu\n",
4867 zone_names[j], memmap_pages, freesize);
4868 }
4869
4870 /* Account for reserved pages */
4871 if (j == 0 && freesize > dma_reserve) {
4872 freesize -= dma_reserve;
4873 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4874 zone_names[0], dma_reserve);
4875 }
4876
4877 if (!is_highmem_idx(j))
4878 nr_kernel_pages += freesize;
4879 /* Charge for highmem memmap if there are enough kernel pages */
4880 else if (nr_kernel_pages > memmap_pages * 2)
4881 nr_kernel_pages -= memmap_pages;
4882 nr_all_pages += freesize;
4883
4884 zone->spanned_pages = size;
4885 zone->present_pages = realsize;
4886 /*
4887 * Set an approximate value for lowmem here, it will be adjusted
4888 * when the bootmem allocator frees pages into the buddy system.
4889 * And all highmem pages will be managed by the buddy system.
4890 */
4891 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4892 #ifdef CONFIG_NUMA
4893 zone->node = nid;
4894 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4895 / 100;
4896 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4897 #endif
4898 zone->name = zone_names[j];
4899 spin_lock_init(&zone->lock);
4900 spin_lock_init(&zone->lru_lock);
4901 zone_seqlock_init(zone);
4902 zone->zone_pgdat = pgdat;
4903 zone_pcp_init(zone);
4904
4905 /* For bootup, initialized properly in watermark setup */
4906 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4907
4908 lruvec_init(&zone->lruvec);
4909 if (!size)
4910 continue;
4911
4912 set_pageblock_order();
4913 setup_usemap(pgdat, zone, zone_start_pfn, size);
4914 ret = init_currently_empty_zone(zone, zone_start_pfn,
4915 size, MEMMAP_EARLY);
4916 BUG_ON(ret);
4917 memmap_init(size, nid, j, zone_start_pfn);
4918 zone_start_pfn += size;
4919 }
4920 }
4921
4922 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4923 {
4924 /* Skip empty nodes */
4925 if (!pgdat->node_spanned_pages)
4926 return;
4927
4928 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4929 /* ia64 gets its own node_mem_map, before this, without bootmem */
4930 if (!pgdat->node_mem_map) {
4931 unsigned long size, start, end;
4932 struct page *map;
4933
4934 /*
4935 * The zone's endpoints aren't required to be MAX_ORDER
4936 * aligned but the node_mem_map endpoints must be in order
4937 * for the buddy allocator to function correctly.
4938 */
4939 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4940 end = pgdat_end_pfn(pgdat);
4941 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4942 size = (end - start) * sizeof(struct page);
4943 map = alloc_remap(pgdat->node_id, size);
4944 if (!map)
4945 map = memblock_virt_alloc_node_nopanic(size,
4946 pgdat->node_id);
4947 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4948 }
4949 #ifndef CONFIG_NEED_MULTIPLE_NODES
4950 /*
4951 * With no DISCONTIG, the global mem_map is just set as node 0's
4952 */
4953 if (pgdat == NODE_DATA(0)) {
4954 mem_map = NODE_DATA(0)->node_mem_map;
4955 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4956 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4957 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4958 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4959 }
4960 #endif
4961 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4962 }
4963
4964 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4965 unsigned long node_start_pfn, unsigned long *zholes_size)
4966 {
4967 pg_data_t *pgdat = NODE_DATA(nid);
4968 unsigned long start_pfn = 0;
4969 unsigned long end_pfn = 0;
4970
4971 /* pg_data_t should be reset to zero when it's allocated */
4972 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4973
4974 pgdat->node_id = nid;
4975 pgdat->node_start_pfn = node_start_pfn;
4976 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4977 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4978 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
4979 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
4980 #endif
4981 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4982 zones_size, zholes_size);
4983
4984 alloc_node_mem_map(pgdat);
4985 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4986 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4987 nid, (unsigned long)pgdat,
4988 (unsigned long)pgdat->node_mem_map);
4989 #endif
4990
4991 free_area_init_core(pgdat, start_pfn, end_pfn,
4992 zones_size, zholes_size);
4993 }
4994
4995 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4996
4997 #if MAX_NUMNODES > 1
4998 /*
4999 * Figure out the number of possible node ids.
5000 */
5001 void __init setup_nr_node_ids(void)
5002 {
5003 unsigned int node;
5004 unsigned int highest = 0;
5005
5006 for_each_node_mask(node, node_possible_map)
5007 highest = node;
5008 nr_node_ids = highest + 1;
5009 }
5010 #endif
5011
5012 /**
5013 * node_map_pfn_alignment - determine the maximum internode alignment
5014 *
5015 * This function should be called after node map is populated and sorted.
5016 * It calculates the maximum power of two alignment which can distinguish
5017 * all the nodes.
5018 *
5019 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5020 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5021 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5022 * shifted, 1GiB is enough and this function will indicate so.
5023 *
5024 * This is used to test whether pfn -> nid mapping of the chosen memory
5025 * model has fine enough granularity to avoid incorrect mapping for the
5026 * populated node map.
5027 *
5028 * Returns the determined alignment in pfn's. 0 if there is no alignment
5029 * requirement (single node).
5030 */
5031 unsigned long __init node_map_pfn_alignment(void)
5032 {
5033 unsigned long accl_mask = 0, last_end = 0;
5034 unsigned long start, end, mask;
5035 int last_nid = -1;
5036 int i, nid;
5037
5038 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5039 if (!start || last_nid < 0 || last_nid == nid) {
5040 last_nid = nid;
5041 last_end = end;
5042 continue;
5043 }
5044
5045 /*
5046 * Start with a mask granular enough to pin-point to the
5047 * start pfn and tick off bits one-by-one until it becomes
5048 * too coarse to separate the current node from the last.
5049 */
5050 mask = ~((1 << __ffs(start)) - 1);
5051 while (mask && last_end <= (start & (mask << 1)))
5052 mask <<= 1;
5053
5054 /* accumulate all internode masks */
5055 accl_mask |= mask;
5056 }
5057
5058 /* convert mask to number of pages */
5059 return ~accl_mask + 1;
5060 }
5061
5062 /* Find the lowest pfn for a node */
5063 static unsigned long __init find_min_pfn_for_node(int nid)
5064 {
5065 unsigned long min_pfn = ULONG_MAX;
5066 unsigned long start_pfn;
5067 int i;
5068
5069 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5070 min_pfn = min(min_pfn, start_pfn);
5071
5072 if (min_pfn == ULONG_MAX) {
5073 printk(KERN_WARNING
5074 "Could not find start_pfn for node %d\n", nid);
5075 return 0;
5076 }
5077
5078 return min_pfn;
5079 }
5080
5081 /**
5082 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5083 *
5084 * It returns the minimum PFN based on information provided via
5085 * memblock_set_node().
5086 */
5087 unsigned long __init find_min_pfn_with_active_regions(void)
5088 {
5089 return find_min_pfn_for_node(MAX_NUMNODES);
5090 }
5091
5092 /*
5093 * early_calculate_totalpages()
5094 * Sum pages in active regions for movable zone.
5095 * Populate N_MEMORY for calculating usable_nodes.
5096 */
5097 static unsigned long __init early_calculate_totalpages(void)
5098 {
5099 unsigned long totalpages = 0;
5100 unsigned long start_pfn, end_pfn;
5101 int i, nid;
5102
5103 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5104 unsigned long pages = end_pfn - start_pfn;
5105
5106 totalpages += pages;
5107 if (pages)
5108 node_set_state(nid, N_MEMORY);
5109 }
5110 return totalpages;
5111 }
5112
5113 /*
5114 * Find the PFN the Movable zone begins in each node. Kernel memory
5115 * is spread evenly between nodes as long as the nodes have enough
5116 * memory. When they don't, some nodes will have more kernelcore than
5117 * others
5118 */
5119 static void __init find_zone_movable_pfns_for_nodes(void)
5120 {
5121 int i, nid;
5122 unsigned long usable_startpfn;
5123 unsigned long kernelcore_node, kernelcore_remaining;
5124 /* save the state before borrow the nodemask */
5125 nodemask_t saved_node_state = node_states[N_MEMORY];
5126 unsigned long totalpages = early_calculate_totalpages();
5127 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5128 struct memblock_region *r;
5129
5130 /* Need to find movable_zone earlier when movable_node is specified. */
5131 find_usable_zone_for_movable();
5132
5133 /*
5134 * If movable_node is specified, ignore kernelcore and movablecore
5135 * options.
5136 */
5137 if (movable_node_is_enabled()) {
5138 for_each_memblock(memory, r) {
5139 if (!memblock_is_hotpluggable(r))
5140 continue;
5141
5142 nid = r->nid;
5143
5144 usable_startpfn = PFN_DOWN(r->base);
5145 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5146 min(usable_startpfn, zone_movable_pfn[nid]) :
5147 usable_startpfn;
5148 }
5149
5150 goto out2;
5151 }
5152
5153 /*
5154 * If movablecore=nn[KMG] was specified, calculate what size of
5155 * kernelcore that corresponds so that memory usable for
5156 * any allocation type is evenly spread. If both kernelcore
5157 * and movablecore are specified, then the value of kernelcore
5158 * will be used for required_kernelcore if it's greater than
5159 * what movablecore would have allowed.
5160 */
5161 if (required_movablecore) {
5162 unsigned long corepages;
5163
5164 /*
5165 * Round-up so that ZONE_MOVABLE is at least as large as what
5166 * was requested by the user
5167 */
5168 required_movablecore =
5169 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5170 corepages = totalpages - required_movablecore;
5171
5172 required_kernelcore = max(required_kernelcore, corepages);
5173 }
5174
5175 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5176 if (!required_kernelcore)
5177 goto out;
5178
5179 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5180 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5181
5182 restart:
5183 /* Spread kernelcore memory as evenly as possible throughout nodes */
5184 kernelcore_node = required_kernelcore / usable_nodes;
5185 for_each_node_state(nid, N_MEMORY) {
5186 unsigned long start_pfn, end_pfn;
5187
5188 /*
5189 * Recalculate kernelcore_node if the division per node
5190 * now exceeds what is necessary to satisfy the requested
5191 * amount of memory for the kernel
5192 */
5193 if (required_kernelcore < kernelcore_node)
5194 kernelcore_node = required_kernelcore / usable_nodes;
5195
5196 /*
5197 * As the map is walked, we track how much memory is usable
5198 * by the kernel using kernelcore_remaining. When it is
5199 * 0, the rest of the node is usable by ZONE_MOVABLE
5200 */
5201 kernelcore_remaining = kernelcore_node;
5202
5203 /* Go through each range of PFNs within this node */
5204 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5205 unsigned long size_pages;
5206
5207 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5208 if (start_pfn >= end_pfn)
5209 continue;
5210
5211 /* Account for what is only usable for kernelcore */
5212 if (start_pfn < usable_startpfn) {
5213 unsigned long kernel_pages;
5214 kernel_pages = min(end_pfn, usable_startpfn)
5215 - start_pfn;
5216
5217 kernelcore_remaining -= min(kernel_pages,
5218 kernelcore_remaining);
5219 required_kernelcore -= min(kernel_pages,
5220 required_kernelcore);
5221
5222 /* Continue if range is now fully accounted */
5223 if (end_pfn <= usable_startpfn) {
5224
5225 /*
5226 * Push zone_movable_pfn to the end so
5227 * that if we have to rebalance
5228 * kernelcore across nodes, we will
5229 * not double account here
5230 */
5231 zone_movable_pfn[nid] = end_pfn;
5232 continue;
5233 }
5234 start_pfn = usable_startpfn;
5235 }
5236
5237 /*
5238 * The usable PFN range for ZONE_MOVABLE is from
5239 * start_pfn->end_pfn. Calculate size_pages as the
5240 * number of pages used as kernelcore
5241 */
5242 size_pages = end_pfn - start_pfn;
5243 if (size_pages > kernelcore_remaining)
5244 size_pages = kernelcore_remaining;
5245 zone_movable_pfn[nid] = start_pfn + size_pages;
5246
5247 /*
5248 * Some kernelcore has been met, update counts and
5249 * break if the kernelcore for this node has been
5250 * satisfied
5251 */
5252 required_kernelcore -= min(required_kernelcore,
5253 size_pages);
5254 kernelcore_remaining -= size_pages;
5255 if (!kernelcore_remaining)
5256 break;
5257 }
5258 }
5259
5260 /*
5261 * If there is still required_kernelcore, we do another pass with one
5262 * less node in the count. This will push zone_movable_pfn[nid] further
5263 * along on the nodes that still have memory until kernelcore is
5264 * satisfied
5265 */
5266 usable_nodes--;
5267 if (usable_nodes && required_kernelcore > usable_nodes)
5268 goto restart;
5269
5270 out2:
5271 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5272 for (nid = 0; nid < MAX_NUMNODES; nid++)
5273 zone_movable_pfn[nid] =
5274 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5275
5276 out:
5277 /* restore the node_state */
5278 node_states[N_MEMORY] = saved_node_state;
5279 }
5280
5281 /* Any regular or high memory on that node ? */
5282 static void check_for_memory(pg_data_t *pgdat, int nid)
5283 {
5284 enum zone_type zone_type;
5285
5286 if (N_MEMORY == N_NORMAL_MEMORY)
5287 return;
5288
5289 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5290 struct zone *zone = &pgdat->node_zones[zone_type];
5291 if (populated_zone(zone)) {
5292 node_set_state(nid, N_HIGH_MEMORY);
5293 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5294 zone_type <= ZONE_NORMAL)
5295 node_set_state(nid, N_NORMAL_MEMORY);
5296 break;
5297 }
5298 }
5299 }
5300
5301 /**
5302 * free_area_init_nodes - Initialise all pg_data_t and zone data
5303 * @max_zone_pfn: an array of max PFNs for each zone
5304 *
5305 * This will call free_area_init_node() for each active node in the system.
5306 * Using the page ranges provided by memblock_set_node(), the size of each
5307 * zone in each node and their holes is calculated. If the maximum PFN
5308 * between two adjacent zones match, it is assumed that the zone is empty.
5309 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5310 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5311 * starts where the previous one ended. For example, ZONE_DMA32 starts
5312 * at arch_max_dma_pfn.
5313 */
5314 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5315 {
5316 unsigned long start_pfn, end_pfn;
5317 int i, nid;
5318
5319 /* Record where the zone boundaries are */
5320 memset(arch_zone_lowest_possible_pfn, 0,
5321 sizeof(arch_zone_lowest_possible_pfn));
5322 memset(arch_zone_highest_possible_pfn, 0,
5323 sizeof(arch_zone_highest_possible_pfn));
5324 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5325 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5326 for (i = 1; i < MAX_NR_ZONES; i++) {
5327 if (i == ZONE_MOVABLE)
5328 continue;
5329 arch_zone_lowest_possible_pfn[i] =
5330 arch_zone_highest_possible_pfn[i-1];
5331 arch_zone_highest_possible_pfn[i] =
5332 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5333 }
5334 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5335 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5336
5337 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5338 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5339 find_zone_movable_pfns_for_nodes();
5340
5341 /* Print out the zone ranges */
5342 pr_info("Zone ranges:\n");
5343 for (i = 0; i < MAX_NR_ZONES; i++) {
5344 if (i == ZONE_MOVABLE)
5345 continue;
5346 pr_info(" %-8s ", zone_names[i]);
5347 if (arch_zone_lowest_possible_pfn[i] ==
5348 arch_zone_highest_possible_pfn[i])
5349 pr_cont("empty\n");
5350 else
5351 pr_cont("[mem %0#10lx-%0#10lx]\n",
5352 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5353 (arch_zone_highest_possible_pfn[i]
5354 << PAGE_SHIFT) - 1);
5355 }
5356
5357 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5358 pr_info("Movable zone start for each node\n");
5359 for (i = 0; i < MAX_NUMNODES; i++) {
5360 if (zone_movable_pfn[i])
5361 pr_info(" Node %d: %#010lx\n", i,
5362 zone_movable_pfn[i] << PAGE_SHIFT);
5363 }
5364
5365 /* Print out the early node map */
5366 pr_info("Early memory node ranges\n");
5367 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5368 pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5369 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5370
5371 /* Initialise every node */
5372 mminit_verify_pageflags_layout();
5373 setup_nr_node_ids();
5374 for_each_online_node(nid) {
5375 pg_data_t *pgdat = NODE_DATA(nid);
5376 free_area_init_node(nid, NULL,
5377 find_min_pfn_for_node(nid), NULL);
5378
5379 /* Any memory on that node */
5380 if (pgdat->node_present_pages)
5381 node_set_state(nid, N_MEMORY);
5382 check_for_memory(pgdat, nid);
5383 }
5384 }
5385
5386 static int __init cmdline_parse_core(char *p, unsigned long *core)
5387 {
5388 unsigned long long coremem;
5389 if (!p)
5390 return -EINVAL;
5391
5392 coremem = memparse(p, &p);
5393 *core = coremem >> PAGE_SHIFT;
5394
5395 /* Paranoid check that UL is enough for the coremem value */
5396 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5397
5398 return 0;
5399 }
5400
5401 /*
5402 * kernelcore=size sets the amount of memory for use for allocations that
5403 * cannot be reclaimed or migrated.
5404 */
5405 static int __init cmdline_parse_kernelcore(char *p)
5406 {
5407 return cmdline_parse_core(p, &required_kernelcore);
5408 }
5409
5410 /*
5411 * movablecore=size sets the amount of memory for use for allocations that
5412 * can be reclaimed or migrated.
5413 */
5414 static int __init cmdline_parse_movablecore(char *p)
5415 {
5416 return cmdline_parse_core(p, &required_movablecore);
5417 }
5418
5419 early_param("kernelcore", cmdline_parse_kernelcore);
5420 early_param("movablecore", cmdline_parse_movablecore);
5421
5422 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5423
5424 void adjust_managed_page_count(struct page *page, long count)
5425 {
5426 spin_lock(&managed_page_count_lock);
5427 page_zone(page)->managed_pages += count;
5428 totalram_pages += count;
5429 #ifdef CONFIG_HIGHMEM
5430 if (PageHighMem(page))
5431 totalhigh_pages += count;
5432 #endif
5433 spin_unlock(&managed_page_count_lock);
5434 }
5435 EXPORT_SYMBOL(adjust_managed_page_count);
5436
5437 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5438 {
5439 void *pos;
5440 unsigned long pages = 0;
5441
5442 start = (void *)PAGE_ALIGN((unsigned long)start);
5443 end = (void *)((unsigned long)end & PAGE_MASK);
5444 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5445 if ((unsigned int)poison <= 0xFF)
5446 memset(pos, poison, PAGE_SIZE);
5447 free_reserved_page(virt_to_page(pos));
5448 }
5449
5450 if (pages && s)
5451 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5452 s, pages << (PAGE_SHIFT - 10), start, end);
5453
5454 return pages;
5455 }
5456 EXPORT_SYMBOL(free_reserved_area);
5457
5458 #ifdef CONFIG_HIGHMEM
5459 void free_highmem_page(struct page *page)
5460 {
5461 __free_reserved_page(page);
5462 totalram_pages++;
5463 page_zone(page)->managed_pages++;
5464 totalhigh_pages++;
5465 }
5466 #endif
5467
5468
5469 void __init mem_init_print_info(const char *str)
5470 {
5471 unsigned long physpages, codesize, datasize, rosize, bss_size;
5472 unsigned long init_code_size, init_data_size;
5473
5474 physpages = get_num_physpages();
5475 codesize = _etext - _stext;
5476 datasize = _edata - _sdata;
5477 rosize = __end_rodata - __start_rodata;
5478 bss_size = __bss_stop - __bss_start;
5479 init_data_size = __init_end - __init_begin;
5480 init_code_size = _einittext - _sinittext;
5481
5482 /*
5483 * Detect special cases and adjust section sizes accordingly:
5484 * 1) .init.* may be embedded into .data sections
5485 * 2) .init.text.* may be out of [__init_begin, __init_end],
5486 * please refer to arch/tile/kernel/vmlinux.lds.S.
5487 * 3) .rodata.* may be embedded into .text or .data sections.
5488 */
5489 #define adj_init_size(start, end, size, pos, adj) \
5490 do { \
5491 if (start <= pos && pos < end && size > adj) \
5492 size -= adj; \
5493 } while (0)
5494
5495 adj_init_size(__init_begin, __init_end, init_data_size,
5496 _sinittext, init_code_size);
5497 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5498 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5499 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5500 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5501
5502 #undef adj_init_size
5503
5504 pr_info("Memory: %luK/%luK available "
5505 "(%luK kernel code, %luK rwdata, %luK rodata, "
5506 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5507 #ifdef CONFIG_HIGHMEM
5508 ", %luK highmem"
5509 #endif
5510 "%s%s)\n",
5511 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5512 codesize >> 10, datasize >> 10, rosize >> 10,
5513 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5514 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5515 totalcma_pages << (PAGE_SHIFT-10),
5516 #ifdef CONFIG_HIGHMEM
5517 totalhigh_pages << (PAGE_SHIFT-10),
5518 #endif
5519 str ? ", " : "", str ? str : "");
5520 }
5521
5522 /**
5523 * set_dma_reserve - set the specified number of pages reserved in the first zone
5524 * @new_dma_reserve: The number of pages to mark reserved
5525 *
5526 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5527 * In the DMA zone, a significant percentage may be consumed by kernel image
5528 * and other unfreeable allocations which can skew the watermarks badly. This
5529 * function may optionally be used to account for unfreeable pages in the
5530 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5531 * smaller per-cpu batchsize.
5532 */
5533 void __init set_dma_reserve(unsigned long new_dma_reserve)
5534 {
5535 dma_reserve = new_dma_reserve;
5536 }
5537
5538 void __init free_area_init(unsigned long *zones_size)
5539 {
5540 free_area_init_node(0, zones_size,
5541 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5542 }
5543
5544 static int page_alloc_cpu_notify(struct notifier_block *self,
5545 unsigned long action, void *hcpu)
5546 {
5547 int cpu = (unsigned long)hcpu;
5548
5549 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5550 lru_add_drain_cpu(cpu);
5551 drain_pages(cpu);
5552
5553 /*
5554 * Spill the event counters of the dead processor
5555 * into the current processors event counters.
5556 * This artificially elevates the count of the current
5557 * processor.
5558 */
5559 vm_events_fold_cpu(cpu);
5560
5561 /*
5562 * Zero the differential counters of the dead processor
5563 * so that the vm statistics are consistent.
5564 *
5565 * This is only okay since the processor is dead and cannot
5566 * race with what we are doing.
5567 */
5568 cpu_vm_stats_fold(cpu);
5569 }
5570 return NOTIFY_OK;
5571 }
5572
5573 void __init page_alloc_init(void)
5574 {
5575 hotcpu_notifier(page_alloc_cpu_notify, 0);
5576 }
5577
5578 /*
5579 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5580 * or min_free_kbytes changes.
5581 */
5582 static void calculate_totalreserve_pages(void)
5583 {
5584 struct pglist_data *pgdat;
5585 unsigned long reserve_pages = 0;
5586 enum zone_type i, j;
5587
5588 for_each_online_pgdat(pgdat) {
5589 for (i = 0; i < MAX_NR_ZONES; i++) {
5590 struct zone *zone = pgdat->node_zones + i;
5591 long max = 0;
5592
5593 /* Find valid and maximum lowmem_reserve in the zone */
5594 for (j = i; j < MAX_NR_ZONES; j++) {
5595 if (zone->lowmem_reserve[j] > max)
5596 max = zone->lowmem_reserve[j];
5597 }
5598
5599 /* we treat the high watermark as reserved pages. */
5600 max += high_wmark_pages(zone);
5601
5602 if (max > zone->managed_pages)
5603 max = zone->managed_pages;
5604 reserve_pages += max;
5605 /*
5606 * Lowmem reserves are not available to
5607 * GFP_HIGHUSER page cache allocations and
5608 * kswapd tries to balance zones to their high
5609 * watermark. As a result, neither should be
5610 * regarded as dirtyable memory, to prevent a
5611 * situation where reclaim has to clean pages
5612 * in order to balance the zones.
5613 */
5614 zone->dirty_balance_reserve = max;
5615 }
5616 }
5617 dirty_balance_reserve = reserve_pages;
5618 totalreserve_pages = reserve_pages;
5619 }
5620
5621 /*
5622 * setup_per_zone_lowmem_reserve - called whenever
5623 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5624 * has a correct pages reserved value, so an adequate number of
5625 * pages are left in the zone after a successful __alloc_pages().
5626 */
5627 static void setup_per_zone_lowmem_reserve(void)
5628 {
5629 struct pglist_data *pgdat;
5630 enum zone_type j, idx;
5631
5632 for_each_online_pgdat(pgdat) {
5633 for (j = 0; j < MAX_NR_ZONES; j++) {
5634 struct zone *zone = pgdat->node_zones + j;
5635 unsigned long managed_pages = zone->managed_pages;
5636
5637 zone->lowmem_reserve[j] = 0;
5638
5639 idx = j;
5640 while (idx) {
5641 struct zone *lower_zone;
5642
5643 idx--;
5644
5645 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5646 sysctl_lowmem_reserve_ratio[idx] = 1;
5647
5648 lower_zone = pgdat->node_zones + idx;
5649 lower_zone->lowmem_reserve[j] = managed_pages /
5650 sysctl_lowmem_reserve_ratio[idx];
5651 managed_pages += lower_zone->managed_pages;
5652 }
5653 }
5654 }
5655
5656 /* update totalreserve_pages */
5657 calculate_totalreserve_pages();
5658 }
5659
5660 static void __setup_per_zone_wmarks(void)
5661 {
5662 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5663 unsigned long lowmem_pages = 0;
5664 struct zone *zone;
5665 unsigned long flags;
5666
5667 /* Calculate total number of !ZONE_HIGHMEM pages */
5668 for_each_zone(zone) {
5669 if (!is_highmem(zone))
5670 lowmem_pages += zone->managed_pages;
5671 }
5672
5673 for_each_zone(zone) {
5674 u64 tmp;
5675
5676 spin_lock_irqsave(&zone->lock, flags);
5677 tmp = (u64)pages_min * zone->managed_pages;
5678 do_div(tmp, lowmem_pages);
5679 if (is_highmem(zone)) {
5680 /*
5681 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5682 * need highmem pages, so cap pages_min to a small
5683 * value here.
5684 *
5685 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5686 * deltas controls asynch page reclaim, and so should
5687 * not be capped for highmem.
5688 */
5689 unsigned long min_pages;
5690
5691 min_pages = zone->managed_pages / 1024;
5692 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5693 zone->watermark[WMARK_MIN] = min_pages;
5694 } else {
5695 /*
5696 * If it's a lowmem zone, reserve a number of pages
5697 * proportionate to the zone's size.
5698 */
5699 zone->watermark[WMARK_MIN] = tmp;
5700 }
5701
5702 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5703 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5704
5705 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5706 high_wmark_pages(zone) - low_wmark_pages(zone) -
5707 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5708
5709 setup_zone_migrate_reserve(zone);
5710 spin_unlock_irqrestore(&zone->lock, flags);
5711 }
5712
5713 /* update totalreserve_pages */
5714 calculate_totalreserve_pages();
5715 }
5716
5717 /**
5718 * setup_per_zone_wmarks - called when min_free_kbytes changes
5719 * or when memory is hot-{added|removed}
5720 *
5721 * Ensures that the watermark[min,low,high] values for each zone are set
5722 * correctly with respect to min_free_kbytes.
5723 */
5724 void setup_per_zone_wmarks(void)
5725 {
5726 mutex_lock(&zonelists_mutex);
5727 __setup_per_zone_wmarks();
5728 mutex_unlock(&zonelists_mutex);
5729 }
5730
5731 /*
5732 * The inactive anon list should be small enough that the VM never has to
5733 * do too much work, but large enough that each inactive page has a chance
5734 * to be referenced again before it is swapped out.
5735 *
5736 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5737 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5738 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5739 * the anonymous pages are kept on the inactive list.
5740 *
5741 * total target max
5742 * memory ratio inactive anon
5743 * -------------------------------------
5744 * 10MB 1 5MB
5745 * 100MB 1 50MB
5746 * 1GB 3 250MB
5747 * 10GB 10 0.9GB
5748 * 100GB 31 3GB
5749 * 1TB 101 10GB
5750 * 10TB 320 32GB
5751 */
5752 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5753 {
5754 unsigned int gb, ratio;
5755
5756 /* Zone size in gigabytes */
5757 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5758 if (gb)
5759 ratio = int_sqrt(10 * gb);
5760 else
5761 ratio = 1;
5762
5763 zone->inactive_ratio = ratio;
5764 }
5765
5766 static void __meminit setup_per_zone_inactive_ratio(void)
5767 {
5768 struct zone *zone;
5769
5770 for_each_zone(zone)
5771 calculate_zone_inactive_ratio(zone);
5772 }
5773
5774 /*
5775 * Initialise min_free_kbytes.
5776 *
5777 * For small machines we want it small (128k min). For large machines
5778 * we want it large (64MB max). But it is not linear, because network
5779 * bandwidth does not increase linearly with machine size. We use
5780 *
5781 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5782 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5783 *
5784 * which yields
5785 *
5786 * 16MB: 512k
5787 * 32MB: 724k
5788 * 64MB: 1024k
5789 * 128MB: 1448k
5790 * 256MB: 2048k
5791 * 512MB: 2896k
5792 * 1024MB: 4096k
5793 * 2048MB: 5792k
5794 * 4096MB: 8192k
5795 * 8192MB: 11584k
5796 * 16384MB: 16384k
5797 */
5798 int __meminit init_per_zone_wmark_min(void)
5799 {
5800 unsigned long lowmem_kbytes;
5801 int new_min_free_kbytes;
5802
5803 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5804 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5805
5806 if (new_min_free_kbytes > user_min_free_kbytes) {
5807 min_free_kbytes = new_min_free_kbytes;
5808 if (min_free_kbytes < 128)
5809 min_free_kbytes = 128;
5810 if (min_free_kbytes > 65536)
5811 min_free_kbytes = 65536;
5812 } else {
5813 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5814 new_min_free_kbytes, user_min_free_kbytes);
5815 }
5816 setup_per_zone_wmarks();
5817 refresh_zone_stat_thresholds();
5818 setup_per_zone_lowmem_reserve();
5819 setup_per_zone_inactive_ratio();
5820 return 0;
5821 }
5822 module_init(init_per_zone_wmark_min)
5823
5824 /*
5825 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5826 * that we can call two helper functions whenever min_free_kbytes
5827 * changes.
5828 */
5829 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5830 void __user *buffer, size_t *length, loff_t *ppos)
5831 {
5832 int rc;
5833
5834 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5835 if (rc)
5836 return rc;
5837
5838 if (write) {
5839 user_min_free_kbytes = min_free_kbytes;
5840 setup_per_zone_wmarks();
5841 }
5842 return 0;
5843 }
5844
5845 #ifdef CONFIG_NUMA
5846 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5847 void __user *buffer, size_t *length, loff_t *ppos)
5848 {
5849 struct zone *zone;
5850 int rc;
5851
5852 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5853 if (rc)
5854 return rc;
5855
5856 for_each_zone(zone)
5857 zone->min_unmapped_pages = (zone->managed_pages *
5858 sysctl_min_unmapped_ratio) / 100;
5859 return 0;
5860 }
5861
5862 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5863 void __user *buffer, size_t *length, loff_t *ppos)
5864 {
5865 struct zone *zone;
5866 int rc;
5867
5868 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5869 if (rc)
5870 return rc;
5871
5872 for_each_zone(zone)
5873 zone->min_slab_pages = (zone->managed_pages *
5874 sysctl_min_slab_ratio) / 100;
5875 return 0;
5876 }
5877 #endif
5878
5879 /*
5880 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5881 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5882 * whenever sysctl_lowmem_reserve_ratio changes.
5883 *
5884 * The reserve ratio obviously has absolutely no relation with the
5885 * minimum watermarks. The lowmem reserve ratio can only make sense
5886 * if in function of the boot time zone sizes.
5887 */
5888 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5889 void __user *buffer, size_t *length, loff_t *ppos)
5890 {
5891 proc_dointvec_minmax(table, write, buffer, length, ppos);
5892 setup_per_zone_lowmem_reserve();
5893 return 0;
5894 }
5895
5896 /*
5897 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5898 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5899 * pagelist can have before it gets flushed back to buddy allocator.
5900 */
5901 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5902 void __user *buffer, size_t *length, loff_t *ppos)
5903 {
5904 struct zone *zone;
5905 int old_percpu_pagelist_fraction;
5906 int ret;
5907
5908 mutex_lock(&pcp_batch_high_lock);
5909 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5910
5911 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5912 if (!write || ret < 0)
5913 goto out;
5914
5915 /* Sanity checking to avoid pcp imbalance */
5916 if (percpu_pagelist_fraction &&
5917 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5918 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5919 ret = -EINVAL;
5920 goto out;
5921 }
5922
5923 /* No change? */
5924 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5925 goto out;
5926
5927 for_each_populated_zone(zone) {
5928 unsigned int cpu;
5929
5930 for_each_possible_cpu(cpu)
5931 pageset_set_high_and_batch(zone,
5932 per_cpu_ptr(zone->pageset, cpu));
5933 }
5934 out:
5935 mutex_unlock(&pcp_batch_high_lock);
5936 return ret;
5937 }
5938
5939 int hashdist = HASHDIST_DEFAULT;
5940
5941 #ifdef CONFIG_NUMA
5942 static int __init set_hashdist(char *str)
5943 {
5944 if (!str)
5945 return 0;
5946 hashdist = simple_strtoul(str, &str, 0);
5947 return 1;
5948 }
5949 __setup("hashdist=", set_hashdist);
5950 #endif
5951
5952 /*
5953 * allocate a large system hash table from bootmem
5954 * - it is assumed that the hash table must contain an exact power-of-2
5955 * quantity of entries
5956 * - limit is the number of hash buckets, not the total allocation size
5957 */
5958 void *__init alloc_large_system_hash(const char *tablename,
5959 unsigned long bucketsize,
5960 unsigned long numentries,
5961 int scale,
5962 int flags,
5963 unsigned int *_hash_shift,
5964 unsigned int *_hash_mask,
5965 unsigned long low_limit,
5966 unsigned long high_limit)
5967 {
5968 unsigned long long max = high_limit;
5969 unsigned long log2qty, size;
5970 void *table = NULL;
5971
5972 /* allow the kernel cmdline to have a say */
5973 if (!numentries) {
5974 /* round applicable memory size up to nearest megabyte */
5975 numentries = nr_kernel_pages;
5976
5977 /* It isn't necessary when PAGE_SIZE >= 1MB */
5978 if (PAGE_SHIFT < 20)
5979 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5980
5981 /* limit to 1 bucket per 2^scale bytes of low memory */
5982 if (scale > PAGE_SHIFT)
5983 numentries >>= (scale - PAGE_SHIFT);
5984 else
5985 numentries <<= (PAGE_SHIFT - scale);
5986
5987 /* Make sure we've got at least a 0-order allocation.. */
5988 if (unlikely(flags & HASH_SMALL)) {
5989 /* Makes no sense without HASH_EARLY */
5990 WARN_ON(!(flags & HASH_EARLY));
5991 if (!(numentries >> *_hash_shift)) {
5992 numentries = 1UL << *_hash_shift;
5993 BUG_ON(!numentries);
5994 }
5995 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5996 numentries = PAGE_SIZE / bucketsize;
5997 }
5998 numentries = roundup_pow_of_two(numentries);
5999
6000 /* limit allocation size to 1/16 total memory by default */
6001 if (max == 0) {
6002 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6003 do_div(max, bucketsize);
6004 }
6005 max = min(max, 0x80000000ULL);
6006
6007 if (numentries < low_limit)
6008 numentries = low_limit;
6009 if (numentries > max)
6010 numentries = max;
6011
6012 log2qty = ilog2(numentries);
6013
6014 do {
6015 size = bucketsize << log2qty;
6016 if (flags & HASH_EARLY)
6017 table = memblock_virt_alloc_nopanic(size, 0);
6018 else if (hashdist)
6019 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6020 else {
6021 /*
6022 * If bucketsize is not a power-of-two, we may free
6023 * some pages at the end of hash table which
6024 * alloc_pages_exact() automatically does
6025 */
6026 if (get_order(size) < MAX_ORDER) {
6027 table = alloc_pages_exact(size, GFP_ATOMIC);
6028 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6029 }
6030 }
6031 } while (!table && size > PAGE_SIZE && --log2qty);
6032
6033 if (!table)
6034 panic("Failed to allocate %s hash table\n", tablename);
6035
6036 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6037 tablename,
6038 (1UL << log2qty),
6039 ilog2(size) - PAGE_SHIFT,
6040 size);
6041
6042 if (_hash_shift)
6043 *_hash_shift = log2qty;
6044 if (_hash_mask)
6045 *_hash_mask = (1 << log2qty) - 1;
6046
6047 return table;
6048 }
6049
6050 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6051 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6052 unsigned long pfn)
6053 {
6054 #ifdef CONFIG_SPARSEMEM
6055 return __pfn_to_section(pfn)->pageblock_flags;
6056 #else
6057 return zone->pageblock_flags;
6058 #endif /* CONFIG_SPARSEMEM */
6059 }
6060
6061 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6062 {
6063 #ifdef CONFIG_SPARSEMEM
6064 pfn &= (PAGES_PER_SECTION-1);
6065 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6066 #else
6067 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6068 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6069 #endif /* CONFIG_SPARSEMEM */
6070 }
6071
6072 /**
6073 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6074 * @page: The page within the block of interest
6075 * @pfn: The target page frame number
6076 * @end_bitidx: The last bit of interest to retrieve
6077 * @mask: mask of bits that the caller is interested in
6078 *
6079 * Return: pageblock_bits flags
6080 */
6081 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6082 unsigned long end_bitidx,
6083 unsigned long mask)
6084 {
6085 struct zone *zone;
6086 unsigned long *bitmap;
6087 unsigned long bitidx, word_bitidx;
6088 unsigned long word;
6089
6090 zone = page_zone(page);
6091 bitmap = get_pageblock_bitmap(zone, pfn);
6092 bitidx = pfn_to_bitidx(zone, pfn);
6093 word_bitidx = bitidx / BITS_PER_LONG;
6094 bitidx &= (BITS_PER_LONG-1);
6095
6096 word = bitmap[word_bitidx];
6097 bitidx += end_bitidx;
6098 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6099 }
6100
6101 /**
6102 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6103 * @page: The page within the block of interest
6104 * @flags: The flags to set
6105 * @pfn: The target page frame number
6106 * @end_bitidx: The last bit of interest
6107 * @mask: mask of bits that the caller is interested in
6108 */
6109 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6110 unsigned long pfn,
6111 unsigned long end_bitidx,
6112 unsigned long mask)
6113 {
6114 struct zone *zone;
6115 unsigned long *bitmap;
6116 unsigned long bitidx, word_bitidx;
6117 unsigned long old_word, word;
6118
6119 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6120
6121 zone = page_zone(page);
6122 bitmap = get_pageblock_bitmap(zone, pfn);
6123 bitidx = pfn_to_bitidx(zone, pfn);
6124 word_bitidx = bitidx / BITS_PER_LONG;
6125 bitidx &= (BITS_PER_LONG-1);
6126
6127 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6128
6129 bitidx += end_bitidx;
6130 mask <<= (BITS_PER_LONG - bitidx - 1);
6131 flags <<= (BITS_PER_LONG - bitidx - 1);
6132
6133 word = ACCESS_ONCE(bitmap[word_bitidx]);
6134 for (;;) {
6135 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6136 if (word == old_word)
6137 break;
6138 word = old_word;
6139 }
6140 }
6141
6142 /*
6143 * This function checks whether pageblock includes unmovable pages or not.
6144 * If @count is not zero, it is okay to include less @count unmovable pages
6145 *
6146 * PageLRU check without isolation or lru_lock could race so that
6147 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6148 * expect this function should be exact.
6149 */
6150 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6151 bool skip_hwpoisoned_pages)
6152 {
6153 unsigned long pfn, iter, found;
6154 int mt;
6155
6156 /*
6157 * For avoiding noise data, lru_add_drain_all() should be called
6158 * If ZONE_MOVABLE, the zone never contains unmovable pages
6159 */
6160 if (zone_idx(zone) == ZONE_MOVABLE)
6161 return false;
6162 mt = get_pageblock_migratetype(page);
6163 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6164 return false;
6165
6166 pfn = page_to_pfn(page);
6167 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6168 unsigned long check = pfn + iter;
6169
6170 if (!pfn_valid_within(check))
6171 continue;
6172
6173 page = pfn_to_page(check);
6174
6175 /*
6176 * Hugepages are not in LRU lists, but they're movable.
6177 * We need not scan over tail pages bacause we don't
6178 * handle each tail page individually in migration.
6179 */
6180 if (PageHuge(page)) {
6181 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6182 continue;
6183 }
6184
6185 /*
6186 * We can't use page_count without pin a page
6187 * because another CPU can free compound page.
6188 * This check already skips compound tails of THP
6189 * because their page->_count is zero at all time.
6190 */
6191 if (!atomic_read(&page->_count)) {
6192 if (PageBuddy(page))
6193 iter += (1 << page_order(page)) - 1;
6194 continue;
6195 }
6196
6197 /*
6198 * The HWPoisoned page may be not in buddy system, and
6199 * page_count() is not 0.
6200 */
6201 if (skip_hwpoisoned_pages && PageHWPoison(page))
6202 continue;
6203
6204 if (!PageLRU(page))
6205 found++;
6206 /*
6207 * If there are RECLAIMABLE pages, we need to check
6208 * it. But now, memory offline itself doesn't call
6209 * shrink_node_slabs() and it still to be fixed.
6210 */
6211 /*
6212 * If the page is not RAM, page_count()should be 0.
6213 * we don't need more check. This is an _used_ not-movable page.
6214 *
6215 * The problematic thing here is PG_reserved pages. PG_reserved
6216 * is set to both of a memory hole page and a _used_ kernel
6217 * page at boot.
6218 */
6219 if (found > count)
6220 return true;
6221 }
6222 return false;
6223 }
6224
6225 bool is_pageblock_removable_nolock(struct page *page)
6226 {
6227 struct zone *zone;
6228 unsigned long pfn;
6229
6230 /*
6231 * We have to be careful here because we are iterating over memory
6232 * sections which are not zone aware so we might end up outside of
6233 * the zone but still within the section.
6234 * We have to take care about the node as well. If the node is offline
6235 * its NODE_DATA will be NULL - see page_zone.
6236 */
6237 if (!node_online(page_to_nid(page)))
6238 return false;
6239
6240 zone = page_zone(page);
6241 pfn = page_to_pfn(page);
6242 if (!zone_spans_pfn(zone, pfn))
6243 return false;
6244
6245 return !has_unmovable_pages(zone, page, 0, true);
6246 }
6247
6248 #ifdef CONFIG_CMA
6249
6250 static unsigned long pfn_max_align_down(unsigned long pfn)
6251 {
6252 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6253 pageblock_nr_pages) - 1);
6254 }
6255
6256 static unsigned long pfn_max_align_up(unsigned long pfn)
6257 {
6258 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6259 pageblock_nr_pages));
6260 }
6261
6262 /* [start, end) must belong to a single zone. */
6263 static int __alloc_contig_migrate_range(struct compact_control *cc,
6264 unsigned long start, unsigned long end)
6265 {
6266 /* This function is based on compact_zone() from compaction.c. */
6267 unsigned long nr_reclaimed;
6268 unsigned long pfn = start;
6269 unsigned int tries = 0;
6270 int ret = 0;
6271
6272 migrate_prep();
6273
6274 while (pfn < end || !list_empty(&cc->migratepages)) {
6275 if (fatal_signal_pending(current)) {
6276 ret = -EINTR;
6277 break;
6278 }
6279
6280 if (list_empty(&cc->migratepages)) {
6281 cc->nr_migratepages = 0;
6282 pfn = isolate_migratepages_range(cc, pfn, end);
6283 if (!pfn) {
6284 ret = -EINTR;
6285 break;
6286 }
6287 tries = 0;
6288 } else if (++tries == 5) {
6289 ret = ret < 0 ? ret : -EBUSY;
6290 break;
6291 }
6292
6293 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6294 &cc->migratepages);
6295 cc->nr_migratepages -= nr_reclaimed;
6296
6297 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6298 NULL, 0, cc->mode, MR_CMA);
6299 }
6300 if (ret < 0) {
6301 putback_movable_pages(&cc->migratepages);
6302 return ret;
6303 }
6304 return 0;
6305 }
6306
6307 /**
6308 * alloc_contig_range() -- tries to allocate given range of pages
6309 * @start: start PFN to allocate
6310 * @end: one-past-the-last PFN to allocate
6311 * @migratetype: migratetype of the underlaying pageblocks (either
6312 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6313 * in range must have the same migratetype and it must
6314 * be either of the two.
6315 *
6316 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6317 * aligned, however it's the caller's responsibility to guarantee that
6318 * we are the only thread that changes migrate type of pageblocks the
6319 * pages fall in.
6320 *
6321 * The PFN range must belong to a single zone.
6322 *
6323 * Returns zero on success or negative error code. On success all
6324 * pages which PFN is in [start, end) are allocated for the caller and
6325 * need to be freed with free_contig_range().
6326 */
6327 int alloc_contig_range(unsigned long start, unsigned long end,
6328 unsigned migratetype)
6329 {
6330 unsigned long outer_start, outer_end;
6331 int ret = 0, order;
6332
6333 struct compact_control cc = {
6334 .nr_migratepages = 0,
6335 .order = -1,
6336 .zone = page_zone(pfn_to_page(start)),
6337 .mode = MIGRATE_SYNC,
6338 .ignore_skip_hint = true,
6339 };
6340 INIT_LIST_HEAD(&cc.migratepages);
6341
6342 /*
6343 * What we do here is we mark all pageblocks in range as
6344 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6345 * have different sizes, and due to the way page allocator
6346 * work, we align the range to biggest of the two pages so
6347 * that page allocator won't try to merge buddies from
6348 * different pageblocks and change MIGRATE_ISOLATE to some
6349 * other migration type.
6350 *
6351 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6352 * migrate the pages from an unaligned range (ie. pages that
6353 * we are interested in). This will put all the pages in
6354 * range back to page allocator as MIGRATE_ISOLATE.
6355 *
6356 * When this is done, we take the pages in range from page
6357 * allocator removing them from the buddy system. This way
6358 * page allocator will never consider using them.
6359 *
6360 * This lets us mark the pageblocks back as
6361 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6362 * aligned range but not in the unaligned, original range are
6363 * put back to page allocator so that buddy can use them.
6364 */
6365
6366 ret = start_isolate_page_range(pfn_max_align_down(start),
6367 pfn_max_align_up(end), migratetype,
6368 false);
6369 if (ret)
6370 return ret;
6371
6372 ret = __alloc_contig_migrate_range(&cc, start, end);
6373 if (ret)
6374 goto done;
6375
6376 /*
6377 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6378 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6379 * more, all pages in [start, end) are free in page allocator.
6380 * What we are going to do is to allocate all pages from
6381 * [start, end) (that is remove them from page allocator).
6382 *
6383 * The only problem is that pages at the beginning and at the
6384 * end of interesting range may be not aligned with pages that
6385 * page allocator holds, ie. they can be part of higher order
6386 * pages. Because of this, we reserve the bigger range and
6387 * once this is done free the pages we are not interested in.
6388 *
6389 * We don't have to hold zone->lock here because the pages are
6390 * isolated thus they won't get removed from buddy.
6391 */
6392
6393 lru_add_drain_all();
6394 drain_all_pages(cc.zone);
6395
6396 order = 0;
6397 outer_start = start;
6398 while (!PageBuddy(pfn_to_page(outer_start))) {
6399 if (++order >= MAX_ORDER) {
6400 ret = -EBUSY;
6401 goto done;
6402 }
6403 outer_start &= ~0UL << order;
6404 }
6405
6406 /* Make sure the range is really isolated. */
6407 if (test_pages_isolated(outer_start, end, false)) {
6408 pr_info("%s: [%lx, %lx) PFNs busy\n",
6409 __func__, outer_start, end);
6410 ret = -EBUSY;
6411 goto done;
6412 }
6413
6414 /* Grab isolated pages from freelists. */
6415 outer_end = isolate_freepages_range(&cc, outer_start, end);
6416 if (!outer_end) {
6417 ret = -EBUSY;
6418 goto done;
6419 }
6420
6421 /* Free head and tail (if any) */
6422 if (start != outer_start)
6423 free_contig_range(outer_start, start - outer_start);
6424 if (end != outer_end)
6425 free_contig_range(end, outer_end - end);
6426
6427 done:
6428 undo_isolate_page_range(pfn_max_align_down(start),
6429 pfn_max_align_up(end), migratetype);
6430 return ret;
6431 }
6432
6433 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6434 {
6435 unsigned int count = 0;
6436
6437 for (; nr_pages--; pfn++) {
6438 struct page *page = pfn_to_page(pfn);
6439
6440 count += page_count(page) != 1;
6441 __free_page(page);
6442 }
6443 WARN(count != 0, "%d pages are still in use!\n", count);
6444 }
6445 #endif
6446
6447 #ifdef CONFIG_MEMORY_HOTPLUG
6448 /*
6449 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6450 * page high values need to be recalulated.
6451 */
6452 void __meminit zone_pcp_update(struct zone *zone)
6453 {
6454 unsigned cpu;
6455 mutex_lock(&pcp_batch_high_lock);
6456 for_each_possible_cpu(cpu)
6457 pageset_set_high_and_batch(zone,
6458 per_cpu_ptr(zone->pageset, cpu));
6459 mutex_unlock(&pcp_batch_high_lock);
6460 }
6461 #endif
6462
6463 void zone_pcp_reset(struct zone *zone)
6464 {
6465 unsigned long flags;
6466 int cpu;
6467 struct per_cpu_pageset *pset;
6468
6469 /* avoid races with drain_pages() */
6470 local_irq_save(flags);
6471 if (zone->pageset != &boot_pageset) {
6472 for_each_online_cpu(cpu) {
6473 pset = per_cpu_ptr(zone->pageset, cpu);
6474 drain_zonestat(zone, pset);
6475 }
6476 free_percpu(zone->pageset);
6477 zone->pageset = &boot_pageset;
6478 }
6479 local_irq_restore(flags);
6480 }
6481
6482 #ifdef CONFIG_MEMORY_HOTREMOVE
6483 /*
6484 * All pages in the range must be isolated before calling this.
6485 */
6486 void
6487 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6488 {
6489 struct page *page;
6490 struct zone *zone;
6491 unsigned int order, i;
6492 unsigned long pfn;
6493 unsigned long flags;
6494 /* find the first valid pfn */
6495 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6496 if (pfn_valid(pfn))
6497 break;
6498 if (pfn == end_pfn)
6499 return;
6500 zone = page_zone(pfn_to_page(pfn));
6501 spin_lock_irqsave(&zone->lock, flags);
6502 pfn = start_pfn;
6503 while (pfn < end_pfn) {
6504 if (!pfn_valid(pfn)) {
6505 pfn++;
6506 continue;
6507 }
6508 page = pfn_to_page(pfn);
6509 /*
6510 * The HWPoisoned page may be not in buddy system, and
6511 * page_count() is not 0.
6512 */
6513 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6514 pfn++;
6515 SetPageReserved(page);
6516 continue;
6517 }
6518
6519 BUG_ON(page_count(page));
6520 BUG_ON(!PageBuddy(page));
6521 order = page_order(page);
6522 #ifdef CONFIG_DEBUG_VM
6523 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6524 pfn, 1 << order, end_pfn);
6525 #endif
6526 list_del(&page->lru);
6527 rmv_page_order(page);
6528 zone->free_area[order].nr_free--;
6529 for (i = 0; i < (1 << order); i++)
6530 SetPageReserved((page+i));
6531 pfn += (1 << order);
6532 }
6533 spin_unlock_irqrestore(&zone->lock, flags);
6534 }
6535 #endif
6536
6537 #ifdef CONFIG_MEMORY_FAILURE
6538 bool is_free_buddy_page(struct page *page)
6539 {
6540 struct zone *zone = page_zone(page);
6541 unsigned long pfn = page_to_pfn(page);
6542 unsigned long flags;
6543 unsigned int order;
6544
6545 spin_lock_irqsave(&zone->lock, flags);
6546 for (order = 0; order < MAX_ORDER; order++) {
6547 struct page *page_head = page - (pfn & ((1 << order) - 1));
6548
6549 if (PageBuddy(page_head) && page_order(page_head) >= order)
6550 break;
6551 }
6552 spin_unlock_irqrestore(&zone->lock, flags);
6553
6554 return order < MAX_ORDER;
6555 }
6556 #endif