]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
Merge branch 'fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION (8)
81
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
85 #endif
86
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
90 /*
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
95 */
96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 #endif
99
100 /* work_structs for global per-cpu drains */
101 struct pcpu_drain {
102 struct zone *zone;
103 struct work_struct work;
104 };
105 DEFINE_MUTEX(pcpu_drain_mutex);
106 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
107
108 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
109 volatile unsigned long latent_entropy __latent_entropy;
110 EXPORT_SYMBOL(latent_entropy);
111 #endif
112
113 /*
114 * Array of node states.
115 */
116 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
117 [N_POSSIBLE] = NODE_MASK_ALL,
118 [N_ONLINE] = { { [0] = 1UL } },
119 #ifndef CONFIG_NUMA
120 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
121 #ifdef CONFIG_HIGHMEM
122 [N_HIGH_MEMORY] = { { [0] = 1UL } },
123 #endif
124 [N_MEMORY] = { { [0] = 1UL } },
125 [N_CPU] = { { [0] = 1UL } },
126 #endif /* NUMA */
127 };
128 EXPORT_SYMBOL(node_states);
129
130 atomic_long_t _totalram_pages __read_mostly;
131 EXPORT_SYMBOL(_totalram_pages);
132 unsigned long totalreserve_pages __read_mostly;
133 unsigned long totalcma_pages __read_mostly;
134
135 int percpu_pagelist_fraction;
136 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
137 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
138 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
139 #else
140 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
141 #endif
142 EXPORT_SYMBOL(init_on_alloc);
143
144 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
145 DEFINE_STATIC_KEY_TRUE(init_on_free);
146 #else
147 DEFINE_STATIC_KEY_FALSE(init_on_free);
148 #endif
149 EXPORT_SYMBOL(init_on_free);
150
151 static int __init early_init_on_alloc(char *buf)
152 {
153 int ret;
154 bool bool_result;
155
156 if (!buf)
157 return -EINVAL;
158 ret = kstrtobool(buf, &bool_result);
159 if (bool_result && page_poisoning_enabled())
160 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
161 if (bool_result)
162 static_branch_enable(&init_on_alloc);
163 else
164 static_branch_disable(&init_on_alloc);
165 return ret;
166 }
167 early_param("init_on_alloc", early_init_on_alloc);
168
169 static int __init early_init_on_free(char *buf)
170 {
171 int ret;
172 bool bool_result;
173
174 if (!buf)
175 return -EINVAL;
176 ret = kstrtobool(buf, &bool_result);
177 if (bool_result && page_poisoning_enabled())
178 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
179 if (bool_result)
180 static_branch_enable(&init_on_free);
181 else
182 static_branch_disable(&init_on_free);
183 return ret;
184 }
185 early_param("init_on_free", early_init_on_free);
186
187 /*
188 * A cached value of the page's pageblock's migratetype, used when the page is
189 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
190 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
191 * Also the migratetype set in the page does not necessarily match the pcplist
192 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
193 * other index - this ensures that it will be put on the correct CMA freelist.
194 */
195 static inline int get_pcppage_migratetype(struct page *page)
196 {
197 return page->index;
198 }
199
200 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
201 {
202 page->index = migratetype;
203 }
204
205 #ifdef CONFIG_PM_SLEEP
206 /*
207 * The following functions are used by the suspend/hibernate code to temporarily
208 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
209 * while devices are suspended. To avoid races with the suspend/hibernate code,
210 * they should always be called with system_transition_mutex held
211 * (gfp_allowed_mask also should only be modified with system_transition_mutex
212 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
213 * with that modification).
214 */
215
216 static gfp_t saved_gfp_mask;
217
218 void pm_restore_gfp_mask(void)
219 {
220 WARN_ON(!mutex_is_locked(&system_transition_mutex));
221 if (saved_gfp_mask) {
222 gfp_allowed_mask = saved_gfp_mask;
223 saved_gfp_mask = 0;
224 }
225 }
226
227 void pm_restrict_gfp_mask(void)
228 {
229 WARN_ON(!mutex_is_locked(&system_transition_mutex));
230 WARN_ON(saved_gfp_mask);
231 saved_gfp_mask = gfp_allowed_mask;
232 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
233 }
234
235 bool pm_suspended_storage(void)
236 {
237 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
238 return false;
239 return true;
240 }
241 #endif /* CONFIG_PM_SLEEP */
242
243 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
244 unsigned int pageblock_order __read_mostly;
245 #endif
246
247 static void __free_pages_ok(struct page *page, unsigned int order);
248
249 /*
250 * results with 256, 32 in the lowmem_reserve sysctl:
251 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
252 * 1G machine -> (16M dma, 784M normal, 224M high)
253 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
254 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
255 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
256 *
257 * TBD: should special case ZONE_DMA32 machines here - in those we normally
258 * don't need any ZONE_NORMAL reservation
259 */
260 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
261 #ifdef CONFIG_ZONE_DMA
262 [ZONE_DMA] = 256,
263 #endif
264 #ifdef CONFIG_ZONE_DMA32
265 [ZONE_DMA32] = 256,
266 #endif
267 [ZONE_NORMAL] = 32,
268 #ifdef CONFIG_HIGHMEM
269 [ZONE_HIGHMEM] = 0,
270 #endif
271 [ZONE_MOVABLE] = 0,
272 };
273
274 static char * const zone_names[MAX_NR_ZONES] = {
275 #ifdef CONFIG_ZONE_DMA
276 "DMA",
277 #endif
278 #ifdef CONFIG_ZONE_DMA32
279 "DMA32",
280 #endif
281 "Normal",
282 #ifdef CONFIG_HIGHMEM
283 "HighMem",
284 #endif
285 "Movable",
286 #ifdef CONFIG_ZONE_DEVICE
287 "Device",
288 #endif
289 };
290
291 const char * const migratetype_names[MIGRATE_TYPES] = {
292 "Unmovable",
293 "Movable",
294 "Reclaimable",
295 "HighAtomic",
296 #ifdef CONFIG_CMA
297 "CMA",
298 #endif
299 #ifdef CONFIG_MEMORY_ISOLATION
300 "Isolate",
301 #endif
302 };
303
304 compound_page_dtor * const compound_page_dtors[] = {
305 NULL,
306 free_compound_page,
307 #ifdef CONFIG_HUGETLB_PAGE
308 free_huge_page,
309 #endif
310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
311 free_transhuge_page,
312 #endif
313 };
314
315 int min_free_kbytes = 1024;
316 int user_min_free_kbytes = -1;
317 #ifdef CONFIG_DISCONTIGMEM
318 /*
319 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
320 * are not on separate NUMA nodes. Functionally this works but with
321 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
322 * quite small. By default, do not boost watermarks on discontigmem as in
323 * many cases very high-order allocations like THP are likely to be
324 * unsupported and the premature reclaim offsets the advantage of long-term
325 * fragmentation avoidance.
326 */
327 int watermark_boost_factor __read_mostly;
328 #else
329 int watermark_boost_factor __read_mostly = 15000;
330 #endif
331 int watermark_scale_factor = 10;
332
333 static unsigned long nr_kernel_pages __initdata;
334 static unsigned long nr_all_pages __initdata;
335 static unsigned long dma_reserve __initdata;
336
337 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
338 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
339 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long required_kernelcore __initdata;
341 static unsigned long required_kernelcore_percent __initdata;
342 static unsigned long required_movablecore __initdata;
343 static unsigned long required_movablecore_percent __initdata;
344 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
345 static bool mirrored_kernelcore __meminitdata;
346
347 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
348 int movable_zone;
349 EXPORT_SYMBOL(movable_zone);
350 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
351
352 #if MAX_NUMNODES > 1
353 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
354 unsigned int nr_online_nodes __read_mostly = 1;
355 EXPORT_SYMBOL(nr_node_ids);
356 EXPORT_SYMBOL(nr_online_nodes);
357 #endif
358
359 int page_group_by_mobility_disabled __read_mostly;
360
361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
362 /*
363 * During boot we initialize deferred pages on-demand, as needed, but once
364 * page_alloc_init_late() has finished, the deferred pages are all initialized,
365 * and we can permanently disable that path.
366 */
367 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
368
369 /*
370 * Calling kasan_free_pages() only after deferred memory initialization
371 * has completed. Poisoning pages during deferred memory init will greatly
372 * lengthen the process and cause problem in large memory systems as the
373 * deferred pages initialization is done with interrupt disabled.
374 *
375 * Assuming that there will be no reference to those newly initialized
376 * pages before they are ever allocated, this should have no effect on
377 * KASAN memory tracking as the poison will be properly inserted at page
378 * allocation time. The only corner case is when pages are allocated by
379 * on-demand allocation and then freed again before the deferred pages
380 * initialization is done, but this is not likely to happen.
381 */
382 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
383 {
384 if (!static_branch_unlikely(&deferred_pages))
385 kasan_free_pages(page, order);
386 }
387
388 /* Returns true if the struct page for the pfn is uninitialised */
389 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
390 {
391 int nid = early_pfn_to_nid(pfn);
392
393 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
394 return true;
395
396 return false;
397 }
398
399 /*
400 * Returns true when the remaining initialisation should be deferred until
401 * later in the boot cycle when it can be parallelised.
402 */
403 static bool __meminit
404 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
405 {
406 static unsigned long prev_end_pfn, nr_initialised;
407
408 /*
409 * prev_end_pfn static that contains the end of previous zone
410 * No need to protect because called very early in boot before smp_init.
411 */
412 if (prev_end_pfn != end_pfn) {
413 prev_end_pfn = end_pfn;
414 nr_initialised = 0;
415 }
416
417 /* Always populate low zones for address-constrained allocations */
418 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
419 return false;
420
421 /*
422 * We start only with one section of pages, more pages are added as
423 * needed until the rest of deferred pages are initialized.
424 */
425 nr_initialised++;
426 if ((nr_initialised > PAGES_PER_SECTION) &&
427 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 NODE_DATA(nid)->first_deferred_pfn = pfn;
429 return true;
430 }
431 return false;
432 }
433 #else
434 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
435
436 static inline bool early_page_uninitialised(unsigned long pfn)
437 {
438 return false;
439 }
440
441 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
442 {
443 return false;
444 }
445 #endif
446
447 /* Return a pointer to the bitmap storing bits affecting a block of pages */
448 static inline unsigned long *get_pageblock_bitmap(struct page *page,
449 unsigned long pfn)
450 {
451 #ifdef CONFIG_SPARSEMEM
452 return section_to_usemap(__pfn_to_section(pfn));
453 #else
454 return page_zone(page)->pageblock_flags;
455 #endif /* CONFIG_SPARSEMEM */
456 }
457
458 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
459 {
460 #ifdef CONFIG_SPARSEMEM
461 pfn &= (PAGES_PER_SECTION-1);
462 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
463 #else
464 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
465 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
466 #endif /* CONFIG_SPARSEMEM */
467 }
468
469 /**
470 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
471 * @page: The page within the block of interest
472 * @pfn: The target page frame number
473 * @end_bitidx: The last bit of interest to retrieve
474 * @mask: mask of bits that the caller is interested in
475 *
476 * Return: pageblock_bits flags
477 */
478 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
479 unsigned long pfn,
480 unsigned long end_bitidx,
481 unsigned long mask)
482 {
483 unsigned long *bitmap;
484 unsigned long bitidx, word_bitidx;
485 unsigned long word;
486
487 bitmap = get_pageblock_bitmap(page, pfn);
488 bitidx = pfn_to_bitidx(page, pfn);
489 word_bitidx = bitidx / BITS_PER_LONG;
490 bitidx &= (BITS_PER_LONG-1);
491
492 word = bitmap[word_bitidx];
493 bitidx += end_bitidx;
494 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
495 }
496
497 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
498 unsigned long end_bitidx,
499 unsigned long mask)
500 {
501 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
502 }
503
504 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
505 {
506 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
507 }
508
509 /**
510 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
511 * @page: The page within the block of interest
512 * @flags: The flags to set
513 * @pfn: The target page frame number
514 * @end_bitidx: The last bit of interest
515 * @mask: mask of bits that the caller is interested in
516 */
517 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
518 unsigned long pfn,
519 unsigned long end_bitidx,
520 unsigned long mask)
521 {
522 unsigned long *bitmap;
523 unsigned long bitidx, word_bitidx;
524 unsigned long old_word, word;
525
526 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
527 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
528
529 bitmap = get_pageblock_bitmap(page, pfn);
530 bitidx = pfn_to_bitidx(page, pfn);
531 word_bitidx = bitidx / BITS_PER_LONG;
532 bitidx &= (BITS_PER_LONG-1);
533
534 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
535
536 bitidx += end_bitidx;
537 mask <<= (BITS_PER_LONG - bitidx - 1);
538 flags <<= (BITS_PER_LONG - bitidx - 1);
539
540 word = READ_ONCE(bitmap[word_bitidx]);
541 for (;;) {
542 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
543 if (word == old_word)
544 break;
545 word = old_word;
546 }
547 }
548
549 void set_pageblock_migratetype(struct page *page, int migratetype)
550 {
551 if (unlikely(page_group_by_mobility_disabled &&
552 migratetype < MIGRATE_PCPTYPES))
553 migratetype = MIGRATE_UNMOVABLE;
554
555 set_pageblock_flags_group(page, (unsigned long)migratetype,
556 PB_migrate, PB_migrate_end);
557 }
558
559 #ifdef CONFIG_DEBUG_VM
560 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
561 {
562 int ret = 0;
563 unsigned seq;
564 unsigned long pfn = page_to_pfn(page);
565 unsigned long sp, start_pfn;
566
567 do {
568 seq = zone_span_seqbegin(zone);
569 start_pfn = zone->zone_start_pfn;
570 sp = zone->spanned_pages;
571 if (!zone_spans_pfn(zone, pfn))
572 ret = 1;
573 } while (zone_span_seqretry(zone, seq));
574
575 if (ret)
576 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
577 pfn, zone_to_nid(zone), zone->name,
578 start_pfn, start_pfn + sp);
579
580 return ret;
581 }
582
583 static int page_is_consistent(struct zone *zone, struct page *page)
584 {
585 if (!pfn_valid_within(page_to_pfn(page)))
586 return 0;
587 if (zone != page_zone(page))
588 return 0;
589
590 return 1;
591 }
592 /*
593 * Temporary debugging check for pages not lying within a given zone.
594 */
595 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
596 {
597 if (page_outside_zone_boundaries(zone, page))
598 return 1;
599 if (!page_is_consistent(zone, page))
600 return 1;
601
602 return 0;
603 }
604 #else
605 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 return 0;
608 }
609 #endif
610
611 static void bad_page(struct page *page, const char *reason,
612 unsigned long bad_flags)
613 {
614 static unsigned long resume;
615 static unsigned long nr_shown;
616 static unsigned long nr_unshown;
617
618 /*
619 * Allow a burst of 60 reports, then keep quiet for that minute;
620 * or allow a steady drip of one report per second.
621 */
622 if (nr_shown == 60) {
623 if (time_before(jiffies, resume)) {
624 nr_unshown++;
625 goto out;
626 }
627 if (nr_unshown) {
628 pr_alert(
629 "BUG: Bad page state: %lu messages suppressed\n",
630 nr_unshown);
631 nr_unshown = 0;
632 }
633 nr_shown = 0;
634 }
635 if (nr_shown++ == 0)
636 resume = jiffies + 60 * HZ;
637
638 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
639 current->comm, page_to_pfn(page));
640 __dump_page(page, reason);
641 bad_flags &= page->flags;
642 if (bad_flags)
643 pr_alert("bad because of flags: %#lx(%pGp)\n",
644 bad_flags, &bad_flags);
645 dump_page_owner(page);
646
647 print_modules();
648 dump_stack();
649 out:
650 /* Leave bad fields for debug, except PageBuddy could make trouble */
651 page_mapcount_reset(page); /* remove PageBuddy */
652 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
653 }
654
655 /*
656 * Higher-order pages are called "compound pages". They are structured thusly:
657 *
658 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
659 *
660 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
661 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
662 *
663 * The first tail page's ->compound_dtor holds the offset in array of compound
664 * page destructors. See compound_page_dtors.
665 *
666 * The first tail page's ->compound_order holds the order of allocation.
667 * This usage means that zero-order pages may not be compound.
668 */
669
670 void free_compound_page(struct page *page)
671 {
672 mem_cgroup_uncharge(page);
673 __free_pages_ok(page, compound_order(page));
674 }
675
676 void prep_compound_page(struct page *page, unsigned int order)
677 {
678 int i;
679 int nr_pages = 1 << order;
680
681 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
682 set_compound_order(page, order);
683 __SetPageHead(page);
684 for (i = 1; i < nr_pages; i++) {
685 struct page *p = page + i;
686 set_page_count(p, 0);
687 p->mapping = TAIL_MAPPING;
688 set_compound_head(p, page);
689 }
690 atomic_set(compound_mapcount_ptr(page), -1);
691 if (hpage_pincount_available(page))
692 atomic_set(compound_pincount_ptr(page), 0);
693 }
694
695 #ifdef CONFIG_DEBUG_PAGEALLOC
696 unsigned int _debug_guardpage_minorder;
697
698 bool _debug_pagealloc_enabled_early __read_mostly
699 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
700 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
701 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
702 EXPORT_SYMBOL(_debug_pagealloc_enabled);
703
704 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
705
706 static int __init early_debug_pagealloc(char *buf)
707 {
708 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
709 }
710 early_param("debug_pagealloc", early_debug_pagealloc);
711
712 void init_debug_pagealloc(void)
713 {
714 if (!debug_pagealloc_enabled())
715 return;
716
717 static_branch_enable(&_debug_pagealloc_enabled);
718
719 if (!debug_guardpage_minorder())
720 return;
721
722 static_branch_enable(&_debug_guardpage_enabled);
723 }
724
725 static int __init debug_guardpage_minorder_setup(char *buf)
726 {
727 unsigned long res;
728
729 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
730 pr_err("Bad debug_guardpage_minorder value\n");
731 return 0;
732 }
733 _debug_guardpage_minorder = res;
734 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
735 return 0;
736 }
737 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
738
739 static inline bool set_page_guard(struct zone *zone, struct page *page,
740 unsigned int order, int migratetype)
741 {
742 if (!debug_guardpage_enabled())
743 return false;
744
745 if (order >= debug_guardpage_minorder())
746 return false;
747
748 __SetPageGuard(page);
749 INIT_LIST_HEAD(&page->lru);
750 set_page_private(page, order);
751 /* Guard pages are not available for any usage */
752 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
753
754 return true;
755 }
756
757 static inline void clear_page_guard(struct zone *zone, struct page *page,
758 unsigned int order, int migratetype)
759 {
760 if (!debug_guardpage_enabled())
761 return;
762
763 __ClearPageGuard(page);
764
765 set_page_private(page, 0);
766 if (!is_migrate_isolate(migratetype))
767 __mod_zone_freepage_state(zone, (1 << order), migratetype);
768 }
769 #else
770 static inline bool set_page_guard(struct zone *zone, struct page *page,
771 unsigned int order, int migratetype) { return false; }
772 static inline void clear_page_guard(struct zone *zone, struct page *page,
773 unsigned int order, int migratetype) {}
774 #endif
775
776 static inline void set_page_order(struct page *page, unsigned int order)
777 {
778 set_page_private(page, order);
779 __SetPageBuddy(page);
780 }
781
782 /*
783 * This function checks whether a page is free && is the buddy
784 * we can coalesce a page and its buddy if
785 * (a) the buddy is not in a hole (check before calling!) &&
786 * (b) the buddy is in the buddy system &&
787 * (c) a page and its buddy have the same order &&
788 * (d) a page and its buddy are in the same zone.
789 *
790 * For recording whether a page is in the buddy system, we set PageBuddy.
791 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
792 *
793 * For recording page's order, we use page_private(page).
794 */
795 static inline bool page_is_buddy(struct page *page, struct page *buddy,
796 unsigned int order)
797 {
798 if (!page_is_guard(buddy) && !PageBuddy(buddy))
799 return false;
800
801 if (page_order(buddy) != order)
802 return false;
803
804 /*
805 * zone check is done late to avoid uselessly calculating
806 * zone/node ids for pages that could never merge.
807 */
808 if (page_zone_id(page) != page_zone_id(buddy))
809 return false;
810
811 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
812
813 return true;
814 }
815
816 #ifdef CONFIG_COMPACTION
817 static inline struct capture_control *task_capc(struct zone *zone)
818 {
819 struct capture_control *capc = current->capture_control;
820
821 return capc &&
822 !(current->flags & PF_KTHREAD) &&
823 !capc->page &&
824 capc->cc->zone == zone &&
825 capc->cc->direct_compaction ? capc : NULL;
826 }
827
828 static inline bool
829 compaction_capture(struct capture_control *capc, struct page *page,
830 int order, int migratetype)
831 {
832 if (!capc || order != capc->cc->order)
833 return false;
834
835 /* Do not accidentally pollute CMA or isolated regions*/
836 if (is_migrate_cma(migratetype) ||
837 is_migrate_isolate(migratetype))
838 return false;
839
840 /*
841 * Do not let lower order allocations polluate a movable pageblock.
842 * This might let an unmovable request use a reclaimable pageblock
843 * and vice-versa but no more than normal fallback logic which can
844 * have trouble finding a high-order free page.
845 */
846 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
847 return false;
848
849 capc->page = page;
850 return true;
851 }
852
853 #else
854 static inline struct capture_control *task_capc(struct zone *zone)
855 {
856 return NULL;
857 }
858
859 static inline bool
860 compaction_capture(struct capture_control *capc, struct page *page,
861 int order, int migratetype)
862 {
863 return false;
864 }
865 #endif /* CONFIG_COMPACTION */
866
867 /*
868 * Freeing function for a buddy system allocator.
869 *
870 * The concept of a buddy system is to maintain direct-mapped table
871 * (containing bit values) for memory blocks of various "orders".
872 * The bottom level table contains the map for the smallest allocatable
873 * units of memory (here, pages), and each level above it describes
874 * pairs of units from the levels below, hence, "buddies".
875 * At a high level, all that happens here is marking the table entry
876 * at the bottom level available, and propagating the changes upward
877 * as necessary, plus some accounting needed to play nicely with other
878 * parts of the VM system.
879 * At each level, we keep a list of pages, which are heads of continuous
880 * free pages of length of (1 << order) and marked with PageBuddy.
881 * Page's order is recorded in page_private(page) field.
882 * So when we are allocating or freeing one, we can derive the state of the
883 * other. That is, if we allocate a small block, and both were
884 * free, the remainder of the region must be split into blocks.
885 * If a block is freed, and its buddy is also free, then this
886 * triggers coalescing into a block of larger size.
887 *
888 * -- nyc
889 */
890
891 static inline void __free_one_page(struct page *page,
892 unsigned long pfn,
893 struct zone *zone, unsigned int order,
894 int migratetype)
895 {
896 unsigned long combined_pfn;
897 unsigned long uninitialized_var(buddy_pfn);
898 struct page *buddy;
899 unsigned int max_order;
900 struct capture_control *capc = task_capc(zone);
901
902 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
903
904 VM_BUG_ON(!zone_is_initialized(zone));
905 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
906
907 VM_BUG_ON(migratetype == -1);
908 if (likely(!is_migrate_isolate(migratetype)))
909 __mod_zone_freepage_state(zone, 1 << order, migratetype);
910
911 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
912 VM_BUG_ON_PAGE(bad_range(zone, page), page);
913
914 continue_merging:
915 while (order < max_order - 1) {
916 if (compaction_capture(capc, page, order, migratetype)) {
917 __mod_zone_freepage_state(zone, -(1 << order),
918 migratetype);
919 return;
920 }
921 buddy_pfn = __find_buddy_pfn(pfn, order);
922 buddy = page + (buddy_pfn - pfn);
923
924 if (!pfn_valid_within(buddy_pfn))
925 goto done_merging;
926 if (!page_is_buddy(page, buddy, order))
927 goto done_merging;
928 /*
929 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
930 * merge with it and move up one order.
931 */
932 if (page_is_guard(buddy))
933 clear_page_guard(zone, buddy, order, migratetype);
934 else
935 del_page_from_free_area(buddy, &zone->free_area[order]);
936 combined_pfn = buddy_pfn & pfn;
937 page = page + (combined_pfn - pfn);
938 pfn = combined_pfn;
939 order++;
940 }
941 if (max_order < MAX_ORDER) {
942 /* If we are here, it means order is >= pageblock_order.
943 * We want to prevent merge between freepages on isolate
944 * pageblock and normal pageblock. Without this, pageblock
945 * isolation could cause incorrect freepage or CMA accounting.
946 *
947 * We don't want to hit this code for the more frequent
948 * low-order merging.
949 */
950 if (unlikely(has_isolate_pageblock(zone))) {
951 int buddy_mt;
952
953 buddy_pfn = __find_buddy_pfn(pfn, order);
954 buddy = page + (buddy_pfn - pfn);
955 buddy_mt = get_pageblock_migratetype(buddy);
956
957 if (migratetype != buddy_mt
958 && (is_migrate_isolate(migratetype) ||
959 is_migrate_isolate(buddy_mt)))
960 goto done_merging;
961 }
962 max_order++;
963 goto continue_merging;
964 }
965
966 done_merging:
967 set_page_order(page, order);
968
969 /*
970 * If this is not the largest possible page, check if the buddy
971 * of the next-highest order is free. If it is, it's possible
972 * that pages are being freed that will coalesce soon. In case,
973 * that is happening, add the free page to the tail of the list
974 * so it's less likely to be used soon and more likely to be merged
975 * as a higher order page
976 */
977 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
978 && !is_shuffle_order(order)) {
979 struct page *higher_page, *higher_buddy;
980 combined_pfn = buddy_pfn & pfn;
981 higher_page = page + (combined_pfn - pfn);
982 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
983 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
984 if (pfn_valid_within(buddy_pfn) &&
985 page_is_buddy(higher_page, higher_buddy, order + 1)) {
986 add_to_free_area_tail(page, &zone->free_area[order],
987 migratetype);
988 return;
989 }
990 }
991
992 if (is_shuffle_order(order))
993 add_to_free_area_random(page, &zone->free_area[order],
994 migratetype);
995 else
996 add_to_free_area(page, &zone->free_area[order], migratetype);
997
998 }
999
1000 /*
1001 * A bad page could be due to a number of fields. Instead of multiple branches,
1002 * try and check multiple fields with one check. The caller must do a detailed
1003 * check if necessary.
1004 */
1005 static inline bool page_expected_state(struct page *page,
1006 unsigned long check_flags)
1007 {
1008 if (unlikely(atomic_read(&page->_mapcount) != -1))
1009 return false;
1010
1011 if (unlikely((unsigned long)page->mapping |
1012 page_ref_count(page) |
1013 #ifdef CONFIG_MEMCG
1014 (unsigned long)page->mem_cgroup |
1015 #endif
1016 (page->flags & check_flags)))
1017 return false;
1018
1019 return true;
1020 }
1021
1022 static void free_pages_check_bad(struct page *page)
1023 {
1024 const char *bad_reason;
1025 unsigned long bad_flags;
1026
1027 bad_reason = NULL;
1028 bad_flags = 0;
1029
1030 if (unlikely(atomic_read(&page->_mapcount) != -1))
1031 bad_reason = "nonzero mapcount";
1032 if (unlikely(page->mapping != NULL))
1033 bad_reason = "non-NULL mapping";
1034 if (unlikely(page_ref_count(page) != 0))
1035 bad_reason = "nonzero _refcount";
1036 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1037 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1038 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1039 }
1040 #ifdef CONFIG_MEMCG
1041 if (unlikely(page->mem_cgroup))
1042 bad_reason = "page still charged to cgroup";
1043 #endif
1044 bad_page(page, bad_reason, bad_flags);
1045 }
1046
1047 static inline int free_pages_check(struct page *page)
1048 {
1049 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1050 return 0;
1051
1052 /* Something has gone sideways, find it */
1053 free_pages_check_bad(page);
1054 return 1;
1055 }
1056
1057 static int free_tail_pages_check(struct page *head_page, struct page *page)
1058 {
1059 int ret = 1;
1060
1061 /*
1062 * We rely page->lru.next never has bit 0 set, unless the page
1063 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1064 */
1065 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1066
1067 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1068 ret = 0;
1069 goto out;
1070 }
1071 switch (page - head_page) {
1072 case 1:
1073 /* the first tail page: ->mapping may be compound_mapcount() */
1074 if (unlikely(compound_mapcount(page))) {
1075 bad_page(page, "nonzero compound_mapcount", 0);
1076 goto out;
1077 }
1078 break;
1079 case 2:
1080 /*
1081 * the second tail page: ->mapping is
1082 * deferred_list.next -- ignore value.
1083 */
1084 break;
1085 default:
1086 if (page->mapping != TAIL_MAPPING) {
1087 bad_page(page, "corrupted mapping in tail page", 0);
1088 goto out;
1089 }
1090 break;
1091 }
1092 if (unlikely(!PageTail(page))) {
1093 bad_page(page, "PageTail not set", 0);
1094 goto out;
1095 }
1096 if (unlikely(compound_head(page) != head_page)) {
1097 bad_page(page, "compound_head not consistent", 0);
1098 goto out;
1099 }
1100 ret = 0;
1101 out:
1102 page->mapping = NULL;
1103 clear_compound_head(page);
1104 return ret;
1105 }
1106
1107 static void kernel_init_free_pages(struct page *page, int numpages)
1108 {
1109 int i;
1110
1111 for (i = 0; i < numpages; i++)
1112 clear_highpage(page + i);
1113 }
1114
1115 static __always_inline bool free_pages_prepare(struct page *page,
1116 unsigned int order, bool check_free)
1117 {
1118 int bad = 0;
1119
1120 VM_BUG_ON_PAGE(PageTail(page), page);
1121
1122 trace_mm_page_free(page, order);
1123
1124 /*
1125 * Check tail pages before head page information is cleared to
1126 * avoid checking PageCompound for order-0 pages.
1127 */
1128 if (unlikely(order)) {
1129 bool compound = PageCompound(page);
1130 int i;
1131
1132 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1133
1134 if (compound)
1135 ClearPageDoubleMap(page);
1136 for (i = 1; i < (1 << order); i++) {
1137 if (compound)
1138 bad += free_tail_pages_check(page, page + i);
1139 if (unlikely(free_pages_check(page + i))) {
1140 bad++;
1141 continue;
1142 }
1143 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1144 }
1145 }
1146 if (PageMappingFlags(page))
1147 page->mapping = NULL;
1148 if (memcg_kmem_enabled() && PageKmemcg(page))
1149 __memcg_kmem_uncharge_page(page, order);
1150 if (check_free)
1151 bad += free_pages_check(page);
1152 if (bad)
1153 return false;
1154
1155 page_cpupid_reset_last(page);
1156 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1157 reset_page_owner(page, order);
1158
1159 if (!PageHighMem(page)) {
1160 debug_check_no_locks_freed(page_address(page),
1161 PAGE_SIZE << order);
1162 debug_check_no_obj_freed(page_address(page),
1163 PAGE_SIZE << order);
1164 }
1165 if (want_init_on_free())
1166 kernel_init_free_pages(page, 1 << order);
1167
1168 kernel_poison_pages(page, 1 << order, 0);
1169 /*
1170 * arch_free_page() can make the page's contents inaccessible. s390
1171 * does this. So nothing which can access the page's contents should
1172 * happen after this.
1173 */
1174 arch_free_page(page, order);
1175
1176 if (debug_pagealloc_enabled_static())
1177 kernel_map_pages(page, 1 << order, 0);
1178
1179 kasan_free_nondeferred_pages(page, order);
1180
1181 return true;
1182 }
1183
1184 #ifdef CONFIG_DEBUG_VM
1185 /*
1186 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1187 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1188 * moved from pcp lists to free lists.
1189 */
1190 static bool free_pcp_prepare(struct page *page)
1191 {
1192 return free_pages_prepare(page, 0, true);
1193 }
1194
1195 static bool bulkfree_pcp_prepare(struct page *page)
1196 {
1197 if (debug_pagealloc_enabled_static())
1198 return free_pages_check(page);
1199 else
1200 return false;
1201 }
1202 #else
1203 /*
1204 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1205 * moving from pcp lists to free list in order to reduce overhead. With
1206 * debug_pagealloc enabled, they are checked also immediately when being freed
1207 * to the pcp lists.
1208 */
1209 static bool free_pcp_prepare(struct page *page)
1210 {
1211 if (debug_pagealloc_enabled_static())
1212 return free_pages_prepare(page, 0, true);
1213 else
1214 return free_pages_prepare(page, 0, false);
1215 }
1216
1217 static bool bulkfree_pcp_prepare(struct page *page)
1218 {
1219 return free_pages_check(page);
1220 }
1221 #endif /* CONFIG_DEBUG_VM */
1222
1223 static inline void prefetch_buddy(struct page *page)
1224 {
1225 unsigned long pfn = page_to_pfn(page);
1226 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1227 struct page *buddy = page + (buddy_pfn - pfn);
1228
1229 prefetch(buddy);
1230 }
1231
1232 /*
1233 * Frees a number of pages from the PCP lists
1234 * Assumes all pages on list are in same zone, and of same order.
1235 * count is the number of pages to free.
1236 *
1237 * If the zone was previously in an "all pages pinned" state then look to
1238 * see if this freeing clears that state.
1239 *
1240 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1241 * pinned" detection logic.
1242 */
1243 static void free_pcppages_bulk(struct zone *zone, int count,
1244 struct per_cpu_pages *pcp)
1245 {
1246 int migratetype = 0;
1247 int batch_free = 0;
1248 int prefetch_nr = 0;
1249 bool isolated_pageblocks;
1250 struct page *page, *tmp;
1251 LIST_HEAD(head);
1252
1253 while (count) {
1254 struct list_head *list;
1255
1256 /*
1257 * Remove pages from lists in a round-robin fashion. A
1258 * batch_free count is maintained that is incremented when an
1259 * empty list is encountered. This is so more pages are freed
1260 * off fuller lists instead of spinning excessively around empty
1261 * lists
1262 */
1263 do {
1264 batch_free++;
1265 if (++migratetype == MIGRATE_PCPTYPES)
1266 migratetype = 0;
1267 list = &pcp->lists[migratetype];
1268 } while (list_empty(list));
1269
1270 /* This is the only non-empty list. Free them all. */
1271 if (batch_free == MIGRATE_PCPTYPES)
1272 batch_free = count;
1273
1274 do {
1275 page = list_last_entry(list, struct page, lru);
1276 /* must delete to avoid corrupting pcp list */
1277 list_del(&page->lru);
1278 pcp->count--;
1279
1280 if (bulkfree_pcp_prepare(page))
1281 continue;
1282
1283 list_add_tail(&page->lru, &head);
1284
1285 /*
1286 * We are going to put the page back to the global
1287 * pool, prefetch its buddy to speed up later access
1288 * under zone->lock. It is believed the overhead of
1289 * an additional test and calculating buddy_pfn here
1290 * can be offset by reduced memory latency later. To
1291 * avoid excessive prefetching due to large count, only
1292 * prefetch buddy for the first pcp->batch nr of pages.
1293 */
1294 if (prefetch_nr++ < pcp->batch)
1295 prefetch_buddy(page);
1296 } while (--count && --batch_free && !list_empty(list));
1297 }
1298
1299 spin_lock(&zone->lock);
1300 isolated_pageblocks = has_isolate_pageblock(zone);
1301
1302 /*
1303 * Use safe version since after __free_one_page(),
1304 * page->lru.next will not point to original list.
1305 */
1306 list_for_each_entry_safe(page, tmp, &head, lru) {
1307 int mt = get_pcppage_migratetype(page);
1308 /* MIGRATE_ISOLATE page should not go to pcplists */
1309 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1310 /* Pageblock could have been isolated meanwhile */
1311 if (unlikely(isolated_pageblocks))
1312 mt = get_pageblock_migratetype(page);
1313
1314 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1315 trace_mm_page_pcpu_drain(page, 0, mt);
1316 }
1317 spin_unlock(&zone->lock);
1318 }
1319
1320 static void free_one_page(struct zone *zone,
1321 struct page *page, unsigned long pfn,
1322 unsigned int order,
1323 int migratetype)
1324 {
1325 spin_lock(&zone->lock);
1326 if (unlikely(has_isolate_pageblock(zone) ||
1327 is_migrate_isolate(migratetype))) {
1328 migratetype = get_pfnblock_migratetype(page, pfn);
1329 }
1330 __free_one_page(page, pfn, zone, order, migratetype);
1331 spin_unlock(&zone->lock);
1332 }
1333
1334 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1335 unsigned long zone, int nid)
1336 {
1337 mm_zero_struct_page(page);
1338 set_page_links(page, zone, nid, pfn);
1339 init_page_count(page);
1340 page_mapcount_reset(page);
1341 page_cpupid_reset_last(page);
1342 page_kasan_tag_reset(page);
1343
1344 INIT_LIST_HEAD(&page->lru);
1345 #ifdef WANT_PAGE_VIRTUAL
1346 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1347 if (!is_highmem_idx(zone))
1348 set_page_address(page, __va(pfn << PAGE_SHIFT));
1349 #endif
1350 }
1351
1352 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1353 static void __meminit init_reserved_page(unsigned long pfn)
1354 {
1355 pg_data_t *pgdat;
1356 int nid, zid;
1357
1358 if (!early_page_uninitialised(pfn))
1359 return;
1360
1361 nid = early_pfn_to_nid(pfn);
1362 pgdat = NODE_DATA(nid);
1363
1364 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1365 struct zone *zone = &pgdat->node_zones[zid];
1366
1367 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1368 break;
1369 }
1370 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1371 }
1372 #else
1373 static inline void init_reserved_page(unsigned long pfn)
1374 {
1375 }
1376 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1377
1378 /*
1379 * Initialised pages do not have PageReserved set. This function is
1380 * called for each range allocated by the bootmem allocator and
1381 * marks the pages PageReserved. The remaining valid pages are later
1382 * sent to the buddy page allocator.
1383 */
1384 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1385 {
1386 unsigned long start_pfn = PFN_DOWN(start);
1387 unsigned long end_pfn = PFN_UP(end);
1388
1389 for (; start_pfn < end_pfn; start_pfn++) {
1390 if (pfn_valid(start_pfn)) {
1391 struct page *page = pfn_to_page(start_pfn);
1392
1393 init_reserved_page(start_pfn);
1394
1395 /* Avoid false-positive PageTail() */
1396 INIT_LIST_HEAD(&page->lru);
1397
1398 /*
1399 * no need for atomic set_bit because the struct
1400 * page is not visible yet so nobody should
1401 * access it yet.
1402 */
1403 __SetPageReserved(page);
1404 }
1405 }
1406 }
1407
1408 static void __free_pages_ok(struct page *page, unsigned int order)
1409 {
1410 unsigned long flags;
1411 int migratetype;
1412 unsigned long pfn = page_to_pfn(page);
1413
1414 if (!free_pages_prepare(page, order, true))
1415 return;
1416
1417 migratetype = get_pfnblock_migratetype(page, pfn);
1418 local_irq_save(flags);
1419 __count_vm_events(PGFREE, 1 << order);
1420 free_one_page(page_zone(page), page, pfn, order, migratetype);
1421 local_irq_restore(flags);
1422 }
1423
1424 void __free_pages_core(struct page *page, unsigned int order)
1425 {
1426 unsigned int nr_pages = 1 << order;
1427 struct page *p = page;
1428 unsigned int loop;
1429
1430 prefetchw(p);
1431 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1432 prefetchw(p + 1);
1433 __ClearPageReserved(p);
1434 set_page_count(p, 0);
1435 }
1436 __ClearPageReserved(p);
1437 set_page_count(p, 0);
1438
1439 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1440 set_page_refcounted(page);
1441 __free_pages(page, order);
1442 }
1443
1444 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1445 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1446
1447 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1448
1449 int __meminit early_pfn_to_nid(unsigned long pfn)
1450 {
1451 static DEFINE_SPINLOCK(early_pfn_lock);
1452 int nid;
1453
1454 spin_lock(&early_pfn_lock);
1455 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1456 if (nid < 0)
1457 nid = first_online_node;
1458 spin_unlock(&early_pfn_lock);
1459
1460 return nid;
1461 }
1462 #endif
1463
1464 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1465 /* Only safe to use early in boot when initialisation is single-threaded */
1466 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1467 {
1468 int nid;
1469
1470 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1471 if (nid >= 0 && nid != node)
1472 return false;
1473 return true;
1474 }
1475
1476 #else
1477 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1478 {
1479 return true;
1480 }
1481 #endif
1482
1483
1484 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1485 unsigned int order)
1486 {
1487 if (early_page_uninitialised(pfn))
1488 return;
1489 __free_pages_core(page, order);
1490 }
1491
1492 /*
1493 * Check that the whole (or subset of) a pageblock given by the interval of
1494 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1495 * with the migration of free compaction scanner. The scanners then need to
1496 * use only pfn_valid_within() check for arches that allow holes within
1497 * pageblocks.
1498 *
1499 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1500 *
1501 * It's possible on some configurations to have a setup like node0 node1 node0
1502 * i.e. it's possible that all pages within a zones range of pages do not
1503 * belong to a single zone. We assume that a border between node0 and node1
1504 * can occur within a single pageblock, but not a node0 node1 node0
1505 * interleaving within a single pageblock. It is therefore sufficient to check
1506 * the first and last page of a pageblock and avoid checking each individual
1507 * page in a pageblock.
1508 */
1509 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1510 unsigned long end_pfn, struct zone *zone)
1511 {
1512 struct page *start_page;
1513 struct page *end_page;
1514
1515 /* end_pfn is one past the range we are checking */
1516 end_pfn--;
1517
1518 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1519 return NULL;
1520
1521 start_page = pfn_to_online_page(start_pfn);
1522 if (!start_page)
1523 return NULL;
1524
1525 if (page_zone(start_page) != zone)
1526 return NULL;
1527
1528 end_page = pfn_to_page(end_pfn);
1529
1530 /* This gives a shorter code than deriving page_zone(end_page) */
1531 if (page_zone_id(start_page) != page_zone_id(end_page))
1532 return NULL;
1533
1534 return start_page;
1535 }
1536
1537 void set_zone_contiguous(struct zone *zone)
1538 {
1539 unsigned long block_start_pfn = zone->zone_start_pfn;
1540 unsigned long block_end_pfn;
1541
1542 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1543 for (; block_start_pfn < zone_end_pfn(zone);
1544 block_start_pfn = block_end_pfn,
1545 block_end_pfn += pageblock_nr_pages) {
1546
1547 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1548
1549 if (!__pageblock_pfn_to_page(block_start_pfn,
1550 block_end_pfn, zone))
1551 return;
1552 }
1553
1554 /* We confirm that there is no hole */
1555 zone->contiguous = true;
1556 }
1557
1558 void clear_zone_contiguous(struct zone *zone)
1559 {
1560 zone->contiguous = false;
1561 }
1562
1563 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1564 static void __init deferred_free_range(unsigned long pfn,
1565 unsigned long nr_pages)
1566 {
1567 struct page *page;
1568 unsigned long i;
1569
1570 if (!nr_pages)
1571 return;
1572
1573 page = pfn_to_page(pfn);
1574
1575 /* Free a large naturally-aligned chunk if possible */
1576 if (nr_pages == pageblock_nr_pages &&
1577 (pfn & (pageblock_nr_pages - 1)) == 0) {
1578 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1579 __free_pages_core(page, pageblock_order);
1580 return;
1581 }
1582
1583 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1584 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1585 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1586 __free_pages_core(page, 0);
1587 }
1588 }
1589
1590 /* Completion tracking for deferred_init_memmap() threads */
1591 static atomic_t pgdat_init_n_undone __initdata;
1592 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1593
1594 static inline void __init pgdat_init_report_one_done(void)
1595 {
1596 if (atomic_dec_and_test(&pgdat_init_n_undone))
1597 complete(&pgdat_init_all_done_comp);
1598 }
1599
1600 /*
1601 * Returns true if page needs to be initialized or freed to buddy allocator.
1602 *
1603 * First we check if pfn is valid on architectures where it is possible to have
1604 * holes within pageblock_nr_pages. On systems where it is not possible, this
1605 * function is optimized out.
1606 *
1607 * Then, we check if a current large page is valid by only checking the validity
1608 * of the head pfn.
1609 */
1610 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1611 {
1612 if (!pfn_valid_within(pfn))
1613 return false;
1614 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1615 return false;
1616 return true;
1617 }
1618
1619 /*
1620 * Free pages to buddy allocator. Try to free aligned pages in
1621 * pageblock_nr_pages sizes.
1622 */
1623 static void __init deferred_free_pages(unsigned long pfn,
1624 unsigned long end_pfn)
1625 {
1626 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1627 unsigned long nr_free = 0;
1628
1629 for (; pfn < end_pfn; pfn++) {
1630 if (!deferred_pfn_valid(pfn)) {
1631 deferred_free_range(pfn - nr_free, nr_free);
1632 nr_free = 0;
1633 } else if (!(pfn & nr_pgmask)) {
1634 deferred_free_range(pfn - nr_free, nr_free);
1635 nr_free = 1;
1636 touch_nmi_watchdog();
1637 } else {
1638 nr_free++;
1639 }
1640 }
1641 /* Free the last block of pages to allocator */
1642 deferred_free_range(pfn - nr_free, nr_free);
1643 }
1644
1645 /*
1646 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1647 * by performing it only once every pageblock_nr_pages.
1648 * Return number of pages initialized.
1649 */
1650 static unsigned long __init deferred_init_pages(struct zone *zone,
1651 unsigned long pfn,
1652 unsigned long end_pfn)
1653 {
1654 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1655 int nid = zone_to_nid(zone);
1656 unsigned long nr_pages = 0;
1657 int zid = zone_idx(zone);
1658 struct page *page = NULL;
1659
1660 for (; pfn < end_pfn; pfn++) {
1661 if (!deferred_pfn_valid(pfn)) {
1662 page = NULL;
1663 continue;
1664 } else if (!page || !(pfn & nr_pgmask)) {
1665 page = pfn_to_page(pfn);
1666 touch_nmi_watchdog();
1667 } else {
1668 page++;
1669 }
1670 __init_single_page(page, pfn, zid, nid);
1671 nr_pages++;
1672 }
1673 return (nr_pages);
1674 }
1675
1676 /*
1677 * This function is meant to pre-load the iterator for the zone init.
1678 * Specifically it walks through the ranges until we are caught up to the
1679 * first_init_pfn value and exits there. If we never encounter the value we
1680 * return false indicating there are no valid ranges left.
1681 */
1682 static bool __init
1683 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1684 unsigned long *spfn, unsigned long *epfn,
1685 unsigned long first_init_pfn)
1686 {
1687 u64 j;
1688
1689 /*
1690 * Start out by walking through the ranges in this zone that have
1691 * already been initialized. We don't need to do anything with them
1692 * so we just need to flush them out of the system.
1693 */
1694 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1695 if (*epfn <= first_init_pfn)
1696 continue;
1697 if (*spfn < first_init_pfn)
1698 *spfn = first_init_pfn;
1699 *i = j;
1700 return true;
1701 }
1702
1703 return false;
1704 }
1705
1706 /*
1707 * Initialize and free pages. We do it in two loops: first we initialize
1708 * struct page, then free to buddy allocator, because while we are
1709 * freeing pages we can access pages that are ahead (computing buddy
1710 * page in __free_one_page()).
1711 *
1712 * In order to try and keep some memory in the cache we have the loop
1713 * broken along max page order boundaries. This way we will not cause
1714 * any issues with the buddy page computation.
1715 */
1716 static unsigned long __init
1717 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1718 unsigned long *end_pfn)
1719 {
1720 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1721 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1722 unsigned long nr_pages = 0;
1723 u64 j = *i;
1724
1725 /* First we loop through and initialize the page values */
1726 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1727 unsigned long t;
1728
1729 if (mo_pfn <= *start_pfn)
1730 break;
1731
1732 t = min(mo_pfn, *end_pfn);
1733 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1734
1735 if (mo_pfn < *end_pfn) {
1736 *start_pfn = mo_pfn;
1737 break;
1738 }
1739 }
1740
1741 /* Reset values and now loop through freeing pages as needed */
1742 swap(j, *i);
1743
1744 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1745 unsigned long t;
1746
1747 if (mo_pfn <= spfn)
1748 break;
1749
1750 t = min(mo_pfn, epfn);
1751 deferred_free_pages(spfn, t);
1752
1753 if (mo_pfn <= epfn)
1754 break;
1755 }
1756
1757 return nr_pages;
1758 }
1759
1760 /* Initialise remaining memory on a node */
1761 static int __init deferred_init_memmap(void *data)
1762 {
1763 pg_data_t *pgdat = data;
1764 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1765 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1766 unsigned long first_init_pfn, flags;
1767 unsigned long start = jiffies;
1768 struct zone *zone;
1769 int zid;
1770 u64 i;
1771
1772 /* Bind memory initialisation thread to a local node if possible */
1773 if (!cpumask_empty(cpumask))
1774 set_cpus_allowed_ptr(current, cpumask);
1775
1776 pgdat_resize_lock(pgdat, &flags);
1777 first_init_pfn = pgdat->first_deferred_pfn;
1778 if (first_init_pfn == ULONG_MAX) {
1779 pgdat_resize_unlock(pgdat, &flags);
1780 pgdat_init_report_one_done();
1781 return 0;
1782 }
1783
1784 /* Sanity check boundaries */
1785 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1786 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1787 pgdat->first_deferred_pfn = ULONG_MAX;
1788
1789 /* Only the highest zone is deferred so find it */
1790 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1791 zone = pgdat->node_zones + zid;
1792 if (first_init_pfn < zone_end_pfn(zone))
1793 break;
1794 }
1795
1796 /* If the zone is empty somebody else may have cleared out the zone */
1797 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1798 first_init_pfn))
1799 goto zone_empty;
1800
1801 /*
1802 * Initialize and free pages in MAX_ORDER sized increments so
1803 * that we can avoid introducing any issues with the buddy
1804 * allocator.
1805 */
1806 while (spfn < epfn)
1807 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1808 zone_empty:
1809 pgdat_resize_unlock(pgdat, &flags);
1810
1811 /* Sanity check that the next zone really is unpopulated */
1812 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1813
1814 pr_info("node %d initialised, %lu pages in %ums\n",
1815 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1816
1817 pgdat_init_report_one_done();
1818 return 0;
1819 }
1820
1821 /*
1822 * If this zone has deferred pages, try to grow it by initializing enough
1823 * deferred pages to satisfy the allocation specified by order, rounded up to
1824 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1825 * of SECTION_SIZE bytes by initializing struct pages in increments of
1826 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1827 *
1828 * Return true when zone was grown, otherwise return false. We return true even
1829 * when we grow less than requested, to let the caller decide if there are
1830 * enough pages to satisfy the allocation.
1831 *
1832 * Note: We use noinline because this function is needed only during boot, and
1833 * it is called from a __ref function _deferred_grow_zone. This way we are
1834 * making sure that it is not inlined into permanent text section.
1835 */
1836 static noinline bool __init
1837 deferred_grow_zone(struct zone *zone, unsigned int order)
1838 {
1839 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1840 pg_data_t *pgdat = zone->zone_pgdat;
1841 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1842 unsigned long spfn, epfn, flags;
1843 unsigned long nr_pages = 0;
1844 u64 i;
1845
1846 /* Only the last zone may have deferred pages */
1847 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1848 return false;
1849
1850 pgdat_resize_lock(pgdat, &flags);
1851
1852 /*
1853 * If deferred pages have been initialized while we were waiting for
1854 * the lock, return true, as the zone was grown. The caller will retry
1855 * this zone. We won't return to this function since the caller also
1856 * has this static branch.
1857 */
1858 if (!static_branch_unlikely(&deferred_pages)) {
1859 pgdat_resize_unlock(pgdat, &flags);
1860 return true;
1861 }
1862
1863 /*
1864 * If someone grew this zone while we were waiting for spinlock, return
1865 * true, as there might be enough pages already.
1866 */
1867 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1868 pgdat_resize_unlock(pgdat, &flags);
1869 return true;
1870 }
1871
1872 /* If the zone is empty somebody else may have cleared out the zone */
1873 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1874 first_deferred_pfn)) {
1875 pgdat->first_deferred_pfn = ULONG_MAX;
1876 pgdat_resize_unlock(pgdat, &flags);
1877 /* Retry only once. */
1878 return first_deferred_pfn != ULONG_MAX;
1879 }
1880
1881 /*
1882 * Initialize and free pages in MAX_ORDER sized increments so
1883 * that we can avoid introducing any issues with the buddy
1884 * allocator.
1885 */
1886 while (spfn < epfn) {
1887 /* update our first deferred PFN for this section */
1888 first_deferred_pfn = spfn;
1889
1890 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1891
1892 /* We should only stop along section boundaries */
1893 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1894 continue;
1895
1896 /* If our quota has been met we can stop here */
1897 if (nr_pages >= nr_pages_needed)
1898 break;
1899 }
1900
1901 pgdat->first_deferred_pfn = spfn;
1902 pgdat_resize_unlock(pgdat, &flags);
1903
1904 return nr_pages > 0;
1905 }
1906
1907 /*
1908 * deferred_grow_zone() is __init, but it is called from
1909 * get_page_from_freelist() during early boot until deferred_pages permanently
1910 * disables this call. This is why we have refdata wrapper to avoid warning,
1911 * and to ensure that the function body gets unloaded.
1912 */
1913 static bool __ref
1914 _deferred_grow_zone(struct zone *zone, unsigned int order)
1915 {
1916 return deferred_grow_zone(zone, order);
1917 }
1918
1919 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1920
1921 void __init page_alloc_init_late(void)
1922 {
1923 struct zone *zone;
1924 int nid;
1925
1926 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1927
1928 /* There will be num_node_state(N_MEMORY) threads */
1929 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1930 for_each_node_state(nid, N_MEMORY) {
1931 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1932 }
1933
1934 /* Block until all are initialised */
1935 wait_for_completion(&pgdat_init_all_done_comp);
1936
1937 /*
1938 * The number of managed pages has changed due to the initialisation
1939 * so the pcpu batch and high limits needs to be updated or the limits
1940 * will be artificially small.
1941 */
1942 for_each_populated_zone(zone)
1943 zone_pcp_update(zone);
1944
1945 /*
1946 * We initialized the rest of the deferred pages. Permanently disable
1947 * on-demand struct page initialization.
1948 */
1949 static_branch_disable(&deferred_pages);
1950
1951 /* Reinit limits that are based on free pages after the kernel is up */
1952 files_maxfiles_init();
1953 #endif
1954
1955 /* Discard memblock private memory */
1956 memblock_discard();
1957
1958 for_each_node_state(nid, N_MEMORY)
1959 shuffle_free_memory(NODE_DATA(nid));
1960
1961 for_each_populated_zone(zone)
1962 set_zone_contiguous(zone);
1963 }
1964
1965 #ifdef CONFIG_CMA
1966 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1967 void __init init_cma_reserved_pageblock(struct page *page)
1968 {
1969 unsigned i = pageblock_nr_pages;
1970 struct page *p = page;
1971
1972 do {
1973 __ClearPageReserved(p);
1974 set_page_count(p, 0);
1975 } while (++p, --i);
1976
1977 set_pageblock_migratetype(page, MIGRATE_CMA);
1978
1979 if (pageblock_order >= MAX_ORDER) {
1980 i = pageblock_nr_pages;
1981 p = page;
1982 do {
1983 set_page_refcounted(p);
1984 __free_pages(p, MAX_ORDER - 1);
1985 p += MAX_ORDER_NR_PAGES;
1986 } while (i -= MAX_ORDER_NR_PAGES);
1987 } else {
1988 set_page_refcounted(page);
1989 __free_pages(page, pageblock_order);
1990 }
1991
1992 adjust_managed_page_count(page, pageblock_nr_pages);
1993 }
1994 #endif
1995
1996 /*
1997 * The order of subdivision here is critical for the IO subsystem.
1998 * Please do not alter this order without good reasons and regression
1999 * testing. Specifically, as large blocks of memory are subdivided,
2000 * the order in which smaller blocks are delivered depends on the order
2001 * they're subdivided in this function. This is the primary factor
2002 * influencing the order in which pages are delivered to the IO
2003 * subsystem according to empirical testing, and this is also justified
2004 * by considering the behavior of a buddy system containing a single
2005 * large block of memory acted on by a series of small allocations.
2006 * This behavior is a critical factor in sglist merging's success.
2007 *
2008 * -- nyc
2009 */
2010 static inline void expand(struct zone *zone, struct page *page,
2011 int low, int high, struct free_area *area,
2012 int migratetype)
2013 {
2014 unsigned long size = 1 << high;
2015
2016 while (high > low) {
2017 area--;
2018 high--;
2019 size >>= 1;
2020 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2021
2022 /*
2023 * Mark as guard pages (or page), that will allow to
2024 * merge back to allocator when buddy will be freed.
2025 * Corresponding page table entries will not be touched,
2026 * pages will stay not present in virtual address space
2027 */
2028 if (set_page_guard(zone, &page[size], high, migratetype))
2029 continue;
2030
2031 add_to_free_area(&page[size], area, migratetype);
2032 set_page_order(&page[size], high);
2033 }
2034 }
2035
2036 static void check_new_page_bad(struct page *page)
2037 {
2038 const char *bad_reason = NULL;
2039 unsigned long bad_flags = 0;
2040
2041 if (unlikely(atomic_read(&page->_mapcount) != -1))
2042 bad_reason = "nonzero mapcount";
2043 if (unlikely(page->mapping != NULL))
2044 bad_reason = "non-NULL mapping";
2045 if (unlikely(page_ref_count(page) != 0))
2046 bad_reason = "nonzero _refcount";
2047 if (unlikely(page->flags & __PG_HWPOISON)) {
2048 bad_reason = "HWPoisoned (hardware-corrupted)";
2049 bad_flags = __PG_HWPOISON;
2050 /* Don't complain about hwpoisoned pages */
2051 page_mapcount_reset(page); /* remove PageBuddy */
2052 return;
2053 }
2054 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2055 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2056 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2057 }
2058 #ifdef CONFIG_MEMCG
2059 if (unlikely(page->mem_cgroup))
2060 bad_reason = "page still charged to cgroup";
2061 #endif
2062 bad_page(page, bad_reason, bad_flags);
2063 }
2064
2065 /*
2066 * This page is about to be returned from the page allocator
2067 */
2068 static inline int check_new_page(struct page *page)
2069 {
2070 if (likely(page_expected_state(page,
2071 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2072 return 0;
2073
2074 check_new_page_bad(page);
2075 return 1;
2076 }
2077
2078 static inline bool free_pages_prezeroed(void)
2079 {
2080 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2081 page_poisoning_enabled()) || want_init_on_free();
2082 }
2083
2084 #ifdef CONFIG_DEBUG_VM
2085 /*
2086 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2087 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2088 * also checked when pcp lists are refilled from the free lists.
2089 */
2090 static inline bool check_pcp_refill(struct page *page)
2091 {
2092 if (debug_pagealloc_enabled_static())
2093 return check_new_page(page);
2094 else
2095 return false;
2096 }
2097
2098 static inline bool check_new_pcp(struct page *page)
2099 {
2100 return check_new_page(page);
2101 }
2102 #else
2103 /*
2104 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2105 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2106 * enabled, they are also checked when being allocated from the pcp lists.
2107 */
2108 static inline bool check_pcp_refill(struct page *page)
2109 {
2110 return check_new_page(page);
2111 }
2112 static inline bool check_new_pcp(struct page *page)
2113 {
2114 if (debug_pagealloc_enabled_static())
2115 return check_new_page(page);
2116 else
2117 return false;
2118 }
2119 #endif /* CONFIG_DEBUG_VM */
2120
2121 static bool check_new_pages(struct page *page, unsigned int order)
2122 {
2123 int i;
2124 for (i = 0; i < (1 << order); i++) {
2125 struct page *p = page + i;
2126
2127 if (unlikely(check_new_page(p)))
2128 return true;
2129 }
2130
2131 return false;
2132 }
2133
2134 inline void post_alloc_hook(struct page *page, unsigned int order,
2135 gfp_t gfp_flags)
2136 {
2137 set_page_private(page, 0);
2138 set_page_refcounted(page);
2139
2140 arch_alloc_page(page, order);
2141 if (debug_pagealloc_enabled_static())
2142 kernel_map_pages(page, 1 << order, 1);
2143 kasan_alloc_pages(page, order);
2144 kernel_poison_pages(page, 1 << order, 1);
2145 set_page_owner(page, order, gfp_flags);
2146 }
2147
2148 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2149 unsigned int alloc_flags)
2150 {
2151 post_alloc_hook(page, order, gfp_flags);
2152
2153 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2154 kernel_init_free_pages(page, 1 << order);
2155
2156 if (order && (gfp_flags & __GFP_COMP))
2157 prep_compound_page(page, order);
2158
2159 /*
2160 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2161 * allocate the page. The expectation is that the caller is taking
2162 * steps that will free more memory. The caller should avoid the page
2163 * being used for !PFMEMALLOC purposes.
2164 */
2165 if (alloc_flags & ALLOC_NO_WATERMARKS)
2166 set_page_pfmemalloc(page);
2167 else
2168 clear_page_pfmemalloc(page);
2169 }
2170
2171 /*
2172 * Go through the free lists for the given migratetype and remove
2173 * the smallest available page from the freelists
2174 */
2175 static __always_inline
2176 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2177 int migratetype)
2178 {
2179 unsigned int current_order;
2180 struct free_area *area;
2181 struct page *page;
2182
2183 /* Find a page of the appropriate size in the preferred list */
2184 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2185 area = &(zone->free_area[current_order]);
2186 page = get_page_from_free_area(area, migratetype);
2187 if (!page)
2188 continue;
2189 del_page_from_free_area(page, area);
2190 expand(zone, page, order, current_order, area, migratetype);
2191 set_pcppage_migratetype(page, migratetype);
2192 return page;
2193 }
2194
2195 return NULL;
2196 }
2197
2198
2199 /*
2200 * This array describes the order lists are fallen back to when
2201 * the free lists for the desirable migrate type are depleted
2202 */
2203 static int fallbacks[MIGRATE_TYPES][4] = {
2204 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2205 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2206 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2207 #ifdef CONFIG_CMA
2208 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2209 #endif
2210 #ifdef CONFIG_MEMORY_ISOLATION
2211 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2212 #endif
2213 };
2214
2215 #ifdef CONFIG_CMA
2216 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2217 unsigned int order)
2218 {
2219 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2220 }
2221 #else
2222 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2223 unsigned int order) { return NULL; }
2224 #endif
2225
2226 /*
2227 * Move the free pages in a range to the free lists of the requested type.
2228 * Note that start_page and end_pages are not aligned on a pageblock
2229 * boundary. If alignment is required, use move_freepages_block()
2230 */
2231 static int move_freepages(struct zone *zone,
2232 struct page *start_page, struct page *end_page,
2233 int migratetype, int *num_movable)
2234 {
2235 struct page *page;
2236 unsigned int order;
2237 int pages_moved = 0;
2238
2239 for (page = start_page; page <= end_page;) {
2240 if (!pfn_valid_within(page_to_pfn(page))) {
2241 page++;
2242 continue;
2243 }
2244
2245 if (!PageBuddy(page)) {
2246 /*
2247 * We assume that pages that could be isolated for
2248 * migration are movable. But we don't actually try
2249 * isolating, as that would be expensive.
2250 */
2251 if (num_movable &&
2252 (PageLRU(page) || __PageMovable(page)))
2253 (*num_movable)++;
2254
2255 page++;
2256 continue;
2257 }
2258
2259 /* Make sure we are not inadvertently changing nodes */
2260 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2261 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2262
2263 order = page_order(page);
2264 move_to_free_area(page, &zone->free_area[order], migratetype);
2265 page += 1 << order;
2266 pages_moved += 1 << order;
2267 }
2268
2269 return pages_moved;
2270 }
2271
2272 int move_freepages_block(struct zone *zone, struct page *page,
2273 int migratetype, int *num_movable)
2274 {
2275 unsigned long start_pfn, end_pfn;
2276 struct page *start_page, *end_page;
2277
2278 if (num_movable)
2279 *num_movable = 0;
2280
2281 start_pfn = page_to_pfn(page);
2282 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2283 start_page = pfn_to_page(start_pfn);
2284 end_page = start_page + pageblock_nr_pages - 1;
2285 end_pfn = start_pfn + pageblock_nr_pages - 1;
2286
2287 /* Do not cross zone boundaries */
2288 if (!zone_spans_pfn(zone, start_pfn))
2289 start_page = page;
2290 if (!zone_spans_pfn(zone, end_pfn))
2291 return 0;
2292
2293 return move_freepages(zone, start_page, end_page, migratetype,
2294 num_movable);
2295 }
2296
2297 static void change_pageblock_range(struct page *pageblock_page,
2298 int start_order, int migratetype)
2299 {
2300 int nr_pageblocks = 1 << (start_order - pageblock_order);
2301
2302 while (nr_pageblocks--) {
2303 set_pageblock_migratetype(pageblock_page, migratetype);
2304 pageblock_page += pageblock_nr_pages;
2305 }
2306 }
2307
2308 /*
2309 * When we are falling back to another migratetype during allocation, try to
2310 * steal extra free pages from the same pageblocks to satisfy further
2311 * allocations, instead of polluting multiple pageblocks.
2312 *
2313 * If we are stealing a relatively large buddy page, it is likely there will
2314 * be more free pages in the pageblock, so try to steal them all. For
2315 * reclaimable and unmovable allocations, we steal regardless of page size,
2316 * as fragmentation caused by those allocations polluting movable pageblocks
2317 * is worse than movable allocations stealing from unmovable and reclaimable
2318 * pageblocks.
2319 */
2320 static bool can_steal_fallback(unsigned int order, int start_mt)
2321 {
2322 /*
2323 * Leaving this order check is intended, although there is
2324 * relaxed order check in next check. The reason is that
2325 * we can actually steal whole pageblock if this condition met,
2326 * but, below check doesn't guarantee it and that is just heuristic
2327 * so could be changed anytime.
2328 */
2329 if (order >= pageblock_order)
2330 return true;
2331
2332 if (order >= pageblock_order / 2 ||
2333 start_mt == MIGRATE_RECLAIMABLE ||
2334 start_mt == MIGRATE_UNMOVABLE ||
2335 page_group_by_mobility_disabled)
2336 return true;
2337
2338 return false;
2339 }
2340
2341 static inline void boost_watermark(struct zone *zone)
2342 {
2343 unsigned long max_boost;
2344
2345 if (!watermark_boost_factor)
2346 return;
2347
2348 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2349 watermark_boost_factor, 10000);
2350
2351 /*
2352 * high watermark may be uninitialised if fragmentation occurs
2353 * very early in boot so do not boost. We do not fall
2354 * through and boost by pageblock_nr_pages as failing
2355 * allocations that early means that reclaim is not going
2356 * to help and it may even be impossible to reclaim the
2357 * boosted watermark resulting in a hang.
2358 */
2359 if (!max_boost)
2360 return;
2361
2362 max_boost = max(pageblock_nr_pages, max_boost);
2363
2364 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2365 max_boost);
2366 }
2367
2368 /*
2369 * This function implements actual steal behaviour. If order is large enough,
2370 * we can steal whole pageblock. If not, we first move freepages in this
2371 * pageblock to our migratetype and determine how many already-allocated pages
2372 * are there in the pageblock with a compatible migratetype. If at least half
2373 * of pages are free or compatible, we can change migratetype of the pageblock
2374 * itself, so pages freed in the future will be put on the correct free list.
2375 */
2376 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2377 unsigned int alloc_flags, int start_type, bool whole_block)
2378 {
2379 unsigned int current_order = page_order(page);
2380 struct free_area *area;
2381 int free_pages, movable_pages, alike_pages;
2382 int old_block_type;
2383
2384 old_block_type = get_pageblock_migratetype(page);
2385
2386 /*
2387 * This can happen due to races and we want to prevent broken
2388 * highatomic accounting.
2389 */
2390 if (is_migrate_highatomic(old_block_type))
2391 goto single_page;
2392
2393 /* Take ownership for orders >= pageblock_order */
2394 if (current_order >= pageblock_order) {
2395 change_pageblock_range(page, current_order, start_type);
2396 goto single_page;
2397 }
2398
2399 /*
2400 * Boost watermarks to increase reclaim pressure to reduce the
2401 * likelihood of future fallbacks. Wake kswapd now as the node
2402 * may be balanced overall and kswapd will not wake naturally.
2403 */
2404 boost_watermark(zone);
2405 if (alloc_flags & ALLOC_KSWAPD)
2406 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2407
2408 /* We are not allowed to try stealing from the whole block */
2409 if (!whole_block)
2410 goto single_page;
2411
2412 free_pages = move_freepages_block(zone, page, start_type,
2413 &movable_pages);
2414 /*
2415 * Determine how many pages are compatible with our allocation.
2416 * For movable allocation, it's the number of movable pages which
2417 * we just obtained. For other types it's a bit more tricky.
2418 */
2419 if (start_type == MIGRATE_MOVABLE) {
2420 alike_pages = movable_pages;
2421 } else {
2422 /*
2423 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2424 * to MOVABLE pageblock, consider all non-movable pages as
2425 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2426 * vice versa, be conservative since we can't distinguish the
2427 * exact migratetype of non-movable pages.
2428 */
2429 if (old_block_type == MIGRATE_MOVABLE)
2430 alike_pages = pageblock_nr_pages
2431 - (free_pages + movable_pages);
2432 else
2433 alike_pages = 0;
2434 }
2435
2436 /* moving whole block can fail due to zone boundary conditions */
2437 if (!free_pages)
2438 goto single_page;
2439
2440 /*
2441 * If a sufficient number of pages in the block are either free or of
2442 * comparable migratability as our allocation, claim the whole block.
2443 */
2444 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2445 page_group_by_mobility_disabled)
2446 set_pageblock_migratetype(page, start_type);
2447
2448 return;
2449
2450 single_page:
2451 area = &zone->free_area[current_order];
2452 move_to_free_area(page, area, start_type);
2453 }
2454
2455 /*
2456 * Check whether there is a suitable fallback freepage with requested order.
2457 * If only_stealable is true, this function returns fallback_mt only if
2458 * we can steal other freepages all together. This would help to reduce
2459 * fragmentation due to mixed migratetype pages in one pageblock.
2460 */
2461 int find_suitable_fallback(struct free_area *area, unsigned int order,
2462 int migratetype, bool only_stealable, bool *can_steal)
2463 {
2464 int i;
2465 int fallback_mt;
2466
2467 if (area->nr_free == 0)
2468 return -1;
2469
2470 *can_steal = false;
2471 for (i = 0;; i++) {
2472 fallback_mt = fallbacks[migratetype][i];
2473 if (fallback_mt == MIGRATE_TYPES)
2474 break;
2475
2476 if (free_area_empty(area, fallback_mt))
2477 continue;
2478
2479 if (can_steal_fallback(order, migratetype))
2480 *can_steal = true;
2481
2482 if (!only_stealable)
2483 return fallback_mt;
2484
2485 if (*can_steal)
2486 return fallback_mt;
2487 }
2488
2489 return -1;
2490 }
2491
2492 /*
2493 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2494 * there are no empty page blocks that contain a page with a suitable order
2495 */
2496 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2497 unsigned int alloc_order)
2498 {
2499 int mt;
2500 unsigned long max_managed, flags;
2501
2502 /*
2503 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2504 * Check is race-prone but harmless.
2505 */
2506 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2507 if (zone->nr_reserved_highatomic >= max_managed)
2508 return;
2509
2510 spin_lock_irqsave(&zone->lock, flags);
2511
2512 /* Recheck the nr_reserved_highatomic limit under the lock */
2513 if (zone->nr_reserved_highatomic >= max_managed)
2514 goto out_unlock;
2515
2516 /* Yoink! */
2517 mt = get_pageblock_migratetype(page);
2518 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2519 && !is_migrate_cma(mt)) {
2520 zone->nr_reserved_highatomic += pageblock_nr_pages;
2521 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2522 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2523 }
2524
2525 out_unlock:
2526 spin_unlock_irqrestore(&zone->lock, flags);
2527 }
2528
2529 /*
2530 * Used when an allocation is about to fail under memory pressure. This
2531 * potentially hurts the reliability of high-order allocations when under
2532 * intense memory pressure but failed atomic allocations should be easier
2533 * to recover from than an OOM.
2534 *
2535 * If @force is true, try to unreserve a pageblock even though highatomic
2536 * pageblock is exhausted.
2537 */
2538 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2539 bool force)
2540 {
2541 struct zonelist *zonelist = ac->zonelist;
2542 unsigned long flags;
2543 struct zoneref *z;
2544 struct zone *zone;
2545 struct page *page;
2546 int order;
2547 bool ret;
2548
2549 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2550 ac->nodemask) {
2551 /*
2552 * Preserve at least one pageblock unless memory pressure
2553 * is really high.
2554 */
2555 if (!force && zone->nr_reserved_highatomic <=
2556 pageblock_nr_pages)
2557 continue;
2558
2559 spin_lock_irqsave(&zone->lock, flags);
2560 for (order = 0; order < MAX_ORDER; order++) {
2561 struct free_area *area = &(zone->free_area[order]);
2562
2563 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2564 if (!page)
2565 continue;
2566
2567 /*
2568 * In page freeing path, migratetype change is racy so
2569 * we can counter several free pages in a pageblock
2570 * in this loop althoug we changed the pageblock type
2571 * from highatomic to ac->migratetype. So we should
2572 * adjust the count once.
2573 */
2574 if (is_migrate_highatomic_page(page)) {
2575 /*
2576 * It should never happen but changes to
2577 * locking could inadvertently allow a per-cpu
2578 * drain to add pages to MIGRATE_HIGHATOMIC
2579 * while unreserving so be safe and watch for
2580 * underflows.
2581 */
2582 zone->nr_reserved_highatomic -= min(
2583 pageblock_nr_pages,
2584 zone->nr_reserved_highatomic);
2585 }
2586
2587 /*
2588 * Convert to ac->migratetype and avoid the normal
2589 * pageblock stealing heuristics. Minimally, the caller
2590 * is doing the work and needs the pages. More
2591 * importantly, if the block was always converted to
2592 * MIGRATE_UNMOVABLE or another type then the number
2593 * of pageblocks that cannot be completely freed
2594 * may increase.
2595 */
2596 set_pageblock_migratetype(page, ac->migratetype);
2597 ret = move_freepages_block(zone, page, ac->migratetype,
2598 NULL);
2599 if (ret) {
2600 spin_unlock_irqrestore(&zone->lock, flags);
2601 return ret;
2602 }
2603 }
2604 spin_unlock_irqrestore(&zone->lock, flags);
2605 }
2606
2607 return false;
2608 }
2609
2610 /*
2611 * Try finding a free buddy page on the fallback list and put it on the free
2612 * list of requested migratetype, possibly along with other pages from the same
2613 * block, depending on fragmentation avoidance heuristics. Returns true if
2614 * fallback was found so that __rmqueue_smallest() can grab it.
2615 *
2616 * The use of signed ints for order and current_order is a deliberate
2617 * deviation from the rest of this file, to make the for loop
2618 * condition simpler.
2619 */
2620 static __always_inline bool
2621 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2622 unsigned int alloc_flags)
2623 {
2624 struct free_area *area;
2625 int current_order;
2626 int min_order = order;
2627 struct page *page;
2628 int fallback_mt;
2629 bool can_steal;
2630
2631 /*
2632 * Do not steal pages from freelists belonging to other pageblocks
2633 * i.e. orders < pageblock_order. If there are no local zones free,
2634 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2635 */
2636 if (alloc_flags & ALLOC_NOFRAGMENT)
2637 min_order = pageblock_order;
2638
2639 /*
2640 * Find the largest available free page in the other list. This roughly
2641 * approximates finding the pageblock with the most free pages, which
2642 * would be too costly to do exactly.
2643 */
2644 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2645 --current_order) {
2646 area = &(zone->free_area[current_order]);
2647 fallback_mt = find_suitable_fallback(area, current_order,
2648 start_migratetype, false, &can_steal);
2649 if (fallback_mt == -1)
2650 continue;
2651
2652 /*
2653 * We cannot steal all free pages from the pageblock and the
2654 * requested migratetype is movable. In that case it's better to
2655 * steal and split the smallest available page instead of the
2656 * largest available page, because even if the next movable
2657 * allocation falls back into a different pageblock than this
2658 * one, it won't cause permanent fragmentation.
2659 */
2660 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2661 && current_order > order)
2662 goto find_smallest;
2663
2664 goto do_steal;
2665 }
2666
2667 return false;
2668
2669 find_smallest:
2670 for (current_order = order; current_order < MAX_ORDER;
2671 current_order++) {
2672 area = &(zone->free_area[current_order]);
2673 fallback_mt = find_suitable_fallback(area, current_order,
2674 start_migratetype, false, &can_steal);
2675 if (fallback_mt != -1)
2676 break;
2677 }
2678
2679 /*
2680 * This should not happen - we already found a suitable fallback
2681 * when looking for the largest page.
2682 */
2683 VM_BUG_ON(current_order == MAX_ORDER);
2684
2685 do_steal:
2686 page = get_page_from_free_area(area, fallback_mt);
2687
2688 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2689 can_steal);
2690
2691 trace_mm_page_alloc_extfrag(page, order, current_order,
2692 start_migratetype, fallback_mt);
2693
2694 return true;
2695
2696 }
2697
2698 /*
2699 * Do the hard work of removing an element from the buddy allocator.
2700 * Call me with the zone->lock already held.
2701 */
2702 static __always_inline struct page *
2703 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2704 unsigned int alloc_flags)
2705 {
2706 struct page *page;
2707
2708 retry:
2709 page = __rmqueue_smallest(zone, order, migratetype);
2710 if (unlikely(!page)) {
2711 if (migratetype == MIGRATE_MOVABLE)
2712 page = __rmqueue_cma_fallback(zone, order);
2713
2714 if (!page && __rmqueue_fallback(zone, order, migratetype,
2715 alloc_flags))
2716 goto retry;
2717 }
2718
2719 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2720 return page;
2721 }
2722
2723 /*
2724 * Obtain a specified number of elements from the buddy allocator, all under
2725 * a single hold of the lock, for efficiency. Add them to the supplied list.
2726 * Returns the number of new pages which were placed at *list.
2727 */
2728 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2729 unsigned long count, struct list_head *list,
2730 int migratetype, unsigned int alloc_flags)
2731 {
2732 int i, alloced = 0;
2733
2734 spin_lock(&zone->lock);
2735 for (i = 0; i < count; ++i) {
2736 struct page *page = __rmqueue(zone, order, migratetype,
2737 alloc_flags);
2738 if (unlikely(page == NULL))
2739 break;
2740
2741 if (unlikely(check_pcp_refill(page)))
2742 continue;
2743
2744 /*
2745 * Split buddy pages returned by expand() are received here in
2746 * physical page order. The page is added to the tail of
2747 * caller's list. From the callers perspective, the linked list
2748 * is ordered by page number under some conditions. This is
2749 * useful for IO devices that can forward direction from the
2750 * head, thus also in the physical page order. This is useful
2751 * for IO devices that can merge IO requests if the physical
2752 * pages are ordered properly.
2753 */
2754 list_add_tail(&page->lru, list);
2755 alloced++;
2756 if (is_migrate_cma(get_pcppage_migratetype(page)))
2757 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2758 -(1 << order));
2759 }
2760
2761 /*
2762 * i pages were removed from the buddy list even if some leak due
2763 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2764 * on i. Do not confuse with 'alloced' which is the number of
2765 * pages added to the pcp list.
2766 */
2767 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2768 spin_unlock(&zone->lock);
2769 return alloced;
2770 }
2771
2772 #ifdef CONFIG_NUMA
2773 /*
2774 * Called from the vmstat counter updater to drain pagesets of this
2775 * currently executing processor on remote nodes after they have
2776 * expired.
2777 *
2778 * Note that this function must be called with the thread pinned to
2779 * a single processor.
2780 */
2781 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2782 {
2783 unsigned long flags;
2784 int to_drain, batch;
2785
2786 local_irq_save(flags);
2787 batch = READ_ONCE(pcp->batch);
2788 to_drain = min(pcp->count, batch);
2789 if (to_drain > 0)
2790 free_pcppages_bulk(zone, to_drain, pcp);
2791 local_irq_restore(flags);
2792 }
2793 #endif
2794
2795 /*
2796 * Drain pcplists of the indicated processor and zone.
2797 *
2798 * The processor must either be the current processor and the
2799 * thread pinned to the current processor or a processor that
2800 * is not online.
2801 */
2802 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2803 {
2804 unsigned long flags;
2805 struct per_cpu_pageset *pset;
2806 struct per_cpu_pages *pcp;
2807
2808 local_irq_save(flags);
2809 pset = per_cpu_ptr(zone->pageset, cpu);
2810
2811 pcp = &pset->pcp;
2812 if (pcp->count)
2813 free_pcppages_bulk(zone, pcp->count, pcp);
2814 local_irq_restore(flags);
2815 }
2816
2817 /*
2818 * Drain pcplists of all zones on the indicated processor.
2819 *
2820 * The processor must either be the current processor and the
2821 * thread pinned to the current processor or a processor that
2822 * is not online.
2823 */
2824 static void drain_pages(unsigned int cpu)
2825 {
2826 struct zone *zone;
2827
2828 for_each_populated_zone(zone) {
2829 drain_pages_zone(cpu, zone);
2830 }
2831 }
2832
2833 /*
2834 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2835 *
2836 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2837 * the single zone's pages.
2838 */
2839 void drain_local_pages(struct zone *zone)
2840 {
2841 int cpu = smp_processor_id();
2842
2843 if (zone)
2844 drain_pages_zone(cpu, zone);
2845 else
2846 drain_pages(cpu);
2847 }
2848
2849 static void drain_local_pages_wq(struct work_struct *work)
2850 {
2851 struct pcpu_drain *drain;
2852
2853 drain = container_of(work, struct pcpu_drain, work);
2854
2855 /*
2856 * drain_all_pages doesn't use proper cpu hotplug protection so
2857 * we can race with cpu offline when the WQ can move this from
2858 * a cpu pinned worker to an unbound one. We can operate on a different
2859 * cpu which is allright but we also have to make sure to not move to
2860 * a different one.
2861 */
2862 preempt_disable();
2863 drain_local_pages(drain->zone);
2864 preempt_enable();
2865 }
2866
2867 /*
2868 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2869 *
2870 * When zone parameter is non-NULL, spill just the single zone's pages.
2871 *
2872 * Note that this can be extremely slow as the draining happens in a workqueue.
2873 */
2874 void drain_all_pages(struct zone *zone)
2875 {
2876 int cpu;
2877
2878 /*
2879 * Allocate in the BSS so we wont require allocation in
2880 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2881 */
2882 static cpumask_t cpus_with_pcps;
2883
2884 /*
2885 * Make sure nobody triggers this path before mm_percpu_wq is fully
2886 * initialized.
2887 */
2888 if (WARN_ON_ONCE(!mm_percpu_wq))
2889 return;
2890
2891 /*
2892 * Do not drain if one is already in progress unless it's specific to
2893 * a zone. Such callers are primarily CMA and memory hotplug and need
2894 * the drain to be complete when the call returns.
2895 */
2896 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2897 if (!zone)
2898 return;
2899 mutex_lock(&pcpu_drain_mutex);
2900 }
2901
2902 /*
2903 * We don't care about racing with CPU hotplug event
2904 * as offline notification will cause the notified
2905 * cpu to drain that CPU pcps and on_each_cpu_mask
2906 * disables preemption as part of its processing
2907 */
2908 for_each_online_cpu(cpu) {
2909 struct per_cpu_pageset *pcp;
2910 struct zone *z;
2911 bool has_pcps = false;
2912
2913 if (zone) {
2914 pcp = per_cpu_ptr(zone->pageset, cpu);
2915 if (pcp->pcp.count)
2916 has_pcps = true;
2917 } else {
2918 for_each_populated_zone(z) {
2919 pcp = per_cpu_ptr(z->pageset, cpu);
2920 if (pcp->pcp.count) {
2921 has_pcps = true;
2922 break;
2923 }
2924 }
2925 }
2926
2927 if (has_pcps)
2928 cpumask_set_cpu(cpu, &cpus_with_pcps);
2929 else
2930 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2931 }
2932
2933 for_each_cpu(cpu, &cpus_with_pcps) {
2934 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2935
2936 drain->zone = zone;
2937 INIT_WORK(&drain->work, drain_local_pages_wq);
2938 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2939 }
2940 for_each_cpu(cpu, &cpus_with_pcps)
2941 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2942
2943 mutex_unlock(&pcpu_drain_mutex);
2944 }
2945
2946 #ifdef CONFIG_HIBERNATION
2947
2948 /*
2949 * Touch the watchdog for every WD_PAGE_COUNT pages.
2950 */
2951 #define WD_PAGE_COUNT (128*1024)
2952
2953 void mark_free_pages(struct zone *zone)
2954 {
2955 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2956 unsigned long flags;
2957 unsigned int order, t;
2958 struct page *page;
2959
2960 if (zone_is_empty(zone))
2961 return;
2962
2963 spin_lock_irqsave(&zone->lock, flags);
2964
2965 max_zone_pfn = zone_end_pfn(zone);
2966 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2967 if (pfn_valid(pfn)) {
2968 page = pfn_to_page(pfn);
2969
2970 if (!--page_count) {
2971 touch_nmi_watchdog();
2972 page_count = WD_PAGE_COUNT;
2973 }
2974
2975 if (page_zone(page) != zone)
2976 continue;
2977
2978 if (!swsusp_page_is_forbidden(page))
2979 swsusp_unset_page_free(page);
2980 }
2981
2982 for_each_migratetype_order(order, t) {
2983 list_for_each_entry(page,
2984 &zone->free_area[order].free_list[t], lru) {
2985 unsigned long i;
2986
2987 pfn = page_to_pfn(page);
2988 for (i = 0; i < (1UL << order); i++) {
2989 if (!--page_count) {
2990 touch_nmi_watchdog();
2991 page_count = WD_PAGE_COUNT;
2992 }
2993 swsusp_set_page_free(pfn_to_page(pfn + i));
2994 }
2995 }
2996 }
2997 spin_unlock_irqrestore(&zone->lock, flags);
2998 }
2999 #endif /* CONFIG_PM */
3000
3001 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3002 {
3003 int migratetype;
3004
3005 if (!free_pcp_prepare(page))
3006 return false;
3007
3008 migratetype = get_pfnblock_migratetype(page, pfn);
3009 set_pcppage_migratetype(page, migratetype);
3010 return true;
3011 }
3012
3013 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3014 {
3015 struct zone *zone = page_zone(page);
3016 struct per_cpu_pages *pcp;
3017 int migratetype;
3018
3019 migratetype = get_pcppage_migratetype(page);
3020 __count_vm_event(PGFREE);
3021
3022 /*
3023 * We only track unmovable, reclaimable and movable on pcp lists.
3024 * Free ISOLATE pages back to the allocator because they are being
3025 * offlined but treat HIGHATOMIC as movable pages so we can get those
3026 * areas back if necessary. Otherwise, we may have to free
3027 * excessively into the page allocator
3028 */
3029 if (migratetype >= MIGRATE_PCPTYPES) {
3030 if (unlikely(is_migrate_isolate(migratetype))) {
3031 free_one_page(zone, page, pfn, 0, migratetype);
3032 return;
3033 }
3034 migratetype = MIGRATE_MOVABLE;
3035 }
3036
3037 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3038 list_add(&page->lru, &pcp->lists[migratetype]);
3039 pcp->count++;
3040 if (pcp->count >= pcp->high) {
3041 unsigned long batch = READ_ONCE(pcp->batch);
3042 free_pcppages_bulk(zone, batch, pcp);
3043 }
3044 }
3045
3046 /*
3047 * Free a 0-order page
3048 */
3049 void free_unref_page(struct page *page)
3050 {
3051 unsigned long flags;
3052 unsigned long pfn = page_to_pfn(page);
3053
3054 if (!free_unref_page_prepare(page, pfn))
3055 return;
3056
3057 local_irq_save(flags);
3058 free_unref_page_commit(page, pfn);
3059 local_irq_restore(flags);
3060 }
3061
3062 /*
3063 * Free a list of 0-order pages
3064 */
3065 void free_unref_page_list(struct list_head *list)
3066 {
3067 struct page *page, *next;
3068 unsigned long flags, pfn;
3069 int batch_count = 0;
3070
3071 /* Prepare pages for freeing */
3072 list_for_each_entry_safe(page, next, list, lru) {
3073 pfn = page_to_pfn(page);
3074 if (!free_unref_page_prepare(page, pfn))
3075 list_del(&page->lru);
3076 set_page_private(page, pfn);
3077 }
3078
3079 local_irq_save(flags);
3080 list_for_each_entry_safe(page, next, list, lru) {
3081 unsigned long pfn = page_private(page);
3082
3083 set_page_private(page, 0);
3084 trace_mm_page_free_batched(page);
3085 free_unref_page_commit(page, pfn);
3086
3087 /*
3088 * Guard against excessive IRQ disabled times when we get
3089 * a large list of pages to free.
3090 */
3091 if (++batch_count == SWAP_CLUSTER_MAX) {
3092 local_irq_restore(flags);
3093 batch_count = 0;
3094 local_irq_save(flags);
3095 }
3096 }
3097 local_irq_restore(flags);
3098 }
3099
3100 /*
3101 * split_page takes a non-compound higher-order page, and splits it into
3102 * n (1<<order) sub-pages: page[0..n]
3103 * Each sub-page must be freed individually.
3104 *
3105 * Note: this is probably too low level an operation for use in drivers.
3106 * Please consult with lkml before using this in your driver.
3107 */
3108 void split_page(struct page *page, unsigned int order)
3109 {
3110 int i;
3111
3112 VM_BUG_ON_PAGE(PageCompound(page), page);
3113 VM_BUG_ON_PAGE(!page_count(page), page);
3114
3115 for (i = 1; i < (1 << order); i++)
3116 set_page_refcounted(page + i);
3117 split_page_owner(page, order);
3118 }
3119 EXPORT_SYMBOL_GPL(split_page);
3120
3121 int __isolate_free_page(struct page *page, unsigned int order)
3122 {
3123 struct free_area *area = &page_zone(page)->free_area[order];
3124 unsigned long watermark;
3125 struct zone *zone;
3126 int mt;
3127
3128 BUG_ON(!PageBuddy(page));
3129
3130 zone = page_zone(page);
3131 mt = get_pageblock_migratetype(page);
3132
3133 if (!is_migrate_isolate(mt)) {
3134 /*
3135 * Obey watermarks as if the page was being allocated. We can
3136 * emulate a high-order watermark check with a raised order-0
3137 * watermark, because we already know our high-order page
3138 * exists.
3139 */
3140 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3141 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3142 return 0;
3143
3144 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3145 }
3146
3147 /* Remove page from free list */
3148
3149 del_page_from_free_area(page, area);
3150
3151 /*
3152 * Set the pageblock if the isolated page is at least half of a
3153 * pageblock
3154 */
3155 if (order >= pageblock_order - 1) {
3156 struct page *endpage = page + (1 << order) - 1;
3157 for (; page < endpage; page += pageblock_nr_pages) {
3158 int mt = get_pageblock_migratetype(page);
3159 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3160 && !is_migrate_highatomic(mt))
3161 set_pageblock_migratetype(page,
3162 MIGRATE_MOVABLE);
3163 }
3164 }
3165
3166
3167 return 1UL << order;
3168 }
3169
3170 /*
3171 * Update NUMA hit/miss statistics
3172 *
3173 * Must be called with interrupts disabled.
3174 */
3175 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3176 {
3177 #ifdef CONFIG_NUMA
3178 enum numa_stat_item local_stat = NUMA_LOCAL;
3179
3180 /* skip numa counters update if numa stats is disabled */
3181 if (!static_branch_likely(&vm_numa_stat_key))
3182 return;
3183
3184 if (zone_to_nid(z) != numa_node_id())
3185 local_stat = NUMA_OTHER;
3186
3187 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3188 __inc_numa_state(z, NUMA_HIT);
3189 else {
3190 __inc_numa_state(z, NUMA_MISS);
3191 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3192 }
3193 __inc_numa_state(z, local_stat);
3194 #endif
3195 }
3196
3197 /* Remove page from the per-cpu list, caller must protect the list */
3198 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3199 unsigned int alloc_flags,
3200 struct per_cpu_pages *pcp,
3201 struct list_head *list)
3202 {
3203 struct page *page;
3204
3205 do {
3206 if (list_empty(list)) {
3207 pcp->count += rmqueue_bulk(zone, 0,
3208 pcp->batch, list,
3209 migratetype, alloc_flags);
3210 if (unlikely(list_empty(list)))
3211 return NULL;
3212 }
3213
3214 page = list_first_entry(list, struct page, lru);
3215 list_del(&page->lru);
3216 pcp->count--;
3217 } while (check_new_pcp(page));
3218
3219 return page;
3220 }
3221
3222 /* Lock and remove page from the per-cpu list */
3223 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3224 struct zone *zone, gfp_t gfp_flags,
3225 int migratetype, unsigned int alloc_flags)
3226 {
3227 struct per_cpu_pages *pcp;
3228 struct list_head *list;
3229 struct page *page;
3230 unsigned long flags;
3231
3232 local_irq_save(flags);
3233 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3234 list = &pcp->lists[migratetype];
3235 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3236 if (page) {
3237 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3238 zone_statistics(preferred_zone, zone);
3239 }
3240 local_irq_restore(flags);
3241 return page;
3242 }
3243
3244 /*
3245 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3246 */
3247 static inline
3248 struct page *rmqueue(struct zone *preferred_zone,
3249 struct zone *zone, unsigned int order,
3250 gfp_t gfp_flags, unsigned int alloc_flags,
3251 int migratetype)
3252 {
3253 unsigned long flags;
3254 struct page *page;
3255
3256 if (likely(order == 0)) {
3257 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3258 migratetype, alloc_flags);
3259 goto out;
3260 }
3261
3262 /*
3263 * We most definitely don't want callers attempting to
3264 * allocate greater than order-1 page units with __GFP_NOFAIL.
3265 */
3266 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3267 spin_lock_irqsave(&zone->lock, flags);
3268
3269 do {
3270 page = NULL;
3271 if (alloc_flags & ALLOC_HARDER) {
3272 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3273 if (page)
3274 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3275 }
3276 if (!page)
3277 page = __rmqueue(zone, order, migratetype, alloc_flags);
3278 } while (page && check_new_pages(page, order));
3279 spin_unlock(&zone->lock);
3280 if (!page)
3281 goto failed;
3282 __mod_zone_freepage_state(zone, -(1 << order),
3283 get_pcppage_migratetype(page));
3284
3285 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3286 zone_statistics(preferred_zone, zone);
3287 local_irq_restore(flags);
3288
3289 out:
3290 /* Separate test+clear to avoid unnecessary atomics */
3291 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3292 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3293 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3294 }
3295
3296 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3297 return page;
3298
3299 failed:
3300 local_irq_restore(flags);
3301 return NULL;
3302 }
3303
3304 #ifdef CONFIG_FAIL_PAGE_ALLOC
3305
3306 static struct {
3307 struct fault_attr attr;
3308
3309 bool ignore_gfp_highmem;
3310 bool ignore_gfp_reclaim;
3311 u32 min_order;
3312 } fail_page_alloc = {
3313 .attr = FAULT_ATTR_INITIALIZER,
3314 .ignore_gfp_reclaim = true,
3315 .ignore_gfp_highmem = true,
3316 .min_order = 1,
3317 };
3318
3319 static int __init setup_fail_page_alloc(char *str)
3320 {
3321 return setup_fault_attr(&fail_page_alloc.attr, str);
3322 }
3323 __setup("fail_page_alloc=", setup_fail_page_alloc);
3324
3325 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3326 {
3327 if (order < fail_page_alloc.min_order)
3328 return false;
3329 if (gfp_mask & __GFP_NOFAIL)
3330 return false;
3331 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3332 return false;
3333 if (fail_page_alloc.ignore_gfp_reclaim &&
3334 (gfp_mask & __GFP_DIRECT_RECLAIM))
3335 return false;
3336
3337 return should_fail(&fail_page_alloc.attr, 1 << order);
3338 }
3339
3340 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3341
3342 static int __init fail_page_alloc_debugfs(void)
3343 {
3344 umode_t mode = S_IFREG | 0600;
3345 struct dentry *dir;
3346
3347 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3348 &fail_page_alloc.attr);
3349
3350 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3351 &fail_page_alloc.ignore_gfp_reclaim);
3352 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3353 &fail_page_alloc.ignore_gfp_highmem);
3354 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3355
3356 return 0;
3357 }
3358
3359 late_initcall(fail_page_alloc_debugfs);
3360
3361 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3362
3363 #else /* CONFIG_FAIL_PAGE_ALLOC */
3364
3365 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3366 {
3367 return false;
3368 }
3369
3370 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3371
3372 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3373 {
3374 return __should_fail_alloc_page(gfp_mask, order);
3375 }
3376 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3377
3378 /*
3379 * Return true if free base pages are above 'mark'. For high-order checks it
3380 * will return true of the order-0 watermark is reached and there is at least
3381 * one free page of a suitable size. Checking now avoids taking the zone lock
3382 * to check in the allocation paths if no pages are free.
3383 */
3384 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3385 int classzone_idx, unsigned int alloc_flags,
3386 long free_pages)
3387 {
3388 long min = mark;
3389 int o;
3390 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3391
3392 /* free_pages may go negative - that's OK */
3393 free_pages -= (1 << order) - 1;
3394
3395 if (alloc_flags & ALLOC_HIGH)
3396 min -= min / 2;
3397
3398 /*
3399 * If the caller does not have rights to ALLOC_HARDER then subtract
3400 * the high-atomic reserves. This will over-estimate the size of the
3401 * atomic reserve but it avoids a search.
3402 */
3403 if (likely(!alloc_harder)) {
3404 free_pages -= z->nr_reserved_highatomic;
3405 } else {
3406 /*
3407 * OOM victims can try even harder than normal ALLOC_HARDER
3408 * users on the grounds that it's definitely going to be in
3409 * the exit path shortly and free memory. Any allocation it
3410 * makes during the free path will be small and short-lived.
3411 */
3412 if (alloc_flags & ALLOC_OOM)
3413 min -= min / 2;
3414 else
3415 min -= min / 4;
3416 }
3417
3418
3419 #ifdef CONFIG_CMA
3420 /* If allocation can't use CMA areas don't use free CMA pages */
3421 if (!(alloc_flags & ALLOC_CMA))
3422 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3423 #endif
3424
3425 /*
3426 * Check watermarks for an order-0 allocation request. If these
3427 * are not met, then a high-order request also cannot go ahead
3428 * even if a suitable page happened to be free.
3429 */
3430 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3431 return false;
3432
3433 /* If this is an order-0 request then the watermark is fine */
3434 if (!order)
3435 return true;
3436
3437 /* For a high-order request, check at least one suitable page is free */
3438 for (o = order; o < MAX_ORDER; o++) {
3439 struct free_area *area = &z->free_area[o];
3440 int mt;
3441
3442 if (!area->nr_free)
3443 continue;
3444
3445 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3446 if (!free_area_empty(area, mt))
3447 return true;
3448 }
3449
3450 #ifdef CONFIG_CMA
3451 if ((alloc_flags & ALLOC_CMA) &&
3452 !free_area_empty(area, MIGRATE_CMA)) {
3453 return true;
3454 }
3455 #endif
3456 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3457 return true;
3458 }
3459 return false;
3460 }
3461
3462 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3463 int classzone_idx, unsigned int alloc_flags)
3464 {
3465 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3466 zone_page_state(z, NR_FREE_PAGES));
3467 }
3468
3469 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3470 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3471 {
3472 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3473 long cma_pages = 0;
3474
3475 #ifdef CONFIG_CMA
3476 /* If allocation can't use CMA areas don't use free CMA pages */
3477 if (!(alloc_flags & ALLOC_CMA))
3478 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3479 #endif
3480
3481 /*
3482 * Fast check for order-0 only. If this fails then the reserves
3483 * need to be calculated. There is a corner case where the check
3484 * passes but only the high-order atomic reserve are free. If
3485 * the caller is !atomic then it'll uselessly search the free
3486 * list. That corner case is then slower but it is harmless.
3487 */
3488 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3489 return true;
3490
3491 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3492 free_pages);
3493 }
3494
3495 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3496 unsigned long mark, int classzone_idx)
3497 {
3498 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3499
3500 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3501 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3502
3503 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3504 free_pages);
3505 }
3506
3507 #ifdef CONFIG_NUMA
3508 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3509 {
3510 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3511 node_reclaim_distance;
3512 }
3513 #else /* CONFIG_NUMA */
3514 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3515 {
3516 return true;
3517 }
3518 #endif /* CONFIG_NUMA */
3519
3520 /*
3521 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3522 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3523 * premature use of a lower zone may cause lowmem pressure problems that
3524 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3525 * probably too small. It only makes sense to spread allocations to avoid
3526 * fragmentation between the Normal and DMA32 zones.
3527 */
3528 static inline unsigned int
3529 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3530 {
3531 unsigned int alloc_flags;
3532
3533 /*
3534 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3535 * to save a branch.
3536 */
3537 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3538
3539 #ifdef CONFIG_ZONE_DMA32
3540 if (!zone)
3541 return alloc_flags;
3542
3543 if (zone_idx(zone) != ZONE_NORMAL)
3544 return alloc_flags;
3545
3546 /*
3547 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3548 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3549 * on UMA that if Normal is populated then so is DMA32.
3550 */
3551 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3552 if (nr_online_nodes > 1 && !populated_zone(--zone))
3553 return alloc_flags;
3554
3555 alloc_flags |= ALLOC_NOFRAGMENT;
3556 #endif /* CONFIG_ZONE_DMA32 */
3557 return alloc_flags;
3558 }
3559
3560 /*
3561 * get_page_from_freelist goes through the zonelist trying to allocate
3562 * a page.
3563 */
3564 static struct page *
3565 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3566 const struct alloc_context *ac)
3567 {
3568 struct zoneref *z;
3569 struct zone *zone;
3570 struct pglist_data *last_pgdat_dirty_limit = NULL;
3571 bool no_fallback;
3572
3573 retry:
3574 /*
3575 * Scan zonelist, looking for a zone with enough free.
3576 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3577 */
3578 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3579 z = ac->preferred_zoneref;
3580 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3581 ac->nodemask) {
3582 struct page *page;
3583 unsigned long mark;
3584
3585 if (cpusets_enabled() &&
3586 (alloc_flags & ALLOC_CPUSET) &&
3587 !__cpuset_zone_allowed(zone, gfp_mask))
3588 continue;
3589 /*
3590 * When allocating a page cache page for writing, we
3591 * want to get it from a node that is within its dirty
3592 * limit, such that no single node holds more than its
3593 * proportional share of globally allowed dirty pages.
3594 * The dirty limits take into account the node's
3595 * lowmem reserves and high watermark so that kswapd
3596 * should be able to balance it without having to
3597 * write pages from its LRU list.
3598 *
3599 * XXX: For now, allow allocations to potentially
3600 * exceed the per-node dirty limit in the slowpath
3601 * (spread_dirty_pages unset) before going into reclaim,
3602 * which is important when on a NUMA setup the allowed
3603 * nodes are together not big enough to reach the
3604 * global limit. The proper fix for these situations
3605 * will require awareness of nodes in the
3606 * dirty-throttling and the flusher threads.
3607 */
3608 if (ac->spread_dirty_pages) {
3609 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3610 continue;
3611
3612 if (!node_dirty_ok(zone->zone_pgdat)) {
3613 last_pgdat_dirty_limit = zone->zone_pgdat;
3614 continue;
3615 }
3616 }
3617
3618 if (no_fallback && nr_online_nodes > 1 &&
3619 zone != ac->preferred_zoneref->zone) {
3620 int local_nid;
3621
3622 /*
3623 * If moving to a remote node, retry but allow
3624 * fragmenting fallbacks. Locality is more important
3625 * than fragmentation avoidance.
3626 */
3627 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3628 if (zone_to_nid(zone) != local_nid) {
3629 alloc_flags &= ~ALLOC_NOFRAGMENT;
3630 goto retry;
3631 }
3632 }
3633
3634 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3635 if (!zone_watermark_fast(zone, order, mark,
3636 ac_classzone_idx(ac), alloc_flags)) {
3637 int ret;
3638
3639 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3640 /*
3641 * Watermark failed for this zone, but see if we can
3642 * grow this zone if it contains deferred pages.
3643 */
3644 if (static_branch_unlikely(&deferred_pages)) {
3645 if (_deferred_grow_zone(zone, order))
3646 goto try_this_zone;
3647 }
3648 #endif
3649 /* Checked here to keep the fast path fast */
3650 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3651 if (alloc_flags & ALLOC_NO_WATERMARKS)
3652 goto try_this_zone;
3653
3654 if (node_reclaim_mode == 0 ||
3655 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3656 continue;
3657
3658 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3659 switch (ret) {
3660 case NODE_RECLAIM_NOSCAN:
3661 /* did not scan */
3662 continue;
3663 case NODE_RECLAIM_FULL:
3664 /* scanned but unreclaimable */
3665 continue;
3666 default:
3667 /* did we reclaim enough */
3668 if (zone_watermark_ok(zone, order, mark,
3669 ac_classzone_idx(ac), alloc_flags))
3670 goto try_this_zone;
3671
3672 continue;
3673 }
3674 }
3675
3676 try_this_zone:
3677 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3678 gfp_mask, alloc_flags, ac->migratetype);
3679 if (page) {
3680 prep_new_page(page, order, gfp_mask, alloc_flags);
3681
3682 /*
3683 * If this is a high-order atomic allocation then check
3684 * if the pageblock should be reserved for the future
3685 */
3686 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3687 reserve_highatomic_pageblock(page, zone, order);
3688
3689 return page;
3690 } else {
3691 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3692 /* Try again if zone has deferred pages */
3693 if (static_branch_unlikely(&deferred_pages)) {
3694 if (_deferred_grow_zone(zone, order))
3695 goto try_this_zone;
3696 }
3697 #endif
3698 }
3699 }
3700
3701 /*
3702 * It's possible on a UMA machine to get through all zones that are
3703 * fragmented. If avoiding fragmentation, reset and try again.
3704 */
3705 if (no_fallback) {
3706 alloc_flags &= ~ALLOC_NOFRAGMENT;
3707 goto retry;
3708 }
3709
3710 return NULL;
3711 }
3712
3713 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3714 {
3715 unsigned int filter = SHOW_MEM_FILTER_NODES;
3716
3717 /*
3718 * This documents exceptions given to allocations in certain
3719 * contexts that are allowed to allocate outside current's set
3720 * of allowed nodes.
3721 */
3722 if (!(gfp_mask & __GFP_NOMEMALLOC))
3723 if (tsk_is_oom_victim(current) ||
3724 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3725 filter &= ~SHOW_MEM_FILTER_NODES;
3726 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3727 filter &= ~SHOW_MEM_FILTER_NODES;
3728
3729 show_mem(filter, nodemask);
3730 }
3731
3732 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3733 {
3734 struct va_format vaf;
3735 va_list args;
3736 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3737
3738 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3739 return;
3740
3741 va_start(args, fmt);
3742 vaf.fmt = fmt;
3743 vaf.va = &args;
3744 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3745 current->comm, &vaf, gfp_mask, &gfp_mask,
3746 nodemask_pr_args(nodemask));
3747 va_end(args);
3748
3749 cpuset_print_current_mems_allowed();
3750 pr_cont("\n");
3751 dump_stack();
3752 warn_alloc_show_mem(gfp_mask, nodemask);
3753 }
3754
3755 static inline struct page *
3756 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3757 unsigned int alloc_flags,
3758 const struct alloc_context *ac)
3759 {
3760 struct page *page;
3761
3762 page = get_page_from_freelist(gfp_mask, order,
3763 alloc_flags|ALLOC_CPUSET, ac);
3764 /*
3765 * fallback to ignore cpuset restriction if our nodes
3766 * are depleted
3767 */
3768 if (!page)
3769 page = get_page_from_freelist(gfp_mask, order,
3770 alloc_flags, ac);
3771
3772 return page;
3773 }
3774
3775 static inline struct page *
3776 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3777 const struct alloc_context *ac, unsigned long *did_some_progress)
3778 {
3779 struct oom_control oc = {
3780 .zonelist = ac->zonelist,
3781 .nodemask = ac->nodemask,
3782 .memcg = NULL,
3783 .gfp_mask = gfp_mask,
3784 .order = order,
3785 };
3786 struct page *page;
3787
3788 *did_some_progress = 0;
3789
3790 /*
3791 * Acquire the oom lock. If that fails, somebody else is
3792 * making progress for us.
3793 */
3794 if (!mutex_trylock(&oom_lock)) {
3795 *did_some_progress = 1;
3796 schedule_timeout_uninterruptible(1);
3797 return NULL;
3798 }
3799
3800 /*
3801 * Go through the zonelist yet one more time, keep very high watermark
3802 * here, this is only to catch a parallel oom killing, we must fail if
3803 * we're still under heavy pressure. But make sure that this reclaim
3804 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3805 * allocation which will never fail due to oom_lock already held.
3806 */
3807 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3808 ~__GFP_DIRECT_RECLAIM, order,
3809 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3810 if (page)
3811 goto out;
3812
3813 /* Coredumps can quickly deplete all memory reserves */
3814 if (current->flags & PF_DUMPCORE)
3815 goto out;
3816 /* The OOM killer will not help higher order allocs */
3817 if (order > PAGE_ALLOC_COSTLY_ORDER)
3818 goto out;
3819 /*
3820 * We have already exhausted all our reclaim opportunities without any
3821 * success so it is time to admit defeat. We will skip the OOM killer
3822 * because it is very likely that the caller has a more reasonable
3823 * fallback than shooting a random task.
3824 */
3825 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3826 goto out;
3827 /* The OOM killer does not needlessly kill tasks for lowmem */
3828 if (ac->high_zoneidx < ZONE_NORMAL)
3829 goto out;
3830 if (pm_suspended_storage())
3831 goto out;
3832 /*
3833 * XXX: GFP_NOFS allocations should rather fail than rely on
3834 * other request to make a forward progress.
3835 * We are in an unfortunate situation where out_of_memory cannot
3836 * do much for this context but let's try it to at least get
3837 * access to memory reserved if the current task is killed (see
3838 * out_of_memory). Once filesystems are ready to handle allocation
3839 * failures more gracefully we should just bail out here.
3840 */
3841
3842 /* The OOM killer may not free memory on a specific node */
3843 if (gfp_mask & __GFP_THISNODE)
3844 goto out;
3845
3846 /* Exhausted what can be done so it's blame time */
3847 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3848 *did_some_progress = 1;
3849
3850 /*
3851 * Help non-failing allocations by giving them access to memory
3852 * reserves
3853 */
3854 if (gfp_mask & __GFP_NOFAIL)
3855 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3856 ALLOC_NO_WATERMARKS, ac);
3857 }
3858 out:
3859 mutex_unlock(&oom_lock);
3860 return page;
3861 }
3862
3863 /*
3864 * Maximum number of compaction retries wit a progress before OOM
3865 * killer is consider as the only way to move forward.
3866 */
3867 #define MAX_COMPACT_RETRIES 16
3868
3869 #ifdef CONFIG_COMPACTION
3870 /* Try memory compaction for high-order allocations before reclaim */
3871 static struct page *
3872 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3873 unsigned int alloc_flags, const struct alloc_context *ac,
3874 enum compact_priority prio, enum compact_result *compact_result)
3875 {
3876 struct page *page = NULL;
3877 unsigned long pflags;
3878 unsigned int noreclaim_flag;
3879
3880 if (!order)
3881 return NULL;
3882
3883 psi_memstall_enter(&pflags);
3884 noreclaim_flag = memalloc_noreclaim_save();
3885
3886 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3887 prio, &page);
3888
3889 memalloc_noreclaim_restore(noreclaim_flag);
3890 psi_memstall_leave(&pflags);
3891
3892 /*
3893 * At least in one zone compaction wasn't deferred or skipped, so let's
3894 * count a compaction stall
3895 */
3896 count_vm_event(COMPACTSTALL);
3897
3898 /* Prep a captured page if available */
3899 if (page)
3900 prep_new_page(page, order, gfp_mask, alloc_flags);
3901
3902 /* Try get a page from the freelist if available */
3903 if (!page)
3904 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3905
3906 if (page) {
3907 struct zone *zone = page_zone(page);
3908
3909 zone->compact_blockskip_flush = false;
3910 compaction_defer_reset(zone, order, true);
3911 count_vm_event(COMPACTSUCCESS);
3912 return page;
3913 }
3914
3915 /*
3916 * It's bad if compaction run occurs and fails. The most likely reason
3917 * is that pages exist, but not enough to satisfy watermarks.
3918 */
3919 count_vm_event(COMPACTFAIL);
3920
3921 cond_resched();
3922
3923 return NULL;
3924 }
3925
3926 static inline bool
3927 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3928 enum compact_result compact_result,
3929 enum compact_priority *compact_priority,
3930 int *compaction_retries)
3931 {
3932 int max_retries = MAX_COMPACT_RETRIES;
3933 int min_priority;
3934 bool ret = false;
3935 int retries = *compaction_retries;
3936 enum compact_priority priority = *compact_priority;
3937
3938 if (!order)
3939 return false;
3940
3941 if (compaction_made_progress(compact_result))
3942 (*compaction_retries)++;
3943
3944 /*
3945 * compaction considers all the zone as desperately out of memory
3946 * so it doesn't really make much sense to retry except when the
3947 * failure could be caused by insufficient priority
3948 */
3949 if (compaction_failed(compact_result))
3950 goto check_priority;
3951
3952 /*
3953 * compaction was skipped because there are not enough order-0 pages
3954 * to work with, so we retry only if it looks like reclaim can help.
3955 */
3956 if (compaction_needs_reclaim(compact_result)) {
3957 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3958 goto out;
3959 }
3960
3961 /*
3962 * make sure the compaction wasn't deferred or didn't bail out early
3963 * due to locks contention before we declare that we should give up.
3964 * But the next retry should use a higher priority if allowed, so
3965 * we don't just keep bailing out endlessly.
3966 */
3967 if (compaction_withdrawn(compact_result)) {
3968 goto check_priority;
3969 }
3970
3971 /*
3972 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3973 * costly ones because they are de facto nofail and invoke OOM
3974 * killer to move on while costly can fail and users are ready
3975 * to cope with that. 1/4 retries is rather arbitrary but we
3976 * would need much more detailed feedback from compaction to
3977 * make a better decision.
3978 */
3979 if (order > PAGE_ALLOC_COSTLY_ORDER)
3980 max_retries /= 4;
3981 if (*compaction_retries <= max_retries) {
3982 ret = true;
3983 goto out;
3984 }
3985
3986 /*
3987 * Make sure there are attempts at the highest priority if we exhausted
3988 * all retries or failed at the lower priorities.
3989 */
3990 check_priority:
3991 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3992 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3993
3994 if (*compact_priority > min_priority) {
3995 (*compact_priority)--;
3996 *compaction_retries = 0;
3997 ret = true;
3998 }
3999 out:
4000 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4001 return ret;
4002 }
4003 #else
4004 static inline struct page *
4005 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4006 unsigned int alloc_flags, const struct alloc_context *ac,
4007 enum compact_priority prio, enum compact_result *compact_result)
4008 {
4009 *compact_result = COMPACT_SKIPPED;
4010 return NULL;
4011 }
4012
4013 static inline bool
4014 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4015 enum compact_result compact_result,
4016 enum compact_priority *compact_priority,
4017 int *compaction_retries)
4018 {
4019 struct zone *zone;
4020 struct zoneref *z;
4021
4022 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4023 return false;
4024
4025 /*
4026 * There are setups with compaction disabled which would prefer to loop
4027 * inside the allocator rather than hit the oom killer prematurely.
4028 * Let's give them a good hope and keep retrying while the order-0
4029 * watermarks are OK.
4030 */
4031 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4032 ac->nodemask) {
4033 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4034 ac_classzone_idx(ac), alloc_flags))
4035 return true;
4036 }
4037 return false;
4038 }
4039 #endif /* CONFIG_COMPACTION */
4040
4041 #ifdef CONFIG_LOCKDEP
4042 static struct lockdep_map __fs_reclaim_map =
4043 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4044
4045 static bool __need_fs_reclaim(gfp_t gfp_mask)
4046 {
4047 gfp_mask = current_gfp_context(gfp_mask);
4048
4049 /* no reclaim without waiting on it */
4050 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4051 return false;
4052
4053 /* this guy won't enter reclaim */
4054 if (current->flags & PF_MEMALLOC)
4055 return false;
4056
4057 /* We're only interested __GFP_FS allocations for now */
4058 if (!(gfp_mask & __GFP_FS))
4059 return false;
4060
4061 if (gfp_mask & __GFP_NOLOCKDEP)
4062 return false;
4063
4064 return true;
4065 }
4066
4067 void __fs_reclaim_acquire(void)
4068 {
4069 lock_map_acquire(&__fs_reclaim_map);
4070 }
4071
4072 void __fs_reclaim_release(void)
4073 {
4074 lock_map_release(&__fs_reclaim_map);
4075 }
4076
4077 void fs_reclaim_acquire(gfp_t gfp_mask)
4078 {
4079 if (__need_fs_reclaim(gfp_mask))
4080 __fs_reclaim_acquire();
4081 }
4082 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4083
4084 void fs_reclaim_release(gfp_t gfp_mask)
4085 {
4086 if (__need_fs_reclaim(gfp_mask))
4087 __fs_reclaim_release();
4088 }
4089 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4090 #endif
4091
4092 /* Perform direct synchronous page reclaim */
4093 static int
4094 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4095 const struct alloc_context *ac)
4096 {
4097 int progress;
4098 unsigned int noreclaim_flag;
4099 unsigned long pflags;
4100
4101 cond_resched();
4102
4103 /* We now go into synchronous reclaim */
4104 cpuset_memory_pressure_bump();
4105 psi_memstall_enter(&pflags);
4106 fs_reclaim_acquire(gfp_mask);
4107 noreclaim_flag = memalloc_noreclaim_save();
4108
4109 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4110 ac->nodemask);
4111
4112 memalloc_noreclaim_restore(noreclaim_flag);
4113 fs_reclaim_release(gfp_mask);
4114 psi_memstall_leave(&pflags);
4115
4116 cond_resched();
4117
4118 return progress;
4119 }
4120
4121 /* The really slow allocator path where we enter direct reclaim */
4122 static inline struct page *
4123 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4124 unsigned int alloc_flags, const struct alloc_context *ac,
4125 unsigned long *did_some_progress)
4126 {
4127 struct page *page = NULL;
4128 bool drained = false;
4129
4130 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4131 if (unlikely(!(*did_some_progress)))
4132 return NULL;
4133
4134 retry:
4135 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4136
4137 /*
4138 * If an allocation failed after direct reclaim, it could be because
4139 * pages are pinned on the per-cpu lists or in high alloc reserves.
4140 * Shrink them them and try again
4141 */
4142 if (!page && !drained) {
4143 unreserve_highatomic_pageblock(ac, false);
4144 drain_all_pages(NULL);
4145 drained = true;
4146 goto retry;
4147 }
4148
4149 return page;
4150 }
4151
4152 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4153 const struct alloc_context *ac)
4154 {
4155 struct zoneref *z;
4156 struct zone *zone;
4157 pg_data_t *last_pgdat = NULL;
4158 enum zone_type high_zoneidx = ac->high_zoneidx;
4159
4160 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4161 ac->nodemask) {
4162 if (last_pgdat != zone->zone_pgdat)
4163 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4164 last_pgdat = zone->zone_pgdat;
4165 }
4166 }
4167
4168 static inline unsigned int
4169 gfp_to_alloc_flags(gfp_t gfp_mask)
4170 {
4171 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4172
4173 /*
4174 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4175 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4176 * to save two branches.
4177 */
4178 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4179 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4180
4181 /*
4182 * The caller may dip into page reserves a bit more if the caller
4183 * cannot run direct reclaim, or if the caller has realtime scheduling
4184 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4185 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4186 */
4187 alloc_flags |= (__force int)
4188 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4189
4190 if (gfp_mask & __GFP_ATOMIC) {
4191 /*
4192 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4193 * if it can't schedule.
4194 */
4195 if (!(gfp_mask & __GFP_NOMEMALLOC))
4196 alloc_flags |= ALLOC_HARDER;
4197 /*
4198 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4199 * comment for __cpuset_node_allowed().
4200 */
4201 alloc_flags &= ~ALLOC_CPUSET;
4202 } else if (unlikely(rt_task(current)) && !in_interrupt())
4203 alloc_flags |= ALLOC_HARDER;
4204
4205 #ifdef CONFIG_CMA
4206 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4207 alloc_flags |= ALLOC_CMA;
4208 #endif
4209 return alloc_flags;
4210 }
4211
4212 static bool oom_reserves_allowed(struct task_struct *tsk)
4213 {
4214 if (!tsk_is_oom_victim(tsk))
4215 return false;
4216
4217 /*
4218 * !MMU doesn't have oom reaper so give access to memory reserves
4219 * only to the thread with TIF_MEMDIE set
4220 */
4221 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4222 return false;
4223
4224 return true;
4225 }
4226
4227 /*
4228 * Distinguish requests which really need access to full memory
4229 * reserves from oom victims which can live with a portion of it
4230 */
4231 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4232 {
4233 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4234 return 0;
4235 if (gfp_mask & __GFP_MEMALLOC)
4236 return ALLOC_NO_WATERMARKS;
4237 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4238 return ALLOC_NO_WATERMARKS;
4239 if (!in_interrupt()) {
4240 if (current->flags & PF_MEMALLOC)
4241 return ALLOC_NO_WATERMARKS;
4242 else if (oom_reserves_allowed(current))
4243 return ALLOC_OOM;
4244 }
4245
4246 return 0;
4247 }
4248
4249 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4250 {
4251 return !!__gfp_pfmemalloc_flags(gfp_mask);
4252 }
4253
4254 /*
4255 * Checks whether it makes sense to retry the reclaim to make a forward progress
4256 * for the given allocation request.
4257 *
4258 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4259 * without success, or when we couldn't even meet the watermark if we
4260 * reclaimed all remaining pages on the LRU lists.
4261 *
4262 * Returns true if a retry is viable or false to enter the oom path.
4263 */
4264 static inline bool
4265 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4266 struct alloc_context *ac, int alloc_flags,
4267 bool did_some_progress, int *no_progress_loops)
4268 {
4269 struct zone *zone;
4270 struct zoneref *z;
4271 bool ret = false;
4272
4273 /*
4274 * Costly allocations might have made a progress but this doesn't mean
4275 * their order will become available due to high fragmentation so
4276 * always increment the no progress counter for them
4277 */
4278 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4279 *no_progress_loops = 0;
4280 else
4281 (*no_progress_loops)++;
4282
4283 /*
4284 * Make sure we converge to OOM if we cannot make any progress
4285 * several times in the row.
4286 */
4287 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4288 /* Before OOM, exhaust highatomic_reserve */
4289 return unreserve_highatomic_pageblock(ac, true);
4290 }
4291
4292 /*
4293 * Keep reclaiming pages while there is a chance this will lead
4294 * somewhere. If none of the target zones can satisfy our allocation
4295 * request even if all reclaimable pages are considered then we are
4296 * screwed and have to go OOM.
4297 */
4298 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4299 ac->nodemask) {
4300 unsigned long available;
4301 unsigned long reclaimable;
4302 unsigned long min_wmark = min_wmark_pages(zone);
4303 bool wmark;
4304
4305 available = reclaimable = zone_reclaimable_pages(zone);
4306 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4307
4308 /*
4309 * Would the allocation succeed if we reclaimed all
4310 * reclaimable pages?
4311 */
4312 wmark = __zone_watermark_ok(zone, order, min_wmark,
4313 ac_classzone_idx(ac), alloc_flags, available);
4314 trace_reclaim_retry_zone(z, order, reclaimable,
4315 available, min_wmark, *no_progress_loops, wmark);
4316 if (wmark) {
4317 /*
4318 * If we didn't make any progress and have a lot of
4319 * dirty + writeback pages then we should wait for
4320 * an IO to complete to slow down the reclaim and
4321 * prevent from pre mature OOM
4322 */
4323 if (!did_some_progress) {
4324 unsigned long write_pending;
4325
4326 write_pending = zone_page_state_snapshot(zone,
4327 NR_ZONE_WRITE_PENDING);
4328
4329 if (2 * write_pending > reclaimable) {
4330 congestion_wait(BLK_RW_ASYNC, HZ/10);
4331 return true;
4332 }
4333 }
4334
4335 ret = true;
4336 goto out;
4337 }
4338 }
4339
4340 out:
4341 /*
4342 * Memory allocation/reclaim might be called from a WQ context and the
4343 * current implementation of the WQ concurrency control doesn't
4344 * recognize that a particular WQ is congested if the worker thread is
4345 * looping without ever sleeping. Therefore we have to do a short sleep
4346 * here rather than calling cond_resched().
4347 */
4348 if (current->flags & PF_WQ_WORKER)
4349 schedule_timeout_uninterruptible(1);
4350 else
4351 cond_resched();
4352 return ret;
4353 }
4354
4355 static inline bool
4356 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4357 {
4358 /*
4359 * It's possible that cpuset's mems_allowed and the nodemask from
4360 * mempolicy don't intersect. This should be normally dealt with by
4361 * policy_nodemask(), but it's possible to race with cpuset update in
4362 * such a way the check therein was true, and then it became false
4363 * before we got our cpuset_mems_cookie here.
4364 * This assumes that for all allocations, ac->nodemask can come only
4365 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4366 * when it does not intersect with the cpuset restrictions) or the
4367 * caller can deal with a violated nodemask.
4368 */
4369 if (cpusets_enabled() && ac->nodemask &&
4370 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4371 ac->nodemask = NULL;
4372 return true;
4373 }
4374
4375 /*
4376 * When updating a task's mems_allowed or mempolicy nodemask, it is
4377 * possible to race with parallel threads in such a way that our
4378 * allocation can fail while the mask is being updated. If we are about
4379 * to fail, check if the cpuset changed during allocation and if so,
4380 * retry.
4381 */
4382 if (read_mems_allowed_retry(cpuset_mems_cookie))
4383 return true;
4384
4385 return false;
4386 }
4387
4388 static inline struct page *
4389 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4390 struct alloc_context *ac)
4391 {
4392 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4393 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4394 struct page *page = NULL;
4395 unsigned int alloc_flags;
4396 unsigned long did_some_progress;
4397 enum compact_priority compact_priority;
4398 enum compact_result compact_result;
4399 int compaction_retries;
4400 int no_progress_loops;
4401 unsigned int cpuset_mems_cookie;
4402 int reserve_flags;
4403
4404 /*
4405 * We also sanity check to catch abuse of atomic reserves being used by
4406 * callers that are not in atomic context.
4407 */
4408 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4409 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4410 gfp_mask &= ~__GFP_ATOMIC;
4411
4412 retry_cpuset:
4413 compaction_retries = 0;
4414 no_progress_loops = 0;
4415 compact_priority = DEF_COMPACT_PRIORITY;
4416 cpuset_mems_cookie = read_mems_allowed_begin();
4417
4418 /*
4419 * The fast path uses conservative alloc_flags to succeed only until
4420 * kswapd needs to be woken up, and to avoid the cost of setting up
4421 * alloc_flags precisely. So we do that now.
4422 */
4423 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4424
4425 /*
4426 * We need to recalculate the starting point for the zonelist iterator
4427 * because we might have used different nodemask in the fast path, or
4428 * there was a cpuset modification and we are retrying - otherwise we
4429 * could end up iterating over non-eligible zones endlessly.
4430 */
4431 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4432 ac->high_zoneidx, ac->nodemask);
4433 if (!ac->preferred_zoneref->zone)
4434 goto nopage;
4435
4436 if (alloc_flags & ALLOC_KSWAPD)
4437 wake_all_kswapds(order, gfp_mask, ac);
4438
4439 /*
4440 * The adjusted alloc_flags might result in immediate success, so try
4441 * that first
4442 */
4443 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4444 if (page)
4445 goto got_pg;
4446
4447 /*
4448 * For costly allocations, try direct compaction first, as it's likely
4449 * that we have enough base pages and don't need to reclaim. For non-
4450 * movable high-order allocations, do that as well, as compaction will
4451 * try prevent permanent fragmentation by migrating from blocks of the
4452 * same migratetype.
4453 * Don't try this for allocations that are allowed to ignore
4454 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4455 */
4456 if (can_direct_reclaim &&
4457 (costly_order ||
4458 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4459 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4460 page = __alloc_pages_direct_compact(gfp_mask, order,
4461 alloc_flags, ac,
4462 INIT_COMPACT_PRIORITY,
4463 &compact_result);
4464 if (page)
4465 goto got_pg;
4466
4467 /*
4468 * Checks for costly allocations with __GFP_NORETRY, which
4469 * includes some THP page fault allocations
4470 */
4471 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4472 /*
4473 * If allocating entire pageblock(s) and compaction
4474 * failed because all zones are below low watermarks
4475 * or is prohibited because it recently failed at this
4476 * order, fail immediately unless the allocator has
4477 * requested compaction and reclaim retry.
4478 *
4479 * Reclaim is
4480 * - potentially very expensive because zones are far
4481 * below their low watermarks or this is part of very
4482 * bursty high order allocations,
4483 * - not guaranteed to help because isolate_freepages()
4484 * may not iterate over freed pages as part of its
4485 * linear scan, and
4486 * - unlikely to make entire pageblocks free on its
4487 * own.
4488 */
4489 if (compact_result == COMPACT_SKIPPED ||
4490 compact_result == COMPACT_DEFERRED)
4491 goto nopage;
4492
4493 /*
4494 * Looks like reclaim/compaction is worth trying, but
4495 * sync compaction could be very expensive, so keep
4496 * using async compaction.
4497 */
4498 compact_priority = INIT_COMPACT_PRIORITY;
4499 }
4500 }
4501
4502 retry:
4503 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4504 if (alloc_flags & ALLOC_KSWAPD)
4505 wake_all_kswapds(order, gfp_mask, ac);
4506
4507 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4508 if (reserve_flags)
4509 alloc_flags = reserve_flags;
4510
4511 /*
4512 * Reset the nodemask and zonelist iterators if memory policies can be
4513 * ignored. These allocations are high priority and system rather than
4514 * user oriented.
4515 */
4516 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4517 ac->nodemask = NULL;
4518 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4519 ac->high_zoneidx, ac->nodemask);
4520 }
4521
4522 /* Attempt with potentially adjusted zonelist and alloc_flags */
4523 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4524 if (page)
4525 goto got_pg;
4526
4527 /* Caller is not willing to reclaim, we can't balance anything */
4528 if (!can_direct_reclaim)
4529 goto nopage;
4530
4531 /* Avoid recursion of direct reclaim */
4532 if (current->flags & PF_MEMALLOC)
4533 goto nopage;
4534
4535 /* Try direct reclaim and then allocating */
4536 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4537 &did_some_progress);
4538 if (page)
4539 goto got_pg;
4540
4541 /* Try direct compaction and then allocating */
4542 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4543 compact_priority, &compact_result);
4544 if (page)
4545 goto got_pg;
4546
4547 /* Do not loop if specifically requested */
4548 if (gfp_mask & __GFP_NORETRY)
4549 goto nopage;
4550
4551 /*
4552 * Do not retry costly high order allocations unless they are
4553 * __GFP_RETRY_MAYFAIL
4554 */
4555 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4556 goto nopage;
4557
4558 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4559 did_some_progress > 0, &no_progress_loops))
4560 goto retry;
4561
4562 /*
4563 * It doesn't make any sense to retry for the compaction if the order-0
4564 * reclaim is not able to make any progress because the current
4565 * implementation of the compaction depends on the sufficient amount
4566 * of free memory (see __compaction_suitable)
4567 */
4568 if (did_some_progress > 0 &&
4569 should_compact_retry(ac, order, alloc_flags,
4570 compact_result, &compact_priority,
4571 &compaction_retries))
4572 goto retry;
4573
4574
4575 /* Deal with possible cpuset update races before we start OOM killing */
4576 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4577 goto retry_cpuset;
4578
4579 /* Reclaim has failed us, start killing things */
4580 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4581 if (page)
4582 goto got_pg;
4583
4584 /* Avoid allocations with no watermarks from looping endlessly */
4585 if (tsk_is_oom_victim(current) &&
4586 (alloc_flags == ALLOC_OOM ||
4587 (gfp_mask & __GFP_NOMEMALLOC)))
4588 goto nopage;
4589
4590 /* Retry as long as the OOM killer is making progress */
4591 if (did_some_progress) {
4592 no_progress_loops = 0;
4593 goto retry;
4594 }
4595
4596 nopage:
4597 /* Deal with possible cpuset update races before we fail */
4598 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4599 goto retry_cpuset;
4600
4601 /*
4602 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4603 * we always retry
4604 */
4605 if (gfp_mask & __GFP_NOFAIL) {
4606 /*
4607 * All existing users of the __GFP_NOFAIL are blockable, so warn
4608 * of any new users that actually require GFP_NOWAIT
4609 */
4610 if (WARN_ON_ONCE(!can_direct_reclaim))
4611 goto fail;
4612
4613 /*
4614 * PF_MEMALLOC request from this context is rather bizarre
4615 * because we cannot reclaim anything and only can loop waiting
4616 * for somebody to do a work for us
4617 */
4618 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4619
4620 /*
4621 * non failing costly orders are a hard requirement which we
4622 * are not prepared for much so let's warn about these users
4623 * so that we can identify them and convert them to something
4624 * else.
4625 */
4626 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4627
4628 /*
4629 * Help non-failing allocations by giving them access to memory
4630 * reserves but do not use ALLOC_NO_WATERMARKS because this
4631 * could deplete whole memory reserves which would just make
4632 * the situation worse
4633 */
4634 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4635 if (page)
4636 goto got_pg;
4637
4638 cond_resched();
4639 goto retry;
4640 }
4641 fail:
4642 warn_alloc(gfp_mask, ac->nodemask,
4643 "page allocation failure: order:%u", order);
4644 got_pg:
4645 return page;
4646 }
4647
4648 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4649 int preferred_nid, nodemask_t *nodemask,
4650 struct alloc_context *ac, gfp_t *alloc_mask,
4651 unsigned int *alloc_flags)
4652 {
4653 ac->high_zoneidx = gfp_zone(gfp_mask);
4654 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4655 ac->nodemask = nodemask;
4656 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4657
4658 if (cpusets_enabled()) {
4659 *alloc_mask |= __GFP_HARDWALL;
4660 if (!ac->nodemask)
4661 ac->nodemask = &cpuset_current_mems_allowed;
4662 else
4663 *alloc_flags |= ALLOC_CPUSET;
4664 }
4665
4666 fs_reclaim_acquire(gfp_mask);
4667 fs_reclaim_release(gfp_mask);
4668
4669 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4670
4671 if (should_fail_alloc_page(gfp_mask, order))
4672 return false;
4673
4674 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4675 *alloc_flags |= ALLOC_CMA;
4676
4677 return true;
4678 }
4679
4680 /* Determine whether to spread dirty pages and what the first usable zone */
4681 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4682 {
4683 /* Dirty zone balancing only done in the fast path */
4684 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4685
4686 /*
4687 * The preferred zone is used for statistics but crucially it is
4688 * also used as the starting point for the zonelist iterator. It
4689 * may get reset for allocations that ignore memory policies.
4690 */
4691 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4692 ac->high_zoneidx, ac->nodemask);
4693 }
4694
4695 /*
4696 * This is the 'heart' of the zoned buddy allocator.
4697 */
4698 struct page *
4699 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4700 nodemask_t *nodemask)
4701 {
4702 struct page *page;
4703 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4704 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4705 struct alloc_context ac = { };
4706
4707 /*
4708 * There are several places where we assume that the order value is sane
4709 * so bail out early if the request is out of bound.
4710 */
4711 if (unlikely(order >= MAX_ORDER)) {
4712 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4713 return NULL;
4714 }
4715
4716 gfp_mask &= gfp_allowed_mask;
4717 alloc_mask = gfp_mask;
4718 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4719 return NULL;
4720
4721 finalise_ac(gfp_mask, &ac);
4722
4723 /*
4724 * Forbid the first pass from falling back to types that fragment
4725 * memory until all local zones are considered.
4726 */
4727 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4728
4729 /* First allocation attempt */
4730 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4731 if (likely(page))
4732 goto out;
4733
4734 /*
4735 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4736 * resp. GFP_NOIO which has to be inherited for all allocation requests
4737 * from a particular context which has been marked by
4738 * memalloc_no{fs,io}_{save,restore}.
4739 */
4740 alloc_mask = current_gfp_context(gfp_mask);
4741 ac.spread_dirty_pages = false;
4742
4743 /*
4744 * Restore the original nodemask if it was potentially replaced with
4745 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4746 */
4747 ac.nodemask = nodemask;
4748
4749 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4750
4751 out:
4752 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4753 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4754 __free_pages(page, order);
4755 page = NULL;
4756 }
4757
4758 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4759
4760 return page;
4761 }
4762 EXPORT_SYMBOL(__alloc_pages_nodemask);
4763
4764 /*
4765 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4766 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4767 * you need to access high mem.
4768 */
4769 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4770 {
4771 struct page *page;
4772
4773 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4774 if (!page)
4775 return 0;
4776 return (unsigned long) page_address(page);
4777 }
4778 EXPORT_SYMBOL(__get_free_pages);
4779
4780 unsigned long get_zeroed_page(gfp_t gfp_mask)
4781 {
4782 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4783 }
4784 EXPORT_SYMBOL(get_zeroed_page);
4785
4786 static inline void free_the_page(struct page *page, unsigned int order)
4787 {
4788 if (order == 0) /* Via pcp? */
4789 free_unref_page(page);
4790 else
4791 __free_pages_ok(page, order);
4792 }
4793
4794 void __free_pages(struct page *page, unsigned int order)
4795 {
4796 if (put_page_testzero(page))
4797 free_the_page(page, order);
4798 }
4799 EXPORT_SYMBOL(__free_pages);
4800
4801 void free_pages(unsigned long addr, unsigned int order)
4802 {
4803 if (addr != 0) {
4804 VM_BUG_ON(!virt_addr_valid((void *)addr));
4805 __free_pages(virt_to_page((void *)addr), order);
4806 }
4807 }
4808
4809 EXPORT_SYMBOL(free_pages);
4810
4811 /*
4812 * Page Fragment:
4813 * An arbitrary-length arbitrary-offset area of memory which resides
4814 * within a 0 or higher order page. Multiple fragments within that page
4815 * are individually refcounted, in the page's reference counter.
4816 *
4817 * The page_frag functions below provide a simple allocation framework for
4818 * page fragments. This is used by the network stack and network device
4819 * drivers to provide a backing region of memory for use as either an
4820 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4821 */
4822 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4823 gfp_t gfp_mask)
4824 {
4825 struct page *page = NULL;
4826 gfp_t gfp = gfp_mask;
4827
4828 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4829 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4830 __GFP_NOMEMALLOC;
4831 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4832 PAGE_FRAG_CACHE_MAX_ORDER);
4833 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4834 #endif
4835 if (unlikely(!page))
4836 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4837
4838 nc->va = page ? page_address(page) : NULL;
4839
4840 return page;
4841 }
4842
4843 void __page_frag_cache_drain(struct page *page, unsigned int count)
4844 {
4845 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4846
4847 if (page_ref_sub_and_test(page, count))
4848 free_the_page(page, compound_order(page));
4849 }
4850 EXPORT_SYMBOL(__page_frag_cache_drain);
4851
4852 void *page_frag_alloc(struct page_frag_cache *nc,
4853 unsigned int fragsz, gfp_t gfp_mask)
4854 {
4855 unsigned int size = PAGE_SIZE;
4856 struct page *page;
4857 int offset;
4858
4859 if (unlikely(!nc->va)) {
4860 refill:
4861 page = __page_frag_cache_refill(nc, gfp_mask);
4862 if (!page)
4863 return NULL;
4864
4865 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4866 /* if size can vary use size else just use PAGE_SIZE */
4867 size = nc->size;
4868 #endif
4869 /* Even if we own the page, we do not use atomic_set().
4870 * This would break get_page_unless_zero() users.
4871 */
4872 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4873
4874 /* reset page count bias and offset to start of new frag */
4875 nc->pfmemalloc = page_is_pfmemalloc(page);
4876 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4877 nc->offset = size;
4878 }
4879
4880 offset = nc->offset - fragsz;
4881 if (unlikely(offset < 0)) {
4882 page = virt_to_page(nc->va);
4883
4884 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4885 goto refill;
4886
4887 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4888 /* if size can vary use size else just use PAGE_SIZE */
4889 size = nc->size;
4890 #endif
4891 /* OK, page count is 0, we can safely set it */
4892 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4893
4894 /* reset page count bias and offset to start of new frag */
4895 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4896 offset = size - fragsz;
4897 }
4898
4899 nc->pagecnt_bias--;
4900 nc->offset = offset;
4901
4902 return nc->va + offset;
4903 }
4904 EXPORT_SYMBOL(page_frag_alloc);
4905
4906 /*
4907 * Frees a page fragment allocated out of either a compound or order 0 page.
4908 */
4909 void page_frag_free(void *addr)
4910 {
4911 struct page *page = virt_to_head_page(addr);
4912
4913 if (unlikely(put_page_testzero(page)))
4914 free_the_page(page, compound_order(page));
4915 }
4916 EXPORT_SYMBOL(page_frag_free);
4917
4918 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4919 size_t size)
4920 {
4921 if (addr) {
4922 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4923 unsigned long used = addr + PAGE_ALIGN(size);
4924
4925 split_page(virt_to_page((void *)addr), order);
4926 while (used < alloc_end) {
4927 free_page(used);
4928 used += PAGE_SIZE;
4929 }
4930 }
4931 return (void *)addr;
4932 }
4933
4934 /**
4935 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4936 * @size: the number of bytes to allocate
4937 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4938 *
4939 * This function is similar to alloc_pages(), except that it allocates the
4940 * minimum number of pages to satisfy the request. alloc_pages() can only
4941 * allocate memory in power-of-two pages.
4942 *
4943 * This function is also limited by MAX_ORDER.
4944 *
4945 * Memory allocated by this function must be released by free_pages_exact().
4946 *
4947 * Return: pointer to the allocated area or %NULL in case of error.
4948 */
4949 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4950 {
4951 unsigned int order = get_order(size);
4952 unsigned long addr;
4953
4954 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4955 gfp_mask &= ~__GFP_COMP;
4956
4957 addr = __get_free_pages(gfp_mask, order);
4958 return make_alloc_exact(addr, order, size);
4959 }
4960 EXPORT_SYMBOL(alloc_pages_exact);
4961
4962 /**
4963 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4964 * pages on a node.
4965 * @nid: the preferred node ID where memory should be allocated
4966 * @size: the number of bytes to allocate
4967 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4968 *
4969 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4970 * back.
4971 *
4972 * Return: pointer to the allocated area or %NULL in case of error.
4973 */
4974 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4975 {
4976 unsigned int order = get_order(size);
4977 struct page *p;
4978
4979 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4980 gfp_mask &= ~__GFP_COMP;
4981
4982 p = alloc_pages_node(nid, gfp_mask, order);
4983 if (!p)
4984 return NULL;
4985 return make_alloc_exact((unsigned long)page_address(p), order, size);
4986 }
4987
4988 /**
4989 * free_pages_exact - release memory allocated via alloc_pages_exact()
4990 * @virt: the value returned by alloc_pages_exact.
4991 * @size: size of allocation, same value as passed to alloc_pages_exact().
4992 *
4993 * Release the memory allocated by a previous call to alloc_pages_exact.
4994 */
4995 void free_pages_exact(void *virt, size_t size)
4996 {
4997 unsigned long addr = (unsigned long)virt;
4998 unsigned long end = addr + PAGE_ALIGN(size);
4999
5000 while (addr < end) {
5001 free_page(addr);
5002 addr += PAGE_SIZE;
5003 }
5004 }
5005 EXPORT_SYMBOL(free_pages_exact);
5006
5007 /**
5008 * nr_free_zone_pages - count number of pages beyond high watermark
5009 * @offset: The zone index of the highest zone
5010 *
5011 * nr_free_zone_pages() counts the number of pages which are beyond the
5012 * high watermark within all zones at or below a given zone index. For each
5013 * zone, the number of pages is calculated as:
5014 *
5015 * nr_free_zone_pages = managed_pages - high_pages
5016 *
5017 * Return: number of pages beyond high watermark.
5018 */
5019 static unsigned long nr_free_zone_pages(int offset)
5020 {
5021 struct zoneref *z;
5022 struct zone *zone;
5023
5024 /* Just pick one node, since fallback list is circular */
5025 unsigned long sum = 0;
5026
5027 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5028
5029 for_each_zone_zonelist(zone, z, zonelist, offset) {
5030 unsigned long size = zone_managed_pages(zone);
5031 unsigned long high = high_wmark_pages(zone);
5032 if (size > high)
5033 sum += size - high;
5034 }
5035
5036 return sum;
5037 }
5038
5039 /**
5040 * nr_free_buffer_pages - count number of pages beyond high watermark
5041 *
5042 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5043 * watermark within ZONE_DMA and ZONE_NORMAL.
5044 *
5045 * Return: number of pages beyond high watermark within ZONE_DMA and
5046 * ZONE_NORMAL.
5047 */
5048 unsigned long nr_free_buffer_pages(void)
5049 {
5050 return nr_free_zone_pages(gfp_zone(GFP_USER));
5051 }
5052 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5053
5054 /**
5055 * nr_free_pagecache_pages - count number of pages beyond high watermark
5056 *
5057 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5058 * high watermark within all zones.
5059 *
5060 * Return: number of pages beyond high watermark within all zones.
5061 */
5062 unsigned long nr_free_pagecache_pages(void)
5063 {
5064 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5065 }
5066
5067 static inline void show_node(struct zone *zone)
5068 {
5069 if (IS_ENABLED(CONFIG_NUMA))
5070 printk("Node %d ", zone_to_nid(zone));
5071 }
5072
5073 long si_mem_available(void)
5074 {
5075 long available;
5076 unsigned long pagecache;
5077 unsigned long wmark_low = 0;
5078 unsigned long pages[NR_LRU_LISTS];
5079 unsigned long reclaimable;
5080 struct zone *zone;
5081 int lru;
5082
5083 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5084 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5085
5086 for_each_zone(zone)
5087 wmark_low += low_wmark_pages(zone);
5088
5089 /*
5090 * Estimate the amount of memory available for userspace allocations,
5091 * without causing swapping.
5092 */
5093 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5094
5095 /*
5096 * Not all the page cache can be freed, otherwise the system will
5097 * start swapping. Assume at least half of the page cache, or the
5098 * low watermark worth of cache, needs to stay.
5099 */
5100 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5101 pagecache -= min(pagecache / 2, wmark_low);
5102 available += pagecache;
5103
5104 /*
5105 * Part of the reclaimable slab and other kernel memory consists of
5106 * items that are in use, and cannot be freed. Cap this estimate at the
5107 * low watermark.
5108 */
5109 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5110 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5111 available += reclaimable - min(reclaimable / 2, wmark_low);
5112
5113 if (available < 0)
5114 available = 0;
5115 return available;
5116 }
5117 EXPORT_SYMBOL_GPL(si_mem_available);
5118
5119 void si_meminfo(struct sysinfo *val)
5120 {
5121 val->totalram = totalram_pages();
5122 val->sharedram = global_node_page_state(NR_SHMEM);
5123 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5124 val->bufferram = nr_blockdev_pages();
5125 val->totalhigh = totalhigh_pages();
5126 val->freehigh = nr_free_highpages();
5127 val->mem_unit = PAGE_SIZE;
5128 }
5129
5130 EXPORT_SYMBOL(si_meminfo);
5131
5132 #ifdef CONFIG_NUMA
5133 void si_meminfo_node(struct sysinfo *val, int nid)
5134 {
5135 int zone_type; /* needs to be signed */
5136 unsigned long managed_pages = 0;
5137 unsigned long managed_highpages = 0;
5138 unsigned long free_highpages = 0;
5139 pg_data_t *pgdat = NODE_DATA(nid);
5140
5141 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5142 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5143 val->totalram = managed_pages;
5144 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5145 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5146 #ifdef CONFIG_HIGHMEM
5147 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5148 struct zone *zone = &pgdat->node_zones[zone_type];
5149
5150 if (is_highmem(zone)) {
5151 managed_highpages += zone_managed_pages(zone);
5152 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5153 }
5154 }
5155 val->totalhigh = managed_highpages;
5156 val->freehigh = free_highpages;
5157 #else
5158 val->totalhigh = managed_highpages;
5159 val->freehigh = free_highpages;
5160 #endif
5161 val->mem_unit = PAGE_SIZE;
5162 }
5163 #endif
5164
5165 /*
5166 * Determine whether the node should be displayed or not, depending on whether
5167 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5168 */
5169 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5170 {
5171 if (!(flags & SHOW_MEM_FILTER_NODES))
5172 return false;
5173
5174 /*
5175 * no node mask - aka implicit memory numa policy. Do not bother with
5176 * the synchronization - read_mems_allowed_begin - because we do not
5177 * have to be precise here.
5178 */
5179 if (!nodemask)
5180 nodemask = &cpuset_current_mems_allowed;
5181
5182 return !node_isset(nid, *nodemask);
5183 }
5184
5185 #define K(x) ((x) << (PAGE_SHIFT-10))
5186
5187 static void show_migration_types(unsigned char type)
5188 {
5189 static const char types[MIGRATE_TYPES] = {
5190 [MIGRATE_UNMOVABLE] = 'U',
5191 [MIGRATE_MOVABLE] = 'M',
5192 [MIGRATE_RECLAIMABLE] = 'E',
5193 [MIGRATE_HIGHATOMIC] = 'H',
5194 #ifdef CONFIG_CMA
5195 [MIGRATE_CMA] = 'C',
5196 #endif
5197 #ifdef CONFIG_MEMORY_ISOLATION
5198 [MIGRATE_ISOLATE] = 'I',
5199 #endif
5200 };
5201 char tmp[MIGRATE_TYPES + 1];
5202 char *p = tmp;
5203 int i;
5204
5205 for (i = 0; i < MIGRATE_TYPES; i++) {
5206 if (type & (1 << i))
5207 *p++ = types[i];
5208 }
5209
5210 *p = '\0';
5211 printk(KERN_CONT "(%s) ", tmp);
5212 }
5213
5214 /*
5215 * Show free area list (used inside shift_scroll-lock stuff)
5216 * We also calculate the percentage fragmentation. We do this by counting the
5217 * memory on each free list with the exception of the first item on the list.
5218 *
5219 * Bits in @filter:
5220 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5221 * cpuset.
5222 */
5223 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5224 {
5225 unsigned long free_pcp = 0;
5226 int cpu;
5227 struct zone *zone;
5228 pg_data_t *pgdat;
5229
5230 for_each_populated_zone(zone) {
5231 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5232 continue;
5233
5234 for_each_online_cpu(cpu)
5235 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5236 }
5237
5238 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5239 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5240 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5241 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5242 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5243 " free:%lu free_pcp:%lu free_cma:%lu\n",
5244 global_node_page_state(NR_ACTIVE_ANON),
5245 global_node_page_state(NR_INACTIVE_ANON),
5246 global_node_page_state(NR_ISOLATED_ANON),
5247 global_node_page_state(NR_ACTIVE_FILE),
5248 global_node_page_state(NR_INACTIVE_FILE),
5249 global_node_page_state(NR_ISOLATED_FILE),
5250 global_node_page_state(NR_UNEVICTABLE),
5251 global_node_page_state(NR_FILE_DIRTY),
5252 global_node_page_state(NR_WRITEBACK),
5253 global_node_page_state(NR_UNSTABLE_NFS),
5254 global_node_page_state(NR_SLAB_RECLAIMABLE),
5255 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5256 global_node_page_state(NR_FILE_MAPPED),
5257 global_node_page_state(NR_SHMEM),
5258 global_zone_page_state(NR_PAGETABLE),
5259 global_zone_page_state(NR_BOUNCE),
5260 global_zone_page_state(NR_FREE_PAGES),
5261 free_pcp,
5262 global_zone_page_state(NR_FREE_CMA_PAGES));
5263
5264 for_each_online_pgdat(pgdat) {
5265 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5266 continue;
5267
5268 printk("Node %d"
5269 " active_anon:%lukB"
5270 " inactive_anon:%lukB"
5271 " active_file:%lukB"
5272 " inactive_file:%lukB"
5273 " unevictable:%lukB"
5274 " isolated(anon):%lukB"
5275 " isolated(file):%lukB"
5276 " mapped:%lukB"
5277 " dirty:%lukB"
5278 " writeback:%lukB"
5279 " shmem:%lukB"
5280 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5281 " shmem_thp: %lukB"
5282 " shmem_pmdmapped: %lukB"
5283 " anon_thp: %lukB"
5284 #endif
5285 " writeback_tmp:%lukB"
5286 " unstable:%lukB"
5287 " all_unreclaimable? %s"
5288 "\n",
5289 pgdat->node_id,
5290 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5291 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5292 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5293 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5294 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5295 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5296 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5297 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5298 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5299 K(node_page_state(pgdat, NR_WRITEBACK)),
5300 K(node_page_state(pgdat, NR_SHMEM)),
5301 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5302 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5303 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5304 * HPAGE_PMD_NR),
5305 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5306 #endif
5307 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5308 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5309 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5310 "yes" : "no");
5311 }
5312
5313 for_each_populated_zone(zone) {
5314 int i;
5315
5316 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5317 continue;
5318
5319 free_pcp = 0;
5320 for_each_online_cpu(cpu)
5321 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5322
5323 show_node(zone);
5324 printk(KERN_CONT
5325 "%s"
5326 " free:%lukB"
5327 " min:%lukB"
5328 " low:%lukB"
5329 " high:%lukB"
5330 " reserved_highatomic:%luKB"
5331 " active_anon:%lukB"
5332 " inactive_anon:%lukB"
5333 " active_file:%lukB"
5334 " inactive_file:%lukB"
5335 " unevictable:%lukB"
5336 " writepending:%lukB"
5337 " present:%lukB"
5338 " managed:%lukB"
5339 " mlocked:%lukB"
5340 " kernel_stack:%lukB"
5341 " pagetables:%lukB"
5342 " bounce:%lukB"
5343 " free_pcp:%lukB"
5344 " local_pcp:%ukB"
5345 " free_cma:%lukB"
5346 "\n",
5347 zone->name,
5348 K(zone_page_state(zone, NR_FREE_PAGES)),
5349 K(min_wmark_pages(zone)),
5350 K(low_wmark_pages(zone)),
5351 K(high_wmark_pages(zone)),
5352 K(zone->nr_reserved_highatomic),
5353 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5354 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5355 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5356 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5357 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5358 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5359 K(zone->present_pages),
5360 K(zone_managed_pages(zone)),
5361 K(zone_page_state(zone, NR_MLOCK)),
5362 zone_page_state(zone, NR_KERNEL_STACK_KB),
5363 K(zone_page_state(zone, NR_PAGETABLE)),
5364 K(zone_page_state(zone, NR_BOUNCE)),
5365 K(free_pcp),
5366 K(this_cpu_read(zone->pageset->pcp.count)),
5367 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5368 printk("lowmem_reserve[]:");
5369 for (i = 0; i < MAX_NR_ZONES; i++)
5370 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5371 printk(KERN_CONT "\n");
5372 }
5373
5374 for_each_populated_zone(zone) {
5375 unsigned int order;
5376 unsigned long nr[MAX_ORDER], flags, total = 0;
5377 unsigned char types[MAX_ORDER];
5378
5379 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5380 continue;
5381 show_node(zone);
5382 printk(KERN_CONT "%s: ", zone->name);
5383
5384 spin_lock_irqsave(&zone->lock, flags);
5385 for (order = 0; order < MAX_ORDER; order++) {
5386 struct free_area *area = &zone->free_area[order];
5387 int type;
5388
5389 nr[order] = area->nr_free;
5390 total += nr[order] << order;
5391
5392 types[order] = 0;
5393 for (type = 0; type < MIGRATE_TYPES; type++) {
5394 if (!free_area_empty(area, type))
5395 types[order] |= 1 << type;
5396 }
5397 }
5398 spin_unlock_irqrestore(&zone->lock, flags);
5399 for (order = 0; order < MAX_ORDER; order++) {
5400 printk(KERN_CONT "%lu*%lukB ",
5401 nr[order], K(1UL) << order);
5402 if (nr[order])
5403 show_migration_types(types[order]);
5404 }
5405 printk(KERN_CONT "= %lukB\n", K(total));
5406 }
5407
5408 hugetlb_show_meminfo();
5409
5410 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5411
5412 show_swap_cache_info();
5413 }
5414
5415 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5416 {
5417 zoneref->zone = zone;
5418 zoneref->zone_idx = zone_idx(zone);
5419 }
5420
5421 /*
5422 * Builds allocation fallback zone lists.
5423 *
5424 * Add all populated zones of a node to the zonelist.
5425 */
5426 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5427 {
5428 struct zone *zone;
5429 enum zone_type zone_type = MAX_NR_ZONES;
5430 int nr_zones = 0;
5431
5432 do {
5433 zone_type--;
5434 zone = pgdat->node_zones + zone_type;
5435 if (managed_zone(zone)) {
5436 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5437 check_highest_zone(zone_type);
5438 }
5439 } while (zone_type);
5440
5441 return nr_zones;
5442 }
5443
5444 #ifdef CONFIG_NUMA
5445
5446 static int __parse_numa_zonelist_order(char *s)
5447 {
5448 /*
5449 * We used to support different zonlists modes but they turned
5450 * out to be just not useful. Let's keep the warning in place
5451 * if somebody still use the cmd line parameter so that we do
5452 * not fail it silently
5453 */
5454 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5455 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5456 return -EINVAL;
5457 }
5458 return 0;
5459 }
5460
5461 static __init int setup_numa_zonelist_order(char *s)
5462 {
5463 if (!s)
5464 return 0;
5465
5466 return __parse_numa_zonelist_order(s);
5467 }
5468 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5469
5470 char numa_zonelist_order[] = "Node";
5471
5472 /*
5473 * sysctl handler for numa_zonelist_order
5474 */
5475 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5476 void __user *buffer, size_t *length,
5477 loff_t *ppos)
5478 {
5479 char *str;
5480 int ret;
5481
5482 if (!write)
5483 return proc_dostring(table, write, buffer, length, ppos);
5484 str = memdup_user_nul(buffer, 16);
5485 if (IS_ERR(str))
5486 return PTR_ERR(str);
5487
5488 ret = __parse_numa_zonelist_order(str);
5489 kfree(str);
5490 return ret;
5491 }
5492
5493
5494 #define MAX_NODE_LOAD (nr_online_nodes)
5495 static int node_load[MAX_NUMNODES];
5496
5497 /**
5498 * find_next_best_node - find the next node that should appear in a given node's fallback list
5499 * @node: node whose fallback list we're appending
5500 * @used_node_mask: nodemask_t of already used nodes
5501 *
5502 * We use a number of factors to determine which is the next node that should
5503 * appear on a given node's fallback list. The node should not have appeared
5504 * already in @node's fallback list, and it should be the next closest node
5505 * according to the distance array (which contains arbitrary distance values
5506 * from each node to each node in the system), and should also prefer nodes
5507 * with no CPUs, since presumably they'll have very little allocation pressure
5508 * on them otherwise.
5509 *
5510 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5511 */
5512 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5513 {
5514 int n, val;
5515 int min_val = INT_MAX;
5516 int best_node = NUMA_NO_NODE;
5517 const struct cpumask *tmp = cpumask_of_node(0);
5518
5519 /* Use the local node if we haven't already */
5520 if (!node_isset(node, *used_node_mask)) {
5521 node_set(node, *used_node_mask);
5522 return node;
5523 }
5524
5525 for_each_node_state(n, N_MEMORY) {
5526
5527 /* Don't want a node to appear more than once */
5528 if (node_isset(n, *used_node_mask))
5529 continue;
5530
5531 /* Use the distance array to find the distance */
5532 val = node_distance(node, n);
5533
5534 /* Penalize nodes under us ("prefer the next node") */
5535 val += (n < node);
5536
5537 /* Give preference to headless and unused nodes */
5538 tmp = cpumask_of_node(n);
5539 if (!cpumask_empty(tmp))
5540 val += PENALTY_FOR_NODE_WITH_CPUS;
5541
5542 /* Slight preference for less loaded node */
5543 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5544 val += node_load[n];
5545
5546 if (val < min_val) {
5547 min_val = val;
5548 best_node = n;
5549 }
5550 }
5551
5552 if (best_node >= 0)
5553 node_set(best_node, *used_node_mask);
5554
5555 return best_node;
5556 }
5557
5558
5559 /*
5560 * Build zonelists ordered by node and zones within node.
5561 * This results in maximum locality--normal zone overflows into local
5562 * DMA zone, if any--but risks exhausting DMA zone.
5563 */
5564 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5565 unsigned nr_nodes)
5566 {
5567 struct zoneref *zonerefs;
5568 int i;
5569
5570 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5571
5572 for (i = 0; i < nr_nodes; i++) {
5573 int nr_zones;
5574
5575 pg_data_t *node = NODE_DATA(node_order[i]);
5576
5577 nr_zones = build_zonerefs_node(node, zonerefs);
5578 zonerefs += nr_zones;
5579 }
5580 zonerefs->zone = NULL;
5581 zonerefs->zone_idx = 0;
5582 }
5583
5584 /*
5585 * Build gfp_thisnode zonelists
5586 */
5587 static void build_thisnode_zonelists(pg_data_t *pgdat)
5588 {
5589 struct zoneref *zonerefs;
5590 int nr_zones;
5591
5592 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5593 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5594 zonerefs += nr_zones;
5595 zonerefs->zone = NULL;
5596 zonerefs->zone_idx = 0;
5597 }
5598
5599 /*
5600 * Build zonelists ordered by zone and nodes within zones.
5601 * This results in conserving DMA zone[s] until all Normal memory is
5602 * exhausted, but results in overflowing to remote node while memory
5603 * may still exist in local DMA zone.
5604 */
5605
5606 static void build_zonelists(pg_data_t *pgdat)
5607 {
5608 static int node_order[MAX_NUMNODES];
5609 int node, load, nr_nodes = 0;
5610 nodemask_t used_mask;
5611 int local_node, prev_node;
5612
5613 /* NUMA-aware ordering of nodes */
5614 local_node = pgdat->node_id;
5615 load = nr_online_nodes;
5616 prev_node = local_node;
5617 nodes_clear(used_mask);
5618
5619 memset(node_order, 0, sizeof(node_order));
5620 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5621 /*
5622 * We don't want to pressure a particular node.
5623 * So adding penalty to the first node in same
5624 * distance group to make it round-robin.
5625 */
5626 if (node_distance(local_node, node) !=
5627 node_distance(local_node, prev_node))
5628 node_load[node] = load;
5629
5630 node_order[nr_nodes++] = node;
5631 prev_node = node;
5632 load--;
5633 }
5634
5635 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5636 build_thisnode_zonelists(pgdat);
5637 }
5638
5639 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5640 /*
5641 * Return node id of node used for "local" allocations.
5642 * I.e., first node id of first zone in arg node's generic zonelist.
5643 * Used for initializing percpu 'numa_mem', which is used primarily
5644 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5645 */
5646 int local_memory_node(int node)
5647 {
5648 struct zoneref *z;
5649
5650 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5651 gfp_zone(GFP_KERNEL),
5652 NULL);
5653 return zone_to_nid(z->zone);
5654 }
5655 #endif
5656
5657 static void setup_min_unmapped_ratio(void);
5658 static void setup_min_slab_ratio(void);
5659 #else /* CONFIG_NUMA */
5660
5661 static void build_zonelists(pg_data_t *pgdat)
5662 {
5663 int node, local_node;
5664 struct zoneref *zonerefs;
5665 int nr_zones;
5666
5667 local_node = pgdat->node_id;
5668
5669 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5670 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5671 zonerefs += nr_zones;
5672
5673 /*
5674 * Now we build the zonelist so that it contains the zones
5675 * of all the other nodes.
5676 * We don't want to pressure a particular node, so when
5677 * building the zones for node N, we make sure that the
5678 * zones coming right after the local ones are those from
5679 * node N+1 (modulo N)
5680 */
5681 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5682 if (!node_online(node))
5683 continue;
5684 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5685 zonerefs += nr_zones;
5686 }
5687 for (node = 0; node < local_node; node++) {
5688 if (!node_online(node))
5689 continue;
5690 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5691 zonerefs += nr_zones;
5692 }
5693
5694 zonerefs->zone = NULL;
5695 zonerefs->zone_idx = 0;
5696 }
5697
5698 #endif /* CONFIG_NUMA */
5699
5700 /*
5701 * Boot pageset table. One per cpu which is going to be used for all
5702 * zones and all nodes. The parameters will be set in such a way
5703 * that an item put on a list will immediately be handed over to
5704 * the buddy list. This is safe since pageset manipulation is done
5705 * with interrupts disabled.
5706 *
5707 * The boot_pagesets must be kept even after bootup is complete for
5708 * unused processors and/or zones. They do play a role for bootstrapping
5709 * hotplugged processors.
5710 *
5711 * zoneinfo_show() and maybe other functions do
5712 * not check if the processor is online before following the pageset pointer.
5713 * Other parts of the kernel may not check if the zone is available.
5714 */
5715 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5716 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5717 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5718
5719 static void __build_all_zonelists(void *data)
5720 {
5721 int nid;
5722 int __maybe_unused cpu;
5723 pg_data_t *self = data;
5724 static DEFINE_SPINLOCK(lock);
5725
5726 spin_lock(&lock);
5727
5728 #ifdef CONFIG_NUMA
5729 memset(node_load, 0, sizeof(node_load));
5730 #endif
5731
5732 /*
5733 * This node is hotadded and no memory is yet present. So just
5734 * building zonelists is fine - no need to touch other nodes.
5735 */
5736 if (self && !node_online(self->node_id)) {
5737 build_zonelists(self);
5738 } else {
5739 for_each_online_node(nid) {
5740 pg_data_t *pgdat = NODE_DATA(nid);
5741
5742 build_zonelists(pgdat);
5743 }
5744
5745 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5746 /*
5747 * We now know the "local memory node" for each node--
5748 * i.e., the node of the first zone in the generic zonelist.
5749 * Set up numa_mem percpu variable for on-line cpus. During
5750 * boot, only the boot cpu should be on-line; we'll init the
5751 * secondary cpus' numa_mem as they come on-line. During
5752 * node/memory hotplug, we'll fixup all on-line cpus.
5753 */
5754 for_each_online_cpu(cpu)
5755 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5756 #endif
5757 }
5758
5759 spin_unlock(&lock);
5760 }
5761
5762 static noinline void __init
5763 build_all_zonelists_init(void)
5764 {
5765 int cpu;
5766
5767 __build_all_zonelists(NULL);
5768
5769 /*
5770 * Initialize the boot_pagesets that are going to be used
5771 * for bootstrapping processors. The real pagesets for
5772 * each zone will be allocated later when the per cpu
5773 * allocator is available.
5774 *
5775 * boot_pagesets are used also for bootstrapping offline
5776 * cpus if the system is already booted because the pagesets
5777 * are needed to initialize allocators on a specific cpu too.
5778 * F.e. the percpu allocator needs the page allocator which
5779 * needs the percpu allocator in order to allocate its pagesets
5780 * (a chicken-egg dilemma).
5781 */
5782 for_each_possible_cpu(cpu)
5783 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5784
5785 mminit_verify_zonelist();
5786 cpuset_init_current_mems_allowed();
5787 }
5788
5789 /*
5790 * unless system_state == SYSTEM_BOOTING.
5791 *
5792 * __ref due to call of __init annotated helper build_all_zonelists_init
5793 * [protected by SYSTEM_BOOTING].
5794 */
5795 void __ref build_all_zonelists(pg_data_t *pgdat)
5796 {
5797 if (system_state == SYSTEM_BOOTING) {
5798 build_all_zonelists_init();
5799 } else {
5800 __build_all_zonelists(pgdat);
5801 /* cpuset refresh routine should be here */
5802 }
5803 vm_total_pages = nr_free_pagecache_pages();
5804 /*
5805 * Disable grouping by mobility if the number of pages in the
5806 * system is too low to allow the mechanism to work. It would be
5807 * more accurate, but expensive to check per-zone. This check is
5808 * made on memory-hotadd so a system can start with mobility
5809 * disabled and enable it later
5810 */
5811 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5812 page_group_by_mobility_disabled = 1;
5813 else
5814 page_group_by_mobility_disabled = 0;
5815
5816 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5817 nr_online_nodes,
5818 page_group_by_mobility_disabled ? "off" : "on",
5819 vm_total_pages);
5820 #ifdef CONFIG_NUMA
5821 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5822 #endif
5823 }
5824
5825 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5826 static bool __meminit
5827 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5828 {
5829 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5830 static struct memblock_region *r;
5831
5832 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5833 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5834 for_each_memblock(memory, r) {
5835 if (*pfn < memblock_region_memory_end_pfn(r))
5836 break;
5837 }
5838 }
5839 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5840 memblock_is_mirror(r)) {
5841 *pfn = memblock_region_memory_end_pfn(r);
5842 return true;
5843 }
5844 }
5845 #endif
5846 return false;
5847 }
5848
5849 #ifdef CONFIG_SPARSEMEM
5850 /* Skip PFNs that belong to non-present sections */
5851 static inline __meminit unsigned long next_pfn(unsigned long pfn)
5852 {
5853 const unsigned long section_nr = pfn_to_section_nr(++pfn);
5854
5855 if (present_section_nr(section_nr))
5856 return pfn;
5857 return section_nr_to_pfn(next_present_section_nr(section_nr));
5858 }
5859 #else
5860 static inline __meminit unsigned long next_pfn(unsigned long pfn)
5861 {
5862 return pfn++;
5863 }
5864 #endif
5865
5866 /*
5867 * Initially all pages are reserved - free ones are freed
5868 * up by memblock_free_all() once the early boot process is
5869 * done. Non-atomic initialization, single-pass.
5870 */
5871 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5872 unsigned long start_pfn, enum memmap_context context,
5873 struct vmem_altmap *altmap)
5874 {
5875 unsigned long pfn, end_pfn = start_pfn + size;
5876 struct page *page;
5877
5878 if (highest_memmap_pfn < end_pfn - 1)
5879 highest_memmap_pfn = end_pfn - 1;
5880
5881 #ifdef CONFIG_ZONE_DEVICE
5882 /*
5883 * Honor reservation requested by the driver for this ZONE_DEVICE
5884 * memory. We limit the total number of pages to initialize to just
5885 * those that might contain the memory mapping. We will defer the
5886 * ZONE_DEVICE page initialization until after we have released
5887 * the hotplug lock.
5888 */
5889 if (zone == ZONE_DEVICE) {
5890 if (!altmap)
5891 return;
5892
5893 if (start_pfn == altmap->base_pfn)
5894 start_pfn += altmap->reserve;
5895 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5896 }
5897 #endif
5898
5899 for (pfn = start_pfn; pfn < end_pfn; ) {
5900 /*
5901 * There can be holes in boot-time mem_map[]s handed to this
5902 * function. They do not exist on hotplugged memory.
5903 */
5904 if (context == MEMMAP_EARLY) {
5905 if (!early_pfn_valid(pfn)) {
5906 pfn = next_pfn(pfn);
5907 continue;
5908 }
5909 if (!early_pfn_in_nid(pfn, nid)) {
5910 pfn++;
5911 continue;
5912 }
5913 if (overlap_memmap_init(zone, &pfn))
5914 continue;
5915 if (defer_init(nid, pfn, end_pfn))
5916 break;
5917 }
5918
5919 page = pfn_to_page(pfn);
5920 __init_single_page(page, pfn, zone, nid);
5921 if (context == MEMMAP_HOTPLUG)
5922 __SetPageReserved(page);
5923
5924 /*
5925 * Mark the block movable so that blocks are reserved for
5926 * movable at startup. This will force kernel allocations
5927 * to reserve their blocks rather than leaking throughout
5928 * the address space during boot when many long-lived
5929 * kernel allocations are made.
5930 *
5931 * bitmap is created for zone's valid pfn range. but memmap
5932 * can be created for invalid pages (for alignment)
5933 * check here not to call set_pageblock_migratetype() against
5934 * pfn out of zone.
5935 */
5936 if (!(pfn & (pageblock_nr_pages - 1))) {
5937 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5938 cond_resched();
5939 }
5940 pfn++;
5941 }
5942 }
5943
5944 #ifdef CONFIG_ZONE_DEVICE
5945 void __ref memmap_init_zone_device(struct zone *zone,
5946 unsigned long start_pfn,
5947 unsigned long nr_pages,
5948 struct dev_pagemap *pgmap)
5949 {
5950 unsigned long pfn, end_pfn = start_pfn + nr_pages;
5951 struct pglist_data *pgdat = zone->zone_pgdat;
5952 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5953 unsigned long zone_idx = zone_idx(zone);
5954 unsigned long start = jiffies;
5955 int nid = pgdat->node_id;
5956
5957 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5958 return;
5959
5960 /*
5961 * The call to memmap_init_zone should have already taken care
5962 * of the pages reserved for the memmap, so we can just jump to
5963 * the end of that region and start processing the device pages.
5964 */
5965 if (altmap) {
5966 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5967 nr_pages = end_pfn - start_pfn;
5968 }
5969
5970 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5971 struct page *page = pfn_to_page(pfn);
5972
5973 __init_single_page(page, pfn, zone_idx, nid);
5974
5975 /*
5976 * Mark page reserved as it will need to wait for onlining
5977 * phase for it to be fully associated with a zone.
5978 *
5979 * We can use the non-atomic __set_bit operation for setting
5980 * the flag as we are still initializing the pages.
5981 */
5982 __SetPageReserved(page);
5983
5984 /*
5985 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5986 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5987 * ever freed or placed on a driver-private list.
5988 */
5989 page->pgmap = pgmap;
5990 page->zone_device_data = NULL;
5991
5992 /*
5993 * Mark the block movable so that blocks are reserved for
5994 * movable at startup. This will force kernel allocations
5995 * to reserve their blocks rather than leaking throughout
5996 * the address space during boot when many long-lived
5997 * kernel allocations are made.
5998 *
5999 * bitmap is created for zone's valid pfn range. but memmap
6000 * can be created for invalid pages (for alignment)
6001 * check here not to call set_pageblock_migratetype() against
6002 * pfn out of zone.
6003 *
6004 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6005 * because this is done early in section_activate()
6006 */
6007 if (!(pfn & (pageblock_nr_pages - 1))) {
6008 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6009 cond_resched();
6010 }
6011 }
6012
6013 pr_info("%s initialised %lu pages in %ums\n", __func__,
6014 nr_pages, jiffies_to_msecs(jiffies - start));
6015 }
6016
6017 #endif
6018 static void __meminit zone_init_free_lists(struct zone *zone)
6019 {
6020 unsigned int order, t;
6021 for_each_migratetype_order(order, t) {
6022 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6023 zone->free_area[order].nr_free = 0;
6024 }
6025 }
6026
6027 void __meminit __weak memmap_init(unsigned long size, int nid,
6028 unsigned long zone, unsigned long start_pfn)
6029 {
6030 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6031 }
6032
6033 static int zone_batchsize(struct zone *zone)
6034 {
6035 #ifdef CONFIG_MMU
6036 int batch;
6037
6038 /*
6039 * The per-cpu-pages pools are set to around 1000th of the
6040 * size of the zone.
6041 */
6042 batch = zone_managed_pages(zone) / 1024;
6043 /* But no more than a meg. */
6044 if (batch * PAGE_SIZE > 1024 * 1024)
6045 batch = (1024 * 1024) / PAGE_SIZE;
6046 batch /= 4; /* We effectively *= 4 below */
6047 if (batch < 1)
6048 batch = 1;
6049
6050 /*
6051 * Clamp the batch to a 2^n - 1 value. Having a power
6052 * of 2 value was found to be more likely to have
6053 * suboptimal cache aliasing properties in some cases.
6054 *
6055 * For example if 2 tasks are alternately allocating
6056 * batches of pages, one task can end up with a lot
6057 * of pages of one half of the possible page colors
6058 * and the other with pages of the other colors.
6059 */
6060 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6061
6062 return batch;
6063
6064 #else
6065 /* The deferral and batching of frees should be suppressed under NOMMU
6066 * conditions.
6067 *
6068 * The problem is that NOMMU needs to be able to allocate large chunks
6069 * of contiguous memory as there's no hardware page translation to
6070 * assemble apparent contiguous memory from discontiguous pages.
6071 *
6072 * Queueing large contiguous runs of pages for batching, however,
6073 * causes the pages to actually be freed in smaller chunks. As there
6074 * can be a significant delay between the individual batches being
6075 * recycled, this leads to the once large chunks of space being
6076 * fragmented and becoming unavailable for high-order allocations.
6077 */
6078 return 0;
6079 #endif
6080 }
6081
6082 /*
6083 * pcp->high and pcp->batch values are related and dependent on one another:
6084 * ->batch must never be higher then ->high.
6085 * The following function updates them in a safe manner without read side
6086 * locking.
6087 *
6088 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6089 * those fields changing asynchronously (acording the the above rule).
6090 *
6091 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6092 * outside of boot time (or some other assurance that no concurrent updaters
6093 * exist).
6094 */
6095 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6096 unsigned long batch)
6097 {
6098 /* start with a fail safe value for batch */
6099 pcp->batch = 1;
6100 smp_wmb();
6101
6102 /* Update high, then batch, in order */
6103 pcp->high = high;
6104 smp_wmb();
6105
6106 pcp->batch = batch;
6107 }
6108
6109 /* a companion to pageset_set_high() */
6110 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6111 {
6112 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6113 }
6114
6115 static void pageset_init(struct per_cpu_pageset *p)
6116 {
6117 struct per_cpu_pages *pcp;
6118 int migratetype;
6119
6120 memset(p, 0, sizeof(*p));
6121
6122 pcp = &p->pcp;
6123 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6124 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6125 }
6126
6127 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6128 {
6129 pageset_init(p);
6130 pageset_set_batch(p, batch);
6131 }
6132
6133 /*
6134 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6135 * to the value high for the pageset p.
6136 */
6137 static void pageset_set_high(struct per_cpu_pageset *p,
6138 unsigned long high)
6139 {
6140 unsigned long batch = max(1UL, high / 4);
6141 if ((high / 4) > (PAGE_SHIFT * 8))
6142 batch = PAGE_SHIFT * 8;
6143
6144 pageset_update(&p->pcp, high, batch);
6145 }
6146
6147 static void pageset_set_high_and_batch(struct zone *zone,
6148 struct per_cpu_pageset *pcp)
6149 {
6150 if (percpu_pagelist_fraction)
6151 pageset_set_high(pcp,
6152 (zone_managed_pages(zone) /
6153 percpu_pagelist_fraction));
6154 else
6155 pageset_set_batch(pcp, zone_batchsize(zone));
6156 }
6157
6158 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6159 {
6160 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6161
6162 pageset_init(pcp);
6163 pageset_set_high_and_batch(zone, pcp);
6164 }
6165
6166 void __meminit setup_zone_pageset(struct zone *zone)
6167 {
6168 int cpu;
6169 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6170 for_each_possible_cpu(cpu)
6171 zone_pageset_init(zone, cpu);
6172 }
6173
6174 /*
6175 * Allocate per cpu pagesets and initialize them.
6176 * Before this call only boot pagesets were available.
6177 */
6178 void __init setup_per_cpu_pageset(void)
6179 {
6180 struct pglist_data *pgdat;
6181 struct zone *zone;
6182
6183 for_each_populated_zone(zone)
6184 setup_zone_pageset(zone);
6185
6186 for_each_online_pgdat(pgdat)
6187 pgdat->per_cpu_nodestats =
6188 alloc_percpu(struct per_cpu_nodestat);
6189 }
6190
6191 static __meminit void zone_pcp_init(struct zone *zone)
6192 {
6193 /*
6194 * per cpu subsystem is not up at this point. The following code
6195 * relies on the ability of the linker to provide the
6196 * offset of a (static) per cpu variable into the per cpu area.
6197 */
6198 zone->pageset = &boot_pageset;
6199
6200 if (populated_zone(zone))
6201 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6202 zone->name, zone->present_pages,
6203 zone_batchsize(zone));
6204 }
6205
6206 void __meminit init_currently_empty_zone(struct zone *zone,
6207 unsigned long zone_start_pfn,
6208 unsigned long size)
6209 {
6210 struct pglist_data *pgdat = zone->zone_pgdat;
6211 int zone_idx = zone_idx(zone) + 1;
6212
6213 if (zone_idx > pgdat->nr_zones)
6214 pgdat->nr_zones = zone_idx;
6215
6216 zone->zone_start_pfn = zone_start_pfn;
6217
6218 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6219 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6220 pgdat->node_id,
6221 (unsigned long)zone_idx(zone),
6222 zone_start_pfn, (zone_start_pfn + size));
6223
6224 zone_init_free_lists(zone);
6225 zone->initialized = 1;
6226 }
6227
6228 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6229 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6230
6231 /*
6232 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6233 */
6234 int __meminit __early_pfn_to_nid(unsigned long pfn,
6235 struct mminit_pfnnid_cache *state)
6236 {
6237 unsigned long start_pfn, end_pfn;
6238 int nid;
6239
6240 if (state->last_start <= pfn && pfn < state->last_end)
6241 return state->last_nid;
6242
6243 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6244 if (nid != NUMA_NO_NODE) {
6245 state->last_start = start_pfn;
6246 state->last_end = end_pfn;
6247 state->last_nid = nid;
6248 }
6249
6250 return nid;
6251 }
6252 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6253
6254 /**
6255 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6256 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6257 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6258 *
6259 * If an architecture guarantees that all ranges registered contain no holes
6260 * and may be freed, this this function may be used instead of calling
6261 * memblock_free_early_nid() manually.
6262 */
6263 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6264 {
6265 unsigned long start_pfn, end_pfn;
6266 int i, this_nid;
6267
6268 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6269 start_pfn = min(start_pfn, max_low_pfn);
6270 end_pfn = min(end_pfn, max_low_pfn);
6271
6272 if (start_pfn < end_pfn)
6273 memblock_free_early_nid(PFN_PHYS(start_pfn),
6274 (end_pfn - start_pfn) << PAGE_SHIFT,
6275 this_nid);
6276 }
6277 }
6278
6279 /**
6280 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6281 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6282 *
6283 * If an architecture guarantees that all ranges registered contain no holes and may
6284 * be freed, this function may be used instead of calling memory_present() manually.
6285 */
6286 void __init sparse_memory_present_with_active_regions(int nid)
6287 {
6288 unsigned long start_pfn, end_pfn;
6289 int i, this_nid;
6290
6291 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6292 memory_present(this_nid, start_pfn, end_pfn);
6293 }
6294
6295 /**
6296 * get_pfn_range_for_nid - Return the start and end page frames for a node
6297 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6298 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6299 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6300 *
6301 * It returns the start and end page frame of a node based on information
6302 * provided by memblock_set_node(). If called for a node
6303 * with no available memory, a warning is printed and the start and end
6304 * PFNs will be 0.
6305 */
6306 void __init get_pfn_range_for_nid(unsigned int nid,
6307 unsigned long *start_pfn, unsigned long *end_pfn)
6308 {
6309 unsigned long this_start_pfn, this_end_pfn;
6310 int i;
6311
6312 *start_pfn = -1UL;
6313 *end_pfn = 0;
6314
6315 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6316 *start_pfn = min(*start_pfn, this_start_pfn);
6317 *end_pfn = max(*end_pfn, this_end_pfn);
6318 }
6319
6320 if (*start_pfn == -1UL)
6321 *start_pfn = 0;
6322 }
6323
6324 /*
6325 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6326 * assumption is made that zones within a node are ordered in monotonic
6327 * increasing memory addresses so that the "highest" populated zone is used
6328 */
6329 static void __init find_usable_zone_for_movable(void)
6330 {
6331 int zone_index;
6332 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6333 if (zone_index == ZONE_MOVABLE)
6334 continue;
6335
6336 if (arch_zone_highest_possible_pfn[zone_index] >
6337 arch_zone_lowest_possible_pfn[zone_index])
6338 break;
6339 }
6340
6341 VM_BUG_ON(zone_index == -1);
6342 movable_zone = zone_index;
6343 }
6344
6345 /*
6346 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6347 * because it is sized independent of architecture. Unlike the other zones,
6348 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6349 * in each node depending on the size of each node and how evenly kernelcore
6350 * is distributed. This helper function adjusts the zone ranges
6351 * provided by the architecture for a given node by using the end of the
6352 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6353 * zones within a node are in order of monotonic increases memory addresses
6354 */
6355 static void __init adjust_zone_range_for_zone_movable(int nid,
6356 unsigned long zone_type,
6357 unsigned long node_start_pfn,
6358 unsigned long node_end_pfn,
6359 unsigned long *zone_start_pfn,
6360 unsigned long *zone_end_pfn)
6361 {
6362 /* Only adjust if ZONE_MOVABLE is on this node */
6363 if (zone_movable_pfn[nid]) {
6364 /* Size ZONE_MOVABLE */
6365 if (zone_type == ZONE_MOVABLE) {
6366 *zone_start_pfn = zone_movable_pfn[nid];
6367 *zone_end_pfn = min(node_end_pfn,
6368 arch_zone_highest_possible_pfn[movable_zone]);
6369
6370 /* Adjust for ZONE_MOVABLE starting within this range */
6371 } else if (!mirrored_kernelcore &&
6372 *zone_start_pfn < zone_movable_pfn[nid] &&
6373 *zone_end_pfn > zone_movable_pfn[nid]) {
6374 *zone_end_pfn = zone_movable_pfn[nid];
6375
6376 /* Check if this whole range is within ZONE_MOVABLE */
6377 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6378 *zone_start_pfn = *zone_end_pfn;
6379 }
6380 }
6381
6382 /*
6383 * Return the number of pages a zone spans in a node, including holes
6384 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6385 */
6386 static unsigned long __init zone_spanned_pages_in_node(int nid,
6387 unsigned long zone_type,
6388 unsigned long node_start_pfn,
6389 unsigned long node_end_pfn,
6390 unsigned long *zone_start_pfn,
6391 unsigned long *zone_end_pfn,
6392 unsigned long *ignored)
6393 {
6394 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6395 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6396 /* When hotadd a new node from cpu_up(), the node should be empty */
6397 if (!node_start_pfn && !node_end_pfn)
6398 return 0;
6399
6400 /* Get the start and end of the zone */
6401 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6402 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6403 adjust_zone_range_for_zone_movable(nid, zone_type,
6404 node_start_pfn, node_end_pfn,
6405 zone_start_pfn, zone_end_pfn);
6406
6407 /* Check that this node has pages within the zone's required range */
6408 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6409 return 0;
6410
6411 /* Move the zone boundaries inside the node if necessary */
6412 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6413 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6414
6415 /* Return the spanned pages */
6416 return *zone_end_pfn - *zone_start_pfn;
6417 }
6418
6419 /*
6420 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6421 * then all holes in the requested range will be accounted for.
6422 */
6423 unsigned long __init __absent_pages_in_range(int nid,
6424 unsigned long range_start_pfn,
6425 unsigned long range_end_pfn)
6426 {
6427 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6428 unsigned long start_pfn, end_pfn;
6429 int i;
6430
6431 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6432 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6433 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6434 nr_absent -= end_pfn - start_pfn;
6435 }
6436 return nr_absent;
6437 }
6438
6439 /**
6440 * absent_pages_in_range - Return number of page frames in holes within a range
6441 * @start_pfn: The start PFN to start searching for holes
6442 * @end_pfn: The end PFN to stop searching for holes
6443 *
6444 * Return: the number of pages frames in memory holes within a range.
6445 */
6446 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6447 unsigned long end_pfn)
6448 {
6449 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6450 }
6451
6452 /* Return the number of page frames in holes in a zone on a node */
6453 static unsigned long __init zone_absent_pages_in_node(int nid,
6454 unsigned long zone_type,
6455 unsigned long node_start_pfn,
6456 unsigned long node_end_pfn,
6457 unsigned long *ignored)
6458 {
6459 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6460 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6461 unsigned long zone_start_pfn, zone_end_pfn;
6462 unsigned long nr_absent;
6463
6464 /* When hotadd a new node from cpu_up(), the node should be empty */
6465 if (!node_start_pfn && !node_end_pfn)
6466 return 0;
6467
6468 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6469 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6470
6471 adjust_zone_range_for_zone_movable(nid, zone_type,
6472 node_start_pfn, node_end_pfn,
6473 &zone_start_pfn, &zone_end_pfn);
6474 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6475
6476 /*
6477 * ZONE_MOVABLE handling.
6478 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6479 * and vice versa.
6480 */
6481 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6482 unsigned long start_pfn, end_pfn;
6483 struct memblock_region *r;
6484
6485 for_each_memblock(memory, r) {
6486 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6487 zone_start_pfn, zone_end_pfn);
6488 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6489 zone_start_pfn, zone_end_pfn);
6490
6491 if (zone_type == ZONE_MOVABLE &&
6492 memblock_is_mirror(r))
6493 nr_absent += end_pfn - start_pfn;
6494
6495 if (zone_type == ZONE_NORMAL &&
6496 !memblock_is_mirror(r))
6497 nr_absent += end_pfn - start_pfn;
6498 }
6499 }
6500
6501 return nr_absent;
6502 }
6503
6504 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6505 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6506 unsigned long zone_type,
6507 unsigned long node_start_pfn,
6508 unsigned long node_end_pfn,
6509 unsigned long *zone_start_pfn,
6510 unsigned long *zone_end_pfn,
6511 unsigned long *zones_size)
6512 {
6513 unsigned int zone;
6514
6515 *zone_start_pfn = node_start_pfn;
6516 for (zone = 0; zone < zone_type; zone++)
6517 *zone_start_pfn += zones_size[zone];
6518
6519 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6520
6521 return zones_size[zone_type];
6522 }
6523
6524 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6525 unsigned long zone_type,
6526 unsigned long node_start_pfn,
6527 unsigned long node_end_pfn,
6528 unsigned long *zholes_size)
6529 {
6530 if (!zholes_size)
6531 return 0;
6532
6533 return zholes_size[zone_type];
6534 }
6535
6536 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6537
6538 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6539 unsigned long node_start_pfn,
6540 unsigned long node_end_pfn,
6541 unsigned long *zones_size,
6542 unsigned long *zholes_size)
6543 {
6544 unsigned long realtotalpages = 0, totalpages = 0;
6545 enum zone_type i;
6546
6547 for (i = 0; i < MAX_NR_ZONES; i++) {
6548 struct zone *zone = pgdat->node_zones + i;
6549 unsigned long zone_start_pfn, zone_end_pfn;
6550 unsigned long size, real_size;
6551
6552 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6553 node_start_pfn,
6554 node_end_pfn,
6555 &zone_start_pfn,
6556 &zone_end_pfn,
6557 zones_size);
6558 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6559 node_start_pfn, node_end_pfn,
6560 zholes_size);
6561 if (size)
6562 zone->zone_start_pfn = zone_start_pfn;
6563 else
6564 zone->zone_start_pfn = 0;
6565 zone->spanned_pages = size;
6566 zone->present_pages = real_size;
6567
6568 totalpages += size;
6569 realtotalpages += real_size;
6570 }
6571
6572 pgdat->node_spanned_pages = totalpages;
6573 pgdat->node_present_pages = realtotalpages;
6574 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6575 realtotalpages);
6576 }
6577
6578 #ifndef CONFIG_SPARSEMEM
6579 /*
6580 * Calculate the size of the zone->blockflags rounded to an unsigned long
6581 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6582 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6583 * round what is now in bits to nearest long in bits, then return it in
6584 * bytes.
6585 */
6586 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6587 {
6588 unsigned long usemapsize;
6589
6590 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6591 usemapsize = roundup(zonesize, pageblock_nr_pages);
6592 usemapsize = usemapsize >> pageblock_order;
6593 usemapsize *= NR_PAGEBLOCK_BITS;
6594 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6595
6596 return usemapsize / 8;
6597 }
6598
6599 static void __ref setup_usemap(struct pglist_data *pgdat,
6600 struct zone *zone,
6601 unsigned long zone_start_pfn,
6602 unsigned long zonesize)
6603 {
6604 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6605 zone->pageblock_flags = NULL;
6606 if (usemapsize) {
6607 zone->pageblock_flags =
6608 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6609 pgdat->node_id);
6610 if (!zone->pageblock_flags)
6611 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6612 usemapsize, zone->name, pgdat->node_id);
6613 }
6614 }
6615 #else
6616 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6617 unsigned long zone_start_pfn, unsigned long zonesize) {}
6618 #endif /* CONFIG_SPARSEMEM */
6619
6620 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6621
6622 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6623 void __init set_pageblock_order(void)
6624 {
6625 unsigned int order;
6626
6627 /* Check that pageblock_nr_pages has not already been setup */
6628 if (pageblock_order)
6629 return;
6630
6631 if (HPAGE_SHIFT > PAGE_SHIFT)
6632 order = HUGETLB_PAGE_ORDER;
6633 else
6634 order = MAX_ORDER - 1;
6635
6636 /*
6637 * Assume the largest contiguous order of interest is a huge page.
6638 * This value may be variable depending on boot parameters on IA64 and
6639 * powerpc.
6640 */
6641 pageblock_order = order;
6642 }
6643 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6644
6645 /*
6646 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6647 * is unused as pageblock_order is set at compile-time. See
6648 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6649 * the kernel config
6650 */
6651 void __init set_pageblock_order(void)
6652 {
6653 }
6654
6655 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6656
6657 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6658 unsigned long present_pages)
6659 {
6660 unsigned long pages = spanned_pages;
6661
6662 /*
6663 * Provide a more accurate estimation if there are holes within
6664 * the zone and SPARSEMEM is in use. If there are holes within the
6665 * zone, each populated memory region may cost us one or two extra
6666 * memmap pages due to alignment because memmap pages for each
6667 * populated regions may not be naturally aligned on page boundary.
6668 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6669 */
6670 if (spanned_pages > present_pages + (present_pages >> 4) &&
6671 IS_ENABLED(CONFIG_SPARSEMEM))
6672 pages = present_pages;
6673
6674 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6675 }
6676
6677 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6678 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6679 {
6680 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6681
6682 spin_lock_init(&ds_queue->split_queue_lock);
6683 INIT_LIST_HEAD(&ds_queue->split_queue);
6684 ds_queue->split_queue_len = 0;
6685 }
6686 #else
6687 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6688 #endif
6689
6690 #ifdef CONFIG_COMPACTION
6691 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6692 {
6693 init_waitqueue_head(&pgdat->kcompactd_wait);
6694 }
6695 #else
6696 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6697 #endif
6698
6699 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6700 {
6701 pgdat_resize_init(pgdat);
6702
6703 pgdat_init_split_queue(pgdat);
6704 pgdat_init_kcompactd(pgdat);
6705
6706 init_waitqueue_head(&pgdat->kswapd_wait);
6707 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6708
6709 pgdat_page_ext_init(pgdat);
6710 spin_lock_init(&pgdat->lru_lock);
6711 lruvec_init(&pgdat->__lruvec);
6712 }
6713
6714 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6715 unsigned long remaining_pages)
6716 {
6717 atomic_long_set(&zone->managed_pages, remaining_pages);
6718 zone_set_nid(zone, nid);
6719 zone->name = zone_names[idx];
6720 zone->zone_pgdat = NODE_DATA(nid);
6721 spin_lock_init(&zone->lock);
6722 zone_seqlock_init(zone);
6723 zone_pcp_init(zone);
6724 }
6725
6726 /*
6727 * Set up the zone data structures
6728 * - init pgdat internals
6729 * - init all zones belonging to this node
6730 *
6731 * NOTE: this function is only called during memory hotplug
6732 */
6733 #ifdef CONFIG_MEMORY_HOTPLUG
6734 void __ref free_area_init_core_hotplug(int nid)
6735 {
6736 enum zone_type z;
6737 pg_data_t *pgdat = NODE_DATA(nid);
6738
6739 pgdat_init_internals(pgdat);
6740 for (z = 0; z < MAX_NR_ZONES; z++)
6741 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6742 }
6743 #endif
6744
6745 /*
6746 * Set up the zone data structures:
6747 * - mark all pages reserved
6748 * - mark all memory queues empty
6749 * - clear the memory bitmaps
6750 *
6751 * NOTE: pgdat should get zeroed by caller.
6752 * NOTE: this function is only called during early init.
6753 */
6754 static void __init free_area_init_core(struct pglist_data *pgdat)
6755 {
6756 enum zone_type j;
6757 int nid = pgdat->node_id;
6758
6759 pgdat_init_internals(pgdat);
6760 pgdat->per_cpu_nodestats = &boot_nodestats;
6761
6762 for (j = 0; j < MAX_NR_ZONES; j++) {
6763 struct zone *zone = pgdat->node_zones + j;
6764 unsigned long size, freesize, memmap_pages;
6765 unsigned long zone_start_pfn = zone->zone_start_pfn;
6766
6767 size = zone->spanned_pages;
6768 freesize = zone->present_pages;
6769
6770 /*
6771 * Adjust freesize so that it accounts for how much memory
6772 * is used by this zone for memmap. This affects the watermark
6773 * and per-cpu initialisations
6774 */
6775 memmap_pages = calc_memmap_size(size, freesize);
6776 if (!is_highmem_idx(j)) {
6777 if (freesize >= memmap_pages) {
6778 freesize -= memmap_pages;
6779 if (memmap_pages)
6780 printk(KERN_DEBUG
6781 " %s zone: %lu pages used for memmap\n",
6782 zone_names[j], memmap_pages);
6783 } else
6784 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6785 zone_names[j], memmap_pages, freesize);
6786 }
6787
6788 /* Account for reserved pages */
6789 if (j == 0 && freesize > dma_reserve) {
6790 freesize -= dma_reserve;
6791 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6792 zone_names[0], dma_reserve);
6793 }
6794
6795 if (!is_highmem_idx(j))
6796 nr_kernel_pages += freesize;
6797 /* Charge for highmem memmap if there are enough kernel pages */
6798 else if (nr_kernel_pages > memmap_pages * 2)
6799 nr_kernel_pages -= memmap_pages;
6800 nr_all_pages += freesize;
6801
6802 /*
6803 * Set an approximate value for lowmem here, it will be adjusted
6804 * when the bootmem allocator frees pages into the buddy system.
6805 * And all highmem pages will be managed by the buddy system.
6806 */
6807 zone_init_internals(zone, j, nid, freesize);
6808
6809 if (!size)
6810 continue;
6811
6812 set_pageblock_order();
6813 setup_usemap(pgdat, zone, zone_start_pfn, size);
6814 init_currently_empty_zone(zone, zone_start_pfn, size);
6815 memmap_init(size, nid, j, zone_start_pfn);
6816 }
6817 }
6818
6819 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6820 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6821 {
6822 unsigned long __maybe_unused start = 0;
6823 unsigned long __maybe_unused offset = 0;
6824
6825 /* Skip empty nodes */
6826 if (!pgdat->node_spanned_pages)
6827 return;
6828
6829 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6830 offset = pgdat->node_start_pfn - start;
6831 /* ia64 gets its own node_mem_map, before this, without bootmem */
6832 if (!pgdat->node_mem_map) {
6833 unsigned long size, end;
6834 struct page *map;
6835
6836 /*
6837 * The zone's endpoints aren't required to be MAX_ORDER
6838 * aligned but the node_mem_map endpoints must be in order
6839 * for the buddy allocator to function correctly.
6840 */
6841 end = pgdat_end_pfn(pgdat);
6842 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6843 size = (end - start) * sizeof(struct page);
6844 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6845 pgdat->node_id);
6846 if (!map)
6847 panic("Failed to allocate %ld bytes for node %d memory map\n",
6848 size, pgdat->node_id);
6849 pgdat->node_mem_map = map + offset;
6850 }
6851 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6852 __func__, pgdat->node_id, (unsigned long)pgdat,
6853 (unsigned long)pgdat->node_mem_map);
6854 #ifndef CONFIG_NEED_MULTIPLE_NODES
6855 /*
6856 * With no DISCONTIG, the global mem_map is just set as node 0's
6857 */
6858 if (pgdat == NODE_DATA(0)) {
6859 mem_map = NODE_DATA(0)->node_mem_map;
6860 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6861 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6862 mem_map -= offset;
6863 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6864 }
6865 #endif
6866 }
6867 #else
6868 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6869 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6870
6871 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6872 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6873 {
6874 pgdat->first_deferred_pfn = ULONG_MAX;
6875 }
6876 #else
6877 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6878 #endif
6879
6880 void __init free_area_init_node(int nid, unsigned long *zones_size,
6881 unsigned long node_start_pfn,
6882 unsigned long *zholes_size)
6883 {
6884 pg_data_t *pgdat = NODE_DATA(nid);
6885 unsigned long start_pfn = 0;
6886 unsigned long end_pfn = 0;
6887
6888 /* pg_data_t should be reset to zero when it's allocated */
6889 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6890
6891 pgdat->node_id = nid;
6892 pgdat->node_start_pfn = node_start_pfn;
6893 pgdat->per_cpu_nodestats = NULL;
6894 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6895 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6896 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6897 (u64)start_pfn << PAGE_SHIFT,
6898 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6899 #else
6900 start_pfn = node_start_pfn;
6901 #endif
6902 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6903 zones_size, zholes_size);
6904
6905 alloc_node_mem_map(pgdat);
6906 pgdat_set_deferred_range(pgdat);
6907
6908 free_area_init_core(pgdat);
6909 }
6910
6911 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6912 /*
6913 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6914 * PageReserved(). Return the number of struct pages that were initialized.
6915 */
6916 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6917 {
6918 unsigned long pfn;
6919 u64 pgcnt = 0;
6920
6921 for (pfn = spfn; pfn < epfn; pfn++) {
6922 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6923 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6924 + pageblock_nr_pages - 1;
6925 continue;
6926 }
6927 /*
6928 * Use a fake node/zone (0) for now. Some of these pages
6929 * (in memblock.reserved but not in memblock.memory) will
6930 * get re-initialized via reserve_bootmem_region() later.
6931 */
6932 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6933 __SetPageReserved(pfn_to_page(pfn));
6934 pgcnt++;
6935 }
6936
6937 return pgcnt;
6938 }
6939
6940 /*
6941 * Only struct pages that are backed by physical memory are zeroed and
6942 * initialized by going through __init_single_page(). But, there are some
6943 * struct pages which are reserved in memblock allocator and their fields
6944 * may be accessed (for example page_to_pfn() on some configuration accesses
6945 * flags). We must explicitly initialize those struct pages.
6946 *
6947 * This function also addresses a similar issue where struct pages are left
6948 * uninitialized because the physical address range is not covered by
6949 * memblock.memory or memblock.reserved. That could happen when memblock
6950 * layout is manually configured via memmap=, or when the highest physical
6951 * address (max_pfn) does not end on a section boundary.
6952 */
6953 static void __init init_unavailable_mem(void)
6954 {
6955 phys_addr_t start, end;
6956 u64 i, pgcnt;
6957 phys_addr_t next = 0;
6958
6959 /*
6960 * Loop through unavailable ranges not covered by memblock.memory.
6961 */
6962 pgcnt = 0;
6963 for_each_mem_range(i, &memblock.memory, NULL,
6964 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6965 if (next < start)
6966 pgcnt += init_unavailable_range(PFN_DOWN(next),
6967 PFN_UP(start));
6968 next = end;
6969 }
6970
6971 /*
6972 * Early sections always have a fully populated memmap for the whole
6973 * section - see pfn_valid(). If the last section has holes at the
6974 * end and that section is marked "online", the memmap will be
6975 * considered initialized. Make sure that memmap has a well defined
6976 * state.
6977 */
6978 pgcnt += init_unavailable_range(PFN_DOWN(next),
6979 round_up(max_pfn, PAGES_PER_SECTION));
6980
6981 /*
6982 * Struct pages that do not have backing memory. This could be because
6983 * firmware is using some of this memory, or for some other reasons.
6984 */
6985 if (pgcnt)
6986 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6987 }
6988 #else
6989 static inline void __init init_unavailable_mem(void)
6990 {
6991 }
6992 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6993
6994 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6995
6996 #if MAX_NUMNODES > 1
6997 /*
6998 * Figure out the number of possible node ids.
6999 */
7000 void __init setup_nr_node_ids(void)
7001 {
7002 unsigned int highest;
7003
7004 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7005 nr_node_ids = highest + 1;
7006 }
7007 #endif
7008
7009 /**
7010 * node_map_pfn_alignment - determine the maximum internode alignment
7011 *
7012 * This function should be called after node map is populated and sorted.
7013 * It calculates the maximum power of two alignment which can distinguish
7014 * all the nodes.
7015 *
7016 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7017 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7018 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7019 * shifted, 1GiB is enough and this function will indicate so.
7020 *
7021 * This is used to test whether pfn -> nid mapping of the chosen memory
7022 * model has fine enough granularity to avoid incorrect mapping for the
7023 * populated node map.
7024 *
7025 * Return: the determined alignment in pfn's. 0 if there is no alignment
7026 * requirement (single node).
7027 */
7028 unsigned long __init node_map_pfn_alignment(void)
7029 {
7030 unsigned long accl_mask = 0, last_end = 0;
7031 unsigned long start, end, mask;
7032 int last_nid = NUMA_NO_NODE;
7033 int i, nid;
7034
7035 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7036 if (!start || last_nid < 0 || last_nid == nid) {
7037 last_nid = nid;
7038 last_end = end;
7039 continue;
7040 }
7041
7042 /*
7043 * Start with a mask granular enough to pin-point to the
7044 * start pfn and tick off bits one-by-one until it becomes
7045 * too coarse to separate the current node from the last.
7046 */
7047 mask = ~((1 << __ffs(start)) - 1);
7048 while (mask && last_end <= (start & (mask << 1)))
7049 mask <<= 1;
7050
7051 /* accumulate all internode masks */
7052 accl_mask |= mask;
7053 }
7054
7055 /* convert mask to number of pages */
7056 return ~accl_mask + 1;
7057 }
7058
7059 /* Find the lowest pfn for a node */
7060 static unsigned long __init find_min_pfn_for_node(int nid)
7061 {
7062 unsigned long min_pfn = ULONG_MAX;
7063 unsigned long start_pfn;
7064 int i;
7065
7066 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7067 min_pfn = min(min_pfn, start_pfn);
7068
7069 if (min_pfn == ULONG_MAX) {
7070 pr_warn("Could not find start_pfn for node %d\n", nid);
7071 return 0;
7072 }
7073
7074 return min_pfn;
7075 }
7076
7077 /**
7078 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7079 *
7080 * Return: the minimum PFN based on information provided via
7081 * memblock_set_node().
7082 */
7083 unsigned long __init find_min_pfn_with_active_regions(void)
7084 {
7085 return find_min_pfn_for_node(MAX_NUMNODES);
7086 }
7087
7088 /*
7089 * early_calculate_totalpages()
7090 * Sum pages in active regions for movable zone.
7091 * Populate N_MEMORY for calculating usable_nodes.
7092 */
7093 static unsigned long __init early_calculate_totalpages(void)
7094 {
7095 unsigned long totalpages = 0;
7096 unsigned long start_pfn, end_pfn;
7097 int i, nid;
7098
7099 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7100 unsigned long pages = end_pfn - start_pfn;
7101
7102 totalpages += pages;
7103 if (pages)
7104 node_set_state(nid, N_MEMORY);
7105 }
7106 return totalpages;
7107 }
7108
7109 /*
7110 * Find the PFN the Movable zone begins in each node. Kernel memory
7111 * is spread evenly between nodes as long as the nodes have enough
7112 * memory. When they don't, some nodes will have more kernelcore than
7113 * others
7114 */
7115 static void __init find_zone_movable_pfns_for_nodes(void)
7116 {
7117 int i, nid;
7118 unsigned long usable_startpfn;
7119 unsigned long kernelcore_node, kernelcore_remaining;
7120 /* save the state before borrow the nodemask */
7121 nodemask_t saved_node_state = node_states[N_MEMORY];
7122 unsigned long totalpages = early_calculate_totalpages();
7123 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7124 struct memblock_region *r;
7125
7126 /* Need to find movable_zone earlier when movable_node is specified. */
7127 find_usable_zone_for_movable();
7128
7129 /*
7130 * If movable_node is specified, ignore kernelcore and movablecore
7131 * options.
7132 */
7133 if (movable_node_is_enabled()) {
7134 for_each_memblock(memory, r) {
7135 if (!memblock_is_hotpluggable(r))
7136 continue;
7137
7138 nid = r->nid;
7139
7140 usable_startpfn = PFN_DOWN(r->base);
7141 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7142 min(usable_startpfn, zone_movable_pfn[nid]) :
7143 usable_startpfn;
7144 }
7145
7146 goto out2;
7147 }
7148
7149 /*
7150 * If kernelcore=mirror is specified, ignore movablecore option
7151 */
7152 if (mirrored_kernelcore) {
7153 bool mem_below_4gb_not_mirrored = false;
7154
7155 for_each_memblock(memory, r) {
7156 if (memblock_is_mirror(r))
7157 continue;
7158
7159 nid = r->nid;
7160
7161 usable_startpfn = memblock_region_memory_base_pfn(r);
7162
7163 if (usable_startpfn < 0x100000) {
7164 mem_below_4gb_not_mirrored = true;
7165 continue;
7166 }
7167
7168 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7169 min(usable_startpfn, zone_movable_pfn[nid]) :
7170 usable_startpfn;
7171 }
7172
7173 if (mem_below_4gb_not_mirrored)
7174 pr_warn("This configuration results in unmirrored kernel memory.");
7175
7176 goto out2;
7177 }
7178
7179 /*
7180 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7181 * amount of necessary memory.
7182 */
7183 if (required_kernelcore_percent)
7184 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7185 10000UL;
7186 if (required_movablecore_percent)
7187 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7188 10000UL;
7189
7190 /*
7191 * If movablecore= was specified, calculate what size of
7192 * kernelcore that corresponds so that memory usable for
7193 * any allocation type is evenly spread. If both kernelcore
7194 * and movablecore are specified, then the value of kernelcore
7195 * will be used for required_kernelcore if it's greater than
7196 * what movablecore would have allowed.
7197 */
7198 if (required_movablecore) {
7199 unsigned long corepages;
7200
7201 /*
7202 * Round-up so that ZONE_MOVABLE is at least as large as what
7203 * was requested by the user
7204 */
7205 required_movablecore =
7206 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7207 required_movablecore = min(totalpages, required_movablecore);
7208 corepages = totalpages - required_movablecore;
7209
7210 required_kernelcore = max(required_kernelcore, corepages);
7211 }
7212
7213 /*
7214 * If kernelcore was not specified or kernelcore size is larger
7215 * than totalpages, there is no ZONE_MOVABLE.
7216 */
7217 if (!required_kernelcore || required_kernelcore >= totalpages)
7218 goto out;
7219
7220 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7221 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7222
7223 restart:
7224 /* Spread kernelcore memory as evenly as possible throughout nodes */
7225 kernelcore_node = required_kernelcore / usable_nodes;
7226 for_each_node_state(nid, N_MEMORY) {
7227 unsigned long start_pfn, end_pfn;
7228
7229 /*
7230 * Recalculate kernelcore_node if the division per node
7231 * now exceeds what is necessary to satisfy the requested
7232 * amount of memory for the kernel
7233 */
7234 if (required_kernelcore < kernelcore_node)
7235 kernelcore_node = required_kernelcore / usable_nodes;
7236
7237 /*
7238 * As the map is walked, we track how much memory is usable
7239 * by the kernel using kernelcore_remaining. When it is
7240 * 0, the rest of the node is usable by ZONE_MOVABLE
7241 */
7242 kernelcore_remaining = kernelcore_node;
7243
7244 /* Go through each range of PFNs within this node */
7245 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7246 unsigned long size_pages;
7247
7248 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7249 if (start_pfn >= end_pfn)
7250 continue;
7251
7252 /* Account for what is only usable for kernelcore */
7253 if (start_pfn < usable_startpfn) {
7254 unsigned long kernel_pages;
7255 kernel_pages = min(end_pfn, usable_startpfn)
7256 - start_pfn;
7257
7258 kernelcore_remaining -= min(kernel_pages,
7259 kernelcore_remaining);
7260 required_kernelcore -= min(kernel_pages,
7261 required_kernelcore);
7262
7263 /* Continue if range is now fully accounted */
7264 if (end_pfn <= usable_startpfn) {
7265
7266 /*
7267 * Push zone_movable_pfn to the end so
7268 * that if we have to rebalance
7269 * kernelcore across nodes, we will
7270 * not double account here
7271 */
7272 zone_movable_pfn[nid] = end_pfn;
7273 continue;
7274 }
7275 start_pfn = usable_startpfn;
7276 }
7277
7278 /*
7279 * The usable PFN range for ZONE_MOVABLE is from
7280 * start_pfn->end_pfn. Calculate size_pages as the
7281 * number of pages used as kernelcore
7282 */
7283 size_pages = end_pfn - start_pfn;
7284 if (size_pages > kernelcore_remaining)
7285 size_pages = kernelcore_remaining;
7286 zone_movable_pfn[nid] = start_pfn + size_pages;
7287
7288 /*
7289 * Some kernelcore has been met, update counts and
7290 * break if the kernelcore for this node has been
7291 * satisfied
7292 */
7293 required_kernelcore -= min(required_kernelcore,
7294 size_pages);
7295 kernelcore_remaining -= size_pages;
7296 if (!kernelcore_remaining)
7297 break;
7298 }
7299 }
7300
7301 /*
7302 * If there is still required_kernelcore, we do another pass with one
7303 * less node in the count. This will push zone_movable_pfn[nid] further
7304 * along on the nodes that still have memory until kernelcore is
7305 * satisfied
7306 */
7307 usable_nodes--;
7308 if (usable_nodes && required_kernelcore > usable_nodes)
7309 goto restart;
7310
7311 out2:
7312 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7313 for (nid = 0; nid < MAX_NUMNODES; nid++)
7314 zone_movable_pfn[nid] =
7315 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7316
7317 out:
7318 /* restore the node_state */
7319 node_states[N_MEMORY] = saved_node_state;
7320 }
7321
7322 /* Any regular or high memory on that node ? */
7323 static void check_for_memory(pg_data_t *pgdat, int nid)
7324 {
7325 enum zone_type zone_type;
7326
7327 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7328 struct zone *zone = &pgdat->node_zones[zone_type];
7329 if (populated_zone(zone)) {
7330 if (IS_ENABLED(CONFIG_HIGHMEM))
7331 node_set_state(nid, N_HIGH_MEMORY);
7332 if (zone_type <= ZONE_NORMAL)
7333 node_set_state(nid, N_NORMAL_MEMORY);
7334 break;
7335 }
7336 }
7337 }
7338
7339 /**
7340 * free_area_init_nodes - Initialise all pg_data_t and zone data
7341 * @max_zone_pfn: an array of max PFNs for each zone
7342 *
7343 * This will call free_area_init_node() for each active node in the system.
7344 * Using the page ranges provided by memblock_set_node(), the size of each
7345 * zone in each node and their holes is calculated. If the maximum PFN
7346 * between two adjacent zones match, it is assumed that the zone is empty.
7347 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7348 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7349 * starts where the previous one ended. For example, ZONE_DMA32 starts
7350 * at arch_max_dma_pfn.
7351 */
7352 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7353 {
7354 unsigned long start_pfn, end_pfn;
7355 int i, nid;
7356
7357 /* Record where the zone boundaries are */
7358 memset(arch_zone_lowest_possible_pfn, 0,
7359 sizeof(arch_zone_lowest_possible_pfn));
7360 memset(arch_zone_highest_possible_pfn, 0,
7361 sizeof(arch_zone_highest_possible_pfn));
7362
7363 start_pfn = find_min_pfn_with_active_regions();
7364
7365 for (i = 0; i < MAX_NR_ZONES; i++) {
7366 if (i == ZONE_MOVABLE)
7367 continue;
7368
7369 end_pfn = max(max_zone_pfn[i], start_pfn);
7370 arch_zone_lowest_possible_pfn[i] = start_pfn;
7371 arch_zone_highest_possible_pfn[i] = end_pfn;
7372
7373 start_pfn = end_pfn;
7374 }
7375
7376 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7377 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7378 find_zone_movable_pfns_for_nodes();
7379
7380 /* Print out the zone ranges */
7381 pr_info("Zone ranges:\n");
7382 for (i = 0; i < MAX_NR_ZONES; i++) {
7383 if (i == ZONE_MOVABLE)
7384 continue;
7385 pr_info(" %-8s ", zone_names[i]);
7386 if (arch_zone_lowest_possible_pfn[i] ==
7387 arch_zone_highest_possible_pfn[i])
7388 pr_cont("empty\n");
7389 else
7390 pr_cont("[mem %#018Lx-%#018Lx]\n",
7391 (u64)arch_zone_lowest_possible_pfn[i]
7392 << PAGE_SHIFT,
7393 ((u64)arch_zone_highest_possible_pfn[i]
7394 << PAGE_SHIFT) - 1);
7395 }
7396
7397 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7398 pr_info("Movable zone start for each node\n");
7399 for (i = 0; i < MAX_NUMNODES; i++) {
7400 if (zone_movable_pfn[i])
7401 pr_info(" Node %d: %#018Lx\n", i,
7402 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7403 }
7404
7405 /*
7406 * Print out the early node map, and initialize the
7407 * subsection-map relative to active online memory ranges to
7408 * enable future "sub-section" extensions of the memory map.
7409 */
7410 pr_info("Early memory node ranges\n");
7411 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7412 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7413 (u64)start_pfn << PAGE_SHIFT,
7414 ((u64)end_pfn << PAGE_SHIFT) - 1);
7415 subsection_map_init(start_pfn, end_pfn - start_pfn);
7416 }
7417
7418 /* Initialise every node */
7419 mminit_verify_pageflags_layout();
7420 setup_nr_node_ids();
7421 init_unavailable_mem();
7422 for_each_online_node(nid) {
7423 pg_data_t *pgdat = NODE_DATA(nid);
7424 free_area_init_node(nid, NULL,
7425 find_min_pfn_for_node(nid), NULL);
7426
7427 /* Any memory on that node */
7428 if (pgdat->node_present_pages)
7429 node_set_state(nid, N_MEMORY);
7430 check_for_memory(pgdat, nid);
7431 }
7432 }
7433
7434 static int __init cmdline_parse_core(char *p, unsigned long *core,
7435 unsigned long *percent)
7436 {
7437 unsigned long long coremem;
7438 char *endptr;
7439
7440 if (!p)
7441 return -EINVAL;
7442
7443 /* Value may be a percentage of total memory, otherwise bytes */
7444 coremem = simple_strtoull(p, &endptr, 0);
7445 if (*endptr == '%') {
7446 /* Paranoid check for percent values greater than 100 */
7447 WARN_ON(coremem > 100);
7448
7449 *percent = coremem;
7450 } else {
7451 coremem = memparse(p, &p);
7452 /* Paranoid check that UL is enough for the coremem value */
7453 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7454
7455 *core = coremem >> PAGE_SHIFT;
7456 *percent = 0UL;
7457 }
7458 return 0;
7459 }
7460
7461 /*
7462 * kernelcore=size sets the amount of memory for use for allocations that
7463 * cannot be reclaimed or migrated.
7464 */
7465 static int __init cmdline_parse_kernelcore(char *p)
7466 {
7467 /* parse kernelcore=mirror */
7468 if (parse_option_str(p, "mirror")) {
7469 mirrored_kernelcore = true;
7470 return 0;
7471 }
7472
7473 return cmdline_parse_core(p, &required_kernelcore,
7474 &required_kernelcore_percent);
7475 }
7476
7477 /*
7478 * movablecore=size sets the amount of memory for use for allocations that
7479 * can be reclaimed or migrated.
7480 */
7481 static int __init cmdline_parse_movablecore(char *p)
7482 {
7483 return cmdline_parse_core(p, &required_movablecore,
7484 &required_movablecore_percent);
7485 }
7486
7487 early_param("kernelcore", cmdline_parse_kernelcore);
7488 early_param("movablecore", cmdline_parse_movablecore);
7489
7490 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7491
7492 void adjust_managed_page_count(struct page *page, long count)
7493 {
7494 atomic_long_add(count, &page_zone(page)->managed_pages);
7495 totalram_pages_add(count);
7496 #ifdef CONFIG_HIGHMEM
7497 if (PageHighMem(page))
7498 totalhigh_pages_add(count);
7499 #endif
7500 }
7501 EXPORT_SYMBOL(adjust_managed_page_count);
7502
7503 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7504 {
7505 void *pos;
7506 unsigned long pages = 0;
7507
7508 start = (void *)PAGE_ALIGN((unsigned long)start);
7509 end = (void *)((unsigned long)end & PAGE_MASK);
7510 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7511 struct page *page = virt_to_page(pos);
7512 void *direct_map_addr;
7513
7514 /*
7515 * 'direct_map_addr' might be different from 'pos'
7516 * because some architectures' virt_to_page()
7517 * work with aliases. Getting the direct map
7518 * address ensures that we get a _writeable_
7519 * alias for the memset().
7520 */
7521 direct_map_addr = page_address(page);
7522 if ((unsigned int)poison <= 0xFF)
7523 memset(direct_map_addr, poison, PAGE_SIZE);
7524
7525 free_reserved_page(page);
7526 }
7527
7528 if (pages && s)
7529 pr_info("Freeing %s memory: %ldK\n",
7530 s, pages << (PAGE_SHIFT - 10));
7531
7532 return pages;
7533 }
7534
7535 #ifdef CONFIG_HIGHMEM
7536 void free_highmem_page(struct page *page)
7537 {
7538 __free_reserved_page(page);
7539 totalram_pages_inc();
7540 atomic_long_inc(&page_zone(page)->managed_pages);
7541 totalhigh_pages_inc();
7542 }
7543 #endif
7544
7545
7546 void __init mem_init_print_info(const char *str)
7547 {
7548 unsigned long physpages, codesize, datasize, rosize, bss_size;
7549 unsigned long init_code_size, init_data_size;
7550
7551 physpages = get_num_physpages();
7552 codesize = _etext - _stext;
7553 datasize = _edata - _sdata;
7554 rosize = __end_rodata - __start_rodata;
7555 bss_size = __bss_stop - __bss_start;
7556 init_data_size = __init_end - __init_begin;
7557 init_code_size = _einittext - _sinittext;
7558
7559 /*
7560 * Detect special cases and adjust section sizes accordingly:
7561 * 1) .init.* may be embedded into .data sections
7562 * 2) .init.text.* may be out of [__init_begin, __init_end],
7563 * please refer to arch/tile/kernel/vmlinux.lds.S.
7564 * 3) .rodata.* may be embedded into .text or .data sections.
7565 */
7566 #define adj_init_size(start, end, size, pos, adj) \
7567 do { \
7568 if (start <= pos && pos < end && size > adj) \
7569 size -= adj; \
7570 } while (0)
7571
7572 adj_init_size(__init_begin, __init_end, init_data_size,
7573 _sinittext, init_code_size);
7574 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7575 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7576 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7577 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7578
7579 #undef adj_init_size
7580
7581 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7582 #ifdef CONFIG_HIGHMEM
7583 ", %luK highmem"
7584 #endif
7585 "%s%s)\n",
7586 nr_free_pages() << (PAGE_SHIFT - 10),
7587 physpages << (PAGE_SHIFT - 10),
7588 codesize >> 10, datasize >> 10, rosize >> 10,
7589 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7590 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7591 totalcma_pages << (PAGE_SHIFT - 10),
7592 #ifdef CONFIG_HIGHMEM
7593 totalhigh_pages() << (PAGE_SHIFT - 10),
7594 #endif
7595 str ? ", " : "", str ? str : "");
7596 }
7597
7598 /**
7599 * set_dma_reserve - set the specified number of pages reserved in the first zone
7600 * @new_dma_reserve: The number of pages to mark reserved
7601 *
7602 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7603 * In the DMA zone, a significant percentage may be consumed by kernel image
7604 * and other unfreeable allocations which can skew the watermarks badly. This
7605 * function may optionally be used to account for unfreeable pages in the
7606 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7607 * smaller per-cpu batchsize.
7608 */
7609 void __init set_dma_reserve(unsigned long new_dma_reserve)
7610 {
7611 dma_reserve = new_dma_reserve;
7612 }
7613
7614 void __init free_area_init(unsigned long *zones_size)
7615 {
7616 init_unavailable_mem();
7617 free_area_init_node(0, zones_size,
7618 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7619 }
7620
7621 static int page_alloc_cpu_dead(unsigned int cpu)
7622 {
7623
7624 lru_add_drain_cpu(cpu);
7625 drain_pages(cpu);
7626
7627 /*
7628 * Spill the event counters of the dead processor
7629 * into the current processors event counters.
7630 * This artificially elevates the count of the current
7631 * processor.
7632 */
7633 vm_events_fold_cpu(cpu);
7634
7635 /*
7636 * Zero the differential counters of the dead processor
7637 * so that the vm statistics are consistent.
7638 *
7639 * This is only okay since the processor is dead and cannot
7640 * race with what we are doing.
7641 */
7642 cpu_vm_stats_fold(cpu);
7643 return 0;
7644 }
7645
7646 #ifdef CONFIG_NUMA
7647 int hashdist = HASHDIST_DEFAULT;
7648
7649 static int __init set_hashdist(char *str)
7650 {
7651 if (!str)
7652 return 0;
7653 hashdist = simple_strtoul(str, &str, 0);
7654 return 1;
7655 }
7656 __setup("hashdist=", set_hashdist);
7657 #endif
7658
7659 void __init page_alloc_init(void)
7660 {
7661 int ret;
7662
7663 #ifdef CONFIG_NUMA
7664 if (num_node_state(N_MEMORY) == 1)
7665 hashdist = 0;
7666 #endif
7667
7668 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7669 "mm/page_alloc:dead", NULL,
7670 page_alloc_cpu_dead);
7671 WARN_ON(ret < 0);
7672 }
7673
7674 /*
7675 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7676 * or min_free_kbytes changes.
7677 */
7678 static void calculate_totalreserve_pages(void)
7679 {
7680 struct pglist_data *pgdat;
7681 unsigned long reserve_pages = 0;
7682 enum zone_type i, j;
7683
7684 for_each_online_pgdat(pgdat) {
7685
7686 pgdat->totalreserve_pages = 0;
7687
7688 for (i = 0; i < MAX_NR_ZONES; i++) {
7689 struct zone *zone = pgdat->node_zones + i;
7690 long max = 0;
7691 unsigned long managed_pages = zone_managed_pages(zone);
7692
7693 /* Find valid and maximum lowmem_reserve in the zone */
7694 for (j = i; j < MAX_NR_ZONES; j++) {
7695 if (zone->lowmem_reserve[j] > max)
7696 max = zone->lowmem_reserve[j];
7697 }
7698
7699 /* we treat the high watermark as reserved pages. */
7700 max += high_wmark_pages(zone);
7701
7702 if (max > managed_pages)
7703 max = managed_pages;
7704
7705 pgdat->totalreserve_pages += max;
7706
7707 reserve_pages += max;
7708 }
7709 }
7710 totalreserve_pages = reserve_pages;
7711 }
7712
7713 /*
7714 * setup_per_zone_lowmem_reserve - called whenever
7715 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7716 * has a correct pages reserved value, so an adequate number of
7717 * pages are left in the zone after a successful __alloc_pages().
7718 */
7719 static void setup_per_zone_lowmem_reserve(void)
7720 {
7721 struct pglist_data *pgdat;
7722 enum zone_type j, idx;
7723
7724 for_each_online_pgdat(pgdat) {
7725 for (j = 0; j < MAX_NR_ZONES; j++) {
7726 struct zone *zone = pgdat->node_zones + j;
7727 unsigned long managed_pages = zone_managed_pages(zone);
7728
7729 zone->lowmem_reserve[j] = 0;
7730
7731 idx = j;
7732 while (idx) {
7733 struct zone *lower_zone;
7734
7735 idx--;
7736 lower_zone = pgdat->node_zones + idx;
7737
7738 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7739 sysctl_lowmem_reserve_ratio[idx] = 0;
7740 lower_zone->lowmem_reserve[j] = 0;
7741 } else {
7742 lower_zone->lowmem_reserve[j] =
7743 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7744 }
7745 managed_pages += zone_managed_pages(lower_zone);
7746 }
7747 }
7748 }
7749
7750 /* update totalreserve_pages */
7751 calculate_totalreserve_pages();
7752 }
7753
7754 static void __setup_per_zone_wmarks(void)
7755 {
7756 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7757 unsigned long lowmem_pages = 0;
7758 struct zone *zone;
7759 unsigned long flags;
7760
7761 /* Calculate total number of !ZONE_HIGHMEM pages */
7762 for_each_zone(zone) {
7763 if (!is_highmem(zone))
7764 lowmem_pages += zone_managed_pages(zone);
7765 }
7766
7767 for_each_zone(zone) {
7768 u64 tmp;
7769
7770 spin_lock_irqsave(&zone->lock, flags);
7771 tmp = (u64)pages_min * zone_managed_pages(zone);
7772 do_div(tmp, lowmem_pages);
7773 if (is_highmem(zone)) {
7774 /*
7775 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7776 * need highmem pages, so cap pages_min to a small
7777 * value here.
7778 *
7779 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7780 * deltas control async page reclaim, and so should
7781 * not be capped for highmem.
7782 */
7783 unsigned long min_pages;
7784
7785 min_pages = zone_managed_pages(zone) / 1024;
7786 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7787 zone->_watermark[WMARK_MIN] = min_pages;
7788 } else {
7789 /*
7790 * If it's a lowmem zone, reserve a number of pages
7791 * proportionate to the zone's size.
7792 */
7793 zone->_watermark[WMARK_MIN] = tmp;
7794 }
7795
7796 /*
7797 * Set the kswapd watermarks distance according to the
7798 * scale factor in proportion to available memory, but
7799 * ensure a minimum size on small systems.
7800 */
7801 tmp = max_t(u64, tmp >> 2,
7802 mult_frac(zone_managed_pages(zone),
7803 watermark_scale_factor, 10000));
7804
7805 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7806 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7807 zone->watermark_boost = 0;
7808
7809 spin_unlock_irqrestore(&zone->lock, flags);
7810 }
7811
7812 /* update totalreserve_pages */
7813 calculate_totalreserve_pages();
7814 }
7815
7816 /**
7817 * setup_per_zone_wmarks - called when min_free_kbytes changes
7818 * or when memory is hot-{added|removed}
7819 *
7820 * Ensures that the watermark[min,low,high] values for each zone are set
7821 * correctly with respect to min_free_kbytes.
7822 */
7823 void setup_per_zone_wmarks(void)
7824 {
7825 static DEFINE_SPINLOCK(lock);
7826
7827 spin_lock(&lock);
7828 __setup_per_zone_wmarks();
7829 spin_unlock(&lock);
7830 }
7831
7832 /*
7833 * Initialise min_free_kbytes.
7834 *
7835 * For small machines we want it small (128k min). For large machines
7836 * we want it large (64MB max). But it is not linear, because network
7837 * bandwidth does not increase linearly with machine size. We use
7838 *
7839 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7840 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7841 *
7842 * which yields
7843 *
7844 * 16MB: 512k
7845 * 32MB: 724k
7846 * 64MB: 1024k
7847 * 128MB: 1448k
7848 * 256MB: 2048k
7849 * 512MB: 2896k
7850 * 1024MB: 4096k
7851 * 2048MB: 5792k
7852 * 4096MB: 8192k
7853 * 8192MB: 11584k
7854 * 16384MB: 16384k
7855 */
7856 int __meminit init_per_zone_wmark_min(void)
7857 {
7858 unsigned long lowmem_kbytes;
7859 int new_min_free_kbytes;
7860
7861 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7862 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7863
7864 if (new_min_free_kbytes > user_min_free_kbytes) {
7865 min_free_kbytes = new_min_free_kbytes;
7866 if (min_free_kbytes < 128)
7867 min_free_kbytes = 128;
7868 if (min_free_kbytes > 262144)
7869 min_free_kbytes = 262144;
7870 } else {
7871 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7872 new_min_free_kbytes, user_min_free_kbytes);
7873 }
7874 setup_per_zone_wmarks();
7875 refresh_zone_stat_thresholds();
7876 setup_per_zone_lowmem_reserve();
7877
7878 #ifdef CONFIG_NUMA
7879 setup_min_unmapped_ratio();
7880 setup_min_slab_ratio();
7881 #endif
7882
7883 return 0;
7884 }
7885 core_initcall(init_per_zone_wmark_min)
7886
7887 /*
7888 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7889 * that we can call two helper functions whenever min_free_kbytes
7890 * changes.
7891 */
7892 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7893 void __user *buffer, size_t *length, loff_t *ppos)
7894 {
7895 int rc;
7896
7897 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7898 if (rc)
7899 return rc;
7900
7901 if (write) {
7902 user_min_free_kbytes = min_free_kbytes;
7903 setup_per_zone_wmarks();
7904 }
7905 return 0;
7906 }
7907
7908 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7909 void __user *buffer, size_t *length, loff_t *ppos)
7910 {
7911 int rc;
7912
7913 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7914 if (rc)
7915 return rc;
7916
7917 return 0;
7918 }
7919
7920 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7921 void __user *buffer, size_t *length, loff_t *ppos)
7922 {
7923 int rc;
7924
7925 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7926 if (rc)
7927 return rc;
7928
7929 if (write)
7930 setup_per_zone_wmarks();
7931
7932 return 0;
7933 }
7934
7935 #ifdef CONFIG_NUMA
7936 static void setup_min_unmapped_ratio(void)
7937 {
7938 pg_data_t *pgdat;
7939 struct zone *zone;
7940
7941 for_each_online_pgdat(pgdat)
7942 pgdat->min_unmapped_pages = 0;
7943
7944 for_each_zone(zone)
7945 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7946 sysctl_min_unmapped_ratio) / 100;
7947 }
7948
7949
7950 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7951 void __user *buffer, size_t *length, loff_t *ppos)
7952 {
7953 int rc;
7954
7955 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7956 if (rc)
7957 return rc;
7958
7959 setup_min_unmapped_ratio();
7960
7961 return 0;
7962 }
7963
7964 static void setup_min_slab_ratio(void)
7965 {
7966 pg_data_t *pgdat;
7967 struct zone *zone;
7968
7969 for_each_online_pgdat(pgdat)
7970 pgdat->min_slab_pages = 0;
7971
7972 for_each_zone(zone)
7973 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7974 sysctl_min_slab_ratio) / 100;
7975 }
7976
7977 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7978 void __user *buffer, size_t *length, loff_t *ppos)
7979 {
7980 int rc;
7981
7982 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7983 if (rc)
7984 return rc;
7985
7986 setup_min_slab_ratio();
7987
7988 return 0;
7989 }
7990 #endif
7991
7992 /*
7993 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7994 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7995 * whenever sysctl_lowmem_reserve_ratio changes.
7996 *
7997 * The reserve ratio obviously has absolutely no relation with the
7998 * minimum watermarks. The lowmem reserve ratio can only make sense
7999 * if in function of the boot time zone sizes.
8000 */
8001 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8002 void __user *buffer, size_t *length, loff_t *ppos)
8003 {
8004 proc_dointvec_minmax(table, write, buffer, length, ppos);
8005 setup_per_zone_lowmem_reserve();
8006 return 0;
8007 }
8008
8009 static void __zone_pcp_update(struct zone *zone)
8010 {
8011 unsigned int cpu;
8012
8013 for_each_possible_cpu(cpu)
8014 pageset_set_high_and_batch(zone,
8015 per_cpu_ptr(zone->pageset, cpu));
8016 }
8017
8018 /*
8019 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8020 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8021 * pagelist can have before it gets flushed back to buddy allocator.
8022 */
8023 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8024 void __user *buffer, size_t *length, loff_t *ppos)
8025 {
8026 struct zone *zone;
8027 int old_percpu_pagelist_fraction;
8028 int ret;
8029
8030 mutex_lock(&pcp_batch_high_lock);
8031 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8032
8033 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8034 if (!write || ret < 0)
8035 goto out;
8036
8037 /* Sanity checking to avoid pcp imbalance */
8038 if (percpu_pagelist_fraction &&
8039 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8040 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8041 ret = -EINVAL;
8042 goto out;
8043 }
8044
8045 /* No change? */
8046 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8047 goto out;
8048
8049 for_each_populated_zone(zone)
8050 __zone_pcp_update(zone);
8051 out:
8052 mutex_unlock(&pcp_batch_high_lock);
8053 return ret;
8054 }
8055
8056 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8057 /*
8058 * Returns the number of pages that arch has reserved but
8059 * is not known to alloc_large_system_hash().
8060 */
8061 static unsigned long __init arch_reserved_kernel_pages(void)
8062 {
8063 return 0;
8064 }
8065 #endif
8066
8067 /*
8068 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8069 * machines. As memory size is increased the scale is also increased but at
8070 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8071 * quadruples the scale is increased by one, which means the size of hash table
8072 * only doubles, instead of quadrupling as well.
8073 * Because 32-bit systems cannot have large physical memory, where this scaling
8074 * makes sense, it is disabled on such platforms.
8075 */
8076 #if __BITS_PER_LONG > 32
8077 #define ADAPT_SCALE_BASE (64ul << 30)
8078 #define ADAPT_SCALE_SHIFT 2
8079 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8080 #endif
8081
8082 /*
8083 * allocate a large system hash table from bootmem
8084 * - it is assumed that the hash table must contain an exact power-of-2
8085 * quantity of entries
8086 * - limit is the number of hash buckets, not the total allocation size
8087 */
8088 void *__init alloc_large_system_hash(const char *tablename,
8089 unsigned long bucketsize,
8090 unsigned long numentries,
8091 int scale,
8092 int flags,
8093 unsigned int *_hash_shift,
8094 unsigned int *_hash_mask,
8095 unsigned long low_limit,
8096 unsigned long high_limit)
8097 {
8098 unsigned long long max = high_limit;
8099 unsigned long log2qty, size;
8100 void *table = NULL;
8101 gfp_t gfp_flags;
8102 bool virt;
8103
8104 /* allow the kernel cmdline to have a say */
8105 if (!numentries) {
8106 /* round applicable memory size up to nearest megabyte */
8107 numentries = nr_kernel_pages;
8108 numentries -= arch_reserved_kernel_pages();
8109
8110 /* It isn't necessary when PAGE_SIZE >= 1MB */
8111 if (PAGE_SHIFT < 20)
8112 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8113
8114 #if __BITS_PER_LONG > 32
8115 if (!high_limit) {
8116 unsigned long adapt;
8117
8118 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8119 adapt <<= ADAPT_SCALE_SHIFT)
8120 scale++;
8121 }
8122 #endif
8123
8124 /* limit to 1 bucket per 2^scale bytes of low memory */
8125 if (scale > PAGE_SHIFT)
8126 numentries >>= (scale - PAGE_SHIFT);
8127 else
8128 numentries <<= (PAGE_SHIFT - scale);
8129
8130 /* Make sure we've got at least a 0-order allocation.. */
8131 if (unlikely(flags & HASH_SMALL)) {
8132 /* Makes no sense without HASH_EARLY */
8133 WARN_ON(!(flags & HASH_EARLY));
8134 if (!(numentries >> *_hash_shift)) {
8135 numentries = 1UL << *_hash_shift;
8136 BUG_ON(!numentries);
8137 }
8138 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8139 numentries = PAGE_SIZE / bucketsize;
8140 }
8141 numentries = roundup_pow_of_two(numentries);
8142
8143 /* limit allocation size to 1/16 total memory by default */
8144 if (max == 0) {
8145 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8146 do_div(max, bucketsize);
8147 }
8148 max = min(max, 0x80000000ULL);
8149
8150 if (numentries < low_limit)
8151 numentries = low_limit;
8152 if (numentries > max)
8153 numentries = max;
8154
8155 log2qty = ilog2(numentries);
8156
8157 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8158 do {
8159 virt = false;
8160 size = bucketsize << log2qty;
8161 if (flags & HASH_EARLY) {
8162 if (flags & HASH_ZERO)
8163 table = memblock_alloc(size, SMP_CACHE_BYTES);
8164 else
8165 table = memblock_alloc_raw(size,
8166 SMP_CACHE_BYTES);
8167 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8168 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8169 virt = true;
8170 } else {
8171 /*
8172 * If bucketsize is not a power-of-two, we may free
8173 * some pages at the end of hash table which
8174 * alloc_pages_exact() automatically does
8175 */
8176 table = alloc_pages_exact(size, gfp_flags);
8177 kmemleak_alloc(table, size, 1, gfp_flags);
8178 }
8179 } while (!table && size > PAGE_SIZE && --log2qty);
8180
8181 if (!table)
8182 panic("Failed to allocate %s hash table\n", tablename);
8183
8184 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8185 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8186 virt ? "vmalloc" : "linear");
8187
8188 if (_hash_shift)
8189 *_hash_shift = log2qty;
8190 if (_hash_mask)
8191 *_hash_mask = (1 << log2qty) - 1;
8192
8193 return table;
8194 }
8195
8196 /*
8197 * This function checks whether pageblock includes unmovable pages or not.
8198 *
8199 * PageLRU check without isolation or lru_lock could race so that
8200 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8201 * check without lock_page also may miss some movable non-lru pages at
8202 * race condition. So you can't expect this function should be exact.
8203 *
8204 * Returns a page without holding a reference. If the caller wants to
8205 * dereference that page (e.g., dumping), it has to make sure that that it
8206 * cannot get removed (e.g., via memory unplug) concurrently.
8207 *
8208 */
8209 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8210 int migratetype, int flags)
8211 {
8212 unsigned long iter = 0;
8213 unsigned long pfn = page_to_pfn(page);
8214
8215 /*
8216 * TODO we could make this much more efficient by not checking every
8217 * page in the range if we know all of them are in MOVABLE_ZONE and
8218 * that the movable zone guarantees that pages are migratable but
8219 * the later is not the case right now unfortunatelly. E.g. movablecore
8220 * can still lead to having bootmem allocations in zone_movable.
8221 */
8222
8223 if (is_migrate_cma_page(page)) {
8224 /*
8225 * CMA allocations (alloc_contig_range) really need to mark
8226 * isolate CMA pageblocks even when they are not movable in fact
8227 * so consider them movable here.
8228 */
8229 if (is_migrate_cma(migratetype))
8230 return NULL;
8231
8232 return page;
8233 }
8234
8235 for (; iter < pageblock_nr_pages; iter++) {
8236 if (!pfn_valid_within(pfn + iter))
8237 continue;
8238
8239 page = pfn_to_page(pfn + iter);
8240
8241 if (PageReserved(page))
8242 return page;
8243
8244 /*
8245 * If the zone is movable and we have ruled out all reserved
8246 * pages then it should be reasonably safe to assume the rest
8247 * is movable.
8248 */
8249 if (zone_idx(zone) == ZONE_MOVABLE)
8250 continue;
8251
8252 /*
8253 * Hugepages are not in LRU lists, but they're movable.
8254 * THPs are on the LRU, but need to be counted as #small pages.
8255 * We need not scan over tail pages because we don't
8256 * handle each tail page individually in migration.
8257 */
8258 if (PageHuge(page) || PageTransCompound(page)) {
8259 struct page *head = compound_head(page);
8260 unsigned int skip_pages;
8261
8262 if (PageHuge(page)) {
8263 if (!hugepage_migration_supported(page_hstate(head)))
8264 return page;
8265 } else if (!PageLRU(head) && !__PageMovable(head)) {
8266 return page;
8267 }
8268
8269 skip_pages = compound_nr(head) - (page - head);
8270 iter += skip_pages - 1;
8271 continue;
8272 }
8273
8274 /*
8275 * We can't use page_count without pin a page
8276 * because another CPU can free compound page.
8277 * This check already skips compound tails of THP
8278 * because their page->_refcount is zero at all time.
8279 */
8280 if (!page_ref_count(page)) {
8281 if (PageBuddy(page))
8282 iter += (1 << page_order(page)) - 1;
8283 continue;
8284 }
8285
8286 /*
8287 * The HWPoisoned page may be not in buddy system, and
8288 * page_count() is not 0.
8289 */
8290 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8291 continue;
8292
8293 if (__PageMovable(page) || PageLRU(page))
8294 continue;
8295
8296 /*
8297 * If there are RECLAIMABLE pages, we need to check
8298 * it. But now, memory offline itself doesn't call
8299 * shrink_node_slabs() and it still to be fixed.
8300 */
8301 /*
8302 * If the page is not RAM, page_count()should be 0.
8303 * we don't need more check. This is an _used_ not-movable page.
8304 *
8305 * The problematic thing here is PG_reserved pages. PG_reserved
8306 * is set to both of a memory hole page and a _used_ kernel
8307 * page at boot.
8308 */
8309 return page;
8310 }
8311 return NULL;
8312 }
8313
8314 #ifdef CONFIG_CONTIG_ALLOC
8315 static unsigned long pfn_max_align_down(unsigned long pfn)
8316 {
8317 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8318 pageblock_nr_pages) - 1);
8319 }
8320
8321 static unsigned long pfn_max_align_up(unsigned long pfn)
8322 {
8323 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8324 pageblock_nr_pages));
8325 }
8326
8327 /* [start, end) must belong to a single zone. */
8328 static int __alloc_contig_migrate_range(struct compact_control *cc,
8329 unsigned long start, unsigned long end)
8330 {
8331 /* This function is based on compact_zone() from compaction.c. */
8332 unsigned long nr_reclaimed;
8333 unsigned long pfn = start;
8334 unsigned int tries = 0;
8335 int ret = 0;
8336
8337 migrate_prep();
8338
8339 while (pfn < end || !list_empty(&cc->migratepages)) {
8340 if (fatal_signal_pending(current)) {
8341 ret = -EINTR;
8342 break;
8343 }
8344
8345 if (list_empty(&cc->migratepages)) {
8346 cc->nr_migratepages = 0;
8347 pfn = isolate_migratepages_range(cc, pfn, end);
8348 if (!pfn) {
8349 ret = -EINTR;
8350 break;
8351 }
8352 tries = 0;
8353 } else if (++tries == 5) {
8354 ret = ret < 0 ? ret : -EBUSY;
8355 break;
8356 }
8357
8358 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8359 &cc->migratepages);
8360 cc->nr_migratepages -= nr_reclaimed;
8361
8362 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8363 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8364 }
8365 if (ret < 0) {
8366 putback_movable_pages(&cc->migratepages);
8367 return ret;
8368 }
8369 return 0;
8370 }
8371
8372 /**
8373 * alloc_contig_range() -- tries to allocate given range of pages
8374 * @start: start PFN to allocate
8375 * @end: one-past-the-last PFN to allocate
8376 * @migratetype: migratetype of the underlaying pageblocks (either
8377 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8378 * in range must have the same migratetype and it must
8379 * be either of the two.
8380 * @gfp_mask: GFP mask to use during compaction
8381 *
8382 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8383 * aligned. The PFN range must belong to a single zone.
8384 *
8385 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8386 * pageblocks in the range. Once isolated, the pageblocks should not
8387 * be modified by others.
8388 *
8389 * Return: zero on success or negative error code. On success all
8390 * pages which PFN is in [start, end) are allocated for the caller and
8391 * need to be freed with free_contig_range().
8392 */
8393 int alloc_contig_range(unsigned long start, unsigned long end,
8394 unsigned migratetype, gfp_t gfp_mask)
8395 {
8396 unsigned long outer_start, outer_end;
8397 unsigned int order;
8398 int ret = 0;
8399
8400 struct compact_control cc = {
8401 .nr_migratepages = 0,
8402 .order = -1,
8403 .zone = page_zone(pfn_to_page(start)),
8404 .mode = MIGRATE_SYNC,
8405 .ignore_skip_hint = true,
8406 .no_set_skip_hint = true,
8407 .gfp_mask = current_gfp_context(gfp_mask),
8408 .alloc_contig = true,
8409 };
8410 INIT_LIST_HEAD(&cc.migratepages);
8411
8412 /*
8413 * What we do here is we mark all pageblocks in range as
8414 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8415 * have different sizes, and due to the way page allocator
8416 * work, we align the range to biggest of the two pages so
8417 * that page allocator won't try to merge buddies from
8418 * different pageblocks and change MIGRATE_ISOLATE to some
8419 * other migration type.
8420 *
8421 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8422 * migrate the pages from an unaligned range (ie. pages that
8423 * we are interested in). This will put all the pages in
8424 * range back to page allocator as MIGRATE_ISOLATE.
8425 *
8426 * When this is done, we take the pages in range from page
8427 * allocator removing them from the buddy system. This way
8428 * page allocator will never consider using them.
8429 *
8430 * This lets us mark the pageblocks back as
8431 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8432 * aligned range but not in the unaligned, original range are
8433 * put back to page allocator so that buddy can use them.
8434 */
8435
8436 ret = start_isolate_page_range(pfn_max_align_down(start),
8437 pfn_max_align_up(end), migratetype, 0);
8438 if (ret < 0)
8439 return ret;
8440
8441 /*
8442 * In case of -EBUSY, we'd like to know which page causes problem.
8443 * So, just fall through. test_pages_isolated() has a tracepoint
8444 * which will report the busy page.
8445 *
8446 * It is possible that busy pages could become available before
8447 * the call to test_pages_isolated, and the range will actually be
8448 * allocated. So, if we fall through be sure to clear ret so that
8449 * -EBUSY is not accidentally used or returned to caller.
8450 */
8451 ret = __alloc_contig_migrate_range(&cc, start, end);
8452 if (ret && ret != -EBUSY)
8453 goto done;
8454 ret =0;
8455
8456 /*
8457 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8458 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8459 * more, all pages in [start, end) are free in page allocator.
8460 * What we are going to do is to allocate all pages from
8461 * [start, end) (that is remove them from page allocator).
8462 *
8463 * The only problem is that pages at the beginning and at the
8464 * end of interesting range may be not aligned with pages that
8465 * page allocator holds, ie. they can be part of higher order
8466 * pages. Because of this, we reserve the bigger range and
8467 * once this is done free the pages we are not interested in.
8468 *
8469 * We don't have to hold zone->lock here because the pages are
8470 * isolated thus they won't get removed from buddy.
8471 */
8472
8473 lru_add_drain_all();
8474
8475 order = 0;
8476 outer_start = start;
8477 while (!PageBuddy(pfn_to_page(outer_start))) {
8478 if (++order >= MAX_ORDER) {
8479 outer_start = start;
8480 break;
8481 }
8482 outer_start &= ~0UL << order;
8483 }
8484
8485 if (outer_start != start) {
8486 order = page_order(pfn_to_page(outer_start));
8487
8488 /*
8489 * outer_start page could be small order buddy page and
8490 * it doesn't include start page. Adjust outer_start
8491 * in this case to report failed page properly
8492 * on tracepoint in test_pages_isolated()
8493 */
8494 if (outer_start + (1UL << order) <= start)
8495 outer_start = start;
8496 }
8497
8498 /* Make sure the range is really isolated. */
8499 if (test_pages_isolated(outer_start, end, 0)) {
8500 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8501 __func__, outer_start, end);
8502 ret = -EBUSY;
8503 goto done;
8504 }
8505
8506 /* Grab isolated pages from freelists. */
8507 outer_end = isolate_freepages_range(&cc, outer_start, end);
8508 if (!outer_end) {
8509 ret = -EBUSY;
8510 goto done;
8511 }
8512
8513 /* Free head and tail (if any) */
8514 if (start != outer_start)
8515 free_contig_range(outer_start, start - outer_start);
8516 if (end != outer_end)
8517 free_contig_range(end, outer_end - end);
8518
8519 done:
8520 undo_isolate_page_range(pfn_max_align_down(start),
8521 pfn_max_align_up(end), migratetype);
8522 return ret;
8523 }
8524
8525 static int __alloc_contig_pages(unsigned long start_pfn,
8526 unsigned long nr_pages, gfp_t gfp_mask)
8527 {
8528 unsigned long end_pfn = start_pfn + nr_pages;
8529
8530 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8531 gfp_mask);
8532 }
8533
8534 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8535 unsigned long nr_pages)
8536 {
8537 unsigned long i, end_pfn = start_pfn + nr_pages;
8538 struct page *page;
8539
8540 for (i = start_pfn; i < end_pfn; i++) {
8541 page = pfn_to_online_page(i);
8542 if (!page)
8543 return false;
8544
8545 if (page_zone(page) != z)
8546 return false;
8547
8548 if (PageReserved(page))
8549 return false;
8550
8551 if (page_count(page) > 0)
8552 return false;
8553
8554 if (PageHuge(page))
8555 return false;
8556 }
8557 return true;
8558 }
8559
8560 static bool zone_spans_last_pfn(const struct zone *zone,
8561 unsigned long start_pfn, unsigned long nr_pages)
8562 {
8563 unsigned long last_pfn = start_pfn + nr_pages - 1;
8564
8565 return zone_spans_pfn(zone, last_pfn);
8566 }
8567
8568 /**
8569 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8570 * @nr_pages: Number of contiguous pages to allocate
8571 * @gfp_mask: GFP mask to limit search and used during compaction
8572 * @nid: Target node
8573 * @nodemask: Mask for other possible nodes
8574 *
8575 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8576 * on an applicable zonelist to find a contiguous pfn range which can then be
8577 * tried for allocation with alloc_contig_range(). This routine is intended
8578 * for allocation requests which can not be fulfilled with the buddy allocator.
8579 *
8580 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8581 * power of two then the alignment is guaranteed to be to the given nr_pages
8582 * (e.g. 1GB request would be aligned to 1GB).
8583 *
8584 * Allocated pages can be freed with free_contig_range() or by manually calling
8585 * __free_page() on each allocated page.
8586 *
8587 * Return: pointer to contiguous pages on success, or NULL if not successful.
8588 */
8589 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8590 int nid, nodemask_t *nodemask)
8591 {
8592 unsigned long ret, pfn, flags;
8593 struct zonelist *zonelist;
8594 struct zone *zone;
8595 struct zoneref *z;
8596
8597 zonelist = node_zonelist(nid, gfp_mask);
8598 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8599 gfp_zone(gfp_mask), nodemask) {
8600 spin_lock_irqsave(&zone->lock, flags);
8601
8602 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8603 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8604 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8605 /*
8606 * We release the zone lock here because
8607 * alloc_contig_range() will also lock the zone
8608 * at some point. If there's an allocation
8609 * spinning on this lock, it may win the race
8610 * and cause alloc_contig_range() to fail...
8611 */
8612 spin_unlock_irqrestore(&zone->lock, flags);
8613 ret = __alloc_contig_pages(pfn, nr_pages,
8614 gfp_mask);
8615 if (!ret)
8616 return pfn_to_page(pfn);
8617 spin_lock_irqsave(&zone->lock, flags);
8618 }
8619 pfn += nr_pages;
8620 }
8621 spin_unlock_irqrestore(&zone->lock, flags);
8622 }
8623 return NULL;
8624 }
8625 #endif /* CONFIG_CONTIG_ALLOC */
8626
8627 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8628 {
8629 unsigned int count = 0;
8630
8631 for (; nr_pages--; pfn++) {
8632 struct page *page = pfn_to_page(pfn);
8633
8634 count += page_count(page) != 1;
8635 __free_page(page);
8636 }
8637 WARN(count != 0, "%d pages are still in use!\n", count);
8638 }
8639
8640 /*
8641 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8642 * page high values need to be recalulated.
8643 */
8644 void __meminit zone_pcp_update(struct zone *zone)
8645 {
8646 mutex_lock(&pcp_batch_high_lock);
8647 __zone_pcp_update(zone);
8648 mutex_unlock(&pcp_batch_high_lock);
8649 }
8650
8651 void zone_pcp_reset(struct zone *zone)
8652 {
8653 unsigned long flags;
8654 int cpu;
8655 struct per_cpu_pageset *pset;
8656
8657 /* avoid races with drain_pages() */
8658 local_irq_save(flags);
8659 if (zone->pageset != &boot_pageset) {
8660 for_each_online_cpu(cpu) {
8661 pset = per_cpu_ptr(zone->pageset, cpu);
8662 drain_zonestat(zone, pset);
8663 }
8664 free_percpu(zone->pageset);
8665 zone->pageset = &boot_pageset;
8666 }
8667 local_irq_restore(flags);
8668 }
8669
8670 #ifdef CONFIG_MEMORY_HOTREMOVE
8671 /*
8672 * All pages in the range must be in a single zone and isolated
8673 * before calling this.
8674 */
8675 unsigned long
8676 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8677 {
8678 struct page *page;
8679 struct zone *zone;
8680 unsigned int order;
8681 unsigned long pfn;
8682 unsigned long flags;
8683 unsigned long offlined_pages = 0;
8684
8685 /* find the first valid pfn */
8686 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8687 if (pfn_valid(pfn))
8688 break;
8689 if (pfn == end_pfn)
8690 return offlined_pages;
8691
8692 offline_mem_sections(pfn, end_pfn);
8693 zone = page_zone(pfn_to_page(pfn));
8694 spin_lock_irqsave(&zone->lock, flags);
8695 pfn = start_pfn;
8696 while (pfn < end_pfn) {
8697 if (!pfn_valid(pfn)) {
8698 pfn++;
8699 continue;
8700 }
8701 page = pfn_to_page(pfn);
8702 /*
8703 * The HWPoisoned page may be not in buddy system, and
8704 * page_count() is not 0.
8705 */
8706 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8707 pfn++;
8708 offlined_pages++;
8709 continue;
8710 }
8711
8712 BUG_ON(page_count(page));
8713 BUG_ON(!PageBuddy(page));
8714 order = page_order(page);
8715 offlined_pages += 1 << order;
8716 del_page_from_free_area(page, &zone->free_area[order]);
8717 pfn += (1 << order);
8718 }
8719 spin_unlock_irqrestore(&zone->lock, flags);
8720
8721 return offlined_pages;
8722 }
8723 #endif
8724
8725 bool is_free_buddy_page(struct page *page)
8726 {
8727 struct zone *zone = page_zone(page);
8728 unsigned long pfn = page_to_pfn(page);
8729 unsigned long flags;
8730 unsigned int order;
8731
8732 spin_lock_irqsave(&zone->lock, flags);
8733 for (order = 0; order < MAX_ORDER; order++) {
8734 struct page *page_head = page - (pfn & ((1 << order) - 1));
8735
8736 if (PageBuddy(page_head) && page_order(page_head) >= order)
8737 break;
8738 }
8739 spin_unlock_irqrestore(&zone->lock, flags);
8740
8741 return order < MAX_ORDER;
8742 }
8743
8744 #ifdef CONFIG_MEMORY_FAILURE
8745 /*
8746 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8747 * test is performed under the zone lock to prevent a race against page
8748 * allocation.
8749 */
8750 bool set_hwpoison_free_buddy_page(struct page *page)
8751 {
8752 struct zone *zone = page_zone(page);
8753 unsigned long pfn = page_to_pfn(page);
8754 unsigned long flags;
8755 unsigned int order;
8756 bool hwpoisoned = false;
8757
8758 spin_lock_irqsave(&zone->lock, flags);
8759 for (order = 0; order < MAX_ORDER; order++) {
8760 struct page *page_head = page - (pfn & ((1 << order) - 1));
8761
8762 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8763 if (!TestSetPageHWPoison(page))
8764 hwpoisoned = true;
8765 break;
8766 }
8767 }
8768 spin_unlock_irqrestore(&zone->lock, flags);
8769
8770 return hwpoisoned;
8771 }
8772 #endif