]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
Merge branch 'fix/hda' into for-linus
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/page_cgroup.h>
48 #include <linux/debugobjects.h>
49
50 #include <asm/tlbflush.h>
51 #include <asm/div64.h>
52 #include "internal.h"
53
54 /*
55 * Array of node states.
56 */
57 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
58 [N_POSSIBLE] = NODE_MASK_ALL,
59 [N_ONLINE] = { { [0] = 1UL } },
60 #ifndef CONFIG_NUMA
61 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
62 #ifdef CONFIG_HIGHMEM
63 [N_HIGH_MEMORY] = { { [0] = 1UL } },
64 #endif
65 [N_CPU] = { { [0] = 1UL } },
66 #endif /* NUMA */
67 };
68 EXPORT_SYMBOL(node_states);
69
70 unsigned long totalram_pages __read_mostly;
71 unsigned long totalreserve_pages __read_mostly;
72 unsigned long highest_memmap_pfn __read_mostly;
73 int percpu_pagelist_fraction;
74
75 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
76 int pageblock_order __read_mostly;
77 #endif
78
79 static void __free_pages_ok(struct page *page, unsigned int order);
80
81 /*
82 * results with 256, 32 in the lowmem_reserve sysctl:
83 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
84 * 1G machine -> (16M dma, 784M normal, 224M high)
85 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
86 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
87 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
88 *
89 * TBD: should special case ZONE_DMA32 machines here - in those we normally
90 * don't need any ZONE_NORMAL reservation
91 */
92 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
93 #ifdef CONFIG_ZONE_DMA
94 256,
95 #endif
96 #ifdef CONFIG_ZONE_DMA32
97 256,
98 #endif
99 #ifdef CONFIG_HIGHMEM
100 32,
101 #endif
102 32,
103 };
104
105 EXPORT_SYMBOL(totalram_pages);
106
107 static char * const zone_names[MAX_NR_ZONES] = {
108 #ifdef CONFIG_ZONE_DMA
109 "DMA",
110 #endif
111 #ifdef CONFIG_ZONE_DMA32
112 "DMA32",
113 #endif
114 "Normal",
115 #ifdef CONFIG_HIGHMEM
116 "HighMem",
117 #endif
118 "Movable",
119 };
120
121 int min_free_kbytes = 1024;
122
123 unsigned long __meminitdata nr_kernel_pages;
124 unsigned long __meminitdata nr_all_pages;
125 static unsigned long __meminitdata dma_reserve;
126
127 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
128 /*
129 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
130 * ranges of memory (RAM) that may be registered with add_active_range().
131 * Ranges passed to add_active_range() will be merged if possible
132 * so the number of times add_active_range() can be called is
133 * related to the number of nodes and the number of holes
134 */
135 #ifdef CONFIG_MAX_ACTIVE_REGIONS
136 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
137 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
138 #else
139 #if MAX_NUMNODES >= 32
140 /* If there can be many nodes, allow up to 50 holes per node */
141 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
142 #else
143 /* By default, allow up to 256 distinct regions */
144 #define MAX_ACTIVE_REGIONS 256
145 #endif
146 #endif
147
148 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
149 static int __meminitdata nr_nodemap_entries;
150 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
151 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
152 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
153 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
154 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
155 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
156 static unsigned long __initdata required_kernelcore;
157 static unsigned long __initdata required_movablecore;
158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
163 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
165 #if MAX_NUMNODES > 1
166 int nr_node_ids __read_mostly = MAX_NUMNODES;
167 EXPORT_SYMBOL(nr_node_ids);
168 #endif
169
170 int page_group_by_mobility_disabled __read_mostly;
171
172 static void set_pageblock_migratetype(struct page *page, int migratetype)
173 {
174 set_pageblock_flags_group(page, (unsigned long)migratetype,
175 PB_migrate, PB_migrate_end);
176 }
177
178 #ifdef CONFIG_DEBUG_VM
179 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
180 {
181 int ret = 0;
182 unsigned seq;
183 unsigned long pfn = page_to_pfn(page);
184
185 do {
186 seq = zone_span_seqbegin(zone);
187 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
188 ret = 1;
189 else if (pfn < zone->zone_start_pfn)
190 ret = 1;
191 } while (zone_span_seqretry(zone, seq));
192
193 return ret;
194 }
195
196 static int page_is_consistent(struct zone *zone, struct page *page)
197 {
198 if (!pfn_valid_within(page_to_pfn(page)))
199 return 0;
200 if (zone != page_zone(page))
201 return 0;
202
203 return 1;
204 }
205 /*
206 * Temporary debugging check for pages not lying within a given zone.
207 */
208 static int bad_range(struct zone *zone, struct page *page)
209 {
210 if (page_outside_zone_boundaries(zone, page))
211 return 1;
212 if (!page_is_consistent(zone, page))
213 return 1;
214
215 return 0;
216 }
217 #else
218 static inline int bad_range(struct zone *zone, struct page *page)
219 {
220 return 0;
221 }
222 #endif
223
224 static void bad_page(struct page *page)
225 {
226 static unsigned long resume;
227 static unsigned long nr_shown;
228 static unsigned long nr_unshown;
229
230 /*
231 * Allow a burst of 60 reports, then keep quiet for that minute;
232 * or allow a steady drip of one report per second.
233 */
234 if (nr_shown == 60) {
235 if (time_before(jiffies, resume)) {
236 nr_unshown++;
237 goto out;
238 }
239 if (nr_unshown) {
240 printk(KERN_ALERT
241 "BUG: Bad page state: %lu messages suppressed\n",
242 nr_unshown);
243 nr_unshown = 0;
244 }
245 nr_shown = 0;
246 }
247 if (nr_shown++ == 0)
248 resume = jiffies + 60 * HZ;
249
250 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
251 current->comm, page_to_pfn(page));
252 printk(KERN_ALERT
253 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
254 page, (void *)page->flags, page_count(page),
255 page_mapcount(page), page->mapping, page->index);
256
257 dump_stack();
258 out:
259 /* Leave bad fields for debug, except PageBuddy could make trouble */
260 __ClearPageBuddy(page);
261 add_taint(TAINT_BAD_PAGE);
262 }
263
264 /*
265 * Higher-order pages are called "compound pages". They are structured thusly:
266 *
267 * The first PAGE_SIZE page is called the "head page".
268 *
269 * The remaining PAGE_SIZE pages are called "tail pages".
270 *
271 * All pages have PG_compound set. All pages have their ->private pointing at
272 * the head page (even the head page has this).
273 *
274 * The first tail page's ->lru.next holds the address of the compound page's
275 * put_page() function. Its ->lru.prev holds the order of allocation.
276 * This usage means that zero-order pages may not be compound.
277 */
278
279 static void free_compound_page(struct page *page)
280 {
281 __free_pages_ok(page, compound_order(page));
282 }
283
284 void prep_compound_page(struct page *page, unsigned long order)
285 {
286 int i;
287 int nr_pages = 1 << order;
288
289 set_compound_page_dtor(page, free_compound_page);
290 set_compound_order(page, order);
291 __SetPageHead(page);
292 for (i = 1; i < nr_pages; i++) {
293 struct page *p = page + i;
294
295 __SetPageTail(p);
296 p->first_page = page;
297 }
298 }
299
300 #ifdef CONFIG_HUGETLBFS
301 void prep_compound_gigantic_page(struct page *page, unsigned long order)
302 {
303 int i;
304 int nr_pages = 1 << order;
305 struct page *p = page + 1;
306
307 set_compound_page_dtor(page, free_compound_page);
308 set_compound_order(page, order);
309 __SetPageHead(page);
310 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
311 __SetPageTail(p);
312 p->first_page = page;
313 }
314 }
315 #endif
316
317 static int destroy_compound_page(struct page *page, unsigned long order)
318 {
319 int i;
320 int nr_pages = 1 << order;
321 int bad = 0;
322
323 if (unlikely(compound_order(page) != order) ||
324 unlikely(!PageHead(page))) {
325 bad_page(page);
326 bad++;
327 }
328
329 __ClearPageHead(page);
330
331 for (i = 1; i < nr_pages; i++) {
332 struct page *p = page + i;
333
334 if (unlikely(!PageTail(p) || (p->first_page != page))) {
335 bad_page(page);
336 bad++;
337 }
338 __ClearPageTail(p);
339 }
340
341 return bad;
342 }
343
344 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
345 {
346 int i;
347
348 /*
349 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
350 * and __GFP_HIGHMEM from hard or soft interrupt context.
351 */
352 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
353 for (i = 0; i < (1 << order); i++)
354 clear_highpage(page + i);
355 }
356
357 static inline void set_page_order(struct page *page, int order)
358 {
359 set_page_private(page, order);
360 __SetPageBuddy(page);
361 }
362
363 static inline void rmv_page_order(struct page *page)
364 {
365 __ClearPageBuddy(page);
366 set_page_private(page, 0);
367 }
368
369 /*
370 * Locate the struct page for both the matching buddy in our
371 * pair (buddy1) and the combined O(n+1) page they form (page).
372 *
373 * 1) Any buddy B1 will have an order O twin B2 which satisfies
374 * the following equation:
375 * B2 = B1 ^ (1 << O)
376 * For example, if the starting buddy (buddy2) is #8 its order
377 * 1 buddy is #10:
378 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
379 *
380 * 2) Any buddy B will have an order O+1 parent P which
381 * satisfies the following equation:
382 * P = B & ~(1 << O)
383 *
384 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
385 */
386 static inline struct page *
387 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
388 {
389 unsigned long buddy_idx = page_idx ^ (1 << order);
390
391 return page + (buddy_idx - page_idx);
392 }
393
394 static inline unsigned long
395 __find_combined_index(unsigned long page_idx, unsigned int order)
396 {
397 return (page_idx & ~(1 << order));
398 }
399
400 /*
401 * This function checks whether a page is free && is the buddy
402 * we can do coalesce a page and its buddy if
403 * (a) the buddy is not in a hole &&
404 * (b) the buddy is in the buddy system &&
405 * (c) a page and its buddy have the same order &&
406 * (d) a page and its buddy are in the same zone.
407 *
408 * For recording whether a page is in the buddy system, we use PG_buddy.
409 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
410 *
411 * For recording page's order, we use page_private(page).
412 */
413 static inline int page_is_buddy(struct page *page, struct page *buddy,
414 int order)
415 {
416 if (!pfn_valid_within(page_to_pfn(buddy)))
417 return 0;
418
419 if (page_zone_id(page) != page_zone_id(buddy))
420 return 0;
421
422 if (PageBuddy(buddy) && page_order(buddy) == order) {
423 BUG_ON(page_count(buddy) != 0);
424 return 1;
425 }
426 return 0;
427 }
428
429 /*
430 * Freeing function for a buddy system allocator.
431 *
432 * The concept of a buddy system is to maintain direct-mapped table
433 * (containing bit values) for memory blocks of various "orders".
434 * The bottom level table contains the map for the smallest allocatable
435 * units of memory (here, pages), and each level above it describes
436 * pairs of units from the levels below, hence, "buddies".
437 * At a high level, all that happens here is marking the table entry
438 * at the bottom level available, and propagating the changes upward
439 * as necessary, plus some accounting needed to play nicely with other
440 * parts of the VM system.
441 * At each level, we keep a list of pages, which are heads of continuous
442 * free pages of length of (1 << order) and marked with PG_buddy. Page's
443 * order is recorded in page_private(page) field.
444 * So when we are allocating or freeing one, we can derive the state of the
445 * other. That is, if we allocate a small block, and both were
446 * free, the remainder of the region must be split into blocks.
447 * If a block is freed, and its buddy is also free, then this
448 * triggers coalescing into a block of larger size.
449 *
450 * -- wli
451 */
452
453 static inline void __free_one_page(struct page *page,
454 struct zone *zone, unsigned int order)
455 {
456 unsigned long page_idx;
457 int order_size = 1 << order;
458 int migratetype = get_pageblock_migratetype(page);
459
460 if (unlikely(PageCompound(page)))
461 if (unlikely(destroy_compound_page(page, order)))
462 return;
463
464 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
465
466 VM_BUG_ON(page_idx & (order_size - 1));
467 VM_BUG_ON(bad_range(zone, page));
468
469 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
470 while (order < MAX_ORDER-1) {
471 unsigned long combined_idx;
472 struct page *buddy;
473
474 buddy = __page_find_buddy(page, page_idx, order);
475 if (!page_is_buddy(page, buddy, order))
476 break;
477
478 /* Our buddy is free, merge with it and move up one order. */
479 list_del(&buddy->lru);
480 zone->free_area[order].nr_free--;
481 rmv_page_order(buddy);
482 combined_idx = __find_combined_index(page_idx, order);
483 page = page + (combined_idx - page_idx);
484 page_idx = combined_idx;
485 order++;
486 }
487 set_page_order(page, order);
488 list_add(&page->lru,
489 &zone->free_area[order].free_list[migratetype]);
490 zone->free_area[order].nr_free++;
491 }
492
493 static inline int free_pages_check(struct page *page)
494 {
495 free_page_mlock(page);
496 if (unlikely(page_mapcount(page) |
497 (page->mapping != NULL) |
498 (page_count(page) != 0) |
499 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
500 bad_page(page);
501 return 1;
502 }
503 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
504 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
505 return 0;
506 }
507
508 /*
509 * Frees a list of pages.
510 * Assumes all pages on list are in same zone, and of same order.
511 * count is the number of pages to free.
512 *
513 * If the zone was previously in an "all pages pinned" state then look to
514 * see if this freeing clears that state.
515 *
516 * And clear the zone's pages_scanned counter, to hold off the "all pages are
517 * pinned" detection logic.
518 */
519 static void free_pages_bulk(struct zone *zone, int count,
520 struct list_head *list, int order)
521 {
522 spin_lock(&zone->lock);
523 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
524 zone->pages_scanned = 0;
525 while (count--) {
526 struct page *page;
527
528 VM_BUG_ON(list_empty(list));
529 page = list_entry(list->prev, struct page, lru);
530 /* have to delete it as __free_one_page list manipulates */
531 list_del(&page->lru);
532 __free_one_page(page, zone, order);
533 }
534 spin_unlock(&zone->lock);
535 }
536
537 static void free_one_page(struct zone *zone, struct page *page, int order)
538 {
539 spin_lock(&zone->lock);
540 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
541 zone->pages_scanned = 0;
542 __free_one_page(page, zone, order);
543 spin_unlock(&zone->lock);
544 }
545
546 static void __free_pages_ok(struct page *page, unsigned int order)
547 {
548 unsigned long flags;
549 int i;
550 int bad = 0;
551
552 for (i = 0 ; i < (1 << order) ; ++i)
553 bad += free_pages_check(page + i);
554 if (bad)
555 return;
556
557 if (!PageHighMem(page)) {
558 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
559 debug_check_no_obj_freed(page_address(page),
560 PAGE_SIZE << order);
561 }
562 arch_free_page(page, order);
563 kernel_map_pages(page, 1 << order, 0);
564
565 local_irq_save(flags);
566 __count_vm_events(PGFREE, 1 << order);
567 free_one_page(page_zone(page), page, order);
568 local_irq_restore(flags);
569 }
570
571 /*
572 * permit the bootmem allocator to evade page validation on high-order frees
573 */
574 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
575 {
576 if (order == 0) {
577 __ClearPageReserved(page);
578 set_page_count(page, 0);
579 set_page_refcounted(page);
580 __free_page(page);
581 } else {
582 int loop;
583
584 prefetchw(page);
585 for (loop = 0; loop < BITS_PER_LONG; loop++) {
586 struct page *p = &page[loop];
587
588 if (loop + 1 < BITS_PER_LONG)
589 prefetchw(p + 1);
590 __ClearPageReserved(p);
591 set_page_count(p, 0);
592 }
593
594 set_page_refcounted(page);
595 __free_pages(page, order);
596 }
597 }
598
599
600 /*
601 * The order of subdivision here is critical for the IO subsystem.
602 * Please do not alter this order without good reasons and regression
603 * testing. Specifically, as large blocks of memory are subdivided,
604 * the order in which smaller blocks are delivered depends on the order
605 * they're subdivided in this function. This is the primary factor
606 * influencing the order in which pages are delivered to the IO
607 * subsystem according to empirical testing, and this is also justified
608 * by considering the behavior of a buddy system containing a single
609 * large block of memory acted on by a series of small allocations.
610 * This behavior is a critical factor in sglist merging's success.
611 *
612 * -- wli
613 */
614 static inline void expand(struct zone *zone, struct page *page,
615 int low, int high, struct free_area *area,
616 int migratetype)
617 {
618 unsigned long size = 1 << high;
619
620 while (high > low) {
621 area--;
622 high--;
623 size >>= 1;
624 VM_BUG_ON(bad_range(zone, &page[size]));
625 list_add(&page[size].lru, &area->free_list[migratetype]);
626 area->nr_free++;
627 set_page_order(&page[size], high);
628 }
629 }
630
631 /*
632 * This page is about to be returned from the page allocator
633 */
634 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
635 {
636 if (unlikely(page_mapcount(page) |
637 (page->mapping != NULL) |
638 (page_count(page) != 0) |
639 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
640 bad_page(page);
641 return 1;
642 }
643
644 set_page_private(page, 0);
645 set_page_refcounted(page);
646
647 arch_alloc_page(page, order);
648 kernel_map_pages(page, 1 << order, 1);
649
650 if (gfp_flags & __GFP_ZERO)
651 prep_zero_page(page, order, gfp_flags);
652
653 if (order && (gfp_flags & __GFP_COMP))
654 prep_compound_page(page, order);
655
656 return 0;
657 }
658
659 /*
660 * Go through the free lists for the given migratetype and remove
661 * the smallest available page from the freelists
662 */
663 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
664 int migratetype)
665 {
666 unsigned int current_order;
667 struct free_area * area;
668 struct page *page;
669
670 /* Find a page of the appropriate size in the preferred list */
671 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
672 area = &(zone->free_area[current_order]);
673 if (list_empty(&area->free_list[migratetype]))
674 continue;
675
676 page = list_entry(area->free_list[migratetype].next,
677 struct page, lru);
678 list_del(&page->lru);
679 rmv_page_order(page);
680 area->nr_free--;
681 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
682 expand(zone, page, order, current_order, area, migratetype);
683 return page;
684 }
685
686 return NULL;
687 }
688
689
690 /*
691 * This array describes the order lists are fallen back to when
692 * the free lists for the desirable migrate type are depleted
693 */
694 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
695 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
696 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
697 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
698 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
699 };
700
701 /*
702 * Move the free pages in a range to the free lists of the requested type.
703 * Note that start_page and end_pages are not aligned on a pageblock
704 * boundary. If alignment is required, use move_freepages_block()
705 */
706 static int move_freepages(struct zone *zone,
707 struct page *start_page, struct page *end_page,
708 int migratetype)
709 {
710 struct page *page;
711 unsigned long order;
712 int pages_moved = 0;
713
714 #ifndef CONFIG_HOLES_IN_ZONE
715 /*
716 * page_zone is not safe to call in this context when
717 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
718 * anyway as we check zone boundaries in move_freepages_block().
719 * Remove at a later date when no bug reports exist related to
720 * grouping pages by mobility
721 */
722 BUG_ON(page_zone(start_page) != page_zone(end_page));
723 #endif
724
725 for (page = start_page; page <= end_page;) {
726 /* Make sure we are not inadvertently changing nodes */
727 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
728
729 if (!pfn_valid_within(page_to_pfn(page))) {
730 page++;
731 continue;
732 }
733
734 if (!PageBuddy(page)) {
735 page++;
736 continue;
737 }
738
739 order = page_order(page);
740 list_del(&page->lru);
741 list_add(&page->lru,
742 &zone->free_area[order].free_list[migratetype]);
743 page += 1 << order;
744 pages_moved += 1 << order;
745 }
746
747 return pages_moved;
748 }
749
750 static int move_freepages_block(struct zone *zone, struct page *page,
751 int migratetype)
752 {
753 unsigned long start_pfn, end_pfn;
754 struct page *start_page, *end_page;
755
756 start_pfn = page_to_pfn(page);
757 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
758 start_page = pfn_to_page(start_pfn);
759 end_page = start_page + pageblock_nr_pages - 1;
760 end_pfn = start_pfn + pageblock_nr_pages - 1;
761
762 /* Do not cross zone boundaries */
763 if (start_pfn < zone->zone_start_pfn)
764 start_page = page;
765 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
766 return 0;
767
768 return move_freepages(zone, start_page, end_page, migratetype);
769 }
770
771 /* Remove an element from the buddy allocator from the fallback list */
772 static struct page *__rmqueue_fallback(struct zone *zone, int order,
773 int start_migratetype)
774 {
775 struct free_area * area;
776 int current_order;
777 struct page *page;
778 int migratetype, i;
779
780 /* Find the largest possible block of pages in the other list */
781 for (current_order = MAX_ORDER-1; current_order >= order;
782 --current_order) {
783 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
784 migratetype = fallbacks[start_migratetype][i];
785
786 /* MIGRATE_RESERVE handled later if necessary */
787 if (migratetype == MIGRATE_RESERVE)
788 continue;
789
790 area = &(zone->free_area[current_order]);
791 if (list_empty(&area->free_list[migratetype]))
792 continue;
793
794 page = list_entry(area->free_list[migratetype].next,
795 struct page, lru);
796 area->nr_free--;
797
798 /*
799 * If breaking a large block of pages, move all free
800 * pages to the preferred allocation list. If falling
801 * back for a reclaimable kernel allocation, be more
802 * agressive about taking ownership of free pages
803 */
804 if (unlikely(current_order >= (pageblock_order >> 1)) ||
805 start_migratetype == MIGRATE_RECLAIMABLE) {
806 unsigned long pages;
807 pages = move_freepages_block(zone, page,
808 start_migratetype);
809
810 /* Claim the whole block if over half of it is free */
811 if (pages >= (1 << (pageblock_order-1)))
812 set_pageblock_migratetype(page,
813 start_migratetype);
814
815 migratetype = start_migratetype;
816 }
817
818 /* Remove the page from the freelists */
819 list_del(&page->lru);
820 rmv_page_order(page);
821 __mod_zone_page_state(zone, NR_FREE_PAGES,
822 -(1UL << order));
823
824 if (current_order == pageblock_order)
825 set_pageblock_migratetype(page,
826 start_migratetype);
827
828 expand(zone, page, order, current_order, area, migratetype);
829 return page;
830 }
831 }
832
833 /* Use MIGRATE_RESERVE rather than fail an allocation */
834 return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
835 }
836
837 /*
838 * Do the hard work of removing an element from the buddy allocator.
839 * Call me with the zone->lock already held.
840 */
841 static struct page *__rmqueue(struct zone *zone, unsigned int order,
842 int migratetype)
843 {
844 struct page *page;
845
846 page = __rmqueue_smallest(zone, order, migratetype);
847
848 if (unlikely(!page))
849 page = __rmqueue_fallback(zone, order, migratetype);
850
851 return page;
852 }
853
854 /*
855 * Obtain a specified number of elements from the buddy allocator, all under
856 * a single hold of the lock, for efficiency. Add them to the supplied list.
857 * Returns the number of new pages which were placed at *list.
858 */
859 static int rmqueue_bulk(struct zone *zone, unsigned int order,
860 unsigned long count, struct list_head *list,
861 int migratetype)
862 {
863 int i;
864
865 spin_lock(&zone->lock);
866 for (i = 0; i < count; ++i) {
867 struct page *page = __rmqueue(zone, order, migratetype);
868 if (unlikely(page == NULL))
869 break;
870
871 /*
872 * Split buddy pages returned by expand() are received here
873 * in physical page order. The page is added to the callers and
874 * list and the list head then moves forward. From the callers
875 * perspective, the linked list is ordered by page number in
876 * some conditions. This is useful for IO devices that can
877 * merge IO requests if the physical pages are ordered
878 * properly.
879 */
880 list_add(&page->lru, list);
881 set_page_private(page, migratetype);
882 list = &page->lru;
883 }
884 spin_unlock(&zone->lock);
885 return i;
886 }
887
888 #ifdef CONFIG_NUMA
889 /*
890 * Called from the vmstat counter updater to drain pagesets of this
891 * currently executing processor on remote nodes after they have
892 * expired.
893 *
894 * Note that this function must be called with the thread pinned to
895 * a single processor.
896 */
897 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
898 {
899 unsigned long flags;
900 int to_drain;
901
902 local_irq_save(flags);
903 if (pcp->count >= pcp->batch)
904 to_drain = pcp->batch;
905 else
906 to_drain = pcp->count;
907 free_pages_bulk(zone, to_drain, &pcp->list, 0);
908 pcp->count -= to_drain;
909 local_irq_restore(flags);
910 }
911 #endif
912
913 /*
914 * Drain pages of the indicated processor.
915 *
916 * The processor must either be the current processor and the
917 * thread pinned to the current processor or a processor that
918 * is not online.
919 */
920 static void drain_pages(unsigned int cpu)
921 {
922 unsigned long flags;
923 struct zone *zone;
924
925 for_each_populated_zone(zone) {
926 struct per_cpu_pageset *pset;
927 struct per_cpu_pages *pcp;
928
929 pset = zone_pcp(zone, cpu);
930
931 pcp = &pset->pcp;
932 local_irq_save(flags);
933 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
934 pcp->count = 0;
935 local_irq_restore(flags);
936 }
937 }
938
939 /*
940 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
941 */
942 void drain_local_pages(void *arg)
943 {
944 drain_pages(smp_processor_id());
945 }
946
947 /*
948 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
949 */
950 void drain_all_pages(void)
951 {
952 on_each_cpu(drain_local_pages, NULL, 1);
953 }
954
955 #ifdef CONFIG_HIBERNATION
956
957 void mark_free_pages(struct zone *zone)
958 {
959 unsigned long pfn, max_zone_pfn;
960 unsigned long flags;
961 int order, t;
962 struct list_head *curr;
963
964 if (!zone->spanned_pages)
965 return;
966
967 spin_lock_irqsave(&zone->lock, flags);
968
969 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
970 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
971 if (pfn_valid(pfn)) {
972 struct page *page = pfn_to_page(pfn);
973
974 if (!swsusp_page_is_forbidden(page))
975 swsusp_unset_page_free(page);
976 }
977
978 for_each_migratetype_order(order, t) {
979 list_for_each(curr, &zone->free_area[order].free_list[t]) {
980 unsigned long i;
981
982 pfn = page_to_pfn(list_entry(curr, struct page, lru));
983 for (i = 0; i < (1UL << order); i++)
984 swsusp_set_page_free(pfn_to_page(pfn + i));
985 }
986 }
987 spin_unlock_irqrestore(&zone->lock, flags);
988 }
989 #endif /* CONFIG_PM */
990
991 /*
992 * Free a 0-order page
993 */
994 static void free_hot_cold_page(struct page *page, int cold)
995 {
996 struct zone *zone = page_zone(page);
997 struct per_cpu_pages *pcp;
998 unsigned long flags;
999
1000 if (PageAnon(page))
1001 page->mapping = NULL;
1002 if (free_pages_check(page))
1003 return;
1004
1005 if (!PageHighMem(page)) {
1006 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1007 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1008 }
1009 arch_free_page(page, 0);
1010 kernel_map_pages(page, 1, 0);
1011
1012 pcp = &zone_pcp(zone, get_cpu())->pcp;
1013 local_irq_save(flags);
1014 __count_vm_event(PGFREE);
1015 if (cold)
1016 list_add_tail(&page->lru, &pcp->list);
1017 else
1018 list_add(&page->lru, &pcp->list);
1019 set_page_private(page, get_pageblock_migratetype(page));
1020 pcp->count++;
1021 if (pcp->count >= pcp->high) {
1022 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1023 pcp->count -= pcp->batch;
1024 }
1025 local_irq_restore(flags);
1026 put_cpu();
1027 }
1028
1029 void free_hot_page(struct page *page)
1030 {
1031 free_hot_cold_page(page, 0);
1032 }
1033
1034 void free_cold_page(struct page *page)
1035 {
1036 free_hot_cold_page(page, 1);
1037 }
1038
1039 /*
1040 * split_page takes a non-compound higher-order page, and splits it into
1041 * n (1<<order) sub-pages: page[0..n]
1042 * Each sub-page must be freed individually.
1043 *
1044 * Note: this is probably too low level an operation for use in drivers.
1045 * Please consult with lkml before using this in your driver.
1046 */
1047 void split_page(struct page *page, unsigned int order)
1048 {
1049 int i;
1050
1051 VM_BUG_ON(PageCompound(page));
1052 VM_BUG_ON(!page_count(page));
1053 for (i = 1; i < (1 << order); i++)
1054 set_page_refcounted(page + i);
1055 }
1056
1057 /*
1058 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1059 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1060 * or two.
1061 */
1062 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1063 struct zone *zone, int order, gfp_t gfp_flags)
1064 {
1065 unsigned long flags;
1066 struct page *page;
1067 int cold = !!(gfp_flags & __GFP_COLD);
1068 int cpu;
1069 int migratetype = allocflags_to_migratetype(gfp_flags);
1070
1071 again:
1072 cpu = get_cpu();
1073 if (likely(order == 0)) {
1074 struct per_cpu_pages *pcp;
1075
1076 pcp = &zone_pcp(zone, cpu)->pcp;
1077 local_irq_save(flags);
1078 if (!pcp->count) {
1079 pcp->count = rmqueue_bulk(zone, 0,
1080 pcp->batch, &pcp->list, migratetype);
1081 if (unlikely(!pcp->count))
1082 goto failed;
1083 }
1084
1085 /* Find a page of the appropriate migrate type */
1086 if (cold) {
1087 list_for_each_entry_reverse(page, &pcp->list, lru)
1088 if (page_private(page) == migratetype)
1089 break;
1090 } else {
1091 list_for_each_entry(page, &pcp->list, lru)
1092 if (page_private(page) == migratetype)
1093 break;
1094 }
1095
1096 /* Allocate more to the pcp list if necessary */
1097 if (unlikely(&page->lru == &pcp->list)) {
1098 pcp->count += rmqueue_bulk(zone, 0,
1099 pcp->batch, &pcp->list, migratetype);
1100 page = list_entry(pcp->list.next, struct page, lru);
1101 }
1102
1103 list_del(&page->lru);
1104 pcp->count--;
1105 } else {
1106 spin_lock_irqsave(&zone->lock, flags);
1107 page = __rmqueue(zone, order, migratetype);
1108 spin_unlock(&zone->lock);
1109 if (!page)
1110 goto failed;
1111 }
1112
1113 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1114 zone_statistics(preferred_zone, zone);
1115 local_irq_restore(flags);
1116 put_cpu();
1117
1118 VM_BUG_ON(bad_range(zone, page));
1119 if (prep_new_page(page, order, gfp_flags))
1120 goto again;
1121 return page;
1122
1123 failed:
1124 local_irq_restore(flags);
1125 put_cpu();
1126 return NULL;
1127 }
1128
1129 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
1130 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
1131 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
1132 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
1133 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1134 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1135 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1136
1137 #ifdef CONFIG_FAIL_PAGE_ALLOC
1138
1139 static struct fail_page_alloc_attr {
1140 struct fault_attr attr;
1141
1142 u32 ignore_gfp_highmem;
1143 u32 ignore_gfp_wait;
1144 u32 min_order;
1145
1146 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1147
1148 struct dentry *ignore_gfp_highmem_file;
1149 struct dentry *ignore_gfp_wait_file;
1150 struct dentry *min_order_file;
1151
1152 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1153
1154 } fail_page_alloc = {
1155 .attr = FAULT_ATTR_INITIALIZER,
1156 .ignore_gfp_wait = 1,
1157 .ignore_gfp_highmem = 1,
1158 .min_order = 1,
1159 };
1160
1161 static int __init setup_fail_page_alloc(char *str)
1162 {
1163 return setup_fault_attr(&fail_page_alloc.attr, str);
1164 }
1165 __setup("fail_page_alloc=", setup_fail_page_alloc);
1166
1167 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1168 {
1169 if (order < fail_page_alloc.min_order)
1170 return 0;
1171 if (gfp_mask & __GFP_NOFAIL)
1172 return 0;
1173 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1174 return 0;
1175 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1176 return 0;
1177
1178 return should_fail(&fail_page_alloc.attr, 1 << order);
1179 }
1180
1181 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1182
1183 static int __init fail_page_alloc_debugfs(void)
1184 {
1185 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1186 struct dentry *dir;
1187 int err;
1188
1189 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1190 "fail_page_alloc");
1191 if (err)
1192 return err;
1193 dir = fail_page_alloc.attr.dentries.dir;
1194
1195 fail_page_alloc.ignore_gfp_wait_file =
1196 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1197 &fail_page_alloc.ignore_gfp_wait);
1198
1199 fail_page_alloc.ignore_gfp_highmem_file =
1200 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1201 &fail_page_alloc.ignore_gfp_highmem);
1202 fail_page_alloc.min_order_file =
1203 debugfs_create_u32("min-order", mode, dir,
1204 &fail_page_alloc.min_order);
1205
1206 if (!fail_page_alloc.ignore_gfp_wait_file ||
1207 !fail_page_alloc.ignore_gfp_highmem_file ||
1208 !fail_page_alloc.min_order_file) {
1209 err = -ENOMEM;
1210 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1211 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1212 debugfs_remove(fail_page_alloc.min_order_file);
1213 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1214 }
1215
1216 return err;
1217 }
1218
1219 late_initcall(fail_page_alloc_debugfs);
1220
1221 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1222
1223 #else /* CONFIG_FAIL_PAGE_ALLOC */
1224
1225 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1226 {
1227 return 0;
1228 }
1229
1230 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1231
1232 /*
1233 * Return 1 if free pages are above 'mark'. This takes into account the order
1234 * of the allocation.
1235 */
1236 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1237 int classzone_idx, int alloc_flags)
1238 {
1239 /* free_pages my go negative - that's OK */
1240 long min = mark;
1241 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1242 int o;
1243
1244 if (alloc_flags & ALLOC_HIGH)
1245 min -= min / 2;
1246 if (alloc_flags & ALLOC_HARDER)
1247 min -= min / 4;
1248
1249 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1250 return 0;
1251 for (o = 0; o < order; o++) {
1252 /* At the next order, this order's pages become unavailable */
1253 free_pages -= z->free_area[o].nr_free << o;
1254
1255 /* Require fewer higher order pages to be free */
1256 min >>= 1;
1257
1258 if (free_pages <= min)
1259 return 0;
1260 }
1261 return 1;
1262 }
1263
1264 #ifdef CONFIG_NUMA
1265 /*
1266 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1267 * skip over zones that are not allowed by the cpuset, or that have
1268 * been recently (in last second) found to be nearly full. See further
1269 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1270 * that have to skip over a lot of full or unallowed zones.
1271 *
1272 * If the zonelist cache is present in the passed in zonelist, then
1273 * returns a pointer to the allowed node mask (either the current
1274 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1275 *
1276 * If the zonelist cache is not available for this zonelist, does
1277 * nothing and returns NULL.
1278 *
1279 * If the fullzones BITMAP in the zonelist cache is stale (more than
1280 * a second since last zap'd) then we zap it out (clear its bits.)
1281 *
1282 * We hold off even calling zlc_setup, until after we've checked the
1283 * first zone in the zonelist, on the theory that most allocations will
1284 * be satisfied from that first zone, so best to examine that zone as
1285 * quickly as we can.
1286 */
1287 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1288 {
1289 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1290 nodemask_t *allowednodes; /* zonelist_cache approximation */
1291
1292 zlc = zonelist->zlcache_ptr;
1293 if (!zlc)
1294 return NULL;
1295
1296 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1297 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1298 zlc->last_full_zap = jiffies;
1299 }
1300
1301 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1302 &cpuset_current_mems_allowed :
1303 &node_states[N_HIGH_MEMORY];
1304 return allowednodes;
1305 }
1306
1307 /*
1308 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1309 * if it is worth looking at further for free memory:
1310 * 1) Check that the zone isn't thought to be full (doesn't have its
1311 * bit set in the zonelist_cache fullzones BITMAP).
1312 * 2) Check that the zones node (obtained from the zonelist_cache
1313 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1314 * Return true (non-zero) if zone is worth looking at further, or
1315 * else return false (zero) if it is not.
1316 *
1317 * This check -ignores- the distinction between various watermarks,
1318 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1319 * found to be full for any variation of these watermarks, it will
1320 * be considered full for up to one second by all requests, unless
1321 * we are so low on memory on all allowed nodes that we are forced
1322 * into the second scan of the zonelist.
1323 *
1324 * In the second scan we ignore this zonelist cache and exactly
1325 * apply the watermarks to all zones, even it is slower to do so.
1326 * We are low on memory in the second scan, and should leave no stone
1327 * unturned looking for a free page.
1328 */
1329 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1330 nodemask_t *allowednodes)
1331 {
1332 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1333 int i; /* index of *z in zonelist zones */
1334 int n; /* node that zone *z is on */
1335
1336 zlc = zonelist->zlcache_ptr;
1337 if (!zlc)
1338 return 1;
1339
1340 i = z - zonelist->_zonerefs;
1341 n = zlc->z_to_n[i];
1342
1343 /* This zone is worth trying if it is allowed but not full */
1344 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1345 }
1346
1347 /*
1348 * Given 'z' scanning a zonelist, set the corresponding bit in
1349 * zlc->fullzones, so that subsequent attempts to allocate a page
1350 * from that zone don't waste time re-examining it.
1351 */
1352 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1353 {
1354 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1355 int i; /* index of *z in zonelist zones */
1356
1357 zlc = zonelist->zlcache_ptr;
1358 if (!zlc)
1359 return;
1360
1361 i = z - zonelist->_zonerefs;
1362
1363 set_bit(i, zlc->fullzones);
1364 }
1365
1366 #else /* CONFIG_NUMA */
1367
1368 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1369 {
1370 return NULL;
1371 }
1372
1373 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1374 nodemask_t *allowednodes)
1375 {
1376 return 1;
1377 }
1378
1379 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1380 {
1381 }
1382 #endif /* CONFIG_NUMA */
1383
1384 /*
1385 * get_page_from_freelist goes through the zonelist trying to allocate
1386 * a page.
1387 */
1388 static struct page *
1389 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1390 struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1391 {
1392 struct zoneref *z;
1393 struct page *page = NULL;
1394 int classzone_idx;
1395 struct zone *zone, *preferred_zone;
1396 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1397 int zlc_active = 0; /* set if using zonelist_cache */
1398 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1399
1400 (void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1401 &preferred_zone);
1402 if (!preferred_zone)
1403 return NULL;
1404
1405 classzone_idx = zone_idx(preferred_zone);
1406
1407 zonelist_scan:
1408 /*
1409 * Scan zonelist, looking for a zone with enough free.
1410 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1411 */
1412 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1413 high_zoneidx, nodemask) {
1414 if (NUMA_BUILD && zlc_active &&
1415 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1416 continue;
1417 if ((alloc_flags & ALLOC_CPUSET) &&
1418 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1419 goto try_next_zone;
1420
1421 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1422 unsigned long mark;
1423 if (alloc_flags & ALLOC_WMARK_MIN)
1424 mark = zone->pages_min;
1425 else if (alloc_flags & ALLOC_WMARK_LOW)
1426 mark = zone->pages_low;
1427 else
1428 mark = zone->pages_high;
1429 if (!zone_watermark_ok(zone, order, mark,
1430 classzone_idx, alloc_flags)) {
1431 if (!zone_reclaim_mode ||
1432 !zone_reclaim(zone, gfp_mask, order))
1433 goto this_zone_full;
1434 }
1435 }
1436
1437 page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1438 if (page)
1439 break;
1440 this_zone_full:
1441 if (NUMA_BUILD)
1442 zlc_mark_zone_full(zonelist, z);
1443 try_next_zone:
1444 if (NUMA_BUILD && !did_zlc_setup) {
1445 /* we do zlc_setup after the first zone is tried */
1446 allowednodes = zlc_setup(zonelist, alloc_flags);
1447 zlc_active = 1;
1448 did_zlc_setup = 1;
1449 }
1450 }
1451
1452 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1453 /* Disable zlc cache for second zonelist scan */
1454 zlc_active = 0;
1455 goto zonelist_scan;
1456 }
1457 return page;
1458 }
1459
1460 /*
1461 * This is the 'heart' of the zoned buddy allocator.
1462 */
1463 struct page *
1464 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1465 struct zonelist *zonelist, nodemask_t *nodemask)
1466 {
1467 const gfp_t wait = gfp_mask & __GFP_WAIT;
1468 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1469 struct zoneref *z;
1470 struct zone *zone;
1471 struct page *page;
1472 struct reclaim_state reclaim_state;
1473 struct task_struct *p = current;
1474 int do_retry;
1475 int alloc_flags;
1476 unsigned long did_some_progress;
1477 unsigned long pages_reclaimed = 0;
1478
1479 lockdep_trace_alloc(gfp_mask);
1480
1481 might_sleep_if(wait);
1482
1483 if (should_fail_alloc_page(gfp_mask, order))
1484 return NULL;
1485
1486 restart:
1487 z = zonelist->_zonerefs; /* the list of zones suitable for gfp_mask */
1488
1489 if (unlikely(!z->zone)) {
1490 /*
1491 * Happens if we have an empty zonelist as a result of
1492 * GFP_THISNODE being used on a memoryless node
1493 */
1494 return NULL;
1495 }
1496
1497 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1498 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1499 if (page)
1500 goto got_pg;
1501
1502 /*
1503 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1504 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1505 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1506 * using a larger set of nodes after it has established that the
1507 * allowed per node queues are empty and that nodes are
1508 * over allocated.
1509 */
1510 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1511 goto nopage;
1512
1513 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1514 wakeup_kswapd(zone, order);
1515
1516 /*
1517 * OK, we're below the kswapd watermark and have kicked background
1518 * reclaim. Now things get more complex, so set up alloc_flags according
1519 * to how we want to proceed.
1520 *
1521 * The caller may dip into page reserves a bit more if the caller
1522 * cannot run direct reclaim, or if the caller has realtime scheduling
1523 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1524 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1525 */
1526 alloc_flags = ALLOC_WMARK_MIN;
1527 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1528 alloc_flags |= ALLOC_HARDER;
1529 if (gfp_mask & __GFP_HIGH)
1530 alloc_flags |= ALLOC_HIGH;
1531 if (wait)
1532 alloc_flags |= ALLOC_CPUSET;
1533
1534 /*
1535 * Go through the zonelist again. Let __GFP_HIGH and allocations
1536 * coming from realtime tasks go deeper into reserves.
1537 *
1538 * This is the last chance, in general, before the goto nopage.
1539 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1540 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1541 */
1542 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1543 high_zoneidx, alloc_flags);
1544 if (page)
1545 goto got_pg;
1546
1547 /* This allocation should allow future memory freeing. */
1548
1549 rebalance:
1550 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1551 && !in_interrupt()) {
1552 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1553 nofail_alloc:
1554 /* go through the zonelist yet again, ignoring mins */
1555 page = get_page_from_freelist(gfp_mask, nodemask, order,
1556 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1557 if (page)
1558 goto got_pg;
1559 if (gfp_mask & __GFP_NOFAIL) {
1560 congestion_wait(WRITE, HZ/50);
1561 goto nofail_alloc;
1562 }
1563 }
1564 goto nopage;
1565 }
1566
1567 /* Atomic allocations - we can't balance anything */
1568 if (!wait)
1569 goto nopage;
1570
1571 cond_resched();
1572
1573 /* We now go into synchronous reclaim */
1574 cpuset_memory_pressure_bump();
1575 /*
1576 * The task's cpuset might have expanded its set of allowable nodes
1577 */
1578 cpuset_update_task_memory_state();
1579 p->flags |= PF_MEMALLOC;
1580
1581 lockdep_set_current_reclaim_state(gfp_mask);
1582 reclaim_state.reclaimed_slab = 0;
1583 p->reclaim_state = &reclaim_state;
1584
1585 did_some_progress = try_to_free_pages(zonelist, order,
1586 gfp_mask, nodemask);
1587
1588 p->reclaim_state = NULL;
1589 lockdep_clear_current_reclaim_state();
1590 p->flags &= ~PF_MEMALLOC;
1591
1592 cond_resched();
1593
1594 if (order != 0)
1595 drain_all_pages();
1596
1597 if (likely(did_some_progress)) {
1598 page = get_page_from_freelist(gfp_mask, nodemask, order,
1599 zonelist, high_zoneidx, alloc_flags);
1600 if (page)
1601 goto got_pg;
1602 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1603 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1604 schedule_timeout_uninterruptible(1);
1605 goto restart;
1606 }
1607
1608 /*
1609 * Go through the zonelist yet one more time, keep
1610 * very high watermark here, this is only to catch
1611 * a parallel oom killing, we must fail if we're still
1612 * under heavy pressure.
1613 */
1614 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1615 order, zonelist, high_zoneidx,
1616 ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1617 if (page) {
1618 clear_zonelist_oom(zonelist, gfp_mask);
1619 goto got_pg;
1620 }
1621
1622 /* The OOM killer will not help higher order allocs so fail */
1623 if (order > PAGE_ALLOC_COSTLY_ORDER) {
1624 clear_zonelist_oom(zonelist, gfp_mask);
1625 goto nopage;
1626 }
1627
1628 out_of_memory(zonelist, gfp_mask, order);
1629 clear_zonelist_oom(zonelist, gfp_mask);
1630 goto restart;
1631 }
1632
1633 /*
1634 * Don't let big-order allocations loop unless the caller explicitly
1635 * requests that. Wait for some write requests to complete then retry.
1636 *
1637 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1638 * means __GFP_NOFAIL, but that may not be true in other
1639 * implementations.
1640 *
1641 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1642 * specified, then we retry until we no longer reclaim any pages
1643 * (above), or we've reclaimed an order of pages at least as
1644 * large as the allocation's order. In both cases, if the
1645 * allocation still fails, we stop retrying.
1646 */
1647 pages_reclaimed += did_some_progress;
1648 do_retry = 0;
1649 if (!(gfp_mask & __GFP_NORETRY)) {
1650 if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1651 do_retry = 1;
1652 } else {
1653 if (gfp_mask & __GFP_REPEAT &&
1654 pages_reclaimed < (1 << order))
1655 do_retry = 1;
1656 }
1657 if (gfp_mask & __GFP_NOFAIL)
1658 do_retry = 1;
1659 }
1660 if (do_retry) {
1661 congestion_wait(WRITE, HZ/50);
1662 goto rebalance;
1663 }
1664
1665 nopage:
1666 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1667 printk(KERN_WARNING "%s: page allocation failure."
1668 " order:%d, mode:0x%x\n",
1669 p->comm, order, gfp_mask);
1670 dump_stack();
1671 show_mem();
1672 }
1673 got_pg:
1674 return page;
1675 }
1676 EXPORT_SYMBOL(__alloc_pages_internal);
1677
1678 /*
1679 * Common helper functions.
1680 */
1681 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1682 {
1683 struct page * page;
1684 page = alloc_pages(gfp_mask, order);
1685 if (!page)
1686 return 0;
1687 return (unsigned long) page_address(page);
1688 }
1689
1690 EXPORT_SYMBOL(__get_free_pages);
1691
1692 unsigned long get_zeroed_page(gfp_t gfp_mask)
1693 {
1694 struct page * page;
1695
1696 /*
1697 * get_zeroed_page() returns a 32-bit address, which cannot represent
1698 * a highmem page
1699 */
1700 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1701
1702 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1703 if (page)
1704 return (unsigned long) page_address(page);
1705 return 0;
1706 }
1707
1708 EXPORT_SYMBOL(get_zeroed_page);
1709
1710 void __pagevec_free(struct pagevec *pvec)
1711 {
1712 int i = pagevec_count(pvec);
1713
1714 while (--i >= 0)
1715 free_hot_cold_page(pvec->pages[i], pvec->cold);
1716 }
1717
1718 void __free_pages(struct page *page, unsigned int order)
1719 {
1720 if (put_page_testzero(page)) {
1721 if (order == 0)
1722 free_hot_page(page);
1723 else
1724 __free_pages_ok(page, order);
1725 }
1726 }
1727
1728 EXPORT_SYMBOL(__free_pages);
1729
1730 void free_pages(unsigned long addr, unsigned int order)
1731 {
1732 if (addr != 0) {
1733 VM_BUG_ON(!virt_addr_valid((void *)addr));
1734 __free_pages(virt_to_page((void *)addr), order);
1735 }
1736 }
1737
1738 EXPORT_SYMBOL(free_pages);
1739
1740 /**
1741 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1742 * @size: the number of bytes to allocate
1743 * @gfp_mask: GFP flags for the allocation
1744 *
1745 * This function is similar to alloc_pages(), except that it allocates the
1746 * minimum number of pages to satisfy the request. alloc_pages() can only
1747 * allocate memory in power-of-two pages.
1748 *
1749 * This function is also limited by MAX_ORDER.
1750 *
1751 * Memory allocated by this function must be released by free_pages_exact().
1752 */
1753 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1754 {
1755 unsigned int order = get_order(size);
1756 unsigned long addr;
1757
1758 addr = __get_free_pages(gfp_mask, order);
1759 if (addr) {
1760 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1761 unsigned long used = addr + PAGE_ALIGN(size);
1762
1763 split_page(virt_to_page(addr), order);
1764 while (used < alloc_end) {
1765 free_page(used);
1766 used += PAGE_SIZE;
1767 }
1768 }
1769
1770 return (void *)addr;
1771 }
1772 EXPORT_SYMBOL(alloc_pages_exact);
1773
1774 /**
1775 * free_pages_exact - release memory allocated via alloc_pages_exact()
1776 * @virt: the value returned by alloc_pages_exact.
1777 * @size: size of allocation, same value as passed to alloc_pages_exact().
1778 *
1779 * Release the memory allocated by a previous call to alloc_pages_exact.
1780 */
1781 void free_pages_exact(void *virt, size_t size)
1782 {
1783 unsigned long addr = (unsigned long)virt;
1784 unsigned long end = addr + PAGE_ALIGN(size);
1785
1786 while (addr < end) {
1787 free_page(addr);
1788 addr += PAGE_SIZE;
1789 }
1790 }
1791 EXPORT_SYMBOL(free_pages_exact);
1792
1793 static unsigned int nr_free_zone_pages(int offset)
1794 {
1795 struct zoneref *z;
1796 struct zone *zone;
1797
1798 /* Just pick one node, since fallback list is circular */
1799 unsigned int sum = 0;
1800
1801 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1802
1803 for_each_zone_zonelist(zone, z, zonelist, offset) {
1804 unsigned long size = zone->present_pages;
1805 unsigned long high = zone->pages_high;
1806 if (size > high)
1807 sum += size - high;
1808 }
1809
1810 return sum;
1811 }
1812
1813 /*
1814 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1815 */
1816 unsigned int nr_free_buffer_pages(void)
1817 {
1818 return nr_free_zone_pages(gfp_zone(GFP_USER));
1819 }
1820 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1821
1822 /*
1823 * Amount of free RAM allocatable within all zones
1824 */
1825 unsigned int nr_free_pagecache_pages(void)
1826 {
1827 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1828 }
1829
1830 static inline void show_node(struct zone *zone)
1831 {
1832 if (NUMA_BUILD)
1833 printk("Node %d ", zone_to_nid(zone));
1834 }
1835
1836 void si_meminfo(struct sysinfo *val)
1837 {
1838 val->totalram = totalram_pages;
1839 val->sharedram = 0;
1840 val->freeram = global_page_state(NR_FREE_PAGES);
1841 val->bufferram = nr_blockdev_pages();
1842 val->totalhigh = totalhigh_pages;
1843 val->freehigh = nr_free_highpages();
1844 val->mem_unit = PAGE_SIZE;
1845 }
1846
1847 EXPORT_SYMBOL(si_meminfo);
1848
1849 #ifdef CONFIG_NUMA
1850 void si_meminfo_node(struct sysinfo *val, int nid)
1851 {
1852 pg_data_t *pgdat = NODE_DATA(nid);
1853
1854 val->totalram = pgdat->node_present_pages;
1855 val->freeram = node_page_state(nid, NR_FREE_PAGES);
1856 #ifdef CONFIG_HIGHMEM
1857 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1858 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1859 NR_FREE_PAGES);
1860 #else
1861 val->totalhigh = 0;
1862 val->freehigh = 0;
1863 #endif
1864 val->mem_unit = PAGE_SIZE;
1865 }
1866 #endif
1867
1868 #define K(x) ((x) << (PAGE_SHIFT-10))
1869
1870 /*
1871 * Show free area list (used inside shift_scroll-lock stuff)
1872 * We also calculate the percentage fragmentation. We do this by counting the
1873 * memory on each free list with the exception of the first item on the list.
1874 */
1875 void show_free_areas(void)
1876 {
1877 int cpu;
1878 struct zone *zone;
1879
1880 for_each_populated_zone(zone) {
1881 show_node(zone);
1882 printk("%s per-cpu:\n", zone->name);
1883
1884 for_each_online_cpu(cpu) {
1885 struct per_cpu_pageset *pageset;
1886
1887 pageset = zone_pcp(zone, cpu);
1888
1889 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1890 cpu, pageset->pcp.high,
1891 pageset->pcp.batch, pageset->pcp.count);
1892 }
1893 }
1894
1895 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
1896 " inactive_file:%lu"
1897 //TODO: check/adjust line lengths
1898 #ifdef CONFIG_UNEVICTABLE_LRU
1899 " unevictable:%lu"
1900 #endif
1901 " dirty:%lu writeback:%lu unstable:%lu\n"
1902 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1903 global_page_state(NR_ACTIVE_ANON),
1904 global_page_state(NR_ACTIVE_FILE),
1905 global_page_state(NR_INACTIVE_ANON),
1906 global_page_state(NR_INACTIVE_FILE),
1907 #ifdef CONFIG_UNEVICTABLE_LRU
1908 global_page_state(NR_UNEVICTABLE),
1909 #endif
1910 global_page_state(NR_FILE_DIRTY),
1911 global_page_state(NR_WRITEBACK),
1912 global_page_state(NR_UNSTABLE_NFS),
1913 global_page_state(NR_FREE_PAGES),
1914 global_page_state(NR_SLAB_RECLAIMABLE) +
1915 global_page_state(NR_SLAB_UNRECLAIMABLE),
1916 global_page_state(NR_FILE_MAPPED),
1917 global_page_state(NR_PAGETABLE),
1918 global_page_state(NR_BOUNCE));
1919
1920 for_each_populated_zone(zone) {
1921 int i;
1922
1923 show_node(zone);
1924 printk("%s"
1925 " free:%lukB"
1926 " min:%lukB"
1927 " low:%lukB"
1928 " high:%lukB"
1929 " active_anon:%lukB"
1930 " inactive_anon:%lukB"
1931 " active_file:%lukB"
1932 " inactive_file:%lukB"
1933 #ifdef CONFIG_UNEVICTABLE_LRU
1934 " unevictable:%lukB"
1935 #endif
1936 " present:%lukB"
1937 " pages_scanned:%lu"
1938 " all_unreclaimable? %s"
1939 "\n",
1940 zone->name,
1941 K(zone_page_state(zone, NR_FREE_PAGES)),
1942 K(zone->pages_min),
1943 K(zone->pages_low),
1944 K(zone->pages_high),
1945 K(zone_page_state(zone, NR_ACTIVE_ANON)),
1946 K(zone_page_state(zone, NR_INACTIVE_ANON)),
1947 K(zone_page_state(zone, NR_ACTIVE_FILE)),
1948 K(zone_page_state(zone, NR_INACTIVE_FILE)),
1949 #ifdef CONFIG_UNEVICTABLE_LRU
1950 K(zone_page_state(zone, NR_UNEVICTABLE)),
1951 #endif
1952 K(zone->present_pages),
1953 zone->pages_scanned,
1954 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1955 );
1956 printk("lowmem_reserve[]:");
1957 for (i = 0; i < MAX_NR_ZONES; i++)
1958 printk(" %lu", zone->lowmem_reserve[i]);
1959 printk("\n");
1960 }
1961
1962 for_each_populated_zone(zone) {
1963 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1964
1965 show_node(zone);
1966 printk("%s: ", zone->name);
1967
1968 spin_lock_irqsave(&zone->lock, flags);
1969 for (order = 0; order < MAX_ORDER; order++) {
1970 nr[order] = zone->free_area[order].nr_free;
1971 total += nr[order] << order;
1972 }
1973 spin_unlock_irqrestore(&zone->lock, flags);
1974 for (order = 0; order < MAX_ORDER; order++)
1975 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1976 printk("= %lukB\n", K(total));
1977 }
1978
1979 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1980
1981 show_swap_cache_info();
1982 }
1983
1984 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1985 {
1986 zoneref->zone = zone;
1987 zoneref->zone_idx = zone_idx(zone);
1988 }
1989
1990 /*
1991 * Builds allocation fallback zone lists.
1992 *
1993 * Add all populated zones of a node to the zonelist.
1994 */
1995 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1996 int nr_zones, enum zone_type zone_type)
1997 {
1998 struct zone *zone;
1999
2000 BUG_ON(zone_type >= MAX_NR_ZONES);
2001 zone_type++;
2002
2003 do {
2004 zone_type--;
2005 zone = pgdat->node_zones + zone_type;
2006 if (populated_zone(zone)) {
2007 zoneref_set_zone(zone,
2008 &zonelist->_zonerefs[nr_zones++]);
2009 check_highest_zone(zone_type);
2010 }
2011
2012 } while (zone_type);
2013 return nr_zones;
2014 }
2015
2016
2017 /*
2018 * zonelist_order:
2019 * 0 = automatic detection of better ordering.
2020 * 1 = order by ([node] distance, -zonetype)
2021 * 2 = order by (-zonetype, [node] distance)
2022 *
2023 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2024 * the same zonelist. So only NUMA can configure this param.
2025 */
2026 #define ZONELIST_ORDER_DEFAULT 0
2027 #define ZONELIST_ORDER_NODE 1
2028 #define ZONELIST_ORDER_ZONE 2
2029
2030 /* zonelist order in the kernel.
2031 * set_zonelist_order() will set this to NODE or ZONE.
2032 */
2033 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2034 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2035
2036
2037 #ifdef CONFIG_NUMA
2038 /* The value user specified ....changed by config */
2039 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2040 /* string for sysctl */
2041 #define NUMA_ZONELIST_ORDER_LEN 16
2042 char numa_zonelist_order[16] = "default";
2043
2044 /*
2045 * interface for configure zonelist ordering.
2046 * command line option "numa_zonelist_order"
2047 * = "[dD]efault - default, automatic configuration.
2048 * = "[nN]ode - order by node locality, then by zone within node
2049 * = "[zZ]one - order by zone, then by locality within zone
2050 */
2051
2052 static int __parse_numa_zonelist_order(char *s)
2053 {
2054 if (*s == 'd' || *s == 'D') {
2055 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2056 } else if (*s == 'n' || *s == 'N') {
2057 user_zonelist_order = ZONELIST_ORDER_NODE;
2058 } else if (*s == 'z' || *s == 'Z') {
2059 user_zonelist_order = ZONELIST_ORDER_ZONE;
2060 } else {
2061 printk(KERN_WARNING
2062 "Ignoring invalid numa_zonelist_order value: "
2063 "%s\n", s);
2064 return -EINVAL;
2065 }
2066 return 0;
2067 }
2068
2069 static __init int setup_numa_zonelist_order(char *s)
2070 {
2071 if (s)
2072 return __parse_numa_zonelist_order(s);
2073 return 0;
2074 }
2075 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2076
2077 /*
2078 * sysctl handler for numa_zonelist_order
2079 */
2080 int numa_zonelist_order_handler(ctl_table *table, int write,
2081 struct file *file, void __user *buffer, size_t *length,
2082 loff_t *ppos)
2083 {
2084 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2085 int ret;
2086
2087 if (write)
2088 strncpy(saved_string, (char*)table->data,
2089 NUMA_ZONELIST_ORDER_LEN);
2090 ret = proc_dostring(table, write, file, buffer, length, ppos);
2091 if (ret)
2092 return ret;
2093 if (write) {
2094 int oldval = user_zonelist_order;
2095 if (__parse_numa_zonelist_order((char*)table->data)) {
2096 /*
2097 * bogus value. restore saved string
2098 */
2099 strncpy((char*)table->data, saved_string,
2100 NUMA_ZONELIST_ORDER_LEN);
2101 user_zonelist_order = oldval;
2102 } else if (oldval != user_zonelist_order)
2103 build_all_zonelists();
2104 }
2105 return 0;
2106 }
2107
2108
2109 #define MAX_NODE_LOAD (num_online_nodes())
2110 static int node_load[MAX_NUMNODES];
2111
2112 /**
2113 * find_next_best_node - find the next node that should appear in a given node's fallback list
2114 * @node: node whose fallback list we're appending
2115 * @used_node_mask: nodemask_t of already used nodes
2116 *
2117 * We use a number of factors to determine which is the next node that should
2118 * appear on a given node's fallback list. The node should not have appeared
2119 * already in @node's fallback list, and it should be the next closest node
2120 * according to the distance array (which contains arbitrary distance values
2121 * from each node to each node in the system), and should also prefer nodes
2122 * with no CPUs, since presumably they'll have very little allocation pressure
2123 * on them otherwise.
2124 * It returns -1 if no node is found.
2125 */
2126 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2127 {
2128 int n, val;
2129 int min_val = INT_MAX;
2130 int best_node = -1;
2131 const struct cpumask *tmp = cpumask_of_node(0);
2132
2133 /* Use the local node if we haven't already */
2134 if (!node_isset(node, *used_node_mask)) {
2135 node_set(node, *used_node_mask);
2136 return node;
2137 }
2138
2139 for_each_node_state(n, N_HIGH_MEMORY) {
2140
2141 /* Don't want a node to appear more than once */
2142 if (node_isset(n, *used_node_mask))
2143 continue;
2144
2145 /* Use the distance array to find the distance */
2146 val = node_distance(node, n);
2147
2148 /* Penalize nodes under us ("prefer the next node") */
2149 val += (n < node);
2150
2151 /* Give preference to headless and unused nodes */
2152 tmp = cpumask_of_node(n);
2153 if (!cpumask_empty(tmp))
2154 val += PENALTY_FOR_NODE_WITH_CPUS;
2155
2156 /* Slight preference for less loaded node */
2157 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2158 val += node_load[n];
2159
2160 if (val < min_val) {
2161 min_val = val;
2162 best_node = n;
2163 }
2164 }
2165
2166 if (best_node >= 0)
2167 node_set(best_node, *used_node_mask);
2168
2169 return best_node;
2170 }
2171
2172
2173 /*
2174 * Build zonelists ordered by node and zones within node.
2175 * This results in maximum locality--normal zone overflows into local
2176 * DMA zone, if any--but risks exhausting DMA zone.
2177 */
2178 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2179 {
2180 int j;
2181 struct zonelist *zonelist;
2182
2183 zonelist = &pgdat->node_zonelists[0];
2184 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2185 ;
2186 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2187 MAX_NR_ZONES - 1);
2188 zonelist->_zonerefs[j].zone = NULL;
2189 zonelist->_zonerefs[j].zone_idx = 0;
2190 }
2191
2192 /*
2193 * Build gfp_thisnode zonelists
2194 */
2195 static void build_thisnode_zonelists(pg_data_t *pgdat)
2196 {
2197 int j;
2198 struct zonelist *zonelist;
2199
2200 zonelist = &pgdat->node_zonelists[1];
2201 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2202 zonelist->_zonerefs[j].zone = NULL;
2203 zonelist->_zonerefs[j].zone_idx = 0;
2204 }
2205
2206 /*
2207 * Build zonelists ordered by zone and nodes within zones.
2208 * This results in conserving DMA zone[s] until all Normal memory is
2209 * exhausted, but results in overflowing to remote node while memory
2210 * may still exist in local DMA zone.
2211 */
2212 static int node_order[MAX_NUMNODES];
2213
2214 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2215 {
2216 int pos, j, node;
2217 int zone_type; /* needs to be signed */
2218 struct zone *z;
2219 struct zonelist *zonelist;
2220
2221 zonelist = &pgdat->node_zonelists[0];
2222 pos = 0;
2223 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2224 for (j = 0; j < nr_nodes; j++) {
2225 node = node_order[j];
2226 z = &NODE_DATA(node)->node_zones[zone_type];
2227 if (populated_zone(z)) {
2228 zoneref_set_zone(z,
2229 &zonelist->_zonerefs[pos++]);
2230 check_highest_zone(zone_type);
2231 }
2232 }
2233 }
2234 zonelist->_zonerefs[pos].zone = NULL;
2235 zonelist->_zonerefs[pos].zone_idx = 0;
2236 }
2237
2238 static int default_zonelist_order(void)
2239 {
2240 int nid, zone_type;
2241 unsigned long low_kmem_size,total_size;
2242 struct zone *z;
2243 int average_size;
2244 /*
2245 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2246 * If they are really small and used heavily, the system can fall
2247 * into OOM very easily.
2248 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2249 */
2250 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2251 low_kmem_size = 0;
2252 total_size = 0;
2253 for_each_online_node(nid) {
2254 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2255 z = &NODE_DATA(nid)->node_zones[zone_type];
2256 if (populated_zone(z)) {
2257 if (zone_type < ZONE_NORMAL)
2258 low_kmem_size += z->present_pages;
2259 total_size += z->present_pages;
2260 }
2261 }
2262 }
2263 if (!low_kmem_size || /* there are no DMA area. */
2264 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2265 return ZONELIST_ORDER_NODE;
2266 /*
2267 * look into each node's config.
2268 * If there is a node whose DMA/DMA32 memory is very big area on
2269 * local memory, NODE_ORDER may be suitable.
2270 */
2271 average_size = total_size /
2272 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2273 for_each_online_node(nid) {
2274 low_kmem_size = 0;
2275 total_size = 0;
2276 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2277 z = &NODE_DATA(nid)->node_zones[zone_type];
2278 if (populated_zone(z)) {
2279 if (zone_type < ZONE_NORMAL)
2280 low_kmem_size += z->present_pages;
2281 total_size += z->present_pages;
2282 }
2283 }
2284 if (low_kmem_size &&
2285 total_size > average_size && /* ignore small node */
2286 low_kmem_size > total_size * 70/100)
2287 return ZONELIST_ORDER_NODE;
2288 }
2289 return ZONELIST_ORDER_ZONE;
2290 }
2291
2292 static void set_zonelist_order(void)
2293 {
2294 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2295 current_zonelist_order = default_zonelist_order();
2296 else
2297 current_zonelist_order = user_zonelist_order;
2298 }
2299
2300 static void build_zonelists(pg_data_t *pgdat)
2301 {
2302 int j, node, load;
2303 enum zone_type i;
2304 nodemask_t used_mask;
2305 int local_node, prev_node;
2306 struct zonelist *zonelist;
2307 int order = current_zonelist_order;
2308
2309 /* initialize zonelists */
2310 for (i = 0; i < MAX_ZONELISTS; i++) {
2311 zonelist = pgdat->node_zonelists + i;
2312 zonelist->_zonerefs[0].zone = NULL;
2313 zonelist->_zonerefs[0].zone_idx = 0;
2314 }
2315
2316 /* NUMA-aware ordering of nodes */
2317 local_node = pgdat->node_id;
2318 load = num_online_nodes();
2319 prev_node = local_node;
2320 nodes_clear(used_mask);
2321
2322 memset(node_load, 0, sizeof(node_load));
2323 memset(node_order, 0, sizeof(node_order));
2324 j = 0;
2325
2326 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2327 int distance = node_distance(local_node, node);
2328
2329 /*
2330 * If another node is sufficiently far away then it is better
2331 * to reclaim pages in a zone before going off node.
2332 */
2333 if (distance > RECLAIM_DISTANCE)
2334 zone_reclaim_mode = 1;
2335
2336 /*
2337 * We don't want to pressure a particular node.
2338 * So adding penalty to the first node in same
2339 * distance group to make it round-robin.
2340 */
2341 if (distance != node_distance(local_node, prev_node))
2342 node_load[node] = load;
2343
2344 prev_node = node;
2345 load--;
2346 if (order == ZONELIST_ORDER_NODE)
2347 build_zonelists_in_node_order(pgdat, node);
2348 else
2349 node_order[j++] = node; /* remember order */
2350 }
2351
2352 if (order == ZONELIST_ORDER_ZONE) {
2353 /* calculate node order -- i.e., DMA last! */
2354 build_zonelists_in_zone_order(pgdat, j);
2355 }
2356
2357 build_thisnode_zonelists(pgdat);
2358 }
2359
2360 /* Construct the zonelist performance cache - see further mmzone.h */
2361 static void build_zonelist_cache(pg_data_t *pgdat)
2362 {
2363 struct zonelist *zonelist;
2364 struct zonelist_cache *zlc;
2365 struct zoneref *z;
2366
2367 zonelist = &pgdat->node_zonelists[0];
2368 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2369 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2370 for (z = zonelist->_zonerefs; z->zone; z++)
2371 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2372 }
2373
2374
2375 #else /* CONFIG_NUMA */
2376
2377 static void set_zonelist_order(void)
2378 {
2379 current_zonelist_order = ZONELIST_ORDER_ZONE;
2380 }
2381
2382 static void build_zonelists(pg_data_t *pgdat)
2383 {
2384 int node, local_node;
2385 enum zone_type j;
2386 struct zonelist *zonelist;
2387
2388 local_node = pgdat->node_id;
2389
2390 zonelist = &pgdat->node_zonelists[0];
2391 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2392
2393 /*
2394 * Now we build the zonelist so that it contains the zones
2395 * of all the other nodes.
2396 * We don't want to pressure a particular node, so when
2397 * building the zones for node N, we make sure that the
2398 * zones coming right after the local ones are those from
2399 * node N+1 (modulo N)
2400 */
2401 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2402 if (!node_online(node))
2403 continue;
2404 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2405 MAX_NR_ZONES - 1);
2406 }
2407 for (node = 0; node < local_node; node++) {
2408 if (!node_online(node))
2409 continue;
2410 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2411 MAX_NR_ZONES - 1);
2412 }
2413
2414 zonelist->_zonerefs[j].zone = NULL;
2415 zonelist->_zonerefs[j].zone_idx = 0;
2416 }
2417
2418 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2419 static void build_zonelist_cache(pg_data_t *pgdat)
2420 {
2421 pgdat->node_zonelists[0].zlcache_ptr = NULL;
2422 }
2423
2424 #endif /* CONFIG_NUMA */
2425
2426 /* return values int ....just for stop_machine() */
2427 static int __build_all_zonelists(void *dummy)
2428 {
2429 int nid;
2430
2431 for_each_online_node(nid) {
2432 pg_data_t *pgdat = NODE_DATA(nid);
2433
2434 build_zonelists(pgdat);
2435 build_zonelist_cache(pgdat);
2436 }
2437 return 0;
2438 }
2439
2440 void build_all_zonelists(void)
2441 {
2442 set_zonelist_order();
2443
2444 if (system_state == SYSTEM_BOOTING) {
2445 __build_all_zonelists(NULL);
2446 mminit_verify_zonelist();
2447 cpuset_init_current_mems_allowed();
2448 } else {
2449 /* we have to stop all cpus to guarantee there is no user
2450 of zonelist */
2451 stop_machine(__build_all_zonelists, NULL, NULL);
2452 /* cpuset refresh routine should be here */
2453 }
2454 vm_total_pages = nr_free_pagecache_pages();
2455 /*
2456 * Disable grouping by mobility if the number of pages in the
2457 * system is too low to allow the mechanism to work. It would be
2458 * more accurate, but expensive to check per-zone. This check is
2459 * made on memory-hotadd so a system can start with mobility
2460 * disabled and enable it later
2461 */
2462 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2463 page_group_by_mobility_disabled = 1;
2464 else
2465 page_group_by_mobility_disabled = 0;
2466
2467 printk("Built %i zonelists in %s order, mobility grouping %s. "
2468 "Total pages: %ld\n",
2469 num_online_nodes(),
2470 zonelist_order_name[current_zonelist_order],
2471 page_group_by_mobility_disabled ? "off" : "on",
2472 vm_total_pages);
2473 #ifdef CONFIG_NUMA
2474 printk("Policy zone: %s\n", zone_names[policy_zone]);
2475 #endif
2476 }
2477
2478 /*
2479 * Helper functions to size the waitqueue hash table.
2480 * Essentially these want to choose hash table sizes sufficiently
2481 * large so that collisions trying to wait on pages are rare.
2482 * But in fact, the number of active page waitqueues on typical
2483 * systems is ridiculously low, less than 200. So this is even
2484 * conservative, even though it seems large.
2485 *
2486 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2487 * waitqueues, i.e. the size of the waitq table given the number of pages.
2488 */
2489 #define PAGES_PER_WAITQUEUE 256
2490
2491 #ifndef CONFIG_MEMORY_HOTPLUG
2492 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2493 {
2494 unsigned long size = 1;
2495
2496 pages /= PAGES_PER_WAITQUEUE;
2497
2498 while (size < pages)
2499 size <<= 1;
2500
2501 /*
2502 * Once we have dozens or even hundreds of threads sleeping
2503 * on IO we've got bigger problems than wait queue collision.
2504 * Limit the size of the wait table to a reasonable size.
2505 */
2506 size = min(size, 4096UL);
2507
2508 return max(size, 4UL);
2509 }
2510 #else
2511 /*
2512 * A zone's size might be changed by hot-add, so it is not possible to determine
2513 * a suitable size for its wait_table. So we use the maximum size now.
2514 *
2515 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2516 *
2517 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2518 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2519 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2520 *
2521 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2522 * or more by the traditional way. (See above). It equals:
2523 *
2524 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2525 * ia64(16K page size) : = ( 8G + 4M)byte.
2526 * powerpc (64K page size) : = (32G +16M)byte.
2527 */
2528 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2529 {
2530 return 4096UL;
2531 }
2532 #endif
2533
2534 /*
2535 * This is an integer logarithm so that shifts can be used later
2536 * to extract the more random high bits from the multiplicative
2537 * hash function before the remainder is taken.
2538 */
2539 static inline unsigned long wait_table_bits(unsigned long size)
2540 {
2541 return ffz(~size);
2542 }
2543
2544 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2545
2546 /*
2547 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2548 * of blocks reserved is based on zone->pages_min. The memory within the
2549 * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2550 * higher will lead to a bigger reserve which will get freed as contiguous
2551 * blocks as reclaim kicks in
2552 */
2553 static void setup_zone_migrate_reserve(struct zone *zone)
2554 {
2555 unsigned long start_pfn, pfn, end_pfn;
2556 struct page *page;
2557 unsigned long reserve, block_migratetype;
2558
2559 /* Get the start pfn, end pfn and the number of blocks to reserve */
2560 start_pfn = zone->zone_start_pfn;
2561 end_pfn = start_pfn + zone->spanned_pages;
2562 reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2563 pageblock_order;
2564
2565 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2566 if (!pfn_valid(pfn))
2567 continue;
2568 page = pfn_to_page(pfn);
2569
2570 /* Watch out for overlapping nodes */
2571 if (page_to_nid(page) != zone_to_nid(zone))
2572 continue;
2573
2574 /* Blocks with reserved pages will never free, skip them. */
2575 if (PageReserved(page))
2576 continue;
2577
2578 block_migratetype = get_pageblock_migratetype(page);
2579
2580 /* If this block is reserved, account for it */
2581 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2582 reserve--;
2583 continue;
2584 }
2585
2586 /* Suitable for reserving if this block is movable */
2587 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2588 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2589 move_freepages_block(zone, page, MIGRATE_RESERVE);
2590 reserve--;
2591 continue;
2592 }
2593
2594 /*
2595 * If the reserve is met and this is a previous reserved block,
2596 * take it back
2597 */
2598 if (block_migratetype == MIGRATE_RESERVE) {
2599 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2600 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2601 }
2602 }
2603 }
2604
2605 /*
2606 * Initially all pages are reserved - free ones are freed
2607 * up by free_all_bootmem() once the early boot process is
2608 * done. Non-atomic initialization, single-pass.
2609 */
2610 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2611 unsigned long start_pfn, enum memmap_context context)
2612 {
2613 struct page *page;
2614 unsigned long end_pfn = start_pfn + size;
2615 unsigned long pfn;
2616 struct zone *z;
2617
2618 if (highest_memmap_pfn < end_pfn - 1)
2619 highest_memmap_pfn = end_pfn - 1;
2620
2621 z = &NODE_DATA(nid)->node_zones[zone];
2622 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2623 /*
2624 * There can be holes in boot-time mem_map[]s
2625 * handed to this function. They do not
2626 * exist on hotplugged memory.
2627 */
2628 if (context == MEMMAP_EARLY) {
2629 if (!early_pfn_valid(pfn))
2630 continue;
2631 if (!early_pfn_in_nid(pfn, nid))
2632 continue;
2633 }
2634 page = pfn_to_page(pfn);
2635 set_page_links(page, zone, nid, pfn);
2636 mminit_verify_page_links(page, zone, nid, pfn);
2637 init_page_count(page);
2638 reset_page_mapcount(page);
2639 SetPageReserved(page);
2640 /*
2641 * Mark the block movable so that blocks are reserved for
2642 * movable at startup. This will force kernel allocations
2643 * to reserve their blocks rather than leaking throughout
2644 * the address space during boot when many long-lived
2645 * kernel allocations are made. Later some blocks near
2646 * the start are marked MIGRATE_RESERVE by
2647 * setup_zone_migrate_reserve()
2648 *
2649 * bitmap is created for zone's valid pfn range. but memmap
2650 * can be created for invalid pages (for alignment)
2651 * check here not to call set_pageblock_migratetype() against
2652 * pfn out of zone.
2653 */
2654 if ((z->zone_start_pfn <= pfn)
2655 && (pfn < z->zone_start_pfn + z->spanned_pages)
2656 && !(pfn & (pageblock_nr_pages - 1)))
2657 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2658
2659 INIT_LIST_HEAD(&page->lru);
2660 #ifdef WANT_PAGE_VIRTUAL
2661 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2662 if (!is_highmem_idx(zone))
2663 set_page_address(page, __va(pfn << PAGE_SHIFT));
2664 #endif
2665 }
2666 }
2667
2668 static void __meminit zone_init_free_lists(struct zone *zone)
2669 {
2670 int order, t;
2671 for_each_migratetype_order(order, t) {
2672 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2673 zone->free_area[order].nr_free = 0;
2674 }
2675 }
2676
2677 #ifndef __HAVE_ARCH_MEMMAP_INIT
2678 #define memmap_init(size, nid, zone, start_pfn) \
2679 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2680 #endif
2681
2682 static int zone_batchsize(struct zone *zone)
2683 {
2684 #ifdef CONFIG_MMU
2685 int batch;
2686
2687 /*
2688 * The per-cpu-pages pools are set to around 1000th of the
2689 * size of the zone. But no more than 1/2 of a meg.
2690 *
2691 * OK, so we don't know how big the cache is. So guess.
2692 */
2693 batch = zone->present_pages / 1024;
2694 if (batch * PAGE_SIZE > 512 * 1024)
2695 batch = (512 * 1024) / PAGE_SIZE;
2696 batch /= 4; /* We effectively *= 4 below */
2697 if (batch < 1)
2698 batch = 1;
2699
2700 /*
2701 * Clamp the batch to a 2^n - 1 value. Having a power
2702 * of 2 value was found to be more likely to have
2703 * suboptimal cache aliasing properties in some cases.
2704 *
2705 * For example if 2 tasks are alternately allocating
2706 * batches of pages, one task can end up with a lot
2707 * of pages of one half of the possible page colors
2708 * and the other with pages of the other colors.
2709 */
2710 batch = rounddown_pow_of_two(batch + batch/2) - 1;
2711
2712 return batch;
2713
2714 #else
2715 /* The deferral and batching of frees should be suppressed under NOMMU
2716 * conditions.
2717 *
2718 * The problem is that NOMMU needs to be able to allocate large chunks
2719 * of contiguous memory as there's no hardware page translation to
2720 * assemble apparent contiguous memory from discontiguous pages.
2721 *
2722 * Queueing large contiguous runs of pages for batching, however,
2723 * causes the pages to actually be freed in smaller chunks. As there
2724 * can be a significant delay between the individual batches being
2725 * recycled, this leads to the once large chunks of space being
2726 * fragmented and becoming unavailable for high-order allocations.
2727 */
2728 return 0;
2729 #endif
2730 }
2731
2732 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2733 {
2734 struct per_cpu_pages *pcp;
2735
2736 memset(p, 0, sizeof(*p));
2737
2738 pcp = &p->pcp;
2739 pcp->count = 0;
2740 pcp->high = 6 * batch;
2741 pcp->batch = max(1UL, 1 * batch);
2742 INIT_LIST_HEAD(&pcp->list);
2743 }
2744
2745 /*
2746 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2747 * to the value high for the pageset p.
2748 */
2749
2750 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2751 unsigned long high)
2752 {
2753 struct per_cpu_pages *pcp;
2754
2755 pcp = &p->pcp;
2756 pcp->high = high;
2757 pcp->batch = max(1UL, high/4);
2758 if ((high/4) > (PAGE_SHIFT * 8))
2759 pcp->batch = PAGE_SHIFT * 8;
2760 }
2761
2762
2763 #ifdef CONFIG_NUMA
2764 /*
2765 * Boot pageset table. One per cpu which is going to be used for all
2766 * zones and all nodes. The parameters will be set in such a way
2767 * that an item put on a list will immediately be handed over to
2768 * the buddy list. This is safe since pageset manipulation is done
2769 * with interrupts disabled.
2770 *
2771 * Some NUMA counter updates may also be caught by the boot pagesets.
2772 *
2773 * The boot_pagesets must be kept even after bootup is complete for
2774 * unused processors and/or zones. They do play a role for bootstrapping
2775 * hotplugged processors.
2776 *
2777 * zoneinfo_show() and maybe other functions do
2778 * not check if the processor is online before following the pageset pointer.
2779 * Other parts of the kernel may not check if the zone is available.
2780 */
2781 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2782
2783 /*
2784 * Dynamically allocate memory for the
2785 * per cpu pageset array in struct zone.
2786 */
2787 static int __cpuinit process_zones(int cpu)
2788 {
2789 struct zone *zone, *dzone;
2790 int node = cpu_to_node(cpu);
2791
2792 node_set_state(node, N_CPU); /* this node has a cpu */
2793
2794 for_each_populated_zone(zone) {
2795 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2796 GFP_KERNEL, node);
2797 if (!zone_pcp(zone, cpu))
2798 goto bad;
2799
2800 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2801
2802 if (percpu_pagelist_fraction)
2803 setup_pagelist_highmark(zone_pcp(zone, cpu),
2804 (zone->present_pages / percpu_pagelist_fraction));
2805 }
2806
2807 return 0;
2808 bad:
2809 for_each_zone(dzone) {
2810 if (!populated_zone(dzone))
2811 continue;
2812 if (dzone == zone)
2813 break;
2814 kfree(zone_pcp(dzone, cpu));
2815 zone_pcp(dzone, cpu) = NULL;
2816 }
2817 return -ENOMEM;
2818 }
2819
2820 static inline void free_zone_pagesets(int cpu)
2821 {
2822 struct zone *zone;
2823
2824 for_each_zone(zone) {
2825 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2826
2827 /* Free per_cpu_pageset if it is slab allocated */
2828 if (pset != &boot_pageset[cpu])
2829 kfree(pset);
2830 zone_pcp(zone, cpu) = NULL;
2831 }
2832 }
2833
2834 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2835 unsigned long action,
2836 void *hcpu)
2837 {
2838 int cpu = (long)hcpu;
2839 int ret = NOTIFY_OK;
2840
2841 switch (action) {
2842 case CPU_UP_PREPARE:
2843 case CPU_UP_PREPARE_FROZEN:
2844 if (process_zones(cpu))
2845 ret = NOTIFY_BAD;
2846 break;
2847 case CPU_UP_CANCELED:
2848 case CPU_UP_CANCELED_FROZEN:
2849 case CPU_DEAD:
2850 case CPU_DEAD_FROZEN:
2851 free_zone_pagesets(cpu);
2852 break;
2853 default:
2854 break;
2855 }
2856 return ret;
2857 }
2858
2859 static struct notifier_block __cpuinitdata pageset_notifier =
2860 { &pageset_cpuup_callback, NULL, 0 };
2861
2862 void __init setup_per_cpu_pageset(void)
2863 {
2864 int err;
2865
2866 /* Initialize per_cpu_pageset for cpu 0.
2867 * A cpuup callback will do this for every cpu
2868 * as it comes online
2869 */
2870 err = process_zones(smp_processor_id());
2871 BUG_ON(err);
2872 register_cpu_notifier(&pageset_notifier);
2873 }
2874
2875 #endif
2876
2877 static noinline __init_refok
2878 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2879 {
2880 int i;
2881 struct pglist_data *pgdat = zone->zone_pgdat;
2882 size_t alloc_size;
2883
2884 /*
2885 * The per-page waitqueue mechanism uses hashed waitqueues
2886 * per zone.
2887 */
2888 zone->wait_table_hash_nr_entries =
2889 wait_table_hash_nr_entries(zone_size_pages);
2890 zone->wait_table_bits =
2891 wait_table_bits(zone->wait_table_hash_nr_entries);
2892 alloc_size = zone->wait_table_hash_nr_entries
2893 * sizeof(wait_queue_head_t);
2894
2895 if (!slab_is_available()) {
2896 zone->wait_table = (wait_queue_head_t *)
2897 alloc_bootmem_node(pgdat, alloc_size);
2898 } else {
2899 /*
2900 * This case means that a zone whose size was 0 gets new memory
2901 * via memory hot-add.
2902 * But it may be the case that a new node was hot-added. In
2903 * this case vmalloc() will not be able to use this new node's
2904 * memory - this wait_table must be initialized to use this new
2905 * node itself as well.
2906 * To use this new node's memory, further consideration will be
2907 * necessary.
2908 */
2909 zone->wait_table = vmalloc(alloc_size);
2910 }
2911 if (!zone->wait_table)
2912 return -ENOMEM;
2913
2914 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2915 init_waitqueue_head(zone->wait_table + i);
2916
2917 return 0;
2918 }
2919
2920 static __meminit void zone_pcp_init(struct zone *zone)
2921 {
2922 int cpu;
2923 unsigned long batch = zone_batchsize(zone);
2924
2925 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2926 #ifdef CONFIG_NUMA
2927 /* Early boot. Slab allocator not functional yet */
2928 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2929 setup_pageset(&boot_pageset[cpu],0);
2930 #else
2931 setup_pageset(zone_pcp(zone,cpu), batch);
2932 #endif
2933 }
2934 if (zone->present_pages)
2935 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2936 zone->name, zone->present_pages, batch);
2937 }
2938
2939 __meminit int init_currently_empty_zone(struct zone *zone,
2940 unsigned long zone_start_pfn,
2941 unsigned long size,
2942 enum memmap_context context)
2943 {
2944 struct pglist_data *pgdat = zone->zone_pgdat;
2945 int ret;
2946 ret = zone_wait_table_init(zone, size);
2947 if (ret)
2948 return ret;
2949 pgdat->nr_zones = zone_idx(zone) + 1;
2950
2951 zone->zone_start_pfn = zone_start_pfn;
2952
2953 mminit_dprintk(MMINIT_TRACE, "memmap_init",
2954 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
2955 pgdat->node_id,
2956 (unsigned long)zone_idx(zone),
2957 zone_start_pfn, (zone_start_pfn + size));
2958
2959 zone_init_free_lists(zone);
2960
2961 return 0;
2962 }
2963
2964 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2965 /*
2966 * Basic iterator support. Return the first range of PFNs for a node
2967 * Note: nid == MAX_NUMNODES returns first region regardless of node
2968 */
2969 static int __meminit first_active_region_index_in_nid(int nid)
2970 {
2971 int i;
2972
2973 for (i = 0; i < nr_nodemap_entries; i++)
2974 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2975 return i;
2976
2977 return -1;
2978 }
2979
2980 /*
2981 * Basic iterator support. Return the next active range of PFNs for a node
2982 * Note: nid == MAX_NUMNODES returns next region regardless of node
2983 */
2984 static int __meminit next_active_region_index_in_nid(int index, int nid)
2985 {
2986 for (index = index + 1; index < nr_nodemap_entries; index++)
2987 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2988 return index;
2989
2990 return -1;
2991 }
2992
2993 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2994 /*
2995 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2996 * Architectures may implement their own version but if add_active_range()
2997 * was used and there are no special requirements, this is a convenient
2998 * alternative
2999 */
3000 int __meminit __early_pfn_to_nid(unsigned long pfn)
3001 {
3002 int i;
3003
3004 for (i = 0; i < nr_nodemap_entries; i++) {
3005 unsigned long start_pfn = early_node_map[i].start_pfn;
3006 unsigned long end_pfn = early_node_map[i].end_pfn;
3007
3008 if (start_pfn <= pfn && pfn < end_pfn)
3009 return early_node_map[i].nid;
3010 }
3011 /* This is a memory hole */
3012 return -1;
3013 }
3014 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3015
3016 int __meminit early_pfn_to_nid(unsigned long pfn)
3017 {
3018 int nid;
3019
3020 nid = __early_pfn_to_nid(pfn);
3021 if (nid >= 0)
3022 return nid;
3023 /* just returns 0 */
3024 return 0;
3025 }
3026
3027 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3028 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3029 {
3030 int nid;
3031
3032 nid = __early_pfn_to_nid(pfn);
3033 if (nid >= 0 && nid != node)
3034 return false;
3035 return true;
3036 }
3037 #endif
3038
3039 /* Basic iterator support to walk early_node_map[] */
3040 #define for_each_active_range_index_in_nid(i, nid) \
3041 for (i = first_active_region_index_in_nid(nid); i != -1; \
3042 i = next_active_region_index_in_nid(i, nid))
3043
3044 /**
3045 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3046 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3047 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3048 *
3049 * If an architecture guarantees that all ranges registered with
3050 * add_active_ranges() contain no holes and may be freed, this
3051 * this function may be used instead of calling free_bootmem() manually.
3052 */
3053 void __init free_bootmem_with_active_regions(int nid,
3054 unsigned long max_low_pfn)
3055 {
3056 int i;
3057
3058 for_each_active_range_index_in_nid(i, nid) {
3059 unsigned long size_pages = 0;
3060 unsigned long end_pfn = early_node_map[i].end_pfn;
3061
3062 if (early_node_map[i].start_pfn >= max_low_pfn)
3063 continue;
3064
3065 if (end_pfn > max_low_pfn)
3066 end_pfn = max_low_pfn;
3067
3068 size_pages = end_pfn - early_node_map[i].start_pfn;
3069 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3070 PFN_PHYS(early_node_map[i].start_pfn),
3071 size_pages << PAGE_SHIFT);
3072 }
3073 }
3074
3075 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3076 {
3077 int i;
3078 int ret;
3079
3080 for_each_active_range_index_in_nid(i, nid) {
3081 ret = work_fn(early_node_map[i].start_pfn,
3082 early_node_map[i].end_pfn, data);
3083 if (ret)
3084 break;
3085 }
3086 }
3087 /**
3088 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3089 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3090 *
3091 * If an architecture guarantees that all ranges registered with
3092 * add_active_ranges() contain no holes and may be freed, this
3093 * function may be used instead of calling memory_present() manually.
3094 */
3095 void __init sparse_memory_present_with_active_regions(int nid)
3096 {
3097 int i;
3098
3099 for_each_active_range_index_in_nid(i, nid)
3100 memory_present(early_node_map[i].nid,
3101 early_node_map[i].start_pfn,
3102 early_node_map[i].end_pfn);
3103 }
3104
3105 /**
3106 * push_node_boundaries - Push node boundaries to at least the requested boundary
3107 * @nid: The nid of the node to push the boundary for
3108 * @start_pfn: The start pfn of the node
3109 * @end_pfn: The end pfn of the node
3110 *
3111 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
3112 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
3113 * be hotplugged even though no physical memory exists. This function allows
3114 * an arch to push out the node boundaries so mem_map is allocated that can
3115 * be used later.
3116 */
3117 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3118 void __init push_node_boundaries(unsigned int nid,
3119 unsigned long start_pfn, unsigned long end_pfn)
3120 {
3121 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3122 "Entering push_node_boundaries(%u, %lu, %lu)\n",
3123 nid, start_pfn, end_pfn);
3124
3125 /* Initialise the boundary for this node if necessary */
3126 if (node_boundary_end_pfn[nid] == 0)
3127 node_boundary_start_pfn[nid] = -1UL;
3128
3129 /* Update the boundaries */
3130 if (node_boundary_start_pfn[nid] > start_pfn)
3131 node_boundary_start_pfn[nid] = start_pfn;
3132 if (node_boundary_end_pfn[nid] < end_pfn)
3133 node_boundary_end_pfn[nid] = end_pfn;
3134 }
3135
3136 /* If necessary, push the node boundary out for reserve hotadd */
3137 static void __meminit account_node_boundary(unsigned int nid,
3138 unsigned long *start_pfn, unsigned long *end_pfn)
3139 {
3140 mminit_dprintk(MMINIT_TRACE, "zoneboundary",
3141 "Entering account_node_boundary(%u, %lu, %lu)\n",
3142 nid, *start_pfn, *end_pfn);
3143
3144 /* Return if boundary information has not been provided */
3145 if (node_boundary_end_pfn[nid] == 0)
3146 return;
3147
3148 /* Check the boundaries and update if necessary */
3149 if (node_boundary_start_pfn[nid] < *start_pfn)
3150 *start_pfn = node_boundary_start_pfn[nid];
3151 if (node_boundary_end_pfn[nid] > *end_pfn)
3152 *end_pfn = node_boundary_end_pfn[nid];
3153 }
3154 #else
3155 void __init push_node_boundaries(unsigned int nid,
3156 unsigned long start_pfn, unsigned long end_pfn) {}
3157
3158 static void __meminit account_node_boundary(unsigned int nid,
3159 unsigned long *start_pfn, unsigned long *end_pfn) {}
3160 #endif
3161
3162
3163 /**
3164 * get_pfn_range_for_nid - Return the start and end page frames for a node
3165 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3166 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3167 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3168 *
3169 * It returns the start and end page frame of a node based on information
3170 * provided by an arch calling add_active_range(). If called for a node
3171 * with no available memory, a warning is printed and the start and end
3172 * PFNs will be 0.
3173 */
3174 void __meminit get_pfn_range_for_nid(unsigned int nid,
3175 unsigned long *start_pfn, unsigned long *end_pfn)
3176 {
3177 int i;
3178 *start_pfn = -1UL;
3179 *end_pfn = 0;
3180
3181 for_each_active_range_index_in_nid(i, nid) {
3182 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3183 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3184 }
3185
3186 if (*start_pfn == -1UL)
3187 *start_pfn = 0;
3188
3189 /* Push the node boundaries out if requested */
3190 account_node_boundary(nid, start_pfn, end_pfn);
3191 }
3192
3193 /*
3194 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3195 * assumption is made that zones within a node are ordered in monotonic
3196 * increasing memory addresses so that the "highest" populated zone is used
3197 */
3198 static void __init find_usable_zone_for_movable(void)
3199 {
3200 int zone_index;
3201 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3202 if (zone_index == ZONE_MOVABLE)
3203 continue;
3204
3205 if (arch_zone_highest_possible_pfn[zone_index] >
3206 arch_zone_lowest_possible_pfn[zone_index])
3207 break;
3208 }
3209
3210 VM_BUG_ON(zone_index == -1);
3211 movable_zone = zone_index;
3212 }
3213
3214 /*
3215 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3216 * because it is sized independant of architecture. Unlike the other zones,
3217 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3218 * in each node depending on the size of each node and how evenly kernelcore
3219 * is distributed. This helper function adjusts the zone ranges
3220 * provided by the architecture for a given node by using the end of the
3221 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3222 * zones within a node are in order of monotonic increases memory addresses
3223 */
3224 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3225 unsigned long zone_type,
3226 unsigned long node_start_pfn,
3227 unsigned long node_end_pfn,
3228 unsigned long *zone_start_pfn,
3229 unsigned long *zone_end_pfn)
3230 {
3231 /* Only adjust if ZONE_MOVABLE is on this node */
3232 if (zone_movable_pfn[nid]) {
3233 /* Size ZONE_MOVABLE */
3234 if (zone_type == ZONE_MOVABLE) {
3235 *zone_start_pfn = zone_movable_pfn[nid];
3236 *zone_end_pfn = min(node_end_pfn,
3237 arch_zone_highest_possible_pfn[movable_zone]);
3238
3239 /* Adjust for ZONE_MOVABLE starting within this range */
3240 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3241 *zone_end_pfn > zone_movable_pfn[nid]) {
3242 *zone_end_pfn = zone_movable_pfn[nid];
3243
3244 /* Check if this whole range is within ZONE_MOVABLE */
3245 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3246 *zone_start_pfn = *zone_end_pfn;
3247 }
3248 }
3249
3250 /*
3251 * Return the number of pages a zone spans in a node, including holes
3252 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3253 */
3254 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3255 unsigned long zone_type,
3256 unsigned long *ignored)
3257 {
3258 unsigned long node_start_pfn, node_end_pfn;
3259 unsigned long zone_start_pfn, zone_end_pfn;
3260
3261 /* Get the start and end of the node and zone */
3262 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3263 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3264 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3265 adjust_zone_range_for_zone_movable(nid, zone_type,
3266 node_start_pfn, node_end_pfn,
3267 &zone_start_pfn, &zone_end_pfn);
3268
3269 /* Check that this node has pages within the zone's required range */
3270 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3271 return 0;
3272
3273 /* Move the zone boundaries inside the node if necessary */
3274 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3275 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3276
3277 /* Return the spanned pages */
3278 return zone_end_pfn - zone_start_pfn;
3279 }
3280
3281 /*
3282 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3283 * then all holes in the requested range will be accounted for.
3284 */
3285 static unsigned long __meminit __absent_pages_in_range(int nid,
3286 unsigned long range_start_pfn,
3287 unsigned long range_end_pfn)
3288 {
3289 int i = 0;
3290 unsigned long prev_end_pfn = 0, hole_pages = 0;
3291 unsigned long start_pfn;
3292
3293 /* Find the end_pfn of the first active range of pfns in the node */
3294 i = first_active_region_index_in_nid(nid);
3295 if (i == -1)
3296 return 0;
3297
3298 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3299
3300 /* Account for ranges before physical memory on this node */
3301 if (early_node_map[i].start_pfn > range_start_pfn)
3302 hole_pages = prev_end_pfn - range_start_pfn;
3303
3304 /* Find all holes for the zone within the node */
3305 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3306
3307 /* No need to continue if prev_end_pfn is outside the zone */
3308 if (prev_end_pfn >= range_end_pfn)
3309 break;
3310
3311 /* Make sure the end of the zone is not within the hole */
3312 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3313 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3314
3315 /* Update the hole size cound and move on */
3316 if (start_pfn > range_start_pfn) {
3317 BUG_ON(prev_end_pfn > start_pfn);
3318 hole_pages += start_pfn - prev_end_pfn;
3319 }
3320 prev_end_pfn = early_node_map[i].end_pfn;
3321 }
3322
3323 /* Account for ranges past physical memory on this node */
3324 if (range_end_pfn > prev_end_pfn)
3325 hole_pages += range_end_pfn -
3326 max(range_start_pfn, prev_end_pfn);
3327
3328 return hole_pages;
3329 }
3330
3331 /**
3332 * absent_pages_in_range - Return number of page frames in holes within a range
3333 * @start_pfn: The start PFN to start searching for holes
3334 * @end_pfn: The end PFN to stop searching for holes
3335 *
3336 * It returns the number of pages frames in memory holes within a range.
3337 */
3338 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3339 unsigned long end_pfn)
3340 {
3341 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3342 }
3343
3344 /* Return the number of page frames in holes in a zone on a node */
3345 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3346 unsigned long zone_type,
3347 unsigned long *ignored)
3348 {
3349 unsigned long node_start_pfn, node_end_pfn;
3350 unsigned long zone_start_pfn, zone_end_pfn;
3351
3352 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3353 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3354 node_start_pfn);
3355 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3356 node_end_pfn);
3357
3358 adjust_zone_range_for_zone_movable(nid, zone_type,
3359 node_start_pfn, node_end_pfn,
3360 &zone_start_pfn, &zone_end_pfn);
3361 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3362 }
3363
3364 #else
3365 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3366 unsigned long zone_type,
3367 unsigned long *zones_size)
3368 {
3369 return zones_size[zone_type];
3370 }
3371
3372 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3373 unsigned long zone_type,
3374 unsigned long *zholes_size)
3375 {
3376 if (!zholes_size)
3377 return 0;
3378
3379 return zholes_size[zone_type];
3380 }
3381
3382 #endif
3383
3384 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3385 unsigned long *zones_size, unsigned long *zholes_size)
3386 {
3387 unsigned long realtotalpages, totalpages = 0;
3388 enum zone_type i;
3389
3390 for (i = 0; i < MAX_NR_ZONES; i++)
3391 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3392 zones_size);
3393 pgdat->node_spanned_pages = totalpages;
3394
3395 realtotalpages = totalpages;
3396 for (i = 0; i < MAX_NR_ZONES; i++)
3397 realtotalpages -=
3398 zone_absent_pages_in_node(pgdat->node_id, i,
3399 zholes_size);
3400 pgdat->node_present_pages = realtotalpages;
3401 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3402 realtotalpages);
3403 }
3404
3405 #ifndef CONFIG_SPARSEMEM
3406 /*
3407 * Calculate the size of the zone->blockflags rounded to an unsigned long
3408 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3409 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3410 * round what is now in bits to nearest long in bits, then return it in
3411 * bytes.
3412 */
3413 static unsigned long __init usemap_size(unsigned long zonesize)
3414 {
3415 unsigned long usemapsize;
3416
3417 usemapsize = roundup(zonesize, pageblock_nr_pages);
3418 usemapsize = usemapsize >> pageblock_order;
3419 usemapsize *= NR_PAGEBLOCK_BITS;
3420 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3421
3422 return usemapsize / 8;
3423 }
3424
3425 static void __init setup_usemap(struct pglist_data *pgdat,
3426 struct zone *zone, unsigned long zonesize)
3427 {
3428 unsigned long usemapsize = usemap_size(zonesize);
3429 zone->pageblock_flags = NULL;
3430 if (usemapsize)
3431 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3432 }
3433 #else
3434 static void inline setup_usemap(struct pglist_data *pgdat,
3435 struct zone *zone, unsigned long zonesize) {}
3436 #endif /* CONFIG_SPARSEMEM */
3437
3438 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3439
3440 /* Return a sensible default order for the pageblock size. */
3441 static inline int pageblock_default_order(void)
3442 {
3443 if (HPAGE_SHIFT > PAGE_SHIFT)
3444 return HUGETLB_PAGE_ORDER;
3445
3446 return MAX_ORDER-1;
3447 }
3448
3449 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3450 static inline void __init set_pageblock_order(unsigned int order)
3451 {
3452 /* Check that pageblock_nr_pages has not already been setup */
3453 if (pageblock_order)
3454 return;
3455
3456 /*
3457 * Assume the largest contiguous order of interest is a huge page.
3458 * This value may be variable depending on boot parameters on IA64
3459 */
3460 pageblock_order = order;
3461 }
3462 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3463
3464 /*
3465 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3466 * and pageblock_default_order() are unused as pageblock_order is set
3467 * at compile-time. See include/linux/pageblock-flags.h for the values of
3468 * pageblock_order based on the kernel config
3469 */
3470 static inline int pageblock_default_order(unsigned int order)
3471 {
3472 return MAX_ORDER-1;
3473 }
3474 #define set_pageblock_order(x) do {} while (0)
3475
3476 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3477
3478 /*
3479 * Set up the zone data structures:
3480 * - mark all pages reserved
3481 * - mark all memory queues empty
3482 * - clear the memory bitmaps
3483 */
3484 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3485 unsigned long *zones_size, unsigned long *zholes_size)
3486 {
3487 enum zone_type j;
3488 int nid = pgdat->node_id;
3489 unsigned long zone_start_pfn = pgdat->node_start_pfn;
3490 int ret;
3491
3492 pgdat_resize_init(pgdat);
3493 pgdat->nr_zones = 0;
3494 init_waitqueue_head(&pgdat->kswapd_wait);
3495 pgdat->kswapd_max_order = 0;
3496 pgdat_page_cgroup_init(pgdat);
3497
3498 for (j = 0; j < MAX_NR_ZONES; j++) {
3499 struct zone *zone = pgdat->node_zones + j;
3500 unsigned long size, realsize, memmap_pages;
3501 enum lru_list l;
3502
3503 size = zone_spanned_pages_in_node(nid, j, zones_size);
3504 realsize = size - zone_absent_pages_in_node(nid, j,
3505 zholes_size);
3506
3507 /*
3508 * Adjust realsize so that it accounts for how much memory
3509 * is used by this zone for memmap. This affects the watermark
3510 * and per-cpu initialisations
3511 */
3512 memmap_pages =
3513 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
3514 if (realsize >= memmap_pages) {
3515 realsize -= memmap_pages;
3516 if (memmap_pages)
3517 printk(KERN_DEBUG
3518 " %s zone: %lu pages used for memmap\n",
3519 zone_names[j], memmap_pages);
3520 } else
3521 printk(KERN_WARNING
3522 " %s zone: %lu pages exceeds realsize %lu\n",
3523 zone_names[j], memmap_pages, realsize);
3524
3525 /* Account for reserved pages */
3526 if (j == 0 && realsize > dma_reserve) {
3527 realsize -= dma_reserve;
3528 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
3529 zone_names[0], dma_reserve);
3530 }
3531
3532 if (!is_highmem_idx(j))
3533 nr_kernel_pages += realsize;
3534 nr_all_pages += realsize;
3535
3536 zone->spanned_pages = size;
3537 zone->present_pages = realsize;
3538 #ifdef CONFIG_NUMA
3539 zone->node = nid;
3540 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3541 / 100;
3542 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3543 #endif
3544 zone->name = zone_names[j];
3545 spin_lock_init(&zone->lock);
3546 spin_lock_init(&zone->lru_lock);
3547 zone_seqlock_init(zone);
3548 zone->zone_pgdat = pgdat;
3549
3550 zone->prev_priority = DEF_PRIORITY;
3551
3552 zone_pcp_init(zone);
3553 for_each_lru(l) {
3554 INIT_LIST_HEAD(&zone->lru[l].list);
3555 zone->lru[l].nr_scan = 0;
3556 }
3557 zone->reclaim_stat.recent_rotated[0] = 0;
3558 zone->reclaim_stat.recent_rotated[1] = 0;
3559 zone->reclaim_stat.recent_scanned[0] = 0;
3560 zone->reclaim_stat.recent_scanned[1] = 0;
3561 zap_zone_vm_stats(zone);
3562 zone->flags = 0;
3563 if (!size)
3564 continue;
3565
3566 set_pageblock_order(pageblock_default_order());
3567 setup_usemap(pgdat, zone, size);
3568 ret = init_currently_empty_zone(zone, zone_start_pfn,
3569 size, MEMMAP_EARLY);
3570 BUG_ON(ret);
3571 memmap_init(size, nid, j, zone_start_pfn);
3572 zone_start_pfn += size;
3573 }
3574 }
3575
3576 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3577 {
3578 /* Skip empty nodes */
3579 if (!pgdat->node_spanned_pages)
3580 return;
3581
3582 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3583 /* ia64 gets its own node_mem_map, before this, without bootmem */
3584 if (!pgdat->node_mem_map) {
3585 unsigned long size, start, end;
3586 struct page *map;
3587
3588 /*
3589 * The zone's endpoints aren't required to be MAX_ORDER
3590 * aligned but the node_mem_map endpoints must be in order
3591 * for the buddy allocator to function correctly.
3592 */
3593 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3594 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3595 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3596 size = (end - start) * sizeof(struct page);
3597 map = alloc_remap(pgdat->node_id, size);
3598 if (!map)
3599 map = alloc_bootmem_node(pgdat, size);
3600 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3601 }
3602 #ifndef CONFIG_NEED_MULTIPLE_NODES
3603 /*
3604 * With no DISCONTIG, the global mem_map is just set as node 0's
3605 */
3606 if (pgdat == NODE_DATA(0)) {
3607 mem_map = NODE_DATA(0)->node_mem_map;
3608 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3609 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3610 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3611 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3612 }
3613 #endif
3614 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3615 }
3616
3617 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3618 unsigned long node_start_pfn, unsigned long *zholes_size)
3619 {
3620 pg_data_t *pgdat = NODE_DATA(nid);
3621
3622 pgdat->node_id = nid;
3623 pgdat->node_start_pfn = node_start_pfn;
3624 calculate_node_totalpages(pgdat, zones_size, zholes_size);
3625
3626 alloc_node_mem_map(pgdat);
3627 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3628 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3629 nid, (unsigned long)pgdat,
3630 (unsigned long)pgdat->node_mem_map);
3631 #endif
3632
3633 free_area_init_core(pgdat, zones_size, zholes_size);
3634 }
3635
3636 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3637
3638 #if MAX_NUMNODES > 1
3639 /*
3640 * Figure out the number of possible node ids.
3641 */
3642 static void __init setup_nr_node_ids(void)
3643 {
3644 unsigned int node;
3645 unsigned int highest = 0;
3646
3647 for_each_node_mask(node, node_possible_map)
3648 highest = node;
3649 nr_node_ids = highest + 1;
3650 }
3651 #else
3652 static inline void setup_nr_node_ids(void)
3653 {
3654 }
3655 #endif
3656
3657 /**
3658 * add_active_range - Register a range of PFNs backed by physical memory
3659 * @nid: The node ID the range resides on
3660 * @start_pfn: The start PFN of the available physical memory
3661 * @end_pfn: The end PFN of the available physical memory
3662 *
3663 * These ranges are stored in an early_node_map[] and later used by
3664 * free_area_init_nodes() to calculate zone sizes and holes. If the
3665 * range spans a memory hole, it is up to the architecture to ensure
3666 * the memory is not freed by the bootmem allocator. If possible
3667 * the range being registered will be merged with existing ranges.
3668 */
3669 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3670 unsigned long end_pfn)
3671 {
3672 int i;
3673
3674 mminit_dprintk(MMINIT_TRACE, "memory_register",
3675 "Entering add_active_range(%d, %#lx, %#lx) "
3676 "%d entries of %d used\n",
3677 nid, start_pfn, end_pfn,
3678 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3679
3680 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3681
3682 /* Merge with existing active regions if possible */
3683 for (i = 0; i < nr_nodemap_entries; i++) {
3684 if (early_node_map[i].nid != nid)
3685 continue;
3686
3687 /* Skip if an existing region covers this new one */
3688 if (start_pfn >= early_node_map[i].start_pfn &&
3689 end_pfn <= early_node_map[i].end_pfn)
3690 return;
3691
3692 /* Merge forward if suitable */
3693 if (start_pfn <= early_node_map[i].end_pfn &&
3694 end_pfn > early_node_map[i].end_pfn) {
3695 early_node_map[i].end_pfn = end_pfn;
3696 return;
3697 }
3698
3699 /* Merge backward if suitable */
3700 if (start_pfn < early_node_map[i].end_pfn &&
3701 end_pfn >= early_node_map[i].start_pfn) {
3702 early_node_map[i].start_pfn = start_pfn;
3703 return;
3704 }
3705 }
3706
3707 /* Check that early_node_map is large enough */
3708 if (i >= MAX_ACTIVE_REGIONS) {
3709 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3710 MAX_ACTIVE_REGIONS);
3711 return;
3712 }
3713
3714 early_node_map[i].nid = nid;
3715 early_node_map[i].start_pfn = start_pfn;
3716 early_node_map[i].end_pfn = end_pfn;
3717 nr_nodemap_entries = i + 1;
3718 }
3719
3720 /**
3721 * remove_active_range - Shrink an existing registered range of PFNs
3722 * @nid: The node id the range is on that should be shrunk
3723 * @start_pfn: The new PFN of the range
3724 * @end_pfn: The new PFN of the range
3725 *
3726 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3727 * The map is kept near the end physical page range that has already been
3728 * registered. This function allows an arch to shrink an existing registered
3729 * range.
3730 */
3731 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3732 unsigned long end_pfn)
3733 {
3734 int i, j;
3735 int removed = 0;
3736
3737 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3738 nid, start_pfn, end_pfn);
3739
3740 /* Find the old active region end and shrink */
3741 for_each_active_range_index_in_nid(i, nid) {
3742 if (early_node_map[i].start_pfn >= start_pfn &&
3743 early_node_map[i].end_pfn <= end_pfn) {
3744 /* clear it */
3745 early_node_map[i].start_pfn = 0;
3746 early_node_map[i].end_pfn = 0;
3747 removed = 1;
3748 continue;
3749 }
3750 if (early_node_map[i].start_pfn < start_pfn &&
3751 early_node_map[i].end_pfn > start_pfn) {
3752 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3753 early_node_map[i].end_pfn = start_pfn;
3754 if (temp_end_pfn > end_pfn)
3755 add_active_range(nid, end_pfn, temp_end_pfn);
3756 continue;
3757 }
3758 if (early_node_map[i].start_pfn >= start_pfn &&
3759 early_node_map[i].end_pfn > end_pfn &&
3760 early_node_map[i].start_pfn < end_pfn) {
3761 early_node_map[i].start_pfn = end_pfn;
3762 continue;
3763 }
3764 }
3765
3766 if (!removed)
3767 return;
3768
3769 /* remove the blank ones */
3770 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3771 if (early_node_map[i].nid != nid)
3772 continue;
3773 if (early_node_map[i].end_pfn)
3774 continue;
3775 /* we found it, get rid of it */
3776 for (j = i; j < nr_nodemap_entries - 1; j++)
3777 memcpy(&early_node_map[j], &early_node_map[j+1],
3778 sizeof(early_node_map[j]));
3779 j = nr_nodemap_entries - 1;
3780 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3781 nr_nodemap_entries--;
3782 }
3783 }
3784
3785 /**
3786 * remove_all_active_ranges - Remove all currently registered regions
3787 *
3788 * During discovery, it may be found that a table like SRAT is invalid
3789 * and an alternative discovery method must be used. This function removes
3790 * all currently registered regions.
3791 */
3792 void __init remove_all_active_ranges(void)
3793 {
3794 memset(early_node_map, 0, sizeof(early_node_map));
3795 nr_nodemap_entries = 0;
3796 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3797 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3798 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3799 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3800 }
3801
3802 /* Compare two active node_active_regions */
3803 static int __init cmp_node_active_region(const void *a, const void *b)
3804 {
3805 struct node_active_region *arange = (struct node_active_region *)a;
3806 struct node_active_region *brange = (struct node_active_region *)b;
3807
3808 /* Done this way to avoid overflows */
3809 if (arange->start_pfn > brange->start_pfn)
3810 return 1;
3811 if (arange->start_pfn < brange->start_pfn)
3812 return -1;
3813
3814 return 0;
3815 }
3816
3817 /* sort the node_map by start_pfn */
3818 static void __init sort_node_map(void)
3819 {
3820 sort(early_node_map, (size_t)nr_nodemap_entries,
3821 sizeof(struct node_active_region),
3822 cmp_node_active_region, NULL);
3823 }
3824
3825 /* Find the lowest pfn for a node */
3826 static unsigned long __init find_min_pfn_for_node(int nid)
3827 {
3828 int i;
3829 unsigned long min_pfn = ULONG_MAX;
3830
3831 /* Assuming a sorted map, the first range found has the starting pfn */
3832 for_each_active_range_index_in_nid(i, nid)
3833 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3834
3835 if (min_pfn == ULONG_MAX) {
3836 printk(KERN_WARNING
3837 "Could not find start_pfn for node %d\n", nid);
3838 return 0;
3839 }
3840
3841 return min_pfn;
3842 }
3843
3844 /**
3845 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3846 *
3847 * It returns the minimum PFN based on information provided via
3848 * add_active_range().
3849 */
3850 unsigned long __init find_min_pfn_with_active_regions(void)
3851 {
3852 return find_min_pfn_for_node(MAX_NUMNODES);
3853 }
3854
3855 /*
3856 * early_calculate_totalpages()
3857 * Sum pages in active regions for movable zone.
3858 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3859 */
3860 static unsigned long __init early_calculate_totalpages(void)
3861 {
3862 int i;
3863 unsigned long totalpages = 0;
3864
3865 for (i = 0; i < nr_nodemap_entries; i++) {
3866 unsigned long pages = early_node_map[i].end_pfn -
3867 early_node_map[i].start_pfn;
3868 totalpages += pages;
3869 if (pages)
3870 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3871 }
3872 return totalpages;
3873 }
3874
3875 /*
3876 * Find the PFN the Movable zone begins in each node. Kernel memory
3877 * is spread evenly between nodes as long as the nodes have enough
3878 * memory. When they don't, some nodes will have more kernelcore than
3879 * others
3880 */
3881 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3882 {
3883 int i, nid;
3884 unsigned long usable_startpfn;
3885 unsigned long kernelcore_node, kernelcore_remaining;
3886 unsigned long totalpages = early_calculate_totalpages();
3887 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3888
3889 /*
3890 * If movablecore was specified, calculate what size of
3891 * kernelcore that corresponds so that memory usable for
3892 * any allocation type is evenly spread. If both kernelcore
3893 * and movablecore are specified, then the value of kernelcore
3894 * will be used for required_kernelcore if it's greater than
3895 * what movablecore would have allowed.
3896 */
3897 if (required_movablecore) {
3898 unsigned long corepages;
3899
3900 /*
3901 * Round-up so that ZONE_MOVABLE is at least as large as what
3902 * was requested by the user
3903 */
3904 required_movablecore =
3905 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3906 corepages = totalpages - required_movablecore;
3907
3908 required_kernelcore = max(required_kernelcore, corepages);
3909 }
3910
3911 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3912 if (!required_kernelcore)
3913 return;
3914
3915 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3916 find_usable_zone_for_movable();
3917 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3918
3919 restart:
3920 /* Spread kernelcore memory as evenly as possible throughout nodes */
3921 kernelcore_node = required_kernelcore / usable_nodes;
3922 for_each_node_state(nid, N_HIGH_MEMORY) {
3923 /*
3924 * Recalculate kernelcore_node if the division per node
3925 * now exceeds what is necessary to satisfy the requested
3926 * amount of memory for the kernel
3927 */
3928 if (required_kernelcore < kernelcore_node)
3929 kernelcore_node = required_kernelcore / usable_nodes;
3930
3931 /*
3932 * As the map is walked, we track how much memory is usable
3933 * by the kernel using kernelcore_remaining. When it is
3934 * 0, the rest of the node is usable by ZONE_MOVABLE
3935 */
3936 kernelcore_remaining = kernelcore_node;
3937
3938 /* Go through each range of PFNs within this node */
3939 for_each_active_range_index_in_nid(i, nid) {
3940 unsigned long start_pfn, end_pfn;
3941 unsigned long size_pages;
3942
3943 start_pfn = max(early_node_map[i].start_pfn,
3944 zone_movable_pfn[nid]);
3945 end_pfn = early_node_map[i].end_pfn;
3946 if (start_pfn >= end_pfn)
3947 continue;
3948
3949 /* Account for what is only usable for kernelcore */
3950 if (start_pfn < usable_startpfn) {
3951 unsigned long kernel_pages;
3952 kernel_pages = min(end_pfn, usable_startpfn)
3953 - start_pfn;
3954
3955 kernelcore_remaining -= min(kernel_pages,
3956 kernelcore_remaining);
3957 required_kernelcore -= min(kernel_pages,
3958 required_kernelcore);
3959
3960 /* Continue if range is now fully accounted */
3961 if (end_pfn <= usable_startpfn) {
3962
3963 /*
3964 * Push zone_movable_pfn to the end so
3965 * that if we have to rebalance
3966 * kernelcore across nodes, we will
3967 * not double account here
3968 */
3969 zone_movable_pfn[nid] = end_pfn;
3970 continue;
3971 }
3972 start_pfn = usable_startpfn;
3973 }
3974
3975 /*
3976 * The usable PFN range for ZONE_MOVABLE is from
3977 * start_pfn->end_pfn. Calculate size_pages as the
3978 * number of pages used as kernelcore
3979 */
3980 size_pages = end_pfn - start_pfn;
3981 if (size_pages > kernelcore_remaining)
3982 size_pages = kernelcore_remaining;
3983 zone_movable_pfn[nid] = start_pfn + size_pages;
3984
3985 /*
3986 * Some kernelcore has been met, update counts and
3987 * break if the kernelcore for this node has been
3988 * satisified
3989 */
3990 required_kernelcore -= min(required_kernelcore,
3991 size_pages);
3992 kernelcore_remaining -= size_pages;
3993 if (!kernelcore_remaining)
3994 break;
3995 }
3996 }
3997
3998 /*
3999 * If there is still required_kernelcore, we do another pass with one
4000 * less node in the count. This will push zone_movable_pfn[nid] further
4001 * along on the nodes that still have memory until kernelcore is
4002 * satisified
4003 */
4004 usable_nodes--;
4005 if (usable_nodes && required_kernelcore > usable_nodes)
4006 goto restart;
4007
4008 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4009 for (nid = 0; nid < MAX_NUMNODES; nid++)
4010 zone_movable_pfn[nid] =
4011 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4012 }
4013
4014 /* Any regular memory on that node ? */
4015 static void check_for_regular_memory(pg_data_t *pgdat)
4016 {
4017 #ifdef CONFIG_HIGHMEM
4018 enum zone_type zone_type;
4019
4020 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4021 struct zone *zone = &pgdat->node_zones[zone_type];
4022 if (zone->present_pages)
4023 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4024 }
4025 #endif
4026 }
4027
4028 /**
4029 * free_area_init_nodes - Initialise all pg_data_t and zone data
4030 * @max_zone_pfn: an array of max PFNs for each zone
4031 *
4032 * This will call free_area_init_node() for each active node in the system.
4033 * Using the page ranges provided by add_active_range(), the size of each
4034 * zone in each node and their holes is calculated. If the maximum PFN
4035 * between two adjacent zones match, it is assumed that the zone is empty.
4036 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4037 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4038 * starts where the previous one ended. For example, ZONE_DMA32 starts
4039 * at arch_max_dma_pfn.
4040 */
4041 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4042 {
4043 unsigned long nid;
4044 int i;
4045
4046 /* Sort early_node_map as initialisation assumes it is sorted */
4047 sort_node_map();
4048
4049 /* Record where the zone boundaries are */
4050 memset(arch_zone_lowest_possible_pfn, 0,
4051 sizeof(arch_zone_lowest_possible_pfn));
4052 memset(arch_zone_highest_possible_pfn, 0,
4053 sizeof(arch_zone_highest_possible_pfn));
4054 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4055 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4056 for (i = 1; i < MAX_NR_ZONES; i++) {
4057 if (i == ZONE_MOVABLE)
4058 continue;
4059 arch_zone_lowest_possible_pfn[i] =
4060 arch_zone_highest_possible_pfn[i-1];
4061 arch_zone_highest_possible_pfn[i] =
4062 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4063 }
4064 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4065 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4066
4067 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4068 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4069 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4070
4071 /* Print out the zone ranges */
4072 printk("Zone PFN ranges:\n");
4073 for (i = 0; i < MAX_NR_ZONES; i++) {
4074 if (i == ZONE_MOVABLE)
4075 continue;
4076 printk(" %-8s %0#10lx -> %0#10lx\n",
4077 zone_names[i],
4078 arch_zone_lowest_possible_pfn[i],
4079 arch_zone_highest_possible_pfn[i]);
4080 }
4081
4082 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4083 printk("Movable zone start PFN for each node\n");
4084 for (i = 0; i < MAX_NUMNODES; i++) {
4085 if (zone_movable_pfn[i])
4086 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4087 }
4088
4089 /* Print out the early_node_map[] */
4090 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4091 for (i = 0; i < nr_nodemap_entries; i++)
4092 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4093 early_node_map[i].start_pfn,
4094 early_node_map[i].end_pfn);
4095
4096 /* Initialise every node */
4097 mminit_verify_pageflags_layout();
4098 setup_nr_node_ids();
4099 for_each_online_node(nid) {
4100 pg_data_t *pgdat = NODE_DATA(nid);
4101 free_area_init_node(nid, NULL,
4102 find_min_pfn_for_node(nid), NULL);
4103
4104 /* Any memory on that node */
4105 if (pgdat->node_present_pages)
4106 node_set_state(nid, N_HIGH_MEMORY);
4107 check_for_regular_memory(pgdat);
4108 }
4109 }
4110
4111 static int __init cmdline_parse_core(char *p, unsigned long *core)
4112 {
4113 unsigned long long coremem;
4114 if (!p)
4115 return -EINVAL;
4116
4117 coremem = memparse(p, &p);
4118 *core = coremem >> PAGE_SHIFT;
4119
4120 /* Paranoid check that UL is enough for the coremem value */
4121 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4122
4123 return 0;
4124 }
4125
4126 /*
4127 * kernelcore=size sets the amount of memory for use for allocations that
4128 * cannot be reclaimed or migrated.
4129 */
4130 static int __init cmdline_parse_kernelcore(char *p)
4131 {
4132 return cmdline_parse_core(p, &required_kernelcore);
4133 }
4134
4135 /*
4136 * movablecore=size sets the amount of memory for use for allocations that
4137 * can be reclaimed or migrated.
4138 */
4139 static int __init cmdline_parse_movablecore(char *p)
4140 {
4141 return cmdline_parse_core(p, &required_movablecore);
4142 }
4143
4144 early_param("kernelcore", cmdline_parse_kernelcore);
4145 early_param("movablecore", cmdline_parse_movablecore);
4146
4147 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4148
4149 /**
4150 * set_dma_reserve - set the specified number of pages reserved in the first zone
4151 * @new_dma_reserve: The number of pages to mark reserved
4152 *
4153 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4154 * In the DMA zone, a significant percentage may be consumed by kernel image
4155 * and other unfreeable allocations which can skew the watermarks badly. This
4156 * function may optionally be used to account for unfreeable pages in the
4157 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4158 * smaller per-cpu batchsize.
4159 */
4160 void __init set_dma_reserve(unsigned long new_dma_reserve)
4161 {
4162 dma_reserve = new_dma_reserve;
4163 }
4164
4165 #ifndef CONFIG_NEED_MULTIPLE_NODES
4166 struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
4167 EXPORT_SYMBOL(contig_page_data);
4168 #endif
4169
4170 void __init free_area_init(unsigned long *zones_size)
4171 {
4172 free_area_init_node(0, zones_size,
4173 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4174 }
4175
4176 static int page_alloc_cpu_notify(struct notifier_block *self,
4177 unsigned long action, void *hcpu)
4178 {
4179 int cpu = (unsigned long)hcpu;
4180
4181 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4182 drain_pages(cpu);
4183
4184 /*
4185 * Spill the event counters of the dead processor
4186 * into the current processors event counters.
4187 * This artificially elevates the count of the current
4188 * processor.
4189 */
4190 vm_events_fold_cpu(cpu);
4191
4192 /*
4193 * Zero the differential counters of the dead processor
4194 * so that the vm statistics are consistent.
4195 *
4196 * This is only okay since the processor is dead and cannot
4197 * race with what we are doing.
4198 */
4199 refresh_cpu_vm_stats(cpu);
4200 }
4201 return NOTIFY_OK;
4202 }
4203
4204 void __init page_alloc_init(void)
4205 {
4206 hotcpu_notifier(page_alloc_cpu_notify, 0);
4207 }
4208
4209 /*
4210 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4211 * or min_free_kbytes changes.
4212 */
4213 static void calculate_totalreserve_pages(void)
4214 {
4215 struct pglist_data *pgdat;
4216 unsigned long reserve_pages = 0;
4217 enum zone_type i, j;
4218
4219 for_each_online_pgdat(pgdat) {
4220 for (i = 0; i < MAX_NR_ZONES; i++) {
4221 struct zone *zone = pgdat->node_zones + i;
4222 unsigned long max = 0;
4223
4224 /* Find valid and maximum lowmem_reserve in the zone */
4225 for (j = i; j < MAX_NR_ZONES; j++) {
4226 if (zone->lowmem_reserve[j] > max)
4227 max = zone->lowmem_reserve[j];
4228 }
4229
4230 /* we treat pages_high as reserved pages. */
4231 max += zone->pages_high;
4232
4233 if (max > zone->present_pages)
4234 max = zone->present_pages;
4235 reserve_pages += max;
4236 }
4237 }
4238 totalreserve_pages = reserve_pages;
4239 }
4240
4241 /*
4242 * setup_per_zone_lowmem_reserve - called whenever
4243 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4244 * has a correct pages reserved value, so an adequate number of
4245 * pages are left in the zone after a successful __alloc_pages().
4246 */
4247 static void setup_per_zone_lowmem_reserve(void)
4248 {
4249 struct pglist_data *pgdat;
4250 enum zone_type j, idx;
4251
4252 for_each_online_pgdat(pgdat) {
4253 for (j = 0; j < MAX_NR_ZONES; j++) {
4254 struct zone *zone = pgdat->node_zones + j;
4255 unsigned long present_pages = zone->present_pages;
4256
4257 zone->lowmem_reserve[j] = 0;
4258
4259 idx = j;
4260 while (idx) {
4261 struct zone *lower_zone;
4262
4263 idx--;
4264
4265 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4266 sysctl_lowmem_reserve_ratio[idx] = 1;
4267
4268 lower_zone = pgdat->node_zones + idx;
4269 lower_zone->lowmem_reserve[j] = present_pages /
4270 sysctl_lowmem_reserve_ratio[idx];
4271 present_pages += lower_zone->present_pages;
4272 }
4273 }
4274 }
4275
4276 /* update totalreserve_pages */
4277 calculate_totalreserve_pages();
4278 }
4279
4280 /**
4281 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4282 *
4283 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4284 * with respect to min_free_kbytes.
4285 */
4286 void setup_per_zone_pages_min(void)
4287 {
4288 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4289 unsigned long lowmem_pages = 0;
4290 struct zone *zone;
4291 unsigned long flags;
4292
4293 /* Calculate total number of !ZONE_HIGHMEM pages */
4294 for_each_zone(zone) {
4295 if (!is_highmem(zone))
4296 lowmem_pages += zone->present_pages;
4297 }
4298
4299 for_each_zone(zone) {
4300 u64 tmp;
4301
4302 spin_lock_irqsave(&zone->lock, flags);
4303 tmp = (u64)pages_min * zone->present_pages;
4304 do_div(tmp, lowmem_pages);
4305 if (is_highmem(zone)) {
4306 /*
4307 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4308 * need highmem pages, so cap pages_min to a small
4309 * value here.
4310 *
4311 * The (pages_high-pages_low) and (pages_low-pages_min)
4312 * deltas controls asynch page reclaim, and so should
4313 * not be capped for highmem.
4314 */
4315 int min_pages;
4316
4317 min_pages = zone->present_pages / 1024;
4318 if (min_pages < SWAP_CLUSTER_MAX)
4319 min_pages = SWAP_CLUSTER_MAX;
4320 if (min_pages > 128)
4321 min_pages = 128;
4322 zone->pages_min = min_pages;
4323 } else {
4324 /*
4325 * If it's a lowmem zone, reserve a number of pages
4326 * proportionate to the zone's size.
4327 */
4328 zone->pages_min = tmp;
4329 }
4330
4331 zone->pages_low = zone->pages_min + (tmp >> 2);
4332 zone->pages_high = zone->pages_min + (tmp >> 1);
4333 setup_zone_migrate_reserve(zone);
4334 spin_unlock_irqrestore(&zone->lock, flags);
4335 }
4336
4337 /* update totalreserve_pages */
4338 calculate_totalreserve_pages();
4339 }
4340
4341 /**
4342 * setup_per_zone_inactive_ratio - called when min_free_kbytes changes.
4343 *
4344 * The inactive anon list should be small enough that the VM never has to
4345 * do too much work, but large enough that each inactive page has a chance
4346 * to be referenced again before it is swapped out.
4347 *
4348 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4349 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4350 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4351 * the anonymous pages are kept on the inactive list.
4352 *
4353 * total target max
4354 * memory ratio inactive anon
4355 * -------------------------------------
4356 * 10MB 1 5MB
4357 * 100MB 1 50MB
4358 * 1GB 3 250MB
4359 * 10GB 10 0.9GB
4360 * 100GB 31 3GB
4361 * 1TB 101 10GB
4362 * 10TB 320 32GB
4363 */
4364 static void setup_per_zone_inactive_ratio(void)
4365 {
4366 struct zone *zone;
4367
4368 for_each_zone(zone) {
4369 unsigned int gb, ratio;
4370
4371 /* Zone size in gigabytes */
4372 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4373 ratio = int_sqrt(10 * gb);
4374 if (!ratio)
4375 ratio = 1;
4376
4377 zone->inactive_ratio = ratio;
4378 }
4379 }
4380
4381 /*
4382 * Initialise min_free_kbytes.
4383 *
4384 * For small machines we want it small (128k min). For large machines
4385 * we want it large (64MB max). But it is not linear, because network
4386 * bandwidth does not increase linearly with machine size. We use
4387 *
4388 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4389 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4390 *
4391 * which yields
4392 *
4393 * 16MB: 512k
4394 * 32MB: 724k
4395 * 64MB: 1024k
4396 * 128MB: 1448k
4397 * 256MB: 2048k
4398 * 512MB: 2896k
4399 * 1024MB: 4096k
4400 * 2048MB: 5792k
4401 * 4096MB: 8192k
4402 * 8192MB: 11584k
4403 * 16384MB: 16384k
4404 */
4405 static int __init init_per_zone_pages_min(void)
4406 {
4407 unsigned long lowmem_kbytes;
4408
4409 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4410
4411 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4412 if (min_free_kbytes < 128)
4413 min_free_kbytes = 128;
4414 if (min_free_kbytes > 65536)
4415 min_free_kbytes = 65536;
4416 setup_per_zone_pages_min();
4417 setup_per_zone_lowmem_reserve();
4418 setup_per_zone_inactive_ratio();
4419 return 0;
4420 }
4421 module_init(init_per_zone_pages_min)
4422
4423 /*
4424 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4425 * that we can call two helper functions whenever min_free_kbytes
4426 * changes.
4427 */
4428 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4429 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4430 {
4431 proc_dointvec(table, write, file, buffer, length, ppos);
4432 if (write)
4433 setup_per_zone_pages_min();
4434 return 0;
4435 }
4436
4437 #ifdef CONFIG_NUMA
4438 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4439 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4440 {
4441 struct zone *zone;
4442 int rc;
4443
4444 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4445 if (rc)
4446 return rc;
4447
4448 for_each_zone(zone)
4449 zone->min_unmapped_pages = (zone->present_pages *
4450 sysctl_min_unmapped_ratio) / 100;
4451 return 0;
4452 }
4453
4454 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4455 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4456 {
4457 struct zone *zone;
4458 int rc;
4459
4460 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4461 if (rc)
4462 return rc;
4463
4464 for_each_zone(zone)
4465 zone->min_slab_pages = (zone->present_pages *
4466 sysctl_min_slab_ratio) / 100;
4467 return 0;
4468 }
4469 #endif
4470
4471 /*
4472 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4473 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4474 * whenever sysctl_lowmem_reserve_ratio changes.
4475 *
4476 * The reserve ratio obviously has absolutely no relation with the
4477 * pages_min watermarks. The lowmem reserve ratio can only make sense
4478 * if in function of the boot time zone sizes.
4479 */
4480 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4481 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4482 {
4483 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4484 setup_per_zone_lowmem_reserve();
4485 return 0;
4486 }
4487
4488 /*
4489 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4490 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4491 * can have before it gets flushed back to buddy allocator.
4492 */
4493
4494 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4495 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4496 {
4497 struct zone *zone;
4498 unsigned int cpu;
4499 int ret;
4500
4501 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4502 if (!write || (ret == -EINVAL))
4503 return ret;
4504 for_each_zone(zone) {
4505 for_each_online_cpu(cpu) {
4506 unsigned long high;
4507 high = zone->present_pages / percpu_pagelist_fraction;
4508 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4509 }
4510 }
4511 return 0;
4512 }
4513
4514 int hashdist = HASHDIST_DEFAULT;
4515
4516 #ifdef CONFIG_NUMA
4517 static int __init set_hashdist(char *str)
4518 {
4519 if (!str)
4520 return 0;
4521 hashdist = simple_strtoul(str, &str, 0);
4522 return 1;
4523 }
4524 __setup("hashdist=", set_hashdist);
4525 #endif
4526
4527 /*
4528 * allocate a large system hash table from bootmem
4529 * - it is assumed that the hash table must contain an exact power-of-2
4530 * quantity of entries
4531 * - limit is the number of hash buckets, not the total allocation size
4532 */
4533 void *__init alloc_large_system_hash(const char *tablename,
4534 unsigned long bucketsize,
4535 unsigned long numentries,
4536 int scale,
4537 int flags,
4538 unsigned int *_hash_shift,
4539 unsigned int *_hash_mask,
4540 unsigned long limit)
4541 {
4542 unsigned long long max = limit;
4543 unsigned long log2qty, size;
4544 void *table = NULL;
4545
4546 /* allow the kernel cmdline to have a say */
4547 if (!numentries) {
4548 /* round applicable memory size up to nearest megabyte */
4549 numentries = nr_kernel_pages;
4550 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4551 numentries >>= 20 - PAGE_SHIFT;
4552 numentries <<= 20 - PAGE_SHIFT;
4553
4554 /* limit to 1 bucket per 2^scale bytes of low memory */
4555 if (scale > PAGE_SHIFT)
4556 numentries >>= (scale - PAGE_SHIFT);
4557 else
4558 numentries <<= (PAGE_SHIFT - scale);
4559
4560 /* Make sure we've got at least a 0-order allocation.. */
4561 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4562 numentries = PAGE_SIZE / bucketsize;
4563 }
4564 numentries = roundup_pow_of_two(numentries);
4565
4566 /* limit allocation size to 1/16 total memory by default */
4567 if (max == 0) {
4568 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4569 do_div(max, bucketsize);
4570 }
4571
4572 if (numentries > max)
4573 numentries = max;
4574
4575 log2qty = ilog2(numentries);
4576
4577 do {
4578 size = bucketsize << log2qty;
4579 if (flags & HASH_EARLY)
4580 table = alloc_bootmem_nopanic(size);
4581 else if (hashdist)
4582 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4583 else {
4584 unsigned long order = get_order(size);
4585 table = (void*) __get_free_pages(GFP_ATOMIC, order);
4586 /*
4587 * If bucketsize is not a power-of-two, we may free
4588 * some pages at the end of hash table.
4589 */
4590 if (table) {
4591 unsigned long alloc_end = (unsigned long)table +
4592 (PAGE_SIZE << order);
4593 unsigned long used = (unsigned long)table +
4594 PAGE_ALIGN(size);
4595 split_page(virt_to_page(table), order);
4596 while (used < alloc_end) {
4597 free_page(used);
4598 used += PAGE_SIZE;
4599 }
4600 }
4601 }
4602 } while (!table && size > PAGE_SIZE && --log2qty);
4603
4604 if (!table)
4605 panic("Failed to allocate %s hash table\n", tablename);
4606
4607 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4608 tablename,
4609 (1U << log2qty),
4610 ilog2(size) - PAGE_SHIFT,
4611 size);
4612
4613 if (_hash_shift)
4614 *_hash_shift = log2qty;
4615 if (_hash_mask)
4616 *_hash_mask = (1 << log2qty) - 1;
4617
4618 return table;
4619 }
4620
4621 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4622 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4623 unsigned long pfn)
4624 {
4625 #ifdef CONFIG_SPARSEMEM
4626 return __pfn_to_section(pfn)->pageblock_flags;
4627 #else
4628 return zone->pageblock_flags;
4629 #endif /* CONFIG_SPARSEMEM */
4630 }
4631
4632 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4633 {
4634 #ifdef CONFIG_SPARSEMEM
4635 pfn &= (PAGES_PER_SECTION-1);
4636 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4637 #else
4638 pfn = pfn - zone->zone_start_pfn;
4639 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4640 #endif /* CONFIG_SPARSEMEM */
4641 }
4642
4643 /**
4644 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4645 * @page: The page within the block of interest
4646 * @start_bitidx: The first bit of interest to retrieve
4647 * @end_bitidx: The last bit of interest
4648 * returns pageblock_bits flags
4649 */
4650 unsigned long get_pageblock_flags_group(struct page *page,
4651 int start_bitidx, int end_bitidx)
4652 {
4653 struct zone *zone;
4654 unsigned long *bitmap;
4655 unsigned long pfn, bitidx;
4656 unsigned long flags = 0;
4657 unsigned long value = 1;
4658
4659 zone = page_zone(page);
4660 pfn = page_to_pfn(page);
4661 bitmap = get_pageblock_bitmap(zone, pfn);
4662 bitidx = pfn_to_bitidx(zone, pfn);
4663
4664 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4665 if (test_bit(bitidx + start_bitidx, bitmap))
4666 flags |= value;
4667
4668 return flags;
4669 }
4670
4671 /**
4672 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4673 * @page: The page within the block of interest
4674 * @start_bitidx: The first bit of interest
4675 * @end_bitidx: The last bit of interest
4676 * @flags: The flags to set
4677 */
4678 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4679 int start_bitidx, int end_bitidx)
4680 {
4681 struct zone *zone;
4682 unsigned long *bitmap;
4683 unsigned long pfn, bitidx;
4684 unsigned long value = 1;
4685
4686 zone = page_zone(page);
4687 pfn = page_to_pfn(page);
4688 bitmap = get_pageblock_bitmap(zone, pfn);
4689 bitidx = pfn_to_bitidx(zone, pfn);
4690 VM_BUG_ON(pfn < zone->zone_start_pfn);
4691 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4692
4693 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4694 if (flags & value)
4695 __set_bit(bitidx + start_bitidx, bitmap);
4696 else
4697 __clear_bit(bitidx + start_bitidx, bitmap);
4698 }
4699
4700 /*
4701 * This is designed as sub function...plz see page_isolation.c also.
4702 * set/clear page block's type to be ISOLATE.
4703 * page allocater never alloc memory from ISOLATE block.
4704 */
4705
4706 int set_migratetype_isolate(struct page *page)
4707 {
4708 struct zone *zone;
4709 unsigned long flags;
4710 int ret = -EBUSY;
4711
4712 zone = page_zone(page);
4713 spin_lock_irqsave(&zone->lock, flags);
4714 /*
4715 * In future, more migrate types will be able to be isolation target.
4716 */
4717 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4718 goto out;
4719 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4720 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4721 ret = 0;
4722 out:
4723 spin_unlock_irqrestore(&zone->lock, flags);
4724 if (!ret)
4725 drain_all_pages();
4726 return ret;
4727 }
4728
4729 void unset_migratetype_isolate(struct page *page)
4730 {
4731 struct zone *zone;
4732 unsigned long flags;
4733 zone = page_zone(page);
4734 spin_lock_irqsave(&zone->lock, flags);
4735 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4736 goto out;
4737 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4738 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4739 out:
4740 spin_unlock_irqrestore(&zone->lock, flags);
4741 }
4742
4743 #ifdef CONFIG_MEMORY_HOTREMOVE
4744 /*
4745 * All pages in the range must be isolated before calling this.
4746 */
4747 void
4748 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4749 {
4750 struct page *page;
4751 struct zone *zone;
4752 int order, i;
4753 unsigned long pfn;
4754 unsigned long flags;
4755 /* find the first valid pfn */
4756 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4757 if (pfn_valid(pfn))
4758 break;
4759 if (pfn == end_pfn)
4760 return;
4761 zone = page_zone(pfn_to_page(pfn));
4762 spin_lock_irqsave(&zone->lock, flags);
4763 pfn = start_pfn;
4764 while (pfn < end_pfn) {
4765 if (!pfn_valid(pfn)) {
4766 pfn++;
4767 continue;
4768 }
4769 page = pfn_to_page(pfn);
4770 BUG_ON(page_count(page));
4771 BUG_ON(!PageBuddy(page));
4772 order = page_order(page);
4773 #ifdef CONFIG_DEBUG_VM
4774 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4775 pfn, 1 << order, end_pfn);
4776 #endif
4777 list_del(&page->lru);
4778 rmv_page_order(page);
4779 zone->free_area[order].nr_free--;
4780 __mod_zone_page_state(zone, NR_FREE_PAGES,
4781 - (1UL << order));
4782 for (i = 0; i < (1 << order); i++)
4783 SetPageReserved((page+i));
4784 pfn += (1 << order);
4785 }
4786 spin_unlock_irqrestore(&zone->lock, flags);
4787 }
4788 #endif