]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/page_alloc.c
mm, page_alloc: remove field from alloc_context
[mirror_ubuntu-focal-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121
122 /*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 return page->index;
133 }
134
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 page->index = migratetype;
138 }
139
140 #ifdef CONFIG_PM_SLEEP
141 /*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
149
150 static gfp_t saved_gfp_mask;
151
152 void pm_restore_gfp_mask(void)
153 {
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
159 }
160
161 void pm_restrict_gfp_mask(void)
162 {
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168
169 bool pm_suspended_storage(void)
170 {
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180
181 static void __free_pages_ok(struct page *page, unsigned int order);
182
183 /*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
193 */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 32,
203 #endif
204 32,
205 };
206
207 EXPORT_SYMBOL(totalram_pages);
208
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
224 };
225
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231 #ifdef CONFIG_CMA
232 "CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236 #endif
237 };
238
239 compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247 #endif
248 };
249
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277
278 int page_group_by_mobility_disabled __read_mostly;
279
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 return true;
291
292 return false;
293 }
294
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301 }
302
303 /*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310 {
311 unsigned long max_initialise;
312
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
322
323 (*nr_initialised)++;
324 if ((*nr_initialised > max_initialise) &&
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 return false;
340 }
341
342 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343 {
344 return false;
345 }
346
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350 {
351 return true;
352 }
353 #endif
354
355
356 void set_pageblock_migratetype(struct page *page, int migratetype)
357 {
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
360 migratetype = MIGRATE_UNMOVABLE;
361
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364 }
365
366 #ifdef CONFIG_DEBUG_VM
367 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
368 {
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
372 unsigned long sp, start_pfn;
373
374 do {
375 seq = zone_span_seqbegin(zone);
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
378 if (!zone_spans_pfn(zone, pfn))
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
382 if (ret)
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
386
387 return ret;
388 }
389
390 static int page_is_consistent(struct zone *zone, struct page *page)
391 {
392 if (!pfn_valid_within(page_to_pfn(page)))
393 return 0;
394 if (zone != page_zone(page))
395 return 0;
396
397 return 1;
398 }
399 /*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402 static int bad_range(struct zone *zone, struct page *page)
403 {
404 if (page_outside_zone_boundaries(zone, page))
405 return 1;
406 if (!page_is_consistent(zone, page))
407 return 1;
408
409 return 0;
410 }
411 #else
412 static inline int bad_range(struct zone *zone, struct page *page)
413 {
414 return 0;
415 }
416 #endif
417
418 static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
420 {
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
427 page_mapcount_reset(page); /* remove PageBuddy */
428 return;
429 }
430
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
441 pr_alert(
442 "BUG: Bad page state: %lu messages suppressed\n",
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
452 current->comm, page_to_pfn(page));
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
458 dump_page_owner(page);
459
460 print_modules();
461 dump_stack();
462 out:
463 /* Leave bad fields for debug, except PageBuddy could make trouble */
464 page_mapcount_reset(page); /* remove PageBuddy */
465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
466 }
467
468 /*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
472 *
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
475 *
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
478 *
479 * The first tail page's ->compound_order holds the order of allocation.
480 * This usage means that zero-order pages may not be compound.
481 */
482
483 void free_compound_page(struct page *page)
484 {
485 __free_pages_ok(page, compound_order(page));
486 }
487
488 void prep_compound_page(struct page *page, unsigned int order)
489 {
490 int i;
491 int nr_pages = 1 << order;
492
493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
498 set_page_count(p, 0);
499 p->mapping = TAIL_MAPPING;
500 set_compound_head(p, page);
501 }
502 atomic_set(compound_mapcount_ptr(page), -1);
503 }
504
505 #ifdef CONFIG_DEBUG_PAGEALLOC
506 unsigned int _debug_guardpage_minorder;
507 bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
509 EXPORT_SYMBOL(_debug_pagealloc_enabled);
510 bool _debug_guardpage_enabled __read_mostly;
511
512 static int __init early_debug_pagealloc(char *buf)
513 {
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
523 return 0;
524 }
525 early_param("debug_pagealloc", early_debug_pagealloc);
526
527 static bool need_debug_guardpage(void)
528 {
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
533 return true;
534 }
535
536 static void init_debug_guardpage(void)
537 {
538 if (!debug_pagealloc_enabled())
539 return;
540
541 _debug_guardpage_enabled = true;
542 }
543
544 struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547 };
548
549 static int __init debug_guardpage_minorder_setup(char *buf)
550 {
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
554 pr_err("Bad debug_guardpage_minorder value\n");
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
559 return 0;
560 }
561 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
563 static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
565 {
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
578 }
579
580 static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
582 {
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
594 }
595 #else
596 struct page_ext_operations debug_guardpage_ops = { NULL, };
597 static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599 static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
601 #endif
602
603 static inline void set_page_order(struct page *page, unsigned int order)
604 {
605 set_page_private(page, order);
606 __SetPageBuddy(page);
607 }
608
609 static inline void rmv_page_order(struct page *page)
610 {
611 __ClearPageBuddy(page);
612 set_page_private(page, 0);
613 }
614
615 /*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
618 * (a) the buddy is not in a hole &&
619 * (b) the buddy is in the buddy system &&
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
622 *
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
627 *
628 * For recording page's order, we use page_private(page).
629 */
630 static inline int page_is_buddy(struct page *page, struct page *buddy,
631 unsigned int order)
632 {
633 if (!pfn_valid_within(page_to_pfn(buddy)))
634 return 0;
635
636 if (page_is_guard(buddy) && page_order(buddy) == order) {
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
642 return 1;
643 }
644
645 if (PageBuddy(buddy) && page_order(buddy) == order) {
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
656 return 1;
657 }
658 return 0;
659 }
660
661 /*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
677 * So when we are allocating or freeing one, we can derive the state of the
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
680 * If a block is freed, and its buddy is also free, then this
681 * triggers coalescing into a block of larger size.
682 *
683 * -- nyc
684 */
685
686 static inline void __free_one_page(struct page *page,
687 unsigned long pfn,
688 struct zone *zone, unsigned int order,
689 int migratetype)
690 {
691 unsigned long page_idx;
692 unsigned long combined_idx;
693 unsigned long uninitialized_var(buddy_idx);
694 struct page *buddy;
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
698
699 VM_BUG_ON(!zone_is_initialized(zone));
700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
701
702 VM_BUG_ON(migratetype == -1);
703 if (likely(!is_migrate_isolate(migratetype)))
704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
705
706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
707
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
710
711 continue_merging:
712 while (order < max_order - 1) {
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
715 if (!page_is_buddy(page, buddy, order))
716 goto done_merging;
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
722 clear_page_guard(zone, buddy, order, migratetype);
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
728 combined_idx = buddy_idx & page_idx;
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758 done_merging:
759 set_page_order(page, order);
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
770 struct page *higher_page, *higher_buddy;
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
774 higher_buddy = higher_page + (buddy_idx - combined_idx);
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783 out:
784 zone->free_area[order].nr_free++;
785 }
786
787 static inline int free_pages_check(struct page *page)
788 {
789 const char *bad_reason = NULL;
790 unsigned long bad_flags = 0;
791
792 if (unlikely(atomic_read(&page->_mapcount) != -1))
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
796 if (unlikely(page_ref_count(page) != 0))
797 bad_reason = "nonzero _refcount";
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
802 #ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805 #endif
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
808 return 1;
809 }
810 page_cpupid_reset_last(page);
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
814 }
815
816 /*
817 * Frees a number of pages from the PCP lists
818 * Assumes all pages on list are in same zone, and of same order.
819 * count is the number of pages to free.
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
827 static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
829 {
830 int migratetype = 0;
831 int batch_free = 0;
832 int to_free = count;
833 unsigned long nr_scanned;
834 bool isolated_pageblocks;
835
836 spin_lock(&zone->lock);
837 isolated_pageblocks = has_isolate_pageblock(zone);
838 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
839 if (nr_scanned)
840 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
841
842 while (to_free) {
843 struct page *page;
844 struct list_head *list;
845
846 /*
847 * Remove pages from lists in a round-robin fashion. A
848 * batch_free count is maintained that is incremented when an
849 * empty list is encountered. This is so more pages are freed
850 * off fuller lists instead of spinning excessively around empty
851 * lists
852 */
853 do {
854 batch_free++;
855 if (++migratetype == MIGRATE_PCPTYPES)
856 migratetype = 0;
857 list = &pcp->lists[migratetype];
858 } while (list_empty(list));
859
860 /* This is the only non-empty list. Free them all. */
861 if (batch_free == MIGRATE_PCPTYPES)
862 batch_free = to_free;
863
864 do {
865 int mt; /* migratetype of the to-be-freed page */
866
867 page = list_last_entry(list, struct page, lru);
868 /* must delete as __free_one_page list manipulates */
869 list_del(&page->lru);
870
871 mt = get_pcppage_migratetype(page);
872 /* MIGRATE_ISOLATE page should not go to pcplists */
873 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
874 /* Pageblock could have been isolated meanwhile */
875 if (unlikely(isolated_pageblocks))
876 mt = get_pageblock_migratetype(page);
877
878 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
879 trace_mm_page_pcpu_drain(page, 0, mt);
880 } while (--to_free && --batch_free && !list_empty(list));
881 }
882 spin_unlock(&zone->lock);
883 }
884
885 static void free_one_page(struct zone *zone,
886 struct page *page, unsigned long pfn,
887 unsigned int order,
888 int migratetype)
889 {
890 unsigned long nr_scanned;
891 spin_lock(&zone->lock);
892 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
893 if (nr_scanned)
894 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
895
896 if (unlikely(has_isolate_pageblock(zone) ||
897 is_migrate_isolate(migratetype))) {
898 migratetype = get_pfnblock_migratetype(page, pfn);
899 }
900 __free_one_page(page, pfn, zone, order, migratetype);
901 spin_unlock(&zone->lock);
902 }
903
904 static int free_tail_pages_check(struct page *head_page, struct page *page)
905 {
906 int ret = 1;
907
908 /*
909 * We rely page->lru.next never has bit 0 set, unless the page
910 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
911 */
912 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
913
914 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
915 ret = 0;
916 goto out;
917 }
918 switch (page - head_page) {
919 case 1:
920 /* the first tail page: ->mapping is compound_mapcount() */
921 if (unlikely(compound_mapcount(page))) {
922 bad_page(page, "nonzero compound_mapcount", 0);
923 goto out;
924 }
925 break;
926 case 2:
927 /*
928 * the second tail page: ->mapping is
929 * page_deferred_list().next -- ignore value.
930 */
931 break;
932 default:
933 if (page->mapping != TAIL_MAPPING) {
934 bad_page(page, "corrupted mapping in tail page", 0);
935 goto out;
936 }
937 break;
938 }
939 if (unlikely(!PageTail(page))) {
940 bad_page(page, "PageTail not set", 0);
941 goto out;
942 }
943 if (unlikely(compound_head(page) != head_page)) {
944 bad_page(page, "compound_head not consistent", 0);
945 goto out;
946 }
947 ret = 0;
948 out:
949 page->mapping = NULL;
950 clear_compound_head(page);
951 return ret;
952 }
953
954 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
955 unsigned long zone, int nid)
956 {
957 set_page_links(page, zone, nid, pfn);
958 init_page_count(page);
959 page_mapcount_reset(page);
960 page_cpupid_reset_last(page);
961
962 INIT_LIST_HEAD(&page->lru);
963 #ifdef WANT_PAGE_VIRTUAL
964 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
965 if (!is_highmem_idx(zone))
966 set_page_address(page, __va(pfn << PAGE_SHIFT));
967 #endif
968 }
969
970 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
971 int nid)
972 {
973 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
974 }
975
976 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
977 static void init_reserved_page(unsigned long pfn)
978 {
979 pg_data_t *pgdat;
980 int nid, zid;
981
982 if (!early_page_uninitialised(pfn))
983 return;
984
985 nid = early_pfn_to_nid(pfn);
986 pgdat = NODE_DATA(nid);
987
988 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
989 struct zone *zone = &pgdat->node_zones[zid];
990
991 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
992 break;
993 }
994 __init_single_pfn(pfn, zid, nid);
995 }
996 #else
997 static inline void init_reserved_page(unsigned long pfn)
998 {
999 }
1000 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1001
1002 /*
1003 * Initialised pages do not have PageReserved set. This function is
1004 * called for each range allocated by the bootmem allocator and
1005 * marks the pages PageReserved. The remaining valid pages are later
1006 * sent to the buddy page allocator.
1007 */
1008 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
1009 {
1010 unsigned long start_pfn = PFN_DOWN(start);
1011 unsigned long end_pfn = PFN_UP(end);
1012
1013 for (; start_pfn < end_pfn; start_pfn++) {
1014 if (pfn_valid(start_pfn)) {
1015 struct page *page = pfn_to_page(start_pfn);
1016
1017 init_reserved_page(start_pfn);
1018
1019 /* Avoid false-positive PageTail() */
1020 INIT_LIST_HEAD(&page->lru);
1021
1022 SetPageReserved(page);
1023 }
1024 }
1025 }
1026
1027 static bool free_pages_prepare(struct page *page, unsigned int order)
1028 {
1029 int bad = 0;
1030
1031 VM_BUG_ON_PAGE(PageTail(page), page);
1032
1033 trace_mm_page_free(page, order);
1034 kmemcheck_free_shadow(page, order);
1035 kasan_free_pages(page, order);
1036
1037 /*
1038 * Check tail pages before head page information is cleared to
1039 * avoid checking PageCompound for order-0 pages.
1040 */
1041 if (unlikely(order)) {
1042 bool compound = PageCompound(page);
1043 int i;
1044
1045 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1046
1047 for (i = 1; i < (1 << order); i++) {
1048 if (compound)
1049 bad += free_tail_pages_check(page, page + i);
1050 bad += free_pages_check(page + i);
1051 }
1052 }
1053 if (PageAnonHead(page))
1054 page->mapping = NULL;
1055 bad += free_pages_check(page);
1056 if (bad)
1057 return false;
1058
1059 reset_page_owner(page, order);
1060
1061 if (!PageHighMem(page)) {
1062 debug_check_no_locks_freed(page_address(page),
1063 PAGE_SIZE << order);
1064 debug_check_no_obj_freed(page_address(page),
1065 PAGE_SIZE << order);
1066 }
1067 arch_free_page(page, order);
1068 kernel_poison_pages(page, 1 << order, 0);
1069 kernel_map_pages(page, 1 << order, 0);
1070
1071 return true;
1072 }
1073
1074 static void __free_pages_ok(struct page *page, unsigned int order)
1075 {
1076 unsigned long flags;
1077 int migratetype;
1078 unsigned long pfn = page_to_pfn(page);
1079
1080 if (!free_pages_prepare(page, order))
1081 return;
1082
1083 migratetype = get_pfnblock_migratetype(page, pfn);
1084 local_irq_save(flags);
1085 __count_vm_events(PGFREE, 1 << order);
1086 free_one_page(page_zone(page), page, pfn, order, migratetype);
1087 local_irq_restore(flags);
1088 }
1089
1090 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1091 {
1092 unsigned int nr_pages = 1 << order;
1093 struct page *p = page;
1094 unsigned int loop;
1095
1096 prefetchw(p);
1097 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1098 prefetchw(p + 1);
1099 __ClearPageReserved(p);
1100 set_page_count(p, 0);
1101 }
1102 __ClearPageReserved(p);
1103 set_page_count(p, 0);
1104
1105 page_zone(page)->managed_pages += nr_pages;
1106 set_page_refcounted(page);
1107 __free_pages(page, order);
1108 }
1109
1110 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1111 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1112
1113 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1114
1115 int __meminit early_pfn_to_nid(unsigned long pfn)
1116 {
1117 static DEFINE_SPINLOCK(early_pfn_lock);
1118 int nid;
1119
1120 spin_lock(&early_pfn_lock);
1121 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1122 if (nid < 0)
1123 nid = 0;
1124 spin_unlock(&early_pfn_lock);
1125
1126 return nid;
1127 }
1128 #endif
1129
1130 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1131 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1132 struct mminit_pfnnid_cache *state)
1133 {
1134 int nid;
1135
1136 nid = __early_pfn_to_nid(pfn, state);
1137 if (nid >= 0 && nid != node)
1138 return false;
1139 return true;
1140 }
1141
1142 /* Only safe to use early in boot when initialisation is single-threaded */
1143 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1144 {
1145 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1146 }
1147
1148 #else
1149
1150 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1151 {
1152 return true;
1153 }
1154 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1155 struct mminit_pfnnid_cache *state)
1156 {
1157 return true;
1158 }
1159 #endif
1160
1161
1162 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1163 unsigned int order)
1164 {
1165 if (early_page_uninitialised(pfn))
1166 return;
1167 return __free_pages_boot_core(page, order);
1168 }
1169
1170 /*
1171 * Check that the whole (or subset of) a pageblock given by the interval of
1172 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1173 * with the migration of free compaction scanner. The scanners then need to
1174 * use only pfn_valid_within() check for arches that allow holes within
1175 * pageblocks.
1176 *
1177 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1178 *
1179 * It's possible on some configurations to have a setup like node0 node1 node0
1180 * i.e. it's possible that all pages within a zones range of pages do not
1181 * belong to a single zone. We assume that a border between node0 and node1
1182 * can occur within a single pageblock, but not a node0 node1 node0
1183 * interleaving within a single pageblock. It is therefore sufficient to check
1184 * the first and last page of a pageblock and avoid checking each individual
1185 * page in a pageblock.
1186 */
1187 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1188 unsigned long end_pfn, struct zone *zone)
1189 {
1190 struct page *start_page;
1191 struct page *end_page;
1192
1193 /* end_pfn is one past the range we are checking */
1194 end_pfn--;
1195
1196 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1197 return NULL;
1198
1199 start_page = pfn_to_page(start_pfn);
1200
1201 if (page_zone(start_page) != zone)
1202 return NULL;
1203
1204 end_page = pfn_to_page(end_pfn);
1205
1206 /* This gives a shorter code than deriving page_zone(end_page) */
1207 if (page_zone_id(start_page) != page_zone_id(end_page))
1208 return NULL;
1209
1210 return start_page;
1211 }
1212
1213 void set_zone_contiguous(struct zone *zone)
1214 {
1215 unsigned long block_start_pfn = zone->zone_start_pfn;
1216 unsigned long block_end_pfn;
1217
1218 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1219 for (; block_start_pfn < zone_end_pfn(zone);
1220 block_start_pfn = block_end_pfn,
1221 block_end_pfn += pageblock_nr_pages) {
1222
1223 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1224
1225 if (!__pageblock_pfn_to_page(block_start_pfn,
1226 block_end_pfn, zone))
1227 return;
1228 }
1229
1230 /* We confirm that there is no hole */
1231 zone->contiguous = true;
1232 }
1233
1234 void clear_zone_contiguous(struct zone *zone)
1235 {
1236 zone->contiguous = false;
1237 }
1238
1239 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1240 static void __init deferred_free_range(struct page *page,
1241 unsigned long pfn, int nr_pages)
1242 {
1243 int i;
1244
1245 if (!page)
1246 return;
1247
1248 /* Free a large naturally-aligned chunk if possible */
1249 if (nr_pages == MAX_ORDER_NR_PAGES &&
1250 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1251 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1252 __free_pages_boot_core(page, MAX_ORDER-1);
1253 return;
1254 }
1255
1256 for (i = 0; i < nr_pages; i++, page++)
1257 __free_pages_boot_core(page, 0);
1258 }
1259
1260 /* Completion tracking for deferred_init_memmap() threads */
1261 static atomic_t pgdat_init_n_undone __initdata;
1262 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1263
1264 static inline void __init pgdat_init_report_one_done(void)
1265 {
1266 if (atomic_dec_and_test(&pgdat_init_n_undone))
1267 complete(&pgdat_init_all_done_comp);
1268 }
1269
1270 /* Initialise remaining memory on a node */
1271 static int __init deferred_init_memmap(void *data)
1272 {
1273 pg_data_t *pgdat = data;
1274 int nid = pgdat->node_id;
1275 struct mminit_pfnnid_cache nid_init_state = { };
1276 unsigned long start = jiffies;
1277 unsigned long nr_pages = 0;
1278 unsigned long walk_start, walk_end;
1279 int i, zid;
1280 struct zone *zone;
1281 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1282 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1283
1284 if (first_init_pfn == ULONG_MAX) {
1285 pgdat_init_report_one_done();
1286 return 0;
1287 }
1288
1289 /* Bind memory initialisation thread to a local node if possible */
1290 if (!cpumask_empty(cpumask))
1291 set_cpus_allowed_ptr(current, cpumask);
1292
1293 /* Sanity check boundaries */
1294 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1295 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1296 pgdat->first_deferred_pfn = ULONG_MAX;
1297
1298 /* Only the highest zone is deferred so find it */
1299 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1300 zone = pgdat->node_zones + zid;
1301 if (first_init_pfn < zone_end_pfn(zone))
1302 break;
1303 }
1304
1305 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1306 unsigned long pfn, end_pfn;
1307 struct page *page = NULL;
1308 struct page *free_base_page = NULL;
1309 unsigned long free_base_pfn = 0;
1310 int nr_to_free = 0;
1311
1312 end_pfn = min(walk_end, zone_end_pfn(zone));
1313 pfn = first_init_pfn;
1314 if (pfn < walk_start)
1315 pfn = walk_start;
1316 if (pfn < zone->zone_start_pfn)
1317 pfn = zone->zone_start_pfn;
1318
1319 for (; pfn < end_pfn; pfn++) {
1320 if (!pfn_valid_within(pfn))
1321 goto free_range;
1322
1323 /*
1324 * Ensure pfn_valid is checked every
1325 * MAX_ORDER_NR_PAGES for memory holes
1326 */
1327 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1328 if (!pfn_valid(pfn)) {
1329 page = NULL;
1330 goto free_range;
1331 }
1332 }
1333
1334 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1335 page = NULL;
1336 goto free_range;
1337 }
1338
1339 /* Minimise pfn page lookups and scheduler checks */
1340 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1341 page++;
1342 } else {
1343 nr_pages += nr_to_free;
1344 deferred_free_range(free_base_page,
1345 free_base_pfn, nr_to_free);
1346 free_base_page = NULL;
1347 free_base_pfn = nr_to_free = 0;
1348
1349 page = pfn_to_page(pfn);
1350 cond_resched();
1351 }
1352
1353 if (page->flags) {
1354 VM_BUG_ON(page_zone(page) != zone);
1355 goto free_range;
1356 }
1357
1358 __init_single_page(page, pfn, zid, nid);
1359 if (!free_base_page) {
1360 free_base_page = page;
1361 free_base_pfn = pfn;
1362 nr_to_free = 0;
1363 }
1364 nr_to_free++;
1365
1366 /* Where possible, batch up pages for a single free */
1367 continue;
1368 free_range:
1369 /* Free the current block of pages to allocator */
1370 nr_pages += nr_to_free;
1371 deferred_free_range(free_base_page, free_base_pfn,
1372 nr_to_free);
1373 free_base_page = NULL;
1374 free_base_pfn = nr_to_free = 0;
1375 }
1376
1377 first_init_pfn = max(end_pfn, first_init_pfn);
1378 }
1379
1380 /* Sanity check that the next zone really is unpopulated */
1381 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1382
1383 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1384 jiffies_to_msecs(jiffies - start));
1385
1386 pgdat_init_report_one_done();
1387 return 0;
1388 }
1389 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1390
1391 void __init page_alloc_init_late(void)
1392 {
1393 struct zone *zone;
1394
1395 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1396 int nid;
1397
1398 /* There will be num_node_state(N_MEMORY) threads */
1399 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1400 for_each_node_state(nid, N_MEMORY) {
1401 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1402 }
1403
1404 /* Block until all are initialised */
1405 wait_for_completion(&pgdat_init_all_done_comp);
1406
1407 /* Reinit limits that are based on free pages after the kernel is up */
1408 files_maxfiles_init();
1409 #endif
1410
1411 for_each_populated_zone(zone)
1412 set_zone_contiguous(zone);
1413 }
1414
1415 #ifdef CONFIG_CMA
1416 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1417 void __init init_cma_reserved_pageblock(struct page *page)
1418 {
1419 unsigned i = pageblock_nr_pages;
1420 struct page *p = page;
1421
1422 do {
1423 __ClearPageReserved(p);
1424 set_page_count(p, 0);
1425 } while (++p, --i);
1426
1427 set_pageblock_migratetype(page, MIGRATE_CMA);
1428
1429 if (pageblock_order >= MAX_ORDER) {
1430 i = pageblock_nr_pages;
1431 p = page;
1432 do {
1433 set_page_refcounted(p);
1434 __free_pages(p, MAX_ORDER - 1);
1435 p += MAX_ORDER_NR_PAGES;
1436 } while (i -= MAX_ORDER_NR_PAGES);
1437 } else {
1438 set_page_refcounted(page);
1439 __free_pages(page, pageblock_order);
1440 }
1441
1442 adjust_managed_page_count(page, pageblock_nr_pages);
1443 }
1444 #endif
1445
1446 /*
1447 * The order of subdivision here is critical for the IO subsystem.
1448 * Please do not alter this order without good reasons and regression
1449 * testing. Specifically, as large blocks of memory are subdivided,
1450 * the order in which smaller blocks are delivered depends on the order
1451 * they're subdivided in this function. This is the primary factor
1452 * influencing the order in which pages are delivered to the IO
1453 * subsystem according to empirical testing, and this is also justified
1454 * by considering the behavior of a buddy system containing a single
1455 * large block of memory acted on by a series of small allocations.
1456 * This behavior is a critical factor in sglist merging's success.
1457 *
1458 * -- nyc
1459 */
1460 static inline void expand(struct zone *zone, struct page *page,
1461 int low, int high, struct free_area *area,
1462 int migratetype)
1463 {
1464 unsigned long size = 1 << high;
1465
1466 while (high > low) {
1467 area--;
1468 high--;
1469 size >>= 1;
1470 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1471
1472 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1473 debug_guardpage_enabled() &&
1474 high < debug_guardpage_minorder()) {
1475 /*
1476 * Mark as guard pages (or page), that will allow to
1477 * merge back to allocator when buddy will be freed.
1478 * Corresponding page table entries will not be touched,
1479 * pages will stay not present in virtual address space
1480 */
1481 set_page_guard(zone, &page[size], high, migratetype);
1482 continue;
1483 }
1484 list_add(&page[size].lru, &area->free_list[migratetype]);
1485 area->nr_free++;
1486 set_page_order(&page[size], high);
1487 }
1488 }
1489
1490 /*
1491 * This page is about to be returned from the page allocator
1492 */
1493 static inline int check_new_page(struct page *page)
1494 {
1495 const char *bad_reason = NULL;
1496 unsigned long bad_flags = 0;
1497
1498 if (unlikely(atomic_read(&page->_mapcount) != -1))
1499 bad_reason = "nonzero mapcount";
1500 if (unlikely(page->mapping != NULL))
1501 bad_reason = "non-NULL mapping";
1502 if (unlikely(page_ref_count(page) != 0))
1503 bad_reason = "nonzero _count";
1504 if (unlikely(page->flags & __PG_HWPOISON)) {
1505 bad_reason = "HWPoisoned (hardware-corrupted)";
1506 bad_flags = __PG_HWPOISON;
1507 }
1508 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1509 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1510 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1511 }
1512 #ifdef CONFIG_MEMCG
1513 if (unlikely(page->mem_cgroup))
1514 bad_reason = "page still charged to cgroup";
1515 #endif
1516 if (unlikely(bad_reason)) {
1517 bad_page(page, bad_reason, bad_flags);
1518 return 1;
1519 }
1520 return 0;
1521 }
1522
1523 static inline bool free_pages_prezeroed(bool poisoned)
1524 {
1525 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1526 page_poisoning_enabled() && poisoned;
1527 }
1528
1529 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1530 unsigned int alloc_flags)
1531 {
1532 int i;
1533 bool poisoned = true;
1534
1535 for (i = 0; i < (1 << order); i++) {
1536 struct page *p = page + i;
1537 if (unlikely(check_new_page(p)))
1538 return 1;
1539 if (poisoned)
1540 poisoned &= page_is_poisoned(p);
1541 }
1542
1543 set_page_private(page, 0);
1544 set_page_refcounted(page);
1545
1546 arch_alloc_page(page, order);
1547 kernel_map_pages(page, 1 << order, 1);
1548 kernel_poison_pages(page, 1 << order, 1);
1549 kasan_alloc_pages(page, order);
1550
1551 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1552 for (i = 0; i < (1 << order); i++)
1553 clear_highpage(page + i);
1554
1555 if (order && (gfp_flags & __GFP_COMP))
1556 prep_compound_page(page, order);
1557
1558 set_page_owner(page, order, gfp_flags);
1559
1560 /*
1561 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1562 * allocate the page. The expectation is that the caller is taking
1563 * steps that will free more memory. The caller should avoid the page
1564 * being used for !PFMEMALLOC purposes.
1565 */
1566 if (alloc_flags & ALLOC_NO_WATERMARKS)
1567 set_page_pfmemalloc(page);
1568 else
1569 clear_page_pfmemalloc(page);
1570
1571 return 0;
1572 }
1573
1574 /*
1575 * Go through the free lists for the given migratetype and remove
1576 * the smallest available page from the freelists
1577 */
1578 static inline
1579 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1580 int migratetype)
1581 {
1582 unsigned int current_order;
1583 struct free_area *area;
1584 struct page *page;
1585
1586 /* Find a page of the appropriate size in the preferred list */
1587 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1588 area = &(zone->free_area[current_order]);
1589 page = list_first_entry_or_null(&area->free_list[migratetype],
1590 struct page, lru);
1591 if (!page)
1592 continue;
1593 list_del(&page->lru);
1594 rmv_page_order(page);
1595 area->nr_free--;
1596 expand(zone, page, order, current_order, area, migratetype);
1597 set_pcppage_migratetype(page, migratetype);
1598 return page;
1599 }
1600
1601 return NULL;
1602 }
1603
1604
1605 /*
1606 * This array describes the order lists are fallen back to when
1607 * the free lists for the desirable migrate type are depleted
1608 */
1609 static int fallbacks[MIGRATE_TYPES][4] = {
1610 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1611 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1612 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1613 #ifdef CONFIG_CMA
1614 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1615 #endif
1616 #ifdef CONFIG_MEMORY_ISOLATION
1617 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1618 #endif
1619 };
1620
1621 #ifdef CONFIG_CMA
1622 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1623 unsigned int order)
1624 {
1625 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1626 }
1627 #else
1628 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1629 unsigned int order) { return NULL; }
1630 #endif
1631
1632 /*
1633 * Move the free pages in a range to the free lists of the requested type.
1634 * Note that start_page and end_pages are not aligned on a pageblock
1635 * boundary. If alignment is required, use move_freepages_block()
1636 */
1637 int move_freepages(struct zone *zone,
1638 struct page *start_page, struct page *end_page,
1639 int migratetype)
1640 {
1641 struct page *page;
1642 unsigned int order;
1643 int pages_moved = 0;
1644
1645 #ifndef CONFIG_HOLES_IN_ZONE
1646 /*
1647 * page_zone is not safe to call in this context when
1648 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1649 * anyway as we check zone boundaries in move_freepages_block().
1650 * Remove at a later date when no bug reports exist related to
1651 * grouping pages by mobility
1652 */
1653 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1654 #endif
1655
1656 for (page = start_page; page <= end_page;) {
1657 /* Make sure we are not inadvertently changing nodes */
1658 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1659
1660 if (!pfn_valid_within(page_to_pfn(page))) {
1661 page++;
1662 continue;
1663 }
1664
1665 if (!PageBuddy(page)) {
1666 page++;
1667 continue;
1668 }
1669
1670 order = page_order(page);
1671 list_move(&page->lru,
1672 &zone->free_area[order].free_list[migratetype]);
1673 page += 1 << order;
1674 pages_moved += 1 << order;
1675 }
1676
1677 return pages_moved;
1678 }
1679
1680 int move_freepages_block(struct zone *zone, struct page *page,
1681 int migratetype)
1682 {
1683 unsigned long start_pfn, end_pfn;
1684 struct page *start_page, *end_page;
1685
1686 start_pfn = page_to_pfn(page);
1687 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1688 start_page = pfn_to_page(start_pfn);
1689 end_page = start_page + pageblock_nr_pages - 1;
1690 end_pfn = start_pfn + pageblock_nr_pages - 1;
1691
1692 /* Do not cross zone boundaries */
1693 if (!zone_spans_pfn(zone, start_pfn))
1694 start_page = page;
1695 if (!zone_spans_pfn(zone, end_pfn))
1696 return 0;
1697
1698 return move_freepages(zone, start_page, end_page, migratetype);
1699 }
1700
1701 static void change_pageblock_range(struct page *pageblock_page,
1702 int start_order, int migratetype)
1703 {
1704 int nr_pageblocks = 1 << (start_order - pageblock_order);
1705
1706 while (nr_pageblocks--) {
1707 set_pageblock_migratetype(pageblock_page, migratetype);
1708 pageblock_page += pageblock_nr_pages;
1709 }
1710 }
1711
1712 /*
1713 * When we are falling back to another migratetype during allocation, try to
1714 * steal extra free pages from the same pageblocks to satisfy further
1715 * allocations, instead of polluting multiple pageblocks.
1716 *
1717 * If we are stealing a relatively large buddy page, it is likely there will
1718 * be more free pages in the pageblock, so try to steal them all. For
1719 * reclaimable and unmovable allocations, we steal regardless of page size,
1720 * as fragmentation caused by those allocations polluting movable pageblocks
1721 * is worse than movable allocations stealing from unmovable and reclaimable
1722 * pageblocks.
1723 */
1724 static bool can_steal_fallback(unsigned int order, int start_mt)
1725 {
1726 /*
1727 * Leaving this order check is intended, although there is
1728 * relaxed order check in next check. The reason is that
1729 * we can actually steal whole pageblock if this condition met,
1730 * but, below check doesn't guarantee it and that is just heuristic
1731 * so could be changed anytime.
1732 */
1733 if (order >= pageblock_order)
1734 return true;
1735
1736 if (order >= pageblock_order / 2 ||
1737 start_mt == MIGRATE_RECLAIMABLE ||
1738 start_mt == MIGRATE_UNMOVABLE ||
1739 page_group_by_mobility_disabled)
1740 return true;
1741
1742 return false;
1743 }
1744
1745 /*
1746 * This function implements actual steal behaviour. If order is large enough,
1747 * we can steal whole pageblock. If not, we first move freepages in this
1748 * pageblock and check whether half of pages are moved or not. If half of
1749 * pages are moved, we can change migratetype of pageblock and permanently
1750 * use it's pages as requested migratetype in the future.
1751 */
1752 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1753 int start_type)
1754 {
1755 unsigned int current_order = page_order(page);
1756 int pages;
1757
1758 /* Take ownership for orders >= pageblock_order */
1759 if (current_order >= pageblock_order) {
1760 change_pageblock_range(page, current_order, start_type);
1761 return;
1762 }
1763
1764 pages = move_freepages_block(zone, page, start_type);
1765
1766 /* Claim the whole block if over half of it is free */
1767 if (pages >= (1 << (pageblock_order-1)) ||
1768 page_group_by_mobility_disabled)
1769 set_pageblock_migratetype(page, start_type);
1770 }
1771
1772 /*
1773 * Check whether there is a suitable fallback freepage with requested order.
1774 * If only_stealable is true, this function returns fallback_mt only if
1775 * we can steal other freepages all together. This would help to reduce
1776 * fragmentation due to mixed migratetype pages in one pageblock.
1777 */
1778 int find_suitable_fallback(struct free_area *area, unsigned int order,
1779 int migratetype, bool only_stealable, bool *can_steal)
1780 {
1781 int i;
1782 int fallback_mt;
1783
1784 if (area->nr_free == 0)
1785 return -1;
1786
1787 *can_steal = false;
1788 for (i = 0;; i++) {
1789 fallback_mt = fallbacks[migratetype][i];
1790 if (fallback_mt == MIGRATE_TYPES)
1791 break;
1792
1793 if (list_empty(&area->free_list[fallback_mt]))
1794 continue;
1795
1796 if (can_steal_fallback(order, migratetype))
1797 *can_steal = true;
1798
1799 if (!only_stealable)
1800 return fallback_mt;
1801
1802 if (*can_steal)
1803 return fallback_mt;
1804 }
1805
1806 return -1;
1807 }
1808
1809 /*
1810 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1811 * there are no empty page blocks that contain a page with a suitable order
1812 */
1813 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1814 unsigned int alloc_order)
1815 {
1816 int mt;
1817 unsigned long max_managed, flags;
1818
1819 /*
1820 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1821 * Check is race-prone but harmless.
1822 */
1823 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1824 if (zone->nr_reserved_highatomic >= max_managed)
1825 return;
1826
1827 spin_lock_irqsave(&zone->lock, flags);
1828
1829 /* Recheck the nr_reserved_highatomic limit under the lock */
1830 if (zone->nr_reserved_highatomic >= max_managed)
1831 goto out_unlock;
1832
1833 /* Yoink! */
1834 mt = get_pageblock_migratetype(page);
1835 if (mt != MIGRATE_HIGHATOMIC &&
1836 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1837 zone->nr_reserved_highatomic += pageblock_nr_pages;
1838 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1839 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1840 }
1841
1842 out_unlock:
1843 spin_unlock_irqrestore(&zone->lock, flags);
1844 }
1845
1846 /*
1847 * Used when an allocation is about to fail under memory pressure. This
1848 * potentially hurts the reliability of high-order allocations when under
1849 * intense memory pressure but failed atomic allocations should be easier
1850 * to recover from than an OOM.
1851 */
1852 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1853 {
1854 struct zonelist *zonelist = ac->zonelist;
1855 unsigned long flags;
1856 struct zoneref *z;
1857 struct zone *zone;
1858 struct page *page;
1859 int order;
1860
1861 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1862 ac->nodemask) {
1863 /* Preserve at least one pageblock */
1864 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1865 continue;
1866
1867 spin_lock_irqsave(&zone->lock, flags);
1868 for (order = 0; order < MAX_ORDER; order++) {
1869 struct free_area *area = &(zone->free_area[order]);
1870
1871 page = list_first_entry_or_null(
1872 &area->free_list[MIGRATE_HIGHATOMIC],
1873 struct page, lru);
1874 if (!page)
1875 continue;
1876
1877 /*
1878 * It should never happen but changes to locking could
1879 * inadvertently allow a per-cpu drain to add pages
1880 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1881 * and watch for underflows.
1882 */
1883 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1884 zone->nr_reserved_highatomic);
1885
1886 /*
1887 * Convert to ac->migratetype and avoid the normal
1888 * pageblock stealing heuristics. Minimally, the caller
1889 * is doing the work and needs the pages. More
1890 * importantly, if the block was always converted to
1891 * MIGRATE_UNMOVABLE or another type then the number
1892 * of pageblocks that cannot be completely freed
1893 * may increase.
1894 */
1895 set_pageblock_migratetype(page, ac->migratetype);
1896 move_freepages_block(zone, page, ac->migratetype);
1897 spin_unlock_irqrestore(&zone->lock, flags);
1898 return;
1899 }
1900 spin_unlock_irqrestore(&zone->lock, flags);
1901 }
1902 }
1903
1904 /* Remove an element from the buddy allocator from the fallback list */
1905 static inline struct page *
1906 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1907 {
1908 struct free_area *area;
1909 unsigned int current_order;
1910 struct page *page;
1911 int fallback_mt;
1912 bool can_steal;
1913
1914 /* Find the largest possible block of pages in the other list */
1915 for (current_order = MAX_ORDER-1;
1916 current_order >= order && current_order <= MAX_ORDER-1;
1917 --current_order) {
1918 area = &(zone->free_area[current_order]);
1919 fallback_mt = find_suitable_fallback(area, current_order,
1920 start_migratetype, false, &can_steal);
1921 if (fallback_mt == -1)
1922 continue;
1923
1924 page = list_first_entry(&area->free_list[fallback_mt],
1925 struct page, lru);
1926 if (can_steal)
1927 steal_suitable_fallback(zone, page, start_migratetype);
1928
1929 /* Remove the page from the freelists */
1930 area->nr_free--;
1931 list_del(&page->lru);
1932 rmv_page_order(page);
1933
1934 expand(zone, page, order, current_order, area,
1935 start_migratetype);
1936 /*
1937 * The pcppage_migratetype may differ from pageblock's
1938 * migratetype depending on the decisions in
1939 * find_suitable_fallback(). This is OK as long as it does not
1940 * differ for MIGRATE_CMA pageblocks. Those can be used as
1941 * fallback only via special __rmqueue_cma_fallback() function
1942 */
1943 set_pcppage_migratetype(page, start_migratetype);
1944
1945 trace_mm_page_alloc_extfrag(page, order, current_order,
1946 start_migratetype, fallback_mt);
1947
1948 return page;
1949 }
1950
1951 return NULL;
1952 }
1953
1954 /*
1955 * Do the hard work of removing an element from the buddy allocator.
1956 * Call me with the zone->lock already held.
1957 */
1958 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1959 int migratetype)
1960 {
1961 struct page *page;
1962
1963 page = __rmqueue_smallest(zone, order, migratetype);
1964 if (unlikely(!page)) {
1965 if (migratetype == MIGRATE_MOVABLE)
1966 page = __rmqueue_cma_fallback(zone, order);
1967
1968 if (!page)
1969 page = __rmqueue_fallback(zone, order, migratetype);
1970 }
1971
1972 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1973 return page;
1974 }
1975
1976 /*
1977 * Obtain a specified number of elements from the buddy allocator, all under
1978 * a single hold of the lock, for efficiency. Add them to the supplied list.
1979 * Returns the number of new pages which were placed at *list.
1980 */
1981 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1982 unsigned long count, struct list_head *list,
1983 int migratetype, bool cold)
1984 {
1985 int i;
1986
1987 spin_lock(&zone->lock);
1988 for (i = 0; i < count; ++i) {
1989 struct page *page = __rmqueue(zone, order, migratetype);
1990 if (unlikely(page == NULL))
1991 break;
1992
1993 /*
1994 * Split buddy pages returned by expand() are received here
1995 * in physical page order. The page is added to the callers and
1996 * list and the list head then moves forward. From the callers
1997 * perspective, the linked list is ordered by page number in
1998 * some conditions. This is useful for IO devices that can
1999 * merge IO requests if the physical pages are ordered
2000 * properly.
2001 */
2002 if (likely(!cold))
2003 list_add(&page->lru, list);
2004 else
2005 list_add_tail(&page->lru, list);
2006 list = &page->lru;
2007 if (is_migrate_cma(get_pcppage_migratetype(page)))
2008 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2009 -(1 << order));
2010 }
2011 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2012 spin_unlock(&zone->lock);
2013 return i;
2014 }
2015
2016 #ifdef CONFIG_NUMA
2017 /*
2018 * Called from the vmstat counter updater to drain pagesets of this
2019 * currently executing processor on remote nodes after they have
2020 * expired.
2021 *
2022 * Note that this function must be called with the thread pinned to
2023 * a single processor.
2024 */
2025 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2026 {
2027 unsigned long flags;
2028 int to_drain, batch;
2029
2030 local_irq_save(flags);
2031 batch = READ_ONCE(pcp->batch);
2032 to_drain = min(pcp->count, batch);
2033 if (to_drain > 0) {
2034 free_pcppages_bulk(zone, to_drain, pcp);
2035 pcp->count -= to_drain;
2036 }
2037 local_irq_restore(flags);
2038 }
2039 #endif
2040
2041 /*
2042 * Drain pcplists of the indicated processor and zone.
2043 *
2044 * The processor must either be the current processor and the
2045 * thread pinned to the current processor or a processor that
2046 * is not online.
2047 */
2048 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2049 {
2050 unsigned long flags;
2051 struct per_cpu_pageset *pset;
2052 struct per_cpu_pages *pcp;
2053
2054 local_irq_save(flags);
2055 pset = per_cpu_ptr(zone->pageset, cpu);
2056
2057 pcp = &pset->pcp;
2058 if (pcp->count) {
2059 free_pcppages_bulk(zone, pcp->count, pcp);
2060 pcp->count = 0;
2061 }
2062 local_irq_restore(flags);
2063 }
2064
2065 /*
2066 * Drain pcplists of all zones on the indicated processor.
2067 *
2068 * The processor must either be the current processor and the
2069 * thread pinned to the current processor or a processor that
2070 * is not online.
2071 */
2072 static void drain_pages(unsigned int cpu)
2073 {
2074 struct zone *zone;
2075
2076 for_each_populated_zone(zone) {
2077 drain_pages_zone(cpu, zone);
2078 }
2079 }
2080
2081 /*
2082 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2083 *
2084 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2085 * the single zone's pages.
2086 */
2087 void drain_local_pages(struct zone *zone)
2088 {
2089 int cpu = smp_processor_id();
2090
2091 if (zone)
2092 drain_pages_zone(cpu, zone);
2093 else
2094 drain_pages(cpu);
2095 }
2096
2097 /*
2098 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2099 *
2100 * When zone parameter is non-NULL, spill just the single zone's pages.
2101 *
2102 * Note that this code is protected against sending an IPI to an offline
2103 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2104 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2105 * nothing keeps CPUs from showing up after we populated the cpumask and
2106 * before the call to on_each_cpu_mask().
2107 */
2108 void drain_all_pages(struct zone *zone)
2109 {
2110 int cpu;
2111
2112 /*
2113 * Allocate in the BSS so we wont require allocation in
2114 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2115 */
2116 static cpumask_t cpus_with_pcps;
2117
2118 /*
2119 * We don't care about racing with CPU hotplug event
2120 * as offline notification will cause the notified
2121 * cpu to drain that CPU pcps and on_each_cpu_mask
2122 * disables preemption as part of its processing
2123 */
2124 for_each_online_cpu(cpu) {
2125 struct per_cpu_pageset *pcp;
2126 struct zone *z;
2127 bool has_pcps = false;
2128
2129 if (zone) {
2130 pcp = per_cpu_ptr(zone->pageset, cpu);
2131 if (pcp->pcp.count)
2132 has_pcps = true;
2133 } else {
2134 for_each_populated_zone(z) {
2135 pcp = per_cpu_ptr(z->pageset, cpu);
2136 if (pcp->pcp.count) {
2137 has_pcps = true;
2138 break;
2139 }
2140 }
2141 }
2142
2143 if (has_pcps)
2144 cpumask_set_cpu(cpu, &cpus_with_pcps);
2145 else
2146 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2147 }
2148 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2149 zone, 1);
2150 }
2151
2152 #ifdef CONFIG_HIBERNATION
2153
2154 void mark_free_pages(struct zone *zone)
2155 {
2156 unsigned long pfn, max_zone_pfn;
2157 unsigned long flags;
2158 unsigned int order, t;
2159 struct page *page;
2160
2161 if (zone_is_empty(zone))
2162 return;
2163
2164 spin_lock_irqsave(&zone->lock, flags);
2165
2166 max_zone_pfn = zone_end_pfn(zone);
2167 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2168 if (pfn_valid(pfn)) {
2169 page = pfn_to_page(pfn);
2170
2171 if (page_zone(page) != zone)
2172 continue;
2173
2174 if (!swsusp_page_is_forbidden(page))
2175 swsusp_unset_page_free(page);
2176 }
2177
2178 for_each_migratetype_order(order, t) {
2179 list_for_each_entry(page,
2180 &zone->free_area[order].free_list[t], lru) {
2181 unsigned long i;
2182
2183 pfn = page_to_pfn(page);
2184 for (i = 0; i < (1UL << order); i++)
2185 swsusp_set_page_free(pfn_to_page(pfn + i));
2186 }
2187 }
2188 spin_unlock_irqrestore(&zone->lock, flags);
2189 }
2190 #endif /* CONFIG_PM */
2191
2192 /*
2193 * Free a 0-order page
2194 * cold == true ? free a cold page : free a hot page
2195 */
2196 void free_hot_cold_page(struct page *page, bool cold)
2197 {
2198 struct zone *zone = page_zone(page);
2199 struct per_cpu_pages *pcp;
2200 unsigned long flags;
2201 unsigned long pfn = page_to_pfn(page);
2202 int migratetype;
2203
2204 if (!free_pages_prepare(page, 0))
2205 return;
2206
2207 migratetype = get_pfnblock_migratetype(page, pfn);
2208 set_pcppage_migratetype(page, migratetype);
2209 local_irq_save(flags);
2210 __count_vm_event(PGFREE);
2211
2212 /*
2213 * We only track unmovable, reclaimable and movable on pcp lists.
2214 * Free ISOLATE pages back to the allocator because they are being
2215 * offlined but treat RESERVE as movable pages so we can get those
2216 * areas back if necessary. Otherwise, we may have to free
2217 * excessively into the page allocator
2218 */
2219 if (migratetype >= MIGRATE_PCPTYPES) {
2220 if (unlikely(is_migrate_isolate(migratetype))) {
2221 free_one_page(zone, page, pfn, 0, migratetype);
2222 goto out;
2223 }
2224 migratetype = MIGRATE_MOVABLE;
2225 }
2226
2227 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2228 if (!cold)
2229 list_add(&page->lru, &pcp->lists[migratetype]);
2230 else
2231 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2232 pcp->count++;
2233 if (pcp->count >= pcp->high) {
2234 unsigned long batch = READ_ONCE(pcp->batch);
2235 free_pcppages_bulk(zone, batch, pcp);
2236 pcp->count -= batch;
2237 }
2238
2239 out:
2240 local_irq_restore(flags);
2241 }
2242
2243 /*
2244 * Free a list of 0-order pages
2245 */
2246 void free_hot_cold_page_list(struct list_head *list, bool cold)
2247 {
2248 struct page *page, *next;
2249
2250 list_for_each_entry_safe(page, next, list, lru) {
2251 trace_mm_page_free_batched(page, cold);
2252 free_hot_cold_page(page, cold);
2253 }
2254 }
2255
2256 /*
2257 * split_page takes a non-compound higher-order page, and splits it into
2258 * n (1<<order) sub-pages: page[0..n]
2259 * Each sub-page must be freed individually.
2260 *
2261 * Note: this is probably too low level an operation for use in drivers.
2262 * Please consult with lkml before using this in your driver.
2263 */
2264 void split_page(struct page *page, unsigned int order)
2265 {
2266 int i;
2267 gfp_t gfp_mask;
2268
2269 VM_BUG_ON_PAGE(PageCompound(page), page);
2270 VM_BUG_ON_PAGE(!page_count(page), page);
2271
2272 #ifdef CONFIG_KMEMCHECK
2273 /*
2274 * Split shadow pages too, because free(page[0]) would
2275 * otherwise free the whole shadow.
2276 */
2277 if (kmemcheck_page_is_tracked(page))
2278 split_page(virt_to_page(page[0].shadow), order);
2279 #endif
2280
2281 gfp_mask = get_page_owner_gfp(page);
2282 set_page_owner(page, 0, gfp_mask);
2283 for (i = 1; i < (1 << order); i++) {
2284 set_page_refcounted(page + i);
2285 set_page_owner(page + i, 0, gfp_mask);
2286 }
2287 }
2288 EXPORT_SYMBOL_GPL(split_page);
2289
2290 int __isolate_free_page(struct page *page, unsigned int order)
2291 {
2292 unsigned long watermark;
2293 struct zone *zone;
2294 int mt;
2295
2296 BUG_ON(!PageBuddy(page));
2297
2298 zone = page_zone(page);
2299 mt = get_pageblock_migratetype(page);
2300
2301 if (!is_migrate_isolate(mt)) {
2302 /* Obey watermarks as if the page was being allocated */
2303 watermark = low_wmark_pages(zone) + (1 << order);
2304 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2305 return 0;
2306
2307 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2308 }
2309
2310 /* Remove page from free list */
2311 list_del(&page->lru);
2312 zone->free_area[order].nr_free--;
2313 rmv_page_order(page);
2314
2315 set_page_owner(page, order, __GFP_MOVABLE);
2316
2317 /* Set the pageblock if the isolated page is at least a pageblock */
2318 if (order >= pageblock_order - 1) {
2319 struct page *endpage = page + (1 << order) - 1;
2320 for (; page < endpage; page += pageblock_nr_pages) {
2321 int mt = get_pageblock_migratetype(page);
2322 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2323 set_pageblock_migratetype(page,
2324 MIGRATE_MOVABLE);
2325 }
2326 }
2327
2328
2329 return 1UL << order;
2330 }
2331
2332 /*
2333 * Similar to split_page except the page is already free. As this is only
2334 * being used for migration, the migratetype of the block also changes.
2335 * As this is called with interrupts disabled, the caller is responsible
2336 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2337 * are enabled.
2338 *
2339 * Note: this is probably too low level an operation for use in drivers.
2340 * Please consult with lkml before using this in your driver.
2341 */
2342 int split_free_page(struct page *page)
2343 {
2344 unsigned int order;
2345 int nr_pages;
2346
2347 order = page_order(page);
2348
2349 nr_pages = __isolate_free_page(page, order);
2350 if (!nr_pages)
2351 return 0;
2352
2353 /* Split into individual pages */
2354 set_page_refcounted(page);
2355 split_page(page, order);
2356 return nr_pages;
2357 }
2358
2359 /*
2360 * Update NUMA hit/miss statistics
2361 *
2362 * Must be called with interrupts disabled.
2363 *
2364 * When __GFP_OTHER_NODE is set assume the node of the preferred
2365 * zone is the local node. This is useful for daemons who allocate
2366 * memory on behalf of other processes.
2367 */
2368 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2369 gfp_t flags)
2370 {
2371 #ifdef CONFIG_NUMA
2372 int local_nid = numa_node_id();
2373 enum zone_stat_item local_stat = NUMA_LOCAL;
2374
2375 if (unlikely(flags & __GFP_OTHER_NODE)) {
2376 local_stat = NUMA_OTHER;
2377 local_nid = preferred_zone->node;
2378 }
2379
2380 if (z->node == local_nid) {
2381 __inc_zone_state(z, NUMA_HIT);
2382 __inc_zone_state(z, local_stat);
2383 } else {
2384 __inc_zone_state(z, NUMA_MISS);
2385 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2386 }
2387 #endif
2388 }
2389
2390 /*
2391 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2392 */
2393 static inline
2394 struct page *buffered_rmqueue(struct zone *preferred_zone,
2395 struct zone *zone, unsigned int order,
2396 gfp_t gfp_flags, unsigned int alloc_flags,
2397 int migratetype)
2398 {
2399 unsigned long flags;
2400 struct page *page;
2401 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2402
2403 if (likely(order == 0)) {
2404 struct per_cpu_pages *pcp;
2405 struct list_head *list;
2406
2407 local_irq_save(flags);
2408 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2409 list = &pcp->lists[migratetype];
2410 if (list_empty(list)) {
2411 pcp->count += rmqueue_bulk(zone, 0,
2412 pcp->batch, list,
2413 migratetype, cold);
2414 if (unlikely(list_empty(list)))
2415 goto failed;
2416 }
2417
2418 if (cold)
2419 page = list_last_entry(list, struct page, lru);
2420 else
2421 page = list_first_entry(list, struct page, lru);
2422
2423 __dec_zone_state(zone, NR_ALLOC_BATCH);
2424 list_del(&page->lru);
2425 pcp->count--;
2426 } else {
2427 /*
2428 * We most definitely don't want callers attempting to
2429 * allocate greater than order-1 page units with __GFP_NOFAIL.
2430 */
2431 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2432 spin_lock_irqsave(&zone->lock, flags);
2433
2434 page = NULL;
2435 if (alloc_flags & ALLOC_HARDER) {
2436 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2437 if (page)
2438 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2439 }
2440 if (!page)
2441 page = __rmqueue(zone, order, migratetype);
2442 spin_unlock(&zone->lock);
2443 if (!page)
2444 goto failed;
2445 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2446 __mod_zone_freepage_state(zone, -(1 << order),
2447 get_pcppage_migratetype(page));
2448 }
2449
2450 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2451 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2452 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2453
2454 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2455 zone_statistics(preferred_zone, zone, gfp_flags);
2456 local_irq_restore(flags);
2457
2458 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2459 return page;
2460
2461 failed:
2462 local_irq_restore(flags);
2463 return NULL;
2464 }
2465
2466 #ifdef CONFIG_FAIL_PAGE_ALLOC
2467
2468 static struct {
2469 struct fault_attr attr;
2470
2471 bool ignore_gfp_highmem;
2472 bool ignore_gfp_reclaim;
2473 u32 min_order;
2474 } fail_page_alloc = {
2475 .attr = FAULT_ATTR_INITIALIZER,
2476 .ignore_gfp_reclaim = true,
2477 .ignore_gfp_highmem = true,
2478 .min_order = 1,
2479 };
2480
2481 static int __init setup_fail_page_alloc(char *str)
2482 {
2483 return setup_fault_attr(&fail_page_alloc.attr, str);
2484 }
2485 __setup("fail_page_alloc=", setup_fail_page_alloc);
2486
2487 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2488 {
2489 if (order < fail_page_alloc.min_order)
2490 return false;
2491 if (gfp_mask & __GFP_NOFAIL)
2492 return false;
2493 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2494 return false;
2495 if (fail_page_alloc.ignore_gfp_reclaim &&
2496 (gfp_mask & __GFP_DIRECT_RECLAIM))
2497 return false;
2498
2499 return should_fail(&fail_page_alloc.attr, 1 << order);
2500 }
2501
2502 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2503
2504 static int __init fail_page_alloc_debugfs(void)
2505 {
2506 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2507 struct dentry *dir;
2508
2509 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2510 &fail_page_alloc.attr);
2511 if (IS_ERR(dir))
2512 return PTR_ERR(dir);
2513
2514 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2515 &fail_page_alloc.ignore_gfp_reclaim))
2516 goto fail;
2517 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2518 &fail_page_alloc.ignore_gfp_highmem))
2519 goto fail;
2520 if (!debugfs_create_u32("min-order", mode, dir,
2521 &fail_page_alloc.min_order))
2522 goto fail;
2523
2524 return 0;
2525 fail:
2526 debugfs_remove_recursive(dir);
2527
2528 return -ENOMEM;
2529 }
2530
2531 late_initcall(fail_page_alloc_debugfs);
2532
2533 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2534
2535 #else /* CONFIG_FAIL_PAGE_ALLOC */
2536
2537 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2538 {
2539 return false;
2540 }
2541
2542 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2543
2544 /*
2545 * Return true if free base pages are above 'mark'. For high-order checks it
2546 * will return true of the order-0 watermark is reached and there is at least
2547 * one free page of a suitable size. Checking now avoids taking the zone lock
2548 * to check in the allocation paths if no pages are free.
2549 */
2550 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2551 unsigned long mark, int classzone_idx,
2552 unsigned int alloc_flags,
2553 long free_pages)
2554 {
2555 long min = mark;
2556 int o;
2557 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2558
2559 /* free_pages may go negative - that's OK */
2560 free_pages -= (1 << order) - 1;
2561
2562 if (alloc_flags & ALLOC_HIGH)
2563 min -= min / 2;
2564
2565 /*
2566 * If the caller does not have rights to ALLOC_HARDER then subtract
2567 * the high-atomic reserves. This will over-estimate the size of the
2568 * atomic reserve but it avoids a search.
2569 */
2570 if (likely(!alloc_harder))
2571 free_pages -= z->nr_reserved_highatomic;
2572 else
2573 min -= min / 4;
2574
2575 #ifdef CONFIG_CMA
2576 /* If allocation can't use CMA areas don't use free CMA pages */
2577 if (!(alloc_flags & ALLOC_CMA))
2578 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2579 #endif
2580
2581 /*
2582 * Check watermarks for an order-0 allocation request. If these
2583 * are not met, then a high-order request also cannot go ahead
2584 * even if a suitable page happened to be free.
2585 */
2586 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2587 return false;
2588
2589 /* If this is an order-0 request then the watermark is fine */
2590 if (!order)
2591 return true;
2592
2593 /* For a high-order request, check at least one suitable page is free */
2594 for (o = order; o < MAX_ORDER; o++) {
2595 struct free_area *area = &z->free_area[o];
2596 int mt;
2597
2598 if (!area->nr_free)
2599 continue;
2600
2601 if (alloc_harder)
2602 return true;
2603
2604 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2605 if (!list_empty(&area->free_list[mt]))
2606 return true;
2607 }
2608
2609 #ifdef CONFIG_CMA
2610 if ((alloc_flags & ALLOC_CMA) &&
2611 !list_empty(&area->free_list[MIGRATE_CMA])) {
2612 return true;
2613 }
2614 #endif
2615 }
2616 return false;
2617 }
2618
2619 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2620 int classzone_idx, unsigned int alloc_flags)
2621 {
2622 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2623 zone_page_state(z, NR_FREE_PAGES));
2624 }
2625
2626 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2627 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2628 {
2629 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2630 long cma_pages = 0;
2631
2632 #ifdef CONFIG_CMA
2633 /* If allocation can't use CMA areas don't use free CMA pages */
2634 if (!(alloc_flags & ALLOC_CMA))
2635 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2636 #endif
2637
2638 /*
2639 * Fast check for order-0 only. If this fails then the reserves
2640 * need to be calculated. There is a corner case where the check
2641 * passes but only the high-order atomic reserve are free. If
2642 * the caller is !atomic then it'll uselessly search the free
2643 * list. That corner case is then slower but it is harmless.
2644 */
2645 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2646 return true;
2647
2648 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2649 free_pages);
2650 }
2651
2652 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2653 unsigned long mark, int classzone_idx)
2654 {
2655 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2656
2657 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2658 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2659
2660 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2661 free_pages);
2662 }
2663
2664 #ifdef CONFIG_NUMA
2665 static bool zone_local(struct zone *local_zone, struct zone *zone)
2666 {
2667 return local_zone->node == zone->node;
2668 }
2669
2670 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2671 {
2672 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2673 RECLAIM_DISTANCE;
2674 }
2675 #else /* CONFIG_NUMA */
2676 static bool zone_local(struct zone *local_zone, struct zone *zone)
2677 {
2678 return true;
2679 }
2680
2681 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2682 {
2683 return true;
2684 }
2685 #endif /* CONFIG_NUMA */
2686
2687 static void reset_alloc_batches(struct zone *preferred_zone)
2688 {
2689 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2690
2691 do {
2692 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2693 high_wmark_pages(zone) - low_wmark_pages(zone) -
2694 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2695 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2696 } while (zone++ != preferred_zone);
2697 }
2698
2699 /*
2700 * get_page_from_freelist goes through the zonelist trying to allocate
2701 * a page.
2702 */
2703 static struct page *
2704 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2705 const struct alloc_context *ac)
2706 {
2707 struct zoneref *z = ac->preferred_zoneref;
2708 struct zone *zone;
2709 bool fair_skipped = false;
2710 bool apply_fair = (alloc_flags & ALLOC_FAIR);
2711
2712 zonelist_scan:
2713 /*
2714 * Scan zonelist, looking for a zone with enough free.
2715 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2716 */
2717 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2718 ac->nodemask) {
2719 struct page *page;
2720 unsigned long mark;
2721
2722 if (cpusets_enabled() &&
2723 (alloc_flags & ALLOC_CPUSET) &&
2724 !cpuset_zone_allowed(zone, gfp_mask))
2725 continue;
2726 /*
2727 * Distribute pages in proportion to the individual
2728 * zone size to ensure fair page aging. The zone a
2729 * page was allocated in should have no effect on the
2730 * time the page has in memory before being reclaimed.
2731 */
2732 if (apply_fair) {
2733 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2734 fair_skipped = true;
2735 continue;
2736 }
2737 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
2738 if (fair_skipped)
2739 goto reset_fair;
2740 apply_fair = false;
2741 }
2742 }
2743 /*
2744 * When allocating a page cache page for writing, we
2745 * want to get it from a zone that is within its dirty
2746 * limit, such that no single zone holds more than its
2747 * proportional share of globally allowed dirty pages.
2748 * The dirty limits take into account the zone's
2749 * lowmem reserves and high watermark so that kswapd
2750 * should be able to balance it without having to
2751 * write pages from its LRU list.
2752 *
2753 * This may look like it could increase pressure on
2754 * lower zones by failing allocations in higher zones
2755 * before they are full. But the pages that do spill
2756 * over are limited as the lower zones are protected
2757 * by this very same mechanism. It should not become
2758 * a practical burden to them.
2759 *
2760 * XXX: For now, allow allocations to potentially
2761 * exceed the per-zone dirty limit in the slowpath
2762 * (spread_dirty_pages unset) before going into reclaim,
2763 * which is important when on a NUMA setup the allowed
2764 * zones are together not big enough to reach the
2765 * global limit. The proper fix for these situations
2766 * will require awareness of zones in the
2767 * dirty-throttling and the flusher threads.
2768 */
2769 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2770 continue;
2771
2772 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2773 if (!zone_watermark_fast(zone, order, mark,
2774 ac_classzone_idx(ac), alloc_flags)) {
2775 int ret;
2776
2777 /* Checked here to keep the fast path fast */
2778 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2779 if (alloc_flags & ALLOC_NO_WATERMARKS)
2780 goto try_this_zone;
2781
2782 if (zone_reclaim_mode == 0 ||
2783 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2784 continue;
2785
2786 ret = zone_reclaim(zone, gfp_mask, order);
2787 switch (ret) {
2788 case ZONE_RECLAIM_NOSCAN:
2789 /* did not scan */
2790 continue;
2791 case ZONE_RECLAIM_FULL:
2792 /* scanned but unreclaimable */
2793 continue;
2794 default:
2795 /* did we reclaim enough */
2796 if (zone_watermark_ok(zone, order, mark,
2797 ac_classzone_idx(ac), alloc_flags))
2798 goto try_this_zone;
2799
2800 continue;
2801 }
2802 }
2803
2804 try_this_zone:
2805 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2806 gfp_mask, alloc_flags, ac->migratetype);
2807 if (page) {
2808 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2809 goto try_this_zone;
2810
2811 /*
2812 * If this is a high-order atomic allocation then check
2813 * if the pageblock should be reserved for the future
2814 */
2815 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2816 reserve_highatomic_pageblock(page, zone, order);
2817
2818 return page;
2819 }
2820 }
2821
2822 /*
2823 * The first pass makes sure allocations are spread fairly within the
2824 * local node. However, the local node might have free pages left
2825 * after the fairness batches are exhausted, and remote zones haven't
2826 * even been considered yet. Try once more without fairness, and
2827 * include remote zones now, before entering the slowpath and waking
2828 * kswapd: prefer spilling to a remote zone over swapping locally.
2829 */
2830 if (fair_skipped) {
2831 reset_fair:
2832 apply_fair = false;
2833 fair_skipped = false;
2834 reset_alloc_batches(ac->preferred_zoneref->zone);
2835 goto zonelist_scan;
2836 }
2837
2838 return NULL;
2839 }
2840
2841 /*
2842 * Large machines with many possible nodes should not always dump per-node
2843 * meminfo in irq context.
2844 */
2845 static inline bool should_suppress_show_mem(void)
2846 {
2847 bool ret = false;
2848
2849 #if NODES_SHIFT > 8
2850 ret = in_interrupt();
2851 #endif
2852 return ret;
2853 }
2854
2855 static DEFINE_RATELIMIT_STATE(nopage_rs,
2856 DEFAULT_RATELIMIT_INTERVAL,
2857 DEFAULT_RATELIMIT_BURST);
2858
2859 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2860 {
2861 unsigned int filter = SHOW_MEM_FILTER_NODES;
2862
2863 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2864 debug_guardpage_minorder() > 0)
2865 return;
2866
2867 /*
2868 * This documents exceptions given to allocations in certain
2869 * contexts that are allowed to allocate outside current's set
2870 * of allowed nodes.
2871 */
2872 if (!(gfp_mask & __GFP_NOMEMALLOC))
2873 if (test_thread_flag(TIF_MEMDIE) ||
2874 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2875 filter &= ~SHOW_MEM_FILTER_NODES;
2876 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2877 filter &= ~SHOW_MEM_FILTER_NODES;
2878
2879 if (fmt) {
2880 struct va_format vaf;
2881 va_list args;
2882
2883 va_start(args, fmt);
2884
2885 vaf.fmt = fmt;
2886 vaf.va = &args;
2887
2888 pr_warn("%pV", &vaf);
2889
2890 va_end(args);
2891 }
2892
2893 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2894 current->comm, order, gfp_mask, &gfp_mask);
2895 dump_stack();
2896 if (!should_suppress_show_mem())
2897 show_mem(filter);
2898 }
2899
2900 static inline struct page *
2901 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2902 const struct alloc_context *ac, unsigned long *did_some_progress)
2903 {
2904 struct oom_control oc = {
2905 .zonelist = ac->zonelist,
2906 .nodemask = ac->nodemask,
2907 .gfp_mask = gfp_mask,
2908 .order = order,
2909 };
2910 struct page *page;
2911
2912 *did_some_progress = 0;
2913
2914 /*
2915 * Acquire the oom lock. If that fails, somebody else is
2916 * making progress for us.
2917 */
2918 if (!mutex_trylock(&oom_lock)) {
2919 *did_some_progress = 1;
2920 schedule_timeout_uninterruptible(1);
2921 return NULL;
2922 }
2923
2924 /*
2925 * Go through the zonelist yet one more time, keep very high watermark
2926 * here, this is only to catch a parallel oom killing, we must fail if
2927 * we're still under heavy pressure.
2928 */
2929 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2930 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2931 if (page)
2932 goto out;
2933
2934 if (!(gfp_mask & __GFP_NOFAIL)) {
2935 /* Coredumps can quickly deplete all memory reserves */
2936 if (current->flags & PF_DUMPCORE)
2937 goto out;
2938 /* The OOM killer will not help higher order allocs */
2939 if (order > PAGE_ALLOC_COSTLY_ORDER)
2940 goto out;
2941 /* The OOM killer does not needlessly kill tasks for lowmem */
2942 if (ac->high_zoneidx < ZONE_NORMAL)
2943 goto out;
2944 if (pm_suspended_storage())
2945 goto out;
2946 /*
2947 * XXX: GFP_NOFS allocations should rather fail than rely on
2948 * other request to make a forward progress.
2949 * We are in an unfortunate situation where out_of_memory cannot
2950 * do much for this context but let's try it to at least get
2951 * access to memory reserved if the current task is killed (see
2952 * out_of_memory). Once filesystems are ready to handle allocation
2953 * failures more gracefully we should just bail out here.
2954 */
2955
2956 /* The OOM killer may not free memory on a specific node */
2957 if (gfp_mask & __GFP_THISNODE)
2958 goto out;
2959 }
2960 /* Exhausted what can be done so it's blamo time */
2961 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2962 *did_some_progress = 1;
2963
2964 if (gfp_mask & __GFP_NOFAIL) {
2965 page = get_page_from_freelist(gfp_mask, order,
2966 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2967 /*
2968 * fallback to ignore cpuset restriction if our nodes
2969 * are depleted
2970 */
2971 if (!page)
2972 page = get_page_from_freelist(gfp_mask, order,
2973 ALLOC_NO_WATERMARKS, ac);
2974 }
2975 }
2976 out:
2977 mutex_unlock(&oom_lock);
2978 return page;
2979 }
2980
2981 #ifdef CONFIG_COMPACTION
2982 /* Try memory compaction for high-order allocations before reclaim */
2983 static struct page *
2984 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2985 unsigned int alloc_flags, const struct alloc_context *ac,
2986 enum migrate_mode mode, int *contended_compaction,
2987 bool *deferred_compaction)
2988 {
2989 unsigned long compact_result;
2990 struct page *page;
2991
2992 if (!order)
2993 return NULL;
2994
2995 current->flags |= PF_MEMALLOC;
2996 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2997 mode, contended_compaction);
2998 current->flags &= ~PF_MEMALLOC;
2999
3000 switch (compact_result) {
3001 case COMPACT_DEFERRED:
3002 *deferred_compaction = true;
3003 /* fall-through */
3004 case COMPACT_SKIPPED:
3005 return NULL;
3006 default:
3007 break;
3008 }
3009
3010 /*
3011 * At least in one zone compaction wasn't deferred or skipped, so let's
3012 * count a compaction stall
3013 */
3014 count_vm_event(COMPACTSTALL);
3015
3016 page = get_page_from_freelist(gfp_mask, order,
3017 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3018
3019 if (page) {
3020 struct zone *zone = page_zone(page);
3021
3022 zone->compact_blockskip_flush = false;
3023 compaction_defer_reset(zone, order, true);
3024 count_vm_event(COMPACTSUCCESS);
3025 return page;
3026 }
3027
3028 /*
3029 * It's bad if compaction run occurs and fails. The most likely reason
3030 * is that pages exist, but not enough to satisfy watermarks.
3031 */
3032 count_vm_event(COMPACTFAIL);
3033
3034 cond_resched();
3035
3036 return NULL;
3037 }
3038 #else
3039 static inline struct page *
3040 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3041 unsigned int alloc_flags, const struct alloc_context *ac,
3042 enum migrate_mode mode, int *contended_compaction,
3043 bool *deferred_compaction)
3044 {
3045 return NULL;
3046 }
3047 #endif /* CONFIG_COMPACTION */
3048
3049 /* Perform direct synchronous page reclaim */
3050 static int
3051 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3052 const struct alloc_context *ac)
3053 {
3054 struct reclaim_state reclaim_state;
3055 int progress;
3056
3057 cond_resched();
3058
3059 /* We now go into synchronous reclaim */
3060 cpuset_memory_pressure_bump();
3061 current->flags |= PF_MEMALLOC;
3062 lockdep_set_current_reclaim_state(gfp_mask);
3063 reclaim_state.reclaimed_slab = 0;
3064 current->reclaim_state = &reclaim_state;
3065
3066 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3067 ac->nodemask);
3068
3069 current->reclaim_state = NULL;
3070 lockdep_clear_current_reclaim_state();
3071 current->flags &= ~PF_MEMALLOC;
3072
3073 cond_resched();
3074
3075 return progress;
3076 }
3077
3078 /* The really slow allocator path where we enter direct reclaim */
3079 static inline struct page *
3080 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3081 unsigned int alloc_flags, const struct alloc_context *ac,
3082 unsigned long *did_some_progress)
3083 {
3084 struct page *page = NULL;
3085 bool drained = false;
3086
3087 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3088 if (unlikely(!(*did_some_progress)))
3089 return NULL;
3090
3091 retry:
3092 page = get_page_from_freelist(gfp_mask, order,
3093 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3094
3095 /*
3096 * If an allocation failed after direct reclaim, it could be because
3097 * pages are pinned on the per-cpu lists or in high alloc reserves.
3098 * Shrink them them and try again
3099 */
3100 if (!page && !drained) {
3101 unreserve_highatomic_pageblock(ac);
3102 drain_all_pages(NULL);
3103 drained = true;
3104 goto retry;
3105 }
3106
3107 return page;
3108 }
3109
3110 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3111 {
3112 struct zoneref *z;
3113 struct zone *zone;
3114
3115 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3116 ac->high_zoneidx, ac->nodemask)
3117 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3118 }
3119
3120 static inline unsigned int
3121 gfp_to_alloc_flags(gfp_t gfp_mask)
3122 {
3123 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3124
3125 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3126 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3127
3128 /*
3129 * The caller may dip into page reserves a bit more if the caller
3130 * cannot run direct reclaim, or if the caller has realtime scheduling
3131 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3132 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3133 */
3134 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3135
3136 if (gfp_mask & __GFP_ATOMIC) {
3137 /*
3138 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3139 * if it can't schedule.
3140 */
3141 if (!(gfp_mask & __GFP_NOMEMALLOC))
3142 alloc_flags |= ALLOC_HARDER;
3143 /*
3144 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3145 * comment for __cpuset_node_allowed().
3146 */
3147 alloc_flags &= ~ALLOC_CPUSET;
3148 } else if (unlikely(rt_task(current)) && !in_interrupt())
3149 alloc_flags |= ALLOC_HARDER;
3150
3151 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3152 if (gfp_mask & __GFP_MEMALLOC)
3153 alloc_flags |= ALLOC_NO_WATERMARKS;
3154 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3155 alloc_flags |= ALLOC_NO_WATERMARKS;
3156 else if (!in_interrupt() &&
3157 ((current->flags & PF_MEMALLOC) ||
3158 unlikely(test_thread_flag(TIF_MEMDIE))))
3159 alloc_flags |= ALLOC_NO_WATERMARKS;
3160 }
3161 #ifdef CONFIG_CMA
3162 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3163 alloc_flags |= ALLOC_CMA;
3164 #endif
3165 return alloc_flags;
3166 }
3167
3168 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3169 {
3170 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3171 }
3172
3173 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3174 {
3175 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3176 }
3177
3178 static inline struct page *
3179 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3180 struct alloc_context *ac)
3181 {
3182 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3183 struct page *page = NULL;
3184 unsigned int alloc_flags;
3185 unsigned long pages_reclaimed = 0;
3186 unsigned long did_some_progress;
3187 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3188 bool deferred_compaction = false;
3189 int contended_compaction = COMPACT_CONTENDED_NONE;
3190
3191 /*
3192 * In the slowpath, we sanity check order to avoid ever trying to
3193 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3194 * be using allocators in order of preference for an area that is
3195 * too large.
3196 */
3197 if (order >= MAX_ORDER) {
3198 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3199 return NULL;
3200 }
3201
3202 /*
3203 * We also sanity check to catch abuse of atomic reserves being used by
3204 * callers that are not in atomic context.
3205 */
3206 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3207 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3208 gfp_mask &= ~__GFP_ATOMIC;
3209
3210 retry:
3211 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3212 wake_all_kswapds(order, ac);
3213
3214 /*
3215 * OK, we're below the kswapd watermark and have kicked background
3216 * reclaim. Now things get more complex, so set up alloc_flags according
3217 * to how we want to proceed.
3218 */
3219 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3220
3221 /* This is the last chance, in general, before the goto nopage. */
3222 page = get_page_from_freelist(gfp_mask, order,
3223 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3224 if (page)
3225 goto got_pg;
3226
3227 /* Allocate without watermarks if the context allows */
3228 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3229 /*
3230 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3231 * the allocation is high priority and these type of
3232 * allocations are system rather than user orientated
3233 */
3234 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3235 page = get_page_from_freelist(gfp_mask, order,
3236 ALLOC_NO_WATERMARKS, ac);
3237 if (page)
3238 goto got_pg;
3239 }
3240
3241 /* Caller is not willing to reclaim, we can't balance anything */
3242 if (!can_direct_reclaim) {
3243 /*
3244 * All existing users of the __GFP_NOFAIL are blockable, so warn
3245 * of any new users that actually allow this type of allocation
3246 * to fail.
3247 */
3248 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3249 goto nopage;
3250 }
3251
3252 /* Avoid recursion of direct reclaim */
3253 if (current->flags & PF_MEMALLOC) {
3254 /*
3255 * __GFP_NOFAIL request from this context is rather bizarre
3256 * because we cannot reclaim anything and only can loop waiting
3257 * for somebody to do a work for us.
3258 */
3259 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3260 cond_resched();
3261 goto retry;
3262 }
3263 goto nopage;
3264 }
3265
3266 /* Avoid allocations with no watermarks from looping endlessly */
3267 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3268 goto nopage;
3269
3270 /*
3271 * Try direct compaction. The first pass is asynchronous. Subsequent
3272 * attempts after direct reclaim are synchronous
3273 */
3274 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3275 migration_mode,
3276 &contended_compaction,
3277 &deferred_compaction);
3278 if (page)
3279 goto got_pg;
3280
3281 /* Checks for THP-specific high-order allocations */
3282 if (is_thp_gfp_mask(gfp_mask)) {
3283 /*
3284 * If compaction is deferred for high-order allocations, it is
3285 * because sync compaction recently failed. If this is the case
3286 * and the caller requested a THP allocation, we do not want
3287 * to heavily disrupt the system, so we fail the allocation
3288 * instead of entering direct reclaim.
3289 */
3290 if (deferred_compaction)
3291 goto nopage;
3292
3293 /*
3294 * In all zones where compaction was attempted (and not
3295 * deferred or skipped), lock contention has been detected.
3296 * For THP allocation we do not want to disrupt the others
3297 * so we fallback to base pages instead.
3298 */
3299 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3300 goto nopage;
3301
3302 /*
3303 * If compaction was aborted due to need_resched(), we do not
3304 * want to further increase allocation latency, unless it is
3305 * khugepaged trying to collapse.
3306 */
3307 if (contended_compaction == COMPACT_CONTENDED_SCHED
3308 && !(current->flags & PF_KTHREAD))
3309 goto nopage;
3310 }
3311
3312 /*
3313 * It can become very expensive to allocate transparent hugepages at
3314 * fault, so use asynchronous memory compaction for THP unless it is
3315 * khugepaged trying to collapse.
3316 */
3317 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3318 migration_mode = MIGRATE_SYNC_LIGHT;
3319
3320 /* Try direct reclaim and then allocating */
3321 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3322 &did_some_progress);
3323 if (page)
3324 goto got_pg;
3325
3326 /* Do not loop if specifically requested */
3327 if (gfp_mask & __GFP_NORETRY)
3328 goto noretry;
3329
3330 /* Keep reclaiming pages as long as there is reasonable progress */
3331 pages_reclaimed += did_some_progress;
3332 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3333 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3334 /* Wait for some write requests to complete then retry */
3335 wait_iff_congested(ac->preferred_zoneref->zone, BLK_RW_ASYNC, HZ/50);
3336 goto retry;
3337 }
3338
3339 /* Reclaim has failed us, start killing things */
3340 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3341 if (page)
3342 goto got_pg;
3343
3344 /* Retry as long as the OOM killer is making progress */
3345 if (did_some_progress)
3346 goto retry;
3347
3348 noretry:
3349 /*
3350 * High-order allocations do not necessarily loop after
3351 * direct reclaim and reclaim/compaction depends on compaction
3352 * being called after reclaim so call directly if necessary
3353 */
3354 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3355 ac, migration_mode,
3356 &contended_compaction,
3357 &deferred_compaction);
3358 if (page)
3359 goto got_pg;
3360 nopage:
3361 warn_alloc_failed(gfp_mask, order, NULL);
3362 got_pg:
3363 return page;
3364 }
3365
3366 /*
3367 * This is the 'heart' of the zoned buddy allocator.
3368 */
3369 struct page *
3370 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3371 struct zonelist *zonelist, nodemask_t *nodemask)
3372 {
3373 struct page *page;
3374 unsigned int cpuset_mems_cookie;
3375 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
3376 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3377 struct alloc_context ac = {
3378 .high_zoneidx = gfp_zone(gfp_mask),
3379 .zonelist = zonelist,
3380 .nodemask = nodemask,
3381 .migratetype = gfpflags_to_migratetype(gfp_mask),
3382 };
3383
3384 if (cpusets_enabled()) {
3385 alloc_mask |= __GFP_HARDWALL;
3386 alloc_flags |= ALLOC_CPUSET;
3387 if (!ac.nodemask)
3388 ac.nodemask = &cpuset_current_mems_allowed;
3389 }
3390
3391 gfp_mask &= gfp_allowed_mask;
3392
3393 lockdep_trace_alloc(gfp_mask);
3394
3395 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3396
3397 if (should_fail_alloc_page(gfp_mask, order))
3398 return NULL;
3399
3400 /*
3401 * Check the zones suitable for the gfp_mask contain at least one
3402 * valid zone. It's possible to have an empty zonelist as a result
3403 * of __GFP_THISNODE and a memoryless node
3404 */
3405 if (unlikely(!zonelist->_zonerefs->zone))
3406 return NULL;
3407
3408 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3409 alloc_flags |= ALLOC_CMA;
3410
3411 retry_cpuset:
3412 cpuset_mems_cookie = read_mems_allowed_begin();
3413
3414 /* Dirty zone balancing only done in the fast path */
3415 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3416
3417 /* The preferred zone is used for statistics later */
3418 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3419 ac.high_zoneidx, ac.nodemask);
3420 if (!ac.preferred_zoneref) {
3421 page = NULL;
3422 goto no_zone;
3423 }
3424
3425 /* First allocation attempt */
3426 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3427 if (likely(page))
3428 goto out;
3429
3430 /*
3431 * Runtime PM, block IO and its error handling path can deadlock
3432 * because I/O on the device might not complete.
3433 */
3434 alloc_mask = memalloc_noio_flags(gfp_mask);
3435 ac.spread_dirty_pages = false;
3436
3437 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3438
3439 no_zone:
3440 /*
3441 * When updating a task's mems_allowed, it is possible to race with
3442 * parallel threads in such a way that an allocation can fail while
3443 * the mask is being updated. If a page allocation is about to fail,
3444 * check if the cpuset changed during allocation and if so, retry.
3445 */
3446 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3447 alloc_mask = gfp_mask;
3448 goto retry_cpuset;
3449 }
3450
3451 out:
3452 if (kmemcheck_enabled && page)
3453 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3454
3455 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3456
3457 return page;
3458 }
3459 EXPORT_SYMBOL(__alloc_pages_nodemask);
3460
3461 /*
3462 * Common helper functions.
3463 */
3464 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3465 {
3466 struct page *page;
3467
3468 /*
3469 * __get_free_pages() returns a 32-bit address, which cannot represent
3470 * a highmem page
3471 */
3472 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3473
3474 page = alloc_pages(gfp_mask, order);
3475 if (!page)
3476 return 0;
3477 return (unsigned long) page_address(page);
3478 }
3479 EXPORT_SYMBOL(__get_free_pages);
3480
3481 unsigned long get_zeroed_page(gfp_t gfp_mask)
3482 {
3483 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3484 }
3485 EXPORT_SYMBOL(get_zeroed_page);
3486
3487 void __free_pages(struct page *page, unsigned int order)
3488 {
3489 if (put_page_testzero(page)) {
3490 if (order == 0)
3491 free_hot_cold_page(page, false);
3492 else
3493 __free_pages_ok(page, order);
3494 }
3495 }
3496
3497 EXPORT_SYMBOL(__free_pages);
3498
3499 void free_pages(unsigned long addr, unsigned int order)
3500 {
3501 if (addr != 0) {
3502 VM_BUG_ON(!virt_addr_valid((void *)addr));
3503 __free_pages(virt_to_page((void *)addr), order);
3504 }
3505 }
3506
3507 EXPORT_SYMBOL(free_pages);
3508
3509 /*
3510 * Page Fragment:
3511 * An arbitrary-length arbitrary-offset area of memory which resides
3512 * within a 0 or higher order page. Multiple fragments within that page
3513 * are individually refcounted, in the page's reference counter.
3514 *
3515 * The page_frag functions below provide a simple allocation framework for
3516 * page fragments. This is used by the network stack and network device
3517 * drivers to provide a backing region of memory for use as either an
3518 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3519 */
3520 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3521 gfp_t gfp_mask)
3522 {
3523 struct page *page = NULL;
3524 gfp_t gfp = gfp_mask;
3525
3526 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3527 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3528 __GFP_NOMEMALLOC;
3529 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3530 PAGE_FRAG_CACHE_MAX_ORDER);
3531 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3532 #endif
3533 if (unlikely(!page))
3534 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3535
3536 nc->va = page ? page_address(page) : NULL;
3537
3538 return page;
3539 }
3540
3541 void *__alloc_page_frag(struct page_frag_cache *nc,
3542 unsigned int fragsz, gfp_t gfp_mask)
3543 {
3544 unsigned int size = PAGE_SIZE;
3545 struct page *page;
3546 int offset;
3547
3548 if (unlikely(!nc->va)) {
3549 refill:
3550 page = __page_frag_refill(nc, gfp_mask);
3551 if (!page)
3552 return NULL;
3553
3554 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3555 /* if size can vary use size else just use PAGE_SIZE */
3556 size = nc->size;
3557 #endif
3558 /* Even if we own the page, we do not use atomic_set().
3559 * This would break get_page_unless_zero() users.
3560 */
3561 page_ref_add(page, size - 1);
3562
3563 /* reset page count bias and offset to start of new frag */
3564 nc->pfmemalloc = page_is_pfmemalloc(page);
3565 nc->pagecnt_bias = size;
3566 nc->offset = size;
3567 }
3568
3569 offset = nc->offset - fragsz;
3570 if (unlikely(offset < 0)) {
3571 page = virt_to_page(nc->va);
3572
3573 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3574 goto refill;
3575
3576 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3577 /* if size can vary use size else just use PAGE_SIZE */
3578 size = nc->size;
3579 #endif
3580 /* OK, page count is 0, we can safely set it */
3581 set_page_count(page, size);
3582
3583 /* reset page count bias and offset to start of new frag */
3584 nc->pagecnt_bias = size;
3585 offset = size - fragsz;
3586 }
3587
3588 nc->pagecnt_bias--;
3589 nc->offset = offset;
3590
3591 return nc->va + offset;
3592 }
3593 EXPORT_SYMBOL(__alloc_page_frag);
3594
3595 /*
3596 * Frees a page fragment allocated out of either a compound or order 0 page.
3597 */
3598 void __free_page_frag(void *addr)
3599 {
3600 struct page *page = virt_to_head_page(addr);
3601
3602 if (unlikely(put_page_testzero(page)))
3603 __free_pages_ok(page, compound_order(page));
3604 }
3605 EXPORT_SYMBOL(__free_page_frag);
3606
3607 /*
3608 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3609 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3610 * equivalent to alloc_pages.
3611 *
3612 * It should be used when the caller would like to use kmalloc, but since the
3613 * allocation is large, it has to fall back to the page allocator.
3614 */
3615 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3616 {
3617 struct page *page;
3618
3619 page = alloc_pages(gfp_mask, order);
3620 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3621 __free_pages(page, order);
3622 page = NULL;
3623 }
3624 return page;
3625 }
3626
3627 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3628 {
3629 struct page *page;
3630
3631 page = alloc_pages_node(nid, gfp_mask, order);
3632 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3633 __free_pages(page, order);
3634 page = NULL;
3635 }
3636 return page;
3637 }
3638
3639 /*
3640 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3641 * alloc_kmem_pages.
3642 */
3643 void __free_kmem_pages(struct page *page, unsigned int order)
3644 {
3645 memcg_kmem_uncharge(page, order);
3646 __free_pages(page, order);
3647 }
3648
3649 void free_kmem_pages(unsigned long addr, unsigned int order)
3650 {
3651 if (addr != 0) {
3652 VM_BUG_ON(!virt_addr_valid((void *)addr));
3653 __free_kmem_pages(virt_to_page((void *)addr), order);
3654 }
3655 }
3656
3657 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3658 size_t size)
3659 {
3660 if (addr) {
3661 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3662 unsigned long used = addr + PAGE_ALIGN(size);
3663
3664 split_page(virt_to_page((void *)addr), order);
3665 while (used < alloc_end) {
3666 free_page(used);
3667 used += PAGE_SIZE;
3668 }
3669 }
3670 return (void *)addr;
3671 }
3672
3673 /**
3674 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3675 * @size: the number of bytes to allocate
3676 * @gfp_mask: GFP flags for the allocation
3677 *
3678 * This function is similar to alloc_pages(), except that it allocates the
3679 * minimum number of pages to satisfy the request. alloc_pages() can only
3680 * allocate memory in power-of-two pages.
3681 *
3682 * This function is also limited by MAX_ORDER.
3683 *
3684 * Memory allocated by this function must be released by free_pages_exact().
3685 */
3686 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3687 {
3688 unsigned int order = get_order(size);
3689 unsigned long addr;
3690
3691 addr = __get_free_pages(gfp_mask, order);
3692 return make_alloc_exact(addr, order, size);
3693 }
3694 EXPORT_SYMBOL(alloc_pages_exact);
3695
3696 /**
3697 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3698 * pages on a node.
3699 * @nid: the preferred node ID where memory should be allocated
3700 * @size: the number of bytes to allocate
3701 * @gfp_mask: GFP flags for the allocation
3702 *
3703 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3704 * back.
3705 */
3706 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3707 {
3708 unsigned int order = get_order(size);
3709 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3710 if (!p)
3711 return NULL;
3712 return make_alloc_exact((unsigned long)page_address(p), order, size);
3713 }
3714
3715 /**
3716 * free_pages_exact - release memory allocated via alloc_pages_exact()
3717 * @virt: the value returned by alloc_pages_exact.
3718 * @size: size of allocation, same value as passed to alloc_pages_exact().
3719 *
3720 * Release the memory allocated by a previous call to alloc_pages_exact.
3721 */
3722 void free_pages_exact(void *virt, size_t size)
3723 {
3724 unsigned long addr = (unsigned long)virt;
3725 unsigned long end = addr + PAGE_ALIGN(size);
3726
3727 while (addr < end) {
3728 free_page(addr);
3729 addr += PAGE_SIZE;
3730 }
3731 }
3732 EXPORT_SYMBOL(free_pages_exact);
3733
3734 /**
3735 * nr_free_zone_pages - count number of pages beyond high watermark
3736 * @offset: The zone index of the highest zone
3737 *
3738 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3739 * high watermark within all zones at or below a given zone index. For each
3740 * zone, the number of pages is calculated as:
3741 * managed_pages - high_pages
3742 */
3743 static unsigned long nr_free_zone_pages(int offset)
3744 {
3745 struct zoneref *z;
3746 struct zone *zone;
3747
3748 /* Just pick one node, since fallback list is circular */
3749 unsigned long sum = 0;
3750
3751 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3752
3753 for_each_zone_zonelist(zone, z, zonelist, offset) {
3754 unsigned long size = zone->managed_pages;
3755 unsigned long high = high_wmark_pages(zone);
3756 if (size > high)
3757 sum += size - high;
3758 }
3759
3760 return sum;
3761 }
3762
3763 /**
3764 * nr_free_buffer_pages - count number of pages beyond high watermark
3765 *
3766 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3767 * watermark within ZONE_DMA and ZONE_NORMAL.
3768 */
3769 unsigned long nr_free_buffer_pages(void)
3770 {
3771 return nr_free_zone_pages(gfp_zone(GFP_USER));
3772 }
3773 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3774
3775 /**
3776 * nr_free_pagecache_pages - count number of pages beyond high watermark
3777 *
3778 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3779 * high watermark within all zones.
3780 */
3781 unsigned long nr_free_pagecache_pages(void)
3782 {
3783 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3784 }
3785
3786 static inline void show_node(struct zone *zone)
3787 {
3788 if (IS_ENABLED(CONFIG_NUMA))
3789 printk("Node %d ", zone_to_nid(zone));
3790 }
3791
3792 long si_mem_available(void)
3793 {
3794 long available;
3795 unsigned long pagecache;
3796 unsigned long wmark_low = 0;
3797 unsigned long pages[NR_LRU_LISTS];
3798 struct zone *zone;
3799 int lru;
3800
3801 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3802 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3803
3804 for_each_zone(zone)
3805 wmark_low += zone->watermark[WMARK_LOW];
3806
3807 /*
3808 * Estimate the amount of memory available for userspace allocations,
3809 * without causing swapping.
3810 */
3811 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3812
3813 /*
3814 * Not all the page cache can be freed, otherwise the system will
3815 * start swapping. Assume at least half of the page cache, or the
3816 * low watermark worth of cache, needs to stay.
3817 */
3818 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3819 pagecache -= min(pagecache / 2, wmark_low);
3820 available += pagecache;
3821
3822 /*
3823 * Part of the reclaimable slab consists of items that are in use,
3824 * and cannot be freed. Cap this estimate at the low watermark.
3825 */
3826 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3827 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3828
3829 if (available < 0)
3830 available = 0;
3831 return available;
3832 }
3833 EXPORT_SYMBOL_GPL(si_mem_available);
3834
3835 void si_meminfo(struct sysinfo *val)
3836 {
3837 val->totalram = totalram_pages;
3838 val->sharedram = global_page_state(NR_SHMEM);
3839 val->freeram = global_page_state(NR_FREE_PAGES);
3840 val->bufferram = nr_blockdev_pages();
3841 val->totalhigh = totalhigh_pages;
3842 val->freehigh = nr_free_highpages();
3843 val->mem_unit = PAGE_SIZE;
3844 }
3845
3846 EXPORT_SYMBOL(si_meminfo);
3847
3848 #ifdef CONFIG_NUMA
3849 void si_meminfo_node(struct sysinfo *val, int nid)
3850 {
3851 int zone_type; /* needs to be signed */
3852 unsigned long managed_pages = 0;
3853 unsigned long managed_highpages = 0;
3854 unsigned long free_highpages = 0;
3855 pg_data_t *pgdat = NODE_DATA(nid);
3856
3857 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3858 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3859 val->totalram = managed_pages;
3860 val->sharedram = node_page_state(nid, NR_SHMEM);
3861 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3862 #ifdef CONFIG_HIGHMEM
3863 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3864 struct zone *zone = &pgdat->node_zones[zone_type];
3865
3866 if (is_highmem(zone)) {
3867 managed_highpages += zone->managed_pages;
3868 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
3869 }
3870 }
3871 val->totalhigh = managed_highpages;
3872 val->freehigh = free_highpages;
3873 #else
3874 val->totalhigh = managed_highpages;
3875 val->freehigh = free_highpages;
3876 #endif
3877 val->mem_unit = PAGE_SIZE;
3878 }
3879 #endif
3880
3881 /*
3882 * Determine whether the node should be displayed or not, depending on whether
3883 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3884 */
3885 bool skip_free_areas_node(unsigned int flags, int nid)
3886 {
3887 bool ret = false;
3888 unsigned int cpuset_mems_cookie;
3889
3890 if (!(flags & SHOW_MEM_FILTER_NODES))
3891 goto out;
3892
3893 do {
3894 cpuset_mems_cookie = read_mems_allowed_begin();
3895 ret = !node_isset(nid, cpuset_current_mems_allowed);
3896 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3897 out:
3898 return ret;
3899 }
3900
3901 #define K(x) ((x) << (PAGE_SHIFT-10))
3902
3903 static void show_migration_types(unsigned char type)
3904 {
3905 static const char types[MIGRATE_TYPES] = {
3906 [MIGRATE_UNMOVABLE] = 'U',
3907 [MIGRATE_MOVABLE] = 'M',
3908 [MIGRATE_RECLAIMABLE] = 'E',
3909 [MIGRATE_HIGHATOMIC] = 'H',
3910 #ifdef CONFIG_CMA
3911 [MIGRATE_CMA] = 'C',
3912 #endif
3913 #ifdef CONFIG_MEMORY_ISOLATION
3914 [MIGRATE_ISOLATE] = 'I',
3915 #endif
3916 };
3917 char tmp[MIGRATE_TYPES + 1];
3918 char *p = tmp;
3919 int i;
3920
3921 for (i = 0; i < MIGRATE_TYPES; i++) {
3922 if (type & (1 << i))
3923 *p++ = types[i];
3924 }
3925
3926 *p = '\0';
3927 printk("(%s) ", tmp);
3928 }
3929
3930 /*
3931 * Show free area list (used inside shift_scroll-lock stuff)
3932 * We also calculate the percentage fragmentation. We do this by counting the
3933 * memory on each free list with the exception of the first item on the list.
3934 *
3935 * Bits in @filter:
3936 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3937 * cpuset.
3938 */
3939 void show_free_areas(unsigned int filter)
3940 {
3941 unsigned long free_pcp = 0;
3942 int cpu;
3943 struct zone *zone;
3944
3945 for_each_populated_zone(zone) {
3946 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3947 continue;
3948
3949 for_each_online_cpu(cpu)
3950 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3951 }
3952
3953 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3954 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3955 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3956 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3957 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3958 " free:%lu free_pcp:%lu free_cma:%lu\n",
3959 global_page_state(NR_ACTIVE_ANON),
3960 global_page_state(NR_INACTIVE_ANON),
3961 global_page_state(NR_ISOLATED_ANON),
3962 global_page_state(NR_ACTIVE_FILE),
3963 global_page_state(NR_INACTIVE_FILE),
3964 global_page_state(NR_ISOLATED_FILE),
3965 global_page_state(NR_UNEVICTABLE),
3966 global_page_state(NR_FILE_DIRTY),
3967 global_page_state(NR_WRITEBACK),
3968 global_page_state(NR_UNSTABLE_NFS),
3969 global_page_state(NR_SLAB_RECLAIMABLE),
3970 global_page_state(NR_SLAB_UNRECLAIMABLE),
3971 global_page_state(NR_FILE_MAPPED),
3972 global_page_state(NR_SHMEM),
3973 global_page_state(NR_PAGETABLE),
3974 global_page_state(NR_BOUNCE),
3975 global_page_state(NR_FREE_PAGES),
3976 free_pcp,
3977 global_page_state(NR_FREE_CMA_PAGES));
3978
3979 for_each_populated_zone(zone) {
3980 int i;
3981
3982 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3983 continue;
3984
3985 free_pcp = 0;
3986 for_each_online_cpu(cpu)
3987 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3988
3989 show_node(zone);
3990 printk("%s"
3991 " free:%lukB"
3992 " min:%lukB"
3993 " low:%lukB"
3994 " high:%lukB"
3995 " active_anon:%lukB"
3996 " inactive_anon:%lukB"
3997 " active_file:%lukB"
3998 " inactive_file:%lukB"
3999 " unevictable:%lukB"
4000 " isolated(anon):%lukB"
4001 " isolated(file):%lukB"
4002 " present:%lukB"
4003 " managed:%lukB"
4004 " mlocked:%lukB"
4005 " dirty:%lukB"
4006 " writeback:%lukB"
4007 " mapped:%lukB"
4008 " shmem:%lukB"
4009 " slab_reclaimable:%lukB"
4010 " slab_unreclaimable:%lukB"
4011 " kernel_stack:%lukB"
4012 " pagetables:%lukB"
4013 " unstable:%lukB"
4014 " bounce:%lukB"
4015 " free_pcp:%lukB"
4016 " local_pcp:%ukB"
4017 " free_cma:%lukB"
4018 " writeback_tmp:%lukB"
4019 " pages_scanned:%lu"
4020 " all_unreclaimable? %s"
4021 "\n",
4022 zone->name,
4023 K(zone_page_state(zone, NR_FREE_PAGES)),
4024 K(min_wmark_pages(zone)),
4025 K(low_wmark_pages(zone)),
4026 K(high_wmark_pages(zone)),
4027 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4028 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4029 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4030 K(zone_page_state(zone, NR_INACTIVE_FILE)),
4031 K(zone_page_state(zone, NR_UNEVICTABLE)),
4032 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4033 K(zone_page_state(zone, NR_ISOLATED_FILE)),
4034 K(zone->present_pages),
4035 K(zone->managed_pages),
4036 K(zone_page_state(zone, NR_MLOCK)),
4037 K(zone_page_state(zone, NR_FILE_DIRTY)),
4038 K(zone_page_state(zone, NR_WRITEBACK)),
4039 K(zone_page_state(zone, NR_FILE_MAPPED)),
4040 K(zone_page_state(zone, NR_SHMEM)),
4041 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4042 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4043 zone_page_state(zone, NR_KERNEL_STACK) *
4044 THREAD_SIZE / 1024,
4045 K(zone_page_state(zone, NR_PAGETABLE)),
4046 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4047 K(zone_page_state(zone, NR_BOUNCE)),
4048 K(free_pcp),
4049 K(this_cpu_read(zone->pageset->pcp.count)),
4050 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4051 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
4052 K(zone_page_state(zone, NR_PAGES_SCANNED)),
4053 (!zone_reclaimable(zone) ? "yes" : "no")
4054 );
4055 printk("lowmem_reserve[]:");
4056 for (i = 0; i < MAX_NR_ZONES; i++)
4057 printk(" %ld", zone->lowmem_reserve[i]);
4058 printk("\n");
4059 }
4060
4061 for_each_populated_zone(zone) {
4062 unsigned int order;
4063 unsigned long nr[MAX_ORDER], flags, total = 0;
4064 unsigned char types[MAX_ORDER];
4065
4066 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4067 continue;
4068 show_node(zone);
4069 printk("%s: ", zone->name);
4070
4071 spin_lock_irqsave(&zone->lock, flags);
4072 for (order = 0; order < MAX_ORDER; order++) {
4073 struct free_area *area = &zone->free_area[order];
4074 int type;
4075
4076 nr[order] = area->nr_free;
4077 total += nr[order] << order;
4078
4079 types[order] = 0;
4080 for (type = 0; type < MIGRATE_TYPES; type++) {
4081 if (!list_empty(&area->free_list[type]))
4082 types[order] |= 1 << type;
4083 }
4084 }
4085 spin_unlock_irqrestore(&zone->lock, flags);
4086 for (order = 0; order < MAX_ORDER; order++) {
4087 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4088 if (nr[order])
4089 show_migration_types(types[order]);
4090 }
4091 printk("= %lukB\n", K(total));
4092 }
4093
4094 hugetlb_show_meminfo();
4095
4096 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4097
4098 show_swap_cache_info();
4099 }
4100
4101 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4102 {
4103 zoneref->zone = zone;
4104 zoneref->zone_idx = zone_idx(zone);
4105 }
4106
4107 /*
4108 * Builds allocation fallback zone lists.
4109 *
4110 * Add all populated zones of a node to the zonelist.
4111 */
4112 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4113 int nr_zones)
4114 {
4115 struct zone *zone;
4116 enum zone_type zone_type = MAX_NR_ZONES;
4117
4118 do {
4119 zone_type--;
4120 zone = pgdat->node_zones + zone_type;
4121 if (populated_zone(zone)) {
4122 zoneref_set_zone(zone,
4123 &zonelist->_zonerefs[nr_zones++]);
4124 check_highest_zone(zone_type);
4125 }
4126 } while (zone_type);
4127
4128 return nr_zones;
4129 }
4130
4131
4132 /*
4133 * zonelist_order:
4134 * 0 = automatic detection of better ordering.
4135 * 1 = order by ([node] distance, -zonetype)
4136 * 2 = order by (-zonetype, [node] distance)
4137 *
4138 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4139 * the same zonelist. So only NUMA can configure this param.
4140 */
4141 #define ZONELIST_ORDER_DEFAULT 0
4142 #define ZONELIST_ORDER_NODE 1
4143 #define ZONELIST_ORDER_ZONE 2
4144
4145 /* zonelist order in the kernel.
4146 * set_zonelist_order() will set this to NODE or ZONE.
4147 */
4148 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4149 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4150
4151
4152 #ifdef CONFIG_NUMA
4153 /* The value user specified ....changed by config */
4154 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4155 /* string for sysctl */
4156 #define NUMA_ZONELIST_ORDER_LEN 16
4157 char numa_zonelist_order[16] = "default";
4158
4159 /*
4160 * interface for configure zonelist ordering.
4161 * command line option "numa_zonelist_order"
4162 * = "[dD]efault - default, automatic configuration.
4163 * = "[nN]ode - order by node locality, then by zone within node
4164 * = "[zZ]one - order by zone, then by locality within zone
4165 */
4166
4167 static int __parse_numa_zonelist_order(char *s)
4168 {
4169 if (*s == 'd' || *s == 'D') {
4170 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4171 } else if (*s == 'n' || *s == 'N') {
4172 user_zonelist_order = ZONELIST_ORDER_NODE;
4173 } else if (*s == 'z' || *s == 'Z') {
4174 user_zonelist_order = ZONELIST_ORDER_ZONE;
4175 } else {
4176 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4177 return -EINVAL;
4178 }
4179 return 0;
4180 }
4181
4182 static __init int setup_numa_zonelist_order(char *s)
4183 {
4184 int ret;
4185
4186 if (!s)
4187 return 0;
4188
4189 ret = __parse_numa_zonelist_order(s);
4190 if (ret == 0)
4191 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4192
4193 return ret;
4194 }
4195 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4196
4197 /*
4198 * sysctl handler for numa_zonelist_order
4199 */
4200 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4201 void __user *buffer, size_t *length,
4202 loff_t *ppos)
4203 {
4204 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4205 int ret;
4206 static DEFINE_MUTEX(zl_order_mutex);
4207
4208 mutex_lock(&zl_order_mutex);
4209 if (write) {
4210 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4211 ret = -EINVAL;
4212 goto out;
4213 }
4214 strcpy(saved_string, (char *)table->data);
4215 }
4216 ret = proc_dostring(table, write, buffer, length, ppos);
4217 if (ret)
4218 goto out;
4219 if (write) {
4220 int oldval = user_zonelist_order;
4221
4222 ret = __parse_numa_zonelist_order((char *)table->data);
4223 if (ret) {
4224 /*
4225 * bogus value. restore saved string
4226 */
4227 strncpy((char *)table->data, saved_string,
4228 NUMA_ZONELIST_ORDER_LEN);
4229 user_zonelist_order = oldval;
4230 } else if (oldval != user_zonelist_order) {
4231 mutex_lock(&zonelists_mutex);
4232 build_all_zonelists(NULL, NULL);
4233 mutex_unlock(&zonelists_mutex);
4234 }
4235 }
4236 out:
4237 mutex_unlock(&zl_order_mutex);
4238 return ret;
4239 }
4240
4241
4242 #define MAX_NODE_LOAD (nr_online_nodes)
4243 static int node_load[MAX_NUMNODES];
4244
4245 /**
4246 * find_next_best_node - find the next node that should appear in a given node's fallback list
4247 * @node: node whose fallback list we're appending
4248 * @used_node_mask: nodemask_t of already used nodes
4249 *
4250 * We use a number of factors to determine which is the next node that should
4251 * appear on a given node's fallback list. The node should not have appeared
4252 * already in @node's fallback list, and it should be the next closest node
4253 * according to the distance array (which contains arbitrary distance values
4254 * from each node to each node in the system), and should also prefer nodes
4255 * with no CPUs, since presumably they'll have very little allocation pressure
4256 * on them otherwise.
4257 * It returns -1 if no node is found.
4258 */
4259 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4260 {
4261 int n, val;
4262 int min_val = INT_MAX;
4263 int best_node = NUMA_NO_NODE;
4264 const struct cpumask *tmp = cpumask_of_node(0);
4265
4266 /* Use the local node if we haven't already */
4267 if (!node_isset(node, *used_node_mask)) {
4268 node_set(node, *used_node_mask);
4269 return node;
4270 }
4271
4272 for_each_node_state(n, N_MEMORY) {
4273
4274 /* Don't want a node to appear more than once */
4275 if (node_isset(n, *used_node_mask))
4276 continue;
4277
4278 /* Use the distance array to find the distance */
4279 val = node_distance(node, n);
4280
4281 /* Penalize nodes under us ("prefer the next node") */
4282 val += (n < node);
4283
4284 /* Give preference to headless and unused nodes */
4285 tmp = cpumask_of_node(n);
4286 if (!cpumask_empty(tmp))
4287 val += PENALTY_FOR_NODE_WITH_CPUS;
4288
4289 /* Slight preference for less loaded node */
4290 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4291 val += node_load[n];
4292
4293 if (val < min_val) {
4294 min_val = val;
4295 best_node = n;
4296 }
4297 }
4298
4299 if (best_node >= 0)
4300 node_set(best_node, *used_node_mask);
4301
4302 return best_node;
4303 }
4304
4305
4306 /*
4307 * Build zonelists ordered by node and zones within node.
4308 * This results in maximum locality--normal zone overflows into local
4309 * DMA zone, if any--but risks exhausting DMA zone.
4310 */
4311 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4312 {
4313 int j;
4314 struct zonelist *zonelist;
4315
4316 zonelist = &pgdat->node_zonelists[0];
4317 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4318 ;
4319 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4320 zonelist->_zonerefs[j].zone = NULL;
4321 zonelist->_zonerefs[j].zone_idx = 0;
4322 }
4323
4324 /*
4325 * Build gfp_thisnode zonelists
4326 */
4327 static void build_thisnode_zonelists(pg_data_t *pgdat)
4328 {
4329 int j;
4330 struct zonelist *zonelist;
4331
4332 zonelist = &pgdat->node_zonelists[1];
4333 j = build_zonelists_node(pgdat, zonelist, 0);
4334 zonelist->_zonerefs[j].zone = NULL;
4335 zonelist->_zonerefs[j].zone_idx = 0;
4336 }
4337
4338 /*
4339 * Build zonelists ordered by zone and nodes within zones.
4340 * This results in conserving DMA zone[s] until all Normal memory is
4341 * exhausted, but results in overflowing to remote node while memory
4342 * may still exist in local DMA zone.
4343 */
4344 static int node_order[MAX_NUMNODES];
4345
4346 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4347 {
4348 int pos, j, node;
4349 int zone_type; /* needs to be signed */
4350 struct zone *z;
4351 struct zonelist *zonelist;
4352
4353 zonelist = &pgdat->node_zonelists[0];
4354 pos = 0;
4355 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4356 for (j = 0; j < nr_nodes; j++) {
4357 node = node_order[j];
4358 z = &NODE_DATA(node)->node_zones[zone_type];
4359 if (populated_zone(z)) {
4360 zoneref_set_zone(z,
4361 &zonelist->_zonerefs[pos++]);
4362 check_highest_zone(zone_type);
4363 }
4364 }
4365 }
4366 zonelist->_zonerefs[pos].zone = NULL;
4367 zonelist->_zonerefs[pos].zone_idx = 0;
4368 }
4369
4370 #if defined(CONFIG_64BIT)
4371 /*
4372 * Devices that require DMA32/DMA are relatively rare and do not justify a
4373 * penalty to every machine in case the specialised case applies. Default
4374 * to Node-ordering on 64-bit NUMA machines
4375 */
4376 static int default_zonelist_order(void)
4377 {
4378 return ZONELIST_ORDER_NODE;
4379 }
4380 #else
4381 /*
4382 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4383 * by the kernel. If processes running on node 0 deplete the low memory zone
4384 * then reclaim will occur more frequency increasing stalls and potentially
4385 * be easier to OOM if a large percentage of the zone is under writeback or
4386 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4387 * Hence, default to zone ordering on 32-bit.
4388 */
4389 static int default_zonelist_order(void)
4390 {
4391 return ZONELIST_ORDER_ZONE;
4392 }
4393 #endif /* CONFIG_64BIT */
4394
4395 static void set_zonelist_order(void)
4396 {
4397 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4398 current_zonelist_order = default_zonelist_order();
4399 else
4400 current_zonelist_order = user_zonelist_order;
4401 }
4402
4403 static void build_zonelists(pg_data_t *pgdat)
4404 {
4405 int i, node, load;
4406 nodemask_t used_mask;
4407 int local_node, prev_node;
4408 struct zonelist *zonelist;
4409 unsigned int order = current_zonelist_order;
4410
4411 /* initialize zonelists */
4412 for (i = 0; i < MAX_ZONELISTS; i++) {
4413 zonelist = pgdat->node_zonelists + i;
4414 zonelist->_zonerefs[0].zone = NULL;
4415 zonelist->_zonerefs[0].zone_idx = 0;
4416 }
4417
4418 /* NUMA-aware ordering of nodes */
4419 local_node = pgdat->node_id;
4420 load = nr_online_nodes;
4421 prev_node = local_node;
4422 nodes_clear(used_mask);
4423
4424 memset(node_order, 0, sizeof(node_order));
4425 i = 0;
4426
4427 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4428 /*
4429 * We don't want to pressure a particular node.
4430 * So adding penalty to the first node in same
4431 * distance group to make it round-robin.
4432 */
4433 if (node_distance(local_node, node) !=
4434 node_distance(local_node, prev_node))
4435 node_load[node] = load;
4436
4437 prev_node = node;
4438 load--;
4439 if (order == ZONELIST_ORDER_NODE)
4440 build_zonelists_in_node_order(pgdat, node);
4441 else
4442 node_order[i++] = node; /* remember order */
4443 }
4444
4445 if (order == ZONELIST_ORDER_ZONE) {
4446 /* calculate node order -- i.e., DMA last! */
4447 build_zonelists_in_zone_order(pgdat, i);
4448 }
4449
4450 build_thisnode_zonelists(pgdat);
4451 }
4452
4453 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4454 /*
4455 * Return node id of node used for "local" allocations.
4456 * I.e., first node id of first zone in arg node's generic zonelist.
4457 * Used for initializing percpu 'numa_mem', which is used primarily
4458 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4459 */
4460 int local_memory_node(int node)
4461 {
4462 struct zoneref *z;
4463
4464 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4465 gfp_zone(GFP_KERNEL),
4466 NULL);
4467 return z->zone->node;
4468 }
4469 #endif
4470
4471 #else /* CONFIG_NUMA */
4472
4473 static void set_zonelist_order(void)
4474 {
4475 current_zonelist_order = ZONELIST_ORDER_ZONE;
4476 }
4477
4478 static void build_zonelists(pg_data_t *pgdat)
4479 {
4480 int node, local_node;
4481 enum zone_type j;
4482 struct zonelist *zonelist;
4483
4484 local_node = pgdat->node_id;
4485
4486 zonelist = &pgdat->node_zonelists[0];
4487 j = build_zonelists_node(pgdat, zonelist, 0);
4488
4489 /*
4490 * Now we build the zonelist so that it contains the zones
4491 * of all the other nodes.
4492 * We don't want to pressure a particular node, so when
4493 * building the zones for node N, we make sure that the
4494 * zones coming right after the local ones are those from
4495 * node N+1 (modulo N)
4496 */
4497 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4498 if (!node_online(node))
4499 continue;
4500 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4501 }
4502 for (node = 0; node < local_node; node++) {
4503 if (!node_online(node))
4504 continue;
4505 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4506 }
4507
4508 zonelist->_zonerefs[j].zone = NULL;
4509 zonelist->_zonerefs[j].zone_idx = 0;
4510 }
4511
4512 #endif /* CONFIG_NUMA */
4513
4514 /*
4515 * Boot pageset table. One per cpu which is going to be used for all
4516 * zones and all nodes. The parameters will be set in such a way
4517 * that an item put on a list will immediately be handed over to
4518 * the buddy list. This is safe since pageset manipulation is done
4519 * with interrupts disabled.
4520 *
4521 * The boot_pagesets must be kept even after bootup is complete for
4522 * unused processors and/or zones. They do play a role for bootstrapping
4523 * hotplugged processors.
4524 *
4525 * zoneinfo_show() and maybe other functions do
4526 * not check if the processor is online before following the pageset pointer.
4527 * Other parts of the kernel may not check if the zone is available.
4528 */
4529 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4530 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4531 static void setup_zone_pageset(struct zone *zone);
4532
4533 /*
4534 * Global mutex to protect against size modification of zonelists
4535 * as well as to serialize pageset setup for the new populated zone.
4536 */
4537 DEFINE_MUTEX(zonelists_mutex);
4538
4539 /* return values int ....just for stop_machine() */
4540 static int __build_all_zonelists(void *data)
4541 {
4542 int nid;
4543 int cpu;
4544 pg_data_t *self = data;
4545
4546 #ifdef CONFIG_NUMA
4547 memset(node_load, 0, sizeof(node_load));
4548 #endif
4549
4550 if (self && !node_online(self->node_id)) {
4551 build_zonelists(self);
4552 }
4553
4554 for_each_online_node(nid) {
4555 pg_data_t *pgdat = NODE_DATA(nid);
4556
4557 build_zonelists(pgdat);
4558 }
4559
4560 /*
4561 * Initialize the boot_pagesets that are going to be used
4562 * for bootstrapping processors. The real pagesets for
4563 * each zone will be allocated later when the per cpu
4564 * allocator is available.
4565 *
4566 * boot_pagesets are used also for bootstrapping offline
4567 * cpus if the system is already booted because the pagesets
4568 * are needed to initialize allocators on a specific cpu too.
4569 * F.e. the percpu allocator needs the page allocator which
4570 * needs the percpu allocator in order to allocate its pagesets
4571 * (a chicken-egg dilemma).
4572 */
4573 for_each_possible_cpu(cpu) {
4574 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4575
4576 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4577 /*
4578 * We now know the "local memory node" for each node--
4579 * i.e., the node of the first zone in the generic zonelist.
4580 * Set up numa_mem percpu variable for on-line cpus. During
4581 * boot, only the boot cpu should be on-line; we'll init the
4582 * secondary cpus' numa_mem as they come on-line. During
4583 * node/memory hotplug, we'll fixup all on-line cpus.
4584 */
4585 if (cpu_online(cpu))
4586 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4587 #endif
4588 }
4589
4590 return 0;
4591 }
4592
4593 static noinline void __init
4594 build_all_zonelists_init(void)
4595 {
4596 __build_all_zonelists(NULL);
4597 mminit_verify_zonelist();
4598 cpuset_init_current_mems_allowed();
4599 }
4600
4601 /*
4602 * Called with zonelists_mutex held always
4603 * unless system_state == SYSTEM_BOOTING.
4604 *
4605 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4606 * [we're only called with non-NULL zone through __meminit paths] and
4607 * (2) call of __init annotated helper build_all_zonelists_init
4608 * [protected by SYSTEM_BOOTING].
4609 */
4610 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4611 {
4612 set_zonelist_order();
4613
4614 if (system_state == SYSTEM_BOOTING) {
4615 build_all_zonelists_init();
4616 } else {
4617 #ifdef CONFIG_MEMORY_HOTPLUG
4618 if (zone)
4619 setup_zone_pageset(zone);
4620 #endif
4621 /* we have to stop all cpus to guarantee there is no user
4622 of zonelist */
4623 stop_machine(__build_all_zonelists, pgdat, NULL);
4624 /* cpuset refresh routine should be here */
4625 }
4626 vm_total_pages = nr_free_pagecache_pages();
4627 /*
4628 * Disable grouping by mobility if the number of pages in the
4629 * system is too low to allow the mechanism to work. It would be
4630 * more accurate, but expensive to check per-zone. This check is
4631 * made on memory-hotadd so a system can start with mobility
4632 * disabled and enable it later
4633 */
4634 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4635 page_group_by_mobility_disabled = 1;
4636 else
4637 page_group_by_mobility_disabled = 0;
4638
4639 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4640 nr_online_nodes,
4641 zonelist_order_name[current_zonelist_order],
4642 page_group_by_mobility_disabled ? "off" : "on",
4643 vm_total_pages);
4644 #ifdef CONFIG_NUMA
4645 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4646 #endif
4647 }
4648
4649 /*
4650 * Helper functions to size the waitqueue hash table.
4651 * Essentially these want to choose hash table sizes sufficiently
4652 * large so that collisions trying to wait on pages are rare.
4653 * But in fact, the number of active page waitqueues on typical
4654 * systems is ridiculously low, less than 200. So this is even
4655 * conservative, even though it seems large.
4656 *
4657 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4658 * waitqueues, i.e. the size of the waitq table given the number of pages.
4659 */
4660 #define PAGES_PER_WAITQUEUE 256
4661
4662 #ifndef CONFIG_MEMORY_HOTPLUG
4663 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4664 {
4665 unsigned long size = 1;
4666
4667 pages /= PAGES_PER_WAITQUEUE;
4668
4669 while (size < pages)
4670 size <<= 1;
4671
4672 /*
4673 * Once we have dozens or even hundreds of threads sleeping
4674 * on IO we've got bigger problems than wait queue collision.
4675 * Limit the size of the wait table to a reasonable size.
4676 */
4677 size = min(size, 4096UL);
4678
4679 return max(size, 4UL);
4680 }
4681 #else
4682 /*
4683 * A zone's size might be changed by hot-add, so it is not possible to determine
4684 * a suitable size for its wait_table. So we use the maximum size now.
4685 *
4686 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4687 *
4688 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4689 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4690 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4691 *
4692 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4693 * or more by the traditional way. (See above). It equals:
4694 *
4695 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4696 * ia64(16K page size) : = ( 8G + 4M)byte.
4697 * powerpc (64K page size) : = (32G +16M)byte.
4698 */
4699 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4700 {
4701 return 4096UL;
4702 }
4703 #endif
4704
4705 /*
4706 * This is an integer logarithm so that shifts can be used later
4707 * to extract the more random high bits from the multiplicative
4708 * hash function before the remainder is taken.
4709 */
4710 static inline unsigned long wait_table_bits(unsigned long size)
4711 {
4712 return ffz(~size);
4713 }
4714
4715 /*
4716 * Initially all pages are reserved - free ones are freed
4717 * up by free_all_bootmem() once the early boot process is
4718 * done. Non-atomic initialization, single-pass.
4719 */
4720 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4721 unsigned long start_pfn, enum memmap_context context)
4722 {
4723 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4724 unsigned long end_pfn = start_pfn + size;
4725 pg_data_t *pgdat = NODE_DATA(nid);
4726 unsigned long pfn;
4727 unsigned long nr_initialised = 0;
4728 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4729 struct memblock_region *r = NULL, *tmp;
4730 #endif
4731
4732 if (highest_memmap_pfn < end_pfn - 1)
4733 highest_memmap_pfn = end_pfn - 1;
4734
4735 /*
4736 * Honor reservation requested by the driver for this ZONE_DEVICE
4737 * memory
4738 */
4739 if (altmap && start_pfn == altmap->base_pfn)
4740 start_pfn += altmap->reserve;
4741
4742 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4743 /*
4744 * There can be holes in boot-time mem_map[]s handed to this
4745 * function. They do not exist on hotplugged memory.
4746 */
4747 if (context != MEMMAP_EARLY)
4748 goto not_early;
4749
4750 if (!early_pfn_valid(pfn))
4751 continue;
4752 if (!early_pfn_in_nid(pfn, nid))
4753 continue;
4754 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4755 break;
4756
4757 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4758 /*
4759 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4760 * from zone_movable_pfn[nid] to end of each node should be
4761 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4762 */
4763 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4764 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4765 continue;
4766
4767 /*
4768 * Check given memblock attribute by firmware which can affect
4769 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4770 * mirrored, it's an overlapped memmap init. skip it.
4771 */
4772 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4773 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4774 for_each_memblock(memory, tmp)
4775 if (pfn < memblock_region_memory_end_pfn(tmp))
4776 break;
4777 r = tmp;
4778 }
4779 if (pfn >= memblock_region_memory_base_pfn(r) &&
4780 memblock_is_mirror(r)) {
4781 /* already initialized as NORMAL */
4782 pfn = memblock_region_memory_end_pfn(r);
4783 continue;
4784 }
4785 }
4786 #endif
4787
4788 not_early:
4789 /*
4790 * Mark the block movable so that blocks are reserved for
4791 * movable at startup. This will force kernel allocations
4792 * to reserve their blocks rather than leaking throughout
4793 * the address space during boot when many long-lived
4794 * kernel allocations are made.
4795 *
4796 * bitmap is created for zone's valid pfn range. but memmap
4797 * can be created for invalid pages (for alignment)
4798 * check here not to call set_pageblock_migratetype() against
4799 * pfn out of zone.
4800 */
4801 if (!(pfn & (pageblock_nr_pages - 1))) {
4802 struct page *page = pfn_to_page(pfn);
4803
4804 __init_single_page(page, pfn, zone, nid);
4805 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4806 } else {
4807 __init_single_pfn(pfn, zone, nid);
4808 }
4809 }
4810 }
4811
4812 static void __meminit zone_init_free_lists(struct zone *zone)
4813 {
4814 unsigned int order, t;
4815 for_each_migratetype_order(order, t) {
4816 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4817 zone->free_area[order].nr_free = 0;
4818 }
4819 }
4820
4821 #ifndef __HAVE_ARCH_MEMMAP_INIT
4822 #define memmap_init(size, nid, zone, start_pfn) \
4823 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4824 #endif
4825
4826 static int zone_batchsize(struct zone *zone)
4827 {
4828 #ifdef CONFIG_MMU
4829 int batch;
4830
4831 /*
4832 * The per-cpu-pages pools are set to around 1000th of the
4833 * size of the zone. But no more than 1/2 of a meg.
4834 *
4835 * OK, so we don't know how big the cache is. So guess.
4836 */
4837 batch = zone->managed_pages / 1024;
4838 if (batch * PAGE_SIZE > 512 * 1024)
4839 batch = (512 * 1024) / PAGE_SIZE;
4840 batch /= 4; /* We effectively *= 4 below */
4841 if (batch < 1)
4842 batch = 1;
4843
4844 /*
4845 * Clamp the batch to a 2^n - 1 value. Having a power
4846 * of 2 value was found to be more likely to have
4847 * suboptimal cache aliasing properties in some cases.
4848 *
4849 * For example if 2 tasks are alternately allocating
4850 * batches of pages, one task can end up with a lot
4851 * of pages of one half of the possible page colors
4852 * and the other with pages of the other colors.
4853 */
4854 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4855
4856 return batch;
4857
4858 #else
4859 /* The deferral and batching of frees should be suppressed under NOMMU
4860 * conditions.
4861 *
4862 * The problem is that NOMMU needs to be able to allocate large chunks
4863 * of contiguous memory as there's no hardware page translation to
4864 * assemble apparent contiguous memory from discontiguous pages.
4865 *
4866 * Queueing large contiguous runs of pages for batching, however,
4867 * causes the pages to actually be freed in smaller chunks. As there
4868 * can be a significant delay between the individual batches being
4869 * recycled, this leads to the once large chunks of space being
4870 * fragmented and becoming unavailable for high-order allocations.
4871 */
4872 return 0;
4873 #endif
4874 }
4875
4876 /*
4877 * pcp->high and pcp->batch values are related and dependent on one another:
4878 * ->batch must never be higher then ->high.
4879 * The following function updates them in a safe manner without read side
4880 * locking.
4881 *
4882 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4883 * those fields changing asynchronously (acording the the above rule).
4884 *
4885 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4886 * outside of boot time (or some other assurance that no concurrent updaters
4887 * exist).
4888 */
4889 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4890 unsigned long batch)
4891 {
4892 /* start with a fail safe value for batch */
4893 pcp->batch = 1;
4894 smp_wmb();
4895
4896 /* Update high, then batch, in order */
4897 pcp->high = high;
4898 smp_wmb();
4899
4900 pcp->batch = batch;
4901 }
4902
4903 /* a companion to pageset_set_high() */
4904 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4905 {
4906 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4907 }
4908
4909 static void pageset_init(struct per_cpu_pageset *p)
4910 {
4911 struct per_cpu_pages *pcp;
4912 int migratetype;
4913
4914 memset(p, 0, sizeof(*p));
4915
4916 pcp = &p->pcp;
4917 pcp->count = 0;
4918 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4919 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4920 }
4921
4922 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4923 {
4924 pageset_init(p);
4925 pageset_set_batch(p, batch);
4926 }
4927
4928 /*
4929 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4930 * to the value high for the pageset p.
4931 */
4932 static void pageset_set_high(struct per_cpu_pageset *p,
4933 unsigned long high)
4934 {
4935 unsigned long batch = max(1UL, high / 4);
4936 if ((high / 4) > (PAGE_SHIFT * 8))
4937 batch = PAGE_SHIFT * 8;
4938
4939 pageset_update(&p->pcp, high, batch);
4940 }
4941
4942 static void pageset_set_high_and_batch(struct zone *zone,
4943 struct per_cpu_pageset *pcp)
4944 {
4945 if (percpu_pagelist_fraction)
4946 pageset_set_high(pcp,
4947 (zone->managed_pages /
4948 percpu_pagelist_fraction));
4949 else
4950 pageset_set_batch(pcp, zone_batchsize(zone));
4951 }
4952
4953 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4954 {
4955 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4956
4957 pageset_init(pcp);
4958 pageset_set_high_and_batch(zone, pcp);
4959 }
4960
4961 static void __meminit setup_zone_pageset(struct zone *zone)
4962 {
4963 int cpu;
4964 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4965 for_each_possible_cpu(cpu)
4966 zone_pageset_init(zone, cpu);
4967 }
4968
4969 /*
4970 * Allocate per cpu pagesets and initialize them.
4971 * Before this call only boot pagesets were available.
4972 */
4973 void __init setup_per_cpu_pageset(void)
4974 {
4975 struct zone *zone;
4976
4977 for_each_populated_zone(zone)
4978 setup_zone_pageset(zone);
4979 }
4980
4981 static noinline __init_refok
4982 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4983 {
4984 int i;
4985 size_t alloc_size;
4986
4987 /*
4988 * The per-page waitqueue mechanism uses hashed waitqueues
4989 * per zone.
4990 */
4991 zone->wait_table_hash_nr_entries =
4992 wait_table_hash_nr_entries(zone_size_pages);
4993 zone->wait_table_bits =
4994 wait_table_bits(zone->wait_table_hash_nr_entries);
4995 alloc_size = zone->wait_table_hash_nr_entries
4996 * sizeof(wait_queue_head_t);
4997
4998 if (!slab_is_available()) {
4999 zone->wait_table = (wait_queue_head_t *)
5000 memblock_virt_alloc_node_nopanic(
5001 alloc_size, zone->zone_pgdat->node_id);
5002 } else {
5003 /*
5004 * This case means that a zone whose size was 0 gets new memory
5005 * via memory hot-add.
5006 * But it may be the case that a new node was hot-added. In
5007 * this case vmalloc() will not be able to use this new node's
5008 * memory - this wait_table must be initialized to use this new
5009 * node itself as well.
5010 * To use this new node's memory, further consideration will be
5011 * necessary.
5012 */
5013 zone->wait_table = vmalloc(alloc_size);
5014 }
5015 if (!zone->wait_table)
5016 return -ENOMEM;
5017
5018 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5019 init_waitqueue_head(zone->wait_table + i);
5020
5021 return 0;
5022 }
5023
5024 static __meminit void zone_pcp_init(struct zone *zone)
5025 {
5026 /*
5027 * per cpu subsystem is not up at this point. The following code
5028 * relies on the ability of the linker to provide the
5029 * offset of a (static) per cpu variable into the per cpu area.
5030 */
5031 zone->pageset = &boot_pageset;
5032
5033 if (populated_zone(zone))
5034 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5035 zone->name, zone->present_pages,
5036 zone_batchsize(zone));
5037 }
5038
5039 int __meminit init_currently_empty_zone(struct zone *zone,
5040 unsigned long zone_start_pfn,
5041 unsigned long size)
5042 {
5043 struct pglist_data *pgdat = zone->zone_pgdat;
5044 int ret;
5045 ret = zone_wait_table_init(zone, size);
5046 if (ret)
5047 return ret;
5048 pgdat->nr_zones = zone_idx(zone) + 1;
5049
5050 zone->zone_start_pfn = zone_start_pfn;
5051
5052 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5053 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5054 pgdat->node_id,
5055 (unsigned long)zone_idx(zone),
5056 zone_start_pfn, (zone_start_pfn + size));
5057
5058 zone_init_free_lists(zone);
5059
5060 return 0;
5061 }
5062
5063 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5064 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5065
5066 /*
5067 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5068 */
5069 int __meminit __early_pfn_to_nid(unsigned long pfn,
5070 struct mminit_pfnnid_cache *state)
5071 {
5072 unsigned long start_pfn, end_pfn;
5073 int nid;
5074
5075 if (state->last_start <= pfn && pfn < state->last_end)
5076 return state->last_nid;
5077
5078 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5079 if (nid != -1) {
5080 state->last_start = start_pfn;
5081 state->last_end = end_pfn;
5082 state->last_nid = nid;
5083 }
5084
5085 return nid;
5086 }
5087 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5088
5089 /**
5090 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5091 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5092 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5093 *
5094 * If an architecture guarantees that all ranges registered contain no holes
5095 * and may be freed, this this function may be used instead of calling
5096 * memblock_free_early_nid() manually.
5097 */
5098 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5099 {
5100 unsigned long start_pfn, end_pfn;
5101 int i, this_nid;
5102
5103 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5104 start_pfn = min(start_pfn, max_low_pfn);
5105 end_pfn = min(end_pfn, max_low_pfn);
5106
5107 if (start_pfn < end_pfn)
5108 memblock_free_early_nid(PFN_PHYS(start_pfn),
5109 (end_pfn - start_pfn) << PAGE_SHIFT,
5110 this_nid);
5111 }
5112 }
5113
5114 /**
5115 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5116 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5117 *
5118 * If an architecture guarantees that all ranges registered contain no holes and may
5119 * be freed, this function may be used instead of calling memory_present() manually.
5120 */
5121 void __init sparse_memory_present_with_active_regions(int nid)
5122 {
5123 unsigned long start_pfn, end_pfn;
5124 int i, this_nid;
5125
5126 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5127 memory_present(this_nid, start_pfn, end_pfn);
5128 }
5129
5130 /**
5131 * get_pfn_range_for_nid - Return the start and end page frames for a node
5132 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5133 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5134 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5135 *
5136 * It returns the start and end page frame of a node based on information
5137 * provided by memblock_set_node(). If called for a node
5138 * with no available memory, a warning is printed and the start and end
5139 * PFNs will be 0.
5140 */
5141 void __meminit get_pfn_range_for_nid(unsigned int nid,
5142 unsigned long *start_pfn, unsigned long *end_pfn)
5143 {
5144 unsigned long this_start_pfn, this_end_pfn;
5145 int i;
5146
5147 *start_pfn = -1UL;
5148 *end_pfn = 0;
5149
5150 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5151 *start_pfn = min(*start_pfn, this_start_pfn);
5152 *end_pfn = max(*end_pfn, this_end_pfn);
5153 }
5154
5155 if (*start_pfn == -1UL)
5156 *start_pfn = 0;
5157 }
5158
5159 /*
5160 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5161 * assumption is made that zones within a node are ordered in monotonic
5162 * increasing memory addresses so that the "highest" populated zone is used
5163 */
5164 static void __init find_usable_zone_for_movable(void)
5165 {
5166 int zone_index;
5167 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5168 if (zone_index == ZONE_MOVABLE)
5169 continue;
5170
5171 if (arch_zone_highest_possible_pfn[zone_index] >
5172 arch_zone_lowest_possible_pfn[zone_index])
5173 break;
5174 }
5175
5176 VM_BUG_ON(zone_index == -1);
5177 movable_zone = zone_index;
5178 }
5179
5180 /*
5181 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5182 * because it is sized independent of architecture. Unlike the other zones,
5183 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5184 * in each node depending on the size of each node and how evenly kernelcore
5185 * is distributed. This helper function adjusts the zone ranges
5186 * provided by the architecture for a given node by using the end of the
5187 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5188 * zones within a node are in order of monotonic increases memory addresses
5189 */
5190 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5191 unsigned long zone_type,
5192 unsigned long node_start_pfn,
5193 unsigned long node_end_pfn,
5194 unsigned long *zone_start_pfn,
5195 unsigned long *zone_end_pfn)
5196 {
5197 /* Only adjust if ZONE_MOVABLE is on this node */
5198 if (zone_movable_pfn[nid]) {
5199 /* Size ZONE_MOVABLE */
5200 if (zone_type == ZONE_MOVABLE) {
5201 *zone_start_pfn = zone_movable_pfn[nid];
5202 *zone_end_pfn = min(node_end_pfn,
5203 arch_zone_highest_possible_pfn[movable_zone]);
5204
5205 /* Check if this whole range is within ZONE_MOVABLE */
5206 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5207 *zone_start_pfn = *zone_end_pfn;
5208 }
5209 }
5210
5211 /*
5212 * Return the number of pages a zone spans in a node, including holes
5213 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5214 */
5215 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5216 unsigned long zone_type,
5217 unsigned long node_start_pfn,
5218 unsigned long node_end_pfn,
5219 unsigned long *zone_start_pfn,
5220 unsigned long *zone_end_pfn,
5221 unsigned long *ignored)
5222 {
5223 /* When hotadd a new node from cpu_up(), the node should be empty */
5224 if (!node_start_pfn && !node_end_pfn)
5225 return 0;
5226
5227 /* Get the start and end of the zone */
5228 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5229 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5230 adjust_zone_range_for_zone_movable(nid, zone_type,
5231 node_start_pfn, node_end_pfn,
5232 zone_start_pfn, zone_end_pfn);
5233
5234 /* Check that this node has pages within the zone's required range */
5235 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5236 return 0;
5237
5238 /* Move the zone boundaries inside the node if necessary */
5239 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5240 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5241
5242 /* Return the spanned pages */
5243 return *zone_end_pfn - *zone_start_pfn;
5244 }
5245
5246 /*
5247 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5248 * then all holes in the requested range will be accounted for.
5249 */
5250 unsigned long __meminit __absent_pages_in_range(int nid,
5251 unsigned long range_start_pfn,
5252 unsigned long range_end_pfn)
5253 {
5254 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5255 unsigned long start_pfn, end_pfn;
5256 int i;
5257
5258 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5259 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5260 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5261 nr_absent -= end_pfn - start_pfn;
5262 }
5263 return nr_absent;
5264 }
5265
5266 /**
5267 * absent_pages_in_range - Return number of page frames in holes within a range
5268 * @start_pfn: The start PFN to start searching for holes
5269 * @end_pfn: The end PFN to stop searching for holes
5270 *
5271 * It returns the number of pages frames in memory holes within a range.
5272 */
5273 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5274 unsigned long end_pfn)
5275 {
5276 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5277 }
5278
5279 /* Return the number of page frames in holes in a zone on a node */
5280 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5281 unsigned long zone_type,
5282 unsigned long node_start_pfn,
5283 unsigned long node_end_pfn,
5284 unsigned long *ignored)
5285 {
5286 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5287 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5288 unsigned long zone_start_pfn, zone_end_pfn;
5289 unsigned long nr_absent;
5290
5291 /* When hotadd a new node from cpu_up(), the node should be empty */
5292 if (!node_start_pfn && !node_end_pfn)
5293 return 0;
5294
5295 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5296 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5297
5298 adjust_zone_range_for_zone_movable(nid, zone_type,
5299 node_start_pfn, node_end_pfn,
5300 &zone_start_pfn, &zone_end_pfn);
5301 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5302
5303 /*
5304 * ZONE_MOVABLE handling.
5305 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5306 * and vice versa.
5307 */
5308 if (zone_movable_pfn[nid]) {
5309 if (mirrored_kernelcore) {
5310 unsigned long start_pfn, end_pfn;
5311 struct memblock_region *r;
5312
5313 for_each_memblock(memory, r) {
5314 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5315 zone_start_pfn, zone_end_pfn);
5316 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5317 zone_start_pfn, zone_end_pfn);
5318
5319 if (zone_type == ZONE_MOVABLE &&
5320 memblock_is_mirror(r))
5321 nr_absent += end_pfn - start_pfn;
5322
5323 if (zone_type == ZONE_NORMAL &&
5324 !memblock_is_mirror(r))
5325 nr_absent += end_pfn - start_pfn;
5326 }
5327 } else {
5328 if (zone_type == ZONE_NORMAL)
5329 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5330 }
5331 }
5332
5333 return nr_absent;
5334 }
5335
5336 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5337 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5338 unsigned long zone_type,
5339 unsigned long node_start_pfn,
5340 unsigned long node_end_pfn,
5341 unsigned long *zone_start_pfn,
5342 unsigned long *zone_end_pfn,
5343 unsigned long *zones_size)
5344 {
5345 unsigned int zone;
5346
5347 *zone_start_pfn = node_start_pfn;
5348 for (zone = 0; zone < zone_type; zone++)
5349 *zone_start_pfn += zones_size[zone];
5350
5351 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5352
5353 return zones_size[zone_type];
5354 }
5355
5356 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5357 unsigned long zone_type,
5358 unsigned long node_start_pfn,
5359 unsigned long node_end_pfn,
5360 unsigned long *zholes_size)
5361 {
5362 if (!zholes_size)
5363 return 0;
5364
5365 return zholes_size[zone_type];
5366 }
5367
5368 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5369
5370 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5371 unsigned long node_start_pfn,
5372 unsigned long node_end_pfn,
5373 unsigned long *zones_size,
5374 unsigned long *zholes_size)
5375 {
5376 unsigned long realtotalpages = 0, totalpages = 0;
5377 enum zone_type i;
5378
5379 for (i = 0; i < MAX_NR_ZONES; i++) {
5380 struct zone *zone = pgdat->node_zones + i;
5381 unsigned long zone_start_pfn, zone_end_pfn;
5382 unsigned long size, real_size;
5383
5384 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5385 node_start_pfn,
5386 node_end_pfn,
5387 &zone_start_pfn,
5388 &zone_end_pfn,
5389 zones_size);
5390 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5391 node_start_pfn, node_end_pfn,
5392 zholes_size);
5393 if (size)
5394 zone->zone_start_pfn = zone_start_pfn;
5395 else
5396 zone->zone_start_pfn = 0;
5397 zone->spanned_pages = size;
5398 zone->present_pages = real_size;
5399
5400 totalpages += size;
5401 realtotalpages += real_size;
5402 }
5403
5404 pgdat->node_spanned_pages = totalpages;
5405 pgdat->node_present_pages = realtotalpages;
5406 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5407 realtotalpages);
5408 }
5409
5410 #ifndef CONFIG_SPARSEMEM
5411 /*
5412 * Calculate the size of the zone->blockflags rounded to an unsigned long
5413 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5414 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5415 * round what is now in bits to nearest long in bits, then return it in
5416 * bytes.
5417 */
5418 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5419 {
5420 unsigned long usemapsize;
5421
5422 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5423 usemapsize = roundup(zonesize, pageblock_nr_pages);
5424 usemapsize = usemapsize >> pageblock_order;
5425 usemapsize *= NR_PAGEBLOCK_BITS;
5426 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5427
5428 return usemapsize / 8;
5429 }
5430
5431 static void __init setup_usemap(struct pglist_data *pgdat,
5432 struct zone *zone,
5433 unsigned long zone_start_pfn,
5434 unsigned long zonesize)
5435 {
5436 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5437 zone->pageblock_flags = NULL;
5438 if (usemapsize)
5439 zone->pageblock_flags =
5440 memblock_virt_alloc_node_nopanic(usemapsize,
5441 pgdat->node_id);
5442 }
5443 #else
5444 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5445 unsigned long zone_start_pfn, unsigned long zonesize) {}
5446 #endif /* CONFIG_SPARSEMEM */
5447
5448 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5449
5450 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5451 void __paginginit set_pageblock_order(void)
5452 {
5453 unsigned int order;
5454
5455 /* Check that pageblock_nr_pages has not already been setup */
5456 if (pageblock_order)
5457 return;
5458
5459 if (HPAGE_SHIFT > PAGE_SHIFT)
5460 order = HUGETLB_PAGE_ORDER;
5461 else
5462 order = MAX_ORDER - 1;
5463
5464 /*
5465 * Assume the largest contiguous order of interest is a huge page.
5466 * This value may be variable depending on boot parameters on IA64 and
5467 * powerpc.
5468 */
5469 pageblock_order = order;
5470 }
5471 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5472
5473 /*
5474 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5475 * is unused as pageblock_order is set at compile-time. See
5476 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5477 * the kernel config
5478 */
5479 void __paginginit set_pageblock_order(void)
5480 {
5481 }
5482
5483 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5484
5485 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5486 unsigned long present_pages)
5487 {
5488 unsigned long pages = spanned_pages;
5489
5490 /*
5491 * Provide a more accurate estimation if there are holes within
5492 * the zone and SPARSEMEM is in use. If there are holes within the
5493 * zone, each populated memory region may cost us one or two extra
5494 * memmap pages due to alignment because memmap pages for each
5495 * populated regions may not naturally algined on page boundary.
5496 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5497 */
5498 if (spanned_pages > present_pages + (present_pages >> 4) &&
5499 IS_ENABLED(CONFIG_SPARSEMEM))
5500 pages = present_pages;
5501
5502 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5503 }
5504
5505 /*
5506 * Set up the zone data structures:
5507 * - mark all pages reserved
5508 * - mark all memory queues empty
5509 * - clear the memory bitmaps
5510 *
5511 * NOTE: pgdat should get zeroed by caller.
5512 */
5513 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5514 {
5515 enum zone_type j;
5516 int nid = pgdat->node_id;
5517 int ret;
5518
5519 pgdat_resize_init(pgdat);
5520 #ifdef CONFIG_NUMA_BALANCING
5521 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5522 pgdat->numabalancing_migrate_nr_pages = 0;
5523 pgdat->numabalancing_migrate_next_window = jiffies;
5524 #endif
5525 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5526 spin_lock_init(&pgdat->split_queue_lock);
5527 INIT_LIST_HEAD(&pgdat->split_queue);
5528 pgdat->split_queue_len = 0;
5529 #endif
5530 init_waitqueue_head(&pgdat->kswapd_wait);
5531 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5532 #ifdef CONFIG_COMPACTION
5533 init_waitqueue_head(&pgdat->kcompactd_wait);
5534 #endif
5535 pgdat_page_ext_init(pgdat);
5536
5537 for (j = 0; j < MAX_NR_ZONES; j++) {
5538 struct zone *zone = pgdat->node_zones + j;
5539 unsigned long size, realsize, freesize, memmap_pages;
5540 unsigned long zone_start_pfn = zone->zone_start_pfn;
5541
5542 size = zone->spanned_pages;
5543 realsize = freesize = zone->present_pages;
5544
5545 /*
5546 * Adjust freesize so that it accounts for how much memory
5547 * is used by this zone for memmap. This affects the watermark
5548 * and per-cpu initialisations
5549 */
5550 memmap_pages = calc_memmap_size(size, realsize);
5551 if (!is_highmem_idx(j)) {
5552 if (freesize >= memmap_pages) {
5553 freesize -= memmap_pages;
5554 if (memmap_pages)
5555 printk(KERN_DEBUG
5556 " %s zone: %lu pages used for memmap\n",
5557 zone_names[j], memmap_pages);
5558 } else
5559 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5560 zone_names[j], memmap_pages, freesize);
5561 }
5562
5563 /* Account for reserved pages */
5564 if (j == 0 && freesize > dma_reserve) {
5565 freesize -= dma_reserve;
5566 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5567 zone_names[0], dma_reserve);
5568 }
5569
5570 if (!is_highmem_idx(j))
5571 nr_kernel_pages += freesize;
5572 /* Charge for highmem memmap if there are enough kernel pages */
5573 else if (nr_kernel_pages > memmap_pages * 2)
5574 nr_kernel_pages -= memmap_pages;
5575 nr_all_pages += freesize;
5576
5577 /*
5578 * Set an approximate value for lowmem here, it will be adjusted
5579 * when the bootmem allocator frees pages into the buddy system.
5580 * And all highmem pages will be managed by the buddy system.
5581 */
5582 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5583 #ifdef CONFIG_NUMA
5584 zone->node = nid;
5585 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5586 / 100;
5587 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5588 #endif
5589 zone->name = zone_names[j];
5590 spin_lock_init(&zone->lock);
5591 spin_lock_init(&zone->lru_lock);
5592 zone_seqlock_init(zone);
5593 zone->zone_pgdat = pgdat;
5594 zone_pcp_init(zone);
5595
5596 /* For bootup, initialized properly in watermark setup */
5597 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5598
5599 lruvec_init(&zone->lruvec);
5600 if (!size)
5601 continue;
5602
5603 set_pageblock_order();
5604 setup_usemap(pgdat, zone, zone_start_pfn, size);
5605 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5606 BUG_ON(ret);
5607 memmap_init(size, nid, j, zone_start_pfn);
5608 }
5609 }
5610
5611 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5612 {
5613 unsigned long __maybe_unused start = 0;
5614 unsigned long __maybe_unused offset = 0;
5615
5616 /* Skip empty nodes */
5617 if (!pgdat->node_spanned_pages)
5618 return;
5619
5620 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5621 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5622 offset = pgdat->node_start_pfn - start;
5623 /* ia64 gets its own node_mem_map, before this, without bootmem */
5624 if (!pgdat->node_mem_map) {
5625 unsigned long size, end;
5626 struct page *map;
5627
5628 /*
5629 * The zone's endpoints aren't required to be MAX_ORDER
5630 * aligned but the node_mem_map endpoints must be in order
5631 * for the buddy allocator to function correctly.
5632 */
5633 end = pgdat_end_pfn(pgdat);
5634 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5635 size = (end - start) * sizeof(struct page);
5636 map = alloc_remap(pgdat->node_id, size);
5637 if (!map)
5638 map = memblock_virt_alloc_node_nopanic(size,
5639 pgdat->node_id);
5640 pgdat->node_mem_map = map + offset;
5641 }
5642 #ifndef CONFIG_NEED_MULTIPLE_NODES
5643 /*
5644 * With no DISCONTIG, the global mem_map is just set as node 0's
5645 */
5646 if (pgdat == NODE_DATA(0)) {
5647 mem_map = NODE_DATA(0)->node_mem_map;
5648 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5649 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5650 mem_map -= offset;
5651 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5652 }
5653 #endif
5654 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5655 }
5656
5657 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5658 unsigned long node_start_pfn, unsigned long *zholes_size)
5659 {
5660 pg_data_t *pgdat = NODE_DATA(nid);
5661 unsigned long start_pfn = 0;
5662 unsigned long end_pfn = 0;
5663
5664 /* pg_data_t should be reset to zero when it's allocated */
5665 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5666
5667 reset_deferred_meminit(pgdat);
5668 pgdat->node_id = nid;
5669 pgdat->node_start_pfn = node_start_pfn;
5670 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5671 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5672 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5673 (u64)start_pfn << PAGE_SHIFT,
5674 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5675 #else
5676 start_pfn = node_start_pfn;
5677 #endif
5678 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5679 zones_size, zholes_size);
5680
5681 alloc_node_mem_map(pgdat);
5682 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5683 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5684 nid, (unsigned long)pgdat,
5685 (unsigned long)pgdat->node_mem_map);
5686 #endif
5687
5688 free_area_init_core(pgdat);
5689 }
5690
5691 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5692
5693 #if MAX_NUMNODES > 1
5694 /*
5695 * Figure out the number of possible node ids.
5696 */
5697 void __init setup_nr_node_ids(void)
5698 {
5699 unsigned int highest;
5700
5701 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5702 nr_node_ids = highest + 1;
5703 }
5704 #endif
5705
5706 /**
5707 * node_map_pfn_alignment - determine the maximum internode alignment
5708 *
5709 * This function should be called after node map is populated and sorted.
5710 * It calculates the maximum power of two alignment which can distinguish
5711 * all the nodes.
5712 *
5713 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5714 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5715 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5716 * shifted, 1GiB is enough and this function will indicate so.
5717 *
5718 * This is used to test whether pfn -> nid mapping of the chosen memory
5719 * model has fine enough granularity to avoid incorrect mapping for the
5720 * populated node map.
5721 *
5722 * Returns the determined alignment in pfn's. 0 if there is no alignment
5723 * requirement (single node).
5724 */
5725 unsigned long __init node_map_pfn_alignment(void)
5726 {
5727 unsigned long accl_mask = 0, last_end = 0;
5728 unsigned long start, end, mask;
5729 int last_nid = -1;
5730 int i, nid;
5731
5732 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5733 if (!start || last_nid < 0 || last_nid == nid) {
5734 last_nid = nid;
5735 last_end = end;
5736 continue;
5737 }
5738
5739 /*
5740 * Start with a mask granular enough to pin-point to the
5741 * start pfn and tick off bits one-by-one until it becomes
5742 * too coarse to separate the current node from the last.
5743 */
5744 mask = ~((1 << __ffs(start)) - 1);
5745 while (mask && last_end <= (start & (mask << 1)))
5746 mask <<= 1;
5747
5748 /* accumulate all internode masks */
5749 accl_mask |= mask;
5750 }
5751
5752 /* convert mask to number of pages */
5753 return ~accl_mask + 1;
5754 }
5755
5756 /* Find the lowest pfn for a node */
5757 static unsigned long __init find_min_pfn_for_node(int nid)
5758 {
5759 unsigned long min_pfn = ULONG_MAX;
5760 unsigned long start_pfn;
5761 int i;
5762
5763 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5764 min_pfn = min(min_pfn, start_pfn);
5765
5766 if (min_pfn == ULONG_MAX) {
5767 pr_warn("Could not find start_pfn for node %d\n", nid);
5768 return 0;
5769 }
5770
5771 return min_pfn;
5772 }
5773
5774 /**
5775 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5776 *
5777 * It returns the minimum PFN based on information provided via
5778 * memblock_set_node().
5779 */
5780 unsigned long __init find_min_pfn_with_active_regions(void)
5781 {
5782 return find_min_pfn_for_node(MAX_NUMNODES);
5783 }
5784
5785 /*
5786 * early_calculate_totalpages()
5787 * Sum pages in active regions for movable zone.
5788 * Populate N_MEMORY for calculating usable_nodes.
5789 */
5790 static unsigned long __init early_calculate_totalpages(void)
5791 {
5792 unsigned long totalpages = 0;
5793 unsigned long start_pfn, end_pfn;
5794 int i, nid;
5795
5796 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5797 unsigned long pages = end_pfn - start_pfn;
5798
5799 totalpages += pages;
5800 if (pages)
5801 node_set_state(nid, N_MEMORY);
5802 }
5803 return totalpages;
5804 }
5805
5806 /*
5807 * Find the PFN the Movable zone begins in each node. Kernel memory
5808 * is spread evenly between nodes as long as the nodes have enough
5809 * memory. When they don't, some nodes will have more kernelcore than
5810 * others
5811 */
5812 static void __init find_zone_movable_pfns_for_nodes(void)
5813 {
5814 int i, nid;
5815 unsigned long usable_startpfn;
5816 unsigned long kernelcore_node, kernelcore_remaining;
5817 /* save the state before borrow the nodemask */
5818 nodemask_t saved_node_state = node_states[N_MEMORY];
5819 unsigned long totalpages = early_calculate_totalpages();
5820 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5821 struct memblock_region *r;
5822
5823 /* Need to find movable_zone earlier when movable_node is specified. */
5824 find_usable_zone_for_movable();
5825
5826 /*
5827 * If movable_node is specified, ignore kernelcore and movablecore
5828 * options.
5829 */
5830 if (movable_node_is_enabled()) {
5831 for_each_memblock(memory, r) {
5832 if (!memblock_is_hotpluggable(r))
5833 continue;
5834
5835 nid = r->nid;
5836
5837 usable_startpfn = PFN_DOWN(r->base);
5838 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5839 min(usable_startpfn, zone_movable_pfn[nid]) :
5840 usable_startpfn;
5841 }
5842
5843 goto out2;
5844 }
5845
5846 /*
5847 * If kernelcore=mirror is specified, ignore movablecore option
5848 */
5849 if (mirrored_kernelcore) {
5850 bool mem_below_4gb_not_mirrored = false;
5851
5852 for_each_memblock(memory, r) {
5853 if (memblock_is_mirror(r))
5854 continue;
5855
5856 nid = r->nid;
5857
5858 usable_startpfn = memblock_region_memory_base_pfn(r);
5859
5860 if (usable_startpfn < 0x100000) {
5861 mem_below_4gb_not_mirrored = true;
5862 continue;
5863 }
5864
5865 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5866 min(usable_startpfn, zone_movable_pfn[nid]) :
5867 usable_startpfn;
5868 }
5869
5870 if (mem_below_4gb_not_mirrored)
5871 pr_warn("This configuration results in unmirrored kernel memory.");
5872
5873 goto out2;
5874 }
5875
5876 /*
5877 * If movablecore=nn[KMG] was specified, calculate what size of
5878 * kernelcore that corresponds so that memory usable for
5879 * any allocation type is evenly spread. If both kernelcore
5880 * and movablecore are specified, then the value of kernelcore
5881 * will be used for required_kernelcore if it's greater than
5882 * what movablecore would have allowed.
5883 */
5884 if (required_movablecore) {
5885 unsigned long corepages;
5886
5887 /*
5888 * Round-up so that ZONE_MOVABLE is at least as large as what
5889 * was requested by the user
5890 */
5891 required_movablecore =
5892 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5893 required_movablecore = min(totalpages, required_movablecore);
5894 corepages = totalpages - required_movablecore;
5895
5896 required_kernelcore = max(required_kernelcore, corepages);
5897 }
5898
5899 /*
5900 * If kernelcore was not specified or kernelcore size is larger
5901 * than totalpages, there is no ZONE_MOVABLE.
5902 */
5903 if (!required_kernelcore || required_kernelcore >= totalpages)
5904 goto out;
5905
5906 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5907 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5908
5909 restart:
5910 /* Spread kernelcore memory as evenly as possible throughout nodes */
5911 kernelcore_node = required_kernelcore / usable_nodes;
5912 for_each_node_state(nid, N_MEMORY) {
5913 unsigned long start_pfn, end_pfn;
5914
5915 /*
5916 * Recalculate kernelcore_node if the division per node
5917 * now exceeds what is necessary to satisfy the requested
5918 * amount of memory for the kernel
5919 */
5920 if (required_kernelcore < kernelcore_node)
5921 kernelcore_node = required_kernelcore / usable_nodes;
5922
5923 /*
5924 * As the map is walked, we track how much memory is usable
5925 * by the kernel using kernelcore_remaining. When it is
5926 * 0, the rest of the node is usable by ZONE_MOVABLE
5927 */
5928 kernelcore_remaining = kernelcore_node;
5929
5930 /* Go through each range of PFNs within this node */
5931 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5932 unsigned long size_pages;
5933
5934 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5935 if (start_pfn >= end_pfn)
5936 continue;
5937
5938 /* Account for what is only usable for kernelcore */
5939 if (start_pfn < usable_startpfn) {
5940 unsigned long kernel_pages;
5941 kernel_pages = min(end_pfn, usable_startpfn)
5942 - start_pfn;
5943
5944 kernelcore_remaining -= min(kernel_pages,
5945 kernelcore_remaining);
5946 required_kernelcore -= min(kernel_pages,
5947 required_kernelcore);
5948
5949 /* Continue if range is now fully accounted */
5950 if (end_pfn <= usable_startpfn) {
5951
5952 /*
5953 * Push zone_movable_pfn to the end so
5954 * that if we have to rebalance
5955 * kernelcore across nodes, we will
5956 * not double account here
5957 */
5958 zone_movable_pfn[nid] = end_pfn;
5959 continue;
5960 }
5961 start_pfn = usable_startpfn;
5962 }
5963
5964 /*
5965 * The usable PFN range for ZONE_MOVABLE is from
5966 * start_pfn->end_pfn. Calculate size_pages as the
5967 * number of pages used as kernelcore
5968 */
5969 size_pages = end_pfn - start_pfn;
5970 if (size_pages > kernelcore_remaining)
5971 size_pages = kernelcore_remaining;
5972 zone_movable_pfn[nid] = start_pfn + size_pages;
5973
5974 /*
5975 * Some kernelcore has been met, update counts and
5976 * break if the kernelcore for this node has been
5977 * satisfied
5978 */
5979 required_kernelcore -= min(required_kernelcore,
5980 size_pages);
5981 kernelcore_remaining -= size_pages;
5982 if (!kernelcore_remaining)
5983 break;
5984 }
5985 }
5986
5987 /*
5988 * If there is still required_kernelcore, we do another pass with one
5989 * less node in the count. This will push zone_movable_pfn[nid] further
5990 * along on the nodes that still have memory until kernelcore is
5991 * satisfied
5992 */
5993 usable_nodes--;
5994 if (usable_nodes && required_kernelcore > usable_nodes)
5995 goto restart;
5996
5997 out2:
5998 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5999 for (nid = 0; nid < MAX_NUMNODES; nid++)
6000 zone_movable_pfn[nid] =
6001 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6002
6003 out:
6004 /* restore the node_state */
6005 node_states[N_MEMORY] = saved_node_state;
6006 }
6007
6008 /* Any regular or high memory on that node ? */
6009 static void check_for_memory(pg_data_t *pgdat, int nid)
6010 {
6011 enum zone_type zone_type;
6012
6013 if (N_MEMORY == N_NORMAL_MEMORY)
6014 return;
6015
6016 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6017 struct zone *zone = &pgdat->node_zones[zone_type];
6018 if (populated_zone(zone)) {
6019 node_set_state(nid, N_HIGH_MEMORY);
6020 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6021 zone_type <= ZONE_NORMAL)
6022 node_set_state(nid, N_NORMAL_MEMORY);
6023 break;
6024 }
6025 }
6026 }
6027
6028 /**
6029 * free_area_init_nodes - Initialise all pg_data_t and zone data
6030 * @max_zone_pfn: an array of max PFNs for each zone
6031 *
6032 * This will call free_area_init_node() for each active node in the system.
6033 * Using the page ranges provided by memblock_set_node(), the size of each
6034 * zone in each node and their holes is calculated. If the maximum PFN
6035 * between two adjacent zones match, it is assumed that the zone is empty.
6036 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6037 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6038 * starts where the previous one ended. For example, ZONE_DMA32 starts
6039 * at arch_max_dma_pfn.
6040 */
6041 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6042 {
6043 unsigned long start_pfn, end_pfn;
6044 int i, nid;
6045
6046 /* Record where the zone boundaries are */
6047 memset(arch_zone_lowest_possible_pfn, 0,
6048 sizeof(arch_zone_lowest_possible_pfn));
6049 memset(arch_zone_highest_possible_pfn, 0,
6050 sizeof(arch_zone_highest_possible_pfn));
6051 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6052 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6053 for (i = 1; i < MAX_NR_ZONES; i++) {
6054 if (i == ZONE_MOVABLE)
6055 continue;
6056 arch_zone_lowest_possible_pfn[i] =
6057 arch_zone_highest_possible_pfn[i-1];
6058 arch_zone_highest_possible_pfn[i] =
6059 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6060 }
6061 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6062 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6063
6064 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6065 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6066 find_zone_movable_pfns_for_nodes();
6067
6068 /* Print out the zone ranges */
6069 pr_info("Zone ranges:\n");
6070 for (i = 0; i < MAX_NR_ZONES; i++) {
6071 if (i == ZONE_MOVABLE)
6072 continue;
6073 pr_info(" %-8s ", zone_names[i]);
6074 if (arch_zone_lowest_possible_pfn[i] ==
6075 arch_zone_highest_possible_pfn[i])
6076 pr_cont("empty\n");
6077 else
6078 pr_cont("[mem %#018Lx-%#018Lx]\n",
6079 (u64)arch_zone_lowest_possible_pfn[i]
6080 << PAGE_SHIFT,
6081 ((u64)arch_zone_highest_possible_pfn[i]
6082 << PAGE_SHIFT) - 1);
6083 }
6084
6085 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6086 pr_info("Movable zone start for each node\n");
6087 for (i = 0; i < MAX_NUMNODES; i++) {
6088 if (zone_movable_pfn[i])
6089 pr_info(" Node %d: %#018Lx\n", i,
6090 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6091 }
6092
6093 /* Print out the early node map */
6094 pr_info("Early memory node ranges\n");
6095 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6096 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6097 (u64)start_pfn << PAGE_SHIFT,
6098 ((u64)end_pfn << PAGE_SHIFT) - 1);
6099
6100 /* Initialise every node */
6101 mminit_verify_pageflags_layout();
6102 setup_nr_node_ids();
6103 for_each_online_node(nid) {
6104 pg_data_t *pgdat = NODE_DATA(nid);
6105 free_area_init_node(nid, NULL,
6106 find_min_pfn_for_node(nid), NULL);
6107
6108 /* Any memory on that node */
6109 if (pgdat->node_present_pages)
6110 node_set_state(nid, N_MEMORY);
6111 check_for_memory(pgdat, nid);
6112 }
6113 }
6114
6115 static int __init cmdline_parse_core(char *p, unsigned long *core)
6116 {
6117 unsigned long long coremem;
6118 if (!p)
6119 return -EINVAL;
6120
6121 coremem = memparse(p, &p);
6122 *core = coremem >> PAGE_SHIFT;
6123
6124 /* Paranoid check that UL is enough for the coremem value */
6125 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6126
6127 return 0;
6128 }
6129
6130 /*
6131 * kernelcore=size sets the amount of memory for use for allocations that
6132 * cannot be reclaimed or migrated.
6133 */
6134 static int __init cmdline_parse_kernelcore(char *p)
6135 {
6136 /* parse kernelcore=mirror */
6137 if (parse_option_str(p, "mirror")) {
6138 mirrored_kernelcore = true;
6139 return 0;
6140 }
6141
6142 return cmdline_parse_core(p, &required_kernelcore);
6143 }
6144
6145 /*
6146 * movablecore=size sets the amount of memory for use for allocations that
6147 * can be reclaimed or migrated.
6148 */
6149 static int __init cmdline_parse_movablecore(char *p)
6150 {
6151 return cmdline_parse_core(p, &required_movablecore);
6152 }
6153
6154 early_param("kernelcore", cmdline_parse_kernelcore);
6155 early_param("movablecore", cmdline_parse_movablecore);
6156
6157 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6158
6159 void adjust_managed_page_count(struct page *page, long count)
6160 {
6161 spin_lock(&managed_page_count_lock);
6162 page_zone(page)->managed_pages += count;
6163 totalram_pages += count;
6164 #ifdef CONFIG_HIGHMEM
6165 if (PageHighMem(page))
6166 totalhigh_pages += count;
6167 #endif
6168 spin_unlock(&managed_page_count_lock);
6169 }
6170 EXPORT_SYMBOL(adjust_managed_page_count);
6171
6172 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6173 {
6174 void *pos;
6175 unsigned long pages = 0;
6176
6177 start = (void *)PAGE_ALIGN((unsigned long)start);
6178 end = (void *)((unsigned long)end & PAGE_MASK);
6179 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6180 if ((unsigned int)poison <= 0xFF)
6181 memset(pos, poison, PAGE_SIZE);
6182 free_reserved_page(virt_to_page(pos));
6183 }
6184
6185 if (pages && s)
6186 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6187 s, pages << (PAGE_SHIFT - 10), start, end);
6188
6189 return pages;
6190 }
6191 EXPORT_SYMBOL(free_reserved_area);
6192
6193 #ifdef CONFIG_HIGHMEM
6194 void free_highmem_page(struct page *page)
6195 {
6196 __free_reserved_page(page);
6197 totalram_pages++;
6198 page_zone(page)->managed_pages++;
6199 totalhigh_pages++;
6200 }
6201 #endif
6202
6203
6204 void __init mem_init_print_info(const char *str)
6205 {
6206 unsigned long physpages, codesize, datasize, rosize, bss_size;
6207 unsigned long init_code_size, init_data_size;
6208
6209 physpages = get_num_physpages();
6210 codesize = _etext - _stext;
6211 datasize = _edata - _sdata;
6212 rosize = __end_rodata - __start_rodata;
6213 bss_size = __bss_stop - __bss_start;
6214 init_data_size = __init_end - __init_begin;
6215 init_code_size = _einittext - _sinittext;
6216
6217 /*
6218 * Detect special cases and adjust section sizes accordingly:
6219 * 1) .init.* may be embedded into .data sections
6220 * 2) .init.text.* may be out of [__init_begin, __init_end],
6221 * please refer to arch/tile/kernel/vmlinux.lds.S.
6222 * 3) .rodata.* may be embedded into .text or .data sections.
6223 */
6224 #define adj_init_size(start, end, size, pos, adj) \
6225 do { \
6226 if (start <= pos && pos < end && size > adj) \
6227 size -= adj; \
6228 } while (0)
6229
6230 adj_init_size(__init_begin, __init_end, init_data_size,
6231 _sinittext, init_code_size);
6232 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6233 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6234 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6235 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6236
6237 #undef adj_init_size
6238
6239 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6240 #ifdef CONFIG_HIGHMEM
6241 ", %luK highmem"
6242 #endif
6243 "%s%s)\n",
6244 nr_free_pages() << (PAGE_SHIFT - 10),
6245 physpages << (PAGE_SHIFT - 10),
6246 codesize >> 10, datasize >> 10, rosize >> 10,
6247 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6248 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6249 totalcma_pages << (PAGE_SHIFT - 10),
6250 #ifdef CONFIG_HIGHMEM
6251 totalhigh_pages << (PAGE_SHIFT - 10),
6252 #endif
6253 str ? ", " : "", str ? str : "");
6254 }
6255
6256 /**
6257 * set_dma_reserve - set the specified number of pages reserved in the first zone
6258 * @new_dma_reserve: The number of pages to mark reserved
6259 *
6260 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6261 * In the DMA zone, a significant percentage may be consumed by kernel image
6262 * and other unfreeable allocations which can skew the watermarks badly. This
6263 * function may optionally be used to account for unfreeable pages in the
6264 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6265 * smaller per-cpu batchsize.
6266 */
6267 void __init set_dma_reserve(unsigned long new_dma_reserve)
6268 {
6269 dma_reserve = new_dma_reserve;
6270 }
6271
6272 void __init free_area_init(unsigned long *zones_size)
6273 {
6274 free_area_init_node(0, zones_size,
6275 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6276 }
6277
6278 static int page_alloc_cpu_notify(struct notifier_block *self,
6279 unsigned long action, void *hcpu)
6280 {
6281 int cpu = (unsigned long)hcpu;
6282
6283 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6284 lru_add_drain_cpu(cpu);
6285 drain_pages(cpu);
6286
6287 /*
6288 * Spill the event counters of the dead processor
6289 * into the current processors event counters.
6290 * This artificially elevates the count of the current
6291 * processor.
6292 */
6293 vm_events_fold_cpu(cpu);
6294
6295 /*
6296 * Zero the differential counters of the dead processor
6297 * so that the vm statistics are consistent.
6298 *
6299 * This is only okay since the processor is dead and cannot
6300 * race with what we are doing.
6301 */
6302 cpu_vm_stats_fold(cpu);
6303 }
6304 return NOTIFY_OK;
6305 }
6306
6307 void __init page_alloc_init(void)
6308 {
6309 hotcpu_notifier(page_alloc_cpu_notify, 0);
6310 }
6311
6312 /*
6313 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6314 * or min_free_kbytes changes.
6315 */
6316 static void calculate_totalreserve_pages(void)
6317 {
6318 struct pglist_data *pgdat;
6319 unsigned long reserve_pages = 0;
6320 enum zone_type i, j;
6321
6322 for_each_online_pgdat(pgdat) {
6323 for (i = 0; i < MAX_NR_ZONES; i++) {
6324 struct zone *zone = pgdat->node_zones + i;
6325 long max = 0;
6326
6327 /* Find valid and maximum lowmem_reserve in the zone */
6328 for (j = i; j < MAX_NR_ZONES; j++) {
6329 if (zone->lowmem_reserve[j] > max)
6330 max = zone->lowmem_reserve[j];
6331 }
6332
6333 /* we treat the high watermark as reserved pages. */
6334 max += high_wmark_pages(zone);
6335
6336 if (max > zone->managed_pages)
6337 max = zone->managed_pages;
6338
6339 zone->totalreserve_pages = max;
6340
6341 reserve_pages += max;
6342 }
6343 }
6344 totalreserve_pages = reserve_pages;
6345 }
6346
6347 /*
6348 * setup_per_zone_lowmem_reserve - called whenever
6349 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6350 * has a correct pages reserved value, so an adequate number of
6351 * pages are left in the zone after a successful __alloc_pages().
6352 */
6353 static void setup_per_zone_lowmem_reserve(void)
6354 {
6355 struct pglist_data *pgdat;
6356 enum zone_type j, idx;
6357
6358 for_each_online_pgdat(pgdat) {
6359 for (j = 0; j < MAX_NR_ZONES; j++) {
6360 struct zone *zone = pgdat->node_zones + j;
6361 unsigned long managed_pages = zone->managed_pages;
6362
6363 zone->lowmem_reserve[j] = 0;
6364
6365 idx = j;
6366 while (idx) {
6367 struct zone *lower_zone;
6368
6369 idx--;
6370
6371 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6372 sysctl_lowmem_reserve_ratio[idx] = 1;
6373
6374 lower_zone = pgdat->node_zones + idx;
6375 lower_zone->lowmem_reserve[j] = managed_pages /
6376 sysctl_lowmem_reserve_ratio[idx];
6377 managed_pages += lower_zone->managed_pages;
6378 }
6379 }
6380 }
6381
6382 /* update totalreserve_pages */
6383 calculate_totalreserve_pages();
6384 }
6385
6386 static void __setup_per_zone_wmarks(void)
6387 {
6388 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6389 unsigned long lowmem_pages = 0;
6390 struct zone *zone;
6391 unsigned long flags;
6392
6393 /* Calculate total number of !ZONE_HIGHMEM pages */
6394 for_each_zone(zone) {
6395 if (!is_highmem(zone))
6396 lowmem_pages += zone->managed_pages;
6397 }
6398
6399 for_each_zone(zone) {
6400 u64 tmp;
6401
6402 spin_lock_irqsave(&zone->lock, flags);
6403 tmp = (u64)pages_min * zone->managed_pages;
6404 do_div(tmp, lowmem_pages);
6405 if (is_highmem(zone)) {
6406 /*
6407 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6408 * need highmem pages, so cap pages_min to a small
6409 * value here.
6410 *
6411 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6412 * deltas control asynch page reclaim, and so should
6413 * not be capped for highmem.
6414 */
6415 unsigned long min_pages;
6416
6417 min_pages = zone->managed_pages / 1024;
6418 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6419 zone->watermark[WMARK_MIN] = min_pages;
6420 } else {
6421 /*
6422 * If it's a lowmem zone, reserve a number of pages
6423 * proportionate to the zone's size.
6424 */
6425 zone->watermark[WMARK_MIN] = tmp;
6426 }
6427
6428 /*
6429 * Set the kswapd watermarks distance according to the
6430 * scale factor in proportion to available memory, but
6431 * ensure a minimum size on small systems.
6432 */
6433 tmp = max_t(u64, tmp >> 2,
6434 mult_frac(zone->managed_pages,
6435 watermark_scale_factor, 10000));
6436
6437 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6438 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6439
6440 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6441 high_wmark_pages(zone) - low_wmark_pages(zone) -
6442 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6443
6444 spin_unlock_irqrestore(&zone->lock, flags);
6445 }
6446
6447 /* update totalreserve_pages */
6448 calculate_totalreserve_pages();
6449 }
6450
6451 /**
6452 * setup_per_zone_wmarks - called when min_free_kbytes changes
6453 * or when memory is hot-{added|removed}
6454 *
6455 * Ensures that the watermark[min,low,high] values for each zone are set
6456 * correctly with respect to min_free_kbytes.
6457 */
6458 void setup_per_zone_wmarks(void)
6459 {
6460 mutex_lock(&zonelists_mutex);
6461 __setup_per_zone_wmarks();
6462 mutex_unlock(&zonelists_mutex);
6463 }
6464
6465 /*
6466 * The inactive anon list should be small enough that the VM never has to
6467 * do too much work, but large enough that each inactive page has a chance
6468 * to be referenced again before it is swapped out.
6469 *
6470 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6471 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6472 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6473 * the anonymous pages are kept on the inactive list.
6474 *
6475 * total target max
6476 * memory ratio inactive anon
6477 * -------------------------------------
6478 * 10MB 1 5MB
6479 * 100MB 1 50MB
6480 * 1GB 3 250MB
6481 * 10GB 10 0.9GB
6482 * 100GB 31 3GB
6483 * 1TB 101 10GB
6484 * 10TB 320 32GB
6485 */
6486 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6487 {
6488 unsigned int gb, ratio;
6489
6490 /* Zone size in gigabytes */
6491 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6492 if (gb)
6493 ratio = int_sqrt(10 * gb);
6494 else
6495 ratio = 1;
6496
6497 zone->inactive_ratio = ratio;
6498 }
6499
6500 static void __meminit setup_per_zone_inactive_ratio(void)
6501 {
6502 struct zone *zone;
6503
6504 for_each_zone(zone)
6505 calculate_zone_inactive_ratio(zone);
6506 }
6507
6508 /*
6509 * Initialise min_free_kbytes.
6510 *
6511 * For small machines we want it small (128k min). For large machines
6512 * we want it large (64MB max). But it is not linear, because network
6513 * bandwidth does not increase linearly with machine size. We use
6514 *
6515 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6516 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6517 *
6518 * which yields
6519 *
6520 * 16MB: 512k
6521 * 32MB: 724k
6522 * 64MB: 1024k
6523 * 128MB: 1448k
6524 * 256MB: 2048k
6525 * 512MB: 2896k
6526 * 1024MB: 4096k
6527 * 2048MB: 5792k
6528 * 4096MB: 8192k
6529 * 8192MB: 11584k
6530 * 16384MB: 16384k
6531 */
6532 int __meminit init_per_zone_wmark_min(void)
6533 {
6534 unsigned long lowmem_kbytes;
6535 int new_min_free_kbytes;
6536
6537 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6538 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6539
6540 if (new_min_free_kbytes > user_min_free_kbytes) {
6541 min_free_kbytes = new_min_free_kbytes;
6542 if (min_free_kbytes < 128)
6543 min_free_kbytes = 128;
6544 if (min_free_kbytes > 65536)
6545 min_free_kbytes = 65536;
6546 } else {
6547 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6548 new_min_free_kbytes, user_min_free_kbytes);
6549 }
6550 setup_per_zone_wmarks();
6551 refresh_zone_stat_thresholds();
6552 setup_per_zone_lowmem_reserve();
6553 setup_per_zone_inactive_ratio();
6554 return 0;
6555 }
6556 core_initcall(init_per_zone_wmark_min)
6557
6558 /*
6559 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6560 * that we can call two helper functions whenever min_free_kbytes
6561 * changes.
6562 */
6563 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6564 void __user *buffer, size_t *length, loff_t *ppos)
6565 {
6566 int rc;
6567
6568 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6569 if (rc)
6570 return rc;
6571
6572 if (write) {
6573 user_min_free_kbytes = min_free_kbytes;
6574 setup_per_zone_wmarks();
6575 }
6576 return 0;
6577 }
6578
6579 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6580 void __user *buffer, size_t *length, loff_t *ppos)
6581 {
6582 int rc;
6583
6584 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6585 if (rc)
6586 return rc;
6587
6588 if (write)
6589 setup_per_zone_wmarks();
6590
6591 return 0;
6592 }
6593
6594 #ifdef CONFIG_NUMA
6595 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6596 void __user *buffer, size_t *length, loff_t *ppos)
6597 {
6598 struct zone *zone;
6599 int rc;
6600
6601 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6602 if (rc)
6603 return rc;
6604
6605 for_each_zone(zone)
6606 zone->min_unmapped_pages = (zone->managed_pages *
6607 sysctl_min_unmapped_ratio) / 100;
6608 return 0;
6609 }
6610
6611 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6612 void __user *buffer, size_t *length, loff_t *ppos)
6613 {
6614 struct zone *zone;
6615 int rc;
6616
6617 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6618 if (rc)
6619 return rc;
6620
6621 for_each_zone(zone)
6622 zone->min_slab_pages = (zone->managed_pages *
6623 sysctl_min_slab_ratio) / 100;
6624 return 0;
6625 }
6626 #endif
6627
6628 /*
6629 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6630 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6631 * whenever sysctl_lowmem_reserve_ratio changes.
6632 *
6633 * The reserve ratio obviously has absolutely no relation with the
6634 * minimum watermarks. The lowmem reserve ratio can only make sense
6635 * if in function of the boot time zone sizes.
6636 */
6637 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6638 void __user *buffer, size_t *length, loff_t *ppos)
6639 {
6640 proc_dointvec_minmax(table, write, buffer, length, ppos);
6641 setup_per_zone_lowmem_reserve();
6642 return 0;
6643 }
6644
6645 /*
6646 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6647 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6648 * pagelist can have before it gets flushed back to buddy allocator.
6649 */
6650 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6651 void __user *buffer, size_t *length, loff_t *ppos)
6652 {
6653 struct zone *zone;
6654 int old_percpu_pagelist_fraction;
6655 int ret;
6656
6657 mutex_lock(&pcp_batch_high_lock);
6658 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6659
6660 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6661 if (!write || ret < 0)
6662 goto out;
6663
6664 /* Sanity checking to avoid pcp imbalance */
6665 if (percpu_pagelist_fraction &&
6666 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6667 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6668 ret = -EINVAL;
6669 goto out;
6670 }
6671
6672 /* No change? */
6673 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6674 goto out;
6675
6676 for_each_populated_zone(zone) {
6677 unsigned int cpu;
6678
6679 for_each_possible_cpu(cpu)
6680 pageset_set_high_and_batch(zone,
6681 per_cpu_ptr(zone->pageset, cpu));
6682 }
6683 out:
6684 mutex_unlock(&pcp_batch_high_lock);
6685 return ret;
6686 }
6687
6688 #ifdef CONFIG_NUMA
6689 int hashdist = HASHDIST_DEFAULT;
6690
6691 static int __init set_hashdist(char *str)
6692 {
6693 if (!str)
6694 return 0;
6695 hashdist = simple_strtoul(str, &str, 0);
6696 return 1;
6697 }
6698 __setup("hashdist=", set_hashdist);
6699 #endif
6700
6701 /*
6702 * allocate a large system hash table from bootmem
6703 * - it is assumed that the hash table must contain an exact power-of-2
6704 * quantity of entries
6705 * - limit is the number of hash buckets, not the total allocation size
6706 */
6707 void *__init alloc_large_system_hash(const char *tablename,
6708 unsigned long bucketsize,
6709 unsigned long numentries,
6710 int scale,
6711 int flags,
6712 unsigned int *_hash_shift,
6713 unsigned int *_hash_mask,
6714 unsigned long low_limit,
6715 unsigned long high_limit)
6716 {
6717 unsigned long long max = high_limit;
6718 unsigned long log2qty, size;
6719 void *table = NULL;
6720
6721 /* allow the kernel cmdline to have a say */
6722 if (!numentries) {
6723 /* round applicable memory size up to nearest megabyte */
6724 numentries = nr_kernel_pages;
6725
6726 /* It isn't necessary when PAGE_SIZE >= 1MB */
6727 if (PAGE_SHIFT < 20)
6728 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6729
6730 /* limit to 1 bucket per 2^scale bytes of low memory */
6731 if (scale > PAGE_SHIFT)
6732 numentries >>= (scale - PAGE_SHIFT);
6733 else
6734 numentries <<= (PAGE_SHIFT - scale);
6735
6736 /* Make sure we've got at least a 0-order allocation.. */
6737 if (unlikely(flags & HASH_SMALL)) {
6738 /* Makes no sense without HASH_EARLY */
6739 WARN_ON(!(flags & HASH_EARLY));
6740 if (!(numentries >> *_hash_shift)) {
6741 numentries = 1UL << *_hash_shift;
6742 BUG_ON(!numentries);
6743 }
6744 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6745 numentries = PAGE_SIZE / bucketsize;
6746 }
6747 numentries = roundup_pow_of_two(numentries);
6748
6749 /* limit allocation size to 1/16 total memory by default */
6750 if (max == 0) {
6751 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6752 do_div(max, bucketsize);
6753 }
6754 max = min(max, 0x80000000ULL);
6755
6756 if (numentries < low_limit)
6757 numentries = low_limit;
6758 if (numentries > max)
6759 numentries = max;
6760
6761 log2qty = ilog2(numentries);
6762
6763 do {
6764 size = bucketsize << log2qty;
6765 if (flags & HASH_EARLY)
6766 table = memblock_virt_alloc_nopanic(size, 0);
6767 else if (hashdist)
6768 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6769 else {
6770 /*
6771 * If bucketsize is not a power-of-two, we may free
6772 * some pages at the end of hash table which
6773 * alloc_pages_exact() automatically does
6774 */
6775 if (get_order(size) < MAX_ORDER) {
6776 table = alloc_pages_exact(size, GFP_ATOMIC);
6777 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6778 }
6779 }
6780 } while (!table && size > PAGE_SIZE && --log2qty);
6781
6782 if (!table)
6783 panic("Failed to allocate %s hash table\n", tablename);
6784
6785 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6786 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
6787
6788 if (_hash_shift)
6789 *_hash_shift = log2qty;
6790 if (_hash_mask)
6791 *_hash_mask = (1 << log2qty) - 1;
6792
6793 return table;
6794 }
6795
6796 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6797 static inline unsigned long *get_pageblock_bitmap(struct page *page,
6798 unsigned long pfn)
6799 {
6800 #ifdef CONFIG_SPARSEMEM
6801 return __pfn_to_section(pfn)->pageblock_flags;
6802 #else
6803 return page_zone(page)->pageblock_flags;
6804 #endif /* CONFIG_SPARSEMEM */
6805 }
6806
6807 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
6808 {
6809 #ifdef CONFIG_SPARSEMEM
6810 pfn &= (PAGES_PER_SECTION-1);
6811 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6812 #else
6813 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
6814 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6815 #endif /* CONFIG_SPARSEMEM */
6816 }
6817
6818 /**
6819 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6820 * @page: The page within the block of interest
6821 * @pfn: The target page frame number
6822 * @end_bitidx: The last bit of interest to retrieve
6823 * @mask: mask of bits that the caller is interested in
6824 *
6825 * Return: pageblock_bits flags
6826 */
6827 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6828 unsigned long end_bitidx,
6829 unsigned long mask)
6830 {
6831 unsigned long *bitmap;
6832 unsigned long bitidx, word_bitidx;
6833 unsigned long word;
6834
6835 bitmap = get_pageblock_bitmap(page, pfn);
6836 bitidx = pfn_to_bitidx(page, pfn);
6837 word_bitidx = bitidx / BITS_PER_LONG;
6838 bitidx &= (BITS_PER_LONG-1);
6839
6840 word = bitmap[word_bitidx];
6841 bitidx += end_bitidx;
6842 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6843 }
6844
6845 /**
6846 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6847 * @page: The page within the block of interest
6848 * @flags: The flags to set
6849 * @pfn: The target page frame number
6850 * @end_bitidx: The last bit of interest
6851 * @mask: mask of bits that the caller is interested in
6852 */
6853 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6854 unsigned long pfn,
6855 unsigned long end_bitidx,
6856 unsigned long mask)
6857 {
6858 unsigned long *bitmap;
6859 unsigned long bitidx, word_bitidx;
6860 unsigned long old_word, word;
6861
6862 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6863
6864 bitmap = get_pageblock_bitmap(page, pfn);
6865 bitidx = pfn_to_bitidx(page, pfn);
6866 word_bitidx = bitidx / BITS_PER_LONG;
6867 bitidx &= (BITS_PER_LONG-1);
6868
6869 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
6870
6871 bitidx += end_bitidx;
6872 mask <<= (BITS_PER_LONG - bitidx - 1);
6873 flags <<= (BITS_PER_LONG - bitidx - 1);
6874
6875 word = READ_ONCE(bitmap[word_bitidx]);
6876 for (;;) {
6877 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6878 if (word == old_word)
6879 break;
6880 word = old_word;
6881 }
6882 }
6883
6884 /*
6885 * This function checks whether pageblock includes unmovable pages or not.
6886 * If @count is not zero, it is okay to include less @count unmovable pages
6887 *
6888 * PageLRU check without isolation or lru_lock could race so that
6889 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6890 * expect this function should be exact.
6891 */
6892 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6893 bool skip_hwpoisoned_pages)
6894 {
6895 unsigned long pfn, iter, found;
6896 int mt;
6897
6898 /*
6899 * For avoiding noise data, lru_add_drain_all() should be called
6900 * If ZONE_MOVABLE, the zone never contains unmovable pages
6901 */
6902 if (zone_idx(zone) == ZONE_MOVABLE)
6903 return false;
6904 mt = get_pageblock_migratetype(page);
6905 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6906 return false;
6907
6908 pfn = page_to_pfn(page);
6909 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6910 unsigned long check = pfn + iter;
6911
6912 if (!pfn_valid_within(check))
6913 continue;
6914
6915 page = pfn_to_page(check);
6916
6917 /*
6918 * Hugepages are not in LRU lists, but they're movable.
6919 * We need not scan over tail pages bacause we don't
6920 * handle each tail page individually in migration.
6921 */
6922 if (PageHuge(page)) {
6923 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6924 continue;
6925 }
6926
6927 /*
6928 * We can't use page_count without pin a page
6929 * because another CPU can free compound page.
6930 * This check already skips compound tails of THP
6931 * because their page->_refcount is zero at all time.
6932 */
6933 if (!page_ref_count(page)) {
6934 if (PageBuddy(page))
6935 iter += (1 << page_order(page)) - 1;
6936 continue;
6937 }
6938
6939 /*
6940 * The HWPoisoned page may be not in buddy system, and
6941 * page_count() is not 0.
6942 */
6943 if (skip_hwpoisoned_pages && PageHWPoison(page))
6944 continue;
6945
6946 if (!PageLRU(page))
6947 found++;
6948 /*
6949 * If there are RECLAIMABLE pages, we need to check
6950 * it. But now, memory offline itself doesn't call
6951 * shrink_node_slabs() and it still to be fixed.
6952 */
6953 /*
6954 * If the page is not RAM, page_count()should be 0.
6955 * we don't need more check. This is an _used_ not-movable page.
6956 *
6957 * The problematic thing here is PG_reserved pages. PG_reserved
6958 * is set to both of a memory hole page and a _used_ kernel
6959 * page at boot.
6960 */
6961 if (found > count)
6962 return true;
6963 }
6964 return false;
6965 }
6966
6967 bool is_pageblock_removable_nolock(struct page *page)
6968 {
6969 struct zone *zone;
6970 unsigned long pfn;
6971
6972 /*
6973 * We have to be careful here because we are iterating over memory
6974 * sections which are not zone aware so we might end up outside of
6975 * the zone but still within the section.
6976 * We have to take care about the node as well. If the node is offline
6977 * its NODE_DATA will be NULL - see page_zone.
6978 */
6979 if (!node_online(page_to_nid(page)))
6980 return false;
6981
6982 zone = page_zone(page);
6983 pfn = page_to_pfn(page);
6984 if (!zone_spans_pfn(zone, pfn))
6985 return false;
6986
6987 return !has_unmovable_pages(zone, page, 0, true);
6988 }
6989
6990 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6991
6992 static unsigned long pfn_max_align_down(unsigned long pfn)
6993 {
6994 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6995 pageblock_nr_pages) - 1);
6996 }
6997
6998 static unsigned long pfn_max_align_up(unsigned long pfn)
6999 {
7000 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7001 pageblock_nr_pages));
7002 }
7003
7004 /* [start, end) must belong to a single zone. */
7005 static int __alloc_contig_migrate_range(struct compact_control *cc,
7006 unsigned long start, unsigned long end)
7007 {
7008 /* This function is based on compact_zone() from compaction.c. */
7009 unsigned long nr_reclaimed;
7010 unsigned long pfn = start;
7011 unsigned int tries = 0;
7012 int ret = 0;
7013
7014 migrate_prep();
7015
7016 while (pfn < end || !list_empty(&cc->migratepages)) {
7017 if (fatal_signal_pending(current)) {
7018 ret = -EINTR;
7019 break;
7020 }
7021
7022 if (list_empty(&cc->migratepages)) {
7023 cc->nr_migratepages = 0;
7024 pfn = isolate_migratepages_range(cc, pfn, end);
7025 if (!pfn) {
7026 ret = -EINTR;
7027 break;
7028 }
7029 tries = 0;
7030 } else if (++tries == 5) {
7031 ret = ret < 0 ? ret : -EBUSY;
7032 break;
7033 }
7034
7035 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7036 &cc->migratepages);
7037 cc->nr_migratepages -= nr_reclaimed;
7038
7039 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7040 NULL, 0, cc->mode, MR_CMA);
7041 }
7042 if (ret < 0) {
7043 putback_movable_pages(&cc->migratepages);
7044 return ret;
7045 }
7046 return 0;
7047 }
7048
7049 /**
7050 * alloc_contig_range() -- tries to allocate given range of pages
7051 * @start: start PFN to allocate
7052 * @end: one-past-the-last PFN to allocate
7053 * @migratetype: migratetype of the underlaying pageblocks (either
7054 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7055 * in range must have the same migratetype and it must
7056 * be either of the two.
7057 *
7058 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7059 * aligned, however it's the caller's responsibility to guarantee that
7060 * we are the only thread that changes migrate type of pageblocks the
7061 * pages fall in.
7062 *
7063 * The PFN range must belong to a single zone.
7064 *
7065 * Returns zero on success or negative error code. On success all
7066 * pages which PFN is in [start, end) are allocated for the caller and
7067 * need to be freed with free_contig_range().
7068 */
7069 int alloc_contig_range(unsigned long start, unsigned long end,
7070 unsigned migratetype)
7071 {
7072 unsigned long outer_start, outer_end;
7073 unsigned int order;
7074 int ret = 0;
7075
7076 struct compact_control cc = {
7077 .nr_migratepages = 0,
7078 .order = -1,
7079 .zone = page_zone(pfn_to_page(start)),
7080 .mode = MIGRATE_SYNC,
7081 .ignore_skip_hint = true,
7082 };
7083 INIT_LIST_HEAD(&cc.migratepages);
7084
7085 /*
7086 * What we do here is we mark all pageblocks in range as
7087 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7088 * have different sizes, and due to the way page allocator
7089 * work, we align the range to biggest of the two pages so
7090 * that page allocator won't try to merge buddies from
7091 * different pageblocks and change MIGRATE_ISOLATE to some
7092 * other migration type.
7093 *
7094 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7095 * migrate the pages from an unaligned range (ie. pages that
7096 * we are interested in). This will put all the pages in
7097 * range back to page allocator as MIGRATE_ISOLATE.
7098 *
7099 * When this is done, we take the pages in range from page
7100 * allocator removing them from the buddy system. This way
7101 * page allocator will never consider using them.
7102 *
7103 * This lets us mark the pageblocks back as
7104 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7105 * aligned range but not in the unaligned, original range are
7106 * put back to page allocator so that buddy can use them.
7107 */
7108
7109 ret = start_isolate_page_range(pfn_max_align_down(start),
7110 pfn_max_align_up(end), migratetype,
7111 false);
7112 if (ret)
7113 return ret;
7114
7115 /*
7116 * In case of -EBUSY, we'd like to know which page causes problem.
7117 * So, just fall through. We will check it in test_pages_isolated().
7118 */
7119 ret = __alloc_contig_migrate_range(&cc, start, end);
7120 if (ret && ret != -EBUSY)
7121 goto done;
7122
7123 /*
7124 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7125 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7126 * more, all pages in [start, end) are free in page allocator.
7127 * What we are going to do is to allocate all pages from
7128 * [start, end) (that is remove them from page allocator).
7129 *
7130 * The only problem is that pages at the beginning and at the
7131 * end of interesting range may be not aligned with pages that
7132 * page allocator holds, ie. they can be part of higher order
7133 * pages. Because of this, we reserve the bigger range and
7134 * once this is done free the pages we are not interested in.
7135 *
7136 * We don't have to hold zone->lock here because the pages are
7137 * isolated thus they won't get removed from buddy.
7138 */
7139
7140 lru_add_drain_all();
7141 drain_all_pages(cc.zone);
7142
7143 order = 0;
7144 outer_start = start;
7145 while (!PageBuddy(pfn_to_page(outer_start))) {
7146 if (++order >= MAX_ORDER) {
7147 outer_start = start;
7148 break;
7149 }
7150 outer_start &= ~0UL << order;
7151 }
7152
7153 if (outer_start != start) {
7154 order = page_order(pfn_to_page(outer_start));
7155
7156 /*
7157 * outer_start page could be small order buddy page and
7158 * it doesn't include start page. Adjust outer_start
7159 * in this case to report failed page properly
7160 * on tracepoint in test_pages_isolated()
7161 */
7162 if (outer_start + (1UL << order) <= start)
7163 outer_start = start;
7164 }
7165
7166 /* Make sure the range is really isolated. */
7167 if (test_pages_isolated(outer_start, end, false)) {
7168 pr_info("%s: [%lx, %lx) PFNs busy\n",
7169 __func__, outer_start, end);
7170 ret = -EBUSY;
7171 goto done;
7172 }
7173
7174 /* Grab isolated pages from freelists. */
7175 outer_end = isolate_freepages_range(&cc, outer_start, end);
7176 if (!outer_end) {
7177 ret = -EBUSY;
7178 goto done;
7179 }
7180
7181 /* Free head and tail (if any) */
7182 if (start != outer_start)
7183 free_contig_range(outer_start, start - outer_start);
7184 if (end != outer_end)
7185 free_contig_range(end, outer_end - end);
7186
7187 done:
7188 undo_isolate_page_range(pfn_max_align_down(start),
7189 pfn_max_align_up(end), migratetype);
7190 return ret;
7191 }
7192
7193 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7194 {
7195 unsigned int count = 0;
7196
7197 for (; nr_pages--; pfn++) {
7198 struct page *page = pfn_to_page(pfn);
7199
7200 count += page_count(page) != 1;
7201 __free_page(page);
7202 }
7203 WARN(count != 0, "%d pages are still in use!\n", count);
7204 }
7205 #endif
7206
7207 #ifdef CONFIG_MEMORY_HOTPLUG
7208 /*
7209 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7210 * page high values need to be recalulated.
7211 */
7212 void __meminit zone_pcp_update(struct zone *zone)
7213 {
7214 unsigned cpu;
7215 mutex_lock(&pcp_batch_high_lock);
7216 for_each_possible_cpu(cpu)
7217 pageset_set_high_and_batch(zone,
7218 per_cpu_ptr(zone->pageset, cpu));
7219 mutex_unlock(&pcp_batch_high_lock);
7220 }
7221 #endif
7222
7223 void zone_pcp_reset(struct zone *zone)
7224 {
7225 unsigned long flags;
7226 int cpu;
7227 struct per_cpu_pageset *pset;
7228
7229 /* avoid races with drain_pages() */
7230 local_irq_save(flags);
7231 if (zone->pageset != &boot_pageset) {
7232 for_each_online_cpu(cpu) {
7233 pset = per_cpu_ptr(zone->pageset, cpu);
7234 drain_zonestat(zone, pset);
7235 }
7236 free_percpu(zone->pageset);
7237 zone->pageset = &boot_pageset;
7238 }
7239 local_irq_restore(flags);
7240 }
7241
7242 #ifdef CONFIG_MEMORY_HOTREMOVE
7243 /*
7244 * All pages in the range must be in a single zone and isolated
7245 * before calling this.
7246 */
7247 void
7248 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7249 {
7250 struct page *page;
7251 struct zone *zone;
7252 unsigned int order, i;
7253 unsigned long pfn;
7254 unsigned long flags;
7255 /* find the first valid pfn */
7256 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7257 if (pfn_valid(pfn))
7258 break;
7259 if (pfn == end_pfn)
7260 return;
7261 zone = page_zone(pfn_to_page(pfn));
7262 spin_lock_irqsave(&zone->lock, flags);
7263 pfn = start_pfn;
7264 while (pfn < end_pfn) {
7265 if (!pfn_valid(pfn)) {
7266 pfn++;
7267 continue;
7268 }
7269 page = pfn_to_page(pfn);
7270 /*
7271 * The HWPoisoned page may be not in buddy system, and
7272 * page_count() is not 0.
7273 */
7274 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7275 pfn++;
7276 SetPageReserved(page);
7277 continue;
7278 }
7279
7280 BUG_ON(page_count(page));
7281 BUG_ON(!PageBuddy(page));
7282 order = page_order(page);
7283 #ifdef CONFIG_DEBUG_VM
7284 pr_info("remove from free list %lx %d %lx\n",
7285 pfn, 1 << order, end_pfn);
7286 #endif
7287 list_del(&page->lru);
7288 rmv_page_order(page);
7289 zone->free_area[order].nr_free--;
7290 for (i = 0; i < (1 << order); i++)
7291 SetPageReserved((page+i));
7292 pfn += (1 << order);
7293 }
7294 spin_unlock_irqrestore(&zone->lock, flags);
7295 }
7296 #endif
7297
7298 bool is_free_buddy_page(struct page *page)
7299 {
7300 struct zone *zone = page_zone(page);
7301 unsigned long pfn = page_to_pfn(page);
7302 unsigned long flags;
7303 unsigned int order;
7304
7305 spin_lock_irqsave(&zone->lock, flags);
7306 for (order = 0; order < MAX_ORDER; order++) {
7307 struct page *page_head = page - (pfn & ((1 << order) - 1));
7308
7309 if (PageBuddy(page_head) && page_order(page_head) >= order)
7310 break;
7311 }
7312 spin_unlock_irqrestore(&zone->lock, flags);
7313
7314 return order < MAX_ORDER;
7315 }