]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/page_alloc.c
mm: put_and_wait_on_page_locked() while page is migrated
[mirror_ubuntu-focal-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/jiffies.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <trace/events/oom.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/sched/mm.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/lockdep.h>
68 #include <linux/nmi.h>
69 #include <linux/psi.h>
70
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
79
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
106 #endif
107
108 /*
109 * Array of node states.
110 */
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
114 #ifndef CONFIG_NUMA
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
118 #endif
119 [N_MEMORY] = { { [0] = 1UL } },
120 [N_CPU] = { { [0] = 1UL } },
121 #endif /* NUMA */
122 };
123 EXPORT_SYMBOL(node_states);
124
125 atomic_long_t _totalram_pages __read_mostly;
126 EXPORT_SYMBOL(_totalram_pages);
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
129
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
132
133 /*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141 static inline int get_pcppage_migratetype(struct page *page)
142 {
143 return page->index;
144 }
145
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147 {
148 page->index = migratetype;
149 }
150
151 #ifdef CONFIG_PM_SLEEP
152 /*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with system_transition_mutex held
157 * (gfp_allowed_mask also should only be modified with system_transition_mutex
158 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
159 * with that modification).
160 */
161
162 static gfp_t saved_gfp_mask;
163
164 void pm_restore_gfp_mask(void)
165 {
166 WARN_ON(!mutex_is_locked(&system_transition_mutex));
167 if (saved_gfp_mask) {
168 gfp_allowed_mask = saved_gfp_mask;
169 saved_gfp_mask = 0;
170 }
171 }
172
173 void pm_restrict_gfp_mask(void)
174 {
175 WARN_ON(!mutex_is_locked(&system_transition_mutex));
176 WARN_ON(saved_gfp_mask);
177 saved_gfp_mask = gfp_allowed_mask;
178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
179 }
180
181 bool pm_suspended_storage(void)
182 {
183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
184 return false;
185 return true;
186 }
187 #endif /* CONFIG_PM_SLEEP */
188
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly;
191 #endif
192
193 static void __free_pages_ok(struct page *page, unsigned int order);
194
195 /*
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202 *
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
205 */
206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
207 #ifdef CONFIG_ZONE_DMA
208 [ZONE_DMA] = 256,
209 #endif
210 #ifdef CONFIG_ZONE_DMA32
211 [ZONE_DMA32] = 256,
212 #endif
213 [ZONE_NORMAL] = 32,
214 #ifdef CONFIG_HIGHMEM
215 [ZONE_HIGHMEM] = 0,
216 #endif
217 [ZONE_MOVABLE] = 0,
218 };
219
220 EXPORT_SYMBOL(totalram_pages);
221
222 static char * const zone_names[MAX_NR_ZONES] = {
223 #ifdef CONFIG_ZONE_DMA
224 "DMA",
225 #endif
226 #ifdef CONFIG_ZONE_DMA32
227 "DMA32",
228 #endif
229 "Normal",
230 #ifdef CONFIG_HIGHMEM
231 "HighMem",
232 #endif
233 "Movable",
234 #ifdef CONFIG_ZONE_DEVICE
235 "Device",
236 #endif
237 };
238
239 const char * const migratetype_names[MIGRATE_TYPES] = {
240 "Unmovable",
241 "Movable",
242 "Reclaimable",
243 "HighAtomic",
244 #ifdef CONFIG_CMA
245 "CMA",
246 #endif
247 #ifdef CONFIG_MEMORY_ISOLATION
248 "Isolate",
249 #endif
250 };
251
252 compound_page_dtor * const compound_page_dtors[] = {
253 NULL,
254 free_compound_page,
255 #ifdef CONFIG_HUGETLB_PAGE
256 free_huge_page,
257 #endif
258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 free_transhuge_page,
260 #endif
261 };
262
263 int min_free_kbytes = 1024;
264 int user_min_free_kbytes = -1;
265 int watermark_boost_factor __read_mostly = 15000;
266 int watermark_scale_factor = 10;
267
268 static unsigned long nr_kernel_pages __meminitdata;
269 static unsigned long nr_all_pages __meminitdata;
270 static unsigned long dma_reserve __meminitdata;
271
272 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
273 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275 static unsigned long required_kernelcore __initdata;
276 static unsigned long required_kernelcore_percent __initdata;
277 static unsigned long required_movablecore __initdata;
278 static unsigned long required_movablecore_percent __initdata;
279 static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280 static bool mirrored_kernelcore __meminitdata;
281
282 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283 int movable_zone;
284 EXPORT_SYMBOL(movable_zone);
285 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
286
287 #if MAX_NUMNODES > 1
288 int nr_node_ids __read_mostly = MAX_NUMNODES;
289 int nr_online_nodes __read_mostly = 1;
290 EXPORT_SYMBOL(nr_node_ids);
291 EXPORT_SYMBOL(nr_online_nodes);
292 #endif
293
294 int page_group_by_mobility_disabled __read_mostly;
295
296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299 {
300 int nid = early_pfn_to_nid(pfn);
301
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 return true;
304
305 return false;
306 }
307
308 /*
309 * Returns true when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
311 */
312 static bool __meminit
313 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
314 {
315 static unsigned long prev_end_pfn, nr_initialised;
316
317 /*
318 * prev_end_pfn static that contains the end of previous zone
319 * No need to protect because called very early in boot before smp_init.
320 */
321 if (prev_end_pfn != end_pfn) {
322 prev_end_pfn = end_pfn;
323 nr_initialised = 0;
324 }
325
326 /* Always populate low zones for address-constrained allocations */
327 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
328 return false;
329 nr_initialised++;
330 if ((nr_initialised > NODE_DATA(nid)->static_init_pgcnt) &&
331 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 NODE_DATA(nid)->first_deferred_pfn = pfn;
333 return true;
334 }
335 return false;
336 }
337 #else
338 static inline bool early_page_uninitialised(unsigned long pfn)
339 {
340 return false;
341 }
342
343 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
344 {
345 return false;
346 }
347 #endif
348
349 /* Return a pointer to the bitmap storing bits affecting a block of pages */
350 static inline unsigned long *get_pageblock_bitmap(struct page *page,
351 unsigned long pfn)
352 {
353 #ifdef CONFIG_SPARSEMEM
354 return __pfn_to_section(pfn)->pageblock_flags;
355 #else
356 return page_zone(page)->pageblock_flags;
357 #endif /* CONFIG_SPARSEMEM */
358 }
359
360 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
361 {
362 #ifdef CONFIG_SPARSEMEM
363 pfn &= (PAGES_PER_SECTION-1);
364 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
365 #else
366 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
367 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
368 #endif /* CONFIG_SPARSEMEM */
369 }
370
371 /**
372 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
373 * @page: The page within the block of interest
374 * @pfn: The target page frame number
375 * @end_bitidx: The last bit of interest to retrieve
376 * @mask: mask of bits that the caller is interested in
377 *
378 * Return: pageblock_bits flags
379 */
380 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
381 unsigned long pfn,
382 unsigned long end_bitidx,
383 unsigned long mask)
384 {
385 unsigned long *bitmap;
386 unsigned long bitidx, word_bitidx;
387 unsigned long word;
388
389 bitmap = get_pageblock_bitmap(page, pfn);
390 bitidx = pfn_to_bitidx(page, pfn);
391 word_bitidx = bitidx / BITS_PER_LONG;
392 bitidx &= (BITS_PER_LONG-1);
393
394 word = bitmap[word_bitidx];
395 bitidx += end_bitidx;
396 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
397 }
398
399 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
400 unsigned long end_bitidx,
401 unsigned long mask)
402 {
403 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
404 }
405
406 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
407 {
408 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
409 }
410
411 /**
412 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
413 * @page: The page within the block of interest
414 * @flags: The flags to set
415 * @pfn: The target page frame number
416 * @end_bitidx: The last bit of interest
417 * @mask: mask of bits that the caller is interested in
418 */
419 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
420 unsigned long pfn,
421 unsigned long end_bitidx,
422 unsigned long mask)
423 {
424 unsigned long *bitmap;
425 unsigned long bitidx, word_bitidx;
426 unsigned long old_word, word;
427
428 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
429
430 bitmap = get_pageblock_bitmap(page, pfn);
431 bitidx = pfn_to_bitidx(page, pfn);
432 word_bitidx = bitidx / BITS_PER_LONG;
433 bitidx &= (BITS_PER_LONG-1);
434
435 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
436
437 bitidx += end_bitidx;
438 mask <<= (BITS_PER_LONG - bitidx - 1);
439 flags <<= (BITS_PER_LONG - bitidx - 1);
440
441 word = READ_ONCE(bitmap[word_bitidx]);
442 for (;;) {
443 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
444 if (word == old_word)
445 break;
446 word = old_word;
447 }
448 }
449
450 void set_pageblock_migratetype(struct page *page, int migratetype)
451 {
452 if (unlikely(page_group_by_mobility_disabled &&
453 migratetype < MIGRATE_PCPTYPES))
454 migratetype = MIGRATE_UNMOVABLE;
455
456 set_pageblock_flags_group(page, (unsigned long)migratetype,
457 PB_migrate, PB_migrate_end);
458 }
459
460 #ifdef CONFIG_DEBUG_VM
461 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
462 {
463 int ret = 0;
464 unsigned seq;
465 unsigned long pfn = page_to_pfn(page);
466 unsigned long sp, start_pfn;
467
468 do {
469 seq = zone_span_seqbegin(zone);
470 start_pfn = zone->zone_start_pfn;
471 sp = zone->spanned_pages;
472 if (!zone_spans_pfn(zone, pfn))
473 ret = 1;
474 } while (zone_span_seqretry(zone, seq));
475
476 if (ret)
477 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
478 pfn, zone_to_nid(zone), zone->name,
479 start_pfn, start_pfn + sp);
480
481 return ret;
482 }
483
484 static int page_is_consistent(struct zone *zone, struct page *page)
485 {
486 if (!pfn_valid_within(page_to_pfn(page)))
487 return 0;
488 if (zone != page_zone(page))
489 return 0;
490
491 return 1;
492 }
493 /*
494 * Temporary debugging check for pages not lying within a given zone.
495 */
496 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
497 {
498 if (page_outside_zone_boundaries(zone, page))
499 return 1;
500 if (!page_is_consistent(zone, page))
501 return 1;
502
503 return 0;
504 }
505 #else
506 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
507 {
508 return 0;
509 }
510 #endif
511
512 static void bad_page(struct page *page, const char *reason,
513 unsigned long bad_flags)
514 {
515 static unsigned long resume;
516 static unsigned long nr_shown;
517 static unsigned long nr_unshown;
518
519 /*
520 * Allow a burst of 60 reports, then keep quiet for that minute;
521 * or allow a steady drip of one report per second.
522 */
523 if (nr_shown == 60) {
524 if (time_before(jiffies, resume)) {
525 nr_unshown++;
526 goto out;
527 }
528 if (nr_unshown) {
529 pr_alert(
530 "BUG: Bad page state: %lu messages suppressed\n",
531 nr_unshown);
532 nr_unshown = 0;
533 }
534 nr_shown = 0;
535 }
536 if (nr_shown++ == 0)
537 resume = jiffies + 60 * HZ;
538
539 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
540 current->comm, page_to_pfn(page));
541 __dump_page(page, reason);
542 bad_flags &= page->flags;
543 if (bad_flags)
544 pr_alert("bad because of flags: %#lx(%pGp)\n",
545 bad_flags, &bad_flags);
546 dump_page_owner(page);
547
548 print_modules();
549 dump_stack();
550 out:
551 /* Leave bad fields for debug, except PageBuddy could make trouble */
552 page_mapcount_reset(page); /* remove PageBuddy */
553 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
554 }
555
556 /*
557 * Higher-order pages are called "compound pages". They are structured thusly:
558 *
559 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
560 *
561 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
562 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
563 *
564 * The first tail page's ->compound_dtor holds the offset in array of compound
565 * page destructors. See compound_page_dtors.
566 *
567 * The first tail page's ->compound_order holds the order of allocation.
568 * This usage means that zero-order pages may not be compound.
569 */
570
571 void free_compound_page(struct page *page)
572 {
573 __free_pages_ok(page, compound_order(page));
574 }
575
576 void prep_compound_page(struct page *page, unsigned int order)
577 {
578 int i;
579 int nr_pages = 1 << order;
580
581 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
582 set_compound_order(page, order);
583 __SetPageHead(page);
584 for (i = 1; i < nr_pages; i++) {
585 struct page *p = page + i;
586 set_page_count(p, 0);
587 p->mapping = TAIL_MAPPING;
588 set_compound_head(p, page);
589 }
590 atomic_set(compound_mapcount_ptr(page), -1);
591 }
592
593 #ifdef CONFIG_DEBUG_PAGEALLOC
594 unsigned int _debug_guardpage_minorder;
595 bool _debug_pagealloc_enabled __read_mostly
596 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
597 EXPORT_SYMBOL(_debug_pagealloc_enabled);
598 bool _debug_guardpage_enabled __read_mostly;
599
600 static int __init early_debug_pagealloc(char *buf)
601 {
602 if (!buf)
603 return -EINVAL;
604 return kstrtobool(buf, &_debug_pagealloc_enabled);
605 }
606 early_param("debug_pagealloc", early_debug_pagealloc);
607
608 static bool need_debug_guardpage(void)
609 {
610 /* If we don't use debug_pagealloc, we don't need guard page */
611 if (!debug_pagealloc_enabled())
612 return false;
613
614 if (!debug_guardpage_minorder())
615 return false;
616
617 return true;
618 }
619
620 static void init_debug_guardpage(void)
621 {
622 if (!debug_pagealloc_enabled())
623 return;
624
625 if (!debug_guardpage_minorder())
626 return;
627
628 _debug_guardpage_enabled = true;
629 }
630
631 struct page_ext_operations debug_guardpage_ops = {
632 .need = need_debug_guardpage,
633 .init = init_debug_guardpage,
634 };
635
636 static int __init debug_guardpage_minorder_setup(char *buf)
637 {
638 unsigned long res;
639
640 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
641 pr_err("Bad debug_guardpage_minorder value\n");
642 return 0;
643 }
644 _debug_guardpage_minorder = res;
645 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
646 return 0;
647 }
648 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
649
650 static inline bool set_page_guard(struct zone *zone, struct page *page,
651 unsigned int order, int migratetype)
652 {
653 struct page_ext *page_ext;
654
655 if (!debug_guardpage_enabled())
656 return false;
657
658 if (order >= debug_guardpage_minorder())
659 return false;
660
661 page_ext = lookup_page_ext(page);
662 if (unlikely(!page_ext))
663 return false;
664
665 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
666
667 INIT_LIST_HEAD(&page->lru);
668 set_page_private(page, order);
669 /* Guard pages are not available for any usage */
670 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
671
672 return true;
673 }
674
675 static inline void clear_page_guard(struct zone *zone, struct page *page,
676 unsigned int order, int migratetype)
677 {
678 struct page_ext *page_ext;
679
680 if (!debug_guardpage_enabled())
681 return;
682
683 page_ext = lookup_page_ext(page);
684 if (unlikely(!page_ext))
685 return;
686
687 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
688
689 set_page_private(page, 0);
690 if (!is_migrate_isolate(migratetype))
691 __mod_zone_freepage_state(zone, (1 << order), migratetype);
692 }
693 #else
694 struct page_ext_operations debug_guardpage_ops;
695 static inline bool set_page_guard(struct zone *zone, struct page *page,
696 unsigned int order, int migratetype) { return false; }
697 static inline void clear_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) {}
699 #endif
700
701 static inline void set_page_order(struct page *page, unsigned int order)
702 {
703 set_page_private(page, order);
704 __SetPageBuddy(page);
705 }
706
707 static inline void rmv_page_order(struct page *page)
708 {
709 __ClearPageBuddy(page);
710 set_page_private(page, 0);
711 }
712
713 /*
714 * This function checks whether a page is free && is the buddy
715 * we can coalesce a page and its buddy if
716 * (a) the buddy is not in a hole (check before calling!) &&
717 * (b) the buddy is in the buddy system &&
718 * (c) a page and its buddy have the same order &&
719 * (d) a page and its buddy are in the same zone.
720 *
721 * For recording whether a page is in the buddy system, we set PageBuddy.
722 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
723 *
724 * For recording page's order, we use page_private(page).
725 */
726 static inline int page_is_buddy(struct page *page, struct page *buddy,
727 unsigned int order)
728 {
729 if (page_is_guard(buddy) && page_order(buddy) == order) {
730 if (page_zone_id(page) != page_zone_id(buddy))
731 return 0;
732
733 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
734
735 return 1;
736 }
737
738 if (PageBuddy(buddy) && page_order(buddy) == order) {
739 /*
740 * zone check is done late to avoid uselessly
741 * calculating zone/node ids for pages that could
742 * never merge.
743 */
744 if (page_zone_id(page) != page_zone_id(buddy))
745 return 0;
746
747 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
748
749 return 1;
750 }
751 return 0;
752 }
753
754 /*
755 * Freeing function for a buddy system allocator.
756 *
757 * The concept of a buddy system is to maintain direct-mapped table
758 * (containing bit values) for memory blocks of various "orders".
759 * The bottom level table contains the map for the smallest allocatable
760 * units of memory (here, pages), and each level above it describes
761 * pairs of units from the levels below, hence, "buddies".
762 * At a high level, all that happens here is marking the table entry
763 * at the bottom level available, and propagating the changes upward
764 * as necessary, plus some accounting needed to play nicely with other
765 * parts of the VM system.
766 * At each level, we keep a list of pages, which are heads of continuous
767 * free pages of length of (1 << order) and marked with PageBuddy.
768 * Page's order is recorded in page_private(page) field.
769 * So when we are allocating or freeing one, we can derive the state of the
770 * other. That is, if we allocate a small block, and both were
771 * free, the remainder of the region must be split into blocks.
772 * If a block is freed, and its buddy is also free, then this
773 * triggers coalescing into a block of larger size.
774 *
775 * -- nyc
776 */
777
778 static inline void __free_one_page(struct page *page,
779 unsigned long pfn,
780 struct zone *zone, unsigned int order,
781 int migratetype)
782 {
783 unsigned long combined_pfn;
784 unsigned long uninitialized_var(buddy_pfn);
785 struct page *buddy;
786 unsigned int max_order;
787
788 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
789
790 VM_BUG_ON(!zone_is_initialized(zone));
791 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
792
793 VM_BUG_ON(migratetype == -1);
794 if (likely(!is_migrate_isolate(migratetype)))
795 __mod_zone_freepage_state(zone, 1 << order, migratetype);
796
797 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
798 VM_BUG_ON_PAGE(bad_range(zone, page), page);
799
800 continue_merging:
801 while (order < max_order - 1) {
802 buddy_pfn = __find_buddy_pfn(pfn, order);
803 buddy = page + (buddy_pfn - pfn);
804
805 if (!pfn_valid_within(buddy_pfn))
806 goto done_merging;
807 if (!page_is_buddy(page, buddy, order))
808 goto done_merging;
809 /*
810 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
811 * merge with it and move up one order.
812 */
813 if (page_is_guard(buddy)) {
814 clear_page_guard(zone, buddy, order, migratetype);
815 } else {
816 list_del(&buddy->lru);
817 zone->free_area[order].nr_free--;
818 rmv_page_order(buddy);
819 }
820 combined_pfn = buddy_pfn & pfn;
821 page = page + (combined_pfn - pfn);
822 pfn = combined_pfn;
823 order++;
824 }
825 if (max_order < MAX_ORDER) {
826 /* If we are here, it means order is >= pageblock_order.
827 * We want to prevent merge between freepages on isolate
828 * pageblock and normal pageblock. Without this, pageblock
829 * isolation could cause incorrect freepage or CMA accounting.
830 *
831 * We don't want to hit this code for the more frequent
832 * low-order merging.
833 */
834 if (unlikely(has_isolate_pageblock(zone))) {
835 int buddy_mt;
836
837 buddy_pfn = __find_buddy_pfn(pfn, order);
838 buddy = page + (buddy_pfn - pfn);
839 buddy_mt = get_pageblock_migratetype(buddy);
840
841 if (migratetype != buddy_mt
842 && (is_migrate_isolate(migratetype) ||
843 is_migrate_isolate(buddy_mt)))
844 goto done_merging;
845 }
846 max_order++;
847 goto continue_merging;
848 }
849
850 done_merging:
851 set_page_order(page, order);
852
853 /*
854 * If this is not the largest possible page, check if the buddy
855 * of the next-highest order is free. If it is, it's possible
856 * that pages are being freed that will coalesce soon. In case,
857 * that is happening, add the free page to the tail of the list
858 * so it's less likely to be used soon and more likely to be merged
859 * as a higher order page
860 */
861 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
862 struct page *higher_page, *higher_buddy;
863 combined_pfn = buddy_pfn & pfn;
864 higher_page = page + (combined_pfn - pfn);
865 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
866 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
867 if (pfn_valid_within(buddy_pfn) &&
868 page_is_buddy(higher_page, higher_buddy, order + 1)) {
869 list_add_tail(&page->lru,
870 &zone->free_area[order].free_list[migratetype]);
871 goto out;
872 }
873 }
874
875 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
876 out:
877 zone->free_area[order].nr_free++;
878 }
879
880 /*
881 * A bad page could be due to a number of fields. Instead of multiple branches,
882 * try and check multiple fields with one check. The caller must do a detailed
883 * check if necessary.
884 */
885 static inline bool page_expected_state(struct page *page,
886 unsigned long check_flags)
887 {
888 if (unlikely(atomic_read(&page->_mapcount) != -1))
889 return false;
890
891 if (unlikely((unsigned long)page->mapping |
892 page_ref_count(page) |
893 #ifdef CONFIG_MEMCG
894 (unsigned long)page->mem_cgroup |
895 #endif
896 (page->flags & check_flags)))
897 return false;
898
899 return true;
900 }
901
902 static void free_pages_check_bad(struct page *page)
903 {
904 const char *bad_reason;
905 unsigned long bad_flags;
906
907 bad_reason = NULL;
908 bad_flags = 0;
909
910 if (unlikely(atomic_read(&page->_mapcount) != -1))
911 bad_reason = "nonzero mapcount";
912 if (unlikely(page->mapping != NULL))
913 bad_reason = "non-NULL mapping";
914 if (unlikely(page_ref_count(page) != 0))
915 bad_reason = "nonzero _refcount";
916 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
917 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
918 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
919 }
920 #ifdef CONFIG_MEMCG
921 if (unlikely(page->mem_cgroup))
922 bad_reason = "page still charged to cgroup";
923 #endif
924 bad_page(page, bad_reason, bad_flags);
925 }
926
927 static inline int free_pages_check(struct page *page)
928 {
929 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
930 return 0;
931
932 /* Something has gone sideways, find it */
933 free_pages_check_bad(page);
934 return 1;
935 }
936
937 static int free_tail_pages_check(struct page *head_page, struct page *page)
938 {
939 int ret = 1;
940
941 /*
942 * We rely page->lru.next never has bit 0 set, unless the page
943 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
944 */
945 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
946
947 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
948 ret = 0;
949 goto out;
950 }
951 switch (page - head_page) {
952 case 1:
953 /* the first tail page: ->mapping may be compound_mapcount() */
954 if (unlikely(compound_mapcount(page))) {
955 bad_page(page, "nonzero compound_mapcount", 0);
956 goto out;
957 }
958 break;
959 case 2:
960 /*
961 * the second tail page: ->mapping is
962 * deferred_list.next -- ignore value.
963 */
964 break;
965 default:
966 if (page->mapping != TAIL_MAPPING) {
967 bad_page(page, "corrupted mapping in tail page", 0);
968 goto out;
969 }
970 break;
971 }
972 if (unlikely(!PageTail(page))) {
973 bad_page(page, "PageTail not set", 0);
974 goto out;
975 }
976 if (unlikely(compound_head(page) != head_page)) {
977 bad_page(page, "compound_head not consistent", 0);
978 goto out;
979 }
980 ret = 0;
981 out:
982 page->mapping = NULL;
983 clear_compound_head(page);
984 return ret;
985 }
986
987 static __always_inline bool free_pages_prepare(struct page *page,
988 unsigned int order, bool check_free)
989 {
990 int bad = 0;
991
992 VM_BUG_ON_PAGE(PageTail(page), page);
993
994 trace_mm_page_free(page, order);
995
996 /*
997 * Check tail pages before head page information is cleared to
998 * avoid checking PageCompound for order-0 pages.
999 */
1000 if (unlikely(order)) {
1001 bool compound = PageCompound(page);
1002 int i;
1003
1004 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1005
1006 if (compound)
1007 ClearPageDoubleMap(page);
1008 for (i = 1; i < (1 << order); i++) {
1009 if (compound)
1010 bad += free_tail_pages_check(page, page + i);
1011 if (unlikely(free_pages_check(page + i))) {
1012 bad++;
1013 continue;
1014 }
1015 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1016 }
1017 }
1018 if (PageMappingFlags(page))
1019 page->mapping = NULL;
1020 if (memcg_kmem_enabled() && PageKmemcg(page))
1021 memcg_kmem_uncharge(page, order);
1022 if (check_free)
1023 bad += free_pages_check(page);
1024 if (bad)
1025 return false;
1026
1027 page_cpupid_reset_last(page);
1028 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1029 reset_page_owner(page, order);
1030
1031 if (!PageHighMem(page)) {
1032 debug_check_no_locks_freed(page_address(page),
1033 PAGE_SIZE << order);
1034 debug_check_no_obj_freed(page_address(page),
1035 PAGE_SIZE << order);
1036 }
1037 arch_free_page(page, order);
1038 kernel_poison_pages(page, 1 << order, 0);
1039 kernel_map_pages(page, 1 << order, 0);
1040 kasan_free_pages(page, order);
1041
1042 return true;
1043 }
1044
1045 #ifdef CONFIG_DEBUG_VM
1046 static inline bool free_pcp_prepare(struct page *page)
1047 {
1048 return free_pages_prepare(page, 0, true);
1049 }
1050
1051 static inline bool bulkfree_pcp_prepare(struct page *page)
1052 {
1053 return false;
1054 }
1055 #else
1056 static bool free_pcp_prepare(struct page *page)
1057 {
1058 return free_pages_prepare(page, 0, false);
1059 }
1060
1061 static bool bulkfree_pcp_prepare(struct page *page)
1062 {
1063 return free_pages_check(page);
1064 }
1065 #endif /* CONFIG_DEBUG_VM */
1066
1067 static inline void prefetch_buddy(struct page *page)
1068 {
1069 unsigned long pfn = page_to_pfn(page);
1070 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1071 struct page *buddy = page + (buddy_pfn - pfn);
1072
1073 prefetch(buddy);
1074 }
1075
1076 /*
1077 * Frees a number of pages from the PCP lists
1078 * Assumes all pages on list are in same zone, and of same order.
1079 * count is the number of pages to free.
1080 *
1081 * If the zone was previously in an "all pages pinned" state then look to
1082 * see if this freeing clears that state.
1083 *
1084 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1085 * pinned" detection logic.
1086 */
1087 static void free_pcppages_bulk(struct zone *zone, int count,
1088 struct per_cpu_pages *pcp)
1089 {
1090 int migratetype = 0;
1091 int batch_free = 0;
1092 int prefetch_nr = 0;
1093 bool isolated_pageblocks;
1094 struct page *page, *tmp;
1095 LIST_HEAD(head);
1096
1097 while (count) {
1098 struct list_head *list;
1099
1100 /*
1101 * Remove pages from lists in a round-robin fashion. A
1102 * batch_free count is maintained that is incremented when an
1103 * empty list is encountered. This is so more pages are freed
1104 * off fuller lists instead of spinning excessively around empty
1105 * lists
1106 */
1107 do {
1108 batch_free++;
1109 if (++migratetype == MIGRATE_PCPTYPES)
1110 migratetype = 0;
1111 list = &pcp->lists[migratetype];
1112 } while (list_empty(list));
1113
1114 /* This is the only non-empty list. Free them all. */
1115 if (batch_free == MIGRATE_PCPTYPES)
1116 batch_free = count;
1117
1118 do {
1119 page = list_last_entry(list, struct page, lru);
1120 /* must delete to avoid corrupting pcp list */
1121 list_del(&page->lru);
1122 pcp->count--;
1123
1124 if (bulkfree_pcp_prepare(page))
1125 continue;
1126
1127 list_add_tail(&page->lru, &head);
1128
1129 /*
1130 * We are going to put the page back to the global
1131 * pool, prefetch its buddy to speed up later access
1132 * under zone->lock. It is believed the overhead of
1133 * an additional test and calculating buddy_pfn here
1134 * can be offset by reduced memory latency later. To
1135 * avoid excessive prefetching due to large count, only
1136 * prefetch buddy for the first pcp->batch nr of pages.
1137 */
1138 if (prefetch_nr++ < pcp->batch)
1139 prefetch_buddy(page);
1140 } while (--count && --batch_free && !list_empty(list));
1141 }
1142
1143 spin_lock(&zone->lock);
1144 isolated_pageblocks = has_isolate_pageblock(zone);
1145
1146 /*
1147 * Use safe version since after __free_one_page(),
1148 * page->lru.next will not point to original list.
1149 */
1150 list_for_each_entry_safe(page, tmp, &head, lru) {
1151 int mt = get_pcppage_migratetype(page);
1152 /* MIGRATE_ISOLATE page should not go to pcplists */
1153 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1154 /* Pageblock could have been isolated meanwhile */
1155 if (unlikely(isolated_pageblocks))
1156 mt = get_pageblock_migratetype(page);
1157
1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 trace_mm_page_pcpu_drain(page, 0, mt);
1160 }
1161 spin_unlock(&zone->lock);
1162 }
1163
1164 static void free_one_page(struct zone *zone,
1165 struct page *page, unsigned long pfn,
1166 unsigned int order,
1167 int migratetype)
1168 {
1169 spin_lock(&zone->lock);
1170 if (unlikely(has_isolate_pageblock(zone) ||
1171 is_migrate_isolate(migratetype))) {
1172 migratetype = get_pfnblock_migratetype(page, pfn);
1173 }
1174 __free_one_page(page, pfn, zone, order, migratetype);
1175 spin_unlock(&zone->lock);
1176 }
1177
1178 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1179 unsigned long zone, int nid)
1180 {
1181 mm_zero_struct_page(page);
1182 set_page_links(page, zone, nid, pfn);
1183 init_page_count(page);
1184 page_mapcount_reset(page);
1185 page_cpupid_reset_last(page);
1186 page_kasan_tag_reset(page);
1187
1188 INIT_LIST_HEAD(&page->lru);
1189 #ifdef WANT_PAGE_VIRTUAL
1190 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1191 if (!is_highmem_idx(zone))
1192 set_page_address(page, __va(pfn << PAGE_SHIFT));
1193 #endif
1194 }
1195
1196 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1197 static void __meminit init_reserved_page(unsigned long pfn)
1198 {
1199 pg_data_t *pgdat;
1200 int nid, zid;
1201
1202 if (!early_page_uninitialised(pfn))
1203 return;
1204
1205 nid = early_pfn_to_nid(pfn);
1206 pgdat = NODE_DATA(nid);
1207
1208 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1209 struct zone *zone = &pgdat->node_zones[zid];
1210
1211 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1212 break;
1213 }
1214 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1215 }
1216 #else
1217 static inline void init_reserved_page(unsigned long pfn)
1218 {
1219 }
1220 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1221
1222 /*
1223 * Initialised pages do not have PageReserved set. This function is
1224 * called for each range allocated by the bootmem allocator and
1225 * marks the pages PageReserved. The remaining valid pages are later
1226 * sent to the buddy page allocator.
1227 */
1228 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1229 {
1230 unsigned long start_pfn = PFN_DOWN(start);
1231 unsigned long end_pfn = PFN_UP(end);
1232
1233 for (; start_pfn < end_pfn; start_pfn++) {
1234 if (pfn_valid(start_pfn)) {
1235 struct page *page = pfn_to_page(start_pfn);
1236
1237 init_reserved_page(start_pfn);
1238
1239 /* Avoid false-positive PageTail() */
1240 INIT_LIST_HEAD(&page->lru);
1241
1242 /*
1243 * no need for atomic set_bit because the struct
1244 * page is not visible yet so nobody should
1245 * access it yet.
1246 */
1247 __SetPageReserved(page);
1248 }
1249 }
1250 }
1251
1252 static void __free_pages_ok(struct page *page, unsigned int order)
1253 {
1254 unsigned long flags;
1255 int migratetype;
1256 unsigned long pfn = page_to_pfn(page);
1257
1258 if (!free_pages_prepare(page, order, true))
1259 return;
1260
1261 migratetype = get_pfnblock_migratetype(page, pfn);
1262 local_irq_save(flags);
1263 __count_vm_events(PGFREE, 1 << order);
1264 free_one_page(page_zone(page), page, pfn, order, migratetype);
1265 local_irq_restore(flags);
1266 }
1267
1268 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1269 {
1270 unsigned int nr_pages = 1 << order;
1271 struct page *p = page;
1272 unsigned int loop;
1273
1274 prefetchw(p);
1275 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1276 prefetchw(p + 1);
1277 __ClearPageReserved(p);
1278 set_page_count(p, 0);
1279 }
1280 __ClearPageReserved(p);
1281 set_page_count(p, 0);
1282
1283 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1284 set_page_refcounted(page);
1285 __free_pages(page, order);
1286 }
1287
1288 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1289 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1290
1291 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1292
1293 int __meminit early_pfn_to_nid(unsigned long pfn)
1294 {
1295 static DEFINE_SPINLOCK(early_pfn_lock);
1296 int nid;
1297
1298 spin_lock(&early_pfn_lock);
1299 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1300 if (nid < 0)
1301 nid = first_online_node;
1302 spin_unlock(&early_pfn_lock);
1303
1304 return nid;
1305 }
1306 #endif
1307
1308 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1309 static inline bool __meminit __maybe_unused
1310 meminit_pfn_in_nid(unsigned long pfn, int node,
1311 struct mminit_pfnnid_cache *state)
1312 {
1313 int nid;
1314
1315 nid = __early_pfn_to_nid(pfn, state);
1316 if (nid >= 0 && nid != node)
1317 return false;
1318 return true;
1319 }
1320
1321 /* Only safe to use early in boot when initialisation is single-threaded */
1322 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1323 {
1324 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1325 }
1326
1327 #else
1328
1329 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1330 {
1331 return true;
1332 }
1333 static inline bool __meminit __maybe_unused
1334 meminit_pfn_in_nid(unsigned long pfn, int node,
1335 struct mminit_pfnnid_cache *state)
1336 {
1337 return true;
1338 }
1339 #endif
1340
1341
1342 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1343 unsigned int order)
1344 {
1345 if (early_page_uninitialised(pfn))
1346 return;
1347 return __free_pages_boot_core(page, order);
1348 }
1349
1350 /*
1351 * Check that the whole (or subset of) a pageblock given by the interval of
1352 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1353 * with the migration of free compaction scanner. The scanners then need to
1354 * use only pfn_valid_within() check for arches that allow holes within
1355 * pageblocks.
1356 *
1357 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1358 *
1359 * It's possible on some configurations to have a setup like node0 node1 node0
1360 * i.e. it's possible that all pages within a zones range of pages do not
1361 * belong to a single zone. We assume that a border between node0 and node1
1362 * can occur within a single pageblock, but not a node0 node1 node0
1363 * interleaving within a single pageblock. It is therefore sufficient to check
1364 * the first and last page of a pageblock and avoid checking each individual
1365 * page in a pageblock.
1366 */
1367 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1368 unsigned long end_pfn, struct zone *zone)
1369 {
1370 struct page *start_page;
1371 struct page *end_page;
1372
1373 /* end_pfn is one past the range we are checking */
1374 end_pfn--;
1375
1376 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1377 return NULL;
1378
1379 start_page = pfn_to_online_page(start_pfn);
1380 if (!start_page)
1381 return NULL;
1382
1383 if (page_zone(start_page) != zone)
1384 return NULL;
1385
1386 end_page = pfn_to_page(end_pfn);
1387
1388 /* This gives a shorter code than deriving page_zone(end_page) */
1389 if (page_zone_id(start_page) != page_zone_id(end_page))
1390 return NULL;
1391
1392 return start_page;
1393 }
1394
1395 void set_zone_contiguous(struct zone *zone)
1396 {
1397 unsigned long block_start_pfn = zone->zone_start_pfn;
1398 unsigned long block_end_pfn;
1399
1400 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1401 for (; block_start_pfn < zone_end_pfn(zone);
1402 block_start_pfn = block_end_pfn,
1403 block_end_pfn += pageblock_nr_pages) {
1404
1405 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1406
1407 if (!__pageblock_pfn_to_page(block_start_pfn,
1408 block_end_pfn, zone))
1409 return;
1410 }
1411
1412 /* We confirm that there is no hole */
1413 zone->contiguous = true;
1414 }
1415
1416 void clear_zone_contiguous(struct zone *zone)
1417 {
1418 zone->contiguous = false;
1419 }
1420
1421 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1422 static void __init deferred_free_range(unsigned long pfn,
1423 unsigned long nr_pages)
1424 {
1425 struct page *page;
1426 unsigned long i;
1427
1428 if (!nr_pages)
1429 return;
1430
1431 page = pfn_to_page(pfn);
1432
1433 /* Free a large naturally-aligned chunk if possible */
1434 if (nr_pages == pageblock_nr_pages &&
1435 (pfn & (pageblock_nr_pages - 1)) == 0) {
1436 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1437 __free_pages_boot_core(page, pageblock_order);
1438 return;
1439 }
1440
1441 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1442 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1443 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1444 __free_pages_boot_core(page, 0);
1445 }
1446 }
1447
1448 /* Completion tracking for deferred_init_memmap() threads */
1449 static atomic_t pgdat_init_n_undone __initdata;
1450 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1451
1452 static inline void __init pgdat_init_report_one_done(void)
1453 {
1454 if (atomic_dec_and_test(&pgdat_init_n_undone))
1455 complete(&pgdat_init_all_done_comp);
1456 }
1457
1458 /*
1459 * Returns true if page needs to be initialized or freed to buddy allocator.
1460 *
1461 * First we check if pfn is valid on architectures where it is possible to have
1462 * holes within pageblock_nr_pages. On systems where it is not possible, this
1463 * function is optimized out.
1464 *
1465 * Then, we check if a current large page is valid by only checking the validity
1466 * of the head pfn.
1467 *
1468 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1469 * within a node: a pfn is between start and end of a node, but does not belong
1470 * to this memory node.
1471 */
1472 static inline bool __init
1473 deferred_pfn_valid(int nid, unsigned long pfn,
1474 struct mminit_pfnnid_cache *nid_init_state)
1475 {
1476 if (!pfn_valid_within(pfn))
1477 return false;
1478 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1479 return false;
1480 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1481 return false;
1482 return true;
1483 }
1484
1485 /*
1486 * Free pages to buddy allocator. Try to free aligned pages in
1487 * pageblock_nr_pages sizes.
1488 */
1489 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1490 unsigned long end_pfn)
1491 {
1492 struct mminit_pfnnid_cache nid_init_state = { };
1493 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1494 unsigned long nr_free = 0;
1495
1496 for (; pfn < end_pfn; pfn++) {
1497 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1498 deferred_free_range(pfn - nr_free, nr_free);
1499 nr_free = 0;
1500 } else if (!(pfn & nr_pgmask)) {
1501 deferred_free_range(pfn - nr_free, nr_free);
1502 nr_free = 1;
1503 touch_nmi_watchdog();
1504 } else {
1505 nr_free++;
1506 }
1507 }
1508 /* Free the last block of pages to allocator */
1509 deferred_free_range(pfn - nr_free, nr_free);
1510 }
1511
1512 /*
1513 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1514 * by performing it only once every pageblock_nr_pages.
1515 * Return number of pages initialized.
1516 */
1517 static unsigned long __init deferred_init_pages(int nid, int zid,
1518 unsigned long pfn,
1519 unsigned long end_pfn)
1520 {
1521 struct mminit_pfnnid_cache nid_init_state = { };
1522 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1523 unsigned long nr_pages = 0;
1524 struct page *page = NULL;
1525
1526 for (; pfn < end_pfn; pfn++) {
1527 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1528 page = NULL;
1529 continue;
1530 } else if (!page || !(pfn & nr_pgmask)) {
1531 page = pfn_to_page(pfn);
1532 touch_nmi_watchdog();
1533 } else {
1534 page++;
1535 }
1536 __init_single_page(page, pfn, zid, nid);
1537 nr_pages++;
1538 }
1539 return (nr_pages);
1540 }
1541
1542 /* Initialise remaining memory on a node */
1543 static int __init deferred_init_memmap(void *data)
1544 {
1545 pg_data_t *pgdat = data;
1546 int nid = pgdat->node_id;
1547 unsigned long start = jiffies;
1548 unsigned long nr_pages = 0;
1549 unsigned long spfn, epfn, first_init_pfn, flags;
1550 phys_addr_t spa, epa;
1551 int zid;
1552 struct zone *zone;
1553 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1554 u64 i;
1555
1556 /* Bind memory initialisation thread to a local node if possible */
1557 if (!cpumask_empty(cpumask))
1558 set_cpus_allowed_ptr(current, cpumask);
1559
1560 pgdat_resize_lock(pgdat, &flags);
1561 first_init_pfn = pgdat->first_deferred_pfn;
1562 if (first_init_pfn == ULONG_MAX) {
1563 pgdat_resize_unlock(pgdat, &flags);
1564 pgdat_init_report_one_done();
1565 return 0;
1566 }
1567
1568 /* Sanity check boundaries */
1569 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1570 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1571 pgdat->first_deferred_pfn = ULONG_MAX;
1572
1573 /* Only the highest zone is deferred so find it */
1574 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1575 zone = pgdat->node_zones + zid;
1576 if (first_init_pfn < zone_end_pfn(zone))
1577 break;
1578 }
1579 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1580
1581 /*
1582 * Initialize and free pages. We do it in two loops: first we initialize
1583 * struct page, than free to buddy allocator, because while we are
1584 * freeing pages we can access pages that are ahead (computing buddy
1585 * page in __free_one_page()).
1586 */
1587 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1588 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1589 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1590 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1591 }
1592 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1593 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1594 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1595 deferred_free_pages(nid, zid, spfn, epfn);
1596 }
1597 pgdat_resize_unlock(pgdat, &flags);
1598
1599 /* Sanity check that the next zone really is unpopulated */
1600 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1601
1602 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1603 jiffies_to_msecs(jiffies - start));
1604
1605 pgdat_init_report_one_done();
1606 return 0;
1607 }
1608
1609 /*
1610 * During boot we initialize deferred pages on-demand, as needed, but once
1611 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1612 * and we can permanently disable that path.
1613 */
1614 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1615
1616 /*
1617 * If this zone has deferred pages, try to grow it by initializing enough
1618 * deferred pages to satisfy the allocation specified by order, rounded up to
1619 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1620 * of SECTION_SIZE bytes by initializing struct pages in increments of
1621 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1622 *
1623 * Return true when zone was grown, otherwise return false. We return true even
1624 * when we grow less than requested, to let the caller decide if there are
1625 * enough pages to satisfy the allocation.
1626 *
1627 * Note: We use noinline because this function is needed only during boot, and
1628 * it is called from a __ref function _deferred_grow_zone. This way we are
1629 * making sure that it is not inlined into permanent text section.
1630 */
1631 static noinline bool __init
1632 deferred_grow_zone(struct zone *zone, unsigned int order)
1633 {
1634 int zid = zone_idx(zone);
1635 int nid = zone_to_nid(zone);
1636 pg_data_t *pgdat = NODE_DATA(nid);
1637 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1638 unsigned long nr_pages = 0;
1639 unsigned long first_init_pfn, spfn, epfn, t, flags;
1640 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1641 phys_addr_t spa, epa;
1642 u64 i;
1643
1644 /* Only the last zone may have deferred pages */
1645 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1646 return false;
1647
1648 pgdat_resize_lock(pgdat, &flags);
1649
1650 /*
1651 * If deferred pages have been initialized while we were waiting for
1652 * the lock, return true, as the zone was grown. The caller will retry
1653 * this zone. We won't return to this function since the caller also
1654 * has this static branch.
1655 */
1656 if (!static_branch_unlikely(&deferred_pages)) {
1657 pgdat_resize_unlock(pgdat, &flags);
1658 return true;
1659 }
1660
1661 /*
1662 * If someone grew this zone while we were waiting for spinlock, return
1663 * true, as there might be enough pages already.
1664 */
1665 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1666 pgdat_resize_unlock(pgdat, &flags);
1667 return true;
1668 }
1669
1670 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1671
1672 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1673 pgdat_resize_unlock(pgdat, &flags);
1674 return false;
1675 }
1676
1677 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1678 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1679 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1680
1681 while (spfn < epfn && nr_pages < nr_pages_needed) {
1682 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1683 first_deferred_pfn = min(t, epfn);
1684 nr_pages += deferred_init_pages(nid, zid, spfn,
1685 first_deferred_pfn);
1686 spfn = first_deferred_pfn;
1687 }
1688
1689 if (nr_pages >= nr_pages_needed)
1690 break;
1691 }
1692
1693 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1694 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1695 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1696 deferred_free_pages(nid, zid, spfn, epfn);
1697
1698 if (first_deferred_pfn == epfn)
1699 break;
1700 }
1701 pgdat->first_deferred_pfn = first_deferred_pfn;
1702 pgdat_resize_unlock(pgdat, &flags);
1703
1704 return nr_pages > 0;
1705 }
1706
1707 /*
1708 * deferred_grow_zone() is __init, but it is called from
1709 * get_page_from_freelist() during early boot until deferred_pages permanently
1710 * disables this call. This is why we have refdata wrapper to avoid warning,
1711 * and to ensure that the function body gets unloaded.
1712 */
1713 static bool __ref
1714 _deferred_grow_zone(struct zone *zone, unsigned int order)
1715 {
1716 return deferred_grow_zone(zone, order);
1717 }
1718
1719 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1720
1721 void __init page_alloc_init_late(void)
1722 {
1723 struct zone *zone;
1724
1725 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1726 int nid;
1727
1728 /* There will be num_node_state(N_MEMORY) threads */
1729 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1730 for_each_node_state(nid, N_MEMORY) {
1731 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1732 }
1733
1734 /* Block until all are initialised */
1735 wait_for_completion(&pgdat_init_all_done_comp);
1736
1737 /*
1738 * We initialized the rest of the deferred pages. Permanently disable
1739 * on-demand struct page initialization.
1740 */
1741 static_branch_disable(&deferred_pages);
1742
1743 /* Reinit limits that are based on free pages after the kernel is up */
1744 files_maxfiles_init();
1745 #endif
1746 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1747 /* Discard memblock private memory */
1748 memblock_discard();
1749 #endif
1750
1751 for_each_populated_zone(zone)
1752 set_zone_contiguous(zone);
1753 }
1754
1755 #ifdef CONFIG_CMA
1756 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1757 void __init init_cma_reserved_pageblock(struct page *page)
1758 {
1759 unsigned i = pageblock_nr_pages;
1760 struct page *p = page;
1761
1762 do {
1763 __ClearPageReserved(p);
1764 set_page_count(p, 0);
1765 } while (++p, --i);
1766
1767 set_pageblock_migratetype(page, MIGRATE_CMA);
1768
1769 if (pageblock_order >= MAX_ORDER) {
1770 i = pageblock_nr_pages;
1771 p = page;
1772 do {
1773 set_page_refcounted(p);
1774 __free_pages(p, MAX_ORDER - 1);
1775 p += MAX_ORDER_NR_PAGES;
1776 } while (i -= MAX_ORDER_NR_PAGES);
1777 } else {
1778 set_page_refcounted(page);
1779 __free_pages(page, pageblock_order);
1780 }
1781
1782 adjust_managed_page_count(page, pageblock_nr_pages);
1783 }
1784 #endif
1785
1786 /*
1787 * The order of subdivision here is critical for the IO subsystem.
1788 * Please do not alter this order without good reasons and regression
1789 * testing. Specifically, as large blocks of memory are subdivided,
1790 * the order in which smaller blocks are delivered depends on the order
1791 * they're subdivided in this function. This is the primary factor
1792 * influencing the order in which pages are delivered to the IO
1793 * subsystem according to empirical testing, and this is also justified
1794 * by considering the behavior of a buddy system containing a single
1795 * large block of memory acted on by a series of small allocations.
1796 * This behavior is a critical factor in sglist merging's success.
1797 *
1798 * -- nyc
1799 */
1800 static inline void expand(struct zone *zone, struct page *page,
1801 int low, int high, struct free_area *area,
1802 int migratetype)
1803 {
1804 unsigned long size = 1 << high;
1805
1806 while (high > low) {
1807 area--;
1808 high--;
1809 size >>= 1;
1810 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1811
1812 /*
1813 * Mark as guard pages (or page), that will allow to
1814 * merge back to allocator when buddy will be freed.
1815 * Corresponding page table entries will not be touched,
1816 * pages will stay not present in virtual address space
1817 */
1818 if (set_page_guard(zone, &page[size], high, migratetype))
1819 continue;
1820
1821 list_add(&page[size].lru, &area->free_list[migratetype]);
1822 area->nr_free++;
1823 set_page_order(&page[size], high);
1824 }
1825 }
1826
1827 static void check_new_page_bad(struct page *page)
1828 {
1829 const char *bad_reason = NULL;
1830 unsigned long bad_flags = 0;
1831
1832 if (unlikely(atomic_read(&page->_mapcount) != -1))
1833 bad_reason = "nonzero mapcount";
1834 if (unlikely(page->mapping != NULL))
1835 bad_reason = "non-NULL mapping";
1836 if (unlikely(page_ref_count(page) != 0))
1837 bad_reason = "nonzero _count";
1838 if (unlikely(page->flags & __PG_HWPOISON)) {
1839 bad_reason = "HWPoisoned (hardware-corrupted)";
1840 bad_flags = __PG_HWPOISON;
1841 /* Don't complain about hwpoisoned pages */
1842 page_mapcount_reset(page); /* remove PageBuddy */
1843 return;
1844 }
1845 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1846 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1847 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1848 }
1849 #ifdef CONFIG_MEMCG
1850 if (unlikely(page->mem_cgroup))
1851 bad_reason = "page still charged to cgroup";
1852 #endif
1853 bad_page(page, bad_reason, bad_flags);
1854 }
1855
1856 /*
1857 * This page is about to be returned from the page allocator
1858 */
1859 static inline int check_new_page(struct page *page)
1860 {
1861 if (likely(page_expected_state(page,
1862 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1863 return 0;
1864
1865 check_new_page_bad(page);
1866 return 1;
1867 }
1868
1869 static inline bool free_pages_prezeroed(void)
1870 {
1871 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1872 page_poisoning_enabled();
1873 }
1874
1875 #ifdef CONFIG_DEBUG_VM
1876 static bool check_pcp_refill(struct page *page)
1877 {
1878 return false;
1879 }
1880
1881 static bool check_new_pcp(struct page *page)
1882 {
1883 return check_new_page(page);
1884 }
1885 #else
1886 static bool check_pcp_refill(struct page *page)
1887 {
1888 return check_new_page(page);
1889 }
1890 static bool check_new_pcp(struct page *page)
1891 {
1892 return false;
1893 }
1894 #endif /* CONFIG_DEBUG_VM */
1895
1896 static bool check_new_pages(struct page *page, unsigned int order)
1897 {
1898 int i;
1899 for (i = 0; i < (1 << order); i++) {
1900 struct page *p = page + i;
1901
1902 if (unlikely(check_new_page(p)))
1903 return true;
1904 }
1905
1906 return false;
1907 }
1908
1909 inline void post_alloc_hook(struct page *page, unsigned int order,
1910 gfp_t gfp_flags)
1911 {
1912 set_page_private(page, 0);
1913 set_page_refcounted(page);
1914
1915 arch_alloc_page(page, order);
1916 kernel_map_pages(page, 1 << order, 1);
1917 kernel_poison_pages(page, 1 << order, 1);
1918 kasan_alloc_pages(page, order);
1919 set_page_owner(page, order, gfp_flags);
1920 }
1921
1922 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1923 unsigned int alloc_flags)
1924 {
1925 int i;
1926
1927 post_alloc_hook(page, order, gfp_flags);
1928
1929 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1930 for (i = 0; i < (1 << order); i++)
1931 clear_highpage(page + i);
1932
1933 if (order && (gfp_flags & __GFP_COMP))
1934 prep_compound_page(page, order);
1935
1936 /*
1937 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1938 * allocate the page. The expectation is that the caller is taking
1939 * steps that will free more memory. The caller should avoid the page
1940 * being used for !PFMEMALLOC purposes.
1941 */
1942 if (alloc_flags & ALLOC_NO_WATERMARKS)
1943 set_page_pfmemalloc(page);
1944 else
1945 clear_page_pfmemalloc(page);
1946 }
1947
1948 /*
1949 * Go through the free lists for the given migratetype and remove
1950 * the smallest available page from the freelists
1951 */
1952 static __always_inline
1953 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1954 int migratetype)
1955 {
1956 unsigned int current_order;
1957 struct free_area *area;
1958 struct page *page;
1959
1960 /* Find a page of the appropriate size in the preferred list */
1961 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1962 area = &(zone->free_area[current_order]);
1963 page = list_first_entry_or_null(&area->free_list[migratetype],
1964 struct page, lru);
1965 if (!page)
1966 continue;
1967 list_del(&page->lru);
1968 rmv_page_order(page);
1969 area->nr_free--;
1970 expand(zone, page, order, current_order, area, migratetype);
1971 set_pcppage_migratetype(page, migratetype);
1972 return page;
1973 }
1974
1975 return NULL;
1976 }
1977
1978
1979 /*
1980 * This array describes the order lists are fallen back to when
1981 * the free lists for the desirable migrate type are depleted
1982 */
1983 static int fallbacks[MIGRATE_TYPES][4] = {
1984 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1985 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1986 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1987 #ifdef CONFIG_CMA
1988 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1989 #endif
1990 #ifdef CONFIG_MEMORY_ISOLATION
1991 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1992 #endif
1993 };
1994
1995 #ifdef CONFIG_CMA
1996 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1997 unsigned int order)
1998 {
1999 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2000 }
2001 #else
2002 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2003 unsigned int order) { return NULL; }
2004 #endif
2005
2006 /*
2007 * Move the free pages in a range to the free lists of the requested type.
2008 * Note that start_page and end_pages are not aligned on a pageblock
2009 * boundary. If alignment is required, use move_freepages_block()
2010 */
2011 static int move_freepages(struct zone *zone,
2012 struct page *start_page, struct page *end_page,
2013 int migratetype, int *num_movable)
2014 {
2015 struct page *page;
2016 unsigned int order;
2017 int pages_moved = 0;
2018
2019 #ifndef CONFIG_HOLES_IN_ZONE
2020 /*
2021 * page_zone is not safe to call in this context when
2022 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2023 * anyway as we check zone boundaries in move_freepages_block().
2024 * Remove at a later date when no bug reports exist related to
2025 * grouping pages by mobility
2026 */
2027 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2028 pfn_valid(page_to_pfn(end_page)) &&
2029 page_zone(start_page) != page_zone(end_page));
2030 #endif
2031 for (page = start_page; page <= end_page;) {
2032 if (!pfn_valid_within(page_to_pfn(page))) {
2033 page++;
2034 continue;
2035 }
2036
2037 /* Make sure we are not inadvertently changing nodes */
2038 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2039
2040 if (!PageBuddy(page)) {
2041 /*
2042 * We assume that pages that could be isolated for
2043 * migration are movable. But we don't actually try
2044 * isolating, as that would be expensive.
2045 */
2046 if (num_movable &&
2047 (PageLRU(page) || __PageMovable(page)))
2048 (*num_movable)++;
2049
2050 page++;
2051 continue;
2052 }
2053
2054 order = page_order(page);
2055 list_move(&page->lru,
2056 &zone->free_area[order].free_list[migratetype]);
2057 page += 1 << order;
2058 pages_moved += 1 << order;
2059 }
2060
2061 return pages_moved;
2062 }
2063
2064 int move_freepages_block(struct zone *zone, struct page *page,
2065 int migratetype, int *num_movable)
2066 {
2067 unsigned long start_pfn, end_pfn;
2068 struct page *start_page, *end_page;
2069
2070 if (num_movable)
2071 *num_movable = 0;
2072
2073 start_pfn = page_to_pfn(page);
2074 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2075 start_page = pfn_to_page(start_pfn);
2076 end_page = start_page + pageblock_nr_pages - 1;
2077 end_pfn = start_pfn + pageblock_nr_pages - 1;
2078
2079 /* Do not cross zone boundaries */
2080 if (!zone_spans_pfn(zone, start_pfn))
2081 start_page = page;
2082 if (!zone_spans_pfn(zone, end_pfn))
2083 return 0;
2084
2085 return move_freepages(zone, start_page, end_page, migratetype,
2086 num_movable);
2087 }
2088
2089 static void change_pageblock_range(struct page *pageblock_page,
2090 int start_order, int migratetype)
2091 {
2092 int nr_pageblocks = 1 << (start_order - pageblock_order);
2093
2094 while (nr_pageblocks--) {
2095 set_pageblock_migratetype(pageblock_page, migratetype);
2096 pageblock_page += pageblock_nr_pages;
2097 }
2098 }
2099
2100 /*
2101 * When we are falling back to another migratetype during allocation, try to
2102 * steal extra free pages from the same pageblocks to satisfy further
2103 * allocations, instead of polluting multiple pageblocks.
2104 *
2105 * If we are stealing a relatively large buddy page, it is likely there will
2106 * be more free pages in the pageblock, so try to steal them all. For
2107 * reclaimable and unmovable allocations, we steal regardless of page size,
2108 * as fragmentation caused by those allocations polluting movable pageblocks
2109 * is worse than movable allocations stealing from unmovable and reclaimable
2110 * pageblocks.
2111 */
2112 static bool can_steal_fallback(unsigned int order, int start_mt)
2113 {
2114 /*
2115 * Leaving this order check is intended, although there is
2116 * relaxed order check in next check. The reason is that
2117 * we can actually steal whole pageblock if this condition met,
2118 * but, below check doesn't guarantee it and that is just heuristic
2119 * so could be changed anytime.
2120 */
2121 if (order >= pageblock_order)
2122 return true;
2123
2124 if (order >= pageblock_order / 2 ||
2125 start_mt == MIGRATE_RECLAIMABLE ||
2126 start_mt == MIGRATE_UNMOVABLE ||
2127 page_group_by_mobility_disabled)
2128 return true;
2129
2130 return false;
2131 }
2132
2133 static inline void boost_watermark(struct zone *zone)
2134 {
2135 unsigned long max_boost;
2136
2137 if (!watermark_boost_factor)
2138 return;
2139
2140 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2141 watermark_boost_factor, 10000);
2142 max_boost = max(pageblock_nr_pages, max_boost);
2143
2144 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2145 max_boost);
2146 }
2147
2148 /*
2149 * This function implements actual steal behaviour. If order is large enough,
2150 * we can steal whole pageblock. If not, we first move freepages in this
2151 * pageblock to our migratetype and determine how many already-allocated pages
2152 * are there in the pageblock with a compatible migratetype. If at least half
2153 * of pages are free or compatible, we can change migratetype of the pageblock
2154 * itself, so pages freed in the future will be put on the correct free list.
2155 */
2156 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2157 unsigned int alloc_flags, int start_type, bool whole_block)
2158 {
2159 unsigned int current_order = page_order(page);
2160 struct free_area *area;
2161 int free_pages, movable_pages, alike_pages;
2162 int old_block_type;
2163
2164 old_block_type = get_pageblock_migratetype(page);
2165
2166 /*
2167 * This can happen due to races and we want to prevent broken
2168 * highatomic accounting.
2169 */
2170 if (is_migrate_highatomic(old_block_type))
2171 goto single_page;
2172
2173 /* Take ownership for orders >= pageblock_order */
2174 if (current_order >= pageblock_order) {
2175 change_pageblock_range(page, current_order, start_type);
2176 goto single_page;
2177 }
2178
2179 /*
2180 * Boost watermarks to increase reclaim pressure to reduce the
2181 * likelihood of future fallbacks. Wake kswapd now as the node
2182 * may be balanced overall and kswapd will not wake naturally.
2183 */
2184 boost_watermark(zone);
2185 if (alloc_flags & ALLOC_KSWAPD)
2186 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2187
2188 /* We are not allowed to try stealing from the whole block */
2189 if (!whole_block)
2190 goto single_page;
2191
2192 free_pages = move_freepages_block(zone, page, start_type,
2193 &movable_pages);
2194 /*
2195 * Determine how many pages are compatible with our allocation.
2196 * For movable allocation, it's the number of movable pages which
2197 * we just obtained. For other types it's a bit more tricky.
2198 */
2199 if (start_type == MIGRATE_MOVABLE) {
2200 alike_pages = movable_pages;
2201 } else {
2202 /*
2203 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2204 * to MOVABLE pageblock, consider all non-movable pages as
2205 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2206 * vice versa, be conservative since we can't distinguish the
2207 * exact migratetype of non-movable pages.
2208 */
2209 if (old_block_type == MIGRATE_MOVABLE)
2210 alike_pages = pageblock_nr_pages
2211 - (free_pages + movable_pages);
2212 else
2213 alike_pages = 0;
2214 }
2215
2216 /* moving whole block can fail due to zone boundary conditions */
2217 if (!free_pages)
2218 goto single_page;
2219
2220 /*
2221 * If a sufficient number of pages in the block are either free or of
2222 * comparable migratability as our allocation, claim the whole block.
2223 */
2224 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2225 page_group_by_mobility_disabled)
2226 set_pageblock_migratetype(page, start_type);
2227
2228 return;
2229
2230 single_page:
2231 area = &zone->free_area[current_order];
2232 list_move(&page->lru, &area->free_list[start_type]);
2233 }
2234
2235 /*
2236 * Check whether there is a suitable fallback freepage with requested order.
2237 * If only_stealable is true, this function returns fallback_mt only if
2238 * we can steal other freepages all together. This would help to reduce
2239 * fragmentation due to mixed migratetype pages in one pageblock.
2240 */
2241 int find_suitable_fallback(struct free_area *area, unsigned int order,
2242 int migratetype, bool only_stealable, bool *can_steal)
2243 {
2244 int i;
2245 int fallback_mt;
2246
2247 if (area->nr_free == 0)
2248 return -1;
2249
2250 *can_steal = false;
2251 for (i = 0;; i++) {
2252 fallback_mt = fallbacks[migratetype][i];
2253 if (fallback_mt == MIGRATE_TYPES)
2254 break;
2255
2256 if (list_empty(&area->free_list[fallback_mt]))
2257 continue;
2258
2259 if (can_steal_fallback(order, migratetype))
2260 *can_steal = true;
2261
2262 if (!only_stealable)
2263 return fallback_mt;
2264
2265 if (*can_steal)
2266 return fallback_mt;
2267 }
2268
2269 return -1;
2270 }
2271
2272 /*
2273 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2274 * there are no empty page blocks that contain a page with a suitable order
2275 */
2276 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2277 unsigned int alloc_order)
2278 {
2279 int mt;
2280 unsigned long max_managed, flags;
2281
2282 /*
2283 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2284 * Check is race-prone but harmless.
2285 */
2286 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2287 if (zone->nr_reserved_highatomic >= max_managed)
2288 return;
2289
2290 spin_lock_irqsave(&zone->lock, flags);
2291
2292 /* Recheck the nr_reserved_highatomic limit under the lock */
2293 if (zone->nr_reserved_highatomic >= max_managed)
2294 goto out_unlock;
2295
2296 /* Yoink! */
2297 mt = get_pageblock_migratetype(page);
2298 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2299 && !is_migrate_cma(mt)) {
2300 zone->nr_reserved_highatomic += pageblock_nr_pages;
2301 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2302 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2303 }
2304
2305 out_unlock:
2306 spin_unlock_irqrestore(&zone->lock, flags);
2307 }
2308
2309 /*
2310 * Used when an allocation is about to fail under memory pressure. This
2311 * potentially hurts the reliability of high-order allocations when under
2312 * intense memory pressure but failed atomic allocations should be easier
2313 * to recover from than an OOM.
2314 *
2315 * If @force is true, try to unreserve a pageblock even though highatomic
2316 * pageblock is exhausted.
2317 */
2318 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2319 bool force)
2320 {
2321 struct zonelist *zonelist = ac->zonelist;
2322 unsigned long flags;
2323 struct zoneref *z;
2324 struct zone *zone;
2325 struct page *page;
2326 int order;
2327 bool ret;
2328
2329 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2330 ac->nodemask) {
2331 /*
2332 * Preserve at least one pageblock unless memory pressure
2333 * is really high.
2334 */
2335 if (!force && zone->nr_reserved_highatomic <=
2336 pageblock_nr_pages)
2337 continue;
2338
2339 spin_lock_irqsave(&zone->lock, flags);
2340 for (order = 0; order < MAX_ORDER; order++) {
2341 struct free_area *area = &(zone->free_area[order]);
2342
2343 page = list_first_entry_or_null(
2344 &area->free_list[MIGRATE_HIGHATOMIC],
2345 struct page, lru);
2346 if (!page)
2347 continue;
2348
2349 /*
2350 * In page freeing path, migratetype change is racy so
2351 * we can counter several free pages in a pageblock
2352 * in this loop althoug we changed the pageblock type
2353 * from highatomic to ac->migratetype. So we should
2354 * adjust the count once.
2355 */
2356 if (is_migrate_highatomic_page(page)) {
2357 /*
2358 * It should never happen but changes to
2359 * locking could inadvertently allow a per-cpu
2360 * drain to add pages to MIGRATE_HIGHATOMIC
2361 * while unreserving so be safe and watch for
2362 * underflows.
2363 */
2364 zone->nr_reserved_highatomic -= min(
2365 pageblock_nr_pages,
2366 zone->nr_reserved_highatomic);
2367 }
2368
2369 /*
2370 * Convert to ac->migratetype and avoid the normal
2371 * pageblock stealing heuristics. Minimally, the caller
2372 * is doing the work and needs the pages. More
2373 * importantly, if the block was always converted to
2374 * MIGRATE_UNMOVABLE or another type then the number
2375 * of pageblocks that cannot be completely freed
2376 * may increase.
2377 */
2378 set_pageblock_migratetype(page, ac->migratetype);
2379 ret = move_freepages_block(zone, page, ac->migratetype,
2380 NULL);
2381 if (ret) {
2382 spin_unlock_irqrestore(&zone->lock, flags);
2383 return ret;
2384 }
2385 }
2386 spin_unlock_irqrestore(&zone->lock, flags);
2387 }
2388
2389 return false;
2390 }
2391
2392 /*
2393 * Try finding a free buddy page on the fallback list and put it on the free
2394 * list of requested migratetype, possibly along with other pages from the same
2395 * block, depending on fragmentation avoidance heuristics. Returns true if
2396 * fallback was found so that __rmqueue_smallest() can grab it.
2397 *
2398 * The use of signed ints for order and current_order is a deliberate
2399 * deviation from the rest of this file, to make the for loop
2400 * condition simpler.
2401 */
2402 static __always_inline bool
2403 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2404 unsigned int alloc_flags)
2405 {
2406 struct free_area *area;
2407 int current_order;
2408 int min_order = order;
2409 struct page *page;
2410 int fallback_mt;
2411 bool can_steal;
2412
2413 /*
2414 * Do not steal pages from freelists belonging to other pageblocks
2415 * i.e. orders < pageblock_order. If there are no local zones free,
2416 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2417 */
2418 if (alloc_flags & ALLOC_NOFRAGMENT)
2419 min_order = pageblock_order;
2420
2421 /*
2422 * Find the largest available free page in the other list. This roughly
2423 * approximates finding the pageblock with the most free pages, which
2424 * would be too costly to do exactly.
2425 */
2426 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2427 --current_order) {
2428 area = &(zone->free_area[current_order]);
2429 fallback_mt = find_suitable_fallback(area, current_order,
2430 start_migratetype, false, &can_steal);
2431 if (fallback_mt == -1)
2432 continue;
2433
2434 /*
2435 * We cannot steal all free pages from the pageblock and the
2436 * requested migratetype is movable. In that case it's better to
2437 * steal and split the smallest available page instead of the
2438 * largest available page, because even if the next movable
2439 * allocation falls back into a different pageblock than this
2440 * one, it won't cause permanent fragmentation.
2441 */
2442 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2443 && current_order > order)
2444 goto find_smallest;
2445
2446 goto do_steal;
2447 }
2448
2449 return false;
2450
2451 find_smallest:
2452 for (current_order = order; current_order < MAX_ORDER;
2453 current_order++) {
2454 area = &(zone->free_area[current_order]);
2455 fallback_mt = find_suitable_fallback(area, current_order,
2456 start_migratetype, false, &can_steal);
2457 if (fallback_mt != -1)
2458 break;
2459 }
2460
2461 /*
2462 * This should not happen - we already found a suitable fallback
2463 * when looking for the largest page.
2464 */
2465 VM_BUG_ON(current_order == MAX_ORDER);
2466
2467 do_steal:
2468 page = list_first_entry(&area->free_list[fallback_mt],
2469 struct page, lru);
2470
2471 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2472 can_steal);
2473
2474 trace_mm_page_alloc_extfrag(page, order, current_order,
2475 start_migratetype, fallback_mt);
2476
2477 return true;
2478
2479 }
2480
2481 /*
2482 * Do the hard work of removing an element from the buddy allocator.
2483 * Call me with the zone->lock already held.
2484 */
2485 static __always_inline struct page *
2486 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2487 unsigned int alloc_flags)
2488 {
2489 struct page *page;
2490
2491 retry:
2492 page = __rmqueue_smallest(zone, order, migratetype);
2493 if (unlikely(!page)) {
2494 if (migratetype == MIGRATE_MOVABLE)
2495 page = __rmqueue_cma_fallback(zone, order);
2496
2497 if (!page && __rmqueue_fallback(zone, order, migratetype,
2498 alloc_flags))
2499 goto retry;
2500 }
2501
2502 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2503 return page;
2504 }
2505
2506 /*
2507 * Obtain a specified number of elements from the buddy allocator, all under
2508 * a single hold of the lock, for efficiency. Add them to the supplied list.
2509 * Returns the number of new pages which were placed at *list.
2510 */
2511 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2512 unsigned long count, struct list_head *list,
2513 int migratetype, unsigned int alloc_flags)
2514 {
2515 int i, alloced = 0;
2516
2517 spin_lock(&zone->lock);
2518 for (i = 0; i < count; ++i) {
2519 struct page *page = __rmqueue(zone, order, migratetype,
2520 alloc_flags);
2521 if (unlikely(page == NULL))
2522 break;
2523
2524 if (unlikely(check_pcp_refill(page)))
2525 continue;
2526
2527 /*
2528 * Split buddy pages returned by expand() are received here in
2529 * physical page order. The page is added to the tail of
2530 * caller's list. From the callers perspective, the linked list
2531 * is ordered by page number under some conditions. This is
2532 * useful for IO devices that can forward direction from the
2533 * head, thus also in the physical page order. This is useful
2534 * for IO devices that can merge IO requests if the physical
2535 * pages are ordered properly.
2536 */
2537 list_add_tail(&page->lru, list);
2538 alloced++;
2539 if (is_migrate_cma(get_pcppage_migratetype(page)))
2540 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2541 -(1 << order));
2542 }
2543
2544 /*
2545 * i pages were removed from the buddy list even if some leak due
2546 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2547 * on i. Do not confuse with 'alloced' which is the number of
2548 * pages added to the pcp list.
2549 */
2550 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2551 spin_unlock(&zone->lock);
2552 return alloced;
2553 }
2554
2555 #ifdef CONFIG_NUMA
2556 /*
2557 * Called from the vmstat counter updater to drain pagesets of this
2558 * currently executing processor on remote nodes after they have
2559 * expired.
2560 *
2561 * Note that this function must be called with the thread pinned to
2562 * a single processor.
2563 */
2564 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2565 {
2566 unsigned long flags;
2567 int to_drain, batch;
2568
2569 local_irq_save(flags);
2570 batch = READ_ONCE(pcp->batch);
2571 to_drain = min(pcp->count, batch);
2572 if (to_drain > 0)
2573 free_pcppages_bulk(zone, to_drain, pcp);
2574 local_irq_restore(flags);
2575 }
2576 #endif
2577
2578 /*
2579 * Drain pcplists of the indicated processor and zone.
2580 *
2581 * The processor must either be the current processor and the
2582 * thread pinned to the current processor or a processor that
2583 * is not online.
2584 */
2585 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2586 {
2587 unsigned long flags;
2588 struct per_cpu_pageset *pset;
2589 struct per_cpu_pages *pcp;
2590
2591 local_irq_save(flags);
2592 pset = per_cpu_ptr(zone->pageset, cpu);
2593
2594 pcp = &pset->pcp;
2595 if (pcp->count)
2596 free_pcppages_bulk(zone, pcp->count, pcp);
2597 local_irq_restore(flags);
2598 }
2599
2600 /*
2601 * Drain pcplists of all zones on the indicated processor.
2602 *
2603 * The processor must either be the current processor and the
2604 * thread pinned to the current processor or a processor that
2605 * is not online.
2606 */
2607 static void drain_pages(unsigned int cpu)
2608 {
2609 struct zone *zone;
2610
2611 for_each_populated_zone(zone) {
2612 drain_pages_zone(cpu, zone);
2613 }
2614 }
2615
2616 /*
2617 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2618 *
2619 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2620 * the single zone's pages.
2621 */
2622 void drain_local_pages(struct zone *zone)
2623 {
2624 int cpu = smp_processor_id();
2625
2626 if (zone)
2627 drain_pages_zone(cpu, zone);
2628 else
2629 drain_pages(cpu);
2630 }
2631
2632 static void drain_local_pages_wq(struct work_struct *work)
2633 {
2634 /*
2635 * drain_all_pages doesn't use proper cpu hotplug protection so
2636 * we can race with cpu offline when the WQ can move this from
2637 * a cpu pinned worker to an unbound one. We can operate on a different
2638 * cpu which is allright but we also have to make sure to not move to
2639 * a different one.
2640 */
2641 preempt_disable();
2642 drain_local_pages(NULL);
2643 preempt_enable();
2644 }
2645
2646 /*
2647 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2648 *
2649 * When zone parameter is non-NULL, spill just the single zone's pages.
2650 *
2651 * Note that this can be extremely slow as the draining happens in a workqueue.
2652 */
2653 void drain_all_pages(struct zone *zone)
2654 {
2655 int cpu;
2656
2657 /*
2658 * Allocate in the BSS so we wont require allocation in
2659 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2660 */
2661 static cpumask_t cpus_with_pcps;
2662
2663 /*
2664 * Make sure nobody triggers this path before mm_percpu_wq is fully
2665 * initialized.
2666 */
2667 if (WARN_ON_ONCE(!mm_percpu_wq))
2668 return;
2669
2670 /*
2671 * Do not drain if one is already in progress unless it's specific to
2672 * a zone. Such callers are primarily CMA and memory hotplug and need
2673 * the drain to be complete when the call returns.
2674 */
2675 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2676 if (!zone)
2677 return;
2678 mutex_lock(&pcpu_drain_mutex);
2679 }
2680
2681 /*
2682 * We don't care about racing with CPU hotplug event
2683 * as offline notification will cause the notified
2684 * cpu to drain that CPU pcps and on_each_cpu_mask
2685 * disables preemption as part of its processing
2686 */
2687 for_each_online_cpu(cpu) {
2688 struct per_cpu_pageset *pcp;
2689 struct zone *z;
2690 bool has_pcps = false;
2691
2692 if (zone) {
2693 pcp = per_cpu_ptr(zone->pageset, cpu);
2694 if (pcp->pcp.count)
2695 has_pcps = true;
2696 } else {
2697 for_each_populated_zone(z) {
2698 pcp = per_cpu_ptr(z->pageset, cpu);
2699 if (pcp->pcp.count) {
2700 has_pcps = true;
2701 break;
2702 }
2703 }
2704 }
2705
2706 if (has_pcps)
2707 cpumask_set_cpu(cpu, &cpus_with_pcps);
2708 else
2709 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2710 }
2711
2712 for_each_cpu(cpu, &cpus_with_pcps) {
2713 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2714 INIT_WORK(work, drain_local_pages_wq);
2715 queue_work_on(cpu, mm_percpu_wq, work);
2716 }
2717 for_each_cpu(cpu, &cpus_with_pcps)
2718 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2719
2720 mutex_unlock(&pcpu_drain_mutex);
2721 }
2722
2723 #ifdef CONFIG_HIBERNATION
2724
2725 /*
2726 * Touch the watchdog for every WD_PAGE_COUNT pages.
2727 */
2728 #define WD_PAGE_COUNT (128*1024)
2729
2730 void mark_free_pages(struct zone *zone)
2731 {
2732 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2733 unsigned long flags;
2734 unsigned int order, t;
2735 struct page *page;
2736
2737 if (zone_is_empty(zone))
2738 return;
2739
2740 spin_lock_irqsave(&zone->lock, flags);
2741
2742 max_zone_pfn = zone_end_pfn(zone);
2743 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2744 if (pfn_valid(pfn)) {
2745 page = pfn_to_page(pfn);
2746
2747 if (!--page_count) {
2748 touch_nmi_watchdog();
2749 page_count = WD_PAGE_COUNT;
2750 }
2751
2752 if (page_zone(page) != zone)
2753 continue;
2754
2755 if (!swsusp_page_is_forbidden(page))
2756 swsusp_unset_page_free(page);
2757 }
2758
2759 for_each_migratetype_order(order, t) {
2760 list_for_each_entry(page,
2761 &zone->free_area[order].free_list[t], lru) {
2762 unsigned long i;
2763
2764 pfn = page_to_pfn(page);
2765 for (i = 0; i < (1UL << order); i++) {
2766 if (!--page_count) {
2767 touch_nmi_watchdog();
2768 page_count = WD_PAGE_COUNT;
2769 }
2770 swsusp_set_page_free(pfn_to_page(pfn + i));
2771 }
2772 }
2773 }
2774 spin_unlock_irqrestore(&zone->lock, flags);
2775 }
2776 #endif /* CONFIG_PM */
2777
2778 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2779 {
2780 int migratetype;
2781
2782 if (!free_pcp_prepare(page))
2783 return false;
2784
2785 migratetype = get_pfnblock_migratetype(page, pfn);
2786 set_pcppage_migratetype(page, migratetype);
2787 return true;
2788 }
2789
2790 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2791 {
2792 struct zone *zone = page_zone(page);
2793 struct per_cpu_pages *pcp;
2794 int migratetype;
2795
2796 migratetype = get_pcppage_migratetype(page);
2797 __count_vm_event(PGFREE);
2798
2799 /*
2800 * We only track unmovable, reclaimable and movable on pcp lists.
2801 * Free ISOLATE pages back to the allocator because they are being
2802 * offlined but treat HIGHATOMIC as movable pages so we can get those
2803 * areas back if necessary. Otherwise, we may have to free
2804 * excessively into the page allocator
2805 */
2806 if (migratetype >= MIGRATE_PCPTYPES) {
2807 if (unlikely(is_migrate_isolate(migratetype))) {
2808 free_one_page(zone, page, pfn, 0, migratetype);
2809 return;
2810 }
2811 migratetype = MIGRATE_MOVABLE;
2812 }
2813
2814 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2815 list_add(&page->lru, &pcp->lists[migratetype]);
2816 pcp->count++;
2817 if (pcp->count >= pcp->high) {
2818 unsigned long batch = READ_ONCE(pcp->batch);
2819 free_pcppages_bulk(zone, batch, pcp);
2820 }
2821 }
2822
2823 /*
2824 * Free a 0-order page
2825 */
2826 void free_unref_page(struct page *page)
2827 {
2828 unsigned long flags;
2829 unsigned long pfn = page_to_pfn(page);
2830
2831 if (!free_unref_page_prepare(page, pfn))
2832 return;
2833
2834 local_irq_save(flags);
2835 free_unref_page_commit(page, pfn);
2836 local_irq_restore(flags);
2837 }
2838
2839 /*
2840 * Free a list of 0-order pages
2841 */
2842 void free_unref_page_list(struct list_head *list)
2843 {
2844 struct page *page, *next;
2845 unsigned long flags, pfn;
2846 int batch_count = 0;
2847
2848 /* Prepare pages for freeing */
2849 list_for_each_entry_safe(page, next, list, lru) {
2850 pfn = page_to_pfn(page);
2851 if (!free_unref_page_prepare(page, pfn))
2852 list_del(&page->lru);
2853 set_page_private(page, pfn);
2854 }
2855
2856 local_irq_save(flags);
2857 list_for_each_entry_safe(page, next, list, lru) {
2858 unsigned long pfn = page_private(page);
2859
2860 set_page_private(page, 0);
2861 trace_mm_page_free_batched(page);
2862 free_unref_page_commit(page, pfn);
2863
2864 /*
2865 * Guard against excessive IRQ disabled times when we get
2866 * a large list of pages to free.
2867 */
2868 if (++batch_count == SWAP_CLUSTER_MAX) {
2869 local_irq_restore(flags);
2870 batch_count = 0;
2871 local_irq_save(flags);
2872 }
2873 }
2874 local_irq_restore(flags);
2875 }
2876
2877 /*
2878 * split_page takes a non-compound higher-order page, and splits it into
2879 * n (1<<order) sub-pages: page[0..n]
2880 * Each sub-page must be freed individually.
2881 *
2882 * Note: this is probably too low level an operation for use in drivers.
2883 * Please consult with lkml before using this in your driver.
2884 */
2885 void split_page(struct page *page, unsigned int order)
2886 {
2887 int i;
2888
2889 VM_BUG_ON_PAGE(PageCompound(page), page);
2890 VM_BUG_ON_PAGE(!page_count(page), page);
2891
2892 for (i = 1; i < (1 << order); i++)
2893 set_page_refcounted(page + i);
2894 split_page_owner(page, order);
2895 }
2896 EXPORT_SYMBOL_GPL(split_page);
2897
2898 int __isolate_free_page(struct page *page, unsigned int order)
2899 {
2900 unsigned long watermark;
2901 struct zone *zone;
2902 int mt;
2903
2904 BUG_ON(!PageBuddy(page));
2905
2906 zone = page_zone(page);
2907 mt = get_pageblock_migratetype(page);
2908
2909 if (!is_migrate_isolate(mt)) {
2910 /*
2911 * Obey watermarks as if the page was being allocated. We can
2912 * emulate a high-order watermark check with a raised order-0
2913 * watermark, because we already know our high-order page
2914 * exists.
2915 */
2916 watermark = min_wmark_pages(zone) + (1UL << order);
2917 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2918 return 0;
2919
2920 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2921 }
2922
2923 /* Remove page from free list */
2924 list_del(&page->lru);
2925 zone->free_area[order].nr_free--;
2926 rmv_page_order(page);
2927
2928 /*
2929 * Set the pageblock if the isolated page is at least half of a
2930 * pageblock
2931 */
2932 if (order >= pageblock_order - 1) {
2933 struct page *endpage = page + (1 << order) - 1;
2934 for (; page < endpage; page += pageblock_nr_pages) {
2935 int mt = get_pageblock_migratetype(page);
2936 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2937 && !is_migrate_highatomic(mt))
2938 set_pageblock_migratetype(page,
2939 MIGRATE_MOVABLE);
2940 }
2941 }
2942
2943
2944 return 1UL << order;
2945 }
2946
2947 /*
2948 * Update NUMA hit/miss statistics
2949 *
2950 * Must be called with interrupts disabled.
2951 */
2952 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2953 {
2954 #ifdef CONFIG_NUMA
2955 enum numa_stat_item local_stat = NUMA_LOCAL;
2956
2957 /* skip numa counters update if numa stats is disabled */
2958 if (!static_branch_likely(&vm_numa_stat_key))
2959 return;
2960
2961 if (zone_to_nid(z) != numa_node_id())
2962 local_stat = NUMA_OTHER;
2963
2964 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2965 __inc_numa_state(z, NUMA_HIT);
2966 else {
2967 __inc_numa_state(z, NUMA_MISS);
2968 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2969 }
2970 __inc_numa_state(z, local_stat);
2971 #endif
2972 }
2973
2974 /* Remove page from the per-cpu list, caller must protect the list */
2975 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2976 unsigned int alloc_flags,
2977 struct per_cpu_pages *pcp,
2978 struct list_head *list)
2979 {
2980 struct page *page;
2981
2982 do {
2983 if (list_empty(list)) {
2984 pcp->count += rmqueue_bulk(zone, 0,
2985 pcp->batch, list,
2986 migratetype, alloc_flags);
2987 if (unlikely(list_empty(list)))
2988 return NULL;
2989 }
2990
2991 page = list_first_entry(list, struct page, lru);
2992 list_del(&page->lru);
2993 pcp->count--;
2994 } while (check_new_pcp(page));
2995
2996 return page;
2997 }
2998
2999 /* Lock and remove page from the per-cpu list */
3000 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3001 struct zone *zone, unsigned int order,
3002 gfp_t gfp_flags, int migratetype,
3003 unsigned int alloc_flags)
3004 {
3005 struct per_cpu_pages *pcp;
3006 struct list_head *list;
3007 struct page *page;
3008 unsigned long flags;
3009
3010 local_irq_save(flags);
3011 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3012 list = &pcp->lists[migratetype];
3013 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3014 if (page) {
3015 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3016 zone_statistics(preferred_zone, zone);
3017 }
3018 local_irq_restore(flags);
3019 return page;
3020 }
3021
3022 /*
3023 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3024 */
3025 static inline
3026 struct page *rmqueue(struct zone *preferred_zone,
3027 struct zone *zone, unsigned int order,
3028 gfp_t gfp_flags, unsigned int alloc_flags,
3029 int migratetype)
3030 {
3031 unsigned long flags;
3032 struct page *page;
3033
3034 if (likely(order == 0)) {
3035 page = rmqueue_pcplist(preferred_zone, zone, order,
3036 gfp_flags, migratetype, alloc_flags);
3037 goto out;
3038 }
3039
3040 /*
3041 * We most definitely don't want callers attempting to
3042 * allocate greater than order-1 page units with __GFP_NOFAIL.
3043 */
3044 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3045 spin_lock_irqsave(&zone->lock, flags);
3046
3047 do {
3048 page = NULL;
3049 if (alloc_flags & ALLOC_HARDER) {
3050 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3051 if (page)
3052 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3053 }
3054 if (!page)
3055 page = __rmqueue(zone, order, migratetype, alloc_flags);
3056 } while (page && check_new_pages(page, order));
3057 spin_unlock(&zone->lock);
3058 if (!page)
3059 goto failed;
3060 __mod_zone_freepage_state(zone, -(1 << order),
3061 get_pcppage_migratetype(page));
3062
3063 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3064 zone_statistics(preferred_zone, zone);
3065 local_irq_restore(flags);
3066
3067 out:
3068 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3069 return page;
3070
3071 failed:
3072 local_irq_restore(flags);
3073 return NULL;
3074 }
3075
3076 #ifdef CONFIG_FAIL_PAGE_ALLOC
3077
3078 static struct {
3079 struct fault_attr attr;
3080
3081 bool ignore_gfp_highmem;
3082 bool ignore_gfp_reclaim;
3083 u32 min_order;
3084 } fail_page_alloc = {
3085 .attr = FAULT_ATTR_INITIALIZER,
3086 .ignore_gfp_reclaim = true,
3087 .ignore_gfp_highmem = true,
3088 .min_order = 1,
3089 };
3090
3091 static int __init setup_fail_page_alloc(char *str)
3092 {
3093 return setup_fault_attr(&fail_page_alloc.attr, str);
3094 }
3095 __setup("fail_page_alloc=", setup_fail_page_alloc);
3096
3097 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3098 {
3099 if (order < fail_page_alloc.min_order)
3100 return false;
3101 if (gfp_mask & __GFP_NOFAIL)
3102 return false;
3103 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3104 return false;
3105 if (fail_page_alloc.ignore_gfp_reclaim &&
3106 (gfp_mask & __GFP_DIRECT_RECLAIM))
3107 return false;
3108
3109 return should_fail(&fail_page_alloc.attr, 1 << order);
3110 }
3111
3112 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3113
3114 static int __init fail_page_alloc_debugfs(void)
3115 {
3116 umode_t mode = S_IFREG | 0600;
3117 struct dentry *dir;
3118
3119 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3120 &fail_page_alloc.attr);
3121 if (IS_ERR(dir))
3122 return PTR_ERR(dir);
3123
3124 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3125 &fail_page_alloc.ignore_gfp_reclaim))
3126 goto fail;
3127 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3128 &fail_page_alloc.ignore_gfp_highmem))
3129 goto fail;
3130 if (!debugfs_create_u32("min-order", mode, dir,
3131 &fail_page_alloc.min_order))
3132 goto fail;
3133
3134 return 0;
3135 fail:
3136 debugfs_remove_recursive(dir);
3137
3138 return -ENOMEM;
3139 }
3140
3141 late_initcall(fail_page_alloc_debugfs);
3142
3143 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3144
3145 #else /* CONFIG_FAIL_PAGE_ALLOC */
3146
3147 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3148 {
3149 return false;
3150 }
3151
3152 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3153
3154 /*
3155 * Return true if free base pages are above 'mark'. For high-order checks it
3156 * will return true of the order-0 watermark is reached and there is at least
3157 * one free page of a suitable size. Checking now avoids taking the zone lock
3158 * to check in the allocation paths if no pages are free.
3159 */
3160 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3161 int classzone_idx, unsigned int alloc_flags,
3162 long free_pages)
3163 {
3164 long min = mark;
3165 int o;
3166 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3167
3168 /* free_pages may go negative - that's OK */
3169 free_pages -= (1 << order) - 1;
3170
3171 if (alloc_flags & ALLOC_HIGH)
3172 min -= min / 2;
3173
3174 /*
3175 * If the caller does not have rights to ALLOC_HARDER then subtract
3176 * the high-atomic reserves. This will over-estimate the size of the
3177 * atomic reserve but it avoids a search.
3178 */
3179 if (likely(!alloc_harder)) {
3180 free_pages -= z->nr_reserved_highatomic;
3181 } else {
3182 /*
3183 * OOM victims can try even harder than normal ALLOC_HARDER
3184 * users on the grounds that it's definitely going to be in
3185 * the exit path shortly and free memory. Any allocation it
3186 * makes during the free path will be small and short-lived.
3187 */
3188 if (alloc_flags & ALLOC_OOM)
3189 min -= min / 2;
3190 else
3191 min -= min / 4;
3192 }
3193
3194
3195 #ifdef CONFIG_CMA
3196 /* If allocation can't use CMA areas don't use free CMA pages */
3197 if (!(alloc_flags & ALLOC_CMA))
3198 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3199 #endif
3200
3201 /*
3202 * Check watermarks for an order-0 allocation request. If these
3203 * are not met, then a high-order request also cannot go ahead
3204 * even if a suitable page happened to be free.
3205 */
3206 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3207 return false;
3208
3209 /* If this is an order-0 request then the watermark is fine */
3210 if (!order)
3211 return true;
3212
3213 /* For a high-order request, check at least one suitable page is free */
3214 for (o = order; o < MAX_ORDER; o++) {
3215 struct free_area *area = &z->free_area[o];
3216 int mt;
3217
3218 if (!area->nr_free)
3219 continue;
3220
3221 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3222 if (!list_empty(&area->free_list[mt]))
3223 return true;
3224 }
3225
3226 #ifdef CONFIG_CMA
3227 if ((alloc_flags & ALLOC_CMA) &&
3228 !list_empty(&area->free_list[MIGRATE_CMA])) {
3229 return true;
3230 }
3231 #endif
3232 if (alloc_harder &&
3233 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3234 return true;
3235 }
3236 return false;
3237 }
3238
3239 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3240 int classzone_idx, unsigned int alloc_flags)
3241 {
3242 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3243 zone_page_state(z, NR_FREE_PAGES));
3244 }
3245
3246 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3247 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3248 {
3249 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3250 long cma_pages = 0;
3251
3252 #ifdef CONFIG_CMA
3253 /* If allocation can't use CMA areas don't use free CMA pages */
3254 if (!(alloc_flags & ALLOC_CMA))
3255 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3256 #endif
3257
3258 /*
3259 * Fast check for order-0 only. If this fails then the reserves
3260 * need to be calculated. There is a corner case where the check
3261 * passes but only the high-order atomic reserve are free. If
3262 * the caller is !atomic then it'll uselessly search the free
3263 * list. That corner case is then slower but it is harmless.
3264 */
3265 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3266 return true;
3267
3268 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3269 free_pages);
3270 }
3271
3272 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3273 unsigned long mark, int classzone_idx)
3274 {
3275 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3276
3277 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3278 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3279
3280 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3281 free_pages);
3282 }
3283
3284 #ifdef CONFIG_NUMA
3285 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3286 {
3287 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3288 RECLAIM_DISTANCE;
3289 }
3290 #else /* CONFIG_NUMA */
3291 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3292 {
3293 return true;
3294 }
3295 #endif /* CONFIG_NUMA */
3296
3297 /*
3298 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3299 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3300 * premature use of a lower zone may cause lowmem pressure problems that
3301 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3302 * probably too small. It only makes sense to spread allocations to avoid
3303 * fragmentation between the Normal and DMA32 zones.
3304 */
3305 static inline unsigned int
3306 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3307 {
3308 unsigned int alloc_flags = 0;
3309
3310 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3311 alloc_flags |= ALLOC_KSWAPD;
3312
3313 #ifdef CONFIG_ZONE_DMA32
3314 if (zone_idx(zone) != ZONE_NORMAL)
3315 goto out;
3316
3317 /*
3318 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3319 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3320 * on UMA that if Normal is populated then so is DMA32.
3321 */
3322 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3323 if (nr_online_nodes > 1 && !populated_zone(--zone))
3324 goto out;
3325
3326 out:
3327 #endif /* CONFIG_ZONE_DMA32 */
3328 return alloc_flags;
3329 }
3330
3331 /*
3332 * get_page_from_freelist goes through the zonelist trying to allocate
3333 * a page.
3334 */
3335 static struct page *
3336 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3337 const struct alloc_context *ac)
3338 {
3339 struct zoneref *z;
3340 struct zone *zone;
3341 struct pglist_data *last_pgdat_dirty_limit = NULL;
3342 bool no_fallback;
3343
3344 retry:
3345 /*
3346 * Scan zonelist, looking for a zone with enough free.
3347 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3348 */
3349 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3350 z = ac->preferred_zoneref;
3351 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3352 ac->nodemask) {
3353 struct page *page;
3354 unsigned long mark;
3355
3356 if (cpusets_enabled() &&
3357 (alloc_flags & ALLOC_CPUSET) &&
3358 !__cpuset_zone_allowed(zone, gfp_mask))
3359 continue;
3360 /*
3361 * When allocating a page cache page for writing, we
3362 * want to get it from a node that is within its dirty
3363 * limit, such that no single node holds more than its
3364 * proportional share of globally allowed dirty pages.
3365 * The dirty limits take into account the node's
3366 * lowmem reserves and high watermark so that kswapd
3367 * should be able to balance it without having to
3368 * write pages from its LRU list.
3369 *
3370 * XXX: For now, allow allocations to potentially
3371 * exceed the per-node dirty limit in the slowpath
3372 * (spread_dirty_pages unset) before going into reclaim,
3373 * which is important when on a NUMA setup the allowed
3374 * nodes are together not big enough to reach the
3375 * global limit. The proper fix for these situations
3376 * will require awareness of nodes in the
3377 * dirty-throttling and the flusher threads.
3378 */
3379 if (ac->spread_dirty_pages) {
3380 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3381 continue;
3382
3383 if (!node_dirty_ok(zone->zone_pgdat)) {
3384 last_pgdat_dirty_limit = zone->zone_pgdat;
3385 continue;
3386 }
3387 }
3388
3389 if (no_fallback && nr_online_nodes > 1 &&
3390 zone != ac->preferred_zoneref->zone) {
3391 int local_nid;
3392
3393 /*
3394 * If moving to a remote node, retry but allow
3395 * fragmenting fallbacks. Locality is more important
3396 * than fragmentation avoidance.
3397 */
3398 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3399 if (zone_to_nid(zone) != local_nid) {
3400 alloc_flags &= ~ALLOC_NOFRAGMENT;
3401 goto retry;
3402 }
3403 }
3404
3405 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3406 if (!zone_watermark_fast(zone, order, mark,
3407 ac_classzone_idx(ac), alloc_flags)) {
3408 int ret;
3409
3410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3411 /*
3412 * Watermark failed for this zone, but see if we can
3413 * grow this zone if it contains deferred pages.
3414 */
3415 if (static_branch_unlikely(&deferred_pages)) {
3416 if (_deferred_grow_zone(zone, order))
3417 goto try_this_zone;
3418 }
3419 #endif
3420 /* Checked here to keep the fast path fast */
3421 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3422 if (alloc_flags & ALLOC_NO_WATERMARKS)
3423 goto try_this_zone;
3424
3425 if (node_reclaim_mode == 0 ||
3426 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3427 continue;
3428
3429 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3430 switch (ret) {
3431 case NODE_RECLAIM_NOSCAN:
3432 /* did not scan */
3433 continue;
3434 case NODE_RECLAIM_FULL:
3435 /* scanned but unreclaimable */
3436 continue;
3437 default:
3438 /* did we reclaim enough */
3439 if (zone_watermark_ok(zone, order, mark,
3440 ac_classzone_idx(ac), alloc_flags))
3441 goto try_this_zone;
3442
3443 continue;
3444 }
3445 }
3446
3447 try_this_zone:
3448 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3449 gfp_mask, alloc_flags, ac->migratetype);
3450 if (page) {
3451 prep_new_page(page, order, gfp_mask, alloc_flags);
3452
3453 /*
3454 * If this is a high-order atomic allocation then check
3455 * if the pageblock should be reserved for the future
3456 */
3457 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3458 reserve_highatomic_pageblock(page, zone, order);
3459
3460 return page;
3461 } else {
3462 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3463 /* Try again if zone has deferred pages */
3464 if (static_branch_unlikely(&deferred_pages)) {
3465 if (_deferred_grow_zone(zone, order))
3466 goto try_this_zone;
3467 }
3468 #endif
3469 }
3470 }
3471
3472 /*
3473 * It's possible on a UMA machine to get through all zones that are
3474 * fragmented. If avoiding fragmentation, reset and try again.
3475 */
3476 if (no_fallback) {
3477 alloc_flags &= ~ALLOC_NOFRAGMENT;
3478 goto retry;
3479 }
3480
3481 return NULL;
3482 }
3483
3484 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3485 {
3486 unsigned int filter = SHOW_MEM_FILTER_NODES;
3487 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3488
3489 if (!__ratelimit(&show_mem_rs))
3490 return;
3491
3492 /*
3493 * This documents exceptions given to allocations in certain
3494 * contexts that are allowed to allocate outside current's set
3495 * of allowed nodes.
3496 */
3497 if (!(gfp_mask & __GFP_NOMEMALLOC))
3498 if (tsk_is_oom_victim(current) ||
3499 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3500 filter &= ~SHOW_MEM_FILTER_NODES;
3501 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3502 filter &= ~SHOW_MEM_FILTER_NODES;
3503
3504 show_mem(filter, nodemask);
3505 }
3506
3507 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3508 {
3509 struct va_format vaf;
3510 va_list args;
3511 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3512 DEFAULT_RATELIMIT_BURST);
3513
3514 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3515 return;
3516
3517 va_start(args, fmt);
3518 vaf.fmt = fmt;
3519 vaf.va = &args;
3520 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3521 current->comm, &vaf, gfp_mask, &gfp_mask,
3522 nodemask_pr_args(nodemask));
3523 va_end(args);
3524
3525 cpuset_print_current_mems_allowed();
3526 pr_cont("\n");
3527 dump_stack();
3528 warn_alloc_show_mem(gfp_mask, nodemask);
3529 }
3530
3531 static inline struct page *
3532 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3533 unsigned int alloc_flags,
3534 const struct alloc_context *ac)
3535 {
3536 struct page *page;
3537
3538 page = get_page_from_freelist(gfp_mask, order,
3539 alloc_flags|ALLOC_CPUSET, ac);
3540 /*
3541 * fallback to ignore cpuset restriction if our nodes
3542 * are depleted
3543 */
3544 if (!page)
3545 page = get_page_from_freelist(gfp_mask, order,
3546 alloc_flags, ac);
3547
3548 return page;
3549 }
3550
3551 static inline struct page *
3552 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3553 const struct alloc_context *ac, unsigned long *did_some_progress)
3554 {
3555 struct oom_control oc = {
3556 .zonelist = ac->zonelist,
3557 .nodemask = ac->nodemask,
3558 .memcg = NULL,
3559 .gfp_mask = gfp_mask,
3560 .order = order,
3561 };
3562 struct page *page;
3563
3564 *did_some_progress = 0;
3565
3566 /*
3567 * Acquire the oom lock. If that fails, somebody else is
3568 * making progress for us.
3569 */
3570 if (!mutex_trylock(&oom_lock)) {
3571 *did_some_progress = 1;
3572 schedule_timeout_uninterruptible(1);
3573 return NULL;
3574 }
3575
3576 /*
3577 * Go through the zonelist yet one more time, keep very high watermark
3578 * here, this is only to catch a parallel oom killing, we must fail if
3579 * we're still under heavy pressure. But make sure that this reclaim
3580 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3581 * allocation which will never fail due to oom_lock already held.
3582 */
3583 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3584 ~__GFP_DIRECT_RECLAIM, order,
3585 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3586 if (page)
3587 goto out;
3588
3589 /* Coredumps can quickly deplete all memory reserves */
3590 if (current->flags & PF_DUMPCORE)
3591 goto out;
3592 /* The OOM killer will not help higher order allocs */
3593 if (order > PAGE_ALLOC_COSTLY_ORDER)
3594 goto out;
3595 /*
3596 * We have already exhausted all our reclaim opportunities without any
3597 * success so it is time to admit defeat. We will skip the OOM killer
3598 * because it is very likely that the caller has a more reasonable
3599 * fallback than shooting a random task.
3600 */
3601 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3602 goto out;
3603 /* The OOM killer does not needlessly kill tasks for lowmem */
3604 if (ac->high_zoneidx < ZONE_NORMAL)
3605 goto out;
3606 if (pm_suspended_storage())
3607 goto out;
3608 /*
3609 * XXX: GFP_NOFS allocations should rather fail than rely on
3610 * other request to make a forward progress.
3611 * We are in an unfortunate situation where out_of_memory cannot
3612 * do much for this context but let's try it to at least get
3613 * access to memory reserved if the current task is killed (see
3614 * out_of_memory). Once filesystems are ready to handle allocation
3615 * failures more gracefully we should just bail out here.
3616 */
3617
3618 /* The OOM killer may not free memory on a specific node */
3619 if (gfp_mask & __GFP_THISNODE)
3620 goto out;
3621
3622 /* Exhausted what can be done so it's blame time */
3623 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3624 *did_some_progress = 1;
3625
3626 /*
3627 * Help non-failing allocations by giving them access to memory
3628 * reserves
3629 */
3630 if (gfp_mask & __GFP_NOFAIL)
3631 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3632 ALLOC_NO_WATERMARKS, ac);
3633 }
3634 out:
3635 mutex_unlock(&oom_lock);
3636 return page;
3637 }
3638
3639 /*
3640 * Maximum number of compaction retries wit a progress before OOM
3641 * killer is consider as the only way to move forward.
3642 */
3643 #define MAX_COMPACT_RETRIES 16
3644
3645 #ifdef CONFIG_COMPACTION
3646 /* Try memory compaction for high-order allocations before reclaim */
3647 static struct page *
3648 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3649 unsigned int alloc_flags, const struct alloc_context *ac,
3650 enum compact_priority prio, enum compact_result *compact_result)
3651 {
3652 struct page *page;
3653 unsigned long pflags;
3654 unsigned int noreclaim_flag;
3655
3656 if (!order)
3657 return NULL;
3658
3659 psi_memstall_enter(&pflags);
3660 noreclaim_flag = memalloc_noreclaim_save();
3661
3662 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3663 prio);
3664
3665 memalloc_noreclaim_restore(noreclaim_flag);
3666 psi_memstall_leave(&pflags);
3667
3668 if (*compact_result <= COMPACT_INACTIVE)
3669 return NULL;
3670
3671 /*
3672 * At least in one zone compaction wasn't deferred or skipped, so let's
3673 * count a compaction stall
3674 */
3675 count_vm_event(COMPACTSTALL);
3676
3677 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3678
3679 if (page) {
3680 struct zone *zone = page_zone(page);
3681
3682 zone->compact_blockskip_flush = false;
3683 compaction_defer_reset(zone, order, true);
3684 count_vm_event(COMPACTSUCCESS);
3685 return page;
3686 }
3687
3688 /*
3689 * It's bad if compaction run occurs and fails. The most likely reason
3690 * is that pages exist, but not enough to satisfy watermarks.
3691 */
3692 count_vm_event(COMPACTFAIL);
3693
3694 cond_resched();
3695
3696 return NULL;
3697 }
3698
3699 static inline bool
3700 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3701 enum compact_result compact_result,
3702 enum compact_priority *compact_priority,
3703 int *compaction_retries)
3704 {
3705 int max_retries = MAX_COMPACT_RETRIES;
3706 int min_priority;
3707 bool ret = false;
3708 int retries = *compaction_retries;
3709 enum compact_priority priority = *compact_priority;
3710
3711 if (!order)
3712 return false;
3713
3714 if (compaction_made_progress(compact_result))
3715 (*compaction_retries)++;
3716
3717 /*
3718 * compaction considers all the zone as desperately out of memory
3719 * so it doesn't really make much sense to retry except when the
3720 * failure could be caused by insufficient priority
3721 */
3722 if (compaction_failed(compact_result))
3723 goto check_priority;
3724
3725 /*
3726 * make sure the compaction wasn't deferred or didn't bail out early
3727 * due to locks contention before we declare that we should give up.
3728 * But do not retry if the given zonelist is not suitable for
3729 * compaction.
3730 */
3731 if (compaction_withdrawn(compact_result)) {
3732 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3733 goto out;
3734 }
3735
3736 /*
3737 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3738 * costly ones because they are de facto nofail and invoke OOM
3739 * killer to move on while costly can fail and users are ready
3740 * to cope with that. 1/4 retries is rather arbitrary but we
3741 * would need much more detailed feedback from compaction to
3742 * make a better decision.
3743 */
3744 if (order > PAGE_ALLOC_COSTLY_ORDER)
3745 max_retries /= 4;
3746 if (*compaction_retries <= max_retries) {
3747 ret = true;
3748 goto out;
3749 }
3750
3751 /*
3752 * Make sure there are attempts at the highest priority if we exhausted
3753 * all retries or failed at the lower priorities.
3754 */
3755 check_priority:
3756 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3757 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3758
3759 if (*compact_priority > min_priority) {
3760 (*compact_priority)--;
3761 *compaction_retries = 0;
3762 ret = true;
3763 }
3764 out:
3765 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3766 return ret;
3767 }
3768 #else
3769 static inline struct page *
3770 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3771 unsigned int alloc_flags, const struct alloc_context *ac,
3772 enum compact_priority prio, enum compact_result *compact_result)
3773 {
3774 *compact_result = COMPACT_SKIPPED;
3775 return NULL;
3776 }
3777
3778 static inline bool
3779 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3780 enum compact_result compact_result,
3781 enum compact_priority *compact_priority,
3782 int *compaction_retries)
3783 {
3784 struct zone *zone;
3785 struct zoneref *z;
3786
3787 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3788 return false;
3789
3790 /*
3791 * There are setups with compaction disabled which would prefer to loop
3792 * inside the allocator rather than hit the oom killer prematurely.
3793 * Let's give them a good hope and keep retrying while the order-0
3794 * watermarks are OK.
3795 */
3796 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3797 ac->nodemask) {
3798 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3799 ac_classzone_idx(ac), alloc_flags))
3800 return true;
3801 }
3802 return false;
3803 }
3804 #endif /* CONFIG_COMPACTION */
3805
3806 #ifdef CONFIG_LOCKDEP
3807 static struct lockdep_map __fs_reclaim_map =
3808 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3809
3810 static bool __need_fs_reclaim(gfp_t gfp_mask)
3811 {
3812 gfp_mask = current_gfp_context(gfp_mask);
3813
3814 /* no reclaim without waiting on it */
3815 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3816 return false;
3817
3818 /* this guy won't enter reclaim */
3819 if (current->flags & PF_MEMALLOC)
3820 return false;
3821
3822 /* We're only interested __GFP_FS allocations for now */
3823 if (!(gfp_mask & __GFP_FS))
3824 return false;
3825
3826 if (gfp_mask & __GFP_NOLOCKDEP)
3827 return false;
3828
3829 return true;
3830 }
3831
3832 void __fs_reclaim_acquire(void)
3833 {
3834 lock_map_acquire(&__fs_reclaim_map);
3835 }
3836
3837 void __fs_reclaim_release(void)
3838 {
3839 lock_map_release(&__fs_reclaim_map);
3840 }
3841
3842 void fs_reclaim_acquire(gfp_t gfp_mask)
3843 {
3844 if (__need_fs_reclaim(gfp_mask))
3845 __fs_reclaim_acquire();
3846 }
3847 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3848
3849 void fs_reclaim_release(gfp_t gfp_mask)
3850 {
3851 if (__need_fs_reclaim(gfp_mask))
3852 __fs_reclaim_release();
3853 }
3854 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3855 #endif
3856
3857 /* Perform direct synchronous page reclaim */
3858 static int
3859 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3860 const struct alloc_context *ac)
3861 {
3862 struct reclaim_state reclaim_state;
3863 int progress;
3864 unsigned int noreclaim_flag;
3865 unsigned long pflags;
3866
3867 cond_resched();
3868
3869 /* We now go into synchronous reclaim */
3870 cpuset_memory_pressure_bump();
3871 psi_memstall_enter(&pflags);
3872 fs_reclaim_acquire(gfp_mask);
3873 noreclaim_flag = memalloc_noreclaim_save();
3874 reclaim_state.reclaimed_slab = 0;
3875 current->reclaim_state = &reclaim_state;
3876
3877 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3878 ac->nodemask);
3879
3880 current->reclaim_state = NULL;
3881 memalloc_noreclaim_restore(noreclaim_flag);
3882 fs_reclaim_release(gfp_mask);
3883 psi_memstall_leave(&pflags);
3884
3885 cond_resched();
3886
3887 return progress;
3888 }
3889
3890 /* The really slow allocator path where we enter direct reclaim */
3891 static inline struct page *
3892 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3893 unsigned int alloc_flags, const struct alloc_context *ac,
3894 unsigned long *did_some_progress)
3895 {
3896 struct page *page = NULL;
3897 bool drained = false;
3898
3899 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3900 if (unlikely(!(*did_some_progress)))
3901 return NULL;
3902
3903 retry:
3904 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3905
3906 /*
3907 * If an allocation failed after direct reclaim, it could be because
3908 * pages are pinned on the per-cpu lists or in high alloc reserves.
3909 * Shrink them them and try again
3910 */
3911 if (!page && !drained) {
3912 unreserve_highatomic_pageblock(ac, false);
3913 drain_all_pages(NULL);
3914 drained = true;
3915 goto retry;
3916 }
3917
3918 return page;
3919 }
3920
3921 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3922 const struct alloc_context *ac)
3923 {
3924 struct zoneref *z;
3925 struct zone *zone;
3926 pg_data_t *last_pgdat = NULL;
3927 enum zone_type high_zoneidx = ac->high_zoneidx;
3928
3929 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3930 ac->nodemask) {
3931 if (last_pgdat != zone->zone_pgdat)
3932 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3933 last_pgdat = zone->zone_pgdat;
3934 }
3935 }
3936
3937 static inline unsigned int
3938 gfp_to_alloc_flags(gfp_t gfp_mask)
3939 {
3940 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3941
3942 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3943 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3944
3945 /*
3946 * The caller may dip into page reserves a bit more if the caller
3947 * cannot run direct reclaim, or if the caller has realtime scheduling
3948 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3949 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3950 */
3951 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3952
3953 if (gfp_mask & __GFP_ATOMIC) {
3954 /*
3955 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3956 * if it can't schedule.
3957 */
3958 if (!(gfp_mask & __GFP_NOMEMALLOC))
3959 alloc_flags |= ALLOC_HARDER;
3960 /*
3961 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3962 * comment for __cpuset_node_allowed().
3963 */
3964 alloc_flags &= ~ALLOC_CPUSET;
3965 } else if (unlikely(rt_task(current)) && !in_interrupt())
3966 alloc_flags |= ALLOC_HARDER;
3967
3968 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3969 alloc_flags |= ALLOC_KSWAPD;
3970
3971 #ifdef CONFIG_CMA
3972 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3973 alloc_flags |= ALLOC_CMA;
3974 #endif
3975 return alloc_flags;
3976 }
3977
3978 static bool oom_reserves_allowed(struct task_struct *tsk)
3979 {
3980 if (!tsk_is_oom_victim(tsk))
3981 return false;
3982
3983 /*
3984 * !MMU doesn't have oom reaper so give access to memory reserves
3985 * only to the thread with TIF_MEMDIE set
3986 */
3987 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3988 return false;
3989
3990 return true;
3991 }
3992
3993 /*
3994 * Distinguish requests which really need access to full memory
3995 * reserves from oom victims which can live with a portion of it
3996 */
3997 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3998 {
3999 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4000 return 0;
4001 if (gfp_mask & __GFP_MEMALLOC)
4002 return ALLOC_NO_WATERMARKS;
4003 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4004 return ALLOC_NO_WATERMARKS;
4005 if (!in_interrupt()) {
4006 if (current->flags & PF_MEMALLOC)
4007 return ALLOC_NO_WATERMARKS;
4008 else if (oom_reserves_allowed(current))
4009 return ALLOC_OOM;
4010 }
4011
4012 return 0;
4013 }
4014
4015 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4016 {
4017 return !!__gfp_pfmemalloc_flags(gfp_mask);
4018 }
4019
4020 /*
4021 * Checks whether it makes sense to retry the reclaim to make a forward progress
4022 * for the given allocation request.
4023 *
4024 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4025 * without success, or when we couldn't even meet the watermark if we
4026 * reclaimed all remaining pages on the LRU lists.
4027 *
4028 * Returns true if a retry is viable or false to enter the oom path.
4029 */
4030 static inline bool
4031 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4032 struct alloc_context *ac, int alloc_flags,
4033 bool did_some_progress, int *no_progress_loops)
4034 {
4035 struct zone *zone;
4036 struct zoneref *z;
4037 bool ret = false;
4038
4039 /*
4040 * Costly allocations might have made a progress but this doesn't mean
4041 * their order will become available due to high fragmentation so
4042 * always increment the no progress counter for them
4043 */
4044 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4045 *no_progress_loops = 0;
4046 else
4047 (*no_progress_loops)++;
4048
4049 /*
4050 * Make sure we converge to OOM if we cannot make any progress
4051 * several times in the row.
4052 */
4053 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4054 /* Before OOM, exhaust highatomic_reserve */
4055 return unreserve_highatomic_pageblock(ac, true);
4056 }
4057
4058 /*
4059 * Keep reclaiming pages while there is a chance this will lead
4060 * somewhere. If none of the target zones can satisfy our allocation
4061 * request even if all reclaimable pages are considered then we are
4062 * screwed and have to go OOM.
4063 */
4064 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4065 ac->nodemask) {
4066 unsigned long available;
4067 unsigned long reclaimable;
4068 unsigned long min_wmark = min_wmark_pages(zone);
4069 bool wmark;
4070
4071 available = reclaimable = zone_reclaimable_pages(zone);
4072 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4073
4074 /*
4075 * Would the allocation succeed if we reclaimed all
4076 * reclaimable pages?
4077 */
4078 wmark = __zone_watermark_ok(zone, order, min_wmark,
4079 ac_classzone_idx(ac), alloc_flags, available);
4080 trace_reclaim_retry_zone(z, order, reclaimable,
4081 available, min_wmark, *no_progress_loops, wmark);
4082 if (wmark) {
4083 /*
4084 * If we didn't make any progress and have a lot of
4085 * dirty + writeback pages then we should wait for
4086 * an IO to complete to slow down the reclaim and
4087 * prevent from pre mature OOM
4088 */
4089 if (!did_some_progress) {
4090 unsigned long write_pending;
4091
4092 write_pending = zone_page_state_snapshot(zone,
4093 NR_ZONE_WRITE_PENDING);
4094
4095 if (2 * write_pending > reclaimable) {
4096 congestion_wait(BLK_RW_ASYNC, HZ/10);
4097 return true;
4098 }
4099 }
4100
4101 ret = true;
4102 goto out;
4103 }
4104 }
4105
4106 out:
4107 /*
4108 * Memory allocation/reclaim might be called from a WQ context and the
4109 * current implementation of the WQ concurrency control doesn't
4110 * recognize that a particular WQ is congested if the worker thread is
4111 * looping without ever sleeping. Therefore we have to do a short sleep
4112 * here rather than calling cond_resched().
4113 */
4114 if (current->flags & PF_WQ_WORKER)
4115 schedule_timeout_uninterruptible(1);
4116 else
4117 cond_resched();
4118 return ret;
4119 }
4120
4121 static inline bool
4122 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4123 {
4124 /*
4125 * It's possible that cpuset's mems_allowed and the nodemask from
4126 * mempolicy don't intersect. This should be normally dealt with by
4127 * policy_nodemask(), but it's possible to race with cpuset update in
4128 * such a way the check therein was true, and then it became false
4129 * before we got our cpuset_mems_cookie here.
4130 * This assumes that for all allocations, ac->nodemask can come only
4131 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4132 * when it does not intersect with the cpuset restrictions) or the
4133 * caller can deal with a violated nodemask.
4134 */
4135 if (cpusets_enabled() && ac->nodemask &&
4136 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4137 ac->nodemask = NULL;
4138 return true;
4139 }
4140
4141 /*
4142 * When updating a task's mems_allowed or mempolicy nodemask, it is
4143 * possible to race with parallel threads in such a way that our
4144 * allocation can fail while the mask is being updated. If we are about
4145 * to fail, check if the cpuset changed during allocation and if so,
4146 * retry.
4147 */
4148 if (read_mems_allowed_retry(cpuset_mems_cookie))
4149 return true;
4150
4151 return false;
4152 }
4153
4154 static inline struct page *
4155 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4156 struct alloc_context *ac)
4157 {
4158 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4159 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4160 struct page *page = NULL;
4161 unsigned int alloc_flags;
4162 unsigned long did_some_progress;
4163 enum compact_priority compact_priority;
4164 enum compact_result compact_result;
4165 int compaction_retries;
4166 int no_progress_loops;
4167 unsigned int cpuset_mems_cookie;
4168 int reserve_flags;
4169
4170 /*
4171 * We also sanity check to catch abuse of atomic reserves being used by
4172 * callers that are not in atomic context.
4173 */
4174 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4175 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4176 gfp_mask &= ~__GFP_ATOMIC;
4177
4178 retry_cpuset:
4179 compaction_retries = 0;
4180 no_progress_loops = 0;
4181 compact_priority = DEF_COMPACT_PRIORITY;
4182 cpuset_mems_cookie = read_mems_allowed_begin();
4183
4184 /*
4185 * The fast path uses conservative alloc_flags to succeed only until
4186 * kswapd needs to be woken up, and to avoid the cost of setting up
4187 * alloc_flags precisely. So we do that now.
4188 */
4189 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4190
4191 /*
4192 * We need to recalculate the starting point for the zonelist iterator
4193 * because we might have used different nodemask in the fast path, or
4194 * there was a cpuset modification and we are retrying - otherwise we
4195 * could end up iterating over non-eligible zones endlessly.
4196 */
4197 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4198 ac->high_zoneidx, ac->nodemask);
4199 if (!ac->preferred_zoneref->zone)
4200 goto nopage;
4201
4202 if (alloc_flags & ALLOC_KSWAPD)
4203 wake_all_kswapds(order, gfp_mask, ac);
4204
4205 /*
4206 * The adjusted alloc_flags might result in immediate success, so try
4207 * that first
4208 */
4209 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4210 if (page)
4211 goto got_pg;
4212
4213 /*
4214 * For costly allocations, try direct compaction first, as it's likely
4215 * that we have enough base pages and don't need to reclaim. For non-
4216 * movable high-order allocations, do that as well, as compaction will
4217 * try prevent permanent fragmentation by migrating from blocks of the
4218 * same migratetype.
4219 * Don't try this for allocations that are allowed to ignore
4220 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4221 */
4222 if (can_direct_reclaim &&
4223 (costly_order ||
4224 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4225 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4226 page = __alloc_pages_direct_compact(gfp_mask, order,
4227 alloc_flags, ac,
4228 INIT_COMPACT_PRIORITY,
4229 &compact_result);
4230 if (page)
4231 goto got_pg;
4232
4233 /*
4234 * Checks for costly allocations with __GFP_NORETRY, which
4235 * includes THP page fault allocations
4236 */
4237 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4238 /*
4239 * If compaction is deferred for high-order allocations,
4240 * it is because sync compaction recently failed. If
4241 * this is the case and the caller requested a THP
4242 * allocation, we do not want to heavily disrupt the
4243 * system, so we fail the allocation instead of entering
4244 * direct reclaim.
4245 */
4246 if (compact_result == COMPACT_DEFERRED)
4247 goto nopage;
4248
4249 /*
4250 * Looks like reclaim/compaction is worth trying, but
4251 * sync compaction could be very expensive, so keep
4252 * using async compaction.
4253 */
4254 compact_priority = INIT_COMPACT_PRIORITY;
4255 }
4256 }
4257
4258 retry:
4259 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4260 if (alloc_flags & ALLOC_KSWAPD)
4261 wake_all_kswapds(order, gfp_mask, ac);
4262
4263 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4264 if (reserve_flags)
4265 alloc_flags = reserve_flags;
4266
4267 /*
4268 * Reset the nodemask and zonelist iterators if memory policies can be
4269 * ignored. These allocations are high priority and system rather than
4270 * user oriented.
4271 */
4272 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4273 ac->nodemask = NULL;
4274 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4275 ac->high_zoneidx, ac->nodemask);
4276 }
4277
4278 /* Attempt with potentially adjusted zonelist and alloc_flags */
4279 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4280 if (page)
4281 goto got_pg;
4282
4283 /* Caller is not willing to reclaim, we can't balance anything */
4284 if (!can_direct_reclaim)
4285 goto nopage;
4286
4287 /* Avoid recursion of direct reclaim */
4288 if (current->flags & PF_MEMALLOC)
4289 goto nopage;
4290
4291 /* Try direct reclaim and then allocating */
4292 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4293 &did_some_progress);
4294 if (page)
4295 goto got_pg;
4296
4297 /* Try direct compaction and then allocating */
4298 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4299 compact_priority, &compact_result);
4300 if (page)
4301 goto got_pg;
4302
4303 /* Do not loop if specifically requested */
4304 if (gfp_mask & __GFP_NORETRY)
4305 goto nopage;
4306
4307 /*
4308 * Do not retry costly high order allocations unless they are
4309 * __GFP_RETRY_MAYFAIL
4310 */
4311 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4312 goto nopage;
4313
4314 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4315 did_some_progress > 0, &no_progress_loops))
4316 goto retry;
4317
4318 /*
4319 * It doesn't make any sense to retry for the compaction if the order-0
4320 * reclaim is not able to make any progress because the current
4321 * implementation of the compaction depends on the sufficient amount
4322 * of free memory (see __compaction_suitable)
4323 */
4324 if (did_some_progress > 0 &&
4325 should_compact_retry(ac, order, alloc_flags,
4326 compact_result, &compact_priority,
4327 &compaction_retries))
4328 goto retry;
4329
4330
4331 /* Deal with possible cpuset update races before we start OOM killing */
4332 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4333 goto retry_cpuset;
4334
4335 /* Reclaim has failed us, start killing things */
4336 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4337 if (page)
4338 goto got_pg;
4339
4340 /* Avoid allocations with no watermarks from looping endlessly */
4341 if (tsk_is_oom_victim(current) &&
4342 (alloc_flags == ALLOC_OOM ||
4343 (gfp_mask & __GFP_NOMEMALLOC)))
4344 goto nopage;
4345
4346 /* Retry as long as the OOM killer is making progress */
4347 if (did_some_progress) {
4348 no_progress_loops = 0;
4349 goto retry;
4350 }
4351
4352 nopage:
4353 /* Deal with possible cpuset update races before we fail */
4354 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4355 goto retry_cpuset;
4356
4357 /*
4358 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4359 * we always retry
4360 */
4361 if (gfp_mask & __GFP_NOFAIL) {
4362 /*
4363 * All existing users of the __GFP_NOFAIL are blockable, so warn
4364 * of any new users that actually require GFP_NOWAIT
4365 */
4366 if (WARN_ON_ONCE(!can_direct_reclaim))
4367 goto fail;
4368
4369 /*
4370 * PF_MEMALLOC request from this context is rather bizarre
4371 * because we cannot reclaim anything and only can loop waiting
4372 * for somebody to do a work for us
4373 */
4374 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4375
4376 /*
4377 * non failing costly orders are a hard requirement which we
4378 * are not prepared for much so let's warn about these users
4379 * so that we can identify them and convert them to something
4380 * else.
4381 */
4382 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4383
4384 /*
4385 * Help non-failing allocations by giving them access to memory
4386 * reserves but do not use ALLOC_NO_WATERMARKS because this
4387 * could deplete whole memory reserves which would just make
4388 * the situation worse
4389 */
4390 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4391 if (page)
4392 goto got_pg;
4393
4394 cond_resched();
4395 goto retry;
4396 }
4397 fail:
4398 warn_alloc(gfp_mask, ac->nodemask,
4399 "page allocation failure: order:%u", order);
4400 got_pg:
4401 return page;
4402 }
4403
4404 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4405 int preferred_nid, nodemask_t *nodemask,
4406 struct alloc_context *ac, gfp_t *alloc_mask,
4407 unsigned int *alloc_flags)
4408 {
4409 ac->high_zoneidx = gfp_zone(gfp_mask);
4410 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4411 ac->nodemask = nodemask;
4412 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4413
4414 if (cpusets_enabled()) {
4415 *alloc_mask |= __GFP_HARDWALL;
4416 if (!ac->nodemask)
4417 ac->nodemask = &cpuset_current_mems_allowed;
4418 else
4419 *alloc_flags |= ALLOC_CPUSET;
4420 }
4421
4422 fs_reclaim_acquire(gfp_mask);
4423 fs_reclaim_release(gfp_mask);
4424
4425 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4426
4427 if (should_fail_alloc_page(gfp_mask, order))
4428 return false;
4429
4430 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4431 *alloc_flags |= ALLOC_CMA;
4432
4433 return true;
4434 }
4435
4436 /* Determine whether to spread dirty pages and what the first usable zone */
4437 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4438 {
4439 /* Dirty zone balancing only done in the fast path */
4440 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4441
4442 /*
4443 * The preferred zone is used for statistics but crucially it is
4444 * also used as the starting point for the zonelist iterator. It
4445 * may get reset for allocations that ignore memory policies.
4446 */
4447 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4448 ac->high_zoneidx, ac->nodemask);
4449 }
4450
4451 /*
4452 * This is the 'heart' of the zoned buddy allocator.
4453 */
4454 struct page *
4455 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4456 nodemask_t *nodemask)
4457 {
4458 struct page *page;
4459 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4460 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4461 struct alloc_context ac = { };
4462
4463 /*
4464 * There are several places where we assume that the order value is sane
4465 * so bail out early if the request is out of bound.
4466 */
4467 if (unlikely(order >= MAX_ORDER)) {
4468 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4469 return NULL;
4470 }
4471
4472 gfp_mask &= gfp_allowed_mask;
4473 alloc_mask = gfp_mask;
4474 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4475 return NULL;
4476
4477 finalise_ac(gfp_mask, &ac);
4478
4479 /*
4480 * Forbid the first pass from falling back to types that fragment
4481 * memory until all local zones are considered.
4482 */
4483 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4484
4485 /* First allocation attempt */
4486 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4487 if (likely(page))
4488 goto out;
4489
4490 /*
4491 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4492 * resp. GFP_NOIO which has to be inherited for all allocation requests
4493 * from a particular context which has been marked by
4494 * memalloc_no{fs,io}_{save,restore}.
4495 */
4496 alloc_mask = current_gfp_context(gfp_mask);
4497 ac.spread_dirty_pages = false;
4498
4499 /*
4500 * Restore the original nodemask if it was potentially replaced with
4501 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4502 */
4503 if (unlikely(ac.nodemask != nodemask))
4504 ac.nodemask = nodemask;
4505
4506 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4507
4508 out:
4509 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4510 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4511 __free_pages(page, order);
4512 page = NULL;
4513 }
4514
4515 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4516
4517 return page;
4518 }
4519 EXPORT_SYMBOL(__alloc_pages_nodemask);
4520
4521 /*
4522 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4523 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4524 * you need to access high mem.
4525 */
4526 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4527 {
4528 struct page *page;
4529
4530 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4531 if (!page)
4532 return 0;
4533 return (unsigned long) page_address(page);
4534 }
4535 EXPORT_SYMBOL(__get_free_pages);
4536
4537 unsigned long get_zeroed_page(gfp_t gfp_mask)
4538 {
4539 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4540 }
4541 EXPORT_SYMBOL(get_zeroed_page);
4542
4543 static inline void free_the_page(struct page *page, unsigned int order)
4544 {
4545 if (order == 0) /* Via pcp? */
4546 free_unref_page(page);
4547 else
4548 __free_pages_ok(page, order);
4549 }
4550
4551 void __free_pages(struct page *page, unsigned int order)
4552 {
4553 if (put_page_testzero(page))
4554 free_the_page(page, order);
4555 }
4556 EXPORT_SYMBOL(__free_pages);
4557
4558 void free_pages(unsigned long addr, unsigned int order)
4559 {
4560 if (addr != 0) {
4561 VM_BUG_ON(!virt_addr_valid((void *)addr));
4562 __free_pages(virt_to_page((void *)addr), order);
4563 }
4564 }
4565
4566 EXPORT_SYMBOL(free_pages);
4567
4568 /*
4569 * Page Fragment:
4570 * An arbitrary-length arbitrary-offset area of memory which resides
4571 * within a 0 or higher order page. Multiple fragments within that page
4572 * are individually refcounted, in the page's reference counter.
4573 *
4574 * The page_frag functions below provide a simple allocation framework for
4575 * page fragments. This is used by the network stack and network device
4576 * drivers to provide a backing region of memory for use as either an
4577 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4578 */
4579 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4580 gfp_t gfp_mask)
4581 {
4582 struct page *page = NULL;
4583 gfp_t gfp = gfp_mask;
4584
4585 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4586 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4587 __GFP_NOMEMALLOC;
4588 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4589 PAGE_FRAG_CACHE_MAX_ORDER);
4590 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4591 #endif
4592 if (unlikely(!page))
4593 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4594
4595 nc->va = page ? page_address(page) : NULL;
4596
4597 return page;
4598 }
4599
4600 void __page_frag_cache_drain(struct page *page, unsigned int count)
4601 {
4602 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4603
4604 if (page_ref_sub_and_test(page, count))
4605 free_the_page(page, compound_order(page));
4606 }
4607 EXPORT_SYMBOL(__page_frag_cache_drain);
4608
4609 void *page_frag_alloc(struct page_frag_cache *nc,
4610 unsigned int fragsz, gfp_t gfp_mask)
4611 {
4612 unsigned int size = PAGE_SIZE;
4613 struct page *page;
4614 int offset;
4615
4616 if (unlikely(!nc->va)) {
4617 refill:
4618 page = __page_frag_cache_refill(nc, gfp_mask);
4619 if (!page)
4620 return NULL;
4621
4622 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4623 /* if size can vary use size else just use PAGE_SIZE */
4624 size = nc->size;
4625 #endif
4626 /* Even if we own the page, we do not use atomic_set().
4627 * This would break get_page_unless_zero() users.
4628 */
4629 page_ref_add(page, size - 1);
4630
4631 /* reset page count bias and offset to start of new frag */
4632 nc->pfmemalloc = page_is_pfmemalloc(page);
4633 nc->pagecnt_bias = size;
4634 nc->offset = size;
4635 }
4636
4637 offset = nc->offset - fragsz;
4638 if (unlikely(offset < 0)) {
4639 page = virt_to_page(nc->va);
4640
4641 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4642 goto refill;
4643
4644 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4645 /* if size can vary use size else just use PAGE_SIZE */
4646 size = nc->size;
4647 #endif
4648 /* OK, page count is 0, we can safely set it */
4649 set_page_count(page, size);
4650
4651 /* reset page count bias and offset to start of new frag */
4652 nc->pagecnt_bias = size;
4653 offset = size - fragsz;
4654 }
4655
4656 nc->pagecnt_bias--;
4657 nc->offset = offset;
4658
4659 return nc->va + offset;
4660 }
4661 EXPORT_SYMBOL(page_frag_alloc);
4662
4663 /*
4664 * Frees a page fragment allocated out of either a compound or order 0 page.
4665 */
4666 void page_frag_free(void *addr)
4667 {
4668 struct page *page = virt_to_head_page(addr);
4669
4670 if (unlikely(put_page_testzero(page)))
4671 free_the_page(page, compound_order(page));
4672 }
4673 EXPORT_SYMBOL(page_frag_free);
4674
4675 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4676 size_t size)
4677 {
4678 if (addr) {
4679 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4680 unsigned long used = addr + PAGE_ALIGN(size);
4681
4682 split_page(virt_to_page((void *)addr), order);
4683 while (used < alloc_end) {
4684 free_page(used);
4685 used += PAGE_SIZE;
4686 }
4687 }
4688 return (void *)addr;
4689 }
4690
4691 /**
4692 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4693 * @size: the number of bytes to allocate
4694 * @gfp_mask: GFP flags for the allocation
4695 *
4696 * This function is similar to alloc_pages(), except that it allocates the
4697 * minimum number of pages to satisfy the request. alloc_pages() can only
4698 * allocate memory in power-of-two pages.
4699 *
4700 * This function is also limited by MAX_ORDER.
4701 *
4702 * Memory allocated by this function must be released by free_pages_exact().
4703 */
4704 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4705 {
4706 unsigned int order = get_order(size);
4707 unsigned long addr;
4708
4709 addr = __get_free_pages(gfp_mask, order);
4710 return make_alloc_exact(addr, order, size);
4711 }
4712 EXPORT_SYMBOL(alloc_pages_exact);
4713
4714 /**
4715 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4716 * pages on a node.
4717 * @nid: the preferred node ID where memory should be allocated
4718 * @size: the number of bytes to allocate
4719 * @gfp_mask: GFP flags for the allocation
4720 *
4721 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4722 * back.
4723 */
4724 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4725 {
4726 unsigned int order = get_order(size);
4727 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4728 if (!p)
4729 return NULL;
4730 return make_alloc_exact((unsigned long)page_address(p), order, size);
4731 }
4732
4733 /**
4734 * free_pages_exact - release memory allocated via alloc_pages_exact()
4735 * @virt: the value returned by alloc_pages_exact.
4736 * @size: size of allocation, same value as passed to alloc_pages_exact().
4737 *
4738 * Release the memory allocated by a previous call to alloc_pages_exact.
4739 */
4740 void free_pages_exact(void *virt, size_t size)
4741 {
4742 unsigned long addr = (unsigned long)virt;
4743 unsigned long end = addr + PAGE_ALIGN(size);
4744
4745 while (addr < end) {
4746 free_page(addr);
4747 addr += PAGE_SIZE;
4748 }
4749 }
4750 EXPORT_SYMBOL(free_pages_exact);
4751
4752 /**
4753 * nr_free_zone_pages - count number of pages beyond high watermark
4754 * @offset: The zone index of the highest zone
4755 *
4756 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4757 * high watermark within all zones at or below a given zone index. For each
4758 * zone, the number of pages is calculated as:
4759 *
4760 * nr_free_zone_pages = managed_pages - high_pages
4761 */
4762 static unsigned long nr_free_zone_pages(int offset)
4763 {
4764 struct zoneref *z;
4765 struct zone *zone;
4766
4767 /* Just pick one node, since fallback list is circular */
4768 unsigned long sum = 0;
4769
4770 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4771
4772 for_each_zone_zonelist(zone, z, zonelist, offset) {
4773 unsigned long size = zone_managed_pages(zone);
4774 unsigned long high = high_wmark_pages(zone);
4775 if (size > high)
4776 sum += size - high;
4777 }
4778
4779 return sum;
4780 }
4781
4782 /**
4783 * nr_free_buffer_pages - count number of pages beyond high watermark
4784 *
4785 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4786 * watermark within ZONE_DMA and ZONE_NORMAL.
4787 */
4788 unsigned long nr_free_buffer_pages(void)
4789 {
4790 return nr_free_zone_pages(gfp_zone(GFP_USER));
4791 }
4792 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4793
4794 /**
4795 * nr_free_pagecache_pages - count number of pages beyond high watermark
4796 *
4797 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4798 * high watermark within all zones.
4799 */
4800 unsigned long nr_free_pagecache_pages(void)
4801 {
4802 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4803 }
4804
4805 static inline void show_node(struct zone *zone)
4806 {
4807 if (IS_ENABLED(CONFIG_NUMA))
4808 printk("Node %d ", zone_to_nid(zone));
4809 }
4810
4811 long si_mem_available(void)
4812 {
4813 long available;
4814 unsigned long pagecache;
4815 unsigned long wmark_low = 0;
4816 unsigned long pages[NR_LRU_LISTS];
4817 unsigned long reclaimable;
4818 struct zone *zone;
4819 int lru;
4820
4821 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4822 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4823
4824 for_each_zone(zone)
4825 wmark_low += low_wmark_pages(zone);
4826
4827 /*
4828 * Estimate the amount of memory available for userspace allocations,
4829 * without causing swapping.
4830 */
4831 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4832
4833 /*
4834 * Not all the page cache can be freed, otherwise the system will
4835 * start swapping. Assume at least half of the page cache, or the
4836 * low watermark worth of cache, needs to stay.
4837 */
4838 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4839 pagecache -= min(pagecache / 2, wmark_low);
4840 available += pagecache;
4841
4842 /*
4843 * Part of the reclaimable slab and other kernel memory consists of
4844 * items that are in use, and cannot be freed. Cap this estimate at the
4845 * low watermark.
4846 */
4847 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4848 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4849 available += reclaimable - min(reclaimable / 2, wmark_low);
4850
4851 if (available < 0)
4852 available = 0;
4853 return available;
4854 }
4855 EXPORT_SYMBOL_GPL(si_mem_available);
4856
4857 void si_meminfo(struct sysinfo *val)
4858 {
4859 val->totalram = totalram_pages();
4860 val->sharedram = global_node_page_state(NR_SHMEM);
4861 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4862 val->bufferram = nr_blockdev_pages();
4863 val->totalhigh = totalhigh_pages();
4864 val->freehigh = nr_free_highpages();
4865 val->mem_unit = PAGE_SIZE;
4866 }
4867
4868 EXPORT_SYMBOL(si_meminfo);
4869
4870 #ifdef CONFIG_NUMA
4871 void si_meminfo_node(struct sysinfo *val, int nid)
4872 {
4873 int zone_type; /* needs to be signed */
4874 unsigned long managed_pages = 0;
4875 unsigned long managed_highpages = 0;
4876 unsigned long free_highpages = 0;
4877 pg_data_t *pgdat = NODE_DATA(nid);
4878
4879 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4880 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
4881 val->totalram = managed_pages;
4882 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4883 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4884 #ifdef CONFIG_HIGHMEM
4885 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4886 struct zone *zone = &pgdat->node_zones[zone_type];
4887
4888 if (is_highmem(zone)) {
4889 managed_highpages += zone_managed_pages(zone);
4890 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4891 }
4892 }
4893 val->totalhigh = managed_highpages;
4894 val->freehigh = free_highpages;
4895 #else
4896 val->totalhigh = managed_highpages;
4897 val->freehigh = free_highpages;
4898 #endif
4899 val->mem_unit = PAGE_SIZE;
4900 }
4901 #endif
4902
4903 /*
4904 * Determine whether the node should be displayed or not, depending on whether
4905 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4906 */
4907 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4908 {
4909 if (!(flags & SHOW_MEM_FILTER_NODES))
4910 return false;
4911
4912 /*
4913 * no node mask - aka implicit memory numa policy. Do not bother with
4914 * the synchronization - read_mems_allowed_begin - because we do not
4915 * have to be precise here.
4916 */
4917 if (!nodemask)
4918 nodemask = &cpuset_current_mems_allowed;
4919
4920 return !node_isset(nid, *nodemask);
4921 }
4922
4923 #define K(x) ((x) << (PAGE_SHIFT-10))
4924
4925 static void show_migration_types(unsigned char type)
4926 {
4927 static const char types[MIGRATE_TYPES] = {
4928 [MIGRATE_UNMOVABLE] = 'U',
4929 [MIGRATE_MOVABLE] = 'M',
4930 [MIGRATE_RECLAIMABLE] = 'E',
4931 [MIGRATE_HIGHATOMIC] = 'H',
4932 #ifdef CONFIG_CMA
4933 [MIGRATE_CMA] = 'C',
4934 #endif
4935 #ifdef CONFIG_MEMORY_ISOLATION
4936 [MIGRATE_ISOLATE] = 'I',
4937 #endif
4938 };
4939 char tmp[MIGRATE_TYPES + 1];
4940 char *p = tmp;
4941 int i;
4942
4943 for (i = 0; i < MIGRATE_TYPES; i++) {
4944 if (type & (1 << i))
4945 *p++ = types[i];
4946 }
4947
4948 *p = '\0';
4949 printk(KERN_CONT "(%s) ", tmp);
4950 }
4951
4952 /*
4953 * Show free area list (used inside shift_scroll-lock stuff)
4954 * We also calculate the percentage fragmentation. We do this by counting the
4955 * memory on each free list with the exception of the first item on the list.
4956 *
4957 * Bits in @filter:
4958 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4959 * cpuset.
4960 */
4961 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4962 {
4963 unsigned long free_pcp = 0;
4964 int cpu;
4965 struct zone *zone;
4966 pg_data_t *pgdat;
4967
4968 for_each_populated_zone(zone) {
4969 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4970 continue;
4971
4972 for_each_online_cpu(cpu)
4973 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4974 }
4975
4976 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4977 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4978 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4979 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4980 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4981 " free:%lu free_pcp:%lu free_cma:%lu\n",
4982 global_node_page_state(NR_ACTIVE_ANON),
4983 global_node_page_state(NR_INACTIVE_ANON),
4984 global_node_page_state(NR_ISOLATED_ANON),
4985 global_node_page_state(NR_ACTIVE_FILE),
4986 global_node_page_state(NR_INACTIVE_FILE),
4987 global_node_page_state(NR_ISOLATED_FILE),
4988 global_node_page_state(NR_UNEVICTABLE),
4989 global_node_page_state(NR_FILE_DIRTY),
4990 global_node_page_state(NR_WRITEBACK),
4991 global_node_page_state(NR_UNSTABLE_NFS),
4992 global_node_page_state(NR_SLAB_RECLAIMABLE),
4993 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4994 global_node_page_state(NR_FILE_MAPPED),
4995 global_node_page_state(NR_SHMEM),
4996 global_zone_page_state(NR_PAGETABLE),
4997 global_zone_page_state(NR_BOUNCE),
4998 global_zone_page_state(NR_FREE_PAGES),
4999 free_pcp,
5000 global_zone_page_state(NR_FREE_CMA_PAGES));
5001
5002 for_each_online_pgdat(pgdat) {
5003 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5004 continue;
5005
5006 printk("Node %d"
5007 " active_anon:%lukB"
5008 " inactive_anon:%lukB"
5009 " active_file:%lukB"
5010 " inactive_file:%lukB"
5011 " unevictable:%lukB"
5012 " isolated(anon):%lukB"
5013 " isolated(file):%lukB"
5014 " mapped:%lukB"
5015 " dirty:%lukB"
5016 " writeback:%lukB"
5017 " shmem:%lukB"
5018 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5019 " shmem_thp: %lukB"
5020 " shmem_pmdmapped: %lukB"
5021 " anon_thp: %lukB"
5022 #endif
5023 " writeback_tmp:%lukB"
5024 " unstable:%lukB"
5025 " all_unreclaimable? %s"
5026 "\n",
5027 pgdat->node_id,
5028 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5029 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5030 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5031 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5032 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5033 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5034 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5035 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5036 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5037 K(node_page_state(pgdat, NR_WRITEBACK)),
5038 K(node_page_state(pgdat, NR_SHMEM)),
5039 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5040 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5041 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5042 * HPAGE_PMD_NR),
5043 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5044 #endif
5045 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5046 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5047 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5048 "yes" : "no");
5049 }
5050
5051 for_each_populated_zone(zone) {
5052 int i;
5053
5054 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5055 continue;
5056
5057 free_pcp = 0;
5058 for_each_online_cpu(cpu)
5059 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5060
5061 show_node(zone);
5062 printk(KERN_CONT
5063 "%s"
5064 " free:%lukB"
5065 " min:%lukB"
5066 " low:%lukB"
5067 " high:%lukB"
5068 " active_anon:%lukB"
5069 " inactive_anon:%lukB"
5070 " active_file:%lukB"
5071 " inactive_file:%lukB"
5072 " unevictable:%lukB"
5073 " writepending:%lukB"
5074 " present:%lukB"
5075 " managed:%lukB"
5076 " mlocked:%lukB"
5077 " kernel_stack:%lukB"
5078 " pagetables:%lukB"
5079 " bounce:%lukB"
5080 " free_pcp:%lukB"
5081 " local_pcp:%ukB"
5082 " free_cma:%lukB"
5083 "\n",
5084 zone->name,
5085 K(zone_page_state(zone, NR_FREE_PAGES)),
5086 K(min_wmark_pages(zone)),
5087 K(low_wmark_pages(zone)),
5088 K(high_wmark_pages(zone)),
5089 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5090 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5091 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5092 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5093 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5094 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5095 K(zone->present_pages),
5096 K(zone_managed_pages(zone)),
5097 K(zone_page_state(zone, NR_MLOCK)),
5098 zone_page_state(zone, NR_KERNEL_STACK_KB),
5099 K(zone_page_state(zone, NR_PAGETABLE)),
5100 K(zone_page_state(zone, NR_BOUNCE)),
5101 K(free_pcp),
5102 K(this_cpu_read(zone->pageset->pcp.count)),
5103 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5104 printk("lowmem_reserve[]:");
5105 for (i = 0; i < MAX_NR_ZONES; i++)
5106 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5107 printk(KERN_CONT "\n");
5108 }
5109
5110 for_each_populated_zone(zone) {
5111 unsigned int order;
5112 unsigned long nr[MAX_ORDER], flags, total = 0;
5113 unsigned char types[MAX_ORDER];
5114
5115 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5116 continue;
5117 show_node(zone);
5118 printk(KERN_CONT "%s: ", zone->name);
5119
5120 spin_lock_irqsave(&zone->lock, flags);
5121 for (order = 0; order < MAX_ORDER; order++) {
5122 struct free_area *area = &zone->free_area[order];
5123 int type;
5124
5125 nr[order] = area->nr_free;
5126 total += nr[order] << order;
5127
5128 types[order] = 0;
5129 for (type = 0; type < MIGRATE_TYPES; type++) {
5130 if (!list_empty(&area->free_list[type]))
5131 types[order] |= 1 << type;
5132 }
5133 }
5134 spin_unlock_irqrestore(&zone->lock, flags);
5135 for (order = 0; order < MAX_ORDER; order++) {
5136 printk(KERN_CONT "%lu*%lukB ",
5137 nr[order], K(1UL) << order);
5138 if (nr[order])
5139 show_migration_types(types[order]);
5140 }
5141 printk(KERN_CONT "= %lukB\n", K(total));
5142 }
5143
5144 hugetlb_show_meminfo();
5145
5146 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5147
5148 show_swap_cache_info();
5149 }
5150
5151 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5152 {
5153 zoneref->zone = zone;
5154 zoneref->zone_idx = zone_idx(zone);
5155 }
5156
5157 /*
5158 * Builds allocation fallback zone lists.
5159 *
5160 * Add all populated zones of a node to the zonelist.
5161 */
5162 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5163 {
5164 struct zone *zone;
5165 enum zone_type zone_type = MAX_NR_ZONES;
5166 int nr_zones = 0;
5167
5168 do {
5169 zone_type--;
5170 zone = pgdat->node_zones + zone_type;
5171 if (managed_zone(zone)) {
5172 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5173 check_highest_zone(zone_type);
5174 }
5175 } while (zone_type);
5176
5177 return nr_zones;
5178 }
5179
5180 #ifdef CONFIG_NUMA
5181
5182 static int __parse_numa_zonelist_order(char *s)
5183 {
5184 /*
5185 * We used to support different zonlists modes but they turned
5186 * out to be just not useful. Let's keep the warning in place
5187 * if somebody still use the cmd line parameter so that we do
5188 * not fail it silently
5189 */
5190 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5191 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5192 return -EINVAL;
5193 }
5194 return 0;
5195 }
5196
5197 static __init int setup_numa_zonelist_order(char *s)
5198 {
5199 if (!s)
5200 return 0;
5201
5202 return __parse_numa_zonelist_order(s);
5203 }
5204 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5205
5206 char numa_zonelist_order[] = "Node";
5207
5208 /*
5209 * sysctl handler for numa_zonelist_order
5210 */
5211 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5212 void __user *buffer, size_t *length,
5213 loff_t *ppos)
5214 {
5215 char *str;
5216 int ret;
5217
5218 if (!write)
5219 return proc_dostring(table, write, buffer, length, ppos);
5220 str = memdup_user_nul(buffer, 16);
5221 if (IS_ERR(str))
5222 return PTR_ERR(str);
5223
5224 ret = __parse_numa_zonelist_order(str);
5225 kfree(str);
5226 return ret;
5227 }
5228
5229
5230 #define MAX_NODE_LOAD (nr_online_nodes)
5231 static int node_load[MAX_NUMNODES];
5232
5233 /**
5234 * find_next_best_node - find the next node that should appear in a given node's fallback list
5235 * @node: node whose fallback list we're appending
5236 * @used_node_mask: nodemask_t of already used nodes
5237 *
5238 * We use a number of factors to determine which is the next node that should
5239 * appear on a given node's fallback list. The node should not have appeared
5240 * already in @node's fallback list, and it should be the next closest node
5241 * according to the distance array (which contains arbitrary distance values
5242 * from each node to each node in the system), and should also prefer nodes
5243 * with no CPUs, since presumably they'll have very little allocation pressure
5244 * on them otherwise.
5245 * It returns -1 if no node is found.
5246 */
5247 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5248 {
5249 int n, val;
5250 int min_val = INT_MAX;
5251 int best_node = NUMA_NO_NODE;
5252 const struct cpumask *tmp = cpumask_of_node(0);
5253
5254 /* Use the local node if we haven't already */
5255 if (!node_isset(node, *used_node_mask)) {
5256 node_set(node, *used_node_mask);
5257 return node;
5258 }
5259
5260 for_each_node_state(n, N_MEMORY) {
5261
5262 /* Don't want a node to appear more than once */
5263 if (node_isset(n, *used_node_mask))
5264 continue;
5265
5266 /* Use the distance array to find the distance */
5267 val = node_distance(node, n);
5268
5269 /* Penalize nodes under us ("prefer the next node") */
5270 val += (n < node);
5271
5272 /* Give preference to headless and unused nodes */
5273 tmp = cpumask_of_node(n);
5274 if (!cpumask_empty(tmp))
5275 val += PENALTY_FOR_NODE_WITH_CPUS;
5276
5277 /* Slight preference for less loaded node */
5278 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5279 val += node_load[n];
5280
5281 if (val < min_val) {
5282 min_val = val;
5283 best_node = n;
5284 }
5285 }
5286
5287 if (best_node >= 0)
5288 node_set(best_node, *used_node_mask);
5289
5290 return best_node;
5291 }
5292
5293
5294 /*
5295 * Build zonelists ordered by node and zones within node.
5296 * This results in maximum locality--normal zone overflows into local
5297 * DMA zone, if any--but risks exhausting DMA zone.
5298 */
5299 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5300 unsigned nr_nodes)
5301 {
5302 struct zoneref *zonerefs;
5303 int i;
5304
5305 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5306
5307 for (i = 0; i < nr_nodes; i++) {
5308 int nr_zones;
5309
5310 pg_data_t *node = NODE_DATA(node_order[i]);
5311
5312 nr_zones = build_zonerefs_node(node, zonerefs);
5313 zonerefs += nr_zones;
5314 }
5315 zonerefs->zone = NULL;
5316 zonerefs->zone_idx = 0;
5317 }
5318
5319 /*
5320 * Build gfp_thisnode zonelists
5321 */
5322 static void build_thisnode_zonelists(pg_data_t *pgdat)
5323 {
5324 struct zoneref *zonerefs;
5325 int nr_zones;
5326
5327 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5328 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5329 zonerefs += nr_zones;
5330 zonerefs->zone = NULL;
5331 zonerefs->zone_idx = 0;
5332 }
5333
5334 /*
5335 * Build zonelists ordered by zone and nodes within zones.
5336 * This results in conserving DMA zone[s] until all Normal memory is
5337 * exhausted, but results in overflowing to remote node while memory
5338 * may still exist in local DMA zone.
5339 */
5340
5341 static void build_zonelists(pg_data_t *pgdat)
5342 {
5343 static int node_order[MAX_NUMNODES];
5344 int node, load, nr_nodes = 0;
5345 nodemask_t used_mask;
5346 int local_node, prev_node;
5347
5348 /* NUMA-aware ordering of nodes */
5349 local_node = pgdat->node_id;
5350 load = nr_online_nodes;
5351 prev_node = local_node;
5352 nodes_clear(used_mask);
5353
5354 memset(node_order, 0, sizeof(node_order));
5355 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5356 /*
5357 * We don't want to pressure a particular node.
5358 * So adding penalty to the first node in same
5359 * distance group to make it round-robin.
5360 */
5361 if (node_distance(local_node, node) !=
5362 node_distance(local_node, prev_node))
5363 node_load[node] = load;
5364
5365 node_order[nr_nodes++] = node;
5366 prev_node = node;
5367 load--;
5368 }
5369
5370 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5371 build_thisnode_zonelists(pgdat);
5372 }
5373
5374 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5375 /*
5376 * Return node id of node used for "local" allocations.
5377 * I.e., first node id of first zone in arg node's generic zonelist.
5378 * Used for initializing percpu 'numa_mem', which is used primarily
5379 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5380 */
5381 int local_memory_node(int node)
5382 {
5383 struct zoneref *z;
5384
5385 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5386 gfp_zone(GFP_KERNEL),
5387 NULL);
5388 return zone_to_nid(z->zone);
5389 }
5390 #endif
5391
5392 static void setup_min_unmapped_ratio(void);
5393 static void setup_min_slab_ratio(void);
5394 #else /* CONFIG_NUMA */
5395
5396 static void build_zonelists(pg_data_t *pgdat)
5397 {
5398 int node, local_node;
5399 struct zoneref *zonerefs;
5400 int nr_zones;
5401
5402 local_node = pgdat->node_id;
5403
5404 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5405 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5406 zonerefs += nr_zones;
5407
5408 /*
5409 * Now we build the zonelist so that it contains the zones
5410 * of all the other nodes.
5411 * We don't want to pressure a particular node, so when
5412 * building the zones for node N, we make sure that the
5413 * zones coming right after the local ones are those from
5414 * node N+1 (modulo N)
5415 */
5416 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5417 if (!node_online(node))
5418 continue;
5419 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5420 zonerefs += nr_zones;
5421 }
5422 for (node = 0; node < local_node; node++) {
5423 if (!node_online(node))
5424 continue;
5425 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5426 zonerefs += nr_zones;
5427 }
5428
5429 zonerefs->zone = NULL;
5430 zonerefs->zone_idx = 0;
5431 }
5432
5433 #endif /* CONFIG_NUMA */
5434
5435 /*
5436 * Boot pageset table. One per cpu which is going to be used for all
5437 * zones and all nodes. The parameters will be set in such a way
5438 * that an item put on a list will immediately be handed over to
5439 * the buddy list. This is safe since pageset manipulation is done
5440 * with interrupts disabled.
5441 *
5442 * The boot_pagesets must be kept even after bootup is complete for
5443 * unused processors and/or zones. They do play a role for bootstrapping
5444 * hotplugged processors.
5445 *
5446 * zoneinfo_show() and maybe other functions do
5447 * not check if the processor is online before following the pageset pointer.
5448 * Other parts of the kernel may not check if the zone is available.
5449 */
5450 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5451 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5452 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5453
5454 static void __build_all_zonelists(void *data)
5455 {
5456 int nid;
5457 int __maybe_unused cpu;
5458 pg_data_t *self = data;
5459 static DEFINE_SPINLOCK(lock);
5460
5461 spin_lock(&lock);
5462
5463 #ifdef CONFIG_NUMA
5464 memset(node_load, 0, sizeof(node_load));
5465 #endif
5466
5467 /*
5468 * This node is hotadded and no memory is yet present. So just
5469 * building zonelists is fine - no need to touch other nodes.
5470 */
5471 if (self && !node_online(self->node_id)) {
5472 build_zonelists(self);
5473 } else {
5474 for_each_online_node(nid) {
5475 pg_data_t *pgdat = NODE_DATA(nid);
5476
5477 build_zonelists(pgdat);
5478 }
5479
5480 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5481 /*
5482 * We now know the "local memory node" for each node--
5483 * i.e., the node of the first zone in the generic zonelist.
5484 * Set up numa_mem percpu variable for on-line cpus. During
5485 * boot, only the boot cpu should be on-line; we'll init the
5486 * secondary cpus' numa_mem as they come on-line. During
5487 * node/memory hotplug, we'll fixup all on-line cpus.
5488 */
5489 for_each_online_cpu(cpu)
5490 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5491 #endif
5492 }
5493
5494 spin_unlock(&lock);
5495 }
5496
5497 static noinline void __init
5498 build_all_zonelists_init(void)
5499 {
5500 int cpu;
5501
5502 __build_all_zonelists(NULL);
5503
5504 /*
5505 * Initialize the boot_pagesets that are going to be used
5506 * for bootstrapping processors. The real pagesets for
5507 * each zone will be allocated later when the per cpu
5508 * allocator is available.
5509 *
5510 * boot_pagesets are used also for bootstrapping offline
5511 * cpus if the system is already booted because the pagesets
5512 * are needed to initialize allocators on a specific cpu too.
5513 * F.e. the percpu allocator needs the page allocator which
5514 * needs the percpu allocator in order to allocate its pagesets
5515 * (a chicken-egg dilemma).
5516 */
5517 for_each_possible_cpu(cpu)
5518 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5519
5520 mminit_verify_zonelist();
5521 cpuset_init_current_mems_allowed();
5522 }
5523
5524 /*
5525 * unless system_state == SYSTEM_BOOTING.
5526 *
5527 * __ref due to call of __init annotated helper build_all_zonelists_init
5528 * [protected by SYSTEM_BOOTING].
5529 */
5530 void __ref build_all_zonelists(pg_data_t *pgdat)
5531 {
5532 if (system_state == SYSTEM_BOOTING) {
5533 build_all_zonelists_init();
5534 } else {
5535 __build_all_zonelists(pgdat);
5536 /* cpuset refresh routine should be here */
5537 }
5538 vm_total_pages = nr_free_pagecache_pages();
5539 /*
5540 * Disable grouping by mobility if the number of pages in the
5541 * system is too low to allow the mechanism to work. It would be
5542 * more accurate, but expensive to check per-zone. This check is
5543 * made on memory-hotadd so a system can start with mobility
5544 * disabled and enable it later
5545 */
5546 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5547 page_group_by_mobility_disabled = 1;
5548 else
5549 page_group_by_mobility_disabled = 0;
5550
5551 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5552 nr_online_nodes,
5553 page_group_by_mobility_disabled ? "off" : "on",
5554 vm_total_pages);
5555 #ifdef CONFIG_NUMA
5556 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5557 #endif
5558 }
5559
5560 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5561 static bool __meminit
5562 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5563 {
5564 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5565 static struct memblock_region *r;
5566
5567 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5568 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5569 for_each_memblock(memory, r) {
5570 if (*pfn < memblock_region_memory_end_pfn(r))
5571 break;
5572 }
5573 }
5574 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5575 memblock_is_mirror(r)) {
5576 *pfn = memblock_region_memory_end_pfn(r);
5577 return true;
5578 }
5579 }
5580 #endif
5581 return false;
5582 }
5583
5584 /*
5585 * Initially all pages are reserved - free ones are freed
5586 * up by memblock_free_all() once the early boot process is
5587 * done. Non-atomic initialization, single-pass.
5588 */
5589 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5590 unsigned long start_pfn, enum memmap_context context,
5591 struct vmem_altmap *altmap)
5592 {
5593 unsigned long pfn, end_pfn = start_pfn + size;
5594 struct page *page;
5595
5596 if (highest_memmap_pfn < end_pfn - 1)
5597 highest_memmap_pfn = end_pfn - 1;
5598
5599 #ifdef CONFIG_ZONE_DEVICE
5600 /*
5601 * Honor reservation requested by the driver for this ZONE_DEVICE
5602 * memory. We limit the total number of pages to initialize to just
5603 * those that might contain the memory mapping. We will defer the
5604 * ZONE_DEVICE page initialization until after we have released
5605 * the hotplug lock.
5606 */
5607 if (zone == ZONE_DEVICE) {
5608 if (!altmap)
5609 return;
5610
5611 if (start_pfn == altmap->base_pfn)
5612 start_pfn += altmap->reserve;
5613 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5614 }
5615 #endif
5616
5617 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5618 /*
5619 * There can be holes in boot-time mem_map[]s handed to this
5620 * function. They do not exist on hotplugged memory.
5621 */
5622 if (context == MEMMAP_EARLY) {
5623 if (!early_pfn_valid(pfn))
5624 continue;
5625 if (!early_pfn_in_nid(pfn, nid))
5626 continue;
5627 if (overlap_memmap_init(zone, &pfn))
5628 continue;
5629 if (defer_init(nid, pfn, end_pfn))
5630 break;
5631 }
5632
5633 page = pfn_to_page(pfn);
5634 __init_single_page(page, pfn, zone, nid);
5635 if (context == MEMMAP_HOTPLUG)
5636 __SetPageReserved(page);
5637
5638 /*
5639 * Mark the block movable so that blocks are reserved for
5640 * movable at startup. This will force kernel allocations
5641 * to reserve their blocks rather than leaking throughout
5642 * the address space during boot when many long-lived
5643 * kernel allocations are made.
5644 *
5645 * bitmap is created for zone's valid pfn range. but memmap
5646 * can be created for invalid pages (for alignment)
5647 * check here not to call set_pageblock_migratetype() against
5648 * pfn out of zone.
5649 */
5650 if (!(pfn & (pageblock_nr_pages - 1))) {
5651 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5652 cond_resched();
5653 }
5654 }
5655 #ifdef CONFIG_SPARSEMEM
5656 /*
5657 * If the zone does not span the rest of the section then
5658 * we should at least initialize those pages. Otherwise we
5659 * could blow up on a poisoned page in some paths which depend
5660 * on full sections being initialized (e.g. memory hotplug).
5661 */
5662 while (end_pfn % PAGES_PER_SECTION) {
5663 __init_single_page(pfn_to_page(end_pfn), end_pfn, zone, nid);
5664 end_pfn++;
5665 }
5666 #endif
5667 }
5668
5669 #ifdef CONFIG_ZONE_DEVICE
5670 void __ref memmap_init_zone_device(struct zone *zone,
5671 unsigned long start_pfn,
5672 unsigned long size,
5673 struct dev_pagemap *pgmap)
5674 {
5675 unsigned long pfn, end_pfn = start_pfn + size;
5676 struct pglist_data *pgdat = zone->zone_pgdat;
5677 unsigned long zone_idx = zone_idx(zone);
5678 unsigned long start = jiffies;
5679 int nid = pgdat->node_id;
5680
5681 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5682 return;
5683
5684 /*
5685 * The call to memmap_init_zone should have already taken care
5686 * of the pages reserved for the memmap, so we can just jump to
5687 * the end of that region and start processing the device pages.
5688 */
5689 if (pgmap->altmap_valid) {
5690 struct vmem_altmap *altmap = &pgmap->altmap;
5691
5692 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5693 size = end_pfn - start_pfn;
5694 }
5695
5696 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5697 struct page *page = pfn_to_page(pfn);
5698
5699 __init_single_page(page, pfn, zone_idx, nid);
5700
5701 /*
5702 * Mark page reserved as it will need to wait for onlining
5703 * phase for it to be fully associated with a zone.
5704 *
5705 * We can use the non-atomic __set_bit operation for setting
5706 * the flag as we are still initializing the pages.
5707 */
5708 __SetPageReserved(page);
5709
5710 /*
5711 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5712 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5713 * page is ever freed or placed on a driver-private list.
5714 */
5715 page->pgmap = pgmap;
5716 page->hmm_data = 0;
5717
5718 /*
5719 * Mark the block movable so that blocks are reserved for
5720 * movable at startup. This will force kernel allocations
5721 * to reserve their blocks rather than leaking throughout
5722 * the address space during boot when many long-lived
5723 * kernel allocations are made.
5724 *
5725 * bitmap is created for zone's valid pfn range. but memmap
5726 * can be created for invalid pages (for alignment)
5727 * check here not to call set_pageblock_migratetype() against
5728 * pfn out of zone.
5729 *
5730 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5731 * because this is done early in sparse_add_one_section
5732 */
5733 if (!(pfn & (pageblock_nr_pages - 1))) {
5734 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5735 cond_resched();
5736 }
5737 }
5738
5739 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5740 size, jiffies_to_msecs(jiffies - start));
5741 }
5742
5743 #endif
5744 static void __meminit zone_init_free_lists(struct zone *zone)
5745 {
5746 unsigned int order, t;
5747 for_each_migratetype_order(order, t) {
5748 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5749 zone->free_area[order].nr_free = 0;
5750 }
5751 }
5752
5753 void __meminit __weak memmap_init(unsigned long size, int nid,
5754 unsigned long zone, unsigned long start_pfn)
5755 {
5756 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5757 }
5758
5759 static int zone_batchsize(struct zone *zone)
5760 {
5761 #ifdef CONFIG_MMU
5762 int batch;
5763
5764 /*
5765 * The per-cpu-pages pools are set to around 1000th of the
5766 * size of the zone.
5767 */
5768 batch = zone_managed_pages(zone) / 1024;
5769 /* But no more than a meg. */
5770 if (batch * PAGE_SIZE > 1024 * 1024)
5771 batch = (1024 * 1024) / PAGE_SIZE;
5772 batch /= 4; /* We effectively *= 4 below */
5773 if (batch < 1)
5774 batch = 1;
5775
5776 /*
5777 * Clamp the batch to a 2^n - 1 value. Having a power
5778 * of 2 value was found to be more likely to have
5779 * suboptimal cache aliasing properties in some cases.
5780 *
5781 * For example if 2 tasks are alternately allocating
5782 * batches of pages, one task can end up with a lot
5783 * of pages of one half of the possible page colors
5784 * and the other with pages of the other colors.
5785 */
5786 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5787
5788 return batch;
5789
5790 #else
5791 /* The deferral and batching of frees should be suppressed under NOMMU
5792 * conditions.
5793 *
5794 * The problem is that NOMMU needs to be able to allocate large chunks
5795 * of contiguous memory as there's no hardware page translation to
5796 * assemble apparent contiguous memory from discontiguous pages.
5797 *
5798 * Queueing large contiguous runs of pages for batching, however,
5799 * causes the pages to actually be freed in smaller chunks. As there
5800 * can be a significant delay between the individual batches being
5801 * recycled, this leads to the once large chunks of space being
5802 * fragmented and becoming unavailable for high-order allocations.
5803 */
5804 return 0;
5805 #endif
5806 }
5807
5808 /*
5809 * pcp->high and pcp->batch values are related and dependent on one another:
5810 * ->batch must never be higher then ->high.
5811 * The following function updates them in a safe manner without read side
5812 * locking.
5813 *
5814 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5815 * those fields changing asynchronously (acording the the above rule).
5816 *
5817 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5818 * outside of boot time (or some other assurance that no concurrent updaters
5819 * exist).
5820 */
5821 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5822 unsigned long batch)
5823 {
5824 /* start with a fail safe value for batch */
5825 pcp->batch = 1;
5826 smp_wmb();
5827
5828 /* Update high, then batch, in order */
5829 pcp->high = high;
5830 smp_wmb();
5831
5832 pcp->batch = batch;
5833 }
5834
5835 /* a companion to pageset_set_high() */
5836 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5837 {
5838 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5839 }
5840
5841 static void pageset_init(struct per_cpu_pageset *p)
5842 {
5843 struct per_cpu_pages *pcp;
5844 int migratetype;
5845
5846 memset(p, 0, sizeof(*p));
5847
5848 pcp = &p->pcp;
5849 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5850 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5851 }
5852
5853 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5854 {
5855 pageset_init(p);
5856 pageset_set_batch(p, batch);
5857 }
5858
5859 /*
5860 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5861 * to the value high for the pageset p.
5862 */
5863 static void pageset_set_high(struct per_cpu_pageset *p,
5864 unsigned long high)
5865 {
5866 unsigned long batch = max(1UL, high / 4);
5867 if ((high / 4) > (PAGE_SHIFT * 8))
5868 batch = PAGE_SHIFT * 8;
5869
5870 pageset_update(&p->pcp, high, batch);
5871 }
5872
5873 static void pageset_set_high_and_batch(struct zone *zone,
5874 struct per_cpu_pageset *pcp)
5875 {
5876 if (percpu_pagelist_fraction)
5877 pageset_set_high(pcp,
5878 (zone_managed_pages(zone) /
5879 percpu_pagelist_fraction));
5880 else
5881 pageset_set_batch(pcp, zone_batchsize(zone));
5882 }
5883
5884 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5885 {
5886 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5887
5888 pageset_init(pcp);
5889 pageset_set_high_and_batch(zone, pcp);
5890 }
5891
5892 void __meminit setup_zone_pageset(struct zone *zone)
5893 {
5894 int cpu;
5895 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5896 for_each_possible_cpu(cpu)
5897 zone_pageset_init(zone, cpu);
5898 }
5899
5900 /*
5901 * Allocate per cpu pagesets and initialize them.
5902 * Before this call only boot pagesets were available.
5903 */
5904 void __init setup_per_cpu_pageset(void)
5905 {
5906 struct pglist_data *pgdat;
5907 struct zone *zone;
5908
5909 for_each_populated_zone(zone)
5910 setup_zone_pageset(zone);
5911
5912 for_each_online_pgdat(pgdat)
5913 pgdat->per_cpu_nodestats =
5914 alloc_percpu(struct per_cpu_nodestat);
5915 }
5916
5917 static __meminit void zone_pcp_init(struct zone *zone)
5918 {
5919 /*
5920 * per cpu subsystem is not up at this point. The following code
5921 * relies on the ability of the linker to provide the
5922 * offset of a (static) per cpu variable into the per cpu area.
5923 */
5924 zone->pageset = &boot_pageset;
5925
5926 if (populated_zone(zone))
5927 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5928 zone->name, zone->present_pages,
5929 zone_batchsize(zone));
5930 }
5931
5932 void __meminit init_currently_empty_zone(struct zone *zone,
5933 unsigned long zone_start_pfn,
5934 unsigned long size)
5935 {
5936 struct pglist_data *pgdat = zone->zone_pgdat;
5937 int zone_idx = zone_idx(zone) + 1;
5938
5939 if (zone_idx > pgdat->nr_zones)
5940 pgdat->nr_zones = zone_idx;
5941
5942 zone->zone_start_pfn = zone_start_pfn;
5943
5944 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5945 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5946 pgdat->node_id,
5947 (unsigned long)zone_idx(zone),
5948 zone_start_pfn, (zone_start_pfn + size));
5949
5950 zone_init_free_lists(zone);
5951 zone->initialized = 1;
5952 }
5953
5954 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5955 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5956
5957 /*
5958 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5959 */
5960 int __meminit __early_pfn_to_nid(unsigned long pfn,
5961 struct mminit_pfnnid_cache *state)
5962 {
5963 unsigned long start_pfn, end_pfn;
5964 int nid;
5965
5966 if (state->last_start <= pfn && pfn < state->last_end)
5967 return state->last_nid;
5968
5969 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5970 if (nid != -1) {
5971 state->last_start = start_pfn;
5972 state->last_end = end_pfn;
5973 state->last_nid = nid;
5974 }
5975
5976 return nid;
5977 }
5978 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5979
5980 /**
5981 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5982 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5983 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5984 *
5985 * If an architecture guarantees that all ranges registered contain no holes
5986 * and may be freed, this this function may be used instead of calling
5987 * memblock_free_early_nid() manually.
5988 */
5989 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5990 {
5991 unsigned long start_pfn, end_pfn;
5992 int i, this_nid;
5993
5994 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5995 start_pfn = min(start_pfn, max_low_pfn);
5996 end_pfn = min(end_pfn, max_low_pfn);
5997
5998 if (start_pfn < end_pfn)
5999 memblock_free_early_nid(PFN_PHYS(start_pfn),
6000 (end_pfn - start_pfn) << PAGE_SHIFT,
6001 this_nid);
6002 }
6003 }
6004
6005 /**
6006 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6007 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6008 *
6009 * If an architecture guarantees that all ranges registered contain no holes and may
6010 * be freed, this function may be used instead of calling memory_present() manually.
6011 */
6012 void __init sparse_memory_present_with_active_regions(int nid)
6013 {
6014 unsigned long start_pfn, end_pfn;
6015 int i, this_nid;
6016
6017 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6018 memory_present(this_nid, start_pfn, end_pfn);
6019 }
6020
6021 /**
6022 * get_pfn_range_for_nid - Return the start and end page frames for a node
6023 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6024 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6025 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6026 *
6027 * It returns the start and end page frame of a node based on information
6028 * provided by memblock_set_node(). If called for a node
6029 * with no available memory, a warning is printed and the start and end
6030 * PFNs will be 0.
6031 */
6032 void __meminit get_pfn_range_for_nid(unsigned int nid,
6033 unsigned long *start_pfn, unsigned long *end_pfn)
6034 {
6035 unsigned long this_start_pfn, this_end_pfn;
6036 int i;
6037
6038 *start_pfn = -1UL;
6039 *end_pfn = 0;
6040
6041 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6042 *start_pfn = min(*start_pfn, this_start_pfn);
6043 *end_pfn = max(*end_pfn, this_end_pfn);
6044 }
6045
6046 if (*start_pfn == -1UL)
6047 *start_pfn = 0;
6048 }
6049
6050 /*
6051 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6052 * assumption is made that zones within a node are ordered in monotonic
6053 * increasing memory addresses so that the "highest" populated zone is used
6054 */
6055 static void __init find_usable_zone_for_movable(void)
6056 {
6057 int zone_index;
6058 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6059 if (zone_index == ZONE_MOVABLE)
6060 continue;
6061
6062 if (arch_zone_highest_possible_pfn[zone_index] >
6063 arch_zone_lowest_possible_pfn[zone_index])
6064 break;
6065 }
6066
6067 VM_BUG_ON(zone_index == -1);
6068 movable_zone = zone_index;
6069 }
6070
6071 /*
6072 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6073 * because it is sized independent of architecture. Unlike the other zones,
6074 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6075 * in each node depending on the size of each node and how evenly kernelcore
6076 * is distributed. This helper function adjusts the zone ranges
6077 * provided by the architecture for a given node by using the end of the
6078 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6079 * zones within a node are in order of monotonic increases memory addresses
6080 */
6081 static void __meminit adjust_zone_range_for_zone_movable(int nid,
6082 unsigned long zone_type,
6083 unsigned long node_start_pfn,
6084 unsigned long node_end_pfn,
6085 unsigned long *zone_start_pfn,
6086 unsigned long *zone_end_pfn)
6087 {
6088 /* Only adjust if ZONE_MOVABLE is on this node */
6089 if (zone_movable_pfn[nid]) {
6090 /* Size ZONE_MOVABLE */
6091 if (zone_type == ZONE_MOVABLE) {
6092 *zone_start_pfn = zone_movable_pfn[nid];
6093 *zone_end_pfn = min(node_end_pfn,
6094 arch_zone_highest_possible_pfn[movable_zone]);
6095
6096 /* Adjust for ZONE_MOVABLE starting within this range */
6097 } else if (!mirrored_kernelcore &&
6098 *zone_start_pfn < zone_movable_pfn[nid] &&
6099 *zone_end_pfn > zone_movable_pfn[nid]) {
6100 *zone_end_pfn = zone_movable_pfn[nid];
6101
6102 /* Check if this whole range is within ZONE_MOVABLE */
6103 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6104 *zone_start_pfn = *zone_end_pfn;
6105 }
6106 }
6107
6108 /*
6109 * Return the number of pages a zone spans in a node, including holes
6110 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6111 */
6112 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
6113 unsigned long zone_type,
6114 unsigned long node_start_pfn,
6115 unsigned long node_end_pfn,
6116 unsigned long *zone_start_pfn,
6117 unsigned long *zone_end_pfn,
6118 unsigned long *ignored)
6119 {
6120 /* When hotadd a new node from cpu_up(), the node should be empty */
6121 if (!node_start_pfn && !node_end_pfn)
6122 return 0;
6123
6124 /* Get the start and end of the zone */
6125 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6126 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
6127 adjust_zone_range_for_zone_movable(nid, zone_type,
6128 node_start_pfn, node_end_pfn,
6129 zone_start_pfn, zone_end_pfn);
6130
6131 /* Check that this node has pages within the zone's required range */
6132 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6133 return 0;
6134
6135 /* Move the zone boundaries inside the node if necessary */
6136 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6137 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6138
6139 /* Return the spanned pages */
6140 return *zone_end_pfn - *zone_start_pfn;
6141 }
6142
6143 /*
6144 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6145 * then all holes in the requested range will be accounted for.
6146 */
6147 unsigned long __meminit __absent_pages_in_range(int nid,
6148 unsigned long range_start_pfn,
6149 unsigned long range_end_pfn)
6150 {
6151 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6152 unsigned long start_pfn, end_pfn;
6153 int i;
6154
6155 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6156 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6157 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6158 nr_absent -= end_pfn - start_pfn;
6159 }
6160 return nr_absent;
6161 }
6162
6163 /**
6164 * absent_pages_in_range - Return number of page frames in holes within a range
6165 * @start_pfn: The start PFN to start searching for holes
6166 * @end_pfn: The end PFN to stop searching for holes
6167 *
6168 * It returns the number of pages frames in memory holes within a range.
6169 */
6170 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6171 unsigned long end_pfn)
6172 {
6173 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6174 }
6175
6176 /* Return the number of page frames in holes in a zone on a node */
6177 static unsigned long __meminit zone_absent_pages_in_node(int nid,
6178 unsigned long zone_type,
6179 unsigned long node_start_pfn,
6180 unsigned long node_end_pfn,
6181 unsigned long *ignored)
6182 {
6183 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6184 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6185 unsigned long zone_start_pfn, zone_end_pfn;
6186 unsigned long nr_absent;
6187
6188 /* When hotadd a new node from cpu_up(), the node should be empty */
6189 if (!node_start_pfn && !node_end_pfn)
6190 return 0;
6191
6192 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6193 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6194
6195 adjust_zone_range_for_zone_movable(nid, zone_type,
6196 node_start_pfn, node_end_pfn,
6197 &zone_start_pfn, &zone_end_pfn);
6198 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6199
6200 /*
6201 * ZONE_MOVABLE handling.
6202 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6203 * and vice versa.
6204 */
6205 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6206 unsigned long start_pfn, end_pfn;
6207 struct memblock_region *r;
6208
6209 for_each_memblock(memory, r) {
6210 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6211 zone_start_pfn, zone_end_pfn);
6212 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6213 zone_start_pfn, zone_end_pfn);
6214
6215 if (zone_type == ZONE_MOVABLE &&
6216 memblock_is_mirror(r))
6217 nr_absent += end_pfn - start_pfn;
6218
6219 if (zone_type == ZONE_NORMAL &&
6220 !memblock_is_mirror(r))
6221 nr_absent += end_pfn - start_pfn;
6222 }
6223 }
6224
6225 return nr_absent;
6226 }
6227
6228 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6229 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6230 unsigned long zone_type,
6231 unsigned long node_start_pfn,
6232 unsigned long node_end_pfn,
6233 unsigned long *zone_start_pfn,
6234 unsigned long *zone_end_pfn,
6235 unsigned long *zones_size)
6236 {
6237 unsigned int zone;
6238
6239 *zone_start_pfn = node_start_pfn;
6240 for (zone = 0; zone < zone_type; zone++)
6241 *zone_start_pfn += zones_size[zone];
6242
6243 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6244
6245 return zones_size[zone_type];
6246 }
6247
6248 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6249 unsigned long zone_type,
6250 unsigned long node_start_pfn,
6251 unsigned long node_end_pfn,
6252 unsigned long *zholes_size)
6253 {
6254 if (!zholes_size)
6255 return 0;
6256
6257 return zholes_size[zone_type];
6258 }
6259
6260 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6261
6262 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6263 unsigned long node_start_pfn,
6264 unsigned long node_end_pfn,
6265 unsigned long *zones_size,
6266 unsigned long *zholes_size)
6267 {
6268 unsigned long realtotalpages = 0, totalpages = 0;
6269 enum zone_type i;
6270
6271 for (i = 0; i < MAX_NR_ZONES; i++) {
6272 struct zone *zone = pgdat->node_zones + i;
6273 unsigned long zone_start_pfn, zone_end_pfn;
6274 unsigned long size, real_size;
6275
6276 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6277 node_start_pfn,
6278 node_end_pfn,
6279 &zone_start_pfn,
6280 &zone_end_pfn,
6281 zones_size);
6282 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6283 node_start_pfn, node_end_pfn,
6284 zholes_size);
6285 if (size)
6286 zone->zone_start_pfn = zone_start_pfn;
6287 else
6288 zone->zone_start_pfn = 0;
6289 zone->spanned_pages = size;
6290 zone->present_pages = real_size;
6291
6292 totalpages += size;
6293 realtotalpages += real_size;
6294 }
6295
6296 pgdat->node_spanned_pages = totalpages;
6297 pgdat->node_present_pages = realtotalpages;
6298 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6299 realtotalpages);
6300 }
6301
6302 #ifndef CONFIG_SPARSEMEM
6303 /*
6304 * Calculate the size of the zone->blockflags rounded to an unsigned long
6305 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6306 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6307 * round what is now in bits to nearest long in bits, then return it in
6308 * bytes.
6309 */
6310 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6311 {
6312 unsigned long usemapsize;
6313
6314 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6315 usemapsize = roundup(zonesize, pageblock_nr_pages);
6316 usemapsize = usemapsize >> pageblock_order;
6317 usemapsize *= NR_PAGEBLOCK_BITS;
6318 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6319
6320 return usemapsize / 8;
6321 }
6322
6323 static void __ref setup_usemap(struct pglist_data *pgdat,
6324 struct zone *zone,
6325 unsigned long zone_start_pfn,
6326 unsigned long zonesize)
6327 {
6328 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6329 zone->pageblock_flags = NULL;
6330 if (usemapsize)
6331 zone->pageblock_flags =
6332 memblock_alloc_node_nopanic(usemapsize,
6333 pgdat->node_id);
6334 }
6335 #else
6336 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6337 unsigned long zone_start_pfn, unsigned long zonesize) {}
6338 #endif /* CONFIG_SPARSEMEM */
6339
6340 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6341
6342 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6343 void __init set_pageblock_order(void)
6344 {
6345 unsigned int order;
6346
6347 /* Check that pageblock_nr_pages has not already been setup */
6348 if (pageblock_order)
6349 return;
6350
6351 if (HPAGE_SHIFT > PAGE_SHIFT)
6352 order = HUGETLB_PAGE_ORDER;
6353 else
6354 order = MAX_ORDER - 1;
6355
6356 /*
6357 * Assume the largest contiguous order of interest is a huge page.
6358 * This value may be variable depending on boot parameters on IA64 and
6359 * powerpc.
6360 */
6361 pageblock_order = order;
6362 }
6363 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6364
6365 /*
6366 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6367 * is unused as pageblock_order is set at compile-time. See
6368 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6369 * the kernel config
6370 */
6371 void __init set_pageblock_order(void)
6372 {
6373 }
6374
6375 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6376
6377 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6378 unsigned long present_pages)
6379 {
6380 unsigned long pages = spanned_pages;
6381
6382 /*
6383 * Provide a more accurate estimation if there are holes within
6384 * the zone and SPARSEMEM is in use. If there are holes within the
6385 * zone, each populated memory region may cost us one or two extra
6386 * memmap pages due to alignment because memmap pages for each
6387 * populated regions may not be naturally aligned on page boundary.
6388 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6389 */
6390 if (spanned_pages > present_pages + (present_pages >> 4) &&
6391 IS_ENABLED(CONFIG_SPARSEMEM))
6392 pages = present_pages;
6393
6394 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6395 }
6396
6397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6398 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6399 {
6400 spin_lock_init(&pgdat->split_queue_lock);
6401 INIT_LIST_HEAD(&pgdat->split_queue);
6402 pgdat->split_queue_len = 0;
6403 }
6404 #else
6405 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6406 #endif
6407
6408 #ifdef CONFIG_COMPACTION
6409 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6410 {
6411 init_waitqueue_head(&pgdat->kcompactd_wait);
6412 }
6413 #else
6414 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6415 #endif
6416
6417 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6418 {
6419 pgdat_resize_init(pgdat);
6420
6421 pgdat_init_split_queue(pgdat);
6422 pgdat_init_kcompactd(pgdat);
6423
6424 init_waitqueue_head(&pgdat->kswapd_wait);
6425 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6426
6427 pgdat_page_ext_init(pgdat);
6428 spin_lock_init(&pgdat->lru_lock);
6429 lruvec_init(node_lruvec(pgdat));
6430 }
6431
6432 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6433 unsigned long remaining_pages)
6434 {
6435 atomic_long_set(&zone->managed_pages, remaining_pages);
6436 zone_set_nid(zone, nid);
6437 zone->name = zone_names[idx];
6438 zone->zone_pgdat = NODE_DATA(nid);
6439 spin_lock_init(&zone->lock);
6440 zone_seqlock_init(zone);
6441 zone_pcp_init(zone);
6442 }
6443
6444 /*
6445 * Set up the zone data structures
6446 * - init pgdat internals
6447 * - init all zones belonging to this node
6448 *
6449 * NOTE: this function is only called during memory hotplug
6450 */
6451 #ifdef CONFIG_MEMORY_HOTPLUG
6452 void __ref free_area_init_core_hotplug(int nid)
6453 {
6454 enum zone_type z;
6455 pg_data_t *pgdat = NODE_DATA(nid);
6456
6457 pgdat_init_internals(pgdat);
6458 for (z = 0; z < MAX_NR_ZONES; z++)
6459 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6460 }
6461 #endif
6462
6463 /*
6464 * Set up the zone data structures:
6465 * - mark all pages reserved
6466 * - mark all memory queues empty
6467 * - clear the memory bitmaps
6468 *
6469 * NOTE: pgdat should get zeroed by caller.
6470 * NOTE: this function is only called during early init.
6471 */
6472 static void __init free_area_init_core(struct pglist_data *pgdat)
6473 {
6474 enum zone_type j;
6475 int nid = pgdat->node_id;
6476
6477 pgdat_init_internals(pgdat);
6478 pgdat->per_cpu_nodestats = &boot_nodestats;
6479
6480 for (j = 0; j < MAX_NR_ZONES; j++) {
6481 struct zone *zone = pgdat->node_zones + j;
6482 unsigned long size, freesize, memmap_pages;
6483 unsigned long zone_start_pfn = zone->zone_start_pfn;
6484
6485 size = zone->spanned_pages;
6486 freesize = zone->present_pages;
6487
6488 /*
6489 * Adjust freesize so that it accounts for how much memory
6490 * is used by this zone for memmap. This affects the watermark
6491 * and per-cpu initialisations
6492 */
6493 memmap_pages = calc_memmap_size(size, freesize);
6494 if (!is_highmem_idx(j)) {
6495 if (freesize >= memmap_pages) {
6496 freesize -= memmap_pages;
6497 if (memmap_pages)
6498 printk(KERN_DEBUG
6499 " %s zone: %lu pages used for memmap\n",
6500 zone_names[j], memmap_pages);
6501 } else
6502 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6503 zone_names[j], memmap_pages, freesize);
6504 }
6505
6506 /* Account for reserved pages */
6507 if (j == 0 && freesize > dma_reserve) {
6508 freesize -= dma_reserve;
6509 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6510 zone_names[0], dma_reserve);
6511 }
6512
6513 if (!is_highmem_idx(j))
6514 nr_kernel_pages += freesize;
6515 /* Charge for highmem memmap if there are enough kernel pages */
6516 else if (nr_kernel_pages > memmap_pages * 2)
6517 nr_kernel_pages -= memmap_pages;
6518 nr_all_pages += freesize;
6519
6520 /*
6521 * Set an approximate value for lowmem here, it will be adjusted
6522 * when the bootmem allocator frees pages into the buddy system.
6523 * And all highmem pages will be managed by the buddy system.
6524 */
6525 zone_init_internals(zone, j, nid, freesize);
6526
6527 if (!size)
6528 continue;
6529
6530 set_pageblock_order();
6531 setup_usemap(pgdat, zone, zone_start_pfn, size);
6532 init_currently_empty_zone(zone, zone_start_pfn, size);
6533 memmap_init(size, nid, j, zone_start_pfn);
6534 }
6535 }
6536
6537 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6538 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6539 {
6540 unsigned long __maybe_unused start = 0;
6541 unsigned long __maybe_unused offset = 0;
6542
6543 /* Skip empty nodes */
6544 if (!pgdat->node_spanned_pages)
6545 return;
6546
6547 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6548 offset = pgdat->node_start_pfn - start;
6549 /* ia64 gets its own node_mem_map, before this, without bootmem */
6550 if (!pgdat->node_mem_map) {
6551 unsigned long size, end;
6552 struct page *map;
6553
6554 /*
6555 * The zone's endpoints aren't required to be MAX_ORDER
6556 * aligned but the node_mem_map endpoints must be in order
6557 * for the buddy allocator to function correctly.
6558 */
6559 end = pgdat_end_pfn(pgdat);
6560 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6561 size = (end - start) * sizeof(struct page);
6562 map = memblock_alloc_node_nopanic(size, pgdat->node_id);
6563 pgdat->node_mem_map = map + offset;
6564 }
6565 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6566 __func__, pgdat->node_id, (unsigned long)pgdat,
6567 (unsigned long)pgdat->node_mem_map);
6568 #ifndef CONFIG_NEED_MULTIPLE_NODES
6569 /*
6570 * With no DISCONTIG, the global mem_map is just set as node 0's
6571 */
6572 if (pgdat == NODE_DATA(0)) {
6573 mem_map = NODE_DATA(0)->node_mem_map;
6574 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6575 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6576 mem_map -= offset;
6577 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6578 }
6579 #endif
6580 }
6581 #else
6582 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6583 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6584
6585 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6586 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6587 {
6588 /*
6589 * We start only with one section of pages, more pages are added as
6590 * needed until the rest of deferred pages are initialized.
6591 */
6592 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6593 pgdat->node_spanned_pages);
6594 pgdat->first_deferred_pfn = ULONG_MAX;
6595 }
6596 #else
6597 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6598 #endif
6599
6600 void __init free_area_init_node(int nid, unsigned long *zones_size,
6601 unsigned long node_start_pfn,
6602 unsigned long *zholes_size)
6603 {
6604 pg_data_t *pgdat = NODE_DATA(nid);
6605 unsigned long start_pfn = 0;
6606 unsigned long end_pfn = 0;
6607
6608 /* pg_data_t should be reset to zero when it's allocated */
6609 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6610
6611 pgdat->node_id = nid;
6612 pgdat->node_start_pfn = node_start_pfn;
6613 pgdat->per_cpu_nodestats = NULL;
6614 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6615 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6616 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6617 (u64)start_pfn << PAGE_SHIFT,
6618 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6619 #else
6620 start_pfn = node_start_pfn;
6621 #endif
6622 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6623 zones_size, zholes_size);
6624
6625 alloc_node_mem_map(pgdat);
6626 pgdat_set_deferred_range(pgdat);
6627
6628 free_area_init_core(pgdat);
6629 }
6630
6631 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6632 /*
6633 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6634 * pages zeroed
6635 */
6636 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6637 {
6638 unsigned long pfn;
6639 u64 pgcnt = 0;
6640
6641 for (pfn = spfn; pfn < epfn; pfn++) {
6642 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6643 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6644 + pageblock_nr_pages - 1;
6645 continue;
6646 }
6647 mm_zero_struct_page(pfn_to_page(pfn));
6648 pgcnt++;
6649 }
6650
6651 return pgcnt;
6652 }
6653
6654 /*
6655 * Only struct pages that are backed by physical memory are zeroed and
6656 * initialized by going through __init_single_page(). But, there are some
6657 * struct pages which are reserved in memblock allocator and their fields
6658 * may be accessed (for example page_to_pfn() on some configuration accesses
6659 * flags). We must explicitly zero those struct pages.
6660 *
6661 * This function also addresses a similar issue where struct pages are left
6662 * uninitialized because the physical address range is not covered by
6663 * memblock.memory or memblock.reserved. That could happen when memblock
6664 * layout is manually configured via memmap=.
6665 */
6666 void __init zero_resv_unavail(void)
6667 {
6668 phys_addr_t start, end;
6669 u64 i, pgcnt;
6670 phys_addr_t next = 0;
6671
6672 /*
6673 * Loop through unavailable ranges not covered by memblock.memory.
6674 */
6675 pgcnt = 0;
6676 for_each_mem_range(i, &memblock.memory, NULL,
6677 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6678 if (next < start)
6679 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6680 next = end;
6681 }
6682 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6683
6684 /*
6685 * Struct pages that do not have backing memory. This could be because
6686 * firmware is using some of this memory, or for some other reasons.
6687 */
6688 if (pgcnt)
6689 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6690 }
6691 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6692
6693 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6694
6695 #if MAX_NUMNODES > 1
6696 /*
6697 * Figure out the number of possible node ids.
6698 */
6699 void __init setup_nr_node_ids(void)
6700 {
6701 unsigned int highest;
6702
6703 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6704 nr_node_ids = highest + 1;
6705 }
6706 #endif
6707
6708 /**
6709 * node_map_pfn_alignment - determine the maximum internode alignment
6710 *
6711 * This function should be called after node map is populated and sorted.
6712 * It calculates the maximum power of two alignment which can distinguish
6713 * all the nodes.
6714 *
6715 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6716 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6717 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6718 * shifted, 1GiB is enough and this function will indicate so.
6719 *
6720 * This is used to test whether pfn -> nid mapping of the chosen memory
6721 * model has fine enough granularity to avoid incorrect mapping for the
6722 * populated node map.
6723 *
6724 * Returns the determined alignment in pfn's. 0 if there is no alignment
6725 * requirement (single node).
6726 */
6727 unsigned long __init node_map_pfn_alignment(void)
6728 {
6729 unsigned long accl_mask = 0, last_end = 0;
6730 unsigned long start, end, mask;
6731 int last_nid = -1;
6732 int i, nid;
6733
6734 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6735 if (!start || last_nid < 0 || last_nid == nid) {
6736 last_nid = nid;
6737 last_end = end;
6738 continue;
6739 }
6740
6741 /*
6742 * Start with a mask granular enough to pin-point to the
6743 * start pfn and tick off bits one-by-one until it becomes
6744 * too coarse to separate the current node from the last.
6745 */
6746 mask = ~((1 << __ffs(start)) - 1);
6747 while (mask && last_end <= (start & (mask << 1)))
6748 mask <<= 1;
6749
6750 /* accumulate all internode masks */
6751 accl_mask |= mask;
6752 }
6753
6754 /* convert mask to number of pages */
6755 return ~accl_mask + 1;
6756 }
6757
6758 /* Find the lowest pfn for a node */
6759 static unsigned long __init find_min_pfn_for_node(int nid)
6760 {
6761 unsigned long min_pfn = ULONG_MAX;
6762 unsigned long start_pfn;
6763 int i;
6764
6765 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6766 min_pfn = min(min_pfn, start_pfn);
6767
6768 if (min_pfn == ULONG_MAX) {
6769 pr_warn("Could not find start_pfn for node %d\n", nid);
6770 return 0;
6771 }
6772
6773 return min_pfn;
6774 }
6775
6776 /**
6777 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6778 *
6779 * It returns the minimum PFN based on information provided via
6780 * memblock_set_node().
6781 */
6782 unsigned long __init find_min_pfn_with_active_regions(void)
6783 {
6784 return find_min_pfn_for_node(MAX_NUMNODES);
6785 }
6786
6787 /*
6788 * early_calculate_totalpages()
6789 * Sum pages in active regions for movable zone.
6790 * Populate N_MEMORY for calculating usable_nodes.
6791 */
6792 static unsigned long __init early_calculate_totalpages(void)
6793 {
6794 unsigned long totalpages = 0;
6795 unsigned long start_pfn, end_pfn;
6796 int i, nid;
6797
6798 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6799 unsigned long pages = end_pfn - start_pfn;
6800
6801 totalpages += pages;
6802 if (pages)
6803 node_set_state(nid, N_MEMORY);
6804 }
6805 return totalpages;
6806 }
6807
6808 /*
6809 * Find the PFN the Movable zone begins in each node. Kernel memory
6810 * is spread evenly between nodes as long as the nodes have enough
6811 * memory. When they don't, some nodes will have more kernelcore than
6812 * others
6813 */
6814 static void __init find_zone_movable_pfns_for_nodes(void)
6815 {
6816 int i, nid;
6817 unsigned long usable_startpfn;
6818 unsigned long kernelcore_node, kernelcore_remaining;
6819 /* save the state before borrow the nodemask */
6820 nodemask_t saved_node_state = node_states[N_MEMORY];
6821 unsigned long totalpages = early_calculate_totalpages();
6822 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6823 struct memblock_region *r;
6824
6825 /* Need to find movable_zone earlier when movable_node is specified. */
6826 find_usable_zone_for_movable();
6827
6828 /*
6829 * If movable_node is specified, ignore kernelcore and movablecore
6830 * options.
6831 */
6832 if (movable_node_is_enabled()) {
6833 for_each_memblock(memory, r) {
6834 if (!memblock_is_hotpluggable(r))
6835 continue;
6836
6837 nid = r->nid;
6838
6839 usable_startpfn = PFN_DOWN(r->base);
6840 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6841 min(usable_startpfn, zone_movable_pfn[nid]) :
6842 usable_startpfn;
6843 }
6844
6845 goto out2;
6846 }
6847
6848 /*
6849 * If kernelcore=mirror is specified, ignore movablecore option
6850 */
6851 if (mirrored_kernelcore) {
6852 bool mem_below_4gb_not_mirrored = false;
6853
6854 for_each_memblock(memory, r) {
6855 if (memblock_is_mirror(r))
6856 continue;
6857
6858 nid = r->nid;
6859
6860 usable_startpfn = memblock_region_memory_base_pfn(r);
6861
6862 if (usable_startpfn < 0x100000) {
6863 mem_below_4gb_not_mirrored = true;
6864 continue;
6865 }
6866
6867 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6868 min(usable_startpfn, zone_movable_pfn[nid]) :
6869 usable_startpfn;
6870 }
6871
6872 if (mem_below_4gb_not_mirrored)
6873 pr_warn("This configuration results in unmirrored kernel memory.");
6874
6875 goto out2;
6876 }
6877
6878 /*
6879 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6880 * amount of necessary memory.
6881 */
6882 if (required_kernelcore_percent)
6883 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6884 10000UL;
6885 if (required_movablecore_percent)
6886 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6887 10000UL;
6888
6889 /*
6890 * If movablecore= was specified, calculate what size of
6891 * kernelcore that corresponds so that memory usable for
6892 * any allocation type is evenly spread. If both kernelcore
6893 * and movablecore are specified, then the value of kernelcore
6894 * will be used for required_kernelcore if it's greater than
6895 * what movablecore would have allowed.
6896 */
6897 if (required_movablecore) {
6898 unsigned long corepages;
6899
6900 /*
6901 * Round-up so that ZONE_MOVABLE is at least as large as what
6902 * was requested by the user
6903 */
6904 required_movablecore =
6905 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6906 required_movablecore = min(totalpages, required_movablecore);
6907 corepages = totalpages - required_movablecore;
6908
6909 required_kernelcore = max(required_kernelcore, corepages);
6910 }
6911
6912 /*
6913 * If kernelcore was not specified or kernelcore size is larger
6914 * than totalpages, there is no ZONE_MOVABLE.
6915 */
6916 if (!required_kernelcore || required_kernelcore >= totalpages)
6917 goto out;
6918
6919 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6920 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6921
6922 restart:
6923 /* Spread kernelcore memory as evenly as possible throughout nodes */
6924 kernelcore_node = required_kernelcore / usable_nodes;
6925 for_each_node_state(nid, N_MEMORY) {
6926 unsigned long start_pfn, end_pfn;
6927
6928 /*
6929 * Recalculate kernelcore_node if the division per node
6930 * now exceeds what is necessary to satisfy the requested
6931 * amount of memory for the kernel
6932 */
6933 if (required_kernelcore < kernelcore_node)
6934 kernelcore_node = required_kernelcore / usable_nodes;
6935
6936 /*
6937 * As the map is walked, we track how much memory is usable
6938 * by the kernel using kernelcore_remaining. When it is
6939 * 0, the rest of the node is usable by ZONE_MOVABLE
6940 */
6941 kernelcore_remaining = kernelcore_node;
6942
6943 /* Go through each range of PFNs within this node */
6944 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6945 unsigned long size_pages;
6946
6947 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6948 if (start_pfn >= end_pfn)
6949 continue;
6950
6951 /* Account for what is only usable for kernelcore */
6952 if (start_pfn < usable_startpfn) {
6953 unsigned long kernel_pages;
6954 kernel_pages = min(end_pfn, usable_startpfn)
6955 - start_pfn;
6956
6957 kernelcore_remaining -= min(kernel_pages,
6958 kernelcore_remaining);
6959 required_kernelcore -= min(kernel_pages,
6960 required_kernelcore);
6961
6962 /* Continue if range is now fully accounted */
6963 if (end_pfn <= usable_startpfn) {
6964
6965 /*
6966 * Push zone_movable_pfn to the end so
6967 * that if we have to rebalance
6968 * kernelcore across nodes, we will
6969 * not double account here
6970 */
6971 zone_movable_pfn[nid] = end_pfn;
6972 continue;
6973 }
6974 start_pfn = usable_startpfn;
6975 }
6976
6977 /*
6978 * The usable PFN range for ZONE_MOVABLE is from
6979 * start_pfn->end_pfn. Calculate size_pages as the
6980 * number of pages used as kernelcore
6981 */
6982 size_pages = end_pfn - start_pfn;
6983 if (size_pages > kernelcore_remaining)
6984 size_pages = kernelcore_remaining;
6985 zone_movable_pfn[nid] = start_pfn + size_pages;
6986
6987 /*
6988 * Some kernelcore has been met, update counts and
6989 * break if the kernelcore for this node has been
6990 * satisfied
6991 */
6992 required_kernelcore -= min(required_kernelcore,
6993 size_pages);
6994 kernelcore_remaining -= size_pages;
6995 if (!kernelcore_remaining)
6996 break;
6997 }
6998 }
6999
7000 /*
7001 * If there is still required_kernelcore, we do another pass with one
7002 * less node in the count. This will push zone_movable_pfn[nid] further
7003 * along on the nodes that still have memory until kernelcore is
7004 * satisfied
7005 */
7006 usable_nodes--;
7007 if (usable_nodes && required_kernelcore > usable_nodes)
7008 goto restart;
7009
7010 out2:
7011 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7012 for (nid = 0; nid < MAX_NUMNODES; nid++)
7013 zone_movable_pfn[nid] =
7014 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7015
7016 out:
7017 /* restore the node_state */
7018 node_states[N_MEMORY] = saved_node_state;
7019 }
7020
7021 /* Any regular or high memory on that node ? */
7022 static void check_for_memory(pg_data_t *pgdat, int nid)
7023 {
7024 enum zone_type zone_type;
7025
7026 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7027 struct zone *zone = &pgdat->node_zones[zone_type];
7028 if (populated_zone(zone)) {
7029 if (IS_ENABLED(CONFIG_HIGHMEM))
7030 node_set_state(nid, N_HIGH_MEMORY);
7031 if (zone_type <= ZONE_NORMAL)
7032 node_set_state(nid, N_NORMAL_MEMORY);
7033 break;
7034 }
7035 }
7036 }
7037
7038 /**
7039 * free_area_init_nodes - Initialise all pg_data_t and zone data
7040 * @max_zone_pfn: an array of max PFNs for each zone
7041 *
7042 * This will call free_area_init_node() for each active node in the system.
7043 * Using the page ranges provided by memblock_set_node(), the size of each
7044 * zone in each node and their holes is calculated. If the maximum PFN
7045 * between two adjacent zones match, it is assumed that the zone is empty.
7046 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7047 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7048 * starts where the previous one ended. For example, ZONE_DMA32 starts
7049 * at arch_max_dma_pfn.
7050 */
7051 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7052 {
7053 unsigned long start_pfn, end_pfn;
7054 int i, nid;
7055
7056 /* Record where the zone boundaries are */
7057 memset(arch_zone_lowest_possible_pfn, 0,
7058 sizeof(arch_zone_lowest_possible_pfn));
7059 memset(arch_zone_highest_possible_pfn, 0,
7060 sizeof(arch_zone_highest_possible_pfn));
7061
7062 start_pfn = find_min_pfn_with_active_regions();
7063
7064 for (i = 0; i < MAX_NR_ZONES; i++) {
7065 if (i == ZONE_MOVABLE)
7066 continue;
7067
7068 end_pfn = max(max_zone_pfn[i], start_pfn);
7069 arch_zone_lowest_possible_pfn[i] = start_pfn;
7070 arch_zone_highest_possible_pfn[i] = end_pfn;
7071
7072 start_pfn = end_pfn;
7073 }
7074
7075 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7076 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7077 find_zone_movable_pfns_for_nodes();
7078
7079 /* Print out the zone ranges */
7080 pr_info("Zone ranges:\n");
7081 for (i = 0; i < MAX_NR_ZONES; i++) {
7082 if (i == ZONE_MOVABLE)
7083 continue;
7084 pr_info(" %-8s ", zone_names[i]);
7085 if (arch_zone_lowest_possible_pfn[i] ==
7086 arch_zone_highest_possible_pfn[i])
7087 pr_cont("empty\n");
7088 else
7089 pr_cont("[mem %#018Lx-%#018Lx]\n",
7090 (u64)arch_zone_lowest_possible_pfn[i]
7091 << PAGE_SHIFT,
7092 ((u64)arch_zone_highest_possible_pfn[i]
7093 << PAGE_SHIFT) - 1);
7094 }
7095
7096 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7097 pr_info("Movable zone start for each node\n");
7098 for (i = 0; i < MAX_NUMNODES; i++) {
7099 if (zone_movable_pfn[i])
7100 pr_info(" Node %d: %#018Lx\n", i,
7101 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7102 }
7103
7104 /* Print out the early node map */
7105 pr_info("Early memory node ranges\n");
7106 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7107 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7108 (u64)start_pfn << PAGE_SHIFT,
7109 ((u64)end_pfn << PAGE_SHIFT) - 1);
7110
7111 /* Initialise every node */
7112 mminit_verify_pageflags_layout();
7113 setup_nr_node_ids();
7114 zero_resv_unavail();
7115 for_each_online_node(nid) {
7116 pg_data_t *pgdat = NODE_DATA(nid);
7117 free_area_init_node(nid, NULL,
7118 find_min_pfn_for_node(nid), NULL);
7119
7120 /* Any memory on that node */
7121 if (pgdat->node_present_pages)
7122 node_set_state(nid, N_MEMORY);
7123 check_for_memory(pgdat, nid);
7124 }
7125 }
7126
7127 static int __init cmdline_parse_core(char *p, unsigned long *core,
7128 unsigned long *percent)
7129 {
7130 unsigned long long coremem;
7131 char *endptr;
7132
7133 if (!p)
7134 return -EINVAL;
7135
7136 /* Value may be a percentage of total memory, otherwise bytes */
7137 coremem = simple_strtoull(p, &endptr, 0);
7138 if (*endptr == '%') {
7139 /* Paranoid check for percent values greater than 100 */
7140 WARN_ON(coremem > 100);
7141
7142 *percent = coremem;
7143 } else {
7144 coremem = memparse(p, &p);
7145 /* Paranoid check that UL is enough for the coremem value */
7146 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7147
7148 *core = coremem >> PAGE_SHIFT;
7149 *percent = 0UL;
7150 }
7151 return 0;
7152 }
7153
7154 /*
7155 * kernelcore=size sets the amount of memory for use for allocations that
7156 * cannot be reclaimed or migrated.
7157 */
7158 static int __init cmdline_parse_kernelcore(char *p)
7159 {
7160 /* parse kernelcore=mirror */
7161 if (parse_option_str(p, "mirror")) {
7162 mirrored_kernelcore = true;
7163 return 0;
7164 }
7165
7166 return cmdline_parse_core(p, &required_kernelcore,
7167 &required_kernelcore_percent);
7168 }
7169
7170 /*
7171 * movablecore=size sets the amount of memory for use for allocations that
7172 * can be reclaimed or migrated.
7173 */
7174 static int __init cmdline_parse_movablecore(char *p)
7175 {
7176 return cmdline_parse_core(p, &required_movablecore,
7177 &required_movablecore_percent);
7178 }
7179
7180 early_param("kernelcore", cmdline_parse_kernelcore);
7181 early_param("movablecore", cmdline_parse_movablecore);
7182
7183 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7184
7185 void adjust_managed_page_count(struct page *page, long count)
7186 {
7187 atomic_long_add(count, &page_zone(page)->managed_pages);
7188 totalram_pages_add(count);
7189 #ifdef CONFIG_HIGHMEM
7190 if (PageHighMem(page))
7191 totalhigh_pages_add(count);
7192 #endif
7193 }
7194 EXPORT_SYMBOL(adjust_managed_page_count);
7195
7196 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7197 {
7198 void *pos;
7199 unsigned long pages = 0;
7200
7201 start = (void *)PAGE_ALIGN((unsigned long)start);
7202 end = (void *)((unsigned long)end & PAGE_MASK);
7203 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7204 struct page *page = virt_to_page(pos);
7205 void *direct_map_addr;
7206
7207 /*
7208 * 'direct_map_addr' might be different from 'pos'
7209 * because some architectures' virt_to_page()
7210 * work with aliases. Getting the direct map
7211 * address ensures that we get a _writeable_
7212 * alias for the memset().
7213 */
7214 direct_map_addr = page_address(page);
7215 if ((unsigned int)poison <= 0xFF)
7216 memset(direct_map_addr, poison, PAGE_SIZE);
7217
7218 free_reserved_page(page);
7219 }
7220
7221 if (pages && s)
7222 pr_info("Freeing %s memory: %ldK\n",
7223 s, pages << (PAGE_SHIFT - 10));
7224
7225 return pages;
7226 }
7227 EXPORT_SYMBOL(free_reserved_area);
7228
7229 #ifdef CONFIG_HIGHMEM
7230 void free_highmem_page(struct page *page)
7231 {
7232 __free_reserved_page(page);
7233 totalram_pages_inc();
7234 atomic_long_inc(&page_zone(page)->managed_pages);
7235 totalhigh_pages_inc();
7236 }
7237 #endif
7238
7239
7240 void __init mem_init_print_info(const char *str)
7241 {
7242 unsigned long physpages, codesize, datasize, rosize, bss_size;
7243 unsigned long init_code_size, init_data_size;
7244
7245 physpages = get_num_physpages();
7246 codesize = _etext - _stext;
7247 datasize = _edata - _sdata;
7248 rosize = __end_rodata - __start_rodata;
7249 bss_size = __bss_stop - __bss_start;
7250 init_data_size = __init_end - __init_begin;
7251 init_code_size = _einittext - _sinittext;
7252
7253 /*
7254 * Detect special cases and adjust section sizes accordingly:
7255 * 1) .init.* may be embedded into .data sections
7256 * 2) .init.text.* may be out of [__init_begin, __init_end],
7257 * please refer to arch/tile/kernel/vmlinux.lds.S.
7258 * 3) .rodata.* may be embedded into .text or .data sections.
7259 */
7260 #define adj_init_size(start, end, size, pos, adj) \
7261 do { \
7262 if (start <= pos && pos < end && size > adj) \
7263 size -= adj; \
7264 } while (0)
7265
7266 adj_init_size(__init_begin, __init_end, init_data_size,
7267 _sinittext, init_code_size);
7268 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7269 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7270 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7271 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7272
7273 #undef adj_init_size
7274
7275 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7276 #ifdef CONFIG_HIGHMEM
7277 ", %luK highmem"
7278 #endif
7279 "%s%s)\n",
7280 nr_free_pages() << (PAGE_SHIFT - 10),
7281 physpages << (PAGE_SHIFT - 10),
7282 codesize >> 10, datasize >> 10, rosize >> 10,
7283 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7284 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7285 totalcma_pages << (PAGE_SHIFT - 10),
7286 #ifdef CONFIG_HIGHMEM
7287 totalhigh_pages() << (PAGE_SHIFT - 10),
7288 #endif
7289 str ? ", " : "", str ? str : "");
7290 }
7291
7292 /**
7293 * set_dma_reserve - set the specified number of pages reserved in the first zone
7294 * @new_dma_reserve: The number of pages to mark reserved
7295 *
7296 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7297 * In the DMA zone, a significant percentage may be consumed by kernel image
7298 * and other unfreeable allocations which can skew the watermarks badly. This
7299 * function may optionally be used to account for unfreeable pages in the
7300 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7301 * smaller per-cpu batchsize.
7302 */
7303 void __init set_dma_reserve(unsigned long new_dma_reserve)
7304 {
7305 dma_reserve = new_dma_reserve;
7306 }
7307
7308 void __init free_area_init(unsigned long *zones_size)
7309 {
7310 zero_resv_unavail();
7311 free_area_init_node(0, zones_size,
7312 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7313 }
7314
7315 static int page_alloc_cpu_dead(unsigned int cpu)
7316 {
7317
7318 lru_add_drain_cpu(cpu);
7319 drain_pages(cpu);
7320
7321 /*
7322 * Spill the event counters of the dead processor
7323 * into the current processors event counters.
7324 * This artificially elevates the count of the current
7325 * processor.
7326 */
7327 vm_events_fold_cpu(cpu);
7328
7329 /*
7330 * Zero the differential counters of the dead processor
7331 * so that the vm statistics are consistent.
7332 *
7333 * This is only okay since the processor is dead and cannot
7334 * race with what we are doing.
7335 */
7336 cpu_vm_stats_fold(cpu);
7337 return 0;
7338 }
7339
7340 void __init page_alloc_init(void)
7341 {
7342 int ret;
7343
7344 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7345 "mm/page_alloc:dead", NULL,
7346 page_alloc_cpu_dead);
7347 WARN_ON(ret < 0);
7348 }
7349
7350 /*
7351 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7352 * or min_free_kbytes changes.
7353 */
7354 static void calculate_totalreserve_pages(void)
7355 {
7356 struct pglist_data *pgdat;
7357 unsigned long reserve_pages = 0;
7358 enum zone_type i, j;
7359
7360 for_each_online_pgdat(pgdat) {
7361
7362 pgdat->totalreserve_pages = 0;
7363
7364 for (i = 0; i < MAX_NR_ZONES; i++) {
7365 struct zone *zone = pgdat->node_zones + i;
7366 long max = 0;
7367 unsigned long managed_pages = zone_managed_pages(zone);
7368
7369 /* Find valid and maximum lowmem_reserve in the zone */
7370 for (j = i; j < MAX_NR_ZONES; j++) {
7371 if (zone->lowmem_reserve[j] > max)
7372 max = zone->lowmem_reserve[j];
7373 }
7374
7375 /* we treat the high watermark as reserved pages. */
7376 max += high_wmark_pages(zone);
7377
7378 if (max > managed_pages)
7379 max = managed_pages;
7380
7381 pgdat->totalreserve_pages += max;
7382
7383 reserve_pages += max;
7384 }
7385 }
7386 totalreserve_pages = reserve_pages;
7387 }
7388
7389 /*
7390 * setup_per_zone_lowmem_reserve - called whenever
7391 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7392 * has a correct pages reserved value, so an adequate number of
7393 * pages are left in the zone after a successful __alloc_pages().
7394 */
7395 static void setup_per_zone_lowmem_reserve(void)
7396 {
7397 struct pglist_data *pgdat;
7398 enum zone_type j, idx;
7399
7400 for_each_online_pgdat(pgdat) {
7401 for (j = 0; j < MAX_NR_ZONES; j++) {
7402 struct zone *zone = pgdat->node_zones + j;
7403 unsigned long managed_pages = zone_managed_pages(zone);
7404
7405 zone->lowmem_reserve[j] = 0;
7406
7407 idx = j;
7408 while (idx) {
7409 struct zone *lower_zone;
7410
7411 idx--;
7412 lower_zone = pgdat->node_zones + idx;
7413
7414 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7415 sysctl_lowmem_reserve_ratio[idx] = 0;
7416 lower_zone->lowmem_reserve[j] = 0;
7417 } else {
7418 lower_zone->lowmem_reserve[j] =
7419 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7420 }
7421 managed_pages += zone_managed_pages(lower_zone);
7422 }
7423 }
7424 }
7425
7426 /* update totalreserve_pages */
7427 calculate_totalreserve_pages();
7428 }
7429
7430 static void __setup_per_zone_wmarks(void)
7431 {
7432 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7433 unsigned long lowmem_pages = 0;
7434 struct zone *zone;
7435 unsigned long flags;
7436
7437 /* Calculate total number of !ZONE_HIGHMEM pages */
7438 for_each_zone(zone) {
7439 if (!is_highmem(zone))
7440 lowmem_pages += zone_managed_pages(zone);
7441 }
7442
7443 for_each_zone(zone) {
7444 u64 tmp;
7445
7446 spin_lock_irqsave(&zone->lock, flags);
7447 tmp = (u64)pages_min * zone_managed_pages(zone);
7448 do_div(tmp, lowmem_pages);
7449 if (is_highmem(zone)) {
7450 /*
7451 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7452 * need highmem pages, so cap pages_min to a small
7453 * value here.
7454 *
7455 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7456 * deltas control asynch page reclaim, and so should
7457 * not be capped for highmem.
7458 */
7459 unsigned long min_pages;
7460
7461 min_pages = zone_managed_pages(zone) / 1024;
7462 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7463 zone->_watermark[WMARK_MIN] = min_pages;
7464 } else {
7465 /*
7466 * If it's a lowmem zone, reserve a number of pages
7467 * proportionate to the zone's size.
7468 */
7469 zone->_watermark[WMARK_MIN] = tmp;
7470 }
7471
7472 /*
7473 * Set the kswapd watermarks distance according to the
7474 * scale factor in proportion to available memory, but
7475 * ensure a minimum size on small systems.
7476 */
7477 tmp = max_t(u64, tmp >> 2,
7478 mult_frac(zone_managed_pages(zone),
7479 watermark_scale_factor, 10000));
7480
7481 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7482 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7483 zone->watermark_boost = 0;
7484
7485 spin_unlock_irqrestore(&zone->lock, flags);
7486 }
7487
7488 /* update totalreserve_pages */
7489 calculate_totalreserve_pages();
7490 }
7491
7492 /**
7493 * setup_per_zone_wmarks - called when min_free_kbytes changes
7494 * or when memory is hot-{added|removed}
7495 *
7496 * Ensures that the watermark[min,low,high] values for each zone are set
7497 * correctly with respect to min_free_kbytes.
7498 */
7499 void setup_per_zone_wmarks(void)
7500 {
7501 static DEFINE_SPINLOCK(lock);
7502
7503 spin_lock(&lock);
7504 __setup_per_zone_wmarks();
7505 spin_unlock(&lock);
7506 }
7507
7508 /*
7509 * Initialise min_free_kbytes.
7510 *
7511 * For small machines we want it small (128k min). For large machines
7512 * we want it large (64MB max). But it is not linear, because network
7513 * bandwidth does not increase linearly with machine size. We use
7514 *
7515 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7516 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7517 *
7518 * which yields
7519 *
7520 * 16MB: 512k
7521 * 32MB: 724k
7522 * 64MB: 1024k
7523 * 128MB: 1448k
7524 * 256MB: 2048k
7525 * 512MB: 2896k
7526 * 1024MB: 4096k
7527 * 2048MB: 5792k
7528 * 4096MB: 8192k
7529 * 8192MB: 11584k
7530 * 16384MB: 16384k
7531 */
7532 int __meminit init_per_zone_wmark_min(void)
7533 {
7534 unsigned long lowmem_kbytes;
7535 int new_min_free_kbytes;
7536
7537 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7538 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7539
7540 if (new_min_free_kbytes > user_min_free_kbytes) {
7541 min_free_kbytes = new_min_free_kbytes;
7542 if (min_free_kbytes < 128)
7543 min_free_kbytes = 128;
7544 if (min_free_kbytes > 65536)
7545 min_free_kbytes = 65536;
7546 } else {
7547 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7548 new_min_free_kbytes, user_min_free_kbytes);
7549 }
7550 setup_per_zone_wmarks();
7551 refresh_zone_stat_thresholds();
7552 setup_per_zone_lowmem_reserve();
7553
7554 #ifdef CONFIG_NUMA
7555 setup_min_unmapped_ratio();
7556 setup_min_slab_ratio();
7557 #endif
7558
7559 return 0;
7560 }
7561 core_initcall(init_per_zone_wmark_min)
7562
7563 /*
7564 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7565 * that we can call two helper functions whenever min_free_kbytes
7566 * changes.
7567 */
7568 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7569 void __user *buffer, size_t *length, loff_t *ppos)
7570 {
7571 int rc;
7572
7573 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7574 if (rc)
7575 return rc;
7576
7577 if (write) {
7578 user_min_free_kbytes = min_free_kbytes;
7579 setup_per_zone_wmarks();
7580 }
7581 return 0;
7582 }
7583
7584 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7585 void __user *buffer, size_t *length, loff_t *ppos)
7586 {
7587 int rc;
7588
7589 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7590 if (rc)
7591 return rc;
7592
7593 return 0;
7594 }
7595
7596 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7597 void __user *buffer, size_t *length, loff_t *ppos)
7598 {
7599 int rc;
7600
7601 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7602 if (rc)
7603 return rc;
7604
7605 if (write)
7606 setup_per_zone_wmarks();
7607
7608 return 0;
7609 }
7610
7611 #ifdef CONFIG_NUMA
7612 static void setup_min_unmapped_ratio(void)
7613 {
7614 pg_data_t *pgdat;
7615 struct zone *zone;
7616
7617 for_each_online_pgdat(pgdat)
7618 pgdat->min_unmapped_pages = 0;
7619
7620 for_each_zone(zone)
7621 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7622 sysctl_min_unmapped_ratio) / 100;
7623 }
7624
7625
7626 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7627 void __user *buffer, size_t *length, loff_t *ppos)
7628 {
7629 int rc;
7630
7631 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7632 if (rc)
7633 return rc;
7634
7635 setup_min_unmapped_ratio();
7636
7637 return 0;
7638 }
7639
7640 static void setup_min_slab_ratio(void)
7641 {
7642 pg_data_t *pgdat;
7643 struct zone *zone;
7644
7645 for_each_online_pgdat(pgdat)
7646 pgdat->min_slab_pages = 0;
7647
7648 for_each_zone(zone)
7649 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7650 sysctl_min_slab_ratio) / 100;
7651 }
7652
7653 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7654 void __user *buffer, size_t *length, loff_t *ppos)
7655 {
7656 int rc;
7657
7658 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7659 if (rc)
7660 return rc;
7661
7662 setup_min_slab_ratio();
7663
7664 return 0;
7665 }
7666 #endif
7667
7668 /*
7669 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7670 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7671 * whenever sysctl_lowmem_reserve_ratio changes.
7672 *
7673 * The reserve ratio obviously has absolutely no relation with the
7674 * minimum watermarks. The lowmem reserve ratio can only make sense
7675 * if in function of the boot time zone sizes.
7676 */
7677 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7678 void __user *buffer, size_t *length, loff_t *ppos)
7679 {
7680 proc_dointvec_minmax(table, write, buffer, length, ppos);
7681 setup_per_zone_lowmem_reserve();
7682 return 0;
7683 }
7684
7685 /*
7686 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7687 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7688 * pagelist can have before it gets flushed back to buddy allocator.
7689 */
7690 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7691 void __user *buffer, size_t *length, loff_t *ppos)
7692 {
7693 struct zone *zone;
7694 int old_percpu_pagelist_fraction;
7695 int ret;
7696
7697 mutex_lock(&pcp_batch_high_lock);
7698 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7699
7700 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7701 if (!write || ret < 0)
7702 goto out;
7703
7704 /* Sanity checking to avoid pcp imbalance */
7705 if (percpu_pagelist_fraction &&
7706 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7707 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7708 ret = -EINVAL;
7709 goto out;
7710 }
7711
7712 /* No change? */
7713 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7714 goto out;
7715
7716 for_each_populated_zone(zone) {
7717 unsigned int cpu;
7718
7719 for_each_possible_cpu(cpu)
7720 pageset_set_high_and_batch(zone,
7721 per_cpu_ptr(zone->pageset, cpu));
7722 }
7723 out:
7724 mutex_unlock(&pcp_batch_high_lock);
7725 return ret;
7726 }
7727
7728 #ifdef CONFIG_NUMA
7729 int hashdist = HASHDIST_DEFAULT;
7730
7731 static int __init set_hashdist(char *str)
7732 {
7733 if (!str)
7734 return 0;
7735 hashdist = simple_strtoul(str, &str, 0);
7736 return 1;
7737 }
7738 __setup("hashdist=", set_hashdist);
7739 #endif
7740
7741 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7742 /*
7743 * Returns the number of pages that arch has reserved but
7744 * is not known to alloc_large_system_hash().
7745 */
7746 static unsigned long __init arch_reserved_kernel_pages(void)
7747 {
7748 return 0;
7749 }
7750 #endif
7751
7752 /*
7753 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7754 * machines. As memory size is increased the scale is also increased but at
7755 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7756 * quadruples the scale is increased by one, which means the size of hash table
7757 * only doubles, instead of quadrupling as well.
7758 * Because 32-bit systems cannot have large physical memory, where this scaling
7759 * makes sense, it is disabled on such platforms.
7760 */
7761 #if __BITS_PER_LONG > 32
7762 #define ADAPT_SCALE_BASE (64ul << 30)
7763 #define ADAPT_SCALE_SHIFT 2
7764 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7765 #endif
7766
7767 /*
7768 * allocate a large system hash table from bootmem
7769 * - it is assumed that the hash table must contain an exact power-of-2
7770 * quantity of entries
7771 * - limit is the number of hash buckets, not the total allocation size
7772 */
7773 void *__init alloc_large_system_hash(const char *tablename,
7774 unsigned long bucketsize,
7775 unsigned long numentries,
7776 int scale,
7777 int flags,
7778 unsigned int *_hash_shift,
7779 unsigned int *_hash_mask,
7780 unsigned long low_limit,
7781 unsigned long high_limit)
7782 {
7783 unsigned long long max = high_limit;
7784 unsigned long log2qty, size;
7785 void *table = NULL;
7786 gfp_t gfp_flags;
7787
7788 /* allow the kernel cmdline to have a say */
7789 if (!numentries) {
7790 /* round applicable memory size up to nearest megabyte */
7791 numentries = nr_kernel_pages;
7792 numentries -= arch_reserved_kernel_pages();
7793
7794 /* It isn't necessary when PAGE_SIZE >= 1MB */
7795 if (PAGE_SHIFT < 20)
7796 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7797
7798 #if __BITS_PER_LONG > 32
7799 if (!high_limit) {
7800 unsigned long adapt;
7801
7802 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7803 adapt <<= ADAPT_SCALE_SHIFT)
7804 scale++;
7805 }
7806 #endif
7807
7808 /* limit to 1 bucket per 2^scale bytes of low memory */
7809 if (scale > PAGE_SHIFT)
7810 numentries >>= (scale - PAGE_SHIFT);
7811 else
7812 numentries <<= (PAGE_SHIFT - scale);
7813
7814 /* Make sure we've got at least a 0-order allocation.. */
7815 if (unlikely(flags & HASH_SMALL)) {
7816 /* Makes no sense without HASH_EARLY */
7817 WARN_ON(!(flags & HASH_EARLY));
7818 if (!(numentries >> *_hash_shift)) {
7819 numentries = 1UL << *_hash_shift;
7820 BUG_ON(!numentries);
7821 }
7822 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7823 numentries = PAGE_SIZE / bucketsize;
7824 }
7825 numentries = roundup_pow_of_two(numentries);
7826
7827 /* limit allocation size to 1/16 total memory by default */
7828 if (max == 0) {
7829 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7830 do_div(max, bucketsize);
7831 }
7832 max = min(max, 0x80000000ULL);
7833
7834 if (numentries < low_limit)
7835 numentries = low_limit;
7836 if (numentries > max)
7837 numentries = max;
7838
7839 log2qty = ilog2(numentries);
7840
7841 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7842 do {
7843 size = bucketsize << log2qty;
7844 if (flags & HASH_EARLY) {
7845 if (flags & HASH_ZERO)
7846 table = memblock_alloc_nopanic(size,
7847 SMP_CACHE_BYTES);
7848 else
7849 table = memblock_alloc_raw(size,
7850 SMP_CACHE_BYTES);
7851 } else if (hashdist) {
7852 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7853 } else {
7854 /*
7855 * If bucketsize is not a power-of-two, we may free
7856 * some pages at the end of hash table which
7857 * alloc_pages_exact() automatically does
7858 */
7859 if (get_order(size) < MAX_ORDER) {
7860 table = alloc_pages_exact(size, gfp_flags);
7861 kmemleak_alloc(table, size, 1, gfp_flags);
7862 }
7863 }
7864 } while (!table && size > PAGE_SIZE && --log2qty);
7865
7866 if (!table)
7867 panic("Failed to allocate %s hash table\n", tablename);
7868
7869 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7870 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7871
7872 if (_hash_shift)
7873 *_hash_shift = log2qty;
7874 if (_hash_mask)
7875 *_hash_mask = (1 << log2qty) - 1;
7876
7877 return table;
7878 }
7879
7880 /*
7881 * This function checks whether pageblock includes unmovable pages or not.
7882 * If @count is not zero, it is okay to include less @count unmovable pages
7883 *
7884 * PageLRU check without isolation or lru_lock could race so that
7885 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7886 * check without lock_page also may miss some movable non-lru pages at
7887 * race condition. So you can't expect this function should be exact.
7888 */
7889 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7890 int migratetype, int flags)
7891 {
7892 unsigned long pfn, iter, found;
7893
7894 /*
7895 * TODO we could make this much more efficient by not checking every
7896 * page in the range if we know all of them are in MOVABLE_ZONE and
7897 * that the movable zone guarantees that pages are migratable but
7898 * the later is not the case right now unfortunatelly. E.g. movablecore
7899 * can still lead to having bootmem allocations in zone_movable.
7900 */
7901
7902 /*
7903 * CMA allocations (alloc_contig_range) really need to mark isolate
7904 * CMA pageblocks even when they are not movable in fact so consider
7905 * them movable here.
7906 */
7907 if (is_migrate_cma(migratetype) &&
7908 is_migrate_cma(get_pageblock_migratetype(page)))
7909 return false;
7910
7911 pfn = page_to_pfn(page);
7912 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7913 unsigned long check = pfn + iter;
7914
7915 if (!pfn_valid_within(check))
7916 continue;
7917
7918 page = pfn_to_page(check);
7919
7920 if (PageReserved(page))
7921 goto unmovable;
7922
7923 /*
7924 * If the zone is movable and we have ruled out all reserved
7925 * pages then it should be reasonably safe to assume the rest
7926 * is movable.
7927 */
7928 if (zone_idx(zone) == ZONE_MOVABLE)
7929 continue;
7930
7931 /*
7932 * Hugepages are not in LRU lists, but they're movable.
7933 * We need not scan over tail pages bacause we don't
7934 * handle each tail page individually in migration.
7935 */
7936 if (PageHuge(page)) {
7937 struct page *head = compound_head(page);
7938 unsigned int skip_pages;
7939
7940 if (!hugepage_migration_supported(page_hstate(head)))
7941 goto unmovable;
7942
7943 skip_pages = (1 << compound_order(head)) - (page - head);
7944 iter += skip_pages - 1;
7945 continue;
7946 }
7947
7948 /*
7949 * We can't use page_count without pin a page
7950 * because another CPU can free compound page.
7951 * This check already skips compound tails of THP
7952 * because their page->_refcount is zero at all time.
7953 */
7954 if (!page_ref_count(page)) {
7955 if (PageBuddy(page))
7956 iter += (1 << page_order(page)) - 1;
7957 continue;
7958 }
7959
7960 /*
7961 * The HWPoisoned page may be not in buddy system, and
7962 * page_count() is not 0.
7963 */
7964 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
7965 continue;
7966
7967 if (__PageMovable(page))
7968 continue;
7969
7970 if (!PageLRU(page))
7971 found++;
7972 /*
7973 * If there are RECLAIMABLE pages, we need to check
7974 * it. But now, memory offline itself doesn't call
7975 * shrink_node_slabs() and it still to be fixed.
7976 */
7977 /*
7978 * If the page is not RAM, page_count()should be 0.
7979 * we don't need more check. This is an _used_ not-movable page.
7980 *
7981 * The problematic thing here is PG_reserved pages. PG_reserved
7982 * is set to both of a memory hole page and a _used_ kernel
7983 * page at boot.
7984 */
7985 if (found > count)
7986 goto unmovable;
7987 }
7988 return false;
7989 unmovable:
7990 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7991 if (flags & REPORT_FAILURE)
7992 dump_page(pfn_to_page(pfn+iter), "unmovable page");
7993 return true;
7994 }
7995
7996 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7997
7998 static unsigned long pfn_max_align_down(unsigned long pfn)
7999 {
8000 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8001 pageblock_nr_pages) - 1);
8002 }
8003
8004 static unsigned long pfn_max_align_up(unsigned long pfn)
8005 {
8006 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8007 pageblock_nr_pages));
8008 }
8009
8010 /* [start, end) must belong to a single zone. */
8011 static int __alloc_contig_migrate_range(struct compact_control *cc,
8012 unsigned long start, unsigned long end)
8013 {
8014 /* This function is based on compact_zone() from compaction.c. */
8015 unsigned long nr_reclaimed;
8016 unsigned long pfn = start;
8017 unsigned int tries = 0;
8018 int ret = 0;
8019
8020 migrate_prep();
8021
8022 while (pfn < end || !list_empty(&cc->migratepages)) {
8023 if (fatal_signal_pending(current)) {
8024 ret = -EINTR;
8025 break;
8026 }
8027
8028 if (list_empty(&cc->migratepages)) {
8029 cc->nr_migratepages = 0;
8030 pfn = isolate_migratepages_range(cc, pfn, end);
8031 if (!pfn) {
8032 ret = -EINTR;
8033 break;
8034 }
8035 tries = 0;
8036 } else if (++tries == 5) {
8037 ret = ret < 0 ? ret : -EBUSY;
8038 break;
8039 }
8040
8041 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8042 &cc->migratepages);
8043 cc->nr_migratepages -= nr_reclaimed;
8044
8045 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8046 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8047 }
8048 if (ret < 0) {
8049 putback_movable_pages(&cc->migratepages);
8050 return ret;
8051 }
8052 return 0;
8053 }
8054
8055 /**
8056 * alloc_contig_range() -- tries to allocate given range of pages
8057 * @start: start PFN to allocate
8058 * @end: one-past-the-last PFN to allocate
8059 * @migratetype: migratetype of the underlaying pageblocks (either
8060 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8061 * in range must have the same migratetype and it must
8062 * be either of the two.
8063 * @gfp_mask: GFP mask to use during compaction
8064 *
8065 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8066 * aligned. The PFN range must belong to a single zone.
8067 *
8068 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8069 * pageblocks in the range. Once isolated, the pageblocks should not
8070 * be modified by others.
8071 *
8072 * Returns zero on success or negative error code. On success all
8073 * pages which PFN is in [start, end) are allocated for the caller and
8074 * need to be freed with free_contig_range().
8075 */
8076 int alloc_contig_range(unsigned long start, unsigned long end,
8077 unsigned migratetype, gfp_t gfp_mask)
8078 {
8079 unsigned long outer_start, outer_end;
8080 unsigned int order;
8081 int ret = 0;
8082
8083 struct compact_control cc = {
8084 .nr_migratepages = 0,
8085 .order = -1,
8086 .zone = page_zone(pfn_to_page(start)),
8087 .mode = MIGRATE_SYNC,
8088 .ignore_skip_hint = true,
8089 .no_set_skip_hint = true,
8090 .gfp_mask = current_gfp_context(gfp_mask),
8091 };
8092 INIT_LIST_HEAD(&cc.migratepages);
8093
8094 /*
8095 * What we do here is we mark all pageblocks in range as
8096 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8097 * have different sizes, and due to the way page allocator
8098 * work, we align the range to biggest of the two pages so
8099 * that page allocator won't try to merge buddies from
8100 * different pageblocks and change MIGRATE_ISOLATE to some
8101 * other migration type.
8102 *
8103 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8104 * migrate the pages from an unaligned range (ie. pages that
8105 * we are interested in). This will put all the pages in
8106 * range back to page allocator as MIGRATE_ISOLATE.
8107 *
8108 * When this is done, we take the pages in range from page
8109 * allocator removing them from the buddy system. This way
8110 * page allocator will never consider using them.
8111 *
8112 * This lets us mark the pageblocks back as
8113 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8114 * aligned range but not in the unaligned, original range are
8115 * put back to page allocator so that buddy can use them.
8116 */
8117
8118 ret = start_isolate_page_range(pfn_max_align_down(start),
8119 pfn_max_align_up(end), migratetype, 0);
8120 if (ret)
8121 return ret;
8122
8123 /*
8124 * In case of -EBUSY, we'd like to know which page causes problem.
8125 * So, just fall through. test_pages_isolated() has a tracepoint
8126 * which will report the busy page.
8127 *
8128 * It is possible that busy pages could become available before
8129 * the call to test_pages_isolated, and the range will actually be
8130 * allocated. So, if we fall through be sure to clear ret so that
8131 * -EBUSY is not accidentally used or returned to caller.
8132 */
8133 ret = __alloc_contig_migrate_range(&cc, start, end);
8134 if (ret && ret != -EBUSY)
8135 goto done;
8136 ret =0;
8137
8138 /*
8139 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8140 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8141 * more, all pages in [start, end) are free in page allocator.
8142 * What we are going to do is to allocate all pages from
8143 * [start, end) (that is remove them from page allocator).
8144 *
8145 * The only problem is that pages at the beginning and at the
8146 * end of interesting range may be not aligned with pages that
8147 * page allocator holds, ie. they can be part of higher order
8148 * pages. Because of this, we reserve the bigger range and
8149 * once this is done free the pages we are not interested in.
8150 *
8151 * We don't have to hold zone->lock here because the pages are
8152 * isolated thus they won't get removed from buddy.
8153 */
8154
8155 lru_add_drain_all();
8156 drain_all_pages(cc.zone);
8157
8158 order = 0;
8159 outer_start = start;
8160 while (!PageBuddy(pfn_to_page(outer_start))) {
8161 if (++order >= MAX_ORDER) {
8162 outer_start = start;
8163 break;
8164 }
8165 outer_start &= ~0UL << order;
8166 }
8167
8168 if (outer_start != start) {
8169 order = page_order(pfn_to_page(outer_start));
8170
8171 /*
8172 * outer_start page could be small order buddy page and
8173 * it doesn't include start page. Adjust outer_start
8174 * in this case to report failed page properly
8175 * on tracepoint in test_pages_isolated()
8176 */
8177 if (outer_start + (1UL << order) <= start)
8178 outer_start = start;
8179 }
8180
8181 /* Make sure the range is really isolated. */
8182 if (test_pages_isolated(outer_start, end, false)) {
8183 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8184 __func__, outer_start, end);
8185 ret = -EBUSY;
8186 goto done;
8187 }
8188
8189 /* Grab isolated pages from freelists. */
8190 outer_end = isolate_freepages_range(&cc, outer_start, end);
8191 if (!outer_end) {
8192 ret = -EBUSY;
8193 goto done;
8194 }
8195
8196 /* Free head and tail (if any) */
8197 if (start != outer_start)
8198 free_contig_range(outer_start, start - outer_start);
8199 if (end != outer_end)
8200 free_contig_range(end, outer_end - end);
8201
8202 done:
8203 undo_isolate_page_range(pfn_max_align_down(start),
8204 pfn_max_align_up(end), migratetype);
8205 return ret;
8206 }
8207
8208 void free_contig_range(unsigned long pfn, unsigned nr_pages)
8209 {
8210 unsigned int count = 0;
8211
8212 for (; nr_pages--; pfn++) {
8213 struct page *page = pfn_to_page(pfn);
8214
8215 count += page_count(page) != 1;
8216 __free_page(page);
8217 }
8218 WARN(count != 0, "%d pages are still in use!\n", count);
8219 }
8220 #endif
8221
8222 #ifdef CONFIG_MEMORY_HOTPLUG
8223 /*
8224 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8225 * page high values need to be recalulated.
8226 */
8227 void __meminit zone_pcp_update(struct zone *zone)
8228 {
8229 unsigned cpu;
8230 mutex_lock(&pcp_batch_high_lock);
8231 for_each_possible_cpu(cpu)
8232 pageset_set_high_and_batch(zone,
8233 per_cpu_ptr(zone->pageset, cpu));
8234 mutex_unlock(&pcp_batch_high_lock);
8235 }
8236 #endif
8237
8238 void zone_pcp_reset(struct zone *zone)
8239 {
8240 unsigned long flags;
8241 int cpu;
8242 struct per_cpu_pageset *pset;
8243
8244 /* avoid races with drain_pages() */
8245 local_irq_save(flags);
8246 if (zone->pageset != &boot_pageset) {
8247 for_each_online_cpu(cpu) {
8248 pset = per_cpu_ptr(zone->pageset, cpu);
8249 drain_zonestat(zone, pset);
8250 }
8251 free_percpu(zone->pageset);
8252 zone->pageset = &boot_pageset;
8253 }
8254 local_irq_restore(flags);
8255 }
8256
8257 #ifdef CONFIG_MEMORY_HOTREMOVE
8258 /*
8259 * All pages in the range must be in a single zone and isolated
8260 * before calling this.
8261 */
8262 void
8263 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8264 {
8265 struct page *page;
8266 struct zone *zone;
8267 unsigned int order, i;
8268 unsigned long pfn;
8269 unsigned long flags;
8270 /* find the first valid pfn */
8271 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8272 if (pfn_valid(pfn))
8273 break;
8274 if (pfn == end_pfn)
8275 return;
8276 offline_mem_sections(pfn, end_pfn);
8277 zone = page_zone(pfn_to_page(pfn));
8278 spin_lock_irqsave(&zone->lock, flags);
8279 pfn = start_pfn;
8280 while (pfn < end_pfn) {
8281 if (!pfn_valid(pfn)) {
8282 pfn++;
8283 continue;
8284 }
8285 page = pfn_to_page(pfn);
8286 /*
8287 * The HWPoisoned page may be not in buddy system, and
8288 * page_count() is not 0.
8289 */
8290 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8291 pfn++;
8292 SetPageReserved(page);
8293 continue;
8294 }
8295
8296 BUG_ON(page_count(page));
8297 BUG_ON(!PageBuddy(page));
8298 order = page_order(page);
8299 #ifdef CONFIG_DEBUG_VM
8300 pr_info("remove from free list %lx %d %lx\n",
8301 pfn, 1 << order, end_pfn);
8302 #endif
8303 list_del(&page->lru);
8304 rmv_page_order(page);
8305 zone->free_area[order].nr_free--;
8306 for (i = 0; i < (1 << order); i++)
8307 SetPageReserved((page+i));
8308 pfn += (1 << order);
8309 }
8310 spin_unlock_irqrestore(&zone->lock, flags);
8311 }
8312 #endif
8313
8314 bool is_free_buddy_page(struct page *page)
8315 {
8316 struct zone *zone = page_zone(page);
8317 unsigned long pfn = page_to_pfn(page);
8318 unsigned long flags;
8319 unsigned int order;
8320
8321 spin_lock_irqsave(&zone->lock, flags);
8322 for (order = 0; order < MAX_ORDER; order++) {
8323 struct page *page_head = page - (pfn & ((1 << order) - 1));
8324
8325 if (PageBuddy(page_head) && page_order(page_head) >= order)
8326 break;
8327 }
8328 spin_unlock_irqrestore(&zone->lock, flags);
8329
8330 return order < MAX_ORDER;
8331 }
8332
8333 #ifdef CONFIG_MEMORY_FAILURE
8334 /*
8335 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8336 * test is performed under the zone lock to prevent a race against page
8337 * allocation.
8338 */
8339 bool set_hwpoison_free_buddy_page(struct page *page)
8340 {
8341 struct zone *zone = page_zone(page);
8342 unsigned long pfn = page_to_pfn(page);
8343 unsigned long flags;
8344 unsigned int order;
8345 bool hwpoisoned = false;
8346
8347 spin_lock_irqsave(&zone->lock, flags);
8348 for (order = 0; order < MAX_ORDER; order++) {
8349 struct page *page_head = page - (pfn & ((1 << order) - 1));
8350
8351 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8352 if (!TestSetPageHWPoison(page))
8353 hwpoisoned = true;
8354 break;
8355 }
8356 }
8357 spin_unlock_irqrestore(&zone->lock, flags);
8358
8359 return hwpoisoned;
8360 }
8361 #endif