]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/page_alloc.c
mm: page_alloc: generalize the dirty balance reserve
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
70
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
79
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 /*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
91
92 /*
93 * Array of node states.
94 */
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 [N_CPU] = { { [0] = 1UL } },
107 #endif /* NUMA */
108 };
109 EXPORT_SYMBOL(node_states);
110
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
113
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
117
118 int percpu_pagelist_fraction;
119 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
120
121 /*
122 * A cached value of the page's pageblock's migratetype, used when the page is
123 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
124 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
125 * Also the migratetype set in the page does not necessarily match the pcplist
126 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
127 * other index - this ensures that it will be put on the correct CMA freelist.
128 */
129 static inline int get_pcppage_migratetype(struct page *page)
130 {
131 return page->index;
132 }
133
134 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
135 {
136 page->index = migratetype;
137 }
138
139 #ifdef CONFIG_PM_SLEEP
140 /*
141 * The following functions are used by the suspend/hibernate code to temporarily
142 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
143 * while devices are suspended. To avoid races with the suspend/hibernate code,
144 * they should always be called with pm_mutex held (gfp_allowed_mask also should
145 * only be modified with pm_mutex held, unless the suspend/hibernate code is
146 * guaranteed not to run in parallel with that modification).
147 */
148
149 static gfp_t saved_gfp_mask;
150
151 void pm_restore_gfp_mask(void)
152 {
153 WARN_ON(!mutex_is_locked(&pm_mutex));
154 if (saved_gfp_mask) {
155 gfp_allowed_mask = saved_gfp_mask;
156 saved_gfp_mask = 0;
157 }
158 }
159
160 void pm_restrict_gfp_mask(void)
161 {
162 WARN_ON(!mutex_is_locked(&pm_mutex));
163 WARN_ON(saved_gfp_mask);
164 saved_gfp_mask = gfp_allowed_mask;
165 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
166 }
167
168 bool pm_suspended_storage(void)
169 {
170 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
171 return false;
172 return true;
173 }
174 #endif /* CONFIG_PM_SLEEP */
175
176 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
177 unsigned int pageblock_order __read_mostly;
178 #endif
179
180 static void __free_pages_ok(struct page *page, unsigned int order);
181
182 /*
183 * results with 256, 32 in the lowmem_reserve sysctl:
184 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
185 * 1G machine -> (16M dma, 784M normal, 224M high)
186 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
187 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
188 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
189 *
190 * TBD: should special case ZONE_DMA32 machines here - in those we normally
191 * don't need any ZONE_NORMAL reservation
192 */
193 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
194 #ifdef CONFIG_ZONE_DMA
195 256,
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 256,
199 #endif
200 #ifdef CONFIG_HIGHMEM
201 32,
202 #endif
203 32,
204 };
205
206 EXPORT_SYMBOL(totalram_pages);
207
208 static char * const zone_names[MAX_NR_ZONES] = {
209 #ifdef CONFIG_ZONE_DMA
210 "DMA",
211 #endif
212 #ifdef CONFIG_ZONE_DMA32
213 "DMA32",
214 #endif
215 "Normal",
216 #ifdef CONFIG_HIGHMEM
217 "HighMem",
218 #endif
219 "Movable",
220 #ifdef CONFIG_ZONE_DEVICE
221 "Device",
222 #endif
223 };
224
225 static void free_compound_page(struct page *page);
226 compound_page_dtor * const compound_page_dtors[] = {
227 NULL,
228 free_compound_page,
229 #ifdef CONFIG_HUGETLB_PAGE
230 free_huge_page,
231 #endif
232 };
233
234 int min_free_kbytes = 1024;
235 int user_min_free_kbytes = -1;
236
237 static unsigned long __meminitdata nr_kernel_pages;
238 static unsigned long __meminitdata nr_all_pages;
239 static unsigned long __meminitdata dma_reserve;
240
241 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
242 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
243 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
244 static unsigned long __initdata required_kernelcore;
245 static unsigned long __initdata required_movablecore;
246 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
247
248 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
249 int movable_zone;
250 EXPORT_SYMBOL(movable_zone);
251 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
252
253 #if MAX_NUMNODES > 1
254 int nr_node_ids __read_mostly = MAX_NUMNODES;
255 int nr_online_nodes __read_mostly = 1;
256 EXPORT_SYMBOL(nr_node_ids);
257 EXPORT_SYMBOL(nr_online_nodes);
258 #endif
259
260 int page_group_by_mobility_disabled __read_mostly;
261
262 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
263 static inline void reset_deferred_meminit(pg_data_t *pgdat)
264 {
265 pgdat->first_deferred_pfn = ULONG_MAX;
266 }
267
268 /* Returns true if the struct page for the pfn is uninitialised */
269 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
270 {
271 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
272 return true;
273
274 return false;
275 }
276
277 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
278 {
279 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
280 return true;
281
282 return false;
283 }
284
285 /*
286 * Returns false when the remaining initialisation should be deferred until
287 * later in the boot cycle when it can be parallelised.
288 */
289 static inline bool update_defer_init(pg_data_t *pgdat,
290 unsigned long pfn, unsigned long zone_end,
291 unsigned long *nr_initialised)
292 {
293 /* Always populate low zones for address-contrained allocations */
294 if (zone_end < pgdat_end_pfn(pgdat))
295 return true;
296
297 /* Initialise at least 2G of the highest zone */
298 (*nr_initialised)++;
299 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
300 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
301 pgdat->first_deferred_pfn = pfn;
302 return false;
303 }
304
305 return true;
306 }
307 #else
308 static inline void reset_deferred_meminit(pg_data_t *pgdat)
309 {
310 }
311
312 static inline bool early_page_uninitialised(unsigned long pfn)
313 {
314 return false;
315 }
316
317 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
318 {
319 return false;
320 }
321
322 static inline bool update_defer_init(pg_data_t *pgdat,
323 unsigned long pfn, unsigned long zone_end,
324 unsigned long *nr_initialised)
325 {
326 return true;
327 }
328 #endif
329
330
331 void set_pageblock_migratetype(struct page *page, int migratetype)
332 {
333 if (unlikely(page_group_by_mobility_disabled &&
334 migratetype < MIGRATE_PCPTYPES))
335 migratetype = MIGRATE_UNMOVABLE;
336
337 set_pageblock_flags_group(page, (unsigned long)migratetype,
338 PB_migrate, PB_migrate_end);
339 }
340
341 #ifdef CONFIG_DEBUG_VM
342 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
343 {
344 int ret = 0;
345 unsigned seq;
346 unsigned long pfn = page_to_pfn(page);
347 unsigned long sp, start_pfn;
348
349 do {
350 seq = zone_span_seqbegin(zone);
351 start_pfn = zone->zone_start_pfn;
352 sp = zone->spanned_pages;
353 if (!zone_spans_pfn(zone, pfn))
354 ret = 1;
355 } while (zone_span_seqretry(zone, seq));
356
357 if (ret)
358 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
359 pfn, zone_to_nid(zone), zone->name,
360 start_pfn, start_pfn + sp);
361
362 return ret;
363 }
364
365 static int page_is_consistent(struct zone *zone, struct page *page)
366 {
367 if (!pfn_valid_within(page_to_pfn(page)))
368 return 0;
369 if (zone != page_zone(page))
370 return 0;
371
372 return 1;
373 }
374 /*
375 * Temporary debugging check for pages not lying within a given zone.
376 */
377 static int bad_range(struct zone *zone, struct page *page)
378 {
379 if (page_outside_zone_boundaries(zone, page))
380 return 1;
381 if (!page_is_consistent(zone, page))
382 return 1;
383
384 return 0;
385 }
386 #else
387 static inline int bad_range(struct zone *zone, struct page *page)
388 {
389 return 0;
390 }
391 #endif
392
393 static void bad_page(struct page *page, const char *reason,
394 unsigned long bad_flags)
395 {
396 static unsigned long resume;
397 static unsigned long nr_shown;
398 static unsigned long nr_unshown;
399
400 /* Don't complain about poisoned pages */
401 if (PageHWPoison(page)) {
402 page_mapcount_reset(page); /* remove PageBuddy */
403 return;
404 }
405
406 /*
407 * Allow a burst of 60 reports, then keep quiet for that minute;
408 * or allow a steady drip of one report per second.
409 */
410 if (nr_shown == 60) {
411 if (time_before(jiffies, resume)) {
412 nr_unshown++;
413 goto out;
414 }
415 if (nr_unshown) {
416 printk(KERN_ALERT
417 "BUG: Bad page state: %lu messages suppressed\n",
418 nr_unshown);
419 nr_unshown = 0;
420 }
421 nr_shown = 0;
422 }
423 if (nr_shown++ == 0)
424 resume = jiffies + 60 * HZ;
425
426 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
427 current->comm, page_to_pfn(page));
428 dump_page_badflags(page, reason, bad_flags);
429
430 print_modules();
431 dump_stack();
432 out:
433 /* Leave bad fields for debug, except PageBuddy could make trouble */
434 page_mapcount_reset(page); /* remove PageBuddy */
435 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
436 }
437
438 /*
439 * Higher-order pages are called "compound pages". They are structured thusly:
440 *
441 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
442 *
443 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
444 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
445 *
446 * The first tail page's ->compound_dtor holds the offset in array of compound
447 * page destructors. See compound_page_dtors.
448 *
449 * The first tail page's ->compound_order holds the order of allocation.
450 * This usage means that zero-order pages may not be compound.
451 */
452
453 static void free_compound_page(struct page *page)
454 {
455 __free_pages_ok(page, compound_order(page));
456 }
457
458 void prep_compound_page(struct page *page, unsigned int order)
459 {
460 int i;
461 int nr_pages = 1 << order;
462
463 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
464 set_compound_order(page, order);
465 __SetPageHead(page);
466 for (i = 1; i < nr_pages; i++) {
467 struct page *p = page + i;
468 set_page_count(p, 0);
469 set_compound_head(p, page);
470 }
471 }
472
473 #ifdef CONFIG_DEBUG_PAGEALLOC
474 unsigned int _debug_guardpage_minorder;
475 bool _debug_pagealloc_enabled __read_mostly;
476 bool _debug_guardpage_enabled __read_mostly;
477
478 static int __init early_debug_pagealloc(char *buf)
479 {
480 if (!buf)
481 return -EINVAL;
482
483 if (strcmp(buf, "on") == 0)
484 _debug_pagealloc_enabled = true;
485
486 return 0;
487 }
488 early_param("debug_pagealloc", early_debug_pagealloc);
489
490 static bool need_debug_guardpage(void)
491 {
492 /* If we don't use debug_pagealloc, we don't need guard page */
493 if (!debug_pagealloc_enabled())
494 return false;
495
496 return true;
497 }
498
499 static void init_debug_guardpage(void)
500 {
501 if (!debug_pagealloc_enabled())
502 return;
503
504 _debug_guardpage_enabled = true;
505 }
506
507 struct page_ext_operations debug_guardpage_ops = {
508 .need = need_debug_guardpage,
509 .init = init_debug_guardpage,
510 };
511
512 static int __init debug_guardpage_minorder_setup(char *buf)
513 {
514 unsigned long res;
515
516 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
517 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
518 return 0;
519 }
520 _debug_guardpage_minorder = res;
521 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
522 return 0;
523 }
524 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
525
526 static inline void set_page_guard(struct zone *zone, struct page *page,
527 unsigned int order, int migratetype)
528 {
529 struct page_ext *page_ext;
530
531 if (!debug_guardpage_enabled())
532 return;
533
534 page_ext = lookup_page_ext(page);
535 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
536
537 INIT_LIST_HEAD(&page->lru);
538 set_page_private(page, order);
539 /* Guard pages are not available for any usage */
540 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
541 }
542
543 static inline void clear_page_guard(struct zone *zone, struct page *page,
544 unsigned int order, int migratetype)
545 {
546 struct page_ext *page_ext;
547
548 if (!debug_guardpage_enabled())
549 return;
550
551 page_ext = lookup_page_ext(page);
552 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
553
554 set_page_private(page, 0);
555 if (!is_migrate_isolate(migratetype))
556 __mod_zone_freepage_state(zone, (1 << order), migratetype);
557 }
558 #else
559 struct page_ext_operations debug_guardpage_ops = { NULL, };
560 static inline void set_page_guard(struct zone *zone, struct page *page,
561 unsigned int order, int migratetype) {}
562 static inline void clear_page_guard(struct zone *zone, struct page *page,
563 unsigned int order, int migratetype) {}
564 #endif
565
566 static inline void set_page_order(struct page *page, unsigned int order)
567 {
568 set_page_private(page, order);
569 __SetPageBuddy(page);
570 }
571
572 static inline void rmv_page_order(struct page *page)
573 {
574 __ClearPageBuddy(page);
575 set_page_private(page, 0);
576 }
577
578 /*
579 * This function checks whether a page is free && is the buddy
580 * we can do coalesce a page and its buddy if
581 * (a) the buddy is not in a hole &&
582 * (b) the buddy is in the buddy system &&
583 * (c) a page and its buddy have the same order &&
584 * (d) a page and its buddy are in the same zone.
585 *
586 * For recording whether a page is in the buddy system, we set ->_mapcount
587 * PAGE_BUDDY_MAPCOUNT_VALUE.
588 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
589 * serialized by zone->lock.
590 *
591 * For recording page's order, we use page_private(page).
592 */
593 static inline int page_is_buddy(struct page *page, struct page *buddy,
594 unsigned int order)
595 {
596 if (!pfn_valid_within(page_to_pfn(buddy)))
597 return 0;
598
599 if (page_is_guard(buddy) && page_order(buddy) == order) {
600 if (page_zone_id(page) != page_zone_id(buddy))
601 return 0;
602
603 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
604
605 return 1;
606 }
607
608 if (PageBuddy(buddy) && page_order(buddy) == order) {
609 /*
610 * zone check is done late to avoid uselessly
611 * calculating zone/node ids for pages that could
612 * never merge.
613 */
614 if (page_zone_id(page) != page_zone_id(buddy))
615 return 0;
616
617 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
618
619 return 1;
620 }
621 return 0;
622 }
623
624 /*
625 * Freeing function for a buddy system allocator.
626 *
627 * The concept of a buddy system is to maintain direct-mapped table
628 * (containing bit values) for memory blocks of various "orders".
629 * The bottom level table contains the map for the smallest allocatable
630 * units of memory (here, pages), and each level above it describes
631 * pairs of units from the levels below, hence, "buddies".
632 * At a high level, all that happens here is marking the table entry
633 * at the bottom level available, and propagating the changes upward
634 * as necessary, plus some accounting needed to play nicely with other
635 * parts of the VM system.
636 * At each level, we keep a list of pages, which are heads of continuous
637 * free pages of length of (1 << order) and marked with _mapcount
638 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
639 * field.
640 * So when we are allocating or freeing one, we can derive the state of the
641 * other. That is, if we allocate a small block, and both were
642 * free, the remainder of the region must be split into blocks.
643 * If a block is freed, and its buddy is also free, then this
644 * triggers coalescing into a block of larger size.
645 *
646 * -- nyc
647 */
648
649 static inline void __free_one_page(struct page *page,
650 unsigned long pfn,
651 struct zone *zone, unsigned int order,
652 int migratetype)
653 {
654 unsigned long page_idx;
655 unsigned long combined_idx;
656 unsigned long uninitialized_var(buddy_idx);
657 struct page *buddy;
658 unsigned int max_order = MAX_ORDER;
659
660 VM_BUG_ON(!zone_is_initialized(zone));
661 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
662
663 VM_BUG_ON(migratetype == -1);
664 if (is_migrate_isolate(migratetype)) {
665 /*
666 * We restrict max order of merging to prevent merge
667 * between freepages on isolate pageblock and normal
668 * pageblock. Without this, pageblock isolation
669 * could cause incorrect freepage accounting.
670 */
671 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
672 } else {
673 __mod_zone_freepage_state(zone, 1 << order, migratetype);
674 }
675
676 page_idx = pfn & ((1 << max_order) - 1);
677
678 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
679 VM_BUG_ON_PAGE(bad_range(zone, page), page);
680
681 while (order < max_order - 1) {
682 buddy_idx = __find_buddy_index(page_idx, order);
683 buddy = page + (buddy_idx - page_idx);
684 if (!page_is_buddy(page, buddy, order))
685 break;
686 /*
687 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
688 * merge with it and move up one order.
689 */
690 if (page_is_guard(buddy)) {
691 clear_page_guard(zone, buddy, order, migratetype);
692 } else {
693 list_del(&buddy->lru);
694 zone->free_area[order].nr_free--;
695 rmv_page_order(buddy);
696 }
697 combined_idx = buddy_idx & page_idx;
698 page = page + (combined_idx - page_idx);
699 page_idx = combined_idx;
700 order++;
701 }
702 set_page_order(page, order);
703
704 /*
705 * If this is not the largest possible page, check if the buddy
706 * of the next-highest order is free. If it is, it's possible
707 * that pages are being freed that will coalesce soon. In case,
708 * that is happening, add the free page to the tail of the list
709 * so it's less likely to be used soon and more likely to be merged
710 * as a higher order page
711 */
712 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
713 struct page *higher_page, *higher_buddy;
714 combined_idx = buddy_idx & page_idx;
715 higher_page = page + (combined_idx - page_idx);
716 buddy_idx = __find_buddy_index(combined_idx, order + 1);
717 higher_buddy = higher_page + (buddy_idx - combined_idx);
718 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
719 list_add_tail(&page->lru,
720 &zone->free_area[order].free_list[migratetype]);
721 goto out;
722 }
723 }
724
725 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
726 out:
727 zone->free_area[order].nr_free++;
728 }
729
730 static inline int free_pages_check(struct page *page)
731 {
732 const char *bad_reason = NULL;
733 unsigned long bad_flags = 0;
734
735 if (unlikely(page_mapcount(page)))
736 bad_reason = "nonzero mapcount";
737 if (unlikely(page->mapping != NULL))
738 bad_reason = "non-NULL mapping";
739 if (unlikely(atomic_read(&page->_count) != 0))
740 bad_reason = "nonzero _count";
741 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
742 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
743 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
744 }
745 #ifdef CONFIG_MEMCG
746 if (unlikely(page->mem_cgroup))
747 bad_reason = "page still charged to cgroup";
748 #endif
749 if (unlikely(bad_reason)) {
750 bad_page(page, bad_reason, bad_flags);
751 return 1;
752 }
753 page_cpupid_reset_last(page);
754 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
755 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
756 return 0;
757 }
758
759 /*
760 * Frees a number of pages from the PCP lists
761 * Assumes all pages on list are in same zone, and of same order.
762 * count is the number of pages to free.
763 *
764 * If the zone was previously in an "all pages pinned" state then look to
765 * see if this freeing clears that state.
766 *
767 * And clear the zone's pages_scanned counter, to hold off the "all pages are
768 * pinned" detection logic.
769 */
770 static void free_pcppages_bulk(struct zone *zone, int count,
771 struct per_cpu_pages *pcp)
772 {
773 int migratetype = 0;
774 int batch_free = 0;
775 int to_free = count;
776 unsigned long nr_scanned;
777
778 spin_lock(&zone->lock);
779 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
780 if (nr_scanned)
781 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
782
783 while (to_free) {
784 struct page *page;
785 struct list_head *list;
786
787 /*
788 * Remove pages from lists in a round-robin fashion. A
789 * batch_free count is maintained that is incremented when an
790 * empty list is encountered. This is so more pages are freed
791 * off fuller lists instead of spinning excessively around empty
792 * lists
793 */
794 do {
795 batch_free++;
796 if (++migratetype == MIGRATE_PCPTYPES)
797 migratetype = 0;
798 list = &pcp->lists[migratetype];
799 } while (list_empty(list));
800
801 /* This is the only non-empty list. Free them all. */
802 if (batch_free == MIGRATE_PCPTYPES)
803 batch_free = to_free;
804
805 do {
806 int mt; /* migratetype of the to-be-freed page */
807
808 page = list_entry(list->prev, struct page, lru);
809 /* must delete as __free_one_page list manipulates */
810 list_del(&page->lru);
811
812 mt = get_pcppage_migratetype(page);
813 /* MIGRATE_ISOLATE page should not go to pcplists */
814 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
815 /* Pageblock could have been isolated meanwhile */
816 if (unlikely(has_isolate_pageblock(zone)))
817 mt = get_pageblock_migratetype(page);
818
819 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
820 trace_mm_page_pcpu_drain(page, 0, mt);
821 } while (--to_free && --batch_free && !list_empty(list));
822 }
823 spin_unlock(&zone->lock);
824 }
825
826 static void free_one_page(struct zone *zone,
827 struct page *page, unsigned long pfn,
828 unsigned int order,
829 int migratetype)
830 {
831 unsigned long nr_scanned;
832 spin_lock(&zone->lock);
833 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
834 if (nr_scanned)
835 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
836
837 if (unlikely(has_isolate_pageblock(zone) ||
838 is_migrate_isolate(migratetype))) {
839 migratetype = get_pfnblock_migratetype(page, pfn);
840 }
841 __free_one_page(page, pfn, zone, order, migratetype);
842 spin_unlock(&zone->lock);
843 }
844
845 static int free_tail_pages_check(struct page *head_page, struct page *page)
846 {
847 int ret = 1;
848
849 /*
850 * We rely page->lru.next never has bit 0 set, unless the page
851 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
852 */
853 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
854
855 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
856 ret = 0;
857 goto out;
858 }
859 if (unlikely(!PageTail(page))) {
860 bad_page(page, "PageTail not set", 0);
861 goto out;
862 }
863 if (unlikely(compound_head(page) != head_page)) {
864 bad_page(page, "compound_head not consistent", 0);
865 goto out;
866 }
867 ret = 0;
868 out:
869 clear_compound_head(page);
870 return ret;
871 }
872
873 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
874 unsigned long zone, int nid)
875 {
876 set_page_links(page, zone, nid, pfn);
877 init_page_count(page);
878 page_mapcount_reset(page);
879 page_cpupid_reset_last(page);
880
881 INIT_LIST_HEAD(&page->lru);
882 #ifdef WANT_PAGE_VIRTUAL
883 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
884 if (!is_highmem_idx(zone))
885 set_page_address(page, __va(pfn << PAGE_SHIFT));
886 #endif
887 }
888
889 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
890 int nid)
891 {
892 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
893 }
894
895 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
896 static void init_reserved_page(unsigned long pfn)
897 {
898 pg_data_t *pgdat;
899 int nid, zid;
900
901 if (!early_page_uninitialised(pfn))
902 return;
903
904 nid = early_pfn_to_nid(pfn);
905 pgdat = NODE_DATA(nid);
906
907 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
908 struct zone *zone = &pgdat->node_zones[zid];
909
910 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
911 break;
912 }
913 __init_single_pfn(pfn, zid, nid);
914 }
915 #else
916 static inline void init_reserved_page(unsigned long pfn)
917 {
918 }
919 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
920
921 /*
922 * Initialised pages do not have PageReserved set. This function is
923 * called for each range allocated by the bootmem allocator and
924 * marks the pages PageReserved. The remaining valid pages are later
925 * sent to the buddy page allocator.
926 */
927 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
928 {
929 unsigned long start_pfn = PFN_DOWN(start);
930 unsigned long end_pfn = PFN_UP(end);
931
932 for (; start_pfn < end_pfn; start_pfn++) {
933 if (pfn_valid(start_pfn)) {
934 struct page *page = pfn_to_page(start_pfn);
935
936 init_reserved_page(start_pfn);
937
938 /* Avoid false-positive PageTail() */
939 INIT_LIST_HEAD(&page->lru);
940
941 SetPageReserved(page);
942 }
943 }
944 }
945
946 static bool free_pages_prepare(struct page *page, unsigned int order)
947 {
948 bool compound = PageCompound(page);
949 int i, bad = 0;
950
951 VM_BUG_ON_PAGE(PageTail(page), page);
952 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
953
954 trace_mm_page_free(page, order);
955 kmemcheck_free_shadow(page, order);
956 kasan_free_pages(page, order);
957
958 if (PageAnon(page))
959 page->mapping = NULL;
960 bad += free_pages_check(page);
961 for (i = 1; i < (1 << order); i++) {
962 if (compound)
963 bad += free_tail_pages_check(page, page + i);
964 bad += free_pages_check(page + i);
965 }
966 if (bad)
967 return false;
968
969 reset_page_owner(page, order);
970
971 if (!PageHighMem(page)) {
972 debug_check_no_locks_freed(page_address(page),
973 PAGE_SIZE << order);
974 debug_check_no_obj_freed(page_address(page),
975 PAGE_SIZE << order);
976 }
977 arch_free_page(page, order);
978 kernel_map_pages(page, 1 << order, 0);
979
980 return true;
981 }
982
983 static void __free_pages_ok(struct page *page, unsigned int order)
984 {
985 unsigned long flags;
986 int migratetype;
987 unsigned long pfn = page_to_pfn(page);
988
989 if (!free_pages_prepare(page, order))
990 return;
991
992 migratetype = get_pfnblock_migratetype(page, pfn);
993 local_irq_save(flags);
994 __count_vm_events(PGFREE, 1 << order);
995 free_one_page(page_zone(page), page, pfn, order, migratetype);
996 local_irq_restore(flags);
997 }
998
999 static void __init __free_pages_boot_core(struct page *page,
1000 unsigned long pfn, unsigned int order)
1001 {
1002 unsigned int nr_pages = 1 << order;
1003 struct page *p = page;
1004 unsigned int loop;
1005
1006 prefetchw(p);
1007 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1008 prefetchw(p + 1);
1009 __ClearPageReserved(p);
1010 set_page_count(p, 0);
1011 }
1012 __ClearPageReserved(p);
1013 set_page_count(p, 0);
1014
1015 page_zone(page)->managed_pages += nr_pages;
1016 set_page_refcounted(page);
1017 __free_pages(page, order);
1018 }
1019
1020 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1021 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1022
1023 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1024
1025 int __meminit early_pfn_to_nid(unsigned long pfn)
1026 {
1027 static DEFINE_SPINLOCK(early_pfn_lock);
1028 int nid;
1029
1030 spin_lock(&early_pfn_lock);
1031 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1032 if (nid < 0)
1033 nid = 0;
1034 spin_unlock(&early_pfn_lock);
1035
1036 return nid;
1037 }
1038 #endif
1039
1040 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1041 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1042 struct mminit_pfnnid_cache *state)
1043 {
1044 int nid;
1045
1046 nid = __early_pfn_to_nid(pfn, state);
1047 if (nid >= 0 && nid != node)
1048 return false;
1049 return true;
1050 }
1051
1052 /* Only safe to use early in boot when initialisation is single-threaded */
1053 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1054 {
1055 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1056 }
1057
1058 #else
1059
1060 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1061 {
1062 return true;
1063 }
1064 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1065 struct mminit_pfnnid_cache *state)
1066 {
1067 return true;
1068 }
1069 #endif
1070
1071
1072 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1073 unsigned int order)
1074 {
1075 if (early_page_uninitialised(pfn))
1076 return;
1077 return __free_pages_boot_core(page, pfn, order);
1078 }
1079
1080 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1081 static void __init deferred_free_range(struct page *page,
1082 unsigned long pfn, int nr_pages)
1083 {
1084 int i;
1085
1086 if (!page)
1087 return;
1088
1089 /* Free a large naturally-aligned chunk if possible */
1090 if (nr_pages == MAX_ORDER_NR_PAGES &&
1091 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1092 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1093 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1094 return;
1095 }
1096
1097 for (i = 0; i < nr_pages; i++, page++, pfn++)
1098 __free_pages_boot_core(page, pfn, 0);
1099 }
1100
1101 /* Completion tracking for deferred_init_memmap() threads */
1102 static atomic_t pgdat_init_n_undone __initdata;
1103 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1104
1105 static inline void __init pgdat_init_report_one_done(void)
1106 {
1107 if (atomic_dec_and_test(&pgdat_init_n_undone))
1108 complete(&pgdat_init_all_done_comp);
1109 }
1110
1111 /* Initialise remaining memory on a node */
1112 static int __init deferred_init_memmap(void *data)
1113 {
1114 pg_data_t *pgdat = data;
1115 int nid = pgdat->node_id;
1116 struct mminit_pfnnid_cache nid_init_state = { };
1117 unsigned long start = jiffies;
1118 unsigned long nr_pages = 0;
1119 unsigned long walk_start, walk_end;
1120 int i, zid;
1121 struct zone *zone;
1122 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1123 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1124
1125 if (first_init_pfn == ULONG_MAX) {
1126 pgdat_init_report_one_done();
1127 return 0;
1128 }
1129
1130 /* Bind memory initialisation thread to a local node if possible */
1131 if (!cpumask_empty(cpumask))
1132 set_cpus_allowed_ptr(current, cpumask);
1133
1134 /* Sanity check boundaries */
1135 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1136 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1137 pgdat->first_deferred_pfn = ULONG_MAX;
1138
1139 /* Only the highest zone is deferred so find it */
1140 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1141 zone = pgdat->node_zones + zid;
1142 if (first_init_pfn < zone_end_pfn(zone))
1143 break;
1144 }
1145
1146 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1147 unsigned long pfn, end_pfn;
1148 struct page *page = NULL;
1149 struct page *free_base_page = NULL;
1150 unsigned long free_base_pfn = 0;
1151 int nr_to_free = 0;
1152
1153 end_pfn = min(walk_end, zone_end_pfn(zone));
1154 pfn = first_init_pfn;
1155 if (pfn < walk_start)
1156 pfn = walk_start;
1157 if (pfn < zone->zone_start_pfn)
1158 pfn = zone->zone_start_pfn;
1159
1160 for (; pfn < end_pfn; pfn++) {
1161 if (!pfn_valid_within(pfn))
1162 goto free_range;
1163
1164 /*
1165 * Ensure pfn_valid is checked every
1166 * MAX_ORDER_NR_PAGES for memory holes
1167 */
1168 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1169 if (!pfn_valid(pfn)) {
1170 page = NULL;
1171 goto free_range;
1172 }
1173 }
1174
1175 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1176 page = NULL;
1177 goto free_range;
1178 }
1179
1180 /* Minimise pfn page lookups and scheduler checks */
1181 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1182 page++;
1183 } else {
1184 nr_pages += nr_to_free;
1185 deferred_free_range(free_base_page,
1186 free_base_pfn, nr_to_free);
1187 free_base_page = NULL;
1188 free_base_pfn = nr_to_free = 0;
1189
1190 page = pfn_to_page(pfn);
1191 cond_resched();
1192 }
1193
1194 if (page->flags) {
1195 VM_BUG_ON(page_zone(page) != zone);
1196 goto free_range;
1197 }
1198
1199 __init_single_page(page, pfn, zid, nid);
1200 if (!free_base_page) {
1201 free_base_page = page;
1202 free_base_pfn = pfn;
1203 nr_to_free = 0;
1204 }
1205 nr_to_free++;
1206
1207 /* Where possible, batch up pages for a single free */
1208 continue;
1209 free_range:
1210 /* Free the current block of pages to allocator */
1211 nr_pages += nr_to_free;
1212 deferred_free_range(free_base_page, free_base_pfn,
1213 nr_to_free);
1214 free_base_page = NULL;
1215 free_base_pfn = nr_to_free = 0;
1216 }
1217
1218 first_init_pfn = max(end_pfn, first_init_pfn);
1219 }
1220
1221 /* Sanity check that the next zone really is unpopulated */
1222 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1223
1224 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1225 jiffies_to_msecs(jiffies - start));
1226
1227 pgdat_init_report_one_done();
1228 return 0;
1229 }
1230
1231 void __init page_alloc_init_late(void)
1232 {
1233 int nid;
1234
1235 /* There will be num_node_state(N_MEMORY) threads */
1236 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1237 for_each_node_state(nid, N_MEMORY) {
1238 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1239 }
1240
1241 /* Block until all are initialised */
1242 wait_for_completion(&pgdat_init_all_done_comp);
1243
1244 /* Reinit limits that are based on free pages after the kernel is up */
1245 files_maxfiles_init();
1246 }
1247 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1248
1249 #ifdef CONFIG_CMA
1250 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1251 void __init init_cma_reserved_pageblock(struct page *page)
1252 {
1253 unsigned i = pageblock_nr_pages;
1254 struct page *p = page;
1255
1256 do {
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
1259 } while (++p, --i);
1260
1261 set_pageblock_migratetype(page, MIGRATE_CMA);
1262
1263 if (pageblock_order >= MAX_ORDER) {
1264 i = pageblock_nr_pages;
1265 p = page;
1266 do {
1267 set_page_refcounted(p);
1268 __free_pages(p, MAX_ORDER - 1);
1269 p += MAX_ORDER_NR_PAGES;
1270 } while (i -= MAX_ORDER_NR_PAGES);
1271 } else {
1272 set_page_refcounted(page);
1273 __free_pages(page, pageblock_order);
1274 }
1275
1276 adjust_managed_page_count(page, pageblock_nr_pages);
1277 }
1278 #endif
1279
1280 /*
1281 * The order of subdivision here is critical for the IO subsystem.
1282 * Please do not alter this order without good reasons and regression
1283 * testing. Specifically, as large blocks of memory are subdivided,
1284 * the order in which smaller blocks are delivered depends on the order
1285 * they're subdivided in this function. This is the primary factor
1286 * influencing the order in which pages are delivered to the IO
1287 * subsystem according to empirical testing, and this is also justified
1288 * by considering the behavior of a buddy system containing a single
1289 * large block of memory acted on by a series of small allocations.
1290 * This behavior is a critical factor in sglist merging's success.
1291 *
1292 * -- nyc
1293 */
1294 static inline void expand(struct zone *zone, struct page *page,
1295 int low, int high, struct free_area *area,
1296 int migratetype)
1297 {
1298 unsigned long size = 1 << high;
1299
1300 while (high > low) {
1301 area--;
1302 high--;
1303 size >>= 1;
1304 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1305
1306 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1307 debug_guardpage_enabled() &&
1308 high < debug_guardpage_minorder()) {
1309 /*
1310 * Mark as guard pages (or page), that will allow to
1311 * merge back to allocator when buddy will be freed.
1312 * Corresponding page table entries will not be touched,
1313 * pages will stay not present in virtual address space
1314 */
1315 set_page_guard(zone, &page[size], high, migratetype);
1316 continue;
1317 }
1318 list_add(&page[size].lru, &area->free_list[migratetype]);
1319 area->nr_free++;
1320 set_page_order(&page[size], high);
1321 }
1322 }
1323
1324 /*
1325 * This page is about to be returned from the page allocator
1326 */
1327 static inline int check_new_page(struct page *page)
1328 {
1329 const char *bad_reason = NULL;
1330 unsigned long bad_flags = 0;
1331
1332 if (unlikely(page_mapcount(page)))
1333 bad_reason = "nonzero mapcount";
1334 if (unlikely(page->mapping != NULL))
1335 bad_reason = "non-NULL mapping";
1336 if (unlikely(atomic_read(&page->_count) != 0))
1337 bad_reason = "nonzero _count";
1338 if (unlikely(page->flags & __PG_HWPOISON)) {
1339 bad_reason = "HWPoisoned (hardware-corrupted)";
1340 bad_flags = __PG_HWPOISON;
1341 }
1342 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1343 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1344 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1345 }
1346 #ifdef CONFIG_MEMCG
1347 if (unlikely(page->mem_cgroup))
1348 bad_reason = "page still charged to cgroup";
1349 #endif
1350 if (unlikely(bad_reason)) {
1351 bad_page(page, bad_reason, bad_flags);
1352 return 1;
1353 }
1354 return 0;
1355 }
1356
1357 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1358 int alloc_flags)
1359 {
1360 int i;
1361
1362 for (i = 0; i < (1 << order); i++) {
1363 struct page *p = page + i;
1364 if (unlikely(check_new_page(p)))
1365 return 1;
1366 }
1367
1368 set_page_private(page, 0);
1369 set_page_refcounted(page);
1370
1371 arch_alloc_page(page, order);
1372 kernel_map_pages(page, 1 << order, 1);
1373 kasan_alloc_pages(page, order);
1374
1375 if (gfp_flags & __GFP_ZERO)
1376 for (i = 0; i < (1 << order); i++)
1377 clear_highpage(page + i);
1378
1379 if (order && (gfp_flags & __GFP_COMP))
1380 prep_compound_page(page, order);
1381
1382 set_page_owner(page, order, gfp_flags);
1383
1384 /*
1385 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1386 * allocate the page. The expectation is that the caller is taking
1387 * steps that will free more memory. The caller should avoid the page
1388 * being used for !PFMEMALLOC purposes.
1389 */
1390 if (alloc_flags & ALLOC_NO_WATERMARKS)
1391 set_page_pfmemalloc(page);
1392 else
1393 clear_page_pfmemalloc(page);
1394
1395 return 0;
1396 }
1397
1398 /*
1399 * Go through the free lists for the given migratetype and remove
1400 * the smallest available page from the freelists
1401 */
1402 static inline
1403 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1404 int migratetype)
1405 {
1406 unsigned int current_order;
1407 struct free_area *area;
1408 struct page *page;
1409
1410 /* Find a page of the appropriate size in the preferred list */
1411 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1412 area = &(zone->free_area[current_order]);
1413 if (list_empty(&area->free_list[migratetype]))
1414 continue;
1415
1416 page = list_entry(area->free_list[migratetype].next,
1417 struct page, lru);
1418 list_del(&page->lru);
1419 rmv_page_order(page);
1420 area->nr_free--;
1421 expand(zone, page, order, current_order, area, migratetype);
1422 set_pcppage_migratetype(page, migratetype);
1423 return page;
1424 }
1425
1426 return NULL;
1427 }
1428
1429
1430 /*
1431 * This array describes the order lists are fallen back to when
1432 * the free lists for the desirable migrate type are depleted
1433 */
1434 static int fallbacks[MIGRATE_TYPES][4] = {
1435 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1436 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1437 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1438 #ifdef CONFIG_CMA
1439 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1440 #endif
1441 #ifdef CONFIG_MEMORY_ISOLATION
1442 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1443 #endif
1444 };
1445
1446 #ifdef CONFIG_CMA
1447 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1448 unsigned int order)
1449 {
1450 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1451 }
1452 #else
1453 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1454 unsigned int order) { return NULL; }
1455 #endif
1456
1457 /*
1458 * Move the free pages in a range to the free lists of the requested type.
1459 * Note that start_page and end_pages are not aligned on a pageblock
1460 * boundary. If alignment is required, use move_freepages_block()
1461 */
1462 int move_freepages(struct zone *zone,
1463 struct page *start_page, struct page *end_page,
1464 int migratetype)
1465 {
1466 struct page *page;
1467 unsigned int order;
1468 int pages_moved = 0;
1469
1470 #ifndef CONFIG_HOLES_IN_ZONE
1471 /*
1472 * page_zone is not safe to call in this context when
1473 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1474 * anyway as we check zone boundaries in move_freepages_block().
1475 * Remove at a later date when no bug reports exist related to
1476 * grouping pages by mobility
1477 */
1478 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1479 #endif
1480
1481 for (page = start_page; page <= end_page;) {
1482 /* Make sure we are not inadvertently changing nodes */
1483 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1484
1485 if (!pfn_valid_within(page_to_pfn(page))) {
1486 page++;
1487 continue;
1488 }
1489
1490 if (!PageBuddy(page)) {
1491 page++;
1492 continue;
1493 }
1494
1495 order = page_order(page);
1496 list_move(&page->lru,
1497 &zone->free_area[order].free_list[migratetype]);
1498 page += 1 << order;
1499 pages_moved += 1 << order;
1500 }
1501
1502 return pages_moved;
1503 }
1504
1505 int move_freepages_block(struct zone *zone, struct page *page,
1506 int migratetype)
1507 {
1508 unsigned long start_pfn, end_pfn;
1509 struct page *start_page, *end_page;
1510
1511 start_pfn = page_to_pfn(page);
1512 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1513 start_page = pfn_to_page(start_pfn);
1514 end_page = start_page + pageblock_nr_pages - 1;
1515 end_pfn = start_pfn + pageblock_nr_pages - 1;
1516
1517 /* Do not cross zone boundaries */
1518 if (!zone_spans_pfn(zone, start_pfn))
1519 start_page = page;
1520 if (!zone_spans_pfn(zone, end_pfn))
1521 return 0;
1522
1523 return move_freepages(zone, start_page, end_page, migratetype);
1524 }
1525
1526 static void change_pageblock_range(struct page *pageblock_page,
1527 int start_order, int migratetype)
1528 {
1529 int nr_pageblocks = 1 << (start_order - pageblock_order);
1530
1531 while (nr_pageblocks--) {
1532 set_pageblock_migratetype(pageblock_page, migratetype);
1533 pageblock_page += pageblock_nr_pages;
1534 }
1535 }
1536
1537 /*
1538 * When we are falling back to another migratetype during allocation, try to
1539 * steal extra free pages from the same pageblocks to satisfy further
1540 * allocations, instead of polluting multiple pageblocks.
1541 *
1542 * If we are stealing a relatively large buddy page, it is likely there will
1543 * be more free pages in the pageblock, so try to steal them all. For
1544 * reclaimable and unmovable allocations, we steal regardless of page size,
1545 * as fragmentation caused by those allocations polluting movable pageblocks
1546 * is worse than movable allocations stealing from unmovable and reclaimable
1547 * pageblocks.
1548 */
1549 static bool can_steal_fallback(unsigned int order, int start_mt)
1550 {
1551 /*
1552 * Leaving this order check is intended, although there is
1553 * relaxed order check in next check. The reason is that
1554 * we can actually steal whole pageblock if this condition met,
1555 * but, below check doesn't guarantee it and that is just heuristic
1556 * so could be changed anytime.
1557 */
1558 if (order >= pageblock_order)
1559 return true;
1560
1561 if (order >= pageblock_order / 2 ||
1562 start_mt == MIGRATE_RECLAIMABLE ||
1563 start_mt == MIGRATE_UNMOVABLE ||
1564 page_group_by_mobility_disabled)
1565 return true;
1566
1567 return false;
1568 }
1569
1570 /*
1571 * This function implements actual steal behaviour. If order is large enough,
1572 * we can steal whole pageblock. If not, we first move freepages in this
1573 * pageblock and check whether half of pages are moved or not. If half of
1574 * pages are moved, we can change migratetype of pageblock and permanently
1575 * use it's pages as requested migratetype in the future.
1576 */
1577 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1578 int start_type)
1579 {
1580 unsigned int current_order = page_order(page);
1581 int pages;
1582
1583 /* Take ownership for orders >= pageblock_order */
1584 if (current_order >= pageblock_order) {
1585 change_pageblock_range(page, current_order, start_type);
1586 return;
1587 }
1588
1589 pages = move_freepages_block(zone, page, start_type);
1590
1591 /* Claim the whole block if over half of it is free */
1592 if (pages >= (1 << (pageblock_order-1)) ||
1593 page_group_by_mobility_disabled)
1594 set_pageblock_migratetype(page, start_type);
1595 }
1596
1597 /*
1598 * Check whether there is a suitable fallback freepage with requested order.
1599 * If only_stealable is true, this function returns fallback_mt only if
1600 * we can steal other freepages all together. This would help to reduce
1601 * fragmentation due to mixed migratetype pages in one pageblock.
1602 */
1603 int find_suitable_fallback(struct free_area *area, unsigned int order,
1604 int migratetype, bool only_stealable, bool *can_steal)
1605 {
1606 int i;
1607 int fallback_mt;
1608
1609 if (area->nr_free == 0)
1610 return -1;
1611
1612 *can_steal = false;
1613 for (i = 0;; i++) {
1614 fallback_mt = fallbacks[migratetype][i];
1615 if (fallback_mt == MIGRATE_TYPES)
1616 break;
1617
1618 if (list_empty(&area->free_list[fallback_mt]))
1619 continue;
1620
1621 if (can_steal_fallback(order, migratetype))
1622 *can_steal = true;
1623
1624 if (!only_stealable)
1625 return fallback_mt;
1626
1627 if (*can_steal)
1628 return fallback_mt;
1629 }
1630
1631 return -1;
1632 }
1633
1634 /*
1635 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1636 * there are no empty page blocks that contain a page with a suitable order
1637 */
1638 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1639 unsigned int alloc_order)
1640 {
1641 int mt;
1642 unsigned long max_managed, flags;
1643
1644 /*
1645 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1646 * Check is race-prone but harmless.
1647 */
1648 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1649 if (zone->nr_reserved_highatomic >= max_managed)
1650 return;
1651
1652 spin_lock_irqsave(&zone->lock, flags);
1653
1654 /* Recheck the nr_reserved_highatomic limit under the lock */
1655 if (zone->nr_reserved_highatomic >= max_managed)
1656 goto out_unlock;
1657
1658 /* Yoink! */
1659 mt = get_pageblock_migratetype(page);
1660 if (mt != MIGRATE_HIGHATOMIC &&
1661 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1662 zone->nr_reserved_highatomic += pageblock_nr_pages;
1663 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1664 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1665 }
1666
1667 out_unlock:
1668 spin_unlock_irqrestore(&zone->lock, flags);
1669 }
1670
1671 /*
1672 * Used when an allocation is about to fail under memory pressure. This
1673 * potentially hurts the reliability of high-order allocations when under
1674 * intense memory pressure but failed atomic allocations should be easier
1675 * to recover from than an OOM.
1676 */
1677 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1678 {
1679 struct zonelist *zonelist = ac->zonelist;
1680 unsigned long flags;
1681 struct zoneref *z;
1682 struct zone *zone;
1683 struct page *page;
1684 int order;
1685
1686 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1687 ac->nodemask) {
1688 /* Preserve at least one pageblock */
1689 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1690 continue;
1691
1692 spin_lock_irqsave(&zone->lock, flags);
1693 for (order = 0; order < MAX_ORDER; order++) {
1694 struct free_area *area = &(zone->free_area[order]);
1695
1696 if (list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
1697 continue;
1698
1699 page = list_entry(area->free_list[MIGRATE_HIGHATOMIC].next,
1700 struct page, lru);
1701
1702 /*
1703 * It should never happen but changes to locking could
1704 * inadvertently allow a per-cpu drain to add pages
1705 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1706 * and watch for underflows.
1707 */
1708 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1709 zone->nr_reserved_highatomic);
1710
1711 /*
1712 * Convert to ac->migratetype and avoid the normal
1713 * pageblock stealing heuristics. Minimally, the caller
1714 * is doing the work and needs the pages. More
1715 * importantly, if the block was always converted to
1716 * MIGRATE_UNMOVABLE or another type then the number
1717 * of pageblocks that cannot be completely freed
1718 * may increase.
1719 */
1720 set_pageblock_migratetype(page, ac->migratetype);
1721 move_freepages_block(zone, page, ac->migratetype);
1722 spin_unlock_irqrestore(&zone->lock, flags);
1723 return;
1724 }
1725 spin_unlock_irqrestore(&zone->lock, flags);
1726 }
1727 }
1728
1729 /* Remove an element from the buddy allocator from the fallback list */
1730 static inline struct page *
1731 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1732 {
1733 struct free_area *area;
1734 unsigned int current_order;
1735 struct page *page;
1736 int fallback_mt;
1737 bool can_steal;
1738
1739 /* Find the largest possible block of pages in the other list */
1740 for (current_order = MAX_ORDER-1;
1741 current_order >= order && current_order <= MAX_ORDER-1;
1742 --current_order) {
1743 area = &(zone->free_area[current_order]);
1744 fallback_mt = find_suitable_fallback(area, current_order,
1745 start_migratetype, false, &can_steal);
1746 if (fallback_mt == -1)
1747 continue;
1748
1749 page = list_entry(area->free_list[fallback_mt].next,
1750 struct page, lru);
1751 if (can_steal)
1752 steal_suitable_fallback(zone, page, start_migratetype);
1753
1754 /* Remove the page from the freelists */
1755 area->nr_free--;
1756 list_del(&page->lru);
1757 rmv_page_order(page);
1758
1759 expand(zone, page, order, current_order, area,
1760 start_migratetype);
1761 /*
1762 * The pcppage_migratetype may differ from pageblock's
1763 * migratetype depending on the decisions in
1764 * find_suitable_fallback(). This is OK as long as it does not
1765 * differ for MIGRATE_CMA pageblocks. Those can be used as
1766 * fallback only via special __rmqueue_cma_fallback() function
1767 */
1768 set_pcppage_migratetype(page, start_migratetype);
1769
1770 trace_mm_page_alloc_extfrag(page, order, current_order,
1771 start_migratetype, fallback_mt);
1772
1773 return page;
1774 }
1775
1776 return NULL;
1777 }
1778
1779 /*
1780 * Do the hard work of removing an element from the buddy allocator.
1781 * Call me with the zone->lock already held.
1782 */
1783 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1784 int migratetype, gfp_t gfp_flags)
1785 {
1786 struct page *page;
1787
1788 page = __rmqueue_smallest(zone, order, migratetype);
1789 if (unlikely(!page)) {
1790 if (migratetype == MIGRATE_MOVABLE)
1791 page = __rmqueue_cma_fallback(zone, order);
1792
1793 if (!page)
1794 page = __rmqueue_fallback(zone, order, migratetype);
1795 }
1796
1797 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1798 return page;
1799 }
1800
1801 /*
1802 * Obtain a specified number of elements from the buddy allocator, all under
1803 * a single hold of the lock, for efficiency. Add them to the supplied list.
1804 * Returns the number of new pages which were placed at *list.
1805 */
1806 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1807 unsigned long count, struct list_head *list,
1808 int migratetype, bool cold)
1809 {
1810 int i;
1811
1812 spin_lock(&zone->lock);
1813 for (i = 0; i < count; ++i) {
1814 struct page *page = __rmqueue(zone, order, migratetype, 0);
1815 if (unlikely(page == NULL))
1816 break;
1817
1818 /*
1819 * Split buddy pages returned by expand() are received here
1820 * in physical page order. The page is added to the callers and
1821 * list and the list head then moves forward. From the callers
1822 * perspective, the linked list is ordered by page number in
1823 * some conditions. This is useful for IO devices that can
1824 * merge IO requests if the physical pages are ordered
1825 * properly.
1826 */
1827 if (likely(!cold))
1828 list_add(&page->lru, list);
1829 else
1830 list_add_tail(&page->lru, list);
1831 list = &page->lru;
1832 if (is_migrate_cma(get_pcppage_migratetype(page)))
1833 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1834 -(1 << order));
1835 }
1836 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1837 spin_unlock(&zone->lock);
1838 return i;
1839 }
1840
1841 #ifdef CONFIG_NUMA
1842 /*
1843 * Called from the vmstat counter updater to drain pagesets of this
1844 * currently executing processor on remote nodes after they have
1845 * expired.
1846 *
1847 * Note that this function must be called with the thread pinned to
1848 * a single processor.
1849 */
1850 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1851 {
1852 unsigned long flags;
1853 int to_drain, batch;
1854
1855 local_irq_save(flags);
1856 batch = READ_ONCE(pcp->batch);
1857 to_drain = min(pcp->count, batch);
1858 if (to_drain > 0) {
1859 free_pcppages_bulk(zone, to_drain, pcp);
1860 pcp->count -= to_drain;
1861 }
1862 local_irq_restore(flags);
1863 }
1864 #endif
1865
1866 /*
1867 * Drain pcplists of the indicated processor and zone.
1868 *
1869 * The processor must either be the current processor and the
1870 * thread pinned to the current processor or a processor that
1871 * is not online.
1872 */
1873 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1874 {
1875 unsigned long flags;
1876 struct per_cpu_pageset *pset;
1877 struct per_cpu_pages *pcp;
1878
1879 local_irq_save(flags);
1880 pset = per_cpu_ptr(zone->pageset, cpu);
1881
1882 pcp = &pset->pcp;
1883 if (pcp->count) {
1884 free_pcppages_bulk(zone, pcp->count, pcp);
1885 pcp->count = 0;
1886 }
1887 local_irq_restore(flags);
1888 }
1889
1890 /*
1891 * Drain pcplists of all zones on the indicated processor.
1892 *
1893 * The processor must either be the current processor and the
1894 * thread pinned to the current processor or a processor that
1895 * is not online.
1896 */
1897 static void drain_pages(unsigned int cpu)
1898 {
1899 struct zone *zone;
1900
1901 for_each_populated_zone(zone) {
1902 drain_pages_zone(cpu, zone);
1903 }
1904 }
1905
1906 /*
1907 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1908 *
1909 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1910 * the single zone's pages.
1911 */
1912 void drain_local_pages(struct zone *zone)
1913 {
1914 int cpu = smp_processor_id();
1915
1916 if (zone)
1917 drain_pages_zone(cpu, zone);
1918 else
1919 drain_pages(cpu);
1920 }
1921
1922 /*
1923 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1924 *
1925 * When zone parameter is non-NULL, spill just the single zone's pages.
1926 *
1927 * Note that this code is protected against sending an IPI to an offline
1928 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1929 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1930 * nothing keeps CPUs from showing up after we populated the cpumask and
1931 * before the call to on_each_cpu_mask().
1932 */
1933 void drain_all_pages(struct zone *zone)
1934 {
1935 int cpu;
1936
1937 /*
1938 * Allocate in the BSS so we wont require allocation in
1939 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1940 */
1941 static cpumask_t cpus_with_pcps;
1942
1943 /*
1944 * We don't care about racing with CPU hotplug event
1945 * as offline notification will cause the notified
1946 * cpu to drain that CPU pcps and on_each_cpu_mask
1947 * disables preemption as part of its processing
1948 */
1949 for_each_online_cpu(cpu) {
1950 struct per_cpu_pageset *pcp;
1951 struct zone *z;
1952 bool has_pcps = false;
1953
1954 if (zone) {
1955 pcp = per_cpu_ptr(zone->pageset, cpu);
1956 if (pcp->pcp.count)
1957 has_pcps = true;
1958 } else {
1959 for_each_populated_zone(z) {
1960 pcp = per_cpu_ptr(z->pageset, cpu);
1961 if (pcp->pcp.count) {
1962 has_pcps = true;
1963 break;
1964 }
1965 }
1966 }
1967
1968 if (has_pcps)
1969 cpumask_set_cpu(cpu, &cpus_with_pcps);
1970 else
1971 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1972 }
1973 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1974 zone, 1);
1975 }
1976
1977 #ifdef CONFIG_HIBERNATION
1978
1979 void mark_free_pages(struct zone *zone)
1980 {
1981 unsigned long pfn, max_zone_pfn;
1982 unsigned long flags;
1983 unsigned int order, t;
1984 struct list_head *curr;
1985
1986 if (zone_is_empty(zone))
1987 return;
1988
1989 spin_lock_irqsave(&zone->lock, flags);
1990
1991 max_zone_pfn = zone_end_pfn(zone);
1992 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1993 if (pfn_valid(pfn)) {
1994 struct page *page = pfn_to_page(pfn);
1995
1996 if (!swsusp_page_is_forbidden(page))
1997 swsusp_unset_page_free(page);
1998 }
1999
2000 for_each_migratetype_order(order, t) {
2001 list_for_each(curr, &zone->free_area[order].free_list[t]) {
2002 unsigned long i;
2003
2004 pfn = page_to_pfn(list_entry(curr, struct page, lru));
2005 for (i = 0; i < (1UL << order); i++)
2006 swsusp_set_page_free(pfn_to_page(pfn + i));
2007 }
2008 }
2009 spin_unlock_irqrestore(&zone->lock, flags);
2010 }
2011 #endif /* CONFIG_PM */
2012
2013 /*
2014 * Free a 0-order page
2015 * cold == true ? free a cold page : free a hot page
2016 */
2017 void free_hot_cold_page(struct page *page, bool cold)
2018 {
2019 struct zone *zone = page_zone(page);
2020 struct per_cpu_pages *pcp;
2021 unsigned long flags;
2022 unsigned long pfn = page_to_pfn(page);
2023 int migratetype;
2024
2025 if (!free_pages_prepare(page, 0))
2026 return;
2027
2028 migratetype = get_pfnblock_migratetype(page, pfn);
2029 set_pcppage_migratetype(page, migratetype);
2030 local_irq_save(flags);
2031 __count_vm_event(PGFREE);
2032
2033 /*
2034 * We only track unmovable, reclaimable and movable on pcp lists.
2035 * Free ISOLATE pages back to the allocator because they are being
2036 * offlined but treat RESERVE as movable pages so we can get those
2037 * areas back if necessary. Otherwise, we may have to free
2038 * excessively into the page allocator
2039 */
2040 if (migratetype >= MIGRATE_PCPTYPES) {
2041 if (unlikely(is_migrate_isolate(migratetype))) {
2042 free_one_page(zone, page, pfn, 0, migratetype);
2043 goto out;
2044 }
2045 migratetype = MIGRATE_MOVABLE;
2046 }
2047
2048 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2049 if (!cold)
2050 list_add(&page->lru, &pcp->lists[migratetype]);
2051 else
2052 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2053 pcp->count++;
2054 if (pcp->count >= pcp->high) {
2055 unsigned long batch = READ_ONCE(pcp->batch);
2056 free_pcppages_bulk(zone, batch, pcp);
2057 pcp->count -= batch;
2058 }
2059
2060 out:
2061 local_irq_restore(flags);
2062 }
2063
2064 /*
2065 * Free a list of 0-order pages
2066 */
2067 void free_hot_cold_page_list(struct list_head *list, bool cold)
2068 {
2069 struct page *page, *next;
2070
2071 list_for_each_entry_safe(page, next, list, lru) {
2072 trace_mm_page_free_batched(page, cold);
2073 free_hot_cold_page(page, cold);
2074 }
2075 }
2076
2077 /*
2078 * split_page takes a non-compound higher-order page, and splits it into
2079 * n (1<<order) sub-pages: page[0..n]
2080 * Each sub-page must be freed individually.
2081 *
2082 * Note: this is probably too low level an operation for use in drivers.
2083 * Please consult with lkml before using this in your driver.
2084 */
2085 void split_page(struct page *page, unsigned int order)
2086 {
2087 int i;
2088 gfp_t gfp_mask;
2089
2090 VM_BUG_ON_PAGE(PageCompound(page), page);
2091 VM_BUG_ON_PAGE(!page_count(page), page);
2092
2093 #ifdef CONFIG_KMEMCHECK
2094 /*
2095 * Split shadow pages too, because free(page[0]) would
2096 * otherwise free the whole shadow.
2097 */
2098 if (kmemcheck_page_is_tracked(page))
2099 split_page(virt_to_page(page[0].shadow), order);
2100 #endif
2101
2102 gfp_mask = get_page_owner_gfp(page);
2103 set_page_owner(page, 0, gfp_mask);
2104 for (i = 1; i < (1 << order); i++) {
2105 set_page_refcounted(page + i);
2106 set_page_owner(page + i, 0, gfp_mask);
2107 }
2108 }
2109 EXPORT_SYMBOL_GPL(split_page);
2110
2111 int __isolate_free_page(struct page *page, unsigned int order)
2112 {
2113 unsigned long watermark;
2114 struct zone *zone;
2115 int mt;
2116
2117 BUG_ON(!PageBuddy(page));
2118
2119 zone = page_zone(page);
2120 mt = get_pageblock_migratetype(page);
2121
2122 if (!is_migrate_isolate(mt)) {
2123 /* Obey watermarks as if the page was being allocated */
2124 watermark = low_wmark_pages(zone) + (1 << order);
2125 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2126 return 0;
2127
2128 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2129 }
2130
2131 /* Remove page from free list */
2132 list_del(&page->lru);
2133 zone->free_area[order].nr_free--;
2134 rmv_page_order(page);
2135
2136 set_page_owner(page, order, __GFP_MOVABLE);
2137
2138 /* Set the pageblock if the isolated page is at least a pageblock */
2139 if (order >= pageblock_order - 1) {
2140 struct page *endpage = page + (1 << order) - 1;
2141 for (; page < endpage; page += pageblock_nr_pages) {
2142 int mt = get_pageblock_migratetype(page);
2143 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2144 set_pageblock_migratetype(page,
2145 MIGRATE_MOVABLE);
2146 }
2147 }
2148
2149
2150 return 1UL << order;
2151 }
2152
2153 /*
2154 * Similar to split_page except the page is already free. As this is only
2155 * being used for migration, the migratetype of the block also changes.
2156 * As this is called with interrupts disabled, the caller is responsible
2157 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2158 * are enabled.
2159 *
2160 * Note: this is probably too low level an operation for use in drivers.
2161 * Please consult with lkml before using this in your driver.
2162 */
2163 int split_free_page(struct page *page)
2164 {
2165 unsigned int order;
2166 int nr_pages;
2167
2168 order = page_order(page);
2169
2170 nr_pages = __isolate_free_page(page, order);
2171 if (!nr_pages)
2172 return 0;
2173
2174 /* Split into individual pages */
2175 set_page_refcounted(page);
2176 split_page(page, order);
2177 return nr_pages;
2178 }
2179
2180 /*
2181 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2182 */
2183 static inline
2184 struct page *buffered_rmqueue(struct zone *preferred_zone,
2185 struct zone *zone, unsigned int order,
2186 gfp_t gfp_flags, int alloc_flags, int migratetype)
2187 {
2188 unsigned long flags;
2189 struct page *page;
2190 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2191
2192 if (likely(order == 0)) {
2193 struct per_cpu_pages *pcp;
2194 struct list_head *list;
2195
2196 local_irq_save(flags);
2197 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2198 list = &pcp->lists[migratetype];
2199 if (list_empty(list)) {
2200 pcp->count += rmqueue_bulk(zone, 0,
2201 pcp->batch, list,
2202 migratetype, cold);
2203 if (unlikely(list_empty(list)))
2204 goto failed;
2205 }
2206
2207 if (cold)
2208 page = list_entry(list->prev, struct page, lru);
2209 else
2210 page = list_entry(list->next, struct page, lru);
2211
2212 list_del(&page->lru);
2213 pcp->count--;
2214 } else {
2215 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2216 /*
2217 * __GFP_NOFAIL is not to be used in new code.
2218 *
2219 * All __GFP_NOFAIL callers should be fixed so that they
2220 * properly detect and handle allocation failures.
2221 *
2222 * We most definitely don't want callers attempting to
2223 * allocate greater than order-1 page units with
2224 * __GFP_NOFAIL.
2225 */
2226 WARN_ON_ONCE(order > 1);
2227 }
2228 spin_lock_irqsave(&zone->lock, flags);
2229
2230 page = NULL;
2231 if (alloc_flags & ALLOC_HARDER) {
2232 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2233 if (page)
2234 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2235 }
2236 if (!page)
2237 page = __rmqueue(zone, order, migratetype, gfp_flags);
2238 spin_unlock(&zone->lock);
2239 if (!page)
2240 goto failed;
2241 __mod_zone_freepage_state(zone, -(1 << order),
2242 get_pcppage_migratetype(page));
2243 }
2244
2245 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2246 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2247 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2248 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2249
2250 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2251 zone_statistics(preferred_zone, zone, gfp_flags);
2252 local_irq_restore(flags);
2253
2254 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2255 return page;
2256
2257 failed:
2258 local_irq_restore(flags);
2259 return NULL;
2260 }
2261
2262 #ifdef CONFIG_FAIL_PAGE_ALLOC
2263
2264 static struct {
2265 struct fault_attr attr;
2266
2267 bool ignore_gfp_highmem;
2268 bool ignore_gfp_reclaim;
2269 u32 min_order;
2270 } fail_page_alloc = {
2271 .attr = FAULT_ATTR_INITIALIZER,
2272 .ignore_gfp_reclaim = true,
2273 .ignore_gfp_highmem = true,
2274 .min_order = 1,
2275 };
2276
2277 static int __init setup_fail_page_alloc(char *str)
2278 {
2279 return setup_fault_attr(&fail_page_alloc.attr, str);
2280 }
2281 __setup("fail_page_alloc=", setup_fail_page_alloc);
2282
2283 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2284 {
2285 if (order < fail_page_alloc.min_order)
2286 return false;
2287 if (gfp_mask & __GFP_NOFAIL)
2288 return false;
2289 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2290 return false;
2291 if (fail_page_alloc.ignore_gfp_reclaim &&
2292 (gfp_mask & __GFP_DIRECT_RECLAIM))
2293 return false;
2294
2295 return should_fail(&fail_page_alloc.attr, 1 << order);
2296 }
2297
2298 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2299
2300 static int __init fail_page_alloc_debugfs(void)
2301 {
2302 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2303 struct dentry *dir;
2304
2305 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2306 &fail_page_alloc.attr);
2307 if (IS_ERR(dir))
2308 return PTR_ERR(dir);
2309
2310 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2311 &fail_page_alloc.ignore_gfp_reclaim))
2312 goto fail;
2313 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2314 &fail_page_alloc.ignore_gfp_highmem))
2315 goto fail;
2316 if (!debugfs_create_u32("min-order", mode, dir,
2317 &fail_page_alloc.min_order))
2318 goto fail;
2319
2320 return 0;
2321 fail:
2322 debugfs_remove_recursive(dir);
2323
2324 return -ENOMEM;
2325 }
2326
2327 late_initcall(fail_page_alloc_debugfs);
2328
2329 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2330
2331 #else /* CONFIG_FAIL_PAGE_ALLOC */
2332
2333 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2334 {
2335 return false;
2336 }
2337
2338 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2339
2340 /*
2341 * Return true if free base pages are above 'mark'. For high-order checks it
2342 * will return true of the order-0 watermark is reached and there is at least
2343 * one free page of a suitable size. Checking now avoids taking the zone lock
2344 * to check in the allocation paths if no pages are free.
2345 */
2346 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2347 unsigned long mark, int classzone_idx, int alloc_flags,
2348 long free_pages)
2349 {
2350 long min = mark;
2351 int o;
2352 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2353
2354 /* free_pages may go negative - that's OK */
2355 free_pages -= (1 << order) - 1;
2356
2357 if (alloc_flags & ALLOC_HIGH)
2358 min -= min / 2;
2359
2360 /*
2361 * If the caller does not have rights to ALLOC_HARDER then subtract
2362 * the high-atomic reserves. This will over-estimate the size of the
2363 * atomic reserve but it avoids a search.
2364 */
2365 if (likely(!alloc_harder))
2366 free_pages -= z->nr_reserved_highatomic;
2367 else
2368 min -= min / 4;
2369
2370 #ifdef CONFIG_CMA
2371 /* If allocation can't use CMA areas don't use free CMA pages */
2372 if (!(alloc_flags & ALLOC_CMA))
2373 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2374 #endif
2375
2376 /*
2377 * Check watermarks for an order-0 allocation request. If these
2378 * are not met, then a high-order request also cannot go ahead
2379 * even if a suitable page happened to be free.
2380 */
2381 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2382 return false;
2383
2384 /* If this is an order-0 request then the watermark is fine */
2385 if (!order)
2386 return true;
2387
2388 /* For a high-order request, check at least one suitable page is free */
2389 for (o = order; o < MAX_ORDER; o++) {
2390 struct free_area *area = &z->free_area[o];
2391 int mt;
2392
2393 if (!area->nr_free)
2394 continue;
2395
2396 if (alloc_harder)
2397 return true;
2398
2399 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2400 if (!list_empty(&area->free_list[mt]))
2401 return true;
2402 }
2403
2404 #ifdef CONFIG_CMA
2405 if ((alloc_flags & ALLOC_CMA) &&
2406 !list_empty(&area->free_list[MIGRATE_CMA])) {
2407 return true;
2408 }
2409 #endif
2410 }
2411 return false;
2412 }
2413
2414 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2415 int classzone_idx, int alloc_flags)
2416 {
2417 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2418 zone_page_state(z, NR_FREE_PAGES));
2419 }
2420
2421 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2422 unsigned long mark, int classzone_idx)
2423 {
2424 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2425
2426 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2427 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2428
2429 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2430 free_pages);
2431 }
2432
2433 #ifdef CONFIG_NUMA
2434 static bool zone_local(struct zone *local_zone, struct zone *zone)
2435 {
2436 return local_zone->node == zone->node;
2437 }
2438
2439 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2440 {
2441 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2442 RECLAIM_DISTANCE;
2443 }
2444 #else /* CONFIG_NUMA */
2445 static bool zone_local(struct zone *local_zone, struct zone *zone)
2446 {
2447 return true;
2448 }
2449
2450 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2451 {
2452 return true;
2453 }
2454 #endif /* CONFIG_NUMA */
2455
2456 static void reset_alloc_batches(struct zone *preferred_zone)
2457 {
2458 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2459
2460 do {
2461 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2462 high_wmark_pages(zone) - low_wmark_pages(zone) -
2463 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2464 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2465 } while (zone++ != preferred_zone);
2466 }
2467
2468 /*
2469 * get_page_from_freelist goes through the zonelist trying to allocate
2470 * a page.
2471 */
2472 static struct page *
2473 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2474 const struct alloc_context *ac)
2475 {
2476 struct zonelist *zonelist = ac->zonelist;
2477 struct zoneref *z;
2478 struct page *page = NULL;
2479 struct zone *zone;
2480 int nr_fair_skipped = 0;
2481 bool zonelist_rescan;
2482
2483 zonelist_scan:
2484 zonelist_rescan = false;
2485
2486 /*
2487 * Scan zonelist, looking for a zone with enough free.
2488 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2489 */
2490 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2491 ac->nodemask) {
2492 unsigned long mark;
2493
2494 if (cpusets_enabled() &&
2495 (alloc_flags & ALLOC_CPUSET) &&
2496 !cpuset_zone_allowed(zone, gfp_mask))
2497 continue;
2498 /*
2499 * Distribute pages in proportion to the individual
2500 * zone size to ensure fair page aging. The zone a
2501 * page was allocated in should have no effect on the
2502 * time the page has in memory before being reclaimed.
2503 */
2504 if (alloc_flags & ALLOC_FAIR) {
2505 if (!zone_local(ac->preferred_zone, zone))
2506 break;
2507 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2508 nr_fair_skipped++;
2509 continue;
2510 }
2511 }
2512 /*
2513 * When allocating a page cache page for writing, we
2514 * want to get it from a zone that is within its dirty
2515 * limit, such that no single zone holds more than its
2516 * proportional share of globally allowed dirty pages.
2517 * The dirty limits take into account the zone's
2518 * lowmem reserves and high watermark so that kswapd
2519 * should be able to balance it without having to
2520 * write pages from its LRU list.
2521 *
2522 * This may look like it could increase pressure on
2523 * lower zones by failing allocations in higher zones
2524 * before they are full. But the pages that do spill
2525 * over are limited as the lower zones are protected
2526 * by this very same mechanism. It should not become
2527 * a practical burden to them.
2528 *
2529 * XXX: For now, allow allocations to potentially
2530 * exceed the per-zone dirty limit in the slowpath
2531 * (spread_dirty_pages unset) before going into reclaim,
2532 * which is important when on a NUMA setup the allowed
2533 * zones are together not big enough to reach the
2534 * global limit. The proper fix for these situations
2535 * will require awareness of zones in the
2536 * dirty-throttling and the flusher threads.
2537 */
2538 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2539 continue;
2540
2541 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2542 if (!zone_watermark_ok(zone, order, mark,
2543 ac->classzone_idx, alloc_flags)) {
2544 int ret;
2545
2546 /* Checked here to keep the fast path fast */
2547 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2548 if (alloc_flags & ALLOC_NO_WATERMARKS)
2549 goto try_this_zone;
2550
2551 if (zone_reclaim_mode == 0 ||
2552 !zone_allows_reclaim(ac->preferred_zone, zone))
2553 continue;
2554
2555 ret = zone_reclaim(zone, gfp_mask, order);
2556 switch (ret) {
2557 case ZONE_RECLAIM_NOSCAN:
2558 /* did not scan */
2559 continue;
2560 case ZONE_RECLAIM_FULL:
2561 /* scanned but unreclaimable */
2562 continue;
2563 default:
2564 /* did we reclaim enough */
2565 if (zone_watermark_ok(zone, order, mark,
2566 ac->classzone_idx, alloc_flags))
2567 goto try_this_zone;
2568
2569 continue;
2570 }
2571 }
2572
2573 try_this_zone:
2574 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2575 gfp_mask, alloc_flags, ac->migratetype);
2576 if (page) {
2577 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2578 goto try_this_zone;
2579
2580 /*
2581 * If this is a high-order atomic allocation then check
2582 * if the pageblock should be reserved for the future
2583 */
2584 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2585 reserve_highatomic_pageblock(page, zone, order);
2586
2587 return page;
2588 }
2589 }
2590
2591 /*
2592 * The first pass makes sure allocations are spread fairly within the
2593 * local node. However, the local node might have free pages left
2594 * after the fairness batches are exhausted, and remote zones haven't
2595 * even been considered yet. Try once more without fairness, and
2596 * include remote zones now, before entering the slowpath and waking
2597 * kswapd: prefer spilling to a remote zone over swapping locally.
2598 */
2599 if (alloc_flags & ALLOC_FAIR) {
2600 alloc_flags &= ~ALLOC_FAIR;
2601 if (nr_fair_skipped) {
2602 zonelist_rescan = true;
2603 reset_alloc_batches(ac->preferred_zone);
2604 }
2605 if (nr_online_nodes > 1)
2606 zonelist_rescan = true;
2607 }
2608
2609 if (zonelist_rescan)
2610 goto zonelist_scan;
2611
2612 return NULL;
2613 }
2614
2615 /*
2616 * Large machines with many possible nodes should not always dump per-node
2617 * meminfo in irq context.
2618 */
2619 static inline bool should_suppress_show_mem(void)
2620 {
2621 bool ret = false;
2622
2623 #if NODES_SHIFT > 8
2624 ret = in_interrupt();
2625 #endif
2626 return ret;
2627 }
2628
2629 static DEFINE_RATELIMIT_STATE(nopage_rs,
2630 DEFAULT_RATELIMIT_INTERVAL,
2631 DEFAULT_RATELIMIT_BURST);
2632
2633 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2634 {
2635 unsigned int filter = SHOW_MEM_FILTER_NODES;
2636
2637 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2638 debug_guardpage_minorder() > 0)
2639 return;
2640
2641 /*
2642 * This documents exceptions given to allocations in certain
2643 * contexts that are allowed to allocate outside current's set
2644 * of allowed nodes.
2645 */
2646 if (!(gfp_mask & __GFP_NOMEMALLOC))
2647 if (test_thread_flag(TIF_MEMDIE) ||
2648 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2649 filter &= ~SHOW_MEM_FILTER_NODES;
2650 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2651 filter &= ~SHOW_MEM_FILTER_NODES;
2652
2653 if (fmt) {
2654 struct va_format vaf;
2655 va_list args;
2656
2657 va_start(args, fmt);
2658
2659 vaf.fmt = fmt;
2660 vaf.va = &args;
2661
2662 pr_warn("%pV", &vaf);
2663
2664 va_end(args);
2665 }
2666
2667 pr_warn("%s: page allocation failure: order:%u, mode:0x%x\n",
2668 current->comm, order, gfp_mask);
2669
2670 dump_stack();
2671 if (!should_suppress_show_mem())
2672 show_mem(filter);
2673 }
2674
2675 static inline struct page *
2676 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2677 const struct alloc_context *ac, unsigned long *did_some_progress)
2678 {
2679 struct oom_control oc = {
2680 .zonelist = ac->zonelist,
2681 .nodemask = ac->nodemask,
2682 .gfp_mask = gfp_mask,
2683 .order = order,
2684 };
2685 struct page *page;
2686
2687 *did_some_progress = 0;
2688
2689 /*
2690 * Acquire the oom lock. If that fails, somebody else is
2691 * making progress for us.
2692 */
2693 if (!mutex_trylock(&oom_lock)) {
2694 *did_some_progress = 1;
2695 schedule_timeout_uninterruptible(1);
2696 return NULL;
2697 }
2698
2699 /*
2700 * Go through the zonelist yet one more time, keep very high watermark
2701 * here, this is only to catch a parallel oom killing, we must fail if
2702 * we're still under heavy pressure.
2703 */
2704 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2705 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2706 if (page)
2707 goto out;
2708
2709 if (!(gfp_mask & __GFP_NOFAIL)) {
2710 /* Coredumps can quickly deplete all memory reserves */
2711 if (current->flags & PF_DUMPCORE)
2712 goto out;
2713 /* The OOM killer will not help higher order allocs */
2714 if (order > PAGE_ALLOC_COSTLY_ORDER)
2715 goto out;
2716 /* The OOM killer does not needlessly kill tasks for lowmem */
2717 if (ac->high_zoneidx < ZONE_NORMAL)
2718 goto out;
2719 /* The OOM killer does not compensate for IO-less reclaim */
2720 if (!(gfp_mask & __GFP_FS)) {
2721 /*
2722 * XXX: Page reclaim didn't yield anything,
2723 * and the OOM killer can't be invoked, but
2724 * keep looping as per tradition.
2725 */
2726 *did_some_progress = 1;
2727 goto out;
2728 }
2729 if (pm_suspended_storage())
2730 goto out;
2731 /* The OOM killer may not free memory on a specific node */
2732 if (gfp_mask & __GFP_THISNODE)
2733 goto out;
2734 }
2735 /* Exhausted what can be done so it's blamo time */
2736 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2737 *did_some_progress = 1;
2738 out:
2739 mutex_unlock(&oom_lock);
2740 return page;
2741 }
2742
2743 #ifdef CONFIG_COMPACTION
2744 /* Try memory compaction for high-order allocations before reclaim */
2745 static struct page *
2746 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2747 int alloc_flags, const struct alloc_context *ac,
2748 enum migrate_mode mode, int *contended_compaction,
2749 bool *deferred_compaction)
2750 {
2751 unsigned long compact_result;
2752 struct page *page;
2753
2754 if (!order)
2755 return NULL;
2756
2757 current->flags |= PF_MEMALLOC;
2758 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2759 mode, contended_compaction);
2760 current->flags &= ~PF_MEMALLOC;
2761
2762 switch (compact_result) {
2763 case COMPACT_DEFERRED:
2764 *deferred_compaction = true;
2765 /* fall-through */
2766 case COMPACT_SKIPPED:
2767 return NULL;
2768 default:
2769 break;
2770 }
2771
2772 /*
2773 * At least in one zone compaction wasn't deferred or skipped, so let's
2774 * count a compaction stall
2775 */
2776 count_vm_event(COMPACTSTALL);
2777
2778 page = get_page_from_freelist(gfp_mask, order,
2779 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2780
2781 if (page) {
2782 struct zone *zone = page_zone(page);
2783
2784 zone->compact_blockskip_flush = false;
2785 compaction_defer_reset(zone, order, true);
2786 count_vm_event(COMPACTSUCCESS);
2787 return page;
2788 }
2789
2790 /*
2791 * It's bad if compaction run occurs and fails. The most likely reason
2792 * is that pages exist, but not enough to satisfy watermarks.
2793 */
2794 count_vm_event(COMPACTFAIL);
2795
2796 cond_resched();
2797
2798 return NULL;
2799 }
2800 #else
2801 static inline struct page *
2802 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2803 int alloc_flags, const struct alloc_context *ac,
2804 enum migrate_mode mode, int *contended_compaction,
2805 bool *deferred_compaction)
2806 {
2807 return NULL;
2808 }
2809 #endif /* CONFIG_COMPACTION */
2810
2811 /* Perform direct synchronous page reclaim */
2812 static int
2813 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2814 const struct alloc_context *ac)
2815 {
2816 struct reclaim_state reclaim_state;
2817 int progress;
2818
2819 cond_resched();
2820
2821 /* We now go into synchronous reclaim */
2822 cpuset_memory_pressure_bump();
2823 current->flags |= PF_MEMALLOC;
2824 lockdep_set_current_reclaim_state(gfp_mask);
2825 reclaim_state.reclaimed_slab = 0;
2826 current->reclaim_state = &reclaim_state;
2827
2828 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2829 ac->nodemask);
2830
2831 current->reclaim_state = NULL;
2832 lockdep_clear_current_reclaim_state();
2833 current->flags &= ~PF_MEMALLOC;
2834
2835 cond_resched();
2836
2837 return progress;
2838 }
2839
2840 /* The really slow allocator path where we enter direct reclaim */
2841 static inline struct page *
2842 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2843 int alloc_flags, const struct alloc_context *ac,
2844 unsigned long *did_some_progress)
2845 {
2846 struct page *page = NULL;
2847 bool drained = false;
2848
2849 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2850 if (unlikely(!(*did_some_progress)))
2851 return NULL;
2852
2853 retry:
2854 page = get_page_from_freelist(gfp_mask, order,
2855 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2856
2857 /*
2858 * If an allocation failed after direct reclaim, it could be because
2859 * pages are pinned on the per-cpu lists or in high alloc reserves.
2860 * Shrink them them and try again
2861 */
2862 if (!page && !drained) {
2863 unreserve_highatomic_pageblock(ac);
2864 drain_all_pages(NULL);
2865 drained = true;
2866 goto retry;
2867 }
2868
2869 return page;
2870 }
2871
2872 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2873 {
2874 struct zoneref *z;
2875 struct zone *zone;
2876
2877 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2878 ac->high_zoneidx, ac->nodemask)
2879 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2880 }
2881
2882 static inline int
2883 gfp_to_alloc_flags(gfp_t gfp_mask)
2884 {
2885 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2886
2887 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2888 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2889
2890 /*
2891 * The caller may dip into page reserves a bit more if the caller
2892 * cannot run direct reclaim, or if the caller has realtime scheduling
2893 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2894 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
2895 */
2896 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2897
2898 if (gfp_mask & __GFP_ATOMIC) {
2899 /*
2900 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2901 * if it can't schedule.
2902 */
2903 if (!(gfp_mask & __GFP_NOMEMALLOC))
2904 alloc_flags |= ALLOC_HARDER;
2905 /*
2906 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2907 * comment for __cpuset_node_allowed().
2908 */
2909 alloc_flags &= ~ALLOC_CPUSET;
2910 } else if (unlikely(rt_task(current)) && !in_interrupt())
2911 alloc_flags |= ALLOC_HARDER;
2912
2913 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2914 if (gfp_mask & __GFP_MEMALLOC)
2915 alloc_flags |= ALLOC_NO_WATERMARKS;
2916 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2917 alloc_flags |= ALLOC_NO_WATERMARKS;
2918 else if (!in_interrupt() &&
2919 ((current->flags & PF_MEMALLOC) ||
2920 unlikely(test_thread_flag(TIF_MEMDIE))))
2921 alloc_flags |= ALLOC_NO_WATERMARKS;
2922 }
2923 #ifdef CONFIG_CMA
2924 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2925 alloc_flags |= ALLOC_CMA;
2926 #endif
2927 return alloc_flags;
2928 }
2929
2930 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2931 {
2932 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2933 }
2934
2935 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
2936 {
2937 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
2938 }
2939
2940 static inline struct page *
2941 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2942 struct alloc_context *ac)
2943 {
2944 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
2945 struct page *page = NULL;
2946 int alloc_flags;
2947 unsigned long pages_reclaimed = 0;
2948 unsigned long did_some_progress;
2949 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2950 bool deferred_compaction = false;
2951 int contended_compaction = COMPACT_CONTENDED_NONE;
2952
2953 /*
2954 * In the slowpath, we sanity check order to avoid ever trying to
2955 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2956 * be using allocators in order of preference for an area that is
2957 * too large.
2958 */
2959 if (order >= MAX_ORDER) {
2960 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2961 return NULL;
2962 }
2963
2964 /*
2965 * We also sanity check to catch abuse of atomic reserves being used by
2966 * callers that are not in atomic context.
2967 */
2968 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
2969 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
2970 gfp_mask &= ~__GFP_ATOMIC;
2971
2972 /*
2973 * If this allocation cannot block and it is for a specific node, then
2974 * fail early. There's no need to wakeup kswapd or retry for a
2975 * speculative node-specific allocation.
2976 */
2977 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !can_direct_reclaim)
2978 goto nopage;
2979
2980 retry:
2981 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
2982 wake_all_kswapds(order, ac);
2983
2984 /*
2985 * OK, we're below the kswapd watermark and have kicked background
2986 * reclaim. Now things get more complex, so set up alloc_flags according
2987 * to how we want to proceed.
2988 */
2989 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2990
2991 /*
2992 * Find the true preferred zone if the allocation is unconstrained by
2993 * cpusets.
2994 */
2995 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
2996 struct zoneref *preferred_zoneref;
2997 preferred_zoneref = first_zones_zonelist(ac->zonelist,
2998 ac->high_zoneidx, NULL, &ac->preferred_zone);
2999 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3000 }
3001
3002 /* This is the last chance, in general, before the goto nopage. */
3003 page = get_page_from_freelist(gfp_mask, order,
3004 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3005 if (page)
3006 goto got_pg;
3007
3008 /* Allocate without watermarks if the context allows */
3009 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3010 /*
3011 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3012 * the allocation is high priority and these type of
3013 * allocations are system rather than user orientated
3014 */
3015 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3016 page = get_page_from_freelist(gfp_mask, order,
3017 ALLOC_NO_WATERMARKS, ac);
3018 if (page)
3019 goto got_pg;
3020 }
3021
3022 /* Caller is not willing to reclaim, we can't balance anything */
3023 if (!can_direct_reclaim) {
3024 /*
3025 * All existing users of the __GFP_NOFAIL are blockable, so warn
3026 * of any new users that actually allow this type of allocation
3027 * to fail.
3028 */
3029 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3030 goto nopage;
3031 }
3032
3033 /* Avoid recursion of direct reclaim */
3034 if (current->flags & PF_MEMALLOC) {
3035 /*
3036 * __GFP_NOFAIL request from this context is rather bizarre
3037 * because we cannot reclaim anything and only can loop waiting
3038 * for somebody to do a work for us.
3039 */
3040 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3041 cond_resched();
3042 goto retry;
3043 }
3044 goto nopage;
3045 }
3046
3047 /* Avoid allocations with no watermarks from looping endlessly */
3048 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3049 goto nopage;
3050
3051 /*
3052 * Try direct compaction. The first pass is asynchronous. Subsequent
3053 * attempts after direct reclaim are synchronous
3054 */
3055 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3056 migration_mode,
3057 &contended_compaction,
3058 &deferred_compaction);
3059 if (page)
3060 goto got_pg;
3061
3062 /* Checks for THP-specific high-order allocations */
3063 if (is_thp_gfp_mask(gfp_mask)) {
3064 /*
3065 * If compaction is deferred for high-order allocations, it is
3066 * because sync compaction recently failed. If this is the case
3067 * and the caller requested a THP allocation, we do not want
3068 * to heavily disrupt the system, so we fail the allocation
3069 * instead of entering direct reclaim.
3070 */
3071 if (deferred_compaction)
3072 goto nopage;
3073
3074 /*
3075 * In all zones where compaction was attempted (and not
3076 * deferred or skipped), lock contention has been detected.
3077 * For THP allocation we do not want to disrupt the others
3078 * so we fallback to base pages instead.
3079 */
3080 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3081 goto nopage;
3082
3083 /*
3084 * If compaction was aborted due to need_resched(), we do not
3085 * want to further increase allocation latency, unless it is
3086 * khugepaged trying to collapse.
3087 */
3088 if (contended_compaction == COMPACT_CONTENDED_SCHED
3089 && !(current->flags & PF_KTHREAD))
3090 goto nopage;
3091 }
3092
3093 /*
3094 * It can become very expensive to allocate transparent hugepages at
3095 * fault, so use asynchronous memory compaction for THP unless it is
3096 * khugepaged trying to collapse.
3097 */
3098 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3099 migration_mode = MIGRATE_SYNC_LIGHT;
3100
3101 /* Try direct reclaim and then allocating */
3102 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3103 &did_some_progress);
3104 if (page)
3105 goto got_pg;
3106
3107 /* Do not loop if specifically requested */
3108 if (gfp_mask & __GFP_NORETRY)
3109 goto noretry;
3110
3111 /* Keep reclaiming pages as long as there is reasonable progress */
3112 pages_reclaimed += did_some_progress;
3113 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3114 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3115 /* Wait for some write requests to complete then retry */
3116 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3117 goto retry;
3118 }
3119
3120 /* Reclaim has failed us, start killing things */
3121 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3122 if (page)
3123 goto got_pg;
3124
3125 /* Retry as long as the OOM killer is making progress */
3126 if (did_some_progress)
3127 goto retry;
3128
3129 noretry:
3130 /*
3131 * High-order allocations do not necessarily loop after
3132 * direct reclaim and reclaim/compaction depends on compaction
3133 * being called after reclaim so call directly if necessary
3134 */
3135 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3136 ac, migration_mode,
3137 &contended_compaction,
3138 &deferred_compaction);
3139 if (page)
3140 goto got_pg;
3141 nopage:
3142 warn_alloc_failed(gfp_mask, order, NULL);
3143 got_pg:
3144 return page;
3145 }
3146
3147 /*
3148 * This is the 'heart' of the zoned buddy allocator.
3149 */
3150 struct page *
3151 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3152 struct zonelist *zonelist, nodemask_t *nodemask)
3153 {
3154 struct zoneref *preferred_zoneref;
3155 struct page *page = NULL;
3156 unsigned int cpuset_mems_cookie;
3157 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3158 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3159 struct alloc_context ac = {
3160 .high_zoneidx = gfp_zone(gfp_mask),
3161 .nodemask = nodemask,
3162 .migratetype = gfpflags_to_migratetype(gfp_mask),
3163 };
3164
3165 gfp_mask &= gfp_allowed_mask;
3166
3167 lockdep_trace_alloc(gfp_mask);
3168
3169 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3170
3171 if (should_fail_alloc_page(gfp_mask, order))
3172 return NULL;
3173
3174 /*
3175 * Check the zones suitable for the gfp_mask contain at least one
3176 * valid zone. It's possible to have an empty zonelist as a result
3177 * of __GFP_THISNODE and a memoryless node
3178 */
3179 if (unlikely(!zonelist->_zonerefs->zone))
3180 return NULL;
3181
3182 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3183 alloc_flags |= ALLOC_CMA;
3184
3185 retry_cpuset:
3186 cpuset_mems_cookie = read_mems_allowed_begin();
3187
3188 /* We set it here, as __alloc_pages_slowpath might have changed it */
3189 ac.zonelist = zonelist;
3190
3191 /* Dirty zone balancing only done in the fast path */
3192 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3193
3194 /* The preferred zone is used for statistics later */
3195 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3196 ac.nodemask ? : &cpuset_current_mems_allowed,
3197 &ac.preferred_zone);
3198 if (!ac.preferred_zone)
3199 goto out;
3200 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3201
3202 /* First allocation attempt */
3203 alloc_mask = gfp_mask|__GFP_HARDWALL;
3204 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3205 if (unlikely(!page)) {
3206 /*
3207 * Runtime PM, block IO and its error handling path
3208 * can deadlock because I/O on the device might not
3209 * complete.
3210 */
3211 alloc_mask = memalloc_noio_flags(gfp_mask);
3212 ac.spread_dirty_pages = false;
3213
3214 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3215 }
3216
3217 if (kmemcheck_enabled && page)
3218 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3219
3220 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3221
3222 out:
3223 /*
3224 * When updating a task's mems_allowed, it is possible to race with
3225 * parallel threads in such a way that an allocation can fail while
3226 * the mask is being updated. If a page allocation is about to fail,
3227 * check if the cpuset changed during allocation and if so, retry.
3228 */
3229 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3230 goto retry_cpuset;
3231
3232 return page;
3233 }
3234 EXPORT_SYMBOL(__alloc_pages_nodemask);
3235
3236 /*
3237 * Common helper functions.
3238 */
3239 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3240 {
3241 struct page *page;
3242
3243 /*
3244 * __get_free_pages() returns a 32-bit address, which cannot represent
3245 * a highmem page
3246 */
3247 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3248
3249 page = alloc_pages(gfp_mask, order);
3250 if (!page)
3251 return 0;
3252 return (unsigned long) page_address(page);
3253 }
3254 EXPORT_SYMBOL(__get_free_pages);
3255
3256 unsigned long get_zeroed_page(gfp_t gfp_mask)
3257 {
3258 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3259 }
3260 EXPORT_SYMBOL(get_zeroed_page);
3261
3262 void __free_pages(struct page *page, unsigned int order)
3263 {
3264 if (put_page_testzero(page)) {
3265 if (order == 0)
3266 free_hot_cold_page(page, false);
3267 else
3268 __free_pages_ok(page, order);
3269 }
3270 }
3271
3272 EXPORT_SYMBOL(__free_pages);
3273
3274 void free_pages(unsigned long addr, unsigned int order)
3275 {
3276 if (addr != 0) {
3277 VM_BUG_ON(!virt_addr_valid((void *)addr));
3278 __free_pages(virt_to_page((void *)addr), order);
3279 }
3280 }
3281
3282 EXPORT_SYMBOL(free_pages);
3283
3284 /*
3285 * Page Fragment:
3286 * An arbitrary-length arbitrary-offset area of memory which resides
3287 * within a 0 or higher order page. Multiple fragments within that page
3288 * are individually refcounted, in the page's reference counter.
3289 *
3290 * The page_frag functions below provide a simple allocation framework for
3291 * page fragments. This is used by the network stack and network device
3292 * drivers to provide a backing region of memory for use as either an
3293 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3294 */
3295 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3296 gfp_t gfp_mask)
3297 {
3298 struct page *page = NULL;
3299 gfp_t gfp = gfp_mask;
3300
3301 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3302 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3303 __GFP_NOMEMALLOC;
3304 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3305 PAGE_FRAG_CACHE_MAX_ORDER);
3306 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3307 #endif
3308 if (unlikely(!page))
3309 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3310
3311 nc->va = page ? page_address(page) : NULL;
3312
3313 return page;
3314 }
3315
3316 void *__alloc_page_frag(struct page_frag_cache *nc,
3317 unsigned int fragsz, gfp_t gfp_mask)
3318 {
3319 unsigned int size = PAGE_SIZE;
3320 struct page *page;
3321 int offset;
3322
3323 if (unlikely(!nc->va)) {
3324 refill:
3325 page = __page_frag_refill(nc, gfp_mask);
3326 if (!page)
3327 return NULL;
3328
3329 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3330 /* if size can vary use size else just use PAGE_SIZE */
3331 size = nc->size;
3332 #endif
3333 /* Even if we own the page, we do not use atomic_set().
3334 * This would break get_page_unless_zero() users.
3335 */
3336 atomic_add(size - 1, &page->_count);
3337
3338 /* reset page count bias and offset to start of new frag */
3339 nc->pfmemalloc = page_is_pfmemalloc(page);
3340 nc->pagecnt_bias = size;
3341 nc->offset = size;
3342 }
3343
3344 offset = nc->offset - fragsz;
3345 if (unlikely(offset < 0)) {
3346 page = virt_to_page(nc->va);
3347
3348 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3349 goto refill;
3350
3351 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3352 /* if size can vary use size else just use PAGE_SIZE */
3353 size = nc->size;
3354 #endif
3355 /* OK, page count is 0, we can safely set it */
3356 atomic_set(&page->_count, size);
3357
3358 /* reset page count bias and offset to start of new frag */
3359 nc->pagecnt_bias = size;
3360 offset = size - fragsz;
3361 }
3362
3363 nc->pagecnt_bias--;
3364 nc->offset = offset;
3365
3366 return nc->va + offset;
3367 }
3368 EXPORT_SYMBOL(__alloc_page_frag);
3369
3370 /*
3371 * Frees a page fragment allocated out of either a compound or order 0 page.
3372 */
3373 void __free_page_frag(void *addr)
3374 {
3375 struct page *page = virt_to_head_page(addr);
3376
3377 if (unlikely(put_page_testzero(page)))
3378 __free_pages_ok(page, compound_order(page));
3379 }
3380 EXPORT_SYMBOL(__free_page_frag);
3381
3382 /*
3383 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3384 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3385 * equivalent to alloc_pages.
3386 *
3387 * It should be used when the caller would like to use kmalloc, but since the
3388 * allocation is large, it has to fall back to the page allocator.
3389 */
3390 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3391 {
3392 struct page *page;
3393
3394 page = alloc_pages(gfp_mask, order);
3395 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3396 __free_pages(page, order);
3397 page = NULL;
3398 }
3399 return page;
3400 }
3401
3402 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3403 {
3404 struct page *page;
3405
3406 page = alloc_pages_node(nid, gfp_mask, order);
3407 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3408 __free_pages(page, order);
3409 page = NULL;
3410 }
3411 return page;
3412 }
3413
3414 /*
3415 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3416 * alloc_kmem_pages.
3417 */
3418 void __free_kmem_pages(struct page *page, unsigned int order)
3419 {
3420 memcg_kmem_uncharge(page, order);
3421 __free_pages(page, order);
3422 }
3423
3424 void free_kmem_pages(unsigned long addr, unsigned int order)
3425 {
3426 if (addr != 0) {
3427 VM_BUG_ON(!virt_addr_valid((void *)addr));
3428 __free_kmem_pages(virt_to_page((void *)addr), order);
3429 }
3430 }
3431
3432 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3433 size_t size)
3434 {
3435 if (addr) {
3436 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3437 unsigned long used = addr + PAGE_ALIGN(size);
3438
3439 split_page(virt_to_page((void *)addr), order);
3440 while (used < alloc_end) {
3441 free_page(used);
3442 used += PAGE_SIZE;
3443 }
3444 }
3445 return (void *)addr;
3446 }
3447
3448 /**
3449 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3450 * @size: the number of bytes to allocate
3451 * @gfp_mask: GFP flags for the allocation
3452 *
3453 * This function is similar to alloc_pages(), except that it allocates the
3454 * minimum number of pages to satisfy the request. alloc_pages() can only
3455 * allocate memory in power-of-two pages.
3456 *
3457 * This function is also limited by MAX_ORDER.
3458 *
3459 * Memory allocated by this function must be released by free_pages_exact().
3460 */
3461 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3462 {
3463 unsigned int order = get_order(size);
3464 unsigned long addr;
3465
3466 addr = __get_free_pages(gfp_mask, order);
3467 return make_alloc_exact(addr, order, size);
3468 }
3469 EXPORT_SYMBOL(alloc_pages_exact);
3470
3471 /**
3472 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3473 * pages on a node.
3474 * @nid: the preferred node ID where memory should be allocated
3475 * @size: the number of bytes to allocate
3476 * @gfp_mask: GFP flags for the allocation
3477 *
3478 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3479 * back.
3480 */
3481 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3482 {
3483 unsigned int order = get_order(size);
3484 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3485 if (!p)
3486 return NULL;
3487 return make_alloc_exact((unsigned long)page_address(p), order, size);
3488 }
3489
3490 /**
3491 * free_pages_exact - release memory allocated via alloc_pages_exact()
3492 * @virt: the value returned by alloc_pages_exact.
3493 * @size: size of allocation, same value as passed to alloc_pages_exact().
3494 *
3495 * Release the memory allocated by a previous call to alloc_pages_exact.
3496 */
3497 void free_pages_exact(void *virt, size_t size)
3498 {
3499 unsigned long addr = (unsigned long)virt;
3500 unsigned long end = addr + PAGE_ALIGN(size);
3501
3502 while (addr < end) {
3503 free_page(addr);
3504 addr += PAGE_SIZE;
3505 }
3506 }
3507 EXPORT_SYMBOL(free_pages_exact);
3508
3509 /**
3510 * nr_free_zone_pages - count number of pages beyond high watermark
3511 * @offset: The zone index of the highest zone
3512 *
3513 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3514 * high watermark within all zones at or below a given zone index. For each
3515 * zone, the number of pages is calculated as:
3516 * managed_pages - high_pages
3517 */
3518 static unsigned long nr_free_zone_pages(int offset)
3519 {
3520 struct zoneref *z;
3521 struct zone *zone;
3522
3523 /* Just pick one node, since fallback list is circular */
3524 unsigned long sum = 0;
3525
3526 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3527
3528 for_each_zone_zonelist(zone, z, zonelist, offset) {
3529 unsigned long size = zone->managed_pages;
3530 unsigned long high = high_wmark_pages(zone);
3531 if (size > high)
3532 sum += size - high;
3533 }
3534
3535 return sum;
3536 }
3537
3538 /**
3539 * nr_free_buffer_pages - count number of pages beyond high watermark
3540 *
3541 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3542 * watermark within ZONE_DMA and ZONE_NORMAL.
3543 */
3544 unsigned long nr_free_buffer_pages(void)
3545 {
3546 return nr_free_zone_pages(gfp_zone(GFP_USER));
3547 }
3548 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3549
3550 /**
3551 * nr_free_pagecache_pages - count number of pages beyond high watermark
3552 *
3553 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3554 * high watermark within all zones.
3555 */
3556 unsigned long nr_free_pagecache_pages(void)
3557 {
3558 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3559 }
3560
3561 static inline void show_node(struct zone *zone)
3562 {
3563 if (IS_ENABLED(CONFIG_NUMA))
3564 printk("Node %d ", zone_to_nid(zone));
3565 }
3566
3567 void si_meminfo(struct sysinfo *val)
3568 {
3569 val->totalram = totalram_pages;
3570 val->sharedram = global_page_state(NR_SHMEM);
3571 val->freeram = global_page_state(NR_FREE_PAGES);
3572 val->bufferram = nr_blockdev_pages();
3573 val->totalhigh = totalhigh_pages;
3574 val->freehigh = nr_free_highpages();
3575 val->mem_unit = PAGE_SIZE;
3576 }
3577
3578 EXPORT_SYMBOL(si_meminfo);
3579
3580 #ifdef CONFIG_NUMA
3581 void si_meminfo_node(struct sysinfo *val, int nid)
3582 {
3583 int zone_type; /* needs to be signed */
3584 unsigned long managed_pages = 0;
3585 pg_data_t *pgdat = NODE_DATA(nid);
3586
3587 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3588 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3589 val->totalram = managed_pages;
3590 val->sharedram = node_page_state(nid, NR_SHMEM);
3591 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3592 #ifdef CONFIG_HIGHMEM
3593 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3594 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3595 NR_FREE_PAGES);
3596 #else
3597 val->totalhigh = 0;
3598 val->freehigh = 0;
3599 #endif
3600 val->mem_unit = PAGE_SIZE;
3601 }
3602 #endif
3603
3604 /*
3605 * Determine whether the node should be displayed or not, depending on whether
3606 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3607 */
3608 bool skip_free_areas_node(unsigned int flags, int nid)
3609 {
3610 bool ret = false;
3611 unsigned int cpuset_mems_cookie;
3612
3613 if (!(flags & SHOW_MEM_FILTER_NODES))
3614 goto out;
3615
3616 do {
3617 cpuset_mems_cookie = read_mems_allowed_begin();
3618 ret = !node_isset(nid, cpuset_current_mems_allowed);
3619 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3620 out:
3621 return ret;
3622 }
3623
3624 #define K(x) ((x) << (PAGE_SHIFT-10))
3625
3626 static void show_migration_types(unsigned char type)
3627 {
3628 static const char types[MIGRATE_TYPES] = {
3629 [MIGRATE_UNMOVABLE] = 'U',
3630 [MIGRATE_MOVABLE] = 'M',
3631 [MIGRATE_RECLAIMABLE] = 'E',
3632 [MIGRATE_HIGHATOMIC] = 'H',
3633 #ifdef CONFIG_CMA
3634 [MIGRATE_CMA] = 'C',
3635 #endif
3636 #ifdef CONFIG_MEMORY_ISOLATION
3637 [MIGRATE_ISOLATE] = 'I',
3638 #endif
3639 };
3640 char tmp[MIGRATE_TYPES + 1];
3641 char *p = tmp;
3642 int i;
3643
3644 for (i = 0; i < MIGRATE_TYPES; i++) {
3645 if (type & (1 << i))
3646 *p++ = types[i];
3647 }
3648
3649 *p = '\0';
3650 printk("(%s) ", tmp);
3651 }
3652
3653 /*
3654 * Show free area list (used inside shift_scroll-lock stuff)
3655 * We also calculate the percentage fragmentation. We do this by counting the
3656 * memory on each free list with the exception of the first item on the list.
3657 *
3658 * Bits in @filter:
3659 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3660 * cpuset.
3661 */
3662 void show_free_areas(unsigned int filter)
3663 {
3664 unsigned long free_pcp = 0;
3665 int cpu;
3666 struct zone *zone;
3667
3668 for_each_populated_zone(zone) {
3669 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3670 continue;
3671
3672 for_each_online_cpu(cpu)
3673 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3674 }
3675
3676 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3677 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3678 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3679 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3680 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3681 " free:%lu free_pcp:%lu free_cma:%lu\n",
3682 global_page_state(NR_ACTIVE_ANON),
3683 global_page_state(NR_INACTIVE_ANON),
3684 global_page_state(NR_ISOLATED_ANON),
3685 global_page_state(NR_ACTIVE_FILE),
3686 global_page_state(NR_INACTIVE_FILE),
3687 global_page_state(NR_ISOLATED_FILE),
3688 global_page_state(NR_UNEVICTABLE),
3689 global_page_state(NR_FILE_DIRTY),
3690 global_page_state(NR_WRITEBACK),
3691 global_page_state(NR_UNSTABLE_NFS),
3692 global_page_state(NR_SLAB_RECLAIMABLE),
3693 global_page_state(NR_SLAB_UNRECLAIMABLE),
3694 global_page_state(NR_FILE_MAPPED),
3695 global_page_state(NR_SHMEM),
3696 global_page_state(NR_PAGETABLE),
3697 global_page_state(NR_BOUNCE),
3698 global_page_state(NR_FREE_PAGES),
3699 free_pcp,
3700 global_page_state(NR_FREE_CMA_PAGES));
3701
3702 for_each_populated_zone(zone) {
3703 int i;
3704
3705 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3706 continue;
3707
3708 free_pcp = 0;
3709 for_each_online_cpu(cpu)
3710 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3711
3712 show_node(zone);
3713 printk("%s"
3714 " free:%lukB"
3715 " min:%lukB"
3716 " low:%lukB"
3717 " high:%lukB"
3718 " active_anon:%lukB"
3719 " inactive_anon:%lukB"
3720 " active_file:%lukB"
3721 " inactive_file:%lukB"
3722 " unevictable:%lukB"
3723 " isolated(anon):%lukB"
3724 " isolated(file):%lukB"
3725 " present:%lukB"
3726 " managed:%lukB"
3727 " mlocked:%lukB"
3728 " dirty:%lukB"
3729 " writeback:%lukB"
3730 " mapped:%lukB"
3731 " shmem:%lukB"
3732 " slab_reclaimable:%lukB"
3733 " slab_unreclaimable:%lukB"
3734 " kernel_stack:%lukB"
3735 " pagetables:%lukB"
3736 " unstable:%lukB"
3737 " bounce:%lukB"
3738 " free_pcp:%lukB"
3739 " local_pcp:%ukB"
3740 " free_cma:%lukB"
3741 " writeback_tmp:%lukB"
3742 " pages_scanned:%lu"
3743 " all_unreclaimable? %s"
3744 "\n",
3745 zone->name,
3746 K(zone_page_state(zone, NR_FREE_PAGES)),
3747 K(min_wmark_pages(zone)),
3748 K(low_wmark_pages(zone)),
3749 K(high_wmark_pages(zone)),
3750 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3751 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3752 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3753 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3754 K(zone_page_state(zone, NR_UNEVICTABLE)),
3755 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3756 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3757 K(zone->present_pages),
3758 K(zone->managed_pages),
3759 K(zone_page_state(zone, NR_MLOCK)),
3760 K(zone_page_state(zone, NR_FILE_DIRTY)),
3761 K(zone_page_state(zone, NR_WRITEBACK)),
3762 K(zone_page_state(zone, NR_FILE_MAPPED)),
3763 K(zone_page_state(zone, NR_SHMEM)),
3764 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3765 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3766 zone_page_state(zone, NR_KERNEL_STACK) *
3767 THREAD_SIZE / 1024,
3768 K(zone_page_state(zone, NR_PAGETABLE)),
3769 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3770 K(zone_page_state(zone, NR_BOUNCE)),
3771 K(free_pcp),
3772 K(this_cpu_read(zone->pageset->pcp.count)),
3773 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3774 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3775 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3776 (!zone_reclaimable(zone) ? "yes" : "no")
3777 );
3778 printk("lowmem_reserve[]:");
3779 for (i = 0; i < MAX_NR_ZONES; i++)
3780 printk(" %ld", zone->lowmem_reserve[i]);
3781 printk("\n");
3782 }
3783
3784 for_each_populated_zone(zone) {
3785 unsigned int order;
3786 unsigned long nr[MAX_ORDER], flags, total = 0;
3787 unsigned char types[MAX_ORDER];
3788
3789 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3790 continue;
3791 show_node(zone);
3792 printk("%s: ", zone->name);
3793
3794 spin_lock_irqsave(&zone->lock, flags);
3795 for (order = 0; order < MAX_ORDER; order++) {
3796 struct free_area *area = &zone->free_area[order];
3797 int type;
3798
3799 nr[order] = area->nr_free;
3800 total += nr[order] << order;
3801
3802 types[order] = 0;
3803 for (type = 0; type < MIGRATE_TYPES; type++) {
3804 if (!list_empty(&area->free_list[type]))
3805 types[order] |= 1 << type;
3806 }
3807 }
3808 spin_unlock_irqrestore(&zone->lock, flags);
3809 for (order = 0; order < MAX_ORDER; order++) {
3810 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3811 if (nr[order])
3812 show_migration_types(types[order]);
3813 }
3814 printk("= %lukB\n", K(total));
3815 }
3816
3817 hugetlb_show_meminfo();
3818
3819 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3820
3821 show_swap_cache_info();
3822 }
3823
3824 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3825 {
3826 zoneref->zone = zone;
3827 zoneref->zone_idx = zone_idx(zone);
3828 }
3829
3830 /*
3831 * Builds allocation fallback zone lists.
3832 *
3833 * Add all populated zones of a node to the zonelist.
3834 */
3835 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3836 int nr_zones)
3837 {
3838 struct zone *zone;
3839 enum zone_type zone_type = MAX_NR_ZONES;
3840
3841 do {
3842 zone_type--;
3843 zone = pgdat->node_zones + zone_type;
3844 if (populated_zone(zone)) {
3845 zoneref_set_zone(zone,
3846 &zonelist->_zonerefs[nr_zones++]);
3847 check_highest_zone(zone_type);
3848 }
3849 } while (zone_type);
3850
3851 return nr_zones;
3852 }
3853
3854
3855 /*
3856 * zonelist_order:
3857 * 0 = automatic detection of better ordering.
3858 * 1 = order by ([node] distance, -zonetype)
3859 * 2 = order by (-zonetype, [node] distance)
3860 *
3861 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3862 * the same zonelist. So only NUMA can configure this param.
3863 */
3864 #define ZONELIST_ORDER_DEFAULT 0
3865 #define ZONELIST_ORDER_NODE 1
3866 #define ZONELIST_ORDER_ZONE 2
3867
3868 /* zonelist order in the kernel.
3869 * set_zonelist_order() will set this to NODE or ZONE.
3870 */
3871 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3872 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3873
3874
3875 #ifdef CONFIG_NUMA
3876 /* The value user specified ....changed by config */
3877 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3878 /* string for sysctl */
3879 #define NUMA_ZONELIST_ORDER_LEN 16
3880 char numa_zonelist_order[16] = "default";
3881
3882 /*
3883 * interface for configure zonelist ordering.
3884 * command line option "numa_zonelist_order"
3885 * = "[dD]efault - default, automatic configuration.
3886 * = "[nN]ode - order by node locality, then by zone within node
3887 * = "[zZ]one - order by zone, then by locality within zone
3888 */
3889
3890 static int __parse_numa_zonelist_order(char *s)
3891 {
3892 if (*s == 'd' || *s == 'D') {
3893 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3894 } else if (*s == 'n' || *s == 'N') {
3895 user_zonelist_order = ZONELIST_ORDER_NODE;
3896 } else if (*s == 'z' || *s == 'Z') {
3897 user_zonelist_order = ZONELIST_ORDER_ZONE;
3898 } else {
3899 printk(KERN_WARNING
3900 "Ignoring invalid numa_zonelist_order value: "
3901 "%s\n", s);
3902 return -EINVAL;
3903 }
3904 return 0;
3905 }
3906
3907 static __init int setup_numa_zonelist_order(char *s)
3908 {
3909 int ret;
3910
3911 if (!s)
3912 return 0;
3913
3914 ret = __parse_numa_zonelist_order(s);
3915 if (ret == 0)
3916 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3917
3918 return ret;
3919 }
3920 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3921
3922 /*
3923 * sysctl handler for numa_zonelist_order
3924 */
3925 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3926 void __user *buffer, size_t *length,
3927 loff_t *ppos)
3928 {
3929 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3930 int ret;
3931 static DEFINE_MUTEX(zl_order_mutex);
3932
3933 mutex_lock(&zl_order_mutex);
3934 if (write) {
3935 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3936 ret = -EINVAL;
3937 goto out;
3938 }
3939 strcpy(saved_string, (char *)table->data);
3940 }
3941 ret = proc_dostring(table, write, buffer, length, ppos);
3942 if (ret)
3943 goto out;
3944 if (write) {
3945 int oldval = user_zonelist_order;
3946
3947 ret = __parse_numa_zonelist_order((char *)table->data);
3948 if (ret) {
3949 /*
3950 * bogus value. restore saved string
3951 */
3952 strncpy((char *)table->data, saved_string,
3953 NUMA_ZONELIST_ORDER_LEN);
3954 user_zonelist_order = oldval;
3955 } else if (oldval != user_zonelist_order) {
3956 mutex_lock(&zonelists_mutex);
3957 build_all_zonelists(NULL, NULL);
3958 mutex_unlock(&zonelists_mutex);
3959 }
3960 }
3961 out:
3962 mutex_unlock(&zl_order_mutex);
3963 return ret;
3964 }
3965
3966
3967 #define MAX_NODE_LOAD (nr_online_nodes)
3968 static int node_load[MAX_NUMNODES];
3969
3970 /**
3971 * find_next_best_node - find the next node that should appear in a given node's fallback list
3972 * @node: node whose fallback list we're appending
3973 * @used_node_mask: nodemask_t of already used nodes
3974 *
3975 * We use a number of factors to determine which is the next node that should
3976 * appear on a given node's fallback list. The node should not have appeared
3977 * already in @node's fallback list, and it should be the next closest node
3978 * according to the distance array (which contains arbitrary distance values
3979 * from each node to each node in the system), and should also prefer nodes
3980 * with no CPUs, since presumably they'll have very little allocation pressure
3981 * on them otherwise.
3982 * It returns -1 if no node is found.
3983 */
3984 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3985 {
3986 int n, val;
3987 int min_val = INT_MAX;
3988 int best_node = NUMA_NO_NODE;
3989 const struct cpumask *tmp = cpumask_of_node(0);
3990
3991 /* Use the local node if we haven't already */
3992 if (!node_isset(node, *used_node_mask)) {
3993 node_set(node, *used_node_mask);
3994 return node;
3995 }
3996
3997 for_each_node_state(n, N_MEMORY) {
3998
3999 /* Don't want a node to appear more than once */
4000 if (node_isset(n, *used_node_mask))
4001 continue;
4002
4003 /* Use the distance array to find the distance */
4004 val = node_distance(node, n);
4005
4006 /* Penalize nodes under us ("prefer the next node") */
4007 val += (n < node);
4008
4009 /* Give preference to headless and unused nodes */
4010 tmp = cpumask_of_node(n);
4011 if (!cpumask_empty(tmp))
4012 val += PENALTY_FOR_NODE_WITH_CPUS;
4013
4014 /* Slight preference for less loaded node */
4015 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4016 val += node_load[n];
4017
4018 if (val < min_val) {
4019 min_val = val;
4020 best_node = n;
4021 }
4022 }
4023
4024 if (best_node >= 0)
4025 node_set(best_node, *used_node_mask);
4026
4027 return best_node;
4028 }
4029
4030
4031 /*
4032 * Build zonelists ordered by node and zones within node.
4033 * This results in maximum locality--normal zone overflows into local
4034 * DMA zone, if any--but risks exhausting DMA zone.
4035 */
4036 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4037 {
4038 int j;
4039 struct zonelist *zonelist;
4040
4041 zonelist = &pgdat->node_zonelists[0];
4042 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4043 ;
4044 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4045 zonelist->_zonerefs[j].zone = NULL;
4046 zonelist->_zonerefs[j].zone_idx = 0;
4047 }
4048
4049 /*
4050 * Build gfp_thisnode zonelists
4051 */
4052 static void build_thisnode_zonelists(pg_data_t *pgdat)
4053 {
4054 int j;
4055 struct zonelist *zonelist;
4056
4057 zonelist = &pgdat->node_zonelists[1];
4058 j = build_zonelists_node(pgdat, zonelist, 0);
4059 zonelist->_zonerefs[j].zone = NULL;
4060 zonelist->_zonerefs[j].zone_idx = 0;
4061 }
4062
4063 /*
4064 * Build zonelists ordered by zone and nodes within zones.
4065 * This results in conserving DMA zone[s] until all Normal memory is
4066 * exhausted, but results in overflowing to remote node while memory
4067 * may still exist in local DMA zone.
4068 */
4069 static int node_order[MAX_NUMNODES];
4070
4071 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4072 {
4073 int pos, j, node;
4074 int zone_type; /* needs to be signed */
4075 struct zone *z;
4076 struct zonelist *zonelist;
4077
4078 zonelist = &pgdat->node_zonelists[0];
4079 pos = 0;
4080 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4081 for (j = 0; j < nr_nodes; j++) {
4082 node = node_order[j];
4083 z = &NODE_DATA(node)->node_zones[zone_type];
4084 if (populated_zone(z)) {
4085 zoneref_set_zone(z,
4086 &zonelist->_zonerefs[pos++]);
4087 check_highest_zone(zone_type);
4088 }
4089 }
4090 }
4091 zonelist->_zonerefs[pos].zone = NULL;
4092 zonelist->_zonerefs[pos].zone_idx = 0;
4093 }
4094
4095 #if defined(CONFIG_64BIT)
4096 /*
4097 * Devices that require DMA32/DMA are relatively rare and do not justify a
4098 * penalty to every machine in case the specialised case applies. Default
4099 * to Node-ordering on 64-bit NUMA machines
4100 */
4101 static int default_zonelist_order(void)
4102 {
4103 return ZONELIST_ORDER_NODE;
4104 }
4105 #else
4106 /*
4107 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4108 * by the kernel. If processes running on node 0 deplete the low memory zone
4109 * then reclaim will occur more frequency increasing stalls and potentially
4110 * be easier to OOM if a large percentage of the zone is under writeback or
4111 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4112 * Hence, default to zone ordering on 32-bit.
4113 */
4114 static int default_zonelist_order(void)
4115 {
4116 return ZONELIST_ORDER_ZONE;
4117 }
4118 #endif /* CONFIG_64BIT */
4119
4120 static void set_zonelist_order(void)
4121 {
4122 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4123 current_zonelist_order = default_zonelist_order();
4124 else
4125 current_zonelist_order = user_zonelist_order;
4126 }
4127
4128 static void build_zonelists(pg_data_t *pgdat)
4129 {
4130 int i, node, load;
4131 nodemask_t used_mask;
4132 int local_node, prev_node;
4133 struct zonelist *zonelist;
4134 unsigned int order = current_zonelist_order;
4135
4136 /* initialize zonelists */
4137 for (i = 0; i < MAX_ZONELISTS; i++) {
4138 zonelist = pgdat->node_zonelists + i;
4139 zonelist->_zonerefs[0].zone = NULL;
4140 zonelist->_zonerefs[0].zone_idx = 0;
4141 }
4142
4143 /* NUMA-aware ordering of nodes */
4144 local_node = pgdat->node_id;
4145 load = nr_online_nodes;
4146 prev_node = local_node;
4147 nodes_clear(used_mask);
4148
4149 memset(node_order, 0, sizeof(node_order));
4150 i = 0;
4151
4152 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4153 /*
4154 * We don't want to pressure a particular node.
4155 * So adding penalty to the first node in same
4156 * distance group to make it round-robin.
4157 */
4158 if (node_distance(local_node, node) !=
4159 node_distance(local_node, prev_node))
4160 node_load[node] = load;
4161
4162 prev_node = node;
4163 load--;
4164 if (order == ZONELIST_ORDER_NODE)
4165 build_zonelists_in_node_order(pgdat, node);
4166 else
4167 node_order[i++] = node; /* remember order */
4168 }
4169
4170 if (order == ZONELIST_ORDER_ZONE) {
4171 /* calculate node order -- i.e., DMA last! */
4172 build_zonelists_in_zone_order(pgdat, i);
4173 }
4174
4175 build_thisnode_zonelists(pgdat);
4176 }
4177
4178 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4179 /*
4180 * Return node id of node used for "local" allocations.
4181 * I.e., first node id of first zone in arg node's generic zonelist.
4182 * Used for initializing percpu 'numa_mem', which is used primarily
4183 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4184 */
4185 int local_memory_node(int node)
4186 {
4187 struct zone *zone;
4188
4189 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4190 gfp_zone(GFP_KERNEL),
4191 NULL,
4192 &zone);
4193 return zone->node;
4194 }
4195 #endif
4196
4197 #else /* CONFIG_NUMA */
4198
4199 static void set_zonelist_order(void)
4200 {
4201 current_zonelist_order = ZONELIST_ORDER_ZONE;
4202 }
4203
4204 static void build_zonelists(pg_data_t *pgdat)
4205 {
4206 int node, local_node;
4207 enum zone_type j;
4208 struct zonelist *zonelist;
4209
4210 local_node = pgdat->node_id;
4211
4212 zonelist = &pgdat->node_zonelists[0];
4213 j = build_zonelists_node(pgdat, zonelist, 0);
4214
4215 /*
4216 * Now we build the zonelist so that it contains the zones
4217 * of all the other nodes.
4218 * We don't want to pressure a particular node, so when
4219 * building the zones for node N, we make sure that the
4220 * zones coming right after the local ones are those from
4221 * node N+1 (modulo N)
4222 */
4223 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4224 if (!node_online(node))
4225 continue;
4226 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4227 }
4228 for (node = 0; node < local_node; node++) {
4229 if (!node_online(node))
4230 continue;
4231 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4232 }
4233
4234 zonelist->_zonerefs[j].zone = NULL;
4235 zonelist->_zonerefs[j].zone_idx = 0;
4236 }
4237
4238 #endif /* CONFIG_NUMA */
4239
4240 /*
4241 * Boot pageset table. One per cpu which is going to be used for all
4242 * zones and all nodes. The parameters will be set in such a way
4243 * that an item put on a list will immediately be handed over to
4244 * the buddy list. This is safe since pageset manipulation is done
4245 * with interrupts disabled.
4246 *
4247 * The boot_pagesets must be kept even after bootup is complete for
4248 * unused processors and/or zones. They do play a role for bootstrapping
4249 * hotplugged processors.
4250 *
4251 * zoneinfo_show() and maybe other functions do
4252 * not check if the processor is online before following the pageset pointer.
4253 * Other parts of the kernel may not check if the zone is available.
4254 */
4255 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4256 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4257 static void setup_zone_pageset(struct zone *zone);
4258
4259 /*
4260 * Global mutex to protect against size modification of zonelists
4261 * as well as to serialize pageset setup for the new populated zone.
4262 */
4263 DEFINE_MUTEX(zonelists_mutex);
4264
4265 /* return values int ....just for stop_machine() */
4266 static int __build_all_zonelists(void *data)
4267 {
4268 int nid;
4269 int cpu;
4270 pg_data_t *self = data;
4271
4272 #ifdef CONFIG_NUMA
4273 memset(node_load, 0, sizeof(node_load));
4274 #endif
4275
4276 if (self && !node_online(self->node_id)) {
4277 build_zonelists(self);
4278 }
4279
4280 for_each_online_node(nid) {
4281 pg_data_t *pgdat = NODE_DATA(nid);
4282
4283 build_zonelists(pgdat);
4284 }
4285
4286 /*
4287 * Initialize the boot_pagesets that are going to be used
4288 * for bootstrapping processors. The real pagesets for
4289 * each zone will be allocated later when the per cpu
4290 * allocator is available.
4291 *
4292 * boot_pagesets are used also for bootstrapping offline
4293 * cpus if the system is already booted because the pagesets
4294 * are needed to initialize allocators on a specific cpu too.
4295 * F.e. the percpu allocator needs the page allocator which
4296 * needs the percpu allocator in order to allocate its pagesets
4297 * (a chicken-egg dilemma).
4298 */
4299 for_each_possible_cpu(cpu) {
4300 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4301
4302 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4303 /*
4304 * We now know the "local memory node" for each node--
4305 * i.e., the node of the first zone in the generic zonelist.
4306 * Set up numa_mem percpu variable for on-line cpus. During
4307 * boot, only the boot cpu should be on-line; we'll init the
4308 * secondary cpus' numa_mem as they come on-line. During
4309 * node/memory hotplug, we'll fixup all on-line cpus.
4310 */
4311 if (cpu_online(cpu))
4312 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4313 #endif
4314 }
4315
4316 return 0;
4317 }
4318
4319 static noinline void __init
4320 build_all_zonelists_init(void)
4321 {
4322 __build_all_zonelists(NULL);
4323 mminit_verify_zonelist();
4324 cpuset_init_current_mems_allowed();
4325 }
4326
4327 /*
4328 * Called with zonelists_mutex held always
4329 * unless system_state == SYSTEM_BOOTING.
4330 *
4331 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4332 * [we're only called with non-NULL zone through __meminit paths] and
4333 * (2) call of __init annotated helper build_all_zonelists_init
4334 * [protected by SYSTEM_BOOTING].
4335 */
4336 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4337 {
4338 set_zonelist_order();
4339
4340 if (system_state == SYSTEM_BOOTING) {
4341 build_all_zonelists_init();
4342 } else {
4343 #ifdef CONFIG_MEMORY_HOTPLUG
4344 if (zone)
4345 setup_zone_pageset(zone);
4346 #endif
4347 /* we have to stop all cpus to guarantee there is no user
4348 of zonelist */
4349 stop_machine(__build_all_zonelists, pgdat, NULL);
4350 /* cpuset refresh routine should be here */
4351 }
4352 vm_total_pages = nr_free_pagecache_pages();
4353 /*
4354 * Disable grouping by mobility if the number of pages in the
4355 * system is too low to allow the mechanism to work. It would be
4356 * more accurate, but expensive to check per-zone. This check is
4357 * made on memory-hotadd so a system can start with mobility
4358 * disabled and enable it later
4359 */
4360 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4361 page_group_by_mobility_disabled = 1;
4362 else
4363 page_group_by_mobility_disabled = 0;
4364
4365 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4366 "Total pages: %ld\n",
4367 nr_online_nodes,
4368 zonelist_order_name[current_zonelist_order],
4369 page_group_by_mobility_disabled ? "off" : "on",
4370 vm_total_pages);
4371 #ifdef CONFIG_NUMA
4372 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4373 #endif
4374 }
4375
4376 /*
4377 * Helper functions to size the waitqueue hash table.
4378 * Essentially these want to choose hash table sizes sufficiently
4379 * large so that collisions trying to wait on pages are rare.
4380 * But in fact, the number of active page waitqueues on typical
4381 * systems is ridiculously low, less than 200. So this is even
4382 * conservative, even though it seems large.
4383 *
4384 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4385 * waitqueues, i.e. the size of the waitq table given the number of pages.
4386 */
4387 #define PAGES_PER_WAITQUEUE 256
4388
4389 #ifndef CONFIG_MEMORY_HOTPLUG
4390 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4391 {
4392 unsigned long size = 1;
4393
4394 pages /= PAGES_PER_WAITQUEUE;
4395
4396 while (size < pages)
4397 size <<= 1;
4398
4399 /*
4400 * Once we have dozens or even hundreds of threads sleeping
4401 * on IO we've got bigger problems than wait queue collision.
4402 * Limit the size of the wait table to a reasonable size.
4403 */
4404 size = min(size, 4096UL);
4405
4406 return max(size, 4UL);
4407 }
4408 #else
4409 /*
4410 * A zone's size might be changed by hot-add, so it is not possible to determine
4411 * a suitable size for its wait_table. So we use the maximum size now.
4412 *
4413 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4414 *
4415 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4416 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4417 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4418 *
4419 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4420 * or more by the traditional way. (See above). It equals:
4421 *
4422 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4423 * ia64(16K page size) : = ( 8G + 4M)byte.
4424 * powerpc (64K page size) : = (32G +16M)byte.
4425 */
4426 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4427 {
4428 return 4096UL;
4429 }
4430 #endif
4431
4432 /*
4433 * This is an integer logarithm so that shifts can be used later
4434 * to extract the more random high bits from the multiplicative
4435 * hash function before the remainder is taken.
4436 */
4437 static inline unsigned long wait_table_bits(unsigned long size)
4438 {
4439 return ffz(~size);
4440 }
4441
4442 /*
4443 * Initially all pages are reserved - free ones are freed
4444 * up by free_all_bootmem() once the early boot process is
4445 * done. Non-atomic initialization, single-pass.
4446 */
4447 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4448 unsigned long start_pfn, enum memmap_context context)
4449 {
4450 pg_data_t *pgdat = NODE_DATA(nid);
4451 unsigned long end_pfn = start_pfn + size;
4452 unsigned long pfn;
4453 struct zone *z;
4454 unsigned long nr_initialised = 0;
4455
4456 if (highest_memmap_pfn < end_pfn - 1)
4457 highest_memmap_pfn = end_pfn - 1;
4458
4459 z = &pgdat->node_zones[zone];
4460 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4461 /*
4462 * There can be holes in boot-time mem_map[]s
4463 * handed to this function. They do not
4464 * exist on hotplugged memory.
4465 */
4466 if (context == MEMMAP_EARLY) {
4467 if (!early_pfn_valid(pfn))
4468 continue;
4469 if (!early_pfn_in_nid(pfn, nid))
4470 continue;
4471 if (!update_defer_init(pgdat, pfn, end_pfn,
4472 &nr_initialised))
4473 break;
4474 }
4475
4476 /*
4477 * Mark the block movable so that blocks are reserved for
4478 * movable at startup. This will force kernel allocations
4479 * to reserve their blocks rather than leaking throughout
4480 * the address space during boot when many long-lived
4481 * kernel allocations are made.
4482 *
4483 * bitmap is created for zone's valid pfn range. but memmap
4484 * can be created for invalid pages (for alignment)
4485 * check here not to call set_pageblock_migratetype() against
4486 * pfn out of zone.
4487 */
4488 if (!(pfn & (pageblock_nr_pages - 1))) {
4489 struct page *page = pfn_to_page(pfn);
4490
4491 __init_single_page(page, pfn, zone, nid);
4492 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4493 } else {
4494 __init_single_pfn(pfn, zone, nid);
4495 }
4496 }
4497 }
4498
4499 static void __meminit zone_init_free_lists(struct zone *zone)
4500 {
4501 unsigned int order, t;
4502 for_each_migratetype_order(order, t) {
4503 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4504 zone->free_area[order].nr_free = 0;
4505 }
4506 }
4507
4508 #ifndef __HAVE_ARCH_MEMMAP_INIT
4509 #define memmap_init(size, nid, zone, start_pfn) \
4510 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4511 #endif
4512
4513 static int zone_batchsize(struct zone *zone)
4514 {
4515 #ifdef CONFIG_MMU
4516 int batch;
4517
4518 /*
4519 * The per-cpu-pages pools are set to around 1000th of the
4520 * size of the zone. But no more than 1/2 of a meg.
4521 *
4522 * OK, so we don't know how big the cache is. So guess.
4523 */
4524 batch = zone->managed_pages / 1024;
4525 if (batch * PAGE_SIZE > 512 * 1024)
4526 batch = (512 * 1024) / PAGE_SIZE;
4527 batch /= 4; /* We effectively *= 4 below */
4528 if (batch < 1)
4529 batch = 1;
4530
4531 /*
4532 * Clamp the batch to a 2^n - 1 value. Having a power
4533 * of 2 value was found to be more likely to have
4534 * suboptimal cache aliasing properties in some cases.
4535 *
4536 * For example if 2 tasks are alternately allocating
4537 * batches of pages, one task can end up with a lot
4538 * of pages of one half of the possible page colors
4539 * and the other with pages of the other colors.
4540 */
4541 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4542
4543 return batch;
4544
4545 #else
4546 /* The deferral and batching of frees should be suppressed under NOMMU
4547 * conditions.
4548 *
4549 * The problem is that NOMMU needs to be able to allocate large chunks
4550 * of contiguous memory as there's no hardware page translation to
4551 * assemble apparent contiguous memory from discontiguous pages.
4552 *
4553 * Queueing large contiguous runs of pages for batching, however,
4554 * causes the pages to actually be freed in smaller chunks. As there
4555 * can be a significant delay between the individual batches being
4556 * recycled, this leads to the once large chunks of space being
4557 * fragmented and becoming unavailable for high-order allocations.
4558 */
4559 return 0;
4560 #endif
4561 }
4562
4563 /*
4564 * pcp->high and pcp->batch values are related and dependent on one another:
4565 * ->batch must never be higher then ->high.
4566 * The following function updates them in a safe manner without read side
4567 * locking.
4568 *
4569 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4570 * those fields changing asynchronously (acording the the above rule).
4571 *
4572 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4573 * outside of boot time (or some other assurance that no concurrent updaters
4574 * exist).
4575 */
4576 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4577 unsigned long batch)
4578 {
4579 /* start with a fail safe value for batch */
4580 pcp->batch = 1;
4581 smp_wmb();
4582
4583 /* Update high, then batch, in order */
4584 pcp->high = high;
4585 smp_wmb();
4586
4587 pcp->batch = batch;
4588 }
4589
4590 /* a companion to pageset_set_high() */
4591 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4592 {
4593 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4594 }
4595
4596 static void pageset_init(struct per_cpu_pageset *p)
4597 {
4598 struct per_cpu_pages *pcp;
4599 int migratetype;
4600
4601 memset(p, 0, sizeof(*p));
4602
4603 pcp = &p->pcp;
4604 pcp->count = 0;
4605 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4606 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4607 }
4608
4609 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4610 {
4611 pageset_init(p);
4612 pageset_set_batch(p, batch);
4613 }
4614
4615 /*
4616 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4617 * to the value high for the pageset p.
4618 */
4619 static void pageset_set_high(struct per_cpu_pageset *p,
4620 unsigned long high)
4621 {
4622 unsigned long batch = max(1UL, high / 4);
4623 if ((high / 4) > (PAGE_SHIFT * 8))
4624 batch = PAGE_SHIFT * 8;
4625
4626 pageset_update(&p->pcp, high, batch);
4627 }
4628
4629 static void pageset_set_high_and_batch(struct zone *zone,
4630 struct per_cpu_pageset *pcp)
4631 {
4632 if (percpu_pagelist_fraction)
4633 pageset_set_high(pcp,
4634 (zone->managed_pages /
4635 percpu_pagelist_fraction));
4636 else
4637 pageset_set_batch(pcp, zone_batchsize(zone));
4638 }
4639
4640 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4641 {
4642 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4643
4644 pageset_init(pcp);
4645 pageset_set_high_and_batch(zone, pcp);
4646 }
4647
4648 static void __meminit setup_zone_pageset(struct zone *zone)
4649 {
4650 int cpu;
4651 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4652 for_each_possible_cpu(cpu)
4653 zone_pageset_init(zone, cpu);
4654 }
4655
4656 /*
4657 * Allocate per cpu pagesets and initialize them.
4658 * Before this call only boot pagesets were available.
4659 */
4660 void __init setup_per_cpu_pageset(void)
4661 {
4662 struct zone *zone;
4663
4664 for_each_populated_zone(zone)
4665 setup_zone_pageset(zone);
4666 }
4667
4668 static noinline __init_refok
4669 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4670 {
4671 int i;
4672 size_t alloc_size;
4673
4674 /*
4675 * The per-page waitqueue mechanism uses hashed waitqueues
4676 * per zone.
4677 */
4678 zone->wait_table_hash_nr_entries =
4679 wait_table_hash_nr_entries(zone_size_pages);
4680 zone->wait_table_bits =
4681 wait_table_bits(zone->wait_table_hash_nr_entries);
4682 alloc_size = zone->wait_table_hash_nr_entries
4683 * sizeof(wait_queue_head_t);
4684
4685 if (!slab_is_available()) {
4686 zone->wait_table = (wait_queue_head_t *)
4687 memblock_virt_alloc_node_nopanic(
4688 alloc_size, zone->zone_pgdat->node_id);
4689 } else {
4690 /*
4691 * This case means that a zone whose size was 0 gets new memory
4692 * via memory hot-add.
4693 * But it may be the case that a new node was hot-added. In
4694 * this case vmalloc() will not be able to use this new node's
4695 * memory - this wait_table must be initialized to use this new
4696 * node itself as well.
4697 * To use this new node's memory, further consideration will be
4698 * necessary.
4699 */
4700 zone->wait_table = vmalloc(alloc_size);
4701 }
4702 if (!zone->wait_table)
4703 return -ENOMEM;
4704
4705 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4706 init_waitqueue_head(zone->wait_table + i);
4707
4708 return 0;
4709 }
4710
4711 static __meminit void zone_pcp_init(struct zone *zone)
4712 {
4713 /*
4714 * per cpu subsystem is not up at this point. The following code
4715 * relies on the ability of the linker to provide the
4716 * offset of a (static) per cpu variable into the per cpu area.
4717 */
4718 zone->pageset = &boot_pageset;
4719
4720 if (populated_zone(zone))
4721 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4722 zone->name, zone->present_pages,
4723 zone_batchsize(zone));
4724 }
4725
4726 int __meminit init_currently_empty_zone(struct zone *zone,
4727 unsigned long zone_start_pfn,
4728 unsigned long size)
4729 {
4730 struct pglist_data *pgdat = zone->zone_pgdat;
4731 int ret;
4732 ret = zone_wait_table_init(zone, size);
4733 if (ret)
4734 return ret;
4735 pgdat->nr_zones = zone_idx(zone) + 1;
4736
4737 zone->zone_start_pfn = zone_start_pfn;
4738
4739 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4740 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4741 pgdat->node_id,
4742 (unsigned long)zone_idx(zone),
4743 zone_start_pfn, (zone_start_pfn + size));
4744
4745 zone_init_free_lists(zone);
4746
4747 return 0;
4748 }
4749
4750 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4751 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4752
4753 /*
4754 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4755 */
4756 int __meminit __early_pfn_to_nid(unsigned long pfn,
4757 struct mminit_pfnnid_cache *state)
4758 {
4759 unsigned long start_pfn, end_pfn;
4760 int nid;
4761
4762 if (state->last_start <= pfn && pfn < state->last_end)
4763 return state->last_nid;
4764
4765 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4766 if (nid != -1) {
4767 state->last_start = start_pfn;
4768 state->last_end = end_pfn;
4769 state->last_nid = nid;
4770 }
4771
4772 return nid;
4773 }
4774 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4775
4776 /**
4777 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4778 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4779 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4780 *
4781 * If an architecture guarantees that all ranges registered contain no holes
4782 * and may be freed, this this function may be used instead of calling
4783 * memblock_free_early_nid() manually.
4784 */
4785 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4786 {
4787 unsigned long start_pfn, end_pfn;
4788 int i, this_nid;
4789
4790 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4791 start_pfn = min(start_pfn, max_low_pfn);
4792 end_pfn = min(end_pfn, max_low_pfn);
4793
4794 if (start_pfn < end_pfn)
4795 memblock_free_early_nid(PFN_PHYS(start_pfn),
4796 (end_pfn - start_pfn) << PAGE_SHIFT,
4797 this_nid);
4798 }
4799 }
4800
4801 /**
4802 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4803 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4804 *
4805 * If an architecture guarantees that all ranges registered contain no holes and may
4806 * be freed, this function may be used instead of calling memory_present() manually.
4807 */
4808 void __init sparse_memory_present_with_active_regions(int nid)
4809 {
4810 unsigned long start_pfn, end_pfn;
4811 int i, this_nid;
4812
4813 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4814 memory_present(this_nid, start_pfn, end_pfn);
4815 }
4816
4817 /**
4818 * get_pfn_range_for_nid - Return the start and end page frames for a node
4819 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4820 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4821 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4822 *
4823 * It returns the start and end page frame of a node based on information
4824 * provided by memblock_set_node(). If called for a node
4825 * with no available memory, a warning is printed and the start and end
4826 * PFNs will be 0.
4827 */
4828 void __meminit get_pfn_range_for_nid(unsigned int nid,
4829 unsigned long *start_pfn, unsigned long *end_pfn)
4830 {
4831 unsigned long this_start_pfn, this_end_pfn;
4832 int i;
4833
4834 *start_pfn = -1UL;
4835 *end_pfn = 0;
4836
4837 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4838 *start_pfn = min(*start_pfn, this_start_pfn);
4839 *end_pfn = max(*end_pfn, this_end_pfn);
4840 }
4841
4842 if (*start_pfn == -1UL)
4843 *start_pfn = 0;
4844 }
4845
4846 /*
4847 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4848 * assumption is made that zones within a node are ordered in monotonic
4849 * increasing memory addresses so that the "highest" populated zone is used
4850 */
4851 static void __init find_usable_zone_for_movable(void)
4852 {
4853 int zone_index;
4854 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4855 if (zone_index == ZONE_MOVABLE)
4856 continue;
4857
4858 if (arch_zone_highest_possible_pfn[zone_index] >
4859 arch_zone_lowest_possible_pfn[zone_index])
4860 break;
4861 }
4862
4863 VM_BUG_ON(zone_index == -1);
4864 movable_zone = zone_index;
4865 }
4866
4867 /*
4868 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4869 * because it is sized independent of architecture. Unlike the other zones,
4870 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4871 * in each node depending on the size of each node and how evenly kernelcore
4872 * is distributed. This helper function adjusts the zone ranges
4873 * provided by the architecture for a given node by using the end of the
4874 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4875 * zones within a node are in order of monotonic increases memory addresses
4876 */
4877 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4878 unsigned long zone_type,
4879 unsigned long node_start_pfn,
4880 unsigned long node_end_pfn,
4881 unsigned long *zone_start_pfn,
4882 unsigned long *zone_end_pfn)
4883 {
4884 /* Only adjust if ZONE_MOVABLE is on this node */
4885 if (zone_movable_pfn[nid]) {
4886 /* Size ZONE_MOVABLE */
4887 if (zone_type == ZONE_MOVABLE) {
4888 *zone_start_pfn = zone_movable_pfn[nid];
4889 *zone_end_pfn = min(node_end_pfn,
4890 arch_zone_highest_possible_pfn[movable_zone]);
4891
4892 /* Adjust for ZONE_MOVABLE starting within this range */
4893 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4894 *zone_end_pfn > zone_movable_pfn[nid]) {
4895 *zone_end_pfn = zone_movable_pfn[nid];
4896
4897 /* Check if this whole range is within ZONE_MOVABLE */
4898 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4899 *zone_start_pfn = *zone_end_pfn;
4900 }
4901 }
4902
4903 /*
4904 * Return the number of pages a zone spans in a node, including holes
4905 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4906 */
4907 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4908 unsigned long zone_type,
4909 unsigned long node_start_pfn,
4910 unsigned long node_end_pfn,
4911 unsigned long *ignored)
4912 {
4913 unsigned long zone_start_pfn, zone_end_pfn;
4914
4915 /* When hotadd a new node from cpu_up(), the node should be empty */
4916 if (!node_start_pfn && !node_end_pfn)
4917 return 0;
4918
4919 /* Get the start and end of the zone */
4920 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4921 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4922 adjust_zone_range_for_zone_movable(nid, zone_type,
4923 node_start_pfn, node_end_pfn,
4924 &zone_start_pfn, &zone_end_pfn);
4925
4926 /* Check that this node has pages within the zone's required range */
4927 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4928 return 0;
4929
4930 /* Move the zone boundaries inside the node if necessary */
4931 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4932 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4933
4934 /* Return the spanned pages */
4935 return zone_end_pfn - zone_start_pfn;
4936 }
4937
4938 /*
4939 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4940 * then all holes in the requested range will be accounted for.
4941 */
4942 unsigned long __meminit __absent_pages_in_range(int nid,
4943 unsigned long range_start_pfn,
4944 unsigned long range_end_pfn)
4945 {
4946 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4947 unsigned long start_pfn, end_pfn;
4948 int i;
4949
4950 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4951 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4952 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4953 nr_absent -= end_pfn - start_pfn;
4954 }
4955 return nr_absent;
4956 }
4957
4958 /**
4959 * absent_pages_in_range - Return number of page frames in holes within a range
4960 * @start_pfn: The start PFN to start searching for holes
4961 * @end_pfn: The end PFN to stop searching for holes
4962 *
4963 * It returns the number of pages frames in memory holes within a range.
4964 */
4965 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4966 unsigned long end_pfn)
4967 {
4968 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4969 }
4970
4971 /* Return the number of page frames in holes in a zone on a node */
4972 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4973 unsigned long zone_type,
4974 unsigned long node_start_pfn,
4975 unsigned long node_end_pfn,
4976 unsigned long *ignored)
4977 {
4978 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4979 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4980 unsigned long zone_start_pfn, zone_end_pfn;
4981
4982 /* When hotadd a new node from cpu_up(), the node should be empty */
4983 if (!node_start_pfn && !node_end_pfn)
4984 return 0;
4985
4986 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4987 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4988
4989 adjust_zone_range_for_zone_movable(nid, zone_type,
4990 node_start_pfn, node_end_pfn,
4991 &zone_start_pfn, &zone_end_pfn);
4992 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4993 }
4994
4995 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4996 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4997 unsigned long zone_type,
4998 unsigned long node_start_pfn,
4999 unsigned long node_end_pfn,
5000 unsigned long *zones_size)
5001 {
5002 return zones_size[zone_type];
5003 }
5004
5005 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5006 unsigned long zone_type,
5007 unsigned long node_start_pfn,
5008 unsigned long node_end_pfn,
5009 unsigned long *zholes_size)
5010 {
5011 if (!zholes_size)
5012 return 0;
5013
5014 return zholes_size[zone_type];
5015 }
5016
5017 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5018
5019 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5020 unsigned long node_start_pfn,
5021 unsigned long node_end_pfn,
5022 unsigned long *zones_size,
5023 unsigned long *zholes_size)
5024 {
5025 unsigned long realtotalpages = 0, totalpages = 0;
5026 enum zone_type i;
5027
5028 for (i = 0; i < MAX_NR_ZONES; i++) {
5029 struct zone *zone = pgdat->node_zones + i;
5030 unsigned long size, real_size;
5031
5032 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5033 node_start_pfn,
5034 node_end_pfn,
5035 zones_size);
5036 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5037 node_start_pfn, node_end_pfn,
5038 zholes_size);
5039 zone->spanned_pages = size;
5040 zone->present_pages = real_size;
5041
5042 totalpages += size;
5043 realtotalpages += real_size;
5044 }
5045
5046 pgdat->node_spanned_pages = totalpages;
5047 pgdat->node_present_pages = realtotalpages;
5048 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5049 realtotalpages);
5050 }
5051
5052 #ifndef CONFIG_SPARSEMEM
5053 /*
5054 * Calculate the size of the zone->blockflags rounded to an unsigned long
5055 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5056 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5057 * round what is now in bits to nearest long in bits, then return it in
5058 * bytes.
5059 */
5060 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5061 {
5062 unsigned long usemapsize;
5063
5064 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5065 usemapsize = roundup(zonesize, pageblock_nr_pages);
5066 usemapsize = usemapsize >> pageblock_order;
5067 usemapsize *= NR_PAGEBLOCK_BITS;
5068 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5069
5070 return usemapsize / 8;
5071 }
5072
5073 static void __init setup_usemap(struct pglist_data *pgdat,
5074 struct zone *zone,
5075 unsigned long zone_start_pfn,
5076 unsigned long zonesize)
5077 {
5078 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5079 zone->pageblock_flags = NULL;
5080 if (usemapsize)
5081 zone->pageblock_flags =
5082 memblock_virt_alloc_node_nopanic(usemapsize,
5083 pgdat->node_id);
5084 }
5085 #else
5086 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5087 unsigned long zone_start_pfn, unsigned long zonesize) {}
5088 #endif /* CONFIG_SPARSEMEM */
5089
5090 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5091
5092 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5093 void __paginginit set_pageblock_order(void)
5094 {
5095 unsigned int order;
5096
5097 /* Check that pageblock_nr_pages has not already been setup */
5098 if (pageblock_order)
5099 return;
5100
5101 if (HPAGE_SHIFT > PAGE_SHIFT)
5102 order = HUGETLB_PAGE_ORDER;
5103 else
5104 order = MAX_ORDER - 1;
5105
5106 /*
5107 * Assume the largest contiguous order of interest is a huge page.
5108 * This value may be variable depending on boot parameters on IA64 and
5109 * powerpc.
5110 */
5111 pageblock_order = order;
5112 }
5113 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5114
5115 /*
5116 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5117 * is unused as pageblock_order is set at compile-time. See
5118 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5119 * the kernel config
5120 */
5121 void __paginginit set_pageblock_order(void)
5122 {
5123 }
5124
5125 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5126
5127 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5128 unsigned long present_pages)
5129 {
5130 unsigned long pages = spanned_pages;
5131
5132 /*
5133 * Provide a more accurate estimation if there are holes within
5134 * the zone and SPARSEMEM is in use. If there are holes within the
5135 * zone, each populated memory region may cost us one or two extra
5136 * memmap pages due to alignment because memmap pages for each
5137 * populated regions may not naturally algined on page boundary.
5138 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5139 */
5140 if (spanned_pages > present_pages + (present_pages >> 4) &&
5141 IS_ENABLED(CONFIG_SPARSEMEM))
5142 pages = present_pages;
5143
5144 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5145 }
5146
5147 /*
5148 * Set up the zone data structures:
5149 * - mark all pages reserved
5150 * - mark all memory queues empty
5151 * - clear the memory bitmaps
5152 *
5153 * NOTE: pgdat should get zeroed by caller.
5154 */
5155 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5156 {
5157 enum zone_type j;
5158 int nid = pgdat->node_id;
5159 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5160 int ret;
5161
5162 pgdat_resize_init(pgdat);
5163 #ifdef CONFIG_NUMA_BALANCING
5164 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5165 pgdat->numabalancing_migrate_nr_pages = 0;
5166 pgdat->numabalancing_migrate_next_window = jiffies;
5167 #endif
5168 init_waitqueue_head(&pgdat->kswapd_wait);
5169 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5170 pgdat_page_ext_init(pgdat);
5171
5172 for (j = 0; j < MAX_NR_ZONES; j++) {
5173 struct zone *zone = pgdat->node_zones + j;
5174 unsigned long size, realsize, freesize, memmap_pages;
5175
5176 size = zone->spanned_pages;
5177 realsize = freesize = zone->present_pages;
5178
5179 /*
5180 * Adjust freesize so that it accounts for how much memory
5181 * is used by this zone for memmap. This affects the watermark
5182 * and per-cpu initialisations
5183 */
5184 memmap_pages = calc_memmap_size(size, realsize);
5185 if (!is_highmem_idx(j)) {
5186 if (freesize >= memmap_pages) {
5187 freesize -= memmap_pages;
5188 if (memmap_pages)
5189 printk(KERN_DEBUG
5190 " %s zone: %lu pages used for memmap\n",
5191 zone_names[j], memmap_pages);
5192 } else
5193 printk(KERN_WARNING
5194 " %s zone: %lu pages exceeds freesize %lu\n",
5195 zone_names[j], memmap_pages, freesize);
5196 }
5197
5198 /* Account for reserved pages */
5199 if (j == 0 && freesize > dma_reserve) {
5200 freesize -= dma_reserve;
5201 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5202 zone_names[0], dma_reserve);
5203 }
5204
5205 if (!is_highmem_idx(j))
5206 nr_kernel_pages += freesize;
5207 /* Charge for highmem memmap if there are enough kernel pages */
5208 else if (nr_kernel_pages > memmap_pages * 2)
5209 nr_kernel_pages -= memmap_pages;
5210 nr_all_pages += freesize;
5211
5212 /*
5213 * Set an approximate value for lowmem here, it will be adjusted
5214 * when the bootmem allocator frees pages into the buddy system.
5215 * And all highmem pages will be managed by the buddy system.
5216 */
5217 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5218 #ifdef CONFIG_NUMA
5219 zone->node = nid;
5220 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5221 / 100;
5222 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5223 #endif
5224 zone->name = zone_names[j];
5225 spin_lock_init(&zone->lock);
5226 spin_lock_init(&zone->lru_lock);
5227 zone_seqlock_init(zone);
5228 zone->zone_pgdat = pgdat;
5229 zone_pcp_init(zone);
5230
5231 /* For bootup, initialized properly in watermark setup */
5232 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5233
5234 lruvec_init(&zone->lruvec);
5235 if (!size)
5236 continue;
5237
5238 set_pageblock_order();
5239 setup_usemap(pgdat, zone, zone_start_pfn, size);
5240 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5241 BUG_ON(ret);
5242 memmap_init(size, nid, j, zone_start_pfn);
5243 zone_start_pfn += size;
5244 }
5245 }
5246
5247 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5248 {
5249 unsigned long __maybe_unused start = 0;
5250 unsigned long __maybe_unused offset = 0;
5251
5252 /* Skip empty nodes */
5253 if (!pgdat->node_spanned_pages)
5254 return;
5255
5256 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5257 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5258 offset = pgdat->node_start_pfn - start;
5259 /* ia64 gets its own node_mem_map, before this, without bootmem */
5260 if (!pgdat->node_mem_map) {
5261 unsigned long size, end;
5262 struct page *map;
5263
5264 /*
5265 * The zone's endpoints aren't required to be MAX_ORDER
5266 * aligned but the node_mem_map endpoints must be in order
5267 * for the buddy allocator to function correctly.
5268 */
5269 end = pgdat_end_pfn(pgdat);
5270 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5271 size = (end - start) * sizeof(struct page);
5272 map = alloc_remap(pgdat->node_id, size);
5273 if (!map)
5274 map = memblock_virt_alloc_node_nopanic(size,
5275 pgdat->node_id);
5276 pgdat->node_mem_map = map + offset;
5277 }
5278 #ifndef CONFIG_NEED_MULTIPLE_NODES
5279 /*
5280 * With no DISCONTIG, the global mem_map is just set as node 0's
5281 */
5282 if (pgdat == NODE_DATA(0)) {
5283 mem_map = NODE_DATA(0)->node_mem_map;
5284 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5285 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5286 mem_map -= offset;
5287 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5288 }
5289 #endif
5290 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5291 }
5292
5293 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5294 unsigned long node_start_pfn, unsigned long *zholes_size)
5295 {
5296 pg_data_t *pgdat = NODE_DATA(nid);
5297 unsigned long start_pfn = 0;
5298 unsigned long end_pfn = 0;
5299
5300 /* pg_data_t should be reset to zero when it's allocated */
5301 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5302
5303 reset_deferred_meminit(pgdat);
5304 pgdat->node_id = nid;
5305 pgdat->node_start_pfn = node_start_pfn;
5306 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5307 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5308 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5309 (u64)start_pfn << PAGE_SHIFT,
5310 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5311 #endif
5312 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5313 zones_size, zholes_size);
5314
5315 alloc_node_mem_map(pgdat);
5316 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5317 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5318 nid, (unsigned long)pgdat,
5319 (unsigned long)pgdat->node_mem_map);
5320 #endif
5321
5322 free_area_init_core(pgdat);
5323 }
5324
5325 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5326
5327 #if MAX_NUMNODES > 1
5328 /*
5329 * Figure out the number of possible node ids.
5330 */
5331 void __init setup_nr_node_ids(void)
5332 {
5333 unsigned int highest;
5334
5335 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5336 nr_node_ids = highest + 1;
5337 }
5338 #endif
5339
5340 /**
5341 * node_map_pfn_alignment - determine the maximum internode alignment
5342 *
5343 * This function should be called after node map is populated and sorted.
5344 * It calculates the maximum power of two alignment which can distinguish
5345 * all the nodes.
5346 *
5347 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5348 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5349 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5350 * shifted, 1GiB is enough and this function will indicate so.
5351 *
5352 * This is used to test whether pfn -> nid mapping of the chosen memory
5353 * model has fine enough granularity to avoid incorrect mapping for the
5354 * populated node map.
5355 *
5356 * Returns the determined alignment in pfn's. 0 if there is no alignment
5357 * requirement (single node).
5358 */
5359 unsigned long __init node_map_pfn_alignment(void)
5360 {
5361 unsigned long accl_mask = 0, last_end = 0;
5362 unsigned long start, end, mask;
5363 int last_nid = -1;
5364 int i, nid;
5365
5366 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5367 if (!start || last_nid < 0 || last_nid == nid) {
5368 last_nid = nid;
5369 last_end = end;
5370 continue;
5371 }
5372
5373 /*
5374 * Start with a mask granular enough to pin-point to the
5375 * start pfn and tick off bits one-by-one until it becomes
5376 * too coarse to separate the current node from the last.
5377 */
5378 mask = ~((1 << __ffs(start)) - 1);
5379 while (mask && last_end <= (start & (mask << 1)))
5380 mask <<= 1;
5381
5382 /* accumulate all internode masks */
5383 accl_mask |= mask;
5384 }
5385
5386 /* convert mask to number of pages */
5387 return ~accl_mask + 1;
5388 }
5389
5390 /* Find the lowest pfn for a node */
5391 static unsigned long __init find_min_pfn_for_node(int nid)
5392 {
5393 unsigned long min_pfn = ULONG_MAX;
5394 unsigned long start_pfn;
5395 int i;
5396
5397 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5398 min_pfn = min(min_pfn, start_pfn);
5399
5400 if (min_pfn == ULONG_MAX) {
5401 printk(KERN_WARNING
5402 "Could not find start_pfn for node %d\n", nid);
5403 return 0;
5404 }
5405
5406 return min_pfn;
5407 }
5408
5409 /**
5410 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5411 *
5412 * It returns the minimum PFN based on information provided via
5413 * memblock_set_node().
5414 */
5415 unsigned long __init find_min_pfn_with_active_regions(void)
5416 {
5417 return find_min_pfn_for_node(MAX_NUMNODES);
5418 }
5419
5420 /*
5421 * early_calculate_totalpages()
5422 * Sum pages in active regions for movable zone.
5423 * Populate N_MEMORY for calculating usable_nodes.
5424 */
5425 static unsigned long __init early_calculate_totalpages(void)
5426 {
5427 unsigned long totalpages = 0;
5428 unsigned long start_pfn, end_pfn;
5429 int i, nid;
5430
5431 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5432 unsigned long pages = end_pfn - start_pfn;
5433
5434 totalpages += pages;
5435 if (pages)
5436 node_set_state(nid, N_MEMORY);
5437 }
5438 return totalpages;
5439 }
5440
5441 /*
5442 * Find the PFN the Movable zone begins in each node. Kernel memory
5443 * is spread evenly between nodes as long as the nodes have enough
5444 * memory. When they don't, some nodes will have more kernelcore than
5445 * others
5446 */
5447 static void __init find_zone_movable_pfns_for_nodes(void)
5448 {
5449 int i, nid;
5450 unsigned long usable_startpfn;
5451 unsigned long kernelcore_node, kernelcore_remaining;
5452 /* save the state before borrow the nodemask */
5453 nodemask_t saved_node_state = node_states[N_MEMORY];
5454 unsigned long totalpages = early_calculate_totalpages();
5455 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5456 struct memblock_region *r;
5457
5458 /* Need to find movable_zone earlier when movable_node is specified. */
5459 find_usable_zone_for_movable();
5460
5461 /*
5462 * If movable_node is specified, ignore kernelcore and movablecore
5463 * options.
5464 */
5465 if (movable_node_is_enabled()) {
5466 for_each_memblock(memory, r) {
5467 if (!memblock_is_hotpluggable(r))
5468 continue;
5469
5470 nid = r->nid;
5471
5472 usable_startpfn = PFN_DOWN(r->base);
5473 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5474 min(usable_startpfn, zone_movable_pfn[nid]) :
5475 usable_startpfn;
5476 }
5477
5478 goto out2;
5479 }
5480
5481 /*
5482 * If movablecore=nn[KMG] was specified, calculate what size of
5483 * kernelcore that corresponds so that memory usable for
5484 * any allocation type is evenly spread. If both kernelcore
5485 * and movablecore are specified, then the value of kernelcore
5486 * will be used for required_kernelcore if it's greater than
5487 * what movablecore would have allowed.
5488 */
5489 if (required_movablecore) {
5490 unsigned long corepages;
5491
5492 /*
5493 * Round-up so that ZONE_MOVABLE is at least as large as what
5494 * was requested by the user
5495 */
5496 required_movablecore =
5497 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5498 required_movablecore = min(totalpages, required_movablecore);
5499 corepages = totalpages - required_movablecore;
5500
5501 required_kernelcore = max(required_kernelcore, corepages);
5502 }
5503
5504 /*
5505 * If kernelcore was not specified or kernelcore size is larger
5506 * than totalpages, there is no ZONE_MOVABLE.
5507 */
5508 if (!required_kernelcore || required_kernelcore >= totalpages)
5509 goto out;
5510
5511 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5512 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5513
5514 restart:
5515 /* Spread kernelcore memory as evenly as possible throughout nodes */
5516 kernelcore_node = required_kernelcore / usable_nodes;
5517 for_each_node_state(nid, N_MEMORY) {
5518 unsigned long start_pfn, end_pfn;
5519
5520 /*
5521 * Recalculate kernelcore_node if the division per node
5522 * now exceeds what is necessary to satisfy the requested
5523 * amount of memory for the kernel
5524 */
5525 if (required_kernelcore < kernelcore_node)
5526 kernelcore_node = required_kernelcore / usable_nodes;
5527
5528 /*
5529 * As the map is walked, we track how much memory is usable
5530 * by the kernel using kernelcore_remaining. When it is
5531 * 0, the rest of the node is usable by ZONE_MOVABLE
5532 */
5533 kernelcore_remaining = kernelcore_node;
5534
5535 /* Go through each range of PFNs within this node */
5536 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5537 unsigned long size_pages;
5538
5539 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5540 if (start_pfn >= end_pfn)
5541 continue;
5542
5543 /* Account for what is only usable for kernelcore */
5544 if (start_pfn < usable_startpfn) {
5545 unsigned long kernel_pages;
5546 kernel_pages = min(end_pfn, usable_startpfn)
5547 - start_pfn;
5548
5549 kernelcore_remaining -= min(kernel_pages,
5550 kernelcore_remaining);
5551 required_kernelcore -= min(kernel_pages,
5552 required_kernelcore);
5553
5554 /* Continue if range is now fully accounted */
5555 if (end_pfn <= usable_startpfn) {
5556
5557 /*
5558 * Push zone_movable_pfn to the end so
5559 * that if we have to rebalance
5560 * kernelcore across nodes, we will
5561 * not double account here
5562 */
5563 zone_movable_pfn[nid] = end_pfn;
5564 continue;
5565 }
5566 start_pfn = usable_startpfn;
5567 }
5568
5569 /*
5570 * The usable PFN range for ZONE_MOVABLE is from
5571 * start_pfn->end_pfn. Calculate size_pages as the
5572 * number of pages used as kernelcore
5573 */
5574 size_pages = end_pfn - start_pfn;
5575 if (size_pages > kernelcore_remaining)
5576 size_pages = kernelcore_remaining;
5577 zone_movable_pfn[nid] = start_pfn + size_pages;
5578
5579 /*
5580 * Some kernelcore has been met, update counts and
5581 * break if the kernelcore for this node has been
5582 * satisfied
5583 */
5584 required_kernelcore -= min(required_kernelcore,
5585 size_pages);
5586 kernelcore_remaining -= size_pages;
5587 if (!kernelcore_remaining)
5588 break;
5589 }
5590 }
5591
5592 /*
5593 * If there is still required_kernelcore, we do another pass with one
5594 * less node in the count. This will push zone_movable_pfn[nid] further
5595 * along on the nodes that still have memory until kernelcore is
5596 * satisfied
5597 */
5598 usable_nodes--;
5599 if (usable_nodes && required_kernelcore > usable_nodes)
5600 goto restart;
5601
5602 out2:
5603 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5604 for (nid = 0; nid < MAX_NUMNODES; nid++)
5605 zone_movable_pfn[nid] =
5606 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5607
5608 out:
5609 /* restore the node_state */
5610 node_states[N_MEMORY] = saved_node_state;
5611 }
5612
5613 /* Any regular or high memory on that node ? */
5614 static void check_for_memory(pg_data_t *pgdat, int nid)
5615 {
5616 enum zone_type zone_type;
5617
5618 if (N_MEMORY == N_NORMAL_MEMORY)
5619 return;
5620
5621 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5622 struct zone *zone = &pgdat->node_zones[zone_type];
5623 if (populated_zone(zone)) {
5624 node_set_state(nid, N_HIGH_MEMORY);
5625 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5626 zone_type <= ZONE_NORMAL)
5627 node_set_state(nid, N_NORMAL_MEMORY);
5628 break;
5629 }
5630 }
5631 }
5632
5633 /**
5634 * free_area_init_nodes - Initialise all pg_data_t and zone data
5635 * @max_zone_pfn: an array of max PFNs for each zone
5636 *
5637 * This will call free_area_init_node() for each active node in the system.
5638 * Using the page ranges provided by memblock_set_node(), the size of each
5639 * zone in each node and their holes is calculated. If the maximum PFN
5640 * between two adjacent zones match, it is assumed that the zone is empty.
5641 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5642 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5643 * starts where the previous one ended. For example, ZONE_DMA32 starts
5644 * at arch_max_dma_pfn.
5645 */
5646 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5647 {
5648 unsigned long start_pfn, end_pfn;
5649 int i, nid;
5650
5651 /* Record where the zone boundaries are */
5652 memset(arch_zone_lowest_possible_pfn, 0,
5653 sizeof(arch_zone_lowest_possible_pfn));
5654 memset(arch_zone_highest_possible_pfn, 0,
5655 sizeof(arch_zone_highest_possible_pfn));
5656 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5657 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5658 for (i = 1; i < MAX_NR_ZONES; i++) {
5659 if (i == ZONE_MOVABLE)
5660 continue;
5661 arch_zone_lowest_possible_pfn[i] =
5662 arch_zone_highest_possible_pfn[i-1];
5663 arch_zone_highest_possible_pfn[i] =
5664 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5665 }
5666 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5667 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5668
5669 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5670 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5671 find_zone_movable_pfns_for_nodes();
5672
5673 /* Print out the zone ranges */
5674 pr_info("Zone ranges:\n");
5675 for (i = 0; i < MAX_NR_ZONES; i++) {
5676 if (i == ZONE_MOVABLE)
5677 continue;
5678 pr_info(" %-8s ", zone_names[i]);
5679 if (arch_zone_lowest_possible_pfn[i] ==
5680 arch_zone_highest_possible_pfn[i])
5681 pr_cont("empty\n");
5682 else
5683 pr_cont("[mem %#018Lx-%#018Lx]\n",
5684 (u64)arch_zone_lowest_possible_pfn[i]
5685 << PAGE_SHIFT,
5686 ((u64)arch_zone_highest_possible_pfn[i]
5687 << PAGE_SHIFT) - 1);
5688 }
5689
5690 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5691 pr_info("Movable zone start for each node\n");
5692 for (i = 0; i < MAX_NUMNODES; i++) {
5693 if (zone_movable_pfn[i])
5694 pr_info(" Node %d: %#018Lx\n", i,
5695 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5696 }
5697
5698 /* Print out the early node map */
5699 pr_info("Early memory node ranges\n");
5700 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5701 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5702 (u64)start_pfn << PAGE_SHIFT,
5703 ((u64)end_pfn << PAGE_SHIFT) - 1);
5704
5705 /* Initialise every node */
5706 mminit_verify_pageflags_layout();
5707 setup_nr_node_ids();
5708 for_each_online_node(nid) {
5709 pg_data_t *pgdat = NODE_DATA(nid);
5710 free_area_init_node(nid, NULL,
5711 find_min_pfn_for_node(nid), NULL);
5712
5713 /* Any memory on that node */
5714 if (pgdat->node_present_pages)
5715 node_set_state(nid, N_MEMORY);
5716 check_for_memory(pgdat, nid);
5717 }
5718 }
5719
5720 static int __init cmdline_parse_core(char *p, unsigned long *core)
5721 {
5722 unsigned long long coremem;
5723 if (!p)
5724 return -EINVAL;
5725
5726 coremem = memparse(p, &p);
5727 *core = coremem >> PAGE_SHIFT;
5728
5729 /* Paranoid check that UL is enough for the coremem value */
5730 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5731
5732 return 0;
5733 }
5734
5735 /*
5736 * kernelcore=size sets the amount of memory for use for allocations that
5737 * cannot be reclaimed or migrated.
5738 */
5739 static int __init cmdline_parse_kernelcore(char *p)
5740 {
5741 return cmdline_parse_core(p, &required_kernelcore);
5742 }
5743
5744 /*
5745 * movablecore=size sets the amount of memory for use for allocations that
5746 * can be reclaimed or migrated.
5747 */
5748 static int __init cmdline_parse_movablecore(char *p)
5749 {
5750 return cmdline_parse_core(p, &required_movablecore);
5751 }
5752
5753 early_param("kernelcore", cmdline_parse_kernelcore);
5754 early_param("movablecore", cmdline_parse_movablecore);
5755
5756 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5757
5758 void adjust_managed_page_count(struct page *page, long count)
5759 {
5760 spin_lock(&managed_page_count_lock);
5761 page_zone(page)->managed_pages += count;
5762 totalram_pages += count;
5763 #ifdef CONFIG_HIGHMEM
5764 if (PageHighMem(page))
5765 totalhigh_pages += count;
5766 #endif
5767 spin_unlock(&managed_page_count_lock);
5768 }
5769 EXPORT_SYMBOL(adjust_managed_page_count);
5770
5771 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5772 {
5773 void *pos;
5774 unsigned long pages = 0;
5775
5776 start = (void *)PAGE_ALIGN((unsigned long)start);
5777 end = (void *)((unsigned long)end & PAGE_MASK);
5778 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5779 if ((unsigned int)poison <= 0xFF)
5780 memset(pos, poison, PAGE_SIZE);
5781 free_reserved_page(virt_to_page(pos));
5782 }
5783
5784 if (pages && s)
5785 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5786 s, pages << (PAGE_SHIFT - 10), start, end);
5787
5788 return pages;
5789 }
5790 EXPORT_SYMBOL(free_reserved_area);
5791
5792 #ifdef CONFIG_HIGHMEM
5793 void free_highmem_page(struct page *page)
5794 {
5795 __free_reserved_page(page);
5796 totalram_pages++;
5797 page_zone(page)->managed_pages++;
5798 totalhigh_pages++;
5799 }
5800 #endif
5801
5802
5803 void __init mem_init_print_info(const char *str)
5804 {
5805 unsigned long physpages, codesize, datasize, rosize, bss_size;
5806 unsigned long init_code_size, init_data_size;
5807
5808 physpages = get_num_physpages();
5809 codesize = _etext - _stext;
5810 datasize = _edata - _sdata;
5811 rosize = __end_rodata - __start_rodata;
5812 bss_size = __bss_stop - __bss_start;
5813 init_data_size = __init_end - __init_begin;
5814 init_code_size = _einittext - _sinittext;
5815
5816 /*
5817 * Detect special cases and adjust section sizes accordingly:
5818 * 1) .init.* may be embedded into .data sections
5819 * 2) .init.text.* may be out of [__init_begin, __init_end],
5820 * please refer to arch/tile/kernel/vmlinux.lds.S.
5821 * 3) .rodata.* may be embedded into .text or .data sections.
5822 */
5823 #define adj_init_size(start, end, size, pos, adj) \
5824 do { \
5825 if (start <= pos && pos < end && size > adj) \
5826 size -= adj; \
5827 } while (0)
5828
5829 adj_init_size(__init_begin, __init_end, init_data_size,
5830 _sinittext, init_code_size);
5831 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5832 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5833 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5834 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5835
5836 #undef adj_init_size
5837
5838 pr_info("Memory: %luK/%luK available "
5839 "(%luK kernel code, %luK rwdata, %luK rodata, "
5840 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5841 #ifdef CONFIG_HIGHMEM
5842 ", %luK highmem"
5843 #endif
5844 "%s%s)\n",
5845 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5846 codesize >> 10, datasize >> 10, rosize >> 10,
5847 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5848 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5849 totalcma_pages << (PAGE_SHIFT-10),
5850 #ifdef CONFIG_HIGHMEM
5851 totalhigh_pages << (PAGE_SHIFT-10),
5852 #endif
5853 str ? ", " : "", str ? str : "");
5854 }
5855
5856 /**
5857 * set_dma_reserve - set the specified number of pages reserved in the first zone
5858 * @new_dma_reserve: The number of pages to mark reserved
5859 *
5860 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
5861 * In the DMA zone, a significant percentage may be consumed by kernel image
5862 * and other unfreeable allocations which can skew the watermarks badly. This
5863 * function may optionally be used to account for unfreeable pages in the
5864 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5865 * smaller per-cpu batchsize.
5866 */
5867 void __init set_dma_reserve(unsigned long new_dma_reserve)
5868 {
5869 dma_reserve = new_dma_reserve;
5870 }
5871
5872 void __init free_area_init(unsigned long *zones_size)
5873 {
5874 free_area_init_node(0, zones_size,
5875 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5876 }
5877
5878 static int page_alloc_cpu_notify(struct notifier_block *self,
5879 unsigned long action, void *hcpu)
5880 {
5881 int cpu = (unsigned long)hcpu;
5882
5883 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5884 lru_add_drain_cpu(cpu);
5885 drain_pages(cpu);
5886
5887 /*
5888 * Spill the event counters of the dead processor
5889 * into the current processors event counters.
5890 * This artificially elevates the count of the current
5891 * processor.
5892 */
5893 vm_events_fold_cpu(cpu);
5894
5895 /*
5896 * Zero the differential counters of the dead processor
5897 * so that the vm statistics are consistent.
5898 *
5899 * This is only okay since the processor is dead and cannot
5900 * race with what we are doing.
5901 */
5902 cpu_vm_stats_fold(cpu);
5903 }
5904 return NOTIFY_OK;
5905 }
5906
5907 void __init page_alloc_init(void)
5908 {
5909 hotcpu_notifier(page_alloc_cpu_notify, 0);
5910 }
5911
5912 /*
5913 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5914 * or min_free_kbytes changes.
5915 */
5916 static void calculate_totalreserve_pages(void)
5917 {
5918 struct pglist_data *pgdat;
5919 unsigned long reserve_pages = 0;
5920 enum zone_type i, j;
5921
5922 for_each_online_pgdat(pgdat) {
5923 for (i = 0; i < MAX_NR_ZONES; i++) {
5924 struct zone *zone = pgdat->node_zones + i;
5925 long max = 0;
5926
5927 /* Find valid and maximum lowmem_reserve in the zone */
5928 for (j = i; j < MAX_NR_ZONES; j++) {
5929 if (zone->lowmem_reserve[j] > max)
5930 max = zone->lowmem_reserve[j];
5931 }
5932
5933 /* we treat the high watermark as reserved pages. */
5934 max += high_wmark_pages(zone);
5935
5936 if (max > zone->managed_pages)
5937 max = zone->managed_pages;
5938
5939 zone->totalreserve_pages = max;
5940
5941 reserve_pages += max;
5942 }
5943 }
5944 totalreserve_pages = reserve_pages;
5945 }
5946
5947 /*
5948 * setup_per_zone_lowmem_reserve - called whenever
5949 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5950 * has a correct pages reserved value, so an adequate number of
5951 * pages are left in the zone after a successful __alloc_pages().
5952 */
5953 static void setup_per_zone_lowmem_reserve(void)
5954 {
5955 struct pglist_data *pgdat;
5956 enum zone_type j, idx;
5957
5958 for_each_online_pgdat(pgdat) {
5959 for (j = 0; j < MAX_NR_ZONES; j++) {
5960 struct zone *zone = pgdat->node_zones + j;
5961 unsigned long managed_pages = zone->managed_pages;
5962
5963 zone->lowmem_reserve[j] = 0;
5964
5965 idx = j;
5966 while (idx) {
5967 struct zone *lower_zone;
5968
5969 idx--;
5970
5971 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5972 sysctl_lowmem_reserve_ratio[idx] = 1;
5973
5974 lower_zone = pgdat->node_zones + idx;
5975 lower_zone->lowmem_reserve[j] = managed_pages /
5976 sysctl_lowmem_reserve_ratio[idx];
5977 managed_pages += lower_zone->managed_pages;
5978 }
5979 }
5980 }
5981
5982 /* update totalreserve_pages */
5983 calculate_totalreserve_pages();
5984 }
5985
5986 static void __setup_per_zone_wmarks(void)
5987 {
5988 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5989 unsigned long lowmem_pages = 0;
5990 struct zone *zone;
5991 unsigned long flags;
5992
5993 /* Calculate total number of !ZONE_HIGHMEM pages */
5994 for_each_zone(zone) {
5995 if (!is_highmem(zone))
5996 lowmem_pages += zone->managed_pages;
5997 }
5998
5999 for_each_zone(zone) {
6000 u64 tmp;
6001
6002 spin_lock_irqsave(&zone->lock, flags);
6003 tmp = (u64)pages_min * zone->managed_pages;
6004 do_div(tmp, lowmem_pages);
6005 if (is_highmem(zone)) {
6006 /*
6007 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6008 * need highmem pages, so cap pages_min to a small
6009 * value here.
6010 *
6011 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6012 * deltas control asynch page reclaim, and so should
6013 * not be capped for highmem.
6014 */
6015 unsigned long min_pages;
6016
6017 min_pages = zone->managed_pages / 1024;
6018 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6019 zone->watermark[WMARK_MIN] = min_pages;
6020 } else {
6021 /*
6022 * If it's a lowmem zone, reserve a number of pages
6023 * proportionate to the zone's size.
6024 */
6025 zone->watermark[WMARK_MIN] = tmp;
6026 }
6027
6028 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6029 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6030
6031 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6032 high_wmark_pages(zone) - low_wmark_pages(zone) -
6033 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6034
6035 spin_unlock_irqrestore(&zone->lock, flags);
6036 }
6037
6038 /* update totalreserve_pages */
6039 calculate_totalreserve_pages();
6040 }
6041
6042 /**
6043 * setup_per_zone_wmarks - called when min_free_kbytes changes
6044 * or when memory is hot-{added|removed}
6045 *
6046 * Ensures that the watermark[min,low,high] values for each zone are set
6047 * correctly with respect to min_free_kbytes.
6048 */
6049 void setup_per_zone_wmarks(void)
6050 {
6051 mutex_lock(&zonelists_mutex);
6052 __setup_per_zone_wmarks();
6053 mutex_unlock(&zonelists_mutex);
6054 }
6055
6056 /*
6057 * The inactive anon list should be small enough that the VM never has to
6058 * do too much work, but large enough that each inactive page has a chance
6059 * to be referenced again before it is swapped out.
6060 *
6061 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6062 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6063 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6064 * the anonymous pages are kept on the inactive list.
6065 *
6066 * total target max
6067 * memory ratio inactive anon
6068 * -------------------------------------
6069 * 10MB 1 5MB
6070 * 100MB 1 50MB
6071 * 1GB 3 250MB
6072 * 10GB 10 0.9GB
6073 * 100GB 31 3GB
6074 * 1TB 101 10GB
6075 * 10TB 320 32GB
6076 */
6077 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6078 {
6079 unsigned int gb, ratio;
6080
6081 /* Zone size in gigabytes */
6082 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6083 if (gb)
6084 ratio = int_sqrt(10 * gb);
6085 else
6086 ratio = 1;
6087
6088 zone->inactive_ratio = ratio;
6089 }
6090
6091 static void __meminit setup_per_zone_inactive_ratio(void)
6092 {
6093 struct zone *zone;
6094
6095 for_each_zone(zone)
6096 calculate_zone_inactive_ratio(zone);
6097 }
6098
6099 /*
6100 * Initialise min_free_kbytes.
6101 *
6102 * For small machines we want it small (128k min). For large machines
6103 * we want it large (64MB max). But it is not linear, because network
6104 * bandwidth does not increase linearly with machine size. We use
6105 *
6106 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6107 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6108 *
6109 * which yields
6110 *
6111 * 16MB: 512k
6112 * 32MB: 724k
6113 * 64MB: 1024k
6114 * 128MB: 1448k
6115 * 256MB: 2048k
6116 * 512MB: 2896k
6117 * 1024MB: 4096k
6118 * 2048MB: 5792k
6119 * 4096MB: 8192k
6120 * 8192MB: 11584k
6121 * 16384MB: 16384k
6122 */
6123 int __meminit init_per_zone_wmark_min(void)
6124 {
6125 unsigned long lowmem_kbytes;
6126 int new_min_free_kbytes;
6127
6128 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6129 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6130
6131 if (new_min_free_kbytes > user_min_free_kbytes) {
6132 min_free_kbytes = new_min_free_kbytes;
6133 if (min_free_kbytes < 128)
6134 min_free_kbytes = 128;
6135 if (min_free_kbytes > 65536)
6136 min_free_kbytes = 65536;
6137 } else {
6138 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6139 new_min_free_kbytes, user_min_free_kbytes);
6140 }
6141 setup_per_zone_wmarks();
6142 refresh_zone_stat_thresholds();
6143 setup_per_zone_lowmem_reserve();
6144 setup_per_zone_inactive_ratio();
6145 return 0;
6146 }
6147 module_init(init_per_zone_wmark_min)
6148
6149 /*
6150 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6151 * that we can call two helper functions whenever min_free_kbytes
6152 * changes.
6153 */
6154 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6155 void __user *buffer, size_t *length, loff_t *ppos)
6156 {
6157 int rc;
6158
6159 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6160 if (rc)
6161 return rc;
6162
6163 if (write) {
6164 user_min_free_kbytes = min_free_kbytes;
6165 setup_per_zone_wmarks();
6166 }
6167 return 0;
6168 }
6169
6170 #ifdef CONFIG_NUMA
6171 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6172 void __user *buffer, size_t *length, loff_t *ppos)
6173 {
6174 struct zone *zone;
6175 int rc;
6176
6177 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6178 if (rc)
6179 return rc;
6180
6181 for_each_zone(zone)
6182 zone->min_unmapped_pages = (zone->managed_pages *
6183 sysctl_min_unmapped_ratio) / 100;
6184 return 0;
6185 }
6186
6187 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6188 void __user *buffer, size_t *length, loff_t *ppos)
6189 {
6190 struct zone *zone;
6191 int rc;
6192
6193 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6194 if (rc)
6195 return rc;
6196
6197 for_each_zone(zone)
6198 zone->min_slab_pages = (zone->managed_pages *
6199 sysctl_min_slab_ratio) / 100;
6200 return 0;
6201 }
6202 #endif
6203
6204 /*
6205 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6206 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6207 * whenever sysctl_lowmem_reserve_ratio changes.
6208 *
6209 * The reserve ratio obviously has absolutely no relation with the
6210 * minimum watermarks. The lowmem reserve ratio can only make sense
6211 * if in function of the boot time zone sizes.
6212 */
6213 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6214 void __user *buffer, size_t *length, loff_t *ppos)
6215 {
6216 proc_dointvec_minmax(table, write, buffer, length, ppos);
6217 setup_per_zone_lowmem_reserve();
6218 return 0;
6219 }
6220
6221 /*
6222 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6223 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6224 * pagelist can have before it gets flushed back to buddy allocator.
6225 */
6226 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6227 void __user *buffer, size_t *length, loff_t *ppos)
6228 {
6229 struct zone *zone;
6230 int old_percpu_pagelist_fraction;
6231 int ret;
6232
6233 mutex_lock(&pcp_batch_high_lock);
6234 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6235
6236 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6237 if (!write || ret < 0)
6238 goto out;
6239
6240 /* Sanity checking to avoid pcp imbalance */
6241 if (percpu_pagelist_fraction &&
6242 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6243 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6244 ret = -EINVAL;
6245 goto out;
6246 }
6247
6248 /* No change? */
6249 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6250 goto out;
6251
6252 for_each_populated_zone(zone) {
6253 unsigned int cpu;
6254
6255 for_each_possible_cpu(cpu)
6256 pageset_set_high_and_batch(zone,
6257 per_cpu_ptr(zone->pageset, cpu));
6258 }
6259 out:
6260 mutex_unlock(&pcp_batch_high_lock);
6261 return ret;
6262 }
6263
6264 #ifdef CONFIG_NUMA
6265 int hashdist = HASHDIST_DEFAULT;
6266
6267 static int __init set_hashdist(char *str)
6268 {
6269 if (!str)
6270 return 0;
6271 hashdist = simple_strtoul(str, &str, 0);
6272 return 1;
6273 }
6274 __setup("hashdist=", set_hashdist);
6275 #endif
6276
6277 /*
6278 * allocate a large system hash table from bootmem
6279 * - it is assumed that the hash table must contain an exact power-of-2
6280 * quantity of entries
6281 * - limit is the number of hash buckets, not the total allocation size
6282 */
6283 void *__init alloc_large_system_hash(const char *tablename,
6284 unsigned long bucketsize,
6285 unsigned long numentries,
6286 int scale,
6287 int flags,
6288 unsigned int *_hash_shift,
6289 unsigned int *_hash_mask,
6290 unsigned long low_limit,
6291 unsigned long high_limit)
6292 {
6293 unsigned long long max = high_limit;
6294 unsigned long log2qty, size;
6295 void *table = NULL;
6296
6297 /* allow the kernel cmdline to have a say */
6298 if (!numentries) {
6299 /* round applicable memory size up to nearest megabyte */
6300 numentries = nr_kernel_pages;
6301
6302 /* It isn't necessary when PAGE_SIZE >= 1MB */
6303 if (PAGE_SHIFT < 20)
6304 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6305
6306 /* limit to 1 bucket per 2^scale bytes of low memory */
6307 if (scale > PAGE_SHIFT)
6308 numentries >>= (scale - PAGE_SHIFT);
6309 else
6310 numentries <<= (PAGE_SHIFT - scale);
6311
6312 /* Make sure we've got at least a 0-order allocation.. */
6313 if (unlikely(flags & HASH_SMALL)) {
6314 /* Makes no sense without HASH_EARLY */
6315 WARN_ON(!(flags & HASH_EARLY));
6316 if (!(numentries >> *_hash_shift)) {
6317 numentries = 1UL << *_hash_shift;
6318 BUG_ON(!numentries);
6319 }
6320 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6321 numentries = PAGE_SIZE / bucketsize;
6322 }
6323 numentries = roundup_pow_of_two(numentries);
6324
6325 /* limit allocation size to 1/16 total memory by default */
6326 if (max == 0) {
6327 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6328 do_div(max, bucketsize);
6329 }
6330 max = min(max, 0x80000000ULL);
6331
6332 if (numentries < low_limit)
6333 numentries = low_limit;
6334 if (numentries > max)
6335 numentries = max;
6336
6337 log2qty = ilog2(numentries);
6338
6339 do {
6340 size = bucketsize << log2qty;
6341 if (flags & HASH_EARLY)
6342 table = memblock_virt_alloc_nopanic(size, 0);
6343 else if (hashdist)
6344 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6345 else {
6346 /*
6347 * If bucketsize is not a power-of-two, we may free
6348 * some pages at the end of hash table which
6349 * alloc_pages_exact() automatically does
6350 */
6351 if (get_order(size) < MAX_ORDER) {
6352 table = alloc_pages_exact(size, GFP_ATOMIC);
6353 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6354 }
6355 }
6356 } while (!table && size > PAGE_SIZE && --log2qty);
6357
6358 if (!table)
6359 panic("Failed to allocate %s hash table\n", tablename);
6360
6361 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6362 tablename,
6363 (1UL << log2qty),
6364 ilog2(size) - PAGE_SHIFT,
6365 size);
6366
6367 if (_hash_shift)
6368 *_hash_shift = log2qty;
6369 if (_hash_mask)
6370 *_hash_mask = (1 << log2qty) - 1;
6371
6372 return table;
6373 }
6374
6375 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6376 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6377 unsigned long pfn)
6378 {
6379 #ifdef CONFIG_SPARSEMEM
6380 return __pfn_to_section(pfn)->pageblock_flags;
6381 #else
6382 return zone->pageblock_flags;
6383 #endif /* CONFIG_SPARSEMEM */
6384 }
6385
6386 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6387 {
6388 #ifdef CONFIG_SPARSEMEM
6389 pfn &= (PAGES_PER_SECTION-1);
6390 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6391 #else
6392 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6393 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6394 #endif /* CONFIG_SPARSEMEM */
6395 }
6396
6397 /**
6398 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6399 * @page: The page within the block of interest
6400 * @pfn: The target page frame number
6401 * @end_bitidx: The last bit of interest to retrieve
6402 * @mask: mask of bits that the caller is interested in
6403 *
6404 * Return: pageblock_bits flags
6405 */
6406 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6407 unsigned long end_bitidx,
6408 unsigned long mask)
6409 {
6410 struct zone *zone;
6411 unsigned long *bitmap;
6412 unsigned long bitidx, word_bitidx;
6413 unsigned long word;
6414
6415 zone = page_zone(page);
6416 bitmap = get_pageblock_bitmap(zone, pfn);
6417 bitidx = pfn_to_bitidx(zone, pfn);
6418 word_bitidx = bitidx / BITS_PER_LONG;
6419 bitidx &= (BITS_PER_LONG-1);
6420
6421 word = bitmap[word_bitidx];
6422 bitidx += end_bitidx;
6423 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6424 }
6425
6426 /**
6427 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6428 * @page: The page within the block of interest
6429 * @flags: The flags to set
6430 * @pfn: The target page frame number
6431 * @end_bitidx: The last bit of interest
6432 * @mask: mask of bits that the caller is interested in
6433 */
6434 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6435 unsigned long pfn,
6436 unsigned long end_bitidx,
6437 unsigned long mask)
6438 {
6439 struct zone *zone;
6440 unsigned long *bitmap;
6441 unsigned long bitidx, word_bitidx;
6442 unsigned long old_word, word;
6443
6444 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6445
6446 zone = page_zone(page);
6447 bitmap = get_pageblock_bitmap(zone, pfn);
6448 bitidx = pfn_to_bitidx(zone, pfn);
6449 word_bitidx = bitidx / BITS_PER_LONG;
6450 bitidx &= (BITS_PER_LONG-1);
6451
6452 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6453
6454 bitidx += end_bitidx;
6455 mask <<= (BITS_PER_LONG - bitidx - 1);
6456 flags <<= (BITS_PER_LONG - bitidx - 1);
6457
6458 word = READ_ONCE(bitmap[word_bitidx]);
6459 for (;;) {
6460 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6461 if (word == old_word)
6462 break;
6463 word = old_word;
6464 }
6465 }
6466
6467 /*
6468 * This function checks whether pageblock includes unmovable pages or not.
6469 * If @count is not zero, it is okay to include less @count unmovable pages
6470 *
6471 * PageLRU check without isolation or lru_lock could race so that
6472 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6473 * expect this function should be exact.
6474 */
6475 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6476 bool skip_hwpoisoned_pages)
6477 {
6478 unsigned long pfn, iter, found;
6479 int mt;
6480
6481 /*
6482 * For avoiding noise data, lru_add_drain_all() should be called
6483 * If ZONE_MOVABLE, the zone never contains unmovable pages
6484 */
6485 if (zone_idx(zone) == ZONE_MOVABLE)
6486 return false;
6487 mt = get_pageblock_migratetype(page);
6488 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6489 return false;
6490
6491 pfn = page_to_pfn(page);
6492 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6493 unsigned long check = pfn + iter;
6494
6495 if (!pfn_valid_within(check))
6496 continue;
6497
6498 page = pfn_to_page(check);
6499
6500 /*
6501 * Hugepages are not in LRU lists, but they're movable.
6502 * We need not scan over tail pages bacause we don't
6503 * handle each tail page individually in migration.
6504 */
6505 if (PageHuge(page)) {
6506 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6507 continue;
6508 }
6509
6510 /*
6511 * We can't use page_count without pin a page
6512 * because another CPU can free compound page.
6513 * This check already skips compound tails of THP
6514 * because their page->_count is zero at all time.
6515 */
6516 if (!atomic_read(&page->_count)) {
6517 if (PageBuddy(page))
6518 iter += (1 << page_order(page)) - 1;
6519 continue;
6520 }
6521
6522 /*
6523 * The HWPoisoned page may be not in buddy system, and
6524 * page_count() is not 0.
6525 */
6526 if (skip_hwpoisoned_pages && PageHWPoison(page))
6527 continue;
6528
6529 if (!PageLRU(page))
6530 found++;
6531 /*
6532 * If there are RECLAIMABLE pages, we need to check
6533 * it. But now, memory offline itself doesn't call
6534 * shrink_node_slabs() and it still to be fixed.
6535 */
6536 /*
6537 * If the page is not RAM, page_count()should be 0.
6538 * we don't need more check. This is an _used_ not-movable page.
6539 *
6540 * The problematic thing here is PG_reserved pages. PG_reserved
6541 * is set to both of a memory hole page and a _used_ kernel
6542 * page at boot.
6543 */
6544 if (found > count)
6545 return true;
6546 }
6547 return false;
6548 }
6549
6550 bool is_pageblock_removable_nolock(struct page *page)
6551 {
6552 struct zone *zone;
6553 unsigned long pfn;
6554
6555 /*
6556 * We have to be careful here because we are iterating over memory
6557 * sections which are not zone aware so we might end up outside of
6558 * the zone but still within the section.
6559 * We have to take care about the node as well. If the node is offline
6560 * its NODE_DATA will be NULL - see page_zone.
6561 */
6562 if (!node_online(page_to_nid(page)))
6563 return false;
6564
6565 zone = page_zone(page);
6566 pfn = page_to_pfn(page);
6567 if (!zone_spans_pfn(zone, pfn))
6568 return false;
6569
6570 return !has_unmovable_pages(zone, page, 0, true);
6571 }
6572
6573 #ifdef CONFIG_CMA
6574
6575 static unsigned long pfn_max_align_down(unsigned long pfn)
6576 {
6577 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6578 pageblock_nr_pages) - 1);
6579 }
6580
6581 static unsigned long pfn_max_align_up(unsigned long pfn)
6582 {
6583 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6584 pageblock_nr_pages));
6585 }
6586
6587 /* [start, end) must belong to a single zone. */
6588 static int __alloc_contig_migrate_range(struct compact_control *cc,
6589 unsigned long start, unsigned long end)
6590 {
6591 /* This function is based on compact_zone() from compaction.c. */
6592 unsigned long nr_reclaimed;
6593 unsigned long pfn = start;
6594 unsigned int tries = 0;
6595 int ret = 0;
6596
6597 migrate_prep();
6598
6599 while (pfn < end || !list_empty(&cc->migratepages)) {
6600 if (fatal_signal_pending(current)) {
6601 ret = -EINTR;
6602 break;
6603 }
6604
6605 if (list_empty(&cc->migratepages)) {
6606 cc->nr_migratepages = 0;
6607 pfn = isolate_migratepages_range(cc, pfn, end);
6608 if (!pfn) {
6609 ret = -EINTR;
6610 break;
6611 }
6612 tries = 0;
6613 } else if (++tries == 5) {
6614 ret = ret < 0 ? ret : -EBUSY;
6615 break;
6616 }
6617
6618 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6619 &cc->migratepages);
6620 cc->nr_migratepages -= nr_reclaimed;
6621
6622 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6623 NULL, 0, cc->mode, MR_CMA);
6624 }
6625 if (ret < 0) {
6626 putback_movable_pages(&cc->migratepages);
6627 return ret;
6628 }
6629 return 0;
6630 }
6631
6632 /**
6633 * alloc_contig_range() -- tries to allocate given range of pages
6634 * @start: start PFN to allocate
6635 * @end: one-past-the-last PFN to allocate
6636 * @migratetype: migratetype of the underlaying pageblocks (either
6637 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6638 * in range must have the same migratetype and it must
6639 * be either of the two.
6640 *
6641 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6642 * aligned, however it's the caller's responsibility to guarantee that
6643 * we are the only thread that changes migrate type of pageblocks the
6644 * pages fall in.
6645 *
6646 * The PFN range must belong to a single zone.
6647 *
6648 * Returns zero on success or negative error code. On success all
6649 * pages which PFN is in [start, end) are allocated for the caller and
6650 * need to be freed with free_contig_range().
6651 */
6652 int alloc_contig_range(unsigned long start, unsigned long end,
6653 unsigned migratetype)
6654 {
6655 unsigned long outer_start, outer_end;
6656 unsigned int order;
6657 int ret = 0;
6658
6659 struct compact_control cc = {
6660 .nr_migratepages = 0,
6661 .order = -1,
6662 .zone = page_zone(pfn_to_page(start)),
6663 .mode = MIGRATE_SYNC,
6664 .ignore_skip_hint = true,
6665 };
6666 INIT_LIST_HEAD(&cc.migratepages);
6667
6668 /*
6669 * What we do here is we mark all pageblocks in range as
6670 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6671 * have different sizes, and due to the way page allocator
6672 * work, we align the range to biggest of the two pages so
6673 * that page allocator won't try to merge buddies from
6674 * different pageblocks and change MIGRATE_ISOLATE to some
6675 * other migration type.
6676 *
6677 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6678 * migrate the pages from an unaligned range (ie. pages that
6679 * we are interested in). This will put all the pages in
6680 * range back to page allocator as MIGRATE_ISOLATE.
6681 *
6682 * When this is done, we take the pages in range from page
6683 * allocator removing them from the buddy system. This way
6684 * page allocator will never consider using them.
6685 *
6686 * This lets us mark the pageblocks back as
6687 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6688 * aligned range but not in the unaligned, original range are
6689 * put back to page allocator so that buddy can use them.
6690 */
6691
6692 ret = start_isolate_page_range(pfn_max_align_down(start),
6693 pfn_max_align_up(end), migratetype,
6694 false);
6695 if (ret)
6696 return ret;
6697
6698 /*
6699 * In case of -EBUSY, we'd like to know which page causes problem.
6700 * So, just fall through. We will check it in test_pages_isolated().
6701 */
6702 ret = __alloc_contig_migrate_range(&cc, start, end);
6703 if (ret && ret != -EBUSY)
6704 goto done;
6705
6706 /*
6707 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6708 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6709 * more, all pages in [start, end) are free in page allocator.
6710 * What we are going to do is to allocate all pages from
6711 * [start, end) (that is remove them from page allocator).
6712 *
6713 * The only problem is that pages at the beginning and at the
6714 * end of interesting range may be not aligned with pages that
6715 * page allocator holds, ie. they can be part of higher order
6716 * pages. Because of this, we reserve the bigger range and
6717 * once this is done free the pages we are not interested in.
6718 *
6719 * We don't have to hold zone->lock here because the pages are
6720 * isolated thus they won't get removed from buddy.
6721 */
6722
6723 lru_add_drain_all();
6724 drain_all_pages(cc.zone);
6725
6726 order = 0;
6727 outer_start = start;
6728 while (!PageBuddy(pfn_to_page(outer_start))) {
6729 if (++order >= MAX_ORDER) {
6730 outer_start = start;
6731 break;
6732 }
6733 outer_start &= ~0UL << order;
6734 }
6735
6736 if (outer_start != start) {
6737 order = page_order(pfn_to_page(outer_start));
6738
6739 /*
6740 * outer_start page could be small order buddy page and
6741 * it doesn't include start page. Adjust outer_start
6742 * in this case to report failed page properly
6743 * on tracepoint in test_pages_isolated()
6744 */
6745 if (outer_start + (1UL << order) <= start)
6746 outer_start = start;
6747 }
6748
6749 /* Make sure the range is really isolated. */
6750 if (test_pages_isolated(outer_start, end, false)) {
6751 pr_info("%s: [%lx, %lx) PFNs busy\n",
6752 __func__, outer_start, end);
6753 ret = -EBUSY;
6754 goto done;
6755 }
6756
6757 /* Grab isolated pages from freelists. */
6758 outer_end = isolate_freepages_range(&cc, outer_start, end);
6759 if (!outer_end) {
6760 ret = -EBUSY;
6761 goto done;
6762 }
6763
6764 /* Free head and tail (if any) */
6765 if (start != outer_start)
6766 free_contig_range(outer_start, start - outer_start);
6767 if (end != outer_end)
6768 free_contig_range(end, outer_end - end);
6769
6770 done:
6771 undo_isolate_page_range(pfn_max_align_down(start),
6772 pfn_max_align_up(end), migratetype);
6773 return ret;
6774 }
6775
6776 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6777 {
6778 unsigned int count = 0;
6779
6780 for (; nr_pages--; pfn++) {
6781 struct page *page = pfn_to_page(pfn);
6782
6783 count += page_count(page) != 1;
6784 __free_page(page);
6785 }
6786 WARN(count != 0, "%d pages are still in use!\n", count);
6787 }
6788 #endif
6789
6790 #ifdef CONFIG_MEMORY_HOTPLUG
6791 /*
6792 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6793 * page high values need to be recalulated.
6794 */
6795 void __meminit zone_pcp_update(struct zone *zone)
6796 {
6797 unsigned cpu;
6798 mutex_lock(&pcp_batch_high_lock);
6799 for_each_possible_cpu(cpu)
6800 pageset_set_high_and_batch(zone,
6801 per_cpu_ptr(zone->pageset, cpu));
6802 mutex_unlock(&pcp_batch_high_lock);
6803 }
6804 #endif
6805
6806 void zone_pcp_reset(struct zone *zone)
6807 {
6808 unsigned long flags;
6809 int cpu;
6810 struct per_cpu_pageset *pset;
6811
6812 /* avoid races with drain_pages() */
6813 local_irq_save(flags);
6814 if (zone->pageset != &boot_pageset) {
6815 for_each_online_cpu(cpu) {
6816 pset = per_cpu_ptr(zone->pageset, cpu);
6817 drain_zonestat(zone, pset);
6818 }
6819 free_percpu(zone->pageset);
6820 zone->pageset = &boot_pageset;
6821 }
6822 local_irq_restore(flags);
6823 }
6824
6825 #ifdef CONFIG_MEMORY_HOTREMOVE
6826 /*
6827 * All pages in the range must be isolated before calling this.
6828 */
6829 void
6830 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6831 {
6832 struct page *page;
6833 struct zone *zone;
6834 unsigned int order, i;
6835 unsigned long pfn;
6836 unsigned long flags;
6837 /* find the first valid pfn */
6838 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6839 if (pfn_valid(pfn))
6840 break;
6841 if (pfn == end_pfn)
6842 return;
6843 zone = page_zone(pfn_to_page(pfn));
6844 spin_lock_irqsave(&zone->lock, flags);
6845 pfn = start_pfn;
6846 while (pfn < end_pfn) {
6847 if (!pfn_valid(pfn)) {
6848 pfn++;
6849 continue;
6850 }
6851 page = pfn_to_page(pfn);
6852 /*
6853 * The HWPoisoned page may be not in buddy system, and
6854 * page_count() is not 0.
6855 */
6856 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6857 pfn++;
6858 SetPageReserved(page);
6859 continue;
6860 }
6861
6862 BUG_ON(page_count(page));
6863 BUG_ON(!PageBuddy(page));
6864 order = page_order(page);
6865 #ifdef CONFIG_DEBUG_VM
6866 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6867 pfn, 1 << order, end_pfn);
6868 #endif
6869 list_del(&page->lru);
6870 rmv_page_order(page);
6871 zone->free_area[order].nr_free--;
6872 for (i = 0; i < (1 << order); i++)
6873 SetPageReserved((page+i));
6874 pfn += (1 << order);
6875 }
6876 spin_unlock_irqrestore(&zone->lock, flags);
6877 }
6878 #endif
6879
6880 #ifdef CONFIG_MEMORY_FAILURE
6881 bool is_free_buddy_page(struct page *page)
6882 {
6883 struct zone *zone = page_zone(page);
6884 unsigned long pfn = page_to_pfn(page);
6885 unsigned long flags;
6886 unsigned int order;
6887
6888 spin_lock_irqsave(&zone->lock, flags);
6889 for (order = 0; order < MAX_ORDER; order++) {
6890 struct page *page_head = page - (pfn & ((1 << order) - 1));
6891
6892 if (PageBuddy(page_head) && page_order(page_head) >= order)
6893 break;
6894 }
6895 spin_unlock_irqrestore(&zone->lock, flags);
6896
6897 return order < MAX_ORDER;
6898 }
6899 #endif