]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
Merge tag 'xfs-5.13-merge-5' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84
85 /* No special request */
86 #define FPI_NONE ((__force fpi_t)0)
87
88 /*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
98 /*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
110 /*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_FRACTION (8)
124
125 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
126 DEFINE_PER_CPU(int, numa_node);
127 EXPORT_PER_CPU_SYMBOL(numa_node);
128 #endif
129
130 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
131
132 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
133 /*
134 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
135 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
136 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
137 * defined in <linux/topology.h>.
138 */
139 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
140 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
141 #endif
142
143 /* work_structs for global per-cpu drains */
144 struct pcpu_drain {
145 struct zone *zone;
146 struct work_struct work;
147 };
148 static DEFINE_MUTEX(pcpu_drain_mutex);
149 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
150
151 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
152 volatile unsigned long latent_entropy __latent_entropy;
153 EXPORT_SYMBOL(latent_entropy);
154 #endif
155
156 /*
157 * Array of node states.
158 */
159 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
160 [N_POSSIBLE] = NODE_MASK_ALL,
161 [N_ONLINE] = { { [0] = 1UL } },
162 #ifndef CONFIG_NUMA
163 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
164 #ifdef CONFIG_HIGHMEM
165 [N_HIGH_MEMORY] = { { [0] = 1UL } },
166 #endif
167 [N_MEMORY] = { { [0] = 1UL } },
168 [N_CPU] = { { [0] = 1UL } },
169 #endif /* NUMA */
170 };
171 EXPORT_SYMBOL(node_states);
172
173 atomic_long_t _totalram_pages __read_mostly;
174 EXPORT_SYMBOL(_totalram_pages);
175 unsigned long totalreserve_pages __read_mostly;
176 unsigned long totalcma_pages __read_mostly;
177
178 int percpu_pagelist_fraction;
179 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
180 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
181 EXPORT_SYMBOL(init_on_alloc);
182
183 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
184 EXPORT_SYMBOL(init_on_free);
185
186 static bool _init_on_alloc_enabled_early __read_mostly
187 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
188 static int __init early_init_on_alloc(char *buf)
189 {
190
191 return kstrtobool(buf, &_init_on_alloc_enabled_early);
192 }
193 early_param("init_on_alloc", early_init_on_alloc);
194
195 static bool _init_on_free_enabled_early __read_mostly
196 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
197 static int __init early_init_on_free(char *buf)
198 {
199 return kstrtobool(buf, &_init_on_free_enabled_early);
200 }
201 early_param("init_on_free", early_init_on_free);
202
203 /*
204 * A cached value of the page's pageblock's migratetype, used when the page is
205 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
206 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
207 * Also the migratetype set in the page does not necessarily match the pcplist
208 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
209 * other index - this ensures that it will be put on the correct CMA freelist.
210 */
211 static inline int get_pcppage_migratetype(struct page *page)
212 {
213 return page->index;
214 }
215
216 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
217 {
218 page->index = migratetype;
219 }
220
221 #ifdef CONFIG_PM_SLEEP
222 /*
223 * The following functions are used by the suspend/hibernate code to temporarily
224 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
225 * while devices are suspended. To avoid races with the suspend/hibernate code,
226 * they should always be called with system_transition_mutex held
227 * (gfp_allowed_mask also should only be modified with system_transition_mutex
228 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
229 * with that modification).
230 */
231
232 static gfp_t saved_gfp_mask;
233
234 void pm_restore_gfp_mask(void)
235 {
236 WARN_ON(!mutex_is_locked(&system_transition_mutex));
237 if (saved_gfp_mask) {
238 gfp_allowed_mask = saved_gfp_mask;
239 saved_gfp_mask = 0;
240 }
241 }
242
243 void pm_restrict_gfp_mask(void)
244 {
245 WARN_ON(!mutex_is_locked(&system_transition_mutex));
246 WARN_ON(saved_gfp_mask);
247 saved_gfp_mask = gfp_allowed_mask;
248 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
249 }
250
251 bool pm_suspended_storage(void)
252 {
253 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
254 return false;
255 return true;
256 }
257 #endif /* CONFIG_PM_SLEEP */
258
259 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
260 unsigned int pageblock_order __read_mostly;
261 #endif
262
263 static void __free_pages_ok(struct page *page, unsigned int order,
264 fpi_t fpi_flags);
265
266 /*
267 * results with 256, 32 in the lowmem_reserve sysctl:
268 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
269 * 1G machine -> (16M dma, 784M normal, 224M high)
270 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
271 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
272 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
273 *
274 * TBD: should special case ZONE_DMA32 machines here - in those we normally
275 * don't need any ZONE_NORMAL reservation
276 */
277 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
278 #ifdef CONFIG_ZONE_DMA
279 [ZONE_DMA] = 256,
280 #endif
281 #ifdef CONFIG_ZONE_DMA32
282 [ZONE_DMA32] = 256,
283 #endif
284 [ZONE_NORMAL] = 32,
285 #ifdef CONFIG_HIGHMEM
286 [ZONE_HIGHMEM] = 0,
287 #endif
288 [ZONE_MOVABLE] = 0,
289 };
290
291 static char * const zone_names[MAX_NR_ZONES] = {
292 #ifdef CONFIG_ZONE_DMA
293 "DMA",
294 #endif
295 #ifdef CONFIG_ZONE_DMA32
296 "DMA32",
297 #endif
298 "Normal",
299 #ifdef CONFIG_HIGHMEM
300 "HighMem",
301 #endif
302 "Movable",
303 #ifdef CONFIG_ZONE_DEVICE
304 "Device",
305 #endif
306 };
307
308 const char * const migratetype_names[MIGRATE_TYPES] = {
309 "Unmovable",
310 "Movable",
311 "Reclaimable",
312 "HighAtomic",
313 #ifdef CONFIG_CMA
314 "CMA",
315 #endif
316 #ifdef CONFIG_MEMORY_ISOLATION
317 "Isolate",
318 #endif
319 };
320
321 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
322 [NULL_COMPOUND_DTOR] = NULL,
323 [COMPOUND_PAGE_DTOR] = free_compound_page,
324 #ifdef CONFIG_HUGETLB_PAGE
325 [HUGETLB_PAGE_DTOR] = free_huge_page,
326 #endif
327 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
328 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
329 #endif
330 };
331
332 int min_free_kbytes = 1024;
333 int user_min_free_kbytes = -1;
334 #ifdef CONFIG_DISCONTIGMEM
335 /*
336 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
337 * are not on separate NUMA nodes. Functionally this works but with
338 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
339 * quite small. By default, do not boost watermarks on discontigmem as in
340 * many cases very high-order allocations like THP are likely to be
341 * unsupported and the premature reclaim offsets the advantage of long-term
342 * fragmentation avoidance.
343 */
344 int watermark_boost_factor __read_mostly;
345 #else
346 int watermark_boost_factor __read_mostly = 15000;
347 #endif
348 int watermark_scale_factor = 10;
349
350 static unsigned long nr_kernel_pages __initdata;
351 static unsigned long nr_all_pages __initdata;
352 static unsigned long dma_reserve __initdata;
353
354 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
355 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
356 static unsigned long required_kernelcore __initdata;
357 static unsigned long required_kernelcore_percent __initdata;
358 static unsigned long required_movablecore __initdata;
359 static unsigned long required_movablecore_percent __initdata;
360 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
361 static bool mirrored_kernelcore __meminitdata;
362
363 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
364 int movable_zone;
365 EXPORT_SYMBOL(movable_zone);
366
367 #if MAX_NUMNODES > 1
368 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
369 unsigned int nr_online_nodes __read_mostly = 1;
370 EXPORT_SYMBOL(nr_node_ids);
371 EXPORT_SYMBOL(nr_online_nodes);
372 #endif
373
374 int page_group_by_mobility_disabled __read_mostly;
375
376 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
377 /*
378 * During boot we initialize deferred pages on-demand, as needed, but once
379 * page_alloc_init_late() has finished, the deferred pages are all initialized,
380 * and we can permanently disable that path.
381 */
382 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
383
384 /*
385 * Calling kasan_free_pages() only after deferred memory initialization
386 * has completed. Poisoning pages during deferred memory init will greatly
387 * lengthen the process and cause problem in large memory systems as the
388 * deferred pages initialization is done with interrupt disabled.
389 *
390 * Assuming that there will be no reference to those newly initialized
391 * pages before they are ever allocated, this should have no effect on
392 * KASAN memory tracking as the poison will be properly inserted at page
393 * allocation time. The only corner case is when pages are allocated by
394 * on-demand allocation and then freed again before the deferred pages
395 * initialization is done, but this is not likely to happen.
396 */
397 static inline void kasan_free_nondeferred_pages(struct page *page, int order,
398 bool init, fpi_t fpi_flags)
399 {
400 if (static_branch_unlikely(&deferred_pages))
401 return;
402 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
403 (fpi_flags & FPI_SKIP_KASAN_POISON))
404 return;
405 kasan_free_pages(page, order, init);
406 }
407
408 /* Returns true if the struct page for the pfn is uninitialised */
409 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
410 {
411 int nid = early_pfn_to_nid(pfn);
412
413 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
414 return true;
415
416 return false;
417 }
418
419 /*
420 * Returns true when the remaining initialisation should be deferred until
421 * later in the boot cycle when it can be parallelised.
422 */
423 static bool __meminit
424 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
425 {
426 static unsigned long prev_end_pfn, nr_initialised;
427
428 /*
429 * prev_end_pfn static that contains the end of previous zone
430 * No need to protect because called very early in boot before smp_init.
431 */
432 if (prev_end_pfn != end_pfn) {
433 prev_end_pfn = end_pfn;
434 nr_initialised = 0;
435 }
436
437 /* Always populate low zones for address-constrained allocations */
438 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
439 return false;
440
441 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
442 return true;
443 /*
444 * We start only with one section of pages, more pages are added as
445 * needed until the rest of deferred pages are initialized.
446 */
447 nr_initialised++;
448 if ((nr_initialised > PAGES_PER_SECTION) &&
449 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
450 NODE_DATA(nid)->first_deferred_pfn = pfn;
451 return true;
452 }
453 return false;
454 }
455 #else
456 static inline void kasan_free_nondeferred_pages(struct page *page, int order,
457 bool init, fpi_t fpi_flags)
458 {
459 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
460 (fpi_flags & FPI_SKIP_KASAN_POISON))
461 return;
462 kasan_free_pages(page, order, init);
463 }
464
465 static inline bool early_page_uninitialised(unsigned long pfn)
466 {
467 return false;
468 }
469
470 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
471 {
472 return false;
473 }
474 #endif
475
476 /* Return a pointer to the bitmap storing bits affecting a block of pages */
477 static inline unsigned long *get_pageblock_bitmap(struct page *page,
478 unsigned long pfn)
479 {
480 #ifdef CONFIG_SPARSEMEM
481 return section_to_usemap(__pfn_to_section(pfn));
482 #else
483 return page_zone(page)->pageblock_flags;
484 #endif /* CONFIG_SPARSEMEM */
485 }
486
487 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
488 {
489 #ifdef CONFIG_SPARSEMEM
490 pfn &= (PAGES_PER_SECTION-1);
491 #else
492 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
493 #endif /* CONFIG_SPARSEMEM */
494 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
495 }
496
497 static __always_inline
498 unsigned long __get_pfnblock_flags_mask(struct page *page,
499 unsigned long pfn,
500 unsigned long mask)
501 {
502 unsigned long *bitmap;
503 unsigned long bitidx, word_bitidx;
504 unsigned long word;
505
506 bitmap = get_pageblock_bitmap(page, pfn);
507 bitidx = pfn_to_bitidx(page, pfn);
508 word_bitidx = bitidx / BITS_PER_LONG;
509 bitidx &= (BITS_PER_LONG-1);
510
511 word = bitmap[word_bitidx];
512 return (word >> bitidx) & mask;
513 }
514
515 /**
516 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
517 * @page: The page within the block of interest
518 * @pfn: The target page frame number
519 * @mask: mask of bits that the caller is interested in
520 *
521 * Return: pageblock_bits flags
522 */
523 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
524 unsigned long mask)
525 {
526 return __get_pfnblock_flags_mask(page, pfn, mask);
527 }
528
529 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
530 {
531 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
532 }
533
534 /**
535 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
536 * @page: The page within the block of interest
537 * @flags: The flags to set
538 * @pfn: The target page frame number
539 * @mask: mask of bits that the caller is interested in
540 */
541 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
542 unsigned long pfn,
543 unsigned long mask)
544 {
545 unsigned long *bitmap;
546 unsigned long bitidx, word_bitidx;
547 unsigned long old_word, word;
548
549 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
550 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
551
552 bitmap = get_pageblock_bitmap(page, pfn);
553 bitidx = pfn_to_bitidx(page, pfn);
554 word_bitidx = bitidx / BITS_PER_LONG;
555 bitidx &= (BITS_PER_LONG-1);
556
557 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
558
559 mask <<= bitidx;
560 flags <<= bitidx;
561
562 word = READ_ONCE(bitmap[word_bitidx]);
563 for (;;) {
564 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
565 if (word == old_word)
566 break;
567 word = old_word;
568 }
569 }
570
571 void set_pageblock_migratetype(struct page *page, int migratetype)
572 {
573 if (unlikely(page_group_by_mobility_disabled &&
574 migratetype < MIGRATE_PCPTYPES))
575 migratetype = MIGRATE_UNMOVABLE;
576
577 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
578 page_to_pfn(page), MIGRATETYPE_MASK);
579 }
580
581 #ifdef CONFIG_DEBUG_VM
582 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
583 {
584 int ret = 0;
585 unsigned seq;
586 unsigned long pfn = page_to_pfn(page);
587 unsigned long sp, start_pfn;
588
589 do {
590 seq = zone_span_seqbegin(zone);
591 start_pfn = zone->zone_start_pfn;
592 sp = zone->spanned_pages;
593 if (!zone_spans_pfn(zone, pfn))
594 ret = 1;
595 } while (zone_span_seqretry(zone, seq));
596
597 if (ret)
598 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
599 pfn, zone_to_nid(zone), zone->name,
600 start_pfn, start_pfn + sp);
601
602 return ret;
603 }
604
605 static int page_is_consistent(struct zone *zone, struct page *page)
606 {
607 if (!pfn_valid_within(page_to_pfn(page)))
608 return 0;
609 if (zone != page_zone(page))
610 return 0;
611
612 return 1;
613 }
614 /*
615 * Temporary debugging check for pages not lying within a given zone.
616 */
617 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
618 {
619 if (page_outside_zone_boundaries(zone, page))
620 return 1;
621 if (!page_is_consistent(zone, page))
622 return 1;
623
624 return 0;
625 }
626 #else
627 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
628 {
629 return 0;
630 }
631 #endif
632
633 static void bad_page(struct page *page, const char *reason)
634 {
635 static unsigned long resume;
636 static unsigned long nr_shown;
637 static unsigned long nr_unshown;
638
639 /*
640 * Allow a burst of 60 reports, then keep quiet for that minute;
641 * or allow a steady drip of one report per second.
642 */
643 if (nr_shown == 60) {
644 if (time_before(jiffies, resume)) {
645 nr_unshown++;
646 goto out;
647 }
648 if (nr_unshown) {
649 pr_alert(
650 "BUG: Bad page state: %lu messages suppressed\n",
651 nr_unshown);
652 nr_unshown = 0;
653 }
654 nr_shown = 0;
655 }
656 if (nr_shown++ == 0)
657 resume = jiffies + 60 * HZ;
658
659 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
660 current->comm, page_to_pfn(page));
661 __dump_page(page, reason);
662 dump_page_owner(page);
663
664 print_modules();
665 dump_stack();
666 out:
667 /* Leave bad fields for debug, except PageBuddy could make trouble */
668 page_mapcount_reset(page); /* remove PageBuddy */
669 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
670 }
671
672 /*
673 * Higher-order pages are called "compound pages". They are structured thusly:
674 *
675 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
676 *
677 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
678 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
679 *
680 * The first tail page's ->compound_dtor holds the offset in array of compound
681 * page destructors. See compound_page_dtors.
682 *
683 * The first tail page's ->compound_order holds the order of allocation.
684 * This usage means that zero-order pages may not be compound.
685 */
686
687 void free_compound_page(struct page *page)
688 {
689 mem_cgroup_uncharge(page);
690 __free_pages_ok(page, compound_order(page), FPI_NONE);
691 }
692
693 void prep_compound_page(struct page *page, unsigned int order)
694 {
695 int i;
696 int nr_pages = 1 << order;
697
698 __SetPageHead(page);
699 for (i = 1; i < nr_pages; i++) {
700 struct page *p = page + i;
701 set_page_count(p, 0);
702 p->mapping = TAIL_MAPPING;
703 set_compound_head(p, page);
704 }
705
706 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
707 set_compound_order(page, order);
708 atomic_set(compound_mapcount_ptr(page), -1);
709 if (hpage_pincount_available(page))
710 atomic_set(compound_pincount_ptr(page), 0);
711 }
712
713 #ifdef CONFIG_DEBUG_PAGEALLOC
714 unsigned int _debug_guardpage_minorder;
715
716 bool _debug_pagealloc_enabled_early __read_mostly
717 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
718 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
719 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
720 EXPORT_SYMBOL(_debug_pagealloc_enabled);
721
722 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
723
724 static int __init early_debug_pagealloc(char *buf)
725 {
726 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
727 }
728 early_param("debug_pagealloc", early_debug_pagealloc);
729
730 static int __init debug_guardpage_minorder_setup(char *buf)
731 {
732 unsigned long res;
733
734 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
735 pr_err("Bad debug_guardpage_minorder value\n");
736 return 0;
737 }
738 _debug_guardpage_minorder = res;
739 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
740 return 0;
741 }
742 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
743
744 static inline bool set_page_guard(struct zone *zone, struct page *page,
745 unsigned int order, int migratetype)
746 {
747 if (!debug_guardpage_enabled())
748 return false;
749
750 if (order >= debug_guardpage_minorder())
751 return false;
752
753 __SetPageGuard(page);
754 INIT_LIST_HEAD(&page->lru);
755 set_page_private(page, order);
756 /* Guard pages are not available for any usage */
757 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
758
759 return true;
760 }
761
762 static inline void clear_page_guard(struct zone *zone, struct page *page,
763 unsigned int order, int migratetype)
764 {
765 if (!debug_guardpage_enabled())
766 return;
767
768 __ClearPageGuard(page);
769
770 set_page_private(page, 0);
771 if (!is_migrate_isolate(migratetype))
772 __mod_zone_freepage_state(zone, (1 << order), migratetype);
773 }
774 #else
775 static inline bool set_page_guard(struct zone *zone, struct page *page,
776 unsigned int order, int migratetype) { return false; }
777 static inline void clear_page_guard(struct zone *zone, struct page *page,
778 unsigned int order, int migratetype) {}
779 #endif
780
781 /*
782 * Enable static keys related to various memory debugging and hardening options.
783 * Some override others, and depend on early params that are evaluated in the
784 * order of appearance. So we need to first gather the full picture of what was
785 * enabled, and then make decisions.
786 */
787 void init_mem_debugging_and_hardening(void)
788 {
789 bool page_poisoning_requested = false;
790
791 #ifdef CONFIG_PAGE_POISONING
792 /*
793 * Page poisoning is debug page alloc for some arches. If
794 * either of those options are enabled, enable poisoning.
795 */
796 if (page_poisoning_enabled() ||
797 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
798 debug_pagealloc_enabled())) {
799 static_branch_enable(&_page_poisoning_enabled);
800 page_poisoning_requested = true;
801 }
802 #endif
803
804 if (_init_on_alloc_enabled_early) {
805 if (page_poisoning_requested)
806 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
807 "will take precedence over init_on_alloc\n");
808 else
809 static_branch_enable(&init_on_alloc);
810 }
811 if (_init_on_free_enabled_early) {
812 if (page_poisoning_requested)
813 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
814 "will take precedence over init_on_free\n");
815 else
816 static_branch_enable(&init_on_free);
817 }
818
819 #ifdef CONFIG_DEBUG_PAGEALLOC
820 if (!debug_pagealloc_enabled())
821 return;
822
823 static_branch_enable(&_debug_pagealloc_enabled);
824
825 if (!debug_guardpage_minorder())
826 return;
827
828 static_branch_enable(&_debug_guardpage_enabled);
829 #endif
830 }
831
832 static inline void set_buddy_order(struct page *page, unsigned int order)
833 {
834 set_page_private(page, order);
835 __SetPageBuddy(page);
836 }
837
838 /*
839 * This function checks whether a page is free && is the buddy
840 * we can coalesce a page and its buddy if
841 * (a) the buddy is not in a hole (check before calling!) &&
842 * (b) the buddy is in the buddy system &&
843 * (c) a page and its buddy have the same order &&
844 * (d) a page and its buddy are in the same zone.
845 *
846 * For recording whether a page is in the buddy system, we set PageBuddy.
847 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
848 *
849 * For recording page's order, we use page_private(page).
850 */
851 static inline bool page_is_buddy(struct page *page, struct page *buddy,
852 unsigned int order)
853 {
854 if (!page_is_guard(buddy) && !PageBuddy(buddy))
855 return false;
856
857 if (buddy_order(buddy) != order)
858 return false;
859
860 /*
861 * zone check is done late to avoid uselessly calculating
862 * zone/node ids for pages that could never merge.
863 */
864 if (page_zone_id(page) != page_zone_id(buddy))
865 return false;
866
867 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
868
869 return true;
870 }
871
872 #ifdef CONFIG_COMPACTION
873 static inline struct capture_control *task_capc(struct zone *zone)
874 {
875 struct capture_control *capc = current->capture_control;
876
877 return unlikely(capc) &&
878 !(current->flags & PF_KTHREAD) &&
879 !capc->page &&
880 capc->cc->zone == zone ? capc : NULL;
881 }
882
883 static inline bool
884 compaction_capture(struct capture_control *capc, struct page *page,
885 int order, int migratetype)
886 {
887 if (!capc || order != capc->cc->order)
888 return false;
889
890 /* Do not accidentally pollute CMA or isolated regions*/
891 if (is_migrate_cma(migratetype) ||
892 is_migrate_isolate(migratetype))
893 return false;
894
895 /*
896 * Do not let lower order allocations polluate a movable pageblock.
897 * This might let an unmovable request use a reclaimable pageblock
898 * and vice-versa but no more than normal fallback logic which can
899 * have trouble finding a high-order free page.
900 */
901 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
902 return false;
903
904 capc->page = page;
905 return true;
906 }
907
908 #else
909 static inline struct capture_control *task_capc(struct zone *zone)
910 {
911 return NULL;
912 }
913
914 static inline bool
915 compaction_capture(struct capture_control *capc, struct page *page,
916 int order, int migratetype)
917 {
918 return false;
919 }
920 #endif /* CONFIG_COMPACTION */
921
922 /* Used for pages not on another list */
923 static inline void add_to_free_list(struct page *page, struct zone *zone,
924 unsigned int order, int migratetype)
925 {
926 struct free_area *area = &zone->free_area[order];
927
928 list_add(&page->lru, &area->free_list[migratetype]);
929 area->nr_free++;
930 }
931
932 /* Used for pages not on another list */
933 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
934 unsigned int order, int migratetype)
935 {
936 struct free_area *area = &zone->free_area[order];
937
938 list_add_tail(&page->lru, &area->free_list[migratetype]);
939 area->nr_free++;
940 }
941
942 /*
943 * Used for pages which are on another list. Move the pages to the tail
944 * of the list - so the moved pages won't immediately be considered for
945 * allocation again (e.g., optimization for memory onlining).
946 */
947 static inline void move_to_free_list(struct page *page, struct zone *zone,
948 unsigned int order, int migratetype)
949 {
950 struct free_area *area = &zone->free_area[order];
951
952 list_move_tail(&page->lru, &area->free_list[migratetype]);
953 }
954
955 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
956 unsigned int order)
957 {
958 /* clear reported state and update reported page count */
959 if (page_reported(page))
960 __ClearPageReported(page);
961
962 list_del(&page->lru);
963 __ClearPageBuddy(page);
964 set_page_private(page, 0);
965 zone->free_area[order].nr_free--;
966 }
967
968 /*
969 * If this is not the largest possible page, check if the buddy
970 * of the next-highest order is free. If it is, it's possible
971 * that pages are being freed that will coalesce soon. In case,
972 * that is happening, add the free page to the tail of the list
973 * so it's less likely to be used soon and more likely to be merged
974 * as a higher order page
975 */
976 static inline bool
977 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
978 struct page *page, unsigned int order)
979 {
980 struct page *higher_page, *higher_buddy;
981 unsigned long combined_pfn;
982
983 if (order >= MAX_ORDER - 2)
984 return false;
985
986 if (!pfn_valid_within(buddy_pfn))
987 return false;
988
989 combined_pfn = buddy_pfn & pfn;
990 higher_page = page + (combined_pfn - pfn);
991 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
992 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
993
994 return pfn_valid_within(buddy_pfn) &&
995 page_is_buddy(higher_page, higher_buddy, order + 1);
996 }
997
998 /*
999 * Freeing function for a buddy system allocator.
1000 *
1001 * The concept of a buddy system is to maintain direct-mapped table
1002 * (containing bit values) for memory blocks of various "orders".
1003 * The bottom level table contains the map for the smallest allocatable
1004 * units of memory (here, pages), and each level above it describes
1005 * pairs of units from the levels below, hence, "buddies".
1006 * At a high level, all that happens here is marking the table entry
1007 * at the bottom level available, and propagating the changes upward
1008 * as necessary, plus some accounting needed to play nicely with other
1009 * parts of the VM system.
1010 * At each level, we keep a list of pages, which are heads of continuous
1011 * free pages of length of (1 << order) and marked with PageBuddy.
1012 * Page's order is recorded in page_private(page) field.
1013 * So when we are allocating or freeing one, we can derive the state of the
1014 * other. That is, if we allocate a small block, and both were
1015 * free, the remainder of the region must be split into blocks.
1016 * If a block is freed, and its buddy is also free, then this
1017 * triggers coalescing into a block of larger size.
1018 *
1019 * -- nyc
1020 */
1021
1022 static inline void __free_one_page(struct page *page,
1023 unsigned long pfn,
1024 struct zone *zone, unsigned int order,
1025 int migratetype, fpi_t fpi_flags)
1026 {
1027 struct capture_control *capc = task_capc(zone);
1028 unsigned long buddy_pfn;
1029 unsigned long combined_pfn;
1030 unsigned int max_order;
1031 struct page *buddy;
1032 bool to_tail;
1033
1034 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1035
1036 VM_BUG_ON(!zone_is_initialized(zone));
1037 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1038
1039 VM_BUG_ON(migratetype == -1);
1040 if (likely(!is_migrate_isolate(migratetype)))
1041 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1042
1043 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1044 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1045
1046 continue_merging:
1047 while (order < max_order) {
1048 if (compaction_capture(capc, page, order, migratetype)) {
1049 __mod_zone_freepage_state(zone, -(1 << order),
1050 migratetype);
1051 return;
1052 }
1053 buddy_pfn = __find_buddy_pfn(pfn, order);
1054 buddy = page + (buddy_pfn - pfn);
1055
1056 if (!pfn_valid_within(buddy_pfn))
1057 goto done_merging;
1058 if (!page_is_buddy(page, buddy, order))
1059 goto done_merging;
1060 /*
1061 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1062 * merge with it and move up one order.
1063 */
1064 if (page_is_guard(buddy))
1065 clear_page_guard(zone, buddy, order, migratetype);
1066 else
1067 del_page_from_free_list(buddy, zone, order);
1068 combined_pfn = buddy_pfn & pfn;
1069 page = page + (combined_pfn - pfn);
1070 pfn = combined_pfn;
1071 order++;
1072 }
1073 if (order < MAX_ORDER - 1) {
1074 /* If we are here, it means order is >= pageblock_order.
1075 * We want to prevent merge between freepages on isolate
1076 * pageblock and normal pageblock. Without this, pageblock
1077 * isolation could cause incorrect freepage or CMA accounting.
1078 *
1079 * We don't want to hit this code for the more frequent
1080 * low-order merging.
1081 */
1082 if (unlikely(has_isolate_pageblock(zone))) {
1083 int buddy_mt;
1084
1085 buddy_pfn = __find_buddy_pfn(pfn, order);
1086 buddy = page + (buddy_pfn - pfn);
1087 buddy_mt = get_pageblock_migratetype(buddy);
1088
1089 if (migratetype != buddy_mt
1090 && (is_migrate_isolate(migratetype) ||
1091 is_migrate_isolate(buddy_mt)))
1092 goto done_merging;
1093 }
1094 max_order = order + 1;
1095 goto continue_merging;
1096 }
1097
1098 done_merging:
1099 set_buddy_order(page, order);
1100
1101 if (fpi_flags & FPI_TO_TAIL)
1102 to_tail = true;
1103 else if (is_shuffle_order(order))
1104 to_tail = shuffle_pick_tail();
1105 else
1106 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1107
1108 if (to_tail)
1109 add_to_free_list_tail(page, zone, order, migratetype);
1110 else
1111 add_to_free_list(page, zone, order, migratetype);
1112
1113 /* Notify page reporting subsystem of freed page */
1114 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1115 page_reporting_notify_free(order);
1116 }
1117
1118 /*
1119 * A bad page could be due to a number of fields. Instead of multiple branches,
1120 * try and check multiple fields with one check. The caller must do a detailed
1121 * check if necessary.
1122 */
1123 static inline bool page_expected_state(struct page *page,
1124 unsigned long check_flags)
1125 {
1126 if (unlikely(atomic_read(&page->_mapcount) != -1))
1127 return false;
1128
1129 if (unlikely((unsigned long)page->mapping |
1130 page_ref_count(page) |
1131 #ifdef CONFIG_MEMCG
1132 page->memcg_data |
1133 #endif
1134 (page->flags & check_flags)))
1135 return false;
1136
1137 return true;
1138 }
1139
1140 static const char *page_bad_reason(struct page *page, unsigned long flags)
1141 {
1142 const char *bad_reason = NULL;
1143
1144 if (unlikely(atomic_read(&page->_mapcount) != -1))
1145 bad_reason = "nonzero mapcount";
1146 if (unlikely(page->mapping != NULL))
1147 bad_reason = "non-NULL mapping";
1148 if (unlikely(page_ref_count(page) != 0))
1149 bad_reason = "nonzero _refcount";
1150 if (unlikely(page->flags & flags)) {
1151 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1152 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1153 else
1154 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1155 }
1156 #ifdef CONFIG_MEMCG
1157 if (unlikely(page->memcg_data))
1158 bad_reason = "page still charged to cgroup";
1159 #endif
1160 return bad_reason;
1161 }
1162
1163 static void check_free_page_bad(struct page *page)
1164 {
1165 bad_page(page,
1166 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1167 }
1168
1169 static inline int check_free_page(struct page *page)
1170 {
1171 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1172 return 0;
1173
1174 /* Something has gone sideways, find it */
1175 check_free_page_bad(page);
1176 return 1;
1177 }
1178
1179 static int free_tail_pages_check(struct page *head_page, struct page *page)
1180 {
1181 int ret = 1;
1182
1183 /*
1184 * We rely page->lru.next never has bit 0 set, unless the page
1185 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1186 */
1187 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1188
1189 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1190 ret = 0;
1191 goto out;
1192 }
1193 switch (page - head_page) {
1194 case 1:
1195 /* the first tail page: ->mapping may be compound_mapcount() */
1196 if (unlikely(compound_mapcount(page))) {
1197 bad_page(page, "nonzero compound_mapcount");
1198 goto out;
1199 }
1200 break;
1201 case 2:
1202 /*
1203 * the second tail page: ->mapping is
1204 * deferred_list.next -- ignore value.
1205 */
1206 break;
1207 default:
1208 if (page->mapping != TAIL_MAPPING) {
1209 bad_page(page, "corrupted mapping in tail page");
1210 goto out;
1211 }
1212 break;
1213 }
1214 if (unlikely(!PageTail(page))) {
1215 bad_page(page, "PageTail not set");
1216 goto out;
1217 }
1218 if (unlikely(compound_head(page) != head_page)) {
1219 bad_page(page, "compound_head not consistent");
1220 goto out;
1221 }
1222 ret = 0;
1223 out:
1224 page->mapping = NULL;
1225 clear_compound_head(page);
1226 return ret;
1227 }
1228
1229 static void kernel_init_free_pages(struct page *page, int numpages)
1230 {
1231 int i;
1232
1233 /* s390's use of memset() could override KASAN redzones. */
1234 kasan_disable_current();
1235 for (i = 0; i < numpages; i++) {
1236 u8 tag = page_kasan_tag(page + i);
1237 page_kasan_tag_reset(page + i);
1238 clear_highpage(page + i);
1239 page_kasan_tag_set(page + i, tag);
1240 }
1241 kasan_enable_current();
1242 }
1243
1244 static __always_inline bool free_pages_prepare(struct page *page,
1245 unsigned int order, bool check_free, fpi_t fpi_flags)
1246 {
1247 int bad = 0;
1248 bool init;
1249
1250 VM_BUG_ON_PAGE(PageTail(page), page);
1251
1252 trace_mm_page_free(page, order);
1253
1254 if (unlikely(PageHWPoison(page)) && !order) {
1255 /*
1256 * Do not let hwpoison pages hit pcplists/buddy
1257 * Untie memcg state and reset page's owner
1258 */
1259 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1260 __memcg_kmem_uncharge_page(page, order);
1261 reset_page_owner(page, order);
1262 return false;
1263 }
1264
1265 /*
1266 * Check tail pages before head page information is cleared to
1267 * avoid checking PageCompound for order-0 pages.
1268 */
1269 if (unlikely(order)) {
1270 bool compound = PageCompound(page);
1271 int i;
1272
1273 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1274
1275 if (compound)
1276 ClearPageDoubleMap(page);
1277 for (i = 1; i < (1 << order); i++) {
1278 if (compound)
1279 bad += free_tail_pages_check(page, page + i);
1280 if (unlikely(check_free_page(page + i))) {
1281 bad++;
1282 continue;
1283 }
1284 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1285 }
1286 }
1287 if (PageMappingFlags(page))
1288 page->mapping = NULL;
1289 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1290 __memcg_kmem_uncharge_page(page, order);
1291 if (check_free)
1292 bad += check_free_page(page);
1293 if (bad)
1294 return false;
1295
1296 page_cpupid_reset_last(page);
1297 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1298 reset_page_owner(page, order);
1299
1300 if (!PageHighMem(page)) {
1301 debug_check_no_locks_freed(page_address(page),
1302 PAGE_SIZE << order);
1303 debug_check_no_obj_freed(page_address(page),
1304 PAGE_SIZE << order);
1305 }
1306
1307 kernel_poison_pages(page, 1 << order);
1308
1309 /*
1310 * As memory initialization might be integrated into KASAN,
1311 * kasan_free_pages and kernel_init_free_pages must be
1312 * kept together to avoid discrepancies in behavior.
1313 *
1314 * With hardware tag-based KASAN, memory tags must be set before the
1315 * page becomes unavailable via debug_pagealloc or arch_free_page.
1316 */
1317 init = want_init_on_free();
1318 if (init && !kasan_has_integrated_init())
1319 kernel_init_free_pages(page, 1 << order);
1320 kasan_free_nondeferred_pages(page, order, init, fpi_flags);
1321
1322 /*
1323 * arch_free_page() can make the page's contents inaccessible. s390
1324 * does this. So nothing which can access the page's contents should
1325 * happen after this.
1326 */
1327 arch_free_page(page, order);
1328
1329 debug_pagealloc_unmap_pages(page, 1 << order);
1330
1331 return true;
1332 }
1333
1334 #ifdef CONFIG_DEBUG_VM
1335 /*
1336 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1337 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1338 * moved from pcp lists to free lists.
1339 */
1340 static bool free_pcp_prepare(struct page *page)
1341 {
1342 return free_pages_prepare(page, 0, true, FPI_NONE);
1343 }
1344
1345 static bool bulkfree_pcp_prepare(struct page *page)
1346 {
1347 if (debug_pagealloc_enabled_static())
1348 return check_free_page(page);
1349 else
1350 return false;
1351 }
1352 #else
1353 /*
1354 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1355 * moving from pcp lists to free list in order to reduce overhead. With
1356 * debug_pagealloc enabled, they are checked also immediately when being freed
1357 * to the pcp lists.
1358 */
1359 static bool free_pcp_prepare(struct page *page)
1360 {
1361 if (debug_pagealloc_enabled_static())
1362 return free_pages_prepare(page, 0, true, FPI_NONE);
1363 else
1364 return free_pages_prepare(page, 0, false, FPI_NONE);
1365 }
1366
1367 static bool bulkfree_pcp_prepare(struct page *page)
1368 {
1369 return check_free_page(page);
1370 }
1371 #endif /* CONFIG_DEBUG_VM */
1372
1373 static inline void prefetch_buddy(struct page *page)
1374 {
1375 unsigned long pfn = page_to_pfn(page);
1376 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1377 struct page *buddy = page + (buddy_pfn - pfn);
1378
1379 prefetch(buddy);
1380 }
1381
1382 /*
1383 * Frees a number of pages from the PCP lists
1384 * Assumes all pages on list are in same zone, and of same order.
1385 * count is the number of pages to free.
1386 *
1387 * If the zone was previously in an "all pages pinned" state then look to
1388 * see if this freeing clears that state.
1389 *
1390 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1391 * pinned" detection logic.
1392 */
1393 static void free_pcppages_bulk(struct zone *zone, int count,
1394 struct per_cpu_pages *pcp)
1395 {
1396 int migratetype = 0;
1397 int batch_free = 0;
1398 int prefetch_nr = READ_ONCE(pcp->batch);
1399 bool isolated_pageblocks;
1400 struct page *page, *tmp;
1401 LIST_HEAD(head);
1402
1403 /*
1404 * Ensure proper count is passed which otherwise would stuck in the
1405 * below while (list_empty(list)) loop.
1406 */
1407 count = min(pcp->count, count);
1408 while (count) {
1409 struct list_head *list;
1410
1411 /*
1412 * Remove pages from lists in a round-robin fashion. A
1413 * batch_free count is maintained that is incremented when an
1414 * empty list is encountered. This is so more pages are freed
1415 * off fuller lists instead of spinning excessively around empty
1416 * lists
1417 */
1418 do {
1419 batch_free++;
1420 if (++migratetype == MIGRATE_PCPTYPES)
1421 migratetype = 0;
1422 list = &pcp->lists[migratetype];
1423 } while (list_empty(list));
1424
1425 /* This is the only non-empty list. Free them all. */
1426 if (batch_free == MIGRATE_PCPTYPES)
1427 batch_free = count;
1428
1429 do {
1430 page = list_last_entry(list, struct page, lru);
1431 /* must delete to avoid corrupting pcp list */
1432 list_del(&page->lru);
1433 pcp->count--;
1434
1435 if (bulkfree_pcp_prepare(page))
1436 continue;
1437
1438 list_add_tail(&page->lru, &head);
1439
1440 /*
1441 * We are going to put the page back to the global
1442 * pool, prefetch its buddy to speed up later access
1443 * under zone->lock. It is believed the overhead of
1444 * an additional test and calculating buddy_pfn here
1445 * can be offset by reduced memory latency later. To
1446 * avoid excessive prefetching due to large count, only
1447 * prefetch buddy for the first pcp->batch nr of pages.
1448 */
1449 if (prefetch_nr) {
1450 prefetch_buddy(page);
1451 prefetch_nr--;
1452 }
1453 } while (--count && --batch_free && !list_empty(list));
1454 }
1455
1456 spin_lock(&zone->lock);
1457 isolated_pageblocks = has_isolate_pageblock(zone);
1458
1459 /*
1460 * Use safe version since after __free_one_page(),
1461 * page->lru.next will not point to original list.
1462 */
1463 list_for_each_entry_safe(page, tmp, &head, lru) {
1464 int mt = get_pcppage_migratetype(page);
1465 /* MIGRATE_ISOLATE page should not go to pcplists */
1466 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1467 /* Pageblock could have been isolated meanwhile */
1468 if (unlikely(isolated_pageblocks))
1469 mt = get_pageblock_migratetype(page);
1470
1471 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1472 trace_mm_page_pcpu_drain(page, 0, mt);
1473 }
1474 spin_unlock(&zone->lock);
1475 }
1476
1477 static void free_one_page(struct zone *zone,
1478 struct page *page, unsigned long pfn,
1479 unsigned int order,
1480 int migratetype, fpi_t fpi_flags)
1481 {
1482 spin_lock(&zone->lock);
1483 if (unlikely(has_isolate_pageblock(zone) ||
1484 is_migrate_isolate(migratetype))) {
1485 migratetype = get_pfnblock_migratetype(page, pfn);
1486 }
1487 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1488 spin_unlock(&zone->lock);
1489 }
1490
1491 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1492 unsigned long zone, int nid)
1493 {
1494 mm_zero_struct_page(page);
1495 set_page_links(page, zone, nid, pfn);
1496 init_page_count(page);
1497 page_mapcount_reset(page);
1498 page_cpupid_reset_last(page);
1499 page_kasan_tag_reset(page);
1500
1501 INIT_LIST_HEAD(&page->lru);
1502 #ifdef WANT_PAGE_VIRTUAL
1503 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1504 if (!is_highmem_idx(zone))
1505 set_page_address(page, __va(pfn << PAGE_SHIFT));
1506 #endif
1507 }
1508
1509 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1510 static void __meminit init_reserved_page(unsigned long pfn)
1511 {
1512 pg_data_t *pgdat;
1513 int nid, zid;
1514
1515 if (!early_page_uninitialised(pfn))
1516 return;
1517
1518 nid = early_pfn_to_nid(pfn);
1519 pgdat = NODE_DATA(nid);
1520
1521 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1522 struct zone *zone = &pgdat->node_zones[zid];
1523
1524 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1525 break;
1526 }
1527 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1528 }
1529 #else
1530 static inline void init_reserved_page(unsigned long pfn)
1531 {
1532 }
1533 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1534
1535 /*
1536 * Initialised pages do not have PageReserved set. This function is
1537 * called for each range allocated by the bootmem allocator and
1538 * marks the pages PageReserved. The remaining valid pages are later
1539 * sent to the buddy page allocator.
1540 */
1541 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1542 {
1543 unsigned long start_pfn = PFN_DOWN(start);
1544 unsigned long end_pfn = PFN_UP(end);
1545
1546 for (; start_pfn < end_pfn; start_pfn++) {
1547 if (pfn_valid(start_pfn)) {
1548 struct page *page = pfn_to_page(start_pfn);
1549
1550 init_reserved_page(start_pfn);
1551
1552 /* Avoid false-positive PageTail() */
1553 INIT_LIST_HEAD(&page->lru);
1554
1555 /*
1556 * no need for atomic set_bit because the struct
1557 * page is not visible yet so nobody should
1558 * access it yet.
1559 */
1560 __SetPageReserved(page);
1561 }
1562 }
1563 }
1564
1565 static void __free_pages_ok(struct page *page, unsigned int order,
1566 fpi_t fpi_flags)
1567 {
1568 unsigned long flags;
1569 int migratetype;
1570 unsigned long pfn = page_to_pfn(page);
1571
1572 if (!free_pages_prepare(page, order, true, fpi_flags))
1573 return;
1574
1575 migratetype = get_pfnblock_migratetype(page, pfn);
1576 local_irq_save(flags);
1577 __count_vm_events(PGFREE, 1 << order);
1578 free_one_page(page_zone(page), page, pfn, order, migratetype,
1579 fpi_flags);
1580 local_irq_restore(flags);
1581 }
1582
1583 void __free_pages_core(struct page *page, unsigned int order)
1584 {
1585 unsigned int nr_pages = 1 << order;
1586 struct page *p = page;
1587 unsigned int loop;
1588
1589 /*
1590 * When initializing the memmap, __init_single_page() sets the refcount
1591 * of all pages to 1 ("allocated"/"not free"). We have to set the
1592 * refcount of all involved pages to 0.
1593 */
1594 prefetchw(p);
1595 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1596 prefetchw(p + 1);
1597 __ClearPageReserved(p);
1598 set_page_count(p, 0);
1599 }
1600 __ClearPageReserved(p);
1601 set_page_count(p, 0);
1602
1603 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1604
1605 /*
1606 * Bypass PCP and place fresh pages right to the tail, primarily
1607 * relevant for memory onlining.
1608 */
1609 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1610 }
1611
1612 #ifdef CONFIG_NEED_MULTIPLE_NODES
1613
1614 /*
1615 * During memory init memblocks map pfns to nids. The search is expensive and
1616 * this caches recent lookups. The implementation of __early_pfn_to_nid
1617 * treats start/end as pfns.
1618 */
1619 struct mminit_pfnnid_cache {
1620 unsigned long last_start;
1621 unsigned long last_end;
1622 int last_nid;
1623 };
1624
1625 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1626
1627 /*
1628 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1629 */
1630 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1631 struct mminit_pfnnid_cache *state)
1632 {
1633 unsigned long start_pfn, end_pfn;
1634 int nid;
1635
1636 if (state->last_start <= pfn && pfn < state->last_end)
1637 return state->last_nid;
1638
1639 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1640 if (nid != NUMA_NO_NODE) {
1641 state->last_start = start_pfn;
1642 state->last_end = end_pfn;
1643 state->last_nid = nid;
1644 }
1645
1646 return nid;
1647 }
1648
1649 int __meminit early_pfn_to_nid(unsigned long pfn)
1650 {
1651 static DEFINE_SPINLOCK(early_pfn_lock);
1652 int nid;
1653
1654 spin_lock(&early_pfn_lock);
1655 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1656 if (nid < 0)
1657 nid = first_online_node;
1658 spin_unlock(&early_pfn_lock);
1659
1660 return nid;
1661 }
1662 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1663
1664 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1665 unsigned int order)
1666 {
1667 if (early_page_uninitialised(pfn))
1668 return;
1669 __free_pages_core(page, order);
1670 }
1671
1672 /*
1673 * Check that the whole (or subset of) a pageblock given by the interval of
1674 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1675 * with the migration of free compaction scanner. The scanners then need to
1676 * use only pfn_valid_within() check for arches that allow holes within
1677 * pageblocks.
1678 *
1679 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1680 *
1681 * It's possible on some configurations to have a setup like node0 node1 node0
1682 * i.e. it's possible that all pages within a zones range of pages do not
1683 * belong to a single zone. We assume that a border between node0 and node1
1684 * can occur within a single pageblock, but not a node0 node1 node0
1685 * interleaving within a single pageblock. It is therefore sufficient to check
1686 * the first and last page of a pageblock and avoid checking each individual
1687 * page in a pageblock.
1688 */
1689 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1690 unsigned long end_pfn, struct zone *zone)
1691 {
1692 struct page *start_page;
1693 struct page *end_page;
1694
1695 /* end_pfn is one past the range we are checking */
1696 end_pfn--;
1697
1698 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1699 return NULL;
1700
1701 start_page = pfn_to_online_page(start_pfn);
1702 if (!start_page)
1703 return NULL;
1704
1705 if (page_zone(start_page) != zone)
1706 return NULL;
1707
1708 end_page = pfn_to_page(end_pfn);
1709
1710 /* This gives a shorter code than deriving page_zone(end_page) */
1711 if (page_zone_id(start_page) != page_zone_id(end_page))
1712 return NULL;
1713
1714 return start_page;
1715 }
1716
1717 void set_zone_contiguous(struct zone *zone)
1718 {
1719 unsigned long block_start_pfn = zone->zone_start_pfn;
1720 unsigned long block_end_pfn;
1721
1722 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1723 for (; block_start_pfn < zone_end_pfn(zone);
1724 block_start_pfn = block_end_pfn,
1725 block_end_pfn += pageblock_nr_pages) {
1726
1727 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1728
1729 if (!__pageblock_pfn_to_page(block_start_pfn,
1730 block_end_pfn, zone))
1731 return;
1732 cond_resched();
1733 }
1734
1735 /* We confirm that there is no hole */
1736 zone->contiguous = true;
1737 }
1738
1739 void clear_zone_contiguous(struct zone *zone)
1740 {
1741 zone->contiguous = false;
1742 }
1743
1744 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1745 static void __init deferred_free_range(unsigned long pfn,
1746 unsigned long nr_pages)
1747 {
1748 struct page *page;
1749 unsigned long i;
1750
1751 if (!nr_pages)
1752 return;
1753
1754 page = pfn_to_page(pfn);
1755
1756 /* Free a large naturally-aligned chunk if possible */
1757 if (nr_pages == pageblock_nr_pages &&
1758 (pfn & (pageblock_nr_pages - 1)) == 0) {
1759 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1760 __free_pages_core(page, pageblock_order);
1761 return;
1762 }
1763
1764 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1765 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1766 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1767 __free_pages_core(page, 0);
1768 }
1769 }
1770
1771 /* Completion tracking for deferred_init_memmap() threads */
1772 static atomic_t pgdat_init_n_undone __initdata;
1773 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1774
1775 static inline void __init pgdat_init_report_one_done(void)
1776 {
1777 if (atomic_dec_and_test(&pgdat_init_n_undone))
1778 complete(&pgdat_init_all_done_comp);
1779 }
1780
1781 /*
1782 * Returns true if page needs to be initialized or freed to buddy allocator.
1783 *
1784 * First we check if pfn is valid on architectures where it is possible to have
1785 * holes within pageblock_nr_pages. On systems where it is not possible, this
1786 * function is optimized out.
1787 *
1788 * Then, we check if a current large page is valid by only checking the validity
1789 * of the head pfn.
1790 */
1791 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1792 {
1793 if (!pfn_valid_within(pfn))
1794 return false;
1795 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1796 return false;
1797 return true;
1798 }
1799
1800 /*
1801 * Free pages to buddy allocator. Try to free aligned pages in
1802 * pageblock_nr_pages sizes.
1803 */
1804 static void __init deferred_free_pages(unsigned long pfn,
1805 unsigned long end_pfn)
1806 {
1807 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1808 unsigned long nr_free = 0;
1809
1810 for (; pfn < end_pfn; pfn++) {
1811 if (!deferred_pfn_valid(pfn)) {
1812 deferred_free_range(pfn - nr_free, nr_free);
1813 nr_free = 0;
1814 } else if (!(pfn & nr_pgmask)) {
1815 deferred_free_range(pfn - nr_free, nr_free);
1816 nr_free = 1;
1817 } else {
1818 nr_free++;
1819 }
1820 }
1821 /* Free the last block of pages to allocator */
1822 deferred_free_range(pfn - nr_free, nr_free);
1823 }
1824
1825 /*
1826 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1827 * by performing it only once every pageblock_nr_pages.
1828 * Return number of pages initialized.
1829 */
1830 static unsigned long __init deferred_init_pages(struct zone *zone,
1831 unsigned long pfn,
1832 unsigned long end_pfn)
1833 {
1834 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1835 int nid = zone_to_nid(zone);
1836 unsigned long nr_pages = 0;
1837 int zid = zone_idx(zone);
1838 struct page *page = NULL;
1839
1840 for (; pfn < end_pfn; pfn++) {
1841 if (!deferred_pfn_valid(pfn)) {
1842 page = NULL;
1843 continue;
1844 } else if (!page || !(pfn & nr_pgmask)) {
1845 page = pfn_to_page(pfn);
1846 } else {
1847 page++;
1848 }
1849 __init_single_page(page, pfn, zid, nid);
1850 nr_pages++;
1851 }
1852 return (nr_pages);
1853 }
1854
1855 /*
1856 * This function is meant to pre-load the iterator for the zone init.
1857 * Specifically it walks through the ranges until we are caught up to the
1858 * first_init_pfn value and exits there. If we never encounter the value we
1859 * return false indicating there are no valid ranges left.
1860 */
1861 static bool __init
1862 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1863 unsigned long *spfn, unsigned long *epfn,
1864 unsigned long first_init_pfn)
1865 {
1866 u64 j;
1867
1868 /*
1869 * Start out by walking through the ranges in this zone that have
1870 * already been initialized. We don't need to do anything with them
1871 * so we just need to flush them out of the system.
1872 */
1873 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1874 if (*epfn <= first_init_pfn)
1875 continue;
1876 if (*spfn < first_init_pfn)
1877 *spfn = first_init_pfn;
1878 *i = j;
1879 return true;
1880 }
1881
1882 return false;
1883 }
1884
1885 /*
1886 * Initialize and free pages. We do it in two loops: first we initialize
1887 * struct page, then free to buddy allocator, because while we are
1888 * freeing pages we can access pages that are ahead (computing buddy
1889 * page in __free_one_page()).
1890 *
1891 * In order to try and keep some memory in the cache we have the loop
1892 * broken along max page order boundaries. This way we will not cause
1893 * any issues with the buddy page computation.
1894 */
1895 static unsigned long __init
1896 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1897 unsigned long *end_pfn)
1898 {
1899 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1900 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1901 unsigned long nr_pages = 0;
1902 u64 j = *i;
1903
1904 /* First we loop through and initialize the page values */
1905 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1906 unsigned long t;
1907
1908 if (mo_pfn <= *start_pfn)
1909 break;
1910
1911 t = min(mo_pfn, *end_pfn);
1912 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1913
1914 if (mo_pfn < *end_pfn) {
1915 *start_pfn = mo_pfn;
1916 break;
1917 }
1918 }
1919
1920 /* Reset values and now loop through freeing pages as needed */
1921 swap(j, *i);
1922
1923 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1924 unsigned long t;
1925
1926 if (mo_pfn <= spfn)
1927 break;
1928
1929 t = min(mo_pfn, epfn);
1930 deferred_free_pages(spfn, t);
1931
1932 if (mo_pfn <= epfn)
1933 break;
1934 }
1935
1936 return nr_pages;
1937 }
1938
1939 static void __init
1940 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1941 void *arg)
1942 {
1943 unsigned long spfn, epfn;
1944 struct zone *zone = arg;
1945 u64 i;
1946
1947 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1948
1949 /*
1950 * Initialize and free pages in MAX_ORDER sized increments so that we
1951 * can avoid introducing any issues with the buddy allocator.
1952 */
1953 while (spfn < end_pfn) {
1954 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1955 cond_resched();
1956 }
1957 }
1958
1959 /* An arch may override for more concurrency. */
1960 __weak int __init
1961 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1962 {
1963 return 1;
1964 }
1965
1966 /* Initialise remaining memory on a node */
1967 static int __init deferred_init_memmap(void *data)
1968 {
1969 pg_data_t *pgdat = data;
1970 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1971 unsigned long spfn = 0, epfn = 0;
1972 unsigned long first_init_pfn, flags;
1973 unsigned long start = jiffies;
1974 struct zone *zone;
1975 int zid, max_threads;
1976 u64 i;
1977
1978 /* Bind memory initialisation thread to a local node if possible */
1979 if (!cpumask_empty(cpumask))
1980 set_cpus_allowed_ptr(current, cpumask);
1981
1982 pgdat_resize_lock(pgdat, &flags);
1983 first_init_pfn = pgdat->first_deferred_pfn;
1984 if (first_init_pfn == ULONG_MAX) {
1985 pgdat_resize_unlock(pgdat, &flags);
1986 pgdat_init_report_one_done();
1987 return 0;
1988 }
1989
1990 /* Sanity check boundaries */
1991 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1992 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1993 pgdat->first_deferred_pfn = ULONG_MAX;
1994
1995 /*
1996 * Once we unlock here, the zone cannot be grown anymore, thus if an
1997 * interrupt thread must allocate this early in boot, zone must be
1998 * pre-grown prior to start of deferred page initialization.
1999 */
2000 pgdat_resize_unlock(pgdat, &flags);
2001
2002 /* Only the highest zone is deferred so find it */
2003 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2004 zone = pgdat->node_zones + zid;
2005 if (first_init_pfn < zone_end_pfn(zone))
2006 break;
2007 }
2008
2009 /* If the zone is empty somebody else may have cleared out the zone */
2010 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2011 first_init_pfn))
2012 goto zone_empty;
2013
2014 max_threads = deferred_page_init_max_threads(cpumask);
2015
2016 while (spfn < epfn) {
2017 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2018 struct padata_mt_job job = {
2019 .thread_fn = deferred_init_memmap_chunk,
2020 .fn_arg = zone,
2021 .start = spfn,
2022 .size = epfn_align - spfn,
2023 .align = PAGES_PER_SECTION,
2024 .min_chunk = PAGES_PER_SECTION,
2025 .max_threads = max_threads,
2026 };
2027
2028 padata_do_multithreaded(&job);
2029 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2030 epfn_align);
2031 }
2032 zone_empty:
2033 /* Sanity check that the next zone really is unpopulated */
2034 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2035
2036 pr_info("node %d deferred pages initialised in %ums\n",
2037 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2038
2039 pgdat_init_report_one_done();
2040 return 0;
2041 }
2042
2043 /*
2044 * If this zone has deferred pages, try to grow it by initializing enough
2045 * deferred pages to satisfy the allocation specified by order, rounded up to
2046 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2047 * of SECTION_SIZE bytes by initializing struct pages in increments of
2048 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2049 *
2050 * Return true when zone was grown, otherwise return false. We return true even
2051 * when we grow less than requested, to let the caller decide if there are
2052 * enough pages to satisfy the allocation.
2053 *
2054 * Note: We use noinline because this function is needed only during boot, and
2055 * it is called from a __ref function _deferred_grow_zone. This way we are
2056 * making sure that it is not inlined into permanent text section.
2057 */
2058 static noinline bool __init
2059 deferred_grow_zone(struct zone *zone, unsigned int order)
2060 {
2061 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2062 pg_data_t *pgdat = zone->zone_pgdat;
2063 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2064 unsigned long spfn, epfn, flags;
2065 unsigned long nr_pages = 0;
2066 u64 i;
2067
2068 /* Only the last zone may have deferred pages */
2069 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2070 return false;
2071
2072 pgdat_resize_lock(pgdat, &flags);
2073
2074 /*
2075 * If someone grew this zone while we were waiting for spinlock, return
2076 * true, as there might be enough pages already.
2077 */
2078 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2079 pgdat_resize_unlock(pgdat, &flags);
2080 return true;
2081 }
2082
2083 /* If the zone is empty somebody else may have cleared out the zone */
2084 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2085 first_deferred_pfn)) {
2086 pgdat->first_deferred_pfn = ULONG_MAX;
2087 pgdat_resize_unlock(pgdat, &flags);
2088 /* Retry only once. */
2089 return first_deferred_pfn != ULONG_MAX;
2090 }
2091
2092 /*
2093 * Initialize and free pages in MAX_ORDER sized increments so
2094 * that we can avoid introducing any issues with the buddy
2095 * allocator.
2096 */
2097 while (spfn < epfn) {
2098 /* update our first deferred PFN for this section */
2099 first_deferred_pfn = spfn;
2100
2101 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2102 touch_nmi_watchdog();
2103
2104 /* We should only stop along section boundaries */
2105 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2106 continue;
2107
2108 /* If our quota has been met we can stop here */
2109 if (nr_pages >= nr_pages_needed)
2110 break;
2111 }
2112
2113 pgdat->first_deferred_pfn = spfn;
2114 pgdat_resize_unlock(pgdat, &flags);
2115
2116 return nr_pages > 0;
2117 }
2118
2119 /*
2120 * deferred_grow_zone() is __init, but it is called from
2121 * get_page_from_freelist() during early boot until deferred_pages permanently
2122 * disables this call. This is why we have refdata wrapper to avoid warning,
2123 * and to ensure that the function body gets unloaded.
2124 */
2125 static bool __ref
2126 _deferred_grow_zone(struct zone *zone, unsigned int order)
2127 {
2128 return deferred_grow_zone(zone, order);
2129 }
2130
2131 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2132
2133 void __init page_alloc_init_late(void)
2134 {
2135 struct zone *zone;
2136 int nid;
2137
2138 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2139
2140 /* There will be num_node_state(N_MEMORY) threads */
2141 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2142 for_each_node_state(nid, N_MEMORY) {
2143 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2144 }
2145
2146 /* Block until all are initialised */
2147 wait_for_completion(&pgdat_init_all_done_comp);
2148
2149 /*
2150 * The number of managed pages has changed due to the initialisation
2151 * so the pcpu batch and high limits needs to be updated or the limits
2152 * will be artificially small.
2153 */
2154 for_each_populated_zone(zone)
2155 zone_pcp_update(zone);
2156
2157 /*
2158 * We initialized the rest of the deferred pages. Permanently disable
2159 * on-demand struct page initialization.
2160 */
2161 static_branch_disable(&deferred_pages);
2162
2163 /* Reinit limits that are based on free pages after the kernel is up */
2164 files_maxfiles_init();
2165 #endif
2166
2167 buffer_init();
2168
2169 /* Discard memblock private memory */
2170 memblock_discard();
2171
2172 for_each_node_state(nid, N_MEMORY)
2173 shuffle_free_memory(NODE_DATA(nid));
2174
2175 for_each_populated_zone(zone)
2176 set_zone_contiguous(zone);
2177 }
2178
2179 #ifdef CONFIG_CMA
2180 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2181 void __init init_cma_reserved_pageblock(struct page *page)
2182 {
2183 unsigned i = pageblock_nr_pages;
2184 struct page *p = page;
2185
2186 do {
2187 __ClearPageReserved(p);
2188 set_page_count(p, 0);
2189 } while (++p, --i);
2190
2191 set_pageblock_migratetype(page, MIGRATE_CMA);
2192
2193 if (pageblock_order >= MAX_ORDER) {
2194 i = pageblock_nr_pages;
2195 p = page;
2196 do {
2197 set_page_refcounted(p);
2198 __free_pages(p, MAX_ORDER - 1);
2199 p += MAX_ORDER_NR_PAGES;
2200 } while (i -= MAX_ORDER_NR_PAGES);
2201 } else {
2202 set_page_refcounted(page);
2203 __free_pages(page, pageblock_order);
2204 }
2205
2206 adjust_managed_page_count(page, pageblock_nr_pages);
2207 page_zone(page)->cma_pages += pageblock_nr_pages;
2208 }
2209 #endif
2210
2211 /*
2212 * The order of subdivision here is critical for the IO subsystem.
2213 * Please do not alter this order without good reasons and regression
2214 * testing. Specifically, as large blocks of memory are subdivided,
2215 * the order in which smaller blocks are delivered depends on the order
2216 * they're subdivided in this function. This is the primary factor
2217 * influencing the order in which pages are delivered to the IO
2218 * subsystem according to empirical testing, and this is also justified
2219 * by considering the behavior of a buddy system containing a single
2220 * large block of memory acted on by a series of small allocations.
2221 * This behavior is a critical factor in sglist merging's success.
2222 *
2223 * -- nyc
2224 */
2225 static inline void expand(struct zone *zone, struct page *page,
2226 int low, int high, int migratetype)
2227 {
2228 unsigned long size = 1 << high;
2229
2230 while (high > low) {
2231 high--;
2232 size >>= 1;
2233 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2234
2235 /*
2236 * Mark as guard pages (or page), that will allow to
2237 * merge back to allocator when buddy will be freed.
2238 * Corresponding page table entries will not be touched,
2239 * pages will stay not present in virtual address space
2240 */
2241 if (set_page_guard(zone, &page[size], high, migratetype))
2242 continue;
2243
2244 add_to_free_list(&page[size], zone, high, migratetype);
2245 set_buddy_order(&page[size], high);
2246 }
2247 }
2248
2249 static void check_new_page_bad(struct page *page)
2250 {
2251 if (unlikely(page->flags & __PG_HWPOISON)) {
2252 /* Don't complain about hwpoisoned pages */
2253 page_mapcount_reset(page); /* remove PageBuddy */
2254 return;
2255 }
2256
2257 bad_page(page,
2258 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2259 }
2260
2261 /*
2262 * This page is about to be returned from the page allocator
2263 */
2264 static inline int check_new_page(struct page *page)
2265 {
2266 if (likely(page_expected_state(page,
2267 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2268 return 0;
2269
2270 check_new_page_bad(page);
2271 return 1;
2272 }
2273
2274 #ifdef CONFIG_DEBUG_VM
2275 /*
2276 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2277 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2278 * also checked when pcp lists are refilled from the free lists.
2279 */
2280 static inline bool check_pcp_refill(struct page *page)
2281 {
2282 if (debug_pagealloc_enabled_static())
2283 return check_new_page(page);
2284 else
2285 return false;
2286 }
2287
2288 static inline bool check_new_pcp(struct page *page)
2289 {
2290 return check_new_page(page);
2291 }
2292 #else
2293 /*
2294 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2295 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2296 * enabled, they are also checked when being allocated from the pcp lists.
2297 */
2298 static inline bool check_pcp_refill(struct page *page)
2299 {
2300 return check_new_page(page);
2301 }
2302 static inline bool check_new_pcp(struct page *page)
2303 {
2304 if (debug_pagealloc_enabled_static())
2305 return check_new_page(page);
2306 else
2307 return false;
2308 }
2309 #endif /* CONFIG_DEBUG_VM */
2310
2311 static bool check_new_pages(struct page *page, unsigned int order)
2312 {
2313 int i;
2314 for (i = 0; i < (1 << order); i++) {
2315 struct page *p = page + i;
2316
2317 if (unlikely(check_new_page(p)))
2318 return true;
2319 }
2320
2321 return false;
2322 }
2323
2324 inline void post_alloc_hook(struct page *page, unsigned int order,
2325 gfp_t gfp_flags)
2326 {
2327 bool init;
2328
2329 set_page_private(page, 0);
2330 set_page_refcounted(page);
2331
2332 arch_alloc_page(page, order);
2333 debug_pagealloc_map_pages(page, 1 << order);
2334
2335 /*
2336 * Page unpoisoning must happen before memory initialization.
2337 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2338 * allocations and the page unpoisoning code will complain.
2339 */
2340 kernel_unpoison_pages(page, 1 << order);
2341
2342 /*
2343 * As memory initialization might be integrated into KASAN,
2344 * kasan_alloc_pages and kernel_init_free_pages must be
2345 * kept together to avoid discrepancies in behavior.
2346 */
2347 init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2348 kasan_alloc_pages(page, order, init);
2349 if (init && !kasan_has_integrated_init())
2350 kernel_init_free_pages(page, 1 << order);
2351
2352 set_page_owner(page, order, gfp_flags);
2353 }
2354
2355 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2356 unsigned int alloc_flags)
2357 {
2358 post_alloc_hook(page, order, gfp_flags);
2359
2360 if (order && (gfp_flags & __GFP_COMP))
2361 prep_compound_page(page, order);
2362
2363 /*
2364 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2365 * allocate the page. The expectation is that the caller is taking
2366 * steps that will free more memory. The caller should avoid the page
2367 * being used for !PFMEMALLOC purposes.
2368 */
2369 if (alloc_flags & ALLOC_NO_WATERMARKS)
2370 set_page_pfmemalloc(page);
2371 else
2372 clear_page_pfmemalloc(page);
2373 }
2374
2375 /*
2376 * Go through the free lists for the given migratetype and remove
2377 * the smallest available page from the freelists
2378 */
2379 static __always_inline
2380 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2381 int migratetype)
2382 {
2383 unsigned int current_order;
2384 struct free_area *area;
2385 struct page *page;
2386
2387 /* Find a page of the appropriate size in the preferred list */
2388 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2389 area = &(zone->free_area[current_order]);
2390 page = get_page_from_free_area(area, migratetype);
2391 if (!page)
2392 continue;
2393 del_page_from_free_list(page, zone, current_order);
2394 expand(zone, page, order, current_order, migratetype);
2395 set_pcppage_migratetype(page, migratetype);
2396 return page;
2397 }
2398
2399 return NULL;
2400 }
2401
2402
2403 /*
2404 * This array describes the order lists are fallen back to when
2405 * the free lists for the desirable migrate type are depleted
2406 */
2407 static int fallbacks[MIGRATE_TYPES][3] = {
2408 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2409 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2410 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2411 #ifdef CONFIG_CMA
2412 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2413 #endif
2414 #ifdef CONFIG_MEMORY_ISOLATION
2415 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2416 #endif
2417 };
2418
2419 #ifdef CONFIG_CMA
2420 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2421 unsigned int order)
2422 {
2423 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2424 }
2425 #else
2426 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2427 unsigned int order) { return NULL; }
2428 #endif
2429
2430 /*
2431 * Move the free pages in a range to the freelist tail of the requested type.
2432 * Note that start_page and end_pages are not aligned on a pageblock
2433 * boundary. If alignment is required, use move_freepages_block()
2434 */
2435 static int move_freepages(struct zone *zone,
2436 unsigned long start_pfn, unsigned long end_pfn,
2437 int migratetype, int *num_movable)
2438 {
2439 struct page *page;
2440 unsigned long pfn;
2441 unsigned int order;
2442 int pages_moved = 0;
2443
2444 for (pfn = start_pfn; pfn <= end_pfn;) {
2445 if (!pfn_valid_within(pfn)) {
2446 pfn++;
2447 continue;
2448 }
2449
2450 page = pfn_to_page(pfn);
2451 if (!PageBuddy(page)) {
2452 /*
2453 * We assume that pages that could be isolated for
2454 * migration are movable. But we don't actually try
2455 * isolating, as that would be expensive.
2456 */
2457 if (num_movable &&
2458 (PageLRU(page) || __PageMovable(page)))
2459 (*num_movable)++;
2460 pfn++;
2461 continue;
2462 }
2463
2464 /* Make sure we are not inadvertently changing nodes */
2465 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2466 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2467
2468 order = buddy_order(page);
2469 move_to_free_list(page, zone, order, migratetype);
2470 pfn += 1 << order;
2471 pages_moved += 1 << order;
2472 }
2473
2474 return pages_moved;
2475 }
2476
2477 int move_freepages_block(struct zone *zone, struct page *page,
2478 int migratetype, int *num_movable)
2479 {
2480 unsigned long start_pfn, end_pfn, pfn;
2481
2482 if (num_movable)
2483 *num_movable = 0;
2484
2485 pfn = page_to_pfn(page);
2486 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2487 end_pfn = start_pfn + pageblock_nr_pages - 1;
2488
2489 /* Do not cross zone boundaries */
2490 if (!zone_spans_pfn(zone, start_pfn))
2491 start_pfn = pfn;
2492 if (!zone_spans_pfn(zone, end_pfn))
2493 return 0;
2494
2495 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2496 num_movable);
2497 }
2498
2499 static void change_pageblock_range(struct page *pageblock_page,
2500 int start_order, int migratetype)
2501 {
2502 int nr_pageblocks = 1 << (start_order - pageblock_order);
2503
2504 while (nr_pageblocks--) {
2505 set_pageblock_migratetype(pageblock_page, migratetype);
2506 pageblock_page += pageblock_nr_pages;
2507 }
2508 }
2509
2510 /*
2511 * When we are falling back to another migratetype during allocation, try to
2512 * steal extra free pages from the same pageblocks to satisfy further
2513 * allocations, instead of polluting multiple pageblocks.
2514 *
2515 * If we are stealing a relatively large buddy page, it is likely there will
2516 * be more free pages in the pageblock, so try to steal them all. For
2517 * reclaimable and unmovable allocations, we steal regardless of page size,
2518 * as fragmentation caused by those allocations polluting movable pageblocks
2519 * is worse than movable allocations stealing from unmovable and reclaimable
2520 * pageblocks.
2521 */
2522 static bool can_steal_fallback(unsigned int order, int start_mt)
2523 {
2524 /*
2525 * Leaving this order check is intended, although there is
2526 * relaxed order check in next check. The reason is that
2527 * we can actually steal whole pageblock if this condition met,
2528 * but, below check doesn't guarantee it and that is just heuristic
2529 * so could be changed anytime.
2530 */
2531 if (order >= pageblock_order)
2532 return true;
2533
2534 if (order >= pageblock_order / 2 ||
2535 start_mt == MIGRATE_RECLAIMABLE ||
2536 start_mt == MIGRATE_UNMOVABLE ||
2537 page_group_by_mobility_disabled)
2538 return true;
2539
2540 return false;
2541 }
2542
2543 static inline bool boost_watermark(struct zone *zone)
2544 {
2545 unsigned long max_boost;
2546
2547 if (!watermark_boost_factor)
2548 return false;
2549 /*
2550 * Don't bother in zones that are unlikely to produce results.
2551 * On small machines, including kdump capture kernels running
2552 * in a small area, boosting the watermark can cause an out of
2553 * memory situation immediately.
2554 */
2555 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2556 return false;
2557
2558 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2559 watermark_boost_factor, 10000);
2560
2561 /*
2562 * high watermark may be uninitialised if fragmentation occurs
2563 * very early in boot so do not boost. We do not fall
2564 * through and boost by pageblock_nr_pages as failing
2565 * allocations that early means that reclaim is not going
2566 * to help and it may even be impossible to reclaim the
2567 * boosted watermark resulting in a hang.
2568 */
2569 if (!max_boost)
2570 return false;
2571
2572 max_boost = max(pageblock_nr_pages, max_boost);
2573
2574 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2575 max_boost);
2576
2577 return true;
2578 }
2579
2580 /*
2581 * This function implements actual steal behaviour. If order is large enough,
2582 * we can steal whole pageblock. If not, we first move freepages in this
2583 * pageblock to our migratetype and determine how many already-allocated pages
2584 * are there in the pageblock with a compatible migratetype. If at least half
2585 * of pages are free or compatible, we can change migratetype of the pageblock
2586 * itself, so pages freed in the future will be put on the correct free list.
2587 */
2588 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2589 unsigned int alloc_flags, int start_type, bool whole_block)
2590 {
2591 unsigned int current_order = buddy_order(page);
2592 int free_pages, movable_pages, alike_pages;
2593 int old_block_type;
2594
2595 old_block_type = get_pageblock_migratetype(page);
2596
2597 /*
2598 * This can happen due to races and we want to prevent broken
2599 * highatomic accounting.
2600 */
2601 if (is_migrate_highatomic(old_block_type))
2602 goto single_page;
2603
2604 /* Take ownership for orders >= pageblock_order */
2605 if (current_order >= pageblock_order) {
2606 change_pageblock_range(page, current_order, start_type);
2607 goto single_page;
2608 }
2609
2610 /*
2611 * Boost watermarks to increase reclaim pressure to reduce the
2612 * likelihood of future fallbacks. Wake kswapd now as the node
2613 * may be balanced overall and kswapd will not wake naturally.
2614 */
2615 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2616 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2617
2618 /* We are not allowed to try stealing from the whole block */
2619 if (!whole_block)
2620 goto single_page;
2621
2622 free_pages = move_freepages_block(zone, page, start_type,
2623 &movable_pages);
2624 /*
2625 * Determine how many pages are compatible with our allocation.
2626 * For movable allocation, it's the number of movable pages which
2627 * we just obtained. For other types it's a bit more tricky.
2628 */
2629 if (start_type == MIGRATE_MOVABLE) {
2630 alike_pages = movable_pages;
2631 } else {
2632 /*
2633 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2634 * to MOVABLE pageblock, consider all non-movable pages as
2635 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2636 * vice versa, be conservative since we can't distinguish the
2637 * exact migratetype of non-movable pages.
2638 */
2639 if (old_block_type == MIGRATE_MOVABLE)
2640 alike_pages = pageblock_nr_pages
2641 - (free_pages + movable_pages);
2642 else
2643 alike_pages = 0;
2644 }
2645
2646 /* moving whole block can fail due to zone boundary conditions */
2647 if (!free_pages)
2648 goto single_page;
2649
2650 /*
2651 * If a sufficient number of pages in the block are either free or of
2652 * comparable migratability as our allocation, claim the whole block.
2653 */
2654 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2655 page_group_by_mobility_disabled)
2656 set_pageblock_migratetype(page, start_type);
2657
2658 return;
2659
2660 single_page:
2661 move_to_free_list(page, zone, current_order, start_type);
2662 }
2663
2664 /*
2665 * Check whether there is a suitable fallback freepage with requested order.
2666 * If only_stealable is true, this function returns fallback_mt only if
2667 * we can steal other freepages all together. This would help to reduce
2668 * fragmentation due to mixed migratetype pages in one pageblock.
2669 */
2670 int find_suitable_fallback(struct free_area *area, unsigned int order,
2671 int migratetype, bool only_stealable, bool *can_steal)
2672 {
2673 int i;
2674 int fallback_mt;
2675
2676 if (area->nr_free == 0)
2677 return -1;
2678
2679 *can_steal = false;
2680 for (i = 0;; i++) {
2681 fallback_mt = fallbacks[migratetype][i];
2682 if (fallback_mt == MIGRATE_TYPES)
2683 break;
2684
2685 if (free_area_empty(area, fallback_mt))
2686 continue;
2687
2688 if (can_steal_fallback(order, migratetype))
2689 *can_steal = true;
2690
2691 if (!only_stealable)
2692 return fallback_mt;
2693
2694 if (*can_steal)
2695 return fallback_mt;
2696 }
2697
2698 return -1;
2699 }
2700
2701 /*
2702 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2703 * there are no empty page blocks that contain a page with a suitable order
2704 */
2705 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2706 unsigned int alloc_order)
2707 {
2708 int mt;
2709 unsigned long max_managed, flags;
2710
2711 /*
2712 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2713 * Check is race-prone but harmless.
2714 */
2715 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2716 if (zone->nr_reserved_highatomic >= max_managed)
2717 return;
2718
2719 spin_lock_irqsave(&zone->lock, flags);
2720
2721 /* Recheck the nr_reserved_highatomic limit under the lock */
2722 if (zone->nr_reserved_highatomic >= max_managed)
2723 goto out_unlock;
2724
2725 /* Yoink! */
2726 mt = get_pageblock_migratetype(page);
2727 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2728 && !is_migrate_cma(mt)) {
2729 zone->nr_reserved_highatomic += pageblock_nr_pages;
2730 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2731 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2732 }
2733
2734 out_unlock:
2735 spin_unlock_irqrestore(&zone->lock, flags);
2736 }
2737
2738 /*
2739 * Used when an allocation is about to fail under memory pressure. This
2740 * potentially hurts the reliability of high-order allocations when under
2741 * intense memory pressure but failed atomic allocations should be easier
2742 * to recover from than an OOM.
2743 *
2744 * If @force is true, try to unreserve a pageblock even though highatomic
2745 * pageblock is exhausted.
2746 */
2747 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2748 bool force)
2749 {
2750 struct zonelist *zonelist = ac->zonelist;
2751 unsigned long flags;
2752 struct zoneref *z;
2753 struct zone *zone;
2754 struct page *page;
2755 int order;
2756 bool ret;
2757
2758 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2759 ac->nodemask) {
2760 /*
2761 * Preserve at least one pageblock unless memory pressure
2762 * is really high.
2763 */
2764 if (!force && zone->nr_reserved_highatomic <=
2765 pageblock_nr_pages)
2766 continue;
2767
2768 spin_lock_irqsave(&zone->lock, flags);
2769 for (order = 0; order < MAX_ORDER; order++) {
2770 struct free_area *area = &(zone->free_area[order]);
2771
2772 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2773 if (!page)
2774 continue;
2775
2776 /*
2777 * In page freeing path, migratetype change is racy so
2778 * we can counter several free pages in a pageblock
2779 * in this loop althoug we changed the pageblock type
2780 * from highatomic to ac->migratetype. So we should
2781 * adjust the count once.
2782 */
2783 if (is_migrate_highatomic_page(page)) {
2784 /*
2785 * It should never happen but changes to
2786 * locking could inadvertently allow a per-cpu
2787 * drain to add pages to MIGRATE_HIGHATOMIC
2788 * while unreserving so be safe and watch for
2789 * underflows.
2790 */
2791 zone->nr_reserved_highatomic -= min(
2792 pageblock_nr_pages,
2793 zone->nr_reserved_highatomic);
2794 }
2795
2796 /*
2797 * Convert to ac->migratetype and avoid the normal
2798 * pageblock stealing heuristics. Minimally, the caller
2799 * is doing the work and needs the pages. More
2800 * importantly, if the block was always converted to
2801 * MIGRATE_UNMOVABLE or another type then the number
2802 * of pageblocks that cannot be completely freed
2803 * may increase.
2804 */
2805 set_pageblock_migratetype(page, ac->migratetype);
2806 ret = move_freepages_block(zone, page, ac->migratetype,
2807 NULL);
2808 if (ret) {
2809 spin_unlock_irqrestore(&zone->lock, flags);
2810 return ret;
2811 }
2812 }
2813 spin_unlock_irqrestore(&zone->lock, flags);
2814 }
2815
2816 return false;
2817 }
2818
2819 /*
2820 * Try finding a free buddy page on the fallback list and put it on the free
2821 * list of requested migratetype, possibly along with other pages from the same
2822 * block, depending on fragmentation avoidance heuristics. Returns true if
2823 * fallback was found so that __rmqueue_smallest() can grab it.
2824 *
2825 * The use of signed ints for order and current_order is a deliberate
2826 * deviation from the rest of this file, to make the for loop
2827 * condition simpler.
2828 */
2829 static __always_inline bool
2830 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2831 unsigned int alloc_flags)
2832 {
2833 struct free_area *area;
2834 int current_order;
2835 int min_order = order;
2836 struct page *page;
2837 int fallback_mt;
2838 bool can_steal;
2839
2840 /*
2841 * Do not steal pages from freelists belonging to other pageblocks
2842 * i.e. orders < pageblock_order. If there are no local zones free,
2843 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2844 */
2845 if (alloc_flags & ALLOC_NOFRAGMENT)
2846 min_order = pageblock_order;
2847
2848 /*
2849 * Find the largest available free page in the other list. This roughly
2850 * approximates finding the pageblock with the most free pages, which
2851 * would be too costly to do exactly.
2852 */
2853 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2854 --current_order) {
2855 area = &(zone->free_area[current_order]);
2856 fallback_mt = find_suitable_fallback(area, current_order,
2857 start_migratetype, false, &can_steal);
2858 if (fallback_mt == -1)
2859 continue;
2860
2861 /*
2862 * We cannot steal all free pages from the pageblock and the
2863 * requested migratetype is movable. In that case it's better to
2864 * steal and split the smallest available page instead of the
2865 * largest available page, because even if the next movable
2866 * allocation falls back into a different pageblock than this
2867 * one, it won't cause permanent fragmentation.
2868 */
2869 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2870 && current_order > order)
2871 goto find_smallest;
2872
2873 goto do_steal;
2874 }
2875
2876 return false;
2877
2878 find_smallest:
2879 for (current_order = order; current_order < MAX_ORDER;
2880 current_order++) {
2881 area = &(zone->free_area[current_order]);
2882 fallback_mt = find_suitable_fallback(area, current_order,
2883 start_migratetype, false, &can_steal);
2884 if (fallback_mt != -1)
2885 break;
2886 }
2887
2888 /*
2889 * This should not happen - we already found a suitable fallback
2890 * when looking for the largest page.
2891 */
2892 VM_BUG_ON(current_order == MAX_ORDER);
2893
2894 do_steal:
2895 page = get_page_from_free_area(area, fallback_mt);
2896
2897 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2898 can_steal);
2899
2900 trace_mm_page_alloc_extfrag(page, order, current_order,
2901 start_migratetype, fallback_mt);
2902
2903 return true;
2904
2905 }
2906
2907 /*
2908 * Do the hard work of removing an element from the buddy allocator.
2909 * Call me with the zone->lock already held.
2910 */
2911 static __always_inline struct page *
2912 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2913 unsigned int alloc_flags)
2914 {
2915 struct page *page;
2916
2917 if (IS_ENABLED(CONFIG_CMA)) {
2918 /*
2919 * Balance movable allocations between regular and CMA areas by
2920 * allocating from CMA when over half of the zone's free memory
2921 * is in the CMA area.
2922 */
2923 if (alloc_flags & ALLOC_CMA &&
2924 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2925 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2926 page = __rmqueue_cma_fallback(zone, order);
2927 if (page)
2928 goto out;
2929 }
2930 }
2931 retry:
2932 page = __rmqueue_smallest(zone, order, migratetype);
2933 if (unlikely(!page)) {
2934 if (alloc_flags & ALLOC_CMA)
2935 page = __rmqueue_cma_fallback(zone, order);
2936
2937 if (!page && __rmqueue_fallback(zone, order, migratetype,
2938 alloc_flags))
2939 goto retry;
2940 }
2941 out:
2942 if (page)
2943 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2944 return page;
2945 }
2946
2947 /*
2948 * Obtain a specified number of elements from the buddy allocator, all under
2949 * a single hold of the lock, for efficiency. Add them to the supplied list.
2950 * Returns the number of new pages which were placed at *list.
2951 */
2952 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2953 unsigned long count, struct list_head *list,
2954 int migratetype, unsigned int alloc_flags)
2955 {
2956 int i, allocated = 0;
2957
2958 spin_lock(&zone->lock);
2959 for (i = 0; i < count; ++i) {
2960 struct page *page = __rmqueue(zone, order, migratetype,
2961 alloc_flags);
2962 if (unlikely(page == NULL))
2963 break;
2964
2965 if (unlikely(check_pcp_refill(page)))
2966 continue;
2967
2968 /*
2969 * Split buddy pages returned by expand() are received here in
2970 * physical page order. The page is added to the tail of
2971 * caller's list. From the callers perspective, the linked list
2972 * is ordered by page number under some conditions. This is
2973 * useful for IO devices that can forward direction from the
2974 * head, thus also in the physical page order. This is useful
2975 * for IO devices that can merge IO requests if the physical
2976 * pages are ordered properly.
2977 */
2978 list_add_tail(&page->lru, list);
2979 allocated++;
2980 if (is_migrate_cma(get_pcppage_migratetype(page)))
2981 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2982 -(1 << order));
2983 }
2984
2985 /*
2986 * i pages were removed from the buddy list even if some leak due
2987 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2988 * on i. Do not confuse with 'allocated' which is the number of
2989 * pages added to the pcp list.
2990 */
2991 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2992 spin_unlock(&zone->lock);
2993 return allocated;
2994 }
2995
2996 #ifdef CONFIG_NUMA
2997 /*
2998 * Called from the vmstat counter updater to drain pagesets of this
2999 * currently executing processor on remote nodes after they have
3000 * expired.
3001 *
3002 * Note that this function must be called with the thread pinned to
3003 * a single processor.
3004 */
3005 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3006 {
3007 unsigned long flags;
3008 int to_drain, batch;
3009
3010 local_irq_save(flags);
3011 batch = READ_ONCE(pcp->batch);
3012 to_drain = min(pcp->count, batch);
3013 if (to_drain > 0)
3014 free_pcppages_bulk(zone, to_drain, pcp);
3015 local_irq_restore(flags);
3016 }
3017 #endif
3018
3019 /*
3020 * Drain pcplists of the indicated processor and zone.
3021 *
3022 * The processor must either be the current processor and the
3023 * thread pinned to the current processor or a processor that
3024 * is not online.
3025 */
3026 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3027 {
3028 unsigned long flags;
3029 struct per_cpu_pageset *pset;
3030 struct per_cpu_pages *pcp;
3031
3032 local_irq_save(flags);
3033 pset = per_cpu_ptr(zone->pageset, cpu);
3034
3035 pcp = &pset->pcp;
3036 if (pcp->count)
3037 free_pcppages_bulk(zone, pcp->count, pcp);
3038 local_irq_restore(flags);
3039 }
3040
3041 /*
3042 * Drain pcplists of all zones on the indicated processor.
3043 *
3044 * The processor must either be the current processor and the
3045 * thread pinned to the current processor or a processor that
3046 * is not online.
3047 */
3048 static void drain_pages(unsigned int cpu)
3049 {
3050 struct zone *zone;
3051
3052 for_each_populated_zone(zone) {
3053 drain_pages_zone(cpu, zone);
3054 }
3055 }
3056
3057 /*
3058 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3059 *
3060 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3061 * the single zone's pages.
3062 */
3063 void drain_local_pages(struct zone *zone)
3064 {
3065 int cpu = smp_processor_id();
3066
3067 if (zone)
3068 drain_pages_zone(cpu, zone);
3069 else
3070 drain_pages(cpu);
3071 }
3072
3073 static void drain_local_pages_wq(struct work_struct *work)
3074 {
3075 struct pcpu_drain *drain;
3076
3077 drain = container_of(work, struct pcpu_drain, work);
3078
3079 /*
3080 * drain_all_pages doesn't use proper cpu hotplug protection so
3081 * we can race with cpu offline when the WQ can move this from
3082 * a cpu pinned worker to an unbound one. We can operate on a different
3083 * cpu which is allright but we also have to make sure to not move to
3084 * a different one.
3085 */
3086 preempt_disable();
3087 drain_local_pages(drain->zone);
3088 preempt_enable();
3089 }
3090
3091 /*
3092 * The implementation of drain_all_pages(), exposing an extra parameter to
3093 * drain on all cpus.
3094 *
3095 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3096 * not empty. The check for non-emptiness can however race with a free to
3097 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3098 * that need the guarantee that every CPU has drained can disable the
3099 * optimizing racy check.
3100 */
3101 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3102 {
3103 int cpu;
3104
3105 /*
3106 * Allocate in the BSS so we wont require allocation in
3107 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3108 */
3109 static cpumask_t cpus_with_pcps;
3110
3111 /*
3112 * Make sure nobody triggers this path before mm_percpu_wq is fully
3113 * initialized.
3114 */
3115 if (WARN_ON_ONCE(!mm_percpu_wq))
3116 return;
3117
3118 /*
3119 * Do not drain if one is already in progress unless it's specific to
3120 * a zone. Such callers are primarily CMA and memory hotplug and need
3121 * the drain to be complete when the call returns.
3122 */
3123 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3124 if (!zone)
3125 return;
3126 mutex_lock(&pcpu_drain_mutex);
3127 }
3128
3129 /*
3130 * We don't care about racing with CPU hotplug event
3131 * as offline notification will cause the notified
3132 * cpu to drain that CPU pcps and on_each_cpu_mask
3133 * disables preemption as part of its processing
3134 */
3135 for_each_online_cpu(cpu) {
3136 struct per_cpu_pageset *pcp;
3137 struct zone *z;
3138 bool has_pcps = false;
3139
3140 if (force_all_cpus) {
3141 /*
3142 * The pcp.count check is racy, some callers need a
3143 * guarantee that no cpu is missed.
3144 */
3145 has_pcps = true;
3146 } else if (zone) {
3147 pcp = per_cpu_ptr(zone->pageset, cpu);
3148 if (pcp->pcp.count)
3149 has_pcps = true;
3150 } else {
3151 for_each_populated_zone(z) {
3152 pcp = per_cpu_ptr(z->pageset, cpu);
3153 if (pcp->pcp.count) {
3154 has_pcps = true;
3155 break;
3156 }
3157 }
3158 }
3159
3160 if (has_pcps)
3161 cpumask_set_cpu(cpu, &cpus_with_pcps);
3162 else
3163 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3164 }
3165
3166 for_each_cpu(cpu, &cpus_with_pcps) {
3167 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3168
3169 drain->zone = zone;
3170 INIT_WORK(&drain->work, drain_local_pages_wq);
3171 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3172 }
3173 for_each_cpu(cpu, &cpus_with_pcps)
3174 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3175
3176 mutex_unlock(&pcpu_drain_mutex);
3177 }
3178
3179 /*
3180 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3181 *
3182 * When zone parameter is non-NULL, spill just the single zone's pages.
3183 *
3184 * Note that this can be extremely slow as the draining happens in a workqueue.
3185 */
3186 void drain_all_pages(struct zone *zone)
3187 {
3188 __drain_all_pages(zone, false);
3189 }
3190
3191 #ifdef CONFIG_HIBERNATION
3192
3193 /*
3194 * Touch the watchdog for every WD_PAGE_COUNT pages.
3195 */
3196 #define WD_PAGE_COUNT (128*1024)
3197
3198 void mark_free_pages(struct zone *zone)
3199 {
3200 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3201 unsigned long flags;
3202 unsigned int order, t;
3203 struct page *page;
3204
3205 if (zone_is_empty(zone))
3206 return;
3207
3208 spin_lock_irqsave(&zone->lock, flags);
3209
3210 max_zone_pfn = zone_end_pfn(zone);
3211 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3212 if (pfn_valid(pfn)) {
3213 page = pfn_to_page(pfn);
3214
3215 if (!--page_count) {
3216 touch_nmi_watchdog();
3217 page_count = WD_PAGE_COUNT;
3218 }
3219
3220 if (page_zone(page) != zone)
3221 continue;
3222
3223 if (!swsusp_page_is_forbidden(page))
3224 swsusp_unset_page_free(page);
3225 }
3226
3227 for_each_migratetype_order(order, t) {
3228 list_for_each_entry(page,
3229 &zone->free_area[order].free_list[t], lru) {
3230 unsigned long i;
3231
3232 pfn = page_to_pfn(page);
3233 for (i = 0; i < (1UL << order); i++) {
3234 if (!--page_count) {
3235 touch_nmi_watchdog();
3236 page_count = WD_PAGE_COUNT;
3237 }
3238 swsusp_set_page_free(pfn_to_page(pfn + i));
3239 }
3240 }
3241 }
3242 spin_unlock_irqrestore(&zone->lock, flags);
3243 }
3244 #endif /* CONFIG_PM */
3245
3246 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3247 {
3248 int migratetype;
3249
3250 if (!free_pcp_prepare(page))
3251 return false;
3252
3253 migratetype = get_pfnblock_migratetype(page, pfn);
3254 set_pcppage_migratetype(page, migratetype);
3255 return true;
3256 }
3257
3258 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3259 {
3260 struct zone *zone = page_zone(page);
3261 struct per_cpu_pages *pcp;
3262 int migratetype;
3263
3264 migratetype = get_pcppage_migratetype(page);
3265 __count_vm_event(PGFREE);
3266
3267 /*
3268 * We only track unmovable, reclaimable and movable on pcp lists.
3269 * Free ISOLATE pages back to the allocator because they are being
3270 * offlined but treat HIGHATOMIC as movable pages so we can get those
3271 * areas back if necessary. Otherwise, we may have to free
3272 * excessively into the page allocator
3273 */
3274 if (migratetype >= MIGRATE_PCPTYPES) {
3275 if (unlikely(is_migrate_isolate(migratetype))) {
3276 free_one_page(zone, page, pfn, 0, migratetype,
3277 FPI_NONE);
3278 return;
3279 }
3280 migratetype = MIGRATE_MOVABLE;
3281 }
3282
3283 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3284 list_add(&page->lru, &pcp->lists[migratetype]);
3285 pcp->count++;
3286 if (pcp->count >= READ_ONCE(pcp->high))
3287 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3288 }
3289
3290 /*
3291 * Free a 0-order page
3292 */
3293 void free_unref_page(struct page *page)
3294 {
3295 unsigned long flags;
3296 unsigned long pfn = page_to_pfn(page);
3297
3298 if (!free_unref_page_prepare(page, pfn))
3299 return;
3300
3301 local_irq_save(flags);
3302 free_unref_page_commit(page, pfn);
3303 local_irq_restore(flags);
3304 }
3305
3306 /*
3307 * Free a list of 0-order pages
3308 */
3309 void free_unref_page_list(struct list_head *list)
3310 {
3311 struct page *page, *next;
3312 unsigned long flags, pfn;
3313 int batch_count = 0;
3314
3315 /* Prepare pages for freeing */
3316 list_for_each_entry_safe(page, next, list, lru) {
3317 pfn = page_to_pfn(page);
3318 if (!free_unref_page_prepare(page, pfn))
3319 list_del(&page->lru);
3320 set_page_private(page, pfn);
3321 }
3322
3323 local_irq_save(flags);
3324 list_for_each_entry_safe(page, next, list, lru) {
3325 unsigned long pfn = page_private(page);
3326
3327 set_page_private(page, 0);
3328 trace_mm_page_free_batched(page);
3329 free_unref_page_commit(page, pfn);
3330
3331 /*
3332 * Guard against excessive IRQ disabled times when we get
3333 * a large list of pages to free.
3334 */
3335 if (++batch_count == SWAP_CLUSTER_MAX) {
3336 local_irq_restore(flags);
3337 batch_count = 0;
3338 local_irq_save(flags);
3339 }
3340 }
3341 local_irq_restore(flags);
3342 }
3343
3344 /*
3345 * split_page takes a non-compound higher-order page, and splits it into
3346 * n (1<<order) sub-pages: page[0..n]
3347 * Each sub-page must be freed individually.
3348 *
3349 * Note: this is probably too low level an operation for use in drivers.
3350 * Please consult with lkml before using this in your driver.
3351 */
3352 void split_page(struct page *page, unsigned int order)
3353 {
3354 int i;
3355
3356 VM_BUG_ON_PAGE(PageCompound(page), page);
3357 VM_BUG_ON_PAGE(!page_count(page), page);
3358
3359 for (i = 1; i < (1 << order); i++)
3360 set_page_refcounted(page + i);
3361 split_page_owner(page, 1 << order);
3362 split_page_memcg(page, 1 << order);
3363 }
3364 EXPORT_SYMBOL_GPL(split_page);
3365
3366 int __isolate_free_page(struct page *page, unsigned int order)
3367 {
3368 unsigned long watermark;
3369 struct zone *zone;
3370 int mt;
3371
3372 BUG_ON(!PageBuddy(page));
3373
3374 zone = page_zone(page);
3375 mt = get_pageblock_migratetype(page);
3376
3377 if (!is_migrate_isolate(mt)) {
3378 /*
3379 * Obey watermarks as if the page was being allocated. We can
3380 * emulate a high-order watermark check with a raised order-0
3381 * watermark, because we already know our high-order page
3382 * exists.
3383 */
3384 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3385 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3386 return 0;
3387
3388 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3389 }
3390
3391 /* Remove page from free list */
3392
3393 del_page_from_free_list(page, zone, order);
3394
3395 /*
3396 * Set the pageblock if the isolated page is at least half of a
3397 * pageblock
3398 */
3399 if (order >= pageblock_order - 1) {
3400 struct page *endpage = page + (1 << order) - 1;
3401 for (; page < endpage; page += pageblock_nr_pages) {
3402 int mt = get_pageblock_migratetype(page);
3403 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3404 && !is_migrate_highatomic(mt))
3405 set_pageblock_migratetype(page,
3406 MIGRATE_MOVABLE);
3407 }
3408 }
3409
3410
3411 return 1UL << order;
3412 }
3413
3414 /**
3415 * __putback_isolated_page - Return a now-isolated page back where we got it
3416 * @page: Page that was isolated
3417 * @order: Order of the isolated page
3418 * @mt: The page's pageblock's migratetype
3419 *
3420 * This function is meant to return a page pulled from the free lists via
3421 * __isolate_free_page back to the free lists they were pulled from.
3422 */
3423 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3424 {
3425 struct zone *zone = page_zone(page);
3426
3427 /* zone lock should be held when this function is called */
3428 lockdep_assert_held(&zone->lock);
3429
3430 /* Return isolated page to tail of freelist. */
3431 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3432 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3433 }
3434
3435 /*
3436 * Update NUMA hit/miss statistics
3437 *
3438 * Must be called with interrupts disabled.
3439 */
3440 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3441 {
3442 #ifdef CONFIG_NUMA
3443 enum numa_stat_item local_stat = NUMA_LOCAL;
3444
3445 /* skip numa counters update if numa stats is disabled */
3446 if (!static_branch_likely(&vm_numa_stat_key))
3447 return;
3448
3449 if (zone_to_nid(z) != numa_node_id())
3450 local_stat = NUMA_OTHER;
3451
3452 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3453 __inc_numa_state(z, NUMA_HIT);
3454 else {
3455 __inc_numa_state(z, NUMA_MISS);
3456 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3457 }
3458 __inc_numa_state(z, local_stat);
3459 #endif
3460 }
3461
3462 /* Remove page from the per-cpu list, caller must protect the list */
3463 static inline
3464 struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3465 unsigned int alloc_flags,
3466 struct per_cpu_pages *pcp,
3467 struct list_head *list)
3468 {
3469 struct page *page;
3470
3471 do {
3472 if (list_empty(list)) {
3473 pcp->count += rmqueue_bulk(zone, 0,
3474 READ_ONCE(pcp->batch), list,
3475 migratetype, alloc_flags);
3476 if (unlikely(list_empty(list)))
3477 return NULL;
3478 }
3479
3480 page = list_first_entry(list, struct page, lru);
3481 list_del(&page->lru);
3482 pcp->count--;
3483 } while (check_new_pcp(page));
3484
3485 return page;
3486 }
3487
3488 /* Lock and remove page from the per-cpu list */
3489 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3490 struct zone *zone, gfp_t gfp_flags,
3491 int migratetype, unsigned int alloc_flags)
3492 {
3493 struct per_cpu_pages *pcp;
3494 struct list_head *list;
3495 struct page *page;
3496 unsigned long flags;
3497
3498 local_irq_save(flags);
3499 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3500 list = &pcp->lists[migratetype];
3501 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3502 if (page) {
3503 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3504 zone_statistics(preferred_zone, zone);
3505 }
3506 local_irq_restore(flags);
3507 return page;
3508 }
3509
3510 /*
3511 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3512 */
3513 static inline
3514 struct page *rmqueue(struct zone *preferred_zone,
3515 struct zone *zone, unsigned int order,
3516 gfp_t gfp_flags, unsigned int alloc_flags,
3517 int migratetype)
3518 {
3519 unsigned long flags;
3520 struct page *page;
3521
3522 if (likely(order == 0)) {
3523 /*
3524 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3525 * we need to skip it when CMA area isn't allowed.
3526 */
3527 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3528 migratetype != MIGRATE_MOVABLE) {
3529 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3530 migratetype, alloc_flags);
3531 goto out;
3532 }
3533 }
3534
3535 /*
3536 * We most definitely don't want callers attempting to
3537 * allocate greater than order-1 page units with __GFP_NOFAIL.
3538 */
3539 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3540 spin_lock_irqsave(&zone->lock, flags);
3541
3542 do {
3543 page = NULL;
3544 /*
3545 * order-0 request can reach here when the pcplist is skipped
3546 * due to non-CMA allocation context. HIGHATOMIC area is
3547 * reserved for high-order atomic allocation, so order-0
3548 * request should skip it.
3549 */
3550 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3551 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3552 if (page)
3553 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3554 }
3555 if (!page)
3556 page = __rmqueue(zone, order, migratetype, alloc_flags);
3557 } while (page && check_new_pages(page, order));
3558 spin_unlock(&zone->lock);
3559 if (!page)
3560 goto failed;
3561 __mod_zone_freepage_state(zone, -(1 << order),
3562 get_pcppage_migratetype(page));
3563
3564 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3565 zone_statistics(preferred_zone, zone);
3566 local_irq_restore(flags);
3567
3568 out:
3569 /* Separate test+clear to avoid unnecessary atomics */
3570 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3571 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3572 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3573 }
3574
3575 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3576 return page;
3577
3578 failed:
3579 local_irq_restore(flags);
3580 return NULL;
3581 }
3582
3583 #ifdef CONFIG_FAIL_PAGE_ALLOC
3584
3585 static struct {
3586 struct fault_attr attr;
3587
3588 bool ignore_gfp_highmem;
3589 bool ignore_gfp_reclaim;
3590 u32 min_order;
3591 } fail_page_alloc = {
3592 .attr = FAULT_ATTR_INITIALIZER,
3593 .ignore_gfp_reclaim = true,
3594 .ignore_gfp_highmem = true,
3595 .min_order = 1,
3596 };
3597
3598 static int __init setup_fail_page_alloc(char *str)
3599 {
3600 return setup_fault_attr(&fail_page_alloc.attr, str);
3601 }
3602 __setup("fail_page_alloc=", setup_fail_page_alloc);
3603
3604 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3605 {
3606 if (order < fail_page_alloc.min_order)
3607 return false;
3608 if (gfp_mask & __GFP_NOFAIL)
3609 return false;
3610 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3611 return false;
3612 if (fail_page_alloc.ignore_gfp_reclaim &&
3613 (gfp_mask & __GFP_DIRECT_RECLAIM))
3614 return false;
3615
3616 return should_fail(&fail_page_alloc.attr, 1 << order);
3617 }
3618
3619 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3620
3621 static int __init fail_page_alloc_debugfs(void)
3622 {
3623 umode_t mode = S_IFREG | 0600;
3624 struct dentry *dir;
3625
3626 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3627 &fail_page_alloc.attr);
3628
3629 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3630 &fail_page_alloc.ignore_gfp_reclaim);
3631 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3632 &fail_page_alloc.ignore_gfp_highmem);
3633 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3634
3635 return 0;
3636 }
3637
3638 late_initcall(fail_page_alloc_debugfs);
3639
3640 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3641
3642 #else /* CONFIG_FAIL_PAGE_ALLOC */
3643
3644 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3645 {
3646 return false;
3647 }
3648
3649 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3650
3651 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3652 {
3653 return __should_fail_alloc_page(gfp_mask, order);
3654 }
3655 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3656
3657 static inline long __zone_watermark_unusable_free(struct zone *z,
3658 unsigned int order, unsigned int alloc_flags)
3659 {
3660 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3661 long unusable_free = (1 << order) - 1;
3662
3663 /*
3664 * If the caller does not have rights to ALLOC_HARDER then subtract
3665 * the high-atomic reserves. This will over-estimate the size of the
3666 * atomic reserve but it avoids a search.
3667 */
3668 if (likely(!alloc_harder))
3669 unusable_free += z->nr_reserved_highatomic;
3670
3671 #ifdef CONFIG_CMA
3672 /* If allocation can't use CMA areas don't use free CMA pages */
3673 if (!(alloc_flags & ALLOC_CMA))
3674 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3675 #endif
3676
3677 return unusable_free;
3678 }
3679
3680 /*
3681 * Return true if free base pages are above 'mark'. For high-order checks it
3682 * will return true of the order-0 watermark is reached and there is at least
3683 * one free page of a suitable size. Checking now avoids taking the zone lock
3684 * to check in the allocation paths if no pages are free.
3685 */
3686 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3687 int highest_zoneidx, unsigned int alloc_flags,
3688 long free_pages)
3689 {
3690 long min = mark;
3691 int o;
3692 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3693
3694 /* free_pages may go negative - that's OK */
3695 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3696
3697 if (alloc_flags & ALLOC_HIGH)
3698 min -= min / 2;
3699
3700 if (unlikely(alloc_harder)) {
3701 /*
3702 * OOM victims can try even harder than normal ALLOC_HARDER
3703 * users on the grounds that it's definitely going to be in
3704 * the exit path shortly and free memory. Any allocation it
3705 * makes during the free path will be small and short-lived.
3706 */
3707 if (alloc_flags & ALLOC_OOM)
3708 min -= min / 2;
3709 else
3710 min -= min / 4;
3711 }
3712
3713 /*
3714 * Check watermarks for an order-0 allocation request. If these
3715 * are not met, then a high-order request also cannot go ahead
3716 * even if a suitable page happened to be free.
3717 */
3718 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3719 return false;
3720
3721 /* If this is an order-0 request then the watermark is fine */
3722 if (!order)
3723 return true;
3724
3725 /* For a high-order request, check at least one suitable page is free */
3726 for (o = order; o < MAX_ORDER; o++) {
3727 struct free_area *area = &z->free_area[o];
3728 int mt;
3729
3730 if (!area->nr_free)
3731 continue;
3732
3733 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3734 if (!free_area_empty(area, mt))
3735 return true;
3736 }
3737
3738 #ifdef CONFIG_CMA
3739 if ((alloc_flags & ALLOC_CMA) &&
3740 !free_area_empty(area, MIGRATE_CMA)) {
3741 return true;
3742 }
3743 #endif
3744 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3745 return true;
3746 }
3747 return false;
3748 }
3749
3750 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3751 int highest_zoneidx, unsigned int alloc_flags)
3752 {
3753 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3754 zone_page_state(z, NR_FREE_PAGES));
3755 }
3756
3757 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3758 unsigned long mark, int highest_zoneidx,
3759 unsigned int alloc_flags, gfp_t gfp_mask)
3760 {
3761 long free_pages;
3762
3763 free_pages = zone_page_state(z, NR_FREE_PAGES);
3764
3765 /*
3766 * Fast check for order-0 only. If this fails then the reserves
3767 * need to be calculated.
3768 */
3769 if (!order) {
3770 long fast_free;
3771
3772 fast_free = free_pages;
3773 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3774 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3775 return true;
3776 }
3777
3778 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3779 free_pages))
3780 return true;
3781 /*
3782 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3783 * when checking the min watermark. The min watermark is the
3784 * point where boosting is ignored so that kswapd is woken up
3785 * when below the low watermark.
3786 */
3787 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3788 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3789 mark = z->_watermark[WMARK_MIN];
3790 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3791 alloc_flags, free_pages);
3792 }
3793
3794 return false;
3795 }
3796
3797 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3798 unsigned long mark, int highest_zoneidx)
3799 {
3800 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3801
3802 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3803 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3804
3805 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3806 free_pages);
3807 }
3808
3809 #ifdef CONFIG_NUMA
3810 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3811 {
3812 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3813 node_reclaim_distance;
3814 }
3815 #else /* CONFIG_NUMA */
3816 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3817 {
3818 return true;
3819 }
3820 #endif /* CONFIG_NUMA */
3821
3822 /*
3823 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3824 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3825 * premature use of a lower zone may cause lowmem pressure problems that
3826 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3827 * probably too small. It only makes sense to spread allocations to avoid
3828 * fragmentation between the Normal and DMA32 zones.
3829 */
3830 static inline unsigned int
3831 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3832 {
3833 unsigned int alloc_flags;
3834
3835 /*
3836 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3837 * to save a branch.
3838 */
3839 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3840
3841 #ifdef CONFIG_ZONE_DMA32
3842 if (!zone)
3843 return alloc_flags;
3844
3845 if (zone_idx(zone) != ZONE_NORMAL)
3846 return alloc_flags;
3847
3848 /*
3849 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3850 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3851 * on UMA that if Normal is populated then so is DMA32.
3852 */
3853 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3854 if (nr_online_nodes > 1 && !populated_zone(--zone))
3855 return alloc_flags;
3856
3857 alloc_flags |= ALLOC_NOFRAGMENT;
3858 #endif /* CONFIG_ZONE_DMA32 */
3859 return alloc_flags;
3860 }
3861
3862 /* Must be called after current_gfp_context() which can change gfp_mask */
3863 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3864 unsigned int alloc_flags)
3865 {
3866 #ifdef CONFIG_CMA
3867 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3868 alloc_flags |= ALLOC_CMA;
3869 #endif
3870 return alloc_flags;
3871 }
3872
3873 /*
3874 * get_page_from_freelist goes through the zonelist trying to allocate
3875 * a page.
3876 */
3877 static struct page *
3878 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3879 const struct alloc_context *ac)
3880 {
3881 struct zoneref *z;
3882 struct zone *zone;
3883 struct pglist_data *last_pgdat_dirty_limit = NULL;
3884 bool no_fallback;
3885
3886 retry:
3887 /*
3888 * Scan zonelist, looking for a zone with enough free.
3889 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3890 */
3891 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3892 z = ac->preferred_zoneref;
3893 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3894 ac->nodemask) {
3895 struct page *page;
3896 unsigned long mark;
3897
3898 if (cpusets_enabled() &&
3899 (alloc_flags & ALLOC_CPUSET) &&
3900 !__cpuset_zone_allowed(zone, gfp_mask))
3901 continue;
3902 /*
3903 * When allocating a page cache page for writing, we
3904 * want to get it from a node that is within its dirty
3905 * limit, such that no single node holds more than its
3906 * proportional share of globally allowed dirty pages.
3907 * The dirty limits take into account the node's
3908 * lowmem reserves and high watermark so that kswapd
3909 * should be able to balance it without having to
3910 * write pages from its LRU list.
3911 *
3912 * XXX: For now, allow allocations to potentially
3913 * exceed the per-node dirty limit in the slowpath
3914 * (spread_dirty_pages unset) before going into reclaim,
3915 * which is important when on a NUMA setup the allowed
3916 * nodes are together not big enough to reach the
3917 * global limit. The proper fix for these situations
3918 * will require awareness of nodes in the
3919 * dirty-throttling and the flusher threads.
3920 */
3921 if (ac->spread_dirty_pages) {
3922 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3923 continue;
3924
3925 if (!node_dirty_ok(zone->zone_pgdat)) {
3926 last_pgdat_dirty_limit = zone->zone_pgdat;
3927 continue;
3928 }
3929 }
3930
3931 if (no_fallback && nr_online_nodes > 1 &&
3932 zone != ac->preferred_zoneref->zone) {
3933 int local_nid;
3934
3935 /*
3936 * If moving to a remote node, retry but allow
3937 * fragmenting fallbacks. Locality is more important
3938 * than fragmentation avoidance.
3939 */
3940 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3941 if (zone_to_nid(zone) != local_nid) {
3942 alloc_flags &= ~ALLOC_NOFRAGMENT;
3943 goto retry;
3944 }
3945 }
3946
3947 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3948 if (!zone_watermark_fast(zone, order, mark,
3949 ac->highest_zoneidx, alloc_flags,
3950 gfp_mask)) {
3951 int ret;
3952
3953 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3954 /*
3955 * Watermark failed for this zone, but see if we can
3956 * grow this zone if it contains deferred pages.
3957 */
3958 if (static_branch_unlikely(&deferred_pages)) {
3959 if (_deferred_grow_zone(zone, order))
3960 goto try_this_zone;
3961 }
3962 #endif
3963 /* Checked here to keep the fast path fast */
3964 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3965 if (alloc_flags & ALLOC_NO_WATERMARKS)
3966 goto try_this_zone;
3967
3968 if (!node_reclaim_enabled() ||
3969 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3970 continue;
3971
3972 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3973 switch (ret) {
3974 case NODE_RECLAIM_NOSCAN:
3975 /* did not scan */
3976 continue;
3977 case NODE_RECLAIM_FULL:
3978 /* scanned but unreclaimable */
3979 continue;
3980 default:
3981 /* did we reclaim enough */
3982 if (zone_watermark_ok(zone, order, mark,
3983 ac->highest_zoneidx, alloc_flags))
3984 goto try_this_zone;
3985
3986 continue;
3987 }
3988 }
3989
3990 try_this_zone:
3991 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3992 gfp_mask, alloc_flags, ac->migratetype);
3993 if (page) {
3994 prep_new_page(page, order, gfp_mask, alloc_flags);
3995
3996 /*
3997 * If this is a high-order atomic allocation then check
3998 * if the pageblock should be reserved for the future
3999 */
4000 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4001 reserve_highatomic_pageblock(page, zone, order);
4002
4003 return page;
4004 } else {
4005 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4006 /* Try again if zone has deferred pages */
4007 if (static_branch_unlikely(&deferred_pages)) {
4008 if (_deferred_grow_zone(zone, order))
4009 goto try_this_zone;
4010 }
4011 #endif
4012 }
4013 }
4014
4015 /*
4016 * It's possible on a UMA machine to get through all zones that are
4017 * fragmented. If avoiding fragmentation, reset and try again.
4018 */
4019 if (no_fallback) {
4020 alloc_flags &= ~ALLOC_NOFRAGMENT;
4021 goto retry;
4022 }
4023
4024 return NULL;
4025 }
4026
4027 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4028 {
4029 unsigned int filter = SHOW_MEM_FILTER_NODES;
4030
4031 /*
4032 * This documents exceptions given to allocations in certain
4033 * contexts that are allowed to allocate outside current's set
4034 * of allowed nodes.
4035 */
4036 if (!(gfp_mask & __GFP_NOMEMALLOC))
4037 if (tsk_is_oom_victim(current) ||
4038 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4039 filter &= ~SHOW_MEM_FILTER_NODES;
4040 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4041 filter &= ~SHOW_MEM_FILTER_NODES;
4042
4043 show_mem(filter, nodemask);
4044 }
4045
4046 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4047 {
4048 struct va_format vaf;
4049 va_list args;
4050 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4051
4052 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4053 return;
4054
4055 va_start(args, fmt);
4056 vaf.fmt = fmt;
4057 vaf.va = &args;
4058 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4059 current->comm, &vaf, gfp_mask, &gfp_mask,
4060 nodemask_pr_args(nodemask));
4061 va_end(args);
4062
4063 cpuset_print_current_mems_allowed();
4064 pr_cont("\n");
4065 dump_stack();
4066 warn_alloc_show_mem(gfp_mask, nodemask);
4067 }
4068
4069 static inline struct page *
4070 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4071 unsigned int alloc_flags,
4072 const struct alloc_context *ac)
4073 {
4074 struct page *page;
4075
4076 page = get_page_from_freelist(gfp_mask, order,
4077 alloc_flags|ALLOC_CPUSET, ac);
4078 /*
4079 * fallback to ignore cpuset restriction if our nodes
4080 * are depleted
4081 */
4082 if (!page)
4083 page = get_page_from_freelist(gfp_mask, order,
4084 alloc_flags, ac);
4085
4086 return page;
4087 }
4088
4089 static inline struct page *
4090 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4091 const struct alloc_context *ac, unsigned long *did_some_progress)
4092 {
4093 struct oom_control oc = {
4094 .zonelist = ac->zonelist,
4095 .nodemask = ac->nodemask,
4096 .memcg = NULL,
4097 .gfp_mask = gfp_mask,
4098 .order = order,
4099 };
4100 struct page *page;
4101
4102 *did_some_progress = 0;
4103
4104 /*
4105 * Acquire the oom lock. If that fails, somebody else is
4106 * making progress for us.
4107 */
4108 if (!mutex_trylock(&oom_lock)) {
4109 *did_some_progress = 1;
4110 schedule_timeout_uninterruptible(1);
4111 return NULL;
4112 }
4113
4114 /*
4115 * Go through the zonelist yet one more time, keep very high watermark
4116 * here, this is only to catch a parallel oom killing, we must fail if
4117 * we're still under heavy pressure. But make sure that this reclaim
4118 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4119 * allocation which will never fail due to oom_lock already held.
4120 */
4121 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4122 ~__GFP_DIRECT_RECLAIM, order,
4123 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4124 if (page)
4125 goto out;
4126
4127 /* Coredumps can quickly deplete all memory reserves */
4128 if (current->flags & PF_DUMPCORE)
4129 goto out;
4130 /* The OOM killer will not help higher order allocs */
4131 if (order > PAGE_ALLOC_COSTLY_ORDER)
4132 goto out;
4133 /*
4134 * We have already exhausted all our reclaim opportunities without any
4135 * success so it is time to admit defeat. We will skip the OOM killer
4136 * because it is very likely that the caller has a more reasonable
4137 * fallback than shooting a random task.
4138 *
4139 * The OOM killer may not free memory on a specific node.
4140 */
4141 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4142 goto out;
4143 /* The OOM killer does not needlessly kill tasks for lowmem */
4144 if (ac->highest_zoneidx < ZONE_NORMAL)
4145 goto out;
4146 if (pm_suspended_storage())
4147 goto out;
4148 /*
4149 * XXX: GFP_NOFS allocations should rather fail than rely on
4150 * other request to make a forward progress.
4151 * We are in an unfortunate situation where out_of_memory cannot
4152 * do much for this context but let's try it to at least get
4153 * access to memory reserved if the current task is killed (see
4154 * out_of_memory). Once filesystems are ready to handle allocation
4155 * failures more gracefully we should just bail out here.
4156 */
4157
4158 /* Exhausted what can be done so it's blame time */
4159 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4160 *did_some_progress = 1;
4161
4162 /*
4163 * Help non-failing allocations by giving them access to memory
4164 * reserves
4165 */
4166 if (gfp_mask & __GFP_NOFAIL)
4167 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4168 ALLOC_NO_WATERMARKS, ac);
4169 }
4170 out:
4171 mutex_unlock(&oom_lock);
4172 return page;
4173 }
4174
4175 /*
4176 * Maximum number of compaction retries wit a progress before OOM
4177 * killer is consider as the only way to move forward.
4178 */
4179 #define MAX_COMPACT_RETRIES 16
4180
4181 #ifdef CONFIG_COMPACTION
4182 /* Try memory compaction for high-order allocations before reclaim */
4183 static struct page *
4184 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4185 unsigned int alloc_flags, const struct alloc_context *ac,
4186 enum compact_priority prio, enum compact_result *compact_result)
4187 {
4188 struct page *page = NULL;
4189 unsigned long pflags;
4190 unsigned int noreclaim_flag;
4191
4192 if (!order)
4193 return NULL;
4194
4195 psi_memstall_enter(&pflags);
4196 noreclaim_flag = memalloc_noreclaim_save();
4197
4198 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4199 prio, &page);
4200
4201 memalloc_noreclaim_restore(noreclaim_flag);
4202 psi_memstall_leave(&pflags);
4203
4204 if (*compact_result == COMPACT_SKIPPED)
4205 return NULL;
4206 /*
4207 * At least in one zone compaction wasn't deferred or skipped, so let's
4208 * count a compaction stall
4209 */
4210 count_vm_event(COMPACTSTALL);
4211
4212 /* Prep a captured page if available */
4213 if (page)
4214 prep_new_page(page, order, gfp_mask, alloc_flags);
4215
4216 /* Try get a page from the freelist if available */
4217 if (!page)
4218 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4219
4220 if (page) {
4221 struct zone *zone = page_zone(page);
4222
4223 zone->compact_blockskip_flush = false;
4224 compaction_defer_reset(zone, order, true);
4225 count_vm_event(COMPACTSUCCESS);
4226 return page;
4227 }
4228
4229 /*
4230 * It's bad if compaction run occurs and fails. The most likely reason
4231 * is that pages exist, but not enough to satisfy watermarks.
4232 */
4233 count_vm_event(COMPACTFAIL);
4234
4235 cond_resched();
4236
4237 return NULL;
4238 }
4239
4240 static inline bool
4241 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4242 enum compact_result compact_result,
4243 enum compact_priority *compact_priority,
4244 int *compaction_retries)
4245 {
4246 int max_retries = MAX_COMPACT_RETRIES;
4247 int min_priority;
4248 bool ret = false;
4249 int retries = *compaction_retries;
4250 enum compact_priority priority = *compact_priority;
4251
4252 if (!order)
4253 return false;
4254
4255 if (compaction_made_progress(compact_result))
4256 (*compaction_retries)++;
4257
4258 /*
4259 * compaction considers all the zone as desperately out of memory
4260 * so it doesn't really make much sense to retry except when the
4261 * failure could be caused by insufficient priority
4262 */
4263 if (compaction_failed(compact_result))
4264 goto check_priority;
4265
4266 /*
4267 * compaction was skipped because there are not enough order-0 pages
4268 * to work with, so we retry only if it looks like reclaim can help.
4269 */
4270 if (compaction_needs_reclaim(compact_result)) {
4271 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4272 goto out;
4273 }
4274
4275 /*
4276 * make sure the compaction wasn't deferred or didn't bail out early
4277 * due to locks contention before we declare that we should give up.
4278 * But the next retry should use a higher priority if allowed, so
4279 * we don't just keep bailing out endlessly.
4280 */
4281 if (compaction_withdrawn(compact_result)) {
4282 goto check_priority;
4283 }
4284
4285 /*
4286 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4287 * costly ones because they are de facto nofail and invoke OOM
4288 * killer to move on while costly can fail and users are ready
4289 * to cope with that. 1/4 retries is rather arbitrary but we
4290 * would need much more detailed feedback from compaction to
4291 * make a better decision.
4292 */
4293 if (order > PAGE_ALLOC_COSTLY_ORDER)
4294 max_retries /= 4;
4295 if (*compaction_retries <= max_retries) {
4296 ret = true;
4297 goto out;
4298 }
4299
4300 /*
4301 * Make sure there are attempts at the highest priority if we exhausted
4302 * all retries or failed at the lower priorities.
4303 */
4304 check_priority:
4305 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4306 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4307
4308 if (*compact_priority > min_priority) {
4309 (*compact_priority)--;
4310 *compaction_retries = 0;
4311 ret = true;
4312 }
4313 out:
4314 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4315 return ret;
4316 }
4317 #else
4318 static inline struct page *
4319 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4320 unsigned int alloc_flags, const struct alloc_context *ac,
4321 enum compact_priority prio, enum compact_result *compact_result)
4322 {
4323 *compact_result = COMPACT_SKIPPED;
4324 return NULL;
4325 }
4326
4327 static inline bool
4328 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4329 enum compact_result compact_result,
4330 enum compact_priority *compact_priority,
4331 int *compaction_retries)
4332 {
4333 struct zone *zone;
4334 struct zoneref *z;
4335
4336 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4337 return false;
4338
4339 /*
4340 * There are setups with compaction disabled which would prefer to loop
4341 * inside the allocator rather than hit the oom killer prematurely.
4342 * Let's give them a good hope and keep retrying while the order-0
4343 * watermarks are OK.
4344 */
4345 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4346 ac->highest_zoneidx, ac->nodemask) {
4347 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4348 ac->highest_zoneidx, alloc_flags))
4349 return true;
4350 }
4351 return false;
4352 }
4353 #endif /* CONFIG_COMPACTION */
4354
4355 #ifdef CONFIG_LOCKDEP
4356 static struct lockdep_map __fs_reclaim_map =
4357 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4358
4359 static bool __need_reclaim(gfp_t gfp_mask)
4360 {
4361 /* no reclaim without waiting on it */
4362 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4363 return false;
4364
4365 /* this guy won't enter reclaim */
4366 if (current->flags & PF_MEMALLOC)
4367 return false;
4368
4369 if (gfp_mask & __GFP_NOLOCKDEP)
4370 return false;
4371
4372 return true;
4373 }
4374
4375 void __fs_reclaim_acquire(void)
4376 {
4377 lock_map_acquire(&__fs_reclaim_map);
4378 }
4379
4380 void __fs_reclaim_release(void)
4381 {
4382 lock_map_release(&__fs_reclaim_map);
4383 }
4384
4385 void fs_reclaim_acquire(gfp_t gfp_mask)
4386 {
4387 gfp_mask = current_gfp_context(gfp_mask);
4388
4389 if (__need_reclaim(gfp_mask)) {
4390 if (gfp_mask & __GFP_FS)
4391 __fs_reclaim_acquire();
4392
4393 #ifdef CONFIG_MMU_NOTIFIER
4394 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4395 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4396 #endif
4397
4398 }
4399 }
4400 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4401
4402 void fs_reclaim_release(gfp_t gfp_mask)
4403 {
4404 gfp_mask = current_gfp_context(gfp_mask);
4405
4406 if (__need_reclaim(gfp_mask)) {
4407 if (gfp_mask & __GFP_FS)
4408 __fs_reclaim_release();
4409 }
4410 }
4411 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4412 #endif
4413
4414 /* Perform direct synchronous page reclaim */
4415 static unsigned long
4416 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4417 const struct alloc_context *ac)
4418 {
4419 unsigned int noreclaim_flag;
4420 unsigned long pflags, progress;
4421
4422 cond_resched();
4423
4424 /* We now go into synchronous reclaim */
4425 cpuset_memory_pressure_bump();
4426 psi_memstall_enter(&pflags);
4427 fs_reclaim_acquire(gfp_mask);
4428 noreclaim_flag = memalloc_noreclaim_save();
4429
4430 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4431 ac->nodemask);
4432
4433 memalloc_noreclaim_restore(noreclaim_flag);
4434 fs_reclaim_release(gfp_mask);
4435 psi_memstall_leave(&pflags);
4436
4437 cond_resched();
4438
4439 return progress;
4440 }
4441
4442 /* The really slow allocator path where we enter direct reclaim */
4443 static inline struct page *
4444 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4445 unsigned int alloc_flags, const struct alloc_context *ac,
4446 unsigned long *did_some_progress)
4447 {
4448 struct page *page = NULL;
4449 bool drained = false;
4450
4451 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4452 if (unlikely(!(*did_some_progress)))
4453 return NULL;
4454
4455 retry:
4456 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4457
4458 /*
4459 * If an allocation failed after direct reclaim, it could be because
4460 * pages are pinned on the per-cpu lists or in high alloc reserves.
4461 * Shrink them and try again
4462 */
4463 if (!page && !drained) {
4464 unreserve_highatomic_pageblock(ac, false);
4465 drain_all_pages(NULL);
4466 drained = true;
4467 goto retry;
4468 }
4469
4470 return page;
4471 }
4472
4473 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4474 const struct alloc_context *ac)
4475 {
4476 struct zoneref *z;
4477 struct zone *zone;
4478 pg_data_t *last_pgdat = NULL;
4479 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4480
4481 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4482 ac->nodemask) {
4483 if (last_pgdat != zone->zone_pgdat)
4484 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4485 last_pgdat = zone->zone_pgdat;
4486 }
4487 }
4488
4489 static inline unsigned int
4490 gfp_to_alloc_flags(gfp_t gfp_mask)
4491 {
4492 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4493
4494 /*
4495 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4496 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4497 * to save two branches.
4498 */
4499 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4500 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4501
4502 /*
4503 * The caller may dip into page reserves a bit more if the caller
4504 * cannot run direct reclaim, or if the caller has realtime scheduling
4505 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4506 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4507 */
4508 alloc_flags |= (__force int)
4509 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4510
4511 if (gfp_mask & __GFP_ATOMIC) {
4512 /*
4513 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4514 * if it can't schedule.
4515 */
4516 if (!(gfp_mask & __GFP_NOMEMALLOC))
4517 alloc_flags |= ALLOC_HARDER;
4518 /*
4519 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4520 * comment for __cpuset_node_allowed().
4521 */
4522 alloc_flags &= ~ALLOC_CPUSET;
4523 } else if (unlikely(rt_task(current)) && !in_interrupt())
4524 alloc_flags |= ALLOC_HARDER;
4525
4526 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4527
4528 return alloc_flags;
4529 }
4530
4531 static bool oom_reserves_allowed(struct task_struct *tsk)
4532 {
4533 if (!tsk_is_oom_victim(tsk))
4534 return false;
4535
4536 /*
4537 * !MMU doesn't have oom reaper so give access to memory reserves
4538 * only to the thread with TIF_MEMDIE set
4539 */
4540 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4541 return false;
4542
4543 return true;
4544 }
4545
4546 /*
4547 * Distinguish requests which really need access to full memory
4548 * reserves from oom victims which can live with a portion of it
4549 */
4550 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4551 {
4552 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4553 return 0;
4554 if (gfp_mask & __GFP_MEMALLOC)
4555 return ALLOC_NO_WATERMARKS;
4556 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4557 return ALLOC_NO_WATERMARKS;
4558 if (!in_interrupt()) {
4559 if (current->flags & PF_MEMALLOC)
4560 return ALLOC_NO_WATERMARKS;
4561 else if (oom_reserves_allowed(current))
4562 return ALLOC_OOM;
4563 }
4564
4565 return 0;
4566 }
4567
4568 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4569 {
4570 return !!__gfp_pfmemalloc_flags(gfp_mask);
4571 }
4572
4573 /*
4574 * Checks whether it makes sense to retry the reclaim to make a forward progress
4575 * for the given allocation request.
4576 *
4577 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4578 * without success, or when we couldn't even meet the watermark if we
4579 * reclaimed all remaining pages on the LRU lists.
4580 *
4581 * Returns true if a retry is viable or false to enter the oom path.
4582 */
4583 static inline bool
4584 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4585 struct alloc_context *ac, int alloc_flags,
4586 bool did_some_progress, int *no_progress_loops)
4587 {
4588 struct zone *zone;
4589 struct zoneref *z;
4590 bool ret = false;
4591
4592 /*
4593 * Costly allocations might have made a progress but this doesn't mean
4594 * their order will become available due to high fragmentation so
4595 * always increment the no progress counter for them
4596 */
4597 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4598 *no_progress_loops = 0;
4599 else
4600 (*no_progress_loops)++;
4601
4602 /*
4603 * Make sure we converge to OOM if we cannot make any progress
4604 * several times in the row.
4605 */
4606 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4607 /* Before OOM, exhaust highatomic_reserve */
4608 return unreserve_highatomic_pageblock(ac, true);
4609 }
4610
4611 /*
4612 * Keep reclaiming pages while there is a chance this will lead
4613 * somewhere. If none of the target zones can satisfy our allocation
4614 * request even if all reclaimable pages are considered then we are
4615 * screwed and have to go OOM.
4616 */
4617 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4618 ac->highest_zoneidx, ac->nodemask) {
4619 unsigned long available;
4620 unsigned long reclaimable;
4621 unsigned long min_wmark = min_wmark_pages(zone);
4622 bool wmark;
4623
4624 available = reclaimable = zone_reclaimable_pages(zone);
4625 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4626
4627 /*
4628 * Would the allocation succeed if we reclaimed all
4629 * reclaimable pages?
4630 */
4631 wmark = __zone_watermark_ok(zone, order, min_wmark,
4632 ac->highest_zoneidx, alloc_flags, available);
4633 trace_reclaim_retry_zone(z, order, reclaimable,
4634 available, min_wmark, *no_progress_loops, wmark);
4635 if (wmark) {
4636 /*
4637 * If we didn't make any progress and have a lot of
4638 * dirty + writeback pages then we should wait for
4639 * an IO to complete to slow down the reclaim and
4640 * prevent from pre mature OOM
4641 */
4642 if (!did_some_progress) {
4643 unsigned long write_pending;
4644
4645 write_pending = zone_page_state_snapshot(zone,
4646 NR_ZONE_WRITE_PENDING);
4647
4648 if (2 * write_pending > reclaimable) {
4649 congestion_wait(BLK_RW_ASYNC, HZ/10);
4650 return true;
4651 }
4652 }
4653
4654 ret = true;
4655 goto out;
4656 }
4657 }
4658
4659 out:
4660 /*
4661 * Memory allocation/reclaim might be called from a WQ context and the
4662 * current implementation of the WQ concurrency control doesn't
4663 * recognize that a particular WQ is congested if the worker thread is
4664 * looping without ever sleeping. Therefore we have to do a short sleep
4665 * here rather than calling cond_resched().
4666 */
4667 if (current->flags & PF_WQ_WORKER)
4668 schedule_timeout_uninterruptible(1);
4669 else
4670 cond_resched();
4671 return ret;
4672 }
4673
4674 static inline bool
4675 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4676 {
4677 /*
4678 * It's possible that cpuset's mems_allowed and the nodemask from
4679 * mempolicy don't intersect. This should be normally dealt with by
4680 * policy_nodemask(), but it's possible to race with cpuset update in
4681 * such a way the check therein was true, and then it became false
4682 * before we got our cpuset_mems_cookie here.
4683 * This assumes that for all allocations, ac->nodemask can come only
4684 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4685 * when it does not intersect with the cpuset restrictions) or the
4686 * caller can deal with a violated nodemask.
4687 */
4688 if (cpusets_enabled() && ac->nodemask &&
4689 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4690 ac->nodemask = NULL;
4691 return true;
4692 }
4693
4694 /*
4695 * When updating a task's mems_allowed or mempolicy nodemask, it is
4696 * possible to race with parallel threads in such a way that our
4697 * allocation can fail while the mask is being updated. If we are about
4698 * to fail, check if the cpuset changed during allocation and if so,
4699 * retry.
4700 */
4701 if (read_mems_allowed_retry(cpuset_mems_cookie))
4702 return true;
4703
4704 return false;
4705 }
4706
4707 static inline struct page *
4708 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4709 struct alloc_context *ac)
4710 {
4711 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4712 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4713 struct page *page = NULL;
4714 unsigned int alloc_flags;
4715 unsigned long did_some_progress;
4716 enum compact_priority compact_priority;
4717 enum compact_result compact_result;
4718 int compaction_retries;
4719 int no_progress_loops;
4720 unsigned int cpuset_mems_cookie;
4721 int reserve_flags;
4722
4723 /*
4724 * We also sanity check to catch abuse of atomic reserves being used by
4725 * callers that are not in atomic context.
4726 */
4727 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4728 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4729 gfp_mask &= ~__GFP_ATOMIC;
4730
4731 retry_cpuset:
4732 compaction_retries = 0;
4733 no_progress_loops = 0;
4734 compact_priority = DEF_COMPACT_PRIORITY;
4735 cpuset_mems_cookie = read_mems_allowed_begin();
4736
4737 /*
4738 * The fast path uses conservative alloc_flags to succeed only until
4739 * kswapd needs to be woken up, and to avoid the cost of setting up
4740 * alloc_flags precisely. So we do that now.
4741 */
4742 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4743
4744 /*
4745 * We need to recalculate the starting point for the zonelist iterator
4746 * because we might have used different nodemask in the fast path, or
4747 * there was a cpuset modification and we are retrying - otherwise we
4748 * could end up iterating over non-eligible zones endlessly.
4749 */
4750 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4751 ac->highest_zoneidx, ac->nodemask);
4752 if (!ac->preferred_zoneref->zone)
4753 goto nopage;
4754
4755 if (alloc_flags & ALLOC_KSWAPD)
4756 wake_all_kswapds(order, gfp_mask, ac);
4757
4758 /*
4759 * The adjusted alloc_flags might result in immediate success, so try
4760 * that first
4761 */
4762 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4763 if (page)
4764 goto got_pg;
4765
4766 /*
4767 * For costly allocations, try direct compaction first, as it's likely
4768 * that we have enough base pages and don't need to reclaim. For non-
4769 * movable high-order allocations, do that as well, as compaction will
4770 * try prevent permanent fragmentation by migrating from blocks of the
4771 * same migratetype.
4772 * Don't try this for allocations that are allowed to ignore
4773 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4774 */
4775 if (can_direct_reclaim &&
4776 (costly_order ||
4777 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4778 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4779 page = __alloc_pages_direct_compact(gfp_mask, order,
4780 alloc_flags, ac,
4781 INIT_COMPACT_PRIORITY,
4782 &compact_result);
4783 if (page)
4784 goto got_pg;
4785
4786 /*
4787 * Checks for costly allocations with __GFP_NORETRY, which
4788 * includes some THP page fault allocations
4789 */
4790 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4791 /*
4792 * If allocating entire pageblock(s) and compaction
4793 * failed because all zones are below low watermarks
4794 * or is prohibited because it recently failed at this
4795 * order, fail immediately unless the allocator has
4796 * requested compaction and reclaim retry.
4797 *
4798 * Reclaim is
4799 * - potentially very expensive because zones are far
4800 * below their low watermarks or this is part of very
4801 * bursty high order allocations,
4802 * - not guaranteed to help because isolate_freepages()
4803 * may not iterate over freed pages as part of its
4804 * linear scan, and
4805 * - unlikely to make entire pageblocks free on its
4806 * own.
4807 */
4808 if (compact_result == COMPACT_SKIPPED ||
4809 compact_result == COMPACT_DEFERRED)
4810 goto nopage;
4811
4812 /*
4813 * Looks like reclaim/compaction is worth trying, but
4814 * sync compaction could be very expensive, so keep
4815 * using async compaction.
4816 */
4817 compact_priority = INIT_COMPACT_PRIORITY;
4818 }
4819 }
4820
4821 retry:
4822 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4823 if (alloc_flags & ALLOC_KSWAPD)
4824 wake_all_kswapds(order, gfp_mask, ac);
4825
4826 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4827 if (reserve_flags)
4828 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4829
4830 /*
4831 * Reset the nodemask and zonelist iterators if memory policies can be
4832 * ignored. These allocations are high priority and system rather than
4833 * user oriented.
4834 */
4835 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4836 ac->nodemask = NULL;
4837 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4838 ac->highest_zoneidx, ac->nodemask);
4839 }
4840
4841 /* Attempt with potentially adjusted zonelist and alloc_flags */
4842 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4843 if (page)
4844 goto got_pg;
4845
4846 /* Caller is not willing to reclaim, we can't balance anything */
4847 if (!can_direct_reclaim)
4848 goto nopage;
4849
4850 /* Avoid recursion of direct reclaim */
4851 if (current->flags & PF_MEMALLOC)
4852 goto nopage;
4853
4854 /* Try direct reclaim and then allocating */
4855 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4856 &did_some_progress);
4857 if (page)
4858 goto got_pg;
4859
4860 /* Try direct compaction and then allocating */
4861 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4862 compact_priority, &compact_result);
4863 if (page)
4864 goto got_pg;
4865
4866 /* Do not loop if specifically requested */
4867 if (gfp_mask & __GFP_NORETRY)
4868 goto nopage;
4869
4870 /*
4871 * Do not retry costly high order allocations unless they are
4872 * __GFP_RETRY_MAYFAIL
4873 */
4874 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4875 goto nopage;
4876
4877 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4878 did_some_progress > 0, &no_progress_loops))
4879 goto retry;
4880
4881 /*
4882 * It doesn't make any sense to retry for the compaction if the order-0
4883 * reclaim is not able to make any progress because the current
4884 * implementation of the compaction depends on the sufficient amount
4885 * of free memory (see __compaction_suitable)
4886 */
4887 if (did_some_progress > 0 &&
4888 should_compact_retry(ac, order, alloc_flags,
4889 compact_result, &compact_priority,
4890 &compaction_retries))
4891 goto retry;
4892
4893
4894 /* Deal with possible cpuset update races before we start OOM killing */
4895 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4896 goto retry_cpuset;
4897
4898 /* Reclaim has failed us, start killing things */
4899 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4900 if (page)
4901 goto got_pg;
4902
4903 /* Avoid allocations with no watermarks from looping endlessly */
4904 if (tsk_is_oom_victim(current) &&
4905 (alloc_flags & ALLOC_OOM ||
4906 (gfp_mask & __GFP_NOMEMALLOC)))
4907 goto nopage;
4908
4909 /* Retry as long as the OOM killer is making progress */
4910 if (did_some_progress) {
4911 no_progress_loops = 0;
4912 goto retry;
4913 }
4914
4915 nopage:
4916 /* Deal with possible cpuset update races before we fail */
4917 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4918 goto retry_cpuset;
4919
4920 /*
4921 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4922 * we always retry
4923 */
4924 if (gfp_mask & __GFP_NOFAIL) {
4925 /*
4926 * All existing users of the __GFP_NOFAIL are blockable, so warn
4927 * of any new users that actually require GFP_NOWAIT
4928 */
4929 if (WARN_ON_ONCE(!can_direct_reclaim))
4930 goto fail;
4931
4932 /*
4933 * PF_MEMALLOC request from this context is rather bizarre
4934 * because we cannot reclaim anything and only can loop waiting
4935 * for somebody to do a work for us
4936 */
4937 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4938
4939 /*
4940 * non failing costly orders are a hard requirement which we
4941 * are not prepared for much so let's warn about these users
4942 * so that we can identify them and convert them to something
4943 * else.
4944 */
4945 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4946
4947 /*
4948 * Help non-failing allocations by giving them access to memory
4949 * reserves but do not use ALLOC_NO_WATERMARKS because this
4950 * could deplete whole memory reserves which would just make
4951 * the situation worse
4952 */
4953 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4954 if (page)
4955 goto got_pg;
4956
4957 cond_resched();
4958 goto retry;
4959 }
4960 fail:
4961 warn_alloc(gfp_mask, ac->nodemask,
4962 "page allocation failure: order:%u", order);
4963 got_pg:
4964 return page;
4965 }
4966
4967 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4968 int preferred_nid, nodemask_t *nodemask,
4969 struct alloc_context *ac, gfp_t *alloc_gfp,
4970 unsigned int *alloc_flags)
4971 {
4972 ac->highest_zoneidx = gfp_zone(gfp_mask);
4973 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4974 ac->nodemask = nodemask;
4975 ac->migratetype = gfp_migratetype(gfp_mask);
4976
4977 if (cpusets_enabled()) {
4978 *alloc_gfp |= __GFP_HARDWALL;
4979 /*
4980 * When we are in the interrupt context, it is irrelevant
4981 * to the current task context. It means that any node ok.
4982 */
4983 if (!in_interrupt() && !ac->nodemask)
4984 ac->nodemask = &cpuset_current_mems_allowed;
4985 else
4986 *alloc_flags |= ALLOC_CPUSET;
4987 }
4988
4989 fs_reclaim_acquire(gfp_mask);
4990 fs_reclaim_release(gfp_mask);
4991
4992 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4993
4994 if (should_fail_alloc_page(gfp_mask, order))
4995 return false;
4996
4997 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4998
4999 /* Dirty zone balancing only done in the fast path */
5000 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5001
5002 /*
5003 * The preferred zone is used for statistics but crucially it is
5004 * also used as the starting point for the zonelist iterator. It
5005 * may get reset for allocations that ignore memory policies.
5006 */
5007 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5008 ac->highest_zoneidx, ac->nodemask);
5009
5010 return true;
5011 }
5012
5013 /*
5014 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5015 * @gfp: GFP flags for the allocation
5016 * @preferred_nid: The preferred NUMA node ID to allocate from
5017 * @nodemask: Set of nodes to allocate from, may be NULL
5018 * @nr_pages: The number of pages desired on the list or array
5019 * @page_list: Optional list to store the allocated pages
5020 * @page_array: Optional array to store the pages
5021 *
5022 * This is a batched version of the page allocator that attempts to
5023 * allocate nr_pages quickly. Pages are added to page_list if page_list
5024 * is not NULL, otherwise it is assumed that the page_array is valid.
5025 *
5026 * For lists, nr_pages is the number of pages that should be allocated.
5027 *
5028 * For arrays, only NULL elements are populated with pages and nr_pages
5029 * is the maximum number of pages that will be stored in the array.
5030 *
5031 * Returns the number of pages on the list or array.
5032 */
5033 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5034 nodemask_t *nodemask, int nr_pages,
5035 struct list_head *page_list,
5036 struct page **page_array)
5037 {
5038 struct page *page;
5039 unsigned long flags;
5040 struct zone *zone;
5041 struct zoneref *z;
5042 struct per_cpu_pages *pcp;
5043 struct list_head *pcp_list;
5044 struct alloc_context ac;
5045 gfp_t alloc_gfp;
5046 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5047 int nr_populated = 0;
5048
5049 if (unlikely(nr_pages <= 0))
5050 return 0;
5051
5052 /*
5053 * Skip populated array elements to determine if any pages need
5054 * to be allocated before disabling IRQs.
5055 */
5056 while (page_array && page_array[nr_populated] && nr_populated < nr_pages)
5057 nr_populated++;
5058
5059 /* Use the single page allocator for one page. */
5060 if (nr_pages - nr_populated == 1)
5061 goto failed;
5062
5063 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5064 gfp &= gfp_allowed_mask;
5065 alloc_gfp = gfp;
5066 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5067 return 0;
5068 gfp = alloc_gfp;
5069
5070 /* Find an allowed local zone that meets the low watermark. */
5071 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5072 unsigned long mark;
5073
5074 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5075 !__cpuset_zone_allowed(zone, gfp)) {
5076 continue;
5077 }
5078
5079 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5080 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5081 goto failed;
5082 }
5083
5084 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5085 if (zone_watermark_fast(zone, 0, mark,
5086 zonelist_zone_idx(ac.preferred_zoneref),
5087 alloc_flags, gfp)) {
5088 break;
5089 }
5090 }
5091
5092 /*
5093 * If there are no allowed local zones that meets the watermarks then
5094 * try to allocate a single page and reclaim if necessary.
5095 */
5096 if (unlikely(!zone))
5097 goto failed;
5098
5099 /* Attempt the batch allocation */
5100 local_irq_save(flags);
5101 pcp = &this_cpu_ptr(zone->pageset)->pcp;
5102 pcp_list = &pcp->lists[ac.migratetype];
5103
5104 while (nr_populated < nr_pages) {
5105
5106 /* Skip existing pages */
5107 if (page_array && page_array[nr_populated]) {
5108 nr_populated++;
5109 continue;
5110 }
5111
5112 page = __rmqueue_pcplist(zone, ac.migratetype, alloc_flags,
5113 pcp, pcp_list);
5114 if (unlikely(!page)) {
5115 /* Try and get at least one page */
5116 if (!nr_populated)
5117 goto failed_irq;
5118 break;
5119 }
5120
5121 /*
5122 * Ideally this would be batched but the best way to do
5123 * that cheaply is to first convert zone_statistics to
5124 * be inaccurate per-cpu counter like vm_events to avoid
5125 * a RMW cycle then do the accounting with IRQs enabled.
5126 */
5127 __count_zid_vm_events(PGALLOC, zone_idx(zone), 1);
5128 zone_statistics(ac.preferred_zoneref->zone, zone);
5129
5130 prep_new_page(page, 0, gfp, 0);
5131 if (page_list)
5132 list_add(&page->lru, page_list);
5133 else
5134 page_array[nr_populated] = page;
5135 nr_populated++;
5136 }
5137
5138 local_irq_restore(flags);
5139
5140 return nr_populated;
5141
5142 failed_irq:
5143 local_irq_restore(flags);
5144
5145 failed:
5146 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5147 if (page) {
5148 if (page_list)
5149 list_add(&page->lru, page_list);
5150 else
5151 page_array[nr_populated] = page;
5152 nr_populated++;
5153 }
5154
5155 return nr_populated;
5156 }
5157 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5158
5159 /*
5160 * This is the 'heart' of the zoned buddy allocator.
5161 */
5162 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5163 nodemask_t *nodemask)
5164 {
5165 struct page *page;
5166 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5167 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5168 struct alloc_context ac = { };
5169
5170 /*
5171 * There are several places where we assume that the order value is sane
5172 * so bail out early if the request is out of bound.
5173 */
5174 if (unlikely(order >= MAX_ORDER)) {
5175 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5176 return NULL;
5177 }
5178
5179 gfp &= gfp_allowed_mask;
5180 /*
5181 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5182 * resp. GFP_NOIO which has to be inherited for all allocation requests
5183 * from a particular context which has been marked by
5184 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5185 * movable zones are not used during allocation.
5186 */
5187 gfp = current_gfp_context(gfp);
5188 alloc_gfp = gfp;
5189 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5190 &alloc_gfp, &alloc_flags))
5191 return NULL;
5192
5193 /*
5194 * Forbid the first pass from falling back to types that fragment
5195 * memory until all local zones are considered.
5196 */
5197 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5198
5199 /* First allocation attempt */
5200 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5201 if (likely(page))
5202 goto out;
5203
5204 alloc_gfp = gfp;
5205 ac.spread_dirty_pages = false;
5206
5207 /*
5208 * Restore the original nodemask if it was potentially replaced with
5209 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5210 */
5211 ac.nodemask = nodemask;
5212
5213 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5214
5215 out:
5216 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5217 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5218 __free_pages(page, order);
5219 page = NULL;
5220 }
5221
5222 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5223
5224 return page;
5225 }
5226 EXPORT_SYMBOL(__alloc_pages);
5227
5228 /*
5229 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5230 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5231 * you need to access high mem.
5232 */
5233 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5234 {
5235 struct page *page;
5236
5237 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5238 if (!page)
5239 return 0;
5240 return (unsigned long) page_address(page);
5241 }
5242 EXPORT_SYMBOL(__get_free_pages);
5243
5244 unsigned long get_zeroed_page(gfp_t gfp_mask)
5245 {
5246 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5247 }
5248 EXPORT_SYMBOL(get_zeroed_page);
5249
5250 static inline void free_the_page(struct page *page, unsigned int order)
5251 {
5252 if (order == 0) /* Via pcp? */
5253 free_unref_page(page);
5254 else
5255 __free_pages_ok(page, order, FPI_NONE);
5256 }
5257
5258 /**
5259 * __free_pages - Free pages allocated with alloc_pages().
5260 * @page: The page pointer returned from alloc_pages().
5261 * @order: The order of the allocation.
5262 *
5263 * This function can free multi-page allocations that are not compound
5264 * pages. It does not check that the @order passed in matches that of
5265 * the allocation, so it is easy to leak memory. Freeing more memory
5266 * than was allocated will probably emit a warning.
5267 *
5268 * If the last reference to this page is speculative, it will be released
5269 * by put_page() which only frees the first page of a non-compound
5270 * allocation. To prevent the remaining pages from being leaked, we free
5271 * the subsequent pages here. If you want to use the page's reference
5272 * count to decide when to free the allocation, you should allocate a
5273 * compound page, and use put_page() instead of __free_pages().
5274 *
5275 * Context: May be called in interrupt context or while holding a normal
5276 * spinlock, but not in NMI context or while holding a raw spinlock.
5277 */
5278 void __free_pages(struct page *page, unsigned int order)
5279 {
5280 if (put_page_testzero(page))
5281 free_the_page(page, order);
5282 else if (!PageHead(page))
5283 while (order-- > 0)
5284 free_the_page(page + (1 << order), order);
5285 }
5286 EXPORT_SYMBOL(__free_pages);
5287
5288 void free_pages(unsigned long addr, unsigned int order)
5289 {
5290 if (addr != 0) {
5291 VM_BUG_ON(!virt_addr_valid((void *)addr));
5292 __free_pages(virt_to_page((void *)addr), order);
5293 }
5294 }
5295
5296 EXPORT_SYMBOL(free_pages);
5297
5298 /*
5299 * Page Fragment:
5300 * An arbitrary-length arbitrary-offset area of memory which resides
5301 * within a 0 or higher order page. Multiple fragments within that page
5302 * are individually refcounted, in the page's reference counter.
5303 *
5304 * The page_frag functions below provide a simple allocation framework for
5305 * page fragments. This is used by the network stack and network device
5306 * drivers to provide a backing region of memory for use as either an
5307 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5308 */
5309 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5310 gfp_t gfp_mask)
5311 {
5312 struct page *page = NULL;
5313 gfp_t gfp = gfp_mask;
5314
5315 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5316 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5317 __GFP_NOMEMALLOC;
5318 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5319 PAGE_FRAG_CACHE_MAX_ORDER);
5320 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5321 #endif
5322 if (unlikely(!page))
5323 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5324
5325 nc->va = page ? page_address(page) : NULL;
5326
5327 return page;
5328 }
5329
5330 void __page_frag_cache_drain(struct page *page, unsigned int count)
5331 {
5332 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5333
5334 if (page_ref_sub_and_test(page, count))
5335 free_the_page(page, compound_order(page));
5336 }
5337 EXPORT_SYMBOL(__page_frag_cache_drain);
5338
5339 void *page_frag_alloc_align(struct page_frag_cache *nc,
5340 unsigned int fragsz, gfp_t gfp_mask,
5341 unsigned int align_mask)
5342 {
5343 unsigned int size = PAGE_SIZE;
5344 struct page *page;
5345 int offset;
5346
5347 if (unlikely(!nc->va)) {
5348 refill:
5349 page = __page_frag_cache_refill(nc, gfp_mask);
5350 if (!page)
5351 return NULL;
5352
5353 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5354 /* if size can vary use size else just use PAGE_SIZE */
5355 size = nc->size;
5356 #endif
5357 /* Even if we own the page, we do not use atomic_set().
5358 * This would break get_page_unless_zero() users.
5359 */
5360 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5361
5362 /* reset page count bias and offset to start of new frag */
5363 nc->pfmemalloc = page_is_pfmemalloc(page);
5364 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5365 nc->offset = size;
5366 }
5367
5368 offset = nc->offset - fragsz;
5369 if (unlikely(offset < 0)) {
5370 page = virt_to_page(nc->va);
5371
5372 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5373 goto refill;
5374
5375 if (unlikely(nc->pfmemalloc)) {
5376 free_the_page(page, compound_order(page));
5377 goto refill;
5378 }
5379
5380 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5381 /* if size can vary use size else just use PAGE_SIZE */
5382 size = nc->size;
5383 #endif
5384 /* OK, page count is 0, we can safely set it */
5385 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5386
5387 /* reset page count bias and offset to start of new frag */
5388 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5389 offset = size - fragsz;
5390 }
5391
5392 nc->pagecnt_bias--;
5393 offset &= align_mask;
5394 nc->offset = offset;
5395
5396 return nc->va + offset;
5397 }
5398 EXPORT_SYMBOL(page_frag_alloc_align);
5399
5400 /*
5401 * Frees a page fragment allocated out of either a compound or order 0 page.
5402 */
5403 void page_frag_free(void *addr)
5404 {
5405 struct page *page = virt_to_head_page(addr);
5406
5407 if (unlikely(put_page_testzero(page)))
5408 free_the_page(page, compound_order(page));
5409 }
5410 EXPORT_SYMBOL(page_frag_free);
5411
5412 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5413 size_t size)
5414 {
5415 if (addr) {
5416 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5417 unsigned long used = addr + PAGE_ALIGN(size);
5418
5419 split_page(virt_to_page((void *)addr), order);
5420 while (used < alloc_end) {
5421 free_page(used);
5422 used += PAGE_SIZE;
5423 }
5424 }
5425 return (void *)addr;
5426 }
5427
5428 /**
5429 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5430 * @size: the number of bytes to allocate
5431 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5432 *
5433 * This function is similar to alloc_pages(), except that it allocates the
5434 * minimum number of pages to satisfy the request. alloc_pages() can only
5435 * allocate memory in power-of-two pages.
5436 *
5437 * This function is also limited by MAX_ORDER.
5438 *
5439 * Memory allocated by this function must be released by free_pages_exact().
5440 *
5441 * Return: pointer to the allocated area or %NULL in case of error.
5442 */
5443 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5444 {
5445 unsigned int order = get_order(size);
5446 unsigned long addr;
5447
5448 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5449 gfp_mask &= ~__GFP_COMP;
5450
5451 addr = __get_free_pages(gfp_mask, order);
5452 return make_alloc_exact(addr, order, size);
5453 }
5454 EXPORT_SYMBOL(alloc_pages_exact);
5455
5456 /**
5457 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5458 * pages on a node.
5459 * @nid: the preferred node ID where memory should be allocated
5460 * @size: the number of bytes to allocate
5461 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5462 *
5463 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5464 * back.
5465 *
5466 * Return: pointer to the allocated area or %NULL in case of error.
5467 */
5468 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5469 {
5470 unsigned int order = get_order(size);
5471 struct page *p;
5472
5473 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5474 gfp_mask &= ~__GFP_COMP;
5475
5476 p = alloc_pages_node(nid, gfp_mask, order);
5477 if (!p)
5478 return NULL;
5479 return make_alloc_exact((unsigned long)page_address(p), order, size);
5480 }
5481
5482 /**
5483 * free_pages_exact - release memory allocated via alloc_pages_exact()
5484 * @virt: the value returned by alloc_pages_exact.
5485 * @size: size of allocation, same value as passed to alloc_pages_exact().
5486 *
5487 * Release the memory allocated by a previous call to alloc_pages_exact.
5488 */
5489 void free_pages_exact(void *virt, size_t size)
5490 {
5491 unsigned long addr = (unsigned long)virt;
5492 unsigned long end = addr + PAGE_ALIGN(size);
5493
5494 while (addr < end) {
5495 free_page(addr);
5496 addr += PAGE_SIZE;
5497 }
5498 }
5499 EXPORT_SYMBOL(free_pages_exact);
5500
5501 /**
5502 * nr_free_zone_pages - count number of pages beyond high watermark
5503 * @offset: The zone index of the highest zone
5504 *
5505 * nr_free_zone_pages() counts the number of pages which are beyond the
5506 * high watermark within all zones at or below a given zone index. For each
5507 * zone, the number of pages is calculated as:
5508 *
5509 * nr_free_zone_pages = managed_pages - high_pages
5510 *
5511 * Return: number of pages beyond high watermark.
5512 */
5513 static unsigned long nr_free_zone_pages(int offset)
5514 {
5515 struct zoneref *z;
5516 struct zone *zone;
5517
5518 /* Just pick one node, since fallback list is circular */
5519 unsigned long sum = 0;
5520
5521 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5522
5523 for_each_zone_zonelist(zone, z, zonelist, offset) {
5524 unsigned long size = zone_managed_pages(zone);
5525 unsigned long high = high_wmark_pages(zone);
5526 if (size > high)
5527 sum += size - high;
5528 }
5529
5530 return sum;
5531 }
5532
5533 /**
5534 * nr_free_buffer_pages - count number of pages beyond high watermark
5535 *
5536 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5537 * watermark within ZONE_DMA and ZONE_NORMAL.
5538 *
5539 * Return: number of pages beyond high watermark within ZONE_DMA and
5540 * ZONE_NORMAL.
5541 */
5542 unsigned long nr_free_buffer_pages(void)
5543 {
5544 return nr_free_zone_pages(gfp_zone(GFP_USER));
5545 }
5546 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5547
5548 static inline void show_node(struct zone *zone)
5549 {
5550 if (IS_ENABLED(CONFIG_NUMA))
5551 printk("Node %d ", zone_to_nid(zone));
5552 }
5553
5554 long si_mem_available(void)
5555 {
5556 long available;
5557 unsigned long pagecache;
5558 unsigned long wmark_low = 0;
5559 unsigned long pages[NR_LRU_LISTS];
5560 unsigned long reclaimable;
5561 struct zone *zone;
5562 int lru;
5563
5564 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5565 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5566
5567 for_each_zone(zone)
5568 wmark_low += low_wmark_pages(zone);
5569
5570 /*
5571 * Estimate the amount of memory available for userspace allocations,
5572 * without causing swapping.
5573 */
5574 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5575
5576 /*
5577 * Not all the page cache can be freed, otherwise the system will
5578 * start swapping. Assume at least half of the page cache, or the
5579 * low watermark worth of cache, needs to stay.
5580 */
5581 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5582 pagecache -= min(pagecache / 2, wmark_low);
5583 available += pagecache;
5584
5585 /*
5586 * Part of the reclaimable slab and other kernel memory consists of
5587 * items that are in use, and cannot be freed. Cap this estimate at the
5588 * low watermark.
5589 */
5590 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5591 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5592 available += reclaimable - min(reclaimable / 2, wmark_low);
5593
5594 if (available < 0)
5595 available = 0;
5596 return available;
5597 }
5598 EXPORT_SYMBOL_GPL(si_mem_available);
5599
5600 void si_meminfo(struct sysinfo *val)
5601 {
5602 val->totalram = totalram_pages();
5603 val->sharedram = global_node_page_state(NR_SHMEM);
5604 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5605 val->bufferram = nr_blockdev_pages();
5606 val->totalhigh = totalhigh_pages();
5607 val->freehigh = nr_free_highpages();
5608 val->mem_unit = PAGE_SIZE;
5609 }
5610
5611 EXPORT_SYMBOL(si_meminfo);
5612
5613 #ifdef CONFIG_NUMA
5614 void si_meminfo_node(struct sysinfo *val, int nid)
5615 {
5616 int zone_type; /* needs to be signed */
5617 unsigned long managed_pages = 0;
5618 unsigned long managed_highpages = 0;
5619 unsigned long free_highpages = 0;
5620 pg_data_t *pgdat = NODE_DATA(nid);
5621
5622 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5623 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5624 val->totalram = managed_pages;
5625 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5626 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5627 #ifdef CONFIG_HIGHMEM
5628 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5629 struct zone *zone = &pgdat->node_zones[zone_type];
5630
5631 if (is_highmem(zone)) {
5632 managed_highpages += zone_managed_pages(zone);
5633 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5634 }
5635 }
5636 val->totalhigh = managed_highpages;
5637 val->freehigh = free_highpages;
5638 #else
5639 val->totalhigh = managed_highpages;
5640 val->freehigh = free_highpages;
5641 #endif
5642 val->mem_unit = PAGE_SIZE;
5643 }
5644 #endif
5645
5646 /*
5647 * Determine whether the node should be displayed or not, depending on whether
5648 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5649 */
5650 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5651 {
5652 if (!(flags & SHOW_MEM_FILTER_NODES))
5653 return false;
5654
5655 /*
5656 * no node mask - aka implicit memory numa policy. Do not bother with
5657 * the synchronization - read_mems_allowed_begin - because we do not
5658 * have to be precise here.
5659 */
5660 if (!nodemask)
5661 nodemask = &cpuset_current_mems_allowed;
5662
5663 return !node_isset(nid, *nodemask);
5664 }
5665
5666 #define K(x) ((x) << (PAGE_SHIFT-10))
5667
5668 static void show_migration_types(unsigned char type)
5669 {
5670 static const char types[MIGRATE_TYPES] = {
5671 [MIGRATE_UNMOVABLE] = 'U',
5672 [MIGRATE_MOVABLE] = 'M',
5673 [MIGRATE_RECLAIMABLE] = 'E',
5674 [MIGRATE_HIGHATOMIC] = 'H',
5675 #ifdef CONFIG_CMA
5676 [MIGRATE_CMA] = 'C',
5677 #endif
5678 #ifdef CONFIG_MEMORY_ISOLATION
5679 [MIGRATE_ISOLATE] = 'I',
5680 #endif
5681 };
5682 char tmp[MIGRATE_TYPES + 1];
5683 char *p = tmp;
5684 int i;
5685
5686 for (i = 0; i < MIGRATE_TYPES; i++) {
5687 if (type & (1 << i))
5688 *p++ = types[i];
5689 }
5690
5691 *p = '\0';
5692 printk(KERN_CONT "(%s) ", tmp);
5693 }
5694
5695 /*
5696 * Show free area list (used inside shift_scroll-lock stuff)
5697 * We also calculate the percentage fragmentation. We do this by counting the
5698 * memory on each free list with the exception of the first item on the list.
5699 *
5700 * Bits in @filter:
5701 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5702 * cpuset.
5703 */
5704 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5705 {
5706 unsigned long free_pcp = 0;
5707 int cpu;
5708 struct zone *zone;
5709 pg_data_t *pgdat;
5710
5711 for_each_populated_zone(zone) {
5712 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5713 continue;
5714
5715 for_each_online_cpu(cpu)
5716 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5717 }
5718
5719 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5720 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5721 " unevictable:%lu dirty:%lu writeback:%lu\n"
5722 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5723 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5724 " free:%lu free_pcp:%lu free_cma:%lu\n",
5725 global_node_page_state(NR_ACTIVE_ANON),
5726 global_node_page_state(NR_INACTIVE_ANON),
5727 global_node_page_state(NR_ISOLATED_ANON),
5728 global_node_page_state(NR_ACTIVE_FILE),
5729 global_node_page_state(NR_INACTIVE_FILE),
5730 global_node_page_state(NR_ISOLATED_FILE),
5731 global_node_page_state(NR_UNEVICTABLE),
5732 global_node_page_state(NR_FILE_DIRTY),
5733 global_node_page_state(NR_WRITEBACK),
5734 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5735 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5736 global_node_page_state(NR_FILE_MAPPED),
5737 global_node_page_state(NR_SHMEM),
5738 global_node_page_state(NR_PAGETABLE),
5739 global_zone_page_state(NR_BOUNCE),
5740 global_zone_page_state(NR_FREE_PAGES),
5741 free_pcp,
5742 global_zone_page_state(NR_FREE_CMA_PAGES));
5743
5744 for_each_online_pgdat(pgdat) {
5745 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5746 continue;
5747
5748 printk("Node %d"
5749 " active_anon:%lukB"
5750 " inactive_anon:%lukB"
5751 " active_file:%lukB"
5752 " inactive_file:%lukB"
5753 " unevictable:%lukB"
5754 " isolated(anon):%lukB"
5755 " isolated(file):%lukB"
5756 " mapped:%lukB"
5757 " dirty:%lukB"
5758 " writeback:%lukB"
5759 " shmem:%lukB"
5760 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5761 " shmem_thp: %lukB"
5762 " shmem_pmdmapped: %lukB"
5763 " anon_thp: %lukB"
5764 #endif
5765 " writeback_tmp:%lukB"
5766 " kernel_stack:%lukB"
5767 #ifdef CONFIG_SHADOW_CALL_STACK
5768 " shadow_call_stack:%lukB"
5769 #endif
5770 " pagetables:%lukB"
5771 " all_unreclaimable? %s"
5772 "\n",
5773 pgdat->node_id,
5774 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5775 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5776 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5777 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5778 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5779 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5780 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5781 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5782 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5783 K(node_page_state(pgdat, NR_WRITEBACK)),
5784 K(node_page_state(pgdat, NR_SHMEM)),
5785 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5786 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5787 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5788 K(node_page_state(pgdat, NR_ANON_THPS)),
5789 #endif
5790 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5791 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5792 #ifdef CONFIG_SHADOW_CALL_STACK
5793 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5794 #endif
5795 K(node_page_state(pgdat, NR_PAGETABLE)),
5796 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5797 "yes" : "no");
5798 }
5799
5800 for_each_populated_zone(zone) {
5801 int i;
5802
5803 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5804 continue;
5805
5806 free_pcp = 0;
5807 for_each_online_cpu(cpu)
5808 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5809
5810 show_node(zone);
5811 printk(KERN_CONT
5812 "%s"
5813 " free:%lukB"
5814 " min:%lukB"
5815 " low:%lukB"
5816 " high:%lukB"
5817 " reserved_highatomic:%luKB"
5818 " active_anon:%lukB"
5819 " inactive_anon:%lukB"
5820 " active_file:%lukB"
5821 " inactive_file:%lukB"
5822 " unevictable:%lukB"
5823 " writepending:%lukB"
5824 " present:%lukB"
5825 " managed:%lukB"
5826 " mlocked:%lukB"
5827 " bounce:%lukB"
5828 " free_pcp:%lukB"
5829 " local_pcp:%ukB"
5830 " free_cma:%lukB"
5831 "\n",
5832 zone->name,
5833 K(zone_page_state(zone, NR_FREE_PAGES)),
5834 K(min_wmark_pages(zone)),
5835 K(low_wmark_pages(zone)),
5836 K(high_wmark_pages(zone)),
5837 K(zone->nr_reserved_highatomic),
5838 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5839 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5840 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5841 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5842 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5843 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5844 K(zone->present_pages),
5845 K(zone_managed_pages(zone)),
5846 K(zone_page_state(zone, NR_MLOCK)),
5847 K(zone_page_state(zone, NR_BOUNCE)),
5848 K(free_pcp),
5849 K(this_cpu_read(zone->pageset->pcp.count)),
5850 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5851 printk("lowmem_reserve[]:");
5852 for (i = 0; i < MAX_NR_ZONES; i++)
5853 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5854 printk(KERN_CONT "\n");
5855 }
5856
5857 for_each_populated_zone(zone) {
5858 unsigned int order;
5859 unsigned long nr[MAX_ORDER], flags, total = 0;
5860 unsigned char types[MAX_ORDER];
5861
5862 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5863 continue;
5864 show_node(zone);
5865 printk(KERN_CONT "%s: ", zone->name);
5866
5867 spin_lock_irqsave(&zone->lock, flags);
5868 for (order = 0; order < MAX_ORDER; order++) {
5869 struct free_area *area = &zone->free_area[order];
5870 int type;
5871
5872 nr[order] = area->nr_free;
5873 total += nr[order] << order;
5874
5875 types[order] = 0;
5876 for (type = 0; type < MIGRATE_TYPES; type++) {
5877 if (!free_area_empty(area, type))
5878 types[order] |= 1 << type;
5879 }
5880 }
5881 spin_unlock_irqrestore(&zone->lock, flags);
5882 for (order = 0; order < MAX_ORDER; order++) {
5883 printk(KERN_CONT "%lu*%lukB ",
5884 nr[order], K(1UL) << order);
5885 if (nr[order])
5886 show_migration_types(types[order]);
5887 }
5888 printk(KERN_CONT "= %lukB\n", K(total));
5889 }
5890
5891 hugetlb_show_meminfo();
5892
5893 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5894
5895 show_swap_cache_info();
5896 }
5897
5898 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5899 {
5900 zoneref->zone = zone;
5901 zoneref->zone_idx = zone_idx(zone);
5902 }
5903
5904 /*
5905 * Builds allocation fallback zone lists.
5906 *
5907 * Add all populated zones of a node to the zonelist.
5908 */
5909 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5910 {
5911 struct zone *zone;
5912 enum zone_type zone_type = MAX_NR_ZONES;
5913 int nr_zones = 0;
5914
5915 do {
5916 zone_type--;
5917 zone = pgdat->node_zones + zone_type;
5918 if (managed_zone(zone)) {
5919 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5920 check_highest_zone(zone_type);
5921 }
5922 } while (zone_type);
5923
5924 return nr_zones;
5925 }
5926
5927 #ifdef CONFIG_NUMA
5928
5929 static int __parse_numa_zonelist_order(char *s)
5930 {
5931 /*
5932 * We used to support different zonlists modes but they turned
5933 * out to be just not useful. Let's keep the warning in place
5934 * if somebody still use the cmd line parameter so that we do
5935 * not fail it silently
5936 */
5937 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5938 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5939 return -EINVAL;
5940 }
5941 return 0;
5942 }
5943
5944 char numa_zonelist_order[] = "Node";
5945
5946 /*
5947 * sysctl handler for numa_zonelist_order
5948 */
5949 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5950 void *buffer, size_t *length, loff_t *ppos)
5951 {
5952 if (write)
5953 return __parse_numa_zonelist_order(buffer);
5954 return proc_dostring(table, write, buffer, length, ppos);
5955 }
5956
5957
5958 #define MAX_NODE_LOAD (nr_online_nodes)
5959 static int node_load[MAX_NUMNODES];
5960
5961 /**
5962 * find_next_best_node - find the next node that should appear in a given node's fallback list
5963 * @node: node whose fallback list we're appending
5964 * @used_node_mask: nodemask_t of already used nodes
5965 *
5966 * We use a number of factors to determine which is the next node that should
5967 * appear on a given node's fallback list. The node should not have appeared
5968 * already in @node's fallback list, and it should be the next closest node
5969 * according to the distance array (which contains arbitrary distance values
5970 * from each node to each node in the system), and should also prefer nodes
5971 * with no CPUs, since presumably they'll have very little allocation pressure
5972 * on them otherwise.
5973 *
5974 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5975 */
5976 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5977 {
5978 int n, val;
5979 int min_val = INT_MAX;
5980 int best_node = NUMA_NO_NODE;
5981
5982 /* Use the local node if we haven't already */
5983 if (!node_isset(node, *used_node_mask)) {
5984 node_set(node, *used_node_mask);
5985 return node;
5986 }
5987
5988 for_each_node_state(n, N_MEMORY) {
5989
5990 /* Don't want a node to appear more than once */
5991 if (node_isset(n, *used_node_mask))
5992 continue;
5993
5994 /* Use the distance array to find the distance */
5995 val = node_distance(node, n);
5996
5997 /* Penalize nodes under us ("prefer the next node") */
5998 val += (n < node);
5999
6000 /* Give preference to headless and unused nodes */
6001 if (!cpumask_empty(cpumask_of_node(n)))
6002 val += PENALTY_FOR_NODE_WITH_CPUS;
6003
6004 /* Slight preference for less loaded node */
6005 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6006 val += node_load[n];
6007
6008 if (val < min_val) {
6009 min_val = val;
6010 best_node = n;
6011 }
6012 }
6013
6014 if (best_node >= 0)
6015 node_set(best_node, *used_node_mask);
6016
6017 return best_node;
6018 }
6019
6020
6021 /*
6022 * Build zonelists ordered by node and zones within node.
6023 * This results in maximum locality--normal zone overflows into local
6024 * DMA zone, if any--but risks exhausting DMA zone.
6025 */
6026 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6027 unsigned nr_nodes)
6028 {
6029 struct zoneref *zonerefs;
6030 int i;
6031
6032 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6033
6034 for (i = 0; i < nr_nodes; i++) {
6035 int nr_zones;
6036
6037 pg_data_t *node = NODE_DATA(node_order[i]);
6038
6039 nr_zones = build_zonerefs_node(node, zonerefs);
6040 zonerefs += nr_zones;
6041 }
6042 zonerefs->zone = NULL;
6043 zonerefs->zone_idx = 0;
6044 }
6045
6046 /*
6047 * Build gfp_thisnode zonelists
6048 */
6049 static void build_thisnode_zonelists(pg_data_t *pgdat)
6050 {
6051 struct zoneref *zonerefs;
6052 int nr_zones;
6053
6054 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6055 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6056 zonerefs += nr_zones;
6057 zonerefs->zone = NULL;
6058 zonerefs->zone_idx = 0;
6059 }
6060
6061 /*
6062 * Build zonelists ordered by zone and nodes within zones.
6063 * This results in conserving DMA zone[s] until all Normal memory is
6064 * exhausted, but results in overflowing to remote node while memory
6065 * may still exist in local DMA zone.
6066 */
6067
6068 static void build_zonelists(pg_data_t *pgdat)
6069 {
6070 static int node_order[MAX_NUMNODES];
6071 int node, load, nr_nodes = 0;
6072 nodemask_t used_mask = NODE_MASK_NONE;
6073 int local_node, prev_node;
6074
6075 /* NUMA-aware ordering of nodes */
6076 local_node = pgdat->node_id;
6077 load = nr_online_nodes;
6078 prev_node = local_node;
6079
6080 memset(node_order, 0, sizeof(node_order));
6081 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6082 /*
6083 * We don't want to pressure a particular node.
6084 * So adding penalty to the first node in same
6085 * distance group to make it round-robin.
6086 */
6087 if (node_distance(local_node, node) !=
6088 node_distance(local_node, prev_node))
6089 node_load[node] = load;
6090
6091 node_order[nr_nodes++] = node;
6092 prev_node = node;
6093 load--;
6094 }
6095
6096 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6097 build_thisnode_zonelists(pgdat);
6098 }
6099
6100 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6101 /*
6102 * Return node id of node used for "local" allocations.
6103 * I.e., first node id of first zone in arg node's generic zonelist.
6104 * Used for initializing percpu 'numa_mem', which is used primarily
6105 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6106 */
6107 int local_memory_node(int node)
6108 {
6109 struct zoneref *z;
6110
6111 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6112 gfp_zone(GFP_KERNEL),
6113 NULL);
6114 return zone_to_nid(z->zone);
6115 }
6116 #endif
6117
6118 static void setup_min_unmapped_ratio(void);
6119 static void setup_min_slab_ratio(void);
6120 #else /* CONFIG_NUMA */
6121
6122 static void build_zonelists(pg_data_t *pgdat)
6123 {
6124 int node, local_node;
6125 struct zoneref *zonerefs;
6126 int nr_zones;
6127
6128 local_node = pgdat->node_id;
6129
6130 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6131 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6132 zonerefs += nr_zones;
6133
6134 /*
6135 * Now we build the zonelist so that it contains the zones
6136 * of all the other nodes.
6137 * We don't want to pressure a particular node, so when
6138 * building the zones for node N, we make sure that the
6139 * zones coming right after the local ones are those from
6140 * node N+1 (modulo N)
6141 */
6142 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6143 if (!node_online(node))
6144 continue;
6145 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6146 zonerefs += nr_zones;
6147 }
6148 for (node = 0; node < local_node; node++) {
6149 if (!node_online(node))
6150 continue;
6151 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6152 zonerefs += nr_zones;
6153 }
6154
6155 zonerefs->zone = NULL;
6156 zonerefs->zone_idx = 0;
6157 }
6158
6159 #endif /* CONFIG_NUMA */
6160
6161 /*
6162 * Boot pageset table. One per cpu which is going to be used for all
6163 * zones and all nodes. The parameters will be set in such a way
6164 * that an item put on a list will immediately be handed over to
6165 * the buddy list. This is safe since pageset manipulation is done
6166 * with interrupts disabled.
6167 *
6168 * The boot_pagesets must be kept even after bootup is complete for
6169 * unused processors and/or zones. They do play a role for bootstrapping
6170 * hotplugged processors.
6171 *
6172 * zoneinfo_show() and maybe other functions do
6173 * not check if the processor is online before following the pageset pointer.
6174 * Other parts of the kernel may not check if the zone is available.
6175 */
6176 static void pageset_init(struct per_cpu_pageset *p);
6177 /* These effectively disable the pcplists in the boot pageset completely */
6178 #define BOOT_PAGESET_HIGH 0
6179 #define BOOT_PAGESET_BATCH 1
6180 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
6181 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6182
6183 static void __build_all_zonelists(void *data)
6184 {
6185 int nid;
6186 int __maybe_unused cpu;
6187 pg_data_t *self = data;
6188 static DEFINE_SPINLOCK(lock);
6189
6190 spin_lock(&lock);
6191
6192 #ifdef CONFIG_NUMA
6193 memset(node_load, 0, sizeof(node_load));
6194 #endif
6195
6196 /*
6197 * This node is hotadded and no memory is yet present. So just
6198 * building zonelists is fine - no need to touch other nodes.
6199 */
6200 if (self && !node_online(self->node_id)) {
6201 build_zonelists(self);
6202 } else {
6203 for_each_online_node(nid) {
6204 pg_data_t *pgdat = NODE_DATA(nid);
6205
6206 build_zonelists(pgdat);
6207 }
6208
6209 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6210 /*
6211 * We now know the "local memory node" for each node--
6212 * i.e., the node of the first zone in the generic zonelist.
6213 * Set up numa_mem percpu variable for on-line cpus. During
6214 * boot, only the boot cpu should be on-line; we'll init the
6215 * secondary cpus' numa_mem as they come on-line. During
6216 * node/memory hotplug, we'll fixup all on-line cpus.
6217 */
6218 for_each_online_cpu(cpu)
6219 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6220 #endif
6221 }
6222
6223 spin_unlock(&lock);
6224 }
6225
6226 static noinline void __init
6227 build_all_zonelists_init(void)
6228 {
6229 int cpu;
6230
6231 __build_all_zonelists(NULL);
6232
6233 /*
6234 * Initialize the boot_pagesets that are going to be used
6235 * for bootstrapping processors. The real pagesets for
6236 * each zone will be allocated later when the per cpu
6237 * allocator is available.
6238 *
6239 * boot_pagesets are used also for bootstrapping offline
6240 * cpus if the system is already booted because the pagesets
6241 * are needed to initialize allocators on a specific cpu too.
6242 * F.e. the percpu allocator needs the page allocator which
6243 * needs the percpu allocator in order to allocate its pagesets
6244 * (a chicken-egg dilemma).
6245 */
6246 for_each_possible_cpu(cpu)
6247 pageset_init(&per_cpu(boot_pageset, cpu));
6248
6249 mminit_verify_zonelist();
6250 cpuset_init_current_mems_allowed();
6251 }
6252
6253 /*
6254 * unless system_state == SYSTEM_BOOTING.
6255 *
6256 * __ref due to call of __init annotated helper build_all_zonelists_init
6257 * [protected by SYSTEM_BOOTING].
6258 */
6259 void __ref build_all_zonelists(pg_data_t *pgdat)
6260 {
6261 unsigned long vm_total_pages;
6262
6263 if (system_state == SYSTEM_BOOTING) {
6264 build_all_zonelists_init();
6265 } else {
6266 __build_all_zonelists(pgdat);
6267 /* cpuset refresh routine should be here */
6268 }
6269 /* Get the number of free pages beyond high watermark in all zones. */
6270 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6271 /*
6272 * Disable grouping by mobility if the number of pages in the
6273 * system is too low to allow the mechanism to work. It would be
6274 * more accurate, but expensive to check per-zone. This check is
6275 * made on memory-hotadd so a system can start with mobility
6276 * disabled and enable it later
6277 */
6278 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6279 page_group_by_mobility_disabled = 1;
6280 else
6281 page_group_by_mobility_disabled = 0;
6282
6283 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6284 nr_online_nodes,
6285 page_group_by_mobility_disabled ? "off" : "on",
6286 vm_total_pages);
6287 #ifdef CONFIG_NUMA
6288 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6289 #endif
6290 }
6291
6292 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6293 static bool __meminit
6294 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6295 {
6296 static struct memblock_region *r;
6297
6298 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6299 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6300 for_each_mem_region(r) {
6301 if (*pfn < memblock_region_memory_end_pfn(r))
6302 break;
6303 }
6304 }
6305 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6306 memblock_is_mirror(r)) {
6307 *pfn = memblock_region_memory_end_pfn(r);
6308 return true;
6309 }
6310 }
6311 return false;
6312 }
6313
6314 /*
6315 * Initially all pages are reserved - free ones are freed
6316 * up by memblock_free_all() once the early boot process is
6317 * done. Non-atomic initialization, single-pass.
6318 *
6319 * All aligned pageblocks are initialized to the specified migratetype
6320 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6321 * zone stats (e.g., nr_isolate_pageblock) are touched.
6322 */
6323 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6324 unsigned long start_pfn, unsigned long zone_end_pfn,
6325 enum meminit_context context,
6326 struct vmem_altmap *altmap, int migratetype)
6327 {
6328 unsigned long pfn, end_pfn = start_pfn + size;
6329 struct page *page;
6330
6331 if (highest_memmap_pfn < end_pfn - 1)
6332 highest_memmap_pfn = end_pfn - 1;
6333
6334 #ifdef CONFIG_ZONE_DEVICE
6335 /*
6336 * Honor reservation requested by the driver for this ZONE_DEVICE
6337 * memory. We limit the total number of pages to initialize to just
6338 * those that might contain the memory mapping. We will defer the
6339 * ZONE_DEVICE page initialization until after we have released
6340 * the hotplug lock.
6341 */
6342 if (zone == ZONE_DEVICE) {
6343 if (!altmap)
6344 return;
6345
6346 if (start_pfn == altmap->base_pfn)
6347 start_pfn += altmap->reserve;
6348 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6349 }
6350 #endif
6351
6352 for (pfn = start_pfn; pfn < end_pfn; ) {
6353 /*
6354 * There can be holes in boot-time mem_map[]s handed to this
6355 * function. They do not exist on hotplugged memory.
6356 */
6357 if (context == MEMINIT_EARLY) {
6358 if (overlap_memmap_init(zone, &pfn))
6359 continue;
6360 if (defer_init(nid, pfn, zone_end_pfn))
6361 break;
6362 }
6363
6364 page = pfn_to_page(pfn);
6365 __init_single_page(page, pfn, zone, nid);
6366 if (context == MEMINIT_HOTPLUG)
6367 __SetPageReserved(page);
6368
6369 /*
6370 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6371 * such that unmovable allocations won't be scattered all
6372 * over the place during system boot.
6373 */
6374 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6375 set_pageblock_migratetype(page, migratetype);
6376 cond_resched();
6377 }
6378 pfn++;
6379 }
6380 }
6381
6382 #ifdef CONFIG_ZONE_DEVICE
6383 void __ref memmap_init_zone_device(struct zone *zone,
6384 unsigned long start_pfn,
6385 unsigned long nr_pages,
6386 struct dev_pagemap *pgmap)
6387 {
6388 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6389 struct pglist_data *pgdat = zone->zone_pgdat;
6390 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6391 unsigned long zone_idx = zone_idx(zone);
6392 unsigned long start = jiffies;
6393 int nid = pgdat->node_id;
6394
6395 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6396 return;
6397
6398 /*
6399 * The call to memmap_init_zone should have already taken care
6400 * of the pages reserved for the memmap, so we can just jump to
6401 * the end of that region and start processing the device pages.
6402 */
6403 if (altmap) {
6404 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6405 nr_pages = end_pfn - start_pfn;
6406 }
6407
6408 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6409 struct page *page = pfn_to_page(pfn);
6410
6411 __init_single_page(page, pfn, zone_idx, nid);
6412
6413 /*
6414 * Mark page reserved as it will need to wait for onlining
6415 * phase for it to be fully associated with a zone.
6416 *
6417 * We can use the non-atomic __set_bit operation for setting
6418 * the flag as we are still initializing the pages.
6419 */
6420 __SetPageReserved(page);
6421
6422 /*
6423 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6424 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6425 * ever freed or placed on a driver-private list.
6426 */
6427 page->pgmap = pgmap;
6428 page->zone_device_data = NULL;
6429
6430 /*
6431 * Mark the block movable so that blocks are reserved for
6432 * movable at startup. This will force kernel allocations
6433 * to reserve their blocks rather than leaking throughout
6434 * the address space during boot when many long-lived
6435 * kernel allocations are made.
6436 *
6437 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6438 * because this is done early in section_activate()
6439 */
6440 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6441 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6442 cond_resched();
6443 }
6444 }
6445
6446 pr_info("%s initialised %lu pages in %ums\n", __func__,
6447 nr_pages, jiffies_to_msecs(jiffies - start));
6448 }
6449
6450 #endif
6451 static void __meminit zone_init_free_lists(struct zone *zone)
6452 {
6453 unsigned int order, t;
6454 for_each_migratetype_order(order, t) {
6455 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6456 zone->free_area[order].nr_free = 0;
6457 }
6458 }
6459
6460 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6461 /*
6462 * Only struct pages that correspond to ranges defined by memblock.memory
6463 * are zeroed and initialized by going through __init_single_page() during
6464 * memmap_init_zone().
6465 *
6466 * But, there could be struct pages that correspond to holes in
6467 * memblock.memory. This can happen because of the following reasons:
6468 * - physical memory bank size is not necessarily the exact multiple of the
6469 * arbitrary section size
6470 * - early reserved memory may not be listed in memblock.memory
6471 * - memory layouts defined with memmap= kernel parameter may not align
6472 * nicely with memmap sections
6473 *
6474 * Explicitly initialize those struct pages so that:
6475 * - PG_Reserved is set
6476 * - zone and node links point to zone and node that span the page if the
6477 * hole is in the middle of a zone
6478 * - zone and node links point to adjacent zone/node if the hole falls on
6479 * the zone boundary; the pages in such holes will be prepended to the
6480 * zone/node above the hole except for the trailing pages in the last
6481 * section that will be appended to the zone/node below.
6482 */
6483 static u64 __meminit init_unavailable_range(unsigned long spfn,
6484 unsigned long epfn,
6485 int zone, int node)
6486 {
6487 unsigned long pfn;
6488 u64 pgcnt = 0;
6489
6490 for (pfn = spfn; pfn < epfn; pfn++) {
6491 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6492 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6493 + pageblock_nr_pages - 1;
6494 continue;
6495 }
6496 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6497 __SetPageReserved(pfn_to_page(pfn));
6498 pgcnt++;
6499 }
6500
6501 return pgcnt;
6502 }
6503 #else
6504 static inline u64 init_unavailable_range(unsigned long spfn, unsigned long epfn,
6505 int zone, int node)
6506 {
6507 return 0;
6508 }
6509 #endif
6510
6511 void __meminit __weak memmap_init_zone(struct zone *zone)
6512 {
6513 unsigned long zone_start_pfn = zone->zone_start_pfn;
6514 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6515 int i, nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6516 static unsigned long hole_pfn;
6517 unsigned long start_pfn, end_pfn;
6518 u64 pgcnt = 0;
6519
6520 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6521 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6522 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6523
6524 if (end_pfn > start_pfn)
6525 memmap_init_range(end_pfn - start_pfn, nid,
6526 zone_id, start_pfn, zone_end_pfn,
6527 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6528
6529 if (hole_pfn < start_pfn)
6530 pgcnt += init_unavailable_range(hole_pfn, start_pfn,
6531 zone_id, nid);
6532 hole_pfn = end_pfn;
6533 }
6534
6535 #ifdef CONFIG_SPARSEMEM
6536 /*
6537 * Initialize the hole in the range [zone_end_pfn, section_end].
6538 * If zone boundary falls in the middle of a section, this hole
6539 * will be re-initialized during the call to this function for the
6540 * higher zone.
6541 */
6542 end_pfn = round_up(zone_end_pfn, PAGES_PER_SECTION);
6543 if (hole_pfn < end_pfn)
6544 pgcnt += init_unavailable_range(hole_pfn, end_pfn,
6545 zone_id, nid);
6546 #endif
6547
6548 if (pgcnt)
6549 pr_info(" %s zone: %llu pages in unavailable ranges\n",
6550 zone->name, pgcnt);
6551 }
6552
6553 static int zone_batchsize(struct zone *zone)
6554 {
6555 #ifdef CONFIG_MMU
6556 int batch;
6557
6558 /*
6559 * The per-cpu-pages pools are set to around 1000th of the
6560 * size of the zone.
6561 */
6562 batch = zone_managed_pages(zone) / 1024;
6563 /* But no more than a meg. */
6564 if (batch * PAGE_SIZE > 1024 * 1024)
6565 batch = (1024 * 1024) / PAGE_SIZE;
6566 batch /= 4; /* We effectively *= 4 below */
6567 if (batch < 1)
6568 batch = 1;
6569
6570 /*
6571 * Clamp the batch to a 2^n - 1 value. Having a power
6572 * of 2 value was found to be more likely to have
6573 * suboptimal cache aliasing properties in some cases.
6574 *
6575 * For example if 2 tasks are alternately allocating
6576 * batches of pages, one task can end up with a lot
6577 * of pages of one half of the possible page colors
6578 * and the other with pages of the other colors.
6579 */
6580 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6581
6582 return batch;
6583
6584 #else
6585 /* The deferral and batching of frees should be suppressed under NOMMU
6586 * conditions.
6587 *
6588 * The problem is that NOMMU needs to be able to allocate large chunks
6589 * of contiguous memory as there's no hardware page translation to
6590 * assemble apparent contiguous memory from discontiguous pages.
6591 *
6592 * Queueing large contiguous runs of pages for batching, however,
6593 * causes the pages to actually be freed in smaller chunks. As there
6594 * can be a significant delay between the individual batches being
6595 * recycled, this leads to the once large chunks of space being
6596 * fragmented and becoming unavailable for high-order allocations.
6597 */
6598 return 0;
6599 #endif
6600 }
6601
6602 /*
6603 * pcp->high and pcp->batch values are related and generally batch is lower
6604 * than high. They are also related to pcp->count such that count is lower
6605 * than high, and as soon as it reaches high, the pcplist is flushed.
6606 *
6607 * However, guaranteeing these relations at all times would require e.g. write
6608 * barriers here but also careful usage of read barriers at the read side, and
6609 * thus be prone to error and bad for performance. Thus the update only prevents
6610 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6611 * can cope with those fields changing asynchronously, and fully trust only the
6612 * pcp->count field on the local CPU with interrupts disabled.
6613 *
6614 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6615 * outside of boot time (or some other assurance that no concurrent updaters
6616 * exist).
6617 */
6618 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6619 unsigned long batch)
6620 {
6621 WRITE_ONCE(pcp->batch, batch);
6622 WRITE_ONCE(pcp->high, high);
6623 }
6624
6625 static void pageset_init(struct per_cpu_pageset *p)
6626 {
6627 struct per_cpu_pages *pcp;
6628 int migratetype;
6629
6630 memset(p, 0, sizeof(*p));
6631
6632 pcp = &p->pcp;
6633 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6634 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6635
6636 /*
6637 * Set batch and high values safe for a boot pageset. A true percpu
6638 * pageset's initialization will update them subsequently. Here we don't
6639 * need to be as careful as pageset_update() as nobody can access the
6640 * pageset yet.
6641 */
6642 pcp->high = BOOT_PAGESET_HIGH;
6643 pcp->batch = BOOT_PAGESET_BATCH;
6644 }
6645
6646 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6647 unsigned long batch)
6648 {
6649 struct per_cpu_pageset *p;
6650 int cpu;
6651
6652 for_each_possible_cpu(cpu) {
6653 p = per_cpu_ptr(zone->pageset, cpu);
6654 pageset_update(&p->pcp, high, batch);
6655 }
6656 }
6657
6658 /*
6659 * Calculate and set new high and batch values for all per-cpu pagesets of a
6660 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6661 */
6662 static void zone_set_pageset_high_and_batch(struct zone *zone)
6663 {
6664 unsigned long new_high, new_batch;
6665
6666 if (percpu_pagelist_fraction) {
6667 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6668 new_batch = max(1UL, new_high / 4);
6669 if ((new_high / 4) > (PAGE_SHIFT * 8))
6670 new_batch = PAGE_SHIFT * 8;
6671 } else {
6672 new_batch = zone_batchsize(zone);
6673 new_high = 6 * new_batch;
6674 new_batch = max(1UL, 1 * new_batch);
6675 }
6676
6677 if (zone->pageset_high == new_high &&
6678 zone->pageset_batch == new_batch)
6679 return;
6680
6681 zone->pageset_high = new_high;
6682 zone->pageset_batch = new_batch;
6683
6684 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6685 }
6686
6687 void __meminit setup_zone_pageset(struct zone *zone)
6688 {
6689 struct per_cpu_pageset *p;
6690 int cpu;
6691
6692 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6693 for_each_possible_cpu(cpu) {
6694 p = per_cpu_ptr(zone->pageset, cpu);
6695 pageset_init(p);
6696 }
6697
6698 zone_set_pageset_high_and_batch(zone);
6699 }
6700
6701 /*
6702 * Allocate per cpu pagesets and initialize them.
6703 * Before this call only boot pagesets were available.
6704 */
6705 void __init setup_per_cpu_pageset(void)
6706 {
6707 struct pglist_data *pgdat;
6708 struct zone *zone;
6709 int __maybe_unused cpu;
6710
6711 for_each_populated_zone(zone)
6712 setup_zone_pageset(zone);
6713
6714 #ifdef CONFIG_NUMA
6715 /*
6716 * Unpopulated zones continue using the boot pagesets.
6717 * The numa stats for these pagesets need to be reset.
6718 * Otherwise, they will end up skewing the stats of
6719 * the nodes these zones are associated with.
6720 */
6721 for_each_possible_cpu(cpu) {
6722 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6723 memset(pcp->vm_numa_stat_diff, 0,
6724 sizeof(pcp->vm_numa_stat_diff));
6725 }
6726 #endif
6727
6728 for_each_online_pgdat(pgdat)
6729 pgdat->per_cpu_nodestats =
6730 alloc_percpu(struct per_cpu_nodestat);
6731 }
6732
6733 static __meminit void zone_pcp_init(struct zone *zone)
6734 {
6735 /*
6736 * per cpu subsystem is not up at this point. The following code
6737 * relies on the ability of the linker to provide the
6738 * offset of a (static) per cpu variable into the per cpu area.
6739 */
6740 zone->pageset = &boot_pageset;
6741 zone->pageset_high = BOOT_PAGESET_HIGH;
6742 zone->pageset_batch = BOOT_PAGESET_BATCH;
6743
6744 if (populated_zone(zone))
6745 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6746 zone->name, zone->present_pages,
6747 zone_batchsize(zone));
6748 }
6749
6750 void __meminit init_currently_empty_zone(struct zone *zone,
6751 unsigned long zone_start_pfn,
6752 unsigned long size)
6753 {
6754 struct pglist_data *pgdat = zone->zone_pgdat;
6755 int zone_idx = zone_idx(zone) + 1;
6756
6757 if (zone_idx > pgdat->nr_zones)
6758 pgdat->nr_zones = zone_idx;
6759
6760 zone->zone_start_pfn = zone_start_pfn;
6761
6762 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6763 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6764 pgdat->node_id,
6765 (unsigned long)zone_idx(zone),
6766 zone_start_pfn, (zone_start_pfn + size));
6767
6768 zone_init_free_lists(zone);
6769 zone->initialized = 1;
6770 }
6771
6772 /**
6773 * get_pfn_range_for_nid - Return the start and end page frames for a node
6774 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6775 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6776 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6777 *
6778 * It returns the start and end page frame of a node based on information
6779 * provided by memblock_set_node(). If called for a node
6780 * with no available memory, a warning is printed and the start and end
6781 * PFNs will be 0.
6782 */
6783 void __init get_pfn_range_for_nid(unsigned int nid,
6784 unsigned long *start_pfn, unsigned long *end_pfn)
6785 {
6786 unsigned long this_start_pfn, this_end_pfn;
6787 int i;
6788
6789 *start_pfn = -1UL;
6790 *end_pfn = 0;
6791
6792 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6793 *start_pfn = min(*start_pfn, this_start_pfn);
6794 *end_pfn = max(*end_pfn, this_end_pfn);
6795 }
6796
6797 if (*start_pfn == -1UL)
6798 *start_pfn = 0;
6799 }
6800
6801 /*
6802 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6803 * assumption is made that zones within a node are ordered in monotonic
6804 * increasing memory addresses so that the "highest" populated zone is used
6805 */
6806 static void __init find_usable_zone_for_movable(void)
6807 {
6808 int zone_index;
6809 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6810 if (zone_index == ZONE_MOVABLE)
6811 continue;
6812
6813 if (arch_zone_highest_possible_pfn[zone_index] >
6814 arch_zone_lowest_possible_pfn[zone_index])
6815 break;
6816 }
6817
6818 VM_BUG_ON(zone_index == -1);
6819 movable_zone = zone_index;
6820 }
6821
6822 /*
6823 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6824 * because it is sized independent of architecture. Unlike the other zones,
6825 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6826 * in each node depending on the size of each node and how evenly kernelcore
6827 * is distributed. This helper function adjusts the zone ranges
6828 * provided by the architecture for a given node by using the end of the
6829 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6830 * zones within a node are in order of monotonic increases memory addresses
6831 */
6832 static void __init adjust_zone_range_for_zone_movable(int nid,
6833 unsigned long zone_type,
6834 unsigned long node_start_pfn,
6835 unsigned long node_end_pfn,
6836 unsigned long *zone_start_pfn,
6837 unsigned long *zone_end_pfn)
6838 {
6839 /* Only adjust if ZONE_MOVABLE is on this node */
6840 if (zone_movable_pfn[nid]) {
6841 /* Size ZONE_MOVABLE */
6842 if (zone_type == ZONE_MOVABLE) {
6843 *zone_start_pfn = zone_movable_pfn[nid];
6844 *zone_end_pfn = min(node_end_pfn,
6845 arch_zone_highest_possible_pfn[movable_zone]);
6846
6847 /* Adjust for ZONE_MOVABLE starting within this range */
6848 } else if (!mirrored_kernelcore &&
6849 *zone_start_pfn < zone_movable_pfn[nid] &&
6850 *zone_end_pfn > zone_movable_pfn[nid]) {
6851 *zone_end_pfn = zone_movable_pfn[nid];
6852
6853 /* Check if this whole range is within ZONE_MOVABLE */
6854 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6855 *zone_start_pfn = *zone_end_pfn;
6856 }
6857 }
6858
6859 /*
6860 * Return the number of pages a zone spans in a node, including holes
6861 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6862 */
6863 static unsigned long __init zone_spanned_pages_in_node(int nid,
6864 unsigned long zone_type,
6865 unsigned long node_start_pfn,
6866 unsigned long node_end_pfn,
6867 unsigned long *zone_start_pfn,
6868 unsigned long *zone_end_pfn)
6869 {
6870 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6871 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6872 /* When hotadd a new node from cpu_up(), the node should be empty */
6873 if (!node_start_pfn && !node_end_pfn)
6874 return 0;
6875
6876 /* Get the start and end of the zone */
6877 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6878 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6879 adjust_zone_range_for_zone_movable(nid, zone_type,
6880 node_start_pfn, node_end_pfn,
6881 zone_start_pfn, zone_end_pfn);
6882
6883 /* Check that this node has pages within the zone's required range */
6884 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6885 return 0;
6886
6887 /* Move the zone boundaries inside the node if necessary */
6888 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6889 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6890
6891 /* Return the spanned pages */
6892 return *zone_end_pfn - *zone_start_pfn;
6893 }
6894
6895 /*
6896 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6897 * then all holes in the requested range will be accounted for.
6898 */
6899 unsigned long __init __absent_pages_in_range(int nid,
6900 unsigned long range_start_pfn,
6901 unsigned long range_end_pfn)
6902 {
6903 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6904 unsigned long start_pfn, end_pfn;
6905 int i;
6906
6907 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6908 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6909 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6910 nr_absent -= end_pfn - start_pfn;
6911 }
6912 return nr_absent;
6913 }
6914
6915 /**
6916 * absent_pages_in_range - Return number of page frames in holes within a range
6917 * @start_pfn: The start PFN to start searching for holes
6918 * @end_pfn: The end PFN to stop searching for holes
6919 *
6920 * Return: the number of pages frames in memory holes within a range.
6921 */
6922 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6923 unsigned long end_pfn)
6924 {
6925 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6926 }
6927
6928 /* Return the number of page frames in holes in a zone on a node */
6929 static unsigned long __init zone_absent_pages_in_node(int nid,
6930 unsigned long zone_type,
6931 unsigned long node_start_pfn,
6932 unsigned long node_end_pfn)
6933 {
6934 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6935 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6936 unsigned long zone_start_pfn, zone_end_pfn;
6937 unsigned long nr_absent;
6938
6939 /* When hotadd a new node from cpu_up(), the node should be empty */
6940 if (!node_start_pfn && !node_end_pfn)
6941 return 0;
6942
6943 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6944 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6945
6946 adjust_zone_range_for_zone_movable(nid, zone_type,
6947 node_start_pfn, node_end_pfn,
6948 &zone_start_pfn, &zone_end_pfn);
6949 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6950
6951 /*
6952 * ZONE_MOVABLE handling.
6953 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6954 * and vice versa.
6955 */
6956 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6957 unsigned long start_pfn, end_pfn;
6958 struct memblock_region *r;
6959
6960 for_each_mem_region(r) {
6961 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6962 zone_start_pfn, zone_end_pfn);
6963 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6964 zone_start_pfn, zone_end_pfn);
6965
6966 if (zone_type == ZONE_MOVABLE &&
6967 memblock_is_mirror(r))
6968 nr_absent += end_pfn - start_pfn;
6969
6970 if (zone_type == ZONE_NORMAL &&
6971 !memblock_is_mirror(r))
6972 nr_absent += end_pfn - start_pfn;
6973 }
6974 }
6975
6976 return nr_absent;
6977 }
6978
6979 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6980 unsigned long node_start_pfn,
6981 unsigned long node_end_pfn)
6982 {
6983 unsigned long realtotalpages = 0, totalpages = 0;
6984 enum zone_type i;
6985
6986 for (i = 0; i < MAX_NR_ZONES; i++) {
6987 struct zone *zone = pgdat->node_zones + i;
6988 unsigned long zone_start_pfn, zone_end_pfn;
6989 unsigned long spanned, absent;
6990 unsigned long size, real_size;
6991
6992 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6993 node_start_pfn,
6994 node_end_pfn,
6995 &zone_start_pfn,
6996 &zone_end_pfn);
6997 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6998 node_start_pfn,
6999 node_end_pfn);
7000
7001 size = spanned;
7002 real_size = size - absent;
7003
7004 if (size)
7005 zone->zone_start_pfn = zone_start_pfn;
7006 else
7007 zone->zone_start_pfn = 0;
7008 zone->spanned_pages = size;
7009 zone->present_pages = real_size;
7010
7011 totalpages += size;
7012 realtotalpages += real_size;
7013 }
7014
7015 pgdat->node_spanned_pages = totalpages;
7016 pgdat->node_present_pages = realtotalpages;
7017 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
7018 realtotalpages);
7019 }
7020
7021 #ifndef CONFIG_SPARSEMEM
7022 /*
7023 * Calculate the size of the zone->blockflags rounded to an unsigned long
7024 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7025 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7026 * round what is now in bits to nearest long in bits, then return it in
7027 * bytes.
7028 */
7029 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7030 {
7031 unsigned long usemapsize;
7032
7033 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7034 usemapsize = roundup(zonesize, pageblock_nr_pages);
7035 usemapsize = usemapsize >> pageblock_order;
7036 usemapsize *= NR_PAGEBLOCK_BITS;
7037 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7038
7039 return usemapsize / 8;
7040 }
7041
7042 static void __ref setup_usemap(struct zone *zone)
7043 {
7044 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7045 zone->spanned_pages);
7046 zone->pageblock_flags = NULL;
7047 if (usemapsize) {
7048 zone->pageblock_flags =
7049 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7050 zone_to_nid(zone));
7051 if (!zone->pageblock_flags)
7052 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7053 usemapsize, zone->name, zone_to_nid(zone));
7054 }
7055 }
7056 #else
7057 static inline void setup_usemap(struct zone *zone) {}
7058 #endif /* CONFIG_SPARSEMEM */
7059
7060 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7061
7062 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7063 void __init set_pageblock_order(void)
7064 {
7065 unsigned int order;
7066
7067 /* Check that pageblock_nr_pages has not already been setup */
7068 if (pageblock_order)
7069 return;
7070
7071 if (HPAGE_SHIFT > PAGE_SHIFT)
7072 order = HUGETLB_PAGE_ORDER;
7073 else
7074 order = MAX_ORDER - 1;
7075
7076 /*
7077 * Assume the largest contiguous order of interest is a huge page.
7078 * This value may be variable depending on boot parameters on IA64 and
7079 * powerpc.
7080 */
7081 pageblock_order = order;
7082 }
7083 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7084
7085 /*
7086 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7087 * is unused as pageblock_order is set at compile-time. See
7088 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7089 * the kernel config
7090 */
7091 void __init set_pageblock_order(void)
7092 {
7093 }
7094
7095 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7096
7097 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7098 unsigned long present_pages)
7099 {
7100 unsigned long pages = spanned_pages;
7101
7102 /*
7103 * Provide a more accurate estimation if there are holes within
7104 * the zone and SPARSEMEM is in use. If there are holes within the
7105 * zone, each populated memory region may cost us one or two extra
7106 * memmap pages due to alignment because memmap pages for each
7107 * populated regions may not be naturally aligned on page boundary.
7108 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7109 */
7110 if (spanned_pages > present_pages + (present_pages >> 4) &&
7111 IS_ENABLED(CONFIG_SPARSEMEM))
7112 pages = present_pages;
7113
7114 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7115 }
7116
7117 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7118 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7119 {
7120 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7121
7122 spin_lock_init(&ds_queue->split_queue_lock);
7123 INIT_LIST_HEAD(&ds_queue->split_queue);
7124 ds_queue->split_queue_len = 0;
7125 }
7126 #else
7127 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7128 #endif
7129
7130 #ifdef CONFIG_COMPACTION
7131 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7132 {
7133 init_waitqueue_head(&pgdat->kcompactd_wait);
7134 }
7135 #else
7136 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7137 #endif
7138
7139 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7140 {
7141 pgdat_resize_init(pgdat);
7142
7143 pgdat_init_split_queue(pgdat);
7144 pgdat_init_kcompactd(pgdat);
7145
7146 init_waitqueue_head(&pgdat->kswapd_wait);
7147 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7148
7149 pgdat_page_ext_init(pgdat);
7150 lruvec_init(&pgdat->__lruvec);
7151 }
7152
7153 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7154 unsigned long remaining_pages)
7155 {
7156 atomic_long_set(&zone->managed_pages, remaining_pages);
7157 zone_set_nid(zone, nid);
7158 zone->name = zone_names[idx];
7159 zone->zone_pgdat = NODE_DATA(nid);
7160 spin_lock_init(&zone->lock);
7161 zone_seqlock_init(zone);
7162 zone_pcp_init(zone);
7163 }
7164
7165 /*
7166 * Set up the zone data structures
7167 * - init pgdat internals
7168 * - init all zones belonging to this node
7169 *
7170 * NOTE: this function is only called during memory hotplug
7171 */
7172 #ifdef CONFIG_MEMORY_HOTPLUG
7173 void __ref free_area_init_core_hotplug(int nid)
7174 {
7175 enum zone_type z;
7176 pg_data_t *pgdat = NODE_DATA(nid);
7177
7178 pgdat_init_internals(pgdat);
7179 for (z = 0; z < MAX_NR_ZONES; z++)
7180 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7181 }
7182 #endif
7183
7184 /*
7185 * Set up the zone data structures:
7186 * - mark all pages reserved
7187 * - mark all memory queues empty
7188 * - clear the memory bitmaps
7189 *
7190 * NOTE: pgdat should get zeroed by caller.
7191 * NOTE: this function is only called during early init.
7192 */
7193 static void __init free_area_init_core(struct pglist_data *pgdat)
7194 {
7195 enum zone_type j;
7196 int nid = pgdat->node_id;
7197
7198 pgdat_init_internals(pgdat);
7199 pgdat->per_cpu_nodestats = &boot_nodestats;
7200
7201 for (j = 0; j < MAX_NR_ZONES; j++) {
7202 struct zone *zone = pgdat->node_zones + j;
7203 unsigned long size, freesize, memmap_pages;
7204
7205 size = zone->spanned_pages;
7206 freesize = zone->present_pages;
7207
7208 /*
7209 * Adjust freesize so that it accounts for how much memory
7210 * is used by this zone for memmap. This affects the watermark
7211 * and per-cpu initialisations
7212 */
7213 memmap_pages = calc_memmap_size(size, freesize);
7214 if (!is_highmem_idx(j)) {
7215 if (freesize >= memmap_pages) {
7216 freesize -= memmap_pages;
7217 if (memmap_pages)
7218 printk(KERN_DEBUG
7219 " %s zone: %lu pages used for memmap\n",
7220 zone_names[j], memmap_pages);
7221 } else
7222 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
7223 zone_names[j], memmap_pages, freesize);
7224 }
7225
7226 /* Account for reserved pages */
7227 if (j == 0 && freesize > dma_reserve) {
7228 freesize -= dma_reserve;
7229 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
7230 zone_names[0], dma_reserve);
7231 }
7232
7233 if (!is_highmem_idx(j))
7234 nr_kernel_pages += freesize;
7235 /* Charge for highmem memmap if there are enough kernel pages */
7236 else if (nr_kernel_pages > memmap_pages * 2)
7237 nr_kernel_pages -= memmap_pages;
7238 nr_all_pages += freesize;
7239
7240 /*
7241 * Set an approximate value for lowmem here, it will be adjusted
7242 * when the bootmem allocator frees pages into the buddy system.
7243 * And all highmem pages will be managed by the buddy system.
7244 */
7245 zone_init_internals(zone, j, nid, freesize);
7246
7247 if (!size)
7248 continue;
7249
7250 set_pageblock_order();
7251 setup_usemap(zone);
7252 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7253 memmap_init_zone(zone);
7254 }
7255 }
7256
7257 #ifdef CONFIG_FLAT_NODE_MEM_MAP
7258 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7259 {
7260 unsigned long __maybe_unused start = 0;
7261 unsigned long __maybe_unused offset = 0;
7262
7263 /* Skip empty nodes */
7264 if (!pgdat->node_spanned_pages)
7265 return;
7266
7267 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7268 offset = pgdat->node_start_pfn - start;
7269 /* ia64 gets its own node_mem_map, before this, without bootmem */
7270 if (!pgdat->node_mem_map) {
7271 unsigned long size, end;
7272 struct page *map;
7273
7274 /*
7275 * The zone's endpoints aren't required to be MAX_ORDER
7276 * aligned but the node_mem_map endpoints must be in order
7277 * for the buddy allocator to function correctly.
7278 */
7279 end = pgdat_end_pfn(pgdat);
7280 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7281 size = (end - start) * sizeof(struct page);
7282 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7283 pgdat->node_id);
7284 if (!map)
7285 panic("Failed to allocate %ld bytes for node %d memory map\n",
7286 size, pgdat->node_id);
7287 pgdat->node_mem_map = map + offset;
7288 }
7289 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7290 __func__, pgdat->node_id, (unsigned long)pgdat,
7291 (unsigned long)pgdat->node_mem_map);
7292 #ifndef CONFIG_NEED_MULTIPLE_NODES
7293 /*
7294 * With no DISCONTIG, the global mem_map is just set as node 0's
7295 */
7296 if (pgdat == NODE_DATA(0)) {
7297 mem_map = NODE_DATA(0)->node_mem_map;
7298 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7299 mem_map -= offset;
7300 }
7301 #endif
7302 }
7303 #else
7304 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7305 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7306
7307 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7308 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7309 {
7310 pgdat->first_deferred_pfn = ULONG_MAX;
7311 }
7312 #else
7313 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7314 #endif
7315
7316 static void __init free_area_init_node(int nid)
7317 {
7318 pg_data_t *pgdat = NODE_DATA(nid);
7319 unsigned long start_pfn = 0;
7320 unsigned long end_pfn = 0;
7321
7322 /* pg_data_t should be reset to zero when it's allocated */
7323 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7324
7325 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7326
7327 pgdat->node_id = nid;
7328 pgdat->node_start_pfn = start_pfn;
7329 pgdat->per_cpu_nodestats = NULL;
7330
7331 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7332 (u64)start_pfn << PAGE_SHIFT,
7333 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7334 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7335
7336 alloc_node_mem_map(pgdat);
7337 pgdat_set_deferred_range(pgdat);
7338
7339 free_area_init_core(pgdat);
7340 }
7341
7342 void __init free_area_init_memoryless_node(int nid)
7343 {
7344 free_area_init_node(nid);
7345 }
7346
7347 #if MAX_NUMNODES > 1
7348 /*
7349 * Figure out the number of possible node ids.
7350 */
7351 void __init setup_nr_node_ids(void)
7352 {
7353 unsigned int highest;
7354
7355 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7356 nr_node_ids = highest + 1;
7357 }
7358 #endif
7359
7360 /**
7361 * node_map_pfn_alignment - determine the maximum internode alignment
7362 *
7363 * This function should be called after node map is populated and sorted.
7364 * It calculates the maximum power of two alignment which can distinguish
7365 * all the nodes.
7366 *
7367 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7368 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7369 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7370 * shifted, 1GiB is enough and this function will indicate so.
7371 *
7372 * This is used to test whether pfn -> nid mapping of the chosen memory
7373 * model has fine enough granularity to avoid incorrect mapping for the
7374 * populated node map.
7375 *
7376 * Return: the determined alignment in pfn's. 0 if there is no alignment
7377 * requirement (single node).
7378 */
7379 unsigned long __init node_map_pfn_alignment(void)
7380 {
7381 unsigned long accl_mask = 0, last_end = 0;
7382 unsigned long start, end, mask;
7383 int last_nid = NUMA_NO_NODE;
7384 int i, nid;
7385
7386 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7387 if (!start || last_nid < 0 || last_nid == nid) {
7388 last_nid = nid;
7389 last_end = end;
7390 continue;
7391 }
7392
7393 /*
7394 * Start with a mask granular enough to pin-point to the
7395 * start pfn and tick off bits one-by-one until it becomes
7396 * too coarse to separate the current node from the last.
7397 */
7398 mask = ~((1 << __ffs(start)) - 1);
7399 while (mask && last_end <= (start & (mask << 1)))
7400 mask <<= 1;
7401
7402 /* accumulate all internode masks */
7403 accl_mask |= mask;
7404 }
7405
7406 /* convert mask to number of pages */
7407 return ~accl_mask + 1;
7408 }
7409
7410 /**
7411 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7412 *
7413 * Return: the minimum PFN based on information provided via
7414 * memblock_set_node().
7415 */
7416 unsigned long __init find_min_pfn_with_active_regions(void)
7417 {
7418 return PHYS_PFN(memblock_start_of_DRAM());
7419 }
7420
7421 /*
7422 * early_calculate_totalpages()
7423 * Sum pages in active regions for movable zone.
7424 * Populate N_MEMORY for calculating usable_nodes.
7425 */
7426 static unsigned long __init early_calculate_totalpages(void)
7427 {
7428 unsigned long totalpages = 0;
7429 unsigned long start_pfn, end_pfn;
7430 int i, nid;
7431
7432 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7433 unsigned long pages = end_pfn - start_pfn;
7434
7435 totalpages += pages;
7436 if (pages)
7437 node_set_state(nid, N_MEMORY);
7438 }
7439 return totalpages;
7440 }
7441
7442 /*
7443 * Find the PFN the Movable zone begins in each node. Kernel memory
7444 * is spread evenly between nodes as long as the nodes have enough
7445 * memory. When they don't, some nodes will have more kernelcore than
7446 * others
7447 */
7448 static void __init find_zone_movable_pfns_for_nodes(void)
7449 {
7450 int i, nid;
7451 unsigned long usable_startpfn;
7452 unsigned long kernelcore_node, kernelcore_remaining;
7453 /* save the state before borrow the nodemask */
7454 nodemask_t saved_node_state = node_states[N_MEMORY];
7455 unsigned long totalpages = early_calculate_totalpages();
7456 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7457 struct memblock_region *r;
7458
7459 /* Need to find movable_zone earlier when movable_node is specified. */
7460 find_usable_zone_for_movable();
7461
7462 /*
7463 * If movable_node is specified, ignore kernelcore and movablecore
7464 * options.
7465 */
7466 if (movable_node_is_enabled()) {
7467 for_each_mem_region(r) {
7468 if (!memblock_is_hotpluggable(r))
7469 continue;
7470
7471 nid = memblock_get_region_node(r);
7472
7473 usable_startpfn = PFN_DOWN(r->base);
7474 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7475 min(usable_startpfn, zone_movable_pfn[nid]) :
7476 usable_startpfn;
7477 }
7478
7479 goto out2;
7480 }
7481
7482 /*
7483 * If kernelcore=mirror is specified, ignore movablecore option
7484 */
7485 if (mirrored_kernelcore) {
7486 bool mem_below_4gb_not_mirrored = false;
7487
7488 for_each_mem_region(r) {
7489 if (memblock_is_mirror(r))
7490 continue;
7491
7492 nid = memblock_get_region_node(r);
7493
7494 usable_startpfn = memblock_region_memory_base_pfn(r);
7495
7496 if (usable_startpfn < 0x100000) {
7497 mem_below_4gb_not_mirrored = true;
7498 continue;
7499 }
7500
7501 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7502 min(usable_startpfn, zone_movable_pfn[nid]) :
7503 usable_startpfn;
7504 }
7505
7506 if (mem_below_4gb_not_mirrored)
7507 pr_warn("This configuration results in unmirrored kernel memory.\n");
7508
7509 goto out2;
7510 }
7511
7512 /*
7513 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7514 * amount of necessary memory.
7515 */
7516 if (required_kernelcore_percent)
7517 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7518 10000UL;
7519 if (required_movablecore_percent)
7520 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7521 10000UL;
7522
7523 /*
7524 * If movablecore= was specified, calculate what size of
7525 * kernelcore that corresponds so that memory usable for
7526 * any allocation type is evenly spread. If both kernelcore
7527 * and movablecore are specified, then the value of kernelcore
7528 * will be used for required_kernelcore if it's greater than
7529 * what movablecore would have allowed.
7530 */
7531 if (required_movablecore) {
7532 unsigned long corepages;
7533
7534 /*
7535 * Round-up so that ZONE_MOVABLE is at least as large as what
7536 * was requested by the user
7537 */
7538 required_movablecore =
7539 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7540 required_movablecore = min(totalpages, required_movablecore);
7541 corepages = totalpages - required_movablecore;
7542
7543 required_kernelcore = max(required_kernelcore, corepages);
7544 }
7545
7546 /*
7547 * If kernelcore was not specified or kernelcore size is larger
7548 * than totalpages, there is no ZONE_MOVABLE.
7549 */
7550 if (!required_kernelcore || required_kernelcore >= totalpages)
7551 goto out;
7552
7553 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7554 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7555
7556 restart:
7557 /* Spread kernelcore memory as evenly as possible throughout nodes */
7558 kernelcore_node = required_kernelcore / usable_nodes;
7559 for_each_node_state(nid, N_MEMORY) {
7560 unsigned long start_pfn, end_pfn;
7561
7562 /*
7563 * Recalculate kernelcore_node if the division per node
7564 * now exceeds what is necessary to satisfy the requested
7565 * amount of memory for the kernel
7566 */
7567 if (required_kernelcore < kernelcore_node)
7568 kernelcore_node = required_kernelcore / usable_nodes;
7569
7570 /*
7571 * As the map is walked, we track how much memory is usable
7572 * by the kernel using kernelcore_remaining. When it is
7573 * 0, the rest of the node is usable by ZONE_MOVABLE
7574 */
7575 kernelcore_remaining = kernelcore_node;
7576
7577 /* Go through each range of PFNs within this node */
7578 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7579 unsigned long size_pages;
7580
7581 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7582 if (start_pfn >= end_pfn)
7583 continue;
7584
7585 /* Account for what is only usable for kernelcore */
7586 if (start_pfn < usable_startpfn) {
7587 unsigned long kernel_pages;
7588 kernel_pages = min(end_pfn, usable_startpfn)
7589 - start_pfn;
7590
7591 kernelcore_remaining -= min(kernel_pages,
7592 kernelcore_remaining);
7593 required_kernelcore -= min(kernel_pages,
7594 required_kernelcore);
7595
7596 /* Continue if range is now fully accounted */
7597 if (end_pfn <= usable_startpfn) {
7598
7599 /*
7600 * Push zone_movable_pfn to the end so
7601 * that if we have to rebalance
7602 * kernelcore across nodes, we will
7603 * not double account here
7604 */
7605 zone_movable_pfn[nid] = end_pfn;
7606 continue;
7607 }
7608 start_pfn = usable_startpfn;
7609 }
7610
7611 /*
7612 * The usable PFN range for ZONE_MOVABLE is from
7613 * start_pfn->end_pfn. Calculate size_pages as the
7614 * number of pages used as kernelcore
7615 */
7616 size_pages = end_pfn - start_pfn;
7617 if (size_pages > kernelcore_remaining)
7618 size_pages = kernelcore_remaining;
7619 zone_movable_pfn[nid] = start_pfn + size_pages;
7620
7621 /*
7622 * Some kernelcore has been met, update counts and
7623 * break if the kernelcore for this node has been
7624 * satisfied
7625 */
7626 required_kernelcore -= min(required_kernelcore,
7627 size_pages);
7628 kernelcore_remaining -= size_pages;
7629 if (!kernelcore_remaining)
7630 break;
7631 }
7632 }
7633
7634 /*
7635 * If there is still required_kernelcore, we do another pass with one
7636 * less node in the count. This will push zone_movable_pfn[nid] further
7637 * along on the nodes that still have memory until kernelcore is
7638 * satisfied
7639 */
7640 usable_nodes--;
7641 if (usable_nodes && required_kernelcore > usable_nodes)
7642 goto restart;
7643
7644 out2:
7645 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7646 for (nid = 0; nid < MAX_NUMNODES; nid++)
7647 zone_movable_pfn[nid] =
7648 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7649
7650 out:
7651 /* restore the node_state */
7652 node_states[N_MEMORY] = saved_node_state;
7653 }
7654
7655 /* Any regular or high memory on that node ? */
7656 static void check_for_memory(pg_data_t *pgdat, int nid)
7657 {
7658 enum zone_type zone_type;
7659
7660 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7661 struct zone *zone = &pgdat->node_zones[zone_type];
7662 if (populated_zone(zone)) {
7663 if (IS_ENABLED(CONFIG_HIGHMEM))
7664 node_set_state(nid, N_HIGH_MEMORY);
7665 if (zone_type <= ZONE_NORMAL)
7666 node_set_state(nid, N_NORMAL_MEMORY);
7667 break;
7668 }
7669 }
7670 }
7671
7672 /*
7673 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7674 * such cases we allow max_zone_pfn sorted in the descending order
7675 */
7676 bool __weak arch_has_descending_max_zone_pfns(void)
7677 {
7678 return false;
7679 }
7680
7681 /**
7682 * free_area_init - Initialise all pg_data_t and zone data
7683 * @max_zone_pfn: an array of max PFNs for each zone
7684 *
7685 * This will call free_area_init_node() for each active node in the system.
7686 * Using the page ranges provided by memblock_set_node(), the size of each
7687 * zone in each node and their holes is calculated. If the maximum PFN
7688 * between two adjacent zones match, it is assumed that the zone is empty.
7689 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7690 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7691 * starts where the previous one ended. For example, ZONE_DMA32 starts
7692 * at arch_max_dma_pfn.
7693 */
7694 void __init free_area_init(unsigned long *max_zone_pfn)
7695 {
7696 unsigned long start_pfn, end_pfn;
7697 int i, nid, zone;
7698 bool descending;
7699
7700 /* Record where the zone boundaries are */
7701 memset(arch_zone_lowest_possible_pfn, 0,
7702 sizeof(arch_zone_lowest_possible_pfn));
7703 memset(arch_zone_highest_possible_pfn, 0,
7704 sizeof(arch_zone_highest_possible_pfn));
7705
7706 start_pfn = find_min_pfn_with_active_regions();
7707 descending = arch_has_descending_max_zone_pfns();
7708
7709 for (i = 0; i < MAX_NR_ZONES; i++) {
7710 if (descending)
7711 zone = MAX_NR_ZONES - i - 1;
7712 else
7713 zone = i;
7714
7715 if (zone == ZONE_MOVABLE)
7716 continue;
7717
7718 end_pfn = max(max_zone_pfn[zone], start_pfn);
7719 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7720 arch_zone_highest_possible_pfn[zone] = end_pfn;
7721
7722 start_pfn = end_pfn;
7723 }
7724
7725 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7726 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7727 find_zone_movable_pfns_for_nodes();
7728
7729 /* Print out the zone ranges */
7730 pr_info("Zone ranges:\n");
7731 for (i = 0; i < MAX_NR_ZONES; i++) {
7732 if (i == ZONE_MOVABLE)
7733 continue;
7734 pr_info(" %-8s ", zone_names[i]);
7735 if (arch_zone_lowest_possible_pfn[i] ==
7736 arch_zone_highest_possible_pfn[i])
7737 pr_cont("empty\n");
7738 else
7739 pr_cont("[mem %#018Lx-%#018Lx]\n",
7740 (u64)arch_zone_lowest_possible_pfn[i]
7741 << PAGE_SHIFT,
7742 ((u64)arch_zone_highest_possible_pfn[i]
7743 << PAGE_SHIFT) - 1);
7744 }
7745
7746 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7747 pr_info("Movable zone start for each node\n");
7748 for (i = 0; i < MAX_NUMNODES; i++) {
7749 if (zone_movable_pfn[i])
7750 pr_info(" Node %d: %#018Lx\n", i,
7751 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7752 }
7753
7754 /*
7755 * Print out the early node map, and initialize the
7756 * subsection-map relative to active online memory ranges to
7757 * enable future "sub-section" extensions of the memory map.
7758 */
7759 pr_info("Early memory node ranges\n");
7760 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7761 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7762 (u64)start_pfn << PAGE_SHIFT,
7763 ((u64)end_pfn << PAGE_SHIFT) - 1);
7764 subsection_map_init(start_pfn, end_pfn - start_pfn);
7765 }
7766
7767 /* Initialise every node */
7768 mminit_verify_pageflags_layout();
7769 setup_nr_node_ids();
7770 for_each_online_node(nid) {
7771 pg_data_t *pgdat = NODE_DATA(nid);
7772 free_area_init_node(nid);
7773
7774 /* Any memory on that node */
7775 if (pgdat->node_present_pages)
7776 node_set_state(nid, N_MEMORY);
7777 check_for_memory(pgdat, nid);
7778 }
7779 }
7780
7781 static int __init cmdline_parse_core(char *p, unsigned long *core,
7782 unsigned long *percent)
7783 {
7784 unsigned long long coremem;
7785 char *endptr;
7786
7787 if (!p)
7788 return -EINVAL;
7789
7790 /* Value may be a percentage of total memory, otherwise bytes */
7791 coremem = simple_strtoull(p, &endptr, 0);
7792 if (*endptr == '%') {
7793 /* Paranoid check for percent values greater than 100 */
7794 WARN_ON(coremem > 100);
7795
7796 *percent = coremem;
7797 } else {
7798 coremem = memparse(p, &p);
7799 /* Paranoid check that UL is enough for the coremem value */
7800 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7801
7802 *core = coremem >> PAGE_SHIFT;
7803 *percent = 0UL;
7804 }
7805 return 0;
7806 }
7807
7808 /*
7809 * kernelcore=size sets the amount of memory for use for allocations that
7810 * cannot be reclaimed or migrated.
7811 */
7812 static int __init cmdline_parse_kernelcore(char *p)
7813 {
7814 /* parse kernelcore=mirror */
7815 if (parse_option_str(p, "mirror")) {
7816 mirrored_kernelcore = true;
7817 return 0;
7818 }
7819
7820 return cmdline_parse_core(p, &required_kernelcore,
7821 &required_kernelcore_percent);
7822 }
7823
7824 /*
7825 * movablecore=size sets the amount of memory for use for allocations that
7826 * can be reclaimed or migrated.
7827 */
7828 static int __init cmdline_parse_movablecore(char *p)
7829 {
7830 return cmdline_parse_core(p, &required_movablecore,
7831 &required_movablecore_percent);
7832 }
7833
7834 early_param("kernelcore", cmdline_parse_kernelcore);
7835 early_param("movablecore", cmdline_parse_movablecore);
7836
7837 void adjust_managed_page_count(struct page *page, long count)
7838 {
7839 atomic_long_add(count, &page_zone(page)->managed_pages);
7840 totalram_pages_add(count);
7841 #ifdef CONFIG_HIGHMEM
7842 if (PageHighMem(page))
7843 totalhigh_pages_add(count);
7844 #endif
7845 }
7846 EXPORT_SYMBOL(adjust_managed_page_count);
7847
7848 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7849 {
7850 void *pos;
7851 unsigned long pages = 0;
7852
7853 start = (void *)PAGE_ALIGN((unsigned long)start);
7854 end = (void *)((unsigned long)end & PAGE_MASK);
7855 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7856 struct page *page = virt_to_page(pos);
7857 void *direct_map_addr;
7858
7859 /*
7860 * 'direct_map_addr' might be different from 'pos'
7861 * because some architectures' virt_to_page()
7862 * work with aliases. Getting the direct map
7863 * address ensures that we get a _writeable_
7864 * alias for the memset().
7865 */
7866 direct_map_addr = page_address(page);
7867 /*
7868 * Perform a kasan-unchecked memset() since this memory
7869 * has not been initialized.
7870 */
7871 direct_map_addr = kasan_reset_tag(direct_map_addr);
7872 if ((unsigned int)poison <= 0xFF)
7873 memset(direct_map_addr, poison, PAGE_SIZE);
7874
7875 free_reserved_page(page);
7876 }
7877
7878 if (pages && s)
7879 pr_info("Freeing %s memory: %ldK\n",
7880 s, pages << (PAGE_SHIFT - 10));
7881
7882 return pages;
7883 }
7884
7885 void __init mem_init_print_info(void)
7886 {
7887 unsigned long physpages, codesize, datasize, rosize, bss_size;
7888 unsigned long init_code_size, init_data_size;
7889
7890 physpages = get_num_physpages();
7891 codesize = _etext - _stext;
7892 datasize = _edata - _sdata;
7893 rosize = __end_rodata - __start_rodata;
7894 bss_size = __bss_stop - __bss_start;
7895 init_data_size = __init_end - __init_begin;
7896 init_code_size = _einittext - _sinittext;
7897
7898 /*
7899 * Detect special cases and adjust section sizes accordingly:
7900 * 1) .init.* may be embedded into .data sections
7901 * 2) .init.text.* may be out of [__init_begin, __init_end],
7902 * please refer to arch/tile/kernel/vmlinux.lds.S.
7903 * 3) .rodata.* may be embedded into .text or .data sections.
7904 */
7905 #define adj_init_size(start, end, size, pos, adj) \
7906 do { \
7907 if (start <= pos && pos < end && size > adj) \
7908 size -= adj; \
7909 } while (0)
7910
7911 adj_init_size(__init_begin, __init_end, init_data_size,
7912 _sinittext, init_code_size);
7913 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7914 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7915 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7916 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7917
7918 #undef adj_init_size
7919
7920 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7921 #ifdef CONFIG_HIGHMEM
7922 ", %luK highmem"
7923 #endif
7924 ")\n",
7925 nr_free_pages() << (PAGE_SHIFT - 10),
7926 physpages << (PAGE_SHIFT - 10),
7927 codesize >> 10, datasize >> 10, rosize >> 10,
7928 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7929 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7930 totalcma_pages << (PAGE_SHIFT - 10)
7931 #ifdef CONFIG_HIGHMEM
7932 , totalhigh_pages() << (PAGE_SHIFT - 10)
7933 #endif
7934 );
7935 }
7936
7937 /**
7938 * set_dma_reserve - set the specified number of pages reserved in the first zone
7939 * @new_dma_reserve: The number of pages to mark reserved
7940 *
7941 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7942 * In the DMA zone, a significant percentage may be consumed by kernel image
7943 * and other unfreeable allocations which can skew the watermarks badly. This
7944 * function may optionally be used to account for unfreeable pages in the
7945 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7946 * smaller per-cpu batchsize.
7947 */
7948 void __init set_dma_reserve(unsigned long new_dma_reserve)
7949 {
7950 dma_reserve = new_dma_reserve;
7951 }
7952
7953 static int page_alloc_cpu_dead(unsigned int cpu)
7954 {
7955
7956 lru_add_drain_cpu(cpu);
7957 drain_pages(cpu);
7958
7959 /*
7960 * Spill the event counters of the dead processor
7961 * into the current processors event counters.
7962 * This artificially elevates the count of the current
7963 * processor.
7964 */
7965 vm_events_fold_cpu(cpu);
7966
7967 /*
7968 * Zero the differential counters of the dead processor
7969 * so that the vm statistics are consistent.
7970 *
7971 * This is only okay since the processor is dead and cannot
7972 * race with what we are doing.
7973 */
7974 cpu_vm_stats_fold(cpu);
7975 return 0;
7976 }
7977
7978 #ifdef CONFIG_NUMA
7979 int hashdist = HASHDIST_DEFAULT;
7980
7981 static int __init set_hashdist(char *str)
7982 {
7983 if (!str)
7984 return 0;
7985 hashdist = simple_strtoul(str, &str, 0);
7986 return 1;
7987 }
7988 __setup("hashdist=", set_hashdist);
7989 #endif
7990
7991 void __init page_alloc_init(void)
7992 {
7993 int ret;
7994
7995 #ifdef CONFIG_NUMA
7996 if (num_node_state(N_MEMORY) == 1)
7997 hashdist = 0;
7998 #endif
7999
8000 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
8001 "mm/page_alloc:dead", NULL,
8002 page_alloc_cpu_dead);
8003 WARN_ON(ret < 0);
8004 }
8005
8006 /*
8007 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8008 * or min_free_kbytes changes.
8009 */
8010 static void calculate_totalreserve_pages(void)
8011 {
8012 struct pglist_data *pgdat;
8013 unsigned long reserve_pages = 0;
8014 enum zone_type i, j;
8015
8016 for_each_online_pgdat(pgdat) {
8017
8018 pgdat->totalreserve_pages = 0;
8019
8020 for (i = 0; i < MAX_NR_ZONES; i++) {
8021 struct zone *zone = pgdat->node_zones + i;
8022 long max = 0;
8023 unsigned long managed_pages = zone_managed_pages(zone);
8024
8025 /* Find valid and maximum lowmem_reserve in the zone */
8026 for (j = i; j < MAX_NR_ZONES; j++) {
8027 if (zone->lowmem_reserve[j] > max)
8028 max = zone->lowmem_reserve[j];
8029 }
8030
8031 /* we treat the high watermark as reserved pages. */
8032 max += high_wmark_pages(zone);
8033
8034 if (max > managed_pages)
8035 max = managed_pages;
8036
8037 pgdat->totalreserve_pages += max;
8038
8039 reserve_pages += max;
8040 }
8041 }
8042 totalreserve_pages = reserve_pages;
8043 }
8044
8045 /*
8046 * setup_per_zone_lowmem_reserve - called whenever
8047 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8048 * has a correct pages reserved value, so an adequate number of
8049 * pages are left in the zone after a successful __alloc_pages().
8050 */
8051 static void setup_per_zone_lowmem_reserve(void)
8052 {
8053 struct pglist_data *pgdat;
8054 enum zone_type i, j;
8055
8056 for_each_online_pgdat(pgdat) {
8057 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8058 struct zone *zone = &pgdat->node_zones[i];
8059 int ratio = sysctl_lowmem_reserve_ratio[i];
8060 bool clear = !ratio || !zone_managed_pages(zone);
8061 unsigned long managed_pages = 0;
8062
8063 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8064 if (clear) {
8065 zone->lowmem_reserve[j] = 0;
8066 } else {
8067 struct zone *upper_zone = &pgdat->node_zones[j];
8068
8069 managed_pages += zone_managed_pages(upper_zone);
8070 zone->lowmem_reserve[j] = managed_pages / ratio;
8071 }
8072 }
8073 }
8074 }
8075
8076 /* update totalreserve_pages */
8077 calculate_totalreserve_pages();
8078 }
8079
8080 static void __setup_per_zone_wmarks(void)
8081 {
8082 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8083 unsigned long lowmem_pages = 0;
8084 struct zone *zone;
8085 unsigned long flags;
8086
8087 /* Calculate total number of !ZONE_HIGHMEM pages */
8088 for_each_zone(zone) {
8089 if (!is_highmem(zone))
8090 lowmem_pages += zone_managed_pages(zone);
8091 }
8092
8093 for_each_zone(zone) {
8094 u64 tmp;
8095
8096 spin_lock_irqsave(&zone->lock, flags);
8097 tmp = (u64)pages_min * zone_managed_pages(zone);
8098 do_div(tmp, lowmem_pages);
8099 if (is_highmem(zone)) {
8100 /*
8101 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8102 * need highmem pages, so cap pages_min to a small
8103 * value here.
8104 *
8105 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8106 * deltas control async page reclaim, and so should
8107 * not be capped for highmem.
8108 */
8109 unsigned long min_pages;
8110
8111 min_pages = zone_managed_pages(zone) / 1024;
8112 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8113 zone->_watermark[WMARK_MIN] = min_pages;
8114 } else {
8115 /*
8116 * If it's a lowmem zone, reserve a number of pages
8117 * proportionate to the zone's size.
8118 */
8119 zone->_watermark[WMARK_MIN] = tmp;
8120 }
8121
8122 /*
8123 * Set the kswapd watermarks distance according to the
8124 * scale factor in proportion to available memory, but
8125 * ensure a minimum size on small systems.
8126 */
8127 tmp = max_t(u64, tmp >> 2,
8128 mult_frac(zone_managed_pages(zone),
8129 watermark_scale_factor, 10000));
8130
8131 zone->watermark_boost = 0;
8132 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8133 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8134
8135 spin_unlock_irqrestore(&zone->lock, flags);
8136 }
8137
8138 /* update totalreserve_pages */
8139 calculate_totalreserve_pages();
8140 }
8141
8142 /**
8143 * setup_per_zone_wmarks - called when min_free_kbytes changes
8144 * or when memory is hot-{added|removed}
8145 *
8146 * Ensures that the watermark[min,low,high] values for each zone are set
8147 * correctly with respect to min_free_kbytes.
8148 */
8149 void setup_per_zone_wmarks(void)
8150 {
8151 static DEFINE_SPINLOCK(lock);
8152
8153 spin_lock(&lock);
8154 __setup_per_zone_wmarks();
8155 spin_unlock(&lock);
8156 }
8157
8158 /*
8159 * Initialise min_free_kbytes.
8160 *
8161 * For small machines we want it small (128k min). For large machines
8162 * we want it large (256MB max). But it is not linear, because network
8163 * bandwidth does not increase linearly with machine size. We use
8164 *
8165 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8166 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8167 *
8168 * which yields
8169 *
8170 * 16MB: 512k
8171 * 32MB: 724k
8172 * 64MB: 1024k
8173 * 128MB: 1448k
8174 * 256MB: 2048k
8175 * 512MB: 2896k
8176 * 1024MB: 4096k
8177 * 2048MB: 5792k
8178 * 4096MB: 8192k
8179 * 8192MB: 11584k
8180 * 16384MB: 16384k
8181 */
8182 int __meminit init_per_zone_wmark_min(void)
8183 {
8184 unsigned long lowmem_kbytes;
8185 int new_min_free_kbytes;
8186
8187 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8188 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8189
8190 if (new_min_free_kbytes > user_min_free_kbytes) {
8191 min_free_kbytes = new_min_free_kbytes;
8192 if (min_free_kbytes < 128)
8193 min_free_kbytes = 128;
8194 if (min_free_kbytes > 262144)
8195 min_free_kbytes = 262144;
8196 } else {
8197 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8198 new_min_free_kbytes, user_min_free_kbytes);
8199 }
8200 setup_per_zone_wmarks();
8201 refresh_zone_stat_thresholds();
8202 setup_per_zone_lowmem_reserve();
8203
8204 #ifdef CONFIG_NUMA
8205 setup_min_unmapped_ratio();
8206 setup_min_slab_ratio();
8207 #endif
8208
8209 khugepaged_min_free_kbytes_update();
8210
8211 return 0;
8212 }
8213 postcore_initcall(init_per_zone_wmark_min)
8214
8215 /*
8216 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8217 * that we can call two helper functions whenever min_free_kbytes
8218 * changes.
8219 */
8220 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8221 void *buffer, size_t *length, loff_t *ppos)
8222 {
8223 int rc;
8224
8225 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8226 if (rc)
8227 return rc;
8228
8229 if (write) {
8230 user_min_free_kbytes = min_free_kbytes;
8231 setup_per_zone_wmarks();
8232 }
8233 return 0;
8234 }
8235
8236 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8237 void *buffer, size_t *length, loff_t *ppos)
8238 {
8239 int rc;
8240
8241 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8242 if (rc)
8243 return rc;
8244
8245 if (write)
8246 setup_per_zone_wmarks();
8247
8248 return 0;
8249 }
8250
8251 #ifdef CONFIG_NUMA
8252 static void setup_min_unmapped_ratio(void)
8253 {
8254 pg_data_t *pgdat;
8255 struct zone *zone;
8256
8257 for_each_online_pgdat(pgdat)
8258 pgdat->min_unmapped_pages = 0;
8259
8260 for_each_zone(zone)
8261 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8262 sysctl_min_unmapped_ratio) / 100;
8263 }
8264
8265
8266 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8267 void *buffer, size_t *length, loff_t *ppos)
8268 {
8269 int rc;
8270
8271 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8272 if (rc)
8273 return rc;
8274
8275 setup_min_unmapped_ratio();
8276
8277 return 0;
8278 }
8279
8280 static void setup_min_slab_ratio(void)
8281 {
8282 pg_data_t *pgdat;
8283 struct zone *zone;
8284
8285 for_each_online_pgdat(pgdat)
8286 pgdat->min_slab_pages = 0;
8287
8288 for_each_zone(zone)
8289 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8290 sysctl_min_slab_ratio) / 100;
8291 }
8292
8293 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8294 void *buffer, size_t *length, loff_t *ppos)
8295 {
8296 int rc;
8297
8298 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8299 if (rc)
8300 return rc;
8301
8302 setup_min_slab_ratio();
8303
8304 return 0;
8305 }
8306 #endif
8307
8308 /*
8309 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8310 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8311 * whenever sysctl_lowmem_reserve_ratio changes.
8312 *
8313 * The reserve ratio obviously has absolutely no relation with the
8314 * minimum watermarks. The lowmem reserve ratio can only make sense
8315 * if in function of the boot time zone sizes.
8316 */
8317 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8318 void *buffer, size_t *length, loff_t *ppos)
8319 {
8320 int i;
8321
8322 proc_dointvec_minmax(table, write, buffer, length, ppos);
8323
8324 for (i = 0; i < MAX_NR_ZONES; i++) {
8325 if (sysctl_lowmem_reserve_ratio[i] < 1)
8326 sysctl_lowmem_reserve_ratio[i] = 0;
8327 }
8328
8329 setup_per_zone_lowmem_reserve();
8330 return 0;
8331 }
8332
8333 /*
8334 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8335 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8336 * pagelist can have before it gets flushed back to buddy allocator.
8337 */
8338 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8339 void *buffer, size_t *length, loff_t *ppos)
8340 {
8341 struct zone *zone;
8342 int old_percpu_pagelist_fraction;
8343 int ret;
8344
8345 mutex_lock(&pcp_batch_high_lock);
8346 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8347
8348 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8349 if (!write || ret < 0)
8350 goto out;
8351
8352 /* Sanity checking to avoid pcp imbalance */
8353 if (percpu_pagelist_fraction &&
8354 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8355 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8356 ret = -EINVAL;
8357 goto out;
8358 }
8359
8360 /* No change? */
8361 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8362 goto out;
8363
8364 for_each_populated_zone(zone)
8365 zone_set_pageset_high_and_batch(zone);
8366 out:
8367 mutex_unlock(&pcp_batch_high_lock);
8368 return ret;
8369 }
8370
8371 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8372 /*
8373 * Returns the number of pages that arch has reserved but
8374 * is not known to alloc_large_system_hash().
8375 */
8376 static unsigned long __init arch_reserved_kernel_pages(void)
8377 {
8378 return 0;
8379 }
8380 #endif
8381
8382 /*
8383 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8384 * machines. As memory size is increased the scale is also increased but at
8385 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8386 * quadruples the scale is increased by one, which means the size of hash table
8387 * only doubles, instead of quadrupling as well.
8388 * Because 32-bit systems cannot have large physical memory, where this scaling
8389 * makes sense, it is disabled on such platforms.
8390 */
8391 #if __BITS_PER_LONG > 32
8392 #define ADAPT_SCALE_BASE (64ul << 30)
8393 #define ADAPT_SCALE_SHIFT 2
8394 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8395 #endif
8396
8397 /*
8398 * allocate a large system hash table from bootmem
8399 * - it is assumed that the hash table must contain an exact power-of-2
8400 * quantity of entries
8401 * - limit is the number of hash buckets, not the total allocation size
8402 */
8403 void *__init alloc_large_system_hash(const char *tablename,
8404 unsigned long bucketsize,
8405 unsigned long numentries,
8406 int scale,
8407 int flags,
8408 unsigned int *_hash_shift,
8409 unsigned int *_hash_mask,
8410 unsigned long low_limit,
8411 unsigned long high_limit)
8412 {
8413 unsigned long long max = high_limit;
8414 unsigned long log2qty, size;
8415 void *table = NULL;
8416 gfp_t gfp_flags;
8417 bool virt;
8418 bool huge;
8419
8420 /* allow the kernel cmdline to have a say */
8421 if (!numentries) {
8422 /* round applicable memory size up to nearest megabyte */
8423 numentries = nr_kernel_pages;
8424 numentries -= arch_reserved_kernel_pages();
8425
8426 /* It isn't necessary when PAGE_SIZE >= 1MB */
8427 if (PAGE_SHIFT < 20)
8428 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8429
8430 #if __BITS_PER_LONG > 32
8431 if (!high_limit) {
8432 unsigned long adapt;
8433
8434 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8435 adapt <<= ADAPT_SCALE_SHIFT)
8436 scale++;
8437 }
8438 #endif
8439
8440 /* limit to 1 bucket per 2^scale bytes of low memory */
8441 if (scale > PAGE_SHIFT)
8442 numentries >>= (scale - PAGE_SHIFT);
8443 else
8444 numentries <<= (PAGE_SHIFT - scale);
8445
8446 /* Make sure we've got at least a 0-order allocation.. */
8447 if (unlikely(flags & HASH_SMALL)) {
8448 /* Makes no sense without HASH_EARLY */
8449 WARN_ON(!(flags & HASH_EARLY));
8450 if (!(numentries >> *_hash_shift)) {
8451 numentries = 1UL << *_hash_shift;
8452 BUG_ON(!numentries);
8453 }
8454 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8455 numentries = PAGE_SIZE / bucketsize;
8456 }
8457 numentries = roundup_pow_of_two(numentries);
8458
8459 /* limit allocation size to 1/16 total memory by default */
8460 if (max == 0) {
8461 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8462 do_div(max, bucketsize);
8463 }
8464 max = min(max, 0x80000000ULL);
8465
8466 if (numentries < low_limit)
8467 numentries = low_limit;
8468 if (numentries > max)
8469 numentries = max;
8470
8471 log2qty = ilog2(numentries);
8472
8473 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8474 do {
8475 virt = false;
8476 size = bucketsize << log2qty;
8477 if (flags & HASH_EARLY) {
8478 if (flags & HASH_ZERO)
8479 table = memblock_alloc(size, SMP_CACHE_BYTES);
8480 else
8481 table = memblock_alloc_raw(size,
8482 SMP_CACHE_BYTES);
8483 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8484 table = __vmalloc(size, gfp_flags);
8485 virt = true;
8486 huge = is_vm_area_hugepages(table);
8487 } else {
8488 /*
8489 * If bucketsize is not a power-of-two, we may free
8490 * some pages at the end of hash table which
8491 * alloc_pages_exact() automatically does
8492 */
8493 table = alloc_pages_exact(size, gfp_flags);
8494 kmemleak_alloc(table, size, 1, gfp_flags);
8495 }
8496 } while (!table && size > PAGE_SIZE && --log2qty);
8497
8498 if (!table)
8499 panic("Failed to allocate %s hash table\n", tablename);
8500
8501 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8502 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8503 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8504
8505 if (_hash_shift)
8506 *_hash_shift = log2qty;
8507 if (_hash_mask)
8508 *_hash_mask = (1 << log2qty) - 1;
8509
8510 return table;
8511 }
8512
8513 /*
8514 * This function checks whether pageblock includes unmovable pages or not.
8515 *
8516 * PageLRU check without isolation or lru_lock could race so that
8517 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8518 * check without lock_page also may miss some movable non-lru pages at
8519 * race condition. So you can't expect this function should be exact.
8520 *
8521 * Returns a page without holding a reference. If the caller wants to
8522 * dereference that page (e.g., dumping), it has to make sure that it
8523 * cannot get removed (e.g., via memory unplug) concurrently.
8524 *
8525 */
8526 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8527 int migratetype, int flags)
8528 {
8529 unsigned long iter = 0;
8530 unsigned long pfn = page_to_pfn(page);
8531 unsigned long offset = pfn % pageblock_nr_pages;
8532
8533 if (is_migrate_cma_page(page)) {
8534 /*
8535 * CMA allocations (alloc_contig_range) really need to mark
8536 * isolate CMA pageblocks even when they are not movable in fact
8537 * so consider them movable here.
8538 */
8539 if (is_migrate_cma(migratetype))
8540 return NULL;
8541
8542 return page;
8543 }
8544
8545 for (; iter < pageblock_nr_pages - offset; iter++) {
8546 if (!pfn_valid_within(pfn + iter))
8547 continue;
8548
8549 page = pfn_to_page(pfn + iter);
8550
8551 /*
8552 * Both, bootmem allocations and memory holes are marked
8553 * PG_reserved and are unmovable. We can even have unmovable
8554 * allocations inside ZONE_MOVABLE, for example when
8555 * specifying "movablecore".
8556 */
8557 if (PageReserved(page))
8558 return page;
8559
8560 /*
8561 * If the zone is movable and we have ruled out all reserved
8562 * pages then it should be reasonably safe to assume the rest
8563 * is movable.
8564 */
8565 if (zone_idx(zone) == ZONE_MOVABLE)
8566 continue;
8567
8568 /*
8569 * Hugepages are not in LRU lists, but they're movable.
8570 * THPs are on the LRU, but need to be counted as #small pages.
8571 * We need not scan over tail pages because we don't
8572 * handle each tail page individually in migration.
8573 */
8574 if (PageHuge(page) || PageTransCompound(page)) {
8575 struct page *head = compound_head(page);
8576 unsigned int skip_pages;
8577
8578 if (PageHuge(page)) {
8579 if (!hugepage_migration_supported(page_hstate(head)))
8580 return page;
8581 } else if (!PageLRU(head) && !__PageMovable(head)) {
8582 return page;
8583 }
8584
8585 skip_pages = compound_nr(head) - (page - head);
8586 iter += skip_pages - 1;
8587 continue;
8588 }
8589
8590 /*
8591 * We can't use page_count without pin a page
8592 * because another CPU can free compound page.
8593 * This check already skips compound tails of THP
8594 * because their page->_refcount is zero at all time.
8595 */
8596 if (!page_ref_count(page)) {
8597 if (PageBuddy(page))
8598 iter += (1 << buddy_order(page)) - 1;
8599 continue;
8600 }
8601
8602 /*
8603 * The HWPoisoned page may be not in buddy system, and
8604 * page_count() is not 0.
8605 */
8606 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8607 continue;
8608
8609 /*
8610 * We treat all PageOffline() pages as movable when offlining
8611 * to give drivers a chance to decrement their reference count
8612 * in MEM_GOING_OFFLINE in order to indicate that these pages
8613 * can be offlined as there are no direct references anymore.
8614 * For actually unmovable PageOffline() where the driver does
8615 * not support this, we will fail later when trying to actually
8616 * move these pages that still have a reference count > 0.
8617 * (false negatives in this function only)
8618 */
8619 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8620 continue;
8621
8622 if (__PageMovable(page) || PageLRU(page))
8623 continue;
8624
8625 /*
8626 * If there are RECLAIMABLE pages, we need to check
8627 * it. But now, memory offline itself doesn't call
8628 * shrink_node_slabs() and it still to be fixed.
8629 */
8630 return page;
8631 }
8632 return NULL;
8633 }
8634
8635 #ifdef CONFIG_CONTIG_ALLOC
8636 static unsigned long pfn_max_align_down(unsigned long pfn)
8637 {
8638 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8639 pageblock_nr_pages) - 1);
8640 }
8641
8642 static unsigned long pfn_max_align_up(unsigned long pfn)
8643 {
8644 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8645 pageblock_nr_pages));
8646 }
8647
8648 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8649 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8650 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8651 static void alloc_contig_dump_pages(struct list_head *page_list)
8652 {
8653 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8654
8655 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8656 struct page *page;
8657
8658 dump_stack();
8659 list_for_each_entry(page, page_list, lru)
8660 dump_page(page, "migration failure");
8661 }
8662 }
8663 #else
8664 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8665 {
8666 }
8667 #endif
8668
8669 /* [start, end) must belong to a single zone. */
8670 static int __alloc_contig_migrate_range(struct compact_control *cc,
8671 unsigned long start, unsigned long end)
8672 {
8673 /* This function is based on compact_zone() from compaction.c. */
8674 unsigned int nr_reclaimed;
8675 unsigned long pfn = start;
8676 unsigned int tries = 0;
8677 int ret = 0;
8678 struct migration_target_control mtc = {
8679 .nid = zone_to_nid(cc->zone),
8680 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8681 };
8682
8683 lru_cache_disable();
8684
8685 while (pfn < end || !list_empty(&cc->migratepages)) {
8686 if (fatal_signal_pending(current)) {
8687 ret = -EINTR;
8688 break;
8689 }
8690
8691 if (list_empty(&cc->migratepages)) {
8692 cc->nr_migratepages = 0;
8693 ret = isolate_migratepages_range(cc, pfn, end);
8694 if (ret && ret != -EAGAIN)
8695 break;
8696 pfn = cc->migrate_pfn;
8697 tries = 0;
8698 } else if (++tries == 5) {
8699 ret = -EBUSY;
8700 break;
8701 }
8702
8703 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8704 &cc->migratepages);
8705 cc->nr_migratepages -= nr_reclaimed;
8706
8707 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8708 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8709
8710 /*
8711 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8712 * to retry again over this error, so do the same here.
8713 */
8714 if (ret == -ENOMEM)
8715 break;
8716 }
8717
8718 lru_cache_enable();
8719 if (ret < 0) {
8720 alloc_contig_dump_pages(&cc->migratepages);
8721 putback_movable_pages(&cc->migratepages);
8722 return ret;
8723 }
8724 return 0;
8725 }
8726
8727 /**
8728 * alloc_contig_range() -- tries to allocate given range of pages
8729 * @start: start PFN to allocate
8730 * @end: one-past-the-last PFN to allocate
8731 * @migratetype: migratetype of the underlaying pageblocks (either
8732 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8733 * in range must have the same migratetype and it must
8734 * be either of the two.
8735 * @gfp_mask: GFP mask to use during compaction
8736 *
8737 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8738 * aligned. The PFN range must belong to a single zone.
8739 *
8740 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8741 * pageblocks in the range. Once isolated, the pageblocks should not
8742 * be modified by others.
8743 *
8744 * Return: zero on success or negative error code. On success all
8745 * pages which PFN is in [start, end) are allocated for the caller and
8746 * need to be freed with free_contig_range().
8747 */
8748 int alloc_contig_range(unsigned long start, unsigned long end,
8749 unsigned migratetype, gfp_t gfp_mask)
8750 {
8751 unsigned long outer_start, outer_end;
8752 unsigned int order;
8753 int ret = 0;
8754
8755 struct compact_control cc = {
8756 .nr_migratepages = 0,
8757 .order = -1,
8758 .zone = page_zone(pfn_to_page(start)),
8759 .mode = MIGRATE_SYNC,
8760 .ignore_skip_hint = true,
8761 .no_set_skip_hint = true,
8762 .gfp_mask = current_gfp_context(gfp_mask),
8763 .alloc_contig = true,
8764 };
8765 INIT_LIST_HEAD(&cc.migratepages);
8766
8767 /*
8768 * What we do here is we mark all pageblocks in range as
8769 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8770 * have different sizes, and due to the way page allocator
8771 * work, we align the range to biggest of the two pages so
8772 * that page allocator won't try to merge buddies from
8773 * different pageblocks and change MIGRATE_ISOLATE to some
8774 * other migration type.
8775 *
8776 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8777 * migrate the pages from an unaligned range (ie. pages that
8778 * we are interested in). This will put all the pages in
8779 * range back to page allocator as MIGRATE_ISOLATE.
8780 *
8781 * When this is done, we take the pages in range from page
8782 * allocator removing them from the buddy system. This way
8783 * page allocator will never consider using them.
8784 *
8785 * This lets us mark the pageblocks back as
8786 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8787 * aligned range but not in the unaligned, original range are
8788 * put back to page allocator so that buddy can use them.
8789 */
8790
8791 ret = start_isolate_page_range(pfn_max_align_down(start),
8792 pfn_max_align_up(end), migratetype, 0);
8793 if (ret)
8794 return ret;
8795
8796 drain_all_pages(cc.zone);
8797
8798 /*
8799 * In case of -EBUSY, we'd like to know which page causes problem.
8800 * So, just fall through. test_pages_isolated() has a tracepoint
8801 * which will report the busy page.
8802 *
8803 * It is possible that busy pages could become available before
8804 * the call to test_pages_isolated, and the range will actually be
8805 * allocated. So, if we fall through be sure to clear ret so that
8806 * -EBUSY is not accidentally used or returned to caller.
8807 */
8808 ret = __alloc_contig_migrate_range(&cc, start, end);
8809 if (ret && ret != -EBUSY)
8810 goto done;
8811 ret = 0;
8812
8813 /*
8814 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8815 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8816 * more, all pages in [start, end) are free in page allocator.
8817 * What we are going to do is to allocate all pages from
8818 * [start, end) (that is remove them from page allocator).
8819 *
8820 * The only problem is that pages at the beginning and at the
8821 * end of interesting range may be not aligned with pages that
8822 * page allocator holds, ie. they can be part of higher order
8823 * pages. Because of this, we reserve the bigger range and
8824 * once this is done free the pages we are not interested in.
8825 *
8826 * We don't have to hold zone->lock here because the pages are
8827 * isolated thus they won't get removed from buddy.
8828 */
8829
8830 order = 0;
8831 outer_start = start;
8832 while (!PageBuddy(pfn_to_page(outer_start))) {
8833 if (++order >= MAX_ORDER) {
8834 outer_start = start;
8835 break;
8836 }
8837 outer_start &= ~0UL << order;
8838 }
8839
8840 if (outer_start != start) {
8841 order = buddy_order(pfn_to_page(outer_start));
8842
8843 /*
8844 * outer_start page could be small order buddy page and
8845 * it doesn't include start page. Adjust outer_start
8846 * in this case to report failed page properly
8847 * on tracepoint in test_pages_isolated()
8848 */
8849 if (outer_start + (1UL << order) <= start)
8850 outer_start = start;
8851 }
8852
8853 /* Make sure the range is really isolated. */
8854 if (test_pages_isolated(outer_start, end, 0)) {
8855 ret = -EBUSY;
8856 goto done;
8857 }
8858
8859 /* Grab isolated pages from freelists. */
8860 outer_end = isolate_freepages_range(&cc, outer_start, end);
8861 if (!outer_end) {
8862 ret = -EBUSY;
8863 goto done;
8864 }
8865
8866 /* Free head and tail (if any) */
8867 if (start != outer_start)
8868 free_contig_range(outer_start, start - outer_start);
8869 if (end != outer_end)
8870 free_contig_range(end, outer_end - end);
8871
8872 done:
8873 undo_isolate_page_range(pfn_max_align_down(start),
8874 pfn_max_align_up(end), migratetype);
8875 return ret;
8876 }
8877 EXPORT_SYMBOL(alloc_contig_range);
8878
8879 static int __alloc_contig_pages(unsigned long start_pfn,
8880 unsigned long nr_pages, gfp_t gfp_mask)
8881 {
8882 unsigned long end_pfn = start_pfn + nr_pages;
8883
8884 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8885 gfp_mask);
8886 }
8887
8888 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8889 unsigned long nr_pages)
8890 {
8891 unsigned long i, end_pfn = start_pfn + nr_pages;
8892 struct page *page;
8893
8894 for (i = start_pfn; i < end_pfn; i++) {
8895 page = pfn_to_online_page(i);
8896 if (!page)
8897 return false;
8898
8899 if (page_zone(page) != z)
8900 return false;
8901
8902 if (PageReserved(page))
8903 return false;
8904 }
8905 return true;
8906 }
8907
8908 static bool zone_spans_last_pfn(const struct zone *zone,
8909 unsigned long start_pfn, unsigned long nr_pages)
8910 {
8911 unsigned long last_pfn = start_pfn + nr_pages - 1;
8912
8913 return zone_spans_pfn(zone, last_pfn);
8914 }
8915
8916 /**
8917 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8918 * @nr_pages: Number of contiguous pages to allocate
8919 * @gfp_mask: GFP mask to limit search and used during compaction
8920 * @nid: Target node
8921 * @nodemask: Mask for other possible nodes
8922 *
8923 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8924 * on an applicable zonelist to find a contiguous pfn range which can then be
8925 * tried for allocation with alloc_contig_range(). This routine is intended
8926 * for allocation requests which can not be fulfilled with the buddy allocator.
8927 *
8928 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8929 * power of two then the alignment is guaranteed to be to the given nr_pages
8930 * (e.g. 1GB request would be aligned to 1GB).
8931 *
8932 * Allocated pages can be freed with free_contig_range() or by manually calling
8933 * __free_page() on each allocated page.
8934 *
8935 * Return: pointer to contiguous pages on success, or NULL if not successful.
8936 */
8937 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8938 int nid, nodemask_t *nodemask)
8939 {
8940 unsigned long ret, pfn, flags;
8941 struct zonelist *zonelist;
8942 struct zone *zone;
8943 struct zoneref *z;
8944
8945 zonelist = node_zonelist(nid, gfp_mask);
8946 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8947 gfp_zone(gfp_mask), nodemask) {
8948 spin_lock_irqsave(&zone->lock, flags);
8949
8950 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8951 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8952 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8953 /*
8954 * We release the zone lock here because
8955 * alloc_contig_range() will also lock the zone
8956 * at some point. If there's an allocation
8957 * spinning on this lock, it may win the race
8958 * and cause alloc_contig_range() to fail...
8959 */
8960 spin_unlock_irqrestore(&zone->lock, flags);
8961 ret = __alloc_contig_pages(pfn, nr_pages,
8962 gfp_mask);
8963 if (!ret)
8964 return pfn_to_page(pfn);
8965 spin_lock_irqsave(&zone->lock, flags);
8966 }
8967 pfn += nr_pages;
8968 }
8969 spin_unlock_irqrestore(&zone->lock, flags);
8970 }
8971 return NULL;
8972 }
8973 #endif /* CONFIG_CONTIG_ALLOC */
8974
8975 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
8976 {
8977 unsigned long count = 0;
8978
8979 for (; nr_pages--; pfn++) {
8980 struct page *page = pfn_to_page(pfn);
8981
8982 count += page_count(page) != 1;
8983 __free_page(page);
8984 }
8985 WARN(count != 0, "%lu pages are still in use!\n", count);
8986 }
8987 EXPORT_SYMBOL(free_contig_range);
8988
8989 /*
8990 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8991 * page high values need to be recalulated.
8992 */
8993 void __meminit zone_pcp_update(struct zone *zone)
8994 {
8995 mutex_lock(&pcp_batch_high_lock);
8996 zone_set_pageset_high_and_batch(zone);
8997 mutex_unlock(&pcp_batch_high_lock);
8998 }
8999
9000 /*
9001 * Effectively disable pcplists for the zone by setting the high limit to 0
9002 * and draining all cpus. A concurrent page freeing on another CPU that's about
9003 * to put the page on pcplist will either finish before the drain and the page
9004 * will be drained, or observe the new high limit and skip the pcplist.
9005 *
9006 * Must be paired with a call to zone_pcp_enable().
9007 */
9008 void zone_pcp_disable(struct zone *zone)
9009 {
9010 mutex_lock(&pcp_batch_high_lock);
9011 __zone_set_pageset_high_and_batch(zone, 0, 1);
9012 __drain_all_pages(zone, true);
9013 }
9014
9015 void zone_pcp_enable(struct zone *zone)
9016 {
9017 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9018 mutex_unlock(&pcp_batch_high_lock);
9019 }
9020
9021 void zone_pcp_reset(struct zone *zone)
9022 {
9023 int cpu;
9024 struct per_cpu_pageset *pset;
9025
9026 if (zone->pageset != &boot_pageset) {
9027 for_each_online_cpu(cpu) {
9028 pset = per_cpu_ptr(zone->pageset, cpu);
9029 drain_zonestat(zone, pset);
9030 }
9031 free_percpu(zone->pageset);
9032 zone->pageset = &boot_pageset;
9033 }
9034 }
9035
9036 #ifdef CONFIG_MEMORY_HOTREMOVE
9037 /*
9038 * All pages in the range must be in a single zone, must not contain holes,
9039 * must span full sections, and must be isolated before calling this function.
9040 */
9041 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9042 {
9043 unsigned long pfn = start_pfn;
9044 struct page *page;
9045 struct zone *zone;
9046 unsigned int order;
9047 unsigned long flags;
9048
9049 offline_mem_sections(pfn, end_pfn);
9050 zone = page_zone(pfn_to_page(pfn));
9051 spin_lock_irqsave(&zone->lock, flags);
9052 while (pfn < end_pfn) {
9053 page = pfn_to_page(pfn);
9054 /*
9055 * The HWPoisoned page may be not in buddy system, and
9056 * page_count() is not 0.
9057 */
9058 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9059 pfn++;
9060 continue;
9061 }
9062 /*
9063 * At this point all remaining PageOffline() pages have a
9064 * reference count of 0 and can simply be skipped.
9065 */
9066 if (PageOffline(page)) {
9067 BUG_ON(page_count(page));
9068 BUG_ON(PageBuddy(page));
9069 pfn++;
9070 continue;
9071 }
9072
9073 BUG_ON(page_count(page));
9074 BUG_ON(!PageBuddy(page));
9075 order = buddy_order(page);
9076 del_page_from_free_list(page, zone, order);
9077 pfn += (1 << order);
9078 }
9079 spin_unlock_irqrestore(&zone->lock, flags);
9080 }
9081 #endif
9082
9083 bool is_free_buddy_page(struct page *page)
9084 {
9085 struct zone *zone = page_zone(page);
9086 unsigned long pfn = page_to_pfn(page);
9087 unsigned long flags;
9088 unsigned int order;
9089
9090 spin_lock_irqsave(&zone->lock, flags);
9091 for (order = 0; order < MAX_ORDER; order++) {
9092 struct page *page_head = page - (pfn & ((1 << order) - 1));
9093
9094 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9095 break;
9096 }
9097 spin_unlock_irqrestore(&zone->lock, flags);
9098
9099 return order < MAX_ORDER;
9100 }
9101
9102 #ifdef CONFIG_MEMORY_FAILURE
9103 /*
9104 * Break down a higher-order page in sub-pages, and keep our target out of
9105 * buddy allocator.
9106 */
9107 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9108 struct page *target, int low, int high,
9109 int migratetype)
9110 {
9111 unsigned long size = 1 << high;
9112 struct page *current_buddy, *next_page;
9113
9114 while (high > low) {
9115 high--;
9116 size >>= 1;
9117
9118 if (target >= &page[size]) {
9119 next_page = page + size;
9120 current_buddy = page;
9121 } else {
9122 next_page = page;
9123 current_buddy = page + size;
9124 }
9125
9126 if (set_page_guard(zone, current_buddy, high, migratetype))
9127 continue;
9128
9129 if (current_buddy != target) {
9130 add_to_free_list(current_buddy, zone, high, migratetype);
9131 set_buddy_order(current_buddy, high);
9132 page = next_page;
9133 }
9134 }
9135 }
9136
9137 /*
9138 * Take a page that will be marked as poisoned off the buddy allocator.
9139 */
9140 bool take_page_off_buddy(struct page *page)
9141 {
9142 struct zone *zone = page_zone(page);
9143 unsigned long pfn = page_to_pfn(page);
9144 unsigned long flags;
9145 unsigned int order;
9146 bool ret = false;
9147
9148 spin_lock_irqsave(&zone->lock, flags);
9149 for (order = 0; order < MAX_ORDER; order++) {
9150 struct page *page_head = page - (pfn & ((1 << order) - 1));
9151 int page_order = buddy_order(page_head);
9152
9153 if (PageBuddy(page_head) && page_order >= order) {
9154 unsigned long pfn_head = page_to_pfn(page_head);
9155 int migratetype = get_pfnblock_migratetype(page_head,
9156 pfn_head);
9157
9158 del_page_from_free_list(page_head, zone, page_order);
9159 break_down_buddy_pages(zone, page_head, page, 0,
9160 page_order, migratetype);
9161 ret = true;
9162 break;
9163 }
9164 if (page_count(page_head) > 0)
9165 break;
9166 }
9167 spin_unlock_irqrestore(&zone->lock, flags);
9168 return ret;
9169 }
9170 #endif