]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/page_alloc.c
mm/memory_hotplug: add comment to some functions related to memory hotplug
[mirror_ubuntu-hirsute-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121
122 /*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 return page->index;
133 }
134
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 page->index = migratetype;
138 }
139
140 #ifdef CONFIG_PM_SLEEP
141 /*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
149
150 static gfp_t saved_gfp_mask;
151
152 void pm_restore_gfp_mask(void)
153 {
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
159 }
160
161 void pm_restrict_gfp_mask(void)
162 {
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168
169 bool pm_suspended_storage(void)
170 {
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180
181 static void __free_pages_ok(struct page *page, unsigned int order);
182
183 /*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
193 */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 32,
203 #endif
204 32,
205 };
206
207 EXPORT_SYMBOL(totalram_pages);
208
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
224 };
225
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231 #ifdef CONFIG_CMA
232 "CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236 #endif
237 };
238
239 compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247 #endif
248 };
249
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277
278 int page_group_by_mobility_disabled __read_mostly;
279
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 return true;
291
292 return false;
293 }
294
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301 }
302
303 /*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310 {
311 unsigned long max_initialise;
312
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
322
323 (*nr_initialised)++;
324 if ((*nr_initialised > max_initialise) &&
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 return false;
340 }
341
342 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343 {
344 return false;
345 }
346
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350 {
351 return true;
352 }
353 #endif
354
355
356 void set_pageblock_migratetype(struct page *page, int migratetype)
357 {
358 if (unlikely(page_group_by_mobility_disabled &&
359 migratetype < MIGRATE_PCPTYPES))
360 migratetype = MIGRATE_UNMOVABLE;
361
362 set_pageblock_flags_group(page, (unsigned long)migratetype,
363 PB_migrate, PB_migrate_end);
364 }
365
366 #ifdef CONFIG_DEBUG_VM
367 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
368 {
369 int ret = 0;
370 unsigned seq;
371 unsigned long pfn = page_to_pfn(page);
372 unsigned long sp, start_pfn;
373
374 do {
375 seq = zone_span_seqbegin(zone);
376 start_pfn = zone->zone_start_pfn;
377 sp = zone->spanned_pages;
378 if (!zone_spans_pfn(zone, pfn))
379 ret = 1;
380 } while (zone_span_seqretry(zone, seq));
381
382 if (ret)
383 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 pfn, zone_to_nid(zone), zone->name,
385 start_pfn, start_pfn + sp);
386
387 return ret;
388 }
389
390 static int page_is_consistent(struct zone *zone, struct page *page)
391 {
392 if (!pfn_valid_within(page_to_pfn(page)))
393 return 0;
394 if (zone != page_zone(page))
395 return 0;
396
397 return 1;
398 }
399 /*
400 * Temporary debugging check for pages not lying within a given zone.
401 */
402 static int bad_range(struct zone *zone, struct page *page)
403 {
404 if (page_outside_zone_boundaries(zone, page))
405 return 1;
406 if (!page_is_consistent(zone, page))
407 return 1;
408
409 return 0;
410 }
411 #else
412 static inline int bad_range(struct zone *zone, struct page *page)
413 {
414 return 0;
415 }
416 #endif
417
418 static void bad_page(struct page *page, const char *reason,
419 unsigned long bad_flags)
420 {
421 static unsigned long resume;
422 static unsigned long nr_shown;
423 static unsigned long nr_unshown;
424
425 /* Don't complain about poisoned pages */
426 if (PageHWPoison(page)) {
427 page_mapcount_reset(page); /* remove PageBuddy */
428 return;
429 }
430
431 /*
432 * Allow a burst of 60 reports, then keep quiet for that minute;
433 * or allow a steady drip of one report per second.
434 */
435 if (nr_shown == 60) {
436 if (time_before(jiffies, resume)) {
437 nr_unshown++;
438 goto out;
439 }
440 if (nr_unshown) {
441 pr_alert(
442 "BUG: Bad page state: %lu messages suppressed\n",
443 nr_unshown);
444 nr_unshown = 0;
445 }
446 nr_shown = 0;
447 }
448 if (nr_shown++ == 0)
449 resume = jiffies + 60 * HZ;
450
451 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
452 current->comm, page_to_pfn(page));
453 __dump_page(page, reason);
454 bad_flags &= page->flags;
455 if (bad_flags)
456 pr_alert("bad because of flags: %#lx(%pGp)\n",
457 bad_flags, &bad_flags);
458 dump_page_owner(page);
459
460 print_modules();
461 dump_stack();
462 out:
463 /* Leave bad fields for debug, except PageBuddy could make trouble */
464 page_mapcount_reset(page); /* remove PageBuddy */
465 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
466 }
467
468 /*
469 * Higher-order pages are called "compound pages". They are structured thusly:
470 *
471 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
472 *
473 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
475 *
476 * The first tail page's ->compound_dtor holds the offset in array of compound
477 * page destructors. See compound_page_dtors.
478 *
479 * The first tail page's ->compound_order holds the order of allocation.
480 * This usage means that zero-order pages may not be compound.
481 */
482
483 void free_compound_page(struct page *page)
484 {
485 __free_pages_ok(page, compound_order(page));
486 }
487
488 void prep_compound_page(struct page *page, unsigned int order)
489 {
490 int i;
491 int nr_pages = 1 << order;
492
493 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
494 set_compound_order(page, order);
495 __SetPageHead(page);
496 for (i = 1; i < nr_pages; i++) {
497 struct page *p = page + i;
498 set_page_count(p, 0);
499 p->mapping = TAIL_MAPPING;
500 set_compound_head(p, page);
501 }
502 atomic_set(compound_mapcount_ptr(page), -1);
503 }
504
505 #ifdef CONFIG_DEBUG_PAGEALLOC
506 unsigned int _debug_guardpage_minorder;
507 bool _debug_pagealloc_enabled __read_mostly
508 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
509 EXPORT_SYMBOL(_debug_pagealloc_enabled);
510 bool _debug_guardpage_enabled __read_mostly;
511
512 static int __init early_debug_pagealloc(char *buf)
513 {
514 if (!buf)
515 return -EINVAL;
516
517 if (strcmp(buf, "on") == 0)
518 _debug_pagealloc_enabled = true;
519
520 if (strcmp(buf, "off") == 0)
521 _debug_pagealloc_enabled = false;
522
523 return 0;
524 }
525 early_param("debug_pagealloc", early_debug_pagealloc);
526
527 static bool need_debug_guardpage(void)
528 {
529 /* If we don't use debug_pagealloc, we don't need guard page */
530 if (!debug_pagealloc_enabled())
531 return false;
532
533 return true;
534 }
535
536 static void init_debug_guardpage(void)
537 {
538 if (!debug_pagealloc_enabled())
539 return;
540
541 _debug_guardpage_enabled = true;
542 }
543
544 struct page_ext_operations debug_guardpage_ops = {
545 .need = need_debug_guardpage,
546 .init = init_debug_guardpage,
547 };
548
549 static int __init debug_guardpage_minorder_setup(char *buf)
550 {
551 unsigned long res;
552
553 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
554 pr_err("Bad debug_guardpage_minorder value\n");
555 return 0;
556 }
557 _debug_guardpage_minorder = res;
558 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
559 return 0;
560 }
561 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562
563 static inline void set_page_guard(struct zone *zone, struct page *page,
564 unsigned int order, int migratetype)
565 {
566 struct page_ext *page_ext;
567
568 if (!debug_guardpage_enabled())
569 return;
570
571 page_ext = lookup_page_ext(page);
572 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573
574 INIT_LIST_HEAD(&page->lru);
575 set_page_private(page, order);
576 /* Guard pages are not available for any usage */
577 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
578 }
579
580 static inline void clear_page_guard(struct zone *zone, struct page *page,
581 unsigned int order, int migratetype)
582 {
583 struct page_ext *page_ext;
584
585 if (!debug_guardpage_enabled())
586 return;
587
588 page_ext = lookup_page_ext(page);
589 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590
591 set_page_private(page, 0);
592 if (!is_migrate_isolate(migratetype))
593 __mod_zone_freepage_state(zone, (1 << order), migratetype);
594 }
595 #else
596 struct page_ext_operations debug_guardpage_ops = { NULL, };
597 static inline void set_page_guard(struct zone *zone, struct page *page,
598 unsigned int order, int migratetype) {}
599 static inline void clear_page_guard(struct zone *zone, struct page *page,
600 unsigned int order, int migratetype) {}
601 #endif
602
603 static inline void set_page_order(struct page *page, unsigned int order)
604 {
605 set_page_private(page, order);
606 __SetPageBuddy(page);
607 }
608
609 static inline void rmv_page_order(struct page *page)
610 {
611 __ClearPageBuddy(page);
612 set_page_private(page, 0);
613 }
614
615 /*
616 * This function checks whether a page is free && is the buddy
617 * we can do coalesce a page and its buddy if
618 * (a) the buddy is not in a hole &&
619 * (b) the buddy is in the buddy system &&
620 * (c) a page and its buddy have the same order &&
621 * (d) a page and its buddy are in the same zone.
622 *
623 * For recording whether a page is in the buddy system, we set ->_mapcount
624 * PAGE_BUDDY_MAPCOUNT_VALUE.
625 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626 * serialized by zone->lock.
627 *
628 * For recording page's order, we use page_private(page).
629 */
630 static inline int page_is_buddy(struct page *page, struct page *buddy,
631 unsigned int order)
632 {
633 if (!pfn_valid_within(page_to_pfn(buddy)))
634 return 0;
635
636 if (page_is_guard(buddy) && page_order(buddy) == order) {
637 if (page_zone_id(page) != page_zone_id(buddy))
638 return 0;
639
640 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641
642 return 1;
643 }
644
645 if (PageBuddy(buddy) && page_order(buddy) == order) {
646 /*
647 * zone check is done late to avoid uselessly
648 * calculating zone/node ids for pages that could
649 * never merge.
650 */
651 if (page_zone_id(page) != page_zone_id(buddy))
652 return 0;
653
654 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655
656 return 1;
657 }
658 return 0;
659 }
660
661 /*
662 * Freeing function for a buddy system allocator.
663 *
664 * The concept of a buddy system is to maintain direct-mapped table
665 * (containing bit values) for memory blocks of various "orders".
666 * The bottom level table contains the map for the smallest allocatable
667 * units of memory (here, pages), and each level above it describes
668 * pairs of units from the levels below, hence, "buddies".
669 * At a high level, all that happens here is marking the table entry
670 * at the bottom level available, and propagating the changes upward
671 * as necessary, plus some accounting needed to play nicely with other
672 * parts of the VM system.
673 * At each level, we keep a list of pages, which are heads of continuous
674 * free pages of length of (1 << order) and marked with _mapcount
675 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676 * field.
677 * So when we are allocating or freeing one, we can derive the state of the
678 * other. That is, if we allocate a small block, and both were
679 * free, the remainder of the region must be split into blocks.
680 * If a block is freed, and its buddy is also free, then this
681 * triggers coalescing into a block of larger size.
682 *
683 * -- nyc
684 */
685
686 static inline void __free_one_page(struct page *page,
687 unsigned long pfn,
688 struct zone *zone, unsigned int order,
689 int migratetype)
690 {
691 unsigned long page_idx;
692 unsigned long combined_idx;
693 unsigned long uninitialized_var(buddy_idx);
694 struct page *buddy;
695 unsigned int max_order;
696
697 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
698
699 VM_BUG_ON(!zone_is_initialized(zone));
700 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
701
702 VM_BUG_ON(migratetype == -1);
703 if (likely(!is_migrate_isolate(migratetype)))
704 __mod_zone_freepage_state(zone, 1 << order, migratetype);
705
706 page_idx = pfn & ((1 << MAX_ORDER) - 1);
707
708 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 VM_BUG_ON_PAGE(bad_range(zone, page), page);
710
711 continue_merging:
712 while (order < max_order - 1) {
713 buddy_idx = __find_buddy_index(page_idx, order);
714 buddy = page + (buddy_idx - page_idx);
715 if (!page_is_buddy(page, buddy, order))
716 goto done_merging;
717 /*
718 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 * merge with it and move up one order.
720 */
721 if (page_is_guard(buddy)) {
722 clear_page_guard(zone, buddy, order, migratetype);
723 } else {
724 list_del(&buddy->lru);
725 zone->free_area[order].nr_free--;
726 rmv_page_order(buddy);
727 }
728 combined_idx = buddy_idx & page_idx;
729 page = page + (combined_idx - page_idx);
730 page_idx = combined_idx;
731 order++;
732 }
733 if (max_order < MAX_ORDER) {
734 /* If we are here, it means order is >= pageblock_order.
735 * We want to prevent merge between freepages on isolate
736 * pageblock and normal pageblock. Without this, pageblock
737 * isolation could cause incorrect freepage or CMA accounting.
738 *
739 * We don't want to hit this code for the more frequent
740 * low-order merging.
741 */
742 if (unlikely(has_isolate_pageblock(zone))) {
743 int buddy_mt;
744
745 buddy_idx = __find_buddy_index(page_idx, order);
746 buddy = page + (buddy_idx - page_idx);
747 buddy_mt = get_pageblock_migratetype(buddy);
748
749 if (migratetype != buddy_mt
750 && (is_migrate_isolate(migratetype) ||
751 is_migrate_isolate(buddy_mt)))
752 goto done_merging;
753 }
754 max_order++;
755 goto continue_merging;
756 }
757
758 done_merging:
759 set_page_order(page, order);
760
761 /*
762 * If this is not the largest possible page, check if the buddy
763 * of the next-highest order is free. If it is, it's possible
764 * that pages are being freed that will coalesce soon. In case,
765 * that is happening, add the free page to the tail of the list
766 * so it's less likely to be used soon and more likely to be merged
767 * as a higher order page
768 */
769 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
770 struct page *higher_page, *higher_buddy;
771 combined_idx = buddy_idx & page_idx;
772 higher_page = page + (combined_idx - page_idx);
773 buddy_idx = __find_buddy_index(combined_idx, order + 1);
774 higher_buddy = higher_page + (buddy_idx - combined_idx);
775 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 list_add_tail(&page->lru,
777 &zone->free_area[order].free_list[migratetype]);
778 goto out;
779 }
780 }
781
782 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783 out:
784 zone->free_area[order].nr_free++;
785 }
786
787 static inline int free_pages_check(struct page *page)
788 {
789 const char *bad_reason = NULL;
790 unsigned long bad_flags = 0;
791
792 if (unlikely(atomic_read(&page->_mapcount) != -1))
793 bad_reason = "nonzero mapcount";
794 if (unlikely(page->mapping != NULL))
795 bad_reason = "non-NULL mapping";
796 if (unlikely(page_ref_count(page) != 0))
797 bad_reason = "nonzero _refcount";
798 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 }
802 #ifdef CONFIG_MEMCG
803 if (unlikely(page->mem_cgroup))
804 bad_reason = "page still charged to cgroup";
805 #endif
806 if (unlikely(bad_reason)) {
807 bad_page(page, bad_reason, bad_flags);
808 return 1;
809 }
810 page_cpupid_reset_last(page);
811 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 return 0;
814 }
815
816 /*
817 * Frees a number of pages from the PCP lists
818 * Assumes all pages on list are in same zone, and of same order.
819 * count is the number of pages to free.
820 *
821 * If the zone was previously in an "all pages pinned" state then look to
822 * see if this freeing clears that state.
823 *
824 * And clear the zone's pages_scanned counter, to hold off the "all pages are
825 * pinned" detection logic.
826 */
827 static void free_pcppages_bulk(struct zone *zone, int count,
828 struct per_cpu_pages *pcp)
829 {
830 int migratetype = 0;
831 int batch_free = 0;
832 int to_free = count;
833 unsigned long nr_scanned;
834
835 spin_lock(&zone->lock);
836 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
837 if (nr_scanned)
838 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
839
840 while (to_free) {
841 struct page *page;
842 struct list_head *list;
843
844 /*
845 * Remove pages from lists in a round-robin fashion. A
846 * batch_free count is maintained that is incremented when an
847 * empty list is encountered. This is so more pages are freed
848 * off fuller lists instead of spinning excessively around empty
849 * lists
850 */
851 do {
852 batch_free++;
853 if (++migratetype == MIGRATE_PCPTYPES)
854 migratetype = 0;
855 list = &pcp->lists[migratetype];
856 } while (list_empty(list));
857
858 /* This is the only non-empty list. Free them all. */
859 if (batch_free == MIGRATE_PCPTYPES)
860 batch_free = to_free;
861
862 do {
863 int mt; /* migratetype of the to-be-freed page */
864
865 page = list_last_entry(list, struct page, lru);
866 /* must delete as __free_one_page list manipulates */
867 list_del(&page->lru);
868
869 mt = get_pcppage_migratetype(page);
870 /* MIGRATE_ISOLATE page should not go to pcplists */
871 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
872 /* Pageblock could have been isolated meanwhile */
873 if (unlikely(has_isolate_pageblock(zone)))
874 mt = get_pageblock_migratetype(page);
875
876 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
877 trace_mm_page_pcpu_drain(page, 0, mt);
878 } while (--to_free && --batch_free && !list_empty(list));
879 }
880 spin_unlock(&zone->lock);
881 }
882
883 static void free_one_page(struct zone *zone,
884 struct page *page, unsigned long pfn,
885 unsigned int order,
886 int migratetype)
887 {
888 unsigned long nr_scanned;
889 spin_lock(&zone->lock);
890 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
891 if (nr_scanned)
892 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
893
894 if (unlikely(has_isolate_pageblock(zone) ||
895 is_migrate_isolate(migratetype))) {
896 migratetype = get_pfnblock_migratetype(page, pfn);
897 }
898 __free_one_page(page, pfn, zone, order, migratetype);
899 spin_unlock(&zone->lock);
900 }
901
902 static int free_tail_pages_check(struct page *head_page, struct page *page)
903 {
904 int ret = 1;
905
906 /*
907 * We rely page->lru.next never has bit 0 set, unless the page
908 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
909 */
910 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
911
912 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
913 ret = 0;
914 goto out;
915 }
916 switch (page - head_page) {
917 case 1:
918 /* the first tail page: ->mapping is compound_mapcount() */
919 if (unlikely(compound_mapcount(page))) {
920 bad_page(page, "nonzero compound_mapcount", 0);
921 goto out;
922 }
923 break;
924 case 2:
925 /*
926 * the second tail page: ->mapping is
927 * page_deferred_list().next -- ignore value.
928 */
929 break;
930 default:
931 if (page->mapping != TAIL_MAPPING) {
932 bad_page(page, "corrupted mapping in tail page", 0);
933 goto out;
934 }
935 break;
936 }
937 if (unlikely(!PageTail(page))) {
938 bad_page(page, "PageTail not set", 0);
939 goto out;
940 }
941 if (unlikely(compound_head(page) != head_page)) {
942 bad_page(page, "compound_head not consistent", 0);
943 goto out;
944 }
945 ret = 0;
946 out:
947 page->mapping = NULL;
948 clear_compound_head(page);
949 return ret;
950 }
951
952 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
953 unsigned long zone, int nid)
954 {
955 set_page_links(page, zone, nid, pfn);
956 init_page_count(page);
957 page_mapcount_reset(page);
958 page_cpupid_reset_last(page);
959
960 INIT_LIST_HEAD(&page->lru);
961 #ifdef WANT_PAGE_VIRTUAL
962 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
963 if (!is_highmem_idx(zone))
964 set_page_address(page, __va(pfn << PAGE_SHIFT));
965 #endif
966 }
967
968 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
969 int nid)
970 {
971 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
972 }
973
974 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
975 static void init_reserved_page(unsigned long pfn)
976 {
977 pg_data_t *pgdat;
978 int nid, zid;
979
980 if (!early_page_uninitialised(pfn))
981 return;
982
983 nid = early_pfn_to_nid(pfn);
984 pgdat = NODE_DATA(nid);
985
986 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
987 struct zone *zone = &pgdat->node_zones[zid];
988
989 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
990 break;
991 }
992 __init_single_pfn(pfn, zid, nid);
993 }
994 #else
995 static inline void init_reserved_page(unsigned long pfn)
996 {
997 }
998 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
999
1000 /*
1001 * Initialised pages do not have PageReserved set. This function is
1002 * called for each range allocated by the bootmem allocator and
1003 * marks the pages PageReserved. The remaining valid pages are later
1004 * sent to the buddy page allocator.
1005 */
1006 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
1007 {
1008 unsigned long start_pfn = PFN_DOWN(start);
1009 unsigned long end_pfn = PFN_UP(end);
1010
1011 for (; start_pfn < end_pfn; start_pfn++) {
1012 if (pfn_valid(start_pfn)) {
1013 struct page *page = pfn_to_page(start_pfn);
1014
1015 init_reserved_page(start_pfn);
1016
1017 /* Avoid false-positive PageTail() */
1018 INIT_LIST_HEAD(&page->lru);
1019
1020 SetPageReserved(page);
1021 }
1022 }
1023 }
1024
1025 static bool free_pages_prepare(struct page *page, unsigned int order)
1026 {
1027 bool compound = PageCompound(page);
1028 int i, bad = 0;
1029
1030 VM_BUG_ON_PAGE(PageTail(page), page);
1031 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1032
1033 trace_mm_page_free(page, order);
1034 kmemcheck_free_shadow(page, order);
1035 kasan_free_pages(page, order);
1036
1037 if (PageAnon(page))
1038 page->mapping = NULL;
1039 bad += free_pages_check(page);
1040 for (i = 1; i < (1 << order); i++) {
1041 if (compound)
1042 bad += free_tail_pages_check(page, page + i);
1043 bad += free_pages_check(page + i);
1044 }
1045 if (bad)
1046 return false;
1047
1048 reset_page_owner(page, order);
1049
1050 if (!PageHighMem(page)) {
1051 debug_check_no_locks_freed(page_address(page),
1052 PAGE_SIZE << order);
1053 debug_check_no_obj_freed(page_address(page),
1054 PAGE_SIZE << order);
1055 }
1056 arch_free_page(page, order);
1057 kernel_poison_pages(page, 1 << order, 0);
1058 kernel_map_pages(page, 1 << order, 0);
1059
1060 return true;
1061 }
1062
1063 static void __free_pages_ok(struct page *page, unsigned int order)
1064 {
1065 unsigned long flags;
1066 int migratetype;
1067 unsigned long pfn = page_to_pfn(page);
1068
1069 if (!free_pages_prepare(page, order))
1070 return;
1071
1072 migratetype = get_pfnblock_migratetype(page, pfn);
1073 local_irq_save(flags);
1074 __count_vm_events(PGFREE, 1 << order);
1075 free_one_page(page_zone(page), page, pfn, order, migratetype);
1076 local_irq_restore(flags);
1077 }
1078
1079 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1080 {
1081 unsigned int nr_pages = 1 << order;
1082 struct page *p = page;
1083 unsigned int loop;
1084
1085 prefetchw(p);
1086 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1087 prefetchw(p + 1);
1088 __ClearPageReserved(p);
1089 set_page_count(p, 0);
1090 }
1091 __ClearPageReserved(p);
1092 set_page_count(p, 0);
1093
1094 page_zone(page)->managed_pages += nr_pages;
1095 set_page_refcounted(page);
1096 __free_pages(page, order);
1097 }
1098
1099 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1100 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1101
1102 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1103
1104 int __meminit early_pfn_to_nid(unsigned long pfn)
1105 {
1106 static DEFINE_SPINLOCK(early_pfn_lock);
1107 int nid;
1108
1109 spin_lock(&early_pfn_lock);
1110 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1111 if (nid < 0)
1112 nid = 0;
1113 spin_unlock(&early_pfn_lock);
1114
1115 return nid;
1116 }
1117 #endif
1118
1119 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1120 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1121 struct mminit_pfnnid_cache *state)
1122 {
1123 int nid;
1124
1125 nid = __early_pfn_to_nid(pfn, state);
1126 if (nid >= 0 && nid != node)
1127 return false;
1128 return true;
1129 }
1130
1131 /* Only safe to use early in boot when initialisation is single-threaded */
1132 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1133 {
1134 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1135 }
1136
1137 #else
1138
1139 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1140 {
1141 return true;
1142 }
1143 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1144 struct mminit_pfnnid_cache *state)
1145 {
1146 return true;
1147 }
1148 #endif
1149
1150
1151 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1152 unsigned int order)
1153 {
1154 if (early_page_uninitialised(pfn))
1155 return;
1156 return __free_pages_boot_core(page, order);
1157 }
1158
1159 /*
1160 * Check that the whole (or subset of) a pageblock given by the interval of
1161 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1162 * with the migration of free compaction scanner. The scanners then need to
1163 * use only pfn_valid_within() check for arches that allow holes within
1164 * pageblocks.
1165 *
1166 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1167 *
1168 * It's possible on some configurations to have a setup like node0 node1 node0
1169 * i.e. it's possible that all pages within a zones range of pages do not
1170 * belong to a single zone. We assume that a border between node0 and node1
1171 * can occur within a single pageblock, but not a node0 node1 node0
1172 * interleaving within a single pageblock. It is therefore sufficient to check
1173 * the first and last page of a pageblock and avoid checking each individual
1174 * page in a pageblock.
1175 */
1176 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1177 unsigned long end_pfn, struct zone *zone)
1178 {
1179 struct page *start_page;
1180 struct page *end_page;
1181
1182 /* end_pfn is one past the range we are checking */
1183 end_pfn--;
1184
1185 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1186 return NULL;
1187
1188 start_page = pfn_to_page(start_pfn);
1189
1190 if (page_zone(start_page) != zone)
1191 return NULL;
1192
1193 end_page = pfn_to_page(end_pfn);
1194
1195 /* This gives a shorter code than deriving page_zone(end_page) */
1196 if (page_zone_id(start_page) != page_zone_id(end_page))
1197 return NULL;
1198
1199 return start_page;
1200 }
1201
1202 void set_zone_contiguous(struct zone *zone)
1203 {
1204 unsigned long block_start_pfn = zone->zone_start_pfn;
1205 unsigned long block_end_pfn;
1206
1207 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1208 for (; block_start_pfn < zone_end_pfn(zone);
1209 block_start_pfn = block_end_pfn,
1210 block_end_pfn += pageblock_nr_pages) {
1211
1212 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1213
1214 if (!__pageblock_pfn_to_page(block_start_pfn,
1215 block_end_pfn, zone))
1216 return;
1217 }
1218
1219 /* We confirm that there is no hole */
1220 zone->contiguous = true;
1221 }
1222
1223 void clear_zone_contiguous(struct zone *zone)
1224 {
1225 zone->contiguous = false;
1226 }
1227
1228 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1229 static void __init deferred_free_range(struct page *page,
1230 unsigned long pfn, int nr_pages)
1231 {
1232 int i;
1233
1234 if (!page)
1235 return;
1236
1237 /* Free a large naturally-aligned chunk if possible */
1238 if (nr_pages == MAX_ORDER_NR_PAGES &&
1239 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1240 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1241 __free_pages_boot_core(page, MAX_ORDER-1);
1242 return;
1243 }
1244
1245 for (i = 0; i < nr_pages; i++, page++)
1246 __free_pages_boot_core(page, 0);
1247 }
1248
1249 /* Completion tracking for deferred_init_memmap() threads */
1250 static atomic_t pgdat_init_n_undone __initdata;
1251 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1252
1253 static inline void __init pgdat_init_report_one_done(void)
1254 {
1255 if (atomic_dec_and_test(&pgdat_init_n_undone))
1256 complete(&pgdat_init_all_done_comp);
1257 }
1258
1259 /* Initialise remaining memory on a node */
1260 static int __init deferred_init_memmap(void *data)
1261 {
1262 pg_data_t *pgdat = data;
1263 int nid = pgdat->node_id;
1264 struct mminit_pfnnid_cache nid_init_state = { };
1265 unsigned long start = jiffies;
1266 unsigned long nr_pages = 0;
1267 unsigned long walk_start, walk_end;
1268 int i, zid;
1269 struct zone *zone;
1270 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1271 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1272
1273 if (first_init_pfn == ULONG_MAX) {
1274 pgdat_init_report_one_done();
1275 return 0;
1276 }
1277
1278 /* Bind memory initialisation thread to a local node if possible */
1279 if (!cpumask_empty(cpumask))
1280 set_cpus_allowed_ptr(current, cpumask);
1281
1282 /* Sanity check boundaries */
1283 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1284 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1285 pgdat->first_deferred_pfn = ULONG_MAX;
1286
1287 /* Only the highest zone is deferred so find it */
1288 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1289 zone = pgdat->node_zones + zid;
1290 if (first_init_pfn < zone_end_pfn(zone))
1291 break;
1292 }
1293
1294 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1295 unsigned long pfn, end_pfn;
1296 struct page *page = NULL;
1297 struct page *free_base_page = NULL;
1298 unsigned long free_base_pfn = 0;
1299 int nr_to_free = 0;
1300
1301 end_pfn = min(walk_end, zone_end_pfn(zone));
1302 pfn = first_init_pfn;
1303 if (pfn < walk_start)
1304 pfn = walk_start;
1305 if (pfn < zone->zone_start_pfn)
1306 pfn = zone->zone_start_pfn;
1307
1308 for (; pfn < end_pfn; pfn++) {
1309 if (!pfn_valid_within(pfn))
1310 goto free_range;
1311
1312 /*
1313 * Ensure pfn_valid is checked every
1314 * MAX_ORDER_NR_PAGES for memory holes
1315 */
1316 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1317 if (!pfn_valid(pfn)) {
1318 page = NULL;
1319 goto free_range;
1320 }
1321 }
1322
1323 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1324 page = NULL;
1325 goto free_range;
1326 }
1327
1328 /* Minimise pfn page lookups and scheduler checks */
1329 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1330 page++;
1331 } else {
1332 nr_pages += nr_to_free;
1333 deferred_free_range(free_base_page,
1334 free_base_pfn, nr_to_free);
1335 free_base_page = NULL;
1336 free_base_pfn = nr_to_free = 0;
1337
1338 page = pfn_to_page(pfn);
1339 cond_resched();
1340 }
1341
1342 if (page->flags) {
1343 VM_BUG_ON(page_zone(page) != zone);
1344 goto free_range;
1345 }
1346
1347 __init_single_page(page, pfn, zid, nid);
1348 if (!free_base_page) {
1349 free_base_page = page;
1350 free_base_pfn = pfn;
1351 nr_to_free = 0;
1352 }
1353 nr_to_free++;
1354
1355 /* Where possible, batch up pages for a single free */
1356 continue;
1357 free_range:
1358 /* Free the current block of pages to allocator */
1359 nr_pages += nr_to_free;
1360 deferred_free_range(free_base_page, free_base_pfn,
1361 nr_to_free);
1362 free_base_page = NULL;
1363 free_base_pfn = nr_to_free = 0;
1364 }
1365
1366 first_init_pfn = max(end_pfn, first_init_pfn);
1367 }
1368
1369 /* Sanity check that the next zone really is unpopulated */
1370 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1371
1372 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1373 jiffies_to_msecs(jiffies - start));
1374
1375 pgdat_init_report_one_done();
1376 return 0;
1377 }
1378 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1379
1380 void __init page_alloc_init_late(void)
1381 {
1382 struct zone *zone;
1383
1384 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1385 int nid;
1386
1387 /* There will be num_node_state(N_MEMORY) threads */
1388 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1389 for_each_node_state(nid, N_MEMORY) {
1390 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1391 }
1392
1393 /* Block until all are initialised */
1394 wait_for_completion(&pgdat_init_all_done_comp);
1395
1396 /* Reinit limits that are based on free pages after the kernel is up */
1397 files_maxfiles_init();
1398 #endif
1399
1400 for_each_populated_zone(zone)
1401 set_zone_contiguous(zone);
1402 }
1403
1404 #ifdef CONFIG_CMA
1405 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1406 void __init init_cma_reserved_pageblock(struct page *page)
1407 {
1408 unsigned i = pageblock_nr_pages;
1409 struct page *p = page;
1410
1411 do {
1412 __ClearPageReserved(p);
1413 set_page_count(p, 0);
1414 } while (++p, --i);
1415
1416 set_pageblock_migratetype(page, MIGRATE_CMA);
1417
1418 if (pageblock_order >= MAX_ORDER) {
1419 i = pageblock_nr_pages;
1420 p = page;
1421 do {
1422 set_page_refcounted(p);
1423 __free_pages(p, MAX_ORDER - 1);
1424 p += MAX_ORDER_NR_PAGES;
1425 } while (i -= MAX_ORDER_NR_PAGES);
1426 } else {
1427 set_page_refcounted(page);
1428 __free_pages(page, pageblock_order);
1429 }
1430
1431 adjust_managed_page_count(page, pageblock_nr_pages);
1432 }
1433 #endif
1434
1435 /*
1436 * The order of subdivision here is critical for the IO subsystem.
1437 * Please do not alter this order without good reasons and regression
1438 * testing. Specifically, as large blocks of memory are subdivided,
1439 * the order in which smaller blocks are delivered depends on the order
1440 * they're subdivided in this function. This is the primary factor
1441 * influencing the order in which pages are delivered to the IO
1442 * subsystem according to empirical testing, and this is also justified
1443 * by considering the behavior of a buddy system containing a single
1444 * large block of memory acted on by a series of small allocations.
1445 * This behavior is a critical factor in sglist merging's success.
1446 *
1447 * -- nyc
1448 */
1449 static inline void expand(struct zone *zone, struct page *page,
1450 int low, int high, struct free_area *area,
1451 int migratetype)
1452 {
1453 unsigned long size = 1 << high;
1454
1455 while (high > low) {
1456 area--;
1457 high--;
1458 size >>= 1;
1459 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1460
1461 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1462 debug_guardpage_enabled() &&
1463 high < debug_guardpage_minorder()) {
1464 /*
1465 * Mark as guard pages (or page), that will allow to
1466 * merge back to allocator when buddy will be freed.
1467 * Corresponding page table entries will not be touched,
1468 * pages will stay not present in virtual address space
1469 */
1470 set_page_guard(zone, &page[size], high, migratetype);
1471 continue;
1472 }
1473 list_add(&page[size].lru, &area->free_list[migratetype]);
1474 area->nr_free++;
1475 set_page_order(&page[size], high);
1476 }
1477 }
1478
1479 /*
1480 * This page is about to be returned from the page allocator
1481 */
1482 static inline int check_new_page(struct page *page)
1483 {
1484 const char *bad_reason = NULL;
1485 unsigned long bad_flags = 0;
1486
1487 if (unlikely(atomic_read(&page->_mapcount) != -1))
1488 bad_reason = "nonzero mapcount";
1489 if (unlikely(page->mapping != NULL))
1490 bad_reason = "non-NULL mapping";
1491 if (unlikely(page_ref_count(page) != 0))
1492 bad_reason = "nonzero _count";
1493 if (unlikely(page->flags & __PG_HWPOISON)) {
1494 bad_reason = "HWPoisoned (hardware-corrupted)";
1495 bad_flags = __PG_HWPOISON;
1496 }
1497 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1498 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1499 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1500 }
1501 #ifdef CONFIG_MEMCG
1502 if (unlikely(page->mem_cgroup))
1503 bad_reason = "page still charged to cgroup";
1504 #endif
1505 if (unlikely(bad_reason)) {
1506 bad_page(page, bad_reason, bad_flags);
1507 return 1;
1508 }
1509 return 0;
1510 }
1511
1512 static inline bool free_pages_prezeroed(bool poisoned)
1513 {
1514 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1515 page_poisoning_enabled() && poisoned;
1516 }
1517
1518 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1519 int alloc_flags)
1520 {
1521 int i;
1522 bool poisoned = true;
1523
1524 for (i = 0; i < (1 << order); i++) {
1525 struct page *p = page + i;
1526 if (unlikely(check_new_page(p)))
1527 return 1;
1528 if (poisoned)
1529 poisoned &= page_is_poisoned(p);
1530 }
1531
1532 set_page_private(page, 0);
1533 set_page_refcounted(page);
1534
1535 arch_alloc_page(page, order);
1536 kernel_map_pages(page, 1 << order, 1);
1537 kernel_poison_pages(page, 1 << order, 1);
1538 kasan_alloc_pages(page, order);
1539
1540 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1541 for (i = 0; i < (1 << order); i++)
1542 clear_highpage(page + i);
1543
1544 if (order && (gfp_flags & __GFP_COMP))
1545 prep_compound_page(page, order);
1546
1547 set_page_owner(page, order, gfp_flags);
1548
1549 /*
1550 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1551 * allocate the page. The expectation is that the caller is taking
1552 * steps that will free more memory. The caller should avoid the page
1553 * being used for !PFMEMALLOC purposes.
1554 */
1555 if (alloc_flags & ALLOC_NO_WATERMARKS)
1556 set_page_pfmemalloc(page);
1557 else
1558 clear_page_pfmemalloc(page);
1559
1560 return 0;
1561 }
1562
1563 /*
1564 * Go through the free lists for the given migratetype and remove
1565 * the smallest available page from the freelists
1566 */
1567 static inline
1568 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1569 int migratetype)
1570 {
1571 unsigned int current_order;
1572 struct free_area *area;
1573 struct page *page;
1574
1575 /* Find a page of the appropriate size in the preferred list */
1576 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1577 area = &(zone->free_area[current_order]);
1578 page = list_first_entry_or_null(&area->free_list[migratetype],
1579 struct page, lru);
1580 if (!page)
1581 continue;
1582 list_del(&page->lru);
1583 rmv_page_order(page);
1584 area->nr_free--;
1585 expand(zone, page, order, current_order, area, migratetype);
1586 set_pcppage_migratetype(page, migratetype);
1587 return page;
1588 }
1589
1590 return NULL;
1591 }
1592
1593
1594 /*
1595 * This array describes the order lists are fallen back to when
1596 * the free lists for the desirable migrate type are depleted
1597 */
1598 static int fallbacks[MIGRATE_TYPES][4] = {
1599 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1600 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1601 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1602 #ifdef CONFIG_CMA
1603 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1604 #endif
1605 #ifdef CONFIG_MEMORY_ISOLATION
1606 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1607 #endif
1608 };
1609
1610 #ifdef CONFIG_CMA
1611 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1612 unsigned int order)
1613 {
1614 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1615 }
1616 #else
1617 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1618 unsigned int order) { return NULL; }
1619 #endif
1620
1621 /*
1622 * Move the free pages in a range to the free lists of the requested type.
1623 * Note that start_page and end_pages are not aligned on a pageblock
1624 * boundary. If alignment is required, use move_freepages_block()
1625 */
1626 int move_freepages(struct zone *zone,
1627 struct page *start_page, struct page *end_page,
1628 int migratetype)
1629 {
1630 struct page *page;
1631 unsigned int order;
1632 int pages_moved = 0;
1633
1634 #ifndef CONFIG_HOLES_IN_ZONE
1635 /*
1636 * page_zone is not safe to call in this context when
1637 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1638 * anyway as we check zone boundaries in move_freepages_block().
1639 * Remove at a later date when no bug reports exist related to
1640 * grouping pages by mobility
1641 */
1642 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1643 #endif
1644
1645 for (page = start_page; page <= end_page;) {
1646 /* Make sure we are not inadvertently changing nodes */
1647 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1648
1649 if (!pfn_valid_within(page_to_pfn(page))) {
1650 page++;
1651 continue;
1652 }
1653
1654 if (!PageBuddy(page)) {
1655 page++;
1656 continue;
1657 }
1658
1659 order = page_order(page);
1660 list_move(&page->lru,
1661 &zone->free_area[order].free_list[migratetype]);
1662 page += 1 << order;
1663 pages_moved += 1 << order;
1664 }
1665
1666 return pages_moved;
1667 }
1668
1669 int move_freepages_block(struct zone *zone, struct page *page,
1670 int migratetype)
1671 {
1672 unsigned long start_pfn, end_pfn;
1673 struct page *start_page, *end_page;
1674
1675 start_pfn = page_to_pfn(page);
1676 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1677 start_page = pfn_to_page(start_pfn);
1678 end_page = start_page + pageblock_nr_pages - 1;
1679 end_pfn = start_pfn + pageblock_nr_pages - 1;
1680
1681 /* Do not cross zone boundaries */
1682 if (!zone_spans_pfn(zone, start_pfn))
1683 start_page = page;
1684 if (!zone_spans_pfn(zone, end_pfn))
1685 return 0;
1686
1687 return move_freepages(zone, start_page, end_page, migratetype);
1688 }
1689
1690 static void change_pageblock_range(struct page *pageblock_page,
1691 int start_order, int migratetype)
1692 {
1693 int nr_pageblocks = 1 << (start_order - pageblock_order);
1694
1695 while (nr_pageblocks--) {
1696 set_pageblock_migratetype(pageblock_page, migratetype);
1697 pageblock_page += pageblock_nr_pages;
1698 }
1699 }
1700
1701 /*
1702 * When we are falling back to another migratetype during allocation, try to
1703 * steal extra free pages from the same pageblocks to satisfy further
1704 * allocations, instead of polluting multiple pageblocks.
1705 *
1706 * If we are stealing a relatively large buddy page, it is likely there will
1707 * be more free pages in the pageblock, so try to steal them all. For
1708 * reclaimable and unmovable allocations, we steal regardless of page size,
1709 * as fragmentation caused by those allocations polluting movable pageblocks
1710 * is worse than movable allocations stealing from unmovable and reclaimable
1711 * pageblocks.
1712 */
1713 static bool can_steal_fallback(unsigned int order, int start_mt)
1714 {
1715 /*
1716 * Leaving this order check is intended, although there is
1717 * relaxed order check in next check. The reason is that
1718 * we can actually steal whole pageblock if this condition met,
1719 * but, below check doesn't guarantee it and that is just heuristic
1720 * so could be changed anytime.
1721 */
1722 if (order >= pageblock_order)
1723 return true;
1724
1725 if (order >= pageblock_order / 2 ||
1726 start_mt == MIGRATE_RECLAIMABLE ||
1727 start_mt == MIGRATE_UNMOVABLE ||
1728 page_group_by_mobility_disabled)
1729 return true;
1730
1731 return false;
1732 }
1733
1734 /*
1735 * This function implements actual steal behaviour. If order is large enough,
1736 * we can steal whole pageblock. If not, we first move freepages in this
1737 * pageblock and check whether half of pages are moved or not. If half of
1738 * pages are moved, we can change migratetype of pageblock and permanently
1739 * use it's pages as requested migratetype in the future.
1740 */
1741 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1742 int start_type)
1743 {
1744 unsigned int current_order = page_order(page);
1745 int pages;
1746
1747 /* Take ownership for orders >= pageblock_order */
1748 if (current_order >= pageblock_order) {
1749 change_pageblock_range(page, current_order, start_type);
1750 return;
1751 }
1752
1753 pages = move_freepages_block(zone, page, start_type);
1754
1755 /* Claim the whole block if over half of it is free */
1756 if (pages >= (1 << (pageblock_order-1)) ||
1757 page_group_by_mobility_disabled)
1758 set_pageblock_migratetype(page, start_type);
1759 }
1760
1761 /*
1762 * Check whether there is a suitable fallback freepage with requested order.
1763 * If only_stealable is true, this function returns fallback_mt only if
1764 * we can steal other freepages all together. This would help to reduce
1765 * fragmentation due to mixed migratetype pages in one pageblock.
1766 */
1767 int find_suitable_fallback(struct free_area *area, unsigned int order,
1768 int migratetype, bool only_stealable, bool *can_steal)
1769 {
1770 int i;
1771 int fallback_mt;
1772
1773 if (area->nr_free == 0)
1774 return -1;
1775
1776 *can_steal = false;
1777 for (i = 0;; i++) {
1778 fallback_mt = fallbacks[migratetype][i];
1779 if (fallback_mt == MIGRATE_TYPES)
1780 break;
1781
1782 if (list_empty(&area->free_list[fallback_mt]))
1783 continue;
1784
1785 if (can_steal_fallback(order, migratetype))
1786 *can_steal = true;
1787
1788 if (!only_stealable)
1789 return fallback_mt;
1790
1791 if (*can_steal)
1792 return fallback_mt;
1793 }
1794
1795 return -1;
1796 }
1797
1798 /*
1799 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1800 * there are no empty page blocks that contain a page with a suitable order
1801 */
1802 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1803 unsigned int alloc_order)
1804 {
1805 int mt;
1806 unsigned long max_managed, flags;
1807
1808 /*
1809 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1810 * Check is race-prone but harmless.
1811 */
1812 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1813 if (zone->nr_reserved_highatomic >= max_managed)
1814 return;
1815
1816 spin_lock_irqsave(&zone->lock, flags);
1817
1818 /* Recheck the nr_reserved_highatomic limit under the lock */
1819 if (zone->nr_reserved_highatomic >= max_managed)
1820 goto out_unlock;
1821
1822 /* Yoink! */
1823 mt = get_pageblock_migratetype(page);
1824 if (mt != MIGRATE_HIGHATOMIC &&
1825 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1826 zone->nr_reserved_highatomic += pageblock_nr_pages;
1827 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1828 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1829 }
1830
1831 out_unlock:
1832 spin_unlock_irqrestore(&zone->lock, flags);
1833 }
1834
1835 /*
1836 * Used when an allocation is about to fail under memory pressure. This
1837 * potentially hurts the reliability of high-order allocations when under
1838 * intense memory pressure but failed atomic allocations should be easier
1839 * to recover from than an OOM.
1840 */
1841 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1842 {
1843 struct zonelist *zonelist = ac->zonelist;
1844 unsigned long flags;
1845 struct zoneref *z;
1846 struct zone *zone;
1847 struct page *page;
1848 int order;
1849
1850 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1851 ac->nodemask) {
1852 /* Preserve at least one pageblock */
1853 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1854 continue;
1855
1856 spin_lock_irqsave(&zone->lock, flags);
1857 for (order = 0; order < MAX_ORDER; order++) {
1858 struct free_area *area = &(zone->free_area[order]);
1859
1860 page = list_first_entry_or_null(
1861 &area->free_list[MIGRATE_HIGHATOMIC],
1862 struct page, lru);
1863 if (!page)
1864 continue;
1865
1866 /*
1867 * It should never happen but changes to locking could
1868 * inadvertently allow a per-cpu drain to add pages
1869 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1870 * and watch for underflows.
1871 */
1872 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1873 zone->nr_reserved_highatomic);
1874
1875 /*
1876 * Convert to ac->migratetype and avoid the normal
1877 * pageblock stealing heuristics. Minimally, the caller
1878 * is doing the work and needs the pages. More
1879 * importantly, if the block was always converted to
1880 * MIGRATE_UNMOVABLE or another type then the number
1881 * of pageblocks that cannot be completely freed
1882 * may increase.
1883 */
1884 set_pageblock_migratetype(page, ac->migratetype);
1885 move_freepages_block(zone, page, ac->migratetype);
1886 spin_unlock_irqrestore(&zone->lock, flags);
1887 return;
1888 }
1889 spin_unlock_irqrestore(&zone->lock, flags);
1890 }
1891 }
1892
1893 /* Remove an element from the buddy allocator from the fallback list */
1894 static inline struct page *
1895 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1896 {
1897 struct free_area *area;
1898 unsigned int current_order;
1899 struct page *page;
1900 int fallback_mt;
1901 bool can_steal;
1902
1903 /* Find the largest possible block of pages in the other list */
1904 for (current_order = MAX_ORDER-1;
1905 current_order >= order && current_order <= MAX_ORDER-1;
1906 --current_order) {
1907 area = &(zone->free_area[current_order]);
1908 fallback_mt = find_suitable_fallback(area, current_order,
1909 start_migratetype, false, &can_steal);
1910 if (fallback_mt == -1)
1911 continue;
1912
1913 page = list_first_entry(&area->free_list[fallback_mt],
1914 struct page, lru);
1915 if (can_steal)
1916 steal_suitable_fallback(zone, page, start_migratetype);
1917
1918 /* Remove the page from the freelists */
1919 area->nr_free--;
1920 list_del(&page->lru);
1921 rmv_page_order(page);
1922
1923 expand(zone, page, order, current_order, area,
1924 start_migratetype);
1925 /*
1926 * The pcppage_migratetype may differ from pageblock's
1927 * migratetype depending on the decisions in
1928 * find_suitable_fallback(). This is OK as long as it does not
1929 * differ for MIGRATE_CMA pageblocks. Those can be used as
1930 * fallback only via special __rmqueue_cma_fallback() function
1931 */
1932 set_pcppage_migratetype(page, start_migratetype);
1933
1934 trace_mm_page_alloc_extfrag(page, order, current_order,
1935 start_migratetype, fallback_mt);
1936
1937 return page;
1938 }
1939
1940 return NULL;
1941 }
1942
1943 /*
1944 * Do the hard work of removing an element from the buddy allocator.
1945 * Call me with the zone->lock already held.
1946 */
1947 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1948 int migratetype)
1949 {
1950 struct page *page;
1951
1952 page = __rmqueue_smallest(zone, order, migratetype);
1953 if (unlikely(!page)) {
1954 if (migratetype == MIGRATE_MOVABLE)
1955 page = __rmqueue_cma_fallback(zone, order);
1956
1957 if (!page)
1958 page = __rmqueue_fallback(zone, order, migratetype);
1959 }
1960
1961 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1962 return page;
1963 }
1964
1965 /*
1966 * Obtain a specified number of elements from the buddy allocator, all under
1967 * a single hold of the lock, for efficiency. Add them to the supplied list.
1968 * Returns the number of new pages which were placed at *list.
1969 */
1970 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1971 unsigned long count, struct list_head *list,
1972 int migratetype, bool cold)
1973 {
1974 int i;
1975
1976 spin_lock(&zone->lock);
1977 for (i = 0; i < count; ++i) {
1978 struct page *page = __rmqueue(zone, order, migratetype);
1979 if (unlikely(page == NULL))
1980 break;
1981
1982 /*
1983 * Split buddy pages returned by expand() are received here
1984 * in physical page order. The page is added to the callers and
1985 * list and the list head then moves forward. From the callers
1986 * perspective, the linked list is ordered by page number in
1987 * some conditions. This is useful for IO devices that can
1988 * merge IO requests if the physical pages are ordered
1989 * properly.
1990 */
1991 if (likely(!cold))
1992 list_add(&page->lru, list);
1993 else
1994 list_add_tail(&page->lru, list);
1995 list = &page->lru;
1996 if (is_migrate_cma(get_pcppage_migratetype(page)))
1997 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1998 -(1 << order));
1999 }
2000 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2001 spin_unlock(&zone->lock);
2002 return i;
2003 }
2004
2005 #ifdef CONFIG_NUMA
2006 /*
2007 * Called from the vmstat counter updater to drain pagesets of this
2008 * currently executing processor on remote nodes after they have
2009 * expired.
2010 *
2011 * Note that this function must be called with the thread pinned to
2012 * a single processor.
2013 */
2014 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2015 {
2016 unsigned long flags;
2017 int to_drain, batch;
2018
2019 local_irq_save(flags);
2020 batch = READ_ONCE(pcp->batch);
2021 to_drain = min(pcp->count, batch);
2022 if (to_drain > 0) {
2023 free_pcppages_bulk(zone, to_drain, pcp);
2024 pcp->count -= to_drain;
2025 }
2026 local_irq_restore(flags);
2027 }
2028 #endif
2029
2030 /*
2031 * Drain pcplists of the indicated processor and zone.
2032 *
2033 * The processor must either be the current processor and the
2034 * thread pinned to the current processor or a processor that
2035 * is not online.
2036 */
2037 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2038 {
2039 unsigned long flags;
2040 struct per_cpu_pageset *pset;
2041 struct per_cpu_pages *pcp;
2042
2043 local_irq_save(flags);
2044 pset = per_cpu_ptr(zone->pageset, cpu);
2045
2046 pcp = &pset->pcp;
2047 if (pcp->count) {
2048 free_pcppages_bulk(zone, pcp->count, pcp);
2049 pcp->count = 0;
2050 }
2051 local_irq_restore(flags);
2052 }
2053
2054 /*
2055 * Drain pcplists of all zones on the indicated processor.
2056 *
2057 * The processor must either be the current processor and the
2058 * thread pinned to the current processor or a processor that
2059 * is not online.
2060 */
2061 static void drain_pages(unsigned int cpu)
2062 {
2063 struct zone *zone;
2064
2065 for_each_populated_zone(zone) {
2066 drain_pages_zone(cpu, zone);
2067 }
2068 }
2069
2070 /*
2071 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2072 *
2073 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2074 * the single zone's pages.
2075 */
2076 void drain_local_pages(struct zone *zone)
2077 {
2078 int cpu = smp_processor_id();
2079
2080 if (zone)
2081 drain_pages_zone(cpu, zone);
2082 else
2083 drain_pages(cpu);
2084 }
2085
2086 /*
2087 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2088 *
2089 * When zone parameter is non-NULL, spill just the single zone's pages.
2090 *
2091 * Note that this code is protected against sending an IPI to an offline
2092 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2093 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2094 * nothing keeps CPUs from showing up after we populated the cpumask and
2095 * before the call to on_each_cpu_mask().
2096 */
2097 void drain_all_pages(struct zone *zone)
2098 {
2099 int cpu;
2100
2101 /*
2102 * Allocate in the BSS so we wont require allocation in
2103 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2104 */
2105 static cpumask_t cpus_with_pcps;
2106
2107 /*
2108 * We don't care about racing with CPU hotplug event
2109 * as offline notification will cause the notified
2110 * cpu to drain that CPU pcps and on_each_cpu_mask
2111 * disables preemption as part of its processing
2112 */
2113 for_each_online_cpu(cpu) {
2114 struct per_cpu_pageset *pcp;
2115 struct zone *z;
2116 bool has_pcps = false;
2117
2118 if (zone) {
2119 pcp = per_cpu_ptr(zone->pageset, cpu);
2120 if (pcp->pcp.count)
2121 has_pcps = true;
2122 } else {
2123 for_each_populated_zone(z) {
2124 pcp = per_cpu_ptr(z->pageset, cpu);
2125 if (pcp->pcp.count) {
2126 has_pcps = true;
2127 break;
2128 }
2129 }
2130 }
2131
2132 if (has_pcps)
2133 cpumask_set_cpu(cpu, &cpus_with_pcps);
2134 else
2135 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2136 }
2137 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2138 zone, 1);
2139 }
2140
2141 #ifdef CONFIG_HIBERNATION
2142
2143 void mark_free_pages(struct zone *zone)
2144 {
2145 unsigned long pfn, max_zone_pfn;
2146 unsigned long flags;
2147 unsigned int order, t;
2148 struct page *page;
2149
2150 if (zone_is_empty(zone))
2151 return;
2152
2153 spin_lock_irqsave(&zone->lock, flags);
2154
2155 max_zone_pfn = zone_end_pfn(zone);
2156 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2157 if (pfn_valid(pfn)) {
2158 page = pfn_to_page(pfn);
2159 if (!swsusp_page_is_forbidden(page))
2160 swsusp_unset_page_free(page);
2161 }
2162
2163 for_each_migratetype_order(order, t) {
2164 list_for_each_entry(page,
2165 &zone->free_area[order].free_list[t], lru) {
2166 unsigned long i;
2167
2168 pfn = page_to_pfn(page);
2169 for (i = 0; i < (1UL << order); i++)
2170 swsusp_set_page_free(pfn_to_page(pfn + i));
2171 }
2172 }
2173 spin_unlock_irqrestore(&zone->lock, flags);
2174 }
2175 #endif /* CONFIG_PM */
2176
2177 /*
2178 * Free a 0-order page
2179 * cold == true ? free a cold page : free a hot page
2180 */
2181 void free_hot_cold_page(struct page *page, bool cold)
2182 {
2183 struct zone *zone = page_zone(page);
2184 struct per_cpu_pages *pcp;
2185 unsigned long flags;
2186 unsigned long pfn = page_to_pfn(page);
2187 int migratetype;
2188
2189 if (!free_pages_prepare(page, 0))
2190 return;
2191
2192 migratetype = get_pfnblock_migratetype(page, pfn);
2193 set_pcppage_migratetype(page, migratetype);
2194 local_irq_save(flags);
2195 __count_vm_event(PGFREE);
2196
2197 /*
2198 * We only track unmovable, reclaimable and movable on pcp lists.
2199 * Free ISOLATE pages back to the allocator because they are being
2200 * offlined but treat RESERVE as movable pages so we can get those
2201 * areas back if necessary. Otherwise, we may have to free
2202 * excessively into the page allocator
2203 */
2204 if (migratetype >= MIGRATE_PCPTYPES) {
2205 if (unlikely(is_migrate_isolate(migratetype))) {
2206 free_one_page(zone, page, pfn, 0, migratetype);
2207 goto out;
2208 }
2209 migratetype = MIGRATE_MOVABLE;
2210 }
2211
2212 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2213 if (!cold)
2214 list_add(&page->lru, &pcp->lists[migratetype]);
2215 else
2216 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2217 pcp->count++;
2218 if (pcp->count >= pcp->high) {
2219 unsigned long batch = READ_ONCE(pcp->batch);
2220 free_pcppages_bulk(zone, batch, pcp);
2221 pcp->count -= batch;
2222 }
2223
2224 out:
2225 local_irq_restore(flags);
2226 }
2227
2228 /*
2229 * Free a list of 0-order pages
2230 */
2231 void free_hot_cold_page_list(struct list_head *list, bool cold)
2232 {
2233 struct page *page, *next;
2234
2235 list_for_each_entry_safe(page, next, list, lru) {
2236 trace_mm_page_free_batched(page, cold);
2237 free_hot_cold_page(page, cold);
2238 }
2239 }
2240
2241 /*
2242 * split_page takes a non-compound higher-order page, and splits it into
2243 * n (1<<order) sub-pages: page[0..n]
2244 * Each sub-page must be freed individually.
2245 *
2246 * Note: this is probably too low level an operation for use in drivers.
2247 * Please consult with lkml before using this in your driver.
2248 */
2249 void split_page(struct page *page, unsigned int order)
2250 {
2251 int i;
2252 gfp_t gfp_mask;
2253
2254 VM_BUG_ON_PAGE(PageCompound(page), page);
2255 VM_BUG_ON_PAGE(!page_count(page), page);
2256
2257 #ifdef CONFIG_KMEMCHECK
2258 /*
2259 * Split shadow pages too, because free(page[0]) would
2260 * otherwise free the whole shadow.
2261 */
2262 if (kmemcheck_page_is_tracked(page))
2263 split_page(virt_to_page(page[0].shadow), order);
2264 #endif
2265
2266 gfp_mask = get_page_owner_gfp(page);
2267 set_page_owner(page, 0, gfp_mask);
2268 for (i = 1; i < (1 << order); i++) {
2269 set_page_refcounted(page + i);
2270 set_page_owner(page + i, 0, gfp_mask);
2271 }
2272 }
2273 EXPORT_SYMBOL_GPL(split_page);
2274
2275 int __isolate_free_page(struct page *page, unsigned int order)
2276 {
2277 unsigned long watermark;
2278 struct zone *zone;
2279 int mt;
2280
2281 BUG_ON(!PageBuddy(page));
2282
2283 zone = page_zone(page);
2284 mt = get_pageblock_migratetype(page);
2285
2286 if (!is_migrate_isolate(mt)) {
2287 /* Obey watermarks as if the page was being allocated */
2288 watermark = low_wmark_pages(zone) + (1 << order);
2289 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2290 return 0;
2291
2292 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2293 }
2294
2295 /* Remove page from free list */
2296 list_del(&page->lru);
2297 zone->free_area[order].nr_free--;
2298 rmv_page_order(page);
2299
2300 set_page_owner(page, order, __GFP_MOVABLE);
2301
2302 /* Set the pageblock if the isolated page is at least a pageblock */
2303 if (order >= pageblock_order - 1) {
2304 struct page *endpage = page + (1 << order) - 1;
2305 for (; page < endpage; page += pageblock_nr_pages) {
2306 int mt = get_pageblock_migratetype(page);
2307 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2308 set_pageblock_migratetype(page,
2309 MIGRATE_MOVABLE);
2310 }
2311 }
2312
2313
2314 return 1UL << order;
2315 }
2316
2317 /*
2318 * Similar to split_page except the page is already free. As this is only
2319 * being used for migration, the migratetype of the block also changes.
2320 * As this is called with interrupts disabled, the caller is responsible
2321 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2322 * are enabled.
2323 *
2324 * Note: this is probably too low level an operation for use in drivers.
2325 * Please consult with lkml before using this in your driver.
2326 */
2327 int split_free_page(struct page *page)
2328 {
2329 unsigned int order;
2330 int nr_pages;
2331
2332 order = page_order(page);
2333
2334 nr_pages = __isolate_free_page(page, order);
2335 if (!nr_pages)
2336 return 0;
2337
2338 /* Split into individual pages */
2339 set_page_refcounted(page);
2340 split_page(page, order);
2341 return nr_pages;
2342 }
2343
2344 /*
2345 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2346 */
2347 static inline
2348 struct page *buffered_rmqueue(struct zone *preferred_zone,
2349 struct zone *zone, unsigned int order,
2350 gfp_t gfp_flags, int alloc_flags, int migratetype)
2351 {
2352 unsigned long flags;
2353 struct page *page;
2354 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2355
2356 if (likely(order == 0)) {
2357 struct per_cpu_pages *pcp;
2358 struct list_head *list;
2359
2360 local_irq_save(flags);
2361 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2362 list = &pcp->lists[migratetype];
2363 if (list_empty(list)) {
2364 pcp->count += rmqueue_bulk(zone, 0,
2365 pcp->batch, list,
2366 migratetype, cold);
2367 if (unlikely(list_empty(list)))
2368 goto failed;
2369 }
2370
2371 if (cold)
2372 page = list_last_entry(list, struct page, lru);
2373 else
2374 page = list_first_entry(list, struct page, lru);
2375
2376 list_del(&page->lru);
2377 pcp->count--;
2378 } else {
2379 /*
2380 * We most definitely don't want callers attempting to
2381 * allocate greater than order-1 page units with __GFP_NOFAIL.
2382 */
2383 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2384 spin_lock_irqsave(&zone->lock, flags);
2385
2386 page = NULL;
2387 if (alloc_flags & ALLOC_HARDER) {
2388 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2389 if (page)
2390 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2391 }
2392 if (!page)
2393 page = __rmqueue(zone, order, migratetype);
2394 spin_unlock(&zone->lock);
2395 if (!page)
2396 goto failed;
2397 __mod_zone_freepage_state(zone, -(1 << order),
2398 get_pcppage_migratetype(page));
2399 }
2400
2401 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2402 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2403 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2404 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2405
2406 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2407 zone_statistics(preferred_zone, zone, gfp_flags);
2408 local_irq_restore(flags);
2409
2410 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2411 return page;
2412
2413 failed:
2414 local_irq_restore(flags);
2415 return NULL;
2416 }
2417
2418 #ifdef CONFIG_FAIL_PAGE_ALLOC
2419
2420 static struct {
2421 struct fault_attr attr;
2422
2423 bool ignore_gfp_highmem;
2424 bool ignore_gfp_reclaim;
2425 u32 min_order;
2426 } fail_page_alloc = {
2427 .attr = FAULT_ATTR_INITIALIZER,
2428 .ignore_gfp_reclaim = true,
2429 .ignore_gfp_highmem = true,
2430 .min_order = 1,
2431 };
2432
2433 static int __init setup_fail_page_alloc(char *str)
2434 {
2435 return setup_fault_attr(&fail_page_alloc.attr, str);
2436 }
2437 __setup("fail_page_alloc=", setup_fail_page_alloc);
2438
2439 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2440 {
2441 if (order < fail_page_alloc.min_order)
2442 return false;
2443 if (gfp_mask & __GFP_NOFAIL)
2444 return false;
2445 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2446 return false;
2447 if (fail_page_alloc.ignore_gfp_reclaim &&
2448 (gfp_mask & __GFP_DIRECT_RECLAIM))
2449 return false;
2450
2451 return should_fail(&fail_page_alloc.attr, 1 << order);
2452 }
2453
2454 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2455
2456 static int __init fail_page_alloc_debugfs(void)
2457 {
2458 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2459 struct dentry *dir;
2460
2461 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2462 &fail_page_alloc.attr);
2463 if (IS_ERR(dir))
2464 return PTR_ERR(dir);
2465
2466 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2467 &fail_page_alloc.ignore_gfp_reclaim))
2468 goto fail;
2469 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2470 &fail_page_alloc.ignore_gfp_highmem))
2471 goto fail;
2472 if (!debugfs_create_u32("min-order", mode, dir,
2473 &fail_page_alloc.min_order))
2474 goto fail;
2475
2476 return 0;
2477 fail:
2478 debugfs_remove_recursive(dir);
2479
2480 return -ENOMEM;
2481 }
2482
2483 late_initcall(fail_page_alloc_debugfs);
2484
2485 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2486
2487 #else /* CONFIG_FAIL_PAGE_ALLOC */
2488
2489 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2490 {
2491 return false;
2492 }
2493
2494 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2495
2496 /*
2497 * Return true if free base pages are above 'mark'. For high-order checks it
2498 * will return true of the order-0 watermark is reached and there is at least
2499 * one free page of a suitable size. Checking now avoids taking the zone lock
2500 * to check in the allocation paths if no pages are free.
2501 */
2502 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2503 unsigned long mark, int classzone_idx, int alloc_flags,
2504 long free_pages)
2505 {
2506 long min = mark;
2507 int o;
2508 const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2509
2510 /* free_pages may go negative - that's OK */
2511 free_pages -= (1 << order) - 1;
2512
2513 if (alloc_flags & ALLOC_HIGH)
2514 min -= min / 2;
2515
2516 /*
2517 * If the caller does not have rights to ALLOC_HARDER then subtract
2518 * the high-atomic reserves. This will over-estimate the size of the
2519 * atomic reserve but it avoids a search.
2520 */
2521 if (likely(!alloc_harder))
2522 free_pages -= z->nr_reserved_highatomic;
2523 else
2524 min -= min / 4;
2525
2526 #ifdef CONFIG_CMA
2527 /* If allocation can't use CMA areas don't use free CMA pages */
2528 if (!(alloc_flags & ALLOC_CMA))
2529 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2530 #endif
2531
2532 /*
2533 * Check watermarks for an order-0 allocation request. If these
2534 * are not met, then a high-order request also cannot go ahead
2535 * even if a suitable page happened to be free.
2536 */
2537 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2538 return false;
2539
2540 /* If this is an order-0 request then the watermark is fine */
2541 if (!order)
2542 return true;
2543
2544 /* For a high-order request, check at least one suitable page is free */
2545 for (o = order; o < MAX_ORDER; o++) {
2546 struct free_area *area = &z->free_area[o];
2547 int mt;
2548
2549 if (!area->nr_free)
2550 continue;
2551
2552 if (alloc_harder)
2553 return true;
2554
2555 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2556 if (!list_empty(&area->free_list[mt]))
2557 return true;
2558 }
2559
2560 #ifdef CONFIG_CMA
2561 if ((alloc_flags & ALLOC_CMA) &&
2562 !list_empty(&area->free_list[MIGRATE_CMA])) {
2563 return true;
2564 }
2565 #endif
2566 }
2567 return false;
2568 }
2569
2570 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2571 int classzone_idx, int alloc_flags)
2572 {
2573 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2574 zone_page_state(z, NR_FREE_PAGES));
2575 }
2576
2577 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2578 unsigned long mark, int classzone_idx)
2579 {
2580 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2581
2582 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2583 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2584
2585 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2586 free_pages);
2587 }
2588
2589 #ifdef CONFIG_NUMA
2590 static bool zone_local(struct zone *local_zone, struct zone *zone)
2591 {
2592 return local_zone->node == zone->node;
2593 }
2594
2595 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2596 {
2597 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2598 RECLAIM_DISTANCE;
2599 }
2600 #else /* CONFIG_NUMA */
2601 static bool zone_local(struct zone *local_zone, struct zone *zone)
2602 {
2603 return true;
2604 }
2605
2606 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2607 {
2608 return true;
2609 }
2610 #endif /* CONFIG_NUMA */
2611
2612 static void reset_alloc_batches(struct zone *preferred_zone)
2613 {
2614 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2615
2616 do {
2617 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2618 high_wmark_pages(zone) - low_wmark_pages(zone) -
2619 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2620 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2621 } while (zone++ != preferred_zone);
2622 }
2623
2624 /*
2625 * get_page_from_freelist goes through the zonelist trying to allocate
2626 * a page.
2627 */
2628 static struct page *
2629 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2630 const struct alloc_context *ac)
2631 {
2632 struct zonelist *zonelist = ac->zonelist;
2633 struct zoneref *z;
2634 struct page *page = NULL;
2635 struct zone *zone;
2636 int nr_fair_skipped = 0;
2637 bool zonelist_rescan;
2638
2639 zonelist_scan:
2640 zonelist_rescan = false;
2641
2642 /*
2643 * Scan zonelist, looking for a zone with enough free.
2644 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2645 */
2646 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2647 ac->nodemask) {
2648 unsigned long mark;
2649
2650 if (cpusets_enabled() &&
2651 (alloc_flags & ALLOC_CPUSET) &&
2652 !cpuset_zone_allowed(zone, gfp_mask))
2653 continue;
2654 /*
2655 * Distribute pages in proportion to the individual
2656 * zone size to ensure fair page aging. The zone a
2657 * page was allocated in should have no effect on the
2658 * time the page has in memory before being reclaimed.
2659 */
2660 if (alloc_flags & ALLOC_FAIR) {
2661 if (!zone_local(ac->preferred_zone, zone))
2662 break;
2663 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2664 nr_fair_skipped++;
2665 continue;
2666 }
2667 }
2668 /*
2669 * When allocating a page cache page for writing, we
2670 * want to get it from a zone that is within its dirty
2671 * limit, such that no single zone holds more than its
2672 * proportional share of globally allowed dirty pages.
2673 * The dirty limits take into account the zone's
2674 * lowmem reserves and high watermark so that kswapd
2675 * should be able to balance it without having to
2676 * write pages from its LRU list.
2677 *
2678 * This may look like it could increase pressure on
2679 * lower zones by failing allocations in higher zones
2680 * before they are full. But the pages that do spill
2681 * over are limited as the lower zones are protected
2682 * by this very same mechanism. It should not become
2683 * a practical burden to them.
2684 *
2685 * XXX: For now, allow allocations to potentially
2686 * exceed the per-zone dirty limit in the slowpath
2687 * (spread_dirty_pages unset) before going into reclaim,
2688 * which is important when on a NUMA setup the allowed
2689 * zones are together not big enough to reach the
2690 * global limit. The proper fix for these situations
2691 * will require awareness of zones in the
2692 * dirty-throttling and the flusher threads.
2693 */
2694 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2695 continue;
2696
2697 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2698 if (!zone_watermark_ok(zone, order, mark,
2699 ac->classzone_idx, alloc_flags)) {
2700 int ret;
2701
2702 /* Checked here to keep the fast path fast */
2703 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2704 if (alloc_flags & ALLOC_NO_WATERMARKS)
2705 goto try_this_zone;
2706
2707 if (zone_reclaim_mode == 0 ||
2708 !zone_allows_reclaim(ac->preferred_zone, zone))
2709 continue;
2710
2711 ret = zone_reclaim(zone, gfp_mask, order);
2712 switch (ret) {
2713 case ZONE_RECLAIM_NOSCAN:
2714 /* did not scan */
2715 continue;
2716 case ZONE_RECLAIM_FULL:
2717 /* scanned but unreclaimable */
2718 continue;
2719 default:
2720 /* did we reclaim enough */
2721 if (zone_watermark_ok(zone, order, mark,
2722 ac->classzone_idx, alloc_flags))
2723 goto try_this_zone;
2724
2725 continue;
2726 }
2727 }
2728
2729 try_this_zone:
2730 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2731 gfp_mask, alloc_flags, ac->migratetype);
2732 if (page) {
2733 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2734 goto try_this_zone;
2735
2736 /*
2737 * If this is a high-order atomic allocation then check
2738 * if the pageblock should be reserved for the future
2739 */
2740 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2741 reserve_highatomic_pageblock(page, zone, order);
2742
2743 return page;
2744 }
2745 }
2746
2747 /*
2748 * The first pass makes sure allocations are spread fairly within the
2749 * local node. However, the local node might have free pages left
2750 * after the fairness batches are exhausted, and remote zones haven't
2751 * even been considered yet. Try once more without fairness, and
2752 * include remote zones now, before entering the slowpath and waking
2753 * kswapd: prefer spilling to a remote zone over swapping locally.
2754 */
2755 if (alloc_flags & ALLOC_FAIR) {
2756 alloc_flags &= ~ALLOC_FAIR;
2757 if (nr_fair_skipped) {
2758 zonelist_rescan = true;
2759 reset_alloc_batches(ac->preferred_zone);
2760 }
2761 if (nr_online_nodes > 1)
2762 zonelist_rescan = true;
2763 }
2764
2765 if (zonelist_rescan)
2766 goto zonelist_scan;
2767
2768 return NULL;
2769 }
2770
2771 /*
2772 * Large machines with many possible nodes should not always dump per-node
2773 * meminfo in irq context.
2774 */
2775 static inline bool should_suppress_show_mem(void)
2776 {
2777 bool ret = false;
2778
2779 #if NODES_SHIFT > 8
2780 ret = in_interrupt();
2781 #endif
2782 return ret;
2783 }
2784
2785 static DEFINE_RATELIMIT_STATE(nopage_rs,
2786 DEFAULT_RATELIMIT_INTERVAL,
2787 DEFAULT_RATELIMIT_BURST);
2788
2789 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2790 {
2791 unsigned int filter = SHOW_MEM_FILTER_NODES;
2792
2793 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2794 debug_guardpage_minorder() > 0)
2795 return;
2796
2797 /*
2798 * This documents exceptions given to allocations in certain
2799 * contexts that are allowed to allocate outside current's set
2800 * of allowed nodes.
2801 */
2802 if (!(gfp_mask & __GFP_NOMEMALLOC))
2803 if (test_thread_flag(TIF_MEMDIE) ||
2804 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2805 filter &= ~SHOW_MEM_FILTER_NODES;
2806 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2807 filter &= ~SHOW_MEM_FILTER_NODES;
2808
2809 if (fmt) {
2810 struct va_format vaf;
2811 va_list args;
2812
2813 va_start(args, fmt);
2814
2815 vaf.fmt = fmt;
2816 vaf.va = &args;
2817
2818 pr_warn("%pV", &vaf);
2819
2820 va_end(args);
2821 }
2822
2823 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2824 current->comm, order, gfp_mask, &gfp_mask);
2825 dump_stack();
2826 if (!should_suppress_show_mem())
2827 show_mem(filter);
2828 }
2829
2830 static inline struct page *
2831 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2832 const struct alloc_context *ac, unsigned long *did_some_progress)
2833 {
2834 struct oom_control oc = {
2835 .zonelist = ac->zonelist,
2836 .nodemask = ac->nodemask,
2837 .gfp_mask = gfp_mask,
2838 .order = order,
2839 };
2840 struct page *page;
2841
2842 *did_some_progress = 0;
2843
2844 /*
2845 * Acquire the oom lock. If that fails, somebody else is
2846 * making progress for us.
2847 */
2848 if (!mutex_trylock(&oom_lock)) {
2849 *did_some_progress = 1;
2850 schedule_timeout_uninterruptible(1);
2851 return NULL;
2852 }
2853
2854 /*
2855 * Go through the zonelist yet one more time, keep very high watermark
2856 * here, this is only to catch a parallel oom killing, we must fail if
2857 * we're still under heavy pressure.
2858 */
2859 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2860 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2861 if (page)
2862 goto out;
2863
2864 if (!(gfp_mask & __GFP_NOFAIL)) {
2865 /* Coredumps can quickly deplete all memory reserves */
2866 if (current->flags & PF_DUMPCORE)
2867 goto out;
2868 /* The OOM killer will not help higher order allocs */
2869 if (order > PAGE_ALLOC_COSTLY_ORDER)
2870 goto out;
2871 /* The OOM killer does not needlessly kill tasks for lowmem */
2872 if (ac->high_zoneidx < ZONE_NORMAL)
2873 goto out;
2874 /* The OOM killer does not compensate for IO-less reclaim */
2875 if (!(gfp_mask & __GFP_FS)) {
2876 /*
2877 * XXX: Page reclaim didn't yield anything,
2878 * and the OOM killer can't be invoked, but
2879 * keep looping as per tradition.
2880 *
2881 * But do not keep looping if oom_killer_disable()
2882 * was already called, for the system is trying to
2883 * enter a quiescent state during suspend.
2884 */
2885 *did_some_progress = !oom_killer_disabled;
2886 goto out;
2887 }
2888 if (pm_suspended_storage())
2889 goto out;
2890 /* The OOM killer may not free memory on a specific node */
2891 if (gfp_mask & __GFP_THISNODE)
2892 goto out;
2893 }
2894 /* Exhausted what can be done so it's blamo time */
2895 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2896 *did_some_progress = 1;
2897
2898 if (gfp_mask & __GFP_NOFAIL) {
2899 page = get_page_from_freelist(gfp_mask, order,
2900 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2901 /*
2902 * fallback to ignore cpuset restriction if our nodes
2903 * are depleted
2904 */
2905 if (!page)
2906 page = get_page_from_freelist(gfp_mask, order,
2907 ALLOC_NO_WATERMARKS, ac);
2908 }
2909 }
2910 out:
2911 mutex_unlock(&oom_lock);
2912 return page;
2913 }
2914
2915 #ifdef CONFIG_COMPACTION
2916 /* Try memory compaction for high-order allocations before reclaim */
2917 static struct page *
2918 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2919 int alloc_flags, const struct alloc_context *ac,
2920 enum migrate_mode mode, int *contended_compaction,
2921 bool *deferred_compaction)
2922 {
2923 unsigned long compact_result;
2924 struct page *page;
2925
2926 if (!order)
2927 return NULL;
2928
2929 current->flags |= PF_MEMALLOC;
2930 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2931 mode, contended_compaction);
2932 current->flags &= ~PF_MEMALLOC;
2933
2934 switch (compact_result) {
2935 case COMPACT_DEFERRED:
2936 *deferred_compaction = true;
2937 /* fall-through */
2938 case COMPACT_SKIPPED:
2939 return NULL;
2940 default:
2941 break;
2942 }
2943
2944 /*
2945 * At least in one zone compaction wasn't deferred or skipped, so let's
2946 * count a compaction stall
2947 */
2948 count_vm_event(COMPACTSTALL);
2949
2950 page = get_page_from_freelist(gfp_mask, order,
2951 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2952
2953 if (page) {
2954 struct zone *zone = page_zone(page);
2955
2956 zone->compact_blockskip_flush = false;
2957 compaction_defer_reset(zone, order, true);
2958 count_vm_event(COMPACTSUCCESS);
2959 return page;
2960 }
2961
2962 /*
2963 * It's bad if compaction run occurs and fails. The most likely reason
2964 * is that pages exist, but not enough to satisfy watermarks.
2965 */
2966 count_vm_event(COMPACTFAIL);
2967
2968 cond_resched();
2969
2970 return NULL;
2971 }
2972 #else
2973 static inline struct page *
2974 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2975 int alloc_flags, const struct alloc_context *ac,
2976 enum migrate_mode mode, int *contended_compaction,
2977 bool *deferred_compaction)
2978 {
2979 return NULL;
2980 }
2981 #endif /* CONFIG_COMPACTION */
2982
2983 /* Perform direct synchronous page reclaim */
2984 static int
2985 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2986 const struct alloc_context *ac)
2987 {
2988 struct reclaim_state reclaim_state;
2989 int progress;
2990
2991 cond_resched();
2992
2993 /* We now go into synchronous reclaim */
2994 cpuset_memory_pressure_bump();
2995 current->flags |= PF_MEMALLOC;
2996 lockdep_set_current_reclaim_state(gfp_mask);
2997 reclaim_state.reclaimed_slab = 0;
2998 current->reclaim_state = &reclaim_state;
2999
3000 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3001 ac->nodemask);
3002
3003 current->reclaim_state = NULL;
3004 lockdep_clear_current_reclaim_state();
3005 current->flags &= ~PF_MEMALLOC;
3006
3007 cond_resched();
3008
3009 return progress;
3010 }
3011
3012 /* The really slow allocator path where we enter direct reclaim */
3013 static inline struct page *
3014 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3015 int alloc_flags, const struct alloc_context *ac,
3016 unsigned long *did_some_progress)
3017 {
3018 struct page *page = NULL;
3019 bool drained = false;
3020
3021 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3022 if (unlikely(!(*did_some_progress)))
3023 return NULL;
3024
3025 retry:
3026 page = get_page_from_freelist(gfp_mask, order,
3027 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3028
3029 /*
3030 * If an allocation failed after direct reclaim, it could be because
3031 * pages are pinned on the per-cpu lists or in high alloc reserves.
3032 * Shrink them them and try again
3033 */
3034 if (!page && !drained) {
3035 unreserve_highatomic_pageblock(ac);
3036 drain_all_pages(NULL);
3037 drained = true;
3038 goto retry;
3039 }
3040
3041 return page;
3042 }
3043
3044 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3045 {
3046 struct zoneref *z;
3047 struct zone *zone;
3048
3049 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3050 ac->high_zoneidx, ac->nodemask)
3051 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3052 }
3053
3054 static inline int
3055 gfp_to_alloc_flags(gfp_t gfp_mask)
3056 {
3057 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3058
3059 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3060 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3061
3062 /*
3063 * The caller may dip into page reserves a bit more if the caller
3064 * cannot run direct reclaim, or if the caller has realtime scheduling
3065 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3066 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3067 */
3068 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3069
3070 if (gfp_mask & __GFP_ATOMIC) {
3071 /*
3072 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3073 * if it can't schedule.
3074 */
3075 if (!(gfp_mask & __GFP_NOMEMALLOC))
3076 alloc_flags |= ALLOC_HARDER;
3077 /*
3078 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3079 * comment for __cpuset_node_allowed().
3080 */
3081 alloc_flags &= ~ALLOC_CPUSET;
3082 } else if (unlikely(rt_task(current)) && !in_interrupt())
3083 alloc_flags |= ALLOC_HARDER;
3084
3085 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3086 if (gfp_mask & __GFP_MEMALLOC)
3087 alloc_flags |= ALLOC_NO_WATERMARKS;
3088 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3089 alloc_flags |= ALLOC_NO_WATERMARKS;
3090 else if (!in_interrupt() &&
3091 ((current->flags & PF_MEMALLOC) ||
3092 unlikely(test_thread_flag(TIF_MEMDIE))))
3093 alloc_flags |= ALLOC_NO_WATERMARKS;
3094 }
3095 #ifdef CONFIG_CMA
3096 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3097 alloc_flags |= ALLOC_CMA;
3098 #endif
3099 return alloc_flags;
3100 }
3101
3102 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3103 {
3104 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3105 }
3106
3107 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3108 {
3109 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3110 }
3111
3112 static inline struct page *
3113 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3114 struct alloc_context *ac)
3115 {
3116 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3117 struct page *page = NULL;
3118 int alloc_flags;
3119 unsigned long pages_reclaimed = 0;
3120 unsigned long did_some_progress;
3121 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3122 bool deferred_compaction = false;
3123 int contended_compaction = COMPACT_CONTENDED_NONE;
3124
3125 /*
3126 * In the slowpath, we sanity check order to avoid ever trying to
3127 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3128 * be using allocators in order of preference for an area that is
3129 * too large.
3130 */
3131 if (order >= MAX_ORDER) {
3132 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3133 return NULL;
3134 }
3135
3136 /*
3137 * We also sanity check to catch abuse of atomic reserves being used by
3138 * callers that are not in atomic context.
3139 */
3140 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3141 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3142 gfp_mask &= ~__GFP_ATOMIC;
3143
3144 retry:
3145 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3146 wake_all_kswapds(order, ac);
3147
3148 /*
3149 * OK, we're below the kswapd watermark and have kicked background
3150 * reclaim. Now things get more complex, so set up alloc_flags according
3151 * to how we want to proceed.
3152 */
3153 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3154
3155 /*
3156 * Find the true preferred zone if the allocation is unconstrained by
3157 * cpusets.
3158 */
3159 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3160 struct zoneref *preferred_zoneref;
3161 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3162 ac->high_zoneidx, NULL, &ac->preferred_zone);
3163 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3164 }
3165
3166 /* This is the last chance, in general, before the goto nopage. */
3167 page = get_page_from_freelist(gfp_mask, order,
3168 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3169 if (page)
3170 goto got_pg;
3171
3172 /* Allocate without watermarks if the context allows */
3173 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3174 /*
3175 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3176 * the allocation is high priority and these type of
3177 * allocations are system rather than user orientated
3178 */
3179 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3180 page = get_page_from_freelist(gfp_mask, order,
3181 ALLOC_NO_WATERMARKS, ac);
3182 if (page)
3183 goto got_pg;
3184 }
3185
3186 /* Caller is not willing to reclaim, we can't balance anything */
3187 if (!can_direct_reclaim) {
3188 /*
3189 * All existing users of the __GFP_NOFAIL are blockable, so warn
3190 * of any new users that actually allow this type of allocation
3191 * to fail.
3192 */
3193 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3194 goto nopage;
3195 }
3196
3197 /* Avoid recursion of direct reclaim */
3198 if (current->flags & PF_MEMALLOC) {
3199 /*
3200 * __GFP_NOFAIL request from this context is rather bizarre
3201 * because we cannot reclaim anything and only can loop waiting
3202 * for somebody to do a work for us.
3203 */
3204 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3205 cond_resched();
3206 goto retry;
3207 }
3208 goto nopage;
3209 }
3210
3211 /* Avoid allocations with no watermarks from looping endlessly */
3212 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3213 goto nopage;
3214
3215 /*
3216 * Try direct compaction. The first pass is asynchronous. Subsequent
3217 * attempts after direct reclaim are synchronous
3218 */
3219 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3220 migration_mode,
3221 &contended_compaction,
3222 &deferred_compaction);
3223 if (page)
3224 goto got_pg;
3225
3226 /* Checks for THP-specific high-order allocations */
3227 if (is_thp_gfp_mask(gfp_mask)) {
3228 /*
3229 * If compaction is deferred for high-order allocations, it is
3230 * because sync compaction recently failed. If this is the case
3231 * and the caller requested a THP allocation, we do not want
3232 * to heavily disrupt the system, so we fail the allocation
3233 * instead of entering direct reclaim.
3234 */
3235 if (deferred_compaction)
3236 goto nopage;
3237
3238 /*
3239 * In all zones where compaction was attempted (and not
3240 * deferred or skipped), lock contention has been detected.
3241 * For THP allocation we do not want to disrupt the others
3242 * so we fallback to base pages instead.
3243 */
3244 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3245 goto nopage;
3246
3247 /*
3248 * If compaction was aborted due to need_resched(), we do not
3249 * want to further increase allocation latency, unless it is
3250 * khugepaged trying to collapse.
3251 */
3252 if (contended_compaction == COMPACT_CONTENDED_SCHED
3253 && !(current->flags & PF_KTHREAD))
3254 goto nopage;
3255 }
3256
3257 /*
3258 * It can become very expensive to allocate transparent hugepages at
3259 * fault, so use asynchronous memory compaction for THP unless it is
3260 * khugepaged trying to collapse.
3261 */
3262 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3263 migration_mode = MIGRATE_SYNC_LIGHT;
3264
3265 /* Try direct reclaim and then allocating */
3266 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3267 &did_some_progress);
3268 if (page)
3269 goto got_pg;
3270
3271 /* Do not loop if specifically requested */
3272 if (gfp_mask & __GFP_NORETRY)
3273 goto noretry;
3274
3275 /* Keep reclaiming pages as long as there is reasonable progress */
3276 pages_reclaimed += did_some_progress;
3277 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3278 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3279 /* Wait for some write requests to complete then retry */
3280 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3281 goto retry;
3282 }
3283
3284 /* Reclaim has failed us, start killing things */
3285 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3286 if (page)
3287 goto got_pg;
3288
3289 /* Retry as long as the OOM killer is making progress */
3290 if (did_some_progress)
3291 goto retry;
3292
3293 noretry:
3294 /*
3295 * High-order allocations do not necessarily loop after
3296 * direct reclaim and reclaim/compaction depends on compaction
3297 * being called after reclaim so call directly if necessary
3298 */
3299 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3300 ac, migration_mode,
3301 &contended_compaction,
3302 &deferred_compaction);
3303 if (page)
3304 goto got_pg;
3305 nopage:
3306 warn_alloc_failed(gfp_mask, order, NULL);
3307 got_pg:
3308 return page;
3309 }
3310
3311 /*
3312 * This is the 'heart' of the zoned buddy allocator.
3313 */
3314 struct page *
3315 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3316 struct zonelist *zonelist, nodemask_t *nodemask)
3317 {
3318 struct zoneref *preferred_zoneref;
3319 struct page *page = NULL;
3320 unsigned int cpuset_mems_cookie;
3321 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3322 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3323 struct alloc_context ac = {
3324 .high_zoneidx = gfp_zone(gfp_mask),
3325 .nodemask = nodemask,
3326 .migratetype = gfpflags_to_migratetype(gfp_mask),
3327 };
3328
3329 gfp_mask &= gfp_allowed_mask;
3330
3331 lockdep_trace_alloc(gfp_mask);
3332
3333 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3334
3335 if (should_fail_alloc_page(gfp_mask, order))
3336 return NULL;
3337
3338 /*
3339 * Check the zones suitable for the gfp_mask contain at least one
3340 * valid zone. It's possible to have an empty zonelist as a result
3341 * of __GFP_THISNODE and a memoryless node
3342 */
3343 if (unlikely(!zonelist->_zonerefs->zone))
3344 return NULL;
3345
3346 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3347 alloc_flags |= ALLOC_CMA;
3348
3349 retry_cpuset:
3350 cpuset_mems_cookie = read_mems_allowed_begin();
3351
3352 /* We set it here, as __alloc_pages_slowpath might have changed it */
3353 ac.zonelist = zonelist;
3354
3355 /* Dirty zone balancing only done in the fast path */
3356 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3357
3358 /* The preferred zone is used for statistics later */
3359 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3360 ac.nodemask ? : &cpuset_current_mems_allowed,
3361 &ac.preferred_zone);
3362 if (!ac.preferred_zone)
3363 goto out;
3364 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3365
3366 /* First allocation attempt */
3367 alloc_mask = gfp_mask|__GFP_HARDWALL;
3368 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3369 if (unlikely(!page)) {
3370 /*
3371 * Runtime PM, block IO and its error handling path
3372 * can deadlock because I/O on the device might not
3373 * complete.
3374 */
3375 alloc_mask = memalloc_noio_flags(gfp_mask);
3376 ac.spread_dirty_pages = false;
3377
3378 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3379 }
3380
3381 if (kmemcheck_enabled && page)
3382 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3383
3384 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3385
3386 out:
3387 /*
3388 * When updating a task's mems_allowed, it is possible to race with
3389 * parallel threads in such a way that an allocation can fail while
3390 * the mask is being updated. If a page allocation is about to fail,
3391 * check if the cpuset changed during allocation and if so, retry.
3392 */
3393 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3394 goto retry_cpuset;
3395
3396 return page;
3397 }
3398 EXPORT_SYMBOL(__alloc_pages_nodemask);
3399
3400 /*
3401 * Common helper functions.
3402 */
3403 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3404 {
3405 struct page *page;
3406
3407 /*
3408 * __get_free_pages() returns a 32-bit address, which cannot represent
3409 * a highmem page
3410 */
3411 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3412
3413 page = alloc_pages(gfp_mask, order);
3414 if (!page)
3415 return 0;
3416 return (unsigned long) page_address(page);
3417 }
3418 EXPORT_SYMBOL(__get_free_pages);
3419
3420 unsigned long get_zeroed_page(gfp_t gfp_mask)
3421 {
3422 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3423 }
3424 EXPORT_SYMBOL(get_zeroed_page);
3425
3426 void __free_pages(struct page *page, unsigned int order)
3427 {
3428 if (put_page_testzero(page)) {
3429 if (order == 0)
3430 free_hot_cold_page(page, false);
3431 else
3432 __free_pages_ok(page, order);
3433 }
3434 }
3435
3436 EXPORT_SYMBOL(__free_pages);
3437
3438 void free_pages(unsigned long addr, unsigned int order)
3439 {
3440 if (addr != 0) {
3441 VM_BUG_ON(!virt_addr_valid((void *)addr));
3442 __free_pages(virt_to_page((void *)addr), order);
3443 }
3444 }
3445
3446 EXPORT_SYMBOL(free_pages);
3447
3448 /*
3449 * Page Fragment:
3450 * An arbitrary-length arbitrary-offset area of memory which resides
3451 * within a 0 or higher order page. Multiple fragments within that page
3452 * are individually refcounted, in the page's reference counter.
3453 *
3454 * The page_frag functions below provide a simple allocation framework for
3455 * page fragments. This is used by the network stack and network device
3456 * drivers to provide a backing region of memory for use as either an
3457 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3458 */
3459 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3460 gfp_t gfp_mask)
3461 {
3462 struct page *page = NULL;
3463 gfp_t gfp = gfp_mask;
3464
3465 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3466 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3467 __GFP_NOMEMALLOC;
3468 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3469 PAGE_FRAG_CACHE_MAX_ORDER);
3470 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3471 #endif
3472 if (unlikely(!page))
3473 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3474
3475 nc->va = page ? page_address(page) : NULL;
3476
3477 return page;
3478 }
3479
3480 void *__alloc_page_frag(struct page_frag_cache *nc,
3481 unsigned int fragsz, gfp_t gfp_mask)
3482 {
3483 unsigned int size = PAGE_SIZE;
3484 struct page *page;
3485 int offset;
3486
3487 if (unlikely(!nc->va)) {
3488 refill:
3489 page = __page_frag_refill(nc, gfp_mask);
3490 if (!page)
3491 return NULL;
3492
3493 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3494 /* if size can vary use size else just use PAGE_SIZE */
3495 size = nc->size;
3496 #endif
3497 /* Even if we own the page, we do not use atomic_set().
3498 * This would break get_page_unless_zero() users.
3499 */
3500 page_ref_add(page, size - 1);
3501
3502 /* reset page count bias and offset to start of new frag */
3503 nc->pfmemalloc = page_is_pfmemalloc(page);
3504 nc->pagecnt_bias = size;
3505 nc->offset = size;
3506 }
3507
3508 offset = nc->offset - fragsz;
3509 if (unlikely(offset < 0)) {
3510 page = virt_to_page(nc->va);
3511
3512 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3513 goto refill;
3514
3515 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3516 /* if size can vary use size else just use PAGE_SIZE */
3517 size = nc->size;
3518 #endif
3519 /* OK, page count is 0, we can safely set it */
3520 set_page_count(page, size);
3521
3522 /* reset page count bias and offset to start of new frag */
3523 nc->pagecnt_bias = size;
3524 offset = size - fragsz;
3525 }
3526
3527 nc->pagecnt_bias--;
3528 nc->offset = offset;
3529
3530 return nc->va + offset;
3531 }
3532 EXPORT_SYMBOL(__alloc_page_frag);
3533
3534 /*
3535 * Frees a page fragment allocated out of either a compound or order 0 page.
3536 */
3537 void __free_page_frag(void *addr)
3538 {
3539 struct page *page = virt_to_head_page(addr);
3540
3541 if (unlikely(put_page_testzero(page)))
3542 __free_pages_ok(page, compound_order(page));
3543 }
3544 EXPORT_SYMBOL(__free_page_frag);
3545
3546 /*
3547 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3548 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3549 * equivalent to alloc_pages.
3550 *
3551 * It should be used when the caller would like to use kmalloc, but since the
3552 * allocation is large, it has to fall back to the page allocator.
3553 */
3554 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3555 {
3556 struct page *page;
3557
3558 page = alloc_pages(gfp_mask, order);
3559 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3560 __free_pages(page, order);
3561 page = NULL;
3562 }
3563 return page;
3564 }
3565
3566 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3567 {
3568 struct page *page;
3569
3570 page = alloc_pages_node(nid, gfp_mask, order);
3571 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3572 __free_pages(page, order);
3573 page = NULL;
3574 }
3575 return page;
3576 }
3577
3578 /*
3579 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3580 * alloc_kmem_pages.
3581 */
3582 void __free_kmem_pages(struct page *page, unsigned int order)
3583 {
3584 memcg_kmem_uncharge(page, order);
3585 __free_pages(page, order);
3586 }
3587
3588 void free_kmem_pages(unsigned long addr, unsigned int order)
3589 {
3590 if (addr != 0) {
3591 VM_BUG_ON(!virt_addr_valid((void *)addr));
3592 __free_kmem_pages(virt_to_page((void *)addr), order);
3593 }
3594 }
3595
3596 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3597 size_t size)
3598 {
3599 if (addr) {
3600 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3601 unsigned long used = addr + PAGE_ALIGN(size);
3602
3603 split_page(virt_to_page((void *)addr), order);
3604 while (used < alloc_end) {
3605 free_page(used);
3606 used += PAGE_SIZE;
3607 }
3608 }
3609 return (void *)addr;
3610 }
3611
3612 /**
3613 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3614 * @size: the number of bytes to allocate
3615 * @gfp_mask: GFP flags for the allocation
3616 *
3617 * This function is similar to alloc_pages(), except that it allocates the
3618 * minimum number of pages to satisfy the request. alloc_pages() can only
3619 * allocate memory in power-of-two pages.
3620 *
3621 * This function is also limited by MAX_ORDER.
3622 *
3623 * Memory allocated by this function must be released by free_pages_exact().
3624 */
3625 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3626 {
3627 unsigned int order = get_order(size);
3628 unsigned long addr;
3629
3630 addr = __get_free_pages(gfp_mask, order);
3631 return make_alloc_exact(addr, order, size);
3632 }
3633 EXPORT_SYMBOL(alloc_pages_exact);
3634
3635 /**
3636 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3637 * pages on a node.
3638 * @nid: the preferred node ID where memory should be allocated
3639 * @size: the number of bytes to allocate
3640 * @gfp_mask: GFP flags for the allocation
3641 *
3642 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3643 * back.
3644 */
3645 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3646 {
3647 unsigned int order = get_order(size);
3648 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3649 if (!p)
3650 return NULL;
3651 return make_alloc_exact((unsigned long)page_address(p), order, size);
3652 }
3653
3654 /**
3655 * free_pages_exact - release memory allocated via alloc_pages_exact()
3656 * @virt: the value returned by alloc_pages_exact.
3657 * @size: size of allocation, same value as passed to alloc_pages_exact().
3658 *
3659 * Release the memory allocated by a previous call to alloc_pages_exact.
3660 */
3661 void free_pages_exact(void *virt, size_t size)
3662 {
3663 unsigned long addr = (unsigned long)virt;
3664 unsigned long end = addr + PAGE_ALIGN(size);
3665
3666 while (addr < end) {
3667 free_page(addr);
3668 addr += PAGE_SIZE;
3669 }
3670 }
3671 EXPORT_SYMBOL(free_pages_exact);
3672
3673 /**
3674 * nr_free_zone_pages - count number of pages beyond high watermark
3675 * @offset: The zone index of the highest zone
3676 *
3677 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3678 * high watermark within all zones at or below a given zone index. For each
3679 * zone, the number of pages is calculated as:
3680 * managed_pages - high_pages
3681 */
3682 static unsigned long nr_free_zone_pages(int offset)
3683 {
3684 struct zoneref *z;
3685 struct zone *zone;
3686
3687 /* Just pick one node, since fallback list is circular */
3688 unsigned long sum = 0;
3689
3690 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3691
3692 for_each_zone_zonelist(zone, z, zonelist, offset) {
3693 unsigned long size = zone->managed_pages;
3694 unsigned long high = high_wmark_pages(zone);
3695 if (size > high)
3696 sum += size - high;
3697 }
3698
3699 return sum;
3700 }
3701
3702 /**
3703 * nr_free_buffer_pages - count number of pages beyond high watermark
3704 *
3705 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3706 * watermark within ZONE_DMA and ZONE_NORMAL.
3707 */
3708 unsigned long nr_free_buffer_pages(void)
3709 {
3710 return nr_free_zone_pages(gfp_zone(GFP_USER));
3711 }
3712 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3713
3714 /**
3715 * nr_free_pagecache_pages - count number of pages beyond high watermark
3716 *
3717 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3718 * high watermark within all zones.
3719 */
3720 unsigned long nr_free_pagecache_pages(void)
3721 {
3722 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3723 }
3724
3725 static inline void show_node(struct zone *zone)
3726 {
3727 if (IS_ENABLED(CONFIG_NUMA))
3728 printk("Node %d ", zone_to_nid(zone));
3729 }
3730
3731 long si_mem_available(void)
3732 {
3733 long available;
3734 unsigned long pagecache;
3735 unsigned long wmark_low = 0;
3736 unsigned long pages[NR_LRU_LISTS];
3737 struct zone *zone;
3738 int lru;
3739
3740 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3741 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3742
3743 for_each_zone(zone)
3744 wmark_low += zone->watermark[WMARK_LOW];
3745
3746 /*
3747 * Estimate the amount of memory available for userspace allocations,
3748 * without causing swapping.
3749 */
3750 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3751
3752 /*
3753 * Not all the page cache can be freed, otherwise the system will
3754 * start swapping. Assume at least half of the page cache, or the
3755 * low watermark worth of cache, needs to stay.
3756 */
3757 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3758 pagecache -= min(pagecache / 2, wmark_low);
3759 available += pagecache;
3760
3761 /*
3762 * Part of the reclaimable slab consists of items that are in use,
3763 * and cannot be freed. Cap this estimate at the low watermark.
3764 */
3765 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3766 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3767
3768 if (available < 0)
3769 available = 0;
3770 return available;
3771 }
3772 EXPORT_SYMBOL_GPL(si_mem_available);
3773
3774 void si_meminfo(struct sysinfo *val)
3775 {
3776 val->totalram = totalram_pages;
3777 val->sharedram = global_page_state(NR_SHMEM);
3778 val->freeram = global_page_state(NR_FREE_PAGES);
3779 val->bufferram = nr_blockdev_pages();
3780 val->totalhigh = totalhigh_pages;
3781 val->freehigh = nr_free_highpages();
3782 val->mem_unit = PAGE_SIZE;
3783 }
3784
3785 EXPORT_SYMBOL(si_meminfo);
3786
3787 #ifdef CONFIG_NUMA
3788 void si_meminfo_node(struct sysinfo *val, int nid)
3789 {
3790 int zone_type; /* needs to be signed */
3791 unsigned long managed_pages = 0;
3792 pg_data_t *pgdat = NODE_DATA(nid);
3793
3794 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3795 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3796 val->totalram = managed_pages;
3797 val->sharedram = node_page_state(nid, NR_SHMEM);
3798 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3799 #ifdef CONFIG_HIGHMEM
3800 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3801 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3802 NR_FREE_PAGES);
3803 #else
3804 val->totalhigh = 0;
3805 val->freehigh = 0;
3806 #endif
3807 val->mem_unit = PAGE_SIZE;
3808 }
3809 #endif
3810
3811 /*
3812 * Determine whether the node should be displayed or not, depending on whether
3813 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3814 */
3815 bool skip_free_areas_node(unsigned int flags, int nid)
3816 {
3817 bool ret = false;
3818 unsigned int cpuset_mems_cookie;
3819
3820 if (!(flags & SHOW_MEM_FILTER_NODES))
3821 goto out;
3822
3823 do {
3824 cpuset_mems_cookie = read_mems_allowed_begin();
3825 ret = !node_isset(nid, cpuset_current_mems_allowed);
3826 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3827 out:
3828 return ret;
3829 }
3830
3831 #define K(x) ((x) << (PAGE_SHIFT-10))
3832
3833 static void show_migration_types(unsigned char type)
3834 {
3835 static const char types[MIGRATE_TYPES] = {
3836 [MIGRATE_UNMOVABLE] = 'U',
3837 [MIGRATE_MOVABLE] = 'M',
3838 [MIGRATE_RECLAIMABLE] = 'E',
3839 [MIGRATE_HIGHATOMIC] = 'H',
3840 #ifdef CONFIG_CMA
3841 [MIGRATE_CMA] = 'C',
3842 #endif
3843 #ifdef CONFIG_MEMORY_ISOLATION
3844 [MIGRATE_ISOLATE] = 'I',
3845 #endif
3846 };
3847 char tmp[MIGRATE_TYPES + 1];
3848 char *p = tmp;
3849 int i;
3850
3851 for (i = 0; i < MIGRATE_TYPES; i++) {
3852 if (type & (1 << i))
3853 *p++ = types[i];
3854 }
3855
3856 *p = '\0';
3857 printk("(%s) ", tmp);
3858 }
3859
3860 /*
3861 * Show free area list (used inside shift_scroll-lock stuff)
3862 * We also calculate the percentage fragmentation. We do this by counting the
3863 * memory on each free list with the exception of the first item on the list.
3864 *
3865 * Bits in @filter:
3866 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3867 * cpuset.
3868 */
3869 void show_free_areas(unsigned int filter)
3870 {
3871 unsigned long free_pcp = 0;
3872 int cpu;
3873 struct zone *zone;
3874
3875 for_each_populated_zone(zone) {
3876 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3877 continue;
3878
3879 for_each_online_cpu(cpu)
3880 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3881 }
3882
3883 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3884 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3885 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3886 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3887 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3888 " free:%lu free_pcp:%lu free_cma:%lu\n",
3889 global_page_state(NR_ACTIVE_ANON),
3890 global_page_state(NR_INACTIVE_ANON),
3891 global_page_state(NR_ISOLATED_ANON),
3892 global_page_state(NR_ACTIVE_FILE),
3893 global_page_state(NR_INACTIVE_FILE),
3894 global_page_state(NR_ISOLATED_FILE),
3895 global_page_state(NR_UNEVICTABLE),
3896 global_page_state(NR_FILE_DIRTY),
3897 global_page_state(NR_WRITEBACK),
3898 global_page_state(NR_UNSTABLE_NFS),
3899 global_page_state(NR_SLAB_RECLAIMABLE),
3900 global_page_state(NR_SLAB_UNRECLAIMABLE),
3901 global_page_state(NR_FILE_MAPPED),
3902 global_page_state(NR_SHMEM),
3903 global_page_state(NR_PAGETABLE),
3904 global_page_state(NR_BOUNCE),
3905 global_page_state(NR_FREE_PAGES),
3906 free_pcp,
3907 global_page_state(NR_FREE_CMA_PAGES));
3908
3909 for_each_populated_zone(zone) {
3910 int i;
3911
3912 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3913 continue;
3914
3915 free_pcp = 0;
3916 for_each_online_cpu(cpu)
3917 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3918
3919 show_node(zone);
3920 printk("%s"
3921 " free:%lukB"
3922 " min:%lukB"
3923 " low:%lukB"
3924 " high:%lukB"
3925 " active_anon:%lukB"
3926 " inactive_anon:%lukB"
3927 " active_file:%lukB"
3928 " inactive_file:%lukB"
3929 " unevictable:%lukB"
3930 " isolated(anon):%lukB"
3931 " isolated(file):%lukB"
3932 " present:%lukB"
3933 " managed:%lukB"
3934 " mlocked:%lukB"
3935 " dirty:%lukB"
3936 " writeback:%lukB"
3937 " mapped:%lukB"
3938 " shmem:%lukB"
3939 " slab_reclaimable:%lukB"
3940 " slab_unreclaimable:%lukB"
3941 " kernel_stack:%lukB"
3942 " pagetables:%lukB"
3943 " unstable:%lukB"
3944 " bounce:%lukB"
3945 " free_pcp:%lukB"
3946 " local_pcp:%ukB"
3947 " free_cma:%lukB"
3948 " writeback_tmp:%lukB"
3949 " pages_scanned:%lu"
3950 " all_unreclaimable? %s"
3951 "\n",
3952 zone->name,
3953 K(zone_page_state(zone, NR_FREE_PAGES)),
3954 K(min_wmark_pages(zone)),
3955 K(low_wmark_pages(zone)),
3956 K(high_wmark_pages(zone)),
3957 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3958 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3959 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3960 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3961 K(zone_page_state(zone, NR_UNEVICTABLE)),
3962 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3963 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3964 K(zone->present_pages),
3965 K(zone->managed_pages),
3966 K(zone_page_state(zone, NR_MLOCK)),
3967 K(zone_page_state(zone, NR_FILE_DIRTY)),
3968 K(zone_page_state(zone, NR_WRITEBACK)),
3969 K(zone_page_state(zone, NR_FILE_MAPPED)),
3970 K(zone_page_state(zone, NR_SHMEM)),
3971 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3972 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3973 zone_page_state(zone, NR_KERNEL_STACK) *
3974 THREAD_SIZE / 1024,
3975 K(zone_page_state(zone, NR_PAGETABLE)),
3976 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3977 K(zone_page_state(zone, NR_BOUNCE)),
3978 K(free_pcp),
3979 K(this_cpu_read(zone->pageset->pcp.count)),
3980 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3981 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3982 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3983 (!zone_reclaimable(zone) ? "yes" : "no")
3984 );
3985 printk("lowmem_reserve[]:");
3986 for (i = 0; i < MAX_NR_ZONES; i++)
3987 printk(" %ld", zone->lowmem_reserve[i]);
3988 printk("\n");
3989 }
3990
3991 for_each_populated_zone(zone) {
3992 unsigned int order;
3993 unsigned long nr[MAX_ORDER], flags, total = 0;
3994 unsigned char types[MAX_ORDER];
3995
3996 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3997 continue;
3998 show_node(zone);
3999 printk("%s: ", zone->name);
4000
4001 spin_lock_irqsave(&zone->lock, flags);
4002 for (order = 0; order < MAX_ORDER; order++) {
4003 struct free_area *area = &zone->free_area[order];
4004 int type;
4005
4006 nr[order] = area->nr_free;
4007 total += nr[order] << order;
4008
4009 types[order] = 0;
4010 for (type = 0; type < MIGRATE_TYPES; type++) {
4011 if (!list_empty(&area->free_list[type]))
4012 types[order] |= 1 << type;
4013 }
4014 }
4015 spin_unlock_irqrestore(&zone->lock, flags);
4016 for (order = 0; order < MAX_ORDER; order++) {
4017 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4018 if (nr[order])
4019 show_migration_types(types[order]);
4020 }
4021 printk("= %lukB\n", K(total));
4022 }
4023
4024 hugetlb_show_meminfo();
4025
4026 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4027
4028 show_swap_cache_info();
4029 }
4030
4031 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4032 {
4033 zoneref->zone = zone;
4034 zoneref->zone_idx = zone_idx(zone);
4035 }
4036
4037 /*
4038 * Builds allocation fallback zone lists.
4039 *
4040 * Add all populated zones of a node to the zonelist.
4041 */
4042 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4043 int nr_zones)
4044 {
4045 struct zone *zone;
4046 enum zone_type zone_type = MAX_NR_ZONES;
4047
4048 do {
4049 zone_type--;
4050 zone = pgdat->node_zones + zone_type;
4051 if (populated_zone(zone)) {
4052 zoneref_set_zone(zone,
4053 &zonelist->_zonerefs[nr_zones++]);
4054 check_highest_zone(zone_type);
4055 }
4056 } while (zone_type);
4057
4058 return nr_zones;
4059 }
4060
4061
4062 /*
4063 * zonelist_order:
4064 * 0 = automatic detection of better ordering.
4065 * 1 = order by ([node] distance, -zonetype)
4066 * 2 = order by (-zonetype, [node] distance)
4067 *
4068 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4069 * the same zonelist. So only NUMA can configure this param.
4070 */
4071 #define ZONELIST_ORDER_DEFAULT 0
4072 #define ZONELIST_ORDER_NODE 1
4073 #define ZONELIST_ORDER_ZONE 2
4074
4075 /* zonelist order in the kernel.
4076 * set_zonelist_order() will set this to NODE or ZONE.
4077 */
4078 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4079 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4080
4081
4082 #ifdef CONFIG_NUMA
4083 /* The value user specified ....changed by config */
4084 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4085 /* string for sysctl */
4086 #define NUMA_ZONELIST_ORDER_LEN 16
4087 char numa_zonelist_order[16] = "default";
4088
4089 /*
4090 * interface for configure zonelist ordering.
4091 * command line option "numa_zonelist_order"
4092 * = "[dD]efault - default, automatic configuration.
4093 * = "[nN]ode - order by node locality, then by zone within node
4094 * = "[zZ]one - order by zone, then by locality within zone
4095 */
4096
4097 static int __parse_numa_zonelist_order(char *s)
4098 {
4099 if (*s == 'd' || *s == 'D') {
4100 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4101 } else if (*s == 'n' || *s == 'N') {
4102 user_zonelist_order = ZONELIST_ORDER_NODE;
4103 } else if (*s == 'z' || *s == 'Z') {
4104 user_zonelist_order = ZONELIST_ORDER_ZONE;
4105 } else {
4106 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4107 return -EINVAL;
4108 }
4109 return 0;
4110 }
4111
4112 static __init int setup_numa_zonelist_order(char *s)
4113 {
4114 int ret;
4115
4116 if (!s)
4117 return 0;
4118
4119 ret = __parse_numa_zonelist_order(s);
4120 if (ret == 0)
4121 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4122
4123 return ret;
4124 }
4125 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4126
4127 /*
4128 * sysctl handler for numa_zonelist_order
4129 */
4130 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4131 void __user *buffer, size_t *length,
4132 loff_t *ppos)
4133 {
4134 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4135 int ret;
4136 static DEFINE_MUTEX(zl_order_mutex);
4137
4138 mutex_lock(&zl_order_mutex);
4139 if (write) {
4140 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4141 ret = -EINVAL;
4142 goto out;
4143 }
4144 strcpy(saved_string, (char *)table->data);
4145 }
4146 ret = proc_dostring(table, write, buffer, length, ppos);
4147 if (ret)
4148 goto out;
4149 if (write) {
4150 int oldval = user_zonelist_order;
4151
4152 ret = __parse_numa_zonelist_order((char *)table->data);
4153 if (ret) {
4154 /*
4155 * bogus value. restore saved string
4156 */
4157 strncpy((char *)table->data, saved_string,
4158 NUMA_ZONELIST_ORDER_LEN);
4159 user_zonelist_order = oldval;
4160 } else if (oldval != user_zonelist_order) {
4161 mutex_lock(&zonelists_mutex);
4162 build_all_zonelists(NULL, NULL);
4163 mutex_unlock(&zonelists_mutex);
4164 }
4165 }
4166 out:
4167 mutex_unlock(&zl_order_mutex);
4168 return ret;
4169 }
4170
4171
4172 #define MAX_NODE_LOAD (nr_online_nodes)
4173 static int node_load[MAX_NUMNODES];
4174
4175 /**
4176 * find_next_best_node - find the next node that should appear in a given node's fallback list
4177 * @node: node whose fallback list we're appending
4178 * @used_node_mask: nodemask_t of already used nodes
4179 *
4180 * We use a number of factors to determine which is the next node that should
4181 * appear on a given node's fallback list. The node should not have appeared
4182 * already in @node's fallback list, and it should be the next closest node
4183 * according to the distance array (which contains arbitrary distance values
4184 * from each node to each node in the system), and should also prefer nodes
4185 * with no CPUs, since presumably they'll have very little allocation pressure
4186 * on them otherwise.
4187 * It returns -1 if no node is found.
4188 */
4189 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4190 {
4191 int n, val;
4192 int min_val = INT_MAX;
4193 int best_node = NUMA_NO_NODE;
4194 const struct cpumask *tmp = cpumask_of_node(0);
4195
4196 /* Use the local node if we haven't already */
4197 if (!node_isset(node, *used_node_mask)) {
4198 node_set(node, *used_node_mask);
4199 return node;
4200 }
4201
4202 for_each_node_state(n, N_MEMORY) {
4203
4204 /* Don't want a node to appear more than once */
4205 if (node_isset(n, *used_node_mask))
4206 continue;
4207
4208 /* Use the distance array to find the distance */
4209 val = node_distance(node, n);
4210
4211 /* Penalize nodes under us ("prefer the next node") */
4212 val += (n < node);
4213
4214 /* Give preference to headless and unused nodes */
4215 tmp = cpumask_of_node(n);
4216 if (!cpumask_empty(tmp))
4217 val += PENALTY_FOR_NODE_WITH_CPUS;
4218
4219 /* Slight preference for less loaded node */
4220 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4221 val += node_load[n];
4222
4223 if (val < min_val) {
4224 min_val = val;
4225 best_node = n;
4226 }
4227 }
4228
4229 if (best_node >= 0)
4230 node_set(best_node, *used_node_mask);
4231
4232 return best_node;
4233 }
4234
4235
4236 /*
4237 * Build zonelists ordered by node and zones within node.
4238 * This results in maximum locality--normal zone overflows into local
4239 * DMA zone, if any--but risks exhausting DMA zone.
4240 */
4241 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4242 {
4243 int j;
4244 struct zonelist *zonelist;
4245
4246 zonelist = &pgdat->node_zonelists[0];
4247 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4248 ;
4249 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4250 zonelist->_zonerefs[j].zone = NULL;
4251 zonelist->_zonerefs[j].zone_idx = 0;
4252 }
4253
4254 /*
4255 * Build gfp_thisnode zonelists
4256 */
4257 static void build_thisnode_zonelists(pg_data_t *pgdat)
4258 {
4259 int j;
4260 struct zonelist *zonelist;
4261
4262 zonelist = &pgdat->node_zonelists[1];
4263 j = build_zonelists_node(pgdat, zonelist, 0);
4264 zonelist->_zonerefs[j].zone = NULL;
4265 zonelist->_zonerefs[j].zone_idx = 0;
4266 }
4267
4268 /*
4269 * Build zonelists ordered by zone and nodes within zones.
4270 * This results in conserving DMA zone[s] until all Normal memory is
4271 * exhausted, but results in overflowing to remote node while memory
4272 * may still exist in local DMA zone.
4273 */
4274 static int node_order[MAX_NUMNODES];
4275
4276 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4277 {
4278 int pos, j, node;
4279 int zone_type; /* needs to be signed */
4280 struct zone *z;
4281 struct zonelist *zonelist;
4282
4283 zonelist = &pgdat->node_zonelists[0];
4284 pos = 0;
4285 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4286 for (j = 0; j < nr_nodes; j++) {
4287 node = node_order[j];
4288 z = &NODE_DATA(node)->node_zones[zone_type];
4289 if (populated_zone(z)) {
4290 zoneref_set_zone(z,
4291 &zonelist->_zonerefs[pos++]);
4292 check_highest_zone(zone_type);
4293 }
4294 }
4295 }
4296 zonelist->_zonerefs[pos].zone = NULL;
4297 zonelist->_zonerefs[pos].zone_idx = 0;
4298 }
4299
4300 #if defined(CONFIG_64BIT)
4301 /*
4302 * Devices that require DMA32/DMA are relatively rare and do not justify a
4303 * penalty to every machine in case the specialised case applies. Default
4304 * to Node-ordering on 64-bit NUMA machines
4305 */
4306 static int default_zonelist_order(void)
4307 {
4308 return ZONELIST_ORDER_NODE;
4309 }
4310 #else
4311 /*
4312 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4313 * by the kernel. If processes running on node 0 deplete the low memory zone
4314 * then reclaim will occur more frequency increasing stalls and potentially
4315 * be easier to OOM if a large percentage of the zone is under writeback or
4316 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4317 * Hence, default to zone ordering on 32-bit.
4318 */
4319 static int default_zonelist_order(void)
4320 {
4321 return ZONELIST_ORDER_ZONE;
4322 }
4323 #endif /* CONFIG_64BIT */
4324
4325 static void set_zonelist_order(void)
4326 {
4327 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4328 current_zonelist_order = default_zonelist_order();
4329 else
4330 current_zonelist_order = user_zonelist_order;
4331 }
4332
4333 static void build_zonelists(pg_data_t *pgdat)
4334 {
4335 int i, node, load;
4336 nodemask_t used_mask;
4337 int local_node, prev_node;
4338 struct zonelist *zonelist;
4339 unsigned int order = current_zonelist_order;
4340
4341 /* initialize zonelists */
4342 for (i = 0; i < MAX_ZONELISTS; i++) {
4343 zonelist = pgdat->node_zonelists + i;
4344 zonelist->_zonerefs[0].zone = NULL;
4345 zonelist->_zonerefs[0].zone_idx = 0;
4346 }
4347
4348 /* NUMA-aware ordering of nodes */
4349 local_node = pgdat->node_id;
4350 load = nr_online_nodes;
4351 prev_node = local_node;
4352 nodes_clear(used_mask);
4353
4354 memset(node_order, 0, sizeof(node_order));
4355 i = 0;
4356
4357 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4358 /*
4359 * We don't want to pressure a particular node.
4360 * So adding penalty to the first node in same
4361 * distance group to make it round-robin.
4362 */
4363 if (node_distance(local_node, node) !=
4364 node_distance(local_node, prev_node))
4365 node_load[node] = load;
4366
4367 prev_node = node;
4368 load--;
4369 if (order == ZONELIST_ORDER_NODE)
4370 build_zonelists_in_node_order(pgdat, node);
4371 else
4372 node_order[i++] = node; /* remember order */
4373 }
4374
4375 if (order == ZONELIST_ORDER_ZONE) {
4376 /* calculate node order -- i.e., DMA last! */
4377 build_zonelists_in_zone_order(pgdat, i);
4378 }
4379
4380 build_thisnode_zonelists(pgdat);
4381 }
4382
4383 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4384 /*
4385 * Return node id of node used for "local" allocations.
4386 * I.e., first node id of first zone in arg node's generic zonelist.
4387 * Used for initializing percpu 'numa_mem', which is used primarily
4388 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4389 */
4390 int local_memory_node(int node)
4391 {
4392 struct zone *zone;
4393
4394 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4395 gfp_zone(GFP_KERNEL),
4396 NULL,
4397 &zone);
4398 return zone->node;
4399 }
4400 #endif
4401
4402 #else /* CONFIG_NUMA */
4403
4404 static void set_zonelist_order(void)
4405 {
4406 current_zonelist_order = ZONELIST_ORDER_ZONE;
4407 }
4408
4409 static void build_zonelists(pg_data_t *pgdat)
4410 {
4411 int node, local_node;
4412 enum zone_type j;
4413 struct zonelist *zonelist;
4414
4415 local_node = pgdat->node_id;
4416
4417 zonelist = &pgdat->node_zonelists[0];
4418 j = build_zonelists_node(pgdat, zonelist, 0);
4419
4420 /*
4421 * Now we build the zonelist so that it contains the zones
4422 * of all the other nodes.
4423 * We don't want to pressure a particular node, so when
4424 * building the zones for node N, we make sure that the
4425 * zones coming right after the local ones are those from
4426 * node N+1 (modulo N)
4427 */
4428 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4429 if (!node_online(node))
4430 continue;
4431 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4432 }
4433 for (node = 0; node < local_node; node++) {
4434 if (!node_online(node))
4435 continue;
4436 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4437 }
4438
4439 zonelist->_zonerefs[j].zone = NULL;
4440 zonelist->_zonerefs[j].zone_idx = 0;
4441 }
4442
4443 #endif /* CONFIG_NUMA */
4444
4445 /*
4446 * Boot pageset table. One per cpu which is going to be used for all
4447 * zones and all nodes. The parameters will be set in such a way
4448 * that an item put on a list will immediately be handed over to
4449 * the buddy list. This is safe since pageset manipulation is done
4450 * with interrupts disabled.
4451 *
4452 * The boot_pagesets must be kept even after bootup is complete for
4453 * unused processors and/or zones. They do play a role for bootstrapping
4454 * hotplugged processors.
4455 *
4456 * zoneinfo_show() and maybe other functions do
4457 * not check if the processor is online before following the pageset pointer.
4458 * Other parts of the kernel may not check if the zone is available.
4459 */
4460 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4461 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4462 static void setup_zone_pageset(struct zone *zone);
4463
4464 /*
4465 * Global mutex to protect against size modification of zonelists
4466 * as well as to serialize pageset setup for the new populated zone.
4467 */
4468 DEFINE_MUTEX(zonelists_mutex);
4469
4470 /* return values int ....just for stop_machine() */
4471 static int __build_all_zonelists(void *data)
4472 {
4473 int nid;
4474 int cpu;
4475 pg_data_t *self = data;
4476
4477 #ifdef CONFIG_NUMA
4478 memset(node_load, 0, sizeof(node_load));
4479 #endif
4480
4481 if (self && !node_online(self->node_id)) {
4482 build_zonelists(self);
4483 }
4484
4485 for_each_online_node(nid) {
4486 pg_data_t *pgdat = NODE_DATA(nid);
4487
4488 build_zonelists(pgdat);
4489 }
4490
4491 /*
4492 * Initialize the boot_pagesets that are going to be used
4493 * for bootstrapping processors. The real pagesets for
4494 * each zone will be allocated later when the per cpu
4495 * allocator is available.
4496 *
4497 * boot_pagesets are used also for bootstrapping offline
4498 * cpus if the system is already booted because the pagesets
4499 * are needed to initialize allocators on a specific cpu too.
4500 * F.e. the percpu allocator needs the page allocator which
4501 * needs the percpu allocator in order to allocate its pagesets
4502 * (a chicken-egg dilemma).
4503 */
4504 for_each_possible_cpu(cpu) {
4505 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4506
4507 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4508 /*
4509 * We now know the "local memory node" for each node--
4510 * i.e., the node of the first zone in the generic zonelist.
4511 * Set up numa_mem percpu variable for on-line cpus. During
4512 * boot, only the boot cpu should be on-line; we'll init the
4513 * secondary cpus' numa_mem as they come on-line. During
4514 * node/memory hotplug, we'll fixup all on-line cpus.
4515 */
4516 if (cpu_online(cpu))
4517 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4518 #endif
4519 }
4520
4521 return 0;
4522 }
4523
4524 static noinline void __init
4525 build_all_zonelists_init(void)
4526 {
4527 __build_all_zonelists(NULL);
4528 mminit_verify_zonelist();
4529 cpuset_init_current_mems_allowed();
4530 }
4531
4532 /*
4533 * Called with zonelists_mutex held always
4534 * unless system_state == SYSTEM_BOOTING.
4535 *
4536 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4537 * [we're only called with non-NULL zone through __meminit paths] and
4538 * (2) call of __init annotated helper build_all_zonelists_init
4539 * [protected by SYSTEM_BOOTING].
4540 */
4541 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4542 {
4543 set_zonelist_order();
4544
4545 if (system_state == SYSTEM_BOOTING) {
4546 build_all_zonelists_init();
4547 } else {
4548 #ifdef CONFIG_MEMORY_HOTPLUG
4549 if (zone)
4550 setup_zone_pageset(zone);
4551 #endif
4552 /* we have to stop all cpus to guarantee there is no user
4553 of zonelist */
4554 stop_machine(__build_all_zonelists, pgdat, NULL);
4555 /* cpuset refresh routine should be here */
4556 }
4557 vm_total_pages = nr_free_pagecache_pages();
4558 /*
4559 * Disable grouping by mobility if the number of pages in the
4560 * system is too low to allow the mechanism to work. It would be
4561 * more accurate, but expensive to check per-zone. This check is
4562 * made on memory-hotadd so a system can start with mobility
4563 * disabled and enable it later
4564 */
4565 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4566 page_group_by_mobility_disabled = 1;
4567 else
4568 page_group_by_mobility_disabled = 0;
4569
4570 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4571 nr_online_nodes,
4572 zonelist_order_name[current_zonelist_order],
4573 page_group_by_mobility_disabled ? "off" : "on",
4574 vm_total_pages);
4575 #ifdef CONFIG_NUMA
4576 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4577 #endif
4578 }
4579
4580 /*
4581 * Helper functions to size the waitqueue hash table.
4582 * Essentially these want to choose hash table sizes sufficiently
4583 * large so that collisions trying to wait on pages are rare.
4584 * But in fact, the number of active page waitqueues on typical
4585 * systems is ridiculously low, less than 200. So this is even
4586 * conservative, even though it seems large.
4587 *
4588 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4589 * waitqueues, i.e. the size of the waitq table given the number of pages.
4590 */
4591 #define PAGES_PER_WAITQUEUE 256
4592
4593 #ifndef CONFIG_MEMORY_HOTPLUG
4594 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4595 {
4596 unsigned long size = 1;
4597
4598 pages /= PAGES_PER_WAITQUEUE;
4599
4600 while (size < pages)
4601 size <<= 1;
4602
4603 /*
4604 * Once we have dozens or even hundreds of threads sleeping
4605 * on IO we've got bigger problems than wait queue collision.
4606 * Limit the size of the wait table to a reasonable size.
4607 */
4608 size = min(size, 4096UL);
4609
4610 return max(size, 4UL);
4611 }
4612 #else
4613 /*
4614 * A zone's size might be changed by hot-add, so it is not possible to determine
4615 * a suitable size for its wait_table. So we use the maximum size now.
4616 *
4617 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4618 *
4619 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4620 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4621 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4622 *
4623 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4624 * or more by the traditional way. (See above). It equals:
4625 *
4626 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4627 * ia64(16K page size) : = ( 8G + 4M)byte.
4628 * powerpc (64K page size) : = (32G +16M)byte.
4629 */
4630 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4631 {
4632 return 4096UL;
4633 }
4634 #endif
4635
4636 /*
4637 * This is an integer logarithm so that shifts can be used later
4638 * to extract the more random high bits from the multiplicative
4639 * hash function before the remainder is taken.
4640 */
4641 static inline unsigned long wait_table_bits(unsigned long size)
4642 {
4643 return ffz(~size);
4644 }
4645
4646 /*
4647 * Initially all pages are reserved - free ones are freed
4648 * up by free_all_bootmem() once the early boot process is
4649 * done. Non-atomic initialization, single-pass.
4650 */
4651 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4652 unsigned long start_pfn, enum memmap_context context)
4653 {
4654 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4655 unsigned long end_pfn = start_pfn + size;
4656 pg_data_t *pgdat = NODE_DATA(nid);
4657 unsigned long pfn;
4658 unsigned long nr_initialised = 0;
4659 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4660 struct memblock_region *r = NULL, *tmp;
4661 #endif
4662
4663 if (highest_memmap_pfn < end_pfn - 1)
4664 highest_memmap_pfn = end_pfn - 1;
4665
4666 /*
4667 * Honor reservation requested by the driver for this ZONE_DEVICE
4668 * memory
4669 */
4670 if (altmap && start_pfn == altmap->base_pfn)
4671 start_pfn += altmap->reserve;
4672
4673 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4674 /*
4675 * There can be holes in boot-time mem_map[]s handed to this
4676 * function. They do not exist on hotplugged memory.
4677 */
4678 if (context != MEMMAP_EARLY)
4679 goto not_early;
4680
4681 if (!early_pfn_valid(pfn))
4682 continue;
4683 if (!early_pfn_in_nid(pfn, nid))
4684 continue;
4685 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4686 break;
4687
4688 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4689 /*
4690 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4691 * from zone_movable_pfn[nid] to end of each node should be
4692 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4693 */
4694 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4695 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4696 continue;
4697
4698 /*
4699 * Check given memblock attribute by firmware which can affect
4700 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4701 * mirrored, it's an overlapped memmap init. skip it.
4702 */
4703 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4704 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4705 for_each_memblock(memory, tmp)
4706 if (pfn < memblock_region_memory_end_pfn(tmp))
4707 break;
4708 r = tmp;
4709 }
4710 if (pfn >= memblock_region_memory_base_pfn(r) &&
4711 memblock_is_mirror(r)) {
4712 /* already initialized as NORMAL */
4713 pfn = memblock_region_memory_end_pfn(r);
4714 continue;
4715 }
4716 }
4717 #endif
4718
4719 not_early:
4720 /*
4721 * Mark the block movable so that blocks are reserved for
4722 * movable at startup. This will force kernel allocations
4723 * to reserve their blocks rather than leaking throughout
4724 * the address space during boot when many long-lived
4725 * kernel allocations are made.
4726 *
4727 * bitmap is created for zone's valid pfn range. but memmap
4728 * can be created for invalid pages (for alignment)
4729 * check here not to call set_pageblock_migratetype() against
4730 * pfn out of zone.
4731 */
4732 if (!(pfn & (pageblock_nr_pages - 1))) {
4733 struct page *page = pfn_to_page(pfn);
4734
4735 __init_single_page(page, pfn, zone, nid);
4736 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4737 } else {
4738 __init_single_pfn(pfn, zone, nid);
4739 }
4740 }
4741 }
4742
4743 static void __meminit zone_init_free_lists(struct zone *zone)
4744 {
4745 unsigned int order, t;
4746 for_each_migratetype_order(order, t) {
4747 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4748 zone->free_area[order].nr_free = 0;
4749 }
4750 }
4751
4752 #ifndef __HAVE_ARCH_MEMMAP_INIT
4753 #define memmap_init(size, nid, zone, start_pfn) \
4754 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4755 #endif
4756
4757 static int zone_batchsize(struct zone *zone)
4758 {
4759 #ifdef CONFIG_MMU
4760 int batch;
4761
4762 /*
4763 * The per-cpu-pages pools are set to around 1000th of the
4764 * size of the zone. But no more than 1/2 of a meg.
4765 *
4766 * OK, so we don't know how big the cache is. So guess.
4767 */
4768 batch = zone->managed_pages / 1024;
4769 if (batch * PAGE_SIZE > 512 * 1024)
4770 batch = (512 * 1024) / PAGE_SIZE;
4771 batch /= 4; /* We effectively *= 4 below */
4772 if (batch < 1)
4773 batch = 1;
4774
4775 /*
4776 * Clamp the batch to a 2^n - 1 value. Having a power
4777 * of 2 value was found to be more likely to have
4778 * suboptimal cache aliasing properties in some cases.
4779 *
4780 * For example if 2 tasks are alternately allocating
4781 * batches of pages, one task can end up with a lot
4782 * of pages of one half of the possible page colors
4783 * and the other with pages of the other colors.
4784 */
4785 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4786
4787 return batch;
4788
4789 #else
4790 /* The deferral and batching of frees should be suppressed under NOMMU
4791 * conditions.
4792 *
4793 * The problem is that NOMMU needs to be able to allocate large chunks
4794 * of contiguous memory as there's no hardware page translation to
4795 * assemble apparent contiguous memory from discontiguous pages.
4796 *
4797 * Queueing large contiguous runs of pages for batching, however,
4798 * causes the pages to actually be freed in smaller chunks. As there
4799 * can be a significant delay between the individual batches being
4800 * recycled, this leads to the once large chunks of space being
4801 * fragmented and becoming unavailable for high-order allocations.
4802 */
4803 return 0;
4804 #endif
4805 }
4806
4807 /*
4808 * pcp->high and pcp->batch values are related and dependent on one another:
4809 * ->batch must never be higher then ->high.
4810 * The following function updates them in a safe manner without read side
4811 * locking.
4812 *
4813 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4814 * those fields changing asynchronously (acording the the above rule).
4815 *
4816 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4817 * outside of boot time (or some other assurance that no concurrent updaters
4818 * exist).
4819 */
4820 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4821 unsigned long batch)
4822 {
4823 /* start with a fail safe value for batch */
4824 pcp->batch = 1;
4825 smp_wmb();
4826
4827 /* Update high, then batch, in order */
4828 pcp->high = high;
4829 smp_wmb();
4830
4831 pcp->batch = batch;
4832 }
4833
4834 /* a companion to pageset_set_high() */
4835 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4836 {
4837 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4838 }
4839
4840 static void pageset_init(struct per_cpu_pageset *p)
4841 {
4842 struct per_cpu_pages *pcp;
4843 int migratetype;
4844
4845 memset(p, 0, sizeof(*p));
4846
4847 pcp = &p->pcp;
4848 pcp->count = 0;
4849 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4850 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4851 }
4852
4853 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4854 {
4855 pageset_init(p);
4856 pageset_set_batch(p, batch);
4857 }
4858
4859 /*
4860 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4861 * to the value high for the pageset p.
4862 */
4863 static void pageset_set_high(struct per_cpu_pageset *p,
4864 unsigned long high)
4865 {
4866 unsigned long batch = max(1UL, high / 4);
4867 if ((high / 4) > (PAGE_SHIFT * 8))
4868 batch = PAGE_SHIFT * 8;
4869
4870 pageset_update(&p->pcp, high, batch);
4871 }
4872
4873 static void pageset_set_high_and_batch(struct zone *zone,
4874 struct per_cpu_pageset *pcp)
4875 {
4876 if (percpu_pagelist_fraction)
4877 pageset_set_high(pcp,
4878 (zone->managed_pages /
4879 percpu_pagelist_fraction));
4880 else
4881 pageset_set_batch(pcp, zone_batchsize(zone));
4882 }
4883
4884 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4885 {
4886 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4887
4888 pageset_init(pcp);
4889 pageset_set_high_and_batch(zone, pcp);
4890 }
4891
4892 static void __meminit setup_zone_pageset(struct zone *zone)
4893 {
4894 int cpu;
4895 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4896 for_each_possible_cpu(cpu)
4897 zone_pageset_init(zone, cpu);
4898 }
4899
4900 /*
4901 * Allocate per cpu pagesets and initialize them.
4902 * Before this call only boot pagesets were available.
4903 */
4904 void __init setup_per_cpu_pageset(void)
4905 {
4906 struct zone *zone;
4907
4908 for_each_populated_zone(zone)
4909 setup_zone_pageset(zone);
4910 }
4911
4912 static noinline __init_refok
4913 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4914 {
4915 int i;
4916 size_t alloc_size;
4917
4918 /*
4919 * The per-page waitqueue mechanism uses hashed waitqueues
4920 * per zone.
4921 */
4922 zone->wait_table_hash_nr_entries =
4923 wait_table_hash_nr_entries(zone_size_pages);
4924 zone->wait_table_bits =
4925 wait_table_bits(zone->wait_table_hash_nr_entries);
4926 alloc_size = zone->wait_table_hash_nr_entries
4927 * sizeof(wait_queue_head_t);
4928
4929 if (!slab_is_available()) {
4930 zone->wait_table = (wait_queue_head_t *)
4931 memblock_virt_alloc_node_nopanic(
4932 alloc_size, zone->zone_pgdat->node_id);
4933 } else {
4934 /*
4935 * This case means that a zone whose size was 0 gets new memory
4936 * via memory hot-add.
4937 * But it may be the case that a new node was hot-added. In
4938 * this case vmalloc() will not be able to use this new node's
4939 * memory - this wait_table must be initialized to use this new
4940 * node itself as well.
4941 * To use this new node's memory, further consideration will be
4942 * necessary.
4943 */
4944 zone->wait_table = vmalloc(alloc_size);
4945 }
4946 if (!zone->wait_table)
4947 return -ENOMEM;
4948
4949 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4950 init_waitqueue_head(zone->wait_table + i);
4951
4952 return 0;
4953 }
4954
4955 static __meminit void zone_pcp_init(struct zone *zone)
4956 {
4957 /*
4958 * per cpu subsystem is not up at this point. The following code
4959 * relies on the ability of the linker to provide the
4960 * offset of a (static) per cpu variable into the per cpu area.
4961 */
4962 zone->pageset = &boot_pageset;
4963
4964 if (populated_zone(zone))
4965 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4966 zone->name, zone->present_pages,
4967 zone_batchsize(zone));
4968 }
4969
4970 int __meminit init_currently_empty_zone(struct zone *zone,
4971 unsigned long zone_start_pfn,
4972 unsigned long size)
4973 {
4974 struct pglist_data *pgdat = zone->zone_pgdat;
4975 int ret;
4976 ret = zone_wait_table_init(zone, size);
4977 if (ret)
4978 return ret;
4979 pgdat->nr_zones = zone_idx(zone) + 1;
4980
4981 zone->zone_start_pfn = zone_start_pfn;
4982
4983 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4984 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4985 pgdat->node_id,
4986 (unsigned long)zone_idx(zone),
4987 zone_start_pfn, (zone_start_pfn + size));
4988
4989 zone_init_free_lists(zone);
4990
4991 return 0;
4992 }
4993
4994 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4995 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4996
4997 /*
4998 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4999 */
5000 int __meminit __early_pfn_to_nid(unsigned long pfn,
5001 struct mminit_pfnnid_cache *state)
5002 {
5003 unsigned long start_pfn, end_pfn;
5004 int nid;
5005
5006 if (state->last_start <= pfn && pfn < state->last_end)
5007 return state->last_nid;
5008
5009 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5010 if (nid != -1) {
5011 state->last_start = start_pfn;
5012 state->last_end = end_pfn;
5013 state->last_nid = nid;
5014 }
5015
5016 return nid;
5017 }
5018 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5019
5020 /**
5021 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5022 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5023 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5024 *
5025 * If an architecture guarantees that all ranges registered contain no holes
5026 * and may be freed, this this function may be used instead of calling
5027 * memblock_free_early_nid() manually.
5028 */
5029 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5030 {
5031 unsigned long start_pfn, end_pfn;
5032 int i, this_nid;
5033
5034 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5035 start_pfn = min(start_pfn, max_low_pfn);
5036 end_pfn = min(end_pfn, max_low_pfn);
5037
5038 if (start_pfn < end_pfn)
5039 memblock_free_early_nid(PFN_PHYS(start_pfn),
5040 (end_pfn - start_pfn) << PAGE_SHIFT,
5041 this_nid);
5042 }
5043 }
5044
5045 /**
5046 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5047 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5048 *
5049 * If an architecture guarantees that all ranges registered contain no holes and may
5050 * be freed, this function may be used instead of calling memory_present() manually.
5051 */
5052 void __init sparse_memory_present_with_active_regions(int nid)
5053 {
5054 unsigned long start_pfn, end_pfn;
5055 int i, this_nid;
5056
5057 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5058 memory_present(this_nid, start_pfn, end_pfn);
5059 }
5060
5061 /**
5062 * get_pfn_range_for_nid - Return the start and end page frames for a node
5063 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5064 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5065 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5066 *
5067 * It returns the start and end page frame of a node based on information
5068 * provided by memblock_set_node(). If called for a node
5069 * with no available memory, a warning is printed and the start and end
5070 * PFNs will be 0.
5071 */
5072 void __meminit get_pfn_range_for_nid(unsigned int nid,
5073 unsigned long *start_pfn, unsigned long *end_pfn)
5074 {
5075 unsigned long this_start_pfn, this_end_pfn;
5076 int i;
5077
5078 *start_pfn = -1UL;
5079 *end_pfn = 0;
5080
5081 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5082 *start_pfn = min(*start_pfn, this_start_pfn);
5083 *end_pfn = max(*end_pfn, this_end_pfn);
5084 }
5085
5086 if (*start_pfn == -1UL)
5087 *start_pfn = 0;
5088 }
5089
5090 /*
5091 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5092 * assumption is made that zones within a node are ordered in monotonic
5093 * increasing memory addresses so that the "highest" populated zone is used
5094 */
5095 static void __init find_usable_zone_for_movable(void)
5096 {
5097 int zone_index;
5098 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5099 if (zone_index == ZONE_MOVABLE)
5100 continue;
5101
5102 if (arch_zone_highest_possible_pfn[zone_index] >
5103 arch_zone_lowest_possible_pfn[zone_index])
5104 break;
5105 }
5106
5107 VM_BUG_ON(zone_index == -1);
5108 movable_zone = zone_index;
5109 }
5110
5111 /*
5112 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5113 * because it is sized independent of architecture. Unlike the other zones,
5114 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5115 * in each node depending on the size of each node and how evenly kernelcore
5116 * is distributed. This helper function adjusts the zone ranges
5117 * provided by the architecture for a given node by using the end of the
5118 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5119 * zones within a node are in order of monotonic increases memory addresses
5120 */
5121 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5122 unsigned long zone_type,
5123 unsigned long node_start_pfn,
5124 unsigned long node_end_pfn,
5125 unsigned long *zone_start_pfn,
5126 unsigned long *zone_end_pfn)
5127 {
5128 /* Only adjust if ZONE_MOVABLE is on this node */
5129 if (zone_movable_pfn[nid]) {
5130 /* Size ZONE_MOVABLE */
5131 if (zone_type == ZONE_MOVABLE) {
5132 *zone_start_pfn = zone_movable_pfn[nid];
5133 *zone_end_pfn = min(node_end_pfn,
5134 arch_zone_highest_possible_pfn[movable_zone]);
5135
5136 /* Check if this whole range is within ZONE_MOVABLE */
5137 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5138 *zone_start_pfn = *zone_end_pfn;
5139 }
5140 }
5141
5142 /*
5143 * Return the number of pages a zone spans in a node, including holes
5144 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5145 */
5146 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5147 unsigned long zone_type,
5148 unsigned long node_start_pfn,
5149 unsigned long node_end_pfn,
5150 unsigned long *zone_start_pfn,
5151 unsigned long *zone_end_pfn,
5152 unsigned long *ignored)
5153 {
5154 /* When hotadd a new node from cpu_up(), the node should be empty */
5155 if (!node_start_pfn && !node_end_pfn)
5156 return 0;
5157
5158 /* Get the start and end of the zone */
5159 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5160 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5161 adjust_zone_range_for_zone_movable(nid, zone_type,
5162 node_start_pfn, node_end_pfn,
5163 zone_start_pfn, zone_end_pfn);
5164
5165 /* Check that this node has pages within the zone's required range */
5166 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5167 return 0;
5168
5169 /* Move the zone boundaries inside the node if necessary */
5170 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5171 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5172
5173 /* Return the spanned pages */
5174 return *zone_end_pfn - *zone_start_pfn;
5175 }
5176
5177 /*
5178 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5179 * then all holes in the requested range will be accounted for.
5180 */
5181 unsigned long __meminit __absent_pages_in_range(int nid,
5182 unsigned long range_start_pfn,
5183 unsigned long range_end_pfn)
5184 {
5185 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5186 unsigned long start_pfn, end_pfn;
5187 int i;
5188
5189 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5190 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5191 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5192 nr_absent -= end_pfn - start_pfn;
5193 }
5194 return nr_absent;
5195 }
5196
5197 /**
5198 * absent_pages_in_range - Return number of page frames in holes within a range
5199 * @start_pfn: The start PFN to start searching for holes
5200 * @end_pfn: The end PFN to stop searching for holes
5201 *
5202 * It returns the number of pages frames in memory holes within a range.
5203 */
5204 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5205 unsigned long end_pfn)
5206 {
5207 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5208 }
5209
5210 /* Return the number of page frames in holes in a zone on a node */
5211 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5212 unsigned long zone_type,
5213 unsigned long node_start_pfn,
5214 unsigned long node_end_pfn,
5215 unsigned long *ignored)
5216 {
5217 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5218 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5219 unsigned long zone_start_pfn, zone_end_pfn;
5220 unsigned long nr_absent;
5221
5222 /* When hotadd a new node from cpu_up(), the node should be empty */
5223 if (!node_start_pfn && !node_end_pfn)
5224 return 0;
5225
5226 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5227 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5228
5229 adjust_zone_range_for_zone_movable(nid, zone_type,
5230 node_start_pfn, node_end_pfn,
5231 &zone_start_pfn, &zone_end_pfn);
5232 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5233
5234 /*
5235 * ZONE_MOVABLE handling.
5236 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5237 * and vice versa.
5238 */
5239 if (zone_movable_pfn[nid]) {
5240 if (mirrored_kernelcore) {
5241 unsigned long start_pfn, end_pfn;
5242 struct memblock_region *r;
5243
5244 for_each_memblock(memory, r) {
5245 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5246 zone_start_pfn, zone_end_pfn);
5247 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5248 zone_start_pfn, zone_end_pfn);
5249
5250 if (zone_type == ZONE_MOVABLE &&
5251 memblock_is_mirror(r))
5252 nr_absent += end_pfn - start_pfn;
5253
5254 if (zone_type == ZONE_NORMAL &&
5255 !memblock_is_mirror(r))
5256 nr_absent += end_pfn - start_pfn;
5257 }
5258 } else {
5259 if (zone_type == ZONE_NORMAL)
5260 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5261 }
5262 }
5263
5264 return nr_absent;
5265 }
5266
5267 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5268 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5269 unsigned long zone_type,
5270 unsigned long node_start_pfn,
5271 unsigned long node_end_pfn,
5272 unsigned long *zone_start_pfn,
5273 unsigned long *zone_end_pfn,
5274 unsigned long *zones_size)
5275 {
5276 unsigned int zone;
5277
5278 *zone_start_pfn = node_start_pfn;
5279 for (zone = 0; zone < zone_type; zone++)
5280 *zone_start_pfn += zones_size[zone];
5281
5282 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5283
5284 return zones_size[zone_type];
5285 }
5286
5287 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5288 unsigned long zone_type,
5289 unsigned long node_start_pfn,
5290 unsigned long node_end_pfn,
5291 unsigned long *zholes_size)
5292 {
5293 if (!zholes_size)
5294 return 0;
5295
5296 return zholes_size[zone_type];
5297 }
5298
5299 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5300
5301 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5302 unsigned long node_start_pfn,
5303 unsigned long node_end_pfn,
5304 unsigned long *zones_size,
5305 unsigned long *zholes_size)
5306 {
5307 unsigned long realtotalpages = 0, totalpages = 0;
5308 enum zone_type i;
5309
5310 for (i = 0; i < MAX_NR_ZONES; i++) {
5311 struct zone *zone = pgdat->node_zones + i;
5312 unsigned long zone_start_pfn, zone_end_pfn;
5313 unsigned long size, real_size;
5314
5315 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5316 node_start_pfn,
5317 node_end_pfn,
5318 &zone_start_pfn,
5319 &zone_end_pfn,
5320 zones_size);
5321 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5322 node_start_pfn, node_end_pfn,
5323 zholes_size);
5324 if (size)
5325 zone->zone_start_pfn = zone_start_pfn;
5326 else
5327 zone->zone_start_pfn = 0;
5328 zone->spanned_pages = size;
5329 zone->present_pages = real_size;
5330
5331 totalpages += size;
5332 realtotalpages += real_size;
5333 }
5334
5335 pgdat->node_spanned_pages = totalpages;
5336 pgdat->node_present_pages = realtotalpages;
5337 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5338 realtotalpages);
5339 }
5340
5341 #ifndef CONFIG_SPARSEMEM
5342 /*
5343 * Calculate the size of the zone->blockflags rounded to an unsigned long
5344 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5345 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5346 * round what is now in bits to nearest long in bits, then return it in
5347 * bytes.
5348 */
5349 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5350 {
5351 unsigned long usemapsize;
5352
5353 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5354 usemapsize = roundup(zonesize, pageblock_nr_pages);
5355 usemapsize = usemapsize >> pageblock_order;
5356 usemapsize *= NR_PAGEBLOCK_BITS;
5357 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5358
5359 return usemapsize / 8;
5360 }
5361
5362 static void __init setup_usemap(struct pglist_data *pgdat,
5363 struct zone *zone,
5364 unsigned long zone_start_pfn,
5365 unsigned long zonesize)
5366 {
5367 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5368 zone->pageblock_flags = NULL;
5369 if (usemapsize)
5370 zone->pageblock_flags =
5371 memblock_virt_alloc_node_nopanic(usemapsize,
5372 pgdat->node_id);
5373 }
5374 #else
5375 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5376 unsigned long zone_start_pfn, unsigned long zonesize) {}
5377 #endif /* CONFIG_SPARSEMEM */
5378
5379 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5380
5381 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5382 void __paginginit set_pageblock_order(void)
5383 {
5384 unsigned int order;
5385
5386 /* Check that pageblock_nr_pages has not already been setup */
5387 if (pageblock_order)
5388 return;
5389
5390 if (HPAGE_SHIFT > PAGE_SHIFT)
5391 order = HUGETLB_PAGE_ORDER;
5392 else
5393 order = MAX_ORDER - 1;
5394
5395 /*
5396 * Assume the largest contiguous order of interest is a huge page.
5397 * This value may be variable depending on boot parameters on IA64 and
5398 * powerpc.
5399 */
5400 pageblock_order = order;
5401 }
5402 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5403
5404 /*
5405 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5406 * is unused as pageblock_order is set at compile-time. See
5407 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5408 * the kernel config
5409 */
5410 void __paginginit set_pageblock_order(void)
5411 {
5412 }
5413
5414 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5415
5416 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5417 unsigned long present_pages)
5418 {
5419 unsigned long pages = spanned_pages;
5420
5421 /*
5422 * Provide a more accurate estimation if there are holes within
5423 * the zone and SPARSEMEM is in use. If there are holes within the
5424 * zone, each populated memory region may cost us one or two extra
5425 * memmap pages due to alignment because memmap pages for each
5426 * populated regions may not naturally algined on page boundary.
5427 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5428 */
5429 if (spanned_pages > present_pages + (present_pages >> 4) &&
5430 IS_ENABLED(CONFIG_SPARSEMEM))
5431 pages = present_pages;
5432
5433 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5434 }
5435
5436 /*
5437 * Set up the zone data structures:
5438 * - mark all pages reserved
5439 * - mark all memory queues empty
5440 * - clear the memory bitmaps
5441 *
5442 * NOTE: pgdat should get zeroed by caller.
5443 */
5444 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5445 {
5446 enum zone_type j;
5447 int nid = pgdat->node_id;
5448 int ret;
5449
5450 pgdat_resize_init(pgdat);
5451 #ifdef CONFIG_NUMA_BALANCING
5452 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5453 pgdat->numabalancing_migrate_nr_pages = 0;
5454 pgdat->numabalancing_migrate_next_window = jiffies;
5455 #endif
5456 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5457 spin_lock_init(&pgdat->split_queue_lock);
5458 INIT_LIST_HEAD(&pgdat->split_queue);
5459 pgdat->split_queue_len = 0;
5460 #endif
5461 init_waitqueue_head(&pgdat->kswapd_wait);
5462 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5463 #ifdef CONFIG_COMPACTION
5464 init_waitqueue_head(&pgdat->kcompactd_wait);
5465 #endif
5466 pgdat_page_ext_init(pgdat);
5467
5468 for (j = 0; j < MAX_NR_ZONES; j++) {
5469 struct zone *zone = pgdat->node_zones + j;
5470 unsigned long size, realsize, freesize, memmap_pages;
5471 unsigned long zone_start_pfn = zone->zone_start_pfn;
5472
5473 size = zone->spanned_pages;
5474 realsize = freesize = zone->present_pages;
5475
5476 /*
5477 * Adjust freesize so that it accounts for how much memory
5478 * is used by this zone for memmap. This affects the watermark
5479 * and per-cpu initialisations
5480 */
5481 memmap_pages = calc_memmap_size(size, realsize);
5482 if (!is_highmem_idx(j)) {
5483 if (freesize >= memmap_pages) {
5484 freesize -= memmap_pages;
5485 if (memmap_pages)
5486 printk(KERN_DEBUG
5487 " %s zone: %lu pages used for memmap\n",
5488 zone_names[j], memmap_pages);
5489 } else
5490 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5491 zone_names[j], memmap_pages, freesize);
5492 }
5493
5494 /* Account for reserved pages */
5495 if (j == 0 && freesize > dma_reserve) {
5496 freesize -= dma_reserve;
5497 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5498 zone_names[0], dma_reserve);
5499 }
5500
5501 if (!is_highmem_idx(j))
5502 nr_kernel_pages += freesize;
5503 /* Charge for highmem memmap if there are enough kernel pages */
5504 else if (nr_kernel_pages > memmap_pages * 2)
5505 nr_kernel_pages -= memmap_pages;
5506 nr_all_pages += freesize;
5507
5508 /*
5509 * Set an approximate value for lowmem here, it will be adjusted
5510 * when the bootmem allocator frees pages into the buddy system.
5511 * And all highmem pages will be managed by the buddy system.
5512 */
5513 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5514 #ifdef CONFIG_NUMA
5515 zone->node = nid;
5516 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5517 / 100;
5518 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5519 #endif
5520 zone->name = zone_names[j];
5521 spin_lock_init(&zone->lock);
5522 spin_lock_init(&zone->lru_lock);
5523 zone_seqlock_init(zone);
5524 zone->zone_pgdat = pgdat;
5525 zone_pcp_init(zone);
5526
5527 /* For bootup, initialized properly in watermark setup */
5528 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5529
5530 lruvec_init(&zone->lruvec);
5531 if (!size)
5532 continue;
5533
5534 set_pageblock_order();
5535 setup_usemap(pgdat, zone, zone_start_pfn, size);
5536 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5537 BUG_ON(ret);
5538 memmap_init(size, nid, j, zone_start_pfn);
5539 }
5540 }
5541
5542 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5543 {
5544 unsigned long __maybe_unused start = 0;
5545 unsigned long __maybe_unused offset = 0;
5546
5547 /* Skip empty nodes */
5548 if (!pgdat->node_spanned_pages)
5549 return;
5550
5551 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5552 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5553 offset = pgdat->node_start_pfn - start;
5554 /* ia64 gets its own node_mem_map, before this, without bootmem */
5555 if (!pgdat->node_mem_map) {
5556 unsigned long size, end;
5557 struct page *map;
5558
5559 /*
5560 * The zone's endpoints aren't required to be MAX_ORDER
5561 * aligned but the node_mem_map endpoints must be in order
5562 * for the buddy allocator to function correctly.
5563 */
5564 end = pgdat_end_pfn(pgdat);
5565 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5566 size = (end - start) * sizeof(struct page);
5567 map = alloc_remap(pgdat->node_id, size);
5568 if (!map)
5569 map = memblock_virt_alloc_node_nopanic(size,
5570 pgdat->node_id);
5571 pgdat->node_mem_map = map + offset;
5572 }
5573 #ifndef CONFIG_NEED_MULTIPLE_NODES
5574 /*
5575 * With no DISCONTIG, the global mem_map is just set as node 0's
5576 */
5577 if (pgdat == NODE_DATA(0)) {
5578 mem_map = NODE_DATA(0)->node_mem_map;
5579 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5580 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5581 mem_map -= offset;
5582 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5583 }
5584 #endif
5585 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5586 }
5587
5588 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5589 unsigned long node_start_pfn, unsigned long *zholes_size)
5590 {
5591 pg_data_t *pgdat = NODE_DATA(nid);
5592 unsigned long start_pfn = 0;
5593 unsigned long end_pfn = 0;
5594
5595 /* pg_data_t should be reset to zero when it's allocated */
5596 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5597
5598 reset_deferred_meminit(pgdat);
5599 pgdat->node_id = nid;
5600 pgdat->node_start_pfn = node_start_pfn;
5601 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5602 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5603 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5604 (u64)start_pfn << PAGE_SHIFT,
5605 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5606 #else
5607 start_pfn = node_start_pfn;
5608 #endif
5609 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5610 zones_size, zholes_size);
5611
5612 alloc_node_mem_map(pgdat);
5613 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5614 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5615 nid, (unsigned long)pgdat,
5616 (unsigned long)pgdat->node_mem_map);
5617 #endif
5618
5619 free_area_init_core(pgdat);
5620 }
5621
5622 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5623
5624 #if MAX_NUMNODES > 1
5625 /*
5626 * Figure out the number of possible node ids.
5627 */
5628 void __init setup_nr_node_ids(void)
5629 {
5630 unsigned int highest;
5631
5632 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5633 nr_node_ids = highest + 1;
5634 }
5635 #endif
5636
5637 /**
5638 * node_map_pfn_alignment - determine the maximum internode alignment
5639 *
5640 * This function should be called after node map is populated and sorted.
5641 * It calculates the maximum power of two alignment which can distinguish
5642 * all the nodes.
5643 *
5644 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5645 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5646 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5647 * shifted, 1GiB is enough and this function will indicate so.
5648 *
5649 * This is used to test whether pfn -> nid mapping of the chosen memory
5650 * model has fine enough granularity to avoid incorrect mapping for the
5651 * populated node map.
5652 *
5653 * Returns the determined alignment in pfn's. 0 if there is no alignment
5654 * requirement (single node).
5655 */
5656 unsigned long __init node_map_pfn_alignment(void)
5657 {
5658 unsigned long accl_mask = 0, last_end = 0;
5659 unsigned long start, end, mask;
5660 int last_nid = -1;
5661 int i, nid;
5662
5663 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5664 if (!start || last_nid < 0 || last_nid == nid) {
5665 last_nid = nid;
5666 last_end = end;
5667 continue;
5668 }
5669
5670 /*
5671 * Start with a mask granular enough to pin-point to the
5672 * start pfn and tick off bits one-by-one until it becomes
5673 * too coarse to separate the current node from the last.
5674 */
5675 mask = ~((1 << __ffs(start)) - 1);
5676 while (mask && last_end <= (start & (mask << 1)))
5677 mask <<= 1;
5678
5679 /* accumulate all internode masks */
5680 accl_mask |= mask;
5681 }
5682
5683 /* convert mask to number of pages */
5684 return ~accl_mask + 1;
5685 }
5686
5687 /* Find the lowest pfn for a node */
5688 static unsigned long __init find_min_pfn_for_node(int nid)
5689 {
5690 unsigned long min_pfn = ULONG_MAX;
5691 unsigned long start_pfn;
5692 int i;
5693
5694 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5695 min_pfn = min(min_pfn, start_pfn);
5696
5697 if (min_pfn == ULONG_MAX) {
5698 pr_warn("Could not find start_pfn for node %d\n", nid);
5699 return 0;
5700 }
5701
5702 return min_pfn;
5703 }
5704
5705 /**
5706 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5707 *
5708 * It returns the minimum PFN based on information provided via
5709 * memblock_set_node().
5710 */
5711 unsigned long __init find_min_pfn_with_active_regions(void)
5712 {
5713 return find_min_pfn_for_node(MAX_NUMNODES);
5714 }
5715
5716 /*
5717 * early_calculate_totalpages()
5718 * Sum pages in active regions for movable zone.
5719 * Populate N_MEMORY for calculating usable_nodes.
5720 */
5721 static unsigned long __init early_calculate_totalpages(void)
5722 {
5723 unsigned long totalpages = 0;
5724 unsigned long start_pfn, end_pfn;
5725 int i, nid;
5726
5727 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5728 unsigned long pages = end_pfn - start_pfn;
5729
5730 totalpages += pages;
5731 if (pages)
5732 node_set_state(nid, N_MEMORY);
5733 }
5734 return totalpages;
5735 }
5736
5737 /*
5738 * Find the PFN the Movable zone begins in each node. Kernel memory
5739 * is spread evenly between nodes as long as the nodes have enough
5740 * memory. When they don't, some nodes will have more kernelcore than
5741 * others
5742 */
5743 static void __init find_zone_movable_pfns_for_nodes(void)
5744 {
5745 int i, nid;
5746 unsigned long usable_startpfn;
5747 unsigned long kernelcore_node, kernelcore_remaining;
5748 /* save the state before borrow the nodemask */
5749 nodemask_t saved_node_state = node_states[N_MEMORY];
5750 unsigned long totalpages = early_calculate_totalpages();
5751 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5752 struct memblock_region *r;
5753
5754 /* Need to find movable_zone earlier when movable_node is specified. */
5755 find_usable_zone_for_movable();
5756
5757 /*
5758 * If movable_node is specified, ignore kernelcore and movablecore
5759 * options.
5760 */
5761 if (movable_node_is_enabled()) {
5762 for_each_memblock(memory, r) {
5763 if (!memblock_is_hotpluggable(r))
5764 continue;
5765
5766 nid = r->nid;
5767
5768 usable_startpfn = PFN_DOWN(r->base);
5769 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5770 min(usable_startpfn, zone_movable_pfn[nid]) :
5771 usable_startpfn;
5772 }
5773
5774 goto out2;
5775 }
5776
5777 /*
5778 * If kernelcore=mirror is specified, ignore movablecore option
5779 */
5780 if (mirrored_kernelcore) {
5781 bool mem_below_4gb_not_mirrored = false;
5782
5783 for_each_memblock(memory, r) {
5784 if (memblock_is_mirror(r))
5785 continue;
5786
5787 nid = r->nid;
5788
5789 usable_startpfn = memblock_region_memory_base_pfn(r);
5790
5791 if (usable_startpfn < 0x100000) {
5792 mem_below_4gb_not_mirrored = true;
5793 continue;
5794 }
5795
5796 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5797 min(usable_startpfn, zone_movable_pfn[nid]) :
5798 usable_startpfn;
5799 }
5800
5801 if (mem_below_4gb_not_mirrored)
5802 pr_warn("This configuration results in unmirrored kernel memory.");
5803
5804 goto out2;
5805 }
5806
5807 /*
5808 * If movablecore=nn[KMG] was specified, calculate what size of
5809 * kernelcore that corresponds so that memory usable for
5810 * any allocation type is evenly spread. If both kernelcore
5811 * and movablecore are specified, then the value of kernelcore
5812 * will be used for required_kernelcore if it's greater than
5813 * what movablecore would have allowed.
5814 */
5815 if (required_movablecore) {
5816 unsigned long corepages;
5817
5818 /*
5819 * Round-up so that ZONE_MOVABLE is at least as large as what
5820 * was requested by the user
5821 */
5822 required_movablecore =
5823 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5824 required_movablecore = min(totalpages, required_movablecore);
5825 corepages = totalpages - required_movablecore;
5826
5827 required_kernelcore = max(required_kernelcore, corepages);
5828 }
5829
5830 /*
5831 * If kernelcore was not specified or kernelcore size is larger
5832 * than totalpages, there is no ZONE_MOVABLE.
5833 */
5834 if (!required_kernelcore || required_kernelcore >= totalpages)
5835 goto out;
5836
5837 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5838 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5839
5840 restart:
5841 /* Spread kernelcore memory as evenly as possible throughout nodes */
5842 kernelcore_node = required_kernelcore / usable_nodes;
5843 for_each_node_state(nid, N_MEMORY) {
5844 unsigned long start_pfn, end_pfn;
5845
5846 /*
5847 * Recalculate kernelcore_node if the division per node
5848 * now exceeds what is necessary to satisfy the requested
5849 * amount of memory for the kernel
5850 */
5851 if (required_kernelcore < kernelcore_node)
5852 kernelcore_node = required_kernelcore / usable_nodes;
5853
5854 /*
5855 * As the map is walked, we track how much memory is usable
5856 * by the kernel using kernelcore_remaining. When it is
5857 * 0, the rest of the node is usable by ZONE_MOVABLE
5858 */
5859 kernelcore_remaining = kernelcore_node;
5860
5861 /* Go through each range of PFNs within this node */
5862 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5863 unsigned long size_pages;
5864
5865 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5866 if (start_pfn >= end_pfn)
5867 continue;
5868
5869 /* Account for what is only usable for kernelcore */
5870 if (start_pfn < usable_startpfn) {
5871 unsigned long kernel_pages;
5872 kernel_pages = min(end_pfn, usable_startpfn)
5873 - start_pfn;
5874
5875 kernelcore_remaining -= min(kernel_pages,
5876 kernelcore_remaining);
5877 required_kernelcore -= min(kernel_pages,
5878 required_kernelcore);
5879
5880 /* Continue if range is now fully accounted */
5881 if (end_pfn <= usable_startpfn) {
5882
5883 /*
5884 * Push zone_movable_pfn to the end so
5885 * that if we have to rebalance
5886 * kernelcore across nodes, we will
5887 * not double account here
5888 */
5889 zone_movable_pfn[nid] = end_pfn;
5890 continue;
5891 }
5892 start_pfn = usable_startpfn;
5893 }
5894
5895 /*
5896 * The usable PFN range for ZONE_MOVABLE is from
5897 * start_pfn->end_pfn. Calculate size_pages as the
5898 * number of pages used as kernelcore
5899 */
5900 size_pages = end_pfn - start_pfn;
5901 if (size_pages > kernelcore_remaining)
5902 size_pages = kernelcore_remaining;
5903 zone_movable_pfn[nid] = start_pfn + size_pages;
5904
5905 /*
5906 * Some kernelcore has been met, update counts and
5907 * break if the kernelcore for this node has been
5908 * satisfied
5909 */
5910 required_kernelcore -= min(required_kernelcore,
5911 size_pages);
5912 kernelcore_remaining -= size_pages;
5913 if (!kernelcore_remaining)
5914 break;
5915 }
5916 }
5917
5918 /*
5919 * If there is still required_kernelcore, we do another pass with one
5920 * less node in the count. This will push zone_movable_pfn[nid] further
5921 * along on the nodes that still have memory until kernelcore is
5922 * satisfied
5923 */
5924 usable_nodes--;
5925 if (usable_nodes && required_kernelcore > usable_nodes)
5926 goto restart;
5927
5928 out2:
5929 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5930 for (nid = 0; nid < MAX_NUMNODES; nid++)
5931 zone_movable_pfn[nid] =
5932 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5933
5934 out:
5935 /* restore the node_state */
5936 node_states[N_MEMORY] = saved_node_state;
5937 }
5938
5939 /* Any regular or high memory on that node ? */
5940 static void check_for_memory(pg_data_t *pgdat, int nid)
5941 {
5942 enum zone_type zone_type;
5943
5944 if (N_MEMORY == N_NORMAL_MEMORY)
5945 return;
5946
5947 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5948 struct zone *zone = &pgdat->node_zones[zone_type];
5949 if (populated_zone(zone)) {
5950 node_set_state(nid, N_HIGH_MEMORY);
5951 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5952 zone_type <= ZONE_NORMAL)
5953 node_set_state(nid, N_NORMAL_MEMORY);
5954 break;
5955 }
5956 }
5957 }
5958
5959 /**
5960 * free_area_init_nodes - Initialise all pg_data_t and zone data
5961 * @max_zone_pfn: an array of max PFNs for each zone
5962 *
5963 * This will call free_area_init_node() for each active node in the system.
5964 * Using the page ranges provided by memblock_set_node(), the size of each
5965 * zone in each node and their holes is calculated. If the maximum PFN
5966 * between two adjacent zones match, it is assumed that the zone is empty.
5967 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5968 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5969 * starts where the previous one ended. For example, ZONE_DMA32 starts
5970 * at arch_max_dma_pfn.
5971 */
5972 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5973 {
5974 unsigned long start_pfn, end_pfn;
5975 int i, nid;
5976
5977 /* Record where the zone boundaries are */
5978 memset(arch_zone_lowest_possible_pfn, 0,
5979 sizeof(arch_zone_lowest_possible_pfn));
5980 memset(arch_zone_highest_possible_pfn, 0,
5981 sizeof(arch_zone_highest_possible_pfn));
5982 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5983 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5984 for (i = 1; i < MAX_NR_ZONES; i++) {
5985 if (i == ZONE_MOVABLE)
5986 continue;
5987 arch_zone_lowest_possible_pfn[i] =
5988 arch_zone_highest_possible_pfn[i-1];
5989 arch_zone_highest_possible_pfn[i] =
5990 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5991 }
5992 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5993 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5994
5995 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5996 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5997 find_zone_movable_pfns_for_nodes();
5998
5999 /* Print out the zone ranges */
6000 pr_info("Zone ranges:\n");
6001 for (i = 0; i < MAX_NR_ZONES; i++) {
6002 if (i == ZONE_MOVABLE)
6003 continue;
6004 pr_info(" %-8s ", zone_names[i]);
6005 if (arch_zone_lowest_possible_pfn[i] ==
6006 arch_zone_highest_possible_pfn[i])
6007 pr_cont("empty\n");
6008 else
6009 pr_cont("[mem %#018Lx-%#018Lx]\n",
6010 (u64)arch_zone_lowest_possible_pfn[i]
6011 << PAGE_SHIFT,
6012 ((u64)arch_zone_highest_possible_pfn[i]
6013 << PAGE_SHIFT) - 1);
6014 }
6015
6016 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6017 pr_info("Movable zone start for each node\n");
6018 for (i = 0; i < MAX_NUMNODES; i++) {
6019 if (zone_movable_pfn[i])
6020 pr_info(" Node %d: %#018Lx\n", i,
6021 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6022 }
6023
6024 /* Print out the early node map */
6025 pr_info("Early memory node ranges\n");
6026 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6027 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6028 (u64)start_pfn << PAGE_SHIFT,
6029 ((u64)end_pfn << PAGE_SHIFT) - 1);
6030
6031 /* Initialise every node */
6032 mminit_verify_pageflags_layout();
6033 setup_nr_node_ids();
6034 for_each_online_node(nid) {
6035 pg_data_t *pgdat = NODE_DATA(nid);
6036 free_area_init_node(nid, NULL,
6037 find_min_pfn_for_node(nid), NULL);
6038
6039 /* Any memory on that node */
6040 if (pgdat->node_present_pages)
6041 node_set_state(nid, N_MEMORY);
6042 check_for_memory(pgdat, nid);
6043 }
6044 }
6045
6046 static int __init cmdline_parse_core(char *p, unsigned long *core)
6047 {
6048 unsigned long long coremem;
6049 if (!p)
6050 return -EINVAL;
6051
6052 coremem = memparse(p, &p);
6053 *core = coremem >> PAGE_SHIFT;
6054
6055 /* Paranoid check that UL is enough for the coremem value */
6056 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6057
6058 return 0;
6059 }
6060
6061 /*
6062 * kernelcore=size sets the amount of memory for use for allocations that
6063 * cannot be reclaimed or migrated.
6064 */
6065 static int __init cmdline_parse_kernelcore(char *p)
6066 {
6067 /* parse kernelcore=mirror */
6068 if (parse_option_str(p, "mirror")) {
6069 mirrored_kernelcore = true;
6070 return 0;
6071 }
6072
6073 return cmdline_parse_core(p, &required_kernelcore);
6074 }
6075
6076 /*
6077 * movablecore=size sets the amount of memory for use for allocations that
6078 * can be reclaimed or migrated.
6079 */
6080 static int __init cmdline_parse_movablecore(char *p)
6081 {
6082 return cmdline_parse_core(p, &required_movablecore);
6083 }
6084
6085 early_param("kernelcore", cmdline_parse_kernelcore);
6086 early_param("movablecore", cmdline_parse_movablecore);
6087
6088 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6089
6090 void adjust_managed_page_count(struct page *page, long count)
6091 {
6092 spin_lock(&managed_page_count_lock);
6093 page_zone(page)->managed_pages += count;
6094 totalram_pages += count;
6095 #ifdef CONFIG_HIGHMEM
6096 if (PageHighMem(page))
6097 totalhigh_pages += count;
6098 #endif
6099 spin_unlock(&managed_page_count_lock);
6100 }
6101 EXPORT_SYMBOL(adjust_managed_page_count);
6102
6103 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6104 {
6105 void *pos;
6106 unsigned long pages = 0;
6107
6108 start = (void *)PAGE_ALIGN((unsigned long)start);
6109 end = (void *)((unsigned long)end & PAGE_MASK);
6110 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6111 if ((unsigned int)poison <= 0xFF)
6112 memset(pos, poison, PAGE_SIZE);
6113 free_reserved_page(virt_to_page(pos));
6114 }
6115
6116 if (pages && s)
6117 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6118 s, pages << (PAGE_SHIFT - 10), start, end);
6119
6120 return pages;
6121 }
6122 EXPORT_SYMBOL(free_reserved_area);
6123
6124 #ifdef CONFIG_HIGHMEM
6125 void free_highmem_page(struct page *page)
6126 {
6127 __free_reserved_page(page);
6128 totalram_pages++;
6129 page_zone(page)->managed_pages++;
6130 totalhigh_pages++;
6131 }
6132 #endif
6133
6134
6135 void __init mem_init_print_info(const char *str)
6136 {
6137 unsigned long physpages, codesize, datasize, rosize, bss_size;
6138 unsigned long init_code_size, init_data_size;
6139
6140 physpages = get_num_physpages();
6141 codesize = _etext - _stext;
6142 datasize = _edata - _sdata;
6143 rosize = __end_rodata - __start_rodata;
6144 bss_size = __bss_stop - __bss_start;
6145 init_data_size = __init_end - __init_begin;
6146 init_code_size = _einittext - _sinittext;
6147
6148 /*
6149 * Detect special cases and adjust section sizes accordingly:
6150 * 1) .init.* may be embedded into .data sections
6151 * 2) .init.text.* may be out of [__init_begin, __init_end],
6152 * please refer to arch/tile/kernel/vmlinux.lds.S.
6153 * 3) .rodata.* may be embedded into .text or .data sections.
6154 */
6155 #define adj_init_size(start, end, size, pos, adj) \
6156 do { \
6157 if (start <= pos && pos < end && size > adj) \
6158 size -= adj; \
6159 } while (0)
6160
6161 adj_init_size(__init_begin, __init_end, init_data_size,
6162 _sinittext, init_code_size);
6163 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6164 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6165 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6166 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6167
6168 #undef adj_init_size
6169
6170 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6171 #ifdef CONFIG_HIGHMEM
6172 ", %luK highmem"
6173 #endif
6174 "%s%s)\n",
6175 nr_free_pages() << (PAGE_SHIFT - 10),
6176 physpages << (PAGE_SHIFT - 10),
6177 codesize >> 10, datasize >> 10, rosize >> 10,
6178 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6179 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6180 totalcma_pages << (PAGE_SHIFT - 10),
6181 #ifdef CONFIG_HIGHMEM
6182 totalhigh_pages << (PAGE_SHIFT - 10),
6183 #endif
6184 str ? ", " : "", str ? str : "");
6185 }
6186
6187 /**
6188 * set_dma_reserve - set the specified number of pages reserved in the first zone
6189 * @new_dma_reserve: The number of pages to mark reserved
6190 *
6191 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6192 * In the DMA zone, a significant percentage may be consumed by kernel image
6193 * and other unfreeable allocations which can skew the watermarks badly. This
6194 * function may optionally be used to account for unfreeable pages in the
6195 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6196 * smaller per-cpu batchsize.
6197 */
6198 void __init set_dma_reserve(unsigned long new_dma_reserve)
6199 {
6200 dma_reserve = new_dma_reserve;
6201 }
6202
6203 void __init free_area_init(unsigned long *zones_size)
6204 {
6205 free_area_init_node(0, zones_size,
6206 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6207 }
6208
6209 static int page_alloc_cpu_notify(struct notifier_block *self,
6210 unsigned long action, void *hcpu)
6211 {
6212 int cpu = (unsigned long)hcpu;
6213
6214 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6215 lru_add_drain_cpu(cpu);
6216 drain_pages(cpu);
6217
6218 /*
6219 * Spill the event counters of the dead processor
6220 * into the current processors event counters.
6221 * This artificially elevates the count of the current
6222 * processor.
6223 */
6224 vm_events_fold_cpu(cpu);
6225
6226 /*
6227 * Zero the differential counters of the dead processor
6228 * so that the vm statistics are consistent.
6229 *
6230 * This is only okay since the processor is dead and cannot
6231 * race with what we are doing.
6232 */
6233 cpu_vm_stats_fold(cpu);
6234 }
6235 return NOTIFY_OK;
6236 }
6237
6238 void __init page_alloc_init(void)
6239 {
6240 hotcpu_notifier(page_alloc_cpu_notify, 0);
6241 }
6242
6243 /*
6244 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6245 * or min_free_kbytes changes.
6246 */
6247 static void calculate_totalreserve_pages(void)
6248 {
6249 struct pglist_data *pgdat;
6250 unsigned long reserve_pages = 0;
6251 enum zone_type i, j;
6252
6253 for_each_online_pgdat(pgdat) {
6254 for (i = 0; i < MAX_NR_ZONES; i++) {
6255 struct zone *zone = pgdat->node_zones + i;
6256 long max = 0;
6257
6258 /* Find valid and maximum lowmem_reserve in the zone */
6259 for (j = i; j < MAX_NR_ZONES; j++) {
6260 if (zone->lowmem_reserve[j] > max)
6261 max = zone->lowmem_reserve[j];
6262 }
6263
6264 /* we treat the high watermark as reserved pages. */
6265 max += high_wmark_pages(zone);
6266
6267 if (max > zone->managed_pages)
6268 max = zone->managed_pages;
6269
6270 zone->totalreserve_pages = max;
6271
6272 reserve_pages += max;
6273 }
6274 }
6275 totalreserve_pages = reserve_pages;
6276 }
6277
6278 /*
6279 * setup_per_zone_lowmem_reserve - called whenever
6280 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6281 * has a correct pages reserved value, so an adequate number of
6282 * pages are left in the zone after a successful __alloc_pages().
6283 */
6284 static void setup_per_zone_lowmem_reserve(void)
6285 {
6286 struct pglist_data *pgdat;
6287 enum zone_type j, idx;
6288
6289 for_each_online_pgdat(pgdat) {
6290 for (j = 0; j < MAX_NR_ZONES; j++) {
6291 struct zone *zone = pgdat->node_zones + j;
6292 unsigned long managed_pages = zone->managed_pages;
6293
6294 zone->lowmem_reserve[j] = 0;
6295
6296 idx = j;
6297 while (idx) {
6298 struct zone *lower_zone;
6299
6300 idx--;
6301
6302 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6303 sysctl_lowmem_reserve_ratio[idx] = 1;
6304
6305 lower_zone = pgdat->node_zones + idx;
6306 lower_zone->lowmem_reserve[j] = managed_pages /
6307 sysctl_lowmem_reserve_ratio[idx];
6308 managed_pages += lower_zone->managed_pages;
6309 }
6310 }
6311 }
6312
6313 /* update totalreserve_pages */
6314 calculate_totalreserve_pages();
6315 }
6316
6317 static void __setup_per_zone_wmarks(void)
6318 {
6319 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6320 unsigned long lowmem_pages = 0;
6321 struct zone *zone;
6322 unsigned long flags;
6323
6324 /* Calculate total number of !ZONE_HIGHMEM pages */
6325 for_each_zone(zone) {
6326 if (!is_highmem(zone))
6327 lowmem_pages += zone->managed_pages;
6328 }
6329
6330 for_each_zone(zone) {
6331 u64 tmp;
6332
6333 spin_lock_irqsave(&zone->lock, flags);
6334 tmp = (u64)pages_min * zone->managed_pages;
6335 do_div(tmp, lowmem_pages);
6336 if (is_highmem(zone)) {
6337 /*
6338 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6339 * need highmem pages, so cap pages_min to a small
6340 * value here.
6341 *
6342 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6343 * deltas control asynch page reclaim, and so should
6344 * not be capped for highmem.
6345 */
6346 unsigned long min_pages;
6347
6348 min_pages = zone->managed_pages / 1024;
6349 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6350 zone->watermark[WMARK_MIN] = min_pages;
6351 } else {
6352 /*
6353 * If it's a lowmem zone, reserve a number of pages
6354 * proportionate to the zone's size.
6355 */
6356 zone->watermark[WMARK_MIN] = tmp;
6357 }
6358
6359 /*
6360 * Set the kswapd watermarks distance according to the
6361 * scale factor in proportion to available memory, but
6362 * ensure a minimum size on small systems.
6363 */
6364 tmp = max_t(u64, tmp >> 2,
6365 mult_frac(zone->managed_pages,
6366 watermark_scale_factor, 10000));
6367
6368 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6369 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6370
6371 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6372 high_wmark_pages(zone) - low_wmark_pages(zone) -
6373 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6374
6375 spin_unlock_irqrestore(&zone->lock, flags);
6376 }
6377
6378 /* update totalreserve_pages */
6379 calculate_totalreserve_pages();
6380 }
6381
6382 /**
6383 * setup_per_zone_wmarks - called when min_free_kbytes changes
6384 * or when memory is hot-{added|removed}
6385 *
6386 * Ensures that the watermark[min,low,high] values for each zone are set
6387 * correctly with respect to min_free_kbytes.
6388 */
6389 void setup_per_zone_wmarks(void)
6390 {
6391 mutex_lock(&zonelists_mutex);
6392 __setup_per_zone_wmarks();
6393 mutex_unlock(&zonelists_mutex);
6394 }
6395
6396 /*
6397 * The inactive anon list should be small enough that the VM never has to
6398 * do too much work, but large enough that each inactive page has a chance
6399 * to be referenced again before it is swapped out.
6400 *
6401 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6402 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6403 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6404 * the anonymous pages are kept on the inactive list.
6405 *
6406 * total target max
6407 * memory ratio inactive anon
6408 * -------------------------------------
6409 * 10MB 1 5MB
6410 * 100MB 1 50MB
6411 * 1GB 3 250MB
6412 * 10GB 10 0.9GB
6413 * 100GB 31 3GB
6414 * 1TB 101 10GB
6415 * 10TB 320 32GB
6416 */
6417 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6418 {
6419 unsigned int gb, ratio;
6420
6421 /* Zone size in gigabytes */
6422 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6423 if (gb)
6424 ratio = int_sqrt(10 * gb);
6425 else
6426 ratio = 1;
6427
6428 zone->inactive_ratio = ratio;
6429 }
6430
6431 static void __meminit setup_per_zone_inactive_ratio(void)
6432 {
6433 struct zone *zone;
6434
6435 for_each_zone(zone)
6436 calculate_zone_inactive_ratio(zone);
6437 }
6438
6439 /*
6440 * Initialise min_free_kbytes.
6441 *
6442 * For small machines we want it small (128k min). For large machines
6443 * we want it large (64MB max). But it is not linear, because network
6444 * bandwidth does not increase linearly with machine size. We use
6445 *
6446 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6447 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6448 *
6449 * which yields
6450 *
6451 * 16MB: 512k
6452 * 32MB: 724k
6453 * 64MB: 1024k
6454 * 128MB: 1448k
6455 * 256MB: 2048k
6456 * 512MB: 2896k
6457 * 1024MB: 4096k
6458 * 2048MB: 5792k
6459 * 4096MB: 8192k
6460 * 8192MB: 11584k
6461 * 16384MB: 16384k
6462 */
6463 int __meminit init_per_zone_wmark_min(void)
6464 {
6465 unsigned long lowmem_kbytes;
6466 int new_min_free_kbytes;
6467
6468 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6469 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6470
6471 if (new_min_free_kbytes > user_min_free_kbytes) {
6472 min_free_kbytes = new_min_free_kbytes;
6473 if (min_free_kbytes < 128)
6474 min_free_kbytes = 128;
6475 if (min_free_kbytes > 65536)
6476 min_free_kbytes = 65536;
6477 } else {
6478 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6479 new_min_free_kbytes, user_min_free_kbytes);
6480 }
6481 setup_per_zone_wmarks();
6482 refresh_zone_stat_thresholds();
6483 setup_per_zone_lowmem_reserve();
6484 setup_per_zone_inactive_ratio();
6485 return 0;
6486 }
6487 core_initcall(init_per_zone_wmark_min)
6488
6489 /*
6490 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6491 * that we can call two helper functions whenever min_free_kbytes
6492 * changes.
6493 */
6494 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6495 void __user *buffer, size_t *length, loff_t *ppos)
6496 {
6497 int rc;
6498
6499 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6500 if (rc)
6501 return rc;
6502
6503 if (write) {
6504 user_min_free_kbytes = min_free_kbytes;
6505 setup_per_zone_wmarks();
6506 }
6507 return 0;
6508 }
6509
6510 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6511 void __user *buffer, size_t *length, loff_t *ppos)
6512 {
6513 int rc;
6514
6515 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6516 if (rc)
6517 return rc;
6518
6519 if (write)
6520 setup_per_zone_wmarks();
6521
6522 return 0;
6523 }
6524
6525 #ifdef CONFIG_NUMA
6526 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6527 void __user *buffer, size_t *length, loff_t *ppos)
6528 {
6529 struct zone *zone;
6530 int rc;
6531
6532 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6533 if (rc)
6534 return rc;
6535
6536 for_each_zone(zone)
6537 zone->min_unmapped_pages = (zone->managed_pages *
6538 sysctl_min_unmapped_ratio) / 100;
6539 return 0;
6540 }
6541
6542 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6543 void __user *buffer, size_t *length, loff_t *ppos)
6544 {
6545 struct zone *zone;
6546 int rc;
6547
6548 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6549 if (rc)
6550 return rc;
6551
6552 for_each_zone(zone)
6553 zone->min_slab_pages = (zone->managed_pages *
6554 sysctl_min_slab_ratio) / 100;
6555 return 0;
6556 }
6557 #endif
6558
6559 /*
6560 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6561 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6562 * whenever sysctl_lowmem_reserve_ratio changes.
6563 *
6564 * The reserve ratio obviously has absolutely no relation with the
6565 * minimum watermarks. The lowmem reserve ratio can only make sense
6566 * if in function of the boot time zone sizes.
6567 */
6568 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6569 void __user *buffer, size_t *length, loff_t *ppos)
6570 {
6571 proc_dointvec_minmax(table, write, buffer, length, ppos);
6572 setup_per_zone_lowmem_reserve();
6573 return 0;
6574 }
6575
6576 /*
6577 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6578 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6579 * pagelist can have before it gets flushed back to buddy allocator.
6580 */
6581 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6582 void __user *buffer, size_t *length, loff_t *ppos)
6583 {
6584 struct zone *zone;
6585 int old_percpu_pagelist_fraction;
6586 int ret;
6587
6588 mutex_lock(&pcp_batch_high_lock);
6589 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6590
6591 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6592 if (!write || ret < 0)
6593 goto out;
6594
6595 /* Sanity checking to avoid pcp imbalance */
6596 if (percpu_pagelist_fraction &&
6597 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6598 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6599 ret = -EINVAL;
6600 goto out;
6601 }
6602
6603 /* No change? */
6604 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6605 goto out;
6606
6607 for_each_populated_zone(zone) {
6608 unsigned int cpu;
6609
6610 for_each_possible_cpu(cpu)
6611 pageset_set_high_and_batch(zone,
6612 per_cpu_ptr(zone->pageset, cpu));
6613 }
6614 out:
6615 mutex_unlock(&pcp_batch_high_lock);
6616 return ret;
6617 }
6618
6619 #ifdef CONFIG_NUMA
6620 int hashdist = HASHDIST_DEFAULT;
6621
6622 static int __init set_hashdist(char *str)
6623 {
6624 if (!str)
6625 return 0;
6626 hashdist = simple_strtoul(str, &str, 0);
6627 return 1;
6628 }
6629 __setup("hashdist=", set_hashdist);
6630 #endif
6631
6632 /*
6633 * allocate a large system hash table from bootmem
6634 * - it is assumed that the hash table must contain an exact power-of-2
6635 * quantity of entries
6636 * - limit is the number of hash buckets, not the total allocation size
6637 */
6638 void *__init alloc_large_system_hash(const char *tablename,
6639 unsigned long bucketsize,
6640 unsigned long numentries,
6641 int scale,
6642 int flags,
6643 unsigned int *_hash_shift,
6644 unsigned int *_hash_mask,
6645 unsigned long low_limit,
6646 unsigned long high_limit)
6647 {
6648 unsigned long long max = high_limit;
6649 unsigned long log2qty, size;
6650 void *table = NULL;
6651
6652 /* allow the kernel cmdline to have a say */
6653 if (!numentries) {
6654 /* round applicable memory size up to nearest megabyte */
6655 numentries = nr_kernel_pages;
6656
6657 /* It isn't necessary when PAGE_SIZE >= 1MB */
6658 if (PAGE_SHIFT < 20)
6659 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6660
6661 /* limit to 1 bucket per 2^scale bytes of low memory */
6662 if (scale > PAGE_SHIFT)
6663 numentries >>= (scale - PAGE_SHIFT);
6664 else
6665 numentries <<= (PAGE_SHIFT - scale);
6666
6667 /* Make sure we've got at least a 0-order allocation.. */
6668 if (unlikely(flags & HASH_SMALL)) {
6669 /* Makes no sense without HASH_EARLY */
6670 WARN_ON(!(flags & HASH_EARLY));
6671 if (!(numentries >> *_hash_shift)) {
6672 numentries = 1UL << *_hash_shift;
6673 BUG_ON(!numentries);
6674 }
6675 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6676 numentries = PAGE_SIZE / bucketsize;
6677 }
6678 numentries = roundup_pow_of_two(numentries);
6679
6680 /* limit allocation size to 1/16 total memory by default */
6681 if (max == 0) {
6682 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6683 do_div(max, bucketsize);
6684 }
6685 max = min(max, 0x80000000ULL);
6686
6687 if (numentries < low_limit)
6688 numentries = low_limit;
6689 if (numentries > max)
6690 numentries = max;
6691
6692 log2qty = ilog2(numentries);
6693
6694 do {
6695 size = bucketsize << log2qty;
6696 if (flags & HASH_EARLY)
6697 table = memblock_virt_alloc_nopanic(size, 0);
6698 else if (hashdist)
6699 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6700 else {
6701 /*
6702 * If bucketsize is not a power-of-two, we may free
6703 * some pages at the end of hash table which
6704 * alloc_pages_exact() automatically does
6705 */
6706 if (get_order(size) < MAX_ORDER) {
6707 table = alloc_pages_exact(size, GFP_ATOMIC);
6708 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6709 }
6710 }
6711 } while (!table && size > PAGE_SIZE && --log2qty);
6712
6713 if (!table)
6714 panic("Failed to allocate %s hash table\n", tablename);
6715
6716 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6717 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
6718
6719 if (_hash_shift)
6720 *_hash_shift = log2qty;
6721 if (_hash_mask)
6722 *_hash_mask = (1 << log2qty) - 1;
6723
6724 return table;
6725 }
6726
6727 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6728 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6729 unsigned long pfn)
6730 {
6731 #ifdef CONFIG_SPARSEMEM
6732 return __pfn_to_section(pfn)->pageblock_flags;
6733 #else
6734 return zone->pageblock_flags;
6735 #endif /* CONFIG_SPARSEMEM */
6736 }
6737
6738 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6739 {
6740 #ifdef CONFIG_SPARSEMEM
6741 pfn &= (PAGES_PER_SECTION-1);
6742 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6743 #else
6744 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6745 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6746 #endif /* CONFIG_SPARSEMEM */
6747 }
6748
6749 /**
6750 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6751 * @page: The page within the block of interest
6752 * @pfn: The target page frame number
6753 * @end_bitidx: The last bit of interest to retrieve
6754 * @mask: mask of bits that the caller is interested in
6755 *
6756 * Return: pageblock_bits flags
6757 */
6758 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6759 unsigned long end_bitidx,
6760 unsigned long mask)
6761 {
6762 struct zone *zone;
6763 unsigned long *bitmap;
6764 unsigned long bitidx, word_bitidx;
6765 unsigned long word;
6766
6767 zone = page_zone(page);
6768 bitmap = get_pageblock_bitmap(zone, pfn);
6769 bitidx = pfn_to_bitidx(zone, pfn);
6770 word_bitidx = bitidx / BITS_PER_LONG;
6771 bitidx &= (BITS_PER_LONG-1);
6772
6773 word = bitmap[word_bitidx];
6774 bitidx += end_bitidx;
6775 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6776 }
6777
6778 /**
6779 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6780 * @page: The page within the block of interest
6781 * @flags: The flags to set
6782 * @pfn: The target page frame number
6783 * @end_bitidx: The last bit of interest
6784 * @mask: mask of bits that the caller is interested in
6785 */
6786 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6787 unsigned long pfn,
6788 unsigned long end_bitidx,
6789 unsigned long mask)
6790 {
6791 struct zone *zone;
6792 unsigned long *bitmap;
6793 unsigned long bitidx, word_bitidx;
6794 unsigned long old_word, word;
6795
6796 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6797
6798 zone = page_zone(page);
6799 bitmap = get_pageblock_bitmap(zone, pfn);
6800 bitidx = pfn_to_bitidx(zone, pfn);
6801 word_bitidx = bitidx / BITS_PER_LONG;
6802 bitidx &= (BITS_PER_LONG-1);
6803
6804 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6805
6806 bitidx += end_bitidx;
6807 mask <<= (BITS_PER_LONG - bitidx - 1);
6808 flags <<= (BITS_PER_LONG - bitidx - 1);
6809
6810 word = READ_ONCE(bitmap[word_bitidx]);
6811 for (;;) {
6812 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6813 if (word == old_word)
6814 break;
6815 word = old_word;
6816 }
6817 }
6818
6819 /*
6820 * This function checks whether pageblock includes unmovable pages or not.
6821 * If @count is not zero, it is okay to include less @count unmovable pages
6822 *
6823 * PageLRU check without isolation or lru_lock could race so that
6824 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6825 * expect this function should be exact.
6826 */
6827 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6828 bool skip_hwpoisoned_pages)
6829 {
6830 unsigned long pfn, iter, found;
6831 int mt;
6832
6833 /*
6834 * For avoiding noise data, lru_add_drain_all() should be called
6835 * If ZONE_MOVABLE, the zone never contains unmovable pages
6836 */
6837 if (zone_idx(zone) == ZONE_MOVABLE)
6838 return false;
6839 mt = get_pageblock_migratetype(page);
6840 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6841 return false;
6842
6843 pfn = page_to_pfn(page);
6844 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6845 unsigned long check = pfn + iter;
6846
6847 if (!pfn_valid_within(check))
6848 continue;
6849
6850 page = pfn_to_page(check);
6851
6852 /*
6853 * Hugepages are not in LRU lists, but they're movable.
6854 * We need not scan over tail pages bacause we don't
6855 * handle each tail page individually in migration.
6856 */
6857 if (PageHuge(page)) {
6858 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6859 continue;
6860 }
6861
6862 /*
6863 * We can't use page_count without pin a page
6864 * because another CPU can free compound page.
6865 * This check already skips compound tails of THP
6866 * because their page->_refcount is zero at all time.
6867 */
6868 if (!page_ref_count(page)) {
6869 if (PageBuddy(page))
6870 iter += (1 << page_order(page)) - 1;
6871 continue;
6872 }
6873
6874 /*
6875 * The HWPoisoned page may be not in buddy system, and
6876 * page_count() is not 0.
6877 */
6878 if (skip_hwpoisoned_pages && PageHWPoison(page))
6879 continue;
6880
6881 if (!PageLRU(page))
6882 found++;
6883 /*
6884 * If there are RECLAIMABLE pages, we need to check
6885 * it. But now, memory offline itself doesn't call
6886 * shrink_node_slabs() and it still to be fixed.
6887 */
6888 /*
6889 * If the page is not RAM, page_count()should be 0.
6890 * we don't need more check. This is an _used_ not-movable page.
6891 *
6892 * The problematic thing here is PG_reserved pages. PG_reserved
6893 * is set to both of a memory hole page and a _used_ kernel
6894 * page at boot.
6895 */
6896 if (found > count)
6897 return true;
6898 }
6899 return false;
6900 }
6901
6902 bool is_pageblock_removable_nolock(struct page *page)
6903 {
6904 struct zone *zone;
6905 unsigned long pfn;
6906
6907 /*
6908 * We have to be careful here because we are iterating over memory
6909 * sections which are not zone aware so we might end up outside of
6910 * the zone but still within the section.
6911 * We have to take care about the node as well. If the node is offline
6912 * its NODE_DATA will be NULL - see page_zone.
6913 */
6914 if (!node_online(page_to_nid(page)))
6915 return false;
6916
6917 zone = page_zone(page);
6918 pfn = page_to_pfn(page);
6919 if (!zone_spans_pfn(zone, pfn))
6920 return false;
6921
6922 return !has_unmovable_pages(zone, page, 0, true);
6923 }
6924
6925 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6926
6927 static unsigned long pfn_max_align_down(unsigned long pfn)
6928 {
6929 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6930 pageblock_nr_pages) - 1);
6931 }
6932
6933 static unsigned long pfn_max_align_up(unsigned long pfn)
6934 {
6935 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6936 pageblock_nr_pages));
6937 }
6938
6939 /* [start, end) must belong to a single zone. */
6940 static int __alloc_contig_migrate_range(struct compact_control *cc,
6941 unsigned long start, unsigned long end)
6942 {
6943 /* This function is based on compact_zone() from compaction.c. */
6944 unsigned long nr_reclaimed;
6945 unsigned long pfn = start;
6946 unsigned int tries = 0;
6947 int ret = 0;
6948
6949 migrate_prep();
6950
6951 while (pfn < end || !list_empty(&cc->migratepages)) {
6952 if (fatal_signal_pending(current)) {
6953 ret = -EINTR;
6954 break;
6955 }
6956
6957 if (list_empty(&cc->migratepages)) {
6958 cc->nr_migratepages = 0;
6959 pfn = isolate_migratepages_range(cc, pfn, end);
6960 if (!pfn) {
6961 ret = -EINTR;
6962 break;
6963 }
6964 tries = 0;
6965 } else if (++tries == 5) {
6966 ret = ret < 0 ? ret : -EBUSY;
6967 break;
6968 }
6969
6970 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6971 &cc->migratepages);
6972 cc->nr_migratepages -= nr_reclaimed;
6973
6974 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6975 NULL, 0, cc->mode, MR_CMA);
6976 }
6977 if (ret < 0) {
6978 putback_movable_pages(&cc->migratepages);
6979 return ret;
6980 }
6981 return 0;
6982 }
6983
6984 /**
6985 * alloc_contig_range() -- tries to allocate given range of pages
6986 * @start: start PFN to allocate
6987 * @end: one-past-the-last PFN to allocate
6988 * @migratetype: migratetype of the underlaying pageblocks (either
6989 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6990 * in range must have the same migratetype and it must
6991 * be either of the two.
6992 *
6993 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6994 * aligned, however it's the caller's responsibility to guarantee that
6995 * we are the only thread that changes migrate type of pageblocks the
6996 * pages fall in.
6997 *
6998 * The PFN range must belong to a single zone.
6999 *
7000 * Returns zero on success or negative error code. On success all
7001 * pages which PFN is in [start, end) are allocated for the caller and
7002 * need to be freed with free_contig_range().
7003 */
7004 int alloc_contig_range(unsigned long start, unsigned long end,
7005 unsigned migratetype)
7006 {
7007 unsigned long outer_start, outer_end;
7008 unsigned int order;
7009 int ret = 0;
7010
7011 struct compact_control cc = {
7012 .nr_migratepages = 0,
7013 .order = -1,
7014 .zone = page_zone(pfn_to_page(start)),
7015 .mode = MIGRATE_SYNC,
7016 .ignore_skip_hint = true,
7017 };
7018 INIT_LIST_HEAD(&cc.migratepages);
7019
7020 /*
7021 * What we do here is we mark all pageblocks in range as
7022 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7023 * have different sizes, and due to the way page allocator
7024 * work, we align the range to biggest of the two pages so
7025 * that page allocator won't try to merge buddies from
7026 * different pageblocks and change MIGRATE_ISOLATE to some
7027 * other migration type.
7028 *
7029 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7030 * migrate the pages from an unaligned range (ie. pages that
7031 * we are interested in). This will put all the pages in
7032 * range back to page allocator as MIGRATE_ISOLATE.
7033 *
7034 * When this is done, we take the pages in range from page
7035 * allocator removing them from the buddy system. This way
7036 * page allocator will never consider using them.
7037 *
7038 * This lets us mark the pageblocks back as
7039 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7040 * aligned range but not in the unaligned, original range are
7041 * put back to page allocator so that buddy can use them.
7042 */
7043
7044 ret = start_isolate_page_range(pfn_max_align_down(start),
7045 pfn_max_align_up(end), migratetype,
7046 false);
7047 if (ret)
7048 return ret;
7049
7050 /*
7051 * In case of -EBUSY, we'd like to know which page causes problem.
7052 * So, just fall through. We will check it in test_pages_isolated().
7053 */
7054 ret = __alloc_contig_migrate_range(&cc, start, end);
7055 if (ret && ret != -EBUSY)
7056 goto done;
7057
7058 /*
7059 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7060 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7061 * more, all pages in [start, end) are free in page allocator.
7062 * What we are going to do is to allocate all pages from
7063 * [start, end) (that is remove them from page allocator).
7064 *
7065 * The only problem is that pages at the beginning and at the
7066 * end of interesting range may be not aligned with pages that
7067 * page allocator holds, ie. they can be part of higher order
7068 * pages. Because of this, we reserve the bigger range and
7069 * once this is done free the pages we are not interested in.
7070 *
7071 * We don't have to hold zone->lock here because the pages are
7072 * isolated thus they won't get removed from buddy.
7073 */
7074
7075 lru_add_drain_all();
7076 drain_all_pages(cc.zone);
7077
7078 order = 0;
7079 outer_start = start;
7080 while (!PageBuddy(pfn_to_page(outer_start))) {
7081 if (++order >= MAX_ORDER) {
7082 outer_start = start;
7083 break;
7084 }
7085 outer_start &= ~0UL << order;
7086 }
7087
7088 if (outer_start != start) {
7089 order = page_order(pfn_to_page(outer_start));
7090
7091 /*
7092 * outer_start page could be small order buddy page and
7093 * it doesn't include start page. Adjust outer_start
7094 * in this case to report failed page properly
7095 * on tracepoint in test_pages_isolated()
7096 */
7097 if (outer_start + (1UL << order) <= start)
7098 outer_start = start;
7099 }
7100
7101 /* Make sure the range is really isolated. */
7102 if (test_pages_isolated(outer_start, end, false)) {
7103 pr_info("%s: [%lx, %lx) PFNs busy\n",
7104 __func__, outer_start, end);
7105 ret = -EBUSY;
7106 goto done;
7107 }
7108
7109 /* Grab isolated pages from freelists. */
7110 outer_end = isolate_freepages_range(&cc, outer_start, end);
7111 if (!outer_end) {
7112 ret = -EBUSY;
7113 goto done;
7114 }
7115
7116 /* Free head and tail (if any) */
7117 if (start != outer_start)
7118 free_contig_range(outer_start, start - outer_start);
7119 if (end != outer_end)
7120 free_contig_range(end, outer_end - end);
7121
7122 done:
7123 undo_isolate_page_range(pfn_max_align_down(start),
7124 pfn_max_align_up(end), migratetype);
7125 return ret;
7126 }
7127
7128 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7129 {
7130 unsigned int count = 0;
7131
7132 for (; nr_pages--; pfn++) {
7133 struct page *page = pfn_to_page(pfn);
7134
7135 count += page_count(page) != 1;
7136 __free_page(page);
7137 }
7138 WARN(count != 0, "%d pages are still in use!\n", count);
7139 }
7140 #endif
7141
7142 #ifdef CONFIG_MEMORY_HOTPLUG
7143 /*
7144 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7145 * page high values need to be recalulated.
7146 */
7147 void __meminit zone_pcp_update(struct zone *zone)
7148 {
7149 unsigned cpu;
7150 mutex_lock(&pcp_batch_high_lock);
7151 for_each_possible_cpu(cpu)
7152 pageset_set_high_and_batch(zone,
7153 per_cpu_ptr(zone->pageset, cpu));
7154 mutex_unlock(&pcp_batch_high_lock);
7155 }
7156 #endif
7157
7158 void zone_pcp_reset(struct zone *zone)
7159 {
7160 unsigned long flags;
7161 int cpu;
7162 struct per_cpu_pageset *pset;
7163
7164 /* avoid races with drain_pages() */
7165 local_irq_save(flags);
7166 if (zone->pageset != &boot_pageset) {
7167 for_each_online_cpu(cpu) {
7168 pset = per_cpu_ptr(zone->pageset, cpu);
7169 drain_zonestat(zone, pset);
7170 }
7171 free_percpu(zone->pageset);
7172 zone->pageset = &boot_pageset;
7173 }
7174 local_irq_restore(flags);
7175 }
7176
7177 #ifdef CONFIG_MEMORY_HOTREMOVE
7178 /*
7179 * All pages in the range must be in a single zone and isolated
7180 * before calling this.
7181 */
7182 void
7183 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7184 {
7185 struct page *page;
7186 struct zone *zone;
7187 unsigned int order, i;
7188 unsigned long pfn;
7189 unsigned long flags;
7190 /* find the first valid pfn */
7191 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7192 if (pfn_valid(pfn))
7193 break;
7194 if (pfn == end_pfn)
7195 return;
7196 zone = page_zone(pfn_to_page(pfn));
7197 spin_lock_irqsave(&zone->lock, flags);
7198 pfn = start_pfn;
7199 while (pfn < end_pfn) {
7200 if (!pfn_valid(pfn)) {
7201 pfn++;
7202 continue;
7203 }
7204 page = pfn_to_page(pfn);
7205 /*
7206 * The HWPoisoned page may be not in buddy system, and
7207 * page_count() is not 0.
7208 */
7209 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7210 pfn++;
7211 SetPageReserved(page);
7212 continue;
7213 }
7214
7215 BUG_ON(page_count(page));
7216 BUG_ON(!PageBuddy(page));
7217 order = page_order(page);
7218 #ifdef CONFIG_DEBUG_VM
7219 pr_info("remove from free list %lx %d %lx\n",
7220 pfn, 1 << order, end_pfn);
7221 #endif
7222 list_del(&page->lru);
7223 rmv_page_order(page);
7224 zone->free_area[order].nr_free--;
7225 for (i = 0; i < (1 << order); i++)
7226 SetPageReserved((page+i));
7227 pfn += (1 << order);
7228 }
7229 spin_unlock_irqrestore(&zone->lock, flags);
7230 }
7231 #endif
7232
7233 bool is_free_buddy_page(struct page *page)
7234 {
7235 struct zone *zone = page_zone(page);
7236 unsigned long pfn = page_to_pfn(page);
7237 unsigned long flags;
7238 unsigned int order;
7239
7240 spin_lock_irqsave(&zone->lock, flags);
7241 for (order = 0; order < MAX_ORDER; order++) {
7242 struct page *page_head = page - (pfn & ((1 << order) - 1));
7243
7244 if (PageBuddy(page_head) && page_order(page_head) >= order)
7245 break;
7246 }
7247 spin_unlock_irqrestore(&zone->lock, flags);
7248
7249 return order < MAX_ORDER;
7250 }