]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/page_alloc.c
Merge branch 'for-rc' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[mirror_ubuntu-zesty-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93
94 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
95 volatile unsigned long latent_entropy __latent_entropy;
96 EXPORT_SYMBOL(latent_entropy);
97 #endif
98
99 /*
100 * Array of node states.
101 */
102 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
103 [N_POSSIBLE] = NODE_MASK_ALL,
104 [N_ONLINE] = { { [0] = 1UL } },
105 #ifndef CONFIG_NUMA
106 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
107 #ifdef CONFIG_HIGHMEM
108 [N_HIGH_MEMORY] = { { [0] = 1UL } },
109 #endif
110 #ifdef CONFIG_MOVABLE_NODE
111 [N_MEMORY] = { { [0] = 1UL } },
112 #endif
113 [N_CPU] = { { [0] = 1UL } },
114 #endif /* NUMA */
115 };
116 EXPORT_SYMBOL(node_states);
117
118 /* Protect totalram_pages and zone->managed_pages */
119 static DEFINE_SPINLOCK(managed_page_count_lock);
120
121 unsigned long totalram_pages __read_mostly;
122 unsigned long totalreserve_pages __read_mostly;
123 unsigned long totalcma_pages __read_mostly;
124
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127
128 /*
129 * A cached value of the page's pageblock's migratetype, used when the page is
130 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
131 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
132 * Also the migratetype set in the page does not necessarily match the pcplist
133 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
134 * other index - this ensures that it will be put on the correct CMA freelist.
135 */
136 static inline int get_pcppage_migratetype(struct page *page)
137 {
138 return page->index;
139 }
140
141 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
142 {
143 page->index = migratetype;
144 }
145
146 #ifdef CONFIG_PM_SLEEP
147 /*
148 * The following functions are used by the suspend/hibernate code to temporarily
149 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
150 * while devices are suspended. To avoid races with the suspend/hibernate code,
151 * they should always be called with pm_mutex held (gfp_allowed_mask also should
152 * only be modified with pm_mutex held, unless the suspend/hibernate code is
153 * guaranteed not to run in parallel with that modification).
154 */
155
156 static gfp_t saved_gfp_mask;
157
158 void pm_restore_gfp_mask(void)
159 {
160 WARN_ON(!mutex_is_locked(&pm_mutex));
161 if (saved_gfp_mask) {
162 gfp_allowed_mask = saved_gfp_mask;
163 saved_gfp_mask = 0;
164 }
165 }
166
167 void pm_restrict_gfp_mask(void)
168 {
169 WARN_ON(!mutex_is_locked(&pm_mutex));
170 WARN_ON(saved_gfp_mask);
171 saved_gfp_mask = gfp_allowed_mask;
172 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
173 }
174
175 bool pm_suspended_storage(void)
176 {
177 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
178 return false;
179 return true;
180 }
181 #endif /* CONFIG_PM_SLEEP */
182
183 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
184 unsigned int pageblock_order __read_mostly;
185 #endif
186
187 static void __free_pages_ok(struct page *page, unsigned int order);
188
189 /*
190 * results with 256, 32 in the lowmem_reserve sysctl:
191 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
192 * 1G machine -> (16M dma, 784M normal, 224M high)
193 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
194 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
195 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
196 *
197 * TBD: should special case ZONE_DMA32 machines here - in those we normally
198 * don't need any ZONE_NORMAL reservation
199 */
200 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
201 #ifdef CONFIG_ZONE_DMA
202 256,
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 256,
206 #endif
207 #ifdef CONFIG_HIGHMEM
208 32,
209 #endif
210 32,
211 };
212
213 EXPORT_SYMBOL(totalram_pages);
214
215 static char * const zone_names[MAX_NR_ZONES] = {
216 #ifdef CONFIG_ZONE_DMA
217 "DMA",
218 #endif
219 #ifdef CONFIG_ZONE_DMA32
220 "DMA32",
221 #endif
222 "Normal",
223 #ifdef CONFIG_HIGHMEM
224 "HighMem",
225 #endif
226 "Movable",
227 #ifdef CONFIG_ZONE_DEVICE
228 "Device",
229 #endif
230 };
231
232 char * const migratetype_names[MIGRATE_TYPES] = {
233 "Unmovable",
234 "Movable",
235 "Reclaimable",
236 "HighAtomic",
237 #ifdef CONFIG_CMA
238 "CMA",
239 #endif
240 #ifdef CONFIG_MEMORY_ISOLATION
241 "Isolate",
242 #endif
243 };
244
245 compound_page_dtor * const compound_page_dtors[] = {
246 NULL,
247 free_compound_page,
248 #ifdef CONFIG_HUGETLB_PAGE
249 free_huge_page,
250 #endif
251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
252 free_transhuge_page,
253 #endif
254 };
255
256 int min_free_kbytes = 1024;
257 int user_min_free_kbytes = -1;
258 int watermark_scale_factor = 10;
259
260 static unsigned long __meminitdata nr_kernel_pages;
261 static unsigned long __meminitdata nr_all_pages;
262 static unsigned long __meminitdata dma_reserve;
263
264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267 static unsigned long __initdata required_kernelcore;
268 static unsigned long __initdata required_movablecore;
269 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
270 static bool mirrored_kernelcore;
271
272 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273 int movable_zone;
274 EXPORT_SYMBOL(movable_zone);
275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
276
277 #if MAX_NUMNODES > 1
278 int nr_node_ids __read_mostly = MAX_NUMNODES;
279 int nr_online_nodes __read_mostly = 1;
280 EXPORT_SYMBOL(nr_node_ids);
281 EXPORT_SYMBOL(nr_online_nodes);
282 #endif
283
284 int page_group_by_mobility_disabled __read_mostly;
285
286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287 static inline void reset_deferred_meminit(pg_data_t *pgdat)
288 {
289 pgdat->first_deferred_pfn = ULONG_MAX;
290 }
291
292 /* Returns true if the struct page for the pfn is uninitialised */
293 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
294 {
295 int nid = early_pfn_to_nid(pfn);
296
297 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301 }
302
303 /*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310 {
311 unsigned long max_initialise;
312
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
322
323 (*nr_initialised)++;
324 if ((*nr_initialised > max_initialise) &&
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 return false;
340 }
341
342 static inline bool update_defer_init(pg_data_t *pgdat,
343 unsigned long pfn, unsigned long zone_end,
344 unsigned long *nr_initialised)
345 {
346 return true;
347 }
348 #endif
349
350 /* Return a pointer to the bitmap storing bits affecting a block of pages */
351 static inline unsigned long *get_pageblock_bitmap(struct page *page,
352 unsigned long pfn)
353 {
354 #ifdef CONFIG_SPARSEMEM
355 return __pfn_to_section(pfn)->pageblock_flags;
356 #else
357 return page_zone(page)->pageblock_flags;
358 #endif /* CONFIG_SPARSEMEM */
359 }
360
361 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
362 {
363 #ifdef CONFIG_SPARSEMEM
364 pfn &= (PAGES_PER_SECTION-1);
365 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
366 #else
367 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
368 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
369 #endif /* CONFIG_SPARSEMEM */
370 }
371
372 /**
373 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
374 * @page: The page within the block of interest
375 * @pfn: The target page frame number
376 * @end_bitidx: The last bit of interest to retrieve
377 * @mask: mask of bits that the caller is interested in
378 *
379 * Return: pageblock_bits flags
380 */
381 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
382 unsigned long pfn,
383 unsigned long end_bitidx,
384 unsigned long mask)
385 {
386 unsigned long *bitmap;
387 unsigned long bitidx, word_bitidx;
388 unsigned long word;
389
390 bitmap = get_pageblock_bitmap(page, pfn);
391 bitidx = pfn_to_bitidx(page, pfn);
392 word_bitidx = bitidx / BITS_PER_LONG;
393 bitidx &= (BITS_PER_LONG-1);
394
395 word = bitmap[word_bitidx];
396 bitidx += end_bitidx;
397 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
398 }
399
400 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
401 unsigned long end_bitidx,
402 unsigned long mask)
403 {
404 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
405 }
406
407 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
408 {
409 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
410 }
411
412 /**
413 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
414 * @page: The page within the block of interest
415 * @flags: The flags to set
416 * @pfn: The target page frame number
417 * @end_bitidx: The last bit of interest
418 * @mask: mask of bits that the caller is interested in
419 */
420 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
421 unsigned long pfn,
422 unsigned long end_bitidx,
423 unsigned long mask)
424 {
425 unsigned long *bitmap;
426 unsigned long bitidx, word_bitidx;
427 unsigned long old_word, word;
428
429 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
430
431 bitmap = get_pageblock_bitmap(page, pfn);
432 bitidx = pfn_to_bitidx(page, pfn);
433 word_bitidx = bitidx / BITS_PER_LONG;
434 bitidx &= (BITS_PER_LONG-1);
435
436 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
437
438 bitidx += end_bitidx;
439 mask <<= (BITS_PER_LONG - bitidx - 1);
440 flags <<= (BITS_PER_LONG - bitidx - 1);
441
442 word = READ_ONCE(bitmap[word_bitidx]);
443 for (;;) {
444 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
445 if (word == old_word)
446 break;
447 word = old_word;
448 }
449 }
450
451 void set_pageblock_migratetype(struct page *page, int migratetype)
452 {
453 if (unlikely(page_group_by_mobility_disabled &&
454 migratetype < MIGRATE_PCPTYPES))
455 migratetype = MIGRATE_UNMOVABLE;
456
457 set_pageblock_flags_group(page, (unsigned long)migratetype,
458 PB_migrate, PB_migrate_end);
459 }
460
461 #ifdef CONFIG_DEBUG_VM
462 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
463 {
464 int ret = 0;
465 unsigned seq;
466 unsigned long pfn = page_to_pfn(page);
467 unsigned long sp, start_pfn;
468
469 do {
470 seq = zone_span_seqbegin(zone);
471 start_pfn = zone->zone_start_pfn;
472 sp = zone->spanned_pages;
473 if (!zone_spans_pfn(zone, pfn))
474 ret = 1;
475 } while (zone_span_seqretry(zone, seq));
476
477 if (ret)
478 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
479 pfn, zone_to_nid(zone), zone->name,
480 start_pfn, start_pfn + sp);
481
482 return ret;
483 }
484
485 static int page_is_consistent(struct zone *zone, struct page *page)
486 {
487 if (!pfn_valid_within(page_to_pfn(page)))
488 return 0;
489 if (zone != page_zone(page))
490 return 0;
491
492 return 1;
493 }
494 /*
495 * Temporary debugging check for pages not lying within a given zone.
496 */
497 static int bad_range(struct zone *zone, struct page *page)
498 {
499 if (page_outside_zone_boundaries(zone, page))
500 return 1;
501 if (!page_is_consistent(zone, page))
502 return 1;
503
504 return 0;
505 }
506 #else
507 static inline int bad_range(struct zone *zone, struct page *page)
508 {
509 return 0;
510 }
511 #endif
512
513 static void bad_page(struct page *page, const char *reason,
514 unsigned long bad_flags)
515 {
516 static unsigned long resume;
517 static unsigned long nr_shown;
518 static unsigned long nr_unshown;
519
520 /*
521 * Allow a burst of 60 reports, then keep quiet for that minute;
522 * or allow a steady drip of one report per second.
523 */
524 if (nr_shown == 60) {
525 if (time_before(jiffies, resume)) {
526 nr_unshown++;
527 goto out;
528 }
529 if (nr_unshown) {
530 pr_alert(
531 "BUG: Bad page state: %lu messages suppressed\n",
532 nr_unshown);
533 nr_unshown = 0;
534 }
535 nr_shown = 0;
536 }
537 if (nr_shown++ == 0)
538 resume = jiffies + 60 * HZ;
539
540 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
541 current->comm, page_to_pfn(page));
542 __dump_page(page, reason);
543 bad_flags &= page->flags;
544 if (bad_flags)
545 pr_alert("bad because of flags: %#lx(%pGp)\n",
546 bad_flags, &bad_flags);
547 dump_page_owner(page);
548
549 print_modules();
550 dump_stack();
551 out:
552 /* Leave bad fields for debug, except PageBuddy could make trouble */
553 page_mapcount_reset(page); /* remove PageBuddy */
554 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
555 }
556
557 /*
558 * Higher-order pages are called "compound pages". They are structured thusly:
559 *
560 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
561 *
562 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
563 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
564 *
565 * The first tail page's ->compound_dtor holds the offset in array of compound
566 * page destructors. See compound_page_dtors.
567 *
568 * The first tail page's ->compound_order holds the order of allocation.
569 * This usage means that zero-order pages may not be compound.
570 */
571
572 void free_compound_page(struct page *page)
573 {
574 __free_pages_ok(page, compound_order(page));
575 }
576
577 void prep_compound_page(struct page *page, unsigned int order)
578 {
579 int i;
580 int nr_pages = 1 << order;
581
582 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
583 set_compound_order(page, order);
584 __SetPageHead(page);
585 for (i = 1; i < nr_pages; i++) {
586 struct page *p = page + i;
587 set_page_count(p, 0);
588 p->mapping = TAIL_MAPPING;
589 set_compound_head(p, page);
590 }
591 atomic_set(compound_mapcount_ptr(page), -1);
592 }
593
594 #ifdef CONFIG_DEBUG_PAGEALLOC
595 unsigned int _debug_guardpage_minorder;
596 bool _debug_pagealloc_enabled __read_mostly
597 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
598 EXPORT_SYMBOL(_debug_pagealloc_enabled);
599 bool _debug_guardpage_enabled __read_mostly;
600
601 static int __init early_debug_pagealloc(char *buf)
602 {
603 if (!buf)
604 return -EINVAL;
605 return kstrtobool(buf, &_debug_pagealloc_enabled);
606 }
607 early_param("debug_pagealloc", early_debug_pagealloc);
608
609 static bool need_debug_guardpage(void)
610 {
611 /* If we don't use debug_pagealloc, we don't need guard page */
612 if (!debug_pagealloc_enabled())
613 return false;
614
615 if (!debug_guardpage_minorder())
616 return false;
617
618 return true;
619 }
620
621 static void init_debug_guardpage(void)
622 {
623 if (!debug_pagealloc_enabled())
624 return;
625
626 if (!debug_guardpage_minorder())
627 return;
628
629 _debug_guardpage_enabled = true;
630 }
631
632 struct page_ext_operations debug_guardpage_ops = {
633 .need = need_debug_guardpage,
634 .init = init_debug_guardpage,
635 };
636
637 static int __init debug_guardpage_minorder_setup(char *buf)
638 {
639 unsigned long res;
640
641 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
642 pr_err("Bad debug_guardpage_minorder value\n");
643 return 0;
644 }
645 _debug_guardpage_minorder = res;
646 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
647 return 0;
648 }
649 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
650
651 static inline bool set_page_guard(struct zone *zone, struct page *page,
652 unsigned int order, int migratetype)
653 {
654 struct page_ext *page_ext;
655
656 if (!debug_guardpage_enabled())
657 return false;
658
659 if (order >= debug_guardpage_minorder())
660 return false;
661
662 page_ext = lookup_page_ext(page);
663 if (unlikely(!page_ext))
664 return false;
665
666 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
667
668 INIT_LIST_HEAD(&page->lru);
669 set_page_private(page, order);
670 /* Guard pages are not available for any usage */
671 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
672
673 return true;
674 }
675
676 static inline void clear_page_guard(struct zone *zone, struct page *page,
677 unsigned int order, int migratetype)
678 {
679 struct page_ext *page_ext;
680
681 if (!debug_guardpage_enabled())
682 return;
683
684 page_ext = lookup_page_ext(page);
685 if (unlikely(!page_ext))
686 return;
687
688 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
689
690 set_page_private(page, 0);
691 if (!is_migrate_isolate(migratetype))
692 __mod_zone_freepage_state(zone, (1 << order), migratetype);
693 }
694 #else
695 struct page_ext_operations debug_guardpage_ops;
696 static inline bool set_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype) { return false; }
698 static inline void clear_page_guard(struct zone *zone, struct page *page,
699 unsigned int order, int migratetype) {}
700 #endif
701
702 static inline void set_page_order(struct page *page, unsigned int order)
703 {
704 set_page_private(page, order);
705 __SetPageBuddy(page);
706 }
707
708 static inline void rmv_page_order(struct page *page)
709 {
710 __ClearPageBuddy(page);
711 set_page_private(page, 0);
712 }
713
714 /*
715 * This function checks whether a page is free && is the buddy
716 * we can do coalesce a page and its buddy if
717 * (a) the buddy is not in a hole &&
718 * (b) the buddy is in the buddy system &&
719 * (c) a page and its buddy have the same order &&
720 * (d) a page and its buddy are in the same zone.
721 *
722 * For recording whether a page is in the buddy system, we set ->_mapcount
723 * PAGE_BUDDY_MAPCOUNT_VALUE.
724 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
725 * serialized by zone->lock.
726 *
727 * For recording page's order, we use page_private(page).
728 */
729 static inline int page_is_buddy(struct page *page, struct page *buddy,
730 unsigned int order)
731 {
732 if (!pfn_valid_within(page_to_pfn(buddy)))
733 return 0;
734
735 if (page_is_guard(buddy) && page_order(buddy) == order) {
736 if (page_zone_id(page) != page_zone_id(buddy))
737 return 0;
738
739 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
740
741 return 1;
742 }
743
744 if (PageBuddy(buddy) && page_order(buddy) == order) {
745 /*
746 * zone check is done late to avoid uselessly
747 * calculating zone/node ids for pages that could
748 * never merge.
749 */
750 if (page_zone_id(page) != page_zone_id(buddy))
751 return 0;
752
753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754
755 return 1;
756 }
757 return 0;
758 }
759
760 /*
761 * Freeing function for a buddy system allocator.
762 *
763 * The concept of a buddy system is to maintain direct-mapped table
764 * (containing bit values) for memory blocks of various "orders".
765 * The bottom level table contains the map for the smallest allocatable
766 * units of memory (here, pages), and each level above it describes
767 * pairs of units from the levels below, hence, "buddies".
768 * At a high level, all that happens here is marking the table entry
769 * at the bottom level available, and propagating the changes upward
770 * as necessary, plus some accounting needed to play nicely with other
771 * parts of the VM system.
772 * At each level, we keep a list of pages, which are heads of continuous
773 * free pages of length of (1 << order) and marked with _mapcount
774 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
775 * field.
776 * So when we are allocating or freeing one, we can derive the state of the
777 * other. That is, if we allocate a small block, and both were
778 * free, the remainder of the region must be split into blocks.
779 * If a block is freed, and its buddy is also free, then this
780 * triggers coalescing into a block of larger size.
781 *
782 * -- nyc
783 */
784
785 static inline void __free_one_page(struct page *page,
786 unsigned long pfn,
787 struct zone *zone, unsigned int order,
788 int migratetype)
789 {
790 unsigned long page_idx;
791 unsigned long combined_idx;
792 unsigned long uninitialized_var(buddy_idx);
793 struct page *buddy;
794 unsigned int max_order;
795
796 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
797
798 VM_BUG_ON(!zone_is_initialized(zone));
799 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
800
801 VM_BUG_ON(migratetype == -1);
802 if (likely(!is_migrate_isolate(migratetype)))
803 __mod_zone_freepage_state(zone, 1 << order, migratetype);
804
805 page_idx = pfn & ((1 << MAX_ORDER) - 1);
806
807 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
808 VM_BUG_ON_PAGE(bad_range(zone, page), page);
809
810 continue_merging:
811 while (order < max_order - 1) {
812 buddy_idx = __find_buddy_index(page_idx, order);
813 buddy = page + (buddy_idx - page_idx);
814 if (!page_is_buddy(page, buddy, order))
815 goto done_merging;
816 /*
817 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
818 * merge with it and move up one order.
819 */
820 if (page_is_guard(buddy)) {
821 clear_page_guard(zone, buddy, order, migratetype);
822 } else {
823 list_del(&buddy->lru);
824 zone->free_area[order].nr_free--;
825 rmv_page_order(buddy);
826 }
827 combined_idx = buddy_idx & page_idx;
828 page = page + (combined_idx - page_idx);
829 page_idx = combined_idx;
830 order++;
831 }
832 if (max_order < MAX_ORDER) {
833 /* If we are here, it means order is >= pageblock_order.
834 * We want to prevent merge between freepages on isolate
835 * pageblock and normal pageblock. Without this, pageblock
836 * isolation could cause incorrect freepage or CMA accounting.
837 *
838 * We don't want to hit this code for the more frequent
839 * low-order merging.
840 */
841 if (unlikely(has_isolate_pageblock(zone))) {
842 int buddy_mt;
843
844 buddy_idx = __find_buddy_index(page_idx, order);
845 buddy = page + (buddy_idx - page_idx);
846 buddy_mt = get_pageblock_migratetype(buddy);
847
848 if (migratetype != buddy_mt
849 && (is_migrate_isolate(migratetype) ||
850 is_migrate_isolate(buddy_mt)))
851 goto done_merging;
852 }
853 max_order++;
854 goto continue_merging;
855 }
856
857 done_merging:
858 set_page_order(page, order);
859
860 /*
861 * If this is not the largest possible page, check if the buddy
862 * of the next-highest order is free. If it is, it's possible
863 * that pages are being freed that will coalesce soon. In case,
864 * that is happening, add the free page to the tail of the list
865 * so it's less likely to be used soon and more likely to be merged
866 * as a higher order page
867 */
868 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
869 struct page *higher_page, *higher_buddy;
870 combined_idx = buddy_idx & page_idx;
871 higher_page = page + (combined_idx - page_idx);
872 buddy_idx = __find_buddy_index(combined_idx, order + 1);
873 higher_buddy = higher_page + (buddy_idx - combined_idx);
874 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
875 list_add_tail(&page->lru,
876 &zone->free_area[order].free_list[migratetype]);
877 goto out;
878 }
879 }
880
881 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
882 out:
883 zone->free_area[order].nr_free++;
884 }
885
886 /*
887 * A bad page could be due to a number of fields. Instead of multiple branches,
888 * try and check multiple fields with one check. The caller must do a detailed
889 * check if necessary.
890 */
891 static inline bool page_expected_state(struct page *page,
892 unsigned long check_flags)
893 {
894 if (unlikely(atomic_read(&page->_mapcount) != -1))
895 return false;
896
897 if (unlikely((unsigned long)page->mapping |
898 page_ref_count(page) |
899 #ifdef CONFIG_MEMCG
900 (unsigned long)page->mem_cgroup |
901 #endif
902 (page->flags & check_flags)))
903 return false;
904
905 return true;
906 }
907
908 static void free_pages_check_bad(struct page *page)
909 {
910 const char *bad_reason;
911 unsigned long bad_flags;
912
913 bad_reason = NULL;
914 bad_flags = 0;
915
916 if (unlikely(atomic_read(&page->_mapcount) != -1))
917 bad_reason = "nonzero mapcount";
918 if (unlikely(page->mapping != NULL))
919 bad_reason = "non-NULL mapping";
920 if (unlikely(page_ref_count(page) != 0))
921 bad_reason = "nonzero _refcount";
922 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
923 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
924 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
925 }
926 #ifdef CONFIG_MEMCG
927 if (unlikely(page->mem_cgroup))
928 bad_reason = "page still charged to cgroup";
929 #endif
930 bad_page(page, bad_reason, bad_flags);
931 }
932
933 static inline int free_pages_check(struct page *page)
934 {
935 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
936 return 0;
937
938 /* Something has gone sideways, find it */
939 free_pages_check_bad(page);
940 return 1;
941 }
942
943 static int free_tail_pages_check(struct page *head_page, struct page *page)
944 {
945 int ret = 1;
946
947 /*
948 * We rely page->lru.next never has bit 0 set, unless the page
949 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
950 */
951 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
952
953 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
954 ret = 0;
955 goto out;
956 }
957 switch (page - head_page) {
958 case 1:
959 /* the first tail page: ->mapping is compound_mapcount() */
960 if (unlikely(compound_mapcount(page))) {
961 bad_page(page, "nonzero compound_mapcount", 0);
962 goto out;
963 }
964 break;
965 case 2:
966 /*
967 * the second tail page: ->mapping is
968 * page_deferred_list().next -- ignore value.
969 */
970 break;
971 default:
972 if (page->mapping != TAIL_MAPPING) {
973 bad_page(page, "corrupted mapping in tail page", 0);
974 goto out;
975 }
976 break;
977 }
978 if (unlikely(!PageTail(page))) {
979 bad_page(page, "PageTail not set", 0);
980 goto out;
981 }
982 if (unlikely(compound_head(page) != head_page)) {
983 bad_page(page, "compound_head not consistent", 0);
984 goto out;
985 }
986 ret = 0;
987 out:
988 page->mapping = NULL;
989 clear_compound_head(page);
990 return ret;
991 }
992
993 static __always_inline bool free_pages_prepare(struct page *page,
994 unsigned int order, bool check_free)
995 {
996 int bad = 0;
997
998 VM_BUG_ON_PAGE(PageTail(page), page);
999
1000 trace_mm_page_free(page, order);
1001 kmemcheck_free_shadow(page, order);
1002
1003 /*
1004 * Check tail pages before head page information is cleared to
1005 * avoid checking PageCompound for order-0 pages.
1006 */
1007 if (unlikely(order)) {
1008 bool compound = PageCompound(page);
1009 int i;
1010
1011 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1012
1013 if (compound)
1014 ClearPageDoubleMap(page);
1015 for (i = 1; i < (1 << order); i++) {
1016 if (compound)
1017 bad += free_tail_pages_check(page, page + i);
1018 if (unlikely(free_pages_check(page + i))) {
1019 bad++;
1020 continue;
1021 }
1022 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1023 }
1024 }
1025 if (PageMappingFlags(page))
1026 page->mapping = NULL;
1027 if (memcg_kmem_enabled() && PageKmemcg(page))
1028 memcg_kmem_uncharge(page, order);
1029 if (check_free)
1030 bad += free_pages_check(page);
1031 if (bad)
1032 return false;
1033
1034 page_cpupid_reset_last(page);
1035 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1036 reset_page_owner(page, order);
1037
1038 if (!PageHighMem(page)) {
1039 debug_check_no_locks_freed(page_address(page),
1040 PAGE_SIZE << order);
1041 debug_check_no_obj_freed(page_address(page),
1042 PAGE_SIZE << order);
1043 }
1044 arch_free_page(page, order);
1045 kernel_poison_pages(page, 1 << order, 0);
1046 kernel_map_pages(page, 1 << order, 0);
1047 kasan_free_pages(page, order);
1048
1049 return true;
1050 }
1051
1052 #ifdef CONFIG_DEBUG_VM
1053 static inline bool free_pcp_prepare(struct page *page)
1054 {
1055 return free_pages_prepare(page, 0, true);
1056 }
1057
1058 static inline bool bulkfree_pcp_prepare(struct page *page)
1059 {
1060 return false;
1061 }
1062 #else
1063 static bool free_pcp_prepare(struct page *page)
1064 {
1065 return free_pages_prepare(page, 0, false);
1066 }
1067
1068 static bool bulkfree_pcp_prepare(struct page *page)
1069 {
1070 return free_pages_check(page);
1071 }
1072 #endif /* CONFIG_DEBUG_VM */
1073
1074 /*
1075 * Frees a number of pages from the PCP lists
1076 * Assumes all pages on list are in same zone, and of same order.
1077 * count is the number of pages to free.
1078 *
1079 * If the zone was previously in an "all pages pinned" state then look to
1080 * see if this freeing clears that state.
1081 *
1082 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1083 * pinned" detection logic.
1084 */
1085 static void free_pcppages_bulk(struct zone *zone, int count,
1086 struct per_cpu_pages *pcp)
1087 {
1088 int migratetype = 0;
1089 int batch_free = 0;
1090 unsigned long nr_scanned;
1091 bool isolated_pageblocks;
1092
1093 spin_lock(&zone->lock);
1094 isolated_pageblocks = has_isolate_pageblock(zone);
1095 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1096 if (nr_scanned)
1097 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1098
1099 while (count) {
1100 struct page *page;
1101 struct list_head *list;
1102
1103 /*
1104 * Remove pages from lists in a round-robin fashion. A
1105 * batch_free count is maintained that is incremented when an
1106 * empty list is encountered. This is so more pages are freed
1107 * off fuller lists instead of spinning excessively around empty
1108 * lists
1109 */
1110 do {
1111 batch_free++;
1112 if (++migratetype == MIGRATE_PCPTYPES)
1113 migratetype = 0;
1114 list = &pcp->lists[migratetype];
1115 } while (list_empty(list));
1116
1117 /* This is the only non-empty list. Free them all. */
1118 if (batch_free == MIGRATE_PCPTYPES)
1119 batch_free = count;
1120
1121 do {
1122 int mt; /* migratetype of the to-be-freed page */
1123
1124 page = list_last_entry(list, struct page, lru);
1125 /* must delete as __free_one_page list manipulates */
1126 list_del(&page->lru);
1127
1128 mt = get_pcppage_migratetype(page);
1129 /* MIGRATE_ISOLATE page should not go to pcplists */
1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 /* Pageblock could have been isolated meanwhile */
1132 if (unlikely(isolated_pageblocks))
1133 mt = get_pageblock_migratetype(page);
1134
1135 if (bulkfree_pcp_prepare(page))
1136 continue;
1137
1138 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1139 trace_mm_page_pcpu_drain(page, 0, mt);
1140 } while (--count && --batch_free && !list_empty(list));
1141 }
1142 spin_unlock(&zone->lock);
1143 }
1144
1145 static void free_one_page(struct zone *zone,
1146 struct page *page, unsigned long pfn,
1147 unsigned int order,
1148 int migratetype)
1149 {
1150 unsigned long nr_scanned;
1151 spin_lock(&zone->lock);
1152 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1153 if (nr_scanned)
1154 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1155
1156 if (unlikely(has_isolate_pageblock(zone) ||
1157 is_migrate_isolate(migratetype))) {
1158 migratetype = get_pfnblock_migratetype(page, pfn);
1159 }
1160 __free_one_page(page, pfn, zone, order, migratetype);
1161 spin_unlock(&zone->lock);
1162 }
1163
1164 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1165 unsigned long zone, int nid)
1166 {
1167 set_page_links(page, zone, nid, pfn);
1168 init_page_count(page);
1169 page_mapcount_reset(page);
1170 page_cpupid_reset_last(page);
1171
1172 INIT_LIST_HEAD(&page->lru);
1173 #ifdef WANT_PAGE_VIRTUAL
1174 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1175 if (!is_highmem_idx(zone))
1176 set_page_address(page, __va(pfn << PAGE_SHIFT));
1177 #endif
1178 }
1179
1180 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1181 int nid)
1182 {
1183 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1184 }
1185
1186 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1187 static void init_reserved_page(unsigned long pfn)
1188 {
1189 pg_data_t *pgdat;
1190 int nid, zid;
1191
1192 if (!early_page_uninitialised(pfn))
1193 return;
1194
1195 nid = early_pfn_to_nid(pfn);
1196 pgdat = NODE_DATA(nid);
1197
1198 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1199 struct zone *zone = &pgdat->node_zones[zid];
1200
1201 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1202 break;
1203 }
1204 __init_single_pfn(pfn, zid, nid);
1205 }
1206 #else
1207 static inline void init_reserved_page(unsigned long pfn)
1208 {
1209 }
1210 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1211
1212 /*
1213 * Initialised pages do not have PageReserved set. This function is
1214 * called for each range allocated by the bootmem allocator and
1215 * marks the pages PageReserved. The remaining valid pages are later
1216 * sent to the buddy page allocator.
1217 */
1218 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1219 {
1220 unsigned long start_pfn = PFN_DOWN(start);
1221 unsigned long end_pfn = PFN_UP(end);
1222
1223 for (; start_pfn < end_pfn; start_pfn++) {
1224 if (pfn_valid(start_pfn)) {
1225 struct page *page = pfn_to_page(start_pfn);
1226
1227 init_reserved_page(start_pfn);
1228
1229 /* Avoid false-positive PageTail() */
1230 INIT_LIST_HEAD(&page->lru);
1231
1232 SetPageReserved(page);
1233 }
1234 }
1235 }
1236
1237 static void __free_pages_ok(struct page *page, unsigned int order)
1238 {
1239 unsigned long flags;
1240 int migratetype;
1241 unsigned long pfn = page_to_pfn(page);
1242
1243 if (!free_pages_prepare(page, order, true))
1244 return;
1245
1246 migratetype = get_pfnblock_migratetype(page, pfn);
1247 local_irq_save(flags);
1248 __count_vm_events(PGFREE, 1 << order);
1249 free_one_page(page_zone(page), page, pfn, order, migratetype);
1250 local_irq_restore(flags);
1251 }
1252
1253 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1254 {
1255 unsigned int nr_pages = 1 << order;
1256 struct page *p = page;
1257 unsigned int loop;
1258
1259 prefetchw(p);
1260 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1261 prefetchw(p + 1);
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
1264 }
1265 __ClearPageReserved(p);
1266 set_page_count(p, 0);
1267
1268 page_zone(page)->managed_pages += nr_pages;
1269 set_page_refcounted(page);
1270 __free_pages(page, order);
1271 }
1272
1273 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1275
1276 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1277
1278 int __meminit early_pfn_to_nid(unsigned long pfn)
1279 {
1280 static DEFINE_SPINLOCK(early_pfn_lock);
1281 int nid;
1282
1283 spin_lock(&early_pfn_lock);
1284 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1285 if (nid < 0)
1286 nid = first_online_node;
1287 spin_unlock(&early_pfn_lock);
1288
1289 return nid;
1290 }
1291 #endif
1292
1293 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1295 struct mminit_pfnnid_cache *state)
1296 {
1297 int nid;
1298
1299 nid = __early_pfn_to_nid(pfn, state);
1300 if (nid >= 0 && nid != node)
1301 return false;
1302 return true;
1303 }
1304
1305 /* Only safe to use early in boot when initialisation is single-threaded */
1306 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1307 {
1308 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309 }
1310
1311 #else
1312
1313 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314 {
1315 return true;
1316 }
1317 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1318 struct mminit_pfnnid_cache *state)
1319 {
1320 return true;
1321 }
1322 #endif
1323
1324
1325 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1326 unsigned int order)
1327 {
1328 if (early_page_uninitialised(pfn))
1329 return;
1330 return __free_pages_boot_core(page, order);
1331 }
1332
1333 /*
1334 * Check that the whole (or subset of) a pageblock given by the interval of
1335 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336 * with the migration of free compaction scanner. The scanners then need to
1337 * use only pfn_valid_within() check for arches that allow holes within
1338 * pageblocks.
1339 *
1340 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1341 *
1342 * It's possible on some configurations to have a setup like node0 node1 node0
1343 * i.e. it's possible that all pages within a zones range of pages do not
1344 * belong to a single zone. We assume that a border between node0 and node1
1345 * can occur within a single pageblock, but not a node0 node1 node0
1346 * interleaving within a single pageblock. It is therefore sufficient to check
1347 * the first and last page of a pageblock and avoid checking each individual
1348 * page in a pageblock.
1349 */
1350 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 unsigned long end_pfn, struct zone *zone)
1352 {
1353 struct page *start_page;
1354 struct page *end_page;
1355
1356 /* end_pfn is one past the range we are checking */
1357 end_pfn--;
1358
1359 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1360 return NULL;
1361
1362 start_page = pfn_to_page(start_pfn);
1363
1364 if (page_zone(start_page) != zone)
1365 return NULL;
1366
1367 end_page = pfn_to_page(end_pfn);
1368
1369 /* This gives a shorter code than deriving page_zone(end_page) */
1370 if (page_zone_id(start_page) != page_zone_id(end_page))
1371 return NULL;
1372
1373 return start_page;
1374 }
1375
1376 void set_zone_contiguous(struct zone *zone)
1377 {
1378 unsigned long block_start_pfn = zone->zone_start_pfn;
1379 unsigned long block_end_pfn;
1380
1381 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1382 for (; block_start_pfn < zone_end_pfn(zone);
1383 block_start_pfn = block_end_pfn,
1384 block_end_pfn += pageblock_nr_pages) {
1385
1386 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1387
1388 if (!__pageblock_pfn_to_page(block_start_pfn,
1389 block_end_pfn, zone))
1390 return;
1391 }
1392
1393 /* We confirm that there is no hole */
1394 zone->contiguous = true;
1395 }
1396
1397 void clear_zone_contiguous(struct zone *zone)
1398 {
1399 zone->contiguous = false;
1400 }
1401
1402 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1403 static void __init deferred_free_range(struct page *page,
1404 unsigned long pfn, int nr_pages)
1405 {
1406 int i;
1407
1408 if (!page)
1409 return;
1410
1411 /* Free a large naturally-aligned chunk if possible */
1412 if (nr_pages == pageblock_nr_pages &&
1413 (pfn & (pageblock_nr_pages - 1)) == 0) {
1414 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1415 __free_pages_boot_core(page, pageblock_order);
1416 return;
1417 }
1418
1419 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1420 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1421 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1422 __free_pages_boot_core(page, 0);
1423 }
1424 }
1425
1426 /* Completion tracking for deferred_init_memmap() threads */
1427 static atomic_t pgdat_init_n_undone __initdata;
1428 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1429
1430 static inline void __init pgdat_init_report_one_done(void)
1431 {
1432 if (atomic_dec_and_test(&pgdat_init_n_undone))
1433 complete(&pgdat_init_all_done_comp);
1434 }
1435
1436 /* Initialise remaining memory on a node */
1437 static int __init deferred_init_memmap(void *data)
1438 {
1439 pg_data_t *pgdat = data;
1440 int nid = pgdat->node_id;
1441 struct mminit_pfnnid_cache nid_init_state = { };
1442 unsigned long start = jiffies;
1443 unsigned long nr_pages = 0;
1444 unsigned long walk_start, walk_end;
1445 int i, zid;
1446 struct zone *zone;
1447 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1448 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1449
1450 if (first_init_pfn == ULONG_MAX) {
1451 pgdat_init_report_one_done();
1452 return 0;
1453 }
1454
1455 /* Bind memory initialisation thread to a local node if possible */
1456 if (!cpumask_empty(cpumask))
1457 set_cpus_allowed_ptr(current, cpumask);
1458
1459 /* Sanity check boundaries */
1460 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1461 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1462 pgdat->first_deferred_pfn = ULONG_MAX;
1463
1464 /* Only the highest zone is deferred so find it */
1465 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1466 zone = pgdat->node_zones + zid;
1467 if (first_init_pfn < zone_end_pfn(zone))
1468 break;
1469 }
1470
1471 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1472 unsigned long pfn, end_pfn;
1473 struct page *page = NULL;
1474 struct page *free_base_page = NULL;
1475 unsigned long free_base_pfn = 0;
1476 int nr_to_free = 0;
1477
1478 end_pfn = min(walk_end, zone_end_pfn(zone));
1479 pfn = first_init_pfn;
1480 if (pfn < walk_start)
1481 pfn = walk_start;
1482 if (pfn < zone->zone_start_pfn)
1483 pfn = zone->zone_start_pfn;
1484
1485 for (; pfn < end_pfn; pfn++) {
1486 if (!pfn_valid_within(pfn))
1487 goto free_range;
1488
1489 /*
1490 * Ensure pfn_valid is checked every
1491 * pageblock_nr_pages for memory holes
1492 */
1493 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1494 if (!pfn_valid(pfn)) {
1495 page = NULL;
1496 goto free_range;
1497 }
1498 }
1499
1500 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 page = NULL;
1502 goto free_range;
1503 }
1504
1505 /* Minimise pfn page lookups and scheduler checks */
1506 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1507 page++;
1508 } else {
1509 nr_pages += nr_to_free;
1510 deferred_free_range(free_base_page,
1511 free_base_pfn, nr_to_free);
1512 free_base_page = NULL;
1513 free_base_pfn = nr_to_free = 0;
1514
1515 page = pfn_to_page(pfn);
1516 cond_resched();
1517 }
1518
1519 if (page->flags) {
1520 VM_BUG_ON(page_zone(page) != zone);
1521 goto free_range;
1522 }
1523
1524 __init_single_page(page, pfn, zid, nid);
1525 if (!free_base_page) {
1526 free_base_page = page;
1527 free_base_pfn = pfn;
1528 nr_to_free = 0;
1529 }
1530 nr_to_free++;
1531
1532 /* Where possible, batch up pages for a single free */
1533 continue;
1534 free_range:
1535 /* Free the current block of pages to allocator */
1536 nr_pages += nr_to_free;
1537 deferred_free_range(free_base_page, free_base_pfn,
1538 nr_to_free);
1539 free_base_page = NULL;
1540 free_base_pfn = nr_to_free = 0;
1541 }
1542 /* Free the last block of pages to allocator */
1543 nr_pages += nr_to_free;
1544 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1545
1546 first_init_pfn = max(end_pfn, first_init_pfn);
1547 }
1548
1549 /* Sanity check that the next zone really is unpopulated */
1550 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1551
1552 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1553 jiffies_to_msecs(jiffies - start));
1554
1555 pgdat_init_report_one_done();
1556 return 0;
1557 }
1558 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1559
1560 void __init page_alloc_init_late(void)
1561 {
1562 struct zone *zone;
1563
1564 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1565 int nid;
1566
1567 /* There will be num_node_state(N_MEMORY) threads */
1568 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1569 for_each_node_state(nid, N_MEMORY) {
1570 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 }
1572
1573 /* Block until all are initialised */
1574 wait_for_completion(&pgdat_init_all_done_comp);
1575
1576 /* Reinit limits that are based on free pages after the kernel is up */
1577 files_maxfiles_init();
1578 #endif
1579
1580 for_each_populated_zone(zone)
1581 set_zone_contiguous(zone);
1582 }
1583
1584 #ifdef CONFIG_CMA
1585 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1586 void __init init_cma_reserved_pageblock(struct page *page)
1587 {
1588 unsigned i = pageblock_nr_pages;
1589 struct page *p = page;
1590
1591 do {
1592 __ClearPageReserved(p);
1593 set_page_count(p, 0);
1594 } while (++p, --i);
1595
1596 set_pageblock_migratetype(page, MIGRATE_CMA);
1597
1598 if (pageblock_order >= MAX_ORDER) {
1599 i = pageblock_nr_pages;
1600 p = page;
1601 do {
1602 set_page_refcounted(p);
1603 __free_pages(p, MAX_ORDER - 1);
1604 p += MAX_ORDER_NR_PAGES;
1605 } while (i -= MAX_ORDER_NR_PAGES);
1606 } else {
1607 set_page_refcounted(page);
1608 __free_pages(page, pageblock_order);
1609 }
1610
1611 adjust_managed_page_count(page, pageblock_nr_pages);
1612 }
1613 #endif
1614
1615 /*
1616 * The order of subdivision here is critical for the IO subsystem.
1617 * Please do not alter this order without good reasons and regression
1618 * testing. Specifically, as large blocks of memory are subdivided,
1619 * the order in which smaller blocks are delivered depends on the order
1620 * they're subdivided in this function. This is the primary factor
1621 * influencing the order in which pages are delivered to the IO
1622 * subsystem according to empirical testing, and this is also justified
1623 * by considering the behavior of a buddy system containing a single
1624 * large block of memory acted on by a series of small allocations.
1625 * This behavior is a critical factor in sglist merging's success.
1626 *
1627 * -- nyc
1628 */
1629 static inline void expand(struct zone *zone, struct page *page,
1630 int low, int high, struct free_area *area,
1631 int migratetype)
1632 {
1633 unsigned long size = 1 << high;
1634
1635 while (high > low) {
1636 area--;
1637 high--;
1638 size >>= 1;
1639 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1640
1641 /*
1642 * Mark as guard pages (or page), that will allow to
1643 * merge back to allocator when buddy will be freed.
1644 * Corresponding page table entries will not be touched,
1645 * pages will stay not present in virtual address space
1646 */
1647 if (set_page_guard(zone, &page[size], high, migratetype))
1648 continue;
1649
1650 list_add(&page[size].lru, &area->free_list[migratetype]);
1651 area->nr_free++;
1652 set_page_order(&page[size], high);
1653 }
1654 }
1655
1656 static void check_new_page_bad(struct page *page)
1657 {
1658 const char *bad_reason = NULL;
1659 unsigned long bad_flags = 0;
1660
1661 if (unlikely(atomic_read(&page->_mapcount) != -1))
1662 bad_reason = "nonzero mapcount";
1663 if (unlikely(page->mapping != NULL))
1664 bad_reason = "non-NULL mapping";
1665 if (unlikely(page_ref_count(page) != 0))
1666 bad_reason = "nonzero _count";
1667 if (unlikely(page->flags & __PG_HWPOISON)) {
1668 bad_reason = "HWPoisoned (hardware-corrupted)";
1669 bad_flags = __PG_HWPOISON;
1670 /* Don't complain about hwpoisoned pages */
1671 page_mapcount_reset(page); /* remove PageBuddy */
1672 return;
1673 }
1674 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1675 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 }
1678 #ifdef CONFIG_MEMCG
1679 if (unlikely(page->mem_cgroup))
1680 bad_reason = "page still charged to cgroup";
1681 #endif
1682 bad_page(page, bad_reason, bad_flags);
1683 }
1684
1685 /*
1686 * This page is about to be returned from the page allocator
1687 */
1688 static inline int check_new_page(struct page *page)
1689 {
1690 if (likely(page_expected_state(page,
1691 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1692 return 0;
1693
1694 check_new_page_bad(page);
1695 return 1;
1696 }
1697
1698 static inline bool free_pages_prezeroed(bool poisoned)
1699 {
1700 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1701 page_poisoning_enabled() && poisoned;
1702 }
1703
1704 #ifdef CONFIG_DEBUG_VM
1705 static bool check_pcp_refill(struct page *page)
1706 {
1707 return false;
1708 }
1709
1710 static bool check_new_pcp(struct page *page)
1711 {
1712 return check_new_page(page);
1713 }
1714 #else
1715 static bool check_pcp_refill(struct page *page)
1716 {
1717 return check_new_page(page);
1718 }
1719 static bool check_new_pcp(struct page *page)
1720 {
1721 return false;
1722 }
1723 #endif /* CONFIG_DEBUG_VM */
1724
1725 static bool check_new_pages(struct page *page, unsigned int order)
1726 {
1727 int i;
1728 for (i = 0; i < (1 << order); i++) {
1729 struct page *p = page + i;
1730
1731 if (unlikely(check_new_page(p)))
1732 return true;
1733 }
1734
1735 return false;
1736 }
1737
1738 inline void post_alloc_hook(struct page *page, unsigned int order,
1739 gfp_t gfp_flags)
1740 {
1741 set_page_private(page, 0);
1742 set_page_refcounted(page);
1743
1744 arch_alloc_page(page, order);
1745 kernel_map_pages(page, 1 << order, 1);
1746 kernel_poison_pages(page, 1 << order, 1);
1747 kasan_alloc_pages(page, order);
1748 set_page_owner(page, order, gfp_flags);
1749 }
1750
1751 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1752 unsigned int alloc_flags)
1753 {
1754 int i;
1755 bool poisoned = true;
1756
1757 for (i = 0; i < (1 << order); i++) {
1758 struct page *p = page + i;
1759 if (poisoned)
1760 poisoned &= page_is_poisoned(p);
1761 }
1762
1763 post_alloc_hook(page, order, gfp_flags);
1764
1765 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1766 for (i = 0; i < (1 << order); i++)
1767 clear_highpage(page + i);
1768
1769 if (order && (gfp_flags & __GFP_COMP))
1770 prep_compound_page(page, order);
1771
1772 /*
1773 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1774 * allocate the page. The expectation is that the caller is taking
1775 * steps that will free more memory. The caller should avoid the page
1776 * being used for !PFMEMALLOC purposes.
1777 */
1778 if (alloc_flags & ALLOC_NO_WATERMARKS)
1779 set_page_pfmemalloc(page);
1780 else
1781 clear_page_pfmemalloc(page);
1782 }
1783
1784 /*
1785 * Go through the free lists for the given migratetype and remove
1786 * the smallest available page from the freelists
1787 */
1788 static inline
1789 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1790 int migratetype)
1791 {
1792 unsigned int current_order;
1793 struct free_area *area;
1794 struct page *page;
1795
1796 /* Find a page of the appropriate size in the preferred list */
1797 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1798 area = &(zone->free_area[current_order]);
1799 page = list_first_entry_or_null(&area->free_list[migratetype],
1800 struct page, lru);
1801 if (!page)
1802 continue;
1803 list_del(&page->lru);
1804 rmv_page_order(page);
1805 area->nr_free--;
1806 expand(zone, page, order, current_order, area, migratetype);
1807 set_pcppage_migratetype(page, migratetype);
1808 return page;
1809 }
1810
1811 return NULL;
1812 }
1813
1814
1815 /*
1816 * This array describes the order lists are fallen back to when
1817 * the free lists for the desirable migrate type are depleted
1818 */
1819 static int fallbacks[MIGRATE_TYPES][4] = {
1820 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1821 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1823 #ifdef CONFIG_CMA
1824 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1825 #endif
1826 #ifdef CONFIG_MEMORY_ISOLATION
1827 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1828 #endif
1829 };
1830
1831 #ifdef CONFIG_CMA
1832 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 unsigned int order)
1834 {
1835 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1836 }
1837 #else
1838 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 unsigned int order) { return NULL; }
1840 #endif
1841
1842 /*
1843 * Move the free pages in a range to the free lists of the requested type.
1844 * Note that start_page and end_pages are not aligned on a pageblock
1845 * boundary. If alignment is required, use move_freepages_block()
1846 */
1847 int move_freepages(struct zone *zone,
1848 struct page *start_page, struct page *end_page,
1849 int migratetype)
1850 {
1851 struct page *page;
1852 unsigned int order;
1853 int pages_moved = 0;
1854
1855 #ifndef CONFIG_HOLES_IN_ZONE
1856 /*
1857 * page_zone is not safe to call in this context when
1858 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 * anyway as we check zone boundaries in move_freepages_block().
1860 * Remove at a later date when no bug reports exist related to
1861 * grouping pages by mobility
1862 */
1863 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1864 #endif
1865
1866 for (page = start_page; page <= end_page;) {
1867 if (!pfn_valid_within(page_to_pfn(page))) {
1868 page++;
1869 continue;
1870 }
1871
1872 /* Make sure we are not inadvertently changing nodes */
1873 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1874
1875 if (!PageBuddy(page)) {
1876 page++;
1877 continue;
1878 }
1879
1880 order = page_order(page);
1881 list_move(&page->lru,
1882 &zone->free_area[order].free_list[migratetype]);
1883 page += 1 << order;
1884 pages_moved += 1 << order;
1885 }
1886
1887 return pages_moved;
1888 }
1889
1890 int move_freepages_block(struct zone *zone, struct page *page,
1891 int migratetype)
1892 {
1893 unsigned long start_pfn, end_pfn;
1894 struct page *start_page, *end_page;
1895
1896 start_pfn = page_to_pfn(page);
1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898 start_page = pfn_to_page(start_pfn);
1899 end_page = start_page + pageblock_nr_pages - 1;
1900 end_pfn = start_pfn + pageblock_nr_pages - 1;
1901
1902 /* Do not cross zone boundaries */
1903 if (!zone_spans_pfn(zone, start_pfn))
1904 start_page = page;
1905 if (!zone_spans_pfn(zone, end_pfn))
1906 return 0;
1907
1908 return move_freepages(zone, start_page, end_page, migratetype);
1909 }
1910
1911 static void change_pageblock_range(struct page *pageblock_page,
1912 int start_order, int migratetype)
1913 {
1914 int nr_pageblocks = 1 << (start_order - pageblock_order);
1915
1916 while (nr_pageblocks--) {
1917 set_pageblock_migratetype(pageblock_page, migratetype);
1918 pageblock_page += pageblock_nr_pages;
1919 }
1920 }
1921
1922 /*
1923 * When we are falling back to another migratetype during allocation, try to
1924 * steal extra free pages from the same pageblocks to satisfy further
1925 * allocations, instead of polluting multiple pageblocks.
1926 *
1927 * If we are stealing a relatively large buddy page, it is likely there will
1928 * be more free pages in the pageblock, so try to steal them all. For
1929 * reclaimable and unmovable allocations, we steal regardless of page size,
1930 * as fragmentation caused by those allocations polluting movable pageblocks
1931 * is worse than movable allocations stealing from unmovable and reclaimable
1932 * pageblocks.
1933 */
1934 static bool can_steal_fallback(unsigned int order, int start_mt)
1935 {
1936 /*
1937 * Leaving this order check is intended, although there is
1938 * relaxed order check in next check. The reason is that
1939 * we can actually steal whole pageblock if this condition met,
1940 * but, below check doesn't guarantee it and that is just heuristic
1941 * so could be changed anytime.
1942 */
1943 if (order >= pageblock_order)
1944 return true;
1945
1946 if (order >= pageblock_order / 2 ||
1947 start_mt == MIGRATE_RECLAIMABLE ||
1948 start_mt == MIGRATE_UNMOVABLE ||
1949 page_group_by_mobility_disabled)
1950 return true;
1951
1952 return false;
1953 }
1954
1955 /*
1956 * This function implements actual steal behaviour. If order is large enough,
1957 * we can steal whole pageblock. If not, we first move freepages in this
1958 * pageblock and check whether half of pages are moved or not. If half of
1959 * pages are moved, we can change migratetype of pageblock and permanently
1960 * use it's pages as requested migratetype in the future.
1961 */
1962 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 int start_type)
1964 {
1965 unsigned int current_order = page_order(page);
1966 int pages;
1967
1968 /* Take ownership for orders >= pageblock_order */
1969 if (current_order >= pageblock_order) {
1970 change_pageblock_range(page, current_order, start_type);
1971 return;
1972 }
1973
1974 pages = move_freepages_block(zone, page, start_type);
1975
1976 /* Claim the whole block if over half of it is free */
1977 if (pages >= (1 << (pageblock_order-1)) ||
1978 page_group_by_mobility_disabled)
1979 set_pageblock_migratetype(page, start_type);
1980 }
1981
1982 /*
1983 * Check whether there is a suitable fallback freepage with requested order.
1984 * If only_stealable is true, this function returns fallback_mt only if
1985 * we can steal other freepages all together. This would help to reduce
1986 * fragmentation due to mixed migratetype pages in one pageblock.
1987 */
1988 int find_suitable_fallback(struct free_area *area, unsigned int order,
1989 int migratetype, bool only_stealable, bool *can_steal)
1990 {
1991 int i;
1992 int fallback_mt;
1993
1994 if (area->nr_free == 0)
1995 return -1;
1996
1997 *can_steal = false;
1998 for (i = 0;; i++) {
1999 fallback_mt = fallbacks[migratetype][i];
2000 if (fallback_mt == MIGRATE_TYPES)
2001 break;
2002
2003 if (list_empty(&area->free_list[fallback_mt]))
2004 continue;
2005
2006 if (can_steal_fallback(order, migratetype))
2007 *can_steal = true;
2008
2009 if (!only_stealable)
2010 return fallback_mt;
2011
2012 if (*can_steal)
2013 return fallback_mt;
2014 }
2015
2016 return -1;
2017 }
2018
2019 /*
2020 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021 * there are no empty page blocks that contain a page with a suitable order
2022 */
2023 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2024 unsigned int alloc_order)
2025 {
2026 int mt;
2027 unsigned long max_managed, flags;
2028
2029 /*
2030 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 * Check is race-prone but harmless.
2032 */
2033 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2034 if (zone->nr_reserved_highatomic >= max_managed)
2035 return;
2036
2037 spin_lock_irqsave(&zone->lock, flags);
2038
2039 /* Recheck the nr_reserved_highatomic limit under the lock */
2040 if (zone->nr_reserved_highatomic >= max_managed)
2041 goto out_unlock;
2042
2043 /* Yoink! */
2044 mt = get_pageblock_migratetype(page);
2045 if (mt != MIGRATE_HIGHATOMIC &&
2046 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2047 zone->nr_reserved_highatomic += pageblock_nr_pages;
2048 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2049 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 }
2051
2052 out_unlock:
2053 spin_unlock_irqrestore(&zone->lock, flags);
2054 }
2055
2056 /*
2057 * Used when an allocation is about to fail under memory pressure. This
2058 * potentially hurts the reliability of high-order allocations when under
2059 * intense memory pressure but failed atomic allocations should be easier
2060 * to recover from than an OOM.
2061 *
2062 * If @force is true, try to unreserve a pageblock even though highatomic
2063 * pageblock is exhausted.
2064 */
2065 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2066 bool force)
2067 {
2068 struct zonelist *zonelist = ac->zonelist;
2069 unsigned long flags;
2070 struct zoneref *z;
2071 struct zone *zone;
2072 struct page *page;
2073 int order;
2074 bool ret;
2075
2076 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2077 ac->nodemask) {
2078 /*
2079 * Preserve at least one pageblock unless memory pressure
2080 * is really high.
2081 */
2082 if (!force && zone->nr_reserved_highatomic <=
2083 pageblock_nr_pages)
2084 continue;
2085
2086 spin_lock_irqsave(&zone->lock, flags);
2087 for (order = 0; order < MAX_ORDER; order++) {
2088 struct free_area *area = &(zone->free_area[order]);
2089
2090 page = list_first_entry_or_null(
2091 &area->free_list[MIGRATE_HIGHATOMIC],
2092 struct page, lru);
2093 if (!page)
2094 continue;
2095
2096 /*
2097 * In page freeing path, migratetype change is racy so
2098 * we can counter several free pages in a pageblock
2099 * in this loop althoug we changed the pageblock type
2100 * from highatomic to ac->migratetype. So we should
2101 * adjust the count once.
2102 */
2103 if (get_pageblock_migratetype(page) ==
2104 MIGRATE_HIGHATOMIC) {
2105 /*
2106 * It should never happen but changes to
2107 * locking could inadvertently allow a per-cpu
2108 * drain to add pages to MIGRATE_HIGHATOMIC
2109 * while unreserving so be safe and watch for
2110 * underflows.
2111 */
2112 zone->nr_reserved_highatomic -= min(
2113 pageblock_nr_pages,
2114 zone->nr_reserved_highatomic);
2115 }
2116
2117 /*
2118 * Convert to ac->migratetype and avoid the normal
2119 * pageblock stealing heuristics. Minimally, the caller
2120 * is doing the work and needs the pages. More
2121 * importantly, if the block was always converted to
2122 * MIGRATE_UNMOVABLE or another type then the number
2123 * of pageblocks that cannot be completely freed
2124 * may increase.
2125 */
2126 set_pageblock_migratetype(page, ac->migratetype);
2127 ret = move_freepages_block(zone, page, ac->migratetype);
2128 if (ret) {
2129 spin_unlock_irqrestore(&zone->lock, flags);
2130 return ret;
2131 }
2132 }
2133 spin_unlock_irqrestore(&zone->lock, flags);
2134 }
2135
2136 return false;
2137 }
2138
2139 /* Remove an element from the buddy allocator from the fallback list */
2140 static inline struct page *
2141 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2142 {
2143 struct free_area *area;
2144 unsigned int current_order;
2145 struct page *page;
2146 int fallback_mt;
2147 bool can_steal;
2148
2149 /* Find the largest possible block of pages in the other list */
2150 for (current_order = MAX_ORDER-1;
2151 current_order >= order && current_order <= MAX_ORDER-1;
2152 --current_order) {
2153 area = &(zone->free_area[current_order]);
2154 fallback_mt = find_suitable_fallback(area, current_order,
2155 start_migratetype, false, &can_steal);
2156 if (fallback_mt == -1)
2157 continue;
2158
2159 page = list_first_entry(&area->free_list[fallback_mt],
2160 struct page, lru);
2161 if (can_steal &&
2162 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2163 steal_suitable_fallback(zone, page, start_migratetype);
2164
2165 /* Remove the page from the freelists */
2166 area->nr_free--;
2167 list_del(&page->lru);
2168 rmv_page_order(page);
2169
2170 expand(zone, page, order, current_order, area,
2171 start_migratetype);
2172 /*
2173 * The pcppage_migratetype may differ from pageblock's
2174 * migratetype depending on the decisions in
2175 * find_suitable_fallback(). This is OK as long as it does not
2176 * differ for MIGRATE_CMA pageblocks. Those can be used as
2177 * fallback only via special __rmqueue_cma_fallback() function
2178 */
2179 set_pcppage_migratetype(page, start_migratetype);
2180
2181 trace_mm_page_alloc_extfrag(page, order, current_order,
2182 start_migratetype, fallback_mt);
2183
2184 return page;
2185 }
2186
2187 return NULL;
2188 }
2189
2190 /*
2191 * Do the hard work of removing an element from the buddy allocator.
2192 * Call me with the zone->lock already held.
2193 */
2194 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2195 int migratetype)
2196 {
2197 struct page *page;
2198
2199 page = __rmqueue_smallest(zone, order, migratetype);
2200 if (unlikely(!page)) {
2201 if (migratetype == MIGRATE_MOVABLE)
2202 page = __rmqueue_cma_fallback(zone, order);
2203
2204 if (!page)
2205 page = __rmqueue_fallback(zone, order, migratetype);
2206 }
2207
2208 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2209 return page;
2210 }
2211
2212 /*
2213 * Obtain a specified number of elements from the buddy allocator, all under
2214 * a single hold of the lock, for efficiency. Add them to the supplied list.
2215 * Returns the number of new pages which were placed at *list.
2216 */
2217 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2218 unsigned long count, struct list_head *list,
2219 int migratetype, bool cold)
2220 {
2221 int i, alloced = 0;
2222
2223 spin_lock(&zone->lock);
2224 for (i = 0; i < count; ++i) {
2225 struct page *page = __rmqueue(zone, order, migratetype);
2226 if (unlikely(page == NULL))
2227 break;
2228
2229 if (unlikely(check_pcp_refill(page)))
2230 continue;
2231
2232 /*
2233 * Split buddy pages returned by expand() are received here
2234 * in physical page order. The page is added to the callers and
2235 * list and the list head then moves forward. From the callers
2236 * perspective, the linked list is ordered by page number in
2237 * some conditions. This is useful for IO devices that can
2238 * merge IO requests if the physical pages are ordered
2239 * properly.
2240 */
2241 if (likely(!cold))
2242 list_add(&page->lru, list);
2243 else
2244 list_add_tail(&page->lru, list);
2245 list = &page->lru;
2246 alloced++;
2247 if (is_migrate_cma(get_pcppage_migratetype(page)))
2248 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2249 -(1 << order));
2250 }
2251
2252 /*
2253 * i pages were removed from the buddy list even if some leak due
2254 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2255 * on i. Do not confuse with 'alloced' which is the number of
2256 * pages added to the pcp list.
2257 */
2258 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2259 spin_unlock(&zone->lock);
2260 return alloced;
2261 }
2262
2263 #ifdef CONFIG_NUMA
2264 /*
2265 * Called from the vmstat counter updater to drain pagesets of this
2266 * currently executing processor on remote nodes after they have
2267 * expired.
2268 *
2269 * Note that this function must be called with the thread pinned to
2270 * a single processor.
2271 */
2272 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2273 {
2274 unsigned long flags;
2275 int to_drain, batch;
2276
2277 local_irq_save(flags);
2278 batch = READ_ONCE(pcp->batch);
2279 to_drain = min(pcp->count, batch);
2280 if (to_drain > 0) {
2281 free_pcppages_bulk(zone, to_drain, pcp);
2282 pcp->count -= to_drain;
2283 }
2284 local_irq_restore(flags);
2285 }
2286 #endif
2287
2288 /*
2289 * Drain pcplists of the indicated processor and zone.
2290 *
2291 * The processor must either be the current processor and the
2292 * thread pinned to the current processor or a processor that
2293 * is not online.
2294 */
2295 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2296 {
2297 unsigned long flags;
2298 struct per_cpu_pageset *pset;
2299 struct per_cpu_pages *pcp;
2300
2301 local_irq_save(flags);
2302 pset = per_cpu_ptr(zone->pageset, cpu);
2303
2304 pcp = &pset->pcp;
2305 if (pcp->count) {
2306 free_pcppages_bulk(zone, pcp->count, pcp);
2307 pcp->count = 0;
2308 }
2309 local_irq_restore(flags);
2310 }
2311
2312 /*
2313 * Drain pcplists of all zones on the indicated processor.
2314 *
2315 * The processor must either be the current processor and the
2316 * thread pinned to the current processor or a processor that
2317 * is not online.
2318 */
2319 static void drain_pages(unsigned int cpu)
2320 {
2321 struct zone *zone;
2322
2323 for_each_populated_zone(zone) {
2324 drain_pages_zone(cpu, zone);
2325 }
2326 }
2327
2328 /*
2329 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2330 *
2331 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2332 * the single zone's pages.
2333 */
2334 void drain_local_pages(struct zone *zone)
2335 {
2336 int cpu = smp_processor_id();
2337
2338 if (zone)
2339 drain_pages_zone(cpu, zone);
2340 else
2341 drain_pages(cpu);
2342 }
2343
2344 /*
2345 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2346 *
2347 * When zone parameter is non-NULL, spill just the single zone's pages.
2348 *
2349 * Note that this code is protected against sending an IPI to an offline
2350 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2351 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2352 * nothing keeps CPUs from showing up after we populated the cpumask and
2353 * before the call to on_each_cpu_mask().
2354 */
2355 void drain_all_pages(struct zone *zone)
2356 {
2357 int cpu;
2358
2359 /*
2360 * Allocate in the BSS so we wont require allocation in
2361 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2362 */
2363 static cpumask_t cpus_with_pcps;
2364
2365 /*
2366 * We don't care about racing with CPU hotplug event
2367 * as offline notification will cause the notified
2368 * cpu to drain that CPU pcps and on_each_cpu_mask
2369 * disables preemption as part of its processing
2370 */
2371 for_each_online_cpu(cpu) {
2372 struct per_cpu_pageset *pcp;
2373 struct zone *z;
2374 bool has_pcps = false;
2375
2376 if (zone) {
2377 pcp = per_cpu_ptr(zone->pageset, cpu);
2378 if (pcp->pcp.count)
2379 has_pcps = true;
2380 } else {
2381 for_each_populated_zone(z) {
2382 pcp = per_cpu_ptr(z->pageset, cpu);
2383 if (pcp->pcp.count) {
2384 has_pcps = true;
2385 break;
2386 }
2387 }
2388 }
2389
2390 if (has_pcps)
2391 cpumask_set_cpu(cpu, &cpus_with_pcps);
2392 else
2393 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2394 }
2395 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2396 zone, 1);
2397 }
2398
2399 #ifdef CONFIG_HIBERNATION
2400
2401 void mark_free_pages(struct zone *zone)
2402 {
2403 unsigned long pfn, max_zone_pfn;
2404 unsigned long flags;
2405 unsigned int order, t;
2406 struct page *page;
2407
2408 if (zone_is_empty(zone))
2409 return;
2410
2411 spin_lock_irqsave(&zone->lock, flags);
2412
2413 max_zone_pfn = zone_end_pfn(zone);
2414 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2415 if (pfn_valid(pfn)) {
2416 page = pfn_to_page(pfn);
2417
2418 if (page_zone(page) != zone)
2419 continue;
2420
2421 if (!swsusp_page_is_forbidden(page))
2422 swsusp_unset_page_free(page);
2423 }
2424
2425 for_each_migratetype_order(order, t) {
2426 list_for_each_entry(page,
2427 &zone->free_area[order].free_list[t], lru) {
2428 unsigned long i;
2429
2430 pfn = page_to_pfn(page);
2431 for (i = 0; i < (1UL << order); i++)
2432 swsusp_set_page_free(pfn_to_page(pfn + i));
2433 }
2434 }
2435 spin_unlock_irqrestore(&zone->lock, flags);
2436 }
2437 #endif /* CONFIG_PM */
2438
2439 /*
2440 * Free a 0-order page
2441 * cold == true ? free a cold page : free a hot page
2442 */
2443 void free_hot_cold_page(struct page *page, bool cold)
2444 {
2445 struct zone *zone = page_zone(page);
2446 struct per_cpu_pages *pcp;
2447 unsigned long flags;
2448 unsigned long pfn = page_to_pfn(page);
2449 int migratetype;
2450
2451 if (!free_pcp_prepare(page))
2452 return;
2453
2454 migratetype = get_pfnblock_migratetype(page, pfn);
2455 set_pcppage_migratetype(page, migratetype);
2456 local_irq_save(flags);
2457 __count_vm_event(PGFREE);
2458
2459 /*
2460 * We only track unmovable, reclaimable and movable on pcp lists.
2461 * Free ISOLATE pages back to the allocator because they are being
2462 * offlined but treat RESERVE as movable pages so we can get those
2463 * areas back if necessary. Otherwise, we may have to free
2464 * excessively into the page allocator
2465 */
2466 if (migratetype >= MIGRATE_PCPTYPES) {
2467 if (unlikely(is_migrate_isolate(migratetype))) {
2468 free_one_page(zone, page, pfn, 0, migratetype);
2469 goto out;
2470 }
2471 migratetype = MIGRATE_MOVABLE;
2472 }
2473
2474 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2475 if (!cold)
2476 list_add(&page->lru, &pcp->lists[migratetype]);
2477 else
2478 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2479 pcp->count++;
2480 if (pcp->count >= pcp->high) {
2481 unsigned long batch = READ_ONCE(pcp->batch);
2482 free_pcppages_bulk(zone, batch, pcp);
2483 pcp->count -= batch;
2484 }
2485
2486 out:
2487 local_irq_restore(flags);
2488 }
2489
2490 /*
2491 * Free a list of 0-order pages
2492 */
2493 void free_hot_cold_page_list(struct list_head *list, bool cold)
2494 {
2495 struct page *page, *next;
2496
2497 list_for_each_entry_safe(page, next, list, lru) {
2498 trace_mm_page_free_batched(page, cold);
2499 free_hot_cold_page(page, cold);
2500 }
2501 }
2502
2503 /*
2504 * split_page takes a non-compound higher-order page, and splits it into
2505 * n (1<<order) sub-pages: page[0..n]
2506 * Each sub-page must be freed individually.
2507 *
2508 * Note: this is probably too low level an operation for use in drivers.
2509 * Please consult with lkml before using this in your driver.
2510 */
2511 void split_page(struct page *page, unsigned int order)
2512 {
2513 int i;
2514
2515 VM_BUG_ON_PAGE(PageCompound(page), page);
2516 VM_BUG_ON_PAGE(!page_count(page), page);
2517
2518 #ifdef CONFIG_KMEMCHECK
2519 /*
2520 * Split shadow pages too, because free(page[0]) would
2521 * otherwise free the whole shadow.
2522 */
2523 if (kmemcheck_page_is_tracked(page))
2524 split_page(virt_to_page(page[0].shadow), order);
2525 #endif
2526
2527 for (i = 1; i < (1 << order); i++)
2528 set_page_refcounted(page + i);
2529 split_page_owner(page, order);
2530 }
2531 EXPORT_SYMBOL_GPL(split_page);
2532
2533 int __isolate_free_page(struct page *page, unsigned int order)
2534 {
2535 unsigned long watermark;
2536 struct zone *zone;
2537 int mt;
2538
2539 BUG_ON(!PageBuddy(page));
2540
2541 zone = page_zone(page);
2542 mt = get_pageblock_migratetype(page);
2543
2544 if (!is_migrate_isolate(mt)) {
2545 /*
2546 * Obey watermarks as if the page was being allocated. We can
2547 * emulate a high-order watermark check with a raised order-0
2548 * watermark, because we already know our high-order page
2549 * exists.
2550 */
2551 watermark = min_wmark_pages(zone) + (1UL << order);
2552 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2553 return 0;
2554
2555 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2556 }
2557
2558 /* Remove page from free list */
2559 list_del(&page->lru);
2560 zone->free_area[order].nr_free--;
2561 rmv_page_order(page);
2562
2563 /*
2564 * Set the pageblock if the isolated page is at least half of a
2565 * pageblock
2566 */
2567 if (order >= pageblock_order - 1) {
2568 struct page *endpage = page + (1 << order) - 1;
2569 for (; page < endpage; page += pageblock_nr_pages) {
2570 int mt = get_pageblock_migratetype(page);
2571 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2572 && mt != MIGRATE_HIGHATOMIC)
2573 set_pageblock_migratetype(page,
2574 MIGRATE_MOVABLE);
2575 }
2576 }
2577
2578
2579 return 1UL << order;
2580 }
2581
2582 /*
2583 * Update NUMA hit/miss statistics
2584 *
2585 * Must be called with interrupts disabled.
2586 */
2587 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2588 {
2589 #ifdef CONFIG_NUMA
2590 enum zone_stat_item local_stat = NUMA_LOCAL;
2591
2592 if (z->node != numa_node_id())
2593 local_stat = NUMA_OTHER;
2594
2595 if (z->node == preferred_zone->node)
2596 __inc_zone_state(z, NUMA_HIT);
2597 else {
2598 __inc_zone_state(z, NUMA_MISS);
2599 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2600 }
2601 __inc_zone_state(z, local_stat);
2602 #endif
2603 }
2604
2605 /*
2606 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2607 */
2608 static inline
2609 struct page *buffered_rmqueue(struct zone *preferred_zone,
2610 struct zone *zone, unsigned int order,
2611 gfp_t gfp_flags, unsigned int alloc_flags,
2612 int migratetype)
2613 {
2614 unsigned long flags;
2615 struct page *page;
2616 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2617
2618 if (likely(order == 0)) {
2619 struct per_cpu_pages *pcp;
2620 struct list_head *list;
2621
2622 local_irq_save(flags);
2623 do {
2624 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2625 list = &pcp->lists[migratetype];
2626 if (list_empty(list)) {
2627 pcp->count += rmqueue_bulk(zone, 0,
2628 pcp->batch, list,
2629 migratetype, cold);
2630 if (unlikely(list_empty(list)))
2631 goto failed;
2632 }
2633
2634 if (cold)
2635 page = list_last_entry(list, struct page, lru);
2636 else
2637 page = list_first_entry(list, struct page, lru);
2638
2639 list_del(&page->lru);
2640 pcp->count--;
2641
2642 } while (check_new_pcp(page));
2643 } else {
2644 /*
2645 * We most definitely don't want callers attempting to
2646 * allocate greater than order-1 page units with __GFP_NOFAIL.
2647 */
2648 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2649 spin_lock_irqsave(&zone->lock, flags);
2650
2651 do {
2652 page = NULL;
2653 if (alloc_flags & ALLOC_HARDER) {
2654 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2655 if (page)
2656 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2657 }
2658 if (!page)
2659 page = __rmqueue(zone, order, migratetype);
2660 } while (page && check_new_pages(page, order));
2661 spin_unlock(&zone->lock);
2662 if (!page)
2663 goto failed;
2664 __mod_zone_freepage_state(zone, -(1 << order),
2665 get_pcppage_migratetype(page));
2666 }
2667
2668 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2669 zone_statistics(preferred_zone, zone);
2670 local_irq_restore(flags);
2671
2672 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2673 return page;
2674
2675 failed:
2676 local_irq_restore(flags);
2677 return NULL;
2678 }
2679
2680 #ifdef CONFIG_FAIL_PAGE_ALLOC
2681
2682 static struct {
2683 struct fault_attr attr;
2684
2685 bool ignore_gfp_highmem;
2686 bool ignore_gfp_reclaim;
2687 u32 min_order;
2688 } fail_page_alloc = {
2689 .attr = FAULT_ATTR_INITIALIZER,
2690 .ignore_gfp_reclaim = true,
2691 .ignore_gfp_highmem = true,
2692 .min_order = 1,
2693 };
2694
2695 static int __init setup_fail_page_alloc(char *str)
2696 {
2697 return setup_fault_attr(&fail_page_alloc.attr, str);
2698 }
2699 __setup("fail_page_alloc=", setup_fail_page_alloc);
2700
2701 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2702 {
2703 if (order < fail_page_alloc.min_order)
2704 return false;
2705 if (gfp_mask & __GFP_NOFAIL)
2706 return false;
2707 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2708 return false;
2709 if (fail_page_alloc.ignore_gfp_reclaim &&
2710 (gfp_mask & __GFP_DIRECT_RECLAIM))
2711 return false;
2712
2713 return should_fail(&fail_page_alloc.attr, 1 << order);
2714 }
2715
2716 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2717
2718 static int __init fail_page_alloc_debugfs(void)
2719 {
2720 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2721 struct dentry *dir;
2722
2723 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2724 &fail_page_alloc.attr);
2725 if (IS_ERR(dir))
2726 return PTR_ERR(dir);
2727
2728 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2729 &fail_page_alloc.ignore_gfp_reclaim))
2730 goto fail;
2731 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2732 &fail_page_alloc.ignore_gfp_highmem))
2733 goto fail;
2734 if (!debugfs_create_u32("min-order", mode, dir,
2735 &fail_page_alloc.min_order))
2736 goto fail;
2737
2738 return 0;
2739 fail:
2740 debugfs_remove_recursive(dir);
2741
2742 return -ENOMEM;
2743 }
2744
2745 late_initcall(fail_page_alloc_debugfs);
2746
2747 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2748
2749 #else /* CONFIG_FAIL_PAGE_ALLOC */
2750
2751 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2752 {
2753 return false;
2754 }
2755
2756 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2757
2758 /*
2759 * Return true if free base pages are above 'mark'. For high-order checks it
2760 * will return true of the order-0 watermark is reached and there is at least
2761 * one free page of a suitable size. Checking now avoids taking the zone lock
2762 * to check in the allocation paths if no pages are free.
2763 */
2764 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2765 int classzone_idx, unsigned int alloc_flags,
2766 long free_pages)
2767 {
2768 long min = mark;
2769 int o;
2770 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2771
2772 /* free_pages may go negative - that's OK */
2773 free_pages -= (1 << order) - 1;
2774
2775 if (alloc_flags & ALLOC_HIGH)
2776 min -= min / 2;
2777
2778 /*
2779 * If the caller does not have rights to ALLOC_HARDER then subtract
2780 * the high-atomic reserves. This will over-estimate the size of the
2781 * atomic reserve but it avoids a search.
2782 */
2783 if (likely(!alloc_harder))
2784 free_pages -= z->nr_reserved_highatomic;
2785 else
2786 min -= min / 4;
2787
2788 #ifdef CONFIG_CMA
2789 /* If allocation can't use CMA areas don't use free CMA pages */
2790 if (!(alloc_flags & ALLOC_CMA))
2791 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2792 #endif
2793
2794 /*
2795 * Check watermarks for an order-0 allocation request. If these
2796 * are not met, then a high-order request also cannot go ahead
2797 * even if a suitable page happened to be free.
2798 */
2799 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2800 return false;
2801
2802 /* If this is an order-0 request then the watermark is fine */
2803 if (!order)
2804 return true;
2805
2806 /* For a high-order request, check at least one suitable page is free */
2807 for (o = order; o < MAX_ORDER; o++) {
2808 struct free_area *area = &z->free_area[o];
2809 int mt;
2810
2811 if (!area->nr_free)
2812 continue;
2813
2814 if (alloc_harder)
2815 return true;
2816
2817 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2818 if (!list_empty(&area->free_list[mt]))
2819 return true;
2820 }
2821
2822 #ifdef CONFIG_CMA
2823 if ((alloc_flags & ALLOC_CMA) &&
2824 !list_empty(&area->free_list[MIGRATE_CMA])) {
2825 return true;
2826 }
2827 #endif
2828 }
2829 return false;
2830 }
2831
2832 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2833 int classzone_idx, unsigned int alloc_flags)
2834 {
2835 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2836 zone_page_state(z, NR_FREE_PAGES));
2837 }
2838
2839 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2840 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2841 {
2842 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2843 long cma_pages = 0;
2844
2845 #ifdef CONFIG_CMA
2846 /* If allocation can't use CMA areas don't use free CMA pages */
2847 if (!(alloc_flags & ALLOC_CMA))
2848 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2849 #endif
2850
2851 /*
2852 * Fast check for order-0 only. If this fails then the reserves
2853 * need to be calculated. There is a corner case where the check
2854 * passes but only the high-order atomic reserve are free. If
2855 * the caller is !atomic then it'll uselessly search the free
2856 * list. That corner case is then slower but it is harmless.
2857 */
2858 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2859 return true;
2860
2861 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2862 free_pages);
2863 }
2864
2865 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2866 unsigned long mark, int classzone_idx)
2867 {
2868 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2869
2870 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2871 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2872
2873 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2874 free_pages);
2875 }
2876
2877 #ifdef CONFIG_NUMA
2878 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2879 {
2880 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2881 RECLAIM_DISTANCE;
2882 }
2883 #else /* CONFIG_NUMA */
2884 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2885 {
2886 return true;
2887 }
2888 #endif /* CONFIG_NUMA */
2889
2890 /*
2891 * get_page_from_freelist goes through the zonelist trying to allocate
2892 * a page.
2893 */
2894 static struct page *
2895 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2896 const struct alloc_context *ac)
2897 {
2898 struct zoneref *z = ac->preferred_zoneref;
2899 struct zone *zone;
2900 struct pglist_data *last_pgdat_dirty_limit = NULL;
2901
2902 /*
2903 * Scan zonelist, looking for a zone with enough free.
2904 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2905 */
2906 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2907 ac->nodemask) {
2908 struct page *page;
2909 unsigned long mark;
2910
2911 if (cpusets_enabled() &&
2912 (alloc_flags & ALLOC_CPUSET) &&
2913 !__cpuset_zone_allowed(zone, gfp_mask))
2914 continue;
2915 /*
2916 * When allocating a page cache page for writing, we
2917 * want to get it from a node that is within its dirty
2918 * limit, such that no single node holds more than its
2919 * proportional share of globally allowed dirty pages.
2920 * The dirty limits take into account the node's
2921 * lowmem reserves and high watermark so that kswapd
2922 * should be able to balance it without having to
2923 * write pages from its LRU list.
2924 *
2925 * XXX: For now, allow allocations to potentially
2926 * exceed the per-node dirty limit in the slowpath
2927 * (spread_dirty_pages unset) before going into reclaim,
2928 * which is important when on a NUMA setup the allowed
2929 * nodes are together not big enough to reach the
2930 * global limit. The proper fix for these situations
2931 * will require awareness of nodes in the
2932 * dirty-throttling and the flusher threads.
2933 */
2934 if (ac->spread_dirty_pages) {
2935 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2936 continue;
2937
2938 if (!node_dirty_ok(zone->zone_pgdat)) {
2939 last_pgdat_dirty_limit = zone->zone_pgdat;
2940 continue;
2941 }
2942 }
2943
2944 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2945 if (!zone_watermark_fast(zone, order, mark,
2946 ac_classzone_idx(ac), alloc_flags)) {
2947 int ret;
2948
2949 /* Checked here to keep the fast path fast */
2950 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2951 if (alloc_flags & ALLOC_NO_WATERMARKS)
2952 goto try_this_zone;
2953
2954 if (node_reclaim_mode == 0 ||
2955 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2956 continue;
2957
2958 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2959 switch (ret) {
2960 case NODE_RECLAIM_NOSCAN:
2961 /* did not scan */
2962 continue;
2963 case NODE_RECLAIM_FULL:
2964 /* scanned but unreclaimable */
2965 continue;
2966 default:
2967 /* did we reclaim enough */
2968 if (zone_watermark_ok(zone, order, mark,
2969 ac_classzone_idx(ac), alloc_flags))
2970 goto try_this_zone;
2971
2972 continue;
2973 }
2974 }
2975
2976 try_this_zone:
2977 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2978 gfp_mask, alloc_flags, ac->migratetype);
2979 if (page) {
2980 prep_new_page(page, order, gfp_mask, alloc_flags);
2981
2982 /*
2983 * If this is a high-order atomic allocation then check
2984 * if the pageblock should be reserved for the future
2985 */
2986 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2987 reserve_highatomic_pageblock(page, zone, order);
2988
2989 return page;
2990 }
2991 }
2992
2993 return NULL;
2994 }
2995
2996 /*
2997 * Large machines with many possible nodes should not always dump per-node
2998 * meminfo in irq context.
2999 */
3000 static inline bool should_suppress_show_mem(void)
3001 {
3002 bool ret = false;
3003
3004 #if NODES_SHIFT > 8
3005 ret = in_interrupt();
3006 #endif
3007 return ret;
3008 }
3009
3010 static DEFINE_RATELIMIT_STATE(nopage_rs,
3011 DEFAULT_RATELIMIT_INTERVAL,
3012 DEFAULT_RATELIMIT_BURST);
3013
3014 void warn_alloc(gfp_t gfp_mask, const char *fmt, ...)
3015 {
3016 unsigned int filter = SHOW_MEM_FILTER_NODES;
3017 struct va_format vaf;
3018 va_list args;
3019
3020 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3021 debug_guardpage_minorder() > 0)
3022 return;
3023
3024 /*
3025 * This documents exceptions given to allocations in certain
3026 * contexts that are allowed to allocate outside current's set
3027 * of allowed nodes.
3028 */
3029 if (!(gfp_mask & __GFP_NOMEMALLOC))
3030 if (test_thread_flag(TIF_MEMDIE) ||
3031 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3032 filter &= ~SHOW_MEM_FILTER_NODES;
3033 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3034 filter &= ~SHOW_MEM_FILTER_NODES;
3035
3036 pr_warn("%s: ", current->comm);
3037
3038 va_start(args, fmt);
3039 vaf.fmt = fmt;
3040 vaf.va = &args;
3041 pr_cont("%pV", &vaf);
3042 va_end(args);
3043
3044 pr_cont(", mode:%#x(%pGg)\n", gfp_mask, &gfp_mask);
3045
3046 dump_stack();
3047 if (!should_suppress_show_mem())
3048 show_mem(filter);
3049 }
3050
3051 static inline struct page *
3052 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3053 const struct alloc_context *ac, unsigned long *did_some_progress)
3054 {
3055 struct oom_control oc = {
3056 .zonelist = ac->zonelist,
3057 .nodemask = ac->nodemask,
3058 .memcg = NULL,
3059 .gfp_mask = gfp_mask,
3060 .order = order,
3061 };
3062 struct page *page;
3063
3064 *did_some_progress = 0;
3065
3066 /*
3067 * Acquire the oom lock. If that fails, somebody else is
3068 * making progress for us.
3069 */
3070 if (!mutex_trylock(&oom_lock)) {
3071 *did_some_progress = 1;
3072 schedule_timeout_uninterruptible(1);
3073 return NULL;
3074 }
3075
3076 /*
3077 * Go through the zonelist yet one more time, keep very high watermark
3078 * here, this is only to catch a parallel oom killing, we must fail if
3079 * we're still under heavy pressure.
3080 */
3081 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3082 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3083 if (page)
3084 goto out;
3085
3086 if (!(gfp_mask & __GFP_NOFAIL)) {
3087 /* Coredumps can quickly deplete all memory reserves */
3088 if (current->flags & PF_DUMPCORE)
3089 goto out;
3090 /* The OOM killer will not help higher order allocs */
3091 if (order > PAGE_ALLOC_COSTLY_ORDER)
3092 goto out;
3093 /* The OOM killer does not needlessly kill tasks for lowmem */
3094 if (ac->high_zoneidx < ZONE_NORMAL)
3095 goto out;
3096 if (pm_suspended_storage())
3097 goto out;
3098 /*
3099 * XXX: GFP_NOFS allocations should rather fail than rely on
3100 * other request to make a forward progress.
3101 * We are in an unfortunate situation where out_of_memory cannot
3102 * do much for this context but let's try it to at least get
3103 * access to memory reserved if the current task is killed (see
3104 * out_of_memory). Once filesystems are ready to handle allocation
3105 * failures more gracefully we should just bail out here.
3106 */
3107
3108 /* The OOM killer may not free memory on a specific node */
3109 if (gfp_mask & __GFP_THISNODE)
3110 goto out;
3111 }
3112 /* Exhausted what can be done so it's blamo time */
3113 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3114 *did_some_progress = 1;
3115
3116 if (gfp_mask & __GFP_NOFAIL) {
3117 page = get_page_from_freelist(gfp_mask, order,
3118 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3119 /*
3120 * fallback to ignore cpuset restriction if our nodes
3121 * are depleted
3122 */
3123 if (!page)
3124 page = get_page_from_freelist(gfp_mask, order,
3125 ALLOC_NO_WATERMARKS, ac);
3126 }
3127 }
3128 out:
3129 mutex_unlock(&oom_lock);
3130 return page;
3131 }
3132
3133 /*
3134 * Maximum number of compaction retries wit a progress before OOM
3135 * killer is consider as the only way to move forward.
3136 */
3137 #define MAX_COMPACT_RETRIES 16
3138
3139 #ifdef CONFIG_COMPACTION
3140 /* Try memory compaction for high-order allocations before reclaim */
3141 static struct page *
3142 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3143 unsigned int alloc_flags, const struct alloc_context *ac,
3144 enum compact_priority prio, enum compact_result *compact_result)
3145 {
3146 struct page *page;
3147
3148 if (!order)
3149 return NULL;
3150
3151 current->flags |= PF_MEMALLOC;
3152 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3153 prio);
3154 current->flags &= ~PF_MEMALLOC;
3155
3156 if (*compact_result <= COMPACT_INACTIVE)
3157 return NULL;
3158
3159 /*
3160 * At least in one zone compaction wasn't deferred or skipped, so let's
3161 * count a compaction stall
3162 */
3163 count_vm_event(COMPACTSTALL);
3164
3165 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3166
3167 if (page) {
3168 struct zone *zone = page_zone(page);
3169
3170 zone->compact_blockskip_flush = false;
3171 compaction_defer_reset(zone, order, true);
3172 count_vm_event(COMPACTSUCCESS);
3173 return page;
3174 }
3175
3176 /*
3177 * It's bad if compaction run occurs and fails. The most likely reason
3178 * is that pages exist, but not enough to satisfy watermarks.
3179 */
3180 count_vm_event(COMPACTFAIL);
3181
3182 cond_resched();
3183
3184 return NULL;
3185 }
3186
3187 static inline bool
3188 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3189 enum compact_result compact_result,
3190 enum compact_priority *compact_priority,
3191 int *compaction_retries)
3192 {
3193 int max_retries = MAX_COMPACT_RETRIES;
3194 int min_priority;
3195
3196 if (!order)
3197 return false;
3198
3199 if (compaction_made_progress(compact_result))
3200 (*compaction_retries)++;
3201
3202 /*
3203 * compaction considers all the zone as desperately out of memory
3204 * so it doesn't really make much sense to retry except when the
3205 * failure could be caused by insufficient priority
3206 */
3207 if (compaction_failed(compact_result))
3208 goto check_priority;
3209
3210 /*
3211 * make sure the compaction wasn't deferred or didn't bail out early
3212 * due to locks contention before we declare that we should give up.
3213 * But do not retry if the given zonelist is not suitable for
3214 * compaction.
3215 */
3216 if (compaction_withdrawn(compact_result))
3217 return compaction_zonelist_suitable(ac, order, alloc_flags);
3218
3219 /*
3220 * !costly requests are much more important than __GFP_REPEAT
3221 * costly ones because they are de facto nofail and invoke OOM
3222 * killer to move on while costly can fail and users are ready
3223 * to cope with that. 1/4 retries is rather arbitrary but we
3224 * would need much more detailed feedback from compaction to
3225 * make a better decision.
3226 */
3227 if (order > PAGE_ALLOC_COSTLY_ORDER)
3228 max_retries /= 4;
3229 if (*compaction_retries <= max_retries)
3230 return true;
3231
3232 /*
3233 * Make sure there are attempts at the highest priority if we exhausted
3234 * all retries or failed at the lower priorities.
3235 */
3236 check_priority:
3237 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3238 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3239 if (*compact_priority > min_priority) {
3240 (*compact_priority)--;
3241 *compaction_retries = 0;
3242 return true;
3243 }
3244 return false;
3245 }
3246 #else
3247 static inline struct page *
3248 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3249 unsigned int alloc_flags, const struct alloc_context *ac,
3250 enum compact_priority prio, enum compact_result *compact_result)
3251 {
3252 *compact_result = COMPACT_SKIPPED;
3253 return NULL;
3254 }
3255
3256 static inline bool
3257 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3258 enum compact_result compact_result,
3259 enum compact_priority *compact_priority,
3260 int *compaction_retries)
3261 {
3262 struct zone *zone;
3263 struct zoneref *z;
3264
3265 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3266 return false;
3267
3268 /*
3269 * There are setups with compaction disabled which would prefer to loop
3270 * inside the allocator rather than hit the oom killer prematurely.
3271 * Let's give them a good hope and keep retrying while the order-0
3272 * watermarks are OK.
3273 */
3274 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3275 ac->nodemask) {
3276 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3277 ac_classzone_idx(ac), alloc_flags))
3278 return true;
3279 }
3280 return false;
3281 }
3282 #endif /* CONFIG_COMPACTION */
3283
3284 /* Perform direct synchronous page reclaim */
3285 static int
3286 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3287 const struct alloc_context *ac)
3288 {
3289 struct reclaim_state reclaim_state;
3290 int progress;
3291
3292 cond_resched();
3293
3294 /* We now go into synchronous reclaim */
3295 cpuset_memory_pressure_bump();
3296 current->flags |= PF_MEMALLOC;
3297 lockdep_set_current_reclaim_state(gfp_mask);
3298 reclaim_state.reclaimed_slab = 0;
3299 current->reclaim_state = &reclaim_state;
3300
3301 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3302 ac->nodemask);
3303
3304 current->reclaim_state = NULL;
3305 lockdep_clear_current_reclaim_state();
3306 current->flags &= ~PF_MEMALLOC;
3307
3308 cond_resched();
3309
3310 return progress;
3311 }
3312
3313 /* The really slow allocator path where we enter direct reclaim */
3314 static inline struct page *
3315 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3316 unsigned int alloc_flags, const struct alloc_context *ac,
3317 unsigned long *did_some_progress)
3318 {
3319 struct page *page = NULL;
3320 bool drained = false;
3321
3322 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3323 if (unlikely(!(*did_some_progress)))
3324 return NULL;
3325
3326 retry:
3327 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3328
3329 /*
3330 * If an allocation failed after direct reclaim, it could be because
3331 * pages are pinned on the per-cpu lists or in high alloc reserves.
3332 * Shrink them them and try again
3333 */
3334 if (!page && !drained) {
3335 unreserve_highatomic_pageblock(ac, false);
3336 drain_all_pages(NULL);
3337 drained = true;
3338 goto retry;
3339 }
3340
3341 return page;
3342 }
3343
3344 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3345 {
3346 struct zoneref *z;
3347 struct zone *zone;
3348 pg_data_t *last_pgdat = NULL;
3349
3350 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3351 ac->high_zoneidx, ac->nodemask) {
3352 if (last_pgdat != zone->zone_pgdat)
3353 wakeup_kswapd(zone, order, ac->high_zoneidx);
3354 last_pgdat = zone->zone_pgdat;
3355 }
3356 }
3357
3358 static inline unsigned int
3359 gfp_to_alloc_flags(gfp_t gfp_mask)
3360 {
3361 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3362
3363 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3364 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3365
3366 /*
3367 * The caller may dip into page reserves a bit more if the caller
3368 * cannot run direct reclaim, or if the caller has realtime scheduling
3369 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3370 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3371 */
3372 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3373
3374 if (gfp_mask & __GFP_ATOMIC) {
3375 /*
3376 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3377 * if it can't schedule.
3378 */
3379 if (!(gfp_mask & __GFP_NOMEMALLOC))
3380 alloc_flags |= ALLOC_HARDER;
3381 /*
3382 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3383 * comment for __cpuset_node_allowed().
3384 */
3385 alloc_flags &= ~ALLOC_CPUSET;
3386 } else if (unlikely(rt_task(current)) && !in_interrupt())
3387 alloc_flags |= ALLOC_HARDER;
3388
3389 #ifdef CONFIG_CMA
3390 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3391 alloc_flags |= ALLOC_CMA;
3392 #endif
3393 return alloc_flags;
3394 }
3395
3396 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3397 {
3398 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3399 return false;
3400
3401 if (gfp_mask & __GFP_MEMALLOC)
3402 return true;
3403 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3404 return true;
3405 if (!in_interrupt() &&
3406 ((current->flags & PF_MEMALLOC) ||
3407 unlikely(test_thread_flag(TIF_MEMDIE))))
3408 return true;
3409
3410 return false;
3411 }
3412
3413 /*
3414 * Maximum number of reclaim retries without any progress before OOM killer
3415 * is consider as the only way to move forward.
3416 */
3417 #define MAX_RECLAIM_RETRIES 16
3418
3419 /*
3420 * Checks whether it makes sense to retry the reclaim to make a forward progress
3421 * for the given allocation request.
3422 * The reclaim feedback represented by did_some_progress (any progress during
3423 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3424 * any progress in a row) is considered as well as the reclaimable pages on the
3425 * applicable zone list (with a backoff mechanism which is a function of
3426 * no_progress_loops).
3427 *
3428 * Returns true if a retry is viable or false to enter the oom path.
3429 */
3430 static inline bool
3431 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3432 struct alloc_context *ac, int alloc_flags,
3433 bool did_some_progress, int *no_progress_loops)
3434 {
3435 struct zone *zone;
3436 struct zoneref *z;
3437
3438 /*
3439 * Costly allocations might have made a progress but this doesn't mean
3440 * their order will become available due to high fragmentation so
3441 * always increment the no progress counter for them
3442 */
3443 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3444 *no_progress_loops = 0;
3445 else
3446 (*no_progress_loops)++;
3447
3448 /*
3449 * Make sure we converge to OOM if we cannot make any progress
3450 * several times in the row.
3451 */
3452 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3453 /* Before OOM, exhaust highatomic_reserve */
3454 return unreserve_highatomic_pageblock(ac, true);
3455 }
3456
3457 /*
3458 * Keep reclaiming pages while there is a chance this will lead
3459 * somewhere. If none of the target zones can satisfy our allocation
3460 * request even if all reclaimable pages are considered then we are
3461 * screwed and have to go OOM.
3462 */
3463 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3464 ac->nodemask) {
3465 unsigned long available;
3466 unsigned long reclaimable;
3467
3468 available = reclaimable = zone_reclaimable_pages(zone);
3469 available -= DIV_ROUND_UP((*no_progress_loops) * available,
3470 MAX_RECLAIM_RETRIES);
3471 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3472
3473 /*
3474 * Would the allocation succeed if we reclaimed the whole
3475 * available?
3476 */
3477 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3478 ac_classzone_idx(ac), alloc_flags, available)) {
3479 /*
3480 * If we didn't make any progress and have a lot of
3481 * dirty + writeback pages then we should wait for
3482 * an IO to complete to slow down the reclaim and
3483 * prevent from pre mature OOM
3484 */
3485 if (!did_some_progress) {
3486 unsigned long write_pending;
3487
3488 write_pending = zone_page_state_snapshot(zone,
3489 NR_ZONE_WRITE_PENDING);
3490
3491 if (2 * write_pending > reclaimable) {
3492 congestion_wait(BLK_RW_ASYNC, HZ/10);
3493 return true;
3494 }
3495 }
3496
3497 /*
3498 * Memory allocation/reclaim might be called from a WQ
3499 * context and the current implementation of the WQ
3500 * concurrency control doesn't recognize that
3501 * a particular WQ is congested if the worker thread is
3502 * looping without ever sleeping. Therefore we have to
3503 * do a short sleep here rather than calling
3504 * cond_resched().
3505 */
3506 if (current->flags & PF_WQ_WORKER)
3507 schedule_timeout_uninterruptible(1);
3508 else
3509 cond_resched();
3510
3511 return true;
3512 }
3513 }
3514
3515 return false;
3516 }
3517
3518 static inline struct page *
3519 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3520 struct alloc_context *ac)
3521 {
3522 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3523 struct page *page = NULL;
3524 unsigned int alloc_flags;
3525 unsigned long did_some_progress;
3526 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
3527 enum compact_result compact_result;
3528 int compaction_retries = 0;
3529 int no_progress_loops = 0;
3530 unsigned long alloc_start = jiffies;
3531 unsigned int stall_timeout = 10 * HZ;
3532
3533 /*
3534 * In the slowpath, we sanity check order to avoid ever trying to
3535 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3536 * be using allocators in order of preference for an area that is
3537 * too large.
3538 */
3539 if (order >= MAX_ORDER) {
3540 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3541 return NULL;
3542 }
3543
3544 /*
3545 * We also sanity check to catch abuse of atomic reserves being used by
3546 * callers that are not in atomic context.
3547 */
3548 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3549 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3550 gfp_mask &= ~__GFP_ATOMIC;
3551
3552 /*
3553 * The fast path uses conservative alloc_flags to succeed only until
3554 * kswapd needs to be woken up, and to avoid the cost of setting up
3555 * alloc_flags precisely. So we do that now.
3556 */
3557 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3558
3559 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3560 wake_all_kswapds(order, ac);
3561
3562 /*
3563 * The adjusted alloc_flags might result in immediate success, so try
3564 * that first
3565 */
3566 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3567 if (page)
3568 goto got_pg;
3569
3570 /*
3571 * For costly allocations, try direct compaction first, as it's likely
3572 * that we have enough base pages and don't need to reclaim. Don't try
3573 * that for allocations that are allowed to ignore watermarks, as the
3574 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3575 */
3576 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3577 !gfp_pfmemalloc_allowed(gfp_mask)) {
3578 page = __alloc_pages_direct_compact(gfp_mask, order,
3579 alloc_flags, ac,
3580 INIT_COMPACT_PRIORITY,
3581 &compact_result);
3582 if (page)
3583 goto got_pg;
3584
3585 /*
3586 * Checks for costly allocations with __GFP_NORETRY, which
3587 * includes THP page fault allocations
3588 */
3589 if (gfp_mask & __GFP_NORETRY) {
3590 /*
3591 * If compaction is deferred for high-order allocations,
3592 * it is because sync compaction recently failed. If
3593 * this is the case and the caller requested a THP
3594 * allocation, we do not want to heavily disrupt the
3595 * system, so we fail the allocation instead of entering
3596 * direct reclaim.
3597 */
3598 if (compact_result == COMPACT_DEFERRED)
3599 goto nopage;
3600
3601 /*
3602 * Looks like reclaim/compaction is worth trying, but
3603 * sync compaction could be very expensive, so keep
3604 * using async compaction.
3605 */
3606 compact_priority = INIT_COMPACT_PRIORITY;
3607 }
3608 }
3609
3610 retry:
3611 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3612 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3613 wake_all_kswapds(order, ac);
3614
3615 if (gfp_pfmemalloc_allowed(gfp_mask))
3616 alloc_flags = ALLOC_NO_WATERMARKS;
3617
3618 /*
3619 * Reset the zonelist iterators if memory policies can be ignored.
3620 * These allocations are high priority and system rather than user
3621 * orientated.
3622 */
3623 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3624 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3625 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3626 ac->high_zoneidx, ac->nodemask);
3627 }
3628
3629 /* Attempt with potentially adjusted zonelist and alloc_flags */
3630 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3631 if (page)
3632 goto got_pg;
3633
3634 /* Caller is not willing to reclaim, we can't balance anything */
3635 if (!can_direct_reclaim) {
3636 /*
3637 * All existing users of the __GFP_NOFAIL are blockable, so warn
3638 * of any new users that actually allow this type of allocation
3639 * to fail.
3640 */
3641 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3642 goto nopage;
3643 }
3644
3645 /* Avoid recursion of direct reclaim */
3646 if (current->flags & PF_MEMALLOC) {
3647 /*
3648 * __GFP_NOFAIL request from this context is rather bizarre
3649 * because we cannot reclaim anything and only can loop waiting
3650 * for somebody to do a work for us.
3651 */
3652 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3653 cond_resched();
3654 goto retry;
3655 }
3656 goto nopage;
3657 }
3658
3659 /* Avoid allocations with no watermarks from looping endlessly */
3660 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3661 goto nopage;
3662
3663
3664 /* Try direct reclaim and then allocating */
3665 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3666 &did_some_progress);
3667 if (page)
3668 goto got_pg;
3669
3670 /* Try direct compaction and then allocating */
3671 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3672 compact_priority, &compact_result);
3673 if (page)
3674 goto got_pg;
3675
3676 /* Do not loop if specifically requested */
3677 if (gfp_mask & __GFP_NORETRY)
3678 goto nopage;
3679
3680 /*
3681 * Do not retry costly high order allocations unless they are
3682 * __GFP_REPEAT
3683 */
3684 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3685 goto nopage;
3686
3687 /* Make sure we know about allocations which stall for too long */
3688 if (time_after(jiffies, alloc_start + stall_timeout)) {
3689 warn_alloc(gfp_mask,
3690 "page allocation stalls for %ums, order:%u",
3691 jiffies_to_msecs(jiffies-alloc_start), order);
3692 stall_timeout += 10 * HZ;
3693 }
3694
3695 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3696 did_some_progress > 0, &no_progress_loops))
3697 goto retry;
3698
3699 /*
3700 * It doesn't make any sense to retry for the compaction if the order-0
3701 * reclaim is not able to make any progress because the current
3702 * implementation of the compaction depends on the sufficient amount
3703 * of free memory (see __compaction_suitable)
3704 */
3705 if (did_some_progress > 0 &&
3706 should_compact_retry(ac, order, alloc_flags,
3707 compact_result, &compact_priority,
3708 &compaction_retries))
3709 goto retry;
3710
3711 /* Reclaim has failed us, start killing things */
3712 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3713 if (page)
3714 goto got_pg;
3715
3716 /* Retry as long as the OOM killer is making progress */
3717 if (did_some_progress) {
3718 no_progress_loops = 0;
3719 goto retry;
3720 }
3721
3722 nopage:
3723 warn_alloc(gfp_mask,
3724 "page allocation failure: order:%u", order);
3725 got_pg:
3726 return page;
3727 }
3728
3729 /*
3730 * This is the 'heart' of the zoned buddy allocator.
3731 */
3732 struct page *
3733 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3734 struct zonelist *zonelist, nodemask_t *nodemask)
3735 {
3736 struct page *page;
3737 unsigned int cpuset_mems_cookie;
3738 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3739 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3740 struct alloc_context ac = {
3741 .high_zoneidx = gfp_zone(gfp_mask),
3742 .zonelist = zonelist,
3743 .nodemask = nodemask,
3744 .migratetype = gfpflags_to_migratetype(gfp_mask),
3745 };
3746
3747 if (cpusets_enabled()) {
3748 alloc_mask |= __GFP_HARDWALL;
3749 alloc_flags |= ALLOC_CPUSET;
3750 if (!ac.nodemask)
3751 ac.nodemask = &cpuset_current_mems_allowed;
3752 }
3753
3754 gfp_mask &= gfp_allowed_mask;
3755
3756 lockdep_trace_alloc(gfp_mask);
3757
3758 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3759
3760 if (should_fail_alloc_page(gfp_mask, order))
3761 return NULL;
3762
3763 /*
3764 * Check the zones suitable for the gfp_mask contain at least one
3765 * valid zone. It's possible to have an empty zonelist as a result
3766 * of __GFP_THISNODE and a memoryless node
3767 */
3768 if (unlikely(!zonelist->_zonerefs->zone))
3769 return NULL;
3770
3771 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3772 alloc_flags |= ALLOC_CMA;
3773
3774 retry_cpuset:
3775 cpuset_mems_cookie = read_mems_allowed_begin();
3776
3777 /* Dirty zone balancing only done in the fast path */
3778 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3779
3780 /*
3781 * The preferred zone is used for statistics but crucially it is
3782 * also used as the starting point for the zonelist iterator. It
3783 * may get reset for allocations that ignore memory policies.
3784 */
3785 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3786 ac.high_zoneidx, ac.nodemask);
3787 if (!ac.preferred_zoneref) {
3788 page = NULL;
3789 goto no_zone;
3790 }
3791
3792 /* First allocation attempt */
3793 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3794 if (likely(page))
3795 goto out;
3796
3797 /*
3798 * Runtime PM, block IO and its error handling path can deadlock
3799 * because I/O on the device might not complete.
3800 */
3801 alloc_mask = memalloc_noio_flags(gfp_mask);
3802 ac.spread_dirty_pages = false;
3803
3804 /*
3805 * Restore the original nodemask if it was potentially replaced with
3806 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3807 */
3808 if (cpusets_enabled())
3809 ac.nodemask = nodemask;
3810 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3811
3812 no_zone:
3813 /*
3814 * When updating a task's mems_allowed, it is possible to race with
3815 * parallel threads in such a way that an allocation can fail while
3816 * the mask is being updated. If a page allocation is about to fail,
3817 * check if the cpuset changed during allocation and if so, retry.
3818 */
3819 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3820 alloc_mask = gfp_mask;
3821 goto retry_cpuset;
3822 }
3823
3824 out:
3825 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3826 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3827 __free_pages(page, order);
3828 page = NULL;
3829 }
3830
3831 if (kmemcheck_enabled && page)
3832 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3833
3834 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3835
3836 return page;
3837 }
3838 EXPORT_SYMBOL(__alloc_pages_nodemask);
3839
3840 /*
3841 * Common helper functions.
3842 */
3843 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3844 {
3845 struct page *page;
3846
3847 /*
3848 * __get_free_pages() returns a 32-bit address, which cannot represent
3849 * a highmem page
3850 */
3851 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3852
3853 page = alloc_pages(gfp_mask, order);
3854 if (!page)
3855 return 0;
3856 return (unsigned long) page_address(page);
3857 }
3858 EXPORT_SYMBOL(__get_free_pages);
3859
3860 unsigned long get_zeroed_page(gfp_t gfp_mask)
3861 {
3862 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3863 }
3864 EXPORT_SYMBOL(get_zeroed_page);
3865
3866 void __free_pages(struct page *page, unsigned int order)
3867 {
3868 if (put_page_testzero(page)) {
3869 if (order == 0)
3870 free_hot_cold_page(page, false);
3871 else
3872 __free_pages_ok(page, order);
3873 }
3874 }
3875
3876 EXPORT_SYMBOL(__free_pages);
3877
3878 void free_pages(unsigned long addr, unsigned int order)
3879 {
3880 if (addr != 0) {
3881 VM_BUG_ON(!virt_addr_valid((void *)addr));
3882 __free_pages(virt_to_page((void *)addr), order);
3883 }
3884 }
3885
3886 EXPORT_SYMBOL(free_pages);
3887
3888 /*
3889 * Page Fragment:
3890 * An arbitrary-length arbitrary-offset area of memory which resides
3891 * within a 0 or higher order page. Multiple fragments within that page
3892 * are individually refcounted, in the page's reference counter.
3893 *
3894 * The page_frag functions below provide a simple allocation framework for
3895 * page fragments. This is used by the network stack and network device
3896 * drivers to provide a backing region of memory for use as either an
3897 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3898 */
3899 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
3900 gfp_t gfp_mask)
3901 {
3902 struct page *page = NULL;
3903 gfp_t gfp = gfp_mask;
3904
3905 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3906 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3907 __GFP_NOMEMALLOC;
3908 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3909 PAGE_FRAG_CACHE_MAX_ORDER);
3910 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3911 #endif
3912 if (unlikely(!page))
3913 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3914
3915 nc->va = page ? page_address(page) : NULL;
3916
3917 return page;
3918 }
3919
3920 void __page_frag_cache_drain(struct page *page, unsigned int count)
3921 {
3922 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
3923
3924 if (page_ref_sub_and_test(page, count)) {
3925 unsigned int order = compound_order(page);
3926
3927 if (order == 0)
3928 free_hot_cold_page(page, false);
3929 else
3930 __free_pages_ok(page, order);
3931 }
3932 }
3933 EXPORT_SYMBOL(__page_frag_cache_drain);
3934
3935 void *page_frag_alloc(struct page_frag_cache *nc,
3936 unsigned int fragsz, gfp_t gfp_mask)
3937 {
3938 unsigned int size = PAGE_SIZE;
3939 struct page *page;
3940 int offset;
3941
3942 if (unlikely(!nc->va)) {
3943 refill:
3944 page = __page_frag_cache_refill(nc, gfp_mask);
3945 if (!page)
3946 return NULL;
3947
3948 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3949 /* if size can vary use size else just use PAGE_SIZE */
3950 size = nc->size;
3951 #endif
3952 /* Even if we own the page, we do not use atomic_set().
3953 * This would break get_page_unless_zero() users.
3954 */
3955 page_ref_add(page, size - 1);
3956
3957 /* reset page count bias and offset to start of new frag */
3958 nc->pfmemalloc = page_is_pfmemalloc(page);
3959 nc->pagecnt_bias = size;
3960 nc->offset = size;
3961 }
3962
3963 offset = nc->offset - fragsz;
3964 if (unlikely(offset < 0)) {
3965 page = virt_to_page(nc->va);
3966
3967 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3968 goto refill;
3969
3970 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3971 /* if size can vary use size else just use PAGE_SIZE */
3972 size = nc->size;
3973 #endif
3974 /* OK, page count is 0, we can safely set it */
3975 set_page_count(page, size);
3976
3977 /* reset page count bias and offset to start of new frag */
3978 nc->pagecnt_bias = size;
3979 offset = size - fragsz;
3980 }
3981
3982 nc->pagecnt_bias--;
3983 nc->offset = offset;
3984
3985 return nc->va + offset;
3986 }
3987 EXPORT_SYMBOL(page_frag_alloc);
3988
3989 /*
3990 * Frees a page fragment allocated out of either a compound or order 0 page.
3991 */
3992 void page_frag_free(void *addr)
3993 {
3994 struct page *page = virt_to_head_page(addr);
3995
3996 if (unlikely(put_page_testzero(page)))
3997 __free_pages_ok(page, compound_order(page));
3998 }
3999 EXPORT_SYMBOL(page_frag_free);
4000
4001 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4002 size_t size)
4003 {
4004 if (addr) {
4005 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4006 unsigned long used = addr + PAGE_ALIGN(size);
4007
4008 split_page(virt_to_page((void *)addr), order);
4009 while (used < alloc_end) {
4010 free_page(used);
4011 used += PAGE_SIZE;
4012 }
4013 }
4014 return (void *)addr;
4015 }
4016
4017 /**
4018 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4019 * @size: the number of bytes to allocate
4020 * @gfp_mask: GFP flags for the allocation
4021 *
4022 * This function is similar to alloc_pages(), except that it allocates the
4023 * minimum number of pages to satisfy the request. alloc_pages() can only
4024 * allocate memory in power-of-two pages.
4025 *
4026 * This function is also limited by MAX_ORDER.
4027 *
4028 * Memory allocated by this function must be released by free_pages_exact().
4029 */
4030 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4031 {
4032 unsigned int order = get_order(size);
4033 unsigned long addr;
4034
4035 addr = __get_free_pages(gfp_mask, order);
4036 return make_alloc_exact(addr, order, size);
4037 }
4038 EXPORT_SYMBOL(alloc_pages_exact);
4039
4040 /**
4041 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4042 * pages on a node.
4043 * @nid: the preferred node ID where memory should be allocated
4044 * @size: the number of bytes to allocate
4045 * @gfp_mask: GFP flags for the allocation
4046 *
4047 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4048 * back.
4049 */
4050 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4051 {
4052 unsigned int order = get_order(size);
4053 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4054 if (!p)
4055 return NULL;
4056 return make_alloc_exact((unsigned long)page_address(p), order, size);
4057 }
4058
4059 /**
4060 * free_pages_exact - release memory allocated via alloc_pages_exact()
4061 * @virt: the value returned by alloc_pages_exact.
4062 * @size: size of allocation, same value as passed to alloc_pages_exact().
4063 *
4064 * Release the memory allocated by a previous call to alloc_pages_exact.
4065 */
4066 void free_pages_exact(void *virt, size_t size)
4067 {
4068 unsigned long addr = (unsigned long)virt;
4069 unsigned long end = addr + PAGE_ALIGN(size);
4070
4071 while (addr < end) {
4072 free_page(addr);
4073 addr += PAGE_SIZE;
4074 }
4075 }
4076 EXPORT_SYMBOL(free_pages_exact);
4077
4078 /**
4079 * nr_free_zone_pages - count number of pages beyond high watermark
4080 * @offset: The zone index of the highest zone
4081 *
4082 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4083 * high watermark within all zones at or below a given zone index. For each
4084 * zone, the number of pages is calculated as:
4085 * managed_pages - high_pages
4086 */
4087 static unsigned long nr_free_zone_pages(int offset)
4088 {
4089 struct zoneref *z;
4090 struct zone *zone;
4091
4092 /* Just pick one node, since fallback list is circular */
4093 unsigned long sum = 0;
4094
4095 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4096
4097 for_each_zone_zonelist(zone, z, zonelist, offset) {
4098 unsigned long size = zone->managed_pages;
4099 unsigned long high = high_wmark_pages(zone);
4100 if (size > high)
4101 sum += size - high;
4102 }
4103
4104 return sum;
4105 }
4106
4107 /**
4108 * nr_free_buffer_pages - count number of pages beyond high watermark
4109 *
4110 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4111 * watermark within ZONE_DMA and ZONE_NORMAL.
4112 */
4113 unsigned long nr_free_buffer_pages(void)
4114 {
4115 return nr_free_zone_pages(gfp_zone(GFP_USER));
4116 }
4117 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4118
4119 /**
4120 * nr_free_pagecache_pages - count number of pages beyond high watermark
4121 *
4122 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4123 * high watermark within all zones.
4124 */
4125 unsigned long nr_free_pagecache_pages(void)
4126 {
4127 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4128 }
4129
4130 static inline void show_node(struct zone *zone)
4131 {
4132 if (IS_ENABLED(CONFIG_NUMA))
4133 printk("Node %d ", zone_to_nid(zone));
4134 }
4135
4136 long si_mem_available(void)
4137 {
4138 long available;
4139 unsigned long pagecache;
4140 unsigned long wmark_low = 0;
4141 unsigned long pages[NR_LRU_LISTS];
4142 struct zone *zone;
4143 int lru;
4144
4145 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4146 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4147
4148 for_each_zone(zone)
4149 wmark_low += zone->watermark[WMARK_LOW];
4150
4151 /*
4152 * Estimate the amount of memory available for userspace allocations,
4153 * without causing swapping.
4154 */
4155 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4156
4157 /*
4158 * Not all the page cache can be freed, otherwise the system will
4159 * start swapping. Assume at least half of the page cache, or the
4160 * low watermark worth of cache, needs to stay.
4161 */
4162 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4163 pagecache -= min(pagecache / 2, wmark_low);
4164 available += pagecache;
4165
4166 /*
4167 * Part of the reclaimable slab consists of items that are in use,
4168 * and cannot be freed. Cap this estimate at the low watermark.
4169 */
4170 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4171 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4172
4173 if (available < 0)
4174 available = 0;
4175 return available;
4176 }
4177 EXPORT_SYMBOL_GPL(si_mem_available);
4178
4179 void si_meminfo(struct sysinfo *val)
4180 {
4181 val->totalram = totalram_pages;
4182 val->sharedram = global_node_page_state(NR_SHMEM);
4183 val->freeram = global_page_state(NR_FREE_PAGES);
4184 val->bufferram = nr_blockdev_pages();
4185 val->totalhigh = totalhigh_pages;
4186 val->freehigh = nr_free_highpages();
4187 val->mem_unit = PAGE_SIZE;
4188 }
4189
4190 EXPORT_SYMBOL(si_meminfo);
4191
4192 #ifdef CONFIG_NUMA
4193 void si_meminfo_node(struct sysinfo *val, int nid)
4194 {
4195 int zone_type; /* needs to be signed */
4196 unsigned long managed_pages = 0;
4197 unsigned long managed_highpages = 0;
4198 unsigned long free_highpages = 0;
4199 pg_data_t *pgdat = NODE_DATA(nid);
4200
4201 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4202 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4203 val->totalram = managed_pages;
4204 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4205 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4206 #ifdef CONFIG_HIGHMEM
4207 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4208 struct zone *zone = &pgdat->node_zones[zone_type];
4209
4210 if (is_highmem(zone)) {
4211 managed_highpages += zone->managed_pages;
4212 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4213 }
4214 }
4215 val->totalhigh = managed_highpages;
4216 val->freehigh = free_highpages;
4217 #else
4218 val->totalhigh = managed_highpages;
4219 val->freehigh = free_highpages;
4220 #endif
4221 val->mem_unit = PAGE_SIZE;
4222 }
4223 #endif
4224
4225 /*
4226 * Determine whether the node should be displayed or not, depending on whether
4227 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4228 */
4229 bool skip_free_areas_node(unsigned int flags, int nid)
4230 {
4231 bool ret = false;
4232 unsigned int cpuset_mems_cookie;
4233
4234 if (!(flags & SHOW_MEM_FILTER_NODES))
4235 goto out;
4236
4237 do {
4238 cpuset_mems_cookie = read_mems_allowed_begin();
4239 ret = !node_isset(nid, cpuset_current_mems_allowed);
4240 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4241 out:
4242 return ret;
4243 }
4244
4245 #define K(x) ((x) << (PAGE_SHIFT-10))
4246
4247 static void show_migration_types(unsigned char type)
4248 {
4249 static const char types[MIGRATE_TYPES] = {
4250 [MIGRATE_UNMOVABLE] = 'U',
4251 [MIGRATE_MOVABLE] = 'M',
4252 [MIGRATE_RECLAIMABLE] = 'E',
4253 [MIGRATE_HIGHATOMIC] = 'H',
4254 #ifdef CONFIG_CMA
4255 [MIGRATE_CMA] = 'C',
4256 #endif
4257 #ifdef CONFIG_MEMORY_ISOLATION
4258 [MIGRATE_ISOLATE] = 'I',
4259 #endif
4260 };
4261 char tmp[MIGRATE_TYPES + 1];
4262 char *p = tmp;
4263 int i;
4264
4265 for (i = 0; i < MIGRATE_TYPES; i++) {
4266 if (type & (1 << i))
4267 *p++ = types[i];
4268 }
4269
4270 *p = '\0';
4271 printk(KERN_CONT "(%s) ", tmp);
4272 }
4273
4274 /*
4275 * Show free area list (used inside shift_scroll-lock stuff)
4276 * We also calculate the percentage fragmentation. We do this by counting the
4277 * memory on each free list with the exception of the first item on the list.
4278 *
4279 * Bits in @filter:
4280 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4281 * cpuset.
4282 */
4283 void show_free_areas(unsigned int filter)
4284 {
4285 unsigned long free_pcp = 0;
4286 int cpu;
4287 struct zone *zone;
4288 pg_data_t *pgdat;
4289
4290 for_each_populated_zone(zone) {
4291 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4292 continue;
4293
4294 for_each_online_cpu(cpu)
4295 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4296 }
4297
4298 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4299 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4300 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4301 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4302 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4303 " free:%lu free_pcp:%lu free_cma:%lu\n",
4304 global_node_page_state(NR_ACTIVE_ANON),
4305 global_node_page_state(NR_INACTIVE_ANON),
4306 global_node_page_state(NR_ISOLATED_ANON),
4307 global_node_page_state(NR_ACTIVE_FILE),
4308 global_node_page_state(NR_INACTIVE_FILE),
4309 global_node_page_state(NR_ISOLATED_FILE),
4310 global_node_page_state(NR_UNEVICTABLE),
4311 global_node_page_state(NR_FILE_DIRTY),
4312 global_node_page_state(NR_WRITEBACK),
4313 global_node_page_state(NR_UNSTABLE_NFS),
4314 global_page_state(NR_SLAB_RECLAIMABLE),
4315 global_page_state(NR_SLAB_UNRECLAIMABLE),
4316 global_node_page_state(NR_FILE_MAPPED),
4317 global_node_page_state(NR_SHMEM),
4318 global_page_state(NR_PAGETABLE),
4319 global_page_state(NR_BOUNCE),
4320 global_page_state(NR_FREE_PAGES),
4321 free_pcp,
4322 global_page_state(NR_FREE_CMA_PAGES));
4323
4324 for_each_online_pgdat(pgdat) {
4325 printk("Node %d"
4326 " active_anon:%lukB"
4327 " inactive_anon:%lukB"
4328 " active_file:%lukB"
4329 " inactive_file:%lukB"
4330 " unevictable:%lukB"
4331 " isolated(anon):%lukB"
4332 " isolated(file):%lukB"
4333 " mapped:%lukB"
4334 " dirty:%lukB"
4335 " writeback:%lukB"
4336 " shmem:%lukB"
4337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4338 " shmem_thp: %lukB"
4339 " shmem_pmdmapped: %lukB"
4340 " anon_thp: %lukB"
4341 #endif
4342 " writeback_tmp:%lukB"
4343 " unstable:%lukB"
4344 " pages_scanned:%lu"
4345 " all_unreclaimable? %s"
4346 "\n",
4347 pgdat->node_id,
4348 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4349 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4350 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4351 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4352 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4353 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4354 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4355 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4356 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4357 K(node_page_state(pgdat, NR_WRITEBACK)),
4358 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4359 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4360 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4361 * HPAGE_PMD_NR),
4362 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4363 #endif
4364 K(node_page_state(pgdat, NR_SHMEM)),
4365 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4366 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4367 node_page_state(pgdat, NR_PAGES_SCANNED),
4368 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4369 }
4370
4371 for_each_populated_zone(zone) {
4372 int i;
4373
4374 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4375 continue;
4376
4377 free_pcp = 0;
4378 for_each_online_cpu(cpu)
4379 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4380
4381 show_node(zone);
4382 printk(KERN_CONT
4383 "%s"
4384 " free:%lukB"
4385 " min:%lukB"
4386 " low:%lukB"
4387 " high:%lukB"
4388 " active_anon:%lukB"
4389 " inactive_anon:%lukB"
4390 " active_file:%lukB"
4391 " inactive_file:%lukB"
4392 " unevictable:%lukB"
4393 " writepending:%lukB"
4394 " present:%lukB"
4395 " managed:%lukB"
4396 " mlocked:%lukB"
4397 " slab_reclaimable:%lukB"
4398 " slab_unreclaimable:%lukB"
4399 " kernel_stack:%lukB"
4400 " pagetables:%lukB"
4401 " bounce:%lukB"
4402 " free_pcp:%lukB"
4403 " local_pcp:%ukB"
4404 " free_cma:%lukB"
4405 "\n",
4406 zone->name,
4407 K(zone_page_state(zone, NR_FREE_PAGES)),
4408 K(min_wmark_pages(zone)),
4409 K(low_wmark_pages(zone)),
4410 K(high_wmark_pages(zone)),
4411 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4412 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4413 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4414 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4415 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4416 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4417 K(zone->present_pages),
4418 K(zone->managed_pages),
4419 K(zone_page_state(zone, NR_MLOCK)),
4420 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4421 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4422 zone_page_state(zone, NR_KERNEL_STACK_KB),
4423 K(zone_page_state(zone, NR_PAGETABLE)),
4424 K(zone_page_state(zone, NR_BOUNCE)),
4425 K(free_pcp),
4426 K(this_cpu_read(zone->pageset->pcp.count)),
4427 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4428 printk("lowmem_reserve[]:");
4429 for (i = 0; i < MAX_NR_ZONES; i++)
4430 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4431 printk(KERN_CONT "\n");
4432 }
4433
4434 for_each_populated_zone(zone) {
4435 unsigned int order;
4436 unsigned long nr[MAX_ORDER], flags, total = 0;
4437 unsigned char types[MAX_ORDER];
4438
4439 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4440 continue;
4441 show_node(zone);
4442 printk(KERN_CONT "%s: ", zone->name);
4443
4444 spin_lock_irqsave(&zone->lock, flags);
4445 for (order = 0; order < MAX_ORDER; order++) {
4446 struct free_area *area = &zone->free_area[order];
4447 int type;
4448
4449 nr[order] = area->nr_free;
4450 total += nr[order] << order;
4451
4452 types[order] = 0;
4453 for (type = 0; type < MIGRATE_TYPES; type++) {
4454 if (!list_empty(&area->free_list[type]))
4455 types[order] |= 1 << type;
4456 }
4457 }
4458 spin_unlock_irqrestore(&zone->lock, flags);
4459 for (order = 0; order < MAX_ORDER; order++) {
4460 printk(KERN_CONT "%lu*%lukB ",
4461 nr[order], K(1UL) << order);
4462 if (nr[order])
4463 show_migration_types(types[order]);
4464 }
4465 printk(KERN_CONT "= %lukB\n", K(total));
4466 }
4467
4468 hugetlb_show_meminfo();
4469
4470 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4471
4472 show_swap_cache_info();
4473 }
4474
4475 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4476 {
4477 zoneref->zone = zone;
4478 zoneref->zone_idx = zone_idx(zone);
4479 }
4480
4481 /*
4482 * Builds allocation fallback zone lists.
4483 *
4484 * Add all populated zones of a node to the zonelist.
4485 */
4486 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4487 int nr_zones)
4488 {
4489 struct zone *zone;
4490 enum zone_type zone_type = MAX_NR_ZONES;
4491
4492 do {
4493 zone_type--;
4494 zone = pgdat->node_zones + zone_type;
4495 if (managed_zone(zone)) {
4496 zoneref_set_zone(zone,
4497 &zonelist->_zonerefs[nr_zones++]);
4498 check_highest_zone(zone_type);
4499 }
4500 } while (zone_type);
4501
4502 return nr_zones;
4503 }
4504
4505
4506 /*
4507 * zonelist_order:
4508 * 0 = automatic detection of better ordering.
4509 * 1 = order by ([node] distance, -zonetype)
4510 * 2 = order by (-zonetype, [node] distance)
4511 *
4512 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4513 * the same zonelist. So only NUMA can configure this param.
4514 */
4515 #define ZONELIST_ORDER_DEFAULT 0
4516 #define ZONELIST_ORDER_NODE 1
4517 #define ZONELIST_ORDER_ZONE 2
4518
4519 /* zonelist order in the kernel.
4520 * set_zonelist_order() will set this to NODE or ZONE.
4521 */
4522 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4523 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4524
4525
4526 #ifdef CONFIG_NUMA
4527 /* The value user specified ....changed by config */
4528 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4529 /* string for sysctl */
4530 #define NUMA_ZONELIST_ORDER_LEN 16
4531 char numa_zonelist_order[16] = "default";
4532
4533 /*
4534 * interface for configure zonelist ordering.
4535 * command line option "numa_zonelist_order"
4536 * = "[dD]efault - default, automatic configuration.
4537 * = "[nN]ode - order by node locality, then by zone within node
4538 * = "[zZ]one - order by zone, then by locality within zone
4539 */
4540
4541 static int __parse_numa_zonelist_order(char *s)
4542 {
4543 if (*s == 'd' || *s == 'D') {
4544 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4545 } else if (*s == 'n' || *s == 'N') {
4546 user_zonelist_order = ZONELIST_ORDER_NODE;
4547 } else if (*s == 'z' || *s == 'Z') {
4548 user_zonelist_order = ZONELIST_ORDER_ZONE;
4549 } else {
4550 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4551 return -EINVAL;
4552 }
4553 return 0;
4554 }
4555
4556 static __init int setup_numa_zonelist_order(char *s)
4557 {
4558 int ret;
4559
4560 if (!s)
4561 return 0;
4562
4563 ret = __parse_numa_zonelist_order(s);
4564 if (ret == 0)
4565 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4566
4567 return ret;
4568 }
4569 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4570
4571 /*
4572 * sysctl handler for numa_zonelist_order
4573 */
4574 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4575 void __user *buffer, size_t *length,
4576 loff_t *ppos)
4577 {
4578 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4579 int ret;
4580 static DEFINE_MUTEX(zl_order_mutex);
4581
4582 mutex_lock(&zl_order_mutex);
4583 if (write) {
4584 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4585 ret = -EINVAL;
4586 goto out;
4587 }
4588 strcpy(saved_string, (char *)table->data);
4589 }
4590 ret = proc_dostring(table, write, buffer, length, ppos);
4591 if (ret)
4592 goto out;
4593 if (write) {
4594 int oldval = user_zonelist_order;
4595
4596 ret = __parse_numa_zonelist_order((char *)table->data);
4597 if (ret) {
4598 /*
4599 * bogus value. restore saved string
4600 */
4601 strncpy((char *)table->data, saved_string,
4602 NUMA_ZONELIST_ORDER_LEN);
4603 user_zonelist_order = oldval;
4604 } else if (oldval != user_zonelist_order) {
4605 mutex_lock(&zonelists_mutex);
4606 build_all_zonelists(NULL, NULL);
4607 mutex_unlock(&zonelists_mutex);
4608 }
4609 }
4610 out:
4611 mutex_unlock(&zl_order_mutex);
4612 return ret;
4613 }
4614
4615
4616 #define MAX_NODE_LOAD (nr_online_nodes)
4617 static int node_load[MAX_NUMNODES];
4618
4619 /**
4620 * find_next_best_node - find the next node that should appear in a given node's fallback list
4621 * @node: node whose fallback list we're appending
4622 * @used_node_mask: nodemask_t of already used nodes
4623 *
4624 * We use a number of factors to determine which is the next node that should
4625 * appear on a given node's fallback list. The node should not have appeared
4626 * already in @node's fallback list, and it should be the next closest node
4627 * according to the distance array (which contains arbitrary distance values
4628 * from each node to each node in the system), and should also prefer nodes
4629 * with no CPUs, since presumably they'll have very little allocation pressure
4630 * on them otherwise.
4631 * It returns -1 if no node is found.
4632 */
4633 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4634 {
4635 int n, val;
4636 int min_val = INT_MAX;
4637 int best_node = NUMA_NO_NODE;
4638 const struct cpumask *tmp = cpumask_of_node(0);
4639
4640 /* Use the local node if we haven't already */
4641 if (!node_isset(node, *used_node_mask)) {
4642 node_set(node, *used_node_mask);
4643 return node;
4644 }
4645
4646 for_each_node_state(n, N_MEMORY) {
4647
4648 /* Don't want a node to appear more than once */
4649 if (node_isset(n, *used_node_mask))
4650 continue;
4651
4652 /* Use the distance array to find the distance */
4653 val = node_distance(node, n);
4654
4655 /* Penalize nodes under us ("prefer the next node") */
4656 val += (n < node);
4657
4658 /* Give preference to headless and unused nodes */
4659 tmp = cpumask_of_node(n);
4660 if (!cpumask_empty(tmp))
4661 val += PENALTY_FOR_NODE_WITH_CPUS;
4662
4663 /* Slight preference for less loaded node */
4664 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4665 val += node_load[n];
4666
4667 if (val < min_val) {
4668 min_val = val;
4669 best_node = n;
4670 }
4671 }
4672
4673 if (best_node >= 0)
4674 node_set(best_node, *used_node_mask);
4675
4676 return best_node;
4677 }
4678
4679
4680 /*
4681 * Build zonelists ordered by node and zones within node.
4682 * This results in maximum locality--normal zone overflows into local
4683 * DMA zone, if any--but risks exhausting DMA zone.
4684 */
4685 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4686 {
4687 int j;
4688 struct zonelist *zonelist;
4689
4690 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4691 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4692 ;
4693 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4694 zonelist->_zonerefs[j].zone = NULL;
4695 zonelist->_zonerefs[j].zone_idx = 0;
4696 }
4697
4698 /*
4699 * Build gfp_thisnode zonelists
4700 */
4701 static void build_thisnode_zonelists(pg_data_t *pgdat)
4702 {
4703 int j;
4704 struct zonelist *zonelist;
4705
4706 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4707 j = build_zonelists_node(pgdat, zonelist, 0);
4708 zonelist->_zonerefs[j].zone = NULL;
4709 zonelist->_zonerefs[j].zone_idx = 0;
4710 }
4711
4712 /*
4713 * Build zonelists ordered by zone and nodes within zones.
4714 * This results in conserving DMA zone[s] until all Normal memory is
4715 * exhausted, but results in overflowing to remote node while memory
4716 * may still exist in local DMA zone.
4717 */
4718 static int node_order[MAX_NUMNODES];
4719
4720 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4721 {
4722 int pos, j, node;
4723 int zone_type; /* needs to be signed */
4724 struct zone *z;
4725 struct zonelist *zonelist;
4726
4727 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4728 pos = 0;
4729 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4730 for (j = 0; j < nr_nodes; j++) {
4731 node = node_order[j];
4732 z = &NODE_DATA(node)->node_zones[zone_type];
4733 if (managed_zone(z)) {
4734 zoneref_set_zone(z,
4735 &zonelist->_zonerefs[pos++]);
4736 check_highest_zone(zone_type);
4737 }
4738 }
4739 }
4740 zonelist->_zonerefs[pos].zone = NULL;
4741 zonelist->_zonerefs[pos].zone_idx = 0;
4742 }
4743
4744 #if defined(CONFIG_64BIT)
4745 /*
4746 * Devices that require DMA32/DMA are relatively rare and do not justify a
4747 * penalty to every machine in case the specialised case applies. Default
4748 * to Node-ordering on 64-bit NUMA machines
4749 */
4750 static int default_zonelist_order(void)
4751 {
4752 return ZONELIST_ORDER_NODE;
4753 }
4754 #else
4755 /*
4756 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4757 * by the kernel. If processes running on node 0 deplete the low memory zone
4758 * then reclaim will occur more frequency increasing stalls and potentially
4759 * be easier to OOM if a large percentage of the zone is under writeback or
4760 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4761 * Hence, default to zone ordering on 32-bit.
4762 */
4763 static int default_zonelist_order(void)
4764 {
4765 return ZONELIST_ORDER_ZONE;
4766 }
4767 #endif /* CONFIG_64BIT */
4768
4769 static void set_zonelist_order(void)
4770 {
4771 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4772 current_zonelist_order = default_zonelist_order();
4773 else
4774 current_zonelist_order = user_zonelist_order;
4775 }
4776
4777 static void build_zonelists(pg_data_t *pgdat)
4778 {
4779 int i, node, load;
4780 nodemask_t used_mask;
4781 int local_node, prev_node;
4782 struct zonelist *zonelist;
4783 unsigned int order = current_zonelist_order;
4784
4785 /* initialize zonelists */
4786 for (i = 0; i < MAX_ZONELISTS; i++) {
4787 zonelist = pgdat->node_zonelists + i;
4788 zonelist->_zonerefs[0].zone = NULL;
4789 zonelist->_zonerefs[0].zone_idx = 0;
4790 }
4791
4792 /* NUMA-aware ordering of nodes */
4793 local_node = pgdat->node_id;
4794 load = nr_online_nodes;
4795 prev_node = local_node;
4796 nodes_clear(used_mask);
4797
4798 memset(node_order, 0, sizeof(node_order));
4799 i = 0;
4800
4801 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4802 /*
4803 * We don't want to pressure a particular node.
4804 * So adding penalty to the first node in same
4805 * distance group to make it round-robin.
4806 */
4807 if (node_distance(local_node, node) !=
4808 node_distance(local_node, prev_node))
4809 node_load[node] = load;
4810
4811 prev_node = node;
4812 load--;
4813 if (order == ZONELIST_ORDER_NODE)
4814 build_zonelists_in_node_order(pgdat, node);
4815 else
4816 node_order[i++] = node; /* remember order */
4817 }
4818
4819 if (order == ZONELIST_ORDER_ZONE) {
4820 /* calculate node order -- i.e., DMA last! */
4821 build_zonelists_in_zone_order(pgdat, i);
4822 }
4823
4824 build_thisnode_zonelists(pgdat);
4825 }
4826
4827 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4828 /*
4829 * Return node id of node used for "local" allocations.
4830 * I.e., first node id of first zone in arg node's generic zonelist.
4831 * Used for initializing percpu 'numa_mem', which is used primarily
4832 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4833 */
4834 int local_memory_node(int node)
4835 {
4836 struct zoneref *z;
4837
4838 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4839 gfp_zone(GFP_KERNEL),
4840 NULL);
4841 return z->zone->node;
4842 }
4843 #endif
4844
4845 static void setup_min_unmapped_ratio(void);
4846 static void setup_min_slab_ratio(void);
4847 #else /* CONFIG_NUMA */
4848
4849 static void set_zonelist_order(void)
4850 {
4851 current_zonelist_order = ZONELIST_ORDER_ZONE;
4852 }
4853
4854 static void build_zonelists(pg_data_t *pgdat)
4855 {
4856 int node, local_node;
4857 enum zone_type j;
4858 struct zonelist *zonelist;
4859
4860 local_node = pgdat->node_id;
4861
4862 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4863 j = build_zonelists_node(pgdat, zonelist, 0);
4864
4865 /*
4866 * Now we build the zonelist so that it contains the zones
4867 * of all the other nodes.
4868 * We don't want to pressure a particular node, so when
4869 * building the zones for node N, we make sure that the
4870 * zones coming right after the local ones are those from
4871 * node N+1 (modulo N)
4872 */
4873 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4874 if (!node_online(node))
4875 continue;
4876 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4877 }
4878 for (node = 0; node < local_node; node++) {
4879 if (!node_online(node))
4880 continue;
4881 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4882 }
4883
4884 zonelist->_zonerefs[j].zone = NULL;
4885 zonelist->_zonerefs[j].zone_idx = 0;
4886 }
4887
4888 #endif /* CONFIG_NUMA */
4889
4890 /*
4891 * Boot pageset table. One per cpu which is going to be used for all
4892 * zones and all nodes. The parameters will be set in such a way
4893 * that an item put on a list will immediately be handed over to
4894 * the buddy list. This is safe since pageset manipulation is done
4895 * with interrupts disabled.
4896 *
4897 * The boot_pagesets must be kept even after bootup is complete for
4898 * unused processors and/or zones. They do play a role for bootstrapping
4899 * hotplugged processors.
4900 *
4901 * zoneinfo_show() and maybe other functions do
4902 * not check if the processor is online before following the pageset pointer.
4903 * Other parts of the kernel may not check if the zone is available.
4904 */
4905 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4906 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4907 static void setup_zone_pageset(struct zone *zone);
4908
4909 /*
4910 * Global mutex to protect against size modification of zonelists
4911 * as well as to serialize pageset setup for the new populated zone.
4912 */
4913 DEFINE_MUTEX(zonelists_mutex);
4914
4915 /* return values int ....just for stop_machine() */
4916 static int __build_all_zonelists(void *data)
4917 {
4918 int nid;
4919 int cpu;
4920 pg_data_t *self = data;
4921
4922 #ifdef CONFIG_NUMA
4923 memset(node_load, 0, sizeof(node_load));
4924 #endif
4925
4926 if (self && !node_online(self->node_id)) {
4927 build_zonelists(self);
4928 }
4929
4930 for_each_online_node(nid) {
4931 pg_data_t *pgdat = NODE_DATA(nid);
4932
4933 build_zonelists(pgdat);
4934 }
4935
4936 /*
4937 * Initialize the boot_pagesets that are going to be used
4938 * for bootstrapping processors. The real pagesets for
4939 * each zone will be allocated later when the per cpu
4940 * allocator is available.
4941 *
4942 * boot_pagesets are used also for bootstrapping offline
4943 * cpus if the system is already booted because the pagesets
4944 * are needed to initialize allocators on a specific cpu too.
4945 * F.e. the percpu allocator needs the page allocator which
4946 * needs the percpu allocator in order to allocate its pagesets
4947 * (a chicken-egg dilemma).
4948 */
4949 for_each_possible_cpu(cpu) {
4950 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4951
4952 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4953 /*
4954 * We now know the "local memory node" for each node--
4955 * i.e., the node of the first zone in the generic zonelist.
4956 * Set up numa_mem percpu variable for on-line cpus. During
4957 * boot, only the boot cpu should be on-line; we'll init the
4958 * secondary cpus' numa_mem as they come on-line. During
4959 * node/memory hotplug, we'll fixup all on-line cpus.
4960 */
4961 if (cpu_online(cpu))
4962 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4963 #endif
4964 }
4965
4966 return 0;
4967 }
4968
4969 static noinline void __init
4970 build_all_zonelists_init(void)
4971 {
4972 __build_all_zonelists(NULL);
4973 mminit_verify_zonelist();
4974 cpuset_init_current_mems_allowed();
4975 }
4976
4977 /*
4978 * Called with zonelists_mutex held always
4979 * unless system_state == SYSTEM_BOOTING.
4980 *
4981 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4982 * [we're only called with non-NULL zone through __meminit paths] and
4983 * (2) call of __init annotated helper build_all_zonelists_init
4984 * [protected by SYSTEM_BOOTING].
4985 */
4986 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4987 {
4988 set_zonelist_order();
4989
4990 if (system_state == SYSTEM_BOOTING) {
4991 build_all_zonelists_init();
4992 } else {
4993 #ifdef CONFIG_MEMORY_HOTPLUG
4994 if (zone)
4995 setup_zone_pageset(zone);
4996 #endif
4997 /* we have to stop all cpus to guarantee there is no user
4998 of zonelist */
4999 stop_machine(__build_all_zonelists, pgdat, NULL);
5000 /* cpuset refresh routine should be here */
5001 }
5002 vm_total_pages = nr_free_pagecache_pages();
5003 /*
5004 * Disable grouping by mobility if the number of pages in the
5005 * system is too low to allow the mechanism to work. It would be
5006 * more accurate, but expensive to check per-zone. This check is
5007 * made on memory-hotadd so a system can start with mobility
5008 * disabled and enable it later
5009 */
5010 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5011 page_group_by_mobility_disabled = 1;
5012 else
5013 page_group_by_mobility_disabled = 0;
5014
5015 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5016 nr_online_nodes,
5017 zonelist_order_name[current_zonelist_order],
5018 page_group_by_mobility_disabled ? "off" : "on",
5019 vm_total_pages);
5020 #ifdef CONFIG_NUMA
5021 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5022 #endif
5023 }
5024
5025 /*
5026 * Initially all pages are reserved - free ones are freed
5027 * up by free_all_bootmem() once the early boot process is
5028 * done. Non-atomic initialization, single-pass.
5029 */
5030 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5031 unsigned long start_pfn, enum memmap_context context)
5032 {
5033 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5034 unsigned long end_pfn = start_pfn + size;
5035 pg_data_t *pgdat = NODE_DATA(nid);
5036 unsigned long pfn;
5037 unsigned long nr_initialised = 0;
5038 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5039 struct memblock_region *r = NULL, *tmp;
5040 #endif
5041
5042 if (highest_memmap_pfn < end_pfn - 1)
5043 highest_memmap_pfn = end_pfn - 1;
5044
5045 /*
5046 * Honor reservation requested by the driver for this ZONE_DEVICE
5047 * memory
5048 */
5049 if (altmap && start_pfn == altmap->base_pfn)
5050 start_pfn += altmap->reserve;
5051
5052 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5053 /*
5054 * There can be holes in boot-time mem_map[]s handed to this
5055 * function. They do not exist on hotplugged memory.
5056 */
5057 if (context != MEMMAP_EARLY)
5058 goto not_early;
5059
5060 if (!early_pfn_valid(pfn))
5061 continue;
5062 if (!early_pfn_in_nid(pfn, nid))
5063 continue;
5064 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5065 break;
5066
5067 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5068 /*
5069 * Check given memblock attribute by firmware which can affect
5070 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5071 * mirrored, it's an overlapped memmap init. skip it.
5072 */
5073 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5074 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5075 for_each_memblock(memory, tmp)
5076 if (pfn < memblock_region_memory_end_pfn(tmp))
5077 break;
5078 r = tmp;
5079 }
5080 if (pfn >= memblock_region_memory_base_pfn(r) &&
5081 memblock_is_mirror(r)) {
5082 /* already initialized as NORMAL */
5083 pfn = memblock_region_memory_end_pfn(r);
5084 continue;
5085 }
5086 }
5087 #endif
5088
5089 not_early:
5090 /*
5091 * Mark the block movable so that blocks are reserved for
5092 * movable at startup. This will force kernel allocations
5093 * to reserve their blocks rather than leaking throughout
5094 * the address space during boot when many long-lived
5095 * kernel allocations are made.
5096 *
5097 * bitmap is created for zone's valid pfn range. but memmap
5098 * can be created for invalid pages (for alignment)
5099 * check here not to call set_pageblock_migratetype() against
5100 * pfn out of zone.
5101 */
5102 if (!(pfn & (pageblock_nr_pages - 1))) {
5103 struct page *page = pfn_to_page(pfn);
5104
5105 __init_single_page(page, pfn, zone, nid);
5106 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5107 } else {
5108 __init_single_pfn(pfn, zone, nid);
5109 }
5110 }
5111 }
5112
5113 static void __meminit zone_init_free_lists(struct zone *zone)
5114 {
5115 unsigned int order, t;
5116 for_each_migratetype_order(order, t) {
5117 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5118 zone->free_area[order].nr_free = 0;
5119 }
5120 }
5121
5122 #ifndef __HAVE_ARCH_MEMMAP_INIT
5123 #define memmap_init(size, nid, zone, start_pfn) \
5124 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5125 #endif
5126
5127 static int zone_batchsize(struct zone *zone)
5128 {
5129 #ifdef CONFIG_MMU
5130 int batch;
5131
5132 /*
5133 * The per-cpu-pages pools are set to around 1000th of the
5134 * size of the zone. But no more than 1/2 of a meg.
5135 *
5136 * OK, so we don't know how big the cache is. So guess.
5137 */
5138 batch = zone->managed_pages / 1024;
5139 if (batch * PAGE_SIZE > 512 * 1024)
5140 batch = (512 * 1024) / PAGE_SIZE;
5141 batch /= 4; /* We effectively *= 4 below */
5142 if (batch < 1)
5143 batch = 1;
5144
5145 /*
5146 * Clamp the batch to a 2^n - 1 value. Having a power
5147 * of 2 value was found to be more likely to have
5148 * suboptimal cache aliasing properties in some cases.
5149 *
5150 * For example if 2 tasks are alternately allocating
5151 * batches of pages, one task can end up with a lot
5152 * of pages of one half of the possible page colors
5153 * and the other with pages of the other colors.
5154 */
5155 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5156
5157 return batch;
5158
5159 #else
5160 /* The deferral and batching of frees should be suppressed under NOMMU
5161 * conditions.
5162 *
5163 * The problem is that NOMMU needs to be able to allocate large chunks
5164 * of contiguous memory as there's no hardware page translation to
5165 * assemble apparent contiguous memory from discontiguous pages.
5166 *
5167 * Queueing large contiguous runs of pages for batching, however,
5168 * causes the pages to actually be freed in smaller chunks. As there
5169 * can be a significant delay between the individual batches being
5170 * recycled, this leads to the once large chunks of space being
5171 * fragmented and becoming unavailable for high-order allocations.
5172 */
5173 return 0;
5174 #endif
5175 }
5176
5177 /*
5178 * pcp->high and pcp->batch values are related and dependent on one another:
5179 * ->batch must never be higher then ->high.
5180 * The following function updates them in a safe manner without read side
5181 * locking.
5182 *
5183 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5184 * those fields changing asynchronously (acording the the above rule).
5185 *
5186 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5187 * outside of boot time (or some other assurance that no concurrent updaters
5188 * exist).
5189 */
5190 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5191 unsigned long batch)
5192 {
5193 /* start with a fail safe value for batch */
5194 pcp->batch = 1;
5195 smp_wmb();
5196
5197 /* Update high, then batch, in order */
5198 pcp->high = high;
5199 smp_wmb();
5200
5201 pcp->batch = batch;
5202 }
5203
5204 /* a companion to pageset_set_high() */
5205 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5206 {
5207 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5208 }
5209
5210 static void pageset_init(struct per_cpu_pageset *p)
5211 {
5212 struct per_cpu_pages *pcp;
5213 int migratetype;
5214
5215 memset(p, 0, sizeof(*p));
5216
5217 pcp = &p->pcp;
5218 pcp->count = 0;
5219 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5220 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5221 }
5222
5223 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5224 {
5225 pageset_init(p);
5226 pageset_set_batch(p, batch);
5227 }
5228
5229 /*
5230 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5231 * to the value high for the pageset p.
5232 */
5233 static void pageset_set_high(struct per_cpu_pageset *p,
5234 unsigned long high)
5235 {
5236 unsigned long batch = max(1UL, high / 4);
5237 if ((high / 4) > (PAGE_SHIFT * 8))
5238 batch = PAGE_SHIFT * 8;
5239
5240 pageset_update(&p->pcp, high, batch);
5241 }
5242
5243 static void pageset_set_high_and_batch(struct zone *zone,
5244 struct per_cpu_pageset *pcp)
5245 {
5246 if (percpu_pagelist_fraction)
5247 pageset_set_high(pcp,
5248 (zone->managed_pages /
5249 percpu_pagelist_fraction));
5250 else
5251 pageset_set_batch(pcp, zone_batchsize(zone));
5252 }
5253
5254 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5255 {
5256 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5257
5258 pageset_init(pcp);
5259 pageset_set_high_and_batch(zone, pcp);
5260 }
5261
5262 static void __meminit setup_zone_pageset(struct zone *zone)
5263 {
5264 int cpu;
5265 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5266 for_each_possible_cpu(cpu)
5267 zone_pageset_init(zone, cpu);
5268 }
5269
5270 /*
5271 * Allocate per cpu pagesets and initialize them.
5272 * Before this call only boot pagesets were available.
5273 */
5274 void __init setup_per_cpu_pageset(void)
5275 {
5276 struct pglist_data *pgdat;
5277 struct zone *zone;
5278
5279 for_each_populated_zone(zone)
5280 setup_zone_pageset(zone);
5281
5282 for_each_online_pgdat(pgdat)
5283 pgdat->per_cpu_nodestats =
5284 alloc_percpu(struct per_cpu_nodestat);
5285 }
5286
5287 static __meminit void zone_pcp_init(struct zone *zone)
5288 {
5289 /*
5290 * per cpu subsystem is not up at this point. The following code
5291 * relies on the ability of the linker to provide the
5292 * offset of a (static) per cpu variable into the per cpu area.
5293 */
5294 zone->pageset = &boot_pageset;
5295
5296 if (populated_zone(zone))
5297 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5298 zone->name, zone->present_pages,
5299 zone_batchsize(zone));
5300 }
5301
5302 int __meminit init_currently_empty_zone(struct zone *zone,
5303 unsigned long zone_start_pfn,
5304 unsigned long size)
5305 {
5306 struct pglist_data *pgdat = zone->zone_pgdat;
5307
5308 pgdat->nr_zones = zone_idx(zone) + 1;
5309
5310 zone->zone_start_pfn = zone_start_pfn;
5311
5312 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5313 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5314 pgdat->node_id,
5315 (unsigned long)zone_idx(zone),
5316 zone_start_pfn, (zone_start_pfn + size));
5317
5318 zone_init_free_lists(zone);
5319 zone->initialized = 1;
5320
5321 return 0;
5322 }
5323
5324 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5325 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5326
5327 /*
5328 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5329 */
5330 int __meminit __early_pfn_to_nid(unsigned long pfn,
5331 struct mminit_pfnnid_cache *state)
5332 {
5333 unsigned long start_pfn, end_pfn;
5334 int nid;
5335
5336 if (state->last_start <= pfn && pfn < state->last_end)
5337 return state->last_nid;
5338
5339 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5340 if (nid != -1) {
5341 state->last_start = start_pfn;
5342 state->last_end = end_pfn;
5343 state->last_nid = nid;
5344 }
5345
5346 return nid;
5347 }
5348 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5349
5350 /**
5351 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5352 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5353 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5354 *
5355 * If an architecture guarantees that all ranges registered contain no holes
5356 * and may be freed, this this function may be used instead of calling
5357 * memblock_free_early_nid() manually.
5358 */
5359 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5360 {
5361 unsigned long start_pfn, end_pfn;
5362 int i, this_nid;
5363
5364 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5365 start_pfn = min(start_pfn, max_low_pfn);
5366 end_pfn = min(end_pfn, max_low_pfn);
5367
5368 if (start_pfn < end_pfn)
5369 memblock_free_early_nid(PFN_PHYS(start_pfn),
5370 (end_pfn - start_pfn) << PAGE_SHIFT,
5371 this_nid);
5372 }
5373 }
5374
5375 /**
5376 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5377 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5378 *
5379 * If an architecture guarantees that all ranges registered contain no holes and may
5380 * be freed, this function may be used instead of calling memory_present() manually.
5381 */
5382 void __init sparse_memory_present_with_active_regions(int nid)
5383 {
5384 unsigned long start_pfn, end_pfn;
5385 int i, this_nid;
5386
5387 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5388 memory_present(this_nid, start_pfn, end_pfn);
5389 }
5390
5391 /**
5392 * get_pfn_range_for_nid - Return the start and end page frames for a node
5393 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5394 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5395 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5396 *
5397 * It returns the start and end page frame of a node based on information
5398 * provided by memblock_set_node(). If called for a node
5399 * with no available memory, a warning is printed and the start and end
5400 * PFNs will be 0.
5401 */
5402 void __meminit get_pfn_range_for_nid(unsigned int nid,
5403 unsigned long *start_pfn, unsigned long *end_pfn)
5404 {
5405 unsigned long this_start_pfn, this_end_pfn;
5406 int i;
5407
5408 *start_pfn = -1UL;
5409 *end_pfn = 0;
5410
5411 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5412 *start_pfn = min(*start_pfn, this_start_pfn);
5413 *end_pfn = max(*end_pfn, this_end_pfn);
5414 }
5415
5416 if (*start_pfn == -1UL)
5417 *start_pfn = 0;
5418 }
5419
5420 /*
5421 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5422 * assumption is made that zones within a node are ordered in monotonic
5423 * increasing memory addresses so that the "highest" populated zone is used
5424 */
5425 static void __init find_usable_zone_for_movable(void)
5426 {
5427 int zone_index;
5428 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5429 if (zone_index == ZONE_MOVABLE)
5430 continue;
5431
5432 if (arch_zone_highest_possible_pfn[zone_index] >
5433 arch_zone_lowest_possible_pfn[zone_index])
5434 break;
5435 }
5436
5437 VM_BUG_ON(zone_index == -1);
5438 movable_zone = zone_index;
5439 }
5440
5441 /*
5442 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5443 * because it is sized independent of architecture. Unlike the other zones,
5444 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5445 * in each node depending on the size of each node and how evenly kernelcore
5446 * is distributed. This helper function adjusts the zone ranges
5447 * provided by the architecture for a given node by using the end of the
5448 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5449 * zones within a node are in order of monotonic increases memory addresses
5450 */
5451 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5452 unsigned long zone_type,
5453 unsigned long node_start_pfn,
5454 unsigned long node_end_pfn,
5455 unsigned long *zone_start_pfn,
5456 unsigned long *zone_end_pfn)
5457 {
5458 /* Only adjust if ZONE_MOVABLE is on this node */
5459 if (zone_movable_pfn[nid]) {
5460 /* Size ZONE_MOVABLE */
5461 if (zone_type == ZONE_MOVABLE) {
5462 *zone_start_pfn = zone_movable_pfn[nid];
5463 *zone_end_pfn = min(node_end_pfn,
5464 arch_zone_highest_possible_pfn[movable_zone]);
5465
5466 /* Adjust for ZONE_MOVABLE starting within this range */
5467 } else if (!mirrored_kernelcore &&
5468 *zone_start_pfn < zone_movable_pfn[nid] &&
5469 *zone_end_pfn > zone_movable_pfn[nid]) {
5470 *zone_end_pfn = zone_movable_pfn[nid];
5471
5472 /* Check if this whole range is within ZONE_MOVABLE */
5473 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5474 *zone_start_pfn = *zone_end_pfn;
5475 }
5476 }
5477
5478 /*
5479 * Return the number of pages a zone spans in a node, including holes
5480 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5481 */
5482 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5483 unsigned long zone_type,
5484 unsigned long node_start_pfn,
5485 unsigned long node_end_pfn,
5486 unsigned long *zone_start_pfn,
5487 unsigned long *zone_end_pfn,
5488 unsigned long *ignored)
5489 {
5490 /* When hotadd a new node from cpu_up(), the node should be empty */
5491 if (!node_start_pfn && !node_end_pfn)
5492 return 0;
5493
5494 /* Get the start and end of the zone */
5495 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5496 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5497 adjust_zone_range_for_zone_movable(nid, zone_type,
5498 node_start_pfn, node_end_pfn,
5499 zone_start_pfn, zone_end_pfn);
5500
5501 /* Check that this node has pages within the zone's required range */
5502 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5503 return 0;
5504
5505 /* Move the zone boundaries inside the node if necessary */
5506 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5507 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5508
5509 /* Return the spanned pages */
5510 return *zone_end_pfn - *zone_start_pfn;
5511 }
5512
5513 /*
5514 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5515 * then all holes in the requested range will be accounted for.
5516 */
5517 unsigned long __meminit __absent_pages_in_range(int nid,
5518 unsigned long range_start_pfn,
5519 unsigned long range_end_pfn)
5520 {
5521 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5522 unsigned long start_pfn, end_pfn;
5523 int i;
5524
5525 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5526 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5527 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5528 nr_absent -= end_pfn - start_pfn;
5529 }
5530 return nr_absent;
5531 }
5532
5533 /**
5534 * absent_pages_in_range - Return number of page frames in holes within a range
5535 * @start_pfn: The start PFN to start searching for holes
5536 * @end_pfn: The end PFN to stop searching for holes
5537 *
5538 * It returns the number of pages frames in memory holes within a range.
5539 */
5540 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5541 unsigned long end_pfn)
5542 {
5543 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5544 }
5545
5546 /* Return the number of page frames in holes in a zone on a node */
5547 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5548 unsigned long zone_type,
5549 unsigned long node_start_pfn,
5550 unsigned long node_end_pfn,
5551 unsigned long *ignored)
5552 {
5553 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5554 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5555 unsigned long zone_start_pfn, zone_end_pfn;
5556 unsigned long nr_absent;
5557
5558 /* When hotadd a new node from cpu_up(), the node should be empty */
5559 if (!node_start_pfn && !node_end_pfn)
5560 return 0;
5561
5562 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5563 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5564
5565 adjust_zone_range_for_zone_movable(nid, zone_type,
5566 node_start_pfn, node_end_pfn,
5567 &zone_start_pfn, &zone_end_pfn);
5568 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5569
5570 /*
5571 * ZONE_MOVABLE handling.
5572 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5573 * and vice versa.
5574 */
5575 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5576 unsigned long start_pfn, end_pfn;
5577 struct memblock_region *r;
5578
5579 for_each_memblock(memory, r) {
5580 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5581 zone_start_pfn, zone_end_pfn);
5582 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5583 zone_start_pfn, zone_end_pfn);
5584
5585 if (zone_type == ZONE_MOVABLE &&
5586 memblock_is_mirror(r))
5587 nr_absent += end_pfn - start_pfn;
5588
5589 if (zone_type == ZONE_NORMAL &&
5590 !memblock_is_mirror(r))
5591 nr_absent += end_pfn - start_pfn;
5592 }
5593 }
5594
5595 return nr_absent;
5596 }
5597
5598 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5599 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5600 unsigned long zone_type,
5601 unsigned long node_start_pfn,
5602 unsigned long node_end_pfn,
5603 unsigned long *zone_start_pfn,
5604 unsigned long *zone_end_pfn,
5605 unsigned long *zones_size)
5606 {
5607 unsigned int zone;
5608
5609 *zone_start_pfn = node_start_pfn;
5610 for (zone = 0; zone < zone_type; zone++)
5611 *zone_start_pfn += zones_size[zone];
5612
5613 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5614
5615 return zones_size[zone_type];
5616 }
5617
5618 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5619 unsigned long zone_type,
5620 unsigned long node_start_pfn,
5621 unsigned long node_end_pfn,
5622 unsigned long *zholes_size)
5623 {
5624 if (!zholes_size)
5625 return 0;
5626
5627 return zholes_size[zone_type];
5628 }
5629
5630 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5631
5632 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5633 unsigned long node_start_pfn,
5634 unsigned long node_end_pfn,
5635 unsigned long *zones_size,
5636 unsigned long *zholes_size)
5637 {
5638 unsigned long realtotalpages = 0, totalpages = 0;
5639 enum zone_type i;
5640
5641 for (i = 0; i < MAX_NR_ZONES; i++) {
5642 struct zone *zone = pgdat->node_zones + i;
5643 unsigned long zone_start_pfn, zone_end_pfn;
5644 unsigned long size, real_size;
5645
5646 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5647 node_start_pfn,
5648 node_end_pfn,
5649 &zone_start_pfn,
5650 &zone_end_pfn,
5651 zones_size);
5652 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5653 node_start_pfn, node_end_pfn,
5654 zholes_size);
5655 if (size)
5656 zone->zone_start_pfn = zone_start_pfn;
5657 else
5658 zone->zone_start_pfn = 0;
5659 zone->spanned_pages = size;
5660 zone->present_pages = real_size;
5661
5662 totalpages += size;
5663 realtotalpages += real_size;
5664 }
5665
5666 pgdat->node_spanned_pages = totalpages;
5667 pgdat->node_present_pages = realtotalpages;
5668 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5669 realtotalpages);
5670 }
5671
5672 #ifndef CONFIG_SPARSEMEM
5673 /*
5674 * Calculate the size of the zone->blockflags rounded to an unsigned long
5675 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5676 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5677 * round what is now in bits to nearest long in bits, then return it in
5678 * bytes.
5679 */
5680 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5681 {
5682 unsigned long usemapsize;
5683
5684 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5685 usemapsize = roundup(zonesize, pageblock_nr_pages);
5686 usemapsize = usemapsize >> pageblock_order;
5687 usemapsize *= NR_PAGEBLOCK_BITS;
5688 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5689
5690 return usemapsize / 8;
5691 }
5692
5693 static void __init setup_usemap(struct pglist_data *pgdat,
5694 struct zone *zone,
5695 unsigned long zone_start_pfn,
5696 unsigned long zonesize)
5697 {
5698 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5699 zone->pageblock_flags = NULL;
5700 if (usemapsize)
5701 zone->pageblock_flags =
5702 memblock_virt_alloc_node_nopanic(usemapsize,
5703 pgdat->node_id);
5704 }
5705 #else
5706 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5707 unsigned long zone_start_pfn, unsigned long zonesize) {}
5708 #endif /* CONFIG_SPARSEMEM */
5709
5710 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5711
5712 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5713 void __paginginit set_pageblock_order(void)
5714 {
5715 unsigned int order;
5716
5717 /* Check that pageblock_nr_pages has not already been setup */
5718 if (pageblock_order)
5719 return;
5720
5721 if (HPAGE_SHIFT > PAGE_SHIFT)
5722 order = HUGETLB_PAGE_ORDER;
5723 else
5724 order = MAX_ORDER - 1;
5725
5726 /*
5727 * Assume the largest contiguous order of interest is a huge page.
5728 * This value may be variable depending on boot parameters on IA64 and
5729 * powerpc.
5730 */
5731 pageblock_order = order;
5732 }
5733 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5734
5735 /*
5736 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5737 * is unused as pageblock_order is set at compile-time. See
5738 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5739 * the kernel config
5740 */
5741 void __paginginit set_pageblock_order(void)
5742 {
5743 }
5744
5745 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5746
5747 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5748 unsigned long present_pages)
5749 {
5750 unsigned long pages = spanned_pages;
5751
5752 /*
5753 * Provide a more accurate estimation if there are holes within
5754 * the zone and SPARSEMEM is in use. If there are holes within the
5755 * zone, each populated memory region may cost us one or two extra
5756 * memmap pages due to alignment because memmap pages for each
5757 * populated regions may not naturally algined on page boundary.
5758 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5759 */
5760 if (spanned_pages > present_pages + (present_pages >> 4) &&
5761 IS_ENABLED(CONFIG_SPARSEMEM))
5762 pages = present_pages;
5763
5764 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5765 }
5766
5767 /*
5768 * Set up the zone data structures:
5769 * - mark all pages reserved
5770 * - mark all memory queues empty
5771 * - clear the memory bitmaps
5772 *
5773 * NOTE: pgdat should get zeroed by caller.
5774 */
5775 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5776 {
5777 enum zone_type j;
5778 int nid = pgdat->node_id;
5779 int ret;
5780
5781 pgdat_resize_init(pgdat);
5782 #ifdef CONFIG_NUMA_BALANCING
5783 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5784 pgdat->numabalancing_migrate_nr_pages = 0;
5785 pgdat->numabalancing_migrate_next_window = jiffies;
5786 #endif
5787 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5788 spin_lock_init(&pgdat->split_queue_lock);
5789 INIT_LIST_HEAD(&pgdat->split_queue);
5790 pgdat->split_queue_len = 0;
5791 #endif
5792 init_waitqueue_head(&pgdat->kswapd_wait);
5793 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5794 #ifdef CONFIG_COMPACTION
5795 init_waitqueue_head(&pgdat->kcompactd_wait);
5796 #endif
5797 pgdat_page_ext_init(pgdat);
5798 spin_lock_init(&pgdat->lru_lock);
5799 lruvec_init(node_lruvec(pgdat));
5800
5801 for (j = 0; j < MAX_NR_ZONES; j++) {
5802 struct zone *zone = pgdat->node_zones + j;
5803 unsigned long size, realsize, freesize, memmap_pages;
5804 unsigned long zone_start_pfn = zone->zone_start_pfn;
5805
5806 size = zone->spanned_pages;
5807 realsize = freesize = zone->present_pages;
5808
5809 /*
5810 * Adjust freesize so that it accounts for how much memory
5811 * is used by this zone for memmap. This affects the watermark
5812 * and per-cpu initialisations
5813 */
5814 memmap_pages = calc_memmap_size(size, realsize);
5815 if (!is_highmem_idx(j)) {
5816 if (freesize >= memmap_pages) {
5817 freesize -= memmap_pages;
5818 if (memmap_pages)
5819 printk(KERN_DEBUG
5820 " %s zone: %lu pages used for memmap\n",
5821 zone_names[j], memmap_pages);
5822 } else
5823 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5824 zone_names[j], memmap_pages, freesize);
5825 }
5826
5827 /* Account for reserved pages */
5828 if (j == 0 && freesize > dma_reserve) {
5829 freesize -= dma_reserve;
5830 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5831 zone_names[0], dma_reserve);
5832 }
5833
5834 if (!is_highmem_idx(j))
5835 nr_kernel_pages += freesize;
5836 /* Charge for highmem memmap if there are enough kernel pages */
5837 else if (nr_kernel_pages > memmap_pages * 2)
5838 nr_kernel_pages -= memmap_pages;
5839 nr_all_pages += freesize;
5840
5841 /*
5842 * Set an approximate value for lowmem here, it will be adjusted
5843 * when the bootmem allocator frees pages into the buddy system.
5844 * And all highmem pages will be managed by the buddy system.
5845 */
5846 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5847 #ifdef CONFIG_NUMA
5848 zone->node = nid;
5849 #endif
5850 zone->name = zone_names[j];
5851 zone->zone_pgdat = pgdat;
5852 spin_lock_init(&zone->lock);
5853 zone_seqlock_init(zone);
5854 zone_pcp_init(zone);
5855
5856 if (!size)
5857 continue;
5858
5859 set_pageblock_order();
5860 setup_usemap(pgdat, zone, zone_start_pfn, size);
5861 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5862 BUG_ON(ret);
5863 memmap_init(size, nid, j, zone_start_pfn);
5864 }
5865 }
5866
5867 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5868 {
5869 unsigned long __maybe_unused start = 0;
5870 unsigned long __maybe_unused offset = 0;
5871
5872 /* Skip empty nodes */
5873 if (!pgdat->node_spanned_pages)
5874 return;
5875
5876 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5877 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5878 offset = pgdat->node_start_pfn - start;
5879 /* ia64 gets its own node_mem_map, before this, without bootmem */
5880 if (!pgdat->node_mem_map) {
5881 unsigned long size, end;
5882 struct page *map;
5883
5884 /*
5885 * The zone's endpoints aren't required to be MAX_ORDER
5886 * aligned but the node_mem_map endpoints must be in order
5887 * for the buddy allocator to function correctly.
5888 */
5889 end = pgdat_end_pfn(pgdat);
5890 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5891 size = (end - start) * sizeof(struct page);
5892 map = alloc_remap(pgdat->node_id, size);
5893 if (!map)
5894 map = memblock_virt_alloc_node_nopanic(size,
5895 pgdat->node_id);
5896 pgdat->node_mem_map = map + offset;
5897 }
5898 #ifndef CONFIG_NEED_MULTIPLE_NODES
5899 /*
5900 * With no DISCONTIG, the global mem_map is just set as node 0's
5901 */
5902 if (pgdat == NODE_DATA(0)) {
5903 mem_map = NODE_DATA(0)->node_mem_map;
5904 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5905 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5906 mem_map -= offset;
5907 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5908 }
5909 #endif
5910 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5911 }
5912
5913 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5914 unsigned long node_start_pfn, unsigned long *zholes_size)
5915 {
5916 pg_data_t *pgdat = NODE_DATA(nid);
5917 unsigned long start_pfn = 0;
5918 unsigned long end_pfn = 0;
5919
5920 /* pg_data_t should be reset to zero when it's allocated */
5921 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5922
5923 reset_deferred_meminit(pgdat);
5924 pgdat->node_id = nid;
5925 pgdat->node_start_pfn = node_start_pfn;
5926 pgdat->per_cpu_nodestats = NULL;
5927 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5928 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5929 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5930 (u64)start_pfn << PAGE_SHIFT,
5931 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5932 #else
5933 start_pfn = node_start_pfn;
5934 #endif
5935 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5936 zones_size, zholes_size);
5937
5938 alloc_node_mem_map(pgdat);
5939 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5940 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5941 nid, (unsigned long)pgdat,
5942 (unsigned long)pgdat->node_mem_map);
5943 #endif
5944
5945 free_area_init_core(pgdat);
5946 }
5947
5948 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5949
5950 #if MAX_NUMNODES > 1
5951 /*
5952 * Figure out the number of possible node ids.
5953 */
5954 void __init setup_nr_node_ids(void)
5955 {
5956 unsigned int highest;
5957
5958 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5959 nr_node_ids = highest + 1;
5960 }
5961 #endif
5962
5963 /**
5964 * node_map_pfn_alignment - determine the maximum internode alignment
5965 *
5966 * This function should be called after node map is populated and sorted.
5967 * It calculates the maximum power of two alignment which can distinguish
5968 * all the nodes.
5969 *
5970 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5971 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5972 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5973 * shifted, 1GiB is enough and this function will indicate so.
5974 *
5975 * This is used to test whether pfn -> nid mapping of the chosen memory
5976 * model has fine enough granularity to avoid incorrect mapping for the
5977 * populated node map.
5978 *
5979 * Returns the determined alignment in pfn's. 0 if there is no alignment
5980 * requirement (single node).
5981 */
5982 unsigned long __init node_map_pfn_alignment(void)
5983 {
5984 unsigned long accl_mask = 0, last_end = 0;
5985 unsigned long start, end, mask;
5986 int last_nid = -1;
5987 int i, nid;
5988
5989 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5990 if (!start || last_nid < 0 || last_nid == nid) {
5991 last_nid = nid;
5992 last_end = end;
5993 continue;
5994 }
5995
5996 /*
5997 * Start with a mask granular enough to pin-point to the
5998 * start pfn and tick off bits one-by-one until it becomes
5999 * too coarse to separate the current node from the last.
6000 */
6001 mask = ~((1 << __ffs(start)) - 1);
6002 while (mask && last_end <= (start & (mask << 1)))
6003 mask <<= 1;
6004
6005 /* accumulate all internode masks */
6006 accl_mask |= mask;
6007 }
6008
6009 /* convert mask to number of pages */
6010 return ~accl_mask + 1;
6011 }
6012
6013 /* Find the lowest pfn for a node */
6014 static unsigned long __init find_min_pfn_for_node(int nid)
6015 {
6016 unsigned long min_pfn = ULONG_MAX;
6017 unsigned long start_pfn;
6018 int i;
6019
6020 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6021 min_pfn = min(min_pfn, start_pfn);
6022
6023 if (min_pfn == ULONG_MAX) {
6024 pr_warn("Could not find start_pfn for node %d\n", nid);
6025 return 0;
6026 }
6027
6028 return min_pfn;
6029 }
6030
6031 /**
6032 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6033 *
6034 * It returns the minimum PFN based on information provided via
6035 * memblock_set_node().
6036 */
6037 unsigned long __init find_min_pfn_with_active_regions(void)
6038 {
6039 return find_min_pfn_for_node(MAX_NUMNODES);
6040 }
6041
6042 /*
6043 * early_calculate_totalpages()
6044 * Sum pages in active regions for movable zone.
6045 * Populate N_MEMORY for calculating usable_nodes.
6046 */
6047 static unsigned long __init early_calculate_totalpages(void)
6048 {
6049 unsigned long totalpages = 0;
6050 unsigned long start_pfn, end_pfn;
6051 int i, nid;
6052
6053 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6054 unsigned long pages = end_pfn - start_pfn;
6055
6056 totalpages += pages;
6057 if (pages)
6058 node_set_state(nid, N_MEMORY);
6059 }
6060 return totalpages;
6061 }
6062
6063 /*
6064 * Find the PFN the Movable zone begins in each node. Kernel memory
6065 * is spread evenly between nodes as long as the nodes have enough
6066 * memory. When they don't, some nodes will have more kernelcore than
6067 * others
6068 */
6069 static void __init find_zone_movable_pfns_for_nodes(void)
6070 {
6071 int i, nid;
6072 unsigned long usable_startpfn;
6073 unsigned long kernelcore_node, kernelcore_remaining;
6074 /* save the state before borrow the nodemask */
6075 nodemask_t saved_node_state = node_states[N_MEMORY];
6076 unsigned long totalpages = early_calculate_totalpages();
6077 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6078 struct memblock_region *r;
6079
6080 /* Need to find movable_zone earlier when movable_node is specified. */
6081 find_usable_zone_for_movable();
6082
6083 /*
6084 * If movable_node is specified, ignore kernelcore and movablecore
6085 * options.
6086 */
6087 if (movable_node_is_enabled()) {
6088 for_each_memblock(memory, r) {
6089 if (!memblock_is_hotpluggable(r))
6090 continue;
6091
6092 nid = r->nid;
6093
6094 usable_startpfn = PFN_DOWN(r->base);
6095 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6096 min(usable_startpfn, zone_movable_pfn[nid]) :
6097 usable_startpfn;
6098 }
6099
6100 goto out2;
6101 }
6102
6103 /*
6104 * If kernelcore=mirror is specified, ignore movablecore option
6105 */
6106 if (mirrored_kernelcore) {
6107 bool mem_below_4gb_not_mirrored = false;
6108
6109 for_each_memblock(memory, r) {
6110 if (memblock_is_mirror(r))
6111 continue;
6112
6113 nid = r->nid;
6114
6115 usable_startpfn = memblock_region_memory_base_pfn(r);
6116
6117 if (usable_startpfn < 0x100000) {
6118 mem_below_4gb_not_mirrored = true;
6119 continue;
6120 }
6121
6122 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6123 min(usable_startpfn, zone_movable_pfn[nid]) :
6124 usable_startpfn;
6125 }
6126
6127 if (mem_below_4gb_not_mirrored)
6128 pr_warn("This configuration results in unmirrored kernel memory.");
6129
6130 goto out2;
6131 }
6132
6133 /*
6134 * If movablecore=nn[KMG] was specified, calculate what size of
6135 * kernelcore that corresponds so that memory usable for
6136 * any allocation type is evenly spread. If both kernelcore
6137 * and movablecore are specified, then the value of kernelcore
6138 * will be used for required_kernelcore if it's greater than
6139 * what movablecore would have allowed.
6140 */
6141 if (required_movablecore) {
6142 unsigned long corepages;
6143
6144 /*
6145 * Round-up so that ZONE_MOVABLE is at least as large as what
6146 * was requested by the user
6147 */
6148 required_movablecore =
6149 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6150 required_movablecore = min(totalpages, required_movablecore);
6151 corepages = totalpages - required_movablecore;
6152
6153 required_kernelcore = max(required_kernelcore, corepages);
6154 }
6155
6156 /*
6157 * If kernelcore was not specified or kernelcore size is larger
6158 * than totalpages, there is no ZONE_MOVABLE.
6159 */
6160 if (!required_kernelcore || required_kernelcore >= totalpages)
6161 goto out;
6162
6163 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6164 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6165
6166 restart:
6167 /* Spread kernelcore memory as evenly as possible throughout nodes */
6168 kernelcore_node = required_kernelcore / usable_nodes;
6169 for_each_node_state(nid, N_MEMORY) {
6170 unsigned long start_pfn, end_pfn;
6171
6172 /*
6173 * Recalculate kernelcore_node if the division per node
6174 * now exceeds what is necessary to satisfy the requested
6175 * amount of memory for the kernel
6176 */
6177 if (required_kernelcore < kernelcore_node)
6178 kernelcore_node = required_kernelcore / usable_nodes;
6179
6180 /*
6181 * As the map is walked, we track how much memory is usable
6182 * by the kernel using kernelcore_remaining. When it is
6183 * 0, the rest of the node is usable by ZONE_MOVABLE
6184 */
6185 kernelcore_remaining = kernelcore_node;
6186
6187 /* Go through each range of PFNs within this node */
6188 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6189 unsigned long size_pages;
6190
6191 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6192 if (start_pfn >= end_pfn)
6193 continue;
6194
6195 /* Account for what is only usable for kernelcore */
6196 if (start_pfn < usable_startpfn) {
6197 unsigned long kernel_pages;
6198 kernel_pages = min(end_pfn, usable_startpfn)
6199 - start_pfn;
6200
6201 kernelcore_remaining -= min(kernel_pages,
6202 kernelcore_remaining);
6203 required_kernelcore -= min(kernel_pages,
6204 required_kernelcore);
6205
6206 /* Continue if range is now fully accounted */
6207 if (end_pfn <= usable_startpfn) {
6208
6209 /*
6210 * Push zone_movable_pfn to the end so
6211 * that if we have to rebalance
6212 * kernelcore across nodes, we will
6213 * not double account here
6214 */
6215 zone_movable_pfn[nid] = end_pfn;
6216 continue;
6217 }
6218 start_pfn = usable_startpfn;
6219 }
6220
6221 /*
6222 * The usable PFN range for ZONE_MOVABLE is from
6223 * start_pfn->end_pfn. Calculate size_pages as the
6224 * number of pages used as kernelcore
6225 */
6226 size_pages = end_pfn - start_pfn;
6227 if (size_pages > kernelcore_remaining)
6228 size_pages = kernelcore_remaining;
6229 zone_movable_pfn[nid] = start_pfn + size_pages;
6230
6231 /*
6232 * Some kernelcore has been met, update counts and
6233 * break if the kernelcore for this node has been
6234 * satisfied
6235 */
6236 required_kernelcore -= min(required_kernelcore,
6237 size_pages);
6238 kernelcore_remaining -= size_pages;
6239 if (!kernelcore_remaining)
6240 break;
6241 }
6242 }
6243
6244 /*
6245 * If there is still required_kernelcore, we do another pass with one
6246 * less node in the count. This will push zone_movable_pfn[nid] further
6247 * along on the nodes that still have memory until kernelcore is
6248 * satisfied
6249 */
6250 usable_nodes--;
6251 if (usable_nodes && required_kernelcore > usable_nodes)
6252 goto restart;
6253
6254 out2:
6255 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6256 for (nid = 0; nid < MAX_NUMNODES; nid++)
6257 zone_movable_pfn[nid] =
6258 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6259
6260 out:
6261 /* restore the node_state */
6262 node_states[N_MEMORY] = saved_node_state;
6263 }
6264
6265 /* Any regular or high memory on that node ? */
6266 static void check_for_memory(pg_data_t *pgdat, int nid)
6267 {
6268 enum zone_type zone_type;
6269
6270 if (N_MEMORY == N_NORMAL_MEMORY)
6271 return;
6272
6273 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6274 struct zone *zone = &pgdat->node_zones[zone_type];
6275 if (populated_zone(zone)) {
6276 node_set_state(nid, N_HIGH_MEMORY);
6277 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6278 zone_type <= ZONE_NORMAL)
6279 node_set_state(nid, N_NORMAL_MEMORY);
6280 break;
6281 }
6282 }
6283 }
6284
6285 /**
6286 * free_area_init_nodes - Initialise all pg_data_t and zone data
6287 * @max_zone_pfn: an array of max PFNs for each zone
6288 *
6289 * This will call free_area_init_node() for each active node in the system.
6290 * Using the page ranges provided by memblock_set_node(), the size of each
6291 * zone in each node and their holes is calculated. If the maximum PFN
6292 * between two adjacent zones match, it is assumed that the zone is empty.
6293 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6294 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6295 * starts where the previous one ended. For example, ZONE_DMA32 starts
6296 * at arch_max_dma_pfn.
6297 */
6298 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6299 {
6300 unsigned long start_pfn, end_pfn;
6301 int i, nid;
6302
6303 /* Record where the zone boundaries are */
6304 memset(arch_zone_lowest_possible_pfn, 0,
6305 sizeof(arch_zone_lowest_possible_pfn));
6306 memset(arch_zone_highest_possible_pfn, 0,
6307 sizeof(arch_zone_highest_possible_pfn));
6308
6309 start_pfn = find_min_pfn_with_active_regions();
6310
6311 for (i = 0; i < MAX_NR_ZONES; i++) {
6312 if (i == ZONE_MOVABLE)
6313 continue;
6314
6315 end_pfn = max(max_zone_pfn[i], start_pfn);
6316 arch_zone_lowest_possible_pfn[i] = start_pfn;
6317 arch_zone_highest_possible_pfn[i] = end_pfn;
6318
6319 start_pfn = end_pfn;
6320 }
6321 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6322 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6323
6324 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6325 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6326 find_zone_movable_pfns_for_nodes();
6327
6328 /* Print out the zone ranges */
6329 pr_info("Zone ranges:\n");
6330 for (i = 0; i < MAX_NR_ZONES; i++) {
6331 if (i == ZONE_MOVABLE)
6332 continue;
6333 pr_info(" %-8s ", zone_names[i]);
6334 if (arch_zone_lowest_possible_pfn[i] ==
6335 arch_zone_highest_possible_pfn[i])
6336 pr_cont("empty\n");
6337 else
6338 pr_cont("[mem %#018Lx-%#018Lx]\n",
6339 (u64)arch_zone_lowest_possible_pfn[i]
6340 << PAGE_SHIFT,
6341 ((u64)arch_zone_highest_possible_pfn[i]
6342 << PAGE_SHIFT) - 1);
6343 }
6344
6345 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6346 pr_info("Movable zone start for each node\n");
6347 for (i = 0; i < MAX_NUMNODES; i++) {
6348 if (zone_movable_pfn[i])
6349 pr_info(" Node %d: %#018Lx\n", i,
6350 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6351 }
6352
6353 /* Print out the early node map */
6354 pr_info("Early memory node ranges\n");
6355 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6356 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6357 (u64)start_pfn << PAGE_SHIFT,
6358 ((u64)end_pfn << PAGE_SHIFT) - 1);
6359
6360 /* Initialise every node */
6361 mminit_verify_pageflags_layout();
6362 setup_nr_node_ids();
6363 for_each_online_node(nid) {
6364 pg_data_t *pgdat = NODE_DATA(nid);
6365 free_area_init_node(nid, NULL,
6366 find_min_pfn_for_node(nid), NULL);
6367
6368 /* Any memory on that node */
6369 if (pgdat->node_present_pages)
6370 node_set_state(nid, N_MEMORY);
6371 check_for_memory(pgdat, nid);
6372 }
6373 }
6374
6375 static int __init cmdline_parse_core(char *p, unsigned long *core)
6376 {
6377 unsigned long long coremem;
6378 if (!p)
6379 return -EINVAL;
6380
6381 coremem = memparse(p, &p);
6382 *core = coremem >> PAGE_SHIFT;
6383
6384 /* Paranoid check that UL is enough for the coremem value */
6385 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6386
6387 return 0;
6388 }
6389
6390 /*
6391 * kernelcore=size sets the amount of memory for use for allocations that
6392 * cannot be reclaimed or migrated.
6393 */
6394 static int __init cmdline_parse_kernelcore(char *p)
6395 {
6396 /* parse kernelcore=mirror */
6397 if (parse_option_str(p, "mirror")) {
6398 mirrored_kernelcore = true;
6399 return 0;
6400 }
6401
6402 return cmdline_parse_core(p, &required_kernelcore);
6403 }
6404
6405 /*
6406 * movablecore=size sets the amount of memory for use for allocations that
6407 * can be reclaimed or migrated.
6408 */
6409 static int __init cmdline_parse_movablecore(char *p)
6410 {
6411 return cmdline_parse_core(p, &required_movablecore);
6412 }
6413
6414 early_param("kernelcore", cmdline_parse_kernelcore);
6415 early_param("movablecore", cmdline_parse_movablecore);
6416
6417 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6418
6419 void adjust_managed_page_count(struct page *page, long count)
6420 {
6421 spin_lock(&managed_page_count_lock);
6422 page_zone(page)->managed_pages += count;
6423 totalram_pages += count;
6424 #ifdef CONFIG_HIGHMEM
6425 if (PageHighMem(page))
6426 totalhigh_pages += count;
6427 #endif
6428 spin_unlock(&managed_page_count_lock);
6429 }
6430 EXPORT_SYMBOL(adjust_managed_page_count);
6431
6432 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6433 {
6434 void *pos;
6435 unsigned long pages = 0;
6436
6437 start = (void *)PAGE_ALIGN((unsigned long)start);
6438 end = (void *)((unsigned long)end & PAGE_MASK);
6439 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6440 if ((unsigned int)poison <= 0xFF)
6441 memset(pos, poison, PAGE_SIZE);
6442 free_reserved_page(virt_to_page(pos));
6443 }
6444
6445 if (pages && s)
6446 pr_info("Freeing %s memory: %ldK\n",
6447 s, pages << (PAGE_SHIFT - 10));
6448
6449 return pages;
6450 }
6451 EXPORT_SYMBOL(free_reserved_area);
6452
6453 #ifdef CONFIG_HIGHMEM
6454 void free_highmem_page(struct page *page)
6455 {
6456 __free_reserved_page(page);
6457 totalram_pages++;
6458 page_zone(page)->managed_pages++;
6459 totalhigh_pages++;
6460 }
6461 #endif
6462
6463
6464 void __init mem_init_print_info(const char *str)
6465 {
6466 unsigned long physpages, codesize, datasize, rosize, bss_size;
6467 unsigned long init_code_size, init_data_size;
6468
6469 physpages = get_num_physpages();
6470 codesize = _etext - _stext;
6471 datasize = _edata - _sdata;
6472 rosize = __end_rodata - __start_rodata;
6473 bss_size = __bss_stop - __bss_start;
6474 init_data_size = __init_end - __init_begin;
6475 init_code_size = _einittext - _sinittext;
6476
6477 /*
6478 * Detect special cases and adjust section sizes accordingly:
6479 * 1) .init.* may be embedded into .data sections
6480 * 2) .init.text.* may be out of [__init_begin, __init_end],
6481 * please refer to arch/tile/kernel/vmlinux.lds.S.
6482 * 3) .rodata.* may be embedded into .text or .data sections.
6483 */
6484 #define adj_init_size(start, end, size, pos, adj) \
6485 do { \
6486 if (start <= pos && pos < end && size > adj) \
6487 size -= adj; \
6488 } while (0)
6489
6490 adj_init_size(__init_begin, __init_end, init_data_size,
6491 _sinittext, init_code_size);
6492 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6493 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6494 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6495 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6496
6497 #undef adj_init_size
6498
6499 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6500 #ifdef CONFIG_HIGHMEM
6501 ", %luK highmem"
6502 #endif
6503 "%s%s)\n",
6504 nr_free_pages() << (PAGE_SHIFT - 10),
6505 physpages << (PAGE_SHIFT - 10),
6506 codesize >> 10, datasize >> 10, rosize >> 10,
6507 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6508 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6509 totalcma_pages << (PAGE_SHIFT - 10),
6510 #ifdef CONFIG_HIGHMEM
6511 totalhigh_pages << (PAGE_SHIFT - 10),
6512 #endif
6513 str ? ", " : "", str ? str : "");
6514 }
6515
6516 /**
6517 * set_dma_reserve - set the specified number of pages reserved in the first zone
6518 * @new_dma_reserve: The number of pages to mark reserved
6519 *
6520 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6521 * In the DMA zone, a significant percentage may be consumed by kernel image
6522 * and other unfreeable allocations which can skew the watermarks badly. This
6523 * function may optionally be used to account for unfreeable pages in the
6524 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6525 * smaller per-cpu batchsize.
6526 */
6527 void __init set_dma_reserve(unsigned long new_dma_reserve)
6528 {
6529 dma_reserve = new_dma_reserve;
6530 }
6531
6532 void __init free_area_init(unsigned long *zones_size)
6533 {
6534 free_area_init_node(0, zones_size,
6535 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6536 }
6537
6538 static int page_alloc_cpu_dead(unsigned int cpu)
6539 {
6540
6541 lru_add_drain_cpu(cpu);
6542 drain_pages(cpu);
6543
6544 /*
6545 * Spill the event counters of the dead processor
6546 * into the current processors event counters.
6547 * This artificially elevates the count of the current
6548 * processor.
6549 */
6550 vm_events_fold_cpu(cpu);
6551
6552 /*
6553 * Zero the differential counters of the dead processor
6554 * so that the vm statistics are consistent.
6555 *
6556 * This is only okay since the processor is dead and cannot
6557 * race with what we are doing.
6558 */
6559 cpu_vm_stats_fold(cpu);
6560 return 0;
6561 }
6562
6563 void __init page_alloc_init(void)
6564 {
6565 int ret;
6566
6567 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6568 "mm/page_alloc:dead", NULL,
6569 page_alloc_cpu_dead);
6570 WARN_ON(ret < 0);
6571 }
6572
6573 /*
6574 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6575 * or min_free_kbytes changes.
6576 */
6577 static void calculate_totalreserve_pages(void)
6578 {
6579 struct pglist_data *pgdat;
6580 unsigned long reserve_pages = 0;
6581 enum zone_type i, j;
6582
6583 for_each_online_pgdat(pgdat) {
6584
6585 pgdat->totalreserve_pages = 0;
6586
6587 for (i = 0; i < MAX_NR_ZONES; i++) {
6588 struct zone *zone = pgdat->node_zones + i;
6589 long max = 0;
6590
6591 /* Find valid and maximum lowmem_reserve in the zone */
6592 for (j = i; j < MAX_NR_ZONES; j++) {
6593 if (zone->lowmem_reserve[j] > max)
6594 max = zone->lowmem_reserve[j];
6595 }
6596
6597 /* we treat the high watermark as reserved pages. */
6598 max += high_wmark_pages(zone);
6599
6600 if (max > zone->managed_pages)
6601 max = zone->managed_pages;
6602
6603 pgdat->totalreserve_pages += max;
6604
6605 reserve_pages += max;
6606 }
6607 }
6608 totalreserve_pages = reserve_pages;
6609 }
6610
6611 /*
6612 * setup_per_zone_lowmem_reserve - called whenever
6613 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6614 * has a correct pages reserved value, so an adequate number of
6615 * pages are left in the zone after a successful __alloc_pages().
6616 */
6617 static void setup_per_zone_lowmem_reserve(void)
6618 {
6619 struct pglist_data *pgdat;
6620 enum zone_type j, idx;
6621
6622 for_each_online_pgdat(pgdat) {
6623 for (j = 0; j < MAX_NR_ZONES; j++) {
6624 struct zone *zone = pgdat->node_zones + j;
6625 unsigned long managed_pages = zone->managed_pages;
6626
6627 zone->lowmem_reserve[j] = 0;
6628
6629 idx = j;
6630 while (idx) {
6631 struct zone *lower_zone;
6632
6633 idx--;
6634
6635 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6636 sysctl_lowmem_reserve_ratio[idx] = 1;
6637
6638 lower_zone = pgdat->node_zones + idx;
6639 lower_zone->lowmem_reserve[j] = managed_pages /
6640 sysctl_lowmem_reserve_ratio[idx];
6641 managed_pages += lower_zone->managed_pages;
6642 }
6643 }
6644 }
6645
6646 /* update totalreserve_pages */
6647 calculate_totalreserve_pages();
6648 }
6649
6650 static void __setup_per_zone_wmarks(void)
6651 {
6652 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6653 unsigned long lowmem_pages = 0;
6654 struct zone *zone;
6655 unsigned long flags;
6656
6657 /* Calculate total number of !ZONE_HIGHMEM pages */
6658 for_each_zone(zone) {
6659 if (!is_highmem(zone))
6660 lowmem_pages += zone->managed_pages;
6661 }
6662
6663 for_each_zone(zone) {
6664 u64 tmp;
6665
6666 spin_lock_irqsave(&zone->lock, flags);
6667 tmp = (u64)pages_min * zone->managed_pages;
6668 do_div(tmp, lowmem_pages);
6669 if (is_highmem(zone)) {
6670 /*
6671 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6672 * need highmem pages, so cap pages_min to a small
6673 * value here.
6674 *
6675 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6676 * deltas control asynch page reclaim, and so should
6677 * not be capped for highmem.
6678 */
6679 unsigned long min_pages;
6680
6681 min_pages = zone->managed_pages / 1024;
6682 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6683 zone->watermark[WMARK_MIN] = min_pages;
6684 } else {
6685 /*
6686 * If it's a lowmem zone, reserve a number of pages
6687 * proportionate to the zone's size.
6688 */
6689 zone->watermark[WMARK_MIN] = tmp;
6690 }
6691
6692 /*
6693 * Set the kswapd watermarks distance according to the
6694 * scale factor in proportion to available memory, but
6695 * ensure a minimum size on small systems.
6696 */
6697 tmp = max_t(u64, tmp >> 2,
6698 mult_frac(zone->managed_pages,
6699 watermark_scale_factor, 10000));
6700
6701 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6702 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6703
6704 spin_unlock_irqrestore(&zone->lock, flags);
6705 }
6706
6707 /* update totalreserve_pages */
6708 calculate_totalreserve_pages();
6709 }
6710
6711 /**
6712 * setup_per_zone_wmarks - called when min_free_kbytes changes
6713 * or when memory is hot-{added|removed}
6714 *
6715 * Ensures that the watermark[min,low,high] values for each zone are set
6716 * correctly with respect to min_free_kbytes.
6717 */
6718 void setup_per_zone_wmarks(void)
6719 {
6720 mutex_lock(&zonelists_mutex);
6721 __setup_per_zone_wmarks();
6722 mutex_unlock(&zonelists_mutex);
6723 }
6724
6725 /*
6726 * Initialise min_free_kbytes.
6727 *
6728 * For small machines we want it small (128k min). For large machines
6729 * we want it large (64MB max). But it is not linear, because network
6730 * bandwidth does not increase linearly with machine size. We use
6731 *
6732 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6733 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6734 *
6735 * which yields
6736 *
6737 * 16MB: 512k
6738 * 32MB: 724k
6739 * 64MB: 1024k
6740 * 128MB: 1448k
6741 * 256MB: 2048k
6742 * 512MB: 2896k
6743 * 1024MB: 4096k
6744 * 2048MB: 5792k
6745 * 4096MB: 8192k
6746 * 8192MB: 11584k
6747 * 16384MB: 16384k
6748 */
6749 int __meminit init_per_zone_wmark_min(void)
6750 {
6751 unsigned long lowmem_kbytes;
6752 int new_min_free_kbytes;
6753
6754 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6755 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6756
6757 if (new_min_free_kbytes > user_min_free_kbytes) {
6758 min_free_kbytes = new_min_free_kbytes;
6759 if (min_free_kbytes < 128)
6760 min_free_kbytes = 128;
6761 if (min_free_kbytes > 65536)
6762 min_free_kbytes = 65536;
6763 } else {
6764 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6765 new_min_free_kbytes, user_min_free_kbytes);
6766 }
6767 setup_per_zone_wmarks();
6768 refresh_zone_stat_thresholds();
6769 setup_per_zone_lowmem_reserve();
6770
6771 #ifdef CONFIG_NUMA
6772 setup_min_unmapped_ratio();
6773 setup_min_slab_ratio();
6774 #endif
6775
6776 return 0;
6777 }
6778 core_initcall(init_per_zone_wmark_min)
6779
6780 /*
6781 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6782 * that we can call two helper functions whenever min_free_kbytes
6783 * changes.
6784 */
6785 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6786 void __user *buffer, size_t *length, loff_t *ppos)
6787 {
6788 int rc;
6789
6790 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6791 if (rc)
6792 return rc;
6793
6794 if (write) {
6795 user_min_free_kbytes = min_free_kbytes;
6796 setup_per_zone_wmarks();
6797 }
6798 return 0;
6799 }
6800
6801 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6802 void __user *buffer, size_t *length, loff_t *ppos)
6803 {
6804 int rc;
6805
6806 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6807 if (rc)
6808 return rc;
6809
6810 if (write)
6811 setup_per_zone_wmarks();
6812
6813 return 0;
6814 }
6815
6816 #ifdef CONFIG_NUMA
6817 static void setup_min_unmapped_ratio(void)
6818 {
6819 pg_data_t *pgdat;
6820 struct zone *zone;
6821
6822 for_each_online_pgdat(pgdat)
6823 pgdat->min_unmapped_pages = 0;
6824
6825 for_each_zone(zone)
6826 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6827 sysctl_min_unmapped_ratio) / 100;
6828 }
6829
6830
6831 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6832 void __user *buffer, size_t *length, loff_t *ppos)
6833 {
6834 int rc;
6835
6836 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6837 if (rc)
6838 return rc;
6839
6840 setup_min_unmapped_ratio();
6841
6842 return 0;
6843 }
6844
6845 static void setup_min_slab_ratio(void)
6846 {
6847 pg_data_t *pgdat;
6848 struct zone *zone;
6849
6850 for_each_online_pgdat(pgdat)
6851 pgdat->min_slab_pages = 0;
6852
6853 for_each_zone(zone)
6854 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6855 sysctl_min_slab_ratio) / 100;
6856 }
6857
6858 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6859 void __user *buffer, size_t *length, loff_t *ppos)
6860 {
6861 int rc;
6862
6863 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6864 if (rc)
6865 return rc;
6866
6867 setup_min_slab_ratio();
6868
6869 return 0;
6870 }
6871 #endif
6872
6873 /*
6874 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6875 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6876 * whenever sysctl_lowmem_reserve_ratio changes.
6877 *
6878 * The reserve ratio obviously has absolutely no relation with the
6879 * minimum watermarks. The lowmem reserve ratio can only make sense
6880 * if in function of the boot time zone sizes.
6881 */
6882 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6883 void __user *buffer, size_t *length, loff_t *ppos)
6884 {
6885 proc_dointvec_minmax(table, write, buffer, length, ppos);
6886 setup_per_zone_lowmem_reserve();
6887 return 0;
6888 }
6889
6890 /*
6891 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6892 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6893 * pagelist can have before it gets flushed back to buddy allocator.
6894 */
6895 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6896 void __user *buffer, size_t *length, loff_t *ppos)
6897 {
6898 struct zone *zone;
6899 int old_percpu_pagelist_fraction;
6900 int ret;
6901
6902 mutex_lock(&pcp_batch_high_lock);
6903 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6904
6905 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6906 if (!write || ret < 0)
6907 goto out;
6908
6909 /* Sanity checking to avoid pcp imbalance */
6910 if (percpu_pagelist_fraction &&
6911 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6912 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6913 ret = -EINVAL;
6914 goto out;
6915 }
6916
6917 /* No change? */
6918 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6919 goto out;
6920
6921 for_each_populated_zone(zone) {
6922 unsigned int cpu;
6923
6924 for_each_possible_cpu(cpu)
6925 pageset_set_high_and_batch(zone,
6926 per_cpu_ptr(zone->pageset, cpu));
6927 }
6928 out:
6929 mutex_unlock(&pcp_batch_high_lock);
6930 return ret;
6931 }
6932
6933 #ifdef CONFIG_NUMA
6934 int hashdist = HASHDIST_DEFAULT;
6935
6936 static int __init set_hashdist(char *str)
6937 {
6938 if (!str)
6939 return 0;
6940 hashdist = simple_strtoul(str, &str, 0);
6941 return 1;
6942 }
6943 __setup("hashdist=", set_hashdist);
6944 #endif
6945
6946 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
6947 /*
6948 * Returns the number of pages that arch has reserved but
6949 * is not known to alloc_large_system_hash().
6950 */
6951 static unsigned long __init arch_reserved_kernel_pages(void)
6952 {
6953 return 0;
6954 }
6955 #endif
6956
6957 /*
6958 * allocate a large system hash table from bootmem
6959 * - it is assumed that the hash table must contain an exact power-of-2
6960 * quantity of entries
6961 * - limit is the number of hash buckets, not the total allocation size
6962 */
6963 void *__init alloc_large_system_hash(const char *tablename,
6964 unsigned long bucketsize,
6965 unsigned long numentries,
6966 int scale,
6967 int flags,
6968 unsigned int *_hash_shift,
6969 unsigned int *_hash_mask,
6970 unsigned long low_limit,
6971 unsigned long high_limit)
6972 {
6973 unsigned long long max = high_limit;
6974 unsigned long log2qty, size;
6975 void *table = NULL;
6976
6977 /* allow the kernel cmdline to have a say */
6978 if (!numentries) {
6979 /* round applicable memory size up to nearest megabyte */
6980 numentries = nr_kernel_pages;
6981 numentries -= arch_reserved_kernel_pages();
6982
6983 /* It isn't necessary when PAGE_SIZE >= 1MB */
6984 if (PAGE_SHIFT < 20)
6985 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6986
6987 /* limit to 1 bucket per 2^scale bytes of low memory */
6988 if (scale > PAGE_SHIFT)
6989 numentries >>= (scale - PAGE_SHIFT);
6990 else
6991 numentries <<= (PAGE_SHIFT - scale);
6992
6993 /* Make sure we've got at least a 0-order allocation.. */
6994 if (unlikely(flags & HASH_SMALL)) {
6995 /* Makes no sense without HASH_EARLY */
6996 WARN_ON(!(flags & HASH_EARLY));
6997 if (!(numentries >> *_hash_shift)) {
6998 numentries = 1UL << *_hash_shift;
6999 BUG_ON(!numentries);
7000 }
7001 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7002 numentries = PAGE_SIZE / bucketsize;
7003 }
7004 numentries = roundup_pow_of_two(numentries);
7005
7006 /* limit allocation size to 1/16 total memory by default */
7007 if (max == 0) {
7008 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7009 do_div(max, bucketsize);
7010 }
7011 max = min(max, 0x80000000ULL);
7012
7013 if (numentries < low_limit)
7014 numentries = low_limit;
7015 if (numentries > max)
7016 numentries = max;
7017
7018 log2qty = ilog2(numentries);
7019
7020 do {
7021 size = bucketsize << log2qty;
7022 if (flags & HASH_EARLY)
7023 table = memblock_virt_alloc_nopanic(size, 0);
7024 else if (hashdist)
7025 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7026 else {
7027 /*
7028 * If bucketsize is not a power-of-two, we may free
7029 * some pages at the end of hash table which
7030 * alloc_pages_exact() automatically does
7031 */
7032 if (get_order(size) < MAX_ORDER) {
7033 table = alloc_pages_exact(size, GFP_ATOMIC);
7034 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7035 }
7036 }
7037 } while (!table && size > PAGE_SIZE && --log2qty);
7038
7039 if (!table)
7040 panic("Failed to allocate %s hash table\n", tablename);
7041
7042 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7043 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7044
7045 if (_hash_shift)
7046 *_hash_shift = log2qty;
7047 if (_hash_mask)
7048 *_hash_mask = (1 << log2qty) - 1;
7049
7050 return table;
7051 }
7052
7053 /*
7054 * This function checks whether pageblock includes unmovable pages or not.
7055 * If @count is not zero, it is okay to include less @count unmovable pages
7056 *
7057 * PageLRU check without isolation or lru_lock could race so that
7058 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7059 * expect this function should be exact.
7060 */
7061 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7062 bool skip_hwpoisoned_pages)
7063 {
7064 unsigned long pfn, iter, found;
7065 int mt;
7066
7067 /*
7068 * For avoiding noise data, lru_add_drain_all() should be called
7069 * If ZONE_MOVABLE, the zone never contains unmovable pages
7070 */
7071 if (zone_idx(zone) == ZONE_MOVABLE)
7072 return false;
7073 mt = get_pageblock_migratetype(page);
7074 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7075 return false;
7076
7077 pfn = page_to_pfn(page);
7078 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7079 unsigned long check = pfn + iter;
7080
7081 if (!pfn_valid_within(check))
7082 continue;
7083
7084 page = pfn_to_page(check);
7085
7086 /*
7087 * Hugepages are not in LRU lists, but they're movable.
7088 * We need not scan over tail pages bacause we don't
7089 * handle each tail page individually in migration.
7090 */
7091 if (PageHuge(page)) {
7092 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7093 continue;
7094 }
7095
7096 /*
7097 * We can't use page_count without pin a page
7098 * because another CPU can free compound page.
7099 * This check already skips compound tails of THP
7100 * because their page->_refcount is zero at all time.
7101 */
7102 if (!page_ref_count(page)) {
7103 if (PageBuddy(page))
7104 iter += (1 << page_order(page)) - 1;
7105 continue;
7106 }
7107
7108 /*
7109 * The HWPoisoned page may be not in buddy system, and
7110 * page_count() is not 0.
7111 */
7112 if (skip_hwpoisoned_pages && PageHWPoison(page))
7113 continue;
7114
7115 if (!PageLRU(page))
7116 found++;
7117 /*
7118 * If there are RECLAIMABLE pages, we need to check
7119 * it. But now, memory offline itself doesn't call
7120 * shrink_node_slabs() and it still to be fixed.
7121 */
7122 /*
7123 * If the page is not RAM, page_count()should be 0.
7124 * we don't need more check. This is an _used_ not-movable page.
7125 *
7126 * The problematic thing here is PG_reserved pages. PG_reserved
7127 * is set to both of a memory hole page and a _used_ kernel
7128 * page at boot.
7129 */
7130 if (found > count)
7131 return true;
7132 }
7133 return false;
7134 }
7135
7136 bool is_pageblock_removable_nolock(struct page *page)
7137 {
7138 struct zone *zone;
7139 unsigned long pfn;
7140
7141 /*
7142 * We have to be careful here because we are iterating over memory
7143 * sections which are not zone aware so we might end up outside of
7144 * the zone but still within the section.
7145 * We have to take care about the node as well. If the node is offline
7146 * its NODE_DATA will be NULL - see page_zone.
7147 */
7148 if (!node_online(page_to_nid(page)))
7149 return false;
7150
7151 zone = page_zone(page);
7152 pfn = page_to_pfn(page);
7153 if (!zone_spans_pfn(zone, pfn))
7154 return false;
7155
7156 return !has_unmovable_pages(zone, page, 0, true);
7157 }
7158
7159 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7160
7161 static unsigned long pfn_max_align_down(unsigned long pfn)
7162 {
7163 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7164 pageblock_nr_pages) - 1);
7165 }
7166
7167 static unsigned long pfn_max_align_up(unsigned long pfn)
7168 {
7169 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7170 pageblock_nr_pages));
7171 }
7172
7173 /* [start, end) must belong to a single zone. */
7174 static int __alloc_contig_migrate_range(struct compact_control *cc,
7175 unsigned long start, unsigned long end)
7176 {
7177 /* This function is based on compact_zone() from compaction.c. */
7178 unsigned long nr_reclaimed;
7179 unsigned long pfn = start;
7180 unsigned int tries = 0;
7181 int ret = 0;
7182
7183 migrate_prep();
7184
7185 while (pfn < end || !list_empty(&cc->migratepages)) {
7186 if (fatal_signal_pending(current)) {
7187 ret = -EINTR;
7188 break;
7189 }
7190
7191 if (list_empty(&cc->migratepages)) {
7192 cc->nr_migratepages = 0;
7193 pfn = isolate_migratepages_range(cc, pfn, end);
7194 if (!pfn) {
7195 ret = -EINTR;
7196 break;
7197 }
7198 tries = 0;
7199 } else if (++tries == 5) {
7200 ret = ret < 0 ? ret : -EBUSY;
7201 break;
7202 }
7203
7204 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7205 &cc->migratepages);
7206 cc->nr_migratepages -= nr_reclaimed;
7207
7208 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7209 NULL, 0, cc->mode, MR_CMA);
7210 }
7211 if (ret < 0) {
7212 putback_movable_pages(&cc->migratepages);
7213 return ret;
7214 }
7215 return 0;
7216 }
7217
7218 /**
7219 * alloc_contig_range() -- tries to allocate given range of pages
7220 * @start: start PFN to allocate
7221 * @end: one-past-the-last PFN to allocate
7222 * @migratetype: migratetype of the underlaying pageblocks (either
7223 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7224 * in range must have the same migratetype and it must
7225 * be either of the two.
7226 *
7227 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7228 * aligned, however it's the caller's responsibility to guarantee that
7229 * we are the only thread that changes migrate type of pageblocks the
7230 * pages fall in.
7231 *
7232 * The PFN range must belong to a single zone.
7233 *
7234 * Returns zero on success or negative error code. On success all
7235 * pages which PFN is in [start, end) are allocated for the caller and
7236 * need to be freed with free_contig_range().
7237 */
7238 int alloc_contig_range(unsigned long start, unsigned long end,
7239 unsigned migratetype)
7240 {
7241 unsigned long outer_start, outer_end;
7242 unsigned int order;
7243 int ret = 0;
7244
7245 struct compact_control cc = {
7246 .nr_migratepages = 0,
7247 .order = -1,
7248 .zone = page_zone(pfn_to_page(start)),
7249 .mode = MIGRATE_SYNC,
7250 .ignore_skip_hint = true,
7251 };
7252 INIT_LIST_HEAD(&cc.migratepages);
7253
7254 /*
7255 * What we do here is we mark all pageblocks in range as
7256 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7257 * have different sizes, and due to the way page allocator
7258 * work, we align the range to biggest of the two pages so
7259 * that page allocator won't try to merge buddies from
7260 * different pageblocks and change MIGRATE_ISOLATE to some
7261 * other migration type.
7262 *
7263 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7264 * migrate the pages from an unaligned range (ie. pages that
7265 * we are interested in). This will put all the pages in
7266 * range back to page allocator as MIGRATE_ISOLATE.
7267 *
7268 * When this is done, we take the pages in range from page
7269 * allocator removing them from the buddy system. This way
7270 * page allocator will never consider using them.
7271 *
7272 * This lets us mark the pageblocks back as
7273 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7274 * aligned range but not in the unaligned, original range are
7275 * put back to page allocator so that buddy can use them.
7276 */
7277
7278 ret = start_isolate_page_range(pfn_max_align_down(start),
7279 pfn_max_align_up(end), migratetype,
7280 false);
7281 if (ret)
7282 return ret;
7283
7284 /*
7285 * In case of -EBUSY, we'd like to know which page causes problem.
7286 * So, just fall through. We will check it in test_pages_isolated().
7287 */
7288 ret = __alloc_contig_migrate_range(&cc, start, end);
7289 if (ret && ret != -EBUSY)
7290 goto done;
7291
7292 /*
7293 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7294 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7295 * more, all pages in [start, end) are free in page allocator.
7296 * What we are going to do is to allocate all pages from
7297 * [start, end) (that is remove them from page allocator).
7298 *
7299 * The only problem is that pages at the beginning and at the
7300 * end of interesting range may be not aligned with pages that
7301 * page allocator holds, ie. they can be part of higher order
7302 * pages. Because of this, we reserve the bigger range and
7303 * once this is done free the pages we are not interested in.
7304 *
7305 * We don't have to hold zone->lock here because the pages are
7306 * isolated thus they won't get removed from buddy.
7307 */
7308
7309 lru_add_drain_all();
7310 drain_all_pages(cc.zone);
7311
7312 order = 0;
7313 outer_start = start;
7314 while (!PageBuddy(pfn_to_page(outer_start))) {
7315 if (++order >= MAX_ORDER) {
7316 outer_start = start;
7317 break;
7318 }
7319 outer_start &= ~0UL << order;
7320 }
7321
7322 if (outer_start != start) {
7323 order = page_order(pfn_to_page(outer_start));
7324
7325 /*
7326 * outer_start page could be small order buddy page and
7327 * it doesn't include start page. Adjust outer_start
7328 * in this case to report failed page properly
7329 * on tracepoint in test_pages_isolated()
7330 */
7331 if (outer_start + (1UL << order) <= start)
7332 outer_start = start;
7333 }
7334
7335 /* Make sure the range is really isolated. */
7336 if (test_pages_isolated(outer_start, end, false)) {
7337 pr_info("%s: [%lx, %lx) PFNs busy\n",
7338 __func__, outer_start, end);
7339 ret = -EBUSY;
7340 goto done;
7341 }
7342
7343 /* Grab isolated pages from freelists. */
7344 outer_end = isolate_freepages_range(&cc, outer_start, end);
7345 if (!outer_end) {
7346 ret = -EBUSY;
7347 goto done;
7348 }
7349
7350 /* Free head and tail (if any) */
7351 if (start != outer_start)
7352 free_contig_range(outer_start, start - outer_start);
7353 if (end != outer_end)
7354 free_contig_range(end, outer_end - end);
7355
7356 done:
7357 undo_isolate_page_range(pfn_max_align_down(start),
7358 pfn_max_align_up(end), migratetype);
7359 return ret;
7360 }
7361
7362 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7363 {
7364 unsigned int count = 0;
7365
7366 for (; nr_pages--; pfn++) {
7367 struct page *page = pfn_to_page(pfn);
7368
7369 count += page_count(page) != 1;
7370 __free_page(page);
7371 }
7372 WARN(count != 0, "%d pages are still in use!\n", count);
7373 }
7374 #endif
7375
7376 #ifdef CONFIG_MEMORY_HOTPLUG
7377 /*
7378 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7379 * page high values need to be recalulated.
7380 */
7381 void __meminit zone_pcp_update(struct zone *zone)
7382 {
7383 unsigned cpu;
7384 mutex_lock(&pcp_batch_high_lock);
7385 for_each_possible_cpu(cpu)
7386 pageset_set_high_and_batch(zone,
7387 per_cpu_ptr(zone->pageset, cpu));
7388 mutex_unlock(&pcp_batch_high_lock);
7389 }
7390 #endif
7391
7392 void zone_pcp_reset(struct zone *zone)
7393 {
7394 unsigned long flags;
7395 int cpu;
7396 struct per_cpu_pageset *pset;
7397
7398 /* avoid races with drain_pages() */
7399 local_irq_save(flags);
7400 if (zone->pageset != &boot_pageset) {
7401 for_each_online_cpu(cpu) {
7402 pset = per_cpu_ptr(zone->pageset, cpu);
7403 drain_zonestat(zone, pset);
7404 }
7405 free_percpu(zone->pageset);
7406 zone->pageset = &boot_pageset;
7407 }
7408 local_irq_restore(flags);
7409 }
7410
7411 #ifdef CONFIG_MEMORY_HOTREMOVE
7412 /*
7413 * All pages in the range must be in a single zone and isolated
7414 * before calling this.
7415 */
7416 void
7417 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7418 {
7419 struct page *page;
7420 struct zone *zone;
7421 unsigned int order, i;
7422 unsigned long pfn;
7423 unsigned long flags;
7424 /* find the first valid pfn */
7425 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7426 if (pfn_valid(pfn))
7427 break;
7428 if (pfn == end_pfn)
7429 return;
7430 zone = page_zone(pfn_to_page(pfn));
7431 spin_lock_irqsave(&zone->lock, flags);
7432 pfn = start_pfn;
7433 while (pfn < end_pfn) {
7434 if (!pfn_valid(pfn)) {
7435 pfn++;
7436 continue;
7437 }
7438 page = pfn_to_page(pfn);
7439 /*
7440 * The HWPoisoned page may be not in buddy system, and
7441 * page_count() is not 0.
7442 */
7443 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7444 pfn++;
7445 SetPageReserved(page);
7446 continue;
7447 }
7448
7449 BUG_ON(page_count(page));
7450 BUG_ON(!PageBuddy(page));
7451 order = page_order(page);
7452 #ifdef CONFIG_DEBUG_VM
7453 pr_info("remove from free list %lx %d %lx\n",
7454 pfn, 1 << order, end_pfn);
7455 #endif
7456 list_del(&page->lru);
7457 rmv_page_order(page);
7458 zone->free_area[order].nr_free--;
7459 for (i = 0; i < (1 << order); i++)
7460 SetPageReserved((page+i));
7461 pfn += (1 << order);
7462 }
7463 spin_unlock_irqrestore(&zone->lock, flags);
7464 }
7465 #endif
7466
7467 bool is_free_buddy_page(struct page *page)
7468 {
7469 struct zone *zone = page_zone(page);
7470 unsigned long pfn = page_to_pfn(page);
7471 unsigned long flags;
7472 unsigned int order;
7473
7474 spin_lock_irqsave(&zone->lock, flags);
7475 for (order = 0; order < MAX_ORDER; order++) {
7476 struct page *page_head = page - (pfn & ((1 << order) - 1));
7477
7478 if (PageBuddy(page_head) && page_order(page_head) >= order)
7479 break;
7480 }
7481 spin_unlock_irqrestore(&zone->lock, flags);
7482
7483 return order < MAX_ORDER;
7484 }