]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
72 #include <linux/khugepaged.h>
73
74 #include <asm/sections.h>
75 #include <asm/tlbflush.h>
76 #include <asm/div64.h>
77 #include "internal.h"
78 #include "shuffle.h"
79 #include "page_reporting.h"
80
81 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
82 static DEFINE_MUTEX(pcp_batch_high_lock);
83 #define MIN_PERCPU_PAGELIST_FRACTION (8)
84
85 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
86 DEFINE_PER_CPU(int, numa_node);
87 EXPORT_PER_CPU_SYMBOL(numa_node);
88 #endif
89
90 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
91
92 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
93 /*
94 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
95 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
96 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
97 * defined in <linux/topology.h>.
98 */
99 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
100 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
101 #endif
102
103 /* work_structs for global per-cpu drains */
104 struct pcpu_drain {
105 struct zone *zone;
106 struct work_struct work;
107 };
108 static DEFINE_MUTEX(pcpu_drain_mutex);
109 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
110
111 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
112 volatile unsigned long latent_entropy __latent_entropy;
113 EXPORT_SYMBOL(latent_entropy);
114 #endif
115
116 /*
117 * Array of node states.
118 */
119 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
120 [N_POSSIBLE] = NODE_MASK_ALL,
121 [N_ONLINE] = { { [0] = 1UL } },
122 #ifndef CONFIG_NUMA
123 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
124 #ifdef CONFIG_HIGHMEM
125 [N_HIGH_MEMORY] = { { [0] = 1UL } },
126 #endif
127 [N_MEMORY] = { { [0] = 1UL } },
128 [N_CPU] = { { [0] = 1UL } },
129 #endif /* NUMA */
130 };
131 EXPORT_SYMBOL(node_states);
132
133 atomic_long_t _totalram_pages __read_mostly;
134 EXPORT_SYMBOL(_totalram_pages);
135 unsigned long totalreserve_pages __read_mostly;
136 unsigned long totalcma_pages __read_mostly;
137
138 int percpu_pagelist_fraction;
139 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
140 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
141 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
142 #else
143 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
144 #endif
145 EXPORT_SYMBOL(init_on_alloc);
146
147 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
148 DEFINE_STATIC_KEY_TRUE(init_on_free);
149 #else
150 DEFINE_STATIC_KEY_FALSE(init_on_free);
151 #endif
152 EXPORT_SYMBOL(init_on_free);
153
154 static int __init early_init_on_alloc(char *buf)
155 {
156 int ret;
157 bool bool_result;
158
159 ret = kstrtobool(buf, &bool_result);
160 if (ret)
161 return ret;
162 if (bool_result && page_poisoning_enabled())
163 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
164 if (bool_result)
165 static_branch_enable(&init_on_alloc);
166 else
167 static_branch_disable(&init_on_alloc);
168 return 0;
169 }
170 early_param("init_on_alloc", early_init_on_alloc);
171
172 static int __init early_init_on_free(char *buf)
173 {
174 int ret;
175 bool bool_result;
176
177 ret = kstrtobool(buf, &bool_result);
178 if (ret)
179 return ret;
180 if (bool_result && page_poisoning_enabled())
181 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
182 if (bool_result)
183 static_branch_enable(&init_on_free);
184 else
185 static_branch_disable(&init_on_free);
186 return 0;
187 }
188 early_param("init_on_free", early_init_on_free);
189
190 /*
191 * A cached value of the page's pageblock's migratetype, used when the page is
192 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
193 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
194 * Also the migratetype set in the page does not necessarily match the pcplist
195 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
196 * other index - this ensures that it will be put on the correct CMA freelist.
197 */
198 static inline int get_pcppage_migratetype(struct page *page)
199 {
200 return page->index;
201 }
202
203 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
204 {
205 page->index = migratetype;
206 }
207
208 #ifdef CONFIG_PM_SLEEP
209 /*
210 * The following functions are used by the suspend/hibernate code to temporarily
211 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
212 * while devices are suspended. To avoid races with the suspend/hibernate code,
213 * they should always be called with system_transition_mutex held
214 * (gfp_allowed_mask also should only be modified with system_transition_mutex
215 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
216 * with that modification).
217 */
218
219 static gfp_t saved_gfp_mask;
220
221 void pm_restore_gfp_mask(void)
222 {
223 WARN_ON(!mutex_is_locked(&system_transition_mutex));
224 if (saved_gfp_mask) {
225 gfp_allowed_mask = saved_gfp_mask;
226 saved_gfp_mask = 0;
227 }
228 }
229
230 void pm_restrict_gfp_mask(void)
231 {
232 WARN_ON(!mutex_is_locked(&system_transition_mutex));
233 WARN_ON(saved_gfp_mask);
234 saved_gfp_mask = gfp_allowed_mask;
235 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
236 }
237
238 bool pm_suspended_storage(void)
239 {
240 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
241 return false;
242 return true;
243 }
244 #endif /* CONFIG_PM_SLEEP */
245
246 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
247 unsigned int pageblock_order __read_mostly;
248 #endif
249
250 static void __free_pages_ok(struct page *page, unsigned int order);
251
252 /*
253 * results with 256, 32 in the lowmem_reserve sysctl:
254 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
255 * 1G machine -> (16M dma, 784M normal, 224M high)
256 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
257 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
258 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
259 *
260 * TBD: should special case ZONE_DMA32 machines here - in those we normally
261 * don't need any ZONE_NORMAL reservation
262 */
263 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
264 #ifdef CONFIG_ZONE_DMA
265 [ZONE_DMA] = 256,
266 #endif
267 #ifdef CONFIG_ZONE_DMA32
268 [ZONE_DMA32] = 256,
269 #endif
270 [ZONE_NORMAL] = 32,
271 #ifdef CONFIG_HIGHMEM
272 [ZONE_HIGHMEM] = 0,
273 #endif
274 [ZONE_MOVABLE] = 0,
275 };
276
277 static char * const zone_names[MAX_NR_ZONES] = {
278 #ifdef CONFIG_ZONE_DMA
279 "DMA",
280 #endif
281 #ifdef CONFIG_ZONE_DMA32
282 "DMA32",
283 #endif
284 "Normal",
285 #ifdef CONFIG_HIGHMEM
286 "HighMem",
287 #endif
288 "Movable",
289 #ifdef CONFIG_ZONE_DEVICE
290 "Device",
291 #endif
292 };
293
294 const char * const migratetype_names[MIGRATE_TYPES] = {
295 "Unmovable",
296 "Movable",
297 "Reclaimable",
298 "HighAtomic",
299 #ifdef CONFIG_CMA
300 "CMA",
301 #endif
302 #ifdef CONFIG_MEMORY_ISOLATION
303 "Isolate",
304 #endif
305 };
306
307 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
308 [NULL_COMPOUND_DTOR] = NULL,
309 [COMPOUND_PAGE_DTOR] = free_compound_page,
310 #ifdef CONFIG_HUGETLB_PAGE
311 [HUGETLB_PAGE_DTOR] = free_huge_page,
312 #endif
313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
314 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
315 #endif
316 };
317
318 int min_free_kbytes = 1024;
319 int user_min_free_kbytes = -1;
320 #ifdef CONFIG_DISCONTIGMEM
321 /*
322 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
323 * are not on separate NUMA nodes. Functionally this works but with
324 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
325 * quite small. By default, do not boost watermarks on discontigmem as in
326 * many cases very high-order allocations like THP are likely to be
327 * unsupported and the premature reclaim offsets the advantage of long-term
328 * fragmentation avoidance.
329 */
330 int watermark_boost_factor __read_mostly;
331 #else
332 int watermark_boost_factor __read_mostly = 15000;
333 #endif
334 int watermark_scale_factor = 10;
335
336 static unsigned long nr_kernel_pages __initdata;
337 static unsigned long nr_all_pages __initdata;
338 static unsigned long dma_reserve __initdata;
339
340 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
342 static unsigned long required_kernelcore __initdata;
343 static unsigned long required_kernelcore_percent __initdata;
344 static unsigned long required_movablecore __initdata;
345 static unsigned long required_movablecore_percent __initdata;
346 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
347 static bool mirrored_kernelcore __meminitdata;
348
349 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
350 int movable_zone;
351 EXPORT_SYMBOL(movable_zone);
352
353 #if MAX_NUMNODES > 1
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
358 #endif
359
360 int page_group_by_mobility_disabled __read_mostly;
361
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 /*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370 /*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384 {
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387 }
388
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391 {
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 return true;
396
397 return false;
398 }
399
400 /*
401 * Returns true when the remaining initialisation should be deferred until
402 * later in the boot cycle when it can be parallelised.
403 */
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406 {
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
418 /* Always populate low zones for address-constrained allocations */
419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 return false;
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
426 nr_initialised++;
427 if ((nr_initialised > PAGES_PER_SECTION) &&
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
431 }
432 return false;
433 }
434 #else
435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
437 static inline bool early_page_uninitialised(unsigned long pfn)
438 {
439 return false;
440 }
441
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443 {
444 return false;
445 }
446 #endif
447
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451 {
452 #ifdef CONFIG_SPARSEMEM
453 return section_to_usemap(__pfn_to_section(pfn));
454 #else
455 return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
457 }
458
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460 {
461 #ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 #else
464 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
465 #endif /* CONFIG_SPARSEMEM */
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 }
468
469 /**
470 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
471 * @page: The page within the block of interest
472 * @pfn: The target page frame number
473 * @mask: mask of bits that the caller is interested in
474 *
475 * Return: pageblock_bits flags
476 */
477 static __always_inline
478 unsigned long __get_pfnblock_flags_mask(struct page *page,
479 unsigned long pfn,
480 unsigned long mask)
481 {
482 unsigned long *bitmap;
483 unsigned long bitidx, word_bitidx;
484 unsigned long word;
485
486 bitmap = get_pageblock_bitmap(page, pfn);
487 bitidx = pfn_to_bitidx(page, pfn);
488 word_bitidx = bitidx / BITS_PER_LONG;
489 bitidx &= (BITS_PER_LONG-1);
490
491 word = bitmap[word_bitidx];
492 return (word >> bitidx) & mask;
493 }
494
495 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
496 unsigned long mask)
497 {
498 return __get_pfnblock_flags_mask(page, pfn, mask);
499 }
500
501 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
502 {
503 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
504 }
505
506 /**
507 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
508 * @page: The page within the block of interest
509 * @flags: The flags to set
510 * @pfn: The target page frame number
511 * @mask: mask of bits that the caller is interested in
512 */
513 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
514 unsigned long pfn,
515 unsigned long mask)
516 {
517 unsigned long *bitmap;
518 unsigned long bitidx, word_bitidx;
519 unsigned long old_word, word;
520
521 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
522 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
523
524 bitmap = get_pageblock_bitmap(page, pfn);
525 bitidx = pfn_to_bitidx(page, pfn);
526 word_bitidx = bitidx / BITS_PER_LONG;
527 bitidx &= (BITS_PER_LONG-1);
528
529 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
530
531 mask <<= bitidx;
532 flags <<= bitidx;
533
534 word = READ_ONCE(bitmap[word_bitidx]);
535 for (;;) {
536 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
537 if (word == old_word)
538 break;
539 word = old_word;
540 }
541 }
542
543 void set_pageblock_migratetype(struct page *page, int migratetype)
544 {
545 if (unlikely(page_group_by_mobility_disabled &&
546 migratetype < MIGRATE_PCPTYPES))
547 migratetype = MIGRATE_UNMOVABLE;
548
549 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
550 page_to_pfn(page), MIGRATETYPE_MASK);
551 }
552
553 #ifdef CONFIG_DEBUG_VM
554 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
555 {
556 int ret = 0;
557 unsigned seq;
558 unsigned long pfn = page_to_pfn(page);
559 unsigned long sp, start_pfn;
560
561 do {
562 seq = zone_span_seqbegin(zone);
563 start_pfn = zone->zone_start_pfn;
564 sp = zone->spanned_pages;
565 if (!zone_spans_pfn(zone, pfn))
566 ret = 1;
567 } while (zone_span_seqretry(zone, seq));
568
569 if (ret)
570 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
571 pfn, zone_to_nid(zone), zone->name,
572 start_pfn, start_pfn + sp);
573
574 return ret;
575 }
576
577 static int page_is_consistent(struct zone *zone, struct page *page)
578 {
579 if (!pfn_valid_within(page_to_pfn(page)))
580 return 0;
581 if (zone != page_zone(page))
582 return 0;
583
584 return 1;
585 }
586 /*
587 * Temporary debugging check for pages not lying within a given zone.
588 */
589 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
590 {
591 if (page_outside_zone_boundaries(zone, page))
592 return 1;
593 if (!page_is_consistent(zone, page))
594 return 1;
595
596 return 0;
597 }
598 #else
599 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
600 {
601 return 0;
602 }
603 #endif
604
605 static void bad_page(struct page *page, const char *reason)
606 {
607 static unsigned long resume;
608 static unsigned long nr_shown;
609 static unsigned long nr_unshown;
610
611 /*
612 * Allow a burst of 60 reports, then keep quiet for that minute;
613 * or allow a steady drip of one report per second.
614 */
615 if (nr_shown == 60) {
616 if (time_before(jiffies, resume)) {
617 nr_unshown++;
618 goto out;
619 }
620 if (nr_unshown) {
621 pr_alert(
622 "BUG: Bad page state: %lu messages suppressed\n",
623 nr_unshown);
624 nr_unshown = 0;
625 }
626 nr_shown = 0;
627 }
628 if (nr_shown++ == 0)
629 resume = jiffies + 60 * HZ;
630
631 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
632 current->comm, page_to_pfn(page));
633 __dump_page(page, reason);
634 dump_page_owner(page);
635
636 print_modules();
637 dump_stack();
638 out:
639 /* Leave bad fields for debug, except PageBuddy could make trouble */
640 page_mapcount_reset(page); /* remove PageBuddy */
641 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
642 }
643
644 /*
645 * Higher-order pages are called "compound pages". They are structured thusly:
646 *
647 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
648 *
649 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
650 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
651 *
652 * The first tail page's ->compound_dtor holds the offset in array of compound
653 * page destructors. See compound_page_dtors.
654 *
655 * The first tail page's ->compound_order holds the order of allocation.
656 * This usage means that zero-order pages may not be compound.
657 */
658
659 void free_compound_page(struct page *page)
660 {
661 mem_cgroup_uncharge(page);
662 __free_pages_ok(page, compound_order(page));
663 }
664
665 void prep_compound_page(struct page *page, unsigned int order)
666 {
667 int i;
668 int nr_pages = 1 << order;
669
670 __SetPageHead(page);
671 for (i = 1; i < nr_pages; i++) {
672 struct page *p = page + i;
673 set_page_count(p, 0);
674 p->mapping = TAIL_MAPPING;
675 set_compound_head(p, page);
676 }
677
678 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
679 set_compound_order(page, order);
680 atomic_set(compound_mapcount_ptr(page), -1);
681 if (hpage_pincount_available(page))
682 atomic_set(compound_pincount_ptr(page), 0);
683 }
684
685 #ifdef CONFIG_DEBUG_PAGEALLOC
686 unsigned int _debug_guardpage_minorder;
687
688 bool _debug_pagealloc_enabled_early __read_mostly
689 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
690 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
691 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
692 EXPORT_SYMBOL(_debug_pagealloc_enabled);
693
694 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
695
696 static int __init early_debug_pagealloc(char *buf)
697 {
698 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
699 }
700 early_param("debug_pagealloc", early_debug_pagealloc);
701
702 void init_debug_pagealloc(void)
703 {
704 if (!debug_pagealloc_enabled())
705 return;
706
707 static_branch_enable(&_debug_pagealloc_enabled);
708
709 if (!debug_guardpage_minorder())
710 return;
711
712 static_branch_enable(&_debug_guardpage_enabled);
713 }
714
715 static int __init debug_guardpage_minorder_setup(char *buf)
716 {
717 unsigned long res;
718
719 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
720 pr_err("Bad debug_guardpage_minorder value\n");
721 return 0;
722 }
723 _debug_guardpage_minorder = res;
724 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
725 return 0;
726 }
727 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
728
729 static inline bool set_page_guard(struct zone *zone, struct page *page,
730 unsigned int order, int migratetype)
731 {
732 if (!debug_guardpage_enabled())
733 return false;
734
735 if (order >= debug_guardpage_minorder())
736 return false;
737
738 __SetPageGuard(page);
739 INIT_LIST_HEAD(&page->lru);
740 set_page_private(page, order);
741 /* Guard pages are not available for any usage */
742 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
743
744 return true;
745 }
746
747 static inline void clear_page_guard(struct zone *zone, struct page *page,
748 unsigned int order, int migratetype)
749 {
750 if (!debug_guardpage_enabled())
751 return;
752
753 __ClearPageGuard(page);
754
755 set_page_private(page, 0);
756 if (!is_migrate_isolate(migratetype))
757 __mod_zone_freepage_state(zone, (1 << order), migratetype);
758 }
759 #else
760 static inline bool set_page_guard(struct zone *zone, struct page *page,
761 unsigned int order, int migratetype) { return false; }
762 static inline void clear_page_guard(struct zone *zone, struct page *page,
763 unsigned int order, int migratetype) {}
764 #endif
765
766 static inline void set_page_order(struct page *page, unsigned int order)
767 {
768 set_page_private(page, order);
769 __SetPageBuddy(page);
770 }
771
772 /*
773 * This function checks whether a page is free && is the buddy
774 * we can coalesce a page and its buddy if
775 * (a) the buddy is not in a hole (check before calling!) &&
776 * (b) the buddy is in the buddy system &&
777 * (c) a page and its buddy have the same order &&
778 * (d) a page and its buddy are in the same zone.
779 *
780 * For recording whether a page is in the buddy system, we set PageBuddy.
781 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
782 *
783 * For recording page's order, we use page_private(page).
784 */
785 static inline bool page_is_buddy(struct page *page, struct page *buddy,
786 unsigned int order)
787 {
788 if (!page_is_guard(buddy) && !PageBuddy(buddy))
789 return false;
790
791 if (page_order(buddy) != order)
792 return false;
793
794 /*
795 * zone check is done late to avoid uselessly calculating
796 * zone/node ids for pages that could never merge.
797 */
798 if (page_zone_id(page) != page_zone_id(buddy))
799 return false;
800
801 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
802
803 return true;
804 }
805
806 #ifdef CONFIG_COMPACTION
807 static inline struct capture_control *task_capc(struct zone *zone)
808 {
809 struct capture_control *capc = current->capture_control;
810
811 return unlikely(capc) &&
812 !(current->flags & PF_KTHREAD) &&
813 !capc->page &&
814 capc->cc->zone == zone ? capc : NULL;
815 }
816
817 static inline bool
818 compaction_capture(struct capture_control *capc, struct page *page,
819 int order, int migratetype)
820 {
821 if (!capc || order != capc->cc->order)
822 return false;
823
824 /* Do not accidentally pollute CMA or isolated regions*/
825 if (is_migrate_cma(migratetype) ||
826 is_migrate_isolate(migratetype))
827 return false;
828
829 /*
830 * Do not let lower order allocations polluate a movable pageblock.
831 * This might let an unmovable request use a reclaimable pageblock
832 * and vice-versa but no more than normal fallback logic which can
833 * have trouble finding a high-order free page.
834 */
835 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
836 return false;
837
838 capc->page = page;
839 return true;
840 }
841
842 #else
843 static inline struct capture_control *task_capc(struct zone *zone)
844 {
845 return NULL;
846 }
847
848 static inline bool
849 compaction_capture(struct capture_control *capc, struct page *page,
850 int order, int migratetype)
851 {
852 return false;
853 }
854 #endif /* CONFIG_COMPACTION */
855
856 /* Used for pages not on another list */
857 static inline void add_to_free_list(struct page *page, struct zone *zone,
858 unsigned int order, int migratetype)
859 {
860 struct free_area *area = &zone->free_area[order];
861
862 list_add(&page->lru, &area->free_list[migratetype]);
863 area->nr_free++;
864 }
865
866 /* Used for pages not on another list */
867 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
868 unsigned int order, int migratetype)
869 {
870 struct free_area *area = &zone->free_area[order];
871
872 list_add_tail(&page->lru, &area->free_list[migratetype]);
873 area->nr_free++;
874 }
875
876 /* Used for pages which are on another list */
877 static inline void move_to_free_list(struct page *page, struct zone *zone,
878 unsigned int order, int migratetype)
879 {
880 struct free_area *area = &zone->free_area[order];
881
882 list_move(&page->lru, &area->free_list[migratetype]);
883 }
884
885 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
886 unsigned int order)
887 {
888 /* clear reported state and update reported page count */
889 if (page_reported(page))
890 __ClearPageReported(page);
891
892 list_del(&page->lru);
893 __ClearPageBuddy(page);
894 set_page_private(page, 0);
895 zone->free_area[order].nr_free--;
896 }
897
898 /*
899 * If this is not the largest possible page, check if the buddy
900 * of the next-highest order is free. If it is, it's possible
901 * that pages are being freed that will coalesce soon. In case,
902 * that is happening, add the free page to the tail of the list
903 * so it's less likely to be used soon and more likely to be merged
904 * as a higher order page
905 */
906 static inline bool
907 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
908 struct page *page, unsigned int order)
909 {
910 struct page *higher_page, *higher_buddy;
911 unsigned long combined_pfn;
912
913 if (order >= MAX_ORDER - 2)
914 return false;
915
916 if (!pfn_valid_within(buddy_pfn))
917 return false;
918
919 combined_pfn = buddy_pfn & pfn;
920 higher_page = page + (combined_pfn - pfn);
921 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
922 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
923
924 return pfn_valid_within(buddy_pfn) &&
925 page_is_buddy(higher_page, higher_buddy, order + 1);
926 }
927
928 /*
929 * Freeing function for a buddy system allocator.
930 *
931 * The concept of a buddy system is to maintain direct-mapped table
932 * (containing bit values) for memory blocks of various "orders".
933 * The bottom level table contains the map for the smallest allocatable
934 * units of memory (here, pages), and each level above it describes
935 * pairs of units from the levels below, hence, "buddies".
936 * At a high level, all that happens here is marking the table entry
937 * at the bottom level available, and propagating the changes upward
938 * as necessary, plus some accounting needed to play nicely with other
939 * parts of the VM system.
940 * At each level, we keep a list of pages, which are heads of continuous
941 * free pages of length of (1 << order) and marked with PageBuddy.
942 * Page's order is recorded in page_private(page) field.
943 * So when we are allocating or freeing one, we can derive the state of the
944 * other. That is, if we allocate a small block, and both were
945 * free, the remainder of the region must be split into blocks.
946 * If a block is freed, and its buddy is also free, then this
947 * triggers coalescing into a block of larger size.
948 *
949 * -- nyc
950 */
951
952 static inline void __free_one_page(struct page *page,
953 unsigned long pfn,
954 struct zone *zone, unsigned int order,
955 int migratetype, bool report)
956 {
957 struct capture_control *capc = task_capc(zone);
958 unsigned long buddy_pfn;
959 unsigned long combined_pfn;
960 unsigned int max_order;
961 struct page *buddy;
962 bool to_tail;
963
964 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
965
966 VM_BUG_ON(!zone_is_initialized(zone));
967 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
968
969 VM_BUG_ON(migratetype == -1);
970 if (likely(!is_migrate_isolate(migratetype)))
971 __mod_zone_freepage_state(zone, 1 << order, migratetype);
972
973 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
974 VM_BUG_ON_PAGE(bad_range(zone, page), page);
975
976 continue_merging:
977 while (order < max_order - 1) {
978 if (compaction_capture(capc, page, order, migratetype)) {
979 __mod_zone_freepage_state(zone, -(1 << order),
980 migratetype);
981 return;
982 }
983 buddy_pfn = __find_buddy_pfn(pfn, order);
984 buddy = page + (buddy_pfn - pfn);
985
986 if (!pfn_valid_within(buddy_pfn))
987 goto done_merging;
988 if (!page_is_buddy(page, buddy, order))
989 goto done_merging;
990 /*
991 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
992 * merge with it and move up one order.
993 */
994 if (page_is_guard(buddy))
995 clear_page_guard(zone, buddy, order, migratetype);
996 else
997 del_page_from_free_list(buddy, zone, order);
998 combined_pfn = buddy_pfn & pfn;
999 page = page + (combined_pfn - pfn);
1000 pfn = combined_pfn;
1001 order++;
1002 }
1003 if (max_order < MAX_ORDER) {
1004 /* If we are here, it means order is >= pageblock_order.
1005 * We want to prevent merge between freepages on isolate
1006 * pageblock and normal pageblock. Without this, pageblock
1007 * isolation could cause incorrect freepage or CMA accounting.
1008 *
1009 * We don't want to hit this code for the more frequent
1010 * low-order merging.
1011 */
1012 if (unlikely(has_isolate_pageblock(zone))) {
1013 int buddy_mt;
1014
1015 buddy_pfn = __find_buddy_pfn(pfn, order);
1016 buddy = page + (buddy_pfn - pfn);
1017 buddy_mt = get_pageblock_migratetype(buddy);
1018
1019 if (migratetype != buddy_mt
1020 && (is_migrate_isolate(migratetype) ||
1021 is_migrate_isolate(buddy_mt)))
1022 goto done_merging;
1023 }
1024 max_order++;
1025 goto continue_merging;
1026 }
1027
1028 done_merging:
1029 set_page_order(page, order);
1030
1031 if (is_shuffle_order(order))
1032 to_tail = shuffle_pick_tail();
1033 else
1034 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1035
1036 if (to_tail)
1037 add_to_free_list_tail(page, zone, order, migratetype);
1038 else
1039 add_to_free_list(page, zone, order, migratetype);
1040
1041 /* Notify page reporting subsystem of freed page */
1042 if (report)
1043 page_reporting_notify_free(order);
1044 }
1045
1046 /*
1047 * A bad page could be due to a number of fields. Instead of multiple branches,
1048 * try and check multiple fields with one check. The caller must do a detailed
1049 * check if necessary.
1050 */
1051 static inline bool page_expected_state(struct page *page,
1052 unsigned long check_flags)
1053 {
1054 if (unlikely(atomic_read(&page->_mapcount) != -1))
1055 return false;
1056
1057 if (unlikely((unsigned long)page->mapping |
1058 page_ref_count(page) |
1059 #ifdef CONFIG_MEMCG
1060 (unsigned long)page->mem_cgroup |
1061 #endif
1062 (page->flags & check_flags)))
1063 return false;
1064
1065 return true;
1066 }
1067
1068 static const char *page_bad_reason(struct page *page, unsigned long flags)
1069 {
1070 const char *bad_reason = NULL;
1071
1072 if (unlikely(atomic_read(&page->_mapcount) != -1))
1073 bad_reason = "nonzero mapcount";
1074 if (unlikely(page->mapping != NULL))
1075 bad_reason = "non-NULL mapping";
1076 if (unlikely(page_ref_count(page) != 0))
1077 bad_reason = "nonzero _refcount";
1078 if (unlikely(page->flags & flags)) {
1079 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1080 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1081 else
1082 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1083 }
1084 #ifdef CONFIG_MEMCG
1085 if (unlikely(page->mem_cgroup))
1086 bad_reason = "page still charged to cgroup";
1087 #endif
1088 return bad_reason;
1089 }
1090
1091 static void check_free_page_bad(struct page *page)
1092 {
1093 bad_page(page,
1094 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1095 }
1096
1097 static inline int check_free_page(struct page *page)
1098 {
1099 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1100 return 0;
1101
1102 /* Something has gone sideways, find it */
1103 check_free_page_bad(page);
1104 return 1;
1105 }
1106
1107 static int free_tail_pages_check(struct page *head_page, struct page *page)
1108 {
1109 int ret = 1;
1110
1111 /*
1112 * We rely page->lru.next never has bit 0 set, unless the page
1113 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1114 */
1115 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1116
1117 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1118 ret = 0;
1119 goto out;
1120 }
1121 switch (page - head_page) {
1122 case 1:
1123 /* the first tail page: ->mapping may be compound_mapcount() */
1124 if (unlikely(compound_mapcount(page))) {
1125 bad_page(page, "nonzero compound_mapcount");
1126 goto out;
1127 }
1128 break;
1129 case 2:
1130 /*
1131 * the second tail page: ->mapping is
1132 * deferred_list.next -- ignore value.
1133 */
1134 break;
1135 default:
1136 if (page->mapping != TAIL_MAPPING) {
1137 bad_page(page, "corrupted mapping in tail page");
1138 goto out;
1139 }
1140 break;
1141 }
1142 if (unlikely(!PageTail(page))) {
1143 bad_page(page, "PageTail not set");
1144 goto out;
1145 }
1146 if (unlikely(compound_head(page) != head_page)) {
1147 bad_page(page, "compound_head not consistent");
1148 goto out;
1149 }
1150 ret = 0;
1151 out:
1152 page->mapping = NULL;
1153 clear_compound_head(page);
1154 return ret;
1155 }
1156
1157 static void kernel_init_free_pages(struct page *page, int numpages)
1158 {
1159 int i;
1160
1161 /* s390's use of memset() could override KASAN redzones. */
1162 kasan_disable_current();
1163 for (i = 0; i < numpages; i++)
1164 clear_highpage(page + i);
1165 kasan_enable_current();
1166 }
1167
1168 static __always_inline bool free_pages_prepare(struct page *page,
1169 unsigned int order, bool check_free)
1170 {
1171 int bad = 0;
1172
1173 VM_BUG_ON_PAGE(PageTail(page), page);
1174
1175 trace_mm_page_free(page, order);
1176
1177 /*
1178 * Check tail pages before head page information is cleared to
1179 * avoid checking PageCompound for order-0 pages.
1180 */
1181 if (unlikely(order)) {
1182 bool compound = PageCompound(page);
1183 int i;
1184
1185 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1186
1187 if (compound)
1188 ClearPageDoubleMap(page);
1189 for (i = 1; i < (1 << order); i++) {
1190 if (compound)
1191 bad += free_tail_pages_check(page, page + i);
1192 if (unlikely(check_free_page(page + i))) {
1193 bad++;
1194 continue;
1195 }
1196 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1197 }
1198 }
1199 if (PageMappingFlags(page))
1200 page->mapping = NULL;
1201 if (memcg_kmem_enabled() && PageKmemcg(page))
1202 __memcg_kmem_uncharge_page(page, order);
1203 if (check_free)
1204 bad += check_free_page(page);
1205 if (bad)
1206 return false;
1207
1208 page_cpupid_reset_last(page);
1209 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1210 reset_page_owner(page, order);
1211
1212 if (!PageHighMem(page)) {
1213 debug_check_no_locks_freed(page_address(page),
1214 PAGE_SIZE << order);
1215 debug_check_no_obj_freed(page_address(page),
1216 PAGE_SIZE << order);
1217 }
1218 if (want_init_on_free())
1219 kernel_init_free_pages(page, 1 << order);
1220
1221 kernel_poison_pages(page, 1 << order, 0);
1222 /*
1223 * arch_free_page() can make the page's contents inaccessible. s390
1224 * does this. So nothing which can access the page's contents should
1225 * happen after this.
1226 */
1227 arch_free_page(page, order);
1228
1229 if (debug_pagealloc_enabled_static())
1230 kernel_map_pages(page, 1 << order, 0);
1231
1232 kasan_free_nondeferred_pages(page, order);
1233
1234 return true;
1235 }
1236
1237 #ifdef CONFIG_DEBUG_VM
1238 /*
1239 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1240 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1241 * moved from pcp lists to free lists.
1242 */
1243 static bool free_pcp_prepare(struct page *page)
1244 {
1245 return free_pages_prepare(page, 0, true);
1246 }
1247
1248 static bool bulkfree_pcp_prepare(struct page *page)
1249 {
1250 if (debug_pagealloc_enabled_static())
1251 return check_free_page(page);
1252 else
1253 return false;
1254 }
1255 #else
1256 /*
1257 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1258 * moving from pcp lists to free list in order to reduce overhead. With
1259 * debug_pagealloc enabled, they are checked also immediately when being freed
1260 * to the pcp lists.
1261 */
1262 static bool free_pcp_prepare(struct page *page)
1263 {
1264 if (debug_pagealloc_enabled_static())
1265 return free_pages_prepare(page, 0, true);
1266 else
1267 return free_pages_prepare(page, 0, false);
1268 }
1269
1270 static bool bulkfree_pcp_prepare(struct page *page)
1271 {
1272 return check_free_page(page);
1273 }
1274 #endif /* CONFIG_DEBUG_VM */
1275
1276 static inline void prefetch_buddy(struct page *page)
1277 {
1278 unsigned long pfn = page_to_pfn(page);
1279 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1280 struct page *buddy = page + (buddy_pfn - pfn);
1281
1282 prefetch(buddy);
1283 }
1284
1285 /*
1286 * Frees a number of pages from the PCP lists
1287 * Assumes all pages on list are in same zone, and of same order.
1288 * count is the number of pages to free.
1289 *
1290 * If the zone was previously in an "all pages pinned" state then look to
1291 * see if this freeing clears that state.
1292 *
1293 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1294 * pinned" detection logic.
1295 */
1296 static void free_pcppages_bulk(struct zone *zone, int count,
1297 struct per_cpu_pages *pcp)
1298 {
1299 int migratetype = 0;
1300 int batch_free = 0;
1301 int prefetch_nr = 0;
1302 bool isolated_pageblocks;
1303 struct page *page, *tmp;
1304 LIST_HEAD(head);
1305
1306 /*
1307 * Ensure proper count is passed which otherwise would stuck in the
1308 * below while (list_empty(list)) loop.
1309 */
1310 count = min(pcp->count, count);
1311 while (count) {
1312 struct list_head *list;
1313
1314 /*
1315 * Remove pages from lists in a round-robin fashion. A
1316 * batch_free count is maintained that is incremented when an
1317 * empty list is encountered. This is so more pages are freed
1318 * off fuller lists instead of spinning excessively around empty
1319 * lists
1320 */
1321 do {
1322 batch_free++;
1323 if (++migratetype == MIGRATE_PCPTYPES)
1324 migratetype = 0;
1325 list = &pcp->lists[migratetype];
1326 } while (list_empty(list));
1327
1328 /* This is the only non-empty list. Free them all. */
1329 if (batch_free == MIGRATE_PCPTYPES)
1330 batch_free = count;
1331
1332 do {
1333 page = list_last_entry(list, struct page, lru);
1334 /* must delete to avoid corrupting pcp list */
1335 list_del(&page->lru);
1336 pcp->count--;
1337
1338 if (bulkfree_pcp_prepare(page))
1339 continue;
1340
1341 list_add_tail(&page->lru, &head);
1342
1343 /*
1344 * We are going to put the page back to the global
1345 * pool, prefetch its buddy to speed up later access
1346 * under zone->lock. It is believed the overhead of
1347 * an additional test and calculating buddy_pfn here
1348 * can be offset by reduced memory latency later. To
1349 * avoid excessive prefetching due to large count, only
1350 * prefetch buddy for the first pcp->batch nr of pages.
1351 */
1352 if (prefetch_nr++ < pcp->batch)
1353 prefetch_buddy(page);
1354 } while (--count && --batch_free && !list_empty(list));
1355 }
1356
1357 spin_lock(&zone->lock);
1358 isolated_pageblocks = has_isolate_pageblock(zone);
1359
1360 /*
1361 * Use safe version since after __free_one_page(),
1362 * page->lru.next will not point to original list.
1363 */
1364 list_for_each_entry_safe(page, tmp, &head, lru) {
1365 int mt = get_pcppage_migratetype(page);
1366 /* MIGRATE_ISOLATE page should not go to pcplists */
1367 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1368 /* Pageblock could have been isolated meanwhile */
1369 if (unlikely(isolated_pageblocks))
1370 mt = get_pageblock_migratetype(page);
1371
1372 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1373 trace_mm_page_pcpu_drain(page, 0, mt);
1374 }
1375 spin_unlock(&zone->lock);
1376 }
1377
1378 static void free_one_page(struct zone *zone,
1379 struct page *page, unsigned long pfn,
1380 unsigned int order,
1381 int migratetype)
1382 {
1383 spin_lock(&zone->lock);
1384 if (unlikely(has_isolate_pageblock(zone) ||
1385 is_migrate_isolate(migratetype))) {
1386 migratetype = get_pfnblock_migratetype(page, pfn);
1387 }
1388 __free_one_page(page, pfn, zone, order, migratetype, true);
1389 spin_unlock(&zone->lock);
1390 }
1391
1392 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1393 unsigned long zone, int nid)
1394 {
1395 mm_zero_struct_page(page);
1396 set_page_links(page, zone, nid, pfn);
1397 init_page_count(page);
1398 page_mapcount_reset(page);
1399 page_cpupid_reset_last(page);
1400 page_kasan_tag_reset(page);
1401
1402 INIT_LIST_HEAD(&page->lru);
1403 #ifdef WANT_PAGE_VIRTUAL
1404 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1405 if (!is_highmem_idx(zone))
1406 set_page_address(page, __va(pfn << PAGE_SHIFT));
1407 #endif
1408 }
1409
1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411 static void __meminit init_reserved_page(unsigned long pfn)
1412 {
1413 pg_data_t *pgdat;
1414 int nid, zid;
1415
1416 if (!early_page_uninitialised(pfn))
1417 return;
1418
1419 nid = early_pfn_to_nid(pfn);
1420 pgdat = NODE_DATA(nid);
1421
1422 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1423 struct zone *zone = &pgdat->node_zones[zid];
1424
1425 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1426 break;
1427 }
1428 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1429 }
1430 #else
1431 static inline void init_reserved_page(unsigned long pfn)
1432 {
1433 }
1434 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1435
1436 /*
1437 * Initialised pages do not have PageReserved set. This function is
1438 * called for each range allocated by the bootmem allocator and
1439 * marks the pages PageReserved. The remaining valid pages are later
1440 * sent to the buddy page allocator.
1441 */
1442 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1443 {
1444 unsigned long start_pfn = PFN_DOWN(start);
1445 unsigned long end_pfn = PFN_UP(end);
1446
1447 for (; start_pfn < end_pfn; start_pfn++) {
1448 if (pfn_valid(start_pfn)) {
1449 struct page *page = pfn_to_page(start_pfn);
1450
1451 init_reserved_page(start_pfn);
1452
1453 /* Avoid false-positive PageTail() */
1454 INIT_LIST_HEAD(&page->lru);
1455
1456 /*
1457 * no need for atomic set_bit because the struct
1458 * page is not visible yet so nobody should
1459 * access it yet.
1460 */
1461 __SetPageReserved(page);
1462 }
1463 }
1464 }
1465
1466 static void __free_pages_ok(struct page *page, unsigned int order)
1467 {
1468 unsigned long flags;
1469 int migratetype;
1470 unsigned long pfn = page_to_pfn(page);
1471
1472 if (!free_pages_prepare(page, order, true))
1473 return;
1474
1475 migratetype = get_pfnblock_migratetype(page, pfn);
1476 local_irq_save(flags);
1477 __count_vm_events(PGFREE, 1 << order);
1478 free_one_page(page_zone(page), page, pfn, order, migratetype);
1479 local_irq_restore(flags);
1480 }
1481
1482 void __free_pages_core(struct page *page, unsigned int order)
1483 {
1484 unsigned int nr_pages = 1 << order;
1485 struct page *p = page;
1486 unsigned int loop;
1487
1488 prefetchw(p);
1489 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1490 prefetchw(p + 1);
1491 __ClearPageReserved(p);
1492 set_page_count(p, 0);
1493 }
1494 __ClearPageReserved(p);
1495 set_page_count(p, 0);
1496
1497 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1498 set_page_refcounted(page);
1499 __free_pages(page, order);
1500 }
1501
1502 #ifdef CONFIG_NEED_MULTIPLE_NODES
1503
1504 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1505
1506 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1507
1508 /*
1509 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1510 */
1511 int __meminit __early_pfn_to_nid(unsigned long pfn,
1512 struct mminit_pfnnid_cache *state)
1513 {
1514 unsigned long start_pfn, end_pfn;
1515 int nid;
1516
1517 if (state->last_start <= pfn && pfn < state->last_end)
1518 return state->last_nid;
1519
1520 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1521 if (nid != NUMA_NO_NODE) {
1522 state->last_start = start_pfn;
1523 state->last_end = end_pfn;
1524 state->last_nid = nid;
1525 }
1526
1527 return nid;
1528 }
1529 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1530
1531 int __meminit early_pfn_to_nid(unsigned long pfn)
1532 {
1533 static DEFINE_SPINLOCK(early_pfn_lock);
1534 int nid;
1535
1536 spin_lock(&early_pfn_lock);
1537 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1538 if (nid < 0)
1539 nid = first_online_node;
1540 spin_unlock(&early_pfn_lock);
1541
1542 return nid;
1543 }
1544 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1545
1546 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1547 unsigned int order)
1548 {
1549 if (early_page_uninitialised(pfn))
1550 return;
1551 __free_pages_core(page, order);
1552 }
1553
1554 /*
1555 * Check that the whole (or subset of) a pageblock given by the interval of
1556 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1557 * with the migration of free compaction scanner. The scanners then need to
1558 * use only pfn_valid_within() check for arches that allow holes within
1559 * pageblocks.
1560 *
1561 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1562 *
1563 * It's possible on some configurations to have a setup like node0 node1 node0
1564 * i.e. it's possible that all pages within a zones range of pages do not
1565 * belong to a single zone. We assume that a border between node0 and node1
1566 * can occur within a single pageblock, but not a node0 node1 node0
1567 * interleaving within a single pageblock. It is therefore sufficient to check
1568 * the first and last page of a pageblock and avoid checking each individual
1569 * page in a pageblock.
1570 */
1571 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1572 unsigned long end_pfn, struct zone *zone)
1573 {
1574 struct page *start_page;
1575 struct page *end_page;
1576
1577 /* end_pfn is one past the range we are checking */
1578 end_pfn--;
1579
1580 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1581 return NULL;
1582
1583 start_page = pfn_to_online_page(start_pfn);
1584 if (!start_page)
1585 return NULL;
1586
1587 if (page_zone(start_page) != zone)
1588 return NULL;
1589
1590 end_page = pfn_to_page(end_pfn);
1591
1592 /* This gives a shorter code than deriving page_zone(end_page) */
1593 if (page_zone_id(start_page) != page_zone_id(end_page))
1594 return NULL;
1595
1596 return start_page;
1597 }
1598
1599 void set_zone_contiguous(struct zone *zone)
1600 {
1601 unsigned long block_start_pfn = zone->zone_start_pfn;
1602 unsigned long block_end_pfn;
1603
1604 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1605 for (; block_start_pfn < zone_end_pfn(zone);
1606 block_start_pfn = block_end_pfn,
1607 block_end_pfn += pageblock_nr_pages) {
1608
1609 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1610
1611 if (!__pageblock_pfn_to_page(block_start_pfn,
1612 block_end_pfn, zone))
1613 return;
1614 cond_resched();
1615 }
1616
1617 /* We confirm that there is no hole */
1618 zone->contiguous = true;
1619 }
1620
1621 void clear_zone_contiguous(struct zone *zone)
1622 {
1623 zone->contiguous = false;
1624 }
1625
1626 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1627 static void __init deferred_free_range(unsigned long pfn,
1628 unsigned long nr_pages)
1629 {
1630 struct page *page;
1631 unsigned long i;
1632
1633 if (!nr_pages)
1634 return;
1635
1636 page = pfn_to_page(pfn);
1637
1638 /* Free a large naturally-aligned chunk if possible */
1639 if (nr_pages == pageblock_nr_pages &&
1640 (pfn & (pageblock_nr_pages - 1)) == 0) {
1641 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1642 __free_pages_core(page, pageblock_order);
1643 return;
1644 }
1645
1646 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1647 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1648 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1649 __free_pages_core(page, 0);
1650 }
1651 }
1652
1653 /* Completion tracking for deferred_init_memmap() threads */
1654 static atomic_t pgdat_init_n_undone __initdata;
1655 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1656
1657 static inline void __init pgdat_init_report_one_done(void)
1658 {
1659 if (atomic_dec_and_test(&pgdat_init_n_undone))
1660 complete(&pgdat_init_all_done_comp);
1661 }
1662
1663 /*
1664 * Returns true if page needs to be initialized or freed to buddy allocator.
1665 *
1666 * First we check if pfn is valid on architectures where it is possible to have
1667 * holes within pageblock_nr_pages. On systems where it is not possible, this
1668 * function is optimized out.
1669 *
1670 * Then, we check if a current large page is valid by only checking the validity
1671 * of the head pfn.
1672 */
1673 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1674 {
1675 if (!pfn_valid_within(pfn))
1676 return false;
1677 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1678 return false;
1679 return true;
1680 }
1681
1682 /*
1683 * Free pages to buddy allocator. Try to free aligned pages in
1684 * pageblock_nr_pages sizes.
1685 */
1686 static void __init deferred_free_pages(unsigned long pfn,
1687 unsigned long end_pfn)
1688 {
1689 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1690 unsigned long nr_free = 0;
1691
1692 for (; pfn < end_pfn; pfn++) {
1693 if (!deferred_pfn_valid(pfn)) {
1694 deferred_free_range(pfn - nr_free, nr_free);
1695 nr_free = 0;
1696 } else if (!(pfn & nr_pgmask)) {
1697 deferred_free_range(pfn - nr_free, nr_free);
1698 nr_free = 1;
1699 } else {
1700 nr_free++;
1701 }
1702 }
1703 /* Free the last block of pages to allocator */
1704 deferred_free_range(pfn - nr_free, nr_free);
1705 }
1706
1707 /*
1708 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1709 * by performing it only once every pageblock_nr_pages.
1710 * Return number of pages initialized.
1711 */
1712 static unsigned long __init deferred_init_pages(struct zone *zone,
1713 unsigned long pfn,
1714 unsigned long end_pfn)
1715 {
1716 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1717 int nid = zone_to_nid(zone);
1718 unsigned long nr_pages = 0;
1719 int zid = zone_idx(zone);
1720 struct page *page = NULL;
1721
1722 for (; pfn < end_pfn; pfn++) {
1723 if (!deferred_pfn_valid(pfn)) {
1724 page = NULL;
1725 continue;
1726 } else if (!page || !(pfn & nr_pgmask)) {
1727 page = pfn_to_page(pfn);
1728 } else {
1729 page++;
1730 }
1731 __init_single_page(page, pfn, zid, nid);
1732 nr_pages++;
1733 }
1734 return (nr_pages);
1735 }
1736
1737 /*
1738 * This function is meant to pre-load the iterator for the zone init.
1739 * Specifically it walks through the ranges until we are caught up to the
1740 * first_init_pfn value and exits there. If we never encounter the value we
1741 * return false indicating there are no valid ranges left.
1742 */
1743 static bool __init
1744 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1745 unsigned long *spfn, unsigned long *epfn,
1746 unsigned long first_init_pfn)
1747 {
1748 u64 j;
1749
1750 /*
1751 * Start out by walking through the ranges in this zone that have
1752 * already been initialized. We don't need to do anything with them
1753 * so we just need to flush them out of the system.
1754 */
1755 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1756 if (*epfn <= first_init_pfn)
1757 continue;
1758 if (*spfn < first_init_pfn)
1759 *spfn = first_init_pfn;
1760 *i = j;
1761 return true;
1762 }
1763
1764 return false;
1765 }
1766
1767 /*
1768 * Initialize and free pages. We do it in two loops: first we initialize
1769 * struct page, then free to buddy allocator, because while we are
1770 * freeing pages we can access pages that are ahead (computing buddy
1771 * page in __free_one_page()).
1772 *
1773 * In order to try and keep some memory in the cache we have the loop
1774 * broken along max page order boundaries. This way we will not cause
1775 * any issues with the buddy page computation.
1776 */
1777 static unsigned long __init
1778 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1779 unsigned long *end_pfn)
1780 {
1781 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1782 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1783 unsigned long nr_pages = 0;
1784 u64 j = *i;
1785
1786 /* First we loop through and initialize the page values */
1787 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1788 unsigned long t;
1789
1790 if (mo_pfn <= *start_pfn)
1791 break;
1792
1793 t = min(mo_pfn, *end_pfn);
1794 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1795
1796 if (mo_pfn < *end_pfn) {
1797 *start_pfn = mo_pfn;
1798 break;
1799 }
1800 }
1801
1802 /* Reset values and now loop through freeing pages as needed */
1803 swap(j, *i);
1804
1805 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1806 unsigned long t;
1807
1808 if (mo_pfn <= spfn)
1809 break;
1810
1811 t = min(mo_pfn, epfn);
1812 deferred_free_pages(spfn, t);
1813
1814 if (mo_pfn <= epfn)
1815 break;
1816 }
1817
1818 return nr_pages;
1819 }
1820
1821 static void __init
1822 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1823 void *arg)
1824 {
1825 unsigned long spfn, epfn;
1826 struct zone *zone = arg;
1827 u64 i;
1828
1829 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1830
1831 /*
1832 * Initialize and free pages in MAX_ORDER sized increments so that we
1833 * can avoid introducing any issues with the buddy allocator.
1834 */
1835 while (spfn < end_pfn) {
1836 deferred_init_maxorder(&i, zone, &spfn, &epfn);
1837 cond_resched();
1838 }
1839 }
1840
1841 /* An arch may override for more concurrency. */
1842 __weak int __init
1843 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1844 {
1845 return 1;
1846 }
1847
1848 /* Initialise remaining memory on a node */
1849 static int __init deferred_init_memmap(void *data)
1850 {
1851 pg_data_t *pgdat = data;
1852 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1853 unsigned long spfn = 0, epfn = 0;
1854 unsigned long first_init_pfn, flags;
1855 unsigned long start = jiffies;
1856 struct zone *zone;
1857 int zid, max_threads;
1858 u64 i;
1859
1860 /* Bind memory initialisation thread to a local node if possible */
1861 if (!cpumask_empty(cpumask))
1862 set_cpus_allowed_ptr(current, cpumask);
1863
1864 pgdat_resize_lock(pgdat, &flags);
1865 first_init_pfn = pgdat->first_deferred_pfn;
1866 if (first_init_pfn == ULONG_MAX) {
1867 pgdat_resize_unlock(pgdat, &flags);
1868 pgdat_init_report_one_done();
1869 return 0;
1870 }
1871
1872 /* Sanity check boundaries */
1873 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1874 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1875 pgdat->first_deferred_pfn = ULONG_MAX;
1876
1877 /*
1878 * Once we unlock here, the zone cannot be grown anymore, thus if an
1879 * interrupt thread must allocate this early in boot, zone must be
1880 * pre-grown prior to start of deferred page initialization.
1881 */
1882 pgdat_resize_unlock(pgdat, &flags);
1883
1884 /* Only the highest zone is deferred so find it */
1885 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1886 zone = pgdat->node_zones + zid;
1887 if (first_init_pfn < zone_end_pfn(zone))
1888 break;
1889 }
1890
1891 /* If the zone is empty somebody else may have cleared out the zone */
1892 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1893 first_init_pfn))
1894 goto zone_empty;
1895
1896 max_threads = deferred_page_init_max_threads(cpumask);
1897
1898 while (spfn < epfn) {
1899 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1900 struct padata_mt_job job = {
1901 .thread_fn = deferred_init_memmap_chunk,
1902 .fn_arg = zone,
1903 .start = spfn,
1904 .size = epfn_align - spfn,
1905 .align = PAGES_PER_SECTION,
1906 .min_chunk = PAGES_PER_SECTION,
1907 .max_threads = max_threads,
1908 };
1909
1910 padata_do_multithreaded(&job);
1911 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1912 epfn_align);
1913 }
1914 zone_empty:
1915 /* Sanity check that the next zone really is unpopulated */
1916 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1917
1918 pr_info("node %d deferred pages initialised in %ums\n",
1919 pgdat->node_id, jiffies_to_msecs(jiffies - start));
1920
1921 pgdat_init_report_one_done();
1922 return 0;
1923 }
1924
1925 /*
1926 * If this zone has deferred pages, try to grow it by initializing enough
1927 * deferred pages to satisfy the allocation specified by order, rounded up to
1928 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1929 * of SECTION_SIZE bytes by initializing struct pages in increments of
1930 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1931 *
1932 * Return true when zone was grown, otherwise return false. We return true even
1933 * when we grow less than requested, to let the caller decide if there are
1934 * enough pages to satisfy the allocation.
1935 *
1936 * Note: We use noinline because this function is needed only during boot, and
1937 * it is called from a __ref function _deferred_grow_zone. This way we are
1938 * making sure that it is not inlined into permanent text section.
1939 */
1940 static noinline bool __init
1941 deferred_grow_zone(struct zone *zone, unsigned int order)
1942 {
1943 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1944 pg_data_t *pgdat = zone->zone_pgdat;
1945 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1946 unsigned long spfn, epfn, flags;
1947 unsigned long nr_pages = 0;
1948 u64 i;
1949
1950 /* Only the last zone may have deferred pages */
1951 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1952 return false;
1953
1954 pgdat_resize_lock(pgdat, &flags);
1955
1956 /*
1957 * If someone grew this zone while we were waiting for spinlock, return
1958 * true, as there might be enough pages already.
1959 */
1960 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1961 pgdat_resize_unlock(pgdat, &flags);
1962 return true;
1963 }
1964
1965 /* If the zone is empty somebody else may have cleared out the zone */
1966 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1967 first_deferred_pfn)) {
1968 pgdat->first_deferred_pfn = ULONG_MAX;
1969 pgdat_resize_unlock(pgdat, &flags);
1970 /* Retry only once. */
1971 return first_deferred_pfn != ULONG_MAX;
1972 }
1973
1974 /*
1975 * Initialize and free pages in MAX_ORDER sized increments so
1976 * that we can avoid introducing any issues with the buddy
1977 * allocator.
1978 */
1979 while (spfn < epfn) {
1980 /* update our first deferred PFN for this section */
1981 first_deferred_pfn = spfn;
1982
1983 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1984 touch_nmi_watchdog();
1985
1986 /* We should only stop along section boundaries */
1987 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1988 continue;
1989
1990 /* If our quota has been met we can stop here */
1991 if (nr_pages >= nr_pages_needed)
1992 break;
1993 }
1994
1995 pgdat->first_deferred_pfn = spfn;
1996 pgdat_resize_unlock(pgdat, &flags);
1997
1998 return nr_pages > 0;
1999 }
2000
2001 /*
2002 * deferred_grow_zone() is __init, but it is called from
2003 * get_page_from_freelist() during early boot until deferred_pages permanently
2004 * disables this call. This is why we have refdata wrapper to avoid warning,
2005 * and to ensure that the function body gets unloaded.
2006 */
2007 static bool __ref
2008 _deferred_grow_zone(struct zone *zone, unsigned int order)
2009 {
2010 return deferred_grow_zone(zone, order);
2011 }
2012
2013 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2014
2015 void __init page_alloc_init_late(void)
2016 {
2017 struct zone *zone;
2018 int nid;
2019
2020 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2021
2022 /* There will be num_node_state(N_MEMORY) threads */
2023 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2024 for_each_node_state(nid, N_MEMORY) {
2025 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2026 }
2027
2028 /* Block until all are initialised */
2029 wait_for_completion(&pgdat_init_all_done_comp);
2030
2031 /*
2032 * The number of managed pages has changed due to the initialisation
2033 * so the pcpu batch and high limits needs to be updated or the limits
2034 * will be artificially small.
2035 */
2036 for_each_populated_zone(zone)
2037 zone_pcp_update(zone);
2038
2039 /*
2040 * We initialized the rest of the deferred pages. Permanently disable
2041 * on-demand struct page initialization.
2042 */
2043 static_branch_disable(&deferred_pages);
2044
2045 /* Reinit limits that are based on free pages after the kernel is up */
2046 files_maxfiles_init();
2047 #endif
2048
2049 /* Discard memblock private memory */
2050 memblock_discard();
2051
2052 for_each_node_state(nid, N_MEMORY)
2053 shuffle_free_memory(NODE_DATA(nid));
2054
2055 for_each_populated_zone(zone)
2056 set_zone_contiguous(zone);
2057 }
2058
2059 #ifdef CONFIG_CMA
2060 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2061 void __init init_cma_reserved_pageblock(struct page *page)
2062 {
2063 unsigned i = pageblock_nr_pages;
2064 struct page *p = page;
2065
2066 do {
2067 __ClearPageReserved(p);
2068 set_page_count(p, 0);
2069 } while (++p, --i);
2070
2071 set_pageblock_migratetype(page, MIGRATE_CMA);
2072
2073 if (pageblock_order >= MAX_ORDER) {
2074 i = pageblock_nr_pages;
2075 p = page;
2076 do {
2077 set_page_refcounted(p);
2078 __free_pages(p, MAX_ORDER - 1);
2079 p += MAX_ORDER_NR_PAGES;
2080 } while (i -= MAX_ORDER_NR_PAGES);
2081 } else {
2082 set_page_refcounted(page);
2083 __free_pages(page, pageblock_order);
2084 }
2085
2086 adjust_managed_page_count(page, pageblock_nr_pages);
2087 }
2088 #endif
2089
2090 /*
2091 * The order of subdivision here is critical for the IO subsystem.
2092 * Please do not alter this order without good reasons and regression
2093 * testing. Specifically, as large blocks of memory are subdivided,
2094 * the order in which smaller blocks are delivered depends on the order
2095 * they're subdivided in this function. This is the primary factor
2096 * influencing the order in which pages are delivered to the IO
2097 * subsystem according to empirical testing, and this is also justified
2098 * by considering the behavior of a buddy system containing a single
2099 * large block of memory acted on by a series of small allocations.
2100 * This behavior is a critical factor in sglist merging's success.
2101 *
2102 * -- nyc
2103 */
2104 static inline void expand(struct zone *zone, struct page *page,
2105 int low, int high, int migratetype)
2106 {
2107 unsigned long size = 1 << high;
2108
2109 while (high > low) {
2110 high--;
2111 size >>= 1;
2112 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2113
2114 /*
2115 * Mark as guard pages (or page), that will allow to
2116 * merge back to allocator when buddy will be freed.
2117 * Corresponding page table entries will not be touched,
2118 * pages will stay not present in virtual address space
2119 */
2120 if (set_page_guard(zone, &page[size], high, migratetype))
2121 continue;
2122
2123 add_to_free_list(&page[size], zone, high, migratetype);
2124 set_page_order(&page[size], high);
2125 }
2126 }
2127
2128 static void check_new_page_bad(struct page *page)
2129 {
2130 if (unlikely(page->flags & __PG_HWPOISON)) {
2131 /* Don't complain about hwpoisoned pages */
2132 page_mapcount_reset(page); /* remove PageBuddy */
2133 return;
2134 }
2135
2136 bad_page(page,
2137 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2138 }
2139
2140 /*
2141 * This page is about to be returned from the page allocator
2142 */
2143 static inline int check_new_page(struct page *page)
2144 {
2145 if (likely(page_expected_state(page,
2146 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2147 return 0;
2148
2149 check_new_page_bad(page);
2150 return 1;
2151 }
2152
2153 static inline bool free_pages_prezeroed(void)
2154 {
2155 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2156 page_poisoning_enabled()) || want_init_on_free();
2157 }
2158
2159 #ifdef CONFIG_DEBUG_VM
2160 /*
2161 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2162 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2163 * also checked when pcp lists are refilled from the free lists.
2164 */
2165 static inline bool check_pcp_refill(struct page *page)
2166 {
2167 if (debug_pagealloc_enabled_static())
2168 return check_new_page(page);
2169 else
2170 return false;
2171 }
2172
2173 static inline bool check_new_pcp(struct page *page)
2174 {
2175 return check_new_page(page);
2176 }
2177 #else
2178 /*
2179 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2180 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2181 * enabled, they are also checked when being allocated from the pcp lists.
2182 */
2183 static inline bool check_pcp_refill(struct page *page)
2184 {
2185 return check_new_page(page);
2186 }
2187 static inline bool check_new_pcp(struct page *page)
2188 {
2189 if (debug_pagealloc_enabled_static())
2190 return check_new_page(page);
2191 else
2192 return false;
2193 }
2194 #endif /* CONFIG_DEBUG_VM */
2195
2196 static bool check_new_pages(struct page *page, unsigned int order)
2197 {
2198 int i;
2199 for (i = 0; i < (1 << order); i++) {
2200 struct page *p = page + i;
2201
2202 if (unlikely(check_new_page(p)))
2203 return true;
2204 }
2205
2206 return false;
2207 }
2208
2209 inline void post_alloc_hook(struct page *page, unsigned int order,
2210 gfp_t gfp_flags)
2211 {
2212 set_page_private(page, 0);
2213 set_page_refcounted(page);
2214
2215 arch_alloc_page(page, order);
2216 if (debug_pagealloc_enabled_static())
2217 kernel_map_pages(page, 1 << order, 1);
2218 kasan_alloc_pages(page, order);
2219 kernel_poison_pages(page, 1 << order, 1);
2220 set_page_owner(page, order, gfp_flags);
2221 }
2222
2223 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2224 unsigned int alloc_flags)
2225 {
2226 post_alloc_hook(page, order, gfp_flags);
2227
2228 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2229 kernel_init_free_pages(page, 1 << order);
2230
2231 if (order && (gfp_flags & __GFP_COMP))
2232 prep_compound_page(page, order);
2233
2234 /*
2235 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2236 * allocate the page. The expectation is that the caller is taking
2237 * steps that will free more memory. The caller should avoid the page
2238 * being used for !PFMEMALLOC purposes.
2239 */
2240 if (alloc_flags & ALLOC_NO_WATERMARKS)
2241 set_page_pfmemalloc(page);
2242 else
2243 clear_page_pfmemalloc(page);
2244 }
2245
2246 /*
2247 * Go through the free lists for the given migratetype and remove
2248 * the smallest available page from the freelists
2249 */
2250 static __always_inline
2251 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2252 int migratetype)
2253 {
2254 unsigned int current_order;
2255 struct free_area *area;
2256 struct page *page;
2257
2258 /* Find a page of the appropriate size in the preferred list */
2259 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2260 area = &(zone->free_area[current_order]);
2261 page = get_page_from_free_area(area, migratetype);
2262 if (!page)
2263 continue;
2264 del_page_from_free_list(page, zone, current_order);
2265 expand(zone, page, order, current_order, migratetype);
2266 set_pcppage_migratetype(page, migratetype);
2267 return page;
2268 }
2269
2270 return NULL;
2271 }
2272
2273
2274 /*
2275 * This array describes the order lists are fallen back to when
2276 * the free lists for the desirable migrate type are depleted
2277 */
2278 static int fallbacks[MIGRATE_TYPES][3] = {
2279 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2280 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2281 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2282 #ifdef CONFIG_CMA
2283 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2284 #endif
2285 #ifdef CONFIG_MEMORY_ISOLATION
2286 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2287 #endif
2288 };
2289
2290 #ifdef CONFIG_CMA
2291 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2292 unsigned int order)
2293 {
2294 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2295 }
2296 #else
2297 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2298 unsigned int order) { return NULL; }
2299 #endif
2300
2301 /*
2302 * Move the free pages in a range to the free lists of the requested type.
2303 * Note that start_page and end_pages are not aligned on a pageblock
2304 * boundary. If alignment is required, use move_freepages_block()
2305 */
2306 static int move_freepages(struct zone *zone,
2307 struct page *start_page, struct page *end_page,
2308 int migratetype, int *num_movable)
2309 {
2310 struct page *page;
2311 unsigned int order;
2312 int pages_moved = 0;
2313
2314 for (page = start_page; page <= end_page;) {
2315 if (!pfn_valid_within(page_to_pfn(page))) {
2316 page++;
2317 continue;
2318 }
2319
2320 if (!PageBuddy(page)) {
2321 /*
2322 * We assume that pages that could be isolated for
2323 * migration are movable. But we don't actually try
2324 * isolating, as that would be expensive.
2325 */
2326 if (num_movable &&
2327 (PageLRU(page) || __PageMovable(page)))
2328 (*num_movable)++;
2329
2330 page++;
2331 continue;
2332 }
2333
2334 /* Make sure we are not inadvertently changing nodes */
2335 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2336 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2337
2338 order = page_order(page);
2339 move_to_free_list(page, zone, order, migratetype);
2340 page += 1 << order;
2341 pages_moved += 1 << order;
2342 }
2343
2344 return pages_moved;
2345 }
2346
2347 int move_freepages_block(struct zone *zone, struct page *page,
2348 int migratetype, int *num_movable)
2349 {
2350 unsigned long start_pfn, end_pfn;
2351 struct page *start_page, *end_page;
2352
2353 if (num_movable)
2354 *num_movable = 0;
2355
2356 start_pfn = page_to_pfn(page);
2357 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2358 start_page = pfn_to_page(start_pfn);
2359 end_page = start_page + pageblock_nr_pages - 1;
2360 end_pfn = start_pfn + pageblock_nr_pages - 1;
2361
2362 /* Do not cross zone boundaries */
2363 if (!zone_spans_pfn(zone, start_pfn))
2364 start_page = page;
2365 if (!zone_spans_pfn(zone, end_pfn))
2366 return 0;
2367
2368 return move_freepages(zone, start_page, end_page, migratetype,
2369 num_movable);
2370 }
2371
2372 static void change_pageblock_range(struct page *pageblock_page,
2373 int start_order, int migratetype)
2374 {
2375 int nr_pageblocks = 1 << (start_order - pageblock_order);
2376
2377 while (nr_pageblocks--) {
2378 set_pageblock_migratetype(pageblock_page, migratetype);
2379 pageblock_page += pageblock_nr_pages;
2380 }
2381 }
2382
2383 /*
2384 * When we are falling back to another migratetype during allocation, try to
2385 * steal extra free pages from the same pageblocks to satisfy further
2386 * allocations, instead of polluting multiple pageblocks.
2387 *
2388 * If we are stealing a relatively large buddy page, it is likely there will
2389 * be more free pages in the pageblock, so try to steal them all. For
2390 * reclaimable and unmovable allocations, we steal regardless of page size,
2391 * as fragmentation caused by those allocations polluting movable pageblocks
2392 * is worse than movable allocations stealing from unmovable and reclaimable
2393 * pageblocks.
2394 */
2395 static bool can_steal_fallback(unsigned int order, int start_mt)
2396 {
2397 /*
2398 * Leaving this order check is intended, although there is
2399 * relaxed order check in next check. The reason is that
2400 * we can actually steal whole pageblock if this condition met,
2401 * but, below check doesn't guarantee it and that is just heuristic
2402 * so could be changed anytime.
2403 */
2404 if (order >= pageblock_order)
2405 return true;
2406
2407 if (order >= pageblock_order / 2 ||
2408 start_mt == MIGRATE_RECLAIMABLE ||
2409 start_mt == MIGRATE_UNMOVABLE ||
2410 page_group_by_mobility_disabled)
2411 return true;
2412
2413 return false;
2414 }
2415
2416 static inline void boost_watermark(struct zone *zone)
2417 {
2418 unsigned long max_boost;
2419
2420 if (!watermark_boost_factor)
2421 return;
2422 /*
2423 * Don't bother in zones that are unlikely to produce results.
2424 * On small machines, including kdump capture kernels running
2425 * in a small area, boosting the watermark can cause an out of
2426 * memory situation immediately.
2427 */
2428 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2429 return;
2430
2431 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2432 watermark_boost_factor, 10000);
2433
2434 /*
2435 * high watermark may be uninitialised if fragmentation occurs
2436 * very early in boot so do not boost. We do not fall
2437 * through and boost by pageblock_nr_pages as failing
2438 * allocations that early means that reclaim is not going
2439 * to help and it may even be impossible to reclaim the
2440 * boosted watermark resulting in a hang.
2441 */
2442 if (!max_boost)
2443 return;
2444
2445 max_boost = max(pageblock_nr_pages, max_boost);
2446
2447 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2448 max_boost);
2449 }
2450
2451 /*
2452 * This function implements actual steal behaviour. If order is large enough,
2453 * we can steal whole pageblock. If not, we first move freepages in this
2454 * pageblock to our migratetype and determine how many already-allocated pages
2455 * are there in the pageblock with a compatible migratetype. If at least half
2456 * of pages are free or compatible, we can change migratetype of the pageblock
2457 * itself, so pages freed in the future will be put on the correct free list.
2458 */
2459 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2460 unsigned int alloc_flags, int start_type, bool whole_block)
2461 {
2462 unsigned int current_order = page_order(page);
2463 int free_pages, movable_pages, alike_pages;
2464 int old_block_type;
2465
2466 old_block_type = get_pageblock_migratetype(page);
2467
2468 /*
2469 * This can happen due to races and we want to prevent broken
2470 * highatomic accounting.
2471 */
2472 if (is_migrate_highatomic(old_block_type))
2473 goto single_page;
2474
2475 /* Take ownership for orders >= pageblock_order */
2476 if (current_order >= pageblock_order) {
2477 change_pageblock_range(page, current_order, start_type);
2478 goto single_page;
2479 }
2480
2481 /*
2482 * Boost watermarks to increase reclaim pressure to reduce the
2483 * likelihood of future fallbacks. Wake kswapd now as the node
2484 * may be balanced overall and kswapd will not wake naturally.
2485 */
2486 boost_watermark(zone);
2487 if (alloc_flags & ALLOC_KSWAPD)
2488 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2489
2490 /* We are not allowed to try stealing from the whole block */
2491 if (!whole_block)
2492 goto single_page;
2493
2494 free_pages = move_freepages_block(zone, page, start_type,
2495 &movable_pages);
2496 /*
2497 * Determine how many pages are compatible with our allocation.
2498 * For movable allocation, it's the number of movable pages which
2499 * we just obtained. For other types it's a bit more tricky.
2500 */
2501 if (start_type == MIGRATE_MOVABLE) {
2502 alike_pages = movable_pages;
2503 } else {
2504 /*
2505 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2506 * to MOVABLE pageblock, consider all non-movable pages as
2507 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2508 * vice versa, be conservative since we can't distinguish the
2509 * exact migratetype of non-movable pages.
2510 */
2511 if (old_block_type == MIGRATE_MOVABLE)
2512 alike_pages = pageblock_nr_pages
2513 - (free_pages + movable_pages);
2514 else
2515 alike_pages = 0;
2516 }
2517
2518 /* moving whole block can fail due to zone boundary conditions */
2519 if (!free_pages)
2520 goto single_page;
2521
2522 /*
2523 * If a sufficient number of pages in the block are either free or of
2524 * comparable migratability as our allocation, claim the whole block.
2525 */
2526 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2527 page_group_by_mobility_disabled)
2528 set_pageblock_migratetype(page, start_type);
2529
2530 return;
2531
2532 single_page:
2533 move_to_free_list(page, zone, current_order, start_type);
2534 }
2535
2536 /*
2537 * Check whether there is a suitable fallback freepage with requested order.
2538 * If only_stealable is true, this function returns fallback_mt only if
2539 * we can steal other freepages all together. This would help to reduce
2540 * fragmentation due to mixed migratetype pages in one pageblock.
2541 */
2542 int find_suitable_fallback(struct free_area *area, unsigned int order,
2543 int migratetype, bool only_stealable, bool *can_steal)
2544 {
2545 int i;
2546 int fallback_mt;
2547
2548 if (area->nr_free == 0)
2549 return -1;
2550
2551 *can_steal = false;
2552 for (i = 0;; i++) {
2553 fallback_mt = fallbacks[migratetype][i];
2554 if (fallback_mt == MIGRATE_TYPES)
2555 break;
2556
2557 if (free_area_empty(area, fallback_mt))
2558 continue;
2559
2560 if (can_steal_fallback(order, migratetype))
2561 *can_steal = true;
2562
2563 if (!only_stealable)
2564 return fallback_mt;
2565
2566 if (*can_steal)
2567 return fallback_mt;
2568 }
2569
2570 return -1;
2571 }
2572
2573 /*
2574 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2575 * there are no empty page blocks that contain a page with a suitable order
2576 */
2577 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2578 unsigned int alloc_order)
2579 {
2580 int mt;
2581 unsigned long max_managed, flags;
2582
2583 /*
2584 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2585 * Check is race-prone but harmless.
2586 */
2587 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2588 if (zone->nr_reserved_highatomic >= max_managed)
2589 return;
2590
2591 spin_lock_irqsave(&zone->lock, flags);
2592
2593 /* Recheck the nr_reserved_highatomic limit under the lock */
2594 if (zone->nr_reserved_highatomic >= max_managed)
2595 goto out_unlock;
2596
2597 /* Yoink! */
2598 mt = get_pageblock_migratetype(page);
2599 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2600 && !is_migrate_cma(mt)) {
2601 zone->nr_reserved_highatomic += pageblock_nr_pages;
2602 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2603 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2604 }
2605
2606 out_unlock:
2607 spin_unlock_irqrestore(&zone->lock, flags);
2608 }
2609
2610 /*
2611 * Used when an allocation is about to fail under memory pressure. This
2612 * potentially hurts the reliability of high-order allocations when under
2613 * intense memory pressure but failed atomic allocations should be easier
2614 * to recover from than an OOM.
2615 *
2616 * If @force is true, try to unreserve a pageblock even though highatomic
2617 * pageblock is exhausted.
2618 */
2619 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2620 bool force)
2621 {
2622 struct zonelist *zonelist = ac->zonelist;
2623 unsigned long flags;
2624 struct zoneref *z;
2625 struct zone *zone;
2626 struct page *page;
2627 int order;
2628 bool ret;
2629
2630 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2631 ac->nodemask) {
2632 /*
2633 * Preserve at least one pageblock unless memory pressure
2634 * is really high.
2635 */
2636 if (!force && zone->nr_reserved_highatomic <=
2637 pageblock_nr_pages)
2638 continue;
2639
2640 spin_lock_irqsave(&zone->lock, flags);
2641 for (order = 0; order < MAX_ORDER; order++) {
2642 struct free_area *area = &(zone->free_area[order]);
2643
2644 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2645 if (!page)
2646 continue;
2647
2648 /*
2649 * In page freeing path, migratetype change is racy so
2650 * we can counter several free pages in a pageblock
2651 * in this loop althoug we changed the pageblock type
2652 * from highatomic to ac->migratetype. So we should
2653 * adjust the count once.
2654 */
2655 if (is_migrate_highatomic_page(page)) {
2656 /*
2657 * It should never happen but changes to
2658 * locking could inadvertently allow a per-cpu
2659 * drain to add pages to MIGRATE_HIGHATOMIC
2660 * while unreserving so be safe and watch for
2661 * underflows.
2662 */
2663 zone->nr_reserved_highatomic -= min(
2664 pageblock_nr_pages,
2665 zone->nr_reserved_highatomic);
2666 }
2667
2668 /*
2669 * Convert to ac->migratetype and avoid the normal
2670 * pageblock stealing heuristics. Minimally, the caller
2671 * is doing the work and needs the pages. More
2672 * importantly, if the block was always converted to
2673 * MIGRATE_UNMOVABLE or another type then the number
2674 * of pageblocks that cannot be completely freed
2675 * may increase.
2676 */
2677 set_pageblock_migratetype(page, ac->migratetype);
2678 ret = move_freepages_block(zone, page, ac->migratetype,
2679 NULL);
2680 if (ret) {
2681 spin_unlock_irqrestore(&zone->lock, flags);
2682 return ret;
2683 }
2684 }
2685 spin_unlock_irqrestore(&zone->lock, flags);
2686 }
2687
2688 return false;
2689 }
2690
2691 /*
2692 * Try finding a free buddy page on the fallback list and put it on the free
2693 * list of requested migratetype, possibly along with other pages from the same
2694 * block, depending on fragmentation avoidance heuristics. Returns true if
2695 * fallback was found so that __rmqueue_smallest() can grab it.
2696 *
2697 * The use of signed ints for order and current_order is a deliberate
2698 * deviation from the rest of this file, to make the for loop
2699 * condition simpler.
2700 */
2701 static __always_inline bool
2702 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2703 unsigned int alloc_flags)
2704 {
2705 struct free_area *area;
2706 int current_order;
2707 int min_order = order;
2708 struct page *page;
2709 int fallback_mt;
2710 bool can_steal;
2711
2712 /*
2713 * Do not steal pages from freelists belonging to other pageblocks
2714 * i.e. orders < pageblock_order. If there are no local zones free,
2715 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2716 */
2717 if (alloc_flags & ALLOC_NOFRAGMENT)
2718 min_order = pageblock_order;
2719
2720 /*
2721 * Find the largest available free page in the other list. This roughly
2722 * approximates finding the pageblock with the most free pages, which
2723 * would be too costly to do exactly.
2724 */
2725 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2726 --current_order) {
2727 area = &(zone->free_area[current_order]);
2728 fallback_mt = find_suitable_fallback(area, current_order,
2729 start_migratetype, false, &can_steal);
2730 if (fallback_mt == -1)
2731 continue;
2732
2733 /*
2734 * We cannot steal all free pages from the pageblock and the
2735 * requested migratetype is movable. In that case it's better to
2736 * steal and split the smallest available page instead of the
2737 * largest available page, because even if the next movable
2738 * allocation falls back into a different pageblock than this
2739 * one, it won't cause permanent fragmentation.
2740 */
2741 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2742 && current_order > order)
2743 goto find_smallest;
2744
2745 goto do_steal;
2746 }
2747
2748 return false;
2749
2750 find_smallest:
2751 for (current_order = order; current_order < MAX_ORDER;
2752 current_order++) {
2753 area = &(zone->free_area[current_order]);
2754 fallback_mt = find_suitable_fallback(area, current_order,
2755 start_migratetype, false, &can_steal);
2756 if (fallback_mt != -1)
2757 break;
2758 }
2759
2760 /*
2761 * This should not happen - we already found a suitable fallback
2762 * when looking for the largest page.
2763 */
2764 VM_BUG_ON(current_order == MAX_ORDER);
2765
2766 do_steal:
2767 page = get_page_from_free_area(area, fallback_mt);
2768
2769 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2770 can_steal);
2771
2772 trace_mm_page_alloc_extfrag(page, order, current_order,
2773 start_migratetype, fallback_mt);
2774
2775 return true;
2776
2777 }
2778
2779 /*
2780 * Do the hard work of removing an element from the buddy allocator.
2781 * Call me with the zone->lock already held.
2782 */
2783 static __always_inline struct page *
2784 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2785 unsigned int alloc_flags)
2786 {
2787 struct page *page;
2788
2789 #ifdef CONFIG_CMA
2790 /*
2791 * Balance movable allocations between regular and CMA areas by
2792 * allocating from CMA when over half of the zone's free memory
2793 * is in the CMA area.
2794 */
2795 if (alloc_flags & ALLOC_CMA &&
2796 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2797 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2798 page = __rmqueue_cma_fallback(zone, order);
2799 if (page)
2800 return page;
2801 }
2802 #endif
2803 retry:
2804 page = __rmqueue_smallest(zone, order, migratetype);
2805 if (unlikely(!page)) {
2806 if (alloc_flags & ALLOC_CMA)
2807 page = __rmqueue_cma_fallback(zone, order);
2808
2809 if (!page && __rmqueue_fallback(zone, order, migratetype,
2810 alloc_flags))
2811 goto retry;
2812 }
2813
2814 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2815 return page;
2816 }
2817
2818 /*
2819 * Obtain a specified number of elements from the buddy allocator, all under
2820 * a single hold of the lock, for efficiency. Add them to the supplied list.
2821 * Returns the number of new pages which were placed at *list.
2822 */
2823 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2824 unsigned long count, struct list_head *list,
2825 int migratetype, unsigned int alloc_flags)
2826 {
2827 int i, alloced = 0;
2828
2829 spin_lock(&zone->lock);
2830 for (i = 0; i < count; ++i) {
2831 struct page *page = __rmqueue(zone, order, migratetype,
2832 alloc_flags);
2833 if (unlikely(page == NULL))
2834 break;
2835
2836 if (unlikely(check_pcp_refill(page)))
2837 continue;
2838
2839 /*
2840 * Split buddy pages returned by expand() are received here in
2841 * physical page order. The page is added to the tail of
2842 * caller's list. From the callers perspective, the linked list
2843 * is ordered by page number under some conditions. This is
2844 * useful for IO devices that can forward direction from the
2845 * head, thus also in the physical page order. This is useful
2846 * for IO devices that can merge IO requests if the physical
2847 * pages are ordered properly.
2848 */
2849 list_add_tail(&page->lru, list);
2850 alloced++;
2851 if (is_migrate_cma(get_pcppage_migratetype(page)))
2852 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2853 -(1 << order));
2854 }
2855
2856 /*
2857 * i pages were removed from the buddy list even if some leak due
2858 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2859 * on i. Do not confuse with 'alloced' which is the number of
2860 * pages added to the pcp list.
2861 */
2862 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2863 spin_unlock(&zone->lock);
2864 return alloced;
2865 }
2866
2867 #ifdef CONFIG_NUMA
2868 /*
2869 * Called from the vmstat counter updater to drain pagesets of this
2870 * currently executing processor on remote nodes after they have
2871 * expired.
2872 *
2873 * Note that this function must be called with the thread pinned to
2874 * a single processor.
2875 */
2876 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2877 {
2878 unsigned long flags;
2879 int to_drain, batch;
2880
2881 local_irq_save(flags);
2882 batch = READ_ONCE(pcp->batch);
2883 to_drain = min(pcp->count, batch);
2884 if (to_drain > 0)
2885 free_pcppages_bulk(zone, to_drain, pcp);
2886 local_irq_restore(flags);
2887 }
2888 #endif
2889
2890 /*
2891 * Drain pcplists of the indicated processor and zone.
2892 *
2893 * The processor must either be the current processor and the
2894 * thread pinned to the current processor or a processor that
2895 * is not online.
2896 */
2897 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2898 {
2899 unsigned long flags;
2900 struct per_cpu_pageset *pset;
2901 struct per_cpu_pages *pcp;
2902
2903 local_irq_save(flags);
2904 pset = per_cpu_ptr(zone->pageset, cpu);
2905
2906 pcp = &pset->pcp;
2907 if (pcp->count)
2908 free_pcppages_bulk(zone, pcp->count, pcp);
2909 local_irq_restore(flags);
2910 }
2911
2912 /*
2913 * Drain pcplists of all zones on the indicated processor.
2914 *
2915 * The processor must either be the current processor and the
2916 * thread pinned to the current processor or a processor that
2917 * is not online.
2918 */
2919 static void drain_pages(unsigned int cpu)
2920 {
2921 struct zone *zone;
2922
2923 for_each_populated_zone(zone) {
2924 drain_pages_zone(cpu, zone);
2925 }
2926 }
2927
2928 /*
2929 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2930 *
2931 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2932 * the single zone's pages.
2933 */
2934 void drain_local_pages(struct zone *zone)
2935 {
2936 int cpu = smp_processor_id();
2937
2938 if (zone)
2939 drain_pages_zone(cpu, zone);
2940 else
2941 drain_pages(cpu);
2942 }
2943
2944 static void drain_local_pages_wq(struct work_struct *work)
2945 {
2946 struct pcpu_drain *drain;
2947
2948 drain = container_of(work, struct pcpu_drain, work);
2949
2950 /*
2951 * drain_all_pages doesn't use proper cpu hotplug protection so
2952 * we can race with cpu offline when the WQ can move this from
2953 * a cpu pinned worker to an unbound one. We can operate on a different
2954 * cpu which is allright but we also have to make sure to not move to
2955 * a different one.
2956 */
2957 preempt_disable();
2958 drain_local_pages(drain->zone);
2959 preempt_enable();
2960 }
2961
2962 /*
2963 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2964 *
2965 * When zone parameter is non-NULL, spill just the single zone's pages.
2966 *
2967 * Note that this can be extremely slow as the draining happens in a workqueue.
2968 */
2969 void drain_all_pages(struct zone *zone)
2970 {
2971 int cpu;
2972
2973 /*
2974 * Allocate in the BSS so we wont require allocation in
2975 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2976 */
2977 static cpumask_t cpus_with_pcps;
2978
2979 /*
2980 * Make sure nobody triggers this path before mm_percpu_wq is fully
2981 * initialized.
2982 */
2983 if (WARN_ON_ONCE(!mm_percpu_wq))
2984 return;
2985
2986 /*
2987 * Do not drain if one is already in progress unless it's specific to
2988 * a zone. Such callers are primarily CMA and memory hotplug and need
2989 * the drain to be complete when the call returns.
2990 */
2991 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2992 if (!zone)
2993 return;
2994 mutex_lock(&pcpu_drain_mutex);
2995 }
2996
2997 /*
2998 * We don't care about racing with CPU hotplug event
2999 * as offline notification will cause the notified
3000 * cpu to drain that CPU pcps and on_each_cpu_mask
3001 * disables preemption as part of its processing
3002 */
3003 for_each_online_cpu(cpu) {
3004 struct per_cpu_pageset *pcp;
3005 struct zone *z;
3006 bool has_pcps = false;
3007
3008 if (zone) {
3009 pcp = per_cpu_ptr(zone->pageset, cpu);
3010 if (pcp->pcp.count)
3011 has_pcps = true;
3012 } else {
3013 for_each_populated_zone(z) {
3014 pcp = per_cpu_ptr(z->pageset, cpu);
3015 if (pcp->pcp.count) {
3016 has_pcps = true;
3017 break;
3018 }
3019 }
3020 }
3021
3022 if (has_pcps)
3023 cpumask_set_cpu(cpu, &cpus_with_pcps);
3024 else
3025 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3026 }
3027
3028 for_each_cpu(cpu, &cpus_with_pcps) {
3029 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3030
3031 drain->zone = zone;
3032 INIT_WORK(&drain->work, drain_local_pages_wq);
3033 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3034 }
3035 for_each_cpu(cpu, &cpus_with_pcps)
3036 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3037
3038 mutex_unlock(&pcpu_drain_mutex);
3039 }
3040
3041 #ifdef CONFIG_HIBERNATION
3042
3043 /*
3044 * Touch the watchdog for every WD_PAGE_COUNT pages.
3045 */
3046 #define WD_PAGE_COUNT (128*1024)
3047
3048 void mark_free_pages(struct zone *zone)
3049 {
3050 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3051 unsigned long flags;
3052 unsigned int order, t;
3053 struct page *page;
3054
3055 if (zone_is_empty(zone))
3056 return;
3057
3058 spin_lock_irqsave(&zone->lock, flags);
3059
3060 max_zone_pfn = zone_end_pfn(zone);
3061 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3062 if (pfn_valid(pfn)) {
3063 page = pfn_to_page(pfn);
3064
3065 if (!--page_count) {
3066 touch_nmi_watchdog();
3067 page_count = WD_PAGE_COUNT;
3068 }
3069
3070 if (page_zone(page) != zone)
3071 continue;
3072
3073 if (!swsusp_page_is_forbidden(page))
3074 swsusp_unset_page_free(page);
3075 }
3076
3077 for_each_migratetype_order(order, t) {
3078 list_for_each_entry(page,
3079 &zone->free_area[order].free_list[t], lru) {
3080 unsigned long i;
3081
3082 pfn = page_to_pfn(page);
3083 for (i = 0; i < (1UL << order); i++) {
3084 if (!--page_count) {
3085 touch_nmi_watchdog();
3086 page_count = WD_PAGE_COUNT;
3087 }
3088 swsusp_set_page_free(pfn_to_page(pfn + i));
3089 }
3090 }
3091 }
3092 spin_unlock_irqrestore(&zone->lock, flags);
3093 }
3094 #endif /* CONFIG_PM */
3095
3096 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3097 {
3098 int migratetype;
3099
3100 if (!free_pcp_prepare(page))
3101 return false;
3102
3103 migratetype = get_pfnblock_migratetype(page, pfn);
3104 set_pcppage_migratetype(page, migratetype);
3105 return true;
3106 }
3107
3108 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3109 {
3110 struct zone *zone = page_zone(page);
3111 struct per_cpu_pages *pcp;
3112 int migratetype;
3113
3114 migratetype = get_pcppage_migratetype(page);
3115 __count_vm_event(PGFREE);
3116
3117 /*
3118 * We only track unmovable, reclaimable and movable on pcp lists.
3119 * Free ISOLATE pages back to the allocator because they are being
3120 * offlined but treat HIGHATOMIC as movable pages so we can get those
3121 * areas back if necessary. Otherwise, we may have to free
3122 * excessively into the page allocator
3123 */
3124 if (migratetype >= MIGRATE_PCPTYPES) {
3125 if (unlikely(is_migrate_isolate(migratetype))) {
3126 free_one_page(zone, page, pfn, 0, migratetype);
3127 return;
3128 }
3129 migratetype = MIGRATE_MOVABLE;
3130 }
3131
3132 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3133 list_add(&page->lru, &pcp->lists[migratetype]);
3134 pcp->count++;
3135 if (pcp->count >= pcp->high) {
3136 unsigned long batch = READ_ONCE(pcp->batch);
3137 free_pcppages_bulk(zone, batch, pcp);
3138 }
3139 }
3140
3141 /*
3142 * Free a 0-order page
3143 */
3144 void free_unref_page(struct page *page)
3145 {
3146 unsigned long flags;
3147 unsigned long pfn = page_to_pfn(page);
3148
3149 if (!free_unref_page_prepare(page, pfn))
3150 return;
3151
3152 local_irq_save(flags);
3153 free_unref_page_commit(page, pfn);
3154 local_irq_restore(flags);
3155 }
3156
3157 /*
3158 * Free a list of 0-order pages
3159 */
3160 void free_unref_page_list(struct list_head *list)
3161 {
3162 struct page *page, *next;
3163 unsigned long flags, pfn;
3164 int batch_count = 0;
3165
3166 /* Prepare pages for freeing */
3167 list_for_each_entry_safe(page, next, list, lru) {
3168 pfn = page_to_pfn(page);
3169 if (!free_unref_page_prepare(page, pfn))
3170 list_del(&page->lru);
3171 set_page_private(page, pfn);
3172 }
3173
3174 local_irq_save(flags);
3175 list_for_each_entry_safe(page, next, list, lru) {
3176 unsigned long pfn = page_private(page);
3177
3178 set_page_private(page, 0);
3179 trace_mm_page_free_batched(page);
3180 free_unref_page_commit(page, pfn);
3181
3182 /*
3183 * Guard against excessive IRQ disabled times when we get
3184 * a large list of pages to free.
3185 */
3186 if (++batch_count == SWAP_CLUSTER_MAX) {
3187 local_irq_restore(flags);
3188 batch_count = 0;
3189 local_irq_save(flags);
3190 }
3191 }
3192 local_irq_restore(flags);
3193 }
3194
3195 /*
3196 * split_page takes a non-compound higher-order page, and splits it into
3197 * n (1<<order) sub-pages: page[0..n]
3198 * Each sub-page must be freed individually.
3199 *
3200 * Note: this is probably too low level an operation for use in drivers.
3201 * Please consult with lkml before using this in your driver.
3202 */
3203 void split_page(struct page *page, unsigned int order)
3204 {
3205 int i;
3206
3207 VM_BUG_ON_PAGE(PageCompound(page), page);
3208 VM_BUG_ON_PAGE(!page_count(page), page);
3209
3210 for (i = 1; i < (1 << order); i++)
3211 set_page_refcounted(page + i);
3212 split_page_owner(page, order);
3213 }
3214 EXPORT_SYMBOL_GPL(split_page);
3215
3216 int __isolate_free_page(struct page *page, unsigned int order)
3217 {
3218 unsigned long watermark;
3219 struct zone *zone;
3220 int mt;
3221
3222 BUG_ON(!PageBuddy(page));
3223
3224 zone = page_zone(page);
3225 mt = get_pageblock_migratetype(page);
3226
3227 if (!is_migrate_isolate(mt)) {
3228 /*
3229 * Obey watermarks as if the page was being allocated. We can
3230 * emulate a high-order watermark check with a raised order-0
3231 * watermark, because we already know our high-order page
3232 * exists.
3233 */
3234 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3235 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3236 return 0;
3237
3238 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3239 }
3240
3241 /* Remove page from free list */
3242
3243 del_page_from_free_list(page, zone, order);
3244
3245 /*
3246 * Set the pageblock if the isolated page is at least half of a
3247 * pageblock
3248 */
3249 if (order >= pageblock_order - 1) {
3250 struct page *endpage = page + (1 << order) - 1;
3251 for (; page < endpage; page += pageblock_nr_pages) {
3252 int mt = get_pageblock_migratetype(page);
3253 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3254 && !is_migrate_highatomic(mt))
3255 set_pageblock_migratetype(page,
3256 MIGRATE_MOVABLE);
3257 }
3258 }
3259
3260
3261 return 1UL << order;
3262 }
3263
3264 /**
3265 * __putback_isolated_page - Return a now-isolated page back where we got it
3266 * @page: Page that was isolated
3267 * @order: Order of the isolated page
3268 * @mt: The page's pageblock's migratetype
3269 *
3270 * This function is meant to return a page pulled from the free lists via
3271 * __isolate_free_page back to the free lists they were pulled from.
3272 */
3273 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3274 {
3275 struct zone *zone = page_zone(page);
3276
3277 /* zone lock should be held when this function is called */
3278 lockdep_assert_held(&zone->lock);
3279
3280 /* Return isolated page to tail of freelist. */
3281 __free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3282 }
3283
3284 /*
3285 * Update NUMA hit/miss statistics
3286 *
3287 * Must be called with interrupts disabled.
3288 */
3289 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3290 {
3291 #ifdef CONFIG_NUMA
3292 enum numa_stat_item local_stat = NUMA_LOCAL;
3293
3294 /* skip numa counters update if numa stats is disabled */
3295 if (!static_branch_likely(&vm_numa_stat_key))
3296 return;
3297
3298 if (zone_to_nid(z) != numa_node_id())
3299 local_stat = NUMA_OTHER;
3300
3301 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3302 __inc_numa_state(z, NUMA_HIT);
3303 else {
3304 __inc_numa_state(z, NUMA_MISS);
3305 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3306 }
3307 __inc_numa_state(z, local_stat);
3308 #endif
3309 }
3310
3311 /* Remove page from the per-cpu list, caller must protect the list */
3312 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3313 unsigned int alloc_flags,
3314 struct per_cpu_pages *pcp,
3315 struct list_head *list)
3316 {
3317 struct page *page;
3318
3319 do {
3320 if (list_empty(list)) {
3321 pcp->count += rmqueue_bulk(zone, 0,
3322 pcp->batch, list,
3323 migratetype, alloc_flags);
3324 if (unlikely(list_empty(list)))
3325 return NULL;
3326 }
3327
3328 page = list_first_entry(list, struct page, lru);
3329 list_del(&page->lru);
3330 pcp->count--;
3331 } while (check_new_pcp(page));
3332
3333 return page;
3334 }
3335
3336 /* Lock and remove page from the per-cpu list */
3337 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3338 struct zone *zone, gfp_t gfp_flags,
3339 int migratetype, unsigned int alloc_flags)
3340 {
3341 struct per_cpu_pages *pcp;
3342 struct list_head *list;
3343 struct page *page;
3344 unsigned long flags;
3345
3346 local_irq_save(flags);
3347 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3348 list = &pcp->lists[migratetype];
3349 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3350 if (page) {
3351 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3352 zone_statistics(preferred_zone, zone);
3353 }
3354 local_irq_restore(flags);
3355 return page;
3356 }
3357
3358 /*
3359 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3360 */
3361 static inline
3362 struct page *rmqueue(struct zone *preferred_zone,
3363 struct zone *zone, unsigned int order,
3364 gfp_t gfp_flags, unsigned int alloc_flags,
3365 int migratetype)
3366 {
3367 unsigned long flags;
3368 struct page *page;
3369
3370 if (likely(order == 0)) {
3371 /*
3372 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3373 * we need to skip it when CMA area isn't allowed.
3374 */
3375 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3376 migratetype != MIGRATE_MOVABLE) {
3377 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3378 migratetype, alloc_flags);
3379 goto out;
3380 }
3381 }
3382
3383 /*
3384 * We most definitely don't want callers attempting to
3385 * allocate greater than order-1 page units with __GFP_NOFAIL.
3386 */
3387 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3388 spin_lock_irqsave(&zone->lock, flags);
3389
3390 do {
3391 page = NULL;
3392 /*
3393 * order-0 request can reach here when the pcplist is skipped
3394 * due to non-CMA allocation context. HIGHATOMIC area is
3395 * reserved for high-order atomic allocation, so order-0
3396 * request should skip it.
3397 */
3398 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3399 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3400 if (page)
3401 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3402 }
3403 if (!page)
3404 page = __rmqueue(zone, order, migratetype, alloc_flags);
3405 } while (page && check_new_pages(page, order));
3406 spin_unlock(&zone->lock);
3407 if (!page)
3408 goto failed;
3409 __mod_zone_freepage_state(zone, -(1 << order),
3410 get_pcppage_migratetype(page));
3411
3412 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3413 zone_statistics(preferred_zone, zone);
3414 local_irq_restore(flags);
3415
3416 out:
3417 /* Separate test+clear to avoid unnecessary atomics */
3418 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3419 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3420 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3421 }
3422
3423 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3424 return page;
3425
3426 failed:
3427 local_irq_restore(flags);
3428 return NULL;
3429 }
3430
3431 #ifdef CONFIG_FAIL_PAGE_ALLOC
3432
3433 static struct {
3434 struct fault_attr attr;
3435
3436 bool ignore_gfp_highmem;
3437 bool ignore_gfp_reclaim;
3438 u32 min_order;
3439 } fail_page_alloc = {
3440 .attr = FAULT_ATTR_INITIALIZER,
3441 .ignore_gfp_reclaim = true,
3442 .ignore_gfp_highmem = true,
3443 .min_order = 1,
3444 };
3445
3446 static int __init setup_fail_page_alloc(char *str)
3447 {
3448 return setup_fault_attr(&fail_page_alloc.attr, str);
3449 }
3450 __setup("fail_page_alloc=", setup_fail_page_alloc);
3451
3452 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3453 {
3454 if (order < fail_page_alloc.min_order)
3455 return false;
3456 if (gfp_mask & __GFP_NOFAIL)
3457 return false;
3458 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3459 return false;
3460 if (fail_page_alloc.ignore_gfp_reclaim &&
3461 (gfp_mask & __GFP_DIRECT_RECLAIM))
3462 return false;
3463
3464 return should_fail(&fail_page_alloc.attr, 1 << order);
3465 }
3466
3467 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3468
3469 static int __init fail_page_alloc_debugfs(void)
3470 {
3471 umode_t mode = S_IFREG | 0600;
3472 struct dentry *dir;
3473
3474 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3475 &fail_page_alloc.attr);
3476
3477 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3478 &fail_page_alloc.ignore_gfp_reclaim);
3479 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3480 &fail_page_alloc.ignore_gfp_highmem);
3481 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3482
3483 return 0;
3484 }
3485
3486 late_initcall(fail_page_alloc_debugfs);
3487
3488 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3489
3490 #else /* CONFIG_FAIL_PAGE_ALLOC */
3491
3492 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3493 {
3494 return false;
3495 }
3496
3497 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3498
3499 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3500 {
3501 return __should_fail_alloc_page(gfp_mask, order);
3502 }
3503 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3504
3505 static inline long __zone_watermark_unusable_free(struct zone *z,
3506 unsigned int order, unsigned int alloc_flags)
3507 {
3508 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3509 long unusable_free = (1 << order) - 1;
3510
3511 /*
3512 * If the caller does not have rights to ALLOC_HARDER then subtract
3513 * the high-atomic reserves. This will over-estimate the size of the
3514 * atomic reserve but it avoids a search.
3515 */
3516 if (likely(!alloc_harder))
3517 unusable_free += z->nr_reserved_highatomic;
3518
3519 #ifdef CONFIG_CMA
3520 /* If allocation can't use CMA areas don't use free CMA pages */
3521 if (!(alloc_flags & ALLOC_CMA))
3522 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3523 #endif
3524
3525 return unusable_free;
3526 }
3527
3528 /*
3529 * Return true if free base pages are above 'mark'. For high-order checks it
3530 * will return true of the order-0 watermark is reached and there is at least
3531 * one free page of a suitable size. Checking now avoids taking the zone lock
3532 * to check in the allocation paths if no pages are free.
3533 */
3534 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3535 int highest_zoneidx, unsigned int alloc_flags,
3536 long free_pages)
3537 {
3538 long min = mark;
3539 int o;
3540 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3541
3542 /* free_pages may go negative - that's OK */
3543 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3544
3545 if (alloc_flags & ALLOC_HIGH)
3546 min -= min / 2;
3547
3548 if (unlikely(alloc_harder)) {
3549 /*
3550 * OOM victims can try even harder than normal ALLOC_HARDER
3551 * users on the grounds that it's definitely going to be in
3552 * the exit path shortly and free memory. Any allocation it
3553 * makes during the free path will be small and short-lived.
3554 */
3555 if (alloc_flags & ALLOC_OOM)
3556 min -= min / 2;
3557 else
3558 min -= min / 4;
3559 }
3560
3561 /*
3562 * Check watermarks for an order-0 allocation request. If these
3563 * are not met, then a high-order request also cannot go ahead
3564 * even if a suitable page happened to be free.
3565 */
3566 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3567 return false;
3568
3569 /* If this is an order-0 request then the watermark is fine */
3570 if (!order)
3571 return true;
3572
3573 /* For a high-order request, check at least one suitable page is free */
3574 for (o = order; o < MAX_ORDER; o++) {
3575 struct free_area *area = &z->free_area[o];
3576 int mt;
3577
3578 if (!area->nr_free)
3579 continue;
3580
3581 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3582 if (!free_area_empty(area, mt))
3583 return true;
3584 }
3585
3586 #ifdef CONFIG_CMA
3587 if ((alloc_flags & ALLOC_CMA) &&
3588 !free_area_empty(area, MIGRATE_CMA)) {
3589 return true;
3590 }
3591 #endif
3592 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3593 return true;
3594 }
3595 return false;
3596 }
3597
3598 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3599 int highest_zoneidx, unsigned int alloc_flags)
3600 {
3601 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3602 zone_page_state(z, NR_FREE_PAGES));
3603 }
3604
3605 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3606 unsigned long mark, int highest_zoneidx,
3607 unsigned int alloc_flags, gfp_t gfp_mask)
3608 {
3609 long free_pages;
3610
3611 free_pages = zone_page_state(z, NR_FREE_PAGES);
3612
3613 /*
3614 * Fast check for order-0 only. If this fails then the reserves
3615 * need to be calculated.
3616 */
3617 if (!order) {
3618 long fast_free;
3619
3620 fast_free = free_pages;
3621 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3622 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3623 return true;
3624 }
3625
3626 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3627 free_pages))
3628 return true;
3629 /*
3630 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3631 * when checking the min watermark. The min watermark is the
3632 * point where boosting is ignored so that kswapd is woken up
3633 * when below the low watermark.
3634 */
3635 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3636 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3637 mark = z->_watermark[WMARK_MIN];
3638 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3639 alloc_flags, free_pages);
3640 }
3641
3642 return false;
3643 }
3644
3645 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3646 unsigned long mark, int highest_zoneidx)
3647 {
3648 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3649
3650 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3651 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3652
3653 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3654 free_pages);
3655 }
3656
3657 #ifdef CONFIG_NUMA
3658 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3659 {
3660 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3661 node_reclaim_distance;
3662 }
3663 #else /* CONFIG_NUMA */
3664 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3665 {
3666 return true;
3667 }
3668 #endif /* CONFIG_NUMA */
3669
3670 /*
3671 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3672 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3673 * premature use of a lower zone may cause lowmem pressure problems that
3674 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3675 * probably too small. It only makes sense to spread allocations to avoid
3676 * fragmentation between the Normal and DMA32 zones.
3677 */
3678 static inline unsigned int
3679 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3680 {
3681 unsigned int alloc_flags;
3682
3683 /*
3684 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3685 * to save a branch.
3686 */
3687 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3688
3689 #ifdef CONFIG_ZONE_DMA32
3690 if (!zone)
3691 return alloc_flags;
3692
3693 if (zone_idx(zone) != ZONE_NORMAL)
3694 return alloc_flags;
3695
3696 /*
3697 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3698 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3699 * on UMA that if Normal is populated then so is DMA32.
3700 */
3701 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3702 if (nr_online_nodes > 1 && !populated_zone(--zone))
3703 return alloc_flags;
3704
3705 alloc_flags |= ALLOC_NOFRAGMENT;
3706 #endif /* CONFIG_ZONE_DMA32 */
3707 return alloc_flags;
3708 }
3709
3710 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3711 unsigned int alloc_flags)
3712 {
3713 #ifdef CONFIG_CMA
3714 unsigned int pflags = current->flags;
3715
3716 if (!(pflags & PF_MEMALLOC_NOCMA) &&
3717 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3718 alloc_flags |= ALLOC_CMA;
3719
3720 #endif
3721 return alloc_flags;
3722 }
3723
3724 /*
3725 * get_page_from_freelist goes through the zonelist trying to allocate
3726 * a page.
3727 */
3728 static struct page *
3729 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3730 const struct alloc_context *ac)
3731 {
3732 struct zoneref *z;
3733 struct zone *zone;
3734 struct pglist_data *last_pgdat_dirty_limit = NULL;
3735 bool no_fallback;
3736
3737 retry:
3738 /*
3739 * Scan zonelist, looking for a zone with enough free.
3740 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3741 */
3742 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3743 z = ac->preferred_zoneref;
3744 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3745 ac->nodemask) {
3746 struct page *page;
3747 unsigned long mark;
3748
3749 if (cpusets_enabled() &&
3750 (alloc_flags & ALLOC_CPUSET) &&
3751 !__cpuset_zone_allowed(zone, gfp_mask))
3752 continue;
3753 /*
3754 * When allocating a page cache page for writing, we
3755 * want to get it from a node that is within its dirty
3756 * limit, such that no single node holds more than its
3757 * proportional share of globally allowed dirty pages.
3758 * The dirty limits take into account the node's
3759 * lowmem reserves and high watermark so that kswapd
3760 * should be able to balance it without having to
3761 * write pages from its LRU list.
3762 *
3763 * XXX: For now, allow allocations to potentially
3764 * exceed the per-node dirty limit in the slowpath
3765 * (spread_dirty_pages unset) before going into reclaim,
3766 * which is important when on a NUMA setup the allowed
3767 * nodes are together not big enough to reach the
3768 * global limit. The proper fix for these situations
3769 * will require awareness of nodes in the
3770 * dirty-throttling and the flusher threads.
3771 */
3772 if (ac->spread_dirty_pages) {
3773 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3774 continue;
3775
3776 if (!node_dirty_ok(zone->zone_pgdat)) {
3777 last_pgdat_dirty_limit = zone->zone_pgdat;
3778 continue;
3779 }
3780 }
3781
3782 if (no_fallback && nr_online_nodes > 1 &&
3783 zone != ac->preferred_zoneref->zone) {
3784 int local_nid;
3785
3786 /*
3787 * If moving to a remote node, retry but allow
3788 * fragmenting fallbacks. Locality is more important
3789 * than fragmentation avoidance.
3790 */
3791 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3792 if (zone_to_nid(zone) != local_nid) {
3793 alloc_flags &= ~ALLOC_NOFRAGMENT;
3794 goto retry;
3795 }
3796 }
3797
3798 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3799 if (!zone_watermark_fast(zone, order, mark,
3800 ac->highest_zoneidx, alloc_flags,
3801 gfp_mask)) {
3802 int ret;
3803
3804 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3805 /*
3806 * Watermark failed for this zone, but see if we can
3807 * grow this zone if it contains deferred pages.
3808 */
3809 if (static_branch_unlikely(&deferred_pages)) {
3810 if (_deferred_grow_zone(zone, order))
3811 goto try_this_zone;
3812 }
3813 #endif
3814 /* Checked here to keep the fast path fast */
3815 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3816 if (alloc_flags & ALLOC_NO_WATERMARKS)
3817 goto try_this_zone;
3818
3819 if (node_reclaim_mode == 0 ||
3820 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3821 continue;
3822
3823 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3824 switch (ret) {
3825 case NODE_RECLAIM_NOSCAN:
3826 /* did not scan */
3827 continue;
3828 case NODE_RECLAIM_FULL:
3829 /* scanned but unreclaimable */
3830 continue;
3831 default:
3832 /* did we reclaim enough */
3833 if (zone_watermark_ok(zone, order, mark,
3834 ac->highest_zoneidx, alloc_flags))
3835 goto try_this_zone;
3836
3837 continue;
3838 }
3839 }
3840
3841 try_this_zone:
3842 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3843 gfp_mask, alloc_flags, ac->migratetype);
3844 if (page) {
3845 prep_new_page(page, order, gfp_mask, alloc_flags);
3846
3847 /*
3848 * If this is a high-order atomic allocation then check
3849 * if the pageblock should be reserved for the future
3850 */
3851 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3852 reserve_highatomic_pageblock(page, zone, order);
3853
3854 return page;
3855 } else {
3856 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3857 /* Try again if zone has deferred pages */
3858 if (static_branch_unlikely(&deferred_pages)) {
3859 if (_deferred_grow_zone(zone, order))
3860 goto try_this_zone;
3861 }
3862 #endif
3863 }
3864 }
3865
3866 /*
3867 * It's possible on a UMA machine to get through all zones that are
3868 * fragmented. If avoiding fragmentation, reset and try again.
3869 */
3870 if (no_fallback) {
3871 alloc_flags &= ~ALLOC_NOFRAGMENT;
3872 goto retry;
3873 }
3874
3875 return NULL;
3876 }
3877
3878 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3879 {
3880 unsigned int filter = SHOW_MEM_FILTER_NODES;
3881
3882 /*
3883 * This documents exceptions given to allocations in certain
3884 * contexts that are allowed to allocate outside current's set
3885 * of allowed nodes.
3886 */
3887 if (!(gfp_mask & __GFP_NOMEMALLOC))
3888 if (tsk_is_oom_victim(current) ||
3889 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3890 filter &= ~SHOW_MEM_FILTER_NODES;
3891 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3892 filter &= ~SHOW_MEM_FILTER_NODES;
3893
3894 show_mem(filter, nodemask);
3895 }
3896
3897 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3898 {
3899 struct va_format vaf;
3900 va_list args;
3901 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3902
3903 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3904 return;
3905
3906 va_start(args, fmt);
3907 vaf.fmt = fmt;
3908 vaf.va = &args;
3909 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3910 current->comm, &vaf, gfp_mask, &gfp_mask,
3911 nodemask_pr_args(nodemask));
3912 va_end(args);
3913
3914 cpuset_print_current_mems_allowed();
3915 pr_cont("\n");
3916 dump_stack();
3917 warn_alloc_show_mem(gfp_mask, nodemask);
3918 }
3919
3920 static inline struct page *
3921 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3922 unsigned int alloc_flags,
3923 const struct alloc_context *ac)
3924 {
3925 struct page *page;
3926
3927 page = get_page_from_freelist(gfp_mask, order,
3928 alloc_flags|ALLOC_CPUSET, ac);
3929 /*
3930 * fallback to ignore cpuset restriction if our nodes
3931 * are depleted
3932 */
3933 if (!page)
3934 page = get_page_from_freelist(gfp_mask, order,
3935 alloc_flags, ac);
3936
3937 return page;
3938 }
3939
3940 static inline struct page *
3941 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3942 const struct alloc_context *ac, unsigned long *did_some_progress)
3943 {
3944 struct oom_control oc = {
3945 .zonelist = ac->zonelist,
3946 .nodemask = ac->nodemask,
3947 .memcg = NULL,
3948 .gfp_mask = gfp_mask,
3949 .order = order,
3950 };
3951 struct page *page;
3952
3953 *did_some_progress = 0;
3954
3955 /*
3956 * Acquire the oom lock. If that fails, somebody else is
3957 * making progress for us.
3958 */
3959 if (!mutex_trylock(&oom_lock)) {
3960 *did_some_progress = 1;
3961 schedule_timeout_uninterruptible(1);
3962 return NULL;
3963 }
3964
3965 /*
3966 * Go through the zonelist yet one more time, keep very high watermark
3967 * here, this is only to catch a parallel oom killing, we must fail if
3968 * we're still under heavy pressure. But make sure that this reclaim
3969 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3970 * allocation which will never fail due to oom_lock already held.
3971 */
3972 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3973 ~__GFP_DIRECT_RECLAIM, order,
3974 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3975 if (page)
3976 goto out;
3977
3978 /* Coredumps can quickly deplete all memory reserves */
3979 if (current->flags & PF_DUMPCORE)
3980 goto out;
3981 /* The OOM killer will not help higher order allocs */
3982 if (order > PAGE_ALLOC_COSTLY_ORDER)
3983 goto out;
3984 /*
3985 * We have already exhausted all our reclaim opportunities without any
3986 * success so it is time to admit defeat. We will skip the OOM killer
3987 * because it is very likely that the caller has a more reasonable
3988 * fallback than shooting a random task.
3989 *
3990 * The OOM killer may not free memory on a specific node.
3991 */
3992 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3993 goto out;
3994 /* The OOM killer does not needlessly kill tasks for lowmem */
3995 if (ac->highest_zoneidx < ZONE_NORMAL)
3996 goto out;
3997 if (pm_suspended_storage())
3998 goto out;
3999 /*
4000 * XXX: GFP_NOFS allocations should rather fail than rely on
4001 * other request to make a forward progress.
4002 * We are in an unfortunate situation where out_of_memory cannot
4003 * do much for this context but let's try it to at least get
4004 * access to memory reserved if the current task is killed (see
4005 * out_of_memory). Once filesystems are ready to handle allocation
4006 * failures more gracefully we should just bail out here.
4007 */
4008
4009 /* Exhausted what can be done so it's blame time */
4010 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4011 *did_some_progress = 1;
4012
4013 /*
4014 * Help non-failing allocations by giving them access to memory
4015 * reserves
4016 */
4017 if (gfp_mask & __GFP_NOFAIL)
4018 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4019 ALLOC_NO_WATERMARKS, ac);
4020 }
4021 out:
4022 mutex_unlock(&oom_lock);
4023 return page;
4024 }
4025
4026 /*
4027 * Maximum number of compaction retries wit a progress before OOM
4028 * killer is consider as the only way to move forward.
4029 */
4030 #define MAX_COMPACT_RETRIES 16
4031
4032 #ifdef CONFIG_COMPACTION
4033 /* Try memory compaction for high-order allocations before reclaim */
4034 static struct page *
4035 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4036 unsigned int alloc_flags, const struct alloc_context *ac,
4037 enum compact_priority prio, enum compact_result *compact_result)
4038 {
4039 struct page *page = NULL;
4040 unsigned long pflags;
4041 unsigned int noreclaim_flag;
4042
4043 if (!order)
4044 return NULL;
4045
4046 psi_memstall_enter(&pflags);
4047 noreclaim_flag = memalloc_noreclaim_save();
4048
4049 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4050 prio, &page);
4051
4052 memalloc_noreclaim_restore(noreclaim_flag);
4053 psi_memstall_leave(&pflags);
4054
4055 /*
4056 * At least in one zone compaction wasn't deferred or skipped, so let's
4057 * count a compaction stall
4058 */
4059 count_vm_event(COMPACTSTALL);
4060
4061 /* Prep a captured page if available */
4062 if (page)
4063 prep_new_page(page, order, gfp_mask, alloc_flags);
4064
4065 /* Try get a page from the freelist if available */
4066 if (!page)
4067 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4068
4069 if (page) {
4070 struct zone *zone = page_zone(page);
4071
4072 zone->compact_blockskip_flush = false;
4073 compaction_defer_reset(zone, order, true);
4074 count_vm_event(COMPACTSUCCESS);
4075 return page;
4076 }
4077
4078 /*
4079 * It's bad if compaction run occurs and fails. The most likely reason
4080 * is that pages exist, but not enough to satisfy watermarks.
4081 */
4082 count_vm_event(COMPACTFAIL);
4083
4084 cond_resched();
4085
4086 return NULL;
4087 }
4088
4089 static inline bool
4090 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4091 enum compact_result compact_result,
4092 enum compact_priority *compact_priority,
4093 int *compaction_retries)
4094 {
4095 int max_retries = MAX_COMPACT_RETRIES;
4096 int min_priority;
4097 bool ret = false;
4098 int retries = *compaction_retries;
4099 enum compact_priority priority = *compact_priority;
4100
4101 if (!order)
4102 return false;
4103
4104 if (compaction_made_progress(compact_result))
4105 (*compaction_retries)++;
4106
4107 /*
4108 * compaction considers all the zone as desperately out of memory
4109 * so it doesn't really make much sense to retry except when the
4110 * failure could be caused by insufficient priority
4111 */
4112 if (compaction_failed(compact_result))
4113 goto check_priority;
4114
4115 /*
4116 * compaction was skipped because there are not enough order-0 pages
4117 * to work with, so we retry only if it looks like reclaim can help.
4118 */
4119 if (compaction_needs_reclaim(compact_result)) {
4120 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4121 goto out;
4122 }
4123
4124 /*
4125 * make sure the compaction wasn't deferred or didn't bail out early
4126 * due to locks contention before we declare that we should give up.
4127 * But the next retry should use a higher priority if allowed, so
4128 * we don't just keep bailing out endlessly.
4129 */
4130 if (compaction_withdrawn(compact_result)) {
4131 goto check_priority;
4132 }
4133
4134 /*
4135 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4136 * costly ones because they are de facto nofail and invoke OOM
4137 * killer to move on while costly can fail and users are ready
4138 * to cope with that. 1/4 retries is rather arbitrary but we
4139 * would need much more detailed feedback from compaction to
4140 * make a better decision.
4141 */
4142 if (order > PAGE_ALLOC_COSTLY_ORDER)
4143 max_retries /= 4;
4144 if (*compaction_retries <= max_retries) {
4145 ret = true;
4146 goto out;
4147 }
4148
4149 /*
4150 * Make sure there are attempts at the highest priority if we exhausted
4151 * all retries or failed at the lower priorities.
4152 */
4153 check_priority:
4154 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4155 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4156
4157 if (*compact_priority > min_priority) {
4158 (*compact_priority)--;
4159 *compaction_retries = 0;
4160 ret = true;
4161 }
4162 out:
4163 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4164 return ret;
4165 }
4166 #else
4167 static inline struct page *
4168 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4169 unsigned int alloc_flags, const struct alloc_context *ac,
4170 enum compact_priority prio, enum compact_result *compact_result)
4171 {
4172 *compact_result = COMPACT_SKIPPED;
4173 return NULL;
4174 }
4175
4176 static inline bool
4177 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4178 enum compact_result compact_result,
4179 enum compact_priority *compact_priority,
4180 int *compaction_retries)
4181 {
4182 struct zone *zone;
4183 struct zoneref *z;
4184
4185 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4186 return false;
4187
4188 /*
4189 * There are setups with compaction disabled which would prefer to loop
4190 * inside the allocator rather than hit the oom killer prematurely.
4191 * Let's give them a good hope and keep retrying while the order-0
4192 * watermarks are OK.
4193 */
4194 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4195 ac->highest_zoneidx, ac->nodemask) {
4196 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4197 ac->highest_zoneidx, alloc_flags))
4198 return true;
4199 }
4200 return false;
4201 }
4202 #endif /* CONFIG_COMPACTION */
4203
4204 #ifdef CONFIG_LOCKDEP
4205 static struct lockdep_map __fs_reclaim_map =
4206 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4207
4208 static bool __need_fs_reclaim(gfp_t gfp_mask)
4209 {
4210 gfp_mask = current_gfp_context(gfp_mask);
4211
4212 /* no reclaim without waiting on it */
4213 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4214 return false;
4215
4216 /* this guy won't enter reclaim */
4217 if (current->flags & PF_MEMALLOC)
4218 return false;
4219
4220 /* We're only interested __GFP_FS allocations for now */
4221 if (!(gfp_mask & __GFP_FS))
4222 return false;
4223
4224 if (gfp_mask & __GFP_NOLOCKDEP)
4225 return false;
4226
4227 return true;
4228 }
4229
4230 void __fs_reclaim_acquire(void)
4231 {
4232 lock_map_acquire(&__fs_reclaim_map);
4233 }
4234
4235 void __fs_reclaim_release(void)
4236 {
4237 lock_map_release(&__fs_reclaim_map);
4238 }
4239
4240 void fs_reclaim_acquire(gfp_t gfp_mask)
4241 {
4242 if (__need_fs_reclaim(gfp_mask))
4243 __fs_reclaim_acquire();
4244 }
4245 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4246
4247 void fs_reclaim_release(gfp_t gfp_mask)
4248 {
4249 if (__need_fs_reclaim(gfp_mask))
4250 __fs_reclaim_release();
4251 }
4252 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4253 #endif
4254
4255 /* Perform direct synchronous page reclaim */
4256 static unsigned long
4257 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4258 const struct alloc_context *ac)
4259 {
4260 unsigned int noreclaim_flag;
4261 unsigned long pflags, progress;
4262
4263 cond_resched();
4264
4265 /* We now go into synchronous reclaim */
4266 cpuset_memory_pressure_bump();
4267 psi_memstall_enter(&pflags);
4268 fs_reclaim_acquire(gfp_mask);
4269 noreclaim_flag = memalloc_noreclaim_save();
4270
4271 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4272 ac->nodemask);
4273
4274 memalloc_noreclaim_restore(noreclaim_flag);
4275 fs_reclaim_release(gfp_mask);
4276 psi_memstall_leave(&pflags);
4277
4278 cond_resched();
4279
4280 return progress;
4281 }
4282
4283 /* The really slow allocator path where we enter direct reclaim */
4284 static inline struct page *
4285 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4286 unsigned int alloc_flags, const struct alloc_context *ac,
4287 unsigned long *did_some_progress)
4288 {
4289 struct page *page = NULL;
4290 bool drained = false;
4291
4292 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4293 if (unlikely(!(*did_some_progress)))
4294 return NULL;
4295
4296 retry:
4297 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4298
4299 /*
4300 * If an allocation failed after direct reclaim, it could be because
4301 * pages are pinned on the per-cpu lists or in high alloc reserves.
4302 * Shrink them and try again
4303 */
4304 if (!page && !drained) {
4305 unreserve_highatomic_pageblock(ac, false);
4306 drain_all_pages(NULL);
4307 drained = true;
4308 goto retry;
4309 }
4310
4311 return page;
4312 }
4313
4314 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4315 const struct alloc_context *ac)
4316 {
4317 struct zoneref *z;
4318 struct zone *zone;
4319 pg_data_t *last_pgdat = NULL;
4320 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4321
4322 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4323 ac->nodemask) {
4324 if (last_pgdat != zone->zone_pgdat)
4325 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4326 last_pgdat = zone->zone_pgdat;
4327 }
4328 }
4329
4330 static inline unsigned int
4331 gfp_to_alloc_flags(gfp_t gfp_mask)
4332 {
4333 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4334
4335 /*
4336 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4337 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4338 * to save two branches.
4339 */
4340 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4341 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4342
4343 /*
4344 * The caller may dip into page reserves a bit more if the caller
4345 * cannot run direct reclaim, or if the caller has realtime scheduling
4346 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4347 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4348 */
4349 alloc_flags |= (__force int)
4350 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4351
4352 if (gfp_mask & __GFP_ATOMIC) {
4353 /*
4354 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4355 * if it can't schedule.
4356 */
4357 if (!(gfp_mask & __GFP_NOMEMALLOC))
4358 alloc_flags |= ALLOC_HARDER;
4359 /*
4360 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4361 * comment for __cpuset_node_allowed().
4362 */
4363 alloc_flags &= ~ALLOC_CPUSET;
4364 } else if (unlikely(rt_task(current)) && !in_interrupt())
4365 alloc_flags |= ALLOC_HARDER;
4366
4367 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4368
4369 return alloc_flags;
4370 }
4371
4372 static bool oom_reserves_allowed(struct task_struct *tsk)
4373 {
4374 if (!tsk_is_oom_victim(tsk))
4375 return false;
4376
4377 /*
4378 * !MMU doesn't have oom reaper so give access to memory reserves
4379 * only to the thread with TIF_MEMDIE set
4380 */
4381 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4382 return false;
4383
4384 return true;
4385 }
4386
4387 /*
4388 * Distinguish requests which really need access to full memory
4389 * reserves from oom victims which can live with a portion of it
4390 */
4391 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4392 {
4393 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4394 return 0;
4395 if (gfp_mask & __GFP_MEMALLOC)
4396 return ALLOC_NO_WATERMARKS;
4397 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4398 return ALLOC_NO_WATERMARKS;
4399 if (!in_interrupt()) {
4400 if (current->flags & PF_MEMALLOC)
4401 return ALLOC_NO_WATERMARKS;
4402 else if (oom_reserves_allowed(current))
4403 return ALLOC_OOM;
4404 }
4405
4406 return 0;
4407 }
4408
4409 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4410 {
4411 return !!__gfp_pfmemalloc_flags(gfp_mask);
4412 }
4413
4414 /*
4415 * Checks whether it makes sense to retry the reclaim to make a forward progress
4416 * for the given allocation request.
4417 *
4418 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4419 * without success, or when we couldn't even meet the watermark if we
4420 * reclaimed all remaining pages on the LRU lists.
4421 *
4422 * Returns true if a retry is viable or false to enter the oom path.
4423 */
4424 static inline bool
4425 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4426 struct alloc_context *ac, int alloc_flags,
4427 bool did_some_progress, int *no_progress_loops)
4428 {
4429 struct zone *zone;
4430 struct zoneref *z;
4431 bool ret = false;
4432
4433 /*
4434 * Costly allocations might have made a progress but this doesn't mean
4435 * their order will become available due to high fragmentation so
4436 * always increment the no progress counter for them
4437 */
4438 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4439 *no_progress_loops = 0;
4440 else
4441 (*no_progress_loops)++;
4442
4443 /*
4444 * Make sure we converge to OOM if we cannot make any progress
4445 * several times in the row.
4446 */
4447 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4448 /* Before OOM, exhaust highatomic_reserve */
4449 return unreserve_highatomic_pageblock(ac, true);
4450 }
4451
4452 /*
4453 * Keep reclaiming pages while there is a chance this will lead
4454 * somewhere. If none of the target zones can satisfy our allocation
4455 * request even if all reclaimable pages are considered then we are
4456 * screwed and have to go OOM.
4457 */
4458 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4459 ac->highest_zoneidx, ac->nodemask) {
4460 unsigned long available;
4461 unsigned long reclaimable;
4462 unsigned long min_wmark = min_wmark_pages(zone);
4463 bool wmark;
4464
4465 available = reclaimable = zone_reclaimable_pages(zone);
4466 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4467
4468 /*
4469 * Would the allocation succeed if we reclaimed all
4470 * reclaimable pages?
4471 */
4472 wmark = __zone_watermark_ok(zone, order, min_wmark,
4473 ac->highest_zoneidx, alloc_flags, available);
4474 trace_reclaim_retry_zone(z, order, reclaimable,
4475 available, min_wmark, *no_progress_loops, wmark);
4476 if (wmark) {
4477 /*
4478 * If we didn't make any progress and have a lot of
4479 * dirty + writeback pages then we should wait for
4480 * an IO to complete to slow down the reclaim and
4481 * prevent from pre mature OOM
4482 */
4483 if (!did_some_progress) {
4484 unsigned long write_pending;
4485
4486 write_pending = zone_page_state_snapshot(zone,
4487 NR_ZONE_WRITE_PENDING);
4488
4489 if (2 * write_pending > reclaimable) {
4490 congestion_wait(BLK_RW_ASYNC, HZ/10);
4491 return true;
4492 }
4493 }
4494
4495 ret = true;
4496 goto out;
4497 }
4498 }
4499
4500 out:
4501 /*
4502 * Memory allocation/reclaim might be called from a WQ context and the
4503 * current implementation of the WQ concurrency control doesn't
4504 * recognize that a particular WQ is congested if the worker thread is
4505 * looping without ever sleeping. Therefore we have to do a short sleep
4506 * here rather than calling cond_resched().
4507 */
4508 if (current->flags & PF_WQ_WORKER)
4509 schedule_timeout_uninterruptible(1);
4510 else
4511 cond_resched();
4512 return ret;
4513 }
4514
4515 static inline bool
4516 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4517 {
4518 /*
4519 * It's possible that cpuset's mems_allowed and the nodemask from
4520 * mempolicy don't intersect. This should be normally dealt with by
4521 * policy_nodemask(), but it's possible to race with cpuset update in
4522 * such a way the check therein was true, and then it became false
4523 * before we got our cpuset_mems_cookie here.
4524 * This assumes that for all allocations, ac->nodemask can come only
4525 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4526 * when it does not intersect with the cpuset restrictions) or the
4527 * caller can deal with a violated nodemask.
4528 */
4529 if (cpusets_enabled() && ac->nodemask &&
4530 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4531 ac->nodemask = NULL;
4532 return true;
4533 }
4534
4535 /*
4536 * When updating a task's mems_allowed or mempolicy nodemask, it is
4537 * possible to race with parallel threads in such a way that our
4538 * allocation can fail while the mask is being updated. If we are about
4539 * to fail, check if the cpuset changed during allocation and if so,
4540 * retry.
4541 */
4542 if (read_mems_allowed_retry(cpuset_mems_cookie))
4543 return true;
4544
4545 return false;
4546 }
4547
4548 static inline struct page *
4549 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4550 struct alloc_context *ac)
4551 {
4552 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4553 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4554 struct page *page = NULL;
4555 unsigned int alloc_flags;
4556 unsigned long did_some_progress;
4557 enum compact_priority compact_priority;
4558 enum compact_result compact_result;
4559 int compaction_retries;
4560 int no_progress_loops;
4561 unsigned int cpuset_mems_cookie;
4562 int reserve_flags;
4563
4564 /*
4565 * We also sanity check to catch abuse of atomic reserves being used by
4566 * callers that are not in atomic context.
4567 */
4568 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4569 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4570 gfp_mask &= ~__GFP_ATOMIC;
4571
4572 retry_cpuset:
4573 compaction_retries = 0;
4574 no_progress_loops = 0;
4575 compact_priority = DEF_COMPACT_PRIORITY;
4576 cpuset_mems_cookie = read_mems_allowed_begin();
4577
4578 /*
4579 * The fast path uses conservative alloc_flags to succeed only until
4580 * kswapd needs to be woken up, and to avoid the cost of setting up
4581 * alloc_flags precisely. So we do that now.
4582 */
4583 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4584
4585 /*
4586 * We need to recalculate the starting point for the zonelist iterator
4587 * because we might have used different nodemask in the fast path, or
4588 * there was a cpuset modification and we are retrying - otherwise we
4589 * could end up iterating over non-eligible zones endlessly.
4590 */
4591 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4592 ac->highest_zoneidx, ac->nodemask);
4593 if (!ac->preferred_zoneref->zone)
4594 goto nopage;
4595
4596 if (alloc_flags & ALLOC_KSWAPD)
4597 wake_all_kswapds(order, gfp_mask, ac);
4598
4599 /*
4600 * The adjusted alloc_flags might result in immediate success, so try
4601 * that first
4602 */
4603 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4604 if (page)
4605 goto got_pg;
4606
4607 /*
4608 * For costly allocations, try direct compaction first, as it's likely
4609 * that we have enough base pages and don't need to reclaim. For non-
4610 * movable high-order allocations, do that as well, as compaction will
4611 * try prevent permanent fragmentation by migrating from blocks of the
4612 * same migratetype.
4613 * Don't try this for allocations that are allowed to ignore
4614 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4615 */
4616 if (can_direct_reclaim &&
4617 (costly_order ||
4618 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4619 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4620 page = __alloc_pages_direct_compact(gfp_mask, order,
4621 alloc_flags, ac,
4622 INIT_COMPACT_PRIORITY,
4623 &compact_result);
4624 if (page)
4625 goto got_pg;
4626
4627 /*
4628 * Checks for costly allocations with __GFP_NORETRY, which
4629 * includes some THP page fault allocations
4630 */
4631 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4632 /*
4633 * If allocating entire pageblock(s) and compaction
4634 * failed because all zones are below low watermarks
4635 * or is prohibited because it recently failed at this
4636 * order, fail immediately unless the allocator has
4637 * requested compaction and reclaim retry.
4638 *
4639 * Reclaim is
4640 * - potentially very expensive because zones are far
4641 * below their low watermarks or this is part of very
4642 * bursty high order allocations,
4643 * - not guaranteed to help because isolate_freepages()
4644 * may not iterate over freed pages as part of its
4645 * linear scan, and
4646 * - unlikely to make entire pageblocks free on its
4647 * own.
4648 */
4649 if (compact_result == COMPACT_SKIPPED ||
4650 compact_result == COMPACT_DEFERRED)
4651 goto nopage;
4652
4653 /*
4654 * Looks like reclaim/compaction is worth trying, but
4655 * sync compaction could be very expensive, so keep
4656 * using async compaction.
4657 */
4658 compact_priority = INIT_COMPACT_PRIORITY;
4659 }
4660 }
4661
4662 retry:
4663 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4664 if (alloc_flags & ALLOC_KSWAPD)
4665 wake_all_kswapds(order, gfp_mask, ac);
4666
4667 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4668 if (reserve_flags)
4669 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4670
4671 /*
4672 * Reset the nodemask and zonelist iterators if memory policies can be
4673 * ignored. These allocations are high priority and system rather than
4674 * user oriented.
4675 */
4676 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4677 ac->nodemask = NULL;
4678 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4679 ac->highest_zoneidx, ac->nodemask);
4680 }
4681
4682 /* Attempt with potentially adjusted zonelist and alloc_flags */
4683 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4684 if (page)
4685 goto got_pg;
4686
4687 /* Caller is not willing to reclaim, we can't balance anything */
4688 if (!can_direct_reclaim)
4689 goto nopage;
4690
4691 /* Avoid recursion of direct reclaim */
4692 if (current->flags & PF_MEMALLOC)
4693 goto nopage;
4694
4695 /* Try direct reclaim and then allocating */
4696 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4697 &did_some_progress);
4698 if (page)
4699 goto got_pg;
4700
4701 /* Try direct compaction and then allocating */
4702 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4703 compact_priority, &compact_result);
4704 if (page)
4705 goto got_pg;
4706
4707 /* Do not loop if specifically requested */
4708 if (gfp_mask & __GFP_NORETRY)
4709 goto nopage;
4710
4711 /*
4712 * Do not retry costly high order allocations unless they are
4713 * __GFP_RETRY_MAYFAIL
4714 */
4715 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4716 goto nopage;
4717
4718 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4719 did_some_progress > 0, &no_progress_loops))
4720 goto retry;
4721
4722 /*
4723 * It doesn't make any sense to retry for the compaction if the order-0
4724 * reclaim is not able to make any progress because the current
4725 * implementation of the compaction depends on the sufficient amount
4726 * of free memory (see __compaction_suitable)
4727 */
4728 if (did_some_progress > 0 &&
4729 should_compact_retry(ac, order, alloc_flags,
4730 compact_result, &compact_priority,
4731 &compaction_retries))
4732 goto retry;
4733
4734
4735 /* Deal with possible cpuset update races before we start OOM killing */
4736 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4737 goto retry_cpuset;
4738
4739 /* Reclaim has failed us, start killing things */
4740 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4741 if (page)
4742 goto got_pg;
4743
4744 /* Avoid allocations with no watermarks from looping endlessly */
4745 if (tsk_is_oom_victim(current) &&
4746 (alloc_flags & ALLOC_OOM ||
4747 (gfp_mask & __GFP_NOMEMALLOC)))
4748 goto nopage;
4749
4750 /* Retry as long as the OOM killer is making progress */
4751 if (did_some_progress) {
4752 no_progress_loops = 0;
4753 goto retry;
4754 }
4755
4756 nopage:
4757 /* Deal with possible cpuset update races before we fail */
4758 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4759 goto retry_cpuset;
4760
4761 /*
4762 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4763 * we always retry
4764 */
4765 if (gfp_mask & __GFP_NOFAIL) {
4766 /*
4767 * All existing users of the __GFP_NOFAIL are blockable, so warn
4768 * of any new users that actually require GFP_NOWAIT
4769 */
4770 if (WARN_ON_ONCE(!can_direct_reclaim))
4771 goto fail;
4772
4773 /*
4774 * PF_MEMALLOC request from this context is rather bizarre
4775 * because we cannot reclaim anything and only can loop waiting
4776 * for somebody to do a work for us
4777 */
4778 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4779
4780 /*
4781 * non failing costly orders are a hard requirement which we
4782 * are not prepared for much so let's warn about these users
4783 * so that we can identify them and convert them to something
4784 * else.
4785 */
4786 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4787
4788 /*
4789 * Help non-failing allocations by giving them access to memory
4790 * reserves but do not use ALLOC_NO_WATERMARKS because this
4791 * could deplete whole memory reserves which would just make
4792 * the situation worse
4793 */
4794 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4795 if (page)
4796 goto got_pg;
4797
4798 cond_resched();
4799 goto retry;
4800 }
4801 fail:
4802 warn_alloc(gfp_mask, ac->nodemask,
4803 "page allocation failure: order:%u", order);
4804 got_pg:
4805 return page;
4806 }
4807
4808 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4809 int preferred_nid, nodemask_t *nodemask,
4810 struct alloc_context *ac, gfp_t *alloc_mask,
4811 unsigned int *alloc_flags)
4812 {
4813 ac->highest_zoneidx = gfp_zone(gfp_mask);
4814 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4815 ac->nodemask = nodemask;
4816 ac->migratetype = gfp_migratetype(gfp_mask);
4817
4818 if (cpusets_enabled()) {
4819 *alloc_mask |= __GFP_HARDWALL;
4820 /*
4821 * When we are in the interrupt context, it is irrelevant
4822 * to the current task context. It means that any node ok.
4823 */
4824 if (!in_interrupt() && !ac->nodemask)
4825 ac->nodemask = &cpuset_current_mems_allowed;
4826 else
4827 *alloc_flags |= ALLOC_CPUSET;
4828 }
4829
4830 fs_reclaim_acquire(gfp_mask);
4831 fs_reclaim_release(gfp_mask);
4832
4833 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4834
4835 if (should_fail_alloc_page(gfp_mask, order))
4836 return false;
4837
4838 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4839
4840 /* Dirty zone balancing only done in the fast path */
4841 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4842
4843 /*
4844 * The preferred zone is used for statistics but crucially it is
4845 * also used as the starting point for the zonelist iterator. It
4846 * may get reset for allocations that ignore memory policies.
4847 */
4848 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4849 ac->highest_zoneidx, ac->nodemask);
4850
4851 return true;
4852 }
4853
4854 /*
4855 * This is the 'heart' of the zoned buddy allocator.
4856 */
4857 struct page *
4858 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4859 nodemask_t *nodemask)
4860 {
4861 struct page *page;
4862 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4863 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4864 struct alloc_context ac = { };
4865
4866 /*
4867 * There are several places where we assume that the order value is sane
4868 * so bail out early if the request is out of bound.
4869 */
4870 if (unlikely(order >= MAX_ORDER)) {
4871 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4872 return NULL;
4873 }
4874
4875 gfp_mask &= gfp_allowed_mask;
4876 alloc_mask = gfp_mask;
4877 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4878 return NULL;
4879
4880 /*
4881 * Forbid the first pass from falling back to types that fragment
4882 * memory until all local zones are considered.
4883 */
4884 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4885
4886 /* First allocation attempt */
4887 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4888 if (likely(page))
4889 goto out;
4890
4891 /*
4892 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4893 * resp. GFP_NOIO which has to be inherited for all allocation requests
4894 * from a particular context which has been marked by
4895 * memalloc_no{fs,io}_{save,restore}.
4896 */
4897 alloc_mask = current_gfp_context(gfp_mask);
4898 ac.spread_dirty_pages = false;
4899
4900 /*
4901 * Restore the original nodemask if it was potentially replaced with
4902 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4903 */
4904 ac.nodemask = nodemask;
4905
4906 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4907
4908 out:
4909 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4910 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4911 __free_pages(page, order);
4912 page = NULL;
4913 }
4914
4915 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4916
4917 return page;
4918 }
4919 EXPORT_SYMBOL(__alloc_pages_nodemask);
4920
4921 /*
4922 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4923 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4924 * you need to access high mem.
4925 */
4926 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4927 {
4928 struct page *page;
4929
4930 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4931 if (!page)
4932 return 0;
4933 return (unsigned long) page_address(page);
4934 }
4935 EXPORT_SYMBOL(__get_free_pages);
4936
4937 unsigned long get_zeroed_page(gfp_t gfp_mask)
4938 {
4939 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4940 }
4941 EXPORT_SYMBOL(get_zeroed_page);
4942
4943 static inline void free_the_page(struct page *page, unsigned int order)
4944 {
4945 if (order == 0) /* Via pcp? */
4946 free_unref_page(page);
4947 else
4948 __free_pages_ok(page, order);
4949 }
4950
4951 void __free_pages(struct page *page, unsigned int order)
4952 {
4953 if (put_page_testzero(page))
4954 free_the_page(page, order);
4955 else if (!PageHead(page))
4956 while (order-- > 0)
4957 free_the_page(page + (1 << order), order);
4958 }
4959 EXPORT_SYMBOL(__free_pages);
4960
4961 void free_pages(unsigned long addr, unsigned int order)
4962 {
4963 if (addr != 0) {
4964 VM_BUG_ON(!virt_addr_valid((void *)addr));
4965 __free_pages(virt_to_page((void *)addr), order);
4966 }
4967 }
4968
4969 EXPORT_SYMBOL(free_pages);
4970
4971 /*
4972 * Page Fragment:
4973 * An arbitrary-length arbitrary-offset area of memory which resides
4974 * within a 0 or higher order page. Multiple fragments within that page
4975 * are individually refcounted, in the page's reference counter.
4976 *
4977 * The page_frag functions below provide a simple allocation framework for
4978 * page fragments. This is used by the network stack and network device
4979 * drivers to provide a backing region of memory for use as either an
4980 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4981 */
4982 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4983 gfp_t gfp_mask)
4984 {
4985 struct page *page = NULL;
4986 gfp_t gfp = gfp_mask;
4987
4988 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4989 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4990 __GFP_NOMEMALLOC;
4991 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4992 PAGE_FRAG_CACHE_MAX_ORDER);
4993 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4994 #endif
4995 if (unlikely(!page))
4996 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4997
4998 nc->va = page ? page_address(page) : NULL;
4999
5000 return page;
5001 }
5002
5003 void __page_frag_cache_drain(struct page *page, unsigned int count)
5004 {
5005 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5006
5007 if (page_ref_sub_and_test(page, count))
5008 free_the_page(page, compound_order(page));
5009 }
5010 EXPORT_SYMBOL(__page_frag_cache_drain);
5011
5012 void *page_frag_alloc(struct page_frag_cache *nc,
5013 unsigned int fragsz, gfp_t gfp_mask)
5014 {
5015 unsigned int size = PAGE_SIZE;
5016 struct page *page;
5017 int offset;
5018
5019 if (unlikely(!nc->va)) {
5020 refill:
5021 page = __page_frag_cache_refill(nc, gfp_mask);
5022 if (!page)
5023 return NULL;
5024
5025 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5026 /* if size can vary use size else just use PAGE_SIZE */
5027 size = nc->size;
5028 #endif
5029 /* Even if we own the page, we do not use atomic_set().
5030 * This would break get_page_unless_zero() users.
5031 */
5032 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5033
5034 /* reset page count bias and offset to start of new frag */
5035 nc->pfmemalloc = page_is_pfmemalloc(page);
5036 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5037 nc->offset = size;
5038 }
5039
5040 offset = nc->offset - fragsz;
5041 if (unlikely(offset < 0)) {
5042 page = virt_to_page(nc->va);
5043
5044 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5045 goto refill;
5046
5047 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5048 /* if size can vary use size else just use PAGE_SIZE */
5049 size = nc->size;
5050 #endif
5051 /* OK, page count is 0, we can safely set it */
5052 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5053
5054 /* reset page count bias and offset to start of new frag */
5055 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5056 offset = size - fragsz;
5057 }
5058
5059 nc->pagecnt_bias--;
5060 nc->offset = offset;
5061
5062 return nc->va + offset;
5063 }
5064 EXPORT_SYMBOL(page_frag_alloc);
5065
5066 /*
5067 * Frees a page fragment allocated out of either a compound or order 0 page.
5068 */
5069 void page_frag_free(void *addr)
5070 {
5071 struct page *page = virt_to_head_page(addr);
5072
5073 if (unlikely(put_page_testzero(page)))
5074 free_the_page(page, compound_order(page));
5075 }
5076 EXPORT_SYMBOL(page_frag_free);
5077
5078 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5079 size_t size)
5080 {
5081 if (addr) {
5082 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5083 unsigned long used = addr + PAGE_ALIGN(size);
5084
5085 split_page(virt_to_page((void *)addr), order);
5086 while (used < alloc_end) {
5087 free_page(used);
5088 used += PAGE_SIZE;
5089 }
5090 }
5091 return (void *)addr;
5092 }
5093
5094 /**
5095 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5096 * @size: the number of bytes to allocate
5097 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5098 *
5099 * This function is similar to alloc_pages(), except that it allocates the
5100 * minimum number of pages to satisfy the request. alloc_pages() can only
5101 * allocate memory in power-of-two pages.
5102 *
5103 * This function is also limited by MAX_ORDER.
5104 *
5105 * Memory allocated by this function must be released by free_pages_exact().
5106 *
5107 * Return: pointer to the allocated area or %NULL in case of error.
5108 */
5109 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5110 {
5111 unsigned int order = get_order(size);
5112 unsigned long addr;
5113
5114 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5115 gfp_mask &= ~__GFP_COMP;
5116
5117 addr = __get_free_pages(gfp_mask, order);
5118 return make_alloc_exact(addr, order, size);
5119 }
5120 EXPORT_SYMBOL(alloc_pages_exact);
5121
5122 /**
5123 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5124 * pages on a node.
5125 * @nid: the preferred node ID where memory should be allocated
5126 * @size: the number of bytes to allocate
5127 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5128 *
5129 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5130 * back.
5131 *
5132 * Return: pointer to the allocated area or %NULL in case of error.
5133 */
5134 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5135 {
5136 unsigned int order = get_order(size);
5137 struct page *p;
5138
5139 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5140 gfp_mask &= ~__GFP_COMP;
5141
5142 p = alloc_pages_node(nid, gfp_mask, order);
5143 if (!p)
5144 return NULL;
5145 return make_alloc_exact((unsigned long)page_address(p), order, size);
5146 }
5147
5148 /**
5149 * free_pages_exact - release memory allocated via alloc_pages_exact()
5150 * @virt: the value returned by alloc_pages_exact.
5151 * @size: size of allocation, same value as passed to alloc_pages_exact().
5152 *
5153 * Release the memory allocated by a previous call to alloc_pages_exact.
5154 */
5155 void free_pages_exact(void *virt, size_t size)
5156 {
5157 unsigned long addr = (unsigned long)virt;
5158 unsigned long end = addr + PAGE_ALIGN(size);
5159
5160 while (addr < end) {
5161 free_page(addr);
5162 addr += PAGE_SIZE;
5163 }
5164 }
5165 EXPORT_SYMBOL(free_pages_exact);
5166
5167 /**
5168 * nr_free_zone_pages - count number of pages beyond high watermark
5169 * @offset: The zone index of the highest zone
5170 *
5171 * nr_free_zone_pages() counts the number of pages which are beyond the
5172 * high watermark within all zones at or below a given zone index. For each
5173 * zone, the number of pages is calculated as:
5174 *
5175 * nr_free_zone_pages = managed_pages - high_pages
5176 *
5177 * Return: number of pages beyond high watermark.
5178 */
5179 static unsigned long nr_free_zone_pages(int offset)
5180 {
5181 struct zoneref *z;
5182 struct zone *zone;
5183
5184 /* Just pick one node, since fallback list is circular */
5185 unsigned long sum = 0;
5186
5187 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5188
5189 for_each_zone_zonelist(zone, z, zonelist, offset) {
5190 unsigned long size = zone_managed_pages(zone);
5191 unsigned long high = high_wmark_pages(zone);
5192 if (size > high)
5193 sum += size - high;
5194 }
5195
5196 return sum;
5197 }
5198
5199 /**
5200 * nr_free_buffer_pages - count number of pages beyond high watermark
5201 *
5202 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5203 * watermark within ZONE_DMA and ZONE_NORMAL.
5204 *
5205 * Return: number of pages beyond high watermark within ZONE_DMA and
5206 * ZONE_NORMAL.
5207 */
5208 unsigned long nr_free_buffer_pages(void)
5209 {
5210 return nr_free_zone_pages(gfp_zone(GFP_USER));
5211 }
5212 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5213
5214 static inline void show_node(struct zone *zone)
5215 {
5216 if (IS_ENABLED(CONFIG_NUMA))
5217 printk("Node %d ", zone_to_nid(zone));
5218 }
5219
5220 long si_mem_available(void)
5221 {
5222 long available;
5223 unsigned long pagecache;
5224 unsigned long wmark_low = 0;
5225 unsigned long pages[NR_LRU_LISTS];
5226 unsigned long reclaimable;
5227 struct zone *zone;
5228 int lru;
5229
5230 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5231 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5232
5233 for_each_zone(zone)
5234 wmark_low += low_wmark_pages(zone);
5235
5236 /*
5237 * Estimate the amount of memory available for userspace allocations,
5238 * without causing swapping.
5239 */
5240 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5241
5242 /*
5243 * Not all the page cache can be freed, otherwise the system will
5244 * start swapping. Assume at least half of the page cache, or the
5245 * low watermark worth of cache, needs to stay.
5246 */
5247 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5248 pagecache -= min(pagecache / 2, wmark_low);
5249 available += pagecache;
5250
5251 /*
5252 * Part of the reclaimable slab and other kernel memory consists of
5253 * items that are in use, and cannot be freed. Cap this estimate at the
5254 * low watermark.
5255 */
5256 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5257 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5258 available += reclaimable - min(reclaimable / 2, wmark_low);
5259
5260 if (available < 0)
5261 available = 0;
5262 return available;
5263 }
5264 EXPORT_SYMBOL_GPL(si_mem_available);
5265
5266 void si_meminfo(struct sysinfo *val)
5267 {
5268 val->totalram = totalram_pages();
5269 val->sharedram = global_node_page_state(NR_SHMEM);
5270 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5271 val->bufferram = nr_blockdev_pages();
5272 val->totalhigh = totalhigh_pages();
5273 val->freehigh = nr_free_highpages();
5274 val->mem_unit = PAGE_SIZE;
5275 }
5276
5277 EXPORT_SYMBOL(si_meminfo);
5278
5279 #ifdef CONFIG_NUMA
5280 void si_meminfo_node(struct sysinfo *val, int nid)
5281 {
5282 int zone_type; /* needs to be signed */
5283 unsigned long managed_pages = 0;
5284 unsigned long managed_highpages = 0;
5285 unsigned long free_highpages = 0;
5286 pg_data_t *pgdat = NODE_DATA(nid);
5287
5288 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5289 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5290 val->totalram = managed_pages;
5291 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5292 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5293 #ifdef CONFIG_HIGHMEM
5294 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5295 struct zone *zone = &pgdat->node_zones[zone_type];
5296
5297 if (is_highmem(zone)) {
5298 managed_highpages += zone_managed_pages(zone);
5299 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5300 }
5301 }
5302 val->totalhigh = managed_highpages;
5303 val->freehigh = free_highpages;
5304 #else
5305 val->totalhigh = managed_highpages;
5306 val->freehigh = free_highpages;
5307 #endif
5308 val->mem_unit = PAGE_SIZE;
5309 }
5310 #endif
5311
5312 /*
5313 * Determine whether the node should be displayed or not, depending on whether
5314 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5315 */
5316 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5317 {
5318 if (!(flags & SHOW_MEM_FILTER_NODES))
5319 return false;
5320
5321 /*
5322 * no node mask - aka implicit memory numa policy. Do not bother with
5323 * the synchronization - read_mems_allowed_begin - because we do not
5324 * have to be precise here.
5325 */
5326 if (!nodemask)
5327 nodemask = &cpuset_current_mems_allowed;
5328
5329 return !node_isset(nid, *nodemask);
5330 }
5331
5332 #define K(x) ((x) << (PAGE_SHIFT-10))
5333
5334 static void show_migration_types(unsigned char type)
5335 {
5336 static const char types[MIGRATE_TYPES] = {
5337 [MIGRATE_UNMOVABLE] = 'U',
5338 [MIGRATE_MOVABLE] = 'M',
5339 [MIGRATE_RECLAIMABLE] = 'E',
5340 [MIGRATE_HIGHATOMIC] = 'H',
5341 #ifdef CONFIG_CMA
5342 [MIGRATE_CMA] = 'C',
5343 #endif
5344 #ifdef CONFIG_MEMORY_ISOLATION
5345 [MIGRATE_ISOLATE] = 'I',
5346 #endif
5347 };
5348 char tmp[MIGRATE_TYPES + 1];
5349 char *p = tmp;
5350 int i;
5351
5352 for (i = 0; i < MIGRATE_TYPES; i++) {
5353 if (type & (1 << i))
5354 *p++ = types[i];
5355 }
5356
5357 *p = '\0';
5358 printk(KERN_CONT "(%s) ", tmp);
5359 }
5360
5361 /*
5362 * Show free area list (used inside shift_scroll-lock stuff)
5363 * We also calculate the percentage fragmentation. We do this by counting the
5364 * memory on each free list with the exception of the first item on the list.
5365 *
5366 * Bits in @filter:
5367 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5368 * cpuset.
5369 */
5370 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5371 {
5372 unsigned long free_pcp = 0;
5373 int cpu;
5374 struct zone *zone;
5375 pg_data_t *pgdat;
5376
5377 for_each_populated_zone(zone) {
5378 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5379 continue;
5380
5381 for_each_online_cpu(cpu)
5382 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5383 }
5384
5385 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5386 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5387 " unevictable:%lu dirty:%lu writeback:%lu\n"
5388 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5389 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5390 " free:%lu free_pcp:%lu free_cma:%lu\n",
5391 global_node_page_state(NR_ACTIVE_ANON),
5392 global_node_page_state(NR_INACTIVE_ANON),
5393 global_node_page_state(NR_ISOLATED_ANON),
5394 global_node_page_state(NR_ACTIVE_FILE),
5395 global_node_page_state(NR_INACTIVE_FILE),
5396 global_node_page_state(NR_ISOLATED_FILE),
5397 global_node_page_state(NR_UNEVICTABLE),
5398 global_node_page_state(NR_FILE_DIRTY),
5399 global_node_page_state(NR_WRITEBACK),
5400 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5401 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5402 global_node_page_state(NR_FILE_MAPPED),
5403 global_node_page_state(NR_SHMEM),
5404 global_zone_page_state(NR_PAGETABLE),
5405 global_zone_page_state(NR_BOUNCE),
5406 global_zone_page_state(NR_FREE_PAGES),
5407 free_pcp,
5408 global_zone_page_state(NR_FREE_CMA_PAGES));
5409
5410 for_each_online_pgdat(pgdat) {
5411 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5412 continue;
5413
5414 printk("Node %d"
5415 " active_anon:%lukB"
5416 " inactive_anon:%lukB"
5417 " active_file:%lukB"
5418 " inactive_file:%lukB"
5419 " unevictable:%lukB"
5420 " isolated(anon):%lukB"
5421 " isolated(file):%lukB"
5422 " mapped:%lukB"
5423 " dirty:%lukB"
5424 " writeback:%lukB"
5425 " shmem:%lukB"
5426 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5427 " shmem_thp: %lukB"
5428 " shmem_pmdmapped: %lukB"
5429 " anon_thp: %lukB"
5430 #endif
5431 " writeback_tmp:%lukB"
5432 " kernel_stack:%lukB"
5433 #ifdef CONFIG_SHADOW_CALL_STACK
5434 " shadow_call_stack:%lukB"
5435 #endif
5436 " all_unreclaimable? %s"
5437 "\n",
5438 pgdat->node_id,
5439 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5440 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5441 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5442 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5443 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5444 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5445 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5446 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5447 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5448 K(node_page_state(pgdat, NR_WRITEBACK)),
5449 K(node_page_state(pgdat, NR_SHMEM)),
5450 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5451 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5452 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5453 * HPAGE_PMD_NR),
5454 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5455 #endif
5456 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5457 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5458 #ifdef CONFIG_SHADOW_CALL_STACK
5459 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5460 #endif
5461 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5462 "yes" : "no");
5463 }
5464
5465 for_each_populated_zone(zone) {
5466 int i;
5467
5468 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5469 continue;
5470
5471 free_pcp = 0;
5472 for_each_online_cpu(cpu)
5473 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5474
5475 show_node(zone);
5476 printk(KERN_CONT
5477 "%s"
5478 " free:%lukB"
5479 " min:%lukB"
5480 " low:%lukB"
5481 " high:%lukB"
5482 " reserved_highatomic:%luKB"
5483 " active_anon:%lukB"
5484 " inactive_anon:%lukB"
5485 " active_file:%lukB"
5486 " inactive_file:%lukB"
5487 " unevictable:%lukB"
5488 " writepending:%lukB"
5489 " present:%lukB"
5490 " managed:%lukB"
5491 " mlocked:%lukB"
5492 " pagetables:%lukB"
5493 " bounce:%lukB"
5494 " free_pcp:%lukB"
5495 " local_pcp:%ukB"
5496 " free_cma:%lukB"
5497 "\n",
5498 zone->name,
5499 K(zone_page_state(zone, NR_FREE_PAGES)),
5500 K(min_wmark_pages(zone)),
5501 K(low_wmark_pages(zone)),
5502 K(high_wmark_pages(zone)),
5503 K(zone->nr_reserved_highatomic),
5504 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5505 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5506 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5507 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5508 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5509 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5510 K(zone->present_pages),
5511 K(zone_managed_pages(zone)),
5512 K(zone_page_state(zone, NR_MLOCK)),
5513 K(zone_page_state(zone, NR_PAGETABLE)),
5514 K(zone_page_state(zone, NR_BOUNCE)),
5515 K(free_pcp),
5516 K(this_cpu_read(zone->pageset->pcp.count)),
5517 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5518 printk("lowmem_reserve[]:");
5519 for (i = 0; i < MAX_NR_ZONES; i++)
5520 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5521 printk(KERN_CONT "\n");
5522 }
5523
5524 for_each_populated_zone(zone) {
5525 unsigned int order;
5526 unsigned long nr[MAX_ORDER], flags, total = 0;
5527 unsigned char types[MAX_ORDER];
5528
5529 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5530 continue;
5531 show_node(zone);
5532 printk(KERN_CONT "%s: ", zone->name);
5533
5534 spin_lock_irqsave(&zone->lock, flags);
5535 for (order = 0; order < MAX_ORDER; order++) {
5536 struct free_area *area = &zone->free_area[order];
5537 int type;
5538
5539 nr[order] = area->nr_free;
5540 total += nr[order] << order;
5541
5542 types[order] = 0;
5543 for (type = 0; type < MIGRATE_TYPES; type++) {
5544 if (!free_area_empty(area, type))
5545 types[order] |= 1 << type;
5546 }
5547 }
5548 spin_unlock_irqrestore(&zone->lock, flags);
5549 for (order = 0; order < MAX_ORDER; order++) {
5550 printk(KERN_CONT "%lu*%lukB ",
5551 nr[order], K(1UL) << order);
5552 if (nr[order])
5553 show_migration_types(types[order]);
5554 }
5555 printk(KERN_CONT "= %lukB\n", K(total));
5556 }
5557
5558 hugetlb_show_meminfo();
5559
5560 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5561
5562 show_swap_cache_info();
5563 }
5564
5565 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5566 {
5567 zoneref->zone = zone;
5568 zoneref->zone_idx = zone_idx(zone);
5569 }
5570
5571 /*
5572 * Builds allocation fallback zone lists.
5573 *
5574 * Add all populated zones of a node to the zonelist.
5575 */
5576 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5577 {
5578 struct zone *zone;
5579 enum zone_type zone_type = MAX_NR_ZONES;
5580 int nr_zones = 0;
5581
5582 do {
5583 zone_type--;
5584 zone = pgdat->node_zones + zone_type;
5585 if (managed_zone(zone)) {
5586 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5587 check_highest_zone(zone_type);
5588 }
5589 } while (zone_type);
5590
5591 return nr_zones;
5592 }
5593
5594 #ifdef CONFIG_NUMA
5595
5596 static int __parse_numa_zonelist_order(char *s)
5597 {
5598 /*
5599 * We used to support different zonlists modes but they turned
5600 * out to be just not useful. Let's keep the warning in place
5601 * if somebody still use the cmd line parameter so that we do
5602 * not fail it silently
5603 */
5604 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5605 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5606 return -EINVAL;
5607 }
5608 return 0;
5609 }
5610
5611 char numa_zonelist_order[] = "Node";
5612
5613 /*
5614 * sysctl handler for numa_zonelist_order
5615 */
5616 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5617 void *buffer, size_t *length, loff_t *ppos)
5618 {
5619 if (write)
5620 return __parse_numa_zonelist_order(buffer);
5621 return proc_dostring(table, write, buffer, length, ppos);
5622 }
5623
5624
5625 #define MAX_NODE_LOAD (nr_online_nodes)
5626 static int node_load[MAX_NUMNODES];
5627
5628 /**
5629 * find_next_best_node - find the next node that should appear in a given node's fallback list
5630 * @node: node whose fallback list we're appending
5631 * @used_node_mask: nodemask_t of already used nodes
5632 *
5633 * We use a number of factors to determine which is the next node that should
5634 * appear on a given node's fallback list. The node should not have appeared
5635 * already in @node's fallback list, and it should be the next closest node
5636 * according to the distance array (which contains arbitrary distance values
5637 * from each node to each node in the system), and should also prefer nodes
5638 * with no CPUs, since presumably they'll have very little allocation pressure
5639 * on them otherwise.
5640 *
5641 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5642 */
5643 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5644 {
5645 int n, val;
5646 int min_val = INT_MAX;
5647 int best_node = NUMA_NO_NODE;
5648
5649 /* Use the local node if we haven't already */
5650 if (!node_isset(node, *used_node_mask)) {
5651 node_set(node, *used_node_mask);
5652 return node;
5653 }
5654
5655 for_each_node_state(n, N_MEMORY) {
5656
5657 /* Don't want a node to appear more than once */
5658 if (node_isset(n, *used_node_mask))
5659 continue;
5660
5661 /* Use the distance array to find the distance */
5662 val = node_distance(node, n);
5663
5664 /* Penalize nodes under us ("prefer the next node") */
5665 val += (n < node);
5666
5667 /* Give preference to headless and unused nodes */
5668 if (!cpumask_empty(cpumask_of_node(n)))
5669 val += PENALTY_FOR_NODE_WITH_CPUS;
5670
5671 /* Slight preference for less loaded node */
5672 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5673 val += node_load[n];
5674
5675 if (val < min_val) {
5676 min_val = val;
5677 best_node = n;
5678 }
5679 }
5680
5681 if (best_node >= 0)
5682 node_set(best_node, *used_node_mask);
5683
5684 return best_node;
5685 }
5686
5687
5688 /*
5689 * Build zonelists ordered by node and zones within node.
5690 * This results in maximum locality--normal zone overflows into local
5691 * DMA zone, if any--but risks exhausting DMA zone.
5692 */
5693 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5694 unsigned nr_nodes)
5695 {
5696 struct zoneref *zonerefs;
5697 int i;
5698
5699 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5700
5701 for (i = 0; i < nr_nodes; i++) {
5702 int nr_zones;
5703
5704 pg_data_t *node = NODE_DATA(node_order[i]);
5705
5706 nr_zones = build_zonerefs_node(node, zonerefs);
5707 zonerefs += nr_zones;
5708 }
5709 zonerefs->zone = NULL;
5710 zonerefs->zone_idx = 0;
5711 }
5712
5713 /*
5714 * Build gfp_thisnode zonelists
5715 */
5716 static void build_thisnode_zonelists(pg_data_t *pgdat)
5717 {
5718 struct zoneref *zonerefs;
5719 int nr_zones;
5720
5721 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5722 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5723 zonerefs += nr_zones;
5724 zonerefs->zone = NULL;
5725 zonerefs->zone_idx = 0;
5726 }
5727
5728 /*
5729 * Build zonelists ordered by zone and nodes within zones.
5730 * This results in conserving DMA zone[s] until all Normal memory is
5731 * exhausted, but results in overflowing to remote node while memory
5732 * may still exist in local DMA zone.
5733 */
5734
5735 static void build_zonelists(pg_data_t *pgdat)
5736 {
5737 static int node_order[MAX_NUMNODES];
5738 int node, load, nr_nodes = 0;
5739 nodemask_t used_mask = NODE_MASK_NONE;
5740 int local_node, prev_node;
5741
5742 /* NUMA-aware ordering of nodes */
5743 local_node = pgdat->node_id;
5744 load = nr_online_nodes;
5745 prev_node = local_node;
5746
5747 memset(node_order, 0, sizeof(node_order));
5748 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5749 /*
5750 * We don't want to pressure a particular node.
5751 * So adding penalty to the first node in same
5752 * distance group to make it round-robin.
5753 */
5754 if (node_distance(local_node, node) !=
5755 node_distance(local_node, prev_node))
5756 node_load[node] = load;
5757
5758 node_order[nr_nodes++] = node;
5759 prev_node = node;
5760 load--;
5761 }
5762
5763 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5764 build_thisnode_zonelists(pgdat);
5765 }
5766
5767 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5768 /*
5769 * Return node id of node used for "local" allocations.
5770 * I.e., first node id of first zone in arg node's generic zonelist.
5771 * Used for initializing percpu 'numa_mem', which is used primarily
5772 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5773 */
5774 int local_memory_node(int node)
5775 {
5776 struct zoneref *z;
5777
5778 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5779 gfp_zone(GFP_KERNEL),
5780 NULL);
5781 return zone_to_nid(z->zone);
5782 }
5783 #endif
5784
5785 static void setup_min_unmapped_ratio(void);
5786 static void setup_min_slab_ratio(void);
5787 #else /* CONFIG_NUMA */
5788
5789 static void build_zonelists(pg_data_t *pgdat)
5790 {
5791 int node, local_node;
5792 struct zoneref *zonerefs;
5793 int nr_zones;
5794
5795 local_node = pgdat->node_id;
5796
5797 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5798 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5799 zonerefs += nr_zones;
5800
5801 /*
5802 * Now we build the zonelist so that it contains the zones
5803 * of all the other nodes.
5804 * We don't want to pressure a particular node, so when
5805 * building the zones for node N, we make sure that the
5806 * zones coming right after the local ones are those from
5807 * node N+1 (modulo N)
5808 */
5809 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5810 if (!node_online(node))
5811 continue;
5812 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5813 zonerefs += nr_zones;
5814 }
5815 for (node = 0; node < local_node; node++) {
5816 if (!node_online(node))
5817 continue;
5818 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5819 zonerefs += nr_zones;
5820 }
5821
5822 zonerefs->zone = NULL;
5823 zonerefs->zone_idx = 0;
5824 }
5825
5826 #endif /* CONFIG_NUMA */
5827
5828 /*
5829 * Boot pageset table. One per cpu which is going to be used for all
5830 * zones and all nodes. The parameters will be set in such a way
5831 * that an item put on a list will immediately be handed over to
5832 * the buddy list. This is safe since pageset manipulation is done
5833 * with interrupts disabled.
5834 *
5835 * The boot_pagesets must be kept even after bootup is complete for
5836 * unused processors and/or zones. They do play a role for bootstrapping
5837 * hotplugged processors.
5838 *
5839 * zoneinfo_show() and maybe other functions do
5840 * not check if the processor is online before following the pageset pointer.
5841 * Other parts of the kernel may not check if the zone is available.
5842 */
5843 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5844 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5845 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5846
5847 static void __build_all_zonelists(void *data)
5848 {
5849 int nid;
5850 int __maybe_unused cpu;
5851 pg_data_t *self = data;
5852 static DEFINE_SPINLOCK(lock);
5853
5854 spin_lock(&lock);
5855
5856 #ifdef CONFIG_NUMA
5857 memset(node_load, 0, sizeof(node_load));
5858 #endif
5859
5860 /*
5861 * This node is hotadded and no memory is yet present. So just
5862 * building zonelists is fine - no need to touch other nodes.
5863 */
5864 if (self && !node_online(self->node_id)) {
5865 build_zonelists(self);
5866 } else {
5867 for_each_online_node(nid) {
5868 pg_data_t *pgdat = NODE_DATA(nid);
5869
5870 build_zonelists(pgdat);
5871 }
5872
5873 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5874 /*
5875 * We now know the "local memory node" for each node--
5876 * i.e., the node of the first zone in the generic zonelist.
5877 * Set up numa_mem percpu variable for on-line cpus. During
5878 * boot, only the boot cpu should be on-line; we'll init the
5879 * secondary cpus' numa_mem as they come on-line. During
5880 * node/memory hotplug, we'll fixup all on-line cpus.
5881 */
5882 for_each_online_cpu(cpu)
5883 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5884 #endif
5885 }
5886
5887 spin_unlock(&lock);
5888 }
5889
5890 static noinline void __init
5891 build_all_zonelists_init(void)
5892 {
5893 int cpu;
5894
5895 __build_all_zonelists(NULL);
5896
5897 /*
5898 * Initialize the boot_pagesets that are going to be used
5899 * for bootstrapping processors. The real pagesets for
5900 * each zone will be allocated later when the per cpu
5901 * allocator is available.
5902 *
5903 * boot_pagesets are used also for bootstrapping offline
5904 * cpus if the system is already booted because the pagesets
5905 * are needed to initialize allocators on a specific cpu too.
5906 * F.e. the percpu allocator needs the page allocator which
5907 * needs the percpu allocator in order to allocate its pagesets
5908 * (a chicken-egg dilemma).
5909 */
5910 for_each_possible_cpu(cpu)
5911 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5912
5913 mminit_verify_zonelist();
5914 cpuset_init_current_mems_allowed();
5915 }
5916
5917 /*
5918 * unless system_state == SYSTEM_BOOTING.
5919 *
5920 * __ref due to call of __init annotated helper build_all_zonelists_init
5921 * [protected by SYSTEM_BOOTING].
5922 */
5923 void __ref build_all_zonelists(pg_data_t *pgdat)
5924 {
5925 unsigned long vm_total_pages;
5926
5927 if (system_state == SYSTEM_BOOTING) {
5928 build_all_zonelists_init();
5929 } else {
5930 __build_all_zonelists(pgdat);
5931 /* cpuset refresh routine should be here */
5932 }
5933 /* Get the number of free pages beyond high watermark in all zones. */
5934 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5935 /*
5936 * Disable grouping by mobility if the number of pages in the
5937 * system is too low to allow the mechanism to work. It would be
5938 * more accurate, but expensive to check per-zone. This check is
5939 * made on memory-hotadd so a system can start with mobility
5940 * disabled and enable it later
5941 */
5942 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5943 page_group_by_mobility_disabled = 1;
5944 else
5945 page_group_by_mobility_disabled = 0;
5946
5947 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5948 nr_online_nodes,
5949 page_group_by_mobility_disabled ? "off" : "on",
5950 vm_total_pages);
5951 #ifdef CONFIG_NUMA
5952 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5953 #endif
5954 }
5955
5956 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5957 static bool __meminit
5958 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5959 {
5960 static struct memblock_region *r;
5961
5962 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5963 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5964 for_each_mem_region(r) {
5965 if (*pfn < memblock_region_memory_end_pfn(r))
5966 break;
5967 }
5968 }
5969 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5970 memblock_is_mirror(r)) {
5971 *pfn = memblock_region_memory_end_pfn(r);
5972 return true;
5973 }
5974 }
5975 return false;
5976 }
5977
5978 /*
5979 * Initially all pages are reserved - free ones are freed
5980 * up by memblock_free_all() once the early boot process is
5981 * done. Non-atomic initialization, single-pass.
5982 */
5983 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5984 unsigned long start_pfn, enum meminit_context context,
5985 struct vmem_altmap *altmap)
5986 {
5987 unsigned long pfn, end_pfn = start_pfn + size;
5988 struct page *page;
5989
5990 if (highest_memmap_pfn < end_pfn - 1)
5991 highest_memmap_pfn = end_pfn - 1;
5992
5993 #ifdef CONFIG_ZONE_DEVICE
5994 /*
5995 * Honor reservation requested by the driver for this ZONE_DEVICE
5996 * memory. We limit the total number of pages to initialize to just
5997 * those that might contain the memory mapping. We will defer the
5998 * ZONE_DEVICE page initialization until after we have released
5999 * the hotplug lock.
6000 */
6001 if (zone == ZONE_DEVICE) {
6002 if (!altmap)
6003 return;
6004
6005 if (start_pfn == altmap->base_pfn)
6006 start_pfn += altmap->reserve;
6007 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6008 }
6009 #endif
6010
6011 for (pfn = start_pfn; pfn < end_pfn; ) {
6012 /*
6013 * There can be holes in boot-time mem_map[]s handed to this
6014 * function. They do not exist on hotplugged memory.
6015 */
6016 if (context == MEMINIT_EARLY) {
6017 if (overlap_memmap_init(zone, &pfn))
6018 continue;
6019 if (defer_init(nid, pfn, end_pfn))
6020 break;
6021 }
6022
6023 page = pfn_to_page(pfn);
6024 __init_single_page(page, pfn, zone, nid);
6025 if (context == MEMINIT_HOTPLUG)
6026 __SetPageReserved(page);
6027
6028 /*
6029 * Mark the block movable so that blocks are reserved for
6030 * movable at startup. This will force kernel allocations
6031 * to reserve their blocks rather than leaking throughout
6032 * the address space during boot when many long-lived
6033 * kernel allocations are made.
6034 *
6035 * bitmap is created for zone's valid pfn range. but memmap
6036 * can be created for invalid pages (for alignment)
6037 * check here not to call set_pageblock_migratetype() against
6038 * pfn out of zone.
6039 */
6040 if (!(pfn & (pageblock_nr_pages - 1))) {
6041 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6042 cond_resched();
6043 }
6044 pfn++;
6045 }
6046 }
6047
6048 #ifdef CONFIG_ZONE_DEVICE
6049 void __ref memmap_init_zone_device(struct zone *zone,
6050 unsigned long start_pfn,
6051 unsigned long nr_pages,
6052 struct dev_pagemap *pgmap)
6053 {
6054 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6055 struct pglist_data *pgdat = zone->zone_pgdat;
6056 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6057 unsigned long zone_idx = zone_idx(zone);
6058 unsigned long start = jiffies;
6059 int nid = pgdat->node_id;
6060
6061 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6062 return;
6063
6064 /*
6065 * The call to memmap_init_zone should have already taken care
6066 * of the pages reserved for the memmap, so we can just jump to
6067 * the end of that region and start processing the device pages.
6068 */
6069 if (altmap) {
6070 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6071 nr_pages = end_pfn - start_pfn;
6072 }
6073
6074 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6075 struct page *page = pfn_to_page(pfn);
6076
6077 __init_single_page(page, pfn, zone_idx, nid);
6078
6079 /*
6080 * Mark page reserved as it will need to wait for onlining
6081 * phase for it to be fully associated with a zone.
6082 *
6083 * We can use the non-atomic __set_bit operation for setting
6084 * the flag as we are still initializing the pages.
6085 */
6086 __SetPageReserved(page);
6087
6088 /*
6089 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6090 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6091 * ever freed or placed on a driver-private list.
6092 */
6093 page->pgmap = pgmap;
6094 page->zone_device_data = NULL;
6095
6096 /*
6097 * Mark the block movable so that blocks are reserved for
6098 * movable at startup. This will force kernel allocations
6099 * to reserve their blocks rather than leaking throughout
6100 * the address space during boot when many long-lived
6101 * kernel allocations are made.
6102 *
6103 * bitmap is created for zone's valid pfn range. but memmap
6104 * can be created for invalid pages (for alignment)
6105 * check here not to call set_pageblock_migratetype() against
6106 * pfn out of zone.
6107 *
6108 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6109 * because this is done early in section_activate()
6110 */
6111 if (!(pfn & (pageblock_nr_pages - 1))) {
6112 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6113 cond_resched();
6114 }
6115 }
6116
6117 pr_info("%s initialised %lu pages in %ums\n", __func__,
6118 nr_pages, jiffies_to_msecs(jiffies - start));
6119 }
6120
6121 #endif
6122 static void __meminit zone_init_free_lists(struct zone *zone)
6123 {
6124 unsigned int order, t;
6125 for_each_migratetype_order(order, t) {
6126 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6127 zone->free_area[order].nr_free = 0;
6128 }
6129 }
6130
6131 void __meminit __weak memmap_init(unsigned long size, int nid,
6132 unsigned long zone,
6133 unsigned long range_start_pfn)
6134 {
6135 unsigned long start_pfn, end_pfn;
6136 unsigned long range_end_pfn = range_start_pfn + size;
6137 int i;
6138
6139 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6140 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6141 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6142
6143 if (end_pfn > start_pfn) {
6144 size = end_pfn - start_pfn;
6145 memmap_init_zone(size, nid, zone, start_pfn,
6146 MEMINIT_EARLY, NULL);
6147 }
6148 }
6149 }
6150
6151 static int zone_batchsize(struct zone *zone)
6152 {
6153 #ifdef CONFIG_MMU
6154 int batch;
6155
6156 /*
6157 * The per-cpu-pages pools are set to around 1000th of the
6158 * size of the zone.
6159 */
6160 batch = zone_managed_pages(zone) / 1024;
6161 /* But no more than a meg. */
6162 if (batch * PAGE_SIZE > 1024 * 1024)
6163 batch = (1024 * 1024) / PAGE_SIZE;
6164 batch /= 4; /* We effectively *= 4 below */
6165 if (batch < 1)
6166 batch = 1;
6167
6168 /*
6169 * Clamp the batch to a 2^n - 1 value. Having a power
6170 * of 2 value was found to be more likely to have
6171 * suboptimal cache aliasing properties in some cases.
6172 *
6173 * For example if 2 tasks are alternately allocating
6174 * batches of pages, one task can end up with a lot
6175 * of pages of one half of the possible page colors
6176 * and the other with pages of the other colors.
6177 */
6178 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6179
6180 return batch;
6181
6182 #else
6183 /* The deferral and batching of frees should be suppressed under NOMMU
6184 * conditions.
6185 *
6186 * The problem is that NOMMU needs to be able to allocate large chunks
6187 * of contiguous memory as there's no hardware page translation to
6188 * assemble apparent contiguous memory from discontiguous pages.
6189 *
6190 * Queueing large contiguous runs of pages for batching, however,
6191 * causes the pages to actually be freed in smaller chunks. As there
6192 * can be a significant delay between the individual batches being
6193 * recycled, this leads to the once large chunks of space being
6194 * fragmented and becoming unavailable for high-order allocations.
6195 */
6196 return 0;
6197 #endif
6198 }
6199
6200 /*
6201 * pcp->high and pcp->batch values are related and dependent on one another:
6202 * ->batch must never be higher then ->high.
6203 * The following function updates them in a safe manner without read side
6204 * locking.
6205 *
6206 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6207 * those fields changing asynchronously (acording to the above rule).
6208 *
6209 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6210 * outside of boot time (or some other assurance that no concurrent updaters
6211 * exist).
6212 */
6213 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6214 unsigned long batch)
6215 {
6216 /* start with a fail safe value for batch */
6217 pcp->batch = 1;
6218 smp_wmb();
6219
6220 /* Update high, then batch, in order */
6221 pcp->high = high;
6222 smp_wmb();
6223
6224 pcp->batch = batch;
6225 }
6226
6227 /* a companion to pageset_set_high() */
6228 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6229 {
6230 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6231 }
6232
6233 static void pageset_init(struct per_cpu_pageset *p)
6234 {
6235 struct per_cpu_pages *pcp;
6236 int migratetype;
6237
6238 memset(p, 0, sizeof(*p));
6239
6240 pcp = &p->pcp;
6241 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6242 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6243 }
6244
6245 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6246 {
6247 pageset_init(p);
6248 pageset_set_batch(p, batch);
6249 }
6250
6251 /*
6252 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6253 * to the value high for the pageset p.
6254 */
6255 static void pageset_set_high(struct per_cpu_pageset *p,
6256 unsigned long high)
6257 {
6258 unsigned long batch = max(1UL, high / 4);
6259 if ((high / 4) > (PAGE_SHIFT * 8))
6260 batch = PAGE_SHIFT * 8;
6261
6262 pageset_update(&p->pcp, high, batch);
6263 }
6264
6265 static void pageset_set_high_and_batch(struct zone *zone,
6266 struct per_cpu_pageset *pcp)
6267 {
6268 if (percpu_pagelist_fraction)
6269 pageset_set_high(pcp,
6270 (zone_managed_pages(zone) /
6271 percpu_pagelist_fraction));
6272 else
6273 pageset_set_batch(pcp, zone_batchsize(zone));
6274 }
6275
6276 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6277 {
6278 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6279
6280 pageset_init(pcp);
6281 pageset_set_high_and_batch(zone, pcp);
6282 }
6283
6284 void __meminit setup_zone_pageset(struct zone *zone)
6285 {
6286 int cpu;
6287 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6288 for_each_possible_cpu(cpu)
6289 zone_pageset_init(zone, cpu);
6290 }
6291
6292 /*
6293 * Allocate per cpu pagesets and initialize them.
6294 * Before this call only boot pagesets were available.
6295 */
6296 void __init setup_per_cpu_pageset(void)
6297 {
6298 struct pglist_data *pgdat;
6299 struct zone *zone;
6300 int __maybe_unused cpu;
6301
6302 for_each_populated_zone(zone)
6303 setup_zone_pageset(zone);
6304
6305 #ifdef CONFIG_NUMA
6306 /*
6307 * Unpopulated zones continue using the boot pagesets.
6308 * The numa stats for these pagesets need to be reset.
6309 * Otherwise, they will end up skewing the stats of
6310 * the nodes these zones are associated with.
6311 */
6312 for_each_possible_cpu(cpu) {
6313 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6314 memset(pcp->vm_numa_stat_diff, 0,
6315 sizeof(pcp->vm_numa_stat_diff));
6316 }
6317 #endif
6318
6319 for_each_online_pgdat(pgdat)
6320 pgdat->per_cpu_nodestats =
6321 alloc_percpu(struct per_cpu_nodestat);
6322 }
6323
6324 static __meminit void zone_pcp_init(struct zone *zone)
6325 {
6326 /*
6327 * per cpu subsystem is not up at this point. The following code
6328 * relies on the ability of the linker to provide the
6329 * offset of a (static) per cpu variable into the per cpu area.
6330 */
6331 zone->pageset = &boot_pageset;
6332
6333 if (populated_zone(zone))
6334 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6335 zone->name, zone->present_pages,
6336 zone_batchsize(zone));
6337 }
6338
6339 void __meminit init_currently_empty_zone(struct zone *zone,
6340 unsigned long zone_start_pfn,
6341 unsigned long size)
6342 {
6343 struct pglist_data *pgdat = zone->zone_pgdat;
6344 int zone_idx = zone_idx(zone) + 1;
6345
6346 if (zone_idx > pgdat->nr_zones)
6347 pgdat->nr_zones = zone_idx;
6348
6349 zone->zone_start_pfn = zone_start_pfn;
6350
6351 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6352 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6353 pgdat->node_id,
6354 (unsigned long)zone_idx(zone),
6355 zone_start_pfn, (zone_start_pfn + size));
6356
6357 zone_init_free_lists(zone);
6358 zone->initialized = 1;
6359 }
6360
6361 /**
6362 * get_pfn_range_for_nid - Return the start and end page frames for a node
6363 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6364 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6365 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6366 *
6367 * It returns the start and end page frame of a node based on information
6368 * provided by memblock_set_node(). If called for a node
6369 * with no available memory, a warning is printed and the start and end
6370 * PFNs will be 0.
6371 */
6372 void __init get_pfn_range_for_nid(unsigned int nid,
6373 unsigned long *start_pfn, unsigned long *end_pfn)
6374 {
6375 unsigned long this_start_pfn, this_end_pfn;
6376 int i;
6377
6378 *start_pfn = -1UL;
6379 *end_pfn = 0;
6380
6381 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6382 *start_pfn = min(*start_pfn, this_start_pfn);
6383 *end_pfn = max(*end_pfn, this_end_pfn);
6384 }
6385
6386 if (*start_pfn == -1UL)
6387 *start_pfn = 0;
6388 }
6389
6390 /*
6391 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6392 * assumption is made that zones within a node are ordered in monotonic
6393 * increasing memory addresses so that the "highest" populated zone is used
6394 */
6395 static void __init find_usable_zone_for_movable(void)
6396 {
6397 int zone_index;
6398 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6399 if (zone_index == ZONE_MOVABLE)
6400 continue;
6401
6402 if (arch_zone_highest_possible_pfn[zone_index] >
6403 arch_zone_lowest_possible_pfn[zone_index])
6404 break;
6405 }
6406
6407 VM_BUG_ON(zone_index == -1);
6408 movable_zone = zone_index;
6409 }
6410
6411 /*
6412 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6413 * because it is sized independent of architecture. Unlike the other zones,
6414 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6415 * in each node depending on the size of each node and how evenly kernelcore
6416 * is distributed. This helper function adjusts the zone ranges
6417 * provided by the architecture for a given node by using the end of the
6418 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6419 * zones within a node are in order of monotonic increases memory addresses
6420 */
6421 static void __init adjust_zone_range_for_zone_movable(int nid,
6422 unsigned long zone_type,
6423 unsigned long node_start_pfn,
6424 unsigned long node_end_pfn,
6425 unsigned long *zone_start_pfn,
6426 unsigned long *zone_end_pfn)
6427 {
6428 /* Only adjust if ZONE_MOVABLE is on this node */
6429 if (zone_movable_pfn[nid]) {
6430 /* Size ZONE_MOVABLE */
6431 if (zone_type == ZONE_MOVABLE) {
6432 *zone_start_pfn = zone_movable_pfn[nid];
6433 *zone_end_pfn = min(node_end_pfn,
6434 arch_zone_highest_possible_pfn[movable_zone]);
6435
6436 /* Adjust for ZONE_MOVABLE starting within this range */
6437 } else if (!mirrored_kernelcore &&
6438 *zone_start_pfn < zone_movable_pfn[nid] &&
6439 *zone_end_pfn > zone_movable_pfn[nid]) {
6440 *zone_end_pfn = zone_movable_pfn[nid];
6441
6442 /* Check if this whole range is within ZONE_MOVABLE */
6443 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6444 *zone_start_pfn = *zone_end_pfn;
6445 }
6446 }
6447
6448 /*
6449 * Return the number of pages a zone spans in a node, including holes
6450 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6451 */
6452 static unsigned long __init zone_spanned_pages_in_node(int nid,
6453 unsigned long zone_type,
6454 unsigned long node_start_pfn,
6455 unsigned long node_end_pfn,
6456 unsigned long *zone_start_pfn,
6457 unsigned long *zone_end_pfn)
6458 {
6459 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6460 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6461 /* When hotadd a new node from cpu_up(), the node should be empty */
6462 if (!node_start_pfn && !node_end_pfn)
6463 return 0;
6464
6465 /* Get the start and end of the zone */
6466 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6467 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6468 adjust_zone_range_for_zone_movable(nid, zone_type,
6469 node_start_pfn, node_end_pfn,
6470 zone_start_pfn, zone_end_pfn);
6471
6472 /* Check that this node has pages within the zone's required range */
6473 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6474 return 0;
6475
6476 /* Move the zone boundaries inside the node if necessary */
6477 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6478 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6479
6480 /* Return the spanned pages */
6481 return *zone_end_pfn - *zone_start_pfn;
6482 }
6483
6484 /*
6485 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6486 * then all holes in the requested range will be accounted for.
6487 */
6488 unsigned long __init __absent_pages_in_range(int nid,
6489 unsigned long range_start_pfn,
6490 unsigned long range_end_pfn)
6491 {
6492 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6493 unsigned long start_pfn, end_pfn;
6494 int i;
6495
6496 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6497 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6498 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6499 nr_absent -= end_pfn - start_pfn;
6500 }
6501 return nr_absent;
6502 }
6503
6504 /**
6505 * absent_pages_in_range - Return number of page frames in holes within a range
6506 * @start_pfn: The start PFN to start searching for holes
6507 * @end_pfn: The end PFN to stop searching for holes
6508 *
6509 * Return: the number of pages frames in memory holes within a range.
6510 */
6511 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6512 unsigned long end_pfn)
6513 {
6514 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6515 }
6516
6517 /* Return the number of page frames in holes in a zone on a node */
6518 static unsigned long __init zone_absent_pages_in_node(int nid,
6519 unsigned long zone_type,
6520 unsigned long node_start_pfn,
6521 unsigned long node_end_pfn)
6522 {
6523 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6524 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6525 unsigned long zone_start_pfn, zone_end_pfn;
6526 unsigned long nr_absent;
6527
6528 /* When hotadd a new node from cpu_up(), the node should be empty */
6529 if (!node_start_pfn && !node_end_pfn)
6530 return 0;
6531
6532 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6533 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6534
6535 adjust_zone_range_for_zone_movable(nid, zone_type,
6536 node_start_pfn, node_end_pfn,
6537 &zone_start_pfn, &zone_end_pfn);
6538 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6539
6540 /*
6541 * ZONE_MOVABLE handling.
6542 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6543 * and vice versa.
6544 */
6545 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6546 unsigned long start_pfn, end_pfn;
6547 struct memblock_region *r;
6548
6549 for_each_mem_region(r) {
6550 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6551 zone_start_pfn, zone_end_pfn);
6552 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6553 zone_start_pfn, zone_end_pfn);
6554
6555 if (zone_type == ZONE_MOVABLE &&
6556 memblock_is_mirror(r))
6557 nr_absent += end_pfn - start_pfn;
6558
6559 if (zone_type == ZONE_NORMAL &&
6560 !memblock_is_mirror(r))
6561 nr_absent += end_pfn - start_pfn;
6562 }
6563 }
6564
6565 return nr_absent;
6566 }
6567
6568 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6569 unsigned long node_start_pfn,
6570 unsigned long node_end_pfn)
6571 {
6572 unsigned long realtotalpages = 0, totalpages = 0;
6573 enum zone_type i;
6574
6575 for (i = 0; i < MAX_NR_ZONES; i++) {
6576 struct zone *zone = pgdat->node_zones + i;
6577 unsigned long zone_start_pfn, zone_end_pfn;
6578 unsigned long spanned, absent;
6579 unsigned long size, real_size;
6580
6581 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6582 node_start_pfn,
6583 node_end_pfn,
6584 &zone_start_pfn,
6585 &zone_end_pfn);
6586 absent = zone_absent_pages_in_node(pgdat->node_id, i,
6587 node_start_pfn,
6588 node_end_pfn);
6589
6590 size = spanned;
6591 real_size = size - absent;
6592
6593 if (size)
6594 zone->zone_start_pfn = zone_start_pfn;
6595 else
6596 zone->zone_start_pfn = 0;
6597 zone->spanned_pages = size;
6598 zone->present_pages = real_size;
6599
6600 totalpages += size;
6601 realtotalpages += real_size;
6602 }
6603
6604 pgdat->node_spanned_pages = totalpages;
6605 pgdat->node_present_pages = realtotalpages;
6606 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6607 realtotalpages);
6608 }
6609
6610 #ifndef CONFIG_SPARSEMEM
6611 /*
6612 * Calculate the size of the zone->blockflags rounded to an unsigned long
6613 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6614 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6615 * round what is now in bits to nearest long in bits, then return it in
6616 * bytes.
6617 */
6618 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6619 {
6620 unsigned long usemapsize;
6621
6622 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6623 usemapsize = roundup(zonesize, pageblock_nr_pages);
6624 usemapsize = usemapsize >> pageblock_order;
6625 usemapsize *= NR_PAGEBLOCK_BITS;
6626 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6627
6628 return usemapsize / 8;
6629 }
6630
6631 static void __ref setup_usemap(struct pglist_data *pgdat,
6632 struct zone *zone,
6633 unsigned long zone_start_pfn,
6634 unsigned long zonesize)
6635 {
6636 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6637 zone->pageblock_flags = NULL;
6638 if (usemapsize) {
6639 zone->pageblock_flags =
6640 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6641 pgdat->node_id);
6642 if (!zone->pageblock_flags)
6643 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6644 usemapsize, zone->name, pgdat->node_id);
6645 }
6646 }
6647 #else
6648 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6649 unsigned long zone_start_pfn, unsigned long zonesize) {}
6650 #endif /* CONFIG_SPARSEMEM */
6651
6652 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6653
6654 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6655 void __init set_pageblock_order(void)
6656 {
6657 unsigned int order;
6658
6659 /* Check that pageblock_nr_pages has not already been setup */
6660 if (pageblock_order)
6661 return;
6662
6663 if (HPAGE_SHIFT > PAGE_SHIFT)
6664 order = HUGETLB_PAGE_ORDER;
6665 else
6666 order = MAX_ORDER - 1;
6667
6668 /*
6669 * Assume the largest contiguous order of interest is a huge page.
6670 * This value may be variable depending on boot parameters on IA64 and
6671 * powerpc.
6672 */
6673 pageblock_order = order;
6674 }
6675 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6676
6677 /*
6678 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6679 * is unused as pageblock_order is set at compile-time. See
6680 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6681 * the kernel config
6682 */
6683 void __init set_pageblock_order(void)
6684 {
6685 }
6686
6687 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6688
6689 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6690 unsigned long present_pages)
6691 {
6692 unsigned long pages = spanned_pages;
6693
6694 /*
6695 * Provide a more accurate estimation if there are holes within
6696 * the zone and SPARSEMEM is in use. If there are holes within the
6697 * zone, each populated memory region may cost us one or two extra
6698 * memmap pages due to alignment because memmap pages for each
6699 * populated regions may not be naturally aligned on page boundary.
6700 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6701 */
6702 if (spanned_pages > present_pages + (present_pages >> 4) &&
6703 IS_ENABLED(CONFIG_SPARSEMEM))
6704 pages = present_pages;
6705
6706 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6707 }
6708
6709 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6710 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6711 {
6712 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6713
6714 spin_lock_init(&ds_queue->split_queue_lock);
6715 INIT_LIST_HEAD(&ds_queue->split_queue);
6716 ds_queue->split_queue_len = 0;
6717 }
6718 #else
6719 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6720 #endif
6721
6722 #ifdef CONFIG_COMPACTION
6723 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6724 {
6725 init_waitqueue_head(&pgdat->kcompactd_wait);
6726 }
6727 #else
6728 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6729 #endif
6730
6731 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6732 {
6733 pgdat_resize_init(pgdat);
6734
6735 pgdat_init_split_queue(pgdat);
6736 pgdat_init_kcompactd(pgdat);
6737
6738 init_waitqueue_head(&pgdat->kswapd_wait);
6739 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6740
6741 pgdat_page_ext_init(pgdat);
6742 spin_lock_init(&pgdat->lru_lock);
6743 lruvec_init(&pgdat->__lruvec);
6744 }
6745
6746 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6747 unsigned long remaining_pages)
6748 {
6749 atomic_long_set(&zone->managed_pages, remaining_pages);
6750 zone_set_nid(zone, nid);
6751 zone->name = zone_names[idx];
6752 zone->zone_pgdat = NODE_DATA(nid);
6753 spin_lock_init(&zone->lock);
6754 zone_seqlock_init(zone);
6755 zone_pcp_init(zone);
6756 }
6757
6758 /*
6759 * Set up the zone data structures
6760 * - init pgdat internals
6761 * - init all zones belonging to this node
6762 *
6763 * NOTE: this function is only called during memory hotplug
6764 */
6765 #ifdef CONFIG_MEMORY_HOTPLUG
6766 void __ref free_area_init_core_hotplug(int nid)
6767 {
6768 enum zone_type z;
6769 pg_data_t *pgdat = NODE_DATA(nid);
6770
6771 pgdat_init_internals(pgdat);
6772 for (z = 0; z < MAX_NR_ZONES; z++)
6773 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6774 }
6775 #endif
6776
6777 /*
6778 * Set up the zone data structures:
6779 * - mark all pages reserved
6780 * - mark all memory queues empty
6781 * - clear the memory bitmaps
6782 *
6783 * NOTE: pgdat should get zeroed by caller.
6784 * NOTE: this function is only called during early init.
6785 */
6786 static void __init free_area_init_core(struct pglist_data *pgdat)
6787 {
6788 enum zone_type j;
6789 int nid = pgdat->node_id;
6790
6791 pgdat_init_internals(pgdat);
6792 pgdat->per_cpu_nodestats = &boot_nodestats;
6793
6794 for (j = 0; j < MAX_NR_ZONES; j++) {
6795 struct zone *zone = pgdat->node_zones + j;
6796 unsigned long size, freesize, memmap_pages;
6797 unsigned long zone_start_pfn = zone->zone_start_pfn;
6798
6799 size = zone->spanned_pages;
6800 freesize = zone->present_pages;
6801
6802 /*
6803 * Adjust freesize so that it accounts for how much memory
6804 * is used by this zone for memmap. This affects the watermark
6805 * and per-cpu initialisations
6806 */
6807 memmap_pages = calc_memmap_size(size, freesize);
6808 if (!is_highmem_idx(j)) {
6809 if (freesize >= memmap_pages) {
6810 freesize -= memmap_pages;
6811 if (memmap_pages)
6812 printk(KERN_DEBUG
6813 " %s zone: %lu pages used for memmap\n",
6814 zone_names[j], memmap_pages);
6815 } else
6816 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6817 zone_names[j], memmap_pages, freesize);
6818 }
6819
6820 /* Account for reserved pages */
6821 if (j == 0 && freesize > dma_reserve) {
6822 freesize -= dma_reserve;
6823 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6824 zone_names[0], dma_reserve);
6825 }
6826
6827 if (!is_highmem_idx(j))
6828 nr_kernel_pages += freesize;
6829 /* Charge for highmem memmap if there are enough kernel pages */
6830 else if (nr_kernel_pages > memmap_pages * 2)
6831 nr_kernel_pages -= memmap_pages;
6832 nr_all_pages += freesize;
6833
6834 /*
6835 * Set an approximate value for lowmem here, it will be adjusted
6836 * when the bootmem allocator frees pages into the buddy system.
6837 * And all highmem pages will be managed by the buddy system.
6838 */
6839 zone_init_internals(zone, j, nid, freesize);
6840
6841 if (!size)
6842 continue;
6843
6844 set_pageblock_order();
6845 setup_usemap(pgdat, zone, zone_start_pfn, size);
6846 init_currently_empty_zone(zone, zone_start_pfn, size);
6847 memmap_init(size, nid, j, zone_start_pfn);
6848 }
6849 }
6850
6851 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6852 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6853 {
6854 unsigned long __maybe_unused start = 0;
6855 unsigned long __maybe_unused offset = 0;
6856
6857 /* Skip empty nodes */
6858 if (!pgdat->node_spanned_pages)
6859 return;
6860
6861 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6862 offset = pgdat->node_start_pfn - start;
6863 /* ia64 gets its own node_mem_map, before this, without bootmem */
6864 if (!pgdat->node_mem_map) {
6865 unsigned long size, end;
6866 struct page *map;
6867
6868 /*
6869 * The zone's endpoints aren't required to be MAX_ORDER
6870 * aligned but the node_mem_map endpoints must be in order
6871 * for the buddy allocator to function correctly.
6872 */
6873 end = pgdat_end_pfn(pgdat);
6874 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6875 size = (end - start) * sizeof(struct page);
6876 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6877 pgdat->node_id);
6878 if (!map)
6879 panic("Failed to allocate %ld bytes for node %d memory map\n",
6880 size, pgdat->node_id);
6881 pgdat->node_mem_map = map + offset;
6882 }
6883 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6884 __func__, pgdat->node_id, (unsigned long)pgdat,
6885 (unsigned long)pgdat->node_mem_map);
6886 #ifndef CONFIG_NEED_MULTIPLE_NODES
6887 /*
6888 * With no DISCONTIG, the global mem_map is just set as node 0's
6889 */
6890 if (pgdat == NODE_DATA(0)) {
6891 mem_map = NODE_DATA(0)->node_mem_map;
6892 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6893 mem_map -= offset;
6894 }
6895 #endif
6896 }
6897 #else
6898 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6899 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6900
6901 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6902 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6903 {
6904 pgdat->first_deferred_pfn = ULONG_MAX;
6905 }
6906 #else
6907 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6908 #endif
6909
6910 static void __init free_area_init_node(int nid)
6911 {
6912 pg_data_t *pgdat = NODE_DATA(nid);
6913 unsigned long start_pfn = 0;
6914 unsigned long end_pfn = 0;
6915
6916 /* pg_data_t should be reset to zero when it's allocated */
6917 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6918
6919 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6920
6921 pgdat->node_id = nid;
6922 pgdat->node_start_pfn = start_pfn;
6923 pgdat->per_cpu_nodestats = NULL;
6924
6925 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6926 (u64)start_pfn << PAGE_SHIFT,
6927 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6928 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
6929
6930 alloc_node_mem_map(pgdat);
6931 pgdat_set_deferred_range(pgdat);
6932
6933 free_area_init_core(pgdat);
6934 }
6935
6936 void __init free_area_init_memoryless_node(int nid)
6937 {
6938 free_area_init_node(nid);
6939 }
6940
6941 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6942 /*
6943 * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6944 * PageReserved(). Return the number of struct pages that were initialized.
6945 */
6946 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6947 {
6948 unsigned long pfn;
6949 u64 pgcnt = 0;
6950
6951 for (pfn = spfn; pfn < epfn; pfn++) {
6952 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6953 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6954 + pageblock_nr_pages - 1;
6955 continue;
6956 }
6957 /*
6958 * Use a fake node/zone (0) for now. Some of these pages
6959 * (in memblock.reserved but not in memblock.memory) will
6960 * get re-initialized via reserve_bootmem_region() later.
6961 */
6962 __init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6963 __SetPageReserved(pfn_to_page(pfn));
6964 pgcnt++;
6965 }
6966
6967 return pgcnt;
6968 }
6969
6970 /*
6971 * Only struct pages that are backed by physical memory are zeroed and
6972 * initialized by going through __init_single_page(). But, there are some
6973 * struct pages which are reserved in memblock allocator and their fields
6974 * may be accessed (for example page_to_pfn() on some configuration accesses
6975 * flags). We must explicitly initialize those struct pages.
6976 *
6977 * This function also addresses a similar issue where struct pages are left
6978 * uninitialized because the physical address range is not covered by
6979 * memblock.memory or memblock.reserved. That could happen when memblock
6980 * layout is manually configured via memmap=, or when the highest physical
6981 * address (max_pfn) does not end on a section boundary.
6982 */
6983 static void __init init_unavailable_mem(void)
6984 {
6985 phys_addr_t start, end;
6986 u64 i, pgcnt;
6987 phys_addr_t next = 0;
6988
6989 /*
6990 * Loop through unavailable ranges not covered by memblock.memory.
6991 */
6992 pgcnt = 0;
6993 for_each_mem_range(i, &start, &end) {
6994 if (next < start)
6995 pgcnt += init_unavailable_range(PFN_DOWN(next),
6996 PFN_UP(start));
6997 next = end;
6998 }
6999
7000 /*
7001 * Early sections always have a fully populated memmap for the whole
7002 * section - see pfn_valid(). If the last section has holes at the
7003 * end and that section is marked "online", the memmap will be
7004 * considered initialized. Make sure that memmap has a well defined
7005 * state.
7006 */
7007 pgcnt += init_unavailable_range(PFN_DOWN(next),
7008 round_up(max_pfn, PAGES_PER_SECTION));
7009
7010 /*
7011 * Struct pages that do not have backing memory. This could be because
7012 * firmware is using some of this memory, or for some other reasons.
7013 */
7014 if (pgcnt)
7015 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7016 }
7017 #else
7018 static inline void __init init_unavailable_mem(void)
7019 {
7020 }
7021 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7022
7023 #if MAX_NUMNODES > 1
7024 /*
7025 * Figure out the number of possible node ids.
7026 */
7027 void __init setup_nr_node_ids(void)
7028 {
7029 unsigned int highest;
7030
7031 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7032 nr_node_ids = highest + 1;
7033 }
7034 #endif
7035
7036 /**
7037 * node_map_pfn_alignment - determine the maximum internode alignment
7038 *
7039 * This function should be called after node map is populated and sorted.
7040 * It calculates the maximum power of two alignment which can distinguish
7041 * all the nodes.
7042 *
7043 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7044 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7045 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7046 * shifted, 1GiB is enough and this function will indicate so.
7047 *
7048 * This is used to test whether pfn -> nid mapping of the chosen memory
7049 * model has fine enough granularity to avoid incorrect mapping for the
7050 * populated node map.
7051 *
7052 * Return: the determined alignment in pfn's. 0 if there is no alignment
7053 * requirement (single node).
7054 */
7055 unsigned long __init node_map_pfn_alignment(void)
7056 {
7057 unsigned long accl_mask = 0, last_end = 0;
7058 unsigned long start, end, mask;
7059 int last_nid = NUMA_NO_NODE;
7060 int i, nid;
7061
7062 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7063 if (!start || last_nid < 0 || last_nid == nid) {
7064 last_nid = nid;
7065 last_end = end;
7066 continue;
7067 }
7068
7069 /*
7070 * Start with a mask granular enough to pin-point to the
7071 * start pfn and tick off bits one-by-one until it becomes
7072 * too coarse to separate the current node from the last.
7073 */
7074 mask = ~((1 << __ffs(start)) - 1);
7075 while (mask && last_end <= (start & (mask << 1)))
7076 mask <<= 1;
7077
7078 /* accumulate all internode masks */
7079 accl_mask |= mask;
7080 }
7081
7082 /* convert mask to number of pages */
7083 return ~accl_mask + 1;
7084 }
7085
7086 /**
7087 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7088 *
7089 * Return: the minimum PFN based on information provided via
7090 * memblock_set_node().
7091 */
7092 unsigned long __init find_min_pfn_with_active_regions(void)
7093 {
7094 return PHYS_PFN(memblock_start_of_DRAM());
7095 }
7096
7097 /*
7098 * early_calculate_totalpages()
7099 * Sum pages in active regions for movable zone.
7100 * Populate N_MEMORY for calculating usable_nodes.
7101 */
7102 static unsigned long __init early_calculate_totalpages(void)
7103 {
7104 unsigned long totalpages = 0;
7105 unsigned long start_pfn, end_pfn;
7106 int i, nid;
7107
7108 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7109 unsigned long pages = end_pfn - start_pfn;
7110
7111 totalpages += pages;
7112 if (pages)
7113 node_set_state(nid, N_MEMORY);
7114 }
7115 return totalpages;
7116 }
7117
7118 /*
7119 * Find the PFN the Movable zone begins in each node. Kernel memory
7120 * is spread evenly between nodes as long as the nodes have enough
7121 * memory. When they don't, some nodes will have more kernelcore than
7122 * others
7123 */
7124 static void __init find_zone_movable_pfns_for_nodes(void)
7125 {
7126 int i, nid;
7127 unsigned long usable_startpfn;
7128 unsigned long kernelcore_node, kernelcore_remaining;
7129 /* save the state before borrow the nodemask */
7130 nodemask_t saved_node_state = node_states[N_MEMORY];
7131 unsigned long totalpages = early_calculate_totalpages();
7132 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7133 struct memblock_region *r;
7134
7135 /* Need to find movable_zone earlier when movable_node is specified. */
7136 find_usable_zone_for_movable();
7137
7138 /*
7139 * If movable_node is specified, ignore kernelcore and movablecore
7140 * options.
7141 */
7142 if (movable_node_is_enabled()) {
7143 for_each_mem_region(r) {
7144 if (!memblock_is_hotpluggable(r))
7145 continue;
7146
7147 nid = memblock_get_region_node(r);
7148
7149 usable_startpfn = PFN_DOWN(r->base);
7150 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7151 min(usable_startpfn, zone_movable_pfn[nid]) :
7152 usable_startpfn;
7153 }
7154
7155 goto out2;
7156 }
7157
7158 /*
7159 * If kernelcore=mirror is specified, ignore movablecore option
7160 */
7161 if (mirrored_kernelcore) {
7162 bool mem_below_4gb_not_mirrored = false;
7163
7164 for_each_mem_region(r) {
7165 if (memblock_is_mirror(r))
7166 continue;
7167
7168 nid = memblock_get_region_node(r);
7169
7170 usable_startpfn = memblock_region_memory_base_pfn(r);
7171
7172 if (usable_startpfn < 0x100000) {
7173 mem_below_4gb_not_mirrored = true;
7174 continue;
7175 }
7176
7177 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7178 min(usable_startpfn, zone_movable_pfn[nid]) :
7179 usable_startpfn;
7180 }
7181
7182 if (mem_below_4gb_not_mirrored)
7183 pr_warn("This configuration results in unmirrored kernel memory.\n");
7184
7185 goto out2;
7186 }
7187
7188 /*
7189 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7190 * amount of necessary memory.
7191 */
7192 if (required_kernelcore_percent)
7193 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7194 10000UL;
7195 if (required_movablecore_percent)
7196 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7197 10000UL;
7198
7199 /*
7200 * If movablecore= was specified, calculate what size of
7201 * kernelcore that corresponds so that memory usable for
7202 * any allocation type is evenly spread. If both kernelcore
7203 * and movablecore are specified, then the value of kernelcore
7204 * will be used for required_kernelcore if it's greater than
7205 * what movablecore would have allowed.
7206 */
7207 if (required_movablecore) {
7208 unsigned long corepages;
7209
7210 /*
7211 * Round-up so that ZONE_MOVABLE is at least as large as what
7212 * was requested by the user
7213 */
7214 required_movablecore =
7215 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7216 required_movablecore = min(totalpages, required_movablecore);
7217 corepages = totalpages - required_movablecore;
7218
7219 required_kernelcore = max(required_kernelcore, corepages);
7220 }
7221
7222 /*
7223 * If kernelcore was not specified or kernelcore size is larger
7224 * than totalpages, there is no ZONE_MOVABLE.
7225 */
7226 if (!required_kernelcore || required_kernelcore >= totalpages)
7227 goto out;
7228
7229 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7230 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7231
7232 restart:
7233 /* Spread kernelcore memory as evenly as possible throughout nodes */
7234 kernelcore_node = required_kernelcore / usable_nodes;
7235 for_each_node_state(nid, N_MEMORY) {
7236 unsigned long start_pfn, end_pfn;
7237
7238 /*
7239 * Recalculate kernelcore_node if the division per node
7240 * now exceeds what is necessary to satisfy the requested
7241 * amount of memory for the kernel
7242 */
7243 if (required_kernelcore < kernelcore_node)
7244 kernelcore_node = required_kernelcore / usable_nodes;
7245
7246 /*
7247 * As the map is walked, we track how much memory is usable
7248 * by the kernel using kernelcore_remaining. When it is
7249 * 0, the rest of the node is usable by ZONE_MOVABLE
7250 */
7251 kernelcore_remaining = kernelcore_node;
7252
7253 /* Go through each range of PFNs within this node */
7254 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7255 unsigned long size_pages;
7256
7257 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7258 if (start_pfn >= end_pfn)
7259 continue;
7260
7261 /* Account for what is only usable for kernelcore */
7262 if (start_pfn < usable_startpfn) {
7263 unsigned long kernel_pages;
7264 kernel_pages = min(end_pfn, usable_startpfn)
7265 - start_pfn;
7266
7267 kernelcore_remaining -= min(kernel_pages,
7268 kernelcore_remaining);
7269 required_kernelcore -= min(kernel_pages,
7270 required_kernelcore);
7271
7272 /* Continue if range is now fully accounted */
7273 if (end_pfn <= usable_startpfn) {
7274
7275 /*
7276 * Push zone_movable_pfn to the end so
7277 * that if we have to rebalance
7278 * kernelcore across nodes, we will
7279 * not double account here
7280 */
7281 zone_movable_pfn[nid] = end_pfn;
7282 continue;
7283 }
7284 start_pfn = usable_startpfn;
7285 }
7286
7287 /*
7288 * The usable PFN range for ZONE_MOVABLE is from
7289 * start_pfn->end_pfn. Calculate size_pages as the
7290 * number of pages used as kernelcore
7291 */
7292 size_pages = end_pfn - start_pfn;
7293 if (size_pages > kernelcore_remaining)
7294 size_pages = kernelcore_remaining;
7295 zone_movable_pfn[nid] = start_pfn + size_pages;
7296
7297 /*
7298 * Some kernelcore has been met, update counts and
7299 * break if the kernelcore for this node has been
7300 * satisfied
7301 */
7302 required_kernelcore -= min(required_kernelcore,
7303 size_pages);
7304 kernelcore_remaining -= size_pages;
7305 if (!kernelcore_remaining)
7306 break;
7307 }
7308 }
7309
7310 /*
7311 * If there is still required_kernelcore, we do another pass with one
7312 * less node in the count. This will push zone_movable_pfn[nid] further
7313 * along on the nodes that still have memory until kernelcore is
7314 * satisfied
7315 */
7316 usable_nodes--;
7317 if (usable_nodes && required_kernelcore > usable_nodes)
7318 goto restart;
7319
7320 out2:
7321 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7322 for (nid = 0; nid < MAX_NUMNODES; nid++)
7323 zone_movable_pfn[nid] =
7324 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7325
7326 out:
7327 /* restore the node_state */
7328 node_states[N_MEMORY] = saved_node_state;
7329 }
7330
7331 /* Any regular or high memory on that node ? */
7332 static void check_for_memory(pg_data_t *pgdat, int nid)
7333 {
7334 enum zone_type zone_type;
7335
7336 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7337 struct zone *zone = &pgdat->node_zones[zone_type];
7338 if (populated_zone(zone)) {
7339 if (IS_ENABLED(CONFIG_HIGHMEM))
7340 node_set_state(nid, N_HIGH_MEMORY);
7341 if (zone_type <= ZONE_NORMAL)
7342 node_set_state(nid, N_NORMAL_MEMORY);
7343 break;
7344 }
7345 }
7346 }
7347
7348 /*
7349 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7350 * such cases we allow max_zone_pfn sorted in the descending order
7351 */
7352 bool __weak arch_has_descending_max_zone_pfns(void)
7353 {
7354 return false;
7355 }
7356
7357 /**
7358 * free_area_init - Initialise all pg_data_t and zone data
7359 * @max_zone_pfn: an array of max PFNs for each zone
7360 *
7361 * This will call free_area_init_node() for each active node in the system.
7362 * Using the page ranges provided by memblock_set_node(), the size of each
7363 * zone in each node and their holes is calculated. If the maximum PFN
7364 * between two adjacent zones match, it is assumed that the zone is empty.
7365 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7366 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7367 * starts where the previous one ended. For example, ZONE_DMA32 starts
7368 * at arch_max_dma_pfn.
7369 */
7370 void __init free_area_init(unsigned long *max_zone_pfn)
7371 {
7372 unsigned long start_pfn, end_pfn;
7373 int i, nid, zone;
7374 bool descending;
7375
7376 /* Record where the zone boundaries are */
7377 memset(arch_zone_lowest_possible_pfn, 0,
7378 sizeof(arch_zone_lowest_possible_pfn));
7379 memset(arch_zone_highest_possible_pfn, 0,
7380 sizeof(arch_zone_highest_possible_pfn));
7381
7382 start_pfn = find_min_pfn_with_active_regions();
7383 descending = arch_has_descending_max_zone_pfns();
7384
7385 for (i = 0; i < MAX_NR_ZONES; i++) {
7386 if (descending)
7387 zone = MAX_NR_ZONES - i - 1;
7388 else
7389 zone = i;
7390
7391 if (zone == ZONE_MOVABLE)
7392 continue;
7393
7394 end_pfn = max(max_zone_pfn[zone], start_pfn);
7395 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7396 arch_zone_highest_possible_pfn[zone] = end_pfn;
7397
7398 start_pfn = end_pfn;
7399 }
7400
7401 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7402 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7403 find_zone_movable_pfns_for_nodes();
7404
7405 /* Print out the zone ranges */
7406 pr_info("Zone ranges:\n");
7407 for (i = 0; i < MAX_NR_ZONES; i++) {
7408 if (i == ZONE_MOVABLE)
7409 continue;
7410 pr_info(" %-8s ", zone_names[i]);
7411 if (arch_zone_lowest_possible_pfn[i] ==
7412 arch_zone_highest_possible_pfn[i])
7413 pr_cont("empty\n");
7414 else
7415 pr_cont("[mem %#018Lx-%#018Lx]\n",
7416 (u64)arch_zone_lowest_possible_pfn[i]
7417 << PAGE_SHIFT,
7418 ((u64)arch_zone_highest_possible_pfn[i]
7419 << PAGE_SHIFT) - 1);
7420 }
7421
7422 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7423 pr_info("Movable zone start for each node\n");
7424 for (i = 0; i < MAX_NUMNODES; i++) {
7425 if (zone_movable_pfn[i])
7426 pr_info(" Node %d: %#018Lx\n", i,
7427 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7428 }
7429
7430 /*
7431 * Print out the early node map, and initialize the
7432 * subsection-map relative to active online memory ranges to
7433 * enable future "sub-section" extensions of the memory map.
7434 */
7435 pr_info("Early memory node ranges\n");
7436 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7437 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7438 (u64)start_pfn << PAGE_SHIFT,
7439 ((u64)end_pfn << PAGE_SHIFT) - 1);
7440 subsection_map_init(start_pfn, end_pfn - start_pfn);
7441 }
7442
7443 /* Initialise every node */
7444 mminit_verify_pageflags_layout();
7445 setup_nr_node_ids();
7446 init_unavailable_mem();
7447 for_each_online_node(nid) {
7448 pg_data_t *pgdat = NODE_DATA(nid);
7449 free_area_init_node(nid);
7450
7451 /* Any memory on that node */
7452 if (pgdat->node_present_pages)
7453 node_set_state(nid, N_MEMORY);
7454 check_for_memory(pgdat, nid);
7455 }
7456 }
7457
7458 static int __init cmdline_parse_core(char *p, unsigned long *core,
7459 unsigned long *percent)
7460 {
7461 unsigned long long coremem;
7462 char *endptr;
7463
7464 if (!p)
7465 return -EINVAL;
7466
7467 /* Value may be a percentage of total memory, otherwise bytes */
7468 coremem = simple_strtoull(p, &endptr, 0);
7469 if (*endptr == '%') {
7470 /* Paranoid check for percent values greater than 100 */
7471 WARN_ON(coremem > 100);
7472
7473 *percent = coremem;
7474 } else {
7475 coremem = memparse(p, &p);
7476 /* Paranoid check that UL is enough for the coremem value */
7477 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7478
7479 *core = coremem >> PAGE_SHIFT;
7480 *percent = 0UL;
7481 }
7482 return 0;
7483 }
7484
7485 /*
7486 * kernelcore=size sets the amount of memory for use for allocations that
7487 * cannot be reclaimed or migrated.
7488 */
7489 static int __init cmdline_parse_kernelcore(char *p)
7490 {
7491 /* parse kernelcore=mirror */
7492 if (parse_option_str(p, "mirror")) {
7493 mirrored_kernelcore = true;
7494 return 0;
7495 }
7496
7497 return cmdline_parse_core(p, &required_kernelcore,
7498 &required_kernelcore_percent);
7499 }
7500
7501 /*
7502 * movablecore=size sets the amount of memory for use for allocations that
7503 * can be reclaimed or migrated.
7504 */
7505 static int __init cmdline_parse_movablecore(char *p)
7506 {
7507 return cmdline_parse_core(p, &required_movablecore,
7508 &required_movablecore_percent);
7509 }
7510
7511 early_param("kernelcore", cmdline_parse_kernelcore);
7512 early_param("movablecore", cmdline_parse_movablecore);
7513
7514 void adjust_managed_page_count(struct page *page, long count)
7515 {
7516 atomic_long_add(count, &page_zone(page)->managed_pages);
7517 totalram_pages_add(count);
7518 #ifdef CONFIG_HIGHMEM
7519 if (PageHighMem(page))
7520 totalhigh_pages_add(count);
7521 #endif
7522 }
7523 EXPORT_SYMBOL(adjust_managed_page_count);
7524
7525 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7526 {
7527 void *pos;
7528 unsigned long pages = 0;
7529
7530 start = (void *)PAGE_ALIGN((unsigned long)start);
7531 end = (void *)((unsigned long)end & PAGE_MASK);
7532 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7533 struct page *page = virt_to_page(pos);
7534 void *direct_map_addr;
7535
7536 /*
7537 * 'direct_map_addr' might be different from 'pos'
7538 * because some architectures' virt_to_page()
7539 * work with aliases. Getting the direct map
7540 * address ensures that we get a _writeable_
7541 * alias for the memset().
7542 */
7543 direct_map_addr = page_address(page);
7544 if ((unsigned int)poison <= 0xFF)
7545 memset(direct_map_addr, poison, PAGE_SIZE);
7546
7547 free_reserved_page(page);
7548 }
7549
7550 if (pages && s)
7551 pr_info("Freeing %s memory: %ldK\n",
7552 s, pages << (PAGE_SHIFT - 10));
7553
7554 return pages;
7555 }
7556
7557 #ifdef CONFIG_HIGHMEM
7558 void free_highmem_page(struct page *page)
7559 {
7560 __free_reserved_page(page);
7561 totalram_pages_inc();
7562 atomic_long_inc(&page_zone(page)->managed_pages);
7563 totalhigh_pages_inc();
7564 }
7565 #endif
7566
7567
7568 void __init mem_init_print_info(const char *str)
7569 {
7570 unsigned long physpages, codesize, datasize, rosize, bss_size;
7571 unsigned long init_code_size, init_data_size;
7572
7573 physpages = get_num_physpages();
7574 codesize = _etext - _stext;
7575 datasize = _edata - _sdata;
7576 rosize = __end_rodata - __start_rodata;
7577 bss_size = __bss_stop - __bss_start;
7578 init_data_size = __init_end - __init_begin;
7579 init_code_size = _einittext - _sinittext;
7580
7581 /*
7582 * Detect special cases and adjust section sizes accordingly:
7583 * 1) .init.* may be embedded into .data sections
7584 * 2) .init.text.* may be out of [__init_begin, __init_end],
7585 * please refer to arch/tile/kernel/vmlinux.lds.S.
7586 * 3) .rodata.* may be embedded into .text or .data sections.
7587 */
7588 #define adj_init_size(start, end, size, pos, adj) \
7589 do { \
7590 if (start <= pos && pos < end && size > adj) \
7591 size -= adj; \
7592 } while (0)
7593
7594 adj_init_size(__init_begin, __init_end, init_data_size,
7595 _sinittext, init_code_size);
7596 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7597 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7598 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7599 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7600
7601 #undef adj_init_size
7602
7603 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7604 #ifdef CONFIG_HIGHMEM
7605 ", %luK highmem"
7606 #endif
7607 "%s%s)\n",
7608 nr_free_pages() << (PAGE_SHIFT - 10),
7609 physpages << (PAGE_SHIFT - 10),
7610 codesize >> 10, datasize >> 10, rosize >> 10,
7611 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7612 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7613 totalcma_pages << (PAGE_SHIFT - 10),
7614 #ifdef CONFIG_HIGHMEM
7615 totalhigh_pages() << (PAGE_SHIFT - 10),
7616 #endif
7617 str ? ", " : "", str ? str : "");
7618 }
7619
7620 /**
7621 * set_dma_reserve - set the specified number of pages reserved in the first zone
7622 * @new_dma_reserve: The number of pages to mark reserved
7623 *
7624 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7625 * In the DMA zone, a significant percentage may be consumed by kernel image
7626 * and other unfreeable allocations which can skew the watermarks badly. This
7627 * function may optionally be used to account for unfreeable pages in the
7628 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7629 * smaller per-cpu batchsize.
7630 */
7631 void __init set_dma_reserve(unsigned long new_dma_reserve)
7632 {
7633 dma_reserve = new_dma_reserve;
7634 }
7635
7636 static int page_alloc_cpu_dead(unsigned int cpu)
7637 {
7638
7639 lru_add_drain_cpu(cpu);
7640 drain_pages(cpu);
7641
7642 /*
7643 * Spill the event counters of the dead processor
7644 * into the current processors event counters.
7645 * This artificially elevates the count of the current
7646 * processor.
7647 */
7648 vm_events_fold_cpu(cpu);
7649
7650 /*
7651 * Zero the differential counters of the dead processor
7652 * so that the vm statistics are consistent.
7653 *
7654 * This is only okay since the processor is dead and cannot
7655 * race with what we are doing.
7656 */
7657 cpu_vm_stats_fold(cpu);
7658 return 0;
7659 }
7660
7661 #ifdef CONFIG_NUMA
7662 int hashdist = HASHDIST_DEFAULT;
7663
7664 static int __init set_hashdist(char *str)
7665 {
7666 if (!str)
7667 return 0;
7668 hashdist = simple_strtoul(str, &str, 0);
7669 return 1;
7670 }
7671 __setup("hashdist=", set_hashdist);
7672 #endif
7673
7674 void __init page_alloc_init(void)
7675 {
7676 int ret;
7677
7678 #ifdef CONFIG_NUMA
7679 if (num_node_state(N_MEMORY) == 1)
7680 hashdist = 0;
7681 #endif
7682
7683 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7684 "mm/page_alloc:dead", NULL,
7685 page_alloc_cpu_dead);
7686 WARN_ON(ret < 0);
7687 }
7688
7689 /*
7690 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7691 * or min_free_kbytes changes.
7692 */
7693 static void calculate_totalreserve_pages(void)
7694 {
7695 struct pglist_data *pgdat;
7696 unsigned long reserve_pages = 0;
7697 enum zone_type i, j;
7698
7699 for_each_online_pgdat(pgdat) {
7700
7701 pgdat->totalreserve_pages = 0;
7702
7703 for (i = 0; i < MAX_NR_ZONES; i++) {
7704 struct zone *zone = pgdat->node_zones + i;
7705 long max = 0;
7706 unsigned long managed_pages = zone_managed_pages(zone);
7707
7708 /* Find valid and maximum lowmem_reserve in the zone */
7709 for (j = i; j < MAX_NR_ZONES; j++) {
7710 if (zone->lowmem_reserve[j] > max)
7711 max = zone->lowmem_reserve[j];
7712 }
7713
7714 /* we treat the high watermark as reserved pages. */
7715 max += high_wmark_pages(zone);
7716
7717 if (max > managed_pages)
7718 max = managed_pages;
7719
7720 pgdat->totalreserve_pages += max;
7721
7722 reserve_pages += max;
7723 }
7724 }
7725 totalreserve_pages = reserve_pages;
7726 }
7727
7728 /*
7729 * setup_per_zone_lowmem_reserve - called whenever
7730 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7731 * has a correct pages reserved value, so an adequate number of
7732 * pages are left in the zone after a successful __alloc_pages().
7733 */
7734 static void setup_per_zone_lowmem_reserve(void)
7735 {
7736 struct pglist_data *pgdat;
7737 enum zone_type j, idx;
7738
7739 for_each_online_pgdat(pgdat) {
7740 for (j = 0; j < MAX_NR_ZONES; j++) {
7741 struct zone *zone = pgdat->node_zones + j;
7742 unsigned long managed_pages = zone_managed_pages(zone);
7743
7744 zone->lowmem_reserve[j] = 0;
7745
7746 idx = j;
7747 while (idx) {
7748 struct zone *lower_zone;
7749
7750 idx--;
7751 lower_zone = pgdat->node_zones + idx;
7752
7753 if (!sysctl_lowmem_reserve_ratio[idx] ||
7754 !zone_managed_pages(lower_zone)) {
7755 lower_zone->lowmem_reserve[j] = 0;
7756 continue;
7757 } else {
7758 lower_zone->lowmem_reserve[j] =
7759 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7760 }
7761 managed_pages += zone_managed_pages(lower_zone);
7762 }
7763 }
7764 }
7765
7766 /* update totalreserve_pages */
7767 calculate_totalreserve_pages();
7768 }
7769
7770 static void __setup_per_zone_wmarks(void)
7771 {
7772 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7773 unsigned long lowmem_pages = 0;
7774 struct zone *zone;
7775 unsigned long flags;
7776
7777 /* Calculate total number of !ZONE_HIGHMEM pages */
7778 for_each_zone(zone) {
7779 if (!is_highmem(zone))
7780 lowmem_pages += zone_managed_pages(zone);
7781 }
7782
7783 for_each_zone(zone) {
7784 u64 tmp;
7785
7786 spin_lock_irqsave(&zone->lock, flags);
7787 tmp = (u64)pages_min * zone_managed_pages(zone);
7788 do_div(tmp, lowmem_pages);
7789 if (is_highmem(zone)) {
7790 /*
7791 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7792 * need highmem pages, so cap pages_min to a small
7793 * value here.
7794 *
7795 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7796 * deltas control async page reclaim, and so should
7797 * not be capped for highmem.
7798 */
7799 unsigned long min_pages;
7800
7801 min_pages = zone_managed_pages(zone) / 1024;
7802 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7803 zone->_watermark[WMARK_MIN] = min_pages;
7804 } else {
7805 /*
7806 * If it's a lowmem zone, reserve a number of pages
7807 * proportionate to the zone's size.
7808 */
7809 zone->_watermark[WMARK_MIN] = tmp;
7810 }
7811
7812 /*
7813 * Set the kswapd watermarks distance according to the
7814 * scale factor in proportion to available memory, but
7815 * ensure a minimum size on small systems.
7816 */
7817 tmp = max_t(u64, tmp >> 2,
7818 mult_frac(zone_managed_pages(zone),
7819 watermark_scale_factor, 10000));
7820
7821 zone->watermark_boost = 0;
7822 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7823 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7824
7825 spin_unlock_irqrestore(&zone->lock, flags);
7826 }
7827
7828 /* update totalreserve_pages */
7829 calculate_totalreserve_pages();
7830 }
7831
7832 /**
7833 * setup_per_zone_wmarks - called when min_free_kbytes changes
7834 * or when memory is hot-{added|removed}
7835 *
7836 * Ensures that the watermark[min,low,high] values for each zone are set
7837 * correctly with respect to min_free_kbytes.
7838 */
7839 void setup_per_zone_wmarks(void)
7840 {
7841 static DEFINE_SPINLOCK(lock);
7842
7843 spin_lock(&lock);
7844 __setup_per_zone_wmarks();
7845 spin_unlock(&lock);
7846 }
7847
7848 /*
7849 * Initialise min_free_kbytes.
7850 *
7851 * For small machines we want it small (128k min). For large machines
7852 * we want it large (256MB max). But it is not linear, because network
7853 * bandwidth does not increase linearly with machine size. We use
7854 *
7855 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7856 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7857 *
7858 * which yields
7859 *
7860 * 16MB: 512k
7861 * 32MB: 724k
7862 * 64MB: 1024k
7863 * 128MB: 1448k
7864 * 256MB: 2048k
7865 * 512MB: 2896k
7866 * 1024MB: 4096k
7867 * 2048MB: 5792k
7868 * 4096MB: 8192k
7869 * 8192MB: 11584k
7870 * 16384MB: 16384k
7871 */
7872 int __meminit init_per_zone_wmark_min(void)
7873 {
7874 unsigned long lowmem_kbytes;
7875 int new_min_free_kbytes;
7876
7877 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7878 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7879
7880 if (new_min_free_kbytes > user_min_free_kbytes) {
7881 min_free_kbytes = new_min_free_kbytes;
7882 if (min_free_kbytes < 128)
7883 min_free_kbytes = 128;
7884 if (min_free_kbytes > 262144)
7885 min_free_kbytes = 262144;
7886 } else {
7887 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7888 new_min_free_kbytes, user_min_free_kbytes);
7889 }
7890 setup_per_zone_wmarks();
7891 refresh_zone_stat_thresholds();
7892 setup_per_zone_lowmem_reserve();
7893
7894 #ifdef CONFIG_NUMA
7895 setup_min_unmapped_ratio();
7896 setup_min_slab_ratio();
7897 #endif
7898
7899 khugepaged_min_free_kbytes_update();
7900
7901 return 0;
7902 }
7903 postcore_initcall(init_per_zone_wmark_min)
7904
7905 /*
7906 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7907 * that we can call two helper functions whenever min_free_kbytes
7908 * changes.
7909 */
7910 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7911 void *buffer, size_t *length, loff_t *ppos)
7912 {
7913 int rc;
7914
7915 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7916 if (rc)
7917 return rc;
7918
7919 if (write) {
7920 user_min_free_kbytes = min_free_kbytes;
7921 setup_per_zone_wmarks();
7922 }
7923 return 0;
7924 }
7925
7926 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7927 void *buffer, size_t *length, loff_t *ppos)
7928 {
7929 int rc;
7930
7931 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7932 if (rc)
7933 return rc;
7934
7935 if (write)
7936 setup_per_zone_wmarks();
7937
7938 return 0;
7939 }
7940
7941 #ifdef CONFIG_NUMA
7942 static void setup_min_unmapped_ratio(void)
7943 {
7944 pg_data_t *pgdat;
7945 struct zone *zone;
7946
7947 for_each_online_pgdat(pgdat)
7948 pgdat->min_unmapped_pages = 0;
7949
7950 for_each_zone(zone)
7951 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7952 sysctl_min_unmapped_ratio) / 100;
7953 }
7954
7955
7956 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7957 void *buffer, size_t *length, loff_t *ppos)
7958 {
7959 int rc;
7960
7961 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7962 if (rc)
7963 return rc;
7964
7965 setup_min_unmapped_ratio();
7966
7967 return 0;
7968 }
7969
7970 static void setup_min_slab_ratio(void)
7971 {
7972 pg_data_t *pgdat;
7973 struct zone *zone;
7974
7975 for_each_online_pgdat(pgdat)
7976 pgdat->min_slab_pages = 0;
7977
7978 for_each_zone(zone)
7979 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7980 sysctl_min_slab_ratio) / 100;
7981 }
7982
7983 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7984 void *buffer, size_t *length, loff_t *ppos)
7985 {
7986 int rc;
7987
7988 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7989 if (rc)
7990 return rc;
7991
7992 setup_min_slab_ratio();
7993
7994 return 0;
7995 }
7996 #endif
7997
7998 /*
7999 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8000 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8001 * whenever sysctl_lowmem_reserve_ratio changes.
8002 *
8003 * The reserve ratio obviously has absolutely no relation with the
8004 * minimum watermarks. The lowmem reserve ratio can only make sense
8005 * if in function of the boot time zone sizes.
8006 */
8007 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8008 void *buffer, size_t *length, loff_t *ppos)
8009 {
8010 int i;
8011
8012 proc_dointvec_minmax(table, write, buffer, length, ppos);
8013
8014 for (i = 0; i < MAX_NR_ZONES; i++) {
8015 if (sysctl_lowmem_reserve_ratio[i] < 1)
8016 sysctl_lowmem_reserve_ratio[i] = 0;
8017 }
8018
8019 setup_per_zone_lowmem_reserve();
8020 return 0;
8021 }
8022
8023 static void __zone_pcp_update(struct zone *zone)
8024 {
8025 unsigned int cpu;
8026
8027 for_each_possible_cpu(cpu)
8028 pageset_set_high_and_batch(zone,
8029 per_cpu_ptr(zone->pageset, cpu));
8030 }
8031
8032 /*
8033 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8034 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8035 * pagelist can have before it gets flushed back to buddy allocator.
8036 */
8037 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8038 void *buffer, size_t *length, loff_t *ppos)
8039 {
8040 struct zone *zone;
8041 int old_percpu_pagelist_fraction;
8042 int ret;
8043
8044 mutex_lock(&pcp_batch_high_lock);
8045 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8046
8047 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8048 if (!write || ret < 0)
8049 goto out;
8050
8051 /* Sanity checking to avoid pcp imbalance */
8052 if (percpu_pagelist_fraction &&
8053 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8054 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8055 ret = -EINVAL;
8056 goto out;
8057 }
8058
8059 /* No change? */
8060 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8061 goto out;
8062
8063 for_each_populated_zone(zone)
8064 __zone_pcp_update(zone);
8065 out:
8066 mutex_unlock(&pcp_batch_high_lock);
8067 return ret;
8068 }
8069
8070 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8071 /*
8072 * Returns the number of pages that arch has reserved but
8073 * is not known to alloc_large_system_hash().
8074 */
8075 static unsigned long __init arch_reserved_kernel_pages(void)
8076 {
8077 return 0;
8078 }
8079 #endif
8080
8081 /*
8082 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8083 * machines. As memory size is increased the scale is also increased but at
8084 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8085 * quadruples the scale is increased by one, which means the size of hash table
8086 * only doubles, instead of quadrupling as well.
8087 * Because 32-bit systems cannot have large physical memory, where this scaling
8088 * makes sense, it is disabled on such platforms.
8089 */
8090 #if __BITS_PER_LONG > 32
8091 #define ADAPT_SCALE_BASE (64ul << 30)
8092 #define ADAPT_SCALE_SHIFT 2
8093 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8094 #endif
8095
8096 /*
8097 * allocate a large system hash table from bootmem
8098 * - it is assumed that the hash table must contain an exact power-of-2
8099 * quantity of entries
8100 * - limit is the number of hash buckets, not the total allocation size
8101 */
8102 void *__init alloc_large_system_hash(const char *tablename,
8103 unsigned long bucketsize,
8104 unsigned long numentries,
8105 int scale,
8106 int flags,
8107 unsigned int *_hash_shift,
8108 unsigned int *_hash_mask,
8109 unsigned long low_limit,
8110 unsigned long high_limit)
8111 {
8112 unsigned long long max = high_limit;
8113 unsigned long log2qty, size;
8114 void *table = NULL;
8115 gfp_t gfp_flags;
8116 bool virt;
8117
8118 /* allow the kernel cmdline to have a say */
8119 if (!numentries) {
8120 /* round applicable memory size up to nearest megabyte */
8121 numentries = nr_kernel_pages;
8122 numentries -= arch_reserved_kernel_pages();
8123
8124 /* It isn't necessary when PAGE_SIZE >= 1MB */
8125 if (PAGE_SHIFT < 20)
8126 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8127
8128 #if __BITS_PER_LONG > 32
8129 if (!high_limit) {
8130 unsigned long adapt;
8131
8132 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8133 adapt <<= ADAPT_SCALE_SHIFT)
8134 scale++;
8135 }
8136 #endif
8137
8138 /* limit to 1 bucket per 2^scale bytes of low memory */
8139 if (scale > PAGE_SHIFT)
8140 numentries >>= (scale - PAGE_SHIFT);
8141 else
8142 numentries <<= (PAGE_SHIFT - scale);
8143
8144 /* Make sure we've got at least a 0-order allocation.. */
8145 if (unlikely(flags & HASH_SMALL)) {
8146 /* Makes no sense without HASH_EARLY */
8147 WARN_ON(!(flags & HASH_EARLY));
8148 if (!(numentries >> *_hash_shift)) {
8149 numentries = 1UL << *_hash_shift;
8150 BUG_ON(!numentries);
8151 }
8152 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8153 numentries = PAGE_SIZE / bucketsize;
8154 }
8155 numentries = roundup_pow_of_two(numentries);
8156
8157 /* limit allocation size to 1/16 total memory by default */
8158 if (max == 0) {
8159 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8160 do_div(max, bucketsize);
8161 }
8162 max = min(max, 0x80000000ULL);
8163
8164 if (numentries < low_limit)
8165 numentries = low_limit;
8166 if (numentries > max)
8167 numentries = max;
8168
8169 log2qty = ilog2(numentries);
8170
8171 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8172 do {
8173 virt = false;
8174 size = bucketsize << log2qty;
8175 if (flags & HASH_EARLY) {
8176 if (flags & HASH_ZERO)
8177 table = memblock_alloc(size, SMP_CACHE_BYTES);
8178 else
8179 table = memblock_alloc_raw(size,
8180 SMP_CACHE_BYTES);
8181 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8182 table = __vmalloc(size, gfp_flags);
8183 virt = true;
8184 } else {
8185 /*
8186 * If bucketsize is not a power-of-two, we may free
8187 * some pages at the end of hash table which
8188 * alloc_pages_exact() automatically does
8189 */
8190 table = alloc_pages_exact(size, gfp_flags);
8191 kmemleak_alloc(table, size, 1, gfp_flags);
8192 }
8193 } while (!table && size > PAGE_SIZE && --log2qty);
8194
8195 if (!table)
8196 panic("Failed to allocate %s hash table\n", tablename);
8197
8198 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8199 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8200 virt ? "vmalloc" : "linear");
8201
8202 if (_hash_shift)
8203 *_hash_shift = log2qty;
8204 if (_hash_mask)
8205 *_hash_mask = (1 << log2qty) - 1;
8206
8207 return table;
8208 }
8209
8210 /*
8211 * This function checks whether pageblock includes unmovable pages or not.
8212 *
8213 * PageLRU check without isolation or lru_lock could race so that
8214 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8215 * check without lock_page also may miss some movable non-lru pages at
8216 * race condition. So you can't expect this function should be exact.
8217 *
8218 * Returns a page without holding a reference. If the caller wants to
8219 * dereference that page (e.g., dumping), it has to make sure that it
8220 * cannot get removed (e.g., via memory unplug) concurrently.
8221 *
8222 */
8223 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8224 int migratetype, int flags)
8225 {
8226 unsigned long iter = 0;
8227 unsigned long pfn = page_to_pfn(page);
8228 unsigned long offset = pfn % pageblock_nr_pages;
8229
8230 if (is_migrate_cma_page(page)) {
8231 /*
8232 * CMA allocations (alloc_contig_range) really need to mark
8233 * isolate CMA pageblocks even when they are not movable in fact
8234 * so consider them movable here.
8235 */
8236 if (is_migrate_cma(migratetype))
8237 return NULL;
8238
8239 return page;
8240 }
8241
8242 for (; iter < pageblock_nr_pages - offset; iter++) {
8243 if (!pfn_valid_within(pfn + iter))
8244 continue;
8245
8246 page = pfn_to_page(pfn + iter);
8247
8248 /*
8249 * Both, bootmem allocations and memory holes are marked
8250 * PG_reserved and are unmovable. We can even have unmovable
8251 * allocations inside ZONE_MOVABLE, for example when
8252 * specifying "movablecore".
8253 */
8254 if (PageReserved(page))
8255 return page;
8256
8257 /*
8258 * If the zone is movable and we have ruled out all reserved
8259 * pages then it should be reasonably safe to assume the rest
8260 * is movable.
8261 */
8262 if (zone_idx(zone) == ZONE_MOVABLE)
8263 continue;
8264
8265 /*
8266 * Hugepages are not in LRU lists, but they're movable.
8267 * THPs are on the LRU, but need to be counted as #small pages.
8268 * We need not scan over tail pages because we don't
8269 * handle each tail page individually in migration.
8270 */
8271 if (PageHuge(page) || PageTransCompound(page)) {
8272 struct page *head = compound_head(page);
8273 unsigned int skip_pages;
8274
8275 if (PageHuge(page)) {
8276 if (!hugepage_migration_supported(page_hstate(head)))
8277 return page;
8278 } else if (!PageLRU(head) && !__PageMovable(head)) {
8279 return page;
8280 }
8281
8282 skip_pages = compound_nr(head) - (page - head);
8283 iter += skip_pages - 1;
8284 continue;
8285 }
8286
8287 /*
8288 * We can't use page_count without pin a page
8289 * because another CPU can free compound page.
8290 * This check already skips compound tails of THP
8291 * because their page->_refcount is zero at all time.
8292 */
8293 if (!page_ref_count(page)) {
8294 if (PageBuddy(page))
8295 iter += (1 << page_order(page)) - 1;
8296 continue;
8297 }
8298
8299 /*
8300 * The HWPoisoned page may be not in buddy system, and
8301 * page_count() is not 0.
8302 */
8303 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8304 continue;
8305
8306 /*
8307 * We treat all PageOffline() pages as movable when offlining
8308 * to give drivers a chance to decrement their reference count
8309 * in MEM_GOING_OFFLINE in order to indicate that these pages
8310 * can be offlined as there are no direct references anymore.
8311 * For actually unmovable PageOffline() where the driver does
8312 * not support this, we will fail later when trying to actually
8313 * move these pages that still have a reference count > 0.
8314 * (false negatives in this function only)
8315 */
8316 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8317 continue;
8318
8319 if (__PageMovable(page) || PageLRU(page))
8320 continue;
8321
8322 /*
8323 * If there are RECLAIMABLE pages, we need to check
8324 * it. But now, memory offline itself doesn't call
8325 * shrink_node_slabs() and it still to be fixed.
8326 */
8327 return page;
8328 }
8329 return NULL;
8330 }
8331
8332 #ifdef CONFIG_CONTIG_ALLOC
8333 static unsigned long pfn_max_align_down(unsigned long pfn)
8334 {
8335 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8336 pageblock_nr_pages) - 1);
8337 }
8338
8339 static unsigned long pfn_max_align_up(unsigned long pfn)
8340 {
8341 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8342 pageblock_nr_pages));
8343 }
8344
8345 /* [start, end) must belong to a single zone. */
8346 static int __alloc_contig_migrate_range(struct compact_control *cc,
8347 unsigned long start, unsigned long end)
8348 {
8349 /* This function is based on compact_zone() from compaction.c. */
8350 unsigned int nr_reclaimed;
8351 unsigned long pfn = start;
8352 unsigned int tries = 0;
8353 int ret = 0;
8354 struct migration_target_control mtc = {
8355 .nid = zone_to_nid(cc->zone),
8356 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8357 };
8358
8359 migrate_prep();
8360
8361 while (pfn < end || !list_empty(&cc->migratepages)) {
8362 if (fatal_signal_pending(current)) {
8363 ret = -EINTR;
8364 break;
8365 }
8366
8367 if (list_empty(&cc->migratepages)) {
8368 cc->nr_migratepages = 0;
8369 pfn = isolate_migratepages_range(cc, pfn, end);
8370 if (!pfn) {
8371 ret = -EINTR;
8372 break;
8373 }
8374 tries = 0;
8375 } else if (++tries == 5) {
8376 ret = ret < 0 ? ret : -EBUSY;
8377 break;
8378 }
8379
8380 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8381 &cc->migratepages);
8382 cc->nr_migratepages -= nr_reclaimed;
8383
8384 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8385 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8386 }
8387 if (ret < 0) {
8388 putback_movable_pages(&cc->migratepages);
8389 return ret;
8390 }
8391 return 0;
8392 }
8393
8394 /**
8395 * alloc_contig_range() -- tries to allocate given range of pages
8396 * @start: start PFN to allocate
8397 * @end: one-past-the-last PFN to allocate
8398 * @migratetype: migratetype of the underlaying pageblocks (either
8399 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8400 * in range must have the same migratetype and it must
8401 * be either of the two.
8402 * @gfp_mask: GFP mask to use during compaction
8403 *
8404 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8405 * aligned. The PFN range must belong to a single zone.
8406 *
8407 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8408 * pageblocks in the range. Once isolated, the pageblocks should not
8409 * be modified by others.
8410 *
8411 * Return: zero on success or negative error code. On success all
8412 * pages which PFN is in [start, end) are allocated for the caller and
8413 * need to be freed with free_contig_range().
8414 */
8415 int alloc_contig_range(unsigned long start, unsigned long end,
8416 unsigned migratetype, gfp_t gfp_mask)
8417 {
8418 unsigned long outer_start, outer_end;
8419 unsigned int order;
8420 int ret = 0;
8421
8422 struct compact_control cc = {
8423 .nr_migratepages = 0,
8424 .order = -1,
8425 .zone = page_zone(pfn_to_page(start)),
8426 .mode = MIGRATE_SYNC,
8427 .ignore_skip_hint = true,
8428 .no_set_skip_hint = true,
8429 .gfp_mask = current_gfp_context(gfp_mask),
8430 .alloc_contig = true,
8431 };
8432 INIT_LIST_HEAD(&cc.migratepages);
8433
8434 /*
8435 * What we do here is we mark all pageblocks in range as
8436 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8437 * have different sizes, and due to the way page allocator
8438 * work, we align the range to biggest of the two pages so
8439 * that page allocator won't try to merge buddies from
8440 * different pageblocks and change MIGRATE_ISOLATE to some
8441 * other migration type.
8442 *
8443 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8444 * migrate the pages from an unaligned range (ie. pages that
8445 * we are interested in). This will put all the pages in
8446 * range back to page allocator as MIGRATE_ISOLATE.
8447 *
8448 * When this is done, we take the pages in range from page
8449 * allocator removing them from the buddy system. This way
8450 * page allocator will never consider using them.
8451 *
8452 * This lets us mark the pageblocks back as
8453 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8454 * aligned range but not in the unaligned, original range are
8455 * put back to page allocator so that buddy can use them.
8456 */
8457
8458 ret = start_isolate_page_range(pfn_max_align_down(start),
8459 pfn_max_align_up(end), migratetype, 0);
8460 if (ret < 0)
8461 return ret;
8462
8463 /*
8464 * In case of -EBUSY, we'd like to know which page causes problem.
8465 * So, just fall through. test_pages_isolated() has a tracepoint
8466 * which will report the busy page.
8467 *
8468 * It is possible that busy pages could become available before
8469 * the call to test_pages_isolated, and the range will actually be
8470 * allocated. So, if we fall through be sure to clear ret so that
8471 * -EBUSY is not accidentally used or returned to caller.
8472 */
8473 ret = __alloc_contig_migrate_range(&cc, start, end);
8474 if (ret && ret != -EBUSY)
8475 goto done;
8476 ret =0;
8477
8478 /*
8479 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8480 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8481 * more, all pages in [start, end) are free in page allocator.
8482 * What we are going to do is to allocate all pages from
8483 * [start, end) (that is remove them from page allocator).
8484 *
8485 * The only problem is that pages at the beginning and at the
8486 * end of interesting range may be not aligned with pages that
8487 * page allocator holds, ie. they can be part of higher order
8488 * pages. Because of this, we reserve the bigger range and
8489 * once this is done free the pages we are not interested in.
8490 *
8491 * We don't have to hold zone->lock here because the pages are
8492 * isolated thus they won't get removed from buddy.
8493 */
8494
8495 lru_add_drain_all();
8496
8497 order = 0;
8498 outer_start = start;
8499 while (!PageBuddy(pfn_to_page(outer_start))) {
8500 if (++order >= MAX_ORDER) {
8501 outer_start = start;
8502 break;
8503 }
8504 outer_start &= ~0UL << order;
8505 }
8506
8507 if (outer_start != start) {
8508 order = page_order(pfn_to_page(outer_start));
8509
8510 /*
8511 * outer_start page could be small order buddy page and
8512 * it doesn't include start page. Adjust outer_start
8513 * in this case to report failed page properly
8514 * on tracepoint in test_pages_isolated()
8515 */
8516 if (outer_start + (1UL << order) <= start)
8517 outer_start = start;
8518 }
8519
8520 /* Make sure the range is really isolated. */
8521 if (test_pages_isolated(outer_start, end, 0)) {
8522 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8523 __func__, outer_start, end);
8524 ret = -EBUSY;
8525 goto done;
8526 }
8527
8528 /* Grab isolated pages from freelists. */
8529 outer_end = isolate_freepages_range(&cc, outer_start, end);
8530 if (!outer_end) {
8531 ret = -EBUSY;
8532 goto done;
8533 }
8534
8535 /* Free head and tail (if any) */
8536 if (start != outer_start)
8537 free_contig_range(outer_start, start - outer_start);
8538 if (end != outer_end)
8539 free_contig_range(end, outer_end - end);
8540
8541 done:
8542 undo_isolate_page_range(pfn_max_align_down(start),
8543 pfn_max_align_up(end), migratetype);
8544 return ret;
8545 }
8546 EXPORT_SYMBOL(alloc_contig_range);
8547
8548 static int __alloc_contig_pages(unsigned long start_pfn,
8549 unsigned long nr_pages, gfp_t gfp_mask)
8550 {
8551 unsigned long end_pfn = start_pfn + nr_pages;
8552
8553 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8554 gfp_mask);
8555 }
8556
8557 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8558 unsigned long nr_pages)
8559 {
8560 unsigned long i, end_pfn = start_pfn + nr_pages;
8561 struct page *page;
8562
8563 for (i = start_pfn; i < end_pfn; i++) {
8564 page = pfn_to_online_page(i);
8565 if (!page)
8566 return false;
8567
8568 if (page_zone(page) != z)
8569 return false;
8570
8571 if (PageReserved(page))
8572 return false;
8573
8574 if (page_count(page) > 0)
8575 return false;
8576
8577 if (PageHuge(page))
8578 return false;
8579 }
8580 return true;
8581 }
8582
8583 static bool zone_spans_last_pfn(const struct zone *zone,
8584 unsigned long start_pfn, unsigned long nr_pages)
8585 {
8586 unsigned long last_pfn = start_pfn + nr_pages - 1;
8587
8588 return zone_spans_pfn(zone, last_pfn);
8589 }
8590
8591 /**
8592 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8593 * @nr_pages: Number of contiguous pages to allocate
8594 * @gfp_mask: GFP mask to limit search and used during compaction
8595 * @nid: Target node
8596 * @nodemask: Mask for other possible nodes
8597 *
8598 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8599 * on an applicable zonelist to find a contiguous pfn range which can then be
8600 * tried for allocation with alloc_contig_range(). This routine is intended
8601 * for allocation requests which can not be fulfilled with the buddy allocator.
8602 *
8603 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8604 * power of two then the alignment is guaranteed to be to the given nr_pages
8605 * (e.g. 1GB request would be aligned to 1GB).
8606 *
8607 * Allocated pages can be freed with free_contig_range() or by manually calling
8608 * __free_page() on each allocated page.
8609 *
8610 * Return: pointer to contiguous pages on success, or NULL if not successful.
8611 */
8612 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8613 int nid, nodemask_t *nodemask)
8614 {
8615 unsigned long ret, pfn, flags;
8616 struct zonelist *zonelist;
8617 struct zone *zone;
8618 struct zoneref *z;
8619
8620 zonelist = node_zonelist(nid, gfp_mask);
8621 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8622 gfp_zone(gfp_mask), nodemask) {
8623 spin_lock_irqsave(&zone->lock, flags);
8624
8625 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8626 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8627 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8628 /*
8629 * We release the zone lock here because
8630 * alloc_contig_range() will also lock the zone
8631 * at some point. If there's an allocation
8632 * spinning on this lock, it may win the race
8633 * and cause alloc_contig_range() to fail...
8634 */
8635 spin_unlock_irqrestore(&zone->lock, flags);
8636 ret = __alloc_contig_pages(pfn, nr_pages,
8637 gfp_mask);
8638 if (!ret)
8639 return pfn_to_page(pfn);
8640 spin_lock_irqsave(&zone->lock, flags);
8641 }
8642 pfn += nr_pages;
8643 }
8644 spin_unlock_irqrestore(&zone->lock, flags);
8645 }
8646 return NULL;
8647 }
8648 #endif /* CONFIG_CONTIG_ALLOC */
8649
8650 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8651 {
8652 unsigned int count = 0;
8653
8654 for (; nr_pages--; pfn++) {
8655 struct page *page = pfn_to_page(pfn);
8656
8657 count += page_count(page) != 1;
8658 __free_page(page);
8659 }
8660 WARN(count != 0, "%d pages are still in use!\n", count);
8661 }
8662 EXPORT_SYMBOL(free_contig_range);
8663
8664 /*
8665 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8666 * page high values need to be recalulated.
8667 */
8668 void __meminit zone_pcp_update(struct zone *zone)
8669 {
8670 mutex_lock(&pcp_batch_high_lock);
8671 __zone_pcp_update(zone);
8672 mutex_unlock(&pcp_batch_high_lock);
8673 }
8674
8675 void zone_pcp_reset(struct zone *zone)
8676 {
8677 unsigned long flags;
8678 int cpu;
8679 struct per_cpu_pageset *pset;
8680
8681 /* avoid races with drain_pages() */
8682 local_irq_save(flags);
8683 if (zone->pageset != &boot_pageset) {
8684 for_each_online_cpu(cpu) {
8685 pset = per_cpu_ptr(zone->pageset, cpu);
8686 drain_zonestat(zone, pset);
8687 }
8688 free_percpu(zone->pageset);
8689 zone->pageset = &boot_pageset;
8690 }
8691 local_irq_restore(flags);
8692 }
8693
8694 #ifdef CONFIG_MEMORY_HOTREMOVE
8695 /*
8696 * All pages in the range must be in a single zone and isolated
8697 * before calling this.
8698 */
8699 unsigned long
8700 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8701 {
8702 struct page *page;
8703 struct zone *zone;
8704 unsigned int order;
8705 unsigned long pfn;
8706 unsigned long flags;
8707 unsigned long offlined_pages = 0;
8708
8709 /* find the first valid pfn */
8710 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8711 if (pfn_valid(pfn))
8712 break;
8713 if (pfn == end_pfn)
8714 return offlined_pages;
8715
8716 offline_mem_sections(pfn, end_pfn);
8717 zone = page_zone(pfn_to_page(pfn));
8718 spin_lock_irqsave(&zone->lock, flags);
8719 pfn = start_pfn;
8720 while (pfn < end_pfn) {
8721 if (!pfn_valid(pfn)) {
8722 pfn++;
8723 continue;
8724 }
8725 page = pfn_to_page(pfn);
8726 /*
8727 * The HWPoisoned page may be not in buddy system, and
8728 * page_count() is not 0.
8729 */
8730 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8731 pfn++;
8732 offlined_pages++;
8733 continue;
8734 }
8735 /*
8736 * At this point all remaining PageOffline() pages have a
8737 * reference count of 0 and can simply be skipped.
8738 */
8739 if (PageOffline(page)) {
8740 BUG_ON(page_count(page));
8741 BUG_ON(PageBuddy(page));
8742 pfn++;
8743 offlined_pages++;
8744 continue;
8745 }
8746
8747 BUG_ON(page_count(page));
8748 BUG_ON(!PageBuddy(page));
8749 order = page_order(page);
8750 offlined_pages += 1 << order;
8751 del_page_from_free_list(page, zone, order);
8752 pfn += (1 << order);
8753 }
8754 spin_unlock_irqrestore(&zone->lock, flags);
8755
8756 return offlined_pages;
8757 }
8758 #endif
8759
8760 bool is_free_buddy_page(struct page *page)
8761 {
8762 struct zone *zone = page_zone(page);
8763 unsigned long pfn = page_to_pfn(page);
8764 unsigned long flags;
8765 unsigned int order;
8766
8767 spin_lock_irqsave(&zone->lock, flags);
8768 for (order = 0; order < MAX_ORDER; order++) {
8769 struct page *page_head = page - (pfn & ((1 << order) - 1));
8770
8771 if (PageBuddy(page_head) && page_order(page_head) >= order)
8772 break;
8773 }
8774 spin_unlock_irqrestore(&zone->lock, flags);
8775
8776 return order < MAX_ORDER;
8777 }
8778
8779 #ifdef CONFIG_MEMORY_FAILURE
8780 /*
8781 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8782 * test is performed under the zone lock to prevent a race against page
8783 * allocation.
8784 */
8785 bool set_hwpoison_free_buddy_page(struct page *page)
8786 {
8787 struct zone *zone = page_zone(page);
8788 unsigned long pfn = page_to_pfn(page);
8789 unsigned long flags;
8790 unsigned int order;
8791 bool hwpoisoned = false;
8792
8793 spin_lock_irqsave(&zone->lock, flags);
8794 for (order = 0; order < MAX_ORDER; order++) {
8795 struct page *page_head = page - (pfn & ((1 << order) - 1));
8796
8797 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8798 if (!TestSetPageHWPoison(page))
8799 hwpoisoned = true;
8800 break;
8801 }
8802 }
8803 spin_unlock_irqrestore(&zone->lock, flags);
8804
8805 return hwpoisoned;
8806 }
8807 #endif