]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
Merge tag 'drm-coc-for-v4.12-rc1' of git://people.freedesktop.org/~airlied/linux
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
73 #include "internal.h"
74
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
78
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
82 #endif
83
84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
85 /*
86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89 * defined in <linux/topology.h>.
90 */
91 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
92 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93 int _node_numa_mem_[MAX_NUMNODES];
94 #endif
95
96 /* work_structs for global per-cpu drains */
97 DEFINE_MUTEX(pcpu_drain_mutex);
98 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99
100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101 volatile unsigned long latent_entropy __latent_entropy;
102 EXPORT_SYMBOL(latent_entropy);
103 #endif
104
105 /*
106 * Array of node states.
107 */
108 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 [N_POSSIBLE] = NODE_MASK_ALL,
110 [N_ONLINE] = { { [0] = 1UL } },
111 #ifndef CONFIG_NUMA
112 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
113 #ifdef CONFIG_HIGHMEM
114 [N_HIGH_MEMORY] = { { [0] = 1UL } },
115 #endif
116 #ifdef CONFIG_MOVABLE_NODE
117 [N_MEMORY] = { { [0] = 1UL } },
118 #endif
119 [N_CPU] = { { [0] = 1UL } },
120 #endif /* NUMA */
121 };
122 EXPORT_SYMBOL(node_states);
123
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
126
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
130
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133
134 /*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142 static inline int get_pcppage_migratetype(struct page *page)
143 {
144 return page->index;
145 }
146
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 {
149 page->index = migratetype;
150 }
151
152 #ifdef CONFIG_PM_SLEEP
153 /*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with pm_mutex held (gfp_allowed_mask also should
158 * only be modified with pm_mutex held, unless the suspend/hibernate code is
159 * guaranteed not to run in parallel with that modification).
160 */
161
162 static gfp_t saved_gfp_mask;
163
164 void pm_restore_gfp_mask(void)
165 {
166 WARN_ON(!mutex_is_locked(&pm_mutex));
167 if (saved_gfp_mask) {
168 gfp_allowed_mask = saved_gfp_mask;
169 saved_gfp_mask = 0;
170 }
171 }
172
173 void pm_restrict_gfp_mask(void)
174 {
175 WARN_ON(!mutex_is_locked(&pm_mutex));
176 WARN_ON(saved_gfp_mask);
177 saved_gfp_mask = gfp_allowed_mask;
178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
179 }
180
181 bool pm_suspended_storage(void)
182 {
183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
184 return false;
185 return true;
186 }
187 #endif /* CONFIG_PM_SLEEP */
188
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly;
191 #endif
192
193 static void __free_pages_ok(struct page *page, unsigned int order);
194
195 /*
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202 *
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
205 */
206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
207 #ifdef CONFIG_ZONE_DMA
208 256,
209 #endif
210 #ifdef CONFIG_ZONE_DMA32
211 256,
212 #endif
213 #ifdef CONFIG_HIGHMEM
214 32,
215 #endif
216 32,
217 };
218
219 EXPORT_SYMBOL(totalram_pages);
220
221 static char * const zone_names[MAX_NR_ZONES] = {
222 #ifdef CONFIG_ZONE_DMA
223 "DMA",
224 #endif
225 #ifdef CONFIG_ZONE_DMA32
226 "DMA32",
227 #endif
228 "Normal",
229 #ifdef CONFIG_HIGHMEM
230 "HighMem",
231 #endif
232 "Movable",
233 #ifdef CONFIG_ZONE_DEVICE
234 "Device",
235 #endif
236 };
237
238 char * const migratetype_names[MIGRATE_TYPES] = {
239 "Unmovable",
240 "Movable",
241 "Reclaimable",
242 "HighAtomic",
243 #ifdef CONFIG_CMA
244 "CMA",
245 #endif
246 #ifdef CONFIG_MEMORY_ISOLATION
247 "Isolate",
248 #endif
249 };
250
251 compound_page_dtor * const compound_page_dtors[] = {
252 NULL,
253 free_compound_page,
254 #ifdef CONFIG_HUGETLB_PAGE
255 free_huge_page,
256 #endif
257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
258 free_transhuge_page,
259 #endif
260 };
261
262 int min_free_kbytes = 1024;
263 int user_min_free_kbytes = -1;
264 int watermark_scale_factor = 10;
265
266 static unsigned long __meminitdata nr_kernel_pages;
267 static unsigned long __meminitdata nr_all_pages;
268 static unsigned long __meminitdata dma_reserve;
269
270 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __initdata required_kernelcore;
274 static unsigned long __initdata required_movablecore;
275 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
276 static bool mirrored_kernelcore;
277
278 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279 int movable_zone;
280 EXPORT_SYMBOL(movable_zone);
281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
282
283 #if MAX_NUMNODES > 1
284 int nr_node_ids __read_mostly = MAX_NUMNODES;
285 int nr_online_nodes __read_mostly = 1;
286 EXPORT_SYMBOL(nr_node_ids);
287 EXPORT_SYMBOL(nr_online_nodes);
288 #endif
289
290 int page_group_by_mobility_disabled __read_mostly;
291
292 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293 static inline void reset_deferred_meminit(pg_data_t *pgdat)
294 {
295 pgdat->first_deferred_pfn = ULONG_MAX;
296 }
297
298 /* Returns true if the struct page for the pfn is uninitialised */
299 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300 {
301 int nid = early_pfn_to_nid(pfn);
302
303 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
304 return true;
305
306 return false;
307 }
308
309 /*
310 * Returns false when the remaining initialisation should be deferred until
311 * later in the boot cycle when it can be parallelised.
312 */
313 static inline bool update_defer_init(pg_data_t *pgdat,
314 unsigned long pfn, unsigned long zone_end,
315 unsigned long *nr_initialised)
316 {
317 unsigned long max_initialise;
318
319 /* Always populate low zones for address-contrained allocations */
320 if (zone_end < pgdat_end_pfn(pgdat))
321 return true;
322 /*
323 * Initialise at least 2G of a node but also take into account that
324 * two large system hashes that can take up 1GB for 0.25TB/node.
325 */
326 max_initialise = max(2UL << (30 - PAGE_SHIFT),
327 (pgdat->node_spanned_pages >> 8));
328
329 (*nr_initialised)++;
330 if ((*nr_initialised > max_initialise) &&
331 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 pgdat->first_deferred_pfn = pfn;
333 return false;
334 }
335
336 return true;
337 }
338 #else
339 static inline void reset_deferred_meminit(pg_data_t *pgdat)
340 {
341 }
342
343 static inline bool early_page_uninitialised(unsigned long pfn)
344 {
345 return false;
346 }
347
348 static inline bool update_defer_init(pg_data_t *pgdat,
349 unsigned long pfn, unsigned long zone_end,
350 unsigned long *nr_initialised)
351 {
352 return true;
353 }
354 #endif
355
356 /* Return a pointer to the bitmap storing bits affecting a block of pages */
357 static inline unsigned long *get_pageblock_bitmap(struct page *page,
358 unsigned long pfn)
359 {
360 #ifdef CONFIG_SPARSEMEM
361 return __pfn_to_section(pfn)->pageblock_flags;
362 #else
363 return page_zone(page)->pageblock_flags;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366
367 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
368 {
369 #ifdef CONFIG_SPARSEMEM
370 pfn &= (PAGES_PER_SECTION-1);
371 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
372 #else
373 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
374 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
375 #endif /* CONFIG_SPARSEMEM */
376 }
377
378 /**
379 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
380 * @page: The page within the block of interest
381 * @pfn: The target page frame number
382 * @end_bitidx: The last bit of interest to retrieve
383 * @mask: mask of bits that the caller is interested in
384 *
385 * Return: pageblock_bits flags
386 */
387 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
388 unsigned long pfn,
389 unsigned long end_bitidx,
390 unsigned long mask)
391 {
392 unsigned long *bitmap;
393 unsigned long bitidx, word_bitidx;
394 unsigned long word;
395
396 bitmap = get_pageblock_bitmap(page, pfn);
397 bitidx = pfn_to_bitidx(page, pfn);
398 word_bitidx = bitidx / BITS_PER_LONG;
399 bitidx &= (BITS_PER_LONG-1);
400
401 word = bitmap[word_bitidx];
402 bitidx += end_bitidx;
403 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
404 }
405
406 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
407 unsigned long end_bitidx,
408 unsigned long mask)
409 {
410 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
411 }
412
413 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
414 {
415 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
416 }
417
418 /**
419 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
420 * @page: The page within the block of interest
421 * @flags: The flags to set
422 * @pfn: The target page frame number
423 * @end_bitidx: The last bit of interest
424 * @mask: mask of bits that the caller is interested in
425 */
426 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
427 unsigned long pfn,
428 unsigned long end_bitidx,
429 unsigned long mask)
430 {
431 unsigned long *bitmap;
432 unsigned long bitidx, word_bitidx;
433 unsigned long old_word, word;
434
435 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
436
437 bitmap = get_pageblock_bitmap(page, pfn);
438 bitidx = pfn_to_bitidx(page, pfn);
439 word_bitidx = bitidx / BITS_PER_LONG;
440 bitidx &= (BITS_PER_LONG-1);
441
442 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
443
444 bitidx += end_bitidx;
445 mask <<= (BITS_PER_LONG - bitidx - 1);
446 flags <<= (BITS_PER_LONG - bitidx - 1);
447
448 word = READ_ONCE(bitmap[word_bitidx]);
449 for (;;) {
450 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
451 if (word == old_word)
452 break;
453 word = old_word;
454 }
455 }
456
457 void set_pageblock_migratetype(struct page *page, int migratetype)
458 {
459 if (unlikely(page_group_by_mobility_disabled &&
460 migratetype < MIGRATE_PCPTYPES))
461 migratetype = MIGRATE_UNMOVABLE;
462
463 set_pageblock_flags_group(page, (unsigned long)migratetype,
464 PB_migrate, PB_migrate_end);
465 }
466
467 #ifdef CONFIG_DEBUG_VM
468 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
469 {
470 int ret = 0;
471 unsigned seq;
472 unsigned long pfn = page_to_pfn(page);
473 unsigned long sp, start_pfn;
474
475 do {
476 seq = zone_span_seqbegin(zone);
477 start_pfn = zone->zone_start_pfn;
478 sp = zone->spanned_pages;
479 if (!zone_spans_pfn(zone, pfn))
480 ret = 1;
481 } while (zone_span_seqretry(zone, seq));
482
483 if (ret)
484 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
485 pfn, zone_to_nid(zone), zone->name,
486 start_pfn, start_pfn + sp);
487
488 return ret;
489 }
490
491 static int page_is_consistent(struct zone *zone, struct page *page)
492 {
493 if (!pfn_valid_within(page_to_pfn(page)))
494 return 0;
495 if (zone != page_zone(page))
496 return 0;
497
498 return 1;
499 }
500 /*
501 * Temporary debugging check for pages not lying within a given zone.
502 */
503 static int bad_range(struct zone *zone, struct page *page)
504 {
505 if (page_outside_zone_boundaries(zone, page))
506 return 1;
507 if (!page_is_consistent(zone, page))
508 return 1;
509
510 return 0;
511 }
512 #else
513 static inline int bad_range(struct zone *zone, struct page *page)
514 {
515 return 0;
516 }
517 #endif
518
519 static void bad_page(struct page *page, const char *reason,
520 unsigned long bad_flags)
521 {
522 static unsigned long resume;
523 static unsigned long nr_shown;
524 static unsigned long nr_unshown;
525
526 /*
527 * Allow a burst of 60 reports, then keep quiet for that minute;
528 * or allow a steady drip of one report per second.
529 */
530 if (nr_shown == 60) {
531 if (time_before(jiffies, resume)) {
532 nr_unshown++;
533 goto out;
534 }
535 if (nr_unshown) {
536 pr_alert(
537 "BUG: Bad page state: %lu messages suppressed\n",
538 nr_unshown);
539 nr_unshown = 0;
540 }
541 nr_shown = 0;
542 }
543 if (nr_shown++ == 0)
544 resume = jiffies + 60 * HZ;
545
546 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
547 current->comm, page_to_pfn(page));
548 __dump_page(page, reason);
549 bad_flags &= page->flags;
550 if (bad_flags)
551 pr_alert("bad because of flags: %#lx(%pGp)\n",
552 bad_flags, &bad_flags);
553 dump_page_owner(page);
554
555 print_modules();
556 dump_stack();
557 out:
558 /* Leave bad fields for debug, except PageBuddy could make trouble */
559 page_mapcount_reset(page); /* remove PageBuddy */
560 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561 }
562
563 /*
564 * Higher-order pages are called "compound pages". They are structured thusly:
565 *
566 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
567 *
568 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
569 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
570 *
571 * The first tail page's ->compound_dtor holds the offset in array of compound
572 * page destructors. See compound_page_dtors.
573 *
574 * The first tail page's ->compound_order holds the order of allocation.
575 * This usage means that zero-order pages may not be compound.
576 */
577
578 void free_compound_page(struct page *page)
579 {
580 __free_pages_ok(page, compound_order(page));
581 }
582
583 void prep_compound_page(struct page *page, unsigned int order)
584 {
585 int i;
586 int nr_pages = 1 << order;
587
588 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
589 set_compound_order(page, order);
590 __SetPageHead(page);
591 for (i = 1; i < nr_pages; i++) {
592 struct page *p = page + i;
593 set_page_count(p, 0);
594 p->mapping = TAIL_MAPPING;
595 set_compound_head(p, page);
596 }
597 atomic_set(compound_mapcount_ptr(page), -1);
598 }
599
600 #ifdef CONFIG_DEBUG_PAGEALLOC
601 unsigned int _debug_guardpage_minorder;
602 bool _debug_pagealloc_enabled __read_mostly
603 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
604 EXPORT_SYMBOL(_debug_pagealloc_enabled);
605 bool _debug_guardpage_enabled __read_mostly;
606
607 static int __init early_debug_pagealloc(char *buf)
608 {
609 if (!buf)
610 return -EINVAL;
611 return kstrtobool(buf, &_debug_pagealloc_enabled);
612 }
613 early_param("debug_pagealloc", early_debug_pagealloc);
614
615 static bool need_debug_guardpage(void)
616 {
617 /* If we don't use debug_pagealloc, we don't need guard page */
618 if (!debug_pagealloc_enabled())
619 return false;
620
621 if (!debug_guardpage_minorder())
622 return false;
623
624 return true;
625 }
626
627 static void init_debug_guardpage(void)
628 {
629 if (!debug_pagealloc_enabled())
630 return;
631
632 if (!debug_guardpage_minorder())
633 return;
634
635 _debug_guardpage_enabled = true;
636 }
637
638 struct page_ext_operations debug_guardpage_ops = {
639 .need = need_debug_guardpage,
640 .init = init_debug_guardpage,
641 };
642
643 static int __init debug_guardpage_minorder_setup(char *buf)
644 {
645 unsigned long res;
646
647 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
648 pr_err("Bad debug_guardpage_minorder value\n");
649 return 0;
650 }
651 _debug_guardpage_minorder = res;
652 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
653 return 0;
654 }
655 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
656
657 static inline bool set_page_guard(struct zone *zone, struct page *page,
658 unsigned int order, int migratetype)
659 {
660 struct page_ext *page_ext;
661
662 if (!debug_guardpage_enabled())
663 return false;
664
665 if (order >= debug_guardpage_minorder())
666 return false;
667
668 page_ext = lookup_page_ext(page);
669 if (unlikely(!page_ext))
670 return false;
671
672 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
674 INIT_LIST_HEAD(&page->lru);
675 set_page_private(page, order);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
678
679 return true;
680 }
681
682 static inline void clear_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype)
684 {
685 struct page_ext *page_ext;
686
687 if (!debug_guardpage_enabled())
688 return;
689
690 page_ext = lookup_page_ext(page);
691 if (unlikely(!page_ext))
692 return;
693
694 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
695
696 set_page_private(page, 0);
697 if (!is_migrate_isolate(migratetype))
698 __mod_zone_freepage_state(zone, (1 << order), migratetype);
699 }
700 #else
701 struct page_ext_operations debug_guardpage_ops;
702 static inline bool set_page_guard(struct zone *zone, struct page *page,
703 unsigned int order, int migratetype) { return false; }
704 static inline void clear_page_guard(struct zone *zone, struct page *page,
705 unsigned int order, int migratetype) {}
706 #endif
707
708 static inline void set_page_order(struct page *page, unsigned int order)
709 {
710 set_page_private(page, order);
711 __SetPageBuddy(page);
712 }
713
714 static inline void rmv_page_order(struct page *page)
715 {
716 __ClearPageBuddy(page);
717 set_page_private(page, 0);
718 }
719
720 /*
721 * This function checks whether a page is free && is the buddy
722 * we can do coalesce a page and its buddy if
723 * (a) the buddy is not in a hole (check before calling!) &&
724 * (b) the buddy is in the buddy system &&
725 * (c) a page and its buddy have the same order &&
726 * (d) a page and its buddy are in the same zone.
727 *
728 * For recording whether a page is in the buddy system, we set ->_mapcount
729 * PAGE_BUDDY_MAPCOUNT_VALUE.
730 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
731 * serialized by zone->lock.
732 *
733 * For recording page's order, we use page_private(page).
734 */
735 static inline int page_is_buddy(struct page *page, struct page *buddy,
736 unsigned int order)
737 {
738 if (page_is_guard(buddy) && page_order(buddy) == order) {
739 if (page_zone_id(page) != page_zone_id(buddy))
740 return 0;
741
742 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
743
744 return 1;
745 }
746
747 if (PageBuddy(buddy) && page_order(buddy) == order) {
748 /*
749 * zone check is done late to avoid uselessly
750 * calculating zone/node ids for pages that could
751 * never merge.
752 */
753 if (page_zone_id(page) != page_zone_id(buddy))
754 return 0;
755
756 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
757
758 return 1;
759 }
760 return 0;
761 }
762
763 /*
764 * Freeing function for a buddy system allocator.
765 *
766 * The concept of a buddy system is to maintain direct-mapped table
767 * (containing bit values) for memory blocks of various "orders".
768 * The bottom level table contains the map for the smallest allocatable
769 * units of memory (here, pages), and each level above it describes
770 * pairs of units from the levels below, hence, "buddies".
771 * At a high level, all that happens here is marking the table entry
772 * at the bottom level available, and propagating the changes upward
773 * as necessary, plus some accounting needed to play nicely with other
774 * parts of the VM system.
775 * At each level, we keep a list of pages, which are heads of continuous
776 * free pages of length of (1 << order) and marked with _mapcount
777 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
778 * field.
779 * So when we are allocating or freeing one, we can derive the state of the
780 * other. That is, if we allocate a small block, and both were
781 * free, the remainder of the region must be split into blocks.
782 * If a block is freed, and its buddy is also free, then this
783 * triggers coalescing into a block of larger size.
784 *
785 * -- nyc
786 */
787
788 static inline void __free_one_page(struct page *page,
789 unsigned long pfn,
790 struct zone *zone, unsigned int order,
791 int migratetype)
792 {
793 unsigned long combined_pfn;
794 unsigned long uninitialized_var(buddy_pfn);
795 struct page *buddy;
796 unsigned int max_order;
797
798 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
799
800 VM_BUG_ON(!zone_is_initialized(zone));
801 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
802
803 VM_BUG_ON(migratetype == -1);
804 if (likely(!is_migrate_isolate(migratetype)))
805 __mod_zone_freepage_state(zone, 1 << order, migratetype);
806
807 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
808 VM_BUG_ON_PAGE(bad_range(zone, page), page);
809
810 continue_merging:
811 while (order < max_order - 1) {
812 buddy_pfn = __find_buddy_pfn(pfn, order);
813 buddy = page + (buddy_pfn - pfn);
814
815 if (!pfn_valid_within(buddy_pfn))
816 goto done_merging;
817 if (!page_is_buddy(page, buddy, order))
818 goto done_merging;
819 /*
820 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
821 * merge with it and move up one order.
822 */
823 if (page_is_guard(buddy)) {
824 clear_page_guard(zone, buddy, order, migratetype);
825 } else {
826 list_del(&buddy->lru);
827 zone->free_area[order].nr_free--;
828 rmv_page_order(buddy);
829 }
830 combined_pfn = buddy_pfn & pfn;
831 page = page + (combined_pfn - pfn);
832 pfn = combined_pfn;
833 order++;
834 }
835 if (max_order < MAX_ORDER) {
836 /* If we are here, it means order is >= pageblock_order.
837 * We want to prevent merge between freepages on isolate
838 * pageblock and normal pageblock. Without this, pageblock
839 * isolation could cause incorrect freepage or CMA accounting.
840 *
841 * We don't want to hit this code for the more frequent
842 * low-order merging.
843 */
844 if (unlikely(has_isolate_pageblock(zone))) {
845 int buddy_mt;
846
847 buddy_pfn = __find_buddy_pfn(pfn, order);
848 buddy = page + (buddy_pfn - pfn);
849 buddy_mt = get_pageblock_migratetype(buddy);
850
851 if (migratetype != buddy_mt
852 && (is_migrate_isolate(migratetype) ||
853 is_migrate_isolate(buddy_mt)))
854 goto done_merging;
855 }
856 max_order++;
857 goto continue_merging;
858 }
859
860 done_merging:
861 set_page_order(page, order);
862
863 /*
864 * If this is not the largest possible page, check if the buddy
865 * of the next-highest order is free. If it is, it's possible
866 * that pages are being freed that will coalesce soon. In case,
867 * that is happening, add the free page to the tail of the list
868 * so it's less likely to be used soon and more likely to be merged
869 * as a higher order page
870 */
871 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
872 struct page *higher_page, *higher_buddy;
873 combined_pfn = buddy_pfn & pfn;
874 higher_page = page + (combined_pfn - pfn);
875 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
876 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
877 if (pfn_valid_within(buddy_pfn) &&
878 page_is_buddy(higher_page, higher_buddy, order + 1)) {
879 list_add_tail(&page->lru,
880 &zone->free_area[order].free_list[migratetype]);
881 goto out;
882 }
883 }
884
885 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
886 out:
887 zone->free_area[order].nr_free++;
888 }
889
890 /*
891 * A bad page could be due to a number of fields. Instead of multiple branches,
892 * try and check multiple fields with one check. The caller must do a detailed
893 * check if necessary.
894 */
895 static inline bool page_expected_state(struct page *page,
896 unsigned long check_flags)
897 {
898 if (unlikely(atomic_read(&page->_mapcount) != -1))
899 return false;
900
901 if (unlikely((unsigned long)page->mapping |
902 page_ref_count(page) |
903 #ifdef CONFIG_MEMCG
904 (unsigned long)page->mem_cgroup |
905 #endif
906 (page->flags & check_flags)))
907 return false;
908
909 return true;
910 }
911
912 static void free_pages_check_bad(struct page *page)
913 {
914 const char *bad_reason;
915 unsigned long bad_flags;
916
917 bad_reason = NULL;
918 bad_flags = 0;
919
920 if (unlikely(atomic_read(&page->_mapcount) != -1))
921 bad_reason = "nonzero mapcount";
922 if (unlikely(page->mapping != NULL))
923 bad_reason = "non-NULL mapping";
924 if (unlikely(page_ref_count(page) != 0))
925 bad_reason = "nonzero _refcount";
926 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
927 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
928 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
929 }
930 #ifdef CONFIG_MEMCG
931 if (unlikely(page->mem_cgroup))
932 bad_reason = "page still charged to cgroup";
933 #endif
934 bad_page(page, bad_reason, bad_flags);
935 }
936
937 static inline int free_pages_check(struct page *page)
938 {
939 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
940 return 0;
941
942 /* Something has gone sideways, find it */
943 free_pages_check_bad(page);
944 return 1;
945 }
946
947 static int free_tail_pages_check(struct page *head_page, struct page *page)
948 {
949 int ret = 1;
950
951 /*
952 * We rely page->lru.next never has bit 0 set, unless the page
953 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
954 */
955 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
956
957 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
958 ret = 0;
959 goto out;
960 }
961 switch (page - head_page) {
962 case 1:
963 /* the first tail page: ->mapping is compound_mapcount() */
964 if (unlikely(compound_mapcount(page))) {
965 bad_page(page, "nonzero compound_mapcount", 0);
966 goto out;
967 }
968 break;
969 case 2:
970 /*
971 * the second tail page: ->mapping is
972 * page_deferred_list().next -- ignore value.
973 */
974 break;
975 default:
976 if (page->mapping != TAIL_MAPPING) {
977 bad_page(page, "corrupted mapping in tail page", 0);
978 goto out;
979 }
980 break;
981 }
982 if (unlikely(!PageTail(page))) {
983 bad_page(page, "PageTail not set", 0);
984 goto out;
985 }
986 if (unlikely(compound_head(page) != head_page)) {
987 bad_page(page, "compound_head not consistent", 0);
988 goto out;
989 }
990 ret = 0;
991 out:
992 page->mapping = NULL;
993 clear_compound_head(page);
994 return ret;
995 }
996
997 static __always_inline bool free_pages_prepare(struct page *page,
998 unsigned int order, bool check_free)
999 {
1000 int bad = 0;
1001
1002 VM_BUG_ON_PAGE(PageTail(page), page);
1003
1004 trace_mm_page_free(page, order);
1005 kmemcheck_free_shadow(page, order);
1006
1007 /*
1008 * Check tail pages before head page information is cleared to
1009 * avoid checking PageCompound for order-0 pages.
1010 */
1011 if (unlikely(order)) {
1012 bool compound = PageCompound(page);
1013 int i;
1014
1015 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1016
1017 if (compound)
1018 ClearPageDoubleMap(page);
1019 for (i = 1; i < (1 << order); i++) {
1020 if (compound)
1021 bad += free_tail_pages_check(page, page + i);
1022 if (unlikely(free_pages_check(page + i))) {
1023 bad++;
1024 continue;
1025 }
1026 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1027 }
1028 }
1029 if (PageMappingFlags(page))
1030 page->mapping = NULL;
1031 if (memcg_kmem_enabled() && PageKmemcg(page))
1032 memcg_kmem_uncharge(page, order);
1033 if (check_free)
1034 bad += free_pages_check(page);
1035 if (bad)
1036 return false;
1037
1038 page_cpupid_reset_last(page);
1039 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1040 reset_page_owner(page, order);
1041
1042 if (!PageHighMem(page)) {
1043 debug_check_no_locks_freed(page_address(page),
1044 PAGE_SIZE << order);
1045 debug_check_no_obj_freed(page_address(page),
1046 PAGE_SIZE << order);
1047 }
1048 arch_free_page(page, order);
1049 kernel_poison_pages(page, 1 << order, 0);
1050 kernel_map_pages(page, 1 << order, 0);
1051 kasan_free_pages(page, order);
1052
1053 return true;
1054 }
1055
1056 #ifdef CONFIG_DEBUG_VM
1057 static inline bool free_pcp_prepare(struct page *page)
1058 {
1059 return free_pages_prepare(page, 0, true);
1060 }
1061
1062 static inline bool bulkfree_pcp_prepare(struct page *page)
1063 {
1064 return false;
1065 }
1066 #else
1067 static bool free_pcp_prepare(struct page *page)
1068 {
1069 return free_pages_prepare(page, 0, false);
1070 }
1071
1072 static bool bulkfree_pcp_prepare(struct page *page)
1073 {
1074 return free_pages_check(page);
1075 }
1076 #endif /* CONFIG_DEBUG_VM */
1077
1078 /*
1079 * Frees a number of pages from the PCP lists
1080 * Assumes all pages on list are in same zone, and of same order.
1081 * count is the number of pages to free.
1082 *
1083 * If the zone was previously in an "all pages pinned" state then look to
1084 * see if this freeing clears that state.
1085 *
1086 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1087 * pinned" detection logic.
1088 */
1089 static void free_pcppages_bulk(struct zone *zone, int count,
1090 struct per_cpu_pages *pcp)
1091 {
1092 int migratetype = 0;
1093 int batch_free = 0;
1094 bool isolated_pageblocks;
1095
1096 spin_lock(&zone->lock);
1097 isolated_pageblocks = has_isolate_pageblock(zone);
1098
1099 while (count) {
1100 struct page *page;
1101 struct list_head *list;
1102
1103 /*
1104 * Remove pages from lists in a round-robin fashion. A
1105 * batch_free count is maintained that is incremented when an
1106 * empty list is encountered. This is so more pages are freed
1107 * off fuller lists instead of spinning excessively around empty
1108 * lists
1109 */
1110 do {
1111 batch_free++;
1112 if (++migratetype == MIGRATE_PCPTYPES)
1113 migratetype = 0;
1114 list = &pcp->lists[migratetype];
1115 } while (list_empty(list));
1116
1117 /* This is the only non-empty list. Free them all. */
1118 if (batch_free == MIGRATE_PCPTYPES)
1119 batch_free = count;
1120
1121 do {
1122 int mt; /* migratetype of the to-be-freed page */
1123
1124 page = list_last_entry(list, struct page, lru);
1125 /* must delete as __free_one_page list manipulates */
1126 list_del(&page->lru);
1127
1128 mt = get_pcppage_migratetype(page);
1129 /* MIGRATE_ISOLATE page should not go to pcplists */
1130 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 /* Pageblock could have been isolated meanwhile */
1132 if (unlikely(isolated_pageblocks))
1133 mt = get_pageblock_migratetype(page);
1134
1135 if (bulkfree_pcp_prepare(page))
1136 continue;
1137
1138 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1139 trace_mm_page_pcpu_drain(page, 0, mt);
1140 } while (--count && --batch_free && !list_empty(list));
1141 }
1142 spin_unlock(&zone->lock);
1143 }
1144
1145 static void free_one_page(struct zone *zone,
1146 struct page *page, unsigned long pfn,
1147 unsigned int order,
1148 int migratetype)
1149 {
1150 spin_lock(&zone->lock);
1151 if (unlikely(has_isolate_pageblock(zone) ||
1152 is_migrate_isolate(migratetype))) {
1153 migratetype = get_pfnblock_migratetype(page, pfn);
1154 }
1155 __free_one_page(page, pfn, zone, order, migratetype);
1156 spin_unlock(&zone->lock);
1157 }
1158
1159 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1160 unsigned long zone, int nid)
1161 {
1162 set_page_links(page, zone, nid, pfn);
1163 init_page_count(page);
1164 page_mapcount_reset(page);
1165 page_cpupid_reset_last(page);
1166
1167 INIT_LIST_HEAD(&page->lru);
1168 #ifdef WANT_PAGE_VIRTUAL
1169 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1170 if (!is_highmem_idx(zone))
1171 set_page_address(page, __va(pfn << PAGE_SHIFT));
1172 #endif
1173 }
1174
1175 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1176 int nid)
1177 {
1178 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1179 }
1180
1181 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1182 static void init_reserved_page(unsigned long pfn)
1183 {
1184 pg_data_t *pgdat;
1185 int nid, zid;
1186
1187 if (!early_page_uninitialised(pfn))
1188 return;
1189
1190 nid = early_pfn_to_nid(pfn);
1191 pgdat = NODE_DATA(nid);
1192
1193 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1194 struct zone *zone = &pgdat->node_zones[zid];
1195
1196 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1197 break;
1198 }
1199 __init_single_pfn(pfn, zid, nid);
1200 }
1201 #else
1202 static inline void init_reserved_page(unsigned long pfn)
1203 {
1204 }
1205 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1206
1207 /*
1208 * Initialised pages do not have PageReserved set. This function is
1209 * called for each range allocated by the bootmem allocator and
1210 * marks the pages PageReserved. The remaining valid pages are later
1211 * sent to the buddy page allocator.
1212 */
1213 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1214 {
1215 unsigned long start_pfn = PFN_DOWN(start);
1216 unsigned long end_pfn = PFN_UP(end);
1217
1218 for (; start_pfn < end_pfn; start_pfn++) {
1219 if (pfn_valid(start_pfn)) {
1220 struct page *page = pfn_to_page(start_pfn);
1221
1222 init_reserved_page(start_pfn);
1223
1224 /* Avoid false-positive PageTail() */
1225 INIT_LIST_HEAD(&page->lru);
1226
1227 SetPageReserved(page);
1228 }
1229 }
1230 }
1231
1232 static void __free_pages_ok(struct page *page, unsigned int order)
1233 {
1234 unsigned long flags;
1235 int migratetype;
1236 unsigned long pfn = page_to_pfn(page);
1237
1238 if (!free_pages_prepare(page, order, true))
1239 return;
1240
1241 migratetype = get_pfnblock_migratetype(page, pfn);
1242 local_irq_save(flags);
1243 __count_vm_events(PGFREE, 1 << order);
1244 free_one_page(page_zone(page), page, pfn, order, migratetype);
1245 local_irq_restore(flags);
1246 }
1247
1248 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1249 {
1250 unsigned int nr_pages = 1 << order;
1251 struct page *p = page;
1252 unsigned int loop;
1253
1254 prefetchw(p);
1255 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1256 prefetchw(p + 1);
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
1259 }
1260 __ClearPageReserved(p);
1261 set_page_count(p, 0);
1262
1263 page_zone(page)->managed_pages += nr_pages;
1264 set_page_refcounted(page);
1265 __free_pages(page, order);
1266 }
1267
1268 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1269 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1270
1271 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1272
1273 int __meminit early_pfn_to_nid(unsigned long pfn)
1274 {
1275 static DEFINE_SPINLOCK(early_pfn_lock);
1276 int nid;
1277
1278 spin_lock(&early_pfn_lock);
1279 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1280 if (nid < 0)
1281 nid = first_online_node;
1282 spin_unlock(&early_pfn_lock);
1283
1284 return nid;
1285 }
1286 #endif
1287
1288 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1289 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1290 struct mminit_pfnnid_cache *state)
1291 {
1292 int nid;
1293
1294 nid = __early_pfn_to_nid(pfn, state);
1295 if (nid >= 0 && nid != node)
1296 return false;
1297 return true;
1298 }
1299
1300 /* Only safe to use early in boot when initialisation is single-threaded */
1301 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1302 {
1303 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1304 }
1305
1306 #else
1307
1308 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1309 {
1310 return true;
1311 }
1312 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1313 struct mminit_pfnnid_cache *state)
1314 {
1315 return true;
1316 }
1317 #endif
1318
1319
1320 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1321 unsigned int order)
1322 {
1323 if (early_page_uninitialised(pfn))
1324 return;
1325 return __free_pages_boot_core(page, order);
1326 }
1327
1328 /*
1329 * Check that the whole (or subset of) a pageblock given by the interval of
1330 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331 * with the migration of free compaction scanner. The scanners then need to
1332 * use only pfn_valid_within() check for arches that allow holes within
1333 * pageblocks.
1334 *
1335 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336 *
1337 * It's possible on some configurations to have a setup like node0 node1 node0
1338 * i.e. it's possible that all pages within a zones range of pages do not
1339 * belong to a single zone. We assume that a border between node0 and node1
1340 * can occur within a single pageblock, but not a node0 node1 node0
1341 * interleaving within a single pageblock. It is therefore sufficient to check
1342 * the first and last page of a pageblock and avoid checking each individual
1343 * page in a pageblock.
1344 */
1345 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 unsigned long end_pfn, struct zone *zone)
1347 {
1348 struct page *start_page;
1349 struct page *end_page;
1350
1351 /* end_pfn is one past the range we are checking */
1352 end_pfn--;
1353
1354 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1355 return NULL;
1356
1357 start_page = pfn_to_page(start_pfn);
1358
1359 if (page_zone(start_page) != zone)
1360 return NULL;
1361
1362 end_page = pfn_to_page(end_pfn);
1363
1364 /* This gives a shorter code than deriving page_zone(end_page) */
1365 if (page_zone_id(start_page) != page_zone_id(end_page))
1366 return NULL;
1367
1368 return start_page;
1369 }
1370
1371 void set_zone_contiguous(struct zone *zone)
1372 {
1373 unsigned long block_start_pfn = zone->zone_start_pfn;
1374 unsigned long block_end_pfn;
1375
1376 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1377 for (; block_start_pfn < zone_end_pfn(zone);
1378 block_start_pfn = block_end_pfn,
1379 block_end_pfn += pageblock_nr_pages) {
1380
1381 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1382
1383 if (!__pageblock_pfn_to_page(block_start_pfn,
1384 block_end_pfn, zone))
1385 return;
1386 }
1387
1388 /* We confirm that there is no hole */
1389 zone->contiguous = true;
1390 }
1391
1392 void clear_zone_contiguous(struct zone *zone)
1393 {
1394 zone->contiguous = false;
1395 }
1396
1397 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1398 static void __init deferred_free_range(struct page *page,
1399 unsigned long pfn, int nr_pages)
1400 {
1401 int i;
1402
1403 if (!page)
1404 return;
1405
1406 /* Free a large naturally-aligned chunk if possible */
1407 if (nr_pages == pageblock_nr_pages &&
1408 (pfn & (pageblock_nr_pages - 1)) == 0) {
1409 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1410 __free_pages_boot_core(page, pageblock_order);
1411 return;
1412 }
1413
1414 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1415 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1416 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1417 __free_pages_boot_core(page, 0);
1418 }
1419 }
1420
1421 /* Completion tracking for deferred_init_memmap() threads */
1422 static atomic_t pgdat_init_n_undone __initdata;
1423 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424
1425 static inline void __init pgdat_init_report_one_done(void)
1426 {
1427 if (atomic_dec_and_test(&pgdat_init_n_undone))
1428 complete(&pgdat_init_all_done_comp);
1429 }
1430
1431 /* Initialise remaining memory on a node */
1432 static int __init deferred_init_memmap(void *data)
1433 {
1434 pg_data_t *pgdat = data;
1435 int nid = pgdat->node_id;
1436 struct mminit_pfnnid_cache nid_init_state = { };
1437 unsigned long start = jiffies;
1438 unsigned long nr_pages = 0;
1439 unsigned long walk_start, walk_end;
1440 int i, zid;
1441 struct zone *zone;
1442 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1443 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1444
1445 if (first_init_pfn == ULONG_MAX) {
1446 pgdat_init_report_one_done();
1447 return 0;
1448 }
1449
1450 /* Bind memory initialisation thread to a local node if possible */
1451 if (!cpumask_empty(cpumask))
1452 set_cpus_allowed_ptr(current, cpumask);
1453
1454 /* Sanity check boundaries */
1455 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1456 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1457 pgdat->first_deferred_pfn = ULONG_MAX;
1458
1459 /* Only the highest zone is deferred so find it */
1460 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 zone = pgdat->node_zones + zid;
1462 if (first_init_pfn < zone_end_pfn(zone))
1463 break;
1464 }
1465
1466 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1467 unsigned long pfn, end_pfn;
1468 struct page *page = NULL;
1469 struct page *free_base_page = NULL;
1470 unsigned long free_base_pfn = 0;
1471 int nr_to_free = 0;
1472
1473 end_pfn = min(walk_end, zone_end_pfn(zone));
1474 pfn = first_init_pfn;
1475 if (pfn < walk_start)
1476 pfn = walk_start;
1477 if (pfn < zone->zone_start_pfn)
1478 pfn = zone->zone_start_pfn;
1479
1480 for (; pfn < end_pfn; pfn++) {
1481 if (!pfn_valid_within(pfn))
1482 goto free_range;
1483
1484 /*
1485 * Ensure pfn_valid is checked every
1486 * pageblock_nr_pages for memory holes
1487 */
1488 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1489 if (!pfn_valid(pfn)) {
1490 page = NULL;
1491 goto free_range;
1492 }
1493 }
1494
1495 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1496 page = NULL;
1497 goto free_range;
1498 }
1499
1500 /* Minimise pfn page lookups and scheduler checks */
1501 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1502 page++;
1503 } else {
1504 nr_pages += nr_to_free;
1505 deferred_free_range(free_base_page,
1506 free_base_pfn, nr_to_free);
1507 free_base_page = NULL;
1508 free_base_pfn = nr_to_free = 0;
1509
1510 page = pfn_to_page(pfn);
1511 cond_resched();
1512 }
1513
1514 if (page->flags) {
1515 VM_BUG_ON(page_zone(page) != zone);
1516 goto free_range;
1517 }
1518
1519 __init_single_page(page, pfn, zid, nid);
1520 if (!free_base_page) {
1521 free_base_page = page;
1522 free_base_pfn = pfn;
1523 nr_to_free = 0;
1524 }
1525 nr_to_free++;
1526
1527 /* Where possible, batch up pages for a single free */
1528 continue;
1529 free_range:
1530 /* Free the current block of pages to allocator */
1531 nr_pages += nr_to_free;
1532 deferred_free_range(free_base_page, free_base_pfn,
1533 nr_to_free);
1534 free_base_page = NULL;
1535 free_base_pfn = nr_to_free = 0;
1536 }
1537 /* Free the last block of pages to allocator */
1538 nr_pages += nr_to_free;
1539 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1540
1541 first_init_pfn = max(end_pfn, first_init_pfn);
1542 }
1543
1544 /* Sanity check that the next zone really is unpopulated */
1545 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1546
1547 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1548 jiffies_to_msecs(jiffies - start));
1549
1550 pgdat_init_report_one_done();
1551 return 0;
1552 }
1553 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1554
1555 void __init page_alloc_init_late(void)
1556 {
1557 struct zone *zone;
1558
1559 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1560 int nid;
1561
1562 /* There will be num_node_state(N_MEMORY) threads */
1563 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1564 for_each_node_state(nid, N_MEMORY) {
1565 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1566 }
1567
1568 /* Block until all are initialised */
1569 wait_for_completion(&pgdat_init_all_done_comp);
1570
1571 /* Reinit limits that are based on free pages after the kernel is up */
1572 files_maxfiles_init();
1573 #endif
1574
1575 for_each_populated_zone(zone)
1576 set_zone_contiguous(zone);
1577 }
1578
1579 #ifdef CONFIG_CMA
1580 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1581 void __init init_cma_reserved_pageblock(struct page *page)
1582 {
1583 unsigned i = pageblock_nr_pages;
1584 struct page *p = page;
1585
1586 do {
1587 __ClearPageReserved(p);
1588 set_page_count(p, 0);
1589 } while (++p, --i);
1590
1591 set_pageblock_migratetype(page, MIGRATE_CMA);
1592
1593 if (pageblock_order >= MAX_ORDER) {
1594 i = pageblock_nr_pages;
1595 p = page;
1596 do {
1597 set_page_refcounted(p);
1598 __free_pages(p, MAX_ORDER - 1);
1599 p += MAX_ORDER_NR_PAGES;
1600 } while (i -= MAX_ORDER_NR_PAGES);
1601 } else {
1602 set_page_refcounted(page);
1603 __free_pages(page, pageblock_order);
1604 }
1605
1606 adjust_managed_page_count(page, pageblock_nr_pages);
1607 }
1608 #endif
1609
1610 /*
1611 * The order of subdivision here is critical for the IO subsystem.
1612 * Please do not alter this order without good reasons and regression
1613 * testing. Specifically, as large blocks of memory are subdivided,
1614 * the order in which smaller blocks are delivered depends on the order
1615 * they're subdivided in this function. This is the primary factor
1616 * influencing the order in which pages are delivered to the IO
1617 * subsystem according to empirical testing, and this is also justified
1618 * by considering the behavior of a buddy system containing a single
1619 * large block of memory acted on by a series of small allocations.
1620 * This behavior is a critical factor in sglist merging's success.
1621 *
1622 * -- nyc
1623 */
1624 static inline void expand(struct zone *zone, struct page *page,
1625 int low, int high, struct free_area *area,
1626 int migratetype)
1627 {
1628 unsigned long size = 1 << high;
1629
1630 while (high > low) {
1631 area--;
1632 high--;
1633 size >>= 1;
1634 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1635
1636 /*
1637 * Mark as guard pages (or page), that will allow to
1638 * merge back to allocator when buddy will be freed.
1639 * Corresponding page table entries will not be touched,
1640 * pages will stay not present in virtual address space
1641 */
1642 if (set_page_guard(zone, &page[size], high, migratetype))
1643 continue;
1644
1645 list_add(&page[size].lru, &area->free_list[migratetype]);
1646 area->nr_free++;
1647 set_page_order(&page[size], high);
1648 }
1649 }
1650
1651 static void check_new_page_bad(struct page *page)
1652 {
1653 const char *bad_reason = NULL;
1654 unsigned long bad_flags = 0;
1655
1656 if (unlikely(atomic_read(&page->_mapcount) != -1))
1657 bad_reason = "nonzero mapcount";
1658 if (unlikely(page->mapping != NULL))
1659 bad_reason = "non-NULL mapping";
1660 if (unlikely(page_ref_count(page) != 0))
1661 bad_reason = "nonzero _count";
1662 if (unlikely(page->flags & __PG_HWPOISON)) {
1663 bad_reason = "HWPoisoned (hardware-corrupted)";
1664 bad_flags = __PG_HWPOISON;
1665 /* Don't complain about hwpoisoned pages */
1666 page_mapcount_reset(page); /* remove PageBuddy */
1667 return;
1668 }
1669 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1670 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1671 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1672 }
1673 #ifdef CONFIG_MEMCG
1674 if (unlikely(page->mem_cgroup))
1675 bad_reason = "page still charged to cgroup";
1676 #endif
1677 bad_page(page, bad_reason, bad_flags);
1678 }
1679
1680 /*
1681 * This page is about to be returned from the page allocator
1682 */
1683 static inline int check_new_page(struct page *page)
1684 {
1685 if (likely(page_expected_state(page,
1686 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1687 return 0;
1688
1689 check_new_page_bad(page);
1690 return 1;
1691 }
1692
1693 static inline bool free_pages_prezeroed(void)
1694 {
1695 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1696 page_poisoning_enabled();
1697 }
1698
1699 #ifdef CONFIG_DEBUG_VM
1700 static bool check_pcp_refill(struct page *page)
1701 {
1702 return false;
1703 }
1704
1705 static bool check_new_pcp(struct page *page)
1706 {
1707 return check_new_page(page);
1708 }
1709 #else
1710 static bool check_pcp_refill(struct page *page)
1711 {
1712 return check_new_page(page);
1713 }
1714 static bool check_new_pcp(struct page *page)
1715 {
1716 return false;
1717 }
1718 #endif /* CONFIG_DEBUG_VM */
1719
1720 static bool check_new_pages(struct page *page, unsigned int order)
1721 {
1722 int i;
1723 for (i = 0; i < (1 << order); i++) {
1724 struct page *p = page + i;
1725
1726 if (unlikely(check_new_page(p)))
1727 return true;
1728 }
1729
1730 return false;
1731 }
1732
1733 inline void post_alloc_hook(struct page *page, unsigned int order,
1734 gfp_t gfp_flags)
1735 {
1736 set_page_private(page, 0);
1737 set_page_refcounted(page);
1738
1739 arch_alloc_page(page, order);
1740 kernel_map_pages(page, 1 << order, 1);
1741 kernel_poison_pages(page, 1 << order, 1);
1742 kasan_alloc_pages(page, order);
1743 set_page_owner(page, order, gfp_flags);
1744 }
1745
1746 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1747 unsigned int alloc_flags)
1748 {
1749 int i;
1750
1751 post_alloc_hook(page, order, gfp_flags);
1752
1753 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1754 for (i = 0; i < (1 << order); i++)
1755 clear_highpage(page + i);
1756
1757 if (order && (gfp_flags & __GFP_COMP))
1758 prep_compound_page(page, order);
1759
1760 /*
1761 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1762 * allocate the page. The expectation is that the caller is taking
1763 * steps that will free more memory. The caller should avoid the page
1764 * being used for !PFMEMALLOC purposes.
1765 */
1766 if (alloc_flags & ALLOC_NO_WATERMARKS)
1767 set_page_pfmemalloc(page);
1768 else
1769 clear_page_pfmemalloc(page);
1770 }
1771
1772 /*
1773 * Go through the free lists for the given migratetype and remove
1774 * the smallest available page from the freelists
1775 */
1776 static inline
1777 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1778 int migratetype)
1779 {
1780 unsigned int current_order;
1781 struct free_area *area;
1782 struct page *page;
1783
1784 /* Find a page of the appropriate size in the preferred list */
1785 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1786 area = &(zone->free_area[current_order]);
1787 page = list_first_entry_or_null(&area->free_list[migratetype],
1788 struct page, lru);
1789 if (!page)
1790 continue;
1791 list_del(&page->lru);
1792 rmv_page_order(page);
1793 area->nr_free--;
1794 expand(zone, page, order, current_order, area, migratetype);
1795 set_pcppage_migratetype(page, migratetype);
1796 return page;
1797 }
1798
1799 return NULL;
1800 }
1801
1802
1803 /*
1804 * This array describes the order lists are fallen back to when
1805 * the free lists for the desirable migrate type are depleted
1806 */
1807 static int fallbacks[MIGRATE_TYPES][4] = {
1808 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1809 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1810 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1811 #ifdef CONFIG_CMA
1812 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1813 #endif
1814 #ifdef CONFIG_MEMORY_ISOLATION
1815 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1816 #endif
1817 };
1818
1819 #ifdef CONFIG_CMA
1820 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1821 unsigned int order)
1822 {
1823 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1824 }
1825 #else
1826 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1827 unsigned int order) { return NULL; }
1828 #endif
1829
1830 /*
1831 * Move the free pages in a range to the free lists of the requested type.
1832 * Note that start_page and end_pages are not aligned on a pageblock
1833 * boundary. If alignment is required, use move_freepages_block()
1834 */
1835 int move_freepages(struct zone *zone,
1836 struct page *start_page, struct page *end_page,
1837 int migratetype)
1838 {
1839 struct page *page;
1840 unsigned int order;
1841 int pages_moved = 0;
1842
1843 #ifndef CONFIG_HOLES_IN_ZONE
1844 /*
1845 * page_zone is not safe to call in this context when
1846 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1847 * anyway as we check zone boundaries in move_freepages_block().
1848 * Remove at a later date when no bug reports exist related to
1849 * grouping pages by mobility
1850 */
1851 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1852 #endif
1853
1854 for (page = start_page; page <= end_page;) {
1855 if (!pfn_valid_within(page_to_pfn(page))) {
1856 page++;
1857 continue;
1858 }
1859
1860 /* Make sure we are not inadvertently changing nodes */
1861 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1862
1863 if (!PageBuddy(page)) {
1864 page++;
1865 continue;
1866 }
1867
1868 order = page_order(page);
1869 list_move(&page->lru,
1870 &zone->free_area[order].free_list[migratetype]);
1871 page += 1 << order;
1872 pages_moved += 1 << order;
1873 }
1874
1875 return pages_moved;
1876 }
1877
1878 int move_freepages_block(struct zone *zone, struct page *page,
1879 int migratetype)
1880 {
1881 unsigned long start_pfn, end_pfn;
1882 struct page *start_page, *end_page;
1883
1884 start_pfn = page_to_pfn(page);
1885 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1886 start_page = pfn_to_page(start_pfn);
1887 end_page = start_page + pageblock_nr_pages - 1;
1888 end_pfn = start_pfn + pageblock_nr_pages - 1;
1889
1890 /* Do not cross zone boundaries */
1891 if (!zone_spans_pfn(zone, start_pfn))
1892 start_page = page;
1893 if (!zone_spans_pfn(zone, end_pfn))
1894 return 0;
1895
1896 return move_freepages(zone, start_page, end_page, migratetype);
1897 }
1898
1899 static void change_pageblock_range(struct page *pageblock_page,
1900 int start_order, int migratetype)
1901 {
1902 int nr_pageblocks = 1 << (start_order - pageblock_order);
1903
1904 while (nr_pageblocks--) {
1905 set_pageblock_migratetype(pageblock_page, migratetype);
1906 pageblock_page += pageblock_nr_pages;
1907 }
1908 }
1909
1910 /*
1911 * When we are falling back to another migratetype during allocation, try to
1912 * steal extra free pages from the same pageblocks to satisfy further
1913 * allocations, instead of polluting multiple pageblocks.
1914 *
1915 * If we are stealing a relatively large buddy page, it is likely there will
1916 * be more free pages in the pageblock, so try to steal them all. For
1917 * reclaimable and unmovable allocations, we steal regardless of page size,
1918 * as fragmentation caused by those allocations polluting movable pageblocks
1919 * is worse than movable allocations stealing from unmovable and reclaimable
1920 * pageblocks.
1921 */
1922 static bool can_steal_fallback(unsigned int order, int start_mt)
1923 {
1924 /*
1925 * Leaving this order check is intended, although there is
1926 * relaxed order check in next check. The reason is that
1927 * we can actually steal whole pageblock if this condition met,
1928 * but, below check doesn't guarantee it and that is just heuristic
1929 * so could be changed anytime.
1930 */
1931 if (order >= pageblock_order)
1932 return true;
1933
1934 if (order >= pageblock_order / 2 ||
1935 start_mt == MIGRATE_RECLAIMABLE ||
1936 start_mt == MIGRATE_UNMOVABLE ||
1937 page_group_by_mobility_disabled)
1938 return true;
1939
1940 return false;
1941 }
1942
1943 /*
1944 * This function implements actual steal behaviour. If order is large enough,
1945 * we can steal whole pageblock. If not, we first move freepages in this
1946 * pageblock and check whether half of pages are moved or not. If half of
1947 * pages are moved, we can change migratetype of pageblock and permanently
1948 * use it's pages as requested migratetype in the future.
1949 */
1950 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1951 int start_type)
1952 {
1953 unsigned int current_order = page_order(page);
1954 int pages;
1955
1956 /* Take ownership for orders >= pageblock_order */
1957 if (current_order >= pageblock_order) {
1958 change_pageblock_range(page, current_order, start_type);
1959 return;
1960 }
1961
1962 pages = move_freepages_block(zone, page, start_type);
1963
1964 /* Claim the whole block if over half of it is free */
1965 if (pages >= (1 << (pageblock_order-1)) ||
1966 page_group_by_mobility_disabled)
1967 set_pageblock_migratetype(page, start_type);
1968 }
1969
1970 /*
1971 * Check whether there is a suitable fallback freepage with requested order.
1972 * If only_stealable is true, this function returns fallback_mt only if
1973 * we can steal other freepages all together. This would help to reduce
1974 * fragmentation due to mixed migratetype pages in one pageblock.
1975 */
1976 int find_suitable_fallback(struct free_area *area, unsigned int order,
1977 int migratetype, bool only_stealable, bool *can_steal)
1978 {
1979 int i;
1980 int fallback_mt;
1981
1982 if (area->nr_free == 0)
1983 return -1;
1984
1985 *can_steal = false;
1986 for (i = 0;; i++) {
1987 fallback_mt = fallbacks[migratetype][i];
1988 if (fallback_mt == MIGRATE_TYPES)
1989 break;
1990
1991 if (list_empty(&area->free_list[fallback_mt]))
1992 continue;
1993
1994 if (can_steal_fallback(order, migratetype))
1995 *can_steal = true;
1996
1997 if (!only_stealable)
1998 return fallback_mt;
1999
2000 if (*can_steal)
2001 return fallback_mt;
2002 }
2003
2004 return -1;
2005 }
2006
2007 /*
2008 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2009 * there are no empty page blocks that contain a page with a suitable order
2010 */
2011 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2012 unsigned int alloc_order)
2013 {
2014 int mt;
2015 unsigned long max_managed, flags;
2016
2017 /*
2018 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2019 * Check is race-prone but harmless.
2020 */
2021 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2022 if (zone->nr_reserved_highatomic >= max_managed)
2023 return;
2024
2025 spin_lock_irqsave(&zone->lock, flags);
2026
2027 /* Recheck the nr_reserved_highatomic limit under the lock */
2028 if (zone->nr_reserved_highatomic >= max_managed)
2029 goto out_unlock;
2030
2031 /* Yoink! */
2032 mt = get_pageblock_migratetype(page);
2033 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2034 && !is_migrate_cma(mt)) {
2035 zone->nr_reserved_highatomic += pageblock_nr_pages;
2036 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2037 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2038 }
2039
2040 out_unlock:
2041 spin_unlock_irqrestore(&zone->lock, flags);
2042 }
2043
2044 /*
2045 * Used when an allocation is about to fail under memory pressure. This
2046 * potentially hurts the reliability of high-order allocations when under
2047 * intense memory pressure but failed atomic allocations should be easier
2048 * to recover from than an OOM.
2049 *
2050 * If @force is true, try to unreserve a pageblock even though highatomic
2051 * pageblock is exhausted.
2052 */
2053 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2054 bool force)
2055 {
2056 struct zonelist *zonelist = ac->zonelist;
2057 unsigned long flags;
2058 struct zoneref *z;
2059 struct zone *zone;
2060 struct page *page;
2061 int order;
2062 bool ret;
2063
2064 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2065 ac->nodemask) {
2066 /*
2067 * Preserve at least one pageblock unless memory pressure
2068 * is really high.
2069 */
2070 if (!force && zone->nr_reserved_highatomic <=
2071 pageblock_nr_pages)
2072 continue;
2073
2074 spin_lock_irqsave(&zone->lock, flags);
2075 for (order = 0; order < MAX_ORDER; order++) {
2076 struct free_area *area = &(zone->free_area[order]);
2077
2078 page = list_first_entry_or_null(
2079 &area->free_list[MIGRATE_HIGHATOMIC],
2080 struct page, lru);
2081 if (!page)
2082 continue;
2083
2084 /*
2085 * In page freeing path, migratetype change is racy so
2086 * we can counter several free pages in a pageblock
2087 * in this loop althoug we changed the pageblock type
2088 * from highatomic to ac->migratetype. So we should
2089 * adjust the count once.
2090 */
2091 if (is_migrate_highatomic_page(page)) {
2092 /*
2093 * It should never happen but changes to
2094 * locking could inadvertently allow a per-cpu
2095 * drain to add pages to MIGRATE_HIGHATOMIC
2096 * while unreserving so be safe and watch for
2097 * underflows.
2098 */
2099 zone->nr_reserved_highatomic -= min(
2100 pageblock_nr_pages,
2101 zone->nr_reserved_highatomic);
2102 }
2103
2104 /*
2105 * Convert to ac->migratetype and avoid the normal
2106 * pageblock stealing heuristics. Minimally, the caller
2107 * is doing the work and needs the pages. More
2108 * importantly, if the block was always converted to
2109 * MIGRATE_UNMOVABLE or another type then the number
2110 * of pageblocks that cannot be completely freed
2111 * may increase.
2112 */
2113 set_pageblock_migratetype(page, ac->migratetype);
2114 ret = move_freepages_block(zone, page, ac->migratetype);
2115 if (ret) {
2116 spin_unlock_irqrestore(&zone->lock, flags);
2117 return ret;
2118 }
2119 }
2120 spin_unlock_irqrestore(&zone->lock, flags);
2121 }
2122
2123 return false;
2124 }
2125
2126 /* Remove an element from the buddy allocator from the fallback list */
2127 static inline struct page *
2128 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2129 {
2130 struct free_area *area;
2131 unsigned int current_order;
2132 struct page *page;
2133 int fallback_mt;
2134 bool can_steal;
2135
2136 /* Find the largest possible block of pages in the other list */
2137 for (current_order = MAX_ORDER-1;
2138 current_order >= order && current_order <= MAX_ORDER-1;
2139 --current_order) {
2140 area = &(zone->free_area[current_order]);
2141 fallback_mt = find_suitable_fallback(area, current_order,
2142 start_migratetype, false, &can_steal);
2143 if (fallback_mt == -1)
2144 continue;
2145
2146 page = list_first_entry(&area->free_list[fallback_mt],
2147 struct page, lru);
2148 if (can_steal && !is_migrate_highatomic_page(page))
2149 steal_suitable_fallback(zone, page, start_migratetype);
2150
2151 /* Remove the page from the freelists */
2152 area->nr_free--;
2153 list_del(&page->lru);
2154 rmv_page_order(page);
2155
2156 expand(zone, page, order, current_order, area,
2157 start_migratetype);
2158 /*
2159 * The pcppage_migratetype may differ from pageblock's
2160 * migratetype depending on the decisions in
2161 * find_suitable_fallback(). This is OK as long as it does not
2162 * differ for MIGRATE_CMA pageblocks. Those can be used as
2163 * fallback only via special __rmqueue_cma_fallback() function
2164 */
2165 set_pcppage_migratetype(page, start_migratetype);
2166
2167 trace_mm_page_alloc_extfrag(page, order, current_order,
2168 start_migratetype, fallback_mt);
2169
2170 return page;
2171 }
2172
2173 return NULL;
2174 }
2175
2176 /*
2177 * Do the hard work of removing an element from the buddy allocator.
2178 * Call me with the zone->lock already held.
2179 */
2180 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2181 int migratetype)
2182 {
2183 struct page *page;
2184
2185 page = __rmqueue_smallest(zone, order, migratetype);
2186 if (unlikely(!page)) {
2187 if (migratetype == MIGRATE_MOVABLE)
2188 page = __rmqueue_cma_fallback(zone, order);
2189
2190 if (!page)
2191 page = __rmqueue_fallback(zone, order, migratetype);
2192 }
2193
2194 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2195 return page;
2196 }
2197
2198 /*
2199 * Obtain a specified number of elements from the buddy allocator, all under
2200 * a single hold of the lock, for efficiency. Add them to the supplied list.
2201 * Returns the number of new pages which were placed at *list.
2202 */
2203 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2204 unsigned long count, struct list_head *list,
2205 int migratetype, bool cold)
2206 {
2207 int i, alloced = 0;
2208
2209 spin_lock(&zone->lock);
2210 for (i = 0; i < count; ++i) {
2211 struct page *page = __rmqueue(zone, order, migratetype);
2212 if (unlikely(page == NULL))
2213 break;
2214
2215 if (unlikely(check_pcp_refill(page)))
2216 continue;
2217
2218 /*
2219 * Split buddy pages returned by expand() are received here
2220 * in physical page order. The page is added to the callers and
2221 * list and the list head then moves forward. From the callers
2222 * perspective, the linked list is ordered by page number in
2223 * some conditions. This is useful for IO devices that can
2224 * merge IO requests if the physical pages are ordered
2225 * properly.
2226 */
2227 if (likely(!cold))
2228 list_add(&page->lru, list);
2229 else
2230 list_add_tail(&page->lru, list);
2231 list = &page->lru;
2232 alloced++;
2233 if (is_migrate_cma(get_pcppage_migratetype(page)))
2234 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2235 -(1 << order));
2236 }
2237
2238 /*
2239 * i pages were removed from the buddy list even if some leak due
2240 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2241 * on i. Do not confuse with 'alloced' which is the number of
2242 * pages added to the pcp list.
2243 */
2244 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2245 spin_unlock(&zone->lock);
2246 return alloced;
2247 }
2248
2249 #ifdef CONFIG_NUMA
2250 /*
2251 * Called from the vmstat counter updater to drain pagesets of this
2252 * currently executing processor on remote nodes after they have
2253 * expired.
2254 *
2255 * Note that this function must be called with the thread pinned to
2256 * a single processor.
2257 */
2258 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2259 {
2260 unsigned long flags;
2261 int to_drain, batch;
2262
2263 local_irq_save(flags);
2264 batch = READ_ONCE(pcp->batch);
2265 to_drain = min(pcp->count, batch);
2266 if (to_drain > 0) {
2267 free_pcppages_bulk(zone, to_drain, pcp);
2268 pcp->count -= to_drain;
2269 }
2270 local_irq_restore(flags);
2271 }
2272 #endif
2273
2274 /*
2275 * Drain pcplists of the indicated processor and zone.
2276 *
2277 * The processor must either be the current processor and the
2278 * thread pinned to the current processor or a processor that
2279 * is not online.
2280 */
2281 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2282 {
2283 unsigned long flags;
2284 struct per_cpu_pageset *pset;
2285 struct per_cpu_pages *pcp;
2286
2287 local_irq_save(flags);
2288 pset = per_cpu_ptr(zone->pageset, cpu);
2289
2290 pcp = &pset->pcp;
2291 if (pcp->count) {
2292 free_pcppages_bulk(zone, pcp->count, pcp);
2293 pcp->count = 0;
2294 }
2295 local_irq_restore(flags);
2296 }
2297
2298 /*
2299 * Drain pcplists of all zones on the indicated processor.
2300 *
2301 * The processor must either be the current processor and the
2302 * thread pinned to the current processor or a processor that
2303 * is not online.
2304 */
2305 static void drain_pages(unsigned int cpu)
2306 {
2307 struct zone *zone;
2308
2309 for_each_populated_zone(zone) {
2310 drain_pages_zone(cpu, zone);
2311 }
2312 }
2313
2314 /*
2315 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2316 *
2317 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2318 * the single zone's pages.
2319 */
2320 void drain_local_pages(struct zone *zone)
2321 {
2322 int cpu = smp_processor_id();
2323
2324 if (zone)
2325 drain_pages_zone(cpu, zone);
2326 else
2327 drain_pages(cpu);
2328 }
2329
2330 static void drain_local_pages_wq(struct work_struct *work)
2331 {
2332 /*
2333 * drain_all_pages doesn't use proper cpu hotplug protection so
2334 * we can race with cpu offline when the WQ can move this from
2335 * a cpu pinned worker to an unbound one. We can operate on a different
2336 * cpu which is allright but we also have to make sure to not move to
2337 * a different one.
2338 */
2339 preempt_disable();
2340 drain_local_pages(NULL);
2341 preempt_enable();
2342 }
2343
2344 /*
2345 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2346 *
2347 * When zone parameter is non-NULL, spill just the single zone's pages.
2348 *
2349 * Note that this can be extremely slow as the draining happens in a workqueue.
2350 */
2351 void drain_all_pages(struct zone *zone)
2352 {
2353 int cpu;
2354
2355 /*
2356 * Allocate in the BSS so we wont require allocation in
2357 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2358 */
2359 static cpumask_t cpus_with_pcps;
2360
2361 /*
2362 * Make sure nobody triggers this path before mm_percpu_wq is fully
2363 * initialized.
2364 */
2365 if (WARN_ON_ONCE(!mm_percpu_wq))
2366 return;
2367
2368 /* Workqueues cannot recurse */
2369 if (current->flags & PF_WQ_WORKER)
2370 return;
2371
2372 /*
2373 * Do not drain if one is already in progress unless it's specific to
2374 * a zone. Such callers are primarily CMA and memory hotplug and need
2375 * the drain to be complete when the call returns.
2376 */
2377 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2378 if (!zone)
2379 return;
2380 mutex_lock(&pcpu_drain_mutex);
2381 }
2382
2383 /*
2384 * We don't care about racing with CPU hotplug event
2385 * as offline notification will cause the notified
2386 * cpu to drain that CPU pcps and on_each_cpu_mask
2387 * disables preemption as part of its processing
2388 */
2389 for_each_online_cpu(cpu) {
2390 struct per_cpu_pageset *pcp;
2391 struct zone *z;
2392 bool has_pcps = false;
2393
2394 if (zone) {
2395 pcp = per_cpu_ptr(zone->pageset, cpu);
2396 if (pcp->pcp.count)
2397 has_pcps = true;
2398 } else {
2399 for_each_populated_zone(z) {
2400 pcp = per_cpu_ptr(z->pageset, cpu);
2401 if (pcp->pcp.count) {
2402 has_pcps = true;
2403 break;
2404 }
2405 }
2406 }
2407
2408 if (has_pcps)
2409 cpumask_set_cpu(cpu, &cpus_with_pcps);
2410 else
2411 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2412 }
2413
2414 for_each_cpu(cpu, &cpus_with_pcps) {
2415 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2416 INIT_WORK(work, drain_local_pages_wq);
2417 queue_work_on(cpu, mm_percpu_wq, work);
2418 }
2419 for_each_cpu(cpu, &cpus_with_pcps)
2420 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2421
2422 mutex_unlock(&pcpu_drain_mutex);
2423 }
2424
2425 #ifdef CONFIG_HIBERNATION
2426
2427 void mark_free_pages(struct zone *zone)
2428 {
2429 unsigned long pfn, max_zone_pfn;
2430 unsigned long flags;
2431 unsigned int order, t;
2432 struct page *page;
2433
2434 if (zone_is_empty(zone))
2435 return;
2436
2437 spin_lock_irqsave(&zone->lock, flags);
2438
2439 max_zone_pfn = zone_end_pfn(zone);
2440 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2441 if (pfn_valid(pfn)) {
2442 page = pfn_to_page(pfn);
2443
2444 if (page_zone(page) != zone)
2445 continue;
2446
2447 if (!swsusp_page_is_forbidden(page))
2448 swsusp_unset_page_free(page);
2449 }
2450
2451 for_each_migratetype_order(order, t) {
2452 list_for_each_entry(page,
2453 &zone->free_area[order].free_list[t], lru) {
2454 unsigned long i;
2455
2456 pfn = page_to_pfn(page);
2457 for (i = 0; i < (1UL << order); i++)
2458 swsusp_set_page_free(pfn_to_page(pfn + i));
2459 }
2460 }
2461 spin_unlock_irqrestore(&zone->lock, flags);
2462 }
2463 #endif /* CONFIG_PM */
2464
2465 /*
2466 * Free a 0-order page
2467 * cold == true ? free a cold page : free a hot page
2468 */
2469 void free_hot_cold_page(struct page *page, bool cold)
2470 {
2471 struct zone *zone = page_zone(page);
2472 struct per_cpu_pages *pcp;
2473 unsigned long flags;
2474 unsigned long pfn = page_to_pfn(page);
2475 int migratetype;
2476
2477 if (!free_pcp_prepare(page))
2478 return;
2479
2480 migratetype = get_pfnblock_migratetype(page, pfn);
2481 set_pcppage_migratetype(page, migratetype);
2482 local_irq_save(flags);
2483 __count_vm_event(PGFREE);
2484
2485 /*
2486 * We only track unmovable, reclaimable and movable on pcp lists.
2487 * Free ISOLATE pages back to the allocator because they are being
2488 * offlined but treat HIGHATOMIC as movable pages so we can get those
2489 * areas back if necessary. Otherwise, we may have to free
2490 * excessively into the page allocator
2491 */
2492 if (migratetype >= MIGRATE_PCPTYPES) {
2493 if (unlikely(is_migrate_isolate(migratetype))) {
2494 free_one_page(zone, page, pfn, 0, migratetype);
2495 goto out;
2496 }
2497 migratetype = MIGRATE_MOVABLE;
2498 }
2499
2500 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2501 if (!cold)
2502 list_add(&page->lru, &pcp->lists[migratetype]);
2503 else
2504 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2505 pcp->count++;
2506 if (pcp->count >= pcp->high) {
2507 unsigned long batch = READ_ONCE(pcp->batch);
2508 free_pcppages_bulk(zone, batch, pcp);
2509 pcp->count -= batch;
2510 }
2511
2512 out:
2513 local_irq_restore(flags);
2514 }
2515
2516 /*
2517 * Free a list of 0-order pages
2518 */
2519 void free_hot_cold_page_list(struct list_head *list, bool cold)
2520 {
2521 struct page *page, *next;
2522
2523 list_for_each_entry_safe(page, next, list, lru) {
2524 trace_mm_page_free_batched(page, cold);
2525 free_hot_cold_page(page, cold);
2526 }
2527 }
2528
2529 /*
2530 * split_page takes a non-compound higher-order page, and splits it into
2531 * n (1<<order) sub-pages: page[0..n]
2532 * Each sub-page must be freed individually.
2533 *
2534 * Note: this is probably too low level an operation for use in drivers.
2535 * Please consult with lkml before using this in your driver.
2536 */
2537 void split_page(struct page *page, unsigned int order)
2538 {
2539 int i;
2540
2541 VM_BUG_ON_PAGE(PageCompound(page), page);
2542 VM_BUG_ON_PAGE(!page_count(page), page);
2543
2544 #ifdef CONFIG_KMEMCHECK
2545 /*
2546 * Split shadow pages too, because free(page[0]) would
2547 * otherwise free the whole shadow.
2548 */
2549 if (kmemcheck_page_is_tracked(page))
2550 split_page(virt_to_page(page[0].shadow), order);
2551 #endif
2552
2553 for (i = 1; i < (1 << order); i++)
2554 set_page_refcounted(page + i);
2555 split_page_owner(page, order);
2556 }
2557 EXPORT_SYMBOL_GPL(split_page);
2558
2559 int __isolate_free_page(struct page *page, unsigned int order)
2560 {
2561 unsigned long watermark;
2562 struct zone *zone;
2563 int mt;
2564
2565 BUG_ON(!PageBuddy(page));
2566
2567 zone = page_zone(page);
2568 mt = get_pageblock_migratetype(page);
2569
2570 if (!is_migrate_isolate(mt)) {
2571 /*
2572 * Obey watermarks as if the page was being allocated. We can
2573 * emulate a high-order watermark check with a raised order-0
2574 * watermark, because we already know our high-order page
2575 * exists.
2576 */
2577 watermark = min_wmark_pages(zone) + (1UL << order);
2578 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2579 return 0;
2580
2581 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2582 }
2583
2584 /* Remove page from free list */
2585 list_del(&page->lru);
2586 zone->free_area[order].nr_free--;
2587 rmv_page_order(page);
2588
2589 /*
2590 * Set the pageblock if the isolated page is at least half of a
2591 * pageblock
2592 */
2593 if (order >= pageblock_order - 1) {
2594 struct page *endpage = page + (1 << order) - 1;
2595 for (; page < endpage; page += pageblock_nr_pages) {
2596 int mt = get_pageblock_migratetype(page);
2597 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2598 && !is_migrate_highatomic(mt))
2599 set_pageblock_migratetype(page,
2600 MIGRATE_MOVABLE);
2601 }
2602 }
2603
2604
2605 return 1UL << order;
2606 }
2607
2608 /*
2609 * Update NUMA hit/miss statistics
2610 *
2611 * Must be called with interrupts disabled.
2612 */
2613 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2614 {
2615 #ifdef CONFIG_NUMA
2616 enum zone_stat_item local_stat = NUMA_LOCAL;
2617
2618 if (z->node != numa_node_id())
2619 local_stat = NUMA_OTHER;
2620
2621 if (z->node == preferred_zone->node)
2622 __inc_zone_state(z, NUMA_HIT);
2623 else {
2624 __inc_zone_state(z, NUMA_MISS);
2625 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2626 }
2627 __inc_zone_state(z, local_stat);
2628 #endif
2629 }
2630
2631 /* Remove page from the per-cpu list, caller must protect the list */
2632 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2633 bool cold, struct per_cpu_pages *pcp,
2634 struct list_head *list)
2635 {
2636 struct page *page;
2637
2638 do {
2639 if (list_empty(list)) {
2640 pcp->count += rmqueue_bulk(zone, 0,
2641 pcp->batch, list,
2642 migratetype, cold);
2643 if (unlikely(list_empty(list)))
2644 return NULL;
2645 }
2646
2647 if (cold)
2648 page = list_last_entry(list, struct page, lru);
2649 else
2650 page = list_first_entry(list, struct page, lru);
2651
2652 list_del(&page->lru);
2653 pcp->count--;
2654 } while (check_new_pcp(page));
2655
2656 return page;
2657 }
2658
2659 /* Lock and remove page from the per-cpu list */
2660 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2661 struct zone *zone, unsigned int order,
2662 gfp_t gfp_flags, int migratetype)
2663 {
2664 struct per_cpu_pages *pcp;
2665 struct list_head *list;
2666 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2667 struct page *page;
2668 unsigned long flags;
2669
2670 local_irq_save(flags);
2671 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2672 list = &pcp->lists[migratetype];
2673 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2674 if (page) {
2675 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2676 zone_statistics(preferred_zone, zone);
2677 }
2678 local_irq_restore(flags);
2679 return page;
2680 }
2681
2682 /*
2683 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2684 */
2685 static inline
2686 struct page *rmqueue(struct zone *preferred_zone,
2687 struct zone *zone, unsigned int order,
2688 gfp_t gfp_flags, unsigned int alloc_flags,
2689 int migratetype)
2690 {
2691 unsigned long flags;
2692 struct page *page;
2693
2694 if (likely(order == 0)) {
2695 page = rmqueue_pcplist(preferred_zone, zone, order,
2696 gfp_flags, migratetype);
2697 goto out;
2698 }
2699
2700 /*
2701 * We most definitely don't want callers attempting to
2702 * allocate greater than order-1 page units with __GFP_NOFAIL.
2703 */
2704 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2705 spin_lock_irqsave(&zone->lock, flags);
2706
2707 do {
2708 page = NULL;
2709 if (alloc_flags & ALLOC_HARDER) {
2710 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2711 if (page)
2712 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2713 }
2714 if (!page)
2715 page = __rmqueue(zone, order, migratetype);
2716 } while (page && check_new_pages(page, order));
2717 spin_unlock(&zone->lock);
2718 if (!page)
2719 goto failed;
2720 __mod_zone_freepage_state(zone, -(1 << order),
2721 get_pcppage_migratetype(page));
2722
2723 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2724 zone_statistics(preferred_zone, zone);
2725 local_irq_restore(flags);
2726
2727 out:
2728 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2729 return page;
2730
2731 failed:
2732 local_irq_restore(flags);
2733 return NULL;
2734 }
2735
2736 #ifdef CONFIG_FAIL_PAGE_ALLOC
2737
2738 static struct {
2739 struct fault_attr attr;
2740
2741 bool ignore_gfp_highmem;
2742 bool ignore_gfp_reclaim;
2743 u32 min_order;
2744 } fail_page_alloc = {
2745 .attr = FAULT_ATTR_INITIALIZER,
2746 .ignore_gfp_reclaim = true,
2747 .ignore_gfp_highmem = true,
2748 .min_order = 1,
2749 };
2750
2751 static int __init setup_fail_page_alloc(char *str)
2752 {
2753 return setup_fault_attr(&fail_page_alloc.attr, str);
2754 }
2755 __setup("fail_page_alloc=", setup_fail_page_alloc);
2756
2757 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2758 {
2759 if (order < fail_page_alloc.min_order)
2760 return false;
2761 if (gfp_mask & __GFP_NOFAIL)
2762 return false;
2763 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2764 return false;
2765 if (fail_page_alloc.ignore_gfp_reclaim &&
2766 (gfp_mask & __GFP_DIRECT_RECLAIM))
2767 return false;
2768
2769 return should_fail(&fail_page_alloc.attr, 1 << order);
2770 }
2771
2772 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2773
2774 static int __init fail_page_alloc_debugfs(void)
2775 {
2776 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2777 struct dentry *dir;
2778
2779 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2780 &fail_page_alloc.attr);
2781 if (IS_ERR(dir))
2782 return PTR_ERR(dir);
2783
2784 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2785 &fail_page_alloc.ignore_gfp_reclaim))
2786 goto fail;
2787 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2788 &fail_page_alloc.ignore_gfp_highmem))
2789 goto fail;
2790 if (!debugfs_create_u32("min-order", mode, dir,
2791 &fail_page_alloc.min_order))
2792 goto fail;
2793
2794 return 0;
2795 fail:
2796 debugfs_remove_recursive(dir);
2797
2798 return -ENOMEM;
2799 }
2800
2801 late_initcall(fail_page_alloc_debugfs);
2802
2803 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2804
2805 #else /* CONFIG_FAIL_PAGE_ALLOC */
2806
2807 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2808 {
2809 return false;
2810 }
2811
2812 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2813
2814 /*
2815 * Return true if free base pages are above 'mark'. For high-order checks it
2816 * will return true of the order-0 watermark is reached and there is at least
2817 * one free page of a suitable size. Checking now avoids taking the zone lock
2818 * to check in the allocation paths if no pages are free.
2819 */
2820 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2821 int classzone_idx, unsigned int alloc_flags,
2822 long free_pages)
2823 {
2824 long min = mark;
2825 int o;
2826 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2827
2828 /* free_pages may go negative - that's OK */
2829 free_pages -= (1 << order) - 1;
2830
2831 if (alloc_flags & ALLOC_HIGH)
2832 min -= min / 2;
2833
2834 /*
2835 * If the caller does not have rights to ALLOC_HARDER then subtract
2836 * the high-atomic reserves. This will over-estimate the size of the
2837 * atomic reserve but it avoids a search.
2838 */
2839 if (likely(!alloc_harder))
2840 free_pages -= z->nr_reserved_highatomic;
2841 else
2842 min -= min / 4;
2843
2844 #ifdef CONFIG_CMA
2845 /* If allocation can't use CMA areas don't use free CMA pages */
2846 if (!(alloc_flags & ALLOC_CMA))
2847 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2848 #endif
2849
2850 /*
2851 * Check watermarks for an order-0 allocation request. If these
2852 * are not met, then a high-order request also cannot go ahead
2853 * even if a suitable page happened to be free.
2854 */
2855 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2856 return false;
2857
2858 /* If this is an order-0 request then the watermark is fine */
2859 if (!order)
2860 return true;
2861
2862 /* For a high-order request, check at least one suitable page is free */
2863 for (o = order; o < MAX_ORDER; o++) {
2864 struct free_area *area = &z->free_area[o];
2865 int mt;
2866
2867 if (!area->nr_free)
2868 continue;
2869
2870 if (alloc_harder)
2871 return true;
2872
2873 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2874 if (!list_empty(&area->free_list[mt]))
2875 return true;
2876 }
2877
2878 #ifdef CONFIG_CMA
2879 if ((alloc_flags & ALLOC_CMA) &&
2880 !list_empty(&area->free_list[MIGRATE_CMA])) {
2881 return true;
2882 }
2883 #endif
2884 }
2885 return false;
2886 }
2887
2888 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2889 int classzone_idx, unsigned int alloc_flags)
2890 {
2891 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2892 zone_page_state(z, NR_FREE_PAGES));
2893 }
2894
2895 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2896 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2897 {
2898 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2899 long cma_pages = 0;
2900
2901 #ifdef CONFIG_CMA
2902 /* If allocation can't use CMA areas don't use free CMA pages */
2903 if (!(alloc_flags & ALLOC_CMA))
2904 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2905 #endif
2906
2907 /*
2908 * Fast check for order-0 only. If this fails then the reserves
2909 * need to be calculated. There is a corner case where the check
2910 * passes but only the high-order atomic reserve are free. If
2911 * the caller is !atomic then it'll uselessly search the free
2912 * list. That corner case is then slower but it is harmless.
2913 */
2914 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2915 return true;
2916
2917 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2918 free_pages);
2919 }
2920
2921 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2922 unsigned long mark, int classzone_idx)
2923 {
2924 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2925
2926 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2927 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2928
2929 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2930 free_pages);
2931 }
2932
2933 #ifdef CONFIG_NUMA
2934 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2935 {
2936 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2937 RECLAIM_DISTANCE;
2938 }
2939 #else /* CONFIG_NUMA */
2940 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2941 {
2942 return true;
2943 }
2944 #endif /* CONFIG_NUMA */
2945
2946 /*
2947 * get_page_from_freelist goes through the zonelist trying to allocate
2948 * a page.
2949 */
2950 static struct page *
2951 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2952 const struct alloc_context *ac)
2953 {
2954 struct zoneref *z = ac->preferred_zoneref;
2955 struct zone *zone;
2956 struct pglist_data *last_pgdat_dirty_limit = NULL;
2957
2958 /*
2959 * Scan zonelist, looking for a zone with enough free.
2960 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2961 */
2962 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2963 ac->nodemask) {
2964 struct page *page;
2965 unsigned long mark;
2966
2967 if (cpusets_enabled() &&
2968 (alloc_flags & ALLOC_CPUSET) &&
2969 !__cpuset_zone_allowed(zone, gfp_mask))
2970 continue;
2971 /*
2972 * When allocating a page cache page for writing, we
2973 * want to get it from a node that is within its dirty
2974 * limit, such that no single node holds more than its
2975 * proportional share of globally allowed dirty pages.
2976 * The dirty limits take into account the node's
2977 * lowmem reserves and high watermark so that kswapd
2978 * should be able to balance it without having to
2979 * write pages from its LRU list.
2980 *
2981 * XXX: For now, allow allocations to potentially
2982 * exceed the per-node dirty limit in the slowpath
2983 * (spread_dirty_pages unset) before going into reclaim,
2984 * which is important when on a NUMA setup the allowed
2985 * nodes are together not big enough to reach the
2986 * global limit. The proper fix for these situations
2987 * will require awareness of nodes in the
2988 * dirty-throttling and the flusher threads.
2989 */
2990 if (ac->spread_dirty_pages) {
2991 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2992 continue;
2993
2994 if (!node_dirty_ok(zone->zone_pgdat)) {
2995 last_pgdat_dirty_limit = zone->zone_pgdat;
2996 continue;
2997 }
2998 }
2999
3000 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3001 if (!zone_watermark_fast(zone, order, mark,
3002 ac_classzone_idx(ac), alloc_flags)) {
3003 int ret;
3004
3005 /* Checked here to keep the fast path fast */
3006 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3007 if (alloc_flags & ALLOC_NO_WATERMARKS)
3008 goto try_this_zone;
3009
3010 if (node_reclaim_mode == 0 ||
3011 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3012 continue;
3013
3014 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3015 switch (ret) {
3016 case NODE_RECLAIM_NOSCAN:
3017 /* did not scan */
3018 continue;
3019 case NODE_RECLAIM_FULL:
3020 /* scanned but unreclaimable */
3021 continue;
3022 default:
3023 /* did we reclaim enough */
3024 if (zone_watermark_ok(zone, order, mark,
3025 ac_classzone_idx(ac), alloc_flags))
3026 goto try_this_zone;
3027
3028 continue;
3029 }
3030 }
3031
3032 try_this_zone:
3033 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3034 gfp_mask, alloc_flags, ac->migratetype);
3035 if (page) {
3036 prep_new_page(page, order, gfp_mask, alloc_flags);
3037
3038 /*
3039 * If this is a high-order atomic allocation then check
3040 * if the pageblock should be reserved for the future
3041 */
3042 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3043 reserve_highatomic_pageblock(page, zone, order);
3044
3045 return page;
3046 }
3047 }
3048
3049 return NULL;
3050 }
3051
3052 /*
3053 * Large machines with many possible nodes should not always dump per-node
3054 * meminfo in irq context.
3055 */
3056 static inline bool should_suppress_show_mem(void)
3057 {
3058 bool ret = false;
3059
3060 #if NODES_SHIFT > 8
3061 ret = in_interrupt();
3062 #endif
3063 return ret;
3064 }
3065
3066 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3067 {
3068 unsigned int filter = SHOW_MEM_FILTER_NODES;
3069 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3070
3071 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3072 return;
3073
3074 /*
3075 * This documents exceptions given to allocations in certain
3076 * contexts that are allowed to allocate outside current's set
3077 * of allowed nodes.
3078 */
3079 if (!(gfp_mask & __GFP_NOMEMALLOC))
3080 if (test_thread_flag(TIF_MEMDIE) ||
3081 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3082 filter &= ~SHOW_MEM_FILTER_NODES;
3083 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3084 filter &= ~SHOW_MEM_FILTER_NODES;
3085
3086 show_mem(filter, nodemask);
3087 }
3088
3089 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3090 {
3091 struct va_format vaf;
3092 va_list args;
3093 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3094 DEFAULT_RATELIMIT_BURST);
3095
3096 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3097 return;
3098
3099 pr_warn("%s: ", current->comm);
3100
3101 va_start(args, fmt);
3102 vaf.fmt = fmt;
3103 vaf.va = &args;
3104 pr_cont("%pV", &vaf);
3105 va_end(args);
3106
3107 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3108 if (nodemask)
3109 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3110 else
3111 pr_cont("(null)\n");
3112
3113 cpuset_print_current_mems_allowed();
3114
3115 dump_stack();
3116 warn_alloc_show_mem(gfp_mask, nodemask);
3117 }
3118
3119 static inline struct page *
3120 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3121 unsigned int alloc_flags,
3122 const struct alloc_context *ac)
3123 {
3124 struct page *page;
3125
3126 page = get_page_from_freelist(gfp_mask, order,
3127 alloc_flags|ALLOC_CPUSET, ac);
3128 /*
3129 * fallback to ignore cpuset restriction if our nodes
3130 * are depleted
3131 */
3132 if (!page)
3133 page = get_page_from_freelist(gfp_mask, order,
3134 alloc_flags, ac);
3135
3136 return page;
3137 }
3138
3139 static inline struct page *
3140 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3141 const struct alloc_context *ac, unsigned long *did_some_progress)
3142 {
3143 struct oom_control oc = {
3144 .zonelist = ac->zonelist,
3145 .nodemask = ac->nodemask,
3146 .memcg = NULL,
3147 .gfp_mask = gfp_mask,
3148 .order = order,
3149 };
3150 struct page *page;
3151
3152 *did_some_progress = 0;
3153
3154 /*
3155 * Acquire the oom lock. If that fails, somebody else is
3156 * making progress for us.
3157 */
3158 if (!mutex_trylock(&oom_lock)) {
3159 *did_some_progress = 1;
3160 schedule_timeout_uninterruptible(1);
3161 return NULL;
3162 }
3163
3164 /*
3165 * Go through the zonelist yet one more time, keep very high watermark
3166 * here, this is only to catch a parallel oom killing, we must fail if
3167 * we're still under heavy pressure.
3168 */
3169 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3170 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3171 if (page)
3172 goto out;
3173
3174 /* Coredumps can quickly deplete all memory reserves */
3175 if (current->flags & PF_DUMPCORE)
3176 goto out;
3177 /* The OOM killer will not help higher order allocs */
3178 if (order > PAGE_ALLOC_COSTLY_ORDER)
3179 goto out;
3180 /* The OOM killer does not needlessly kill tasks for lowmem */
3181 if (ac->high_zoneidx < ZONE_NORMAL)
3182 goto out;
3183 if (pm_suspended_storage())
3184 goto out;
3185 /*
3186 * XXX: GFP_NOFS allocations should rather fail than rely on
3187 * other request to make a forward progress.
3188 * We are in an unfortunate situation where out_of_memory cannot
3189 * do much for this context but let's try it to at least get
3190 * access to memory reserved if the current task is killed (see
3191 * out_of_memory). Once filesystems are ready to handle allocation
3192 * failures more gracefully we should just bail out here.
3193 */
3194
3195 /* The OOM killer may not free memory on a specific node */
3196 if (gfp_mask & __GFP_THISNODE)
3197 goto out;
3198
3199 /* Exhausted what can be done so it's blamo time */
3200 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3201 *did_some_progress = 1;
3202
3203 /*
3204 * Help non-failing allocations by giving them access to memory
3205 * reserves
3206 */
3207 if (gfp_mask & __GFP_NOFAIL)
3208 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3209 ALLOC_NO_WATERMARKS, ac);
3210 }
3211 out:
3212 mutex_unlock(&oom_lock);
3213 return page;
3214 }
3215
3216 /*
3217 * Maximum number of compaction retries wit a progress before OOM
3218 * killer is consider as the only way to move forward.
3219 */
3220 #define MAX_COMPACT_RETRIES 16
3221
3222 #ifdef CONFIG_COMPACTION
3223 /* Try memory compaction for high-order allocations before reclaim */
3224 static struct page *
3225 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3226 unsigned int alloc_flags, const struct alloc_context *ac,
3227 enum compact_priority prio, enum compact_result *compact_result)
3228 {
3229 struct page *page;
3230
3231 if (!order)
3232 return NULL;
3233
3234 current->flags |= PF_MEMALLOC;
3235 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3236 prio);
3237 current->flags &= ~PF_MEMALLOC;
3238
3239 if (*compact_result <= COMPACT_INACTIVE)
3240 return NULL;
3241
3242 /*
3243 * At least in one zone compaction wasn't deferred or skipped, so let's
3244 * count a compaction stall
3245 */
3246 count_vm_event(COMPACTSTALL);
3247
3248 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3249
3250 if (page) {
3251 struct zone *zone = page_zone(page);
3252
3253 zone->compact_blockskip_flush = false;
3254 compaction_defer_reset(zone, order, true);
3255 count_vm_event(COMPACTSUCCESS);
3256 return page;
3257 }
3258
3259 /*
3260 * It's bad if compaction run occurs and fails. The most likely reason
3261 * is that pages exist, but not enough to satisfy watermarks.
3262 */
3263 count_vm_event(COMPACTFAIL);
3264
3265 cond_resched();
3266
3267 return NULL;
3268 }
3269
3270 static inline bool
3271 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3272 enum compact_result compact_result,
3273 enum compact_priority *compact_priority,
3274 int *compaction_retries)
3275 {
3276 int max_retries = MAX_COMPACT_RETRIES;
3277 int min_priority;
3278 bool ret = false;
3279 int retries = *compaction_retries;
3280 enum compact_priority priority = *compact_priority;
3281
3282 if (!order)
3283 return false;
3284
3285 if (compaction_made_progress(compact_result))
3286 (*compaction_retries)++;
3287
3288 /*
3289 * compaction considers all the zone as desperately out of memory
3290 * so it doesn't really make much sense to retry except when the
3291 * failure could be caused by insufficient priority
3292 */
3293 if (compaction_failed(compact_result))
3294 goto check_priority;
3295
3296 /*
3297 * make sure the compaction wasn't deferred or didn't bail out early
3298 * due to locks contention before we declare that we should give up.
3299 * But do not retry if the given zonelist is not suitable for
3300 * compaction.
3301 */
3302 if (compaction_withdrawn(compact_result)) {
3303 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3304 goto out;
3305 }
3306
3307 /*
3308 * !costly requests are much more important than __GFP_REPEAT
3309 * costly ones because they are de facto nofail and invoke OOM
3310 * killer to move on while costly can fail and users are ready
3311 * to cope with that. 1/4 retries is rather arbitrary but we
3312 * would need much more detailed feedback from compaction to
3313 * make a better decision.
3314 */
3315 if (order > PAGE_ALLOC_COSTLY_ORDER)
3316 max_retries /= 4;
3317 if (*compaction_retries <= max_retries) {
3318 ret = true;
3319 goto out;
3320 }
3321
3322 /*
3323 * Make sure there are attempts at the highest priority if we exhausted
3324 * all retries or failed at the lower priorities.
3325 */
3326 check_priority:
3327 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3328 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3329
3330 if (*compact_priority > min_priority) {
3331 (*compact_priority)--;
3332 *compaction_retries = 0;
3333 ret = true;
3334 }
3335 out:
3336 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3337 return ret;
3338 }
3339 #else
3340 static inline struct page *
3341 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3342 unsigned int alloc_flags, const struct alloc_context *ac,
3343 enum compact_priority prio, enum compact_result *compact_result)
3344 {
3345 *compact_result = COMPACT_SKIPPED;
3346 return NULL;
3347 }
3348
3349 static inline bool
3350 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3351 enum compact_result compact_result,
3352 enum compact_priority *compact_priority,
3353 int *compaction_retries)
3354 {
3355 struct zone *zone;
3356 struct zoneref *z;
3357
3358 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3359 return false;
3360
3361 /*
3362 * There are setups with compaction disabled which would prefer to loop
3363 * inside the allocator rather than hit the oom killer prematurely.
3364 * Let's give them a good hope and keep retrying while the order-0
3365 * watermarks are OK.
3366 */
3367 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3368 ac->nodemask) {
3369 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3370 ac_classzone_idx(ac), alloc_flags))
3371 return true;
3372 }
3373 return false;
3374 }
3375 #endif /* CONFIG_COMPACTION */
3376
3377 /* Perform direct synchronous page reclaim */
3378 static int
3379 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3380 const struct alloc_context *ac)
3381 {
3382 struct reclaim_state reclaim_state;
3383 int progress;
3384
3385 cond_resched();
3386
3387 /* We now go into synchronous reclaim */
3388 cpuset_memory_pressure_bump();
3389 current->flags |= PF_MEMALLOC;
3390 lockdep_set_current_reclaim_state(gfp_mask);
3391 reclaim_state.reclaimed_slab = 0;
3392 current->reclaim_state = &reclaim_state;
3393
3394 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3395 ac->nodemask);
3396
3397 current->reclaim_state = NULL;
3398 lockdep_clear_current_reclaim_state();
3399 current->flags &= ~PF_MEMALLOC;
3400
3401 cond_resched();
3402
3403 return progress;
3404 }
3405
3406 /* The really slow allocator path where we enter direct reclaim */
3407 static inline struct page *
3408 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3409 unsigned int alloc_flags, const struct alloc_context *ac,
3410 unsigned long *did_some_progress)
3411 {
3412 struct page *page = NULL;
3413 bool drained = false;
3414
3415 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3416 if (unlikely(!(*did_some_progress)))
3417 return NULL;
3418
3419 retry:
3420 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3421
3422 /*
3423 * If an allocation failed after direct reclaim, it could be because
3424 * pages are pinned on the per-cpu lists or in high alloc reserves.
3425 * Shrink them them and try again
3426 */
3427 if (!page && !drained) {
3428 unreserve_highatomic_pageblock(ac, false);
3429 drain_all_pages(NULL);
3430 drained = true;
3431 goto retry;
3432 }
3433
3434 return page;
3435 }
3436
3437 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3438 {
3439 struct zoneref *z;
3440 struct zone *zone;
3441 pg_data_t *last_pgdat = NULL;
3442
3443 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3444 ac->high_zoneidx, ac->nodemask) {
3445 if (last_pgdat != zone->zone_pgdat)
3446 wakeup_kswapd(zone, order, ac->high_zoneidx);
3447 last_pgdat = zone->zone_pgdat;
3448 }
3449 }
3450
3451 static inline unsigned int
3452 gfp_to_alloc_flags(gfp_t gfp_mask)
3453 {
3454 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3455
3456 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3457 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3458
3459 /*
3460 * The caller may dip into page reserves a bit more if the caller
3461 * cannot run direct reclaim, or if the caller has realtime scheduling
3462 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3463 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3464 */
3465 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3466
3467 if (gfp_mask & __GFP_ATOMIC) {
3468 /*
3469 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3470 * if it can't schedule.
3471 */
3472 if (!(gfp_mask & __GFP_NOMEMALLOC))
3473 alloc_flags |= ALLOC_HARDER;
3474 /*
3475 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3476 * comment for __cpuset_node_allowed().
3477 */
3478 alloc_flags &= ~ALLOC_CPUSET;
3479 } else if (unlikely(rt_task(current)) && !in_interrupt())
3480 alloc_flags |= ALLOC_HARDER;
3481
3482 #ifdef CONFIG_CMA
3483 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3484 alloc_flags |= ALLOC_CMA;
3485 #endif
3486 return alloc_flags;
3487 }
3488
3489 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3490 {
3491 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3492 return false;
3493
3494 if (gfp_mask & __GFP_MEMALLOC)
3495 return true;
3496 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3497 return true;
3498 if (!in_interrupt() &&
3499 ((current->flags & PF_MEMALLOC) ||
3500 unlikely(test_thread_flag(TIF_MEMDIE))))
3501 return true;
3502
3503 return false;
3504 }
3505
3506 /*
3507 * Checks whether it makes sense to retry the reclaim to make a forward progress
3508 * for the given allocation request.
3509 *
3510 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3511 * without success, or when we couldn't even meet the watermark if we
3512 * reclaimed all remaining pages on the LRU lists.
3513 *
3514 * Returns true if a retry is viable or false to enter the oom path.
3515 */
3516 static inline bool
3517 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3518 struct alloc_context *ac, int alloc_flags,
3519 bool did_some_progress, int *no_progress_loops)
3520 {
3521 struct zone *zone;
3522 struct zoneref *z;
3523
3524 /*
3525 * Costly allocations might have made a progress but this doesn't mean
3526 * their order will become available due to high fragmentation so
3527 * always increment the no progress counter for them
3528 */
3529 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3530 *no_progress_loops = 0;
3531 else
3532 (*no_progress_loops)++;
3533
3534 /*
3535 * Make sure we converge to OOM if we cannot make any progress
3536 * several times in the row.
3537 */
3538 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3539 /* Before OOM, exhaust highatomic_reserve */
3540 return unreserve_highatomic_pageblock(ac, true);
3541 }
3542
3543 /*
3544 * Keep reclaiming pages while there is a chance this will lead
3545 * somewhere. If none of the target zones can satisfy our allocation
3546 * request even if all reclaimable pages are considered then we are
3547 * screwed and have to go OOM.
3548 */
3549 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3550 ac->nodemask) {
3551 unsigned long available;
3552 unsigned long reclaimable;
3553 unsigned long min_wmark = min_wmark_pages(zone);
3554 bool wmark;
3555
3556 available = reclaimable = zone_reclaimable_pages(zone);
3557 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3558
3559 /*
3560 * Would the allocation succeed if we reclaimed all
3561 * reclaimable pages?
3562 */
3563 wmark = __zone_watermark_ok(zone, order, min_wmark,
3564 ac_classzone_idx(ac), alloc_flags, available);
3565 trace_reclaim_retry_zone(z, order, reclaimable,
3566 available, min_wmark, *no_progress_loops, wmark);
3567 if (wmark) {
3568 /*
3569 * If we didn't make any progress and have a lot of
3570 * dirty + writeback pages then we should wait for
3571 * an IO to complete to slow down the reclaim and
3572 * prevent from pre mature OOM
3573 */
3574 if (!did_some_progress) {
3575 unsigned long write_pending;
3576
3577 write_pending = zone_page_state_snapshot(zone,
3578 NR_ZONE_WRITE_PENDING);
3579
3580 if (2 * write_pending > reclaimable) {
3581 congestion_wait(BLK_RW_ASYNC, HZ/10);
3582 return true;
3583 }
3584 }
3585
3586 /*
3587 * Memory allocation/reclaim might be called from a WQ
3588 * context and the current implementation of the WQ
3589 * concurrency control doesn't recognize that
3590 * a particular WQ is congested if the worker thread is
3591 * looping without ever sleeping. Therefore we have to
3592 * do a short sleep here rather than calling
3593 * cond_resched().
3594 */
3595 if (current->flags & PF_WQ_WORKER)
3596 schedule_timeout_uninterruptible(1);
3597 else
3598 cond_resched();
3599
3600 return true;
3601 }
3602 }
3603
3604 return false;
3605 }
3606
3607 static inline struct page *
3608 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3609 struct alloc_context *ac)
3610 {
3611 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3612 struct page *page = NULL;
3613 unsigned int alloc_flags;
3614 unsigned long did_some_progress;
3615 enum compact_priority compact_priority;
3616 enum compact_result compact_result;
3617 int compaction_retries;
3618 int no_progress_loops;
3619 unsigned long alloc_start = jiffies;
3620 unsigned int stall_timeout = 10 * HZ;
3621 unsigned int cpuset_mems_cookie;
3622
3623 /*
3624 * In the slowpath, we sanity check order to avoid ever trying to
3625 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3626 * be using allocators in order of preference for an area that is
3627 * too large.
3628 */
3629 if (order >= MAX_ORDER) {
3630 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3631 return NULL;
3632 }
3633
3634 /*
3635 * We also sanity check to catch abuse of atomic reserves being used by
3636 * callers that are not in atomic context.
3637 */
3638 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3639 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3640 gfp_mask &= ~__GFP_ATOMIC;
3641
3642 retry_cpuset:
3643 compaction_retries = 0;
3644 no_progress_loops = 0;
3645 compact_priority = DEF_COMPACT_PRIORITY;
3646 cpuset_mems_cookie = read_mems_allowed_begin();
3647
3648 /*
3649 * The fast path uses conservative alloc_flags to succeed only until
3650 * kswapd needs to be woken up, and to avoid the cost of setting up
3651 * alloc_flags precisely. So we do that now.
3652 */
3653 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3654
3655 /*
3656 * We need to recalculate the starting point for the zonelist iterator
3657 * because we might have used different nodemask in the fast path, or
3658 * there was a cpuset modification and we are retrying - otherwise we
3659 * could end up iterating over non-eligible zones endlessly.
3660 */
3661 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3662 ac->high_zoneidx, ac->nodemask);
3663 if (!ac->preferred_zoneref->zone)
3664 goto nopage;
3665
3666 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3667 wake_all_kswapds(order, ac);
3668
3669 /*
3670 * The adjusted alloc_flags might result in immediate success, so try
3671 * that first
3672 */
3673 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3674 if (page)
3675 goto got_pg;
3676
3677 /*
3678 * For costly allocations, try direct compaction first, as it's likely
3679 * that we have enough base pages and don't need to reclaim. Don't try
3680 * that for allocations that are allowed to ignore watermarks, as the
3681 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3682 */
3683 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3684 !gfp_pfmemalloc_allowed(gfp_mask)) {
3685 page = __alloc_pages_direct_compact(gfp_mask, order,
3686 alloc_flags, ac,
3687 INIT_COMPACT_PRIORITY,
3688 &compact_result);
3689 if (page)
3690 goto got_pg;
3691
3692 /*
3693 * Checks for costly allocations with __GFP_NORETRY, which
3694 * includes THP page fault allocations
3695 */
3696 if (gfp_mask & __GFP_NORETRY) {
3697 /*
3698 * If compaction is deferred for high-order allocations,
3699 * it is because sync compaction recently failed. If
3700 * this is the case and the caller requested a THP
3701 * allocation, we do not want to heavily disrupt the
3702 * system, so we fail the allocation instead of entering
3703 * direct reclaim.
3704 */
3705 if (compact_result == COMPACT_DEFERRED)
3706 goto nopage;
3707
3708 /*
3709 * Looks like reclaim/compaction is worth trying, but
3710 * sync compaction could be very expensive, so keep
3711 * using async compaction.
3712 */
3713 compact_priority = INIT_COMPACT_PRIORITY;
3714 }
3715 }
3716
3717 retry:
3718 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3719 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3720 wake_all_kswapds(order, ac);
3721
3722 if (gfp_pfmemalloc_allowed(gfp_mask))
3723 alloc_flags = ALLOC_NO_WATERMARKS;
3724
3725 /*
3726 * Reset the zonelist iterators if memory policies can be ignored.
3727 * These allocations are high priority and system rather than user
3728 * orientated.
3729 */
3730 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3731 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3732 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3733 ac->high_zoneidx, ac->nodemask);
3734 }
3735
3736 /* Attempt with potentially adjusted zonelist and alloc_flags */
3737 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3738 if (page)
3739 goto got_pg;
3740
3741 /* Caller is not willing to reclaim, we can't balance anything */
3742 if (!can_direct_reclaim)
3743 goto nopage;
3744
3745 /* Make sure we know about allocations which stall for too long */
3746 if (time_after(jiffies, alloc_start + stall_timeout)) {
3747 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3748 "page allocation stalls for %ums, order:%u",
3749 jiffies_to_msecs(jiffies-alloc_start), order);
3750 stall_timeout += 10 * HZ;
3751 }
3752
3753 /* Avoid recursion of direct reclaim */
3754 if (current->flags & PF_MEMALLOC)
3755 goto nopage;
3756
3757 /* Try direct reclaim and then allocating */
3758 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3759 &did_some_progress);
3760 if (page)
3761 goto got_pg;
3762
3763 /* Try direct compaction and then allocating */
3764 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3765 compact_priority, &compact_result);
3766 if (page)
3767 goto got_pg;
3768
3769 /* Do not loop if specifically requested */
3770 if (gfp_mask & __GFP_NORETRY)
3771 goto nopage;
3772
3773 /*
3774 * Do not retry costly high order allocations unless they are
3775 * __GFP_REPEAT
3776 */
3777 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3778 goto nopage;
3779
3780 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3781 did_some_progress > 0, &no_progress_loops))
3782 goto retry;
3783
3784 /*
3785 * It doesn't make any sense to retry for the compaction if the order-0
3786 * reclaim is not able to make any progress because the current
3787 * implementation of the compaction depends on the sufficient amount
3788 * of free memory (see __compaction_suitable)
3789 */
3790 if (did_some_progress > 0 &&
3791 should_compact_retry(ac, order, alloc_flags,
3792 compact_result, &compact_priority,
3793 &compaction_retries))
3794 goto retry;
3795
3796 /*
3797 * It's possible we raced with cpuset update so the OOM would be
3798 * premature (see below the nopage: label for full explanation).
3799 */
3800 if (read_mems_allowed_retry(cpuset_mems_cookie))
3801 goto retry_cpuset;
3802
3803 /* Reclaim has failed us, start killing things */
3804 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3805 if (page)
3806 goto got_pg;
3807
3808 /* Avoid allocations with no watermarks from looping endlessly */
3809 if (test_thread_flag(TIF_MEMDIE))
3810 goto nopage;
3811
3812 /* Retry as long as the OOM killer is making progress */
3813 if (did_some_progress) {
3814 no_progress_loops = 0;
3815 goto retry;
3816 }
3817
3818 nopage:
3819 /*
3820 * When updating a task's mems_allowed or mempolicy nodemask, it is
3821 * possible to race with parallel threads in such a way that our
3822 * allocation can fail while the mask is being updated. If we are about
3823 * to fail, check if the cpuset changed during allocation and if so,
3824 * retry.
3825 */
3826 if (read_mems_allowed_retry(cpuset_mems_cookie))
3827 goto retry_cpuset;
3828
3829 /*
3830 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3831 * we always retry
3832 */
3833 if (gfp_mask & __GFP_NOFAIL) {
3834 /*
3835 * All existing users of the __GFP_NOFAIL are blockable, so warn
3836 * of any new users that actually require GFP_NOWAIT
3837 */
3838 if (WARN_ON_ONCE(!can_direct_reclaim))
3839 goto fail;
3840
3841 /*
3842 * PF_MEMALLOC request from this context is rather bizarre
3843 * because we cannot reclaim anything and only can loop waiting
3844 * for somebody to do a work for us
3845 */
3846 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3847
3848 /*
3849 * non failing costly orders are a hard requirement which we
3850 * are not prepared for much so let's warn about these users
3851 * so that we can identify them and convert them to something
3852 * else.
3853 */
3854 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3855
3856 /*
3857 * Help non-failing allocations by giving them access to memory
3858 * reserves but do not use ALLOC_NO_WATERMARKS because this
3859 * could deplete whole memory reserves which would just make
3860 * the situation worse
3861 */
3862 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3863 if (page)
3864 goto got_pg;
3865
3866 cond_resched();
3867 goto retry;
3868 }
3869 fail:
3870 warn_alloc(gfp_mask, ac->nodemask,
3871 "page allocation failure: order:%u", order);
3872 got_pg:
3873 return page;
3874 }
3875
3876 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3877 struct zonelist *zonelist, nodemask_t *nodemask,
3878 struct alloc_context *ac, gfp_t *alloc_mask,
3879 unsigned int *alloc_flags)
3880 {
3881 ac->high_zoneidx = gfp_zone(gfp_mask);
3882 ac->zonelist = zonelist;
3883 ac->nodemask = nodemask;
3884 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3885
3886 if (cpusets_enabled()) {
3887 *alloc_mask |= __GFP_HARDWALL;
3888 if (!ac->nodemask)
3889 ac->nodemask = &cpuset_current_mems_allowed;
3890 else
3891 *alloc_flags |= ALLOC_CPUSET;
3892 }
3893
3894 lockdep_trace_alloc(gfp_mask);
3895
3896 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3897
3898 if (should_fail_alloc_page(gfp_mask, order))
3899 return false;
3900
3901 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3902 *alloc_flags |= ALLOC_CMA;
3903
3904 return true;
3905 }
3906
3907 /* Determine whether to spread dirty pages and what the first usable zone */
3908 static inline void finalise_ac(gfp_t gfp_mask,
3909 unsigned int order, struct alloc_context *ac)
3910 {
3911 /* Dirty zone balancing only done in the fast path */
3912 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3913
3914 /*
3915 * The preferred zone is used for statistics but crucially it is
3916 * also used as the starting point for the zonelist iterator. It
3917 * may get reset for allocations that ignore memory policies.
3918 */
3919 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3920 ac->high_zoneidx, ac->nodemask);
3921 }
3922
3923 /*
3924 * This is the 'heart' of the zoned buddy allocator.
3925 */
3926 struct page *
3927 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3928 struct zonelist *zonelist, nodemask_t *nodemask)
3929 {
3930 struct page *page;
3931 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3932 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3933 struct alloc_context ac = { };
3934
3935 gfp_mask &= gfp_allowed_mask;
3936 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3937 return NULL;
3938
3939 finalise_ac(gfp_mask, order, &ac);
3940
3941 /* First allocation attempt */
3942 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3943 if (likely(page))
3944 goto out;
3945
3946 /*
3947 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
3948 * resp. GFP_NOIO which has to be inherited for all allocation requests
3949 * from a particular context which has been marked by
3950 * memalloc_no{fs,io}_{save,restore}.
3951 */
3952 alloc_mask = current_gfp_context(gfp_mask);
3953 ac.spread_dirty_pages = false;
3954
3955 /*
3956 * Restore the original nodemask if it was potentially replaced with
3957 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3958 */
3959 if (unlikely(ac.nodemask != nodemask))
3960 ac.nodemask = nodemask;
3961
3962 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3963
3964 out:
3965 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3966 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3967 __free_pages(page, order);
3968 page = NULL;
3969 }
3970
3971 if (kmemcheck_enabled && page)
3972 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3973
3974 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3975
3976 return page;
3977 }
3978 EXPORT_SYMBOL(__alloc_pages_nodemask);
3979
3980 /*
3981 * Common helper functions.
3982 */
3983 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3984 {
3985 struct page *page;
3986
3987 /*
3988 * __get_free_pages() returns a 32-bit address, which cannot represent
3989 * a highmem page
3990 */
3991 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3992
3993 page = alloc_pages(gfp_mask, order);
3994 if (!page)
3995 return 0;
3996 return (unsigned long) page_address(page);
3997 }
3998 EXPORT_SYMBOL(__get_free_pages);
3999
4000 unsigned long get_zeroed_page(gfp_t gfp_mask)
4001 {
4002 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4003 }
4004 EXPORT_SYMBOL(get_zeroed_page);
4005
4006 void __free_pages(struct page *page, unsigned int order)
4007 {
4008 if (put_page_testzero(page)) {
4009 if (order == 0)
4010 free_hot_cold_page(page, false);
4011 else
4012 __free_pages_ok(page, order);
4013 }
4014 }
4015
4016 EXPORT_SYMBOL(__free_pages);
4017
4018 void free_pages(unsigned long addr, unsigned int order)
4019 {
4020 if (addr != 0) {
4021 VM_BUG_ON(!virt_addr_valid((void *)addr));
4022 __free_pages(virt_to_page((void *)addr), order);
4023 }
4024 }
4025
4026 EXPORT_SYMBOL(free_pages);
4027
4028 /*
4029 * Page Fragment:
4030 * An arbitrary-length arbitrary-offset area of memory which resides
4031 * within a 0 or higher order page. Multiple fragments within that page
4032 * are individually refcounted, in the page's reference counter.
4033 *
4034 * The page_frag functions below provide a simple allocation framework for
4035 * page fragments. This is used by the network stack and network device
4036 * drivers to provide a backing region of memory for use as either an
4037 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4038 */
4039 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4040 gfp_t gfp_mask)
4041 {
4042 struct page *page = NULL;
4043 gfp_t gfp = gfp_mask;
4044
4045 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4046 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4047 __GFP_NOMEMALLOC;
4048 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4049 PAGE_FRAG_CACHE_MAX_ORDER);
4050 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4051 #endif
4052 if (unlikely(!page))
4053 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4054
4055 nc->va = page ? page_address(page) : NULL;
4056
4057 return page;
4058 }
4059
4060 void __page_frag_cache_drain(struct page *page, unsigned int count)
4061 {
4062 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4063
4064 if (page_ref_sub_and_test(page, count)) {
4065 unsigned int order = compound_order(page);
4066
4067 if (order == 0)
4068 free_hot_cold_page(page, false);
4069 else
4070 __free_pages_ok(page, order);
4071 }
4072 }
4073 EXPORT_SYMBOL(__page_frag_cache_drain);
4074
4075 void *page_frag_alloc(struct page_frag_cache *nc,
4076 unsigned int fragsz, gfp_t gfp_mask)
4077 {
4078 unsigned int size = PAGE_SIZE;
4079 struct page *page;
4080 int offset;
4081
4082 if (unlikely(!nc->va)) {
4083 refill:
4084 page = __page_frag_cache_refill(nc, gfp_mask);
4085 if (!page)
4086 return NULL;
4087
4088 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4089 /* if size can vary use size else just use PAGE_SIZE */
4090 size = nc->size;
4091 #endif
4092 /* Even if we own the page, we do not use atomic_set().
4093 * This would break get_page_unless_zero() users.
4094 */
4095 page_ref_add(page, size - 1);
4096
4097 /* reset page count bias and offset to start of new frag */
4098 nc->pfmemalloc = page_is_pfmemalloc(page);
4099 nc->pagecnt_bias = size;
4100 nc->offset = size;
4101 }
4102
4103 offset = nc->offset - fragsz;
4104 if (unlikely(offset < 0)) {
4105 page = virt_to_page(nc->va);
4106
4107 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4108 goto refill;
4109
4110 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4111 /* if size can vary use size else just use PAGE_SIZE */
4112 size = nc->size;
4113 #endif
4114 /* OK, page count is 0, we can safely set it */
4115 set_page_count(page, size);
4116
4117 /* reset page count bias and offset to start of new frag */
4118 nc->pagecnt_bias = size;
4119 offset = size - fragsz;
4120 }
4121
4122 nc->pagecnt_bias--;
4123 nc->offset = offset;
4124
4125 return nc->va + offset;
4126 }
4127 EXPORT_SYMBOL(page_frag_alloc);
4128
4129 /*
4130 * Frees a page fragment allocated out of either a compound or order 0 page.
4131 */
4132 void page_frag_free(void *addr)
4133 {
4134 struct page *page = virt_to_head_page(addr);
4135
4136 if (unlikely(put_page_testzero(page)))
4137 __free_pages_ok(page, compound_order(page));
4138 }
4139 EXPORT_SYMBOL(page_frag_free);
4140
4141 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4142 size_t size)
4143 {
4144 if (addr) {
4145 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4146 unsigned long used = addr + PAGE_ALIGN(size);
4147
4148 split_page(virt_to_page((void *)addr), order);
4149 while (used < alloc_end) {
4150 free_page(used);
4151 used += PAGE_SIZE;
4152 }
4153 }
4154 return (void *)addr;
4155 }
4156
4157 /**
4158 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4159 * @size: the number of bytes to allocate
4160 * @gfp_mask: GFP flags for the allocation
4161 *
4162 * This function is similar to alloc_pages(), except that it allocates the
4163 * minimum number of pages to satisfy the request. alloc_pages() can only
4164 * allocate memory in power-of-two pages.
4165 *
4166 * This function is also limited by MAX_ORDER.
4167 *
4168 * Memory allocated by this function must be released by free_pages_exact().
4169 */
4170 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4171 {
4172 unsigned int order = get_order(size);
4173 unsigned long addr;
4174
4175 addr = __get_free_pages(gfp_mask, order);
4176 return make_alloc_exact(addr, order, size);
4177 }
4178 EXPORT_SYMBOL(alloc_pages_exact);
4179
4180 /**
4181 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4182 * pages on a node.
4183 * @nid: the preferred node ID where memory should be allocated
4184 * @size: the number of bytes to allocate
4185 * @gfp_mask: GFP flags for the allocation
4186 *
4187 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4188 * back.
4189 */
4190 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4191 {
4192 unsigned int order = get_order(size);
4193 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4194 if (!p)
4195 return NULL;
4196 return make_alloc_exact((unsigned long)page_address(p), order, size);
4197 }
4198
4199 /**
4200 * free_pages_exact - release memory allocated via alloc_pages_exact()
4201 * @virt: the value returned by alloc_pages_exact.
4202 * @size: size of allocation, same value as passed to alloc_pages_exact().
4203 *
4204 * Release the memory allocated by a previous call to alloc_pages_exact.
4205 */
4206 void free_pages_exact(void *virt, size_t size)
4207 {
4208 unsigned long addr = (unsigned long)virt;
4209 unsigned long end = addr + PAGE_ALIGN(size);
4210
4211 while (addr < end) {
4212 free_page(addr);
4213 addr += PAGE_SIZE;
4214 }
4215 }
4216 EXPORT_SYMBOL(free_pages_exact);
4217
4218 /**
4219 * nr_free_zone_pages - count number of pages beyond high watermark
4220 * @offset: The zone index of the highest zone
4221 *
4222 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4223 * high watermark within all zones at or below a given zone index. For each
4224 * zone, the number of pages is calculated as:
4225 *
4226 * nr_free_zone_pages = managed_pages - high_pages
4227 */
4228 static unsigned long nr_free_zone_pages(int offset)
4229 {
4230 struct zoneref *z;
4231 struct zone *zone;
4232
4233 /* Just pick one node, since fallback list is circular */
4234 unsigned long sum = 0;
4235
4236 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4237
4238 for_each_zone_zonelist(zone, z, zonelist, offset) {
4239 unsigned long size = zone->managed_pages;
4240 unsigned long high = high_wmark_pages(zone);
4241 if (size > high)
4242 sum += size - high;
4243 }
4244
4245 return sum;
4246 }
4247
4248 /**
4249 * nr_free_buffer_pages - count number of pages beyond high watermark
4250 *
4251 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4252 * watermark within ZONE_DMA and ZONE_NORMAL.
4253 */
4254 unsigned long nr_free_buffer_pages(void)
4255 {
4256 return nr_free_zone_pages(gfp_zone(GFP_USER));
4257 }
4258 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4259
4260 /**
4261 * nr_free_pagecache_pages - count number of pages beyond high watermark
4262 *
4263 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4264 * high watermark within all zones.
4265 */
4266 unsigned long nr_free_pagecache_pages(void)
4267 {
4268 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4269 }
4270
4271 static inline void show_node(struct zone *zone)
4272 {
4273 if (IS_ENABLED(CONFIG_NUMA))
4274 printk("Node %d ", zone_to_nid(zone));
4275 }
4276
4277 long si_mem_available(void)
4278 {
4279 long available;
4280 unsigned long pagecache;
4281 unsigned long wmark_low = 0;
4282 unsigned long pages[NR_LRU_LISTS];
4283 struct zone *zone;
4284 int lru;
4285
4286 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4287 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4288
4289 for_each_zone(zone)
4290 wmark_low += zone->watermark[WMARK_LOW];
4291
4292 /*
4293 * Estimate the amount of memory available for userspace allocations,
4294 * without causing swapping.
4295 */
4296 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4297
4298 /*
4299 * Not all the page cache can be freed, otherwise the system will
4300 * start swapping. Assume at least half of the page cache, or the
4301 * low watermark worth of cache, needs to stay.
4302 */
4303 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4304 pagecache -= min(pagecache / 2, wmark_low);
4305 available += pagecache;
4306
4307 /*
4308 * Part of the reclaimable slab consists of items that are in use,
4309 * and cannot be freed. Cap this estimate at the low watermark.
4310 */
4311 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4312 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4313
4314 if (available < 0)
4315 available = 0;
4316 return available;
4317 }
4318 EXPORT_SYMBOL_GPL(si_mem_available);
4319
4320 void si_meminfo(struct sysinfo *val)
4321 {
4322 val->totalram = totalram_pages;
4323 val->sharedram = global_node_page_state(NR_SHMEM);
4324 val->freeram = global_page_state(NR_FREE_PAGES);
4325 val->bufferram = nr_blockdev_pages();
4326 val->totalhigh = totalhigh_pages;
4327 val->freehigh = nr_free_highpages();
4328 val->mem_unit = PAGE_SIZE;
4329 }
4330
4331 EXPORT_SYMBOL(si_meminfo);
4332
4333 #ifdef CONFIG_NUMA
4334 void si_meminfo_node(struct sysinfo *val, int nid)
4335 {
4336 int zone_type; /* needs to be signed */
4337 unsigned long managed_pages = 0;
4338 unsigned long managed_highpages = 0;
4339 unsigned long free_highpages = 0;
4340 pg_data_t *pgdat = NODE_DATA(nid);
4341
4342 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4343 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4344 val->totalram = managed_pages;
4345 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4346 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4347 #ifdef CONFIG_HIGHMEM
4348 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4349 struct zone *zone = &pgdat->node_zones[zone_type];
4350
4351 if (is_highmem(zone)) {
4352 managed_highpages += zone->managed_pages;
4353 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4354 }
4355 }
4356 val->totalhigh = managed_highpages;
4357 val->freehigh = free_highpages;
4358 #else
4359 val->totalhigh = managed_highpages;
4360 val->freehigh = free_highpages;
4361 #endif
4362 val->mem_unit = PAGE_SIZE;
4363 }
4364 #endif
4365
4366 /*
4367 * Determine whether the node should be displayed or not, depending on whether
4368 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4369 */
4370 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4371 {
4372 if (!(flags & SHOW_MEM_FILTER_NODES))
4373 return false;
4374
4375 /*
4376 * no node mask - aka implicit memory numa policy. Do not bother with
4377 * the synchronization - read_mems_allowed_begin - because we do not
4378 * have to be precise here.
4379 */
4380 if (!nodemask)
4381 nodemask = &cpuset_current_mems_allowed;
4382
4383 return !node_isset(nid, *nodemask);
4384 }
4385
4386 #define K(x) ((x) << (PAGE_SHIFT-10))
4387
4388 static void show_migration_types(unsigned char type)
4389 {
4390 static const char types[MIGRATE_TYPES] = {
4391 [MIGRATE_UNMOVABLE] = 'U',
4392 [MIGRATE_MOVABLE] = 'M',
4393 [MIGRATE_RECLAIMABLE] = 'E',
4394 [MIGRATE_HIGHATOMIC] = 'H',
4395 #ifdef CONFIG_CMA
4396 [MIGRATE_CMA] = 'C',
4397 #endif
4398 #ifdef CONFIG_MEMORY_ISOLATION
4399 [MIGRATE_ISOLATE] = 'I',
4400 #endif
4401 };
4402 char tmp[MIGRATE_TYPES + 1];
4403 char *p = tmp;
4404 int i;
4405
4406 for (i = 0; i < MIGRATE_TYPES; i++) {
4407 if (type & (1 << i))
4408 *p++ = types[i];
4409 }
4410
4411 *p = '\0';
4412 printk(KERN_CONT "(%s) ", tmp);
4413 }
4414
4415 /*
4416 * Show free area list (used inside shift_scroll-lock stuff)
4417 * We also calculate the percentage fragmentation. We do this by counting the
4418 * memory on each free list with the exception of the first item on the list.
4419 *
4420 * Bits in @filter:
4421 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4422 * cpuset.
4423 */
4424 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4425 {
4426 unsigned long free_pcp = 0;
4427 int cpu;
4428 struct zone *zone;
4429 pg_data_t *pgdat;
4430
4431 for_each_populated_zone(zone) {
4432 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4433 continue;
4434
4435 for_each_online_cpu(cpu)
4436 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4437 }
4438
4439 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4440 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4441 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4442 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4443 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4444 " free:%lu free_pcp:%lu free_cma:%lu\n",
4445 global_node_page_state(NR_ACTIVE_ANON),
4446 global_node_page_state(NR_INACTIVE_ANON),
4447 global_node_page_state(NR_ISOLATED_ANON),
4448 global_node_page_state(NR_ACTIVE_FILE),
4449 global_node_page_state(NR_INACTIVE_FILE),
4450 global_node_page_state(NR_ISOLATED_FILE),
4451 global_node_page_state(NR_UNEVICTABLE),
4452 global_node_page_state(NR_FILE_DIRTY),
4453 global_node_page_state(NR_WRITEBACK),
4454 global_node_page_state(NR_UNSTABLE_NFS),
4455 global_page_state(NR_SLAB_RECLAIMABLE),
4456 global_page_state(NR_SLAB_UNRECLAIMABLE),
4457 global_node_page_state(NR_FILE_MAPPED),
4458 global_node_page_state(NR_SHMEM),
4459 global_page_state(NR_PAGETABLE),
4460 global_page_state(NR_BOUNCE),
4461 global_page_state(NR_FREE_PAGES),
4462 free_pcp,
4463 global_page_state(NR_FREE_CMA_PAGES));
4464
4465 for_each_online_pgdat(pgdat) {
4466 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4467 continue;
4468
4469 printk("Node %d"
4470 " active_anon:%lukB"
4471 " inactive_anon:%lukB"
4472 " active_file:%lukB"
4473 " inactive_file:%lukB"
4474 " unevictable:%lukB"
4475 " isolated(anon):%lukB"
4476 " isolated(file):%lukB"
4477 " mapped:%lukB"
4478 " dirty:%lukB"
4479 " writeback:%lukB"
4480 " shmem:%lukB"
4481 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4482 " shmem_thp: %lukB"
4483 " shmem_pmdmapped: %lukB"
4484 " anon_thp: %lukB"
4485 #endif
4486 " writeback_tmp:%lukB"
4487 " unstable:%lukB"
4488 " all_unreclaimable? %s"
4489 "\n",
4490 pgdat->node_id,
4491 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4492 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4493 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4494 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4495 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4496 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4497 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4498 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4499 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4500 K(node_page_state(pgdat, NR_WRITEBACK)),
4501 K(node_page_state(pgdat, NR_SHMEM)),
4502 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4503 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4504 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4505 * HPAGE_PMD_NR),
4506 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4507 #endif
4508 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4509 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4510 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4511 "yes" : "no");
4512 }
4513
4514 for_each_populated_zone(zone) {
4515 int i;
4516
4517 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4518 continue;
4519
4520 free_pcp = 0;
4521 for_each_online_cpu(cpu)
4522 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4523
4524 show_node(zone);
4525 printk(KERN_CONT
4526 "%s"
4527 " free:%lukB"
4528 " min:%lukB"
4529 " low:%lukB"
4530 " high:%lukB"
4531 " active_anon:%lukB"
4532 " inactive_anon:%lukB"
4533 " active_file:%lukB"
4534 " inactive_file:%lukB"
4535 " unevictable:%lukB"
4536 " writepending:%lukB"
4537 " present:%lukB"
4538 " managed:%lukB"
4539 " mlocked:%lukB"
4540 " slab_reclaimable:%lukB"
4541 " slab_unreclaimable:%lukB"
4542 " kernel_stack:%lukB"
4543 " pagetables:%lukB"
4544 " bounce:%lukB"
4545 " free_pcp:%lukB"
4546 " local_pcp:%ukB"
4547 " free_cma:%lukB"
4548 "\n",
4549 zone->name,
4550 K(zone_page_state(zone, NR_FREE_PAGES)),
4551 K(min_wmark_pages(zone)),
4552 K(low_wmark_pages(zone)),
4553 K(high_wmark_pages(zone)),
4554 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4555 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4556 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4557 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4558 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4559 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4560 K(zone->present_pages),
4561 K(zone->managed_pages),
4562 K(zone_page_state(zone, NR_MLOCK)),
4563 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4564 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4565 zone_page_state(zone, NR_KERNEL_STACK_KB),
4566 K(zone_page_state(zone, NR_PAGETABLE)),
4567 K(zone_page_state(zone, NR_BOUNCE)),
4568 K(free_pcp),
4569 K(this_cpu_read(zone->pageset->pcp.count)),
4570 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4571 printk("lowmem_reserve[]:");
4572 for (i = 0; i < MAX_NR_ZONES; i++)
4573 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4574 printk(KERN_CONT "\n");
4575 }
4576
4577 for_each_populated_zone(zone) {
4578 unsigned int order;
4579 unsigned long nr[MAX_ORDER], flags, total = 0;
4580 unsigned char types[MAX_ORDER];
4581
4582 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4583 continue;
4584 show_node(zone);
4585 printk(KERN_CONT "%s: ", zone->name);
4586
4587 spin_lock_irqsave(&zone->lock, flags);
4588 for (order = 0; order < MAX_ORDER; order++) {
4589 struct free_area *area = &zone->free_area[order];
4590 int type;
4591
4592 nr[order] = area->nr_free;
4593 total += nr[order] << order;
4594
4595 types[order] = 0;
4596 for (type = 0; type < MIGRATE_TYPES; type++) {
4597 if (!list_empty(&area->free_list[type]))
4598 types[order] |= 1 << type;
4599 }
4600 }
4601 spin_unlock_irqrestore(&zone->lock, flags);
4602 for (order = 0; order < MAX_ORDER; order++) {
4603 printk(KERN_CONT "%lu*%lukB ",
4604 nr[order], K(1UL) << order);
4605 if (nr[order])
4606 show_migration_types(types[order]);
4607 }
4608 printk(KERN_CONT "= %lukB\n", K(total));
4609 }
4610
4611 hugetlb_show_meminfo();
4612
4613 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4614
4615 show_swap_cache_info();
4616 }
4617
4618 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4619 {
4620 zoneref->zone = zone;
4621 zoneref->zone_idx = zone_idx(zone);
4622 }
4623
4624 /*
4625 * Builds allocation fallback zone lists.
4626 *
4627 * Add all populated zones of a node to the zonelist.
4628 */
4629 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4630 int nr_zones)
4631 {
4632 struct zone *zone;
4633 enum zone_type zone_type = MAX_NR_ZONES;
4634
4635 do {
4636 zone_type--;
4637 zone = pgdat->node_zones + zone_type;
4638 if (managed_zone(zone)) {
4639 zoneref_set_zone(zone,
4640 &zonelist->_zonerefs[nr_zones++]);
4641 check_highest_zone(zone_type);
4642 }
4643 } while (zone_type);
4644
4645 return nr_zones;
4646 }
4647
4648
4649 /*
4650 * zonelist_order:
4651 * 0 = automatic detection of better ordering.
4652 * 1 = order by ([node] distance, -zonetype)
4653 * 2 = order by (-zonetype, [node] distance)
4654 *
4655 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4656 * the same zonelist. So only NUMA can configure this param.
4657 */
4658 #define ZONELIST_ORDER_DEFAULT 0
4659 #define ZONELIST_ORDER_NODE 1
4660 #define ZONELIST_ORDER_ZONE 2
4661
4662 /* zonelist order in the kernel.
4663 * set_zonelist_order() will set this to NODE or ZONE.
4664 */
4665 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4666 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4667
4668
4669 #ifdef CONFIG_NUMA
4670 /* The value user specified ....changed by config */
4671 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4672 /* string for sysctl */
4673 #define NUMA_ZONELIST_ORDER_LEN 16
4674 char numa_zonelist_order[16] = "default";
4675
4676 /*
4677 * interface for configure zonelist ordering.
4678 * command line option "numa_zonelist_order"
4679 * = "[dD]efault - default, automatic configuration.
4680 * = "[nN]ode - order by node locality, then by zone within node
4681 * = "[zZ]one - order by zone, then by locality within zone
4682 */
4683
4684 static int __parse_numa_zonelist_order(char *s)
4685 {
4686 if (*s == 'd' || *s == 'D') {
4687 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4688 } else if (*s == 'n' || *s == 'N') {
4689 user_zonelist_order = ZONELIST_ORDER_NODE;
4690 } else if (*s == 'z' || *s == 'Z') {
4691 user_zonelist_order = ZONELIST_ORDER_ZONE;
4692 } else {
4693 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4694 return -EINVAL;
4695 }
4696 return 0;
4697 }
4698
4699 static __init int setup_numa_zonelist_order(char *s)
4700 {
4701 int ret;
4702
4703 if (!s)
4704 return 0;
4705
4706 ret = __parse_numa_zonelist_order(s);
4707 if (ret == 0)
4708 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4709
4710 return ret;
4711 }
4712 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4713
4714 /*
4715 * sysctl handler for numa_zonelist_order
4716 */
4717 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4718 void __user *buffer, size_t *length,
4719 loff_t *ppos)
4720 {
4721 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4722 int ret;
4723 static DEFINE_MUTEX(zl_order_mutex);
4724
4725 mutex_lock(&zl_order_mutex);
4726 if (write) {
4727 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4728 ret = -EINVAL;
4729 goto out;
4730 }
4731 strcpy(saved_string, (char *)table->data);
4732 }
4733 ret = proc_dostring(table, write, buffer, length, ppos);
4734 if (ret)
4735 goto out;
4736 if (write) {
4737 int oldval = user_zonelist_order;
4738
4739 ret = __parse_numa_zonelist_order((char *)table->data);
4740 if (ret) {
4741 /*
4742 * bogus value. restore saved string
4743 */
4744 strncpy((char *)table->data, saved_string,
4745 NUMA_ZONELIST_ORDER_LEN);
4746 user_zonelist_order = oldval;
4747 } else if (oldval != user_zonelist_order) {
4748 mutex_lock(&zonelists_mutex);
4749 build_all_zonelists(NULL, NULL);
4750 mutex_unlock(&zonelists_mutex);
4751 }
4752 }
4753 out:
4754 mutex_unlock(&zl_order_mutex);
4755 return ret;
4756 }
4757
4758
4759 #define MAX_NODE_LOAD (nr_online_nodes)
4760 static int node_load[MAX_NUMNODES];
4761
4762 /**
4763 * find_next_best_node - find the next node that should appear in a given node's fallback list
4764 * @node: node whose fallback list we're appending
4765 * @used_node_mask: nodemask_t of already used nodes
4766 *
4767 * We use a number of factors to determine which is the next node that should
4768 * appear on a given node's fallback list. The node should not have appeared
4769 * already in @node's fallback list, and it should be the next closest node
4770 * according to the distance array (which contains arbitrary distance values
4771 * from each node to each node in the system), and should also prefer nodes
4772 * with no CPUs, since presumably they'll have very little allocation pressure
4773 * on them otherwise.
4774 * It returns -1 if no node is found.
4775 */
4776 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4777 {
4778 int n, val;
4779 int min_val = INT_MAX;
4780 int best_node = NUMA_NO_NODE;
4781 const struct cpumask *tmp = cpumask_of_node(0);
4782
4783 /* Use the local node if we haven't already */
4784 if (!node_isset(node, *used_node_mask)) {
4785 node_set(node, *used_node_mask);
4786 return node;
4787 }
4788
4789 for_each_node_state(n, N_MEMORY) {
4790
4791 /* Don't want a node to appear more than once */
4792 if (node_isset(n, *used_node_mask))
4793 continue;
4794
4795 /* Use the distance array to find the distance */
4796 val = node_distance(node, n);
4797
4798 /* Penalize nodes under us ("prefer the next node") */
4799 val += (n < node);
4800
4801 /* Give preference to headless and unused nodes */
4802 tmp = cpumask_of_node(n);
4803 if (!cpumask_empty(tmp))
4804 val += PENALTY_FOR_NODE_WITH_CPUS;
4805
4806 /* Slight preference for less loaded node */
4807 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4808 val += node_load[n];
4809
4810 if (val < min_val) {
4811 min_val = val;
4812 best_node = n;
4813 }
4814 }
4815
4816 if (best_node >= 0)
4817 node_set(best_node, *used_node_mask);
4818
4819 return best_node;
4820 }
4821
4822
4823 /*
4824 * Build zonelists ordered by node and zones within node.
4825 * This results in maximum locality--normal zone overflows into local
4826 * DMA zone, if any--but risks exhausting DMA zone.
4827 */
4828 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4829 {
4830 int j;
4831 struct zonelist *zonelist;
4832
4833 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4834 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4835 ;
4836 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4837 zonelist->_zonerefs[j].zone = NULL;
4838 zonelist->_zonerefs[j].zone_idx = 0;
4839 }
4840
4841 /*
4842 * Build gfp_thisnode zonelists
4843 */
4844 static void build_thisnode_zonelists(pg_data_t *pgdat)
4845 {
4846 int j;
4847 struct zonelist *zonelist;
4848
4849 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4850 j = build_zonelists_node(pgdat, zonelist, 0);
4851 zonelist->_zonerefs[j].zone = NULL;
4852 zonelist->_zonerefs[j].zone_idx = 0;
4853 }
4854
4855 /*
4856 * Build zonelists ordered by zone and nodes within zones.
4857 * This results in conserving DMA zone[s] until all Normal memory is
4858 * exhausted, but results in overflowing to remote node while memory
4859 * may still exist in local DMA zone.
4860 */
4861 static int node_order[MAX_NUMNODES];
4862
4863 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4864 {
4865 int pos, j, node;
4866 int zone_type; /* needs to be signed */
4867 struct zone *z;
4868 struct zonelist *zonelist;
4869
4870 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4871 pos = 0;
4872 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4873 for (j = 0; j < nr_nodes; j++) {
4874 node = node_order[j];
4875 z = &NODE_DATA(node)->node_zones[zone_type];
4876 if (managed_zone(z)) {
4877 zoneref_set_zone(z,
4878 &zonelist->_zonerefs[pos++]);
4879 check_highest_zone(zone_type);
4880 }
4881 }
4882 }
4883 zonelist->_zonerefs[pos].zone = NULL;
4884 zonelist->_zonerefs[pos].zone_idx = 0;
4885 }
4886
4887 #if defined(CONFIG_64BIT)
4888 /*
4889 * Devices that require DMA32/DMA are relatively rare and do not justify a
4890 * penalty to every machine in case the specialised case applies. Default
4891 * to Node-ordering on 64-bit NUMA machines
4892 */
4893 static int default_zonelist_order(void)
4894 {
4895 return ZONELIST_ORDER_NODE;
4896 }
4897 #else
4898 /*
4899 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4900 * by the kernel. If processes running on node 0 deplete the low memory zone
4901 * then reclaim will occur more frequency increasing stalls and potentially
4902 * be easier to OOM if a large percentage of the zone is under writeback or
4903 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4904 * Hence, default to zone ordering on 32-bit.
4905 */
4906 static int default_zonelist_order(void)
4907 {
4908 return ZONELIST_ORDER_ZONE;
4909 }
4910 #endif /* CONFIG_64BIT */
4911
4912 static void set_zonelist_order(void)
4913 {
4914 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4915 current_zonelist_order = default_zonelist_order();
4916 else
4917 current_zonelist_order = user_zonelist_order;
4918 }
4919
4920 static void build_zonelists(pg_data_t *pgdat)
4921 {
4922 int i, node, load;
4923 nodemask_t used_mask;
4924 int local_node, prev_node;
4925 struct zonelist *zonelist;
4926 unsigned int order = current_zonelist_order;
4927
4928 /* initialize zonelists */
4929 for (i = 0; i < MAX_ZONELISTS; i++) {
4930 zonelist = pgdat->node_zonelists + i;
4931 zonelist->_zonerefs[0].zone = NULL;
4932 zonelist->_zonerefs[0].zone_idx = 0;
4933 }
4934
4935 /* NUMA-aware ordering of nodes */
4936 local_node = pgdat->node_id;
4937 load = nr_online_nodes;
4938 prev_node = local_node;
4939 nodes_clear(used_mask);
4940
4941 memset(node_order, 0, sizeof(node_order));
4942 i = 0;
4943
4944 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4945 /*
4946 * We don't want to pressure a particular node.
4947 * So adding penalty to the first node in same
4948 * distance group to make it round-robin.
4949 */
4950 if (node_distance(local_node, node) !=
4951 node_distance(local_node, prev_node))
4952 node_load[node] = load;
4953
4954 prev_node = node;
4955 load--;
4956 if (order == ZONELIST_ORDER_NODE)
4957 build_zonelists_in_node_order(pgdat, node);
4958 else
4959 node_order[i++] = node; /* remember order */
4960 }
4961
4962 if (order == ZONELIST_ORDER_ZONE) {
4963 /* calculate node order -- i.e., DMA last! */
4964 build_zonelists_in_zone_order(pgdat, i);
4965 }
4966
4967 build_thisnode_zonelists(pgdat);
4968 }
4969
4970 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4971 /*
4972 * Return node id of node used for "local" allocations.
4973 * I.e., first node id of first zone in arg node's generic zonelist.
4974 * Used for initializing percpu 'numa_mem', which is used primarily
4975 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4976 */
4977 int local_memory_node(int node)
4978 {
4979 struct zoneref *z;
4980
4981 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4982 gfp_zone(GFP_KERNEL),
4983 NULL);
4984 return z->zone->node;
4985 }
4986 #endif
4987
4988 static void setup_min_unmapped_ratio(void);
4989 static void setup_min_slab_ratio(void);
4990 #else /* CONFIG_NUMA */
4991
4992 static void set_zonelist_order(void)
4993 {
4994 current_zonelist_order = ZONELIST_ORDER_ZONE;
4995 }
4996
4997 static void build_zonelists(pg_data_t *pgdat)
4998 {
4999 int node, local_node;
5000 enum zone_type j;
5001 struct zonelist *zonelist;
5002
5003 local_node = pgdat->node_id;
5004
5005 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5006 j = build_zonelists_node(pgdat, zonelist, 0);
5007
5008 /*
5009 * Now we build the zonelist so that it contains the zones
5010 * of all the other nodes.
5011 * We don't want to pressure a particular node, so when
5012 * building the zones for node N, we make sure that the
5013 * zones coming right after the local ones are those from
5014 * node N+1 (modulo N)
5015 */
5016 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5017 if (!node_online(node))
5018 continue;
5019 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5020 }
5021 for (node = 0; node < local_node; node++) {
5022 if (!node_online(node))
5023 continue;
5024 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5025 }
5026
5027 zonelist->_zonerefs[j].zone = NULL;
5028 zonelist->_zonerefs[j].zone_idx = 0;
5029 }
5030
5031 #endif /* CONFIG_NUMA */
5032
5033 /*
5034 * Boot pageset table. One per cpu which is going to be used for all
5035 * zones and all nodes. The parameters will be set in such a way
5036 * that an item put on a list will immediately be handed over to
5037 * the buddy list. This is safe since pageset manipulation is done
5038 * with interrupts disabled.
5039 *
5040 * The boot_pagesets must be kept even after bootup is complete for
5041 * unused processors and/or zones. They do play a role for bootstrapping
5042 * hotplugged processors.
5043 *
5044 * zoneinfo_show() and maybe other functions do
5045 * not check if the processor is online before following the pageset pointer.
5046 * Other parts of the kernel may not check if the zone is available.
5047 */
5048 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5049 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5050 static void setup_zone_pageset(struct zone *zone);
5051
5052 /*
5053 * Global mutex to protect against size modification of zonelists
5054 * as well as to serialize pageset setup for the new populated zone.
5055 */
5056 DEFINE_MUTEX(zonelists_mutex);
5057
5058 /* return values int ....just for stop_machine() */
5059 static int __build_all_zonelists(void *data)
5060 {
5061 int nid;
5062 int cpu;
5063 pg_data_t *self = data;
5064
5065 #ifdef CONFIG_NUMA
5066 memset(node_load, 0, sizeof(node_load));
5067 #endif
5068
5069 if (self && !node_online(self->node_id)) {
5070 build_zonelists(self);
5071 }
5072
5073 for_each_online_node(nid) {
5074 pg_data_t *pgdat = NODE_DATA(nid);
5075
5076 build_zonelists(pgdat);
5077 }
5078
5079 /*
5080 * Initialize the boot_pagesets that are going to be used
5081 * for bootstrapping processors. The real pagesets for
5082 * each zone will be allocated later when the per cpu
5083 * allocator is available.
5084 *
5085 * boot_pagesets are used also for bootstrapping offline
5086 * cpus if the system is already booted because the pagesets
5087 * are needed to initialize allocators on a specific cpu too.
5088 * F.e. the percpu allocator needs the page allocator which
5089 * needs the percpu allocator in order to allocate its pagesets
5090 * (a chicken-egg dilemma).
5091 */
5092 for_each_possible_cpu(cpu) {
5093 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5094
5095 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5096 /*
5097 * We now know the "local memory node" for each node--
5098 * i.e., the node of the first zone in the generic zonelist.
5099 * Set up numa_mem percpu variable for on-line cpus. During
5100 * boot, only the boot cpu should be on-line; we'll init the
5101 * secondary cpus' numa_mem as they come on-line. During
5102 * node/memory hotplug, we'll fixup all on-line cpus.
5103 */
5104 if (cpu_online(cpu))
5105 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5106 #endif
5107 }
5108
5109 return 0;
5110 }
5111
5112 static noinline void __init
5113 build_all_zonelists_init(void)
5114 {
5115 __build_all_zonelists(NULL);
5116 mminit_verify_zonelist();
5117 cpuset_init_current_mems_allowed();
5118 }
5119
5120 /*
5121 * Called with zonelists_mutex held always
5122 * unless system_state == SYSTEM_BOOTING.
5123 *
5124 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5125 * [we're only called with non-NULL zone through __meminit paths] and
5126 * (2) call of __init annotated helper build_all_zonelists_init
5127 * [protected by SYSTEM_BOOTING].
5128 */
5129 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5130 {
5131 set_zonelist_order();
5132
5133 if (system_state == SYSTEM_BOOTING) {
5134 build_all_zonelists_init();
5135 } else {
5136 #ifdef CONFIG_MEMORY_HOTPLUG
5137 if (zone)
5138 setup_zone_pageset(zone);
5139 #endif
5140 /* we have to stop all cpus to guarantee there is no user
5141 of zonelist */
5142 stop_machine(__build_all_zonelists, pgdat, NULL);
5143 /* cpuset refresh routine should be here */
5144 }
5145 vm_total_pages = nr_free_pagecache_pages();
5146 /*
5147 * Disable grouping by mobility if the number of pages in the
5148 * system is too low to allow the mechanism to work. It would be
5149 * more accurate, but expensive to check per-zone. This check is
5150 * made on memory-hotadd so a system can start with mobility
5151 * disabled and enable it later
5152 */
5153 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5154 page_group_by_mobility_disabled = 1;
5155 else
5156 page_group_by_mobility_disabled = 0;
5157
5158 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5159 nr_online_nodes,
5160 zonelist_order_name[current_zonelist_order],
5161 page_group_by_mobility_disabled ? "off" : "on",
5162 vm_total_pages);
5163 #ifdef CONFIG_NUMA
5164 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5165 #endif
5166 }
5167
5168 /*
5169 * Initially all pages are reserved - free ones are freed
5170 * up by free_all_bootmem() once the early boot process is
5171 * done. Non-atomic initialization, single-pass.
5172 */
5173 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5174 unsigned long start_pfn, enum memmap_context context)
5175 {
5176 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5177 unsigned long end_pfn = start_pfn + size;
5178 pg_data_t *pgdat = NODE_DATA(nid);
5179 unsigned long pfn;
5180 unsigned long nr_initialised = 0;
5181 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5182 struct memblock_region *r = NULL, *tmp;
5183 #endif
5184
5185 if (highest_memmap_pfn < end_pfn - 1)
5186 highest_memmap_pfn = end_pfn - 1;
5187
5188 /*
5189 * Honor reservation requested by the driver for this ZONE_DEVICE
5190 * memory
5191 */
5192 if (altmap && start_pfn == altmap->base_pfn)
5193 start_pfn += altmap->reserve;
5194
5195 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5196 /*
5197 * There can be holes in boot-time mem_map[]s handed to this
5198 * function. They do not exist on hotplugged memory.
5199 */
5200 if (context != MEMMAP_EARLY)
5201 goto not_early;
5202
5203 if (!early_pfn_valid(pfn)) {
5204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5205 /*
5206 * Skip to the pfn preceding the next valid one (or
5207 * end_pfn), such that we hit a valid pfn (or end_pfn)
5208 * on our next iteration of the loop.
5209 */
5210 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5211 #endif
5212 continue;
5213 }
5214 if (!early_pfn_in_nid(pfn, nid))
5215 continue;
5216 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5217 break;
5218
5219 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5220 /*
5221 * Check given memblock attribute by firmware which can affect
5222 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5223 * mirrored, it's an overlapped memmap init. skip it.
5224 */
5225 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5226 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5227 for_each_memblock(memory, tmp)
5228 if (pfn < memblock_region_memory_end_pfn(tmp))
5229 break;
5230 r = tmp;
5231 }
5232 if (pfn >= memblock_region_memory_base_pfn(r) &&
5233 memblock_is_mirror(r)) {
5234 /* already initialized as NORMAL */
5235 pfn = memblock_region_memory_end_pfn(r);
5236 continue;
5237 }
5238 }
5239 #endif
5240
5241 not_early:
5242 /*
5243 * Mark the block movable so that blocks are reserved for
5244 * movable at startup. This will force kernel allocations
5245 * to reserve their blocks rather than leaking throughout
5246 * the address space during boot when many long-lived
5247 * kernel allocations are made.
5248 *
5249 * bitmap is created for zone's valid pfn range. but memmap
5250 * can be created for invalid pages (for alignment)
5251 * check here not to call set_pageblock_migratetype() against
5252 * pfn out of zone.
5253 */
5254 if (!(pfn & (pageblock_nr_pages - 1))) {
5255 struct page *page = pfn_to_page(pfn);
5256
5257 __init_single_page(page, pfn, zone, nid);
5258 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5259 } else {
5260 __init_single_pfn(pfn, zone, nid);
5261 }
5262 }
5263 }
5264
5265 static void __meminit zone_init_free_lists(struct zone *zone)
5266 {
5267 unsigned int order, t;
5268 for_each_migratetype_order(order, t) {
5269 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5270 zone->free_area[order].nr_free = 0;
5271 }
5272 }
5273
5274 #ifndef __HAVE_ARCH_MEMMAP_INIT
5275 #define memmap_init(size, nid, zone, start_pfn) \
5276 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5277 #endif
5278
5279 static int zone_batchsize(struct zone *zone)
5280 {
5281 #ifdef CONFIG_MMU
5282 int batch;
5283
5284 /*
5285 * The per-cpu-pages pools are set to around 1000th of the
5286 * size of the zone. But no more than 1/2 of a meg.
5287 *
5288 * OK, so we don't know how big the cache is. So guess.
5289 */
5290 batch = zone->managed_pages / 1024;
5291 if (batch * PAGE_SIZE > 512 * 1024)
5292 batch = (512 * 1024) / PAGE_SIZE;
5293 batch /= 4; /* We effectively *= 4 below */
5294 if (batch < 1)
5295 batch = 1;
5296
5297 /*
5298 * Clamp the batch to a 2^n - 1 value. Having a power
5299 * of 2 value was found to be more likely to have
5300 * suboptimal cache aliasing properties in some cases.
5301 *
5302 * For example if 2 tasks are alternately allocating
5303 * batches of pages, one task can end up with a lot
5304 * of pages of one half of the possible page colors
5305 * and the other with pages of the other colors.
5306 */
5307 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5308
5309 return batch;
5310
5311 #else
5312 /* The deferral and batching of frees should be suppressed under NOMMU
5313 * conditions.
5314 *
5315 * The problem is that NOMMU needs to be able to allocate large chunks
5316 * of contiguous memory as there's no hardware page translation to
5317 * assemble apparent contiguous memory from discontiguous pages.
5318 *
5319 * Queueing large contiguous runs of pages for batching, however,
5320 * causes the pages to actually be freed in smaller chunks. As there
5321 * can be a significant delay between the individual batches being
5322 * recycled, this leads to the once large chunks of space being
5323 * fragmented and becoming unavailable for high-order allocations.
5324 */
5325 return 0;
5326 #endif
5327 }
5328
5329 /*
5330 * pcp->high and pcp->batch values are related and dependent on one another:
5331 * ->batch must never be higher then ->high.
5332 * The following function updates them in a safe manner without read side
5333 * locking.
5334 *
5335 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5336 * those fields changing asynchronously (acording the the above rule).
5337 *
5338 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5339 * outside of boot time (or some other assurance that no concurrent updaters
5340 * exist).
5341 */
5342 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5343 unsigned long batch)
5344 {
5345 /* start with a fail safe value for batch */
5346 pcp->batch = 1;
5347 smp_wmb();
5348
5349 /* Update high, then batch, in order */
5350 pcp->high = high;
5351 smp_wmb();
5352
5353 pcp->batch = batch;
5354 }
5355
5356 /* a companion to pageset_set_high() */
5357 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5358 {
5359 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5360 }
5361
5362 static void pageset_init(struct per_cpu_pageset *p)
5363 {
5364 struct per_cpu_pages *pcp;
5365 int migratetype;
5366
5367 memset(p, 0, sizeof(*p));
5368
5369 pcp = &p->pcp;
5370 pcp->count = 0;
5371 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5372 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5373 }
5374
5375 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5376 {
5377 pageset_init(p);
5378 pageset_set_batch(p, batch);
5379 }
5380
5381 /*
5382 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5383 * to the value high for the pageset p.
5384 */
5385 static void pageset_set_high(struct per_cpu_pageset *p,
5386 unsigned long high)
5387 {
5388 unsigned long batch = max(1UL, high / 4);
5389 if ((high / 4) > (PAGE_SHIFT * 8))
5390 batch = PAGE_SHIFT * 8;
5391
5392 pageset_update(&p->pcp, high, batch);
5393 }
5394
5395 static void pageset_set_high_and_batch(struct zone *zone,
5396 struct per_cpu_pageset *pcp)
5397 {
5398 if (percpu_pagelist_fraction)
5399 pageset_set_high(pcp,
5400 (zone->managed_pages /
5401 percpu_pagelist_fraction));
5402 else
5403 pageset_set_batch(pcp, zone_batchsize(zone));
5404 }
5405
5406 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5407 {
5408 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5409
5410 pageset_init(pcp);
5411 pageset_set_high_and_batch(zone, pcp);
5412 }
5413
5414 static void __meminit setup_zone_pageset(struct zone *zone)
5415 {
5416 int cpu;
5417 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5418 for_each_possible_cpu(cpu)
5419 zone_pageset_init(zone, cpu);
5420 }
5421
5422 /*
5423 * Allocate per cpu pagesets and initialize them.
5424 * Before this call only boot pagesets were available.
5425 */
5426 void __init setup_per_cpu_pageset(void)
5427 {
5428 struct pglist_data *pgdat;
5429 struct zone *zone;
5430
5431 for_each_populated_zone(zone)
5432 setup_zone_pageset(zone);
5433
5434 for_each_online_pgdat(pgdat)
5435 pgdat->per_cpu_nodestats =
5436 alloc_percpu(struct per_cpu_nodestat);
5437 }
5438
5439 static __meminit void zone_pcp_init(struct zone *zone)
5440 {
5441 /*
5442 * per cpu subsystem is not up at this point. The following code
5443 * relies on the ability of the linker to provide the
5444 * offset of a (static) per cpu variable into the per cpu area.
5445 */
5446 zone->pageset = &boot_pageset;
5447
5448 if (populated_zone(zone))
5449 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5450 zone->name, zone->present_pages,
5451 zone_batchsize(zone));
5452 }
5453
5454 int __meminit init_currently_empty_zone(struct zone *zone,
5455 unsigned long zone_start_pfn,
5456 unsigned long size)
5457 {
5458 struct pglist_data *pgdat = zone->zone_pgdat;
5459
5460 pgdat->nr_zones = zone_idx(zone) + 1;
5461
5462 zone->zone_start_pfn = zone_start_pfn;
5463
5464 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5465 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5466 pgdat->node_id,
5467 (unsigned long)zone_idx(zone),
5468 zone_start_pfn, (zone_start_pfn + size));
5469
5470 zone_init_free_lists(zone);
5471 zone->initialized = 1;
5472
5473 return 0;
5474 }
5475
5476 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5477 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5478
5479 /*
5480 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5481 */
5482 int __meminit __early_pfn_to_nid(unsigned long pfn,
5483 struct mminit_pfnnid_cache *state)
5484 {
5485 unsigned long start_pfn, end_pfn;
5486 int nid;
5487
5488 if (state->last_start <= pfn && pfn < state->last_end)
5489 return state->last_nid;
5490
5491 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5492 if (nid != -1) {
5493 state->last_start = start_pfn;
5494 state->last_end = end_pfn;
5495 state->last_nid = nid;
5496 }
5497
5498 return nid;
5499 }
5500 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5501
5502 /**
5503 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5504 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5505 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5506 *
5507 * If an architecture guarantees that all ranges registered contain no holes
5508 * and may be freed, this this function may be used instead of calling
5509 * memblock_free_early_nid() manually.
5510 */
5511 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5512 {
5513 unsigned long start_pfn, end_pfn;
5514 int i, this_nid;
5515
5516 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5517 start_pfn = min(start_pfn, max_low_pfn);
5518 end_pfn = min(end_pfn, max_low_pfn);
5519
5520 if (start_pfn < end_pfn)
5521 memblock_free_early_nid(PFN_PHYS(start_pfn),
5522 (end_pfn - start_pfn) << PAGE_SHIFT,
5523 this_nid);
5524 }
5525 }
5526
5527 /**
5528 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5529 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5530 *
5531 * If an architecture guarantees that all ranges registered contain no holes and may
5532 * be freed, this function may be used instead of calling memory_present() manually.
5533 */
5534 void __init sparse_memory_present_with_active_regions(int nid)
5535 {
5536 unsigned long start_pfn, end_pfn;
5537 int i, this_nid;
5538
5539 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5540 memory_present(this_nid, start_pfn, end_pfn);
5541 }
5542
5543 /**
5544 * get_pfn_range_for_nid - Return the start and end page frames for a node
5545 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5546 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5547 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5548 *
5549 * It returns the start and end page frame of a node based on information
5550 * provided by memblock_set_node(). If called for a node
5551 * with no available memory, a warning is printed and the start and end
5552 * PFNs will be 0.
5553 */
5554 void __meminit get_pfn_range_for_nid(unsigned int nid,
5555 unsigned long *start_pfn, unsigned long *end_pfn)
5556 {
5557 unsigned long this_start_pfn, this_end_pfn;
5558 int i;
5559
5560 *start_pfn = -1UL;
5561 *end_pfn = 0;
5562
5563 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5564 *start_pfn = min(*start_pfn, this_start_pfn);
5565 *end_pfn = max(*end_pfn, this_end_pfn);
5566 }
5567
5568 if (*start_pfn == -1UL)
5569 *start_pfn = 0;
5570 }
5571
5572 /*
5573 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5574 * assumption is made that zones within a node are ordered in monotonic
5575 * increasing memory addresses so that the "highest" populated zone is used
5576 */
5577 static void __init find_usable_zone_for_movable(void)
5578 {
5579 int zone_index;
5580 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5581 if (zone_index == ZONE_MOVABLE)
5582 continue;
5583
5584 if (arch_zone_highest_possible_pfn[zone_index] >
5585 arch_zone_lowest_possible_pfn[zone_index])
5586 break;
5587 }
5588
5589 VM_BUG_ON(zone_index == -1);
5590 movable_zone = zone_index;
5591 }
5592
5593 /*
5594 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5595 * because it is sized independent of architecture. Unlike the other zones,
5596 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5597 * in each node depending on the size of each node and how evenly kernelcore
5598 * is distributed. This helper function adjusts the zone ranges
5599 * provided by the architecture for a given node by using the end of the
5600 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5601 * zones within a node are in order of monotonic increases memory addresses
5602 */
5603 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5604 unsigned long zone_type,
5605 unsigned long node_start_pfn,
5606 unsigned long node_end_pfn,
5607 unsigned long *zone_start_pfn,
5608 unsigned long *zone_end_pfn)
5609 {
5610 /* Only adjust if ZONE_MOVABLE is on this node */
5611 if (zone_movable_pfn[nid]) {
5612 /* Size ZONE_MOVABLE */
5613 if (zone_type == ZONE_MOVABLE) {
5614 *zone_start_pfn = zone_movable_pfn[nid];
5615 *zone_end_pfn = min(node_end_pfn,
5616 arch_zone_highest_possible_pfn[movable_zone]);
5617
5618 /* Adjust for ZONE_MOVABLE starting within this range */
5619 } else if (!mirrored_kernelcore &&
5620 *zone_start_pfn < zone_movable_pfn[nid] &&
5621 *zone_end_pfn > zone_movable_pfn[nid]) {
5622 *zone_end_pfn = zone_movable_pfn[nid];
5623
5624 /* Check if this whole range is within ZONE_MOVABLE */
5625 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5626 *zone_start_pfn = *zone_end_pfn;
5627 }
5628 }
5629
5630 /*
5631 * Return the number of pages a zone spans in a node, including holes
5632 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5633 */
5634 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5635 unsigned long zone_type,
5636 unsigned long node_start_pfn,
5637 unsigned long node_end_pfn,
5638 unsigned long *zone_start_pfn,
5639 unsigned long *zone_end_pfn,
5640 unsigned long *ignored)
5641 {
5642 /* When hotadd a new node from cpu_up(), the node should be empty */
5643 if (!node_start_pfn && !node_end_pfn)
5644 return 0;
5645
5646 /* Get the start and end of the zone */
5647 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5648 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5649 adjust_zone_range_for_zone_movable(nid, zone_type,
5650 node_start_pfn, node_end_pfn,
5651 zone_start_pfn, zone_end_pfn);
5652
5653 /* Check that this node has pages within the zone's required range */
5654 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5655 return 0;
5656
5657 /* Move the zone boundaries inside the node if necessary */
5658 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5659 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5660
5661 /* Return the spanned pages */
5662 return *zone_end_pfn - *zone_start_pfn;
5663 }
5664
5665 /*
5666 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5667 * then all holes in the requested range will be accounted for.
5668 */
5669 unsigned long __meminit __absent_pages_in_range(int nid,
5670 unsigned long range_start_pfn,
5671 unsigned long range_end_pfn)
5672 {
5673 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5674 unsigned long start_pfn, end_pfn;
5675 int i;
5676
5677 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5678 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5679 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5680 nr_absent -= end_pfn - start_pfn;
5681 }
5682 return nr_absent;
5683 }
5684
5685 /**
5686 * absent_pages_in_range - Return number of page frames in holes within a range
5687 * @start_pfn: The start PFN to start searching for holes
5688 * @end_pfn: The end PFN to stop searching for holes
5689 *
5690 * It returns the number of pages frames in memory holes within a range.
5691 */
5692 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5693 unsigned long end_pfn)
5694 {
5695 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5696 }
5697
5698 /* Return the number of page frames in holes in a zone on a node */
5699 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5700 unsigned long zone_type,
5701 unsigned long node_start_pfn,
5702 unsigned long node_end_pfn,
5703 unsigned long *ignored)
5704 {
5705 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5706 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5707 unsigned long zone_start_pfn, zone_end_pfn;
5708 unsigned long nr_absent;
5709
5710 /* When hotadd a new node from cpu_up(), the node should be empty */
5711 if (!node_start_pfn && !node_end_pfn)
5712 return 0;
5713
5714 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5715 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5716
5717 adjust_zone_range_for_zone_movable(nid, zone_type,
5718 node_start_pfn, node_end_pfn,
5719 &zone_start_pfn, &zone_end_pfn);
5720 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5721
5722 /*
5723 * ZONE_MOVABLE handling.
5724 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5725 * and vice versa.
5726 */
5727 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5728 unsigned long start_pfn, end_pfn;
5729 struct memblock_region *r;
5730
5731 for_each_memblock(memory, r) {
5732 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5733 zone_start_pfn, zone_end_pfn);
5734 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5735 zone_start_pfn, zone_end_pfn);
5736
5737 if (zone_type == ZONE_MOVABLE &&
5738 memblock_is_mirror(r))
5739 nr_absent += end_pfn - start_pfn;
5740
5741 if (zone_type == ZONE_NORMAL &&
5742 !memblock_is_mirror(r))
5743 nr_absent += end_pfn - start_pfn;
5744 }
5745 }
5746
5747 return nr_absent;
5748 }
5749
5750 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5751 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5752 unsigned long zone_type,
5753 unsigned long node_start_pfn,
5754 unsigned long node_end_pfn,
5755 unsigned long *zone_start_pfn,
5756 unsigned long *zone_end_pfn,
5757 unsigned long *zones_size)
5758 {
5759 unsigned int zone;
5760
5761 *zone_start_pfn = node_start_pfn;
5762 for (zone = 0; zone < zone_type; zone++)
5763 *zone_start_pfn += zones_size[zone];
5764
5765 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5766
5767 return zones_size[zone_type];
5768 }
5769
5770 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5771 unsigned long zone_type,
5772 unsigned long node_start_pfn,
5773 unsigned long node_end_pfn,
5774 unsigned long *zholes_size)
5775 {
5776 if (!zholes_size)
5777 return 0;
5778
5779 return zholes_size[zone_type];
5780 }
5781
5782 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5783
5784 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5785 unsigned long node_start_pfn,
5786 unsigned long node_end_pfn,
5787 unsigned long *zones_size,
5788 unsigned long *zholes_size)
5789 {
5790 unsigned long realtotalpages = 0, totalpages = 0;
5791 enum zone_type i;
5792
5793 for (i = 0; i < MAX_NR_ZONES; i++) {
5794 struct zone *zone = pgdat->node_zones + i;
5795 unsigned long zone_start_pfn, zone_end_pfn;
5796 unsigned long size, real_size;
5797
5798 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5799 node_start_pfn,
5800 node_end_pfn,
5801 &zone_start_pfn,
5802 &zone_end_pfn,
5803 zones_size);
5804 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5805 node_start_pfn, node_end_pfn,
5806 zholes_size);
5807 if (size)
5808 zone->zone_start_pfn = zone_start_pfn;
5809 else
5810 zone->zone_start_pfn = 0;
5811 zone->spanned_pages = size;
5812 zone->present_pages = real_size;
5813
5814 totalpages += size;
5815 realtotalpages += real_size;
5816 }
5817
5818 pgdat->node_spanned_pages = totalpages;
5819 pgdat->node_present_pages = realtotalpages;
5820 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5821 realtotalpages);
5822 }
5823
5824 #ifndef CONFIG_SPARSEMEM
5825 /*
5826 * Calculate the size of the zone->blockflags rounded to an unsigned long
5827 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5828 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5829 * round what is now in bits to nearest long in bits, then return it in
5830 * bytes.
5831 */
5832 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5833 {
5834 unsigned long usemapsize;
5835
5836 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5837 usemapsize = roundup(zonesize, pageblock_nr_pages);
5838 usemapsize = usemapsize >> pageblock_order;
5839 usemapsize *= NR_PAGEBLOCK_BITS;
5840 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5841
5842 return usemapsize / 8;
5843 }
5844
5845 static void __init setup_usemap(struct pglist_data *pgdat,
5846 struct zone *zone,
5847 unsigned long zone_start_pfn,
5848 unsigned long zonesize)
5849 {
5850 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5851 zone->pageblock_flags = NULL;
5852 if (usemapsize)
5853 zone->pageblock_flags =
5854 memblock_virt_alloc_node_nopanic(usemapsize,
5855 pgdat->node_id);
5856 }
5857 #else
5858 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5859 unsigned long zone_start_pfn, unsigned long zonesize) {}
5860 #endif /* CONFIG_SPARSEMEM */
5861
5862 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5863
5864 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5865 void __paginginit set_pageblock_order(void)
5866 {
5867 unsigned int order;
5868
5869 /* Check that pageblock_nr_pages has not already been setup */
5870 if (pageblock_order)
5871 return;
5872
5873 if (HPAGE_SHIFT > PAGE_SHIFT)
5874 order = HUGETLB_PAGE_ORDER;
5875 else
5876 order = MAX_ORDER - 1;
5877
5878 /*
5879 * Assume the largest contiguous order of interest is a huge page.
5880 * This value may be variable depending on boot parameters on IA64 and
5881 * powerpc.
5882 */
5883 pageblock_order = order;
5884 }
5885 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5886
5887 /*
5888 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5889 * is unused as pageblock_order is set at compile-time. See
5890 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5891 * the kernel config
5892 */
5893 void __paginginit set_pageblock_order(void)
5894 {
5895 }
5896
5897 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5898
5899 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5900 unsigned long present_pages)
5901 {
5902 unsigned long pages = spanned_pages;
5903
5904 /*
5905 * Provide a more accurate estimation if there are holes within
5906 * the zone and SPARSEMEM is in use. If there are holes within the
5907 * zone, each populated memory region may cost us one or two extra
5908 * memmap pages due to alignment because memmap pages for each
5909 * populated regions may not be naturally aligned on page boundary.
5910 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5911 */
5912 if (spanned_pages > present_pages + (present_pages >> 4) &&
5913 IS_ENABLED(CONFIG_SPARSEMEM))
5914 pages = present_pages;
5915
5916 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5917 }
5918
5919 /*
5920 * Set up the zone data structures:
5921 * - mark all pages reserved
5922 * - mark all memory queues empty
5923 * - clear the memory bitmaps
5924 *
5925 * NOTE: pgdat should get zeroed by caller.
5926 */
5927 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5928 {
5929 enum zone_type j;
5930 int nid = pgdat->node_id;
5931 int ret;
5932
5933 pgdat_resize_init(pgdat);
5934 #ifdef CONFIG_NUMA_BALANCING
5935 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5936 pgdat->numabalancing_migrate_nr_pages = 0;
5937 pgdat->numabalancing_migrate_next_window = jiffies;
5938 #endif
5939 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5940 spin_lock_init(&pgdat->split_queue_lock);
5941 INIT_LIST_HEAD(&pgdat->split_queue);
5942 pgdat->split_queue_len = 0;
5943 #endif
5944 init_waitqueue_head(&pgdat->kswapd_wait);
5945 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5946 #ifdef CONFIG_COMPACTION
5947 init_waitqueue_head(&pgdat->kcompactd_wait);
5948 #endif
5949 pgdat_page_ext_init(pgdat);
5950 spin_lock_init(&pgdat->lru_lock);
5951 lruvec_init(node_lruvec(pgdat));
5952
5953 for (j = 0; j < MAX_NR_ZONES; j++) {
5954 struct zone *zone = pgdat->node_zones + j;
5955 unsigned long size, realsize, freesize, memmap_pages;
5956 unsigned long zone_start_pfn = zone->zone_start_pfn;
5957
5958 size = zone->spanned_pages;
5959 realsize = freesize = zone->present_pages;
5960
5961 /*
5962 * Adjust freesize so that it accounts for how much memory
5963 * is used by this zone for memmap. This affects the watermark
5964 * and per-cpu initialisations
5965 */
5966 memmap_pages = calc_memmap_size(size, realsize);
5967 if (!is_highmem_idx(j)) {
5968 if (freesize >= memmap_pages) {
5969 freesize -= memmap_pages;
5970 if (memmap_pages)
5971 printk(KERN_DEBUG
5972 " %s zone: %lu pages used for memmap\n",
5973 zone_names[j], memmap_pages);
5974 } else
5975 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5976 zone_names[j], memmap_pages, freesize);
5977 }
5978
5979 /* Account for reserved pages */
5980 if (j == 0 && freesize > dma_reserve) {
5981 freesize -= dma_reserve;
5982 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5983 zone_names[0], dma_reserve);
5984 }
5985
5986 if (!is_highmem_idx(j))
5987 nr_kernel_pages += freesize;
5988 /* Charge for highmem memmap if there are enough kernel pages */
5989 else if (nr_kernel_pages > memmap_pages * 2)
5990 nr_kernel_pages -= memmap_pages;
5991 nr_all_pages += freesize;
5992
5993 /*
5994 * Set an approximate value for lowmem here, it will be adjusted
5995 * when the bootmem allocator frees pages into the buddy system.
5996 * And all highmem pages will be managed by the buddy system.
5997 */
5998 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5999 #ifdef CONFIG_NUMA
6000 zone->node = nid;
6001 #endif
6002 zone->name = zone_names[j];
6003 zone->zone_pgdat = pgdat;
6004 spin_lock_init(&zone->lock);
6005 zone_seqlock_init(zone);
6006 zone_pcp_init(zone);
6007
6008 if (!size)
6009 continue;
6010
6011 set_pageblock_order();
6012 setup_usemap(pgdat, zone, zone_start_pfn, size);
6013 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6014 BUG_ON(ret);
6015 memmap_init(size, nid, j, zone_start_pfn);
6016 }
6017 }
6018
6019 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6020 {
6021 unsigned long __maybe_unused start = 0;
6022 unsigned long __maybe_unused offset = 0;
6023
6024 /* Skip empty nodes */
6025 if (!pgdat->node_spanned_pages)
6026 return;
6027
6028 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6029 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6030 offset = pgdat->node_start_pfn - start;
6031 /* ia64 gets its own node_mem_map, before this, without bootmem */
6032 if (!pgdat->node_mem_map) {
6033 unsigned long size, end;
6034 struct page *map;
6035
6036 /*
6037 * The zone's endpoints aren't required to be MAX_ORDER
6038 * aligned but the node_mem_map endpoints must be in order
6039 * for the buddy allocator to function correctly.
6040 */
6041 end = pgdat_end_pfn(pgdat);
6042 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6043 size = (end - start) * sizeof(struct page);
6044 map = alloc_remap(pgdat->node_id, size);
6045 if (!map)
6046 map = memblock_virt_alloc_node_nopanic(size,
6047 pgdat->node_id);
6048 pgdat->node_mem_map = map + offset;
6049 }
6050 #ifndef CONFIG_NEED_MULTIPLE_NODES
6051 /*
6052 * With no DISCONTIG, the global mem_map is just set as node 0's
6053 */
6054 if (pgdat == NODE_DATA(0)) {
6055 mem_map = NODE_DATA(0)->node_mem_map;
6056 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6057 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6058 mem_map -= offset;
6059 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6060 }
6061 #endif
6062 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6063 }
6064
6065 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6066 unsigned long node_start_pfn, unsigned long *zholes_size)
6067 {
6068 pg_data_t *pgdat = NODE_DATA(nid);
6069 unsigned long start_pfn = 0;
6070 unsigned long end_pfn = 0;
6071
6072 /* pg_data_t should be reset to zero when it's allocated */
6073 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6074
6075 reset_deferred_meminit(pgdat);
6076 pgdat->node_id = nid;
6077 pgdat->node_start_pfn = node_start_pfn;
6078 pgdat->per_cpu_nodestats = NULL;
6079 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6080 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6081 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6082 (u64)start_pfn << PAGE_SHIFT,
6083 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6084 #else
6085 start_pfn = node_start_pfn;
6086 #endif
6087 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6088 zones_size, zholes_size);
6089
6090 alloc_node_mem_map(pgdat);
6091 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6092 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6093 nid, (unsigned long)pgdat,
6094 (unsigned long)pgdat->node_mem_map);
6095 #endif
6096
6097 free_area_init_core(pgdat);
6098 }
6099
6100 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6101
6102 #if MAX_NUMNODES > 1
6103 /*
6104 * Figure out the number of possible node ids.
6105 */
6106 void __init setup_nr_node_ids(void)
6107 {
6108 unsigned int highest;
6109
6110 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6111 nr_node_ids = highest + 1;
6112 }
6113 #endif
6114
6115 /**
6116 * node_map_pfn_alignment - determine the maximum internode alignment
6117 *
6118 * This function should be called after node map is populated and sorted.
6119 * It calculates the maximum power of two alignment which can distinguish
6120 * all the nodes.
6121 *
6122 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6123 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6124 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6125 * shifted, 1GiB is enough and this function will indicate so.
6126 *
6127 * This is used to test whether pfn -> nid mapping of the chosen memory
6128 * model has fine enough granularity to avoid incorrect mapping for the
6129 * populated node map.
6130 *
6131 * Returns the determined alignment in pfn's. 0 if there is no alignment
6132 * requirement (single node).
6133 */
6134 unsigned long __init node_map_pfn_alignment(void)
6135 {
6136 unsigned long accl_mask = 0, last_end = 0;
6137 unsigned long start, end, mask;
6138 int last_nid = -1;
6139 int i, nid;
6140
6141 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6142 if (!start || last_nid < 0 || last_nid == nid) {
6143 last_nid = nid;
6144 last_end = end;
6145 continue;
6146 }
6147
6148 /*
6149 * Start with a mask granular enough to pin-point to the
6150 * start pfn and tick off bits one-by-one until it becomes
6151 * too coarse to separate the current node from the last.
6152 */
6153 mask = ~((1 << __ffs(start)) - 1);
6154 while (mask && last_end <= (start & (mask << 1)))
6155 mask <<= 1;
6156
6157 /* accumulate all internode masks */
6158 accl_mask |= mask;
6159 }
6160
6161 /* convert mask to number of pages */
6162 return ~accl_mask + 1;
6163 }
6164
6165 /* Find the lowest pfn for a node */
6166 static unsigned long __init find_min_pfn_for_node(int nid)
6167 {
6168 unsigned long min_pfn = ULONG_MAX;
6169 unsigned long start_pfn;
6170 int i;
6171
6172 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6173 min_pfn = min(min_pfn, start_pfn);
6174
6175 if (min_pfn == ULONG_MAX) {
6176 pr_warn("Could not find start_pfn for node %d\n", nid);
6177 return 0;
6178 }
6179
6180 return min_pfn;
6181 }
6182
6183 /**
6184 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6185 *
6186 * It returns the minimum PFN based on information provided via
6187 * memblock_set_node().
6188 */
6189 unsigned long __init find_min_pfn_with_active_regions(void)
6190 {
6191 return find_min_pfn_for_node(MAX_NUMNODES);
6192 }
6193
6194 /*
6195 * early_calculate_totalpages()
6196 * Sum pages in active regions for movable zone.
6197 * Populate N_MEMORY for calculating usable_nodes.
6198 */
6199 static unsigned long __init early_calculate_totalpages(void)
6200 {
6201 unsigned long totalpages = 0;
6202 unsigned long start_pfn, end_pfn;
6203 int i, nid;
6204
6205 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6206 unsigned long pages = end_pfn - start_pfn;
6207
6208 totalpages += pages;
6209 if (pages)
6210 node_set_state(nid, N_MEMORY);
6211 }
6212 return totalpages;
6213 }
6214
6215 /*
6216 * Find the PFN the Movable zone begins in each node. Kernel memory
6217 * is spread evenly between nodes as long as the nodes have enough
6218 * memory. When they don't, some nodes will have more kernelcore than
6219 * others
6220 */
6221 static void __init find_zone_movable_pfns_for_nodes(void)
6222 {
6223 int i, nid;
6224 unsigned long usable_startpfn;
6225 unsigned long kernelcore_node, kernelcore_remaining;
6226 /* save the state before borrow the nodemask */
6227 nodemask_t saved_node_state = node_states[N_MEMORY];
6228 unsigned long totalpages = early_calculate_totalpages();
6229 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6230 struct memblock_region *r;
6231
6232 /* Need to find movable_zone earlier when movable_node is specified. */
6233 find_usable_zone_for_movable();
6234
6235 /*
6236 * If movable_node is specified, ignore kernelcore and movablecore
6237 * options.
6238 */
6239 if (movable_node_is_enabled()) {
6240 for_each_memblock(memory, r) {
6241 if (!memblock_is_hotpluggable(r))
6242 continue;
6243
6244 nid = r->nid;
6245
6246 usable_startpfn = PFN_DOWN(r->base);
6247 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6248 min(usable_startpfn, zone_movable_pfn[nid]) :
6249 usable_startpfn;
6250 }
6251
6252 goto out2;
6253 }
6254
6255 /*
6256 * If kernelcore=mirror is specified, ignore movablecore option
6257 */
6258 if (mirrored_kernelcore) {
6259 bool mem_below_4gb_not_mirrored = false;
6260
6261 for_each_memblock(memory, r) {
6262 if (memblock_is_mirror(r))
6263 continue;
6264
6265 nid = r->nid;
6266
6267 usable_startpfn = memblock_region_memory_base_pfn(r);
6268
6269 if (usable_startpfn < 0x100000) {
6270 mem_below_4gb_not_mirrored = true;
6271 continue;
6272 }
6273
6274 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6275 min(usable_startpfn, zone_movable_pfn[nid]) :
6276 usable_startpfn;
6277 }
6278
6279 if (mem_below_4gb_not_mirrored)
6280 pr_warn("This configuration results in unmirrored kernel memory.");
6281
6282 goto out2;
6283 }
6284
6285 /*
6286 * If movablecore=nn[KMG] was specified, calculate what size of
6287 * kernelcore that corresponds so that memory usable for
6288 * any allocation type is evenly spread. If both kernelcore
6289 * and movablecore are specified, then the value of kernelcore
6290 * will be used for required_kernelcore if it's greater than
6291 * what movablecore would have allowed.
6292 */
6293 if (required_movablecore) {
6294 unsigned long corepages;
6295
6296 /*
6297 * Round-up so that ZONE_MOVABLE is at least as large as what
6298 * was requested by the user
6299 */
6300 required_movablecore =
6301 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6302 required_movablecore = min(totalpages, required_movablecore);
6303 corepages = totalpages - required_movablecore;
6304
6305 required_kernelcore = max(required_kernelcore, corepages);
6306 }
6307
6308 /*
6309 * If kernelcore was not specified or kernelcore size is larger
6310 * than totalpages, there is no ZONE_MOVABLE.
6311 */
6312 if (!required_kernelcore || required_kernelcore >= totalpages)
6313 goto out;
6314
6315 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6316 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6317
6318 restart:
6319 /* Spread kernelcore memory as evenly as possible throughout nodes */
6320 kernelcore_node = required_kernelcore / usable_nodes;
6321 for_each_node_state(nid, N_MEMORY) {
6322 unsigned long start_pfn, end_pfn;
6323
6324 /*
6325 * Recalculate kernelcore_node if the division per node
6326 * now exceeds what is necessary to satisfy the requested
6327 * amount of memory for the kernel
6328 */
6329 if (required_kernelcore < kernelcore_node)
6330 kernelcore_node = required_kernelcore / usable_nodes;
6331
6332 /*
6333 * As the map is walked, we track how much memory is usable
6334 * by the kernel using kernelcore_remaining. When it is
6335 * 0, the rest of the node is usable by ZONE_MOVABLE
6336 */
6337 kernelcore_remaining = kernelcore_node;
6338
6339 /* Go through each range of PFNs within this node */
6340 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6341 unsigned long size_pages;
6342
6343 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6344 if (start_pfn >= end_pfn)
6345 continue;
6346
6347 /* Account for what is only usable for kernelcore */
6348 if (start_pfn < usable_startpfn) {
6349 unsigned long kernel_pages;
6350 kernel_pages = min(end_pfn, usable_startpfn)
6351 - start_pfn;
6352
6353 kernelcore_remaining -= min(kernel_pages,
6354 kernelcore_remaining);
6355 required_kernelcore -= min(kernel_pages,
6356 required_kernelcore);
6357
6358 /* Continue if range is now fully accounted */
6359 if (end_pfn <= usable_startpfn) {
6360
6361 /*
6362 * Push zone_movable_pfn to the end so
6363 * that if we have to rebalance
6364 * kernelcore across nodes, we will
6365 * not double account here
6366 */
6367 zone_movable_pfn[nid] = end_pfn;
6368 continue;
6369 }
6370 start_pfn = usable_startpfn;
6371 }
6372
6373 /*
6374 * The usable PFN range for ZONE_MOVABLE is from
6375 * start_pfn->end_pfn. Calculate size_pages as the
6376 * number of pages used as kernelcore
6377 */
6378 size_pages = end_pfn - start_pfn;
6379 if (size_pages > kernelcore_remaining)
6380 size_pages = kernelcore_remaining;
6381 zone_movable_pfn[nid] = start_pfn + size_pages;
6382
6383 /*
6384 * Some kernelcore has been met, update counts and
6385 * break if the kernelcore for this node has been
6386 * satisfied
6387 */
6388 required_kernelcore -= min(required_kernelcore,
6389 size_pages);
6390 kernelcore_remaining -= size_pages;
6391 if (!kernelcore_remaining)
6392 break;
6393 }
6394 }
6395
6396 /*
6397 * If there is still required_kernelcore, we do another pass with one
6398 * less node in the count. This will push zone_movable_pfn[nid] further
6399 * along on the nodes that still have memory until kernelcore is
6400 * satisfied
6401 */
6402 usable_nodes--;
6403 if (usable_nodes && required_kernelcore > usable_nodes)
6404 goto restart;
6405
6406 out2:
6407 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6408 for (nid = 0; nid < MAX_NUMNODES; nid++)
6409 zone_movable_pfn[nid] =
6410 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6411
6412 out:
6413 /* restore the node_state */
6414 node_states[N_MEMORY] = saved_node_state;
6415 }
6416
6417 /* Any regular or high memory on that node ? */
6418 static void check_for_memory(pg_data_t *pgdat, int nid)
6419 {
6420 enum zone_type zone_type;
6421
6422 if (N_MEMORY == N_NORMAL_MEMORY)
6423 return;
6424
6425 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6426 struct zone *zone = &pgdat->node_zones[zone_type];
6427 if (populated_zone(zone)) {
6428 node_set_state(nid, N_HIGH_MEMORY);
6429 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6430 zone_type <= ZONE_NORMAL)
6431 node_set_state(nid, N_NORMAL_MEMORY);
6432 break;
6433 }
6434 }
6435 }
6436
6437 /**
6438 * free_area_init_nodes - Initialise all pg_data_t and zone data
6439 * @max_zone_pfn: an array of max PFNs for each zone
6440 *
6441 * This will call free_area_init_node() for each active node in the system.
6442 * Using the page ranges provided by memblock_set_node(), the size of each
6443 * zone in each node and their holes is calculated. If the maximum PFN
6444 * between two adjacent zones match, it is assumed that the zone is empty.
6445 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6446 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6447 * starts where the previous one ended. For example, ZONE_DMA32 starts
6448 * at arch_max_dma_pfn.
6449 */
6450 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6451 {
6452 unsigned long start_pfn, end_pfn;
6453 int i, nid;
6454
6455 /* Record where the zone boundaries are */
6456 memset(arch_zone_lowest_possible_pfn, 0,
6457 sizeof(arch_zone_lowest_possible_pfn));
6458 memset(arch_zone_highest_possible_pfn, 0,
6459 sizeof(arch_zone_highest_possible_pfn));
6460
6461 start_pfn = find_min_pfn_with_active_regions();
6462
6463 for (i = 0; i < MAX_NR_ZONES; i++) {
6464 if (i == ZONE_MOVABLE)
6465 continue;
6466
6467 end_pfn = max(max_zone_pfn[i], start_pfn);
6468 arch_zone_lowest_possible_pfn[i] = start_pfn;
6469 arch_zone_highest_possible_pfn[i] = end_pfn;
6470
6471 start_pfn = end_pfn;
6472 }
6473
6474 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6475 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6476 find_zone_movable_pfns_for_nodes();
6477
6478 /* Print out the zone ranges */
6479 pr_info("Zone ranges:\n");
6480 for (i = 0; i < MAX_NR_ZONES; i++) {
6481 if (i == ZONE_MOVABLE)
6482 continue;
6483 pr_info(" %-8s ", zone_names[i]);
6484 if (arch_zone_lowest_possible_pfn[i] ==
6485 arch_zone_highest_possible_pfn[i])
6486 pr_cont("empty\n");
6487 else
6488 pr_cont("[mem %#018Lx-%#018Lx]\n",
6489 (u64)arch_zone_lowest_possible_pfn[i]
6490 << PAGE_SHIFT,
6491 ((u64)arch_zone_highest_possible_pfn[i]
6492 << PAGE_SHIFT) - 1);
6493 }
6494
6495 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6496 pr_info("Movable zone start for each node\n");
6497 for (i = 0; i < MAX_NUMNODES; i++) {
6498 if (zone_movable_pfn[i])
6499 pr_info(" Node %d: %#018Lx\n", i,
6500 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6501 }
6502
6503 /* Print out the early node map */
6504 pr_info("Early memory node ranges\n");
6505 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6506 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6507 (u64)start_pfn << PAGE_SHIFT,
6508 ((u64)end_pfn << PAGE_SHIFT) - 1);
6509
6510 /* Initialise every node */
6511 mminit_verify_pageflags_layout();
6512 setup_nr_node_ids();
6513 for_each_online_node(nid) {
6514 pg_data_t *pgdat = NODE_DATA(nid);
6515 free_area_init_node(nid, NULL,
6516 find_min_pfn_for_node(nid), NULL);
6517
6518 /* Any memory on that node */
6519 if (pgdat->node_present_pages)
6520 node_set_state(nid, N_MEMORY);
6521 check_for_memory(pgdat, nid);
6522 }
6523 }
6524
6525 static int __init cmdline_parse_core(char *p, unsigned long *core)
6526 {
6527 unsigned long long coremem;
6528 if (!p)
6529 return -EINVAL;
6530
6531 coremem = memparse(p, &p);
6532 *core = coremem >> PAGE_SHIFT;
6533
6534 /* Paranoid check that UL is enough for the coremem value */
6535 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6536
6537 return 0;
6538 }
6539
6540 /*
6541 * kernelcore=size sets the amount of memory for use for allocations that
6542 * cannot be reclaimed or migrated.
6543 */
6544 static int __init cmdline_parse_kernelcore(char *p)
6545 {
6546 /* parse kernelcore=mirror */
6547 if (parse_option_str(p, "mirror")) {
6548 mirrored_kernelcore = true;
6549 return 0;
6550 }
6551
6552 return cmdline_parse_core(p, &required_kernelcore);
6553 }
6554
6555 /*
6556 * movablecore=size sets the amount of memory for use for allocations that
6557 * can be reclaimed or migrated.
6558 */
6559 static int __init cmdline_parse_movablecore(char *p)
6560 {
6561 return cmdline_parse_core(p, &required_movablecore);
6562 }
6563
6564 early_param("kernelcore", cmdline_parse_kernelcore);
6565 early_param("movablecore", cmdline_parse_movablecore);
6566
6567 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6568
6569 void adjust_managed_page_count(struct page *page, long count)
6570 {
6571 spin_lock(&managed_page_count_lock);
6572 page_zone(page)->managed_pages += count;
6573 totalram_pages += count;
6574 #ifdef CONFIG_HIGHMEM
6575 if (PageHighMem(page))
6576 totalhigh_pages += count;
6577 #endif
6578 spin_unlock(&managed_page_count_lock);
6579 }
6580 EXPORT_SYMBOL(adjust_managed_page_count);
6581
6582 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6583 {
6584 void *pos;
6585 unsigned long pages = 0;
6586
6587 start = (void *)PAGE_ALIGN((unsigned long)start);
6588 end = (void *)((unsigned long)end & PAGE_MASK);
6589 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6590 if ((unsigned int)poison <= 0xFF)
6591 memset(pos, poison, PAGE_SIZE);
6592 free_reserved_page(virt_to_page(pos));
6593 }
6594
6595 if (pages && s)
6596 pr_info("Freeing %s memory: %ldK\n",
6597 s, pages << (PAGE_SHIFT - 10));
6598
6599 return pages;
6600 }
6601 EXPORT_SYMBOL(free_reserved_area);
6602
6603 #ifdef CONFIG_HIGHMEM
6604 void free_highmem_page(struct page *page)
6605 {
6606 __free_reserved_page(page);
6607 totalram_pages++;
6608 page_zone(page)->managed_pages++;
6609 totalhigh_pages++;
6610 }
6611 #endif
6612
6613
6614 void __init mem_init_print_info(const char *str)
6615 {
6616 unsigned long physpages, codesize, datasize, rosize, bss_size;
6617 unsigned long init_code_size, init_data_size;
6618
6619 physpages = get_num_physpages();
6620 codesize = _etext - _stext;
6621 datasize = _edata - _sdata;
6622 rosize = __end_rodata - __start_rodata;
6623 bss_size = __bss_stop - __bss_start;
6624 init_data_size = __init_end - __init_begin;
6625 init_code_size = _einittext - _sinittext;
6626
6627 /*
6628 * Detect special cases and adjust section sizes accordingly:
6629 * 1) .init.* may be embedded into .data sections
6630 * 2) .init.text.* may be out of [__init_begin, __init_end],
6631 * please refer to arch/tile/kernel/vmlinux.lds.S.
6632 * 3) .rodata.* may be embedded into .text or .data sections.
6633 */
6634 #define adj_init_size(start, end, size, pos, adj) \
6635 do { \
6636 if (start <= pos && pos < end && size > adj) \
6637 size -= adj; \
6638 } while (0)
6639
6640 adj_init_size(__init_begin, __init_end, init_data_size,
6641 _sinittext, init_code_size);
6642 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6643 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6644 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6645 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6646
6647 #undef adj_init_size
6648
6649 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6650 #ifdef CONFIG_HIGHMEM
6651 ", %luK highmem"
6652 #endif
6653 "%s%s)\n",
6654 nr_free_pages() << (PAGE_SHIFT - 10),
6655 physpages << (PAGE_SHIFT - 10),
6656 codesize >> 10, datasize >> 10, rosize >> 10,
6657 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6658 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6659 totalcma_pages << (PAGE_SHIFT - 10),
6660 #ifdef CONFIG_HIGHMEM
6661 totalhigh_pages << (PAGE_SHIFT - 10),
6662 #endif
6663 str ? ", " : "", str ? str : "");
6664 }
6665
6666 /**
6667 * set_dma_reserve - set the specified number of pages reserved in the first zone
6668 * @new_dma_reserve: The number of pages to mark reserved
6669 *
6670 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6671 * In the DMA zone, a significant percentage may be consumed by kernel image
6672 * and other unfreeable allocations which can skew the watermarks badly. This
6673 * function may optionally be used to account for unfreeable pages in the
6674 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6675 * smaller per-cpu batchsize.
6676 */
6677 void __init set_dma_reserve(unsigned long new_dma_reserve)
6678 {
6679 dma_reserve = new_dma_reserve;
6680 }
6681
6682 void __init free_area_init(unsigned long *zones_size)
6683 {
6684 free_area_init_node(0, zones_size,
6685 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6686 }
6687
6688 static int page_alloc_cpu_dead(unsigned int cpu)
6689 {
6690
6691 lru_add_drain_cpu(cpu);
6692 drain_pages(cpu);
6693
6694 /*
6695 * Spill the event counters of the dead processor
6696 * into the current processors event counters.
6697 * This artificially elevates the count of the current
6698 * processor.
6699 */
6700 vm_events_fold_cpu(cpu);
6701
6702 /*
6703 * Zero the differential counters of the dead processor
6704 * so that the vm statistics are consistent.
6705 *
6706 * This is only okay since the processor is dead and cannot
6707 * race with what we are doing.
6708 */
6709 cpu_vm_stats_fold(cpu);
6710 return 0;
6711 }
6712
6713 void __init page_alloc_init(void)
6714 {
6715 int ret;
6716
6717 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6718 "mm/page_alloc:dead", NULL,
6719 page_alloc_cpu_dead);
6720 WARN_ON(ret < 0);
6721 }
6722
6723 /*
6724 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6725 * or min_free_kbytes changes.
6726 */
6727 static void calculate_totalreserve_pages(void)
6728 {
6729 struct pglist_data *pgdat;
6730 unsigned long reserve_pages = 0;
6731 enum zone_type i, j;
6732
6733 for_each_online_pgdat(pgdat) {
6734
6735 pgdat->totalreserve_pages = 0;
6736
6737 for (i = 0; i < MAX_NR_ZONES; i++) {
6738 struct zone *zone = pgdat->node_zones + i;
6739 long max = 0;
6740
6741 /* Find valid and maximum lowmem_reserve in the zone */
6742 for (j = i; j < MAX_NR_ZONES; j++) {
6743 if (zone->lowmem_reserve[j] > max)
6744 max = zone->lowmem_reserve[j];
6745 }
6746
6747 /* we treat the high watermark as reserved pages. */
6748 max += high_wmark_pages(zone);
6749
6750 if (max > zone->managed_pages)
6751 max = zone->managed_pages;
6752
6753 pgdat->totalreserve_pages += max;
6754
6755 reserve_pages += max;
6756 }
6757 }
6758 totalreserve_pages = reserve_pages;
6759 }
6760
6761 /*
6762 * setup_per_zone_lowmem_reserve - called whenever
6763 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6764 * has a correct pages reserved value, so an adequate number of
6765 * pages are left in the zone after a successful __alloc_pages().
6766 */
6767 static void setup_per_zone_lowmem_reserve(void)
6768 {
6769 struct pglist_data *pgdat;
6770 enum zone_type j, idx;
6771
6772 for_each_online_pgdat(pgdat) {
6773 for (j = 0; j < MAX_NR_ZONES; j++) {
6774 struct zone *zone = pgdat->node_zones + j;
6775 unsigned long managed_pages = zone->managed_pages;
6776
6777 zone->lowmem_reserve[j] = 0;
6778
6779 idx = j;
6780 while (idx) {
6781 struct zone *lower_zone;
6782
6783 idx--;
6784
6785 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6786 sysctl_lowmem_reserve_ratio[idx] = 1;
6787
6788 lower_zone = pgdat->node_zones + idx;
6789 lower_zone->lowmem_reserve[j] = managed_pages /
6790 sysctl_lowmem_reserve_ratio[idx];
6791 managed_pages += lower_zone->managed_pages;
6792 }
6793 }
6794 }
6795
6796 /* update totalreserve_pages */
6797 calculate_totalreserve_pages();
6798 }
6799
6800 static void __setup_per_zone_wmarks(void)
6801 {
6802 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6803 unsigned long lowmem_pages = 0;
6804 struct zone *zone;
6805 unsigned long flags;
6806
6807 /* Calculate total number of !ZONE_HIGHMEM pages */
6808 for_each_zone(zone) {
6809 if (!is_highmem(zone))
6810 lowmem_pages += zone->managed_pages;
6811 }
6812
6813 for_each_zone(zone) {
6814 u64 tmp;
6815
6816 spin_lock_irqsave(&zone->lock, flags);
6817 tmp = (u64)pages_min * zone->managed_pages;
6818 do_div(tmp, lowmem_pages);
6819 if (is_highmem(zone)) {
6820 /*
6821 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6822 * need highmem pages, so cap pages_min to a small
6823 * value here.
6824 *
6825 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6826 * deltas control asynch page reclaim, and so should
6827 * not be capped for highmem.
6828 */
6829 unsigned long min_pages;
6830
6831 min_pages = zone->managed_pages / 1024;
6832 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6833 zone->watermark[WMARK_MIN] = min_pages;
6834 } else {
6835 /*
6836 * If it's a lowmem zone, reserve a number of pages
6837 * proportionate to the zone's size.
6838 */
6839 zone->watermark[WMARK_MIN] = tmp;
6840 }
6841
6842 /*
6843 * Set the kswapd watermarks distance according to the
6844 * scale factor in proportion to available memory, but
6845 * ensure a minimum size on small systems.
6846 */
6847 tmp = max_t(u64, tmp >> 2,
6848 mult_frac(zone->managed_pages,
6849 watermark_scale_factor, 10000));
6850
6851 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6852 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6853
6854 spin_unlock_irqrestore(&zone->lock, flags);
6855 }
6856
6857 /* update totalreserve_pages */
6858 calculate_totalreserve_pages();
6859 }
6860
6861 /**
6862 * setup_per_zone_wmarks - called when min_free_kbytes changes
6863 * or when memory is hot-{added|removed}
6864 *
6865 * Ensures that the watermark[min,low,high] values for each zone are set
6866 * correctly with respect to min_free_kbytes.
6867 */
6868 void setup_per_zone_wmarks(void)
6869 {
6870 mutex_lock(&zonelists_mutex);
6871 __setup_per_zone_wmarks();
6872 mutex_unlock(&zonelists_mutex);
6873 }
6874
6875 /*
6876 * Initialise min_free_kbytes.
6877 *
6878 * For small machines we want it small (128k min). For large machines
6879 * we want it large (64MB max). But it is not linear, because network
6880 * bandwidth does not increase linearly with machine size. We use
6881 *
6882 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6883 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6884 *
6885 * which yields
6886 *
6887 * 16MB: 512k
6888 * 32MB: 724k
6889 * 64MB: 1024k
6890 * 128MB: 1448k
6891 * 256MB: 2048k
6892 * 512MB: 2896k
6893 * 1024MB: 4096k
6894 * 2048MB: 5792k
6895 * 4096MB: 8192k
6896 * 8192MB: 11584k
6897 * 16384MB: 16384k
6898 */
6899 int __meminit init_per_zone_wmark_min(void)
6900 {
6901 unsigned long lowmem_kbytes;
6902 int new_min_free_kbytes;
6903
6904 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6905 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6906
6907 if (new_min_free_kbytes > user_min_free_kbytes) {
6908 min_free_kbytes = new_min_free_kbytes;
6909 if (min_free_kbytes < 128)
6910 min_free_kbytes = 128;
6911 if (min_free_kbytes > 65536)
6912 min_free_kbytes = 65536;
6913 } else {
6914 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6915 new_min_free_kbytes, user_min_free_kbytes);
6916 }
6917 setup_per_zone_wmarks();
6918 refresh_zone_stat_thresholds();
6919 setup_per_zone_lowmem_reserve();
6920
6921 #ifdef CONFIG_NUMA
6922 setup_min_unmapped_ratio();
6923 setup_min_slab_ratio();
6924 #endif
6925
6926 return 0;
6927 }
6928 core_initcall(init_per_zone_wmark_min)
6929
6930 /*
6931 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6932 * that we can call two helper functions whenever min_free_kbytes
6933 * changes.
6934 */
6935 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6936 void __user *buffer, size_t *length, loff_t *ppos)
6937 {
6938 int rc;
6939
6940 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6941 if (rc)
6942 return rc;
6943
6944 if (write) {
6945 user_min_free_kbytes = min_free_kbytes;
6946 setup_per_zone_wmarks();
6947 }
6948 return 0;
6949 }
6950
6951 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6952 void __user *buffer, size_t *length, loff_t *ppos)
6953 {
6954 int rc;
6955
6956 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6957 if (rc)
6958 return rc;
6959
6960 if (write)
6961 setup_per_zone_wmarks();
6962
6963 return 0;
6964 }
6965
6966 #ifdef CONFIG_NUMA
6967 static void setup_min_unmapped_ratio(void)
6968 {
6969 pg_data_t *pgdat;
6970 struct zone *zone;
6971
6972 for_each_online_pgdat(pgdat)
6973 pgdat->min_unmapped_pages = 0;
6974
6975 for_each_zone(zone)
6976 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6977 sysctl_min_unmapped_ratio) / 100;
6978 }
6979
6980
6981 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6982 void __user *buffer, size_t *length, loff_t *ppos)
6983 {
6984 int rc;
6985
6986 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6987 if (rc)
6988 return rc;
6989
6990 setup_min_unmapped_ratio();
6991
6992 return 0;
6993 }
6994
6995 static void setup_min_slab_ratio(void)
6996 {
6997 pg_data_t *pgdat;
6998 struct zone *zone;
6999
7000 for_each_online_pgdat(pgdat)
7001 pgdat->min_slab_pages = 0;
7002
7003 for_each_zone(zone)
7004 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7005 sysctl_min_slab_ratio) / 100;
7006 }
7007
7008 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7009 void __user *buffer, size_t *length, loff_t *ppos)
7010 {
7011 int rc;
7012
7013 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7014 if (rc)
7015 return rc;
7016
7017 setup_min_slab_ratio();
7018
7019 return 0;
7020 }
7021 #endif
7022
7023 /*
7024 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7025 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7026 * whenever sysctl_lowmem_reserve_ratio changes.
7027 *
7028 * The reserve ratio obviously has absolutely no relation with the
7029 * minimum watermarks. The lowmem reserve ratio can only make sense
7030 * if in function of the boot time zone sizes.
7031 */
7032 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7033 void __user *buffer, size_t *length, loff_t *ppos)
7034 {
7035 proc_dointvec_minmax(table, write, buffer, length, ppos);
7036 setup_per_zone_lowmem_reserve();
7037 return 0;
7038 }
7039
7040 /*
7041 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7042 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7043 * pagelist can have before it gets flushed back to buddy allocator.
7044 */
7045 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7046 void __user *buffer, size_t *length, loff_t *ppos)
7047 {
7048 struct zone *zone;
7049 int old_percpu_pagelist_fraction;
7050 int ret;
7051
7052 mutex_lock(&pcp_batch_high_lock);
7053 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7054
7055 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7056 if (!write || ret < 0)
7057 goto out;
7058
7059 /* Sanity checking to avoid pcp imbalance */
7060 if (percpu_pagelist_fraction &&
7061 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7062 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7063 ret = -EINVAL;
7064 goto out;
7065 }
7066
7067 /* No change? */
7068 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7069 goto out;
7070
7071 for_each_populated_zone(zone) {
7072 unsigned int cpu;
7073
7074 for_each_possible_cpu(cpu)
7075 pageset_set_high_and_batch(zone,
7076 per_cpu_ptr(zone->pageset, cpu));
7077 }
7078 out:
7079 mutex_unlock(&pcp_batch_high_lock);
7080 return ret;
7081 }
7082
7083 #ifdef CONFIG_NUMA
7084 int hashdist = HASHDIST_DEFAULT;
7085
7086 static int __init set_hashdist(char *str)
7087 {
7088 if (!str)
7089 return 0;
7090 hashdist = simple_strtoul(str, &str, 0);
7091 return 1;
7092 }
7093 __setup("hashdist=", set_hashdist);
7094 #endif
7095
7096 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7097 /*
7098 * Returns the number of pages that arch has reserved but
7099 * is not known to alloc_large_system_hash().
7100 */
7101 static unsigned long __init arch_reserved_kernel_pages(void)
7102 {
7103 return 0;
7104 }
7105 #endif
7106
7107 /*
7108 * allocate a large system hash table from bootmem
7109 * - it is assumed that the hash table must contain an exact power-of-2
7110 * quantity of entries
7111 * - limit is the number of hash buckets, not the total allocation size
7112 */
7113 void *__init alloc_large_system_hash(const char *tablename,
7114 unsigned long bucketsize,
7115 unsigned long numentries,
7116 int scale,
7117 int flags,
7118 unsigned int *_hash_shift,
7119 unsigned int *_hash_mask,
7120 unsigned long low_limit,
7121 unsigned long high_limit)
7122 {
7123 unsigned long long max = high_limit;
7124 unsigned long log2qty, size;
7125 void *table = NULL;
7126
7127 /* allow the kernel cmdline to have a say */
7128 if (!numentries) {
7129 /* round applicable memory size up to nearest megabyte */
7130 numentries = nr_kernel_pages;
7131 numentries -= arch_reserved_kernel_pages();
7132
7133 /* It isn't necessary when PAGE_SIZE >= 1MB */
7134 if (PAGE_SHIFT < 20)
7135 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7136
7137 /* limit to 1 bucket per 2^scale bytes of low memory */
7138 if (scale > PAGE_SHIFT)
7139 numentries >>= (scale - PAGE_SHIFT);
7140 else
7141 numentries <<= (PAGE_SHIFT - scale);
7142
7143 /* Make sure we've got at least a 0-order allocation.. */
7144 if (unlikely(flags & HASH_SMALL)) {
7145 /* Makes no sense without HASH_EARLY */
7146 WARN_ON(!(flags & HASH_EARLY));
7147 if (!(numentries >> *_hash_shift)) {
7148 numentries = 1UL << *_hash_shift;
7149 BUG_ON(!numentries);
7150 }
7151 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7152 numentries = PAGE_SIZE / bucketsize;
7153 }
7154 numentries = roundup_pow_of_two(numentries);
7155
7156 /* limit allocation size to 1/16 total memory by default */
7157 if (max == 0) {
7158 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7159 do_div(max, bucketsize);
7160 }
7161 max = min(max, 0x80000000ULL);
7162
7163 if (numentries < low_limit)
7164 numentries = low_limit;
7165 if (numentries > max)
7166 numentries = max;
7167
7168 log2qty = ilog2(numentries);
7169
7170 do {
7171 size = bucketsize << log2qty;
7172 if (flags & HASH_EARLY)
7173 table = memblock_virt_alloc_nopanic(size, 0);
7174 else if (hashdist)
7175 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7176 else {
7177 /*
7178 * If bucketsize is not a power-of-two, we may free
7179 * some pages at the end of hash table which
7180 * alloc_pages_exact() automatically does
7181 */
7182 if (get_order(size) < MAX_ORDER) {
7183 table = alloc_pages_exact(size, GFP_ATOMIC);
7184 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7185 }
7186 }
7187 } while (!table && size > PAGE_SIZE && --log2qty);
7188
7189 if (!table)
7190 panic("Failed to allocate %s hash table\n", tablename);
7191
7192 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7193 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7194
7195 if (_hash_shift)
7196 *_hash_shift = log2qty;
7197 if (_hash_mask)
7198 *_hash_mask = (1 << log2qty) - 1;
7199
7200 return table;
7201 }
7202
7203 /*
7204 * This function checks whether pageblock includes unmovable pages or not.
7205 * If @count is not zero, it is okay to include less @count unmovable pages
7206 *
7207 * PageLRU check without isolation or lru_lock could race so that
7208 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7209 * check without lock_page also may miss some movable non-lru pages at
7210 * race condition. So you can't expect this function should be exact.
7211 */
7212 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7213 bool skip_hwpoisoned_pages)
7214 {
7215 unsigned long pfn, iter, found;
7216 int mt;
7217
7218 /*
7219 * For avoiding noise data, lru_add_drain_all() should be called
7220 * If ZONE_MOVABLE, the zone never contains unmovable pages
7221 */
7222 if (zone_idx(zone) == ZONE_MOVABLE)
7223 return false;
7224 mt = get_pageblock_migratetype(page);
7225 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7226 return false;
7227
7228 pfn = page_to_pfn(page);
7229 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7230 unsigned long check = pfn + iter;
7231
7232 if (!pfn_valid_within(check))
7233 continue;
7234
7235 page = pfn_to_page(check);
7236
7237 /*
7238 * Hugepages are not in LRU lists, but they're movable.
7239 * We need not scan over tail pages bacause we don't
7240 * handle each tail page individually in migration.
7241 */
7242 if (PageHuge(page)) {
7243 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7244 continue;
7245 }
7246
7247 /*
7248 * We can't use page_count without pin a page
7249 * because another CPU can free compound page.
7250 * This check already skips compound tails of THP
7251 * because their page->_refcount is zero at all time.
7252 */
7253 if (!page_ref_count(page)) {
7254 if (PageBuddy(page))
7255 iter += (1 << page_order(page)) - 1;
7256 continue;
7257 }
7258
7259 /*
7260 * The HWPoisoned page may be not in buddy system, and
7261 * page_count() is not 0.
7262 */
7263 if (skip_hwpoisoned_pages && PageHWPoison(page))
7264 continue;
7265
7266 if (__PageMovable(page))
7267 continue;
7268
7269 if (!PageLRU(page))
7270 found++;
7271 /*
7272 * If there are RECLAIMABLE pages, we need to check
7273 * it. But now, memory offline itself doesn't call
7274 * shrink_node_slabs() and it still to be fixed.
7275 */
7276 /*
7277 * If the page is not RAM, page_count()should be 0.
7278 * we don't need more check. This is an _used_ not-movable page.
7279 *
7280 * The problematic thing here is PG_reserved pages. PG_reserved
7281 * is set to both of a memory hole page and a _used_ kernel
7282 * page at boot.
7283 */
7284 if (found > count)
7285 return true;
7286 }
7287 return false;
7288 }
7289
7290 bool is_pageblock_removable_nolock(struct page *page)
7291 {
7292 struct zone *zone;
7293 unsigned long pfn;
7294
7295 /*
7296 * We have to be careful here because we are iterating over memory
7297 * sections which are not zone aware so we might end up outside of
7298 * the zone but still within the section.
7299 * We have to take care about the node as well. If the node is offline
7300 * its NODE_DATA will be NULL - see page_zone.
7301 */
7302 if (!node_online(page_to_nid(page)))
7303 return false;
7304
7305 zone = page_zone(page);
7306 pfn = page_to_pfn(page);
7307 if (!zone_spans_pfn(zone, pfn))
7308 return false;
7309
7310 return !has_unmovable_pages(zone, page, 0, true);
7311 }
7312
7313 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7314
7315 static unsigned long pfn_max_align_down(unsigned long pfn)
7316 {
7317 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7318 pageblock_nr_pages) - 1);
7319 }
7320
7321 static unsigned long pfn_max_align_up(unsigned long pfn)
7322 {
7323 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7324 pageblock_nr_pages));
7325 }
7326
7327 /* [start, end) must belong to a single zone. */
7328 static int __alloc_contig_migrate_range(struct compact_control *cc,
7329 unsigned long start, unsigned long end)
7330 {
7331 /* This function is based on compact_zone() from compaction.c. */
7332 unsigned long nr_reclaimed;
7333 unsigned long pfn = start;
7334 unsigned int tries = 0;
7335 int ret = 0;
7336
7337 migrate_prep();
7338
7339 while (pfn < end || !list_empty(&cc->migratepages)) {
7340 if (fatal_signal_pending(current)) {
7341 ret = -EINTR;
7342 break;
7343 }
7344
7345 if (list_empty(&cc->migratepages)) {
7346 cc->nr_migratepages = 0;
7347 pfn = isolate_migratepages_range(cc, pfn, end);
7348 if (!pfn) {
7349 ret = -EINTR;
7350 break;
7351 }
7352 tries = 0;
7353 } else if (++tries == 5) {
7354 ret = ret < 0 ? ret : -EBUSY;
7355 break;
7356 }
7357
7358 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7359 &cc->migratepages);
7360 cc->nr_migratepages -= nr_reclaimed;
7361
7362 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7363 NULL, 0, cc->mode, MR_CMA);
7364 }
7365 if (ret < 0) {
7366 putback_movable_pages(&cc->migratepages);
7367 return ret;
7368 }
7369 return 0;
7370 }
7371
7372 /**
7373 * alloc_contig_range() -- tries to allocate given range of pages
7374 * @start: start PFN to allocate
7375 * @end: one-past-the-last PFN to allocate
7376 * @migratetype: migratetype of the underlaying pageblocks (either
7377 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7378 * in range must have the same migratetype and it must
7379 * be either of the two.
7380 * @gfp_mask: GFP mask to use during compaction
7381 *
7382 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7383 * aligned, however it's the caller's responsibility to guarantee that
7384 * we are the only thread that changes migrate type of pageblocks the
7385 * pages fall in.
7386 *
7387 * The PFN range must belong to a single zone.
7388 *
7389 * Returns zero on success or negative error code. On success all
7390 * pages which PFN is in [start, end) are allocated for the caller and
7391 * need to be freed with free_contig_range().
7392 */
7393 int alloc_contig_range(unsigned long start, unsigned long end,
7394 unsigned migratetype, gfp_t gfp_mask)
7395 {
7396 unsigned long outer_start, outer_end;
7397 unsigned int order;
7398 int ret = 0;
7399
7400 struct compact_control cc = {
7401 .nr_migratepages = 0,
7402 .order = -1,
7403 .zone = page_zone(pfn_to_page(start)),
7404 .mode = MIGRATE_SYNC,
7405 .ignore_skip_hint = true,
7406 .gfp_mask = current_gfp_context(gfp_mask),
7407 };
7408 INIT_LIST_HEAD(&cc.migratepages);
7409
7410 /*
7411 * What we do here is we mark all pageblocks in range as
7412 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7413 * have different sizes, and due to the way page allocator
7414 * work, we align the range to biggest of the two pages so
7415 * that page allocator won't try to merge buddies from
7416 * different pageblocks and change MIGRATE_ISOLATE to some
7417 * other migration type.
7418 *
7419 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7420 * migrate the pages from an unaligned range (ie. pages that
7421 * we are interested in). This will put all the pages in
7422 * range back to page allocator as MIGRATE_ISOLATE.
7423 *
7424 * When this is done, we take the pages in range from page
7425 * allocator removing them from the buddy system. This way
7426 * page allocator will never consider using them.
7427 *
7428 * This lets us mark the pageblocks back as
7429 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7430 * aligned range but not in the unaligned, original range are
7431 * put back to page allocator so that buddy can use them.
7432 */
7433
7434 ret = start_isolate_page_range(pfn_max_align_down(start),
7435 pfn_max_align_up(end), migratetype,
7436 false);
7437 if (ret)
7438 return ret;
7439
7440 /*
7441 * In case of -EBUSY, we'd like to know which page causes problem.
7442 * So, just fall through. We will check it in test_pages_isolated().
7443 */
7444 ret = __alloc_contig_migrate_range(&cc, start, end);
7445 if (ret && ret != -EBUSY)
7446 goto done;
7447
7448 /*
7449 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7450 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7451 * more, all pages in [start, end) are free in page allocator.
7452 * What we are going to do is to allocate all pages from
7453 * [start, end) (that is remove them from page allocator).
7454 *
7455 * The only problem is that pages at the beginning and at the
7456 * end of interesting range may be not aligned with pages that
7457 * page allocator holds, ie. they can be part of higher order
7458 * pages. Because of this, we reserve the bigger range and
7459 * once this is done free the pages we are not interested in.
7460 *
7461 * We don't have to hold zone->lock here because the pages are
7462 * isolated thus they won't get removed from buddy.
7463 */
7464
7465 lru_add_drain_all();
7466 drain_all_pages(cc.zone);
7467
7468 order = 0;
7469 outer_start = start;
7470 while (!PageBuddy(pfn_to_page(outer_start))) {
7471 if (++order >= MAX_ORDER) {
7472 outer_start = start;
7473 break;
7474 }
7475 outer_start &= ~0UL << order;
7476 }
7477
7478 if (outer_start != start) {
7479 order = page_order(pfn_to_page(outer_start));
7480
7481 /*
7482 * outer_start page could be small order buddy page and
7483 * it doesn't include start page. Adjust outer_start
7484 * in this case to report failed page properly
7485 * on tracepoint in test_pages_isolated()
7486 */
7487 if (outer_start + (1UL << order) <= start)
7488 outer_start = start;
7489 }
7490
7491 /* Make sure the range is really isolated. */
7492 if (test_pages_isolated(outer_start, end, false)) {
7493 pr_info("%s: [%lx, %lx) PFNs busy\n",
7494 __func__, outer_start, end);
7495 ret = -EBUSY;
7496 goto done;
7497 }
7498
7499 /* Grab isolated pages from freelists. */
7500 outer_end = isolate_freepages_range(&cc, outer_start, end);
7501 if (!outer_end) {
7502 ret = -EBUSY;
7503 goto done;
7504 }
7505
7506 /* Free head and tail (if any) */
7507 if (start != outer_start)
7508 free_contig_range(outer_start, start - outer_start);
7509 if (end != outer_end)
7510 free_contig_range(end, outer_end - end);
7511
7512 done:
7513 undo_isolate_page_range(pfn_max_align_down(start),
7514 pfn_max_align_up(end), migratetype);
7515 return ret;
7516 }
7517
7518 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7519 {
7520 unsigned int count = 0;
7521
7522 for (; nr_pages--; pfn++) {
7523 struct page *page = pfn_to_page(pfn);
7524
7525 count += page_count(page) != 1;
7526 __free_page(page);
7527 }
7528 WARN(count != 0, "%d pages are still in use!\n", count);
7529 }
7530 #endif
7531
7532 #ifdef CONFIG_MEMORY_HOTPLUG
7533 /*
7534 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7535 * page high values need to be recalulated.
7536 */
7537 void __meminit zone_pcp_update(struct zone *zone)
7538 {
7539 unsigned cpu;
7540 mutex_lock(&pcp_batch_high_lock);
7541 for_each_possible_cpu(cpu)
7542 pageset_set_high_and_batch(zone,
7543 per_cpu_ptr(zone->pageset, cpu));
7544 mutex_unlock(&pcp_batch_high_lock);
7545 }
7546 #endif
7547
7548 void zone_pcp_reset(struct zone *zone)
7549 {
7550 unsigned long flags;
7551 int cpu;
7552 struct per_cpu_pageset *pset;
7553
7554 /* avoid races with drain_pages() */
7555 local_irq_save(flags);
7556 if (zone->pageset != &boot_pageset) {
7557 for_each_online_cpu(cpu) {
7558 pset = per_cpu_ptr(zone->pageset, cpu);
7559 drain_zonestat(zone, pset);
7560 }
7561 free_percpu(zone->pageset);
7562 zone->pageset = &boot_pageset;
7563 }
7564 local_irq_restore(flags);
7565 }
7566
7567 #ifdef CONFIG_MEMORY_HOTREMOVE
7568 /*
7569 * All pages in the range must be in a single zone and isolated
7570 * before calling this.
7571 */
7572 void
7573 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7574 {
7575 struct page *page;
7576 struct zone *zone;
7577 unsigned int order, i;
7578 unsigned long pfn;
7579 unsigned long flags;
7580 /* find the first valid pfn */
7581 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7582 if (pfn_valid(pfn))
7583 break;
7584 if (pfn == end_pfn)
7585 return;
7586 zone = page_zone(pfn_to_page(pfn));
7587 spin_lock_irqsave(&zone->lock, flags);
7588 pfn = start_pfn;
7589 while (pfn < end_pfn) {
7590 if (!pfn_valid(pfn)) {
7591 pfn++;
7592 continue;
7593 }
7594 page = pfn_to_page(pfn);
7595 /*
7596 * The HWPoisoned page may be not in buddy system, and
7597 * page_count() is not 0.
7598 */
7599 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7600 pfn++;
7601 SetPageReserved(page);
7602 continue;
7603 }
7604
7605 BUG_ON(page_count(page));
7606 BUG_ON(!PageBuddy(page));
7607 order = page_order(page);
7608 #ifdef CONFIG_DEBUG_VM
7609 pr_info("remove from free list %lx %d %lx\n",
7610 pfn, 1 << order, end_pfn);
7611 #endif
7612 list_del(&page->lru);
7613 rmv_page_order(page);
7614 zone->free_area[order].nr_free--;
7615 for (i = 0; i < (1 << order); i++)
7616 SetPageReserved((page+i));
7617 pfn += (1 << order);
7618 }
7619 spin_unlock_irqrestore(&zone->lock, flags);
7620 }
7621 #endif
7622
7623 bool is_free_buddy_page(struct page *page)
7624 {
7625 struct zone *zone = page_zone(page);
7626 unsigned long pfn = page_to_pfn(page);
7627 unsigned long flags;
7628 unsigned int order;
7629
7630 spin_lock_irqsave(&zone->lock, flags);
7631 for (order = 0; order < MAX_ORDER; order++) {
7632 struct page *page_head = page - (pfn & ((1 << order) - 1));
7633
7634 if (PageBuddy(page_head) && page_order(page_head) >= order)
7635 break;
7636 }
7637 spin_unlock_irqrestore(&zone->lock, flags);
7638
7639 return order < MAX_ORDER;
7640 }