]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
Merge drm/drm-next into drm-intel-next-queued
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION (8)
81
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
85 #endif
86
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
90 /*
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
95 */
96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 int _node_numa_mem_[MAX_NUMNODES];
99 #endif
100
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105 };
106 DEFINE_MUTEX(pcpu_drain_mutex);
107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
113
114 /*
115 * Array of node states.
116 */
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 [N_MEMORY] = { { [0] = 1UL } },
126 [N_CPU] = { { [0] = 1UL } },
127 #endif /* NUMA */
128 };
129 EXPORT_SYMBOL(node_states);
130
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
135
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140 #else
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142 #endif
143 EXPORT_SYMBOL(init_on_alloc);
144
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
147 #else
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
149 #endif
150 EXPORT_SYMBOL(init_on_free);
151
152 static int __init early_init_on_alloc(char *buf)
153 {
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167 }
168 early_param("init_on_alloc", early_init_on_alloc);
169
170 static int __init early_init_on_free(char *buf)
171 {
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185 }
186 early_param("init_on_free", early_init_on_free);
187
188 /*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196 static inline int get_pcppage_migratetype(struct page *page)
197 {
198 return page->index;
199 }
200
201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202 {
203 page->index = migratetype;
204 }
205
206 #ifdef CONFIG_PM_SLEEP
207 /*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
215 */
216
217 static gfp_t saved_gfp_mask;
218
219 void pm_restore_gfp_mask(void)
220 {
221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
226 }
227
228 void pm_restrict_gfp_mask(void)
229 {
230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234 }
235
236 bool pm_suspended_storage(void)
237 {
238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 return false;
240 return true;
241 }
242 #endif /* CONFIG_PM_SLEEP */
243
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
246 #endif
247
248 static void __free_pages_ok(struct page *page, unsigned int order);
249
250 /*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
260 */
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 [ZONE_DMA] = 256,
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 [ZONE_DMA32] = 256,
267 #endif
268 [ZONE_NORMAL] = 32,
269 #ifdef CONFIG_HIGHMEM
270 [ZONE_HIGHMEM] = 0,
271 #endif
272 [ZONE_MOVABLE] = 0,
273 };
274
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
277 "DMA",
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 "DMA32",
281 #endif
282 "Normal",
283 #ifdef CONFIG_HIGHMEM
284 "HighMem",
285 #endif
286 "Movable",
287 #ifdef CONFIG_ZONE_DEVICE
288 "Device",
289 #endif
290 };
291
292 const char * const migratetype_names[MIGRATE_TYPES] = {
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297 #ifdef CONFIG_CMA
298 "CMA",
299 #endif
300 #ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302 #endif
303 };
304
305 compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308 #ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310 #endif
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313 #endif
314 };
315
316 int min_free_kbytes = 1024;
317 int user_min_free_kbytes = -1;
318 #ifdef CONFIG_DISCONTIGMEM
319 /*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328 int watermark_boost_factor __read_mostly;
329 #else
330 int watermark_boost_factor __read_mostly = 15000;
331 #endif
332 int watermark_scale_factor = 10;
333
334 static unsigned long nr_kernel_pages __initdata;
335 static unsigned long nr_all_pages __initdata;
336 static unsigned long dma_reserve __initdata;
337
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352
353 #if MAX_NUMNODES > 1
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
358 #endif
359
360 int page_group_by_mobility_disabled __read_mostly;
361
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 /*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370 /*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384 {
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387 }
388
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391 {
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 return true;
396
397 return false;
398 }
399
400 /*
401 * Returns true when the remaining initialisation should be deferred until
402 * later in the boot cycle when it can be parallelised.
403 */
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406 {
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
418 /* Always populate low zones for address-constrained allocations */
419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 return false;
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
426 nr_initialised++;
427 if ((nr_initialised > PAGES_PER_SECTION) &&
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
431 }
432 return false;
433 }
434 #else
435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
437 static inline bool early_page_uninitialised(unsigned long pfn)
438 {
439 return false;
440 }
441
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443 {
444 return false;
445 }
446 #endif
447
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451 {
452 #ifdef CONFIG_SPARSEMEM
453 return section_to_usemap(__pfn_to_section(pfn));
454 #else
455 return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
457 }
458
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460 {
461 #ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464 #else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 #endif /* CONFIG_SPARSEMEM */
468 }
469
470 /**
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
476 *
477 * Return: pageblock_bits flags
478 */
479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
483 {
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
487
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
492
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496 }
497
498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
501 {
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503 }
504
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506 {
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508 }
509
510 /**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
517 */
518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
522 {
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
540
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
547 }
548 }
549
550 void set_pageblock_migratetype(struct page *page, int migratetype)
551 {
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
554 migratetype = MIGRATE_UNMOVABLE;
555
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
558 }
559
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
562 {
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
566 unsigned long sp, start_pfn;
567
568 do {
569 seq = zone_span_seqbegin(zone);
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
572 if (!zone_spans_pfn(zone, pfn))
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
575
576 if (ret)
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
580
581 return ret;
582 }
583
584 static int page_is_consistent(struct zone *zone, struct page *page)
585 {
586 if (!pfn_valid_within(page_to_pfn(page)))
587 return 0;
588 if (zone != page_zone(page))
589 return 0;
590
591 return 1;
592 }
593 /*
594 * Temporary debugging check for pages not lying within a given zone.
595 */
596 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 {
598 if (page_outside_zone_boundaries(zone, page))
599 return 1;
600 if (!page_is_consistent(zone, page))
601 return 1;
602
603 return 0;
604 }
605 #else
606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
607 {
608 return 0;
609 }
610 #endif
611
612 static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
614 {
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
618
619 /*
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
622 */
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
627 }
628 if (nr_unshown) {
629 pr_alert(
630 "BUG: Bad page state: %lu messages suppressed\n",
631 nr_unshown);
632 nr_unshown = 0;
633 }
634 nr_shown = 0;
635 }
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
638
639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
640 current->comm, page_to_pfn(page));
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
646 dump_page_owner(page);
647
648 print_modules();
649 dump_stack();
650 out:
651 /* Leave bad fields for debug, except PageBuddy could make trouble */
652 page_mapcount_reset(page); /* remove PageBuddy */
653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
654 }
655
656 /*
657 * Higher-order pages are called "compound pages". They are structured thusly:
658 *
659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
660 *
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
663 *
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
666 *
667 * The first tail page's ->compound_order holds the order of allocation.
668 * This usage means that zero-order pages may not be compound.
669 */
670
671 void free_compound_page(struct page *page)
672 {
673 mem_cgroup_uncharge(page);
674 __free_pages_ok(page, compound_order(page));
675 }
676
677 void prep_compound_page(struct page *page, unsigned int order)
678 {
679 int i;
680 int nr_pages = 1 << order;
681
682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 set_compound_order(page, order);
684 __SetPageHead(page);
685 for (i = 1; i < nr_pages; i++) {
686 struct page *p = page + i;
687 set_page_count(p, 0);
688 p->mapping = TAIL_MAPPING;
689 set_compound_head(p, page);
690 }
691 atomic_set(compound_mapcount_ptr(page), -1);
692 }
693
694 #ifdef CONFIG_DEBUG_PAGEALLOC
695 unsigned int _debug_guardpage_minorder;
696
697 bool _debug_pagealloc_enabled_early __read_mostly
698 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
699 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
700 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
701 EXPORT_SYMBOL(_debug_pagealloc_enabled);
702
703 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
704
705 static int __init early_debug_pagealloc(char *buf)
706 {
707 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
708 }
709 early_param("debug_pagealloc", early_debug_pagealloc);
710
711 void init_debug_pagealloc(void)
712 {
713 if (!debug_pagealloc_enabled())
714 return;
715
716 static_branch_enable(&_debug_pagealloc_enabled);
717
718 if (!debug_guardpage_minorder())
719 return;
720
721 static_branch_enable(&_debug_guardpage_enabled);
722 }
723
724 static int __init debug_guardpage_minorder_setup(char *buf)
725 {
726 unsigned long res;
727
728 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
729 pr_err("Bad debug_guardpage_minorder value\n");
730 return 0;
731 }
732 _debug_guardpage_minorder = res;
733 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
734 return 0;
735 }
736 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
737
738 static inline bool set_page_guard(struct zone *zone, struct page *page,
739 unsigned int order, int migratetype)
740 {
741 if (!debug_guardpage_enabled())
742 return false;
743
744 if (order >= debug_guardpage_minorder())
745 return false;
746
747 __SetPageGuard(page);
748 INIT_LIST_HEAD(&page->lru);
749 set_page_private(page, order);
750 /* Guard pages are not available for any usage */
751 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
752
753 return true;
754 }
755
756 static inline void clear_page_guard(struct zone *zone, struct page *page,
757 unsigned int order, int migratetype)
758 {
759 if (!debug_guardpage_enabled())
760 return;
761
762 __ClearPageGuard(page);
763
764 set_page_private(page, 0);
765 if (!is_migrate_isolate(migratetype))
766 __mod_zone_freepage_state(zone, (1 << order), migratetype);
767 }
768 #else
769 static inline bool set_page_guard(struct zone *zone, struct page *page,
770 unsigned int order, int migratetype) { return false; }
771 static inline void clear_page_guard(struct zone *zone, struct page *page,
772 unsigned int order, int migratetype) {}
773 #endif
774
775 static inline void set_page_order(struct page *page, unsigned int order)
776 {
777 set_page_private(page, order);
778 __SetPageBuddy(page);
779 }
780
781 /*
782 * This function checks whether a page is free && is the buddy
783 * we can coalesce a page and its buddy if
784 * (a) the buddy is not in a hole (check before calling!) &&
785 * (b) the buddy is in the buddy system &&
786 * (c) a page and its buddy have the same order &&
787 * (d) a page and its buddy are in the same zone.
788 *
789 * For recording whether a page is in the buddy system, we set PageBuddy.
790 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
791 *
792 * For recording page's order, we use page_private(page).
793 */
794 static inline int page_is_buddy(struct page *page, struct page *buddy,
795 unsigned int order)
796 {
797 if (page_is_guard(buddy) && page_order(buddy) == order) {
798 if (page_zone_id(page) != page_zone_id(buddy))
799 return 0;
800
801 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
802
803 return 1;
804 }
805
806 if (PageBuddy(buddy) && page_order(buddy) == order) {
807 /*
808 * zone check is done late to avoid uselessly
809 * calculating zone/node ids for pages that could
810 * never merge.
811 */
812 if (page_zone_id(page) != page_zone_id(buddy))
813 return 0;
814
815 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
816
817 return 1;
818 }
819 return 0;
820 }
821
822 #ifdef CONFIG_COMPACTION
823 static inline struct capture_control *task_capc(struct zone *zone)
824 {
825 struct capture_control *capc = current->capture_control;
826
827 return capc &&
828 !(current->flags & PF_KTHREAD) &&
829 !capc->page &&
830 capc->cc->zone == zone &&
831 capc->cc->direct_compaction ? capc : NULL;
832 }
833
834 static inline bool
835 compaction_capture(struct capture_control *capc, struct page *page,
836 int order, int migratetype)
837 {
838 if (!capc || order != capc->cc->order)
839 return false;
840
841 /* Do not accidentally pollute CMA or isolated regions*/
842 if (is_migrate_cma(migratetype) ||
843 is_migrate_isolate(migratetype))
844 return false;
845
846 /*
847 * Do not let lower order allocations polluate a movable pageblock.
848 * This might let an unmovable request use a reclaimable pageblock
849 * and vice-versa but no more than normal fallback logic which can
850 * have trouble finding a high-order free page.
851 */
852 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
853 return false;
854
855 capc->page = page;
856 return true;
857 }
858
859 #else
860 static inline struct capture_control *task_capc(struct zone *zone)
861 {
862 return NULL;
863 }
864
865 static inline bool
866 compaction_capture(struct capture_control *capc, struct page *page,
867 int order, int migratetype)
868 {
869 return false;
870 }
871 #endif /* CONFIG_COMPACTION */
872
873 /*
874 * Freeing function for a buddy system allocator.
875 *
876 * The concept of a buddy system is to maintain direct-mapped table
877 * (containing bit values) for memory blocks of various "orders".
878 * The bottom level table contains the map for the smallest allocatable
879 * units of memory (here, pages), and each level above it describes
880 * pairs of units from the levels below, hence, "buddies".
881 * At a high level, all that happens here is marking the table entry
882 * at the bottom level available, and propagating the changes upward
883 * as necessary, plus some accounting needed to play nicely with other
884 * parts of the VM system.
885 * At each level, we keep a list of pages, which are heads of continuous
886 * free pages of length of (1 << order) and marked with PageBuddy.
887 * Page's order is recorded in page_private(page) field.
888 * So when we are allocating or freeing one, we can derive the state of the
889 * other. That is, if we allocate a small block, and both were
890 * free, the remainder of the region must be split into blocks.
891 * If a block is freed, and its buddy is also free, then this
892 * triggers coalescing into a block of larger size.
893 *
894 * -- nyc
895 */
896
897 static inline void __free_one_page(struct page *page,
898 unsigned long pfn,
899 struct zone *zone, unsigned int order,
900 int migratetype)
901 {
902 unsigned long combined_pfn;
903 unsigned long uninitialized_var(buddy_pfn);
904 struct page *buddy;
905 unsigned int max_order;
906 struct capture_control *capc = task_capc(zone);
907
908 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
909
910 VM_BUG_ON(!zone_is_initialized(zone));
911 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
912
913 VM_BUG_ON(migratetype == -1);
914 if (likely(!is_migrate_isolate(migratetype)))
915 __mod_zone_freepage_state(zone, 1 << order, migratetype);
916
917 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
918 VM_BUG_ON_PAGE(bad_range(zone, page), page);
919
920 continue_merging:
921 while (order < max_order - 1) {
922 if (compaction_capture(capc, page, order, migratetype)) {
923 __mod_zone_freepage_state(zone, -(1 << order),
924 migratetype);
925 return;
926 }
927 buddy_pfn = __find_buddy_pfn(pfn, order);
928 buddy = page + (buddy_pfn - pfn);
929
930 if (!pfn_valid_within(buddy_pfn))
931 goto done_merging;
932 if (!page_is_buddy(page, buddy, order))
933 goto done_merging;
934 /*
935 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
936 * merge with it and move up one order.
937 */
938 if (page_is_guard(buddy))
939 clear_page_guard(zone, buddy, order, migratetype);
940 else
941 del_page_from_free_area(buddy, &zone->free_area[order]);
942 combined_pfn = buddy_pfn & pfn;
943 page = page + (combined_pfn - pfn);
944 pfn = combined_pfn;
945 order++;
946 }
947 if (max_order < MAX_ORDER) {
948 /* If we are here, it means order is >= pageblock_order.
949 * We want to prevent merge between freepages on isolate
950 * pageblock and normal pageblock. Without this, pageblock
951 * isolation could cause incorrect freepage or CMA accounting.
952 *
953 * We don't want to hit this code for the more frequent
954 * low-order merging.
955 */
956 if (unlikely(has_isolate_pageblock(zone))) {
957 int buddy_mt;
958
959 buddy_pfn = __find_buddy_pfn(pfn, order);
960 buddy = page + (buddy_pfn - pfn);
961 buddy_mt = get_pageblock_migratetype(buddy);
962
963 if (migratetype != buddy_mt
964 && (is_migrate_isolate(migratetype) ||
965 is_migrate_isolate(buddy_mt)))
966 goto done_merging;
967 }
968 max_order++;
969 goto continue_merging;
970 }
971
972 done_merging:
973 set_page_order(page, order);
974
975 /*
976 * If this is not the largest possible page, check if the buddy
977 * of the next-highest order is free. If it is, it's possible
978 * that pages are being freed that will coalesce soon. In case,
979 * that is happening, add the free page to the tail of the list
980 * so it's less likely to be used soon and more likely to be merged
981 * as a higher order page
982 */
983 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
984 && !is_shuffle_order(order)) {
985 struct page *higher_page, *higher_buddy;
986 combined_pfn = buddy_pfn & pfn;
987 higher_page = page + (combined_pfn - pfn);
988 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
989 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
990 if (pfn_valid_within(buddy_pfn) &&
991 page_is_buddy(higher_page, higher_buddy, order + 1)) {
992 add_to_free_area_tail(page, &zone->free_area[order],
993 migratetype);
994 return;
995 }
996 }
997
998 if (is_shuffle_order(order))
999 add_to_free_area_random(page, &zone->free_area[order],
1000 migratetype);
1001 else
1002 add_to_free_area(page, &zone->free_area[order], migratetype);
1003
1004 }
1005
1006 /*
1007 * A bad page could be due to a number of fields. Instead of multiple branches,
1008 * try and check multiple fields with one check. The caller must do a detailed
1009 * check if necessary.
1010 */
1011 static inline bool page_expected_state(struct page *page,
1012 unsigned long check_flags)
1013 {
1014 if (unlikely(atomic_read(&page->_mapcount) != -1))
1015 return false;
1016
1017 if (unlikely((unsigned long)page->mapping |
1018 page_ref_count(page) |
1019 #ifdef CONFIG_MEMCG
1020 (unsigned long)page->mem_cgroup |
1021 #endif
1022 (page->flags & check_flags)))
1023 return false;
1024
1025 return true;
1026 }
1027
1028 static void free_pages_check_bad(struct page *page)
1029 {
1030 const char *bad_reason;
1031 unsigned long bad_flags;
1032
1033 bad_reason = NULL;
1034 bad_flags = 0;
1035
1036 if (unlikely(atomic_read(&page->_mapcount) != -1))
1037 bad_reason = "nonzero mapcount";
1038 if (unlikely(page->mapping != NULL))
1039 bad_reason = "non-NULL mapping";
1040 if (unlikely(page_ref_count(page) != 0))
1041 bad_reason = "nonzero _refcount";
1042 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1043 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1044 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1045 }
1046 #ifdef CONFIG_MEMCG
1047 if (unlikely(page->mem_cgroup))
1048 bad_reason = "page still charged to cgroup";
1049 #endif
1050 bad_page(page, bad_reason, bad_flags);
1051 }
1052
1053 static inline int free_pages_check(struct page *page)
1054 {
1055 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1056 return 0;
1057
1058 /* Something has gone sideways, find it */
1059 free_pages_check_bad(page);
1060 return 1;
1061 }
1062
1063 static int free_tail_pages_check(struct page *head_page, struct page *page)
1064 {
1065 int ret = 1;
1066
1067 /*
1068 * We rely page->lru.next never has bit 0 set, unless the page
1069 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1070 */
1071 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1072
1073 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1074 ret = 0;
1075 goto out;
1076 }
1077 switch (page - head_page) {
1078 case 1:
1079 /* the first tail page: ->mapping may be compound_mapcount() */
1080 if (unlikely(compound_mapcount(page))) {
1081 bad_page(page, "nonzero compound_mapcount", 0);
1082 goto out;
1083 }
1084 break;
1085 case 2:
1086 /*
1087 * the second tail page: ->mapping is
1088 * deferred_list.next -- ignore value.
1089 */
1090 break;
1091 default:
1092 if (page->mapping != TAIL_MAPPING) {
1093 bad_page(page, "corrupted mapping in tail page", 0);
1094 goto out;
1095 }
1096 break;
1097 }
1098 if (unlikely(!PageTail(page))) {
1099 bad_page(page, "PageTail not set", 0);
1100 goto out;
1101 }
1102 if (unlikely(compound_head(page) != head_page)) {
1103 bad_page(page, "compound_head not consistent", 0);
1104 goto out;
1105 }
1106 ret = 0;
1107 out:
1108 page->mapping = NULL;
1109 clear_compound_head(page);
1110 return ret;
1111 }
1112
1113 static void kernel_init_free_pages(struct page *page, int numpages)
1114 {
1115 int i;
1116
1117 for (i = 0; i < numpages; i++)
1118 clear_highpage(page + i);
1119 }
1120
1121 static __always_inline bool free_pages_prepare(struct page *page,
1122 unsigned int order, bool check_free)
1123 {
1124 int bad = 0;
1125
1126 VM_BUG_ON_PAGE(PageTail(page), page);
1127
1128 trace_mm_page_free(page, order);
1129
1130 /*
1131 * Check tail pages before head page information is cleared to
1132 * avoid checking PageCompound for order-0 pages.
1133 */
1134 if (unlikely(order)) {
1135 bool compound = PageCompound(page);
1136 int i;
1137
1138 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1139
1140 if (compound)
1141 ClearPageDoubleMap(page);
1142 for (i = 1; i < (1 << order); i++) {
1143 if (compound)
1144 bad += free_tail_pages_check(page, page + i);
1145 if (unlikely(free_pages_check(page + i))) {
1146 bad++;
1147 continue;
1148 }
1149 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1150 }
1151 }
1152 if (PageMappingFlags(page))
1153 page->mapping = NULL;
1154 if (memcg_kmem_enabled() && PageKmemcg(page))
1155 __memcg_kmem_uncharge(page, order);
1156 if (check_free)
1157 bad += free_pages_check(page);
1158 if (bad)
1159 return false;
1160
1161 page_cpupid_reset_last(page);
1162 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1163 reset_page_owner(page, order);
1164
1165 if (!PageHighMem(page)) {
1166 debug_check_no_locks_freed(page_address(page),
1167 PAGE_SIZE << order);
1168 debug_check_no_obj_freed(page_address(page),
1169 PAGE_SIZE << order);
1170 }
1171 if (want_init_on_free())
1172 kernel_init_free_pages(page, 1 << order);
1173
1174 kernel_poison_pages(page, 1 << order, 0);
1175 /*
1176 * arch_free_page() can make the page's contents inaccessible. s390
1177 * does this. So nothing which can access the page's contents should
1178 * happen after this.
1179 */
1180 arch_free_page(page, order);
1181
1182 if (debug_pagealloc_enabled_static())
1183 kernel_map_pages(page, 1 << order, 0);
1184
1185 kasan_free_nondeferred_pages(page, order);
1186
1187 return true;
1188 }
1189
1190 #ifdef CONFIG_DEBUG_VM
1191 /*
1192 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1193 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1194 * moved from pcp lists to free lists.
1195 */
1196 static bool free_pcp_prepare(struct page *page)
1197 {
1198 return free_pages_prepare(page, 0, true);
1199 }
1200
1201 static bool bulkfree_pcp_prepare(struct page *page)
1202 {
1203 if (debug_pagealloc_enabled_static())
1204 return free_pages_check(page);
1205 else
1206 return false;
1207 }
1208 #else
1209 /*
1210 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1211 * moving from pcp lists to free list in order to reduce overhead. With
1212 * debug_pagealloc enabled, they are checked also immediately when being freed
1213 * to the pcp lists.
1214 */
1215 static bool free_pcp_prepare(struct page *page)
1216 {
1217 if (debug_pagealloc_enabled_static())
1218 return free_pages_prepare(page, 0, true);
1219 else
1220 return free_pages_prepare(page, 0, false);
1221 }
1222
1223 static bool bulkfree_pcp_prepare(struct page *page)
1224 {
1225 return free_pages_check(page);
1226 }
1227 #endif /* CONFIG_DEBUG_VM */
1228
1229 static inline void prefetch_buddy(struct page *page)
1230 {
1231 unsigned long pfn = page_to_pfn(page);
1232 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1233 struct page *buddy = page + (buddy_pfn - pfn);
1234
1235 prefetch(buddy);
1236 }
1237
1238 /*
1239 * Frees a number of pages from the PCP lists
1240 * Assumes all pages on list are in same zone, and of same order.
1241 * count is the number of pages to free.
1242 *
1243 * If the zone was previously in an "all pages pinned" state then look to
1244 * see if this freeing clears that state.
1245 *
1246 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1247 * pinned" detection logic.
1248 */
1249 static void free_pcppages_bulk(struct zone *zone, int count,
1250 struct per_cpu_pages *pcp)
1251 {
1252 int migratetype = 0;
1253 int batch_free = 0;
1254 int prefetch_nr = 0;
1255 bool isolated_pageblocks;
1256 struct page *page, *tmp;
1257 LIST_HEAD(head);
1258
1259 while (count) {
1260 struct list_head *list;
1261
1262 /*
1263 * Remove pages from lists in a round-robin fashion. A
1264 * batch_free count is maintained that is incremented when an
1265 * empty list is encountered. This is so more pages are freed
1266 * off fuller lists instead of spinning excessively around empty
1267 * lists
1268 */
1269 do {
1270 batch_free++;
1271 if (++migratetype == MIGRATE_PCPTYPES)
1272 migratetype = 0;
1273 list = &pcp->lists[migratetype];
1274 } while (list_empty(list));
1275
1276 /* This is the only non-empty list. Free them all. */
1277 if (batch_free == MIGRATE_PCPTYPES)
1278 batch_free = count;
1279
1280 do {
1281 page = list_last_entry(list, struct page, lru);
1282 /* must delete to avoid corrupting pcp list */
1283 list_del(&page->lru);
1284 pcp->count--;
1285
1286 if (bulkfree_pcp_prepare(page))
1287 continue;
1288
1289 list_add_tail(&page->lru, &head);
1290
1291 /*
1292 * We are going to put the page back to the global
1293 * pool, prefetch its buddy to speed up later access
1294 * under zone->lock. It is believed the overhead of
1295 * an additional test and calculating buddy_pfn here
1296 * can be offset by reduced memory latency later. To
1297 * avoid excessive prefetching due to large count, only
1298 * prefetch buddy for the first pcp->batch nr of pages.
1299 */
1300 if (prefetch_nr++ < pcp->batch)
1301 prefetch_buddy(page);
1302 } while (--count && --batch_free && !list_empty(list));
1303 }
1304
1305 spin_lock(&zone->lock);
1306 isolated_pageblocks = has_isolate_pageblock(zone);
1307
1308 /*
1309 * Use safe version since after __free_one_page(),
1310 * page->lru.next will not point to original list.
1311 */
1312 list_for_each_entry_safe(page, tmp, &head, lru) {
1313 int mt = get_pcppage_migratetype(page);
1314 /* MIGRATE_ISOLATE page should not go to pcplists */
1315 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1316 /* Pageblock could have been isolated meanwhile */
1317 if (unlikely(isolated_pageblocks))
1318 mt = get_pageblock_migratetype(page);
1319
1320 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1321 trace_mm_page_pcpu_drain(page, 0, mt);
1322 }
1323 spin_unlock(&zone->lock);
1324 }
1325
1326 static void free_one_page(struct zone *zone,
1327 struct page *page, unsigned long pfn,
1328 unsigned int order,
1329 int migratetype)
1330 {
1331 spin_lock(&zone->lock);
1332 if (unlikely(has_isolate_pageblock(zone) ||
1333 is_migrate_isolate(migratetype))) {
1334 migratetype = get_pfnblock_migratetype(page, pfn);
1335 }
1336 __free_one_page(page, pfn, zone, order, migratetype);
1337 spin_unlock(&zone->lock);
1338 }
1339
1340 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1341 unsigned long zone, int nid)
1342 {
1343 mm_zero_struct_page(page);
1344 set_page_links(page, zone, nid, pfn);
1345 init_page_count(page);
1346 page_mapcount_reset(page);
1347 page_cpupid_reset_last(page);
1348 page_kasan_tag_reset(page);
1349
1350 INIT_LIST_HEAD(&page->lru);
1351 #ifdef WANT_PAGE_VIRTUAL
1352 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1353 if (!is_highmem_idx(zone))
1354 set_page_address(page, __va(pfn << PAGE_SHIFT));
1355 #endif
1356 }
1357
1358 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1359 static void __meminit init_reserved_page(unsigned long pfn)
1360 {
1361 pg_data_t *pgdat;
1362 int nid, zid;
1363
1364 if (!early_page_uninitialised(pfn))
1365 return;
1366
1367 nid = early_pfn_to_nid(pfn);
1368 pgdat = NODE_DATA(nid);
1369
1370 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1371 struct zone *zone = &pgdat->node_zones[zid];
1372
1373 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1374 break;
1375 }
1376 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1377 }
1378 #else
1379 static inline void init_reserved_page(unsigned long pfn)
1380 {
1381 }
1382 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1383
1384 /*
1385 * Initialised pages do not have PageReserved set. This function is
1386 * called for each range allocated by the bootmem allocator and
1387 * marks the pages PageReserved. The remaining valid pages are later
1388 * sent to the buddy page allocator.
1389 */
1390 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1391 {
1392 unsigned long start_pfn = PFN_DOWN(start);
1393 unsigned long end_pfn = PFN_UP(end);
1394
1395 for (; start_pfn < end_pfn; start_pfn++) {
1396 if (pfn_valid(start_pfn)) {
1397 struct page *page = pfn_to_page(start_pfn);
1398
1399 init_reserved_page(start_pfn);
1400
1401 /* Avoid false-positive PageTail() */
1402 INIT_LIST_HEAD(&page->lru);
1403
1404 /*
1405 * no need for atomic set_bit because the struct
1406 * page is not visible yet so nobody should
1407 * access it yet.
1408 */
1409 __SetPageReserved(page);
1410 }
1411 }
1412 }
1413
1414 static void __free_pages_ok(struct page *page, unsigned int order)
1415 {
1416 unsigned long flags;
1417 int migratetype;
1418 unsigned long pfn = page_to_pfn(page);
1419
1420 if (!free_pages_prepare(page, order, true))
1421 return;
1422
1423 migratetype = get_pfnblock_migratetype(page, pfn);
1424 local_irq_save(flags);
1425 __count_vm_events(PGFREE, 1 << order);
1426 free_one_page(page_zone(page), page, pfn, order, migratetype);
1427 local_irq_restore(flags);
1428 }
1429
1430 void __free_pages_core(struct page *page, unsigned int order)
1431 {
1432 unsigned int nr_pages = 1 << order;
1433 struct page *p = page;
1434 unsigned int loop;
1435
1436 prefetchw(p);
1437 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1438 prefetchw(p + 1);
1439 __ClearPageReserved(p);
1440 set_page_count(p, 0);
1441 }
1442 __ClearPageReserved(p);
1443 set_page_count(p, 0);
1444
1445 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1446 set_page_refcounted(page);
1447 __free_pages(page, order);
1448 }
1449
1450 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1451 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1452
1453 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1454
1455 int __meminit early_pfn_to_nid(unsigned long pfn)
1456 {
1457 static DEFINE_SPINLOCK(early_pfn_lock);
1458 int nid;
1459
1460 spin_lock(&early_pfn_lock);
1461 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1462 if (nid < 0)
1463 nid = first_online_node;
1464 spin_unlock(&early_pfn_lock);
1465
1466 return nid;
1467 }
1468 #endif
1469
1470 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1471 /* Only safe to use early in boot when initialisation is single-threaded */
1472 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1473 {
1474 int nid;
1475
1476 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1477 if (nid >= 0 && nid != node)
1478 return false;
1479 return true;
1480 }
1481
1482 #else
1483 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1484 {
1485 return true;
1486 }
1487 #endif
1488
1489
1490 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1491 unsigned int order)
1492 {
1493 if (early_page_uninitialised(pfn))
1494 return;
1495 __free_pages_core(page, order);
1496 }
1497
1498 /*
1499 * Check that the whole (or subset of) a pageblock given by the interval of
1500 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1501 * with the migration of free compaction scanner. The scanners then need to
1502 * use only pfn_valid_within() check for arches that allow holes within
1503 * pageblocks.
1504 *
1505 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1506 *
1507 * It's possible on some configurations to have a setup like node0 node1 node0
1508 * i.e. it's possible that all pages within a zones range of pages do not
1509 * belong to a single zone. We assume that a border between node0 and node1
1510 * can occur within a single pageblock, but not a node0 node1 node0
1511 * interleaving within a single pageblock. It is therefore sufficient to check
1512 * the first and last page of a pageblock and avoid checking each individual
1513 * page in a pageblock.
1514 */
1515 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1516 unsigned long end_pfn, struct zone *zone)
1517 {
1518 struct page *start_page;
1519 struct page *end_page;
1520
1521 /* end_pfn is one past the range we are checking */
1522 end_pfn--;
1523
1524 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1525 return NULL;
1526
1527 start_page = pfn_to_online_page(start_pfn);
1528 if (!start_page)
1529 return NULL;
1530
1531 if (page_zone(start_page) != zone)
1532 return NULL;
1533
1534 end_page = pfn_to_page(end_pfn);
1535
1536 /* This gives a shorter code than deriving page_zone(end_page) */
1537 if (page_zone_id(start_page) != page_zone_id(end_page))
1538 return NULL;
1539
1540 return start_page;
1541 }
1542
1543 void set_zone_contiguous(struct zone *zone)
1544 {
1545 unsigned long block_start_pfn = zone->zone_start_pfn;
1546 unsigned long block_end_pfn;
1547
1548 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1549 for (; block_start_pfn < zone_end_pfn(zone);
1550 block_start_pfn = block_end_pfn,
1551 block_end_pfn += pageblock_nr_pages) {
1552
1553 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1554
1555 if (!__pageblock_pfn_to_page(block_start_pfn,
1556 block_end_pfn, zone))
1557 return;
1558 }
1559
1560 /* We confirm that there is no hole */
1561 zone->contiguous = true;
1562 }
1563
1564 void clear_zone_contiguous(struct zone *zone)
1565 {
1566 zone->contiguous = false;
1567 }
1568
1569 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1570 static void __init deferred_free_range(unsigned long pfn,
1571 unsigned long nr_pages)
1572 {
1573 struct page *page;
1574 unsigned long i;
1575
1576 if (!nr_pages)
1577 return;
1578
1579 page = pfn_to_page(pfn);
1580
1581 /* Free a large naturally-aligned chunk if possible */
1582 if (nr_pages == pageblock_nr_pages &&
1583 (pfn & (pageblock_nr_pages - 1)) == 0) {
1584 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1585 __free_pages_core(page, pageblock_order);
1586 return;
1587 }
1588
1589 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1590 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1592 __free_pages_core(page, 0);
1593 }
1594 }
1595
1596 /* Completion tracking for deferred_init_memmap() threads */
1597 static atomic_t pgdat_init_n_undone __initdata;
1598 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1599
1600 static inline void __init pgdat_init_report_one_done(void)
1601 {
1602 if (atomic_dec_and_test(&pgdat_init_n_undone))
1603 complete(&pgdat_init_all_done_comp);
1604 }
1605
1606 /*
1607 * Returns true if page needs to be initialized or freed to buddy allocator.
1608 *
1609 * First we check if pfn is valid on architectures where it is possible to have
1610 * holes within pageblock_nr_pages. On systems where it is not possible, this
1611 * function is optimized out.
1612 *
1613 * Then, we check if a current large page is valid by only checking the validity
1614 * of the head pfn.
1615 */
1616 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1617 {
1618 if (!pfn_valid_within(pfn))
1619 return false;
1620 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1621 return false;
1622 return true;
1623 }
1624
1625 /*
1626 * Free pages to buddy allocator. Try to free aligned pages in
1627 * pageblock_nr_pages sizes.
1628 */
1629 static void __init deferred_free_pages(unsigned long pfn,
1630 unsigned long end_pfn)
1631 {
1632 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1633 unsigned long nr_free = 0;
1634
1635 for (; pfn < end_pfn; pfn++) {
1636 if (!deferred_pfn_valid(pfn)) {
1637 deferred_free_range(pfn - nr_free, nr_free);
1638 nr_free = 0;
1639 } else if (!(pfn & nr_pgmask)) {
1640 deferred_free_range(pfn - nr_free, nr_free);
1641 nr_free = 1;
1642 touch_nmi_watchdog();
1643 } else {
1644 nr_free++;
1645 }
1646 }
1647 /* Free the last block of pages to allocator */
1648 deferred_free_range(pfn - nr_free, nr_free);
1649 }
1650
1651 /*
1652 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1653 * by performing it only once every pageblock_nr_pages.
1654 * Return number of pages initialized.
1655 */
1656 static unsigned long __init deferred_init_pages(struct zone *zone,
1657 unsigned long pfn,
1658 unsigned long end_pfn)
1659 {
1660 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1661 int nid = zone_to_nid(zone);
1662 unsigned long nr_pages = 0;
1663 int zid = zone_idx(zone);
1664 struct page *page = NULL;
1665
1666 for (; pfn < end_pfn; pfn++) {
1667 if (!deferred_pfn_valid(pfn)) {
1668 page = NULL;
1669 continue;
1670 } else if (!page || !(pfn & nr_pgmask)) {
1671 page = pfn_to_page(pfn);
1672 touch_nmi_watchdog();
1673 } else {
1674 page++;
1675 }
1676 __init_single_page(page, pfn, zid, nid);
1677 nr_pages++;
1678 }
1679 return (nr_pages);
1680 }
1681
1682 /*
1683 * This function is meant to pre-load the iterator for the zone init.
1684 * Specifically it walks through the ranges until we are caught up to the
1685 * first_init_pfn value and exits there. If we never encounter the value we
1686 * return false indicating there are no valid ranges left.
1687 */
1688 static bool __init
1689 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1690 unsigned long *spfn, unsigned long *epfn,
1691 unsigned long first_init_pfn)
1692 {
1693 u64 j;
1694
1695 /*
1696 * Start out by walking through the ranges in this zone that have
1697 * already been initialized. We don't need to do anything with them
1698 * so we just need to flush them out of the system.
1699 */
1700 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1701 if (*epfn <= first_init_pfn)
1702 continue;
1703 if (*spfn < first_init_pfn)
1704 *spfn = first_init_pfn;
1705 *i = j;
1706 return true;
1707 }
1708
1709 return false;
1710 }
1711
1712 /*
1713 * Initialize and free pages. We do it in two loops: first we initialize
1714 * struct page, then free to buddy allocator, because while we are
1715 * freeing pages we can access pages that are ahead (computing buddy
1716 * page in __free_one_page()).
1717 *
1718 * In order to try and keep some memory in the cache we have the loop
1719 * broken along max page order boundaries. This way we will not cause
1720 * any issues with the buddy page computation.
1721 */
1722 static unsigned long __init
1723 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1724 unsigned long *end_pfn)
1725 {
1726 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1727 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1728 unsigned long nr_pages = 0;
1729 u64 j = *i;
1730
1731 /* First we loop through and initialize the page values */
1732 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1733 unsigned long t;
1734
1735 if (mo_pfn <= *start_pfn)
1736 break;
1737
1738 t = min(mo_pfn, *end_pfn);
1739 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1740
1741 if (mo_pfn < *end_pfn) {
1742 *start_pfn = mo_pfn;
1743 break;
1744 }
1745 }
1746
1747 /* Reset values and now loop through freeing pages as needed */
1748 swap(j, *i);
1749
1750 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1751 unsigned long t;
1752
1753 if (mo_pfn <= spfn)
1754 break;
1755
1756 t = min(mo_pfn, epfn);
1757 deferred_free_pages(spfn, t);
1758
1759 if (mo_pfn <= epfn)
1760 break;
1761 }
1762
1763 return nr_pages;
1764 }
1765
1766 /* Initialise remaining memory on a node */
1767 static int __init deferred_init_memmap(void *data)
1768 {
1769 pg_data_t *pgdat = data;
1770 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1771 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1772 unsigned long first_init_pfn, flags;
1773 unsigned long start = jiffies;
1774 struct zone *zone;
1775 int zid;
1776 u64 i;
1777
1778 /* Bind memory initialisation thread to a local node if possible */
1779 if (!cpumask_empty(cpumask))
1780 set_cpus_allowed_ptr(current, cpumask);
1781
1782 pgdat_resize_lock(pgdat, &flags);
1783 first_init_pfn = pgdat->first_deferred_pfn;
1784 if (first_init_pfn == ULONG_MAX) {
1785 pgdat_resize_unlock(pgdat, &flags);
1786 pgdat_init_report_one_done();
1787 return 0;
1788 }
1789
1790 /* Sanity check boundaries */
1791 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1792 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1793 pgdat->first_deferred_pfn = ULONG_MAX;
1794
1795 /* Only the highest zone is deferred so find it */
1796 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1797 zone = pgdat->node_zones + zid;
1798 if (first_init_pfn < zone_end_pfn(zone))
1799 break;
1800 }
1801
1802 /* If the zone is empty somebody else may have cleared out the zone */
1803 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1804 first_init_pfn))
1805 goto zone_empty;
1806
1807 /*
1808 * Initialize and free pages in MAX_ORDER sized increments so
1809 * that we can avoid introducing any issues with the buddy
1810 * allocator.
1811 */
1812 while (spfn < epfn)
1813 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1814 zone_empty:
1815 pgdat_resize_unlock(pgdat, &flags);
1816
1817 /* Sanity check that the next zone really is unpopulated */
1818 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1819
1820 pr_info("node %d initialised, %lu pages in %ums\n",
1821 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
1822
1823 pgdat_init_report_one_done();
1824 return 0;
1825 }
1826
1827 /*
1828 * If this zone has deferred pages, try to grow it by initializing enough
1829 * deferred pages to satisfy the allocation specified by order, rounded up to
1830 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1831 * of SECTION_SIZE bytes by initializing struct pages in increments of
1832 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1833 *
1834 * Return true when zone was grown, otherwise return false. We return true even
1835 * when we grow less than requested, to let the caller decide if there are
1836 * enough pages to satisfy the allocation.
1837 *
1838 * Note: We use noinline because this function is needed only during boot, and
1839 * it is called from a __ref function _deferred_grow_zone. This way we are
1840 * making sure that it is not inlined into permanent text section.
1841 */
1842 static noinline bool __init
1843 deferred_grow_zone(struct zone *zone, unsigned int order)
1844 {
1845 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1846 pg_data_t *pgdat = zone->zone_pgdat;
1847 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1848 unsigned long spfn, epfn, flags;
1849 unsigned long nr_pages = 0;
1850 u64 i;
1851
1852 /* Only the last zone may have deferred pages */
1853 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1854 return false;
1855
1856 pgdat_resize_lock(pgdat, &flags);
1857
1858 /*
1859 * If deferred pages have been initialized while we were waiting for
1860 * the lock, return true, as the zone was grown. The caller will retry
1861 * this zone. We won't return to this function since the caller also
1862 * has this static branch.
1863 */
1864 if (!static_branch_unlikely(&deferred_pages)) {
1865 pgdat_resize_unlock(pgdat, &flags);
1866 return true;
1867 }
1868
1869 /*
1870 * If someone grew this zone while we were waiting for spinlock, return
1871 * true, as there might be enough pages already.
1872 */
1873 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1874 pgdat_resize_unlock(pgdat, &flags);
1875 return true;
1876 }
1877
1878 /* If the zone is empty somebody else may have cleared out the zone */
1879 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1880 first_deferred_pfn)) {
1881 pgdat->first_deferred_pfn = ULONG_MAX;
1882 pgdat_resize_unlock(pgdat, &flags);
1883 /* Retry only once. */
1884 return first_deferred_pfn != ULONG_MAX;
1885 }
1886
1887 /*
1888 * Initialize and free pages in MAX_ORDER sized increments so
1889 * that we can avoid introducing any issues with the buddy
1890 * allocator.
1891 */
1892 while (spfn < epfn) {
1893 /* update our first deferred PFN for this section */
1894 first_deferred_pfn = spfn;
1895
1896 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1897
1898 /* We should only stop along section boundaries */
1899 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1900 continue;
1901
1902 /* If our quota has been met we can stop here */
1903 if (nr_pages >= nr_pages_needed)
1904 break;
1905 }
1906
1907 pgdat->first_deferred_pfn = spfn;
1908 pgdat_resize_unlock(pgdat, &flags);
1909
1910 return nr_pages > 0;
1911 }
1912
1913 /*
1914 * deferred_grow_zone() is __init, but it is called from
1915 * get_page_from_freelist() during early boot until deferred_pages permanently
1916 * disables this call. This is why we have refdata wrapper to avoid warning,
1917 * and to ensure that the function body gets unloaded.
1918 */
1919 static bool __ref
1920 _deferred_grow_zone(struct zone *zone, unsigned int order)
1921 {
1922 return deferred_grow_zone(zone, order);
1923 }
1924
1925 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1926
1927 void __init page_alloc_init_late(void)
1928 {
1929 struct zone *zone;
1930 int nid;
1931
1932 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1933
1934 /* There will be num_node_state(N_MEMORY) threads */
1935 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1936 for_each_node_state(nid, N_MEMORY) {
1937 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1938 }
1939
1940 /* Block until all are initialised */
1941 wait_for_completion(&pgdat_init_all_done_comp);
1942
1943 /*
1944 * The number of managed pages has changed due to the initialisation
1945 * so the pcpu batch and high limits needs to be updated or the limits
1946 * will be artificially small.
1947 */
1948 for_each_populated_zone(zone)
1949 zone_pcp_update(zone);
1950
1951 /*
1952 * We initialized the rest of the deferred pages. Permanently disable
1953 * on-demand struct page initialization.
1954 */
1955 static_branch_disable(&deferred_pages);
1956
1957 /* Reinit limits that are based on free pages after the kernel is up */
1958 files_maxfiles_init();
1959 #endif
1960
1961 /* Discard memblock private memory */
1962 memblock_discard();
1963
1964 for_each_node_state(nid, N_MEMORY)
1965 shuffle_free_memory(NODE_DATA(nid));
1966
1967 for_each_populated_zone(zone)
1968 set_zone_contiguous(zone);
1969 }
1970
1971 #ifdef CONFIG_CMA
1972 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1973 void __init init_cma_reserved_pageblock(struct page *page)
1974 {
1975 unsigned i = pageblock_nr_pages;
1976 struct page *p = page;
1977
1978 do {
1979 __ClearPageReserved(p);
1980 set_page_count(p, 0);
1981 } while (++p, --i);
1982
1983 set_pageblock_migratetype(page, MIGRATE_CMA);
1984
1985 if (pageblock_order >= MAX_ORDER) {
1986 i = pageblock_nr_pages;
1987 p = page;
1988 do {
1989 set_page_refcounted(p);
1990 __free_pages(p, MAX_ORDER - 1);
1991 p += MAX_ORDER_NR_PAGES;
1992 } while (i -= MAX_ORDER_NR_PAGES);
1993 } else {
1994 set_page_refcounted(page);
1995 __free_pages(page, pageblock_order);
1996 }
1997
1998 adjust_managed_page_count(page, pageblock_nr_pages);
1999 }
2000 #endif
2001
2002 /*
2003 * The order of subdivision here is critical for the IO subsystem.
2004 * Please do not alter this order without good reasons and regression
2005 * testing. Specifically, as large blocks of memory are subdivided,
2006 * the order in which smaller blocks are delivered depends on the order
2007 * they're subdivided in this function. This is the primary factor
2008 * influencing the order in which pages are delivered to the IO
2009 * subsystem according to empirical testing, and this is also justified
2010 * by considering the behavior of a buddy system containing a single
2011 * large block of memory acted on by a series of small allocations.
2012 * This behavior is a critical factor in sglist merging's success.
2013 *
2014 * -- nyc
2015 */
2016 static inline void expand(struct zone *zone, struct page *page,
2017 int low, int high, struct free_area *area,
2018 int migratetype)
2019 {
2020 unsigned long size = 1 << high;
2021
2022 while (high > low) {
2023 area--;
2024 high--;
2025 size >>= 1;
2026 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2027
2028 /*
2029 * Mark as guard pages (or page), that will allow to
2030 * merge back to allocator when buddy will be freed.
2031 * Corresponding page table entries will not be touched,
2032 * pages will stay not present in virtual address space
2033 */
2034 if (set_page_guard(zone, &page[size], high, migratetype))
2035 continue;
2036
2037 add_to_free_area(&page[size], area, migratetype);
2038 set_page_order(&page[size], high);
2039 }
2040 }
2041
2042 static void check_new_page_bad(struct page *page)
2043 {
2044 const char *bad_reason = NULL;
2045 unsigned long bad_flags = 0;
2046
2047 if (unlikely(atomic_read(&page->_mapcount) != -1))
2048 bad_reason = "nonzero mapcount";
2049 if (unlikely(page->mapping != NULL))
2050 bad_reason = "non-NULL mapping";
2051 if (unlikely(page_ref_count(page) != 0))
2052 bad_reason = "nonzero _refcount";
2053 if (unlikely(page->flags & __PG_HWPOISON)) {
2054 bad_reason = "HWPoisoned (hardware-corrupted)";
2055 bad_flags = __PG_HWPOISON;
2056 /* Don't complain about hwpoisoned pages */
2057 page_mapcount_reset(page); /* remove PageBuddy */
2058 return;
2059 }
2060 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2061 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2062 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2063 }
2064 #ifdef CONFIG_MEMCG
2065 if (unlikely(page->mem_cgroup))
2066 bad_reason = "page still charged to cgroup";
2067 #endif
2068 bad_page(page, bad_reason, bad_flags);
2069 }
2070
2071 /*
2072 * This page is about to be returned from the page allocator
2073 */
2074 static inline int check_new_page(struct page *page)
2075 {
2076 if (likely(page_expected_state(page,
2077 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2078 return 0;
2079
2080 check_new_page_bad(page);
2081 return 1;
2082 }
2083
2084 static inline bool free_pages_prezeroed(void)
2085 {
2086 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2087 page_poisoning_enabled()) || want_init_on_free();
2088 }
2089
2090 #ifdef CONFIG_DEBUG_VM
2091 /*
2092 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2093 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2094 * also checked when pcp lists are refilled from the free lists.
2095 */
2096 static inline bool check_pcp_refill(struct page *page)
2097 {
2098 if (debug_pagealloc_enabled_static())
2099 return check_new_page(page);
2100 else
2101 return false;
2102 }
2103
2104 static inline bool check_new_pcp(struct page *page)
2105 {
2106 return check_new_page(page);
2107 }
2108 #else
2109 /*
2110 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2111 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2112 * enabled, they are also checked when being allocated from the pcp lists.
2113 */
2114 static inline bool check_pcp_refill(struct page *page)
2115 {
2116 return check_new_page(page);
2117 }
2118 static inline bool check_new_pcp(struct page *page)
2119 {
2120 if (debug_pagealloc_enabled_static())
2121 return check_new_page(page);
2122 else
2123 return false;
2124 }
2125 #endif /* CONFIG_DEBUG_VM */
2126
2127 static bool check_new_pages(struct page *page, unsigned int order)
2128 {
2129 int i;
2130 for (i = 0; i < (1 << order); i++) {
2131 struct page *p = page + i;
2132
2133 if (unlikely(check_new_page(p)))
2134 return true;
2135 }
2136
2137 return false;
2138 }
2139
2140 inline void post_alloc_hook(struct page *page, unsigned int order,
2141 gfp_t gfp_flags)
2142 {
2143 set_page_private(page, 0);
2144 set_page_refcounted(page);
2145
2146 arch_alloc_page(page, order);
2147 if (debug_pagealloc_enabled_static())
2148 kernel_map_pages(page, 1 << order, 1);
2149 kasan_alloc_pages(page, order);
2150 kernel_poison_pages(page, 1 << order, 1);
2151 set_page_owner(page, order, gfp_flags);
2152 }
2153
2154 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2155 unsigned int alloc_flags)
2156 {
2157 post_alloc_hook(page, order, gfp_flags);
2158
2159 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2160 kernel_init_free_pages(page, 1 << order);
2161
2162 if (order && (gfp_flags & __GFP_COMP))
2163 prep_compound_page(page, order);
2164
2165 /*
2166 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2167 * allocate the page. The expectation is that the caller is taking
2168 * steps that will free more memory. The caller should avoid the page
2169 * being used for !PFMEMALLOC purposes.
2170 */
2171 if (alloc_flags & ALLOC_NO_WATERMARKS)
2172 set_page_pfmemalloc(page);
2173 else
2174 clear_page_pfmemalloc(page);
2175 }
2176
2177 /*
2178 * Go through the free lists for the given migratetype and remove
2179 * the smallest available page from the freelists
2180 */
2181 static __always_inline
2182 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2183 int migratetype)
2184 {
2185 unsigned int current_order;
2186 struct free_area *area;
2187 struct page *page;
2188
2189 /* Find a page of the appropriate size in the preferred list */
2190 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2191 area = &(zone->free_area[current_order]);
2192 page = get_page_from_free_area(area, migratetype);
2193 if (!page)
2194 continue;
2195 del_page_from_free_area(page, area);
2196 expand(zone, page, order, current_order, area, migratetype);
2197 set_pcppage_migratetype(page, migratetype);
2198 return page;
2199 }
2200
2201 return NULL;
2202 }
2203
2204
2205 /*
2206 * This array describes the order lists are fallen back to when
2207 * the free lists for the desirable migrate type are depleted
2208 */
2209 static int fallbacks[MIGRATE_TYPES][4] = {
2210 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2211 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2212 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2213 #ifdef CONFIG_CMA
2214 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2215 #endif
2216 #ifdef CONFIG_MEMORY_ISOLATION
2217 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2218 #endif
2219 };
2220
2221 #ifdef CONFIG_CMA
2222 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2223 unsigned int order)
2224 {
2225 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2226 }
2227 #else
2228 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2229 unsigned int order) { return NULL; }
2230 #endif
2231
2232 /*
2233 * Move the free pages in a range to the free lists of the requested type.
2234 * Note that start_page and end_pages are not aligned on a pageblock
2235 * boundary. If alignment is required, use move_freepages_block()
2236 */
2237 static int move_freepages(struct zone *zone,
2238 struct page *start_page, struct page *end_page,
2239 int migratetype, int *num_movable)
2240 {
2241 struct page *page;
2242 unsigned int order;
2243 int pages_moved = 0;
2244
2245 for (page = start_page; page <= end_page;) {
2246 if (!pfn_valid_within(page_to_pfn(page))) {
2247 page++;
2248 continue;
2249 }
2250
2251 if (!PageBuddy(page)) {
2252 /*
2253 * We assume that pages that could be isolated for
2254 * migration are movable. But we don't actually try
2255 * isolating, as that would be expensive.
2256 */
2257 if (num_movable &&
2258 (PageLRU(page) || __PageMovable(page)))
2259 (*num_movable)++;
2260
2261 page++;
2262 continue;
2263 }
2264
2265 /* Make sure we are not inadvertently changing nodes */
2266 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2267 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2268
2269 order = page_order(page);
2270 move_to_free_area(page, &zone->free_area[order], migratetype);
2271 page += 1 << order;
2272 pages_moved += 1 << order;
2273 }
2274
2275 return pages_moved;
2276 }
2277
2278 int move_freepages_block(struct zone *zone, struct page *page,
2279 int migratetype, int *num_movable)
2280 {
2281 unsigned long start_pfn, end_pfn;
2282 struct page *start_page, *end_page;
2283
2284 if (num_movable)
2285 *num_movable = 0;
2286
2287 start_pfn = page_to_pfn(page);
2288 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2289 start_page = pfn_to_page(start_pfn);
2290 end_page = start_page + pageblock_nr_pages - 1;
2291 end_pfn = start_pfn + pageblock_nr_pages - 1;
2292
2293 /* Do not cross zone boundaries */
2294 if (!zone_spans_pfn(zone, start_pfn))
2295 start_page = page;
2296 if (!zone_spans_pfn(zone, end_pfn))
2297 return 0;
2298
2299 return move_freepages(zone, start_page, end_page, migratetype,
2300 num_movable);
2301 }
2302
2303 static void change_pageblock_range(struct page *pageblock_page,
2304 int start_order, int migratetype)
2305 {
2306 int nr_pageblocks = 1 << (start_order - pageblock_order);
2307
2308 while (nr_pageblocks--) {
2309 set_pageblock_migratetype(pageblock_page, migratetype);
2310 pageblock_page += pageblock_nr_pages;
2311 }
2312 }
2313
2314 /*
2315 * When we are falling back to another migratetype during allocation, try to
2316 * steal extra free pages from the same pageblocks to satisfy further
2317 * allocations, instead of polluting multiple pageblocks.
2318 *
2319 * If we are stealing a relatively large buddy page, it is likely there will
2320 * be more free pages in the pageblock, so try to steal them all. For
2321 * reclaimable and unmovable allocations, we steal regardless of page size,
2322 * as fragmentation caused by those allocations polluting movable pageblocks
2323 * is worse than movable allocations stealing from unmovable and reclaimable
2324 * pageblocks.
2325 */
2326 static bool can_steal_fallback(unsigned int order, int start_mt)
2327 {
2328 /*
2329 * Leaving this order check is intended, although there is
2330 * relaxed order check in next check. The reason is that
2331 * we can actually steal whole pageblock if this condition met,
2332 * but, below check doesn't guarantee it and that is just heuristic
2333 * so could be changed anytime.
2334 */
2335 if (order >= pageblock_order)
2336 return true;
2337
2338 if (order >= pageblock_order / 2 ||
2339 start_mt == MIGRATE_RECLAIMABLE ||
2340 start_mt == MIGRATE_UNMOVABLE ||
2341 page_group_by_mobility_disabled)
2342 return true;
2343
2344 return false;
2345 }
2346
2347 static inline void boost_watermark(struct zone *zone)
2348 {
2349 unsigned long max_boost;
2350
2351 if (!watermark_boost_factor)
2352 return;
2353
2354 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2355 watermark_boost_factor, 10000);
2356
2357 /*
2358 * high watermark may be uninitialised if fragmentation occurs
2359 * very early in boot so do not boost. We do not fall
2360 * through and boost by pageblock_nr_pages as failing
2361 * allocations that early means that reclaim is not going
2362 * to help and it may even be impossible to reclaim the
2363 * boosted watermark resulting in a hang.
2364 */
2365 if (!max_boost)
2366 return;
2367
2368 max_boost = max(pageblock_nr_pages, max_boost);
2369
2370 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2371 max_boost);
2372 }
2373
2374 /*
2375 * This function implements actual steal behaviour. If order is large enough,
2376 * we can steal whole pageblock. If not, we first move freepages in this
2377 * pageblock to our migratetype and determine how many already-allocated pages
2378 * are there in the pageblock with a compatible migratetype. If at least half
2379 * of pages are free or compatible, we can change migratetype of the pageblock
2380 * itself, so pages freed in the future will be put on the correct free list.
2381 */
2382 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2383 unsigned int alloc_flags, int start_type, bool whole_block)
2384 {
2385 unsigned int current_order = page_order(page);
2386 struct free_area *area;
2387 int free_pages, movable_pages, alike_pages;
2388 int old_block_type;
2389
2390 old_block_type = get_pageblock_migratetype(page);
2391
2392 /*
2393 * This can happen due to races and we want to prevent broken
2394 * highatomic accounting.
2395 */
2396 if (is_migrate_highatomic(old_block_type))
2397 goto single_page;
2398
2399 /* Take ownership for orders >= pageblock_order */
2400 if (current_order >= pageblock_order) {
2401 change_pageblock_range(page, current_order, start_type);
2402 goto single_page;
2403 }
2404
2405 /*
2406 * Boost watermarks to increase reclaim pressure to reduce the
2407 * likelihood of future fallbacks. Wake kswapd now as the node
2408 * may be balanced overall and kswapd will not wake naturally.
2409 */
2410 boost_watermark(zone);
2411 if (alloc_flags & ALLOC_KSWAPD)
2412 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2413
2414 /* We are not allowed to try stealing from the whole block */
2415 if (!whole_block)
2416 goto single_page;
2417
2418 free_pages = move_freepages_block(zone, page, start_type,
2419 &movable_pages);
2420 /*
2421 * Determine how many pages are compatible with our allocation.
2422 * For movable allocation, it's the number of movable pages which
2423 * we just obtained. For other types it's a bit more tricky.
2424 */
2425 if (start_type == MIGRATE_MOVABLE) {
2426 alike_pages = movable_pages;
2427 } else {
2428 /*
2429 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2430 * to MOVABLE pageblock, consider all non-movable pages as
2431 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2432 * vice versa, be conservative since we can't distinguish the
2433 * exact migratetype of non-movable pages.
2434 */
2435 if (old_block_type == MIGRATE_MOVABLE)
2436 alike_pages = pageblock_nr_pages
2437 - (free_pages + movable_pages);
2438 else
2439 alike_pages = 0;
2440 }
2441
2442 /* moving whole block can fail due to zone boundary conditions */
2443 if (!free_pages)
2444 goto single_page;
2445
2446 /*
2447 * If a sufficient number of pages in the block are either free or of
2448 * comparable migratability as our allocation, claim the whole block.
2449 */
2450 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2451 page_group_by_mobility_disabled)
2452 set_pageblock_migratetype(page, start_type);
2453
2454 return;
2455
2456 single_page:
2457 area = &zone->free_area[current_order];
2458 move_to_free_area(page, area, start_type);
2459 }
2460
2461 /*
2462 * Check whether there is a suitable fallback freepage with requested order.
2463 * If only_stealable is true, this function returns fallback_mt only if
2464 * we can steal other freepages all together. This would help to reduce
2465 * fragmentation due to mixed migratetype pages in one pageblock.
2466 */
2467 int find_suitable_fallback(struct free_area *area, unsigned int order,
2468 int migratetype, bool only_stealable, bool *can_steal)
2469 {
2470 int i;
2471 int fallback_mt;
2472
2473 if (area->nr_free == 0)
2474 return -1;
2475
2476 *can_steal = false;
2477 for (i = 0;; i++) {
2478 fallback_mt = fallbacks[migratetype][i];
2479 if (fallback_mt == MIGRATE_TYPES)
2480 break;
2481
2482 if (free_area_empty(area, fallback_mt))
2483 continue;
2484
2485 if (can_steal_fallback(order, migratetype))
2486 *can_steal = true;
2487
2488 if (!only_stealable)
2489 return fallback_mt;
2490
2491 if (*can_steal)
2492 return fallback_mt;
2493 }
2494
2495 return -1;
2496 }
2497
2498 /*
2499 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2500 * there are no empty page blocks that contain a page with a suitable order
2501 */
2502 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2503 unsigned int alloc_order)
2504 {
2505 int mt;
2506 unsigned long max_managed, flags;
2507
2508 /*
2509 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2510 * Check is race-prone but harmless.
2511 */
2512 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2513 if (zone->nr_reserved_highatomic >= max_managed)
2514 return;
2515
2516 spin_lock_irqsave(&zone->lock, flags);
2517
2518 /* Recheck the nr_reserved_highatomic limit under the lock */
2519 if (zone->nr_reserved_highatomic >= max_managed)
2520 goto out_unlock;
2521
2522 /* Yoink! */
2523 mt = get_pageblock_migratetype(page);
2524 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2525 && !is_migrate_cma(mt)) {
2526 zone->nr_reserved_highatomic += pageblock_nr_pages;
2527 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2528 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2529 }
2530
2531 out_unlock:
2532 spin_unlock_irqrestore(&zone->lock, flags);
2533 }
2534
2535 /*
2536 * Used when an allocation is about to fail under memory pressure. This
2537 * potentially hurts the reliability of high-order allocations when under
2538 * intense memory pressure but failed atomic allocations should be easier
2539 * to recover from than an OOM.
2540 *
2541 * If @force is true, try to unreserve a pageblock even though highatomic
2542 * pageblock is exhausted.
2543 */
2544 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2545 bool force)
2546 {
2547 struct zonelist *zonelist = ac->zonelist;
2548 unsigned long flags;
2549 struct zoneref *z;
2550 struct zone *zone;
2551 struct page *page;
2552 int order;
2553 bool ret;
2554
2555 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2556 ac->nodemask) {
2557 /*
2558 * Preserve at least one pageblock unless memory pressure
2559 * is really high.
2560 */
2561 if (!force && zone->nr_reserved_highatomic <=
2562 pageblock_nr_pages)
2563 continue;
2564
2565 spin_lock_irqsave(&zone->lock, flags);
2566 for (order = 0; order < MAX_ORDER; order++) {
2567 struct free_area *area = &(zone->free_area[order]);
2568
2569 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2570 if (!page)
2571 continue;
2572
2573 /*
2574 * In page freeing path, migratetype change is racy so
2575 * we can counter several free pages in a pageblock
2576 * in this loop althoug we changed the pageblock type
2577 * from highatomic to ac->migratetype. So we should
2578 * adjust the count once.
2579 */
2580 if (is_migrate_highatomic_page(page)) {
2581 /*
2582 * It should never happen but changes to
2583 * locking could inadvertently allow a per-cpu
2584 * drain to add pages to MIGRATE_HIGHATOMIC
2585 * while unreserving so be safe and watch for
2586 * underflows.
2587 */
2588 zone->nr_reserved_highatomic -= min(
2589 pageblock_nr_pages,
2590 zone->nr_reserved_highatomic);
2591 }
2592
2593 /*
2594 * Convert to ac->migratetype and avoid the normal
2595 * pageblock stealing heuristics. Minimally, the caller
2596 * is doing the work and needs the pages. More
2597 * importantly, if the block was always converted to
2598 * MIGRATE_UNMOVABLE or another type then the number
2599 * of pageblocks that cannot be completely freed
2600 * may increase.
2601 */
2602 set_pageblock_migratetype(page, ac->migratetype);
2603 ret = move_freepages_block(zone, page, ac->migratetype,
2604 NULL);
2605 if (ret) {
2606 spin_unlock_irqrestore(&zone->lock, flags);
2607 return ret;
2608 }
2609 }
2610 spin_unlock_irqrestore(&zone->lock, flags);
2611 }
2612
2613 return false;
2614 }
2615
2616 /*
2617 * Try finding a free buddy page on the fallback list and put it on the free
2618 * list of requested migratetype, possibly along with other pages from the same
2619 * block, depending on fragmentation avoidance heuristics. Returns true if
2620 * fallback was found so that __rmqueue_smallest() can grab it.
2621 *
2622 * The use of signed ints for order and current_order is a deliberate
2623 * deviation from the rest of this file, to make the for loop
2624 * condition simpler.
2625 */
2626 static __always_inline bool
2627 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2628 unsigned int alloc_flags)
2629 {
2630 struct free_area *area;
2631 int current_order;
2632 int min_order = order;
2633 struct page *page;
2634 int fallback_mt;
2635 bool can_steal;
2636
2637 /*
2638 * Do not steal pages from freelists belonging to other pageblocks
2639 * i.e. orders < pageblock_order. If there are no local zones free,
2640 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2641 */
2642 if (alloc_flags & ALLOC_NOFRAGMENT)
2643 min_order = pageblock_order;
2644
2645 /*
2646 * Find the largest available free page in the other list. This roughly
2647 * approximates finding the pageblock with the most free pages, which
2648 * would be too costly to do exactly.
2649 */
2650 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2651 --current_order) {
2652 area = &(zone->free_area[current_order]);
2653 fallback_mt = find_suitable_fallback(area, current_order,
2654 start_migratetype, false, &can_steal);
2655 if (fallback_mt == -1)
2656 continue;
2657
2658 /*
2659 * We cannot steal all free pages from the pageblock and the
2660 * requested migratetype is movable. In that case it's better to
2661 * steal and split the smallest available page instead of the
2662 * largest available page, because even if the next movable
2663 * allocation falls back into a different pageblock than this
2664 * one, it won't cause permanent fragmentation.
2665 */
2666 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2667 && current_order > order)
2668 goto find_smallest;
2669
2670 goto do_steal;
2671 }
2672
2673 return false;
2674
2675 find_smallest:
2676 for (current_order = order; current_order < MAX_ORDER;
2677 current_order++) {
2678 area = &(zone->free_area[current_order]);
2679 fallback_mt = find_suitable_fallback(area, current_order,
2680 start_migratetype, false, &can_steal);
2681 if (fallback_mt != -1)
2682 break;
2683 }
2684
2685 /*
2686 * This should not happen - we already found a suitable fallback
2687 * when looking for the largest page.
2688 */
2689 VM_BUG_ON(current_order == MAX_ORDER);
2690
2691 do_steal:
2692 page = get_page_from_free_area(area, fallback_mt);
2693
2694 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2695 can_steal);
2696
2697 trace_mm_page_alloc_extfrag(page, order, current_order,
2698 start_migratetype, fallback_mt);
2699
2700 return true;
2701
2702 }
2703
2704 /*
2705 * Do the hard work of removing an element from the buddy allocator.
2706 * Call me with the zone->lock already held.
2707 */
2708 static __always_inline struct page *
2709 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2710 unsigned int alloc_flags)
2711 {
2712 struct page *page;
2713
2714 retry:
2715 page = __rmqueue_smallest(zone, order, migratetype);
2716 if (unlikely(!page)) {
2717 if (migratetype == MIGRATE_MOVABLE)
2718 page = __rmqueue_cma_fallback(zone, order);
2719
2720 if (!page && __rmqueue_fallback(zone, order, migratetype,
2721 alloc_flags))
2722 goto retry;
2723 }
2724
2725 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2726 return page;
2727 }
2728
2729 /*
2730 * Obtain a specified number of elements from the buddy allocator, all under
2731 * a single hold of the lock, for efficiency. Add them to the supplied list.
2732 * Returns the number of new pages which were placed at *list.
2733 */
2734 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2735 unsigned long count, struct list_head *list,
2736 int migratetype, unsigned int alloc_flags)
2737 {
2738 int i, alloced = 0;
2739
2740 spin_lock(&zone->lock);
2741 for (i = 0; i < count; ++i) {
2742 struct page *page = __rmqueue(zone, order, migratetype,
2743 alloc_flags);
2744 if (unlikely(page == NULL))
2745 break;
2746
2747 if (unlikely(check_pcp_refill(page)))
2748 continue;
2749
2750 /*
2751 * Split buddy pages returned by expand() are received here in
2752 * physical page order. The page is added to the tail of
2753 * caller's list. From the callers perspective, the linked list
2754 * is ordered by page number under some conditions. This is
2755 * useful for IO devices that can forward direction from the
2756 * head, thus also in the physical page order. This is useful
2757 * for IO devices that can merge IO requests if the physical
2758 * pages are ordered properly.
2759 */
2760 list_add_tail(&page->lru, list);
2761 alloced++;
2762 if (is_migrate_cma(get_pcppage_migratetype(page)))
2763 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2764 -(1 << order));
2765 }
2766
2767 /*
2768 * i pages were removed from the buddy list even if some leak due
2769 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2770 * on i. Do not confuse with 'alloced' which is the number of
2771 * pages added to the pcp list.
2772 */
2773 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2774 spin_unlock(&zone->lock);
2775 return alloced;
2776 }
2777
2778 #ifdef CONFIG_NUMA
2779 /*
2780 * Called from the vmstat counter updater to drain pagesets of this
2781 * currently executing processor on remote nodes after they have
2782 * expired.
2783 *
2784 * Note that this function must be called with the thread pinned to
2785 * a single processor.
2786 */
2787 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2788 {
2789 unsigned long flags;
2790 int to_drain, batch;
2791
2792 local_irq_save(flags);
2793 batch = READ_ONCE(pcp->batch);
2794 to_drain = min(pcp->count, batch);
2795 if (to_drain > 0)
2796 free_pcppages_bulk(zone, to_drain, pcp);
2797 local_irq_restore(flags);
2798 }
2799 #endif
2800
2801 /*
2802 * Drain pcplists of the indicated processor and zone.
2803 *
2804 * The processor must either be the current processor and the
2805 * thread pinned to the current processor or a processor that
2806 * is not online.
2807 */
2808 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2809 {
2810 unsigned long flags;
2811 struct per_cpu_pageset *pset;
2812 struct per_cpu_pages *pcp;
2813
2814 local_irq_save(flags);
2815 pset = per_cpu_ptr(zone->pageset, cpu);
2816
2817 pcp = &pset->pcp;
2818 if (pcp->count)
2819 free_pcppages_bulk(zone, pcp->count, pcp);
2820 local_irq_restore(flags);
2821 }
2822
2823 /*
2824 * Drain pcplists of all zones on the indicated processor.
2825 *
2826 * The processor must either be the current processor and the
2827 * thread pinned to the current processor or a processor that
2828 * is not online.
2829 */
2830 static void drain_pages(unsigned int cpu)
2831 {
2832 struct zone *zone;
2833
2834 for_each_populated_zone(zone) {
2835 drain_pages_zone(cpu, zone);
2836 }
2837 }
2838
2839 /*
2840 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2841 *
2842 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2843 * the single zone's pages.
2844 */
2845 void drain_local_pages(struct zone *zone)
2846 {
2847 int cpu = smp_processor_id();
2848
2849 if (zone)
2850 drain_pages_zone(cpu, zone);
2851 else
2852 drain_pages(cpu);
2853 }
2854
2855 static void drain_local_pages_wq(struct work_struct *work)
2856 {
2857 struct pcpu_drain *drain;
2858
2859 drain = container_of(work, struct pcpu_drain, work);
2860
2861 /*
2862 * drain_all_pages doesn't use proper cpu hotplug protection so
2863 * we can race with cpu offline when the WQ can move this from
2864 * a cpu pinned worker to an unbound one. We can operate on a different
2865 * cpu which is allright but we also have to make sure to not move to
2866 * a different one.
2867 */
2868 preempt_disable();
2869 drain_local_pages(drain->zone);
2870 preempt_enable();
2871 }
2872
2873 /*
2874 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2875 *
2876 * When zone parameter is non-NULL, spill just the single zone's pages.
2877 *
2878 * Note that this can be extremely slow as the draining happens in a workqueue.
2879 */
2880 void drain_all_pages(struct zone *zone)
2881 {
2882 int cpu;
2883
2884 /*
2885 * Allocate in the BSS so we wont require allocation in
2886 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2887 */
2888 static cpumask_t cpus_with_pcps;
2889
2890 /*
2891 * Make sure nobody triggers this path before mm_percpu_wq is fully
2892 * initialized.
2893 */
2894 if (WARN_ON_ONCE(!mm_percpu_wq))
2895 return;
2896
2897 /*
2898 * Do not drain if one is already in progress unless it's specific to
2899 * a zone. Such callers are primarily CMA and memory hotplug and need
2900 * the drain to be complete when the call returns.
2901 */
2902 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2903 if (!zone)
2904 return;
2905 mutex_lock(&pcpu_drain_mutex);
2906 }
2907
2908 /*
2909 * We don't care about racing with CPU hotplug event
2910 * as offline notification will cause the notified
2911 * cpu to drain that CPU pcps and on_each_cpu_mask
2912 * disables preemption as part of its processing
2913 */
2914 for_each_online_cpu(cpu) {
2915 struct per_cpu_pageset *pcp;
2916 struct zone *z;
2917 bool has_pcps = false;
2918
2919 if (zone) {
2920 pcp = per_cpu_ptr(zone->pageset, cpu);
2921 if (pcp->pcp.count)
2922 has_pcps = true;
2923 } else {
2924 for_each_populated_zone(z) {
2925 pcp = per_cpu_ptr(z->pageset, cpu);
2926 if (pcp->pcp.count) {
2927 has_pcps = true;
2928 break;
2929 }
2930 }
2931 }
2932
2933 if (has_pcps)
2934 cpumask_set_cpu(cpu, &cpus_with_pcps);
2935 else
2936 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2937 }
2938
2939 for_each_cpu(cpu, &cpus_with_pcps) {
2940 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2941
2942 drain->zone = zone;
2943 INIT_WORK(&drain->work, drain_local_pages_wq);
2944 queue_work_on(cpu, mm_percpu_wq, &drain->work);
2945 }
2946 for_each_cpu(cpu, &cpus_with_pcps)
2947 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2948
2949 mutex_unlock(&pcpu_drain_mutex);
2950 }
2951
2952 #ifdef CONFIG_HIBERNATION
2953
2954 /*
2955 * Touch the watchdog for every WD_PAGE_COUNT pages.
2956 */
2957 #define WD_PAGE_COUNT (128*1024)
2958
2959 void mark_free_pages(struct zone *zone)
2960 {
2961 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2962 unsigned long flags;
2963 unsigned int order, t;
2964 struct page *page;
2965
2966 if (zone_is_empty(zone))
2967 return;
2968
2969 spin_lock_irqsave(&zone->lock, flags);
2970
2971 max_zone_pfn = zone_end_pfn(zone);
2972 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2973 if (pfn_valid(pfn)) {
2974 page = pfn_to_page(pfn);
2975
2976 if (!--page_count) {
2977 touch_nmi_watchdog();
2978 page_count = WD_PAGE_COUNT;
2979 }
2980
2981 if (page_zone(page) != zone)
2982 continue;
2983
2984 if (!swsusp_page_is_forbidden(page))
2985 swsusp_unset_page_free(page);
2986 }
2987
2988 for_each_migratetype_order(order, t) {
2989 list_for_each_entry(page,
2990 &zone->free_area[order].free_list[t], lru) {
2991 unsigned long i;
2992
2993 pfn = page_to_pfn(page);
2994 for (i = 0; i < (1UL << order); i++) {
2995 if (!--page_count) {
2996 touch_nmi_watchdog();
2997 page_count = WD_PAGE_COUNT;
2998 }
2999 swsusp_set_page_free(pfn_to_page(pfn + i));
3000 }
3001 }
3002 }
3003 spin_unlock_irqrestore(&zone->lock, flags);
3004 }
3005 #endif /* CONFIG_PM */
3006
3007 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3008 {
3009 int migratetype;
3010
3011 if (!free_pcp_prepare(page))
3012 return false;
3013
3014 migratetype = get_pfnblock_migratetype(page, pfn);
3015 set_pcppage_migratetype(page, migratetype);
3016 return true;
3017 }
3018
3019 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3020 {
3021 struct zone *zone = page_zone(page);
3022 struct per_cpu_pages *pcp;
3023 int migratetype;
3024
3025 migratetype = get_pcppage_migratetype(page);
3026 __count_vm_event(PGFREE);
3027
3028 /*
3029 * We only track unmovable, reclaimable and movable on pcp lists.
3030 * Free ISOLATE pages back to the allocator because they are being
3031 * offlined but treat HIGHATOMIC as movable pages so we can get those
3032 * areas back if necessary. Otherwise, we may have to free
3033 * excessively into the page allocator
3034 */
3035 if (migratetype >= MIGRATE_PCPTYPES) {
3036 if (unlikely(is_migrate_isolate(migratetype))) {
3037 free_one_page(zone, page, pfn, 0, migratetype);
3038 return;
3039 }
3040 migratetype = MIGRATE_MOVABLE;
3041 }
3042
3043 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3044 list_add(&page->lru, &pcp->lists[migratetype]);
3045 pcp->count++;
3046 if (pcp->count >= pcp->high) {
3047 unsigned long batch = READ_ONCE(pcp->batch);
3048 free_pcppages_bulk(zone, batch, pcp);
3049 }
3050 }
3051
3052 /*
3053 * Free a 0-order page
3054 */
3055 void free_unref_page(struct page *page)
3056 {
3057 unsigned long flags;
3058 unsigned long pfn = page_to_pfn(page);
3059
3060 if (!free_unref_page_prepare(page, pfn))
3061 return;
3062
3063 local_irq_save(flags);
3064 free_unref_page_commit(page, pfn);
3065 local_irq_restore(flags);
3066 }
3067
3068 /*
3069 * Free a list of 0-order pages
3070 */
3071 void free_unref_page_list(struct list_head *list)
3072 {
3073 struct page *page, *next;
3074 unsigned long flags, pfn;
3075 int batch_count = 0;
3076
3077 /* Prepare pages for freeing */
3078 list_for_each_entry_safe(page, next, list, lru) {
3079 pfn = page_to_pfn(page);
3080 if (!free_unref_page_prepare(page, pfn))
3081 list_del(&page->lru);
3082 set_page_private(page, pfn);
3083 }
3084
3085 local_irq_save(flags);
3086 list_for_each_entry_safe(page, next, list, lru) {
3087 unsigned long pfn = page_private(page);
3088
3089 set_page_private(page, 0);
3090 trace_mm_page_free_batched(page);
3091 free_unref_page_commit(page, pfn);
3092
3093 /*
3094 * Guard against excessive IRQ disabled times when we get
3095 * a large list of pages to free.
3096 */
3097 if (++batch_count == SWAP_CLUSTER_MAX) {
3098 local_irq_restore(flags);
3099 batch_count = 0;
3100 local_irq_save(flags);
3101 }
3102 }
3103 local_irq_restore(flags);
3104 }
3105
3106 /*
3107 * split_page takes a non-compound higher-order page, and splits it into
3108 * n (1<<order) sub-pages: page[0..n]
3109 * Each sub-page must be freed individually.
3110 *
3111 * Note: this is probably too low level an operation for use in drivers.
3112 * Please consult with lkml before using this in your driver.
3113 */
3114 void split_page(struct page *page, unsigned int order)
3115 {
3116 int i;
3117
3118 VM_BUG_ON_PAGE(PageCompound(page), page);
3119 VM_BUG_ON_PAGE(!page_count(page), page);
3120
3121 for (i = 1; i < (1 << order); i++)
3122 set_page_refcounted(page + i);
3123 split_page_owner(page, order);
3124 }
3125 EXPORT_SYMBOL_GPL(split_page);
3126
3127 int __isolate_free_page(struct page *page, unsigned int order)
3128 {
3129 struct free_area *area = &page_zone(page)->free_area[order];
3130 unsigned long watermark;
3131 struct zone *zone;
3132 int mt;
3133
3134 BUG_ON(!PageBuddy(page));
3135
3136 zone = page_zone(page);
3137 mt = get_pageblock_migratetype(page);
3138
3139 if (!is_migrate_isolate(mt)) {
3140 /*
3141 * Obey watermarks as if the page was being allocated. We can
3142 * emulate a high-order watermark check with a raised order-0
3143 * watermark, because we already know our high-order page
3144 * exists.
3145 */
3146 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3147 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3148 return 0;
3149
3150 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3151 }
3152
3153 /* Remove page from free list */
3154
3155 del_page_from_free_area(page, area);
3156
3157 /*
3158 * Set the pageblock if the isolated page is at least half of a
3159 * pageblock
3160 */
3161 if (order >= pageblock_order - 1) {
3162 struct page *endpage = page + (1 << order) - 1;
3163 for (; page < endpage; page += pageblock_nr_pages) {
3164 int mt = get_pageblock_migratetype(page);
3165 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3166 && !is_migrate_highatomic(mt))
3167 set_pageblock_migratetype(page,
3168 MIGRATE_MOVABLE);
3169 }
3170 }
3171
3172
3173 return 1UL << order;
3174 }
3175
3176 /*
3177 * Update NUMA hit/miss statistics
3178 *
3179 * Must be called with interrupts disabled.
3180 */
3181 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3182 {
3183 #ifdef CONFIG_NUMA
3184 enum numa_stat_item local_stat = NUMA_LOCAL;
3185
3186 /* skip numa counters update if numa stats is disabled */
3187 if (!static_branch_likely(&vm_numa_stat_key))
3188 return;
3189
3190 if (zone_to_nid(z) != numa_node_id())
3191 local_stat = NUMA_OTHER;
3192
3193 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3194 __inc_numa_state(z, NUMA_HIT);
3195 else {
3196 __inc_numa_state(z, NUMA_MISS);
3197 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
3198 }
3199 __inc_numa_state(z, local_stat);
3200 #endif
3201 }
3202
3203 /* Remove page from the per-cpu list, caller must protect the list */
3204 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3205 unsigned int alloc_flags,
3206 struct per_cpu_pages *pcp,
3207 struct list_head *list)
3208 {
3209 struct page *page;
3210
3211 do {
3212 if (list_empty(list)) {
3213 pcp->count += rmqueue_bulk(zone, 0,
3214 pcp->batch, list,
3215 migratetype, alloc_flags);
3216 if (unlikely(list_empty(list)))
3217 return NULL;
3218 }
3219
3220 page = list_first_entry(list, struct page, lru);
3221 list_del(&page->lru);
3222 pcp->count--;
3223 } while (check_new_pcp(page));
3224
3225 return page;
3226 }
3227
3228 /* Lock and remove page from the per-cpu list */
3229 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3230 struct zone *zone, gfp_t gfp_flags,
3231 int migratetype, unsigned int alloc_flags)
3232 {
3233 struct per_cpu_pages *pcp;
3234 struct list_head *list;
3235 struct page *page;
3236 unsigned long flags;
3237
3238 local_irq_save(flags);
3239 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3240 list = &pcp->lists[migratetype];
3241 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
3242 if (page) {
3243 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3244 zone_statistics(preferred_zone, zone);
3245 }
3246 local_irq_restore(flags);
3247 return page;
3248 }
3249
3250 /*
3251 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3252 */
3253 static inline
3254 struct page *rmqueue(struct zone *preferred_zone,
3255 struct zone *zone, unsigned int order,
3256 gfp_t gfp_flags, unsigned int alloc_flags,
3257 int migratetype)
3258 {
3259 unsigned long flags;
3260 struct page *page;
3261
3262 if (likely(order == 0)) {
3263 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3264 migratetype, alloc_flags);
3265 goto out;
3266 }
3267
3268 /*
3269 * We most definitely don't want callers attempting to
3270 * allocate greater than order-1 page units with __GFP_NOFAIL.
3271 */
3272 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3273 spin_lock_irqsave(&zone->lock, flags);
3274
3275 do {
3276 page = NULL;
3277 if (alloc_flags & ALLOC_HARDER) {
3278 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3279 if (page)
3280 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3281 }
3282 if (!page)
3283 page = __rmqueue(zone, order, migratetype, alloc_flags);
3284 } while (page && check_new_pages(page, order));
3285 spin_unlock(&zone->lock);
3286 if (!page)
3287 goto failed;
3288 __mod_zone_freepage_state(zone, -(1 << order),
3289 get_pcppage_migratetype(page));
3290
3291 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3292 zone_statistics(preferred_zone, zone);
3293 local_irq_restore(flags);
3294
3295 out:
3296 /* Separate test+clear to avoid unnecessary atomics */
3297 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3298 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3299 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3300 }
3301
3302 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3303 return page;
3304
3305 failed:
3306 local_irq_restore(flags);
3307 return NULL;
3308 }
3309
3310 #ifdef CONFIG_FAIL_PAGE_ALLOC
3311
3312 static struct {
3313 struct fault_attr attr;
3314
3315 bool ignore_gfp_highmem;
3316 bool ignore_gfp_reclaim;
3317 u32 min_order;
3318 } fail_page_alloc = {
3319 .attr = FAULT_ATTR_INITIALIZER,
3320 .ignore_gfp_reclaim = true,
3321 .ignore_gfp_highmem = true,
3322 .min_order = 1,
3323 };
3324
3325 static int __init setup_fail_page_alloc(char *str)
3326 {
3327 return setup_fault_attr(&fail_page_alloc.attr, str);
3328 }
3329 __setup("fail_page_alloc=", setup_fail_page_alloc);
3330
3331 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3332 {
3333 if (order < fail_page_alloc.min_order)
3334 return false;
3335 if (gfp_mask & __GFP_NOFAIL)
3336 return false;
3337 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3338 return false;
3339 if (fail_page_alloc.ignore_gfp_reclaim &&
3340 (gfp_mask & __GFP_DIRECT_RECLAIM))
3341 return false;
3342
3343 return should_fail(&fail_page_alloc.attr, 1 << order);
3344 }
3345
3346 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3347
3348 static int __init fail_page_alloc_debugfs(void)
3349 {
3350 umode_t mode = S_IFREG | 0600;
3351 struct dentry *dir;
3352
3353 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3354 &fail_page_alloc.attr);
3355
3356 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3357 &fail_page_alloc.ignore_gfp_reclaim);
3358 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3359 &fail_page_alloc.ignore_gfp_highmem);
3360 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3361
3362 return 0;
3363 }
3364
3365 late_initcall(fail_page_alloc_debugfs);
3366
3367 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3368
3369 #else /* CONFIG_FAIL_PAGE_ALLOC */
3370
3371 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3372 {
3373 return false;
3374 }
3375
3376 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3377
3378 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3379 {
3380 return __should_fail_alloc_page(gfp_mask, order);
3381 }
3382 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3383
3384 /*
3385 * Return true if free base pages are above 'mark'. For high-order checks it
3386 * will return true of the order-0 watermark is reached and there is at least
3387 * one free page of a suitable size. Checking now avoids taking the zone lock
3388 * to check in the allocation paths if no pages are free.
3389 */
3390 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3391 int classzone_idx, unsigned int alloc_flags,
3392 long free_pages)
3393 {
3394 long min = mark;
3395 int o;
3396 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3397
3398 /* free_pages may go negative - that's OK */
3399 free_pages -= (1 << order) - 1;
3400
3401 if (alloc_flags & ALLOC_HIGH)
3402 min -= min / 2;
3403
3404 /*
3405 * If the caller does not have rights to ALLOC_HARDER then subtract
3406 * the high-atomic reserves. This will over-estimate the size of the
3407 * atomic reserve but it avoids a search.
3408 */
3409 if (likely(!alloc_harder)) {
3410 free_pages -= z->nr_reserved_highatomic;
3411 } else {
3412 /*
3413 * OOM victims can try even harder than normal ALLOC_HARDER
3414 * users on the grounds that it's definitely going to be in
3415 * the exit path shortly and free memory. Any allocation it
3416 * makes during the free path will be small and short-lived.
3417 */
3418 if (alloc_flags & ALLOC_OOM)
3419 min -= min / 2;
3420 else
3421 min -= min / 4;
3422 }
3423
3424
3425 #ifdef CONFIG_CMA
3426 /* If allocation can't use CMA areas don't use free CMA pages */
3427 if (!(alloc_flags & ALLOC_CMA))
3428 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3429 #endif
3430
3431 /*
3432 * Check watermarks for an order-0 allocation request. If these
3433 * are not met, then a high-order request also cannot go ahead
3434 * even if a suitable page happened to be free.
3435 */
3436 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3437 return false;
3438
3439 /* If this is an order-0 request then the watermark is fine */
3440 if (!order)
3441 return true;
3442
3443 /* For a high-order request, check at least one suitable page is free */
3444 for (o = order; o < MAX_ORDER; o++) {
3445 struct free_area *area = &z->free_area[o];
3446 int mt;
3447
3448 if (!area->nr_free)
3449 continue;
3450
3451 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3452 if (!free_area_empty(area, mt))
3453 return true;
3454 }
3455
3456 #ifdef CONFIG_CMA
3457 if ((alloc_flags & ALLOC_CMA) &&
3458 !free_area_empty(area, MIGRATE_CMA)) {
3459 return true;
3460 }
3461 #endif
3462 if (alloc_harder &&
3463 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3464 return true;
3465 }
3466 return false;
3467 }
3468
3469 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3470 int classzone_idx, unsigned int alloc_flags)
3471 {
3472 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3473 zone_page_state(z, NR_FREE_PAGES));
3474 }
3475
3476 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3477 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3478 {
3479 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3480 long cma_pages = 0;
3481
3482 #ifdef CONFIG_CMA
3483 /* If allocation can't use CMA areas don't use free CMA pages */
3484 if (!(alloc_flags & ALLOC_CMA))
3485 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3486 #endif
3487
3488 /*
3489 * Fast check for order-0 only. If this fails then the reserves
3490 * need to be calculated. There is a corner case where the check
3491 * passes but only the high-order atomic reserve are free. If
3492 * the caller is !atomic then it'll uselessly search the free
3493 * list. That corner case is then slower but it is harmless.
3494 */
3495 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3496 return true;
3497
3498 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3499 free_pages);
3500 }
3501
3502 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3503 unsigned long mark, int classzone_idx)
3504 {
3505 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3506
3507 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3508 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3509
3510 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3511 free_pages);
3512 }
3513
3514 #ifdef CONFIG_NUMA
3515 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3516 {
3517 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3518 node_reclaim_distance;
3519 }
3520 #else /* CONFIG_NUMA */
3521 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3522 {
3523 return true;
3524 }
3525 #endif /* CONFIG_NUMA */
3526
3527 /*
3528 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3529 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3530 * premature use of a lower zone may cause lowmem pressure problems that
3531 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3532 * probably too small. It only makes sense to spread allocations to avoid
3533 * fragmentation between the Normal and DMA32 zones.
3534 */
3535 static inline unsigned int
3536 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3537 {
3538 unsigned int alloc_flags = 0;
3539
3540 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3541 alloc_flags |= ALLOC_KSWAPD;
3542
3543 #ifdef CONFIG_ZONE_DMA32
3544 if (!zone)
3545 return alloc_flags;
3546
3547 if (zone_idx(zone) != ZONE_NORMAL)
3548 return alloc_flags;
3549
3550 /*
3551 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3552 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3553 * on UMA that if Normal is populated then so is DMA32.
3554 */
3555 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3556 if (nr_online_nodes > 1 && !populated_zone(--zone))
3557 return alloc_flags;
3558
3559 alloc_flags |= ALLOC_NOFRAGMENT;
3560 #endif /* CONFIG_ZONE_DMA32 */
3561 return alloc_flags;
3562 }
3563
3564 /*
3565 * get_page_from_freelist goes through the zonelist trying to allocate
3566 * a page.
3567 */
3568 static struct page *
3569 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3570 const struct alloc_context *ac)
3571 {
3572 struct zoneref *z;
3573 struct zone *zone;
3574 struct pglist_data *last_pgdat_dirty_limit = NULL;
3575 bool no_fallback;
3576
3577 retry:
3578 /*
3579 * Scan zonelist, looking for a zone with enough free.
3580 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3581 */
3582 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3583 z = ac->preferred_zoneref;
3584 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3585 ac->nodemask) {
3586 struct page *page;
3587 unsigned long mark;
3588
3589 if (cpusets_enabled() &&
3590 (alloc_flags & ALLOC_CPUSET) &&
3591 !__cpuset_zone_allowed(zone, gfp_mask))
3592 continue;
3593 /*
3594 * When allocating a page cache page for writing, we
3595 * want to get it from a node that is within its dirty
3596 * limit, such that no single node holds more than its
3597 * proportional share of globally allowed dirty pages.
3598 * The dirty limits take into account the node's
3599 * lowmem reserves and high watermark so that kswapd
3600 * should be able to balance it without having to
3601 * write pages from its LRU list.
3602 *
3603 * XXX: For now, allow allocations to potentially
3604 * exceed the per-node dirty limit in the slowpath
3605 * (spread_dirty_pages unset) before going into reclaim,
3606 * which is important when on a NUMA setup the allowed
3607 * nodes are together not big enough to reach the
3608 * global limit. The proper fix for these situations
3609 * will require awareness of nodes in the
3610 * dirty-throttling and the flusher threads.
3611 */
3612 if (ac->spread_dirty_pages) {
3613 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3614 continue;
3615
3616 if (!node_dirty_ok(zone->zone_pgdat)) {
3617 last_pgdat_dirty_limit = zone->zone_pgdat;
3618 continue;
3619 }
3620 }
3621
3622 if (no_fallback && nr_online_nodes > 1 &&
3623 zone != ac->preferred_zoneref->zone) {
3624 int local_nid;
3625
3626 /*
3627 * If moving to a remote node, retry but allow
3628 * fragmenting fallbacks. Locality is more important
3629 * than fragmentation avoidance.
3630 */
3631 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3632 if (zone_to_nid(zone) != local_nid) {
3633 alloc_flags &= ~ALLOC_NOFRAGMENT;
3634 goto retry;
3635 }
3636 }
3637
3638 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3639 if (!zone_watermark_fast(zone, order, mark,
3640 ac_classzone_idx(ac), alloc_flags)) {
3641 int ret;
3642
3643 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3644 /*
3645 * Watermark failed for this zone, but see if we can
3646 * grow this zone if it contains deferred pages.
3647 */
3648 if (static_branch_unlikely(&deferred_pages)) {
3649 if (_deferred_grow_zone(zone, order))
3650 goto try_this_zone;
3651 }
3652 #endif
3653 /* Checked here to keep the fast path fast */
3654 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3655 if (alloc_flags & ALLOC_NO_WATERMARKS)
3656 goto try_this_zone;
3657
3658 if (node_reclaim_mode == 0 ||
3659 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3660 continue;
3661
3662 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3663 switch (ret) {
3664 case NODE_RECLAIM_NOSCAN:
3665 /* did not scan */
3666 continue;
3667 case NODE_RECLAIM_FULL:
3668 /* scanned but unreclaimable */
3669 continue;
3670 default:
3671 /* did we reclaim enough */
3672 if (zone_watermark_ok(zone, order, mark,
3673 ac_classzone_idx(ac), alloc_flags))
3674 goto try_this_zone;
3675
3676 continue;
3677 }
3678 }
3679
3680 try_this_zone:
3681 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3682 gfp_mask, alloc_flags, ac->migratetype);
3683 if (page) {
3684 prep_new_page(page, order, gfp_mask, alloc_flags);
3685
3686 /*
3687 * If this is a high-order atomic allocation then check
3688 * if the pageblock should be reserved for the future
3689 */
3690 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3691 reserve_highatomic_pageblock(page, zone, order);
3692
3693 return page;
3694 } else {
3695 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3696 /* Try again if zone has deferred pages */
3697 if (static_branch_unlikely(&deferred_pages)) {
3698 if (_deferred_grow_zone(zone, order))
3699 goto try_this_zone;
3700 }
3701 #endif
3702 }
3703 }
3704
3705 /*
3706 * It's possible on a UMA machine to get through all zones that are
3707 * fragmented. If avoiding fragmentation, reset and try again.
3708 */
3709 if (no_fallback) {
3710 alloc_flags &= ~ALLOC_NOFRAGMENT;
3711 goto retry;
3712 }
3713
3714 return NULL;
3715 }
3716
3717 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3718 {
3719 unsigned int filter = SHOW_MEM_FILTER_NODES;
3720
3721 /*
3722 * This documents exceptions given to allocations in certain
3723 * contexts that are allowed to allocate outside current's set
3724 * of allowed nodes.
3725 */
3726 if (!(gfp_mask & __GFP_NOMEMALLOC))
3727 if (tsk_is_oom_victim(current) ||
3728 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3729 filter &= ~SHOW_MEM_FILTER_NODES;
3730 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3731 filter &= ~SHOW_MEM_FILTER_NODES;
3732
3733 show_mem(filter, nodemask);
3734 }
3735
3736 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3737 {
3738 struct va_format vaf;
3739 va_list args;
3740 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3741
3742 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3743 return;
3744
3745 va_start(args, fmt);
3746 vaf.fmt = fmt;
3747 vaf.va = &args;
3748 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3749 current->comm, &vaf, gfp_mask, &gfp_mask,
3750 nodemask_pr_args(nodemask));
3751 va_end(args);
3752
3753 cpuset_print_current_mems_allowed();
3754 pr_cont("\n");
3755 dump_stack();
3756 warn_alloc_show_mem(gfp_mask, nodemask);
3757 }
3758
3759 static inline struct page *
3760 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3761 unsigned int alloc_flags,
3762 const struct alloc_context *ac)
3763 {
3764 struct page *page;
3765
3766 page = get_page_from_freelist(gfp_mask, order,
3767 alloc_flags|ALLOC_CPUSET, ac);
3768 /*
3769 * fallback to ignore cpuset restriction if our nodes
3770 * are depleted
3771 */
3772 if (!page)
3773 page = get_page_from_freelist(gfp_mask, order,
3774 alloc_flags, ac);
3775
3776 return page;
3777 }
3778
3779 static inline struct page *
3780 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3781 const struct alloc_context *ac, unsigned long *did_some_progress)
3782 {
3783 struct oom_control oc = {
3784 .zonelist = ac->zonelist,
3785 .nodemask = ac->nodemask,
3786 .memcg = NULL,
3787 .gfp_mask = gfp_mask,
3788 .order = order,
3789 };
3790 struct page *page;
3791
3792 *did_some_progress = 0;
3793
3794 /*
3795 * Acquire the oom lock. If that fails, somebody else is
3796 * making progress for us.
3797 */
3798 if (!mutex_trylock(&oom_lock)) {
3799 *did_some_progress = 1;
3800 schedule_timeout_uninterruptible(1);
3801 return NULL;
3802 }
3803
3804 /*
3805 * Go through the zonelist yet one more time, keep very high watermark
3806 * here, this is only to catch a parallel oom killing, we must fail if
3807 * we're still under heavy pressure. But make sure that this reclaim
3808 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3809 * allocation which will never fail due to oom_lock already held.
3810 */
3811 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3812 ~__GFP_DIRECT_RECLAIM, order,
3813 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3814 if (page)
3815 goto out;
3816
3817 /* Coredumps can quickly deplete all memory reserves */
3818 if (current->flags & PF_DUMPCORE)
3819 goto out;
3820 /* The OOM killer will not help higher order allocs */
3821 if (order > PAGE_ALLOC_COSTLY_ORDER)
3822 goto out;
3823 /*
3824 * We have already exhausted all our reclaim opportunities without any
3825 * success so it is time to admit defeat. We will skip the OOM killer
3826 * because it is very likely that the caller has a more reasonable
3827 * fallback than shooting a random task.
3828 */
3829 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3830 goto out;
3831 /* The OOM killer does not needlessly kill tasks for lowmem */
3832 if (ac->high_zoneidx < ZONE_NORMAL)
3833 goto out;
3834 if (pm_suspended_storage())
3835 goto out;
3836 /*
3837 * XXX: GFP_NOFS allocations should rather fail than rely on
3838 * other request to make a forward progress.
3839 * We are in an unfortunate situation where out_of_memory cannot
3840 * do much for this context but let's try it to at least get
3841 * access to memory reserved if the current task is killed (see
3842 * out_of_memory). Once filesystems are ready to handle allocation
3843 * failures more gracefully we should just bail out here.
3844 */
3845
3846 /* The OOM killer may not free memory on a specific node */
3847 if (gfp_mask & __GFP_THISNODE)
3848 goto out;
3849
3850 /* Exhausted what can be done so it's blame time */
3851 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3852 *did_some_progress = 1;
3853
3854 /*
3855 * Help non-failing allocations by giving them access to memory
3856 * reserves
3857 */
3858 if (gfp_mask & __GFP_NOFAIL)
3859 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3860 ALLOC_NO_WATERMARKS, ac);
3861 }
3862 out:
3863 mutex_unlock(&oom_lock);
3864 return page;
3865 }
3866
3867 /*
3868 * Maximum number of compaction retries wit a progress before OOM
3869 * killer is consider as the only way to move forward.
3870 */
3871 #define MAX_COMPACT_RETRIES 16
3872
3873 #ifdef CONFIG_COMPACTION
3874 /* Try memory compaction for high-order allocations before reclaim */
3875 static struct page *
3876 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3877 unsigned int alloc_flags, const struct alloc_context *ac,
3878 enum compact_priority prio, enum compact_result *compact_result)
3879 {
3880 struct page *page = NULL;
3881 unsigned long pflags;
3882 unsigned int noreclaim_flag;
3883
3884 if (!order)
3885 return NULL;
3886
3887 psi_memstall_enter(&pflags);
3888 noreclaim_flag = memalloc_noreclaim_save();
3889
3890 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3891 prio, &page);
3892
3893 memalloc_noreclaim_restore(noreclaim_flag);
3894 psi_memstall_leave(&pflags);
3895
3896 /*
3897 * At least in one zone compaction wasn't deferred or skipped, so let's
3898 * count a compaction stall
3899 */
3900 count_vm_event(COMPACTSTALL);
3901
3902 /* Prep a captured page if available */
3903 if (page)
3904 prep_new_page(page, order, gfp_mask, alloc_flags);
3905
3906 /* Try get a page from the freelist if available */
3907 if (!page)
3908 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3909
3910 if (page) {
3911 struct zone *zone = page_zone(page);
3912
3913 zone->compact_blockskip_flush = false;
3914 compaction_defer_reset(zone, order, true);
3915 count_vm_event(COMPACTSUCCESS);
3916 return page;
3917 }
3918
3919 /*
3920 * It's bad if compaction run occurs and fails. The most likely reason
3921 * is that pages exist, but not enough to satisfy watermarks.
3922 */
3923 count_vm_event(COMPACTFAIL);
3924
3925 cond_resched();
3926
3927 return NULL;
3928 }
3929
3930 static inline bool
3931 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3932 enum compact_result compact_result,
3933 enum compact_priority *compact_priority,
3934 int *compaction_retries)
3935 {
3936 int max_retries = MAX_COMPACT_RETRIES;
3937 int min_priority;
3938 bool ret = false;
3939 int retries = *compaction_retries;
3940 enum compact_priority priority = *compact_priority;
3941
3942 if (!order)
3943 return false;
3944
3945 if (compaction_made_progress(compact_result))
3946 (*compaction_retries)++;
3947
3948 /*
3949 * compaction considers all the zone as desperately out of memory
3950 * so it doesn't really make much sense to retry except when the
3951 * failure could be caused by insufficient priority
3952 */
3953 if (compaction_failed(compact_result))
3954 goto check_priority;
3955
3956 /*
3957 * compaction was skipped because there are not enough order-0 pages
3958 * to work with, so we retry only if it looks like reclaim can help.
3959 */
3960 if (compaction_needs_reclaim(compact_result)) {
3961 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3962 goto out;
3963 }
3964
3965 /*
3966 * make sure the compaction wasn't deferred or didn't bail out early
3967 * due to locks contention before we declare that we should give up.
3968 * But the next retry should use a higher priority if allowed, so
3969 * we don't just keep bailing out endlessly.
3970 */
3971 if (compaction_withdrawn(compact_result)) {
3972 goto check_priority;
3973 }
3974
3975 /*
3976 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3977 * costly ones because they are de facto nofail and invoke OOM
3978 * killer to move on while costly can fail and users are ready
3979 * to cope with that. 1/4 retries is rather arbitrary but we
3980 * would need much more detailed feedback from compaction to
3981 * make a better decision.
3982 */
3983 if (order > PAGE_ALLOC_COSTLY_ORDER)
3984 max_retries /= 4;
3985 if (*compaction_retries <= max_retries) {
3986 ret = true;
3987 goto out;
3988 }
3989
3990 /*
3991 * Make sure there are attempts at the highest priority if we exhausted
3992 * all retries or failed at the lower priorities.
3993 */
3994 check_priority:
3995 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3996 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3997
3998 if (*compact_priority > min_priority) {
3999 (*compact_priority)--;
4000 *compaction_retries = 0;
4001 ret = true;
4002 }
4003 out:
4004 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4005 return ret;
4006 }
4007 #else
4008 static inline struct page *
4009 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4010 unsigned int alloc_flags, const struct alloc_context *ac,
4011 enum compact_priority prio, enum compact_result *compact_result)
4012 {
4013 *compact_result = COMPACT_SKIPPED;
4014 return NULL;
4015 }
4016
4017 static inline bool
4018 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4019 enum compact_result compact_result,
4020 enum compact_priority *compact_priority,
4021 int *compaction_retries)
4022 {
4023 struct zone *zone;
4024 struct zoneref *z;
4025
4026 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4027 return false;
4028
4029 /*
4030 * There are setups with compaction disabled which would prefer to loop
4031 * inside the allocator rather than hit the oom killer prematurely.
4032 * Let's give them a good hope and keep retrying while the order-0
4033 * watermarks are OK.
4034 */
4035 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4036 ac->nodemask) {
4037 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4038 ac_classzone_idx(ac), alloc_flags))
4039 return true;
4040 }
4041 return false;
4042 }
4043 #endif /* CONFIG_COMPACTION */
4044
4045 #ifdef CONFIG_LOCKDEP
4046 static struct lockdep_map __fs_reclaim_map =
4047 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4048
4049 static bool __need_fs_reclaim(gfp_t gfp_mask)
4050 {
4051 gfp_mask = current_gfp_context(gfp_mask);
4052
4053 /* no reclaim without waiting on it */
4054 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4055 return false;
4056
4057 /* this guy won't enter reclaim */
4058 if (current->flags & PF_MEMALLOC)
4059 return false;
4060
4061 /* We're only interested __GFP_FS allocations for now */
4062 if (!(gfp_mask & __GFP_FS))
4063 return false;
4064
4065 if (gfp_mask & __GFP_NOLOCKDEP)
4066 return false;
4067
4068 return true;
4069 }
4070
4071 void __fs_reclaim_acquire(void)
4072 {
4073 lock_map_acquire(&__fs_reclaim_map);
4074 }
4075
4076 void __fs_reclaim_release(void)
4077 {
4078 lock_map_release(&__fs_reclaim_map);
4079 }
4080
4081 void fs_reclaim_acquire(gfp_t gfp_mask)
4082 {
4083 if (__need_fs_reclaim(gfp_mask))
4084 __fs_reclaim_acquire();
4085 }
4086 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4087
4088 void fs_reclaim_release(gfp_t gfp_mask)
4089 {
4090 if (__need_fs_reclaim(gfp_mask))
4091 __fs_reclaim_release();
4092 }
4093 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4094 #endif
4095
4096 /* Perform direct synchronous page reclaim */
4097 static int
4098 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4099 const struct alloc_context *ac)
4100 {
4101 int progress;
4102 unsigned int noreclaim_flag;
4103 unsigned long pflags;
4104
4105 cond_resched();
4106
4107 /* We now go into synchronous reclaim */
4108 cpuset_memory_pressure_bump();
4109 psi_memstall_enter(&pflags);
4110 fs_reclaim_acquire(gfp_mask);
4111 noreclaim_flag = memalloc_noreclaim_save();
4112
4113 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4114 ac->nodemask);
4115
4116 memalloc_noreclaim_restore(noreclaim_flag);
4117 fs_reclaim_release(gfp_mask);
4118 psi_memstall_leave(&pflags);
4119
4120 cond_resched();
4121
4122 return progress;
4123 }
4124
4125 /* The really slow allocator path where we enter direct reclaim */
4126 static inline struct page *
4127 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4128 unsigned int alloc_flags, const struct alloc_context *ac,
4129 unsigned long *did_some_progress)
4130 {
4131 struct page *page = NULL;
4132 bool drained = false;
4133
4134 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4135 if (unlikely(!(*did_some_progress)))
4136 return NULL;
4137
4138 retry:
4139 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4140
4141 /*
4142 * If an allocation failed after direct reclaim, it could be because
4143 * pages are pinned on the per-cpu lists or in high alloc reserves.
4144 * Shrink them them and try again
4145 */
4146 if (!page && !drained) {
4147 unreserve_highatomic_pageblock(ac, false);
4148 drain_all_pages(NULL);
4149 drained = true;
4150 goto retry;
4151 }
4152
4153 return page;
4154 }
4155
4156 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4157 const struct alloc_context *ac)
4158 {
4159 struct zoneref *z;
4160 struct zone *zone;
4161 pg_data_t *last_pgdat = NULL;
4162 enum zone_type high_zoneidx = ac->high_zoneidx;
4163
4164 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4165 ac->nodemask) {
4166 if (last_pgdat != zone->zone_pgdat)
4167 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4168 last_pgdat = zone->zone_pgdat;
4169 }
4170 }
4171
4172 static inline unsigned int
4173 gfp_to_alloc_flags(gfp_t gfp_mask)
4174 {
4175 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4176
4177 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4178 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4179
4180 /*
4181 * The caller may dip into page reserves a bit more if the caller
4182 * cannot run direct reclaim, or if the caller has realtime scheduling
4183 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4184 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4185 */
4186 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4187
4188 if (gfp_mask & __GFP_ATOMIC) {
4189 /*
4190 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4191 * if it can't schedule.
4192 */
4193 if (!(gfp_mask & __GFP_NOMEMALLOC))
4194 alloc_flags |= ALLOC_HARDER;
4195 /*
4196 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4197 * comment for __cpuset_node_allowed().
4198 */
4199 alloc_flags &= ~ALLOC_CPUSET;
4200 } else if (unlikely(rt_task(current)) && !in_interrupt())
4201 alloc_flags |= ALLOC_HARDER;
4202
4203 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4204 alloc_flags |= ALLOC_KSWAPD;
4205
4206 #ifdef CONFIG_CMA
4207 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4208 alloc_flags |= ALLOC_CMA;
4209 #endif
4210 return alloc_flags;
4211 }
4212
4213 static bool oom_reserves_allowed(struct task_struct *tsk)
4214 {
4215 if (!tsk_is_oom_victim(tsk))
4216 return false;
4217
4218 /*
4219 * !MMU doesn't have oom reaper so give access to memory reserves
4220 * only to the thread with TIF_MEMDIE set
4221 */
4222 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4223 return false;
4224
4225 return true;
4226 }
4227
4228 /*
4229 * Distinguish requests which really need access to full memory
4230 * reserves from oom victims which can live with a portion of it
4231 */
4232 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4233 {
4234 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4235 return 0;
4236 if (gfp_mask & __GFP_MEMALLOC)
4237 return ALLOC_NO_WATERMARKS;
4238 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4239 return ALLOC_NO_WATERMARKS;
4240 if (!in_interrupt()) {
4241 if (current->flags & PF_MEMALLOC)
4242 return ALLOC_NO_WATERMARKS;
4243 else if (oom_reserves_allowed(current))
4244 return ALLOC_OOM;
4245 }
4246
4247 return 0;
4248 }
4249
4250 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4251 {
4252 return !!__gfp_pfmemalloc_flags(gfp_mask);
4253 }
4254
4255 /*
4256 * Checks whether it makes sense to retry the reclaim to make a forward progress
4257 * for the given allocation request.
4258 *
4259 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4260 * without success, or when we couldn't even meet the watermark if we
4261 * reclaimed all remaining pages on the LRU lists.
4262 *
4263 * Returns true if a retry is viable or false to enter the oom path.
4264 */
4265 static inline bool
4266 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4267 struct alloc_context *ac, int alloc_flags,
4268 bool did_some_progress, int *no_progress_loops)
4269 {
4270 struct zone *zone;
4271 struct zoneref *z;
4272 bool ret = false;
4273
4274 /*
4275 * Costly allocations might have made a progress but this doesn't mean
4276 * their order will become available due to high fragmentation so
4277 * always increment the no progress counter for them
4278 */
4279 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4280 *no_progress_loops = 0;
4281 else
4282 (*no_progress_loops)++;
4283
4284 /*
4285 * Make sure we converge to OOM if we cannot make any progress
4286 * several times in the row.
4287 */
4288 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4289 /* Before OOM, exhaust highatomic_reserve */
4290 return unreserve_highatomic_pageblock(ac, true);
4291 }
4292
4293 /*
4294 * Keep reclaiming pages while there is a chance this will lead
4295 * somewhere. If none of the target zones can satisfy our allocation
4296 * request even if all reclaimable pages are considered then we are
4297 * screwed and have to go OOM.
4298 */
4299 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4300 ac->nodemask) {
4301 unsigned long available;
4302 unsigned long reclaimable;
4303 unsigned long min_wmark = min_wmark_pages(zone);
4304 bool wmark;
4305
4306 available = reclaimable = zone_reclaimable_pages(zone);
4307 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4308
4309 /*
4310 * Would the allocation succeed if we reclaimed all
4311 * reclaimable pages?
4312 */
4313 wmark = __zone_watermark_ok(zone, order, min_wmark,
4314 ac_classzone_idx(ac), alloc_flags, available);
4315 trace_reclaim_retry_zone(z, order, reclaimable,
4316 available, min_wmark, *no_progress_loops, wmark);
4317 if (wmark) {
4318 /*
4319 * If we didn't make any progress and have a lot of
4320 * dirty + writeback pages then we should wait for
4321 * an IO to complete to slow down the reclaim and
4322 * prevent from pre mature OOM
4323 */
4324 if (!did_some_progress) {
4325 unsigned long write_pending;
4326
4327 write_pending = zone_page_state_snapshot(zone,
4328 NR_ZONE_WRITE_PENDING);
4329
4330 if (2 * write_pending > reclaimable) {
4331 congestion_wait(BLK_RW_ASYNC, HZ/10);
4332 return true;
4333 }
4334 }
4335
4336 ret = true;
4337 goto out;
4338 }
4339 }
4340
4341 out:
4342 /*
4343 * Memory allocation/reclaim might be called from a WQ context and the
4344 * current implementation of the WQ concurrency control doesn't
4345 * recognize that a particular WQ is congested if the worker thread is
4346 * looping without ever sleeping. Therefore we have to do a short sleep
4347 * here rather than calling cond_resched().
4348 */
4349 if (current->flags & PF_WQ_WORKER)
4350 schedule_timeout_uninterruptible(1);
4351 else
4352 cond_resched();
4353 return ret;
4354 }
4355
4356 static inline bool
4357 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4358 {
4359 /*
4360 * It's possible that cpuset's mems_allowed and the nodemask from
4361 * mempolicy don't intersect. This should be normally dealt with by
4362 * policy_nodemask(), but it's possible to race with cpuset update in
4363 * such a way the check therein was true, and then it became false
4364 * before we got our cpuset_mems_cookie here.
4365 * This assumes that for all allocations, ac->nodemask can come only
4366 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4367 * when it does not intersect with the cpuset restrictions) or the
4368 * caller can deal with a violated nodemask.
4369 */
4370 if (cpusets_enabled() && ac->nodemask &&
4371 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4372 ac->nodemask = NULL;
4373 return true;
4374 }
4375
4376 /*
4377 * When updating a task's mems_allowed or mempolicy nodemask, it is
4378 * possible to race with parallel threads in such a way that our
4379 * allocation can fail while the mask is being updated. If we are about
4380 * to fail, check if the cpuset changed during allocation and if so,
4381 * retry.
4382 */
4383 if (read_mems_allowed_retry(cpuset_mems_cookie))
4384 return true;
4385
4386 return false;
4387 }
4388
4389 static inline struct page *
4390 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4391 struct alloc_context *ac)
4392 {
4393 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4394 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4395 struct page *page = NULL;
4396 unsigned int alloc_flags;
4397 unsigned long did_some_progress;
4398 enum compact_priority compact_priority;
4399 enum compact_result compact_result;
4400 int compaction_retries;
4401 int no_progress_loops;
4402 unsigned int cpuset_mems_cookie;
4403 int reserve_flags;
4404
4405 /*
4406 * We also sanity check to catch abuse of atomic reserves being used by
4407 * callers that are not in atomic context.
4408 */
4409 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4410 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4411 gfp_mask &= ~__GFP_ATOMIC;
4412
4413 retry_cpuset:
4414 compaction_retries = 0;
4415 no_progress_loops = 0;
4416 compact_priority = DEF_COMPACT_PRIORITY;
4417 cpuset_mems_cookie = read_mems_allowed_begin();
4418
4419 /*
4420 * The fast path uses conservative alloc_flags to succeed only until
4421 * kswapd needs to be woken up, and to avoid the cost of setting up
4422 * alloc_flags precisely. So we do that now.
4423 */
4424 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4425
4426 /*
4427 * We need to recalculate the starting point for the zonelist iterator
4428 * because we might have used different nodemask in the fast path, or
4429 * there was a cpuset modification and we are retrying - otherwise we
4430 * could end up iterating over non-eligible zones endlessly.
4431 */
4432 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4433 ac->high_zoneidx, ac->nodemask);
4434 if (!ac->preferred_zoneref->zone)
4435 goto nopage;
4436
4437 if (alloc_flags & ALLOC_KSWAPD)
4438 wake_all_kswapds(order, gfp_mask, ac);
4439
4440 /*
4441 * The adjusted alloc_flags might result in immediate success, so try
4442 * that first
4443 */
4444 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4445 if (page)
4446 goto got_pg;
4447
4448 /*
4449 * For costly allocations, try direct compaction first, as it's likely
4450 * that we have enough base pages and don't need to reclaim. For non-
4451 * movable high-order allocations, do that as well, as compaction will
4452 * try prevent permanent fragmentation by migrating from blocks of the
4453 * same migratetype.
4454 * Don't try this for allocations that are allowed to ignore
4455 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4456 */
4457 if (can_direct_reclaim &&
4458 (costly_order ||
4459 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4460 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4461 page = __alloc_pages_direct_compact(gfp_mask, order,
4462 alloc_flags, ac,
4463 INIT_COMPACT_PRIORITY,
4464 &compact_result);
4465 if (page)
4466 goto got_pg;
4467
4468 /*
4469 * Checks for costly allocations with __GFP_NORETRY, which
4470 * includes some THP page fault allocations
4471 */
4472 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4473 /*
4474 * If allocating entire pageblock(s) and compaction
4475 * failed because all zones are below low watermarks
4476 * or is prohibited because it recently failed at this
4477 * order, fail immediately unless the allocator has
4478 * requested compaction and reclaim retry.
4479 *
4480 * Reclaim is
4481 * - potentially very expensive because zones are far
4482 * below their low watermarks or this is part of very
4483 * bursty high order allocations,
4484 * - not guaranteed to help because isolate_freepages()
4485 * may not iterate over freed pages as part of its
4486 * linear scan, and
4487 * - unlikely to make entire pageblocks free on its
4488 * own.
4489 */
4490 if (compact_result == COMPACT_SKIPPED ||
4491 compact_result == COMPACT_DEFERRED)
4492 goto nopage;
4493
4494 /*
4495 * Looks like reclaim/compaction is worth trying, but
4496 * sync compaction could be very expensive, so keep
4497 * using async compaction.
4498 */
4499 compact_priority = INIT_COMPACT_PRIORITY;
4500 }
4501 }
4502
4503 retry:
4504 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4505 if (alloc_flags & ALLOC_KSWAPD)
4506 wake_all_kswapds(order, gfp_mask, ac);
4507
4508 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4509 if (reserve_flags)
4510 alloc_flags = reserve_flags;
4511
4512 /*
4513 * Reset the nodemask and zonelist iterators if memory policies can be
4514 * ignored. These allocations are high priority and system rather than
4515 * user oriented.
4516 */
4517 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4518 ac->nodemask = NULL;
4519 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4520 ac->high_zoneidx, ac->nodemask);
4521 }
4522
4523 /* Attempt with potentially adjusted zonelist and alloc_flags */
4524 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4525 if (page)
4526 goto got_pg;
4527
4528 /* Caller is not willing to reclaim, we can't balance anything */
4529 if (!can_direct_reclaim)
4530 goto nopage;
4531
4532 /* Avoid recursion of direct reclaim */
4533 if (current->flags & PF_MEMALLOC)
4534 goto nopage;
4535
4536 /* Try direct reclaim and then allocating */
4537 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4538 &did_some_progress);
4539 if (page)
4540 goto got_pg;
4541
4542 /* Try direct compaction and then allocating */
4543 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4544 compact_priority, &compact_result);
4545 if (page)
4546 goto got_pg;
4547
4548 /* Do not loop if specifically requested */
4549 if (gfp_mask & __GFP_NORETRY)
4550 goto nopage;
4551
4552 /*
4553 * Do not retry costly high order allocations unless they are
4554 * __GFP_RETRY_MAYFAIL
4555 */
4556 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4557 goto nopage;
4558
4559 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4560 did_some_progress > 0, &no_progress_loops))
4561 goto retry;
4562
4563 /*
4564 * It doesn't make any sense to retry for the compaction if the order-0
4565 * reclaim is not able to make any progress because the current
4566 * implementation of the compaction depends on the sufficient amount
4567 * of free memory (see __compaction_suitable)
4568 */
4569 if (did_some_progress > 0 &&
4570 should_compact_retry(ac, order, alloc_flags,
4571 compact_result, &compact_priority,
4572 &compaction_retries))
4573 goto retry;
4574
4575
4576 /* Deal with possible cpuset update races before we start OOM killing */
4577 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4578 goto retry_cpuset;
4579
4580 /* Reclaim has failed us, start killing things */
4581 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4582 if (page)
4583 goto got_pg;
4584
4585 /* Avoid allocations with no watermarks from looping endlessly */
4586 if (tsk_is_oom_victim(current) &&
4587 (alloc_flags == ALLOC_OOM ||
4588 (gfp_mask & __GFP_NOMEMALLOC)))
4589 goto nopage;
4590
4591 /* Retry as long as the OOM killer is making progress */
4592 if (did_some_progress) {
4593 no_progress_loops = 0;
4594 goto retry;
4595 }
4596
4597 nopage:
4598 /* Deal with possible cpuset update races before we fail */
4599 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4600 goto retry_cpuset;
4601
4602 /*
4603 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4604 * we always retry
4605 */
4606 if (gfp_mask & __GFP_NOFAIL) {
4607 /*
4608 * All existing users of the __GFP_NOFAIL are blockable, so warn
4609 * of any new users that actually require GFP_NOWAIT
4610 */
4611 if (WARN_ON_ONCE(!can_direct_reclaim))
4612 goto fail;
4613
4614 /*
4615 * PF_MEMALLOC request from this context is rather bizarre
4616 * because we cannot reclaim anything and only can loop waiting
4617 * for somebody to do a work for us
4618 */
4619 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4620
4621 /*
4622 * non failing costly orders are a hard requirement which we
4623 * are not prepared for much so let's warn about these users
4624 * so that we can identify them and convert them to something
4625 * else.
4626 */
4627 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4628
4629 /*
4630 * Help non-failing allocations by giving them access to memory
4631 * reserves but do not use ALLOC_NO_WATERMARKS because this
4632 * could deplete whole memory reserves which would just make
4633 * the situation worse
4634 */
4635 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4636 if (page)
4637 goto got_pg;
4638
4639 cond_resched();
4640 goto retry;
4641 }
4642 fail:
4643 warn_alloc(gfp_mask, ac->nodemask,
4644 "page allocation failure: order:%u", order);
4645 got_pg:
4646 return page;
4647 }
4648
4649 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4650 int preferred_nid, nodemask_t *nodemask,
4651 struct alloc_context *ac, gfp_t *alloc_mask,
4652 unsigned int *alloc_flags)
4653 {
4654 ac->high_zoneidx = gfp_zone(gfp_mask);
4655 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4656 ac->nodemask = nodemask;
4657 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4658
4659 if (cpusets_enabled()) {
4660 *alloc_mask |= __GFP_HARDWALL;
4661 if (!ac->nodemask)
4662 ac->nodemask = &cpuset_current_mems_allowed;
4663 else
4664 *alloc_flags |= ALLOC_CPUSET;
4665 }
4666
4667 fs_reclaim_acquire(gfp_mask);
4668 fs_reclaim_release(gfp_mask);
4669
4670 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4671
4672 if (should_fail_alloc_page(gfp_mask, order))
4673 return false;
4674
4675 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4676 *alloc_flags |= ALLOC_CMA;
4677
4678 return true;
4679 }
4680
4681 /* Determine whether to spread dirty pages and what the first usable zone */
4682 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4683 {
4684 /* Dirty zone balancing only done in the fast path */
4685 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4686
4687 /*
4688 * The preferred zone is used for statistics but crucially it is
4689 * also used as the starting point for the zonelist iterator. It
4690 * may get reset for allocations that ignore memory policies.
4691 */
4692 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4693 ac->high_zoneidx, ac->nodemask);
4694 }
4695
4696 /*
4697 * This is the 'heart' of the zoned buddy allocator.
4698 */
4699 struct page *
4700 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4701 nodemask_t *nodemask)
4702 {
4703 struct page *page;
4704 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4705 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4706 struct alloc_context ac = { };
4707
4708 /*
4709 * There are several places where we assume that the order value is sane
4710 * so bail out early if the request is out of bound.
4711 */
4712 if (unlikely(order >= MAX_ORDER)) {
4713 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4714 return NULL;
4715 }
4716
4717 gfp_mask &= gfp_allowed_mask;
4718 alloc_mask = gfp_mask;
4719 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4720 return NULL;
4721
4722 finalise_ac(gfp_mask, &ac);
4723
4724 /*
4725 * Forbid the first pass from falling back to types that fragment
4726 * memory until all local zones are considered.
4727 */
4728 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4729
4730 /* First allocation attempt */
4731 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4732 if (likely(page))
4733 goto out;
4734
4735 /*
4736 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4737 * resp. GFP_NOIO which has to be inherited for all allocation requests
4738 * from a particular context which has been marked by
4739 * memalloc_no{fs,io}_{save,restore}.
4740 */
4741 alloc_mask = current_gfp_context(gfp_mask);
4742 ac.spread_dirty_pages = false;
4743
4744 /*
4745 * Restore the original nodemask if it was potentially replaced with
4746 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4747 */
4748 if (unlikely(ac.nodemask != nodemask))
4749 ac.nodemask = nodemask;
4750
4751 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4752
4753 out:
4754 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4755 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4756 __free_pages(page, order);
4757 page = NULL;
4758 }
4759
4760 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4761
4762 return page;
4763 }
4764 EXPORT_SYMBOL(__alloc_pages_nodemask);
4765
4766 /*
4767 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4768 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4769 * you need to access high mem.
4770 */
4771 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4772 {
4773 struct page *page;
4774
4775 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4776 if (!page)
4777 return 0;
4778 return (unsigned long) page_address(page);
4779 }
4780 EXPORT_SYMBOL(__get_free_pages);
4781
4782 unsigned long get_zeroed_page(gfp_t gfp_mask)
4783 {
4784 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4785 }
4786 EXPORT_SYMBOL(get_zeroed_page);
4787
4788 static inline void free_the_page(struct page *page, unsigned int order)
4789 {
4790 if (order == 0) /* Via pcp? */
4791 free_unref_page(page);
4792 else
4793 __free_pages_ok(page, order);
4794 }
4795
4796 void __free_pages(struct page *page, unsigned int order)
4797 {
4798 if (put_page_testzero(page))
4799 free_the_page(page, order);
4800 }
4801 EXPORT_SYMBOL(__free_pages);
4802
4803 void free_pages(unsigned long addr, unsigned int order)
4804 {
4805 if (addr != 0) {
4806 VM_BUG_ON(!virt_addr_valid((void *)addr));
4807 __free_pages(virt_to_page((void *)addr), order);
4808 }
4809 }
4810
4811 EXPORT_SYMBOL(free_pages);
4812
4813 /*
4814 * Page Fragment:
4815 * An arbitrary-length arbitrary-offset area of memory which resides
4816 * within a 0 or higher order page. Multiple fragments within that page
4817 * are individually refcounted, in the page's reference counter.
4818 *
4819 * The page_frag functions below provide a simple allocation framework for
4820 * page fragments. This is used by the network stack and network device
4821 * drivers to provide a backing region of memory for use as either an
4822 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4823 */
4824 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4825 gfp_t gfp_mask)
4826 {
4827 struct page *page = NULL;
4828 gfp_t gfp = gfp_mask;
4829
4830 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4831 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4832 __GFP_NOMEMALLOC;
4833 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4834 PAGE_FRAG_CACHE_MAX_ORDER);
4835 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4836 #endif
4837 if (unlikely(!page))
4838 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4839
4840 nc->va = page ? page_address(page) : NULL;
4841
4842 return page;
4843 }
4844
4845 void __page_frag_cache_drain(struct page *page, unsigned int count)
4846 {
4847 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4848
4849 if (page_ref_sub_and_test(page, count))
4850 free_the_page(page, compound_order(page));
4851 }
4852 EXPORT_SYMBOL(__page_frag_cache_drain);
4853
4854 void *page_frag_alloc(struct page_frag_cache *nc,
4855 unsigned int fragsz, gfp_t gfp_mask)
4856 {
4857 unsigned int size = PAGE_SIZE;
4858 struct page *page;
4859 int offset;
4860
4861 if (unlikely(!nc->va)) {
4862 refill:
4863 page = __page_frag_cache_refill(nc, gfp_mask);
4864 if (!page)
4865 return NULL;
4866
4867 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4868 /* if size can vary use size else just use PAGE_SIZE */
4869 size = nc->size;
4870 #endif
4871 /* Even if we own the page, we do not use atomic_set().
4872 * This would break get_page_unless_zero() users.
4873 */
4874 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4875
4876 /* reset page count bias and offset to start of new frag */
4877 nc->pfmemalloc = page_is_pfmemalloc(page);
4878 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4879 nc->offset = size;
4880 }
4881
4882 offset = nc->offset - fragsz;
4883 if (unlikely(offset < 0)) {
4884 page = virt_to_page(nc->va);
4885
4886 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4887 goto refill;
4888
4889 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4890 /* if size can vary use size else just use PAGE_SIZE */
4891 size = nc->size;
4892 #endif
4893 /* OK, page count is 0, we can safely set it */
4894 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4895
4896 /* reset page count bias and offset to start of new frag */
4897 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4898 offset = size - fragsz;
4899 }
4900
4901 nc->pagecnt_bias--;
4902 nc->offset = offset;
4903
4904 return nc->va + offset;
4905 }
4906 EXPORT_SYMBOL(page_frag_alloc);
4907
4908 /*
4909 * Frees a page fragment allocated out of either a compound or order 0 page.
4910 */
4911 void page_frag_free(void *addr)
4912 {
4913 struct page *page = virt_to_head_page(addr);
4914
4915 if (unlikely(put_page_testzero(page)))
4916 free_the_page(page, compound_order(page));
4917 }
4918 EXPORT_SYMBOL(page_frag_free);
4919
4920 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4921 size_t size)
4922 {
4923 if (addr) {
4924 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4925 unsigned long used = addr + PAGE_ALIGN(size);
4926
4927 split_page(virt_to_page((void *)addr), order);
4928 while (used < alloc_end) {
4929 free_page(used);
4930 used += PAGE_SIZE;
4931 }
4932 }
4933 return (void *)addr;
4934 }
4935
4936 /**
4937 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4938 * @size: the number of bytes to allocate
4939 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4940 *
4941 * This function is similar to alloc_pages(), except that it allocates the
4942 * minimum number of pages to satisfy the request. alloc_pages() can only
4943 * allocate memory in power-of-two pages.
4944 *
4945 * This function is also limited by MAX_ORDER.
4946 *
4947 * Memory allocated by this function must be released by free_pages_exact().
4948 *
4949 * Return: pointer to the allocated area or %NULL in case of error.
4950 */
4951 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4952 {
4953 unsigned int order = get_order(size);
4954 unsigned long addr;
4955
4956 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4957 gfp_mask &= ~__GFP_COMP;
4958
4959 addr = __get_free_pages(gfp_mask, order);
4960 return make_alloc_exact(addr, order, size);
4961 }
4962 EXPORT_SYMBOL(alloc_pages_exact);
4963
4964 /**
4965 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4966 * pages on a node.
4967 * @nid: the preferred node ID where memory should be allocated
4968 * @size: the number of bytes to allocate
4969 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4970 *
4971 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4972 * back.
4973 *
4974 * Return: pointer to the allocated area or %NULL in case of error.
4975 */
4976 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4977 {
4978 unsigned int order = get_order(size);
4979 struct page *p;
4980
4981 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4982 gfp_mask &= ~__GFP_COMP;
4983
4984 p = alloc_pages_node(nid, gfp_mask, order);
4985 if (!p)
4986 return NULL;
4987 return make_alloc_exact((unsigned long)page_address(p), order, size);
4988 }
4989
4990 /**
4991 * free_pages_exact - release memory allocated via alloc_pages_exact()
4992 * @virt: the value returned by alloc_pages_exact.
4993 * @size: size of allocation, same value as passed to alloc_pages_exact().
4994 *
4995 * Release the memory allocated by a previous call to alloc_pages_exact.
4996 */
4997 void free_pages_exact(void *virt, size_t size)
4998 {
4999 unsigned long addr = (unsigned long)virt;
5000 unsigned long end = addr + PAGE_ALIGN(size);
5001
5002 while (addr < end) {
5003 free_page(addr);
5004 addr += PAGE_SIZE;
5005 }
5006 }
5007 EXPORT_SYMBOL(free_pages_exact);
5008
5009 /**
5010 * nr_free_zone_pages - count number of pages beyond high watermark
5011 * @offset: The zone index of the highest zone
5012 *
5013 * nr_free_zone_pages() counts the number of pages which are beyond the
5014 * high watermark within all zones at or below a given zone index. For each
5015 * zone, the number of pages is calculated as:
5016 *
5017 * nr_free_zone_pages = managed_pages - high_pages
5018 *
5019 * Return: number of pages beyond high watermark.
5020 */
5021 static unsigned long nr_free_zone_pages(int offset)
5022 {
5023 struct zoneref *z;
5024 struct zone *zone;
5025
5026 /* Just pick one node, since fallback list is circular */
5027 unsigned long sum = 0;
5028
5029 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5030
5031 for_each_zone_zonelist(zone, z, zonelist, offset) {
5032 unsigned long size = zone_managed_pages(zone);
5033 unsigned long high = high_wmark_pages(zone);
5034 if (size > high)
5035 sum += size - high;
5036 }
5037
5038 return sum;
5039 }
5040
5041 /**
5042 * nr_free_buffer_pages - count number of pages beyond high watermark
5043 *
5044 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5045 * watermark within ZONE_DMA and ZONE_NORMAL.
5046 *
5047 * Return: number of pages beyond high watermark within ZONE_DMA and
5048 * ZONE_NORMAL.
5049 */
5050 unsigned long nr_free_buffer_pages(void)
5051 {
5052 return nr_free_zone_pages(gfp_zone(GFP_USER));
5053 }
5054 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5055
5056 /**
5057 * nr_free_pagecache_pages - count number of pages beyond high watermark
5058 *
5059 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5060 * high watermark within all zones.
5061 *
5062 * Return: number of pages beyond high watermark within all zones.
5063 */
5064 unsigned long nr_free_pagecache_pages(void)
5065 {
5066 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5067 }
5068
5069 static inline void show_node(struct zone *zone)
5070 {
5071 if (IS_ENABLED(CONFIG_NUMA))
5072 printk("Node %d ", zone_to_nid(zone));
5073 }
5074
5075 long si_mem_available(void)
5076 {
5077 long available;
5078 unsigned long pagecache;
5079 unsigned long wmark_low = 0;
5080 unsigned long pages[NR_LRU_LISTS];
5081 unsigned long reclaimable;
5082 struct zone *zone;
5083 int lru;
5084
5085 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5086 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5087
5088 for_each_zone(zone)
5089 wmark_low += low_wmark_pages(zone);
5090
5091 /*
5092 * Estimate the amount of memory available for userspace allocations,
5093 * without causing swapping.
5094 */
5095 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5096
5097 /*
5098 * Not all the page cache can be freed, otherwise the system will
5099 * start swapping. Assume at least half of the page cache, or the
5100 * low watermark worth of cache, needs to stay.
5101 */
5102 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5103 pagecache -= min(pagecache / 2, wmark_low);
5104 available += pagecache;
5105
5106 /*
5107 * Part of the reclaimable slab and other kernel memory consists of
5108 * items that are in use, and cannot be freed. Cap this estimate at the
5109 * low watermark.
5110 */
5111 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5112 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5113 available += reclaimable - min(reclaimable / 2, wmark_low);
5114
5115 if (available < 0)
5116 available = 0;
5117 return available;
5118 }
5119 EXPORT_SYMBOL_GPL(si_mem_available);
5120
5121 void si_meminfo(struct sysinfo *val)
5122 {
5123 val->totalram = totalram_pages();
5124 val->sharedram = global_node_page_state(NR_SHMEM);
5125 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5126 val->bufferram = nr_blockdev_pages();
5127 val->totalhigh = totalhigh_pages();
5128 val->freehigh = nr_free_highpages();
5129 val->mem_unit = PAGE_SIZE;
5130 }
5131
5132 EXPORT_SYMBOL(si_meminfo);
5133
5134 #ifdef CONFIG_NUMA
5135 void si_meminfo_node(struct sysinfo *val, int nid)
5136 {
5137 int zone_type; /* needs to be signed */
5138 unsigned long managed_pages = 0;
5139 unsigned long managed_highpages = 0;
5140 unsigned long free_highpages = 0;
5141 pg_data_t *pgdat = NODE_DATA(nid);
5142
5143 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5144 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5145 val->totalram = managed_pages;
5146 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5147 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5148 #ifdef CONFIG_HIGHMEM
5149 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5150 struct zone *zone = &pgdat->node_zones[zone_type];
5151
5152 if (is_highmem(zone)) {
5153 managed_highpages += zone_managed_pages(zone);
5154 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5155 }
5156 }
5157 val->totalhigh = managed_highpages;
5158 val->freehigh = free_highpages;
5159 #else
5160 val->totalhigh = managed_highpages;
5161 val->freehigh = free_highpages;
5162 #endif
5163 val->mem_unit = PAGE_SIZE;
5164 }
5165 #endif
5166
5167 /*
5168 * Determine whether the node should be displayed or not, depending on whether
5169 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5170 */
5171 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5172 {
5173 if (!(flags & SHOW_MEM_FILTER_NODES))
5174 return false;
5175
5176 /*
5177 * no node mask - aka implicit memory numa policy. Do not bother with
5178 * the synchronization - read_mems_allowed_begin - because we do not
5179 * have to be precise here.
5180 */
5181 if (!nodemask)
5182 nodemask = &cpuset_current_mems_allowed;
5183
5184 return !node_isset(nid, *nodemask);
5185 }
5186
5187 #define K(x) ((x) << (PAGE_SHIFT-10))
5188
5189 static void show_migration_types(unsigned char type)
5190 {
5191 static const char types[MIGRATE_TYPES] = {
5192 [MIGRATE_UNMOVABLE] = 'U',
5193 [MIGRATE_MOVABLE] = 'M',
5194 [MIGRATE_RECLAIMABLE] = 'E',
5195 [MIGRATE_HIGHATOMIC] = 'H',
5196 #ifdef CONFIG_CMA
5197 [MIGRATE_CMA] = 'C',
5198 #endif
5199 #ifdef CONFIG_MEMORY_ISOLATION
5200 [MIGRATE_ISOLATE] = 'I',
5201 #endif
5202 };
5203 char tmp[MIGRATE_TYPES + 1];
5204 char *p = tmp;
5205 int i;
5206
5207 for (i = 0; i < MIGRATE_TYPES; i++) {
5208 if (type & (1 << i))
5209 *p++ = types[i];
5210 }
5211
5212 *p = '\0';
5213 printk(KERN_CONT "(%s) ", tmp);
5214 }
5215
5216 /*
5217 * Show free area list (used inside shift_scroll-lock stuff)
5218 * We also calculate the percentage fragmentation. We do this by counting the
5219 * memory on each free list with the exception of the first item on the list.
5220 *
5221 * Bits in @filter:
5222 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5223 * cpuset.
5224 */
5225 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5226 {
5227 unsigned long free_pcp = 0;
5228 int cpu;
5229 struct zone *zone;
5230 pg_data_t *pgdat;
5231
5232 for_each_populated_zone(zone) {
5233 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5234 continue;
5235
5236 for_each_online_cpu(cpu)
5237 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5238 }
5239
5240 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5241 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5242 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5243 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5244 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5245 " free:%lu free_pcp:%lu free_cma:%lu\n",
5246 global_node_page_state(NR_ACTIVE_ANON),
5247 global_node_page_state(NR_INACTIVE_ANON),
5248 global_node_page_state(NR_ISOLATED_ANON),
5249 global_node_page_state(NR_ACTIVE_FILE),
5250 global_node_page_state(NR_INACTIVE_FILE),
5251 global_node_page_state(NR_ISOLATED_FILE),
5252 global_node_page_state(NR_UNEVICTABLE),
5253 global_node_page_state(NR_FILE_DIRTY),
5254 global_node_page_state(NR_WRITEBACK),
5255 global_node_page_state(NR_UNSTABLE_NFS),
5256 global_node_page_state(NR_SLAB_RECLAIMABLE),
5257 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5258 global_node_page_state(NR_FILE_MAPPED),
5259 global_node_page_state(NR_SHMEM),
5260 global_zone_page_state(NR_PAGETABLE),
5261 global_zone_page_state(NR_BOUNCE),
5262 global_zone_page_state(NR_FREE_PAGES),
5263 free_pcp,
5264 global_zone_page_state(NR_FREE_CMA_PAGES));
5265
5266 for_each_online_pgdat(pgdat) {
5267 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5268 continue;
5269
5270 printk("Node %d"
5271 " active_anon:%lukB"
5272 " inactive_anon:%lukB"
5273 " active_file:%lukB"
5274 " inactive_file:%lukB"
5275 " unevictable:%lukB"
5276 " isolated(anon):%lukB"
5277 " isolated(file):%lukB"
5278 " mapped:%lukB"
5279 " dirty:%lukB"
5280 " writeback:%lukB"
5281 " shmem:%lukB"
5282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5283 " shmem_thp: %lukB"
5284 " shmem_pmdmapped: %lukB"
5285 " anon_thp: %lukB"
5286 #endif
5287 " writeback_tmp:%lukB"
5288 " unstable:%lukB"
5289 " all_unreclaimable? %s"
5290 "\n",
5291 pgdat->node_id,
5292 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5293 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5294 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5295 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5296 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5297 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5298 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5299 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5300 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5301 K(node_page_state(pgdat, NR_WRITEBACK)),
5302 K(node_page_state(pgdat, NR_SHMEM)),
5303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5304 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5305 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5306 * HPAGE_PMD_NR),
5307 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5308 #endif
5309 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5310 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5311 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5312 "yes" : "no");
5313 }
5314
5315 for_each_populated_zone(zone) {
5316 int i;
5317
5318 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5319 continue;
5320
5321 free_pcp = 0;
5322 for_each_online_cpu(cpu)
5323 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5324
5325 show_node(zone);
5326 printk(KERN_CONT
5327 "%s"
5328 " free:%lukB"
5329 " min:%lukB"
5330 " low:%lukB"
5331 " high:%lukB"
5332 " reserved_highatomic:%luKB"
5333 " active_anon:%lukB"
5334 " inactive_anon:%lukB"
5335 " active_file:%lukB"
5336 " inactive_file:%lukB"
5337 " unevictable:%lukB"
5338 " writepending:%lukB"
5339 " present:%lukB"
5340 " managed:%lukB"
5341 " mlocked:%lukB"
5342 " kernel_stack:%lukB"
5343 " pagetables:%lukB"
5344 " bounce:%lukB"
5345 " free_pcp:%lukB"
5346 " local_pcp:%ukB"
5347 " free_cma:%lukB"
5348 "\n",
5349 zone->name,
5350 K(zone_page_state(zone, NR_FREE_PAGES)),
5351 K(min_wmark_pages(zone)),
5352 K(low_wmark_pages(zone)),
5353 K(high_wmark_pages(zone)),
5354 K(zone->nr_reserved_highatomic),
5355 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5356 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5357 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5358 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5359 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5360 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5361 K(zone->present_pages),
5362 K(zone_managed_pages(zone)),
5363 K(zone_page_state(zone, NR_MLOCK)),
5364 zone_page_state(zone, NR_KERNEL_STACK_KB),
5365 K(zone_page_state(zone, NR_PAGETABLE)),
5366 K(zone_page_state(zone, NR_BOUNCE)),
5367 K(free_pcp),
5368 K(this_cpu_read(zone->pageset->pcp.count)),
5369 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5370 printk("lowmem_reserve[]:");
5371 for (i = 0; i < MAX_NR_ZONES; i++)
5372 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5373 printk(KERN_CONT "\n");
5374 }
5375
5376 for_each_populated_zone(zone) {
5377 unsigned int order;
5378 unsigned long nr[MAX_ORDER], flags, total = 0;
5379 unsigned char types[MAX_ORDER];
5380
5381 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5382 continue;
5383 show_node(zone);
5384 printk(KERN_CONT "%s: ", zone->name);
5385
5386 spin_lock_irqsave(&zone->lock, flags);
5387 for (order = 0; order < MAX_ORDER; order++) {
5388 struct free_area *area = &zone->free_area[order];
5389 int type;
5390
5391 nr[order] = area->nr_free;
5392 total += nr[order] << order;
5393
5394 types[order] = 0;
5395 for (type = 0; type < MIGRATE_TYPES; type++) {
5396 if (!free_area_empty(area, type))
5397 types[order] |= 1 << type;
5398 }
5399 }
5400 spin_unlock_irqrestore(&zone->lock, flags);
5401 for (order = 0; order < MAX_ORDER; order++) {
5402 printk(KERN_CONT "%lu*%lukB ",
5403 nr[order], K(1UL) << order);
5404 if (nr[order])
5405 show_migration_types(types[order]);
5406 }
5407 printk(KERN_CONT "= %lukB\n", K(total));
5408 }
5409
5410 hugetlb_show_meminfo();
5411
5412 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5413
5414 show_swap_cache_info();
5415 }
5416
5417 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5418 {
5419 zoneref->zone = zone;
5420 zoneref->zone_idx = zone_idx(zone);
5421 }
5422
5423 /*
5424 * Builds allocation fallback zone lists.
5425 *
5426 * Add all populated zones of a node to the zonelist.
5427 */
5428 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5429 {
5430 struct zone *zone;
5431 enum zone_type zone_type = MAX_NR_ZONES;
5432 int nr_zones = 0;
5433
5434 do {
5435 zone_type--;
5436 zone = pgdat->node_zones + zone_type;
5437 if (managed_zone(zone)) {
5438 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5439 check_highest_zone(zone_type);
5440 }
5441 } while (zone_type);
5442
5443 return nr_zones;
5444 }
5445
5446 #ifdef CONFIG_NUMA
5447
5448 static int __parse_numa_zonelist_order(char *s)
5449 {
5450 /*
5451 * We used to support different zonlists modes but they turned
5452 * out to be just not useful. Let's keep the warning in place
5453 * if somebody still use the cmd line parameter so that we do
5454 * not fail it silently
5455 */
5456 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5457 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
5458 return -EINVAL;
5459 }
5460 return 0;
5461 }
5462
5463 static __init int setup_numa_zonelist_order(char *s)
5464 {
5465 if (!s)
5466 return 0;
5467
5468 return __parse_numa_zonelist_order(s);
5469 }
5470 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5471
5472 char numa_zonelist_order[] = "Node";
5473
5474 /*
5475 * sysctl handler for numa_zonelist_order
5476 */
5477 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5478 void __user *buffer, size_t *length,
5479 loff_t *ppos)
5480 {
5481 char *str;
5482 int ret;
5483
5484 if (!write)
5485 return proc_dostring(table, write, buffer, length, ppos);
5486 str = memdup_user_nul(buffer, 16);
5487 if (IS_ERR(str))
5488 return PTR_ERR(str);
5489
5490 ret = __parse_numa_zonelist_order(str);
5491 kfree(str);
5492 return ret;
5493 }
5494
5495
5496 #define MAX_NODE_LOAD (nr_online_nodes)
5497 static int node_load[MAX_NUMNODES];
5498
5499 /**
5500 * find_next_best_node - find the next node that should appear in a given node's fallback list
5501 * @node: node whose fallback list we're appending
5502 * @used_node_mask: nodemask_t of already used nodes
5503 *
5504 * We use a number of factors to determine which is the next node that should
5505 * appear on a given node's fallback list. The node should not have appeared
5506 * already in @node's fallback list, and it should be the next closest node
5507 * according to the distance array (which contains arbitrary distance values
5508 * from each node to each node in the system), and should also prefer nodes
5509 * with no CPUs, since presumably they'll have very little allocation pressure
5510 * on them otherwise.
5511 *
5512 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5513 */
5514 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5515 {
5516 int n, val;
5517 int min_val = INT_MAX;
5518 int best_node = NUMA_NO_NODE;
5519 const struct cpumask *tmp = cpumask_of_node(0);
5520
5521 /* Use the local node if we haven't already */
5522 if (!node_isset(node, *used_node_mask)) {
5523 node_set(node, *used_node_mask);
5524 return node;
5525 }
5526
5527 for_each_node_state(n, N_MEMORY) {
5528
5529 /* Don't want a node to appear more than once */
5530 if (node_isset(n, *used_node_mask))
5531 continue;
5532
5533 /* Use the distance array to find the distance */
5534 val = node_distance(node, n);
5535
5536 /* Penalize nodes under us ("prefer the next node") */
5537 val += (n < node);
5538
5539 /* Give preference to headless and unused nodes */
5540 tmp = cpumask_of_node(n);
5541 if (!cpumask_empty(tmp))
5542 val += PENALTY_FOR_NODE_WITH_CPUS;
5543
5544 /* Slight preference for less loaded node */
5545 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5546 val += node_load[n];
5547
5548 if (val < min_val) {
5549 min_val = val;
5550 best_node = n;
5551 }
5552 }
5553
5554 if (best_node >= 0)
5555 node_set(best_node, *used_node_mask);
5556
5557 return best_node;
5558 }
5559
5560
5561 /*
5562 * Build zonelists ordered by node and zones within node.
5563 * This results in maximum locality--normal zone overflows into local
5564 * DMA zone, if any--but risks exhausting DMA zone.
5565 */
5566 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5567 unsigned nr_nodes)
5568 {
5569 struct zoneref *zonerefs;
5570 int i;
5571
5572 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5573
5574 for (i = 0; i < nr_nodes; i++) {
5575 int nr_zones;
5576
5577 pg_data_t *node = NODE_DATA(node_order[i]);
5578
5579 nr_zones = build_zonerefs_node(node, zonerefs);
5580 zonerefs += nr_zones;
5581 }
5582 zonerefs->zone = NULL;
5583 zonerefs->zone_idx = 0;
5584 }
5585
5586 /*
5587 * Build gfp_thisnode zonelists
5588 */
5589 static void build_thisnode_zonelists(pg_data_t *pgdat)
5590 {
5591 struct zoneref *zonerefs;
5592 int nr_zones;
5593
5594 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5595 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5596 zonerefs += nr_zones;
5597 zonerefs->zone = NULL;
5598 zonerefs->zone_idx = 0;
5599 }
5600
5601 /*
5602 * Build zonelists ordered by zone and nodes within zones.
5603 * This results in conserving DMA zone[s] until all Normal memory is
5604 * exhausted, but results in overflowing to remote node while memory
5605 * may still exist in local DMA zone.
5606 */
5607
5608 static void build_zonelists(pg_data_t *pgdat)
5609 {
5610 static int node_order[MAX_NUMNODES];
5611 int node, load, nr_nodes = 0;
5612 nodemask_t used_mask;
5613 int local_node, prev_node;
5614
5615 /* NUMA-aware ordering of nodes */
5616 local_node = pgdat->node_id;
5617 load = nr_online_nodes;
5618 prev_node = local_node;
5619 nodes_clear(used_mask);
5620
5621 memset(node_order, 0, sizeof(node_order));
5622 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5623 /*
5624 * We don't want to pressure a particular node.
5625 * So adding penalty to the first node in same
5626 * distance group to make it round-robin.
5627 */
5628 if (node_distance(local_node, node) !=
5629 node_distance(local_node, prev_node))
5630 node_load[node] = load;
5631
5632 node_order[nr_nodes++] = node;
5633 prev_node = node;
5634 load--;
5635 }
5636
5637 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5638 build_thisnode_zonelists(pgdat);
5639 }
5640
5641 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5642 /*
5643 * Return node id of node used for "local" allocations.
5644 * I.e., first node id of first zone in arg node's generic zonelist.
5645 * Used for initializing percpu 'numa_mem', which is used primarily
5646 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5647 */
5648 int local_memory_node(int node)
5649 {
5650 struct zoneref *z;
5651
5652 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5653 gfp_zone(GFP_KERNEL),
5654 NULL);
5655 return zone_to_nid(z->zone);
5656 }
5657 #endif
5658
5659 static void setup_min_unmapped_ratio(void);
5660 static void setup_min_slab_ratio(void);
5661 #else /* CONFIG_NUMA */
5662
5663 static void build_zonelists(pg_data_t *pgdat)
5664 {
5665 int node, local_node;
5666 struct zoneref *zonerefs;
5667 int nr_zones;
5668
5669 local_node = pgdat->node_id;
5670
5671 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5672 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5673 zonerefs += nr_zones;
5674
5675 /*
5676 * Now we build the zonelist so that it contains the zones
5677 * of all the other nodes.
5678 * We don't want to pressure a particular node, so when
5679 * building the zones for node N, we make sure that the
5680 * zones coming right after the local ones are those from
5681 * node N+1 (modulo N)
5682 */
5683 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5684 if (!node_online(node))
5685 continue;
5686 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5687 zonerefs += nr_zones;
5688 }
5689 for (node = 0; node < local_node; node++) {
5690 if (!node_online(node))
5691 continue;
5692 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5693 zonerefs += nr_zones;
5694 }
5695
5696 zonerefs->zone = NULL;
5697 zonerefs->zone_idx = 0;
5698 }
5699
5700 #endif /* CONFIG_NUMA */
5701
5702 /*
5703 * Boot pageset table. One per cpu which is going to be used for all
5704 * zones and all nodes. The parameters will be set in such a way
5705 * that an item put on a list will immediately be handed over to
5706 * the buddy list. This is safe since pageset manipulation is done
5707 * with interrupts disabled.
5708 *
5709 * The boot_pagesets must be kept even after bootup is complete for
5710 * unused processors and/or zones. They do play a role for bootstrapping
5711 * hotplugged processors.
5712 *
5713 * zoneinfo_show() and maybe other functions do
5714 * not check if the processor is online before following the pageset pointer.
5715 * Other parts of the kernel may not check if the zone is available.
5716 */
5717 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5718 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5719 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5720
5721 static void __build_all_zonelists(void *data)
5722 {
5723 int nid;
5724 int __maybe_unused cpu;
5725 pg_data_t *self = data;
5726 static DEFINE_SPINLOCK(lock);
5727
5728 spin_lock(&lock);
5729
5730 #ifdef CONFIG_NUMA
5731 memset(node_load, 0, sizeof(node_load));
5732 #endif
5733
5734 /*
5735 * This node is hotadded and no memory is yet present. So just
5736 * building zonelists is fine - no need to touch other nodes.
5737 */
5738 if (self && !node_online(self->node_id)) {
5739 build_zonelists(self);
5740 } else {
5741 for_each_online_node(nid) {
5742 pg_data_t *pgdat = NODE_DATA(nid);
5743
5744 build_zonelists(pgdat);
5745 }
5746
5747 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5748 /*
5749 * We now know the "local memory node" for each node--
5750 * i.e., the node of the first zone in the generic zonelist.
5751 * Set up numa_mem percpu variable for on-line cpus. During
5752 * boot, only the boot cpu should be on-line; we'll init the
5753 * secondary cpus' numa_mem as they come on-line. During
5754 * node/memory hotplug, we'll fixup all on-line cpus.
5755 */
5756 for_each_online_cpu(cpu)
5757 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5758 #endif
5759 }
5760
5761 spin_unlock(&lock);
5762 }
5763
5764 static noinline void __init
5765 build_all_zonelists_init(void)
5766 {
5767 int cpu;
5768
5769 __build_all_zonelists(NULL);
5770
5771 /*
5772 * Initialize the boot_pagesets that are going to be used
5773 * for bootstrapping processors. The real pagesets for
5774 * each zone will be allocated later when the per cpu
5775 * allocator is available.
5776 *
5777 * boot_pagesets are used also for bootstrapping offline
5778 * cpus if the system is already booted because the pagesets
5779 * are needed to initialize allocators on a specific cpu too.
5780 * F.e. the percpu allocator needs the page allocator which
5781 * needs the percpu allocator in order to allocate its pagesets
5782 * (a chicken-egg dilemma).
5783 */
5784 for_each_possible_cpu(cpu)
5785 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5786
5787 mminit_verify_zonelist();
5788 cpuset_init_current_mems_allowed();
5789 }
5790
5791 /*
5792 * unless system_state == SYSTEM_BOOTING.
5793 *
5794 * __ref due to call of __init annotated helper build_all_zonelists_init
5795 * [protected by SYSTEM_BOOTING].
5796 */
5797 void __ref build_all_zonelists(pg_data_t *pgdat)
5798 {
5799 if (system_state == SYSTEM_BOOTING) {
5800 build_all_zonelists_init();
5801 } else {
5802 __build_all_zonelists(pgdat);
5803 /* cpuset refresh routine should be here */
5804 }
5805 vm_total_pages = nr_free_pagecache_pages();
5806 /*
5807 * Disable grouping by mobility if the number of pages in the
5808 * system is too low to allow the mechanism to work. It would be
5809 * more accurate, but expensive to check per-zone. This check is
5810 * made on memory-hotadd so a system can start with mobility
5811 * disabled and enable it later
5812 */
5813 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5814 page_group_by_mobility_disabled = 1;
5815 else
5816 page_group_by_mobility_disabled = 0;
5817
5818 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5819 nr_online_nodes,
5820 page_group_by_mobility_disabled ? "off" : "on",
5821 vm_total_pages);
5822 #ifdef CONFIG_NUMA
5823 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5824 #endif
5825 }
5826
5827 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5828 static bool __meminit
5829 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5830 {
5831 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5832 static struct memblock_region *r;
5833
5834 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5835 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5836 for_each_memblock(memory, r) {
5837 if (*pfn < memblock_region_memory_end_pfn(r))
5838 break;
5839 }
5840 }
5841 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5842 memblock_is_mirror(r)) {
5843 *pfn = memblock_region_memory_end_pfn(r);
5844 return true;
5845 }
5846 }
5847 #endif
5848 return false;
5849 }
5850
5851 /*
5852 * Initially all pages are reserved - free ones are freed
5853 * up by memblock_free_all() once the early boot process is
5854 * done. Non-atomic initialization, single-pass.
5855 */
5856 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5857 unsigned long start_pfn, enum memmap_context context,
5858 struct vmem_altmap *altmap)
5859 {
5860 unsigned long pfn, end_pfn = start_pfn + size;
5861 struct page *page;
5862
5863 if (highest_memmap_pfn < end_pfn - 1)
5864 highest_memmap_pfn = end_pfn - 1;
5865
5866 #ifdef CONFIG_ZONE_DEVICE
5867 /*
5868 * Honor reservation requested by the driver for this ZONE_DEVICE
5869 * memory. We limit the total number of pages to initialize to just
5870 * those that might contain the memory mapping. We will defer the
5871 * ZONE_DEVICE page initialization until after we have released
5872 * the hotplug lock.
5873 */
5874 if (zone == ZONE_DEVICE) {
5875 if (!altmap)
5876 return;
5877
5878 if (start_pfn == altmap->base_pfn)
5879 start_pfn += altmap->reserve;
5880 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5881 }
5882 #endif
5883
5884 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5885 /*
5886 * There can be holes in boot-time mem_map[]s handed to this
5887 * function. They do not exist on hotplugged memory.
5888 */
5889 if (context == MEMMAP_EARLY) {
5890 if (!early_pfn_valid(pfn))
5891 continue;
5892 if (!early_pfn_in_nid(pfn, nid))
5893 continue;
5894 if (overlap_memmap_init(zone, &pfn))
5895 continue;
5896 if (defer_init(nid, pfn, end_pfn))
5897 break;
5898 }
5899
5900 page = pfn_to_page(pfn);
5901 __init_single_page(page, pfn, zone, nid);
5902 if (context == MEMMAP_HOTPLUG)
5903 __SetPageReserved(page);
5904
5905 /*
5906 * Mark the block movable so that blocks are reserved for
5907 * movable at startup. This will force kernel allocations
5908 * to reserve their blocks rather than leaking throughout
5909 * the address space during boot when many long-lived
5910 * kernel allocations are made.
5911 *
5912 * bitmap is created for zone's valid pfn range. but memmap
5913 * can be created for invalid pages (for alignment)
5914 * check here not to call set_pageblock_migratetype() against
5915 * pfn out of zone.
5916 */
5917 if (!(pfn & (pageblock_nr_pages - 1))) {
5918 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5919 cond_resched();
5920 }
5921 }
5922 }
5923
5924 #ifdef CONFIG_ZONE_DEVICE
5925 void __ref memmap_init_zone_device(struct zone *zone,
5926 unsigned long start_pfn,
5927 unsigned long size,
5928 struct dev_pagemap *pgmap)
5929 {
5930 unsigned long pfn, end_pfn = start_pfn + size;
5931 struct pglist_data *pgdat = zone->zone_pgdat;
5932 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5933 unsigned long zone_idx = zone_idx(zone);
5934 unsigned long start = jiffies;
5935 int nid = pgdat->node_id;
5936
5937 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5938 return;
5939
5940 /*
5941 * The call to memmap_init_zone should have already taken care
5942 * of the pages reserved for the memmap, so we can just jump to
5943 * the end of that region and start processing the device pages.
5944 */
5945 if (altmap) {
5946 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5947 size = end_pfn - start_pfn;
5948 }
5949
5950 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5951 struct page *page = pfn_to_page(pfn);
5952
5953 __init_single_page(page, pfn, zone_idx, nid);
5954
5955 /*
5956 * Mark page reserved as it will need to wait for onlining
5957 * phase for it to be fully associated with a zone.
5958 *
5959 * We can use the non-atomic __set_bit operation for setting
5960 * the flag as we are still initializing the pages.
5961 */
5962 __SetPageReserved(page);
5963
5964 /*
5965 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5966 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5967 * ever freed or placed on a driver-private list.
5968 */
5969 page->pgmap = pgmap;
5970 page->zone_device_data = NULL;
5971
5972 /*
5973 * Mark the block movable so that blocks are reserved for
5974 * movable at startup. This will force kernel allocations
5975 * to reserve their blocks rather than leaking throughout
5976 * the address space during boot when many long-lived
5977 * kernel allocations are made.
5978 *
5979 * bitmap is created for zone's valid pfn range. but memmap
5980 * can be created for invalid pages (for alignment)
5981 * check here not to call set_pageblock_migratetype() against
5982 * pfn out of zone.
5983 *
5984 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5985 * because this is done early in section_activate()
5986 */
5987 if (!(pfn & (pageblock_nr_pages - 1))) {
5988 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5989 cond_resched();
5990 }
5991 }
5992
5993 pr_info("%s initialised %lu pages in %ums\n", __func__,
5994 size, jiffies_to_msecs(jiffies - start));
5995 }
5996
5997 #endif
5998 static void __meminit zone_init_free_lists(struct zone *zone)
5999 {
6000 unsigned int order, t;
6001 for_each_migratetype_order(order, t) {
6002 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6003 zone->free_area[order].nr_free = 0;
6004 }
6005 }
6006
6007 void __meminit __weak memmap_init(unsigned long size, int nid,
6008 unsigned long zone, unsigned long start_pfn)
6009 {
6010 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6011 }
6012
6013 static int zone_batchsize(struct zone *zone)
6014 {
6015 #ifdef CONFIG_MMU
6016 int batch;
6017
6018 /*
6019 * The per-cpu-pages pools are set to around 1000th of the
6020 * size of the zone.
6021 */
6022 batch = zone_managed_pages(zone) / 1024;
6023 /* But no more than a meg. */
6024 if (batch * PAGE_SIZE > 1024 * 1024)
6025 batch = (1024 * 1024) / PAGE_SIZE;
6026 batch /= 4; /* We effectively *= 4 below */
6027 if (batch < 1)
6028 batch = 1;
6029
6030 /*
6031 * Clamp the batch to a 2^n - 1 value. Having a power
6032 * of 2 value was found to be more likely to have
6033 * suboptimal cache aliasing properties in some cases.
6034 *
6035 * For example if 2 tasks are alternately allocating
6036 * batches of pages, one task can end up with a lot
6037 * of pages of one half of the possible page colors
6038 * and the other with pages of the other colors.
6039 */
6040 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6041
6042 return batch;
6043
6044 #else
6045 /* The deferral and batching of frees should be suppressed under NOMMU
6046 * conditions.
6047 *
6048 * The problem is that NOMMU needs to be able to allocate large chunks
6049 * of contiguous memory as there's no hardware page translation to
6050 * assemble apparent contiguous memory from discontiguous pages.
6051 *
6052 * Queueing large contiguous runs of pages for batching, however,
6053 * causes the pages to actually be freed in smaller chunks. As there
6054 * can be a significant delay between the individual batches being
6055 * recycled, this leads to the once large chunks of space being
6056 * fragmented and becoming unavailable for high-order allocations.
6057 */
6058 return 0;
6059 #endif
6060 }
6061
6062 /*
6063 * pcp->high and pcp->batch values are related and dependent on one another:
6064 * ->batch must never be higher then ->high.
6065 * The following function updates them in a safe manner without read side
6066 * locking.
6067 *
6068 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6069 * those fields changing asynchronously (acording the the above rule).
6070 *
6071 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6072 * outside of boot time (or some other assurance that no concurrent updaters
6073 * exist).
6074 */
6075 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6076 unsigned long batch)
6077 {
6078 /* start with a fail safe value for batch */
6079 pcp->batch = 1;
6080 smp_wmb();
6081
6082 /* Update high, then batch, in order */
6083 pcp->high = high;
6084 smp_wmb();
6085
6086 pcp->batch = batch;
6087 }
6088
6089 /* a companion to pageset_set_high() */
6090 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6091 {
6092 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6093 }
6094
6095 static void pageset_init(struct per_cpu_pageset *p)
6096 {
6097 struct per_cpu_pages *pcp;
6098 int migratetype;
6099
6100 memset(p, 0, sizeof(*p));
6101
6102 pcp = &p->pcp;
6103 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6104 INIT_LIST_HEAD(&pcp->lists[migratetype]);
6105 }
6106
6107 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6108 {
6109 pageset_init(p);
6110 pageset_set_batch(p, batch);
6111 }
6112
6113 /*
6114 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6115 * to the value high for the pageset p.
6116 */
6117 static void pageset_set_high(struct per_cpu_pageset *p,
6118 unsigned long high)
6119 {
6120 unsigned long batch = max(1UL, high / 4);
6121 if ((high / 4) > (PAGE_SHIFT * 8))
6122 batch = PAGE_SHIFT * 8;
6123
6124 pageset_update(&p->pcp, high, batch);
6125 }
6126
6127 static void pageset_set_high_and_batch(struct zone *zone,
6128 struct per_cpu_pageset *pcp)
6129 {
6130 if (percpu_pagelist_fraction)
6131 pageset_set_high(pcp,
6132 (zone_managed_pages(zone) /
6133 percpu_pagelist_fraction));
6134 else
6135 pageset_set_batch(pcp, zone_batchsize(zone));
6136 }
6137
6138 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6139 {
6140 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6141
6142 pageset_init(pcp);
6143 pageset_set_high_and_batch(zone, pcp);
6144 }
6145
6146 void __meminit setup_zone_pageset(struct zone *zone)
6147 {
6148 int cpu;
6149 zone->pageset = alloc_percpu(struct per_cpu_pageset);
6150 for_each_possible_cpu(cpu)
6151 zone_pageset_init(zone, cpu);
6152 }
6153
6154 /*
6155 * Allocate per cpu pagesets and initialize them.
6156 * Before this call only boot pagesets were available.
6157 */
6158 void __init setup_per_cpu_pageset(void)
6159 {
6160 struct pglist_data *pgdat;
6161 struct zone *zone;
6162
6163 for_each_populated_zone(zone)
6164 setup_zone_pageset(zone);
6165
6166 for_each_online_pgdat(pgdat)
6167 pgdat->per_cpu_nodestats =
6168 alloc_percpu(struct per_cpu_nodestat);
6169 }
6170
6171 static __meminit void zone_pcp_init(struct zone *zone)
6172 {
6173 /*
6174 * per cpu subsystem is not up at this point. The following code
6175 * relies on the ability of the linker to provide the
6176 * offset of a (static) per cpu variable into the per cpu area.
6177 */
6178 zone->pageset = &boot_pageset;
6179
6180 if (populated_zone(zone))
6181 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6182 zone->name, zone->present_pages,
6183 zone_batchsize(zone));
6184 }
6185
6186 void __meminit init_currently_empty_zone(struct zone *zone,
6187 unsigned long zone_start_pfn,
6188 unsigned long size)
6189 {
6190 struct pglist_data *pgdat = zone->zone_pgdat;
6191 int zone_idx = zone_idx(zone) + 1;
6192
6193 if (zone_idx > pgdat->nr_zones)
6194 pgdat->nr_zones = zone_idx;
6195
6196 zone->zone_start_pfn = zone_start_pfn;
6197
6198 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6199 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6200 pgdat->node_id,
6201 (unsigned long)zone_idx(zone),
6202 zone_start_pfn, (zone_start_pfn + size));
6203
6204 zone_init_free_lists(zone);
6205 zone->initialized = 1;
6206 }
6207
6208 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6209 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6210
6211 /*
6212 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6213 */
6214 int __meminit __early_pfn_to_nid(unsigned long pfn,
6215 struct mminit_pfnnid_cache *state)
6216 {
6217 unsigned long start_pfn, end_pfn;
6218 int nid;
6219
6220 if (state->last_start <= pfn && pfn < state->last_end)
6221 return state->last_nid;
6222
6223 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6224 if (nid != NUMA_NO_NODE) {
6225 state->last_start = start_pfn;
6226 state->last_end = end_pfn;
6227 state->last_nid = nid;
6228 }
6229
6230 return nid;
6231 }
6232 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6233
6234 /**
6235 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6236 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6237 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6238 *
6239 * If an architecture guarantees that all ranges registered contain no holes
6240 * and may be freed, this this function may be used instead of calling
6241 * memblock_free_early_nid() manually.
6242 */
6243 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6244 {
6245 unsigned long start_pfn, end_pfn;
6246 int i, this_nid;
6247
6248 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6249 start_pfn = min(start_pfn, max_low_pfn);
6250 end_pfn = min(end_pfn, max_low_pfn);
6251
6252 if (start_pfn < end_pfn)
6253 memblock_free_early_nid(PFN_PHYS(start_pfn),
6254 (end_pfn - start_pfn) << PAGE_SHIFT,
6255 this_nid);
6256 }
6257 }
6258
6259 /**
6260 * sparse_memory_present_with_active_regions - Call memory_present for each active range
6261 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6262 *
6263 * If an architecture guarantees that all ranges registered contain no holes and may
6264 * be freed, this function may be used instead of calling memory_present() manually.
6265 */
6266 void __init sparse_memory_present_with_active_regions(int nid)
6267 {
6268 unsigned long start_pfn, end_pfn;
6269 int i, this_nid;
6270
6271 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6272 memory_present(this_nid, start_pfn, end_pfn);
6273 }
6274
6275 /**
6276 * get_pfn_range_for_nid - Return the start and end page frames for a node
6277 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6278 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6279 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6280 *
6281 * It returns the start and end page frame of a node based on information
6282 * provided by memblock_set_node(). If called for a node
6283 * with no available memory, a warning is printed and the start and end
6284 * PFNs will be 0.
6285 */
6286 void __init get_pfn_range_for_nid(unsigned int nid,
6287 unsigned long *start_pfn, unsigned long *end_pfn)
6288 {
6289 unsigned long this_start_pfn, this_end_pfn;
6290 int i;
6291
6292 *start_pfn = -1UL;
6293 *end_pfn = 0;
6294
6295 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6296 *start_pfn = min(*start_pfn, this_start_pfn);
6297 *end_pfn = max(*end_pfn, this_end_pfn);
6298 }
6299
6300 if (*start_pfn == -1UL)
6301 *start_pfn = 0;
6302 }
6303
6304 /*
6305 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6306 * assumption is made that zones within a node are ordered in monotonic
6307 * increasing memory addresses so that the "highest" populated zone is used
6308 */
6309 static void __init find_usable_zone_for_movable(void)
6310 {
6311 int zone_index;
6312 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6313 if (zone_index == ZONE_MOVABLE)
6314 continue;
6315
6316 if (arch_zone_highest_possible_pfn[zone_index] >
6317 arch_zone_lowest_possible_pfn[zone_index])
6318 break;
6319 }
6320
6321 VM_BUG_ON(zone_index == -1);
6322 movable_zone = zone_index;
6323 }
6324
6325 /*
6326 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6327 * because it is sized independent of architecture. Unlike the other zones,
6328 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6329 * in each node depending on the size of each node and how evenly kernelcore
6330 * is distributed. This helper function adjusts the zone ranges
6331 * provided by the architecture for a given node by using the end of the
6332 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6333 * zones within a node are in order of monotonic increases memory addresses
6334 */
6335 static void __init adjust_zone_range_for_zone_movable(int nid,
6336 unsigned long zone_type,
6337 unsigned long node_start_pfn,
6338 unsigned long node_end_pfn,
6339 unsigned long *zone_start_pfn,
6340 unsigned long *zone_end_pfn)
6341 {
6342 /* Only adjust if ZONE_MOVABLE is on this node */
6343 if (zone_movable_pfn[nid]) {
6344 /* Size ZONE_MOVABLE */
6345 if (zone_type == ZONE_MOVABLE) {
6346 *zone_start_pfn = zone_movable_pfn[nid];
6347 *zone_end_pfn = min(node_end_pfn,
6348 arch_zone_highest_possible_pfn[movable_zone]);
6349
6350 /* Adjust for ZONE_MOVABLE starting within this range */
6351 } else if (!mirrored_kernelcore &&
6352 *zone_start_pfn < zone_movable_pfn[nid] &&
6353 *zone_end_pfn > zone_movable_pfn[nid]) {
6354 *zone_end_pfn = zone_movable_pfn[nid];
6355
6356 /* Check if this whole range is within ZONE_MOVABLE */
6357 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6358 *zone_start_pfn = *zone_end_pfn;
6359 }
6360 }
6361
6362 /*
6363 * Return the number of pages a zone spans in a node, including holes
6364 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6365 */
6366 static unsigned long __init zone_spanned_pages_in_node(int nid,
6367 unsigned long zone_type,
6368 unsigned long node_start_pfn,
6369 unsigned long node_end_pfn,
6370 unsigned long *zone_start_pfn,
6371 unsigned long *zone_end_pfn,
6372 unsigned long *ignored)
6373 {
6374 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6375 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6376 /* When hotadd a new node from cpu_up(), the node should be empty */
6377 if (!node_start_pfn && !node_end_pfn)
6378 return 0;
6379
6380 /* Get the start and end of the zone */
6381 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6382 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6383 adjust_zone_range_for_zone_movable(nid, zone_type,
6384 node_start_pfn, node_end_pfn,
6385 zone_start_pfn, zone_end_pfn);
6386
6387 /* Check that this node has pages within the zone's required range */
6388 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6389 return 0;
6390
6391 /* Move the zone boundaries inside the node if necessary */
6392 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6393 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6394
6395 /* Return the spanned pages */
6396 return *zone_end_pfn - *zone_start_pfn;
6397 }
6398
6399 /*
6400 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6401 * then all holes in the requested range will be accounted for.
6402 */
6403 unsigned long __init __absent_pages_in_range(int nid,
6404 unsigned long range_start_pfn,
6405 unsigned long range_end_pfn)
6406 {
6407 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6408 unsigned long start_pfn, end_pfn;
6409 int i;
6410
6411 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6412 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6413 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6414 nr_absent -= end_pfn - start_pfn;
6415 }
6416 return nr_absent;
6417 }
6418
6419 /**
6420 * absent_pages_in_range - Return number of page frames in holes within a range
6421 * @start_pfn: The start PFN to start searching for holes
6422 * @end_pfn: The end PFN to stop searching for holes
6423 *
6424 * Return: the number of pages frames in memory holes within a range.
6425 */
6426 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6427 unsigned long end_pfn)
6428 {
6429 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6430 }
6431
6432 /* Return the number of page frames in holes in a zone on a node */
6433 static unsigned long __init zone_absent_pages_in_node(int nid,
6434 unsigned long zone_type,
6435 unsigned long node_start_pfn,
6436 unsigned long node_end_pfn,
6437 unsigned long *ignored)
6438 {
6439 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6440 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6441 unsigned long zone_start_pfn, zone_end_pfn;
6442 unsigned long nr_absent;
6443
6444 /* When hotadd a new node from cpu_up(), the node should be empty */
6445 if (!node_start_pfn && !node_end_pfn)
6446 return 0;
6447
6448 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6449 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6450
6451 adjust_zone_range_for_zone_movable(nid, zone_type,
6452 node_start_pfn, node_end_pfn,
6453 &zone_start_pfn, &zone_end_pfn);
6454 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6455
6456 /*
6457 * ZONE_MOVABLE handling.
6458 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6459 * and vice versa.
6460 */
6461 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6462 unsigned long start_pfn, end_pfn;
6463 struct memblock_region *r;
6464
6465 for_each_memblock(memory, r) {
6466 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6467 zone_start_pfn, zone_end_pfn);
6468 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6469 zone_start_pfn, zone_end_pfn);
6470
6471 if (zone_type == ZONE_MOVABLE &&
6472 memblock_is_mirror(r))
6473 nr_absent += end_pfn - start_pfn;
6474
6475 if (zone_type == ZONE_NORMAL &&
6476 !memblock_is_mirror(r))
6477 nr_absent += end_pfn - start_pfn;
6478 }
6479 }
6480
6481 return nr_absent;
6482 }
6483
6484 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6485 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6486 unsigned long zone_type,
6487 unsigned long node_start_pfn,
6488 unsigned long node_end_pfn,
6489 unsigned long *zone_start_pfn,
6490 unsigned long *zone_end_pfn,
6491 unsigned long *zones_size)
6492 {
6493 unsigned int zone;
6494
6495 *zone_start_pfn = node_start_pfn;
6496 for (zone = 0; zone < zone_type; zone++)
6497 *zone_start_pfn += zones_size[zone];
6498
6499 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6500
6501 return zones_size[zone_type];
6502 }
6503
6504 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6505 unsigned long zone_type,
6506 unsigned long node_start_pfn,
6507 unsigned long node_end_pfn,
6508 unsigned long *zholes_size)
6509 {
6510 if (!zholes_size)
6511 return 0;
6512
6513 return zholes_size[zone_type];
6514 }
6515
6516 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6517
6518 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6519 unsigned long node_start_pfn,
6520 unsigned long node_end_pfn,
6521 unsigned long *zones_size,
6522 unsigned long *zholes_size)
6523 {
6524 unsigned long realtotalpages = 0, totalpages = 0;
6525 enum zone_type i;
6526
6527 for (i = 0; i < MAX_NR_ZONES; i++) {
6528 struct zone *zone = pgdat->node_zones + i;
6529 unsigned long zone_start_pfn, zone_end_pfn;
6530 unsigned long size, real_size;
6531
6532 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6533 node_start_pfn,
6534 node_end_pfn,
6535 &zone_start_pfn,
6536 &zone_end_pfn,
6537 zones_size);
6538 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6539 node_start_pfn, node_end_pfn,
6540 zholes_size);
6541 if (size)
6542 zone->zone_start_pfn = zone_start_pfn;
6543 else
6544 zone->zone_start_pfn = 0;
6545 zone->spanned_pages = size;
6546 zone->present_pages = real_size;
6547
6548 totalpages += size;
6549 realtotalpages += real_size;
6550 }
6551
6552 pgdat->node_spanned_pages = totalpages;
6553 pgdat->node_present_pages = realtotalpages;
6554 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6555 realtotalpages);
6556 }
6557
6558 #ifndef CONFIG_SPARSEMEM
6559 /*
6560 * Calculate the size of the zone->blockflags rounded to an unsigned long
6561 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6562 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6563 * round what is now in bits to nearest long in bits, then return it in
6564 * bytes.
6565 */
6566 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6567 {
6568 unsigned long usemapsize;
6569
6570 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6571 usemapsize = roundup(zonesize, pageblock_nr_pages);
6572 usemapsize = usemapsize >> pageblock_order;
6573 usemapsize *= NR_PAGEBLOCK_BITS;
6574 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6575
6576 return usemapsize / 8;
6577 }
6578
6579 static void __ref setup_usemap(struct pglist_data *pgdat,
6580 struct zone *zone,
6581 unsigned long zone_start_pfn,
6582 unsigned long zonesize)
6583 {
6584 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6585 zone->pageblock_flags = NULL;
6586 if (usemapsize) {
6587 zone->pageblock_flags =
6588 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6589 pgdat->node_id);
6590 if (!zone->pageblock_flags)
6591 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6592 usemapsize, zone->name, pgdat->node_id);
6593 }
6594 }
6595 #else
6596 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6597 unsigned long zone_start_pfn, unsigned long zonesize) {}
6598 #endif /* CONFIG_SPARSEMEM */
6599
6600 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6601
6602 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6603 void __init set_pageblock_order(void)
6604 {
6605 unsigned int order;
6606
6607 /* Check that pageblock_nr_pages has not already been setup */
6608 if (pageblock_order)
6609 return;
6610
6611 if (HPAGE_SHIFT > PAGE_SHIFT)
6612 order = HUGETLB_PAGE_ORDER;
6613 else
6614 order = MAX_ORDER - 1;
6615
6616 /*
6617 * Assume the largest contiguous order of interest is a huge page.
6618 * This value may be variable depending on boot parameters on IA64 and
6619 * powerpc.
6620 */
6621 pageblock_order = order;
6622 }
6623 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6624
6625 /*
6626 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6627 * is unused as pageblock_order is set at compile-time. See
6628 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6629 * the kernel config
6630 */
6631 void __init set_pageblock_order(void)
6632 {
6633 }
6634
6635 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6636
6637 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6638 unsigned long present_pages)
6639 {
6640 unsigned long pages = spanned_pages;
6641
6642 /*
6643 * Provide a more accurate estimation if there are holes within
6644 * the zone and SPARSEMEM is in use. If there are holes within the
6645 * zone, each populated memory region may cost us one or two extra
6646 * memmap pages due to alignment because memmap pages for each
6647 * populated regions may not be naturally aligned on page boundary.
6648 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6649 */
6650 if (spanned_pages > present_pages + (present_pages >> 4) &&
6651 IS_ENABLED(CONFIG_SPARSEMEM))
6652 pages = present_pages;
6653
6654 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6655 }
6656
6657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6658 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6659 {
6660 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6661
6662 spin_lock_init(&ds_queue->split_queue_lock);
6663 INIT_LIST_HEAD(&ds_queue->split_queue);
6664 ds_queue->split_queue_len = 0;
6665 }
6666 #else
6667 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6668 #endif
6669
6670 #ifdef CONFIG_COMPACTION
6671 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6672 {
6673 init_waitqueue_head(&pgdat->kcompactd_wait);
6674 }
6675 #else
6676 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6677 #endif
6678
6679 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6680 {
6681 pgdat_resize_init(pgdat);
6682
6683 pgdat_init_split_queue(pgdat);
6684 pgdat_init_kcompactd(pgdat);
6685
6686 init_waitqueue_head(&pgdat->kswapd_wait);
6687 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6688
6689 pgdat_page_ext_init(pgdat);
6690 spin_lock_init(&pgdat->lru_lock);
6691 lruvec_init(&pgdat->__lruvec);
6692 }
6693
6694 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6695 unsigned long remaining_pages)
6696 {
6697 atomic_long_set(&zone->managed_pages, remaining_pages);
6698 zone_set_nid(zone, nid);
6699 zone->name = zone_names[idx];
6700 zone->zone_pgdat = NODE_DATA(nid);
6701 spin_lock_init(&zone->lock);
6702 zone_seqlock_init(zone);
6703 zone_pcp_init(zone);
6704 }
6705
6706 /*
6707 * Set up the zone data structures
6708 * - init pgdat internals
6709 * - init all zones belonging to this node
6710 *
6711 * NOTE: this function is only called during memory hotplug
6712 */
6713 #ifdef CONFIG_MEMORY_HOTPLUG
6714 void __ref free_area_init_core_hotplug(int nid)
6715 {
6716 enum zone_type z;
6717 pg_data_t *pgdat = NODE_DATA(nid);
6718
6719 pgdat_init_internals(pgdat);
6720 for (z = 0; z < MAX_NR_ZONES; z++)
6721 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6722 }
6723 #endif
6724
6725 /*
6726 * Set up the zone data structures:
6727 * - mark all pages reserved
6728 * - mark all memory queues empty
6729 * - clear the memory bitmaps
6730 *
6731 * NOTE: pgdat should get zeroed by caller.
6732 * NOTE: this function is only called during early init.
6733 */
6734 static void __init free_area_init_core(struct pglist_data *pgdat)
6735 {
6736 enum zone_type j;
6737 int nid = pgdat->node_id;
6738
6739 pgdat_init_internals(pgdat);
6740 pgdat->per_cpu_nodestats = &boot_nodestats;
6741
6742 for (j = 0; j < MAX_NR_ZONES; j++) {
6743 struct zone *zone = pgdat->node_zones + j;
6744 unsigned long size, freesize, memmap_pages;
6745 unsigned long zone_start_pfn = zone->zone_start_pfn;
6746
6747 size = zone->spanned_pages;
6748 freesize = zone->present_pages;
6749
6750 /*
6751 * Adjust freesize so that it accounts for how much memory
6752 * is used by this zone for memmap. This affects the watermark
6753 * and per-cpu initialisations
6754 */
6755 memmap_pages = calc_memmap_size(size, freesize);
6756 if (!is_highmem_idx(j)) {
6757 if (freesize >= memmap_pages) {
6758 freesize -= memmap_pages;
6759 if (memmap_pages)
6760 printk(KERN_DEBUG
6761 " %s zone: %lu pages used for memmap\n",
6762 zone_names[j], memmap_pages);
6763 } else
6764 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6765 zone_names[j], memmap_pages, freesize);
6766 }
6767
6768 /* Account for reserved pages */
6769 if (j == 0 && freesize > dma_reserve) {
6770 freesize -= dma_reserve;
6771 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6772 zone_names[0], dma_reserve);
6773 }
6774
6775 if (!is_highmem_idx(j))
6776 nr_kernel_pages += freesize;
6777 /* Charge for highmem memmap if there are enough kernel pages */
6778 else if (nr_kernel_pages > memmap_pages * 2)
6779 nr_kernel_pages -= memmap_pages;
6780 nr_all_pages += freesize;
6781
6782 /*
6783 * Set an approximate value for lowmem here, it will be adjusted
6784 * when the bootmem allocator frees pages into the buddy system.
6785 * And all highmem pages will be managed by the buddy system.
6786 */
6787 zone_init_internals(zone, j, nid, freesize);
6788
6789 if (!size)
6790 continue;
6791
6792 set_pageblock_order();
6793 setup_usemap(pgdat, zone, zone_start_pfn, size);
6794 init_currently_empty_zone(zone, zone_start_pfn, size);
6795 memmap_init(size, nid, j, zone_start_pfn);
6796 }
6797 }
6798
6799 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6800 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6801 {
6802 unsigned long __maybe_unused start = 0;
6803 unsigned long __maybe_unused offset = 0;
6804
6805 /* Skip empty nodes */
6806 if (!pgdat->node_spanned_pages)
6807 return;
6808
6809 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6810 offset = pgdat->node_start_pfn - start;
6811 /* ia64 gets its own node_mem_map, before this, without bootmem */
6812 if (!pgdat->node_mem_map) {
6813 unsigned long size, end;
6814 struct page *map;
6815
6816 /*
6817 * The zone's endpoints aren't required to be MAX_ORDER
6818 * aligned but the node_mem_map endpoints must be in order
6819 * for the buddy allocator to function correctly.
6820 */
6821 end = pgdat_end_pfn(pgdat);
6822 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6823 size = (end - start) * sizeof(struct page);
6824 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6825 pgdat->node_id);
6826 if (!map)
6827 panic("Failed to allocate %ld bytes for node %d memory map\n",
6828 size, pgdat->node_id);
6829 pgdat->node_mem_map = map + offset;
6830 }
6831 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6832 __func__, pgdat->node_id, (unsigned long)pgdat,
6833 (unsigned long)pgdat->node_mem_map);
6834 #ifndef CONFIG_NEED_MULTIPLE_NODES
6835 /*
6836 * With no DISCONTIG, the global mem_map is just set as node 0's
6837 */
6838 if (pgdat == NODE_DATA(0)) {
6839 mem_map = NODE_DATA(0)->node_mem_map;
6840 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6841 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6842 mem_map -= offset;
6843 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6844 }
6845 #endif
6846 }
6847 #else
6848 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6849 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6850
6851 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6852 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6853 {
6854 pgdat->first_deferred_pfn = ULONG_MAX;
6855 }
6856 #else
6857 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6858 #endif
6859
6860 void __init free_area_init_node(int nid, unsigned long *zones_size,
6861 unsigned long node_start_pfn,
6862 unsigned long *zholes_size)
6863 {
6864 pg_data_t *pgdat = NODE_DATA(nid);
6865 unsigned long start_pfn = 0;
6866 unsigned long end_pfn = 0;
6867
6868 /* pg_data_t should be reset to zero when it's allocated */
6869 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6870
6871 pgdat->node_id = nid;
6872 pgdat->node_start_pfn = node_start_pfn;
6873 pgdat->per_cpu_nodestats = NULL;
6874 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6875 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6876 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6877 (u64)start_pfn << PAGE_SHIFT,
6878 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6879 #else
6880 start_pfn = node_start_pfn;
6881 #endif
6882 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6883 zones_size, zholes_size);
6884
6885 alloc_node_mem_map(pgdat);
6886 pgdat_set_deferred_range(pgdat);
6887
6888 free_area_init_core(pgdat);
6889 }
6890
6891 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6892 /*
6893 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6894 * pages zeroed
6895 */
6896 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6897 {
6898 unsigned long pfn;
6899 u64 pgcnt = 0;
6900
6901 for (pfn = spfn; pfn < epfn; pfn++) {
6902 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6903 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6904 + pageblock_nr_pages - 1;
6905 continue;
6906 }
6907 mm_zero_struct_page(pfn_to_page(pfn));
6908 pgcnt++;
6909 }
6910
6911 return pgcnt;
6912 }
6913
6914 /*
6915 * Only struct pages that are backed by physical memory are zeroed and
6916 * initialized by going through __init_single_page(). But, there are some
6917 * struct pages which are reserved in memblock allocator and their fields
6918 * may be accessed (for example page_to_pfn() on some configuration accesses
6919 * flags). We must explicitly zero those struct pages.
6920 *
6921 * This function also addresses a similar issue where struct pages are left
6922 * uninitialized because the physical address range is not covered by
6923 * memblock.memory or memblock.reserved. That could happen when memblock
6924 * layout is manually configured via memmap=.
6925 */
6926 void __init zero_resv_unavail(void)
6927 {
6928 phys_addr_t start, end;
6929 u64 i, pgcnt;
6930 phys_addr_t next = 0;
6931
6932 /*
6933 * Loop through unavailable ranges not covered by memblock.memory.
6934 */
6935 pgcnt = 0;
6936 for_each_mem_range(i, &memblock.memory, NULL,
6937 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6938 if (next < start)
6939 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6940 next = end;
6941 }
6942 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6943
6944 /*
6945 * Struct pages that do not have backing memory. This could be because
6946 * firmware is using some of this memory, or for some other reasons.
6947 */
6948 if (pgcnt)
6949 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6950 }
6951 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6952
6953 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6954
6955 #if MAX_NUMNODES > 1
6956 /*
6957 * Figure out the number of possible node ids.
6958 */
6959 void __init setup_nr_node_ids(void)
6960 {
6961 unsigned int highest;
6962
6963 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6964 nr_node_ids = highest + 1;
6965 }
6966 #endif
6967
6968 /**
6969 * node_map_pfn_alignment - determine the maximum internode alignment
6970 *
6971 * This function should be called after node map is populated and sorted.
6972 * It calculates the maximum power of two alignment which can distinguish
6973 * all the nodes.
6974 *
6975 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6976 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6977 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6978 * shifted, 1GiB is enough and this function will indicate so.
6979 *
6980 * This is used to test whether pfn -> nid mapping of the chosen memory
6981 * model has fine enough granularity to avoid incorrect mapping for the
6982 * populated node map.
6983 *
6984 * Return: the determined alignment in pfn's. 0 if there is no alignment
6985 * requirement (single node).
6986 */
6987 unsigned long __init node_map_pfn_alignment(void)
6988 {
6989 unsigned long accl_mask = 0, last_end = 0;
6990 unsigned long start, end, mask;
6991 int last_nid = NUMA_NO_NODE;
6992 int i, nid;
6993
6994 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6995 if (!start || last_nid < 0 || last_nid == nid) {
6996 last_nid = nid;
6997 last_end = end;
6998 continue;
6999 }
7000
7001 /*
7002 * Start with a mask granular enough to pin-point to the
7003 * start pfn and tick off bits one-by-one until it becomes
7004 * too coarse to separate the current node from the last.
7005 */
7006 mask = ~((1 << __ffs(start)) - 1);
7007 while (mask && last_end <= (start & (mask << 1)))
7008 mask <<= 1;
7009
7010 /* accumulate all internode masks */
7011 accl_mask |= mask;
7012 }
7013
7014 /* convert mask to number of pages */
7015 return ~accl_mask + 1;
7016 }
7017
7018 /* Find the lowest pfn for a node */
7019 static unsigned long __init find_min_pfn_for_node(int nid)
7020 {
7021 unsigned long min_pfn = ULONG_MAX;
7022 unsigned long start_pfn;
7023 int i;
7024
7025 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7026 min_pfn = min(min_pfn, start_pfn);
7027
7028 if (min_pfn == ULONG_MAX) {
7029 pr_warn("Could not find start_pfn for node %d\n", nid);
7030 return 0;
7031 }
7032
7033 return min_pfn;
7034 }
7035
7036 /**
7037 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7038 *
7039 * Return: the minimum PFN based on information provided via
7040 * memblock_set_node().
7041 */
7042 unsigned long __init find_min_pfn_with_active_regions(void)
7043 {
7044 return find_min_pfn_for_node(MAX_NUMNODES);
7045 }
7046
7047 /*
7048 * early_calculate_totalpages()
7049 * Sum pages in active regions for movable zone.
7050 * Populate N_MEMORY for calculating usable_nodes.
7051 */
7052 static unsigned long __init early_calculate_totalpages(void)
7053 {
7054 unsigned long totalpages = 0;
7055 unsigned long start_pfn, end_pfn;
7056 int i, nid;
7057
7058 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7059 unsigned long pages = end_pfn - start_pfn;
7060
7061 totalpages += pages;
7062 if (pages)
7063 node_set_state(nid, N_MEMORY);
7064 }
7065 return totalpages;
7066 }
7067
7068 /*
7069 * Find the PFN the Movable zone begins in each node. Kernel memory
7070 * is spread evenly between nodes as long as the nodes have enough
7071 * memory. When they don't, some nodes will have more kernelcore than
7072 * others
7073 */
7074 static void __init find_zone_movable_pfns_for_nodes(void)
7075 {
7076 int i, nid;
7077 unsigned long usable_startpfn;
7078 unsigned long kernelcore_node, kernelcore_remaining;
7079 /* save the state before borrow the nodemask */
7080 nodemask_t saved_node_state = node_states[N_MEMORY];
7081 unsigned long totalpages = early_calculate_totalpages();
7082 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7083 struct memblock_region *r;
7084
7085 /* Need to find movable_zone earlier when movable_node is specified. */
7086 find_usable_zone_for_movable();
7087
7088 /*
7089 * If movable_node is specified, ignore kernelcore and movablecore
7090 * options.
7091 */
7092 if (movable_node_is_enabled()) {
7093 for_each_memblock(memory, r) {
7094 if (!memblock_is_hotpluggable(r))
7095 continue;
7096
7097 nid = r->nid;
7098
7099 usable_startpfn = PFN_DOWN(r->base);
7100 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7101 min(usable_startpfn, zone_movable_pfn[nid]) :
7102 usable_startpfn;
7103 }
7104
7105 goto out2;
7106 }
7107
7108 /*
7109 * If kernelcore=mirror is specified, ignore movablecore option
7110 */
7111 if (mirrored_kernelcore) {
7112 bool mem_below_4gb_not_mirrored = false;
7113
7114 for_each_memblock(memory, r) {
7115 if (memblock_is_mirror(r))
7116 continue;
7117
7118 nid = r->nid;
7119
7120 usable_startpfn = memblock_region_memory_base_pfn(r);
7121
7122 if (usable_startpfn < 0x100000) {
7123 mem_below_4gb_not_mirrored = true;
7124 continue;
7125 }
7126
7127 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7128 min(usable_startpfn, zone_movable_pfn[nid]) :
7129 usable_startpfn;
7130 }
7131
7132 if (mem_below_4gb_not_mirrored)
7133 pr_warn("This configuration results in unmirrored kernel memory.");
7134
7135 goto out2;
7136 }
7137
7138 /*
7139 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7140 * amount of necessary memory.
7141 */
7142 if (required_kernelcore_percent)
7143 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7144 10000UL;
7145 if (required_movablecore_percent)
7146 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7147 10000UL;
7148
7149 /*
7150 * If movablecore= was specified, calculate what size of
7151 * kernelcore that corresponds so that memory usable for
7152 * any allocation type is evenly spread. If both kernelcore
7153 * and movablecore are specified, then the value of kernelcore
7154 * will be used for required_kernelcore if it's greater than
7155 * what movablecore would have allowed.
7156 */
7157 if (required_movablecore) {
7158 unsigned long corepages;
7159
7160 /*
7161 * Round-up so that ZONE_MOVABLE is at least as large as what
7162 * was requested by the user
7163 */
7164 required_movablecore =
7165 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7166 required_movablecore = min(totalpages, required_movablecore);
7167 corepages = totalpages - required_movablecore;
7168
7169 required_kernelcore = max(required_kernelcore, corepages);
7170 }
7171
7172 /*
7173 * If kernelcore was not specified or kernelcore size is larger
7174 * than totalpages, there is no ZONE_MOVABLE.
7175 */
7176 if (!required_kernelcore || required_kernelcore >= totalpages)
7177 goto out;
7178
7179 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7180 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7181
7182 restart:
7183 /* Spread kernelcore memory as evenly as possible throughout nodes */
7184 kernelcore_node = required_kernelcore / usable_nodes;
7185 for_each_node_state(nid, N_MEMORY) {
7186 unsigned long start_pfn, end_pfn;
7187
7188 /*
7189 * Recalculate kernelcore_node if the division per node
7190 * now exceeds what is necessary to satisfy the requested
7191 * amount of memory for the kernel
7192 */
7193 if (required_kernelcore < kernelcore_node)
7194 kernelcore_node = required_kernelcore / usable_nodes;
7195
7196 /*
7197 * As the map is walked, we track how much memory is usable
7198 * by the kernel using kernelcore_remaining. When it is
7199 * 0, the rest of the node is usable by ZONE_MOVABLE
7200 */
7201 kernelcore_remaining = kernelcore_node;
7202
7203 /* Go through each range of PFNs within this node */
7204 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7205 unsigned long size_pages;
7206
7207 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7208 if (start_pfn >= end_pfn)
7209 continue;
7210
7211 /* Account for what is only usable for kernelcore */
7212 if (start_pfn < usable_startpfn) {
7213 unsigned long kernel_pages;
7214 kernel_pages = min(end_pfn, usable_startpfn)
7215 - start_pfn;
7216
7217 kernelcore_remaining -= min(kernel_pages,
7218 kernelcore_remaining);
7219 required_kernelcore -= min(kernel_pages,
7220 required_kernelcore);
7221
7222 /* Continue if range is now fully accounted */
7223 if (end_pfn <= usable_startpfn) {
7224
7225 /*
7226 * Push zone_movable_pfn to the end so
7227 * that if we have to rebalance
7228 * kernelcore across nodes, we will
7229 * not double account here
7230 */
7231 zone_movable_pfn[nid] = end_pfn;
7232 continue;
7233 }
7234 start_pfn = usable_startpfn;
7235 }
7236
7237 /*
7238 * The usable PFN range for ZONE_MOVABLE is from
7239 * start_pfn->end_pfn. Calculate size_pages as the
7240 * number of pages used as kernelcore
7241 */
7242 size_pages = end_pfn - start_pfn;
7243 if (size_pages > kernelcore_remaining)
7244 size_pages = kernelcore_remaining;
7245 zone_movable_pfn[nid] = start_pfn + size_pages;
7246
7247 /*
7248 * Some kernelcore has been met, update counts and
7249 * break if the kernelcore for this node has been
7250 * satisfied
7251 */
7252 required_kernelcore -= min(required_kernelcore,
7253 size_pages);
7254 kernelcore_remaining -= size_pages;
7255 if (!kernelcore_remaining)
7256 break;
7257 }
7258 }
7259
7260 /*
7261 * If there is still required_kernelcore, we do another pass with one
7262 * less node in the count. This will push zone_movable_pfn[nid] further
7263 * along on the nodes that still have memory until kernelcore is
7264 * satisfied
7265 */
7266 usable_nodes--;
7267 if (usable_nodes && required_kernelcore > usable_nodes)
7268 goto restart;
7269
7270 out2:
7271 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7272 for (nid = 0; nid < MAX_NUMNODES; nid++)
7273 zone_movable_pfn[nid] =
7274 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7275
7276 out:
7277 /* restore the node_state */
7278 node_states[N_MEMORY] = saved_node_state;
7279 }
7280
7281 /* Any regular or high memory on that node ? */
7282 static void check_for_memory(pg_data_t *pgdat, int nid)
7283 {
7284 enum zone_type zone_type;
7285
7286 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7287 struct zone *zone = &pgdat->node_zones[zone_type];
7288 if (populated_zone(zone)) {
7289 if (IS_ENABLED(CONFIG_HIGHMEM))
7290 node_set_state(nid, N_HIGH_MEMORY);
7291 if (zone_type <= ZONE_NORMAL)
7292 node_set_state(nid, N_NORMAL_MEMORY);
7293 break;
7294 }
7295 }
7296 }
7297
7298 /**
7299 * free_area_init_nodes - Initialise all pg_data_t and zone data
7300 * @max_zone_pfn: an array of max PFNs for each zone
7301 *
7302 * This will call free_area_init_node() for each active node in the system.
7303 * Using the page ranges provided by memblock_set_node(), the size of each
7304 * zone in each node and their holes is calculated. If the maximum PFN
7305 * between two adjacent zones match, it is assumed that the zone is empty.
7306 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7307 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7308 * starts where the previous one ended. For example, ZONE_DMA32 starts
7309 * at arch_max_dma_pfn.
7310 */
7311 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7312 {
7313 unsigned long start_pfn, end_pfn;
7314 int i, nid;
7315
7316 /* Record where the zone boundaries are */
7317 memset(arch_zone_lowest_possible_pfn, 0,
7318 sizeof(arch_zone_lowest_possible_pfn));
7319 memset(arch_zone_highest_possible_pfn, 0,
7320 sizeof(arch_zone_highest_possible_pfn));
7321
7322 start_pfn = find_min_pfn_with_active_regions();
7323
7324 for (i = 0; i < MAX_NR_ZONES; i++) {
7325 if (i == ZONE_MOVABLE)
7326 continue;
7327
7328 end_pfn = max(max_zone_pfn[i], start_pfn);
7329 arch_zone_lowest_possible_pfn[i] = start_pfn;
7330 arch_zone_highest_possible_pfn[i] = end_pfn;
7331
7332 start_pfn = end_pfn;
7333 }
7334
7335 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7336 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7337 find_zone_movable_pfns_for_nodes();
7338
7339 /* Print out the zone ranges */
7340 pr_info("Zone ranges:\n");
7341 for (i = 0; i < MAX_NR_ZONES; i++) {
7342 if (i == ZONE_MOVABLE)
7343 continue;
7344 pr_info(" %-8s ", zone_names[i]);
7345 if (arch_zone_lowest_possible_pfn[i] ==
7346 arch_zone_highest_possible_pfn[i])
7347 pr_cont("empty\n");
7348 else
7349 pr_cont("[mem %#018Lx-%#018Lx]\n",
7350 (u64)arch_zone_lowest_possible_pfn[i]
7351 << PAGE_SHIFT,
7352 ((u64)arch_zone_highest_possible_pfn[i]
7353 << PAGE_SHIFT) - 1);
7354 }
7355
7356 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7357 pr_info("Movable zone start for each node\n");
7358 for (i = 0; i < MAX_NUMNODES; i++) {
7359 if (zone_movable_pfn[i])
7360 pr_info(" Node %d: %#018Lx\n", i,
7361 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7362 }
7363
7364 /*
7365 * Print out the early node map, and initialize the
7366 * subsection-map relative to active online memory ranges to
7367 * enable future "sub-section" extensions of the memory map.
7368 */
7369 pr_info("Early memory node ranges\n");
7370 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7371 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7372 (u64)start_pfn << PAGE_SHIFT,
7373 ((u64)end_pfn << PAGE_SHIFT) - 1);
7374 subsection_map_init(start_pfn, end_pfn - start_pfn);
7375 }
7376
7377 /* Initialise every node */
7378 mminit_verify_pageflags_layout();
7379 setup_nr_node_ids();
7380 zero_resv_unavail();
7381 for_each_online_node(nid) {
7382 pg_data_t *pgdat = NODE_DATA(nid);
7383 free_area_init_node(nid, NULL,
7384 find_min_pfn_for_node(nid), NULL);
7385
7386 /* Any memory on that node */
7387 if (pgdat->node_present_pages)
7388 node_set_state(nid, N_MEMORY);
7389 check_for_memory(pgdat, nid);
7390 }
7391 }
7392
7393 static int __init cmdline_parse_core(char *p, unsigned long *core,
7394 unsigned long *percent)
7395 {
7396 unsigned long long coremem;
7397 char *endptr;
7398
7399 if (!p)
7400 return -EINVAL;
7401
7402 /* Value may be a percentage of total memory, otherwise bytes */
7403 coremem = simple_strtoull(p, &endptr, 0);
7404 if (*endptr == '%') {
7405 /* Paranoid check for percent values greater than 100 */
7406 WARN_ON(coremem > 100);
7407
7408 *percent = coremem;
7409 } else {
7410 coremem = memparse(p, &p);
7411 /* Paranoid check that UL is enough for the coremem value */
7412 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7413
7414 *core = coremem >> PAGE_SHIFT;
7415 *percent = 0UL;
7416 }
7417 return 0;
7418 }
7419
7420 /*
7421 * kernelcore=size sets the amount of memory for use for allocations that
7422 * cannot be reclaimed or migrated.
7423 */
7424 static int __init cmdline_parse_kernelcore(char *p)
7425 {
7426 /* parse kernelcore=mirror */
7427 if (parse_option_str(p, "mirror")) {
7428 mirrored_kernelcore = true;
7429 return 0;
7430 }
7431
7432 return cmdline_parse_core(p, &required_kernelcore,
7433 &required_kernelcore_percent);
7434 }
7435
7436 /*
7437 * movablecore=size sets the amount of memory for use for allocations that
7438 * can be reclaimed or migrated.
7439 */
7440 static int __init cmdline_parse_movablecore(char *p)
7441 {
7442 return cmdline_parse_core(p, &required_movablecore,
7443 &required_movablecore_percent);
7444 }
7445
7446 early_param("kernelcore", cmdline_parse_kernelcore);
7447 early_param("movablecore", cmdline_parse_movablecore);
7448
7449 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7450
7451 void adjust_managed_page_count(struct page *page, long count)
7452 {
7453 atomic_long_add(count, &page_zone(page)->managed_pages);
7454 totalram_pages_add(count);
7455 #ifdef CONFIG_HIGHMEM
7456 if (PageHighMem(page))
7457 totalhigh_pages_add(count);
7458 #endif
7459 }
7460 EXPORT_SYMBOL(adjust_managed_page_count);
7461
7462 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7463 {
7464 void *pos;
7465 unsigned long pages = 0;
7466
7467 start = (void *)PAGE_ALIGN((unsigned long)start);
7468 end = (void *)((unsigned long)end & PAGE_MASK);
7469 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7470 struct page *page = virt_to_page(pos);
7471 void *direct_map_addr;
7472
7473 /*
7474 * 'direct_map_addr' might be different from 'pos'
7475 * because some architectures' virt_to_page()
7476 * work with aliases. Getting the direct map
7477 * address ensures that we get a _writeable_
7478 * alias for the memset().
7479 */
7480 direct_map_addr = page_address(page);
7481 if ((unsigned int)poison <= 0xFF)
7482 memset(direct_map_addr, poison, PAGE_SIZE);
7483
7484 free_reserved_page(page);
7485 }
7486
7487 if (pages && s)
7488 pr_info("Freeing %s memory: %ldK\n",
7489 s, pages << (PAGE_SHIFT - 10));
7490
7491 return pages;
7492 }
7493
7494 #ifdef CONFIG_HIGHMEM
7495 void free_highmem_page(struct page *page)
7496 {
7497 __free_reserved_page(page);
7498 totalram_pages_inc();
7499 atomic_long_inc(&page_zone(page)->managed_pages);
7500 totalhigh_pages_inc();
7501 }
7502 #endif
7503
7504
7505 void __init mem_init_print_info(const char *str)
7506 {
7507 unsigned long physpages, codesize, datasize, rosize, bss_size;
7508 unsigned long init_code_size, init_data_size;
7509
7510 physpages = get_num_physpages();
7511 codesize = _etext - _stext;
7512 datasize = _edata - _sdata;
7513 rosize = __end_rodata - __start_rodata;
7514 bss_size = __bss_stop - __bss_start;
7515 init_data_size = __init_end - __init_begin;
7516 init_code_size = _einittext - _sinittext;
7517
7518 /*
7519 * Detect special cases and adjust section sizes accordingly:
7520 * 1) .init.* may be embedded into .data sections
7521 * 2) .init.text.* may be out of [__init_begin, __init_end],
7522 * please refer to arch/tile/kernel/vmlinux.lds.S.
7523 * 3) .rodata.* may be embedded into .text or .data sections.
7524 */
7525 #define adj_init_size(start, end, size, pos, adj) \
7526 do { \
7527 if (start <= pos && pos < end && size > adj) \
7528 size -= adj; \
7529 } while (0)
7530
7531 adj_init_size(__init_begin, __init_end, init_data_size,
7532 _sinittext, init_code_size);
7533 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7534 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7535 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7536 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7537
7538 #undef adj_init_size
7539
7540 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7541 #ifdef CONFIG_HIGHMEM
7542 ", %luK highmem"
7543 #endif
7544 "%s%s)\n",
7545 nr_free_pages() << (PAGE_SHIFT - 10),
7546 physpages << (PAGE_SHIFT - 10),
7547 codesize >> 10, datasize >> 10, rosize >> 10,
7548 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7549 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7550 totalcma_pages << (PAGE_SHIFT - 10),
7551 #ifdef CONFIG_HIGHMEM
7552 totalhigh_pages() << (PAGE_SHIFT - 10),
7553 #endif
7554 str ? ", " : "", str ? str : "");
7555 }
7556
7557 /**
7558 * set_dma_reserve - set the specified number of pages reserved in the first zone
7559 * @new_dma_reserve: The number of pages to mark reserved
7560 *
7561 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7562 * In the DMA zone, a significant percentage may be consumed by kernel image
7563 * and other unfreeable allocations which can skew the watermarks badly. This
7564 * function may optionally be used to account for unfreeable pages in the
7565 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7566 * smaller per-cpu batchsize.
7567 */
7568 void __init set_dma_reserve(unsigned long new_dma_reserve)
7569 {
7570 dma_reserve = new_dma_reserve;
7571 }
7572
7573 void __init free_area_init(unsigned long *zones_size)
7574 {
7575 zero_resv_unavail();
7576 free_area_init_node(0, zones_size,
7577 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7578 }
7579
7580 static int page_alloc_cpu_dead(unsigned int cpu)
7581 {
7582
7583 lru_add_drain_cpu(cpu);
7584 drain_pages(cpu);
7585
7586 /*
7587 * Spill the event counters of the dead processor
7588 * into the current processors event counters.
7589 * This artificially elevates the count of the current
7590 * processor.
7591 */
7592 vm_events_fold_cpu(cpu);
7593
7594 /*
7595 * Zero the differential counters of the dead processor
7596 * so that the vm statistics are consistent.
7597 *
7598 * This is only okay since the processor is dead and cannot
7599 * race with what we are doing.
7600 */
7601 cpu_vm_stats_fold(cpu);
7602 return 0;
7603 }
7604
7605 #ifdef CONFIG_NUMA
7606 int hashdist = HASHDIST_DEFAULT;
7607
7608 static int __init set_hashdist(char *str)
7609 {
7610 if (!str)
7611 return 0;
7612 hashdist = simple_strtoul(str, &str, 0);
7613 return 1;
7614 }
7615 __setup("hashdist=", set_hashdist);
7616 #endif
7617
7618 void __init page_alloc_init(void)
7619 {
7620 int ret;
7621
7622 #ifdef CONFIG_NUMA
7623 if (num_node_state(N_MEMORY) == 1)
7624 hashdist = 0;
7625 #endif
7626
7627 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7628 "mm/page_alloc:dead", NULL,
7629 page_alloc_cpu_dead);
7630 WARN_ON(ret < 0);
7631 }
7632
7633 /*
7634 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7635 * or min_free_kbytes changes.
7636 */
7637 static void calculate_totalreserve_pages(void)
7638 {
7639 struct pglist_data *pgdat;
7640 unsigned long reserve_pages = 0;
7641 enum zone_type i, j;
7642
7643 for_each_online_pgdat(pgdat) {
7644
7645 pgdat->totalreserve_pages = 0;
7646
7647 for (i = 0; i < MAX_NR_ZONES; i++) {
7648 struct zone *zone = pgdat->node_zones + i;
7649 long max = 0;
7650 unsigned long managed_pages = zone_managed_pages(zone);
7651
7652 /* Find valid and maximum lowmem_reserve in the zone */
7653 for (j = i; j < MAX_NR_ZONES; j++) {
7654 if (zone->lowmem_reserve[j] > max)
7655 max = zone->lowmem_reserve[j];
7656 }
7657
7658 /* we treat the high watermark as reserved pages. */
7659 max += high_wmark_pages(zone);
7660
7661 if (max > managed_pages)
7662 max = managed_pages;
7663
7664 pgdat->totalreserve_pages += max;
7665
7666 reserve_pages += max;
7667 }
7668 }
7669 totalreserve_pages = reserve_pages;
7670 }
7671
7672 /*
7673 * setup_per_zone_lowmem_reserve - called whenever
7674 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
7675 * has a correct pages reserved value, so an adequate number of
7676 * pages are left in the zone after a successful __alloc_pages().
7677 */
7678 static void setup_per_zone_lowmem_reserve(void)
7679 {
7680 struct pglist_data *pgdat;
7681 enum zone_type j, idx;
7682
7683 for_each_online_pgdat(pgdat) {
7684 for (j = 0; j < MAX_NR_ZONES; j++) {
7685 struct zone *zone = pgdat->node_zones + j;
7686 unsigned long managed_pages = zone_managed_pages(zone);
7687
7688 zone->lowmem_reserve[j] = 0;
7689
7690 idx = j;
7691 while (idx) {
7692 struct zone *lower_zone;
7693
7694 idx--;
7695 lower_zone = pgdat->node_zones + idx;
7696
7697 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7698 sysctl_lowmem_reserve_ratio[idx] = 0;
7699 lower_zone->lowmem_reserve[j] = 0;
7700 } else {
7701 lower_zone->lowmem_reserve[j] =
7702 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7703 }
7704 managed_pages += zone_managed_pages(lower_zone);
7705 }
7706 }
7707 }
7708
7709 /* update totalreserve_pages */
7710 calculate_totalreserve_pages();
7711 }
7712
7713 static void __setup_per_zone_wmarks(void)
7714 {
7715 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7716 unsigned long lowmem_pages = 0;
7717 struct zone *zone;
7718 unsigned long flags;
7719
7720 /* Calculate total number of !ZONE_HIGHMEM pages */
7721 for_each_zone(zone) {
7722 if (!is_highmem(zone))
7723 lowmem_pages += zone_managed_pages(zone);
7724 }
7725
7726 for_each_zone(zone) {
7727 u64 tmp;
7728
7729 spin_lock_irqsave(&zone->lock, flags);
7730 tmp = (u64)pages_min * zone_managed_pages(zone);
7731 do_div(tmp, lowmem_pages);
7732 if (is_highmem(zone)) {
7733 /*
7734 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7735 * need highmem pages, so cap pages_min to a small
7736 * value here.
7737 *
7738 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7739 * deltas control async page reclaim, and so should
7740 * not be capped for highmem.
7741 */
7742 unsigned long min_pages;
7743
7744 min_pages = zone_managed_pages(zone) / 1024;
7745 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7746 zone->_watermark[WMARK_MIN] = min_pages;
7747 } else {
7748 /*
7749 * If it's a lowmem zone, reserve a number of pages
7750 * proportionate to the zone's size.
7751 */
7752 zone->_watermark[WMARK_MIN] = tmp;
7753 }
7754
7755 /*
7756 * Set the kswapd watermarks distance according to the
7757 * scale factor in proportion to available memory, but
7758 * ensure a minimum size on small systems.
7759 */
7760 tmp = max_t(u64, tmp >> 2,
7761 mult_frac(zone_managed_pages(zone),
7762 watermark_scale_factor, 10000));
7763
7764 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7765 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7766 zone->watermark_boost = 0;
7767
7768 spin_unlock_irqrestore(&zone->lock, flags);
7769 }
7770
7771 /* update totalreserve_pages */
7772 calculate_totalreserve_pages();
7773 }
7774
7775 /**
7776 * setup_per_zone_wmarks - called when min_free_kbytes changes
7777 * or when memory is hot-{added|removed}
7778 *
7779 * Ensures that the watermark[min,low,high] values for each zone are set
7780 * correctly with respect to min_free_kbytes.
7781 */
7782 void setup_per_zone_wmarks(void)
7783 {
7784 static DEFINE_SPINLOCK(lock);
7785
7786 spin_lock(&lock);
7787 __setup_per_zone_wmarks();
7788 spin_unlock(&lock);
7789 }
7790
7791 /*
7792 * Initialise min_free_kbytes.
7793 *
7794 * For small machines we want it small (128k min). For large machines
7795 * we want it large (64MB max). But it is not linear, because network
7796 * bandwidth does not increase linearly with machine size. We use
7797 *
7798 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7799 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7800 *
7801 * which yields
7802 *
7803 * 16MB: 512k
7804 * 32MB: 724k
7805 * 64MB: 1024k
7806 * 128MB: 1448k
7807 * 256MB: 2048k
7808 * 512MB: 2896k
7809 * 1024MB: 4096k
7810 * 2048MB: 5792k
7811 * 4096MB: 8192k
7812 * 8192MB: 11584k
7813 * 16384MB: 16384k
7814 */
7815 int __meminit init_per_zone_wmark_min(void)
7816 {
7817 unsigned long lowmem_kbytes;
7818 int new_min_free_kbytes;
7819
7820 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7821 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7822
7823 if (new_min_free_kbytes > user_min_free_kbytes) {
7824 min_free_kbytes = new_min_free_kbytes;
7825 if (min_free_kbytes < 128)
7826 min_free_kbytes = 128;
7827 if (min_free_kbytes > 65536)
7828 min_free_kbytes = 65536;
7829 } else {
7830 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7831 new_min_free_kbytes, user_min_free_kbytes);
7832 }
7833 setup_per_zone_wmarks();
7834 refresh_zone_stat_thresholds();
7835 setup_per_zone_lowmem_reserve();
7836
7837 #ifdef CONFIG_NUMA
7838 setup_min_unmapped_ratio();
7839 setup_min_slab_ratio();
7840 #endif
7841
7842 return 0;
7843 }
7844 core_initcall(init_per_zone_wmark_min)
7845
7846 /*
7847 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7848 * that we can call two helper functions whenever min_free_kbytes
7849 * changes.
7850 */
7851 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7852 void __user *buffer, size_t *length, loff_t *ppos)
7853 {
7854 int rc;
7855
7856 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7857 if (rc)
7858 return rc;
7859
7860 if (write) {
7861 user_min_free_kbytes = min_free_kbytes;
7862 setup_per_zone_wmarks();
7863 }
7864 return 0;
7865 }
7866
7867 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7868 void __user *buffer, size_t *length, loff_t *ppos)
7869 {
7870 int rc;
7871
7872 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7873 if (rc)
7874 return rc;
7875
7876 return 0;
7877 }
7878
7879 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7880 void __user *buffer, size_t *length, loff_t *ppos)
7881 {
7882 int rc;
7883
7884 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7885 if (rc)
7886 return rc;
7887
7888 if (write)
7889 setup_per_zone_wmarks();
7890
7891 return 0;
7892 }
7893
7894 #ifdef CONFIG_NUMA
7895 static void setup_min_unmapped_ratio(void)
7896 {
7897 pg_data_t *pgdat;
7898 struct zone *zone;
7899
7900 for_each_online_pgdat(pgdat)
7901 pgdat->min_unmapped_pages = 0;
7902
7903 for_each_zone(zone)
7904 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7905 sysctl_min_unmapped_ratio) / 100;
7906 }
7907
7908
7909 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7910 void __user *buffer, size_t *length, loff_t *ppos)
7911 {
7912 int rc;
7913
7914 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7915 if (rc)
7916 return rc;
7917
7918 setup_min_unmapped_ratio();
7919
7920 return 0;
7921 }
7922
7923 static void setup_min_slab_ratio(void)
7924 {
7925 pg_data_t *pgdat;
7926 struct zone *zone;
7927
7928 for_each_online_pgdat(pgdat)
7929 pgdat->min_slab_pages = 0;
7930
7931 for_each_zone(zone)
7932 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7933 sysctl_min_slab_ratio) / 100;
7934 }
7935
7936 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7937 void __user *buffer, size_t *length, loff_t *ppos)
7938 {
7939 int rc;
7940
7941 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7942 if (rc)
7943 return rc;
7944
7945 setup_min_slab_ratio();
7946
7947 return 0;
7948 }
7949 #endif
7950
7951 /*
7952 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7953 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7954 * whenever sysctl_lowmem_reserve_ratio changes.
7955 *
7956 * The reserve ratio obviously has absolutely no relation with the
7957 * minimum watermarks. The lowmem reserve ratio can only make sense
7958 * if in function of the boot time zone sizes.
7959 */
7960 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7961 void __user *buffer, size_t *length, loff_t *ppos)
7962 {
7963 proc_dointvec_minmax(table, write, buffer, length, ppos);
7964 setup_per_zone_lowmem_reserve();
7965 return 0;
7966 }
7967
7968 static void __zone_pcp_update(struct zone *zone)
7969 {
7970 unsigned int cpu;
7971
7972 for_each_possible_cpu(cpu)
7973 pageset_set_high_and_batch(zone,
7974 per_cpu_ptr(zone->pageset, cpu));
7975 }
7976
7977 /*
7978 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7979 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7980 * pagelist can have before it gets flushed back to buddy allocator.
7981 */
7982 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7983 void __user *buffer, size_t *length, loff_t *ppos)
7984 {
7985 struct zone *zone;
7986 int old_percpu_pagelist_fraction;
7987 int ret;
7988
7989 mutex_lock(&pcp_batch_high_lock);
7990 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7991
7992 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7993 if (!write || ret < 0)
7994 goto out;
7995
7996 /* Sanity checking to avoid pcp imbalance */
7997 if (percpu_pagelist_fraction &&
7998 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7999 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8000 ret = -EINVAL;
8001 goto out;
8002 }
8003
8004 /* No change? */
8005 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8006 goto out;
8007
8008 for_each_populated_zone(zone)
8009 __zone_pcp_update(zone);
8010 out:
8011 mutex_unlock(&pcp_batch_high_lock);
8012 return ret;
8013 }
8014
8015 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8016 /*
8017 * Returns the number of pages that arch has reserved but
8018 * is not known to alloc_large_system_hash().
8019 */
8020 static unsigned long __init arch_reserved_kernel_pages(void)
8021 {
8022 return 0;
8023 }
8024 #endif
8025
8026 /*
8027 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8028 * machines. As memory size is increased the scale is also increased but at
8029 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8030 * quadruples the scale is increased by one, which means the size of hash table
8031 * only doubles, instead of quadrupling as well.
8032 * Because 32-bit systems cannot have large physical memory, where this scaling
8033 * makes sense, it is disabled on such platforms.
8034 */
8035 #if __BITS_PER_LONG > 32
8036 #define ADAPT_SCALE_BASE (64ul << 30)
8037 #define ADAPT_SCALE_SHIFT 2
8038 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8039 #endif
8040
8041 /*
8042 * allocate a large system hash table from bootmem
8043 * - it is assumed that the hash table must contain an exact power-of-2
8044 * quantity of entries
8045 * - limit is the number of hash buckets, not the total allocation size
8046 */
8047 void *__init alloc_large_system_hash(const char *tablename,
8048 unsigned long bucketsize,
8049 unsigned long numentries,
8050 int scale,
8051 int flags,
8052 unsigned int *_hash_shift,
8053 unsigned int *_hash_mask,
8054 unsigned long low_limit,
8055 unsigned long high_limit)
8056 {
8057 unsigned long long max = high_limit;
8058 unsigned long log2qty, size;
8059 void *table = NULL;
8060 gfp_t gfp_flags;
8061 bool virt;
8062
8063 /* allow the kernel cmdline to have a say */
8064 if (!numentries) {
8065 /* round applicable memory size up to nearest megabyte */
8066 numentries = nr_kernel_pages;
8067 numentries -= arch_reserved_kernel_pages();
8068
8069 /* It isn't necessary when PAGE_SIZE >= 1MB */
8070 if (PAGE_SHIFT < 20)
8071 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8072
8073 #if __BITS_PER_LONG > 32
8074 if (!high_limit) {
8075 unsigned long adapt;
8076
8077 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8078 adapt <<= ADAPT_SCALE_SHIFT)
8079 scale++;
8080 }
8081 #endif
8082
8083 /* limit to 1 bucket per 2^scale bytes of low memory */
8084 if (scale > PAGE_SHIFT)
8085 numentries >>= (scale - PAGE_SHIFT);
8086 else
8087 numentries <<= (PAGE_SHIFT - scale);
8088
8089 /* Make sure we've got at least a 0-order allocation.. */
8090 if (unlikely(flags & HASH_SMALL)) {
8091 /* Makes no sense without HASH_EARLY */
8092 WARN_ON(!(flags & HASH_EARLY));
8093 if (!(numentries >> *_hash_shift)) {
8094 numentries = 1UL << *_hash_shift;
8095 BUG_ON(!numentries);
8096 }
8097 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8098 numentries = PAGE_SIZE / bucketsize;
8099 }
8100 numentries = roundup_pow_of_two(numentries);
8101
8102 /* limit allocation size to 1/16 total memory by default */
8103 if (max == 0) {
8104 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8105 do_div(max, bucketsize);
8106 }
8107 max = min(max, 0x80000000ULL);
8108
8109 if (numentries < low_limit)
8110 numentries = low_limit;
8111 if (numentries > max)
8112 numentries = max;
8113
8114 log2qty = ilog2(numentries);
8115
8116 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8117 do {
8118 virt = false;
8119 size = bucketsize << log2qty;
8120 if (flags & HASH_EARLY) {
8121 if (flags & HASH_ZERO)
8122 table = memblock_alloc(size, SMP_CACHE_BYTES);
8123 else
8124 table = memblock_alloc_raw(size,
8125 SMP_CACHE_BYTES);
8126 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8127 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8128 virt = true;
8129 } else {
8130 /*
8131 * If bucketsize is not a power-of-two, we may free
8132 * some pages at the end of hash table which
8133 * alloc_pages_exact() automatically does
8134 */
8135 table = alloc_pages_exact(size, gfp_flags);
8136 kmemleak_alloc(table, size, 1, gfp_flags);
8137 }
8138 } while (!table && size > PAGE_SIZE && --log2qty);
8139
8140 if (!table)
8141 panic("Failed to allocate %s hash table\n", tablename);
8142
8143 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8144 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8145 virt ? "vmalloc" : "linear");
8146
8147 if (_hash_shift)
8148 *_hash_shift = log2qty;
8149 if (_hash_mask)
8150 *_hash_mask = (1 << log2qty) - 1;
8151
8152 return table;
8153 }
8154
8155 /*
8156 * This function checks whether pageblock includes unmovable pages or not.
8157 * If @count is not zero, it is okay to include less @count unmovable pages
8158 *
8159 * PageLRU check without isolation or lru_lock could race so that
8160 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8161 * check without lock_page also may miss some movable non-lru pages at
8162 * race condition. So you can't expect this function should be exact.
8163 */
8164 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8165 int migratetype, int flags)
8166 {
8167 unsigned long found;
8168 unsigned long iter = 0;
8169 unsigned long pfn = page_to_pfn(page);
8170 const char *reason = "unmovable page";
8171
8172 /*
8173 * TODO we could make this much more efficient by not checking every
8174 * page in the range if we know all of them are in MOVABLE_ZONE and
8175 * that the movable zone guarantees that pages are migratable but
8176 * the later is not the case right now unfortunatelly. E.g. movablecore
8177 * can still lead to having bootmem allocations in zone_movable.
8178 */
8179
8180 if (is_migrate_cma_page(page)) {
8181 /*
8182 * CMA allocations (alloc_contig_range) really need to mark
8183 * isolate CMA pageblocks even when they are not movable in fact
8184 * so consider them movable here.
8185 */
8186 if (is_migrate_cma(migratetype))
8187 return false;
8188
8189 reason = "CMA page";
8190 goto unmovable;
8191 }
8192
8193 for (found = 0; iter < pageblock_nr_pages; iter++) {
8194 unsigned long check = pfn + iter;
8195
8196 if (!pfn_valid_within(check))
8197 continue;
8198
8199 page = pfn_to_page(check);
8200
8201 if (PageReserved(page))
8202 goto unmovable;
8203
8204 /*
8205 * If the zone is movable and we have ruled out all reserved
8206 * pages then it should be reasonably safe to assume the rest
8207 * is movable.
8208 */
8209 if (zone_idx(zone) == ZONE_MOVABLE)
8210 continue;
8211
8212 /*
8213 * Hugepages are not in LRU lists, but they're movable.
8214 * We need not scan over tail pages because we don't
8215 * handle each tail page individually in migration.
8216 */
8217 if (PageHuge(page)) {
8218 struct page *head = compound_head(page);
8219 unsigned int skip_pages;
8220
8221 if (!hugepage_migration_supported(page_hstate(head)))
8222 goto unmovable;
8223
8224 skip_pages = compound_nr(head) - (page - head);
8225 iter += skip_pages - 1;
8226 continue;
8227 }
8228
8229 /*
8230 * We can't use page_count without pin a page
8231 * because another CPU can free compound page.
8232 * This check already skips compound tails of THP
8233 * because their page->_refcount is zero at all time.
8234 */
8235 if (!page_ref_count(page)) {
8236 if (PageBuddy(page))
8237 iter += (1 << page_order(page)) - 1;
8238 continue;
8239 }
8240
8241 /*
8242 * The HWPoisoned page may be not in buddy system, and
8243 * page_count() is not 0.
8244 */
8245 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8246 continue;
8247
8248 if (__PageMovable(page))
8249 continue;
8250
8251 if (!PageLRU(page))
8252 found++;
8253 /*
8254 * If there are RECLAIMABLE pages, we need to check
8255 * it. But now, memory offline itself doesn't call
8256 * shrink_node_slabs() and it still to be fixed.
8257 */
8258 /*
8259 * If the page is not RAM, page_count()should be 0.
8260 * we don't need more check. This is an _used_ not-movable page.
8261 *
8262 * The problematic thing here is PG_reserved pages. PG_reserved
8263 * is set to both of a memory hole page and a _used_ kernel
8264 * page at boot.
8265 */
8266 if (found > count)
8267 goto unmovable;
8268 }
8269 return false;
8270 unmovable:
8271 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8272 if (flags & REPORT_FAILURE)
8273 dump_page(pfn_to_page(pfn + iter), reason);
8274 return true;
8275 }
8276
8277 #ifdef CONFIG_CONTIG_ALLOC
8278 static unsigned long pfn_max_align_down(unsigned long pfn)
8279 {
8280 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8281 pageblock_nr_pages) - 1);
8282 }
8283
8284 static unsigned long pfn_max_align_up(unsigned long pfn)
8285 {
8286 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8287 pageblock_nr_pages));
8288 }
8289
8290 /* [start, end) must belong to a single zone. */
8291 static int __alloc_contig_migrate_range(struct compact_control *cc,
8292 unsigned long start, unsigned long end)
8293 {
8294 /* This function is based on compact_zone() from compaction.c. */
8295 unsigned long nr_reclaimed;
8296 unsigned long pfn = start;
8297 unsigned int tries = 0;
8298 int ret = 0;
8299
8300 migrate_prep();
8301
8302 while (pfn < end || !list_empty(&cc->migratepages)) {
8303 if (fatal_signal_pending(current)) {
8304 ret = -EINTR;
8305 break;
8306 }
8307
8308 if (list_empty(&cc->migratepages)) {
8309 cc->nr_migratepages = 0;
8310 pfn = isolate_migratepages_range(cc, pfn, end);
8311 if (!pfn) {
8312 ret = -EINTR;
8313 break;
8314 }
8315 tries = 0;
8316 } else if (++tries == 5) {
8317 ret = ret < 0 ? ret : -EBUSY;
8318 break;
8319 }
8320
8321 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8322 &cc->migratepages);
8323 cc->nr_migratepages -= nr_reclaimed;
8324
8325 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8326 NULL, 0, cc->mode, MR_CONTIG_RANGE);
8327 }
8328 if (ret < 0) {
8329 putback_movable_pages(&cc->migratepages);
8330 return ret;
8331 }
8332 return 0;
8333 }
8334
8335 /**
8336 * alloc_contig_range() -- tries to allocate given range of pages
8337 * @start: start PFN to allocate
8338 * @end: one-past-the-last PFN to allocate
8339 * @migratetype: migratetype of the underlaying pageblocks (either
8340 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8341 * in range must have the same migratetype and it must
8342 * be either of the two.
8343 * @gfp_mask: GFP mask to use during compaction
8344 *
8345 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8346 * aligned. The PFN range must belong to a single zone.
8347 *
8348 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8349 * pageblocks in the range. Once isolated, the pageblocks should not
8350 * be modified by others.
8351 *
8352 * Return: zero on success or negative error code. On success all
8353 * pages which PFN is in [start, end) are allocated for the caller and
8354 * need to be freed with free_contig_range().
8355 */
8356 int alloc_contig_range(unsigned long start, unsigned long end,
8357 unsigned migratetype, gfp_t gfp_mask)
8358 {
8359 unsigned long outer_start, outer_end;
8360 unsigned int order;
8361 int ret = 0;
8362
8363 struct compact_control cc = {
8364 .nr_migratepages = 0,
8365 .order = -1,
8366 .zone = page_zone(pfn_to_page(start)),
8367 .mode = MIGRATE_SYNC,
8368 .ignore_skip_hint = true,
8369 .no_set_skip_hint = true,
8370 .gfp_mask = current_gfp_context(gfp_mask),
8371 };
8372 INIT_LIST_HEAD(&cc.migratepages);
8373
8374 /*
8375 * What we do here is we mark all pageblocks in range as
8376 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8377 * have different sizes, and due to the way page allocator
8378 * work, we align the range to biggest of the two pages so
8379 * that page allocator won't try to merge buddies from
8380 * different pageblocks and change MIGRATE_ISOLATE to some
8381 * other migration type.
8382 *
8383 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8384 * migrate the pages from an unaligned range (ie. pages that
8385 * we are interested in). This will put all the pages in
8386 * range back to page allocator as MIGRATE_ISOLATE.
8387 *
8388 * When this is done, we take the pages in range from page
8389 * allocator removing them from the buddy system. This way
8390 * page allocator will never consider using them.
8391 *
8392 * This lets us mark the pageblocks back as
8393 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8394 * aligned range but not in the unaligned, original range are
8395 * put back to page allocator so that buddy can use them.
8396 */
8397
8398 ret = start_isolate_page_range(pfn_max_align_down(start),
8399 pfn_max_align_up(end), migratetype, 0);
8400 if (ret < 0)
8401 return ret;
8402
8403 /*
8404 * In case of -EBUSY, we'd like to know which page causes problem.
8405 * So, just fall through. test_pages_isolated() has a tracepoint
8406 * which will report the busy page.
8407 *
8408 * It is possible that busy pages could become available before
8409 * the call to test_pages_isolated, and the range will actually be
8410 * allocated. So, if we fall through be sure to clear ret so that
8411 * -EBUSY is not accidentally used or returned to caller.
8412 */
8413 ret = __alloc_contig_migrate_range(&cc, start, end);
8414 if (ret && ret != -EBUSY)
8415 goto done;
8416 ret =0;
8417
8418 /*
8419 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8420 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8421 * more, all pages in [start, end) are free in page allocator.
8422 * What we are going to do is to allocate all pages from
8423 * [start, end) (that is remove them from page allocator).
8424 *
8425 * The only problem is that pages at the beginning and at the
8426 * end of interesting range may be not aligned with pages that
8427 * page allocator holds, ie. they can be part of higher order
8428 * pages. Because of this, we reserve the bigger range and
8429 * once this is done free the pages we are not interested in.
8430 *
8431 * We don't have to hold zone->lock here because the pages are
8432 * isolated thus they won't get removed from buddy.
8433 */
8434
8435 lru_add_drain_all();
8436
8437 order = 0;
8438 outer_start = start;
8439 while (!PageBuddy(pfn_to_page(outer_start))) {
8440 if (++order >= MAX_ORDER) {
8441 outer_start = start;
8442 break;
8443 }
8444 outer_start &= ~0UL << order;
8445 }
8446
8447 if (outer_start != start) {
8448 order = page_order(pfn_to_page(outer_start));
8449
8450 /*
8451 * outer_start page could be small order buddy page and
8452 * it doesn't include start page. Adjust outer_start
8453 * in this case to report failed page properly
8454 * on tracepoint in test_pages_isolated()
8455 */
8456 if (outer_start + (1UL << order) <= start)
8457 outer_start = start;
8458 }
8459
8460 /* Make sure the range is really isolated. */
8461 if (test_pages_isolated(outer_start, end, 0)) {
8462 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8463 __func__, outer_start, end);
8464 ret = -EBUSY;
8465 goto done;
8466 }
8467
8468 /* Grab isolated pages from freelists. */
8469 outer_end = isolate_freepages_range(&cc, outer_start, end);
8470 if (!outer_end) {
8471 ret = -EBUSY;
8472 goto done;
8473 }
8474
8475 /* Free head and tail (if any) */
8476 if (start != outer_start)
8477 free_contig_range(outer_start, start - outer_start);
8478 if (end != outer_end)
8479 free_contig_range(end, outer_end - end);
8480
8481 done:
8482 undo_isolate_page_range(pfn_max_align_down(start),
8483 pfn_max_align_up(end), migratetype);
8484 return ret;
8485 }
8486
8487 static int __alloc_contig_pages(unsigned long start_pfn,
8488 unsigned long nr_pages, gfp_t gfp_mask)
8489 {
8490 unsigned long end_pfn = start_pfn + nr_pages;
8491
8492 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8493 gfp_mask);
8494 }
8495
8496 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8497 unsigned long nr_pages)
8498 {
8499 unsigned long i, end_pfn = start_pfn + nr_pages;
8500 struct page *page;
8501
8502 for (i = start_pfn; i < end_pfn; i++) {
8503 page = pfn_to_online_page(i);
8504 if (!page)
8505 return false;
8506
8507 if (page_zone(page) != z)
8508 return false;
8509
8510 if (PageReserved(page))
8511 return false;
8512
8513 if (page_count(page) > 0)
8514 return false;
8515
8516 if (PageHuge(page))
8517 return false;
8518 }
8519 return true;
8520 }
8521
8522 static bool zone_spans_last_pfn(const struct zone *zone,
8523 unsigned long start_pfn, unsigned long nr_pages)
8524 {
8525 unsigned long last_pfn = start_pfn + nr_pages - 1;
8526
8527 return zone_spans_pfn(zone, last_pfn);
8528 }
8529
8530 /**
8531 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8532 * @nr_pages: Number of contiguous pages to allocate
8533 * @gfp_mask: GFP mask to limit search and used during compaction
8534 * @nid: Target node
8535 * @nodemask: Mask for other possible nodes
8536 *
8537 * This routine is a wrapper around alloc_contig_range(). It scans over zones
8538 * on an applicable zonelist to find a contiguous pfn range which can then be
8539 * tried for allocation with alloc_contig_range(). This routine is intended
8540 * for allocation requests which can not be fulfilled with the buddy allocator.
8541 *
8542 * The allocated memory is always aligned to a page boundary. If nr_pages is a
8543 * power of two then the alignment is guaranteed to be to the given nr_pages
8544 * (e.g. 1GB request would be aligned to 1GB).
8545 *
8546 * Allocated pages can be freed with free_contig_range() or by manually calling
8547 * __free_page() on each allocated page.
8548 *
8549 * Return: pointer to contiguous pages on success, or NULL if not successful.
8550 */
8551 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8552 int nid, nodemask_t *nodemask)
8553 {
8554 unsigned long ret, pfn, flags;
8555 struct zonelist *zonelist;
8556 struct zone *zone;
8557 struct zoneref *z;
8558
8559 zonelist = node_zonelist(nid, gfp_mask);
8560 for_each_zone_zonelist_nodemask(zone, z, zonelist,
8561 gfp_zone(gfp_mask), nodemask) {
8562 spin_lock_irqsave(&zone->lock, flags);
8563
8564 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8565 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8566 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8567 /*
8568 * We release the zone lock here because
8569 * alloc_contig_range() will also lock the zone
8570 * at some point. If there's an allocation
8571 * spinning on this lock, it may win the race
8572 * and cause alloc_contig_range() to fail...
8573 */
8574 spin_unlock_irqrestore(&zone->lock, flags);
8575 ret = __alloc_contig_pages(pfn, nr_pages,
8576 gfp_mask);
8577 if (!ret)
8578 return pfn_to_page(pfn);
8579 spin_lock_irqsave(&zone->lock, flags);
8580 }
8581 pfn += nr_pages;
8582 }
8583 spin_unlock_irqrestore(&zone->lock, flags);
8584 }
8585 return NULL;
8586 }
8587 #endif /* CONFIG_CONTIG_ALLOC */
8588
8589 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8590 {
8591 unsigned int count = 0;
8592
8593 for (; nr_pages--; pfn++) {
8594 struct page *page = pfn_to_page(pfn);
8595
8596 count += page_count(page) != 1;
8597 __free_page(page);
8598 }
8599 WARN(count != 0, "%d pages are still in use!\n", count);
8600 }
8601
8602 /*
8603 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8604 * page high values need to be recalulated.
8605 */
8606 void __meminit zone_pcp_update(struct zone *zone)
8607 {
8608 mutex_lock(&pcp_batch_high_lock);
8609 __zone_pcp_update(zone);
8610 mutex_unlock(&pcp_batch_high_lock);
8611 }
8612
8613 void zone_pcp_reset(struct zone *zone)
8614 {
8615 unsigned long flags;
8616 int cpu;
8617 struct per_cpu_pageset *pset;
8618
8619 /* avoid races with drain_pages() */
8620 local_irq_save(flags);
8621 if (zone->pageset != &boot_pageset) {
8622 for_each_online_cpu(cpu) {
8623 pset = per_cpu_ptr(zone->pageset, cpu);
8624 drain_zonestat(zone, pset);
8625 }
8626 free_percpu(zone->pageset);
8627 zone->pageset = &boot_pageset;
8628 }
8629 local_irq_restore(flags);
8630 }
8631
8632 #ifdef CONFIG_MEMORY_HOTREMOVE
8633 /*
8634 * All pages in the range must be in a single zone and isolated
8635 * before calling this.
8636 */
8637 unsigned long
8638 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8639 {
8640 struct page *page;
8641 struct zone *zone;
8642 unsigned int order;
8643 unsigned long pfn;
8644 unsigned long flags;
8645 unsigned long offlined_pages = 0;
8646
8647 /* find the first valid pfn */
8648 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8649 if (pfn_valid(pfn))
8650 break;
8651 if (pfn == end_pfn)
8652 return offlined_pages;
8653
8654 offline_mem_sections(pfn, end_pfn);
8655 zone = page_zone(pfn_to_page(pfn));
8656 spin_lock_irqsave(&zone->lock, flags);
8657 pfn = start_pfn;
8658 while (pfn < end_pfn) {
8659 if (!pfn_valid(pfn)) {
8660 pfn++;
8661 continue;
8662 }
8663 page = pfn_to_page(pfn);
8664 /*
8665 * The HWPoisoned page may be not in buddy system, and
8666 * page_count() is not 0.
8667 */
8668 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8669 pfn++;
8670 offlined_pages++;
8671 continue;
8672 }
8673
8674 BUG_ON(page_count(page));
8675 BUG_ON(!PageBuddy(page));
8676 order = page_order(page);
8677 offlined_pages += 1 << order;
8678 #ifdef CONFIG_DEBUG_VM
8679 pr_info("remove from free list %lx %d %lx\n",
8680 pfn, 1 << order, end_pfn);
8681 #endif
8682 del_page_from_free_area(page, &zone->free_area[order]);
8683 pfn += (1 << order);
8684 }
8685 spin_unlock_irqrestore(&zone->lock, flags);
8686
8687 return offlined_pages;
8688 }
8689 #endif
8690
8691 bool is_free_buddy_page(struct page *page)
8692 {
8693 struct zone *zone = page_zone(page);
8694 unsigned long pfn = page_to_pfn(page);
8695 unsigned long flags;
8696 unsigned int order;
8697
8698 spin_lock_irqsave(&zone->lock, flags);
8699 for (order = 0; order < MAX_ORDER; order++) {
8700 struct page *page_head = page - (pfn & ((1 << order) - 1));
8701
8702 if (PageBuddy(page_head) && page_order(page_head) >= order)
8703 break;
8704 }
8705 spin_unlock_irqrestore(&zone->lock, flags);
8706
8707 return order < MAX_ORDER;
8708 }
8709
8710 #ifdef CONFIG_MEMORY_FAILURE
8711 /*
8712 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8713 * test is performed under the zone lock to prevent a race against page
8714 * allocation.
8715 */
8716 bool set_hwpoison_free_buddy_page(struct page *page)
8717 {
8718 struct zone *zone = page_zone(page);
8719 unsigned long pfn = page_to_pfn(page);
8720 unsigned long flags;
8721 unsigned int order;
8722 bool hwpoisoned = false;
8723
8724 spin_lock_irqsave(&zone->lock, flags);
8725 for (order = 0; order < MAX_ORDER; order++) {
8726 struct page *page_head = page - (pfn & ((1 << order) - 1));
8727
8728 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8729 if (!TestSetPageHWPoison(page))
8730 hwpoisoned = true;
8731 break;
8732 }
8733 }
8734 spin_unlock_irqrestore(&zone->lock, flags);
8735
8736 return hwpoisoned;
8737 }
8738 #endif