]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/page_alloc.c
Merge tag 'io_uring-5.15-2021-09-11' of git://git.kernel.dk/linux-block
[mirror_ubuntu-jammy-kernel.git] / mm / page_alloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84
85 /* No special request */
86 #define FPI_NONE ((__force fpi_t)0)
87
88 /*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
98 /*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
110 /*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124
125 struct pagesets {
126 local_lock_t lock;
127 };
128 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 .lock = INIT_LOCAL_LOCK(lock),
130 };
131
132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133 DEFINE_PER_CPU(int, numa_node);
134 EXPORT_PER_CPU_SYMBOL(numa_node);
135 #endif
136
137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138
139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
140 /*
141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144 * defined in <linux/topology.h>.
145 */
146 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
147 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148 #endif
149
150 /* work_structs for global per-cpu drains */
151 struct pcpu_drain {
152 struct zone *zone;
153 struct work_struct work;
154 };
155 static DEFINE_MUTEX(pcpu_drain_mutex);
156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
157
158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
159 volatile unsigned long latent_entropy __latent_entropy;
160 EXPORT_SYMBOL(latent_entropy);
161 #endif
162
163 /*
164 * Array of node states.
165 */
166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 [N_POSSIBLE] = NODE_MASK_ALL,
168 [N_ONLINE] = { { [0] = 1UL } },
169 #ifndef CONFIG_NUMA
170 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
171 #ifdef CONFIG_HIGHMEM
172 [N_HIGH_MEMORY] = { { [0] = 1UL } },
173 #endif
174 [N_MEMORY] = { { [0] = 1UL } },
175 [N_CPU] = { { [0] = 1UL } },
176 #endif /* NUMA */
177 };
178 EXPORT_SYMBOL(node_states);
179
180 atomic_long_t _totalram_pages __read_mostly;
181 EXPORT_SYMBOL(_totalram_pages);
182 unsigned long totalreserve_pages __read_mostly;
183 unsigned long totalcma_pages __read_mostly;
184
185 int percpu_pagelist_high_fraction;
186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
188 EXPORT_SYMBOL(init_on_alloc);
189
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
191 EXPORT_SYMBOL(init_on_free);
192
193 static bool _init_on_alloc_enabled_early __read_mostly
194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
195 static int __init early_init_on_alloc(char *buf)
196 {
197
198 return kstrtobool(buf, &_init_on_alloc_enabled_early);
199 }
200 early_param("init_on_alloc", early_init_on_alloc);
201
202 static bool _init_on_free_enabled_early __read_mostly
203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
204 static int __init early_init_on_free(char *buf)
205 {
206 return kstrtobool(buf, &_init_on_free_enabled_early);
207 }
208 early_param("init_on_free", early_init_on_free);
209
210 /*
211 * A cached value of the page's pageblock's migratetype, used when the page is
212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214 * Also the migratetype set in the page does not necessarily match the pcplist
215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216 * other index - this ensures that it will be put on the correct CMA freelist.
217 */
218 static inline int get_pcppage_migratetype(struct page *page)
219 {
220 return page->index;
221 }
222
223 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224 {
225 page->index = migratetype;
226 }
227
228 #ifdef CONFIG_PM_SLEEP
229 /*
230 * The following functions are used by the suspend/hibernate code to temporarily
231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232 * while devices are suspended. To avoid races with the suspend/hibernate code,
233 * they should always be called with system_transition_mutex held
234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236 * with that modification).
237 */
238
239 static gfp_t saved_gfp_mask;
240
241 void pm_restore_gfp_mask(void)
242 {
243 WARN_ON(!mutex_is_locked(&system_transition_mutex));
244 if (saved_gfp_mask) {
245 gfp_allowed_mask = saved_gfp_mask;
246 saved_gfp_mask = 0;
247 }
248 }
249
250 void pm_restrict_gfp_mask(void)
251 {
252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
253 WARN_ON(saved_gfp_mask);
254 saved_gfp_mask = gfp_allowed_mask;
255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
256 }
257
258 bool pm_suspended_storage(void)
259 {
260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
261 return false;
262 return true;
263 }
264 #endif /* CONFIG_PM_SLEEP */
265
266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
267 unsigned int pageblock_order __read_mostly;
268 #endif
269
270 static void __free_pages_ok(struct page *page, unsigned int order,
271 fpi_t fpi_flags);
272
273 /*
274 * results with 256, 32 in the lowmem_reserve sysctl:
275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276 * 1G machine -> (16M dma, 784M normal, 224M high)
277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
280 *
281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
282 * don't need any ZONE_NORMAL reservation
283 */
284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
285 #ifdef CONFIG_ZONE_DMA
286 [ZONE_DMA] = 256,
287 #endif
288 #ifdef CONFIG_ZONE_DMA32
289 [ZONE_DMA32] = 256,
290 #endif
291 [ZONE_NORMAL] = 32,
292 #ifdef CONFIG_HIGHMEM
293 [ZONE_HIGHMEM] = 0,
294 #endif
295 [ZONE_MOVABLE] = 0,
296 };
297
298 static char * const zone_names[MAX_NR_ZONES] = {
299 #ifdef CONFIG_ZONE_DMA
300 "DMA",
301 #endif
302 #ifdef CONFIG_ZONE_DMA32
303 "DMA32",
304 #endif
305 "Normal",
306 #ifdef CONFIG_HIGHMEM
307 "HighMem",
308 #endif
309 "Movable",
310 #ifdef CONFIG_ZONE_DEVICE
311 "Device",
312 #endif
313 };
314
315 const char * const migratetype_names[MIGRATE_TYPES] = {
316 "Unmovable",
317 "Movable",
318 "Reclaimable",
319 "HighAtomic",
320 #ifdef CONFIG_CMA
321 "CMA",
322 #endif
323 #ifdef CONFIG_MEMORY_ISOLATION
324 "Isolate",
325 #endif
326 };
327
328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 [NULL_COMPOUND_DTOR] = NULL,
330 [COMPOUND_PAGE_DTOR] = free_compound_page,
331 #ifdef CONFIG_HUGETLB_PAGE
332 [HUGETLB_PAGE_DTOR] = free_huge_page,
333 #endif
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
336 #endif
337 };
338
339 int min_free_kbytes = 1024;
340 int user_min_free_kbytes = -1;
341 int watermark_boost_factor __read_mostly = 15000;
342 int watermark_scale_factor = 10;
343
344 static unsigned long nr_kernel_pages __initdata;
345 static unsigned long nr_all_pages __initdata;
346 static unsigned long dma_reserve __initdata;
347
348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
350 static unsigned long required_kernelcore __initdata;
351 static unsigned long required_kernelcore_percent __initdata;
352 static unsigned long required_movablecore __initdata;
353 static unsigned long required_movablecore_percent __initdata;
354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
355 static bool mirrored_kernelcore __meminitdata;
356
357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358 int movable_zone;
359 EXPORT_SYMBOL(movable_zone);
360
361 #if MAX_NUMNODES > 1
362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
363 unsigned int nr_online_nodes __read_mostly = 1;
364 EXPORT_SYMBOL(nr_node_ids);
365 EXPORT_SYMBOL(nr_online_nodes);
366 #endif
367
368 int page_group_by_mobility_disabled __read_mostly;
369
370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
371 /*
372 * During boot we initialize deferred pages on-demand, as needed, but once
373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
374 * and we can permanently disable that path.
375 */
376 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377
378 /*
379 * Calling kasan_poison_pages() only after deferred memory initialization
380 * has completed. Poisoning pages during deferred memory init will greatly
381 * lengthen the process and cause problem in large memory systems as the
382 * deferred pages initialization is done with interrupt disabled.
383 *
384 * Assuming that there will be no reference to those newly initialized
385 * pages before they are ever allocated, this should have no effect on
386 * KASAN memory tracking as the poison will be properly inserted at page
387 * allocation time. The only corner case is when pages are allocated by
388 * on-demand allocation and then freed again before the deferred pages
389 * initialization is done, but this is not likely to happen.
390 */
391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
392 {
393 return static_branch_unlikely(&deferred_pages) ||
394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
395 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 PageSkipKASanPoison(page);
397 }
398
399 /* Returns true if the struct page for the pfn is uninitialised */
400 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
401 {
402 int nid = early_pfn_to_nid(pfn);
403
404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
405 return true;
406
407 return false;
408 }
409
410 /*
411 * Returns true when the remaining initialisation should be deferred until
412 * later in the boot cycle when it can be parallelised.
413 */
414 static bool __meminit
415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
416 {
417 static unsigned long prev_end_pfn, nr_initialised;
418
419 /*
420 * prev_end_pfn static that contains the end of previous zone
421 * No need to protect because called very early in boot before smp_init.
422 */
423 if (prev_end_pfn != end_pfn) {
424 prev_end_pfn = end_pfn;
425 nr_initialised = 0;
426 }
427
428 /* Always populate low zones for address-constrained allocations */
429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
430 return false;
431
432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 return true;
434 /*
435 * We start only with one section of pages, more pages are added as
436 * needed until the rest of deferred pages are initialized.
437 */
438 nr_initialised++;
439 if ((nr_initialised > PAGES_PER_SECTION) &&
440 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 NODE_DATA(nid)->first_deferred_pfn = pfn;
442 return true;
443 }
444 return false;
445 }
446 #else
447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
448 {
449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
450 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 PageSkipKASanPoison(page);
452 }
453
454 static inline bool early_page_uninitialised(unsigned long pfn)
455 {
456 return false;
457 }
458
459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
460 {
461 return false;
462 }
463 #endif
464
465 /* Return a pointer to the bitmap storing bits affecting a block of pages */
466 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
467 unsigned long pfn)
468 {
469 #ifdef CONFIG_SPARSEMEM
470 return section_to_usemap(__pfn_to_section(pfn));
471 #else
472 return page_zone(page)->pageblock_flags;
473 #endif /* CONFIG_SPARSEMEM */
474 }
475
476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
477 {
478 #ifdef CONFIG_SPARSEMEM
479 pfn &= (PAGES_PER_SECTION-1);
480 #else
481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
482 #endif /* CONFIG_SPARSEMEM */
483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
484 }
485
486 static __always_inline
487 unsigned long __get_pfnblock_flags_mask(const struct page *page,
488 unsigned long pfn,
489 unsigned long mask)
490 {
491 unsigned long *bitmap;
492 unsigned long bitidx, word_bitidx;
493 unsigned long word;
494
495 bitmap = get_pageblock_bitmap(page, pfn);
496 bitidx = pfn_to_bitidx(page, pfn);
497 word_bitidx = bitidx / BITS_PER_LONG;
498 bitidx &= (BITS_PER_LONG-1);
499
500 word = bitmap[word_bitidx];
501 return (word >> bitidx) & mask;
502 }
503
504 /**
505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506 * @page: The page within the block of interest
507 * @pfn: The target page frame number
508 * @mask: mask of bits that the caller is interested in
509 *
510 * Return: pageblock_bits flags
511 */
512 unsigned long get_pfnblock_flags_mask(const struct page *page,
513 unsigned long pfn, unsigned long mask)
514 {
515 return __get_pfnblock_flags_mask(page, pfn, mask);
516 }
517
518 static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 unsigned long pfn)
520 {
521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
522 }
523
524 /**
525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526 * @page: The page within the block of interest
527 * @flags: The flags to set
528 * @pfn: The target page frame number
529 * @mask: mask of bits that the caller is interested in
530 */
531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 unsigned long pfn,
533 unsigned long mask)
534 {
535 unsigned long *bitmap;
536 unsigned long bitidx, word_bitidx;
537 unsigned long old_word, word;
538
539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
541
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
546
547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548
549 mask <<= bitidx;
550 flags <<= bitidx;
551
552 word = READ_ONCE(bitmap[word_bitidx]);
553 for (;;) {
554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 if (word == old_word)
556 break;
557 word = old_word;
558 }
559 }
560
561 void set_pageblock_migratetype(struct page *page, int migratetype)
562 {
563 if (unlikely(page_group_by_mobility_disabled &&
564 migratetype < MIGRATE_PCPTYPES))
565 migratetype = MIGRATE_UNMOVABLE;
566
567 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
568 page_to_pfn(page), MIGRATETYPE_MASK);
569 }
570
571 #ifdef CONFIG_DEBUG_VM
572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
573 {
574 int ret = 0;
575 unsigned seq;
576 unsigned long pfn = page_to_pfn(page);
577 unsigned long sp, start_pfn;
578
579 do {
580 seq = zone_span_seqbegin(zone);
581 start_pfn = zone->zone_start_pfn;
582 sp = zone->spanned_pages;
583 if (!zone_spans_pfn(zone, pfn))
584 ret = 1;
585 } while (zone_span_seqretry(zone, seq));
586
587 if (ret)
588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 pfn, zone_to_nid(zone), zone->name,
590 start_pfn, start_pfn + sp);
591
592 return ret;
593 }
594
595 static int page_is_consistent(struct zone *zone, struct page *page)
596 {
597 if (zone != page_zone(page))
598 return 0;
599
600 return 1;
601 }
602 /*
603 * Temporary debugging check for pages not lying within a given zone.
604 */
605 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 if (page_outside_zone_boundaries(zone, page))
608 return 1;
609 if (!page_is_consistent(zone, page))
610 return 1;
611
612 return 0;
613 }
614 #else
615 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
616 {
617 return 0;
618 }
619 #endif
620
621 static void bad_page(struct page *page, const char *reason)
622 {
623 static unsigned long resume;
624 static unsigned long nr_shown;
625 static unsigned long nr_unshown;
626
627 /*
628 * Allow a burst of 60 reports, then keep quiet for that minute;
629 * or allow a steady drip of one report per second.
630 */
631 if (nr_shown == 60) {
632 if (time_before(jiffies, resume)) {
633 nr_unshown++;
634 goto out;
635 }
636 if (nr_unshown) {
637 pr_alert(
638 "BUG: Bad page state: %lu messages suppressed\n",
639 nr_unshown);
640 nr_unshown = 0;
641 }
642 nr_shown = 0;
643 }
644 if (nr_shown++ == 0)
645 resume = jiffies + 60 * HZ;
646
647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
648 current->comm, page_to_pfn(page));
649 dump_page(page, reason);
650
651 print_modules();
652 dump_stack();
653 out:
654 /* Leave bad fields for debug, except PageBuddy could make trouble */
655 page_mapcount_reset(page); /* remove PageBuddy */
656 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
657 }
658
659 static inline unsigned int order_to_pindex(int migratetype, int order)
660 {
661 int base = order;
662
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 if (order > PAGE_ALLOC_COSTLY_ORDER) {
665 VM_BUG_ON(order != pageblock_order);
666 base = PAGE_ALLOC_COSTLY_ORDER + 1;
667 }
668 #else
669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670 #endif
671
672 return (MIGRATE_PCPTYPES * base) + migratetype;
673 }
674
675 static inline int pindex_to_order(unsigned int pindex)
676 {
677 int order = pindex / MIGRATE_PCPTYPES;
678
679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 if (order > PAGE_ALLOC_COSTLY_ORDER) {
681 order = pageblock_order;
682 VM_BUG_ON(order != pageblock_order);
683 }
684 #else
685 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
686 #endif
687
688 return order;
689 }
690
691 static inline bool pcp_allowed_order(unsigned int order)
692 {
693 if (order <= PAGE_ALLOC_COSTLY_ORDER)
694 return true;
695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
696 if (order == pageblock_order)
697 return true;
698 #endif
699 return false;
700 }
701
702 static inline void free_the_page(struct page *page, unsigned int order)
703 {
704 if (pcp_allowed_order(order)) /* Via pcp? */
705 free_unref_page(page, order);
706 else
707 __free_pages_ok(page, order, FPI_NONE);
708 }
709
710 /*
711 * Higher-order pages are called "compound pages". They are structured thusly:
712 *
713 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
714 *
715 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
716 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
717 *
718 * The first tail page's ->compound_dtor holds the offset in array of compound
719 * page destructors. See compound_page_dtors.
720 *
721 * The first tail page's ->compound_order holds the order of allocation.
722 * This usage means that zero-order pages may not be compound.
723 */
724
725 void free_compound_page(struct page *page)
726 {
727 mem_cgroup_uncharge(page);
728 free_the_page(page, compound_order(page));
729 }
730
731 void prep_compound_page(struct page *page, unsigned int order)
732 {
733 int i;
734 int nr_pages = 1 << order;
735
736 __SetPageHead(page);
737 for (i = 1; i < nr_pages; i++) {
738 struct page *p = page + i;
739 p->mapping = TAIL_MAPPING;
740 set_compound_head(p, page);
741 }
742
743 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
744 set_compound_order(page, order);
745 atomic_set(compound_mapcount_ptr(page), -1);
746 if (hpage_pincount_available(page))
747 atomic_set(compound_pincount_ptr(page), 0);
748 }
749
750 #ifdef CONFIG_DEBUG_PAGEALLOC
751 unsigned int _debug_guardpage_minorder;
752
753 bool _debug_pagealloc_enabled_early __read_mostly
754 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
755 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
756 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
757 EXPORT_SYMBOL(_debug_pagealloc_enabled);
758
759 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
760
761 static int __init early_debug_pagealloc(char *buf)
762 {
763 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
764 }
765 early_param("debug_pagealloc", early_debug_pagealloc);
766
767 static int __init debug_guardpage_minorder_setup(char *buf)
768 {
769 unsigned long res;
770
771 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
772 pr_err("Bad debug_guardpage_minorder value\n");
773 return 0;
774 }
775 _debug_guardpage_minorder = res;
776 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
777 return 0;
778 }
779 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
780
781 static inline bool set_page_guard(struct zone *zone, struct page *page,
782 unsigned int order, int migratetype)
783 {
784 if (!debug_guardpage_enabled())
785 return false;
786
787 if (order >= debug_guardpage_minorder())
788 return false;
789
790 __SetPageGuard(page);
791 INIT_LIST_HEAD(&page->lru);
792 set_page_private(page, order);
793 /* Guard pages are not available for any usage */
794 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
795
796 return true;
797 }
798
799 static inline void clear_page_guard(struct zone *zone, struct page *page,
800 unsigned int order, int migratetype)
801 {
802 if (!debug_guardpage_enabled())
803 return;
804
805 __ClearPageGuard(page);
806
807 set_page_private(page, 0);
808 if (!is_migrate_isolate(migratetype))
809 __mod_zone_freepage_state(zone, (1 << order), migratetype);
810 }
811 #else
812 static inline bool set_page_guard(struct zone *zone, struct page *page,
813 unsigned int order, int migratetype) { return false; }
814 static inline void clear_page_guard(struct zone *zone, struct page *page,
815 unsigned int order, int migratetype) {}
816 #endif
817
818 /*
819 * Enable static keys related to various memory debugging and hardening options.
820 * Some override others, and depend on early params that are evaluated in the
821 * order of appearance. So we need to first gather the full picture of what was
822 * enabled, and then make decisions.
823 */
824 void init_mem_debugging_and_hardening(void)
825 {
826 bool page_poisoning_requested = false;
827
828 #ifdef CONFIG_PAGE_POISONING
829 /*
830 * Page poisoning is debug page alloc for some arches. If
831 * either of those options are enabled, enable poisoning.
832 */
833 if (page_poisoning_enabled() ||
834 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
835 debug_pagealloc_enabled())) {
836 static_branch_enable(&_page_poisoning_enabled);
837 page_poisoning_requested = true;
838 }
839 #endif
840
841 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
842 page_poisoning_requested) {
843 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
844 "will take precedence over init_on_alloc and init_on_free\n");
845 _init_on_alloc_enabled_early = false;
846 _init_on_free_enabled_early = false;
847 }
848
849 if (_init_on_alloc_enabled_early)
850 static_branch_enable(&init_on_alloc);
851 else
852 static_branch_disable(&init_on_alloc);
853
854 if (_init_on_free_enabled_early)
855 static_branch_enable(&init_on_free);
856 else
857 static_branch_disable(&init_on_free);
858
859 #ifdef CONFIG_DEBUG_PAGEALLOC
860 if (!debug_pagealloc_enabled())
861 return;
862
863 static_branch_enable(&_debug_pagealloc_enabled);
864
865 if (!debug_guardpage_minorder())
866 return;
867
868 static_branch_enable(&_debug_guardpage_enabled);
869 #endif
870 }
871
872 static inline void set_buddy_order(struct page *page, unsigned int order)
873 {
874 set_page_private(page, order);
875 __SetPageBuddy(page);
876 }
877
878 /*
879 * This function checks whether a page is free && is the buddy
880 * we can coalesce a page and its buddy if
881 * (a) the buddy is not in a hole (check before calling!) &&
882 * (b) the buddy is in the buddy system &&
883 * (c) a page and its buddy have the same order &&
884 * (d) a page and its buddy are in the same zone.
885 *
886 * For recording whether a page is in the buddy system, we set PageBuddy.
887 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
888 *
889 * For recording page's order, we use page_private(page).
890 */
891 static inline bool page_is_buddy(struct page *page, struct page *buddy,
892 unsigned int order)
893 {
894 if (!page_is_guard(buddy) && !PageBuddy(buddy))
895 return false;
896
897 if (buddy_order(buddy) != order)
898 return false;
899
900 /*
901 * zone check is done late to avoid uselessly calculating
902 * zone/node ids for pages that could never merge.
903 */
904 if (page_zone_id(page) != page_zone_id(buddy))
905 return false;
906
907 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
908
909 return true;
910 }
911
912 #ifdef CONFIG_COMPACTION
913 static inline struct capture_control *task_capc(struct zone *zone)
914 {
915 struct capture_control *capc = current->capture_control;
916
917 return unlikely(capc) &&
918 !(current->flags & PF_KTHREAD) &&
919 !capc->page &&
920 capc->cc->zone == zone ? capc : NULL;
921 }
922
923 static inline bool
924 compaction_capture(struct capture_control *capc, struct page *page,
925 int order, int migratetype)
926 {
927 if (!capc || order != capc->cc->order)
928 return false;
929
930 /* Do not accidentally pollute CMA or isolated regions*/
931 if (is_migrate_cma(migratetype) ||
932 is_migrate_isolate(migratetype))
933 return false;
934
935 /*
936 * Do not let lower order allocations pollute a movable pageblock.
937 * This might let an unmovable request use a reclaimable pageblock
938 * and vice-versa but no more than normal fallback logic which can
939 * have trouble finding a high-order free page.
940 */
941 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
942 return false;
943
944 capc->page = page;
945 return true;
946 }
947
948 #else
949 static inline struct capture_control *task_capc(struct zone *zone)
950 {
951 return NULL;
952 }
953
954 static inline bool
955 compaction_capture(struct capture_control *capc, struct page *page,
956 int order, int migratetype)
957 {
958 return false;
959 }
960 #endif /* CONFIG_COMPACTION */
961
962 /* Used for pages not on another list */
963 static inline void add_to_free_list(struct page *page, struct zone *zone,
964 unsigned int order, int migratetype)
965 {
966 struct free_area *area = &zone->free_area[order];
967
968 list_add(&page->lru, &area->free_list[migratetype]);
969 area->nr_free++;
970 }
971
972 /* Used for pages not on another list */
973 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
974 unsigned int order, int migratetype)
975 {
976 struct free_area *area = &zone->free_area[order];
977
978 list_add_tail(&page->lru, &area->free_list[migratetype]);
979 area->nr_free++;
980 }
981
982 /*
983 * Used for pages which are on another list. Move the pages to the tail
984 * of the list - so the moved pages won't immediately be considered for
985 * allocation again (e.g., optimization for memory onlining).
986 */
987 static inline void move_to_free_list(struct page *page, struct zone *zone,
988 unsigned int order, int migratetype)
989 {
990 struct free_area *area = &zone->free_area[order];
991
992 list_move_tail(&page->lru, &area->free_list[migratetype]);
993 }
994
995 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
996 unsigned int order)
997 {
998 /* clear reported state and update reported page count */
999 if (page_reported(page))
1000 __ClearPageReported(page);
1001
1002 list_del(&page->lru);
1003 __ClearPageBuddy(page);
1004 set_page_private(page, 0);
1005 zone->free_area[order].nr_free--;
1006 }
1007
1008 /*
1009 * If this is not the largest possible page, check if the buddy
1010 * of the next-highest order is free. If it is, it's possible
1011 * that pages are being freed that will coalesce soon. In case,
1012 * that is happening, add the free page to the tail of the list
1013 * so it's less likely to be used soon and more likely to be merged
1014 * as a higher order page
1015 */
1016 static inline bool
1017 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1018 struct page *page, unsigned int order)
1019 {
1020 struct page *higher_page, *higher_buddy;
1021 unsigned long combined_pfn;
1022
1023 if (order >= MAX_ORDER - 2)
1024 return false;
1025
1026 combined_pfn = buddy_pfn & pfn;
1027 higher_page = page + (combined_pfn - pfn);
1028 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1029 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1030
1031 return page_is_buddy(higher_page, higher_buddy, order + 1);
1032 }
1033
1034 /*
1035 * Freeing function for a buddy system allocator.
1036 *
1037 * The concept of a buddy system is to maintain direct-mapped table
1038 * (containing bit values) for memory blocks of various "orders".
1039 * The bottom level table contains the map for the smallest allocatable
1040 * units of memory (here, pages), and each level above it describes
1041 * pairs of units from the levels below, hence, "buddies".
1042 * At a high level, all that happens here is marking the table entry
1043 * at the bottom level available, and propagating the changes upward
1044 * as necessary, plus some accounting needed to play nicely with other
1045 * parts of the VM system.
1046 * At each level, we keep a list of pages, which are heads of continuous
1047 * free pages of length of (1 << order) and marked with PageBuddy.
1048 * Page's order is recorded in page_private(page) field.
1049 * So when we are allocating or freeing one, we can derive the state of the
1050 * other. That is, if we allocate a small block, and both were
1051 * free, the remainder of the region must be split into blocks.
1052 * If a block is freed, and its buddy is also free, then this
1053 * triggers coalescing into a block of larger size.
1054 *
1055 * -- nyc
1056 */
1057
1058 static inline void __free_one_page(struct page *page,
1059 unsigned long pfn,
1060 struct zone *zone, unsigned int order,
1061 int migratetype, fpi_t fpi_flags)
1062 {
1063 struct capture_control *capc = task_capc(zone);
1064 unsigned long buddy_pfn;
1065 unsigned long combined_pfn;
1066 unsigned int max_order;
1067 struct page *buddy;
1068 bool to_tail;
1069
1070 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1071
1072 VM_BUG_ON(!zone_is_initialized(zone));
1073 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1074
1075 VM_BUG_ON(migratetype == -1);
1076 if (likely(!is_migrate_isolate(migratetype)))
1077 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1078
1079 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1080 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1081
1082 continue_merging:
1083 while (order < max_order) {
1084 if (compaction_capture(capc, page, order, migratetype)) {
1085 __mod_zone_freepage_state(zone, -(1 << order),
1086 migratetype);
1087 return;
1088 }
1089 buddy_pfn = __find_buddy_pfn(pfn, order);
1090 buddy = page + (buddy_pfn - pfn);
1091
1092 if (!page_is_buddy(page, buddy, order))
1093 goto done_merging;
1094 /*
1095 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1096 * merge with it and move up one order.
1097 */
1098 if (page_is_guard(buddy))
1099 clear_page_guard(zone, buddy, order, migratetype);
1100 else
1101 del_page_from_free_list(buddy, zone, order);
1102 combined_pfn = buddy_pfn & pfn;
1103 page = page + (combined_pfn - pfn);
1104 pfn = combined_pfn;
1105 order++;
1106 }
1107 if (order < MAX_ORDER - 1) {
1108 /* If we are here, it means order is >= pageblock_order.
1109 * We want to prevent merge between freepages on isolate
1110 * pageblock and normal pageblock. Without this, pageblock
1111 * isolation could cause incorrect freepage or CMA accounting.
1112 *
1113 * We don't want to hit this code for the more frequent
1114 * low-order merging.
1115 */
1116 if (unlikely(has_isolate_pageblock(zone))) {
1117 int buddy_mt;
1118
1119 buddy_pfn = __find_buddy_pfn(pfn, order);
1120 buddy = page + (buddy_pfn - pfn);
1121 buddy_mt = get_pageblock_migratetype(buddy);
1122
1123 if (migratetype != buddy_mt
1124 && (is_migrate_isolate(migratetype) ||
1125 is_migrate_isolate(buddy_mt)))
1126 goto done_merging;
1127 }
1128 max_order = order + 1;
1129 goto continue_merging;
1130 }
1131
1132 done_merging:
1133 set_buddy_order(page, order);
1134
1135 if (fpi_flags & FPI_TO_TAIL)
1136 to_tail = true;
1137 else if (is_shuffle_order(order))
1138 to_tail = shuffle_pick_tail();
1139 else
1140 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1141
1142 if (to_tail)
1143 add_to_free_list_tail(page, zone, order, migratetype);
1144 else
1145 add_to_free_list(page, zone, order, migratetype);
1146
1147 /* Notify page reporting subsystem of freed page */
1148 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1149 page_reporting_notify_free(order);
1150 }
1151
1152 /*
1153 * A bad page could be due to a number of fields. Instead of multiple branches,
1154 * try and check multiple fields with one check. The caller must do a detailed
1155 * check if necessary.
1156 */
1157 static inline bool page_expected_state(struct page *page,
1158 unsigned long check_flags)
1159 {
1160 if (unlikely(atomic_read(&page->_mapcount) != -1))
1161 return false;
1162
1163 if (unlikely((unsigned long)page->mapping |
1164 page_ref_count(page) |
1165 #ifdef CONFIG_MEMCG
1166 page->memcg_data |
1167 #endif
1168 (page->flags & check_flags)))
1169 return false;
1170
1171 return true;
1172 }
1173
1174 static const char *page_bad_reason(struct page *page, unsigned long flags)
1175 {
1176 const char *bad_reason = NULL;
1177
1178 if (unlikely(atomic_read(&page->_mapcount) != -1))
1179 bad_reason = "nonzero mapcount";
1180 if (unlikely(page->mapping != NULL))
1181 bad_reason = "non-NULL mapping";
1182 if (unlikely(page_ref_count(page) != 0))
1183 bad_reason = "nonzero _refcount";
1184 if (unlikely(page->flags & flags)) {
1185 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1186 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1187 else
1188 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1189 }
1190 #ifdef CONFIG_MEMCG
1191 if (unlikely(page->memcg_data))
1192 bad_reason = "page still charged to cgroup";
1193 #endif
1194 return bad_reason;
1195 }
1196
1197 static void check_free_page_bad(struct page *page)
1198 {
1199 bad_page(page,
1200 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1201 }
1202
1203 static inline int check_free_page(struct page *page)
1204 {
1205 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1206 return 0;
1207
1208 /* Something has gone sideways, find it */
1209 check_free_page_bad(page);
1210 return 1;
1211 }
1212
1213 static int free_tail_pages_check(struct page *head_page, struct page *page)
1214 {
1215 int ret = 1;
1216
1217 /*
1218 * We rely page->lru.next never has bit 0 set, unless the page
1219 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1220 */
1221 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1222
1223 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1224 ret = 0;
1225 goto out;
1226 }
1227 switch (page - head_page) {
1228 case 1:
1229 /* the first tail page: ->mapping may be compound_mapcount() */
1230 if (unlikely(compound_mapcount(page))) {
1231 bad_page(page, "nonzero compound_mapcount");
1232 goto out;
1233 }
1234 break;
1235 case 2:
1236 /*
1237 * the second tail page: ->mapping is
1238 * deferred_list.next -- ignore value.
1239 */
1240 break;
1241 default:
1242 if (page->mapping != TAIL_MAPPING) {
1243 bad_page(page, "corrupted mapping in tail page");
1244 goto out;
1245 }
1246 break;
1247 }
1248 if (unlikely(!PageTail(page))) {
1249 bad_page(page, "PageTail not set");
1250 goto out;
1251 }
1252 if (unlikely(compound_head(page) != head_page)) {
1253 bad_page(page, "compound_head not consistent");
1254 goto out;
1255 }
1256 ret = 0;
1257 out:
1258 page->mapping = NULL;
1259 clear_compound_head(page);
1260 return ret;
1261 }
1262
1263 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1264 {
1265 int i;
1266
1267 if (zero_tags) {
1268 for (i = 0; i < numpages; i++)
1269 tag_clear_highpage(page + i);
1270 return;
1271 }
1272
1273 /* s390's use of memset() could override KASAN redzones. */
1274 kasan_disable_current();
1275 for (i = 0; i < numpages; i++) {
1276 u8 tag = page_kasan_tag(page + i);
1277 page_kasan_tag_reset(page + i);
1278 clear_highpage(page + i);
1279 page_kasan_tag_set(page + i, tag);
1280 }
1281 kasan_enable_current();
1282 }
1283
1284 static __always_inline bool free_pages_prepare(struct page *page,
1285 unsigned int order, bool check_free, fpi_t fpi_flags)
1286 {
1287 int bad = 0;
1288 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1289
1290 VM_BUG_ON_PAGE(PageTail(page), page);
1291
1292 trace_mm_page_free(page, order);
1293
1294 if (unlikely(PageHWPoison(page)) && !order) {
1295 /*
1296 * Do not let hwpoison pages hit pcplists/buddy
1297 * Untie memcg state and reset page's owner
1298 */
1299 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1300 __memcg_kmem_uncharge_page(page, order);
1301 reset_page_owner(page, order);
1302 return false;
1303 }
1304
1305 /*
1306 * Check tail pages before head page information is cleared to
1307 * avoid checking PageCompound for order-0 pages.
1308 */
1309 if (unlikely(order)) {
1310 bool compound = PageCompound(page);
1311 int i;
1312
1313 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1314
1315 if (compound)
1316 ClearPageDoubleMap(page);
1317 for (i = 1; i < (1 << order); i++) {
1318 if (compound)
1319 bad += free_tail_pages_check(page, page + i);
1320 if (unlikely(check_free_page(page + i))) {
1321 bad++;
1322 continue;
1323 }
1324 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1325 }
1326 }
1327 if (PageMappingFlags(page))
1328 page->mapping = NULL;
1329 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1330 __memcg_kmem_uncharge_page(page, order);
1331 if (check_free)
1332 bad += check_free_page(page);
1333 if (bad)
1334 return false;
1335
1336 page_cpupid_reset_last(page);
1337 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1338 reset_page_owner(page, order);
1339
1340 if (!PageHighMem(page)) {
1341 debug_check_no_locks_freed(page_address(page),
1342 PAGE_SIZE << order);
1343 debug_check_no_obj_freed(page_address(page),
1344 PAGE_SIZE << order);
1345 }
1346
1347 kernel_poison_pages(page, 1 << order);
1348
1349 /*
1350 * As memory initialization might be integrated into KASAN,
1351 * kasan_free_pages and kernel_init_free_pages must be
1352 * kept together to avoid discrepancies in behavior.
1353 *
1354 * With hardware tag-based KASAN, memory tags must be set before the
1355 * page becomes unavailable via debug_pagealloc or arch_free_page.
1356 */
1357 if (kasan_has_integrated_init()) {
1358 if (!skip_kasan_poison)
1359 kasan_free_pages(page, order);
1360 } else {
1361 bool init = want_init_on_free();
1362
1363 if (init)
1364 kernel_init_free_pages(page, 1 << order, false);
1365 if (!skip_kasan_poison)
1366 kasan_poison_pages(page, order, init);
1367 }
1368
1369 /*
1370 * arch_free_page() can make the page's contents inaccessible. s390
1371 * does this. So nothing which can access the page's contents should
1372 * happen after this.
1373 */
1374 arch_free_page(page, order);
1375
1376 debug_pagealloc_unmap_pages(page, 1 << order);
1377
1378 return true;
1379 }
1380
1381 #ifdef CONFIG_DEBUG_VM
1382 /*
1383 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1384 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1385 * moved from pcp lists to free lists.
1386 */
1387 static bool free_pcp_prepare(struct page *page, unsigned int order)
1388 {
1389 return free_pages_prepare(page, order, true, FPI_NONE);
1390 }
1391
1392 static bool bulkfree_pcp_prepare(struct page *page)
1393 {
1394 if (debug_pagealloc_enabled_static())
1395 return check_free_page(page);
1396 else
1397 return false;
1398 }
1399 #else
1400 /*
1401 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1402 * moving from pcp lists to free list in order to reduce overhead. With
1403 * debug_pagealloc enabled, they are checked also immediately when being freed
1404 * to the pcp lists.
1405 */
1406 static bool free_pcp_prepare(struct page *page, unsigned int order)
1407 {
1408 if (debug_pagealloc_enabled_static())
1409 return free_pages_prepare(page, order, true, FPI_NONE);
1410 else
1411 return free_pages_prepare(page, order, false, FPI_NONE);
1412 }
1413
1414 static bool bulkfree_pcp_prepare(struct page *page)
1415 {
1416 return check_free_page(page);
1417 }
1418 #endif /* CONFIG_DEBUG_VM */
1419
1420 static inline void prefetch_buddy(struct page *page)
1421 {
1422 unsigned long pfn = page_to_pfn(page);
1423 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1424 struct page *buddy = page + (buddy_pfn - pfn);
1425
1426 prefetch(buddy);
1427 }
1428
1429 /*
1430 * Frees a number of pages from the PCP lists
1431 * Assumes all pages on list are in same zone, and of same order.
1432 * count is the number of pages to free.
1433 *
1434 * If the zone was previously in an "all pages pinned" state then look to
1435 * see if this freeing clears that state.
1436 *
1437 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1438 * pinned" detection logic.
1439 */
1440 static void free_pcppages_bulk(struct zone *zone, int count,
1441 struct per_cpu_pages *pcp)
1442 {
1443 int pindex = 0;
1444 int batch_free = 0;
1445 int nr_freed = 0;
1446 unsigned int order;
1447 int prefetch_nr = READ_ONCE(pcp->batch);
1448 bool isolated_pageblocks;
1449 struct page *page, *tmp;
1450 LIST_HEAD(head);
1451
1452 /*
1453 * Ensure proper count is passed which otherwise would stuck in the
1454 * below while (list_empty(list)) loop.
1455 */
1456 count = min(pcp->count, count);
1457 while (count > 0) {
1458 struct list_head *list;
1459
1460 /*
1461 * Remove pages from lists in a round-robin fashion. A
1462 * batch_free count is maintained that is incremented when an
1463 * empty list is encountered. This is so more pages are freed
1464 * off fuller lists instead of spinning excessively around empty
1465 * lists
1466 */
1467 do {
1468 batch_free++;
1469 if (++pindex == NR_PCP_LISTS)
1470 pindex = 0;
1471 list = &pcp->lists[pindex];
1472 } while (list_empty(list));
1473
1474 /* This is the only non-empty list. Free them all. */
1475 if (batch_free == NR_PCP_LISTS)
1476 batch_free = count;
1477
1478 order = pindex_to_order(pindex);
1479 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1480 do {
1481 page = list_last_entry(list, struct page, lru);
1482 /* must delete to avoid corrupting pcp list */
1483 list_del(&page->lru);
1484 nr_freed += 1 << order;
1485 count -= 1 << order;
1486
1487 if (bulkfree_pcp_prepare(page))
1488 continue;
1489
1490 /* Encode order with the migratetype */
1491 page->index <<= NR_PCP_ORDER_WIDTH;
1492 page->index |= order;
1493
1494 list_add_tail(&page->lru, &head);
1495
1496 /*
1497 * We are going to put the page back to the global
1498 * pool, prefetch its buddy to speed up later access
1499 * under zone->lock. It is believed the overhead of
1500 * an additional test and calculating buddy_pfn here
1501 * can be offset by reduced memory latency later. To
1502 * avoid excessive prefetching due to large count, only
1503 * prefetch buddy for the first pcp->batch nr of pages.
1504 */
1505 if (prefetch_nr) {
1506 prefetch_buddy(page);
1507 prefetch_nr--;
1508 }
1509 } while (count > 0 && --batch_free && !list_empty(list));
1510 }
1511 pcp->count -= nr_freed;
1512
1513 /*
1514 * local_lock_irq held so equivalent to spin_lock_irqsave for
1515 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1516 */
1517 spin_lock(&zone->lock);
1518 isolated_pageblocks = has_isolate_pageblock(zone);
1519
1520 /*
1521 * Use safe version since after __free_one_page(),
1522 * page->lru.next will not point to original list.
1523 */
1524 list_for_each_entry_safe(page, tmp, &head, lru) {
1525 int mt = get_pcppage_migratetype(page);
1526
1527 /* mt has been encoded with the order (see above) */
1528 order = mt & NR_PCP_ORDER_MASK;
1529 mt >>= NR_PCP_ORDER_WIDTH;
1530
1531 /* MIGRATE_ISOLATE page should not go to pcplists */
1532 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1533 /* Pageblock could have been isolated meanwhile */
1534 if (unlikely(isolated_pageblocks))
1535 mt = get_pageblock_migratetype(page);
1536
1537 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1538 trace_mm_page_pcpu_drain(page, order, mt);
1539 }
1540 spin_unlock(&zone->lock);
1541 }
1542
1543 static void free_one_page(struct zone *zone,
1544 struct page *page, unsigned long pfn,
1545 unsigned int order,
1546 int migratetype, fpi_t fpi_flags)
1547 {
1548 unsigned long flags;
1549
1550 spin_lock_irqsave(&zone->lock, flags);
1551 if (unlikely(has_isolate_pageblock(zone) ||
1552 is_migrate_isolate(migratetype))) {
1553 migratetype = get_pfnblock_migratetype(page, pfn);
1554 }
1555 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1556 spin_unlock_irqrestore(&zone->lock, flags);
1557 }
1558
1559 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1560 unsigned long zone, int nid)
1561 {
1562 mm_zero_struct_page(page);
1563 set_page_links(page, zone, nid, pfn);
1564 init_page_count(page);
1565 page_mapcount_reset(page);
1566 page_cpupid_reset_last(page);
1567 page_kasan_tag_reset(page);
1568
1569 INIT_LIST_HEAD(&page->lru);
1570 #ifdef WANT_PAGE_VIRTUAL
1571 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1572 if (!is_highmem_idx(zone))
1573 set_page_address(page, __va(pfn << PAGE_SHIFT));
1574 #endif
1575 }
1576
1577 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1578 static void __meminit init_reserved_page(unsigned long pfn)
1579 {
1580 pg_data_t *pgdat;
1581 int nid, zid;
1582
1583 if (!early_page_uninitialised(pfn))
1584 return;
1585
1586 nid = early_pfn_to_nid(pfn);
1587 pgdat = NODE_DATA(nid);
1588
1589 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1590 struct zone *zone = &pgdat->node_zones[zid];
1591
1592 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1593 break;
1594 }
1595 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1596 }
1597 #else
1598 static inline void init_reserved_page(unsigned long pfn)
1599 {
1600 }
1601 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1602
1603 /*
1604 * Initialised pages do not have PageReserved set. This function is
1605 * called for each range allocated by the bootmem allocator and
1606 * marks the pages PageReserved. The remaining valid pages are later
1607 * sent to the buddy page allocator.
1608 */
1609 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1610 {
1611 unsigned long start_pfn = PFN_DOWN(start);
1612 unsigned long end_pfn = PFN_UP(end);
1613
1614 for (; start_pfn < end_pfn; start_pfn++) {
1615 if (pfn_valid(start_pfn)) {
1616 struct page *page = pfn_to_page(start_pfn);
1617
1618 init_reserved_page(start_pfn);
1619
1620 /* Avoid false-positive PageTail() */
1621 INIT_LIST_HEAD(&page->lru);
1622
1623 /*
1624 * no need for atomic set_bit because the struct
1625 * page is not visible yet so nobody should
1626 * access it yet.
1627 */
1628 __SetPageReserved(page);
1629 }
1630 }
1631 }
1632
1633 static void __free_pages_ok(struct page *page, unsigned int order,
1634 fpi_t fpi_flags)
1635 {
1636 unsigned long flags;
1637 int migratetype;
1638 unsigned long pfn = page_to_pfn(page);
1639 struct zone *zone = page_zone(page);
1640
1641 if (!free_pages_prepare(page, order, true, fpi_flags))
1642 return;
1643
1644 migratetype = get_pfnblock_migratetype(page, pfn);
1645
1646 spin_lock_irqsave(&zone->lock, flags);
1647 if (unlikely(has_isolate_pageblock(zone) ||
1648 is_migrate_isolate(migratetype))) {
1649 migratetype = get_pfnblock_migratetype(page, pfn);
1650 }
1651 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1652 spin_unlock_irqrestore(&zone->lock, flags);
1653
1654 __count_vm_events(PGFREE, 1 << order);
1655 }
1656
1657 void __free_pages_core(struct page *page, unsigned int order)
1658 {
1659 unsigned int nr_pages = 1 << order;
1660 struct page *p = page;
1661 unsigned int loop;
1662
1663 /*
1664 * When initializing the memmap, __init_single_page() sets the refcount
1665 * of all pages to 1 ("allocated"/"not free"). We have to set the
1666 * refcount of all involved pages to 0.
1667 */
1668 prefetchw(p);
1669 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1670 prefetchw(p + 1);
1671 __ClearPageReserved(p);
1672 set_page_count(p, 0);
1673 }
1674 __ClearPageReserved(p);
1675 set_page_count(p, 0);
1676
1677 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1678
1679 /*
1680 * Bypass PCP and place fresh pages right to the tail, primarily
1681 * relevant for memory onlining.
1682 */
1683 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1684 }
1685
1686 #ifdef CONFIG_NUMA
1687
1688 /*
1689 * During memory init memblocks map pfns to nids. The search is expensive and
1690 * this caches recent lookups. The implementation of __early_pfn_to_nid
1691 * treats start/end as pfns.
1692 */
1693 struct mminit_pfnnid_cache {
1694 unsigned long last_start;
1695 unsigned long last_end;
1696 int last_nid;
1697 };
1698
1699 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1700
1701 /*
1702 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1703 */
1704 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1705 struct mminit_pfnnid_cache *state)
1706 {
1707 unsigned long start_pfn, end_pfn;
1708 int nid;
1709
1710 if (state->last_start <= pfn && pfn < state->last_end)
1711 return state->last_nid;
1712
1713 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1714 if (nid != NUMA_NO_NODE) {
1715 state->last_start = start_pfn;
1716 state->last_end = end_pfn;
1717 state->last_nid = nid;
1718 }
1719
1720 return nid;
1721 }
1722
1723 int __meminit early_pfn_to_nid(unsigned long pfn)
1724 {
1725 static DEFINE_SPINLOCK(early_pfn_lock);
1726 int nid;
1727
1728 spin_lock(&early_pfn_lock);
1729 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1730 if (nid < 0)
1731 nid = first_online_node;
1732 spin_unlock(&early_pfn_lock);
1733
1734 return nid;
1735 }
1736 #endif /* CONFIG_NUMA */
1737
1738 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1739 unsigned int order)
1740 {
1741 if (early_page_uninitialised(pfn))
1742 return;
1743 __free_pages_core(page, order);
1744 }
1745
1746 /*
1747 * Check that the whole (or subset of) a pageblock given by the interval of
1748 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1749 * with the migration of free compaction scanner.
1750 *
1751 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1752 *
1753 * It's possible on some configurations to have a setup like node0 node1 node0
1754 * i.e. it's possible that all pages within a zones range of pages do not
1755 * belong to a single zone. We assume that a border between node0 and node1
1756 * can occur within a single pageblock, but not a node0 node1 node0
1757 * interleaving within a single pageblock. It is therefore sufficient to check
1758 * the first and last page of a pageblock and avoid checking each individual
1759 * page in a pageblock.
1760 */
1761 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1762 unsigned long end_pfn, struct zone *zone)
1763 {
1764 struct page *start_page;
1765 struct page *end_page;
1766
1767 /* end_pfn is one past the range we are checking */
1768 end_pfn--;
1769
1770 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1771 return NULL;
1772
1773 start_page = pfn_to_online_page(start_pfn);
1774 if (!start_page)
1775 return NULL;
1776
1777 if (page_zone(start_page) != zone)
1778 return NULL;
1779
1780 end_page = pfn_to_page(end_pfn);
1781
1782 /* This gives a shorter code than deriving page_zone(end_page) */
1783 if (page_zone_id(start_page) != page_zone_id(end_page))
1784 return NULL;
1785
1786 return start_page;
1787 }
1788
1789 void set_zone_contiguous(struct zone *zone)
1790 {
1791 unsigned long block_start_pfn = zone->zone_start_pfn;
1792 unsigned long block_end_pfn;
1793
1794 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1795 for (; block_start_pfn < zone_end_pfn(zone);
1796 block_start_pfn = block_end_pfn,
1797 block_end_pfn += pageblock_nr_pages) {
1798
1799 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1800
1801 if (!__pageblock_pfn_to_page(block_start_pfn,
1802 block_end_pfn, zone))
1803 return;
1804 cond_resched();
1805 }
1806
1807 /* We confirm that there is no hole */
1808 zone->contiguous = true;
1809 }
1810
1811 void clear_zone_contiguous(struct zone *zone)
1812 {
1813 zone->contiguous = false;
1814 }
1815
1816 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1817 static void __init deferred_free_range(unsigned long pfn,
1818 unsigned long nr_pages)
1819 {
1820 struct page *page;
1821 unsigned long i;
1822
1823 if (!nr_pages)
1824 return;
1825
1826 page = pfn_to_page(pfn);
1827
1828 /* Free a large naturally-aligned chunk if possible */
1829 if (nr_pages == pageblock_nr_pages &&
1830 (pfn & (pageblock_nr_pages - 1)) == 0) {
1831 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1832 __free_pages_core(page, pageblock_order);
1833 return;
1834 }
1835
1836 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1837 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1838 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1839 __free_pages_core(page, 0);
1840 }
1841 }
1842
1843 /* Completion tracking for deferred_init_memmap() threads */
1844 static atomic_t pgdat_init_n_undone __initdata;
1845 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1846
1847 static inline void __init pgdat_init_report_one_done(void)
1848 {
1849 if (atomic_dec_and_test(&pgdat_init_n_undone))
1850 complete(&pgdat_init_all_done_comp);
1851 }
1852
1853 /*
1854 * Returns true if page needs to be initialized or freed to buddy allocator.
1855 *
1856 * First we check if pfn is valid on architectures where it is possible to have
1857 * holes within pageblock_nr_pages. On systems where it is not possible, this
1858 * function is optimized out.
1859 *
1860 * Then, we check if a current large page is valid by only checking the validity
1861 * of the head pfn.
1862 */
1863 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1864 {
1865 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1866 return false;
1867 return true;
1868 }
1869
1870 /*
1871 * Free pages to buddy allocator. Try to free aligned pages in
1872 * pageblock_nr_pages sizes.
1873 */
1874 static void __init deferred_free_pages(unsigned long pfn,
1875 unsigned long end_pfn)
1876 {
1877 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1878 unsigned long nr_free = 0;
1879
1880 for (; pfn < end_pfn; pfn++) {
1881 if (!deferred_pfn_valid(pfn)) {
1882 deferred_free_range(pfn - nr_free, nr_free);
1883 nr_free = 0;
1884 } else if (!(pfn & nr_pgmask)) {
1885 deferred_free_range(pfn - nr_free, nr_free);
1886 nr_free = 1;
1887 } else {
1888 nr_free++;
1889 }
1890 }
1891 /* Free the last block of pages to allocator */
1892 deferred_free_range(pfn - nr_free, nr_free);
1893 }
1894
1895 /*
1896 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1897 * by performing it only once every pageblock_nr_pages.
1898 * Return number of pages initialized.
1899 */
1900 static unsigned long __init deferred_init_pages(struct zone *zone,
1901 unsigned long pfn,
1902 unsigned long end_pfn)
1903 {
1904 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1905 int nid = zone_to_nid(zone);
1906 unsigned long nr_pages = 0;
1907 int zid = zone_idx(zone);
1908 struct page *page = NULL;
1909
1910 for (; pfn < end_pfn; pfn++) {
1911 if (!deferred_pfn_valid(pfn)) {
1912 page = NULL;
1913 continue;
1914 } else if (!page || !(pfn & nr_pgmask)) {
1915 page = pfn_to_page(pfn);
1916 } else {
1917 page++;
1918 }
1919 __init_single_page(page, pfn, zid, nid);
1920 nr_pages++;
1921 }
1922 return (nr_pages);
1923 }
1924
1925 /*
1926 * This function is meant to pre-load the iterator for the zone init.
1927 * Specifically it walks through the ranges until we are caught up to the
1928 * first_init_pfn value and exits there. If we never encounter the value we
1929 * return false indicating there are no valid ranges left.
1930 */
1931 static bool __init
1932 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1933 unsigned long *spfn, unsigned long *epfn,
1934 unsigned long first_init_pfn)
1935 {
1936 u64 j;
1937
1938 /*
1939 * Start out by walking through the ranges in this zone that have
1940 * already been initialized. We don't need to do anything with them
1941 * so we just need to flush them out of the system.
1942 */
1943 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1944 if (*epfn <= first_init_pfn)
1945 continue;
1946 if (*spfn < first_init_pfn)
1947 *spfn = first_init_pfn;
1948 *i = j;
1949 return true;
1950 }
1951
1952 return false;
1953 }
1954
1955 /*
1956 * Initialize and free pages. We do it in two loops: first we initialize
1957 * struct page, then free to buddy allocator, because while we are
1958 * freeing pages we can access pages that are ahead (computing buddy
1959 * page in __free_one_page()).
1960 *
1961 * In order to try and keep some memory in the cache we have the loop
1962 * broken along max page order boundaries. This way we will not cause
1963 * any issues with the buddy page computation.
1964 */
1965 static unsigned long __init
1966 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1967 unsigned long *end_pfn)
1968 {
1969 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1970 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1971 unsigned long nr_pages = 0;
1972 u64 j = *i;
1973
1974 /* First we loop through and initialize the page values */
1975 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1976 unsigned long t;
1977
1978 if (mo_pfn <= *start_pfn)
1979 break;
1980
1981 t = min(mo_pfn, *end_pfn);
1982 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1983
1984 if (mo_pfn < *end_pfn) {
1985 *start_pfn = mo_pfn;
1986 break;
1987 }
1988 }
1989
1990 /* Reset values and now loop through freeing pages as needed */
1991 swap(j, *i);
1992
1993 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1994 unsigned long t;
1995
1996 if (mo_pfn <= spfn)
1997 break;
1998
1999 t = min(mo_pfn, epfn);
2000 deferred_free_pages(spfn, t);
2001
2002 if (mo_pfn <= epfn)
2003 break;
2004 }
2005
2006 return nr_pages;
2007 }
2008
2009 static void __init
2010 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2011 void *arg)
2012 {
2013 unsigned long spfn, epfn;
2014 struct zone *zone = arg;
2015 u64 i;
2016
2017 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2018
2019 /*
2020 * Initialize and free pages in MAX_ORDER sized increments so that we
2021 * can avoid introducing any issues with the buddy allocator.
2022 */
2023 while (spfn < end_pfn) {
2024 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2025 cond_resched();
2026 }
2027 }
2028
2029 /* An arch may override for more concurrency. */
2030 __weak int __init
2031 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2032 {
2033 return 1;
2034 }
2035
2036 /* Initialise remaining memory on a node */
2037 static int __init deferred_init_memmap(void *data)
2038 {
2039 pg_data_t *pgdat = data;
2040 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2041 unsigned long spfn = 0, epfn = 0;
2042 unsigned long first_init_pfn, flags;
2043 unsigned long start = jiffies;
2044 struct zone *zone;
2045 int zid, max_threads;
2046 u64 i;
2047
2048 /* Bind memory initialisation thread to a local node if possible */
2049 if (!cpumask_empty(cpumask))
2050 set_cpus_allowed_ptr(current, cpumask);
2051
2052 pgdat_resize_lock(pgdat, &flags);
2053 first_init_pfn = pgdat->first_deferred_pfn;
2054 if (first_init_pfn == ULONG_MAX) {
2055 pgdat_resize_unlock(pgdat, &flags);
2056 pgdat_init_report_one_done();
2057 return 0;
2058 }
2059
2060 /* Sanity check boundaries */
2061 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2062 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2063 pgdat->first_deferred_pfn = ULONG_MAX;
2064
2065 /*
2066 * Once we unlock here, the zone cannot be grown anymore, thus if an
2067 * interrupt thread must allocate this early in boot, zone must be
2068 * pre-grown prior to start of deferred page initialization.
2069 */
2070 pgdat_resize_unlock(pgdat, &flags);
2071
2072 /* Only the highest zone is deferred so find it */
2073 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2074 zone = pgdat->node_zones + zid;
2075 if (first_init_pfn < zone_end_pfn(zone))
2076 break;
2077 }
2078
2079 /* If the zone is empty somebody else may have cleared out the zone */
2080 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2081 first_init_pfn))
2082 goto zone_empty;
2083
2084 max_threads = deferred_page_init_max_threads(cpumask);
2085
2086 while (spfn < epfn) {
2087 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2088 struct padata_mt_job job = {
2089 .thread_fn = deferred_init_memmap_chunk,
2090 .fn_arg = zone,
2091 .start = spfn,
2092 .size = epfn_align - spfn,
2093 .align = PAGES_PER_SECTION,
2094 .min_chunk = PAGES_PER_SECTION,
2095 .max_threads = max_threads,
2096 };
2097
2098 padata_do_multithreaded(&job);
2099 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2100 epfn_align);
2101 }
2102 zone_empty:
2103 /* Sanity check that the next zone really is unpopulated */
2104 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2105
2106 pr_info("node %d deferred pages initialised in %ums\n",
2107 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2108
2109 pgdat_init_report_one_done();
2110 return 0;
2111 }
2112
2113 /*
2114 * If this zone has deferred pages, try to grow it by initializing enough
2115 * deferred pages to satisfy the allocation specified by order, rounded up to
2116 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2117 * of SECTION_SIZE bytes by initializing struct pages in increments of
2118 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2119 *
2120 * Return true when zone was grown, otherwise return false. We return true even
2121 * when we grow less than requested, to let the caller decide if there are
2122 * enough pages to satisfy the allocation.
2123 *
2124 * Note: We use noinline because this function is needed only during boot, and
2125 * it is called from a __ref function _deferred_grow_zone. This way we are
2126 * making sure that it is not inlined into permanent text section.
2127 */
2128 static noinline bool __init
2129 deferred_grow_zone(struct zone *zone, unsigned int order)
2130 {
2131 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2132 pg_data_t *pgdat = zone->zone_pgdat;
2133 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2134 unsigned long spfn, epfn, flags;
2135 unsigned long nr_pages = 0;
2136 u64 i;
2137
2138 /* Only the last zone may have deferred pages */
2139 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2140 return false;
2141
2142 pgdat_resize_lock(pgdat, &flags);
2143
2144 /*
2145 * If someone grew this zone while we were waiting for spinlock, return
2146 * true, as there might be enough pages already.
2147 */
2148 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2149 pgdat_resize_unlock(pgdat, &flags);
2150 return true;
2151 }
2152
2153 /* If the zone is empty somebody else may have cleared out the zone */
2154 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2155 first_deferred_pfn)) {
2156 pgdat->first_deferred_pfn = ULONG_MAX;
2157 pgdat_resize_unlock(pgdat, &flags);
2158 /* Retry only once. */
2159 return first_deferred_pfn != ULONG_MAX;
2160 }
2161
2162 /*
2163 * Initialize and free pages in MAX_ORDER sized increments so
2164 * that we can avoid introducing any issues with the buddy
2165 * allocator.
2166 */
2167 while (spfn < epfn) {
2168 /* update our first deferred PFN for this section */
2169 first_deferred_pfn = spfn;
2170
2171 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2172 touch_nmi_watchdog();
2173
2174 /* We should only stop along section boundaries */
2175 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2176 continue;
2177
2178 /* If our quota has been met we can stop here */
2179 if (nr_pages >= nr_pages_needed)
2180 break;
2181 }
2182
2183 pgdat->first_deferred_pfn = spfn;
2184 pgdat_resize_unlock(pgdat, &flags);
2185
2186 return nr_pages > 0;
2187 }
2188
2189 /*
2190 * deferred_grow_zone() is __init, but it is called from
2191 * get_page_from_freelist() during early boot until deferred_pages permanently
2192 * disables this call. This is why we have refdata wrapper to avoid warning,
2193 * and to ensure that the function body gets unloaded.
2194 */
2195 static bool __ref
2196 _deferred_grow_zone(struct zone *zone, unsigned int order)
2197 {
2198 return deferred_grow_zone(zone, order);
2199 }
2200
2201 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2202
2203 void __init page_alloc_init_late(void)
2204 {
2205 struct zone *zone;
2206 int nid;
2207
2208 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2209
2210 /* There will be num_node_state(N_MEMORY) threads */
2211 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2212 for_each_node_state(nid, N_MEMORY) {
2213 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2214 }
2215
2216 /* Block until all are initialised */
2217 wait_for_completion(&pgdat_init_all_done_comp);
2218
2219 /*
2220 * We initialized the rest of the deferred pages. Permanently disable
2221 * on-demand struct page initialization.
2222 */
2223 static_branch_disable(&deferred_pages);
2224
2225 /* Reinit limits that are based on free pages after the kernel is up */
2226 files_maxfiles_init();
2227 #endif
2228
2229 buffer_init();
2230
2231 /* Discard memblock private memory */
2232 memblock_discard();
2233
2234 for_each_node_state(nid, N_MEMORY)
2235 shuffle_free_memory(NODE_DATA(nid));
2236
2237 for_each_populated_zone(zone)
2238 set_zone_contiguous(zone);
2239 }
2240
2241 #ifdef CONFIG_CMA
2242 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2243 void __init init_cma_reserved_pageblock(struct page *page)
2244 {
2245 unsigned i = pageblock_nr_pages;
2246 struct page *p = page;
2247
2248 do {
2249 __ClearPageReserved(p);
2250 set_page_count(p, 0);
2251 } while (++p, --i);
2252
2253 set_pageblock_migratetype(page, MIGRATE_CMA);
2254
2255 if (pageblock_order >= MAX_ORDER) {
2256 i = pageblock_nr_pages;
2257 p = page;
2258 do {
2259 set_page_refcounted(p);
2260 __free_pages(p, MAX_ORDER - 1);
2261 p += MAX_ORDER_NR_PAGES;
2262 } while (i -= MAX_ORDER_NR_PAGES);
2263 } else {
2264 set_page_refcounted(page);
2265 __free_pages(page, pageblock_order);
2266 }
2267
2268 adjust_managed_page_count(page, pageblock_nr_pages);
2269 page_zone(page)->cma_pages += pageblock_nr_pages;
2270 }
2271 #endif
2272
2273 /*
2274 * The order of subdivision here is critical for the IO subsystem.
2275 * Please do not alter this order without good reasons and regression
2276 * testing. Specifically, as large blocks of memory are subdivided,
2277 * the order in which smaller blocks are delivered depends on the order
2278 * they're subdivided in this function. This is the primary factor
2279 * influencing the order in which pages are delivered to the IO
2280 * subsystem according to empirical testing, and this is also justified
2281 * by considering the behavior of a buddy system containing a single
2282 * large block of memory acted on by a series of small allocations.
2283 * This behavior is a critical factor in sglist merging's success.
2284 *
2285 * -- nyc
2286 */
2287 static inline void expand(struct zone *zone, struct page *page,
2288 int low, int high, int migratetype)
2289 {
2290 unsigned long size = 1 << high;
2291
2292 while (high > low) {
2293 high--;
2294 size >>= 1;
2295 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2296
2297 /*
2298 * Mark as guard pages (or page), that will allow to
2299 * merge back to allocator when buddy will be freed.
2300 * Corresponding page table entries will not be touched,
2301 * pages will stay not present in virtual address space
2302 */
2303 if (set_page_guard(zone, &page[size], high, migratetype))
2304 continue;
2305
2306 add_to_free_list(&page[size], zone, high, migratetype);
2307 set_buddy_order(&page[size], high);
2308 }
2309 }
2310
2311 static void check_new_page_bad(struct page *page)
2312 {
2313 if (unlikely(page->flags & __PG_HWPOISON)) {
2314 /* Don't complain about hwpoisoned pages */
2315 page_mapcount_reset(page); /* remove PageBuddy */
2316 return;
2317 }
2318
2319 bad_page(page,
2320 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2321 }
2322
2323 /*
2324 * This page is about to be returned from the page allocator
2325 */
2326 static inline int check_new_page(struct page *page)
2327 {
2328 if (likely(page_expected_state(page,
2329 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2330 return 0;
2331
2332 check_new_page_bad(page);
2333 return 1;
2334 }
2335
2336 #ifdef CONFIG_DEBUG_VM
2337 /*
2338 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2339 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2340 * also checked when pcp lists are refilled from the free lists.
2341 */
2342 static inline bool check_pcp_refill(struct page *page)
2343 {
2344 if (debug_pagealloc_enabled_static())
2345 return check_new_page(page);
2346 else
2347 return false;
2348 }
2349
2350 static inline bool check_new_pcp(struct page *page)
2351 {
2352 return check_new_page(page);
2353 }
2354 #else
2355 /*
2356 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2357 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2358 * enabled, they are also checked when being allocated from the pcp lists.
2359 */
2360 static inline bool check_pcp_refill(struct page *page)
2361 {
2362 return check_new_page(page);
2363 }
2364 static inline bool check_new_pcp(struct page *page)
2365 {
2366 if (debug_pagealloc_enabled_static())
2367 return check_new_page(page);
2368 else
2369 return false;
2370 }
2371 #endif /* CONFIG_DEBUG_VM */
2372
2373 static bool check_new_pages(struct page *page, unsigned int order)
2374 {
2375 int i;
2376 for (i = 0; i < (1 << order); i++) {
2377 struct page *p = page + i;
2378
2379 if (unlikely(check_new_page(p)))
2380 return true;
2381 }
2382
2383 return false;
2384 }
2385
2386 inline void post_alloc_hook(struct page *page, unsigned int order,
2387 gfp_t gfp_flags)
2388 {
2389 set_page_private(page, 0);
2390 set_page_refcounted(page);
2391
2392 arch_alloc_page(page, order);
2393 debug_pagealloc_map_pages(page, 1 << order);
2394
2395 /*
2396 * Page unpoisoning must happen before memory initialization.
2397 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2398 * allocations and the page unpoisoning code will complain.
2399 */
2400 kernel_unpoison_pages(page, 1 << order);
2401
2402 /*
2403 * As memory initialization might be integrated into KASAN,
2404 * kasan_alloc_pages and kernel_init_free_pages must be
2405 * kept together to avoid discrepancies in behavior.
2406 */
2407 if (kasan_has_integrated_init()) {
2408 kasan_alloc_pages(page, order, gfp_flags);
2409 } else {
2410 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2411
2412 kasan_unpoison_pages(page, order, init);
2413 if (init)
2414 kernel_init_free_pages(page, 1 << order,
2415 gfp_flags & __GFP_ZEROTAGS);
2416 }
2417
2418 set_page_owner(page, order, gfp_flags);
2419 }
2420
2421 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2422 unsigned int alloc_flags)
2423 {
2424 post_alloc_hook(page, order, gfp_flags);
2425
2426 if (order && (gfp_flags & __GFP_COMP))
2427 prep_compound_page(page, order);
2428
2429 /*
2430 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2431 * allocate the page. The expectation is that the caller is taking
2432 * steps that will free more memory. The caller should avoid the page
2433 * being used for !PFMEMALLOC purposes.
2434 */
2435 if (alloc_flags & ALLOC_NO_WATERMARKS)
2436 set_page_pfmemalloc(page);
2437 else
2438 clear_page_pfmemalloc(page);
2439 }
2440
2441 /*
2442 * Go through the free lists for the given migratetype and remove
2443 * the smallest available page from the freelists
2444 */
2445 static __always_inline
2446 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2447 int migratetype)
2448 {
2449 unsigned int current_order;
2450 struct free_area *area;
2451 struct page *page;
2452
2453 /* Find a page of the appropriate size in the preferred list */
2454 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2455 area = &(zone->free_area[current_order]);
2456 page = get_page_from_free_area(area, migratetype);
2457 if (!page)
2458 continue;
2459 del_page_from_free_list(page, zone, current_order);
2460 expand(zone, page, order, current_order, migratetype);
2461 set_pcppage_migratetype(page, migratetype);
2462 return page;
2463 }
2464
2465 return NULL;
2466 }
2467
2468
2469 /*
2470 * This array describes the order lists are fallen back to when
2471 * the free lists for the desirable migrate type are depleted
2472 */
2473 static int fallbacks[MIGRATE_TYPES][3] = {
2474 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2475 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2476 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2477 #ifdef CONFIG_CMA
2478 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2479 #endif
2480 #ifdef CONFIG_MEMORY_ISOLATION
2481 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2482 #endif
2483 };
2484
2485 #ifdef CONFIG_CMA
2486 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2487 unsigned int order)
2488 {
2489 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2490 }
2491 #else
2492 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2493 unsigned int order) { return NULL; }
2494 #endif
2495
2496 /*
2497 * Move the free pages in a range to the freelist tail of the requested type.
2498 * Note that start_page and end_pages are not aligned on a pageblock
2499 * boundary. If alignment is required, use move_freepages_block()
2500 */
2501 static int move_freepages(struct zone *zone,
2502 unsigned long start_pfn, unsigned long end_pfn,
2503 int migratetype, int *num_movable)
2504 {
2505 struct page *page;
2506 unsigned long pfn;
2507 unsigned int order;
2508 int pages_moved = 0;
2509
2510 for (pfn = start_pfn; pfn <= end_pfn;) {
2511 page = pfn_to_page(pfn);
2512 if (!PageBuddy(page)) {
2513 /*
2514 * We assume that pages that could be isolated for
2515 * migration are movable. But we don't actually try
2516 * isolating, as that would be expensive.
2517 */
2518 if (num_movable &&
2519 (PageLRU(page) || __PageMovable(page)))
2520 (*num_movable)++;
2521 pfn++;
2522 continue;
2523 }
2524
2525 /* Make sure we are not inadvertently changing nodes */
2526 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2527 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2528
2529 order = buddy_order(page);
2530 move_to_free_list(page, zone, order, migratetype);
2531 pfn += 1 << order;
2532 pages_moved += 1 << order;
2533 }
2534
2535 return pages_moved;
2536 }
2537
2538 int move_freepages_block(struct zone *zone, struct page *page,
2539 int migratetype, int *num_movable)
2540 {
2541 unsigned long start_pfn, end_pfn, pfn;
2542
2543 if (num_movable)
2544 *num_movable = 0;
2545
2546 pfn = page_to_pfn(page);
2547 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2548 end_pfn = start_pfn + pageblock_nr_pages - 1;
2549
2550 /* Do not cross zone boundaries */
2551 if (!zone_spans_pfn(zone, start_pfn))
2552 start_pfn = pfn;
2553 if (!zone_spans_pfn(zone, end_pfn))
2554 return 0;
2555
2556 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2557 num_movable);
2558 }
2559
2560 static void change_pageblock_range(struct page *pageblock_page,
2561 int start_order, int migratetype)
2562 {
2563 int nr_pageblocks = 1 << (start_order - pageblock_order);
2564
2565 while (nr_pageblocks--) {
2566 set_pageblock_migratetype(pageblock_page, migratetype);
2567 pageblock_page += pageblock_nr_pages;
2568 }
2569 }
2570
2571 /*
2572 * When we are falling back to another migratetype during allocation, try to
2573 * steal extra free pages from the same pageblocks to satisfy further
2574 * allocations, instead of polluting multiple pageblocks.
2575 *
2576 * If we are stealing a relatively large buddy page, it is likely there will
2577 * be more free pages in the pageblock, so try to steal them all. For
2578 * reclaimable and unmovable allocations, we steal regardless of page size,
2579 * as fragmentation caused by those allocations polluting movable pageblocks
2580 * is worse than movable allocations stealing from unmovable and reclaimable
2581 * pageblocks.
2582 */
2583 static bool can_steal_fallback(unsigned int order, int start_mt)
2584 {
2585 /*
2586 * Leaving this order check is intended, although there is
2587 * relaxed order check in next check. The reason is that
2588 * we can actually steal whole pageblock if this condition met,
2589 * but, below check doesn't guarantee it and that is just heuristic
2590 * so could be changed anytime.
2591 */
2592 if (order >= pageblock_order)
2593 return true;
2594
2595 if (order >= pageblock_order / 2 ||
2596 start_mt == MIGRATE_RECLAIMABLE ||
2597 start_mt == MIGRATE_UNMOVABLE ||
2598 page_group_by_mobility_disabled)
2599 return true;
2600
2601 return false;
2602 }
2603
2604 static inline bool boost_watermark(struct zone *zone)
2605 {
2606 unsigned long max_boost;
2607
2608 if (!watermark_boost_factor)
2609 return false;
2610 /*
2611 * Don't bother in zones that are unlikely to produce results.
2612 * On small machines, including kdump capture kernels running
2613 * in a small area, boosting the watermark can cause an out of
2614 * memory situation immediately.
2615 */
2616 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2617 return false;
2618
2619 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2620 watermark_boost_factor, 10000);
2621
2622 /*
2623 * high watermark may be uninitialised if fragmentation occurs
2624 * very early in boot so do not boost. We do not fall
2625 * through and boost by pageblock_nr_pages as failing
2626 * allocations that early means that reclaim is not going
2627 * to help and it may even be impossible to reclaim the
2628 * boosted watermark resulting in a hang.
2629 */
2630 if (!max_boost)
2631 return false;
2632
2633 max_boost = max(pageblock_nr_pages, max_boost);
2634
2635 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2636 max_boost);
2637
2638 return true;
2639 }
2640
2641 /*
2642 * This function implements actual steal behaviour. If order is large enough,
2643 * we can steal whole pageblock. If not, we first move freepages in this
2644 * pageblock to our migratetype and determine how many already-allocated pages
2645 * are there in the pageblock with a compatible migratetype. If at least half
2646 * of pages are free or compatible, we can change migratetype of the pageblock
2647 * itself, so pages freed in the future will be put on the correct free list.
2648 */
2649 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2650 unsigned int alloc_flags, int start_type, bool whole_block)
2651 {
2652 unsigned int current_order = buddy_order(page);
2653 int free_pages, movable_pages, alike_pages;
2654 int old_block_type;
2655
2656 old_block_type = get_pageblock_migratetype(page);
2657
2658 /*
2659 * This can happen due to races and we want to prevent broken
2660 * highatomic accounting.
2661 */
2662 if (is_migrate_highatomic(old_block_type))
2663 goto single_page;
2664
2665 /* Take ownership for orders >= pageblock_order */
2666 if (current_order >= pageblock_order) {
2667 change_pageblock_range(page, current_order, start_type);
2668 goto single_page;
2669 }
2670
2671 /*
2672 * Boost watermarks to increase reclaim pressure to reduce the
2673 * likelihood of future fallbacks. Wake kswapd now as the node
2674 * may be balanced overall and kswapd will not wake naturally.
2675 */
2676 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2677 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2678
2679 /* We are not allowed to try stealing from the whole block */
2680 if (!whole_block)
2681 goto single_page;
2682
2683 free_pages = move_freepages_block(zone, page, start_type,
2684 &movable_pages);
2685 /*
2686 * Determine how many pages are compatible with our allocation.
2687 * For movable allocation, it's the number of movable pages which
2688 * we just obtained. For other types it's a bit more tricky.
2689 */
2690 if (start_type == MIGRATE_MOVABLE) {
2691 alike_pages = movable_pages;
2692 } else {
2693 /*
2694 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2695 * to MOVABLE pageblock, consider all non-movable pages as
2696 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2697 * vice versa, be conservative since we can't distinguish the
2698 * exact migratetype of non-movable pages.
2699 */
2700 if (old_block_type == MIGRATE_MOVABLE)
2701 alike_pages = pageblock_nr_pages
2702 - (free_pages + movable_pages);
2703 else
2704 alike_pages = 0;
2705 }
2706
2707 /* moving whole block can fail due to zone boundary conditions */
2708 if (!free_pages)
2709 goto single_page;
2710
2711 /*
2712 * If a sufficient number of pages in the block are either free or of
2713 * comparable migratability as our allocation, claim the whole block.
2714 */
2715 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2716 page_group_by_mobility_disabled)
2717 set_pageblock_migratetype(page, start_type);
2718
2719 return;
2720
2721 single_page:
2722 move_to_free_list(page, zone, current_order, start_type);
2723 }
2724
2725 /*
2726 * Check whether there is a suitable fallback freepage with requested order.
2727 * If only_stealable is true, this function returns fallback_mt only if
2728 * we can steal other freepages all together. This would help to reduce
2729 * fragmentation due to mixed migratetype pages in one pageblock.
2730 */
2731 int find_suitable_fallback(struct free_area *area, unsigned int order,
2732 int migratetype, bool only_stealable, bool *can_steal)
2733 {
2734 int i;
2735 int fallback_mt;
2736
2737 if (area->nr_free == 0)
2738 return -1;
2739
2740 *can_steal = false;
2741 for (i = 0;; i++) {
2742 fallback_mt = fallbacks[migratetype][i];
2743 if (fallback_mt == MIGRATE_TYPES)
2744 break;
2745
2746 if (free_area_empty(area, fallback_mt))
2747 continue;
2748
2749 if (can_steal_fallback(order, migratetype))
2750 *can_steal = true;
2751
2752 if (!only_stealable)
2753 return fallback_mt;
2754
2755 if (*can_steal)
2756 return fallback_mt;
2757 }
2758
2759 return -1;
2760 }
2761
2762 /*
2763 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2764 * there are no empty page blocks that contain a page with a suitable order
2765 */
2766 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2767 unsigned int alloc_order)
2768 {
2769 int mt;
2770 unsigned long max_managed, flags;
2771
2772 /*
2773 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2774 * Check is race-prone but harmless.
2775 */
2776 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2777 if (zone->nr_reserved_highatomic >= max_managed)
2778 return;
2779
2780 spin_lock_irqsave(&zone->lock, flags);
2781
2782 /* Recheck the nr_reserved_highatomic limit under the lock */
2783 if (zone->nr_reserved_highatomic >= max_managed)
2784 goto out_unlock;
2785
2786 /* Yoink! */
2787 mt = get_pageblock_migratetype(page);
2788 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2789 && !is_migrate_cma(mt)) {
2790 zone->nr_reserved_highatomic += pageblock_nr_pages;
2791 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2792 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2793 }
2794
2795 out_unlock:
2796 spin_unlock_irqrestore(&zone->lock, flags);
2797 }
2798
2799 /*
2800 * Used when an allocation is about to fail under memory pressure. This
2801 * potentially hurts the reliability of high-order allocations when under
2802 * intense memory pressure but failed atomic allocations should be easier
2803 * to recover from than an OOM.
2804 *
2805 * If @force is true, try to unreserve a pageblock even though highatomic
2806 * pageblock is exhausted.
2807 */
2808 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2809 bool force)
2810 {
2811 struct zonelist *zonelist = ac->zonelist;
2812 unsigned long flags;
2813 struct zoneref *z;
2814 struct zone *zone;
2815 struct page *page;
2816 int order;
2817 bool ret;
2818
2819 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2820 ac->nodemask) {
2821 /*
2822 * Preserve at least one pageblock unless memory pressure
2823 * is really high.
2824 */
2825 if (!force && zone->nr_reserved_highatomic <=
2826 pageblock_nr_pages)
2827 continue;
2828
2829 spin_lock_irqsave(&zone->lock, flags);
2830 for (order = 0; order < MAX_ORDER; order++) {
2831 struct free_area *area = &(zone->free_area[order]);
2832
2833 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2834 if (!page)
2835 continue;
2836
2837 /*
2838 * In page freeing path, migratetype change is racy so
2839 * we can counter several free pages in a pageblock
2840 * in this loop although we changed the pageblock type
2841 * from highatomic to ac->migratetype. So we should
2842 * adjust the count once.
2843 */
2844 if (is_migrate_highatomic_page(page)) {
2845 /*
2846 * It should never happen but changes to
2847 * locking could inadvertently allow a per-cpu
2848 * drain to add pages to MIGRATE_HIGHATOMIC
2849 * while unreserving so be safe and watch for
2850 * underflows.
2851 */
2852 zone->nr_reserved_highatomic -= min(
2853 pageblock_nr_pages,
2854 zone->nr_reserved_highatomic);
2855 }
2856
2857 /*
2858 * Convert to ac->migratetype and avoid the normal
2859 * pageblock stealing heuristics. Minimally, the caller
2860 * is doing the work and needs the pages. More
2861 * importantly, if the block was always converted to
2862 * MIGRATE_UNMOVABLE or another type then the number
2863 * of pageblocks that cannot be completely freed
2864 * may increase.
2865 */
2866 set_pageblock_migratetype(page, ac->migratetype);
2867 ret = move_freepages_block(zone, page, ac->migratetype,
2868 NULL);
2869 if (ret) {
2870 spin_unlock_irqrestore(&zone->lock, flags);
2871 return ret;
2872 }
2873 }
2874 spin_unlock_irqrestore(&zone->lock, flags);
2875 }
2876
2877 return false;
2878 }
2879
2880 /*
2881 * Try finding a free buddy page on the fallback list and put it on the free
2882 * list of requested migratetype, possibly along with other pages from the same
2883 * block, depending on fragmentation avoidance heuristics. Returns true if
2884 * fallback was found so that __rmqueue_smallest() can grab it.
2885 *
2886 * The use of signed ints for order and current_order is a deliberate
2887 * deviation from the rest of this file, to make the for loop
2888 * condition simpler.
2889 */
2890 static __always_inline bool
2891 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2892 unsigned int alloc_flags)
2893 {
2894 struct free_area *area;
2895 int current_order;
2896 int min_order = order;
2897 struct page *page;
2898 int fallback_mt;
2899 bool can_steal;
2900
2901 /*
2902 * Do not steal pages from freelists belonging to other pageblocks
2903 * i.e. orders < pageblock_order. If there are no local zones free,
2904 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2905 */
2906 if (alloc_flags & ALLOC_NOFRAGMENT)
2907 min_order = pageblock_order;
2908
2909 /*
2910 * Find the largest available free page in the other list. This roughly
2911 * approximates finding the pageblock with the most free pages, which
2912 * would be too costly to do exactly.
2913 */
2914 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2915 --current_order) {
2916 area = &(zone->free_area[current_order]);
2917 fallback_mt = find_suitable_fallback(area, current_order,
2918 start_migratetype, false, &can_steal);
2919 if (fallback_mt == -1)
2920 continue;
2921
2922 /*
2923 * We cannot steal all free pages from the pageblock and the
2924 * requested migratetype is movable. In that case it's better to
2925 * steal and split the smallest available page instead of the
2926 * largest available page, because even if the next movable
2927 * allocation falls back into a different pageblock than this
2928 * one, it won't cause permanent fragmentation.
2929 */
2930 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2931 && current_order > order)
2932 goto find_smallest;
2933
2934 goto do_steal;
2935 }
2936
2937 return false;
2938
2939 find_smallest:
2940 for (current_order = order; current_order < MAX_ORDER;
2941 current_order++) {
2942 area = &(zone->free_area[current_order]);
2943 fallback_mt = find_suitable_fallback(area, current_order,
2944 start_migratetype, false, &can_steal);
2945 if (fallback_mt != -1)
2946 break;
2947 }
2948
2949 /*
2950 * This should not happen - we already found a suitable fallback
2951 * when looking for the largest page.
2952 */
2953 VM_BUG_ON(current_order == MAX_ORDER);
2954
2955 do_steal:
2956 page = get_page_from_free_area(area, fallback_mt);
2957
2958 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2959 can_steal);
2960
2961 trace_mm_page_alloc_extfrag(page, order, current_order,
2962 start_migratetype, fallback_mt);
2963
2964 return true;
2965
2966 }
2967
2968 /*
2969 * Do the hard work of removing an element from the buddy allocator.
2970 * Call me with the zone->lock already held.
2971 */
2972 static __always_inline struct page *
2973 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2974 unsigned int alloc_flags)
2975 {
2976 struct page *page;
2977
2978 if (IS_ENABLED(CONFIG_CMA)) {
2979 /*
2980 * Balance movable allocations between regular and CMA areas by
2981 * allocating from CMA when over half of the zone's free memory
2982 * is in the CMA area.
2983 */
2984 if (alloc_flags & ALLOC_CMA &&
2985 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2986 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2987 page = __rmqueue_cma_fallback(zone, order);
2988 if (page)
2989 goto out;
2990 }
2991 }
2992 retry:
2993 page = __rmqueue_smallest(zone, order, migratetype);
2994 if (unlikely(!page)) {
2995 if (alloc_flags & ALLOC_CMA)
2996 page = __rmqueue_cma_fallback(zone, order);
2997
2998 if (!page && __rmqueue_fallback(zone, order, migratetype,
2999 alloc_flags))
3000 goto retry;
3001 }
3002 out:
3003 if (page)
3004 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3005 return page;
3006 }
3007
3008 /*
3009 * Obtain a specified number of elements from the buddy allocator, all under
3010 * a single hold of the lock, for efficiency. Add them to the supplied list.
3011 * Returns the number of new pages which were placed at *list.
3012 */
3013 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3014 unsigned long count, struct list_head *list,
3015 int migratetype, unsigned int alloc_flags)
3016 {
3017 int i, allocated = 0;
3018
3019 /*
3020 * local_lock_irq held so equivalent to spin_lock_irqsave for
3021 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3022 */
3023 spin_lock(&zone->lock);
3024 for (i = 0; i < count; ++i) {
3025 struct page *page = __rmqueue(zone, order, migratetype,
3026 alloc_flags);
3027 if (unlikely(page == NULL))
3028 break;
3029
3030 if (unlikely(check_pcp_refill(page)))
3031 continue;
3032
3033 /*
3034 * Split buddy pages returned by expand() are received here in
3035 * physical page order. The page is added to the tail of
3036 * caller's list. From the callers perspective, the linked list
3037 * is ordered by page number under some conditions. This is
3038 * useful for IO devices that can forward direction from the
3039 * head, thus also in the physical page order. This is useful
3040 * for IO devices that can merge IO requests if the physical
3041 * pages are ordered properly.
3042 */
3043 list_add_tail(&page->lru, list);
3044 allocated++;
3045 if (is_migrate_cma(get_pcppage_migratetype(page)))
3046 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3047 -(1 << order));
3048 }
3049
3050 /*
3051 * i pages were removed from the buddy list even if some leak due
3052 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3053 * on i. Do not confuse with 'allocated' which is the number of
3054 * pages added to the pcp list.
3055 */
3056 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3057 spin_unlock(&zone->lock);
3058 return allocated;
3059 }
3060
3061 #ifdef CONFIG_NUMA
3062 /*
3063 * Called from the vmstat counter updater to drain pagesets of this
3064 * currently executing processor on remote nodes after they have
3065 * expired.
3066 *
3067 * Note that this function must be called with the thread pinned to
3068 * a single processor.
3069 */
3070 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3071 {
3072 unsigned long flags;
3073 int to_drain, batch;
3074
3075 local_lock_irqsave(&pagesets.lock, flags);
3076 batch = READ_ONCE(pcp->batch);
3077 to_drain = min(pcp->count, batch);
3078 if (to_drain > 0)
3079 free_pcppages_bulk(zone, to_drain, pcp);
3080 local_unlock_irqrestore(&pagesets.lock, flags);
3081 }
3082 #endif
3083
3084 /*
3085 * Drain pcplists of the indicated processor and zone.
3086 *
3087 * The processor must either be the current processor and the
3088 * thread pinned to the current processor or a processor that
3089 * is not online.
3090 */
3091 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3092 {
3093 unsigned long flags;
3094 struct per_cpu_pages *pcp;
3095
3096 local_lock_irqsave(&pagesets.lock, flags);
3097
3098 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3099 if (pcp->count)
3100 free_pcppages_bulk(zone, pcp->count, pcp);
3101
3102 local_unlock_irqrestore(&pagesets.lock, flags);
3103 }
3104
3105 /*
3106 * Drain pcplists of all zones on the indicated processor.
3107 *
3108 * The processor must either be the current processor and the
3109 * thread pinned to the current processor or a processor that
3110 * is not online.
3111 */
3112 static void drain_pages(unsigned int cpu)
3113 {
3114 struct zone *zone;
3115
3116 for_each_populated_zone(zone) {
3117 drain_pages_zone(cpu, zone);
3118 }
3119 }
3120
3121 /*
3122 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3123 *
3124 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3125 * the single zone's pages.
3126 */
3127 void drain_local_pages(struct zone *zone)
3128 {
3129 int cpu = smp_processor_id();
3130
3131 if (zone)
3132 drain_pages_zone(cpu, zone);
3133 else
3134 drain_pages(cpu);
3135 }
3136
3137 static void drain_local_pages_wq(struct work_struct *work)
3138 {
3139 struct pcpu_drain *drain;
3140
3141 drain = container_of(work, struct pcpu_drain, work);
3142
3143 /*
3144 * drain_all_pages doesn't use proper cpu hotplug protection so
3145 * we can race with cpu offline when the WQ can move this from
3146 * a cpu pinned worker to an unbound one. We can operate on a different
3147 * cpu which is alright but we also have to make sure to not move to
3148 * a different one.
3149 */
3150 preempt_disable();
3151 drain_local_pages(drain->zone);
3152 preempt_enable();
3153 }
3154
3155 /*
3156 * The implementation of drain_all_pages(), exposing an extra parameter to
3157 * drain on all cpus.
3158 *
3159 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3160 * not empty. The check for non-emptiness can however race with a free to
3161 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3162 * that need the guarantee that every CPU has drained can disable the
3163 * optimizing racy check.
3164 */
3165 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3166 {
3167 int cpu;
3168
3169 /*
3170 * Allocate in the BSS so we won't require allocation in
3171 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3172 */
3173 static cpumask_t cpus_with_pcps;
3174
3175 /*
3176 * Make sure nobody triggers this path before mm_percpu_wq is fully
3177 * initialized.
3178 */
3179 if (WARN_ON_ONCE(!mm_percpu_wq))
3180 return;
3181
3182 /*
3183 * Do not drain if one is already in progress unless it's specific to
3184 * a zone. Such callers are primarily CMA and memory hotplug and need
3185 * the drain to be complete when the call returns.
3186 */
3187 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3188 if (!zone)
3189 return;
3190 mutex_lock(&pcpu_drain_mutex);
3191 }
3192
3193 /*
3194 * We don't care about racing with CPU hotplug event
3195 * as offline notification will cause the notified
3196 * cpu to drain that CPU pcps and on_each_cpu_mask
3197 * disables preemption as part of its processing
3198 */
3199 for_each_online_cpu(cpu) {
3200 struct per_cpu_pages *pcp;
3201 struct zone *z;
3202 bool has_pcps = false;
3203
3204 if (force_all_cpus) {
3205 /*
3206 * The pcp.count check is racy, some callers need a
3207 * guarantee that no cpu is missed.
3208 */
3209 has_pcps = true;
3210 } else if (zone) {
3211 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3212 if (pcp->count)
3213 has_pcps = true;
3214 } else {
3215 for_each_populated_zone(z) {
3216 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3217 if (pcp->count) {
3218 has_pcps = true;
3219 break;
3220 }
3221 }
3222 }
3223
3224 if (has_pcps)
3225 cpumask_set_cpu(cpu, &cpus_with_pcps);
3226 else
3227 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3228 }
3229
3230 for_each_cpu(cpu, &cpus_with_pcps) {
3231 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3232
3233 drain->zone = zone;
3234 INIT_WORK(&drain->work, drain_local_pages_wq);
3235 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3236 }
3237 for_each_cpu(cpu, &cpus_with_pcps)
3238 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3239
3240 mutex_unlock(&pcpu_drain_mutex);
3241 }
3242
3243 /*
3244 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3245 *
3246 * When zone parameter is non-NULL, spill just the single zone's pages.
3247 *
3248 * Note that this can be extremely slow as the draining happens in a workqueue.
3249 */
3250 void drain_all_pages(struct zone *zone)
3251 {
3252 __drain_all_pages(zone, false);
3253 }
3254
3255 #ifdef CONFIG_HIBERNATION
3256
3257 /*
3258 * Touch the watchdog for every WD_PAGE_COUNT pages.
3259 */
3260 #define WD_PAGE_COUNT (128*1024)
3261
3262 void mark_free_pages(struct zone *zone)
3263 {
3264 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3265 unsigned long flags;
3266 unsigned int order, t;
3267 struct page *page;
3268
3269 if (zone_is_empty(zone))
3270 return;
3271
3272 spin_lock_irqsave(&zone->lock, flags);
3273
3274 max_zone_pfn = zone_end_pfn(zone);
3275 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3276 if (pfn_valid(pfn)) {
3277 page = pfn_to_page(pfn);
3278
3279 if (!--page_count) {
3280 touch_nmi_watchdog();
3281 page_count = WD_PAGE_COUNT;
3282 }
3283
3284 if (page_zone(page) != zone)
3285 continue;
3286
3287 if (!swsusp_page_is_forbidden(page))
3288 swsusp_unset_page_free(page);
3289 }
3290
3291 for_each_migratetype_order(order, t) {
3292 list_for_each_entry(page,
3293 &zone->free_area[order].free_list[t], lru) {
3294 unsigned long i;
3295
3296 pfn = page_to_pfn(page);
3297 for (i = 0; i < (1UL << order); i++) {
3298 if (!--page_count) {
3299 touch_nmi_watchdog();
3300 page_count = WD_PAGE_COUNT;
3301 }
3302 swsusp_set_page_free(pfn_to_page(pfn + i));
3303 }
3304 }
3305 }
3306 spin_unlock_irqrestore(&zone->lock, flags);
3307 }
3308 #endif /* CONFIG_PM */
3309
3310 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3311 unsigned int order)
3312 {
3313 int migratetype;
3314
3315 if (!free_pcp_prepare(page, order))
3316 return false;
3317
3318 migratetype = get_pfnblock_migratetype(page, pfn);
3319 set_pcppage_migratetype(page, migratetype);
3320 return true;
3321 }
3322
3323 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3324 {
3325 int min_nr_free, max_nr_free;
3326
3327 /* Check for PCP disabled or boot pageset */
3328 if (unlikely(high < batch))
3329 return 1;
3330
3331 /* Leave at least pcp->batch pages on the list */
3332 min_nr_free = batch;
3333 max_nr_free = high - batch;
3334
3335 /*
3336 * Double the number of pages freed each time there is subsequent
3337 * freeing of pages without any allocation.
3338 */
3339 batch <<= pcp->free_factor;
3340 if (batch < max_nr_free)
3341 pcp->free_factor++;
3342 batch = clamp(batch, min_nr_free, max_nr_free);
3343
3344 return batch;
3345 }
3346
3347 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3348 {
3349 int high = READ_ONCE(pcp->high);
3350
3351 if (unlikely(!high))
3352 return 0;
3353
3354 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3355 return high;
3356
3357 /*
3358 * If reclaim is active, limit the number of pages that can be
3359 * stored on pcp lists
3360 */
3361 return min(READ_ONCE(pcp->batch) << 2, high);
3362 }
3363
3364 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3365 int migratetype, unsigned int order)
3366 {
3367 struct zone *zone = page_zone(page);
3368 struct per_cpu_pages *pcp;
3369 int high;
3370 int pindex;
3371
3372 __count_vm_event(PGFREE);
3373 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3374 pindex = order_to_pindex(migratetype, order);
3375 list_add(&page->lru, &pcp->lists[pindex]);
3376 pcp->count += 1 << order;
3377 high = nr_pcp_high(pcp, zone);
3378 if (pcp->count >= high) {
3379 int batch = READ_ONCE(pcp->batch);
3380
3381 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3382 }
3383 }
3384
3385 /*
3386 * Free a pcp page
3387 */
3388 void free_unref_page(struct page *page, unsigned int order)
3389 {
3390 unsigned long flags;
3391 unsigned long pfn = page_to_pfn(page);
3392 int migratetype;
3393
3394 if (!free_unref_page_prepare(page, pfn, order))
3395 return;
3396
3397 /*
3398 * We only track unmovable, reclaimable and movable on pcp lists.
3399 * Place ISOLATE pages on the isolated list because they are being
3400 * offlined but treat HIGHATOMIC as movable pages so we can get those
3401 * areas back if necessary. Otherwise, we may have to free
3402 * excessively into the page allocator
3403 */
3404 migratetype = get_pcppage_migratetype(page);
3405 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3406 if (unlikely(is_migrate_isolate(migratetype))) {
3407 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3408 return;
3409 }
3410 migratetype = MIGRATE_MOVABLE;
3411 }
3412
3413 local_lock_irqsave(&pagesets.lock, flags);
3414 free_unref_page_commit(page, pfn, migratetype, order);
3415 local_unlock_irqrestore(&pagesets.lock, flags);
3416 }
3417
3418 /*
3419 * Free a list of 0-order pages
3420 */
3421 void free_unref_page_list(struct list_head *list)
3422 {
3423 struct page *page, *next;
3424 unsigned long flags, pfn;
3425 int batch_count = 0;
3426 int migratetype;
3427
3428 /* Prepare pages for freeing */
3429 list_for_each_entry_safe(page, next, list, lru) {
3430 pfn = page_to_pfn(page);
3431 if (!free_unref_page_prepare(page, pfn, 0)) {
3432 list_del(&page->lru);
3433 continue;
3434 }
3435
3436 /*
3437 * Free isolated pages directly to the allocator, see
3438 * comment in free_unref_page.
3439 */
3440 migratetype = get_pcppage_migratetype(page);
3441 if (unlikely(is_migrate_isolate(migratetype))) {
3442 list_del(&page->lru);
3443 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3444 continue;
3445 }
3446
3447 set_page_private(page, pfn);
3448 }
3449
3450 local_lock_irqsave(&pagesets.lock, flags);
3451 list_for_each_entry_safe(page, next, list, lru) {
3452 pfn = page_private(page);
3453 set_page_private(page, 0);
3454
3455 /*
3456 * Non-isolated types over MIGRATE_PCPTYPES get added
3457 * to the MIGRATE_MOVABLE pcp list.
3458 */
3459 migratetype = get_pcppage_migratetype(page);
3460 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3461 migratetype = MIGRATE_MOVABLE;
3462
3463 trace_mm_page_free_batched(page);
3464 free_unref_page_commit(page, pfn, migratetype, 0);
3465
3466 /*
3467 * Guard against excessive IRQ disabled times when we get
3468 * a large list of pages to free.
3469 */
3470 if (++batch_count == SWAP_CLUSTER_MAX) {
3471 local_unlock_irqrestore(&pagesets.lock, flags);
3472 batch_count = 0;
3473 local_lock_irqsave(&pagesets.lock, flags);
3474 }
3475 }
3476 local_unlock_irqrestore(&pagesets.lock, flags);
3477 }
3478
3479 /*
3480 * split_page takes a non-compound higher-order page, and splits it into
3481 * n (1<<order) sub-pages: page[0..n]
3482 * Each sub-page must be freed individually.
3483 *
3484 * Note: this is probably too low level an operation for use in drivers.
3485 * Please consult with lkml before using this in your driver.
3486 */
3487 void split_page(struct page *page, unsigned int order)
3488 {
3489 int i;
3490
3491 VM_BUG_ON_PAGE(PageCompound(page), page);
3492 VM_BUG_ON_PAGE(!page_count(page), page);
3493
3494 for (i = 1; i < (1 << order); i++)
3495 set_page_refcounted(page + i);
3496 split_page_owner(page, 1 << order);
3497 split_page_memcg(page, 1 << order);
3498 }
3499 EXPORT_SYMBOL_GPL(split_page);
3500
3501 int __isolate_free_page(struct page *page, unsigned int order)
3502 {
3503 unsigned long watermark;
3504 struct zone *zone;
3505 int mt;
3506
3507 BUG_ON(!PageBuddy(page));
3508
3509 zone = page_zone(page);
3510 mt = get_pageblock_migratetype(page);
3511
3512 if (!is_migrate_isolate(mt)) {
3513 /*
3514 * Obey watermarks as if the page was being allocated. We can
3515 * emulate a high-order watermark check with a raised order-0
3516 * watermark, because we already know our high-order page
3517 * exists.
3518 */
3519 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3520 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3521 return 0;
3522
3523 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3524 }
3525
3526 /* Remove page from free list */
3527
3528 del_page_from_free_list(page, zone, order);
3529
3530 /*
3531 * Set the pageblock if the isolated page is at least half of a
3532 * pageblock
3533 */
3534 if (order >= pageblock_order - 1) {
3535 struct page *endpage = page + (1 << order) - 1;
3536 for (; page < endpage; page += pageblock_nr_pages) {
3537 int mt = get_pageblock_migratetype(page);
3538 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3539 && !is_migrate_highatomic(mt))
3540 set_pageblock_migratetype(page,
3541 MIGRATE_MOVABLE);
3542 }
3543 }
3544
3545
3546 return 1UL << order;
3547 }
3548
3549 /**
3550 * __putback_isolated_page - Return a now-isolated page back where we got it
3551 * @page: Page that was isolated
3552 * @order: Order of the isolated page
3553 * @mt: The page's pageblock's migratetype
3554 *
3555 * This function is meant to return a page pulled from the free lists via
3556 * __isolate_free_page back to the free lists they were pulled from.
3557 */
3558 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3559 {
3560 struct zone *zone = page_zone(page);
3561
3562 /* zone lock should be held when this function is called */
3563 lockdep_assert_held(&zone->lock);
3564
3565 /* Return isolated page to tail of freelist. */
3566 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3567 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3568 }
3569
3570 /*
3571 * Update NUMA hit/miss statistics
3572 *
3573 * Must be called with interrupts disabled.
3574 */
3575 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3576 long nr_account)
3577 {
3578 #ifdef CONFIG_NUMA
3579 enum numa_stat_item local_stat = NUMA_LOCAL;
3580
3581 /* skip numa counters update if numa stats is disabled */
3582 if (!static_branch_likely(&vm_numa_stat_key))
3583 return;
3584
3585 if (zone_to_nid(z) != numa_node_id())
3586 local_stat = NUMA_OTHER;
3587
3588 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3589 __count_numa_events(z, NUMA_HIT, nr_account);
3590 else {
3591 __count_numa_events(z, NUMA_MISS, nr_account);
3592 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3593 }
3594 __count_numa_events(z, local_stat, nr_account);
3595 #endif
3596 }
3597
3598 /* Remove page from the per-cpu list, caller must protect the list */
3599 static inline
3600 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3601 int migratetype,
3602 unsigned int alloc_flags,
3603 struct per_cpu_pages *pcp,
3604 struct list_head *list)
3605 {
3606 struct page *page;
3607
3608 do {
3609 if (list_empty(list)) {
3610 int batch = READ_ONCE(pcp->batch);
3611 int alloced;
3612
3613 /*
3614 * Scale batch relative to order if batch implies
3615 * free pages can be stored on the PCP. Batch can
3616 * be 1 for small zones or for boot pagesets which
3617 * should never store free pages as the pages may
3618 * belong to arbitrary zones.
3619 */
3620 if (batch > 1)
3621 batch = max(batch >> order, 2);
3622 alloced = rmqueue_bulk(zone, order,
3623 batch, list,
3624 migratetype, alloc_flags);
3625
3626 pcp->count += alloced << order;
3627 if (unlikely(list_empty(list)))
3628 return NULL;
3629 }
3630
3631 page = list_first_entry(list, struct page, lru);
3632 list_del(&page->lru);
3633 pcp->count -= 1 << order;
3634 } while (check_new_pcp(page));
3635
3636 return page;
3637 }
3638
3639 /* Lock and remove page from the per-cpu list */
3640 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3641 struct zone *zone, unsigned int order,
3642 gfp_t gfp_flags, int migratetype,
3643 unsigned int alloc_flags)
3644 {
3645 struct per_cpu_pages *pcp;
3646 struct list_head *list;
3647 struct page *page;
3648 unsigned long flags;
3649
3650 local_lock_irqsave(&pagesets.lock, flags);
3651
3652 /*
3653 * On allocation, reduce the number of pages that are batch freed.
3654 * See nr_pcp_free() where free_factor is increased for subsequent
3655 * frees.
3656 */
3657 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3658 pcp->free_factor >>= 1;
3659 list = &pcp->lists[order_to_pindex(migratetype, order)];
3660 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3661 local_unlock_irqrestore(&pagesets.lock, flags);
3662 if (page) {
3663 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3664 zone_statistics(preferred_zone, zone, 1);
3665 }
3666 return page;
3667 }
3668
3669 /*
3670 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3671 */
3672 static inline
3673 struct page *rmqueue(struct zone *preferred_zone,
3674 struct zone *zone, unsigned int order,
3675 gfp_t gfp_flags, unsigned int alloc_flags,
3676 int migratetype)
3677 {
3678 unsigned long flags;
3679 struct page *page;
3680
3681 if (likely(pcp_allowed_order(order))) {
3682 /*
3683 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3684 * we need to skip it when CMA area isn't allowed.
3685 */
3686 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3687 migratetype != MIGRATE_MOVABLE) {
3688 page = rmqueue_pcplist(preferred_zone, zone, order,
3689 gfp_flags, migratetype, alloc_flags);
3690 goto out;
3691 }
3692 }
3693
3694 /*
3695 * We most definitely don't want callers attempting to
3696 * allocate greater than order-1 page units with __GFP_NOFAIL.
3697 */
3698 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3699 spin_lock_irqsave(&zone->lock, flags);
3700
3701 do {
3702 page = NULL;
3703 /*
3704 * order-0 request can reach here when the pcplist is skipped
3705 * due to non-CMA allocation context. HIGHATOMIC area is
3706 * reserved for high-order atomic allocation, so order-0
3707 * request should skip it.
3708 */
3709 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3710 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3711 if (page)
3712 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3713 }
3714 if (!page)
3715 page = __rmqueue(zone, order, migratetype, alloc_flags);
3716 } while (page && check_new_pages(page, order));
3717 if (!page)
3718 goto failed;
3719
3720 __mod_zone_freepage_state(zone, -(1 << order),
3721 get_pcppage_migratetype(page));
3722 spin_unlock_irqrestore(&zone->lock, flags);
3723
3724 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3725 zone_statistics(preferred_zone, zone, 1);
3726
3727 out:
3728 /* Separate test+clear to avoid unnecessary atomics */
3729 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3730 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3731 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3732 }
3733
3734 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3735 return page;
3736
3737 failed:
3738 spin_unlock_irqrestore(&zone->lock, flags);
3739 return NULL;
3740 }
3741
3742 #ifdef CONFIG_FAIL_PAGE_ALLOC
3743
3744 static struct {
3745 struct fault_attr attr;
3746
3747 bool ignore_gfp_highmem;
3748 bool ignore_gfp_reclaim;
3749 u32 min_order;
3750 } fail_page_alloc = {
3751 .attr = FAULT_ATTR_INITIALIZER,
3752 .ignore_gfp_reclaim = true,
3753 .ignore_gfp_highmem = true,
3754 .min_order = 1,
3755 };
3756
3757 static int __init setup_fail_page_alloc(char *str)
3758 {
3759 return setup_fault_attr(&fail_page_alloc.attr, str);
3760 }
3761 __setup("fail_page_alloc=", setup_fail_page_alloc);
3762
3763 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3764 {
3765 if (order < fail_page_alloc.min_order)
3766 return false;
3767 if (gfp_mask & __GFP_NOFAIL)
3768 return false;
3769 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3770 return false;
3771 if (fail_page_alloc.ignore_gfp_reclaim &&
3772 (gfp_mask & __GFP_DIRECT_RECLAIM))
3773 return false;
3774
3775 return should_fail(&fail_page_alloc.attr, 1 << order);
3776 }
3777
3778 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3779
3780 static int __init fail_page_alloc_debugfs(void)
3781 {
3782 umode_t mode = S_IFREG | 0600;
3783 struct dentry *dir;
3784
3785 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3786 &fail_page_alloc.attr);
3787
3788 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3789 &fail_page_alloc.ignore_gfp_reclaim);
3790 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3791 &fail_page_alloc.ignore_gfp_highmem);
3792 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3793
3794 return 0;
3795 }
3796
3797 late_initcall(fail_page_alloc_debugfs);
3798
3799 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3800
3801 #else /* CONFIG_FAIL_PAGE_ALLOC */
3802
3803 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3804 {
3805 return false;
3806 }
3807
3808 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3809
3810 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3811 {
3812 return __should_fail_alloc_page(gfp_mask, order);
3813 }
3814 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3815
3816 static inline long __zone_watermark_unusable_free(struct zone *z,
3817 unsigned int order, unsigned int alloc_flags)
3818 {
3819 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3820 long unusable_free = (1 << order) - 1;
3821
3822 /*
3823 * If the caller does not have rights to ALLOC_HARDER then subtract
3824 * the high-atomic reserves. This will over-estimate the size of the
3825 * atomic reserve but it avoids a search.
3826 */
3827 if (likely(!alloc_harder))
3828 unusable_free += z->nr_reserved_highatomic;
3829
3830 #ifdef CONFIG_CMA
3831 /* If allocation can't use CMA areas don't use free CMA pages */
3832 if (!(alloc_flags & ALLOC_CMA))
3833 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3834 #endif
3835
3836 return unusable_free;
3837 }
3838
3839 /*
3840 * Return true if free base pages are above 'mark'. For high-order checks it
3841 * will return true of the order-0 watermark is reached and there is at least
3842 * one free page of a suitable size. Checking now avoids taking the zone lock
3843 * to check in the allocation paths if no pages are free.
3844 */
3845 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3846 int highest_zoneidx, unsigned int alloc_flags,
3847 long free_pages)
3848 {
3849 long min = mark;
3850 int o;
3851 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3852
3853 /* free_pages may go negative - that's OK */
3854 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3855
3856 if (alloc_flags & ALLOC_HIGH)
3857 min -= min / 2;
3858
3859 if (unlikely(alloc_harder)) {
3860 /*
3861 * OOM victims can try even harder than normal ALLOC_HARDER
3862 * users on the grounds that it's definitely going to be in
3863 * the exit path shortly and free memory. Any allocation it
3864 * makes during the free path will be small and short-lived.
3865 */
3866 if (alloc_flags & ALLOC_OOM)
3867 min -= min / 2;
3868 else
3869 min -= min / 4;
3870 }
3871
3872 /*
3873 * Check watermarks for an order-0 allocation request. If these
3874 * are not met, then a high-order request also cannot go ahead
3875 * even if a suitable page happened to be free.
3876 */
3877 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3878 return false;
3879
3880 /* If this is an order-0 request then the watermark is fine */
3881 if (!order)
3882 return true;
3883
3884 /* For a high-order request, check at least one suitable page is free */
3885 for (o = order; o < MAX_ORDER; o++) {
3886 struct free_area *area = &z->free_area[o];
3887 int mt;
3888
3889 if (!area->nr_free)
3890 continue;
3891
3892 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3893 if (!free_area_empty(area, mt))
3894 return true;
3895 }
3896
3897 #ifdef CONFIG_CMA
3898 if ((alloc_flags & ALLOC_CMA) &&
3899 !free_area_empty(area, MIGRATE_CMA)) {
3900 return true;
3901 }
3902 #endif
3903 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3904 return true;
3905 }
3906 return false;
3907 }
3908
3909 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3910 int highest_zoneidx, unsigned int alloc_flags)
3911 {
3912 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3913 zone_page_state(z, NR_FREE_PAGES));
3914 }
3915
3916 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3917 unsigned long mark, int highest_zoneidx,
3918 unsigned int alloc_flags, gfp_t gfp_mask)
3919 {
3920 long free_pages;
3921
3922 free_pages = zone_page_state(z, NR_FREE_PAGES);
3923
3924 /*
3925 * Fast check for order-0 only. If this fails then the reserves
3926 * need to be calculated.
3927 */
3928 if (!order) {
3929 long fast_free;
3930
3931 fast_free = free_pages;
3932 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3933 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3934 return true;
3935 }
3936
3937 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3938 free_pages))
3939 return true;
3940 /*
3941 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3942 * when checking the min watermark. The min watermark is the
3943 * point where boosting is ignored so that kswapd is woken up
3944 * when below the low watermark.
3945 */
3946 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3947 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3948 mark = z->_watermark[WMARK_MIN];
3949 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3950 alloc_flags, free_pages);
3951 }
3952
3953 return false;
3954 }
3955
3956 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3957 unsigned long mark, int highest_zoneidx)
3958 {
3959 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3960
3961 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3962 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3963
3964 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3965 free_pages);
3966 }
3967
3968 #ifdef CONFIG_NUMA
3969 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3970 {
3971 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3972 node_reclaim_distance;
3973 }
3974 #else /* CONFIG_NUMA */
3975 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3976 {
3977 return true;
3978 }
3979 #endif /* CONFIG_NUMA */
3980
3981 /*
3982 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3983 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3984 * premature use of a lower zone may cause lowmem pressure problems that
3985 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3986 * probably too small. It only makes sense to spread allocations to avoid
3987 * fragmentation between the Normal and DMA32 zones.
3988 */
3989 static inline unsigned int
3990 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3991 {
3992 unsigned int alloc_flags;
3993
3994 /*
3995 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3996 * to save a branch.
3997 */
3998 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3999
4000 #ifdef CONFIG_ZONE_DMA32
4001 if (!zone)
4002 return alloc_flags;
4003
4004 if (zone_idx(zone) != ZONE_NORMAL)
4005 return alloc_flags;
4006
4007 /*
4008 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4009 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4010 * on UMA that if Normal is populated then so is DMA32.
4011 */
4012 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4013 if (nr_online_nodes > 1 && !populated_zone(--zone))
4014 return alloc_flags;
4015
4016 alloc_flags |= ALLOC_NOFRAGMENT;
4017 #endif /* CONFIG_ZONE_DMA32 */
4018 return alloc_flags;
4019 }
4020
4021 /* Must be called after current_gfp_context() which can change gfp_mask */
4022 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4023 unsigned int alloc_flags)
4024 {
4025 #ifdef CONFIG_CMA
4026 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4027 alloc_flags |= ALLOC_CMA;
4028 #endif
4029 return alloc_flags;
4030 }
4031
4032 /*
4033 * get_page_from_freelist goes through the zonelist trying to allocate
4034 * a page.
4035 */
4036 static struct page *
4037 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4038 const struct alloc_context *ac)
4039 {
4040 struct zoneref *z;
4041 struct zone *zone;
4042 struct pglist_data *last_pgdat_dirty_limit = NULL;
4043 bool no_fallback;
4044
4045 retry:
4046 /*
4047 * Scan zonelist, looking for a zone with enough free.
4048 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4049 */
4050 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4051 z = ac->preferred_zoneref;
4052 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4053 ac->nodemask) {
4054 struct page *page;
4055 unsigned long mark;
4056
4057 if (cpusets_enabled() &&
4058 (alloc_flags & ALLOC_CPUSET) &&
4059 !__cpuset_zone_allowed(zone, gfp_mask))
4060 continue;
4061 /*
4062 * When allocating a page cache page for writing, we
4063 * want to get it from a node that is within its dirty
4064 * limit, such that no single node holds more than its
4065 * proportional share of globally allowed dirty pages.
4066 * The dirty limits take into account the node's
4067 * lowmem reserves and high watermark so that kswapd
4068 * should be able to balance it without having to
4069 * write pages from its LRU list.
4070 *
4071 * XXX: For now, allow allocations to potentially
4072 * exceed the per-node dirty limit in the slowpath
4073 * (spread_dirty_pages unset) before going into reclaim,
4074 * which is important when on a NUMA setup the allowed
4075 * nodes are together not big enough to reach the
4076 * global limit. The proper fix for these situations
4077 * will require awareness of nodes in the
4078 * dirty-throttling and the flusher threads.
4079 */
4080 if (ac->spread_dirty_pages) {
4081 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4082 continue;
4083
4084 if (!node_dirty_ok(zone->zone_pgdat)) {
4085 last_pgdat_dirty_limit = zone->zone_pgdat;
4086 continue;
4087 }
4088 }
4089
4090 if (no_fallback && nr_online_nodes > 1 &&
4091 zone != ac->preferred_zoneref->zone) {
4092 int local_nid;
4093
4094 /*
4095 * If moving to a remote node, retry but allow
4096 * fragmenting fallbacks. Locality is more important
4097 * than fragmentation avoidance.
4098 */
4099 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4100 if (zone_to_nid(zone) != local_nid) {
4101 alloc_flags &= ~ALLOC_NOFRAGMENT;
4102 goto retry;
4103 }
4104 }
4105
4106 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4107 if (!zone_watermark_fast(zone, order, mark,
4108 ac->highest_zoneidx, alloc_flags,
4109 gfp_mask)) {
4110 int ret;
4111
4112 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4113 /*
4114 * Watermark failed for this zone, but see if we can
4115 * grow this zone if it contains deferred pages.
4116 */
4117 if (static_branch_unlikely(&deferred_pages)) {
4118 if (_deferred_grow_zone(zone, order))
4119 goto try_this_zone;
4120 }
4121 #endif
4122 /* Checked here to keep the fast path fast */
4123 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4124 if (alloc_flags & ALLOC_NO_WATERMARKS)
4125 goto try_this_zone;
4126
4127 if (!node_reclaim_enabled() ||
4128 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4129 continue;
4130
4131 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4132 switch (ret) {
4133 case NODE_RECLAIM_NOSCAN:
4134 /* did not scan */
4135 continue;
4136 case NODE_RECLAIM_FULL:
4137 /* scanned but unreclaimable */
4138 continue;
4139 default:
4140 /* did we reclaim enough */
4141 if (zone_watermark_ok(zone, order, mark,
4142 ac->highest_zoneidx, alloc_flags))
4143 goto try_this_zone;
4144
4145 continue;
4146 }
4147 }
4148
4149 try_this_zone:
4150 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4151 gfp_mask, alloc_flags, ac->migratetype);
4152 if (page) {
4153 prep_new_page(page, order, gfp_mask, alloc_flags);
4154
4155 /*
4156 * If this is a high-order atomic allocation then check
4157 * if the pageblock should be reserved for the future
4158 */
4159 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4160 reserve_highatomic_pageblock(page, zone, order);
4161
4162 return page;
4163 } else {
4164 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4165 /* Try again if zone has deferred pages */
4166 if (static_branch_unlikely(&deferred_pages)) {
4167 if (_deferred_grow_zone(zone, order))
4168 goto try_this_zone;
4169 }
4170 #endif
4171 }
4172 }
4173
4174 /*
4175 * It's possible on a UMA machine to get through all zones that are
4176 * fragmented. If avoiding fragmentation, reset and try again.
4177 */
4178 if (no_fallback) {
4179 alloc_flags &= ~ALLOC_NOFRAGMENT;
4180 goto retry;
4181 }
4182
4183 return NULL;
4184 }
4185
4186 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4187 {
4188 unsigned int filter = SHOW_MEM_FILTER_NODES;
4189
4190 /*
4191 * This documents exceptions given to allocations in certain
4192 * contexts that are allowed to allocate outside current's set
4193 * of allowed nodes.
4194 */
4195 if (!(gfp_mask & __GFP_NOMEMALLOC))
4196 if (tsk_is_oom_victim(current) ||
4197 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4198 filter &= ~SHOW_MEM_FILTER_NODES;
4199 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4200 filter &= ~SHOW_MEM_FILTER_NODES;
4201
4202 show_mem(filter, nodemask);
4203 }
4204
4205 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4206 {
4207 struct va_format vaf;
4208 va_list args;
4209 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4210
4211 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4212 return;
4213
4214 va_start(args, fmt);
4215 vaf.fmt = fmt;
4216 vaf.va = &args;
4217 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4218 current->comm, &vaf, gfp_mask, &gfp_mask,
4219 nodemask_pr_args(nodemask));
4220 va_end(args);
4221
4222 cpuset_print_current_mems_allowed();
4223 pr_cont("\n");
4224 dump_stack();
4225 warn_alloc_show_mem(gfp_mask, nodemask);
4226 }
4227
4228 static inline struct page *
4229 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4230 unsigned int alloc_flags,
4231 const struct alloc_context *ac)
4232 {
4233 struct page *page;
4234
4235 page = get_page_from_freelist(gfp_mask, order,
4236 alloc_flags|ALLOC_CPUSET, ac);
4237 /*
4238 * fallback to ignore cpuset restriction if our nodes
4239 * are depleted
4240 */
4241 if (!page)
4242 page = get_page_from_freelist(gfp_mask, order,
4243 alloc_flags, ac);
4244
4245 return page;
4246 }
4247
4248 static inline struct page *
4249 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4250 const struct alloc_context *ac, unsigned long *did_some_progress)
4251 {
4252 struct oom_control oc = {
4253 .zonelist = ac->zonelist,
4254 .nodemask = ac->nodemask,
4255 .memcg = NULL,
4256 .gfp_mask = gfp_mask,
4257 .order = order,
4258 };
4259 struct page *page;
4260
4261 *did_some_progress = 0;
4262
4263 /*
4264 * Acquire the oom lock. If that fails, somebody else is
4265 * making progress for us.
4266 */
4267 if (!mutex_trylock(&oom_lock)) {
4268 *did_some_progress = 1;
4269 schedule_timeout_uninterruptible(1);
4270 return NULL;
4271 }
4272
4273 /*
4274 * Go through the zonelist yet one more time, keep very high watermark
4275 * here, this is only to catch a parallel oom killing, we must fail if
4276 * we're still under heavy pressure. But make sure that this reclaim
4277 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4278 * allocation which will never fail due to oom_lock already held.
4279 */
4280 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4281 ~__GFP_DIRECT_RECLAIM, order,
4282 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4283 if (page)
4284 goto out;
4285
4286 /* Coredumps can quickly deplete all memory reserves */
4287 if (current->flags & PF_DUMPCORE)
4288 goto out;
4289 /* The OOM killer will not help higher order allocs */
4290 if (order > PAGE_ALLOC_COSTLY_ORDER)
4291 goto out;
4292 /*
4293 * We have already exhausted all our reclaim opportunities without any
4294 * success so it is time to admit defeat. We will skip the OOM killer
4295 * because it is very likely that the caller has a more reasonable
4296 * fallback than shooting a random task.
4297 *
4298 * The OOM killer may not free memory on a specific node.
4299 */
4300 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4301 goto out;
4302 /* The OOM killer does not needlessly kill tasks for lowmem */
4303 if (ac->highest_zoneidx < ZONE_NORMAL)
4304 goto out;
4305 if (pm_suspended_storage())
4306 goto out;
4307 /*
4308 * XXX: GFP_NOFS allocations should rather fail than rely on
4309 * other request to make a forward progress.
4310 * We are in an unfortunate situation where out_of_memory cannot
4311 * do much for this context but let's try it to at least get
4312 * access to memory reserved if the current task is killed (see
4313 * out_of_memory). Once filesystems are ready to handle allocation
4314 * failures more gracefully we should just bail out here.
4315 */
4316
4317 /* Exhausted what can be done so it's blame time */
4318 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4319 *did_some_progress = 1;
4320
4321 /*
4322 * Help non-failing allocations by giving them access to memory
4323 * reserves
4324 */
4325 if (gfp_mask & __GFP_NOFAIL)
4326 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4327 ALLOC_NO_WATERMARKS, ac);
4328 }
4329 out:
4330 mutex_unlock(&oom_lock);
4331 return page;
4332 }
4333
4334 /*
4335 * Maximum number of compaction retries with a progress before OOM
4336 * killer is consider as the only way to move forward.
4337 */
4338 #define MAX_COMPACT_RETRIES 16
4339
4340 #ifdef CONFIG_COMPACTION
4341 /* Try memory compaction for high-order allocations before reclaim */
4342 static struct page *
4343 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4344 unsigned int alloc_flags, const struct alloc_context *ac,
4345 enum compact_priority prio, enum compact_result *compact_result)
4346 {
4347 struct page *page = NULL;
4348 unsigned long pflags;
4349 unsigned int noreclaim_flag;
4350
4351 if (!order)
4352 return NULL;
4353
4354 psi_memstall_enter(&pflags);
4355 noreclaim_flag = memalloc_noreclaim_save();
4356
4357 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4358 prio, &page);
4359
4360 memalloc_noreclaim_restore(noreclaim_flag);
4361 psi_memstall_leave(&pflags);
4362
4363 if (*compact_result == COMPACT_SKIPPED)
4364 return NULL;
4365 /*
4366 * At least in one zone compaction wasn't deferred or skipped, so let's
4367 * count a compaction stall
4368 */
4369 count_vm_event(COMPACTSTALL);
4370
4371 /* Prep a captured page if available */
4372 if (page)
4373 prep_new_page(page, order, gfp_mask, alloc_flags);
4374
4375 /* Try get a page from the freelist if available */
4376 if (!page)
4377 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4378
4379 if (page) {
4380 struct zone *zone = page_zone(page);
4381
4382 zone->compact_blockskip_flush = false;
4383 compaction_defer_reset(zone, order, true);
4384 count_vm_event(COMPACTSUCCESS);
4385 return page;
4386 }
4387
4388 /*
4389 * It's bad if compaction run occurs and fails. The most likely reason
4390 * is that pages exist, but not enough to satisfy watermarks.
4391 */
4392 count_vm_event(COMPACTFAIL);
4393
4394 cond_resched();
4395
4396 return NULL;
4397 }
4398
4399 static inline bool
4400 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4401 enum compact_result compact_result,
4402 enum compact_priority *compact_priority,
4403 int *compaction_retries)
4404 {
4405 int max_retries = MAX_COMPACT_RETRIES;
4406 int min_priority;
4407 bool ret = false;
4408 int retries = *compaction_retries;
4409 enum compact_priority priority = *compact_priority;
4410
4411 if (!order)
4412 return false;
4413
4414 if (fatal_signal_pending(current))
4415 return false;
4416
4417 if (compaction_made_progress(compact_result))
4418 (*compaction_retries)++;
4419
4420 /*
4421 * compaction considers all the zone as desperately out of memory
4422 * so it doesn't really make much sense to retry except when the
4423 * failure could be caused by insufficient priority
4424 */
4425 if (compaction_failed(compact_result))
4426 goto check_priority;
4427
4428 /*
4429 * compaction was skipped because there are not enough order-0 pages
4430 * to work with, so we retry only if it looks like reclaim can help.
4431 */
4432 if (compaction_needs_reclaim(compact_result)) {
4433 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4434 goto out;
4435 }
4436
4437 /*
4438 * make sure the compaction wasn't deferred or didn't bail out early
4439 * due to locks contention before we declare that we should give up.
4440 * But the next retry should use a higher priority if allowed, so
4441 * we don't just keep bailing out endlessly.
4442 */
4443 if (compaction_withdrawn(compact_result)) {
4444 goto check_priority;
4445 }
4446
4447 /*
4448 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4449 * costly ones because they are de facto nofail and invoke OOM
4450 * killer to move on while costly can fail and users are ready
4451 * to cope with that. 1/4 retries is rather arbitrary but we
4452 * would need much more detailed feedback from compaction to
4453 * make a better decision.
4454 */
4455 if (order > PAGE_ALLOC_COSTLY_ORDER)
4456 max_retries /= 4;
4457 if (*compaction_retries <= max_retries) {
4458 ret = true;
4459 goto out;
4460 }
4461
4462 /*
4463 * Make sure there are attempts at the highest priority if we exhausted
4464 * all retries or failed at the lower priorities.
4465 */
4466 check_priority:
4467 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4468 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4469
4470 if (*compact_priority > min_priority) {
4471 (*compact_priority)--;
4472 *compaction_retries = 0;
4473 ret = true;
4474 }
4475 out:
4476 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4477 return ret;
4478 }
4479 #else
4480 static inline struct page *
4481 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4482 unsigned int alloc_flags, const struct alloc_context *ac,
4483 enum compact_priority prio, enum compact_result *compact_result)
4484 {
4485 *compact_result = COMPACT_SKIPPED;
4486 return NULL;
4487 }
4488
4489 static inline bool
4490 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4491 enum compact_result compact_result,
4492 enum compact_priority *compact_priority,
4493 int *compaction_retries)
4494 {
4495 struct zone *zone;
4496 struct zoneref *z;
4497
4498 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4499 return false;
4500
4501 /*
4502 * There are setups with compaction disabled which would prefer to loop
4503 * inside the allocator rather than hit the oom killer prematurely.
4504 * Let's give them a good hope and keep retrying while the order-0
4505 * watermarks are OK.
4506 */
4507 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4508 ac->highest_zoneidx, ac->nodemask) {
4509 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4510 ac->highest_zoneidx, alloc_flags))
4511 return true;
4512 }
4513 return false;
4514 }
4515 #endif /* CONFIG_COMPACTION */
4516
4517 #ifdef CONFIG_LOCKDEP
4518 static struct lockdep_map __fs_reclaim_map =
4519 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4520
4521 static bool __need_reclaim(gfp_t gfp_mask)
4522 {
4523 /* no reclaim without waiting on it */
4524 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4525 return false;
4526
4527 /* this guy won't enter reclaim */
4528 if (current->flags & PF_MEMALLOC)
4529 return false;
4530
4531 if (gfp_mask & __GFP_NOLOCKDEP)
4532 return false;
4533
4534 return true;
4535 }
4536
4537 void __fs_reclaim_acquire(unsigned long ip)
4538 {
4539 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4540 }
4541
4542 void __fs_reclaim_release(unsigned long ip)
4543 {
4544 lock_release(&__fs_reclaim_map, ip);
4545 }
4546
4547 void fs_reclaim_acquire(gfp_t gfp_mask)
4548 {
4549 gfp_mask = current_gfp_context(gfp_mask);
4550
4551 if (__need_reclaim(gfp_mask)) {
4552 if (gfp_mask & __GFP_FS)
4553 __fs_reclaim_acquire(_RET_IP_);
4554
4555 #ifdef CONFIG_MMU_NOTIFIER
4556 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4557 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4558 #endif
4559
4560 }
4561 }
4562 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4563
4564 void fs_reclaim_release(gfp_t gfp_mask)
4565 {
4566 gfp_mask = current_gfp_context(gfp_mask);
4567
4568 if (__need_reclaim(gfp_mask)) {
4569 if (gfp_mask & __GFP_FS)
4570 __fs_reclaim_release(_RET_IP_);
4571 }
4572 }
4573 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4574 #endif
4575
4576 /* Perform direct synchronous page reclaim */
4577 static unsigned long
4578 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4579 const struct alloc_context *ac)
4580 {
4581 unsigned int noreclaim_flag;
4582 unsigned long pflags, progress;
4583
4584 cond_resched();
4585
4586 /* We now go into synchronous reclaim */
4587 cpuset_memory_pressure_bump();
4588 psi_memstall_enter(&pflags);
4589 fs_reclaim_acquire(gfp_mask);
4590 noreclaim_flag = memalloc_noreclaim_save();
4591
4592 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4593 ac->nodemask);
4594
4595 memalloc_noreclaim_restore(noreclaim_flag);
4596 fs_reclaim_release(gfp_mask);
4597 psi_memstall_leave(&pflags);
4598
4599 cond_resched();
4600
4601 return progress;
4602 }
4603
4604 /* The really slow allocator path where we enter direct reclaim */
4605 static inline struct page *
4606 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4607 unsigned int alloc_flags, const struct alloc_context *ac,
4608 unsigned long *did_some_progress)
4609 {
4610 struct page *page = NULL;
4611 bool drained = false;
4612
4613 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4614 if (unlikely(!(*did_some_progress)))
4615 return NULL;
4616
4617 retry:
4618 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4619
4620 /*
4621 * If an allocation failed after direct reclaim, it could be because
4622 * pages are pinned on the per-cpu lists or in high alloc reserves.
4623 * Shrink them and try again
4624 */
4625 if (!page && !drained) {
4626 unreserve_highatomic_pageblock(ac, false);
4627 drain_all_pages(NULL);
4628 drained = true;
4629 goto retry;
4630 }
4631
4632 return page;
4633 }
4634
4635 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4636 const struct alloc_context *ac)
4637 {
4638 struct zoneref *z;
4639 struct zone *zone;
4640 pg_data_t *last_pgdat = NULL;
4641 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4642
4643 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4644 ac->nodemask) {
4645 if (last_pgdat != zone->zone_pgdat)
4646 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4647 last_pgdat = zone->zone_pgdat;
4648 }
4649 }
4650
4651 static inline unsigned int
4652 gfp_to_alloc_flags(gfp_t gfp_mask)
4653 {
4654 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4655
4656 /*
4657 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4658 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4659 * to save two branches.
4660 */
4661 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4662 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4663
4664 /*
4665 * The caller may dip into page reserves a bit more if the caller
4666 * cannot run direct reclaim, or if the caller has realtime scheduling
4667 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4668 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4669 */
4670 alloc_flags |= (__force int)
4671 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4672
4673 if (gfp_mask & __GFP_ATOMIC) {
4674 /*
4675 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4676 * if it can't schedule.
4677 */
4678 if (!(gfp_mask & __GFP_NOMEMALLOC))
4679 alloc_flags |= ALLOC_HARDER;
4680 /*
4681 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4682 * comment for __cpuset_node_allowed().
4683 */
4684 alloc_flags &= ~ALLOC_CPUSET;
4685 } else if (unlikely(rt_task(current)) && in_task())
4686 alloc_flags |= ALLOC_HARDER;
4687
4688 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4689
4690 return alloc_flags;
4691 }
4692
4693 static bool oom_reserves_allowed(struct task_struct *tsk)
4694 {
4695 if (!tsk_is_oom_victim(tsk))
4696 return false;
4697
4698 /*
4699 * !MMU doesn't have oom reaper so give access to memory reserves
4700 * only to the thread with TIF_MEMDIE set
4701 */
4702 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4703 return false;
4704
4705 return true;
4706 }
4707
4708 /*
4709 * Distinguish requests which really need access to full memory
4710 * reserves from oom victims which can live with a portion of it
4711 */
4712 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4713 {
4714 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4715 return 0;
4716 if (gfp_mask & __GFP_MEMALLOC)
4717 return ALLOC_NO_WATERMARKS;
4718 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4719 return ALLOC_NO_WATERMARKS;
4720 if (!in_interrupt()) {
4721 if (current->flags & PF_MEMALLOC)
4722 return ALLOC_NO_WATERMARKS;
4723 else if (oom_reserves_allowed(current))
4724 return ALLOC_OOM;
4725 }
4726
4727 return 0;
4728 }
4729
4730 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4731 {
4732 return !!__gfp_pfmemalloc_flags(gfp_mask);
4733 }
4734
4735 /*
4736 * Checks whether it makes sense to retry the reclaim to make a forward progress
4737 * for the given allocation request.
4738 *
4739 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4740 * without success, or when we couldn't even meet the watermark if we
4741 * reclaimed all remaining pages on the LRU lists.
4742 *
4743 * Returns true if a retry is viable or false to enter the oom path.
4744 */
4745 static inline bool
4746 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4747 struct alloc_context *ac, int alloc_flags,
4748 bool did_some_progress, int *no_progress_loops)
4749 {
4750 struct zone *zone;
4751 struct zoneref *z;
4752 bool ret = false;
4753
4754 /*
4755 * Costly allocations might have made a progress but this doesn't mean
4756 * their order will become available due to high fragmentation so
4757 * always increment the no progress counter for them
4758 */
4759 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4760 *no_progress_loops = 0;
4761 else
4762 (*no_progress_loops)++;
4763
4764 /*
4765 * Make sure we converge to OOM if we cannot make any progress
4766 * several times in the row.
4767 */
4768 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4769 /* Before OOM, exhaust highatomic_reserve */
4770 return unreserve_highatomic_pageblock(ac, true);
4771 }
4772
4773 /*
4774 * Keep reclaiming pages while there is a chance this will lead
4775 * somewhere. If none of the target zones can satisfy our allocation
4776 * request even if all reclaimable pages are considered then we are
4777 * screwed and have to go OOM.
4778 */
4779 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4780 ac->highest_zoneidx, ac->nodemask) {
4781 unsigned long available;
4782 unsigned long reclaimable;
4783 unsigned long min_wmark = min_wmark_pages(zone);
4784 bool wmark;
4785
4786 available = reclaimable = zone_reclaimable_pages(zone);
4787 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4788
4789 /*
4790 * Would the allocation succeed if we reclaimed all
4791 * reclaimable pages?
4792 */
4793 wmark = __zone_watermark_ok(zone, order, min_wmark,
4794 ac->highest_zoneidx, alloc_flags, available);
4795 trace_reclaim_retry_zone(z, order, reclaimable,
4796 available, min_wmark, *no_progress_loops, wmark);
4797 if (wmark) {
4798 /*
4799 * If we didn't make any progress and have a lot of
4800 * dirty + writeback pages then we should wait for
4801 * an IO to complete to slow down the reclaim and
4802 * prevent from pre mature OOM
4803 */
4804 if (!did_some_progress) {
4805 unsigned long write_pending;
4806
4807 write_pending = zone_page_state_snapshot(zone,
4808 NR_ZONE_WRITE_PENDING);
4809
4810 if (2 * write_pending > reclaimable) {
4811 congestion_wait(BLK_RW_ASYNC, HZ/10);
4812 return true;
4813 }
4814 }
4815
4816 ret = true;
4817 goto out;
4818 }
4819 }
4820
4821 out:
4822 /*
4823 * Memory allocation/reclaim might be called from a WQ context and the
4824 * current implementation of the WQ concurrency control doesn't
4825 * recognize that a particular WQ is congested if the worker thread is
4826 * looping without ever sleeping. Therefore we have to do a short sleep
4827 * here rather than calling cond_resched().
4828 */
4829 if (current->flags & PF_WQ_WORKER)
4830 schedule_timeout_uninterruptible(1);
4831 else
4832 cond_resched();
4833 return ret;
4834 }
4835
4836 static inline bool
4837 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4838 {
4839 /*
4840 * It's possible that cpuset's mems_allowed and the nodemask from
4841 * mempolicy don't intersect. This should be normally dealt with by
4842 * policy_nodemask(), but it's possible to race with cpuset update in
4843 * such a way the check therein was true, and then it became false
4844 * before we got our cpuset_mems_cookie here.
4845 * This assumes that for all allocations, ac->nodemask can come only
4846 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4847 * when it does not intersect with the cpuset restrictions) or the
4848 * caller can deal with a violated nodemask.
4849 */
4850 if (cpusets_enabled() && ac->nodemask &&
4851 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4852 ac->nodemask = NULL;
4853 return true;
4854 }
4855
4856 /*
4857 * When updating a task's mems_allowed or mempolicy nodemask, it is
4858 * possible to race with parallel threads in such a way that our
4859 * allocation can fail while the mask is being updated. If we are about
4860 * to fail, check if the cpuset changed during allocation and if so,
4861 * retry.
4862 */
4863 if (read_mems_allowed_retry(cpuset_mems_cookie))
4864 return true;
4865
4866 return false;
4867 }
4868
4869 static inline struct page *
4870 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4871 struct alloc_context *ac)
4872 {
4873 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4874 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4875 struct page *page = NULL;
4876 unsigned int alloc_flags;
4877 unsigned long did_some_progress;
4878 enum compact_priority compact_priority;
4879 enum compact_result compact_result;
4880 int compaction_retries;
4881 int no_progress_loops;
4882 unsigned int cpuset_mems_cookie;
4883 int reserve_flags;
4884
4885 /*
4886 * We also sanity check to catch abuse of atomic reserves being used by
4887 * callers that are not in atomic context.
4888 */
4889 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4890 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4891 gfp_mask &= ~__GFP_ATOMIC;
4892
4893 retry_cpuset:
4894 compaction_retries = 0;
4895 no_progress_loops = 0;
4896 compact_priority = DEF_COMPACT_PRIORITY;
4897 cpuset_mems_cookie = read_mems_allowed_begin();
4898
4899 /*
4900 * The fast path uses conservative alloc_flags to succeed only until
4901 * kswapd needs to be woken up, and to avoid the cost of setting up
4902 * alloc_flags precisely. So we do that now.
4903 */
4904 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4905
4906 /*
4907 * We need to recalculate the starting point for the zonelist iterator
4908 * because we might have used different nodemask in the fast path, or
4909 * there was a cpuset modification and we are retrying - otherwise we
4910 * could end up iterating over non-eligible zones endlessly.
4911 */
4912 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4913 ac->highest_zoneidx, ac->nodemask);
4914 if (!ac->preferred_zoneref->zone)
4915 goto nopage;
4916
4917 if (alloc_flags & ALLOC_KSWAPD)
4918 wake_all_kswapds(order, gfp_mask, ac);
4919
4920 /*
4921 * The adjusted alloc_flags might result in immediate success, so try
4922 * that first
4923 */
4924 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4925 if (page)
4926 goto got_pg;
4927
4928 /*
4929 * For costly allocations, try direct compaction first, as it's likely
4930 * that we have enough base pages and don't need to reclaim. For non-
4931 * movable high-order allocations, do that as well, as compaction will
4932 * try prevent permanent fragmentation by migrating from blocks of the
4933 * same migratetype.
4934 * Don't try this for allocations that are allowed to ignore
4935 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4936 */
4937 if (can_direct_reclaim &&
4938 (costly_order ||
4939 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4940 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4941 page = __alloc_pages_direct_compact(gfp_mask, order,
4942 alloc_flags, ac,
4943 INIT_COMPACT_PRIORITY,
4944 &compact_result);
4945 if (page)
4946 goto got_pg;
4947
4948 /*
4949 * Checks for costly allocations with __GFP_NORETRY, which
4950 * includes some THP page fault allocations
4951 */
4952 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4953 /*
4954 * If allocating entire pageblock(s) and compaction
4955 * failed because all zones are below low watermarks
4956 * or is prohibited because it recently failed at this
4957 * order, fail immediately unless the allocator has
4958 * requested compaction and reclaim retry.
4959 *
4960 * Reclaim is
4961 * - potentially very expensive because zones are far
4962 * below their low watermarks or this is part of very
4963 * bursty high order allocations,
4964 * - not guaranteed to help because isolate_freepages()
4965 * may not iterate over freed pages as part of its
4966 * linear scan, and
4967 * - unlikely to make entire pageblocks free on its
4968 * own.
4969 */
4970 if (compact_result == COMPACT_SKIPPED ||
4971 compact_result == COMPACT_DEFERRED)
4972 goto nopage;
4973
4974 /*
4975 * Looks like reclaim/compaction is worth trying, but
4976 * sync compaction could be very expensive, so keep
4977 * using async compaction.
4978 */
4979 compact_priority = INIT_COMPACT_PRIORITY;
4980 }
4981 }
4982
4983 retry:
4984 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4985 if (alloc_flags & ALLOC_KSWAPD)
4986 wake_all_kswapds(order, gfp_mask, ac);
4987
4988 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4989 if (reserve_flags)
4990 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4991
4992 /*
4993 * Reset the nodemask and zonelist iterators if memory policies can be
4994 * ignored. These allocations are high priority and system rather than
4995 * user oriented.
4996 */
4997 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4998 ac->nodemask = NULL;
4999 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5000 ac->highest_zoneidx, ac->nodemask);
5001 }
5002
5003 /* Attempt with potentially adjusted zonelist and alloc_flags */
5004 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5005 if (page)
5006 goto got_pg;
5007
5008 /* Caller is not willing to reclaim, we can't balance anything */
5009 if (!can_direct_reclaim)
5010 goto nopage;
5011
5012 /* Avoid recursion of direct reclaim */
5013 if (current->flags & PF_MEMALLOC)
5014 goto nopage;
5015
5016 /* Try direct reclaim and then allocating */
5017 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5018 &did_some_progress);
5019 if (page)
5020 goto got_pg;
5021
5022 /* Try direct compaction and then allocating */
5023 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5024 compact_priority, &compact_result);
5025 if (page)
5026 goto got_pg;
5027
5028 /* Do not loop if specifically requested */
5029 if (gfp_mask & __GFP_NORETRY)
5030 goto nopage;
5031
5032 /*
5033 * Do not retry costly high order allocations unless they are
5034 * __GFP_RETRY_MAYFAIL
5035 */
5036 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5037 goto nopage;
5038
5039 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5040 did_some_progress > 0, &no_progress_loops))
5041 goto retry;
5042
5043 /*
5044 * It doesn't make any sense to retry for the compaction if the order-0
5045 * reclaim is not able to make any progress because the current
5046 * implementation of the compaction depends on the sufficient amount
5047 * of free memory (see __compaction_suitable)
5048 */
5049 if (did_some_progress > 0 &&
5050 should_compact_retry(ac, order, alloc_flags,
5051 compact_result, &compact_priority,
5052 &compaction_retries))
5053 goto retry;
5054
5055
5056 /* Deal with possible cpuset update races before we start OOM killing */
5057 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5058 goto retry_cpuset;
5059
5060 /* Reclaim has failed us, start killing things */
5061 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5062 if (page)
5063 goto got_pg;
5064
5065 /* Avoid allocations with no watermarks from looping endlessly */
5066 if (tsk_is_oom_victim(current) &&
5067 (alloc_flags & ALLOC_OOM ||
5068 (gfp_mask & __GFP_NOMEMALLOC)))
5069 goto nopage;
5070
5071 /* Retry as long as the OOM killer is making progress */
5072 if (did_some_progress) {
5073 no_progress_loops = 0;
5074 goto retry;
5075 }
5076
5077 nopage:
5078 /* Deal with possible cpuset update races before we fail */
5079 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5080 goto retry_cpuset;
5081
5082 /*
5083 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5084 * we always retry
5085 */
5086 if (gfp_mask & __GFP_NOFAIL) {
5087 /*
5088 * All existing users of the __GFP_NOFAIL are blockable, so warn
5089 * of any new users that actually require GFP_NOWAIT
5090 */
5091 if (WARN_ON_ONCE(!can_direct_reclaim))
5092 goto fail;
5093
5094 /*
5095 * PF_MEMALLOC request from this context is rather bizarre
5096 * because we cannot reclaim anything and only can loop waiting
5097 * for somebody to do a work for us
5098 */
5099 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5100
5101 /*
5102 * non failing costly orders are a hard requirement which we
5103 * are not prepared for much so let's warn about these users
5104 * so that we can identify them and convert them to something
5105 * else.
5106 */
5107 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5108
5109 /*
5110 * Help non-failing allocations by giving them access to memory
5111 * reserves but do not use ALLOC_NO_WATERMARKS because this
5112 * could deplete whole memory reserves which would just make
5113 * the situation worse
5114 */
5115 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5116 if (page)
5117 goto got_pg;
5118
5119 cond_resched();
5120 goto retry;
5121 }
5122 fail:
5123 warn_alloc(gfp_mask, ac->nodemask,
5124 "page allocation failure: order:%u", order);
5125 got_pg:
5126 return page;
5127 }
5128
5129 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5130 int preferred_nid, nodemask_t *nodemask,
5131 struct alloc_context *ac, gfp_t *alloc_gfp,
5132 unsigned int *alloc_flags)
5133 {
5134 ac->highest_zoneidx = gfp_zone(gfp_mask);
5135 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5136 ac->nodemask = nodemask;
5137 ac->migratetype = gfp_migratetype(gfp_mask);
5138
5139 if (cpusets_enabled()) {
5140 *alloc_gfp |= __GFP_HARDWALL;
5141 /*
5142 * When we are in the interrupt context, it is irrelevant
5143 * to the current task context. It means that any node ok.
5144 */
5145 if (in_task() && !ac->nodemask)
5146 ac->nodemask = &cpuset_current_mems_allowed;
5147 else
5148 *alloc_flags |= ALLOC_CPUSET;
5149 }
5150
5151 fs_reclaim_acquire(gfp_mask);
5152 fs_reclaim_release(gfp_mask);
5153
5154 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5155
5156 if (should_fail_alloc_page(gfp_mask, order))
5157 return false;
5158
5159 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5160
5161 /* Dirty zone balancing only done in the fast path */
5162 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5163
5164 /*
5165 * The preferred zone is used for statistics but crucially it is
5166 * also used as the starting point for the zonelist iterator. It
5167 * may get reset for allocations that ignore memory policies.
5168 */
5169 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5170 ac->highest_zoneidx, ac->nodemask);
5171
5172 return true;
5173 }
5174
5175 /*
5176 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5177 * @gfp: GFP flags for the allocation
5178 * @preferred_nid: The preferred NUMA node ID to allocate from
5179 * @nodemask: Set of nodes to allocate from, may be NULL
5180 * @nr_pages: The number of pages desired on the list or array
5181 * @page_list: Optional list to store the allocated pages
5182 * @page_array: Optional array to store the pages
5183 *
5184 * This is a batched version of the page allocator that attempts to
5185 * allocate nr_pages quickly. Pages are added to page_list if page_list
5186 * is not NULL, otherwise it is assumed that the page_array is valid.
5187 *
5188 * For lists, nr_pages is the number of pages that should be allocated.
5189 *
5190 * For arrays, only NULL elements are populated with pages and nr_pages
5191 * is the maximum number of pages that will be stored in the array.
5192 *
5193 * Returns the number of pages on the list or array.
5194 */
5195 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5196 nodemask_t *nodemask, int nr_pages,
5197 struct list_head *page_list,
5198 struct page **page_array)
5199 {
5200 struct page *page;
5201 unsigned long flags;
5202 struct zone *zone;
5203 struct zoneref *z;
5204 struct per_cpu_pages *pcp;
5205 struct list_head *pcp_list;
5206 struct alloc_context ac;
5207 gfp_t alloc_gfp;
5208 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5209 int nr_populated = 0, nr_account = 0;
5210
5211 /*
5212 * Skip populated array elements to determine if any pages need
5213 * to be allocated before disabling IRQs.
5214 */
5215 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5216 nr_populated++;
5217
5218 /* No pages requested? */
5219 if (unlikely(nr_pages <= 0))
5220 goto out;
5221
5222 /* Already populated array? */
5223 if (unlikely(page_array && nr_pages - nr_populated == 0))
5224 goto out;
5225
5226 /* Use the single page allocator for one page. */
5227 if (nr_pages - nr_populated == 1)
5228 goto failed;
5229
5230 #ifdef CONFIG_PAGE_OWNER
5231 /*
5232 * PAGE_OWNER may recurse into the allocator to allocate space to
5233 * save the stack with pagesets.lock held. Releasing/reacquiring
5234 * removes much of the performance benefit of bulk allocation so
5235 * force the caller to allocate one page at a time as it'll have
5236 * similar performance to added complexity to the bulk allocator.
5237 */
5238 if (static_branch_unlikely(&page_owner_inited))
5239 goto failed;
5240 #endif
5241
5242 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5243 gfp &= gfp_allowed_mask;
5244 alloc_gfp = gfp;
5245 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5246 goto out;
5247 gfp = alloc_gfp;
5248
5249 /* Find an allowed local zone that meets the low watermark. */
5250 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5251 unsigned long mark;
5252
5253 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5254 !__cpuset_zone_allowed(zone, gfp)) {
5255 continue;
5256 }
5257
5258 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5259 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5260 goto failed;
5261 }
5262
5263 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5264 if (zone_watermark_fast(zone, 0, mark,
5265 zonelist_zone_idx(ac.preferred_zoneref),
5266 alloc_flags, gfp)) {
5267 break;
5268 }
5269 }
5270
5271 /*
5272 * If there are no allowed local zones that meets the watermarks then
5273 * try to allocate a single page and reclaim if necessary.
5274 */
5275 if (unlikely(!zone))
5276 goto failed;
5277
5278 /* Attempt the batch allocation */
5279 local_lock_irqsave(&pagesets.lock, flags);
5280 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5281 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5282
5283 while (nr_populated < nr_pages) {
5284
5285 /* Skip existing pages */
5286 if (page_array && page_array[nr_populated]) {
5287 nr_populated++;
5288 continue;
5289 }
5290
5291 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5292 pcp, pcp_list);
5293 if (unlikely(!page)) {
5294 /* Try and get at least one page */
5295 if (!nr_populated)
5296 goto failed_irq;
5297 break;
5298 }
5299 nr_account++;
5300
5301 prep_new_page(page, 0, gfp, 0);
5302 if (page_list)
5303 list_add(&page->lru, page_list);
5304 else
5305 page_array[nr_populated] = page;
5306 nr_populated++;
5307 }
5308
5309 local_unlock_irqrestore(&pagesets.lock, flags);
5310
5311 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5312 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5313
5314 out:
5315 return nr_populated;
5316
5317 failed_irq:
5318 local_unlock_irqrestore(&pagesets.lock, flags);
5319
5320 failed:
5321 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5322 if (page) {
5323 if (page_list)
5324 list_add(&page->lru, page_list);
5325 else
5326 page_array[nr_populated] = page;
5327 nr_populated++;
5328 }
5329
5330 goto out;
5331 }
5332 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5333
5334 /*
5335 * This is the 'heart' of the zoned buddy allocator.
5336 */
5337 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5338 nodemask_t *nodemask)
5339 {
5340 struct page *page;
5341 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5342 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5343 struct alloc_context ac = { };
5344
5345 /*
5346 * There are several places where we assume that the order value is sane
5347 * so bail out early if the request is out of bound.
5348 */
5349 if (unlikely(order >= MAX_ORDER)) {
5350 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5351 return NULL;
5352 }
5353
5354 gfp &= gfp_allowed_mask;
5355 /*
5356 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5357 * resp. GFP_NOIO which has to be inherited for all allocation requests
5358 * from a particular context which has been marked by
5359 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5360 * movable zones are not used during allocation.
5361 */
5362 gfp = current_gfp_context(gfp);
5363 alloc_gfp = gfp;
5364 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5365 &alloc_gfp, &alloc_flags))
5366 return NULL;
5367
5368 /*
5369 * Forbid the first pass from falling back to types that fragment
5370 * memory until all local zones are considered.
5371 */
5372 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5373
5374 /* First allocation attempt */
5375 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5376 if (likely(page))
5377 goto out;
5378
5379 alloc_gfp = gfp;
5380 ac.spread_dirty_pages = false;
5381
5382 /*
5383 * Restore the original nodemask if it was potentially replaced with
5384 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5385 */
5386 ac.nodemask = nodemask;
5387
5388 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5389
5390 out:
5391 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5392 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5393 __free_pages(page, order);
5394 page = NULL;
5395 }
5396
5397 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5398
5399 return page;
5400 }
5401 EXPORT_SYMBOL(__alloc_pages);
5402
5403 /*
5404 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5405 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5406 * you need to access high mem.
5407 */
5408 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5409 {
5410 struct page *page;
5411
5412 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5413 if (!page)
5414 return 0;
5415 return (unsigned long) page_address(page);
5416 }
5417 EXPORT_SYMBOL(__get_free_pages);
5418
5419 unsigned long get_zeroed_page(gfp_t gfp_mask)
5420 {
5421 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5422 }
5423 EXPORT_SYMBOL(get_zeroed_page);
5424
5425 /**
5426 * __free_pages - Free pages allocated with alloc_pages().
5427 * @page: The page pointer returned from alloc_pages().
5428 * @order: The order of the allocation.
5429 *
5430 * This function can free multi-page allocations that are not compound
5431 * pages. It does not check that the @order passed in matches that of
5432 * the allocation, so it is easy to leak memory. Freeing more memory
5433 * than was allocated will probably emit a warning.
5434 *
5435 * If the last reference to this page is speculative, it will be released
5436 * by put_page() which only frees the first page of a non-compound
5437 * allocation. To prevent the remaining pages from being leaked, we free
5438 * the subsequent pages here. If you want to use the page's reference
5439 * count to decide when to free the allocation, you should allocate a
5440 * compound page, and use put_page() instead of __free_pages().
5441 *
5442 * Context: May be called in interrupt context or while holding a normal
5443 * spinlock, but not in NMI context or while holding a raw spinlock.
5444 */
5445 void __free_pages(struct page *page, unsigned int order)
5446 {
5447 if (put_page_testzero(page))
5448 free_the_page(page, order);
5449 else if (!PageHead(page))
5450 while (order-- > 0)
5451 free_the_page(page + (1 << order), order);
5452 }
5453 EXPORT_SYMBOL(__free_pages);
5454
5455 void free_pages(unsigned long addr, unsigned int order)
5456 {
5457 if (addr != 0) {
5458 VM_BUG_ON(!virt_addr_valid((void *)addr));
5459 __free_pages(virt_to_page((void *)addr), order);
5460 }
5461 }
5462
5463 EXPORT_SYMBOL(free_pages);
5464
5465 /*
5466 * Page Fragment:
5467 * An arbitrary-length arbitrary-offset area of memory which resides
5468 * within a 0 or higher order page. Multiple fragments within that page
5469 * are individually refcounted, in the page's reference counter.
5470 *
5471 * The page_frag functions below provide a simple allocation framework for
5472 * page fragments. This is used by the network stack and network device
5473 * drivers to provide a backing region of memory for use as either an
5474 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5475 */
5476 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5477 gfp_t gfp_mask)
5478 {
5479 struct page *page = NULL;
5480 gfp_t gfp = gfp_mask;
5481
5482 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5483 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5484 __GFP_NOMEMALLOC;
5485 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5486 PAGE_FRAG_CACHE_MAX_ORDER);
5487 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5488 #endif
5489 if (unlikely(!page))
5490 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5491
5492 nc->va = page ? page_address(page) : NULL;
5493
5494 return page;
5495 }
5496
5497 void __page_frag_cache_drain(struct page *page, unsigned int count)
5498 {
5499 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5500
5501 if (page_ref_sub_and_test(page, count))
5502 free_the_page(page, compound_order(page));
5503 }
5504 EXPORT_SYMBOL(__page_frag_cache_drain);
5505
5506 void *page_frag_alloc_align(struct page_frag_cache *nc,
5507 unsigned int fragsz, gfp_t gfp_mask,
5508 unsigned int align_mask)
5509 {
5510 unsigned int size = PAGE_SIZE;
5511 struct page *page;
5512 int offset;
5513
5514 if (unlikely(!nc->va)) {
5515 refill:
5516 page = __page_frag_cache_refill(nc, gfp_mask);
5517 if (!page)
5518 return NULL;
5519
5520 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5521 /* if size can vary use size else just use PAGE_SIZE */
5522 size = nc->size;
5523 #endif
5524 /* Even if we own the page, we do not use atomic_set().
5525 * This would break get_page_unless_zero() users.
5526 */
5527 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5528
5529 /* reset page count bias and offset to start of new frag */
5530 nc->pfmemalloc = page_is_pfmemalloc(page);
5531 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5532 nc->offset = size;
5533 }
5534
5535 offset = nc->offset - fragsz;
5536 if (unlikely(offset < 0)) {
5537 page = virt_to_page(nc->va);
5538
5539 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5540 goto refill;
5541
5542 if (unlikely(nc->pfmemalloc)) {
5543 free_the_page(page, compound_order(page));
5544 goto refill;
5545 }
5546
5547 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5548 /* if size can vary use size else just use PAGE_SIZE */
5549 size = nc->size;
5550 #endif
5551 /* OK, page count is 0, we can safely set it */
5552 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5553
5554 /* reset page count bias and offset to start of new frag */
5555 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5556 offset = size - fragsz;
5557 }
5558
5559 nc->pagecnt_bias--;
5560 offset &= align_mask;
5561 nc->offset = offset;
5562
5563 return nc->va + offset;
5564 }
5565 EXPORT_SYMBOL(page_frag_alloc_align);
5566
5567 /*
5568 * Frees a page fragment allocated out of either a compound or order 0 page.
5569 */
5570 void page_frag_free(void *addr)
5571 {
5572 struct page *page = virt_to_head_page(addr);
5573
5574 if (unlikely(put_page_testzero(page)))
5575 free_the_page(page, compound_order(page));
5576 }
5577 EXPORT_SYMBOL(page_frag_free);
5578
5579 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5580 size_t size)
5581 {
5582 if (addr) {
5583 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5584 unsigned long used = addr + PAGE_ALIGN(size);
5585
5586 split_page(virt_to_page((void *)addr), order);
5587 while (used < alloc_end) {
5588 free_page(used);
5589 used += PAGE_SIZE;
5590 }
5591 }
5592 return (void *)addr;
5593 }
5594
5595 /**
5596 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5597 * @size: the number of bytes to allocate
5598 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5599 *
5600 * This function is similar to alloc_pages(), except that it allocates the
5601 * minimum number of pages to satisfy the request. alloc_pages() can only
5602 * allocate memory in power-of-two pages.
5603 *
5604 * This function is also limited by MAX_ORDER.
5605 *
5606 * Memory allocated by this function must be released by free_pages_exact().
5607 *
5608 * Return: pointer to the allocated area or %NULL in case of error.
5609 */
5610 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5611 {
5612 unsigned int order = get_order(size);
5613 unsigned long addr;
5614
5615 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5616 gfp_mask &= ~__GFP_COMP;
5617
5618 addr = __get_free_pages(gfp_mask, order);
5619 return make_alloc_exact(addr, order, size);
5620 }
5621 EXPORT_SYMBOL(alloc_pages_exact);
5622
5623 /**
5624 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5625 * pages on a node.
5626 * @nid: the preferred node ID where memory should be allocated
5627 * @size: the number of bytes to allocate
5628 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5629 *
5630 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5631 * back.
5632 *
5633 * Return: pointer to the allocated area or %NULL in case of error.
5634 */
5635 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5636 {
5637 unsigned int order = get_order(size);
5638 struct page *p;
5639
5640 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5641 gfp_mask &= ~__GFP_COMP;
5642
5643 p = alloc_pages_node(nid, gfp_mask, order);
5644 if (!p)
5645 return NULL;
5646 return make_alloc_exact((unsigned long)page_address(p), order, size);
5647 }
5648
5649 /**
5650 * free_pages_exact - release memory allocated via alloc_pages_exact()
5651 * @virt: the value returned by alloc_pages_exact.
5652 * @size: size of allocation, same value as passed to alloc_pages_exact().
5653 *
5654 * Release the memory allocated by a previous call to alloc_pages_exact.
5655 */
5656 void free_pages_exact(void *virt, size_t size)
5657 {
5658 unsigned long addr = (unsigned long)virt;
5659 unsigned long end = addr + PAGE_ALIGN(size);
5660
5661 while (addr < end) {
5662 free_page(addr);
5663 addr += PAGE_SIZE;
5664 }
5665 }
5666 EXPORT_SYMBOL(free_pages_exact);
5667
5668 /**
5669 * nr_free_zone_pages - count number of pages beyond high watermark
5670 * @offset: The zone index of the highest zone
5671 *
5672 * nr_free_zone_pages() counts the number of pages which are beyond the
5673 * high watermark within all zones at or below a given zone index. For each
5674 * zone, the number of pages is calculated as:
5675 *
5676 * nr_free_zone_pages = managed_pages - high_pages
5677 *
5678 * Return: number of pages beyond high watermark.
5679 */
5680 static unsigned long nr_free_zone_pages(int offset)
5681 {
5682 struct zoneref *z;
5683 struct zone *zone;
5684
5685 /* Just pick one node, since fallback list is circular */
5686 unsigned long sum = 0;
5687
5688 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5689
5690 for_each_zone_zonelist(zone, z, zonelist, offset) {
5691 unsigned long size = zone_managed_pages(zone);
5692 unsigned long high = high_wmark_pages(zone);
5693 if (size > high)
5694 sum += size - high;
5695 }
5696
5697 return sum;
5698 }
5699
5700 /**
5701 * nr_free_buffer_pages - count number of pages beyond high watermark
5702 *
5703 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5704 * watermark within ZONE_DMA and ZONE_NORMAL.
5705 *
5706 * Return: number of pages beyond high watermark within ZONE_DMA and
5707 * ZONE_NORMAL.
5708 */
5709 unsigned long nr_free_buffer_pages(void)
5710 {
5711 return nr_free_zone_pages(gfp_zone(GFP_USER));
5712 }
5713 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5714
5715 static inline void show_node(struct zone *zone)
5716 {
5717 if (IS_ENABLED(CONFIG_NUMA))
5718 printk("Node %d ", zone_to_nid(zone));
5719 }
5720
5721 long si_mem_available(void)
5722 {
5723 long available;
5724 unsigned long pagecache;
5725 unsigned long wmark_low = 0;
5726 unsigned long pages[NR_LRU_LISTS];
5727 unsigned long reclaimable;
5728 struct zone *zone;
5729 int lru;
5730
5731 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5732 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5733
5734 for_each_zone(zone)
5735 wmark_low += low_wmark_pages(zone);
5736
5737 /*
5738 * Estimate the amount of memory available for userspace allocations,
5739 * without causing swapping.
5740 */
5741 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5742
5743 /*
5744 * Not all the page cache can be freed, otherwise the system will
5745 * start swapping. Assume at least half of the page cache, or the
5746 * low watermark worth of cache, needs to stay.
5747 */
5748 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5749 pagecache -= min(pagecache / 2, wmark_low);
5750 available += pagecache;
5751
5752 /*
5753 * Part of the reclaimable slab and other kernel memory consists of
5754 * items that are in use, and cannot be freed. Cap this estimate at the
5755 * low watermark.
5756 */
5757 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5758 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5759 available += reclaimable - min(reclaimable / 2, wmark_low);
5760
5761 if (available < 0)
5762 available = 0;
5763 return available;
5764 }
5765 EXPORT_SYMBOL_GPL(si_mem_available);
5766
5767 void si_meminfo(struct sysinfo *val)
5768 {
5769 val->totalram = totalram_pages();
5770 val->sharedram = global_node_page_state(NR_SHMEM);
5771 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5772 val->bufferram = nr_blockdev_pages();
5773 val->totalhigh = totalhigh_pages();
5774 val->freehigh = nr_free_highpages();
5775 val->mem_unit = PAGE_SIZE;
5776 }
5777
5778 EXPORT_SYMBOL(si_meminfo);
5779
5780 #ifdef CONFIG_NUMA
5781 void si_meminfo_node(struct sysinfo *val, int nid)
5782 {
5783 int zone_type; /* needs to be signed */
5784 unsigned long managed_pages = 0;
5785 unsigned long managed_highpages = 0;
5786 unsigned long free_highpages = 0;
5787 pg_data_t *pgdat = NODE_DATA(nid);
5788
5789 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5790 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5791 val->totalram = managed_pages;
5792 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5793 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5794 #ifdef CONFIG_HIGHMEM
5795 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5796 struct zone *zone = &pgdat->node_zones[zone_type];
5797
5798 if (is_highmem(zone)) {
5799 managed_highpages += zone_managed_pages(zone);
5800 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5801 }
5802 }
5803 val->totalhigh = managed_highpages;
5804 val->freehigh = free_highpages;
5805 #else
5806 val->totalhigh = managed_highpages;
5807 val->freehigh = free_highpages;
5808 #endif
5809 val->mem_unit = PAGE_SIZE;
5810 }
5811 #endif
5812
5813 /*
5814 * Determine whether the node should be displayed or not, depending on whether
5815 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5816 */
5817 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5818 {
5819 if (!(flags & SHOW_MEM_FILTER_NODES))
5820 return false;
5821
5822 /*
5823 * no node mask - aka implicit memory numa policy. Do not bother with
5824 * the synchronization - read_mems_allowed_begin - because we do not
5825 * have to be precise here.
5826 */
5827 if (!nodemask)
5828 nodemask = &cpuset_current_mems_allowed;
5829
5830 return !node_isset(nid, *nodemask);
5831 }
5832
5833 #define K(x) ((x) << (PAGE_SHIFT-10))
5834
5835 static void show_migration_types(unsigned char type)
5836 {
5837 static const char types[MIGRATE_TYPES] = {
5838 [MIGRATE_UNMOVABLE] = 'U',
5839 [MIGRATE_MOVABLE] = 'M',
5840 [MIGRATE_RECLAIMABLE] = 'E',
5841 [MIGRATE_HIGHATOMIC] = 'H',
5842 #ifdef CONFIG_CMA
5843 [MIGRATE_CMA] = 'C',
5844 #endif
5845 #ifdef CONFIG_MEMORY_ISOLATION
5846 [MIGRATE_ISOLATE] = 'I',
5847 #endif
5848 };
5849 char tmp[MIGRATE_TYPES + 1];
5850 char *p = tmp;
5851 int i;
5852
5853 for (i = 0; i < MIGRATE_TYPES; i++) {
5854 if (type & (1 << i))
5855 *p++ = types[i];
5856 }
5857
5858 *p = '\0';
5859 printk(KERN_CONT "(%s) ", tmp);
5860 }
5861
5862 /*
5863 * Show free area list (used inside shift_scroll-lock stuff)
5864 * We also calculate the percentage fragmentation. We do this by counting the
5865 * memory on each free list with the exception of the first item on the list.
5866 *
5867 * Bits in @filter:
5868 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5869 * cpuset.
5870 */
5871 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5872 {
5873 unsigned long free_pcp = 0;
5874 int cpu;
5875 struct zone *zone;
5876 pg_data_t *pgdat;
5877
5878 for_each_populated_zone(zone) {
5879 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5880 continue;
5881
5882 for_each_online_cpu(cpu)
5883 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5884 }
5885
5886 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5887 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5888 " unevictable:%lu dirty:%lu writeback:%lu\n"
5889 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5890 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5891 " kernel_misc_reclaimable:%lu\n"
5892 " free:%lu free_pcp:%lu free_cma:%lu\n",
5893 global_node_page_state(NR_ACTIVE_ANON),
5894 global_node_page_state(NR_INACTIVE_ANON),
5895 global_node_page_state(NR_ISOLATED_ANON),
5896 global_node_page_state(NR_ACTIVE_FILE),
5897 global_node_page_state(NR_INACTIVE_FILE),
5898 global_node_page_state(NR_ISOLATED_FILE),
5899 global_node_page_state(NR_UNEVICTABLE),
5900 global_node_page_state(NR_FILE_DIRTY),
5901 global_node_page_state(NR_WRITEBACK),
5902 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5903 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5904 global_node_page_state(NR_FILE_MAPPED),
5905 global_node_page_state(NR_SHMEM),
5906 global_node_page_state(NR_PAGETABLE),
5907 global_zone_page_state(NR_BOUNCE),
5908 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5909 global_zone_page_state(NR_FREE_PAGES),
5910 free_pcp,
5911 global_zone_page_state(NR_FREE_CMA_PAGES));
5912
5913 for_each_online_pgdat(pgdat) {
5914 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5915 continue;
5916
5917 printk("Node %d"
5918 " active_anon:%lukB"
5919 " inactive_anon:%lukB"
5920 " active_file:%lukB"
5921 " inactive_file:%lukB"
5922 " unevictable:%lukB"
5923 " isolated(anon):%lukB"
5924 " isolated(file):%lukB"
5925 " mapped:%lukB"
5926 " dirty:%lukB"
5927 " writeback:%lukB"
5928 " shmem:%lukB"
5929 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5930 " shmem_thp: %lukB"
5931 " shmem_pmdmapped: %lukB"
5932 " anon_thp: %lukB"
5933 #endif
5934 " writeback_tmp:%lukB"
5935 " kernel_stack:%lukB"
5936 #ifdef CONFIG_SHADOW_CALL_STACK
5937 " shadow_call_stack:%lukB"
5938 #endif
5939 " pagetables:%lukB"
5940 " all_unreclaimable? %s"
5941 "\n",
5942 pgdat->node_id,
5943 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5944 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5945 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5946 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5947 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5948 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5949 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5950 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5951 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5952 K(node_page_state(pgdat, NR_WRITEBACK)),
5953 K(node_page_state(pgdat, NR_SHMEM)),
5954 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5955 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5956 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5957 K(node_page_state(pgdat, NR_ANON_THPS)),
5958 #endif
5959 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5960 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5961 #ifdef CONFIG_SHADOW_CALL_STACK
5962 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5963 #endif
5964 K(node_page_state(pgdat, NR_PAGETABLE)),
5965 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5966 "yes" : "no");
5967 }
5968
5969 for_each_populated_zone(zone) {
5970 int i;
5971
5972 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5973 continue;
5974
5975 free_pcp = 0;
5976 for_each_online_cpu(cpu)
5977 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5978
5979 show_node(zone);
5980 printk(KERN_CONT
5981 "%s"
5982 " free:%lukB"
5983 " min:%lukB"
5984 " low:%lukB"
5985 " high:%lukB"
5986 " reserved_highatomic:%luKB"
5987 " active_anon:%lukB"
5988 " inactive_anon:%lukB"
5989 " active_file:%lukB"
5990 " inactive_file:%lukB"
5991 " unevictable:%lukB"
5992 " writepending:%lukB"
5993 " present:%lukB"
5994 " managed:%lukB"
5995 " mlocked:%lukB"
5996 " bounce:%lukB"
5997 " free_pcp:%lukB"
5998 " local_pcp:%ukB"
5999 " free_cma:%lukB"
6000 "\n",
6001 zone->name,
6002 K(zone_page_state(zone, NR_FREE_PAGES)),
6003 K(min_wmark_pages(zone)),
6004 K(low_wmark_pages(zone)),
6005 K(high_wmark_pages(zone)),
6006 K(zone->nr_reserved_highatomic),
6007 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6008 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6009 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6010 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6011 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6012 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6013 K(zone->present_pages),
6014 K(zone_managed_pages(zone)),
6015 K(zone_page_state(zone, NR_MLOCK)),
6016 K(zone_page_state(zone, NR_BOUNCE)),
6017 K(free_pcp),
6018 K(this_cpu_read(zone->per_cpu_pageset->count)),
6019 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6020 printk("lowmem_reserve[]:");
6021 for (i = 0; i < MAX_NR_ZONES; i++)
6022 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6023 printk(KERN_CONT "\n");
6024 }
6025
6026 for_each_populated_zone(zone) {
6027 unsigned int order;
6028 unsigned long nr[MAX_ORDER], flags, total = 0;
6029 unsigned char types[MAX_ORDER];
6030
6031 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6032 continue;
6033 show_node(zone);
6034 printk(KERN_CONT "%s: ", zone->name);
6035
6036 spin_lock_irqsave(&zone->lock, flags);
6037 for (order = 0; order < MAX_ORDER; order++) {
6038 struct free_area *area = &zone->free_area[order];
6039 int type;
6040
6041 nr[order] = area->nr_free;
6042 total += nr[order] << order;
6043
6044 types[order] = 0;
6045 for (type = 0; type < MIGRATE_TYPES; type++) {
6046 if (!free_area_empty(area, type))
6047 types[order] |= 1 << type;
6048 }
6049 }
6050 spin_unlock_irqrestore(&zone->lock, flags);
6051 for (order = 0; order < MAX_ORDER; order++) {
6052 printk(KERN_CONT "%lu*%lukB ",
6053 nr[order], K(1UL) << order);
6054 if (nr[order])
6055 show_migration_types(types[order]);
6056 }
6057 printk(KERN_CONT "= %lukB\n", K(total));
6058 }
6059
6060 hugetlb_show_meminfo();
6061
6062 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6063
6064 show_swap_cache_info();
6065 }
6066
6067 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6068 {
6069 zoneref->zone = zone;
6070 zoneref->zone_idx = zone_idx(zone);
6071 }
6072
6073 /*
6074 * Builds allocation fallback zone lists.
6075 *
6076 * Add all populated zones of a node to the zonelist.
6077 */
6078 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6079 {
6080 struct zone *zone;
6081 enum zone_type zone_type = MAX_NR_ZONES;
6082 int nr_zones = 0;
6083
6084 do {
6085 zone_type--;
6086 zone = pgdat->node_zones + zone_type;
6087 if (managed_zone(zone)) {
6088 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6089 check_highest_zone(zone_type);
6090 }
6091 } while (zone_type);
6092
6093 return nr_zones;
6094 }
6095
6096 #ifdef CONFIG_NUMA
6097
6098 static int __parse_numa_zonelist_order(char *s)
6099 {
6100 /*
6101 * We used to support different zonelists modes but they turned
6102 * out to be just not useful. Let's keep the warning in place
6103 * if somebody still use the cmd line parameter so that we do
6104 * not fail it silently
6105 */
6106 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6107 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6108 return -EINVAL;
6109 }
6110 return 0;
6111 }
6112
6113 char numa_zonelist_order[] = "Node";
6114
6115 /*
6116 * sysctl handler for numa_zonelist_order
6117 */
6118 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6119 void *buffer, size_t *length, loff_t *ppos)
6120 {
6121 if (write)
6122 return __parse_numa_zonelist_order(buffer);
6123 return proc_dostring(table, write, buffer, length, ppos);
6124 }
6125
6126
6127 #define MAX_NODE_LOAD (nr_online_nodes)
6128 static int node_load[MAX_NUMNODES];
6129
6130 /**
6131 * find_next_best_node - find the next node that should appear in a given node's fallback list
6132 * @node: node whose fallback list we're appending
6133 * @used_node_mask: nodemask_t of already used nodes
6134 *
6135 * We use a number of factors to determine which is the next node that should
6136 * appear on a given node's fallback list. The node should not have appeared
6137 * already in @node's fallback list, and it should be the next closest node
6138 * according to the distance array (which contains arbitrary distance values
6139 * from each node to each node in the system), and should also prefer nodes
6140 * with no CPUs, since presumably they'll have very little allocation pressure
6141 * on them otherwise.
6142 *
6143 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6144 */
6145 int find_next_best_node(int node, nodemask_t *used_node_mask)
6146 {
6147 int n, val;
6148 int min_val = INT_MAX;
6149 int best_node = NUMA_NO_NODE;
6150
6151 /* Use the local node if we haven't already */
6152 if (!node_isset(node, *used_node_mask)) {
6153 node_set(node, *used_node_mask);
6154 return node;
6155 }
6156
6157 for_each_node_state(n, N_MEMORY) {
6158
6159 /* Don't want a node to appear more than once */
6160 if (node_isset(n, *used_node_mask))
6161 continue;
6162
6163 /* Use the distance array to find the distance */
6164 val = node_distance(node, n);
6165
6166 /* Penalize nodes under us ("prefer the next node") */
6167 val += (n < node);
6168
6169 /* Give preference to headless and unused nodes */
6170 if (!cpumask_empty(cpumask_of_node(n)))
6171 val += PENALTY_FOR_NODE_WITH_CPUS;
6172
6173 /* Slight preference for less loaded node */
6174 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6175 val += node_load[n];
6176
6177 if (val < min_val) {
6178 min_val = val;
6179 best_node = n;
6180 }
6181 }
6182
6183 if (best_node >= 0)
6184 node_set(best_node, *used_node_mask);
6185
6186 return best_node;
6187 }
6188
6189
6190 /*
6191 * Build zonelists ordered by node and zones within node.
6192 * This results in maximum locality--normal zone overflows into local
6193 * DMA zone, if any--but risks exhausting DMA zone.
6194 */
6195 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6196 unsigned nr_nodes)
6197 {
6198 struct zoneref *zonerefs;
6199 int i;
6200
6201 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6202
6203 for (i = 0; i < nr_nodes; i++) {
6204 int nr_zones;
6205
6206 pg_data_t *node = NODE_DATA(node_order[i]);
6207
6208 nr_zones = build_zonerefs_node(node, zonerefs);
6209 zonerefs += nr_zones;
6210 }
6211 zonerefs->zone = NULL;
6212 zonerefs->zone_idx = 0;
6213 }
6214
6215 /*
6216 * Build gfp_thisnode zonelists
6217 */
6218 static void build_thisnode_zonelists(pg_data_t *pgdat)
6219 {
6220 struct zoneref *zonerefs;
6221 int nr_zones;
6222
6223 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6224 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6225 zonerefs += nr_zones;
6226 zonerefs->zone = NULL;
6227 zonerefs->zone_idx = 0;
6228 }
6229
6230 /*
6231 * Build zonelists ordered by zone and nodes within zones.
6232 * This results in conserving DMA zone[s] until all Normal memory is
6233 * exhausted, but results in overflowing to remote node while memory
6234 * may still exist in local DMA zone.
6235 */
6236
6237 static void build_zonelists(pg_data_t *pgdat)
6238 {
6239 static int node_order[MAX_NUMNODES];
6240 int node, load, nr_nodes = 0;
6241 nodemask_t used_mask = NODE_MASK_NONE;
6242 int local_node, prev_node;
6243
6244 /* NUMA-aware ordering of nodes */
6245 local_node = pgdat->node_id;
6246 load = nr_online_nodes;
6247 prev_node = local_node;
6248
6249 memset(node_order, 0, sizeof(node_order));
6250 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6251 /*
6252 * We don't want to pressure a particular node.
6253 * So adding penalty to the first node in same
6254 * distance group to make it round-robin.
6255 */
6256 if (node_distance(local_node, node) !=
6257 node_distance(local_node, prev_node))
6258 node_load[node] = load;
6259
6260 node_order[nr_nodes++] = node;
6261 prev_node = node;
6262 load--;
6263 }
6264
6265 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6266 build_thisnode_zonelists(pgdat);
6267 }
6268
6269 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6270 /*
6271 * Return node id of node used for "local" allocations.
6272 * I.e., first node id of first zone in arg node's generic zonelist.
6273 * Used for initializing percpu 'numa_mem', which is used primarily
6274 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6275 */
6276 int local_memory_node(int node)
6277 {
6278 struct zoneref *z;
6279
6280 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6281 gfp_zone(GFP_KERNEL),
6282 NULL);
6283 return zone_to_nid(z->zone);
6284 }
6285 #endif
6286
6287 static void setup_min_unmapped_ratio(void);
6288 static void setup_min_slab_ratio(void);
6289 #else /* CONFIG_NUMA */
6290
6291 static void build_zonelists(pg_data_t *pgdat)
6292 {
6293 int node, local_node;
6294 struct zoneref *zonerefs;
6295 int nr_zones;
6296
6297 local_node = pgdat->node_id;
6298
6299 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6300 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6301 zonerefs += nr_zones;
6302
6303 /*
6304 * Now we build the zonelist so that it contains the zones
6305 * of all the other nodes.
6306 * We don't want to pressure a particular node, so when
6307 * building the zones for node N, we make sure that the
6308 * zones coming right after the local ones are those from
6309 * node N+1 (modulo N)
6310 */
6311 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6312 if (!node_online(node))
6313 continue;
6314 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6315 zonerefs += nr_zones;
6316 }
6317 for (node = 0; node < local_node; node++) {
6318 if (!node_online(node))
6319 continue;
6320 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6321 zonerefs += nr_zones;
6322 }
6323
6324 zonerefs->zone = NULL;
6325 zonerefs->zone_idx = 0;
6326 }
6327
6328 #endif /* CONFIG_NUMA */
6329
6330 /*
6331 * Boot pageset table. One per cpu which is going to be used for all
6332 * zones and all nodes. The parameters will be set in such a way
6333 * that an item put on a list will immediately be handed over to
6334 * the buddy list. This is safe since pageset manipulation is done
6335 * with interrupts disabled.
6336 *
6337 * The boot_pagesets must be kept even after bootup is complete for
6338 * unused processors and/or zones. They do play a role for bootstrapping
6339 * hotplugged processors.
6340 *
6341 * zoneinfo_show() and maybe other functions do
6342 * not check if the processor is online before following the pageset pointer.
6343 * Other parts of the kernel may not check if the zone is available.
6344 */
6345 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6346 /* These effectively disable the pcplists in the boot pageset completely */
6347 #define BOOT_PAGESET_HIGH 0
6348 #define BOOT_PAGESET_BATCH 1
6349 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6350 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6351 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6352
6353 static void __build_all_zonelists(void *data)
6354 {
6355 int nid;
6356 int __maybe_unused cpu;
6357 pg_data_t *self = data;
6358 static DEFINE_SPINLOCK(lock);
6359
6360 spin_lock(&lock);
6361
6362 #ifdef CONFIG_NUMA
6363 memset(node_load, 0, sizeof(node_load));
6364 #endif
6365
6366 /*
6367 * This node is hotadded and no memory is yet present. So just
6368 * building zonelists is fine - no need to touch other nodes.
6369 */
6370 if (self && !node_online(self->node_id)) {
6371 build_zonelists(self);
6372 } else {
6373 for_each_online_node(nid) {
6374 pg_data_t *pgdat = NODE_DATA(nid);
6375
6376 build_zonelists(pgdat);
6377 }
6378
6379 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6380 /*
6381 * We now know the "local memory node" for each node--
6382 * i.e., the node of the first zone in the generic zonelist.
6383 * Set up numa_mem percpu variable for on-line cpus. During
6384 * boot, only the boot cpu should be on-line; we'll init the
6385 * secondary cpus' numa_mem as they come on-line. During
6386 * node/memory hotplug, we'll fixup all on-line cpus.
6387 */
6388 for_each_online_cpu(cpu)
6389 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6390 #endif
6391 }
6392
6393 spin_unlock(&lock);
6394 }
6395
6396 static noinline void __init
6397 build_all_zonelists_init(void)
6398 {
6399 int cpu;
6400
6401 __build_all_zonelists(NULL);
6402
6403 /*
6404 * Initialize the boot_pagesets that are going to be used
6405 * for bootstrapping processors. The real pagesets for
6406 * each zone will be allocated later when the per cpu
6407 * allocator is available.
6408 *
6409 * boot_pagesets are used also for bootstrapping offline
6410 * cpus if the system is already booted because the pagesets
6411 * are needed to initialize allocators on a specific cpu too.
6412 * F.e. the percpu allocator needs the page allocator which
6413 * needs the percpu allocator in order to allocate its pagesets
6414 * (a chicken-egg dilemma).
6415 */
6416 for_each_possible_cpu(cpu)
6417 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6418
6419 mminit_verify_zonelist();
6420 cpuset_init_current_mems_allowed();
6421 }
6422
6423 /*
6424 * unless system_state == SYSTEM_BOOTING.
6425 *
6426 * __ref due to call of __init annotated helper build_all_zonelists_init
6427 * [protected by SYSTEM_BOOTING].
6428 */
6429 void __ref build_all_zonelists(pg_data_t *pgdat)
6430 {
6431 unsigned long vm_total_pages;
6432
6433 if (system_state == SYSTEM_BOOTING) {
6434 build_all_zonelists_init();
6435 } else {
6436 __build_all_zonelists(pgdat);
6437 /* cpuset refresh routine should be here */
6438 }
6439 /* Get the number of free pages beyond high watermark in all zones. */
6440 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6441 /*
6442 * Disable grouping by mobility if the number of pages in the
6443 * system is too low to allow the mechanism to work. It would be
6444 * more accurate, but expensive to check per-zone. This check is
6445 * made on memory-hotadd so a system can start with mobility
6446 * disabled and enable it later
6447 */
6448 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6449 page_group_by_mobility_disabled = 1;
6450 else
6451 page_group_by_mobility_disabled = 0;
6452
6453 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6454 nr_online_nodes,
6455 page_group_by_mobility_disabled ? "off" : "on",
6456 vm_total_pages);
6457 #ifdef CONFIG_NUMA
6458 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6459 #endif
6460 }
6461
6462 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6463 static bool __meminit
6464 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6465 {
6466 static struct memblock_region *r;
6467
6468 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6469 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6470 for_each_mem_region(r) {
6471 if (*pfn < memblock_region_memory_end_pfn(r))
6472 break;
6473 }
6474 }
6475 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6476 memblock_is_mirror(r)) {
6477 *pfn = memblock_region_memory_end_pfn(r);
6478 return true;
6479 }
6480 }
6481 return false;
6482 }
6483
6484 /*
6485 * Initially all pages are reserved - free ones are freed
6486 * up by memblock_free_all() once the early boot process is
6487 * done. Non-atomic initialization, single-pass.
6488 *
6489 * All aligned pageblocks are initialized to the specified migratetype
6490 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6491 * zone stats (e.g., nr_isolate_pageblock) are touched.
6492 */
6493 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6494 unsigned long start_pfn, unsigned long zone_end_pfn,
6495 enum meminit_context context,
6496 struct vmem_altmap *altmap, int migratetype)
6497 {
6498 unsigned long pfn, end_pfn = start_pfn + size;
6499 struct page *page;
6500
6501 if (highest_memmap_pfn < end_pfn - 1)
6502 highest_memmap_pfn = end_pfn - 1;
6503
6504 #ifdef CONFIG_ZONE_DEVICE
6505 /*
6506 * Honor reservation requested by the driver for this ZONE_DEVICE
6507 * memory. We limit the total number of pages to initialize to just
6508 * those that might contain the memory mapping. We will defer the
6509 * ZONE_DEVICE page initialization until after we have released
6510 * the hotplug lock.
6511 */
6512 if (zone == ZONE_DEVICE) {
6513 if (!altmap)
6514 return;
6515
6516 if (start_pfn == altmap->base_pfn)
6517 start_pfn += altmap->reserve;
6518 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6519 }
6520 #endif
6521
6522 for (pfn = start_pfn; pfn < end_pfn; ) {
6523 /*
6524 * There can be holes in boot-time mem_map[]s handed to this
6525 * function. They do not exist on hotplugged memory.
6526 */
6527 if (context == MEMINIT_EARLY) {
6528 if (overlap_memmap_init(zone, &pfn))
6529 continue;
6530 if (defer_init(nid, pfn, zone_end_pfn))
6531 break;
6532 }
6533
6534 page = pfn_to_page(pfn);
6535 __init_single_page(page, pfn, zone, nid);
6536 if (context == MEMINIT_HOTPLUG)
6537 __SetPageReserved(page);
6538
6539 /*
6540 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6541 * such that unmovable allocations won't be scattered all
6542 * over the place during system boot.
6543 */
6544 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6545 set_pageblock_migratetype(page, migratetype);
6546 cond_resched();
6547 }
6548 pfn++;
6549 }
6550 }
6551
6552 #ifdef CONFIG_ZONE_DEVICE
6553 void __ref memmap_init_zone_device(struct zone *zone,
6554 unsigned long start_pfn,
6555 unsigned long nr_pages,
6556 struct dev_pagemap *pgmap)
6557 {
6558 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6559 struct pglist_data *pgdat = zone->zone_pgdat;
6560 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6561 unsigned long zone_idx = zone_idx(zone);
6562 unsigned long start = jiffies;
6563 int nid = pgdat->node_id;
6564
6565 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6566 return;
6567
6568 /*
6569 * The call to memmap_init should have already taken care
6570 * of the pages reserved for the memmap, so we can just jump to
6571 * the end of that region and start processing the device pages.
6572 */
6573 if (altmap) {
6574 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6575 nr_pages = end_pfn - start_pfn;
6576 }
6577
6578 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6579 struct page *page = pfn_to_page(pfn);
6580
6581 __init_single_page(page, pfn, zone_idx, nid);
6582
6583 /*
6584 * Mark page reserved as it will need to wait for onlining
6585 * phase for it to be fully associated with a zone.
6586 *
6587 * We can use the non-atomic __set_bit operation for setting
6588 * the flag as we are still initializing the pages.
6589 */
6590 __SetPageReserved(page);
6591
6592 /*
6593 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6594 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6595 * ever freed or placed on a driver-private list.
6596 */
6597 page->pgmap = pgmap;
6598 page->zone_device_data = NULL;
6599
6600 /*
6601 * Mark the block movable so that blocks are reserved for
6602 * movable at startup. This will force kernel allocations
6603 * to reserve their blocks rather than leaking throughout
6604 * the address space during boot when many long-lived
6605 * kernel allocations are made.
6606 *
6607 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6608 * because this is done early in section_activate()
6609 */
6610 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6611 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6612 cond_resched();
6613 }
6614 }
6615
6616 pr_info("%s initialised %lu pages in %ums\n", __func__,
6617 nr_pages, jiffies_to_msecs(jiffies - start));
6618 }
6619
6620 #endif
6621 static void __meminit zone_init_free_lists(struct zone *zone)
6622 {
6623 unsigned int order, t;
6624 for_each_migratetype_order(order, t) {
6625 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6626 zone->free_area[order].nr_free = 0;
6627 }
6628 }
6629
6630 /*
6631 * Only struct pages that correspond to ranges defined by memblock.memory
6632 * are zeroed and initialized by going through __init_single_page() during
6633 * memmap_init_zone_range().
6634 *
6635 * But, there could be struct pages that correspond to holes in
6636 * memblock.memory. This can happen because of the following reasons:
6637 * - physical memory bank size is not necessarily the exact multiple of the
6638 * arbitrary section size
6639 * - early reserved memory may not be listed in memblock.memory
6640 * - memory layouts defined with memmap= kernel parameter may not align
6641 * nicely with memmap sections
6642 *
6643 * Explicitly initialize those struct pages so that:
6644 * - PG_Reserved is set
6645 * - zone and node links point to zone and node that span the page if the
6646 * hole is in the middle of a zone
6647 * - zone and node links point to adjacent zone/node if the hole falls on
6648 * the zone boundary; the pages in such holes will be prepended to the
6649 * zone/node above the hole except for the trailing pages in the last
6650 * section that will be appended to the zone/node below.
6651 */
6652 static void __init init_unavailable_range(unsigned long spfn,
6653 unsigned long epfn,
6654 int zone, int node)
6655 {
6656 unsigned long pfn;
6657 u64 pgcnt = 0;
6658
6659 for (pfn = spfn; pfn < epfn; pfn++) {
6660 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6661 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6662 + pageblock_nr_pages - 1;
6663 continue;
6664 }
6665 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6666 __SetPageReserved(pfn_to_page(pfn));
6667 pgcnt++;
6668 }
6669
6670 if (pgcnt)
6671 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6672 node, zone_names[zone], pgcnt);
6673 }
6674
6675 static void __init memmap_init_zone_range(struct zone *zone,
6676 unsigned long start_pfn,
6677 unsigned long end_pfn,
6678 unsigned long *hole_pfn)
6679 {
6680 unsigned long zone_start_pfn = zone->zone_start_pfn;
6681 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6682 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6683
6684 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6685 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6686
6687 if (start_pfn >= end_pfn)
6688 return;
6689
6690 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6691 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6692
6693 if (*hole_pfn < start_pfn)
6694 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6695
6696 *hole_pfn = end_pfn;
6697 }
6698
6699 static void __init memmap_init(void)
6700 {
6701 unsigned long start_pfn, end_pfn;
6702 unsigned long hole_pfn = 0;
6703 int i, j, zone_id = 0, nid;
6704
6705 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6706 struct pglist_data *node = NODE_DATA(nid);
6707
6708 for (j = 0; j < MAX_NR_ZONES; j++) {
6709 struct zone *zone = node->node_zones + j;
6710
6711 if (!populated_zone(zone))
6712 continue;
6713
6714 memmap_init_zone_range(zone, start_pfn, end_pfn,
6715 &hole_pfn);
6716 zone_id = j;
6717 }
6718 }
6719
6720 #ifdef CONFIG_SPARSEMEM
6721 /*
6722 * Initialize the memory map for hole in the range [memory_end,
6723 * section_end].
6724 * Append the pages in this hole to the highest zone in the last
6725 * node.
6726 * The call to init_unavailable_range() is outside the ifdef to
6727 * silence the compiler warining about zone_id set but not used;
6728 * for FLATMEM it is a nop anyway
6729 */
6730 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6731 if (hole_pfn < end_pfn)
6732 #endif
6733 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6734 }
6735
6736 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6737 phys_addr_t min_addr, int nid, bool exact_nid)
6738 {
6739 void *ptr;
6740
6741 if (exact_nid)
6742 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6743 MEMBLOCK_ALLOC_ACCESSIBLE,
6744 nid);
6745 else
6746 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6747 MEMBLOCK_ALLOC_ACCESSIBLE,
6748 nid);
6749
6750 if (ptr && size > 0)
6751 page_init_poison(ptr, size);
6752
6753 return ptr;
6754 }
6755
6756 static int zone_batchsize(struct zone *zone)
6757 {
6758 #ifdef CONFIG_MMU
6759 int batch;
6760
6761 /*
6762 * The number of pages to batch allocate is either ~0.1%
6763 * of the zone or 1MB, whichever is smaller. The batch
6764 * size is striking a balance between allocation latency
6765 * and zone lock contention.
6766 */
6767 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6768 batch /= 4; /* We effectively *= 4 below */
6769 if (batch < 1)
6770 batch = 1;
6771
6772 /*
6773 * Clamp the batch to a 2^n - 1 value. Having a power
6774 * of 2 value was found to be more likely to have
6775 * suboptimal cache aliasing properties in some cases.
6776 *
6777 * For example if 2 tasks are alternately allocating
6778 * batches of pages, one task can end up with a lot
6779 * of pages of one half of the possible page colors
6780 * and the other with pages of the other colors.
6781 */
6782 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6783
6784 return batch;
6785
6786 #else
6787 /* The deferral and batching of frees should be suppressed under NOMMU
6788 * conditions.
6789 *
6790 * The problem is that NOMMU needs to be able to allocate large chunks
6791 * of contiguous memory as there's no hardware page translation to
6792 * assemble apparent contiguous memory from discontiguous pages.
6793 *
6794 * Queueing large contiguous runs of pages for batching, however,
6795 * causes the pages to actually be freed in smaller chunks. As there
6796 * can be a significant delay between the individual batches being
6797 * recycled, this leads to the once large chunks of space being
6798 * fragmented and becoming unavailable for high-order allocations.
6799 */
6800 return 0;
6801 #endif
6802 }
6803
6804 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6805 {
6806 #ifdef CONFIG_MMU
6807 int high;
6808 int nr_split_cpus;
6809 unsigned long total_pages;
6810
6811 if (!percpu_pagelist_high_fraction) {
6812 /*
6813 * By default, the high value of the pcp is based on the zone
6814 * low watermark so that if they are full then background
6815 * reclaim will not be started prematurely.
6816 */
6817 total_pages = low_wmark_pages(zone);
6818 } else {
6819 /*
6820 * If percpu_pagelist_high_fraction is configured, the high
6821 * value is based on a fraction of the managed pages in the
6822 * zone.
6823 */
6824 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6825 }
6826
6827 /*
6828 * Split the high value across all online CPUs local to the zone. Note
6829 * that early in boot that CPUs may not be online yet and that during
6830 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6831 * onlined. For memory nodes that have no CPUs, split pcp->high across
6832 * all online CPUs to mitigate the risk that reclaim is triggered
6833 * prematurely due to pages stored on pcp lists.
6834 */
6835 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6836 if (!nr_split_cpus)
6837 nr_split_cpus = num_online_cpus();
6838 high = total_pages / nr_split_cpus;
6839
6840 /*
6841 * Ensure high is at least batch*4. The multiple is based on the
6842 * historical relationship between high and batch.
6843 */
6844 high = max(high, batch << 2);
6845
6846 return high;
6847 #else
6848 return 0;
6849 #endif
6850 }
6851
6852 /*
6853 * pcp->high and pcp->batch values are related and generally batch is lower
6854 * than high. They are also related to pcp->count such that count is lower
6855 * than high, and as soon as it reaches high, the pcplist is flushed.
6856 *
6857 * However, guaranteeing these relations at all times would require e.g. write
6858 * barriers here but also careful usage of read barriers at the read side, and
6859 * thus be prone to error and bad for performance. Thus the update only prevents
6860 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6861 * can cope with those fields changing asynchronously, and fully trust only the
6862 * pcp->count field on the local CPU with interrupts disabled.
6863 *
6864 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6865 * outside of boot time (or some other assurance that no concurrent updaters
6866 * exist).
6867 */
6868 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6869 unsigned long batch)
6870 {
6871 WRITE_ONCE(pcp->batch, batch);
6872 WRITE_ONCE(pcp->high, high);
6873 }
6874
6875 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6876 {
6877 int pindex;
6878
6879 memset(pcp, 0, sizeof(*pcp));
6880 memset(pzstats, 0, sizeof(*pzstats));
6881
6882 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6883 INIT_LIST_HEAD(&pcp->lists[pindex]);
6884
6885 /*
6886 * Set batch and high values safe for a boot pageset. A true percpu
6887 * pageset's initialization will update them subsequently. Here we don't
6888 * need to be as careful as pageset_update() as nobody can access the
6889 * pageset yet.
6890 */
6891 pcp->high = BOOT_PAGESET_HIGH;
6892 pcp->batch = BOOT_PAGESET_BATCH;
6893 pcp->free_factor = 0;
6894 }
6895
6896 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6897 unsigned long batch)
6898 {
6899 struct per_cpu_pages *pcp;
6900 int cpu;
6901
6902 for_each_possible_cpu(cpu) {
6903 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6904 pageset_update(pcp, high, batch);
6905 }
6906 }
6907
6908 /*
6909 * Calculate and set new high and batch values for all per-cpu pagesets of a
6910 * zone based on the zone's size.
6911 */
6912 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6913 {
6914 int new_high, new_batch;
6915
6916 new_batch = max(1, zone_batchsize(zone));
6917 new_high = zone_highsize(zone, new_batch, cpu_online);
6918
6919 if (zone->pageset_high == new_high &&
6920 zone->pageset_batch == new_batch)
6921 return;
6922
6923 zone->pageset_high = new_high;
6924 zone->pageset_batch = new_batch;
6925
6926 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6927 }
6928
6929 void __meminit setup_zone_pageset(struct zone *zone)
6930 {
6931 int cpu;
6932
6933 /* Size may be 0 on !SMP && !NUMA */
6934 if (sizeof(struct per_cpu_zonestat) > 0)
6935 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6936
6937 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6938 for_each_possible_cpu(cpu) {
6939 struct per_cpu_pages *pcp;
6940 struct per_cpu_zonestat *pzstats;
6941
6942 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6943 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6944 per_cpu_pages_init(pcp, pzstats);
6945 }
6946
6947 zone_set_pageset_high_and_batch(zone, 0);
6948 }
6949
6950 /*
6951 * Allocate per cpu pagesets and initialize them.
6952 * Before this call only boot pagesets were available.
6953 */
6954 void __init setup_per_cpu_pageset(void)
6955 {
6956 struct pglist_data *pgdat;
6957 struct zone *zone;
6958 int __maybe_unused cpu;
6959
6960 for_each_populated_zone(zone)
6961 setup_zone_pageset(zone);
6962
6963 #ifdef CONFIG_NUMA
6964 /*
6965 * Unpopulated zones continue using the boot pagesets.
6966 * The numa stats for these pagesets need to be reset.
6967 * Otherwise, they will end up skewing the stats of
6968 * the nodes these zones are associated with.
6969 */
6970 for_each_possible_cpu(cpu) {
6971 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6972 memset(pzstats->vm_numa_event, 0,
6973 sizeof(pzstats->vm_numa_event));
6974 }
6975 #endif
6976
6977 for_each_online_pgdat(pgdat)
6978 pgdat->per_cpu_nodestats =
6979 alloc_percpu(struct per_cpu_nodestat);
6980 }
6981
6982 static __meminit void zone_pcp_init(struct zone *zone)
6983 {
6984 /*
6985 * per cpu subsystem is not up at this point. The following code
6986 * relies on the ability of the linker to provide the
6987 * offset of a (static) per cpu variable into the per cpu area.
6988 */
6989 zone->per_cpu_pageset = &boot_pageset;
6990 zone->per_cpu_zonestats = &boot_zonestats;
6991 zone->pageset_high = BOOT_PAGESET_HIGH;
6992 zone->pageset_batch = BOOT_PAGESET_BATCH;
6993
6994 if (populated_zone(zone))
6995 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6996 zone->present_pages, zone_batchsize(zone));
6997 }
6998
6999 void __meminit init_currently_empty_zone(struct zone *zone,
7000 unsigned long zone_start_pfn,
7001 unsigned long size)
7002 {
7003 struct pglist_data *pgdat = zone->zone_pgdat;
7004 int zone_idx = zone_idx(zone) + 1;
7005
7006 if (zone_idx > pgdat->nr_zones)
7007 pgdat->nr_zones = zone_idx;
7008
7009 zone->zone_start_pfn = zone_start_pfn;
7010
7011 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7012 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7013 pgdat->node_id,
7014 (unsigned long)zone_idx(zone),
7015 zone_start_pfn, (zone_start_pfn + size));
7016
7017 zone_init_free_lists(zone);
7018 zone->initialized = 1;
7019 }
7020
7021 /**
7022 * get_pfn_range_for_nid - Return the start and end page frames for a node
7023 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7024 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7025 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7026 *
7027 * It returns the start and end page frame of a node based on information
7028 * provided by memblock_set_node(). If called for a node
7029 * with no available memory, a warning is printed and the start and end
7030 * PFNs will be 0.
7031 */
7032 void __init get_pfn_range_for_nid(unsigned int nid,
7033 unsigned long *start_pfn, unsigned long *end_pfn)
7034 {
7035 unsigned long this_start_pfn, this_end_pfn;
7036 int i;
7037
7038 *start_pfn = -1UL;
7039 *end_pfn = 0;
7040
7041 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7042 *start_pfn = min(*start_pfn, this_start_pfn);
7043 *end_pfn = max(*end_pfn, this_end_pfn);
7044 }
7045
7046 if (*start_pfn == -1UL)
7047 *start_pfn = 0;
7048 }
7049
7050 /*
7051 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7052 * assumption is made that zones within a node are ordered in monotonic
7053 * increasing memory addresses so that the "highest" populated zone is used
7054 */
7055 static void __init find_usable_zone_for_movable(void)
7056 {
7057 int zone_index;
7058 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7059 if (zone_index == ZONE_MOVABLE)
7060 continue;
7061
7062 if (arch_zone_highest_possible_pfn[zone_index] >
7063 arch_zone_lowest_possible_pfn[zone_index])
7064 break;
7065 }
7066
7067 VM_BUG_ON(zone_index == -1);
7068 movable_zone = zone_index;
7069 }
7070
7071 /*
7072 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7073 * because it is sized independent of architecture. Unlike the other zones,
7074 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7075 * in each node depending on the size of each node and how evenly kernelcore
7076 * is distributed. This helper function adjusts the zone ranges
7077 * provided by the architecture for a given node by using the end of the
7078 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7079 * zones within a node are in order of monotonic increases memory addresses
7080 */
7081 static void __init adjust_zone_range_for_zone_movable(int nid,
7082 unsigned long zone_type,
7083 unsigned long node_start_pfn,
7084 unsigned long node_end_pfn,
7085 unsigned long *zone_start_pfn,
7086 unsigned long *zone_end_pfn)
7087 {
7088 /* Only adjust if ZONE_MOVABLE is on this node */
7089 if (zone_movable_pfn[nid]) {
7090 /* Size ZONE_MOVABLE */
7091 if (zone_type == ZONE_MOVABLE) {
7092 *zone_start_pfn = zone_movable_pfn[nid];
7093 *zone_end_pfn = min(node_end_pfn,
7094 arch_zone_highest_possible_pfn[movable_zone]);
7095
7096 /* Adjust for ZONE_MOVABLE starting within this range */
7097 } else if (!mirrored_kernelcore &&
7098 *zone_start_pfn < zone_movable_pfn[nid] &&
7099 *zone_end_pfn > zone_movable_pfn[nid]) {
7100 *zone_end_pfn = zone_movable_pfn[nid];
7101
7102 /* Check if this whole range is within ZONE_MOVABLE */
7103 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7104 *zone_start_pfn = *zone_end_pfn;
7105 }
7106 }
7107
7108 /*
7109 * Return the number of pages a zone spans in a node, including holes
7110 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7111 */
7112 static unsigned long __init zone_spanned_pages_in_node(int nid,
7113 unsigned long zone_type,
7114 unsigned long node_start_pfn,
7115 unsigned long node_end_pfn,
7116 unsigned long *zone_start_pfn,
7117 unsigned long *zone_end_pfn)
7118 {
7119 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7120 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7121 /* When hotadd a new node from cpu_up(), the node should be empty */
7122 if (!node_start_pfn && !node_end_pfn)
7123 return 0;
7124
7125 /* Get the start and end of the zone */
7126 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7127 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7128 adjust_zone_range_for_zone_movable(nid, zone_type,
7129 node_start_pfn, node_end_pfn,
7130 zone_start_pfn, zone_end_pfn);
7131
7132 /* Check that this node has pages within the zone's required range */
7133 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7134 return 0;
7135
7136 /* Move the zone boundaries inside the node if necessary */
7137 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7138 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7139
7140 /* Return the spanned pages */
7141 return *zone_end_pfn - *zone_start_pfn;
7142 }
7143
7144 /*
7145 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7146 * then all holes in the requested range will be accounted for.
7147 */
7148 unsigned long __init __absent_pages_in_range(int nid,
7149 unsigned long range_start_pfn,
7150 unsigned long range_end_pfn)
7151 {
7152 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7153 unsigned long start_pfn, end_pfn;
7154 int i;
7155
7156 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7157 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7158 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7159 nr_absent -= end_pfn - start_pfn;
7160 }
7161 return nr_absent;
7162 }
7163
7164 /**
7165 * absent_pages_in_range - Return number of page frames in holes within a range
7166 * @start_pfn: The start PFN to start searching for holes
7167 * @end_pfn: The end PFN to stop searching for holes
7168 *
7169 * Return: the number of pages frames in memory holes within a range.
7170 */
7171 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7172 unsigned long end_pfn)
7173 {
7174 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7175 }
7176
7177 /* Return the number of page frames in holes in a zone on a node */
7178 static unsigned long __init zone_absent_pages_in_node(int nid,
7179 unsigned long zone_type,
7180 unsigned long node_start_pfn,
7181 unsigned long node_end_pfn)
7182 {
7183 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7184 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7185 unsigned long zone_start_pfn, zone_end_pfn;
7186 unsigned long nr_absent;
7187
7188 /* When hotadd a new node from cpu_up(), the node should be empty */
7189 if (!node_start_pfn && !node_end_pfn)
7190 return 0;
7191
7192 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7193 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7194
7195 adjust_zone_range_for_zone_movable(nid, zone_type,
7196 node_start_pfn, node_end_pfn,
7197 &zone_start_pfn, &zone_end_pfn);
7198 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7199
7200 /*
7201 * ZONE_MOVABLE handling.
7202 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7203 * and vice versa.
7204 */
7205 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7206 unsigned long start_pfn, end_pfn;
7207 struct memblock_region *r;
7208
7209 for_each_mem_region(r) {
7210 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7211 zone_start_pfn, zone_end_pfn);
7212 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7213 zone_start_pfn, zone_end_pfn);
7214
7215 if (zone_type == ZONE_MOVABLE &&
7216 memblock_is_mirror(r))
7217 nr_absent += end_pfn - start_pfn;
7218
7219 if (zone_type == ZONE_NORMAL &&
7220 !memblock_is_mirror(r))
7221 nr_absent += end_pfn - start_pfn;
7222 }
7223 }
7224
7225 return nr_absent;
7226 }
7227
7228 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7229 unsigned long node_start_pfn,
7230 unsigned long node_end_pfn)
7231 {
7232 unsigned long realtotalpages = 0, totalpages = 0;
7233 enum zone_type i;
7234
7235 for (i = 0; i < MAX_NR_ZONES; i++) {
7236 struct zone *zone = pgdat->node_zones + i;
7237 unsigned long zone_start_pfn, zone_end_pfn;
7238 unsigned long spanned, absent;
7239 unsigned long size, real_size;
7240
7241 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7242 node_start_pfn,
7243 node_end_pfn,
7244 &zone_start_pfn,
7245 &zone_end_pfn);
7246 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7247 node_start_pfn,
7248 node_end_pfn);
7249
7250 size = spanned;
7251 real_size = size - absent;
7252
7253 if (size)
7254 zone->zone_start_pfn = zone_start_pfn;
7255 else
7256 zone->zone_start_pfn = 0;
7257 zone->spanned_pages = size;
7258 zone->present_pages = real_size;
7259 #if defined(CONFIG_MEMORY_HOTPLUG)
7260 zone->present_early_pages = real_size;
7261 #endif
7262
7263 totalpages += size;
7264 realtotalpages += real_size;
7265 }
7266
7267 pgdat->node_spanned_pages = totalpages;
7268 pgdat->node_present_pages = realtotalpages;
7269 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7270 }
7271
7272 #ifndef CONFIG_SPARSEMEM
7273 /*
7274 * Calculate the size of the zone->blockflags rounded to an unsigned long
7275 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7276 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7277 * round what is now in bits to nearest long in bits, then return it in
7278 * bytes.
7279 */
7280 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7281 {
7282 unsigned long usemapsize;
7283
7284 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7285 usemapsize = roundup(zonesize, pageblock_nr_pages);
7286 usemapsize = usemapsize >> pageblock_order;
7287 usemapsize *= NR_PAGEBLOCK_BITS;
7288 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7289
7290 return usemapsize / 8;
7291 }
7292
7293 static void __ref setup_usemap(struct zone *zone)
7294 {
7295 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7296 zone->spanned_pages);
7297 zone->pageblock_flags = NULL;
7298 if (usemapsize) {
7299 zone->pageblock_flags =
7300 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7301 zone_to_nid(zone));
7302 if (!zone->pageblock_flags)
7303 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7304 usemapsize, zone->name, zone_to_nid(zone));
7305 }
7306 }
7307 #else
7308 static inline void setup_usemap(struct zone *zone) {}
7309 #endif /* CONFIG_SPARSEMEM */
7310
7311 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7312
7313 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7314 void __init set_pageblock_order(void)
7315 {
7316 unsigned int order;
7317
7318 /* Check that pageblock_nr_pages has not already been setup */
7319 if (pageblock_order)
7320 return;
7321
7322 if (HPAGE_SHIFT > PAGE_SHIFT)
7323 order = HUGETLB_PAGE_ORDER;
7324 else
7325 order = MAX_ORDER - 1;
7326
7327 /*
7328 * Assume the largest contiguous order of interest is a huge page.
7329 * This value may be variable depending on boot parameters on IA64 and
7330 * powerpc.
7331 */
7332 pageblock_order = order;
7333 }
7334 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7335
7336 /*
7337 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7338 * is unused as pageblock_order is set at compile-time. See
7339 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7340 * the kernel config
7341 */
7342 void __init set_pageblock_order(void)
7343 {
7344 }
7345
7346 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7347
7348 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7349 unsigned long present_pages)
7350 {
7351 unsigned long pages = spanned_pages;
7352
7353 /*
7354 * Provide a more accurate estimation if there are holes within
7355 * the zone and SPARSEMEM is in use. If there are holes within the
7356 * zone, each populated memory region may cost us one or two extra
7357 * memmap pages due to alignment because memmap pages for each
7358 * populated regions may not be naturally aligned on page boundary.
7359 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7360 */
7361 if (spanned_pages > present_pages + (present_pages >> 4) &&
7362 IS_ENABLED(CONFIG_SPARSEMEM))
7363 pages = present_pages;
7364
7365 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7366 }
7367
7368 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7369 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7370 {
7371 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7372
7373 spin_lock_init(&ds_queue->split_queue_lock);
7374 INIT_LIST_HEAD(&ds_queue->split_queue);
7375 ds_queue->split_queue_len = 0;
7376 }
7377 #else
7378 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7379 #endif
7380
7381 #ifdef CONFIG_COMPACTION
7382 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7383 {
7384 init_waitqueue_head(&pgdat->kcompactd_wait);
7385 }
7386 #else
7387 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7388 #endif
7389
7390 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7391 {
7392 pgdat_resize_init(pgdat);
7393
7394 pgdat_init_split_queue(pgdat);
7395 pgdat_init_kcompactd(pgdat);
7396
7397 init_waitqueue_head(&pgdat->kswapd_wait);
7398 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7399
7400 pgdat_page_ext_init(pgdat);
7401 lruvec_init(&pgdat->__lruvec);
7402 }
7403
7404 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7405 unsigned long remaining_pages)
7406 {
7407 atomic_long_set(&zone->managed_pages, remaining_pages);
7408 zone_set_nid(zone, nid);
7409 zone->name = zone_names[idx];
7410 zone->zone_pgdat = NODE_DATA(nid);
7411 spin_lock_init(&zone->lock);
7412 zone_seqlock_init(zone);
7413 zone_pcp_init(zone);
7414 }
7415
7416 /*
7417 * Set up the zone data structures
7418 * - init pgdat internals
7419 * - init all zones belonging to this node
7420 *
7421 * NOTE: this function is only called during memory hotplug
7422 */
7423 #ifdef CONFIG_MEMORY_HOTPLUG
7424 void __ref free_area_init_core_hotplug(int nid)
7425 {
7426 enum zone_type z;
7427 pg_data_t *pgdat = NODE_DATA(nid);
7428
7429 pgdat_init_internals(pgdat);
7430 for (z = 0; z < MAX_NR_ZONES; z++)
7431 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7432 }
7433 #endif
7434
7435 /*
7436 * Set up the zone data structures:
7437 * - mark all pages reserved
7438 * - mark all memory queues empty
7439 * - clear the memory bitmaps
7440 *
7441 * NOTE: pgdat should get zeroed by caller.
7442 * NOTE: this function is only called during early init.
7443 */
7444 static void __init free_area_init_core(struct pglist_data *pgdat)
7445 {
7446 enum zone_type j;
7447 int nid = pgdat->node_id;
7448
7449 pgdat_init_internals(pgdat);
7450 pgdat->per_cpu_nodestats = &boot_nodestats;
7451
7452 for (j = 0; j < MAX_NR_ZONES; j++) {
7453 struct zone *zone = pgdat->node_zones + j;
7454 unsigned long size, freesize, memmap_pages;
7455
7456 size = zone->spanned_pages;
7457 freesize = zone->present_pages;
7458
7459 /*
7460 * Adjust freesize so that it accounts for how much memory
7461 * is used by this zone for memmap. This affects the watermark
7462 * and per-cpu initialisations
7463 */
7464 memmap_pages = calc_memmap_size(size, freesize);
7465 if (!is_highmem_idx(j)) {
7466 if (freesize >= memmap_pages) {
7467 freesize -= memmap_pages;
7468 if (memmap_pages)
7469 pr_debug(" %s zone: %lu pages used for memmap\n",
7470 zone_names[j], memmap_pages);
7471 } else
7472 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7473 zone_names[j], memmap_pages, freesize);
7474 }
7475
7476 /* Account for reserved pages */
7477 if (j == 0 && freesize > dma_reserve) {
7478 freesize -= dma_reserve;
7479 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7480 }
7481
7482 if (!is_highmem_idx(j))
7483 nr_kernel_pages += freesize;
7484 /* Charge for highmem memmap if there are enough kernel pages */
7485 else if (nr_kernel_pages > memmap_pages * 2)
7486 nr_kernel_pages -= memmap_pages;
7487 nr_all_pages += freesize;
7488
7489 /*
7490 * Set an approximate value for lowmem here, it will be adjusted
7491 * when the bootmem allocator frees pages into the buddy system.
7492 * And all highmem pages will be managed by the buddy system.
7493 */
7494 zone_init_internals(zone, j, nid, freesize);
7495
7496 if (!size)
7497 continue;
7498
7499 set_pageblock_order();
7500 setup_usemap(zone);
7501 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7502 }
7503 }
7504
7505 #ifdef CONFIG_FLATMEM
7506 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7507 {
7508 unsigned long __maybe_unused start = 0;
7509 unsigned long __maybe_unused offset = 0;
7510
7511 /* Skip empty nodes */
7512 if (!pgdat->node_spanned_pages)
7513 return;
7514
7515 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7516 offset = pgdat->node_start_pfn - start;
7517 /* ia64 gets its own node_mem_map, before this, without bootmem */
7518 if (!pgdat->node_mem_map) {
7519 unsigned long size, end;
7520 struct page *map;
7521
7522 /*
7523 * The zone's endpoints aren't required to be MAX_ORDER
7524 * aligned but the node_mem_map endpoints must be in order
7525 * for the buddy allocator to function correctly.
7526 */
7527 end = pgdat_end_pfn(pgdat);
7528 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7529 size = (end - start) * sizeof(struct page);
7530 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7531 pgdat->node_id, false);
7532 if (!map)
7533 panic("Failed to allocate %ld bytes for node %d memory map\n",
7534 size, pgdat->node_id);
7535 pgdat->node_mem_map = map + offset;
7536 }
7537 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7538 __func__, pgdat->node_id, (unsigned long)pgdat,
7539 (unsigned long)pgdat->node_mem_map);
7540 #ifndef CONFIG_NUMA
7541 /*
7542 * With no DISCONTIG, the global mem_map is just set as node 0's
7543 */
7544 if (pgdat == NODE_DATA(0)) {
7545 mem_map = NODE_DATA(0)->node_mem_map;
7546 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7547 mem_map -= offset;
7548 }
7549 #endif
7550 }
7551 #else
7552 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7553 #endif /* CONFIG_FLATMEM */
7554
7555 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7556 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7557 {
7558 pgdat->first_deferred_pfn = ULONG_MAX;
7559 }
7560 #else
7561 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7562 #endif
7563
7564 static void __init free_area_init_node(int nid)
7565 {
7566 pg_data_t *pgdat = NODE_DATA(nid);
7567 unsigned long start_pfn = 0;
7568 unsigned long end_pfn = 0;
7569
7570 /* pg_data_t should be reset to zero when it's allocated */
7571 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7572
7573 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7574
7575 pgdat->node_id = nid;
7576 pgdat->node_start_pfn = start_pfn;
7577 pgdat->per_cpu_nodestats = NULL;
7578
7579 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7580 (u64)start_pfn << PAGE_SHIFT,
7581 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7582 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7583
7584 alloc_node_mem_map(pgdat);
7585 pgdat_set_deferred_range(pgdat);
7586
7587 free_area_init_core(pgdat);
7588 }
7589
7590 void __init free_area_init_memoryless_node(int nid)
7591 {
7592 free_area_init_node(nid);
7593 }
7594
7595 #if MAX_NUMNODES > 1
7596 /*
7597 * Figure out the number of possible node ids.
7598 */
7599 void __init setup_nr_node_ids(void)
7600 {
7601 unsigned int highest;
7602
7603 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7604 nr_node_ids = highest + 1;
7605 }
7606 #endif
7607
7608 /**
7609 * node_map_pfn_alignment - determine the maximum internode alignment
7610 *
7611 * This function should be called after node map is populated and sorted.
7612 * It calculates the maximum power of two alignment which can distinguish
7613 * all the nodes.
7614 *
7615 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7616 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7617 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7618 * shifted, 1GiB is enough and this function will indicate so.
7619 *
7620 * This is used to test whether pfn -> nid mapping of the chosen memory
7621 * model has fine enough granularity to avoid incorrect mapping for the
7622 * populated node map.
7623 *
7624 * Return: the determined alignment in pfn's. 0 if there is no alignment
7625 * requirement (single node).
7626 */
7627 unsigned long __init node_map_pfn_alignment(void)
7628 {
7629 unsigned long accl_mask = 0, last_end = 0;
7630 unsigned long start, end, mask;
7631 int last_nid = NUMA_NO_NODE;
7632 int i, nid;
7633
7634 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7635 if (!start || last_nid < 0 || last_nid == nid) {
7636 last_nid = nid;
7637 last_end = end;
7638 continue;
7639 }
7640
7641 /*
7642 * Start with a mask granular enough to pin-point to the
7643 * start pfn and tick off bits one-by-one until it becomes
7644 * too coarse to separate the current node from the last.
7645 */
7646 mask = ~((1 << __ffs(start)) - 1);
7647 while (mask && last_end <= (start & (mask << 1)))
7648 mask <<= 1;
7649
7650 /* accumulate all internode masks */
7651 accl_mask |= mask;
7652 }
7653
7654 /* convert mask to number of pages */
7655 return ~accl_mask + 1;
7656 }
7657
7658 /**
7659 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7660 *
7661 * Return: the minimum PFN based on information provided via
7662 * memblock_set_node().
7663 */
7664 unsigned long __init find_min_pfn_with_active_regions(void)
7665 {
7666 return PHYS_PFN(memblock_start_of_DRAM());
7667 }
7668
7669 /*
7670 * early_calculate_totalpages()
7671 * Sum pages in active regions for movable zone.
7672 * Populate N_MEMORY for calculating usable_nodes.
7673 */
7674 static unsigned long __init early_calculate_totalpages(void)
7675 {
7676 unsigned long totalpages = 0;
7677 unsigned long start_pfn, end_pfn;
7678 int i, nid;
7679
7680 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7681 unsigned long pages = end_pfn - start_pfn;
7682
7683 totalpages += pages;
7684 if (pages)
7685 node_set_state(nid, N_MEMORY);
7686 }
7687 return totalpages;
7688 }
7689
7690 /*
7691 * Find the PFN the Movable zone begins in each node. Kernel memory
7692 * is spread evenly between nodes as long as the nodes have enough
7693 * memory. When they don't, some nodes will have more kernelcore than
7694 * others
7695 */
7696 static void __init find_zone_movable_pfns_for_nodes(void)
7697 {
7698 int i, nid;
7699 unsigned long usable_startpfn;
7700 unsigned long kernelcore_node, kernelcore_remaining;
7701 /* save the state before borrow the nodemask */
7702 nodemask_t saved_node_state = node_states[N_MEMORY];
7703 unsigned long totalpages = early_calculate_totalpages();
7704 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7705 struct memblock_region *r;
7706
7707 /* Need to find movable_zone earlier when movable_node is specified. */
7708 find_usable_zone_for_movable();
7709
7710 /*
7711 * If movable_node is specified, ignore kernelcore and movablecore
7712 * options.
7713 */
7714 if (movable_node_is_enabled()) {
7715 for_each_mem_region(r) {
7716 if (!memblock_is_hotpluggable(r))
7717 continue;
7718
7719 nid = memblock_get_region_node(r);
7720
7721 usable_startpfn = PFN_DOWN(r->base);
7722 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7723 min(usable_startpfn, zone_movable_pfn[nid]) :
7724 usable_startpfn;
7725 }
7726
7727 goto out2;
7728 }
7729
7730 /*
7731 * If kernelcore=mirror is specified, ignore movablecore option
7732 */
7733 if (mirrored_kernelcore) {
7734 bool mem_below_4gb_not_mirrored = false;
7735
7736 for_each_mem_region(r) {
7737 if (memblock_is_mirror(r))
7738 continue;
7739
7740 nid = memblock_get_region_node(r);
7741
7742 usable_startpfn = memblock_region_memory_base_pfn(r);
7743
7744 if (usable_startpfn < 0x100000) {
7745 mem_below_4gb_not_mirrored = true;
7746 continue;
7747 }
7748
7749 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7750 min(usable_startpfn, zone_movable_pfn[nid]) :
7751 usable_startpfn;
7752 }
7753
7754 if (mem_below_4gb_not_mirrored)
7755 pr_warn("This configuration results in unmirrored kernel memory.\n");
7756
7757 goto out2;
7758 }
7759
7760 /*
7761 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7762 * amount of necessary memory.
7763 */
7764 if (required_kernelcore_percent)
7765 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7766 10000UL;
7767 if (required_movablecore_percent)
7768 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7769 10000UL;
7770
7771 /*
7772 * If movablecore= was specified, calculate what size of
7773 * kernelcore that corresponds so that memory usable for
7774 * any allocation type is evenly spread. If both kernelcore
7775 * and movablecore are specified, then the value of kernelcore
7776 * will be used for required_kernelcore if it's greater than
7777 * what movablecore would have allowed.
7778 */
7779 if (required_movablecore) {
7780 unsigned long corepages;
7781
7782 /*
7783 * Round-up so that ZONE_MOVABLE is at least as large as what
7784 * was requested by the user
7785 */
7786 required_movablecore =
7787 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7788 required_movablecore = min(totalpages, required_movablecore);
7789 corepages = totalpages - required_movablecore;
7790
7791 required_kernelcore = max(required_kernelcore, corepages);
7792 }
7793
7794 /*
7795 * If kernelcore was not specified or kernelcore size is larger
7796 * than totalpages, there is no ZONE_MOVABLE.
7797 */
7798 if (!required_kernelcore || required_kernelcore >= totalpages)
7799 goto out;
7800
7801 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7802 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7803
7804 restart:
7805 /* Spread kernelcore memory as evenly as possible throughout nodes */
7806 kernelcore_node = required_kernelcore / usable_nodes;
7807 for_each_node_state(nid, N_MEMORY) {
7808 unsigned long start_pfn, end_pfn;
7809
7810 /*
7811 * Recalculate kernelcore_node if the division per node
7812 * now exceeds what is necessary to satisfy the requested
7813 * amount of memory for the kernel
7814 */
7815 if (required_kernelcore < kernelcore_node)
7816 kernelcore_node = required_kernelcore / usable_nodes;
7817
7818 /*
7819 * As the map is walked, we track how much memory is usable
7820 * by the kernel using kernelcore_remaining. When it is
7821 * 0, the rest of the node is usable by ZONE_MOVABLE
7822 */
7823 kernelcore_remaining = kernelcore_node;
7824
7825 /* Go through each range of PFNs within this node */
7826 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7827 unsigned long size_pages;
7828
7829 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7830 if (start_pfn >= end_pfn)
7831 continue;
7832
7833 /* Account for what is only usable for kernelcore */
7834 if (start_pfn < usable_startpfn) {
7835 unsigned long kernel_pages;
7836 kernel_pages = min(end_pfn, usable_startpfn)
7837 - start_pfn;
7838
7839 kernelcore_remaining -= min(kernel_pages,
7840 kernelcore_remaining);
7841 required_kernelcore -= min(kernel_pages,
7842 required_kernelcore);
7843
7844 /* Continue if range is now fully accounted */
7845 if (end_pfn <= usable_startpfn) {
7846
7847 /*
7848 * Push zone_movable_pfn to the end so
7849 * that if we have to rebalance
7850 * kernelcore across nodes, we will
7851 * not double account here
7852 */
7853 zone_movable_pfn[nid] = end_pfn;
7854 continue;
7855 }
7856 start_pfn = usable_startpfn;
7857 }
7858
7859 /*
7860 * The usable PFN range for ZONE_MOVABLE is from
7861 * start_pfn->end_pfn. Calculate size_pages as the
7862 * number of pages used as kernelcore
7863 */
7864 size_pages = end_pfn - start_pfn;
7865 if (size_pages > kernelcore_remaining)
7866 size_pages = kernelcore_remaining;
7867 zone_movable_pfn[nid] = start_pfn + size_pages;
7868
7869 /*
7870 * Some kernelcore has been met, update counts and
7871 * break if the kernelcore for this node has been
7872 * satisfied
7873 */
7874 required_kernelcore -= min(required_kernelcore,
7875 size_pages);
7876 kernelcore_remaining -= size_pages;
7877 if (!kernelcore_remaining)
7878 break;
7879 }
7880 }
7881
7882 /*
7883 * If there is still required_kernelcore, we do another pass with one
7884 * less node in the count. This will push zone_movable_pfn[nid] further
7885 * along on the nodes that still have memory until kernelcore is
7886 * satisfied
7887 */
7888 usable_nodes--;
7889 if (usable_nodes && required_kernelcore > usable_nodes)
7890 goto restart;
7891
7892 out2:
7893 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7894 for (nid = 0; nid < MAX_NUMNODES; nid++)
7895 zone_movable_pfn[nid] =
7896 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7897
7898 out:
7899 /* restore the node_state */
7900 node_states[N_MEMORY] = saved_node_state;
7901 }
7902
7903 /* Any regular or high memory on that node ? */
7904 static void check_for_memory(pg_data_t *pgdat, int nid)
7905 {
7906 enum zone_type zone_type;
7907
7908 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7909 struct zone *zone = &pgdat->node_zones[zone_type];
7910 if (populated_zone(zone)) {
7911 if (IS_ENABLED(CONFIG_HIGHMEM))
7912 node_set_state(nid, N_HIGH_MEMORY);
7913 if (zone_type <= ZONE_NORMAL)
7914 node_set_state(nid, N_NORMAL_MEMORY);
7915 break;
7916 }
7917 }
7918 }
7919
7920 /*
7921 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7922 * such cases we allow max_zone_pfn sorted in the descending order
7923 */
7924 bool __weak arch_has_descending_max_zone_pfns(void)
7925 {
7926 return false;
7927 }
7928
7929 /**
7930 * free_area_init - Initialise all pg_data_t and zone data
7931 * @max_zone_pfn: an array of max PFNs for each zone
7932 *
7933 * This will call free_area_init_node() for each active node in the system.
7934 * Using the page ranges provided by memblock_set_node(), the size of each
7935 * zone in each node and their holes is calculated. If the maximum PFN
7936 * between two adjacent zones match, it is assumed that the zone is empty.
7937 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7938 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7939 * starts where the previous one ended. For example, ZONE_DMA32 starts
7940 * at arch_max_dma_pfn.
7941 */
7942 void __init free_area_init(unsigned long *max_zone_pfn)
7943 {
7944 unsigned long start_pfn, end_pfn;
7945 int i, nid, zone;
7946 bool descending;
7947
7948 /* Record where the zone boundaries are */
7949 memset(arch_zone_lowest_possible_pfn, 0,
7950 sizeof(arch_zone_lowest_possible_pfn));
7951 memset(arch_zone_highest_possible_pfn, 0,
7952 sizeof(arch_zone_highest_possible_pfn));
7953
7954 start_pfn = find_min_pfn_with_active_regions();
7955 descending = arch_has_descending_max_zone_pfns();
7956
7957 for (i = 0; i < MAX_NR_ZONES; i++) {
7958 if (descending)
7959 zone = MAX_NR_ZONES - i - 1;
7960 else
7961 zone = i;
7962
7963 if (zone == ZONE_MOVABLE)
7964 continue;
7965
7966 end_pfn = max(max_zone_pfn[zone], start_pfn);
7967 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7968 arch_zone_highest_possible_pfn[zone] = end_pfn;
7969
7970 start_pfn = end_pfn;
7971 }
7972
7973 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7974 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7975 find_zone_movable_pfns_for_nodes();
7976
7977 /* Print out the zone ranges */
7978 pr_info("Zone ranges:\n");
7979 for (i = 0; i < MAX_NR_ZONES; i++) {
7980 if (i == ZONE_MOVABLE)
7981 continue;
7982 pr_info(" %-8s ", zone_names[i]);
7983 if (arch_zone_lowest_possible_pfn[i] ==
7984 arch_zone_highest_possible_pfn[i])
7985 pr_cont("empty\n");
7986 else
7987 pr_cont("[mem %#018Lx-%#018Lx]\n",
7988 (u64)arch_zone_lowest_possible_pfn[i]
7989 << PAGE_SHIFT,
7990 ((u64)arch_zone_highest_possible_pfn[i]
7991 << PAGE_SHIFT) - 1);
7992 }
7993
7994 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
7995 pr_info("Movable zone start for each node\n");
7996 for (i = 0; i < MAX_NUMNODES; i++) {
7997 if (zone_movable_pfn[i])
7998 pr_info(" Node %d: %#018Lx\n", i,
7999 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8000 }
8001
8002 /*
8003 * Print out the early node map, and initialize the
8004 * subsection-map relative to active online memory ranges to
8005 * enable future "sub-section" extensions of the memory map.
8006 */
8007 pr_info("Early memory node ranges\n");
8008 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8009 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8010 (u64)start_pfn << PAGE_SHIFT,
8011 ((u64)end_pfn << PAGE_SHIFT) - 1);
8012 subsection_map_init(start_pfn, end_pfn - start_pfn);
8013 }
8014
8015 /* Initialise every node */
8016 mminit_verify_pageflags_layout();
8017 setup_nr_node_ids();
8018 for_each_online_node(nid) {
8019 pg_data_t *pgdat = NODE_DATA(nid);
8020 free_area_init_node(nid);
8021
8022 /* Any memory on that node */
8023 if (pgdat->node_present_pages)
8024 node_set_state(nid, N_MEMORY);
8025 check_for_memory(pgdat, nid);
8026 }
8027
8028 memmap_init();
8029 }
8030
8031 static int __init cmdline_parse_core(char *p, unsigned long *core,
8032 unsigned long *percent)
8033 {
8034 unsigned long long coremem;
8035 char *endptr;
8036
8037 if (!p)
8038 return -EINVAL;
8039
8040 /* Value may be a percentage of total memory, otherwise bytes */
8041 coremem = simple_strtoull(p, &endptr, 0);
8042 if (*endptr == '%') {
8043 /* Paranoid check for percent values greater than 100 */
8044 WARN_ON(coremem > 100);
8045
8046 *percent = coremem;
8047 } else {
8048 coremem = memparse(p, &p);
8049 /* Paranoid check that UL is enough for the coremem value */
8050 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8051
8052 *core = coremem >> PAGE_SHIFT;
8053 *percent = 0UL;
8054 }
8055 return 0;
8056 }
8057
8058 /*
8059 * kernelcore=size sets the amount of memory for use for allocations that
8060 * cannot be reclaimed or migrated.
8061 */
8062 static int __init cmdline_parse_kernelcore(char *p)
8063 {
8064 /* parse kernelcore=mirror */
8065 if (parse_option_str(p, "mirror")) {
8066 mirrored_kernelcore = true;
8067 return 0;
8068 }
8069
8070 return cmdline_parse_core(p, &required_kernelcore,
8071 &required_kernelcore_percent);
8072 }
8073
8074 /*
8075 * movablecore=size sets the amount of memory for use for allocations that
8076 * can be reclaimed or migrated.
8077 */
8078 static int __init cmdline_parse_movablecore(char *p)
8079 {
8080 return cmdline_parse_core(p, &required_movablecore,
8081 &required_movablecore_percent);
8082 }
8083
8084 early_param("kernelcore", cmdline_parse_kernelcore);
8085 early_param("movablecore", cmdline_parse_movablecore);
8086
8087 void adjust_managed_page_count(struct page *page, long count)
8088 {
8089 atomic_long_add(count, &page_zone(page)->managed_pages);
8090 totalram_pages_add(count);
8091 #ifdef CONFIG_HIGHMEM
8092 if (PageHighMem(page))
8093 totalhigh_pages_add(count);
8094 #endif
8095 }
8096 EXPORT_SYMBOL(adjust_managed_page_count);
8097
8098 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8099 {
8100 void *pos;
8101 unsigned long pages = 0;
8102
8103 start = (void *)PAGE_ALIGN((unsigned long)start);
8104 end = (void *)((unsigned long)end & PAGE_MASK);
8105 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8106 struct page *page = virt_to_page(pos);
8107 void *direct_map_addr;
8108
8109 /*
8110 * 'direct_map_addr' might be different from 'pos'
8111 * because some architectures' virt_to_page()
8112 * work with aliases. Getting the direct map
8113 * address ensures that we get a _writeable_
8114 * alias for the memset().
8115 */
8116 direct_map_addr = page_address(page);
8117 /*
8118 * Perform a kasan-unchecked memset() since this memory
8119 * has not been initialized.
8120 */
8121 direct_map_addr = kasan_reset_tag(direct_map_addr);
8122 if ((unsigned int)poison <= 0xFF)
8123 memset(direct_map_addr, poison, PAGE_SIZE);
8124
8125 free_reserved_page(page);
8126 }
8127
8128 if (pages && s)
8129 pr_info("Freeing %s memory: %ldK\n",
8130 s, pages << (PAGE_SHIFT - 10));
8131
8132 return pages;
8133 }
8134
8135 void __init mem_init_print_info(void)
8136 {
8137 unsigned long physpages, codesize, datasize, rosize, bss_size;
8138 unsigned long init_code_size, init_data_size;
8139
8140 physpages = get_num_physpages();
8141 codesize = _etext - _stext;
8142 datasize = _edata - _sdata;
8143 rosize = __end_rodata - __start_rodata;
8144 bss_size = __bss_stop - __bss_start;
8145 init_data_size = __init_end - __init_begin;
8146 init_code_size = _einittext - _sinittext;
8147
8148 /*
8149 * Detect special cases and adjust section sizes accordingly:
8150 * 1) .init.* may be embedded into .data sections
8151 * 2) .init.text.* may be out of [__init_begin, __init_end],
8152 * please refer to arch/tile/kernel/vmlinux.lds.S.
8153 * 3) .rodata.* may be embedded into .text or .data sections.
8154 */
8155 #define adj_init_size(start, end, size, pos, adj) \
8156 do { \
8157 if (start <= pos && pos < end && size > adj) \
8158 size -= adj; \
8159 } while (0)
8160
8161 adj_init_size(__init_begin, __init_end, init_data_size,
8162 _sinittext, init_code_size);
8163 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8164 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8165 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8166 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8167
8168 #undef adj_init_size
8169
8170 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8171 #ifdef CONFIG_HIGHMEM
8172 ", %luK highmem"
8173 #endif
8174 ")\n",
8175 nr_free_pages() << (PAGE_SHIFT - 10),
8176 physpages << (PAGE_SHIFT - 10),
8177 codesize >> 10, datasize >> 10, rosize >> 10,
8178 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8179 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8180 totalcma_pages << (PAGE_SHIFT - 10)
8181 #ifdef CONFIG_HIGHMEM
8182 , totalhigh_pages() << (PAGE_SHIFT - 10)
8183 #endif
8184 );
8185 }
8186
8187 /**
8188 * set_dma_reserve - set the specified number of pages reserved in the first zone
8189 * @new_dma_reserve: The number of pages to mark reserved
8190 *
8191 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8192 * In the DMA zone, a significant percentage may be consumed by kernel image
8193 * and other unfreeable allocations which can skew the watermarks badly. This
8194 * function may optionally be used to account for unfreeable pages in the
8195 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8196 * smaller per-cpu batchsize.
8197 */
8198 void __init set_dma_reserve(unsigned long new_dma_reserve)
8199 {
8200 dma_reserve = new_dma_reserve;
8201 }
8202
8203 static int page_alloc_cpu_dead(unsigned int cpu)
8204 {
8205 struct zone *zone;
8206
8207 lru_add_drain_cpu(cpu);
8208 drain_pages(cpu);
8209
8210 /*
8211 * Spill the event counters of the dead processor
8212 * into the current processors event counters.
8213 * This artificially elevates the count of the current
8214 * processor.
8215 */
8216 vm_events_fold_cpu(cpu);
8217
8218 /*
8219 * Zero the differential counters of the dead processor
8220 * so that the vm statistics are consistent.
8221 *
8222 * This is only okay since the processor is dead and cannot
8223 * race with what we are doing.
8224 */
8225 cpu_vm_stats_fold(cpu);
8226
8227 for_each_populated_zone(zone)
8228 zone_pcp_update(zone, 0);
8229
8230 return 0;
8231 }
8232
8233 static int page_alloc_cpu_online(unsigned int cpu)
8234 {
8235 struct zone *zone;
8236
8237 for_each_populated_zone(zone)
8238 zone_pcp_update(zone, 1);
8239 return 0;
8240 }
8241
8242 #ifdef CONFIG_NUMA
8243 int hashdist = HASHDIST_DEFAULT;
8244
8245 static int __init set_hashdist(char *str)
8246 {
8247 if (!str)
8248 return 0;
8249 hashdist = simple_strtoul(str, &str, 0);
8250 return 1;
8251 }
8252 __setup("hashdist=", set_hashdist);
8253 #endif
8254
8255 void __init page_alloc_init(void)
8256 {
8257 int ret;
8258
8259 #ifdef CONFIG_NUMA
8260 if (num_node_state(N_MEMORY) == 1)
8261 hashdist = 0;
8262 #endif
8263
8264 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8265 "mm/page_alloc:pcp",
8266 page_alloc_cpu_online,
8267 page_alloc_cpu_dead);
8268 WARN_ON(ret < 0);
8269 }
8270
8271 /*
8272 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8273 * or min_free_kbytes changes.
8274 */
8275 static void calculate_totalreserve_pages(void)
8276 {
8277 struct pglist_data *pgdat;
8278 unsigned long reserve_pages = 0;
8279 enum zone_type i, j;
8280
8281 for_each_online_pgdat(pgdat) {
8282
8283 pgdat->totalreserve_pages = 0;
8284
8285 for (i = 0; i < MAX_NR_ZONES; i++) {
8286 struct zone *zone = pgdat->node_zones + i;
8287 long max = 0;
8288 unsigned long managed_pages = zone_managed_pages(zone);
8289
8290 /* Find valid and maximum lowmem_reserve in the zone */
8291 for (j = i; j < MAX_NR_ZONES; j++) {
8292 if (zone->lowmem_reserve[j] > max)
8293 max = zone->lowmem_reserve[j];
8294 }
8295
8296 /* we treat the high watermark as reserved pages. */
8297 max += high_wmark_pages(zone);
8298
8299 if (max > managed_pages)
8300 max = managed_pages;
8301
8302 pgdat->totalreserve_pages += max;
8303
8304 reserve_pages += max;
8305 }
8306 }
8307 totalreserve_pages = reserve_pages;
8308 }
8309
8310 /*
8311 * setup_per_zone_lowmem_reserve - called whenever
8312 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8313 * has a correct pages reserved value, so an adequate number of
8314 * pages are left in the zone after a successful __alloc_pages().
8315 */
8316 static void setup_per_zone_lowmem_reserve(void)
8317 {
8318 struct pglist_data *pgdat;
8319 enum zone_type i, j;
8320
8321 for_each_online_pgdat(pgdat) {
8322 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8323 struct zone *zone = &pgdat->node_zones[i];
8324 int ratio = sysctl_lowmem_reserve_ratio[i];
8325 bool clear = !ratio || !zone_managed_pages(zone);
8326 unsigned long managed_pages = 0;
8327
8328 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8329 struct zone *upper_zone = &pgdat->node_zones[j];
8330
8331 managed_pages += zone_managed_pages(upper_zone);
8332
8333 if (clear)
8334 zone->lowmem_reserve[j] = 0;
8335 else
8336 zone->lowmem_reserve[j] = managed_pages / ratio;
8337 }
8338 }
8339 }
8340
8341 /* update totalreserve_pages */
8342 calculate_totalreserve_pages();
8343 }
8344
8345 static void __setup_per_zone_wmarks(void)
8346 {
8347 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8348 unsigned long lowmem_pages = 0;
8349 struct zone *zone;
8350 unsigned long flags;
8351
8352 /* Calculate total number of !ZONE_HIGHMEM pages */
8353 for_each_zone(zone) {
8354 if (!is_highmem(zone))
8355 lowmem_pages += zone_managed_pages(zone);
8356 }
8357
8358 for_each_zone(zone) {
8359 u64 tmp;
8360
8361 spin_lock_irqsave(&zone->lock, flags);
8362 tmp = (u64)pages_min * zone_managed_pages(zone);
8363 do_div(tmp, lowmem_pages);
8364 if (is_highmem(zone)) {
8365 /*
8366 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8367 * need highmem pages, so cap pages_min to a small
8368 * value here.
8369 *
8370 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8371 * deltas control async page reclaim, and so should
8372 * not be capped for highmem.
8373 */
8374 unsigned long min_pages;
8375
8376 min_pages = zone_managed_pages(zone) / 1024;
8377 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8378 zone->_watermark[WMARK_MIN] = min_pages;
8379 } else {
8380 /*
8381 * If it's a lowmem zone, reserve a number of pages
8382 * proportionate to the zone's size.
8383 */
8384 zone->_watermark[WMARK_MIN] = tmp;
8385 }
8386
8387 /*
8388 * Set the kswapd watermarks distance according to the
8389 * scale factor in proportion to available memory, but
8390 * ensure a minimum size on small systems.
8391 */
8392 tmp = max_t(u64, tmp >> 2,
8393 mult_frac(zone_managed_pages(zone),
8394 watermark_scale_factor, 10000));
8395
8396 zone->watermark_boost = 0;
8397 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8398 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8399
8400 spin_unlock_irqrestore(&zone->lock, flags);
8401 }
8402
8403 /* update totalreserve_pages */
8404 calculate_totalreserve_pages();
8405 }
8406
8407 /**
8408 * setup_per_zone_wmarks - called when min_free_kbytes changes
8409 * or when memory is hot-{added|removed}
8410 *
8411 * Ensures that the watermark[min,low,high] values for each zone are set
8412 * correctly with respect to min_free_kbytes.
8413 */
8414 void setup_per_zone_wmarks(void)
8415 {
8416 struct zone *zone;
8417 static DEFINE_SPINLOCK(lock);
8418
8419 spin_lock(&lock);
8420 __setup_per_zone_wmarks();
8421 spin_unlock(&lock);
8422
8423 /*
8424 * The watermark size have changed so update the pcpu batch
8425 * and high limits or the limits may be inappropriate.
8426 */
8427 for_each_zone(zone)
8428 zone_pcp_update(zone, 0);
8429 }
8430
8431 /*
8432 * Initialise min_free_kbytes.
8433 *
8434 * For small machines we want it small (128k min). For large machines
8435 * we want it large (256MB max). But it is not linear, because network
8436 * bandwidth does not increase linearly with machine size. We use
8437 *
8438 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8439 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8440 *
8441 * which yields
8442 *
8443 * 16MB: 512k
8444 * 32MB: 724k
8445 * 64MB: 1024k
8446 * 128MB: 1448k
8447 * 256MB: 2048k
8448 * 512MB: 2896k
8449 * 1024MB: 4096k
8450 * 2048MB: 5792k
8451 * 4096MB: 8192k
8452 * 8192MB: 11584k
8453 * 16384MB: 16384k
8454 */
8455 int __meminit init_per_zone_wmark_min(void)
8456 {
8457 unsigned long lowmem_kbytes;
8458 int new_min_free_kbytes;
8459
8460 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8461 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8462
8463 if (new_min_free_kbytes > user_min_free_kbytes) {
8464 min_free_kbytes = new_min_free_kbytes;
8465 if (min_free_kbytes < 128)
8466 min_free_kbytes = 128;
8467 if (min_free_kbytes > 262144)
8468 min_free_kbytes = 262144;
8469 } else {
8470 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8471 new_min_free_kbytes, user_min_free_kbytes);
8472 }
8473 setup_per_zone_wmarks();
8474 refresh_zone_stat_thresholds();
8475 setup_per_zone_lowmem_reserve();
8476
8477 #ifdef CONFIG_NUMA
8478 setup_min_unmapped_ratio();
8479 setup_min_slab_ratio();
8480 #endif
8481
8482 khugepaged_min_free_kbytes_update();
8483
8484 return 0;
8485 }
8486 postcore_initcall(init_per_zone_wmark_min)
8487
8488 /*
8489 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8490 * that we can call two helper functions whenever min_free_kbytes
8491 * changes.
8492 */
8493 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8494 void *buffer, size_t *length, loff_t *ppos)
8495 {
8496 int rc;
8497
8498 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8499 if (rc)
8500 return rc;
8501
8502 if (write) {
8503 user_min_free_kbytes = min_free_kbytes;
8504 setup_per_zone_wmarks();
8505 }
8506 return 0;
8507 }
8508
8509 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8510 void *buffer, size_t *length, loff_t *ppos)
8511 {
8512 int rc;
8513
8514 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8515 if (rc)
8516 return rc;
8517
8518 if (write)
8519 setup_per_zone_wmarks();
8520
8521 return 0;
8522 }
8523
8524 #ifdef CONFIG_NUMA
8525 static void setup_min_unmapped_ratio(void)
8526 {
8527 pg_data_t *pgdat;
8528 struct zone *zone;
8529
8530 for_each_online_pgdat(pgdat)
8531 pgdat->min_unmapped_pages = 0;
8532
8533 for_each_zone(zone)
8534 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8535 sysctl_min_unmapped_ratio) / 100;
8536 }
8537
8538
8539 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8540 void *buffer, size_t *length, loff_t *ppos)
8541 {
8542 int rc;
8543
8544 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8545 if (rc)
8546 return rc;
8547
8548 setup_min_unmapped_ratio();
8549
8550 return 0;
8551 }
8552
8553 static void setup_min_slab_ratio(void)
8554 {
8555 pg_data_t *pgdat;
8556 struct zone *zone;
8557
8558 for_each_online_pgdat(pgdat)
8559 pgdat->min_slab_pages = 0;
8560
8561 for_each_zone(zone)
8562 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8563 sysctl_min_slab_ratio) / 100;
8564 }
8565
8566 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8567 void *buffer, size_t *length, loff_t *ppos)
8568 {
8569 int rc;
8570
8571 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8572 if (rc)
8573 return rc;
8574
8575 setup_min_slab_ratio();
8576
8577 return 0;
8578 }
8579 #endif
8580
8581 /*
8582 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8583 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8584 * whenever sysctl_lowmem_reserve_ratio changes.
8585 *
8586 * The reserve ratio obviously has absolutely no relation with the
8587 * minimum watermarks. The lowmem reserve ratio can only make sense
8588 * if in function of the boot time zone sizes.
8589 */
8590 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8591 void *buffer, size_t *length, loff_t *ppos)
8592 {
8593 int i;
8594
8595 proc_dointvec_minmax(table, write, buffer, length, ppos);
8596
8597 for (i = 0; i < MAX_NR_ZONES; i++) {
8598 if (sysctl_lowmem_reserve_ratio[i] < 1)
8599 sysctl_lowmem_reserve_ratio[i] = 0;
8600 }
8601
8602 setup_per_zone_lowmem_reserve();
8603 return 0;
8604 }
8605
8606 /*
8607 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8608 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8609 * pagelist can have before it gets flushed back to buddy allocator.
8610 */
8611 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8612 int write, void *buffer, size_t *length, loff_t *ppos)
8613 {
8614 struct zone *zone;
8615 int old_percpu_pagelist_high_fraction;
8616 int ret;
8617
8618 mutex_lock(&pcp_batch_high_lock);
8619 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8620
8621 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8622 if (!write || ret < 0)
8623 goto out;
8624
8625 /* Sanity checking to avoid pcp imbalance */
8626 if (percpu_pagelist_high_fraction &&
8627 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8628 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8629 ret = -EINVAL;
8630 goto out;
8631 }
8632
8633 /* No change? */
8634 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8635 goto out;
8636
8637 for_each_populated_zone(zone)
8638 zone_set_pageset_high_and_batch(zone, 0);
8639 out:
8640 mutex_unlock(&pcp_batch_high_lock);
8641 return ret;
8642 }
8643
8644 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8645 /*
8646 * Returns the number of pages that arch has reserved but
8647 * is not known to alloc_large_system_hash().
8648 */
8649 static unsigned long __init arch_reserved_kernel_pages(void)
8650 {
8651 return 0;
8652 }
8653 #endif
8654
8655 /*
8656 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8657 * machines. As memory size is increased the scale is also increased but at
8658 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8659 * quadruples the scale is increased by one, which means the size of hash table
8660 * only doubles, instead of quadrupling as well.
8661 * Because 32-bit systems cannot have large physical memory, where this scaling
8662 * makes sense, it is disabled on such platforms.
8663 */
8664 #if __BITS_PER_LONG > 32
8665 #define ADAPT_SCALE_BASE (64ul << 30)
8666 #define ADAPT_SCALE_SHIFT 2
8667 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8668 #endif
8669
8670 /*
8671 * allocate a large system hash table from bootmem
8672 * - it is assumed that the hash table must contain an exact power-of-2
8673 * quantity of entries
8674 * - limit is the number of hash buckets, not the total allocation size
8675 */
8676 void *__init alloc_large_system_hash(const char *tablename,
8677 unsigned long bucketsize,
8678 unsigned long numentries,
8679 int scale,
8680 int flags,
8681 unsigned int *_hash_shift,
8682 unsigned int *_hash_mask,
8683 unsigned long low_limit,
8684 unsigned long high_limit)
8685 {
8686 unsigned long long max = high_limit;
8687 unsigned long log2qty, size;
8688 void *table = NULL;
8689 gfp_t gfp_flags;
8690 bool virt;
8691 bool huge;
8692
8693 /* allow the kernel cmdline to have a say */
8694 if (!numentries) {
8695 /* round applicable memory size up to nearest megabyte */
8696 numentries = nr_kernel_pages;
8697 numentries -= arch_reserved_kernel_pages();
8698
8699 /* It isn't necessary when PAGE_SIZE >= 1MB */
8700 if (PAGE_SHIFT < 20)
8701 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8702
8703 #if __BITS_PER_LONG > 32
8704 if (!high_limit) {
8705 unsigned long adapt;
8706
8707 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8708 adapt <<= ADAPT_SCALE_SHIFT)
8709 scale++;
8710 }
8711 #endif
8712
8713 /* limit to 1 bucket per 2^scale bytes of low memory */
8714 if (scale > PAGE_SHIFT)
8715 numentries >>= (scale - PAGE_SHIFT);
8716 else
8717 numentries <<= (PAGE_SHIFT - scale);
8718
8719 /* Make sure we've got at least a 0-order allocation.. */
8720 if (unlikely(flags & HASH_SMALL)) {
8721 /* Makes no sense without HASH_EARLY */
8722 WARN_ON(!(flags & HASH_EARLY));
8723 if (!(numentries >> *_hash_shift)) {
8724 numentries = 1UL << *_hash_shift;
8725 BUG_ON(!numentries);
8726 }
8727 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8728 numentries = PAGE_SIZE / bucketsize;
8729 }
8730 numentries = roundup_pow_of_two(numentries);
8731
8732 /* limit allocation size to 1/16 total memory by default */
8733 if (max == 0) {
8734 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8735 do_div(max, bucketsize);
8736 }
8737 max = min(max, 0x80000000ULL);
8738
8739 if (numentries < low_limit)
8740 numentries = low_limit;
8741 if (numentries > max)
8742 numentries = max;
8743
8744 log2qty = ilog2(numentries);
8745
8746 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8747 do {
8748 virt = false;
8749 size = bucketsize << log2qty;
8750 if (flags & HASH_EARLY) {
8751 if (flags & HASH_ZERO)
8752 table = memblock_alloc(size, SMP_CACHE_BYTES);
8753 else
8754 table = memblock_alloc_raw(size,
8755 SMP_CACHE_BYTES);
8756 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8757 table = __vmalloc(size, gfp_flags);
8758 virt = true;
8759 huge = is_vm_area_hugepages(table);
8760 } else {
8761 /*
8762 * If bucketsize is not a power-of-two, we may free
8763 * some pages at the end of hash table which
8764 * alloc_pages_exact() automatically does
8765 */
8766 table = alloc_pages_exact(size, gfp_flags);
8767 kmemleak_alloc(table, size, 1, gfp_flags);
8768 }
8769 } while (!table && size > PAGE_SIZE && --log2qty);
8770
8771 if (!table)
8772 panic("Failed to allocate %s hash table\n", tablename);
8773
8774 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8775 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8776 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8777
8778 if (_hash_shift)
8779 *_hash_shift = log2qty;
8780 if (_hash_mask)
8781 *_hash_mask = (1 << log2qty) - 1;
8782
8783 return table;
8784 }
8785
8786 /*
8787 * This function checks whether pageblock includes unmovable pages or not.
8788 *
8789 * PageLRU check without isolation or lru_lock could race so that
8790 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8791 * check without lock_page also may miss some movable non-lru pages at
8792 * race condition. So you can't expect this function should be exact.
8793 *
8794 * Returns a page without holding a reference. If the caller wants to
8795 * dereference that page (e.g., dumping), it has to make sure that it
8796 * cannot get removed (e.g., via memory unplug) concurrently.
8797 *
8798 */
8799 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8800 int migratetype, int flags)
8801 {
8802 unsigned long iter = 0;
8803 unsigned long pfn = page_to_pfn(page);
8804 unsigned long offset = pfn % pageblock_nr_pages;
8805
8806 if (is_migrate_cma_page(page)) {
8807 /*
8808 * CMA allocations (alloc_contig_range) really need to mark
8809 * isolate CMA pageblocks even when they are not movable in fact
8810 * so consider them movable here.
8811 */
8812 if (is_migrate_cma(migratetype))
8813 return NULL;
8814
8815 return page;
8816 }
8817
8818 for (; iter < pageblock_nr_pages - offset; iter++) {
8819 page = pfn_to_page(pfn + iter);
8820
8821 /*
8822 * Both, bootmem allocations and memory holes are marked
8823 * PG_reserved and are unmovable. We can even have unmovable
8824 * allocations inside ZONE_MOVABLE, for example when
8825 * specifying "movablecore".
8826 */
8827 if (PageReserved(page))
8828 return page;
8829
8830 /*
8831 * If the zone is movable and we have ruled out all reserved
8832 * pages then it should be reasonably safe to assume the rest
8833 * is movable.
8834 */
8835 if (zone_idx(zone) == ZONE_MOVABLE)
8836 continue;
8837
8838 /*
8839 * Hugepages are not in LRU lists, but they're movable.
8840 * THPs are on the LRU, but need to be counted as #small pages.
8841 * We need not scan over tail pages because we don't
8842 * handle each tail page individually in migration.
8843 */
8844 if (PageHuge(page) || PageTransCompound(page)) {
8845 struct page *head = compound_head(page);
8846 unsigned int skip_pages;
8847
8848 if (PageHuge(page)) {
8849 if (!hugepage_migration_supported(page_hstate(head)))
8850 return page;
8851 } else if (!PageLRU(head) && !__PageMovable(head)) {
8852 return page;
8853 }
8854
8855 skip_pages = compound_nr(head) - (page - head);
8856 iter += skip_pages - 1;
8857 continue;
8858 }
8859
8860 /*
8861 * We can't use page_count without pin a page
8862 * because another CPU can free compound page.
8863 * This check already skips compound tails of THP
8864 * because their page->_refcount is zero at all time.
8865 */
8866 if (!page_ref_count(page)) {
8867 if (PageBuddy(page))
8868 iter += (1 << buddy_order(page)) - 1;
8869 continue;
8870 }
8871
8872 /*
8873 * The HWPoisoned page may be not in buddy system, and
8874 * page_count() is not 0.
8875 */
8876 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8877 continue;
8878
8879 /*
8880 * We treat all PageOffline() pages as movable when offlining
8881 * to give drivers a chance to decrement their reference count
8882 * in MEM_GOING_OFFLINE in order to indicate that these pages
8883 * can be offlined as there are no direct references anymore.
8884 * For actually unmovable PageOffline() where the driver does
8885 * not support this, we will fail later when trying to actually
8886 * move these pages that still have a reference count > 0.
8887 * (false negatives in this function only)
8888 */
8889 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8890 continue;
8891
8892 if (__PageMovable(page) || PageLRU(page))
8893 continue;
8894
8895 /*
8896 * If there are RECLAIMABLE pages, we need to check
8897 * it. But now, memory offline itself doesn't call
8898 * shrink_node_slabs() and it still to be fixed.
8899 */
8900 return page;
8901 }
8902 return NULL;
8903 }
8904
8905 #ifdef CONFIG_CONTIG_ALLOC
8906 static unsigned long pfn_max_align_down(unsigned long pfn)
8907 {
8908 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8909 pageblock_nr_pages) - 1);
8910 }
8911
8912 static unsigned long pfn_max_align_up(unsigned long pfn)
8913 {
8914 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8915 pageblock_nr_pages));
8916 }
8917
8918 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8919 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8920 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8921 static void alloc_contig_dump_pages(struct list_head *page_list)
8922 {
8923 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8924
8925 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8926 struct page *page;
8927
8928 dump_stack();
8929 list_for_each_entry(page, page_list, lru)
8930 dump_page(page, "migration failure");
8931 }
8932 }
8933 #else
8934 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8935 {
8936 }
8937 #endif
8938
8939 /* [start, end) must belong to a single zone. */
8940 static int __alloc_contig_migrate_range(struct compact_control *cc,
8941 unsigned long start, unsigned long end)
8942 {
8943 /* This function is based on compact_zone() from compaction.c. */
8944 unsigned int nr_reclaimed;
8945 unsigned long pfn = start;
8946 unsigned int tries = 0;
8947 int ret = 0;
8948 struct migration_target_control mtc = {
8949 .nid = zone_to_nid(cc->zone),
8950 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8951 };
8952
8953 lru_cache_disable();
8954
8955 while (pfn < end || !list_empty(&cc->migratepages)) {
8956 if (fatal_signal_pending(current)) {
8957 ret = -EINTR;
8958 break;
8959 }
8960
8961 if (list_empty(&cc->migratepages)) {
8962 cc->nr_migratepages = 0;
8963 ret = isolate_migratepages_range(cc, pfn, end);
8964 if (ret && ret != -EAGAIN)
8965 break;
8966 pfn = cc->migrate_pfn;
8967 tries = 0;
8968 } else if (++tries == 5) {
8969 ret = -EBUSY;
8970 break;
8971 }
8972
8973 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8974 &cc->migratepages);
8975 cc->nr_migratepages -= nr_reclaimed;
8976
8977 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8978 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
8979
8980 /*
8981 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8982 * to retry again over this error, so do the same here.
8983 */
8984 if (ret == -ENOMEM)
8985 break;
8986 }
8987
8988 lru_cache_enable();
8989 if (ret < 0) {
8990 if (ret == -EBUSY)
8991 alloc_contig_dump_pages(&cc->migratepages);
8992 putback_movable_pages(&cc->migratepages);
8993 return ret;
8994 }
8995 return 0;
8996 }
8997
8998 /**
8999 * alloc_contig_range() -- tries to allocate given range of pages
9000 * @start: start PFN to allocate
9001 * @end: one-past-the-last PFN to allocate
9002 * @migratetype: migratetype of the underlying pageblocks (either
9003 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9004 * in range must have the same migratetype and it must
9005 * be either of the two.
9006 * @gfp_mask: GFP mask to use during compaction
9007 *
9008 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9009 * aligned. The PFN range must belong to a single zone.
9010 *
9011 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9012 * pageblocks in the range. Once isolated, the pageblocks should not
9013 * be modified by others.
9014 *
9015 * Return: zero on success or negative error code. On success all
9016 * pages which PFN is in [start, end) are allocated for the caller and
9017 * need to be freed with free_contig_range().
9018 */
9019 int alloc_contig_range(unsigned long start, unsigned long end,
9020 unsigned migratetype, gfp_t gfp_mask)
9021 {
9022 unsigned long outer_start, outer_end;
9023 unsigned int order;
9024 int ret = 0;
9025
9026 struct compact_control cc = {
9027 .nr_migratepages = 0,
9028 .order = -1,
9029 .zone = page_zone(pfn_to_page(start)),
9030 .mode = MIGRATE_SYNC,
9031 .ignore_skip_hint = true,
9032 .no_set_skip_hint = true,
9033 .gfp_mask = current_gfp_context(gfp_mask),
9034 .alloc_contig = true,
9035 };
9036 INIT_LIST_HEAD(&cc.migratepages);
9037
9038 /*
9039 * What we do here is we mark all pageblocks in range as
9040 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9041 * have different sizes, and due to the way page allocator
9042 * work, we align the range to biggest of the two pages so
9043 * that page allocator won't try to merge buddies from
9044 * different pageblocks and change MIGRATE_ISOLATE to some
9045 * other migration type.
9046 *
9047 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9048 * migrate the pages from an unaligned range (ie. pages that
9049 * we are interested in). This will put all the pages in
9050 * range back to page allocator as MIGRATE_ISOLATE.
9051 *
9052 * When this is done, we take the pages in range from page
9053 * allocator removing them from the buddy system. This way
9054 * page allocator will never consider using them.
9055 *
9056 * This lets us mark the pageblocks back as
9057 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9058 * aligned range but not in the unaligned, original range are
9059 * put back to page allocator so that buddy can use them.
9060 */
9061
9062 ret = start_isolate_page_range(pfn_max_align_down(start),
9063 pfn_max_align_up(end), migratetype, 0);
9064 if (ret)
9065 return ret;
9066
9067 drain_all_pages(cc.zone);
9068
9069 /*
9070 * In case of -EBUSY, we'd like to know which page causes problem.
9071 * So, just fall through. test_pages_isolated() has a tracepoint
9072 * which will report the busy page.
9073 *
9074 * It is possible that busy pages could become available before
9075 * the call to test_pages_isolated, and the range will actually be
9076 * allocated. So, if we fall through be sure to clear ret so that
9077 * -EBUSY is not accidentally used or returned to caller.
9078 */
9079 ret = __alloc_contig_migrate_range(&cc, start, end);
9080 if (ret && ret != -EBUSY)
9081 goto done;
9082 ret = 0;
9083
9084 /*
9085 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9086 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9087 * more, all pages in [start, end) are free in page allocator.
9088 * What we are going to do is to allocate all pages from
9089 * [start, end) (that is remove them from page allocator).
9090 *
9091 * The only problem is that pages at the beginning and at the
9092 * end of interesting range may be not aligned with pages that
9093 * page allocator holds, ie. they can be part of higher order
9094 * pages. Because of this, we reserve the bigger range and
9095 * once this is done free the pages we are not interested in.
9096 *
9097 * We don't have to hold zone->lock here because the pages are
9098 * isolated thus they won't get removed from buddy.
9099 */
9100
9101 order = 0;
9102 outer_start = start;
9103 while (!PageBuddy(pfn_to_page(outer_start))) {
9104 if (++order >= MAX_ORDER) {
9105 outer_start = start;
9106 break;
9107 }
9108 outer_start &= ~0UL << order;
9109 }
9110
9111 if (outer_start != start) {
9112 order = buddy_order(pfn_to_page(outer_start));
9113
9114 /*
9115 * outer_start page could be small order buddy page and
9116 * it doesn't include start page. Adjust outer_start
9117 * in this case to report failed page properly
9118 * on tracepoint in test_pages_isolated()
9119 */
9120 if (outer_start + (1UL << order) <= start)
9121 outer_start = start;
9122 }
9123
9124 /* Make sure the range is really isolated. */
9125 if (test_pages_isolated(outer_start, end, 0)) {
9126 ret = -EBUSY;
9127 goto done;
9128 }
9129
9130 /* Grab isolated pages from freelists. */
9131 outer_end = isolate_freepages_range(&cc, outer_start, end);
9132 if (!outer_end) {
9133 ret = -EBUSY;
9134 goto done;
9135 }
9136
9137 /* Free head and tail (if any) */
9138 if (start != outer_start)
9139 free_contig_range(outer_start, start - outer_start);
9140 if (end != outer_end)
9141 free_contig_range(end, outer_end - end);
9142
9143 done:
9144 undo_isolate_page_range(pfn_max_align_down(start),
9145 pfn_max_align_up(end), migratetype);
9146 return ret;
9147 }
9148 EXPORT_SYMBOL(alloc_contig_range);
9149
9150 static int __alloc_contig_pages(unsigned long start_pfn,
9151 unsigned long nr_pages, gfp_t gfp_mask)
9152 {
9153 unsigned long end_pfn = start_pfn + nr_pages;
9154
9155 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9156 gfp_mask);
9157 }
9158
9159 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9160 unsigned long nr_pages)
9161 {
9162 unsigned long i, end_pfn = start_pfn + nr_pages;
9163 struct page *page;
9164
9165 for (i = start_pfn; i < end_pfn; i++) {
9166 page = pfn_to_online_page(i);
9167 if (!page)
9168 return false;
9169
9170 if (page_zone(page) != z)
9171 return false;
9172
9173 if (PageReserved(page))
9174 return false;
9175 }
9176 return true;
9177 }
9178
9179 static bool zone_spans_last_pfn(const struct zone *zone,
9180 unsigned long start_pfn, unsigned long nr_pages)
9181 {
9182 unsigned long last_pfn = start_pfn + nr_pages - 1;
9183
9184 return zone_spans_pfn(zone, last_pfn);
9185 }
9186
9187 /**
9188 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9189 * @nr_pages: Number of contiguous pages to allocate
9190 * @gfp_mask: GFP mask to limit search and used during compaction
9191 * @nid: Target node
9192 * @nodemask: Mask for other possible nodes
9193 *
9194 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9195 * on an applicable zonelist to find a contiguous pfn range which can then be
9196 * tried for allocation with alloc_contig_range(). This routine is intended
9197 * for allocation requests which can not be fulfilled with the buddy allocator.
9198 *
9199 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9200 * power of two then the alignment is guaranteed to be to the given nr_pages
9201 * (e.g. 1GB request would be aligned to 1GB).
9202 *
9203 * Allocated pages can be freed with free_contig_range() or by manually calling
9204 * __free_page() on each allocated page.
9205 *
9206 * Return: pointer to contiguous pages on success, or NULL if not successful.
9207 */
9208 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9209 int nid, nodemask_t *nodemask)
9210 {
9211 unsigned long ret, pfn, flags;
9212 struct zonelist *zonelist;
9213 struct zone *zone;
9214 struct zoneref *z;
9215
9216 zonelist = node_zonelist(nid, gfp_mask);
9217 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9218 gfp_zone(gfp_mask), nodemask) {
9219 spin_lock_irqsave(&zone->lock, flags);
9220
9221 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9222 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9223 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9224 /*
9225 * We release the zone lock here because
9226 * alloc_contig_range() will also lock the zone
9227 * at some point. If there's an allocation
9228 * spinning on this lock, it may win the race
9229 * and cause alloc_contig_range() to fail...
9230 */
9231 spin_unlock_irqrestore(&zone->lock, flags);
9232 ret = __alloc_contig_pages(pfn, nr_pages,
9233 gfp_mask);
9234 if (!ret)
9235 return pfn_to_page(pfn);
9236 spin_lock_irqsave(&zone->lock, flags);
9237 }
9238 pfn += nr_pages;
9239 }
9240 spin_unlock_irqrestore(&zone->lock, flags);
9241 }
9242 return NULL;
9243 }
9244 #endif /* CONFIG_CONTIG_ALLOC */
9245
9246 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9247 {
9248 unsigned long count = 0;
9249
9250 for (; nr_pages--; pfn++) {
9251 struct page *page = pfn_to_page(pfn);
9252
9253 count += page_count(page) != 1;
9254 __free_page(page);
9255 }
9256 WARN(count != 0, "%lu pages are still in use!\n", count);
9257 }
9258 EXPORT_SYMBOL(free_contig_range);
9259
9260 /*
9261 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9262 * page high values need to be recalculated.
9263 */
9264 void zone_pcp_update(struct zone *zone, int cpu_online)
9265 {
9266 mutex_lock(&pcp_batch_high_lock);
9267 zone_set_pageset_high_and_batch(zone, cpu_online);
9268 mutex_unlock(&pcp_batch_high_lock);
9269 }
9270
9271 /*
9272 * Effectively disable pcplists for the zone by setting the high limit to 0
9273 * and draining all cpus. A concurrent page freeing on another CPU that's about
9274 * to put the page on pcplist will either finish before the drain and the page
9275 * will be drained, or observe the new high limit and skip the pcplist.
9276 *
9277 * Must be paired with a call to zone_pcp_enable().
9278 */
9279 void zone_pcp_disable(struct zone *zone)
9280 {
9281 mutex_lock(&pcp_batch_high_lock);
9282 __zone_set_pageset_high_and_batch(zone, 0, 1);
9283 __drain_all_pages(zone, true);
9284 }
9285
9286 void zone_pcp_enable(struct zone *zone)
9287 {
9288 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9289 mutex_unlock(&pcp_batch_high_lock);
9290 }
9291
9292 void zone_pcp_reset(struct zone *zone)
9293 {
9294 int cpu;
9295 struct per_cpu_zonestat *pzstats;
9296
9297 if (zone->per_cpu_pageset != &boot_pageset) {
9298 for_each_online_cpu(cpu) {
9299 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9300 drain_zonestat(zone, pzstats);
9301 }
9302 free_percpu(zone->per_cpu_pageset);
9303 free_percpu(zone->per_cpu_zonestats);
9304 zone->per_cpu_pageset = &boot_pageset;
9305 zone->per_cpu_zonestats = &boot_zonestats;
9306 }
9307 }
9308
9309 #ifdef CONFIG_MEMORY_HOTREMOVE
9310 /*
9311 * All pages in the range must be in a single zone, must not contain holes,
9312 * must span full sections, and must be isolated before calling this function.
9313 */
9314 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9315 {
9316 unsigned long pfn = start_pfn;
9317 struct page *page;
9318 struct zone *zone;
9319 unsigned int order;
9320 unsigned long flags;
9321
9322 offline_mem_sections(pfn, end_pfn);
9323 zone = page_zone(pfn_to_page(pfn));
9324 spin_lock_irqsave(&zone->lock, flags);
9325 while (pfn < end_pfn) {
9326 page = pfn_to_page(pfn);
9327 /*
9328 * The HWPoisoned page may be not in buddy system, and
9329 * page_count() is not 0.
9330 */
9331 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9332 pfn++;
9333 continue;
9334 }
9335 /*
9336 * At this point all remaining PageOffline() pages have a
9337 * reference count of 0 and can simply be skipped.
9338 */
9339 if (PageOffline(page)) {
9340 BUG_ON(page_count(page));
9341 BUG_ON(PageBuddy(page));
9342 pfn++;
9343 continue;
9344 }
9345
9346 BUG_ON(page_count(page));
9347 BUG_ON(!PageBuddy(page));
9348 order = buddy_order(page);
9349 del_page_from_free_list(page, zone, order);
9350 pfn += (1 << order);
9351 }
9352 spin_unlock_irqrestore(&zone->lock, flags);
9353 }
9354 #endif
9355
9356 bool is_free_buddy_page(struct page *page)
9357 {
9358 struct zone *zone = page_zone(page);
9359 unsigned long pfn = page_to_pfn(page);
9360 unsigned long flags;
9361 unsigned int order;
9362
9363 spin_lock_irqsave(&zone->lock, flags);
9364 for (order = 0; order < MAX_ORDER; order++) {
9365 struct page *page_head = page - (pfn & ((1 << order) - 1));
9366
9367 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9368 break;
9369 }
9370 spin_unlock_irqrestore(&zone->lock, flags);
9371
9372 return order < MAX_ORDER;
9373 }
9374
9375 #ifdef CONFIG_MEMORY_FAILURE
9376 /*
9377 * Break down a higher-order page in sub-pages, and keep our target out of
9378 * buddy allocator.
9379 */
9380 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9381 struct page *target, int low, int high,
9382 int migratetype)
9383 {
9384 unsigned long size = 1 << high;
9385 struct page *current_buddy, *next_page;
9386
9387 while (high > low) {
9388 high--;
9389 size >>= 1;
9390
9391 if (target >= &page[size]) {
9392 next_page = page + size;
9393 current_buddy = page;
9394 } else {
9395 next_page = page;
9396 current_buddy = page + size;
9397 }
9398
9399 if (set_page_guard(zone, current_buddy, high, migratetype))
9400 continue;
9401
9402 if (current_buddy != target) {
9403 add_to_free_list(current_buddy, zone, high, migratetype);
9404 set_buddy_order(current_buddy, high);
9405 page = next_page;
9406 }
9407 }
9408 }
9409
9410 /*
9411 * Take a page that will be marked as poisoned off the buddy allocator.
9412 */
9413 bool take_page_off_buddy(struct page *page)
9414 {
9415 struct zone *zone = page_zone(page);
9416 unsigned long pfn = page_to_pfn(page);
9417 unsigned long flags;
9418 unsigned int order;
9419 bool ret = false;
9420
9421 spin_lock_irqsave(&zone->lock, flags);
9422 for (order = 0; order < MAX_ORDER; order++) {
9423 struct page *page_head = page - (pfn & ((1 << order) - 1));
9424 int page_order = buddy_order(page_head);
9425
9426 if (PageBuddy(page_head) && page_order >= order) {
9427 unsigned long pfn_head = page_to_pfn(page_head);
9428 int migratetype = get_pfnblock_migratetype(page_head,
9429 pfn_head);
9430
9431 del_page_from_free_list(page_head, zone, page_order);
9432 break_down_buddy_pages(zone, page_head, page, 0,
9433 page_order, migratetype);
9434 if (!is_migrate_isolate(migratetype))
9435 __mod_zone_freepage_state(zone, -1, migratetype);
9436 ret = true;
9437 break;
9438 }
9439 if (page_count(page_head) > 0)
9440 break;
9441 }
9442 spin_unlock_irqrestore(&zone->lock, flags);
9443 return ret;
9444 }
9445 #endif