]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
mm, meminit: replace rwsem with completion
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
70
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION (8)
74
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
79
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 /*
82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85 * defined in <linux/topology.h>.
86 */
87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
91
92 /*
93 * Array of node states.
94 */
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 [N_POSSIBLE] = NODE_MASK_ALL,
97 [N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 [N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 [N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 [N_CPU] = { { [0] = 1UL } },
107 #endif /* NUMA */
108 };
109 EXPORT_SYMBOL(node_states);
110
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
113
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
117 /*
118 * When calculating the number of globally allowed dirty pages, there
119 * is a certain number of per-zone reserves that should not be
120 * considered dirtyable memory. This is the sum of those reserves
121 * over all existing zones that contribute dirtyable memory.
122 */
123 unsigned long dirty_balance_reserve __read_mostly;
124
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127
128 #ifdef CONFIG_PM_SLEEP
129 /*
130 * The following functions are used by the suspend/hibernate code to temporarily
131 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
132 * while devices are suspended. To avoid races with the suspend/hibernate code,
133 * they should always be called with pm_mutex held (gfp_allowed_mask also should
134 * only be modified with pm_mutex held, unless the suspend/hibernate code is
135 * guaranteed not to run in parallel with that modification).
136 */
137
138 static gfp_t saved_gfp_mask;
139
140 void pm_restore_gfp_mask(void)
141 {
142 WARN_ON(!mutex_is_locked(&pm_mutex));
143 if (saved_gfp_mask) {
144 gfp_allowed_mask = saved_gfp_mask;
145 saved_gfp_mask = 0;
146 }
147 }
148
149 void pm_restrict_gfp_mask(void)
150 {
151 WARN_ON(!mutex_is_locked(&pm_mutex));
152 WARN_ON(saved_gfp_mask);
153 saved_gfp_mask = gfp_allowed_mask;
154 gfp_allowed_mask &= ~GFP_IOFS;
155 }
156
157 bool pm_suspended_storage(void)
158 {
159 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
160 return false;
161 return true;
162 }
163 #endif /* CONFIG_PM_SLEEP */
164
165 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
166 int pageblock_order __read_mostly;
167 #endif
168
169 static void __free_pages_ok(struct page *page, unsigned int order);
170
171 /*
172 * results with 256, 32 in the lowmem_reserve sysctl:
173 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
174 * 1G machine -> (16M dma, 784M normal, 224M high)
175 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
176 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
177 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
178 *
179 * TBD: should special case ZONE_DMA32 machines here - in those we normally
180 * don't need any ZONE_NORMAL reservation
181 */
182 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
183 #ifdef CONFIG_ZONE_DMA
184 256,
185 #endif
186 #ifdef CONFIG_ZONE_DMA32
187 256,
188 #endif
189 #ifdef CONFIG_HIGHMEM
190 32,
191 #endif
192 32,
193 };
194
195 EXPORT_SYMBOL(totalram_pages);
196
197 static char * const zone_names[MAX_NR_ZONES] = {
198 #ifdef CONFIG_ZONE_DMA
199 "DMA",
200 #endif
201 #ifdef CONFIG_ZONE_DMA32
202 "DMA32",
203 #endif
204 "Normal",
205 #ifdef CONFIG_HIGHMEM
206 "HighMem",
207 #endif
208 "Movable",
209 };
210
211 int min_free_kbytes = 1024;
212 int user_min_free_kbytes = -1;
213
214 static unsigned long __meminitdata nr_kernel_pages;
215 static unsigned long __meminitdata nr_all_pages;
216 static unsigned long __meminitdata dma_reserve;
217
218 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
219 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
221 static unsigned long __initdata required_kernelcore;
222 static unsigned long __initdata required_movablecore;
223 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
224
225 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
226 int movable_zone;
227 EXPORT_SYMBOL(movable_zone);
228 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
229
230 #if MAX_NUMNODES > 1
231 int nr_node_ids __read_mostly = MAX_NUMNODES;
232 int nr_online_nodes __read_mostly = 1;
233 EXPORT_SYMBOL(nr_node_ids);
234 EXPORT_SYMBOL(nr_online_nodes);
235 #endif
236
237 int page_group_by_mobility_disabled __read_mostly;
238
239 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
240 static inline void reset_deferred_meminit(pg_data_t *pgdat)
241 {
242 pgdat->first_deferred_pfn = ULONG_MAX;
243 }
244
245 /* Returns true if the struct page for the pfn is uninitialised */
246 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
247 {
248 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
249 return true;
250
251 return false;
252 }
253
254 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
255 {
256 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
257 return true;
258
259 return false;
260 }
261
262 /*
263 * Returns false when the remaining initialisation should be deferred until
264 * later in the boot cycle when it can be parallelised.
265 */
266 static inline bool update_defer_init(pg_data_t *pgdat,
267 unsigned long pfn, unsigned long zone_end,
268 unsigned long *nr_initialised)
269 {
270 /* Always populate low zones for address-contrained allocations */
271 if (zone_end < pgdat_end_pfn(pgdat))
272 return true;
273
274 /* Initialise at least 2G of the highest zone */
275 (*nr_initialised)++;
276 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
277 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
278 pgdat->first_deferred_pfn = pfn;
279 return false;
280 }
281
282 return true;
283 }
284 #else
285 static inline void reset_deferred_meminit(pg_data_t *pgdat)
286 {
287 }
288
289 static inline bool early_page_uninitialised(unsigned long pfn)
290 {
291 return false;
292 }
293
294 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
295 {
296 return false;
297 }
298
299 static inline bool update_defer_init(pg_data_t *pgdat,
300 unsigned long pfn, unsigned long zone_end,
301 unsigned long *nr_initialised)
302 {
303 return true;
304 }
305 #endif
306
307
308 void set_pageblock_migratetype(struct page *page, int migratetype)
309 {
310 if (unlikely(page_group_by_mobility_disabled &&
311 migratetype < MIGRATE_PCPTYPES))
312 migratetype = MIGRATE_UNMOVABLE;
313
314 set_pageblock_flags_group(page, (unsigned long)migratetype,
315 PB_migrate, PB_migrate_end);
316 }
317
318 #ifdef CONFIG_DEBUG_VM
319 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
320 {
321 int ret = 0;
322 unsigned seq;
323 unsigned long pfn = page_to_pfn(page);
324 unsigned long sp, start_pfn;
325
326 do {
327 seq = zone_span_seqbegin(zone);
328 start_pfn = zone->zone_start_pfn;
329 sp = zone->spanned_pages;
330 if (!zone_spans_pfn(zone, pfn))
331 ret = 1;
332 } while (zone_span_seqretry(zone, seq));
333
334 if (ret)
335 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
336 pfn, zone_to_nid(zone), zone->name,
337 start_pfn, start_pfn + sp);
338
339 return ret;
340 }
341
342 static int page_is_consistent(struct zone *zone, struct page *page)
343 {
344 if (!pfn_valid_within(page_to_pfn(page)))
345 return 0;
346 if (zone != page_zone(page))
347 return 0;
348
349 return 1;
350 }
351 /*
352 * Temporary debugging check for pages not lying within a given zone.
353 */
354 static int bad_range(struct zone *zone, struct page *page)
355 {
356 if (page_outside_zone_boundaries(zone, page))
357 return 1;
358 if (!page_is_consistent(zone, page))
359 return 1;
360
361 return 0;
362 }
363 #else
364 static inline int bad_range(struct zone *zone, struct page *page)
365 {
366 return 0;
367 }
368 #endif
369
370 static void bad_page(struct page *page, const char *reason,
371 unsigned long bad_flags)
372 {
373 static unsigned long resume;
374 static unsigned long nr_shown;
375 static unsigned long nr_unshown;
376
377 /* Don't complain about poisoned pages */
378 if (PageHWPoison(page)) {
379 page_mapcount_reset(page); /* remove PageBuddy */
380 return;
381 }
382
383 /*
384 * Allow a burst of 60 reports, then keep quiet for that minute;
385 * or allow a steady drip of one report per second.
386 */
387 if (nr_shown == 60) {
388 if (time_before(jiffies, resume)) {
389 nr_unshown++;
390 goto out;
391 }
392 if (nr_unshown) {
393 printk(KERN_ALERT
394 "BUG: Bad page state: %lu messages suppressed\n",
395 nr_unshown);
396 nr_unshown = 0;
397 }
398 nr_shown = 0;
399 }
400 if (nr_shown++ == 0)
401 resume = jiffies + 60 * HZ;
402
403 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
404 current->comm, page_to_pfn(page));
405 dump_page_badflags(page, reason, bad_flags);
406
407 print_modules();
408 dump_stack();
409 out:
410 /* Leave bad fields for debug, except PageBuddy could make trouble */
411 page_mapcount_reset(page); /* remove PageBuddy */
412 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
413 }
414
415 /*
416 * Higher-order pages are called "compound pages". They are structured thusly:
417 *
418 * The first PAGE_SIZE page is called the "head page".
419 *
420 * The remaining PAGE_SIZE pages are called "tail pages".
421 *
422 * All pages have PG_compound set. All tail pages have their ->first_page
423 * pointing at the head page.
424 *
425 * The first tail page's ->lru.next holds the address of the compound page's
426 * put_page() function. Its ->lru.prev holds the order of allocation.
427 * This usage means that zero-order pages may not be compound.
428 */
429
430 static void free_compound_page(struct page *page)
431 {
432 __free_pages_ok(page, compound_order(page));
433 }
434
435 void prep_compound_page(struct page *page, unsigned long order)
436 {
437 int i;
438 int nr_pages = 1 << order;
439
440 set_compound_page_dtor(page, free_compound_page);
441 set_compound_order(page, order);
442 __SetPageHead(page);
443 for (i = 1; i < nr_pages; i++) {
444 struct page *p = page + i;
445 set_page_count(p, 0);
446 p->first_page = page;
447 /* Make sure p->first_page is always valid for PageTail() */
448 smp_wmb();
449 __SetPageTail(p);
450 }
451 }
452
453 #ifdef CONFIG_DEBUG_PAGEALLOC
454 unsigned int _debug_guardpage_minorder;
455 bool _debug_pagealloc_enabled __read_mostly;
456 bool _debug_guardpage_enabled __read_mostly;
457
458 static int __init early_debug_pagealloc(char *buf)
459 {
460 if (!buf)
461 return -EINVAL;
462
463 if (strcmp(buf, "on") == 0)
464 _debug_pagealloc_enabled = true;
465
466 return 0;
467 }
468 early_param("debug_pagealloc", early_debug_pagealloc);
469
470 static bool need_debug_guardpage(void)
471 {
472 /* If we don't use debug_pagealloc, we don't need guard page */
473 if (!debug_pagealloc_enabled())
474 return false;
475
476 return true;
477 }
478
479 static void init_debug_guardpage(void)
480 {
481 if (!debug_pagealloc_enabled())
482 return;
483
484 _debug_guardpage_enabled = true;
485 }
486
487 struct page_ext_operations debug_guardpage_ops = {
488 .need = need_debug_guardpage,
489 .init = init_debug_guardpage,
490 };
491
492 static int __init debug_guardpage_minorder_setup(char *buf)
493 {
494 unsigned long res;
495
496 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
497 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
498 return 0;
499 }
500 _debug_guardpage_minorder = res;
501 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
502 return 0;
503 }
504 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
505
506 static inline void set_page_guard(struct zone *zone, struct page *page,
507 unsigned int order, int migratetype)
508 {
509 struct page_ext *page_ext;
510
511 if (!debug_guardpage_enabled())
512 return;
513
514 page_ext = lookup_page_ext(page);
515 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
516
517 INIT_LIST_HEAD(&page->lru);
518 set_page_private(page, order);
519 /* Guard pages are not available for any usage */
520 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
521 }
522
523 static inline void clear_page_guard(struct zone *zone, struct page *page,
524 unsigned int order, int migratetype)
525 {
526 struct page_ext *page_ext;
527
528 if (!debug_guardpage_enabled())
529 return;
530
531 page_ext = lookup_page_ext(page);
532 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
533
534 set_page_private(page, 0);
535 if (!is_migrate_isolate(migratetype))
536 __mod_zone_freepage_state(zone, (1 << order), migratetype);
537 }
538 #else
539 struct page_ext_operations debug_guardpage_ops = { NULL, };
540 static inline void set_page_guard(struct zone *zone, struct page *page,
541 unsigned int order, int migratetype) {}
542 static inline void clear_page_guard(struct zone *zone, struct page *page,
543 unsigned int order, int migratetype) {}
544 #endif
545
546 static inline void set_page_order(struct page *page, unsigned int order)
547 {
548 set_page_private(page, order);
549 __SetPageBuddy(page);
550 }
551
552 static inline void rmv_page_order(struct page *page)
553 {
554 __ClearPageBuddy(page);
555 set_page_private(page, 0);
556 }
557
558 /*
559 * This function checks whether a page is free && is the buddy
560 * we can do coalesce a page and its buddy if
561 * (a) the buddy is not in a hole &&
562 * (b) the buddy is in the buddy system &&
563 * (c) a page and its buddy have the same order &&
564 * (d) a page and its buddy are in the same zone.
565 *
566 * For recording whether a page is in the buddy system, we set ->_mapcount
567 * PAGE_BUDDY_MAPCOUNT_VALUE.
568 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
569 * serialized by zone->lock.
570 *
571 * For recording page's order, we use page_private(page).
572 */
573 static inline int page_is_buddy(struct page *page, struct page *buddy,
574 unsigned int order)
575 {
576 if (!pfn_valid_within(page_to_pfn(buddy)))
577 return 0;
578
579 if (page_is_guard(buddy) && page_order(buddy) == order) {
580 if (page_zone_id(page) != page_zone_id(buddy))
581 return 0;
582
583 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
584
585 return 1;
586 }
587
588 if (PageBuddy(buddy) && page_order(buddy) == order) {
589 /*
590 * zone check is done late to avoid uselessly
591 * calculating zone/node ids for pages that could
592 * never merge.
593 */
594 if (page_zone_id(page) != page_zone_id(buddy))
595 return 0;
596
597 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
598
599 return 1;
600 }
601 return 0;
602 }
603
604 /*
605 * Freeing function for a buddy system allocator.
606 *
607 * The concept of a buddy system is to maintain direct-mapped table
608 * (containing bit values) for memory blocks of various "orders".
609 * The bottom level table contains the map for the smallest allocatable
610 * units of memory (here, pages), and each level above it describes
611 * pairs of units from the levels below, hence, "buddies".
612 * At a high level, all that happens here is marking the table entry
613 * at the bottom level available, and propagating the changes upward
614 * as necessary, plus some accounting needed to play nicely with other
615 * parts of the VM system.
616 * At each level, we keep a list of pages, which are heads of continuous
617 * free pages of length of (1 << order) and marked with _mapcount
618 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
619 * field.
620 * So when we are allocating or freeing one, we can derive the state of the
621 * other. That is, if we allocate a small block, and both were
622 * free, the remainder of the region must be split into blocks.
623 * If a block is freed, and its buddy is also free, then this
624 * triggers coalescing into a block of larger size.
625 *
626 * -- nyc
627 */
628
629 static inline void __free_one_page(struct page *page,
630 unsigned long pfn,
631 struct zone *zone, unsigned int order,
632 int migratetype)
633 {
634 unsigned long page_idx;
635 unsigned long combined_idx;
636 unsigned long uninitialized_var(buddy_idx);
637 struct page *buddy;
638 int max_order = MAX_ORDER;
639
640 VM_BUG_ON(!zone_is_initialized(zone));
641 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
642
643 VM_BUG_ON(migratetype == -1);
644 if (is_migrate_isolate(migratetype)) {
645 /*
646 * We restrict max order of merging to prevent merge
647 * between freepages on isolate pageblock and normal
648 * pageblock. Without this, pageblock isolation
649 * could cause incorrect freepage accounting.
650 */
651 max_order = min(MAX_ORDER, pageblock_order + 1);
652 } else {
653 __mod_zone_freepage_state(zone, 1 << order, migratetype);
654 }
655
656 page_idx = pfn & ((1 << max_order) - 1);
657
658 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
659 VM_BUG_ON_PAGE(bad_range(zone, page), page);
660
661 while (order < max_order - 1) {
662 buddy_idx = __find_buddy_index(page_idx, order);
663 buddy = page + (buddy_idx - page_idx);
664 if (!page_is_buddy(page, buddy, order))
665 break;
666 /*
667 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
668 * merge with it and move up one order.
669 */
670 if (page_is_guard(buddy)) {
671 clear_page_guard(zone, buddy, order, migratetype);
672 } else {
673 list_del(&buddy->lru);
674 zone->free_area[order].nr_free--;
675 rmv_page_order(buddy);
676 }
677 combined_idx = buddy_idx & page_idx;
678 page = page + (combined_idx - page_idx);
679 page_idx = combined_idx;
680 order++;
681 }
682 set_page_order(page, order);
683
684 /*
685 * If this is not the largest possible page, check if the buddy
686 * of the next-highest order is free. If it is, it's possible
687 * that pages are being freed that will coalesce soon. In case,
688 * that is happening, add the free page to the tail of the list
689 * so it's less likely to be used soon and more likely to be merged
690 * as a higher order page
691 */
692 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
693 struct page *higher_page, *higher_buddy;
694 combined_idx = buddy_idx & page_idx;
695 higher_page = page + (combined_idx - page_idx);
696 buddy_idx = __find_buddy_index(combined_idx, order + 1);
697 higher_buddy = higher_page + (buddy_idx - combined_idx);
698 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
699 list_add_tail(&page->lru,
700 &zone->free_area[order].free_list[migratetype]);
701 goto out;
702 }
703 }
704
705 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
706 out:
707 zone->free_area[order].nr_free++;
708 }
709
710 static inline int free_pages_check(struct page *page)
711 {
712 const char *bad_reason = NULL;
713 unsigned long bad_flags = 0;
714
715 if (unlikely(page_mapcount(page)))
716 bad_reason = "nonzero mapcount";
717 if (unlikely(page->mapping != NULL))
718 bad_reason = "non-NULL mapping";
719 if (unlikely(atomic_read(&page->_count) != 0))
720 bad_reason = "nonzero _count";
721 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
722 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
723 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
724 }
725 #ifdef CONFIG_MEMCG
726 if (unlikely(page->mem_cgroup))
727 bad_reason = "page still charged to cgroup";
728 #endif
729 if (unlikely(bad_reason)) {
730 bad_page(page, bad_reason, bad_flags);
731 return 1;
732 }
733 page_cpupid_reset_last(page);
734 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
735 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
736 return 0;
737 }
738
739 /*
740 * Frees a number of pages from the PCP lists
741 * Assumes all pages on list are in same zone, and of same order.
742 * count is the number of pages to free.
743 *
744 * If the zone was previously in an "all pages pinned" state then look to
745 * see if this freeing clears that state.
746 *
747 * And clear the zone's pages_scanned counter, to hold off the "all pages are
748 * pinned" detection logic.
749 */
750 static void free_pcppages_bulk(struct zone *zone, int count,
751 struct per_cpu_pages *pcp)
752 {
753 int migratetype = 0;
754 int batch_free = 0;
755 int to_free = count;
756 unsigned long nr_scanned;
757
758 spin_lock(&zone->lock);
759 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
760 if (nr_scanned)
761 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
762
763 while (to_free) {
764 struct page *page;
765 struct list_head *list;
766
767 /*
768 * Remove pages from lists in a round-robin fashion. A
769 * batch_free count is maintained that is incremented when an
770 * empty list is encountered. This is so more pages are freed
771 * off fuller lists instead of spinning excessively around empty
772 * lists
773 */
774 do {
775 batch_free++;
776 if (++migratetype == MIGRATE_PCPTYPES)
777 migratetype = 0;
778 list = &pcp->lists[migratetype];
779 } while (list_empty(list));
780
781 /* This is the only non-empty list. Free them all. */
782 if (batch_free == MIGRATE_PCPTYPES)
783 batch_free = to_free;
784
785 do {
786 int mt; /* migratetype of the to-be-freed page */
787
788 page = list_entry(list->prev, struct page, lru);
789 /* must delete as __free_one_page list manipulates */
790 list_del(&page->lru);
791 mt = get_freepage_migratetype(page);
792 if (unlikely(has_isolate_pageblock(zone)))
793 mt = get_pageblock_migratetype(page);
794
795 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
796 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
797 trace_mm_page_pcpu_drain(page, 0, mt);
798 } while (--to_free && --batch_free && !list_empty(list));
799 }
800 spin_unlock(&zone->lock);
801 }
802
803 static void free_one_page(struct zone *zone,
804 struct page *page, unsigned long pfn,
805 unsigned int order,
806 int migratetype)
807 {
808 unsigned long nr_scanned;
809 spin_lock(&zone->lock);
810 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
811 if (nr_scanned)
812 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
813
814 if (unlikely(has_isolate_pageblock(zone) ||
815 is_migrate_isolate(migratetype))) {
816 migratetype = get_pfnblock_migratetype(page, pfn);
817 }
818 __free_one_page(page, pfn, zone, order, migratetype);
819 spin_unlock(&zone->lock);
820 }
821
822 static int free_tail_pages_check(struct page *head_page, struct page *page)
823 {
824 if (!IS_ENABLED(CONFIG_DEBUG_VM))
825 return 0;
826 if (unlikely(!PageTail(page))) {
827 bad_page(page, "PageTail not set", 0);
828 return 1;
829 }
830 if (unlikely(page->first_page != head_page)) {
831 bad_page(page, "first_page not consistent", 0);
832 return 1;
833 }
834 return 0;
835 }
836
837 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
838 unsigned long zone, int nid)
839 {
840 set_page_links(page, zone, nid, pfn);
841 init_page_count(page);
842 page_mapcount_reset(page);
843 page_cpupid_reset_last(page);
844
845 INIT_LIST_HEAD(&page->lru);
846 #ifdef WANT_PAGE_VIRTUAL
847 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
848 if (!is_highmem_idx(zone))
849 set_page_address(page, __va(pfn << PAGE_SHIFT));
850 #endif
851 }
852
853 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
854 int nid)
855 {
856 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
857 }
858
859 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
860 static void init_reserved_page(unsigned long pfn)
861 {
862 pg_data_t *pgdat;
863 int nid, zid;
864
865 if (!early_page_uninitialised(pfn))
866 return;
867
868 nid = early_pfn_to_nid(pfn);
869 pgdat = NODE_DATA(nid);
870
871 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
872 struct zone *zone = &pgdat->node_zones[zid];
873
874 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
875 break;
876 }
877 __init_single_pfn(pfn, zid, nid);
878 }
879 #else
880 static inline void init_reserved_page(unsigned long pfn)
881 {
882 }
883 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
884
885 /*
886 * Initialised pages do not have PageReserved set. This function is
887 * called for each range allocated by the bootmem allocator and
888 * marks the pages PageReserved. The remaining valid pages are later
889 * sent to the buddy page allocator.
890 */
891 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
892 {
893 unsigned long start_pfn = PFN_DOWN(start);
894 unsigned long end_pfn = PFN_UP(end);
895
896 for (; start_pfn < end_pfn; start_pfn++) {
897 if (pfn_valid(start_pfn)) {
898 struct page *page = pfn_to_page(start_pfn);
899
900 init_reserved_page(start_pfn);
901 SetPageReserved(page);
902 }
903 }
904 }
905
906 static bool free_pages_prepare(struct page *page, unsigned int order)
907 {
908 bool compound = PageCompound(page);
909 int i, bad = 0;
910
911 VM_BUG_ON_PAGE(PageTail(page), page);
912 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
913
914 trace_mm_page_free(page, order);
915 kmemcheck_free_shadow(page, order);
916 kasan_free_pages(page, order);
917
918 if (PageAnon(page))
919 page->mapping = NULL;
920 bad += free_pages_check(page);
921 for (i = 1; i < (1 << order); i++) {
922 if (compound)
923 bad += free_tail_pages_check(page, page + i);
924 bad += free_pages_check(page + i);
925 }
926 if (bad)
927 return false;
928
929 reset_page_owner(page, order);
930
931 if (!PageHighMem(page)) {
932 debug_check_no_locks_freed(page_address(page),
933 PAGE_SIZE << order);
934 debug_check_no_obj_freed(page_address(page),
935 PAGE_SIZE << order);
936 }
937 arch_free_page(page, order);
938 kernel_map_pages(page, 1 << order, 0);
939
940 return true;
941 }
942
943 static void __free_pages_ok(struct page *page, unsigned int order)
944 {
945 unsigned long flags;
946 int migratetype;
947 unsigned long pfn = page_to_pfn(page);
948
949 if (!free_pages_prepare(page, order))
950 return;
951
952 migratetype = get_pfnblock_migratetype(page, pfn);
953 local_irq_save(flags);
954 __count_vm_events(PGFREE, 1 << order);
955 set_freepage_migratetype(page, migratetype);
956 free_one_page(page_zone(page), page, pfn, order, migratetype);
957 local_irq_restore(flags);
958 }
959
960 static void __init __free_pages_boot_core(struct page *page,
961 unsigned long pfn, unsigned int order)
962 {
963 unsigned int nr_pages = 1 << order;
964 struct page *p = page;
965 unsigned int loop;
966
967 prefetchw(p);
968 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
969 prefetchw(p + 1);
970 __ClearPageReserved(p);
971 set_page_count(p, 0);
972 }
973 __ClearPageReserved(p);
974 set_page_count(p, 0);
975
976 page_zone(page)->managed_pages += nr_pages;
977 set_page_refcounted(page);
978 __free_pages(page, order);
979 }
980
981 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
982 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
983
984 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
985
986 int __meminit early_pfn_to_nid(unsigned long pfn)
987 {
988 static DEFINE_SPINLOCK(early_pfn_lock);
989 int nid;
990
991 spin_lock(&early_pfn_lock);
992 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
993 if (nid < 0)
994 nid = 0;
995 spin_unlock(&early_pfn_lock);
996
997 return nid;
998 }
999 #endif
1000
1001 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1002 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1003 struct mminit_pfnnid_cache *state)
1004 {
1005 int nid;
1006
1007 nid = __early_pfn_to_nid(pfn, state);
1008 if (nid >= 0 && nid != node)
1009 return false;
1010 return true;
1011 }
1012
1013 /* Only safe to use early in boot when initialisation is single-threaded */
1014 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1015 {
1016 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1017 }
1018
1019 #else
1020
1021 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1022 {
1023 return true;
1024 }
1025 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1026 struct mminit_pfnnid_cache *state)
1027 {
1028 return true;
1029 }
1030 #endif
1031
1032
1033 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1034 unsigned int order)
1035 {
1036 if (early_page_uninitialised(pfn))
1037 return;
1038 return __free_pages_boot_core(page, pfn, order);
1039 }
1040
1041 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1042 static void __init deferred_free_range(struct page *page,
1043 unsigned long pfn, int nr_pages)
1044 {
1045 int i;
1046
1047 if (!page)
1048 return;
1049
1050 /* Free a large naturally-aligned chunk if possible */
1051 if (nr_pages == MAX_ORDER_NR_PAGES &&
1052 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1053 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1054 __free_pages_boot_core(page, pfn, MAX_ORDER-1);
1055 return;
1056 }
1057
1058 for (i = 0; i < nr_pages; i++, page++, pfn++)
1059 __free_pages_boot_core(page, pfn, 0);
1060 }
1061
1062 /* Completion tracking for deferred_init_memmap() threads */
1063 static atomic_t pgdat_init_n_undone __initdata;
1064 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1065
1066 static inline void __init pgdat_init_report_one_done(void)
1067 {
1068 if (atomic_dec_and_test(&pgdat_init_n_undone))
1069 complete(&pgdat_init_all_done_comp);
1070 }
1071
1072 /* Initialise remaining memory on a node */
1073 static int __init deferred_init_memmap(void *data)
1074 {
1075 pg_data_t *pgdat = data;
1076 int nid = pgdat->node_id;
1077 struct mminit_pfnnid_cache nid_init_state = { };
1078 unsigned long start = jiffies;
1079 unsigned long nr_pages = 0;
1080 unsigned long walk_start, walk_end;
1081 int i, zid;
1082 struct zone *zone;
1083 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1084 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1085
1086 if (first_init_pfn == ULONG_MAX) {
1087 pgdat_init_report_one_done();
1088 return 0;
1089 }
1090
1091 /* Bind memory initialisation thread to a local node if possible */
1092 if (!cpumask_empty(cpumask))
1093 set_cpus_allowed_ptr(current, cpumask);
1094
1095 /* Sanity check boundaries */
1096 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1097 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1098 pgdat->first_deferred_pfn = ULONG_MAX;
1099
1100 /* Only the highest zone is deferred so find it */
1101 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1102 zone = pgdat->node_zones + zid;
1103 if (first_init_pfn < zone_end_pfn(zone))
1104 break;
1105 }
1106
1107 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1108 unsigned long pfn, end_pfn;
1109 struct page *page = NULL;
1110 struct page *free_base_page = NULL;
1111 unsigned long free_base_pfn = 0;
1112 int nr_to_free = 0;
1113
1114 end_pfn = min(walk_end, zone_end_pfn(zone));
1115 pfn = first_init_pfn;
1116 if (pfn < walk_start)
1117 pfn = walk_start;
1118 if (pfn < zone->zone_start_pfn)
1119 pfn = zone->zone_start_pfn;
1120
1121 for (; pfn < end_pfn; pfn++) {
1122 if (!pfn_valid_within(pfn))
1123 goto free_range;
1124
1125 /*
1126 * Ensure pfn_valid is checked every
1127 * MAX_ORDER_NR_PAGES for memory holes
1128 */
1129 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1130 if (!pfn_valid(pfn)) {
1131 page = NULL;
1132 goto free_range;
1133 }
1134 }
1135
1136 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1137 page = NULL;
1138 goto free_range;
1139 }
1140
1141 /* Minimise pfn page lookups and scheduler checks */
1142 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1143 page++;
1144 } else {
1145 nr_pages += nr_to_free;
1146 deferred_free_range(free_base_page,
1147 free_base_pfn, nr_to_free);
1148 free_base_page = NULL;
1149 free_base_pfn = nr_to_free = 0;
1150
1151 page = pfn_to_page(pfn);
1152 cond_resched();
1153 }
1154
1155 if (page->flags) {
1156 VM_BUG_ON(page_zone(page) != zone);
1157 goto free_range;
1158 }
1159
1160 __init_single_page(page, pfn, zid, nid);
1161 if (!free_base_page) {
1162 free_base_page = page;
1163 free_base_pfn = pfn;
1164 nr_to_free = 0;
1165 }
1166 nr_to_free++;
1167
1168 /* Where possible, batch up pages for a single free */
1169 continue;
1170 free_range:
1171 /* Free the current block of pages to allocator */
1172 nr_pages += nr_to_free;
1173 deferred_free_range(free_base_page, free_base_pfn,
1174 nr_to_free);
1175 free_base_page = NULL;
1176 free_base_pfn = nr_to_free = 0;
1177 }
1178
1179 first_init_pfn = max(end_pfn, first_init_pfn);
1180 }
1181
1182 /* Sanity check that the next zone really is unpopulated */
1183 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1184
1185 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1186 jiffies_to_msecs(jiffies - start));
1187
1188 pgdat_init_report_one_done();
1189 return 0;
1190 }
1191
1192 void __init page_alloc_init_late(void)
1193 {
1194 int nid;
1195
1196 /* There will be num_node_state(N_MEMORY) threads */
1197 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1198 for_each_node_state(nid, N_MEMORY) {
1199 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1200 }
1201
1202 /* Block until all are initialised */
1203 wait_for_completion(&pgdat_init_all_done_comp);
1204 }
1205 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1206
1207 #ifdef CONFIG_CMA
1208 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1209 void __init init_cma_reserved_pageblock(struct page *page)
1210 {
1211 unsigned i = pageblock_nr_pages;
1212 struct page *p = page;
1213
1214 do {
1215 __ClearPageReserved(p);
1216 set_page_count(p, 0);
1217 } while (++p, --i);
1218
1219 set_pageblock_migratetype(page, MIGRATE_CMA);
1220
1221 if (pageblock_order >= MAX_ORDER) {
1222 i = pageblock_nr_pages;
1223 p = page;
1224 do {
1225 set_page_refcounted(p);
1226 __free_pages(p, MAX_ORDER - 1);
1227 p += MAX_ORDER_NR_PAGES;
1228 } while (i -= MAX_ORDER_NR_PAGES);
1229 } else {
1230 set_page_refcounted(page);
1231 __free_pages(page, pageblock_order);
1232 }
1233
1234 adjust_managed_page_count(page, pageblock_nr_pages);
1235 }
1236 #endif
1237
1238 /*
1239 * The order of subdivision here is critical for the IO subsystem.
1240 * Please do not alter this order without good reasons and regression
1241 * testing. Specifically, as large blocks of memory are subdivided,
1242 * the order in which smaller blocks are delivered depends on the order
1243 * they're subdivided in this function. This is the primary factor
1244 * influencing the order in which pages are delivered to the IO
1245 * subsystem according to empirical testing, and this is also justified
1246 * by considering the behavior of a buddy system containing a single
1247 * large block of memory acted on by a series of small allocations.
1248 * This behavior is a critical factor in sglist merging's success.
1249 *
1250 * -- nyc
1251 */
1252 static inline void expand(struct zone *zone, struct page *page,
1253 int low, int high, struct free_area *area,
1254 int migratetype)
1255 {
1256 unsigned long size = 1 << high;
1257
1258 while (high > low) {
1259 area--;
1260 high--;
1261 size >>= 1;
1262 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1263
1264 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1265 debug_guardpage_enabled() &&
1266 high < debug_guardpage_minorder()) {
1267 /*
1268 * Mark as guard pages (or page), that will allow to
1269 * merge back to allocator when buddy will be freed.
1270 * Corresponding page table entries will not be touched,
1271 * pages will stay not present in virtual address space
1272 */
1273 set_page_guard(zone, &page[size], high, migratetype);
1274 continue;
1275 }
1276 list_add(&page[size].lru, &area->free_list[migratetype]);
1277 area->nr_free++;
1278 set_page_order(&page[size], high);
1279 }
1280 }
1281
1282 /*
1283 * This page is about to be returned from the page allocator
1284 */
1285 static inline int check_new_page(struct page *page)
1286 {
1287 const char *bad_reason = NULL;
1288 unsigned long bad_flags = 0;
1289
1290 if (unlikely(page_mapcount(page)))
1291 bad_reason = "nonzero mapcount";
1292 if (unlikely(page->mapping != NULL))
1293 bad_reason = "non-NULL mapping";
1294 if (unlikely(atomic_read(&page->_count) != 0))
1295 bad_reason = "nonzero _count";
1296 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1297 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1298 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1299 }
1300 #ifdef CONFIG_MEMCG
1301 if (unlikely(page->mem_cgroup))
1302 bad_reason = "page still charged to cgroup";
1303 #endif
1304 if (unlikely(bad_reason)) {
1305 bad_page(page, bad_reason, bad_flags);
1306 return 1;
1307 }
1308 return 0;
1309 }
1310
1311 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1312 int alloc_flags)
1313 {
1314 int i;
1315
1316 for (i = 0; i < (1 << order); i++) {
1317 struct page *p = page + i;
1318 if (unlikely(check_new_page(p)))
1319 return 1;
1320 }
1321
1322 set_page_private(page, 0);
1323 set_page_refcounted(page);
1324
1325 arch_alloc_page(page, order);
1326 kernel_map_pages(page, 1 << order, 1);
1327 kasan_alloc_pages(page, order);
1328
1329 if (gfp_flags & __GFP_ZERO)
1330 for (i = 0; i < (1 << order); i++)
1331 clear_highpage(page + i);
1332
1333 if (order && (gfp_flags & __GFP_COMP))
1334 prep_compound_page(page, order);
1335
1336 set_page_owner(page, order, gfp_flags);
1337
1338 /*
1339 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1340 * allocate the page. The expectation is that the caller is taking
1341 * steps that will free more memory. The caller should avoid the page
1342 * being used for !PFMEMALLOC purposes.
1343 */
1344 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1345
1346 return 0;
1347 }
1348
1349 /*
1350 * Go through the free lists for the given migratetype and remove
1351 * the smallest available page from the freelists
1352 */
1353 static inline
1354 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1355 int migratetype)
1356 {
1357 unsigned int current_order;
1358 struct free_area *area;
1359 struct page *page;
1360
1361 /* Find a page of the appropriate size in the preferred list */
1362 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1363 area = &(zone->free_area[current_order]);
1364 if (list_empty(&area->free_list[migratetype]))
1365 continue;
1366
1367 page = list_entry(area->free_list[migratetype].next,
1368 struct page, lru);
1369 list_del(&page->lru);
1370 rmv_page_order(page);
1371 area->nr_free--;
1372 expand(zone, page, order, current_order, area, migratetype);
1373 set_freepage_migratetype(page, migratetype);
1374 return page;
1375 }
1376
1377 return NULL;
1378 }
1379
1380
1381 /*
1382 * This array describes the order lists are fallen back to when
1383 * the free lists for the desirable migrate type are depleted
1384 */
1385 static int fallbacks[MIGRATE_TYPES][4] = {
1386 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1387 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1388 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1389 #ifdef CONFIG_CMA
1390 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1391 #endif
1392 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1393 #ifdef CONFIG_MEMORY_ISOLATION
1394 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1395 #endif
1396 };
1397
1398 #ifdef CONFIG_CMA
1399 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1400 unsigned int order)
1401 {
1402 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1403 }
1404 #else
1405 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1406 unsigned int order) { return NULL; }
1407 #endif
1408
1409 /*
1410 * Move the free pages in a range to the free lists of the requested type.
1411 * Note that start_page and end_pages are not aligned on a pageblock
1412 * boundary. If alignment is required, use move_freepages_block()
1413 */
1414 int move_freepages(struct zone *zone,
1415 struct page *start_page, struct page *end_page,
1416 int migratetype)
1417 {
1418 struct page *page;
1419 unsigned long order;
1420 int pages_moved = 0;
1421
1422 #ifndef CONFIG_HOLES_IN_ZONE
1423 /*
1424 * page_zone is not safe to call in this context when
1425 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1426 * anyway as we check zone boundaries in move_freepages_block().
1427 * Remove at a later date when no bug reports exist related to
1428 * grouping pages by mobility
1429 */
1430 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1431 #endif
1432
1433 for (page = start_page; page <= end_page;) {
1434 /* Make sure we are not inadvertently changing nodes */
1435 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1436
1437 if (!pfn_valid_within(page_to_pfn(page))) {
1438 page++;
1439 continue;
1440 }
1441
1442 if (!PageBuddy(page)) {
1443 page++;
1444 continue;
1445 }
1446
1447 order = page_order(page);
1448 list_move(&page->lru,
1449 &zone->free_area[order].free_list[migratetype]);
1450 set_freepage_migratetype(page, migratetype);
1451 page += 1 << order;
1452 pages_moved += 1 << order;
1453 }
1454
1455 return pages_moved;
1456 }
1457
1458 int move_freepages_block(struct zone *zone, struct page *page,
1459 int migratetype)
1460 {
1461 unsigned long start_pfn, end_pfn;
1462 struct page *start_page, *end_page;
1463
1464 start_pfn = page_to_pfn(page);
1465 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1466 start_page = pfn_to_page(start_pfn);
1467 end_page = start_page + pageblock_nr_pages - 1;
1468 end_pfn = start_pfn + pageblock_nr_pages - 1;
1469
1470 /* Do not cross zone boundaries */
1471 if (!zone_spans_pfn(zone, start_pfn))
1472 start_page = page;
1473 if (!zone_spans_pfn(zone, end_pfn))
1474 return 0;
1475
1476 return move_freepages(zone, start_page, end_page, migratetype);
1477 }
1478
1479 static void change_pageblock_range(struct page *pageblock_page,
1480 int start_order, int migratetype)
1481 {
1482 int nr_pageblocks = 1 << (start_order - pageblock_order);
1483
1484 while (nr_pageblocks--) {
1485 set_pageblock_migratetype(pageblock_page, migratetype);
1486 pageblock_page += pageblock_nr_pages;
1487 }
1488 }
1489
1490 /*
1491 * When we are falling back to another migratetype during allocation, try to
1492 * steal extra free pages from the same pageblocks to satisfy further
1493 * allocations, instead of polluting multiple pageblocks.
1494 *
1495 * If we are stealing a relatively large buddy page, it is likely there will
1496 * be more free pages in the pageblock, so try to steal them all. For
1497 * reclaimable and unmovable allocations, we steal regardless of page size,
1498 * as fragmentation caused by those allocations polluting movable pageblocks
1499 * is worse than movable allocations stealing from unmovable and reclaimable
1500 * pageblocks.
1501 */
1502 static bool can_steal_fallback(unsigned int order, int start_mt)
1503 {
1504 /*
1505 * Leaving this order check is intended, although there is
1506 * relaxed order check in next check. The reason is that
1507 * we can actually steal whole pageblock if this condition met,
1508 * but, below check doesn't guarantee it and that is just heuristic
1509 * so could be changed anytime.
1510 */
1511 if (order >= pageblock_order)
1512 return true;
1513
1514 if (order >= pageblock_order / 2 ||
1515 start_mt == MIGRATE_RECLAIMABLE ||
1516 start_mt == MIGRATE_UNMOVABLE ||
1517 page_group_by_mobility_disabled)
1518 return true;
1519
1520 return false;
1521 }
1522
1523 /*
1524 * This function implements actual steal behaviour. If order is large enough,
1525 * we can steal whole pageblock. If not, we first move freepages in this
1526 * pageblock and check whether half of pages are moved or not. If half of
1527 * pages are moved, we can change migratetype of pageblock and permanently
1528 * use it's pages as requested migratetype in the future.
1529 */
1530 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1531 int start_type)
1532 {
1533 int current_order = page_order(page);
1534 int pages;
1535
1536 /* Take ownership for orders >= pageblock_order */
1537 if (current_order >= pageblock_order) {
1538 change_pageblock_range(page, current_order, start_type);
1539 return;
1540 }
1541
1542 pages = move_freepages_block(zone, page, start_type);
1543
1544 /* Claim the whole block if over half of it is free */
1545 if (pages >= (1 << (pageblock_order-1)) ||
1546 page_group_by_mobility_disabled)
1547 set_pageblock_migratetype(page, start_type);
1548 }
1549
1550 /*
1551 * Check whether there is a suitable fallback freepage with requested order.
1552 * If only_stealable is true, this function returns fallback_mt only if
1553 * we can steal other freepages all together. This would help to reduce
1554 * fragmentation due to mixed migratetype pages in one pageblock.
1555 */
1556 int find_suitable_fallback(struct free_area *area, unsigned int order,
1557 int migratetype, bool only_stealable, bool *can_steal)
1558 {
1559 int i;
1560 int fallback_mt;
1561
1562 if (area->nr_free == 0)
1563 return -1;
1564
1565 *can_steal = false;
1566 for (i = 0;; i++) {
1567 fallback_mt = fallbacks[migratetype][i];
1568 if (fallback_mt == MIGRATE_RESERVE)
1569 break;
1570
1571 if (list_empty(&area->free_list[fallback_mt]))
1572 continue;
1573
1574 if (can_steal_fallback(order, migratetype))
1575 *can_steal = true;
1576
1577 if (!only_stealable)
1578 return fallback_mt;
1579
1580 if (*can_steal)
1581 return fallback_mt;
1582 }
1583
1584 return -1;
1585 }
1586
1587 /* Remove an element from the buddy allocator from the fallback list */
1588 static inline struct page *
1589 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1590 {
1591 struct free_area *area;
1592 unsigned int current_order;
1593 struct page *page;
1594 int fallback_mt;
1595 bool can_steal;
1596
1597 /* Find the largest possible block of pages in the other list */
1598 for (current_order = MAX_ORDER-1;
1599 current_order >= order && current_order <= MAX_ORDER-1;
1600 --current_order) {
1601 area = &(zone->free_area[current_order]);
1602 fallback_mt = find_suitable_fallback(area, current_order,
1603 start_migratetype, false, &can_steal);
1604 if (fallback_mt == -1)
1605 continue;
1606
1607 page = list_entry(area->free_list[fallback_mt].next,
1608 struct page, lru);
1609 if (can_steal)
1610 steal_suitable_fallback(zone, page, start_migratetype);
1611
1612 /* Remove the page from the freelists */
1613 area->nr_free--;
1614 list_del(&page->lru);
1615 rmv_page_order(page);
1616
1617 expand(zone, page, order, current_order, area,
1618 start_migratetype);
1619 /*
1620 * The freepage_migratetype may differ from pageblock's
1621 * migratetype depending on the decisions in
1622 * try_to_steal_freepages(). This is OK as long as it
1623 * does not differ for MIGRATE_CMA pageblocks. For CMA
1624 * we need to make sure unallocated pages flushed from
1625 * pcp lists are returned to the correct freelist.
1626 */
1627 set_freepage_migratetype(page, start_migratetype);
1628
1629 trace_mm_page_alloc_extfrag(page, order, current_order,
1630 start_migratetype, fallback_mt);
1631
1632 return page;
1633 }
1634
1635 return NULL;
1636 }
1637
1638 /*
1639 * Do the hard work of removing an element from the buddy allocator.
1640 * Call me with the zone->lock already held.
1641 */
1642 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1643 int migratetype)
1644 {
1645 struct page *page;
1646
1647 retry_reserve:
1648 page = __rmqueue_smallest(zone, order, migratetype);
1649
1650 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1651 if (migratetype == MIGRATE_MOVABLE)
1652 page = __rmqueue_cma_fallback(zone, order);
1653
1654 if (!page)
1655 page = __rmqueue_fallback(zone, order, migratetype);
1656
1657 /*
1658 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1659 * is used because __rmqueue_smallest is an inline function
1660 * and we want just one call site
1661 */
1662 if (!page) {
1663 migratetype = MIGRATE_RESERVE;
1664 goto retry_reserve;
1665 }
1666 }
1667
1668 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1669 return page;
1670 }
1671
1672 /*
1673 * Obtain a specified number of elements from the buddy allocator, all under
1674 * a single hold of the lock, for efficiency. Add them to the supplied list.
1675 * Returns the number of new pages which were placed at *list.
1676 */
1677 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1678 unsigned long count, struct list_head *list,
1679 int migratetype, bool cold)
1680 {
1681 int i;
1682
1683 spin_lock(&zone->lock);
1684 for (i = 0; i < count; ++i) {
1685 struct page *page = __rmqueue(zone, order, migratetype);
1686 if (unlikely(page == NULL))
1687 break;
1688
1689 /*
1690 * Split buddy pages returned by expand() are received here
1691 * in physical page order. The page is added to the callers and
1692 * list and the list head then moves forward. From the callers
1693 * perspective, the linked list is ordered by page number in
1694 * some conditions. This is useful for IO devices that can
1695 * merge IO requests if the physical pages are ordered
1696 * properly.
1697 */
1698 if (likely(!cold))
1699 list_add(&page->lru, list);
1700 else
1701 list_add_tail(&page->lru, list);
1702 list = &page->lru;
1703 if (is_migrate_cma(get_freepage_migratetype(page)))
1704 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1705 -(1 << order));
1706 }
1707 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1708 spin_unlock(&zone->lock);
1709 return i;
1710 }
1711
1712 #ifdef CONFIG_NUMA
1713 /*
1714 * Called from the vmstat counter updater to drain pagesets of this
1715 * currently executing processor on remote nodes after they have
1716 * expired.
1717 *
1718 * Note that this function must be called with the thread pinned to
1719 * a single processor.
1720 */
1721 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1722 {
1723 unsigned long flags;
1724 int to_drain, batch;
1725
1726 local_irq_save(flags);
1727 batch = READ_ONCE(pcp->batch);
1728 to_drain = min(pcp->count, batch);
1729 if (to_drain > 0) {
1730 free_pcppages_bulk(zone, to_drain, pcp);
1731 pcp->count -= to_drain;
1732 }
1733 local_irq_restore(flags);
1734 }
1735 #endif
1736
1737 /*
1738 * Drain pcplists of the indicated processor and zone.
1739 *
1740 * The processor must either be the current processor and the
1741 * thread pinned to the current processor or a processor that
1742 * is not online.
1743 */
1744 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1745 {
1746 unsigned long flags;
1747 struct per_cpu_pageset *pset;
1748 struct per_cpu_pages *pcp;
1749
1750 local_irq_save(flags);
1751 pset = per_cpu_ptr(zone->pageset, cpu);
1752
1753 pcp = &pset->pcp;
1754 if (pcp->count) {
1755 free_pcppages_bulk(zone, pcp->count, pcp);
1756 pcp->count = 0;
1757 }
1758 local_irq_restore(flags);
1759 }
1760
1761 /*
1762 * Drain pcplists of all zones on the indicated processor.
1763 *
1764 * The processor must either be the current processor and the
1765 * thread pinned to the current processor or a processor that
1766 * is not online.
1767 */
1768 static void drain_pages(unsigned int cpu)
1769 {
1770 struct zone *zone;
1771
1772 for_each_populated_zone(zone) {
1773 drain_pages_zone(cpu, zone);
1774 }
1775 }
1776
1777 /*
1778 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1779 *
1780 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1781 * the single zone's pages.
1782 */
1783 void drain_local_pages(struct zone *zone)
1784 {
1785 int cpu = smp_processor_id();
1786
1787 if (zone)
1788 drain_pages_zone(cpu, zone);
1789 else
1790 drain_pages(cpu);
1791 }
1792
1793 /*
1794 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1795 *
1796 * When zone parameter is non-NULL, spill just the single zone's pages.
1797 *
1798 * Note that this code is protected against sending an IPI to an offline
1799 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1800 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1801 * nothing keeps CPUs from showing up after we populated the cpumask and
1802 * before the call to on_each_cpu_mask().
1803 */
1804 void drain_all_pages(struct zone *zone)
1805 {
1806 int cpu;
1807
1808 /*
1809 * Allocate in the BSS so we wont require allocation in
1810 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1811 */
1812 static cpumask_t cpus_with_pcps;
1813
1814 /*
1815 * We don't care about racing with CPU hotplug event
1816 * as offline notification will cause the notified
1817 * cpu to drain that CPU pcps and on_each_cpu_mask
1818 * disables preemption as part of its processing
1819 */
1820 for_each_online_cpu(cpu) {
1821 struct per_cpu_pageset *pcp;
1822 struct zone *z;
1823 bool has_pcps = false;
1824
1825 if (zone) {
1826 pcp = per_cpu_ptr(zone->pageset, cpu);
1827 if (pcp->pcp.count)
1828 has_pcps = true;
1829 } else {
1830 for_each_populated_zone(z) {
1831 pcp = per_cpu_ptr(z->pageset, cpu);
1832 if (pcp->pcp.count) {
1833 has_pcps = true;
1834 break;
1835 }
1836 }
1837 }
1838
1839 if (has_pcps)
1840 cpumask_set_cpu(cpu, &cpus_with_pcps);
1841 else
1842 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1843 }
1844 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1845 zone, 1);
1846 }
1847
1848 #ifdef CONFIG_HIBERNATION
1849
1850 void mark_free_pages(struct zone *zone)
1851 {
1852 unsigned long pfn, max_zone_pfn;
1853 unsigned long flags;
1854 unsigned int order, t;
1855 struct list_head *curr;
1856
1857 if (zone_is_empty(zone))
1858 return;
1859
1860 spin_lock_irqsave(&zone->lock, flags);
1861
1862 max_zone_pfn = zone_end_pfn(zone);
1863 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1864 if (pfn_valid(pfn)) {
1865 struct page *page = pfn_to_page(pfn);
1866
1867 if (!swsusp_page_is_forbidden(page))
1868 swsusp_unset_page_free(page);
1869 }
1870
1871 for_each_migratetype_order(order, t) {
1872 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1873 unsigned long i;
1874
1875 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1876 for (i = 0; i < (1UL << order); i++)
1877 swsusp_set_page_free(pfn_to_page(pfn + i));
1878 }
1879 }
1880 spin_unlock_irqrestore(&zone->lock, flags);
1881 }
1882 #endif /* CONFIG_PM */
1883
1884 /*
1885 * Free a 0-order page
1886 * cold == true ? free a cold page : free a hot page
1887 */
1888 void free_hot_cold_page(struct page *page, bool cold)
1889 {
1890 struct zone *zone = page_zone(page);
1891 struct per_cpu_pages *pcp;
1892 unsigned long flags;
1893 unsigned long pfn = page_to_pfn(page);
1894 int migratetype;
1895
1896 if (!free_pages_prepare(page, 0))
1897 return;
1898
1899 migratetype = get_pfnblock_migratetype(page, pfn);
1900 set_freepage_migratetype(page, migratetype);
1901 local_irq_save(flags);
1902 __count_vm_event(PGFREE);
1903
1904 /*
1905 * We only track unmovable, reclaimable and movable on pcp lists.
1906 * Free ISOLATE pages back to the allocator because they are being
1907 * offlined but treat RESERVE as movable pages so we can get those
1908 * areas back if necessary. Otherwise, we may have to free
1909 * excessively into the page allocator
1910 */
1911 if (migratetype >= MIGRATE_PCPTYPES) {
1912 if (unlikely(is_migrate_isolate(migratetype))) {
1913 free_one_page(zone, page, pfn, 0, migratetype);
1914 goto out;
1915 }
1916 migratetype = MIGRATE_MOVABLE;
1917 }
1918
1919 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1920 if (!cold)
1921 list_add(&page->lru, &pcp->lists[migratetype]);
1922 else
1923 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1924 pcp->count++;
1925 if (pcp->count >= pcp->high) {
1926 unsigned long batch = READ_ONCE(pcp->batch);
1927 free_pcppages_bulk(zone, batch, pcp);
1928 pcp->count -= batch;
1929 }
1930
1931 out:
1932 local_irq_restore(flags);
1933 }
1934
1935 /*
1936 * Free a list of 0-order pages
1937 */
1938 void free_hot_cold_page_list(struct list_head *list, bool cold)
1939 {
1940 struct page *page, *next;
1941
1942 list_for_each_entry_safe(page, next, list, lru) {
1943 trace_mm_page_free_batched(page, cold);
1944 free_hot_cold_page(page, cold);
1945 }
1946 }
1947
1948 /*
1949 * split_page takes a non-compound higher-order page, and splits it into
1950 * n (1<<order) sub-pages: page[0..n]
1951 * Each sub-page must be freed individually.
1952 *
1953 * Note: this is probably too low level an operation for use in drivers.
1954 * Please consult with lkml before using this in your driver.
1955 */
1956 void split_page(struct page *page, unsigned int order)
1957 {
1958 int i;
1959 gfp_t gfp_mask;
1960
1961 VM_BUG_ON_PAGE(PageCompound(page), page);
1962 VM_BUG_ON_PAGE(!page_count(page), page);
1963
1964 #ifdef CONFIG_KMEMCHECK
1965 /*
1966 * Split shadow pages too, because free(page[0]) would
1967 * otherwise free the whole shadow.
1968 */
1969 if (kmemcheck_page_is_tracked(page))
1970 split_page(virt_to_page(page[0].shadow), order);
1971 #endif
1972
1973 gfp_mask = get_page_owner_gfp(page);
1974 set_page_owner(page, 0, gfp_mask);
1975 for (i = 1; i < (1 << order); i++) {
1976 set_page_refcounted(page + i);
1977 set_page_owner(page + i, 0, gfp_mask);
1978 }
1979 }
1980 EXPORT_SYMBOL_GPL(split_page);
1981
1982 int __isolate_free_page(struct page *page, unsigned int order)
1983 {
1984 unsigned long watermark;
1985 struct zone *zone;
1986 int mt;
1987
1988 BUG_ON(!PageBuddy(page));
1989
1990 zone = page_zone(page);
1991 mt = get_pageblock_migratetype(page);
1992
1993 if (!is_migrate_isolate(mt)) {
1994 /* Obey watermarks as if the page was being allocated */
1995 watermark = low_wmark_pages(zone) + (1 << order);
1996 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1997 return 0;
1998
1999 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2000 }
2001
2002 /* Remove page from free list */
2003 list_del(&page->lru);
2004 zone->free_area[order].nr_free--;
2005 rmv_page_order(page);
2006
2007 set_page_owner(page, order, __GFP_MOVABLE);
2008
2009 /* Set the pageblock if the isolated page is at least a pageblock */
2010 if (order >= pageblock_order - 1) {
2011 struct page *endpage = page + (1 << order) - 1;
2012 for (; page < endpage; page += pageblock_nr_pages) {
2013 int mt = get_pageblock_migratetype(page);
2014 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2015 set_pageblock_migratetype(page,
2016 MIGRATE_MOVABLE);
2017 }
2018 }
2019
2020
2021 return 1UL << order;
2022 }
2023
2024 /*
2025 * Similar to split_page except the page is already free. As this is only
2026 * being used for migration, the migratetype of the block also changes.
2027 * As this is called with interrupts disabled, the caller is responsible
2028 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2029 * are enabled.
2030 *
2031 * Note: this is probably too low level an operation for use in drivers.
2032 * Please consult with lkml before using this in your driver.
2033 */
2034 int split_free_page(struct page *page)
2035 {
2036 unsigned int order;
2037 int nr_pages;
2038
2039 order = page_order(page);
2040
2041 nr_pages = __isolate_free_page(page, order);
2042 if (!nr_pages)
2043 return 0;
2044
2045 /* Split into individual pages */
2046 set_page_refcounted(page);
2047 split_page(page, order);
2048 return nr_pages;
2049 }
2050
2051 /*
2052 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2053 */
2054 static inline
2055 struct page *buffered_rmqueue(struct zone *preferred_zone,
2056 struct zone *zone, unsigned int order,
2057 gfp_t gfp_flags, int migratetype)
2058 {
2059 unsigned long flags;
2060 struct page *page;
2061 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2062
2063 if (likely(order == 0)) {
2064 struct per_cpu_pages *pcp;
2065 struct list_head *list;
2066
2067 local_irq_save(flags);
2068 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2069 list = &pcp->lists[migratetype];
2070 if (list_empty(list)) {
2071 pcp->count += rmqueue_bulk(zone, 0,
2072 pcp->batch, list,
2073 migratetype, cold);
2074 if (unlikely(list_empty(list)))
2075 goto failed;
2076 }
2077
2078 if (cold)
2079 page = list_entry(list->prev, struct page, lru);
2080 else
2081 page = list_entry(list->next, struct page, lru);
2082
2083 list_del(&page->lru);
2084 pcp->count--;
2085 } else {
2086 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2087 /*
2088 * __GFP_NOFAIL is not to be used in new code.
2089 *
2090 * All __GFP_NOFAIL callers should be fixed so that they
2091 * properly detect and handle allocation failures.
2092 *
2093 * We most definitely don't want callers attempting to
2094 * allocate greater than order-1 page units with
2095 * __GFP_NOFAIL.
2096 */
2097 WARN_ON_ONCE(order > 1);
2098 }
2099 spin_lock_irqsave(&zone->lock, flags);
2100 page = __rmqueue(zone, order, migratetype);
2101 spin_unlock(&zone->lock);
2102 if (!page)
2103 goto failed;
2104 __mod_zone_freepage_state(zone, -(1 << order),
2105 get_freepage_migratetype(page));
2106 }
2107
2108 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2109 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2110 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2111 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2112
2113 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2114 zone_statistics(preferred_zone, zone, gfp_flags);
2115 local_irq_restore(flags);
2116
2117 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2118 return page;
2119
2120 failed:
2121 local_irq_restore(flags);
2122 return NULL;
2123 }
2124
2125 #ifdef CONFIG_FAIL_PAGE_ALLOC
2126
2127 static struct {
2128 struct fault_attr attr;
2129
2130 u32 ignore_gfp_highmem;
2131 u32 ignore_gfp_wait;
2132 u32 min_order;
2133 } fail_page_alloc = {
2134 .attr = FAULT_ATTR_INITIALIZER,
2135 .ignore_gfp_wait = 1,
2136 .ignore_gfp_highmem = 1,
2137 .min_order = 1,
2138 };
2139
2140 static int __init setup_fail_page_alloc(char *str)
2141 {
2142 return setup_fault_attr(&fail_page_alloc.attr, str);
2143 }
2144 __setup("fail_page_alloc=", setup_fail_page_alloc);
2145
2146 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2147 {
2148 if (order < fail_page_alloc.min_order)
2149 return false;
2150 if (gfp_mask & __GFP_NOFAIL)
2151 return false;
2152 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2153 return false;
2154 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
2155 return false;
2156
2157 return should_fail(&fail_page_alloc.attr, 1 << order);
2158 }
2159
2160 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2161
2162 static int __init fail_page_alloc_debugfs(void)
2163 {
2164 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2165 struct dentry *dir;
2166
2167 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2168 &fail_page_alloc.attr);
2169 if (IS_ERR(dir))
2170 return PTR_ERR(dir);
2171
2172 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2173 &fail_page_alloc.ignore_gfp_wait))
2174 goto fail;
2175 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2176 &fail_page_alloc.ignore_gfp_highmem))
2177 goto fail;
2178 if (!debugfs_create_u32("min-order", mode, dir,
2179 &fail_page_alloc.min_order))
2180 goto fail;
2181
2182 return 0;
2183 fail:
2184 debugfs_remove_recursive(dir);
2185
2186 return -ENOMEM;
2187 }
2188
2189 late_initcall(fail_page_alloc_debugfs);
2190
2191 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2192
2193 #else /* CONFIG_FAIL_PAGE_ALLOC */
2194
2195 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2196 {
2197 return false;
2198 }
2199
2200 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2201
2202 /*
2203 * Return true if free pages are above 'mark'. This takes into account the order
2204 * of the allocation.
2205 */
2206 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2207 unsigned long mark, int classzone_idx, int alloc_flags,
2208 long free_pages)
2209 {
2210 /* free_pages may go negative - that's OK */
2211 long min = mark;
2212 int o;
2213 long free_cma = 0;
2214
2215 free_pages -= (1 << order) - 1;
2216 if (alloc_flags & ALLOC_HIGH)
2217 min -= min / 2;
2218 if (alloc_flags & ALLOC_HARDER)
2219 min -= min / 4;
2220 #ifdef CONFIG_CMA
2221 /* If allocation can't use CMA areas don't use free CMA pages */
2222 if (!(alloc_flags & ALLOC_CMA))
2223 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
2224 #endif
2225
2226 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
2227 return false;
2228 for (o = 0; o < order; o++) {
2229 /* At the next order, this order's pages become unavailable */
2230 free_pages -= z->free_area[o].nr_free << o;
2231
2232 /* Require fewer higher order pages to be free */
2233 min >>= 1;
2234
2235 if (free_pages <= min)
2236 return false;
2237 }
2238 return true;
2239 }
2240
2241 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2242 int classzone_idx, int alloc_flags)
2243 {
2244 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2245 zone_page_state(z, NR_FREE_PAGES));
2246 }
2247
2248 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2249 unsigned long mark, int classzone_idx, int alloc_flags)
2250 {
2251 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2252
2253 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2254 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2255
2256 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2257 free_pages);
2258 }
2259
2260 #ifdef CONFIG_NUMA
2261 /*
2262 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
2263 * skip over zones that are not allowed by the cpuset, or that have
2264 * been recently (in last second) found to be nearly full. See further
2265 * comments in mmzone.h. Reduces cache footprint of zonelist scans
2266 * that have to skip over a lot of full or unallowed zones.
2267 *
2268 * If the zonelist cache is present in the passed zonelist, then
2269 * returns a pointer to the allowed node mask (either the current
2270 * tasks mems_allowed, or node_states[N_MEMORY].)
2271 *
2272 * If the zonelist cache is not available for this zonelist, does
2273 * nothing and returns NULL.
2274 *
2275 * If the fullzones BITMAP in the zonelist cache is stale (more than
2276 * a second since last zap'd) then we zap it out (clear its bits.)
2277 *
2278 * We hold off even calling zlc_setup, until after we've checked the
2279 * first zone in the zonelist, on the theory that most allocations will
2280 * be satisfied from that first zone, so best to examine that zone as
2281 * quickly as we can.
2282 */
2283 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2284 {
2285 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2286 nodemask_t *allowednodes; /* zonelist_cache approximation */
2287
2288 zlc = zonelist->zlcache_ptr;
2289 if (!zlc)
2290 return NULL;
2291
2292 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
2293 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2294 zlc->last_full_zap = jiffies;
2295 }
2296
2297 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2298 &cpuset_current_mems_allowed :
2299 &node_states[N_MEMORY];
2300 return allowednodes;
2301 }
2302
2303 /*
2304 * Given 'z' scanning a zonelist, run a couple of quick checks to see
2305 * if it is worth looking at further for free memory:
2306 * 1) Check that the zone isn't thought to be full (doesn't have its
2307 * bit set in the zonelist_cache fullzones BITMAP).
2308 * 2) Check that the zones node (obtained from the zonelist_cache
2309 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2310 * Return true (non-zero) if zone is worth looking at further, or
2311 * else return false (zero) if it is not.
2312 *
2313 * This check -ignores- the distinction between various watermarks,
2314 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
2315 * found to be full for any variation of these watermarks, it will
2316 * be considered full for up to one second by all requests, unless
2317 * we are so low on memory on all allowed nodes that we are forced
2318 * into the second scan of the zonelist.
2319 *
2320 * In the second scan we ignore this zonelist cache and exactly
2321 * apply the watermarks to all zones, even it is slower to do so.
2322 * We are low on memory in the second scan, and should leave no stone
2323 * unturned looking for a free page.
2324 */
2325 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2326 nodemask_t *allowednodes)
2327 {
2328 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2329 int i; /* index of *z in zonelist zones */
2330 int n; /* node that zone *z is on */
2331
2332 zlc = zonelist->zlcache_ptr;
2333 if (!zlc)
2334 return 1;
2335
2336 i = z - zonelist->_zonerefs;
2337 n = zlc->z_to_n[i];
2338
2339 /* This zone is worth trying if it is allowed but not full */
2340 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2341 }
2342
2343 /*
2344 * Given 'z' scanning a zonelist, set the corresponding bit in
2345 * zlc->fullzones, so that subsequent attempts to allocate a page
2346 * from that zone don't waste time re-examining it.
2347 */
2348 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2349 {
2350 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2351 int i; /* index of *z in zonelist zones */
2352
2353 zlc = zonelist->zlcache_ptr;
2354 if (!zlc)
2355 return;
2356
2357 i = z - zonelist->_zonerefs;
2358
2359 set_bit(i, zlc->fullzones);
2360 }
2361
2362 /*
2363 * clear all zones full, called after direct reclaim makes progress so that
2364 * a zone that was recently full is not skipped over for up to a second
2365 */
2366 static void zlc_clear_zones_full(struct zonelist *zonelist)
2367 {
2368 struct zonelist_cache *zlc; /* cached zonelist speedup info */
2369
2370 zlc = zonelist->zlcache_ptr;
2371 if (!zlc)
2372 return;
2373
2374 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2375 }
2376
2377 static bool zone_local(struct zone *local_zone, struct zone *zone)
2378 {
2379 return local_zone->node == zone->node;
2380 }
2381
2382 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2383 {
2384 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2385 RECLAIM_DISTANCE;
2386 }
2387
2388 #else /* CONFIG_NUMA */
2389
2390 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2391 {
2392 return NULL;
2393 }
2394
2395 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2396 nodemask_t *allowednodes)
2397 {
2398 return 1;
2399 }
2400
2401 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2402 {
2403 }
2404
2405 static void zlc_clear_zones_full(struct zonelist *zonelist)
2406 {
2407 }
2408
2409 static bool zone_local(struct zone *local_zone, struct zone *zone)
2410 {
2411 return true;
2412 }
2413
2414 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2415 {
2416 return true;
2417 }
2418
2419 #endif /* CONFIG_NUMA */
2420
2421 static void reset_alloc_batches(struct zone *preferred_zone)
2422 {
2423 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2424
2425 do {
2426 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2427 high_wmark_pages(zone) - low_wmark_pages(zone) -
2428 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2429 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2430 } while (zone++ != preferred_zone);
2431 }
2432
2433 /*
2434 * get_page_from_freelist goes through the zonelist trying to allocate
2435 * a page.
2436 */
2437 static struct page *
2438 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2439 const struct alloc_context *ac)
2440 {
2441 struct zonelist *zonelist = ac->zonelist;
2442 struct zoneref *z;
2443 struct page *page = NULL;
2444 struct zone *zone;
2445 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2446 int zlc_active = 0; /* set if using zonelist_cache */
2447 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2448 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2449 (gfp_mask & __GFP_WRITE);
2450 int nr_fair_skipped = 0;
2451 bool zonelist_rescan;
2452
2453 zonelist_scan:
2454 zonelist_rescan = false;
2455
2456 /*
2457 * Scan zonelist, looking for a zone with enough free.
2458 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2459 */
2460 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2461 ac->nodemask) {
2462 unsigned long mark;
2463
2464 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2465 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2466 continue;
2467 if (cpusets_enabled() &&
2468 (alloc_flags & ALLOC_CPUSET) &&
2469 !cpuset_zone_allowed(zone, gfp_mask))
2470 continue;
2471 /*
2472 * Distribute pages in proportion to the individual
2473 * zone size to ensure fair page aging. The zone a
2474 * page was allocated in should have no effect on the
2475 * time the page has in memory before being reclaimed.
2476 */
2477 if (alloc_flags & ALLOC_FAIR) {
2478 if (!zone_local(ac->preferred_zone, zone))
2479 break;
2480 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2481 nr_fair_skipped++;
2482 continue;
2483 }
2484 }
2485 /*
2486 * When allocating a page cache page for writing, we
2487 * want to get it from a zone that is within its dirty
2488 * limit, such that no single zone holds more than its
2489 * proportional share of globally allowed dirty pages.
2490 * The dirty limits take into account the zone's
2491 * lowmem reserves and high watermark so that kswapd
2492 * should be able to balance it without having to
2493 * write pages from its LRU list.
2494 *
2495 * This may look like it could increase pressure on
2496 * lower zones by failing allocations in higher zones
2497 * before they are full. But the pages that do spill
2498 * over are limited as the lower zones are protected
2499 * by this very same mechanism. It should not become
2500 * a practical burden to them.
2501 *
2502 * XXX: For now, allow allocations to potentially
2503 * exceed the per-zone dirty limit in the slowpath
2504 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2505 * which is important when on a NUMA setup the allowed
2506 * zones are together not big enough to reach the
2507 * global limit. The proper fix for these situations
2508 * will require awareness of zones in the
2509 * dirty-throttling and the flusher threads.
2510 */
2511 if (consider_zone_dirty && !zone_dirty_ok(zone))
2512 continue;
2513
2514 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2515 if (!zone_watermark_ok(zone, order, mark,
2516 ac->classzone_idx, alloc_flags)) {
2517 int ret;
2518
2519 /* Checked here to keep the fast path fast */
2520 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2521 if (alloc_flags & ALLOC_NO_WATERMARKS)
2522 goto try_this_zone;
2523
2524 if (IS_ENABLED(CONFIG_NUMA) &&
2525 !did_zlc_setup && nr_online_nodes > 1) {
2526 /*
2527 * we do zlc_setup if there are multiple nodes
2528 * and before considering the first zone allowed
2529 * by the cpuset.
2530 */
2531 allowednodes = zlc_setup(zonelist, alloc_flags);
2532 zlc_active = 1;
2533 did_zlc_setup = 1;
2534 }
2535
2536 if (zone_reclaim_mode == 0 ||
2537 !zone_allows_reclaim(ac->preferred_zone, zone))
2538 goto this_zone_full;
2539
2540 /*
2541 * As we may have just activated ZLC, check if the first
2542 * eligible zone has failed zone_reclaim recently.
2543 */
2544 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2545 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2546 continue;
2547
2548 ret = zone_reclaim(zone, gfp_mask, order);
2549 switch (ret) {
2550 case ZONE_RECLAIM_NOSCAN:
2551 /* did not scan */
2552 continue;
2553 case ZONE_RECLAIM_FULL:
2554 /* scanned but unreclaimable */
2555 continue;
2556 default:
2557 /* did we reclaim enough */
2558 if (zone_watermark_ok(zone, order, mark,
2559 ac->classzone_idx, alloc_flags))
2560 goto try_this_zone;
2561
2562 /*
2563 * Failed to reclaim enough to meet watermark.
2564 * Only mark the zone full if checking the min
2565 * watermark or if we failed to reclaim just
2566 * 1<<order pages or else the page allocator
2567 * fastpath will prematurely mark zones full
2568 * when the watermark is between the low and
2569 * min watermarks.
2570 */
2571 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2572 ret == ZONE_RECLAIM_SOME)
2573 goto this_zone_full;
2574
2575 continue;
2576 }
2577 }
2578
2579 try_this_zone:
2580 page = buffered_rmqueue(ac->preferred_zone, zone, order,
2581 gfp_mask, ac->migratetype);
2582 if (page) {
2583 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2584 goto try_this_zone;
2585 return page;
2586 }
2587 this_zone_full:
2588 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2589 zlc_mark_zone_full(zonelist, z);
2590 }
2591
2592 /*
2593 * The first pass makes sure allocations are spread fairly within the
2594 * local node. However, the local node might have free pages left
2595 * after the fairness batches are exhausted, and remote zones haven't
2596 * even been considered yet. Try once more without fairness, and
2597 * include remote zones now, before entering the slowpath and waking
2598 * kswapd: prefer spilling to a remote zone over swapping locally.
2599 */
2600 if (alloc_flags & ALLOC_FAIR) {
2601 alloc_flags &= ~ALLOC_FAIR;
2602 if (nr_fair_skipped) {
2603 zonelist_rescan = true;
2604 reset_alloc_batches(ac->preferred_zone);
2605 }
2606 if (nr_online_nodes > 1)
2607 zonelist_rescan = true;
2608 }
2609
2610 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2611 /* Disable zlc cache for second zonelist scan */
2612 zlc_active = 0;
2613 zonelist_rescan = true;
2614 }
2615
2616 if (zonelist_rescan)
2617 goto zonelist_scan;
2618
2619 return NULL;
2620 }
2621
2622 /*
2623 * Large machines with many possible nodes should not always dump per-node
2624 * meminfo in irq context.
2625 */
2626 static inline bool should_suppress_show_mem(void)
2627 {
2628 bool ret = false;
2629
2630 #if NODES_SHIFT > 8
2631 ret = in_interrupt();
2632 #endif
2633 return ret;
2634 }
2635
2636 static DEFINE_RATELIMIT_STATE(nopage_rs,
2637 DEFAULT_RATELIMIT_INTERVAL,
2638 DEFAULT_RATELIMIT_BURST);
2639
2640 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2641 {
2642 unsigned int filter = SHOW_MEM_FILTER_NODES;
2643
2644 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2645 debug_guardpage_minorder() > 0)
2646 return;
2647
2648 /*
2649 * This documents exceptions given to allocations in certain
2650 * contexts that are allowed to allocate outside current's set
2651 * of allowed nodes.
2652 */
2653 if (!(gfp_mask & __GFP_NOMEMALLOC))
2654 if (test_thread_flag(TIF_MEMDIE) ||
2655 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2656 filter &= ~SHOW_MEM_FILTER_NODES;
2657 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2658 filter &= ~SHOW_MEM_FILTER_NODES;
2659
2660 if (fmt) {
2661 struct va_format vaf;
2662 va_list args;
2663
2664 va_start(args, fmt);
2665
2666 vaf.fmt = fmt;
2667 vaf.va = &args;
2668
2669 pr_warn("%pV", &vaf);
2670
2671 va_end(args);
2672 }
2673
2674 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2675 current->comm, order, gfp_mask);
2676
2677 dump_stack();
2678 if (!should_suppress_show_mem())
2679 show_mem(filter);
2680 }
2681
2682 static inline struct page *
2683 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2684 const struct alloc_context *ac, unsigned long *did_some_progress)
2685 {
2686 struct page *page;
2687
2688 *did_some_progress = 0;
2689
2690 /*
2691 * Acquire the oom lock. If that fails, somebody else is
2692 * making progress for us.
2693 */
2694 if (!mutex_trylock(&oom_lock)) {
2695 *did_some_progress = 1;
2696 schedule_timeout_uninterruptible(1);
2697 return NULL;
2698 }
2699
2700 /*
2701 * Go through the zonelist yet one more time, keep very high watermark
2702 * here, this is only to catch a parallel oom killing, we must fail if
2703 * we're still under heavy pressure.
2704 */
2705 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2706 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2707 if (page)
2708 goto out;
2709
2710 if (!(gfp_mask & __GFP_NOFAIL)) {
2711 /* Coredumps can quickly deplete all memory reserves */
2712 if (current->flags & PF_DUMPCORE)
2713 goto out;
2714 /* The OOM killer will not help higher order allocs */
2715 if (order > PAGE_ALLOC_COSTLY_ORDER)
2716 goto out;
2717 /* The OOM killer does not needlessly kill tasks for lowmem */
2718 if (ac->high_zoneidx < ZONE_NORMAL)
2719 goto out;
2720 /* The OOM killer does not compensate for IO-less reclaim */
2721 if (!(gfp_mask & __GFP_FS)) {
2722 /*
2723 * XXX: Page reclaim didn't yield anything,
2724 * and the OOM killer can't be invoked, but
2725 * keep looping as per tradition.
2726 */
2727 *did_some_progress = 1;
2728 goto out;
2729 }
2730 if (pm_suspended_storage())
2731 goto out;
2732 /* The OOM killer may not free memory on a specific node */
2733 if (gfp_mask & __GFP_THISNODE)
2734 goto out;
2735 }
2736 /* Exhausted what can be done so it's blamo time */
2737 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2738 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2739 *did_some_progress = 1;
2740 out:
2741 mutex_unlock(&oom_lock);
2742 return page;
2743 }
2744
2745 #ifdef CONFIG_COMPACTION
2746 /* Try memory compaction for high-order allocations before reclaim */
2747 static struct page *
2748 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2749 int alloc_flags, const struct alloc_context *ac,
2750 enum migrate_mode mode, int *contended_compaction,
2751 bool *deferred_compaction)
2752 {
2753 unsigned long compact_result;
2754 struct page *page;
2755
2756 if (!order)
2757 return NULL;
2758
2759 current->flags |= PF_MEMALLOC;
2760 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2761 mode, contended_compaction);
2762 current->flags &= ~PF_MEMALLOC;
2763
2764 switch (compact_result) {
2765 case COMPACT_DEFERRED:
2766 *deferred_compaction = true;
2767 /* fall-through */
2768 case COMPACT_SKIPPED:
2769 return NULL;
2770 default:
2771 break;
2772 }
2773
2774 /*
2775 * At least in one zone compaction wasn't deferred or skipped, so let's
2776 * count a compaction stall
2777 */
2778 count_vm_event(COMPACTSTALL);
2779
2780 page = get_page_from_freelist(gfp_mask, order,
2781 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2782
2783 if (page) {
2784 struct zone *zone = page_zone(page);
2785
2786 zone->compact_blockskip_flush = false;
2787 compaction_defer_reset(zone, order, true);
2788 count_vm_event(COMPACTSUCCESS);
2789 return page;
2790 }
2791
2792 /*
2793 * It's bad if compaction run occurs and fails. The most likely reason
2794 * is that pages exist, but not enough to satisfy watermarks.
2795 */
2796 count_vm_event(COMPACTFAIL);
2797
2798 cond_resched();
2799
2800 return NULL;
2801 }
2802 #else
2803 static inline struct page *
2804 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2805 int alloc_flags, const struct alloc_context *ac,
2806 enum migrate_mode mode, int *contended_compaction,
2807 bool *deferred_compaction)
2808 {
2809 return NULL;
2810 }
2811 #endif /* CONFIG_COMPACTION */
2812
2813 /* Perform direct synchronous page reclaim */
2814 static int
2815 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2816 const struct alloc_context *ac)
2817 {
2818 struct reclaim_state reclaim_state;
2819 int progress;
2820
2821 cond_resched();
2822
2823 /* We now go into synchronous reclaim */
2824 cpuset_memory_pressure_bump();
2825 current->flags |= PF_MEMALLOC;
2826 lockdep_set_current_reclaim_state(gfp_mask);
2827 reclaim_state.reclaimed_slab = 0;
2828 current->reclaim_state = &reclaim_state;
2829
2830 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2831 ac->nodemask);
2832
2833 current->reclaim_state = NULL;
2834 lockdep_clear_current_reclaim_state();
2835 current->flags &= ~PF_MEMALLOC;
2836
2837 cond_resched();
2838
2839 return progress;
2840 }
2841
2842 /* The really slow allocator path where we enter direct reclaim */
2843 static inline struct page *
2844 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2845 int alloc_flags, const struct alloc_context *ac,
2846 unsigned long *did_some_progress)
2847 {
2848 struct page *page = NULL;
2849 bool drained = false;
2850
2851 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2852 if (unlikely(!(*did_some_progress)))
2853 return NULL;
2854
2855 /* After successful reclaim, reconsider all zones for allocation */
2856 if (IS_ENABLED(CONFIG_NUMA))
2857 zlc_clear_zones_full(ac->zonelist);
2858
2859 retry:
2860 page = get_page_from_freelist(gfp_mask, order,
2861 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2862
2863 /*
2864 * If an allocation failed after direct reclaim, it could be because
2865 * pages are pinned on the per-cpu lists. Drain them and try again
2866 */
2867 if (!page && !drained) {
2868 drain_all_pages(NULL);
2869 drained = true;
2870 goto retry;
2871 }
2872
2873 return page;
2874 }
2875
2876 /*
2877 * This is called in the allocator slow-path if the allocation request is of
2878 * sufficient urgency to ignore watermarks and take other desperate measures
2879 */
2880 static inline struct page *
2881 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2882 const struct alloc_context *ac)
2883 {
2884 struct page *page;
2885
2886 do {
2887 page = get_page_from_freelist(gfp_mask, order,
2888 ALLOC_NO_WATERMARKS, ac);
2889
2890 if (!page && gfp_mask & __GFP_NOFAIL)
2891 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2892 HZ/50);
2893 } while (!page && (gfp_mask & __GFP_NOFAIL));
2894
2895 return page;
2896 }
2897
2898 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2899 {
2900 struct zoneref *z;
2901 struct zone *zone;
2902
2903 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2904 ac->high_zoneidx, ac->nodemask)
2905 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2906 }
2907
2908 static inline int
2909 gfp_to_alloc_flags(gfp_t gfp_mask)
2910 {
2911 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2912 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2913
2914 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2915 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2916
2917 /*
2918 * The caller may dip into page reserves a bit more if the caller
2919 * cannot run direct reclaim, or if the caller has realtime scheduling
2920 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2921 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2922 */
2923 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2924
2925 if (atomic) {
2926 /*
2927 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2928 * if it can't schedule.
2929 */
2930 if (!(gfp_mask & __GFP_NOMEMALLOC))
2931 alloc_flags |= ALLOC_HARDER;
2932 /*
2933 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2934 * comment for __cpuset_node_allowed().
2935 */
2936 alloc_flags &= ~ALLOC_CPUSET;
2937 } else if (unlikely(rt_task(current)) && !in_interrupt())
2938 alloc_flags |= ALLOC_HARDER;
2939
2940 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2941 if (gfp_mask & __GFP_MEMALLOC)
2942 alloc_flags |= ALLOC_NO_WATERMARKS;
2943 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2944 alloc_flags |= ALLOC_NO_WATERMARKS;
2945 else if (!in_interrupt() &&
2946 ((current->flags & PF_MEMALLOC) ||
2947 unlikely(test_thread_flag(TIF_MEMDIE))))
2948 alloc_flags |= ALLOC_NO_WATERMARKS;
2949 }
2950 #ifdef CONFIG_CMA
2951 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2952 alloc_flags |= ALLOC_CMA;
2953 #endif
2954 return alloc_flags;
2955 }
2956
2957 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2958 {
2959 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2960 }
2961
2962 static inline struct page *
2963 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2964 struct alloc_context *ac)
2965 {
2966 const gfp_t wait = gfp_mask & __GFP_WAIT;
2967 struct page *page = NULL;
2968 int alloc_flags;
2969 unsigned long pages_reclaimed = 0;
2970 unsigned long did_some_progress;
2971 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2972 bool deferred_compaction = false;
2973 int contended_compaction = COMPACT_CONTENDED_NONE;
2974
2975 /*
2976 * In the slowpath, we sanity check order to avoid ever trying to
2977 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2978 * be using allocators in order of preference for an area that is
2979 * too large.
2980 */
2981 if (order >= MAX_ORDER) {
2982 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2983 return NULL;
2984 }
2985
2986 /*
2987 * If this allocation cannot block and it is for a specific node, then
2988 * fail early. There's no need to wakeup kswapd or retry for a
2989 * speculative node-specific allocation.
2990 */
2991 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
2992 goto nopage;
2993
2994 retry:
2995 if (!(gfp_mask & __GFP_NO_KSWAPD))
2996 wake_all_kswapds(order, ac);
2997
2998 /*
2999 * OK, we're below the kswapd watermark and have kicked background
3000 * reclaim. Now things get more complex, so set up alloc_flags according
3001 * to how we want to proceed.
3002 */
3003 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3004
3005 /*
3006 * Find the true preferred zone if the allocation is unconstrained by
3007 * cpusets.
3008 */
3009 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3010 struct zoneref *preferred_zoneref;
3011 preferred_zoneref = first_zones_zonelist(ac->zonelist,
3012 ac->high_zoneidx, NULL, &ac->preferred_zone);
3013 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3014 }
3015
3016 /* This is the last chance, in general, before the goto nopage. */
3017 page = get_page_from_freelist(gfp_mask, order,
3018 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3019 if (page)
3020 goto got_pg;
3021
3022 /* Allocate without watermarks if the context allows */
3023 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3024 /*
3025 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3026 * the allocation is high priority and these type of
3027 * allocations are system rather than user orientated
3028 */
3029 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3030
3031 page = __alloc_pages_high_priority(gfp_mask, order, ac);
3032
3033 if (page) {
3034 goto got_pg;
3035 }
3036 }
3037
3038 /* Atomic allocations - we can't balance anything */
3039 if (!wait) {
3040 /*
3041 * All existing users of the deprecated __GFP_NOFAIL are
3042 * blockable, so warn of any new users that actually allow this
3043 * type of allocation to fail.
3044 */
3045 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3046 goto nopage;
3047 }
3048
3049 /* Avoid recursion of direct reclaim */
3050 if (current->flags & PF_MEMALLOC)
3051 goto nopage;
3052
3053 /* Avoid allocations with no watermarks from looping endlessly */
3054 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3055 goto nopage;
3056
3057 /*
3058 * Try direct compaction. The first pass is asynchronous. Subsequent
3059 * attempts after direct reclaim are synchronous
3060 */
3061 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3062 migration_mode,
3063 &contended_compaction,
3064 &deferred_compaction);
3065 if (page)
3066 goto got_pg;
3067
3068 /* Checks for THP-specific high-order allocations */
3069 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
3070 /*
3071 * If compaction is deferred for high-order allocations, it is
3072 * because sync compaction recently failed. If this is the case
3073 * and the caller requested a THP allocation, we do not want
3074 * to heavily disrupt the system, so we fail the allocation
3075 * instead of entering direct reclaim.
3076 */
3077 if (deferred_compaction)
3078 goto nopage;
3079
3080 /*
3081 * In all zones where compaction was attempted (and not
3082 * deferred or skipped), lock contention has been detected.
3083 * For THP allocation we do not want to disrupt the others
3084 * so we fallback to base pages instead.
3085 */
3086 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3087 goto nopage;
3088
3089 /*
3090 * If compaction was aborted due to need_resched(), we do not
3091 * want to further increase allocation latency, unless it is
3092 * khugepaged trying to collapse.
3093 */
3094 if (contended_compaction == COMPACT_CONTENDED_SCHED
3095 && !(current->flags & PF_KTHREAD))
3096 goto nopage;
3097 }
3098
3099 /*
3100 * It can become very expensive to allocate transparent hugepages at
3101 * fault, so use asynchronous memory compaction for THP unless it is
3102 * khugepaged trying to collapse.
3103 */
3104 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3105 (current->flags & PF_KTHREAD))
3106 migration_mode = MIGRATE_SYNC_LIGHT;
3107
3108 /* Try direct reclaim and then allocating */
3109 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3110 &did_some_progress);
3111 if (page)
3112 goto got_pg;
3113
3114 /* Do not loop if specifically requested */
3115 if (gfp_mask & __GFP_NORETRY)
3116 goto noretry;
3117
3118 /* Keep reclaiming pages as long as there is reasonable progress */
3119 pages_reclaimed += did_some_progress;
3120 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3121 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3122 /* Wait for some write requests to complete then retry */
3123 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3124 goto retry;
3125 }
3126
3127 /* Reclaim has failed us, start killing things */
3128 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3129 if (page)
3130 goto got_pg;
3131
3132 /* Retry as long as the OOM killer is making progress */
3133 if (did_some_progress)
3134 goto retry;
3135
3136 noretry:
3137 /*
3138 * High-order allocations do not necessarily loop after
3139 * direct reclaim and reclaim/compaction depends on compaction
3140 * being called after reclaim so call directly if necessary
3141 */
3142 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3143 ac, migration_mode,
3144 &contended_compaction,
3145 &deferred_compaction);
3146 if (page)
3147 goto got_pg;
3148 nopage:
3149 warn_alloc_failed(gfp_mask, order, NULL);
3150 got_pg:
3151 return page;
3152 }
3153
3154 /*
3155 * This is the 'heart' of the zoned buddy allocator.
3156 */
3157 struct page *
3158 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3159 struct zonelist *zonelist, nodemask_t *nodemask)
3160 {
3161 struct zoneref *preferred_zoneref;
3162 struct page *page = NULL;
3163 unsigned int cpuset_mems_cookie;
3164 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3165 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3166 struct alloc_context ac = {
3167 .high_zoneidx = gfp_zone(gfp_mask),
3168 .nodemask = nodemask,
3169 .migratetype = gfpflags_to_migratetype(gfp_mask),
3170 };
3171
3172 gfp_mask &= gfp_allowed_mask;
3173
3174 lockdep_trace_alloc(gfp_mask);
3175
3176 might_sleep_if(gfp_mask & __GFP_WAIT);
3177
3178 if (should_fail_alloc_page(gfp_mask, order))
3179 return NULL;
3180
3181 /*
3182 * Check the zones suitable for the gfp_mask contain at least one
3183 * valid zone. It's possible to have an empty zonelist as a result
3184 * of __GFP_THISNODE and a memoryless node
3185 */
3186 if (unlikely(!zonelist->_zonerefs->zone))
3187 return NULL;
3188
3189 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3190 alloc_flags |= ALLOC_CMA;
3191
3192 retry_cpuset:
3193 cpuset_mems_cookie = read_mems_allowed_begin();
3194
3195 /* We set it here, as __alloc_pages_slowpath might have changed it */
3196 ac.zonelist = zonelist;
3197 /* The preferred zone is used for statistics later */
3198 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3199 ac.nodemask ? : &cpuset_current_mems_allowed,
3200 &ac.preferred_zone);
3201 if (!ac.preferred_zone)
3202 goto out;
3203 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3204
3205 /* First allocation attempt */
3206 alloc_mask = gfp_mask|__GFP_HARDWALL;
3207 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3208 if (unlikely(!page)) {
3209 /*
3210 * Runtime PM, block IO and its error handling path
3211 * can deadlock because I/O on the device might not
3212 * complete.
3213 */
3214 alloc_mask = memalloc_noio_flags(gfp_mask);
3215
3216 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3217 }
3218
3219 if (kmemcheck_enabled && page)
3220 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3221
3222 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3223
3224 out:
3225 /*
3226 * When updating a task's mems_allowed, it is possible to race with
3227 * parallel threads in such a way that an allocation can fail while
3228 * the mask is being updated. If a page allocation is about to fail,
3229 * check if the cpuset changed during allocation and if so, retry.
3230 */
3231 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3232 goto retry_cpuset;
3233
3234 return page;
3235 }
3236 EXPORT_SYMBOL(__alloc_pages_nodemask);
3237
3238 /*
3239 * Common helper functions.
3240 */
3241 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3242 {
3243 struct page *page;
3244
3245 /*
3246 * __get_free_pages() returns a 32-bit address, which cannot represent
3247 * a highmem page
3248 */
3249 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3250
3251 page = alloc_pages(gfp_mask, order);
3252 if (!page)
3253 return 0;
3254 return (unsigned long) page_address(page);
3255 }
3256 EXPORT_SYMBOL(__get_free_pages);
3257
3258 unsigned long get_zeroed_page(gfp_t gfp_mask)
3259 {
3260 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3261 }
3262 EXPORT_SYMBOL(get_zeroed_page);
3263
3264 void __free_pages(struct page *page, unsigned int order)
3265 {
3266 if (put_page_testzero(page)) {
3267 if (order == 0)
3268 free_hot_cold_page(page, false);
3269 else
3270 __free_pages_ok(page, order);
3271 }
3272 }
3273
3274 EXPORT_SYMBOL(__free_pages);
3275
3276 void free_pages(unsigned long addr, unsigned int order)
3277 {
3278 if (addr != 0) {
3279 VM_BUG_ON(!virt_addr_valid((void *)addr));
3280 __free_pages(virt_to_page((void *)addr), order);
3281 }
3282 }
3283
3284 EXPORT_SYMBOL(free_pages);
3285
3286 /*
3287 * Page Fragment:
3288 * An arbitrary-length arbitrary-offset area of memory which resides
3289 * within a 0 or higher order page. Multiple fragments within that page
3290 * are individually refcounted, in the page's reference counter.
3291 *
3292 * The page_frag functions below provide a simple allocation framework for
3293 * page fragments. This is used by the network stack and network device
3294 * drivers to provide a backing region of memory for use as either an
3295 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3296 */
3297 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3298 gfp_t gfp_mask)
3299 {
3300 struct page *page = NULL;
3301 gfp_t gfp = gfp_mask;
3302
3303 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3304 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3305 __GFP_NOMEMALLOC;
3306 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3307 PAGE_FRAG_CACHE_MAX_ORDER);
3308 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3309 #endif
3310 if (unlikely(!page))
3311 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3312
3313 nc->va = page ? page_address(page) : NULL;
3314
3315 return page;
3316 }
3317
3318 void *__alloc_page_frag(struct page_frag_cache *nc,
3319 unsigned int fragsz, gfp_t gfp_mask)
3320 {
3321 unsigned int size = PAGE_SIZE;
3322 struct page *page;
3323 int offset;
3324
3325 if (unlikely(!nc->va)) {
3326 refill:
3327 page = __page_frag_refill(nc, gfp_mask);
3328 if (!page)
3329 return NULL;
3330
3331 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3332 /* if size can vary use size else just use PAGE_SIZE */
3333 size = nc->size;
3334 #endif
3335 /* Even if we own the page, we do not use atomic_set().
3336 * This would break get_page_unless_zero() users.
3337 */
3338 atomic_add(size - 1, &page->_count);
3339
3340 /* reset page count bias and offset to start of new frag */
3341 nc->pfmemalloc = page->pfmemalloc;
3342 nc->pagecnt_bias = size;
3343 nc->offset = size;
3344 }
3345
3346 offset = nc->offset - fragsz;
3347 if (unlikely(offset < 0)) {
3348 page = virt_to_page(nc->va);
3349
3350 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3351 goto refill;
3352
3353 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3354 /* if size can vary use size else just use PAGE_SIZE */
3355 size = nc->size;
3356 #endif
3357 /* OK, page count is 0, we can safely set it */
3358 atomic_set(&page->_count, size);
3359
3360 /* reset page count bias and offset to start of new frag */
3361 nc->pagecnt_bias = size;
3362 offset = size - fragsz;
3363 }
3364
3365 nc->pagecnt_bias--;
3366 nc->offset = offset;
3367
3368 return nc->va + offset;
3369 }
3370 EXPORT_SYMBOL(__alloc_page_frag);
3371
3372 /*
3373 * Frees a page fragment allocated out of either a compound or order 0 page.
3374 */
3375 void __free_page_frag(void *addr)
3376 {
3377 struct page *page = virt_to_head_page(addr);
3378
3379 if (unlikely(put_page_testzero(page)))
3380 __free_pages_ok(page, compound_order(page));
3381 }
3382 EXPORT_SYMBOL(__free_page_frag);
3383
3384 /*
3385 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3386 * of the current memory cgroup.
3387 *
3388 * It should be used when the caller would like to use kmalloc, but since the
3389 * allocation is large, it has to fall back to the page allocator.
3390 */
3391 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3392 {
3393 struct page *page;
3394 struct mem_cgroup *memcg = NULL;
3395
3396 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3397 return NULL;
3398 page = alloc_pages(gfp_mask, order);
3399 memcg_kmem_commit_charge(page, memcg, order);
3400 return page;
3401 }
3402
3403 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3404 {
3405 struct page *page;
3406 struct mem_cgroup *memcg = NULL;
3407
3408 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3409 return NULL;
3410 page = alloc_pages_node(nid, gfp_mask, order);
3411 memcg_kmem_commit_charge(page, memcg, order);
3412 return page;
3413 }
3414
3415 /*
3416 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3417 * alloc_kmem_pages.
3418 */
3419 void __free_kmem_pages(struct page *page, unsigned int order)
3420 {
3421 memcg_kmem_uncharge_pages(page, order);
3422 __free_pages(page, order);
3423 }
3424
3425 void free_kmem_pages(unsigned long addr, unsigned int order)
3426 {
3427 if (addr != 0) {
3428 VM_BUG_ON(!virt_addr_valid((void *)addr));
3429 __free_kmem_pages(virt_to_page((void *)addr), order);
3430 }
3431 }
3432
3433 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3434 {
3435 if (addr) {
3436 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3437 unsigned long used = addr + PAGE_ALIGN(size);
3438
3439 split_page(virt_to_page((void *)addr), order);
3440 while (used < alloc_end) {
3441 free_page(used);
3442 used += PAGE_SIZE;
3443 }
3444 }
3445 return (void *)addr;
3446 }
3447
3448 /**
3449 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3450 * @size: the number of bytes to allocate
3451 * @gfp_mask: GFP flags for the allocation
3452 *
3453 * This function is similar to alloc_pages(), except that it allocates the
3454 * minimum number of pages to satisfy the request. alloc_pages() can only
3455 * allocate memory in power-of-two pages.
3456 *
3457 * This function is also limited by MAX_ORDER.
3458 *
3459 * Memory allocated by this function must be released by free_pages_exact().
3460 */
3461 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3462 {
3463 unsigned int order = get_order(size);
3464 unsigned long addr;
3465
3466 addr = __get_free_pages(gfp_mask, order);
3467 return make_alloc_exact(addr, order, size);
3468 }
3469 EXPORT_SYMBOL(alloc_pages_exact);
3470
3471 /**
3472 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3473 * pages on a node.
3474 * @nid: the preferred node ID where memory should be allocated
3475 * @size: the number of bytes to allocate
3476 * @gfp_mask: GFP flags for the allocation
3477 *
3478 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3479 * back.
3480 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3481 * but is not exact.
3482 */
3483 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3484 {
3485 unsigned order = get_order(size);
3486 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3487 if (!p)
3488 return NULL;
3489 return make_alloc_exact((unsigned long)page_address(p), order, size);
3490 }
3491
3492 /**
3493 * free_pages_exact - release memory allocated via alloc_pages_exact()
3494 * @virt: the value returned by alloc_pages_exact.
3495 * @size: size of allocation, same value as passed to alloc_pages_exact().
3496 *
3497 * Release the memory allocated by a previous call to alloc_pages_exact.
3498 */
3499 void free_pages_exact(void *virt, size_t size)
3500 {
3501 unsigned long addr = (unsigned long)virt;
3502 unsigned long end = addr + PAGE_ALIGN(size);
3503
3504 while (addr < end) {
3505 free_page(addr);
3506 addr += PAGE_SIZE;
3507 }
3508 }
3509 EXPORT_SYMBOL(free_pages_exact);
3510
3511 /**
3512 * nr_free_zone_pages - count number of pages beyond high watermark
3513 * @offset: The zone index of the highest zone
3514 *
3515 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3516 * high watermark within all zones at or below a given zone index. For each
3517 * zone, the number of pages is calculated as:
3518 * managed_pages - high_pages
3519 */
3520 static unsigned long nr_free_zone_pages(int offset)
3521 {
3522 struct zoneref *z;
3523 struct zone *zone;
3524
3525 /* Just pick one node, since fallback list is circular */
3526 unsigned long sum = 0;
3527
3528 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3529
3530 for_each_zone_zonelist(zone, z, zonelist, offset) {
3531 unsigned long size = zone->managed_pages;
3532 unsigned long high = high_wmark_pages(zone);
3533 if (size > high)
3534 sum += size - high;
3535 }
3536
3537 return sum;
3538 }
3539
3540 /**
3541 * nr_free_buffer_pages - count number of pages beyond high watermark
3542 *
3543 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3544 * watermark within ZONE_DMA and ZONE_NORMAL.
3545 */
3546 unsigned long nr_free_buffer_pages(void)
3547 {
3548 return nr_free_zone_pages(gfp_zone(GFP_USER));
3549 }
3550 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3551
3552 /**
3553 * nr_free_pagecache_pages - count number of pages beyond high watermark
3554 *
3555 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3556 * high watermark within all zones.
3557 */
3558 unsigned long nr_free_pagecache_pages(void)
3559 {
3560 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3561 }
3562
3563 static inline void show_node(struct zone *zone)
3564 {
3565 if (IS_ENABLED(CONFIG_NUMA))
3566 printk("Node %d ", zone_to_nid(zone));
3567 }
3568
3569 void si_meminfo(struct sysinfo *val)
3570 {
3571 val->totalram = totalram_pages;
3572 val->sharedram = global_page_state(NR_SHMEM);
3573 val->freeram = global_page_state(NR_FREE_PAGES);
3574 val->bufferram = nr_blockdev_pages();
3575 val->totalhigh = totalhigh_pages;
3576 val->freehigh = nr_free_highpages();
3577 val->mem_unit = PAGE_SIZE;
3578 }
3579
3580 EXPORT_SYMBOL(si_meminfo);
3581
3582 #ifdef CONFIG_NUMA
3583 void si_meminfo_node(struct sysinfo *val, int nid)
3584 {
3585 int zone_type; /* needs to be signed */
3586 unsigned long managed_pages = 0;
3587 pg_data_t *pgdat = NODE_DATA(nid);
3588
3589 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3590 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3591 val->totalram = managed_pages;
3592 val->sharedram = node_page_state(nid, NR_SHMEM);
3593 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3594 #ifdef CONFIG_HIGHMEM
3595 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3596 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3597 NR_FREE_PAGES);
3598 #else
3599 val->totalhigh = 0;
3600 val->freehigh = 0;
3601 #endif
3602 val->mem_unit = PAGE_SIZE;
3603 }
3604 #endif
3605
3606 /*
3607 * Determine whether the node should be displayed or not, depending on whether
3608 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3609 */
3610 bool skip_free_areas_node(unsigned int flags, int nid)
3611 {
3612 bool ret = false;
3613 unsigned int cpuset_mems_cookie;
3614
3615 if (!(flags & SHOW_MEM_FILTER_NODES))
3616 goto out;
3617
3618 do {
3619 cpuset_mems_cookie = read_mems_allowed_begin();
3620 ret = !node_isset(nid, cpuset_current_mems_allowed);
3621 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3622 out:
3623 return ret;
3624 }
3625
3626 #define K(x) ((x) << (PAGE_SHIFT-10))
3627
3628 static void show_migration_types(unsigned char type)
3629 {
3630 static const char types[MIGRATE_TYPES] = {
3631 [MIGRATE_UNMOVABLE] = 'U',
3632 [MIGRATE_RECLAIMABLE] = 'E',
3633 [MIGRATE_MOVABLE] = 'M',
3634 [MIGRATE_RESERVE] = 'R',
3635 #ifdef CONFIG_CMA
3636 [MIGRATE_CMA] = 'C',
3637 #endif
3638 #ifdef CONFIG_MEMORY_ISOLATION
3639 [MIGRATE_ISOLATE] = 'I',
3640 #endif
3641 };
3642 char tmp[MIGRATE_TYPES + 1];
3643 char *p = tmp;
3644 int i;
3645
3646 for (i = 0; i < MIGRATE_TYPES; i++) {
3647 if (type & (1 << i))
3648 *p++ = types[i];
3649 }
3650
3651 *p = '\0';
3652 printk("(%s) ", tmp);
3653 }
3654
3655 /*
3656 * Show free area list (used inside shift_scroll-lock stuff)
3657 * We also calculate the percentage fragmentation. We do this by counting the
3658 * memory on each free list with the exception of the first item on the list.
3659 *
3660 * Bits in @filter:
3661 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3662 * cpuset.
3663 */
3664 void show_free_areas(unsigned int filter)
3665 {
3666 unsigned long free_pcp = 0;
3667 int cpu;
3668 struct zone *zone;
3669
3670 for_each_populated_zone(zone) {
3671 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3672 continue;
3673
3674 for_each_online_cpu(cpu)
3675 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3676 }
3677
3678 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3679 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3680 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3681 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3682 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3683 " free:%lu free_pcp:%lu free_cma:%lu\n",
3684 global_page_state(NR_ACTIVE_ANON),
3685 global_page_state(NR_INACTIVE_ANON),
3686 global_page_state(NR_ISOLATED_ANON),
3687 global_page_state(NR_ACTIVE_FILE),
3688 global_page_state(NR_INACTIVE_FILE),
3689 global_page_state(NR_ISOLATED_FILE),
3690 global_page_state(NR_UNEVICTABLE),
3691 global_page_state(NR_FILE_DIRTY),
3692 global_page_state(NR_WRITEBACK),
3693 global_page_state(NR_UNSTABLE_NFS),
3694 global_page_state(NR_SLAB_RECLAIMABLE),
3695 global_page_state(NR_SLAB_UNRECLAIMABLE),
3696 global_page_state(NR_FILE_MAPPED),
3697 global_page_state(NR_SHMEM),
3698 global_page_state(NR_PAGETABLE),
3699 global_page_state(NR_BOUNCE),
3700 global_page_state(NR_FREE_PAGES),
3701 free_pcp,
3702 global_page_state(NR_FREE_CMA_PAGES));
3703
3704 for_each_populated_zone(zone) {
3705 int i;
3706
3707 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3708 continue;
3709
3710 free_pcp = 0;
3711 for_each_online_cpu(cpu)
3712 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3713
3714 show_node(zone);
3715 printk("%s"
3716 " free:%lukB"
3717 " min:%lukB"
3718 " low:%lukB"
3719 " high:%lukB"
3720 " active_anon:%lukB"
3721 " inactive_anon:%lukB"
3722 " active_file:%lukB"
3723 " inactive_file:%lukB"
3724 " unevictable:%lukB"
3725 " isolated(anon):%lukB"
3726 " isolated(file):%lukB"
3727 " present:%lukB"
3728 " managed:%lukB"
3729 " mlocked:%lukB"
3730 " dirty:%lukB"
3731 " writeback:%lukB"
3732 " mapped:%lukB"
3733 " shmem:%lukB"
3734 " slab_reclaimable:%lukB"
3735 " slab_unreclaimable:%lukB"
3736 " kernel_stack:%lukB"
3737 " pagetables:%lukB"
3738 " unstable:%lukB"
3739 " bounce:%lukB"
3740 " free_pcp:%lukB"
3741 " local_pcp:%ukB"
3742 " free_cma:%lukB"
3743 " writeback_tmp:%lukB"
3744 " pages_scanned:%lu"
3745 " all_unreclaimable? %s"
3746 "\n",
3747 zone->name,
3748 K(zone_page_state(zone, NR_FREE_PAGES)),
3749 K(min_wmark_pages(zone)),
3750 K(low_wmark_pages(zone)),
3751 K(high_wmark_pages(zone)),
3752 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3753 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3754 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3755 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3756 K(zone_page_state(zone, NR_UNEVICTABLE)),
3757 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3758 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3759 K(zone->present_pages),
3760 K(zone->managed_pages),
3761 K(zone_page_state(zone, NR_MLOCK)),
3762 K(zone_page_state(zone, NR_FILE_DIRTY)),
3763 K(zone_page_state(zone, NR_WRITEBACK)),
3764 K(zone_page_state(zone, NR_FILE_MAPPED)),
3765 K(zone_page_state(zone, NR_SHMEM)),
3766 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3767 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3768 zone_page_state(zone, NR_KERNEL_STACK) *
3769 THREAD_SIZE / 1024,
3770 K(zone_page_state(zone, NR_PAGETABLE)),
3771 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3772 K(zone_page_state(zone, NR_BOUNCE)),
3773 K(free_pcp),
3774 K(this_cpu_read(zone->pageset->pcp.count)),
3775 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3776 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3777 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3778 (!zone_reclaimable(zone) ? "yes" : "no")
3779 );
3780 printk("lowmem_reserve[]:");
3781 for (i = 0; i < MAX_NR_ZONES; i++)
3782 printk(" %ld", zone->lowmem_reserve[i]);
3783 printk("\n");
3784 }
3785
3786 for_each_populated_zone(zone) {
3787 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3788 unsigned char types[MAX_ORDER];
3789
3790 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3791 continue;
3792 show_node(zone);
3793 printk("%s: ", zone->name);
3794
3795 spin_lock_irqsave(&zone->lock, flags);
3796 for (order = 0; order < MAX_ORDER; order++) {
3797 struct free_area *area = &zone->free_area[order];
3798 int type;
3799
3800 nr[order] = area->nr_free;
3801 total += nr[order] << order;
3802
3803 types[order] = 0;
3804 for (type = 0; type < MIGRATE_TYPES; type++) {
3805 if (!list_empty(&area->free_list[type]))
3806 types[order] |= 1 << type;
3807 }
3808 }
3809 spin_unlock_irqrestore(&zone->lock, flags);
3810 for (order = 0; order < MAX_ORDER; order++) {
3811 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3812 if (nr[order])
3813 show_migration_types(types[order]);
3814 }
3815 printk("= %lukB\n", K(total));
3816 }
3817
3818 hugetlb_show_meminfo();
3819
3820 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3821
3822 show_swap_cache_info();
3823 }
3824
3825 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3826 {
3827 zoneref->zone = zone;
3828 zoneref->zone_idx = zone_idx(zone);
3829 }
3830
3831 /*
3832 * Builds allocation fallback zone lists.
3833 *
3834 * Add all populated zones of a node to the zonelist.
3835 */
3836 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3837 int nr_zones)
3838 {
3839 struct zone *zone;
3840 enum zone_type zone_type = MAX_NR_ZONES;
3841
3842 do {
3843 zone_type--;
3844 zone = pgdat->node_zones + zone_type;
3845 if (populated_zone(zone)) {
3846 zoneref_set_zone(zone,
3847 &zonelist->_zonerefs[nr_zones++]);
3848 check_highest_zone(zone_type);
3849 }
3850 } while (zone_type);
3851
3852 return nr_zones;
3853 }
3854
3855
3856 /*
3857 * zonelist_order:
3858 * 0 = automatic detection of better ordering.
3859 * 1 = order by ([node] distance, -zonetype)
3860 * 2 = order by (-zonetype, [node] distance)
3861 *
3862 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3863 * the same zonelist. So only NUMA can configure this param.
3864 */
3865 #define ZONELIST_ORDER_DEFAULT 0
3866 #define ZONELIST_ORDER_NODE 1
3867 #define ZONELIST_ORDER_ZONE 2
3868
3869 /* zonelist order in the kernel.
3870 * set_zonelist_order() will set this to NODE or ZONE.
3871 */
3872 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3873 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3874
3875
3876 #ifdef CONFIG_NUMA
3877 /* The value user specified ....changed by config */
3878 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3879 /* string for sysctl */
3880 #define NUMA_ZONELIST_ORDER_LEN 16
3881 char numa_zonelist_order[16] = "default";
3882
3883 /*
3884 * interface for configure zonelist ordering.
3885 * command line option "numa_zonelist_order"
3886 * = "[dD]efault - default, automatic configuration.
3887 * = "[nN]ode - order by node locality, then by zone within node
3888 * = "[zZ]one - order by zone, then by locality within zone
3889 */
3890
3891 static int __parse_numa_zonelist_order(char *s)
3892 {
3893 if (*s == 'd' || *s == 'D') {
3894 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3895 } else if (*s == 'n' || *s == 'N') {
3896 user_zonelist_order = ZONELIST_ORDER_NODE;
3897 } else if (*s == 'z' || *s == 'Z') {
3898 user_zonelist_order = ZONELIST_ORDER_ZONE;
3899 } else {
3900 printk(KERN_WARNING
3901 "Ignoring invalid numa_zonelist_order value: "
3902 "%s\n", s);
3903 return -EINVAL;
3904 }
3905 return 0;
3906 }
3907
3908 static __init int setup_numa_zonelist_order(char *s)
3909 {
3910 int ret;
3911
3912 if (!s)
3913 return 0;
3914
3915 ret = __parse_numa_zonelist_order(s);
3916 if (ret == 0)
3917 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3918
3919 return ret;
3920 }
3921 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3922
3923 /*
3924 * sysctl handler for numa_zonelist_order
3925 */
3926 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3927 void __user *buffer, size_t *length,
3928 loff_t *ppos)
3929 {
3930 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3931 int ret;
3932 static DEFINE_MUTEX(zl_order_mutex);
3933
3934 mutex_lock(&zl_order_mutex);
3935 if (write) {
3936 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3937 ret = -EINVAL;
3938 goto out;
3939 }
3940 strcpy(saved_string, (char *)table->data);
3941 }
3942 ret = proc_dostring(table, write, buffer, length, ppos);
3943 if (ret)
3944 goto out;
3945 if (write) {
3946 int oldval = user_zonelist_order;
3947
3948 ret = __parse_numa_zonelist_order((char *)table->data);
3949 if (ret) {
3950 /*
3951 * bogus value. restore saved string
3952 */
3953 strncpy((char *)table->data, saved_string,
3954 NUMA_ZONELIST_ORDER_LEN);
3955 user_zonelist_order = oldval;
3956 } else if (oldval != user_zonelist_order) {
3957 mutex_lock(&zonelists_mutex);
3958 build_all_zonelists(NULL, NULL);
3959 mutex_unlock(&zonelists_mutex);
3960 }
3961 }
3962 out:
3963 mutex_unlock(&zl_order_mutex);
3964 return ret;
3965 }
3966
3967
3968 #define MAX_NODE_LOAD (nr_online_nodes)
3969 static int node_load[MAX_NUMNODES];
3970
3971 /**
3972 * find_next_best_node - find the next node that should appear in a given node's fallback list
3973 * @node: node whose fallback list we're appending
3974 * @used_node_mask: nodemask_t of already used nodes
3975 *
3976 * We use a number of factors to determine which is the next node that should
3977 * appear on a given node's fallback list. The node should not have appeared
3978 * already in @node's fallback list, and it should be the next closest node
3979 * according to the distance array (which contains arbitrary distance values
3980 * from each node to each node in the system), and should also prefer nodes
3981 * with no CPUs, since presumably they'll have very little allocation pressure
3982 * on them otherwise.
3983 * It returns -1 if no node is found.
3984 */
3985 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3986 {
3987 int n, val;
3988 int min_val = INT_MAX;
3989 int best_node = NUMA_NO_NODE;
3990 const struct cpumask *tmp = cpumask_of_node(0);
3991
3992 /* Use the local node if we haven't already */
3993 if (!node_isset(node, *used_node_mask)) {
3994 node_set(node, *used_node_mask);
3995 return node;
3996 }
3997
3998 for_each_node_state(n, N_MEMORY) {
3999
4000 /* Don't want a node to appear more than once */
4001 if (node_isset(n, *used_node_mask))
4002 continue;
4003
4004 /* Use the distance array to find the distance */
4005 val = node_distance(node, n);
4006
4007 /* Penalize nodes under us ("prefer the next node") */
4008 val += (n < node);
4009
4010 /* Give preference to headless and unused nodes */
4011 tmp = cpumask_of_node(n);
4012 if (!cpumask_empty(tmp))
4013 val += PENALTY_FOR_NODE_WITH_CPUS;
4014
4015 /* Slight preference for less loaded node */
4016 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4017 val += node_load[n];
4018
4019 if (val < min_val) {
4020 min_val = val;
4021 best_node = n;
4022 }
4023 }
4024
4025 if (best_node >= 0)
4026 node_set(best_node, *used_node_mask);
4027
4028 return best_node;
4029 }
4030
4031
4032 /*
4033 * Build zonelists ordered by node and zones within node.
4034 * This results in maximum locality--normal zone overflows into local
4035 * DMA zone, if any--but risks exhausting DMA zone.
4036 */
4037 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4038 {
4039 int j;
4040 struct zonelist *zonelist;
4041
4042 zonelist = &pgdat->node_zonelists[0];
4043 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4044 ;
4045 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4046 zonelist->_zonerefs[j].zone = NULL;
4047 zonelist->_zonerefs[j].zone_idx = 0;
4048 }
4049
4050 /*
4051 * Build gfp_thisnode zonelists
4052 */
4053 static void build_thisnode_zonelists(pg_data_t *pgdat)
4054 {
4055 int j;
4056 struct zonelist *zonelist;
4057
4058 zonelist = &pgdat->node_zonelists[1];
4059 j = build_zonelists_node(pgdat, zonelist, 0);
4060 zonelist->_zonerefs[j].zone = NULL;
4061 zonelist->_zonerefs[j].zone_idx = 0;
4062 }
4063
4064 /*
4065 * Build zonelists ordered by zone and nodes within zones.
4066 * This results in conserving DMA zone[s] until all Normal memory is
4067 * exhausted, but results in overflowing to remote node while memory
4068 * may still exist in local DMA zone.
4069 */
4070 static int node_order[MAX_NUMNODES];
4071
4072 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4073 {
4074 int pos, j, node;
4075 int zone_type; /* needs to be signed */
4076 struct zone *z;
4077 struct zonelist *zonelist;
4078
4079 zonelist = &pgdat->node_zonelists[0];
4080 pos = 0;
4081 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4082 for (j = 0; j < nr_nodes; j++) {
4083 node = node_order[j];
4084 z = &NODE_DATA(node)->node_zones[zone_type];
4085 if (populated_zone(z)) {
4086 zoneref_set_zone(z,
4087 &zonelist->_zonerefs[pos++]);
4088 check_highest_zone(zone_type);
4089 }
4090 }
4091 }
4092 zonelist->_zonerefs[pos].zone = NULL;
4093 zonelist->_zonerefs[pos].zone_idx = 0;
4094 }
4095
4096 #if defined(CONFIG_64BIT)
4097 /*
4098 * Devices that require DMA32/DMA are relatively rare and do not justify a
4099 * penalty to every machine in case the specialised case applies. Default
4100 * to Node-ordering on 64-bit NUMA machines
4101 */
4102 static int default_zonelist_order(void)
4103 {
4104 return ZONELIST_ORDER_NODE;
4105 }
4106 #else
4107 /*
4108 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4109 * by the kernel. If processes running on node 0 deplete the low memory zone
4110 * then reclaim will occur more frequency increasing stalls and potentially
4111 * be easier to OOM if a large percentage of the zone is under writeback or
4112 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4113 * Hence, default to zone ordering on 32-bit.
4114 */
4115 static int default_zonelist_order(void)
4116 {
4117 return ZONELIST_ORDER_ZONE;
4118 }
4119 #endif /* CONFIG_64BIT */
4120
4121 static void set_zonelist_order(void)
4122 {
4123 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4124 current_zonelist_order = default_zonelist_order();
4125 else
4126 current_zonelist_order = user_zonelist_order;
4127 }
4128
4129 static void build_zonelists(pg_data_t *pgdat)
4130 {
4131 int j, node, load;
4132 enum zone_type i;
4133 nodemask_t used_mask;
4134 int local_node, prev_node;
4135 struct zonelist *zonelist;
4136 int order = current_zonelist_order;
4137
4138 /* initialize zonelists */
4139 for (i = 0; i < MAX_ZONELISTS; i++) {
4140 zonelist = pgdat->node_zonelists + i;
4141 zonelist->_zonerefs[0].zone = NULL;
4142 zonelist->_zonerefs[0].zone_idx = 0;
4143 }
4144
4145 /* NUMA-aware ordering of nodes */
4146 local_node = pgdat->node_id;
4147 load = nr_online_nodes;
4148 prev_node = local_node;
4149 nodes_clear(used_mask);
4150
4151 memset(node_order, 0, sizeof(node_order));
4152 j = 0;
4153
4154 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4155 /*
4156 * We don't want to pressure a particular node.
4157 * So adding penalty to the first node in same
4158 * distance group to make it round-robin.
4159 */
4160 if (node_distance(local_node, node) !=
4161 node_distance(local_node, prev_node))
4162 node_load[node] = load;
4163
4164 prev_node = node;
4165 load--;
4166 if (order == ZONELIST_ORDER_NODE)
4167 build_zonelists_in_node_order(pgdat, node);
4168 else
4169 node_order[j++] = node; /* remember order */
4170 }
4171
4172 if (order == ZONELIST_ORDER_ZONE) {
4173 /* calculate node order -- i.e., DMA last! */
4174 build_zonelists_in_zone_order(pgdat, j);
4175 }
4176
4177 build_thisnode_zonelists(pgdat);
4178 }
4179
4180 /* Construct the zonelist performance cache - see further mmzone.h */
4181 static void build_zonelist_cache(pg_data_t *pgdat)
4182 {
4183 struct zonelist *zonelist;
4184 struct zonelist_cache *zlc;
4185 struct zoneref *z;
4186
4187 zonelist = &pgdat->node_zonelists[0];
4188 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4189 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
4190 for (z = zonelist->_zonerefs; z->zone; z++)
4191 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
4192 }
4193
4194 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4195 /*
4196 * Return node id of node used for "local" allocations.
4197 * I.e., first node id of first zone in arg node's generic zonelist.
4198 * Used for initializing percpu 'numa_mem', which is used primarily
4199 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4200 */
4201 int local_memory_node(int node)
4202 {
4203 struct zone *zone;
4204
4205 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4206 gfp_zone(GFP_KERNEL),
4207 NULL,
4208 &zone);
4209 return zone->node;
4210 }
4211 #endif
4212
4213 #else /* CONFIG_NUMA */
4214
4215 static void set_zonelist_order(void)
4216 {
4217 current_zonelist_order = ZONELIST_ORDER_ZONE;
4218 }
4219
4220 static void build_zonelists(pg_data_t *pgdat)
4221 {
4222 int node, local_node;
4223 enum zone_type j;
4224 struct zonelist *zonelist;
4225
4226 local_node = pgdat->node_id;
4227
4228 zonelist = &pgdat->node_zonelists[0];
4229 j = build_zonelists_node(pgdat, zonelist, 0);
4230
4231 /*
4232 * Now we build the zonelist so that it contains the zones
4233 * of all the other nodes.
4234 * We don't want to pressure a particular node, so when
4235 * building the zones for node N, we make sure that the
4236 * zones coming right after the local ones are those from
4237 * node N+1 (modulo N)
4238 */
4239 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4240 if (!node_online(node))
4241 continue;
4242 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4243 }
4244 for (node = 0; node < local_node; node++) {
4245 if (!node_online(node))
4246 continue;
4247 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4248 }
4249
4250 zonelist->_zonerefs[j].zone = NULL;
4251 zonelist->_zonerefs[j].zone_idx = 0;
4252 }
4253
4254 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
4255 static void build_zonelist_cache(pg_data_t *pgdat)
4256 {
4257 pgdat->node_zonelists[0].zlcache_ptr = NULL;
4258 }
4259
4260 #endif /* CONFIG_NUMA */
4261
4262 /*
4263 * Boot pageset table. One per cpu which is going to be used for all
4264 * zones and all nodes. The parameters will be set in such a way
4265 * that an item put on a list will immediately be handed over to
4266 * the buddy list. This is safe since pageset manipulation is done
4267 * with interrupts disabled.
4268 *
4269 * The boot_pagesets must be kept even after bootup is complete for
4270 * unused processors and/or zones. They do play a role for bootstrapping
4271 * hotplugged processors.
4272 *
4273 * zoneinfo_show() and maybe other functions do
4274 * not check if the processor is online before following the pageset pointer.
4275 * Other parts of the kernel may not check if the zone is available.
4276 */
4277 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4278 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4279 static void setup_zone_pageset(struct zone *zone);
4280
4281 /*
4282 * Global mutex to protect against size modification of zonelists
4283 * as well as to serialize pageset setup for the new populated zone.
4284 */
4285 DEFINE_MUTEX(zonelists_mutex);
4286
4287 /* return values int ....just for stop_machine() */
4288 static int __build_all_zonelists(void *data)
4289 {
4290 int nid;
4291 int cpu;
4292 pg_data_t *self = data;
4293
4294 #ifdef CONFIG_NUMA
4295 memset(node_load, 0, sizeof(node_load));
4296 #endif
4297
4298 if (self && !node_online(self->node_id)) {
4299 build_zonelists(self);
4300 build_zonelist_cache(self);
4301 }
4302
4303 for_each_online_node(nid) {
4304 pg_data_t *pgdat = NODE_DATA(nid);
4305
4306 build_zonelists(pgdat);
4307 build_zonelist_cache(pgdat);
4308 }
4309
4310 /*
4311 * Initialize the boot_pagesets that are going to be used
4312 * for bootstrapping processors. The real pagesets for
4313 * each zone will be allocated later when the per cpu
4314 * allocator is available.
4315 *
4316 * boot_pagesets are used also for bootstrapping offline
4317 * cpus if the system is already booted because the pagesets
4318 * are needed to initialize allocators on a specific cpu too.
4319 * F.e. the percpu allocator needs the page allocator which
4320 * needs the percpu allocator in order to allocate its pagesets
4321 * (a chicken-egg dilemma).
4322 */
4323 for_each_possible_cpu(cpu) {
4324 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4325
4326 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4327 /*
4328 * We now know the "local memory node" for each node--
4329 * i.e., the node of the first zone in the generic zonelist.
4330 * Set up numa_mem percpu variable for on-line cpus. During
4331 * boot, only the boot cpu should be on-line; we'll init the
4332 * secondary cpus' numa_mem as they come on-line. During
4333 * node/memory hotplug, we'll fixup all on-line cpus.
4334 */
4335 if (cpu_online(cpu))
4336 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4337 #endif
4338 }
4339
4340 return 0;
4341 }
4342
4343 static noinline void __init
4344 build_all_zonelists_init(void)
4345 {
4346 __build_all_zonelists(NULL);
4347 mminit_verify_zonelist();
4348 cpuset_init_current_mems_allowed();
4349 }
4350
4351 /*
4352 * Called with zonelists_mutex held always
4353 * unless system_state == SYSTEM_BOOTING.
4354 *
4355 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4356 * [we're only called with non-NULL zone through __meminit paths] and
4357 * (2) call of __init annotated helper build_all_zonelists_init
4358 * [protected by SYSTEM_BOOTING].
4359 */
4360 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4361 {
4362 set_zonelist_order();
4363
4364 if (system_state == SYSTEM_BOOTING) {
4365 build_all_zonelists_init();
4366 } else {
4367 #ifdef CONFIG_MEMORY_HOTPLUG
4368 if (zone)
4369 setup_zone_pageset(zone);
4370 #endif
4371 /* we have to stop all cpus to guarantee there is no user
4372 of zonelist */
4373 stop_machine(__build_all_zonelists, pgdat, NULL);
4374 /* cpuset refresh routine should be here */
4375 }
4376 vm_total_pages = nr_free_pagecache_pages();
4377 /*
4378 * Disable grouping by mobility if the number of pages in the
4379 * system is too low to allow the mechanism to work. It would be
4380 * more accurate, but expensive to check per-zone. This check is
4381 * made on memory-hotadd so a system can start with mobility
4382 * disabled and enable it later
4383 */
4384 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4385 page_group_by_mobility_disabled = 1;
4386 else
4387 page_group_by_mobility_disabled = 0;
4388
4389 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
4390 "Total pages: %ld\n",
4391 nr_online_nodes,
4392 zonelist_order_name[current_zonelist_order],
4393 page_group_by_mobility_disabled ? "off" : "on",
4394 vm_total_pages);
4395 #ifdef CONFIG_NUMA
4396 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4397 #endif
4398 }
4399
4400 /*
4401 * Helper functions to size the waitqueue hash table.
4402 * Essentially these want to choose hash table sizes sufficiently
4403 * large so that collisions trying to wait on pages are rare.
4404 * But in fact, the number of active page waitqueues on typical
4405 * systems is ridiculously low, less than 200. So this is even
4406 * conservative, even though it seems large.
4407 *
4408 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4409 * waitqueues, i.e. the size of the waitq table given the number of pages.
4410 */
4411 #define PAGES_PER_WAITQUEUE 256
4412
4413 #ifndef CONFIG_MEMORY_HOTPLUG
4414 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4415 {
4416 unsigned long size = 1;
4417
4418 pages /= PAGES_PER_WAITQUEUE;
4419
4420 while (size < pages)
4421 size <<= 1;
4422
4423 /*
4424 * Once we have dozens or even hundreds of threads sleeping
4425 * on IO we've got bigger problems than wait queue collision.
4426 * Limit the size of the wait table to a reasonable size.
4427 */
4428 size = min(size, 4096UL);
4429
4430 return max(size, 4UL);
4431 }
4432 #else
4433 /*
4434 * A zone's size might be changed by hot-add, so it is not possible to determine
4435 * a suitable size for its wait_table. So we use the maximum size now.
4436 *
4437 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4438 *
4439 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4440 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4441 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4442 *
4443 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4444 * or more by the traditional way. (See above). It equals:
4445 *
4446 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4447 * ia64(16K page size) : = ( 8G + 4M)byte.
4448 * powerpc (64K page size) : = (32G +16M)byte.
4449 */
4450 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4451 {
4452 return 4096UL;
4453 }
4454 #endif
4455
4456 /*
4457 * This is an integer logarithm so that shifts can be used later
4458 * to extract the more random high bits from the multiplicative
4459 * hash function before the remainder is taken.
4460 */
4461 static inline unsigned long wait_table_bits(unsigned long size)
4462 {
4463 return ffz(~size);
4464 }
4465
4466 /*
4467 * Check if a pageblock contains reserved pages
4468 */
4469 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4470 {
4471 unsigned long pfn;
4472
4473 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4474 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4475 return 1;
4476 }
4477 return 0;
4478 }
4479
4480 /*
4481 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4482 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4483 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4484 * higher will lead to a bigger reserve which will get freed as contiguous
4485 * blocks as reclaim kicks in
4486 */
4487 static void setup_zone_migrate_reserve(struct zone *zone)
4488 {
4489 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4490 struct page *page;
4491 unsigned long block_migratetype;
4492 int reserve;
4493 int old_reserve;
4494
4495 /*
4496 * Get the start pfn, end pfn and the number of blocks to reserve
4497 * We have to be careful to be aligned to pageblock_nr_pages to
4498 * make sure that we always check pfn_valid for the first page in
4499 * the block.
4500 */
4501 start_pfn = zone->zone_start_pfn;
4502 end_pfn = zone_end_pfn(zone);
4503 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4504 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4505 pageblock_order;
4506
4507 /*
4508 * Reserve blocks are generally in place to help high-order atomic
4509 * allocations that are short-lived. A min_free_kbytes value that
4510 * would result in more than 2 reserve blocks for atomic allocations
4511 * is assumed to be in place to help anti-fragmentation for the
4512 * future allocation of hugepages at runtime.
4513 */
4514 reserve = min(2, reserve);
4515 old_reserve = zone->nr_migrate_reserve_block;
4516
4517 /* When memory hot-add, we almost always need to do nothing */
4518 if (reserve == old_reserve)
4519 return;
4520 zone->nr_migrate_reserve_block = reserve;
4521
4522 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4523 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4524 return;
4525
4526 if (!pfn_valid(pfn))
4527 continue;
4528 page = pfn_to_page(pfn);
4529
4530 /* Watch out for overlapping nodes */
4531 if (page_to_nid(page) != zone_to_nid(zone))
4532 continue;
4533
4534 block_migratetype = get_pageblock_migratetype(page);
4535
4536 /* Only test what is necessary when the reserves are not met */
4537 if (reserve > 0) {
4538 /*
4539 * Blocks with reserved pages will never free, skip
4540 * them.
4541 */
4542 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4543 if (pageblock_is_reserved(pfn, block_end_pfn))
4544 continue;
4545
4546 /* If this block is reserved, account for it */
4547 if (block_migratetype == MIGRATE_RESERVE) {
4548 reserve--;
4549 continue;
4550 }
4551
4552 /* Suitable for reserving if this block is movable */
4553 if (block_migratetype == MIGRATE_MOVABLE) {
4554 set_pageblock_migratetype(page,
4555 MIGRATE_RESERVE);
4556 move_freepages_block(zone, page,
4557 MIGRATE_RESERVE);
4558 reserve--;
4559 continue;
4560 }
4561 } else if (!old_reserve) {
4562 /*
4563 * At boot time we don't need to scan the whole zone
4564 * for turning off MIGRATE_RESERVE.
4565 */
4566 break;
4567 }
4568
4569 /*
4570 * If the reserve is met and this is a previous reserved block,
4571 * take it back
4572 */
4573 if (block_migratetype == MIGRATE_RESERVE) {
4574 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4575 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4576 }
4577 }
4578 }
4579
4580 /*
4581 * Initially all pages are reserved - free ones are freed
4582 * up by free_all_bootmem() once the early boot process is
4583 * done. Non-atomic initialization, single-pass.
4584 */
4585 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4586 unsigned long start_pfn, enum memmap_context context)
4587 {
4588 pg_data_t *pgdat = NODE_DATA(nid);
4589 unsigned long end_pfn = start_pfn + size;
4590 unsigned long pfn;
4591 struct zone *z;
4592 unsigned long nr_initialised = 0;
4593
4594 if (highest_memmap_pfn < end_pfn - 1)
4595 highest_memmap_pfn = end_pfn - 1;
4596
4597 z = &pgdat->node_zones[zone];
4598 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4599 /*
4600 * There can be holes in boot-time mem_map[]s
4601 * handed to this function. They do not
4602 * exist on hotplugged memory.
4603 */
4604 if (context == MEMMAP_EARLY) {
4605 if (!early_pfn_valid(pfn))
4606 continue;
4607 if (!early_pfn_in_nid(pfn, nid))
4608 continue;
4609 if (!update_defer_init(pgdat, pfn, end_pfn,
4610 &nr_initialised))
4611 break;
4612 }
4613
4614 /*
4615 * Mark the block movable so that blocks are reserved for
4616 * movable at startup. This will force kernel allocations
4617 * to reserve their blocks rather than leaking throughout
4618 * the address space during boot when many long-lived
4619 * kernel allocations are made. Later some blocks near
4620 * the start are marked MIGRATE_RESERVE by
4621 * setup_zone_migrate_reserve()
4622 *
4623 * bitmap is created for zone's valid pfn range. but memmap
4624 * can be created for invalid pages (for alignment)
4625 * check here not to call set_pageblock_migratetype() against
4626 * pfn out of zone.
4627 */
4628 if (!(pfn & (pageblock_nr_pages - 1))) {
4629 struct page *page = pfn_to_page(pfn);
4630
4631 __init_single_page(page, pfn, zone, nid);
4632 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4633 } else {
4634 __init_single_pfn(pfn, zone, nid);
4635 }
4636 }
4637 }
4638
4639 static void __meminit zone_init_free_lists(struct zone *zone)
4640 {
4641 unsigned int order, t;
4642 for_each_migratetype_order(order, t) {
4643 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4644 zone->free_area[order].nr_free = 0;
4645 }
4646 }
4647
4648 #ifndef __HAVE_ARCH_MEMMAP_INIT
4649 #define memmap_init(size, nid, zone, start_pfn) \
4650 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4651 #endif
4652
4653 static int zone_batchsize(struct zone *zone)
4654 {
4655 #ifdef CONFIG_MMU
4656 int batch;
4657
4658 /*
4659 * The per-cpu-pages pools are set to around 1000th of the
4660 * size of the zone. But no more than 1/2 of a meg.
4661 *
4662 * OK, so we don't know how big the cache is. So guess.
4663 */
4664 batch = zone->managed_pages / 1024;
4665 if (batch * PAGE_SIZE > 512 * 1024)
4666 batch = (512 * 1024) / PAGE_SIZE;
4667 batch /= 4; /* We effectively *= 4 below */
4668 if (batch < 1)
4669 batch = 1;
4670
4671 /*
4672 * Clamp the batch to a 2^n - 1 value. Having a power
4673 * of 2 value was found to be more likely to have
4674 * suboptimal cache aliasing properties in some cases.
4675 *
4676 * For example if 2 tasks are alternately allocating
4677 * batches of pages, one task can end up with a lot
4678 * of pages of one half of the possible page colors
4679 * and the other with pages of the other colors.
4680 */
4681 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4682
4683 return batch;
4684
4685 #else
4686 /* The deferral and batching of frees should be suppressed under NOMMU
4687 * conditions.
4688 *
4689 * The problem is that NOMMU needs to be able to allocate large chunks
4690 * of contiguous memory as there's no hardware page translation to
4691 * assemble apparent contiguous memory from discontiguous pages.
4692 *
4693 * Queueing large contiguous runs of pages for batching, however,
4694 * causes the pages to actually be freed in smaller chunks. As there
4695 * can be a significant delay between the individual batches being
4696 * recycled, this leads to the once large chunks of space being
4697 * fragmented and becoming unavailable for high-order allocations.
4698 */
4699 return 0;
4700 #endif
4701 }
4702
4703 /*
4704 * pcp->high and pcp->batch values are related and dependent on one another:
4705 * ->batch must never be higher then ->high.
4706 * The following function updates them in a safe manner without read side
4707 * locking.
4708 *
4709 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4710 * those fields changing asynchronously (acording the the above rule).
4711 *
4712 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4713 * outside of boot time (or some other assurance that no concurrent updaters
4714 * exist).
4715 */
4716 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4717 unsigned long batch)
4718 {
4719 /* start with a fail safe value for batch */
4720 pcp->batch = 1;
4721 smp_wmb();
4722
4723 /* Update high, then batch, in order */
4724 pcp->high = high;
4725 smp_wmb();
4726
4727 pcp->batch = batch;
4728 }
4729
4730 /* a companion to pageset_set_high() */
4731 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4732 {
4733 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4734 }
4735
4736 static void pageset_init(struct per_cpu_pageset *p)
4737 {
4738 struct per_cpu_pages *pcp;
4739 int migratetype;
4740
4741 memset(p, 0, sizeof(*p));
4742
4743 pcp = &p->pcp;
4744 pcp->count = 0;
4745 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4746 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4747 }
4748
4749 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4750 {
4751 pageset_init(p);
4752 pageset_set_batch(p, batch);
4753 }
4754
4755 /*
4756 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4757 * to the value high for the pageset p.
4758 */
4759 static void pageset_set_high(struct per_cpu_pageset *p,
4760 unsigned long high)
4761 {
4762 unsigned long batch = max(1UL, high / 4);
4763 if ((high / 4) > (PAGE_SHIFT * 8))
4764 batch = PAGE_SHIFT * 8;
4765
4766 pageset_update(&p->pcp, high, batch);
4767 }
4768
4769 static void pageset_set_high_and_batch(struct zone *zone,
4770 struct per_cpu_pageset *pcp)
4771 {
4772 if (percpu_pagelist_fraction)
4773 pageset_set_high(pcp,
4774 (zone->managed_pages /
4775 percpu_pagelist_fraction));
4776 else
4777 pageset_set_batch(pcp, zone_batchsize(zone));
4778 }
4779
4780 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4781 {
4782 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4783
4784 pageset_init(pcp);
4785 pageset_set_high_and_batch(zone, pcp);
4786 }
4787
4788 static void __meminit setup_zone_pageset(struct zone *zone)
4789 {
4790 int cpu;
4791 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4792 for_each_possible_cpu(cpu)
4793 zone_pageset_init(zone, cpu);
4794 }
4795
4796 /*
4797 * Allocate per cpu pagesets and initialize them.
4798 * Before this call only boot pagesets were available.
4799 */
4800 void __init setup_per_cpu_pageset(void)
4801 {
4802 struct zone *zone;
4803
4804 for_each_populated_zone(zone)
4805 setup_zone_pageset(zone);
4806 }
4807
4808 static noinline __init_refok
4809 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4810 {
4811 int i;
4812 size_t alloc_size;
4813
4814 /*
4815 * The per-page waitqueue mechanism uses hashed waitqueues
4816 * per zone.
4817 */
4818 zone->wait_table_hash_nr_entries =
4819 wait_table_hash_nr_entries(zone_size_pages);
4820 zone->wait_table_bits =
4821 wait_table_bits(zone->wait_table_hash_nr_entries);
4822 alloc_size = zone->wait_table_hash_nr_entries
4823 * sizeof(wait_queue_head_t);
4824
4825 if (!slab_is_available()) {
4826 zone->wait_table = (wait_queue_head_t *)
4827 memblock_virt_alloc_node_nopanic(
4828 alloc_size, zone->zone_pgdat->node_id);
4829 } else {
4830 /*
4831 * This case means that a zone whose size was 0 gets new memory
4832 * via memory hot-add.
4833 * But it may be the case that a new node was hot-added. In
4834 * this case vmalloc() will not be able to use this new node's
4835 * memory - this wait_table must be initialized to use this new
4836 * node itself as well.
4837 * To use this new node's memory, further consideration will be
4838 * necessary.
4839 */
4840 zone->wait_table = vmalloc(alloc_size);
4841 }
4842 if (!zone->wait_table)
4843 return -ENOMEM;
4844
4845 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4846 init_waitqueue_head(zone->wait_table + i);
4847
4848 return 0;
4849 }
4850
4851 static __meminit void zone_pcp_init(struct zone *zone)
4852 {
4853 /*
4854 * per cpu subsystem is not up at this point. The following code
4855 * relies on the ability of the linker to provide the
4856 * offset of a (static) per cpu variable into the per cpu area.
4857 */
4858 zone->pageset = &boot_pageset;
4859
4860 if (populated_zone(zone))
4861 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4862 zone->name, zone->present_pages,
4863 zone_batchsize(zone));
4864 }
4865
4866 int __meminit init_currently_empty_zone(struct zone *zone,
4867 unsigned long zone_start_pfn,
4868 unsigned long size,
4869 enum memmap_context context)
4870 {
4871 struct pglist_data *pgdat = zone->zone_pgdat;
4872 int ret;
4873 ret = zone_wait_table_init(zone, size);
4874 if (ret)
4875 return ret;
4876 pgdat->nr_zones = zone_idx(zone) + 1;
4877
4878 zone->zone_start_pfn = zone_start_pfn;
4879
4880 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4881 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4882 pgdat->node_id,
4883 (unsigned long)zone_idx(zone),
4884 zone_start_pfn, (zone_start_pfn + size));
4885
4886 zone_init_free_lists(zone);
4887
4888 return 0;
4889 }
4890
4891 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4892 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4893
4894 /*
4895 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4896 */
4897 int __meminit __early_pfn_to_nid(unsigned long pfn,
4898 struct mminit_pfnnid_cache *state)
4899 {
4900 unsigned long start_pfn, end_pfn;
4901 int nid;
4902
4903 if (state->last_start <= pfn && pfn < state->last_end)
4904 return state->last_nid;
4905
4906 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4907 if (nid != -1) {
4908 state->last_start = start_pfn;
4909 state->last_end = end_pfn;
4910 state->last_nid = nid;
4911 }
4912
4913 return nid;
4914 }
4915 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4916
4917 /**
4918 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4919 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4920 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4921 *
4922 * If an architecture guarantees that all ranges registered contain no holes
4923 * and may be freed, this this function may be used instead of calling
4924 * memblock_free_early_nid() manually.
4925 */
4926 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4927 {
4928 unsigned long start_pfn, end_pfn;
4929 int i, this_nid;
4930
4931 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4932 start_pfn = min(start_pfn, max_low_pfn);
4933 end_pfn = min(end_pfn, max_low_pfn);
4934
4935 if (start_pfn < end_pfn)
4936 memblock_free_early_nid(PFN_PHYS(start_pfn),
4937 (end_pfn - start_pfn) << PAGE_SHIFT,
4938 this_nid);
4939 }
4940 }
4941
4942 /**
4943 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4944 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4945 *
4946 * If an architecture guarantees that all ranges registered contain no holes and may
4947 * be freed, this function may be used instead of calling memory_present() manually.
4948 */
4949 void __init sparse_memory_present_with_active_regions(int nid)
4950 {
4951 unsigned long start_pfn, end_pfn;
4952 int i, this_nid;
4953
4954 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4955 memory_present(this_nid, start_pfn, end_pfn);
4956 }
4957
4958 /**
4959 * get_pfn_range_for_nid - Return the start and end page frames for a node
4960 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4961 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4962 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4963 *
4964 * It returns the start and end page frame of a node based on information
4965 * provided by memblock_set_node(). If called for a node
4966 * with no available memory, a warning is printed and the start and end
4967 * PFNs will be 0.
4968 */
4969 void __meminit get_pfn_range_for_nid(unsigned int nid,
4970 unsigned long *start_pfn, unsigned long *end_pfn)
4971 {
4972 unsigned long this_start_pfn, this_end_pfn;
4973 int i;
4974
4975 *start_pfn = -1UL;
4976 *end_pfn = 0;
4977
4978 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4979 *start_pfn = min(*start_pfn, this_start_pfn);
4980 *end_pfn = max(*end_pfn, this_end_pfn);
4981 }
4982
4983 if (*start_pfn == -1UL)
4984 *start_pfn = 0;
4985 }
4986
4987 /*
4988 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4989 * assumption is made that zones within a node are ordered in monotonic
4990 * increasing memory addresses so that the "highest" populated zone is used
4991 */
4992 static void __init find_usable_zone_for_movable(void)
4993 {
4994 int zone_index;
4995 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4996 if (zone_index == ZONE_MOVABLE)
4997 continue;
4998
4999 if (arch_zone_highest_possible_pfn[zone_index] >
5000 arch_zone_lowest_possible_pfn[zone_index])
5001 break;
5002 }
5003
5004 VM_BUG_ON(zone_index == -1);
5005 movable_zone = zone_index;
5006 }
5007
5008 /*
5009 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5010 * because it is sized independent of architecture. Unlike the other zones,
5011 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5012 * in each node depending on the size of each node and how evenly kernelcore
5013 * is distributed. This helper function adjusts the zone ranges
5014 * provided by the architecture for a given node by using the end of the
5015 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5016 * zones within a node are in order of monotonic increases memory addresses
5017 */
5018 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5019 unsigned long zone_type,
5020 unsigned long node_start_pfn,
5021 unsigned long node_end_pfn,
5022 unsigned long *zone_start_pfn,
5023 unsigned long *zone_end_pfn)
5024 {
5025 /* Only adjust if ZONE_MOVABLE is on this node */
5026 if (zone_movable_pfn[nid]) {
5027 /* Size ZONE_MOVABLE */
5028 if (zone_type == ZONE_MOVABLE) {
5029 *zone_start_pfn = zone_movable_pfn[nid];
5030 *zone_end_pfn = min(node_end_pfn,
5031 arch_zone_highest_possible_pfn[movable_zone]);
5032
5033 /* Adjust for ZONE_MOVABLE starting within this range */
5034 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5035 *zone_end_pfn > zone_movable_pfn[nid]) {
5036 *zone_end_pfn = zone_movable_pfn[nid];
5037
5038 /* Check if this whole range is within ZONE_MOVABLE */
5039 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5040 *zone_start_pfn = *zone_end_pfn;
5041 }
5042 }
5043
5044 /*
5045 * Return the number of pages a zone spans in a node, including holes
5046 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5047 */
5048 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5049 unsigned long zone_type,
5050 unsigned long node_start_pfn,
5051 unsigned long node_end_pfn,
5052 unsigned long *ignored)
5053 {
5054 unsigned long zone_start_pfn, zone_end_pfn;
5055
5056 /* Get the start and end of the zone */
5057 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5058 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5059 adjust_zone_range_for_zone_movable(nid, zone_type,
5060 node_start_pfn, node_end_pfn,
5061 &zone_start_pfn, &zone_end_pfn);
5062
5063 /* Check that this node has pages within the zone's required range */
5064 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5065 return 0;
5066
5067 /* Move the zone boundaries inside the node if necessary */
5068 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5069 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5070
5071 /* Return the spanned pages */
5072 return zone_end_pfn - zone_start_pfn;
5073 }
5074
5075 /*
5076 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5077 * then all holes in the requested range will be accounted for.
5078 */
5079 unsigned long __meminit __absent_pages_in_range(int nid,
5080 unsigned long range_start_pfn,
5081 unsigned long range_end_pfn)
5082 {
5083 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5084 unsigned long start_pfn, end_pfn;
5085 int i;
5086
5087 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5088 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5089 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5090 nr_absent -= end_pfn - start_pfn;
5091 }
5092 return nr_absent;
5093 }
5094
5095 /**
5096 * absent_pages_in_range - Return number of page frames in holes within a range
5097 * @start_pfn: The start PFN to start searching for holes
5098 * @end_pfn: The end PFN to stop searching for holes
5099 *
5100 * It returns the number of pages frames in memory holes within a range.
5101 */
5102 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5103 unsigned long end_pfn)
5104 {
5105 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5106 }
5107
5108 /* Return the number of page frames in holes in a zone on a node */
5109 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5110 unsigned long zone_type,
5111 unsigned long node_start_pfn,
5112 unsigned long node_end_pfn,
5113 unsigned long *ignored)
5114 {
5115 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5116 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5117 unsigned long zone_start_pfn, zone_end_pfn;
5118
5119 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5120 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5121
5122 adjust_zone_range_for_zone_movable(nid, zone_type,
5123 node_start_pfn, node_end_pfn,
5124 &zone_start_pfn, &zone_end_pfn);
5125 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5126 }
5127
5128 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5129 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5130 unsigned long zone_type,
5131 unsigned long node_start_pfn,
5132 unsigned long node_end_pfn,
5133 unsigned long *zones_size)
5134 {
5135 return zones_size[zone_type];
5136 }
5137
5138 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5139 unsigned long zone_type,
5140 unsigned long node_start_pfn,
5141 unsigned long node_end_pfn,
5142 unsigned long *zholes_size)
5143 {
5144 if (!zholes_size)
5145 return 0;
5146
5147 return zholes_size[zone_type];
5148 }
5149
5150 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5151
5152 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5153 unsigned long node_start_pfn,
5154 unsigned long node_end_pfn,
5155 unsigned long *zones_size,
5156 unsigned long *zholes_size)
5157 {
5158 unsigned long realtotalpages = 0, totalpages = 0;
5159 enum zone_type i;
5160
5161 for (i = 0; i < MAX_NR_ZONES; i++) {
5162 struct zone *zone = pgdat->node_zones + i;
5163 unsigned long size, real_size;
5164
5165 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5166 node_start_pfn,
5167 node_end_pfn,
5168 zones_size);
5169 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5170 node_start_pfn, node_end_pfn,
5171 zholes_size);
5172 zone->spanned_pages = size;
5173 zone->present_pages = real_size;
5174
5175 totalpages += size;
5176 realtotalpages += real_size;
5177 }
5178
5179 pgdat->node_spanned_pages = totalpages;
5180 pgdat->node_present_pages = realtotalpages;
5181 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5182 realtotalpages);
5183 }
5184
5185 #ifndef CONFIG_SPARSEMEM
5186 /*
5187 * Calculate the size of the zone->blockflags rounded to an unsigned long
5188 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5189 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5190 * round what is now in bits to nearest long in bits, then return it in
5191 * bytes.
5192 */
5193 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5194 {
5195 unsigned long usemapsize;
5196
5197 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5198 usemapsize = roundup(zonesize, pageblock_nr_pages);
5199 usemapsize = usemapsize >> pageblock_order;
5200 usemapsize *= NR_PAGEBLOCK_BITS;
5201 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5202
5203 return usemapsize / 8;
5204 }
5205
5206 static void __init setup_usemap(struct pglist_data *pgdat,
5207 struct zone *zone,
5208 unsigned long zone_start_pfn,
5209 unsigned long zonesize)
5210 {
5211 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5212 zone->pageblock_flags = NULL;
5213 if (usemapsize)
5214 zone->pageblock_flags =
5215 memblock_virt_alloc_node_nopanic(usemapsize,
5216 pgdat->node_id);
5217 }
5218 #else
5219 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5220 unsigned long zone_start_pfn, unsigned long zonesize) {}
5221 #endif /* CONFIG_SPARSEMEM */
5222
5223 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5224
5225 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5226 void __paginginit set_pageblock_order(void)
5227 {
5228 unsigned int order;
5229
5230 /* Check that pageblock_nr_pages has not already been setup */
5231 if (pageblock_order)
5232 return;
5233
5234 if (HPAGE_SHIFT > PAGE_SHIFT)
5235 order = HUGETLB_PAGE_ORDER;
5236 else
5237 order = MAX_ORDER - 1;
5238
5239 /*
5240 * Assume the largest contiguous order of interest is a huge page.
5241 * This value may be variable depending on boot parameters on IA64 and
5242 * powerpc.
5243 */
5244 pageblock_order = order;
5245 }
5246 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5247
5248 /*
5249 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5250 * is unused as pageblock_order is set at compile-time. See
5251 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5252 * the kernel config
5253 */
5254 void __paginginit set_pageblock_order(void)
5255 {
5256 }
5257
5258 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5259
5260 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5261 unsigned long present_pages)
5262 {
5263 unsigned long pages = spanned_pages;
5264
5265 /*
5266 * Provide a more accurate estimation if there are holes within
5267 * the zone and SPARSEMEM is in use. If there are holes within the
5268 * zone, each populated memory region may cost us one or two extra
5269 * memmap pages due to alignment because memmap pages for each
5270 * populated regions may not naturally algined on page boundary.
5271 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5272 */
5273 if (spanned_pages > present_pages + (present_pages >> 4) &&
5274 IS_ENABLED(CONFIG_SPARSEMEM))
5275 pages = present_pages;
5276
5277 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5278 }
5279
5280 /*
5281 * Set up the zone data structures:
5282 * - mark all pages reserved
5283 * - mark all memory queues empty
5284 * - clear the memory bitmaps
5285 *
5286 * NOTE: pgdat should get zeroed by caller.
5287 */
5288 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
5289 unsigned long node_start_pfn, unsigned long node_end_pfn)
5290 {
5291 enum zone_type j;
5292 int nid = pgdat->node_id;
5293 unsigned long zone_start_pfn = pgdat->node_start_pfn;
5294 int ret;
5295
5296 pgdat_resize_init(pgdat);
5297 #ifdef CONFIG_NUMA_BALANCING
5298 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5299 pgdat->numabalancing_migrate_nr_pages = 0;
5300 pgdat->numabalancing_migrate_next_window = jiffies;
5301 #endif
5302 init_waitqueue_head(&pgdat->kswapd_wait);
5303 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5304 pgdat_page_ext_init(pgdat);
5305
5306 for (j = 0; j < MAX_NR_ZONES; j++) {
5307 struct zone *zone = pgdat->node_zones + j;
5308 unsigned long size, realsize, freesize, memmap_pages;
5309
5310 size = zone->spanned_pages;
5311 realsize = freesize = zone->present_pages;
5312
5313 /*
5314 * Adjust freesize so that it accounts for how much memory
5315 * is used by this zone for memmap. This affects the watermark
5316 * and per-cpu initialisations
5317 */
5318 memmap_pages = calc_memmap_size(size, realsize);
5319 if (!is_highmem_idx(j)) {
5320 if (freesize >= memmap_pages) {
5321 freesize -= memmap_pages;
5322 if (memmap_pages)
5323 printk(KERN_DEBUG
5324 " %s zone: %lu pages used for memmap\n",
5325 zone_names[j], memmap_pages);
5326 } else
5327 printk(KERN_WARNING
5328 " %s zone: %lu pages exceeds freesize %lu\n",
5329 zone_names[j], memmap_pages, freesize);
5330 }
5331
5332 /* Account for reserved pages */
5333 if (j == 0 && freesize > dma_reserve) {
5334 freesize -= dma_reserve;
5335 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5336 zone_names[0], dma_reserve);
5337 }
5338
5339 if (!is_highmem_idx(j))
5340 nr_kernel_pages += freesize;
5341 /* Charge for highmem memmap if there are enough kernel pages */
5342 else if (nr_kernel_pages > memmap_pages * 2)
5343 nr_kernel_pages -= memmap_pages;
5344 nr_all_pages += freesize;
5345
5346 /*
5347 * Set an approximate value for lowmem here, it will be adjusted
5348 * when the bootmem allocator frees pages into the buddy system.
5349 * And all highmem pages will be managed by the buddy system.
5350 */
5351 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5352 #ifdef CONFIG_NUMA
5353 zone->node = nid;
5354 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5355 / 100;
5356 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5357 #endif
5358 zone->name = zone_names[j];
5359 spin_lock_init(&zone->lock);
5360 spin_lock_init(&zone->lru_lock);
5361 zone_seqlock_init(zone);
5362 zone->zone_pgdat = pgdat;
5363 zone_pcp_init(zone);
5364
5365 /* For bootup, initialized properly in watermark setup */
5366 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5367
5368 lruvec_init(&zone->lruvec);
5369 if (!size)
5370 continue;
5371
5372 set_pageblock_order();
5373 setup_usemap(pgdat, zone, zone_start_pfn, size);
5374 ret = init_currently_empty_zone(zone, zone_start_pfn,
5375 size, MEMMAP_EARLY);
5376 BUG_ON(ret);
5377 memmap_init(size, nid, j, zone_start_pfn);
5378 zone_start_pfn += size;
5379 }
5380 }
5381
5382 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5383 {
5384 /* Skip empty nodes */
5385 if (!pgdat->node_spanned_pages)
5386 return;
5387
5388 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5389 /* ia64 gets its own node_mem_map, before this, without bootmem */
5390 if (!pgdat->node_mem_map) {
5391 unsigned long size, start, end;
5392 struct page *map;
5393
5394 /*
5395 * The zone's endpoints aren't required to be MAX_ORDER
5396 * aligned but the node_mem_map endpoints must be in order
5397 * for the buddy allocator to function correctly.
5398 */
5399 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5400 end = pgdat_end_pfn(pgdat);
5401 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5402 size = (end - start) * sizeof(struct page);
5403 map = alloc_remap(pgdat->node_id, size);
5404 if (!map)
5405 map = memblock_virt_alloc_node_nopanic(size,
5406 pgdat->node_id);
5407 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5408 }
5409 #ifndef CONFIG_NEED_MULTIPLE_NODES
5410 /*
5411 * With no DISCONTIG, the global mem_map is just set as node 0's
5412 */
5413 if (pgdat == NODE_DATA(0)) {
5414 mem_map = NODE_DATA(0)->node_mem_map;
5415 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5416 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5417 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5418 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5419 }
5420 #endif
5421 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5422 }
5423
5424 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5425 unsigned long node_start_pfn, unsigned long *zholes_size)
5426 {
5427 pg_data_t *pgdat = NODE_DATA(nid);
5428 unsigned long start_pfn = 0;
5429 unsigned long end_pfn = 0;
5430
5431 /* pg_data_t should be reset to zero when it's allocated */
5432 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5433
5434 reset_deferred_meminit(pgdat);
5435 pgdat->node_id = nid;
5436 pgdat->node_start_pfn = node_start_pfn;
5437 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5438 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5439 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5440 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5441 #endif
5442 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5443 zones_size, zholes_size);
5444
5445 alloc_node_mem_map(pgdat);
5446 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5447 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5448 nid, (unsigned long)pgdat,
5449 (unsigned long)pgdat->node_mem_map);
5450 #endif
5451
5452 free_area_init_core(pgdat, start_pfn, end_pfn);
5453 }
5454
5455 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5456
5457 #if MAX_NUMNODES > 1
5458 /*
5459 * Figure out the number of possible node ids.
5460 */
5461 void __init setup_nr_node_ids(void)
5462 {
5463 unsigned int node;
5464 unsigned int highest = 0;
5465
5466 for_each_node_mask(node, node_possible_map)
5467 highest = node;
5468 nr_node_ids = highest + 1;
5469 }
5470 #endif
5471
5472 /**
5473 * node_map_pfn_alignment - determine the maximum internode alignment
5474 *
5475 * This function should be called after node map is populated and sorted.
5476 * It calculates the maximum power of two alignment which can distinguish
5477 * all the nodes.
5478 *
5479 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5480 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5481 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5482 * shifted, 1GiB is enough and this function will indicate so.
5483 *
5484 * This is used to test whether pfn -> nid mapping of the chosen memory
5485 * model has fine enough granularity to avoid incorrect mapping for the
5486 * populated node map.
5487 *
5488 * Returns the determined alignment in pfn's. 0 if there is no alignment
5489 * requirement (single node).
5490 */
5491 unsigned long __init node_map_pfn_alignment(void)
5492 {
5493 unsigned long accl_mask = 0, last_end = 0;
5494 unsigned long start, end, mask;
5495 int last_nid = -1;
5496 int i, nid;
5497
5498 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5499 if (!start || last_nid < 0 || last_nid == nid) {
5500 last_nid = nid;
5501 last_end = end;
5502 continue;
5503 }
5504
5505 /*
5506 * Start with a mask granular enough to pin-point to the
5507 * start pfn and tick off bits one-by-one until it becomes
5508 * too coarse to separate the current node from the last.
5509 */
5510 mask = ~((1 << __ffs(start)) - 1);
5511 while (mask && last_end <= (start & (mask << 1)))
5512 mask <<= 1;
5513
5514 /* accumulate all internode masks */
5515 accl_mask |= mask;
5516 }
5517
5518 /* convert mask to number of pages */
5519 return ~accl_mask + 1;
5520 }
5521
5522 /* Find the lowest pfn for a node */
5523 static unsigned long __init find_min_pfn_for_node(int nid)
5524 {
5525 unsigned long min_pfn = ULONG_MAX;
5526 unsigned long start_pfn;
5527 int i;
5528
5529 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5530 min_pfn = min(min_pfn, start_pfn);
5531
5532 if (min_pfn == ULONG_MAX) {
5533 printk(KERN_WARNING
5534 "Could not find start_pfn for node %d\n", nid);
5535 return 0;
5536 }
5537
5538 return min_pfn;
5539 }
5540
5541 /**
5542 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5543 *
5544 * It returns the minimum PFN based on information provided via
5545 * memblock_set_node().
5546 */
5547 unsigned long __init find_min_pfn_with_active_regions(void)
5548 {
5549 return find_min_pfn_for_node(MAX_NUMNODES);
5550 }
5551
5552 /*
5553 * early_calculate_totalpages()
5554 * Sum pages in active regions for movable zone.
5555 * Populate N_MEMORY for calculating usable_nodes.
5556 */
5557 static unsigned long __init early_calculate_totalpages(void)
5558 {
5559 unsigned long totalpages = 0;
5560 unsigned long start_pfn, end_pfn;
5561 int i, nid;
5562
5563 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5564 unsigned long pages = end_pfn - start_pfn;
5565
5566 totalpages += pages;
5567 if (pages)
5568 node_set_state(nid, N_MEMORY);
5569 }
5570 return totalpages;
5571 }
5572
5573 /*
5574 * Find the PFN the Movable zone begins in each node. Kernel memory
5575 * is spread evenly between nodes as long as the nodes have enough
5576 * memory. When they don't, some nodes will have more kernelcore than
5577 * others
5578 */
5579 static void __init find_zone_movable_pfns_for_nodes(void)
5580 {
5581 int i, nid;
5582 unsigned long usable_startpfn;
5583 unsigned long kernelcore_node, kernelcore_remaining;
5584 /* save the state before borrow the nodemask */
5585 nodemask_t saved_node_state = node_states[N_MEMORY];
5586 unsigned long totalpages = early_calculate_totalpages();
5587 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5588 struct memblock_region *r;
5589
5590 /* Need to find movable_zone earlier when movable_node is specified. */
5591 find_usable_zone_for_movable();
5592
5593 /*
5594 * If movable_node is specified, ignore kernelcore and movablecore
5595 * options.
5596 */
5597 if (movable_node_is_enabled()) {
5598 for_each_memblock(memory, r) {
5599 if (!memblock_is_hotpluggable(r))
5600 continue;
5601
5602 nid = r->nid;
5603
5604 usable_startpfn = PFN_DOWN(r->base);
5605 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5606 min(usable_startpfn, zone_movable_pfn[nid]) :
5607 usable_startpfn;
5608 }
5609
5610 goto out2;
5611 }
5612
5613 /*
5614 * If movablecore=nn[KMG] was specified, calculate what size of
5615 * kernelcore that corresponds so that memory usable for
5616 * any allocation type is evenly spread. If both kernelcore
5617 * and movablecore are specified, then the value of kernelcore
5618 * will be used for required_kernelcore if it's greater than
5619 * what movablecore would have allowed.
5620 */
5621 if (required_movablecore) {
5622 unsigned long corepages;
5623
5624 /*
5625 * Round-up so that ZONE_MOVABLE is at least as large as what
5626 * was requested by the user
5627 */
5628 required_movablecore =
5629 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5630 corepages = totalpages - required_movablecore;
5631
5632 required_kernelcore = max(required_kernelcore, corepages);
5633 }
5634
5635 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5636 if (!required_kernelcore)
5637 goto out;
5638
5639 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5640 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5641
5642 restart:
5643 /* Spread kernelcore memory as evenly as possible throughout nodes */
5644 kernelcore_node = required_kernelcore / usable_nodes;
5645 for_each_node_state(nid, N_MEMORY) {
5646 unsigned long start_pfn, end_pfn;
5647
5648 /*
5649 * Recalculate kernelcore_node if the division per node
5650 * now exceeds what is necessary to satisfy the requested
5651 * amount of memory for the kernel
5652 */
5653 if (required_kernelcore < kernelcore_node)
5654 kernelcore_node = required_kernelcore / usable_nodes;
5655
5656 /*
5657 * As the map is walked, we track how much memory is usable
5658 * by the kernel using kernelcore_remaining. When it is
5659 * 0, the rest of the node is usable by ZONE_MOVABLE
5660 */
5661 kernelcore_remaining = kernelcore_node;
5662
5663 /* Go through each range of PFNs within this node */
5664 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5665 unsigned long size_pages;
5666
5667 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5668 if (start_pfn >= end_pfn)
5669 continue;
5670
5671 /* Account for what is only usable for kernelcore */
5672 if (start_pfn < usable_startpfn) {
5673 unsigned long kernel_pages;
5674 kernel_pages = min(end_pfn, usable_startpfn)
5675 - start_pfn;
5676
5677 kernelcore_remaining -= min(kernel_pages,
5678 kernelcore_remaining);
5679 required_kernelcore -= min(kernel_pages,
5680 required_kernelcore);
5681
5682 /* Continue if range is now fully accounted */
5683 if (end_pfn <= usable_startpfn) {
5684
5685 /*
5686 * Push zone_movable_pfn to the end so
5687 * that if we have to rebalance
5688 * kernelcore across nodes, we will
5689 * not double account here
5690 */
5691 zone_movable_pfn[nid] = end_pfn;
5692 continue;
5693 }
5694 start_pfn = usable_startpfn;
5695 }
5696
5697 /*
5698 * The usable PFN range for ZONE_MOVABLE is from
5699 * start_pfn->end_pfn. Calculate size_pages as the
5700 * number of pages used as kernelcore
5701 */
5702 size_pages = end_pfn - start_pfn;
5703 if (size_pages > kernelcore_remaining)
5704 size_pages = kernelcore_remaining;
5705 zone_movable_pfn[nid] = start_pfn + size_pages;
5706
5707 /*
5708 * Some kernelcore has been met, update counts and
5709 * break if the kernelcore for this node has been
5710 * satisfied
5711 */
5712 required_kernelcore -= min(required_kernelcore,
5713 size_pages);
5714 kernelcore_remaining -= size_pages;
5715 if (!kernelcore_remaining)
5716 break;
5717 }
5718 }
5719
5720 /*
5721 * If there is still required_kernelcore, we do another pass with one
5722 * less node in the count. This will push zone_movable_pfn[nid] further
5723 * along on the nodes that still have memory until kernelcore is
5724 * satisfied
5725 */
5726 usable_nodes--;
5727 if (usable_nodes && required_kernelcore > usable_nodes)
5728 goto restart;
5729
5730 out2:
5731 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5732 for (nid = 0; nid < MAX_NUMNODES; nid++)
5733 zone_movable_pfn[nid] =
5734 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5735
5736 out:
5737 /* restore the node_state */
5738 node_states[N_MEMORY] = saved_node_state;
5739 }
5740
5741 /* Any regular or high memory on that node ? */
5742 static void check_for_memory(pg_data_t *pgdat, int nid)
5743 {
5744 enum zone_type zone_type;
5745
5746 if (N_MEMORY == N_NORMAL_MEMORY)
5747 return;
5748
5749 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5750 struct zone *zone = &pgdat->node_zones[zone_type];
5751 if (populated_zone(zone)) {
5752 node_set_state(nid, N_HIGH_MEMORY);
5753 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5754 zone_type <= ZONE_NORMAL)
5755 node_set_state(nid, N_NORMAL_MEMORY);
5756 break;
5757 }
5758 }
5759 }
5760
5761 /**
5762 * free_area_init_nodes - Initialise all pg_data_t and zone data
5763 * @max_zone_pfn: an array of max PFNs for each zone
5764 *
5765 * This will call free_area_init_node() for each active node in the system.
5766 * Using the page ranges provided by memblock_set_node(), the size of each
5767 * zone in each node and their holes is calculated. If the maximum PFN
5768 * between two adjacent zones match, it is assumed that the zone is empty.
5769 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5770 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5771 * starts where the previous one ended. For example, ZONE_DMA32 starts
5772 * at arch_max_dma_pfn.
5773 */
5774 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5775 {
5776 unsigned long start_pfn, end_pfn;
5777 int i, nid;
5778
5779 /* Record where the zone boundaries are */
5780 memset(arch_zone_lowest_possible_pfn, 0,
5781 sizeof(arch_zone_lowest_possible_pfn));
5782 memset(arch_zone_highest_possible_pfn, 0,
5783 sizeof(arch_zone_highest_possible_pfn));
5784 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5785 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5786 for (i = 1; i < MAX_NR_ZONES; i++) {
5787 if (i == ZONE_MOVABLE)
5788 continue;
5789 arch_zone_lowest_possible_pfn[i] =
5790 arch_zone_highest_possible_pfn[i-1];
5791 arch_zone_highest_possible_pfn[i] =
5792 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5793 }
5794 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5795 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5796
5797 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5798 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5799 find_zone_movable_pfns_for_nodes();
5800
5801 /* Print out the zone ranges */
5802 pr_info("Zone ranges:\n");
5803 for (i = 0; i < MAX_NR_ZONES; i++) {
5804 if (i == ZONE_MOVABLE)
5805 continue;
5806 pr_info(" %-8s ", zone_names[i]);
5807 if (arch_zone_lowest_possible_pfn[i] ==
5808 arch_zone_highest_possible_pfn[i])
5809 pr_cont("empty\n");
5810 else
5811 pr_cont("[mem %#018Lx-%#018Lx]\n",
5812 (u64)arch_zone_lowest_possible_pfn[i]
5813 << PAGE_SHIFT,
5814 ((u64)arch_zone_highest_possible_pfn[i]
5815 << PAGE_SHIFT) - 1);
5816 }
5817
5818 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5819 pr_info("Movable zone start for each node\n");
5820 for (i = 0; i < MAX_NUMNODES; i++) {
5821 if (zone_movable_pfn[i])
5822 pr_info(" Node %d: %#018Lx\n", i,
5823 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5824 }
5825
5826 /* Print out the early node map */
5827 pr_info("Early memory node ranges\n");
5828 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5829 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5830 (u64)start_pfn << PAGE_SHIFT,
5831 ((u64)end_pfn << PAGE_SHIFT) - 1);
5832
5833 /* Initialise every node */
5834 mminit_verify_pageflags_layout();
5835 setup_nr_node_ids();
5836 for_each_online_node(nid) {
5837 pg_data_t *pgdat = NODE_DATA(nid);
5838 free_area_init_node(nid, NULL,
5839 find_min_pfn_for_node(nid), NULL);
5840
5841 /* Any memory on that node */
5842 if (pgdat->node_present_pages)
5843 node_set_state(nid, N_MEMORY);
5844 check_for_memory(pgdat, nid);
5845 }
5846 }
5847
5848 static int __init cmdline_parse_core(char *p, unsigned long *core)
5849 {
5850 unsigned long long coremem;
5851 if (!p)
5852 return -EINVAL;
5853
5854 coremem = memparse(p, &p);
5855 *core = coremem >> PAGE_SHIFT;
5856
5857 /* Paranoid check that UL is enough for the coremem value */
5858 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5859
5860 return 0;
5861 }
5862
5863 /*
5864 * kernelcore=size sets the amount of memory for use for allocations that
5865 * cannot be reclaimed or migrated.
5866 */
5867 static int __init cmdline_parse_kernelcore(char *p)
5868 {
5869 return cmdline_parse_core(p, &required_kernelcore);
5870 }
5871
5872 /*
5873 * movablecore=size sets the amount of memory for use for allocations that
5874 * can be reclaimed or migrated.
5875 */
5876 static int __init cmdline_parse_movablecore(char *p)
5877 {
5878 return cmdline_parse_core(p, &required_movablecore);
5879 }
5880
5881 early_param("kernelcore", cmdline_parse_kernelcore);
5882 early_param("movablecore", cmdline_parse_movablecore);
5883
5884 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5885
5886 void adjust_managed_page_count(struct page *page, long count)
5887 {
5888 spin_lock(&managed_page_count_lock);
5889 page_zone(page)->managed_pages += count;
5890 totalram_pages += count;
5891 #ifdef CONFIG_HIGHMEM
5892 if (PageHighMem(page))
5893 totalhigh_pages += count;
5894 #endif
5895 spin_unlock(&managed_page_count_lock);
5896 }
5897 EXPORT_SYMBOL(adjust_managed_page_count);
5898
5899 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5900 {
5901 void *pos;
5902 unsigned long pages = 0;
5903
5904 start = (void *)PAGE_ALIGN((unsigned long)start);
5905 end = (void *)((unsigned long)end & PAGE_MASK);
5906 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5907 if ((unsigned int)poison <= 0xFF)
5908 memset(pos, poison, PAGE_SIZE);
5909 free_reserved_page(virt_to_page(pos));
5910 }
5911
5912 if (pages && s)
5913 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5914 s, pages << (PAGE_SHIFT - 10), start, end);
5915
5916 return pages;
5917 }
5918 EXPORT_SYMBOL(free_reserved_area);
5919
5920 #ifdef CONFIG_HIGHMEM
5921 void free_highmem_page(struct page *page)
5922 {
5923 __free_reserved_page(page);
5924 totalram_pages++;
5925 page_zone(page)->managed_pages++;
5926 totalhigh_pages++;
5927 }
5928 #endif
5929
5930
5931 void __init mem_init_print_info(const char *str)
5932 {
5933 unsigned long physpages, codesize, datasize, rosize, bss_size;
5934 unsigned long init_code_size, init_data_size;
5935
5936 physpages = get_num_physpages();
5937 codesize = _etext - _stext;
5938 datasize = _edata - _sdata;
5939 rosize = __end_rodata - __start_rodata;
5940 bss_size = __bss_stop - __bss_start;
5941 init_data_size = __init_end - __init_begin;
5942 init_code_size = _einittext - _sinittext;
5943
5944 /*
5945 * Detect special cases and adjust section sizes accordingly:
5946 * 1) .init.* may be embedded into .data sections
5947 * 2) .init.text.* may be out of [__init_begin, __init_end],
5948 * please refer to arch/tile/kernel/vmlinux.lds.S.
5949 * 3) .rodata.* may be embedded into .text or .data sections.
5950 */
5951 #define adj_init_size(start, end, size, pos, adj) \
5952 do { \
5953 if (start <= pos && pos < end && size > adj) \
5954 size -= adj; \
5955 } while (0)
5956
5957 adj_init_size(__init_begin, __init_end, init_data_size,
5958 _sinittext, init_code_size);
5959 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5960 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5961 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5962 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5963
5964 #undef adj_init_size
5965
5966 pr_info("Memory: %luK/%luK available "
5967 "(%luK kernel code, %luK rwdata, %luK rodata, "
5968 "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5969 #ifdef CONFIG_HIGHMEM
5970 ", %luK highmem"
5971 #endif
5972 "%s%s)\n",
5973 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5974 codesize >> 10, datasize >> 10, rosize >> 10,
5975 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5976 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5977 totalcma_pages << (PAGE_SHIFT-10),
5978 #ifdef CONFIG_HIGHMEM
5979 totalhigh_pages << (PAGE_SHIFT-10),
5980 #endif
5981 str ? ", " : "", str ? str : "");
5982 }
5983
5984 /**
5985 * set_dma_reserve - set the specified number of pages reserved in the first zone
5986 * @new_dma_reserve: The number of pages to mark reserved
5987 *
5988 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5989 * In the DMA zone, a significant percentage may be consumed by kernel image
5990 * and other unfreeable allocations which can skew the watermarks badly. This
5991 * function may optionally be used to account for unfreeable pages in the
5992 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5993 * smaller per-cpu batchsize.
5994 */
5995 void __init set_dma_reserve(unsigned long new_dma_reserve)
5996 {
5997 dma_reserve = new_dma_reserve;
5998 }
5999
6000 void __init free_area_init(unsigned long *zones_size)
6001 {
6002 free_area_init_node(0, zones_size,
6003 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6004 }
6005
6006 static int page_alloc_cpu_notify(struct notifier_block *self,
6007 unsigned long action, void *hcpu)
6008 {
6009 int cpu = (unsigned long)hcpu;
6010
6011 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6012 lru_add_drain_cpu(cpu);
6013 drain_pages(cpu);
6014
6015 /*
6016 * Spill the event counters of the dead processor
6017 * into the current processors event counters.
6018 * This artificially elevates the count of the current
6019 * processor.
6020 */
6021 vm_events_fold_cpu(cpu);
6022
6023 /*
6024 * Zero the differential counters of the dead processor
6025 * so that the vm statistics are consistent.
6026 *
6027 * This is only okay since the processor is dead and cannot
6028 * race with what we are doing.
6029 */
6030 cpu_vm_stats_fold(cpu);
6031 }
6032 return NOTIFY_OK;
6033 }
6034
6035 void __init page_alloc_init(void)
6036 {
6037 hotcpu_notifier(page_alloc_cpu_notify, 0);
6038 }
6039
6040 /*
6041 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
6042 * or min_free_kbytes changes.
6043 */
6044 static void calculate_totalreserve_pages(void)
6045 {
6046 struct pglist_data *pgdat;
6047 unsigned long reserve_pages = 0;
6048 enum zone_type i, j;
6049
6050 for_each_online_pgdat(pgdat) {
6051 for (i = 0; i < MAX_NR_ZONES; i++) {
6052 struct zone *zone = pgdat->node_zones + i;
6053 long max = 0;
6054
6055 /* Find valid and maximum lowmem_reserve in the zone */
6056 for (j = i; j < MAX_NR_ZONES; j++) {
6057 if (zone->lowmem_reserve[j] > max)
6058 max = zone->lowmem_reserve[j];
6059 }
6060
6061 /* we treat the high watermark as reserved pages. */
6062 max += high_wmark_pages(zone);
6063
6064 if (max > zone->managed_pages)
6065 max = zone->managed_pages;
6066 reserve_pages += max;
6067 /*
6068 * Lowmem reserves are not available to
6069 * GFP_HIGHUSER page cache allocations and
6070 * kswapd tries to balance zones to their high
6071 * watermark. As a result, neither should be
6072 * regarded as dirtyable memory, to prevent a
6073 * situation where reclaim has to clean pages
6074 * in order to balance the zones.
6075 */
6076 zone->dirty_balance_reserve = max;
6077 }
6078 }
6079 dirty_balance_reserve = reserve_pages;
6080 totalreserve_pages = reserve_pages;
6081 }
6082
6083 /*
6084 * setup_per_zone_lowmem_reserve - called whenever
6085 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
6086 * has a correct pages reserved value, so an adequate number of
6087 * pages are left in the zone after a successful __alloc_pages().
6088 */
6089 static void setup_per_zone_lowmem_reserve(void)
6090 {
6091 struct pglist_data *pgdat;
6092 enum zone_type j, idx;
6093
6094 for_each_online_pgdat(pgdat) {
6095 for (j = 0; j < MAX_NR_ZONES; j++) {
6096 struct zone *zone = pgdat->node_zones + j;
6097 unsigned long managed_pages = zone->managed_pages;
6098
6099 zone->lowmem_reserve[j] = 0;
6100
6101 idx = j;
6102 while (idx) {
6103 struct zone *lower_zone;
6104
6105 idx--;
6106
6107 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6108 sysctl_lowmem_reserve_ratio[idx] = 1;
6109
6110 lower_zone = pgdat->node_zones + idx;
6111 lower_zone->lowmem_reserve[j] = managed_pages /
6112 sysctl_lowmem_reserve_ratio[idx];
6113 managed_pages += lower_zone->managed_pages;
6114 }
6115 }
6116 }
6117
6118 /* update totalreserve_pages */
6119 calculate_totalreserve_pages();
6120 }
6121
6122 static void __setup_per_zone_wmarks(void)
6123 {
6124 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6125 unsigned long lowmem_pages = 0;
6126 struct zone *zone;
6127 unsigned long flags;
6128
6129 /* Calculate total number of !ZONE_HIGHMEM pages */
6130 for_each_zone(zone) {
6131 if (!is_highmem(zone))
6132 lowmem_pages += zone->managed_pages;
6133 }
6134
6135 for_each_zone(zone) {
6136 u64 tmp;
6137
6138 spin_lock_irqsave(&zone->lock, flags);
6139 tmp = (u64)pages_min * zone->managed_pages;
6140 do_div(tmp, lowmem_pages);
6141 if (is_highmem(zone)) {
6142 /*
6143 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6144 * need highmem pages, so cap pages_min to a small
6145 * value here.
6146 *
6147 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6148 * deltas control asynch page reclaim, and so should
6149 * not be capped for highmem.
6150 */
6151 unsigned long min_pages;
6152
6153 min_pages = zone->managed_pages / 1024;
6154 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6155 zone->watermark[WMARK_MIN] = min_pages;
6156 } else {
6157 /*
6158 * If it's a lowmem zone, reserve a number of pages
6159 * proportionate to the zone's size.
6160 */
6161 zone->watermark[WMARK_MIN] = tmp;
6162 }
6163
6164 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
6165 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6166
6167 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6168 high_wmark_pages(zone) - low_wmark_pages(zone) -
6169 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6170
6171 setup_zone_migrate_reserve(zone);
6172 spin_unlock_irqrestore(&zone->lock, flags);
6173 }
6174
6175 /* update totalreserve_pages */
6176 calculate_totalreserve_pages();
6177 }
6178
6179 /**
6180 * setup_per_zone_wmarks - called when min_free_kbytes changes
6181 * or when memory is hot-{added|removed}
6182 *
6183 * Ensures that the watermark[min,low,high] values for each zone are set
6184 * correctly with respect to min_free_kbytes.
6185 */
6186 void setup_per_zone_wmarks(void)
6187 {
6188 mutex_lock(&zonelists_mutex);
6189 __setup_per_zone_wmarks();
6190 mutex_unlock(&zonelists_mutex);
6191 }
6192
6193 /*
6194 * The inactive anon list should be small enough that the VM never has to
6195 * do too much work, but large enough that each inactive page has a chance
6196 * to be referenced again before it is swapped out.
6197 *
6198 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6199 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6200 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6201 * the anonymous pages are kept on the inactive list.
6202 *
6203 * total target max
6204 * memory ratio inactive anon
6205 * -------------------------------------
6206 * 10MB 1 5MB
6207 * 100MB 1 50MB
6208 * 1GB 3 250MB
6209 * 10GB 10 0.9GB
6210 * 100GB 31 3GB
6211 * 1TB 101 10GB
6212 * 10TB 320 32GB
6213 */
6214 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6215 {
6216 unsigned int gb, ratio;
6217
6218 /* Zone size in gigabytes */
6219 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6220 if (gb)
6221 ratio = int_sqrt(10 * gb);
6222 else
6223 ratio = 1;
6224
6225 zone->inactive_ratio = ratio;
6226 }
6227
6228 static void __meminit setup_per_zone_inactive_ratio(void)
6229 {
6230 struct zone *zone;
6231
6232 for_each_zone(zone)
6233 calculate_zone_inactive_ratio(zone);
6234 }
6235
6236 /*
6237 * Initialise min_free_kbytes.
6238 *
6239 * For small machines we want it small (128k min). For large machines
6240 * we want it large (64MB max). But it is not linear, because network
6241 * bandwidth does not increase linearly with machine size. We use
6242 *
6243 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6244 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6245 *
6246 * which yields
6247 *
6248 * 16MB: 512k
6249 * 32MB: 724k
6250 * 64MB: 1024k
6251 * 128MB: 1448k
6252 * 256MB: 2048k
6253 * 512MB: 2896k
6254 * 1024MB: 4096k
6255 * 2048MB: 5792k
6256 * 4096MB: 8192k
6257 * 8192MB: 11584k
6258 * 16384MB: 16384k
6259 */
6260 int __meminit init_per_zone_wmark_min(void)
6261 {
6262 unsigned long lowmem_kbytes;
6263 int new_min_free_kbytes;
6264
6265 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6266 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6267
6268 if (new_min_free_kbytes > user_min_free_kbytes) {
6269 min_free_kbytes = new_min_free_kbytes;
6270 if (min_free_kbytes < 128)
6271 min_free_kbytes = 128;
6272 if (min_free_kbytes > 65536)
6273 min_free_kbytes = 65536;
6274 } else {
6275 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6276 new_min_free_kbytes, user_min_free_kbytes);
6277 }
6278 setup_per_zone_wmarks();
6279 refresh_zone_stat_thresholds();
6280 setup_per_zone_lowmem_reserve();
6281 setup_per_zone_inactive_ratio();
6282 return 0;
6283 }
6284 module_init(init_per_zone_wmark_min)
6285
6286 /*
6287 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6288 * that we can call two helper functions whenever min_free_kbytes
6289 * changes.
6290 */
6291 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6292 void __user *buffer, size_t *length, loff_t *ppos)
6293 {
6294 int rc;
6295
6296 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6297 if (rc)
6298 return rc;
6299
6300 if (write) {
6301 user_min_free_kbytes = min_free_kbytes;
6302 setup_per_zone_wmarks();
6303 }
6304 return 0;
6305 }
6306
6307 #ifdef CONFIG_NUMA
6308 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6309 void __user *buffer, size_t *length, loff_t *ppos)
6310 {
6311 struct zone *zone;
6312 int rc;
6313
6314 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6315 if (rc)
6316 return rc;
6317
6318 for_each_zone(zone)
6319 zone->min_unmapped_pages = (zone->managed_pages *
6320 sysctl_min_unmapped_ratio) / 100;
6321 return 0;
6322 }
6323
6324 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6325 void __user *buffer, size_t *length, loff_t *ppos)
6326 {
6327 struct zone *zone;
6328 int rc;
6329
6330 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6331 if (rc)
6332 return rc;
6333
6334 for_each_zone(zone)
6335 zone->min_slab_pages = (zone->managed_pages *
6336 sysctl_min_slab_ratio) / 100;
6337 return 0;
6338 }
6339 #endif
6340
6341 /*
6342 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6343 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6344 * whenever sysctl_lowmem_reserve_ratio changes.
6345 *
6346 * The reserve ratio obviously has absolutely no relation with the
6347 * minimum watermarks. The lowmem reserve ratio can only make sense
6348 * if in function of the boot time zone sizes.
6349 */
6350 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6351 void __user *buffer, size_t *length, loff_t *ppos)
6352 {
6353 proc_dointvec_minmax(table, write, buffer, length, ppos);
6354 setup_per_zone_lowmem_reserve();
6355 return 0;
6356 }
6357
6358 /*
6359 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6360 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6361 * pagelist can have before it gets flushed back to buddy allocator.
6362 */
6363 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6364 void __user *buffer, size_t *length, loff_t *ppos)
6365 {
6366 struct zone *zone;
6367 int old_percpu_pagelist_fraction;
6368 int ret;
6369
6370 mutex_lock(&pcp_batch_high_lock);
6371 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6372
6373 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6374 if (!write || ret < 0)
6375 goto out;
6376
6377 /* Sanity checking to avoid pcp imbalance */
6378 if (percpu_pagelist_fraction &&
6379 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6380 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6381 ret = -EINVAL;
6382 goto out;
6383 }
6384
6385 /* No change? */
6386 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6387 goto out;
6388
6389 for_each_populated_zone(zone) {
6390 unsigned int cpu;
6391
6392 for_each_possible_cpu(cpu)
6393 pageset_set_high_and_batch(zone,
6394 per_cpu_ptr(zone->pageset, cpu));
6395 }
6396 out:
6397 mutex_unlock(&pcp_batch_high_lock);
6398 return ret;
6399 }
6400
6401 #ifdef CONFIG_NUMA
6402 int hashdist = HASHDIST_DEFAULT;
6403
6404 static int __init set_hashdist(char *str)
6405 {
6406 if (!str)
6407 return 0;
6408 hashdist = simple_strtoul(str, &str, 0);
6409 return 1;
6410 }
6411 __setup("hashdist=", set_hashdist);
6412 #endif
6413
6414 /*
6415 * allocate a large system hash table from bootmem
6416 * - it is assumed that the hash table must contain an exact power-of-2
6417 * quantity of entries
6418 * - limit is the number of hash buckets, not the total allocation size
6419 */
6420 void *__init alloc_large_system_hash(const char *tablename,
6421 unsigned long bucketsize,
6422 unsigned long numentries,
6423 int scale,
6424 int flags,
6425 unsigned int *_hash_shift,
6426 unsigned int *_hash_mask,
6427 unsigned long low_limit,
6428 unsigned long high_limit)
6429 {
6430 unsigned long long max = high_limit;
6431 unsigned long log2qty, size;
6432 void *table = NULL;
6433
6434 /* allow the kernel cmdline to have a say */
6435 if (!numentries) {
6436 /* round applicable memory size up to nearest megabyte */
6437 numentries = nr_kernel_pages;
6438
6439 /* It isn't necessary when PAGE_SIZE >= 1MB */
6440 if (PAGE_SHIFT < 20)
6441 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6442
6443 /* limit to 1 bucket per 2^scale bytes of low memory */
6444 if (scale > PAGE_SHIFT)
6445 numentries >>= (scale - PAGE_SHIFT);
6446 else
6447 numentries <<= (PAGE_SHIFT - scale);
6448
6449 /* Make sure we've got at least a 0-order allocation.. */
6450 if (unlikely(flags & HASH_SMALL)) {
6451 /* Makes no sense without HASH_EARLY */
6452 WARN_ON(!(flags & HASH_EARLY));
6453 if (!(numentries >> *_hash_shift)) {
6454 numentries = 1UL << *_hash_shift;
6455 BUG_ON(!numentries);
6456 }
6457 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6458 numentries = PAGE_SIZE / bucketsize;
6459 }
6460 numentries = roundup_pow_of_two(numentries);
6461
6462 /* limit allocation size to 1/16 total memory by default */
6463 if (max == 0) {
6464 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6465 do_div(max, bucketsize);
6466 }
6467 max = min(max, 0x80000000ULL);
6468
6469 if (numentries < low_limit)
6470 numentries = low_limit;
6471 if (numentries > max)
6472 numentries = max;
6473
6474 log2qty = ilog2(numentries);
6475
6476 do {
6477 size = bucketsize << log2qty;
6478 if (flags & HASH_EARLY)
6479 table = memblock_virt_alloc_nopanic(size, 0);
6480 else if (hashdist)
6481 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6482 else {
6483 /*
6484 * If bucketsize is not a power-of-two, we may free
6485 * some pages at the end of hash table which
6486 * alloc_pages_exact() automatically does
6487 */
6488 if (get_order(size) < MAX_ORDER) {
6489 table = alloc_pages_exact(size, GFP_ATOMIC);
6490 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6491 }
6492 }
6493 } while (!table && size > PAGE_SIZE && --log2qty);
6494
6495 if (!table)
6496 panic("Failed to allocate %s hash table\n", tablename);
6497
6498 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6499 tablename,
6500 (1UL << log2qty),
6501 ilog2(size) - PAGE_SHIFT,
6502 size);
6503
6504 if (_hash_shift)
6505 *_hash_shift = log2qty;
6506 if (_hash_mask)
6507 *_hash_mask = (1 << log2qty) - 1;
6508
6509 return table;
6510 }
6511
6512 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6513 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6514 unsigned long pfn)
6515 {
6516 #ifdef CONFIG_SPARSEMEM
6517 return __pfn_to_section(pfn)->pageblock_flags;
6518 #else
6519 return zone->pageblock_flags;
6520 #endif /* CONFIG_SPARSEMEM */
6521 }
6522
6523 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6524 {
6525 #ifdef CONFIG_SPARSEMEM
6526 pfn &= (PAGES_PER_SECTION-1);
6527 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6528 #else
6529 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6530 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6531 #endif /* CONFIG_SPARSEMEM */
6532 }
6533
6534 /**
6535 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6536 * @page: The page within the block of interest
6537 * @pfn: The target page frame number
6538 * @end_bitidx: The last bit of interest to retrieve
6539 * @mask: mask of bits that the caller is interested in
6540 *
6541 * Return: pageblock_bits flags
6542 */
6543 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6544 unsigned long end_bitidx,
6545 unsigned long mask)
6546 {
6547 struct zone *zone;
6548 unsigned long *bitmap;
6549 unsigned long bitidx, word_bitidx;
6550 unsigned long word;
6551
6552 zone = page_zone(page);
6553 bitmap = get_pageblock_bitmap(zone, pfn);
6554 bitidx = pfn_to_bitidx(zone, pfn);
6555 word_bitidx = bitidx / BITS_PER_LONG;
6556 bitidx &= (BITS_PER_LONG-1);
6557
6558 word = bitmap[word_bitidx];
6559 bitidx += end_bitidx;
6560 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6561 }
6562
6563 /**
6564 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6565 * @page: The page within the block of interest
6566 * @flags: The flags to set
6567 * @pfn: The target page frame number
6568 * @end_bitidx: The last bit of interest
6569 * @mask: mask of bits that the caller is interested in
6570 */
6571 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6572 unsigned long pfn,
6573 unsigned long end_bitidx,
6574 unsigned long mask)
6575 {
6576 struct zone *zone;
6577 unsigned long *bitmap;
6578 unsigned long bitidx, word_bitidx;
6579 unsigned long old_word, word;
6580
6581 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6582
6583 zone = page_zone(page);
6584 bitmap = get_pageblock_bitmap(zone, pfn);
6585 bitidx = pfn_to_bitidx(zone, pfn);
6586 word_bitidx = bitidx / BITS_PER_LONG;
6587 bitidx &= (BITS_PER_LONG-1);
6588
6589 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6590
6591 bitidx += end_bitidx;
6592 mask <<= (BITS_PER_LONG - bitidx - 1);
6593 flags <<= (BITS_PER_LONG - bitidx - 1);
6594
6595 word = READ_ONCE(bitmap[word_bitidx]);
6596 for (;;) {
6597 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6598 if (word == old_word)
6599 break;
6600 word = old_word;
6601 }
6602 }
6603
6604 /*
6605 * This function checks whether pageblock includes unmovable pages or not.
6606 * If @count is not zero, it is okay to include less @count unmovable pages
6607 *
6608 * PageLRU check without isolation or lru_lock could race so that
6609 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6610 * expect this function should be exact.
6611 */
6612 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6613 bool skip_hwpoisoned_pages)
6614 {
6615 unsigned long pfn, iter, found;
6616 int mt;
6617
6618 /*
6619 * For avoiding noise data, lru_add_drain_all() should be called
6620 * If ZONE_MOVABLE, the zone never contains unmovable pages
6621 */
6622 if (zone_idx(zone) == ZONE_MOVABLE)
6623 return false;
6624 mt = get_pageblock_migratetype(page);
6625 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6626 return false;
6627
6628 pfn = page_to_pfn(page);
6629 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6630 unsigned long check = pfn + iter;
6631
6632 if (!pfn_valid_within(check))
6633 continue;
6634
6635 page = pfn_to_page(check);
6636
6637 /*
6638 * Hugepages are not in LRU lists, but they're movable.
6639 * We need not scan over tail pages bacause we don't
6640 * handle each tail page individually in migration.
6641 */
6642 if (PageHuge(page)) {
6643 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6644 continue;
6645 }
6646
6647 /*
6648 * We can't use page_count without pin a page
6649 * because another CPU can free compound page.
6650 * This check already skips compound tails of THP
6651 * because their page->_count is zero at all time.
6652 */
6653 if (!atomic_read(&page->_count)) {
6654 if (PageBuddy(page))
6655 iter += (1 << page_order(page)) - 1;
6656 continue;
6657 }
6658
6659 /*
6660 * The HWPoisoned page may be not in buddy system, and
6661 * page_count() is not 0.
6662 */
6663 if (skip_hwpoisoned_pages && PageHWPoison(page))
6664 continue;
6665
6666 if (!PageLRU(page))
6667 found++;
6668 /*
6669 * If there are RECLAIMABLE pages, we need to check
6670 * it. But now, memory offline itself doesn't call
6671 * shrink_node_slabs() and it still to be fixed.
6672 */
6673 /*
6674 * If the page is not RAM, page_count()should be 0.
6675 * we don't need more check. This is an _used_ not-movable page.
6676 *
6677 * The problematic thing here is PG_reserved pages. PG_reserved
6678 * is set to both of a memory hole page and a _used_ kernel
6679 * page at boot.
6680 */
6681 if (found > count)
6682 return true;
6683 }
6684 return false;
6685 }
6686
6687 bool is_pageblock_removable_nolock(struct page *page)
6688 {
6689 struct zone *zone;
6690 unsigned long pfn;
6691
6692 /*
6693 * We have to be careful here because we are iterating over memory
6694 * sections which are not zone aware so we might end up outside of
6695 * the zone but still within the section.
6696 * We have to take care about the node as well. If the node is offline
6697 * its NODE_DATA will be NULL - see page_zone.
6698 */
6699 if (!node_online(page_to_nid(page)))
6700 return false;
6701
6702 zone = page_zone(page);
6703 pfn = page_to_pfn(page);
6704 if (!zone_spans_pfn(zone, pfn))
6705 return false;
6706
6707 return !has_unmovable_pages(zone, page, 0, true);
6708 }
6709
6710 #ifdef CONFIG_CMA
6711
6712 static unsigned long pfn_max_align_down(unsigned long pfn)
6713 {
6714 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6715 pageblock_nr_pages) - 1);
6716 }
6717
6718 static unsigned long pfn_max_align_up(unsigned long pfn)
6719 {
6720 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6721 pageblock_nr_pages));
6722 }
6723
6724 /* [start, end) must belong to a single zone. */
6725 static int __alloc_contig_migrate_range(struct compact_control *cc,
6726 unsigned long start, unsigned long end)
6727 {
6728 /* This function is based on compact_zone() from compaction.c. */
6729 unsigned long nr_reclaimed;
6730 unsigned long pfn = start;
6731 unsigned int tries = 0;
6732 int ret = 0;
6733
6734 migrate_prep();
6735
6736 while (pfn < end || !list_empty(&cc->migratepages)) {
6737 if (fatal_signal_pending(current)) {
6738 ret = -EINTR;
6739 break;
6740 }
6741
6742 if (list_empty(&cc->migratepages)) {
6743 cc->nr_migratepages = 0;
6744 pfn = isolate_migratepages_range(cc, pfn, end);
6745 if (!pfn) {
6746 ret = -EINTR;
6747 break;
6748 }
6749 tries = 0;
6750 } else if (++tries == 5) {
6751 ret = ret < 0 ? ret : -EBUSY;
6752 break;
6753 }
6754
6755 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6756 &cc->migratepages);
6757 cc->nr_migratepages -= nr_reclaimed;
6758
6759 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6760 NULL, 0, cc->mode, MR_CMA);
6761 }
6762 if (ret < 0) {
6763 putback_movable_pages(&cc->migratepages);
6764 return ret;
6765 }
6766 return 0;
6767 }
6768
6769 /**
6770 * alloc_contig_range() -- tries to allocate given range of pages
6771 * @start: start PFN to allocate
6772 * @end: one-past-the-last PFN to allocate
6773 * @migratetype: migratetype of the underlaying pageblocks (either
6774 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6775 * in range must have the same migratetype and it must
6776 * be either of the two.
6777 *
6778 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6779 * aligned, however it's the caller's responsibility to guarantee that
6780 * we are the only thread that changes migrate type of pageblocks the
6781 * pages fall in.
6782 *
6783 * The PFN range must belong to a single zone.
6784 *
6785 * Returns zero on success or negative error code. On success all
6786 * pages which PFN is in [start, end) are allocated for the caller and
6787 * need to be freed with free_contig_range().
6788 */
6789 int alloc_contig_range(unsigned long start, unsigned long end,
6790 unsigned migratetype)
6791 {
6792 unsigned long outer_start, outer_end;
6793 int ret = 0, order;
6794
6795 struct compact_control cc = {
6796 .nr_migratepages = 0,
6797 .order = -1,
6798 .zone = page_zone(pfn_to_page(start)),
6799 .mode = MIGRATE_SYNC,
6800 .ignore_skip_hint = true,
6801 };
6802 INIT_LIST_HEAD(&cc.migratepages);
6803
6804 /*
6805 * What we do here is we mark all pageblocks in range as
6806 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6807 * have different sizes, and due to the way page allocator
6808 * work, we align the range to biggest of the two pages so
6809 * that page allocator won't try to merge buddies from
6810 * different pageblocks and change MIGRATE_ISOLATE to some
6811 * other migration type.
6812 *
6813 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6814 * migrate the pages from an unaligned range (ie. pages that
6815 * we are interested in). This will put all the pages in
6816 * range back to page allocator as MIGRATE_ISOLATE.
6817 *
6818 * When this is done, we take the pages in range from page
6819 * allocator removing them from the buddy system. This way
6820 * page allocator will never consider using them.
6821 *
6822 * This lets us mark the pageblocks back as
6823 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6824 * aligned range but not in the unaligned, original range are
6825 * put back to page allocator so that buddy can use them.
6826 */
6827
6828 ret = start_isolate_page_range(pfn_max_align_down(start),
6829 pfn_max_align_up(end), migratetype,
6830 false);
6831 if (ret)
6832 return ret;
6833
6834 ret = __alloc_contig_migrate_range(&cc, start, end);
6835 if (ret)
6836 goto done;
6837
6838 /*
6839 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6840 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6841 * more, all pages in [start, end) are free in page allocator.
6842 * What we are going to do is to allocate all pages from
6843 * [start, end) (that is remove them from page allocator).
6844 *
6845 * The only problem is that pages at the beginning and at the
6846 * end of interesting range may be not aligned with pages that
6847 * page allocator holds, ie. they can be part of higher order
6848 * pages. Because of this, we reserve the bigger range and
6849 * once this is done free the pages we are not interested in.
6850 *
6851 * We don't have to hold zone->lock here because the pages are
6852 * isolated thus they won't get removed from buddy.
6853 */
6854
6855 lru_add_drain_all();
6856 drain_all_pages(cc.zone);
6857
6858 order = 0;
6859 outer_start = start;
6860 while (!PageBuddy(pfn_to_page(outer_start))) {
6861 if (++order >= MAX_ORDER) {
6862 ret = -EBUSY;
6863 goto done;
6864 }
6865 outer_start &= ~0UL << order;
6866 }
6867
6868 /* Make sure the range is really isolated. */
6869 if (test_pages_isolated(outer_start, end, false)) {
6870 pr_info("%s: [%lx, %lx) PFNs busy\n",
6871 __func__, outer_start, end);
6872 ret = -EBUSY;
6873 goto done;
6874 }
6875
6876 /* Grab isolated pages from freelists. */
6877 outer_end = isolate_freepages_range(&cc, outer_start, end);
6878 if (!outer_end) {
6879 ret = -EBUSY;
6880 goto done;
6881 }
6882
6883 /* Free head and tail (if any) */
6884 if (start != outer_start)
6885 free_contig_range(outer_start, start - outer_start);
6886 if (end != outer_end)
6887 free_contig_range(end, outer_end - end);
6888
6889 done:
6890 undo_isolate_page_range(pfn_max_align_down(start),
6891 pfn_max_align_up(end), migratetype);
6892 return ret;
6893 }
6894
6895 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6896 {
6897 unsigned int count = 0;
6898
6899 for (; nr_pages--; pfn++) {
6900 struct page *page = pfn_to_page(pfn);
6901
6902 count += page_count(page) != 1;
6903 __free_page(page);
6904 }
6905 WARN(count != 0, "%d pages are still in use!\n", count);
6906 }
6907 #endif
6908
6909 #ifdef CONFIG_MEMORY_HOTPLUG
6910 /*
6911 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6912 * page high values need to be recalulated.
6913 */
6914 void __meminit zone_pcp_update(struct zone *zone)
6915 {
6916 unsigned cpu;
6917 mutex_lock(&pcp_batch_high_lock);
6918 for_each_possible_cpu(cpu)
6919 pageset_set_high_and_batch(zone,
6920 per_cpu_ptr(zone->pageset, cpu));
6921 mutex_unlock(&pcp_batch_high_lock);
6922 }
6923 #endif
6924
6925 void zone_pcp_reset(struct zone *zone)
6926 {
6927 unsigned long flags;
6928 int cpu;
6929 struct per_cpu_pageset *pset;
6930
6931 /* avoid races with drain_pages() */
6932 local_irq_save(flags);
6933 if (zone->pageset != &boot_pageset) {
6934 for_each_online_cpu(cpu) {
6935 pset = per_cpu_ptr(zone->pageset, cpu);
6936 drain_zonestat(zone, pset);
6937 }
6938 free_percpu(zone->pageset);
6939 zone->pageset = &boot_pageset;
6940 }
6941 local_irq_restore(flags);
6942 }
6943
6944 #ifdef CONFIG_MEMORY_HOTREMOVE
6945 /*
6946 * All pages in the range must be isolated before calling this.
6947 */
6948 void
6949 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6950 {
6951 struct page *page;
6952 struct zone *zone;
6953 unsigned int order, i;
6954 unsigned long pfn;
6955 unsigned long flags;
6956 /* find the first valid pfn */
6957 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6958 if (pfn_valid(pfn))
6959 break;
6960 if (pfn == end_pfn)
6961 return;
6962 zone = page_zone(pfn_to_page(pfn));
6963 spin_lock_irqsave(&zone->lock, flags);
6964 pfn = start_pfn;
6965 while (pfn < end_pfn) {
6966 if (!pfn_valid(pfn)) {
6967 pfn++;
6968 continue;
6969 }
6970 page = pfn_to_page(pfn);
6971 /*
6972 * The HWPoisoned page may be not in buddy system, and
6973 * page_count() is not 0.
6974 */
6975 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6976 pfn++;
6977 SetPageReserved(page);
6978 continue;
6979 }
6980
6981 BUG_ON(page_count(page));
6982 BUG_ON(!PageBuddy(page));
6983 order = page_order(page);
6984 #ifdef CONFIG_DEBUG_VM
6985 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6986 pfn, 1 << order, end_pfn);
6987 #endif
6988 list_del(&page->lru);
6989 rmv_page_order(page);
6990 zone->free_area[order].nr_free--;
6991 for (i = 0; i < (1 << order); i++)
6992 SetPageReserved((page+i));
6993 pfn += (1 << order);
6994 }
6995 spin_unlock_irqrestore(&zone->lock, flags);
6996 }
6997 #endif
6998
6999 #ifdef CONFIG_MEMORY_FAILURE
7000 bool is_free_buddy_page(struct page *page)
7001 {
7002 struct zone *zone = page_zone(page);
7003 unsigned long pfn = page_to_pfn(page);
7004 unsigned long flags;
7005 unsigned int order;
7006
7007 spin_lock_irqsave(&zone->lock, flags);
7008 for (order = 0; order < MAX_ORDER; order++) {
7009 struct page *page_head = page - (pfn & ((1 << order) - 1));
7010
7011 if (PageBuddy(page_head) && page_order(page_head) >= order)
7012 break;
7013 }
7014 spin_unlock_irqrestore(&zone->lock, flags);
7015
7016 return order < MAX_ORDER;
7017 }
7018 #endif