]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
Merge with /pub/scm/linux/kernel/git/torvalds/linux-2.6.git
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/config.h>
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/notifier.h>
32 #include <linux/topology.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mempolicy.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 /*
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
47 */
48 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
49 EXPORT_SYMBOL(node_online_map);
50 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
51 EXPORT_SYMBOL(node_possible_map);
52 unsigned long totalram_pages __read_mostly;
53 unsigned long totalhigh_pages __read_mostly;
54 long nr_swap_pages;
55 int percpu_pagelist_fraction;
56
57 static void __free_pages_ok(struct page *page, unsigned int order);
58
59 /*
60 * results with 256, 32 in the lowmem_reserve sysctl:
61 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
62 * 1G machine -> (16M dma, 784M normal, 224M high)
63 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
64 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
65 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
66 *
67 * TBD: should special case ZONE_DMA32 machines here - in those we normally
68 * don't need any ZONE_NORMAL reservation
69 */
70 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
71
72 EXPORT_SYMBOL(totalram_pages);
73
74 /*
75 * Used by page_zone() to look up the address of the struct zone whose
76 * id is encoded in the upper bits of page->flags
77 */
78 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
79 EXPORT_SYMBOL(zone_table);
80
81 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
82 int min_free_kbytes = 1024;
83
84 unsigned long __initdata nr_kernel_pages;
85 unsigned long __initdata nr_all_pages;
86
87 #ifdef CONFIG_DEBUG_VM
88 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
89 {
90 int ret = 0;
91 unsigned seq;
92 unsigned long pfn = page_to_pfn(page);
93
94 do {
95 seq = zone_span_seqbegin(zone);
96 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
97 ret = 1;
98 else if (pfn < zone->zone_start_pfn)
99 ret = 1;
100 } while (zone_span_seqretry(zone, seq));
101
102 return ret;
103 }
104
105 static int page_is_consistent(struct zone *zone, struct page *page)
106 {
107 #ifdef CONFIG_HOLES_IN_ZONE
108 if (!pfn_valid(page_to_pfn(page)))
109 return 0;
110 #endif
111 if (zone != page_zone(page))
112 return 0;
113
114 return 1;
115 }
116 /*
117 * Temporary debugging check for pages not lying within a given zone.
118 */
119 static int bad_range(struct zone *zone, struct page *page)
120 {
121 if (page_outside_zone_boundaries(zone, page))
122 return 1;
123 if (!page_is_consistent(zone, page))
124 return 1;
125
126 return 0;
127 }
128
129 #else
130 static inline int bad_range(struct zone *zone, struct page *page)
131 {
132 return 0;
133 }
134 #endif
135
136 static void bad_page(struct page *page)
137 {
138 printk(KERN_EMERG "Bad page state in process '%s'\n"
139 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
140 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
141 KERN_EMERG "Backtrace:\n",
142 current->comm, page, (int)(2*sizeof(unsigned long)),
143 (unsigned long)page->flags, page->mapping,
144 page_mapcount(page), page_count(page));
145 dump_stack();
146 page->flags &= ~(1 << PG_lru |
147 1 << PG_private |
148 1 << PG_locked |
149 1 << PG_active |
150 1 << PG_dirty |
151 1 << PG_reclaim |
152 1 << PG_slab |
153 1 << PG_swapcache |
154 1 << PG_writeback );
155 set_page_count(page, 0);
156 reset_page_mapcount(page);
157 page->mapping = NULL;
158 add_taint(TAINT_BAD_PAGE);
159 }
160
161 /*
162 * Higher-order pages are called "compound pages". They are structured thusly:
163 *
164 * The first PAGE_SIZE page is called the "head page".
165 *
166 * The remaining PAGE_SIZE pages are called "tail pages".
167 *
168 * All pages have PG_compound set. All pages have their ->private pointing at
169 * the head page (even the head page has this).
170 *
171 * The first tail page's ->lru.next holds the address of the compound page's
172 * put_page() function. Its ->lru.prev holds the order of allocation.
173 * This usage means that zero-order pages may not be compound.
174 */
175
176 static void free_compound_page(struct page *page)
177 {
178 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
179 }
180
181 static void prep_compound_page(struct page *page, unsigned long order)
182 {
183 int i;
184 int nr_pages = 1 << order;
185
186 page[1].lru.next = (void *)free_compound_page; /* set dtor */
187 page[1].lru.prev = (void *)order;
188 for (i = 0; i < nr_pages; i++) {
189 struct page *p = page + i;
190
191 __SetPageCompound(p);
192 set_page_private(p, (unsigned long)page);
193 }
194 }
195
196 static void destroy_compound_page(struct page *page, unsigned long order)
197 {
198 int i;
199 int nr_pages = 1 << order;
200
201 if (unlikely((unsigned long)page[1].lru.prev != order))
202 bad_page(page);
203
204 for (i = 0; i < nr_pages; i++) {
205 struct page *p = page + i;
206
207 if (unlikely(!PageCompound(p) |
208 (page_private(p) != (unsigned long)page)))
209 bad_page(page);
210 __ClearPageCompound(p);
211 }
212 }
213
214 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
215 {
216 int i;
217
218 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
219 /*
220 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
221 * and __GFP_HIGHMEM from hard or soft interrupt context.
222 */
223 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
224 for (i = 0; i < (1 << order); i++)
225 clear_highpage(page + i);
226 }
227
228 /*
229 * function for dealing with page's order in buddy system.
230 * zone->lock is already acquired when we use these.
231 * So, we don't need atomic page->flags operations here.
232 */
233 static inline unsigned long page_order(struct page *page) {
234 return page_private(page);
235 }
236
237 static inline void set_page_order(struct page *page, int order) {
238 set_page_private(page, order);
239 __SetPagePrivate(page);
240 }
241
242 static inline void rmv_page_order(struct page *page)
243 {
244 __ClearPagePrivate(page);
245 set_page_private(page, 0);
246 }
247
248 /*
249 * Locate the struct page for both the matching buddy in our
250 * pair (buddy1) and the combined O(n+1) page they form (page).
251 *
252 * 1) Any buddy B1 will have an order O twin B2 which satisfies
253 * the following equation:
254 * B2 = B1 ^ (1 << O)
255 * For example, if the starting buddy (buddy2) is #8 its order
256 * 1 buddy is #10:
257 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
258 *
259 * 2) Any buddy B will have an order O+1 parent P which
260 * satisfies the following equation:
261 * P = B & ~(1 << O)
262 *
263 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
264 */
265 static inline struct page *
266 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
267 {
268 unsigned long buddy_idx = page_idx ^ (1 << order);
269
270 return page + (buddy_idx - page_idx);
271 }
272
273 static inline unsigned long
274 __find_combined_index(unsigned long page_idx, unsigned int order)
275 {
276 return (page_idx & ~(1 << order));
277 }
278
279 /*
280 * This function checks whether a page is free && is the buddy
281 * we can do coalesce a page and its buddy if
282 * (a) the buddy is not in a hole &&
283 * (b) the buddy is free &&
284 * (c) the buddy is on the buddy system &&
285 * (d) a page and its buddy have the same order.
286 * for recording page's order, we use page_private(page) and PG_private.
287 *
288 */
289 static inline int page_is_buddy(struct page *page, int order)
290 {
291 #ifdef CONFIG_HOLES_IN_ZONE
292 if (!pfn_valid(page_to_pfn(page)))
293 return 0;
294 #endif
295
296 if (PagePrivate(page) &&
297 (page_order(page) == order) &&
298 page_count(page) == 0)
299 return 1;
300 return 0;
301 }
302
303 /*
304 * Freeing function for a buddy system allocator.
305 *
306 * The concept of a buddy system is to maintain direct-mapped table
307 * (containing bit values) for memory blocks of various "orders".
308 * The bottom level table contains the map for the smallest allocatable
309 * units of memory (here, pages), and each level above it describes
310 * pairs of units from the levels below, hence, "buddies".
311 * At a high level, all that happens here is marking the table entry
312 * at the bottom level available, and propagating the changes upward
313 * as necessary, plus some accounting needed to play nicely with other
314 * parts of the VM system.
315 * At each level, we keep a list of pages, which are heads of continuous
316 * free pages of length of (1 << order) and marked with PG_Private.Page's
317 * order is recorded in page_private(page) field.
318 * So when we are allocating or freeing one, we can derive the state of the
319 * other. That is, if we allocate a small block, and both were
320 * free, the remainder of the region must be split into blocks.
321 * If a block is freed, and its buddy is also free, then this
322 * triggers coalescing into a block of larger size.
323 *
324 * -- wli
325 */
326
327 static inline void __free_one_page(struct page *page,
328 struct zone *zone, unsigned int order)
329 {
330 unsigned long page_idx;
331 int order_size = 1 << order;
332
333 if (unlikely(PageCompound(page)))
334 destroy_compound_page(page, order);
335
336 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
337
338 BUG_ON(page_idx & (order_size - 1));
339 BUG_ON(bad_range(zone, page));
340
341 zone->free_pages += order_size;
342 while (order < MAX_ORDER-1) {
343 unsigned long combined_idx;
344 struct free_area *area;
345 struct page *buddy;
346
347 buddy = __page_find_buddy(page, page_idx, order);
348 if (!page_is_buddy(buddy, order))
349 break; /* Move the buddy up one level. */
350
351 list_del(&buddy->lru);
352 area = zone->free_area + order;
353 area->nr_free--;
354 rmv_page_order(buddy);
355 combined_idx = __find_combined_index(page_idx, order);
356 page = page + (combined_idx - page_idx);
357 page_idx = combined_idx;
358 order++;
359 }
360 set_page_order(page, order);
361 list_add(&page->lru, &zone->free_area[order].free_list);
362 zone->free_area[order].nr_free++;
363 }
364
365 static inline int free_pages_check(struct page *page)
366 {
367 if (unlikely(page_mapcount(page) |
368 (page->mapping != NULL) |
369 (page_count(page) != 0) |
370 (page->flags & (
371 1 << PG_lru |
372 1 << PG_private |
373 1 << PG_locked |
374 1 << PG_active |
375 1 << PG_reclaim |
376 1 << PG_slab |
377 1 << PG_swapcache |
378 1 << PG_writeback |
379 1 << PG_reserved ))))
380 bad_page(page);
381 if (PageDirty(page))
382 __ClearPageDirty(page);
383 /*
384 * For now, we report if PG_reserved was found set, but do not
385 * clear it, and do not free the page. But we shall soon need
386 * to do more, for when the ZERO_PAGE count wraps negative.
387 */
388 return PageReserved(page);
389 }
390
391 /*
392 * Frees a list of pages.
393 * Assumes all pages on list are in same zone, and of same order.
394 * count is the number of pages to free.
395 *
396 * If the zone was previously in an "all pages pinned" state then look to
397 * see if this freeing clears that state.
398 *
399 * And clear the zone's pages_scanned counter, to hold off the "all pages are
400 * pinned" detection logic.
401 */
402 static void free_pages_bulk(struct zone *zone, int count,
403 struct list_head *list, int order)
404 {
405 spin_lock(&zone->lock);
406 zone->all_unreclaimable = 0;
407 zone->pages_scanned = 0;
408 while (count--) {
409 struct page *page;
410
411 BUG_ON(list_empty(list));
412 page = list_entry(list->prev, struct page, lru);
413 /* have to delete it as __free_one_page list manipulates */
414 list_del(&page->lru);
415 __free_one_page(page, zone, order);
416 }
417 spin_unlock(&zone->lock);
418 }
419
420 static void free_one_page(struct zone *zone, struct page *page, int order)
421 {
422 LIST_HEAD(list);
423 list_add(&page->lru, &list);
424 free_pages_bulk(zone, 1, &list, order);
425 }
426
427 static void __free_pages_ok(struct page *page, unsigned int order)
428 {
429 unsigned long flags;
430 int i;
431 int reserved = 0;
432
433 arch_free_page(page, order);
434 if (!PageHighMem(page))
435 mutex_debug_check_no_locks_freed(page_address(page),
436 PAGE_SIZE<<order);
437
438 for (i = 0 ; i < (1 << order) ; ++i)
439 reserved += free_pages_check(page + i);
440 if (reserved)
441 return;
442
443 kernel_map_pages(page, 1 << order, 0);
444 local_irq_save(flags);
445 __mod_page_state(pgfree, 1 << order);
446 free_one_page(page_zone(page), page, order);
447 local_irq_restore(flags);
448 }
449
450 /*
451 * permit the bootmem allocator to evade page validation on high-order frees
452 */
453 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
454 {
455 if (order == 0) {
456 __ClearPageReserved(page);
457 set_page_count(page, 0);
458 set_page_refcounted(page);
459 __free_page(page);
460 } else {
461 int loop;
462
463 prefetchw(page);
464 for (loop = 0; loop < BITS_PER_LONG; loop++) {
465 struct page *p = &page[loop];
466
467 if (loop + 1 < BITS_PER_LONG)
468 prefetchw(p + 1);
469 __ClearPageReserved(p);
470 set_page_count(p, 0);
471 }
472
473 set_page_refcounted(page);
474 __free_pages(page, order);
475 }
476 }
477
478
479 /*
480 * The order of subdivision here is critical for the IO subsystem.
481 * Please do not alter this order without good reasons and regression
482 * testing. Specifically, as large blocks of memory are subdivided,
483 * the order in which smaller blocks are delivered depends on the order
484 * they're subdivided in this function. This is the primary factor
485 * influencing the order in which pages are delivered to the IO
486 * subsystem according to empirical testing, and this is also justified
487 * by considering the behavior of a buddy system containing a single
488 * large block of memory acted on by a series of small allocations.
489 * This behavior is a critical factor in sglist merging's success.
490 *
491 * -- wli
492 */
493 static inline void expand(struct zone *zone, struct page *page,
494 int low, int high, struct free_area *area)
495 {
496 unsigned long size = 1 << high;
497
498 while (high > low) {
499 area--;
500 high--;
501 size >>= 1;
502 BUG_ON(bad_range(zone, &page[size]));
503 list_add(&page[size].lru, &area->free_list);
504 area->nr_free++;
505 set_page_order(&page[size], high);
506 }
507 }
508
509 /*
510 * This page is about to be returned from the page allocator
511 */
512 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
513 {
514 if (unlikely(page_mapcount(page) |
515 (page->mapping != NULL) |
516 (page_count(page) != 0) |
517 (page->flags & (
518 1 << PG_lru |
519 1 << PG_private |
520 1 << PG_locked |
521 1 << PG_active |
522 1 << PG_dirty |
523 1 << PG_reclaim |
524 1 << PG_slab |
525 1 << PG_swapcache |
526 1 << PG_writeback |
527 1 << PG_reserved ))))
528 bad_page(page);
529
530 /*
531 * For now, we report if PG_reserved was found set, but do not
532 * clear it, and do not allocate the page: as a safety net.
533 */
534 if (PageReserved(page))
535 return 1;
536
537 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
538 1 << PG_referenced | 1 << PG_arch_1 |
539 1 << PG_checked | 1 << PG_mappedtodisk);
540 set_page_private(page, 0);
541 set_page_refcounted(page);
542 kernel_map_pages(page, 1 << order, 1);
543
544 if (gfp_flags & __GFP_ZERO)
545 prep_zero_page(page, order, gfp_flags);
546
547 if (order && (gfp_flags & __GFP_COMP))
548 prep_compound_page(page, order);
549
550 return 0;
551 }
552
553 /*
554 * Do the hard work of removing an element from the buddy allocator.
555 * Call me with the zone->lock already held.
556 */
557 static struct page *__rmqueue(struct zone *zone, unsigned int order)
558 {
559 struct free_area * area;
560 unsigned int current_order;
561 struct page *page;
562
563 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
564 area = zone->free_area + current_order;
565 if (list_empty(&area->free_list))
566 continue;
567
568 page = list_entry(area->free_list.next, struct page, lru);
569 list_del(&page->lru);
570 rmv_page_order(page);
571 area->nr_free--;
572 zone->free_pages -= 1UL << order;
573 expand(zone, page, order, current_order, area);
574 return page;
575 }
576
577 return NULL;
578 }
579
580 /*
581 * Obtain a specified number of elements from the buddy allocator, all under
582 * a single hold of the lock, for efficiency. Add them to the supplied list.
583 * Returns the number of new pages which were placed at *list.
584 */
585 static int rmqueue_bulk(struct zone *zone, unsigned int order,
586 unsigned long count, struct list_head *list)
587 {
588 int i;
589
590 spin_lock(&zone->lock);
591 for (i = 0; i < count; ++i) {
592 struct page *page = __rmqueue(zone, order);
593 if (unlikely(page == NULL))
594 break;
595 list_add_tail(&page->lru, list);
596 }
597 spin_unlock(&zone->lock);
598 return i;
599 }
600
601 #ifdef CONFIG_NUMA
602 /*
603 * Called from the slab reaper to drain pagesets on a particular node that
604 * belong to the currently executing processor.
605 * Note that this function must be called with the thread pinned to
606 * a single processor.
607 */
608 void drain_node_pages(int nodeid)
609 {
610 int i, z;
611 unsigned long flags;
612
613 for (z = 0; z < MAX_NR_ZONES; z++) {
614 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
615 struct per_cpu_pageset *pset;
616
617 pset = zone_pcp(zone, smp_processor_id());
618 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
619 struct per_cpu_pages *pcp;
620
621 pcp = &pset->pcp[i];
622 if (pcp->count) {
623 local_irq_save(flags);
624 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
625 pcp->count = 0;
626 local_irq_restore(flags);
627 }
628 }
629 }
630 }
631 #endif
632
633 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
634 static void __drain_pages(unsigned int cpu)
635 {
636 unsigned long flags;
637 struct zone *zone;
638 int i;
639
640 for_each_zone(zone) {
641 struct per_cpu_pageset *pset;
642
643 pset = zone_pcp(zone, cpu);
644 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
645 struct per_cpu_pages *pcp;
646
647 pcp = &pset->pcp[i];
648 local_irq_save(flags);
649 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
650 pcp->count = 0;
651 local_irq_restore(flags);
652 }
653 }
654 }
655 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
656
657 #ifdef CONFIG_PM
658
659 void mark_free_pages(struct zone *zone)
660 {
661 unsigned long zone_pfn, flags;
662 int order;
663 struct list_head *curr;
664
665 if (!zone->spanned_pages)
666 return;
667
668 spin_lock_irqsave(&zone->lock, flags);
669 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
670 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
671
672 for (order = MAX_ORDER - 1; order >= 0; --order)
673 list_for_each(curr, &zone->free_area[order].free_list) {
674 unsigned long start_pfn, i;
675
676 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
677
678 for (i=0; i < (1<<order); i++)
679 SetPageNosaveFree(pfn_to_page(start_pfn+i));
680 }
681 spin_unlock_irqrestore(&zone->lock, flags);
682 }
683
684 /*
685 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
686 */
687 void drain_local_pages(void)
688 {
689 unsigned long flags;
690
691 local_irq_save(flags);
692 __drain_pages(smp_processor_id());
693 local_irq_restore(flags);
694 }
695 #endif /* CONFIG_PM */
696
697 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
698 {
699 #ifdef CONFIG_NUMA
700 pg_data_t *pg = z->zone_pgdat;
701 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
702 struct per_cpu_pageset *p;
703
704 p = zone_pcp(z, cpu);
705 if (pg == orig) {
706 p->numa_hit++;
707 } else {
708 p->numa_miss++;
709 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
710 }
711 if (pg == NODE_DATA(numa_node_id()))
712 p->local_node++;
713 else
714 p->other_node++;
715 #endif
716 }
717
718 /*
719 * Free a 0-order page
720 */
721 static void fastcall free_hot_cold_page(struct page *page, int cold)
722 {
723 struct zone *zone = page_zone(page);
724 struct per_cpu_pages *pcp;
725 unsigned long flags;
726
727 arch_free_page(page, 0);
728
729 if (PageAnon(page))
730 page->mapping = NULL;
731 if (free_pages_check(page))
732 return;
733
734 kernel_map_pages(page, 1, 0);
735
736 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
737 local_irq_save(flags);
738 __inc_page_state(pgfree);
739 list_add(&page->lru, &pcp->list);
740 pcp->count++;
741 if (pcp->count >= pcp->high) {
742 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
743 pcp->count -= pcp->batch;
744 }
745 local_irq_restore(flags);
746 put_cpu();
747 }
748
749 void fastcall free_hot_page(struct page *page)
750 {
751 free_hot_cold_page(page, 0);
752 }
753
754 void fastcall free_cold_page(struct page *page)
755 {
756 free_hot_cold_page(page, 1);
757 }
758
759 /*
760 * split_page takes a non-compound higher-order page, and splits it into
761 * n (1<<order) sub-pages: page[0..n]
762 * Each sub-page must be freed individually.
763 *
764 * Note: this is probably too low level an operation for use in drivers.
765 * Please consult with lkml before using this in your driver.
766 */
767 void split_page(struct page *page, unsigned int order)
768 {
769 int i;
770
771 BUG_ON(PageCompound(page));
772 BUG_ON(!page_count(page));
773 for (i = 1; i < (1 << order); i++)
774 set_page_refcounted(page + i);
775 }
776
777 /*
778 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
779 * we cheat by calling it from here, in the order > 0 path. Saves a branch
780 * or two.
781 */
782 static struct page *buffered_rmqueue(struct zonelist *zonelist,
783 struct zone *zone, int order, gfp_t gfp_flags)
784 {
785 unsigned long flags;
786 struct page *page;
787 int cold = !!(gfp_flags & __GFP_COLD);
788 int cpu;
789
790 again:
791 cpu = get_cpu();
792 if (likely(order == 0)) {
793 struct per_cpu_pages *pcp;
794
795 pcp = &zone_pcp(zone, cpu)->pcp[cold];
796 local_irq_save(flags);
797 if (!pcp->count) {
798 pcp->count += rmqueue_bulk(zone, 0,
799 pcp->batch, &pcp->list);
800 if (unlikely(!pcp->count))
801 goto failed;
802 }
803 page = list_entry(pcp->list.next, struct page, lru);
804 list_del(&page->lru);
805 pcp->count--;
806 } else {
807 spin_lock_irqsave(&zone->lock, flags);
808 page = __rmqueue(zone, order);
809 spin_unlock(&zone->lock);
810 if (!page)
811 goto failed;
812 }
813
814 __mod_page_state_zone(zone, pgalloc, 1 << order);
815 zone_statistics(zonelist, zone, cpu);
816 local_irq_restore(flags);
817 put_cpu();
818
819 BUG_ON(bad_range(zone, page));
820 if (prep_new_page(page, order, gfp_flags))
821 goto again;
822 return page;
823
824 failed:
825 local_irq_restore(flags);
826 put_cpu();
827 return NULL;
828 }
829
830 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
831 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
832 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
833 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
834 #define ALLOC_HARDER 0x10 /* try to alloc harder */
835 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
836 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
837
838 /*
839 * Return 1 if free pages are above 'mark'. This takes into account the order
840 * of the allocation.
841 */
842 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
843 int classzone_idx, int alloc_flags)
844 {
845 /* free_pages my go negative - that's OK */
846 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
847 int o;
848
849 if (alloc_flags & ALLOC_HIGH)
850 min -= min / 2;
851 if (alloc_flags & ALLOC_HARDER)
852 min -= min / 4;
853
854 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
855 return 0;
856 for (o = 0; o < order; o++) {
857 /* At the next order, this order's pages become unavailable */
858 free_pages -= z->free_area[o].nr_free << o;
859
860 /* Require fewer higher order pages to be free */
861 min >>= 1;
862
863 if (free_pages <= min)
864 return 0;
865 }
866 return 1;
867 }
868
869 /*
870 * get_page_from_freeliest goes through the zonelist trying to allocate
871 * a page.
872 */
873 static struct page *
874 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
875 struct zonelist *zonelist, int alloc_flags)
876 {
877 struct zone **z = zonelist->zones;
878 struct page *page = NULL;
879 int classzone_idx = zone_idx(*z);
880
881 /*
882 * Go through the zonelist once, looking for a zone with enough free.
883 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
884 */
885 do {
886 if ((alloc_flags & ALLOC_CPUSET) &&
887 !cpuset_zone_allowed(*z, gfp_mask))
888 continue;
889
890 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
891 unsigned long mark;
892 if (alloc_flags & ALLOC_WMARK_MIN)
893 mark = (*z)->pages_min;
894 else if (alloc_flags & ALLOC_WMARK_LOW)
895 mark = (*z)->pages_low;
896 else
897 mark = (*z)->pages_high;
898 if (!zone_watermark_ok(*z, order, mark,
899 classzone_idx, alloc_flags))
900 if (!zone_reclaim_mode ||
901 !zone_reclaim(*z, gfp_mask, order))
902 continue;
903 }
904
905 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
906 if (page) {
907 break;
908 }
909 } while (*(++z) != NULL);
910 return page;
911 }
912
913 /*
914 * This is the 'heart' of the zoned buddy allocator.
915 */
916 struct page * fastcall
917 __alloc_pages(gfp_t gfp_mask, unsigned int order,
918 struct zonelist *zonelist)
919 {
920 const gfp_t wait = gfp_mask & __GFP_WAIT;
921 struct zone **z;
922 struct page *page;
923 struct reclaim_state reclaim_state;
924 struct task_struct *p = current;
925 int do_retry;
926 int alloc_flags;
927 int did_some_progress;
928
929 might_sleep_if(wait);
930
931 restart:
932 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
933
934 if (unlikely(*z == NULL)) {
935 /* Should this ever happen?? */
936 return NULL;
937 }
938
939 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
940 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
941 if (page)
942 goto got_pg;
943
944 do {
945 if (cpuset_zone_allowed(*z, gfp_mask))
946 wakeup_kswapd(*z, order);
947 } while (*(++z));
948
949 /*
950 * OK, we're below the kswapd watermark and have kicked background
951 * reclaim. Now things get more complex, so set up alloc_flags according
952 * to how we want to proceed.
953 *
954 * The caller may dip into page reserves a bit more if the caller
955 * cannot run direct reclaim, or if the caller has realtime scheduling
956 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
957 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
958 */
959 alloc_flags = ALLOC_WMARK_MIN;
960 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
961 alloc_flags |= ALLOC_HARDER;
962 if (gfp_mask & __GFP_HIGH)
963 alloc_flags |= ALLOC_HIGH;
964 alloc_flags |= ALLOC_CPUSET;
965
966 /*
967 * Go through the zonelist again. Let __GFP_HIGH and allocations
968 * coming from realtime tasks go deeper into reserves.
969 *
970 * This is the last chance, in general, before the goto nopage.
971 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
972 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
973 */
974 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
975 if (page)
976 goto got_pg;
977
978 /* This allocation should allow future memory freeing. */
979
980 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
981 && !in_interrupt()) {
982 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
983 nofail_alloc:
984 /* go through the zonelist yet again, ignoring mins */
985 page = get_page_from_freelist(gfp_mask, order,
986 zonelist, ALLOC_NO_WATERMARKS);
987 if (page)
988 goto got_pg;
989 if (gfp_mask & __GFP_NOFAIL) {
990 blk_congestion_wait(WRITE, HZ/50);
991 goto nofail_alloc;
992 }
993 }
994 goto nopage;
995 }
996
997 /* Atomic allocations - we can't balance anything */
998 if (!wait)
999 goto nopage;
1000
1001 rebalance:
1002 cond_resched();
1003
1004 /* We now go into synchronous reclaim */
1005 cpuset_memory_pressure_bump();
1006 p->flags |= PF_MEMALLOC;
1007 reclaim_state.reclaimed_slab = 0;
1008 p->reclaim_state = &reclaim_state;
1009
1010 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1011
1012 p->reclaim_state = NULL;
1013 p->flags &= ~PF_MEMALLOC;
1014
1015 cond_resched();
1016
1017 if (likely(did_some_progress)) {
1018 page = get_page_from_freelist(gfp_mask, order,
1019 zonelist, alloc_flags);
1020 if (page)
1021 goto got_pg;
1022 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1023 /*
1024 * Go through the zonelist yet one more time, keep
1025 * very high watermark here, this is only to catch
1026 * a parallel oom killing, we must fail if we're still
1027 * under heavy pressure.
1028 */
1029 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1030 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1031 if (page)
1032 goto got_pg;
1033
1034 out_of_memory(zonelist, gfp_mask, order);
1035 goto restart;
1036 }
1037
1038 /*
1039 * Don't let big-order allocations loop unless the caller explicitly
1040 * requests that. Wait for some write requests to complete then retry.
1041 *
1042 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1043 * <= 3, but that may not be true in other implementations.
1044 */
1045 do_retry = 0;
1046 if (!(gfp_mask & __GFP_NORETRY)) {
1047 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1048 do_retry = 1;
1049 if (gfp_mask & __GFP_NOFAIL)
1050 do_retry = 1;
1051 }
1052 if (do_retry) {
1053 blk_congestion_wait(WRITE, HZ/50);
1054 goto rebalance;
1055 }
1056
1057 nopage:
1058 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1059 printk(KERN_WARNING "%s: page allocation failure."
1060 " order:%d, mode:0x%x\n",
1061 p->comm, order, gfp_mask);
1062 dump_stack();
1063 show_mem();
1064 }
1065 got_pg:
1066 return page;
1067 }
1068
1069 EXPORT_SYMBOL(__alloc_pages);
1070
1071 /*
1072 * Common helper functions.
1073 */
1074 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1075 {
1076 struct page * page;
1077 page = alloc_pages(gfp_mask, order);
1078 if (!page)
1079 return 0;
1080 return (unsigned long) page_address(page);
1081 }
1082
1083 EXPORT_SYMBOL(__get_free_pages);
1084
1085 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1086 {
1087 struct page * page;
1088
1089 /*
1090 * get_zeroed_page() returns a 32-bit address, which cannot represent
1091 * a highmem page
1092 */
1093 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1094
1095 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1096 if (page)
1097 return (unsigned long) page_address(page);
1098 return 0;
1099 }
1100
1101 EXPORT_SYMBOL(get_zeroed_page);
1102
1103 void __pagevec_free(struct pagevec *pvec)
1104 {
1105 int i = pagevec_count(pvec);
1106
1107 while (--i >= 0)
1108 free_hot_cold_page(pvec->pages[i], pvec->cold);
1109 }
1110
1111 fastcall void __free_pages(struct page *page, unsigned int order)
1112 {
1113 if (put_page_testzero(page)) {
1114 if (order == 0)
1115 free_hot_page(page);
1116 else
1117 __free_pages_ok(page, order);
1118 }
1119 }
1120
1121 EXPORT_SYMBOL(__free_pages);
1122
1123 fastcall void free_pages(unsigned long addr, unsigned int order)
1124 {
1125 if (addr != 0) {
1126 BUG_ON(!virt_addr_valid((void *)addr));
1127 __free_pages(virt_to_page((void *)addr), order);
1128 }
1129 }
1130
1131 EXPORT_SYMBOL(free_pages);
1132
1133 /*
1134 * Total amount of free (allocatable) RAM:
1135 */
1136 unsigned int nr_free_pages(void)
1137 {
1138 unsigned int sum = 0;
1139 struct zone *zone;
1140
1141 for_each_zone(zone)
1142 sum += zone->free_pages;
1143
1144 return sum;
1145 }
1146
1147 EXPORT_SYMBOL(nr_free_pages);
1148
1149 #ifdef CONFIG_NUMA
1150 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1151 {
1152 unsigned int i, sum = 0;
1153
1154 for (i = 0; i < MAX_NR_ZONES; i++)
1155 sum += pgdat->node_zones[i].free_pages;
1156
1157 return sum;
1158 }
1159 #endif
1160
1161 static unsigned int nr_free_zone_pages(int offset)
1162 {
1163 /* Just pick one node, since fallback list is circular */
1164 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1165 unsigned int sum = 0;
1166
1167 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1168 struct zone **zonep = zonelist->zones;
1169 struct zone *zone;
1170
1171 for (zone = *zonep++; zone; zone = *zonep++) {
1172 unsigned long size = zone->present_pages;
1173 unsigned long high = zone->pages_high;
1174 if (size > high)
1175 sum += size - high;
1176 }
1177
1178 return sum;
1179 }
1180
1181 /*
1182 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1183 */
1184 unsigned int nr_free_buffer_pages(void)
1185 {
1186 return nr_free_zone_pages(gfp_zone(GFP_USER));
1187 }
1188
1189 /*
1190 * Amount of free RAM allocatable within all zones
1191 */
1192 unsigned int nr_free_pagecache_pages(void)
1193 {
1194 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1195 }
1196
1197 #ifdef CONFIG_HIGHMEM
1198 unsigned int nr_free_highpages (void)
1199 {
1200 pg_data_t *pgdat;
1201 unsigned int pages = 0;
1202
1203 for_each_online_pgdat(pgdat)
1204 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1205
1206 return pages;
1207 }
1208 #endif
1209
1210 #ifdef CONFIG_NUMA
1211 static void show_node(struct zone *zone)
1212 {
1213 printk("Node %d ", zone->zone_pgdat->node_id);
1214 }
1215 #else
1216 #define show_node(zone) do { } while (0)
1217 #endif
1218
1219 /*
1220 * Accumulate the page_state information across all CPUs.
1221 * The result is unavoidably approximate - it can change
1222 * during and after execution of this function.
1223 */
1224 static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1225
1226 atomic_t nr_pagecache = ATOMIC_INIT(0);
1227 EXPORT_SYMBOL(nr_pagecache);
1228 #ifdef CONFIG_SMP
1229 DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1230 #endif
1231
1232 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1233 {
1234 unsigned cpu;
1235
1236 memset(ret, 0, nr * sizeof(unsigned long));
1237 cpus_and(*cpumask, *cpumask, cpu_online_map);
1238
1239 for_each_cpu_mask(cpu, *cpumask) {
1240 unsigned long *in;
1241 unsigned long *out;
1242 unsigned off;
1243 unsigned next_cpu;
1244
1245 in = (unsigned long *)&per_cpu(page_states, cpu);
1246
1247 next_cpu = next_cpu(cpu, *cpumask);
1248 if (likely(next_cpu < NR_CPUS))
1249 prefetch(&per_cpu(page_states, next_cpu));
1250
1251 out = (unsigned long *)ret;
1252 for (off = 0; off < nr; off++)
1253 *out++ += *in++;
1254 }
1255 }
1256
1257 void get_page_state_node(struct page_state *ret, int node)
1258 {
1259 int nr;
1260 cpumask_t mask = node_to_cpumask(node);
1261
1262 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1263 nr /= sizeof(unsigned long);
1264
1265 __get_page_state(ret, nr+1, &mask);
1266 }
1267
1268 void get_page_state(struct page_state *ret)
1269 {
1270 int nr;
1271 cpumask_t mask = CPU_MASK_ALL;
1272
1273 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1274 nr /= sizeof(unsigned long);
1275
1276 __get_page_state(ret, nr + 1, &mask);
1277 }
1278
1279 void get_full_page_state(struct page_state *ret)
1280 {
1281 cpumask_t mask = CPU_MASK_ALL;
1282
1283 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1284 }
1285
1286 unsigned long read_page_state_offset(unsigned long offset)
1287 {
1288 unsigned long ret = 0;
1289 int cpu;
1290
1291 for_each_online_cpu(cpu) {
1292 unsigned long in;
1293
1294 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1295 ret += *((unsigned long *)in);
1296 }
1297 return ret;
1298 }
1299
1300 void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1301 {
1302 void *ptr;
1303
1304 ptr = &__get_cpu_var(page_states);
1305 *(unsigned long *)(ptr + offset) += delta;
1306 }
1307 EXPORT_SYMBOL(__mod_page_state_offset);
1308
1309 void mod_page_state_offset(unsigned long offset, unsigned long delta)
1310 {
1311 unsigned long flags;
1312 void *ptr;
1313
1314 local_irq_save(flags);
1315 ptr = &__get_cpu_var(page_states);
1316 *(unsigned long *)(ptr + offset) += delta;
1317 local_irq_restore(flags);
1318 }
1319 EXPORT_SYMBOL(mod_page_state_offset);
1320
1321 void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1322 unsigned long *free, struct pglist_data *pgdat)
1323 {
1324 struct zone *zones = pgdat->node_zones;
1325 int i;
1326
1327 *active = 0;
1328 *inactive = 0;
1329 *free = 0;
1330 for (i = 0; i < MAX_NR_ZONES; i++) {
1331 *active += zones[i].nr_active;
1332 *inactive += zones[i].nr_inactive;
1333 *free += zones[i].free_pages;
1334 }
1335 }
1336
1337 void get_zone_counts(unsigned long *active,
1338 unsigned long *inactive, unsigned long *free)
1339 {
1340 struct pglist_data *pgdat;
1341
1342 *active = 0;
1343 *inactive = 0;
1344 *free = 0;
1345 for_each_online_pgdat(pgdat) {
1346 unsigned long l, m, n;
1347 __get_zone_counts(&l, &m, &n, pgdat);
1348 *active += l;
1349 *inactive += m;
1350 *free += n;
1351 }
1352 }
1353
1354 void si_meminfo(struct sysinfo *val)
1355 {
1356 val->totalram = totalram_pages;
1357 val->sharedram = 0;
1358 val->freeram = nr_free_pages();
1359 val->bufferram = nr_blockdev_pages();
1360 #ifdef CONFIG_HIGHMEM
1361 val->totalhigh = totalhigh_pages;
1362 val->freehigh = nr_free_highpages();
1363 #else
1364 val->totalhigh = 0;
1365 val->freehigh = 0;
1366 #endif
1367 val->mem_unit = PAGE_SIZE;
1368 }
1369
1370 EXPORT_SYMBOL(si_meminfo);
1371
1372 #ifdef CONFIG_NUMA
1373 void si_meminfo_node(struct sysinfo *val, int nid)
1374 {
1375 pg_data_t *pgdat = NODE_DATA(nid);
1376
1377 val->totalram = pgdat->node_present_pages;
1378 val->freeram = nr_free_pages_pgdat(pgdat);
1379 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1380 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1381 val->mem_unit = PAGE_SIZE;
1382 }
1383 #endif
1384
1385 #define K(x) ((x) << (PAGE_SHIFT-10))
1386
1387 /*
1388 * Show free area list (used inside shift_scroll-lock stuff)
1389 * We also calculate the percentage fragmentation. We do this by counting the
1390 * memory on each free list with the exception of the first item on the list.
1391 */
1392 void show_free_areas(void)
1393 {
1394 struct page_state ps;
1395 int cpu, temperature;
1396 unsigned long active;
1397 unsigned long inactive;
1398 unsigned long free;
1399 struct zone *zone;
1400
1401 for_each_zone(zone) {
1402 show_node(zone);
1403 printk("%s per-cpu:", zone->name);
1404
1405 if (!populated_zone(zone)) {
1406 printk(" empty\n");
1407 continue;
1408 } else
1409 printk("\n");
1410
1411 for_each_online_cpu(cpu) {
1412 struct per_cpu_pageset *pageset;
1413
1414 pageset = zone_pcp(zone, cpu);
1415
1416 for (temperature = 0; temperature < 2; temperature++)
1417 printk("cpu %d %s: high %d, batch %d used:%d\n",
1418 cpu,
1419 temperature ? "cold" : "hot",
1420 pageset->pcp[temperature].high,
1421 pageset->pcp[temperature].batch,
1422 pageset->pcp[temperature].count);
1423 }
1424 }
1425
1426 get_page_state(&ps);
1427 get_zone_counts(&active, &inactive, &free);
1428
1429 printk("Free pages: %11ukB (%ukB HighMem)\n",
1430 K(nr_free_pages()),
1431 K(nr_free_highpages()));
1432
1433 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1434 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1435 active,
1436 inactive,
1437 ps.nr_dirty,
1438 ps.nr_writeback,
1439 ps.nr_unstable,
1440 nr_free_pages(),
1441 ps.nr_slab,
1442 ps.nr_mapped,
1443 ps.nr_page_table_pages);
1444
1445 for_each_zone(zone) {
1446 int i;
1447
1448 show_node(zone);
1449 printk("%s"
1450 " free:%lukB"
1451 " min:%lukB"
1452 " low:%lukB"
1453 " high:%lukB"
1454 " active:%lukB"
1455 " inactive:%lukB"
1456 " present:%lukB"
1457 " pages_scanned:%lu"
1458 " all_unreclaimable? %s"
1459 "\n",
1460 zone->name,
1461 K(zone->free_pages),
1462 K(zone->pages_min),
1463 K(zone->pages_low),
1464 K(zone->pages_high),
1465 K(zone->nr_active),
1466 K(zone->nr_inactive),
1467 K(zone->present_pages),
1468 zone->pages_scanned,
1469 (zone->all_unreclaimable ? "yes" : "no")
1470 );
1471 printk("lowmem_reserve[]:");
1472 for (i = 0; i < MAX_NR_ZONES; i++)
1473 printk(" %lu", zone->lowmem_reserve[i]);
1474 printk("\n");
1475 }
1476
1477 for_each_zone(zone) {
1478 unsigned long nr, flags, order, total = 0;
1479
1480 show_node(zone);
1481 printk("%s: ", zone->name);
1482 if (!populated_zone(zone)) {
1483 printk("empty\n");
1484 continue;
1485 }
1486
1487 spin_lock_irqsave(&zone->lock, flags);
1488 for (order = 0; order < MAX_ORDER; order++) {
1489 nr = zone->free_area[order].nr_free;
1490 total += nr << order;
1491 printk("%lu*%lukB ", nr, K(1UL) << order);
1492 }
1493 spin_unlock_irqrestore(&zone->lock, flags);
1494 printk("= %lukB\n", K(total));
1495 }
1496
1497 show_swap_cache_info();
1498 }
1499
1500 /*
1501 * Builds allocation fallback zone lists.
1502 *
1503 * Add all populated zones of a node to the zonelist.
1504 */
1505 static int __init build_zonelists_node(pg_data_t *pgdat,
1506 struct zonelist *zonelist, int nr_zones, int zone_type)
1507 {
1508 struct zone *zone;
1509
1510 BUG_ON(zone_type > ZONE_HIGHMEM);
1511
1512 do {
1513 zone = pgdat->node_zones + zone_type;
1514 if (populated_zone(zone)) {
1515 #ifndef CONFIG_HIGHMEM
1516 BUG_ON(zone_type > ZONE_NORMAL);
1517 #endif
1518 zonelist->zones[nr_zones++] = zone;
1519 check_highest_zone(zone_type);
1520 }
1521 zone_type--;
1522
1523 } while (zone_type >= 0);
1524 return nr_zones;
1525 }
1526
1527 static inline int highest_zone(int zone_bits)
1528 {
1529 int res = ZONE_NORMAL;
1530 if (zone_bits & (__force int)__GFP_HIGHMEM)
1531 res = ZONE_HIGHMEM;
1532 if (zone_bits & (__force int)__GFP_DMA32)
1533 res = ZONE_DMA32;
1534 if (zone_bits & (__force int)__GFP_DMA)
1535 res = ZONE_DMA;
1536 return res;
1537 }
1538
1539 #ifdef CONFIG_NUMA
1540 #define MAX_NODE_LOAD (num_online_nodes())
1541 static int __initdata node_load[MAX_NUMNODES];
1542 /**
1543 * find_next_best_node - find the next node that should appear in a given node's fallback list
1544 * @node: node whose fallback list we're appending
1545 * @used_node_mask: nodemask_t of already used nodes
1546 *
1547 * We use a number of factors to determine which is the next node that should
1548 * appear on a given node's fallback list. The node should not have appeared
1549 * already in @node's fallback list, and it should be the next closest node
1550 * according to the distance array (which contains arbitrary distance values
1551 * from each node to each node in the system), and should also prefer nodes
1552 * with no CPUs, since presumably they'll have very little allocation pressure
1553 * on them otherwise.
1554 * It returns -1 if no node is found.
1555 */
1556 static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1557 {
1558 int n, val;
1559 int min_val = INT_MAX;
1560 int best_node = -1;
1561
1562 /* Use the local node if we haven't already */
1563 if (!node_isset(node, *used_node_mask)) {
1564 node_set(node, *used_node_mask);
1565 return node;
1566 }
1567
1568 for_each_online_node(n) {
1569 cpumask_t tmp;
1570
1571 /* Don't want a node to appear more than once */
1572 if (node_isset(n, *used_node_mask))
1573 continue;
1574
1575 /* Use the distance array to find the distance */
1576 val = node_distance(node, n);
1577
1578 /* Penalize nodes under us ("prefer the next node") */
1579 val += (n < node);
1580
1581 /* Give preference to headless and unused nodes */
1582 tmp = node_to_cpumask(n);
1583 if (!cpus_empty(tmp))
1584 val += PENALTY_FOR_NODE_WITH_CPUS;
1585
1586 /* Slight preference for less loaded node */
1587 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1588 val += node_load[n];
1589
1590 if (val < min_val) {
1591 min_val = val;
1592 best_node = n;
1593 }
1594 }
1595
1596 if (best_node >= 0)
1597 node_set(best_node, *used_node_mask);
1598
1599 return best_node;
1600 }
1601
1602 static void __init build_zonelists(pg_data_t *pgdat)
1603 {
1604 int i, j, k, node, local_node;
1605 int prev_node, load;
1606 struct zonelist *zonelist;
1607 nodemask_t used_mask;
1608
1609 /* initialize zonelists */
1610 for (i = 0; i < GFP_ZONETYPES; i++) {
1611 zonelist = pgdat->node_zonelists + i;
1612 zonelist->zones[0] = NULL;
1613 }
1614
1615 /* NUMA-aware ordering of nodes */
1616 local_node = pgdat->node_id;
1617 load = num_online_nodes();
1618 prev_node = local_node;
1619 nodes_clear(used_mask);
1620 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1621 int distance = node_distance(local_node, node);
1622
1623 /*
1624 * If another node is sufficiently far away then it is better
1625 * to reclaim pages in a zone before going off node.
1626 */
1627 if (distance > RECLAIM_DISTANCE)
1628 zone_reclaim_mode = 1;
1629
1630 /*
1631 * We don't want to pressure a particular node.
1632 * So adding penalty to the first node in same
1633 * distance group to make it round-robin.
1634 */
1635
1636 if (distance != node_distance(local_node, prev_node))
1637 node_load[node] += load;
1638 prev_node = node;
1639 load--;
1640 for (i = 0; i < GFP_ZONETYPES; i++) {
1641 zonelist = pgdat->node_zonelists + i;
1642 for (j = 0; zonelist->zones[j] != NULL; j++);
1643
1644 k = highest_zone(i);
1645
1646 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1647 zonelist->zones[j] = NULL;
1648 }
1649 }
1650 }
1651
1652 #else /* CONFIG_NUMA */
1653
1654 static void __init build_zonelists(pg_data_t *pgdat)
1655 {
1656 int i, j, k, node, local_node;
1657
1658 local_node = pgdat->node_id;
1659 for (i = 0; i < GFP_ZONETYPES; i++) {
1660 struct zonelist *zonelist;
1661
1662 zonelist = pgdat->node_zonelists + i;
1663
1664 j = 0;
1665 k = highest_zone(i);
1666 j = build_zonelists_node(pgdat, zonelist, j, k);
1667 /*
1668 * Now we build the zonelist so that it contains the zones
1669 * of all the other nodes.
1670 * We don't want to pressure a particular node, so when
1671 * building the zones for node N, we make sure that the
1672 * zones coming right after the local ones are those from
1673 * node N+1 (modulo N)
1674 */
1675 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1676 if (!node_online(node))
1677 continue;
1678 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1679 }
1680 for (node = 0; node < local_node; node++) {
1681 if (!node_online(node))
1682 continue;
1683 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1684 }
1685
1686 zonelist->zones[j] = NULL;
1687 }
1688 }
1689
1690 #endif /* CONFIG_NUMA */
1691
1692 void __init build_all_zonelists(void)
1693 {
1694 int i;
1695
1696 for_each_online_node(i)
1697 build_zonelists(NODE_DATA(i));
1698 printk("Built %i zonelists\n", num_online_nodes());
1699 cpuset_init_current_mems_allowed();
1700 }
1701
1702 /*
1703 * Helper functions to size the waitqueue hash table.
1704 * Essentially these want to choose hash table sizes sufficiently
1705 * large so that collisions trying to wait on pages are rare.
1706 * But in fact, the number of active page waitqueues on typical
1707 * systems is ridiculously low, less than 200. So this is even
1708 * conservative, even though it seems large.
1709 *
1710 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1711 * waitqueues, i.e. the size of the waitq table given the number of pages.
1712 */
1713 #define PAGES_PER_WAITQUEUE 256
1714
1715 static inline unsigned long wait_table_size(unsigned long pages)
1716 {
1717 unsigned long size = 1;
1718
1719 pages /= PAGES_PER_WAITQUEUE;
1720
1721 while (size < pages)
1722 size <<= 1;
1723
1724 /*
1725 * Once we have dozens or even hundreds of threads sleeping
1726 * on IO we've got bigger problems than wait queue collision.
1727 * Limit the size of the wait table to a reasonable size.
1728 */
1729 size = min(size, 4096UL);
1730
1731 return max(size, 4UL);
1732 }
1733
1734 /*
1735 * This is an integer logarithm so that shifts can be used later
1736 * to extract the more random high bits from the multiplicative
1737 * hash function before the remainder is taken.
1738 */
1739 static inline unsigned long wait_table_bits(unsigned long size)
1740 {
1741 return ffz(~size);
1742 }
1743
1744 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1745
1746 static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1747 unsigned long *zones_size, unsigned long *zholes_size)
1748 {
1749 unsigned long realtotalpages, totalpages = 0;
1750 int i;
1751
1752 for (i = 0; i < MAX_NR_ZONES; i++)
1753 totalpages += zones_size[i];
1754 pgdat->node_spanned_pages = totalpages;
1755
1756 realtotalpages = totalpages;
1757 if (zholes_size)
1758 for (i = 0; i < MAX_NR_ZONES; i++)
1759 realtotalpages -= zholes_size[i];
1760 pgdat->node_present_pages = realtotalpages;
1761 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1762 }
1763
1764
1765 /*
1766 * Initially all pages are reserved - free ones are freed
1767 * up by free_all_bootmem() once the early boot process is
1768 * done. Non-atomic initialization, single-pass.
1769 */
1770 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1771 unsigned long start_pfn)
1772 {
1773 struct page *page;
1774 unsigned long end_pfn = start_pfn + size;
1775 unsigned long pfn;
1776
1777 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1778 if (!early_pfn_valid(pfn))
1779 continue;
1780 page = pfn_to_page(pfn);
1781 set_page_links(page, zone, nid, pfn);
1782 init_page_count(page);
1783 reset_page_mapcount(page);
1784 SetPageReserved(page);
1785 INIT_LIST_HEAD(&page->lru);
1786 #ifdef WANT_PAGE_VIRTUAL
1787 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1788 if (!is_highmem_idx(zone))
1789 set_page_address(page, __va(pfn << PAGE_SHIFT));
1790 #endif
1791 }
1792 }
1793
1794 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1795 unsigned long size)
1796 {
1797 int order;
1798 for (order = 0; order < MAX_ORDER ; order++) {
1799 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1800 zone->free_area[order].nr_free = 0;
1801 }
1802 }
1803
1804 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1805 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1806 unsigned long size)
1807 {
1808 unsigned long snum = pfn_to_section_nr(pfn);
1809 unsigned long end = pfn_to_section_nr(pfn + size);
1810
1811 if (FLAGS_HAS_NODE)
1812 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1813 else
1814 for (; snum <= end; snum++)
1815 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1816 }
1817
1818 #ifndef __HAVE_ARCH_MEMMAP_INIT
1819 #define memmap_init(size, nid, zone, start_pfn) \
1820 memmap_init_zone((size), (nid), (zone), (start_pfn))
1821 #endif
1822
1823 static int __cpuinit zone_batchsize(struct zone *zone)
1824 {
1825 int batch;
1826
1827 /*
1828 * The per-cpu-pages pools are set to around 1000th of the
1829 * size of the zone. But no more than 1/2 of a meg.
1830 *
1831 * OK, so we don't know how big the cache is. So guess.
1832 */
1833 batch = zone->present_pages / 1024;
1834 if (batch * PAGE_SIZE > 512 * 1024)
1835 batch = (512 * 1024) / PAGE_SIZE;
1836 batch /= 4; /* We effectively *= 4 below */
1837 if (batch < 1)
1838 batch = 1;
1839
1840 /*
1841 * Clamp the batch to a 2^n - 1 value. Having a power
1842 * of 2 value was found to be more likely to have
1843 * suboptimal cache aliasing properties in some cases.
1844 *
1845 * For example if 2 tasks are alternately allocating
1846 * batches of pages, one task can end up with a lot
1847 * of pages of one half of the possible page colors
1848 * and the other with pages of the other colors.
1849 */
1850 batch = (1 << (fls(batch + batch/2)-1)) - 1;
1851
1852 return batch;
1853 }
1854
1855 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1856 {
1857 struct per_cpu_pages *pcp;
1858
1859 memset(p, 0, sizeof(*p));
1860
1861 pcp = &p->pcp[0]; /* hot */
1862 pcp->count = 0;
1863 pcp->high = 6 * batch;
1864 pcp->batch = max(1UL, 1 * batch);
1865 INIT_LIST_HEAD(&pcp->list);
1866
1867 pcp = &p->pcp[1]; /* cold*/
1868 pcp->count = 0;
1869 pcp->high = 2 * batch;
1870 pcp->batch = max(1UL, batch/2);
1871 INIT_LIST_HEAD(&pcp->list);
1872 }
1873
1874 /*
1875 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1876 * to the value high for the pageset p.
1877 */
1878
1879 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1880 unsigned long high)
1881 {
1882 struct per_cpu_pages *pcp;
1883
1884 pcp = &p->pcp[0]; /* hot list */
1885 pcp->high = high;
1886 pcp->batch = max(1UL, high/4);
1887 if ((high/4) > (PAGE_SHIFT * 8))
1888 pcp->batch = PAGE_SHIFT * 8;
1889 }
1890
1891
1892 #ifdef CONFIG_NUMA
1893 /*
1894 * Boot pageset table. One per cpu which is going to be used for all
1895 * zones and all nodes. The parameters will be set in such a way
1896 * that an item put on a list will immediately be handed over to
1897 * the buddy list. This is safe since pageset manipulation is done
1898 * with interrupts disabled.
1899 *
1900 * Some NUMA counter updates may also be caught by the boot pagesets.
1901 *
1902 * The boot_pagesets must be kept even after bootup is complete for
1903 * unused processors and/or zones. They do play a role for bootstrapping
1904 * hotplugged processors.
1905 *
1906 * zoneinfo_show() and maybe other functions do
1907 * not check if the processor is online before following the pageset pointer.
1908 * Other parts of the kernel may not check if the zone is available.
1909 */
1910 static struct per_cpu_pageset boot_pageset[NR_CPUS];
1911
1912 /*
1913 * Dynamically allocate memory for the
1914 * per cpu pageset array in struct zone.
1915 */
1916 static int __cpuinit process_zones(int cpu)
1917 {
1918 struct zone *zone, *dzone;
1919
1920 for_each_zone(zone) {
1921
1922 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
1923 GFP_KERNEL, cpu_to_node(cpu));
1924 if (!zone_pcp(zone, cpu))
1925 goto bad;
1926
1927 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
1928
1929 if (percpu_pagelist_fraction)
1930 setup_pagelist_highmark(zone_pcp(zone, cpu),
1931 (zone->present_pages / percpu_pagelist_fraction));
1932 }
1933
1934 return 0;
1935 bad:
1936 for_each_zone(dzone) {
1937 if (dzone == zone)
1938 break;
1939 kfree(zone_pcp(dzone, cpu));
1940 zone_pcp(dzone, cpu) = NULL;
1941 }
1942 return -ENOMEM;
1943 }
1944
1945 static inline void free_zone_pagesets(int cpu)
1946 {
1947 struct zone *zone;
1948
1949 for_each_zone(zone) {
1950 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1951
1952 zone_pcp(zone, cpu) = NULL;
1953 kfree(pset);
1954 }
1955 }
1956
1957 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
1958 unsigned long action,
1959 void *hcpu)
1960 {
1961 int cpu = (long)hcpu;
1962 int ret = NOTIFY_OK;
1963
1964 switch (action) {
1965 case CPU_UP_PREPARE:
1966 if (process_zones(cpu))
1967 ret = NOTIFY_BAD;
1968 break;
1969 case CPU_UP_CANCELED:
1970 case CPU_DEAD:
1971 free_zone_pagesets(cpu);
1972 break;
1973 default:
1974 break;
1975 }
1976 return ret;
1977 }
1978
1979 static struct notifier_block pageset_notifier =
1980 { &pageset_cpuup_callback, NULL, 0 };
1981
1982 void __init setup_per_cpu_pageset(void)
1983 {
1984 int err;
1985
1986 /* Initialize per_cpu_pageset for cpu 0.
1987 * A cpuup callback will do this for every cpu
1988 * as it comes online
1989 */
1990 err = process_zones(smp_processor_id());
1991 BUG_ON(err);
1992 register_cpu_notifier(&pageset_notifier);
1993 }
1994
1995 #endif
1996
1997 static __meminit
1998 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1999 {
2000 int i;
2001 struct pglist_data *pgdat = zone->zone_pgdat;
2002
2003 /*
2004 * The per-page waitqueue mechanism uses hashed waitqueues
2005 * per zone.
2006 */
2007 zone->wait_table_size = wait_table_size(zone_size_pages);
2008 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
2009 zone->wait_table = (wait_queue_head_t *)
2010 alloc_bootmem_node(pgdat, zone->wait_table_size
2011 * sizeof(wait_queue_head_t));
2012
2013 for(i = 0; i < zone->wait_table_size; ++i)
2014 init_waitqueue_head(zone->wait_table + i);
2015 }
2016
2017 static __meminit void zone_pcp_init(struct zone *zone)
2018 {
2019 int cpu;
2020 unsigned long batch = zone_batchsize(zone);
2021
2022 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2023 #ifdef CONFIG_NUMA
2024 /* Early boot. Slab allocator not functional yet */
2025 zone_pcp(zone, cpu) = &boot_pageset[cpu];
2026 setup_pageset(&boot_pageset[cpu],0);
2027 #else
2028 setup_pageset(zone_pcp(zone,cpu), batch);
2029 #endif
2030 }
2031 if (zone->present_pages)
2032 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2033 zone->name, zone->present_pages, batch);
2034 }
2035
2036 static __meminit void init_currently_empty_zone(struct zone *zone,
2037 unsigned long zone_start_pfn, unsigned long size)
2038 {
2039 struct pglist_data *pgdat = zone->zone_pgdat;
2040
2041 zone_wait_table_init(zone, size);
2042 pgdat->nr_zones = zone_idx(zone) + 1;
2043
2044 zone->zone_start_pfn = zone_start_pfn;
2045
2046 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2047
2048 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2049 }
2050
2051 /*
2052 * Set up the zone data structures:
2053 * - mark all pages reserved
2054 * - mark all memory queues empty
2055 * - clear the memory bitmaps
2056 */
2057 static void __init free_area_init_core(struct pglist_data *pgdat,
2058 unsigned long *zones_size, unsigned long *zholes_size)
2059 {
2060 unsigned long j;
2061 int nid = pgdat->node_id;
2062 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2063
2064 pgdat_resize_init(pgdat);
2065 pgdat->nr_zones = 0;
2066 init_waitqueue_head(&pgdat->kswapd_wait);
2067 pgdat->kswapd_max_order = 0;
2068
2069 for (j = 0; j < MAX_NR_ZONES; j++) {
2070 struct zone *zone = pgdat->node_zones + j;
2071 unsigned long size, realsize;
2072
2073 realsize = size = zones_size[j];
2074 if (zholes_size)
2075 realsize -= zholes_size[j];
2076
2077 if (j < ZONE_HIGHMEM)
2078 nr_kernel_pages += realsize;
2079 nr_all_pages += realsize;
2080
2081 zone->spanned_pages = size;
2082 zone->present_pages = realsize;
2083 zone->name = zone_names[j];
2084 spin_lock_init(&zone->lock);
2085 spin_lock_init(&zone->lru_lock);
2086 zone_seqlock_init(zone);
2087 zone->zone_pgdat = pgdat;
2088 zone->free_pages = 0;
2089
2090 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2091
2092 zone_pcp_init(zone);
2093 INIT_LIST_HEAD(&zone->active_list);
2094 INIT_LIST_HEAD(&zone->inactive_list);
2095 zone->nr_scan_active = 0;
2096 zone->nr_scan_inactive = 0;
2097 zone->nr_active = 0;
2098 zone->nr_inactive = 0;
2099 atomic_set(&zone->reclaim_in_progress, 0);
2100 if (!size)
2101 continue;
2102
2103 zonetable_add(zone, nid, j, zone_start_pfn, size);
2104 init_currently_empty_zone(zone, zone_start_pfn, size);
2105 zone_start_pfn += size;
2106 }
2107 }
2108
2109 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2110 {
2111 /* Skip empty nodes */
2112 if (!pgdat->node_spanned_pages)
2113 return;
2114
2115 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2116 /* ia64 gets its own node_mem_map, before this, without bootmem */
2117 if (!pgdat->node_mem_map) {
2118 unsigned long size;
2119 struct page *map;
2120
2121 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
2122 map = alloc_remap(pgdat->node_id, size);
2123 if (!map)
2124 map = alloc_bootmem_node(pgdat, size);
2125 pgdat->node_mem_map = map;
2126 }
2127 #ifdef CONFIG_FLATMEM
2128 /*
2129 * With no DISCONTIG, the global mem_map is just set as node 0's
2130 */
2131 if (pgdat == NODE_DATA(0))
2132 mem_map = NODE_DATA(0)->node_mem_map;
2133 #endif
2134 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2135 }
2136
2137 void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2138 unsigned long *zones_size, unsigned long node_start_pfn,
2139 unsigned long *zholes_size)
2140 {
2141 pgdat->node_id = nid;
2142 pgdat->node_start_pfn = node_start_pfn;
2143 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2144
2145 alloc_node_mem_map(pgdat);
2146
2147 free_area_init_core(pgdat, zones_size, zholes_size);
2148 }
2149
2150 #ifndef CONFIG_NEED_MULTIPLE_NODES
2151 static bootmem_data_t contig_bootmem_data;
2152 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2153
2154 EXPORT_SYMBOL(contig_page_data);
2155 #endif
2156
2157 void __init free_area_init(unsigned long *zones_size)
2158 {
2159 free_area_init_node(0, NODE_DATA(0), zones_size,
2160 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2161 }
2162
2163 #ifdef CONFIG_PROC_FS
2164
2165 #include <linux/seq_file.h>
2166
2167 static void *frag_start(struct seq_file *m, loff_t *pos)
2168 {
2169 pg_data_t *pgdat;
2170 loff_t node = *pos;
2171 for (pgdat = first_online_pgdat();
2172 pgdat && node;
2173 pgdat = next_online_pgdat(pgdat))
2174 --node;
2175
2176 return pgdat;
2177 }
2178
2179 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2180 {
2181 pg_data_t *pgdat = (pg_data_t *)arg;
2182
2183 (*pos)++;
2184 return next_online_pgdat(pgdat);
2185 }
2186
2187 static void frag_stop(struct seq_file *m, void *arg)
2188 {
2189 }
2190
2191 /*
2192 * This walks the free areas for each zone.
2193 */
2194 static int frag_show(struct seq_file *m, void *arg)
2195 {
2196 pg_data_t *pgdat = (pg_data_t *)arg;
2197 struct zone *zone;
2198 struct zone *node_zones = pgdat->node_zones;
2199 unsigned long flags;
2200 int order;
2201
2202 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
2203 if (!populated_zone(zone))
2204 continue;
2205
2206 spin_lock_irqsave(&zone->lock, flags);
2207 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2208 for (order = 0; order < MAX_ORDER; ++order)
2209 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2210 spin_unlock_irqrestore(&zone->lock, flags);
2211 seq_putc(m, '\n');
2212 }
2213 return 0;
2214 }
2215
2216 struct seq_operations fragmentation_op = {
2217 .start = frag_start,
2218 .next = frag_next,
2219 .stop = frag_stop,
2220 .show = frag_show,
2221 };
2222
2223 /*
2224 * Output information about zones in @pgdat.
2225 */
2226 static int zoneinfo_show(struct seq_file *m, void *arg)
2227 {
2228 pg_data_t *pgdat = arg;
2229 struct zone *zone;
2230 struct zone *node_zones = pgdat->node_zones;
2231 unsigned long flags;
2232
2233 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2234 int i;
2235
2236 if (!populated_zone(zone))
2237 continue;
2238
2239 spin_lock_irqsave(&zone->lock, flags);
2240 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2241 seq_printf(m,
2242 "\n pages free %lu"
2243 "\n min %lu"
2244 "\n low %lu"
2245 "\n high %lu"
2246 "\n active %lu"
2247 "\n inactive %lu"
2248 "\n scanned %lu (a: %lu i: %lu)"
2249 "\n spanned %lu"
2250 "\n present %lu",
2251 zone->free_pages,
2252 zone->pages_min,
2253 zone->pages_low,
2254 zone->pages_high,
2255 zone->nr_active,
2256 zone->nr_inactive,
2257 zone->pages_scanned,
2258 zone->nr_scan_active, zone->nr_scan_inactive,
2259 zone->spanned_pages,
2260 zone->present_pages);
2261 seq_printf(m,
2262 "\n protection: (%lu",
2263 zone->lowmem_reserve[0]);
2264 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2265 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2266 seq_printf(m,
2267 ")"
2268 "\n pagesets");
2269 for_each_online_cpu(i) {
2270 struct per_cpu_pageset *pageset;
2271 int j;
2272
2273 pageset = zone_pcp(zone, i);
2274 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2275 if (pageset->pcp[j].count)
2276 break;
2277 }
2278 if (j == ARRAY_SIZE(pageset->pcp))
2279 continue;
2280 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2281 seq_printf(m,
2282 "\n cpu: %i pcp: %i"
2283 "\n count: %i"
2284 "\n high: %i"
2285 "\n batch: %i",
2286 i, j,
2287 pageset->pcp[j].count,
2288 pageset->pcp[j].high,
2289 pageset->pcp[j].batch);
2290 }
2291 #ifdef CONFIG_NUMA
2292 seq_printf(m,
2293 "\n numa_hit: %lu"
2294 "\n numa_miss: %lu"
2295 "\n numa_foreign: %lu"
2296 "\n interleave_hit: %lu"
2297 "\n local_node: %lu"
2298 "\n other_node: %lu",
2299 pageset->numa_hit,
2300 pageset->numa_miss,
2301 pageset->numa_foreign,
2302 pageset->interleave_hit,
2303 pageset->local_node,
2304 pageset->other_node);
2305 #endif
2306 }
2307 seq_printf(m,
2308 "\n all_unreclaimable: %u"
2309 "\n prev_priority: %i"
2310 "\n temp_priority: %i"
2311 "\n start_pfn: %lu",
2312 zone->all_unreclaimable,
2313 zone->prev_priority,
2314 zone->temp_priority,
2315 zone->zone_start_pfn);
2316 spin_unlock_irqrestore(&zone->lock, flags);
2317 seq_putc(m, '\n');
2318 }
2319 return 0;
2320 }
2321
2322 struct seq_operations zoneinfo_op = {
2323 .start = frag_start, /* iterate over all zones. The same as in
2324 * fragmentation. */
2325 .next = frag_next,
2326 .stop = frag_stop,
2327 .show = zoneinfo_show,
2328 };
2329
2330 static char *vmstat_text[] = {
2331 "nr_dirty",
2332 "nr_writeback",
2333 "nr_unstable",
2334 "nr_page_table_pages",
2335 "nr_mapped",
2336 "nr_slab",
2337
2338 "pgpgin",
2339 "pgpgout",
2340 "pswpin",
2341 "pswpout",
2342
2343 "pgalloc_high",
2344 "pgalloc_normal",
2345 "pgalloc_dma32",
2346 "pgalloc_dma",
2347
2348 "pgfree",
2349 "pgactivate",
2350 "pgdeactivate",
2351
2352 "pgfault",
2353 "pgmajfault",
2354
2355 "pgrefill_high",
2356 "pgrefill_normal",
2357 "pgrefill_dma32",
2358 "pgrefill_dma",
2359
2360 "pgsteal_high",
2361 "pgsteal_normal",
2362 "pgsteal_dma32",
2363 "pgsteal_dma",
2364
2365 "pgscan_kswapd_high",
2366 "pgscan_kswapd_normal",
2367 "pgscan_kswapd_dma32",
2368 "pgscan_kswapd_dma",
2369
2370 "pgscan_direct_high",
2371 "pgscan_direct_normal",
2372 "pgscan_direct_dma32",
2373 "pgscan_direct_dma",
2374
2375 "pginodesteal",
2376 "slabs_scanned",
2377 "kswapd_steal",
2378 "kswapd_inodesteal",
2379 "pageoutrun",
2380 "allocstall",
2381
2382 "pgrotated",
2383 "nr_bounce",
2384 };
2385
2386 static void *vmstat_start(struct seq_file *m, loff_t *pos)
2387 {
2388 struct page_state *ps;
2389
2390 if (*pos >= ARRAY_SIZE(vmstat_text))
2391 return NULL;
2392
2393 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2394 m->private = ps;
2395 if (!ps)
2396 return ERR_PTR(-ENOMEM);
2397 get_full_page_state(ps);
2398 ps->pgpgin /= 2; /* sectors -> kbytes */
2399 ps->pgpgout /= 2;
2400 return (unsigned long *)ps + *pos;
2401 }
2402
2403 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2404 {
2405 (*pos)++;
2406 if (*pos >= ARRAY_SIZE(vmstat_text))
2407 return NULL;
2408 return (unsigned long *)m->private + *pos;
2409 }
2410
2411 static int vmstat_show(struct seq_file *m, void *arg)
2412 {
2413 unsigned long *l = arg;
2414 unsigned long off = l - (unsigned long *)m->private;
2415
2416 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2417 return 0;
2418 }
2419
2420 static void vmstat_stop(struct seq_file *m, void *arg)
2421 {
2422 kfree(m->private);
2423 m->private = NULL;
2424 }
2425
2426 struct seq_operations vmstat_op = {
2427 .start = vmstat_start,
2428 .next = vmstat_next,
2429 .stop = vmstat_stop,
2430 .show = vmstat_show,
2431 };
2432
2433 #endif /* CONFIG_PROC_FS */
2434
2435 #ifdef CONFIG_HOTPLUG_CPU
2436 static int page_alloc_cpu_notify(struct notifier_block *self,
2437 unsigned long action, void *hcpu)
2438 {
2439 int cpu = (unsigned long)hcpu;
2440 long *count;
2441 unsigned long *src, *dest;
2442
2443 if (action == CPU_DEAD) {
2444 int i;
2445
2446 /* Drain local pagecache count. */
2447 count = &per_cpu(nr_pagecache_local, cpu);
2448 atomic_add(*count, &nr_pagecache);
2449 *count = 0;
2450 local_irq_disable();
2451 __drain_pages(cpu);
2452
2453 /* Add dead cpu's page_states to our own. */
2454 dest = (unsigned long *)&__get_cpu_var(page_states);
2455 src = (unsigned long *)&per_cpu(page_states, cpu);
2456
2457 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2458 i++) {
2459 dest[i] += src[i];
2460 src[i] = 0;
2461 }
2462
2463 local_irq_enable();
2464 }
2465 return NOTIFY_OK;
2466 }
2467 #endif /* CONFIG_HOTPLUG_CPU */
2468
2469 void __init page_alloc_init(void)
2470 {
2471 hotcpu_notifier(page_alloc_cpu_notify, 0);
2472 }
2473
2474 /*
2475 * setup_per_zone_lowmem_reserve - called whenever
2476 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2477 * has a correct pages reserved value, so an adequate number of
2478 * pages are left in the zone after a successful __alloc_pages().
2479 */
2480 static void setup_per_zone_lowmem_reserve(void)
2481 {
2482 struct pglist_data *pgdat;
2483 int j, idx;
2484
2485 for_each_online_pgdat(pgdat) {
2486 for (j = 0; j < MAX_NR_ZONES; j++) {
2487 struct zone *zone = pgdat->node_zones + j;
2488 unsigned long present_pages = zone->present_pages;
2489
2490 zone->lowmem_reserve[j] = 0;
2491
2492 for (idx = j-1; idx >= 0; idx--) {
2493 struct zone *lower_zone;
2494
2495 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2496 sysctl_lowmem_reserve_ratio[idx] = 1;
2497
2498 lower_zone = pgdat->node_zones + idx;
2499 lower_zone->lowmem_reserve[j] = present_pages /
2500 sysctl_lowmem_reserve_ratio[idx];
2501 present_pages += lower_zone->present_pages;
2502 }
2503 }
2504 }
2505 }
2506
2507 /*
2508 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2509 * that the pages_{min,low,high} values for each zone are set correctly
2510 * with respect to min_free_kbytes.
2511 */
2512 void setup_per_zone_pages_min(void)
2513 {
2514 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2515 unsigned long lowmem_pages = 0;
2516 struct zone *zone;
2517 unsigned long flags;
2518
2519 /* Calculate total number of !ZONE_HIGHMEM pages */
2520 for_each_zone(zone) {
2521 if (!is_highmem(zone))
2522 lowmem_pages += zone->present_pages;
2523 }
2524
2525 for_each_zone(zone) {
2526 unsigned long tmp;
2527 spin_lock_irqsave(&zone->lru_lock, flags);
2528 tmp = (pages_min * zone->present_pages) / lowmem_pages;
2529 if (is_highmem(zone)) {
2530 /*
2531 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2532 * need highmem pages, so cap pages_min to a small
2533 * value here.
2534 *
2535 * The (pages_high-pages_low) and (pages_low-pages_min)
2536 * deltas controls asynch page reclaim, and so should
2537 * not be capped for highmem.
2538 */
2539 int min_pages;
2540
2541 min_pages = zone->present_pages / 1024;
2542 if (min_pages < SWAP_CLUSTER_MAX)
2543 min_pages = SWAP_CLUSTER_MAX;
2544 if (min_pages > 128)
2545 min_pages = 128;
2546 zone->pages_min = min_pages;
2547 } else {
2548 /*
2549 * If it's a lowmem zone, reserve a number of pages
2550 * proportionate to the zone's size.
2551 */
2552 zone->pages_min = tmp;
2553 }
2554
2555 zone->pages_low = zone->pages_min + tmp / 4;
2556 zone->pages_high = zone->pages_min + tmp / 2;
2557 spin_unlock_irqrestore(&zone->lru_lock, flags);
2558 }
2559 }
2560
2561 /*
2562 * Initialise min_free_kbytes.
2563 *
2564 * For small machines we want it small (128k min). For large machines
2565 * we want it large (64MB max). But it is not linear, because network
2566 * bandwidth does not increase linearly with machine size. We use
2567 *
2568 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2569 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2570 *
2571 * which yields
2572 *
2573 * 16MB: 512k
2574 * 32MB: 724k
2575 * 64MB: 1024k
2576 * 128MB: 1448k
2577 * 256MB: 2048k
2578 * 512MB: 2896k
2579 * 1024MB: 4096k
2580 * 2048MB: 5792k
2581 * 4096MB: 8192k
2582 * 8192MB: 11584k
2583 * 16384MB: 16384k
2584 */
2585 static int __init init_per_zone_pages_min(void)
2586 {
2587 unsigned long lowmem_kbytes;
2588
2589 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2590
2591 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2592 if (min_free_kbytes < 128)
2593 min_free_kbytes = 128;
2594 if (min_free_kbytes > 65536)
2595 min_free_kbytes = 65536;
2596 setup_per_zone_pages_min();
2597 setup_per_zone_lowmem_reserve();
2598 return 0;
2599 }
2600 module_init(init_per_zone_pages_min)
2601
2602 /*
2603 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2604 * that we can call two helper functions whenever min_free_kbytes
2605 * changes.
2606 */
2607 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2608 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2609 {
2610 proc_dointvec(table, write, file, buffer, length, ppos);
2611 setup_per_zone_pages_min();
2612 return 0;
2613 }
2614
2615 /*
2616 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2617 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2618 * whenever sysctl_lowmem_reserve_ratio changes.
2619 *
2620 * The reserve ratio obviously has absolutely no relation with the
2621 * pages_min watermarks. The lowmem reserve ratio can only make sense
2622 * if in function of the boot time zone sizes.
2623 */
2624 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2625 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2626 {
2627 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2628 setup_per_zone_lowmem_reserve();
2629 return 0;
2630 }
2631
2632 /*
2633 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2634 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2635 * can have before it gets flushed back to buddy allocator.
2636 */
2637
2638 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2639 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2640 {
2641 struct zone *zone;
2642 unsigned int cpu;
2643 int ret;
2644
2645 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2646 if (!write || (ret == -EINVAL))
2647 return ret;
2648 for_each_zone(zone) {
2649 for_each_online_cpu(cpu) {
2650 unsigned long high;
2651 high = zone->present_pages / percpu_pagelist_fraction;
2652 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2653 }
2654 }
2655 return 0;
2656 }
2657
2658 __initdata int hashdist = HASHDIST_DEFAULT;
2659
2660 #ifdef CONFIG_NUMA
2661 static int __init set_hashdist(char *str)
2662 {
2663 if (!str)
2664 return 0;
2665 hashdist = simple_strtoul(str, &str, 0);
2666 return 1;
2667 }
2668 __setup("hashdist=", set_hashdist);
2669 #endif
2670
2671 /*
2672 * allocate a large system hash table from bootmem
2673 * - it is assumed that the hash table must contain an exact power-of-2
2674 * quantity of entries
2675 * - limit is the number of hash buckets, not the total allocation size
2676 */
2677 void *__init alloc_large_system_hash(const char *tablename,
2678 unsigned long bucketsize,
2679 unsigned long numentries,
2680 int scale,
2681 int flags,
2682 unsigned int *_hash_shift,
2683 unsigned int *_hash_mask,
2684 unsigned long limit)
2685 {
2686 unsigned long long max = limit;
2687 unsigned long log2qty, size;
2688 void *table = NULL;
2689
2690 /* allow the kernel cmdline to have a say */
2691 if (!numentries) {
2692 /* round applicable memory size up to nearest megabyte */
2693 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2694 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2695 numentries >>= 20 - PAGE_SHIFT;
2696 numentries <<= 20 - PAGE_SHIFT;
2697
2698 /* limit to 1 bucket per 2^scale bytes of low memory */
2699 if (scale > PAGE_SHIFT)
2700 numentries >>= (scale - PAGE_SHIFT);
2701 else
2702 numentries <<= (PAGE_SHIFT - scale);
2703 }
2704 numentries = roundup_pow_of_two(numentries);
2705
2706 /* limit allocation size to 1/16 total memory by default */
2707 if (max == 0) {
2708 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2709 do_div(max, bucketsize);
2710 }
2711
2712 if (numentries > max)
2713 numentries = max;
2714
2715 log2qty = long_log2(numentries);
2716
2717 do {
2718 size = bucketsize << log2qty;
2719 if (flags & HASH_EARLY)
2720 table = alloc_bootmem(size);
2721 else if (hashdist)
2722 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2723 else {
2724 unsigned long order;
2725 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2726 ;
2727 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2728 }
2729 } while (!table && size > PAGE_SIZE && --log2qty);
2730
2731 if (!table)
2732 panic("Failed to allocate %s hash table\n", tablename);
2733
2734 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2735 tablename,
2736 (1U << log2qty),
2737 long_log2(size) - PAGE_SHIFT,
2738 size);
2739
2740 if (_hash_shift)
2741 *_hash_shift = log2qty;
2742 if (_hash_mask)
2743 *_hash_mask = (1 << log2qty) - 1;
2744
2745 return table;
2746 }
2747
2748 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2749 /*
2750 * pfn <-> page translation. out-of-line version.
2751 * (see asm-generic/memory_model.h)
2752 */
2753 #if defined(CONFIG_FLATMEM)
2754 struct page *pfn_to_page(unsigned long pfn)
2755 {
2756 return mem_map + (pfn - ARCH_PFN_OFFSET);
2757 }
2758 unsigned long page_to_pfn(struct page *page)
2759 {
2760 return (page - mem_map) + ARCH_PFN_OFFSET;
2761 }
2762 #elif defined(CONFIG_DISCONTIGMEM)
2763 struct page *pfn_to_page(unsigned long pfn)
2764 {
2765 int nid = arch_pfn_to_nid(pfn);
2766 return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid);
2767 }
2768 unsigned long page_to_pfn(struct page *page)
2769 {
2770 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
2771 return (page - pgdat->node_mem_map) + pgdat->node_start_pfn;
2772 }
2773 #elif defined(CONFIG_SPARSEMEM)
2774 struct page *pfn_to_page(unsigned long pfn)
2775 {
2776 return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn;
2777 }
2778
2779 unsigned long page_to_pfn(struct page *page)
2780 {
2781 long section_id = page_to_section(page);
2782 return page - __section_mem_map_addr(__nr_to_section(section_id));
2783 }
2784 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2785 EXPORT_SYMBOL(pfn_to_page);
2786 EXPORT_SYMBOL(page_to_pfn);
2787 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */