]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/page_alloc.c
Merge tag 'staging-3.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[mirror_ubuntu-artful-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_ext.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/prefetch.h>
57 #include <linux/mm_inline.h>
58 #include <linux/migrate.h>
59 #include <linux/page_ext.h>
60 #include <linux/hugetlb.h>
61 #include <linux/sched/rt.h>
62 #include <linux/page_owner.h>
63
64 #include <asm/sections.h>
65 #include <asm/tlbflush.h>
66 #include <asm/div64.h>
67 #include "internal.h"
68
69 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
70 static DEFINE_MUTEX(pcp_batch_high_lock);
71 #define MIN_PERCPU_PAGELIST_FRACTION (8)
72
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 int _node_numa_mem_[MAX_NUMNODES];
88 #endif
89
90 /*
91 * Array of node states.
92 */
93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 [N_POSSIBLE] = NODE_MASK_ALL,
95 [N_ONLINE] = { { [0] = 1UL } },
96 #ifndef CONFIG_NUMA
97 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
98 #ifdef CONFIG_HIGHMEM
99 [N_HIGH_MEMORY] = { { [0] = 1UL } },
100 #endif
101 #ifdef CONFIG_MOVABLE_NODE
102 [N_MEMORY] = { { [0] = 1UL } },
103 #endif
104 [N_CPU] = { { [0] = 1UL } },
105 #endif /* NUMA */
106 };
107 EXPORT_SYMBOL(node_states);
108
109 /* Protect totalram_pages and zone->managed_pages */
110 static DEFINE_SPINLOCK(managed_page_count_lock);
111
112 unsigned long totalram_pages __read_mostly;
113 unsigned long totalreserve_pages __read_mostly;
114 /*
115 * When calculating the number of globally allowed dirty pages, there
116 * is a certain number of per-zone reserves that should not be
117 * considered dirtyable memory. This is the sum of those reserves
118 * over all existing zones that contribute dirtyable memory.
119 */
120 unsigned long dirty_balance_reserve __read_mostly;
121
122 int percpu_pagelist_fraction;
123 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
124
125 #ifdef CONFIG_PM_SLEEP
126 /*
127 * The following functions are used by the suspend/hibernate code to temporarily
128 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
129 * while devices are suspended. To avoid races with the suspend/hibernate code,
130 * they should always be called with pm_mutex held (gfp_allowed_mask also should
131 * only be modified with pm_mutex held, unless the suspend/hibernate code is
132 * guaranteed not to run in parallel with that modification).
133 */
134
135 static gfp_t saved_gfp_mask;
136
137 void pm_restore_gfp_mask(void)
138 {
139 WARN_ON(!mutex_is_locked(&pm_mutex));
140 if (saved_gfp_mask) {
141 gfp_allowed_mask = saved_gfp_mask;
142 saved_gfp_mask = 0;
143 }
144 }
145
146 void pm_restrict_gfp_mask(void)
147 {
148 WARN_ON(!mutex_is_locked(&pm_mutex));
149 WARN_ON(saved_gfp_mask);
150 saved_gfp_mask = gfp_allowed_mask;
151 gfp_allowed_mask &= ~GFP_IOFS;
152 }
153
154 bool pm_suspended_storage(void)
155 {
156 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
157 return false;
158 return true;
159 }
160 #endif /* CONFIG_PM_SLEEP */
161
162 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
163 int pageblock_order __read_mostly;
164 #endif
165
166 static void __free_pages_ok(struct page *page, unsigned int order);
167
168 /*
169 * results with 256, 32 in the lowmem_reserve sysctl:
170 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
171 * 1G machine -> (16M dma, 784M normal, 224M high)
172 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
173 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
174 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
175 *
176 * TBD: should special case ZONE_DMA32 machines here - in those we normally
177 * don't need any ZONE_NORMAL reservation
178 */
179 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
180 #ifdef CONFIG_ZONE_DMA
181 256,
182 #endif
183 #ifdef CONFIG_ZONE_DMA32
184 256,
185 #endif
186 #ifdef CONFIG_HIGHMEM
187 32,
188 #endif
189 32,
190 };
191
192 EXPORT_SYMBOL(totalram_pages);
193
194 static char * const zone_names[MAX_NR_ZONES] = {
195 #ifdef CONFIG_ZONE_DMA
196 "DMA",
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 "DMA32",
200 #endif
201 "Normal",
202 #ifdef CONFIG_HIGHMEM
203 "HighMem",
204 #endif
205 "Movable",
206 };
207
208 int min_free_kbytes = 1024;
209 int user_min_free_kbytes = -1;
210
211 static unsigned long __meminitdata nr_kernel_pages;
212 static unsigned long __meminitdata nr_all_pages;
213 static unsigned long __meminitdata dma_reserve;
214
215 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
216 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
218 static unsigned long __initdata required_kernelcore;
219 static unsigned long __initdata required_movablecore;
220 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
221
222 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
223 int movable_zone;
224 EXPORT_SYMBOL(movable_zone);
225 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
226
227 #if MAX_NUMNODES > 1
228 int nr_node_ids __read_mostly = MAX_NUMNODES;
229 int nr_online_nodes __read_mostly = 1;
230 EXPORT_SYMBOL(nr_node_ids);
231 EXPORT_SYMBOL(nr_online_nodes);
232 #endif
233
234 int page_group_by_mobility_disabled __read_mostly;
235
236 void set_pageblock_migratetype(struct page *page, int migratetype)
237 {
238 if (unlikely(page_group_by_mobility_disabled &&
239 migratetype < MIGRATE_PCPTYPES))
240 migratetype = MIGRATE_UNMOVABLE;
241
242 set_pageblock_flags_group(page, (unsigned long)migratetype,
243 PB_migrate, PB_migrate_end);
244 }
245
246 bool oom_killer_disabled __read_mostly;
247
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
254 unsigned long sp, start_pfn;
255
256 do {
257 seq = zone_span_seqbegin(zone);
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
260 if (!zone_spans_pfn(zone, pfn))
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
264 if (ret)
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
268
269 return ret;
270 }
271
272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 if (!pfn_valid_within(page_to_pfn(page)))
275 return 0;
276 if (zone != page_zone(page))
277 return 0;
278
279 return 1;
280 }
281 /*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 if (page_outside_zone_boundaries(zone, page))
287 return 1;
288 if (!page_is_consistent(zone, page))
289 return 1;
290
291 return 0;
292 }
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 return 0;
297 }
298 #endif
299
300 static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
302 {
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
309 page_mapcount_reset(page); /* remove PageBuddy */
310 return;
311 }
312
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
334 current->comm, page_to_pfn(page));
335 dump_page_badflags(page, reason, bad_flags);
336
337 print_modules();
338 dump_stack();
339 out:
340 /* Leave bad fields for debug, except PageBuddy could make trouble */
341 page_mapcount_reset(page); /* remove PageBuddy */
342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344
345 /*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
354 *
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
358 */
359
360 static void free_compound_page(struct page *page)
361 {
362 __free_pages_ok(page, compound_order(page));
363 }
364
365 void prep_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
375 set_page_count(p, 0);
376 p->first_page = page;
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
380 }
381 }
382
383 /* update __split_huge_page_refcount if you change this function */
384 static int destroy_compound_page(struct page *page, unsigned long order)
385 {
386 int i;
387 int nr_pages = 1 << order;
388 int bad = 0;
389
390 if (unlikely(compound_order(page) != order)) {
391 bad_page(page, "wrong compound order", 0);
392 bad++;
393 }
394
395 __ClearPageHead(page);
396
397 for (i = 1; i < nr_pages; i++) {
398 struct page *p = page + i;
399
400 if (unlikely(!PageTail(p))) {
401 bad_page(page, "PageTail not set", 0);
402 bad++;
403 } else if (unlikely(p->first_page != page)) {
404 bad_page(page, "first_page not consistent", 0);
405 bad++;
406 }
407 __ClearPageTail(p);
408 }
409
410 return bad;
411 }
412
413 static inline void prep_zero_page(struct page *page, unsigned int order,
414 gfp_t gfp_flags)
415 {
416 int i;
417
418 /*
419 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
420 * and __GFP_HIGHMEM from hard or soft interrupt context.
421 */
422 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
423 for (i = 0; i < (1 << order); i++)
424 clear_highpage(page + i);
425 }
426
427 #ifdef CONFIG_DEBUG_PAGEALLOC
428 unsigned int _debug_guardpage_minorder;
429 bool _debug_pagealloc_enabled __read_mostly;
430 bool _debug_guardpage_enabled __read_mostly;
431
432 static int __init early_debug_pagealloc(char *buf)
433 {
434 if (!buf)
435 return -EINVAL;
436
437 if (strcmp(buf, "on") == 0)
438 _debug_pagealloc_enabled = true;
439
440 return 0;
441 }
442 early_param("debug_pagealloc", early_debug_pagealloc);
443
444 static bool need_debug_guardpage(void)
445 {
446 /* If we don't use debug_pagealloc, we don't need guard page */
447 if (!debug_pagealloc_enabled())
448 return false;
449
450 return true;
451 }
452
453 static void init_debug_guardpage(void)
454 {
455 if (!debug_pagealloc_enabled())
456 return;
457
458 _debug_guardpage_enabled = true;
459 }
460
461 struct page_ext_operations debug_guardpage_ops = {
462 .need = need_debug_guardpage,
463 .init = init_debug_guardpage,
464 };
465
466 static int __init debug_guardpage_minorder_setup(char *buf)
467 {
468 unsigned long res;
469
470 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
471 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
472 return 0;
473 }
474 _debug_guardpage_minorder = res;
475 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
476 return 0;
477 }
478 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
479
480 static inline void set_page_guard(struct zone *zone, struct page *page,
481 unsigned int order, int migratetype)
482 {
483 struct page_ext *page_ext;
484
485 if (!debug_guardpage_enabled())
486 return;
487
488 page_ext = lookup_page_ext(page);
489 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
490
491 INIT_LIST_HEAD(&page->lru);
492 set_page_private(page, order);
493 /* Guard pages are not available for any usage */
494 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
495 }
496
497 static inline void clear_page_guard(struct zone *zone, struct page *page,
498 unsigned int order, int migratetype)
499 {
500 struct page_ext *page_ext;
501
502 if (!debug_guardpage_enabled())
503 return;
504
505 page_ext = lookup_page_ext(page);
506 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
507
508 set_page_private(page, 0);
509 if (!is_migrate_isolate(migratetype))
510 __mod_zone_freepage_state(zone, (1 << order), migratetype);
511 }
512 #else
513 struct page_ext_operations debug_guardpage_ops = { NULL, };
514 static inline void set_page_guard(struct zone *zone, struct page *page,
515 unsigned int order, int migratetype) {}
516 static inline void clear_page_guard(struct zone *zone, struct page *page,
517 unsigned int order, int migratetype) {}
518 #endif
519
520 static inline void set_page_order(struct page *page, unsigned int order)
521 {
522 set_page_private(page, order);
523 __SetPageBuddy(page);
524 }
525
526 static inline void rmv_page_order(struct page *page)
527 {
528 __ClearPageBuddy(page);
529 set_page_private(page, 0);
530 }
531
532 /*
533 * This function checks whether a page is free && is the buddy
534 * we can do coalesce a page and its buddy if
535 * (a) the buddy is not in a hole &&
536 * (b) the buddy is in the buddy system &&
537 * (c) a page and its buddy have the same order &&
538 * (d) a page and its buddy are in the same zone.
539 *
540 * For recording whether a page is in the buddy system, we set ->_mapcount
541 * PAGE_BUDDY_MAPCOUNT_VALUE.
542 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
543 * serialized by zone->lock.
544 *
545 * For recording page's order, we use page_private(page).
546 */
547 static inline int page_is_buddy(struct page *page, struct page *buddy,
548 unsigned int order)
549 {
550 if (!pfn_valid_within(page_to_pfn(buddy)))
551 return 0;
552
553 if (page_is_guard(buddy) && page_order(buddy) == order) {
554 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
555
556 if (page_zone_id(page) != page_zone_id(buddy))
557 return 0;
558
559 return 1;
560 }
561
562 if (PageBuddy(buddy) && page_order(buddy) == order) {
563 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
564
565 /*
566 * zone check is done late to avoid uselessly
567 * calculating zone/node ids for pages that could
568 * never merge.
569 */
570 if (page_zone_id(page) != page_zone_id(buddy))
571 return 0;
572
573 return 1;
574 }
575 return 0;
576 }
577
578 /*
579 * Freeing function for a buddy system allocator.
580 *
581 * The concept of a buddy system is to maintain direct-mapped table
582 * (containing bit values) for memory blocks of various "orders".
583 * The bottom level table contains the map for the smallest allocatable
584 * units of memory (here, pages), and each level above it describes
585 * pairs of units from the levels below, hence, "buddies".
586 * At a high level, all that happens here is marking the table entry
587 * at the bottom level available, and propagating the changes upward
588 * as necessary, plus some accounting needed to play nicely with other
589 * parts of the VM system.
590 * At each level, we keep a list of pages, which are heads of continuous
591 * free pages of length of (1 << order) and marked with _mapcount
592 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
593 * field.
594 * So when we are allocating or freeing one, we can derive the state of the
595 * other. That is, if we allocate a small block, and both were
596 * free, the remainder of the region must be split into blocks.
597 * If a block is freed, and its buddy is also free, then this
598 * triggers coalescing into a block of larger size.
599 *
600 * -- nyc
601 */
602
603 static inline void __free_one_page(struct page *page,
604 unsigned long pfn,
605 struct zone *zone, unsigned int order,
606 int migratetype)
607 {
608 unsigned long page_idx;
609 unsigned long combined_idx;
610 unsigned long uninitialized_var(buddy_idx);
611 struct page *buddy;
612 int max_order = MAX_ORDER;
613
614 VM_BUG_ON(!zone_is_initialized(zone));
615
616 if (unlikely(PageCompound(page)))
617 if (unlikely(destroy_compound_page(page, order)))
618 return;
619
620 VM_BUG_ON(migratetype == -1);
621 if (is_migrate_isolate(migratetype)) {
622 /*
623 * We restrict max order of merging to prevent merge
624 * between freepages on isolate pageblock and normal
625 * pageblock. Without this, pageblock isolation
626 * could cause incorrect freepage accounting.
627 */
628 max_order = min(MAX_ORDER, pageblock_order + 1);
629 } else {
630 __mod_zone_freepage_state(zone, 1 << order, migratetype);
631 }
632
633 page_idx = pfn & ((1 << max_order) - 1);
634
635 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
636 VM_BUG_ON_PAGE(bad_range(zone, page), page);
637
638 while (order < max_order - 1) {
639 buddy_idx = __find_buddy_index(page_idx, order);
640 buddy = page + (buddy_idx - page_idx);
641 if (!page_is_buddy(page, buddy, order))
642 break;
643 /*
644 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
645 * merge with it and move up one order.
646 */
647 if (page_is_guard(buddy)) {
648 clear_page_guard(zone, buddy, order, migratetype);
649 } else {
650 list_del(&buddy->lru);
651 zone->free_area[order].nr_free--;
652 rmv_page_order(buddy);
653 }
654 combined_idx = buddy_idx & page_idx;
655 page = page + (combined_idx - page_idx);
656 page_idx = combined_idx;
657 order++;
658 }
659 set_page_order(page, order);
660
661 /*
662 * If this is not the largest possible page, check if the buddy
663 * of the next-highest order is free. If it is, it's possible
664 * that pages are being freed that will coalesce soon. In case,
665 * that is happening, add the free page to the tail of the list
666 * so it's less likely to be used soon and more likely to be merged
667 * as a higher order page
668 */
669 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
670 struct page *higher_page, *higher_buddy;
671 combined_idx = buddy_idx & page_idx;
672 higher_page = page + (combined_idx - page_idx);
673 buddy_idx = __find_buddy_index(combined_idx, order + 1);
674 higher_buddy = higher_page + (buddy_idx - combined_idx);
675 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
676 list_add_tail(&page->lru,
677 &zone->free_area[order].free_list[migratetype]);
678 goto out;
679 }
680 }
681
682 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
683 out:
684 zone->free_area[order].nr_free++;
685 }
686
687 static inline int free_pages_check(struct page *page)
688 {
689 const char *bad_reason = NULL;
690 unsigned long bad_flags = 0;
691
692 if (unlikely(page_mapcount(page)))
693 bad_reason = "nonzero mapcount";
694 if (unlikely(page->mapping != NULL))
695 bad_reason = "non-NULL mapping";
696 if (unlikely(atomic_read(&page->_count) != 0))
697 bad_reason = "nonzero _count";
698 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
699 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
700 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
701 }
702 #ifdef CONFIG_MEMCG
703 if (unlikely(page->mem_cgroup))
704 bad_reason = "page still charged to cgroup";
705 #endif
706 if (unlikely(bad_reason)) {
707 bad_page(page, bad_reason, bad_flags);
708 return 1;
709 }
710 page_cpupid_reset_last(page);
711 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
712 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
713 return 0;
714 }
715
716 /*
717 * Frees a number of pages from the PCP lists
718 * Assumes all pages on list are in same zone, and of same order.
719 * count is the number of pages to free.
720 *
721 * If the zone was previously in an "all pages pinned" state then look to
722 * see if this freeing clears that state.
723 *
724 * And clear the zone's pages_scanned counter, to hold off the "all pages are
725 * pinned" detection logic.
726 */
727 static void free_pcppages_bulk(struct zone *zone, int count,
728 struct per_cpu_pages *pcp)
729 {
730 int migratetype = 0;
731 int batch_free = 0;
732 int to_free = count;
733 unsigned long nr_scanned;
734
735 spin_lock(&zone->lock);
736 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
737 if (nr_scanned)
738 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
739
740 while (to_free) {
741 struct page *page;
742 struct list_head *list;
743
744 /*
745 * Remove pages from lists in a round-robin fashion. A
746 * batch_free count is maintained that is incremented when an
747 * empty list is encountered. This is so more pages are freed
748 * off fuller lists instead of spinning excessively around empty
749 * lists
750 */
751 do {
752 batch_free++;
753 if (++migratetype == MIGRATE_PCPTYPES)
754 migratetype = 0;
755 list = &pcp->lists[migratetype];
756 } while (list_empty(list));
757
758 /* This is the only non-empty list. Free them all. */
759 if (batch_free == MIGRATE_PCPTYPES)
760 batch_free = to_free;
761
762 do {
763 int mt; /* migratetype of the to-be-freed page */
764
765 page = list_entry(list->prev, struct page, lru);
766 /* must delete as __free_one_page list manipulates */
767 list_del(&page->lru);
768 mt = get_freepage_migratetype(page);
769 if (unlikely(has_isolate_pageblock(zone)))
770 mt = get_pageblock_migratetype(page);
771
772 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
773 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
774 trace_mm_page_pcpu_drain(page, 0, mt);
775 } while (--to_free && --batch_free && !list_empty(list));
776 }
777 spin_unlock(&zone->lock);
778 }
779
780 static void free_one_page(struct zone *zone,
781 struct page *page, unsigned long pfn,
782 unsigned int order,
783 int migratetype)
784 {
785 unsigned long nr_scanned;
786 spin_lock(&zone->lock);
787 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
788 if (nr_scanned)
789 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
790
791 if (unlikely(has_isolate_pageblock(zone) ||
792 is_migrate_isolate(migratetype))) {
793 migratetype = get_pfnblock_migratetype(page, pfn);
794 }
795 __free_one_page(page, pfn, zone, order, migratetype);
796 spin_unlock(&zone->lock);
797 }
798
799 static bool free_pages_prepare(struct page *page, unsigned int order)
800 {
801 int i;
802 int bad = 0;
803
804 VM_BUG_ON_PAGE(PageTail(page), page);
805 VM_BUG_ON_PAGE(PageHead(page) && compound_order(page) != order, page);
806
807 trace_mm_page_free(page, order);
808 kmemcheck_free_shadow(page, order);
809
810 if (PageAnon(page))
811 page->mapping = NULL;
812 for (i = 0; i < (1 << order); i++)
813 bad += free_pages_check(page + i);
814 if (bad)
815 return false;
816
817 reset_page_owner(page, order);
818
819 if (!PageHighMem(page)) {
820 debug_check_no_locks_freed(page_address(page),
821 PAGE_SIZE << order);
822 debug_check_no_obj_freed(page_address(page),
823 PAGE_SIZE << order);
824 }
825 arch_free_page(page, order);
826 kernel_map_pages(page, 1 << order, 0);
827
828 return true;
829 }
830
831 static void __free_pages_ok(struct page *page, unsigned int order)
832 {
833 unsigned long flags;
834 int migratetype;
835 unsigned long pfn = page_to_pfn(page);
836
837 if (!free_pages_prepare(page, order))
838 return;
839
840 migratetype = get_pfnblock_migratetype(page, pfn);
841 local_irq_save(flags);
842 __count_vm_events(PGFREE, 1 << order);
843 set_freepage_migratetype(page, migratetype);
844 free_one_page(page_zone(page), page, pfn, order, migratetype);
845 local_irq_restore(flags);
846 }
847
848 void __init __free_pages_bootmem(struct page *page, unsigned int order)
849 {
850 unsigned int nr_pages = 1 << order;
851 struct page *p = page;
852 unsigned int loop;
853
854 prefetchw(p);
855 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
856 prefetchw(p + 1);
857 __ClearPageReserved(p);
858 set_page_count(p, 0);
859 }
860 __ClearPageReserved(p);
861 set_page_count(p, 0);
862
863 page_zone(page)->managed_pages += nr_pages;
864 set_page_refcounted(page);
865 __free_pages(page, order);
866 }
867
868 #ifdef CONFIG_CMA
869 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
870 void __init init_cma_reserved_pageblock(struct page *page)
871 {
872 unsigned i = pageblock_nr_pages;
873 struct page *p = page;
874
875 do {
876 __ClearPageReserved(p);
877 set_page_count(p, 0);
878 } while (++p, --i);
879
880 set_pageblock_migratetype(page, MIGRATE_CMA);
881
882 if (pageblock_order >= MAX_ORDER) {
883 i = pageblock_nr_pages;
884 p = page;
885 do {
886 set_page_refcounted(p);
887 __free_pages(p, MAX_ORDER - 1);
888 p += MAX_ORDER_NR_PAGES;
889 } while (i -= MAX_ORDER_NR_PAGES);
890 } else {
891 set_page_refcounted(page);
892 __free_pages(page, pageblock_order);
893 }
894
895 adjust_managed_page_count(page, pageblock_nr_pages);
896 }
897 #endif
898
899 /*
900 * The order of subdivision here is critical for the IO subsystem.
901 * Please do not alter this order without good reasons and regression
902 * testing. Specifically, as large blocks of memory are subdivided,
903 * the order in which smaller blocks are delivered depends on the order
904 * they're subdivided in this function. This is the primary factor
905 * influencing the order in which pages are delivered to the IO
906 * subsystem according to empirical testing, and this is also justified
907 * by considering the behavior of a buddy system containing a single
908 * large block of memory acted on by a series of small allocations.
909 * This behavior is a critical factor in sglist merging's success.
910 *
911 * -- nyc
912 */
913 static inline void expand(struct zone *zone, struct page *page,
914 int low, int high, struct free_area *area,
915 int migratetype)
916 {
917 unsigned long size = 1 << high;
918
919 while (high > low) {
920 area--;
921 high--;
922 size >>= 1;
923 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
924
925 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
926 debug_guardpage_enabled() &&
927 high < debug_guardpage_minorder()) {
928 /*
929 * Mark as guard pages (or page), that will allow to
930 * merge back to allocator when buddy will be freed.
931 * Corresponding page table entries will not be touched,
932 * pages will stay not present in virtual address space
933 */
934 set_page_guard(zone, &page[size], high, migratetype);
935 continue;
936 }
937 list_add(&page[size].lru, &area->free_list[migratetype]);
938 area->nr_free++;
939 set_page_order(&page[size], high);
940 }
941 }
942
943 /*
944 * This page is about to be returned from the page allocator
945 */
946 static inline int check_new_page(struct page *page)
947 {
948 const char *bad_reason = NULL;
949 unsigned long bad_flags = 0;
950
951 if (unlikely(page_mapcount(page)))
952 bad_reason = "nonzero mapcount";
953 if (unlikely(page->mapping != NULL))
954 bad_reason = "non-NULL mapping";
955 if (unlikely(atomic_read(&page->_count) != 0))
956 bad_reason = "nonzero _count";
957 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
958 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
959 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
960 }
961 #ifdef CONFIG_MEMCG
962 if (unlikely(page->mem_cgroup))
963 bad_reason = "page still charged to cgroup";
964 #endif
965 if (unlikely(bad_reason)) {
966 bad_page(page, bad_reason, bad_flags);
967 return 1;
968 }
969 return 0;
970 }
971
972 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
973 {
974 int i;
975
976 for (i = 0; i < (1 << order); i++) {
977 struct page *p = page + i;
978 if (unlikely(check_new_page(p)))
979 return 1;
980 }
981
982 set_page_private(page, 0);
983 set_page_refcounted(page);
984
985 arch_alloc_page(page, order);
986 kernel_map_pages(page, 1 << order, 1);
987
988 if (gfp_flags & __GFP_ZERO)
989 prep_zero_page(page, order, gfp_flags);
990
991 if (order && (gfp_flags & __GFP_COMP))
992 prep_compound_page(page, order);
993
994 set_page_owner(page, order, gfp_flags);
995
996 return 0;
997 }
998
999 /*
1000 * Go through the free lists for the given migratetype and remove
1001 * the smallest available page from the freelists
1002 */
1003 static inline
1004 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1005 int migratetype)
1006 {
1007 unsigned int current_order;
1008 struct free_area *area;
1009 struct page *page;
1010
1011 /* Find a page of the appropriate size in the preferred list */
1012 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1013 area = &(zone->free_area[current_order]);
1014 if (list_empty(&area->free_list[migratetype]))
1015 continue;
1016
1017 page = list_entry(area->free_list[migratetype].next,
1018 struct page, lru);
1019 list_del(&page->lru);
1020 rmv_page_order(page);
1021 area->nr_free--;
1022 expand(zone, page, order, current_order, area, migratetype);
1023 set_freepage_migratetype(page, migratetype);
1024 return page;
1025 }
1026
1027 return NULL;
1028 }
1029
1030
1031 /*
1032 * This array describes the order lists are fallen back to when
1033 * the free lists for the desirable migrate type are depleted
1034 */
1035 static int fallbacks[MIGRATE_TYPES][4] = {
1036 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1037 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
1038 #ifdef CONFIG_CMA
1039 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1040 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
1041 #else
1042 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
1043 #endif
1044 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
1045 #ifdef CONFIG_MEMORY_ISOLATION
1046 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
1047 #endif
1048 };
1049
1050 /*
1051 * Move the free pages in a range to the free lists of the requested type.
1052 * Note that start_page and end_pages are not aligned on a pageblock
1053 * boundary. If alignment is required, use move_freepages_block()
1054 */
1055 int move_freepages(struct zone *zone,
1056 struct page *start_page, struct page *end_page,
1057 int migratetype)
1058 {
1059 struct page *page;
1060 unsigned long order;
1061 int pages_moved = 0;
1062
1063 #ifndef CONFIG_HOLES_IN_ZONE
1064 /*
1065 * page_zone is not safe to call in this context when
1066 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1067 * anyway as we check zone boundaries in move_freepages_block().
1068 * Remove at a later date when no bug reports exist related to
1069 * grouping pages by mobility
1070 */
1071 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1072 #endif
1073
1074 for (page = start_page; page <= end_page;) {
1075 /* Make sure we are not inadvertently changing nodes */
1076 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1077
1078 if (!pfn_valid_within(page_to_pfn(page))) {
1079 page++;
1080 continue;
1081 }
1082
1083 if (!PageBuddy(page)) {
1084 page++;
1085 continue;
1086 }
1087
1088 order = page_order(page);
1089 list_move(&page->lru,
1090 &zone->free_area[order].free_list[migratetype]);
1091 set_freepage_migratetype(page, migratetype);
1092 page += 1 << order;
1093 pages_moved += 1 << order;
1094 }
1095
1096 return pages_moved;
1097 }
1098
1099 int move_freepages_block(struct zone *zone, struct page *page,
1100 int migratetype)
1101 {
1102 unsigned long start_pfn, end_pfn;
1103 struct page *start_page, *end_page;
1104
1105 start_pfn = page_to_pfn(page);
1106 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1107 start_page = pfn_to_page(start_pfn);
1108 end_page = start_page + pageblock_nr_pages - 1;
1109 end_pfn = start_pfn + pageblock_nr_pages - 1;
1110
1111 /* Do not cross zone boundaries */
1112 if (!zone_spans_pfn(zone, start_pfn))
1113 start_page = page;
1114 if (!zone_spans_pfn(zone, end_pfn))
1115 return 0;
1116
1117 return move_freepages(zone, start_page, end_page, migratetype);
1118 }
1119
1120 static void change_pageblock_range(struct page *pageblock_page,
1121 int start_order, int migratetype)
1122 {
1123 int nr_pageblocks = 1 << (start_order - pageblock_order);
1124
1125 while (nr_pageblocks--) {
1126 set_pageblock_migratetype(pageblock_page, migratetype);
1127 pageblock_page += pageblock_nr_pages;
1128 }
1129 }
1130
1131 /*
1132 * If breaking a large block of pages, move all free pages to the preferred
1133 * allocation list. If falling back for a reclaimable kernel allocation, be
1134 * more aggressive about taking ownership of free pages.
1135 *
1136 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1137 * nor move CMA pages to different free lists. We don't want unmovable pages
1138 * to be allocated from MIGRATE_CMA areas.
1139 *
1140 * Returns the new migratetype of the pageblock (or the same old migratetype
1141 * if it was unchanged).
1142 */
1143 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1144 int start_type, int fallback_type)
1145 {
1146 int current_order = page_order(page);
1147
1148 /*
1149 * When borrowing from MIGRATE_CMA, we need to release the excess
1150 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1151 * is set to CMA so it is returned to the correct freelist in case
1152 * the page ends up being not actually allocated from the pcp lists.
1153 */
1154 if (is_migrate_cma(fallback_type))
1155 return fallback_type;
1156
1157 /* Take ownership for orders >= pageblock_order */
1158 if (current_order >= pageblock_order) {
1159 change_pageblock_range(page, current_order, start_type);
1160 return start_type;
1161 }
1162
1163 if (current_order >= pageblock_order / 2 ||
1164 start_type == MIGRATE_RECLAIMABLE ||
1165 page_group_by_mobility_disabled) {
1166 int pages;
1167
1168 pages = move_freepages_block(zone, page, start_type);
1169
1170 /* Claim the whole block if over half of it is free */
1171 if (pages >= (1 << (pageblock_order-1)) ||
1172 page_group_by_mobility_disabled) {
1173
1174 set_pageblock_migratetype(page, start_type);
1175 return start_type;
1176 }
1177
1178 }
1179
1180 return fallback_type;
1181 }
1182
1183 /* Remove an element from the buddy allocator from the fallback list */
1184 static inline struct page *
1185 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1186 {
1187 struct free_area *area;
1188 unsigned int current_order;
1189 struct page *page;
1190 int migratetype, new_type, i;
1191
1192 /* Find the largest possible block of pages in the other list */
1193 for (current_order = MAX_ORDER-1;
1194 current_order >= order && current_order <= MAX_ORDER-1;
1195 --current_order) {
1196 for (i = 0;; i++) {
1197 migratetype = fallbacks[start_migratetype][i];
1198
1199 /* MIGRATE_RESERVE handled later if necessary */
1200 if (migratetype == MIGRATE_RESERVE)
1201 break;
1202
1203 area = &(zone->free_area[current_order]);
1204 if (list_empty(&area->free_list[migratetype]))
1205 continue;
1206
1207 page = list_entry(area->free_list[migratetype].next,
1208 struct page, lru);
1209 area->nr_free--;
1210
1211 new_type = try_to_steal_freepages(zone, page,
1212 start_migratetype,
1213 migratetype);
1214
1215 /* Remove the page from the freelists */
1216 list_del(&page->lru);
1217 rmv_page_order(page);
1218
1219 expand(zone, page, order, current_order, area,
1220 new_type);
1221 /* The freepage_migratetype may differ from pageblock's
1222 * migratetype depending on the decisions in
1223 * try_to_steal_freepages. This is OK as long as it does
1224 * not differ for MIGRATE_CMA type.
1225 */
1226 set_freepage_migratetype(page, new_type);
1227
1228 trace_mm_page_alloc_extfrag(page, order, current_order,
1229 start_migratetype, migratetype, new_type);
1230
1231 return page;
1232 }
1233 }
1234
1235 return NULL;
1236 }
1237
1238 /*
1239 * Do the hard work of removing an element from the buddy allocator.
1240 * Call me with the zone->lock already held.
1241 */
1242 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1243 int migratetype)
1244 {
1245 struct page *page;
1246
1247 retry_reserve:
1248 page = __rmqueue_smallest(zone, order, migratetype);
1249
1250 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1251 page = __rmqueue_fallback(zone, order, migratetype);
1252
1253 /*
1254 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1255 * is used because __rmqueue_smallest is an inline function
1256 * and we want just one call site
1257 */
1258 if (!page) {
1259 migratetype = MIGRATE_RESERVE;
1260 goto retry_reserve;
1261 }
1262 }
1263
1264 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1265 return page;
1266 }
1267
1268 /*
1269 * Obtain a specified number of elements from the buddy allocator, all under
1270 * a single hold of the lock, for efficiency. Add them to the supplied list.
1271 * Returns the number of new pages which were placed at *list.
1272 */
1273 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1274 unsigned long count, struct list_head *list,
1275 int migratetype, bool cold)
1276 {
1277 int i;
1278
1279 spin_lock(&zone->lock);
1280 for (i = 0; i < count; ++i) {
1281 struct page *page = __rmqueue(zone, order, migratetype);
1282 if (unlikely(page == NULL))
1283 break;
1284
1285 /*
1286 * Split buddy pages returned by expand() are received here
1287 * in physical page order. The page is added to the callers and
1288 * list and the list head then moves forward. From the callers
1289 * perspective, the linked list is ordered by page number in
1290 * some conditions. This is useful for IO devices that can
1291 * merge IO requests if the physical pages are ordered
1292 * properly.
1293 */
1294 if (likely(!cold))
1295 list_add(&page->lru, list);
1296 else
1297 list_add_tail(&page->lru, list);
1298 list = &page->lru;
1299 if (is_migrate_cma(get_freepage_migratetype(page)))
1300 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1301 -(1 << order));
1302 }
1303 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1304 spin_unlock(&zone->lock);
1305 return i;
1306 }
1307
1308 #ifdef CONFIG_NUMA
1309 /*
1310 * Called from the vmstat counter updater to drain pagesets of this
1311 * currently executing processor on remote nodes after they have
1312 * expired.
1313 *
1314 * Note that this function must be called with the thread pinned to
1315 * a single processor.
1316 */
1317 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1318 {
1319 unsigned long flags;
1320 int to_drain, batch;
1321
1322 local_irq_save(flags);
1323 batch = ACCESS_ONCE(pcp->batch);
1324 to_drain = min(pcp->count, batch);
1325 if (to_drain > 0) {
1326 free_pcppages_bulk(zone, to_drain, pcp);
1327 pcp->count -= to_drain;
1328 }
1329 local_irq_restore(flags);
1330 }
1331 #endif
1332
1333 /*
1334 * Drain pcplists of the indicated processor and zone.
1335 *
1336 * The processor must either be the current processor and the
1337 * thread pinned to the current processor or a processor that
1338 * is not online.
1339 */
1340 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1341 {
1342 unsigned long flags;
1343 struct per_cpu_pageset *pset;
1344 struct per_cpu_pages *pcp;
1345
1346 local_irq_save(flags);
1347 pset = per_cpu_ptr(zone->pageset, cpu);
1348
1349 pcp = &pset->pcp;
1350 if (pcp->count) {
1351 free_pcppages_bulk(zone, pcp->count, pcp);
1352 pcp->count = 0;
1353 }
1354 local_irq_restore(flags);
1355 }
1356
1357 /*
1358 * Drain pcplists of all zones on the indicated processor.
1359 *
1360 * The processor must either be the current processor and the
1361 * thread pinned to the current processor or a processor that
1362 * is not online.
1363 */
1364 static void drain_pages(unsigned int cpu)
1365 {
1366 struct zone *zone;
1367
1368 for_each_populated_zone(zone) {
1369 drain_pages_zone(cpu, zone);
1370 }
1371 }
1372
1373 /*
1374 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1375 *
1376 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1377 * the single zone's pages.
1378 */
1379 void drain_local_pages(struct zone *zone)
1380 {
1381 int cpu = smp_processor_id();
1382
1383 if (zone)
1384 drain_pages_zone(cpu, zone);
1385 else
1386 drain_pages(cpu);
1387 }
1388
1389 /*
1390 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1391 *
1392 * When zone parameter is non-NULL, spill just the single zone's pages.
1393 *
1394 * Note that this code is protected against sending an IPI to an offline
1395 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1396 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1397 * nothing keeps CPUs from showing up after we populated the cpumask and
1398 * before the call to on_each_cpu_mask().
1399 */
1400 void drain_all_pages(struct zone *zone)
1401 {
1402 int cpu;
1403
1404 /*
1405 * Allocate in the BSS so we wont require allocation in
1406 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1407 */
1408 static cpumask_t cpus_with_pcps;
1409
1410 /*
1411 * We don't care about racing with CPU hotplug event
1412 * as offline notification will cause the notified
1413 * cpu to drain that CPU pcps and on_each_cpu_mask
1414 * disables preemption as part of its processing
1415 */
1416 for_each_online_cpu(cpu) {
1417 struct per_cpu_pageset *pcp;
1418 struct zone *z;
1419 bool has_pcps = false;
1420
1421 if (zone) {
1422 pcp = per_cpu_ptr(zone->pageset, cpu);
1423 if (pcp->pcp.count)
1424 has_pcps = true;
1425 } else {
1426 for_each_populated_zone(z) {
1427 pcp = per_cpu_ptr(z->pageset, cpu);
1428 if (pcp->pcp.count) {
1429 has_pcps = true;
1430 break;
1431 }
1432 }
1433 }
1434
1435 if (has_pcps)
1436 cpumask_set_cpu(cpu, &cpus_with_pcps);
1437 else
1438 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1439 }
1440 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1441 zone, 1);
1442 }
1443
1444 #ifdef CONFIG_HIBERNATION
1445
1446 void mark_free_pages(struct zone *zone)
1447 {
1448 unsigned long pfn, max_zone_pfn;
1449 unsigned long flags;
1450 unsigned int order, t;
1451 struct list_head *curr;
1452
1453 if (zone_is_empty(zone))
1454 return;
1455
1456 spin_lock_irqsave(&zone->lock, flags);
1457
1458 max_zone_pfn = zone_end_pfn(zone);
1459 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1460 if (pfn_valid(pfn)) {
1461 struct page *page = pfn_to_page(pfn);
1462
1463 if (!swsusp_page_is_forbidden(page))
1464 swsusp_unset_page_free(page);
1465 }
1466
1467 for_each_migratetype_order(order, t) {
1468 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1469 unsigned long i;
1470
1471 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1472 for (i = 0; i < (1UL << order); i++)
1473 swsusp_set_page_free(pfn_to_page(pfn + i));
1474 }
1475 }
1476 spin_unlock_irqrestore(&zone->lock, flags);
1477 }
1478 #endif /* CONFIG_PM */
1479
1480 /*
1481 * Free a 0-order page
1482 * cold == true ? free a cold page : free a hot page
1483 */
1484 void free_hot_cold_page(struct page *page, bool cold)
1485 {
1486 struct zone *zone = page_zone(page);
1487 struct per_cpu_pages *pcp;
1488 unsigned long flags;
1489 unsigned long pfn = page_to_pfn(page);
1490 int migratetype;
1491
1492 if (!free_pages_prepare(page, 0))
1493 return;
1494
1495 migratetype = get_pfnblock_migratetype(page, pfn);
1496 set_freepage_migratetype(page, migratetype);
1497 local_irq_save(flags);
1498 __count_vm_event(PGFREE);
1499
1500 /*
1501 * We only track unmovable, reclaimable and movable on pcp lists.
1502 * Free ISOLATE pages back to the allocator because they are being
1503 * offlined but treat RESERVE as movable pages so we can get those
1504 * areas back if necessary. Otherwise, we may have to free
1505 * excessively into the page allocator
1506 */
1507 if (migratetype >= MIGRATE_PCPTYPES) {
1508 if (unlikely(is_migrate_isolate(migratetype))) {
1509 free_one_page(zone, page, pfn, 0, migratetype);
1510 goto out;
1511 }
1512 migratetype = MIGRATE_MOVABLE;
1513 }
1514
1515 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1516 if (!cold)
1517 list_add(&page->lru, &pcp->lists[migratetype]);
1518 else
1519 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1520 pcp->count++;
1521 if (pcp->count >= pcp->high) {
1522 unsigned long batch = ACCESS_ONCE(pcp->batch);
1523 free_pcppages_bulk(zone, batch, pcp);
1524 pcp->count -= batch;
1525 }
1526
1527 out:
1528 local_irq_restore(flags);
1529 }
1530
1531 /*
1532 * Free a list of 0-order pages
1533 */
1534 void free_hot_cold_page_list(struct list_head *list, bool cold)
1535 {
1536 struct page *page, *next;
1537
1538 list_for_each_entry_safe(page, next, list, lru) {
1539 trace_mm_page_free_batched(page, cold);
1540 free_hot_cold_page(page, cold);
1541 }
1542 }
1543
1544 /*
1545 * split_page takes a non-compound higher-order page, and splits it into
1546 * n (1<<order) sub-pages: page[0..n]
1547 * Each sub-page must be freed individually.
1548 *
1549 * Note: this is probably too low level an operation for use in drivers.
1550 * Please consult with lkml before using this in your driver.
1551 */
1552 void split_page(struct page *page, unsigned int order)
1553 {
1554 int i;
1555
1556 VM_BUG_ON_PAGE(PageCompound(page), page);
1557 VM_BUG_ON_PAGE(!page_count(page), page);
1558
1559 #ifdef CONFIG_KMEMCHECK
1560 /*
1561 * Split shadow pages too, because free(page[0]) would
1562 * otherwise free the whole shadow.
1563 */
1564 if (kmemcheck_page_is_tracked(page))
1565 split_page(virt_to_page(page[0].shadow), order);
1566 #endif
1567
1568 set_page_owner(page, 0, 0);
1569 for (i = 1; i < (1 << order); i++) {
1570 set_page_refcounted(page + i);
1571 set_page_owner(page + i, 0, 0);
1572 }
1573 }
1574 EXPORT_SYMBOL_GPL(split_page);
1575
1576 int __isolate_free_page(struct page *page, unsigned int order)
1577 {
1578 unsigned long watermark;
1579 struct zone *zone;
1580 int mt;
1581
1582 BUG_ON(!PageBuddy(page));
1583
1584 zone = page_zone(page);
1585 mt = get_pageblock_migratetype(page);
1586
1587 if (!is_migrate_isolate(mt)) {
1588 /* Obey watermarks as if the page was being allocated */
1589 watermark = low_wmark_pages(zone) + (1 << order);
1590 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1591 return 0;
1592
1593 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1594 }
1595
1596 /* Remove page from free list */
1597 list_del(&page->lru);
1598 zone->free_area[order].nr_free--;
1599 rmv_page_order(page);
1600
1601 /* Set the pageblock if the isolated page is at least a pageblock */
1602 if (order >= pageblock_order - 1) {
1603 struct page *endpage = page + (1 << order) - 1;
1604 for (; page < endpage; page += pageblock_nr_pages) {
1605 int mt = get_pageblock_migratetype(page);
1606 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1607 set_pageblock_migratetype(page,
1608 MIGRATE_MOVABLE);
1609 }
1610 }
1611
1612 set_page_owner(page, order, 0);
1613 return 1UL << order;
1614 }
1615
1616 /*
1617 * Similar to split_page except the page is already free. As this is only
1618 * being used for migration, the migratetype of the block also changes.
1619 * As this is called with interrupts disabled, the caller is responsible
1620 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1621 * are enabled.
1622 *
1623 * Note: this is probably too low level an operation for use in drivers.
1624 * Please consult with lkml before using this in your driver.
1625 */
1626 int split_free_page(struct page *page)
1627 {
1628 unsigned int order;
1629 int nr_pages;
1630
1631 order = page_order(page);
1632
1633 nr_pages = __isolate_free_page(page, order);
1634 if (!nr_pages)
1635 return 0;
1636
1637 /* Split into individual pages */
1638 set_page_refcounted(page);
1639 split_page(page, order);
1640 return nr_pages;
1641 }
1642
1643 /*
1644 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1645 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1646 * or two.
1647 */
1648 static inline
1649 struct page *buffered_rmqueue(struct zone *preferred_zone,
1650 struct zone *zone, unsigned int order,
1651 gfp_t gfp_flags, int migratetype)
1652 {
1653 unsigned long flags;
1654 struct page *page;
1655 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1656
1657 again:
1658 if (likely(order == 0)) {
1659 struct per_cpu_pages *pcp;
1660 struct list_head *list;
1661
1662 local_irq_save(flags);
1663 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1664 list = &pcp->lists[migratetype];
1665 if (list_empty(list)) {
1666 pcp->count += rmqueue_bulk(zone, 0,
1667 pcp->batch, list,
1668 migratetype, cold);
1669 if (unlikely(list_empty(list)))
1670 goto failed;
1671 }
1672
1673 if (cold)
1674 page = list_entry(list->prev, struct page, lru);
1675 else
1676 page = list_entry(list->next, struct page, lru);
1677
1678 list_del(&page->lru);
1679 pcp->count--;
1680 } else {
1681 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1682 /*
1683 * __GFP_NOFAIL is not to be used in new code.
1684 *
1685 * All __GFP_NOFAIL callers should be fixed so that they
1686 * properly detect and handle allocation failures.
1687 *
1688 * We most definitely don't want callers attempting to
1689 * allocate greater than order-1 page units with
1690 * __GFP_NOFAIL.
1691 */
1692 WARN_ON_ONCE(order > 1);
1693 }
1694 spin_lock_irqsave(&zone->lock, flags);
1695 page = __rmqueue(zone, order, migratetype);
1696 spin_unlock(&zone->lock);
1697 if (!page)
1698 goto failed;
1699 __mod_zone_freepage_state(zone, -(1 << order),
1700 get_freepage_migratetype(page));
1701 }
1702
1703 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1704 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
1705 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
1706 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
1707
1708 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1709 zone_statistics(preferred_zone, zone, gfp_flags);
1710 local_irq_restore(flags);
1711
1712 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1713 if (prep_new_page(page, order, gfp_flags))
1714 goto again;
1715 return page;
1716
1717 failed:
1718 local_irq_restore(flags);
1719 return NULL;
1720 }
1721
1722 #ifdef CONFIG_FAIL_PAGE_ALLOC
1723
1724 static struct {
1725 struct fault_attr attr;
1726
1727 u32 ignore_gfp_highmem;
1728 u32 ignore_gfp_wait;
1729 u32 min_order;
1730 } fail_page_alloc = {
1731 .attr = FAULT_ATTR_INITIALIZER,
1732 .ignore_gfp_wait = 1,
1733 .ignore_gfp_highmem = 1,
1734 .min_order = 1,
1735 };
1736
1737 static int __init setup_fail_page_alloc(char *str)
1738 {
1739 return setup_fault_attr(&fail_page_alloc.attr, str);
1740 }
1741 __setup("fail_page_alloc=", setup_fail_page_alloc);
1742
1743 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1744 {
1745 if (order < fail_page_alloc.min_order)
1746 return false;
1747 if (gfp_mask & __GFP_NOFAIL)
1748 return false;
1749 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1750 return false;
1751 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1752 return false;
1753
1754 return should_fail(&fail_page_alloc.attr, 1 << order);
1755 }
1756
1757 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1758
1759 static int __init fail_page_alloc_debugfs(void)
1760 {
1761 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1762 struct dentry *dir;
1763
1764 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1765 &fail_page_alloc.attr);
1766 if (IS_ERR(dir))
1767 return PTR_ERR(dir);
1768
1769 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1770 &fail_page_alloc.ignore_gfp_wait))
1771 goto fail;
1772 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1773 &fail_page_alloc.ignore_gfp_highmem))
1774 goto fail;
1775 if (!debugfs_create_u32("min-order", mode, dir,
1776 &fail_page_alloc.min_order))
1777 goto fail;
1778
1779 return 0;
1780 fail:
1781 debugfs_remove_recursive(dir);
1782
1783 return -ENOMEM;
1784 }
1785
1786 late_initcall(fail_page_alloc_debugfs);
1787
1788 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1789
1790 #else /* CONFIG_FAIL_PAGE_ALLOC */
1791
1792 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1793 {
1794 return false;
1795 }
1796
1797 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1798
1799 /*
1800 * Return true if free pages are above 'mark'. This takes into account the order
1801 * of the allocation.
1802 */
1803 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1804 unsigned long mark, int classzone_idx, int alloc_flags,
1805 long free_pages)
1806 {
1807 /* free_pages may go negative - that's OK */
1808 long min = mark;
1809 int o;
1810 long free_cma = 0;
1811
1812 free_pages -= (1 << order) - 1;
1813 if (alloc_flags & ALLOC_HIGH)
1814 min -= min / 2;
1815 if (alloc_flags & ALLOC_HARDER)
1816 min -= min / 4;
1817 #ifdef CONFIG_CMA
1818 /* If allocation can't use CMA areas don't use free CMA pages */
1819 if (!(alloc_flags & ALLOC_CMA))
1820 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1821 #endif
1822
1823 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
1824 return false;
1825 for (o = 0; o < order; o++) {
1826 /* At the next order, this order's pages become unavailable */
1827 free_pages -= z->free_area[o].nr_free << o;
1828
1829 /* Require fewer higher order pages to be free */
1830 min >>= 1;
1831
1832 if (free_pages <= min)
1833 return false;
1834 }
1835 return true;
1836 }
1837
1838 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1839 int classzone_idx, int alloc_flags)
1840 {
1841 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1842 zone_page_state(z, NR_FREE_PAGES));
1843 }
1844
1845 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1846 unsigned long mark, int classzone_idx, int alloc_flags)
1847 {
1848 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1849
1850 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1851 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1852
1853 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1854 free_pages);
1855 }
1856
1857 #ifdef CONFIG_NUMA
1858 /*
1859 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1860 * skip over zones that are not allowed by the cpuset, or that have
1861 * been recently (in last second) found to be nearly full. See further
1862 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1863 * that have to skip over a lot of full or unallowed zones.
1864 *
1865 * If the zonelist cache is present in the passed zonelist, then
1866 * returns a pointer to the allowed node mask (either the current
1867 * tasks mems_allowed, or node_states[N_MEMORY].)
1868 *
1869 * If the zonelist cache is not available for this zonelist, does
1870 * nothing and returns NULL.
1871 *
1872 * If the fullzones BITMAP in the zonelist cache is stale (more than
1873 * a second since last zap'd) then we zap it out (clear its bits.)
1874 *
1875 * We hold off even calling zlc_setup, until after we've checked the
1876 * first zone in the zonelist, on the theory that most allocations will
1877 * be satisfied from that first zone, so best to examine that zone as
1878 * quickly as we can.
1879 */
1880 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1881 {
1882 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1883 nodemask_t *allowednodes; /* zonelist_cache approximation */
1884
1885 zlc = zonelist->zlcache_ptr;
1886 if (!zlc)
1887 return NULL;
1888
1889 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1890 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1891 zlc->last_full_zap = jiffies;
1892 }
1893
1894 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1895 &cpuset_current_mems_allowed :
1896 &node_states[N_MEMORY];
1897 return allowednodes;
1898 }
1899
1900 /*
1901 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1902 * if it is worth looking at further for free memory:
1903 * 1) Check that the zone isn't thought to be full (doesn't have its
1904 * bit set in the zonelist_cache fullzones BITMAP).
1905 * 2) Check that the zones node (obtained from the zonelist_cache
1906 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1907 * Return true (non-zero) if zone is worth looking at further, or
1908 * else return false (zero) if it is not.
1909 *
1910 * This check -ignores- the distinction between various watermarks,
1911 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1912 * found to be full for any variation of these watermarks, it will
1913 * be considered full for up to one second by all requests, unless
1914 * we are so low on memory on all allowed nodes that we are forced
1915 * into the second scan of the zonelist.
1916 *
1917 * In the second scan we ignore this zonelist cache and exactly
1918 * apply the watermarks to all zones, even it is slower to do so.
1919 * We are low on memory in the second scan, and should leave no stone
1920 * unturned looking for a free page.
1921 */
1922 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1923 nodemask_t *allowednodes)
1924 {
1925 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1926 int i; /* index of *z in zonelist zones */
1927 int n; /* node that zone *z is on */
1928
1929 zlc = zonelist->zlcache_ptr;
1930 if (!zlc)
1931 return 1;
1932
1933 i = z - zonelist->_zonerefs;
1934 n = zlc->z_to_n[i];
1935
1936 /* This zone is worth trying if it is allowed but not full */
1937 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1938 }
1939
1940 /*
1941 * Given 'z' scanning a zonelist, set the corresponding bit in
1942 * zlc->fullzones, so that subsequent attempts to allocate a page
1943 * from that zone don't waste time re-examining it.
1944 */
1945 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1946 {
1947 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1948 int i; /* index of *z in zonelist zones */
1949
1950 zlc = zonelist->zlcache_ptr;
1951 if (!zlc)
1952 return;
1953
1954 i = z - zonelist->_zonerefs;
1955
1956 set_bit(i, zlc->fullzones);
1957 }
1958
1959 /*
1960 * clear all zones full, called after direct reclaim makes progress so that
1961 * a zone that was recently full is not skipped over for up to a second
1962 */
1963 static void zlc_clear_zones_full(struct zonelist *zonelist)
1964 {
1965 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1966
1967 zlc = zonelist->zlcache_ptr;
1968 if (!zlc)
1969 return;
1970
1971 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1972 }
1973
1974 static bool zone_local(struct zone *local_zone, struct zone *zone)
1975 {
1976 return local_zone->node == zone->node;
1977 }
1978
1979 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1980 {
1981 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1982 RECLAIM_DISTANCE;
1983 }
1984
1985 #else /* CONFIG_NUMA */
1986
1987 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1988 {
1989 return NULL;
1990 }
1991
1992 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1993 nodemask_t *allowednodes)
1994 {
1995 return 1;
1996 }
1997
1998 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1999 {
2000 }
2001
2002 static void zlc_clear_zones_full(struct zonelist *zonelist)
2003 {
2004 }
2005
2006 static bool zone_local(struct zone *local_zone, struct zone *zone)
2007 {
2008 return true;
2009 }
2010
2011 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2012 {
2013 return true;
2014 }
2015
2016 #endif /* CONFIG_NUMA */
2017
2018 static void reset_alloc_batches(struct zone *preferred_zone)
2019 {
2020 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2021
2022 do {
2023 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2024 high_wmark_pages(zone) - low_wmark_pages(zone) -
2025 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2026 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2027 } while (zone++ != preferred_zone);
2028 }
2029
2030 /*
2031 * get_page_from_freelist goes through the zonelist trying to allocate
2032 * a page.
2033 */
2034 static struct page *
2035 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
2036 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
2037 struct zone *preferred_zone, int classzone_idx, int migratetype)
2038 {
2039 struct zoneref *z;
2040 struct page *page = NULL;
2041 struct zone *zone;
2042 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2043 int zlc_active = 0; /* set if using zonelist_cache */
2044 int did_zlc_setup = 0; /* just call zlc_setup() one time */
2045 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2046 (gfp_mask & __GFP_WRITE);
2047 int nr_fair_skipped = 0;
2048 bool zonelist_rescan;
2049
2050 zonelist_scan:
2051 zonelist_rescan = false;
2052
2053 /*
2054 * Scan zonelist, looking for a zone with enough free.
2055 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2056 */
2057 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2058 high_zoneidx, nodemask) {
2059 unsigned long mark;
2060
2061 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2062 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2063 continue;
2064 if (cpusets_enabled() &&
2065 (alloc_flags & ALLOC_CPUSET) &&
2066 !cpuset_zone_allowed(zone, gfp_mask))
2067 continue;
2068 /*
2069 * Distribute pages in proportion to the individual
2070 * zone size to ensure fair page aging. The zone a
2071 * page was allocated in should have no effect on the
2072 * time the page has in memory before being reclaimed.
2073 */
2074 if (alloc_flags & ALLOC_FAIR) {
2075 if (!zone_local(preferred_zone, zone))
2076 break;
2077 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2078 nr_fair_skipped++;
2079 continue;
2080 }
2081 }
2082 /*
2083 * When allocating a page cache page for writing, we
2084 * want to get it from a zone that is within its dirty
2085 * limit, such that no single zone holds more than its
2086 * proportional share of globally allowed dirty pages.
2087 * The dirty limits take into account the zone's
2088 * lowmem reserves and high watermark so that kswapd
2089 * should be able to balance it without having to
2090 * write pages from its LRU list.
2091 *
2092 * This may look like it could increase pressure on
2093 * lower zones by failing allocations in higher zones
2094 * before they are full. But the pages that do spill
2095 * over are limited as the lower zones are protected
2096 * by this very same mechanism. It should not become
2097 * a practical burden to them.
2098 *
2099 * XXX: For now, allow allocations to potentially
2100 * exceed the per-zone dirty limit in the slowpath
2101 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2102 * which is important when on a NUMA setup the allowed
2103 * zones are together not big enough to reach the
2104 * global limit. The proper fix for these situations
2105 * will require awareness of zones in the
2106 * dirty-throttling and the flusher threads.
2107 */
2108 if (consider_zone_dirty && !zone_dirty_ok(zone))
2109 continue;
2110
2111 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2112 if (!zone_watermark_ok(zone, order, mark,
2113 classzone_idx, alloc_flags)) {
2114 int ret;
2115
2116 /* Checked here to keep the fast path fast */
2117 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2118 if (alloc_flags & ALLOC_NO_WATERMARKS)
2119 goto try_this_zone;
2120
2121 if (IS_ENABLED(CONFIG_NUMA) &&
2122 !did_zlc_setup && nr_online_nodes > 1) {
2123 /*
2124 * we do zlc_setup if there are multiple nodes
2125 * and before considering the first zone allowed
2126 * by the cpuset.
2127 */
2128 allowednodes = zlc_setup(zonelist, alloc_flags);
2129 zlc_active = 1;
2130 did_zlc_setup = 1;
2131 }
2132
2133 if (zone_reclaim_mode == 0 ||
2134 !zone_allows_reclaim(preferred_zone, zone))
2135 goto this_zone_full;
2136
2137 /*
2138 * As we may have just activated ZLC, check if the first
2139 * eligible zone has failed zone_reclaim recently.
2140 */
2141 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2142 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2143 continue;
2144
2145 ret = zone_reclaim(zone, gfp_mask, order);
2146 switch (ret) {
2147 case ZONE_RECLAIM_NOSCAN:
2148 /* did not scan */
2149 continue;
2150 case ZONE_RECLAIM_FULL:
2151 /* scanned but unreclaimable */
2152 continue;
2153 default:
2154 /* did we reclaim enough */
2155 if (zone_watermark_ok(zone, order, mark,
2156 classzone_idx, alloc_flags))
2157 goto try_this_zone;
2158
2159 /*
2160 * Failed to reclaim enough to meet watermark.
2161 * Only mark the zone full if checking the min
2162 * watermark or if we failed to reclaim just
2163 * 1<<order pages or else the page allocator
2164 * fastpath will prematurely mark zones full
2165 * when the watermark is between the low and
2166 * min watermarks.
2167 */
2168 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2169 ret == ZONE_RECLAIM_SOME)
2170 goto this_zone_full;
2171
2172 continue;
2173 }
2174 }
2175
2176 try_this_zone:
2177 page = buffered_rmqueue(preferred_zone, zone, order,
2178 gfp_mask, migratetype);
2179 if (page)
2180 break;
2181 this_zone_full:
2182 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2183 zlc_mark_zone_full(zonelist, z);
2184 }
2185
2186 if (page) {
2187 /*
2188 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2189 * necessary to allocate the page. The expectation is
2190 * that the caller is taking steps that will free more
2191 * memory. The caller should avoid the page being used
2192 * for !PFMEMALLOC purposes.
2193 */
2194 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2195 return page;
2196 }
2197
2198 /*
2199 * The first pass makes sure allocations are spread fairly within the
2200 * local node. However, the local node might have free pages left
2201 * after the fairness batches are exhausted, and remote zones haven't
2202 * even been considered yet. Try once more without fairness, and
2203 * include remote zones now, before entering the slowpath and waking
2204 * kswapd: prefer spilling to a remote zone over swapping locally.
2205 */
2206 if (alloc_flags & ALLOC_FAIR) {
2207 alloc_flags &= ~ALLOC_FAIR;
2208 if (nr_fair_skipped) {
2209 zonelist_rescan = true;
2210 reset_alloc_batches(preferred_zone);
2211 }
2212 if (nr_online_nodes > 1)
2213 zonelist_rescan = true;
2214 }
2215
2216 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2217 /* Disable zlc cache for second zonelist scan */
2218 zlc_active = 0;
2219 zonelist_rescan = true;
2220 }
2221
2222 if (zonelist_rescan)
2223 goto zonelist_scan;
2224
2225 return NULL;
2226 }
2227
2228 /*
2229 * Large machines with many possible nodes should not always dump per-node
2230 * meminfo in irq context.
2231 */
2232 static inline bool should_suppress_show_mem(void)
2233 {
2234 bool ret = false;
2235
2236 #if NODES_SHIFT > 8
2237 ret = in_interrupt();
2238 #endif
2239 return ret;
2240 }
2241
2242 static DEFINE_RATELIMIT_STATE(nopage_rs,
2243 DEFAULT_RATELIMIT_INTERVAL,
2244 DEFAULT_RATELIMIT_BURST);
2245
2246 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2247 {
2248 unsigned int filter = SHOW_MEM_FILTER_NODES;
2249
2250 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2251 debug_guardpage_minorder() > 0)
2252 return;
2253
2254 /*
2255 * This documents exceptions given to allocations in certain
2256 * contexts that are allowed to allocate outside current's set
2257 * of allowed nodes.
2258 */
2259 if (!(gfp_mask & __GFP_NOMEMALLOC))
2260 if (test_thread_flag(TIF_MEMDIE) ||
2261 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2262 filter &= ~SHOW_MEM_FILTER_NODES;
2263 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2264 filter &= ~SHOW_MEM_FILTER_NODES;
2265
2266 if (fmt) {
2267 struct va_format vaf;
2268 va_list args;
2269
2270 va_start(args, fmt);
2271
2272 vaf.fmt = fmt;
2273 vaf.va = &args;
2274
2275 pr_warn("%pV", &vaf);
2276
2277 va_end(args);
2278 }
2279
2280 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2281 current->comm, order, gfp_mask);
2282
2283 dump_stack();
2284 if (!should_suppress_show_mem())
2285 show_mem(filter);
2286 }
2287
2288 static inline int
2289 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2290 unsigned long did_some_progress,
2291 unsigned long pages_reclaimed)
2292 {
2293 /* Do not loop if specifically requested */
2294 if (gfp_mask & __GFP_NORETRY)
2295 return 0;
2296
2297 /* Always retry if specifically requested */
2298 if (gfp_mask & __GFP_NOFAIL)
2299 return 1;
2300
2301 /*
2302 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2303 * making forward progress without invoking OOM. Suspend also disables
2304 * storage devices so kswapd will not help. Bail if we are suspending.
2305 */
2306 if (!did_some_progress && pm_suspended_storage())
2307 return 0;
2308
2309 /*
2310 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2311 * means __GFP_NOFAIL, but that may not be true in other
2312 * implementations.
2313 */
2314 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2315 return 1;
2316
2317 /*
2318 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2319 * specified, then we retry until we no longer reclaim any pages
2320 * (above), or we've reclaimed an order of pages at least as
2321 * large as the allocation's order. In both cases, if the
2322 * allocation still fails, we stop retrying.
2323 */
2324 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2325 return 1;
2326
2327 return 0;
2328 }
2329
2330 static inline struct page *
2331 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2332 struct zonelist *zonelist, enum zone_type high_zoneidx,
2333 nodemask_t *nodemask, struct zone *preferred_zone,
2334 int classzone_idx, int migratetype)
2335 {
2336 struct page *page;
2337
2338 /* Acquire the per-zone oom lock for each zone */
2339 if (!oom_zonelist_trylock(zonelist, gfp_mask)) {
2340 schedule_timeout_uninterruptible(1);
2341 return NULL;
2342 }
2343
2344 /*
2345 * PM-freezer should be notified that there might be an OOM killer on
2346 * its way to kill and wake somebody up. This is too early and we might
2347 * end up not killing anything but false positives are acceptable.
2348 * See freeze_processes.
2349 */
2350 note_oom_kill();
2351
2352 /*
2353 * Go through the zonelist yet one more time, keep very high watermark
2354 * here, this is only to catch a parallel oom killing, we must fail if
2355 * we're still under heavy pressure.
2356 */
2357 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2358 order, zonelist, high_zoneidx,
2359 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2360 preferred_zone, classzone_idx, migratetype);
2361 if (page)
2362 goto out;
2363
2364 if (!(gfp_mask & __GFP_NOFAIL)) {
2365 /* The OOM killer will not help higher order allocs */
2366 if (order > PAGE_ALLOC_COSTLY_ORDER)
2367 goto out;
2368 /* The OOM killer does not needlessly kill tasks for lowmem */
2369 if (high_zoneidx < ZONE_NORMAL)
2370 goto out;
2371 /*
2372 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2373 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2374 * The caller should handle page allocation failure by itself if
2375 * it specifies __GFP_THISNODE.
2376 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2377 */
2378 if (gfp_mask & __GFP_THISNODE)
2379 goto out;
2380 }
2381 /* Exhausted what can be done so it's blamo time */
2382 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2383
2384 out:
2385 oom_zonelist_unlock(zonelist, gfp_mask);
2386 return page;
2387 }
2388
2389 #ifdef CONFIG_COMPACTION
2390 /* Try memory compaction for high-order allocations before reclaim */
2391 static struct page *
2392 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2393 struct zonelist *zonelist, enum zone_type high_zoneidx,
2394 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2395 int classzone_idx, int migratetype, enum migrate_mode mode,
2396 int *contended_compaction, bool *deferred_compaction)
2397 {
2398 unsigned long compact_result;
2399 struct page *page;
2400
2401 if (!order)
2402 return NULL;
2403
2404 current->flags |= PF_MEMALLOC;
2405 compact_result = try_to_compact_pages(zonelist, order, gfp_mask,
2406 nodemask, mode,
2407 contended_compaction,
2408 alloc_flags, classzone_idx);
2409 current->flags &= ~PF_MEMALLOC;
2410
2411 switch (compact_result) {
2412 case COMPACT_DEFERRED:
2413 *deferred_compaction = true;
2414 /* fall-through */
2415 case COMPACT_SKIPPED:
2416 return NULL;
2417 default:
2418 break;
2419 }
2420
2421 /*
2422 * At least in one zone compaction wasn't deferred or skipped, so let's
2423 * count a compaction stall
2424 */
2425 count_vm_event(COMPACTSTALL);
2426
2427 page = get_page_from_freelist(gfp_mask, nodemask,
2428 order, zonelist, high_zoneidx,
2429 alloc_flags & ~ALLOC_NO_WATERMARKS,
2430 preferred_zone, classzone_idx, migratetype);
2431
2432 if (page) {
2433 struct zone *zone = page_zone(page);
2434
2435 zone->compact_blockskip_flush = false;
2436 compaction_defer_reset(zone, order, true);
2437 count_vm_event(COMPACTSUCCESS);
2438 return page;
2439 }
2440
2441 /*
2442 * It's bad if compaction run occurs and fails. The most likely reason
2443 * is that pages exist, but not enough to satisfy watermarks.
2444 */
2445 count_vm_event(COMPACTFAIL);
2446
2447 cond_resched();
2448
2449 return NULL;
2450 }
2451 #else
2452 static inline struct page *
2453 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2454 struct zonelist *zonelist, enum zone_type high_zoneidx,
2455 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2456 int classzone_idx, int migratetype, enum migrate_mode mode,
2457 int *contended_compaction, bool *deferred_compaction)
2458 {
2459 return NULL;
2460 }
2461 #endif /* CONFIG_COMPACTION */
2462
2463 /* Perform direct synchronous page reclaim */
2464 static int
2465 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2466 nodemask_t *nodemask)
2467 {
2468 struct reclaim_state reclaim_state;
2469 int progress;
2470
2471 cond_resched();
2472
2473 /* We now go into synchronous reclaim */
2474 cpuset_memory_pressure_bump();
2475 current->flags |= PF_MEMALLOC;
2476 lockdep_set_current_reclaim_state(gfp_mask);
2477 reclaim_state.reclaimed_slab = 0;
2478 current->reclaim_state = &reclaim_state;
2479
2480 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2481
2482 current->reclaim_state = NULL;
2483 lockdep_clear_current_reclaim_state();
2484 current->flags &= ~PF_MEMALLOC;
2485
2486 cond_resched();
2487
2488 return progress;
2489 }
2490
2491 /* The really slow allocator path where we enter direct reclaim */
2492 static inline struct page *
2493 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2494 struct zonelist *zonelist, enum zone_type high_zoneidx,
2495 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2496 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2497 {
2498 struct page *page = NULL;
2499 bool drained = false;
2500
2501 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2502 nodemask);
2503 if (unlikely(!(*did_some_progress)))
2504 return NULL;
2505
2506 /* After successful reclaim, reconsider all zones for allocation */
2507 if (IS_ENABLED(CONFIG_NUMA))
2508 zlc_clear_zones_full(zonelist);
2509
2510 retry:
2511 page = get_page_from_freelist(gfp_mask, nodemask, order,
2512 zonelist, high_zoneidx,
2513 alloc_flags & ~ALLOC_NO_WATERMARKS,
2514 preferred_zone, classzone_idx,
2515 migratetype);
2516
2517 /*
2518 * If an allocation failed after direct reclaim, it could be because
2519 * pages are pinned on the per-cpu lists. Drain them and try again
2520 */
2521 if (!page && !drained) {
2522 drain_all_pages(NULL);
2523 drained = true;
2524 goto retry;
2525 }
2526
2527 return page;
2528 }
2529
2530 /*
2531 * This is called in the allocator slow-path if the allocation request is of
2532 * sufficient urgency to ignore watermarks and take other desperate measures
2533 */
2534 static inline struct page *
2535 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2536 struct zonelist *zonelist, enum zone_type high_zoneidx,
2537 nodemask_t *nodemask, struct zone *preferred_zone,
2538 int classzone_idx, int migratetype)
2539 {
2540 struct page *page;
2541
2542 do {
2543 page = get_page_from_freelist(gfp_mask, nodemask, order,
2544 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2545 preferred_zone, classzone_idx, migratetype);
2546
2547 if (!page && gfp_mask & __GFP_NOFAIL)
2548 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2549 } while (!page && (gfp_mask & __GFP_NOFAIL));
2550
2551 return page;
2552 }
2553
2554 static void wake_all_kswapds(unsigned int order,
2555 struct zonelist *zonelist,
2556 enum zone_type high_zoneidx,
2557 struct zone *preferred_zone,
2558 nodemask_t *nodemask)
2559 {
2560 struct zoneref *z;
2561 struct zone *zone;
2562
2563 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2564 high_zoneidx, nodemask)
2565 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2566 }
2567
2568 static inline int
2569 gfp_to_alloc_flags(gfp_t gfp_mask)
2570 {
2571 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2572 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2573
2574 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2575 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2576
2577 /*
2578 * The caller may dip into page reserves a bit more if the caller
2579 * cannot run direct reclaim, or if the caller has realtime scheduling
2580 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2581 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2582 */
2583 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2584
2585 if (atomic) {
2586 /*
2587 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2588 * if it can't schedule.
2589 */
2590 if (!(gfp_mask & __GFP_NOMEMALLOC))
2591 alloc_flags |= ALLOC_HARDER;
2592 /*
2593 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2594 * comment for __cpuset_node_allowed().
2595 */
2596 alloc_flags &= ~ALLOC_CPUSET;
2597 } else if (unlikely(rt_task(current)) && !in_interrupt())
2598 alloc_flags |= ALLOC_HARDER;
2599
2600 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2601 if (gfp_mask & __GFP_MEMALLOC)
2602 alloc_flags |= ALLOC_NO_WATERMARKS;
2603 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2604 alloc_flags |= ALLOC_NO_WATERMARKS;
2605 else if (!in_interrupt() &&
2606 ((current->flags & PF_MEMALLOC) ||
2607 unlikely(test_thread_flag(TIF_MEMDIE))))
2608 alloc_flags |= ALLOC_NO_WATERMARKS;
2609 }
2610 #ifdef CONFIG_CMA
2611 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2612 alloc_flags |= ALLOC_CMA;
2613 #endif
2614 return alloc_flags;
2615 }
2616
2617 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2618 {
2619 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2620 }
2621
2622 static inline struct page *
2623 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2624 struct zonelist *zonelist, enum zone_type high_zoneidx,
2625 nodemask_t *nodemask, struct zone *preferred_zone,
2626 int classzone_idx, int migratetype)
2627 {
2628 const gfp_t wait = gfp_mask & __GFP_WAIT;
2629 struct page *page = NULL;
2630 int alloc_flags;
2631 unsigned long pages_reclaimed = 0;
2632 unsigned long did_some_progress;
2633 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2634 bool deferred_compaction = false;
2635 int contended_compaction = COMPACT_CONTENDED_NONE;
2636
2637 /*
2638 * In the slowpath, we sanity check order to avoid ever trying to
2639 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2640 * be using allocators in order of preference for an area that is
2641 * too large.
2642 */
2643 if (order >= MAX_ORDER) {
2644 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2645 return NULL;
2646 }
2647
2648 /*
2649 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2650 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2651 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2652 * using a larger set of nodes after it has established that the
2653 * allowed per node queues are empty and that nodes are
2654 * over allocated.
2655 */
2656 if (IS_ENABLED(CONFIG_NUMA) &&
2657 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2658 goto nopage;
2659
2660 restart:
2661 if (!(gfp_mask & __GFP_NO_KSWAPD))
2662 wake_all_kswapds(order, zonelist, high_zoneidx,
2663 preferred_zone, nodemask);
2664
2665 /*
2666 * OK, we're below the kswapd watermark and have kicked background
2667 * reclaim. Now things get more complex, so set up alloc_flags according
2668 * to how we want to proceed.
2669 */
2670 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2671
2672 /*
2673 * Find the true preferred zone if the allocation is unconstrained by
2674 * cpusets.
2675 */
2676 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2677 struct zoneref *preferred_zoneref;
2678 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2679 NULL, &preferred_zone);
2680 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2681 }
2682
2683 rebalance:
2684 /* This is the last chance, in general, before the goto nopage. */
2685 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2686 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2687 preferred_zone, classzone_idx, migratetype);
2688 if (page)
2689 goto got_pg;
2690
2691 /* Allocate without watermarks if the context allows */
2692 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2693 /*
2694 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2695 * the allocation is high priority and these type of
2696 * allocations are system rather than user orientated
2697 */
2698 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2699
2700 page = __alloc_pages_high_priority(gfp_mask, order,
2701 zonelist, high_zoneidx, nodemask,
2702 preferred_zone, classzone_idx, migratetype);
2703 if (page) {
2704 goto got_pg;
2705 }
2706 }
2707
2708 /* Atomic allocations - we can't balance anything */
2709 if (!wait) {
2710 /*
2711 * All existing users of the deprecated __GFP_NOFAIL are
2712 * blockable, so warn of any new users that actually allow this
2713 * type of allocation to fail.
2714 */
2715 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2716 goto nopage;
2717 }
2718
2719 /* Avoid recursion of direct reclaim */
2720 if (current->flags & PF_MEMALLOC)
2721 goto nopage;
2722
2723 /* Avoid allocations with no watermarks from looping endlessly */
2724 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2725 goto nopage;
2726
2727 /*
2728 * Try direct compaction. The first pass is asynchronous. Subsequent
2729 * attempts after direct reclaim are synchronous
2730 */
2731 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2732 high_zoneidx, nodemask, alloc_flags,
2733 preferred_zone,
2734 classzone_idx, migratetype,
2735 migration_mode, &contended_compaction,
2736 &deferred_compaction);
2737 if (page)
2738 goto got_pg;
2739
2740 /* Checks for THP-specific high-order allocations */
2741 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
2742 /*
2743 * If compaction is deferred for high-order allocations, it is
2744 * because sync compaction recently failed. If this is the case
2745 * and the caller requested a THP allocation, we do not want
2746 * to heavily disrupt the system, so we fail the allocation
2747 * instead of entering direct reclaim.
2748 */
2749 if (deferred_compaction)
2750 goto nopage;
2751
2752 /*
2753 * In all zones where compaction was attempted (and not
2754 * deferred or skipped), lock contention has been detected.
2755 * For THP allocation we do not want to disrupt the others
2756 * so we fallback to base pages instead.
2757 */
2758 if (contended_compaction == COMPACT_CONTENDED_LOCK)
2759 goto nopage;
2760
2761 /*
2762 * If compaction was aborted due to need_resched(), we do not
2763 * want to further increase allocation latency, unless it is
2764 * khugepaged trying to collapse.
2765 */
2766 if (contended_compaction == COMPACT_CONTENDED_SCHED
2767 && !(current->flags & PF_KTHREAD))
2768 goto nopage;
2769 }
2770
2771 /*
2772 * It can become very expensive to allocate transparent hugepages at
2773 * fault, so use asynchronous memory compaction for THP unless it is
2774 * khugepaged trying to collapse.
2775 */
2776 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
2777 (current->flags & PF_KTHREAD))
2778 migration_mode = MIGRATE_SYNC_LIGHT;
2779
2780 /* Try direct reclaim and then allocating */
2781 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2782 zonelist, high_zoneidx,
2783 nodemask,
2784 alloc_flags, preferred_zone,
2785 classzone_idx, migratetype,
2786 &did_some_progress);
2787 if (page)
2788 goto got_pg;
2789
2790 /*
2791 * If we failed to make any progress reclaiming, then we are
2792 * running out of options and have to consider going OOM
2793 */
2794 if (!did_some_progress) {
2795 if (oom_gfp_allowed(gfp_mask)) {
2796 if (oom_killer_disabled)
2797 goto nopage;
2798 /* Coredumps can quickly deplete all memory reserves */
2799 if ((current->flags & PF_DUMPCORE) &&
2800 !(gfp_mask & __GFP_NOFAIL))
2801 goto nopage;
2802 page = __alloc_pages_may_oom(gfp_mask, order,
2803 zonelist, high_zoneidx,
2804 nodemask, preferred_zone,
2805 classzone_idx, migratetype);
2806 if (page)
2807 goto got_pg;
2808
2809 if (!(gfp_mask & __GFP_NOFAIL)) {
2810 /*
2811 * The oom killer is not called for high-order
2812 * allocations that may fail, so if no progress
2813 * is being made, there are no other options and
2814 * retrying is unlikely to help.
2815 */
2816 if (order > PAGE_ALLOC_COSTLY_ORDER)
2817 goto nopage;
2818 /*
2819 * The oom killer is not called for lowmem
2820 * allocations to prevent needlessly killing
2821 * innocent tasks.
2822 */
2823 if (high_zoneidx < ZONE_NORMAL)
2824 goto nopage;
2825 }
2826
2827 goto restart;
2828 }
2829 }
2830
2831 /* Check if we should retry the allocation */
2832 pages_reclaimed += did_some_progress;
2833 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2834 pages_reclaimed)) {
2835 /* Wait for some write requests to complete then retry */
2836 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2837 goto rebalance;
2838 } else {
2839 /*
2840 * High-order allocations do not necessarily loop after
2841 * direct reclaim and reclaim/compaction depends on compaction
2842 * being called after reclaim so call directly if necessary
2843 */
2844 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2845 high_zoneidx, nodemask, alloc_flags,
2846 preferred_zone,
2847 classzone_idx, migratetype,
2848 migration_mode, &contended_compaction,
2849 &deferred_compaction);
2850 if (page)
2851 goto got_pg;
2852 }
2853
2854 nopage:
2855 warn_alloc_failed(gfp_mask, order, NULL);
2856 return page;
2857 got_pg:
2858 if (kmemcheck_enabled)
2859 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2860
2861 return page;
2862 }
2863
2864 /*
2865 * This is the 'heart' of the zoned buddy allocator.
2866 */
2867 struct page *
2868 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2869 struct zonelist *zonelist, nodemask_t *nodemask)
2870 {
2871 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2872 struct zone *preferred_zone;
2873 struct zoneref *preferred_zoneref;
2874 struct page *page = NULL;
2875 int migratetype = gfpflags_to_migratetype(gfp_mask);
2876 unsigned int cpuset_mems_cookie;
2877 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2878 int classzone_idx;
2879
2880 gfp_mask &= gfp_allowed_mask;
2881
2882 lockdep_trace_alloc(gfp_mask);
2883
2884 might_sleep_if(gfp_mask & __GFP_WAIT);
2885
2886 if (should_fail_alloc_page(gfp_mask, order))
2887 return NULL;
2888
2889 /*
2890 * Check the zones suitable for the gfp_mask contain at least one
2891 * valid zone. It's possible to have an empty zonelist as a result
2892 * of GFP_THISNODE and a memoryless node
2893 */
2894 if (unlikely(!zonelist->_zonerefs->zone))
2895 return NULL;
2896
2897 if (IS_ENABLED(CONFIG_CMA) && migratetype == MIGRATE_MOVABLE)
2898 alloc_flags |= ALLOC_CMA;
2899
2900 retry_cpuset:
2901 cpuset_mems_cookie = read_mems_allowed_begin();
2902
2903 /* The preferred zone is used for statistics later */
2904 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2905 nodemask ? : &cpuset_current_mems_allowed,
2906 &preferred_zone);
2907 if (!preferred_zone)
2908 goto out;
2909 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2910
2911 /* First allocation attempt */
2912 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2913 zonelist, high_zoneidx, alloc_flags,
2914 preferred_zone, classzone_idx, migratetype);
2915 if (unlikely(!page)) {
2916 /*
2917 * Runtime PM, block IO and its error handling path
2918 * can deadlock because I/O on the device might not
2919 * complete.
2920 */
2921 gfp_mask = memalloc_noio_flags(gfp_mask);
2922 page = __alloc_pages_slowpath(gfp_mask, order,
2923 zonelist, high_zoneidx, nodemask,
2924 preferred_zone, classzone_idx, migratetype);
2925 }
2926
2927 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2928
2929 out:
2930 /*
2931 * When updating a task's mems_allowed, it is possible to race with
2932 * parallel threads in such a way that an allocation can fail while
2933 * the mask is being updated. If a page allocation is about to fail,
2934 * check if the cpuset changed during allocation and if so, retry.
2935 */
2936 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2937 goto retry_cpuset;
2938
2939 return page;
2940 }
2941 EXPORT_SYMBOL(__alloc_pages_nodemask);
2942
2943 /*
2944 * Common helper functions.
2945 */
2946 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2947 {
2948 struct page *page;
2949
2950 /*
2951 * __get_free_pages() returns a 32-bit address, which cannot represent
2952 * a highmem page
2953 */
2954 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2955
2956 page = alloc_pages(gfp_mask, order);
2957 if (!page)
2958 return 0;
2959 return (unsigned long) page_address(page);
2960 }
2961 EXPORT_SYMBOL(__get_free_pages);
2962
2963 unsigned long get_zeroed_page(gfp_t gfp_mask)
2964 {
2965 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2966 }
2967 EXPORT_SYMBOL(get_zeroed_page);
2968
2969 void __free_pages(struct page *page, unsigned int order)
2970 {
2971 if (put_page_testzero(page)) {
2972 if (order == 0)
2973 free_hot_cold_page(page, false);
2974 else
2975 __free_pages_ok(page, order);
2976 }
2977 }
2978
2979 EXPORT_SYMBOL(__free_pages);
2980
2981 void free_pages(unsigned long addr, unsigned int order)
2982 {
2983 if (addr != 0) {
2984 VM_BUG_ON(!virt_addr_valid((void *)addr));
2985 __free_pages(virt_to_page((void *)addr), order);
2986 }
2987 }
2988
2989 EXPORT_SYMBOL(free_pages);
2990
2991 /*
2992 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2993 * of the current memory cgroup.
2994 *
2995 * It should be used when the caller would like to use kmalloc, but since the
2996 * allocation is large, it has to fall back to the page allocator.
2997 */
2998 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2999 {
3000 struct page *page;
3001 struct mem_cgroup *memcg = NULL;
3002
3003 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3004 return NULL;
3005 page = alloc_pages(gfp_mask, order);
3006 memcg_kmem_commit_charge(page, memcg, order);
3007 return page;
3008 }
3009
3010 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3011 {
3012 struct page *page;
3013 struct mem_cgroup *memcg = NULL;
3014
3015 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3016 return NULL;
3017 page = alloc_pages_node(nid, gfp_mask, order);
3018 memcg_kmem_commit_charge(page, memcg, order);
3019 return page;
3020 }
3021
3022 /*
3023 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3024 * alloc_kmem_pages.
3025 */
3026 void __free_kmem_pages(struct page *page, unsigned int order)
3027 {
3028 memcg_kmem_uncharge_pages(page, order);
3029 __free_pages(page, order);
3030 }
3031
3032 void free_kmem_pages(unsigned long addr, unsigned int order)
3033 {
3034 if (addr != 0) {
3035 VM_BUG_ON(!virt_addr_valid((void *)addr));
3036 __free_kmem_pages(virt_to_page((void *)addr), order);
3037 }
3038 }
3039
3040 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3041 {
3042 if (addr) {
3043 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3044 unsigned long used = addr + PAGE_ALIGN(size);
3045
3046 split_page(virt_to_page((void *)addr), order);
3047 while (used < alloc_end) {
3048 free_page(used);
3049 used += PAGE_SIZE;
3050 }
3051 }
3052 return (void *)addr;
3053 }
3054
3055 /**
3056 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3057 * @size: the number of bytes to allocate
3058 * @gfp_mask: GFP flags for the allocation
3059 *
3060 * This function is similar to alloc_pages(), except that it allocates the
3061 * minimum number of pages to satisfy the request. alloc_pages() can only
3062 * allocate memory in power-of-two pages.
3063 *
3064 * This function is also limited by MAX_ORDER.
3065 *
3066 * Memory allocated by this function must be released by free_pages_exact().
3067 */
3068 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3069 {
3070 unsigned int order = get_order(size);
3071 unsigned long addr;
3072
3073 addr = __get_free_pages(gfp_mask, order);
3074 return make_alloc_exact(addr, order, size);
3075 }
3076 EXPORT_SYMBOL(alloc_pages_exact);
3077
3078 /**
3079 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3080 * pages on a node.
3081 * @nid: the preferred node ID where memory should be allocated
3082 * @size: the number of bytes to allocate
3083 * @gfp_mask: GFP flags for the allocation
3084 *
3085 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3086 * back.
3087 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3088 * but is not exact.
3089 */
3090 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3091 {
3092 unsigned order = get_order(size);
3093 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3094 if (!p)
3095 return NULL;
3096 return make_alloc_exact((unsigned long)page_address(p), order, size);
3097 }
3098
3099 /**
3100 * free_pages_exact - release memory allocated via alloc_pages_exact()
3101 * @virt: the value returned by alloc_pages_exact.
3102 * @size: size of allocation, same value as passed to alloc_pages_exact().
3103 *
3104 * Release the memory allocated by a previous call to alloc_pages_exact.
3105 */
3106 void free_pages_exact(void *virt, size_t size)
3107 {
3108 unsigned long addr = (unsigned long)virt;
3109 unsigned long end = addr + PAGE_ALIGN(size);
3110
3111 while (addr < end) {
3112 free_page(addr);
3113 addr += PAGE_SIZE;
3114 }
3115 }
3116 EXPORT_SYMBOL(free_pages_exact);
3117
3118 /**
3119 * nr_free_zone_pages - count number of pages beyond high watermark
3120 * @offset: The zone index of the highest zone
3121 *
3122 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3123 * high watermark within all zones at or below a given zone index. For each
3124 * zone, the number of pages is calculated as:
3125 * managed_pages - high_pages
3126 */
3127 static unsigned long nr_free_zone_pages(int offset)
3128 {
3129 struct zoneref *z;
3130 struct zone *zone;
3131
3132 /* Just pick one node, since fallback list is circular */
3133 unsigned long sum = 0;
3134
3135 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3136
3137 for_each_zone_zonelist(zone, z, zonelist, offset) {
3138 unsigned long size = zone->managed_pages;
3139 unsigned long high = high_wmark_pages(zone);
3140 if (size > high)
3141 sum += size - high;
3142 }
3143
3144 return sum;
3145 }
3146
3147 /**
3148 * nr_free_buffer_pages - count number of pages beyond high watermark
3149 *
3150 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3151 * watermark within ZONE_DMA and ZONE_NORMAL.
3152 */
3153 unsigned long nr_free_buffer_pages(void)
3154 {
3155 return nr_free_zone_pages(gfp_zone(GFP_USER));
3156 }
3157 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3158
3159 /**
3160 * nr_free_pagecache_pages - count number of pages beyond high watermark
3161 *
3162 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3163 * high watermark within all zones.
3164 */
3165 unsigned long nr_free_pagecache_pages(void)
3166 {
3167 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3168 }
3169
3170 static inline void show_node(struct zone *zone)
3171 {
3172 if (IS_ENABLED(CONFIG_NUMA))
3173 printk("Node %d ", zone_to_nid(zone));
3174 }
3175
3176 void si_meminfo(struct sysinfo *val)
3177 {
3178 val->totalram = totalram_pages;
3179 val->sharedram = global_page_state(NR_SHMEM);
3180 val->freeram = global_page_state(NR_FREE_PAGES);
3181 val->bufferram = nr_blockdev_pages();
3182 val->totalhigh = totalhigh_pages;
3183 val->freehigh = nr_free_highpages();
3184 val->mem_unit = PAGE_SIZE;
3185 }
3186
3187 EXPORT_SYMBOL(si_meminfo);
3188
3189 #ifdef CONFIG_NUMA
3190 void si_meminfo_node(struct sysinfo *val, int nid)
3191 {
3192 int zone_type; /* needs to be signed */
3193 unsigned long managed_pages = 0;
3194 pg_data_t *pgdat = NODE_DATA(nid);
3195
3196 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3197 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3198 val->totalram = managed_pages;
3199 val->sharedram = node_page_state(nid, NR_SHMEM);
3200 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3201 #ifdef CONFIG_HIGHMEM
3202 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3203 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3204 NR_FREE_PAGES);
3205 #else
3206 val->totalhigh = 0;
3207 val->freehigh = 0;
3208 #endif
3209 val->mem_unit = PAGE_SIZE;
3210 }
3211 #endif
3212
3213 /*
3214 * Determine whether the node should be displayed or not, depending on whether
3215 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3216 */
3217 bool skip_free_areas_node(unsigned int flags, int nid)
3218 {
3219 bool ret = false;
3220 unsigned int cpuset_mems_cookie;
3221
3222 if (!(flags & SHOW_MEM_FILTER_NODES))
3223 goto out;
3224
3225 do {
3226 cpuset_mems_cookie = read_mems_allowed_begin();
3227 ret = !node_isset(nid, cpuset_current_mems_allowed);
3228 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3229 out:
3230 return ret;
3231 }
3232
3233 #define K(x) ((x) << (PAGE_SHIFT-10))
3234
3235 static void show_migration_types(unsigned char type)
3236 {
3237 static const char types[MIGRATE_TYPES] = {
3238 [MIGRATE_UNMOVABLE] = 'U',
3239 [MIGRATE_RECLAIMABLE] = 'E',
3240 [MIGRATE_MOVABLE] = 'M',
3241 [MIGRATE_RESERVE] = 'R',
3242 #ifdef CONFIG_CMA
3243 [MIGRATE_CMA] = 'C',
3244 #endif
3245 #ifdef CONFIG_MEMORY_ISOLATION
3246 [MIGRATE_ISOLATE] = 'I',
3247 #endif
3248 };
3249 char tmp[MIGRATE_TYPES + 1];
3250 char *p = tmp;
3251 int i;
3252
3253 for (i = 0; i < MIGRATE_TYPES; i++) {
3254 if (type & (1 << i))
3255 *p++ = types[i];
3256 }
3257
3258 *p = '\0';
3259 printk("(%s) ", tmp);
3260 }
3261
3262 /*
3263 * Show free area list (used inside shift_scroll-lock stuff)
3264 * We also calculate the percentage fragmentation. We do this by counting the
3265 * memory on each free list with the exception of the first item on the list.
3266 * Suppresses nodes that are not allowed by current's cpuset if
3267 * SHOW_MEM_FILTER_NODES is passed.
3268 */
3269 void show_free_areas(unsigned int filter)
3270 {
3271 int cpu;
3272 struct zone *zone;
3273
3274 for_each_populated_zone(zone) {
3275 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3276 continue;
3277 show_node(zone);
3278 printk("%s per-cpu:\n", zone->name);
3279
3280 for_each_online_cpu(cpu) {
3281 struct per_cpu_pageset *pageset;
3282
3283 pageset = per_cpu_ptr(zone->pageset, cpu);
3284
3285 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3286 cpu, pageset->pcp.high,
3287 pageset->pcp.batch, pageset->pcp.count);
3288 }
3289 }
3290
3291 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3292 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3293 " unevictable:%lu"
3294 " dirty:%lu writeback:%lu unstable:%lu\n"
3295 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3296 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3297 " free_cma:%lu\n",
3298 global_page_state(NR_ACTIVE_ANON),
3299 global_page_state(NR_INACTIVE_ANON),
3300 global_page_state(NR_ISOLATED_ANON),
3301 global_page_state(NR_ACTIVE_FILE),
3302 global_page_state(NR_INACTIVE_FILE),
3303 global_page_state(NR_ISOLATED_FILE),
3304 global_page_state(NR_UNEVICTABLE),
3305 global_page_state(NR_FILE_DIRTY),
3306 global_page_state(NR_WRITEBACK),
3307 global_page_state(NR_UNSTABLE_NFS),
3308 global_page_state(NR_FREE_PAGES),
3309 global_page_state(NR_SLAB_RECLAIMABLE),
3310 global_page_state(NR_SLAB_UNRECLAIMABLE),
3311 global_page_state(NR_FILE_MAPPED),
3312 global_page_state(NR_SHMEM),
3313 global_page_state(NR_PAGETABLE),
3314 global_page_state(NR_BOUNCE),
3315 global_page_state(NR_FREE_CMA_PAGES));
3316
3317 for_each_populated_zone(zone) {
3318 int i;
3319
3320 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3321 continue;
3322 show_node(zone);
3323 printk("%s"
3324 " free:%lukB"
3325 " min:%lukB"
3326 " low:%lukB"
3327 " high:%lukB"
3328 " active_anon:%lukB"
3329 " inactive_anon:%lukB"
3330 " active_file:%lukB"
3331 " inactive_file:%lukB"
3332 " unevictable:%lukB"
3333 " isolated(anon):%lukB"
3334 " isolated(file):%lukB"
3335 " present:%lukB"
3336 " managed:%lukB"
3337 " mlocked:%lukB"
3338 " dirty:%lukB"
3339 " writeback:%lukB"
3340 " mapped:%lukB"
3341 " shmem:%lukB"
3342 " slab_reclaimable:%lukB"
3343 " slab_unreclaimable:%lukB"
3344 " kernel_stack:%lukB"
3345 " pagetables:%lukB"
3346 " unstable:%lukB"
3347 " bounce:%lukB"
3348 " free_cma:%lukB"
3349 " writeback_tmp:%lukB"
3350 " pages_scanned:%lu"
3351 " all_unreclaimable? %s"
3352 "\n",
3353 zone->name,
3354 K(zone_page_state(zone, NR_FREE_PAGES)),
3355 K(min_wmark_pages(zone)),
3356 K(low_wmark_pages(zone)),
3357 K(high_wmark_pages(zone)),
3358 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3359 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3360 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3361 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3362 K(zone_page_state(zone, NR_UNEVICTABLE)),
3363 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3364 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3365 K(zone->present_pages),
3366 K(zone->managed_pages),
3367 K(zone_page_state(zone, NR_MLOCK)),
3368 K(zone_page_state(zone, NR_FILE_DIRTY)),
3369 K(zone_page_state(zone, NR_WRITEBACK)),
3370 K(zone_page_state(zone, NR_FILE_MAPPED)),
3371 K(zone_page_state(zone, NR_SHMEM)),
3372 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3373 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3374 zone_page_state(zone, NR_KERNEL_STACK) *
3375 THREAD_SIZE / 1024,
3376 K(zone_page_state(zone, NR_PAGETABLE)),
3377 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3378 K(zone_page_state(zone, NR_BOUNCE)),
3379 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3380 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3381 K(zone_page_state(zone, NR_PAGES_SCANNED)),
3382 (!zone_reclaimable(zone) ? "yes" : "no")
3383 );
3384 printk("lowmem_reserve[]:");
3385 for (i = 0; i < MAX_NR_ZONES; i++)
3386 printk(" %ld", zone->lowmem_reserve[i]);
3387 printk("\n");
3388 }
3389
3390 for_each_populated_zone(zone) {
3391 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3392 unsigned char types[MAX_ORDER];
3393
3394 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3395 continue;
3396 show_node(zone);
3397 printk("%s: ", zone->name);
3398
3399 spin_lock_irqsave(&zone->lock, flags);
3400 for (order = 0; order < MAX_ORDER; order++) {
3401 struct free_area *area = &zone->free_area[order];
3402 int type;
3403
3404 nr[order] = area->nr_free;
3405 total += nr[order] << order;
3406
3407 types[order] = 0;
3408 for (type = 0; type < MIGRATE_TYPES; type++) {
3409 if (!list_empty(&area->free_list[type]))
3410 types[order] |= 1 << type;
3411 }
3412 }
3413 spin_unlock_irqrestore(&zone->lock, flags);
3414 for (order = 0; order < MAX_ORDER; order++) {
3415 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3416 if (nr[order])
3417 show_migration_types(types[order]);
3418 }
3419 printk("= %lukB\n", K(total));
3420 }
3421
3422 hugetlb_show_meminfo();
3423
3424 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3425
3426 show_swap_cache_info();
3427 }
3428
3429 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3430 {
3431 zoneref->zone = zone;
3432 zoneref->zone_idx = zone_idx(zone);
3433 }
3434
3435 /*
3436 * Builds allocation fallback zone lists.
3437 *
3438 * Add all populated zones of a node to the zonelist.
3439 */
3440 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3441 int nr_zones)
3442 {
3443 struct zone *zone;
3444 enum zone_type zone_type = MAX_NR_ZONES;
3445
3446 do {
3447 zone_type--;
3448 zone = pgdat->node_zones + zone_type;
3449 if (populated_zone(zone)) {
3450 zoneref_set_zone(zone,
3451 &zonelist->_zonerefs[nr_zones++]);
3452 check_highest_zone(zone_type);
3453 }
3454 } while (zone_type);
3455
3456 return nr_zones;
3457 }
3458
3459
3460 /*
3461 * zonelist_order:
3462 * 0 = automatic detection of better ordering.
3463 * 1 = order by ([node] distance, -zonetype)
3464 * 2 = order by (-zonetype, [node] distance)
3465 *
3466 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3467 * the same zonelist. So only NUMA can configure this param.
3468 */
3469 #define ZONELIST_ORDER_DEFAULT 0
3470 #define ZONELIST_ORDER_NODE 1
3471 #define ZONELIST_ORDER_ZONE 2
3472
3473 /* zonelist order in the kernel.
3474 * set_zonelist_order() will set this to NODE or ZONE.
3475 */
3476 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3477 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3478
3479
3480 #ifdef CONFIG_NUMA
3481 /* The value user specified ....changed by config */
3482 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3483 /* string for sysctl */
3484 #define NUMA_ZONELIST_ORDER_LEN 16
3485 char numa_zonelist_order[16] = "default";
3486
3487 /*
3488 * interface for configure zonelist ordering.
3489 * command line option "numa_zonelist_order"
3490 * = "[dD]efault - default, automatic configuration.
3491 * = "[nN]ode - order by node locality, then by zone within node
3492 * = "[zZ]one - order by zone, then by locality within zone
3493 */
3494
3495 static int __parse_numa_zonelist_order(char *s)
3496 {
3497 if (*s == 'd' || *s == 'D') {
3498 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3499 } else if (*s == 'n' || *s == 'N') {
3500 user_zonelist_order = ZONELIST_ORDER_NODE;
3501 } else if (*s == 'z' || *s == 'Z') {
3502 user_zonelist_order = ZONELIST_ORDER_ZONE;
3503 } else {
3504 printk(KERN_WARNING
3505 "Ignoring invalid numa_zonelist_order value: "
3506 "%s\n", s);
3507 return -EINVAL;
3508 }
3509 return 0;
3510 }
3511
3512 static __init int setup_numa_zonelist_order(char *s)
3513 {
3514 int ret;
3515
3516 if (!s)
3517 return 0;
3518
3519 ret = __parse_numa_zonelist_order(s);
3520 if (ret == 0)
3521 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3522
3523 return ret;
3524 }
3525 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3526
3527 /*
3528 * sysctl handler for numa_zonelist_order
3529 */
3530 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3531 void __user *buffer, size_t *length,
3532 loff_t *ppos)
3533 {
3534 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3535 int ret;
3536 static DEFINE_MUTEX(zl_order_mutex);
3537
3538 mutex_lock(&zl_order_mutex);
3539 if (write) {
3540 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3541 ret = -EINVAL;
3542 goto out;
3543 }
3544 strcpy(saved_string, (char *)table->data);
3545 }
3546 ret = proc_dostring(table, write, buffer, length, ppos);
3547 if (ret)
3548 goto out;
3549 if (write) {
3550 int oldval = user_zonelist_order;
3551
3552 ret = __parse_numa_zonelist_order((char *)table->data);
3553 if (ret) {
3554 /*
3555 * bogus value. restore saved string
3556 */
3557 strncpy((char *)table->data, saved_string,
3558 NUMA_ZONELIST_ORDER_LEN);
3559 user_zonelist_order = oldval;
3560 } else if (oldval != user_zonelist_order) {
3561 mutex_lock(&zonelists_mutex);
3562 build_all_zonelists(NULL, NULL);
3563 mutex_unlock(&zonelists_mutex);
3564 }
3565 }
3566 out:
3567 mutex_unlock(&zl_order_mutex);
3568 return ret;
3569 }
3570
3571
3572 #define MAX_NODE_LOAD (nr_online_nodes)
3573 static int node_load[MAX_NUMNODES];
3574
3575 /**
3576 * find_next_best_node - find the next node that should appear in a given node's fallback list
3577 * @node: node whose fallback list we're appending
3578 * @used_node_mask: nodemask_t of already used nodes
3579 *
3580 * We use a number of factors to determine which is the next node that should
3581 * appear on a given node's fallback list. The node should not have appeared
3582 * already in @node's fallback list, and it should be the next closest node
3583 * according to the distance array (which contains arbitrary distance values
3584 * from each node to each node in the system), and should also prefer nodes
3585 * with no CPUs, since presumably they'll have very little allocation pressure
3586 * on them otherwise.
3587 * It returns -1 if no node is found.
3588 */
3589 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3590 {
3591 int n, val;
3592 int min_val = INT_MAX;
3593 int best_node = NUMA_NO_NODE;
3594 const struct cpumask *tmp = cpumask_of_node(0);
3595
3596 /* Use the local node if we haven't already */
3597 if (!node_isset(node, *used_node_mask)) {
3598 node_set(node, *used_node_mask);
3599 return node;
3600 }
3601
3602 for_each_node_state(n, N_MEMORY) {
3603
3604 /* Don't want a node to appear more than once */
3605 if (node_isset(n, *used_node_mask))
3606 continue;
3607
3608 /* Use the distance array to find the distance */
3609 val = node_distance(node, n);
3610
3611 /* Penalize nodes under us ("prefer the next node") */
3612 val += (n < node);
3613
3614 /* Give preference to headless and unused nodes */
3615 tmp = cpumask_of_node(n);
3616 if (!cpumask_empty(tmp))
3617 val += PENALTY_FOR_NODE_WITH_CPUS;
3618
3619 /* Slight preference for less loaded node */
3620 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3621 val += node_load[n];
3622
3623 if (val < min_val) {
3624 min_val = val;
3625 best_node = n;
3626 }
3627 }
3628
3629 if (best_node >= 0)
3630 node_set(best_node, *used_node_mask);
3631
3632 return best_node;
3633 }
3634
3635
3636 /*
3637 * Build zonelists ordered by node and zones within node.
3638 * This results in maximum locality--normal zone overflows into local
3639 * DMA zone, if any--but risks exhausting DMA zone.
3640 */
3641 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3642 {
3643 int j;
3644 struct zonelist *zonelist;
3645
3646 zonelist = &pgdat->node_zonelists[0];
3647 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3648 ;
3649 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3650 zonelist->_zonerefs[j].zone = NULL;
3651 zonelist->_zonerefs[j].zone_idx = 0;
3652 }
3653
3654 /*
3655 * Build gfp_thisnode zonelists
3656 */
3657 static void build_thisnode_zonelists(pg_data_t *pgdat)
3658 {
3659 int j;
3660 struct zonelist *zonelist;
3661
3662 zonelist = &pgdat->node_zonelists[1];
3663 j = build_zonelists_node(pgdat, zonelist, 0);
3664 zonelist->_zonerefs[j].zone = NULL;
3665 zonelist->_zonerefs[j].zone_idx = 0;
3666 }
3667
3668 /*
3669 * Build zonelists ordered by zone and nodes within zones.
3670 * This results in conserving DMA zone[s] until all Normal memory is
3671 * exhausted, but results in overflowing to remote node while memory
3672 * may still exist in local DMA zone.
3673 */
3674 static int node_order[MAX_NUMNODES];
3675
3676 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3677 {
3678 int pos, j, node;
3679 int zone_type; /* needs to be signed */
3680 struct zone *z;
3681 struct zonelist *zonelist;
3682
3683 zonelist = &pgdat->node_zonelists[0];
3684 pos = 0;
3685 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3686 for (j = 0; j < nr_nodes; j++) {
3687 node = node_order[j];
3688 z = &NODE_DATA(node)->node_zones[zone_type];
3689 if (populated_zone(z)) {
3690 zoneref_set_zone(z,
3691 &zonelist->_zonerefs[pos++]);
3692 check_highest_zone(zone_type);
3693 }
3694 }
3695 }
3696 zonelist->_zonerefs[pos].zone = NULL;
3697 zonelist->_zonerefs[pos].zone_idx = 0;
3698 }
3699
3700 #if defined(CONFIG_64BIT)
3701 /*
3702 * Devices that require DMA32/DMA are relatively rare and do not justify a
3703 * penalty to every machine in case the specialised case applies. Default
3704 * to Node-ordering on 64-bit NUMA machines
3705 */
3706 static int default_zonelist_order(void)
3707 {
3708 return ZONELIST_ORDER_NODE;
3709 }
3710 #else
3711 /*
3712 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
3713 * by the kernel. If processes running on node 0 deplete the low memory zone
3714 * then reclaim will occur more frequency increasing stalls and potentially
3715 * be easier to OOM if a large percentage of the zone is under writeback or
3716 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
3717 * Hence, default to zone ordering on 32-bit.
3718 */
3719 static int default_zonelist_order(void)
3720 {
3721 return ZONELIST_ORDER_ZONE;
3722 }
3723 #endif /* CONFIG_64BIT */
3724
3725 static void set_zonelist_order(void)
3726 {
3727 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3728 current_zonelist_order = default_zonelist_order();
3729 else
3730 current_zonelist_order = user_zonelist_order;
3731 }
3732
3733 static void build_zonelists(pg_data_t *pgdat)
3734 {
3735 int j, node, load;
3736 enum zone_type i;
3737 nodemask_t used_mask;
3738 int local_node, prev_node;
3739 struct zonelist *zonelist;
3740 int order = current_zonelist_order;
3741
3742 /* initialize zonelists */
3743 for (i = 0; i < MAX_ZONELISTS; i++) {
3744 zonelist = pgdat->node_zonelists + i;
3745 zonelist->_zonerefs[0].zone = NULL;
3746 zonelist->_zonerefs[0].zone_idx = 0;
3747 }
3748
3749 /* NUMA-aware ordering of nodes */
3750 local_node = pgdat->node_id;
3751 load = nr_online_nodes;
3752 prev_node = local_node;
3753 nodes_clear(used_mask);
3754
3755 memset(node_order, 0, sizeof(node_order));
3756 j = 0;
3757
3758 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3759 /*
3760 * We don't want to pressure a particular node.
3761 * So adding penalty to the first node in same
3762 * distance group to make it round-robin.
3763 */
3764 if (node_distance(local_node, node) !=
3765 node_distance(local_node, prev_node))
3766 node_load[node] = load;
3767
3768 prev_node = node;
3769 load--;
3770 if (order == ZONELIST_ORDER_NODE)
3771 build_zonelists_in_node_order(pgdat, node);
3772 else
3773 node_order[j++] = node; /* remember order */
3774 }
3775
3776 if (order == ZONELIST_ORDER_ZONE) {
3777 /* calculate node order -- i.e., DMA last! */
3778 build_zonelists_in_zone_order(pgdat, j);
3779 }
3780
3781 build_thisnode_zonelists(pgdat);
3782 }
3783
3784 /* Construct the zonelist performance cache - see further mmzone.h */
3785 static void build_zonelist_cache(pg_data_t *pgdat)
3786 {
3787 struct zonelist *zonelist;
3788 struct zonelist_cache *zlc;
3789 struct zoneref *z;
3790
3791 zonelist = &pgdat->node_zonelists[0];
3792 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3793 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3794 for (z = zonelist->_zonerefs; z->zone; z++)
3795 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3796 }
3797
3798 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3799 /*
3800 * Return node id of node used for "local" allocations.
3801 * I.e., first node id of first zone in arg node's generic zonelist.
3802 * Used for initializing percpu 'numa_mem', which is used primarily
3803 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3804 */
3805 int local_memory_node(int node)
3806 {
3807 struct zone *zone;
3808
3809 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3810 gfp_zone(GFP_KERNEL),
3811 NULL,
3812 &zone);
3813 return zone->node;
3814 }
3815 #endif
3816
3817 #else /* CONFIG_NUMA */
3818
3819 static void set_zonelist_order(void)
3820 {
3821 current_zonelist_order = ZONELIST_ORDER_ZONE;
3822 }
3823
3824 static void build_zonelists(pg_data_t *pgdat)
3825 {
3826 int node, local_node;
3827 enum zone_type j;
3828 struct zonelist *zonelist;
3829
3830 local_node = pgdat->node_id;
3831
3832 zonelist = &pgdat->node_zonelists[0];
3833 j = build_zonelists_node(pgdat, zonelist, 0);
3834
3835 /*
3836 * Now we build the zonelist so that it contains the zones
3837 * of all the other nodes.
3838 * We don't want to pressure a particular node, so when
3839 * building the zones for node N, we make sure that the
3840 * zones coming right after the local ones are those from
3841 * node N+1 (modulo N)
3842 */
3843 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3844 if (!node_online(node))
3845 continue;
3846 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3847 }
3848 for (node = 0; node < local_node; node++) {
3849 if (!node_online(node))
3850 continue;
3851 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3852 }
3853
3854 zonelist->_zonerefs[j].zone = NULL;
3855 zonelist->_zonerefs[j].zone_idx = 0;
3856 }
3857
3858 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3859 static void build_zonelist_cache(pg_data_t *pgdat)
3860 {
3861 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3862 }
3863
3864 #endif /* CONFIG_NUMA */
3865
3866 /*
3867 * Boot pageset table. One per cpu which is going to be used for all
3868 * zones and all nodes. The parameters will be set in such a way
3869 * that an item put on a list will immediately be handed over to
3870 * the buddy list. This is safe since pageset manipulation is done
3871 * with interrupts disabled.
3872 *
3873 * The boot_pagesets must be kept even after bootup is complete for
3874 * unused processors and/or zones. They do play a role for bootstrapping
3875 * hotplugged processors.
3876 *
3877 * zoneinfo_show() and maybe other functions do
3878 * not check if the processor is online before following the pageset pointer.
3879 * Other parts of the kernel may not check if the zone is available.
3880 */
3881 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3882 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3883 static void setup_zone_pageset(struct zone *zone);
3884
3885 /*
3886 * Global mutex to protect against size modification of zonelists
3887 * as well as to serialize pageset setup for the new populated zone.
3888 */
3889 DEFINE_MUTEX(zonelists_mutex);
3890
3891 /* return values int ....just for stop_machine() */
3892 static int __build_all_zonelists(void *data)
3893 {
3894 int nid;
3895 int cpu;
3896 pg_data_t *self = data;
3897
3898 #ifdef CONFIG_NUMA
3899 memset(node_load, 0, sizeof(node_load));
3900 #endif
3901
3902 if (self && !node_online(self->node_id)) {
3903 build_zonelists(self);
3904 build_zonelist_cache(self);
3905 }
3906
3907 for_each_online_node(nid) {
3908 pg_data_t *pgdat = NODE_DATA(nid);
3909
3910 build_zonelists(pgdat);
3911 build_zonelist_cache(pgdat);
3912 }
3913
3914 /*
3915 * Initialize the boot_pagesets that are going to be used
3916 * for bootstrapping processors. The real pagesets for
3917 * each zone will be allocated later when the per cpu
3918 * allocator is available.
3919 *
3920 * boot_pagesets are used also for bootstrapping offline
3921 * cpus if the system is already booted because the pagesets
3922 * are needed to initialize allocators on a specific cpu too.
3923 * F.e. the percpu allocator needs the page allocator which
3924 * needs the percpu allocator in order to allocate its pagesets
3925 * (a chicken-egg dilemma).
3926 */
3927 for_each_possible_cpu(cpu) {
3928 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3929
3930 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3931 /*
3932 * We now know the "local memory node" for each node--
3933 * i.e., the node of the first zone in the generic zonelist.
3934 * Set up numa_mem percpu variable for on-line cpus. During
3935 * boot, only the boot cpu should be on-line; we'll init the
3936 * secondary cpus' numa_mem as they come on-line. During
3937 * node/memory hotplug, we'll fixup all on-line cpus.
3938 */
3939 if (cpu_online(cpu))
3940 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3941 #endif
3942 }
3943
3944 return 0;
3945 }
3946
3947 /*
3948 * Called with zonelists_mutex held always
3949 * unless system_state == SYSTEM_BOOTING.
3950 */
3951 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3952 {
3953 set_zonelist_order();
3954
3955 if (system_state == SYSTEM_BOOTING) {
3956 __build_all_zonelists(NULL);
3957 mminit_verify_zonelist();
3958 cpuset_init_current_mems_allowed();
3959 } else {
3960 #ifdef CONFIG_MEMORY_HOTPLUG
3961 if (zone)
3962 setup_zone_pageset(zone);
3963 #endif
3964 /* we have to stop all cpus to guarantee there is no user
3965 of zonelist */
3966 stop_machine(__build_all_zonelists, pgdat, NULL);
3967 /* cpuset refresh routine should be here */
3968 }
3969 vm_total_pages = nr_free_pagecache_pages();
3970 /*
3971 * Disable grouping by mobility if the number of pages in the
3972 * system is too low to allow the mechanism to work. It would be
3973 * more accurate, but expensive to check per-zone. This check is
3974 * made on memory-hotadd so a system can start with mobility
3975 * disabled and enable it later
3976 */
3977 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3978 page_group_by_mobility_disabled = 1;
3979 else
3980 page_group_by_mobility_disabled = 0;
3981
3982 pr_info("Built %i zonelists in %s order, mobility grouping %s. "
3983 "Total pages: %ld\n",
3984 nr_online_nodes,
3985 zonelist_order_name[current_zonelist_order],
3986 page_group_by_mobility_disabled ? "off" : "on",
3987 vm_total_pages);
3988 #ifdef CONFIG_NUMA
3989 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
3990 #endif
3991 }
3992
3993 /*
3994 * Helper functions to size the waitqueue hash table.
3995 * Essentially these want to choose hash table sizes sufficiently
3996 * large so that collisions trying to wait on pages are rare.
3997 * But in fact, the number of active page waitqueues on typical
3998 * systems is ridiculously low, less than 200. So this is even
3999 * conservative, even though it seems large.
4000 *
4001 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4002 * waitqueues, i.e. the size of the waitq table given the number of pages.
4003 */
4004 #define PAGES_PER_WAITQUEUE 256
4005
4006 #ifndef CONFIG_MEMORY_HOTPLUG
4007 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4008 {
4009 unsigned long size = 1;
4010
4011 pages /= PAGES_PER_WAITQUEUE;
4012
4013 while (size < pages)
4014 size <<= 1;
4015
4016 /*
4017 * Once we have dozens or even hundreds of threads sleeping
4018 * on IO we've got bigger problems than wait queue collision.
4019 * Limit the size of the wait table to a reasonable size.
4020 */
4021 size = min(size, 4096UL);
4022
4023 return max(size, 4UL);
4024 }
4025 #else
4026 /*
4027 * A zone's size might be changed by hot-add, so it is not possible to determine
4028 * a suitable size for its wait_table. So we use the maximum size now.
4029 *
4030 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4031 *
4032 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4033 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4034 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4035 *
4036 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4037 * or more by the traditional way. (See above). It equals:
4038 *
4039 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4040 * ia64(16K page size) : = ( 8G + 4M)byte.
4041 * powerpc (64K page size) : = (32G +16M)byte.
4042 */
4043 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4044 {
4045 return 4096UL;
4046 }
4047 #endif
4048
4049 /*
4050 * This is an integer logarithm so that shifts can be used later
4051 * to extract the more random high bits from the multiplicative
4052 * hash function before the remainder is taken.
4053 */
4054 static inline unsigned long wait_table_bits(unsigned long size)
4055 {
4056 return ffz(~size);
4057 }
4058
4059 /*
4060 * Check if a pageblock contains reserved pages
4061 */
4062 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4063 {
4064 unsigned long pfn;
4065
4066 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4067 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4068 return 1;
4069 }
4070 return 0;
4071 }
4072
4073 /*
4074 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4075 * of blocks reserved is based on min_wmark_pages(zone). The memory within
4076 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4077 * higher will lead to a bigger reserve which will get freed as contiguous
4078 * blocks as reclaim kicks in
4079 */
4080 static void setup_zone_migrate_reserve(struct zone *zone)
4081 {
4082 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4083 struct page *page;
4084 unsigned long block_migratetype;
4085 int reserve;
4086 int old_reserve;
4087
4088 /*
4089 * Get the start pfn, end pfn and the number of blocks to reserve
4090 * We have to be careful to be aligned to pageblock_nr_pages to
4091 * make sure that we always check pfn_valid for the first page in
4092 * the block.
4093 */
4094 start_pfn = zone->zone_start_pfn;
4095 end_pfn = zone_end_pfn(zone);
4096 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4097 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4098 pageblock_order;
4099
4100 /*
4101 * Reserve blocks are generally in place to help high-order atomic
4102 * allocations that are short-lived. A min_free_kbytes value that
4103 * would result in more than 2 reserve blocks for atomic allocations
4104 * is assumed to be in place to help anti-fragmentation for the
4105 * future allocation of hugepages at runtime.
4106 */
4107 reserve = min(2, reserve);
4108 old_reserve = zone->nr_migrate_reserve_block;
4109
4110 /* When memory hot-add, we almost always need to do nothing */
4111 if (reserve == old_reserve)
4112 return;
4113 zone->nr_migrate_reserve_block = reserve;
4114
4115 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4116 if (!pfn_valid(pfn))
4117 continue;
4118 page = pfn_to_page(pfn);
4119
4120 /* Watch out for overlapping nodes */
4121 if (page_to_nid(page) != zone_to_nid(zone))
4122 continue;
4123
4124 block_migratetype = get_pageblock_migratetype(page);
4125
4126 /* Only test what is necessary when the reserves are not met */
4127 if (reserve > 0) {
4128 /*
4129 * Blocks with reserved pages will never free, skip
4130 * them.
4131 */
4132 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4133 if (pageblock_is_reserved(pfn, block_end_pfn))
4134 continue;
4135
4136 /* If this block is reserved, account for it */
4137 if (block_migratetype == MIGRATE_RESERVE) {
4138 reserve--;
4139 continue;
4140 }
4141
4142 /* Suitable for reserving if this block is movable */
4143 if (block_migratetype == MIGRATE_MOVABLE) {
4144 set_pageblock_migratetype(page,
4145 MIGRATE_RESERVE);
4146 move_freepages_block(zone, page,
4147 MIGRATE_RESERVE);
4148 reserve--;
4149 continue;
4150 }
4151 } else if (!old_reserve) {
4152 /*
4153 * At boot time we don't need to scan the whole zone
4154 * for turning off MIGRATE_RESERVE.
4155 */
4156 break;
4157 }
4158
4159 /*
4160 * If the reserve is met and this is a previous reserved block,
4161 * take it back
4162 */
4163 if (block_migratetype == MIGRATE_RESERVE) {
4164 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4165 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4166 }
4167 }
4168 }
4169
4170 /*
4171 * Initially all pages are reserved - free ones are freed
4172 * up by free_all_bootmem() once the early boot process is
4173 * done. Non-atomic initialization, single-pass.
4174 */
4175 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4176 unsigned long start_pfn, enum memmap_context context)
4177 {
4178 struct page *page;
4179 unsigned long end_pfn = start_pfn + size;
4180 unsigned long pfn;
4181 struct zone *z;
4182
4183 if (highest_memmap_pfn < end_pfn - 1)
4184 highest_memmap_pfn = end_pfn - 1;
4185
4186 z = &NODE_DATA(nid)->node_zones[zone];
4187 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4188 /*
4189 * There can be holes in boot-time mem_map[]s
4190 * handed to this function. They do not
4191 * exist on hotplugged memory.
4192 */
4193 if (context == MEMMAP_EARLY) {
4194 if (!early_pfn_valid(pfn))
4195 continue;
4196 if (!early_pfn_in_nid(pfn, nid))
4197 continue;
4198 }
4199 page = pfn_to_page(pfn);
4200 set_page_links(page, zone, nid, pfn);
4201 mminit_verify_page_links(page, zone, nid, pfn);
4202 init_page_count(page);
4203 page_mapcount_reset(page);
4204 page_cpupid_reset_last(page);
4205 SetPageReserved(page);
4206 /*
4207 * Mark the block movable so that blocks are reserved for
4208 * movable at startup. This will force kernel allocations
4209 * to reserve their blocks rather than leaking throughout
4210 * the address space during boot when many long-lived
4211 * kernel allocations are made. Later some blocks near
4212 * the start are marked MIGRATE_RESERVE by
4213 * setup_zone_migrate_reserve()
4214 *
4215 * bitmap is created for zone's valid pfn range. but memmap
4216 * can be created for invalid pages (for alignment)
4217 * check here not to call set_pageblock_migratetype() against
4218 * pfn out of zone.
4219 */
4220 if ((z->zone_start_pfn <= pfn)
4221 && (pfn < zone_end_pfn(z))
4222 && !(pfn & (pageblock_nr_pages - 1)))
4223 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4224
4225 INIT_LIST_HEAD(&page->lru);
4226 #ifdef WANT_PAGE_VIRTUAL
4227 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4228 if (!is_highmem_idx(zone))
4229 set_page_address(page, __va(pfn << PAGE_SHIFT));
4230 #endif
4231 }
4232 }
4233
4234 static void __meminit zone_init_free_lists(struct zone *zone)
4235 {
4236 unsigned int order, t;
4237 for_each_migratetype_order(order, t) {
4238 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4239 zone->free_area[order].nr_free = 0;
4240 }
4241 }
4242
4243 #ifndef __HAVE_ARCH_MEMMAP_INIT
4244 #define memmap_init(size, nid, zone, start_pfn) \
4245 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4246 #endif
4247
4248 static int zone_batchsize(struct zone *zone)
4249 {
4250 #ifdef CONFIG_MMU
4251 int batch;
4252
4253 /*
4254 * The per-cpu-pages pools are set to around 1000th of the
4255 * size of the zone. But no more than 1/2 of a meg.
4256 *
4257 * OK, so we don't know how big the cache is. So guess.
4258 */
4259 batch = zone->managed_pages / 1024;
4260 if (batch * PAGE_SIZE > 512 * 1024)
4261 batch = (512 * 1024) / PAGE_SIZE;
4262 batch /= 4; /* We effectively *= 4 below */
4263 if (batch < 1)
4264 batch = 1;
4265
4266 /*
4267 * Clamp the batch to a 2^n - 1 value. Having a power
4268 * of 2 value was found to be more likely to have
4269 * suboptimal cache aliasing properties in some cases.
4270 *
4271 * For example if 2 tasks are alternately allocating
4272 * batches of pages, one task can end up with a lot
4273 * of pages of one half of the possible page colors
4274 * and the other with pages of the other colors.
4275 */
4276 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4277
4278 return batch;
4279
4280 #else
4281 /* The deferral and batching of frees should be suppressed under NOMMU
4282 * conditions.
4283 *
4284 * The problem is that NOMMU needs to be able to allocate large chunks
4285 * of contiguous memory as there's no hardware page translation to
4286 * assemble apparent contiguous memory from discontiguous pages.
4287 *
4288 * Queueing large contiguous runs of pages for batching, however,
4289 * causes the pages to actually be freed in smaller chunks. As there
4290 * can be a significant delay between the individual batches being
4291 * recycled, this leads to the once large chunks of space being
4292 * fragmented and becoming unavailable for high-order allocations.
4293 */
4294 return 0;
4295 #endif
4296 }
4297
4298 /*
4299 * pcp->high and pcp->batch values are related and dependent on one another:
4300 * ->batch must never be higher then ->high.
4301 * The following function updates them in a safe manner without read side
4302 * locking.
4303 *
4304 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4305 * those fields changing asynchronously (acording the the above rule).
4306 *
4307 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4308 * outside of boot time (or some other assurance that no concurrent updaters
4309 * exist).
4310 */
4311 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4312 unsigned long batch)
4313 {
4314 /* start with a fail safe value for batch */
4315 pcp->batch = 1;
4316 smp_wmb();
4317
4318 /* Update high, then batch, in order */
4319 pcp->high = high;
4320 smp_wmb();
4321
4322 pcp->batch = batch;
4323 }
4324
4325 /* a companion to pageset_set_high() */
4326 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4327 {
4328 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4329 }
4330
4331 static void pageset_init(struct per_cpu_pageset *p)
4332 {
4333 struct per_cpu_pages *pcp;
4334 int migratetype;
4335
4336 memset(p, 0, sizeof(*p));
4337
4338 pcp = &p->pcp;
4339 pcp->count = 0;
4340 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4341 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4342 }
4343
4344 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4345 {
4346 pageset_init(p);
4347 pageset_set_batch(p, batch);
4348 }
4349
4350 /*
4351 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4352 * to the value high for the pageset p.
4353 */
4354 static void pageset_set_high(struct per_cpu_pageset *p,
4355 unsigned long high)
4356 {
4357 unsigned long batch = max(1UL, high / 4);
4358 if ((high / 4) > (PAGE_SHIFT * 8))
4359 batch = PAGE_SHIFT * 8;
4360
4361 pageset_update(&p->pcp, high, batch);
4362 }
4363
4364 static void pageset_set_high_and_batch(struct zone *zone,
4365 struct per_cpu_pageset *pcp)
4366 {
4367 if (percpu_pagelist_fraction)
4368 pageset_set_high(pcp,
4369 (zone->managed_pages /
4370 percpu_pagelist_fraction));
4371 else
4372 pageset_set_batch(pcp, zone_batchsize(zone));
4373 }
4374
4375 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4376 {
4377 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4378
4379 pageset_init(pcp);
4380 pageset_set_high_and_batch(zone, pcp);
4381 }
4382
4383 static void __meminit setup_zone_pageset(struct zone *zone)
4384 {
4385 int cpu;
4386 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4387 for_each_possible_cpu(cpu)
4388 zone_pageset_init(zone, cpu);
4389 }
4390
4391 /*
4392 * Allocate per cpu pagesets and initialize them.
4393 * Before this call only boot pagesets were available.
4394 */
4395 void __init setup_per_cpu_pageset(void)
4396 {
4397 struct zone *zone;
4398
4399 for_each_populated_zone(zone)
4400 setup_zone_pageset(zone);
4401 }
4402
4403 static noinline __init_refok
4404 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4405 {
4406 int i;
4407 size_t alloc_size;
4408
4409 /*
4410 * The per-page waitqueue mechanism uses hashed waitqueues
4411 * per zone.
4412 */
4413 zone->wait_table_hash_nr_entries =
4414 wait_table_hash_nr_entries(zone_size_pages);
4415 zone->wait_table_bits =
4416 wait_table_bits(zone->wait_table_hash_nr_entries);
4417 alloc_size = zone->wait_table_hash_nr_entries
4418 * sizeof(wait_queue_head_t);
4419
4420 if (!slab_is_available()) {
4421 zone->wait_table = (wait_queue_head_t *)
4422 memblock_virt_alloc_node_nopanic(
4423 alloc_size, zone->zone_pgdat->node_id);
4424 } else {
4425 /*
4426 * This case means that a zone whose size was 0 gets new memory
4427 * via memory hot-add.
4428 * But it may be the case that a new node was hot-added. In
4429 * this case vmalloc() will not be able to use this new node's
4430 * memory - this wait_table must be initialized to use this new
4431 * node itself as well.
4432 * To use this new node's memory, further consideration will be
4433 * necessary.
4434 */
4435 zone->wait_table = vmalloc(alloc_size);
4436 }
4437 if (!zone->wait_table)
4438 return -ENOMEM;
4439
4440 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4441 init_waitqueue_head(zone->wait_table + i);
4442
4443 return 0;
4444 }
4445
4446 static __meminit void zone_pcp_init(struct zone *zone)
4447 {
4448 /*
4449 * per cpu subsystem is not up at this point. The following code
4450 * relies on the ability of the linker to provide the
4451 * offset of a (static) per cpu variable into the per cpu area.
4452 */
4453 zone->pageset = &boot_pageset;
4454
4455 if (populated_zone(zone))
4456 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4457 zone->name, zone->present_pages,
4458 zone_batchsize(zone));
4459 }
4460
4461 int __meminit init_currently_empty_zone(struct zone *zone,
4462 unsigned long zone_start_pfn,
4463 unsigned long size,
4464 enum memmap_context context)
4465 {
4466 struct pglist_data *pgdat = zone->zone_pgdat;
4467 int ret;
4468 ret = zone_wait_table_init(zone, size);
4469 if (ret)
4470 return ret;
4471 pgdat->nr_zones = zone_idx(zone) + 1;
4472
4473 zone->zone_start_pfn = zone_start_pfn;
4474
4475 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4476 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4477 pgdat->node_id,
4478 (unsigned long)zone_idx(zone),
4479 zone_start_pfn, (zone_start_pfn + size));
4480
4481 zone_init_free_lists(zone);
4482
4483 return 0;
4484 }
4485
4486 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4487 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4488 /*
4489 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4490 */
4491 int __meminit __early_pfn_to_nid(unsigned long pfn)
4492 {
4493 unsigned long start_pfn, end_pfn;
4494 int nid;
4495 /*
4496 * NOTE: The following SMP-unsafe globals are only used early in boot
4497 * when the kernel is running single-threaded.
4498 */
4499 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4500 static int __meminitdata last_nid;
4501
4502 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4503 return last_nid;
4504
4505 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4506 if (nid != -1) {
4507 last_start_pfn = start_pfn;
4508 last_end_pfn = end_pfn;
4509 last_nid = nid;
4510 }
4511
4512 return nid;
4513 }
4514 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4515
4516 int __meminit early_pfn_to_nid(unsigned long pfn)
4517 {
4518 int nid;
4519
4520 nid = __early_pfn_to_nid(pfn);
4521 if (nid >= 0)
4522 return nid;
4523 /* just returns 0 */
4524 return 0;
4525 }
4526
4527 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4528 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4529 {
4530 int nid;
4531
4532 nid = __early_pfn_to_nid(pfn);
4533 if (nid >= 0 && nid != node)
4534 return false;
4535 return true;
4536 }
4537 #endif
4538
4539 /**
4540 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4541 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4542 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4543 *
4544 * If an architecture guarantees that all ranges registered contain no holes
4545 * and may be freed, this this function may be used instead of calling
4546 * memblock_free_early_nid() manually.
4547 */
4548 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4549 {
4550 unsigned long start_pfn, end_pfn;
4551 int i, this_nid;
4552
4553 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4554 start_pfn = min(start_pfn, max_low_pfn);
4555 end_pfn = min(end_pfn, max_low_pfn);
4556
4557 if (start_pfn < end_pfn)
4558 memblock_free_early_nid(PFN_PHYS(start_pfn),
4559 (end_pfn - start_pfn) << PAGE_SHIFT,
4560 this_nid);
4561 }
4562 }
4563
4564 /**
4565 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4566 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4567 *
4568 * If an architecture guarantees that all ranges registered contain no holes and may
4569 * be freed, this function may be used instead of calling memory_present() manually.
4570 */
4571 void __init sparse_memory_present_with_active_regions(int nid)
4572 {
4573 unsigned long start_pfn, end_pfn;
4574 int i, this_nid;
4575
4576 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4577 memory_present(this_nid, start_pfn, end_pfn);
4578 }
4579
4580 /**
4581 * get_pfn_range_for_nid - Return the start and end page frames for a node
4582 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4583 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4584 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4585 *
4586 * It returns the start and end page frame of a node based on information
4587 * provided by memblock_set_node(). If called for a node
4588 * with no available memory, a warning is printed and the start and end
4589 * PFNs will be 0.
4590 */
4591 void __meminit get_pfn_range_for_nid(unsigned int nid,
4592 unsigned long *start_pfn, unsigned long *end_pfn)
4593 {
4594 unsigned long this_start_pfn, this_end_pfn;
4595 int i;
4596
4597 *start_pfn = -1UL;
4598 *end_pfn = 0;
4599
4600 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4601 *start_pfn = min(*start_pfn, this_start_pfn);
4602 *end_pfn = max(*end_pfn, this_end_pfn);
4603 }
4604
4605 if (*start_pfn == -1UL)
4606 *start_pfn = 0;
4607 }
4608
4609 /*
4610 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4611 * assumption is made that zones within a node are ordered in monotonic
4612 * increasing memory addresses so that the "highest" populated zone is used
4613 */
4614 static void __init find_usable_zone_for_movable(void)
4615 {
4616 int zone_index;
4617 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4618 if (zone_index == ZONE_MOVABLE)
4619 continue;
4620
4621 if (arch_zone_highest_possible_pfn[zone_index] >
4622 arch_zone_lowest_possible_pfn[zone_index])
4623 break;
4624 }
4625
4626 VM_BUG_ON(zone_index == -1);
4627 movable_zone = zone_index;
4628 }
4629
4630 /*
4631 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4632 * because it is sized independent of architecture. Unlike the other zones,
4633 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4634 * in each node depending on the size of each node and how evenly kernelcore
4635 * is distributed. This helper function adjusts the zone ranges
4636 * provided by the architecture for a given node by using the end of the
4637 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4638 * zones within a node are in order of monotonic increases memory addresses
4639 */
4640 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4641 unsigned long zone_type,
4642 unsigned long node_start_pfn,
4643 unsigned long node_end_pfn,
4644 unsigned long *zone_start_pfn,
4645 unsigned long *zone_end_pfn)
4646 {
4647 /* Only adjust if ZONE_MOVABLE is on this node */
4648 if (zone_movable_pfn[nid]) {
4649 /* Size ZONE_MOVABLE */
4650 if (zone_type == ZONE_MOVABLE) {
4651 *zone_start_pfn = zone_movable_pfn[nid];
4652 *zone_end_pfn = min(node_end_pfn,
4653 arch_zone_highest_possible_pfn[movable_zone]);
4654
4655 /* Adjust for ZONE_MOVABLE starting within this range */
4656 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4657 *zone_end_pfn > zone_movable_pfn[nid]) {
4658 *zone_end_pfn = zone_movable_pfn[nid];
4659
4660 /* Check if this whole range is within ZONE_MOVABLE */
4661 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4662 *zone_start_pfn = *zone_end_pfn;
4663 }
4664 }
4665
4666 /*
4667 * Return the number of pages a zone spans in a node, including holes
4668 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4669 */
4670 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4671 unsigned long zone_type,
4672 unsigned long node_start_pfn,
4673 unsigned long node_end_pfn,
4674 unsigned long *ignored)
4675 {
4676 unsigned long zone_start_pfn, zone_end_pfn;
4677
4678 /* Get the start and end of the zone */
4679 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4680 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4681 adjust_zone_range_for_zone_movable(nid, zone_type,
4682 node_start_pfn, node_end_pfn,
4683 &zone_start_pfn, &zone_end_pfn);
4684
4685 /* Check that this node has pages within the zone's required range */
4686 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4687 return 0;
4688
4689 /* Move the zone boundaries inside the node if necessary */
4690 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4691 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4692
4693 /* Return the spanned pages */
4694 return zone_end_pfn - zone_start_pfn;
4695 }
4696
4697 /*
4698 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4699 * then all holes in the requested range will be accounted for.
4700 */
4701 unsigned long __meminit __absent_pages_in_range(int nid,
4702 unsigned long range_start_pfn,
4703 unsigned long range_end_pfn)
4704 {
4705 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4706 unsigned long start_pfn, end_pfn;
4707 int i;
4708
4709 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4710 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4711 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4712 nr_absent -= end_pfn - start_pfn;
4713 }
4714 return nr_absent;
4715 }
4716
4717 /**
4718 * absent_pages_in_range - Return number of page frames in holes within a range
4719 * @start_pfn: The start PFN to start searching for holes
4720 * @end_pfn: The end PFN to stop searching for holes
4721 *
4722 * It returns the number of pages frames in memory holes within a range.
4723 */
4724 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4725 unsigned long end_pfn)
4726 {
4727 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4728 }
4729
4730 /* Return the number of page frames in holes in a zone on a node */
4731 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4732 unsigned long zone_type,
4733 unsigned long node_start_pfn,
4734 unsigned long node_end_pfn,
4735 unsigned long *ignored)
4736 {
4737 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4738 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4739 unsigned long zone_start_pfn, zone_end_pfn;
4740
4741 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4742 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4743
4744 adjust_zone_range_for_zone_movable(nid, zone_type,
4745 node_start_pfn, node_end_pfn,
4746 &zone_start_pfn, &zone_end_pfn);
4747 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4748 }
4749
4750 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4751 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4752 unsigned long zone_type,
4753 unsigned long node_start_pfn,
4754 unsigned long node_end_pfn,
4755 unsigned long *zones_size)
4756 {
4757 return zones_size[zone_type];
4758 }
4759
4760 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4761 unsigned long zone_type,
4762 unsigned long node_start_pfn,
4763 unsigned long node_end_pfn,
4764 unsigned long *zholes_size)
4765 {
4766 if (!zholes_size)
4767 return 0;
4768
4769 return zholes_size[zone_type];
4770 }
4771
4772 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4773
4774 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4775 unsigned long node_start_pfn,
4776 unsigned long node_end_pfn,
4777 unsigned long *zones_size,
4778 unsigned long *zholes_size)
4779 {
4780 unsigned long realtotalpages, totalpages = 0;
4781 enum zone_type i;
4782
4783 for (i = 0; i < MAX_NR_ZONES; i++)
4784 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4785 node_start_pfn,
4786 node_end_pfn,
4787 zones_size);
4788 pgdat->node_spanned_pages = totalpages;
4789
4790 realtotalpages = totalpages;
4791 for (i = 0; i < MAX_NR_ZONES; i++)
4792 realtotalpages -=
4793 zone_absent_pages_in_node(pgdat->node_id, i,
4794 node_start_pfn, node_end_pfn,
4795 zholes_size);
4796 pgdat->node_present_pages = realtotalpages;
4797 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4798 realtotalpages);
4799 }
4800
4801 #ifndef CONFIG_SPARSEMEM
4802 /*
4803 * Calculate the size of the zone->blockflags rounded to an unsigned long
4804 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4805 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4806 * round what is now in bits to nearest long in bits, then return it in
4807 * bytes.
4808 */
4809 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4810 {
4811 unsigned long usemapsize;
4812
4813 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4814 usemapsize = roundup(zonesize, pageblock_nr_pages);
4815 usemapsize = usemapsize >> pageblock_order;
4816 usemapsize *= NR_PAGEBLOCK_BITS;
4817 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4818
4819 return usemapsize / 8;
4820 }
4821
4822 static void __init setup_usemap(struct pglist_data *pgdat,
4823 struct zone *zone,
4824 unsigned long zone_start_pfn,
4825 unsigned long zonesize)
4826 {
4827 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4828 zone->pageblock_flags = NULL;
4829 if (usemapsize)
4830 zone->pageblock_flags =
4831 memblock_virt_alloc_node_nopanic(usemapsize,
4832 pgdat->node_id);
4833 }
4834 #else
4835 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4836 unsigned long zone_start_pfn, unsigned long zonesize) {}
4837 #endif /* CONFIG_SPARSEMEM */
4838
4839 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4840
4841 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4842 void __paginginit set_pageblock_order(void)
4843 {
4844 unsigned int order;
4845
4846 /* Check that pageblock_nr_pages has not already been setup */
4847 if (pageblock_order)
4848 return;
4849
4850 if (HPAGE_SHIFT > PAGE_SHIFT)
4851 order = HUGETLB_PAGE_ORDER;
4852 else
4853 order = MAX_ORDER - 1;
4854
4855 /*
4856 * Assume the largest contiguous order of interest is a huge page.
4857 * This value may be variable depending on boot parameters on IA64 and
4858 * powerpc.
4859 */
4860 pageblock_order = order;
4861 }
4862 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4863
4864 /*
4865 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4866 * is unused as pageblock_order is set at compile-time. See
4867 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4868 * the kernel config
4869 */
4870 void __paginginit set_pageblock_order(void)
4871 {
4872 }
4873
4874 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4875
4876 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4877 unsigned long present_pages)
4878 {
4879 unsigned long pages = spanned_pages;
4880
4881 /*
4882 * Provide a more accurate estimation if there are holes within
4883 * the zone and SPARSEMEM is in use. If there are holes within the
4884 * zone, each populated memory region may cost us one or two extra
4885 * memmap pages due to alignment because memmap pages for each
4886 * populated regions may not naturally algined on page boundary.
4887 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4888 */
4889 if (spanned_pages > present_pages + (present_pages >> 4) &&
4890 IS_ENABLED(CONFIG_SPARSEMEM))
4891 pages = present_pages;
4892
4893 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4894 }
4895
4896 /*
4897 * Set up the zone data structures:
4898 * - mark all pages reserved
4899 * - mark all memory queues empty
4900 * - clear the memory bitmaps
4901 *
4902 * NOTE: pgdat should get zeroed by caller.
4903 */
4904 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4905 unsigned long node_start_pfn, unsigned long node_end_pfn,
4906 unsigned long *zones_size, unsigned long *zholes_size)
4907 {
4908 enum zone_type j;
4909 int nid = pgdat->node_id;
4910 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4911 int ret;
4912
4913 pgdat_resize_init(pgdat);
4914 #ifdef CONFIG_NUMA_BALANCING
4915 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4916 pgdat->numabalancing_migrate_nr_pages = 0;
4917 pgdat->numabalancing_migrate_next_window = jiffies;
4918 #endif
4919 init_waitqueue_head(&pgdat->kswapd_wait);
4920 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4921 pgdat_page_ext_init(pgdat);
4922
4923 for (j = 0; j < MAX_NR_ZONES; j++) {
4924 struct zone *zone = pgdat->node_zones + j;
4925 unsigned long size, realsize, freesize, memmap_pages;
4926
4927 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4928 node_end_pfn, zones_size);
4929 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4930 node_start_pfn,
4931 node_end_pfn,
4932 zholes_size);
4933
4934 /*
4935 * Adjust freesize so that it accounts for how much memory
4936 * is used by this zone for memmap. This affects the watermark
4937 * and per-cpu initialisations
4938 */
4939 memmap_pages = calc_memmap_size(size, realsize);
4940 if (!is_highmem_idx(j)) {
4941 if (freesize >= memmap_pages) {
4942 freesize -= memmap_pages;
4943 if (memmap_pages)
4944 printk(KERN_DEBUG
4945 " %s zone: %lu pages used for memmap\n",
4946 zone_names[j], memmap_pages);
4947 } else
4948 printk(KERN_WARNING
4949 " %s zone: %lu pages exceeds freesize %lu\n",
4950 zone_names[j], memmap_pages, freesize);
4951 }
4952
4953 /* Account for reserved pages */
4954 if (j == 0 && freesize > dma_reserve) {
4955 freesize -= dma_reserve;
4956 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4957 zone_names[0], dma_reserve);
4958 }
4959
4960 if (!is_highmem_idx(j))
4961 nr_kernel_pages += freesize;
4962 /* Charge for highmem memmap if there are enough kernel pages */
4963 else if (nr_kernel_pages > memmap_pages * 2)
4964 nr_kernel_pages -= memmap_pages;
4965 nr_all_pages += freesize;
4966
4967 zone->spanned_pages = size;
4968 zone->present_pages = realsize;
4969 /*
4970 * Set an approximate value for lowmem here, it will be adjusted
4971 * when the bootmem allocator frees pages into the buddy system.
4972 * And all highmem pages will be managed by the buddy system.
4973 */
4974 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4975 #ifdef CONFIG_NUMA
4976 zone->node = nid;
4977 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4978 / 100;
4979 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4980 #endif
4981 zone->name = zone_names[j];
4982 spin_lock_init(&zone->lock);
4983 spin_lock_init(&zone->lru_lock);
4984 zone_seqlock_init(zone);
4985 zone->zone_pgdat = pgdat;
4986 zone_pcp_init(zone);
4987
4988 /* For bootup, initialized properly in watermark setup */
4989 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4990
4991 lruvec_init(&zone->lruvec);
4992 if (!size)
4993 continue;
4994
4995 set_pageblock_order();
4996 setup_usemap(pgdat, zone, zone_start_pfn, size);
4997 ret = init_currently_empty_zone(zone, zone_start_pfn,
4998 size, MEMMAP_EARLY);
4999 BUG_ON(ret);
5000 memmap_init(size, nid, j, zone_start_pfn);
5001 zone_start_pfn += size;
5002 }
5003 }
5004
5005 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5006 {
5007 /* Skip empty nodes */
5008 if (!pgdat->node_spanned_pages)
5009 return;
5010
5011 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5012 /* ia64 gets its own node_mem_map, before this, without bootmem */
5013 if (!pgdat->node_mem_map) {
5014 unsigned long size, start, end;
5015 struct page *map;
5016
5017 /*
5018 * The zone's endpoints aren't required to be MAX_ORDER
5019 * aligned but the node_mem_map endpoints must be in order
5020 * for the buddy allocator to function correctly.
5021 */
5022 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5023 end = pgdat_end_pfn(pgdat);
5024 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5025 size = (end - start) * sizeof(struct page);
5026 map = alloc_remap(pgdat->node_id, size);
5027 if (!map)
5028 map = memblock_virt_alloc_node_nopanic(size,
5029 pgdat->node_id);
5030 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5031 }
5032 #ifndef CONFIG_NEED_MULTIPLE_NODES
5033 /*
5034 * With no DISCONTIG, the global mem_map is just set as node 0's
5035 */
5036 if (pgdat == NODE_DATA(0)) {
5037 mem_map = NODE_DATA(0)->node_mem_map;
5038 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5039 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5040 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5041 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5042 }
5043 #endif
5044 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5045 }
5046
5047 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5048 unsigned long node_start_pfn, unsigned long *zholes_size)
5049 {
5050 pg_data_t *pgdat = NODE_DATA(nid);
5051 unsigned long start_pfn = 0;
5052 unsigned long end_pfn = 0;
5053
5054 /* pg_data_t should be reset to zero when it's allocated */
5055 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5056
5057 pgdat->node_id = nid;
5058 pgdat->node_start_pfn = node_start_pfn;
5059 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5060 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5061 printk(KERN_INFO "Initmem setup node %d [mem %#010Lx-%#010Lx]\n", nid,
5062 (u64) start_pfn << PAGE_SHIFT, (u64) (end_pfn << PAGE_SHIFT) - 1);
5063 #endif
5064 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5065 zones_size, zholes_size);
5066
5067 alloc_node_mem_map(pgdat);
5068 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5069 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5070 nid, (unsigned long)pgdat,
5071 (unsigned long)pgdat->node_mem_map);
5072 #endif
5073
5074 free_area_init_core(pgdat, start_pfn, end_pfn,
5075 zones_size, zholes_size);
5076 }
5077
5078 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5079
5080 #if MAX_NUMNODES > 1
5081 /*
5082 * Figure out the number of possible node ids.
5083 */
5084 void __init setup_nr_node_ids(void)
5085 {
5086 unsigned int node;
5087 unsigned int highest = 0;
5088
5089 for_each_node_mask(node, node_possible_map)
5090 highest = node;
5091 nr_node_ids = highest + 1;
5092 }
5093 #endif
5094
5095 /**
5096 * node_map_pfn_alignment - determine the maximum internode alignment
5097 *
5098 * This function should be called after node map is populated and sorted.
5099 * It calculates the maximum power of two alignment which can distinguish
5100 * all the nodes.
5101 *
5102 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5103 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5104 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5105 * shifted, 1GiB is enough and this function will indicate so.
5106 *
5107 * This is used to test whether pfn -> nid mapping of the chosen memory
5108 * model has fine enough granularity to avoid incorrect mapping for the
5109 * populated node map.
5110 *
5111 * Returns the determined alignment in pfn's. 0 if there is no alignment
5112 * requirement (single node).
5113 */
5114 unsigned long __init node_map_pfn_alignment(void)
5115 {
5116 unsigned long accl_mask = 0, last_end = 0;
5117 unsigned long start, end, mask;
5118 int last_nid = -1;
5119 int i, nid;
5120
5121 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5122 if (!start || last_nid < 0 || last_nid == nid) {
5123 last_nid = nid;
5124 last_end = end;
5125 continue;
5126 }
5127
5128 /*
5129 * Start with a mask granular enough to pin-point to the
5130 * start pfn and tick off bits one-by-one until it becomes
5131 * too coarse to separate the current node from the last.
5132 */
5133 mask = ~((1 << __ffs(start)) - 1);
5134 while (mask && last_end <= (start & (mask << 1)))
5135 mask <<= 1;
5136
5137 /* accumulate all internode masks */
5138 accl_mask |= mask;
5139 }
5140
5141 /* convert mask to number of pages */
5142 return ~accl_mask + 1;
5143 }
5144
5145 /* Find the lowest pfn for a node */
5146 static unsigned long __init find_min_pfn_for_node(int nid)
5147 {
5148 unsigned long min_pfn = ULONG_MAX;
5149 unsigned long start_pfn;
5150 int i;
5151
5152 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5153 min_pfn = min(min_pfn, start_pfn);
5154
5155 if (min_pfn == ULONG_MAX) {
5156 printk(KERN_WARNING
5157 "Could not find start_pfn for node %d\n", nid);
5158 return 0;
5159 }
5160
5161 return min_pfn;
5162 }
5163
5164 /**
5165 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5166 *
5167 * It returns the minimum PFN based on information provided via
5168 * memblock_set_node().
5169 */
5170 unsigned long __init find_min_pfn_with_active_regions(void)
5171 {
5172 return find_min_pfn_for_node(MAX_NUMNODES);
5173 }
5174
5175 /*
5176 * early_calculate_totalpages()
5177 * Sum pages in active regions for movable zone.
5178 * Populate N_MEMORY for calculating usable_nodes.
5179 */
5180 static unsigned long __init early_calculate_totalpages(void)
5181 {
5182 unsigned long totalpages = 0;
5183 unsigned long start_pfn, end_pfn;
5184 int i, nid;
5185
5186 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5187 unsigned long pages = end_pfn - start_pfn;
5188
5189 totalpages += pages;
5190 if (pages)
5191 node_set_state(nid, N_MEMORY);
5192 }
5193 return totalpages;
5194 }
5195
5196 /*
5197 * Find the PFN the Movable zone begins in each node. Kernel memory
5198 * is spread evenly between nodes as long as the nodes have enough
5199 * memory. When they don't, some nodes will have more kernelcore than
5200 * others
5201 */
5202 static void __init find_zone_movable_pfns_for_nodes(void)
5203 {
5204 int i, nid;
5205 unsigned long usable_startpfn;
5206 unsigned long kernelcore_node, kernelcore_remaining;
5207 /* save the state before borrow the nodemask */
5208 nodemask_t saved_node_state = node_states[N_MEMORY];
5209 unsigned long totalpages = early_calculate_totalpages();
5210 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5211 struct memblock_region *r;
5212
5213 /* Need to find movable_zone earlier when movable_node is specified. */
5214 find_usable_zone_for_movable();
5215
5216 /*
5217 * If movable_node is specified, ignore kernelcore and movablecore
5218 * options.
5219 */
5220 if (movable_node_is_enabled()) {
5221 for_each_memblock(memory, r) {
5222 if (!memblock_is_hotpluggable(r))
5223 continue;
5224
5225 nid = r->nid;
5226
5227 usable_startpfn = PFN_DOWN(r->base);
5228 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5229 min(usable_startpfn, zone_movable_pfn[nid]) :
5230 usable_startpfn;
5231 }
5232
5233 goto out2;
5234 }
5235
5236 /*
5237 * If movablecore=nn[KMG] was specified, calculate what size of
5238 * kernelcore that corresponds so that memory usable for
5239 * any allocation type is evenly spread. If both kernelcore
5240 * and movablecore are specified, then the value of kernelcore
5241 * will be used for required_kernelcore if it's greater than
5242 * what movablecore would have allowed.
5243 */
5244 if (required_movablecore) {
5245 unsigned long corepages;
5246
5247 /*
5248 * Round-up so that ZONE_MOVABLE is at least as large as what
5249 * was requested by the user
5250 */
5251 required_movablecore =
5252 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5253 corepages = totalpages - required_movablecore;
5254
5255 required_kernelcore = max(required_kernelcore, corepages);
5256 }
5257
5258 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5259 if (!required_kernelcore)
5260 goto out;
5261
5262 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5263 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5264
5265 restart:
5266 /* Spread kernelcore memory as evenly as possible throughout nodes */
5267 kernelcore_node = required_kernelcore / usable_nodes;
5268 for_each_node_state(nid, N_MEMORY) {
5269 unsigned long start_pfn, end_pfn;
5270
5271 /*
5272 * Recalculate kernelcore_node if the division per node
5273 * now exceeds what is necessary to satisfy the requested
5274 * amount of memory for the kernel
5275 */
5276 if (required_kernelcore < kernelcore_node)
5277 kernelcore_node = required_kernelcore / usable_nodes;
5278
5279 /*
5280 * As the map is walked, we track how much memory is usable
5281 * by the kernel using kernelcore_remaining. When it is
5282 * 0, the rest of the node is usable by ZONE_MOVABLE
5283 */
5284 kernelcore_remaining = kernelcore_node;
5285
5286 /* Go through each range of PFNs within this node */
5287 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5288 unsigned long size_pages;
5289
5290 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5291 if (start_pfn >= end_pfn)
5292 continue;
5293
5294 /* Account for what is only usable for kernelcore */
5295 if (start_pfn < usable_startpfn) {
5296 unsigned long kernel_pages;
5297 kernel_pages = min(end_pfn, usable_startpfn)
5298 - start_pfn;
5299
5300 kernelcore_remaining -= min(kernel_pages,
5301 kernelcore_remaining);
5302 required_kernelcore -= min(kernel_pages,
5303 required_kernelcore);
5304
5305 /* Continue if range is now fully accounted */
5306 if (end_pfn <= usable_startpfn) {
5307
5308 /*
5309 * Push zone_movable_pfn to the end so
5310 * that if we have to rebalance
5311 * kernelcore across nodes, we will
5312 * not double account here
5313 */
5314 zone_movable_pfn[nid] = end_pfn;
5315 continue;
5316 }
5317 start_pfn = usable_startpfn;
5318 }
5319
5320 /*
5321 * The usable PFN range for ZONE_MOVABLE is from
5322 * start_pfn->end_pfn. Calculate size_pages as the
5323 * number of pages used as kernelcore
5324 */
5325 size_pages = end_pfn - start_pfn;
5326 if (size_pages > kernelcore_remaining)
5327 size_pages = kernelcore_remaining;
5328 zone_movable_pfn[nid] = start_pfn + size_pages;
5329
5330 /*
5331 * Some kernelcore has been met, update counts and
5332 * break if the kernelcore for this node has been
5333 * satisfied
5334 */
5335 required_kernelcore -= min(required_kernelcore,
5336 size_pages);
5337 kernelcore_remaining -= size_pages;
5338 if (!kernelcore_remaining)
5339 break;
5340 }
5341 }
5342
5343 /*
5344 * If there is still required_kernelcore, we do another pass with one
5345 * less node in the count. This will push zone_movable_pfn[nid] further
5346 * along on the nodes that still have memory until kernelcore is
5347 * satisfied
5348 */
5349 usable_nodes--;
5350 if (usable_nodes && required_kernelcore > usable_nodes)
5351 goto restart;
5352
5353 out2:
5354 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5355 for (nid = 0; nid < MAX_NUMNODES; nid++)
5356 zone_movable_pfn[nid] =
5357 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5358
5359 out:
5360 /* restore the node_state */
5361 node_states[N_MEMORY] = saved_node_state;
5362 }
5363
5364 /* Any regular or high memory on that node ? */
5365 static void check_for_memory(pg_data_t *pgdat, int nid)
5366 {
5367 enum zone_type zone_type;
5368
5369 if (N_MEMORY == N_NORMAL_MEMORY)
5370 return;
5371
5372 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5373 struct zone *zone = &pgdat->node_zones[zone_type];
5374 if (populated_zone(zone)) {
5375 node_set_state(nid, N_HIGH_MEMORY);
5376 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5377 zone_type <= ZONE_NORMAL)
5378 node_set_state(nid, N_NORMAL_MEMORY);
5379 break;
5380 }
5381 }
5382 }
5383
5384 /**
5385 * free_area_init_nodes - Initialise all pg_data_t and zone data
5386 * @max_zone_pfn: an array of max PFNs for each zone
5387 *
5388 * This will call free_area_init_node() for each active node in the system.
5389 * Using the page ranges provided by memblock_set_node(), the size of each
5390 * zone in each node and their holes is calculated. If the maximum PFN
5391 * between two adjacent zones match, it is assumed that the zone is empty.
5392 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5393 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5394 * starts where the previous one ended. For example, ZONE_DMA32 starts
5395 * at arch_max_dma_pfn.
5396 */
5397 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5398 {
5399 unsigned long start_pfn, end_pfn;
5400 int i, nid;
5401
5402 /* Record where the zone boundaries are */
5403 memset(arch_zone_lowest_possible_pfn, 0,
5404 sizeof(arch_zone_lowest_possible_pfn));
5405 memset(arch_zone_highest_possible_pfn, 0,
5406 sizeof(arch_zone_highest_possible_pfn));
5407 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5408 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5409 for (i = 1; i < MAX_NR_ZONES; i++) {
5410 if (i == ZONE_MOVABLE)
5411 continue;
5412 arch_zone_lowest_possible_pfn[i] =
5413 arch_zone_highest_possible_pfn[i-1];
5414 arch_zone_highest_possible_pfn[i] =
5415 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5416 }
5417 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5418 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5419
5420 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5421 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5422 find_zone_movable_pfns_for_nodes();
5423
5424 /* Print out the zone ranges */
5425 pr_info("Zone ranges:\n");
5426 for (i = 0; i < MAX_NR_ZONES; i++) {
5427 if (i == ZONE_MOVABLE)
5428 continue;
5429 pr_info(" %-8s ", zone_names[i]);
5430 if (arch_zone_lowest_possible_pfn[i] ==
5431 arch_zone_highest_possible_pfn[i])
5432 pr_cont("empty\n");
5433 else
5434 pr_cont("[mem %0#10lx-%0#10lx]\n",
5435 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5436 (arch_zone_highest_possible_pfn[i]
5437 << PAGE_SHIFT) - 1);
5438 }
5439
5440 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5441 pr_info("Movable zone start for each node\n");
5442 for (i = 0; i < MAX_NUMNODES; i++) {
5443 if (zone_movable_pfn[i])
5444 pr_info(" Node %d: %#010lx\n", i,
5445 zone_movable_pfn[i] << PAGE_SHIFT);
5446 }
5447
5448 /* Print out the early node map */
5449 pr_info("Early memory node ranges\n");
5450 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5451 pr_info(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5452 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5453
5454 /* Initialise every node */
5455 mminit_verify_pageflags_layout();
5456 setup_nr_node_ids();
5457 for_each_online_node(nid) {
5458 pg_data_t *pgdat = NODE_DATA(nid);
5459 free_area_init_node(nid, NULL,
5460 find_min_pfn_for_node(nid), NULL);
5461
5462 /* Any memory on that node */
5463 if (pgdat->node_present_pages)
5464 node_set_state(nid, N_MEMORY);
5465 check_for_memory(pgdat, nid);
5466 }
5467 }
5468
5469 static int __init cmdline_parse_core(char *p, unsigned long *core)
5470 {
5471 unsigned long long coremem;
5472 if (!p)
5473 return -EINVAL;
5474
5475 coremem = memparse(p, &p);
5476 *core = coremem >> PAGE_SHIFT;
5477
5478 /* Paranoid check that UL is enough for the coremem value */
5479 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5480
5481 return 0;
5482 }
5483
5484 /*
5485 * kernelcore=size sets the amount of memory for use for allocations that
5486 * cannot be reclaimed or migrated.
5487 */
5488 static int __init cmdline_parse_kernelcore(char *p)
5489 {
5490 return cmdline_parse_core(p, &required_kernelcore);
5491 }
5492
5493 /*
5494 * movablecore=size sets the amount of memory for use for allocations that
5495 * can be reclaimed or migrated.
5496 */
5497 static int __init cmdline_parse_movablecore(char *p)
5498 {
5499 return cmdline_parse_core(p, &required_movablecore);
5500 }
5501
5502 early_param("kernelcore", cmdline_parse_kernelcore);
5503 early_param("movablecore", cmdline_parse_movablecore);
5504
5505 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5506
5507 void adjust_managed_page_count(struct page *page, long count)
5508 {
5509 spin_lock(&managed_page_count_lock);
5510 page_zone(page)->managed_pages += count;
5511 totalram_pages += count;
5512 #ifdef CONFIG_HIGHMEM
5513 if (PageHighMem(page))
5514 totalhigh_pages += count;
5515 #endif
5516 spin_unlock(&managed_page_count_lock);
5517 }
5518 EXPORT_SYMBOL(adjust_managed_page_count);
5519
5520 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5521 {
5522 void *pos;
5523 unsigned long pages = 0;
5524
5525 start = (void *)PAGE_ALIGN((unsigned long)start);
5526 end = (void *)((unsigned long)end & PAGE_MASK);
5527 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5528 if ((unsigned int)poison <= 0xFF)
5529 memset(pos, poison, PAGE_SIZE);
5530 free_reserved_page(virt_to_page(pos));
5531 }
5532
5533 if (pages && s)
5534 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5535 s, pages << (PAGE_SHIFT - 10), start, end);
5536
5537 return pages;
5538 }
5539 EXPORT_SYMBOL(free_reserved_area);
5540
5541 #ifdef CONFIG_HIGHMEM
5542 void free_highmem_page(struct page *page)
5543 {
5544 __free_reserved_page(page);
5545 totalram_pages++;
5546 page_zone(page)->managed_pages++;
5547 totalhigh_pages++;
5548 }
5549 #endif
5550
5551
5552 void __init mem_init_print_info(const char *str)
5553 {
5554 unsigned long physpages, codesize, datasize, rosize, bss_size;
5555 unsigned long init_code_size, init_data_size;
5556
5557 physpages = get_num_physpages();
5558 codesize = _etext - _stext;
5559 datasize = _edata - _sdata;
5560 rosize = __end_rodata - __start_rodata;
5561 bss_size = __bss_stop - __bss_start;
5562 init_data_size = __init_end - __init_begin;
5563 init_code_size = _einittext - _sinittext;
5564
5565 /*
5566 * Detect special cases and adjust section sizes accordingly:
5567 * 1) .init.* may be embedded into .data sections
5568 * 2) .init.text.* may be out of [__init_begin, __init_end],
5569 * please refer to arch/tile/kernel/vmlinux.lds.S.
5570 * 3) .rodata.* may be embedded into .text or .data sections.
5571 */
5572 #define adj_init_size(start, end, size, pos, adj) \
5573 do { \
5574 if (start <= pos && pos < end && size > adj) \
5575 size -= adj; \
5576 } while (0)
5577
5578 adj_init_size(__init_begin, __init_end, init_data_size,
5579 _sinittext, init_code_size);
5580 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5581 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5582 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5583 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5584
5585 #undef adj_init_size
5586
5587 pr_info("Memory: %luK/%luK available "
5588 "(%luK kernel code, %luK rwdata, %luK rodata, "
5589 "%luK init, %luK bss, %luK reserved"
5590 #ifdef CONFIG_HIGHMEM
5591 ", %luK highmem"
5592 #endif
5593 "%s%s)\n",
5594 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5595 codesize >> 10, datasize >> 10, rosize >> 10,
5596 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5597 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5598 #ifdef CONFIG_HIGHMEM
5599 totalhigh_pages << (PAGE_SHIFT-10),
5600 #endif
5601 str ? ", " : "", str ? str : "");
5602 }
5603
5604 /**
5605 * set_dma_reserve - set the specified number of pages reserved in the first zone
5606 * @new_dma_reserve: The number of pages to mark reserved
5607 *
5608 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5609 * In the DMA zone, a significant percentage may be consumed by kernel image
5610 * and other unfreeable allocations which can skew the watermarks badly. This
5611 * function may optionally be used to account for unfreeable pages in the
5612 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5613 * smaller per-cpu batchsize.
5614 */
5615 void __init set_dma_reserve(unsigned long new_dma_reserve)
5616 {
5617 dma_reserve = new_dma_reserve;
5618 }
5619
5620 void __init free_area_init(unsigned long *zones_size)
5621 {
5622 free_area_init_node(0, zones_size,
5623 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5624 }
5625
5626 static int page_alloc_cpu_notify(struct notifier_block *self,
5627 unsigned long action, void *hcpu)
5628 {
5629 int cpu = (unsigned long)hcpu;
5630
5631 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5632 lru_add_drain_cpu(cpu);
5633 drain_pages(cpu);
5634
5635 /*
5636 * Spill the event counters of the dead processor
5637 * into the current processors event counters.
5638 * This artificially elevates the count of the current
5639 * processor.
5640 */
5641 vm_events_fold_cpu(cpu);
5642
5643 /*
5644 * Zero the differential counters of the dead processor
5645 * so that the vm statistics are consistent.
5646 *
5647 * This is only okay since the processor is dead and cannot
5648 * race with what we are doing.
5649 */
5650 cpu_vm_stats_fold(cpu);
5651 }
5652 return NOTIFY_OK;
5653 }
5654
5655 void __init page_alloc_init(void)
5656 {
5657 hotcpu_notifier(page_alloc_cpu_notify, 0);
5658 }
5659
5660 /*
5661 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5662 * or min_free_kbytes changes.
5663 */
5664 static void calculate_totalreserve_pages(void)
5665 {
5666 struct pglist_data *pgdat;
5667 unsigned long reserve_pages = 0;
5668 enum zone_type i, j;
5669
5670 for_each_online_pgdat(pgdat) {
5671 for (i = 0; i < MAX_NR_ZONES; i++) {
5672 struct zone *zone = pgdat->node_zones + i;
5673 long max = 0;
5674
5675 /* Find valid and maximum lowmem_reserve in the zone */
5676 for (j = i; j < MAX_NR_ZONES; j++) {
5677 if (zone->lowmem_reserve[j] > max)
5678 max = zone->lowmem_reserve[j];
5679 }
5680
5681 /* we treat the high watermark as reserved pages. */
5682 max += high_wmark_pages(zone);
5683
5684 if (max > zone->managed_pages)
5685 max = zone->managed_pages;
5686 reserve_pages += max;
5687 /*
5688 * Lowmem reserves are not available to
5689 * GFP_HIGHUSER page cache allocations and
5690 * kswapd tries to balance zones to their high
5691 * watermark. As a result, neither should be
5692 * regarded as dirtyable memory, to prevent a
5693 * situation where reclaim has to clean pages
5694 * in order to balance the zones.
5695 */
5696 zone->dirty_balance_reserve = max;
5697 }
5698 }
5699 dirty_balance_reserve = reserve_pages;
5700 totalreserve_pages = reserve_pages;
5701 }
5702
5703 /*
5704 * setup_per_zone_lowmem_reserve - called whenever
5705 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5706 * has a correct pages reserved value, so an adequate number of
5707 * pages are left in the zone after a successful __alloc_pages().
5708 */
5709 static void setup_per_zone_lowmem_reserve(void)
5710 {
5711 struct pglist_data *pgdat;
5712 enum zone_type j, idx;
5713
5714 for_each_online_pgdat(pgdat) {
5715 for (j = 0; j < MAX_NR_ZONES; j++) {
5716 struct zone *zone = pgdat->node_zones + j;
5717 unsigned long managed_pages = zone->managed_pages;
5718
5719 zone->lowmem_reserve[j] = 0;
5720
5721 idx = j;
5722 while (idx) {
5723 struct zone *lower_zone;
5724
5725 idx--;
5726
5727 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5728 sysctl_lowmem_reserve_ratio[idx] = 1;
5729
5730 lower_zone = pgdat->node_zones + idx;
5731 lower_zone->lowmem_reserve[j] = managed_pages /
5732 sysctl_lowmem_reserve_ratio[idx];
5733 managed_pages += lower_zone->managed_pages;
5734 }
5735 }
5736 }
5737
5738 /* update totalreserve_pages */
5739 calculate_totalreserve_pages();
5740 }
5741
5742 static void __setup_per_zone_wmarks(void)
5743 {
5744 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5745 unsigned long lowmem_pages = 0;
5746 struct zone *zone;
5747 unsigned long flags;
5748
5749 /* Calculate total number of !ZONE_HIGHMEM pages */
5750 for_each_zone(zone) {
5751 if (!is_highmem(zone))
5752 lowmem_pages += zone->managed_pages;
5753 }
5754
5755 for_each_zone(zone) {
5756 u64 tmp;
5757
5758 spin_lock_irqsave(&zone->lock, flags);
5759 tmp = (u64)pages_min * zone->managed_pages;
5760 do_div(tmp, lowmem_pages);
5761 if (is_highmem(zone)) {
5762 /*
5763 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5764 * need highmem pages, so cap pages_min to a small
5765 * value here.
5766 *
5767 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5768 * deltas controls asynch page reclaim, and so should
5769 * not be capped for highmem.
5770 */
5771 unsigned long min_pages;
5772
5773 min_pages = zone->managed_pages / 1024;
5774 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5775 zone->watermark[WMARK_MIN] = min_pages;
5776 } else {
5777 /*
5778 * If it's a lowmem zone, reserve a number of pages
5779 * proportionate to the zone's size.
5780 */
5781 zone->watermark[WMARK_MIN] = tmp;
5782 }
5783
5784 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5785 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5786
5787 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5788 high_wmark_pages(zone) - low_wmark_pages(zone) -
5789 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
5790
5791 setup_zone_migrate_reserve(zone);
5792 spin_unlock_irqrestore(&zone->lock, flags);
5793 }
5794
5795 /* update totalreserve_pages */
5796 calculate_totalreserve_pages();
5797 }
5798
5799 /**
5800 * setup_per_zone_wmarks - called when min_free_kbytes changes
5801 * or when memory is hot-{added|removed}
5802 *
5803 * Ensures that the watermark[min,low,high] values for each zone are set
5804 * correctly with respect to min_free_kbytes.
5805 */
5806 void setup_per_zone_wmarks(void)
5807 {
5808 mutex_lock(&zonelists_mutex);
5809 __setup_per_zone_wmarks();
5810 mutex_unlock(&zonelists_mutex);
5811 }
5812
5813 /*
5814 * The inactive anon list should be small enough that the VM never has to
5815 * do too much work, but large enough that each inactive page has a chance
5816 * to be referenced again before it is swapped out.
5817 *
5818 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5819 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5820 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5821 * the anonymous pages are kept on the inactive list.
5822 *
5823 * total target max
5824 * memory ratio inactive anon
5825 * -------------------------------------
5826 * 10MB 1 5MB
5827 * 100MB 1 50MB
5828 * 1GB 3 250MB
5829 * 10GB 10 0.9GB
5830 * 100GB 31 3GB
5831 * 1TB 101 10GB
5832 * 10TB 320 32GB
5833 */
5834 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5835 {
5836 unsigned int gb, ratio;
5837
5838 /* Zone size in gigabytes */
5839 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5840 if (gb)
5841 ratio = int_sqrt(10 * gb);
5842 else
5843 ratio = 1;
5844
5845 zone->inactive_ratio = ratio;
5846 }
5847
5848 static void __meminit setup_per_zone_inactive_ratio(void)
5849 {
5850 struct zone *zone;
5851
5852 for_each_zone(zone)
5853 calculate_zone_inactive_ratio(zone);
5854 }
5855
5856 /*
5857 * Initialise min_free_kbytes.
5858 *
5859 * For small machines we want it small (128k min). For large machines
5860 * we want it large (64MB max). But it is not linear, because network
5861 * bandwidth does not increase linearly with machine size. We use
5862 *
5863 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5864 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5865 *
5866 * which yields
5867 *
5868 * 16MB: 512k
5869 * 32MB: 724k
5870 * 64MB: 1024k
5871 * 128MB: 1448k
5872 * 256MB: 2048k
5873 * 512MB: 2896k
5874 * 1024MB: 4096k
5875 * 2048MB: 5792k
5876 * 4096MB: 8192k
5877 * 8192MB: 11584k
5878 * 16384MB: 16384k
5879 */
5880 int __meminit init_per_zone_wmark_min(void)
5881 {
5882 unsigned long lowmem_kbytes;
5883 int new_min_free_kbytes;
5884
5885 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5886 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5887
5888 if (new_min_free_kbytes > user_min_free_kbytes) {
5889 min_free_kbytes = new_min_free_kbytes;
5890 if (min_free_kbytes < 128)
5891 min_free_kbytes = 128;
5892 if (min_free_kbytes > 65536)
5893 min_free_kbytes = 65536;
5894 } else {
5895 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5896 new_min_free_kbytes, user_min_free_kbytes);
5897 }
5898 setup_per_zone_wmarks();
5899 refresh_zone_stat_thresholds();
5900 setup_per_zone_lowmem_reserve();
5901 setup_per_zone_inactive_ratio();
5902 return 0;
5903 }
5904 module_init(init_per_zone_wmark_min)
5905
5906 /*
5907 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5908 * that we can call two helper functions whenever min_free_kbytes
5909 * changes.
5910 */
5911 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5912 void __user *buffer, size_t *length, loff_t *ppos)
5913 {
5914 int rc;
5915
5916 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5917 if (rc)
5918 return rc;
5919
5920 if (write) {
5921 user_min_free_kbytes = min_free_kbytes;
5922 setup_per_zone_wmarks();
5923 }
5924 return 0;
5925 }
5926
5927 #ifdef CONFIG_NUMA
5928 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5929 void __user *buffer, size_t *length, loff_t *ppos)
5930 {
5931 struct zone *zone;
5932 int rc;
5933
5934 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5935 if (rc)
5936 return rc;
5937
5938 for_each_zone(zone)
5939 zone->min_unmapped_pages = (zone->managed_pages *
5940 sysctl_min_unmapped_ratio) / 100;
5941 return 0;
5942 }
5943
5944 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5945 void __user *buffer, size_t *length, loff_t *ppos)
5946 {
5947 struct zone *zone;
5948 int rc;
5949
5950 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5951 if (rc)
5952 return rc;
5953
5954 for_each_zone(zone)
5955 zone->min_slab_pages = (zone->managed_pages *
5956 sysctl_min_slab_ratio) / 100;
5957 return 0;
5958 }
5959 #endif
5960
5961 /*
5962 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5963 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5964 * whenever sysctl_lowmem_reserve_ratio changes.
5965 *
5966 * The reserve ratio obviously has absolutely no relation with the
5967 * minimum watermarks. The lowmem reserve ratio can only make sense
5968 * if in function of the boot time zone sizes.
5969 */
5970 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5971 void __user *buffer, size_t *length, loff_t *ppos)
5972 {
5973 proc_dointvec_minmax(table, write, buffer, length, ppos);
5974 setup_per_zone_lowmem_reserve();
5975 return 0;
5976 }
5977
5978 /*
5979 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5980 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5981 * pagelist can have before it gets flushed back to buddy allocator.
5982 */
5983 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5984 void __user *buffer, size_t *length, loff_t *ppos)
5985 {
5986 struct zone *zone;
5987 int old_percpu_pagelist_fraction;
5988 int ret;
5989
5990 mutex_lock(&pcp_batch_high_lock);
5991 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5992
5993 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5994 if (!write || ret < 0)
5995 goto out;
5996
5997 /* Sanity checking to avoid pcp imbalance */
5998 if (percpu_pagelist_fraction &&
5999 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6000 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6001 ret = -EINVAL;
6002 goto out;
6003 }
6004
6005 /* No change? */
6006 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6007 goto out;
6008
6009 for_each_populated_zone(zone) {
6010 unsigned int cpu;
6011
6012 for_each_possible_cpu(cpu)
6013 pageset_set_high_and_batch(zone,
6014 per_cpu_ptr(zone->pageset, cpu));
6015 }
6016 out:
6017 mutex_unlock(&pcp_batch_high_lock);
6018 return ret;
6019 }
6020
6021 int hashdist = HASHDIST_DEFAULT;
6022
6023 #ifdef CONFIG_NUMA
6024 static int __init set_hashdist(char *str)
6025 {
6026 if (!str)
6027 return 0;
6028 hashdist = simple_strtoul(str, &str, 0);
6029 return 1;
6030 }
6031 __setup("hashdist=", set_hashdist);
6032 #endif
6033
6034 /*
6035 * allocate a large system hash table from bootmem
6036 * - it is assumed that the hash table must contain an exact power-of-2
6037 * quantity of entries
6038 * - limit is the number of hash buckets, not the total allocation size
6039 */
6040 void *__init alloc_large_system_hash(const char *tablename,
6041 unsigned long bucketsize,
6042 unsigned long numentries,
6043 int scale,
6044 int flags,
6045 unsigned int *_hash_shift,
6046 unsigned int *_hash_mask,
6047 unsigned long low_limit,
6048 unsigned long high_limit)
6049 {
6050 unsigned long long max = high_limit;
6051 unsigned long log2qty, size;
6052 void *table = NULL;
6053
6054 /* allow the kernel cmdline to have a say */
6055 if (!numentries) {
6056 /* round applicable memory size up to nearest megabyte */
6057 numentries = nr_kernel_pages;
6058
6059 /* It isn't necessary when PAGE_SIZE >= 1MB */
6060 if (PAGE_SHIFT < 20)
6061 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6062
6063 /* limit to 1 bucket per 2^scale bytes of low memory */
6064 if (scale > PAGE_SHIFT)
6065 numentries >>= (scale - PAGE_SHIFT);
6066 else
6067 numentries <<= (PAGE_SHIFT - scale);
6068
6069 /* Make sure we've got at least a 0-order allocation.. */
6070 if (unlikely(flags & HASH_SMALL)) {
6071 /* Makes no sense without HASH_EARLY */
6072 WARN_ON(!(flags & HASH_EARLY));
6073 if (!(numentries >> *_hash_shift)) {
6074 numentries = 1UL << *_hash_shift;
6075 BUG_ON(!numentries);
6076 }
6077 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6078 numentries = PAGE_SIZE / bucketsize;
6079 }
6080 numentries = roundup_pow_of_two(numentries);
6081
6082 /* limit allocation size to 1/16 total memory by default */
6083 if (max == 0) {
6084 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6085 do_div(max, bucketsize);
6086 }
6087 max = min(max, 0x80000000ULL);
6088
6089 if (numentries < low_limit)
6090 numentries = low_limit;
6091 if (numentries > max)
6092 numentries = max;
6093
6094 log2qty = ilog2(numentries);
6095
6096 do {
6097 size = bucketsize << log2qty;
6098 if (flags & HASH_EARLY)
6099 table = memblock_virt_alloc_nopanic(size, 0);
6100 else if (hashdist)
6101 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6102 else {
6103 /*
6104 * If bucketsize is not a power-of-two, we may free
6105 * some pages at the end of hash table which
6106 * alloc_pages_exact() automatically does
6107 */
6108 if (get_order(size) < MAX_ORDER) {
6109 table = alloc_pages_exact(size, GFP_ATOMIC);
6110 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6111 }
6112 }
6113 } while (!table && size > PAGE_SIZE && --log2qty);
6114
6115 if (!table)
6116 panic("Failed to allocate %s hash table\n", tablename);
6117
6118 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6119 tablename,
6120 (1UL << log2qty),
6121 ilog2(size) - PAGE_SHIFT,
6122 size);
6123
6124 if (_hash_shift)
6125 *_hash_shift = log2qty;
6126 if (_hash_mask)
6127 *_hash_mask = (1 << log2qty) - 1;
6128
6129 return table;
6130 }
6131
6132 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6133 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6134 unsigned long pfn)
6135 {
6136 #ifdef CONFIG_SPARSEMEM
6137 return __pfn_to_section(pfn)->pageblock_flags;
6138 #else
6139 return zone->pageblock_flags;
6140 #endif /* CONFIG_SPARSEMEM */
6141 }
6142
6143 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6144 {
6145 #ifdef CONFIG_SPARSEMEM
6146 pfn &= (PAGES_PER_SECTION-1);
6147 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6148 #else
6149 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6150 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6151 #endif /* CONFIG_SPARSEMEM */
6152 }
6153
6154 /**
6155 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6156 * @page: The page within the block of interest
6157 * @pfn: The target page frame number
6158 * @end_bitidx: The last bit of interest to retrieve
6159 * @mask: mask of bits that the caller is interested in
6160 *
6161 * Return: pageblock_bits flags
6162 */
6163 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6164 unsigned long end_bitidx,
6165 unsigned long mask)
6166 {
6167 struct zone *zone;
6168 unsigned long *bitmap;
6169 unsigned long bitidx, word_bitidx;
6170 unsigned long word;
6171
6172 zone = page_zone(page);
6173 bitmap = get_pageblock_bitmap(zone, pfn);
6174 bitidx = pfn_to_bitidx(zone, pfn);
6175 word_bitidx = bitidx / BITS_PER_LONG;
6176 bitidx &= (BITS_PER_LONG-1);
6177
6178 word = bitmap[word_bitidx];
6179 bitidx += end_bitidx;
6180 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6181 }
6182
6183 /**
6184 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6185 * @page: The page within the block of interest
6186 * @flags: The flags to set
6187 * @pfn: The target page frame number
6188 * @end_bitidx: The last bit of interest
6189 * @mask: mask of bits that the caller is interested in
6190 */
6191 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6192 unsigned long pfn,
6193 unsigned long end_bitidx,
6194 unsigned long mask)
6195 {
6196 struct zone *zone;
6197 unsigned long *bitmap;
6198 unsigned long bitidx, word_bitidx;
6199 unsigned long old_word, word;
6200
6201 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6202
6203 zone = page_zone(page);
6204 bitmap = get_pageblock_bitmap(zone, pfn);
6205 bitidx = pfn_to_bitidx(zone, pfn);
6206 word_bitidx = bitidx / BITS_PER_LONG;
6207 bitidx &= (BITS_PER_LONG-1);
6208
6209 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6210
6211 bitidx += end_bitidx;
6212 mask <<= (BITS_PER_LONG - bitidx - 1);
6213 flags <<= (BITS_PER_LONG - bitidx - 1);
6214
6215 word = ACCESS_ONCE(bitmap[word_bitidx]);
6216 for (;;) {
6217 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6218 if (word == old_word)
6219 break;
6220 word = old_word;
6221 }
6222 }
6223
6224 /*
6225 * This function checks whether pageblock includes unmovable pages or not.
6226 * If @count is not zero, it is okay to include less @count unmovable pages
6227 *
6228 * PageLRU check without isolation or lru_lock could race so that
6229 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6230 * expect this function should be exact.
6231 */
6232 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6233 bool skip_hwpoisoned_pages)
6234 {
6235 unsigned long pfn, iter, found;
6236 int mt;
6237
6238 /*
6239 * For avoiding noise data, lru_add_drain_all() should be called
6240 * If ZONE_MOVABLE, the zone never contains unmovable pages
6241 */
6242 if (zone_idx(zone) == ZONE_MOVABLE)
6243 return false;
6244 mt = get_pageblock_migratetype(page);
6245 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6246 return false;
6247
6248 pfn = page_to_pfn(page);
6249 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6250 unsigned long check = pfn + iter;
6251
6252 if (!pfn_valid_within(check))
6253 continue;
6254
6255 page = pfn_to_page(check);
6256
6257 /*
6258 * Hugepages are not in LRU lists, but they're movable.
6259 * We need not scan over tail pages bacause we don't
6260 * handle each tail page individually in migration.
6261 */
6262 if (PageHuge(page)) {
6263 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6264 continue;
6265 }
6266
6267 /*
6268 * We can't use page_count without pin a page
6269 * because another CPU can free compound page.
6270 * This check already skips compound tails of THP
6271 * because their page->_count is zero at all time.
6272 */
6273 if (!atomic_read(&page->_count)) {
6274 if (PageBuddy(page))
6275 iter += (1 << page_order(page)) - 1;
6276 continue;
6277 }
6278
6279 /*
6280 * The HWPoisoned page may be not in buddy system, and
6281 * page_count() is not 0.
6282 */
6283 if (skip_hwpoisoned_pages && PageHWPoison(page))
6284 continue;
6285
6286 if (!PageLRU(page))
6287 found++;
6288 /*
6289 * If there are RECLAIMABLE pages, we need to check
6290 * it. But now, memory offline itself doesn't call
6291 * shrink_node_slabs() and it still to be fixed.
6292 */
6293 /*
6294 * If the page is not RAM, page_count()should be 0.
6295 * we don't need more check. This is an _used_ not-movable page.
6296 *
6297 * The problematic thing here is PG_reserved pages. PG_reserved
6298 * is set to both of a memory hole page and a _used_ kernel
6299 * page at boot.
6300 */
6301 if (found > count)
6302 return true;
6303 }
6304 return false;
6305 }
6306
6307 bool is_pageblock_removable_nolock(struct page *page)
6308 {
6309 struct zone *zone;
6310 unsigned long pfn;
6311
6312 /*
6313 * We have to be careful here because we are iterating over memory
6314 * sections which are not zone aware so we might end up outside of
6315 * the zone but still within the section.
6316 * We have to take care about the node as well. If the node is offline
6317 * its NODE_DATA will be NULL - see page_zone.
6318 */
6319 if (!node_online(page_to_nid(page)))
6320 return false;
6321
6322 zone = page_zone(page);
6323 pfn = page_to_pfn(page);
6324 if (!zone_spans_pfn(zone, pfn))
6325 return false;
6326
6327 return !has_unmovable_pages(zone, page, 0, true);
6328 }
6329
6330 #ifdef CONFIG_CMA
6331
6332 static unsigned long pfn_max_align_down(unsigned long pfn)
6333 {
6334 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6335 pageblock_nr_pages) - 1);
6336 }
6337
6338 static unsigned long pfn_max_align_up(unsigned long pfn)
6339 {
6340 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6341 pageblock_nr_pages));
6342 }
6343
6344 /* [start, end) must belong to a single zone. */
6345 static int __alloc_contig_migrate_range(struct compact_control *cc,
6346 unsigned long start, unsigned long end)
6347 {
6348 /* This function is based on compact_zone() from compaction.c. */
6349 unsigned long nr_reclaimed;
6350 unsigned long pfn = start;
6351 unsigned int tries = 0;
6352 int ret = 0;
6353
6354 migrate_prep();
6355
6356 while (pfn < end || !list_empty(&cc->migratepages)) {
6357 if (fatal_signal_pending(current)) {
6358 ret = -EINTR;
6359 break;
6360 }
6361
6362 if (list_empty(&cc->migratepages)) {
6363 cc->nr_migratepages = 0;
6364 pfn = isolate_migratepages_range(cc, pfn, end);
6365 if (!pfn) {
6366 ret = -EINTR;
6367 break;
6368 }
6369 tries = 0;
6370 } else if (++tries == 5) {
6371 ret = ret < 0 ? ret : -EBUSY;
6372 break;
6373 }
6374
6375 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6376 &cc->migratepages);
6377 cc->nr_migratepages -= nr_reclaimed;
6378
6379 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6380 NULL, 0, cc->mode, MR_CMA);
6381 }
6382 if (ret < 0) {
6383 putback_movable_pages(&cc->migratepages);
6384 return ret;
6385 }
6386 return 0;
6387 }
6388
6389 /**
6390 * alloc_contig_range() -- tries to allocate given range of pages
6391 * @start: start PFN to allocate
6392 * @end: one-past-the-last PFN to allocate
6393 * @migratetype: migratetype of the underlaying pageblocks (either
6394 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6395 * in range must have the same migratetype and it must
6396 * be either of the two.
6397 *
6398 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6399 * aligned, however it's the caller's responsibility to guarantee that
6400 * we are the only thread that changes migrate type of pageblocks the
6401 * pages fall in.
6402 *
6403 * The PFN range must belong to a single zone.
6404 *
6405 * Returns zero on success or negative error code. On success all
6406 * pages which PFN is in [start, end) are allocated for the caller and
6407 * need to be freed with free_contig_range().
6408 */
6409 int alloc_contig_range(unsigned long start, unsigned long end,
6410 unsigned migratetype)
6411 {
6412 unsigned long outer_start, outer_end;
6413 int ret = 0, order;
6414
6415 struct compact_control cc = {
6416 .nr_migratepages = 0,
6417 .order = -1,
6418 .zone = page_zone(pfn_to_page(start)),
6419 .mode = MIGRATE_SYNC,
6420 .ignore_skip_hint = true,
6421 };
6422 INIT_LIST_HEAD(&cc.migratepages);
6423
6424 /*
6425 * What we do here is we mark all pageblocks in range as
6426 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6427 * have different sizes, and due to the way page allocator
6428 * work, we align the range to biggest of the two pages so
6429 * that page allocator won't try to merge buddies from
6430 * different pageblocks and change MIGRATE_ISOLATE to some
6431 * other migration type.
6432 *
6433 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6434 * migrate the pages from an unaligned range (ie. pages that
6435 * we are interested in). This will put all the pages in
6436 * range back to page allocator as MIGRATE_ISOLATE.
6437 *
6438 * When this is done, we take the pages in range from page
6439 * allocator removing them from the buddy system. This way
6440 * page allocator will never consider using them.
6441 *
6442 * This lets us mark the pageblocks back as
6443 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6444 * aligned range but not in the unaligned, original range are
6445 * put back to page allocator so that buddy can use them.
6446 */
6447
6448 ret = start_isolate_page_range(pfn_max_align_down(start),
6449 pfn_max_align_up(end), migratetype,
6450 false);
6451 if (ret)
6452 return ret;
6453
6454 ret = __alloc_contig_migrate_range(&cc, start, end);
6455 if (ret)
6456 goto done;
6457
6458 /*
6459 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6460 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6461 * more, all pages in [start, end) are free in page allocator.
6462 * What we are going to do is to allocate all pages from
6463 * [start, end) (that is remove them from page allocator).
6464 *
6465 * The only problem is that pages at the beginning and at the
6466 * end of interesting range may be not aligned with pages that
6467 * page allocator holds, ie. they can be part of higher order
6468 * pages. Because of this, we reserve the bigger range and
6469 * once this is done free the pages we are not interested in.
6470 *
6471 * We don't have to hold zone->lock here because the pages are
6472 * isolated thus they won't get removed from buddy.
6473 */
6474
6475 lru_add_drain_all();
6476 drain_all_pages(cc.zone);
6477
6478 order = 0;
6479 outer_start = start;
6480 while (!PageBuddy(pfn_to_page(outer_start))) {
6481 if (++order >= MAX_ORDER) {
6482 ret = -EBUSY;
6483 goto done;
6484 }
6485 outer_start &= ~0UL << order;
6486 }
6487
6488 /* Make sure the range is really isolated. */
6489 if (test_pages_isolated(outer_start, end, false)) {
6490 pr_info("%s: [%lx, %lx) PFNs busy\n",
6491 __func__, outer_start, end);
6492 ret = -EBUSY;
6493 goto done;
6494 }
6495
6496 /* Grab isolated pages from freelists. */
6497 outer_end = isolate_freepages_range(&cc, outer_start, end);
6498 if (!outer_end) {
6499 ret = -EBUSY;
6500 goto done;
6501 }
6502
6503 /* Free head and tail (if any) */
6504 if (start != outer_start)
6505 free_contig_range(outer_start, start - outer_start);
6506 if (end != outer_end)
6507 free_contig_range(end, outer_end - end);
6508
6509 done:
6510 undo_isolate_page_range(pfn_max_align_down(start),
6511 pfn_max_align_up(end), migratetype);
6512 return ret;
6513 }
6514
6515 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6516 {
6517 unsigned int count = 0;
6518
6519 for (; nr_pages--; pfn++) {
6520 struct page *page = pfn_to_page(pfn);
6521
6522 count += page_count(page) != 1;
6523 __free_page(page);
6524 }
6525 WARN(count != 0, "%d pages are still in use!\n", count);
6526 }
6527 #endif
6528
6529 #ifdef CONFIG_MEMORY_HOTPLUG
6530 /*
6531 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6532 * page high values need to be recalulated.
6533 */
6534 void __meminit zone_pcp_update(struct zone *zone)
6535 {
6536 unsigned cpu;
6537 mutex_lock(&pcp_batch_high_lock);
6538 for_each_possible_cpu(cpu)
6539 pageset_set_high_and_batch(zone,
6540 per_cpu_ptr(zone->pageset, cpu));
6541 mutex_unlock(&pcp_batch_high_lock);
6542 }
6543 #endif
6544
6545 void zone_pcp_reset(struct zone *zone)
6546 {
6547 unsigned long flags;
6548 int cpu;
6549 struct per_cpu_pageset *pset;
6550
6551 /* avoid races with drain_pages() */
6552 local_irq_save(flags);
6553 if (zone->pageset != &boot_pageset) {
6554 for_each_online_cpu(cpu) {
6555 pset = per_cpu_ptr(zone->pageset, cpu);
6556 drain_zonestat(zone, pset);
6557 }
6558 free_percpu(zone->pageset);
6559 zone->pageset = &boot_pageset;
6560 }
6561 local_irq_restore(flags);
6562 }
6563
6564 #ifdef CONFIG_MEMORY_HOTREMOVE
6565 /*
6566 * All pages in the range must be isolated before calling this.
6567 */
6568 void
6569 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6570 {
6571 struct page *page;
6572 struct zone *zone;
6573 unsigned int order, i;
6574 unsigned long pfn;
6575 unsigned long flags;
6576 /* find the first valid pfn */
6577 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6578 if (pfn_valid(pfn))
6579 break;
6580 if (pfn == end_pfn)
6581 return;
6582 zone = page_zone(pfn_to_page(pfn));
6583 spin_lock_irqsave(&zone->lock, flags);
6584 pfn = start_pfn;
6585 while (pfn < end_pfn) {
6586 if (!pfn_valid(pfn)) {
6587 pfn++;
6588 continue;
6589 }
6590 page = pfn_to_page(pfn);
6591 /*
6592 * The HWPoisoned page may be not in buddy system, and
6593 * page_count() is not 0.
6594 */
6595 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6596 pfn++;
6597 SetPageReserved(page);
6598 continue;
6599 }
6600
6601 BUG_ON(page_count(page));
6602 BUG_ON(!PageBuddy(page));
6603 order = page_order(page);
6604 #ifdef CONFIG_DEBUG_VM
6605 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6606 pfn, 1 << order, end_pfn);
6607 #endif
6608 list_del(&page->lru);
6609 rmv_page_order(page);
6610 zone->free_area[order].nr_free--;
6611 for (i = 0; i < (1 << order); i++)
6612 SetPageReserved((page+i));
6613 pfn += (1 << order);
6614 }
6615 spin_unlock_irqrestore(&zone->lock, flags);
6616 }
6617 #endif
6618
6619 #ifdef CONFIG_MEMORY_FAILURE
6620 bool is_free_buddy_page(struct page *page)
6621 {
6622 struct zone *zone = page_zone(page);
6623 unsigned long pfn = page_to_pfn(page);
6624 unsigned long flags;
6625 unsigned int order;
6626
6627 spin_lock_irqsave(&zone->lock, flags);
6628 for (order = 0; order < MAX_ORDER; order++) {
6629 struct page *page_head = page - (pfn & ((1 << order) - 1));
6630
6631 if (PageBuddy(page_head) && page_order(page_head) >= order)
6632 break;
6633 }
6634 spin_unlock_irqrestore(&zone->lock, flags);
6635
6636 return order < MAX_ORDER;
6637 }
6638 #endif