]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
mm: remove return value from init_currently_empty_zone
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
73 #include "internal.h"
74
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION (8)
78
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
82 #endif
83
84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
85 /*
86 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89 * defined in <linux/topology.h>.
90 */
91 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
92 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93 int _node_numa_mem_[MAX_NUMNODES];
94 #endif
95
96 /* work_structs for global per-cpu drains */
97 DEFINE_MUTEX(pcpu_drain_mutex);
98 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99
100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101 volatile unsigned long latent_entropy __latent_entropy;
102 EXPORT_SYMBOL(latent_entropy);
103 #endif
104
105 /*
106 * Array of node states.
107 */
108 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 [N_POSSIBLE] = NODE_MASK_ALL,
110 [N_ONLINE] = { { [0] = 1UL } },
111 #ifndef CONFIG_NUMA
112 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
113 #ifdef CONFIG_HIGHMEM
114 [N_HIGH_MEMORY] = { { [0] = 1UL } },
115 #endif
116 #ifdef CONFIG_MOVABLE_NODE
117 [N_MEMORY] = { { [0] = 1UL } },
118 #endif
119 [N_CPU] = { { [0] = 1UL } },
120 #endif /* NUMA */
121 };
122 EXPORT_SYMBOL(node_states);
123
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
126
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
130
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133
134 /*
135 * A cached value of the page's pageblock's migratetype, used when the page is
136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138 * Also the migratetype set in the page does not necessarily match the pcplist
139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140 * other index - this ensures that it will be put on the correct CMA freelist.
141 */
142 static inline int get_pcppage_migratetype(struct page *page)
143 {
144 return page->index;
145 }
146
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 {
149 page->index = migratetype;
150 }
151
152 #ifdef CONFIG_PM_SLEEP
153 /*
154 * The following functions are used by the suspend/hibernate code to temporarily
155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156 * while devices are suspended. To avoid races with the suspend/hibernate code,
157 * they should always be called with pm_mutex held (gfp_allowed_mask also should
158 * only be modified with pm_mutex held, unless the suspend/hibernate code is
159 * guaranteed not to run in parallel with that modification).
160 */
161
162 static gfp_t saved_gfp_mask;
163
164 void pm_restore_gfp_mask(void)
165 {
166 WARN_ON(!mutex_is_locked(&pm_mutex));
167 if (saved_gfp_mask) {
168 gfp_allowed_mask = saved_gfp_mask;
169 saved_gfp_mask = 0;
170 }
171 }
172
173 void pm_restrict_gfp_mask(void)
174 {
175 WARN_ON(!mutex_is_locked(&pm_mutex));
176 WARN_ON(saved_gfp_mask);
177 saved_gfp_mask = gfp_allowed_mask;
178 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
179 }
180
181 bool pm_suspended_storage(void)
182 {
183 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
184 return false;
185 return true;
186 }
187 #endif /* CONFIG_PM_SLEEP */
188
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly;
191 #endif
192
193 static void __free_pages_ok(struct page *page, unsigned int order);
194
195 /*
196 * results with 256, 32 in the lowmem_reserve sysctl:
197 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198 * 1G machine -> (16M dma, 784M normal, 224M high)
199 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202 *
203 * TBD: should special case ZONE_DMA32 machines here - in those we normally
204 * don't need any ZONE_NORMAL reservation
205 */
206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
207 #ifdef CONFIG_ZONE_DMA
208 256,
209 #endif
210 #ifdef CONFIG_ZONE_DMA32
211 256,
212 #endif
213 #ifdef CONFIG_HIGHMEM
214 32,
215 #endif
216 32,
217 };
218
219 EXPORT_SYMBOL(totalram_pages);
220
221 static char * const zone_names[MAX_NR_ZONES] = {
222 #ifdef CONFIG_ZONE_DMA
223 "DMA",
224 #endif
225 #ifdef CONFIG_ZONE_DMA32
226 "DMA32",
227 #endif
228 "Normal",
229 #ifdef CONFIG_HIGHMEM
230 "HighMem",
231 #endif
232 "Movable",
233 #ifdef CONFIG_ZONE_DEVICE
234 "Device",
235 #endif
236 };
237
238 char * const migratetype_names[MIGRATE_TYPES] = {
239 "Unmovable",
240 "Movable",
241 "Reclaimable",
242 "HighAtomic",
243 #ifdef CONFIG_CMA
244 "CMA",
245 #endif
246 #ifdef CONFIG_MEMORY_ISOLATION
247 "Isolate",
248 #endif
249 };
250
251 compound_page_dtor * const compound_page_dtors[] = {
252 NULL,
253 free_compound_page,
254 #ifdef CONFIG_HUGETLB_PAGE
255 free_huge_page,
256 #endif
257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
258 free_transhuge_page,
259 #endif
260 };
261
262 int min_free_kbytes = 1024;
263 int user_min_free_kbytes = -1;
264 int watermark_scale_factor = 10;
265
266 static unsigned long __meminitdata nr_kernel_pages;
267 static unsigned long __meminitdata nr_all_pages;
268 static unsigned long __meminitdata dma_reserve;
269
270 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __initdata required_kernelcore;
274 static unsigned long __initdata required_movablecore;
275 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
276 static bool mirrored_kernelcore;
277
278 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279 int movable_zone;
280 EXPORT_SYMBOL(movable_zone);
281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
282
283 #if MAX_NUMNODES > 1
284 int nr_node_ids __read_mostly = MAX_NUMNODES;
285 int nr_online_nodes __read_mostly = 1;
286 EXPORT_SYMBOL(nr_node_ids);
287 EXPORT_SYMBOL(nr_online_nodes);
288 #endif
289
290 int page_group_by_mobility_disabled __read_mostly;
291
292 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293 static inline void reset_deferred_meminit(pg_data_t *pgdat)
294 {
295 unsigned long max_initialise;
296 unsigned long reserved_lowmem;
297
298 /*
299 * Initialise at least 2G of a node but also take into account that
300 * two large system hashes that can take up 1GB for 0.25TB/node.
301 */
302 max_initialise = max(2UL << (30 - PAGE_SHIFT),
303 (pgdat->node_spanned_pages >> 8));
304
305 /*
306 * Compensate the all the memblock reservations (e.g. crash kernel)
307 * from the initial estimation to make sure we will initialize enough
308 * memory to boot.
309 */
310 reserved_lowmem = memblock_reserved_memory_within(pgdat->node_start_pfn,
311 pgdat->node_start_pfn + max_initialise);
312 max_initialise += reserved_lowmem;
313
314 pgdat->static_init_size = min(max_initialise, pgdat->node_spanned_pages);
315 pgdat->first_deferred_pfn = ULONG_MAX;
316 }
317
318 /* Returns true if the struct page for the pfn is uninitialised */
319 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
320 {
321 int nid = early_pfn_to_nid(pfn);
322
323 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
324 return true;
325
326 return false;
327 }
328
329 /*
330 * Returns false when the remaining initialisation should be deferred until
331 * later in the boot cycle when it can be parallelised.
332 */
333 static inline bool update_defer_init(pg_data_t *pgdat,
334 unsigned long pfn, unsigned long zone_end,
335 unsigned long *nr_initialised)
336 {
337 /* Always populate low zones for address-contrained allocations */
338 if (zone_end < pgdat_end_pfn(pgdat))
339 return true;
340 (*nr_initialised)++;
341 if ((*nr_initialised > pgdat->static_init_size) &&
342 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
343 pgdat->first_deferred_pfn = pfn;
344 return false;
345 }
346
347 return true;
348 }
349 #else
350 static inline void reset_deferred_meminit(pg_data_t *pgdat)
351 {
352 }
353
354 static inline bool early_page_uninitialised(unsigned long pfn)
355 {
356 return false;
357 }
358
359 static inline bool update_defer_init(pg_data_t *pgdat,
360 unsigned long pfn, unsigned long zone_end,
361 unsigned long *nr_initialised)
362 {
363 return true;
364 }
365 #endif
366
367 /* Return a pointer to the bitmap storing bits affecting a block of pages */
368 static inline unsigned long *get_pageblock_bitmap(struct page *page,
369 unsigned long pfn)
370 {
371 #ifdef CONFIG_SPARSEMEM
372 return __pfn_to_section(pfn)->pageblock_flags;
373 #else
374 return page_zone(page)->pageblock_flags;
375 #endif /* CONFIG_SPARSEMEM */
376 }
377
378 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
379 {
380 #ifdef CONFIG_SPARSEMEM
381 pfn &= (PAGES_PER_SECTION-1);
382 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
383 #else
384 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
385 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
386 #endif /* CONFIG_SPARSEMEM */
387 }
388
389 /**
390 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
391 * @page: The page within the block of interest
392 * @pfn: The target page frame number
393 * @end_bitidx: The last bit of interest to retrieve
394 * @mask: mask of bits that the caller is interested in
395 *
396 * Return: pageblock_bits flags
397 */
398 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
399 unsigned long pfn,
400 unsigned long end_bitidx,
401 unsigned long mask)
402 {
403 unsigned long *bitmap;
404 unsigned long bitidx, word_bitidx;
405 unsigned long word;
406
407 bitmap = get_pageblock_bitmap(page, pfn);
408 bitidx = pfn_to_bitidx(page, pfn);
409 word_bitidx = bitidx / BITS_PER_LONG;
410 bitidx &= (BITS_PER_LONG-1);
411
412 word = bitmap[word_bitidx];
413 bitidx += end_bitidx;
414 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
415 }
416
417 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
418 unsigned long end_bitidx,
419 unsigned long mask)
420 {
421 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
422 }
423
424 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
425 {
426 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
427 }
428
429 /**
430 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
431 * @page: The page within the block of interest
432 * @flags: The flags to set
433 * @pfn: The target page frame number
434 * @end_bitidx: The last bit of interest
435 * @mask: mask of bits that the caller is interested in
436 */
437 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
438 unsigned long pfn,
439 unsigned long end_bitidx,
440 unsigned long mask)
441 {
442 unsigned long *bitmap;
443 unsigned long bitidx, word_bitidx;
444 unsigned long old_word, word;
445
446 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
447
448 bitmap = get_pageblock_bitmap(page, pfn);
449 bitidx = pfn_to_bitidx(page, pfn);
450 word_bitidx = bitidx / BITS_PER_LONG;
451 bitidx &= (BITS_PER_LONG-1);
452
453 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
454
455 bitidx += end_bitidx;
456 mask <<= (BITS_PER_LONG - bitidx - 1);
457 flags <<= (BITS_PER_LONG - bitidx - 1);
458
459 word = READ_ONCE(bitmap[word_bitidx]);
460 for (;;) {
461 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
462 if (word == old_word)
463 break;
464 word = old_word;
465 }
466 }
467
468 void set_pageblock_migratetype(struct page *page, int migratetype)
469 {
470 if (unlikely(page_group_by_mobility_disabled &&
471 migratetype < MIGRATE_PCPTYPES))
472 migratetype = MIGRATE_UNMOVABLE;
473
474 set_pageblock_flags_group(page, (unsigned long)migratetype,
475 PB_migrate, PB_migrate_end);
476 }
477
478 #ifdef CONFIG_DEBUG_VM
479 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
480 {
481 int ret = 0;
482 unsigned seq;
483 unsigned long pfn = page_to_pfn(page);
484 unsigned long sp, start_pfn;
485
486 do {
487 seq = zone_span_seqbegin(zone);
488 start_pfn = zone->zone_start_pfn;
489 sp = zone->spanned_pages;
490 if (!zone_spans_pfn(zone, pfn))
491 ret = 1;
492 } while (zone_span_seqretry(zone, seq));
493
494 if (ret)
495 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
496 pfn, zone_to_nid(zone), zone->name,
497 start_pfn, start_pfn + sp);
498
499 return ret;
500 }
501
502 static int page_is_consistent(struct zone *zone, struct page *page)
503 {
504 if (!pfn_valid_within(page_to_pfn(page)))
505 return 0;
506 if (zone != page_zone(page))
507 return 0;
508
509 return 1;
510 }
511 /*
512 * Temporary debugging check for pages not lying within a given zone.
513 */
514 static int bad_range(struct zone *zone, struct page *page)
515 {
516 if (page_outside_zone_boundaries(zone, page))
517 return 1;
518 if (!page_is_consistent(zone, page))
519 return 1;
520
521 return 0;
522 }
523 #else
524 static inline int bad_range(struct zone *zone, struct page *page)
525 {
526 return 0;
527 }
528 #endif
529
530 static void bad_page(struct page *page, const char *reason,
531 unsigned long bad_flags)
532 {
533 static unsigned long resume;
534 static unsigned long nr_shown;
535 static unsigned long nr_unshown;
536
537 /*
538 * Allow a burst of 60 reports, then keep quiet for that minute;
539 * or allow a steady drip of one report per second.
540 */
541 if (nr_shown == 60) {
542 if (time_before(jiffies, resume)) {
543 nr_unshown++;
544 goto out;
545 }
546 if (nr_unshown) {
547 pr_alert(
548 "BUG: Bad page state: %lu messages suppressed\n",
549 nr_unshown);
550 nr_unshown = 0;
551 }
552 nr_shown = 0;
553 }
554 if (nr_shown++ == 0)
555 resume = jiffies + 60 * HZ;
556
557 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
558 current->comm, page_to_pfn(page));
559 __dump_page(page, reason);
560 bad_flags &= page->flags;
561 if (bad_flags)
562 pr_alert("bad because of flags: %#lx(%pGp)\n",
563 bad_flags, &bad_flags);
564 dump_page_owner(page);
565
566 print_modules();
567 dump_stack();
568 out:
569 /* Leave bad fields for debug, except PageBuddy could make trouble */
570 page_mapcount_reset(page); /* remove PageBuddy */
571 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
572 }
573
574 /*
575 * Higher-order pages are called "compound pages". They are structured thusly:
576 *
577 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
578 *
579 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
580 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
581 *
582 * The first tail page's ->compound_dtor holds the offset in array of compound
583 * page destructors. See compound_page_dtors.
584 *
585 * The first tail page's ->compound_order holds the order of allocation.
586 * This usage means that zero-order pages may not be compound.
587 */
588
589 void free_compound_page(struct page *page)
590 {
591 __free_pages_ok(page, compound_order(page));
592 }
593
594 void prep_compound_page(struct page *page, unsigned int order)
595 {
596 int i;
597 int nr_pages = 1 << order;
598
599 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
600 set_compound_order(page, order);
601 __SetPageHead(page);
602 for (i = 1; i < nr_pages; i++) {
603 struct page *p = page + i;
604 set_page_count(p, 0);
605 p->mapping = TAIL_MAPPING;
606 set_compound_head(p, page);
607 }
608 atomic_set(compound_mapcount_ptr(page), -1);
609 }
610
611 #ifdef CONFIG_DEBUG_PAGEALLOC
612 unsigned int _debug_guardpage_minorder;
613 bool _debug_pagealloc_enabled __read_mostly
614 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
615 EXPORT_SYMBOL(_debug_pagealloc_enabled);
616 bool _debug_guardpage_enabled __read_mostly;
617
618 static int __init early_debug_pagealloc(char *buf)
619 {
620 if (!buf)
621 return -EINVAL;
622 return kstrtobool(buf, &_debug_pagealloc_enabled);
623 }
624 early_param("debug_pagealloc", early_debug_pagealloc);
625
626 static bool need_debug_guardpage(void)
627 {
628 /* If we don't use debug_pagealloc, we don't need guard page */
629 if (!debug_pagealloc_enabled())
630 return false;
631
632 if (!debug_guardpage_minorder())
633 return false;
634
635 return true;
636 }
637
638 static void init_debug_guardpage(void)
639 {
640 if (!debug_pagealloc_enabled())
641 return;
642
643 if (!debug_guardpage_minorder())
644 return;
645
646 _debug_guardpage_enabled = true;
647 }
648
649 struct page_ext_operations debug_guardpage_ops = {
650 .need = need_debug_guardpage,
651 .init = init_debug_guardpage,
652 };
653
654 static int __init debug_guardpage_minorder_setup(char *buf)
655 {
656 unsigned long res;
657
658 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
659 pr_err("Bad debug_guardpage_minorder value\n");
660 return 0;
661 }
662 _debug_guardpage_minorder = res;
663 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
664 return 0;
665 }
666 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
667
668 static inline bool set_page_guard(struct zone *zone, struct page *page,
669 unsigned int order, int migratetype)
670 {
671 struct page_ext *page_ext;
672
673 if (!debug_guardpage_enabled())
674 return false;
675
676 if (order >= debug_guardpage_minorder())
677 return false;
678
679 page_ext = lookup_page_ext(page);
680 if (unlikely(!page_ext))
681 return false;
682
683 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
684
685 INIT_LIST_HEAD(&page->lru);
686 set_page_private(page, order);
687 /* Guard pages are not available for any usage */
688 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
689
690 return true;
691 }
692
693 static inline void clear_page_guard(struct zone *zone, struct page *page,
694 unsigned int order, int migratetype)
695 {
696 struct page_ext *page_ext;
697
698 if (!debug_guardpage_enabled())
699 return;
700
701 page_ext = lookup_page_ext(page);
702 if (unlikely(!page_ext))
703 return;
704
705 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
706
707 set_page_private(page, 0);
708 if (!is_migrate_isolate(migratetype))
709 __mod_zone_freepage_state(zone, (1 << order), migratetype);
710 }
711 #else
712 struct page_ext_operations debug_guardpage_ops;
713 static inline bool set_page_guard(struct zone *zone, struct page *page,
714 unsigned int order, int migratetype) { return false; }
715 static inline void clear_page_guard(struct zone *zone, struct page *page,
716 unsigned int order, int migratetype) {}
717 #endif
718
719 static inline void set_page_order(struct page *page, unsigned int order)
720 {
721 set_page_private(page, order);
722 __SetPageBuddy(page);
723 }
724
725 static inline void rmv_page_order(struct page *page)
726 {
727 __ClearPageBuddy(page);
728 set_page_private(page, 0);
729 }
730
731 /*
732 * This function checks whether a page is free && is the buddy
733 * we can do coalesce a page and its buddy if
734 * (a) the buddy is not in a hole (check before calling!) &&
735 * (b) the buddy is in the buddy system &&
736 * (c) a page and its buddy have the same order &&
737 * (d) a page and its buddy are in the same zone.
738 *
739 * For recording whether a page is in the buddy system, we set ->_mapcount
740 * PAGE_BUDDY_MAPCOUNT_VALUE.
741 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
742 * serialized by zone->lock.
743 *
744 * For recording page's order, we use page_private(page).
745 */
746 static inline int page_is_buddy(struct page *page, struct page *buddy,
747 unsigned int order)
748 {
749 if (page_is_guard(buddy) && page_order(buddy) == order) {
750 if (page_zone_id(page) != page_zone_id(buddy))
751 return 0;
752
753 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
754
755 return 1;
756 }
757
758 if (PageBuddy(buddy) && page_order(buddy) == order) {
759 /*
760 * zone check is done late to avoid uselessly
761 * calculating zone/node ids for pages that could
762 * never merge.
763 */
764 if (page_zone_id(page) != page_zone_id(buddy))
765 return 0;
766
767 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
768
769 return 1;
770 }
771 return 0;
772 }
773
774 /*
775 * Freeing function for a buddy system allocator.
776 *
777 * The concept of a buddy system is to maintain direct-mapped table
778 * (containing bit values) for memory blocks of various "orders".
779 * The bottom level table contains the map for the smallest allocatable
780 * units of memory (here, pages), and each level above it describes
781 * pairs of units from the levels below, hence, "buddies".
782 * At a high level, all that happens here is marking the table entry
783 * at the bottom level available, and propagating the changes upward
784 * as necessary, plus some accounting needed to play nicely with other
785 * parts of the VM system.
786 * At each level, we keep a list of pages, which are heads of continuous
787 * free pages of length of (1 << order) and marked with _mapcount
788 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
789 * field.
790 * So when we are allocating or freeing one, we can derive the state of the
791 * other. That is, if we allocate a small block, and both were
792 * free, the remainder of the region must be split into blocks.
793 * If a block is freed, and its buddy is also free, then this
794 * triggers coalescing into a block of larger size.
795 *
796 * -- nyc
797 */
798
799 static inline void __free_one_page(struct page *page,
800 unsigned long pfn,
801 struct zone *zone, unsigned int order,
802 int migratetype)
803 {
804 unsigned long combined_pfn;
805 unsigned long uninitialized_var(buddy_pfn);
806 struct page *buddy;
807 unsigned int max_order;
808
809 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
810
811 VM_BUG_ON(!zone_is_initialized(zone));
812 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
813
814 VM_BUG_ON(migratetype == -1);
815 if (likely(!is_migrate_isolate(migratetype)))
816 __mod_zone_freepage_state(zone, 1 << order, migratetype);
817
818 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
819 VM_BUG_ON_PAGE(bad_range(zone, page), page);
820
821 continue_merging:
822 while (order < max_order - 1) {
823 buddy_pfn = __find_buddy_pfn(pfn, order);
824 buddy = page + (buddy_pfn - pfn);
825
826 if (!pfn_valid_within(buddy_pfn))
827 goto done_merging;
828 if (!page_is_buddy(page, buddy, order))
829 goto done_merging;
830 /*
831 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
832 * merge with it and move up one order.
833 */
834 if (page_is_guard(buddy)) {
835 clear_page_guard(zone, buddy, order, migratetype);
836 } else {
837 list_del(&buddy->lru);
838 zone->free_area[order].nr_free--;
839 rmv_page_order(buddy);
840 }
841 combined_pfn = buddy_pfn & pfn;
842 page = page + (combined_pfn - pfn);
843 pfn = combined_pfn;
844 order++;
845 }
846 if (max_order < MAX_ORDER) {
847 /* If we are here, it means order is >= pageblock_order.
848 * We want to prevent merge between freepages on isolate
849 * pageblock and normal pageblock. Without this, pageblock
850 * isolation could cause incorrect freepage or CMA accounting.
851 *
852 * We don't want to hit this code for the more frequent
853 * low-order merging.
854 */
855 if (unlikely(has_isolate_pageblock(zone))) {
856 int buddy_mt;
857
858 buddy_pfn = __find_buddy_pfn(pfn, order);
859 buddy = page + (buddy_pfn - pfn);
860 buddy_mt = get_pageblock_migratetype(buddy);
861
862 if (migratetype != buddy_mt
863 && (is_migrate_isolate(migratetype) ||
864 is_migrate_isolate(buddy_mt)))
865 goto done_merging;
866 }
867 max_order++;
868 goto continue_merging;
869 }
870
871 done_merging:
872 set_page_order(page, order);
873
874 /*
875 * If this is not the largest possible page, check if the buddy
876 * of the next-highest order is free. If it is, it's possible
877 * that pages are being freed that will coalesce soon. In case,
878 * that is happening, add the free page to the tail of the list
879 * so it's less likely to be used soon and more likely to be merged
880 * as a higher order page
881 */
882 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
883 struct page *higher_page, *higher_buddy;
884 combined_pfn = buddy_pfn & pfn;
885 higher_page = page + (combined_pfn - pfn);
886 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
887 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
888 if (pfn_valid_within(buddy_pfn) &&
889 page_is_buddy(higher_page, higher_buddy, order + 1)) {
890 list_add_tail(&page->lru,
891 &zone->free_area[order].free_list[migratetype]);
892 goto out;
893 }
894 }
895
896 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
897 out:
898 zone->free_area[order].nr_free++;
899 }
900
901 /*
902 * A bad page could be due to a number of fields. Instead of multiple branches,
903 * try and check multiple fields with one check. The caller must do a detailed
904 * check if necessary.
905 */
906 static inline bool page_expected_state(struct page *page,
907 unsigned long check_flags)
908 {
909 if (unlikely(atomic_read(&page->_mapcount) != -1))
910 return false;
911
912 if (unlikely((unsigned long)page->mapping |
913 page_ref_count(page) |
914 #ifdef CONFIG_MEMCG
915 (unsigned long)page->mem_cgroup |
916 #endif
917 (page->flags & check_flags)))
918 return false;
919
920 return true;
921 }
922
923 static void free_pages_check_bad(struct page *page)
924 {
925 const char *bad_reason;
926 unsigned long bad_flags;
927
928 bad_reason = NULL;
929 bad_flags = 0;
930
931 if (unlikely(atomic_read(&page->_mapcount) != -1))
932 bad_reason = "nonzero mapcount";
933 if (unlikely(page->mapping != NULL))
934 bad_reason = "non-NULL mapping";
935 if (unlikely(page_ref_count(page) != 0))
936 bad_reason = "nonzero _refcount";
937 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
938 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
939 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
940 }
941 #ifdef CONFIG_MEMCG
942 if (unlikely(page->mem_cgroup))
943 bad_reason = "page still charged to cgroup";
944 #endif
945 bad_page(page, bad_reason, bad_flags);
946 }
947
948 static inline int free_pages_check(struct page *page)
949 {
950 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
951 return 0;
952
953 /* Something has gone sideways, find it */
954 free_pages_check_bad(page);
955 return 1;
956 }
957
958 static int free_tail_pages_check(struct page *head_page, struct page *page)
959 {
960 int ret = 1;
961
962 /*
963 * We rely page->lru.next never has bit 0 set, unless the page
964 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
965 */
966 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
967
968 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
969 ret = 0;
970 goto out;
971 }
972 switch (page - head_page) {
973 case 1:
974 /* the first tail page: ->mapping is compound_mapcount() */
975 if (unlikely(compound_mapcount(page))) {
976 bad_page(page, "nonzero compound_mapcount", 0);
977 goto out;
978 }
979 break;
980 case 2:
981 /*
982 * the second tail page: ->mapping is
983 * page_deferred_list().next -- ignore value.
984 */
985 break;
986 default:
987 if (page->mapping != TAIL_MAPPING) {
988 bad_page(page, "corrupted mapping in tail page", 0);
989 goto out;
990 }
991 break;
992 }
993 if (unlikely(!PageTail(page))) {
994 bad_page(page, "PageTail not set", 0);
995 goto out;
996 }
997 if (unlikely(compound_head(page) != head_page)) {
998 bad_page(page, "compound_head not consistent", 0);
999 goto out;
1000 }
1001 ret = 0;
1002 out:
1003 page->mapping = NULL;
1004 clear_compound_head(page);
1005 return ret;
1006 }
1007
1008 static __always_inline bool free_pages_prepare(struct page *page,
1009 unsigned int order, bool check_free)
1010 {
1011 int bad = 0;
1012
1013 VM_BUG_ON_PAGE(PageTail(page), page);
1014
1015 trace_mm_page_free(page, order);
1016 kmemcheck_free_shadow(page, order);
1017
1018 /*
1019 * Check tail pages before head page information is cleared to
1020 * avoid checking PageCompound for order-0 pages.
1021 */
1022 if (unlikely(order)) {
1023 bool compound = PageCompound(page);
1024 int i;
1025
1026 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1027
1028 if (compound)
1029 ClearPageDoubleMap(page);
1030 for (i = 1; i < (1 << order); i++) {
1031 if (compound)
1032 bad += free_tail_pages_check(page, page + i);
1033 if (unlikely(free_pages_check(page + i))) {
1034 bad++;
1035 continue;
1036 }
1037 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1038 }
1039 }
1040 if (PageMappingFlags(page))
1041 page->mapping = NULL;
1042 if (memcg_kmem_enabled() && PageKmemcg(page))
1043 memcg_kmem_uncharge(page, order);
1044 if (check_free)
1045 bad += free_pages_check(page);
1046 if (bad)
1047 return false;
1048
1049 page_cpupid_reset_last(page);
1050 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1051 reset_page_owner(page, order);
1052
1053 if (!PageHighMem(page)) {
1054 debug_check_no_locks_freed(page_address(page),
1055 PAGE_SIZE << order);
1056 debug_check_no_obj_freed(page_address(page),
1057 PAGE_SIZE << order);
1058 }
1059 arch_free_page(page, order);
1060 kernel_poison_pages(page, 1 << order, 0);
1061 kernel_map_pages(page, 1 << order, 0);
1062 kasan_free_pages(page, order);
1063
1064 return true;
1065 }
1066
1067 #ifdef CONFIG_DEBUG_VM
1068 static inline bool free_pcp_prepare(struct page *page)
1069 {
1070 return free_pages_prepare(page, 0, true);
1071 }
1072
1073 static inline bool bulkfree_pcp_prepare(struct page *page)
1074 {
1075 return false;
1076 }
1077 #else
1078 static bool free_pcp_prepare(struct page *page)
1079 {
1080 return free_pages_prepare(page, 0, false);
1081 }
1082
1083 static bool bulkfree_pcp_prepare(struct page *page)
1084 {
1085 return free_pages_check(page);
1086 }
1087 #endif /* CONFIG_DEBUG_VM */
1088
1089 /*
1090 * Frees a number of pages from the PCP lists
1091 * Assumes all pages on list are in same zone, and of same order.
1092 * count is the number of pages to free.
1093 *
1094 * If the zone was previously in an "all pages pinned" state then look to
1095 * see if this freeing clears that state.
1096 *
1097 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1098 * pinned" detection logic.
1099 */
1100 static void free_pcppages_bulk(struct zone *zone, int count,
1101 struct per_cpu_pages *pcp)
1102 {
1103 int migratetype = 0;
1104 int batch_free = 0;
1105 bool isolated_pageblocks;
1106
1107 spin_lock(&zone->lock);
1108 isolated_pageblocks = has_isolate_pageblock(zone);
1109
1110 while (count) {
1111 struct page *page;
1112 struct list_head *list;
1113
1114 /*
1115 * Remove pages from lists in a round-robin fashion. A
1116 * batch_free count is maintained that is incremented when an
1117 * empty list is encountered. This is so more pages are freed
1118 * off fuller lists instead of spinning excessively around empty
1119 * lists
1120 */
1121 do {
1122 batch_free++;
1123 if (++migratetype == MIGRATE_PCPTYPES)
1124 migratetype = 0;
1125 list = &pcp->lists[migratetype];
1126 } while (list_empty(list));
1127
1128 /* This is the only non-empty list. Free them all. */
1129 if (batch_free == MIGRATE_PCPTYPES)
1130 batch_free = count;
1131
1132 do {
1133 int mt; /* migratetype of the to-be-freed page */
1134
1135 page = list_last_entry(list, struct page, lru);
1136 /* must delete as __free_one_page list manipulates */
1137 list_del(&page->lru);
1138
1139 mt = get_pcppage_migratetype(page);
1140 /* MIGRATE_ISOLATE page should not go to pcplists */
1141 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1142 /* Pageblock could have been isolated meanwhile */
1143 if (unlikely(isolated_pageblocks))
1144 mt = get_pageblock_migratetype(page);
1145
1146 if (bulkfree_pcp_prepare(page))
1147 continue;
1148
1149 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1150 trace_mm_page_pcpu_drain(page, 0, mt);
1151 } while (--count && --batch_free && !list_empty(list));
1152 }
1153 spin_unlock(&zone->lock);
1154 }
1155
1156 static void free_one_page(struct zone *zone,
1157 struct page *page, unsigned long pfn,
1158 unsigned int order,
1159 int migratetype)
1160 {
1161 spin_lock(&zone->lock);
1162 if (unlikely(has_isolate_pageblock(zone) ||
1163 is_migrate_isolate(migratetype))) {
1164 migratetype = get_pfnblock_migratetype(page, pfn);
1165 }
1166 __free_one_page(page, pfn, zone, order, migratetype);
1167 spin_unlock(&zone->lock);
1168 }
1169
1170 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1171 unsigned long zone, int nid)
1172 {
1173 set_page_links(page, zone, nid, pfn);
1174 init_page_count(page);
1175 page_mapcount_reset(page);
1176 page_cpupid_reset_last(page);
1177
1178 INIT_LIST_HEAD(&page->lru);
1179 #ifdef WANT_PAGE_VIRTUAL
1180 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1181 if (!is_highmem_idx(zone))
1182 set_page_address(page, __va(pfn << PAGE_SHIFT));
1183 #endif
1184 }
1185
1186 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1187 int nid)
1188 {
1189 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1190 }
1191
1192 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1193 static void init_reserved_page(unsigned long pfn)
1194 {
1195 pg_data_t *pgdat;
1196 int nid, zid;
1197
1198 if (!early_page_uninitialised(pfn))
1199 return;
1200
1201 nid = early_pfn_to_nid(pfn);
1202 pgdat = NODE_DATA(nid);
1203
1204 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1205 struct zone *zone = &pgdat->node_zones[zid];
1206
1207 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1208 break;
1209 }
1210 __init_single_pfn(pfn, zid, nid);
1211 }
1212 #else
1213 static inline void init_reserved_page(unsigned long pfn)
1214 {
1215 }
1216 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1217
1218 /*
1219 * Initialised pages do not have PageReserved set. This function is
1220 * called for each range allocated by the bootmem allocator and
1221 * marks the pages PageReserved. The remaining valid pages are later
1222 * sent to the buddy page allocator.
1223 */
1224 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1225 {
1226 unsigned long start_pfn = PFN_DOWN(start);
1227 unsigned long end_pfn = PFN_UP(end);
1228
1229 for (; start_pfn < end_pfn; start_pfn++) {
1230 if (pfn_valid(start_pfn)) {
1231 struct page *page = pfn_to_page(start_pfn);
1232
1233 init_reserved_page(start_pfn);
1234
1235 /* Avoid false-positive PageTail() */
1236 INIT_LIST_HEAD(&page->lru);
1237
1238 SetPageReserved(page);
1239 }
1240 }
1241 }
1242
1243 static void __free_pages_ok(struct page *page, unsigned int order)
1244 {
1245 unsigned long flags;
1246 int migratetype;
1247 unsigned long pfn = page_to_pfn(page);
1248
1249 if (!free_pages_prepare(page, order, true))
1250 return;
1251
1252 migratetype = get_pfnblock_migratetype(page, pfn);
1253 local_irq_save(flags);
1254 __count_vm_events(PGFREE, 1 << order);
1255 free_one_page(page_zone(page), page, pfn, order, migratetype);
1256 local_irq_restore(flags);
1257 }
1258
1259 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1260 {
1261 unsigned int nr_pages = 1 << order;
1262 struct page *p = page;
1263 unsigned int loop;
1264
1265 prefetchw(p);
1266 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1267 prefetchw(p + 1);
1268 __ClearPageReserved(p);
1269 set_page_count(p, 0);
1270 }
1271 __ClearPageReserved(p);
1272 set_page_count(p, 0);
1273
1274 page_zone(page)->managed_pages += nr_pages;
1275 set_page_refcounted(page);
1276 __free_pages(page, order);
1277 }
1278
1279 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1280 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1281
1282 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1283
1284 int __meminit early_pfn_to_nid(unsigned long pfn)
1285 {
1286 static DEFINE_SPINLOCK(early_pfn_lock);
1287 int nid;
1288
1289 spin_lock(&early_pfn_lock);
1290 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1291 if (nid < 0)
1292 nid = first_online_node;
1293 spin_unlock(&early_pfn_lock);
1294
1295 return nid;
1296 }
1297 #endif
1298
1299 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1300 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1301 struct mminit_pfnnid_cache *state)
1302 {
1303 int nid;
1304
1305 nid = __early_pfn_to_nid(pfn, state);
1306 if (nid >= 0 && nid != node)
1307 return false;
1308 return true;
1309 }
1310
1311 /* Only safe to use early in boot when initialisation is single-threaded */
1312 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313 {
1314 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1315 }
1316
1317 #else
1318
1319 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1320 {
1321 return true;
1322 }
1323 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1324 struct mminit_pfnnid_cache *state)
1325 {
1326 return true;
1327 }
1328 #endif
1329
1330
1331 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1332 unsigned int order)
1333 {
1334 if (early_page_uninitialised(pfn))
1335 return;
1336 return __free_pages_boot_core(page, order);
1337 }
1338
1339 /*
1340 * Check that the whole (or subset of) a pageblock given by the interval of
1341 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1342 * with the migration of free compaction scanner. The scanners then need to
1343 * use only pfn_valid_within() check for arches that allow holes within
1344 * pageblocks.
1345 *
1346 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1347 *
1348 * It's possible on some configurations to have a setup like node0 node1 node0
1349 * i.e. it's possible that all pages within a zones range of pages do not
1350 * belong to a single zone. We assume that a border between node0 and node1
1351 * can occur within a single pageblock, but not a node0 node1 node0
1352 * interleaving within a single pageblock. It is therefore sufficient to check
1353 * the first and last page of a pageblock and avoid checking each individual
1354 * page in a pageblock.
1355 */
1356 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1357 unsigned long end_pfn, struct zone *zone)
1358 {
1359 struct page *start_page;
1360 struct page *end_page;
1361
1362 /* end_pfn is one past the range we are checking */
1363 end_pfn--;
1364
1365 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1366 return NULL;
1367
1368 start_page = pfn_to_page(start_pfn);
1369
1370 if (page_zone(start_page) != zone)
1371 return NULL;
1372
1373 end_page = pfn_to_page(end_pfn);
1374
1375 /* This gives a shorter code than deriving page_zone(end_page) */
1376 if (page_zone_id(start_page) != page_zone_id(end_page))
1377 return NULL;
1378
1379 return start_page;
1380 }
1381
1382 void set_zone_contiguous(struct zone *zone)
1383 {
1384 unsigned long block_start_pfn = zone->zone_start_pfn;
1385 unsigned long block_end_pfn;
1386
1387 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1388 for (; block_start_pfn < zone_end_pfn(zone);
1389 block_start_pfn = block_end_pfn,
1390 block_end_pfn += pageblock_nr_pages) {
1391
1392 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1393
1394 if (!__pageblock_pfn_to_page(block_start_pfn,
1395 block_end_pfn, zone))
1396 return;
1397 }
1398
1399 /* We confirm that there is no hole */
1400 zone->contiguous = true;
1401 }
1402
1403 void clear_zone_contiguous(struct zone *zone)
1404 {
1405 zone->contiguous = false;
1406 }
1407
1408 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1409 static void __init deferred_free_range(struct page *page,
1410 unsigned long pfn, int nr_pages)
1411 {
1412 int i;
1413
1414 if (!page)
1415 return;
1416
1417 /* Free a large naturally-aligned chunk if possible */
1418 if (nr_pages == pageblock_nr_pages &&
1419 (pfn & (pageblock_nr_pages - 1)) == 0) {
1420 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1421 __free_pages_boot_core(page, pageblock_order);
1422 return;
1423 }
1424
1425 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1426 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1427 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1428 __free_pages_boot_core(page, 0);
1429 }
1430 }
1431
1432 /* Completion tracking for deferred_init_memmap() threads */
1433 static atomic_t pgdat_init_n_undone __initdata;
1434 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1435
1436 static inline void __init pgdat_init_report_one_done(void)
1437 {
1438 if (atomic_dec_and_test(&pgdat_init_n_undone))
1439 complete(&pgdat_init_all_done_comp);
1440 }
1441
1442 /* Initialise remaining memory on a node */
1443 static int __init deferred_init_memmap(void *data)
1444 {
1445 pg_data_t *pgdat = data;
1446 int nid = pgdat->node_id;
1447 struct mminit_pfnnid_cache nid_init_state = { };
1448 unsigned long start = jiffies;
1449 unsigned long nr_pages = 0;
1450 unsigned long walk_start, walk_end;
1451 int i, zid;
1452 struct zone *zone;
1453 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1454 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1455
1456 if (first_init_pfn == ULONG_MAX) {
1457 pgdat_init_report_one_done();
1458 return 0;
1459 }
1460
1461 /* Bind memory initialisation thread to a local node if possible */
1462 if (!cpumask_empty(cpumask))
1463 set_cpus_allowed_ptr(current, cpumask);
1464
1465 /* Sanity check boundaries */
1466 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1467 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1468 pgdat->first_deferred_pfn = ULONG_MAX;
1469
1470 /* Only the highest zone is deferred so find it */
1471 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1472 zone = pgdat->node_zones + zid;
1473 if (first_init_pfn < zone_end_pfn(zone))
1474 break;
1475 }
1476
1477 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1478 unsigned long pfn, end_pfn;
1479 struct page *page = NULL;
1480 struct page *free_base_page = NULL;
1481 unsigned long free_base_pfn = 0;
1482 int nr_to_free = 0;
1483
1484 end_pfn = min(walk_end, zone_end_pfn(zone));
1485 pfn = first_init_pfn;
1486 if (pfn < walk_start)
1487 pfn = walk_start;
1488 if (pfn < zone->zone_start_pfn)
1489 pfn = zone->zone_start_pfn;
1490
1491 for (; pfn < end_pfn; pfn++) {
1492 if (!pfn_valid_within(pfn))
1493 goto free_range;
1494
1495 /*
1496 * Ensure pfn_valid is checked every
1497 * pageblock_nr_pages for memory holes
1498 */
1499 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1500 if (!pfn_valid(pfn)) {
1501 page = NULL;
1502 goto free_range;
1503 }
1504 }
1505
1506 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1507 page = NULL;
1508 goto free_range;
1509 }
1510
1511 /* Minimise pfn page lookups and scheduler checks */
1512 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1513 page++;
1514 } else {
1515 nr_pages += nr_to_free;
1516 deferred_free_range(free_base_page,
1517 free_base_pfn, nr_to_free);
1518 free_base_page = NULL;
1519 free_base_pfn = nr_to_free = 0;
1520
1521 page = pfn_to_page(pfn);
1522 cond_resched();
1523 }
1524
1525 if (page->flags) {
1526 VM_BUG_ON(page_zone(page) != zone);
1527 goto free_range;
1528 }
1529
1530 __init_single_page(page, pfn, zid, nid);
1531 if (!free_base_page) {
1532 free_base_page = page;
1533 free_base_pfn = pfn;
1534 nr_to_free = 0;
1535 }
1536 nr_to_free++;
1537
1538 /* Where possible, batch up pages for a single free */
1539 continue;
1540 free_range:
1541 /* Free the current block of pages to allocator */
1542 nr_pages += nr_to_free;
1543 deferred_free_range(free_base_page, free_base_pfn,
1544 nr_to_free);
1545 free_base_page = NULL;
1546 free_base_pfn = nr_to_free = 0;
1547 }
1548 /* Free the last block of pages to allocator */
1549 nr_pages += nr_to_free;
1550 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1551
1552 first_init_pfn = max(end_pfn, first_init_pfn);
1553 }
1554
1555 /* Sanity check that the next zone really is unpopulated */
1556 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1557
1558 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1559 jiffies_to_msecs(jiffies - start));
1560
1561 pgdat_init_report_one_done();
1562 return 0;
1563 }
1564 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1565
1566 void __init page_alloc_init_late(void)
1567 {
1568 struct zone *zone;
1569
1570 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1571 int nid;
1572
1573 /* There will be num_node_state(N_MEMORY) threads */
1574 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1575 for_each_node_state(nid, N_MEMORY) {
1576 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1577 }
1578
1579 /* Block until all are initialised */
1580 wait_for_completion(&pgdat_init_all_done_comp);
1581
1582 /* Reinit limits that are based on free pages after the kernel is up */
1583 files_maxfiles_init();
1584 #endif
1585
1586 for_each_populated_zone(zone)
1587 set_zone_contiguous(zone);
1588 }
1589
1590 #ifdef CONFIG_CMA
1591 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1592 void __init init_cma_reserved_pageblock(struct page *page)
1593 {
1594 unsigned i = pageblock_nr_pages;
1595 struct page *p = page;
1596
1597 do {
1598 __ClearPageReserved(p);
1599 set_page_count(p, 0);
1600 } while (++p, --i);
1601
1602 set_pageblock_migratetype(page, MIGRATE_CMA);
1603
1604 if (pageblock_order >= MAX_ORDER) {
1605 i = pageblock_nr_pages;
1606 p = page;
1607 do {
1608 set_page_refcounted(p);
1609 __free_pages(p, MAX_ORDER - 1);
1610 p += MAX_ORDER_NR_PAGES;
1611 } while (i -= MAX_ORDER_NR_PAGES);
1612 } else {
1613 set_page_refcounted(page);
1614 __free_pages(page, pageblock_order);
1615 }
1616
1617 adjust_managed_page_count(page, pageblock_nr_pages);
1618 }
1619 #endif
1620
1621 /*
1622 * The order of subdivision here is critical for the IO subsystem.
1623 * Please do not alter this order without good reasons and regression
1624 * testing. Specifically, as large blocks of memory are subdivided,
1625 * the order in which smaller blocks are delivered depends on the order
1626 * they're subdivided in this function. This is the primary factor
1627 * influencing the order in which pages are delivered to the IO
1628 * subsystem according to empirical testing, and this is also justified
1629 * by considering the behavior of a buddy system containing a single
1630 * large block of memory acted on by a series of small allocations.
1631 * This behavior is a critical factor in sglist merging's success.
1632 *
1633 * -- nyc
1634 */
1635 static inline void expand(struct zone *zone, struct page *page,
1636 int low, int high, struct free_area *area,
1637 int migratetype)
1638 {
1639 unsigned long size = 1 << high;
1640
1641 while (high > low) {
1642 area--;
1643 high--;
1644 size >>= 1;
1645 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1646
1647 /*
1648 * Mark as guard pages (or page), that will allow to
1649 * merge back to allocator when buddy will be freed.
1650 * Corresponding page table entries will not be touched,
1651 * pages will stay not present in virtual address space
1652 */
1653 if (set_page_guard(zone, &page[size], high, migratetype))
1654 continue;
1655
1656 list_add(&page[size].lru, &area->free_list[migratetype]);
1657 area->nr_free++;
1658 set_page_order(&page[size], high);
1659 }
1660 }
1661
1662 static void check_new_page_bad(struct page *page)
1663 {
1664 const char *bad_reason = NULL;
1665 unsigned long bad_flags = 0;
1666
1667 if (unlikely(atomic_read(&page->_mapcount) != -1))
1668 bad_reason = "nonzero mapcount";
1669 if (unlikely(page->mapping != NULL))
1670 bad_reason = "non-NULL mapping";
1671 if (unlikely(page_ref_count(page) != 0))
1672 bad_reason = "nonzero _count";
1673 if (unlikely(page->flags & __PG_HWPOISON)) {
1674 bad_reason = "HWPoisoned (hardware-corrupted)";
1675 bad_flags = __PG_HWPOISON;
1676 /* Don't complain about hwpoisoned pages */
1677 page_mapcount_reset(page); /* remove PageBuddy */
1678 return;
1679 }
1680 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1681 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1682 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1683 }
1684 #ifdef CONFIG_MEMCG
1685 if (unlikely(page->mem_cgroup))
1686 bad_reason = "page still charged to cgroup";
1687 #endif
1688 bad_page(page, bad_reason, bad_flags);
1689 }
1690
1691 /*
1692 * This page is about to be returned from the page allocator
1693 */
1694 static inline int check_new_page(struct page *page)
1695 {
1696 if (likely(page_expected_state(page,
1697 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1698 return 0;
1699
1700 check_new_page_bad(page);
1701 return 1;
1702 }
1703
1704 static inline bool free_pages_prezeroed(void)
1705 {
1706 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1707 page_poisoning_enabled();
1708 }
1709
1710 #ifdef CONFIG_DEBUG_VM
1711 static bool check_pcp_refill(struct page *page)
1712 {
1713 return false;
1714 }
1715
1716 static bool check_new_pcp(struct page *page)
1717 {
1718 return check_new_page(page);
1719 }
1720 #else
1721 static bool check_pcp_refill(struct page *page)
1722 {
1723 return check_new_page(page);
1724 }
1725 static bool check_new_pcp(struct page *page)
1726 {
1727 return false;
1728 }
1729 #endif /* CONFIG_DEBUG_VM */
1730
1731 static bool check_new_pages(struct page *page, unsigned int order)
1732 {
1733 int i;
1734 for (i = 0; i < (1 << order); i++) {
1735 struct page *p = page + i;
1736
1737 if (unlikely(check_new_page(p)))
1738 return true;
1739 }
1740
1741 return false;
1742 }
1743
1744 inline void post_alloc_hook(struct page *page, unsigned int order,
1745 gfp_t gfp_flags)
1746 {
1747 set_page_private(page, 0);
1748 set_page_refcounted(page);
1749
1750 arch_alloc_page(page, order);
1751 kernel_map_pages(page, 1 << order, 1);
1752 kernel_poison_pages(page, 1 << order, 1);
1753 kasan_alloc_pages(page, order);
1754 set_page_owner(page, order, gfp_flags);
1755 }
1756
1757 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1758 unsigned int alloc_flags)
1759 {
1760 int i;
1761
1762 post_alloc_hook(page, order, gfp_flags);
1763
1764 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1765 for (i = 0; i < (1 << order); i++)
1766 clear_highpage(page + i);
1767
1768 if (order && (gfp_flags & __GFP_COMP))
1769 prep_compound_page(page, order);
1770
1771 /*
1772 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1773 * allocate the page. The expectation is that the caller is taking
1774 * steps that will free more memory. The caller should avoid the page
1775 * being used for !PFMEMALLOC purposes.
1776 */
1777 if (alloc_flags & ALLOC_NO_WATERMARKS)
1778 set_page_pfmemalloc(page);
1779 else
1780 clear_page_pfmemalloc(page);
1781 }
1782
1783 /*
1784 * Go through the free lists for the given migratetype and remove
1785 * the smallest available page from the freelists
1786 */
1787 static inline
1788 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1789 int migratetype)
1790 {
1791 unsigned int current_order;
1792 struct free_area *area;
1793 struct page *page;
1794
1795 /* Find a page of the appropriate size in the preferred list */
1796 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1797 area = &(zone->free_area[current_order]);
1798 page = list_first_entry_or_null(&area->free_list[migratetype],
1799 struct page, lru);
1800 if (!page)
1801 continue;
1802 list_del(&page->lru);
1803 rmv_page_order(page);
1804 area->nr_free--;
1805 expand(zone, page, order, current_order, area, migratetype);
1806 set_pcppage_migratetype(page, migratetype);
1807 return page;
1808 }
1809
1810 return NULL;
1811 }
1812
1813
1814 /*
1815 * This array describes the order lists are fallen back to when
1816 * the free lists for the desirable migrate type are depleted
1817 */
1818 static int fallbacks[MIGRATE_TYPES][4] = {
1819 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1820 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1821 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1822 #ifdef CONFIG_CMA
1823 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1824 #endif
1825 #ifdef CONFIG_MEMORY_ISOLATION
1826 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1827 #endif
1828 };
1829
1830 #ifdef CONFIG_CMA
1831 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1832 unsigned int order)
1833 {
1834 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1835 }
1836 #else
1837 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1838 unsigned int order) { return NULL; }
1839 #endif
1840
1841 /*
1842 * Move the free pages in a range to the free lists of the requested type.
1843 * Note that start_page and end_pages are not aligned on a pageblock
1844 * boundary. If alignment is required, use move_freepages_block()
1845 */
1846 static int move_freepages(struct zone *zone,
1847 struct page *start_page, struct page *end_page,
1848 int migratetype, int *num_movable)
1849 {
1850 struct page *page;
1851 unsigned int order;
1852 int pages_moved = 0;
1853
1854 #ifndef CONFIG_HOLES_IN_ZONE
1855 /*
1856 * page_zone is not safe to call in this context when
1857 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1858 * anyway as we check zone boundaries in move_freepages_block().
1859 * Remove at a later date when no bug reports exist related to
1860 * grouping pages by mobility
1861 */
1862 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1863 #endif
1864
1865 if (num_movable)
1866 *num_movable = 0;
1867
1868 for (page = start_page; page <= end_page;) {
1869 if (!pfn_valid_within(page_to_pfn(page))) {
1870 page++;
1871 continue;
1872 }
1873
1874 /* Make sure we are not inadvertently changing nodes */
1875 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1876
1877 if (!PageBuddy(page)) {
1878 /*
1879 * We assume that pages that could be isolated for
1880 * migration are movable. But we don't actually try
1881 * isolating, as that would be expensive.
1882 */
1883 if (num_movable &&
1884 (PageLRU(page) || __PageMovable(page)))
1885 (*num_movable)++;
1886
1887 page++;
1888 continue;
1889 }
1890
1891 order = page_order(page);
1892 list_move(&page->lru,
1893 &zone->free_area[order].free_list[migratetype]);
1894 page += 1 << order;
1895 pages_moved += 1 << order;
1896 }
1897
1898 return pages_moved;
1899 }
1900
1901 int move_freepages_block(struct zone *zone, struct page *page,
1902 int migratetype, int *num_movable)
1903 {
1904 unsigned long start_pfn, end_pfn;
1905 struct page *start_page, *end_page;
1906
1907 start_pfn = page_to_pfn(page);
1908 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1909 start_page = pfn_to_page(start_pfn);
1910 end_page = start_page + pageblock_nr_pages - 1;
1911 end_pfn = start_pfn + pageblock_nr_pages - 1;
1912
1913 /* Do not cross zone boundaries */
1914 if (!zone_spans_pfn(zone, start_pfn))
1915 start_page = page;
1916 if (!zone_spans_pfn(zone, end_pfn))
1917 return 0;
1918
1919 return move_freepages(zone, start_page, end_page, migratetype,
1920 num_movable);
1921 }
1922
1923 static void change_pageblock_range(struct page *pageblock_page,
1924 int start_order, int migratetype)
1925 {
1926 int nr_pageblocks = 1 << (start_order - pageblock_order);
1927
1928 while (nr_pageblocks--) {
1929 set_pageblock_migratetype(pageblock_page, migratetype);
1930 pageblock_page += pageblock_nr_pages;
1931 }
1932 }
1933
1934 /*
1935 * When we are falling back to another migratetype during allocation, try to
1936 * steal extra free pages from the same pageblocks to satisfy further
1937 * allocations, instead of polluting multiple pageblocks.
1938 *
1939 * If we are stealing a relatively large buddy page, it is likely there will
1940 * be more free pages in the pageblock, so try to steal them all. For
1941 * reclaimable and unmovable allocations, we steal regardless of page size,
1942 * as fragmentation caused by those allocations polluting movable pageblocks
1943 * is worse than movable allocations stealing from unmovable and reclaimable
1944 * pageblocks.
1945 */
1946 static bool can_steal_fallback(unsigned int order, int start_mt)
1947 {
1948 /*
1949 * Leaving this order check is intended, although there is
1950 * relaxed order check in next check. The reason is that
1951 * we can actually steal whole pageblock if this condition met,
1952 * but, below check doesn't guarantee it and that is just heuristic
1953 * so could be changed anytime.
1954 */
1955 if (order >= pageblock_order)
1956 return true;
1957
1958 if (order >= pageblock_order / 2 ||
1959 start_mt == MIGRATE_RECLAIMABLE ||
1960 start_mt == MIGRATE_UNMOVABLE ||
1961 page_group_by_mobility_disabled)
1962 return true;
1963
1964 return false;
1965 }
1966
1967 /*
1968 * This function implements actual steal behaviour. If order is large enough,
1969 * we can steal whole pageblock. If not, we first move freepages in this
1970 * pageblock to our migratetype and determine how many already-allocated pages
1971 * are there in the pageblock with a compatible migratetype. If at least half
1972 * of pages are free or compatible, we can change migratetype of the pageblock
1973 * itself, so pages freed in the future will be put on the correct free list.
1974 */
1975 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1976 int start_type, bool whole_block)
1977 {
1978 unsigned int current_order = page_order(page);
1979 struct free_area *area;
1980 int free_pages, movable_pages, alike_pages;
1981 int old_block_type;
1982
1983 old_block_type = get_pageblock_migratetype(page);
1984
1985 /*
1986 * This can happen due to races and we want to prevent broken
1987 * highatomic accounting.
1988 */
1989 if (is_migrate_highatomic(old_block_type))
1990 goto single_page;
1991
1992 /* Take ownership for orders >= pageblock_order */
1993 if (current_order >= pageblock_order) {
1994 change_pageblock_range(page, current_order, start_type);
1995 goto single_page;
1996 }
1997
1998 /* We are not allowed to try stealing from the whole block */
1999 if (!whole_block)
2000 goto single_page;
2001
2002 free_pages = move_freepages_block(zone, page, start_type,
2003 &movable_pages);
2004 /*
2005 * Determine how many pages are compatible with our allocation.
2006 * For movable allocation, it's the number of movable pages which
2007 * we just obtained. For other types it's a bit more tricky.
2008 */
2009 if (start_type == MIGRATE_MOVABLE) {
2010 alike_pages = movable_pages;
2011 } else {
2012 /*
2013 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2014 * to MOVABLE pageblock, consider all non-movable pages as
2015 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2016 * vice versa, be conservative since we can't distinguish the
2017 * exact migratetype of non-movable pages.
2018 */
2019 if (old_block_type == MIGRATE_MOVABLE)
2020 alike_pages = pageblock_nr_pages
2021 - (free_pages + movable_pages);
2022 else
2023 alike_pages = 0;
2024 }
2025
2026 /* moving whole block can fail due to zone boundary conditions */
2027 if (!free_pages)
2028 goto single_page;
2029
2030 /*
2031 * If a sufficient number of pages in the block are either free or of
2032 * comparable migratability as our allocation, claim the whole block.
2033 */
2034 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2035 page_group_by_mobility_disabled)
2036 set_pageblock_migratetype(page, start_type);
2037
2038 return;
2039
2040 single_page:
2041 area = &zone->free_area[current_order];
2042 list_move(&page->lru, &area->free_list[start_type]);
2043 }
2044
2045 /*
2046 * Check whether there is a suitable fallback freepage with requested order.
2047 * If only_stealable is true, this function returns fallback_mt only if
2048 * we can steal other freepages all together. This would help to reduce
2049 * fragmentation due to mixed migratetype pages in one pageblock.
2050 */
2051 int find_suitable_fallback(struct free_area *area, unsigned int order,
2052 int migratetype, bool only_stealable, bool *can_steal)
2053 {
2054 int i;
2055 int fallback_mt;
2056
2057 if (area->nr_free == 0)
2058 return -1;
2059
2060 *can_steal = false;
2061 for (i = 0;; i++) {
2062 fallback_mt = fallbacks[migratetype][i];
2063 if (fallback_mt == MIGRATE_TYPES)
2064 break;
2065
2066 if (list_empty(&area->free_list[fallback_mt]))
2067 continue;
2068
2069 if (can_steal_fallback(order, migratetype))
2070 *can_steal = true;
2071
2072 if (!only_stealable)
2073 return fallback_mt;
2074
2075 if (*can_steal)
2076 return fallback_mt;
2077 }
2078
2079 return -1;
2080 }
2081
2082 /*
2083 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2084 * there are no empty page blocks that contain a page with a suitable order
2085 */
2086 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2087 unsigned int alloc_order)
2088 {
2089 int mt;
2090 unsigned long max_managed, flags;
2091
2092 /*
2093 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2094 * Check is race-prone but harmless.
2095 */
2096 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2097 if (zone->nr_reserved_highatomic >= max_managed)
2098 return;
2099
2100 spin_lock_irqsave(&zone->lock, flags);
2101
2102 /* Recheck the nr_reserved_highatomic limit under the lock */
2103 if (zone->nr_reserved_highatomic >= max_managed)
2104 goto out_unlock;
2105
2106 /* Yoink! */
2107 mt = get_pageblock_migratetype(page);
2108 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2109 && !is_migrate_cma(mt)) {
2110 zone->nr_reserved_highatomic += pageblock_nr_pages;
2111 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2112 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2113 }
2114
2115 out_unlock:
2116 spin_unlock_irqrestore(&zone->lock, flags);
2117 }
2118
2119 /*
2120 * Used when an allocation is about to fail under memory pressure. This
2121 * potentially hurts the reliability of high-order allocations when under
2122 * intense memory pressure but failed atomic allocations should be easier
2123 * to recover from than an OOM.
2124 *
2125 * If @force is true, try to unreserve a pageblock even though highatomic
2126 * pageblock is exhausted.
2127 */
2128 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2129 bool force)
2130 {
2131 struct zonelist *zonelist = ac->zonelist;
2132 unsigned long flags;
2133 struct zoneref *z;
2134 struct zone *zone;
2135 struct page *page;
2136 int order;
2137 bool ret;
2138
2139 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2140 ac->nodemask) {
2141 /*
2142 * Preserve at least one pageblock unless memory pressure
2143 * is really high.
2144 */
2145 if (!force && zone->nr_reserved_highatomic <=
2146 pageblock_nr_pages)
2147 continue;
2148
2149 spin_lock_irqsave(&zone->lock, flags);
2150 for (order = 0; order < MAX_ORDER; order++) {
2151 struct free_area *area = &(zone->free_area[order]);
2152
2153 page = list_first_entry_or_null(
2154 &area->free_list[MIGRATE_HIGHATOMIC],
2155 struct page, lru);
2156 if (!page)
2157 continue;
2158
2159 /*
2160 * In page freeing path, migratetype change is racy so
2161 * we can counter several free pages in a pageblock
2162 * in this loop althoug we changed the pageblock type
2163 * from highatomic to ac->migratetype. So we should
2164 * adjust the count once.
2165 */
2166 if (is_migrate_highatomic_page(page)) {
2167 /*
2168 * It should never happen but changes to
2169 * locking could inadvertently allow a per-cpu
2170 * drain to add pages to MIGRATE_HIGHATOMIC
2171 * while unreserving so be safe and watch for
2172 * underflows.
2173 */
2174 zone->nr_reserved_highatomic -= min(
2175 pageblock_nr_pages,
2176 zone->nr_reserved_highatomic);
2177 }
2178
2179 /*
2180 * Convert to ac->migratetype and avoid the normal
2181 * pageblock stealing heuristics. Minimally, the caller
2182 * is doing the work and needs the pages. More
2183 * importantly, if the block was always converted to
2184 * MIGRATE_UNMOVABLE or another type then the number
2185 * of pageblocks that cannot be completely freed
2186 * may increase.
2187 */
2188 set_pageblock_migratetype(page, ac->migratetype);
2189 ret = move_freepages_block(zone, page, ac->migratetype,
2190 NULL);
2191 if (ret) {
2192 spin_unlock_irqrestore(&zone->lock, flags);
2193 return ret;
2194 }
2195 }
2196 spin_unlock_irqrestore(&zone->lock, flags);
2197 }
2198
2199 return false;
2200 }
2201
2202 /*
2203 * Try finding a free buddy page on the fallback list and put it on the free
2204 * list of requested migratetype, possibly along with other pages from the same
2205 * block, depending on fragmentation avoidance heuristics. Returns true if
2206 * fallback was found so that __rmqueue_smallest() can grab it.
2207 */
2208 static inline bool
2209 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2210 {
2211 struct free_area *area;
2212 unsigned int current_order;
2213 struct page *page;
2214 int fallback_mt;
2215 bool can_steal;
2216
2217 /* Find the largest possible block of pages in the other list */
2218 for (current_order = MAX_ORDER-1;
2219 current_order >= order && current_order <= MAX_ORDER-1;
2220 --current_order) {
2221 area = &(zone->free_area[current_order]);
2222 fallback_mt = find_suitable_fallback(area, current_order,
2223 start_migratetype, false, &can_steal);
2224 if (fallback_mt == -1)
2225 continue;
2226
2227 page = list_first_entry(&area->free_list[fallback_mt],
2228 struct page, lru);
2229
2230 steal_suitable_fallback(zone, page, start_migratetype,
2231 can_steal);
2232
2233 trace_mm_page_alloc_extfrag(page, order, current_order,
2234 start_migratetype, fallback_mt);
2235
2236 return true;
2237 }
2238
2239 return false;
2240 }
2241
2242 /*
2243 * Do the hard work of removing an element from the buddy allocator.
2244 * Call me with the zone->lock already held.
2245 */
2246 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2247 int migratetype)
2248 {
2249 struct page *page;
2250
2251 retry:
2252 page = __rmqueue_smallest(zone, order, migratetype);
2253 if (unlikely(!page)) {
2254 if (migratetype == MIGRATE_MOVABLE)
2255 page = __rmqueue_cma_fallback(zone, order);
2256
2257 if (!page && __rmqueue_fallback(zone, order, migratetype))
2258 goto retry;
2259 }
2260
2261 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2262 return page;
2263 }
2264
2265 /*
2266 * Obtain a specified number of elements from the buddy allocator, all under
2267 * a single hold of the lock, for efficiency. Add them to the supplied list.
2268 * Returns the number of new pages which were placed at *list.
2269 */
2270 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2271 unsigned long count, struct list_head *list,
2272 int migratetype, bool cold)
2273 {
2274 int i, alloced = 0;
2275
2276 spin_lock(&zone->lock);
2277 for (i = 0; i < count; ++i) {
2278 struct page *page = __rmqueue(zone, order, migratetype);
2279 if (unlikely(page == NULL))
2280 break;
2281
2282 if (unlikely(check_pcp_refill(page)))
2283 continue;
2284
2285 /*
2286 * Split buddy pages returned by expand() are received here
2287 * in physical page order. The page is added to the callers and
2288 * list and the list head then moves forward. From the callers
2289 * perspective, the linked list is ordered by page number in
2290 * some conditions. This is useful for IO devices that can
2291 * merge IO requests if the physical pages are ordered
2292 * properly.
2293 */
2294 if (likely(!cold))
2295 list_add(&page->lru, list);
2296 else
2297 list_add_tail(&page->lru, list);
2298 list = &page->lru;
2299 alloced++;
2300 if (is_migrate_cma(get_pcppage_migratetype(page)))
2301 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2302 -(1 << order));
2303 }
2304
2305 /*
2306 * i pages were removed from the buddy list even if some leak due
2307 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2308 * on i. Do not confuse with 'alloced' which is the number of
2309 * pages added to the pcp list.
2310 */
2311 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2312 spin_unlock(&zone->lock);
2313 return alloced;
2314 }
2315
2316 #ifdef CONFIG_NUMA
2317 /*
2318 * Called from the vmstat counter updater to drain pagesets of this
2319 * currently executing processor on remote nodes after they have
2320 * expired.
2321 *
2322 * Note that this function must be called with the thread pinned to
2323 * a single processor.
2324 */
2325 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2326 {
2327 unsigned long flags;
2328 int to_drain, batch;
2329
2330 local_irq_save(flags);
2331 batch = READ_ONCE(pcp->batch);
2332 to_drain = min(pcp->count, batch);
2333 if (to_drain > 0) {
2334 free_pcppages_bulk(zone, to_drain, pcp);
2335 pcp->count -= to_drain;
2336 }
2337 local_irq_restore(flags);
2338 }
2339 #endif
2340
2341 /*
2342 * Drain pcplists of the indicated processor and zone.
2343 *
2344 * The processor must either be the current processor and the
2345 * thread pinned to the current processor or a processor that
2346 * is not online.
2347 */
2348 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2349 {
2350 unsigned long flags;
2351 struct per_cpu_pageset *pset;
2352 struct per_cpu_pages *pcp;
2353
2354 local_irq_save(flags);
2355 pset = per_cpu_ptr(zone->pageset, cpu);
2356
2357 pcp = &pset->pcp;
2358 if (pcp->count) {
2359 free_pcppages_bulk(zone, pcp->count, pcp);
2360 pcp->count = 0;
2361 }
2362 local_irq_restore(flags);
2363 }
2364
2365 /*
2366 * Drain pcplists of all zones on the indicated processor.
2367 *
2368 * The processor must either be the current processor and the
2369 * thread pinned to the current processor or a processor that
2370 * is not online.
2371 */
2372 static void drain_pages(unsigned int cpu)
2373 {
2374 struct zone *zone;
2375
2376 for_each_populated_zone(zone) {
2377 drain_pages_zone(cpu, zone);
2378 }
2379 }
2380
2381 /*
2382 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2383 *
2384 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2385 * the single zone's pages.
2386 */
2387 void drain_local_pages(struct zone *zone)
2388 {
2389 int cpu = smp_processor_id();
2390
2391 if (zone)
2392 drain_pages_zone(cpu, zone);
2393 else
2394 drain_pages(cpu);
2395 }
2396
2397 static void drain_local_pages_wq(struct work_struct *work)
2398 {
2399 /*
2400 * drain_all_pages doesn't use proper cpu hotplug protection so
2401 * we can race with cpu offline when the WQ can move this from
2402 * a cpu pinned worker to an unbound one. We can operate on a different
2403 * cpu which is allright but we also have to make sure to not move to
2404 * a different one.
2405 */
2406 preempt_disable();
2407 drain_local_pages(NULL);
2408 preempt_enable();
2409 }
2410
2411 /*
2412 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2413 *
2414 * When zone parameter is non-NULL, spill just the single zone's pages.
2415 *
2416 * Note that this can be extremely slow as the draining happens in a workqueue.
2417 */
2418 void drain_all_pages(struct zone *zone)
2419 {
2420 int cpu;
2421
2422 /*
2423 * Allocate in the BSS so we wont require allocation in
2424 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2425 */
2426 static cpumask_t cpus_with_pcps;
2427
2428 /*
2429 * Make sure nobody triggers this path before mm_percpu_wq is fully
2430 * initialized.
2431 */
2432 if (WARN_ON_ONCE(!mm_percpu_wq))
2433 return;
2434
2435 /* Workqueues cannot recurse */
2436 if (current->flags & PF_WQ_WORKER)
2437 return;
2438
2439 /*
2440 * Do not drain if one is already in progress unless it's specific to
2441 * a zone. Such callers are primarily CMA and memory hotplug and need
2442 * the drain to be complete when the call returns.
2443 */
2444 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2445 if (!zone)
2446 return;
2447 mutex_lock(&pcpu_drain_mutex);
2448 }
2449
2450 /*
2451 * We don't care about racing with CPU hotplug event
2452 * as offline notification will cause the notified
2453 * cpu to drain that CPU pcps and on_each_cpu_mask
2454 * disables preemption as part of its processing
2455 */
2456 for_each_online_cpu(cpu) {
2457 struct per_cpu_pageset *pcp;
2458 struct zone *z;
2459 bool has_pcps = false;
2460
2461 if (zone) {
2462 pcp = per_cpu_ptr(zone->pageset, cpu);
2463 if (pcp->pcp.count)
2464 has_pcps = true;
2465 } else {
2466 for_each_populated_zone(z) {
2467 pcp = per_cpu_ptr(z->pageset, cpu);
2468 if (pcp->pcp.count) {
2469 has_pcps = true;
2470 break;
2471 }
2472 }
2473 }
2474
2475 if (has_pcps)
2476 cpumask_set_cpu(cpu, &cpus_with_pcps);
2477 else
2478 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2479 }
2480
2481 for_each_cpu(cpu, &cpus_with_pcps) {
2482 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2483 INIT_WORK(work, drain_local_pages_wq);
2484 queue_work_on(cpu, mm_percpu_wq, work);
2485 }
2486 for_each_cpu(cpu, &cpus_with_pcps)
2487 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2488
2489 mutex_unlock(&pcpu_drain_mutex);
2490 }
2491
2492 #ifdef CONFIG_HIBERNATION
2493
2494 void mark_free_pages(struct zone *zone)
2495 {
2496 unsigned long pfn, max_zone_pfn;
2497 unsigned long flags;
2498 unsigned int order, t;
2499 struct page *page;
2500
2501 if (zone_is_empty(zone))
2502 return;
2503
2504 spin_lock_irqsave(&zone->lock, flags);
2505
2506 max_zone_pfn = zone_end_pfn(zone);
2507 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2508 if (pfn_valid(pfn)) {
2509 page = pfn_to_page(pfn);
2510
2511 if (page_zone(page) != zone)
2512 continue;
2513
2514 if (!swsusp_page_is_forbidden(page))
2515 swsusp_unset_page_free(page);
2516 }
2517
2518 for_each_migratetype_order(order, t) {
2519 list_for_each_entry(page,
2520 &zone->free_area[order].free_list[t], lru) {
2521 unsigned long i;
2522
2523 pfn = page_to_pfn(page);
2524 for (i = 0; i < (1UL << order); i++)
2525 swsusp_set_page_free(pfn_to_page(pfn + i));
2526 }
2527 }
2528 spin_unlock_irqrestore(&zone->lock, flags);
2529 }
2530 #endif /* CONFIG_PM */
2531
2532 /*
2533 * Free a 0-order page
2534 * cold == true ? free a cold page : free a hot page
2535 */
2536 void free_hot_cold_page(struct page *page, bool cold)
2537 {
2538 struct zone *zone = page_zone(page);
2539 struct per_cpu_pages *pcp;
2540 unsigned long flags;
2541 unsigned long pfn = page_to_pfn(page);
2542 int migratetype;
2543
2544 if (!free_pcp_prepare(page))
2545 return;
2546
2547 migratetype = get_pfnblock_migratetype(page, pfn);
2548 set_pcppage_migratetype(page, migratetype);
2549 local_irq_save(flags);
2550 __count_vm_event(PGFREE);
2551
2552 /*
2553 * We only track unmovable, reclaimable and movable on pcp lists.
2554 * Free ISOLATE pages back to the allocator because they are being
2555 * offlined but treat HIGHATOMIC as movable pages so we can get those
2556 * areas back if necessary. Otherwise, we may have to free
2557 * excessively into the page allocator
2558 */
2559 if (migratetype >= MIGRATE_PCPTYPES) {
2560 if (unlikely(is_migrate_isolate(migratetype))) {
2561 free_one_page(zone, page, pfn, 0, migratetype);
2562 goto out;
2563 }
2564 migratetype = MIGRATE_MOVABLE;
2565 }
2566
2567 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2568 if (!cold)
2569 list_add(&page->lru, &pcp->lists[migratetype]);
2570 else
2571 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2572 pcp->count++;
2573 if (pcp->count >= pcp->high) {
2574 unsigned long batch = READ_ONCE(pcp->batch);
2575 free_pcppages_bulk(zone, batch, pcp);
2576 pcp->count -= batch;
2577 }
2578
2579 out:
2580 local_irq_restore(flags);
2581 }
2582
2583 /*
2584 * Free a list of 0-order pages
2585 */
2586 void free_hot_cold_page_list(struct list_head *list, bool cold)
2587 {
2588 struct page *page, *next;
2589
2590 list_for_each_entry_safe(page, next, list, lru) {
2591 trace_mm_page_free_batched(page, cold);
2592 free_hot_cold_page(page, cold);
2593 }
2594 }
2595
2596 /*
2597 * split_page takes a non-compound higher-order page, and splits it into
2598 * n (1<<order) sub-pages: page[0..n]
2599 * Each sub-page must be freed individually.
2600 *
2601 * Note: this is probably too low level an operation for use in drivers.
2602 * Please consult with lkml before using this in your driver.
2603 */
2604 void split_page(struct page *page, unsigned int order)
2605 {
2606 int i;
2607
2608 VM_BUG_ON_PAGE(PageCompound(page), page);
2609 VM_BUG_ON_PAGE(!page_count(page), page);
2610
2611 #ifdef CONFIG_KMEMCHECK
2612 /*
2613 * Split shadow pages too, because free(page[0]) would
2614 * otherwise free the whole shadow.
2615 */
2616 if (kmemcheck_page_is_tracked(page))
2617 split_page(virt_to_page(page[0].shadow), order);
2618 #endif
2619
2620 for (i = 1; i < (1 << order); i++)
2621 set_page_refcounted(page + i);
2622 split_page_owner(page, order);
2623 }
2624 EXPORT_SYMBOL_GPL(split_page);
2625
2626 int __isolate_free_page(struct page *page, unsigned int order)
2627 {
2628 unsigned long watermark;
2629 struct zone *zone;
2630 int mt;
2631
2632 BUG_ON(!PageBuddy(page));
2633
2634 zone = page_zone(page);
2635 mt = get_pageblock_migratetype(page);
2636
2637 if (!is_migrate_isolate(mt)) {
2638 /*
2639 * Obey watermarks as if the page was being allocated. We can
2640 * emulate a high-order watermark check with a raised order-0
2641 * watermark, because we already know our high-order page
2642 * exists.
2643 */
2644 watermark = min_wmark_pages(zone) + (1UL << order);
2645 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2646 return 0;
2647
2648 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2649 }
2650
2651 /* Remove page from free list */
2652 list_del(&page->lru);
2653 zone->free_area[order].nr_free--;
2654 rmv_page_order(page);
2655
2656 /*
2657 * Set the pageblock if the isolated page is at least half of a
2658 * pageblock
2659 */
2660 if (order >= pageblock_order - 1) {
2661 struct page *endpage = page + (1 << order) - 1;
2662 for (; page < endpage; page += pageblock_nr_pages) {
2663 int mt = get_pageblock_migratetype(page);
2664 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2665 && !is_migrate_highatomic(mt))
2666 set_pageblock_migratetype(page,
2667 MIGRATE_MOVABLE);
2668 }
2669 }
2670
2671
2672 return 1UL << order;
2673 }
2674
2675 /*
2676 * Update NUMA hit/miss statistics
2677 *
2678 * Must be called with interrupts disabled.
2679 */
2680 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2681 {
2682 #ifdef CONFIG_NUMA
2683 enum zone_stat_item local_stat = NUMA_LOCAL;
2684
2685 if (z->node != numa_node_id())
2686 local_stat = NUMA_OTHER;
2687
2688 if (z->node == preferred_zone->node)
2689 __inc_zone_state(z, NUMA_HIT);
2690 else {
2691 __inc_zone_state(z, NUMA_MISS);
2692 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2693 }
2694 __inc_zone_state(z, local_stat);
2695 #endif
2696 }
2697
2698 /* Remove page from the per-cpu list, caller must protect the list */
2699 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2700 bool cold, struct per_cpu_pages *pcp,
2701 struct list_head *list)
2702 {
2703 struct page *page;
2704
2705 do {
2706 if (list_empty(list)) {
2707 pcp->count += rmqueue_bulk(zone, 0,
2708 pcp->batch, list,
2709 migratetype, cold);
2710 if (unlikely(list_empty(list)))
2711 return NULL;
2712 }
2713
2714 if (cold)
2715 page = list_last_entry(list, struct page, lru);
2716 else
2717 page = list_first_entry(list, struct page, lru);
2718
2719 list_del(&page->lru);
2720 pcp->count--;
2721 } while (check_new_pcp(page));
2722
2723 return page;
2724 }
2725
2726 /* Lock and remove page from the per-cpu list */
2727 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2728 struct zone *zone, unsigned int order,
2729 gfp_t gfp_flags, int migratetype)
2730 {
2731 struct per_cpu_pages *pcp;
2732 struct list_head *list;
2733 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2734 struct page *page;
2735 unsigned long flags;
2736
2737 local_irq_save(flags);
2738 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2739 list = &pcp->lists[migratetype];
2740 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2741 if (page) {
2742 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2743 zone_statistics(preferred_zone, zone);
2744 }
2745 local_irq_restore(flags);
2746 return page;
2747 }
2748
2749 /*
2750 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2751 */
2752 static inline
2753 struct page *rmqueue(struct zone *preferred_zone,
2754 struct zone *zone, unsigned int order,
2755 gfp_t gfp_flags, unsigned int alloc_flags,
2756 int migratetype)
2757 {
2758 unsigned long flags;
2759 struct page *page;
2760
2761 if (likely(order == 0)) {
2762 page = rmqueue_pcplist(preferred_zone, zone, order,
2763 gfp_flags, migratetype);
2764 goto out;
2765 }
2766
2767 /*
2768 * We most definitely don't want callers attempting to
2769 * allocate greater than order-1 page units with __GFP_NOFAIL.
2770 */
2771 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2772 spin_lock_irqsave(&zone->lock, flags);
2773
2774 do {
2775 page = NULL;
2776 if (alloc_flags & ALLOC_HARDER) {
2777 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2778 if (page)
2779 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2780 }
2781 if (!page)
2782 page = __rmqueue(zone, order, migratetype);
2783 } while (page && check_new_pages(page, order));
2784 spin_unlock(&zone->lock);
2785 if (!page)
2786 goto failed;
2787 __mod_zone_freepage_state(zone, -(1 << order),
2788 get_pcppage_migratetype(page));
2789
2790 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2791 zone_statistics(preferred_zone, zone);
2792 local_irq_restore(flags);
2793
2794 out:
2795 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2796 return page;
2797
2798 failed:
2799 local_irq_restore(flags);
2800 return NULL;
2801 }
2802
2803 #ifdef CONFIG_FAIL_PAGE_ALLOC
2804
2805 static struct {
2806 struct fault_attr attr;
2807
2808 bool ignore_gfp_highmem;
2809 bool ignore_gfp_reclaim;
2810 u32 min_order;
2811 } fail_page_alloc = {
2812 .attr = FAULT_ATTR_INITIALIZER,
2813 .ignore_gfp_reclaim = true,
2814 .ignore_gfp_highmem = true,
2815 .min_order = 1,
2816 };
2817
2818 static int __init setup_fail_page_alloc(char *str)
2819 {
2820 return setup_fault_attr(&fail_page_alloc.attr, str);
2821 }
2822 __setup("fail_page_alloc=", setup_fail_page_alloc);
2823
2824 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2825 {
2826 if (order < fail_page_alloc.min_order)
2827 return false;
2828 if (gfp_mask & __GFP_NOFAIL)
2829 return false;
2830 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2831 return false;
2832 if (fail_page_alloc.ignore_gfp_reclaim &&
2833 (gfp_mask & __GFP_DIRECT_RECLAIM))
2834 return false;
2835
2836 return should_fail(&fail_page_alloc.attr, 1 << order);
2837 }
2838
2839 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2840
2841 static int __init fail_page_alloc_debugfs(void)
2842 {
2843 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2844 struct dentry *dir;
2845
2846 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2847 &fail_page_alloc.attr);
2848 if (IS_ERR(dir))
2849 return PTR_ERR(dir);
2850
2851 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2852 &fail_page_alloc.ignore_gfp_reclaim))
2853 goto fail;
2854 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2855 &fail_page_alloc.ignore_gfp_highmem))
2856 goto fail;
2857 if (!debugfs_create_u32("min-order", mode, dir,
2858 &fail_page_alloc.min_order))
2859 goto fail;
2860
2861 return 0;
2862 fail:
2863 debugfs_remove_recursive(dir);
2864
2865 return -ENOMEM;
2866 }
2867
2868 late_initcall(fail_page_alloc_debugfs);
2869
2870 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2871
2872 #else /* CONFIG_FAIL_PAGE_ALLOC */
2873
2874 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2875 {
2876 return false;
2877 }
2878
2879 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2880
2881 /*
2882 * Return true if free base pages are above 'mark'. For high-order checks it
2883 * will return true of the order-0 watermark is reached and there is at least
2884 * one free page of a suitable size. Checking now avoids taking the zone lock
2885 * to check in the allocation paths if no pages are free.
2886 */
2887 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2888 int classzone_idx, unsigned int alloc_flags,
2889 long free_pages)
2890 {
2891 long min = mark;
2892 int o;
2893 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2894
2895 /* free_pages may go negative - that's OK */
2896 free_pages -= (1 << order) - 1;
2897
2898 if (alloc_flags & ALLOC_HIGH)
2899 min -= min / 2;
2900
2901 /*
2902 * If the caller does not have rights to ALLOC_HARDER then subtract
2903 * the high-atomic reserves. This will over-estimate the size of the
2904 * atomic reserve but it avoids a search.
2905 */
2906 if (likely(!alloc_harder))
2907 free_pages -= z->nr_reserved_highatomic;
2908 else
2909 min -= min / 4;
2910
2911 #ifdef CONFIG_CMA
2912 /* If allocation can't use CMA areas don't use free CMA pages */
2913 if (!(alloc_flags & ALLOC_CMA))
2914 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2915 #endif
2916
2917 /*
2918 * Check watermarks for an order-0 allocation request. If these
2919 * are not met, then a high-order request also cannot go ahead
2920 * even if a suitable page happened to be free.
2921 */
2922 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2923 return false;
2924
2925 /* If this is an order-0 request then the watermark is fine */
2926 if (!order)
2927 return true;
2928
2929 /* For a high-order request, check at least one suitable page is free */
2930 for (o = order; o < MAX_ORDER; o++) {
2931 struct free_area *area = &z->free_area[o];
2932 int mt;
2933
2934 if (!area->nr_free)
2935 continue;
2936
2937 if (alloc_harder)
2938 return true;
2939
2940 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2941 if (!list_empty(&area->free_list[mt]))
2942 return true;
2943 }
2944
2945 #ifdef CONFIG_CMA
2946 if ((alloc_flags & ALLOC_CMA) &&
2947 !list_empty(&area->free_list[MIGRATE_CMA])) {
2948 return true;
2949 }
2950 #endif
2951 }
2952 return false;
2953 }
2954
2955 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2956 int classzone_idx, unsigned int alloc_flags)
2957 {
2958 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2959 zone_page_state(z, NR_FREE_PAGES));
2960 }
2961
2962 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2963 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2964 {
2965 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2966 long cma_pages = 0;
2967
2968 #ifdef CONFIG_CMA
2969 /* If allocation can't use CMA areas don't use free CMA pages */
2970 if (!(alloc_flags & ALLOC_CMA))
2971 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2972 #endif
2973
2974 /*
2975 * Fast check for order-0 only. If this fails then the reserves
2976 * need to be calculated. There is a corner case where the check
2977 * passes but only the high-order atomic reserve are free. If
2978 * the caller is !atomic then it'll uselessly search the free
2979 * list. That corner case is then slower but it is harmless.
2980 */
2981 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2982 return true;
2983
2984 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2985 free_pages);
2986 }
2987
2988 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2989 unsigned long mark, int classzone_idx)
2990 {
2991 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2992
2993 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2994 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2995
2996 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2997 free_pages);
2998 }
2999
3000 #ifdef CONFIG_NUMA
3001 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3002 {
3003 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3004 RECLAIM_DISTANCE;
3005 }
3006 #else /* CONFIG_NUMA */
3007 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3008 {
3009 return true;
3010 }
3011 #endif /* CONFIG_NUMA */
3012
3013 /*
3014 * get_page_from_freelist goes through the zonelist trying to allocate
3015 * a page.
3016 */
3017 static struct page *
3018 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3019 const struct alloc_context *ac)
3020 {
3021 struct zoneref *z = ac->preferred_zoneref;
3022 struct zone *zone;
3023 struct pglist_data *last_pgdat_dirty_limit = NULL;
3024
3025 /*
3026 * Scan zonelist, looking for a zone with enough free.
3027 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3028 */
3029 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3030 ac->nodemask) {
3031 struct page *page;
3032 unsigned long mark;
3033
3034 if (cpusets_enabled() &&
3035 (alloc_flags & ALLOC_CPUSET) &&
3036 !__cpuset_zone_allowed(zone, gfp_mask))
3037 continue;
3038 /*
3039 * When allocating a page cache page for writing, we
3040 * want to get it from a node that is within its dirty
3041 * limit, such that no single node holds more than its
3042 * proportional share of globally allowed dirty pages.
3043 * The dirty limits take into account the node's
3044 * lowmem reserves and high watermark so that kswapd
3045 * should be able to balance it without having to
3046 * write pages from its LRU list.
3047 *
3048 * XXX: For now, allow allocations to potentially
3049 * exceed the per-node dirty limit in the slowpath
3050 * (spread_dirty_pages unset) before going into reclaim,
3051 * which is important when on a NUMA setup the allowed
3052 * nodes are together not big enough to reach the
3053 * global limit. The proper fix for these situations
3054 * will require awareness of nodes in the
3055 * dirty-throttling and the flusher threads.
3056 */
3057 if (ac->spread_dirty_pages) {
3058 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3059 continue;
3060
3061 if (!node_dirty_ok(zone->zone_pgdat)) {
3062 last_pgdat_dirty_limit = zone->zone_pgdat;
3063 continue;
3064 }
3065 }
3066
3067 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3068 if (!zone_watermark_fast(zone, order, mark,
3069 ac_classzone_idx(ac), alloc_flags)) {
3070 int ret;
3071
3072 /* Checked here to keep the fast path fast */
3073 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3074 if (alloc_flags & ALLOC_NO_WATERMARKS)
3075 goto try_this_zone;
3076
3077 if (node_reclaim_mode == 0 ||
3078 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3079 continue;
3080
3081 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3082 switch (ret) {
3083 case NODE_RECLAIM_NOSCAN:
3084 /* did not scan */
3085 continue;
3086 case NODE_RECLAIM_FULL:
3087 /* scanned but unreclaimable */
3088 continue;
3089 default:
3090 /* did we reclaim enough */
3091 if (zone_watermark_ok(zone, order, mark,
3092 ac_classzone_idx(ac), alloc_flags))
3093 goto try_this_zone;
3094
3095 continue;
3096 }
3097 }
3098
3099 try_this_zone:
3100 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3101 gfp_mask, alloc_flags, ac->migratetype);
3102 if (page) {
3103 prep_new_page(page, order, gfp_mask, alloc_flags);
3104
3105 /*
3106 * If this is a high-order atomic allocation then check
3107 * if the pageblock should be reserved for the future
3108 */
3109 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3110 reserve_highatomic_pageblock(page, zone, order);
3111
3112 return page;
3113 }
3114 }
3115
3116 return NULL;
3117 }
3118
3119 /*
3120 * Large machines with many possible nodes should not always dump per-node
3121 * meminfo in irq context.
3122 */
3123 static inline bool should_suppress_show_mem(void)
3124 {
3125 bool ret = false;
3126
3127 #if NODES_SHIFT > 8
3128 ret = in_interrupt();
3129 #endif
3130 return ret;
3131 }
3132
3133 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3134 {
3135 unsigned int filter = SHOW_MEM_FILTER_NODES;
3136 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3137
3138 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3139 return;
3140
3141 /*
3142 * This documents exceptions given to allocations in certain
3143 * contexts that are allowed to allocate outside current's set
3144 * of allowed nodes.
3145 */
3146 if (!(gfp_mask & __GFP_NOMEMALLOC))
3147 if (test_thread_flag(TIF_MEMDIE) ||
3148 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3149 filter &= ~SHOW_MEM_FILTER_NODES;
3150 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3151 filter &= ~SHOW_MEM_FILTER_NODES;
3152
3153 show_mem(filter, nodemask);
3154 }
3155
3156 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3157 {
3158 struct va_format vaf;
3159 va_list args;
3160 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3161 DEFAULT_RATELIMIT_BURST);
3162
3163 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3164 return;
3165
3166 pr_warn("%s: ", current->comm);
3167
3168 va_start(args, fmt);
3169 vaf.fmt = fmt;
3170 vaf.va = &args;
3171 pr_cont("%pV", &vaf);
3172 va_end(args);
3173
3174 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3175 if (nodemask)
3176 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3177 else
3178 pr_cont("(null)\n");
3179
3180 cpuset_print_current_mems_allowed();
3181
3182 dump_stack();
3183 warn_alloc_show_mem(gfp_mask, nodemask);
3184 }
3185
3186 static inline struct page *
3187 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3188 unsigned int alloc_flags,
3189 const struct alloc_context *ac)
3190 {
3191 struct page *page;
3192
3193 page = get_page_from_freelist(gfp_mask, order,
3194 alloc_flags|ALLOC_CPUSET, ac);
3195 /*
3196 * fallback to ignore cpuset restriction if our nodes
3197 * are depleted
3198 */
3199 if (!page)
3200 page = get_page_from_freelist(gfp_mask, order,
3201 alloc_flags, ac);
3202
3203 return page;
3204 }
3205
3206 static inline struct page *
3207 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3208 const struct alloc_context *ac, unsigned long *did_some_progress)
3209 {
3210 struct oom_control oc = {
3211 .zonelist = ac->zonelist,
3212 .nodemask = ac->nodemask,
3213 .memcg = NULL,
3214 .gfp_mask = gfp_mask,
3215 .order = order,
3216 };
3217 struct page *page;
3218
3219 *did_some_progress = 0;
3220
3221 /*
3222 * Acquire the oom lock. If that fails, somebody else is
3223 * making progress for us.
3224 */
3225 if (!mutex_trylock(&oom_lock)) {
3226 *did_some_progress = 1;
3227 schedule_timeout_uninterruptible(1);
3228 return NULL;
3229 }
3230
3231 /*
3232 * Go through the zonelist yet one more time, keep very high watermark
3233 * here, this is only to catch a parallel oom killing, we must fail if
3234 * we're still under heavy pressure.
3235 */
3236 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3237 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3238 if (page)
3239 goto out;
3240
3241 /* Coredumps can quickly deplete all memory reserves */
3242 if (current->flags & PF_DUMPCORE)
3243 goto out;
3244 /* The OOM killer will not help higher order allocs */
3245 if (order > PAGE_ALLOC_COSTLY_ORDER)
3246 goto out;
3247 /* The OOM killer does not needlessly kill tasks for lowmem */
3248 if (ac->high_zoneidx < ZONE_NORMAL)
3249 goto out;
3250 if (pm_suspended_storage())
3251 goto out;
3252 /*
3253 * XXX: GFP_NOFS allocations should rather fail than rely on
3254 * other request to make a forward progress.
3255 * We are in an unfortunate situation where out_of_memory cannot
3256 * do much for this context but let's try it to at least get
3257 * access to memory reserved if the current task is killed (see
3258 * out_of_memory). Once filesystems are ready to handle allocation
3259 * failures more gracefully we should just bail out here.
3260 */
3261
3262 /* The OOM killer may not free memory on a specific node */
3263 if (gfp_mask & __GFP_THISNODE)
3264 goto out;
3265
3266 /* Exhausted what can be done so it's blamo time */
3267 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3268 *did_some_progress = 1;
3269
3270 /*
3271 * Help non-failing allocations by giving them access to memory
3272 * reserves
3273 */
3274 if (gfp_mask & __GFP_NOFAIL)
3275 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3276 ALLOC_NO_WATERMARKS, ac);
3277 }
3278 out:
3279 mutex_unlock(&oom_lock);
3280 return page;
3281 }
3282
3283 /*
3284 * Maximum number of compaction retries wit a progress before OOM
3285 * killer is consider as the only way to move forward.
3286 */
3287 #define MAX_COMPACT_RETRIES 16
3288
3289 #ifdef CONFIG_COMPACTION
3290 /* Try memory compaction for high-order allocations before reclaim */
3291 static struct page *
3292 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3293 unsigned int alloc_flags, const struct alloc_context *ac,
3294 enum compact_priority prio, enum compact_result *compact_result)
3295 {
3296 struct page *page;
3297 unsigned int noreclaim_flag;
3298
3299 if (!order)
3300 return NULL;
3301
3302 noreclaim_flag = memalloc_noreclaim_save();
3303 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3304 prio);
3305 memalloc_noreclaim_restore(noreclaim_flag);
3306
3307 if (*compact_result <= COMPACT_INACTIVE)
3308 return NULL;
3309
3310 /*
3311 * At least in one zone compaction wasn't deferred or skipped, so let's
3312 * count a compaction stall
3313 */
3314 count_vm_event(COMPACTSTALL);
3315
3316 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3317
3318 if (page) {
3319 struct zone *zone = page_zone(page);
3320
3321 zone->compact_blockskip_flush = false;
3322 compaction_defer_reset(zone, order, true);
3323 count_vm_event(COMPACTSUCCESS);
3324 return page;
3325 }
3326
3327 /*
3328 * It's bad if compaction run occurs and fails. The most likely reason
3329 * is that pages exist, but not enough to satisfy watermarks.
3330 */
3331 count_vm_event(COMPACTFAIL);
3332
3333 cond_resched();
3334
3335 return NULL;
3336 }
3337
3338 static inline bool
3339 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3340 enum compact_result compact_result,
3341 enum compact_priority *compact_priority,
3342 int *compaction_retries)
3343 {
3344 int max_retries = MAX_COMPACT_RETRIES;
3345 int min_priority;
3346 bool ret = false;
3347 int retries = *compaction_retries;
3348 enum compact_priority priority = *compact_priority;
3349
3350 if (!order)
3351 return false;
3352
3353 if (compaction_made_progress(compact_result))
3354 (*compaction_retries)++;
3355
3356 /*
3357 * compaction considers all the zone as desperately out of memory
3358 * so it doesn't really make much sense to retry except when the
3359 * failure could be caused by insufficient priority
3360 */
3361 if (compaction_failed(compact_result))
3362 goto check_priority;
3363
3364 /*
3365 * make sure the compaction wasn't deferred or didn't bail out early
3366 * due to locks contention before we declare that we should give up.
3367 * But do not retry if the given zonelist is not suitable for
3368 * compaction.
3369 */
3370 if (compaction_withdrawn(compact_result)) {
3371 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3372 goto out;
3373 }
3374
3375 /*
3376 * !costly requests are much more important than __GFP_REPEAT
3377 * costly ones because they are de facto nofail and invoke OOM
3378 * killer to move on while costly can fail and users are ready
3379 * to cope with that. 1/4 retries is rather arbitrary but we
3380 * would need much more detailed feedback from compaction to
3381 * make a better decision.
3382 */
3383 if (order > PAGE_ALLOC_COSTLY_ORDER)
3384 max_retries /= 4;
3385 if (*compaction_retries <= max_retries) {
3386 ret = true;
3387 goto out;
3388 }
3389
3390 /*
3391 * Make sure there are attempts at the highest priority if we exhausted
3392 * all retries or failed at the lower priorities.
3393 */
3394 check_priority:
3395 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3396 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3397
3398 if (*compact_priority > min_priority) {
3399 (*compact_priority)--;
3400 *compaction_retries = 0;
3401 ret = true;
3402 }
3403 out:
3404 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3405 return ret;
3406 }
3407 #else
3408 static inline struct page *
3409 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3410 unsigned int alloc_flags, const struct alloc_context *ac,
3411 enum compact_priority prio, enum compact_result *compact_result)
3412 {
3413 *compact_result = COMPACT_SKIPPED;
3414 return NULL;
3415 }
3416
3417 static inline bool
3418 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3419 enum compact_result compact_result,
3420 enum compact_priority *compact_priority,
3421 int *compaction_retries)
3422 {
3423 struct zone *zone;
3424 struct zoneref *z;
3425
3426 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3427 return false;
3428
3429 /*
3430 * There are setups with compaction disabled which would prefer to loop
3431 * inside the allocator rather than hit the oom killer prematurely.
3432 * Let's give them a good hope and keep retrying while the order-0
3433 * watermarks are OK.
3434 */
3435 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3436 ac->nodemask) {
3437 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3438 ac_classzone_idx(ac), alloc_flags))
3439 return true;
3440 }
3441 return false;
3442 }
3443 #endif /* CONFIG_COMPACTION */
3444
3445 /* Perform direct synchronous page reclaim */
3446 static int
3447 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3448 const struct alloc_context *ac)
3449 {
3450 struct reclaim_state reclaim_state;
3451 int progress;
3452 unsigned int noreclaim_flag;
3453
3454 cond_resched();
3455
3456 /* We now go into synchronous reclaim */
3457 cpuset_memory_pressure_bump();
3458 noreclaim_flag = memalloc_noreclaim_save();
3459 lockdep_set_current_reclaim_state(gfp_mask);
3460 reclaim_state.reclaimed_slab = 0;
3461 current->reclaim_state = &reclaim_state;
3462
3463 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3464 ac->nodemask);
3465
3466 current->reclaim_state = NULL;
3467 lockdep_clear_current_reclaim_state();
3468 memalloc_noreclaim_restore(noreclaim_flag);
3469
3470 cond_resched();
3471
3472 return progress;
3473 }
3474
3475 /* The really slow allocator path where we enter direct reclaim */
3476 static inline struct page *
3477 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3478 unsigned int alloc_flags, const struct alloc_context *ac,
3479 unsigned long *did_some_progress)
3480 {
3481 struct page *page = NULL;
3482 bool drained = false;
3483
3484 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3485 if (unlikely(!(*did_some_progress)))
3486 return NULL;
3487
3488 retry:
3489 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3490
3491 /*
3492 * If an allocation failed after direct reclaim, it could be because
3493 * pages are pinned on the per-cpu lists or in high alloc reserves.
3494 * Shrink them them and try again
3495 */
3496 if (!page && !drained) {
3497 unreserve_highatomic_pageblock(ac, false);
3498 drain_all_pages(NULL);
3499 drained = true;
3500 goto retry;
3501 }
3502
3503 return page;
3504 }
3505
3506 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3507 {
3508 struct zoneref *z;
3509 struct zone *zone;
3510 pg_data_t *last_pgdat = NULL;
3511
3512 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3513 ac->high_zoneidx, ac->nodemask) {
3514 if (last_pgdat != zone->zone_pgdat)
3515 wakeup_kswapd(zone, order, ac->high_zoneidx);
3516 last_pgdat = zone->zone_pgdat;
3517 }
3518 }
3519
3520 static inline unsigned int
3521 gfp_to_alloc_flags(gfp_t gfp_mask)
3522 {
3523 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3524
3525 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3526 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3527
3528 /*
3529 * The caller may dip into page reserves a bit more if the caller
3530 * cannot run direct reclaim, or if the caller has realtime scheduling
3531 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3532 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3533 */
3534 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3535
3536 if (gfp_mask & __GFP_ATOMIC) {
3537 /*
3538 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3539 * if it can't schedule.
3540 */
3541 if (!(gfp_mask & __GFP_NOMEMALLOC))
3542 alloc_flags |= ALLOC_HARDER;
3543 /*
3544 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3545 * comment for __cpuset_node_allowed().
3546 */
3547 alloc_flags &= ~ALLOC_CPUSET;
3548 } else if (unlikely(rt_task(current)) && !in_interrupt())
3549 alloc_flags |= ALLOC_HARDER;
3550
3551 #ifdef CONFIG_CMA
3552 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3553 alloc_flags |= ALLOC_CMA;
3554 #endif
3555 return alloc_flags;
3556 }
3557
3558 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3559 {
3560 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3561 return false;
3562
3563 if (gfp_mask & __GFP_MEMALLOC)
3564 return true;
3565 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3566 return true;
3567 if (!in_interrupt() &&
3568 ((current->flags & PF_MEMALLOC) ||
3569 unlikely(test_thread_flag(TIF_MEMDIE))))
3570 return true;
3571
3572 return false;
3573 }
3574
3575 /*
3576 * Checks whether it makes sense to retry the reclaim to make a forward progress
3577 * for the given allocation request.
3578 *
3579 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3580 * without success, or when we couldn't even meet the watermark if we
3581 * reclaimed all remaining pages on the LRU lists.
3582 *
3583 * Returns true if a retry is viable or false to enter the oom path.
3584 */
3585 static inline bool
3586 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3587 struct alloc_context *ac, int alloc_flags,
3588 bool did_some_progress, int *no_progress_loops)
3589 {
3590 struct zone *zone;
3591 struct zoneref *z;
3592
3593 /*
3594 * Costly allocations might have made a progress but this doesn't mean
3595 * their order will become available due to high fragmentation so
3596 * always increment the no progress counter for them
3597 */
3598 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3599 *no_progress_loops = 0;
3600 else
3601 (*no_progress_loops)++;
3602
3603 /*
3604 * Make sure we converge to OOM if we cannot make any progress
3605 * several times in the row.
3606 */
3607 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3608 /* Before OOM, exhaust highatomic_reserve */
3609 return unreserve_highatomic_pageblock(ac, true);
3610 }
3611
3612 /*
3613 * Keep reclaiming pages while there is a chance this will lead
3614 * somewhere. If none of the target zones can satisfy our allocation
3615 * request even if all reclaimable pages are considered then we are
3616 * screwed and have to go OOM.
3617 */
3618 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3619 ac->nodemask) {
3620 unsigned long available;
3621 unsigned long reclaimable;
3622 unsigned long min_wmark = min_wmark_pages(zone);
3623 bool wmark;
3624
3625 available = reclaimable = zone_reclaimable_pages(zone);
3626 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3627
3628 /*
3629 * Would the allocation succeed if we reclaimed all
3630 * reclaimable pages?
3631 */
3632 wmark = __zone_watermark_ok(zone, order, min_wmark,
3633 ac_classzone_idx(ac), alloc_flags, available);
3634 trace_reclaim_retry_zone(z, order, reclaimable,
3635 available, min_wmark, *no_progress_loops, wmark);
3636 if (wmark) {
3637 /*
3638 * If we didn't make any progress and have a lot of
3639 * dirty + writeback pages then we should wait for
3640 * an IO to complete to slow down the reclaim and
3641 * prevent from pre mature OOM
3642 */
3643 if (!did_some_progress) {
3644 unsigned long write_pending;
3645
3646 write_pending = zone_page_state_snapshot(zone,
3647 NR_ZONE_WRITE_PENDING);
3648
3649 if (2 * write_pending > reclaimable) {
3650 congestion_wait(BLK_RW_ASYNC, HZ/10);
3651 return true;
3652 }
3653 }
3654
3655 /*
3656 * Memory allocation/reclaim might be called from a WQ
3657 * context and the current implementation of the WQ
3658 * concurrency control doesn't recognize that
3659 * a particular WQ is congested if the worker thread is
3660 * looping without ever sleeping. Therefore we have to
3661 * do a short sleep here rather than calling
3662 * cond_resched().
3663 */
3664 if (current->flags & PF_WQ_WORKER)
3665 schedule_timeout_uninterruptible(1);
3666 else
3667 cond_resched();
3668
3669 return true;
3670 }
3671 }
3672
3673 return false;
3674 }
3675
3676 static inline struct page *
3677 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3678 struct alloc_context *ac)
3679 {
3680 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3681 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3682 struct page *page = NULL;
3683 unsigned int alloc_flags;
3684 unsigned long did_some_progress;
3685 enum compact_priority compact_priority;
3686 enum compact_result compact_result;
3687 int compaction_retries;
3688 int no_progress_loops;
3689 unsigned long alloc_start = jiffies;
3690 unsigned int stall_timeout = 10 * HZ;
3691 unsigned int cpuset_mems_cookie;
3692
3693 /*
3694 * In the slowpath, we sanity check order to avoid ever trying to
3695 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3696 * be using allocators in order of preference for an area that is
3697 * too large.
3698 */
3699 if (order >= MAX_ORDER) {
3700 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3701 return NULL;
3702 }
3703
3704 /*
3705 * We also sanity check to catch abuse of atomic reserves being used by
3706 * callers that are not in atomic context.
3707 */
3708 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3709 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3710 gfp_mask &= ~__GFP_ATOMIC;
3711
3712 retry_cpuset:
3713 compaction_retries = 0;
3714 no_progress_loops = 0;
3715 compact_priority = DEF_COMPACT_PRIORITY;
3716 cpuset_mems_cookie = read_mems_allowed_begin();
3717
3718 /*
3719 * The fast path uses conservative alloc_flags to succeed only until
3720 * kswapd needs to be woken up, and to avoid the cost of setting up
3721 * alloc_flags precisely. So we do that now.
3722 */
3723 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3724
3725 /*
3726 * We need to recalculate the starting point for the zonelist iterator
3727 * because we might have used different nodemask in the fast path, or
3728 * there was a cpuset modification and we are retrying - otherwise we
3729 * could end up iterating over non-eligible zones endlessly.
3730 */
3731 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3732 ac->high_zoneidx, ac->nodemask);
3733 if (!ac->preferred_zoneref->zone)
3734 goto nopage;
3735
3736 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3737 wake_all_kswapds(order, ac);
3738
3739 /*
3740 * The adjusted alloc_flags might result in immediate success, so try
3741 * that first
3742 */
3743 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3744 if (page)
3745 goto got_pg;
3746
3747 /*
3748 * For costly allocations, try direct compaction first, as it's likely
3749 * that we have enough base pages and don't need to reclaim. For non-
3750 * movable high-order allocations, do that as well, as compaction will
3751 * try prevent permanent fragmentation by migrating from blocks of the
3752 * same migratetype.
3753 * Don't try this for allocations that are allowed to ignore
3754 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3755 */
3756 if (can_direct_reclaim &&
3757 (costly_order ||
3758 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3759 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3760 page = __alloc_pages_direct_compact(gfp_mask, order,
3761 alloc_flags, ac,
3762 INIT_COMPACT_PRIORITY,
3763 &compact_result);
3764 if (page)
3765 goto got_pg;
3766
3767 /*
3768 * Checks for costly allocations with __GFP_NORETRY, which
3769 * includes THP page fault allocations
3770 */
3771 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3772 /*
3773 * If compaction is deferred for high-order allocations,
3774 * it is because sync compaction recently failed. If
3775 * this is the case and the caller requested a THP
3776 * allocation, we do not want to heavily disrupt the
3777 * system, so we fail the allocation instead of entering
3778 * direct reclaim.
3779 */
3780 if (compact_result == COMPACT_DEFERRED)
3781 goto nopage;
3782
3783 /*
3784 * Looks like reclaim/compaction is worth trying, but
3785 * sync compaction could be very expensive, so keep
3786 * using async compaction.
3787 */
3788 compact_priority = INIT_COMPACT_PRIORITY;
3789 }
3790 }
3791
3792 retry:
3793 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3794 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3795 wake_all_kswapds(order, ac);
3796
3797 if (gfp_pfmemalloc_allowed(gfp_mask))
3798 alloc_flags = ALLOC_NO_WATERMARKS;
3799
3800 /*
3801 * Reset the zonelist iterators if memory policies can be ignored.
3802 * These allocations are high priority and system rather than user
3803 * orientated.
3804 */
3805 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3806 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3807 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3808 ac->high_zoneidx, ac->nodemask);
3809 }
3810
3811 /* Attempt with potentially adjusted zonelist and alloc_flags */
3812 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3813 if (page)
3814 goto got_pg;
3815
3816 /* Caller is not willing to reclaim, we can't balance anything */
3817 if (!can_direct_reclaim)
3818 goto nopage;
3819
3820 /* Make sure we know about allocations which stall for too long */
3821 if (time_after(jiffies, alloc_start + stall_timeout)) {
3822 warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3823 "page allocation stalls for %ums, order:%u",
3824 jiffies_to_msecs(jiffies-alloc_start), order);
3825 stall_timeout += 10 * HZ;
3826 }
3827
3828 /* Avoid recursion of direct reclaim */
3829 if (current->flags & PF_MEMALLOC)
3830 goto nopage;
3831
3832 /* Try direct reclaim and then allocating */
3833 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3834 &did_some_progress);
3835 if (page)
3836 goto got_pg;
3837
3838 /* Try direct compaction and then allocating */
3839 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3840 compact_priority, &compact_result);
3841 if (page)
3842 goto got_pg;
3843
3844 /* Do not loop if specifically requested */
3845 if (gfp_mask & __GFP_NORETRY)
3846 goto nopage;
3847
3848 /*
3849 * Do not retry costly high order allocations unless they are
3850 * __GFP_REPEAT
3851 */
3852 if (costly_order && !(gfp_mask & __GFP_REPEAT))
3853 goto nopage;
3854
3855 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3856 did_some_progress > 0, &no_progress_loops))
3857 goto retry;
3858
3859 /*
3860 * It doesn't make any sense to retry for the compaction if the order-0
3861 * reclaim is not able to make any progress because the current
3862 * implementation of the compaction depends on the sufficient amount
3863 * of free memory (see __compaction_suitable)
3864 */
3865 if (did_some_progress > 0 &&
3866 should_compact_retry(ac, order, alloc_flags,
3867 compact_result, &compact_priority,
3868 &compaction_retries))
3869 goto retry;
3870
3871 /*
3872 * It's possible we raced with cpuset update so the OOM would be
3873 * premature (see below the nopage: label for full explanation).
3874 */
3875 if (read_mems_allowed_retry(cpuset_mems_cookie))
3876 goto retry_cpuset;
3877
3878 /* Reclaim has failed us, start killing things */
3879 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3880 if (page)
3881 goto got_pg;
3882
3883 /* Avoid allocations with no watermarks from looping endlessly */
3884 if (test_thread_flag(TIF_MEMDIE) &&
3885 (alloc_flags == ALLOC_NO_WATERMARKS ||
3886 (gfp_mask & __GFP_NOMEMALLOC)))
3887 goto nopage;
3888
3889 /* Retry as long as the OOM killer is making progress */
3890 if (did_some_progress) {
3891 no_progress_loops = 0;
3892 goto retry;
3893 }
3894
3895 nopage:
3896 /*
3897 * When updating a task's mems_allowed or mempolicy nodemask, it is
3898 * possible to race with parallel threads in such a way that our
3899 * allocation can fail while the mask is being updated. If we are about
3900 * to fail, check if the cpuset changed during allocation and if so,
3901 * retry.
3902 */
3903 if (read_mems_allowed_retry(cpuset_mems_cookie))
3904 goto retry_cpuset;
3905
3906 /*
3907 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3908 * we always retry
3909 */
3910 if (gfp_mask & __GFP_NOFAIL) {
3911 /*
3912 * All existing users of the __GFP_NOFAIL are blockable, so warn
3913 * of any new users that actually require GFP_NOWAIT
3914 */
3915 if (WARN_ON_ONCE(!can_direct_reclaim))
3916 goto fail;
3917
3918 /*
3919 * PF_MEMALLOC request from this context is rather bizarre
3920 * because we cannot reclaim anything and only can loop waiting
3921 * for somebody to do a work for us
3922 */
3923 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3924
3925 /*
3926 * non failing costly orders are a hard requirement which we
3927 * are not prepared for much so let's warn about these users
3928 * so that we can identify them and convert them to something
3929 * else.
3930 */
3931 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3932
3933 /*
3934 * Help non-failing allocations by giving them access to memory
3935 * reserves but do not use ALLOC_NO_WATERMARKS because this
3936 * could deplete whole memory reserves which would just make
3937 * the situation worse
3938 */
3939 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3940 if (page)
3941 goto got_pg;
3942
3943 cond_resched();
3944 goto retry;
3945 }
3946 fail:
3947 warn_alloc(gfp_mask, ac->nodemask,
3948 "page allocation failure: order:%u", order);
3949 got_pg:
3950 return page;
3951 }
3952
3953 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3954 struct zonelist *zonelist, nodemask_t *nodemask,
3955 struct alloc_context *ac, gfp_t *alloc_mask,
3956 unsigned int *alloc_flags)
3957 {
3958 ac->high_zoneidx = gfp_zone(gfp_mask);
3959 ac->zonelist = zonelist;
3960 ac->nodemask = nodemask;
3961 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3962
3963 if (cpusets_enabled()) {
3964 *alloc_mask |= __GFP_HARDWALL;
3965 if (!ac->nodemask)
3966 ac->nodemask = &cpuset_current_mems_allowed;
3967 else
3968 *alloc_flags |= ALLOC_CPUSET;
3969 }
3970
3971 lockdep_trace_alloc(gfp_mask);
3972
3973 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3974
3975 if (should_fail_alloc_page(gfp_mask, order))
3976 return false;
3977
3978 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3979 *alloc_flags |= ALLOC_CMA;
3980
3981 return true;
3982 }
3983
3984 /* Determine whether to spread dirty pages and what the first usable zone */
3985 static inline void finalise_ac(gfp_t gfp_mask,
3986 unsigned int order, struct alloc_context *ac)
3987 {
3988 /* Dirty zone balancing only done in the fast path */
3989 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3990
3991 /*
3992 * The preferred zone is used for statistics but crucially it is
3993 * also used as the starting point for the zonelist iterator. It
3994 * may get reset for allocations that ignore memory policies.
3995 */
3996 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3997 ac->high_zoneidx, ac->nodemask);
3998 }
3999
4000 /*
4001 * This is the 'heart' of the zoned buddy allocator.
4002 */
4003 struct page *
4004 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
4005 struct zonelist *zonelist, nodemask_t *nodemask)
4006 {
4007 struct page *page;
4008 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4009 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
4010 struct alloc_context ac = { };
4011
4012 gfp_mask &= gfp_allowed_mask;
4013 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
4014 return NULL;
4015
4016 finalise_ac(gfp_mask, order, &ac);
4017
4018 /* First allocation attempt */
4019 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4020 if (likely(page))
4021 goto out;
4022
4023 /*
4024 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4025 * resp. GFP_NOIO which has to be inherited for all allocation requests
4026 * from a particular context which has been marked by
4027 * memalloc_no{fs,io}_{save,restore}.
4028 */
4029 alloc_mask = current_gfp_context(gfp_mask);
4030 ac.spread_dirty_pages = false;
4031
4032 /*
4033 * Restore the original nodemask if it was potentially replaced with
4034 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4035 */
4036 if (unlikely(ac.nodemask != nodemask))
4037 ac.nodemask = nodemask;
4038
4039 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4040
4041 out:
4042 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4043 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4044 __free_pages(page, order);
4045 page = NULL;
4046 }
4047
4048 if (kmemcheck_enabled && page)
4049 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4050
4051 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4052
4053 return page;
4054 }
4055 EXPORT_SYMBOL(__alloc_pages_nodemask);
4056
4057 /*
4058 * Common helper functions.
4059 */
4060 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4061 {
4062 struct page *page;
4063
4064 /*
4065 * __get_free_pages() returns a 32-bit address, which cannot represent
4066 * a highmem page
4067 */
4068 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4069
4070 page = alloc_pages(gfp_mask, order);
4071 if (!page)
4072 return 0;
4073 return (unsigned long) page_address(page);
4074 }
4075 EXPORT_SYMBOL(__get_free_pages);
4076
4077 unsigned long get_zeroed_page(gfp_t gfp_mask)
4078 {
4079 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4080 }
4081 EXPORT_SYMBOL(get_zeroed_page);
4082
4083 void __free_pages(struct page *page, unsigned int order)
4084 {
4085 if (put_page_testzero(page)) {
4086 if (order == 0)
4087 free_hot_cold_page(page, false);
4088 else
4089 __free_pages_ok(page, order);
4090 }
4091 }
4092
4093 EXPORT_SYMBOL(__free_pages);
4094
4095 void free_pages(unsigned long addr, unsigned int order)
4096 {
4097 if (addr != 0) {
4098 VM_BUG_ON(!virt_addr_valid((void *)addr));
4099 __free_pages(virt_to_page((void *)addr), order);
4100 }
4101 }
4102
4103 EXPORT_SYMBOL(free_pages);
4104
4105 /*
4106 * Page Fragment:
4107 * An arbitrary-length arbitrary-offset area of memory which resides
4108 * within a 0 or higher order page. Multiple fragments within that page
4109 * are individually refcounted, in the page's reference counter.
4110 *
4111 * The page_frag functions below provide a simple allocation framework for
4112 * page fragments. This is used by the network stack and network device
4113 * drivers to provide a backing region of memory for use as either an
4114 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4115 */
4116 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4117 gfp_t gfp_mask)
4118 {
4119 struct page *page = NULL;
4120 gfp_t gfp = gfp_mask;
4121
4122 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4123 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4124 __GFP_NOMEMALLOC;
4125 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4126 PAGE_FRAG_CACHE_MAX_ORDER);
4127 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4128 #endif
4129 if (unlikely(!page))
4130 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4131
4132 nc->va = page ? page_address(page) : NULL;
4133
4134 return page;
4135 }
4136
4137 void __page_frag_cache_drain(struct page *page, unsigned int count)
4138 {
4139 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4140
4141 if (page_ref_sub_and_test(page, count)) {
4142 unsigned int order = compound_order(page);
4143
4144 if (order == 0)
4145 free_hot_cold_page(page, false);
4146 else
4147 __free_pages_ok(page, order);
4148 }
4149 }
4150 EXPORT_SYMBOL(__page_frag_cache_drain);
4151
4152 void *page_frag_alloc(struct page_frag_cache *nc,
4153 unsigned int fragsz, gfp_t gfp_mask)
4154 {
4155 unsigned int size = PAGE_SIZE;
4156 struct page *page;
4157 int offset;
4158
4159 if (unlikely(!nc->va)) {
4160 refill:
4161 page = __page_frag_cache_refill(nc, gfp_mask);
4162 if (!page)
4163 return NULL;
4164
4165 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4166 /* if size can vary use size else just use PAGE_SIZE */
4167 size = nc->size;
4168 #endif
4169 /* Even if we own the page, we do not use atomic_set().
4170 * This would break get_page_unless_zero() users.
4171 */
4172 page_ref_add(page, size - 1);
4173
4174 /* reset page count bias and offset to start of new frag */
4175 nc->pfmemalloc = page_is_pfmemalloc(page);
4176 nc->pagecnt_bias = size;
4177 nc->offset = size;
4178 }
4179
4180 offset = nc->offset - fragsz;
4181 if (unlikely(offset < 0)) {
4182 page = virt_to_page(nc->va);
4183
4184 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4185 goto refill;
4186
4187 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4188 /* if size can vary use size else just use PAGE_SIZE */
4189 size = nc->size;
4190 #endif
4191 /* OK, page count is 0, we can safely set it */
4192 set_page_count(page, size);
4193
4194 /* reset page count bias and offset to start of new frag */
4195 nc->pagecnt_bias = size;
4196 offset = size - fragsz;
4197 }
4198
4199 nc->pagecnt_bias--;
4200 nc->offset = offset;
4201
4202 return nc->va + offset;
4203 }
4204 EXPORT_SYMBOL(page_frag_alloc);
4205
4206 /*
4207 * Frees a page fragment allocated out of either a compound or order 0 page.
4208 */
4209 void page_frag_free(void *addr)
4210 {
4211 struct page *page = virt_to_head_page(addr);
4212
4213 if (unlikely(put_page_testzero(page)))
4214 __free_pages_ok(page, compound_order(page));
4215 }
4216 EXPORT_SYMBOL(page_frag_free);
4217
4218 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4219 size_t size)
4220 {
4221 if (addr) {
4222 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4223 unsigned long used = addr + PAGE_ALIGN(size);
4224
4225 split_page(virt_to_page((void *)addr), order);
4226 while (used < alloc_end) {
4227 free_page(used);
4228 used += PAGE_SIZE;
4229 }
4230 }
4231 return (void *)addr;
4232 }
4233
4234 /**
4235 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4236 * @size: the number of bytes to allocate
4237 * @gfp_mask: GFP flags for the allocation
4238 *
4239 * This function is similar to alloc_pages(), except that it allocates the
4240 * minimum number of pages to satisfy the request. alloc_pages() can only
4241 * allocate memory in power-of-two pages.
4242 *
4243 * This function is also limited by MAX_ORDER.
4244 *
4245 * Memory allocated by this function must be released by free_pages_exact().
4246 */
4247 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4248 {
4249 unsigned int order = get_order(size);
4250 unsigned long addr;
4251
4252 addr = __get_free_pages(gfp_mask, order);
4253 return make_alloc_exact(addr, order, size);
4254 }
4255 EXPORT_SYMBOL(alloc_pages_exact);
4256
4257 /**
4258 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4259 * pages on a node.
4260 * @nid: the preferred node ID where memory should be allocated
4261 * @size: the number of bytes to allocate
4262 * @gfp_mask: GFP flags for the allocation
4263 *
4264 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4265 * back.
4266 */
4267 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4268 {
4269 unsigned int order = get_order(size);
4270 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4271 if (!p)
4272 return NULL;
4273 return make_alloc_exact((unsigned long)page_address(p), order, size);
4274 }
4275
4276 /**
4277 * free_pages_exact - release memory allocated via alloc_pages_exact()
4278 * @virt: the value returned by alloc_pages_exact.
4279 * @size: size of allocation, same value as passed to alloc_pages_exact().
4280 *
4281 * Release the memory allocated by a previous call to alloc_pages_exact.
4282 */
4283 void free_pages_exact(void *virt, size_t size)
4284 {
4285 unsigned long addr = (unsigned long)virt;
4286 unsigned long end = addr + PAGE_ALIGN(size);
4287
4288 while (addr < end) {
4289 free_page(addr);
4290 addr += PAGE_SIZE;
4291 }
4292 }
4293 EXPORT_SYMBOL(free_pages_exact);
4294
4295 /**
4296 * nr_free_zone_pages - count number of pages beyond high watermark
4297 * @offset: The zone index of the highest zone
4298 *
4299 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4300 * high watermark within all zones at or below a given zone index. For each
4301 * zone, the number of pages is calculated as:
4302 *
4303 * nr_free_zone_pages = managed_pages - high_pages
4304 */
4305 static unsigned long nr_free_zone_pages(int offset)
4306 {
4307 struct zoneref *z;
4308 struct zone *zone;
4309
4310 /* Just pick one node, since fallback list is circular */
4311 unsigned long sum = 0;
4312
4313 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4314
4315 for_each_zone_zonelist(zone, z, zonelist, offset) {
4316 unsigned long size = zone->managed_pages;
4317 unsigned long high = high_wmark_pages(zone);
4318 if (size > high)
4319 sum += size - high;
4320 }
4321
4322 return sum;
4323 }
4324
4325 /**
4326 * nr_free_buffer_pages - count number of pages beyond high watermark
4327 *
4328 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4329 * watermark within ZONE_DMA and ZONE_NORMAL.
4330 */
4331 unsigned long nr_free_buffer_pages(void)
4332 {
4333 return nr_free_zone_pages(gfp_zone(GFP_USER));
4334 }
4335 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4336
4337 /**
4338 * nr_free_pagecache_pages - count number of pages beyond high watermark
4339 *
4340 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4341 * high watermark within all zones.
4342 */
4343 unsigned long nr_free_pagecache_pages(void)
4344 {
4345 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4346 }
4347
4348 static inline void show_node(struct zone *zone)
4349 {
4350 if (IS_ENABLED(CONFIG_NUMA))
4351 printk("Node %d ", zone_to_nid(zone));
4352 }
4353
4354 long si_mem_available(void)
4355 {
4356 long available;
4357 unsigned long pagecache;
4358 unsigned long wmark_low = 0;
4359 unsigned long pages[NR_LRU_LISTS];
4360 struct zone *zone;
4361 int lru;
4362
4363 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4364 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4365
4366 for_each_zone(zone)
4367 wmark_low += zone->watermark[WMARK_LOW];
4368
4369 /*
4370 * Estimate the amount of memory available for userspace allocations,
4371 * without causing swapping.
4372 */
4373 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4374
4375 /*
4376 * Not all the page cache can be freed, otherwise the system will
4377 * start swapping. Assume at least half of the page cache, or the
4378 * low watermark worth of cache, needs to stay.
4379 */
4380 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4381 pagecache -= min(pagecache / 2, wmark_low);
4382 available += pagecache;
4383
4384 /*
4385 * Part of the reclaimable slab consists of items that are in use,
4386 * and cannot be freed. Cap this estimate at the low watermark.
4387 */
4388 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4389 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4390
4391 if (available < 0)
4392 available = 0;
4393 return available;
4394 }
4395 EXPORT_SYMBOL_GPL(si_mem_available);
4396
4397 void si_meminfo(struct sysinfo *val)
4398 {
4399 val->totalram = totalram_pages;
4400 val->sharedram = global_node_page_state(NR_SHMEM);
4401 val->freeram = global_page_state(NR_FREE_PAGES);
4402 val->bufferram = nr_blockdev_pages();
4403 val->totalhigh = totalhigh_pages;
4404 val->freehigh = nr_free_highpages();
4405 val->mem_unit = PAGE_SIZE;
4406 }
4407
4408 EXPORT_SYMBOL(si_meminfo);
4409
4410 #ifdef CONFIG_NUMA
4411 void si_meminfo_node(struct sysinfo *val, int nid)
4412 {
4413 int zone_type; /* needs to be signed */
4414 unsigned long managed_pages = 0;
4415 unsigned long managed_highpages = 0;
4416 unsigned long free_highpages = 0;
4417 pg_data_t *pgdat = NODE_DATA(nid);
4418
4419 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4420 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4421 val->totalram = managed_pages;
4422 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4423 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4424 #ifdef CONFIG_HIGHMEM
4425 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4426 struct zone *zone = &pgdat->node_zones[zone_type];
4427
4428 if (is_highmem(zone)) {
4429 managed_highpages += zone->managed_pages;
4430 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4431 }
4432 }
4433 val->totalhigh = managed_highpages;
4434 val->freehigh = free_highpages;
4435 #else
4436 val->totalhigh = managed_highpages;
4437 val->freehigh = free_highpages;
4438 #endif
4439 val->mem_unit = PAGE_SIZE;
4440 }
4441 #endif
4442
4443 /*
4444 * Determine whether the node should be displayed or not, depending on whether
4445 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4446 */
4447 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4448 {
4449 if (!(flags & SHOW_MEM_FILTER_NODES))
4450 return false;
4451
4452 /*
4453 * no node mask - aka implicit memory numa policy. Do not bother with
4454 * the synchronization - read_mems_allowed_begin - because we do not
4455 * have to be precise here.
4456 */
4457 if (!nodemask)
4458 nodemask = &cpuset_current_mems_allowed;
4459
4460 return !node_isset(nid, *nodemask);
4461 }
4462
4463 #define K(x) ((x) << (PAGE_SHIFT-10))
4464
4465 static void show_migration_types(unsigned char type)
4466 {
4467 static const char types[MIGRATE_TYPES] = {
4468 [MIGRATE_UNMOVABLE] = 'U',
4469 [MIGRATE_MOVABLE] = 'M',
4470 [MIGRATE_RECLAIMABLE] = 'E',
4471 [MIGRATE_HIGHATOMIC] = 'H',
4472 #ifdef CONFIG_CMA
4473 [MIGRATE_CMA] = 'C',
4474 #endif
4475 #ifdef CONFIG_MEMORY_ISOLATION
4476 [MIGRATE_ISOLATE] = 'I',
4477 #endif
4478 };
4479 char tmp[MIGRATE_TYPES + 1];
4480 char *p = tmp;
4481 int i;
4482
4483 for (i = 0; i < MIGRATE_TYPES; i++) {
4484 if (type & (1 << i))
4485 *p++ = types[i];
4486 }
4487
4488 *p = '\0';
4489 printk(KERN_CONT "(%s) ", tmp);
4490 }
4491
4492 /*
4493 * Show free area list (used inside shift_scroll-lock stuff)
4494 * We also calculate the percentage fragmentation. We do this by counting the
4495 * memory on each free list with the exception of the first item on the list.
4496 *
4497 * Bits in @filter:
4498 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4499 * cpuset.
4500 */
4501 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4502 {
4503 unsigned long free_pcp = 0;
4504 int cpu;
4505 struct zone *zone;
4506 pg_data_t *pgdat;
4507
4508 for_each_populated_zone(zone) {
4509 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4510 continue;
4511
4512 for_each_online_cpu(cpu)
4513 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4514 }
4515
4516 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4517 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4518 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4519 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4520 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4521 " free:%lu free_pcp:%lu free_cma:%lu\n",
4522 global_node_page_state(NR_ACTIVE_ANON),
4523 global_node_page_state(NR_INACTIVE_ANON),
4524 global_node_page_state(NR_ISOLATED_ANON),
4525 global_node_page_state(NR_ACTIVE_FILE),
4526 global_node_page_state(NR_INACTIVE_FILE),
4527 global_node_page_state(NR_ISOLATED_FILE),
4528 global_node_page_state(NR_UNEVICTABLE),
4529 global_node_page_state(NR_FILE_DIRTY),
4530 global_node_page_state(NR_WRITEBACK),
4531 global_node_page_state(NR_UNSTABLE_NFS),
4532 global_page_state(NR_SLAB_RECLAIMABLE),
4533 global_page_state(NR_SLAB_UNRECLAIMABLE),
4534 global_node_page_state(NR_FILE_MAPPED),
4535 global_node_page_state(NR_SHMEM),
4536 global_page_state(NR_PAGETABLE),
4537 global_page_state(NR_BOUNCE),
4538 global_page_state(NR_FREE_PAGES),
4539 free_pcp,
4540 global_page_state(NR_FREE_CMA_PAGES));
4541
4542 for_each_online_pgdat(pgdat) {
4543 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4544 continue;
4545
4546 printk("Node %d"
4547 " active_anon:%lukB"
4548 " inactive_anon:%lukB"
4549 " active_file:%lukB"
4550 " inactive_file:%lukB"
4551 " unevictable:%lukB"
4552 " isolated(anon):%lukB"
4553 " isolated(file):%lukB"
4554 " mapped:%lukB"
4555 " dirty:%lukB"
4556 " writeback:%lukB"
4557 " shmem:%lukB"
4558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4559 " shmem_thp: %lukB"
4560 " shmem_pmdmapped: %lukB"
4561 " anon_thp: %lukB"
4562 #endif
4563 " writeback_tmp:%lukB"
4564 " unstable:%lukB"
4565 " all_unreclaimable? %s"
4566 "\n",
4567 pgdat->node_id,
4568 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4569 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4570 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4571 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4572 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4573 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4574 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4575 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4576 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4577 K(node_page_state(pgdat, NR_WRITEBACK)),
4578 K(node_page_state(pgdat, NR_SHMEM)),
4579 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4580 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4581 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4582 * HPAGE_PMD_NR),
4583 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4584 #endif
4585 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4586 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4587 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4588 "yes" : "no");
4589 }
4590
4591 for_each_populated_zone(zone) {
4592 int i;
4593
4594 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4595 continue;
4596
4597 free_pcp = 0;
4598 for_each_online_cpu(cpu)
4599 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4600
4601 show_node(zone);
4602 printk(KERN_CONT
4603 "%s"
4604 " free:%lukB"
4605 " min:%lukB"
4606 " low:%lukB"
4607 " high:%lukB"
4608 " active_anon:%lukB"
4609 " inactive_anon:%lukB"
4610 " active_file:%lukB"
4611 " inactive_file:%lukB"
4612 " unevictable:%lukB"
4613 " writepending:%lukB"
4614 " present:%lukB"
4615 " managed:%lukB"
4616 " mlocked:%lukB"
4617 " slab_reclaimable:%lukB"
4618 " slab_unreclaimable:%lukB"
4619 " kernel_stack:%lukB"
4620 " pagetables:%lukB"
4621 " bounce:%lukB"
4622 " free_pcp:%lukB"
4623 " local_pcp:%ukB"
4624 " free_cma:%lukB"
4625 "\n",
4626 zone->name,
4627 K(zone_page_state(zone, NR_FREE_PAGES)),
4628 K(min_wmark_pages(zone)),
4629 K(low_wmark_pages(zone)),
4630 K(high_wmark_pages(zone)),
4631 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4632 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4633 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4634 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4635 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4636 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4637 K(zone->present_pages),
4638 K(zone->managed_pages),
4639 K(zone_page_state(zone, NR_MLOCK)),
4640 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4641 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4642 zone_page_state(zone, NR_KERNEL_STACK_KB),
4643 K(zone_page_state(zone, NR_PAGETABLE)),
4644 K(zone_page_state(zone, NR_BOUNCE)),
4645 K(free_pcp),
4646 K(this_cpu_read(zone->pageset->pcp.count)),
4647 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4648 printk("lowmem_reserve[]:");
4649 for (i = 0; i < MAX_NR_ZONES; i++)
4650 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4651 printk(KERN_CONT "\n");
4652 }
4653
4654 for_each_populated_zone(zone) {
4655 unsigned int order;
4656 unsigned long nr[MAX_ORDER], flags, total = 0;
4657 unsigned char types[MAX_ORDER];
4658
4659 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4660 continue;
4661 show_node(zone);
4662 printk(KERN_CONT "%s: ", zone->name);
4663
4664 spin_lock_irqsave(&zone->lock, flags);
4665 for (order = 0; order < MAX_ORDER; order++) {
4666 struct free_area *area = &zone->free_area[order];
4667 int type;
4668
4669 nr[order] = area->nr_free;
4670 total += nr[order] << order;
4671
4672 types[order] = 0;
4673 for (type = 0; type < MIGRATE_TYPES; type++) {
4674 if (!list_empty(&area->free_list[type]))
4675 types[order] |= 1 << type;
4676 }
4677 }
4678 spin_unlock_irqrestore(&zone->lock, flags);
4679 for (order = 0; order < MAX_ORDER; order++) {
4680 printk(KERN_CONT "%lu*%lukB ",
4681 nr[order], K(1UL) << order);
4682 if (nr[order])
4683 show_migration_types(types[order]);
4684 }
4685 printk(KERN_CONT "= %lukB\n", K(total));
4686 }
4687
4688 hugetlb_show_meminfo();
4689
4690 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4691
4692 show_swap_cache_info();
4693 }
4694
4695 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4696 {
4697 zoneref->zone = zone;
4698 zoneref->zone_idx = zone_idx(zone);
4699 }
4700
4701 /*
4702 * Builds allocation fallback zone lists.
4703 *
4704 * Add all populated zones of a node to the zonelist.
4705 */
4706 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4707 int nr_zones)
4708 {
4709 struct zone *zone;
4710 enum zone_type zone_type = MAX_NR_ZONES;
4711
4712 do {
4713 zone_type--;
4714 zone = pgdat->node_zones + zone_type;
4715 if (managed_zone(zone)) {
4716 zoneref_set_zone(zone,
4717 &zonelist->_zonerefs[nr_zones++]);
4718 check_highest_zone(zone_type);
4719 }
4720 } while (zone_type);
4721
4722 return nr_zones;
4723 }
4724
4725
4726 /*
4727 * zonelist_order:
4728 * 0 = automatic detection of better ordering.
4729 * 1 = order by ([node] distance, -zonetype)
4730 * 2 = order by (-zonetype, [node] distance)
4731 *
4732 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4733 * the same zonelist. So only NUMA can configure this param.
4734 */
4735 #define ZONELIST_ORDER_DEFAULT 0
4736 #define ZONELIST_ORDER_NODE 1
4737 #define ZONELIST_ORDER_ZONE 2
4738
4739 /* zonelist order in the kernel.
4740 * set_zonelist_order() will set this to NODE or ZONE.
4741 */
4742 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4743 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4744
4745
4746 #ifdef CONFIG_NUMA
4747 /* The value user specified ....changed by config */
4748 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4749 /* string for sysctl */
4750 #define NUMA_ZONELIST_ORDER_LEN 16
4751 char numa_zonelist_order[16] = "default";
4752
4753 /*
4754 * interface for configure zonelist ordering.
4755 * command line option "numa_zonelist_order"
4756 * = "[dD]efault - default, automatic configuration.
4757 * = "[nN]ode - order by node locality, then by zone within node
4758 * = "[zZ]one - order by zone, then by locality within zone
4759 */
4760
4761 static int __parse_numa_zonelist_order(char *s)
4762 {
4763 if (*s == 'd' || *s == 'D') {
4764 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4765 } else if (*s == 'n' || *s == 'N') {
4766 user_zonelist_order = ZONELIST_ORDER_NODE;
4767 } else if (*s == 'z' || *s == 'Z') {
4768 user_zonelist_order = ZONELIST_ORDER_ZONE;
4769 } else {
4770 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4771 return -EINVAL;
4772 }
4773 return 0;
4774 }
4775
4776 static __init int setup_numa_zonelist_order(char *s)
4777 {
4778 int ret;
4779
4780 if (!s)
4781 return 0;
4782
4783 ret = __parse_numa_zonelist_order(s);
4784 if (ret == 0)
4785 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4786
4787 return ret;
4788 }
4789 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4790
4791 /*
4792 * sysctl handler for numa_zonelist_order
4793 */
4794 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4795 void __user *buffer, size_t *length,
4796 loff_t *ppos)
4797 {
4798 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4799 int ret;
4800 static DEFINE_MUTEX(zl_order_mutex);
4801
4802 mutex_lock(&zl_order_mutex);
4803 if (write) {
4804 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4805 ret = -EINVAL;
4806 goto out;
4807 }
4808 strcpy(saved_string, (char *)table->data);
4809 }
4810 ret = proc_dostring(table, write, buffer, length, ppos);
4811 if (ret)
4812 goto out;
4813 if (write) {
4814 int oldval = user_zonelist_order;
4815
4816 ret = __parse_numa_zonelist_order((char *)table->data);
4817 if (ret) {
4818 /*
4819 * bogus value. restore saved string
4820 */
4821 strncpy((char *)table->data, saved_string,
4822 NUMA_ZONELIST_ORDER_LEN);
4823 user_zonelist_order = oldval;
4824 } else if (oldval != user_zonelist_order) {
4825 mutex_lock(&zonelists_mutex);
4826 build_all_zonelists(NULL, NULL);
4827 mutex_unlock(&zonelists_mutex);
4828 }
4829 }
4830 out:
4831 mutex_unlock(&zl_order_mutex);
4832 return ret;
4833 }
4834
4835
4836 #define MAX_NODE_LOAD (nr_online_nodes)
4837 static int node_load[MAX_NUMNODES];
4838
4839 /**
4840 * find_next_best_node - find the next node that should appear in a given node's fallback list
4841 * @node: node whose fallback list we're appending
4842 * @used_node_mask: nodemask_t of already used nodes
4843 *
4844 * We use a number of factors to determine which is the next node that should
4845 * appear on a given node's fallback list. The node should not have appeared
4846 * already in @node's fallback list, and it should be the next closest node
4847 * according to the distance array (which contains arbitrary distance values
4848 * from each node to each node in the system), and should also prefer nodes
4849 * with no CPUs, since presumably they'll have very little allocation pressure
4850 * on them otherwise.
4851 * It returns -1 if no node is found.
4852 */
4853 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4854 {
4855 int n, val;
4856 int min_val = INT_MAX;
4857 int best_node = NUMA_NO_NODE;
4858 const struct cpumask *tmp = cpumask_of_node(0);
4859
4860 /* Use the local node if we haven't already */
4861 if (!node_isset(node, *used_node_mask)) {
4862 node_set(node, *used_node_mask);
4863 return node;
4864 }
4865
4866 for_each_node_state(n, N_MEMORY) {
4867
4868 /* Don't want a node to appear more than once */
4869 if (node_isset(n, *used_node_mask))
4870 continue;
4871
4872 /* Use the distance array to find the distance */
4873 val = node_distance(node, n);
4874
4875 /* Penalize nodes under us ("prefer the next node") */
4876 val += (n < node);
4877
4878 /* Give preference to headless and unused nodes */
4879 tmp = cpumask_of_node(n);
4880 if (!cpumask_empty(tmp))
4881 val += PENALTY_FOR_NODE_WITH_CPUS;
4882
4883 /* Slight preference for less loaded node */
4884 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4885 val += node_load[n];
4886
4887 if (val < min_val) {
4888 min_val = val;
4889 best_node = n;
4890 }
4891 }
4892
4893 if (best_node >= 0)
4894 node_set(best_node, *used_node_mask);
4895
4896 return best_node;
4897 }
4898
4899
4900 /*
4901 * Build zonelists ordered by node and zones within node.
4902 * This results in maximum locality--normal zone overflows into local
4903 * DMA zone, if any--but risks exhausting DMA zone.
4904 */
4905 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4906 {
4907 int j;
4908 struct zonelist *zonelist;
4909
4910 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4911 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4912 ;
4913 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4914 zonelist->_zonerefs[j].zone = NULL;
4915 zonelist->_zonerefs[j].zone_idx = 0;
4916 }
4917
4918 /*
4919 * Build gfp_thisnode zonelists
4920 */
4921 static void build_thisnode_zonelists(pg_data_t *pgdat)
4922 {
4923 int j;
4924 struct zonelist *zonelist;
4925
4926 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4927 j = build_zonelists_node(pgdat, zonelist, 0);
4928 zonelist->_zonerefs[j].zone = NULL;
4929 zonelist->_zonerefs[j].zone_idx = 0;
4930 }
4931
4932 /*
4933 * Build zonelists ordered by zone and nodes within zones.
4934 * This results in conserving DMA zone[s] until all Normal memory is
4935 * exhausted, but results in overflowing to remote node while memory
4936 * may still exist in local DMA zone.
4937 */
4938 static int node_order[MAX_NUMNODES];
4939
4940 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4941 {
4942 int pos, j, node;
4943 int zone_type; /* needs to be signed */
4944 struct zone *z;
4945 struct zonelist *zonelist;
4946
4947 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4948 pos = 0;
4949 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4950 for (j = 0; j < nr_nodes; j++) {
4951 node = node_order[j];
4952 z = &NODE_DATA(node)->node_zones[zone_type];
4953 if (managed_zone(z)) {
4954 zoneref_set_zone(z,
4955 &zonelist->_zonerefs[pos++]);
4956 check_highest_zone(zone_type);
4957 }
4958 }
4959 }
4960 zonelist->_zonerefs[pos].zone = NULL;
4961 zonelist->_zonerefs[pos].zone_idx = 0;
4962 }
4963
4964 #if defined(CONFIG_64BIT)
4965 /*
4966 * Devices that require DMA32/DMA are relatively rare and do not justify a
4967 * penalty to every machine in case the specialised case applies. Default
4968 * to Node-ordering on 64-bit NUMA machines
4969 */
4970 static int default_zonelist_order(void)
4971 {
4972 return ZONELIST_ORDER_NODE;
4973 }
4974 #else
4975 /*
4976 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4977 * by the kernel. If processes running on node 0 deplete the low memory zone
4978 * then reclaim will occur more frequency increasing stalls and potentially
4979 * be easier to OOM if a large percentage of the zone is under writeback or
4980 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4981 * Hence, default to zone ordering on 32-bit.
4982 */
4983 static int default_zonelist_order(void)
4984 {
4985 return ZONELIST_ORDER_ZONE;
4986 }
4987 #endif /* CONFIG_64BIT */
4988
4989 static void set_zonelist_order(void)
4990 {
4991 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4992 current_zonelist_order = default_zonelist_order();
4993 else
4994 current_zonelist_order = user_zonelist_order;
4995 }
4996
4997 static void build_zonelists(pg_data_t *pgdat)
4998 {
4999 int i, node, load;
5000 nodemask_t used_mask;
5001 int local_node, prev_node;
5002 struct zonelist *zonelist;
5003 unsigned int order = current_zonelist_order;
5004
5005 /* initialize zonelists */
5006 for (i = 0; i < MAX_ZONELISTS; i++) {
5007 zonelist = pgdat->node_zonelists + i;
5008 zonelist->_zonerefs[0].zone = NULL;
5009 zonelist->_zonerefs[0].zone_idx = 0;
5010 }
5011
5012 /* NUMA-aware ordering of nodes */
5013 local_node = pgdat->node_id;
5014 load = nr_online_nodes;
5015 prev_node = local_node;
5016 nodes_clear(used_mask);
5017
5018 memset(node_order, 0, sizeof(node_order));
5019 i = 0;
5020
5021 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5022 /*
5023 * We don't want to pressure a particular node.
5024 * So adding penalty to the first node in same
5025 * distance group to make it round-robin.
5026 */
5027 if (node_distance(local_node, node) !=
5028 node_distance(local_node, prev_node))
5029 node_load[node] = load;
5030
5031 prev_node = node;
5032 load--;
5033 if (order == ZONELIST_ORDER_NODE)
5034 build_zonelists_in_node_order(pgdat, node);
5035 else
5036 node_order[i++] = node; /* remember order */
5037 }
5038
5039 if (order == ZONELIST_ORDER_ZONE) {
5040 /* calculate node order -- i.e., DMA last! */
5041 build_zonelists_in_zone_order(pgdat, i);
5042 }
5043
5044 build_thisnode_zonelists(pgdat);
5045 }
5046
5047 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5048 /*
5049 * Return node id of node used for "local" allocations.
5050 * I.e., first node id of first zone in arg node's generic zonelist.
5051 * Used for initializing percpu 'numa_mem', which is used primarily
5052 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5053 */
5054 int local_memory_node(int node)
5055 {
5056 struct zoneref *z;
5057
5058 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5059 gfp_zone(GFP_KERNEL),
5060 NULL);
5061 return z->zone->node;
5062 }
5063 #endif
5064
5065 static void setup_min_unmapped_ratio(void);
5066 static void setup_min_slab_ratio(void);
5067 #else /* CONFIG_NUMA */
5068
5069 static void set_zonelist_order(void)
5070 {
5071 current_zonelist_order = ZONELIST_ORDER_ZONE;
5072 }
5073
5074 static void build_zonelists(pg_data_t *pgdat)
5075 {
5076 int node, local_node;
5077 enum zone_type j;
5078 struct zonelist *zonelist;
5079
5080 local_node = pgdat->node_id;
5081
5082 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5083 j = build_zonelists_node(pgdat, zonelist, 0);
5084
5085 /*
5086 * Now we build the zonelist so that it contains the zones
5087 * of all the other nodes.
5088 * We don't want to pressure a particular node, so when
5089 * building the zones for node N, we make sure that the
5090 * zones coming right after the local ones are those from
5091 * node N+1 (modulo N)
5092 */
5093 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5094 if (!node_online(node))
5095 continue;
5096 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5097 }
5098 for (node = 0; node < local_node; node++) {
5099 if (!node_online(node))
5100 continue;
5101 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5102 }
5103
5104 zonelist->_zonerefs[j].zone = NULL;
5105 zonelist->_zonerefs[j].zone_idx = 0;
5106 }
5107
5108 #endif /* CONFIG_NUMA */
5109
5110 /*
5111 * Boot pageset table. One per cpu which is going to be used for all
5112 * zones and all nodes. The parameters will be set in such a way
5113 * that an item put on a list will immediately be handed over to
5114 * the buddy list. This is safe since pageset manipulation is done
5115 * with interrupts disabled.
5116 *
5117 * The boot_pagesets must be kept even after bootup is complete for
5118 * unused processors and/or zones. They do play a role for bootstrapping
5119 * hotplugged processors.
5120 *
5121 * zoneinfo_show() and maybe other functions do
5122 * not check if the processor is online before following the pageset pointer.
5123 * Other parts of the kernel may not check if the zone is available.
5124 */
5125 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5126 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5127 static void setup_zone_pageset(struct zone *zone);
5128
5129 /*
5130 * Global mutex to protect against size modification of zonelists
5131 * as well as to serialize pageset setup for the new populated zone.
5132 */
5133 DEFINE_MUTEX(zonelists_mutex);
5134
5135 /* return values int ....just for stop_machine() */
5136 static int __build_all_zonelists(void *data)
5137 {
5138 int nid;
5139 int cpu;
5140 pg_data_t *self = data;
5141
5142 #ifdef CONFIG_NUMA
5143 memset(node_load, 0, sizeof(node_load));
5144 #endif
5145
5146 if (self && !node_online(self->node_id)) {
5147 build_zonelists(self);
5148 }
5149
5150 for_each_online_node(nid) {
5151 pg_data_t *pgdat = NODE_DATA(nid);
5152
5153 build_zonelists(pgdat);
5154 }
5155
5156 /*
5157 * Initialize the boot_pagesets that are going to be used
5158 * for bootstrapping processors. The real pagesets for
5159 * each zone will be allocated later when the per cpu
5160 * allocator is available.
5161 *
5162 * boot_pagesets are used also for bootstrapping offline
5163 * cpus if the system is already booted because the pagesets
5164 * are needed to initialize allocators on a specific cpu too.
5165 * F.e. the percpu allocator needs the page allocator which
5166 * needs the percpu allocator in order to allocate its pagesets
5167 * (a chicken-egg dilemma).
5168 */
5169 for_each_possible_cpu(cpu) {
5170 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5171
5172 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5173 /*
5174 * We now know the "local memory node" for each node--
5175 * i.e., the node of the first zone in the generic zonelist.
5176 * Set up numa_mem percpu variable for on-line cpus. During
5177 * boot, only the boot cpu should be on-line; we'll init the
5178 * secondary cpus' numa_mem as they come on-line. During
5179 * node/memory hotplug, we'll fixup all on-line cpus.
5180 */
5181 if (cpu_online(cpu))
5182 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5183 #endif
5184 }
5185
5186 return 0;
5187 }
5188
5189 static noinline void __init
5190 build_all_zonelists_init(void)
5191 {
5192 __build_all_zonelists(NULL);
5193 mminit_verify_zonelist();
5194 cpuset_init_current_mems_allowed();
5195 }
5196
5197 /*
5198 * Called with zonelists_mutex held always
5199 * unless system_state == SYSTEM_BOOTING.
5200 *
5201 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5202 * [we're only called with non-NULL zone through __meminit paths] and
5203 * (2) call of __init annotated helper build_all_zonelists_init
5204 * [protected by SYSTEM_BOOTING].
5205 */
5206 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5207 {
5208 set_zonelist_order();
5209
5210 if (system_state == SYSTEM_BOOTING) {
5211 build_all_zonelists_init();
5212 } else {
5213 #ifdef CONFIG_MEMORY_HOTPLUG
5214 if (zone)
5215 setup_zone_pageset(zone);
5216 #endif
5217 /* we have to stop all cpus to guarantee there is no user
5218 of zonelist */
5219 stop_machine(__build_all_zonelists, pgdat, NULL);
5220 /* cpuset refresh routine should be here */
5221 }
5222 vm_total_pages = nr_free_pagecache_pages();
5223 /*
5224 * Disable grouping by mobility if the number of pages in the
5225 * system is too low to allow the mechanism to work. It would be
5226 * more accurate, but expensive to check per-zone. This check is
5227 * made on memory-hotadd so a system can start with mobility
5228 * disabled and enable it later
5229 */
5230 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5231 page_group_by_mobility_disabled = 1;
5232 else
5233 page_group_by_mobility_disabled = 0;
5234
5235 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5236 nr_online_nodes,
5237 zonelist_order_name[current_zonelist_order],
5238 page_group_by_mobility_disabled ? "off" : "on",
5239 vm_total_pages);
5240 #ifdef CONFIG_NUMA
5241 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5242 #endif
5243 }
5244
5245 /*
5246 * Initially all pages are reserved - free ones are freed
5247 * up by free_all_bootmem() once the early boot process is
5248 * done. Non-atomic initialization, single-pass.
5249 */
5250 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5251 unsigned long start_pfn, enum memmap_context context)
5252 {
5253 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5254 unsigned long end_pfn = start_pfn + size;
5255 pg_data_t *pgdat = NODE_DATA(nid);
5256 unsigned long pfn;
5257 unsigned long nr_initialised = 0;
5258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5259 struct memblock_region *r = NULL, *tmp;
5260 #endif
5261
5262 if (highest_memmap_pfn < end_pfn - 1)
5263 highest_memmap_pfn = end_pfn - 1;
5264
5265 /*
5266 * Honor reservation requested by the driver for this ZONE_DEVICE
5267 * memory
5268 */
5269 if (altmap && start_pfn == altmap->base_pfn)
5270 start_pfn += altmap->reserve;
5271
5272 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5273 /*
5274 * There can be holes in boot-time mem_map[]s handed to this
5275 * function. They do not exist on hotplugged memory.
5276 */
5277 if (context != MEMMAP_EARLY)
5278 goto not_early;
5279
5280 if (!early_pfn_valid(pfn)) {
5281 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5282 /*
5283 * Skip to the pfn preceding the next valid one (or
5284 * end_pfn), such that we hit a valid pfn (or end_pfn)
5285 * on our next iteration of the loop.
5286 */
5287 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5288 #endif
5289 continue;
5290 }
5291 if (!early_pfn_in_nid(pfn, nid))
5292 continue;
5293 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5294 break;
5295
5296 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5297 /*
5298 * Check given memblock attribute by firmware which can affect
5299 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5300 * mirrored, it's an overlapped memmap init. skip it.
5301 */
5302 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5303 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5304 for_each_memblock(memory, tmp)
5305 if (pfn < memblock_region_memory_end_pfn(tmp))
5306 break;
5307 r = tmp;
5308 }
5309 if (pfn >= memblock_region_memory_base_pfn(r) &&
5310 memblock_is_mirror(r)) {
5311 /* already initialized as NORMAL */
5312 pfn = memblock_region_memory_end_pfn(r);
5313 continue;
5314 }
5315 }
5316 #endif
5317
5318 not_early:
5319 /*
5320 * Mark the block movable so that blocks are reserved for
5321 * movable at startup. This will force kernel allocations
5322 * to reserve their blocks rather than leaking throughout
5323 * the address space during boot when many long-lived
5324 * kernel allocations are made.
5325 *
5326 * bitmap is created for zone's valid pfn range. but memmap
5327 * can be created for invalid pages (for alignment)
5328 * check here not to call set_pageblock_migratetype() against
5329 * pfn out of zone.
5330 */
5331 if (!(pfn & (pageblock_nr_pages - 1))) {
5332 struct page *page = pfn_to_page(pfn);
5333
5334 __init_single_page(page, pfn, zone, nid);
5335 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5336 } else {
5337 __init_single_pfn(pfn, zone, nid);
5338 }
5339 }
5340 }
5341
5342 static void __meminit zone_init_free_lists(struct zone *zone)
5343 {
5344 unsigned int order, t;
5345 for_each_migratetype_order(order, t) {
5346 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5347 zone->free_area[order].nr_free = 0;
5348 }
5349 }
5350
5351 #ifndef __HAVE_ARCH_MEMMAP_INIT
5352 #define memmap_init(size, nid, zone, start_pfn) \
5353 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5354 #endif
5355
5356 static int zone_batchsize(struct zone *zone)
5357 {
5358 #ifdef CONFIG_MMU
5359 int batch;
5360
5361 /*
5362 * The per-cpu-pages pools are set to around 1000th of the
5363 * size of the zone. But no more than 1/2 of a meg.
5364 *
5365 * OK, so we don't know how big the cache is. So guess.
5366 */
5367 batch = zone->managed_pages / 1024;
5368 if (batch * PAGE_SIZE > 512 * 1024)
5369 batch = (512 * 1024) / PAGE_SIZE;
5370 batch /= 4; /* We effectively *= 4 below */
5371 if (batch < 1)
5372 batch = 1;
5373
5374 /*
5375 * Clamp the batch to a 2^n - 1 value. Having a power
5376 * of 2 value was found to be more likely to have
5377 * suboptimal cache aliasing properties in some cases.
5378 *
5379 * For example if 2 tasks are alternately allocating
5380 * batches of pages, one task can end up with a lot
5381 * of pages of one half of the possible page colors
5382 * and the other with pages of the other colors.
5383 */
5384 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5385
5386 return batch;
5387
5388 #else
5389 /* The deferral and batching of frees should be suppressed under NOMMU
5390 * conditions.
5391 *
5392 * The problem is that NOMMU needs to be able to allocate large chunks
5393 * of contiguous memory as there's no hardware page translation to
5394 * assemble apparent contiguous memory from discontiguous pages.
5395 *
5396 * Queueing large contiguous runs of pages for batching, however,
5397 * causes the pages to actually be freed in smaller chunks. As there
5398 * can be a significant delay between the individual batches being
5399 * recycled, this leads to the once large chunks of space being
5400 * fragmented and becoming unavailable for high-order allocations.
5401 */
5402 return 0;
5403 #endif
5404 }
5405
5406 /*
5407 * pcp->high and pcp->batch values are related and dependent on one another:
5408 * ->batch must never be higher then ->high.
5409 * The following function updates them in a safe manner without read side
5410 * locking.
5411 *
5412 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5413 * those fields changing asynchronously (acording the the above rule).
5414 *
5415 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5416 * outside of boot time (or some other assurance that no concurrent updaters
5417 * exist).
5418 */
5419 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5420 unsigned long batch)
5421 {
5422 /* start with a fail safe value for batch */
5423 pcp->batch = 1;
5424 smp_wmb();
5425
5426 /* Update high, then batch, in order */
5427 pcp->high = high;
5428 smp_wmb();
5429
5430 pcp->batch = batch;
5431 }
5432
5433 /* a companion to pageset_set_high() */
5434 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5435 {
5436 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5437 }
5438
5439 static void pageset_init(struct per_cpu_pageset *p)
5440 {
5441 struct per_cpu_pages *pcp;
5442 int migratetype;
5443
5444 memset(p, 0, sizeof(*p));
5445
5446 pcp = &p->pcp;
5447 pcp->count = 0;
5448 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5449 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5450 }
5451
5452 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5453 {
5454 pageset_init(p);
5455 pageset_set_batch(p, batch);
5456 }
5457
5458 /*
5459 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5460 * to the value high for the pageset p.
5461 */
5462 static void pageset_set_high(struct per_cpu_pageset *p,
5463 unsigned long high)
5464 {
5465 unsigned long batch = max(1UL, high / 4);
5466 if ((high / 4) > (PAGE_SHIFT * 8))
5467 batch = PAGE_SHIFT * 8;
5468
5469 pageset_update(&p->pcp, high, batch);
5470 }
5471
5472 static void pageset_set_high_and_batch(struct zone *zone,
5473 struct per_cpu_pageset *pcp)
5474 {
5475 if (percpu_pagelist_fraction)
5476 pageset_set_high(pcp,
5477 (zone->managed_pages /
5478 percpu_pagelist_fraction));
5479 else
5480 pageset_set_batch(pcp, zone_batchsize(zone));
5481 }
5482
5483 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5484 {
5485 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5486
5487 pageset_init(pcp);
5488 pageset_set_high_and_batch(zone, pcp);
5489 }
5490
5491 static void __meminit setup_zone_pageset(struct zone *zone)
5492 {
5493 int cpu;
5494 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5495 for_each_possible_cpu(cpu)
5496 zone_pageset_init(zone, cpu);
5497 }
5498
5499 /*
5500 * Allocate per cpu pagesets and initialize them.
5501 * Before this call only boot pagesets were available.
5502 */
5503 void __init setup_per_cpu_pageset(void)
5504 {
5505 struct pglist_data *pgdat;
5506 struct zone *zone;
5507
5508 for_each_populated_zone(zone)
5509 setup_zone_pageset(zone);
5510
5511 for_each_online_pgdat(pgdat)
5512 pgdat->per_cpu_nodestats =
5513 alloc_percpu(struct per_cpu_nodestat);
5514 }
5515
5516 static __meminit void zone_pcp_init(struct zone *zone)
5517 {
5518 /*
5519 * per cpu subsystem is not up at this point. The following code
5520 * relies on the ability of the linker to provide the
5521 * offset of a (static) per cpu variable into the per cpu area.
5522 */
5523 zone->pageset = &boot_pageset;
5524
5525 if (populated_zone(zone))
5526 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5527 zone->name, zone->present_pages,
5528 zone_batchsize(zone));
5529 }
5530
5531 void __meminit init_currently_empty_zone(struct zone *zone,
5532 unsigned long zone_start_pfn,
5533 unsigned long size)
5534 {
5535 struct pglist_data *pgdat = zone->zone_pgdat;
5536
5537 pgdat->nr_zones = zone_idx(zone) + 1;
5538
5539 zone->zone_start_pfn = zone_start_pfn;
5540
5541 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5542 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5543 pgdat->node_id,
5544 (unsigned long)zone_idx(zone),
5545 zone_start_pfn, (zone_start_pfn + size));
5546
5547 zone_init_free_lists(zone);
5548 zone->initialized = 1;
5549 }
5550
5551 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5552 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5553
5554 /*
5555 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5556 */
5557 int __meminit __early_pfn_to_nid(unsigned long pfn,
5558 struct mminit_pfnnid_cache *state)
5559 {
5560 unsigned long start_pfn, end_pfn;
5561 int nid;
5562
5563 if (state->last_start <= pfn && pfn < state->last_end)
5564 return state->last_nid;
5565
5566 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5567 if (nid != -1) {
5568 state->last_start = start_pfn;
5569 state->last_end = end_pfn;
5570 state->last_nid = nid;
5571 }
5572
5573 return nid;
5574 }
5575 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5576
5577 /**
5578 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5579 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5580 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5581 *
5582 * If an architecture guarantees that all ranges registered contain no holes
5583 * and may be freed, this this function may be used instead of calling
5584 * memblock_free_early_nid() manually.
5585 */
5586 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5587 {
5588 unsigned long start_pfn, end_pfn;
5589 int i, this_nid;
5590
5591 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5592 start_pfn = min(start_pfn, max_low_pfn);
5593 end_pfn = min(end_pfn, max_low_pfn);
5594
5595 if (start_pfn < end_pfn)
5596 memblock_free_early_nid(PFN_PHYS(start_pfn),
5597 (end_pfn - start_pfn) << PAGE_SHIFT,
5598 this_nid);
5599 }
5600 }
5601
5602 /**
5603 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5604 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5605 *
5606 * If an architecture guarantees that all ranges registered contain no holes and may
5607 * be freed, this function may be used instead of calling memory_present() manually.
5608 */
5609 void __init sparse_memory_present_with_active_regions(int nid)
5610 {
5611 unsigned long start_pfn, end_pfn;
5612 int i, this_nid;
5613
5614 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5615 memory_present(this_nid, start_pfn, end_pfn);
5616 }
5617
5618 /**
5619 * get_pfn_range_for_nid - Return the start and end page frames for a node
5620 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5621 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5622 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5623 *
5624 * It returns the start and end page frame of a node based on information
5625 * provided by memblock_set_node(). If called for a node
5626 * with no available memory, a warning is printed and the start and end
5627 * PFNs will be 0.
5628 */
5629 void __meminit get_pfn_range_for_nid(unsigned int nid,
5630 unsigned long *start_pfn, unsigned long *end_pfn)
5631 {
5632 unsigned long this_start_pfn, this_end_pfn;
5633 int i;
5634
5635 *start_pfn = -1UL;
5636 *end_pfn = 0;
5637
5638 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5639 *start_pfn = min(*start_pfn, this_start_pfn);
5640 *end_pfn = max(*end_pfn, this_end_pfn);
5641 }
5642
5643 if (*start_pfn == -1UL)
5644 *start_pfn = 0;
5645 }
5646
5647 /*
5648 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5649 * assumption is made that zones within a node are ordered in monotonic
5650 * increasing memory addresses so that the "highest" populated zone is used
5651 */
5652 static void __init find_usable_zone_for_movable(void)
5653 {
5654 int zone_index;
5655 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5656 if (zone_index == ZONE_MOVABLE)
5657 continue;
5658
5659 if (arch_zone_highest_possible_pfn[zone_index] >
5660 arch_zone_lowest_possible_pfn[zone_index])
5661 break;
5662 }
5663
5664 VM_BUG_ON(zone_index == -1);
5665 movable_zone = zone_index;
5666 }
5667
5668 /*
5669 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5670 * because it is sized independent of architecture. Unlike the other zones,
5671 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5672 * in each node depending on the size of each node and how evenly kernelcore
5673 * is distributed. This helper function adjusts the zone ranges
5674 * provided by the architecture for a given node by using the end of the
5675 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5676 * zones within a node are in order of monotonic increases memory addresses
5677 */
5678 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5679 unsigned long zone_type,
5680 unsigned long node_start_pfn,
5681 unsigned long node_end_pfn,
5682 unsigned long *zone_start_pfn,
5683 unsigned long *zone_end_pfn)
5684 {
5685 /* Only adjust if ZONE_MOVABLE is on this node */
5686 if (zone_movable_pfn[nid]) {
5687 /* Size ZONE_MOVABLE */
5688 if (zone_type == ZONE_MOVABLE) {
5689 *zone_start_pfn = zone_movable_pfn[nid];
5690 *zone_end_pfn = min(node_end_pfn,
5691 arch_zone_highest_possible_pfn[movable_zone]);
5692
5693 /* Adjust for ZONE_MOVABLE starting within this range */
5694 } else if (!mirrored_kernelcore &&
5695 *zone_start_pfn < zone_movable_pfn[nid] &&
5696 *zone_end_pfn > zone_movable_pfn[nid]) {
5697 *zone_end_pfn = zone_movable_pfn[nid];
5698
5699 /* Check if this whole range is within ZONE_MOVABLE */
5700 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5701 *zone_start_pfn = *zone_end_pfn;
5702 }
5703 }
5704
5705 /*
5706 * Return the number of pages a zone spans in a node, including holes
5707 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5708 */
5709 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5710 unsigned long zone_type,
5711 unsigned long node_start_pfn,
5712 unsigned long node_end_pfn,
5713 unsigned long *zone_start_pfn,
5714 unsigned long *zone_end_pfn,
5715 unsigned long *ignored)
5716 {
5717 /* When hotadd a new node from cpu_up(), the node should be empty */
5718 if (!node_start_pfn && !node_end_pfn)
5719 return 0;
5720
5721 /* Get the start and end of the zone */
5722 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5723 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5724 adjust_zone_range_for_zone_movable(nid, zone_type,
5725 node_start_pfn, node_end_pfn,
5726 zone_start_pfn, zone_end_pfn);
5727
5728 /* Check that this node has pages within the zone's required range */
5729 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5730 return 0;
5731
5732 /* Move the zone boundaries inside the node if necessary */
5733 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5734 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5735
5736 /* Return the spanned pages */
5737 return *zone_end_pfn - *zone_start_pfn;
5738 }
5739
5740 /*
5741 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5742 * then all holes in the requested range will be accounted for.
5743 */
5744 unsigned long __meminit __absent_pages_in_range(int nid,
5745 unsigned long range_start_pfn,
5746 unsigned long range_end_pfn)
5747 {
5748 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5749 unsigned long start_pfn, end_pfn;
5750 int i;
5751
5752 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5753 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5754 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5755 nr_absent -= end_pfn - start_pfn;
5756 }
5757 return nr_absent;
5758 }
5759
5760 /**
5761 * absent_pages_in_range - Return number of page frames in holes within a range
5762 * @start_pfn: The start PFN to start searching for holes
5763 * @end_pfn: The end PFN to stop searching for holes
5764 *
5765 * It returns the number of pages frames in memory holes within a range.
5766 */
5767 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5768 unsigned long end_pfn)
5769 {
5770 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5771 }
5772
5773 /* Return the number of page frames in holes in a zone on a node */
5774 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5775 unsigned long zone_type,
5776 unsigned long node_start_pfn,
5777 unsigned long node_end_pfn,
5778 unsigned long *ignored)
5779 {
5780 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5781 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5782 unsigned long zone_start_pfn, zone_end_pfn;
5783 unsigned long nr_absent;
5784
5785 /* When hotadd a new node from cpu_up(), the node should be empty */
5786 if (!node_start_pfn && !node_end_pfn)
5787 return 0;
5788
5789 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5790 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5791
5792 adjust_zone_range_for_zone_movable(nid, zone_type,
5793 node_start_pfn, node_end_pfn,
5794 &zone_start_pfn, &zone_end_pfn);
5795 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5796
5797 /*
5798 * ZONE_MOVABLE handling.
5799 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5800 * and vice versa.
5801 */
5802 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5803 unsigned long start_pfn, end_pfn;
5804 struct memblock_region *r;
5805
5806 for_each_memblock(memory, r) {
5807 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5808 zone_start_pfn, zone_end_pfn);
5809 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5810 zone_start_pfn, zone_end_pfn);
5811
5812 if (zone_type == ZONE_MOVABLE &&
5813 memblock_is_mirror(r))
5814 nr_absent += end_pfn - start_pfn;
5815
5816 if (zone_type == ZONE_NORMAL &&
5817 !memblock_is_mirror(r))
5818 nr_absent += end_pfn - start_pfn;
5819 }
5820 }
5821
5822 return nr_absent;
5823 }
5824
5825 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5826 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5827 unsigned long zone_type,
5828 unsigned long node_start_pfn,
5829 unsigned long node_end_pfn,
5830 unsigned long *zone_start_pfn,
5831 unsigned long *zone_end_pfn,
5832 unsigned long *zones_size)
5833 {
5834 unsigned int zone;
5835
5836 *zone_start_pfn = node_start_pfn;
5837 for (zone = 0; zone < zone_type; zone++)
5838 *zone_start_pfn += zones_size[zone];
5839
5840 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5841
5842 return zones_size[zone_type];
5843 }
5844
5845 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5846 unsigned long zone_type,
5847 unsigned long node_start_pfn,
5848 unsigned long node_end_pfn,
5849 unsigned long *zholes_size)
5850 {
5851 if (!zholes_size)
5852 return 0;
5853
5854 return zholes_size[zone_type];
5855 }
5856
5857 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5858
5859 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5860 unsigned long node_start_pfn,
5861 unsigned long node_end_pfn,
5862 unsigned long *zones_size,
5863 unsigned long *zholes_size)
5864 {
5865 unsigned long realtotalpages = 0, totalpages = 0;
5866 enum zone_type i;
5867
5868 for (i = 0; i < MAX_NR_ZONES; i++) {
5869 struct zone *zone = pgdat->node_zones + i;
5870 unsigned long zone_start_pfn, zone_end_pfn;
5871 unsigned long size, real_size;
5872
5873 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5874 node_start_pfn,
5875 node_end_pfn,
5876 &zone_start_pfn,
5877 &zone_end_pfn,
5878 zones_size);
5879 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5880 node_start_pfn, node_end_pfn,
5881 zholes_size);
5882 if (size)
5883 zone->zone_start_pfn = zone_start_pfn;
5884 else
5885 zone->zone_start_pfn = 0;
5886 zone->spanned_pages = size;
5887 zone->present_pages = real_size;
5888
5889 totalpages += size;
5890 realtotalpages += real_size;
5891 }
5892
5893 pgdat->node_spanned_pages = totalpages;
5894 pgdat->node_present_pages = realtotalpages;
5895 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5896 realtotalpages);
5897 }
5898
5899 #ifndef CONFIG_SPARSEMEM
5900 /*
5901 * Calculate the size of the zone->blockflags rounded to an unsigned long
5902 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5903 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5904 * round what is now in bits to nearest long in bits, then return it in
5905 * bytes.
5906 */
5907 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5908 {
5909 unsigned long usemapsize;
5910
5911 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5912 usemapsize = roundup(zonesize, pageblock_nr_pages);
5913 usemapsize = usemapsize >> pageblock_order;
5914 usemapsize *= NR_PAGEBLOCK_BITS;
5915 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5916
5917 return usemapsize / 8;
5918 }
5919
5920 static void __init setup_usemap(struct pglist_data *pgdat,
5921 struct zone *zone,
5922 unsigned long zone_start_pfn,
5923 unsigned long zonesize)
5924 {
5925 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5926 zone->pageblock_flags = NULL;
5927 if (usemapsize)
5928 zone->pageblock_flags =
5929 memblock_virt_alloc_node_nopanic(usemapsize,
5930 pgdat->node_id);
5931 }
5932 #else
5933 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5934 unsigned long zone_start_pfn, unsigned long zonesize) {}
5935 #endif /* CONFIG_SPARSEMEM */
5936
5937 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5938
5939 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5940 void __paginginit set_pageblock_order(void)
5941 {
5942 unsigned int order;
5943
5944 /* Check that pageblock_nr_pages has not already been setup */
5945 if (pageblock_order)
5946 return;
5947
5948 if (HPAGE_SHIFT > PAGE_SHIFT)
5949 order = HUGETLB_PAGE_ORDER;
5950 else
5951 order = MAX_ORDER - 1;
5952
5953 /*
5954 * Assume the largest contiguous order of interest is a huge page.
5955 * This value may be variable depending on boot parameters on IA64 and
5956 * powerpc.
5957 */
5958 pageblock_order = order;
5959 }
5960 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5961
5962 /*
5963 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5964 * is unused as pageblock_order is set at compile-time. See
5965 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5966 * the kernel config
5967 */
5968 void __paginginit set_pageblock_order(void)
5969 {
5970 }
5971
5972 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5973
5974 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5975 unsigned long present_pages)
5976 {
5977 unsigned long pages = spanned_pages;
5978
5979 /*
5980 * Provide a more accurate estimation if there are holes within
5981 * the zone and SPARSEMEM is in use. If there are holes within the
5982 * zone, each populated memory region may cost us one or two extra
5983 * memmap pages due to alignment because memmap pages for each
5984 * populated regions may not be naturally aligned on page boundary.
5985 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5986 */
5987 if (spanned_pages > present_pages + (present_pages >> 4) &&
5988 IS_ENABLED(CONFIG_SPARSEMEM))
5989 pages = present_pages;
5990
5991 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5992 }
5993
5994 /*
5995 * Set up the zone data structures:
5996 * - mark all pages reserved
5997 * - mark all memory queues empty
5998 * - clear the memory bitmaps
5999 *
6000 * NOTE: pgdat should get zeroed by caller.
6001 */
6002 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6003 {
6004 enum zone_type j;
6005 int nid = pgdat->node_id;
6006
6007 pgdat_resize_init(pgdat);
6008 #ifdef CONFIG_NUMA_BALANCING
6009 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6010 pgdat->numabalancing_migrate_nr_pages = 0;
6011 pgdat->numabalancing_migrate_next_window = jiffies;
6012 #endif
6013 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6014 spin_lock_init(&pgdat->split_queue_lock);
6015 INIT_LIST_HEAD(&pgdat->split_queue);
6016 pgdat->split_queue_len = 0;
6017 #endif
6018 init_waitqueue_head(&pgdat->kswapd_wait);
6019 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6020 #ifdef CONFIG_COMPACTION
6021 init_waitqueue_head(&pgdat->kcompactd_wait);
6022 #endif
6023 pgdat_page_ext_init(pgdat);
6024 spin_lock_init(&pgdat->lru_lock);
6025 lruvec_init(node_lruvec(pgdat));
6026
6027 for (j = 0; j < MAX_NR_ZONES; j++) {
6028 struct zone *zone = pgdat->node_zones + j;
6029 unsigned long size, realsize, freesize, memmap_pages;
6030 unsigned long zone_start_pfn = zone->zone_start_pfn;
6031
6032 size = zone->spanned_pages;
6033 realsize = freesize = zone->present_pages;
6034
6035 /*
6036 * Adjust freesize so that it accounts for how much memory
6037 * is used by this zone for memmap. This affects the watermark
6038 * and per-cpu initialisations
6039 */
6040 memmap_pages = calc_memmap_size(size, realsize);
6041 if (!is_highmem_idx(j)) {
6042 if (freesize >= memmap_pages) {
6043 freesize -= memmap_pages;
6044 if (memmap_pages)
6045 printk(KERN_DEBUG
6046 " %s zone: %lu pages used for memmap\n",
6047 zone_names[j], memmap_pages);
6048 } else
6049 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6050 zone_names[j], memmap_pages, freesize);
6051 }
6052
6053 /* Account for reserved pages */
6054 if (j == 0 && freesize > dma_reserve) {
6055 freesize -= dma_reserve;
6056 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6057 zone_names[0], dma_reserve);
6058 }
6059
6060 if (!is_highmem_idx(j))
6061 nr_kernel_pages += freesize;
6062 /* Charge for highmem memmap if there are enough kernel pages */
6063 else if (nr_kernel_pages > memmap_pages * 2)
6064 nr_kernel_pages -= memmap_pages;
6065 nr_all_pages += freesize;
6066
6067 /*
6068 * Set an approximate value for lowmem here, it will be adjusted
6069 * when the bootmem allocator frees pages into the buddy system.
6070 * And all highmem pages will be managed by the buddy system.
6071 */
6072 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6073 #ifdef CONFIG_NUMA
6074 zone->node = nid;
6075 #endif
6076 zone->name = zone_names[j];
6077 zone->zone_pgdat = pgdat;
6078 spin_lock_init(&zone->lock);
6079 zone_seqlock_init(zone);
6080 zone_pcp_init(zone);
6081
6082 if (!size)
6083 continue;
6084
6085 set_pageblock_order();
6086 setup_usemap(pgdat, zone, zone_start_pfn, size);
6087 init_currently_empty_zone(zone, zone_start_pfn, size);
6088 memmap_init(size, nid, j, zone_start_pfn);
6089 }
6090 }
6091
6092 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6093 {
6094 unsigned long __maybe_unused start = 0;
6095 unsigned long __maybe_unused offset = 0;
6096
6097 /* Skip empty nodes */
6098 if (!pgdat->node_spanned_pages)
6099 return;
6100
6101 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6102 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6103 offset = pgdat->node_start_pfn - start;
6104 /* ia64 gets its own node_mem_map, before this, without bootmem */
6105 if (!pgdat->node_mem_map) {
6106 unsigned long size, end;
6107 struct page *map;
6108
6109 /*
6110 * The zone's endpoints aren't required to be MAX_ORDER
6111 * aligned but the node_mem_map endpoints must be in order
6112 * for the buddy allocator to function correctly.
6113 */
6114 end = pgdat_end_pfn(pgdat);
6115 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6116 size = (end - start) * sizeof(struct page);
6117 map = alloc_remap(pgdat->node_id, size);
6118 if (!map)
6119 map = memblock_virt_alloc_node_nopanic(size,
6120 pgdat->node_id);
6121 pgdat->node_mem_map = map + offset;
6122 }
6123 #ifndef CONFIG_NEED_MULTIPLE_NODES
6124 /*
6125 * With no DISCONTIG, the global mem_map is just set as node 0's
6126 */
6127 if (pgdat == NODE_DATA(0)) {
6128 mem_map = NODE_DATA(0)->node_mem_map;
6129 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6130 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6131 mem_map -= offset;
6132 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6133 }
6134 #endif
6135 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6136 }
6137
6138 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6139 unsigned long node_start_pfn, unsigned long *zholes_size)
6140 {
6141 pg_data_t *pgdat = NODE_DATA(nid);
6142 unsigned long start_pfn = 0;
6143 unsigned long end_pfn = 0;
6144
6145 /* pg_data_t should be reset to zero when it's allocated */
6146 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6147
6148 pgdat->node_id = nid;
6149 pgdat->node_start_pfn = node_start_pfn;
6150 pgdat->per_cpu_nodestats = NULL;
6151 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6152 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6153 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6154 (u64)start_pfn << PAGE_SHIFT,
6155 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6156 #else
6157 start_pfn = node_start_pfn;
6158 #endif
6159 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6160 zones_size, zholes_size);
6161
6162 alloc_node_mem_map(pgdat);
6163 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6164 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6165 nid, (unsigned long)pgdat,
6166 (unsigned long)pgdat->node_mem_map);
6167 #endif
6168
6169 reset_deferred_meminit(pgdat);
6170 free_area_init_core(pgdat);
6171 }
6172
6173 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6174
6175 #if MAX_NUMNODES > 1
6176 /*
6177 * Figure out the number of possible node ids.
6178 */
6179 void __init setup_nr_node_ids(void)
6180 {
6181 unsigned int highest;
6182
6183 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6184 nr_node_ids = highest + 1;
6185 }
6186 #endif
6187
6188 /**
6189 * node_map_pfn_alignment - determine the maximum internode alignment
6190 *
6191 * This function should be called after node map is populated and sorted.
6192 * It calculates the maximum power of two alignment which can distinguish
6193 * all the nodes.
6194 *
6195 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6196 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6197 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6198 * shifted, 1GiB is enough and this function will indicate so.
6199 *
6200 * This is used to test whether pfn -> nid mapping of the chosen memory
6201 * model has fine enough granularity to avoid incorrect mapping for the
6202 * populated node map.
6203 *
6204 * Returns the determined alignment in pfn's. 0 if there is no alignment
6205 * requirement (single node).
6206 */
6207 unsigned long __init node_map_pfn_alignment(void)
6208 {
6209 unsigned long accl_mask = 0, last_end = 0;
6210 unsigned long start, end, mask;
6211 int last_nid = -1;
6212 int i, nid;
6213
6214 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6215 if (!start || last_nid < 0 || last_nid == nid) {
6216 last_nid = nid;
6217 last_end = end;
6218 continue;
6219 }
6220
6221 /*
6222 * Start with a mask granular enough to pin-point to the
6223 * start pfn and tick off bits one-by-one until it becomes
6224 * too coarse to separate the current node from the last.
6225 */
6226 mask = ~((1 << __ffs(start)) - 1);
6227 while (mask && last_end <= (start & (mask << 1)))
6228 mask <<= 1;
6229
6230 /* accumulate all internode masks */
6231 accl_mask |= mask;
6232 }
6233
6234 /* convert mask to number of pages */
6235 return ~accl_mask + 1;
6236 }
6237
6238 /* Find the lowest pfn for a node */
6239 static unsigned long __init find_min_pfn_for_node(int nid)
6240 {
6241 unsigned long min_pfn = ULONG_MAX;
6242 unsigned long start_pfn;
6243 int i;
6244
6245 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6246 min_pfn = min(min_pfn, start_pfn);
6247
6248 if (min_pfn == ULONG_MAX) {
6249 pr_warn("Could not find start_pfn for node %d\n", nid);
6250 return 0;
6251 }
6252
6253 return min_pfn;
6254 }
6255
6256 /**
6257 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6258 *
6259 * It returns the minimum PFN based on information provided via
6260 * memblock_set_node().
6261 */
6262 unsigned long __init find_min_pfn_with_active_regions(void)
6263 {
6264 return find_min_pfn_for_node(MAX_NUMNODES);
6265 }
6266
6267 /*
6268 * early_calculate_totalpages()
6269 * Sum pages in active regions for movable zone.
6270 * Populate N_MEMORY for calculating usable_nodes.
6271 */
6272 static unsigned long __init early_calculate_totalpages(void)
6273 {
6274 unsigned long totalpages = 0;
6275 unsigned long start_pfn, end_pfn;
6276 int i, nid;
6277
6278 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6279 unsigned long pages = end_pfn - start_pfn;
6280
6281 totalpages += pages;
6282 if (pages)
6283 node_set_state(nid, N_MEMORY);
6284 }
6285 return totalpages;
6286 }
6287
6288 /*
6289 * Find the PFN the Movable zone begins in each node. Kernel memory
6290 * is spread evenly between nodes as long as the nodes have enough
6291 * memory. When they don't, some nodes will have more kernelcore than
6292 * others
6293 */
6294 static void __init find_zone_movable_pfns_for_nodes(void)
6295 {
6296 int i, nid;
6297 unsigned long usable_startpfn;
6298 unsigned long kernelcore_node, kernelcore_remaining;
6299 /* save the state before borrow the nodemask */
6300 nodemask_t saved_node_state = node_states[N_MEMORY];
6301 unsigned long totalpages = early_calculate_totalpages();
6302 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6303 struct memblock_region *r;
6304
6305 /* Need to find movable_zone earlier when movable_node is specified. */
6306 find_usable_zone_for_movable();
6307
6308 /*
6309 * If movable_node is specified, ignore kernelcore and movablecore
6310 * options.
6311 */
6312 if (movable_node_is_enabled()) {
6313 for_each_memblock(memory, r) {
6314 if (!memblock_is_hotpluggable(r))
6315 continue;
6316
6317 nid = r->nid;
6318
6319 usable_startpfn = PFN_DOWN(r->base);
6320 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6321 min(usable_startpfn, zone_movable_pfn[nid]) :
6322 usable_startpfn;
6323 }
6324
6325 goto out2;
6326 }
6327
6328 /*
6329 * If kernelcore=mirror is specified, ignore movablecore option
6330 */
6331 if (mirrored_kernelcore) {
6332 bool mem_below_4gb_not_mirrored = false;
6333
6334 for_each_memblock(memory, r) {
6335 if (memblock_is_mirror(r))
6336 continue;
6337
6338 nid = r->nid;
6339
6340 usable_startpfn = memblock_region_memory_base_pfn(r);
6341
6342 if (usable_startpfn < 0x100000) {
6343 mem_below_4gb_not_mirrored = true;
6344 continue;
6345 }
6346
6347 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6348 min(usable_startpfn, zone_movable_pfn[nid]) :
6349 usable_startpfn;
6350 }
6351
6352 if (mem_below_4gb_not_mirrored)
6353 pr_warn("This configuration results in unmirrored kernel memory.");
6354
6355 goto out2;
6356 }
6357
6358 /*
6359 * If movablecore=nn[KMG] was specified, calculate what size of
6360 * kernelcore that corresponds so that memory usable for
6361 * any allocation type is evenly spread. If both kernelcore
6362 * and movablecore are specified, then the value of kernelcore
6363 * will be used for required_kernelcore if it's greater than
6364 * what movablecore would have allowed.
6365 */
6366 if (required_movablecore) {
6367 unsigned long corepages;
6368
6369 /*
6370 * Round-up so that ZONE_MOVABLE is at least as large as what
6371 * was requested by the user
6372 */
6373 required_movablecore =
6374 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6375 required_movablecore = min(totalpages, required_movablecore);
6376 corepages = totalpages - required_movablecore;
6377
6378 required_kernelcore = max(required_kernelcore, corepages);
6379 }
6380
6381 /*
6382 * If kernelcore was not specified or kernelcore size is larger
6383 * than totalpages, there is no ZONE_MOVABLE.
6384 */
6385 if (!required_kernelcore || required_kernelcore >= totalpages)
6386 goto out;
6387
6388 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6389 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6390
6391 restart:
6392 /* Spread kernelcore memory as evenly as possible throughout nodes */
6393 kernelcore_node = required_kernelcore / usable_nodes;
6394 for_each_node_state(nid, N_MEMORY) {
6395 unsigned long start_pfn, end_pfn;
6396
6397 /*
6398 * Recalculate kernelcore_node if the division per node
6399 * now exceeds what is necessary to satisfy the requested
6400 * amount of memory for the kernel
6401 */
6402 if (required_kernelcore < kernelcore_node)
6403 kernelcore_node = required_kernelcore / usable_nodes;
6404
6405 /*
6406 * As the map is walked, we track how much memory is usable
6407 * by the kernel using kernelcore_remaining. When it is
6408 * 0, the rest of the node is usable by ZONE_MOVABLE
6409 */
6410 kernelcore_remaining = kernelcore_node;
6411
6412 /* Go through each range of PFNs within this node */
6413 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6414 unsigned long size_pages;
6415
6416 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6417 if (start_pfn >= end_pfn)
6418 continue;
6419
6420 /* Account for what is only usable for kernelcore */
6421 if (start_pfn < usable_startpfn) {
6422 unsigned long kernel_pages;
6423 kernel_pages = min(end_pfn, usable_startpfn)
6424 - start_pfn;
6425
6426 kernelcore_remaining -= min(kernel_pages,
6427 kernelcore_remaining);
6428 required_kernelcore -= min(kernel_pages,
6429 required_kernelcore);
6430
6431 /* Continue if range is now fully accounted */
6432 if (end_pfn <= usable_startpfn) {
6433
6434 /*
6435 * Push zone_movable_pfn to the end so
6436 * that if we have to rebalance
6437 * kernelcore across nodes, we will
6438 * not double account here
6439 */
6440 zone_movable_pfn[nid] = end_pfn;
6441 continue;
6442 }
6443 start_pfn = usable_startpfn;
6444 }
6445
6446 /*
6447 * The usable PFN range for ZONE_MOVABLE is from
6448 * start_pfn->end_pfn. Calculate size_pages as the
6449 * number of pages used as kernelcore
6450 */
6451 size_pages = end_pfn - start_pfn;
6452 if (size_pages > kernelcore_remaining)
6453 size_pages = kernelcore_remaining;
6454 zone_movable_pfn[nid] = start_pfn + size_pages;
6455
6456 /*
6457 * Some kernelcore has been met, update counts and
6458 * break if the kernelcore for this node has been
6459 * satisfied
6460 */
6461 required_kernelcore -= min(required_kernelcore,
6462 size_pages);
6463 kernelcore_remaining -= size_pages;
6464 if (!kernelcore_remaining)
6465 break;
6466 }
6467 }
6468
6469 /*
6470 * If there is still required_kernelcore, we do another pass with one
6471 * less node in the count. This will push zone_movable_pfn[nid] further
6472 * along on the nodes that still have memory until kernelcore is
6473 * satisfied
6474 */
6475 usable_nodes--;
6476 if (usable_nodes && required_kernelcore > usable_nodes)
6477 goto restart;
6478
6479 out2:
6480 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6481 for (nid = 0; nid < MAX_NUMNODES; nid++)
6482 zone_movable_pfn[nid] =
6483 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6484
6485 out:
6486 /* restore the node_state */
6487 node_states[N_MEMORY] = saved_node_state;
6488 }
6489
6490 /* Any regular or high memory on that node ? */
6491 static void check_for_memory(pg_data_t *pgdat, int nid)
6492 {
6493 enum zone_type zone_type;
6494
6495 if (N_MEMORY == N_NORMAL_MEMORY)
6496 return;
6497
6498 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6499 struct zone *zone = &pgdat->node_zones[zone_type];
6500 if (populated_zone(zone)) {
6501 node_set_state(nid, N_HIGH_MEMORY);
6502 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6503 zone_type <= ZONE_NORMAL)
6504 node_set_state(nid, N_NORMAL_MEMORY);
6505 break;
6506 }
6507 }
6508 }
6509
6510 /**
6511 * free_area_init_nodes - Initialise all pg_data_t and zone data
6512 * @max_zone_pfn: an array of max PFNs for each zone
6513 *
6514 * This will call free_area_init_node() for each active node in the system.
6515 * Using the page ranges provided by memblock_set_node(), the size of each
6516 * zone in each node and their holes is calculated. If the maximum PFN
6517 * between two adjacent zones match, it is assumed that the zone is empty.
6518 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6519 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6520 * starts where the previous one ended. For example, ZONE_DMA32 starts
6521 * at arch_max_dma_pfn.
6522 */
6523 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6524 {
6525 unsigned long start_pfn, end_pfn;
6526 int i, nid;
6527
6528 /* Record where the zone boundaries are */
6529 memset(arch_zone_lowest_possible_pfn, 0,
6530 sizeof(arch_zone_lowest_possible_pfn));
6531 memset(arch_zone_highest_possible_pfn, 0,
6532 sizeof(arch_zone_highest_possible_pfn));
6533
6534 start_pfn = find_min_pfn_with_active_regions();
6535
6536 for (i = 0; i < MAX_NR_ZONES; i++) {
6537 if (i == ZONE_MOVABLE)
6538 continue;
6539
6540 end_pfn = max(max_zone_pfn[i], start_pfn);
6541 arch_zone_lowest_possible_pfn[i] = start_pfn;
6542 arch_zone_highest_possible_pfn[i] = end_pfn;
6543
6544 start_pfn = end_pfn;
6545 }
6546
6547 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6548 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6549 find_zone_movable_pfns_for_nodes();
6550
6551 /* Print out the zone ranges */
6552 pr_info("Zone ranges:\n");
6553 for (i = 0; i < MAX_NR_ZONES; i++) {
6554 if (i == ZONE_MOVABLE)
6555 continue;
6556 pr_info(" %-8s ", zone_names[i]);
6557 if (arch_zone_lowest_possible_pfn[i] ==
6558 arch_zone_highest_possible_pfn[i])
6559 pr_cont("empty\n");
6560 else
6561 pr_cont("[mem %#018Lx-%#018Lx]\n",
6562 (u64)arch_zone_lowest_possible_pfn[i]
6563 << PAGE_SHIFT,
6564 ((u64)arch_zone_highest_possible_pfn[i]
6565 << PAGE_SHIFT) - 1);
6566 }
6567
6568 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6569 pr_info("Movable zone start for each node\n");
6570 for (i = 0; i < MAX_NUMNODES; i++) {
6571 if (zone_movable_pfn[i])
6572 pr_info(" Node %d: %#018Lx\n", i,
6573 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6574 }
6575
6576 /* Print out the early node map */
6577 pr_info("Early memory node ranges\n");
6578 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6579 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6580 (u64)start_pfn << PAGE_SHIFT,
6581 ((u64)end_pfn << PAGE_SHIFT) - 1);
6582
6583 /* Initialise every node */
6584 mminit_verify_pageflags_layout();
6585 setup_nr_node_ids();
6586 for_each_online_node(nid) {
6587 pg_data_t *pgdat = NODE_DATA(nid);
6588 free_area_init_node(nid, NULL,
6589 find_min_pfn_for_node(nid), NULL);
6590
6591 /* Any memory on that node */
6592 if (pgdat->node_present_pages)
6593 node_set_state(nid, N_MEMORY);
6594 check_for_memory(pgdat, nid);
6595 }
6596 }
6597
6598 static int __init cmdline_parse_core(char *p, unsigned long *core)
6599 {
6600 unsigned long long coremem;
6601 if (!p)
6602 return -EINVAL;
6603
6604 coremem = memparse(p, &p);
6605 *core = coremem >> PAGE_SHIFT;
6606
6607 /* Paranoid check that UL is enough for the coremem value */
6608 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6609
6610 return 0;
6611 }
6612
6613 /*
6614 * kernelcore=size sets the amount of memory for use for allocations that
6615 * cannot be reclaimed or migrated.
6616 */
6617 static int __init cmdline_parse_kernelcore(char *p)
6618 {
6619 /* parse kernelcore=mirror */
6620 if (parse_option_str(p, "mirror")) {
6621 mirrored_kernelcore = true;
6622 return 0;
6623 }
6624
6625 return cmdline_parse_core(p, &required_kernelcore);
6626 }
6627
6628 /*
6629 * movablecore=size sets the amount of memory for use for allocations that
6630 * can be reclaimed or migrated.
6631 */
6632 static int __init cmdline_parse_movablecore(char *p)
6633 {
6634 return cmdline_parse_core(p, &required_movablecore);
6635 }
6636
6637 early_param("kernelcore", cmdline_parse_kernelcore);
6638 early_param("movablecore", cmdline_parse_movablecore);
6639
6640 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6641
6642 void adjust_managed_page_count(struct page *page, long count)
6643 {
6644 spin_lock(&managed_page_count_lock);
6645 page_zone(page)->managed_pages += count;
6646 totalram_pages += count;
6647 #ifdef CONFIG_HIGHMEM
6648 if (PageHighMem(page))
6649 totalhigh_pages += count;
6650 #endif
6651 spin_unlock(&managed_page_count_lock);
6652 }
6653 EXPORT_SYMBOL(adjust_managed_page_count);
6654
6655 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6656 {
6657 void *pos;
6658 unsigned long pages = 0;
6659
6660 start = (void *)PAGE_ALIGN((unsigned long)start);
6661 end = (void *)((unsigned long)end & PAGE_MASK);
6662 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6663 if ((unsigned int)poison <= 0xFF)
6664 memset(pos, poison, PAGE_SIZE);
6665 free_reserved_page(virt_to_page(pos));
6666 }
6667
6668 if (pages && s)
6669 pr_info("Freeing %s memory: %ldK\n",
6670 s, pages << (PAGE_SHIFT - 10));
6671
6672 return pages;
6673 }
6674 EXPORT_SYMBOL(free_reserved_area);
6675
6676 #ifdef CONFIG_HIGHMEM
6677 void free_highmem_page(struct page *page)
6678 {
6679 __free_reserved_page(page);
6680 totalram_pages++;
6681 page_zone(page)->managed_pages++;
6682 totalhigh_pages++;
6683 }
6684 #endif
6685
6686
6687 void __init mem_init_print_info(const char *str)
6688 {
6689 unsigned long physpages, codesize, datasize, rosize, bss_size;
6690 unsigned long init_code_size, init_data_size;
6691
6692 physpages = get_num_physpages();
6693 codesize = _etext - _stext;
6694 datasize = _edata - _sdata;
6695 rosize = __end_rodata - __start_rodata;
6696 bss_size = __bss_stop - __bss_start;
6697 init_data_size = __init_end - __init_begin;
6698 init_code_size = _einittext - _sinittext;
6699
6700 /*
6701 * Detect special cases and adjust section sizes accordingly:
6702 * 1) .init.* may be embedded into .data sections
6703 * 2) .init.text.* may be out of [__init_begin, __init_end],
6704 * please refer to arch/tile/kernel/vmlinux.lds.S.
6705 * 3) .rodata.* may be embedded into .text or .data sections.
6706 */
6707 #define adj_init_size(start, end, size, pos, adj) \
6708 do { \
6709 if (start <= pos && pos < end && size > adj) \
6710 size -= adj; \
6711 } while (0)
6712
6713 adj_init_size(__init_begin, __init_end, init_data_size,
6714 _sinittext, init_code_size);
6715 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6716 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6717 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6718 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6719
6720 #undef adj_init_size
6721
6722 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6723 #ifdef CONFIG_HIGHMEM
6724 ", %luK highmem"
6725 #endif
6726 "%s%s)\n",
6727 nr_free_pages() << (PAGE_SHIFT - 10),
6728 physpages << (PAGE_SHIFT - 10),
6729 codesize >> 10, datasize >> 10, rosize >> 10,
6730 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6731 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6732 totalcma_pages << (PAGE_SHIFT - 10),
6733 #ifdef CONFIG_HIGHMEM
6734 totalhigh_pages << (PAGE_SHIFT - 10),
6735 #endif
6736 str ? ", " : "", str ? str : "");
6737 }
6738
6739 /**
6740 * set_dma_reserve - set the specified number of pages reserved in the first zone
6741 * @new_dma_reserve: The number of pages to mark reserved
6742 *
6743 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6744 * In the DMA zone, a significant percentage may be consumed by kernel image
6745 * and other unfreeable allocations which can skew the watermarks badly. This
6746 * function may optionally be used to account for unfreeable pages in the
6747 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6748 * smaller per-cpu batchsize.
6749 */
6750 void __init set_dma_reserve(unsigned long new_dma_reserve)
6751 {
6752 dma_reserve = new_dma_reserve;
6753 }
6754
6755 void __init free_area_init(unsigned long *zones_size)
6756 {
6757 free_area_init_node(0, zones_size,
6758 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6759 }
6760
6761 static int page_alloc_cpu_dead(unsigned int cpu)
6762 {
6763
6764 lru_add_drain_cpu(cpu);
6765 drain_pages(cpu);
6766
6767 /*
6768 * Spill the event counters of the dead processor
6769 * into the current processors event counters.
6770 * This artificially elevates the count of the current
6771 * processor.
6772 */
6773 vm_events_fold_cpu(cpu);
6774
6775 /*
6776 * Zero the differential counters of the dead processor
6777 * so that the vm statistics are consistent.
6778 *
6779 * This is only okay since the processor is dead and cannot
6780 * race with what we are doing.
6781 */
6782 cpu_vm_stats_fold(cpu);
6783 return 0;
6784 }
6785
6786 void __init page_alloc_init(void)
6787 {
6788 int ret;
6789
6790 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6791 "mm/page_alloc:dead", NULL,
6792 page_alloc_cpu_dead);
6793 WARN_ON(ret < 0);
6794 }
6795
6796 /*
6797 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6798 * or min_free_kbytes changes.
6799 */
6800 static void calculate_totalreserve_pages(void)
6801 {
6802 struct pglist_data *pgdat;
6803 unsigned long reserve_pages = 0;
6804 enum zone_type i, j;
6805
6806 for_each_online_pgdat(pgdat) {
6807
6808 pgdat->totalreserve_pages = 0;
6809
6810 for (i = 0; i < MAX_NR_ZONES; i++) {
6811 struct zone *zone = pgdat->node_zones + i;
6812 long max = 0;
6813
6814 /* Find valid and maximum lowmem_reserve in the zone */
6815 for (j = i; j < MAX_NR_ZONES; j++) {
6816 if (zone->lowmem_reserve[j] > max)
6817 max = zone->lowmem_reserve[j];
6818 }
6819
6820 /* we treat the high watermark as reserved pages. */
6821 max += high_wmark_pages(zone);
6822
6823 if (max > zone->managed_pages)
6824 max = zone->managed_pages;
6825
6826 pgdat->totalreserve_pages += max;
6827
6828 reserve_pages += max;
6829 }
6830 }
6831 totalreserve_pages = reserve_pages;
6832 }
6833
6834 /*
6835 * setup_per_zone_lowmem_reserve - called whenever
6836 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6837 * has a correct pages reserved value, so an adequate number of
6838 * pages are left in the zone after a successful __alloc_pages().
6839 */
6840 static void setup_per_zone_lowmem_reserve(void)
6841 {
6842 struct pglist_data *pgdat;
6843 enum zone_type j, idx;
6844
6845 for_each_online_pgdat(pgdat) {
6846 for (j = 0; j < MAX_NR_ZONES; j++) {
6847 struct zone *zone = pgdat->node_zones + j;
6848 unsigned long managed_pages = zone->managed_pages;
6849
6850 zone->lowmem_reserve[j] = 0;
6851
6852 idx = j;
6853 while (idx) {
6854 struct zone *lower_zone;
6855
6856 idx--;
6857
6858 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6859 sysctl_lowmem_reserve_ratio[idx] = 1;
6860
6861 lower_zone = pgdat->node_zones + idx;
6862 lower_zone->lowmem_reserve[j] = managed_pages /
6863 sysctl_lowmem_reserve_ratio[idx];
6864 managed_pages += lower_zone->managed_pages;
6865 }
6866 }
6867 }
6868
6869 /* update totalreserve_pages */
6870 calculate_totalreserve_pages();
6871 }
6872
6873 static void __setup_per_zone_wmarks(void)
6874 {
6875 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6876 unsigned long lowmem_pages = 0;
6877 struct zone *zone;
6878 unsigned long flags;
6879
6880 /* Calculate total number of !ZONE_HIGHMEM pages */
6881 for_each_zone(zone) {
6882 if (!is_highmem(zone))
6883 lowmem_pages += zone->managed_pages;
6884 }
6885
6886 for_each_zone(zone) {
6887 u64 tmp;
6888
6889 spin_lock_irqsave(&zone->lock, flags);
6890 tmp = (u64)pages_min * zone->managed_pages;
6891 do_div(tmp, lowmem_pages);
6892 if (is_highmem(zone)) {
6893 /*
6894 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6895 * need highmem pages, so cap pages_min to a small
6896 * value here.
6897 *
6898 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6899 * deltas control asynch page reclaim, and so should
6900 * not be capped for highmem.
6901 */
6902 unsigned long min_pages;
6903
6904 min_pages = zone->managed_pages / 1024;
6905 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6906 zone->watermark[WMARK_MIN] = min_pages;
6907 } else {
6908 /*
6909 * If it's a lowmem zone, reserve a number of pages
6910 * proportionate to the zone's size.
6911 */
6912 zone->watermark[WMARK_MIN] = tmp;
6913 }
6914
6915 /*
6916 * Set the kswapd watermarks distance according to the
6917 * scale factor in proportion to available memory, but
6918 * ensure a minimum size on small systems.
6919 */
6920 tmp = max_t(u64, tmp >> 2,
6921 mult_frac(zone->managed_pages,
6922 watermark_scale_factor, 10000));
6923
6924 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6925 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6926
6927 spin_unlock_irqrestore(&zone->lock, flags);
6928 }
6929
6930 /* update totalreserve_pages */
6931 calculate_totalreserve_pages();
6932 }
6933
6934 /**
6935 * setup_per_zone_wmarks - called when min_free_kbytes changes
6936 * or when memory is hot-{added|removed}
6937 *
6938 * Ensures that the watermark[min,low,high] values for each zone are set
6939 * correctly with respect to min_free_kbytes.
6940 */
6941 void setup_per_zone_wmarks(void)
6942 {
6943 mutex_lock(&zonelists_mutex);
6944 __setup_per_zone_wmarks();
6945 mutex_unlock(&zonelists_mutex);
6946 }
6947
6948 /*
6949 * Initialise min_free_kbytes.
6950 *
6951 * For small machines we want it small (128k min). For large machines
6952 * we want it large (64MB max). But it is not linear, because network
6953 * bandwidth does not increase linearly with machine size. We use
6954 *
6955 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6956 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6957 *
6958 * which yields
6959 *
6960 * 16MB: 512k
6961 * 32MB: 724k
6962 * 64MB: 1024k
6963 * 128MB: 1448k
6964 * 256MB: 2048k
6965 * 512MB: 2896k
6966 * 1024MB: 4096k
6967 * 2048MB: 5792k
6968 * 4096MB: 8192k
6969 * 8192MB: 11584k
6970 * 16384MB: 16384k
6971 */
6972 int __meminit init_per_zone_wmark_min(void)
6973 {
6974 unsigned long lowmem_kbytes;
6975 int new_min_free_kbytes;
6976
6977 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6978 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6979
6980 if (new_min_free_kbytes > user_min_free_kbytes) {
6981 min_free_kbytes = new_min_free_kbytes;
6982 if (min_free_kbytes < 128)
6983 min_free_kbytes = 128;
6984 if (min_free_kbytes > 65536)
6985 min_free_kbytes = 65536;
6986 } else {
6987 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6988 new_min_free_kbytes, user_min_free_kbytes);
6989 }
6990 setup_per_zone_wmarks();
6991 refresh_zone_stat_thresholds();
6992 setup_per_zone_lowmem_reserve();
6993
6994 #ifdef CONFIG_NUMA
6995 setup_min_unmapped_ratio();
6996 setup_min_slab_ratio();
6997 #endif
6998
6999 return 0;
7000 }
7001 core_initcall(init_per_zone_wmark_min)
7002
7003 /*
7004 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7005 * that we can call two helper functions whenever min_free_kbytes
7006 * changes.
7007 */
7008 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7009 void __user *buffer, size_t *length, loff_t *ppos)
7010 {
7011 int rc;
7012
7013 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7014 if (rc)
7015 return rc;
7016
7017 if (write) {
7018 user_min_free_kbytes = min_free_kbytes;
7019 setup_per_zone_wmarks();
7020 }
7021 return 0;
7022 }
7023
7024 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7025 void __user *buffer, size_t *length, loff_t *ppos)
7026 {
7027 int rc;
7028
7029 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7030 if (rc)
7031 return rc;
7032
7033 if (write)
7034 setup_per_zone_wmarks();
7035
7036 return 0;
7037 }
7038
7039 #ifdef CONFIG_NUMA
7040 static void setup_min_unmapped_ratio(void)
7041 {
7042 pg_data_t *pgdat;
7043 struct zone *zone;
7044
7045 for_each_online_pgdat(pgdat)
7046 pgdat->min_unmapped_pages = 0;
7047
7048 for_each_zone(zone)
7049 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7050 sysctl_min_unmapped_ratio) / 100;
7051 }
7052
7053
7054 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7055 void __user *buffer, size_t *length, loff_t *ppos)
7056 {
7057 int rc;
7058
7059 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7060 if (rc)
7061 return rc;
7062
7063 setup_min_unmapped_ratio();
7064
7065 return 0;
7066 }
7067
7068 static void setup_min_slab_ratio(void)
7069 {
7070 pg_data_t *pgdat;
7071 struct zone *zone;
7072
7073 for_each_online_pgdat(pgdat)
7074 pgdat->min_slab_pages = 0;
7075
7076 for_each_zone(zone)
7077 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7078 sysctl_min_slab_ratio) / 100;
7079 }
7080
7081 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7082 void __user *buffer, size_t *length, loff_t *ppos)
7083 {
7084 int rc;
7085
7086 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7087 if (rc)
7088 return rc;
7089
7090 setup_min_slab_ratio();
7091
7092 return 0;
7093 }
7094 #endif
7095
7096 /*
7097 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7098 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7099 * whenever sysctl_lowmem_reserve_ratio changes.
7100 *
7101 * The reserve ratio obviously has absolutely no relation with the
7102 * minimum watermarks. The lowmem reserve ratio can only make sense
7103 * if in function of the boot time zone sizes.
7104 */
7105 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7106 void __user *buffer, size_t *length, loff_t *ppos)
7107 {
7108 proc_dointvec_minmax(table, write, buffer, length, ppos);
7109 setup_per_zone_lowmem_reserve();
7110 return 0;
7111 }
7112
7113 /*
7114 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7115 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7116 * pagelist can have before it gets flushed back to buddy allocator.
7117 */
7118 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7119 void __user *buffer, size_t *length, loff_t *ppos)
7120 {
7121 struct zone *zone;
7122 int old_percpu_pagelist_fraction;
7123 int ret;
7124
7125 mutex_lock(&pcp_batch_high_lock);
7126 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7127
7128 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7129 if (!write || ret < 0)
7130 goto out;
7131
7132 /* Sanity checking to avoid pcp imbalance */
7133 if (percpu_pagelist_fraction &&
7134 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7135 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7136 ret = -EINVAL;
7137 goto out;
7138 }
7139
7140 /* No change? */
7141 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7142 goto out;
7143
7144 for_each_populated_zone(zone) {
7145 unsigned int cpu;
7146
7147 for_each_possible_cpu(cpu)
7148 pageset_set_high_and_batch(zone,
7149 per_cpu_ptr(zone->pageset, cpu));
7150 }
7151 out:
7152 mutex_unlock(&pcp_batch_high_lock);
7153 return ret;
7154 }
7155
7156 #ifdef CONFIG_NUMA
7157 int hashdist = HASHDIST_DEFAULT;
7158
7159 static int __init set_hashdist(char *str)
7160 {
7161 if (!str)
7162 return 0;
7163 hashdist = simple_strtoul(str, &str, 0);
7164 return 1;
7165 }
7166 __setup("hashdist=", set_hashdist);
7167 #endif
7168
7169 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7170 /*
7171 * Returns the number of pages that arch has reserved but
7172 * is not known to alloc_large_system_hash().
7173 */
7174 static unsigned long __init arch_reserved_kernel_pages(void)
7175 {
7176 return 0;
7177 }
7178 #endif
7179
7180 /*
7181 * allocate a large system hash table from bootmem
7182 * - it is assumed that the hash table must contain an exact power-of-2
7183 * quantity of entries
7184 * - limit is the number of hash buckets, not the total allocation size
7185 */
7186 void *__init alloc_large_system_hash(const char *tablename,
7187 unsigned long bucketsize,
7188 unsigned long numentries,
7189 int scale,
7190 int flags,
7191 unsigned int *_hash_shift,
7192 unsigned int *_hash_mask,
7193 unsigned long low_limit,
7194 unsigned long high_limit)
7195 {
7196 unsigned long long max = high_limit;
7197 unsigned long log2qty, size;
7198 void *table = NULL;
7199
7200 /* allow the kernel cmdline to have a say */
7201 if (!numentries) {
7202 /* round applicable memory size up to nearest megabyte */
7203 numentries = nr_kernel_pages;
7204 numentries -= arch_reserved_kernel_pages();
7205
7206 /* It isn't necessary when PAGE_SIZE >= 1MB */
7207 if (PAGE_SHIFT < 20)
7208 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7209
7210 /* limit to 1 bucket per 2^scale bytes of low memory */
7211 if (scale > PAGE_SHIFT)
7212 numentries >>= (scale - PAGE_SHIFT);
7213 else
7214 numentries <<= (PAGE_SHIFT - scale);
7215
7216 /* Make sure we've got at least a 0-order allocation.. */
7217 if (unlikely(flags & HASH_SMALL)) {
7218 /* Makes no sense without HASH_EARLY */
7219 WARN_ON(!(flags & HASH_EARLY));
7220 if (!(numentries >> *_hash_shift)) {
7221 numentries = 1UL << *_hash_shift;
7222 BUG_ON(!numentries);
7223 }
7224 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7225 numentries = PAGE_SIZE / bucketsize;
7226 }
7227 numentries = roundup_pow_of_two(numentries);
7228
7229 /* limit allocation size to 1/16 total memory by default */
7230 if (max == 0) {
7231 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7232 do_div(max, bucketsize);
7233 }
7234 max = min(max, 0x80000000ULL);
7235
7236 if (numentries < low_limit)
7237 numentries = low_limit;
7238 if (numentries > max)
7239 numentries = max;
7240
7241 log2qty = ilog2(numentries);
7242
7243 do {
7244 size = bucketsize << log2qty;
7245 if (flags & HASH_EARLY)
7246 table = memblock_virt_alloc_nopanic(size, 0);
7247 else if (hashdist)
7248 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7249 else {
7250 /*
7251 * If bucketsize is not a power-of-two, we may free
7252 * some pages at the end of hash table which
7253 * alloc_pages_exact() automatically does
7254 */
7255 if (get_order(size) < MAX_ORDER) {
7256 table = alloc_pages_exact(size, GFP_ATOMIC);
7257 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7258 }
7259 }
7260 } while (!table && size > PAGE_SIZE && --log2qty);
7261
7262 if (!table)
7263 panic("Failed to allocate %s hash table\n", tablename);
7264
7265 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7266 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7267
7268 if (_hash_shift)
7269 *_hash_shift = log2qty;
7270 if (_hash_mask)
7271 *_hash_mask = (1 << log2qty) - 1;
7272
7273 return table;
7274 }
7275
7276 /*
7277 * This function checks whether pageblock includes unmovable pages or not.
7278 * If @count is not zero, it is okay to include less @count unmovable pages
7279 *
7280 * PageLRU check without isolation or lru_lock could race so that
7281 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7282 * check without lock_page also may miss some movable non-lru pages at
7283 * race condition. So you can't expect this function should be exact.
7284 */
7285 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7286 bool skip_hwpoisoned_pages)
7287 {
7288 unsigned long pfn, iter, found;
7289 int mt;
7290
7291 /*
7292 * For avoiding noise data, lru_add_drain_all() should be called
7293 * If ZONE_MOVABLE, the zone never contains unmovable pages
7294 */
7295 if (zone_idx(zone) == ZONE_MOVABLE)
7296 return false;
7297 mt = get_pageblock_migratetype(page);
7298 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7299 return false;
7300
7301 pfn = page_to_pfn(page);
7302 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7303 unsigned long check = pfn + iter;
7304
7305 if (!pfn_valid_within(check))
7306 continue;
7307
7308 page = pfn_to_page(check);
7309
7310 /*
7311 * Hugepages are not in LRU lists, but they're movable.
7312 * We need not scan over tail pages bacause we don't
7313 * handle each tail page individually in migration.
7314 */
7315 if (PageHuge(page)) {
7316 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7317 continue;
7318 }
7319
7320 /*
7321 * We can't use page_count without pin a page
7322 * because another CPU can free compound page.
7323 * This check already skips compound tails of THP
7324 * because their page->_refcount is zero at all time.
7325 */
7326 if (!page_ref_count(page)) {
7327 if (PageBuddy(page))
7328 iter += (1 << page_order(page)) - 1;
7329 continue;
7330 }
7331
7332 /*
7333 * The HWPoisoned page may be not in buddy system, and
7334 * page_count() is not 0.
7335 */
7336 if (skip_hwpoisoned_pages && PageHWPoison(page))
7337 continue;
7338
7339 if (__PageMovable(page))
7340 continue;
7341
7342 if (!PageLRU(page))
7343 found++;
7344 /*
7345 * If there are RECLAIMABLE pages, we need to check
7346 * it. But now, memory offline itself doesn't call
7347 * shrink_node_slabs() and it still to be fixed.
7348 */
7349 /*
7350 * If the page is not RAM, page_count()should be 0.
7351 * we don't need more check. This is an _used_ not-movable page.
7352 *
7353 * The problematic thing here is PG_reserved pages. PG_reserved
7354 * is set to both of a memory hole page and a _used_ kernel
7355 * page at boot.
7356 */
7357 if (found > count)
7358 return true;
7359 }
7360 return false;
7361 }
7362
7363 bool is_pageblock_removable_nolock(struct page *page)
7364 {
7365 struct zone *zone;
7366 unsigned long pfn;
7367
7368 /*
7369 * We have to be careful here because we are iterating over memory
7370 * sections which are not zone aware so we might end up outside of
7371 * the zone but still within the section.
7372 * We have to take care about the node as well. If the node is offline
7373 * its NODE_DATA will be NULL - see page_zone.
7374 */
7375 if (!node_online(page_to_nid(page)))
7376 return false;
7377
7378 zone = page_zone(page);
7379 pfn = page_to_pfn(page);
7380 if (!zone_spans_pfn(zone, pfn))
7381 return false;
7382
7383 return !has_unmovable_pages(zone, page, 0, true);
7384 }
7385
7386 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7387
7388 static unsigned long pfn_max_align_down(unsigned long pfn)
7389 {
7390 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7391 pageblock_nr_pages) - 1);
7392 }
7393
7394 static unsigned long pfn_max_align_up(unsigned long pfn)
7395 {
7396 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7397 pageblock_nr_pages));
7398 }
7399
7400 /* [start, end) must belong to a single zone. */
7401 static int __alloc_contig_migrate_range(struct compact_control *cc,
7402 unsigned long start, unsigned long end)
7403 {
7404 /* This function is based on compact_zone() from compaction.c. */
7405 unsigned long nr_reclaimed;
7406 unsigned long pfn = start;
7407 unsigned int tries = 0;
7408 int ret = 0;
7409
7410 migrate_prep();
7411
7412 while (pfn < end || !list_empty(&cc->migratepages)) {
7413 if (fatal_signal_pending(current)) {
7414 ret = -EINTR;
7415 break;
7416 }
7417
7418 if (list_empty(&cc->migratepages)) {
7419 cc->nr_migratepages = 0;
7420 pfn = isolate_migratepages_range(cc, pfn, end);
7421 if (!pfn) {
7422 ret = -EINTR;
7423 break;
7424 }
7425 tries = 0;
7426 } else if (++tries == 5) {
7427 ret = ret < 0 ? ret : -EBUSY;
7428 break;
7429 }
7430
7431 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7432 &cc->migratepages);
7433 cc->nr_migratepages -= nr_reclaimed;
7434
7435 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7436 NULL, 0, cc->mode, MR_CMA);
7437 }
7438 if (ret < 0) {
7439 putback_movable_pages(&cc->migratepages);
7440 return ret;
7441 }
7442 return 0;
7443 }
7444
7445 /**
7446 * alloc_contig_range() -- tries to allocate given range of pages
7447 * @start: start PFN to allocate
7448 * @end: one-past-the-last PFN to allocate
7449 * @migratetype: migratetype of the underlaying pageblocks (either
7450 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7451 * in range must have the same migratetype and it must
7452 * be either of the two.
7453 * @gfp_mask: GFP mask to use during compaction
7454 *
7455 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7456 * aligned, however it's the caller's responsibility to guarantee that
7457 * we are the only thread that changes migrate type of pageblocks the
7458 * pages fall in.
7459 *
7460 * The PFN range must belong to a single zone.
7461 *
7462 * Returns zero on success or negative error code. On success all
7463 * pages which PFN is in [start, end) are allocated for the caller and
7464 * need to be freed with free_contig_range().
7465 */
7466 int alloc_contig_range(unsigned long start, unsigned long end,
7467 unsigned migratetype, gfp_t gfp_mask)
7468 {
7469 unsigned long outer_start, outer_end;
7470 unsigned int order;
7471 int ret = 0;
7472
7473 struct compact_control cc = {
7474 .nr_migratepages = 0,
7475 .order = -1,
7476 .zone = page_zone(pfn_to_page(start)),
7477 .mode = MIGRATE_SYNC,
7478 .ignore_skip_hint = true,
7479 .gfp_mask = current_gfp_context(gfp_mask),
7480 };
7481 INIT_LIST_HEAD(&cc.migratepages);
7482
7483 /*
7484 * What we do here is we mark all pageblocks in range as
7485 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7486 * have different sizes, and due to the way page allocator
7487 * work, we align the range to biggest of the two pages so
7488 * that page allocator won't try to merge buddies from
7489 * different pageblocks and change MIGRATE_ISOLATE to some
7490 * other migration type.
7491 *
7492 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7493 * migrate the pages from an unaligned range (ie. pages that
7494 * we are interested in). This will put all the pages in
7495 * range back to page allocator as MIGRATE_ISOLATE.
7496 *
7497 * When this is done, we take the pages in range from page
7498 * allocator removing them from the buddy system. This way
7499 * page allocator will never consider using them.
7500 *
7501 * This lets us mark the pageblocks back as
7502 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7503 * aligned range but not in the unaligned, original range are
7504 * put back to page allocator so that buddy can use them.
7505 */
7506
7507 ret = start_isolate_page_range(pfn_max_align_down(start),
7508 pfn_max_align_up(end), migratetype,
7509 false);
7510 if (ret)
7511 return ret;
7512
7513 /*
7514 * In case of -EBUSY, we'd like to know which page causes problem.
7515 * So, just fall through. We will check it in test_pages_isolated().
7516 */
7517 ret = __alloc_contig_migrate_range(&cc, start, end);
7518 if (ret && ret != -EBUSY)
7519 goto done;
7520
7521 /*
7522 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7523 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7524 * more, all pages in [start, end) are free in page allocator.
7525 * What we are going to do is to allocate all pages from
7526 * [start, end) (that is remove them from page allocator).
7527 *
7528 * The only problem is that pages at the beginning and at the
7529 * end of interesting range may be not aligned with pages that
7530 * page allocator holds, ie. they can be part of higher order
7531 * pages. Because of this, we reserve the bigger range and
7532 * once this is done free the pages we are not interested in.
7533 *
7534 * We don't have to hold zone->lock here because the pages are
7535 * isolated thus they won't get removed from buddy.
7536 */
7537
7538 lru_add_drain_all();
7539 drain_all_pages(cc.zone);
7540
7541 order = 0;
7542 outer_start = start;
7543 while (!PageBuddy(pfn_to_page(outer_start))) {
7544 if (++order >= MAX_ORDER) {
7545 outer_start = start;
7546 break;
7547 }
7548 outer_start &= ~0UL << order;
7549 }
7550
7551 if (outer_start != start) {
7552 order = page_order(pfn_to_page(outer_start));
7553
7554 /*
7555 * outer_start page could be small order buddy page and
7556 * it doesn't include start page. Adjust outer_start
7557 * in this case to report failed page properly
7558 * on tracepoint in test_pages_isolated()
7559 */
7560 if (outer_start + (1UL << order) <= start)
7561 outer_start = start;
7562 }
7563
7564 /* Make sure the range is really isolated. */
7565 if (test_pages_isolated(outer_start, end, false)) {
7566 pr_info("%s: [%lx, %lx) PFNs busy\n",
7567 __func__, outer_start, end);
7568 ret = -EBUSY;
7569 goto done;
7570 }
7571
7572 /* Grab isolated pages from freelists. */
7573 outer_end = isolate_freepages_range(&cc, outer_start, end);
7574 if (!outer_end) {
7575 ret = -EBUSY;
7576 goto done;
7577 }
7578
7579 /* Free head and tail (if any) */
7580 if (start != outer_start)
7581 free_contig_range(outer_start, start - outer_start);
7582 if (end != outer_end)
7583 free_contig_range(end, outer_end - end);
7584
7585 done:
7586 undo_isolate_page_range(pfn_max_align_down(start),
7587 pfn_max_align_up(end), migratetype);
7588 return ret;
7589 }
7590
7591 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7592 {
7593 unsigned int count = 0;
7594
7595 for (; nr_pages--; pfn++) {
7596 struct page *page = pfn_to_page(pfn);
7597
7598 count += page_count(page) != 1;
7599 __free_page(page);
7600 }
7601 WARN(count != 0, "%d pages are still in use!\n", count);
7602 }
7603 #endif
7604
7605 #ifdef CONFIG_MEMORY_HOTPLUG
7606 /*
7607 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7608 * page high values need to be recalulated.
7609 */
7610 void __meminit zone_pcp_update(struct zone *zone)
7611 {
7612 unsigned cpu;
7613 mutex_lock(&pcp_batch_high_lock);
7614 for_each_possible_cpu(cpu)
7615 pageset_set_high_and_batch(zone,
7616 per_cpu_ptr(zone->pageset, cpu));
7617 mutex_unlock(&pcp_batch_high_lock);
7618 }
7619 #endif
7620
7621 void zone_pcp_reset(struct zone *zone)
7622 {
7623 unsigned long flags;
7624 int cpu;
7625 struct per_cpu_pageset *pset;
7626
7627 /* avoid races with drain_pages() */
7628 local_irq_save(flags);
7629 if (zone->pageset != &boot_pageset) {
7630 for_each_online_cpu(cpu) {
7631 pset = per_cpu_ptr(zone->pageset, cpu);
7632 drain_zonestat(zone, pset);
7633 }
7634 free_percpu(zone->pageset);
7635 zone->pageset = &boot_pageset;
7636 }
7637 local_irq_restore(flags);
7638 }
7639
7640 #ifdef CONFIG_MEMORY_HOTREMOVE
7641 /*
7642 * All pages in the range must be in a single zone and isolated
7643 * before calling this.
7644 */
7645 void
7646 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7647 {
7648 struct page *page;
7649 struct zone *zone;
7650 unsigned int order, i;
7651 unsigned long pfn;
7652 unsigned long flags;
7653 /* find the first valid pfn */
7654 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7655 if (pfn_valid(pfn))
7656 break;
7657 if (pfn == end_pfn)
7658 return;
7659 zone = page_zone(pfn_to_page(pfn));
7660 spin_lock_irqsave(&zone->lock, flags);
7661 pfn = start_pfn;
7662 while (pfn < end_pfn) {
7663 if (!pfn_valid(pfn)) {
7664 pfn++;
7665 continue;
7666 }
7667 page = pfn_to_page(pfn);
7668 /*
7669 * The HWPoisoned page may be not in buddy system, and
7670 * page_count() is not 0.
7671 */
7672 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7673 pfn++;
7674 SetPageReserved(page);
7675 continue;
7676 }
7677
7678 BUG_ON(page_count(page));
7679 BUG_ON(!PageBuddy(page));
7680 order = page_order(page);
7681 #ifdef CONFIG_DEBUG_VM
7682 pr_info("remove from free list %lx %d %lx\n",
7683 pfn, 1 << order, end_pfn);
7684 #endif
7685 list_del(&page->lru);
7686 rmv_page_order(page);
7687 zone->free_area[order].nr_free--;
7688 for (i = 0; i < (1 << order); i++)
7689 SetPageReserved((page+i));
7690 pfn += (1 << order);
7691 }
7692 spin_unlock_irqrestore(&zone->lock, flags);
7693 }
7694 #endif
7695
7696 bool is_free_buddy_page(struct page *page)
7697 {
7698 struct zone *zone = page_zone(page);
7699 unsigned long pfn = page_to_pfn(page);
7700 unsigned long flags;
7701 unsigned int order;
7702
7703 spin_lock_irqsave(&zone->lock, flags);
7704 for (order = 0; order < MAX_ORDER; order++) {
7705 struct page *page_head = page - (pfn & ((1 << order) - 1));
7706
7707 if (PageBuddy(page_head) && page_order(page_head) >= order)
7708 break;
7709 }
7710 spin_unlock_irqrestore(&zone->lock, flags);
7711
7712 return order < MAX_ORDER;
7713 }