]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/page_alloc.c
Merge branch 'akpm' (incoming from Andrew)
[mirror_ubuntu-bionic-kernel.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 #endif
88
89 /*
90 * Array of node states.
91 */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 [N_CPU] = { { [0] = 1UL } },
104 #endif /* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119 unsigned long dirty_balance_reserve __read_mostly;
120
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123
124 #ifdef CONFIG_PM_SLEEP
125 /*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
133
134 static gfp_t saved_gfp_mask;
135
136 void pm_restore_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
143 }
144
145 void pm_restrict_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
151 }
152
153 bool pm_suspended_storage(void)
154 {
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164
165 static void __free_pages_ok(struct page *page, unsigned int order);
166
167 /*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
177 */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 32,
187 #endif
188 32,
189 };
190
191 EXPORT_SYMBOL(totalram_pages);
192
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 "DMA32",
199 #endif
200 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 "HighMem",
203 #endif
204 "Movable",
205 };
206
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes;
209
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232
233 int page_group_by_mobility_disabled __read_mostly;
234
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
239 migratetype = MIGRATE_UNMOVABLE;
240
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243 }
244
245 bool oom_killer_disabled __read_mostly;
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
267 return ret;
268 }
269
270 static int page_is_consistent(struct zone *zone, struct page *page)
271 {
272 if (!pfn_valid_within(page_to_pfn(page)))
273 return 0;
274 if (zone != page_zone(page))
275 return 0;
276
277 return 1;
278 }
279 /*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282 static int bad_range(struct zone *zone, struct page *page)
283 {
284 if (page_outside_zone_boundaries(zone, page))
285 return 1;
286 if (!page_is_consistent(zone, page))
287 return 1;
288
289 return 0;
290 }
291 #else
292 static inline int bad_range(struct zone *zone, struct page *page)
293 {
294 return 0;
295 }
296 #endif
297
298 static void bad_page(struct page *page)
299 {
300 static unsigned long resume;
301 static unsigned long nr_shown;
302 static unsigned long nr_unshown;
303
304 /* Don't complain about poisoned pages */
305 if (PageHWPoison(page)) {
306 page_mapcount_reset(page); /* remove PageBuddy */
307 return;
308 }
309
310 /*
311 * Allow a burst of 60 reports, then keep quiet for that minute;
312 * or allow a steady drip of one report per second.
313 */
314 if (nr_shown == 60) {
315 if (time_before(jiffies, resume)) {
316 nr_unshown++;
317 goto out;
318 }
319 if (nr_unshown) {
320 printk(KERN_ALERT
321 "BUG: Bad page state: %lu messages suppressed\n",
322 nr_unshown);
323 nr_unshown = 0;
324 }
325 nr_shown = 0;
326 }
327 if (nr_shown++ == 0)
328 resume = jiffies + 60 * HZ;
329
330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
331 current->comm, page_to_pfn(page));
332 dump_page(page);
333
334 print_modules();
335 dump_stack();
336 out:
337 /* Leave bad fields for debug, except PageBuddy could make trouble */
338 page_mapcount_reset(page); /* remove PageBuddy */
339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
340 }
341
342 /*
343 * Higher-order pages are called "compound pages". They are structured thusly:
344 *
345 * The first PAGE_SIZE page is called the "head page".
346 *
347 * The remaining PAGE_SIZE pages are called "tail pages".
348 *
349 * All pages have PG_compound set. All tail pages have their ->first_page
350 * pointing at the head page.
351 *
352 * The first tail page's ->lru.next holds the address of the compound page's
353 * put_page() function. Its ->lru.prev holds the order of allocation.
354 * This usage means that zero-order pages may not be compound.
355 */
356
357 static void free_compound_page(struct page *page)
358 {
359 __free_pages_ok(page, compound_order(page));
360 }
361
362 void prep_compound_page(struct page *page, unsigned long order)
363 {
364 int i;
365 int nr_pages = 1 << order;
366
367 set_compound_page_dtor(page, free_compound_page);
368 set_compound_order(page, order);
369 __SetPageHead(page);
370 for (i = 1; i < nr_pages; i++) {
371 struct page *p = page + i;
372 __SetPageTail(p);
373 set_page_count(p, 0);
374 p->first_page = page;
375 }
376 }
377
378 /* update __split_huge_page_refcount if you change this function */
379 static int destroy_compound_page(struct page *page, unsigned long order)
380 {
381 int i;
382 int nr_pages = 1 << order;
383 int bad = 0;
384
385 if (unlikely(compound_order(page) != order)) {
386 bad_page(page);
387 bad++;
388 }
389
390 __ClearPageHead(page);
391
392 for (i = 1; i < nr_pages; i++) {
393 struct page *p = page + i;
394
395 if (unlikely(!PageTail(p) || (p->first_page != page))) {
396 bad_page(page);
397 bad++;
398 }
399 __ClearPageTail(p);
400 }
401
402 return bad;
403 }
404
405 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
406 {
407 int i;
408
409 /*
410 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
411 * and __GFP_HIGHMEM from hard or soft interrupt context.
412 */
413 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
414 for (i = 0; i < (1 << order); i++)
415 clear_highpage(page + i);
416 }
417
418 #ifdef CONFIG_DEBUG_PAGEALLOC
419 unsigned int _debug_guardpage_minorder;
420
421 static int __init debug_guardpage_minorder_setup(char *buf)
422 {
423 unsigned long res;
424
425 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
426 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
427 return 0;
428 }
429 _debug_guardpage_minorder = res;
430 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
431 return 0;
432 }
433 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
434
435 static inline void set_page_guard_flag(struct page *page)
436 {
437 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
438 }
439
440 static inline void clear_page_guard_flag(struct page *page)
441 {
442 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
443 }
444 #else
445 static inline void set_page_guard_flag(struct page *page) { }
446 static inline void clear_page_guard_flag(struct page *page) { }
447 #endif
448
449 static inline void set_page_order(struct page *page, int order)
450 {
451 set_page_private(page, order);
452 __SetPageBuddy(page);
453 }
454
455 static inline void rmv_page_order(struct page *page)
456 {
457 __ClearPageBuddy(page);
458 set_page_private(page, 0);
459 }
460
461 /*
462 * Locate the struct page for both the matching buddy in our
463 * pair (buddy1) and the combined O(n+1) page they form (page).
464 *
465 * 1) Any buddy B1 will have an order O twin B2 which satisfies
466 * the following equation:
467 * B2 = B1 ^ (1 << O)
468 * For example, if the starting buddy (buddy2) is #8 its order
469 * 1 buddy is #10:
470 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
471 *
472 * 2) Any buddy B will have an order O+1 parent P which
473 * satisfies the following equation:
474 * P = B & ~(1 << O)
475 *
476 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
477 */
478 static inline unsigned long
479 __find_buddy_index(unsigned long page_idx, unsigned int order)
480 {
481 return page_idx ^ (1 << order);
482 }
483
484 /*
485 * This function checks whether a page is free && is the buddy
486 * we can do coalesce a page and its buddy if
487 * (a) the buddy is not in a hole &&
488 * (b) the buddy is in the buddy system &&
489 * (c) a page and its buddy have the same order &&
490 * (d) a page and its buddy are in the same zone.
491 *
492 * For recording whether a page is in the buddy system, we set ->_mapcount
493 * PAGE_BUDDY_MAPCOUNT_VALUE.
494 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
495 * serialized by zone->lock.
496 *
497 * For recording page's order, we use page_private(page).
498 */
499 static inline int page_is_buddy(struct page *page, struct page *buddy,
500 int order)
501 {
502 if (!pfn_valid_within(page_to_pfn(buddy)))
503 return 0;
504
505 if (page_zone_id(page) != page_zone_id(buddy))
506 return 0;
507
508 if (page_is_guard(buddy) && page_order(buddy) == order) {
509 VM_BUG_ON(page_count(buddy) != 0);
510 return 1;
511 }
512
513 if (PageBuddy(buddy) && page_order(buddy) == order) {
514 VM_BUG_ON(page_count(buddy) != 0);
515 return 1;
516 }
517 return 0;
518 }
519
520 /*
521 * Freeing function for a buddy system allocator.
522 *
523 * The concept of a buddy system is to maintain direct-mapped table
524 * (containing bit values) for memory blocks of various "orders".
525 * The bottom level table contains the map for the smallest allocatable
526 * units of memory (here, pages), and each level above it describes
527 * pairs of units from the levels below, hence, "buddies".
528 * At a high level, all that happens here is marking the table entry
529 * at the bottom level available, and propagating the changes upward
530 * as necessary, plus some accounting needed to play nicely with other
531 * parts of the VM system.
532 * At each level, we keep a list of pages, which are heads of continuous
533 * free pages of length of (1 << order) and marked with _mapcount
534 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
535 * field.
536 * So when we are allocating or freeing one, we can derive the state of the
537 * other. That is, if we allocate a small block, and both were
538 * free, the remainder of the region must be split into blocks.
539 * If a block is freed, and its buddy is also free, then this
540 * triggers coalescing into a block of larger size.
541 *
542 * -- nyc
543 */
544
545 static inline void __free_one_page(struct page *page,
546 struct zone *zone, unsigned int order,
547 int migratetype)
548 {
549 unsigned long page_idx;
550 unsigned long combined_idx;
551 unsigned long uninitialized_var(buddy_idx);
552 struct page *buddy;
553
554 VM_BUG_ON(!zone_is_initialized(zone));
555
556 if (unlikely(PageCompound(page)))
557 if (unlikely(destroy_compound_page(page, order)))
558 return;
559
560 VM_BUG_ON(migratetype == -1);
561
562 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
563
564 VM_BUG_ON(page_idx & ((1 << order) - 1));
565 VM_BUG_ON(bad_range(zone, page));
566
567 while (order < MAX_ORDER-1) {
568 buddy_idx = __find_buddy_index(page_idx, order);
569 buddy = page + (buddy_idx - page_idx);
570 if (!page_is_buddy(page, buddy, order))
571 break;
572 /*
573 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
574 * merge with it and move up one order.
575 */
576 if (page_is_guard(buddy)) {
577 clear_page_guard_flag(buddy);
578 set_page_private(page, 0);
579 __mod_zone_freepage_state(zone, 1 << order,
580 migratetype);
581 } else {
582 list_del(&buddy->lru);
583 zone->free_area[order].nr_free--;
584 rmv_page_order(buddy);
585 }
586 combined_idx = buddy_idx & page_idx;
587 page = page + (combined_idx - page_idx);
588 page_idx = combined_idx;
589 order++;
590 }
591 set_page_order(page, order);
592
593 /*
594 * If this is not the largest possible page, check if the buddy
595 * of the next-highest order is free. If it is, it's possible
596 * that pages are being freed that will coalesce soon. In case,
597 * that is happening, add the free page to the tail of the list
598 * so it's less likely to be used soon and more likely to be merged
599 * as a higher order page
600 */
601 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
602 struct page *higher_page, *higher_buddy;
603 combined_idx = buddy_idx & page_idx;
604 higher_page = page + (combined_idx - page_idx);
605 buddy_idx = __find_buddy_index(combined_idx, order + 1);
606 higher_buddy = higher_page + (buddy_idx - combined_idx);
607 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
608 list_add_tail(&page->lru,
609 &zone->free_area[order].free_list[migratetype]);
610 goto out;
611 }
612 }
613
614 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
615 out:
616 zone->free_area[order].nr_free++;
617 }
618
619 static inline int free_pages_check(struct page *page)
620 {
621 if (unlikely(page_mapcount(page) |
622 (page->mapping != NULL) |
623 (atomic_read(&page->_count) != 0) |
624 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
625 (mem_cgroup_bad_page_check(page)))) {
626 bad_page(page);
627 return 1;
628 }
629 page_cpupid_reset_last(page);
630 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
631 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
632 return 0;
633 }
634
635 /*
636 * Frees a number of pages from the PCP lists
637 * Assumes all pages on list are in same zone, and of same order.
638 * count is the number of pages to free.
639 *
640 * If the zone was previously in an "all pages pinned" state then look to
641 * see if this freeing clears that state.
642 *
643 * And clear the zone's pages_scanned counter, to hold off the "all pages are
644 * pinned" detection logic.
645 */
646 static void free_pcppages_bulk(struct zone *zone, int count,
647 struct per_cpu_pages *pcp)
648 {
649 int migratetype = 0;
650 int batch_free = 0;
651 int to_free = count;
652
653 spin_lock(&zone->lock);
654 zone->pages_scanned = 0;
655
656 while (to_free) {
657 struct page *page;
658 struct list_head *list;
659
660 /*
661 * Remove pages from lists in a round-robin fashion. A
662 * batch_free count is maintained that is incremented when an
663 * empty list is encountered. This is so more pages are freed
664 * off fuller lists instead of spinning excessively around empty
665 * lists
666 */
667 do {
668 batch_free++;
669 if (++migratetype == MIGRATE_PCPTYPES)
670 migratetype = 0;
671 list = &pcp->lists[migratetype];
672 } while (list_empty(list));
673
674 /* This is the only non-empty list. Free them all. */
675 if (batch_free == MIGRATE_PCPTYPES)
676 batch_free = to_free;
677
678 do {
679 int mt; /* migratetype of the to-be-freed page */
680
681 page = list_entry(list->prev, struct page, lru);
682 /* must delete as __free_one_page list manipulates */
683 list_del(&page->lru);
684 mt = get_freepage_migratetype(page);
685 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
686 __free_one_page(page, zone, 0, mt);
687 trace_mm_page_pcpu_drain(page, 0, mt);
688 if (likely(!is_migrate_isolate_page(page))) {
689 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
690 if (is_migrate_cma(mt))
691 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
692 }
693 } while (--to_free && --batch_free && !list_empty(list));
694 }
695 spin_unlock(&zone->lock);
696 }
697
698 static void free_one_page(struct zone *zone, struct page *page, int order,
699 int migratetype)
700 {
701 spin_lock(&zone->lock);
702 zone->pages_scanned = 0;
703
704 __free_one_page(page, zone, order, migratetype);
705 if (unlikely(!is_migrate_isolate(migratetype)))
706 __mod_zone_freepage_state(zone, 1 << order, migratetype);
707 spin_unlock(&zone->lock);
708 }
709
710 static bool free_pages_prepare(struct page *page, unsigned int order)
711 {
712 int i;
713 int bad = 0;
714
715 trace_mm_page_free(page, order);
716 kmemcheck_free_shadow(page, order);
717
718 if (PageAnon(page))
719 page->mapping = NULL;
720 for (i = 0; i < (1 << order); i++)
721 bad += free_pages_check(page + i);
722 if (bad)
723 return false;
724
725 if (!PageHighMem(page)) {
726 debug_check_no_locks_freed(page_address(page),
727 PAGE_SIZE << order);
728 debug_check_no_obj_freed(page_address(page),
729 PAGE_SIZE << order);
730 }
731 arch_free_page(page, order);
732 kernel_map_pages(page, 1 << order, 0);
733
734 return true;
735 }
736
737 static void __free_pages_ok(struct page *page, unsigned int order)
738 {
739 unsigned long flags;
740 int migratetype;
741
742 if (!free_pages_prepare(page, order))
743 return;
744
745 local_irq_save(flags);
746 __count_vm_events(PGFREE, 1 << order);
747 migratetype = get_pageblock_migratetype(page);
748 set_freepage_migratetype(page, migratetype);
749 free_one_page(page_zone(page), page, order, migratetype);
750 local_irq_restore(flags);
751 }
752
753 void __init __free_pages_bootmem(struct page *page, unsigned int order)
754 {
755 unsigned int nr_pages = 1 << order;
756 struct page *p = page;
757 unsigned int loop;
758
759 prefetchw(p);
760 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
761 prefetchw(p + 1);
762 __ClearPageReserved(p);
763 set_page_count(p, 0);
764 }
765 __ClearPageReserved(p);
766 set_page_count(p, 0);
767
768 page_zone(page)->managed_pages += nr_pages;
769 set_page_refcounted(page);
770 __free_pages(page, order);
771 }
772
773 #ifdef CONFIG_CMA
774 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
775 void __init init_cma_reserved_pageblock(struct page *page)
776 {
777 unsigned i = pageblock_nr_pages;
778 struct page *p = page;
779
780 do {
781 __ClearPageReserved(p);
782 set_page_count(p, 0);
783 } while (++p, --i);
784
785 set_page_refcounted(page);
786 set_pageblock_migratetype(page, MIGRATE_CMA);
787 __free_pages(page, pageblock_order);
788 adjust_managed_page_count(page, pageblock_nr_pages);
789 }
790 #endif
791
792 /*
793 * The order of subdivision here is critical for the IO subsystem.
794 * Please do not alter this order without good reasons and regression
795 * testing. Specifically, as large blocks of memory are subdivided,
796 * the order in which smaller blocks are delivered depends on the order
797 * they're subdivided in this function. This is the primary factor
798 * influencing the order in which pages are delivered to the IO
799 * subsystem according to empirical testing, and this is also justified
800 * by considering the behavior of a buddy system containing a single
801 * large block of memory acted on by a series of small allocations.
802 * This behavior is a critical factor in sglist merging's success.
803 *
804 * -- nyc
805 */
806 static inline void expand(struct zone *zone, struct page *page,
807 int low, int high, struct free_area *area,
808 int migratetype)
809 {
810 unsigned long size = 1 << high;
811
812 while (high > low) {
813 area--;
814 high--;
815 size >>= 1;
816 VM_BUG_ON(bad_range(zone, &page[size]));
817
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 if (high < debug_guardpage_minorder()) {
820 /*
821 * Mark as guard pages (or page), that will allow to
822 * merge back to allocator when buddy will be freed.
823 * Corresponding page table entries will not be touched,
824 * pages will stay not present in virtual address space
825 */
826 INIT_LIST_HEAD(&page[size].lru);
827 set_page_guard_flag(&page[size]);
828 set_page_private(&page[size], high);
829 /* Guard pages are not available for any usage */
830 __mod_zone_freepage_state(zone, -(1 << high),
831 migratetype);
832 continue;
833 }
834 #endif
835 list_add(&page[size].lru, &area->free_list[migratetype]);
836 area->nr_free++;
837 set_page_order(&page[size], high);
838 }
839 }
840
841 /*
842 * This page is about to be returned from the page allocator
843 */
844 static inline int check_new_page(struct page *page)
845 {
846 if (unlikely(page_mapcount(page) |
847 (page->mapping != NULL) |
848 (atomic_read(&page->_count) != 0) |
849 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
850 (mem_cgroup_bad_page_check(page)))) {
851 bad_page(page);
852 return 1;
853 }
854 return 0;
855 }
856
857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
858 {
859 int i;
860
861 for (i = 0; i < (1 << order); i++) {
862 struct page *p = page + i;
863 if (unlikely(check_new_page(p)))
864 return 1;
865 }
866
867 set_page_private(page, 0);
868 set_page_refcounted(page);
869
870 arch_alloc_page(page, order);
871 kernel_map_pages(page, 1 << order, 1);
872
873 if (gfp_flags & __GFP_ZERO)
874 prep_zero_page(page, order, gfp_flags);
875
876 if (order && (gfp_flags & __GFP_COMP))
877 prep_compound_page(page, order);
878
879 return 0;
880 }
881
882 /*
883 * Go through the free lists for the given migratetype and remove
884 * the smallest available page from the freelists
885 */
886 static inline
887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
888 int migratetype)
889 {
890 unsigned int current_order;
891 struct free_area *area;
892 struct page *page;
893
894 /* Find a page of the appropriate size in the preferred list */
895 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
896 area = &(zone->free_area[current_order]);
897 if (list_empty(&area->free_list[migratetype]))
898 continue;
899
900 page = list_entry(area->free_list[migratetype].next,
901 struct page, lru);
902 list_del(&page->lru);
903 rmv_page_order(page);
904 area->nr_free--;
905 expand(zone, page, order, current_order, area, migratetype);
906 return page;
907 }
908
909 return NULL;
910 }
911
912
913 /*
914 * This array describes the order lists are fallen back to when
915 * the free lists for the desirable migrate type are depleted
916 */
917 static int fallbacks[MIGRATE_TYPES][4] = {
918 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
920 #ifdef CONFIG_CMA
921 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
923 #else
924 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
925 #endif
926 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
927 #ifdef CONFIG_MEMORY_ISOLATION
928 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
929 #endif
930 };
931
932 /*
933 * Move the free pages in a range to the free lists of the requested type.
934 * Note that start_page and end_pages are not aligned on a pageblock
935 * boundary. If alignment is required, use move_freepages_block()
936 */
937 int move_freepages(struct zone *zone,
938 struct page *start_page, struct page *end_page,
939 int migratetype)
940 {
941 struct page *page;
942 unsigned long order;
943 int pages_moved = 0;
944
945 #ifndef CONFIG_HOLES_IN_ZONE
946 /*
947 * page_zone is not safe to call in this context when
948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
949 * anyway as we check zone boundaries in move_freepages_block().
950 * Remove at a later date when no bug reports exist related to
951 * grouping pages by mobility
952 */
953 BUG_ON(page_zone(start_page) != page_zone(end_page));
954 #endif
955
956 for (page = start_page; page <= end_page;) {
957 /* Make sure we are not inadvertently changing nodes */
958 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
959
960 if (!pfn_valid_within(page_to_pfn(page))) {
961 page++;
962 continue;
963 }
964
965 if (!PageBuddy(page)) {
966 page++;
967 continue;
968 }
969
970 order = page_order(page);
971 list_move(&page->lru,
972 &zone->free_area[order].free_list[migratetype]);
973 set_freepage_migratetype(page, migratetype);
974 page += 1 << order;
975 pages_moved += 1 << order;
976 }
977
978 return pages_moved;
979 }
980
981 int move_freepages_block(struct zone *zone, struct page *page,
982 int migratetype)
983 {
984 unsigned long start_pfn, end_pfn;
985 struct page *start_page, *end_page;
986
987 start_pfn = page_to_pfn(page);
988 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
989 start_page = pfn_to_page(start_pfn);
990 end_page = start_page + pageblock_nr_pages - 1;
991 end_pfn = start_pfn + pageblock_nr_pages - 1;
992
993 /* Do not cross zone boundaries */
994 if (!zone_spans_pfn(zone, start_pfn))
995 start_page = page;
996 if (!zone_spans_pfn(zone, end_pfn))
997 return 0;
998
999 return move_freepages(zone, start_page, end_page, migratetype);
1000 }
1001
1002 static void change_pageblock_range(struct page *pageblock_page,
1003 int start_order, int migratetype)
1004 {
1005 int nr_pageblocks = 1 << (start_order - pageblock_order);
1006
1007 while (nr_pageblocks--) {
1008 set_pageblock_migratetype(pageblock_page, migratetype);
1009 pageblock_page += pageblock_nr_pages;
1010 }
1011 }
1012
1013 /*
1014 * If breaking a large block of pages, move all free pages to the preferred
1015 * allocation list. If falling back for a reclaimable kernel allocation, be
1016 * more aggressive about taking ownership of free pages.
1017 *
1018 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1019 * nor move CMA pages to different free lists. We don't want unmovable pages
1020 * to be allocated from MIGRATE_CMA areas.
1021 *
1022 * Returns the new migratetype of the pageblock (or the same old migratetype
1023 * if it was unchanged).
1024 */
1025 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1026 int start_type, int fallback_type)
1027 {
1028 int current_order = page_order(page);
1029
1030 /*
1031 * When borrowing from MIGRATE_CMA, we need to release the excess
1032 * buddy pages to CMA itself.
1033 */
1034 if (is_migrate_cma(fallback_type))
1035 return fallback_type;
1036
1037 /* Take ownership for orders >= pageblock_order */
1038 if (current_order >= pageblock_order) {
1039 change_pageblock_range(page, current_order, start_type);
1040 return start_type;
1041 }
1042
1043 if (current_order >= pageblock_order / 2 ||
1044 start_type == MIGRATE_RECLAIMABLE ||
1045 page_group_by_mobility_disabled) {
1046 int pages;
1047
1048 pages = move_freepages_block(zone, page, start_type);
1049
1050 /* Claim the whole block if over half of it is free */
1051 if (pages >= (1 << (pageblock_order-1)) ||
1052 page_group_by_mobility_disabled) {
1053
1054 set_pageblock_migratetype(page, start_type);
1055 return start_type;
1056 }
1057
1058 }
1059
1060 return fallback_type;
1061 }
1062
1063 /* Remove an element from the buddy allocator from the fallback list */
1064 static inline struct page *
1065 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1066 {
1067 struct free_area *area;
1068 int current_order;
1069 struct page *page;
1070 int migratetype, new_type, i;
1071
1072 /* Find the largest possible block of pages in the other list */
1073 for (current_order = MAX_ORDER-1; current_order >= order;
1074 --current_order) {
1075 for (i = 0;; i++) {
1076 migratetype = fallbacks[start_migratetype][i];
1077
1078 /* MIGRATE_RESERVE handled later if necessary */
1079 if (migratetype == MIGRATE_RESERVE)
1080 break;
1081
1082 area = &(zone->free_area[current_order]);
1083 if (list_empty(&area->free_list[migratetype]))
1084 continue;
1085
1086 page = list_entry(area->free_list[migratetype].next,
1087 struct page, lru);
1088 area->nr_free--;
1089
1090 new_type = try_to_steal_freepages(zone, page,
1091 start_migratetype,
1092 migratetype);
1093
1094 /* Remove the page from the freelists */
1095 list_del(&page->lru);
1096 rmv_page_order(page);
1097
1098 expand(zone, page, order, current_order, area,
1099 new_type);
1100
1101 trace_mm_page_alloc_extfrag(page, order, current_order,
1102 start_migratetype, migratetype, new_type);
1103
1104 return page;
1105 }
1106 }
1107
1108 return NULL;
1109 }
1110
1111 /*
1112 * Do the hard work of removing an element from the buddy allocator.
1113 * Call me with the zone->lock already held.
1114 */
1115 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1116 int migratetype)
1117 {
1118 struct page *page;
1119
1120 retry_reserve:
1121 page = __rmqueue_smallest(zone, order, migratetype);
1122
1123 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1124 page = __rmqueue_fallback(zone, order, migratetype);
1125
1126 /*
1127 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1128 * is used because __rmqueue_smallest is an inline function
1129 * and we want just one call site
1130 */
1131 if (!page) {
1132 migratetype = MIGRATE_RESERVE;
1133 goto retry_reserve;
1134 }
1135 }
1136
1137 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1138 return page;
1139 }
1140
1141 /*
1142 * Obtain a specified number of elements from the buddy allocator, all under
1143 * a single hold of the lock, for efficiency. Add them to the supplied list.
1144 * Returns the number of new pages which were placed at *list.
1145 */
1146 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1147 unsigned long count, struct list_head *list,
1148 int migratetype, int cold)
1149 {
1150 int mt = migratetype, i;
1151
1152 spin_lock(&zone->lock);
1153 for (i = 0; i < count; ++i) {
1154 struct page *page = __rmqueue(zone, order, migratetype);
1155 if (unlikely(page == NULL))
1156 break;
1157
1158 /*
1159 * Split buddy pages returned by expand() are received here
1160 * in physical page order. The page is added to the callers and
1161 * list and the list head then moves forward. From the callers
1162 * perspective, the linked list is ordered by page number in
1163 * some conditions. This is useful for IO devices that can
1164 * merge IO requests if the physical pages are ordered
1165 * properly.
1166 */
1167 if (likely(cold == 0))
1168 list_add(&page->lru, list);
1169 else
1170 list_add_tail(&page->lru, list);
1171 if (IS_ENABLED(CONFIG_CMA)) {
1172 mt = get_pageblock_migratetype(page);
1173 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1174 mt = migratetype;
1175 }
1176 set_freepage_migratetype(page, mt);
1177 list = &page->lru;
1178 if (is_migrate_cma(mt))
1179 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1180 -(1 << order));
1181 }
1182 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1183 spin_unlock(&zone->lock);
1184 return i;
1185 }
1186
1187 #ifdef CONFIG_NUMA
1188 /*
1189 * Called from the vmstat counter updater to drain pagesets of this
1190 * currently executing processor on remote nodes after they have
1191 * expired.
1192 *
1193 * Note that this function must be called with the thread pinned to
1194 * a single processor.
1195 */
1196 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1197 {
1198 unsigned long flags;
1199 int to_drain;
1200 unsigned long batch;
1201
1202 local_irq_save(flags);
1203 batch = ACCESS_ONCE(pcp->batch);
1204 if (pcp->count >= batch)
1205 to_drain = batch;
1206 else
1207 to_drain = pcp->count;
1208 if (to_drain > 0) {
1209 free_pcppages_bulk(zone, to_drain, pcp);
1210 pcp->count -= to_drain;
1211 }
1212 local_irq_restore(flags);
1213 }
1214 #endif
1215
1216 /*
1217 * Drain pages of the indicated processor.
1218 *
1219 * The processor must either be the current processor and the
1220 * thread pinned to the current processor or a processor that
1221 * is not online.
1222 */
1223 static void drain_pages(unsigned int cpu)
1224 {
1225 unsigned long flags;
1226 struct zone *zone;
1227
1228 for_each_populated_zone(zone) {
1229 struct per_cpu_pageset *pset;
1230 struct per_cpu_pages *pcp;
1231
1232 local_irq_save(flags);
1233 pset = per_cpu_ptr(zone->pageset, cpu);
1234
1235 pcp = &pset->pcp;
1236 if (pcp->count) {
1237 free_pcppages_bulk(zone, pcp->count, pcp);
1238 pcp->count = 0;
1239 }
1240 local_irq_restore(flags);
1241 }
1242 }
1243
1244 /*
1245 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1246 */
1247 void drain_local_pages(void *arg)
1248 {
1249 drain_pages(smp_processor_id());
1250 }
1251
1252 /*
1253 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1254 *
1255 * Note that this code is protected against sending an IPI to an offline
1256 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1257 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1258 * nothing keeps CPUs from showing up after we populated the cpumask and
1259 * before the call to on_each_cpu_mask().
1260 */
1261 void drain_all_pages(void)
1262 {
1263 int cpu;
1264 struct per_cpu_pageset *pcp;
1265 struct zone *zone;
1266
1267 /*
1268 * Allocate in the BSS so we wont require allocation in
1269 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1270 */
1271 static cpumask_t cpus_with_pcps;
1272
1273 /*
1274 * We don't care about racing with CPU hotplug event
1275 * as offline notification will cause the notified
1276 * cpu to drain that CPU pcps and on_each_cpu_mask
1277 * disables preemption as part of its processing
1278 */
1279 for_each_online_cpu(cpu) {
1280 bool has_pcps = false;
1281 for_each_populated_zone(zone) {
1282 pcp = per_cpu_ptr(zone->pageset, cpu);
1283 if (pcp->pcp.count) {
1284 has_pcps = true;
1285 break;
1286 }
1287 }
1288 if (has_pcps)
1289 cpumask_set_cpu(cpu, &cpus_with_pcps);
1290 else
1291 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1292 }
1293 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1294 }
1295
1296 #ifdef CONFIG_HIBERNATION
1297
1298 void mark_free_pages(struct zone *zone)
1299 {
1300 unsigned long pfn, max_zone_pfn;
1301 unsigned long flags;
1302 int order, t;
1303 struct list_head *curr;
1304
1305 if (zone_is_empty(zone))
1306 return;
1307
1308 spin_lock_irqsave(&zone->lock, flags);
1309
1310 max_zone_pfn = zone_end_pfn(zone);
1311 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1312 if (pfn_valid(pfn)) {
1313 struct page *page = pfn_to_page(pfn);
1314
1315 if (!swsusp_page_is_forbidden(page))
1316 swsusp_unset_page_free(page);
1317 }
1318
1319 for_each_migratetype_order(order, t) {
1320 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1321 unsigned long i;
1322
1323 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1324 for (i = 0; i < (1UL << order); i++)
1325 swsusp_set_page_free(pfn_to_page(pfn + i));
1326 }
1327 }
1328 spin_unlock_irqrestore(&zone->lock, flags);
1329 }
1330 #endif /* CONFIG_PM */
1331
1332 /*
1333 * Free a 0-order page
1334 * cold == 1 ? free a cold page : free a hot page
1335 */
1336 void free_hot_cold_page(struct page *page, int cold)
1337 {
1338 struct zone *zone = page_zone(page);
1339 struct per_cpu_pages *pcp;
1340 unsigned long flags;
1341 int migratetype;
1342
1343 if (!free_pages_prepare(page, 0))
1344 return;
1345
1346 migratetype = get_pageblock_migratetype(page);
1347 set_freepage_migratetype(page, migratetype);
1348 local_irq_save(flags);
1349 __count_vm_event(PGFREE);
1350
1351 /*
1352 * We only track unmovable, reclaimable and movable on pcp lists.
1353 * Free ISOLATE pages back to the allocator because they are being
1354 * offlined but treat RESERVE as movable pages so we can get those
1355 * areas back if necessary. Otherwise, we may have to free
1356 * excessively into the page allocator
1357 */
1358 if (migratetype >= MIGRATE_PCPTYPES) {
1359 if (unlikely(is_migrate_isolate(migratetype))) {
1360 free_one_page(zone, page, 0, migratetype);
1361 goto out;
1362 }
1363 migratetype = MIGRATE_MOVABLE;
1364 }
1365
1366 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1367 if (cold)
1368 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1369 else
1370 list_add(&page->lru, &pcp->lists[migratetype]);
1371 pcp->count++;
1372 if (pcp->count >= pcp->high) {
1373 unsigned long batch = ACCESS_ONCE(pcp->batch);
1374 free_pcppages_bulk(zone, batch, pcp);
1375 pcp->count -= batch;
1376 }
1377
1378 out:
1379 local_irq_restore(flags);
1380 }
1381
1382 /*
1383 * Free a list of 0-order pages
1384 */
1385 void free_hot_cold_page_list(struct list_head *list, int cold)
1386 {
1387 struct page *page, *next;
1388
1389 list_for_each_entry_safe(page, next, list, lru) {
1390 trace_mm_page_free_batched(page, cold);
1391 free_hot_cold_page(page, cold);
1392 }
1393 }
1394
1395 /*
1396 * split_page takes a non-compound higher-order page, and splits it into
1397 * n (1<<order) sub-pages: page[0..n]
1398 * Each sub-page must be freed individually.
1399 *
1400 * Note: this is probably too low level an operation for use in drivers.
1401 * Please consult with lkml before using this in your driver.
1402 */
1403 void split_page(struct page *page, unsigned int order)
1404 {
1405 int i;
1406
1407 VM_BUG_ON(PageCompound(page));
1408 VM_BUG_ON(!page_count(page));
1409
1410 #ifdef CONFIG_KMEMCHECK
1411 /*
1412 * Split shadow pages too, because free(page[0]) would
1413 * otherwise free the whole shadow.
1414 */
1415 if (kmemcheck_page_is_tracked(page))
1416 split_page(virt_to_page(page[0].shadow), order);
1417 #endif
1418
1419 for (i = 1; i < (1 << order); i++)
1420 set_page_refcounted(page + i);
1421 }
1422 EXPORT_SYMBOL_GPL(split_page);
1423
1424 static int __isolate_free_page(struct page *page, unsigned int order)
1425 {
1426 unsigned long watermark;
1427 struct zone *zone;
1428 int mt;
1429
1430 BUG_ON(!PageBuddy(page));
1431
1432 zone = page_zone(page);
1433 mt = get_pageblock_migratetype(page);
1434
1435 if (!is_migrate_isolate(mt)) {
1436 /* Obey watermarks as if the page was being allocated */
1437 watermark = low_wmark_pages(zone) + (1 << order);
1438 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1439 return 0;
1440
1441 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1442 }
1443
1444 /* Remove page from free list */
1445 list_del(&page->lru);
1446 zone->free_area[order].nr_free--;
1447 rmv_page_order(page);
1448
1449 /* Set the pageblock if the isolated page is at least a pageblock */
1450 if (order >= pageblock_order - 1) {
1451 struct page *endpage = page + (1 << order) - 1;
1452 for (; page < endpage; page += pageblock_nr_pages) {
1453 int mt = get_pageblock_migratetype(page);
1454 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1455 set_pageblock_migratetype(page,
1456 MIGRATE_MOVABLE);
1457 }
1458 }
1459
1460 return 1UL << order;
1461 }
1462
1463 /*
1464 * Similar to split_page except the page is already free. As this is only
1465 * being used for migration, the migratetype of the block also changes.
1466 * As this is called with interrupts disabled, the caller is responsible
1467 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1468 * are enabled.
1469 *
1470 * Note: this is probably too low level an operation for use in drivers.
1471 * Please consult with lkml before using this in your driver.
1472 */
1473 int split_free_page(struct page *page)
1474 {
1475 unsigned int order;
1476 int nr_pages;
1477
1478 order = page_order(page);
1479
1480 nr_pages = __isolate_free_page(page, order);
1481 if (!nr_pages)
1482 return 0;
1483
1484 /* Split into individual pages */
1485 set_page_refcounted(page);
1486 split_page(page, order);
1487 return nr_pages;
1488 }
1489
1490 /*
1491 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1492 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1493 * or two.
1494 */
1495 static inline
1496 struct page *buffered_rmqueue(struct zone *preferred_zone,
1497 struct zone *zone, int order, gfp_t gfp_flags,
1498 int migratetype)
1499 {
1500 unsigned long flags;
1501 struct page *page;
1502 int cold = !!(gfp_flags & __GFP_COLD);
1503
1504 again:
1505 if (likely(order == 0)) {
1506 struct per_cpu_pages *pcp;
1507 struct list_head *list;
1508
1509 local_irq_save(flags);
1510 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1511 list = &pcp->lists[migratetype];
1512 if (list_empty(list)) {
1513 pcp->count += rmqueue_bulk(zone, 0,
1514 pcp->batch, list,
1515 migratetype, cold);
1516 if (unlikely(list_empty(list)))
1517 goto failed;
1518 }
1519
1520 if (cold)
1521 page = list_entry(list->prev, struct page, lru);
1522 else
1523 page = list_entry(list->next, struct page, lru);
1524
1525 list_del(&page->lru);
1526 pcp->count--;
1527 } else {
1528 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1529 /*
1530 * __GFP_NOFAIL is not to be used in new code.
1531 *
1532 * All __GFP_NOFAIL callers should be fixed so that they
1533 * properly detect and handle allocation failures.
1534 *
1535 * We most definitely don't want callers attempting to
1536 * allocate greater than order-1 page units with
1537 * __GFP_NOFAIL.
1538 */
1539 WARN_ON_ONCE(order > 1);
1540 }
1541 spin_lock_irqsave(&zone->lock, flags);
1542 page = __rmqueue(zone, order, migratetype);
1543 spin_unlock(&zone->lock);
1544 if (!page)
1545 goto failed;
1546 __mod_zone_freepage_state(zone, -(1 << order),
1547 get_pageblock_migratetype(page));
1548 }
1549
1550 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1551 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1552 zone_statistics(preferred_zone, zone, gfp_flags);
1553 local_irq_restore(flags);
1554
1555 VM_BUG_ON(bad_range(zone, page));
1556 if (prep_new_page(page, order, gfp_flags))
1557 goto again;
1558 return page;
1559
1560 failed:
1561 local_irq_restore(flags);
1562 return NULL;
1563 }
1564
1565 #ifdef CONFIG_FAIL_PAGE_ALLOC
1566
1567 static struct {
1568 struct fault_attr attr;
1569
1570 u32 ignore_gfp_highmem;
1571 u32 ignore_gfp_wait;
1572 u32 min_order;
1573 } fail_page_alloc = {
1574 .attr = FAULT_ATTR_INITIALIZER,
1575 .ignore_gfp_wait = 1,
1576 .ignore_gfp_highmem = 1,
1577 .min_order = 1,
1578 };
1579
1580 static int __init setup_fail_page_alloc(char *str)
1581 {
1582 return setup_fault_attr(&fail_page_alloc.attr, str);
1583 }
1584 __setup("fail_page_alloc=", setup_fail_page_alloc);
1585
1586 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1587 {
1588 if (order < fail_page_alloc.min_order)
1589 return false;
1590 if (gfp_mask & __GFP_NOFAIL)
1591 return false;
1592 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1593 return false;
1594 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1595 return false;
1596
1597 return should_fail(&fail_page_alloc.attr, 1 << order);
1598 }
1599
1600 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1601
1602 static int __init fail_page_alloc_debugfs(void)
1603 {
1604 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1605 struct dentry *dir;
1606
1607 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1608 &fail_page_alloc.attr);
1609 if (IS_ERR(dir))
1610 return PTR_ERR(dir);
1611
1612 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1613 &fail_page_alloc.ignore_gfp_wait))
1614 goto fail;
1615 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1616 &fail_page_alloc.ignore_gfp_highmem))
1617 goto fail;
1618 if (!debugfs_create_u32("min-order", mode, dir,
1619 &fail_page_alloc.min_order))
1620 goto fail;
1621
1622 return 0;
1623 fail:
1624 debugfs_remove_recursive(dir);
1625
1626 return -ENOMEM;
1627 }
1628
1629 late_initcall(fail_page_alloc_debugfs);
1630
1631 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1632
1633 #else /* CONFIG_FAIL_PAGE_ALLOC */
1634
1635 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1636 {
1637 return false;
1638 }
1639
1640 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1641
1642 /*
1643 * Return true if free pages are above 'mark'. This takes into account the order
1644 * of the allocation.
1645 */
1646 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1647 int classzone_idx, int alloc_flags, long free_pages)
1648 {
1649 /* free_pages my go negative - that's OK */
1650 long min = mark;
1651 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1652 int o;
1653 long free_cma = 0;
1654
1655 free_pages -= (1 << order) - 1;
1656 if (alloc_flags & ALLOC_HIGH)
1657 min -= min / 2;
1658 if (alloc_flags & ALLOC_HARDER)
1659 min -= min / 4;
1660 #ifdef CONFIG_CMA
1661 /* If allocation can't use CMA areas don't use free CMA pages */
1662 if (!(alloc_flags & ALLOC_CMA))
1663 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1664 #endif
1665
1666 if (free_pages - free_cma <= min + lowmem_reserve)
1667 return false;
1668 for (o = 0; o < order; o++) {
1669 /* At the next order, this order's pages become unavailable */
1670 free_pages -= z->free_area[o].nr_free << o;
1671
1672 /* Require fewer higher order pages to be free */
1673 min >>= 1;
1674
1675 if (free_pages <= min)
1676 return false;
1677 }
1678 return true;
1679 }
1680
1681 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1682 int classzone_idx, int alloc_flags)
1683 {
1684 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1685 zone_page_state(z, NR_FREE_PAGES));
1686 }
1687
1688 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1689 int classzone_idx, int alloc_flags)
1690 {
1691 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1692
1693 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1694 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1695
1696 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1697 free_pages);
1698 }
1699
1700 #ifdef CONFIG_NUMA
1701 /*
1702 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1703 * skip over zones that are not allowed by the cpuset, or that have
1704 * been recently (in last second) found to be nearly full. See further
1705 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1706 * that have to skip over a lot of full or unallowed zones.
1707 *
1708 * If the zonelist cache is present in the passed zonelist, then
1709 * returns a pointer to the allowed node mask (either the current
1710 * tasks mems_allowed, or node_states[N_MEMORY].)
1711 *
1712 * If the zonelist cache is not available for this zonelist, does
1713 * nothing and returns NULL.
1714 *
1715 * If the fullzones BITMAP in the zonelist cache is stale (more than
1716 * a second since last zap'd) then we zap it out (clear its bits.)
1717 *
1718 * We hold off even calling zlc_setup, until after we've checked the
1719 * first zone in the zonelist, on the theory that most allocations will
1720 * be satisfied from that first zone, so best to examine that zone as
1721 * quickly as we can.
1722 */
1723 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1724 {
1725 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1726 nodemask_t *allowednodes; /* zonelist_cache approximation */
1727
1728 zlc = zonelist->zlcache_ptr;
1729 if (!zlc)
1730 return NULL;
1731
1732 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1733 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1734 zlc->last_full_zap = jiffies;
1735 }
1736
1737 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1738 &cpuset_current_mems_allowed :
1739 &node_states[N_MEMORY];
1740 return allowednodes;
1741 }
1742
1743 /*
1744 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1745 * if it is worth looking at further for free memory:
1746 * 1) Check that the zone isn't thought to be full (doesn't have its
1747 * bit set in the zonelist_cache fullzones BITMAP).
1748 * 2) Check that the zones node (obtained from the zonelist_cache
1749 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1750 * Return true (non-zero) if zone is worth looking at further, or
1751 * else return false (zero) if it is not.
1752 *
1753 * This check -ignores- the distinction between various watermarks,
1754 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1755 * found to be full for any variation of these watermarks, it will
1756 * be considered full for up to one second by all requests, unless
1757 * we are so low on memory on all allowed nodes that we are forced
1758 * into the second scan of the zonelist.
1759 *
1760 * In the second scan we ignore this zonelist cache and exactly
1761 * apply the watermarks to all zones, even it is slower to do so.
1762 * We are low on memory in the second scan, and should leave no stone
1763 * unturned looking for a free page.
1764 */
1765 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1766 nodemask_t *allowednodes)
1767 {
1768 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1769 int i; /* index of *z in zonelist zones */
1770 int n; /* node that zone *z is on */
1771
1772 zlc = zonelist->zlcache_ptr;
1773 if (!zlc)
1774 return 1;
1775
1776 i = z - zonelist->_zonerefs;
1777 n = zlc->z_to_n[i];
1778
1779 /* This zone is worth trying if it is allowed but not full */
1780 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1781 }
1782
1783 /*
1784 * Given 'z' scanning a zonelist, set the corresponding bit in
1785 * zlc->fullzones, so that subsequent attempts to allocate a page
1786 * from that zone don't waste time re-examining it.
1787 */
1788 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1789 {
1790 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1791 int i; /* index of *z in zonelist zones */
1792
1793 zlc = zonelist->zlcache_ptr;
1794 if (!zlc)
1795 return;
1796
1797 i = z - zonelist->_zonerefs;
1798
1799 set_bit(i, zlc->fullzones);
1800 }
1801
1802 /*
1803 * clear all zones full, called after direct reclaim makes progress so that
1804 * a zone that was recently full is not skipped over for up to a second
1805 */
1806 static void zlc_clear_zones_full(struct zonelist *zonelist)
1807 {
1808 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1809
1810 zlc = zonelist->zlcache_ptr;
1811 if (!zlc)
1812 return;
1813
1814 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1815 }
1816
1817 static bool zone_local(struct zone *local_zone, struct zone *zone)
1818 {
1819 return local_zone->node == zone->node;
1820 }
1821
1822 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1823 {
1824 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1825 }
1826
1827 static void __paginginit init_zone_allows_reclaim(int nid)
1828 {
1829 int i;
1830
1831 for_each_online_node(i)
1832 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1833 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1834 else
1835 zone_reclaim_mode = 1;
1836 }
1837
1838 #else /* CONFIG_NUMA */
1839
1840 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1841 {
1842 return NULL;
1843 }
1844
1845 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1846 nodemask_t *allowednodes)
1847 {
1848 return 1;
1849 }
1850
1851 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1852 {
1853 }
1854
1855 static void zlc_clear_zones_full(struct zonelist *zonelist)
1856 {
1857 }
1858
1859 static bool zone_local(struct zone *local_zone, struct zone *zone)
1860 {
1861 return true;
1862 }
1863
1864 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1865 {
1866 return true;
1867 }
1868
1869 static inline void init_zone_allows_reclaim(int nid)
1870 {
1871 }
1872 #endif /* CONFIG_NUMA */
1873
1874 /*
1875 * get_page_from_freelist goes through the zonelist trying to allocate
1876 * a page.
1877 */
1878 static struct page *
1879 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1880 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1881 struct zone *preferred_zone, int migratetype)
1882 {
1883 struct zoneref *z;
1884 struct page *page = NULL;
1885 int classzone_idx;
1886 struct zone *zone;
1887 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1888 int zlc_active = 0; /* set if using zonelist_cache */
1889 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1890
1891 classzone_idx = zone_idx(preferred_zone);
1892 zonelist_scan:
1893 /*
1894 * Scan zonelist, looking for a zone with enough free.
1895 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1896 */
1897 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1898 high_zoneidx, nodemask) {
1899 unsigned long mark;
1900
1901 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1902 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1903 continue;
1904 if ((alloc_flags & ALLOC_CPUSET) &&
1905 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1906 continue;
1907 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1908 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1909 goto try_this_zone;
1910 /*
1911 * Distribute pages in proportion to the individual
1912 * zone size to ensure fair page aging. The zone a
1913 * page was allocated in should have no effect on the
1914 * time the page has in memory before being reclaimed.
1915 *
1916 * Try to stay in local zones in the fastpath. If
1917 * that fails, the slowpath is entered, which will do
1918 * another pass starting with the local zones, but
1919 * ultimately fall back to remote zones that do not
1920 * partake in the fairness round-robin cycle of this
1921 * zonelist.
1922 */
1923 if (alloc_flags & ALLOC_WMARK_LOW) {
1924 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1925 continue;
1926 if (!zone_local(preferred_zone, zone))
1927 continue;
1928 }
1929 /*
1930 * When allocating a page cache page for writing, we
1931 * want to get it from a zone that is within its dirty
1932 * limit, such that no single zone holds more than its
1933 * proportional share of globally allowed dirty pages.
1934 * The dirty limits take into account the zone's
1935 * lowmem reserves and high watermark so that kswapd
1936 * should be able to balance it without having to
1937 * write pages from its LRU list.
1938 *
1939 * This may look like it could increase pressure on
1940 * lower zones by failing allocations in higher zones
1941 * before they are full. But the pages that do spill
1942 * over are limited as the lower zones are protected
1943 * by this very same mechanism. It should not become
1944 * a practical burden to them.
1945 *
1946 * XXX: For now, allow allocations to potentially
1947 * exceed the per-zone dirty limit in the slowpath
1948 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1949 * which is important when on a NUMA setup the allowed
1950 * zones are together not big enough to reach the
1951 * global limit. The proper fix for these situations
1952 * will require awareness of zones in the
1953 * dirty-throttling and the flusher threads.
1954 */
1955 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1956 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1957 goto this_zone_full;
1958
1959 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1960 if (!zone_watermark_ok(zone, order, mark,
1961 classzone_idx, alloc_flags)) {
1962 int ret;
1963
1964 if (IS_ENABLED(CONFIG_NUMA) &&
1965 !did_zlc_setup && nr_online_nodes > 1) {
1966 /*
1967 * we do zlc_setup if there are multiple nodes
1968 * and before considering the first zone allowed
1969 * by the cpuset.
1970 */
1971 allowednodes = zlc_setup(zonelist, alloc_flags);
1972 zlc_active = 1;
1973 did_zlc_setup = 1;
1974 }
1975
1976 if (zone_reclaim_mode == 0 ||
1977 !zone_allows_reclaim(preferred_zone, zone))
1978 goto this_zone_full;
1979
1980 /*
1981 * As we may have just activated ZLC, check if the first
1982 * eligible zone has failed zone_reclaim recently.
1983 */
1984 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1985 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1986 continue;
1987
1988 ret = zone_reclaim(zone, gfp_mask, order);
1989 switch (ret) {
1990 case ZONE_RECLAIM_NOSCAN:
1991 /* did not scan */
1992 continue;
1993 case ZONE_RECLAIM_FULL:
1994 /* scanned but unreclaimable */
1995 continue;
1996 default:
1997 /* did we reclaim enough */
1998 if (zone_watermark_ok(zone, order, mark,
1999 classzone_idx, alloc_flags))
2000 goto try_this_zone;
2001
2002 /*
2003 * Failed to reclaim enough to meet watermark.
2004 * Only mark the zone full if checking the min
2005 * watermark or if we failed to reclaim just
2006 * 1<<order pages or else the page allocator
2007 * fastpath will prematurely mark zones full
2008 * when the watermark is between the low and
2009 * min watermarks.
2010 */
2011 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2012 ret == ZONE_RECLAIM_SOME)
2013 goto this_zone_full;
2014
2015 continue;
2016 }
2017 }
2018
2019 try_this_zone:
2020 page = buffered_rmqueue(preferred_zone, zone, order,
2021 gfp_mask, migratetype);
2022 if (page)
2023 break;
2024 this_zone_full:
2025 if (IS_ENABLED(CONFIG_NUMA))
2026 zlc_mark_zone_full(zonelist, z);
2027 }
2028
2029 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2030 /* Disable zlc cache for second zonelist scan */
2031 zlc_active = 0;
2032 goto zonelist_scan;
2033 }
2034
2035 if (page)
2036 /*
2037 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2038 * necessary to allocate the page. The expectation is
2039 * that the caller is taking steps that will free more
2040 * memory. The caller should avoid the page being used
2041 * for !PFMEMALLOC purposes.
2042 */
2043 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2044
2045 return page;
2046 }
2047
2048 /*
2049 * Large machines with many possible nodes should not always dump per-node
2050 * meminfo in irq context.
2051 */
2052 static inline bool should_suppress_show_mem(void)
2053 {
2054 bool ret = false;
2055
2056 #if NODES_SHIFT > 8
2057 ret = in_interrupt();
2058 #endif
2059 return ret;
2060 }
2061
2062 static DEFINE_RATELIMIT_STATE(nopage_rs,
2063 DEFAULT_RATELIMIT_INTERVAL,
2064 DEFAULT_RATELIMIT_BURST);
2065
2066 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2067 {
2068 unsigned int filter = SHOW_MEM_FILTER_NODES;
2069
2070 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2071 debug_guardpage_minorder() > 0)
2072 return;
2073
2074 /*
2075 * This documents exceptions given to allocations in certain
2076 * contexts that are allowed to allocate outside current's set
2077 * of allowed nodes.
2078 */
2079 if (!(gfp_mask & __GFP_NOMEMALLOC))
2080 if (test_thread_flag(TIF_MEMDIE) ||
2081 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2082 filter &= ~SHOW_MEM_FILTER_NODES;
2083 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2084 filter &= ~SHOW_MEM_FILTER_NODES;
2085
2086 if (fmt) {
2087 struct va_format vaf;
2088 va_list args;
2089
2090 va_start(args, fmt);
2091
2092 vaf.fmt = fmt;
2093 vaf.va = &args;
2094
2095 pr_warn("%pV", &vaf);
2096
2097 va_end(args);
2098 }
2099
2100 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2101 current->comm, order, gfp_mask);
2102
2103 dump_stack();
2104 if (!should_suppress_show_mem())
2105 show_mem(filter);
2106 }
2107
2108 static inline int
2109 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2110 unsigned long did_some_progress,
2111 unsigned long pages_reclaimed)
2112 {
2113 /* Do not loop if specifically requested */
2114 if (gfp_mask & __GFP_NORETRY)
2115 return 0;
2116
2117 /* Always retry if specifically requested */
2118 if (gfp_mask & __GFP_NOFAIL)
2119 return 1;
2120
2121 /*
2122 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2123 * making forward progress without invoking OOM. Suspend also disables
2124 * storage devices so kswapd will not help. Bail if we are suspending.
2125 */
2126 if (!did_some_progress && pm_suspended_storage())
2127 return 0;
2128
2129 /*
2130 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2131 * means __GFP_NOFAIL, but that may not be true in other
2132 * implementations.
2133 */
2134 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2135 return 1;
2136
2137 /*
2138 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2139 * specified, then we retry until we no longer reclaim any pages
2140 * (above), or we've reclaimed an order of pages at least as
2141 * large as the allocation's order. In both cases, if the
2142 * allocation still fails, we stop retrying.
2143 */
2144 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2145 return 1;
2146
2147 return 0;
2148 }
2149
2150 static inline struct page *
2151 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2152 struct zonelist *zonelist, enum zone_type high_zoneidx,
2153 nodemask_t *nodemask, struct zone *preferred_zone,
2154 int migratetype)
2155 {
2156 struct page *page;
2157
2158 /* Acquire the OOM killer lock for the zones in zonelist */
2159 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2160 schedule_timeout_uninterruptible(1);
2161 return NULL;
2162 }
2163
2164 /*
2165 * Go through the zonelist yet one more time, keep very high watermark
2166 * here, this is only to catch a parallel oom killing, we must fail if
2167 * we're still under heavy pressure.
2168 */
2169 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2170 order, zonelist, high_zoneidx,
2171 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2172 preferred_zone, migratetype);
2173 if (page)
2174 goto out;
2175
2176 if (!(gfp_mask & __GFP_NOFAIL)) {
2177 /* The OOM killer will not help higher order allocs */
2178 if (order > PAGE_ALLOC_COSTLY_ORDER)
2179 goto out;
2180 /* The OOM killer does not needlessly kill tasks for lowmem */
2181 if (high_zoneidx < ZONE_NORMAL)
2182 goto out;
2183 /*
2184 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2185 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2186 * The caller should handle page allocation failure by itself if
2187 * it specifies __GFP_THISNODE.
2188 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2189 */
2190 if (gfp_mask & __GFP_THISNODE)
2191 goto out;
2192 }
2193 /* Exhausted what can be done so it's blamo time */
2194 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2195
2196 out:
2197 clear_zonelist_oom(zonelist, gfp_mask);
2198 return page;
2199 }
2200
2201 #ifdef CONFIG_COMPACTION
2202 /* Try memory compaction for high-order allocations before reclaim */
2203 static struct page *
2204 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2205 struct zonelist *zonelist, enum zone_type high_zoneidx,
2206 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2207 int migratetype, bool sync_migration,
2208 bool *contended_compaction, bool *deferred_compaction,
2209 unsigned long *did_some_progress)
2210 {
2211 if (!order)
2212 return NULL;
2213
2214 if (compaction_deferred(preferred_zone, order)) {
2215 *deferred_compaction = true;
2216 return NULL;
2217 }
2218
2219 current->flags |= PF_MEMALLOC;
2220 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2221 nodemask, sync_migration,
2222 contended_compaction);
2223 current->flags &= ~PF_MEMALLOC;
2224
2225 if (*did_some_progress != COMPACT_SKIPPED) {
2226 struct page *page;
2227
2228 /* Page migration frees to the PCP lists but we want merging */
2229 drain_pages(get_cpu());
2230 put_cpu();
2231
2232 page = get_page_from_freelist(gfp_mask, nodemask,
2233 order, zonelist, high_zoneidx,
2234 alloc_flags & ~ALLOC_NO_WATERMARKS,
2235 preferred_zone, migratetype);
2236 if (page) {
2237 preferred_zone->compact_blockskip_flush = false;
2238 compaction_defer_reset(preferred_zone, order, true);
2239 count_vm_event(COMPACTSUCCESS);
2240 return page;
2241 }
2242
2243 /*
2244 * It's bad if compaction run occurs and fails.
2245 * The most likely reason is that pages exist,
2246 * but not enough to satisfy watermarks.
2247 */
2248 count_vm_event(COMPACTFAIL);
2249
2250 /*
2251 * As async compaction considers a subset of pageblocks, only
2252 * defer if the failure was a sync compaction failure.
2253 */
2254 if (sync_migration)
2255 defer_compaction(preferred_zone, order);
2256
2257 cond_resched();
2258 }
2259
2260 return NULL;
2261 }
2262 #else
2263 static inline struct page *
2264 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2265 struct zonelist *zonelist, enum zone_type high_zoneidx,
2266 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2267 int migratetype, bool sync_migration,
2268 bool *contended_compaction, bool *deferred_compaction,
2269 unsigned long *did_some_progress)
2270 {
2271 return NULL;
2272 }
2273 #endif /* CONFIG_COMPACTION */
2274
2275 /* Perform direct synchronous page reclaim */
2276 static int
2277 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2278 nodemask_t *nodemask)
2279 {
2280 struct reclaim_state reclaim_state;
2281 int progress;
2282
2283 cond_resched();
2284
2285 /* We now go into synchronous reclaim */
2286 cpuset_memory_pressure_bump();
2287 current->flags |= PF_MEMALLOC;
2288 lockdep_set_current_reclaim_state(gfp_mask);
2289 reclaim_state.reclaimed_slab = 0;
2290 current->reclaim_state = &reclaim_state;
2291
2292 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2293
2294 current->reclaim_state = NULL;
2295 lockdep_clear_current_reclaim_state();
2296 current->flags &= ~PF_MEMALLOC;
2297
2298 cond_resched();
2299
2300 return progress;
2301 }
2302
2303 /* The really slow allocator path where we enter direct reclaim */
2304 static inline struct page *
2305 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2306 struct zonelist *zonelist, enum zone_type high_zoneidx,
2307 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2308 int migratetype, unsigned long *did_some_progress)
2309 {
2310 struct page *page = NULL;
2311 bool drained = false;
2312
2313 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2314 nodemask);
2315 if (unlikely(!(*did_some_progress)))
2316 return NULL;
2317
2318 /* After successful reclaim, reconsider all zones for allocation */
2319 if (IS_ENABLED(CONFIG_NUMA))
2320 zlc_clear_zones_full(zonelist);
2321
2322 retry:
2323 page = get_page_from_freelist(gfp_mask, nodemask, order,
2324 zonelist, high_zoneidx,
2325 alloc_flags & ~ALLOC_NO_WATERMARKS,
2326 preferred_zone, migratetype);
2327
2328 /*
2329 * If an allocation failed after direct reclaim, it could be because
2330 * pages are pinned on the per-cpu lists. Drain them and try again
2331 */
2332 if (!page && !drained) {
2333 drain_all_pages();
2334 drained = true;
2335 goto retry;
2336 }
2337
2338 return page;
2339 }
2340
2341 /*
2342 * This is called in the allocator slow-path if the allocation request is of
2343 * sufficient urgency to ignore watermarks and take other desperate measures
2344 */
2345 static inline struct page *
2346 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2347 struct zonelist *zonelist, enum zone_type high_zoneidx,
2348 nodemask_t *nodemask, struct zone *preferred_zone,
2349 int migratetype)
2350 {
2351 struct page *page;
2352
2353 do {
2354 page = get_page_from_freelist(gfp_mask, nodemask, order,
2355 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2356 preferred_zone, migratetype);
2357
2358 if (!page && gfp_mask & __GFP_NOFAIL)
2359 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2360 } while (!page && (gfp_mask & __GFP_NOFAIL));
2361
2362 return page;
2363 }
2364
2365 static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2366 struct zonelist *zonelist,
2367 enum zone_type high_zoneidx,
2368 struct zone *preferred_zone)
2369 {
2370 struct zoneref *z;
2371 struct zone *zone;
2372
2373 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2374 if (!(gfp_mask & __GFP_NO_KSWAPD))
2375 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2376 /*
2377 * Only reset the batches of zones that were actually
2378 * considered in the fast path, we don't want to
2379 * thrash fairness information for zones that are not
2380 * actually part of this zonelist's round-robin cycle.
2381 */
2382 if (!zone_local(preferred_zone, zone))
2383 continue;
2384 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2385 high_wmark_pages(zone) -
2386 low_wmark_pages(zone) -
2387 zone_page_state(zone, NR_ALLOC_BATCH));
2388 }
2389 }
2390
2391 static inline int
2392 gfp_to_alloc_flags(gfp_t gfp_mask)
2393 {
2394 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2395 const gfp_t wait = gfp_mask & __GFP_WAIT;
2396
2397 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2398 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2399
2400 /*
2401 * The caller may dip into page reserves a bit more if the caller
2402 * cannot run direct reclaim, or if the caller has realtime scheduling
2403 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2404 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2405 */
2406 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2407
2408 if (!wait) {
2409 /*
2410 * Not worth trying to allocate harder for
2411 * __GFP_NOMEMALLOC even if it can't schedule.
2412 */
2413 if (!(gfp_mask & __GFP_NOMEMALLOC))
2414 alloc_flags |= ALLOC_HARDER;
2415 /*
2416 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2417 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2418 */
2419 alloc_flags &= ~ALLOC_CPUSET;
2420 } else if (unlikely(rt_task(current)) && !in_interrupt())
2421 alloc_flags |= ALLOC_HARDER;
2422
2423 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2424 if (gfp_mask & __GFP_MEMALLOC)
2425 alloc_flags |= ALLOC_NO_WATERMARKS;
2426 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2427 alloc_flags |= ALLOC_NO_WATERMARKS;
2428 else if (!in_interrupt() &&
2429 ((current->flags & PF_MEMALLOC) ||
2430 unlikely(test_thread_flag(TIF_MEMDIE))))
2431 alloc_flags |= ALLOC_NO_WATERMARKS;
2432 }
2433 #ifdef CONFIG_CMA
2434 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2435 alloc_flags |= ALLOC_CMA;
2436 #endif
2437 return alloc_flags;
2438 }
2439
2440 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2441 {
2442 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2443 }
2444
2445 static inline struct page *
2446 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2447 struct zonelist *zonelist, enum zone_type high_zoneidx,
2448 nodemask_t *nodemask, struct zone *preferred_zone,
2449 int migratetype)
2450 {
2451 const gfp_t wait = gfp_mask & __GFP_WAIT;
2452 struct page *page = NULL;
2453 int alloc_flags;
2454 unsigned long pages_reclaimed = 0;
2455 unsigned long did_some_progress;
2456 bool sync_migration = false;
2457 bool deferred_compaction = false;
2458 bool contended_compaction = false;
2459
2460 /*
2461 * In the slowpath, we sanity check order to avoid ever trying to
2462 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2463 * be using allocators in order of preference for an area that is
2464 * too large.
2465 */
2466 if (order >= MAX_ORDER) {
2467 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2468 return NULL;
2469 }
2470
2471 /*
2472 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2473 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2474 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2475 * using a larger set of nodes after it has established that the
2476 * allowed per node queues are empty and that nodes are
2477 * over allocated.
2478 */
2479 if (IS_ENABLED(CONFIG_NUMA) &&
2480 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2481 goto nopage;
2482
2483 restart:
2484 prepare_slowpath(gfp_mask, order, zonelist,
2485 high_zoneidx, preferred_zone);
2486
2487 /*
2488 * OK, we're below the kswapd watermark and have kicked background
2489 * reclaim. Now things get more complex, so set up alloc_flags according
2490 * to how we want to proceed.
2491 */
2492 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2493
2494 /*
2495 * Find the true preferred zone if the allocation is unconstrained by
2496 * cpusets.
2497 */
2498 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2499 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2500 &preferred_zone);
2501
2502 rebalance:
2503 /* This is the last chance, in general, before the goto nopage. */
2504 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2505 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2506 preferred_zone, migratetype);
2507 if (page)
2508 goto got_pg;
2509
2510 /* Allocate without watermarks if the context allows */
2511 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2512 /*
2513 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2514 * the allocation is high priority and these type of
2515 * allocations are system rather than user orientated
2516 */
2517 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2518
2519 page = __alloc_pages_high_priority(gfp_mask, order,
2520 zonelist, high_zoneidx, nodemask,
2521 preferred_zone, migratetype);
2522 if (page) {
2523 goto got_pg;
2524 }
2525 }
2526
2527 /* Atomic allocations - we can't balance anything */
2528 if (!wait) {
2529 /*
2530 * All existing users of the deprecated __GFP_NOFAIL are
2531 * blockable, so warn of any new users that actually allow this
2532 * type of allocation to fail.
2533 */
2534 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2535 goto nopage;
2536 }
2537
2538 /* Avoid recursion of direct reclaim */
2539 if (current->flags & PF_MEMALLOC)
2540 goto nopage;
2541
2542 /* Avoid allocations with no watermarks from looping endlessly */
2543 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2544 goto nopage;
2545
2546 /*
2547 * Try direct compaction. The first pass is asynchronous. Subsequent
2548 * attempts after direct reclaim are synchronous
2549 */
2550 page = __alloc_pages_direct_compact(gfp_mask, order,
2551 zonelist, high_zoneidx,
2552 nodemask,
2553 alloc_flags, preferred_zone,
2554 migratetype, sync_migration,
2555 &contended_compaction,
2556 &deferred_compaction,
2557 &did_some_progress);
2558 if (page)
2559 goto got_pg;
2560 sync_migration = true;
2561
2562 /*
2563 * If compaction is deferred for high-order allocations, it is because
2564 * sync compaction recently failed. In this is the case and the caller
2565 * requested a movable allocation that does not heavily disrupt the
2566 * system then fail the allocation instead of entering direct reclaim.
2567 */
2568 if ((deferred_compaction || contended_compaction) &&
2569 (gfp_mask & __GFP_NO_KSWAPD))
2570 goto nopage;
2571
2572 /* Try direct reclaim and then allocating */
2573 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2574 zonelist, high_zoneidx,
2575 nodemask,
2576 alloc_flags, preferred_zone,
2577 migratetype, &did_some_progress);
2578 if (page)
2579 goto got_pg;
2580
2581 /*
2582 * If we failed to make any progress reclaiming, then we are
2583 * running out of options and have to consider going OOM
2584 */
2585 if (!did_some_progress) {
2586 if (oom_gfp_allowed(gfp_mask)) {
2587 if (oom_killer_disabled)
2588 goto nopage;
2589 /* Coredumps can quickly deplete all memory reserves */
2590 if ((current->flags & PF_DUMPCORE) &&
2591 !(gfp_mask & __GFP_NOFAIL))
2592 goto nopage;
2593 page = __alloc_pages_may_oom(gfp_mask, order,
2594 zonelist, high_zoneidx,
2595 nodemask, preferred_zone,
2596 migratetype);
2597 if (page)
2598 goto got_pg;
2599
2600 if (!(gfp_mask & __GFP_NOFAIL)) {
2601 /*
2602 * The oom killer is not called for high-order
2603 * allocations that may fail, so if no progress
2604 * is being made, there are no other options and
2605 * retrying is unlikely to help.
2606 */
2607 if (order > PAGE_ALLOC_COSTLY_ORDER)
2608 goto nopage;
2609 /*
2610 * The oom killer is not called for lowmem
2611 * allocations to prevent needlessly killing
2612 * innocent tasks.
2613 */
2614 if (high_zoneidx < ZONE_NORMAL)
2615 goto nopage;
2616 }
2617
2618 goto restart;
2619 }
2620 }
2621
2622 /* Check if we should retry the allocation */
2623 pages_reclaimed += did_some_progress;
2624 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2625 pages_reclaimed)) {
2626 /* Wait for some write requests to complete then retry */
2627 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2628 goto rebalance;
2629 } else {
2630 /*
2631 * High-order allocations do not necessarily loop after
2632 * direct reclaim and reclaim/compaction depends on compaction
2633 * being called after reclaim so call directly if necessary
2634 */
2635 page = __alloc_pages_direct_compact(gfp_mask, order,
2636 zonelist, high_zoneidx,
2637 nodemask,
2638 alloc_flags, preferred_zone,
2639 migratetype, sync_migration,
2640 &contended_compaction,
2641 &deferred_compaction,
2642 &did_some_progress);
2643 if (page)
2644 goto got_pg;
2645 }
2646
2647 nopage:
2648 warn_alloc_failed(gfp_mask, order, NULL);
2649 return page;
2650 got_pg:
2651 if (kmemcheck_enabled)
2652 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2653
2654 return page;
2655 }
2656
2657 /*
2658 * This is the 'heart' of the zoned buddy allocator.
2659 */
2660 struct page *
2661 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2662 struct zonelist *zonelist, nodemask_t *nodemask)
2663 {
2664 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2665 struct zone *preferred_zone;
2666 struct page *page = NULL;
2667 int migratetype = allocflags_to_migratetype(gfp_mask);
2668 unsigned int cpuset_mems_cookie;
2669 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2670 struct mem_cgroup *memcg = NULL;
2671
2672 gfp_mask &= gfp_allowed_mask;
2673
2674 lockdep_trace_alloc(gfp_mask);
2675
2676 might_sleep_if(gfp_mask & __GFP_WAIT);
2677
2678 if (should_fail_alloc_page(gfp_mask, order))
2679 return NULL;
2680
2681 /*
2682 * Check the zones suitable for the gfp_mask contain at least one
2683 * valid zone. It's possible to have an empty zonelist as a result
2684 * of GFP_THISNODE and a memoryless node
2685 */
2686 if (unlikely(!zonelist->_zonerefs->zone))
2687 return NULL;
2688
2689 /*
2690 * Will only have any effect when __GFP_KMEMCG is set. This is
2691 * verified in the (always inline) callee
2692 */
2693 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2694 return NULL;
2695
2696 retry_cpuset:
2697 cpuset_mems_cookie = get_mems_allowed();
2698
2699 /* The preferred zone is used for statistics later */
2700 first_zones_zonelist(zonelist, high_zoneidx,
2701 nodemask ? : &cpuset_current_mems_allowed,
2702 &preferred_zone);
2703 if (!preferred_zone)
2704 goto out;
2705
2706 #ifdef CONFIG_CMA
2707 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2708 alloc_flags |= ALLOC_CMA;
2709 #endif
2710 /* First allocation attempt */
2711 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2712 zonelist, high_zoneidx, alloc_flags,
2713 preferred_zone, migratetype);
2714 if (unlikely(!page)) {
2715 /*
2716 * Runtime PM, block IO and its error handling path
2717 * can deadlock because I/O on the device might not
2718 * complete.
2719 */
2720 gfp_mask = memalloc_noio_flags(gfp_mask);
2721 page = __alloc_pages_slowpath(gfp_mask, order,
2722 zonelist, high_zoneidx, nodemask,
2723 preferred_zone, migratetype);
2724 }
2725
2726 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2727
2728 out:
2729 /*
2730 * When updating a task's mems_allowed, it is possible to race with
2731 * parallel threads in such a way that an allocation can fail while
2732 * the mask is being updated. If a page allocation is about to fail,
2733 * check if the cpuset changed during allocation and if so, retry.
2734 */
2735 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2736 goto retry_cpuset;
2737
2738 memcg_kmem_commit_charge(page, memcg, order);
2739
2740 return page;
2741 }
2742 EXPORT_SYMBOL(__alloc_pages_nodemask);
2743
2744 /*
2745 * Common helper functions.
2746 */
2747 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2748 {
2749 struct page *page;
2750
2751 /*
2752 * __get_free_pages() returns a 32-bit address, which cannot represent
2753 * a highmem page
2754 */
2755 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2756
2757 page = alloc_pages(gfp_mask, order);
2758 if (!page)
2759 return 0;
2760 return (unsigned long) page_address(page);
2761 }
2762 EXPORT_SYMBOL(__get_free_pages);
2763
2764 unsigned long get_zeroed_page(gfp_t gfp_mask)
2765 {
2766 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2767 }
2768 EXPORT_SYMBOL(get_zeroed_page);
2769
2770 void __free_pages(struct page *page, unsigned int order)
2771 {
2772 if (put_page_testzero(page)) {
2773 if (order == 0)
2774 free_hot_cold_page(page, 0);
2775 else
2776 __free_pages_ok(page, order);
2777 }
2778 }
2779
2780 EXPORT_SYMBOL(__free_pages);
2781
2782 void free_pages(unsigned long addr, unsigned int order)
2783 {
2784 if (addr != 0) {
2785 VM_BUG_ON(!virt_addr_valid((void *)addr));
2786 __free_pages(virt_to_page((void *)addr), order);
2787 }
2788 }
2789
2790 EXPORT_SYMBOL(free_pages);
2791
2792 /*
2793 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2794 * pages allocated with __GFP_KMEMCG.
2795 *
2796 * Those pages are accounted to a particular memcg, embedded in the
2797 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2798 * for that information only to find out that it is NULL for users who have no
2799 * interest in that whatsoever, we provide these functions.
2800 *
2801 * The caller knows better which flags it relies on.
2802 */
2803 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2804 {
2805 memcg_kmem_uncharge_pages(page, order);
2806 __free_pages(page, order);
2807 }
2808
2809 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2810 {
2811 if (addr != 0) {
2812 VM_BUG_ON(!virt_addr_valid((void *)addr));
2813 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2814 }
2815 }
2816
2817 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2818 {
2819 if (addr) {
2820 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2821 unsigned long used = addr + PAGE_ALIGN(size);
2822
2823 split_page(virt_to_page((void *)addr), order);
2824 while (used < alloc_end) {
2825 free_page(used);
2826 used += PAGE_SIZE;
2827 }
2828 }
2829 return (void *)addr;
2830 }
2831
2832 /**
2833 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2834 * @size: the number of bytes to allocate
2835 * @gfp_mask: GFP flags for the allocation
2836 *
2837 * This function is similar to alloc_pages(), except that it allocates the
2838 * minimum number of pages to satisfy the request. alloc_pages() can only
2839 * allocate memory in power-of-two pages.
2840 *
2841 * This function is also limited by MAX_ORDER.
2842 *
2843 * Memory allocated by this function must be released by free_pages_exact().
2844 */
2845 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2846 {
2847 unsigned int order = get_order(size);
2848 unsigned long addr;
2849
2850 addr = __get_free_pages(gfp_mask, order);
2851 return make_alloc_exact(addr, order, size);
2852 }
2853 EXPORT_SYMBOL(alloc_pages_exact);
2854
2855 /**
2856 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2857 * pages on a node.
2858 * @nid: the preferred node ID where memory should be allocated
2859 * @size: the number of bytes to allocate
2860 * @gfp_mask: GFP flags for the allocation
2861 *
2862 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2863 * back.
2864 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2865 * but is not exact.
2866 */
2867 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2868 {
2869 unsigned order = get_order(size);
2870 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2871 if (!p)
2872 return NULL;
2873 return make_alloc_exact((unsigned long)page_address(p), order, size);
2874 }
2875 EXPORT_SYMBOL(alloc_pages_exact_nid);
2876
2877 /**
2878 * free_pages_exact - release memory allocated via alloc_pages_exact()
2879 * @virt: the value returned by alloc_pages_exact.
2880 * @size: size of allocation, same value as passed to alloc_pages_exact().
2881 *
2882 * Release the memory allocated by a previous call to alloc_pages_exact.
2883 */
2884 void free_pages_exact(void *virt, size_t size)
2885 {
2886 unsigned long addr = (unsigned long)virt;
2887 unsigned long end = addr + PAGE_ALIGN(size);
2888
2889 while (addr < end) {
2890 free_page(addr);
2891 addr += PAGE_SIZE;
2892 }
2893 }
2894 EXPORT_SYMBOL(free_pages_exact);
2895
2896 /**
2897 * nr_free_zone_pages - count number of pages beyond high watermark
2898 * @offset: The zone index of the highest zone
2899 *
2900 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2901 * high watermark within all zones at or below a given zone index. For each
2902 * zone, the number of pages is calculated as:
2903 * managed_pages - high_pages
2904 */
2905 static unsigned long nr_free_zone_pages(int offset)
2906 {
2907 struct zoneref *z;
2908 struct zone *zone;
2909
2910 /* Just pick one node, since fallback list is circular */
2911 unsigned long sum = 0;
2912
2913 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2914
2915 for_each_zone_zonelist(zone, z, zonelist, offset) {
2916 unsigned long size = zone->managed_pages;
2917 unsigned long high = high_wmark_pages(zone);
2918 if (size > high)
2919 sum += size - high;
2920 }
2921
2922 return sum;
2923 }
2924
2925 /**
2926 * nr_free_buffer_pages - count number of pages beyond high watermark
2927 *
2928 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2929 * watermark within ZONE_DMA and ZONE_NORMAL.
2930 */
2931 unsigned long nr_free_buffer_pages(void)
2932 {
2933 return nr_free_zone_pages(gfp_zone(GFP_USER));
2934 }
2935 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2936
2937 /**
2938 * nr_free_pagecache_pages - count number of pages beyond high watermark
2939 *
2940 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2941 * high watermark within all zones.
2942 */
2943 unsigned long nr_free_pagecache_pages(void)
2944 {
2945 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2946 }
2947
2948 static inline void show_node(struct zone *zone)
2949 {
2950 if (IS_ENABLED(CONFIG_NUMA))
2951 printk("Node %d ", zone_to_nid(zone));
2952 }
2953
2954 void si_meminfo(struct sysinfo *val)
2955 {
2956 val->totalram = totalram_pages;
2957 val->sharedram = 0;
2958 val->freeram = global_page_state(NR_FREE_PAGES);
2959 val->bufferram = nr_blockdev_pages();
2960 val->totalhigh = totalhigh_pages;
2961 val->freehigh = nr_free_highpages();
2962 val->mem_unit = PAGE_SIZE;
2963 }
2964
2965 EXPORT_SYMBOL(si_meminfo);
2966
2967 #ifdef CONFIG_NUMA
2968 void si_meminfo_node(struct sysinfo *val, int nid)
2969 {
2970 int zone_type; /* needs to be signed */
2971 unsigned long managed_pages = 0;
2972 pg_data_t *pgdat = NODE_DATA(nid);
2973
2974 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2975 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2976 val->totalram = managed_pages;
2977 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2978 #ifdef CONFIG_HIGHMEM
2979 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2980 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2981 NR_FREE_PAGES);
2982 #else
2983 val->totalhigh = 0;
2984 val->freehigh = 0;
2985 #endif
2986 val->mem_unit = PAGE_SIZE;
2987 }
2988 #endif
2989
2990 /*
2991 * Determine whether the node should be displayed or not, depending on whether
2992 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2993 */
2994 bool skip_free_areas_node(unsigned int flags, int nid)
2995 {
2996 bool ret = false;
2997 unsigned int cpuset_mems_cookie;
2998
2999 if (!(flags & SHOW_MEM_FILTER_NODES))
3000 goto out;
3001
3002 do {
3003 cpuset_mems_cookie = get_mems_allowed();
3004 ret = !node_isset(nid, cpuset_current_mems_allowed);
3005 } while (!put_mems_allowed(cpuset_mems_cookie));
3006 out:
3007 return ret;
3008 }
3009
3010 #define K(x) ((x) << (PAGE_SHIFT-10))
3011
3012 static void show_migration_types(unsigned char type)
3013 {
3014 static const char types[MIGRATE_TYPES] = {
3015 [MIGRATE_UNMOVABLE] = 'U',
3016 [MIGRATE_RECLAIMABLE] = 'E',
3017 [MIGRATE_MOVABLE] = 'M',
3018 [MIGRATE_RESERVE] = 'R',
3019 #ifdef CONFIG_CMA
3020 [MIGRATE_CMA] = 'C',
3021 #endif
3022 #ifdef CONFIG_MEMORY_ISOLATION
3023 [MIGRATE_ISOLATE] = 'I',
3024 #endif
3025 };
3026 char tmp[MIGRATE_TYPES + 1];
3027 char *p = tmp;
3028 int i;
3029
3030 for (i = 0; i < MIGRATE_TYPES; i++) {
3031 if (type & (1 << i))
3032 *p++ = types[i];
3033 }
3034
3035 *p = '\0';
3036 printk("(%s) ", tmp);
3037 }
3038
3039 /*
3040 * Show free area list (used inside shift_scroll-lock stuff)
3041 * We also calculate the percentage fragmentation. We do this by counting the
3042 * memory on each free list with the exception of the first item on the list.
3043 * Suppresses nodes that are not allowed by current's cpuset if
3044 * SHOW_MEM_FILTER_NODES is passed.
3045 */
3046 void show_free_areas(unsigned int filter)
3047 {
3048 int cpu;
3049 struct zone *zone;
3050
3051 for_each_populated_zone(zone) {
3052 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3053 continue;
3054 show_node(zone);
3055 printk("%s per-cpu:\n", zone->name);
3056
3057 for_each_online_cpu(cpu) {
3058 struct per_cpu_pageset *pageset;
3059
3060 pageset = per_cpu_ptr(zone->pageset, cpu);
3061
3062 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3063 cpu, pageset->pcp.high,
3064 pageset->pcp.batch, pageset->pcp.count);
3065 }
3066 }
3067
3068 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3069 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3070 " unevictable:%lu"
3071 " dirty:%lu writeback:%lu unstable:%lu\n"
3072 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3073 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3074 " free_cma:%lu\n",
3075 global_page_state(NR_ACTIVE_ANON),
3076 global_page_state(NR_INACTIVE_ANON),
3077 global_page_state(NR_ISOLATED_ANON),
3078 global_page_state(NR_ACTIVE_FILE),
3079 global_page_state(NR_INACTIVE_FILE),
3080 global_page_state(NR_ISOLATED_FILE),
3081 global_page_state(NR_UNEVICTABLE),
3082 global_page_state(NR_FILE_DIRTY),
3083 global_page_state(NR_WRITEBACK),
3084 global_page_state(NR_UNSTABLE_NFS),
3085 global_page_state(NR_FREE_PAGES),
3086 global_page_state(NR_SLAB_RECLAIMABLE),
3087 global_page_state(NR_SLAB_UNRECLAIMABLE),
3088 global_page_state(NR_FILE_MAPPED),
3089 global_page_state(NR_SHMEM),
3090 global_page_state(NR_PAGETABLE),
3091 global_page_state(NR_BOUNCE),
3092 global_page_state(NR_FREE_CMA_PAGES));
3093
3094 for_each_populated_zone(zone) {
3095 int i;
3096
3097 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3098 continue;
3099 show_node(zone);
3100 printk("%s"
3101 " free:%lukB"
3102 " min:%lukB"
3103 " low:%lukB"
3104 " high:%lukB"
3105 " active_anon:%lukB"
3106 " inactive_anon:%lukB"
3107 " active_file:%lukB"
3108 " inactive_file:%lukB"
3109 " unevictable:%lukB"
3110 " isolated(anon):%lukB"
3111 " isolated(file):%lukB"
3112 " present:%lukB"
3113 " managed:%lukB"
3114 " mlocked:%lukB"
3115 " dirty:%lukB"
3116 " writeback:%lukB"
3117 " mapped:%lukB"
3118 " shmem:%lukB"
3119 " slab_reclaimable:%lukB"
3120 " slab_unreclaimable:%lukB"
3121 " kernel_stack:%lukB"
3122 " pagetables:%lukB"
3123 " unstable:%lukB"
3124 " bounce:%lukB"
3125 " free_cma:%lukB"
3126 " writeback_tmp:%lukB"
3127 " pages_scanned:%lu"
3128 " all_unreclaimable? %s"
3129 "\n",
3130 zone->name,
3131 K(zone_page_state(zone, NR_FREE_PAGES)),
3132 K(min_wmark_pages(zone)),
3133 K(low_wmark_pages(zone)),
3134 K(high_wmark_pages(zone)),
3135 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3136 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3137 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3138 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3139 K(zone_page_state(zone, NR_UNEVICTABLE)),
3140 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3141 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3142 K(zone->present_pages),
3143 K(zone->managed_pages),
3144 K(zone_page_state(zone, NR_MLOCK)),
3145 K(zone_page_state(zone, NR_FILE_DIRTY)),
3146 K(zone_page_state(zone, NR_WRITEBACK)),
3147 K(zone_page_state(zone, NR_FILE_MAPPED)),
3148 K(zone_page_state(zone, NR_SHMEM)),
3149 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3150 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3151 zone_page_state(zone, NR_KERNEL_STACK) *
3152 THREAD_SIZE / 1024,
3153 K(zone_page_state(zone, NR_PAGETABLE)),
3154 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3155 K(zone_page_state(zone, NR_BOUNCE)),
3156 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3157 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3158 zone->pages_scanned,
3159 (!zone_reclaimable(zone) ? "yes" : "no")
3160 );
3161 printk("lowmem_reserve[]:");
3162 for (i = 0; i < MAX_NR_ZONES; i++)
3163 printk(" %lu", zone->lowmem_reserve[i]);
3164 printk("\n");
3165 }
3166
3167 for_each_populated_zone(zone) {
3168 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3169 unsigned char types[MAX_ORDER];
3170
3171 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3172 continue;
3173 show_node(zone);
3174 printk("%s: ", zone->name);
3175
3176 spin_lock_irqsave(&zone->lock, flags);
3177 for (order = 0; order < MAX_ORDER; order++) {
3178 struct free_area *area = &zone->free_area[order];
3179 int type;
3180
3181 nr[order] = area->nr_free;
3182 total += nr[order] << order;
3183
3184 types[order] = 0;
3185 for (type = 0; type < MIGRATE_TYPES; type++) {
3186 if (!list_empty(&area->free_list[type]))
3187 types[order] |= 1 << type;
3188 }
3189 }
3190 spin_unlock_irqrestore(&zone->lock, flags);
3191 for (order = 0; order < MAX_ORDER; order++) {
3192 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3193 if (nr[order])
3194 show_migration_types(types[order]);
3195 }
3196 printk("= %lukB\n", K(total));
3197 }
3198
3199 hugetlb_show_meminfo();
3200
3201 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3202
3203 show_swap_cache_info();
3204 }
3205
3206 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3207 {
3208 zoneref->zone = zone;
3209 zoneref->zone_idx = zone_idx(zone);
3210 }
3211
3212 /*
3213 * Builds allocation fallback zone lists.
3214 *
3215 * Add all populated zones of a node to the zonelist.
3216 */
3217 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3218 int nr_zones)
3219 {
3220 struct zone *zone;
3221 enum zone_type zone_type = MAX_NR_ZONES;
3222
3223 do {
3224 zone_type--;
3225 zone = pgdat->node_zones + zone_type;
3226 if (populated_zone(zone)) {
3227 zoneref_set_zone(zone,
3228 &zonelist->_zonerefs[nr_zones++]);
3229 check_highest_zone(zone_type);
3230 }
3231 } while (zone_type);
3232
3233 return nr_zones;
3234 }
3235
3236
3237 /*
3238 * zonelist_order:
3239 * 0 = automatic detection of better ordering.
3240 * 1 = order by ([node] distance, -zonetype)
3241 * 2 = order by (-zonetype, [node] distance)
3242 *
3243 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3244 * the same zonelist. So only NUMA can configure this param.
3245 */
3246 #define ZONELIST_ORDER_DEFAULT 0
3247 #define ZONELIST_ORDER_NODE 1
3248 #define ZONELIST_ORDER_ZONE 2
3249
3250 /* zonelist order in the kernel.
3251 * set_zonelist_order() will set this to NODE or ZONE.
3252 */
3253 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3254 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3255
3256
3257 #ifdef CONFIG_NUMA
3258 /* The value user specified ....changed by config */
3259 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3260 /* string for sysctl */
3261 #define NUMA_ZONELIST_ORDER_LEN 16
3262 char numa_zonelist_order[16] = "default";
3263
3264 /*
3265 * interface for configure zonelist ordering.
3266 * command line option "numa_zonelist_order"
3267 * = "[dD]efault - default, automatic configuration.
3268 * = "[nN]ode - order by node locality, then by zone within node
3269 * = "[zZ]one - order by zone, then by locality within zone
3270 */
3271
3272 static int __parse_numa_zonelist_order(char *s)
3273 {
3274 if (*s == 'd' || *s == 'D') {
3275 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3276 } else if (*s == 'n' || *s == 'N') {
3277 user_zonelist_order = ZONELIST_ORDER_NODE;
3278 } else if (*s == 'z' || *s == 'Z') {
3279 user_zonelist_order = ZONELIST_ORDER_ZONE;
3280 } else {
3281 printk(KERN_WARNING
3282 "Ignoring invalid numa_zonelist_order value: "
3283 "%s\n", s);
3284 return -EINVAL;
3285 }
3286 return 0;
3287 }
3288
3289 static __init int setup_numa_zonelist_order(char *s)
3290 {
3291 int ret;
3292
3293 if (!s)
3294 return 0;
3295
3296 ret = __parse_numa_zonelist_order(s);
3297 if (ret == 0)
3298 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3299
3300 return ret;
3301 }
3302 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3303
3304 /*
3305 * sysctl handler for numa_zonelist_order
3306 */
3307 int numa_zonelist_order_handler(ctl_table *table, int write,
3308 void __user *buffer, size_t *length,
3309 loff_t *ppos)
3310 {
3311 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3312 int ret;
3313 static DEFINE_MUTEX(zl_order_mutex);
3314
3315 mutex_lock(&zl_order_mutex);
3316 if (write) {
3317 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3318 ret = -EINVAL;
3319 goto out;
3320 }
3321 strcpy(saved_string, (char *)table->data);
3322 }
3323 ret = proc_dostring(table, write, buffer, length, ppos);
3324 if (ret)
3325 goto out;
3326 if (write) {
3327 int oldval = user_zonelist_order;
3328
3329 ret = __parse_numa_zonelist_order((char *)table->data);
3330 if (ret) {
3331 /*
3332 * bogus value. restore saved string
3333 */
3334 strncpy((char *)table->data, saved_string,
3335 NUMA_ZONELIST_ORDER_LEN);
3336 user_zonelist_order = oldval;
3337 } else if (oldval != user_zonelist_order) {
3338 mutex_lock(&zonelists_mutex);
3339 build_all_zonelists(NULL, NULL);
3340 mutex_unlock(&zonelists_mutex);
3341 }
3342 }
3343 out:
3344 mutex_unlock(&zl_order_mutex);
3345 return ret;
3346 }
3347
3348
3349 #define MAX_NODE_LOAD (nr_online_nodes)
3350 static int node_load[MAX_NUMNODES];
3351
3352 /**
3353 * find_next_best_node - find the next node that should appear in a given node's fallback list
3354 * @node: node whose fallback list we're appending
3355 * @used_node_mask: nodemask_t of already used nodes
3356 *
3357 * We use a number of factors to determine which is the next node that should
3358 * appear on a given node's fallback list. The node should not have appeared
3359 * already in @node's fallback list, and it should be the next closest node
3360 * according to the distance array (which contains arbitrary distance values
3361 * from each node to each node in the system), and should also prefer nodes
3362 * with no CPUs, since presumably they'll have very little allocation pressure
3363 * on them otherwise.
3364 * It returns -1 if no node is found.
3365 */
3366 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3367 {
3368 int n, val;
3369 int min_val = INT_MAX;
3370 int best_node = NUMA_NO_NODE;
3371 const struct cpumask *tmp = cpumask_of_node(0);
3372
3373 /* Use the local node if we haven't already */
3374 if (!node_isset(node, *used_node_mask)) {
3375 node_set(node, *used_node_mask);
3376 return node;
3377 }
3378
3379 for_each_node_state(n, N_MEMORY) {
3380
3381 /* Don't want a node to appear more than once */
3382 if (node_isset(n, *used_node_mask))
3383 continue;
3384
3385 /* Use the distance array to find the distance */
3386 val = node_distance(node, n);
3387
3388 /* Penalize nodes under us ("prefer the next node") */
3389 val += (n < node);
3390
3391 /* Give preference to headless and unused nodes */
3392 tmp = cpumask_of_node(n);
3393 if (!cpumask_empty(tmp))
3394 val += PENALTY_FOR_NODE_WITH_CPUS;
3395
3396 /* Slight preference for less loaded node */
3397 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3398 val += node_load[n];
3399
3400 if (val < min_val) {
3401 min_val = val;
3402 best_node = n;
3403 }
3404 }
3405
3406 if (best_node >= 0)
3407 node_set(best_node, *used_node_mask);
3408
3409 return best_node;
3410 }
3411
3412
3413 /*
3414 * Build zonelists ordered by node and zones within node.
3415 * This results in maximum locality--normal zone overflows into local
3416 * DMA zone, if any--but risks exhausting DMA zone.
3417 */
3418 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3419 {
3420 int j;
3421 struct zonelist *zonelist;
3422
3423 zonelist = &pgdat->node_zonelists[0];
3424 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3425 ;
3426 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3427 zonelist->_zonerefs[j].zone = NULL;
3428 zonelist->_zonerefs[j].zone_idx = 0;
3429 }
3430
3431 /*
3432 * Build gfp_thisnode zonelists
3433 */
3434 static void build_thisnode_zonelists(pg_data_t *pgdat)
3435 {
3436 int j;
3437 struct zonelist *zonelist;
3438
3439 zonelist = &pgdat->node_zonelists[1];
3440 j = build_zonelists_node(pgdat, zonelist, 0);
3441 zonelist->_zonerefs[j].zone = NULL;
3442 zonelist->_zonerefs[j].zone_idx = 0;
3443 }
3444
3445 /*
3446 * Build zonelists ordered by zone and nodes within zones.
3447 * This results in conserving DMA zone[s] until all Normal memory is
3448 * exhausted, but results in overflowing to remote node while memory
3449 * may still exist in local DMA zone.
3450 */
3451 static int node_order[MAX_NUMNODES];
3452
3453 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3454 {
3455 int pos, j, node;
3456 int zone_type; /* needs to be signed */
3457 struct zone *z;
3458 struct zonelist *zonelist;
3459
3460 zonelist = &pgdat->node_zonelists[0];
3461 pos = 0;
3462 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3463 for (j = 0; j < nr_nodes; j++) {
3464 node = node_order[j];
3465 z = &NODE_DATA(node)->node_zones[zone_type];
3466 if (populated_zone(z)) {
3467 zoneref_set_zone(z,
3468 &zonelist->_zonerefs[pos++]);
3469 check_highest_zone(zone_type);
3470 }
3471 }
3472 }
3473 zonelist->_zonerefs[pos].zone = NULL;
3474 zonelist->_zonerefs[pos].zone_idx = 0;
3475 }
3476
3477 static int default_zonelist_order(void)
3478 {
3479 int nid, zone_type;
3480 unsigned long low_kmem_size, total_size;
3481 struct zone *z;
3482 int average_size;
3483 /*
3484 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3485 * If they are really small and used heavily, the system can fall
3486 * into OOM very easily.
3487 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3488 */
3489 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3490 low_kmem_size = 0;
3491 total_size = 0;
3492 for_each_online_node(nid) {
3493 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3494 z = &NODE_DATA(nid)->node_zones[zone_type];
3495 if (populated_zone(z)) {
3496 if (zone_type < ZONE_NORMAL)
3497 low_kmem_size += z->managed_pages;
3498 total_size += z->managed_pages;
3499 } else if (zone_type == ZONE_NORMAL) {
3500 /*
3501 * If any node has only lowmem, then node order
3502 * is preferred to allow kernel allocations
3503 * locally; otherwise, they can easily infringe
3504 * on other nodes when there is an abundance of
3505 * lowmem available to allocate from.
3506 */
3507 return ZONELIST_ORDER_NODE;
3508 }
3509 }
3510 }
3511 if (!low_kmem_size || /* there are no DMA area. */
3512 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3513 return ZONELIST_ORDER_NODE;
3514 /*
3515 * look into each node's config.
3516 * If there is a node whose DMA/DMA32 memory is very big area on
3517 * local memory, NODE_ORDER may be suitable.
3518 */
3519 average_size = total_size /
3520 (nodes_weight(node_states[N_MEMORY]) + 1);
3521 for_each_online_node(nid) {
3522 low_kmem_size = 0;
3523 total_size = 0;
3524 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3525 z = &NODE_DATA(nid)->node_zones[zone_type];
3526 if (populated_zone(z)) {
3527 if (zone_type < ZONE_NORMAL)
3528 low_kmem_size += z->present_pages;
3529 total_size += z->present_pages;
3530 }
3531 }
3532 if (low_kmem_size &&
3533 total_size > average_size && /* ignore small node */
3534 low_kmem_size > total_size * 70/100)
3535 return ZONELIST_ORDER_NODE;
3536 }
3537 return ZONELIST_ORDER_ZONE;
3538 }
3539
3540 static void set_zonelist_order(void)
3541 {
3542 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3543 current_zonelist_order = default_zonelist_order();
3544 else
3545 current_zonelist_order = user_zonelist_order;
3546 }
3547
3548 static void build_zonelists(pg_data_t *pgdat)
3549 {
3550 int j, node, load;
3551 enum zone_type i;
3552 nodemask_t used_mask;
3553 int local_node, prev_node;
3554 struct zonelist *zonelist;
3555 int order = current_zonelist_order;
3556
3557 /* initialize zonelists */
3558 for (i = 0; i < MAX_ZONELISTS; i++) {
3559 zonelist = pgdat->node_zonelists + i;
3560 zonelist->_zonerefs[0].zone = NULL;
3561 zonelist->_zonerefs[0].zone_idx = 0;
3562 }
3563
3564 /* NUMA-aware ordering of nodes */
3565 local_node = pgdat->node_id;
3566 load = nr_online_nodes;
3567 prev_node = local_node;
3568 nodes_clear(used_mask);
3569
3570 memset(node_order, 0, sizeof(node_order));
3571 j = 0;
3572
3573 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3574 /*
3575 * We don't want to pressure a particular node.
3576 * So adding penalty to the first node in same
3577 * distance group to make it round-robin.
3578 */
3579 if (node_distance(local_node, node) !=
3580 node_distance(local_node, prev_node))
3581 node_load[node] = load;
3582
3583 prev_node = node;
3584 load--;
3585 if (order == ZONELIST_ORDER_NODE)
3586 build_zonelists_in_node_order(pgdat, node);
3587 else
3588 node_order[j++] = node; /* remember order */
3589 }
3590
3591 if (order == ZONELIST_ORDER_ZONE) {
3592 /* calculate node order -- i.e., DMA last! */
3593 build_zonelists_in_zone_order(pgdat, j);
3594 }
3595
3596 build_thisnode_zonelists(pgdat);
3597 }
3598
3599 /* Construct the zonelist performance cache - see further mmzone.h */
3600 static void build_zonelist_cache(pg_data_t *pgdat)
3601 {
3602 struct zonelist *zonelist;
3603 struct zonelist_cache *zlc;
3604 struct zoneref *z;
3605
3606 zonelist = &pgdat->node_zonelists[0];
3607 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3608 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3609 for (z = zonelist->_zonerefs; z->zone; z++)
3610 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3611 }
3612
3613 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3614 /*
3615 * Return node id of node used for "local" allocations.
3616 * I.e., first node id of first zone in arg node's generic zonelist.
3617 * Used for initializing percpu 'numa_mem', which is used primarily
3618 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3619 */
3620 int local_memory_node(int node)
3621 {
3622 struct zone *zone;
3623
3624 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3625 gfp_zone(GFP_KERNEL),
3626 NULL,
3627 &zone);
3628 return zone->node;
3629 }
3630 #endif
3631
3632 #else /* CONFIG_NUMA */
3633
3634 static void set_zonelist_order(void)
3635 {
3636 current_zonelist_order = ZONELIST_ORDER_ZONE;
3637 }
3638
3639 static void build_zonelists(pg_data_t *pgdat)
3640 {
3641 int node, local_node;
3642 enum zone_type j;
3643 struct zonelist *zonelist;
3644
3645 local_node = pgdat->node_id;
3646
3647 zonelist = &pgdat->node_zonelists[0];
3648 j = build_zonelists_node(pgdat, zonelist, 0);
3649
3650 /*
3651 * Now we build the zonelist so that it contains the zones
3652 * of all the other nodes.
3653 * We don't want to pressure a particular node, so when
3654 * building the zones for node N, we make sure that the
3655 * zones coming right after the local ones are those from
3656 * node N+1 (modulo N)
3657 */
3658 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3659 if (!node_online(node))
3660 continue;
3661 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3662 }
3663 for (node = 0; node < local_node; node++) {
3664 if (!node_online(node))
3665 continue;
3666 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3667 }
3668
3669 zonelist->_zonerefs[j].zone = NULL;
3670 zonelist->_zonerefs[j].zone_idx = 0;
3671 }
3672
3673 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3674 static void build_zonelist_cache(pg_data_t *pgdat)
3675 {
3676 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3677 }
3678
3679 #endif /* CONFIG_NUMA */
3680
3681 /*
3682 * Boot pageset table. One per cpu which is going to be used for all
3683 * zones and all nodes. The parameters will be set in such a way
3684 * that an item put on a list will immediately be handed over to
3685 * the buddy list. This is safe since pageset manipulation is done
3686 * with interrupts disabled.
3687 *
3688 * The boot_pagesets must be kept even after bootup is complete for
3689 * unused processors and/or zones. They do play a role for bootstrapping
3690 * hotplugged processors.
3691 *
3692 * zoneinfo_show() and maybe other functions do
3693 * not check if the processor is online before following the pageset pointer.
3694 * Other parts of the kernel may not check if the zone is available.
3695 */
3696 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3697 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3698 static void setup_zone_pageset(struct zone *zone);
3699
3700 /*
3701 * Global mutex to protect against size modification of zonelists
3702 * as well as to serialize pageset setup for the new populated zone.
3703 */
3704 DEFINE_MUTEX(zonelists_mutex);
3705
3706 /* return values int ....just for stop_machine() */
3707 static int __build_all_zonelists(void *data)
3708 {
3709 int nid;
3710 int cpu;
3711 pg_data_t *self = data;
3712
3713 #ifdef CONFIG_NUMA
3714 memset(node_load, 0, sizeof(node_load));
3715 #endif
3716
3717 if (self && !node_online(self->node_id)) {
3718 build_zonelists(self);
3719 build_zonelist_cache(self);
3720 }
3721
3722 for_each_online_node(nid) {
3723 pg_data_t *pgdat = NODE_DATA(nid);
3724
3725 build_zonelists(pgdat);
3726 build_zonelist_cache(pgdat);
3727 }
3728
3729 /*
3730 * Initialize the boot_pagesets that are going to be used
3731 * for bootstrapping processors. The real pagesets for
3732 * each zone will be allocated later when the per cpu
3733 * allocator is available.
3734 *
3735 * boot_pagesets are used also for bootstrapping offline
3736 * cpus if the system is already booted because the pagesets
3737 * are needed to initialize allocators on a specific cpu too.
3738 * F.e. the percpu allocator needs the page allocator which
3739 * needs the percpu allocator in order to allocate its pagesets
3740 * (a chicken-egg dilemma).
3741 */
3742 for_each_possible_cpu(cpu) {
3743 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3744
3745 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3746 /*
3747 * We now know the "local memory node" for each node--
3748 * i.e., the node of the first zone in the generic zonelist.
3749 * Set up numa_mem percpu variable for on-line cpus. During
3750 * boot, only the boot cpu should be on-line; we'll init the
3751 * secondary cpus' numa_mem as they come on-line. During
3752 * node/memory hotplug, we'll fixup all on-line cpus.
3753 */
3754 if (cpu_online(cpu))
3755 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3756 #endif
3757 }
3758
3759 return 0;
3760 }
3761
3762 /*
3763 * Called with zonelists_mutex held always
3764 * unless system_state == SYSTEM_BOOTING.
3765 */
3766 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3767 {
3768 set_zonelist_order();
3769
3770 if (system_state == SYSTEM_BOOTING) {
3771 __build_all_zonelists(NULL);
3772 mminit_verify_zonelist();
3773 cpuset_init_current_mems_allowed();
3774 } else {
3775 #ifdef CONFIG_MEMORY_HOTPLUG
3776 if (zone)
3777 setup_zone_pageset(zone);
3778 #endif
3779 /* we have to stop all cpus to guarantee there is no user
3780 of zonelist */
3781 stop_machine(__build_all_zonelists, pgdat, NULL);
3782 /* cpuset refresh routine should be here */
3783 }
3784 vm_total_pages = nr_free_pagecache_pages();
3785 /*
3786 * Disable grouping by mobility if the number of pages in the
3787 * system is too low to allow the mechanism to work. It would be
3788 * more accurate, but expensive to check per-zone. This check is
3789 * made on memory-hotadd so a system can start with mobility
3790 * disabled and enable it later
3791 */
3792 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3793 page_group_by_mobility_disabled = 1;
3794 else
3795 page_group_by_mobility_disabled = 0;
3796
3797 printk("Built %i zonelists in %s order, mobility grouping %s. "
3798 "Total pages: %ld\n",
3799 nr_online_nodes,
3800 zonelist_order_name[current_zonelist_order],
3801 page_group_by_mobility_disabled ? "off" : "on",
3802 vm_total_pages);
3803 #ifdef CONFIG_NUMA
3804 printk("Policy zone: %s\n", zone_names[policy_zone]);
3805 #endif
3806 }
3807
3808 /*
3809 * Helper functions to size the waitqueue hash table.
3810 * Essentially these want to choose hash table sizes sufficiently
3811 * large so that collisions trying to wait on pages are rare.
3812 * But in fact, the number of active page waitqueues on typical
3813 * systems is ridiculously low, less than 200. So this is even
3814 * conservative, even though it seems large.
3815 *
3816 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3817 * waitqueues, i.e. the size of the waitq table given the number of pages.
3818 */
3819 #define PAGES_PER_WAITQUEUE 256
3820
3821 #ifndef CONFIG_MEMORY_HOTPLUG
3822 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3823 {
3824 unsigned long size = 1;
3825
3826 pages /= PAGES_PER_WAITQUEUE;
3827
3828 while (size < pages)
3829 size <<= 1;
3830
3831 /*
3832 * Once we have dozens or even hundreds of threads sleeping
3833 * on IO we've got bigger problems than wait queue collision.
3834 * Limit the size of the wait table to a reasonable size.
3835 */
3836 size = min(size, 4096UL);
3837
3838 return max(size, 4UL);
3839 }
3840 #else
3841 /*
3842 * A zone's size might be changed by hot-add, so it is not possible to determine
3843 * a suitable size for its wait_table. So we use the maximum size now.
3844 *
3845 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3846 *
3847 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3848 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3849 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3850 *
3851 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3852 * or more by the traditional way. (See above). It equals:
3853 *
3854 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3855 * ia64(16K page size) : = ( 8G + 4M)byte.
3856 * powerpc (64K page size) : = (32G +16M)byte.
3857 */
3858 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3859 {
3860 return 4096UL;
3861 }
3862 #endif
3863
3864 /*
3865 * This is an integer logarithm so that shifts can be used later
3866 * to extract the more random high bits from the multiplicative
3867 * hash function before the remainder is taken.
3868 */
3869 static inline unsigned long wait_table_bits(unsigned long size)
3870 {
3871 return ffz(~size);
3872 }
3873
3874 /*
3875 * Check if a pageblock contains reserved pages
3876 */
3877 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3878 {
3879 unsigned long pfn;
3880
3881 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3882 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3883 return 1;
3884 }
3885 return 0;
3886 }
3887
3888 /*
3889 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3890 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3891 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3892 * higher will lead to a bigger reserve which will get freed as contiguous
3893 * blocks as reclaim kicks in
3894 */
3895 static void setup_zone_migrate_reserve(struct zone *zone)
3896 {
3897 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3898 struct page *page;
3899 unsigned long block_migratetype;
3900 int reserve;
3901 int old_reserve;
3902
3903 /*
3904 * Get the start pfn, end pfn and the number of blocks to reserve
3905 * We have to be careful to be aligned to pageblock_nr_pages to
3906 * make sure that we always check pfn_valid for the first page in
3907 * the block.
3908 */
3909 start_pfn = zone->zone_start_pfn;
3910 end_pfn = zone_end_pfn(zone);
3911 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3912 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3913 pageblock_order;
3914
3915 /*
3916 * Reserve blocks are generally in place to help high-order atomic
3917 * allocations that are short-lived. A min_free_kbytes value that
3918 * would result in more than 2 reserve blocks for atomic allocations
3919 * is assumed to be in place to help anti-fragmentation for the
3920 * future allocation of hugepages at runtime.
3921 */
3922 reserve = min(2, reserve);
3923 old_reserve = zone->nr_migrate_reserve_block;
3924
3925 /* When memory hot-add, we almost always need to do nothing */
3926 if (reserve == old_reserve)
3927 return;
3928 zone->nr_migrate_reserve_block = reserve;
3929
3930 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3931 if (!pfn_valid(pfn))
3932 continue;
3933 page = pfn_to_page(pfn);
3934
3935 /* Watch out for overlapping nodes */
3936 if (page_to_nid(page) != zone_to_nid(zone))
3937 continue;
3938
3939 block_migratetype = get_pageblock_migratetype(page);
3940
3941 /* Only test what is necessary when the reserves are not met */
3942 if (reserve > 0) {
3943 /*
3944 * Blocks with reserved pages will never free, skip
3945 * them.
3946 */
3947 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3948 if (pageblock_is_reserved(pfn, block_end_pfn))
3949 continue;
3950
3951 /* If this block is reserved, account for it */
3952 if (block_migratetype == MIGRATE_RESERVE) {
3953 reserve--;
3954 continue;
3955 }
3956
3957 /* Suitable for reserving if this block is movable */
3958 if (block_migratetype == MIGRATE_MOVABLE) {
3959 set_pageblock_migratetype(page,
3960 MIGRATE_RESERVE);
3961 move_freepages_block(zone, page,
3962 MIGRATE_RESERVE);
3963 reserve--;
3964 continue;
3965 }
3966 } else if (!old_reserve) {
3967 /*
3968 * At boot time we don't need to scan the whole zone
3969 * for turning off MIGRATE_RESERVE.
3970 */
3971 break;
3972 }
3973
3974 /*
3975 * If the reserve is met and this is a previous reserved block,
3976 * take it back
3977 */
3978 if (block_migratetype == MIGRATE_RESERVE) {
3979 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3980 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3981 }
3982 }
3983 }
3984
3985 /*
3986 * Initially all pages are reserved - free ones are freed
3987 * up by free_all_bootmem() once the early boot process is
3988 * done. Non-atomic initialization, single-pass.
3989 */
3990 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3991 unsigned long start_pfn, enum memmap_context context)
3992 {
3993 struct page *page;
3994 unsigned long end_pfn = start_pfn + size;
3995 unsigned long pfn;
3996 struct zone *z;
3997
3998 if (highest_memmap_pfn < end_pfn - 1)
3999 highest_memmap_pfn = end_pfn - 1;
4000
4001 z = &NODE_DATA(nid)->node_zones[zone];
4002 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4003 /*
4004 * There can be holes in boot-time mem_map[]s
4005 * handed to this function. They do not
4006 * exist on hotplugged memory.
4007 */
4008 if (context == MEMMAP_EARLY) {
4009 if (!early_pfn_valid(pfn))
4010 continue;
4011 if (!early_pfn_in_nid(pfn, nid))
4012 continue;
4013 }
4014 page = pfn_to_page(pfn);
4015 set_page_links(page, zone, nid, pfn);
4016 mminit_verify_page_links(page, zone, nid, pfn);
4017 init_page_count(page);
4018 page_mapcount_reset(page);
4019 page_cpupid_reset_last(page);
4020 SetPageReserved(page);
4021 /*
4022 * Mark the block movable so that blocks are reserved for
4023 * movable at startup. This will force kernel allocations
4024 * to reserve their blocks rather than leaking throughout
4025 * the address space during boot when many long-lived
4026 * kernel allocations are made. Later some blocks near
4027 * the start are marked MIGRATE_RESERVE by
4028 * setup_zone_migrate_reserve()
4029 *
4030 * bitmap is created for zone's valid pfn range. but memmap
4031 * can be created for invalid pages (for alignment)
4032 * check here not to call set_pageblock_migratetype() against
4033 * pfn out of zone.
4034 */
4035 if ((z->zone_start_pfn <= pfn)
4036 && (pfn < zone_end_pfn(z))
4037 && !(pfn & (pageblock_nr_pages - 1)))
4038 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4039
4040 INIT_LIST_HEAD(&page->lru);
4041 #ifdef WANT_PAGE_VIRTUAL
4042 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4043 if (!is_highmem_idx(zone))
4044 set_page_address(page, __va(pfn << PAGE_SHIFT));
4045 #endif
4046 }
4047 }
4048
4049 static void __meminit zone_init_free_lists(struct zone *zone)
4050 {
4051 int order, t;
4052 for_each_migratetype_order(order, t) {
4053 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4054 zone->free_area[order].nr_free = 0;
4055 }
4056 }
4057
4058 #ifndef __HAVE_ARCH_MEMMAP_INIT
4059 #define memmap_init(size, nid, zone, start_pfn) \
4060 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4061 #endif
4062
4063 static int __meminit zone_batchsize(struct zone *zone)
4064 {
4065 #ifdef CONFIG_MMU
4066 int batch;
4067
4068 /*
4069 * The per-cpu-pages pools are set to around 1000th of the
4070 * size of the zone. But no more than 1/2 of a meg.
4071 *
4072 * OK, so we don't know how big the cache is. So guess.
4073 */
4074 batch = zone->managed_pages / 1024;
4075 if (batch * PAGE_SIZE > 512 * 1024)
4076 batch = (512 * 1024) / PAGE_SIZE;
4077 batch /= 4; /* We effectively *= 4 below */
4078 if (batch < 1)
4079 batch = 1;
4080
4081 /*
4082 * Clamp the batch to a 2^n - 1 value. Having a power
4083 * of 2 value was found to be more likely to have
4084 * suboptimal cache aliasing properties in some cases.
4085 *
4086 * For example if 2 tasks are alternately allocating
4087 * batches of pages, one task can end up with a lot
4088 * of pages of one half of the possible page colors
4089 * and the other with pages of the other colors.
4090 */
4091 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4092
4093 return batch;
4094
4095 #else
4096 /* The deferral and batching of frees should be suppressed under NOMMU
4097 * conditions.
4098 *
4099 * The problem is that NOMMU needs to be able to allocate large chunks
4100 * of contiguous memory as there's no hardware page translation to
4101 * assemble apparent contiguous memory from discontiguous pages.
4102 *
4103 * Queueing large contiguous runs of pages for batching, however,
4104 * causes the pages to actually be freed in smaller chunks. As there
4105 * can be a significant delay between the individual batches being
4106 * recycled, this leads to the once large chunks of space being
4107 * fragmented and becoming unavailable for high-order allocations.
4108 */
4109 return 0;
4110 #endif
4111 }
4112
4113 /*
4114 * pcp->high and pcp->batch values are related and dependent on one another:
4115 * ->batch must never be higher then ->high.
4116 * The following function updates them in a safe manner without read side
4117 * locking.
4118 *
4119 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4120 * those fields changing asynchronously (acording the the above rule).
4121 *
4122 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4123 * outside of boot time (or some other assurance that no concurrent updaters
4124 * exist).
4125 */
4126 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4127 unsigned long batch)
4128 {
4129 /* start with a fail safe value for batch */
4130 pcp->batch = 1;
4131 smp_wmb();
4132
4133 /* Update high, then batch, in order */
4134 pcp->high = high;
4135 smp_wmb();
4136
4137 pcp->batch = batch;
4138 }
4139
4140 /* a companion to pageset_set_high() */
4141 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4142 {
4143 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4144 }
4145
4146 static void pageset_init(struct per_cpu_pageset *p)
4147 {
4148 struct per_cpu_pages *pcp;
4149 int migratetype;
4150
4151 memset(p, 0, sizeof(*p));
4152
4153 pcp = &p->pcp;
4154 pcp->count = 0;
4155 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4156 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4157 }
4158
4159 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4160 {
4161 pageset_init(p);
4162 pageset_set_batch(p, batch);
4163 }
4164
4165 /*
4166 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4167 * to the value high for the pageset p.
4168 */
4169 static void pageset_set_high(struct per_cpu_pageset *p,
4170 unsigned long high)
4171 {
4172 unsigned long batch = max(1UL, high / 4);
4173 if ((high / 4) > (PAGE_SHIFT * 8))
4174 batch = PAGE_SHIFT * 8;
4175
4176 pageset_update(&p->pcp, high, batch);
4177 }
4178
4179 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4180 struct per_cpu_pageset *pcp)
4181 {
4182 if (percpu_pagelist_fraction)
4183 pageset_set_high(pcp,
4184 (zone->managed_pages /
4185 percpu_pagelist_fraction));
4186 else
4187 pageset_set_batch(pcp, zone_batchsize(zone));
4188 }
4189
4190 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4191 {
4192 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4193
4194 pageset_init(pcp);
4195 pageset_set_high_and_batch(zone, pcp);
4196 }
4197
4198 static void __meminit setup_zone_pageset(struct zone *zone)
4199 {
4200 int cpu;
4201 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4202 for_each_possible_cpu(cpu)
4203 zone_pageset_init(zone, cpu);
4204 }
4205
4206 /*
4207 * Allocate per cpu pagesets and initialize them.
4208 * Before this call only boot pagesets were available.
4209 */
4210 void __init setup_per_cpu_pageset(void)
4211 {
4212 struct zone *zone;
4213
4214 for_each_populated_zone(zone)
4215 setup_zone_pageset(zone);
4216 }
4217
4218 static noinline __init_refok
4219 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4220 {
4221 int i;
4222 size_t alloc_size;
4223
4224 /*
4225 * The per-page waitqueue mechanism uses hashed waitqueues
4226 * per zone.
4227 */
4228 zone->wait_table_hash_nr_entries =
4229 wait_table_hash_nr_entries(zone_size_pages);
4230 zone->wait_table_bits =
4231 wait_table_bits(zone->wait_table_hash_nr_entries);
4232 alloc_size = zone->wait_table_hash_nr_entries
4233 * sizeof(wait_queue_head_t);
4234
4235 if (!slab_is_available()) {
4236 zone->wait_table = (wait_queue_head_t *)
4237 memblock_virt_alloc_node_nopanic(
4238 alloc_size, zone->zone_pgdat->node_id);
4239 } else {
4240 /*
4241 * This case means that a zone whose size was 0 gets new memory
4242 * via memory hot-add.
4243 * But it may be the case that a new node was hot-added. In
4244 * this case vmalloc() will not be able to use this new node's
4245 * memory - this wait_table must be initialized to use this new
4246 * node itself as well.
4247 * To use this new node's memory, further consideration will be
4248 * necessary.
4249 */
4250 zone->wait_table = vmalloc(alloc_size);
4251 }
4252 if (!zone->wait_table)
4253 return -ENOMEM;
4254
4255 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4256 init_waitqueue_head(zone->wait_table + i);
4257
4258 return 0;
4259 }
4260
4261 static __meminit void zone_pcp_init(struct zone *zone)
4262 {
4263 /*
4264 * per cpu subsystem is not up at this point. The following code
4265 * relies on the ability of the linker to provide the
4266 * offset of a (static) per cpu variable into the per cpu area.
4267 */
4268 zone->pageset = &boot_pageset;
4269
4270 if (populated_zone(zone))
4271 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4272 zone->name, zone->present_pages,
4273 zone_batchsize(zone));
4274 }
4275
4276 int __meminit init_currently_empty_zone(struct zone *zone,
4277 unsigned long zone_start_pfn,
4278 unsigned long size,
4279 enum memmap_context context)
4280 {
4281 struct pglist_data *pgdat = zone->zone_pgdat;
4282 int ret;
4283 ret = zone_wait_table_init(zone, size);
4284 if (ret)
4285 return ret;
4286 pgdat->nr_zones = zone_idx(zone) + 1;
4287
4288 zone->zone_start_pfn = zone_start_pfn;
4289
4290 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4291 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4292 pgdat->node_id,
4293 (unsigned long)zone_idx(zone),
4294 zone_start_pfn, (zone_start_pfn + size));
4295
4296 zone_init_free_lists(zone);
4297
4298 return 0;
4299 }
4300
4301 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4302 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4303 /*
4304 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4305 * Architectures may implement their own version but if add_active_range()
4306 * was used and there are no special requirements, this is a convenient
4307 * alternative
4308 */
4309 int __meminit __early_pfn_to_nid(unsigned long pfn)
4310 {
4311 unsigned long start_pfn, end_pfn;
4312 int nid;
4313 /*
4314 * NOTE: The following SMP-unsafe globals are only used early in boot
4315 * when the kernel is running single-threaded.
4316 */
4317 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4318 static int __meminitdata last_nid;
4319
4320 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4321 return last_nid;
4322
4323 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4324 if (nid != -1) {
4325 last_start_pfn = start_pfn;
4326 last_end_pfn = end_pfn;
4327 last_nid = nid;
4328 }
4329
4330 return nid;
4331 }
4332 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4333
4334 int __meminit early_pfn_to_nid(unsigned long pfn)
4335 {
4336 int nid;
4337
4338 nid = __early_pfn_to_nid(pfn);
4339 if (nid >= 0)
4340 return nid;
4341 /* just returns 0 */
4342 return 0;
4343 }
4344
4345 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4346 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4347 {
4348 int nid;
4349
4350 nid = __early_pfn_to_nid(pfn);
4351 if (nid >= 0 && nid != node)
4352 return false;
4353 return true;
4354 }
4355 #endif
4356
4357 /**
4358 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4359 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4360 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4361 *
4362 * If an architecture guarantees that all ranges registered with
4363 * add_active_ranges() contain no holes and may be freed, this
4364 * this function may be used instead of calling memblock_free_early_nid()
4365 * manually.
4366 */
4367 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4368 {
4369 unsigned long start_pfn, end_pfn;
4370 int i, this_nid;
4371
4372 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4373 start_pfn = min(start_pfn, max_low_pfn);
4374 end_pfn = min(end_pfn, max_low_pfn);
4375
4376 if (start_pfn < end_pfn)
4377 memblock_free_early_nid(PFN_PHYS(start_pfn),
4378 (end_pfn - start_pfn) << PAGE_SHIFT,
4379 this_nid);
4380 }
4381 }
4382
4383 /**
4384 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4385 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4386 *
4387 * If an architecture guarantees that all ranges registered with
4388 * add_active_ranges() contain no holes and may be freed, this
4389 * function may be used instead of calling memory_present() manually.
4390 */
4391 void __init sparse_memory_present_with_active_regions(int nid)
4392 {
4393 unsigned long start_pfn, end_pfn;
4394 int i, this_nid;
4395
4396 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4397 memory_present(this_nid, start_pfn, end_pfn);
4398 }
4399
4400 /**
4401 * get_pfn_range_for_nid - Return the start and end page frames for a node
4402 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4403 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4404 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4405 *
4406 * It returns the start and end page frame of a node based on information
4407 * provided by an arch calling add_active_range(). If called for a node
4408 * with no available memory, a warning is printed and the start and end
4409 * PFNs will be 0.
4410 */
4411 void __meminit get_pfn_range_for_nid(unsigned int nid,
4412 unsigned long *start_pfn, unsigned long *end_pfn)
4413 {
4414 unsigned long this_start_pfn, this_end_pfn;
4415 int i;
4416
4417 *start_pfn = -1UL;
4418 *end_pfn = 0;
4419
4420 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4421 *start_pfn = min(*start_pfn, this_start_pfn);
4422 *end_pfn = max(*end_pfn, this_end_pfn);
4423 }
4424
4425 if (*start_pfn == -1UL)
4426 *start_pfn = 0;
4427 }
4428
4429 /*
4430 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4431 * assumption is made that zones within a node are ordered in monotonic
4432 * increasing memory addresses so that the "highest" populated zone is used
4433 */
4434 static void __init find_usable_zone_for_movable(void)
4435 {
4436 int zone_index;
4437 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4438 if (zone_index == ZONE_MOVABLE)
4439 continue;
4440
4441 if (arch_zone_highest_possible_pfn[zone_index] >
4442 arch_zone_lowest_possible_pfn[zone_index])
4443 break;
4444 }
4445
4446 VM_BUG_ON(zone_index == -1);
4447 movable_zone = zone_index;
4448 }
4449
4450 /*
4451 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4452 * because it is sized independent of architecture. Unlike the other zones,
4453 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4454 * in each node depending on the size of each node and how evenly kernelcore
4455 * is distributed. This helper function adjusts the zone ranges
4456 * provided by the architecture for a given node by using the end of the
4457 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4458 * zones within a node are in order of monotonic increases memory addresses
4459 */
4460 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4461 unsigned long zone_type,
4462 unsigned long node_start_pfn,
4463 unsigned long node_end_pfn,
4464 unsigned long *zone_start_pfn,
4465 unsigned long *zone_end_pfn)
4466 {
4467 /* Only adjust if ZONE_MOVABLE is on this node */
4468 if (zone_movable_pfn[nid]) {
4469 /* Size ZONE_MOVABLE */
4470 if (zone_type == ZONE_MOVABLE) {
4471 *zone_start_pfn = zone_movable_pfn[nid];
4472 *zone_end_pfn = min(node_end_pfn,
4473 arch_zone_highest_possible_pfn[movable_zone]);
4474
4475 /* Adjust for ZONE_MOVABLE starting within this range */
4476 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4477 *zone_end_pfn > zone_movable_pfn[nid]) {
4478 *zone_end_pfn = zone_movable_pfn[nid];
4479
4480 /* Check if this whole range is within ZONE_MOVABLE */
4481 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4482 *zone_start_pfn = *zone_end_pfn;
4483 }
4484 }
4485
4486 /*
4487 * Return the number of pages a zone spans in a node, including holes
4488 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4489 */
4490 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4491 unsigned long zone_type,
4492 unsigned long node_start_pfn,
4493 unsigned long node_end_pfn,
4494 unsigned long *ignored)
4495 {
4496 unsigned long zone_start_pfn, zone_end_pfn;
4497
4498 /* Get the start and end of the zone */
4499 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4500 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4501 adjust_zone_range_for_zone_movable(nid, zone_type,
4502 node_start_pfn, node_end_pfn,
4503 &zone_start_pfn, &zone_end_pfn);
4504
4505 /* Check that this node has pages within the zone's required range */
4506 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4507 return 0;
4508
4509 /* Move the zone boundaries inside the node if necessary */
4510 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4511 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4512
4513 /* Return the spanned pages */
4514 return zone_end_pfn - zone_start_pfn;
4515 }
4516
4517 /*
4518 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4519 * then all holes in the requested range will be accounted for.
4520 */
4521 unsigned long __meminit __absent_pages_in_range(int nid,
4522 unsigned long range_start_pfn,
4523 unsigned long range_end_pfn)
4524 {
4525 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4526 unsigned long start_pfn, end_pfn;
4527 int i;
4528
4529 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4530 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4531 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4532 nr_absent -= end_pfn - start_pfn;
4533 }
4534 return nr_absent;
4535 }
4536
4537 /**
4538 * absent_pages_in_range - Return number of page frames in holes within a range
4539 * @start_pfn: The start PFN to start searching for holes
4540 * @end_pfn: The end PFN to stop searching for holes
4541 *
4542 * It returns the number of pages frames in memory holes within a range.
4543 */
4544 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4545 unsigned long end_pfn)
4546 {
4547 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4548 }
4549
4550 /* Return the number of page frames in holes in a zone on a node */
4551 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4552 unsigned long zone_type,
4553 unsigned long node_start_pfn,
4554 unsigned long node_end_pfn,
4555 unsigned long *ignored)
4556 {
4557 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4558 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4559 unsigned long zone_start_pfn, zone_end_pfn;
4560
4561 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4562 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4563
4564 adjust_zone_range_for_zone_movable(nid, zone_type,
4565 node_start_pfn, node_end_pfn,
4566 &zone_start_pfn, &zone_end_pfn);
4567 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4568 }
4569
4570 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4571 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4572 unsigned long zone_type,
4573 unsigned long node_start_pfn,
4574 unsigned long node_end_pfn,
4575 unsigned long *zones_size)
4576 {
4577 return zones_size[zone_type];
4578 }
4579
4580 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4581 unsigned long zone_type,
4582 unsigned long node_start_pfn,
4583 unsigned long node_end_pfn,
4584 unsigned long *zholes_size)
4585 {
4586 if (!zholes_size)
4587 return 0;
4588
4589 return zholes_size[zone_type];
4590 }
4591
4592 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4593
4594 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4595 unsigned long node_start_pfn,
4596 unsigned long node_end_pfn,
4597 unsigned long *zones_size,
4598 unsigned long *zholes_size)
4599 {
4600 unsigned long realtotalpages, totalpages = 0;
4601 enum zone_type i;
4602
4603 for (i = 0; i < MAX_NR_ZONES; i++)
4604 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4605 node_start_pfn,
4606 node_end_pfn,
4607 zones_size);
4608 pgdat->node_spanned_pages = totalpages;
4609
4610 realtotalpages = totalpages;
4611 for (i = 0; i < MAX_NR_ZONES; i++)
4612 realtotalpages -=
4613 zone_absent_pages_in_node(pgdat->node_id, i,
4614 node_start_pfn, node_end_pfn,
4615 zholes_size);
4616 pgdat->node_present_pages = realtotalpages;
4617 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4618 realtotalpages);
4619 }
4620
4621 #ifndef CONFIG_SPARSEMEM
4622 /*
4623 * Calculate the size of the zone->blockflags rounded to an unsigned long
4624 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4625 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4626 * round what is now in bits to nearest long in bits, then return it in
4627 * bytes.
4628 */
4629 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4630 {
4631 unsigned long usemapsize;
4632
4633 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4634 usemapsize = roundup(zonesize, pageblock_nr_pages);
4635 usemapsize = usemapsize >> pageblock_order;
4636 usemapsize *= NR_PAGEBLOCK_BITS;
4637 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4638
4639 return usemapsize / 8;
4640 }
4641
4642 static void __init setup_usemap(struct pglist_data *pgdat,
4643 struct zone *zone,
4644 unsigned long zone_start_pfn,
4645 unsigned long zonesize)
4646 {
4647 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4648 zone->pageblock_flags = NULL;
4649 if (usemapsize)
4650 zone->pageblock_flags =
4651 memblock_virt_alloc_node_nopanic(usemapsize,
4652 pgdat->node_id);
4653 }
4654 #else
4655 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4656 unsigned long zone_start_pfn, unsigned long zonesize) {}
4657 #endif /* CONFIG_SPARSEMEM */
4658
4659 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4660
4661 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4662 void __paginginit set_pageblock_order(void)
4663 {
4664 unsigned int order;
4665
4666 /* Check that pageblock_nr_pages has not already been setup */
4667 if (pageblock_order)
4668 return;
4669
4670 if (HPAGE_SHIFT > PAGE_SHIFT)
4671 order = HUGETLB_PAGE_ORDER;
4672 else
4673 order = MAX_ORDER - 1;
4674
4675 /*
4676 * Assume the largest contiguous order of interest is a huge page.
4677 * This value may be variable depending on boot parameters on IA64 and
4678 * powerpc.
4679 */
4680 pageblock_order = order;
4681 }
4682 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4683
4684 /*
4685 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4686 * is unused as pageblock_order is set at compile-time. See
4687 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4688 * the kernel config
4689 */
4690 void __paginginit set_pageblock_order(void)
4691 {
4692 }
4693
4694 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4695
4696 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4697 unsigned long present_pages)
4698 {
4699 unsigned long pages = spanned_pages;
4700
4701 /*
4702 * Provide a more accurate estimation if there are holes within
4703 * the zone and SPARSEMEM is in use. If there are holes within the
4704 * zone, each populated memory region may cost us one or two extra
4705 * memmap pages due to alignment because memmap pages for each
4706 * populated regions may not naturally algined on page boundary.
4707 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4708 */
4709 if (spanned_pages > present_pages + (present_pages >> 4) &&
4710 IS_ENABLED(CONFIG_SPARSEMEM))
4711 pages = present_pages;
4712
4713 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4714 }
4715
4716 /*
4717 * Set up the zone data structures:
4718 * - mark all pages reserved
4719 * - mark all memory queues empty
4720 * - clear the memory bitmaps
4721 *
4722 * NOTE: pgdat should get zeroed by caller.
4723 */
4724 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4725 unsigned long node_start_pfn, unsigned long node_end_pfn,
4726 unsigned long *zones_size, unsigned long *zholes_size)
4727 {
4728 enum zone_type j;
4729 int nid = pgdat->node_id;
4730 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4731 int ret;
4732
4733 pgdat_resize_init(pgdat);
4734 #ifdef CONFIG_NUMA_BALANCING
4735 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4736 pgdat->numabalancing_migrate_nr_pages = 0;
4737 pgdat->numabalancing_migrate_next_window = jiffies;
4738 #endif
4739 init_waitqueue_head(&pgdat->kswapd_wait);
4740 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4741 pgdat_page_cgroup_init(pgdat);
4742
4743 for (j = 0; j < MAX_NR_ZONES; j++) {
4744 struct zone *zone = pgdat->node_zones + j;
4745 unsigned long size, realsize, freesize, memmap_pages;
4746
4747 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4748 node_end_pfn, zones_size);
4749 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4750 node_start_pfn,
4751 node_end_pfn,
4752 zholes_size);
4753
4754 /*
4755 * Adjust freesize so that it accounts for how much memory
4756 * is used by this zone for memmap. This affects the watermark
4757 * and per-cpu initialisations
4758 */
4759 memmap_pages = calc_memmap_size(size, realsize);
4760 if (freesize >= memmap_pages) {
4761 freesize -= memmap_pages;
4762 if (memmap_pages)
4763 printk(KERN_DEBUG
4764 " %s zone: %lu pages used for memmap\n",
4765 zone_names[j], memmap_pages);
4766 } else
4767 printk(KERN_WARNING
4768 " %s zone: %lu pages exceeds freesize %lu\n",
4769 zone_names[j], memmap_pages, freesize);
4770
4771 /* Account for reserved pages */
4772 if (j == 0 && freesize > dma_reserve) {
4773 freesize -= dma_reserve;
4774 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4775 zone_names[0], dma_reserve);
4776 }
4777
4778 if (!is_highmem_idx(j))
4779 nr_kernel_pages += freesize;
4780 /* Charge for highmem memmap if there are enough kernel pages */
4781 else if (nr_kernel_pages > memmap_pages * 2)
4782 nr_kernel_pages -= memmap_pages;
4783 nr_all_pages += freesize;
4784
4785 zone->spanned_pages = size;
4786 zone->present_pages = realsize;
4787 /*
4788 * Set an approximate value for lowmem here, it will be adjusted
4789 * when the bootmem allocator frees pages into the buddy system.
4790 * And all highmem pages will be managed by the buddy system.
4791 */
4792 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4793 #ifdef CONFIG_NUMA
4794 zone->node = nid;
4795 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4796 / 100;
4797 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4798 #endif
4799 zone->name = zone_names[j];
4800 spin_lock_init(&zone->lock);
4801 spin_lock_init(&zone->lru_lock);
4802 zone_seqlock_init(zone);
4803 zone->zone_pgdat = pgdat;
4804 zone_pcp_init(zone);
4805
4806 /* For bootup, initialized properly in watermark setup */
4807 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4808
4809 lruvec_init(&zone->lruvec);
4810 if (!size)
4811 continue;
4812
4813 set_pageblock_order();
4814 setup_usemap(pgdat, zone, zone_start_pfn, size);
4815 ret = init_currently_empty_zone(zone, zone_start_pfn,
4816 size, MEMMAP_EARLY);
4817 BUG_ON(ret);
4818 memmap_init(size, nid, j, zone_start_pfn);
4819 zone_start_pfn += size;
4820 }
4821 }
4822
4823 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4824 {
4825 /* Skip empty nodes */
4826 if (!pgdat->node_spanned_pages)
4827 return;
4828
4829 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4830 /* ia64 gets its own node_mem_map, before this, without bootmem */
4831 if (!pgdat->node_mem_map) {
4832 unsigned long size, start, end;
4833 struct page *map;
4834
4835 /*
4836 * The zone's endpoints aren't required to be MAX_ORDER
4837 * aligned but the node_mem_map endpoints must be in order
4838 * for the buddy allocator to function correctly.
4839 */
4840 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4841 end = pgdat_end_pfn(pgdat);
4842 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4843 size = (end - start) * sizeof(struct page);
4844 map = alloc_remap(pgdat->node_id, size);
4845 if (!map)
4846 map = memblock_virt_alloc_node_nopanic(size,
4847 pgdat->node_id);
4848 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4849 }
4850 #ifndef CONFIG_NEED_MULTIPLE_NODES
4851 /*
4852 * With no DISCONTIG, the global mem_map is just set as node 0's
4853 */
4854 if (pgdat == NODE_DATA(0)) {
4855 mem_map = NODE_DATA(0)->node_mem_map;
4856 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4857 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4858 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4859 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4860 }
4861 #endif
4862 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4863 }
4864
4865 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4866 unsigned long node_start_pfn, unsigned long *zholes_size)
4867 {
4868 pg_data_t *pgdat = NODE_DATA(nid);
4869 unsigned long start_pfn = 0;
4870 unsigned long end_pfn = 0;
4871
4872 /* pg_data_t should be reset to zero when it's allocated */
4873 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4874
4875 pgdat->node_id = nid;
4876 pgdat->node_start_pfn = node_start_pfn;
4877 init_zone_allows_reclaim(nid);
4878 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4879 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4880 #endif
4881 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4882 zones_size, zholes_size);
4883
4884 alloc_node_mem_map(pgdat);
4885 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4886 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4887 nid, (unsigned long)pgdat,
4888 (unsigned long)pgdat->node_mem_map);
4889 #endif
4890
4891 free_area_init_core(pgdat, start_pfn, end_pfn,
4892 zones_size, zholes_size);
4893 }
4894
4895 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4896
4897 #if MAX_NUMNODES > 1
4898 /*
4899 * Figure out the number of possible node ids.
4900 */
4901 void __init setup_nr_node_ids(void)
4902 {
4903 unsigned int node;
4904 unsigned int highest = 0;
4905
4906 for_each_node_mask(node, node_possible_map)
4907 highest = node;
4908 nr_node_ids = highest + 1;
4909 }
4910 #endif
4911
4912 /**
4913 * node_map_pfn_alignment - determine the maximum internode alignment
4914 *
4915 * This function should be called after node map is populated and sorted.
4916 * It calculates the maximum power of two alignment which can distinguish
4917 * all the nodes.
4918 *
4919 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4920 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4921 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4922 * shifted, 1GiB is enough and this function will indicate so.
4923 *
4924 * This is used to test whether pfn -> nid mapping of the chosen memory
4925 * model has fine enough granularity to avoid incorrect mapping for the
4926 * populated node map.
4927 *
4928 * Returns the determined alignment in pfn's. 0 if there is no alignment
4929 * requirement (single node).
4930 */
4931 unsigned long __init node_map_pfn_alignment(void)
4932 {
4933 unsigned long accl_mask = 0, last_end = 0;
4934 unsigned long start, end, mask;
4935 int last_nid = -1;
4936 int i, nid;
4937
4938 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4939 if (!start || last_nid < 0 || last_nid == nid) {
4940 last_nid = nid;
4941 last_end = end;
4942 continue;
4943 }
4944
4945 /*
4946 * Start with a mask granular enough to pin-point to the
4947 * start pfn and tick off bits one-by-one until it becomes
4948 * too coarse to separate the current node from the last.
4949 */
4950 mask = ~((1 << __ffs(start)) - 1);
4951 while (mask && last_end <= (start & (mask << 1)))
4952 mask <<= 1;
4953
4954 /* accumulate all internode masks */
4955 accl_mask |= mask;
4956 }
4957
4958 /* convert mask to number of pages */
4959 return ~accl_mask + 1;
4960 }
4961
4962 /* Find the lowest pfn for a node */
4963 static unsigned long __init find_min_pfn_for_node(int nid)
4964 {
4965 unsigned long min_pfn = ULONG_MAX;
4966 unsigned long start_pfn;
4967 int i;
4968
4969 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4970 min_pfn = min(min_pfn, start_pfn);
4971
4972 if (min_pfn == ULONG_MAX) {
4973 printk(KERN_WARNING
4974 "Could not find start_pfn for node %d\n", nid);
4975 return 0;
4976 }
4977
4978 return min_pfn;
4979 }
4980
4981 /**
4982 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4983 *
4984 * It returns the minimum PFN based on information provided via
4985 * add_active_range().
4986 */
4987 unsigned long __init find_min_pfn_with_active_regions(void)
4988 {
4989 return find_min_pfn_for_node(MAX_NUMNODES);
4990 }
4991
4992 /*
4993 * early_calculate_totalpages()
4994 * Sum pages in active regions for movable zone.
4995 * Populate N_MEMORY for calculating usable_nodes.
4996 */
4997 static unsigned long __init early_calculate_totalpages(void)
4998 {
4999 unsigned long totalpages = 0;
5000 unsigned long start_pfn, end_pfn;
5001 int i, nid;
5002
5003 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5004 unsigned long pages = end_pfn - start_pfn;
5005
5006 totalpages += pages;
5007 if (pages)
5008 node_set_state(nid, N_MEMORY);
5009 }
5010 return totalpages;
5011 }
5012
5013 /*
5014 * Find the PFN the Movable zone begins in each node. Kernel memory
5015 * is spread evenly between nodes as long as the nodes have enough
5016 * memory. When they don't, some nodes will have more kernelcore than
5017 * others
5018 */
5019 static void __init find_zone_movable_pfns_for_nodes(void)
5020 {
5021 int i, nid;
5022 unsigned long usable_startpfn;
5023 unsigned long kernelcore_node, kernelcore_remaining;
5024 /* save the state before borrow the nodemask */
5025 nodemask_t saved_node_state = node_states[N_MEMORY];
5026 unsigned long totalpages = early_calculate_totalpages();
5027 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5028 struct memblock_type *type = &memblock.memory;
5029
5030 /* Need to find movable_zone earlier when movable_node is specified. */
5031 find_usable_zone_for_movable();
5032
5033 /*
5034 * If movable_node is specified, ignore kernelcore and movablecore
5035 * options.
5036 */
5037 if (movable_node_is_enabled()) {
5038 for (i = 0; i < type->cnt; i++) {
5039 if (!memblock_is_hotpluggable(&type->regions[i]))
5040 continue;
5041
5042 nid = type->regions[i].nid;
5043
5044 usable_startpfn = PFN_DOWN(type->regions[i].base);
5045 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5046 min(usable_startpfn, zone_movable_pfn[nid]) :
5047 usable_startpfn;
5048 }
5049
5050 goto out2;
5051 }
5052
5053 /*
5054 * If movablecore=nn[KMG] was specified, calculate what size of
5055 * kernelcore that corresponds so that memory usable for
5056 * any allocation type is evenly spread. If both kernelcore
5057 * and movablecore are specified, then the value of kernelcore
5058 * will be used for required_kernelcore if it's greater than
5059 * what movablecore would have allowed.
5060 */
5061 if (required_movablecore) {
5062 unsigned long corepages;
5063
5064 /*
5065 * Round-up so that ZONE_MOVABLE is at least as large as what
5066 * was requested by the user
5067 */
5068 required_movablecore =
5069 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5070 corepages = totalpages - required_movablecore;
5071
5072 required_kernelcore = max(required_kernelcore, corepages);
5073 }
5074
5075 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5076 if (!required_kernelcore)
5077 goto out;
5078
5079 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5080 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5081
5082 restart:
5083 /* Spread kernelcore memory as evenly as possible throughout nodes */
5084 kernelcore_node = required_kernelcore / usable_nodes;
5085 for_each_node_state(nid, N_MEMORY) {
5086 unsigned long start_pfn, end_pfn;
5087
5088 /*
5089 * Recalculate kernelcore_node if the division per node
5090 * now exceeds what is necessary to satisfy the requested
5091 * amount of memory for the kernel
5092 */
5093 if (required_kernelcore < kernelcore_node)
5094 kernelcore_node = required_kernelcore / usable_nodes;
5095
5096 /*
5097 * As the map is walked, we track how much memory is usable
5098 * by the kernel using kernelcore_remaining. When it is
5099 * 0, the rest of the node is usable by ZONE_MOVABLE
5100 */
5101 kernelcore_remaining = kernelcore_node;
5102
5103 /* Go through each range of PFNs within this node */
5104 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5105 unsigned long size_pages;
5106
5107 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5108 if (start_pfn >= end_pfn)
5109 continue;
5110
5111 /* Account for what is only usable for kernelcore */
5112 if (start_pfn < usable_startpfn) {
5113 unsigned long kernel_pages;
5114 kernel_pages = min(end_pfn, usable_startpfn)
5115 - start_pfn;
5116
5117 kernelcore_remaining -= min(kernel_pages,
5118 kernelcore_remaining);
5119 required_kernelcore -= min(kernel_pages,
5120 required_kernelcore);
5121
5122 /* Continue if range is now fully accounted */
5123 if (end_pfn <= usable_startpfn) {
5124
5125 /*
5126 * Push zone_movable_pfn to the end so
5127 * that if we have to rebalance
5128 * kernelcore across nodes, we will
5129 * not double account here
5130 */
5131 zone_movable_pfn[nid] = end_pfn;
5132 continue;
5133 }
5134 start_pfn = usable_startpfn;
5135 }
5136
5137 /*
5138 * The usable PFN range for ZONE_MOVABLE is from
5139 * start_pfn->end_pfn. Calculate size_pages as the
5140 * number of pages used as kernelcore
5141 */
5142 size_pages = end_pfn - start_pfn;
5143 if (size_pages > kernelcore_remaining)
5144 size_pages = kernelcore_remaining;
5145 zone_movable_pfn[nid] = start_pfn + size_pages;
5146
5147 /*
5148 * Some kernelcore has been met, update counts and
5149 * break if the kernelcore for this node has been
5150 * satisfied
5151 */
5152 required_kernelcore -= min(required_kernelcore,
5153 size_pages);
5154 kernelcore_remaining -= size_pages;
5155 if (!kernelcore_remaining)
5156 break;
5157 }
5158 }
5159
5160 /*
5161 * If there is still required_kernelcore, we do another pass with one
5162 * less node in the count. This will push zone_movable_pfn[nid] further
5163 * along on the nodes that still have memory until kernelcore is
5164 * satisfied
5165 */
5166 usable_nodes--;
5167 if (usable_nodes && required_kernelcore > usable_nodes)
5168 goto restart;
5169
5170 out2:
5171 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5172 for (nid = 0; nid < MAX_NUMNODES; nid++)
5173 zone_movable_pfn[nid] =
5174 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5175
5176 out:
5177 /* restore the node_state */
5178 node_states[N_MEMORY] = saved_node_state;
5179 }
5180
5181 /* Any regular or high memory on that node ? */
5182 static void check_for_memory(pg_data_t *pgdat, int nid)
5183 {
5184 enum zone_type zone_type;
5185
5186 if (N_MEMORY == N_NORMAL_MEMORY)
5187 return;
5188
5189 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5190 struct zone *zone = &pgdat->node_zones[zone_type];
5191 if (populated_zone(zone)) {
5192 node_set_state(nid, N_HIGH_MEMORY);
5193 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5194 zone_type <= ZONE_NORMAL)
5195 node_set_state(nid, N_NORMAL_MEMORY);
5196 break;
5197 }
5198 }
5199 }
5200
5201 /**
5202 * free_area_init_nodes - Initialise all pg_data_t and zone data
5203 * @max_zone_pfn: an array of max PFNs for each zone
5204 *
5205 * This will call free_area_init_node() for each active node in the system.
5206 * Using the page ranges provided by add_active_range(), the size of each
5207 * zone in each node and their holes is calculated. If the maximum PFN
5208 * between two adjacent zones match, it is assumed that the zone is empty.
5209 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5210 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5211 * starts where the previous one ended. For example, ZONE_DMA32 starts
5212 * at arch_max_dma_pfn.
5213 */
5214 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5215 {
5216 unsigned long start_pfn, end_pfn;
5217 int i, nid;
5218
5219 /* Record where the zone boundaries are */
5220 memset(arch_zone_lowest_possible_pfn, 0,
5221 sizeof(arch_zone_lowest_possible_pfn));
5222 memset(arch_zone_highest_possible_pfn, 0,
5223 sizeof(arch_zone_highest_possible_pfn));
5224 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5225 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5226 for (i = 1; i < MAX_NR_ZONES; i++) {
5227 if (i == ZONE_MOVABLE)
5228 continue;
5229 arch_zone_lowest_possible_pfn[i] =
5230 arch_zone_highest_possible_pfn[i-1];
5231 arch_zone_highest_possible_pfn[i] =
5232 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5233 }
5234 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5235 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5236
5237 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5238 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5239 find_zone_movable_pfns_for_nodes();
5240
5241 /* Print out the zone ranges */
5242 printk("Zone ranges:\n");
5243 for (i = 0; i < MAX_NR_ZONES; i++) {
5244 if (i == ZONE_MOVABLE)
5245 continue;
5246 printk(KERN_CONT " %-8s ", zone_names[i]);
5247 if (arch_zone_lowest_possible_pfn[i] ==
5248 arch_zone_highest_possible_pfn[i])
5249 printk(KERN_CONT "empty\n");
5250 else
5251 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5252 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5253 (arch_zone_highest_possible_pfn[i]
5254 << PAGE_SHIFT) - 1);
5255 }
5256
5257 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5258 printk("Movable zone start for each node\n");
5259 for (i = 0; i < MAX_NUMNODES; i++) {
5260 if (zone_movable_pfn[i])
5261 printk(" Node %d: %#010lx\n", i,
5262 zone_movable_pfn[i] << PAGE_SHIFT);
5263 }
5264
5265 /* Print out the early node map */
5266 printk("Early memory node ranges\n");
5267 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5268 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5269 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5270
5271 /* Initialise every node */
5272 mminit_verify_pageflags_layout();
5273 setup_nr_node_ids();
5274 for_each_online_node(nid) {
5275 pg_data_t *pgdat = NODE_DATA(nid);
5276 free_area_init_node(nid, NULL,
5277 find_min_pfn_for_node(nid), NULL);
5278
5279 /* Any memory on that node */
5280 if (pgdat->node_present_pages)
5281 node_set_state(nid, N_MEMORY);
5282 check_for_memory(pgdat, nid);
5283 }
5284 }
5285
5286 static int __init cmdline_parse_core(char *p, unsigned long *core)
5287 {
5288 unsigned long long coremem;
5289 if (!p)
5290 return -EINVAL;
5291
5292 coremem = memparse(p, &p);
5293 *core = coremem >> PAGE_SHIFT;
5294
5295 /* Paranoid check that UL is enough for the coremem value */
5296 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5297
5298 return 0;
5299 }
5300
5301 /*
5302 * kernelcore=size sets the amount of memory for use for allocations that
5303 * cannot be reclaimed or migrated.
5304 */
5305 static int __init cmdline_parse_kernelcore(char *p)
5306 {
5307 return cmdline_parse_core(p, &required_kernelcore);
5308 }
5309
5310 /*
5311 * movablecore=size sets the amount of memory for use for allocations that
5312 * can be reclaimed or migrated.
5313 */
5314 static int __init cmdline_parse_movablecore(char *p)
5315 {
5316 return cmdline_parse_core(p, &required_movablecore);
5317 }
5318
5319 early_param("kernelcore", cmdline_parse_kernelcore);
5320 early_param("movablecore", cmdline_parse_movablecore);
5321
5322 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5323
5324 void adjust_managed_page_count(struct page *page, long count)
5325 {
5326 spin_lock(&managed_page_count_lock);
5327 page_zone(page)->managed_pages += count;
5328 totalram_pages += count;
5329 #ifdef CONFIG_HIGHMEM
5330 if (PageHighMem(page))
5331 totalhigh_pages += count;
5332 #endif
5333 spin_unlock(&managed_page_count_lock);
5334 }
5335 EXPORT_SYMBOL(adjust_managed_page_count);
5336
5337 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5338 {
5339 void *pos;
5340 unsigned long pages = 0;
5341
5342 start = (void *)PAGE_ALIGN((unsigned long)start);
5343 end = (void *)((unsigned long)end & PAGE_MASK);
5344 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5345 if ((unsigned int)poison <= 0xFF)
5346 memset(pos, poison, PAGE_SIZE);
5347 free_reserved_page(virt_to_page(pos));
5348 }
5349
5350 if (pages && s)
5351 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5352 s, pages << (PAGE_SHIFT - 10), start, end);
5353
5354 return pages;
5355 }
5356 EXPORT_SYMBOL(free_reserved_area);
5357
5358 #ifdef CONFIG_HIGHMEM
5359 void free_highmem_page(struct page *page)
5360 {
5361 __free_reserved_page(page);
5362 totalram_pages++;
5363 page_zone(page)->managed_pages++;
5364 totalhigh_pages++;
5365 }
5366 #endif
5367
5368
5369 void __init mem_init_print_info(const char *str)
5370 {
5371 unsigned long physpages, codesize, datasize, rosize, bss_size;
5372 unsigned long init_code_size, init_data_size;
5373
5374 physpages = get_num_physpages();
5375 codesize = _etext - _stext;
5376 datasize = _edata - _sdata;
5377 rosize = __end_rodata - __start_rodata;
5378 bss_size = __bss_stop - __bss_start;
5379 init_data_size = __init_end - __init_begin;
5380 init_code_size = _einittext - _sinittext;
5381
5382 /*
5383 * Detect special cases and adjust section sizes accordingly:
5384 * 1) .init.* may be embedded into .data sections
5385 * 2) .init.text.* may be out of [__init_begin, __init_end],
5386 * please refer to arch/tile/kernel/vmlinux.lds.S.
5387 * 3) .rodata.* may be embedded into .text or .data sections.
5388 */
5389 #define adj_init_size(start, end, size, pos, adj) \
5390 do { \
5391 if (start <= pos && pos < end && size > adj) \
5392 size -= adj; \
5393 } while (0)
5394
5395 adj_init_size(__init_begin, __init_end, init_data_size,
5396 _sinittext, init_code_size);
5397 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5398 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5399 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5400 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5401
5402 #undef adj_init_size
5403
5404 printk("Memory: %luK/%luK available "
5405 "(%luK kernel code, %luK rwdata, %luK rodata, "
5406 "%luK init, %luK bss, %luK reserved"
5407 #ifdef CONFIG_HIGHMEM
5408 ", %luK highmem"
5409 #endif
5410 "%s%s)\n",
5411 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5412 codesize >> 10, datasize >> 10, rosize >> 10,
5413 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5414 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5415 #ifdef CONFIG_HIGHMEM
5416 totalhigh_pages << (PAGE_SHIFT-10),
5417 #endif
5418 str ? ", " : "", str ? str : "");
5419 }
5420
5421 /**
5422 * set_dma_reserve - set the specified number of pages reserved in the first zone
5423 * @new_dma_reserve: The number of pages to mark reserved
5424 *
5425 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5426 * In the DMA zone, a significant percentage may be consumed by kernel image
5427 * and other unfreeable allocations which can skew the watermarks badly. This
5428 * function may optionally be used to account for unfreeable pages in the
5429 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5430 * smaller per-cpu batchsize.
5431 */
5432 void __init set_dma_reserve(unsigned long new_dma_reserve)
5433 {
5434 dma_reserve = new_dma_reserve;
5435 }
5436
5437 void __init free_area_init(unsigned long *zones_size)
5438 {
5439 free_area_init_node(0, zones_size,
5440 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5441 }
5442
5443 static int page_alloc_cpu_notify(struct notifier_block *self,
5444 unsigned long action, void *hcpu)
5445 {
5446 int cpu = (unsigned long)hcpu;
5447
5448 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5449 lru_add_drain_cpu(cpu);
5450 drain_pages(cpu);
5451
5452 /*
5453 * Spill the event counters of the dead processor
5454 * into the current processors event counters.
5455 * This artificially elevates the count of the current
5456 * processor.
5457 */
5458 vm_events_fold_cpu(cpu);
5459
5460 /*
5461 * Zero the differential counters of the dead processor
5462 * so that the vm statistics are consistent.
5463 *
5464 * This is only okay since the processor is dead and cannot
5465 * race with what we are doing.
5466 */
5467 cpu_vm_stats_fold(cpu);
5468 }
5469 return NOTIFY_OK;
5470 }
5471
5472 void __init page_alloc_init(void)
5473 {
5474 hotcpu_notifier(page_alloc_cpu_notify, 0);
5475 }
5476
5477 /*
5478 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5479 * or min_free_kbytes changes.
5480 */
5481 static void calculate_totalreserve_pages(void)
5482 {
5483 struct pglist_data *pgdat;
5484 unsigned long reserve_pages = 0;
5485 enum zone_type i, j;
5486
5487 for_each_online_pgdat(pgdat) {
5488 for (i = 0; i < MAX_NR_ZONES; i++) {
5489 struct zone *zone = pgdat->node_zones + i;
5490 unsigned long max = 0;
5491
5492 /* Find valid and maximum lowmem_reserve in the zone */
5493 for (j = i; j < MAX_NR_ZONES; j++) {
5494 if (zone->lowmem_reserve[j] > max)
5495 max = zone->lowmem_reserve[j];
5496 }
5497
5498 /* we treat the high watermark as reserved pages. */
5499 max += high_wmark_pages(zone);
5500
5501 if (max > zone->managed_pages)
5502 max = zone->managed_pages;
5503 reserve_pages += max;
5504 /*
5505 * Lowmem reserves are not available to
5506 * GFP_HIGHUSER page cache allocations and
5507 * kswapd tries to balance zones to their high
5508 * watermark. As a result, neither should be
5509 * regarded as dirtyable memory, to prevent a
5510 * situation where reclaim has to clean pages
5511 * in order to balance the zones.
5512 */
5513 zone->dirty_balance_reserve = max;
5514 }
5515 }
5516 dirty_balance_reserve = reserve_pages;
5517 totalreserve_pages = reserve_pages;
5518 }
5519
5520 /*
5521 * setup_per_zone_lowmem_reserve - called whenever
5522 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5523 * has a correct pages reserved value, so an adequate number of
5524 * pages are left in the zone after a successful __alloc_pages().
5525 */
5526 static void setup_per_zone_lowmem_reserve(void)
5527 {
5528 struct pglist_data *pgdat;
5529 enum zone_type j, idx;
5530
5531 for_each_online_pgdat(pgdat) {
5532 for (j = 0; j < MAX_NR_ZONES; j++) {
5533 struct zone *zone = pgdat->node_zones + j;
5534 unsigned long managed_pages = zone->managed_pages;
5535
5536 zone->lowmem_reserve[j] = 0;
5537
5538 idx = j;
5539 while (idx) {
5540 struct zone *lower_zone;
5541
5542 idx--;
5543
5544 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5545 sysctl_lowmem_reserve_ratio[idx] = 1;
5546
5547 lower_zone = pgdat->node_zones + idx;
5548 lower_zone->lowmem_reserve[j] = managed_pages /
5549 sysctl_lowmem_reserve_ratio[idx];
5550 managed_pages += lower_zone->managed_pages;
5551 }
5552 }
5553 }
5554
5555 /* update totalreserve_pages */
5556 calculate_totalreserve_pages();
5557 }
5558
5559 static void __setup_per_zone_wmarks(void)
5560 {
5561 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5562 unsigned long lowmem_pages = 0;
5563 struct zone *zone;
5564 unsigned long flags;
5565
5566 /* Calculate total number of !ZONE_HIGHMEM pages */
5567 for_each_zone(zone) {
5568 if (!is_highmem(zone))
5569 lowmem_pages += zone->managed_pages;
5570 }
5571
5572 for_each_zone(zone) {
5573 u64 tmp;
5574
5575 spin_lock_irqsave(&zone->lock, flags);
5576 tmp = (u64)pages_min * zone->managed_pages;
5577 do_div(tmp, lowmem_pages);
5578 if (is_highmem(zone)) {
5579 /*
5580 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5581 * need highmem pages, so cap pages_min to a small
5582 * value here.
5583 *
5584 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5585 * deltas controls asynch page reclaim, and so should
5586 * not be capped for highmem.
5587 */
5588 unsigned long min_pages;
5589
5590 min_pages = zone->managed_pages / 1024;
5591 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5592 zone->watermark[WMARK_MIN] = min_pages;
5593 } else {
5594 /*
5595 * If it's a lowmem zone, reserve a number of pages
5596 * proportionate to the zone's size.
5597 */
5598 zone->watermark[WMARK_MIN] = tmp;
5599 }
5600
5601 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5602 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5603
5604 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5605 high_wmark_pages(zone) -
5606 low_wmark_pages(zone) -
5607 zone_page_state(zone, NR_ALLOC_BATCH));
5608
5609 setup_zone_migrate_reserve(zone);
5610 spin_unlock_irqrestore(&zone->lock, flags);
5611 }
5612
5613 /* update totalreserve_pages */
5614 calculate_totalreserve_pages();
5615 }
5616
5617 /**
5618 * setup_per_zone_wmarks - called when min_free_kbytes changes
5619 * or when memory is hot-{added|removed}
5620 *
5621 * Ensures that the watermark[min,low,high] values for each zone are set
5622 * correctly with respect to min_free_kbytes.
5623 */
5624 void setup_per_zone_wmarks(void)
5625 {
5626 mutex_lock(&zonelists_mutex);
5627 __setup_per_zone_wmarks();
5628 mutex_unlock(&zonelists_mutex);
5629 }
5630
5631 /*
5632 * The inactive anon list should be small enough that the VM never has to
5633 * do too much work, but large enough that each inactive page has a chance
5634 * to be referenced again before it is swapped out.
5635 *
5636 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5637 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5638 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5639 * the anonymous pages are kept on the inactive list.
5640 *
5641 * total target max
5642 * memory ratio inactive anon
5643 * -------------------------------------
5644 * 10MB 1 5MB
5645 * 100MB 1 50MB
5646 * 1GB 3 250MB
5647 * 10GB 10 0.9GB
5648 * 100GB 31 3GB
5649 * 1TB 101 10GB
5650 * 10TB 320 32GB
5651 */
5652 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5653 {
5654 unsigned int gb, ratio;
5655
5656 /* Zone size in gigabytes */
5657 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5658 if (gb)
5659 ratio = int_sqrt(10 * gb);
5660 else
5661 ratio = 1;
5662
5663 zone->inactive_ratio = ratio;
5664 }
5665
5666 static void __meminit setup_per_zone_inactive_ratio(void)
5667 {
5668 struct zone *zone;
5669
5670 for_each_zone(zone)
5671 calculate_zone_inactive_ratio(zone);
5672 }
5673
5674 /*
5675 * Initialise min_free_kbytes.
5676 *
5677 * For small machines we want it small (128k min). For large machines
5678 * we want it large (64MB max). But it is not linear, because network
5679 * bandwidth does not increase linearly with machine size. We use
5680 *
5681 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5682 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5683 *
5684 * which yields
5685 *
5686 * 16MB: 512k
5687 * 32MB: 724k
5688 * 64MB: 1024k
5689 * 128MB: 1448k
5690 * 256MB: 2048k
5691 * 512MB: 2896k
5692 * 1024MB: 4096k
5693 * 2048MB: 5792k
5694 * 4096MB: 8192k
5695 * 8192MB: 11584k
5696 * 16384MB: 16384k
5697 */
5698 int __meminit init_per_zone_wmark_min(void)
5699 {
5700 unsigned long lowmem_kbytes;
5701 int new_min_free_kbytes;
5702
5703 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5704 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5705
5706 if (new_min_free_kbytes > user_min_free_kbytes) {
5707 min_free_kbytes = new_min_free_kbytes;
5708 if (min_free_kbytes < 128)
5709 min_free_kbytes = 128;
5710 if (min_free_kbytes > 65536)
5711 min_free_kbytes = 65536;
5712 } else {
5713 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5714 new_min_free_kbytes, user_min_free_kbytes);
5715 }
5716 setup_per_zone_wmarks();
5717 refresh_zone_stat_thresholds();
5718 setup_per_zone_lowmem_reserve();
5719 setup_per_zone_inactive_ratio();
5720 return 0;
5721 }
5722 module_init(init_per_zone_wmark_min)
5723
5724 /*
5725 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5726 * that we can call two helper functions whenever min_free_kbytes
5727 * changes.
5728 */
5729 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5730 void __user *buffer, size_t *length, loff_t *ppos)
5731 {
5732 proc_dointvec(table, write, buffer, length, ppos);
5733 if (write) {
5734 user_min_free_kbytes = min_free_kbytes;
5735 setup_per_zone_wmarks();
5736 }
5737 return 0;
5738 }
5739
5740 #ifdef CONFIG_NUMA
5741 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5742 void __user *buffer, size_t *length, loff_t *ppos)
5743 {
5744 struct zone *zone;
5745 int rc;
5746
5747 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5748 if (rc)
5749 return rc;
5750
5751 for_each_zone(zone)
5752 zone->min_unmapped_pages = (zone->managed_pages *
5753 sysctl_min_unmapped_ratio) / 100;
5754 return 0;
5755 }
5756
5757 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5758 void __user *buffer, size_t *length, loff_t *ppos)
5759 {
5760 struct zone *zone;
5761 int rc;
5762
5763 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5764 if (rc)
5765 return rc;
5766
5767 for_each_zone(zone)
5768 zone->min_slab_pages = (zone->managed_pages *
5769 sysctl_min_slab_ratio) / 100;
5770 return 0;
5771 }
5772 #endif
5773
5774 /*
5775 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5776 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5777 * whenever sysctl_lowmem_reserve_ratio changes.
5778 *
5779 * The reserve ratio obviously has absolutely no relation with the
5780 * minimum watermarks. The lowmem reserve ratio can only make sense
5781 * if in function of the boot time zone sizes.
5782 */
5783 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5784 void __user *buffer, size_t *length, loff_t *ppos)
5785 {
5786 proc_dointvec_minmax(table, write, buffer, length, ppos);
5787 setup_per_zone_lowmem_reserve();
5788 return 0;
5789 }
5790
5791 /*
5792 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5793 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5794 * pagelist can have before it gets flushed back to buddy allocator.
5795 */
5796 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5797 void __user *buffer, size_t *length, loff_t *ppos)
5798 {
5799 struct zone *zone;
5800 unsigned int cpu;
5801 int ret;
5802
5803 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5804 if (!write || (ret < 0))
5805 return ret;
5806
5807 mutex_lock(&pcp_batch_high_lock);
5808 for_each_populated_zone(zone) {
5809 unsigned long high;
5810 high = zone->managed_pages / percpu_pagelist_fraction;
5811 for_each_possible_cpu(cpu)
5812 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5813 high);
5814 }
5815 mutex_unlock(&pcp_batch_high_lock);
5816 return 0;
5817 }
5818
5819 int hashdist = HASHDIST_DEFAULT;
5820
5821 #ifdef CONFIG_NUMA
5822 static int __init set_hashdist(char *str)
5823 {
5824 if (!str)
5825 return 0;
5826 hashdist = simple_strtoul(str, &str, 0);
5827 return 1;
5828 }
5829 __setup("hashdist=", set_hashdist);
5830 #endif
5831
5832 /*
5833 * allocate a large system hash table from bootmem
5834 * - it is assumed that the hash table must contain an exact power-of-2
5835 * quantity of entries
5836 * - limit is the number of hash buckets, not the total allocation size
5837 */
5838 void *__init alloc_large_system_hash(const char *tablename,
5839 unsigned long bucketsize,
5840 unsigned long numentries,
5841 int scale,
5842 int flags,
5843 unsigned int *_hash_shift,
5844 unsigned int *_hash_mask,
5845 unsigned long low_limit,
5846 unsigned long high_limit)
5847 {
5848 unsigned long long max = high_limit;
5849 unsigned long log2qty, size;
5850 void *table = NULL;
5851
5852 /* allow the kernel cmdline to have a say */
5853 if (!numentries) {
5854 /* round applicable memory size up to nearest megabyte */
5855 numentries = nr_kernel_pages;
5856
5857 /* It isn't necessary when PAGE_SIZE >= 1MB */
5858 if (PAGE_SHIFT < 20)
5859 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5860
5861 /* limit to 1 bucket per 2^scale bytes of low memory */
5862 if (scale > PAGE_SHIFT)
5863 numentries >>= (scale - PAGE_SHIFT);
5864 else
5865 numentries <<= (PAGE_SHIFT - scale);
5866
5867 /* Make sure we've got at least a 0-order allocation.. */
5868 if (unlikely(flags & HASH_SMALL)) {
5869 /* Makes no sense without HASH_EARLY */
5870 WARN_ON(!(flags & HASH_EARLY));
5871 if (!(numentries >> *_hash_shift)) {
5872 numentries = 1UL << *_hash_shift;
5873 BUG_ON(!numentries);
5874 }
5875 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5876 numentries = PAGE_SIZE / bucketsize;
5877 }
5878 numentries = roundup_pow_of_two(numentries);
5879
5880 /* limit allocation size to 1/16 total memory by default */
5881 if (max == 0) {
5882 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5883 do_div(max, bucketsize);
5884 }
5885 max = min(max, 0x80000000ULL);
5886
5887 if (numentries < low_limit)
5888 numentries = low_limit;
5889 if (numentries > max)
5890 numentries = max;
5891
5892 log2qty = ilog2(numentries);
5893
5894 do {
5895 size = bucketsize << log2qty;
5896 if (flags & HASH_EARLY)
5897 table = memblock_virt_alloc_nopanic(size, 0);
5898 else if (hashdist)
5899 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5900 else {
5901 /*
5902 * If bucketsize is not a power-of-two, we may free
5903 * some pages at the end of hash table which
5904 * alloc_pages_exact() automatically does
5905 */
5906 if (get_order(size) < MAX_ORDER) {
5907 table = alloc_pages_exact(size, GFP_ATOMIC);
5908 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5909 }
5910 }
5911 } while (!table && size > PAGE_SIZE && --log2qty);
5912
5913 if (!table)
5914 panic("Failed to allocate %s hash table\n", tablename);
5915
5916 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5917 tablename,
5918 (1UL << log2qty),
5919 ilog2(size) - PAGE_SHIFT,
5920 size);
5921
5922 if (_hash_shift)
5923 *_hash_shift = log2qty;
5924 if (_hash_mask)
5925 *_hash_mask = (1 << log2qty) - 1;
5926
5927 return table;
5928 }
5929
5930 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5931 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5932 unsigned long pfn)
5933 {
5934 #ifdef CONFIG_SPARSEMEM
5935 return __pfn_to_section(pfn)->pageblock_flags;
5936 #else
5937 return zone->pageblock_flags;
5938 #endif /* CONFIG_SPARSEMEM */
5939 }
5940
5941 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5942 {
5943 #ifdef CONFIG_SPARSEMEM
5944 pfn &= (PAGES_PER_SECTION-1);
5945 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5946 #else
5947 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5948 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5949 #endif /* CONFIG_SPARSEMEM */
5950 }
5951
5952 /**
5953 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5954 * @page: The page within the block of interest
5955 * @start_bitidx: The first bit of interest to retrieve
5956 * @end_bitidx: The last bit of interest
5957 * returns pageblock_bits flags
5958 */
5959 unsigned long get_pageblock_flags_group(struct page *page,
5960 int start_bitidx, int end_bitidx)
5961 {
5962 struct zone *zone;
5963 unsigned long *bitmap;
5964 unsigned long pfn, bitidx;
5965 unsigned long flags = 0;
5966 unsigned long value = 1;
5967
5968 zone = page_zone(page);
5969 pfn = page_to_pfn(page);
5970 bitmap = get_pageblock_bitmap(zone, pfn);
5971 bitidx = pfn_to_bitidx(zone, pfn);
5972
5973 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5974 if (test_bit(bitidx + start_bitidx, bitmap))
5975 flags |= value;
5976
5977 return flags;
5978 }
5979
5980 /**
5981 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5982 * @page: The page within the block of interest
5983 * @start_bitidx: The first bit of interest
5984 * @end_bitidx: The last bit of interest
5985 * @flags: The flags to set
5986 */
5987 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5988 int start_bitidx, int end_bitidx)
5989 {
5990 struct zone *zone;
5991 unsigned long *bitmap;
5992 unsigned long pfn, bitidx;
5993 unsigned long value = 1;
5994
5995 zone = page_zone(page);
5996 pfn = page_to_pfn(page);
5997 bitmap = get_pageblock_bitmap(zone, pfn);
5998 bitidx = pfn_to_bitidx(zone, pfn);
5999 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
6000
6001 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6002 if (flags & value)
6003 __set_bit(bitidx + start_bitidx, bitmap);
6004 else
6005 __clear_bit(bitidx + start_bitidx, bitmap);
6006 }
6007
6008 /*
6009 * This function checks whether pageblock includes unmovable pages or not.
6010 * If @count is not zero, it is okay to include less @count unmovable pages
6011 *
6012 * PageLRU check without isolation or lru_lock could race so that
6013 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6014 * expect this function should be exact.
6015 */
6016 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6017 bool skip_hwpoisoned_pages)
6018 {
6019 unsigned long pfn, iter, found;
6020 int mt;
6021
6022 /*
6023 * For avoiding noise data, lru_add_drain_all() should be called
6024 * If ZONE_MOVABLE, the zone never contains unmovable pages
6025 */
6026 if (zone_idx(zone) == ZONE_MOVABLE)
6027 return false;
6028 mt = get_pageblock_migratetype(page);
6029 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6030 return false;
6031
6032 pfn = page_to_pfn(page);
6033 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6034 unsigned long check = pfn + iter;
6035
6036 if (!pfn_valid_within(check))
6037 continue;
6038
6039 page = pfn_to_page(check);
6040
6041 /*
6042 * Hugepages are not in LRU lists, but they're movable.
6043 * We need not scan over tail pages bacause we don't
6044 * handle each tail page individually in migration.
6045 */
6046 if (PageHuge(page)) {
6047 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6048 continue;
6049 }
6050
6051 /*
6052 * We can't use page_count without pin a page
6053 * because another CPU can free compound page.
6054 * This check already skips compound tails of THP
6055 * because their page->_count is zero at all time.
6056 */
6057 if (!atomic_read(&page->_count)) {
6058 if (PageBuddy(page))
6059 iter += (1 << page_order(page)) - 1;
6060 continue;
6061 }
6062
6063 /*
6064 * The HWPoisoned page may be not in buddy system, and
6065 * page_count() is not 0.
6066 */
6067 if (skip_hwpoisoned_pages && PageHWPoison(page))
6068 continue;
6069
6070 if (!PageLRU(page))
6071 found++;
6072 /*
6073 * If there are RECLAIMABLE pages, we need to check it.
6074 * But now, memory offline itself doesn't call shrink_slab()
6075 * and it still to be fixed.
6076 */
6077 /*
6078 * If the page is not RAM, page_count()should be 0.
6079 * we don't need more check. This is an _used_ not-movable page.
6080 *
6081 * The problematic thing here is PG_reserved pages. PG_reserved
6082 * is set to both of a memory hole page and a _used_ kernel
6083 * page at boot.
6084 */
6085 if (found > count)
6086 return true;
6087 }
6088 return false;
6089 }
6090
6091 bool is_pageblock_removable_nolock(struct page *page)
6092 {
6093 struct zone *zone;
6094 unsigned long pfn;
6095
6096 /*
6097 * We have to be careful here because we are iterating over memory
6098 * sections which are not zone aware so we might end up outside of
6099 * the zone but still within the section.
6100 * We have to take care about the node as well. If the node is offline
6101 * its NODE_DATA will be NULL - see page_zone.
6102 */
6103 if (!node_online(page_to_nid(page)))
6104 return false;
6105
6106 zone = page_zone(page);
6107 pfn = page_to_pfn(page);
6108 if (!zone_spans_pfn(zone, pfn))
6109 return false;
6110
6111 return !has_unmovable_pages(zone, page, 0, true);
6112 }
6113
6114 #ifdef CONFIG_CMA
6115
6116 static unsigned long pfn_max_align_down(unsigned long pfn)
6117 {
6118 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6119 pageblock_nr_pages) - 1);
6120 }
6121
6122 static unsigned long pfn_max_align_up(unsigned long pfn)
6123 {
6124 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6125 pageblock_nr_pages));
6126 }
6127
6128 /* [start, end) must belong to a single zone. */
6129 static int __alloc_contig_migrate_range(struct compact_control *cc,
6130 unsigned long start, unsigned long end)
6131 {
6132 /* This function is based on compact_zone() from compaction.c. */
6133 unsigned long nr_reclaimed;
6134 unsigned long pfn = start;
6135 unsigned int tries = 0;
6136 int ret = 0;
6137
6138 migrate_prep();
6139
6140 while (pfn < end || !list_empty(&cc->migratepages)) {
6141 if (fatal_signal_pending(current)) {
6142 ret = -EINTR;
6143 break;
6144 }
6145
6146 if (list_empty(&cc->migratepages)) {
6147 cc->nr_migratepages = 0;
6148 pfn = isolate_migratepages_range(cc->zone, cc,
6149 pfn, end, true);
6150 if (!pfn) {
6151 ret = -EINTR;
6152 break;
6153 }
6154 tries = 0;
6155 } else if (++tries == 5) {
6156 ret = ret < 0 ? ret : -EBUSY;
6157 break;
6158 }
6159
6160 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6161 &cc->migratepages);
6162 cc->nr_migratepages -= nr_reclaimed;
6163
6164 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6165 0, MIGRATE_SYNC, MR_CMA);
6166 }
6167 if (ret < 0) {
6168 putback_movable_pages(&cc->migratepages);
6169 return ret;
6170 }
6171 return 0;
6172 }
6173
6174 /**
6175 * alloc_contig_range() -- tries to allocate given range of pages
6176 * @start: start PFN to allocate
6177 * @end: one-past-the-last PFN to allocate
6178 * @migratetype: migratetype of the underlaying pageblocks (either
6179 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6180 * in range must have the same migratetype and it must
6181 * be either of the two.
6182 *
6183 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6184 * aligned, however it's the caller's responsibility to guarantee that
6185 * we are the only thread that changes migrate type of pageblocks the
6186 * pages fall in.
6187 *
6188 * The PFN range must belong to a single zone.
6189 *
6190 * Returns zero on success or negative error code. On success all
6191 * pages which PFN is in [start, end) are allocated for the caller and
6192 * need to be freed with free_contig_range().
6193 */
6194 int alloc_contig_range(unsigned long start, unsigned long end,
6195 unsigned migratetype)
6196 {
6197 unsigned long outer_start, outer_end;
6198 int ret = 0, order;
6199
6200 struct compact_control cc = {
6201 .nr_migratepages = 0,
6202 .order = -1,
6203 .zone = page_zone(pfn_to_page(start)),
6204 .sync = true,
6205 .ignore_skip_hint = true,
6206 };
6207 INIT_LIST_HEAD(&cc.migratepages);
6208
6209 /*
6210 * What we do here is we mark all pageblocks in range as
6211 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6212 * have different sizes, and due to the way page allocator
6213 * work, we align the range to biggest of the two pages so
6214 * that page allocator won't try to merge buddies from
6215 * different pageblocks and change MIGRATE_ISOLATE to some
6216 * other migration type.
6217 *
6218 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6219 * migrate the pages from an unaligned range (ie. pages that
6220 * we are interested in). This will put all the pages in
6221 * range back to page allocator as MIGRATE_ISOLATE.
6222 *
6223 * When this is done, we take the pages in range from page
6224 * allocator removing them from the buddy system. This way
6225 * page allocator will never consider using them.
6226 *
6227 * This lets us mark the pageblocks back as
6228 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6229 * aligned range but not in the unaligned, original range are
6230 * put back to page allocator so that buddy can use them.
6231 */
6232
6233 ret = start_isolate_page_range(pfn_max_align_down(start),
6234 pfn_max_align_up(end), migratetype,
6235 false);
6236 if (ret)
6237 return ret;
6238
6239 ret = __alloc_contig_migrate_range(&cc, start, end);
6240 if (ret)
6241 goto done;
6242
6243 /*
6244 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6245 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6246 * more, all pages in [start, end) are free in page allocator.
6247 * What we are going to do is to allocate all pages from
6248 * [start, end) (that is remove them from page allocator).
6249 *
6250 * The only problem is that pages at the beginning and at the
6251 * end of interesting range may be not aligned with pages that
6252 * page allocator holds, ie. they can be part of higher order
6253 * pages. Because of this, we reserve the bigger range and
6254 * once this is done free the pages we are not interested in.
6255 *
6256 * We don't have to hold zone->lock here because the pages are
6257 * isolated thus they won't get removed from buddy.
6258 */
6259
6260 lru_add_drain_all();
6261 drain_all_pages();
6262
6263 order = 0;
6264 outer_start = start;
6265 while (!PageBuddy(pfn_to_page(outer_start))) {
6266 if (++order >= MAX_ORDER) {
6267 ret = -EBUSY;
6268 goto done;
6269 }
6270 outer_start &= ~0UL << order;
6271 }
6272
6273 /* Make sure the range is really isolated. */
6274 if (test_pages_isolated(outer_start, end, false)) {
6275 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6276 outer_start, end);
6277 ret = -EBUSY;
6278 goto done;
6279 }
6280
6281
6282 /* Grab isolated pages from freelists. */
6283 outer_end = isolate_freepages_range(&cc, outer_start, end);
6284 if (!outer_end) {
6285 ret = -EBUSY;
6286 goto done;
6287 }
6288
6289 /* Free head and tail (if any) */
6290 if (start != outer_start)
6291 free_contig_range(outer_start, start - outer_start);
6292 if (end != outer_end)
6293 free_contig_range(end, outer_end - end);
6294
6295 done:
6296 undo_isolate_page_range(pfn_max_align_down(start),
6297 pfn_max_align_up(end), migratetype);
6298 return ret;
6299 }
6300
6301 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6302 {
6303 unsigned int count = 0;
6304
6305 for (; nr_pages--; pfn++) {
6306 struct page *page = pfn_to_page(pfn);
6307
6308 count += page_count(page) != 1;
6309 __free_page(page);
6310 }
6311 WARN(count != 0, "%d pages are still in use!\n", count);
6312 }
6313 #endif
6314
6315 #ifdef CONFIG_MEMORY_HOTPLUG
6316 /*
6317 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6318 * page high values need to be recalulated.
6319 */
6320 void __meminit zone_pcp_update(struct zone *zone)
6321 {
6322 unsigned cpu;
6323 mutex_lock(&pcp_batch_high_lock);
6324 for_each_possible_cpu(cpu)
6325 pageset_set_high_and_batch(zone,
6326 per_cpu_ptr(zone->pageset, cpu));
6327 mutex_unlock(&pcp_batch_high_lock);
6328 }
6329 #endif
6330
6331 void zone_pcp_reset(struct zone *zone)
6332 {
6333 unsigned long flags;
6334 int cpu;
6335 struct per_cpu_pageset *pset;
6336
6337 /* avoid races with drain_pages() */
6338 local_irq_save(flags);
6339 if (zone->pageset != &boot_pageset) {
6340 for_each_online_cpu(cpu) {
6341 pset = per_cpu_ptr(zone->pageset, cpu);
6342 drain_zonestat(zone, pset);
6343 }
6344 free_percpu(zone->pageset);
6345 zone->pageset = &boot_pageset;
6346 }
6347 local_irq_restore(flags);
6348 }
6349
6350 #ifdef CONFIG_MEMORY_HOTREMOVE
6351 /*
6352 * All pages in the range must be isolated before calling this.
6353 */
6354 void
6355 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6356 {
6357 struct page *page;
6358 struct zone *zone;
6359 int order, i;
6360 unsigned long pfn;
6361 unsigned long flags;
6362 /* find the first valid pfn */
6363 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6364 if (pfn_valid(pfn))
6365 break;
6366 if (pfn == end_pfn)
6367 return;
6368 zone = page_zone(pfn_to_page(pfn));
6369 spin_lock_irqsave(&zone->lock, flags);
6370 pfn = start_pfn;
6371 while (pfn < end_pfn) {
6372 if (!pfn_valid(pfn)) {
6373 pfn++;
6374 continue;
6375 }
6376 page = pfn_to_page(pfn);
6377 /*
6378 * The HWPoisoned page may be not in buddy system, and
6379 * page_count() is not 0.
6380 */
6381 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6382 pfn++;
6383 SetPageReserved(page);
6384 continue;
6385 }
6386
6387 BUG_ON(page_count(page));
6388 BUG_ON(!PageBuddy(page));
6389 order = page_order(page);
6390 #ifdef CONFIG_DEBUG_VM
6391 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6392 pfn, 1 << order, end_pfn);
6393 #endif
6394 list_del(&page->lru);
6395 rmv_page_order(page);
6396 zone->free_area[order].nr_free--;
6397 for (i = 0; i < (1 << order); i++)
6398 SetPageReserved((page+i));
6399 pfn += (1 << order);
6400 }
6401 spin_unlock_irqrestore(&zone->lock, flags);
6402 }
6403 #endif
6404
6405 #ifdef CONFIG_MEMORY_FAILURE
6406 bool is_free_buddy_page(struct page *page)
6407 {
6408 struct zone *zone = page_zone(page);
6409 unsigned long pfn = page_to_pfn(page);
6410 unsigned long flags;
6411 int order;
6412
6413 spin_lock_irqsave(&zone->lock, flags);
6414 for (order = 0; order < MAX_ORDER; order++) {
6415 struct page *page_head = page - (pfn & ((1 << order) - 1));
6416
6417 if (PageBuddy(page_head) && page_order(page_head) >= order)
6418 break;
6419 }
6420 spin_unlock_irqrestore(&zone->lock, flags);
6421
6422 return order < MAX_ORDER;
6423 }
6424 #endif
6425
6426 static const struct trace_print_flags pageflag_names[] = {
6427 {1UL << PG_locked, "locked" },
6428 {1UL << PG_error, "error" },
6429 {1UL << PG_referenced, "referenced" },
6430 {1UL << PG_uptodate, "uptodate" },
6431 {1UL << PG_dirty, "dirty" },
6432 {1UL << PG_lru, "lru" },
6433 {1UL << PG_active, "active" },
6434 {1UL << PG_slab, "slab" },
6435 {1UL << PG_owner_priv_1, "owner_priv_1" },
6436 {1UL << PG_arch_1, "arch_1" },
6437 {1UL << PG_reserved, "reserved" },
6438 {1UL << PG_private, "private" },
6439 {1UL << PG_private_2, "private_2" },
6440 {1UL << PG_writeback, "writeback" },
6441 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6442 {1UL << PG_head, "head" },
6443 {1UL << PG_tail, "tail" },
6444 #else
6445 {1UL << PG_compound, "compound" },
6446 #endif
6447 {1UL << PG_swapcache, "swapcache" },
6448 {1UL << PG_mappedtodisk, "mappedtodisk" },
6449 {1UL << PG_reclaim, "reclaim" },
6450 {1UL << PG_swapbacked, "swapbacked" },
6451 {1UL << PG_unevictable, "unevictable" },
6452 #ifdef CONFIG_MMU
6453 {1UL << PG_mlocked, "mlocked" },
6454 #endif
6455 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6456 {1UL << PG_uncached, "uncached" },
6457 #endif
6458 #ifdef CONFIG_MEMORY_FAILURE
6459 {1UL << PG_hwpoison, "hwpoison" },
6460 #endif
6461 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6462 {1UL << PG_compound_lock, "compound_lock" },
6463 #endif
6464 };
6465
6466 static void dump_page_flags(unsigned long flags)
6467 {
6468 const char *delim = "";
6469 unsigned long mask;
6470 int i;
6471
6472 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6473
6474 printk(KERN_ALERT "page flags: %#lx(", flags);
6475
6476 /* remove zone id */
6477 flags &= (1UL << NR_PAGEFLAGS) - 1;
6478
6479 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6480
6481 mask = pageflag_names[i].mask;
6482 if ((flags & mask) != mask)
6483 continue;
6484
6485 flags &= ~mask;
6486 printk("%s%s", delim, pageflag_names[i].name);
6487 delim = "|";
6488 }
6489
6490 /* check for left over flags */
6491 if (flags)
6492 printk("%s%#lx", delim, flags);
6493
6494 printk(")\n");
6495 }
6496
6497 void dump_page(struct page *page)
6498 {
6499 printk(KERN_ALERT
6500 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6501 page, atomic_read(&page->_count), page_mapcount(page),
6502 page->mapping, page->index);
6503 dump_page_flags(page->flags);
6504 mem_cgroup_print_bad_page(page);
6505 }